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Preface

This book offers a systematic and thorough examination of theoretical and compu-
tational aspects of the modern mimetic finite difference (MFD) method. The MFD
method preserves or mimics underlying properties of physical and mathematical mod-
els, thereby improving the fidelity and predictive capability of computer simulations.
We focus here on the numerical solution of elliptic partial differential equation (PDEs)
on unstructured polygonal and polyhedral meshes for which the MFD method has
proven to be very successful in the last five decades.

The book covers advanced research topics and issues. Most of the presented ma-
terial is the result of our research work that has been published in the last decade. Our
intention is to offer a deep introduction to the major aspects of the MFD method such
as the design principles for the development of new schemes, tools for the conver-
gence analysis, and matrix formulas ready for a code implementation, to the widest
possible audience. Nonetheless, to appreciate our effort a minimum background is
required in the linear algebra, functional analysis, and numerical analysis of PDEs.
It will be helpful for the reader to have some familiarity with the classical lowest-
order finite element schemes, such as the primal linear and mixed Raviart-Thomas
methods, the classical finite volume and finite difference schemes.

The book is structured in three parts with four chapters each.

The MFD method has a strong theoretical foundation, which is reviewed in Part I,
entitled Foundation. In Chap. 1, after a short motivation for using the MFD method
in applications, we give an historical introduction to the development of the mimetic
technology and an overview of all mathematical models considered in the book. We
present their strong and weak formulations and summarize results concerning the
existence and regularity of weak solutions. We also introduce the notion of shape-
regular polyhedral and polygonal meshes that are extensively used throughout the
book. In Sect.1.3 we illustrate a few basic design principles of the mimetic discretiza-
tion method on the simplest one-dimensional Poisson equation. This section is par-
ticularly suitable for readers not familiar with the mimetic technology.

The theoretical foundation of the existing compatible discretization methods dates
back to the fundamental work of Withney on geometric integration. No surprise that
the MFD method is related to some of the most basic concepts of discrete differential
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forms such as the chain-cochain duality and discrete Stokes theorems. The mimetic
schemes are derived in part by mimicking the Stokes theorems in a discrete setting.
The further development of this concept is in Chap. 2, where a discrete vector and ten-
sor calculus (DVTC), the core of the MFD method that separates it from finite volume
methods, is introduced. Using fundamental physical principles, we formulate natural
discrete analogues of the first-order differential operators divergence, gradient, and
curl. Compatible adjoint discrete operators are defined via duality relationships, more
precisely, via discrete integration by parts formulas. The derivation of these operators
uses the notion of mimetic inner products that approximate L? products of scalar or
vector functions.

The practical construction of accurate inner products on unstructured polygonal
and polyhedral meshes requires a set of new theoretical tools that are introduced in
Chap. 3. We introduce the stability and consistency conditions that play the funda-
mental role in proving well-posedness and accuracy of the mimetic discretizations.
We also connect the mimetic inner products with reconstruction operators that make a
useful theoretical tool but are never built in practice. This chapter highlights a unique
feature of the MFD method. On polyhedral (including hexahedral and sometimes
simplicial) meshes, it produces a family of schemes with equivalent properties such
as the stencil size and convergence rate.

In Chap. 4 we extend the mimetic discretization technology to general bilinear
forms, which allows us to apply the MFD method to a wider range of problems. We
moreover present a different approach to mimetic discretizations that takes the steps
from the weak formulation of the problem, rather than the strong one. Although this
approach turns out to be often equivalent to the construction presented in the previ-
ous chapters, this is not always the case and it is very useful to have a clear picture
of both methodologies. Furthermore, in Chap. 4 we focus on the detailed analysis of
the stability and consistency conditions. We show again that the MFD method pro-
vides a family of schemes that share some important properties, e.g., accuracy and
stability, so that the convergence analysis can be carried out simultaneously for the
entire family.

Part I1 is entitled Mimetic Discretization of Basic PDEs. It explains how the MFD
method can be applied for solving the steady-state diffusion equation in the primal
and mixed formulations, Maxwell’s equations, and the steady Stokes equations. We
extended the construction of mimetic inner products (in three discrete spaces) to the
case of tensorial coefficients. We also provide theoretical construction of various
reconstruction operators, prove stability results, and derive a priori and a posteriori
error estimates in mesh-dependent norms.

A useful but also limited viewpoint is to consider the MFD method as an exten-
sion of some classical discretization methods to polygonal and polyhedral meshes.
Indeed, the family of low-order mimetic schemes contains many well-known finite
volume, finite difference and finite elements schemes. On special regular grids (or-
thogonal Cartesian grids or logically rectangular grids), we recover such schemes as
the particular members of the mimetic family. However, the mimetic schemes work
perfectly on unstructured polygonal and polyhedral meshes, with arbitrarily-shaped
cells that may be even non-convex and degenerate.
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In Chap. 5, we apply the MFD method for solving the steady-state diffusion equa-
tion in a mixed form and show how this method generalizes the lowest-order Raviart-
Thomas and BDM finite element methods on simplicial meshes to unstructured polyg-
onal and polyhedral meshes in two and three spatial dimensions. We also investigate
additional important issues such as the super convergence, solution post-processing,
a-posteriori error estimation and adaptivity.

In Chap. 6, we apply the MFD method for solving the steady-state diffusion equa-
tion in a primal form and show how this method generalizes the linear Galerkin meth-
od on simplicial meshes to unstructured polygonal and polyhedral meshes in two and
three spatial dimensions. On meshes of simplices, the nodal mimetic formulation of
coincides with the linear Galerkin finite element method. On rectangular meshes,
particular members of the mimetic family coincide with a number of classical finite
difference schemes (5-point Laplacian, 9-point Laplacian, Q) finite element method).
For two-dimensional problems, we also describe and analyze arbitrary-order mimetic
schemes. Finally, we consider the a-posteriori error estimation and adaptivity for the
low order mimetic schemes.

In Chap. 7, we apply the MFD for two time-dependent problems governed by
Maxwell’s equations and the magnetostatic problem. We discuss the conservation
of energy in the mimetic discretizations and provide formulas ready for the code
implementation. The convergence analysis of the MFD method for the magnetostatic
problem is a work in progress and therefore is incomplete.

In Chap. 8, we derive and analyze mimetic schemes for the steady-state Stokes
equations. Analysis of the inf-sup stability condition imposes constraints on the dis-
crete spaces for the velocity and pressure. We first develop a mimetic method that
takes inspiration from classical finite elements and show the good behavior of such
scheme. Afterwards, we use the flexibility of the mimetic technology to build a more
computationally efficient method, that makes use of much less degrees of freedom
and still satisfies the constraints above.

We were asked frequently by our colleagues about the applicability of the MFD
method to a wider class of problem. The Part III entitled Further Developments de-
scribes how the mimetic technology contributes to solving challenging problems
emerging in modeling complex physical processes. This includes solution of non-
linear PDEs, preservation of maximum principles, and stability and accuracy of dis-
cretizations on deforming (e.g., Lagrangian) meshes.

Chapter 9 is devoted to the problems of structural mechanics. We first present an
MFD method for the linear elasticity problem, considering both the displacement-
pressure and stress-displacement formulations. Afterwards, we present a mimetic
scheme for the Reissner-Mindlin plate bending problem, which uses deflection and
rotation as unknown variables. Our additional interest of these problems is related to
the fact that, in order to derive and analyze the numerical schemes, a large number
of mimetic operators and discrete spaces must be considered at once.

In Chap. 10, we present the MFD method for the convection-diffusion equation,
and the obstacle problem. We also consider the case of high Peclet numbers charac-
terizing a convection-dominated regime where the continuum solution may display
strong parabolic and exponential boundary layers.
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In Chap. 11, we consider a new emerging research direction dubbed m-adaptation,
which stands for mimetic adaptation. The m-adaptation allows us to select an opti-
mal scheme from the family of mimetic schemes in accordance with some problem-
dependent criteria that may include a discrete maximum principle (DMP), reduction
of a numerical dispersion, and boosting performance of algebraic solvers. Even if the
m-adaptation is still under development, a few interesting results are already available
for the derivation of positive schemes or schemes satisfying a DMP. In this chapter,
we analyze the family of the lowest-order mimetic schemes for the diffusion equation
in the mixed and primal forms. We formulate the constructive sufficient conditions
for the existence of a subfamily of mimetic scheme that satisfy the DMP.

In Chap. 12, we extend the MFD method to generalized polyhedral meshes with
cells featuring non-planar faces. Such cells appear in Lagrangian simulations where
the computational mesh is moved and deformed with the fluid. We use again the
flexibility of the mimetic construction to add velocity unknowns only on strongly
curved mesh faces in order to recover the optimal convergence rate.

Our final note is about the computational aspects of the mimetic technology. In
each of the Chaps. 5-12, one or more sections are dedicated to the implementation
details. The reader will find explicit formulas for the local mass and stiffness matrices.
Additional interesting implementation details can be found in Chap. 4. Once the local
matrices are coded, building the global mass or stiffness matrix can be done using
the conventional assembly process, like in the finite element method.

Los Alamos, New Mexico and Milano-Pavia, Italy Lourengo Beirdo da Veiga
September, 2013 Konstantin Lipnikov
Gianmarco Manzini
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Part 1
Foundation



1

Model elliptic problems

“Late Latin mimeticus,

from Greek mimetikos,

from mimeisthai to imitate,
from mimos mime”
(Merriam-Webster’s dictionary
on the origin of word mimetic)

The mathematical models used to describe our understanding of physical processes
become more sophisticated every decade. Thanks to the enormous growth of compu-
tational capabilities, modern computer simulations include dozens of coupled physi-
cal phenomena. This imposes new requirements on the underlying numerical models.
In addition to be accurate approximations of the mathematical models, the best dis-
crete models try to preserve or mimic other important properties of PDEs such as
the conservation laws, symmetries, maximum principles, and asymptotic limits. The
mimetic finite difference (MFD) method is one of the existing tools used by numeri-
cal analysts to design such discrete models.

The MFD method combines the best properties of advanced discretization meth-
ods. Like the finite volume method, it works on general polygonal and polyhedral
meshes. Like the finite element method, it has a fast growing convergence theory.
This book is focused on what is perhaps the most important aspect of the mimetic dis-
cretization technology — the derivation of numerical schemes on unstructured polyg-
onal and polyhedral meshes for elliptic PDEs.

It is nowadays recognized that the polyhedral meshes propose a number of advan-
tages for practical applications. When coupled with a robust discretization method
such as the MFD, they are more robust to mesh distortion and anisotropy. Meshes
with skewed and non-convex cells can still satisfy shape-regularity conditions (see
Sect. 1.6) to guarantee high quality of numerical results, a feature that is useful not
only for a mesh generation of complex domains, but also for capturing solution fea-
tures and using dynamically changing meshes. Regular polyhedral and polygonal
elements have more rotational symmetries with respect to tetrahedra and hexahedra.
This turns out to be very useful in applications such as the topology optimization
where a bias to certain mesh directions has to be avoided as most as possible.

The modern simulators of geophysical flows use polyhedral meshes due their flex-
ibility to represent geometric objects varying by many orders in size: tilted geological
layers, sharp pinch-outs, faults, and small wells [362]. The applications include anal-
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ysis of fresh water subsurface reservoirs, geothermal energy extraction, and control
of the fate of hazardous waste buried under the surface. A computational mesh is
often built by starting with a two-dimensional polygonal mesh and extruding it in
the vertical direction, which leads to a prismatic polyhedral mesh. The MFD method
allows us to approximate almost any PDEs on a mesh with arbitrarily shaped cells
which makes it well suited for subsurface applications.

Locally refined meshes used in simulation to improve the accuracy of the numer-
ical solution belong to the class of polygonal and polyhedral meshes. In the modern
MEFD technology the “hanging nodes” are treated as regular mesh nodes thus ensuring
automatically full conformity of the discrete solution. The use of polygonal meshes
simplifies and makes more efficient the practical implementation of mesh adaptation
algorithms and may have a large impact in a numerical solution of dynamic contact
problems, such as the problems with sliding domains.

These advantages of polygonal and polyhedral meshes have been recognized by
practitioners and implemented in a number of commercial codes, see for example,
[152,298], and publicly available subsurface simulators [274,362]. The useful fea-
tures of polygonal and polyhedral meshes stimulated recent development of mimetic
schemes for other fundamental classes of problems such as magnetostatics (Chap. 7),
fluid mechanics (Chap. 8) and structural mechanics (Chap. 9).

In addition to relatively simple treatment of polyhedral meshes, the MFD method
has a number of other interesting properties that stem from the flexibility of its con-
struction and allows it to tackle challenging problems. For example, accurate mod-
eling of geological flows and dispersive transport on polyhedral meshes requires nu-
merical schemes to preserve maximum principles to avoid underestimation and over-
estimation of concentration of transported chemicals which may be amplified signifi-
cantly by a nonlinearity of chemical reactions. The MFD method provides a family of
schemes that share important properties, such as accuracy and stability. The richness
of this family leads to a new research direction called m-adaptation, which stands
for the mimetic adaptation. The m-adaptation allows us to select an optimal scheme
(when possible) in accordance with a problem-dependent criterion, e.g. the maxi-
mum principle. Even if the m-adaptation is still under development, some promising
results are available and discussed in Chap. 11.

The flexibility of mimetic framework allows us to build stable discretizations with
the minimum number of stabilizing degrees of freedom. In Chap. 8, we introduce
a stable low-order mimetic scheme for the Stokes problem that uses only vertex-
based degrees of freedom for fluid velocity and cell-centered degrees of freedom for
pressure.

To model elastic and plastic deformation of solids or geological reservoirs (e.g.
due to an extensive pumping out of water or oil), large number of engineering codes
use hexahedral and polyhedral meshes. The deformation even of a shape-regular mesh
leads to mesh cells with strongly curved faces which require special treatment in al-
most any discretization method. A similar issue arises in modeling compressible and
visco-elastic flows using Lagrangian schemes where the mesh is moving with fluid.
The MFD method again has an elegant solution to this problem. Additional degrees
of freedom are introduced to capture curvature of mesh faces (Chap. 12); however,
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the whole construction of the scheme is not changed. The discretization framework
uses local consistency and stability conditions that can accommodate almost any def-
inition of degrees of freedom.

The family of mimetic schemes contains many well-known finite volume (FV) and
finite element (FE) methods as particular members. In Chap. 5, we show that the MFD
method contains the two-point flux approximation method on orthogonal meshes and
the Raviart-Thomas FE method on simplicial meshes. In Chap. 6, we establish a
similar result for a nodal mimetic discretization. The MFD method coincides with
the Galerkin FE method on simplicial meshes. In the case of quadrilateral meshes,
a family of nodal mimetic schemes contains the classical finite difference schemes
(5-point and 9-point Laplacians) and the Q; FE method. Thus, the MFD method
preserves all properties of these methods on a class of simple meshes and extends
them to very general polygonal and polyhedral meshes.

The theoretical analysis of the MFD method uses many tools introduced originally
in the finite element community such as the Agmon’s inequality and a priori error
estimates on polyhedral domains. In addition to that, new tools were developed during
the last decade using the notion of the reconstruction operator. On a simplex, the
reconstruction operator is often (but not always!) a finite element shape function. On
a general polyhedron, it is just a theoretical tool that is never needed in practice but
is useful to prove error estimates.

The theoretical foundation of the mimetic and compatible discretization methods
dates back to the fundamental work of Whitney on geometric integration. The MFD
method is related to some of the most basic concepts of discrete differential forms
(chain-cochain duality, discrete Stokes theorems). Similar ideas were applied, some-
times naively, many times in the past, as we describe in the historical introductory
section. Thus, it is no surprise that the core of the MFD method is a discrete vector
and tensor calculus (DVTC). It helps us to prove discrete energy conservation for
Maxwell’s equations (Chap. 7), symmetry and positive of discrete systems (Chap. 5)
and in general to build methods that preserve the underlying structure of the contin-
uum problem for more involved cases such as the Reissner-Mindlin plate bending
(Chap. 9).

Modern research topics on the MFD method includes developments of a high-
order DVTC and related mimetic schemes, mimetic schemes using non-standard de-
grees of freedom (solution derivatives), and a posteriori error analysis. Some of these
topics are discussed in Chaps. 5 and 6. A similar research is going on for the polygo-
nal and polyhedral FE method, although the available results are much more limited
so far.

In the first part of the present chapter we will briefly describe the history of the
mimetic finite difference method. Afterwards, we will present the main model prob-
lems considered in this book together with minimal results such as the well-posedness
and the regularity of the solution. Finally, we will introduce the notation of shape-
regular polyhedral and polygonal meshes, together with a set of results useful in the
rest of the book.
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1.1 A brief history of the mimetic finite difference method

The early history of the mimetic finite difference (MFD) method includes the work
carried out in the Soviet Union and for various reasons not well known in the West.
The subsequent historic notes and references are representative and by no means
pretend to be complete. They represent Authors’ involvement in the development
and learning of mimetic, and compatible in general, discretization methods.

The development of the MFD method can be divided into four periods. The first
period begins in the mid-fifties and its main characteristics are:

* the development of numerical methods using discrete operators that preserve im-
portant properties of continuum operators;

+ the use of orthogonal meshes, where the construction of such mimetic operators
is relatively simple;

* the use of the compatibility property of mimetic operators to prove stability and
convergence results.

It is pertinent to note that the discrete mimetic operators are build independently,
and only then it is proved that they satisfy some duality relationships. The seminal
paper [345] (English translation [315]) is one of the earliest work, known to us, based
on the concept that discrete analogs of differential operators satisfy discrete analogs
of integral identities. These compatible discrete operators are used to derive finite
difference schemes and their mimetic properties can be used to prove the stability and
convergence of such schemes. The most comprehensive presentation of this theory
isin [313,314,317,318].

The importance of compatible discretizations of differential operators has been
also recognized and clearly articulated in the series of papers [244-246]. There, the
author introduces finite difference analogs of the first-order differential operators V,
curl, and div on uniform orthogonal meshes and proves discrete versions of some fun-
damental identities of calculus, including the orthogonal decomposition theorem. The
author proves stability and convergence of the resulting finite difference discretiza-
tions for the Laplace equation and elliptic equations with discontinuous coefficients.
Similar ideas are used in [237] to discretize the Navier-Stokes equations in a stream
function formulation. The discrete model satisfies a law of energy dissipation similar
to the one in the continuum case.

In [238] we find a different approach to building compatible discretizations based
on the algebraic topology. The differential equations are written using exterior dif-
ferential forms and discrete analogs of an exterior derivative and the Hodge * opera-
tor are constructed. This approach is applied to the Laplace equation, the biharmonic
equation, Lame’s equations for isotropic linear elasticity, and steady-state Maxwell’s
equations. A detailed treatment of Lame’s equations is also given in [236].

In a distinct series of papers [134—137] the concepts of the algebraic topology are
used to discretize partial differential equations (PDEs) on orthogonal meshes. In this
work, the square mesh on a plane is interpreted as a topological complex. The co-
boundary and boundary operators, acting on functions of the complex and defined by
the combinatorial structure, generate the difference analogs of the classical differen-
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tial operators of mathematical physics, such as V, div, curl, and Laplacian. Further-
more, a discrete model for the steady Euler equations is proposed in [135]. Due to
quasi-linearity of these equations, it becomes necessary to introduce a suitable prod-
uct between discrete differential forms; to this purpose, the Whitney product [361] is
chosen. Detailed description of this approach to the construction of discrete models
is in the book [138].

In this period, we find a few important papers in the West that introduce elements
of the mimetic methodology. In [349], strong relationships between some quantities
of physical theories and basic geometric and chronometric objects are investigated.
This study leads to a classification of physical theories, where the equations of physics
can be described by a single mathematical process, the co-boundary process, which
is the exterior differential on co-chains. In [140], a finite difference method on sim-
plicial meshes based on the Whitney forms and a discrete Hodge theory is developed.
In[364] a numerical scheme is proposed for solving time-dependent Maxwell’s equa-
tions on rectangular meshes using a staggered discretization: edge unknowns for the
electric field and face unknowns for the magnetic field. This work is the foundation of
an entire class of numerical schemes for computational electromagnetics, cf. [341],
the finite difference time domain (FDTD) method. In [23,24,311] mimetic meth-
ods for shallow water equations and climate modeling that preserve mass, potential
enstrophy and vorticity on logically rectangular meshes are proposed.

Mimetic methods with similar properties are also found for triangular meshes in
[299] and [70]. In [183] a finite difference scheme is proposed for second-order el-
liptic Dirichlet boundary value problems on irregular networks with the topological
structure of a logically rectangular mesh. This scheme uses discrete divergence and
gradient operators that can be shown are dual to each other. The optimal rate of con-
vergence in a discrete energy-like norm is proved. We also mention the numerical
approach proposed in [307] which preserves mass, potential enstrophy, and energy
on hexagonal geodesic meshes, and approach in [5] which proposes a mimetic finite
difference discretization for the incompressible Navier-Stokes equations. It turns out
that these properties are fundamental requirements for a long-term numerical inte-
gration of the equations of incompressible fluid motion.

The second period in the development of the MFD method begins in the mid-
seventies. The new research is motivated by the necessity to solve PDEs with dis-
continuous coefficients on non-orthogonal meshes. These issues arise naturally in
modeling physical problems like the Inertial Confinement Fusion [292,354], Toka-
mak [222], high velocity impact dynamics [365], and shape charges [358], which
involve domains with complex shapes, several coupled physical processes including
gas dynamics, heat conduction, and electromagnetism, and Lagrangian meshes that
move with fluid flow. The main characteristics of this period are:

+ the derivation of compatible discrete operators is based on variational principles
and discrete integral identities; hence, it is not carried out independently for each
operator as in the first period;

» components of vector variables (tangential and normal with respect to mesh edges
and faces) are used as the degrees of freedom for vector fields;
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» aconservative staggered discretization (using cell and nodal grid functions) of the
equations of the Lagrangian hydrodynamics is developed.

At the beginning of this period, the variational principle is used to construct dif-
ferent mimetic operators. One operator is identified as the primary operator and dis-
cretized directly. The other operator is constructed through a discrete version of a
variational principle and called the derived operator. This technology is summarized
in books [316,348]. The developed schemes are successfully applied to the heat con-
duction equation [168,347] and the magnetic diffusion equations [167,172,235].

In these works, only selected components of vector variables are used as the de-
grees of freedom. For example, the heat flux and the magnetic flux density B are rep-
resented by their normal components on mesh faces because these components are
continuous across material interfaces. Likewise, the electric field intensity E is repre-
sented by its tangential components on the mesh edges because these components are
also continuous. For such a selection of the degrees of freedom, a discretization of
integrals in a variational principle becomes a non-trivial task and leads to the devel-
opment of mimetic inner products. These inner products use discrete representations
(for example, vectors E;, and E;) of continuum vector functions (resp, E and E) and
provide accurate approximations of integrals, e.g:

[Eh,ih]gZ/ E-EdV—FO(h‘D) VEh,EhEgh,
Q

where &), is a discrete space of edge-based grid functions, the brackets represent its
mimetic inner product, 4 is the characteristic mesh size and p the order of approxi-
mation. In the same years, similar ideas appear in the finite element community and
lead to the development of mixed finite elements for elliptic and Maxwell’s equa-
tions, cf. [282,305].

Another approach to the discretization of Maxwell’s equations, the finite integra-
tion technigue (FIT) in introduced in [359]. It uses the primary mesh for the discretiza-
tion of Faraday’s induction law and a dual mesh for the discretization of Maxwell-
Ampére’s law. An interpolation of the electric field E and the magnetic field H be-
tween the meshes is needed to discretize the constitutive relations D = ¢ E and B =
wH, where € is the electric permittivity and p is the magnetic permeability of the
medium. Only later, it was recognized that the interpolation must satisfy special prop-
erties for the method to be stable [118]. It is pertinent to note that the mimetic schemes
developed in [167,168,172,235,347] do not require a dual mesh. We refer the reader
to [211] where connections between mimetic, mixed finite element and other methods
are also discussed.

As we mentioned before, algebraic topology provides natural framework for de-
scribing discrete structures. Applying it to the electromagnetism (see, for example,
book [75] and references therein) formal mathematical structures associated with
edges and faces can be introduced. These structures correspond to the mimetic dis-
cretizations of the electric and magnetic fields. Construction of consistent adjoint
operators leads to a major problem: the discretization of the Hodge * operator (com-
pare with the interpolation issue in the FIT method). Some contributions to the topic
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are made in [170]. Discretization of the Hodge * operator on general grids requires
a complex set of mathematical tools. Moreover, these tools are natural for partic-
ular discretizations of vector fields and cannot be extended easily to many popular
discretizations such as that using nodal values.

The variational principles are also actively used to construct conservative finite
difference methods on staggered grids for gas dynamics, magneto-hydrodynamics
and dynamics of deformable media, see [171,187-189,346] for more details.

The use of the variational principle in the construction of derived operators can be
marked as the true beginning of a systematic development of the MFD method. The
design principles for the MFD method described in Chap. 2 are clearly formulated in
several papers including [169,230,312,319,320]. There, we find basic tools of the
mimetic construction: discrete spaces equipped with inner products, primary discrete
operators, discrete derived operators built from discrete duality relationships, and the
connection of the duality principle with the desired properties for a discrete model.

In this period, the method is not yet called mimetic. The closest translation from
Russian is “support operator method”, which does not make much sense besides the
fact that the discrete operators support the derivation of numerical schemes for PDEs.
Because of this, publishers used a few different translations in English such as “basic
operators” and “reference operators”.

Subsequent publications, listed in almost chronological order, show a wide use of
the mimetic approach. Axisymmetric difference operators in orthogonal coordinate
systems are derived in [232,233]. Mimetic discrete operators for Voronoi meshes are
constructed in [327,329]. The approach is also extended to equations of gas dynamics
in the framework of free-Lagrangian methods [273,327,328]. Mimetic discretizations
for elliptic equations on non-matching grids are developed in [153]. Mimetic schemes
for Maxwell’s equations in the cylindrical geometry on an orthogonal grid are pro-
posed in [139]. The biharmonic equation is treated in [331]. Arbitrary quadrilateral
meshes for solving elliptic problems are considered in [324].

During this period, various publications are focused on the analysis of stability
and convergence properties of the mimetic discretizations [25-27,131,186,310]. In
most of these papers, the stability and convergence results are proved in energy norms
induced by the mimetic inner products.

Mimetic discretizations are also used to solve problems of practical interest. We
mention a few representative papers: solving Navier-Stokes equations on the Voronoi
meshes [22]; solving static problems of elasticity [231]; modeling of the Rayleigh-
Taylor instability [181]; modeling compression of a toroidal plasma by the quasi-
spherical liner [179,180]; modeling of a controlled laser fusion [356]; computer sim-
ulations of an over-compressed detonation wave in a conic canal [227]; simulation of
a magnetic field in a spiral band reel [36, 98]; calculation of viscous incompressible
fluid flow with a free surface on two-dimensional Lagrangian meshes [130]; mod-
eling of a microwave plasma generator [260]; and simulation of the collapse of a
quasi-spherical target in a hard cone [342].

The design principles for the development of mimetic discretizations are sum-
marized in book [323]. The author applies the support operator method to construct
mimetic methods for elliptic and parabolic equations as well as for the equations of
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Lagrangian gas dynamics. Only nodal and cell-centered discretizations of vector and
scalar functions are considered in this book. The book contains a computer disk with
examples of codes implementing various mimetic schemes.

Several papers published in the second period develop a different approach to
mimetic discretizations; namely, compatible discretizations for the Lagrangian hy-
drodynamics [100, 101,216]. There, the differential operators are not approximated
directly, but rather the momentum and internal energy equations are discretized
through a balance of the kinetic and internal energy that conserves the total energy.
This approach, although specific to the hydrodynamics equations, is quite general. It
can be applied to the case where forces of arbitrary nature (e.g., artificial numerical
viscosity) are present and/or added to the momentum equation.

Finally, we mention other numerical methods developed during this period that
contain mimetic ideas: [284,285,287,288,309] and [267,268]. In particular, [267]
emphasizes the fact that a discretization of the divergence operator has to be consis-
tent with the change of volume of the computational cell. The same idea is used to
construct a mimetic discretization in [188].

The third period in the development of the mimetic discretizations begins ap-
proximately in the mid-nineties. The main characteristics of this period are:

+ the systematic development of the mathematical foundation for the mimetic dis-
cretizations and a discrete vector and tensor calculus (DVTC);

+ the extension of the mimetic approach to more general meshes including polygo-
nal, polyhedral, locally refined and non-matching meshes;

» an extensive and careful testing of the mimetic discretizations for many different
PDEs.

The systematic development of the mathematical foundation for the DVTC begins
with three seminal papers [206,210,215]. In [215], natural discrete analogs (primary
mimetic operators) for V, div, and curl on logically rectangular grids are constructed.
Discrete analogs of several important theorems of the continuum calculus are also
proved such as divA = 0 if and only if A = curlB. The internal structure of the pri-
mary mimetic operators is described in terms of primitive difference and metric op-
erators. In this paper, the terminology “mimetic difference operators” and “mimetic
discretizations” is used for the first time, although the word “mimetic” has been al-
ready used in the unpublished report [209].

The derived mimetic operators (the discrete dual operators) corresponding to the
primary operators are constructed in [210]. The construction of the derived operators
is based on the duality principle, e.g.

[y, Vipipl 7, = —[diviup, ph) 2, Yw, € F, pp € P,

where %), and Z), are discrete spaces for face-based and cell-based grid functions,
respectively. In other words, the derived gradient operator V/, is negatively adjoint to
the primary mimetic operator div;, with respect to the inner products in spaces %, and
2. The internal structure of the derived operators in terms of primitive difference
operators and the inner product matrices is described there. The discrete analogs of
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major theorems of the vector calculus are also presented. The set of primary and
derived mimetic operators allows one to construct discrete analogs of second-order
operators like divV, Vdiv, curlcurl, and the vector Laplace operator A = Vdiv —
curl curl, which are needed to discretize various PDEs.

The discrete Helmholtz orthogonal decomposition theorems for logically rectan-
gular meshes, for both face-based and edge-based representations of vector fields, are
developed in [212]. The DVTC is used in [68] to transfer divergence-free fields rep-
resented by their normal components on mesh faces between two different meshes.
In [102], the mimetic technology is used to discretize the divergence of a tensor and
the gradient of a vector using two different representations of the tensor field via their
projections on face normal and edge tangent vectors.

A DVTC calculus is not unique. This fact is exploited in [206] to extend the dis-
crete operators to a domain boundary. The boundary conditions are incorporated into
the definition of new mimetic operators. For example, on the boundary, the discrete
divergence operator is equal to the normal component of its vector argument. The dis-
crete duality principle includes boundary terms. This fact leads to a new definition of
inner products; however, the design principle remains the same — the derived gradient
operator is still the negatively adjoint of the (extended) primary divergence operator.
This strategy allows us to discretize Neumann and Robin boundary conditions in a
natural way using the framework of mimetic discretizations.

The mimetic inner product is usually not unique. In [213], two inner products,
which correspond to different reconstructions of a vector field inside a mesh cell,
are compared. It is shown that the absolute error is two-three times smaller when
the reconstruction uses the Piola transformation compared to the piecewise constant
reconstruction. This work is the first analysis of optimal reconstruction operators, see
the next period. The non-uniqueness of the mimetic inner product is also analyzed
in [286,352] to develop a unified formulation for the covolume and support operator
methods in two dimensions.

Another important paper of this period is [257]. There, equations for the mimetic
inner product matrix are derived from accuracy considerations, in particular, from the
requirement that the discrete gradient must be exact for linear functions. A solution
to this problem is proposed for triangular meshes.

The mimetic inner products for vector functions developed so far are not suitable
for degenerate cells (cells with 180° angle between two edges or cells having edges
with zero length) and non-convex cells. In [239], a new approach to the construction
of inner products for general polygonal cells is proposed. Each cell is subdivided into
triangles and new temporary unknowns are introduced on internal edges. Then, the
standard mimetic inner product is defined for each triangle and, finally, the temporary
unknowns are eliminated using two conditions: the discrete divergence is constant in
the cell and the inner product satisfies a stability condition (see Chap. 2). This ap-
proach works for arbitrarily-shaped polygons. Moreover, the inner product depends
continuously on the shape of the cell, for example, this is the case when a quadri-
lateral degenerates to a triangle. The same construction is used in [254] for arbitrary
polyhedral meshes.
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A conceptually new development of the mimetic discretizations is the introduction
of the local support operator method for diffusion problems [277], where both cell
and face unknowns are used to represent the scalar variable. This approach allows one
to reduce the discrete problem to a system of algebraic equations with a symmetric
positive definite (SPD) matrix and use efficient algebraic solvers. The new technol-
ogy is developed for triangular meshes [178], meshes with local refinement [251],
and non-matching meshes [62].

High-order mimetic discretizations, which use a wider stencil, are developed in
[111,112]. A more extensive research on higher-order schemes is performed in the
next period.

Convergence analysis of the mimetic discretizations starts to use more tools from
the functional analysis and related discretization methods. For diffusion problems,
the convergence results are obtained in [61-63,214]. The second-order convergence
(superconvergence) of the vector variable on smooth meshes is proved in [63]. A
mortar technique for the mimetic discretizations on non-matching meshes is devel-
oped and analyzed in [62].

In this period, the mimetic discretizations are applied to a wide range of prob-
lems: diffusion equations with strongly discontinuous anisotropic coefficients [205,
208, 325]; Maxwell’s equations and equations of a magnetic diffusion [207,211];
equations of the Lagrangian hydrodynamics on general polygonal meshes [104], in-
cluding an artificial viscosity [103]; equations of a solid dynamics and shallow water
equations [266]; and the Lagrangian hydrodynamics on curvilinear logically rectan-
gular meshes preserving spatial symmetries [265].

The foundation for a systematic development of conservative compatible discreti-
zations based on the balance of the kinetic and internal energy is built in [108—110].
Readers may also be interested in the review paper [229] where some other mimetic
properties of numerical algorithms are discussed, as well as in paper [299] where
conservation properties of unstructured staggered discretizations are discussed.

The fourth period in the development of the mimetic discretizations begins after
the IMA meeting in 2004 [142]. It is based on the collaboration between the Los
Alamos National Laboratory, USA, and a research group in Milano-Pavia, Italy. The
main characteristics of this period are:

+ the development of novel mathematical tools for design of mimetic discretizations
of various PDEs and their convergence analysis;

+ the development of a rich parametric family of mimetic discretizations that in-
cludes many other discretization methods as particular members;

* the development of arbitrary-order discretizations for elliptic problems, the anal-
ysis of the stability and discrete maximum principles.

A set of new mathematical tools introduced in [90] forms the foundation for a
rigorous convergence theory for the mimetic discretizations. The subsequent papers
[92, 93] develop a new approach to the construction of an accurate mimetic inner
product. This inner product is built algebraically to satisfy the consistency and sta-
bility conditions that enforce the optimal convergence rate and lead to independent
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cell-based problems. Such construction is easy to implement in a computer code. A
strategy for a systematic development of mimetic inner products for cochain spaces
is discussed in [83, 85].

The consistency and stability conditions have already appeared in a different form
in [257], but the new approach results in a number of important developments that are
more transformational than incremental. First, the new consistency condition can be
formulated for non-convex polygonal and polyhedral cells, including cells with non-
planar faces [91]. Second, the consistency and stability conditions do not determine
a single scheme but an entire family of mimetic schemes. All members of this family
share common properties such as accuracy and convergence rate and have the same
stencil size for the derived operators. Third, such family of schemes contains many
well-known finite volume and finite element methods.

In [91, 92], the new technology is used to develop and analyze a mimetic dis-
cretization for generalized polyhedral meshes having strongly non-flat mesh faces.
In [253], it is applied to build a mimetic discretization for equations of the magnetic
diffusion in the axisymmetric cylindrical geometry. This scheme remains accurate
near the axis of symmetry » = 0 and, most important, leads to a consistent calcula-
tion of the Joule heating on strongly distorted meshes.

It has been soon discovered that, due to the generality in the allowed meshes,
the MFD method constitutes a very appealing ground for the application of adaptive
refinement techniques, that, in turn, need some tools in order to estimate the local
errors. A residual-based a posteriori estimator for mimetic discretizations has been
developed in [41] for the diffusion problem in mixed form, and combined with an
adaptive strategy in [54]. The estimator makes use also of a post-processing technique
introduced in [106].

The families of mimetic schemes are analyzed in [193,249,250] and sub-families
of schemes with additional properties are found. The schemes satisfying a discrete
maximum principle for diffusion problems are described in [249,250] for a class
of two-dimensional and three-dimensional meshes. In [193], a new mimetic scheme
for a well-studied acoustics equation is developed. This scheme has complexity of
roughly two second-order schemes but shows the fourth-order numerical dispersion
and the sixth-order numerical anisotropy. The last property has never been reported
for other state-of-the-art fourth-order schemes.

In [84], the mathematical tools for building accurate mimetic inner products have
been extended to semi-inner products representing an energy norm. This allowed
us to build new mimetic discretizations for primary formulations of second-order
PDEs. A nodal mimetic discretization on polygonal and polyhedral meshes for ellip-
tic problems is developed in [84]. Optimal convergence estimate in the energy norm
is proved there. Later, this technology has been extended to more complicated equa-
tions, such as the linear elasticity equation [42], the Stokes equations [46,49] and
Reissner-Mindlin plate equations [52,57]. In [47] the advantage of having polygonal
grids is used in order to develop more efficient inf-sup stable elements for the Stokes
problem. A hybrid error estimator for the method in [84] has been developed in [16].

It turns out that higher-order mimetic discretizations can be built using the same
framework: adding more degrees of freedom and enforcing stronger consistency con-
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ditions. The arbitrary-order mimetic discretizations of diffusion problems are devel-
oped and analyzed in [50]. In [43], this approach has been recasted as the virtual ele-
ment method (VEM). The VEM is a finite element method where the discrete spaces
are virtual in the sense that they are not build explicitly and instead are characterized
through properties. Other contributions to the VEM are found in [14,44, 55, 56,94].
The practical implementation of the VEM can be based on the mimetic inner prod-
ucts.

The new mimetic discretizations have demonstrated their efficiency in solving
convection-diffusion problems in both diffusive [107] and convection-dominated
regimes [45], eigenvalue problems in mixed form [105], mixed formulation of a lin-
ear elasticity [42], modeling of biological suspensions [194], and modeling of flows
in porous media [252].

Finally, the mimetic finite difference method has been developed and analyzed
also for nonlinear equations, such as the obstacle problem [17], elliptic quasilinear
problems [20] and control problems [19]. A study of dedicated solvers for the MFD
method has been initiated in [21].

In this period, development, analysis, and application of the mimetic discretiza-
tions have been done by various research groups in Europe and USA including sub-
surface flows on corner-point meshes [1]; development of mimetic discretizations
based on a discrete calculus for fluid dynamics [300,301], geophysical flows [5, 70,
307,344]; oil reservoir simulations [10,191,326]; seismic wave propagation on multi-
GPU system [330]; viscoelastic wave modeling and rupture dynamics [158, 159];
poroelasticity problems [280]; electromagnetics [35,258,259]; plasma physics [297];
astrophysics [279]; pharmaceutical science [119]; general relativity [39]; and image
processing [40]. Furthermore, a systematic comparison with other numerical methods
for solving 2-D and 3-D elliptic problems with strongly anisotropic diffusion tensors
was carried out and presented in the conference benchmarks [165, 195].

1.2 Other compatible discretization methods

The idea of incorporating properties of the continuum calculus in the design of nu-
merical schemes appears in various methods. In a series of articles published in the
seventies (see, e.g., [349,350] and the references therein), it was observed that many
physical theories have a very similar formal structure from the geometrical, algebraic
and analytic standpoints. This principle has led to Tonti’s diagram, a classification
scheme of the physical quantities and the physical theories in which they are involved.
For example, balance equations, continuity equations, equations of motion, and cir-
cuital equations state that one physical quantity defined on a d-dimensional manifold
is equal to another physical quantity defined on its boundary. The equations can be
reformulated in a finite framework using basic concepts from the algebraic topology
such as fully discrete functions (cochains) defined on combination of grid objects
(chains) rather than functions in the continuum. Going further along this direction,
it is possible to establish a set of direct algebraic relations among geometrically-based
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physical variables that is suitable to numerical applications, e.g., the cell method (CM)
[269,351]. Although the CM is derived directly from the experimental laws, thus
avoiding a discretization of differential equations, its mimetic nature is evident per
se. The CM is consistent by design; however, it may result in a non-symmetric dis-
cretization for a symmetric problem. Moreover, since the stability condition is not one
of the design principles, the CM may lead to an unstable discretization on a strongly
distorted mesh.

A unified computational model is proposed in [114,295,296] to make a bridge
between the geometry and the physical behavior of engineering systems. This model
uses differential k-forms and their discrete representation through k-cochains over
a cell complex, a finite approximation to a manifold which abstracts only its topo-
logical properties, and the co-boundary operator acting on cochains to represent a
geometry-based differentiation process. It turns out that only a small set of the usual
combinatorial operators, e.g., boundary, co-boundary, and dualization, are sufficient
to represent a variety of physical laws and invariants. Cochains as a numerical dis-
cretization mechanism and connection with a finite element analysis are also inves-
tigated in [295].

The covolume method [285] is another example of a compatible discretization
method. This method was originally developed for the planar div — curl system and
was extended later to three-dimensional systems [288], the Navier-Stokes equations,
and Maxwell’s equations [287]. It can be viewed as a significant generalization of
Yee’s method to simplicial meshes, and thus can be applied to complex geometries.
Like the FDTD, the covolume method requires two orthogonal meshes to approxi-
mate the electric and magnetic fields. This is one of its major features but also its
major limitation. To this purpose, the Delaunay triangulation and the corresponding
Voronoi diagram are the natural choice. Every edge of the Voronoi mesh is orthogo-
nal to the corresponding face of the Delaunay triangulation, and viceversa. The covol-
ume and MFD methods use the same primary operators. However, the construction
of the dual operators in the covolume method relies strongly on the orthogonality
property of the Delaunay and Voronoi meshes.

Mimetic ideas are also found in [293,294], where finite difference approximations
of differential operators on logically rectangular grids and weighted inner products
are designed so that a summation by parts formula mimicking the integration by parts
holds. The analogy between the discrete and continuum calculus is rather strong,
even stability estimates for these finite difference schemes are obtained following the
argument used for continuum problems, including hyperbolic, parabolic, and mixed
hyperbolic-parabolic systems. Further developments are found in [271,338], where
the Euler equations are solved using an energy-stable scheme based on the fifth-order
summation-by-parts operators, and in [272], where fourth-, sixth- and eighth-order
accurate finite difference operators are derived for second-order derivatives.

The finite volume (FV) method, introduced originally in [150, 151] for the heat
equation and dubbed as the integrated finite difference method, leads to the largest
class of schemes that can handle unstructured polygonal and polyhedral meshes, non-
linear problems, and problems with anisotropic coefficients (see discussion in [160,
161, 164]). These schemes are mimetic in the sense that they enforce balance equa-
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tions for mass, momentum, and energy on each mesh cell. The discrete operators
in the balance equations coincide with the primary mimetic operators; e.g., the bal-
ance of fluxes corresponds to the primary divergence operator acting on face grid
functions. The essential difference between the FV and MFD methods is in the ap-
proximation of constitutive laws.

In the pioneering works on the integrated finite difference method [151,281] for
the heat equation, Fourier’s law is approximated using a two-point flux formula. A
diffusive flux across a mesh interface involves temperature unknowns only in the two
adjacent cells. Thus, the total number of unknowns equals to the number of mesh
cells. This scheme offers the advantage of a very compact computational stencil, but
a consistent formulation requires meshes satisfying a rather restrictive orthogonality
constraint, e.g., the Voronoi meshes. Combined with a first order-convection flux,
this approach is applied to the numerical discretization of non-coercive convection-
diffusion equations in [145].

To overcome the disadvantages of the two-point flux formula, an alternative strat-
egy was proposed in [120], namely, the diamond scheme. This scheme uses a piece-
wise constant approximation of the full solution gradient inside auxiliary diamond-
shaped subcells. In two-dimensions, the diamond-subcell is formed by a mesh edge
and centers of two neighboring cells. The formula for the gradient requires to know
auxiliary solution values at end points of each edge. They can be expressed by a
linear interpolation of the primary unknowns at neighboring cells. The resulting FV
scheme is consistent provided that the interpolation is exact for piecewise linear so-
lutions. Interpolation algorithms based on least squares are known to be quite accu-
rate [64,66,123,124,262,263] and used for the discretization of more complex prob-
lems [261]. Linearity preserving algorithms are used in more recent papers [363].
Non-linear averages are also investigated in the literature, usually to provide discrete
maximum and minimum principles [65,242,243,255].

A breakthrough in the diamond scheme methodology comes from [196, 197],
where it is proposed to treat the vertex values as independent unknowns. The result-
ing scheme combines two distinct FV schemes on two overlapping meshes, the mesh
of the primal cells where the original diamond scheme is formulated, and the mesh
of the dual control volumes built around the vertices of the primal mesh. The method
can be also reformulated in the framework of mimetic discretizations by introduc-
ing discrete divergence and gradient operators which are in a duality relationship,
i.e. a discrete integration by parts formula holds. This fact motivates the name of the
method: the discrete duality finite volume (DDFV) method. Such analog requires an
inner product for the discrete scalar unknowns that is defined by using simultane-
ously the overlapping primal and dual meshes and an inner product for the discrete
vector unknowns that is defined on the diamond mesh, an auxiliary mesh whose cells
are related to the edges of the primal cells. The DDFV method was applied to the
Laplace equation in [141] and has shown to provide a very accurate approximation
of the solution gradient on distorted meshes [195]. A generalization to nonlinear el-
liptic equations is found in [13], and to the div-curl problems in [129].

The DDFV method has been also generalized to three-dimensional problems.
However, it is subtle to preserve the discrete duality property, which is the basis
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for proving well-posedness of the method as well as for deriving optimal estimates
of the discretization error. To this purpose, several strategies have been proposed in
the literature, mainly in [198,199], in [122,302], in [12] and in [121].

Another class of FV methods, consistent by design, is constructed by introducing
additional unknowns on mesh faces. Examples of such methods include the Aybrid
finite volume method [162,163], and the mixed finite volume method [146]. These
FV methods introduce stabilization terms that can be connected with the stability
condition of the mimetic finite difference method, see [148].

Another approach to overcome the limitations induced by the two-point flux for-
mula comes from the multi-point flux approximation (MPFA) method [3, 4] and
similar, but developed independently, the control-volume distributed (CVD) method
[154,155]. In the MPFA and CVD methods, fluxes on mesh interfaces having a com-
mon point are defined simultaneously from local consistency and continuity condi-
tions. On general meshes, these methods produce non-symmetric schemes for sym-
metric problems. A lack of a stability condition may result in numerical instabili-
ties on strongly distorted meshes. The MPFA method can be reformulated using the
mixed finite element framework as in [360] or the mimetic framework with inner
products induced by non-symmetric matrices as in [256]. The latter approach is also
used to analyze convergence of the MPFA method in [228].

The mixed finite element (MFE) method is, perhaps, the most developed com-
patible discretization framework, mainly on simplicial meshes. An overview of this
method is well beyond the scope of this paper, and for this reason we just refer to the
fundamental book [88], the most recent overview provided in the book [69], and the
references therein.

Although not related directly to the mimetic concepts, a wide literature has been
developed in the last decade to generalize the finite element method to polygonal
meshes, namely, the polygonal finite element method (PFEM). We mention the pio-
neering book [357] and the most recent papers [58,127,177,278,336,337,340].

Although the reformulation of the mimetic discretizations in the framework of dif-
ferential forms is beyond the scope of this book, it is worth mentioning some impor-
tant works in this direction. Using topological concepts, strong similarities between
numerical methods of very different nature, such as finite volumes, finite differences,
and finite elements are outlined in [270]. The connection between the Whitney forms
and the MFEs (Nedelec elements) and its application to computational electromag-
netics are explored in a series of papers published in the nineties, cf. [72—74] and the
references therein, and summarized in the book [75]. A review of basic concepts of
the mimetic discretizations and their relations with notions from the algebraic topol-
ogy is found in [67]. Finite element techniques have been recently recasted in the
framework of the Whitney forms and formalized in the finite element exterior calcu-
lus, cf. [33,34]. In this respect, we also mention the work in [200,201] and the exten-
sions proposed in [96,97]. The discrete exterior calculus [132,202] makes it possible
to reproduce some well-established finite difference and finite volume methods using
unifying notation of the differential forms. Extensions of the FDTD and finite element
time domain (FETD) methods for solving transient Maxwell’s equations in complex
media are reviewed in [343].
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1.3 Principles of mimetic discretizations

In this section, we highlight the basic principles of the mimetic discretizations using
the simple one-dimensional Poisson equation:

d2
—d—x};:b, x€(0,1),
p(0)=p(1)=0, (1.1)

where b(x) is a sufficiently smooth given source term. We write this second-order
equation as a system of two first-order equations:
dp du b
dx’ dx

(1.2)

Let us consider a uniform mesh with (#+ 1) nodes x; = (i — 1)Ax, where Ax =
1/n, see Fig. 1.1 We select the following degrees of freedom. The discrete function
uj, € R"*! approximates the continuum function » at mesh nodes, i.e. u;, = (u;);’jll
and u; ~ u(x;). The discrete function pj, € R” is approximated at centers of mesh in-
tervals, i.e. pp = (pi1/2)i-; and piy 12 = p(xiy1/2). The well-know finite difference

discretization of (1.2) reads:

_Pir1)2—Pi-1)2
Ax ’

:b(xi+1/2)7 i=1,....n, (1.3)

U = i=1,....n+1,
Uip1 — U

Ax
where p| /2 = p,13/2 = 0. The original mimetic schemes were developed using finite-
difference operators, which explains the words “finite difference” in the name of the
method. We can formally re-write these equations introducing symbols V, and divy,
(used frequently in this book) for the gradient and divergence operators, respectively:

up = —Vppn, divjup = by,

where b, = (b1 /2)}, and, clearly,

S Piv1/2 = Pi-1)2 . Ui ] — U
(Vipn)i = %xl/? (divaup)it1)2 = WA—XI (1.4)
Pi-1)2 Pit+1/2
—@ ® ® @ o
Ui Ui Uit

Fig. 1.1. Degrees of freedom in the mixed discretization. Mesh nodes are mark with solid disks
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Let us multiply the first equation in (1.3) by ; and the second one by p;, ;. It is not
difficult to verify that

n+1

Piv1/2 = Pi-1)2 Uiyl —
Ax 2% i = —Ax 2 I+ Pz+1/2 (1.5)
i=1

Using the definitions introduced in (1.4), we have the equivalent expression

ntl n
Ax Y (Vipn) i = —Ax Y (diVhup) i1 2pis1 - (1.6)
i=1 i=1
Formula (1.5), and its equivalent expression (1.6), is a discrete integration by parts
formula, i.e., a discrete analog of the continuum Green formula

Ldp
o dx

The duality between the discrete gradient and the discrete divergence operators seems
like the natural property of the finite difference scheme (1.3). It has many useful con-
sequences; for instance, the elimination of unknowns #; leads to a system of equations
with a symmetric and positive definite matrix. This is in turn implies the existence
and uniqueness of the solution py,.

The first mimetic principle is to preserve this discrete duality property in two and
three-dimensions on arbitrary polygonal and polyhedral meshes. Apparently this is
not possible if we discretize the gradient and divergence operators independently of
each other. Let us elaborate this point using the formal presentation of the discrete
duality (1.5):

——udx = — /p dx Yu e H'(0,1), p € H}(0,1).

[%Ph,uh]fh = —[pn.divpup) »,  Ypp € Py, Yuy € F. (1.7)

Here 22, = R” and .%), = R"*! are spaces for p, and uy, respectively, and brackets
mean the inner products in these spaces:

n+1
[vi,up) 7 2 Axviu; v, uy, € Sy,
and
[n, P 7 ZAX%+1/2PI+1/2 Van, ph € Pp-

=1
The other equivalent way to represent the inner products is to use mass matrices:

[Vhauh]fh :VZthuh7 [thph]fh ZQZMJ’;,Ph-

In the considered one-dimensional example, the mass matrices Mz, and M », are
scalar matrices, more precisely, the identity matrices multiplied by Ax. Using these
matrices in (1.7), we obtain

Vi=—MdiviM.,. (1.8)
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Thus, the discrete divergence operator and the inner product matrices define the
unique discrete gradient operator. If we change one of them, we obtain a new scheme
where these operators remain negatively adjoint to each other. On an unstructured
mesh, only the discrete gradient operator defined via the duality property (1.7) leads
to a system of algebraic equations for p, (after elimination of u,) with a symmetric
and positive definite matrix. For a general PDE, certain discrete operators (called pri-
mal) will be defined directly as in (1.3), while others (called dual) will be defined by
discrete duality as in (1.8).

Unfortunately, on unstructured meshes, the construction of the mass matrices is
a non-trivial task. This book explains, in particular, how such matrices can be build
for polygonal and polyhedral meshes and a great variety of PDEs. The construction
uses two additional principles leading to the consistency and stability conditions. We
illustrate these principles using the matrix M z, and the one-dimensional example.

To simplify the construction of the mass matrix, we typically break it into pieces
M; associated with mesh intervals [x;,x;;1]:

Mz, = 3 A TM; A, (1.9)

i=1

where .4} are the assembling matrices identical to that used in the finite element
method. They contains only ones and zeros that indicate in which rows and columns
of the global matrix the entries of the local matrix M; should be inserted.
The local matrices M; are 2 x 2 matrices and have the same interpretation as the
global mass matrix, more precisely:

u; Xit1
(vi, vie1)M; =~ vudx.
s Vit
ul+1 Xi

In the one-dimensional case, the global mass matrix is a scalar matrix; hence, it is
easy to verify that the following matrices satisfy (1.9):

Ax (1 0
FD __ AX
Mim =3 (0 1)'

A direct calculation shows

Xj.
(vi, vip1)MEP <uu+,1> = Ax(viu; + vir1uir1) = / - vudx + 0((Ax)*).
i Xi

Thus, the local mass matrices play the role of a quadrature rule for integrals. The
accuracy of this quadrature is sufficient to prove that the finite difference scheme is
second-order accurate for both p and . This observation is true for a general polygo-
nal or polyhedral mesh. The quality of a local approximation of cell integrals affects
the accuracy of the resulting mimetic scheme. Let us show how the local matrix can
be derived from two conditions that can be generalized to arbitrary dimension.

Let us replace the function v by a constant v* and the function u by a linear function

u!'. We assume that 10 equals the average value of v on the [x;,x;+1] and u' takes values
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u; and u;; | at the end points of this interval. Then,
Xit1 0.1 Xit] 2
/ vu dxz/ vudx+ O((Ax)7).
Xi Xi

This reduced accuracy requirement still leads to the second-order scheme, but most
important, it allows us to connect the integrals with the local inner products. We have
the following identity:

Xit1 Ax U
/ vouldxz7v0(ui+ui+1):(v0,v0)MfD< ! )
Xi Ujt1

that holds for any v°, u;, and ;. The mimetic consistency condition states: find a
2 x 2 symmetric positive definite matrix M; such that

. Xit1
(VO,VO)M;< i ) :/ 0l dx WO Y (i, wis ). (1.10)
ul+1 X

We already know one solution given by MP. 1t is not difficult to verify that the
matrix MfT appearing the lowest-order Raviart-Thomas finite element method also

satisfies Eq. (1.10):
MRT:ﬂ 21
! 6 \1 2)°

Apparently, there exist a one-parameter family of solutions M; that includes both
positive definite and indefinite matrices. Most of SPD matrices will lead to a well
behaved numerical scheme, which obviously leave somes room for an optimization
(see Chap. 11). To eliminate indefinite matrices from the analysis, we need the stabil-
ity condition that states: There exists two positive constants o, and ¢* independent
of Ax such that

”
o Ax(u? +ut, ) < (i ui)M; (u+’1> < ot Ax(u? +ul,y) Y (uiy tit1).
I

For the finite difference matrix this condition holds with 6, = 6* = 1. For the Raviart-
Thomas matrix, we have o, = 1 and o* = 3. Multiple examples of the application of
the consistency and stability conditions will be considered in the subsequent chapters.

Remark 1.1. In the engineering community, the consistency condition is closely re-
lated to the patch test.

For general polygonal and polyhedral meshes, the concept of the consistency and
stability conditions allows us to derive accurate approximations of the L? integrals of
scalar and vector functions presented by various degrees of freedom, including point
values, normal and tangential components, and face and cell moments. This concept
can be extended to derive high-order schemes on such meshes (see Chaps. 5 and 6).

The consistency and stability conditions can be used to derive discrete represen-
tations of more general bilinear forms, such as that representing /7' -type semi-inner
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products of scalar and vector functions. Moreover, by making use of this construction
one can develop a different approach to mimetic discretizations, based on the varia-
tional form of the problem (rather than the strong form). Although the two methodolo-
gies are often equivalent, this second one turns out to be more flexible; it is therefore
convenient to have a clear picture of both approaches. Let us illustrate this second
choice through a simple application on the one-dimensional Poisson equation. Its
weak formulation reads:

Find p € H}(0,1) such that

1 1
i %%dx:/o bgdx Vg€ HL(0,1).

Let us select the following degrees of freedom. The discrete vector p, € R”~!
approximates the continuum function p at mesh nodes, i.e. p;, = ( p;)l’.’;ll and p; ~
p(xi.1). Similarly, let ¢;, € R”~! be the approximation of g.

There are a few admissible approximations of the right-hand side integral in the
weak formulation, e.g.

szn}b(xi)qi - /0 pgdx -+ 0((Ax)2).

=

For the left-hand we formally introduce a global stiffness matrix M such that
Vdpd
T paq
Mgp=~ | ——dx+0(A
AT /0 Tr 2T 0(Ax%),

i.e. we are looking for a numerical scheme that will be the first-order accurate in the
energy norm. The global stiffness matrix is assembled from elemental matrices M;,
where i = 1,...,n— 1. The consistency and stability conditions are now used to find
local stiffness matrices that represent accurate (at least, first-order) approximations
of the local bilinear forms.

We consider the interval [x;,x;+1] and make the following observation. Let p =
p' 4+ O((Ax)?) on this interval, where p' is a linear function with values p; and p;. |
at the end points of the interval. Then, for all sufficiently regular functions ¢

Xit1 dp dq /xi+1 dpl dq 2
— —dx= ——dx+0((A
/; dx dx * X dx dx x+0((4x)7)

Ai Ai

| (1.11)
_ %(q(xfﬂ) —q(x)) + O((Ax)2).

The mimetic consistency condition states: Find a local stiffness matrix M; such that

: si1 dp' dg
Vo), p G ))M (9 =/ tdp_dq vpl.g. 1.12
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Therefore, each solution to (1.12) satisfies:

1 1 qi Yitl dp dg 2
i i+1))M; = — —dx+0((A v
e w1 ) = [ L acro(an®) o
which is sufficient to prove linear convergence to the solution in an energy-type norm.

Note that the right hand side in (1.12) is computable due to the second identity in
(1.11), stating that

v = ——(q(xit1) —q(x:))

R
x dx dx = dx

Xi

for all linear p! and regular . The consistency condition (1.12) can be simplified by
noting that g, is an arbitrary vector:

1 1
p(x:) dp” (-1 1
M; = Vp'.
! <P1(xi+1)> dx <+1 P
There is no need to consider all possible linear function p'. It is sufficient to take two

linearly independent functions, e.g. p! =1 and p! =x —X; 112 that give two matrix
equations. We write these equation in a compact form:

(46

The solution is now obvious (and unique):

M — <+1 —1> .

Ax \—1 +1
The same matrix appears in the Galerkin finite element method. A similar result holds
in higher dimensions for triangular and tetrahedral cells. However, for more gen-
eral polygonal and polyhedral cells, the number of independent equations generated
by the consistency condition is smaller than the size of the stiffness matrix. In such
a case, the solution of the matrix equation is not unique. To avoid spurious solu-
tions, the elemental stiffness matrix is required to satisfy the stability condition (see
Chap. 4).

Various bilinear forms are considered in the subsequent chapters. But the dis-
cretization strategy remains the same: select a proper polynomial approximation space
for p and the proper degrees of freedom, so that the right-hand side of the consistency
condition can be simplified and written in terms of the degrees of freedom. The ma-
trix form of the consistency condition is always looks like M;N; = R; where N; and R;
are computed using the cell geometry and problem coefficients. The generic formula
from Chap. 4 gives a solution M; to this matrix equation that satisfies the stability
condition.

The development of higher-order mimetic schemes uses the same strategy; the set
of degrees of freedom typically may include point-values and moments of functions
associated to vertexes, edges, faces and elements.



24 1 Model elliptic problems

1.4 Scalar elliptic problems

Throughout this book we use a regular font for scalar functions (e.g., p, u, or ¢) and
a bold font for vector functions and tensors (e.g., u and o). Also, we assume that
the computational domain € is a Lipschitz domain, i.e. its boundary I = dQ can be
described locally by a Lipschitz continuous function. Moreover we will assume that
the boundary of (2 is divided into two parts

I'=IpUly,

each being a (possibly void) finite sum of connected components of I".

1.4.1 Diffusion equation in primal form

The steady-state diffusion problem for scalar field p is given by the Poisson equa-
tion [303]:
—div(KVp)=b in Q,
p=g” on Ip, (1.13)
(KVp)-n=¢" on Iy,

where K is the diffusion tensor describing the material properties, b is the forcing
term, g and gV are the boundary functions defining the Dirichlet and Neumann
boundary conditions, respectively. We assume for simplicity that meas(Ip) > 0 to
avoid a non-trivial kernel. In addition to that, we make the following standard as-
sumptions.

(H1) The diffusion tensor K : Q@ — R>*? is a d x d bounded, measurable, and
symmetric tensor. Moreover, K is strongly elliptic, i.e., there exist two positive
constants k; and k* such that for every x € Q it holds

V2 < v-K(x)v < ||V WveRY, (1.14)

where ||v|| = (v-v)!/? is the Euclidean norm of vector v.
(H2) The boundary data functions g, g" belong to H'/?(Ip) and the dual of

Hééz(l“ ), respectively. The load function b belongs to the dual of /] ,,(€2) that
is introduced below. Moreover, we assume that I is of positive measure.

Remark 1.2. From the assumption of strong ellipticity it follows that the matrix K(x)
is positive definite for every x € Q. Hence, the inverse matrix K(x) ! is also symmet-
ric and positive definite, and satisfies analogous lower and upper bounds involving,
respectively, (k*) ™! and k.

Let us consider the functional space

H;(Q) —{(weH'(Q): w=gonlIp}
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for the function g in H'/2(Ip). Let H} () denote the space H}(£2) in the case
g = 0. Problem (1.13) can be restated in the variational form: Find p € Hng (L) such
that

/QKVp-deV: (b, w@;—}—(glv7 W>FN VWGHOIYD(Q). (1.15)

The terms in the right-hand side represent duality products that can be written as
regular integrals in case of smooth boundary data.

Under assumptions (H1)—(H2), problem (1.13) is well-posed [190]. The existence
and uniqueness of the weak solution of the variational formulation follows by the
coerciveness and boundedness of the bilinear form in the left-hand side of (1.15).
The following regularity result holds.

Theorem 1.1. There exist two constants 1/2 < 6 < 1 and C = C(Q,0,K) > 0 such
that the following holds. If the load b € L*(Q), the tensor K € W'(Q) and the
boundary data functions g¥ € H°'/2(I}) and g° € H°'/2(I}), then the solution
to the Poisson equation p € H'"°(Q) with the bound

p H1+0'(Q)§C< b LZ(Q)+ gD Ho‘+l/2(9)+ gN HG—]/Z(Q))‘ (116)

Moreover, if Q is convex, then ¢ = 1.

1.4.2 Diffusion equation in mixed form

We formulate the Darcy problem by rewriting problem (1.13) in the equivalent mixed
form for the scalar solution field p and the vector flux field u as

u+KVp =20 in Q,

divu = b in Q,
p=g° on TP,
u-n:—gN on I'VN.

(1.17)

We consider again assumption (H1) from the previous section and modify assump-
tion (H2) as follows.

(H2a) The boundary data functions g”, g" belong to H'/?(I}) and the dual of

Hgé 2(F ), respectively. The load function b belongs to L?(£2). Moreover, we as-
sume that I'p has positive measure.

Let us introduce the space

X, ={veH(div,Q): v.n= —gonTy}.
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The variational formulation of problem (1.17) is as follows: Find u € Xov and p €
L*(Q) such that

/K_lu-va’V—/pdivvdV:—<gD,v-n>FD v € Xo, (1.18)
Q Q

/qdivudV:/ bqdv Vg e IX(Q).  (1.19)
Q Q

Under assumptions (H1) and (H2a) it is possible to show that problem (1.17) is
well-posed [190]. Moreover, the same regularity result stated in Theorem 1.1 holds
again.

1.4.3 Advection-diffusion equation in mixed form

Many biological and geophysical problems involve transport of the scalar field ¢
(species concentration for mass transfer in porous media or temperature for heat
transfer) with the vector field 3. This process is described by the advection-diffusion

equation:
div(Bc—KVe)=b in Q,

c=gP on T. (1.20)

Let us introduce the diffusive flux u = —KVc and the total flux @t = u + B¢. Then,
the advection-diffusion problem can be reformulated as follows:

i+KVe—Bc=0 in Q,
divi=b in Q, (1.21)

c=gP on T.

We consider assumptions (H1)—(H2a) and make an additional assumption on the
velocity field:

(H3) B € C'(Q)7 and is such that div 3 > 0.

The variational formulation of problem (1.21) is as follows: Find it € H(div,2) and
p € L*(Q) such that

/K*Iﬁ-vdV—/ cdivvdV—/ K'Be-vdV = <gD,v-n>r,
Q Q Q
/qdivﬁdV:/ bqdv,
Q Q

hold for all v € H(div, Q) and g € L*(Q).

Under assumptions (H1), (H2a) and (H3), problem (1.22) is well-posed. Under
such hypotheses, a regularity result analogous to Theorem 1.1 holds also for the pre-
sent problem.

(1.22)
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1.5 Vector elliptic problems

We consider examples of vector elliptic problems that can be solved numerically
using mimetic discretizations.

1.5.1 Stokes problem

The incompressible Stokes problem for the vector field u and the scalar pressure field
p is given by

—div(ve(u))+Vp=>b inQ, (1.23)
divu=0 inQ, (1.24)

u=g’ onr?, (1.25)

ve(u)-n=g" onr"V, (1.26)

where b is the forcing term, v > 0 is the fluid viscosity, g” and g" are boundary data,
and €(u) is the symmetric strain tensor,

e(u) = %(Vu+ (Vu)T).

Let us consider the functional space V = (H'(Q))?, space

Vep = u €V suchthatu=g” on "}, (1.27)

and the subspace V5 C V obtained by setting g = 0 in the definition above. We assume
minimal regularity of input data.

(H4) The vector-valued function b belongs to the dual of V, the vector-valued
function gV belongs to the dual of (H(}gz(FN))d, and gP € (HI/Z(FD))d. For a
pure Dirichlet problem (I'N = 0), g” must also satisfy the compatibility condition

/I_gD-ndS:O.

The space Q of admissible pressures depends on the Neumann boundary condi-
tion:

Q:{LZ(Q) it TV £0, (125

L*(Q)/R if T'N=0,
where we denote
L2(Q)/R:{qeL2(Q):/qu:o}.
Q

Multiplying equations (1.23)—(1.24) by the test functions v € V and g € Q, re-
spectively, and integrating by parts yields the variational formulation:
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Findu € Vyp and p € Q such that

/Qve(u):e(v)dV—/deivvdV: (b, v +<gN, V) YV E T, (1.29)
/quivudV:O Ve, (130

where the double dot “:” stands for the standard contraction operator between ten-
sors. The Dirichlet condition (1.25) is taken into account as the essential boundary
condition by seeking the velocity in space Vyp. The terms on the right hand side rep-
resent duality products, but in the case b € (Lz(Q))d and gV € (L2(r'Y ))d their can
be written as regular integrals.

Let us assume that meas(I"”) > 0 and v is bounded from below by a positive con-
stant. Then, due to Korn’s inequality, see for instance [116], we have the coercivity
of the bilinear form above over the space Vy:

/ ve):eWdl > alVi g WE T, (1.31)
Q

where ¢ is a positive constant. Moreover, the following inf-sup condition holds, see
[184]. There exists a positive constant 3 such that for every ¢ € Q it is possible to
find v € 7} that satisfies

/quivvdeﬂ 9 1200 and Vo) S (1.32)

The above coercivity and inf-sup conditions are sufficient for proving the existence
and uniqueness of the solution of (1.29)—(1.30). Moreover, we have the following
regularity result, see [224].

Theorem 1.2. Let Q be a convex domain. Furthermore, let b € (LZ(Q))d and the
boundary datag" € (Hl/z(FN))d, gl c (H3/2(FD))d. Then, solutionu € (HZ(Q))d,
p € H'(Q), and there exists a positive constant C = C(Q) such that

Uyt P o) SC( P gt g’ w2 T g HI2@)-

The Stokes problem is very similar to the displacement-pressure formulation of the
incompressible linear elasticity problem, which is considered in the next section.

1.5.2 Linear elasticity problem

Let domain €2 represent an elastic body that is blocked on a part of the boundary
I'° € 9Q and is free on the remaining part I'Y. We assume that meas(I"”) > 0 in
order to eliminate the rigid body motions. Then, following the classical theory of
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linear elasticity (see, e.g., [115]), the deformation of €2 is governed by

o =Ce(u) inQ, (1.33)
—dive=b in Q, (1.34)
u=g’ onI?, (1.35)
ocn=g" onI'V, (1.36)

where © is the stress tensor, b the external loading term, u the displacement vector,
C the tensor of elastic moduli, g” the boundary displacement, and g" the boundary
force.

In general, C can be a full forth-order tensor; however, many materials are de-
scribed by the two Lamé parameters i and A. In this case,

Ce(u) =2ue(u)+Atr(g(u))I
where I is the second-order identity tensor, and tr is the trace operator.

We make the following assumptions.

(H5) The material functions p(x) and A (x) belong to L=(£2) and there exist two
positive constants L, t* such that 1, < p(x) < u* on Q.

(H6) The boundary functions g” and g" belong, respectively, to (H 12 (rP )) 7 and
the dual of (Hééz (rvy ))d. The load function b belongs to (L (Q))d.

Let us define the following space of stress tensor fields:

Hyy (2;8)= 1€ (Lz(Q))dXd: divt € (Lz(Q))d, T-n=gonl"}.

The space Hyg;, (£2;0) is derived from the previous definition by setting g = 0. A
mixed weakly symmetric formulation of problem (1.33)-(1.36) reads:

Find (6, u,s) € Hy;, (2;g") x (Lz(Q))d X (L2(Q))d such that:

/(C_IO':Ta’V—l—/ll'diVTdV—l—/ s-as(7)dV = (g” t-n)
Q Q Q D

VT € Hy;, (2;0), (1.37)
/Q dive-vdV = (bvg, Wve (132(Q))" (1.38)
/Qas(a)-qu:O Vg € L*(Q). (1.39)

In three dimensions, the anti-symmetry operator as : R3*3 — R3 is defined by

T2 — T2
as(7) = | Ti3— 1731 |, (1.40)
T3 — T32
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where the subindices indicate components of the tensor. In two dimensions, as be-
comes a scalar operator, as (T) = T12 — T21.
The bilinear form [, C~'6': TdV is symmetric and L*-positive definite since

1 1 A
C't= ZMT 2u(2u+d/1)tr(1)]l' (1.41)
In the limiting case of an incompressible material, when A — oo, the coercivity on
the whole space of tensors is lost and holds only on the subspace of traceless tensors.
Under assumptions (H4)—(H5), problem (1.37)—(1.39) is stable; thus, its solution ex-
ists and is unique (see, for instance, [30, Theorem 2.1]). Moreover, the following
regularity result holds [116].

Theorem 1.3. Let domain  be convex and the material data p, 2. € W'=(Q). Fur-
thermore, let the load b € (LZ(Q))d and the boundary data gV € (H'/?(I; N))d,
gl ¢ (H3/2(1"D))d. Then, for the solution of problem (1.37)~(1.39) we have & <

(H' (Q))dXd, uc (H*(Q))?, ands € (H'(Q))?. Moreover, there exists a positive
constant C = C(Q, 1L, L) such that

lollm1 @)+ lullg2@) + Isllg @) < C(||b||L2(Q) + ||gD||H3/2(Q) + ||gN||H1/2(Q))-

Note that there exists a different variational formulation of continuum equations
(1.33)—(1.36) that shows strong connection with the Stokes problem. Let assumption
(H4) of Sect. 1.5.1, and assumption (H5) of this section hold. Let the spaces Vep,
7o, and Q be defined as in Sect. 1.5.1. Substituting (1.33) into (1.34), introducing the
pressure

p=Atr(g(u)) = Adivu, (1.42)
and then following the same steps as for the Stokes problem, we obtain a displace-
ment-pressure variational problem:

Findw € Vyp and p € Q such that

/QZue(u):e(v)dV—/deivvdV:<b, v@z+<gN,v>rN Ve, (143)

/qdivua’V—?L_l/pqu:O Vgeo. (1.44)
Q Q

The above problem resembles to the variational formulation of the Stokes problem.
Indeed, in the case of incompressible elasticity, A = +oo, the corresponding integral
disappears and the two problems become essentially identical. The stability and reg-
ularity results for the Stokes problem hold also for problem (1.43)—(1.44).

Although formulation (1.43)—(1.44) is equivalent to (1.37)—(1.39), their discretiza-
tions will lead to different schemes.
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1.5.3 Reissner-Mindlin plate bending problem

Consider an elastic plate  x (—%, £) of thickness 7 such that 0 < 7 < diam(£2). The
two-dimensional domain €2 represents the midsection of the plate. The deformation
of this plate is described by the Reissner-Mindlin model [275,306] using three un-
knowns: the rotations B = (B, 32) of fibers that are initially normal to plate’s mid-
surface, the scaled shear stresses ¥ = (71,72), and the transverse displacement w.
Assuming for simplicity that the plate is clamped on its whole boundary dQ2, we
have the following equations:

—divCe(B)—y=0 in Q, (1.45)
—div(y) =b in Q, (1.46)

y=xt 2(Vw—B) in Q, (1.47)

B=0 on 9Q, (1.48)

w=0 on JdQ, (1.49)

where C is the tensor of bending moduli,

E

Ct .= m((

1—v)T+vir (7)),

with £ > 0 being the Young modulus and 0 < v < 1/2 being the Poisson ratio for
the material.

To write a variational formulation of this problem,we first introduce an elliptic
bilinear form

a(B.m):= [ Ce(B)ze(m)ar
E

mfg (1—v)e(B):&(n) + vdivBdivn) av,

where € is the two-dimensional strain tensor defined by

a1 (9B 9B .
81](B)_§<axl +ax/)7 1§l,]§2

We make the following assumption.
(H7) The load b is in H~!(£2), the dual of /] (£2).

For notation’s convenience, we introduce a tensor-product space 7 =
(H}())? x H} (). Then, a variational formulation of problem (1.45)—(1.49) reads:
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Find (B,w) € 5 and y € (L*(Q))? such that
a(Bm)+ [y (Vv=mdV =(bvy Ve, (150)
/(Vw—ﬂ)-SdV—K‘ltz/ y-8dV =0 Ve e (LX(Q))?,  (1.51)
Q Q

where K = oE /2(1 + v) is the shear modulus using the correction factor ¢, which
equals to 5/6 for clamped plates. There exists a unique solution to the above problem
and the following regularity result holds [117,133].

Theorem 1.4. Let Q be a convex polygon. Then, for any t € (0,diam(Q)] and b €
L*(Q), the components of the solution (B,w) to (1.50)~(1.51) are in H*(Q) while
the components of ¥ are in H'(Q). Moreover it holds

1Bz (@) + Wl 2 @) + 21Vl (@) + 1Y llEg @) < ClIBl2 @) (1.52)

where C is independent of t.

We must observe that the clamped boundary conditions play an important role in
the regularity result above. Indeed, there are different sets of homogeneous boundary
conditions which generate layers in the rotation variable such that the solution B is
not guaranteed to lay in /7%(€2) even for regular problem data. For example, this
happens when a part of the boundary is set free (see, for instance, [32]).

1.5.4 Magnetostatics problem

Magnetostatics studies magnetic fields in systems where the currents are either con-
stant in time or do not alternate rapidly. Magnetostatics is widely used in micromag-
netics to model magnetic recording devices.

Let H be the magnetic field intensity and J the divergence-free current density.
The mathematical formulation of magnetostatics has a form of a div-curl problem:

curlH=J in Q, (1.53)
div(uH) =0 inQ, (1.54)
Hxn=g onT, (1.55)

where ut is the magnetic permeability tensor and g’ is a vector-valued boundary func-
tion. The tensor coefficient 4 may be discontinuous. However, the tangential com-
ponent of H and the normal component of uH are continuous across discontinuity
interfaces of .

From a physical standpoint, the domain 2 should be the whole three-dimensional
space, and the magnetic field should satisfy a radiation condition such as H — 0
at infinity. In practice, we assume that 2 is a bounded, simply connected, polyhe-
dral domain with a Lipschitz boundary I", and replace the radiation condition by the
Dirichlet boundary condition (1.55).
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Condition (1.54) allows us to introduce the vector potential u such that curlu =
wH. The choice of u is not unique as we can always add the gradient of any scalar
function without changing H. Thus, to obtain a weak formulation that admits a unique
solution, we consider the Coulomb gauge, which leads to a divergence-free vector
potential. More precisely, we require that the vector field u be the solution of the
following set of equations:

curl(p 'curlu) =J  in Q, (1.56)
divu=0 inQ, (1.57)
uxn=¢g inl. (1.58)

We derive the variational formulation for this problem in the following steps. First,
we introduce a Sobolev space

H(curl, Q) = ve (L*(Q)): curlve (L*(Q))7} (1.59)
and an affine space of admissible weak solutions
Hg(curl, Q)= veH(curl,Q): vxn=gonT}. (1.60)

We do not explicitly require that the vector fields in Hy(curl, £2) be divergence-free.
Instead, we will take into account the solenoidal constraint (1.57) through the intro-
duction of the Lagrangian multiplier p, which belongs to the Sobolev space H (L2).
We make the following assumptions.

(H8) The magnetic density tensor ( is a bounded, measurable, and symmetric
tensor. Moreover, U is strongly elliptic, see (H1) for more detail.

(H9) The external current field J is in the dual of Hy(curl, £2). The boundary func-
tiong € (H~'/2(div,I")).

The variational formulation of problem (1.56)—(1.58) reads: Find w € Hg(curl,£2)
and p € H} () such that

/ [,Flcurlu-curlvdV—l—/ v-VpdV =(J,v@, VveH(curl,Q), (1.61)
Q Q
/u-quVzO Vg € HY(Q). (1.62)
Q
Under assumptions (H8)—(H9), the well-posedness of (1.61)—(1.62) can be proved
in the framework of Brezzi-Babuska theory for saddle-point problems. A regularity
results for the present problem can be found for instance in [11].

1.6 Polyhedral meshes

Large part of this book is devoted to solving elliptic PDEs in three dimensions using
polyhedral meshes; however, developed schemes can be readily applied in two di-
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mensions using polygonal meshes. Note that tetrahedral and hexahedral meshes are
just subsets of polyhedral meshes.

1.6.1 Mesh shape regularity

Convergence analysis of mimetic discretizations is performed on a sequence of shape
regular polyhedral meshes {€2;}, where /4 is the diameter of the largest element in
€, and h — 0. A polyhedron P is a closed domain in three dimensions with flat faces
and straight edges. A shape-regular mesh satisfies the following minimal assumptions
introduced originally in [84]:

(MR) [Shape-regularily] There exist two positive real numbers .4/* and p; such
that every mesh €2, admits a conforming sub-partition T, into shape-regular tetra-
hedra such that

* (MR1) every polyhedron P € Q;, admits a decomposition T;|p made of less
than .4 tetrahedra that includes all vertices of P;

* (MR2) each tetrahedron T € T}, is shape-regular: the ratio of radius 1 of the
inscribed sphere to diameter /7 is bounded from below:
rT

T > py>o0. (1.63)
ht

Remark 1.3. We point out that only existence of a tetrahedral partition T, is required,
a fact that can be easily verified in most cases.

Assumptions (MR1)-(MR2) impose weak restrictions on the shape of admissible
elements in order to avoid various pathological situations such as slivers and needles.
Nonetheless, the meshes of {€2;,}, may contain very generally shaped elements, for
instance, non-convex or degenerate elements. Two examples of shape-regular poly-
hedra are shown in Fig. 1.2.

We denote the faces of polyhedron P by f, its edges by e, and its vertices (also
called nodes) by v. Let |P|, |f| and |e| denote the volume of P, area of f, and length
of e, respectively. We indicate with /e, s, hp the diameter of edge e, face f and poly-
hedron P, respectively.

Fig. 1.2. Shape-regular convex (left) and degenerate non-convex (right) polyhedra
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Let ns be a unit normal vector to face f fixed once and for all, and 7T, be a unit
tangent edge vector with a priory fixed orientation. Let xp be the centroid of polyhe-
dron P. Similarly, we define centroids x¢ and x, for face f and edge e, respectively.
Finally, x, is the coordinate vector of node v.

We denote the sets of mesh nodes v, edges e, faces f, and polyhedra Pby ¥, &, %,
and 2, respectively. Let 2 be one of these sets. We define the subsets 2(P), 2(f),
and 2(e), which are formed by the mesh objects of 2 that are related, respectively,
to polyhedron P, face f, and edge e. When the argument has a higher topological
dimension, the resulting set 2(P), 2(f), or 2(e) is the collection of mesh objects
that belong to the boundary of P, f, and e, respectively. For example, & (P) denotes
all the edges forming the boundary of polyhedron P. When the argument has a lower
topological dimension, the resulting set 2(f), 2 (e), or 2(v) is the collection of mesh
objects sharing face f, edge e, or node v, respectively. For example, & (e) denotes all
polyhedra sharing edge e. When the topological degrees are the same, we consider the
subset of items that are connected in some sense to the argument. For example, & (e)
is the set of edges sharing at least a node with e. In the following we will also make
use of the more intuitive boundary symbol in order to indicate sub-sets of vertexes,
edges or faces. For instance {v},cyp indicates the set of vertexes of polygon P, the
symbol {e}.cor denotes the set of edges pertaining to face f, and so on. Finally, the
symbol #2(c) where o may be v, e, f and P is the cardinality of set 2(0), i.e., the
number of objects that are in this set. For example, #& (P) is the number of edges of
polyhedron P.

Assume for a moment that each polyhedron P is star-shaped with respect to a
point Xp € P, and each face f is star-shaped with respect to a point X¢ € f. These
points may or may not coincide with the corresponding centroids. Then, we say that
the sub-partition Ty, is simple if it is built in the following way. First, each face f
is subdivided into triangles by connecting each vertex v € #'(F) with the point Xs.
Second, each element P is decomposed into tetrahedra by connecting each vertex v
of P and each point X¢, f € .%p, with the point Xp.

In certain cases, assumption (MR) can be made stronger by adding the following
condition:

(MR3) each polyhedron P is star-shaped with respect to a point Xp € P, and each
face f is star-shaped with respect to a point X¢ € f. Moreover, the tetrahedral sub-
partition T, is simple.

This assumption imposes additional constraints on the shape of mesh elements
with respect to assumptions (MR1)—(MR2). Still, the family of admissible meshes re-
mains significantly large to meet demands of engineering applications. Later, in anal-
ysis of mimetic discretizations, we will use either the minimal assumptions (MR1)—
(MR2) or the expanded assumptions (MR1)-(MR3).

Remark 1.4. Another set of mesh assumptions can be found in the literature on mime-
tic discretizations, for example, in [90]. Although these assumptions seem more com-
plicated, it is possible to prove that they are equivalent to assumptions (MR1)—(MR3),
see, e.g., [41]. Therefore, we do not list them here.
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1.6.2 Consequences of the mesh regularity assumptions

The regularity assumptions (MR1)-(MR2) lead to a few useful consequences. These
consequences are not necessary for understanding the mimetic method, but will be
extensively used in the theoretical derivations of the subsequent chapters.

(M1) There exist two positive integers .4 and .4 depending only on .4* such
that every element P has at most .#"” faces, and every face f has at most .4#“
edges.

(M2) For every element P € €, all the related geometrical quantities scale in a
uniform way. More precisely, there exists a constant a, depending only on .4
and p; such that for all faces f € dP and all edges e € dP it holds

ahy <|P|<hp,  adp <|f|<h,

and
hp <a.'hs,  hp<a,'he.

(M3) There exists a constant b, depending only on .4* and p; such that for all
PeQandall T € Ty|p it holds

hp < b, hT.

(M4) [Agmon inequality] There exists a constant C#2” independent of #p and such
that:

3 19122 < € (B 116]22p) + 0 6 31(p)) (1.64)
feadP

for any function ¢ € H'(P).

(M5) [Approximation estimates] Let m € N. Then, there exists a constant C/
independent of 7zp such that for any function g € H**! (P) withs € Rand 0 < s < m

there exists an approximating polynomial ql(jm) € P,,(P) such that

llg— a5l 2¢p +Zh 17— a8 |y < C 5 gl ), (1.65)

where [s] is the integer part of s.

Property (M1) follows immediately from assumption (MR1) by observing that
each edge (respectively, face) of P is the union of edges (respectively, faces) of at
most .4 tetrahedra.

The upper bounds on area and volume in property (M2) follow from the definition
of hp. Since the sub-partition T, is shape regular (assumption (MR1)) and the number
of tetrahedra in Tj|p is bounded by .4*, there exists a constant C, depending only
on A" and p; such that

min At > C, max ht.
TeT,lp TETylp
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Since
hp < z ht <A max ht,
TeTylp TeTylp

property (M3) follows immediately with b, = C_!.#%. After that, the remaining
inequalities in (M2) follow from (M3). For instance,

. Ag NS Ag N Sp? 4rplC3
Pl > 4% T > 3/> Sh3/> s*h3
Pl=A7 min T 2——rp2—3 =30y P

where T’ denotes the tetrahedron with the smallest diameter. A similar set of inequal-
ities is obtained for f . Finally, the constant a, is defined as the smallest one in all
inequalities.

Property (M4) is a scaled trace inequality, and is well known to hold for shape
regular meshes made of tetrahedra, see for instance [7, 28, 78]. Since T}, is shape
regular, we have that, forall 7 € Ty,

— 2
16122007 <€ (Hr 1012y 7 6 1))

with C independent of the particular 7. Due to (M3), the above bound can be written
as

_ 2
16122007 < € (B 161227y 0 6 11 (1.66)

with a different C, still independent of 7. Therefore, property (M4) follows from
(1.66) by simply observing that the union of all faces f in JP is a union of faces of
tetrahedra in Ty, and thus

_ 2
S 10l <€ X (hp 101 +he 6 tnir))
fcoP TGTh‘p

which immediately gives the desired result.

The proof of property (M5) is more involved. Indeed, the approximation result
(1.65) is well known for star-shaped elements, see for instance [78, Lemma 4.3.8].
Since, accordingly to (MR), the polyhedron P may be not star shaped, the approx-
imation bound must rely on more general results in [149]. We derive them here in
the version of [17] which better adapts to our situation. In order to keep the notation
simpler in the following developments, we will use symbol H° for the L? space. We
start with the following result.

Lemma 1.1. Let wy, be a connected conforming mesh of N shape regular tetrahedra
satisfying the regularity condition (1.63) and ® = Urcq,T. Furthermore, let k and
m be non-negative integer numbers. Then, there exists a constant C' = C'(ps,N,m, k)
such that

14" k) < Cla"™ |prry VT € 4, ¥g™ € Pr(). (1.67)

Proof. We only sketch the proof. Given N, there exist a finite number of possible con-
nectivity configurations of the tetrahedra in wy,. Therefore, there exist a finite number
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of reference meshes @, such that each admissible mesh @, can be mapped into a
reference mesh. Since both norms in (1.67) have the same kernel and the space IP,,
is finite dimensional, there exists a constant C"" = C” (N, m, k) such that the lemma is
true on all reference meshes. Then, the lemma follows easily from a scaling argument
since all the maps have bounded norms due to the mesh regularity of wj,. |

Consider an element P € €),. Let k,m € N be non-negative integers and s € R,
0 < s < m. We prove property (M5) by induction on the number N of tetrahedra in
Tyulp. Recall that N is bounded by 4™ of Assumption (MR1). We start observing
that, if 77 and 75 are two tetrahedrons (of a shape regular family of meshes) which
share one face, then the union U = 77 U T3 is star shaped with respect to a ball. More-
over the ratio of the radius of such ball divided by the diameter of U is uniformly
bounded from below. Such result is easy to check and we do not prove it here. As a
consequence, for any U = 71 U T, we can apply the well known interpolation bound
on star shaped domains, see for instance [115]. For all ¢ € H**!(U), there exists
¢"™ € P, (U), such that

Hilg =™ | ar iy < Cuhy Malusn o) (1.68)

with Cy = Cy(k,m,s,ps) and where p; is the shape regularity constant appearing
in (MR2). Furthermore, the same result obviously applies if U is a single tetrahe-
dron. Thus we obtained that, if N = 1 or 2 the bound in (1.65) is proved with C" =
([s]+ 1)Cy. We now assume that (1.65) holds for meshes of up to N tetrahedra (with
a constant C depending only on k,m,s, ps, and N). Let T;|p be composed of N + 1
tetrahedra. Let T, be any tetrahedron from T,|p and let T, be any other tetrahedron
from T,|p which has a common face with T;. Then, we consider the following two
subsets of P

A=T{UT, and B:{UT : TETh|p, T#Tl}.

It is clear that AUB = P and 4 N B = T». By the induction hypothesis, the interpola-

tion result (1.65) is true for both 4 and B. Given any g € H**!(P), let q;m) and qg")
in IP,,,(T") be the interpolation polynomials for ¢ on subsets 4 and B, respectively:

Mg —q" k) < Ch Nl ey, il — qgn)|Hk(B) < Chiy gl s+ gy
Using property (M3), we obtain
hplq — qim)lHk(A) < Chi™! 19|51 4, hplqg — q(B"’)IHk(B) <Chy'! 19| ps+1(5) (1.69)

with another constant C depending only on k,m,s, ps, and .4#". By the triangle in-
equality, one easily gets

a4 ey < la— a5 ey +la— a8 o) + 14" —a§ . (170)

For the last term above, we apply Lemma 1.1 (with @ = B and 7' = 7>) and then the
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triangle inequality to obtain

195" ~ a5 sy < 1"~ a5” sy
<C(I4y" —dlpery +la—a8" ) (1.71)

< C/(|(J£1m) —4lpray+la— qgn) |Hk(3))~
Combining (1.70), (1.71) and the interpolation bounds (1.69) yields

Hblg— a5 ey < V2(1+C) Chis gl s ),

which implies property (MS5).

1.7 Polygonal meshes

A two-dimensional polygonal mesh is a collection of polygons. The notation for the
polygonal meshes is essentially equivalent to that for polyhedral meshes. Therefore,
we stress only important differences.

The sets &, &, ¥ represent the sets of mesh polygons (also called elements), edges
and vertices, respectively. Throughout the book we will use both terms, face and edge,
to denote an edge of a polygon; however, the selected term will remain consistent
across each chapter. Therefore, the set .% is the same as the set &

Assumptions (MR1)—(MR3) are easily adjusted to polygonal meshes. A sub-parti-
tion T, into tetrahedra becomes a sub-partition into triangles. In the case of (MR3),
a simple sub-partition T}, is obtained in one step by connecting each vertex v € #p
to the point Xp, see Fig. 1.3. Hereafter, we will refer to Assumptions (MR1)-(MR3)
for analysis of both polygonal and polyhedral meshes.

Among properties (M1)—-(M5), only the second one has to be modified slightly.
Introducing the space dimension constant d (d = 2 in 2-D and d = 3 in 3-D), we
reformulate this property as follows.

Fig. 1.3. Examples for simple partitions of shape-regular polygons
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(M2) For every element P € €2, the related geometrical quantities are uniformly
bounded from above and below. More precisely, there exists a constant a, de-
pending only on .4 and p, such that, for all faces f € P and all edges e € dP,
it holds

ah <|P|<hy,  adl ' <[f|<H,
and

hp < a, 'hy, hp < a, 'he.

Hereafter, we will refer to properties (M1), modified (M2) and (M3)—(MS5) for anal-
ysis of both polygonal and polyhedral meshes.
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Foundations of mimetic finite difference method

“The higher your structure is to be,
the deeper must be its foundation.”
(Saint Augustine)

The mimetic discretization technology relies on a discrete vector and tensor calculus
(DVTC) that deals with discrete fields and discrete operators. The DVTC makes it
possible to reproduce (or mimic) fundamental identities of continuum calculus, such
as kernels of operators (see Sect. 2.6) and the Helmholtz decomposition theorems
(see Sect. 2.7), in the discrete framework. It also guarantees symmetry and positivity
of discrete operators when these properties hold for the corresponding differential
operators.

The DVTC can be built in an abstract form by exploiting duality relationships be-
tween pairs of differential operators. In such construction, we first derive one discrete
operator, called the primary operator, from first principles and then built the other
one, called the derived operator, through a discrete analog of the integration by parts
formula.

To define the primary operators, i.e., gradient, divergence and curl, we consider
their coordinate invariant formulations:

[V perdL = pxa) - pxo). @
/(curlu) ndsS= / u-TdL, (2.2)
/lelldV / u-nds, 2.3)

where 7 is the unit vector tangent to either a curve connecting points x, and x; or a
polygonal boundary dS, Vp- 7 is the directional derivative of the scalar field p along
such curves, and n is the unit normal vector to the surface S or dV (see Fig. 2.1).

Equations (2.1)-(2.3) are different forms of the Stokes theorem. They suggest a
naturally choice for degrees of freedom and their relations with various mesh ob-
jects such as vertices, edges, faces and cells. Note also that (2.2) requires a proper
orientation of the normal and tangent vectors.

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI10.1007/978-3-319-02663-3_2, © Springer International Publishing
Switzerland 2014
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T

Fig. 2.1. Domain with a smooth boundary

The duality relations for the first-order differential operators are given by Green’s
formulas:

/pdivudV:—/ Vp-udV+/ p(u-n)ds, (2.4)
Q Q 20

/u-dideV:—/ Vu-O‘dV—l—/ u-(o-n)ds, (2.5)
Q Q 20
/u-curlvdV:/(curlu)-vdV+/ (uxv)-nds. (2.6)
Q Q 20

To ease the presentation, we assume that the boundary integrals in (2.4)—(2.6) are
zero, i.e. the functions satisfy proper boundary conditions. This assumption is quite
natural when we deal with partial differential equations with (essential) homogeneous
boundary conditions. For example, if p € H} (€2) in the first formula, u € (H} (2))4
in the second formula, and u € Hy(curl,£2) in the third formula, we obtain:

/pdivudV:—/ Vp-udv, @.7)
Q Q

/u~dideV:—/ Vu-odv, 2.8)
Q Q

/u-curlvdV:/ (curlu) -vdV. (2.9)
Q Q

Remark 2.1. Inhomogeneous boundary conditions can be treated by extending the
first-order operators to the boundary, see, for instance, [206]. The DVTC that results
from this approach is different.

In the mimetic approach, a problem coefficient is combined with a differential
operator and the two are discretized simultaneously. For example, let K be a positive
definite tensor. Formula (2.7) is obviously equivalent to

/pdivudV:—/ K~ (KVp)-ud. (2.10)
Q Q
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Relation (2.10) is a duality relation between the two first-order operators div and KV
if we interpret the volume integral in the right-hand side as a weighted inner product
for vector fields with K—! as the weight. The discrete analogs of such operators will
satisfy a similar duality relation with respect to the discrete analog of this weighted
inner product.

LetZ: S — S* represent the operator in the left-hand side of formulas (2.7)—(2.9).
Then, the operator in the right-hand side is its dual 2*: S* — S, and the formulas
can be written in the abstract form

(Pu, v|s+ = [u, D™V]s, YueS, veS™, (2.11)

where brackets indicate inner products in the corresponding spaces. These inner prod-
uct may be occasionally weighted by the problem coefficients.

Let 2, be the discrete analog of & acting from the discrete space Sy, into the
discrete space S;. We assume that the spaces S, and S}, are equipped with the inner
products [+, -]s, and [+, -]s+. Then, the duality relationship

(Dyun, vilss = [un, Zpvils,, — Yup €Sp, vy €S] (2.12)

defines the unique operator ;. This discrete dual operator has a number of important
properties. By taking v;, = &, u;, we obtain the following inequality:

(D (Dhun)s unls, = [Duun, Dnunls; >0,  Vup €Sy (2.13)

If one enriches the discrete spaces S, and S}, by adding more degrees of freedom
and modifies accordingly the primary operator &, implicit definition (2.12) gives
a new dual operator &7, the derived operator, for which inequality (2.13) holds. If
one chooses different inner products, definition (2.12) gives again a consistent dual
operator. For this reason, the arising discrete systems always preserve symmetry and
positivity properties of continuum problems.

2.1 Degrees of freedom and discrete fields

We define a discrete field as a collection of degrees of freedom. We consider four dif-
ferent types of discrete fields defined by the degrees of freedom associated with four
different mesh objects: vertices, edges, faces, and elements. A natural enumeration
of mesh objects allows one to write a discrete field as an algebraic vector of degrees
of freedom.

+ A vertex-based discrete field pj, is defined by attaching one number pj, , (we shall
write simply py) to each mesh vertex v. The discrete field p;, can be often inter-
preted as an approximation of a continuous scalar function p(x) at mesh vertices,

e.g. pv = p(xv).
* An edge-based discrete field uy, is defined by attaching one number u;, . (we shall
write simply #) to each mesh edge e. The discrete field u;, can be often interpreted
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as an approximation of the tangential component of a vector function u(x) on mesh
edges.

* A face-based discrete field uy is defined by attaching one number u), ¢ (we shall
write simply uf) to each mesh face f. The discrete field uj, can be often interpreted
as an approximation of the normal component of a vector function u(x) on mesh
faces.

* An element-based discrete field p;, (also called a cell-based discrete field) is de-
fined by attaching one number pj, p (we shall write simply pp) to each mesh el-
ement P. The mesh element function p;, can be often interpreted as an approx-
imation of a continuous scalar function p(x) at centers of mesh elements, e.g.
pp = p(xp).

Hereafter, we denote continuous and discrete scalar fields by letters in a normal
font (e.g. pressure p(x) and py,), and continuous and discrete vector and tensor fields
by letters in a bold font (e.g. velocity u(x) and uy,).

Let ¥}, &,, %y, and &), denote the sets of vertex-based, edge-based, face-based,
and element-based discrete fields, respectively. The isomorphism between discrete
fields and algebraic vectors can be used to define the linear operations on a set of
discrete fields. For instance, the sum of two discrete fields pj, g, € &2, is defined via
the sum of the two corresponding vectors. In this way, every set of discrete fields is
given the algebraic structure of a linear space. Later, we will refer to ¥, &, %), and
P}, as linear vector spaces.

Let .}, denote anyone of the spaces ¥}, &, Fj,, or Z2;. We will write dim(.%,)
for the dimension of space .77,.

The discrete fields are illustrated in Fig. 2.2 for a single prismatic mesh element.
Restriction of a vertex-based function to this element is marked with dots. Restric-
tions of an edge-based and a face-based functions are marked with arrows.

Remark 2.2. Additional properties will be assigned later to discrete fields, so that
various mathematical operations will be well defined. For instance, an element-based
function pj, can be defined to be constant inside each element, so that its point-wise
value will be well defined for every interior point of every mesh element. Similarly
a face-based function can be defined to be constant over each mesh face. This is one
of the reasons why we prefer to work with discrete fields rather than with algebraic
vectors of degrees of freedom.

Throughout the book we will use restrictions of discrete fields to a submesh or a
single element. A restriction of a generic discrete field s;, € .%), to a geometric object
Q is denoted by sp,|q (or simply by sq). A few examples are given below.

* Let v, € &,. Then, vj s = (Ve)ecys denotes the subset of degrees of freedom ve
attached to the edges e that form the boundary of face f. Let &}, ¢ denote the set of
restrictions vy for all edge-based discrete fields.

* Let vy, € &, Then, vjp = (ve)ecop denotes the subset of degrees of freedom ve
attached to the edges e that form the boundary of element P. Let &), p denote the
set of restrictions vy p for all edge-based discrete fields.
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(a)

45
(b)
(d)

Fig. 2.2. Plot (a) shows a node-based discrete field; plot (b) shows an edge-based discrete
field, the arrows indicate the local orientation of the edges; plot (c¢) shows a face-based discrete
field, the arrows indicate the local orientation of the faces; plot (d) shows a cell-based discrete
field

(c)

* Letvy, € %) Then, vjp = (vf)scop denotes the subset of degrees of freedom v¢
attached to the faces f that form the boundary of element P. Let .%), p denote the
set of restrictions v, p for all face-based discrete fields.

Using the isomorphism with a space of algebraic vectors, each space (& ¢, &, p, and
Fj,p) may be given the algebraic structure of a linear space. Later, we will refer to
Ent, épp, and F, p as linear vector spaces.

Remark 2.3. Up to a suitable rescaling of the quantities defined above, it is possible
to re-interpret the entire setting in terms of co-chains [33], i.e., 3-D discrete k-forms,
where k = 0 corresponds to ¥}, k = 1 to &, k = 2 to %, and k = 3 to ;. Although
the algebraic topology is a very powerful framework, we do not pursue anymore such
topic.

2.2 Discrete spaces and projection operators
The projection operators translate the spaces of sufficiently smooth scalar or vector-

valued functions into the discrete spaces ¥, &), %y, and 22, In other words, they
return discrete approximations of continuum scalar and vector fields. In the language
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of differential forms, the projection operators correspond to the De Rham projection
operators.

We denote the projection operators by the generic symbol IT~". The restriction
of IT” to a specific mesh object Q is denoted by HQ/ , where Q can be a single
mesh element. The projection operators satisfy the commuting diagram property of
Lemma 2.2 that involve the differentiation operators V, curl, div and their discrete
counterparts Vy, curly, divy,.

The vertex projection operator

Let p(x) be a sufficiently regular scalar function so that we can take its pointwise
values, for example p € H'(€2) NC%(Q). Its approximation pj, € ¥, is obtained by
applying the vertex projection operator IT” :

pr=T"(p) = (P )vers pv=p(x), (2.14)

where 7 is the set of mesh vertices. Obviously, the dimension of space ¥}, is equal to
the number of mesh vertices. The local projection operators I"[é (p) forQ € {v,e,f,P}
are defined similarly:

114 (p) = (pv)veq-

For example, I} (p) is a discrete field in 7, p defined at vertices of element P. For
a cubic cell, the dimension of ¥, p is eight.

The edge projection operator

Let u(x) be a sufficiently regular vector-valued function, so that the integrals of its
tangential component are well defined along the mesh edges. Its approximation uy, €
&), is obtained by applying the edge projection operator IT*:

. 1
wy = I (0) = (te)ecss the = H/u.reafL, 2.15)
e

where & is the set of mesh edges. Obviously, the projector is surjective and the di-
mension of space &}, is equal to the number of mesh edges. We recall that 7. denotes
the unit vector parallel to edge e. The orientation of 7. is fixed once and for all. The
local edge projection operators Hé (q) for Q € {v,e,f,P} are defined similarly:

G (u) = (e)ecq-

For example, IT5 (u) is a discrete field in &, p defined on the edges of element P. For
a cubic cell, the dimension of &), p is 12.

The face projection operator

Let u(x) be a sufficiently regular vector-valued function, so that the integrals of its
normal component are well deé}ined on the mesh faces. For example, u can be taken
in the Sobolev space (L*(£2))“, s > 2, with divergence in L?(2). Its approximation
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uy, € .%, is obtained by applying the face projection operator IT” :
7 1
w, =117 (u) = (u)se 7, ur= m/fﬂ'nfd& (2.16)

where .Z is the set of mesh faces. Obviously, the projector is surjective and the di-
mension of space .7, is equal to the number of mesh edges. We recall that ns is the
unit vector orthogonal to face f. The orientation of n¢ is fixed once and for all. The
local face projection operators Hé (u) for Q € {e,f,P} are defined similarly:

113 () = (uf)seq.

For example, IT5 (u) is a discrete field in %, p defined on the faces of element P.
For a cubic cell, the dimension of .%), p is six.

The cell projection operator

Let p(x) be a sufficiently regular scalar function, so that its integrals on compact
subsets of Q exist, for example p € L' (Q). Its approximation pj, € 27, is obtained

by applying the cell projection operator IT”:
7 1
P =117 (p) = (pelecr, po=or [P, @17)

where 2 is the set of mesh elements. The dimension of 22, is equal to the number
of the mesh cells.

2.3 Primary mimetic operators
The primary mimetic operators are the discrete gradient operator, V, the discrete curl

operator, curly, and the discrete divergence operator, divj,. These three operators are
derived naturally from the Stokes theorem in one, two and three spatial dimensions.

2.3.1 The discrete gradient operator V;, . Vj, — &),

The Stokes theorem (2.1) on the one-dimensional edge e connecting the vertices v
and v, (and oriented from the former to the latter) becomes:

d

/ P dL:/Vp-tedL:p(xV2)—p(xvl). 2.18)
e dTe e

In view of Eq. (2.18), it is straightforward to define the discrete gradient operator V,

applied to a vertex-based discrete field pj, on edge e as follows:

sz _pV1

(Vipn), = A

(2.19)
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In accordance with (2.12), the discrete gradient operator V}, acts from 7} to 7). The
linear space 7, is related to the mesh edges and coincides with &,

Let p, =11 I (p). If p € C?(Q), the Taylor expansion shows that V), is the first-
order accurate approximation of the continuous gradient operator in the sense that

(Virn), = (VP)(xe) + Olhe).

The discrete gradient operator is exact for linear functions p.

2.3.2 The discrete curl operator curly, : &, — 7,

The Stokes theorem (2.2) applied to the two-dimensional face f gives:
/ (curlu) - nsdS = /a . dL, (2.20)
f f )

where the tangential vector T is oriented counter-clockwise along df when look-
ing from the tip of the normal vector ns. In view of Eq. (2.20), it is straightforward
to define the discrete operator curly, applied to an edge-based mesh uy, on face f as
follows:
(curl,up), 2 Of e |e] te. (2.21)
eE(f

The factor o . = %1 is determined by the mutual orientation of the tangential vectors
Te, Tf e and the normal vector n¢. In accordance with (2.12), the discrete curl operator
acts from &, to &) The linear space &) is related to the mesh faces and coincides
with .%,.

Letu, = I1° (u). Ifu € (C*(2))“, the mid-point quadrature gives that curl, is the
first-order accurate approximation of the continuous curl operator in the sense that

(curlpuy), = G / (curlu) - n¢dS = (curlu)(x¢) + O(h).
The discrete curl operator is exact for linear vector-valued functions u.

2.3.3 The discrete divergence operator div), : F), — &,

The Stokes theorem (2.3) on the three-dimensional cell P becomes:

/ divady = / u-npds, (2.22)
P aP

where np is the outward unit normal vector. In view of Eq. (2.22), it is straightforward
to define the discrete operator div;, applied to a face-based discrete field u;, on cell P

as follows: :

op s |f| us. (2.23)
|p| fz ;

€p

(divyup)p =

The factor op £ = n¢ - np ¢ = £1 is determined by the mutual orientation of the normal
vectors np ¢ and n¢. In accordance with (2.12), the discrete divergence operator acts
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from .7, to .. The linear space .7} is related to the mesh cells and coincides with
Py,

Letu, = IT7 (u). Ifu € (C>())“, the mid-point quadrature gives that divy, is the
first-order accurate approximation of the continuous divergence operator in the sense
that

ﬁ/PdivudV: (divu)(xp) + O(hp).

The discrete divergence operator is exact for linear vector-valued functions u.

(dth llh) p=

2.3.4 Discrete versions of the Stokes theorem

The definition of the primary mimetic operators is based on the Stokes theorem ap-
plied to a single mesh object. Let us show that a discrete version of the Stokes theorem
holds for a collection of mesh objects.

Example 2.1. Formula (2.1) states that the line integral between two points x, and
X, corresponding to two vertices vg and v, does not depend on the path connecting
them. Let us consider the mesh path L; joining vg and v,, through the sequence of
mesh vertexes v, v, .. .,V,_1, Vs, Where each pair of consecutive vertices (v;_p, v;, )
is connected by a mesh edge e;, fori = 1,...,n. By assuming that the discrete gradient
of p; € ¥, is constant on each mesh edge and integrating along this path, we obtain:

n

/ VyprdL = 2|e1| Vhph z DPv; — Pv;_ 1 = DPv, — Pvy-
i=1
The results does not depend on the mesh path connecting vg and v,,, see Fig. 2.3. This
is the discrete analog of the 1-D Stokes theorem.

Example 2.2. Let S be a surface embedded in the three-dimensional space and bound-
ed by a closed curve L. Formula (2.2) states that the total flux of the vorticity of a
field u through the surface S depends only on the curve L. Let us consider a set of
mesh faces f forming a discrete surface S, (approximating S) which is bounded by
a set of mesh edges e forming a closed mesh path L. In addition, we assume that

Fig. 2.3. Two-dimensional illustrations for Examples 2.1 (left) and 2.2 (right)
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the orientations of n¢, f € Sj,, and 7., e € L,, are consistent with the orientations of
the normal and tangential vectors in the Stokes theorem (2.2). By assuming that the
discrete curl of uj, € & is constant on each mesh face and integrating it over Sy, we
obtain:

/ curlyu,dS = Y |f| (curlyup), = Y le|ue.
Sp

fesy, ecLy,

For a fixed mesh path Ly, the results does not depend on the surface Sj, see Fig. 2.3.
This is the discrete analog of the 2-D Stokes theorem.

Example 2.3. Let V' be a simply-connected domain bounded by a surface S. Formula
(2.3) states that the integral of the divergence over V' is equal to the outward flux of
a vector field through the surface S. Let us consider a set of mesh cells P forming a
simply-connected domain V}, (approximating »’) which is bounded by a set of mesh
faces f forming a closed discrete surface S,. In addition, let the normals n¢, f € S,
point out of V;,. By assuming that the discrete divergence of u;, € %, is constant inside
each cell and integrating it over V},, we obtain:

/ divywydv = 3 |P|(divyu)p = 3 [Flus.
Vi PV, fes),

This is the discrete analog of the 3-D Stokes theorem also known as Gauss’s theorem
or Ostrogradsky’s theorem.

2.3.5 Basic properties of the primary operators

Discrete analogs of the fundamental calculus relationships such as curlo V = 0 and
div o curl = 0 hold also for the primary mimetic operators. These properties are dis-
cussed in detail in Sect. 2.6. Here, we establish a result related to the stability of
mimetic discretizations for the diffusion problem and prove a commuting diagram
property that involves the differential operators V, curl and div, their discrete analogs
Vi, curly, and divy, and the projection operators of Sect. 2.2.

To avoid unnecessary complications, we consider a polyhedral domain €2, which
it is fully covered by the mesh.

Lemma 2.1. Let Q have a Lipschitz continuous boundary. Then, the primary diver-
gence operator divy, is surjective, i.e., img(divy) = Py,

Proof. We need to prove that for any discrete field g;, in &7, there exists a discrete
field v, in %, such that ¢;, = (qp)pe» = divj, vj,. A constructive proof of this state-
ment allows us to build v, in a systematic way once the field ¢;, in &7, is given. The
field v, is obtained in three steps.

1. We define the piecewise-constant function ¢ € L?(€) such that qp = qp- Note
that g, = IT” (q).
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2. We define a function ¢ as the solution of the Laplace equation:
Ap=q inQ,
0=0 ondQ.
Since €2, has a Lipschitz continuous boundary, there exist s > 2 such that ¢ €
wis(Q).
3. We take v =V @, so that divv = q. Finally, we define v;, € %, as the face projec-
tion of v, i.e., vj, = Hy(v).

To complete the proof, let us show that g, = div;, v;. Due to the regularity of ¢, the
face integrals of v do exist. Starting from definition (2.23), we make the following
developments:

(divh Vh) p= P z Oop. f |f| 143 [use (2.16)]
| |f€aP
1
=— > opg / v-nedS [collect the face integrals|
[P| feop  /f
1
= — / v-npdS [use the divergence theorem|
|P[ Jop
1
=— [ divvdV use divv =
Pl [ d
L g
- |P| p q =dqp-
This proves the assertion of the lemma. ]

Lemma 2.2. The following commuting diagram holds:

\Y curl div
HY(Q)— H(curl,Q) —— H(div,Q)—— L*(Q)

Vi curly, divy,
Vh — & —_— F —— D

Proof. Toprove the left part of the commuting diagram, let ¢ be a sufficiently regular
scalar function on Q. Using the definitions of IT® and IT” , applying the fundamen-
tal theorem of calculus, and recalling the definition of the discrete gradient operator
in (2.19) yield

1 (Vg)le = o7 [[(Va)- e - w:(vhnﬂq»e,
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which holds for any oriented edge e € & with vertices v; and v;.

To prove the middle part of the commuting diagram, let v be a sufficiently regular
vector function on . Using the definitions of IT” and IT” , applying the circulation
theorem, and recalling the definition of the discrete curl operator in (2.21) yield

I (curl(v))|f = m/{curlv-nde: m Za'f eV'Tf,edL
ec
1

= G Y le|ogeve = (curl, Hg(v))f.

ecof

To prove the right part of the commuting diagram, let v be a sufficiently regular
vector function on Q. Using the definitions of IT” and IT” , applying the divergence
theorem, and recalling the definition of the discrete divergence operator in (2.23)
yield

7 1 1
M7 (divv)|p = — / divvdy = — / venpdS (2.24)
( ) Pl Jp P fg‘p f /
1 7
= z |f|0(p‘f Vf = (divh I (V))P. (2.25)
Pl ¢&p '
This proves the assertion of the lemma. o

2.3.6 Matrix representation of the primary operators

Recall that a discrete field can be interpreted via an algebraic vector. Similarly, the
three primary operators V, curl, and divj, can be interpreted via matrices. There is a
strong connection between such matrices and the topological structure of the mesh.
In fact, the matrices representing V;,, curly, and divy, are the adjacency matrices of the
mesh up to a diagonal rescaling of their rows and columns.

The matrix associated with V, and rescaled with the edge lengths represents vertex-
edge connections. The matrix associated with curl, and rescaled with edge and face
measures represents edge-face connections. The matrix associated with div;, and re-
scaled with face and cell measures represents face-cell connections. With a small
abuse of notation, these matrices are denoted using the same symbol of the corre-
sponding discrete operators.

The matrix representation is extremely useful as it allows us to reinterpret the
action of a discrete operator as a matrix-vector product. For example, if N/ and N*
are, respectively, the number of nodes and edges in the mesh, the discrete gradient
operator V}, is a rectangular N ¢ x N’ matrix. Then, the expression v, = V), pj,, can
be evaluated by multiplying the matrix V), by the N ’_sized vector (pp)pe. »,- The
result is N¢ -sized vector (Ve)ecs;,- A similar interpretation holds for curl;, and divj,.

It will be always clear from the context whether V;, should be interpreted as an
operator or a matrix. For example, the expression uZVhph means a vector-matrix-
vector product.
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2.4 Derived mimetic operators

The duality relationship (2.12) leads to three new mimetic operators, denoted by V,
curly, and divy, that are adjoint to the primary operators divy, curl;, and Vj, respec-
tively. More precisely, formula (2.12) defines uniquely an adjoint operator &, for
each primary operator dj,. Using this formula, we define the adjoint operators V7,
curly, and div} for the primary operators Vy, curl,, and div,, respectively. To reflect

the nature of the adjoint operators better, we identify %h = —div}, curl;, = curl}, and
div, = —Vj. Since the new operators are derived from the primary operators, we

refer to them as the derived mimetic operators.

A formal definition of the derived operators leaves freedom in selecting inner prod-
ucts in the discrete spaces. The results proved in this chapter do not limit this selec-
tion. In the subsequent chapters, we will show that the accuracy of mimetic discretiza-
tions does depend on this selection. The derivation of accurate inner products is in
the heart of the mimetic technology.

Let the spaces ¥}, &, %y, or &, be equipped with inner products and a matrix
representation be available for each of them. We recall that an inner product [-, | »,,
where .7}, is one of the spaces ¥}, &, F), or &, can be represented by a symmetric
positive definite matrix M . For the moment, we simply assume that there exists a
matrix M o such that

[wp Vil = () Ms vy, Vv, €., (2.26)

Let us insert the primary and adjoint operators div;, and div} into formula (2.12)
and recall the renaming of the adjoint operators:

[divy, Vi, pi) 2, = Vi, 4V} p4) 7, = — Vi, Viipil 7,5 2.27)

which holds for every v, € .%), and every p, € &2;. Applying formula (2.26) to the
inner products in spaces &2, and .%;,, we obtain the following algebraic expression:

T 3:, T T v
v, divy, Mo py = —v, Mz V, py,

where div,{ is the transpose of matrix divy,. Since vectors v;, and pj, are arbitrary, we
have the matrix relation

MV, = —divI M,

from which it follows that

Vi = —div, = —M3 div] M. (2.28)

In other words, the derived gradient operator is negatively adjoint to the primary
divergence operator. Now, it becomes clear that the properties (e.g., accuracy) of the
derived gradient operator depend on the properties of two inner product matrices.

The duality relation between the discrete curl operator curl;, and its adjoint curly;, =
curl, implies that

[curl vy, Wy 2, = [V, curly Wil s, = [vi, curl, wys, (2.29)
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holds for every wj, € %, and every v, € &),. Applying formula (2.26) to the inner
products, we obtain its algebraic form:

vicurl’ M 2w, = vI M ccurl,wy,,

where curl,{ is the transpose of matrix curly,. Since vectors v, and pj, are arbitrary,
we have the matrix relation

M scurly, = curl,{ng
from which we obtain that
curl, = M curl] M 5. (2.30)

In the continuum setting, the curl operator is a self-adjoint operator. In the discrete
setting, we have two distinct curl operators, the primary and the derived curl operator,
and the derived curl operator is adjoint to the primary curl operator.
Finally, the duality relation between the discrete gradient operator V and its adjoint
% = —div;, implies that the relation

(Vian, Wale, = an, Vi, Wil s, = —lqn, divy,way, (2.31)

holds for every g;, € ¥}, and wj, € &),. By applying formula (2.26) to the inner products,
we reformulate (2.31) as follows:

ah ViMew, = —q) My divywy,

where V,{ is the transpose of matrix V. Since vectors g, and w, are arbitrary, we
have the matrix relation

My div, = —=V; Mg,
from which we obtain that

div, = —M ' V] Mg (2.32)
In other words, the derived divergence operator is negatively adjoint to the primary

gradient operator.

Remark 2.4. With a few exceptions, the inner product matrices are often irreducible
matrices for unstructured meshes. Thus, their inverse matrices are dense and the sten-
cil of the derived operators is non-local. A similar statement can be made for other
compatible discretization methods such as the mixed finite element method.

Remark 2.5. The derived operators also contains information about the coefficients
of the partial differential equation. For example, let the functions ¢ and v be zero on
the boundary of Q. In view of the relation

/ KVq-vdV — — / gdivKvdy, (2.33)
Q Q
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if we define a primary operator V;, &~ V, it follows that div,, a div(K - ). This property
is implicit in the definition of the mimetic inner product that approximates the integral
in the right-hand side of (2.33).

2.5 Second-order discrete operators

We can combine the first-order primary and derived operators to form the second-
order operators div,, V,, divj, V},, curly, curly,, and curly, curl,, which are discrete ana-
logs of the continuum operators A = divV and curlcurl. These discrete operators
preserve various properties of the continuum operators. For example, the operator
curlycurl,: &, — & is self-adjoint with respect to the inner product in space &. It
can be used to design a mimetic scheme for the electric field in Maxwell’s equations.
The operator curly, curl,: %), — .%, is self-adjoint with respect to the inner product
in space %, It can be used to design a mimetic scheme for solving the equations of
magnetic diffusion.

We also have two discrete analogs of the vector Laplace operator A = Vdiv —
curl curl, which are given by

Agh = Vh&F/h —(ﬁﬁhcuﬂh: (gdh — (5‘},
and ~
Adfzh = Vhdivh —curlhc/ﬁ/rlh: gz}, — y;,.

The discrete operators A 5, and A 7, are symmetric and semi-negative definite with
respect to the inner products in spaces &}, and %, respectively. Such combined op-
erators provide a quick and elegant way to design mimetic discretizations of PDEs,
which we illustrate with a few examples. For simplicity of exposition, we assume
that the coefficients describing material properties are equal to 1.

Example 2.4. Let us consider the diffusion problem in mixed form:

u=-Vp inQ, (2.34)

divu=5 in Q, (2.35)

subject to homogeneous Dirichlet boundary conditions. We assume that b is a suffi-
ciently smooth function.

A mimetic discretization of this problem is given by introducing two discrete fields
pr € Py and vy, € %, that satisfy the discrete analog of (2.34)—(2.35):

w, =V, pi, (2.36)
div,uy, = by, 2.37)

where b, € 2, is the cell-based discrete field approximating b, i.e. b, = IT” (b).
From (2.36)—(2.37) we immediately obtain the cell-centered mimetic scheme for py:

—div, Vy pp = b (2.38)
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This scheme is well-posed since the discrete operator divj, V), is associated with a full
rank matrix, as shown in Lemma 2.7. Moreover, the operator div;, V, is self-adjoint
with respect to the inner product in space &,. Substituting the expression of V, given
by (2.28), we obtain the following linear system:

div, M div] M s p), = by

We stress that this cell-centered discretization of the Poisson equation includes al-
ready the homogeneous Dirichlet boundary condition. Mimetic discretizations of this
type will be the subject of Chap. 5.

Example 2.5. Consider again the diffusion problem (2.34)—(2.35) subject to homo-
geneous Neumann boundary conditions. An alternative mimetic discretization of this
problem is obtained by introducing the two discrete fields pj, € ¥, and u;, € &), that
satisfy

u, = _Vhph in 97 (239)
a—ﬁlh u, = bh in 97 (2.40)

where by, € ¥, is the vertex-based discrete field approximating b, i.e., b, = I1" (b).
From (2.39)—(2.40) we immediately obtain the nodal mimetic scheme for py,:

—&F/thph = bh. (241)

The kernel of the discrete operator divy, V;, consists of constant discrete fields in %, as
shown in Lemma 2.8. This mimics the similar property of the continuum problem that
has a solution defined up to an arbitrary constant. Note that the Dirichlet boundary
condition can be imposed by setting prescribed values to the components of p;, at the
boundary nodes and eliminating the corresponding equations from the global system.

The operator divy, V}, is also self-adjoint with respect to the inner product in space
¥}, Substituting the expression of div;, given by (2.28), we obtain the following al-
gebraic system:

My Vi MV, py = by

Mimetic discretizations of this type will be the subject of Chap. 6.

Example 2.6. Let us consider the div-curl problem for a vector potential A and a
scalar function p which reads as

curl(u 'eurlA) +Vp=J inQ, (2.42)
divA=0 inQ, (2.43)
Axn=0 ondQ, (2.44)

where J is a given current. For simplicity, we assume that the magnetic permeability
is given by u = 1.

Let “//ho denote a proper subspace of ¥}, consisting of vectors whose components
are zero for boundary nodes. Similarly, let é"ho denote a proper subspace of &}, con-
sisting of vectors whose components are zero for boundary edges. We discretize this
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problem by introducing the discrete fields p, € ‘//ho and Ay, € é”,? that satisfy

curly, curl, Ay + V), pp =y, (2.45)
dvy Ay =0, (2.46)

where J;, = (Je) pes represents the vector function J in &), and the degrees of freedom
Je are defined by (2.15). The linear algebraic formulation follows immediately by
using the definition of primary and derived operators:

M ! curl) M 7 curl, Ay + YV, py = 3, (2.47)
M, 'VI Mg Ay, =0. (2.48)

Since Mgl can be dense on an unstructured mesh, a computationally tractable system
is obtained by multiplying the first equation by M. A symmetric system is obtained
by multiplying the second equation by M. The well-posedness of this mimetic meth-
od for the general case with u > 0 is proved in [248].

2.6 Exact identities

A set of fundamental properties of the continuous calculus are exactly reproduced in
the discrete setting by the primary and derived operators. These properties character-
ize the kernel of the partial differential operators, e.g., curlo V = 0 and div o curl =
0, and their preservation in the DVTC is one of the most important aspects of the
mimetic methods. Indeed, they play a crucial role for the stability of the numerical
approximation of PDEs such as Navier-Stokes and Maxwell’s equations. Other dis-
crete analogs of the continuous calculus regard the Helmholtz decomposition theorem
that will be discussed in the next section.

For clarity of presentation, we always assume that the computational mesh €2, is
topologically connected in accordance with the following definition.

Definition 2.1. A polyhedral mesh is called face-connected if it cannot be split into
two submeshes that have no common faces but may have common vertices and edges.

Definition 2.2. Let y denote a closed mesh surface formed by a subset of mesh faces
without inner loops. A face-connected polyhedral mesh is called simply connected
if, for any such y, there exists a subset €2, of mesh elements that form a simply-
connected domain with boundary y.

We will also denote the range (or image) of a primary or derived operator d by
img(d) and its null space by ker(d); the orthogonal complement of a linear subspace
Q by (Q)* and its trivial subspace, which only contains the zero element, by {0}q.
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2.6.1 The kernel of the primary operators

Let us first characterize the kernel of the primary gradient operator.

Lemma 2.3. Let £, be a simply-connected mesh. Then, the kernel of V), is formed
by the subset of the constant vectors of Py, i.e., those vectors whose entries have the
same value.

Proof. From definition (2.19) we can easily see that V;, p;, = 0 ifand only if p,, = py,
for any edge e = (v1,v2). Since the mesh is simply-connected, pj, is a constant vector.
Thus, we can identify the subspace of the constant vectors in ¥}, with the null space
of Vh . O

Let us now characterize the kernel of the primary curl and divergence operators.
More precisely, in the following lemma we prove that ker(curl;,) = img(V},) and
ker(divy,) = img(curly,). The two conditions are the mimetic analogs of curloV =0
and div o curl = 0, respectively.

Lemma 2.4. Let the domain 2 and its mesh partition €, be simply connected. Then,
curlyvi, =0 ifandonly if v, =V, q, (2.49)
Jfor some qj, € Vj, and
diviyv, =0 ifand only if vj, = curlju,, (2.50)

Jfor some uy, € &),

Proof. The “if” part of the lemma’s assertion can be readily verified since from a
straightforward calculation it follows that curl;, V;, = 0 and div, curl, = 0.

To prove the “only if” part of assertion (2.49) we consider a discrete field v;, € &,
such that curl, v, = 0. We need to find a discrete field ¢, € ¥}, such that v, =V qy,.
Let us choose a vertex v; of the mesh. As the mesh is simply connected, any other
vertex v; can be reached from v through a mesh path of consecutive edges {e;}i_,
that begins at v; and ends at v;. Let us now introduce the discrete field g, € ¥}, that
takes the value

1
qvi = 49w, + z O‘I'J(|ek| Ve, (251)
k=2
at v;, where @4 in (2.51) is the sign &1 that depends on the orientation of the k-th
edge e with respect to the mesh path. Now, since curly, v;, = 0 and the mesh is simply
connected ¢,, is independent of the mesh path and must only depends on g, . This
initial value can be left undefined, which is equivalent to say that g, is defined up
to a constant vector. By construction, it immediately holds that V¢, = v;, as the
constant vectors are in the kernel of the primary gradient operator, see Lemma 2.3.
To prove the only if part of assertion (2.50), let us consider a discrete field v;, €
%y, such that divyv, = 0. We need to find a discrete field u;, € &, such that v, =
curly uy. On a logically rectangular mesh this result can be proved by using a simple
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constructive argument, see, e.g., [210, 215]. However, its extension to the case of
general unstructured meshes is not trivial. Herein, we use a different argument that
is based on the properties of the continuum operators. Let v € H(div, Q)N (C%(Q))4
be a vector function whose restriction to each cell P is such that

divv=20 in P,

nps-v=oapsy onfedP,

where vf is the component of the face-based function v, associated with the mesh
face f of JP. Since divv = 0 in Q, there exists a vector potential u € (H' (Q))3 (a
scalar stream function in 2D) such that v = curlu. The proof can be found in [184].
Let us introduce the discrete field uj;, whose component are the mean values of u - T,
along the mesh edges, see, e.g., (2.15).

Now, through a straightforward calculation that starts from the definition of the
face degrees of freedom in (2.16), we obtain

1
vE = Tf] /V' nedS [substitute v = curlu, cf. [184]]
f
1
= Tf] / (curlu) -n¢dS [apply the Circulation Theorem, see (2.2)]
f
1
=T /Bf u-TedS [split the integral on of|
1
= T 2 Oﬂf,e/u -TedL [use definitions (2.15) and (2.21)]
ecdt €
= (curl, up)..
This proves the assertion of the lemma. O

2.6.2 The kernel of the derived operators

As for the primary operators, also the kernel of the derived operators is similarly
characterized. The noteworthy difference is the result of the following lemma, which
establishes that the derived gradient operator in this specific DVTC is injective.

Lemma 2.5. The kernel of the derived operator Vy, is the trivial subspace {0} 2,

Proof. Let py, be a cell function in &2, such that 6;, pn = 0. From (2.28) it follows
that

~M divj M pj, = 0. (2.52)

Since M5 is a non-singular inner product matrix, Eq. (2.52) implies that
div] M p, = 0, or, equivalently, that

M_» pj € ker(divj).
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From Lemma 2.1 we know that divy, is a surjective operator, i.e., img(div,) = .
Using a standard algebraic relation yields:

ker(div] ) = (img(divy)) " = (24)" = {0} »,.
This proves the assertion of the lemma. O

It is natural to expect that the kernel of a discrete gradient operator contains the
constant vectors as is the case of the kernel of the primary operator V,,, see Lemma 2.3.
Thus, the assertion of Lemma 2.5 may seem strange at a first glance. However, in the
construction of the DVTC that we carry out in this chapter we have assumed that
the boundary integrals in formulas (2.7)~(2.9) are zero and the result of Lemma 2.5
reflects this fact. Indeed, a comparison between formula (2.7) and (2.27) shows that
the operator V), incorporates also the boundary part in the right hand side of (2.27).

For example, on an orthogonal mesh, it holds that

~ (pp —pp )/d12 if f =.%p, N%p,,
(Vipn)e = oo ‘ ! : (2.53)
_pPl/dlf lf‘f:c/p1 NoQ,

where d; is the distance between the centroids of Py and P», and d/ 1 is the distance

between the centroid of P and face f. Now, let 6;, pr = 0. From the first relation
in (2.53) it follows that all pp are equal. From the second relation in (2.53) it follows
that pp is zero if a face of dP is also a boundary face. Therefore, all the pp are zero
and the kernel of Vj, must be the discrete field p, = 0.

Let us now characterize the kernel of the derived curl and divergence operators.
More precisely, in the following lemma we prove that ker(curl,) = img(V},) and
ker(div,) = img(curly,). The two conditions are the mimetic analogs of curloV =0
and div o curl = 0, respectively.

Lemma 2.6. Let the domain §2 and its mesh partition €2, be simply connected. Then,
Z’_z;ﬁh v, =0 ifandonly if v, = %hph (2.54)
Jor some py, € Py, and
divyvy, =0 ifand only if vj, = curl,w, (2.55)
Jfor some wy, € Fy,
Proof. By using the matrix definitions of V,, curl,,, and div;, given in (2.28), (2.30),

and (2.32), respectively, and the results of Lemma 2.4, a straightforward calculation
shows that

cutl, Vj, = =M curl] M > M div] M, = =M (divy, curl,)” M » =0,
and
T 1T 1 4T -1 T
divy, curl, = =M V; Mg M curly, M7z = —M " (curl, V;)" Mz =0,

which proves the “if” part of the Lemma.
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To prove the “only if” part of assertion (2.54) let us consider a discrete field v;, €
Z, such that curl; v, = 0. We need to find a discrete field pj, € &7, such that v;, =
V), pi. The definition of curly, in (2.30) implies that

curly, vy, = —Mglcurlz Mz v, =0.

Since M« is a non-singular inner product matrix, it follows that curl,{ M zv;, =0, or,
equivalently, that

Mz vy, € ker(curl,{).

Now, we apply the result of Lemma 2.4, see (2.50), and a standard algebraic relation
to obtain:

ker(curl] ) = (img(curl;)) " = (ker(div,)) "~ = img(div}). (2.56)

Equation (2.56) implies that there exists a vector g, € &7, such that M zv;, = div,fqh.
As M » is also a non-singular matrix, we can introduce the vector p, = —M;lq/,, )
that M v, = —div] M »p,, and using (2.28) we obtain that

\ —M:;ldiVZlw M_ﬂph = %hph.

To prove the “only if” part of assertion (2.55), let us consider a discrete field
vj, € &), such that div;, v;, = 0. Equation (2.32) implies that

&F/hvh = —MjIVZ Mgvy, =0.
Since M is a non-singular inner product matrix, it follows that V,{ Mgevy, =0, or,
equivalently, that
Mgvy, € ker(V,{).

Now, we apply the result of Lemma 2.4, see (2.49), and a standard algebraic relation
to obtain:

ker(V]) = (img(Vy)) " = (ker(curl;))” = img(curl]). (2.57)
The definition of divy, in (2.57) implies that there exists a vector wj, € .%, such that
Mgv, = curl,{ wy,. As M # is a non singular matrix, we can introduce the vector uj, =
M;l Wy, so that M gv), = curl,{ M zuy, and using (2.30) we obtain that
vy, =M curl] M suy, = curl, .

This proves the assertion of the lemma. ]

2.6.3 The kernel of the second-order mimetic operators

In this section we investigate the properties of the kernels of the combined mimetic
operators introduced in Sect. 2.5. _

The kernel of the second-order mimetic operator divy, V), is characterized by the
following lemma.
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Lemma 2.7. The product divy, %h is a full rank matrix, i.e., ker(divy, %h) = {0},

Proof. Let us consider a cell-based discrete ﬁel~d qn in &y, such that divy, %h qn=0.
By using the definition of the derived operator V;, given in (2.27) we obtain

0= [dth Vi qw]h] P [ﬁh an Vi Qh]

— )
T,

from which it follows that ﬁh qn = 0. We apply the result of Lemma 2.5, which im-
plies that g5, = 0. ]

The kernel of the second-order mimetic operator div;, V), is characterized by the
following lemma.

Lemma 2.8. Let €2, be simply-connected. The kernel of the combined mimetic oper-
ator div, Vy, is formed by the constant vectors of V},.

Proof Let us consider a node-based discrete field g, in ¥, such that div, V; g, = 0.
By using the definition of the derived operator div;, given in (2.31) we obtain

0 = [divy Vign,qn) s, = —Vian Vaanls, »

from which it follows that V;, ¢g;, = 0. We apply the result of Lemma 2.3, which im-
plies that g, is a constant vector. ]

The kernels of the operators curly, curl;, and curly, curl;, are characterized by the
following lemma.

Lemma 2.9. Let the domain € and mesh €, be simply connected. Then,

2’_1;17;1 curlyvy, =0 ifandonly if v, =V,q) (2.58)
Jor some q, € ¥y, and

curlhz;ﬁh v, =0 ifandonly if v, = %h qn (2.59)

Jor some q, € P,

Proof. The “if” part of (2.58) is a consequence of Lemma 2.4. The “if”’ part of (2.59)
is a consequence of Lemma 2.6.

To prove the “only if” part of assertion (2.58), let us consider a discrete field
v, € &, such that curly, curl; v;, = 0. By using the definition of the derived operator
curl, given in (2.29) we obtain

0 = [y, curly,curly,vy] . = [curl, vy, curly, Vil 7,

Eh
from which it follows that curl; v, = 0. Lemma 2.4, see (2.49), implies the existence
of a field g, € ¥, such that v, = V, ¢y,.
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To prove the “only if” part of assertion (2.59), let us consider a discrete field
V), € Fy, such that curl, curl, v, = 0. By using again (2.29) we obtain

0= [V}77 curlh cﬁr/l;,,vh] 7 = [&Trlh Vh,gﬁﬂh Vh] &

from which it follows that curl,, v;, = 0. Lemma 2.6, see (2.54), implies the existence

of afield g, € &), such that v;, = V, q;,. This proves the assertion of the lemma. 0O

The two mimetic operators curly, curl;, and curly, curl, are also in the definition of
the edge-based and face-based vector Laplace operators. The kernel of these latters
is characterized by the following lemma.

Lemma 2.10. The null space of the vector Laplace operators A, and A 7, are the
trivial subspaces {0} 5, and {0} 7,, respectively.

Proof. (i) To prove that ker (A, ) = {0}, , we consider a discrete field vj, in &, such
that A 4 vj, = 0. It follows that:

0 = [vi, A, vi] (use the definition of A, )

S
= [Vi, Vi div, vil s, — [va, curly curly, v, 5 (use (2.31) and (2.29) )

= —[div), vy, div,, vy, curly, vy, curl, vy | .
h’ 9y '—/h7

2,~ [
from which we have

div,v; =0 and curl,v,=0. (2.60)

These two conditions imply that v, = 0. In fact, by using the result of Lemma 2.6,
from the first equation in (2.60) it follows that there exists a discrete field u;, € .%),
such that v;, = curlj, u;,. The second equation in (2.60) implies that curly, curl, uj, = 0,
while Lemma 2.9 (cf. (2.59)) implies that there exists a discrete field g, € 2}, such
that u, = V;,¢g;,. We substitute back these expressions and apply again Lemma 2.6 to
obtain that ~

vj, = curlywy, = curl, V9, = 0

regardless of gy,.
(i) To prove that ker(A yh) = {0} 7,, let us consider a face vector v; in .%), such
that A 7, v;, = 0. It follows that:

0 = [vi, A2, Vi) 7, (use the definition of A 7, )
= [V, Vidivyvi] 7, — [vicurlyeurlyvi] o (use (2.27) and (2.29))
= — [divh Vi, dth Vh] 7, [(Tﬁﬂh Vi, (Tﬁﬂh Vh] Ty

Zh
from which we have:

divyv, =0 and curl,v, =0. (2.61)
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These two conditions imply that v, = 0. In fact, by using the result of Lemma 2.4,
from the first equation in (2.61) it follows that there exists a discrete field u;, € &,
such that v;, = curl, uy,. The second equation in (2.61) implies that curl;, curlj, u, = 0,
while Lemma 2.9 (cf. (2.58)) implies that there exists a discrete field g, € ¥}, such
that u;, = V}, ¢;. We substitute back these expressions and apply again Lemma 2.4 to
obtain

v, = curlu, =curl, Vg, =0

regardless of g;,. This proves the assertion of the lemma. |

2.7 Discrete Helmholtz decomposition theorems
We present two discrete versions of the Helmholtz decomposition theorem.

Theorem 2.1. Let domain £ and mesh £, be simply-connected. Then, for any discrete
field vy, in F), there exists a unique q, in 2y, and a unique wy, in &), with divyu, =0
such that _

v, = Vyuqn + curlyuy,. (2.62)

Proof. Let us first show that (2.62) is an orthogonal decomposition in 7). In fact,
using the definition of the derived operator V, and the result of Lemma 2.4, we obtain
[curlh uy, %h qh] = [divh Cl.ll‘l/7 uh,qh],}h =0.

Fn N
We apply the primary mimetic operator divy, to both sides of (2.62) and obtain the

relation: _
dth V= divh Vh qh- (2.63)

The combined mimetic operator divy, %h is a full rank operator, and, thus, it is non-
singular, cf. Lemma 2.7. Therefore, a solution g, € &, to (2.63) exists and is unique
for any discrete field vj, in .%),.

From (2.63) we immediately have that

divi, (v —Vigy) =0

and thus (v, — V},¢;) is in the kernel of the operator div,. Therefore, by applying
(2.50), we immediately have the existence of uy, € &, such that (2.62) is satisfied.
The uniqueness of uy, follows under the assumption that divj, u;, = 0. In fact, let uj,
be another edge field such that curl, u), = curl, uj, and divy, uj, = 0. Clearly, curly, (u, —
u;,) = 0, and by applying Lemma 2.4 (cf. Eq. (2.49)), we can prove the existence of
a discrete field g, € ¥} such that u, —u), =V ¢;,. Now, the following development

[Vh qh7vh qh]éh = [“h - u;ﬁvh Qh] &, = [a;{/h(uh - u;’l)7th| i = 07

implies that V;, ¢, = 0, or, equivalently, that u;, = u),. o
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Corollary 2.1. The four discrete spaces ¥}, &, Fy, and Py, are such
dim(%#,) = dim(Z,) + dim(&,) — dim(¥,) + 1. (2.64)

Proof. The orthogonality of the decomposition requires that the dimension of .%,
must be equal to the dimension of &7, plus the dimension of &), minus the dimensions
of the kernels of V), and curl;,. The assertion of the corollary follows because the
kernel of V}, has dimension equal to zero and the kernel of curly, is the image of V;,. O

For a single polyhedron we can substitute dim(Z?,) = 1 in the corollary’s assertion
and we obtain the famous Euler’s polyhedron formula.

The second discrete Helmholtz decomposition theorem holds in space &j,.

Theorem 2.2. Let domain §2 and mesh §2j, be simply-connected. Then, for any vj, € &},
there exist a discrete field qj, € ¥}, which is unique up to an additive constant field,
and a unique discrete field w;, € %), with divyuy, = 0 such that

—

vy, = Viqn+ curlpuy,. (2.65)

Proof. Letus first show that (2.65) is an orthogonal decomposition. In fact, we use the
definition of the derived operator curl;, and the result of Lemma 2.6 (see Eq. (2.55))
and we obtain

[curl, wy, Vi gy 6= [divy, curl, w,, gy 5, = O-

We apply the derived mimetic operator div;, to both sides of (2.65) and obtain the
following relation:
aK/th Za—F/thqh. (2.66)

The kernel of div, V;, consists of the constant vectors of %, cf. Lemma 2.8. Therefore,
for any discrete field v, € &}, there exists a solution g, € ¥}, to (2.66). Moreover, this
solution is unique up to an additive constant.

Due to Eq. (2.66) it holds that (v, — V,gy,) is in the kernel of the operator divy,.
Therefore (2.65) simply follows by applying (2.55).

The uniqueness of uy, follows under the assumption that div; u;, = 0. In fact, let u),
be another edge field such that curly, uj, = curl, uj, and div, u), = 0. Clearly, curl, (u, —

u},) = 0, and by applying Lemma 2.6 (cf. Eq. (2.54)), we obtain that u, —u), =V, g,
for some discrete field g, € 22;,. Now, the following development is true:

[ﬁh%ﬁh%} = [uh—uZﬁth] = [divi(uy —w)),q4] , =0,
Eh Eh h

which implies that %h g, = 0, or, equivalently, that u, = u),. O

Remark 2.6. Using the same argument used for the proof of Corollary 2.1 we obtain
again (2.64).
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Mimetic inner products and reconstruction
operators

“Whatever good things we build
end up building us.”
(Jim Rohn)

The first goal of this chapter is to derive explicit formulas for inner product matrices
M2, M2, Mg, and M » that were formally introduced in Chap. 2. The second goal
is to create foundations for the theoretical analysis of mimetic discretizations.

A reconstruction operator is an important concept in the theoretical analysis of
mimetic schemes. It maps a mesh function into a continuum function and allows to
describe mimetic discretizations using a finite element language. Such an interpreta-
tion exists for a large set of mimetic schemes (but not all of them) which makes it a
valuable theoretical tool.

3.1 Mimetic inner product

Let ., denote one of the spaces introduced in Chap. 2, e.g., ¥, &, Fp, or P, and
Zpp be its restriction to cell P. We consider a projection operator

Hg/ 2 Xp — S

Various projection operators were introduced in Sect. 2.2.

Let 7p be the space of trial functions. To build the low-order mimetic schemes,
this space is defined as the space of constant scalar or vector functions. The trial space
is generalized in Chap. 4 to allow building of higher-order mimetic schemes. Let S, p
be a subspace of Xp with the following properties.

(B1) The projection operator pr is surjective from S, p to .7 p.

(B2) The space Sy, p contains the trial space Jp.

(B3) Letg € Ip and v € S, p. Then, the integral / qvdV can be calculated exactly
p

using the degrees of freedom, i.e the components of vector H,f (v).

The assumption (B1) states that the space S, p is rich enough. In all mimetic
schemes discussed later in this book, it is defined originally as an infinite dimensional
space. The assumption (B2) is connected with the accuracy of a mimetic scheme that

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI10.1007/978-3-319-02663-3_3, © Springer International Publishing
Switzerland 2014
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we want to design. In this chapter we consider the low-order schemes; hence, the
trial space Jp contains only constant functions. The assumption (B3) is problem-
dependent; a more general framework will be introduced in Chap. 4. In general, the
space Sy, p is selected such that assumption (B3) can be easily shown.

Each mimetic inner product is assembled from local inner products:

lnvil 7y = D, [unpovnel , p  Vunvi € S,
PGQ}, ’

where u, p and v, p are the restrictions of mesh functions ), and v; to element P,

respectively.

Definition 3.1 (Consistency condition). The inner product is said to satisfy the con-
sistency condition if

1 @10 )] o= [qvdV Yge o wese. G

For a polyhedral cell, the space of all vectors pr (g) can be smaller than the space
pp. In such a case, the consistency condition does not define the inner product
uniquely. To avoid numerical instabilities, we need the stability condition.

Definition 3.2 (Stability condition). The inner product is said to satisfy the stability
condition if

CuPlvipll? < [vip.vap] ,, p SCIPlIvipll? Yvip e Shp  (32)

with positive constants C, and C* independent of P and v, p.

Remark 3.1. In general, we do not need the infinite dimensional space Sy, p to charac-
terize the mimetic inner product in the finite dimensional space .}, p. It is possible to
build the mimetic method using a finite dimensional space Sy, p isomorphic to .}, p.
Hence, in addition to the above conditions, we may require

dim(S),p) = dim(.%,p). (3.3)

In such case the projection operator will clearly be an invertible mapping from S, p
into .#, p and thus the two spaces will be isomorphic. Hereafter, we assume that (3.3)
holds true. Finally, note that a finite dimensional space Sy, p is not unique. ]

Let us consider a reconstruction operator
RE : Sp — 8
p - 7hP h,P

that is inverse to the projection operator. Due to assumptions (B1)—(B2) and (3.3),
each function in Sj, p is the reconstruction of a (unique) discrete field in .7, p, see
also the important Remark 3.2.
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If the reconstruction operator would be easy to build, the local inner product could
be defined explicitly:

[uh,PJ’h,P]_%p Z/PRg(uh,P)Rig/(Vh,P)dV- (3.4)

Unfortunately, this is possible only for cells with simple geometry (e.g. tetrahedron
or hexahedron). We will show, that for an arbitrary-shaped cell P, the reconstruction
operator can be defined through the solution of a local PDE problem. In this case,
its calculation becomes a non-trivial task. For this reason, the MFD method never
calculates the reconstruction operator explicitly. Instead, it is defined implicitly, not
always uniquely, via properties of space Sj, p.

In subsequent sections, we study various reconstruction operators. Then, we use
their properties to show that the computation of the right-hand side in (3.1) does not
depend on the behavior of the reconstructed field Rg (v, p) inside cell P. We conclude
this introductory part with an important remark and a simple example that serves the
purpose to present the idea behind the construction.

Remark 3.2. Selection of a space S, p that satisfies (B1)—(B3) and (3.3) yields imme-
diately a definition of the reconstruction operator R‘,g as the inverse of H,57 restricted
to Sy, p. Viceversa, if one builds first a reconstruction operator R;;’ , then a space Sy, p
will be automatically defined as the image of R',é’ . Both approaches are equivalent.
Clearly the reconstruction operator needs to satisfy certain properties to ensure that
space S;, p can be useful for the derivation of the method. In the main part of the
present chapter we will follow the second approach and focus our attention on recon-
struction operators and obtain the space Sy, p as an implicit consequence. In Chap. 4,
we will employ the first approach and focus on the space Sj, p, thus avoiding the need
to build the related reconstruction operator. |

Example 3.1. Let us consider the case d = 2 and the mimetic space %, associated
to the edges of a polygonal mesh. We want to build a local inner product

[-7 ] TP : ffhyp X Lg‘sh.’p — R
that mimics the standard L?(P) scalar product and satisfies the consistency condition

(3.1). For the space of trial functions Zp we choose the space of constant vectors,
9p = []P()(P)]z. Then,

[Hﬁ:?(c),vh,P]y,,,P = /Pc'VdV WV E Shp, Ve € T, 32)

where v, p = Hf (v). We start by defining a finite dimensional space Sy, p of vector
functions living on P that satisfies (B1)-(B3) and (3.3). We require that space S, p
satisfies two inclusions:

[IP()(P)]z CSHpPC w € Hyiv(P): wls-ns € Py(f) Vf € P, divw € IP()(P)}. (3.6)

The first inclusion implies that the space S, p contains the constant vector functions,
that is (B2). The second inclusion will be fundamental for property (B3).
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There exists an infinite number of choices for Sj, p; for instance, one may build
Sy, p by solving a set of diffusion problems on P associated with basis vectors in
Fy.p. Since, as it will be shown below, this choice does not change our conclusions,
we do not need to elaborate on it. Thus, let the reconstruction operator be any stable
operator N

Ry : Fnp — Shp

that is inverse to the projection operator (and thus preserves the degrees of freedom).
As already noted in Remark 3.2, defining Sy, p yields a definition of RF> and, vicev-
ersa, defining RP gives a definition of S, p. In the present example, we will focus on
the first approach, i.e. on the definition of Sp.p. It will be convenient to characterize
the space of test functions as the space of gradients of linear functions:

ypz{vq . g€ Py(P), /quV:O}.

The consistency condition (3.5) states that the inner product is exact when one of
its arguments is a constant vector field and the other is a function from Sy, p. Using the
definition of S, p, we show that the right hand side in (3.5) is computable and does not
depend on the particular choice of R" Indeed, replacing ¢ = Vg, where [pgdV = 0
integrating by parts and using (3.6), more precisely that le(RP (vip)) € Po(P), w
obtain

[ Va-RE ie) v == [ qdiv(RS (wp))dV + ¥ [RE (vip)-npcgds
feoP

=3 /Rp (Vip) -mpsqdS.

fedP
Note that the functions in S}, p have constant normal component on each face f. Using

definition (2.16) and recallihg that H,"f oR’P} is the identity operator, we obtain

7 1 7 73
RE (viip)l¢-mp s = m/be?(Vh,P) ‘np¢dS = (I Ry (Vup))f = (Vip)f = vr.
Inserting the last two formulas in (3.5) gives a new form of the consistency condition:

(11 (Va)vie] 5, p = X o1 [adS Wip € Fip Vg € PI(P)/R. (37)
fedP

The above condition does not depend on the choice of the reconstruction operator
R‘,?,z ; hence, it should not be built in practice. O

The above example will be continued in Sect. 3.4, where the consistency condition
(3.7) will be written explicitly in a matrix-vector form. The reader can safely skip the
intermediate theoretical sections.
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3.2 Properties of the reconstruction operators

Let us list the formal properties that the reconstruction operators must satisfy for
the spaces ¥, 8y, %, and Z;,. The existence and application of the reconstructed
operators to building the mimetic inner product will be described in the next sections.
By building a (local) reconstruction operator, from .%}, p into a finite dimensional
functional space living on P, that satisfies the five properties below, we guarantee
that the ensuing image space Sy, p satisfies (B1)—(B3). Clearly, such a reconstruction
operator is not always unique.

We will use symbol R/ to denote the reconstruction operator in space .%, of
mesh functions restricted to the geometric object ¢ that can be cell P, face f, edge e,
or vertex v. The set of reconstruction operators {Ry } is defined for all meaningful
combinations of ., and ©.

The reconstruction operator R,/ " is required to satisfy the five formal properties
labeled as (R1)—(RS5). These properties involve the projection operators IT;, the dif-
ferentiation operators V, curl, div and their discrete counterpart V, curly, div,. For
some choices of .}, and o, the five properties do not determine a unique operator
Rf; , and we obtain a family of reconstruction operators. A reconstruction operator
RY is called admissible if it satisfies the five properties.

We point out that the commuting property (R3) and the locality property (R5)
lead to the inter-dependence between the reconstruction operators. For this reason,
the derivation of the reconstruction operators must be done in a precise order. We
denote a constant scalar function by ¢, a constant vector function by ¢, the generic
identity operator by |, a three-dimensional point by x, a local two-dimensional point
on face f by & € f, and a local one-dimensional point on edge e by & € e.

(R1) Rightinverse property. Each reconstruction operator is a right inverse of the
corresponding projection operator:

« onP: Iy oRL =1, [T oRp =1, ITY oRZ =1, I oRY =1;
« onf: I/ oR/ =1, IT{ oR{ =1, II7 oRY =1;
« one: [T/ oR] =1, I1{ oR; =1,
« onv: I1] oR) =1.
The last case is trivial and we consider it only for the sake of completeness.

(R2) Accuracy property. Each reconstruction operator is exact on constant func-
tions:

« onP: R) oIy (¢) =c, R oIl5 (¢) =¢, RE oIlF (¢) =¢, Ry oIly (c) =c¢;
« onf: Rl oIl/ (c)=c, Rf oIlf (¢) =¢, R oIT (¢) =¢;

e one: Rl oIl (¢)=c, RS oII¢ (¢) =c¢;

« onv: R} oIl) (c) =c.

The last case is again trivial.
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(R3) Commuting property. The reconstruction operators commute with the con-
tinuum and discrete differentiation operators:

« onP: Rgo s VOR;Q Rgocuﬂh = curlORg, RP/}Odth = divoRg;
« onf: RfoV,=VoR/, R‘fyocurlh:curloR/’:;
* One: Rfth:VoRé
In the second case, we consider the two-dimensional curl operator curl ¢ = 991 _ 9%

where ¢ = §¢1 , ) is a two-dimensional vector field. In the third case, V denotes the
derivative 9E with respect to the local coordinate £ defined along edge e.

(R4) Orthogonality property. The reconstructed functions are orthogonal to a spe-
cial subspace of linear polynomials with zero average. Let xp be the barycenter of
P, & be the barycenter of f, and & be the mid-point of e. Then,

* onP:
/R‘g((p).pldVZO V(pEéah‘p, Vpl EﬁgE C(X—Xp),VCGR};
b :
F 1 _ ar 1 T _ 3.
/PRP((p)'p dV=0 YoeFup,Vp €0p = ex(x—xp),VeeR’};

/PR-F?(q;)pldV —0 Vo Pup, Vp' €O = ¢ (x—xp), Ve R

* onf:
/fRf(q;)-pldS:o Vo € &hp, Vp' € OF = (& — &), Ve €R);
/fRff(w)p‘dS:O Vo € T, Vp' € 67 = ¢ (§ &), Ve e R}
* One:
[RE (@) dL=0 Vg ebie il €O = (6 VeeR).

For Rg” s Rf? and Rg the orthogonality property is trivially satisfied as the recon-
structed function is a constant. Nonetheless, for Rf , R and Rg ensuring this property
requires a careful design. These issues are discussed in Sect. 3.3.

(R5) Datalocality property. The trace of the reconstructed function on a boundary
face f of a cell P or on the boundary edge e of a face f only depends on the local
degrees of freedom associated with f or e:
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* on P, for every f € dP:
R ()¢ =R{ (¢) Vo € Vip and @ € Vs,
RE(9)i =R (@) Vo € &p and @ € &y,
RE () ne=R{ (@) = Yo € Fypand o € Fs.
« onf, forevery e € Jf:

R{ (@) =Rl (pe) Vo€ Vpsand @ € Ve,

R{ (@) Te =R (Qe) = e V9 € &g and @ € Gpe.

This property expresses the local dependence of the reconstruction operators and
guarantees continuity (in a weak or strong sense) of the reconstructed functions in
neighboring cells. For example, consider the scalar function R} (¢) defined on cell P
that is reconstructed from the vertex-based mesh function ¢ € ¥}, p. The restriction
of R} (¢) to a boundary face f of JP, i.., R;/((p)‘f, is determined completely by
the values of ¢ at the vertices of f, i.e., . Thus, this trace may be given by any
admissible reconstruction operator R} ' (@) acting on that face.

3.3 Minimal reconstruction operators

We will present a constructive proof of the existence of a unique set of admissible
reconstruction operators that satisfy properties (R1)—(R5).

About one third of the reconstruction operators is not defined uniquely by the five
properties (R1)—(RS). The uniqueness is restored by solving a minimization prob-
lem. For this reason, we refer to the resulting operator as the minimal reconstruction
operator. A family of admissible reconstruction operators can be derived from the
minimal reconstruction operator.

Figure 3.1 shows the inter-dependence between the reconstruction operators. For
example, construction of operator Rg requires to know operator Rf to satisfy the
commuting property (R3) and operator R{ to satisfy the data locality property (R4).
For this reason, we first define the operators R | Rf, R'Z and R;f(J located on the main
diagonal, which are trivial and unique. Then we define the reconstruction operators
R!,R{,and Rg located on the first sub-diagonal as the solutions of partial differential
equations that are specifically designed to ensure properties (R1)—(RS5). As we will
see later, the orthogonality property (R4) is a crucial condition for the derivation of
operators R‘f , RS, and R‘g and deserves a careful treatment. Finally, we derive the
remaining reconstruction operators Rg L R%, and R,yp'.

For every non-trivial reconstruction operator, we also show that the mean value
of the reconstructed function depends only on the input mesh function and a few ge-
ometrical quantities. Therefore, if there exists a family of admissible reconstruction
operators, all members of this family return the same mean value. This average prop-
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Fig. 3.1. Recursive definition of the reconstruction operators: the operators are defined along
diagonals as indicated by arrows starting from the main (the largest) diagonal and moving
down

erty plays a crucial role in the derivation of the mimetic inner product. In short, see
details below, it shows that this inner product does not depend on a reconstruction
operator when one of the arguments in the inner product is the grid projection of a
constant scalar or vector field. We will prove this property directly for the operators
R., Rf and R (on the first sub-diagonal in Fig. 3.1) and will derive a recursive
relations for the others using properties (R4) and (R5).

3.3.1 The reconstruction operators Rz/ , Rf, Rf; and RP‘@

These reconstruction operators, which corresponds to the main diagonal in Fig. 3.1,
are the simplest ones as they reconstruct a constant scalar field from the unique data
available from the grid function to which they are applied:

Ry (9) =0 Vo = (@ )ver, € Vi (3.8)
RS (@) = 0. Yo = (@e)ecs, € Che, (3.9)
RY () = s Vo = (97 € T (3.10)
RE (¢) = gp Vo = (@p)perp € Php. (3.11)

Properties (R1)—(R3) for all the operators and property (R4) for Rf, R'f and R;?
follow immediately as such operators return constant fields.

3.3.2 The reconstruction operators R/, Rf and Rﬁz

These operators correspond to the second diagonal in Fig. 3.1. The operator R is
defined uniquely, while the other two operators lead to a family of admissible recon-
structions. A unique reconstruction is provided by solving a minimization problem.
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3.3.2.1 The 1-D reconstruction operator R

Let £ be the local coordinate parametrizing the position along the edge e = (vi,v2)
and such that & = 0 corresponds to the vertex v; and & = 1 to the vertex v,. Let
¢© = (@v,,¢y,) be a vertex-based mesh function from %}, .. The reconstructed func-
tion R/ (¢) along the edge e is the unique solution of the following boundary value
problem:

d .,
R (@)go =, and RI(9)jz_; = P,
The solution is the linear polynomial:
RE(9)(E) = 0w, + (P — @) & (3.12)

Property (R1) is satisfied because (IT) o R )(¢) returns the values of R (¢) (&)
at edge end-points £ = 0 and & = 1, which are ¢, and ¢, respectively. Property
(R2) is satisfied because, if ¢ is the projection of a constant function c, then ¢,, =
@y, =cand R] (¢)(&) = c for every & € [0,1]. Property (R3) is satisfied because
(VoR! )@ =dR! (¢)/d& and

Pu, — @ =RL(Pv, — @u) =RE (V1)) = (RS 0 V).

Lemma 3.1. Let e be the edge connecting vertices v| and v,. For every vertex-based
Sunction @ = (Qy)ycoe € Vhe it holds:

[R @yar =P veee. (3.13)
e

Proof. Since R () is a linear function of e, the midpoint quadrature rule gives

[ R (@)dL =R (9)(xe) el = P2 P2 e, (3.14)

where X is the edge midpoint. m]

3.3.2.2 The 2-D reconstruction operator R;

Let @ = (@e)ecor be an edge-based mesh function from &, ¢. The two-dimensional
vector function reconstructed from ¢ takes the form R{ (¢) = @ + @, The first func-
tion ¢@ € H(curl, f) is the solution of following boundary value problem:

curlo =curl,¢ inf, (3.15)
divp =0 inf, (3.16)
@ Te= Qe on e € Jf. (3.17)

The second function satisfies two conditions: curl @, = 0in f and @, - T. = 0 on edges
e € Jf. Since we consider here a single face f, we can assume that unit tangential
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vectors T, are oriented counter-clockwise as required by the Stokes theorem; thus,
Of e = L.

Condition (3.16) ensures that problem (3.15)—(3.17) has a unique solution. Con-
ditions (3.15) and (3.17) are necessary to show properties (R1), (R3) and (R5). The
accuracy property (R2) and the orthogonality property (R4) follow from a proper
choice of function @,,.

Let us discuss these properties in details. Property (R1) holds because the projec-
tion operator Hf@( uses only boundary values of the reconstructed function:

. 1 ‘ 1
(1 o) (0) = ) [ K (0)-2eds = ) [(9+90) e = g

Property (R3) is satisfied because curl, ¢ = R{ (curl, @) = (R ocurl,)(¢), from
which it follows that

(curloR{) ¢ = curl(R{ (¢)) = curl(@ + @,) = curl, ¢ = (R{ ocurl;) ¢.

Property (RS) is satisfied because Rf (@) - Te = (@ + @) - Te = @ = RS (@) for
every edge e of Jf (note that RS is unique).

Now, we are left to determine a suitable vector function ¢ to ensure properties
(R2) and (R4). As curl @, = 0, we take @, = V ¢ for some scalar function g in /] (f).
As g has zero trace on Jf, its tangential derivative along each edge is zero; hence the
condition ¢ - T. = 0 is preserved. Imposing the orthogonality condition (R4) and
integrating by parts yield:

[o:(&-Ends—— [Vq-(&-&as—2 [qas. (3.18)

Equation (3.18) gives us a necessary condition to choose ¢ as a function of ¢ but the
choice is not unique. To fix this, let us define

1
X = §/¢(§ —&¢)dS and (f) = {q € H} (f) such that /qu: x},
f f
and take p € H(} (f) as the unique solution of the minimization problem:

. 2
mlnqe,}fx(f)/f Vg~ ds.

Then, we set @, := V p. To show that condition (R2) is satisfied by ¢ + @,, we
consider ¢ = IT¢ (¢) for some constant vector ¢ € R2. The unique solution to (3.15)-
(3.17) is @ = ¢, which implies that y = 0. The minimization process returns ¢ = 0
and, hence, @, = 0. We conclude that Rf (¢) = @ + V p is the admissible minimal
reconstruction operator.

A family of admissible reconstruction operators is obtained by taking ¢, =
V. (@) where .# : @ — g may be any linear operator that respects (3.18) and
returns ./ (¢) = 0 for every constant vector function c.

Lemma 3.2. Let e; for i = 1,2 be the i-th vector of the canonical basis of R?, and
p} be a linear polynomial of ﬁ’fg such that e; = curl p}. Then, for every admissible
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reconstruction operator Rf and every edge-based mesh function ¢ = (Qe)ecof € Enf
it holds:

/Rf((p)-eidS: D <pe/p} dL. (3.19)
f e

ecof

Proof. Using conditions of the lemma and integrating by parts, we obtain
/fR?((p) -e;dS = /fRf((p) -curlp! ds

_ /f pleulRY (9)dS+ Y / TR (@)pldl.  (3.20)

ecof /€

The first integral term in the right-hand side of (3.20) is zero. Indeed, using the com-
muting property (R3), the fact that R is constant on f, cf. (3.10), and the definition
of space ¢ , we obtain:

/fp}curlRf((p) ds = /fR'f’J?(curlh @)p)dS = R{ (curl, 9) /fp,l ds=0.
The locality property (RS) and the definition of Rg given in (3.9) yield

v i (p)pldL= [RE(pe)pldL=g. [ pldL.

This proves the assertion of the lemma. O

3.3.2.3 The 3-D reconstruction operator R’P7

Let ¢ = (¢f)scop be a face-based mesh function from %), p. The three-dimensional
vector function reconstructed from ¢ inside cell P takes the form Rg (¢) = @ + @,,.
The first function ¢ € H(div,P) is the solution of the following problem:

dive =div, ¢ in P, 3.21)
curlp =0 in P, (3.22)
@ -ng = ¢ vf € dP. (3.23)

The second function must satisfy two conditions: div @, = 0 in P and ¢, -n¢ = 0 on
faces f € dP. Since we consider here a single polyhedron P, we can assume that the
unit normal vectors n¢ are exterior to P; hence, ap s = 1.

Condition (3.22) ensures that problem (3.21)-(3.23) has a unique solution ¢. Con-
ditions (3.21) and (3.23) are necessary to show properties (R1), (R3), and (RS). The
accuracy property (R2) and the orthogonality property (R4) follow from a proper
choice of function @.

Let us discuss these issues in details. Property (R1) is satisfied because the pro-
jection operator HF‘,’? returns the face degrees of freedom of ¢ due to (3.23):

P P 1 P 1
(5" oRE ) (9) ¢ = m/erf«p) ‘nedS = m/{(‘P""Po) ‘ngdS = %/fd5= 5.
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The commuting property (R3) holds because div, ¢ = RS (div, ¢) = (R‘Ff” odiv,) @
from which it follows that

(divoRY) @ = div(RE (¢)) = div(p + @,) = divy, @ = (RF odiv,) ¢.

The locality property (R5) is satisfied because R',f (@) -nf= ¢ = R;f (¢yf) for every
feadP.

What is left is to determine a suitable function ¢, that ensures properties (R2)
and (R4). Since div ¢, = 0, we can define ¢, = curlq for some vector function q €
Hy(curl,P). The quantity curlq - ns depends only on the tangential derivatives of q
on f. Since q X nf = 0 on f, these derivatives are zero and the condition @ - nf =
curlq-ns = 0 is preserved. Imposing the orthogonality condition (R4) and integrating
by parts yield:

—/(p-(cx(x—xP))de/curlq~(c><(x—xP))dV:Z/q-ch, 3.24)
P P P

which holds for every constant vector ¢ € R>. Equation (3.24) gives us a necessary
condition to choose q as a function of ¢ but the choice is not unique. To fix this, let
us define

1
xX:= 5/(p X (x—xp)dV and Hy(P)= {q € Hy(curl,P): /qu :x},
P P
and take p € Hy(curl, P) as the unique solution of the minimization problem:

minqu,,(P)/P|Q|2dV-

Then, we set @, := curlp. To show that condition (R2) is satisfied by ¢ + @, we
consider ¢ = H|§7 (¢) for some constant vector ¢ € R*. The unique solution to (3.21)—
(3.23) is @ = ¢, which implies that ¥ = 0. The minimization process returns q =
0; hence, @, = 0. We conclude that RZ (¢) = @ + curlp is an admissible minimal
reconstruction operator.

A family of admissible reconstruction operator is obtained by taking ¢@, =
curl . Z (@), where .# : ¢ — q can be any vector-valued linear operator that re-
spects (3.24) and returns .# (¢) = 0 for every constant vector function c.

Lemma 3.3. Let e; be the i-th vector of the canonical basis of R3, i = 1,2, 3. Then, for

every admissible reconstruction operator R’P} and every face function @ = (Qf)segp €
yhﬁp it holds:

[ RE (9)-eiav = 3 orlfles(xc—xp). (3.25)
P feaP
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Proof Lete; =V p! where p!(x) := e;- (x — xp). Using this and integrating the left
hand side of (3.25) by parts, we obtain

[ RE (9)-esdv = [ R (0)-V plav
P P

=~ [ plavRE (@@ + 3 [necRE (@)plav.  (326)
P feoP f

The first integral term in the right-hand side of (3.26) is zero. Indeed, using the com-
muting property (R3) and the fact that RP/ is constant on P, cf. (3.11), we obtain:

[ piaiveg (o) av = [ RS (divig) plav =R (divig) [ pldV ~0.
The locality property (R5) and the midpoint integration rule give
e RS (9)plav = s [ plav = grlfles-(xi—xe).

The proves the assertion of the lemma. ]

3.3.3 The reconstruction operators R;’/ and R,‘f

These two operators correspond to the third diagonal in Fig. 3.1. Their construction
uses the reconstruction operators described above.

3.3.3.1 The 2-D reconstruction operator Rg '

Let ¢ = (@,)veas be a vertex function from %, ¢. A scalar function R/ (¢) recon-
structed from ¢ on face f is the unique solution of the following problem:

VR{ (¢) =R{ (Vsp) inf, (3.27)
R¢ () =R{(pe)  oneedf, (3.28)

where R? and R are the admissible reconstruction operators defined in Sect. 3.3.2.

Property (R1) holds because the projection operator ny " evaluates function values
at vertices v of f, which are determined uniquely by the boundary conditions (3.28)
and the properties of R} ‘(). Property (R5) is the boundary condition (3.28). To show
property (R2), let us take ¢ = ny/(c) for a constant function ¢. Then ¢, = ¢ for every
vertex v and V;,¢ = 0. Hence, the right-hand side of (3.27) is zero and the solution to
the problem is a constant that must take the same value ¢. Property (R3) is implied
directly by (3.27).

The right-hand side in (3.27) is not unique unless we consider the minimal admis-
sible reconstruction operator Rf , see Sect. 3.3.2. Taking the divergence of both sides
of (3.27) yields that R/ (¢) is a solution of the boundary value problem:

A(R{ (¢)) =div(R{ (V,9))  inf, (3.29)

R{ () =Rl (pe.) onecof. (3.30)
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Since the right-hand side of (3.30) is determined uniquely by (3.12), the solution is
unique. Obviously, it also the solution to problem (3.27)—(3.28).

Let us show that the accuracy property (R2) can be extended to linear functions.
Consider ¢ = Hf7'( p') for alinear function p'. Note that the right-hand side of (3.29)

is zero and the right-hand side of (3.30) is the trace of p' on df. Hence, p' is the

solution of this problem and R{ (I1/ (p')) = p'.

Lemma 3.4. Let n¢ . denote the exterior unit vector orthogonal to e € df. Then, for
every admissible reconstruction operator Rf’ and every vertex-based mesh function
© = (@ )vear € Vi it holds that

, 1
/ng (p)dS = 5 z

ecof

(§e—§f)-nf,e/eR;’/(<p\e) dL. (3.31)

Proof. We use the identity 2 = div(§ — &) and integrate the left-hand side of (3.31)
by parts:

2[R (g)ds = [ R} (p)div(§ ~&7)ds
~— [VE (0)- 6 —8ds+ 3, [ (@) emee- (E—8pdL. (3:32)

ecof

The first integral in the right-hand side is zero. Indeed, using the commuting prop-
erty (R3) and the orthogonality property (R4), we obtain:

VR (9)- (G ~&ds = [Rf (Vio)-(E~Ends 0.

Note that (& — &¢) - n¢ e is constant along edge e and can be evaluated at the edge
mid-point. Applying the locality property (RS), we obtain:

/eRfy/(‘P)\enf,e (§—&¢)dL=nse-(Ec—&¢) ‘/eR:,((P\e)dL'
This proves the assertion of the lemma. o
Remark 3.3. We can evaluate the integrals in the right-hand side of (3.32) using the

result of Lemma 3.1. Thus, the average of R{ (¢) on f is the same for all admissible
reconstruction operators Rf7 and depends only on ¢ and a few geometric quantities.

3.3.3.2 The 3-D reconstruction operator Rj,

Let ¢ = (@e)ecop be an edge-based mesh function from &), p. The three-dimensional
vector field reconstructed from ¢ inside cell P has the form Ré (¢) =@+ @,. The
first function @ € H(curl,P) is the solution of the following problem:

curlg = R’P}(curll1 ) in P, (3.33)
dive =0 in P, (3.34)
(@)1r=Ri (pf)  onfedP, (3.35)
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where Rg is the admissible reconstruction operator defined in Sect. 3.3.2 and (@) | ¢
denotes the orthogonal projection on the plane of f. In other words, we fix the tan-
gential component of ¢ on dP. The second function @, must satisfy two conditions:
curl@, =0in P and ¢, = 0 on dP.

Condition (3.34) is introduced to ensure that the problem (3.33)—(3.35) has a unique
solution. Conditions (3.33) and (3.35) are necessary to ensure properties (R1), (R3),
and (R5). The accuracy property (R2) and the orthogonality property (R4) follow
from a proper choice of function ¢.

Let us discuss these properties in more details. The data locality property (R5)
holds immediately due to selection of boundary conditions in (3.35). Property (R1)
holds because the projections operator Hé returns values of the reconstructed func-
tion averaged over edges. Using this and definition (3.17), we obtain:

. 1 U f o,
(16 o RE) (9), = 1 [(@+@0)-redr - = & (00)- zed =g,
where f is any face to which e belongs. The commuting property (R3) holds because

(curloRp) ¢ = curl Rp (9) = curl(@ + @y) = RY (curl, @) = (RF ocurly) ¢.

What is left is to determine a suitable function @, to ensure properties (R2) and
(R4). Since curl @, = 0, we take @, = V ¢ for some scalar function g in H} (P). As
q has zero trace on dP, its tangential derivatives on each face f € dP are also zeros,
and the condition ¢, = 0 on JP is preserved. Imposing the orthogonality condition
and integrating by parts yield:

/P(p~(x—Xp)dV:—/PVq-(x—xP)dV::%/quV. (3.36)

Equation (3.36) gives us a necessary condition to choose ¢ as a function of ¢ but the
choice is not unique. To fix this, let us define

X = %/ Q- (x—xp)dV and 5 (P)= {qEHol(P): /qu:x},
P P
and take p € H/ (f) as the unique solution of the minimization problem:

min,c ey [ Vg av. (337)

Then, we set @, := V p. To show that the accuracy property (R2) is satisfied by
¢+ ¢, we consider ¢ = H,f (¢) for some constant vector ¢ € R, The unique solu-
tion to (3.33)-(3.35) is @ = ¢, which implies that y = 0. The minimization process
returns ¢ = 0 and, hence, @, = 0. We conclude that Rj (¢) = @ + V p is the minimal
admissible reconstruction operator.

A family of admissible reconstruction operators is obtained by taking @, =
V. % (@) where 4 : @ — q that can be any linear operator that respects (3.36) and
such that .# (¢) = 0 for every constant vector function c.

Lemma 3.5. Let e; be the i-th vector of the canonical basis of R, i = 1,2,3. For
every admissible reconstruction operator Rg and every edge-based mesh function
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@ = (Pe)ecop € &rp it holds:
/Ré( e,dV_ D, o /Rf o) d (3.38)
P 2¢5p

where R{ is any admissible reconstruction operator and

o= (mps(Xr—Xp)e;+nps-e(Xp—Xf)) (. (3.39)

Proof. Let us rewrite e; using the following identity
2e¢; =curlp!(x) with p!(x)=e;x (x—xp). (3.40)
Substituting (3.40) in (3.38) and integrating by parts, we obtain
2/PR§§(¢) e dV = /PRéj(q;) -curlp! dv

:/cuﬂRéj(q) Yav+ Y /Ré “(npsxpl)dS. (341)
P feoP

The volume integral in the right-hand side of (3.41) is zero. Indeed, using the com-
muting property (R3) and the orthogonality property (R4), we obtain:

/Pcurle((p) pldv = /F’Rf,?(curlh @)-pldv=o.
The locality property (R5) gives
/RP “(npgxp})dS = /Rf @) (npgxp') 1 ¢dS. (3.42)
Applying vector calculus, we obtain:

np X p; =nps-(X—xp)e;i— (Nps-€;) (X —Xp). (3.43)

Note that np ¢ - (x —Xp) is a constant quantity on f. Adding and subtracting x¢, we
rewrite (3.43) as follows:

np’f X pil = np’f . (Xf — Xp) € — (np’f . ei) (Xf — Xp) — (nprf . e,~) (X — Xf) (3.44)

The first two terms in the right-hand side form a vector parallel to the plane of f. The
same is true for the third term. Consider a local coordinate system & associated with
the plane of f. Then, the orthogonal projection is quite simple:

(np ¢ x P})M =ag;—(nps-e;)(E—&;). (3.45)
Inserting this in (3.42), we obtain:
/RP npfxp, )dS = /Rf (P‘f af,dS (Ilpf e; /Rf (Plf é éf ds.
The assertion of the lemma follows by observing that the last integral is zero due to

the orthogonality property (R4). ]

Remark 3.4. The average of the reconstructed function R (¢) on P depends on aver-
ages of the reconstructed functions Rf ((P‘f) on faces f. According to Lemma 3.3, the
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later do not depend on the choice of the reconstruction operator. Thus, the average of
R{ () is the same for all admissible reconstruction operators and depends only on ¢
and a few geometrical quantities.

3.3.4 The reconstruction operator Rg/

Let @ = (¢y)ycop be a vertex-based mesh function from %}, p. A scalar function re-
constructed from ¢ inside cell P is the unique solution of the following problem

VR) (@) =RE (V4 9) inP, (3.46)
Rp (@) =R{ () onfeaP, (3.47)

where R@; and R/ " are admissible reconstruction operators defined in Sect. 3.3.3.

From Sect. 3.3.3 we know that an admissible reconstruction operator can be writ-
ten as Ry (@) = @ + V. (@), where @ is a divergence-free field. Taking the diver-
gence of both side of (3.46), we obtain the following necessary condition:

AR (9) = A4 (9).

The solution R} (¢) is determined uniquely by taking .# (@) = p, where p is the so-
lution of the minimization problem (3.37). We refer to such a reconstruction operator
as the minimal reconstruction operator.

Property (R1) holds because the projection operator I"IFZ/ returns values of the
reconstructed function at vertices v of P and these values are defined uniquely by
boundary conditions (3.47). To show that the accuracy property (R2) holds, let us
consider ¢ = I1 (c) for a constant function c. Since ¢, = ¢ for every vertex v of P,
we have V(@) = 0; hence, the right-hand side of (3.46) is zero. Thus, the solution
is constant on P and must take the same value ¢ due to the boundary conditions. The
commuting property (R3) follows immediately from (3.46).

The accuracy property can be extended to linear functions. Let p! € P{(P) and
@ =TT} (p"). Since V p! is a constant vector, we have:

VRp (11§ (")) = Rs (VaTlg (p1)) [use (R3)]
~ RE (T (VD)) [use (R
= Vpl .
Thus, Rg/((p) = p! satisfies (3.46). We have already proved that the reconstruction

operator Rz " is exact for linear functions; hence, Rg,/((p) = p! satisfies boundary con-
ditions (3.47). We conclude that (R} o I3 )(p') = p'.

Lemma 3.6. Let e; for i = 1,2,3 be the i-th vector of the canonical basis of R>. For
every admissible reconstruction operator R,Z, and every vertex-based mesh function

¢ = (@ )veop € Vpp it holds:

T R ,
[Ré()ar = 3, (3 xe) meg R (00)ds. (3.48)
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where Rf’ is any admissible reconstruction operator defined in Sect. 3.3.3.

Proof. Let us consider the identity 3 = div(x — xp). Integrating by parts and using
the data locality property, we obtain

3 / RL(@)dV = / RL (¢)div(x — xp)dV

/VRP (x—xp)dV+ Y /Ré/(¢)‘f(x—xp).np7fd8
feop”f

/VRP (x—xp)dV + Y /fRf"(W)(x—xP)-np;de. (3.49)
feoP

The first integral term in the right-hand side is zero. Indeed, using the commuting
property (R3) and the orthogonality property (R4), we obtain:

/ VRL(9)- (x—xp)dV — / RE(Vy@)-(x—xp)dV —=0.  (3.50)
Using (3.50) in (3.49), we rewrite it as:

y _1 v ).
/PRP((p) dv — 3fgp/f1ef (@) (x—xp) -np ¢ dS. 3.51)

The assertion of the lemma follows by noting that (x — xp) - np 5 is constant on face
f and can be evaluated at its barycenter xs. |

Remark 3.5. Combining the results of Lemmas 3.6, 3.4, and 3.1, we conclude that the
average of Rg;/((p) over cell P is the same for all admissible reconstruction operators
and depends only on ¢ and a few geometrical quantities.

3.4 Mimetic inner products for a single cell

Let us return back to a generic space ., that can represent ¥}, &, %), or . Its
restriction to cell P, S|p = %}, p, represents ¥, p, &,p, Fpp, or P p. Any inner
product can be represented by a symmetric positive-definite matrix:

T
[uh.vah.P]yh_p =uwpMopvip,  Vupp,vip. (3.52)

We define the space Jp of the test functions (see the consistency condition (3.1))
as the space of constant (scalar or vector) functions, i.e. 7p = IPo(P). Let v, p =
pr (v) for v € S, p. Using property (3.3), we can rewrite the consistency condition
in the equivalent form:

(11 (c).vip] . o = / cRE (vpp)d (3.53)

for all v, p € .}, p and any constant (scalar or vector) function ¢ € Py (P).
We will systematically use this form of the consistency condition to derive its
linear algebra form:
My pNyp=Rsp, (3.54)
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where matrices N p and R p are computable. This is the matrix equation with
respect to the unknown matrix M p. Hereafter, the construction is limited to a single
cell P. Thus, for each particular space, we can safely drop the subscripts from our
matrix notations and write MN = R.

Remark 3.6. We restrict our attention to the fundamental case of the standard L? scalar
product. The extension to more a general scalar product, for instance, with a symmet-
ric and strictly positive definite tensorial weight is introduced in Part I1.

Before showing the inner products for the spaces ¥, p, &), p, % p, Py p in three
dimensions, we complete the two-dimensional Example 3.1.

Example 3.2. Let us recall the consistency condition (3.7) for the mimetic inner prod-
uct in space .%), p in two dimensions

[Hﬁ:?(V(J),Vh,P]t;h’p =Y Vf/fqu VYip € Fpp, Vg € P1(P)/R,  (3.55)
fedP

where v, p = (Vf)fegp-

We select a natural basis for the quotient space P (P)/R = span{x —xp,y —yp},
where x,y are the Cartesian coordinates and (xp,yp) is the barycenter of P. Inserting
q =x—xp in (3.55), we get

[Hg(el)7vh-P]ﬁh.P = Vf/(x_xP)dS (3.56)
fedP f

where the vector e; = (1,0)7. By enumerating the faces of P, the right hand side
above can be written as a scalar product of the vectors v;, p and Ry = (R ¢)¢cyp, with

&f:/@—mym vf € P.
' f

Let N; = I"I,‘;/f2 (e1). Then, (3.56) can be expressed as an algebraic condition on the
local inner product matrix:
MN; =R;.

The same argument applied to ¢ =y —yp leads to the second algebraic condition
MN; = R, where N, = IT5 (e3), Ry = (Raf)segp. and Ry ¢ = [¢(y —yp) dS. We can
combining the two algebraic conditions in one matrix equation:

MN =R, (3.57)

where N = [Ny, N2] and R = [Ry, Ry]. Equation (3.57) is the algebraic form of the
consistency condition. Solution of this equation is given briefly in Sect. 3.4.5 and in
more details in Chap. 4. O

As a final remark, we note that the construction of other inner product matrices
follow the same pattern that starts from a consistency condition, that can be repre-
sented as a surface integral as in (3.55) and leads to the typical mimetic equation
MN = R, but with different matrices N and R.
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3.4.1 Mimetic inner product in V), p

For every constant function ¢ defined on cell P and any vertex-based mesh function
¢ from 7}, p, we apply the consistency condition (3.53) to obtain

(.15 (0)],p = [ RE (p)cdV. (3.58)

Let us take ¢ = 1 as a basis for the space of constant functions. Applying first
Lemma 3.6 and then Lemma 3.4, and finally Lemma 3.1, we obtain

1
0T ()], p =3 3 (xs—xe) mes X (Eo—E&e) mee P26, (3.59)
' feoP ecof

where we recall that &, is the midpoint of edge e € 9f, & and x¢ denote the barycenter
of face f in a local and the global coordinate systems, and ng¢ . is the unit vector
orthogonal to e € df in the plane containing f. Reordering the above sum yields

IR, p=t T 5 T (o) mes(E &) menile

vedPecodf fedP
exv f=e
= Y Riuo, (3.60)
vedP

with the obvious definition of coefficients R, ;. Collecting these coefficients, we form
avector Ry € ¥, p:

Ri = (Riv)veor-

Let N| = Hg/(l). The definition of the projection operator implies that all compo-
nents of vector N; equal to 1. Using the matrix representation of the inner product
(see formula (3.52)), we rewrite (3.60) as follows:

¢"MN; = @"R;.
Since ¢ is an arbitrary vector, we obtain the matrix equation
MN; =R;.
Comparing with (3.54), we conclude that matrices N and R are single-column matri-

ces in the considered case.

Remark 3.7. Recall that the reconstruction operator RE,' is also exact for linear func-
tions. Therefore, the above construction can be extended in order to satisfy the con-
sistency condition (3.53) for any test function in P, (P).

3.4.2 Mimetic inner product in &), p

Let {ej,es,e3} denote the canonical basis of R3. Treating e;, i = 1,2,3, as constant
vector functions over cell P, {e;,ey,e3} form a basis for [Po(P)]>. For every i =
1,2,3 and any edge-based mesh function ¢ in &}, p, we apply the consistency condi-
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tion (3.53) to obtain
(.17 (e))] / RE(9) e V. 3.61)

We develop the right-hand side using first Lemma 3.5 and then Lemma 3.2. From
the first lemma it follows that

[0, 115 (e)] . Z ;- / R{ (@) d (3.62)
feaP

where R{ is any admissible reconstruction operator for f € JP and the vector-valued
constant @ ; € R? is given by (3.39):

;= (mps-(Xf—Xp)e; +nps-e (Xp —Xf)) | ¢, (3.63)

where x¢ and xp are the barycenters of f and P, respectively. Each vector ¢ ; lies on
the two-dimensional face f and can be expanded in the canonical basis {n,1n,} of
R? as:

2
o5 = z O i i Ny
k=1

From Lemma 3.2 it follows that for for every admissible reconstruction operator
R{ and every edge function @ = (e )ecos € & ¢ it holds that

/Rf Q) dS = zafzknk /Rf @) dS = — Zafzkzafe(Pe/Pde

ecof

where 1, = curl p}. The orientation of tangent vectors Te is now important. We no
longer can make a simplifying assumption, like in Lemma 3.2 and must carry around
the factor o o = £ 1. Taking p} (&) = 0 x (€ — &) and re-ordering summations, we
obtain

: 1
[0, 115 (e)] ;, p = —3 2 Y, ik Y Oreele] (M x (8.~ &)
=1 fedP ecof
-y (——z Y X nichelel (N x (&~ &) )0
ecép =1 fcdP ecof
= z Rie®e, (3.64)

with the obvious definition of coefficients R; . Collecting these coefficients, we form
a vector R; € &, p:

Ri = (Rie)ecop-

Let N; = IT5 (e;). Using the matrix representation of the inner product (see for-
mula (3.52)), we rewrite (3.64) as follows:

o MN; = ¢ R;.
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Since ¢ is an arbitrary vector, for each 7, we obtain the matrix equation
MN; =R;.

Let us form matrices R = [Ry, Rz, R3] and N = [Ny, N2, N3]. We conclude that
the algebraic form of the generic consistency condition (see formula (3.54)) in the
considered case is MN = R with the three-column matrices N and R.

3.4.3 Mimetic inner product in ) p

For every constant vector e;, i = 1,2,3, as in the previous subsection, and for every
face-based mesh function ¢ € .7, p, we apply the consistency condition (3.53), to
obtain

(0.1 ()] 5, p = [ RE (9)-esl. (3.69)
We develop the right-hand side using Lemma 3.3:
[0.1T5" ()] 5, p= X, orei-(xi—xp) fl= 3, xR, (3.66)
fedP fedP

with the obvious definition of coefficients R; s. Collecting these coefficients, we form
avector R; € &, p, Ri = (Rif)seop. LetN; = Hp?(e,-). Using the matrix representation
of the inner product (see formula (3.52)), we rewrite (3.66) as follows:

o MN; = ¢ R;.

Let us form matrices R = [Ry, Rz, R3] and N = [Ny, N2, N3]. We conclude that
the algebraic form of the generic consistency condition (see formula (3.54)) in the
considered case is MN = R with the three-column matrices N and R.

3.4.4 Mimetic inner product in &), p

This case is trivial, since ¢ € &, p is just the number @p. Let y € &) p. The con-
sistency condition (3.53) with ¢ = yp gives

[, I ( /RP vedV = |P|op yp.

Hence, M = |P]|.

3.4.5 Formula for the inner product matrix

Consider the matrix equation MN = R with matrices N and R derived above. Here,
we give a quick solution to this equation and leave its detailed analysis to Chap. 4
and Part II.

A simple proof by contradiction can be used to show that matrix N has a full
rank. Let us show that matrix R has also a full rank. If we take u,p and v, p in
definition (3.52) as the columns of matrix N, apply the consistency condition (3.59)
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and the accuracy property (R3), we obtain:
[unp.vhp] , p=NTMN; =RTN; = /P cic;dv,

where ¢; and ¢; are constant (scalar or vector) functions generating vectors N; and
N, respectively. Since, functions c; are orthogonal basis functions, the product NTR
is the diagonal positive definite matrix; hence, non-singular. This implies that matrix
R must have a full rank.

A partial solution to the matrix equation is given by

M® =R(RTN)'RT,

which can be verified by direct substitution. The matrix M is positive semi-definite,
and it is positive definite only when the number of rows in N is bigger than the number
of columns. The problem is rectified by adding to M? another positive semi-definite
matrix M! such that M!'N =0, e.g.

M =y(I=N(NTN)"INT),  y>o0.
The final solution, recommended for practical calculations is given by
1
M=M"+M! =R(RTN)'RT + —trace(M®) (I =N (NTN)"INT),  (3.67)
m

where m is the size of matrix M. It is not difficult to show that this matrix is al-
ways positive definite, for instance, using a proof by contradiction. A more difficult
task is to prove that it satisfies the stability condition (3.2) which is only true for
shape-regular cells. Detailed analysis of the stability condition is presented in the
next chapter after a generalization of the consistency condition.

Remark 3.8. Formula (3.67) gives only one of the possible solutions to the matrix
equation MN = R. A complete family of solutions is derived later. This family con-
tains matrices M for which we can prove existence of reconstruction operators Ry (+)
such that formula (3.4) holds true. It may also contain matrices for which the existing
analysis tools are insufficient to give a definite answer.
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Mimetic discretization of bilinear forms

"Complexity that works is built up
out of modules that work perfectly,
layered one over the other."
(Kevin Kelly)

In the previous chapter we described the mimetic inner products that are low-order
approximations of classical L products of continuum functions « and v:

[uspvip) o= /P uvdV +O0(hp) |P|,
where u;, p, vy, p are discrete mesh functions from a space .7

upp = Ip(u), vap=ITp(v).

In this chapter, we extend the developed discretization tools to more general bilinear
forms. More precisely, let us consider an elliptic problem:

Find u € X such that:
HB(u,v)={(fvo WwelX, 4.1)

where X is a Hilbert space, & : X x X — R is a symmetric, continuous and coercive
bilinear form and f is a loading term in the dual space of X. Essential boundary con-
ditions are included in the definition of X. Natural boundary conditions are included
in the definition of the loading term. Due to the Lax-Milgram lemma, the problem is
well posed [80].

The mimetic discretization of problem (4.1) includes three steps that are typical
for all discretization methods; however, each step has features that are unique for the
mimetic approach.

1. Definition of the discrete space . We define the space .¥), through the de-
grees of freedom, which are real numbers associated with a collection of vari-
ous geometric objects such as cells, faces, edges and/or vertices of a mesh €2,.
The choice of the degrees of freedom is, obviously, problem dependent. Exam-
ples of .}, include the fundamental spaces &2,,.%},, &), ¥, introduced in Chap. 2.
The mimetic approach allows us to mix degrees of freedom with different phys-
ical meaning (pointwise values, moments, normal and tangential components of
tensors) associated with different geometric objects. In contrast with the finite

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI10.1007/978-3-319-02663-3_4, © Springer International Publishing
Switzerland 2014
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element method, no shape functions are constructed explicitly; hence, no unisol-
vency condition is needed.

2. Construction of the discrete bilinear form %y, : ./ x %) — R. Since the MFD
method does not use shape functions in its construction, the discrete bilinear
forms are built from different principles called the consistency and stability con-
ditions. The consistency condition is an exactness property stating that the bilin-
ear form %, reproduces exactly (up to some reconstruction operator) the contin-
uum form % when at least one of its two arguments lives in a special subspace
of .,. The stability condition guarantees that the discrete bilinear form %, is
uniformly coercive and continuous, which leads to a well-posed scheme.

3. Construction of the discrete loading term ( f,- G : /; — R. The discrete loading
term is a continuous linear operator that approximates the right-hand side of (4.1).

Once these steps are completed, the mimetic scheme reads as follows: Find u;, € .7},
such that:

By (upyvn) = (f,vn @ Yvn € S (4.2)

The above construction uses a direct discretization of the variational form of the
problem and is different from the approach proposed in Chap. 2 that reformulates
the original second-order PDE as a system of two first-order equations. Although the
two approaches turn out to be often equivalent (at the level of discrete equations),
this second one has a wider range of applications.

In the subsequent sections, we will develop a framework for a proper choice of the
discrete space .77, and the construction of the bilinear form %;,. We will also discuss
the implementation of 8, in a computer program. The construction of ( f,- G will be
discussed in the next chapters for specific PDEs.

Remark 4.1. In the case of simplicial meshes, the MFD method leads often to the
same scheme as a finite element method that uses the same degrees of freedom. The
proposed framework can be used as an alternative numerical approach to the con-
struction of local stiffness and mass matrices. For instance, a practical implementa-
tion of high-order finite element methods (e.g. Argyris element) can be done more
efficiently using the MFD framework.

4.1 Discrete bilinear forms

We assume that the bilinear form 4 is given in the form of an integral over a computa-
tional domain €. If €2, is a subdivision of 2 into polyhedral cells P (see Sect. 1.6.2),
9 can be split into the sum of local terms

B (u,v) = z Bp (u,v) Yu,v € X, (4.3)
PEQh

where %Bp is a symmetric and positive semi-definite bilinear form associated with
cell P. By analogy with (4.3), we split the bilinear form %), into the sum of local
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terms

By (upvi) = Y, Bpp(unpvip) Vup,vy € S, (4.4)
PGQh

where By p 1 Sp X S p — Ris a symmetric and positive semi-definite bilinear
form associated with cell P and .}, p = .7, p. Let ny, , denote the dimension of the
local space .7}, p.

Let us consider a polyhedral cell P and define the kernel of the bilinear form Bp
as follows:

ker(#p) = v € Xjp such that Zp (v,v) = 0}. 4.5)

We also define a sufficiently rich finite-dimensional space of trial functions Jp such
that the following inclusions hold:

ker(%Bp) C Ip C)(‘p and Py(P)C % (4.6)

for some integer k € N.

Remark 4.2. Our notation is tailored for spaces of scalar functions. In the case of
spaces of vector-valued functions, we replace the second inclusion by (IPx(P))? C Jp
where d > 1 is the space dimension.

Let n7, denote the dimension of space .7p and functions ¢/ form a basis in this
space:
Ip =span{q', ¢, ..., ¢"*}.

The requirement that a polynomial space is included in Zp is necessary to ensure the
accuracy of the method. In practice, it often holds that 7p = IP;(P) for some integer
k. The other requirement, ker(%p) C Jp, is used in Sect. 4.3 to assure that the local
discrete bilinear forms %), p reproduces the kernel of the continuum form %p.

Like in the previous chapter, we consider a subspace Sy, p C X|p. Again, this space
is never constructed explicitly and only its generic properties are used in the MFD
method.

(B1) The projection operator Hg: Xjp — Z)p restricted to Sy, p is surjective on
Fnpsie. Sp =I5(Shp).

(B2) S), p contains the trial space Jp.

(B3) Zp (v,q) withv € Sj, p and g € Fp can be computed exactly using only g and
the degrees of freedom of v.

Note that the space Sj, p can be infinite dimensional and in general it may be conve-
nient (and simpler) to keep it like that avoiding to enforce further conditions on Sj, p.
Nevertheless, one can always choose a space Sy, p (possibly by selecting a subspace)
such that

dim(Sy, p) = dim(-7, p). 4.7
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In such case the projection operator Hg becomes an invertible application from S, p
into .}, p and the discrete fields in .7}, p are the degrees of freedom of the functions
in Sy p. Thus, each function v € Sy, p is uniquely determined by its degrees of freedom
I15(v) and the choice of S, p determines a reconstruction operator

Rgi yh’p — Sh.’p.

The reconstruction operator R',%Y " must satisfy a different set of conditions com-
pared to the reconstruction operators of Chap. 3. Indeed, properties (R3)—(R4) de-
pend on the definition of the bilinear form %p. The right inverse property (R1) and
the accuracy property (R2) are now replaced automatically by the fact that the recon-
struction operator is the inverse of the projection operator on space Sy, p.

Like in Chap. 3, a family of reconstruction operators may exist. Different recon-
struction operators define different spaces Sj p. The properties (B2) and (B3) are
common for all reconstruction operators in the family and are required to ensure the
accuracy of the MFD method. Stability of the method is controlled by imposing uni-
form bounds on the reconstruction operators.

The property (B3) is fundamental to establish an algebraic form of the consistency
condition that makes the derivation of the method possible. This derivation uses only
the degrees of freedom of v € Sj, p and is independent of the reconstruction opera-
tor. In low-order mimetic schemes, the degrees of freedom are often related to the
boundary of P and the space Sj, p is selected to reduce the computation of %p (v, q)
to dP. In high-order mimetic schemes, some degrees of freedom of v may be also
related to the interior of P such as cell moments with respect to the polynomials. In
such a case, the computation of %p (v7 q) is more involved but again feasible with a
proper selection of Sj, p. We stress again that in a computer program, we do not need
to construct the space Sy, p as well as the reconstruction operator.

Remark 4.3. In contrast to the previous chapter, in the present one we will focus more
on the space S}, p rather than on the reconstruction operator. The two approaches are
equivalent, as noted in Remark 3.2.

4.1.1 Consistency condition

Definition 4.1 (Consistency condition). We say that the bilinear form %, p satisfies
the consistency condition if

Zp (MR (v),115(q)) = #p(vq) Vv E Sip, Vg € Tp. 4.8)

Condition (4.8) is compatible with the symmetry of %p and %, p, and is in fact the
accuracy property. Whenever %), p is applied to the degrees of freedom of a function
in Jp and of a function in S}, p, it returns the exact value of the bilinear form %p.
If (4.7) holds, we can reformulate the consistency condition using the reconstruction
operator as follows.
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Definition 4.2 (Consistency condition, alternative definition). We say that the bi-
linear form %, p satisfies the consistency condition if

Bip (113(q),vnp) = Be(0,RE (vip)) Vvnp € Fhp, Vg€ Tp.  (49)
Let us illustrate these preliminary developments with an example.

Example 4.1. Let us consider a convex polygon P and take Xjp = I/ Y(P).Let S p =
Y, p and

%’p(mv) :/PKqu-VvdV7 (4.10)

where Kp is a constant tensor. Thus, we are looking for a node-based discretization
of the Poisson equation.

Let 7p = IP;(P) be the space of linear polynomials, u = g for some g € Jp, and
vpp = T3 (v). Integrating the right-hand side of the consistency condition (4.8) by
parts and noting that Kp Vg is a constant vector, we obtain:

Bp(q,v) = —/PdiV(Kqu) vdV—i—/aP(np-Kqu)vdV

=Y npe vaq/vd& @“.11)
ecdP €

where e denotes an edge of dP and np . its exterior normal vector. Each edge integral
could be calculated exactly using, for example, the trapezoidal rule if v were a linear
function along the edge. For the edge e connecting the couple of vertices (v, v,), we
could obtain:

le]

/evdS = % (v(xy,) +v(xy,)) = 7(\/\/1 +y,). (4.12)

In general, the linearity assumption is not required. Instead, we can define Sy, p as any
space of functions that can be integrated exactly on edges e € dP with the trapezoidal
rule,

Spp C {vGHl(P)ﬂCO(ﬁ):/evdS: %(v(xvl)—l—v(xw)) Ve = (vi,v2) € aP},

and such that Sj, p contains the space 7p = IP1(P). Note that the two conditions above
are clearly compatible since the restriction of a linear function to an edge is a linear
one dimensional function.

One does not really need to define further the space Sj, p since the information
above is sufficient to implement the consistency condition and build the local bilinear
form. Nevertheless, if one prefers to define a finite dimensional space Sj, p (isomor-
phic to .}, p), a possible choice is given by the solutions of the harmonic problems:

div(KVy) =0  inP,

Ve=Ve onecadP,
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where Ve is the linear interpolation of the edge end-point values v(xvl) =, and
v(Xy,) = W,. If polygon P has a non-trivial shape, explicit calculation of the basis
functions in Sj, p will be an expensive procedure and must be avoided. In any case,
the final form of the consistency condition for the present example becomes

le]

Byp(I3(q),vnp) = 3 7(nP7e -KpVg) (v, +,)
ecdP
forall g € Ip = P{(P) and for all v, p € 7}, p. Note that we have derived the above
explicit condition without the complete knowledge of the functions in Sj, p. m|

4.1.2 Stability condition

The symmetric and positive semi-definite bilinear form %), p can be represented by
a symmetric and positive semi-definite matrix Mp:

By p (unp,vi) =t p Mpvyp. (4.13)

We show later that if the dimension of the trial space Jp is less than the size of matrix
Mp, the consistency condition does not define a unique matrix Mp. For the bilinear
form considered in Example 4.1, matrix Mp has size n, where #n is the number of
vertices of P. Since the dimension of Jp is three, we obtain a family of matrices that
satisfy the consistency condition whenever n > 4.

The aforementioned family may include ill-conditioned matrices and a stability
condition is required to ensure the well-posedness of the discrete problem. The sta-
bility condition can be formulated in various norms. For the moment, we consider a
local semi-norm |||Vh’p|||#hqp on ./, p, which is such that |||v;, p |||"/h-P = 0 if and only

if v, p = IT3(v) for some function v € ker(%p), and we define the global semi-norm
as follows:

2 2
Il = 32 el o i € i
€Ly

In most practical cases, this operator defines a norm on a subspace of mesh functions
that satisfy the essential boundary conditions.

Definition 4.3 (Stability condition). There exist two positive constants C, and C*,
which are independent of 4 and P, such that

ih_P < Byp(vip,vinp) < C*|||Vh,P|||ih_P Yihp € Znp- (4.14)

C*|||Vh,P

The definition of the discrete semi-norm |||Vh7p|||',/h_P is clearly problem de-
pendent but, most importantly, it does not depend on the reconstruction opera-
tor. In practice, we often consider a semi-norm that is spectrally equivalent to
%p (RE (vip),RE (vip)) and is easily computable. Let us illustrate this with the
following example.

Example 4.2. Let us consider the bilinear form and the discrete space %, p from
Example 4.1. Using definition of the primary gradient operator (2.19), we introduce
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the mesh-dependent semi-norm

2 Vy, — Wy, 2
|||Vh,P|||~2,,}"P =PI Y (Vawp), =Pl X % . (4.15)
ecdP e=(v1 Nz)E(?P e

Clearly, |||vip |||‘fh~P = 0 if and only if v, p is a constant vertex-based mesh function.
Thus, the kernels of ||| - ||| ,p and Z,p coincide. Indeed, let ¢ be a constant function
onPand¢pp = Hg (¢). Since, ¢ belongs to Ip, definition (4.10) implies that:

Bp(cnprcnp) = Bup(IT5(c),cnp) = Bp(c,c) =0.

Finally, it can be easily checked that, under suitable mesh assumptions, the local
semi-norms above scale, with respect to the element size 4p, as the H'(P) semi-
norm. O

4.2 Algebraic form of the consistency condition

Here, we derive the algebraic equations for the matrix Mp in (4.13). In view of split-
ting (4.4), the global matrix representing %, is built by assembling the local matri-
ces Mp. In order to simplify the exposition, let us assume that (4.7) holds. We stress
again that such a condition is not restrictive as one can always choose a subspace of
the space Sy, p.

For any g € Ip, v € Spp and v,p = I"[S (v), the right-hand side of the consis-
tency condition (4.8) is a linear functional with respect to v, p and thus (4.2) can be
written as

Zyp(I5(q),vip) =RIvip  Ywup € Fhp, (4.16)

where vector R, € 7, p depends on ¢ and the bilinear form 4. Note that the right hand
sides of (4.1) and (4.2), and thus R, is computable thanks to assumption (B3). Vector
R, depends linearly on ¢ and so does the projection operator Hg (g)- Therefore, it is
sufficient to enforce the above equality only for functions ¢', i =1,...,n 7, that form
a basis of Jp. Let us define the following vectors:

N;=IT(¢) and R;=R,. 4.17)
Remark 4.4. Both matrices N and R depend on the geometry of cell P. However, the
analysis presented in the rest of this chapter is done for a single cell P, so we do not
need a more complex notation like Np and Rp.
Using these vectors and representation (4.13), we rewrite (4.16) as follows:
NIT Mp VP = RIT VhP-

Since HS is surjective, vy, p is an arbitrary vector, and we obtain n 7, algebraic equa-
tions
MpN; =R;. (4.18)
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If we introduce two rectangular matrices, N = [Ny,..., N,,]P] andR=[Ry,..., R,,]P],
the algebraic equations can be written in the compact form
MpN =R. (4.19)

Therefore the bilinear form %, p in (4.13) satisfies the consistency condition if and
only if the associated matrix Mp satisfies the following (algebraic) consistency con-
dition.

Definition 4.4 (Algebraic consistency condition). Let columns of matrices N and
R be defined by (4.17). We say that matrix Mp satisfies the algebraic consistency
condition if MpN = R.

The projection operator Hg is defined explicitly and the basis functions ¢’ are often
polynomials. Hence, the vectors N; can be easily calculated for any cell P, while for
all low-order mimetic schemes the calculation of R; is reduced to the evaluation of
surface integrals, as shown in the following example.

Example 4.3. Let us consider again the diffusion problem described in Example 4.1.
Let n be the number of vertices in cell P. We take ¢'(x) = 1, ¢*(x) = x — xp, and
¢>(x) = y — yp as the basis functions of Zp. The vertex-based projection operator
returns the point values of the basis functions:

g (¢, =1, Mg (), =x—xp, I ("), =n—yp

for any vertex v of P. We enumerate the vertices counterclockwise as in Fig. 4.1 by
using the index i = 1,2,...,n and we recall that x?;i = (xy;, ;) 1s the position vector

of the i-th vertex. Let 1 = (1,1,..., l)T be the n-sized vector all of whose components
are equal to 1. In view of (4.17), matrix N is given by

xvl —Xp J’vl —JP

=R =R sz —Xp yV2 —JP
N=(1,N) where N= ‘ ‘ ) (4.20)

Xv, —XP Yy, —VP

V3 V2

nj

Vs

Fig. 4.1. Illustration for Example 4.3
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To derive the explicit formula for matrix R, we insert (4.12) in (4.11) and change
the summation from edges to vertices:

Fo(ng) = 3, Ynpe-KeVg 'e'> @21)

vedP exv

Taking ¢ = ¢’ and comparing (4.21) with (4.16) gives us the formulas for the com-
ponents of column R;. The first column, R;, corresponds to ¢! = 1; thus, this is the
zero vector due to Vg' = 0. Let ¢; = (v;,v; 1) fori=1,2,...,n (with v,,, | = v;) be
the clockwise enumeration of the cell edges and let n; be the unit outward normal
vector to e;. It is easy to see that the second sum in (4.21) has exactly two terms. For
vertex v; they correspond to edges e; and e;;1 (with e,,] = e;). In order to calcu-
late the components of columns R; and R3, we use Vg = (1,0)7 and V¢ = (0,1)7
in (4.21). Therefore, the matrix R takes the form

leq|n] +|e;|nT

. 1| lerlnf +lez[n]
R=(0,R) where RZE ' Kp. 4.22)

o 1|n 1—|—|en|n

In this example we have introduced a block column partitioning of matrices N and
R with respect to the kernel of %p. We will use a similar block partitioning in the
next subsection. o

4.3 Formula for matrix Mp

At this point we can assume that we know both matrices N and R and solve the
algebraic equation Mp N = R. We choose the basis functions ¢’ € 9p in such a way
that the first 7 of them spans the kernel of %p:

ker(%p) =span q¢'.¢%, ....q" }. (4.23)

This ordering induces the block partitionings N = (N N) and R = (R, R), where

N and R _correspond to the first 7 basis functions ¢'. From (4.18) it is obvious that
Mp N=Rand M pN= R. The matrices introduced so far satisfy a few exact identities
that follow from the following lemma.

Lemma 4.1. Matrix RTN is symmetric and positive semi-definite. Moreover,

N/R;=%p(q'q'), 1<ij<ng. (4.29)

Proof. Let us take ¢ = ¢/ and Vpp = Hg (¢') in (4.16). Then, using the consistency
condition (4.8), we obtain

RIN: = Zup (IMa(¢"), 113(q")) = %p (¢',4').
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The assertion of the lemma follows from the symmetry and positive-definiteness of
the bilinear form. m|

Corollary 4.1. Let N, R, and R be the matrices introduced above. Then

R=0 and NTR=0. (4.25)

Proof Let i <, so that ¢’ € ker(%p). By applying formula (4.24) with i = j and
R; = Mp N;, we obtain o
N7 MpN; = Zp (¢,4) = 0.

As Mp is positive semi-definite, N; is in the kernel of Mp, i.e., R; = MpN; = 0, and
we have that R = 0.
Leti < < j. Due to the symmetry of matrix Mp, we obtain

N7R; = NI MpN; = (MpN,)"N;.

The second statement of the lemma follows immediately, since N; is in the kernel of
matrix Mp. 0

The matrix R” N plays a crucial role in the solution of the matrix equation Mp N =
R. Let7# = n 7, — n. To emphasize the block structure of RT N, we introduce a generic
zero rectangular matrix O and a zero square matrix Oy of size s. Corollary (4.1) im-

plies that
. 0; of
N'R= o N'R)’ (4.26)

where matrix N7R has size 7 and is symmetric and positive definite.

Let us comment on the relationship between the kernel of N7 R and the kernel of
PBp. A direct calculation offers an insightful characterization of the matrix kernel.
Let us consider a vector z;, € R"7 and partition it as zZ = (zI,z]') in accordance
with the block-partitioning (4.26). It holds that

z; N Rz, =2T N7 ﬁzAh7
and the right-hand side is zero if and only if z, = 0. Thus, z;, € ker(N” R) if and only

ifz;, = 0. On the other hand, using Lemma 4.1 and the bilinearity of %p, we can write

z,{ N Rz, = ,@p( z ziq', 2 z;q’). 4.27)
i=1 i=1
Therefore zj, € ker(N” R) if and only if Z?j’ ziq' € ker(%p), i.e.,ifand only if z; = 0
for all i > 7 due to (4.23).
nj’f ziq'. In general, z;, # I15(v).

i

Remark 4.5. Let zj, = {z,}:;]lP andv=7Y
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Now, let us introduce the pseudo-inverse of matrix N7 R:

(NTR)T = O AOAT : (4.28)
o (NTR)™'

When 7 = dim(ker(%p)) > 0, we recall that the product of matrix N”R and its
pseudo-inverse is not the identity matrix

. 0; of 0; of 0; O
(NTR)'N"R= N A_>< " A>: )7“"7.:

o (N'R)"'/ 0 N7R 0

Example 4.4. By using the matrices R and N built in Example 4.3, one can immedi-

ately compute the matrix N”R. An alternative, and a more elegant way, is to apply

formula (4.24). Since V¢' = (0,0)7, Vg? = (1,0)7 and V¢* = (0,1)7, we obtain
=|P|Kp.

Such a formula is typical for low-order mimetic methods and leads to an efficient
calculation of matrix Mp. m|

Lemma 4.2. The matrix
M% =R(RTN)TRT =R(RTN) 'R (4.29)

satisfies the algebraic consistency condition of Definition 4.4.

Proof. Let us first note that
N 0; oOf 0 PP
RR'N)YRT = (oR) " . _ (A )zRRTN -IRT,
(R™N) ()O(RTN)I ar ) =RRN)
which shows the second equality in (4.29). From the second equation in (4.25) we
have RTN = 0. A straightforward calculation yields:
M3N =R(R"N)"'R”(N,N) = (0,R(R"N)"'R"N) = (0, R) =R,

from which the assertion of the lemma follows. O

Unfortunately, the matrix M(,Z, does not always satisfy the stability condition of Defi-

nition 4.3. Indeed, any vector that is orthogonal to the columns of Ris in the kernel of
Mg, cf. (4.29). The dimension of this kernel is at least n, , —n 7, +n, which could
be larger than 7, the dimension of the kernel of %p. To fix this problem, we introduce
a correction matrix M,lD and define the final matrix as follows:

Mp = M2 +M}. (4.30)

This correction should not break the algebraic consistency condition and must guar-
antee the stability condition. Sufficient conditions for such a correction matrix are
given in the next lemma.
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Lemma 4.3. Let M,lg be a symmetric and positive semi-definite matrix with the kernel
characterization ker(M}) = img(N). Then, the matrix Mp given by (4.30) is symmet-
ric, positive semi-definite and satisfies the algebraic consistency condition. Moreover,

ker(Mp) = v, € Spp: vy = Hg(v) for ve ker(%p)}. (4.31)

Proof. The first assertion of the lemma follows from the definition of matrix Mg and
the hypothesis on M}. Indeed, Mp N = (M2 + ML)N = M3 N =R.

To prove the second assertion of the lemma, let us note that v, € ker(M) if and
only if

Ozvz Mp\/’h:VZ; Mgvh+V£M|l:)Vh. (4.32)

Since Mg and M,lD are positive semi-definite, both terms in the right-hand side are
zero. The second zero term, vI MLy, = 0, implies that v is in the kernel of M};
hence, by the hypothesis v, = Nz, for some vector z,. Writing zI = (z1,z]), the first
zero term gives

~

0= M%v, = (RTNz,)" (R"N) " (R"Nz,). (4.33)

Since R” N is a positive definite matrix, we have that z;, = 0. Thus, each vector in the
kernel of M(,Z, is a linear combination of the first # columns of N. The definition of
these columns gives:

n n n
= 3N = 3z — 115 3.
i=1 i=1 i=1
The linear combination of the first 7z functions ¢’ form the kernel of Zp. 0

As shown by the previous lemma, the kernel of matrix Mp corresponds bijectively
to the kernel of the bilinear form Ap, so that

ker(Mp) = span { [15(¢"), TE() . TTS(¢") }. (434)

If ¢' is in ker(%p ), the definition of Mp in (4.13) and the consistency condition (4.8)
yield:

8 (¢") " MeII3(q") = %,p (I13(¢'), 1T3(¢")) = #r (¢',4') = 0 (4.35)

and I15(g') is in ker(Mp) and viceversa. If %p is an L? scalar product, we have 7 =0,
which in turn implies that matrix Mp is positive definite as expected. Moreover, since
ker(RT N) becomes the trivial space {0}, the pseudo-inverse of this matrix equals to
its normal inverse and we get the following formula:

Mp = R(RTN)'R” +M}.
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4.4 Stability analysis

Here, we will show how the stability of the discrete bilinear form %, p defines nec-
essary bounds on the matrix M). The first part of our analysis is based on a suitable
projection operator here denoted by 7p to describe the structure of matrix Mp. A
similar operator has been used in the mimetic literature to derive post-processed dis-
crete solutions, but never in such a generality. In the second part, we derive a stability
condition in a more practical Euclidean norm.

We will keep the discussion quite general leaving the treatment of applications to
the next chapters. However, all major steps in the analysis will be illustrated with a
simple bilinear form.

4.4.1 Stability result in the natural norm

Let us assume (4.7) and define, only for the present section, a discrete semi-norm as
follows:

|||vh,P|||yh,P = %Bp (V7 V) Vvh,p S yh,p, AS Shﬁp and Vpp = Hg(v), (4.36)

or, equivalently, by

TSP PBp (Ri?’/ (Vh,P)ng (Vh,P)) :

This semi-norm has mainly a theoretical value and it is normally not used in practice.
The stability analysis in this subsection relies on the operator mp, which represents
an orthogonal projection onto the subspace 7p /ker(%p) with respect to the energy
bilinear form %p. Part of this section takes inspiration from ideas introduced in the
virtual element method [43].

[lvap

Definition 4.5. Let us consider the linear operator mp : ./ p — Jp /ker(%p) such
that for any v, € .}, p the function 7p (v;) is such that

Bp (e (vi),q) = Bnp (v TI3(q)) Vg € Tp [ker(Zp). (4.37)

Remark 4.6. If the discrete field vy, is the collection of degrees of freedom of a func-
tion v of S p, i.e., vy = 1'[,59 (v), the consistency condition (4.8) implies that

PBp (np(vh)7q) = %Bp (V,q) Vq S ﬂp/ker(&?p), (4.38)

and therefore the operator 7p is an energy projection on Jp /ker(%p). Indeed, for
any trial function ¢ of Zp we use (4.37) and we obtain

B (mp(vi),q) = Bup (vi 115(q)) [substitute v, = IT3(v)]
= Byp(I3(v),115(q)) [use (4.8)]
= %p(v,q),
which implies (4.38). O



104 4 Mimetic discretization of bilinear forms

Example 4.5. Let us consider again the bilinear form from Example 4.1. In this ex-
ample Jp = P1(P) with the basis functions ¢' =1, ¢*> =x—xp,and ¢* =y —yp. The
kernel of ker(%p) consists of constant functions. Let v;, = ITJ (v) for some function
v € S p. The scalar function 7p (v;) (defined up to a constant) is a linear polynomial
of the form:

mp(vh)(x,y) = ci(x—xp) +c2(y —yp), cr,2 €R. (4.39)
The two scalar coefficients ¢; and ¢, which form Vrp(uy;), are determined from

(4.37) by taking ¢ = ¢* and ¢ = ¢°, respectively. Since V¢? = (1,0)7 and Vrp(uy,)
is a constant vector on P, we obtain:

B (mo(1). %) = [ KeViin(v) ViV =PIV (1)K ( é) .

On the other hand,

o (v.4?) :/PKva-qudV: (/PVvdV)-Kp((l)>.

Similar relations hold for ¢ = ¢>. As Kp is a non singular matrix, we find:
1
Vo () = 1oy /P VodV. (4.40)

Thus, Vap(vy) is the average of the gradient of v, and, in the next example, we will
show that it does not depend on the behavior of v inside cell P. In order to build a
polynomial approximation of v;, we need to add to 7tp (v;,) a constant that represents
an average value of v;, over P. A possible choice is to take the arithmetic average of
all components of vector vy,. ]

The following lemma summarizes other properties of the operator 7p.

Lemma 4.4. The linear operator mp given by (4.37) satisfies the following properties:

(1) mp is invariant with respect to the projection operator Hg in the sense that
7p o ITS o Tp (vy) = 7tp (Vi) Vvj € s
(ii) mpo Hg is self-adjoint with respect to the bilinear form Pp in the sense that
Bp (7'CP ) Hg(u),v) = PBp (u7 mp o Hg(v)) Yu,v € Sy p;

(iil) for any pair of functions u and v of Sy p with degrees of freedom uj, and vy, the
Jfollowing decomposition holds:

B (u,v) = Bp (mp (up), 7w (vi)) + Bp (u— 7p (up),v—1p (vy)).  (4.41)
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Proof. (i) Let ¢ be any function from Jp /ker(%p). We first apply Definition 4.5 and
then the consistency property (4.8) to obtain the relation

B (mp oIS o mtp (vi)),q) = Bip (I3 0 e (vi), 13 (q)) = B (mp (V). q).

The result follows from the positive semi-definiteness of the bilinear form.

(i1) To see that mp o Hg is symmetric with respect to the bilinear form %p, let us
note that for any v;, € .}, p the function 7p (v;) belongs to .7p /ker(%p) and can play
the role of ¢ in (4.8). Thus, for any couple of functions # and v of S, p, the consistency
relation (4.8) (withg =mp o Hg (u)) and Definition 4.5 (with v;, = Hg (v)) gives:

%p (np o 113 (), v) = By, p (115 o mp o T3 (u), IT3(v))
= Bp (mp o IT3 (u), mp o T3 (). (4.42)

Now, we revert this argument by using Definition 4.5 (with uj, = Hg (u)) and applying
the consistency relation (4.8) (with ¢ = 7p o IT3(v)):
B (50 0 1S(0), 70 0 TIS()) = B (TS0) TH 0 7 0 TS()
= Bp (u,mp o II3 (v)). (4.43)
Assertion (ii) follows by combining (4.42) and (4.43).
(iii) The isomorphism between S, p and .#, p implies that u;, = Hg (u) and v, =
I13(v). The definition (4.37) gives %p (u— mp(up), p(vy)) = 0. A similar orthog-

onality property holds when u and v are swapped. Using the above properties, we
make the following developments:

B (7p (un), 7p (vi)) + B (u— 1p (up), v — 7p (1))
= Bp (mp (up), wp (vir)) + Bp (u— 7p (up),v)
= DBp (u,v) + Bp (7 (un), mp (Vi) —v)
= %Bp (u,v).

This completes the proof of the lemma. ]

Let us derive an explicit form for the operator 7p (v;;) that uses only the degrees
of freedom.

Lemma 4.5. For any vy, € ., p, the discrete field Hg omp(vy), is given by
15 o 7ip (v,) = N(R"N) 'R . (4.44)

Proof. Since 7p(v;) belongs to the quotient space Jp /ker(%p), we can expand it
on the set of basis functions {¢"*!,...¢"?}. Let ¢ = {cj}i-, be the coefficients of
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such expansion (recall that 7 = n 7, — n), so that

ﬁ ~ .
W)=Y, ciqd" . (4.45)
j=1

Let us use expansion (4.45) as one of the arguments in the bilinear form %p and
q""" € Fp as the other argument. Then, Lemma 4.1 gives

ﬁ —~ o~ o~ o~
Bp (p (v1), ") Zc Bp(q",¢"") = ¥ RIN;¢; =R"Ne. (4.46)
Jj= Jj=1

Definition (4.37) of columns of the matrix R implies that
Bp (np(vi),¢" ) = RL v (4.47)

We combine formulas (4.46) and (4.47) to obtain the relation R’Ne = ’|:\3th from
which it follows that

= (R'N)" 'R,

Applying the projection operator Hg to both sides of (4.45), using its linearity and
definition of the column of matrix N, we obtain:

n ~ ~ o~ ~
115 o 7p (vy,) zchS (¢"7) =Y ¢jNs;;=Ne=N(R'N)"'RTv,
=1 J=1

which is the assertion of the lemma. m|

Example 4.6. We apply Lemma 4.5 to the projection operator (4.39) from Exam-
ple 4.5. Note that Vzip (v;,) = (c1, c2)” = ¢. Hence,

Vap(vy) = (RTN)"'R7v,.

This can be verified by a straightforward calculation using formula (4.40) and inte-
gration by parts:

Vap(vy) = |P|/VvdV |P|

E: /[npevdS

ecdP

where v, = Hg (v) and v € ), p. As function v belongs to Sy, p its edge integrals are
calculated exactly using the trapezoidal quadrature rule, see Example 4.1. Let us con-
sider again the local clockwise enumeration of edges and vertices of polygon P. Using
the formula for matrix R (see Example 4.3) and the main formula in Example 4.4,
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RTN = Kp |P|, we obtain:

.
Np

1 e 1
Ve (vy) = = 3, niu (W, +Wit) = 5= 2w, (milei] +micyfeisn])
PIS 2 2[Pl 5
1 ~ e~
= ﬁK,;lRth = (RTN)"'RTv, (4.48)
which is exactly the value calculated applying Lemma 4.5. |

With these developments, we can connect the matrix decomposition Mp = Mg +
M}, with the orthogonal decomposition (4.41). First, the projection operator 7p allows
us to connect the matrix Mg with the bilinear form %p restricted to space Ip.

Lemma 4.6. Let u, v be functions from Ip, and uy,, vy, their degrees of freedom. Then,
Be (mp (un), e (V1)) = ufy Mp v (4.49)

Proof. As both mp(uy) and mp(vy) are functions of Jp /ker(%p) we can use
Lemma 4.5 and the consistency condition to start the following chain of relations:

B (mp (vi), 7 (up)) = Byp (IS (mp (up)),vi)  [use (4.13)]

= 13 (e (us)) " Mp vy, [use (4.44)]
:ugﬁ(ﬁTﬁ)flﬁTMpvh [use N"M = R7]
= uj, R(RTN)'RTv, [use (4.29)]
= u,{ Mg Vi,
which is the assertion of the lemma. o

Example 4.7. Referring to Example 4.1 we find that
u,{ Mg vy = / KpVﬂ:p(uh) . Vﬁp(vh) dav. (4.50)
P

Let u,v € S p and uy, = I15(u), v, = IT3(v). Let us insert formula (4.50) into the
orthogonal decomposition (4.41):

/P KpVu-VvdV = u,{ Mg vh+ /P KpV(u — n:p(uh))) . V(v — nfp(v;,)) dav.
In view of this formula, matrix M}; provides an approximation of the second term:
uZM,lgvh ~ /P KpV(u — n:p(uh)) . V(v — Tp (vh)) dav.
The stability condition with respect to the energy norm must use the matrix Mé, that

is spectrally equivalent to this term on the space orthogonal to Jp. This issue is
considered in the stability theorems that follows. |
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Theorem 4.1. Let matrices Mg and M}, satisfy the hypothesis of Lemma 4.3. Fur-
thermore, let s, and s* be positive constants independent of P such that

S« Bp (V— e (vp),v— ﬂp(vh)) < V}];M}DV}, < 5" Bp (v— p(vp),v— n'p(v;,)) 4.51)

Jorall vy, € Sy p and v = R’,): (v). Then, the local bilinear form %), p, represented
by matrix Mp = Mg + ML, satisfies the stability inequalities

2 T 2
G, <viMewy <CHlImlI?,

with constants C, = min(1,s,) and C* = max(1,s*).
Proof. We recall that the ||| - ||| », p DOrM Was defined in (4.36). We use (4.13) and

(4.30), then (4.49), and finally the right inequality in (4.51) and decomposition (4.41),
to obtain:

v;Mpvh = v,{ Mgvh —I—v,f M},vh
< Bp (7t (vi), 7o (vi)) + 5" Bp (v —1tp (vi), (v —p (V1))
<max(1,5*) (Bp (o (vi), 7 (vi)) + Be (v —1p (vi), (v— 1t (v)) )
= max(1,s*) Bp(v,v)
=C*|Ivaplll, - (4.52)
Using the same argument but with the left inequality in (4.51), we obtain
vIMp vy, =vE ME v, +vI Mb v,
> Bp (e (vh), 7p (Vi) + 5+ B ((v—7tp (vi), (v — 7p (v1))
> min(1,sy) (Qﬁp(ﬁp(vh)7 n:p(vh)) + ABp ((v— np(vp), (v— n:p(v;,)))
=Cellvelll, - (4.53)

This completes the proof of the theorem. a

4.4.2 Stability result in the mesh-dependent norm

Let us define a computable discrete semi-norm using the Euclidean norm of mesh
function v;, € %, p. With a little abuse of notation, we will use the same symbol
adopted in (4.36) for the non-computable semi-norm, since the purpose of the two
discrete semi-norms is the same. The consistency condition gives us the matrix Mg,
that is independent of the norm used in the stability analysis. Therefore, spectral prop-
erties of this matrix, such as its trace, can be used to define a proper scaling of the
Euclidean norm:

lIvielll,,, =trace(Mp)  min )||vhrp+q,,||,

gneker(Bpp
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This semi-norm is the norm on the quotient space .7}, p /ker(%j, p). To formulate the
stability result, we introduce the effective condition number cond(Mp) as the ratio
of the maximum eigenvalue to the smallest positive eigenvalue:

COIld(M?:) - /’Lmax(M(I)D)/)'ntm(Mg)

The general idea of the stabilization is to make matrix M,l;, comparable to matrix
M(F’, in the spectral sense. The mesh shape-regularity assumptions (MR1)-(MR2)
play an important role in the analysis below.

Theorem 4.2. Let matrices Mg and M}, satisfy the hypothesis of Lemma 4.3. Fur-
thermore, let us assume that

Sk )'Izin

(MO v, <vEMbv, Vv, € ker(NT), (4.54)
v,{ M'1:>vh < s*kmax(Mg)v,{ i YV €SP (4.55)

for some positive constant s, s* independent of P and vy,. Then, the local bilinear
form By, p, represented by matrix Mp = Mg + ML, satisfies the stability inequalities

-2
Cy (cond(Mp)) " [vallI%, < vi Mpvy < C*[[lwilll>, (4.56)
with Cy and C* independent of P.

Proof. First, we prove the left inequality in (4.56). Consider the following orthogonal
decomposition of vector vj, € .7, p:

=+, v, cimg(N), ;€ ker(NT). 4.57)
We note that M|13\7h = 0 by the definition of this matrix. Therefore,
VI Mp v = (B 45) " M3 (5, 495) + (v)T My = T1 + Ta. (4.58)

To estimate the first term, we bound the cross-product \7,{ I\/I?D v§, from below using the
standard inequality for algebraic vectors a and b:

1
2a’b < eala+ EbTb,
which holds for every € > 0. Applying this inequality, we obtain:
- —~ 1
Ty > (1—e)dT M8T), + (1 - E) V) TMOVE =Ty + T (4.59)

In the following developments, we assume that € < 1, so that T} > 0and Ty, <O0.
The term T is bounded using the minimum positive eigenvalue of matrix Mg:

Ti1 > (1—) Ay, (Mp)V V- (4.60)
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The term T, is bounded using the maximum positive eigenvalue:
1
Ti2 > (1= ) Anan (MB) 05)7 v (4.61)

Since ker(N7) = (img(N))L, the second term in the last right-hand side of (4.58) is
bounded by our assumption (4.54). Now, we combine inequalities (4.60), (4.61), and
(4.54) to obtain the following lower bound:

T~ 1 N
V}{ Mpvy = (1 - 8)7L$in(M0)V; Vi + (S*/’L;nrin(Mo) + (1 - g)lmaX(MgO (VZ)TV;r
Note that the coefficients in front of the vector norms are strictly positive if

1>e> (1 4—s*/cond(M(F),))71 .

If we set € to the mid-point of this interval, after some calculations, we obtain

2 _ o 2
e —" T
P (cond(MD)) ~

The left inequality of (4.56) follows by noting that (v} v, + (v5)7v5) = ||v4||* since
v, and vj, are orthogonal.

Second, we prove the right inequality in (4.56). Using the upper bound (4.55)
yields:

Sy

2(cond(M2))*(1+s,)n7

v,{MpVhZ 1Al

v My = v (M -+ ME) v < (1+5") Aamax (MBI v < (157 [,

The proves is completed by setting C* = (1 +s*). m|

The result of the theorem implies that a better conditioning of matrix Mg improves
the spectral bound of matrix Mp. In practice, this can be achieved by scaling correctly
the degrees of freedom. In all lower-order mimetic schemes considered in this book,
cond(Mg) depends only on the shape-regularity constants of cell P. In general, this
effective condition number remains the primary quantity to be controlled in the de-
velopment of mimetic schemes.

Remark 4.7. Inequalities (4.54) and (4.55) allows us to vary the stabilization matrix
M,lp to build a scheme that has not only the prescribed order of accuracy but also
possesses additional properties. In Chap. 11, this freedom will be used to enforce the
discrete maximum principle on a family of meshes.
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4.5 Construction of stabilization matrix M},

The following lemma provides a general form for the family of stabilization matrices
M5,

Lemma 4.7. Let Mg be the matrix given in (4.29). Let D and U be any matrices with
the following properties.
() D isafull rank matrix of sizen.y, , X (n., , —nz) such that img(D) = ker(NT)
i.e. its columns form a basis for ker(NT);
(ii) U is a symmetric and positive definite matrix of size (n., , —nz,).

Furthermore, let ML, = DUDT and
Mp =M% +Mb =R(R"N)'R” +DUD’.

Then, matrix Mp is symmetric, semi-positive definite, and satisfies the algebraic
consistency condition. Moreover,

ker(Mp) = y,E yhypl vy, = Hg(v) fOI’ S ker(ﬂp)} .

Proof. The assertions of the lemma follow immediately from Lemma 4.3 if we prove
that ker(M}) = img(N). Let z; € ker(M}). As U is positive definite, the condition

0= z,{M,l;,zh = (DTzh)TU (DTzh)
implies that D7z, = 0, i.e., zj is orthogonal to the columns of D. Since
img(D) = ker(NT) = (img(N))L7

we have z;, € img(N). Therefore, ker(M}) C img(N).

Let zj, € img(N). Then, there exists a discrete field a;, such that z;, = Naj,. From
DTN = 0, which is true by the hypothesis, it follows that MLz, = DUDTz, =
DUDT Nay, = 0. Hence, z, € ker(M},) and img(N) C ker(M}).

We conclude that ker(M}) = img(N). O

Remark 4.8. The columns of N and D form a basis for R"7#P .

The entries of U can be arbitrary chosen as long as the matrix remains symmetric
and positive definite. These entries can be treated as parameters that, together with
the positivity constraint, define a family of admissible matrices Mp satisfying the
consistency condition The symmetry reduces the number of parameters to

1

E(nyh.P —nz+1)(ny,, —nz).

The stability condition imposes additional constraints on the parameters. Still, in our
experience, these parameters may vary several orders in magnitude with a minor to
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moderate impact on the accuracy of the mimetic scheme, see, e.g., Example 5.1. The
optimal choice of these parameters is problem dependent and is still an open issue. For
a computer program, we recommend the simple choice of matrix U that leads to the
one-parameter family of well-behaved mimetic schemes of the following corollary.

Corollary 4.2. 4 one-parameter family for the matrices Mp that satisfies hypotheses
(i) — (i) in Lemma 4.7 is given by

Mp =R (RTN)"R7 +2 (1= N(N"N)~'NT), (4.62)
where A is real strictly positive parameter. A convenient choice for A is given by

l:

trace(R (RTN)' RT); (4.63)

nsp

with such choice, the matrix Mp in (4.62) satisfies the hypotheses (4.54)—~(4.55) ap-
pearing in Theorem 4.2.

Proof. Formula (4.62) is easily derived by choosing
U=A(D"D) ', (4.64)

in Lemma 4.7. Indeed, columns of N and D form a basis in .%, p, the space of the
n,;z»h,P—sized vectors. Moreover, the columns of D are orthogonal to that of N. Thus,

D(DTD) DT + N(NTN) " INT =1. (4.65)

Setting A as in (4.63) takes into account the proper scaling of the matrix Mg. It
is not difficult to verify conditions (4.54) and (4.55) of the stability Theorem 4.2.
Indeed, one easily has by the definition of D that

[vall> =vj (I=N(N"N)"'N")v, Vv, € ker(NT),
and, since the involved matrix is a projection,
VE(=N(NTN)TINT) vy, < [lval2 - Vvp € Fp.

Finally, trace(M}) is bounded from above by 1., , Amax(M}) and from below by
)';111('\/'%) a
Remark 4.9. For the diffusion problem considered in Examples 4.1-4.3 the scaling
factor in (4.63) leads to a diagonal matrix Mp when P is a square cell and the diffu-
sion tensor Kp is a scalar matrix (multiple of the identity matrix). Moreover, since
trace(MQ) is the sum of the eigenvalues of M3, we have that A belongs to the spec-
trum of MJ. Another typical choice is setting 1/d instead of 2/, , in (4.63). O
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4.6 The inverse of matrix Mp

Let us consider the case of ker(%p) = 0, e.g. the case of mimetic inner products
considered in Chap. 3. Then, the algebraic consistency condition of Definition 4.4
can be formulated with respect to the inverse of matrix Mp and takes the form

WpR = N. (4.66)

Matrix Wp is used in the efficient implementation of the mimetic schemes for the
diffusion problems in mixed form. As for the mixed finite element method, a hy-
bridization procedure can be employed to reduce a saddle-point algebraic system to
the equivalent system with a positive definite matrix. This procedure requires only
the inverse matrix Mgl. Matrix Mgl can be substituted by matrix Wp.

The general solution of Eq. (4.66) is given by

Wp=N(N"R)"'N”+DUD’, (4.67)

where the columns of matrix D form a basis for ker(RT) and Uisa symmetric positive
definite matrix of parameters. A formula similar to (4.63) is found by setting

U=A({D"D)"! with A=

trace (N (NTR)"! NT) . (4.68)

e
After simple algebraic manipulations, we obtain

Wp =N (N7R) 'N7+2 (1I-R(R"R)'R"). (4.69)

The family of matrices Wp satisfying (4.67) are the inverse of the matrices Mp
considered in Lemma 4.7 in the following sense. The inverse of each matrix Mp can
be written as in (4.67) through a suitable choice of the matrices D and U. However,
for a given couple of matrices R and N, the matrix Wp in (4.69) with A given as
in (4.68) is not the inverse of the matrix Mp in (4.62) with A given by (4.63).
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The diffusion problem in mixed form

The velocity of flow of a liquid

through a porous medium due to difference
in pressure is proportional to the pressure
gradient in the direction of flow.

(Darcy’s law)

The diffusion problem in a mixed form is governed by the following set of equations:

u+KVp=0 in Q, (5.1)
divu=»b in Q, (5.2)
p=g” onTIP, (5.3)
un=—-g" on IV, 54

where the vector variable u represents the flux of the scalar unknown p. The unknown
p may be a pressure, a temperature, or a flow density depending on the physical inter-
pretation that we give to this mathematical model. The mixed form of the diffusion
problem provides an opportunity for a better approximation of the flux and the exact
satisfaction of balance condition (5.2), e.g., [90,205,208].

The lowest-order mimetic discretization uses one degree of freedom per mesh
face to approximate u and one degree of freedom per mesh element to approximate
p- It is first-order accurate for u and second-order accurate for p provided that p €
H?(Q). On meshes of simplices (triangles in 2-D and tetrahedra in 3-D), the result-
ing mimetic discretization can be interpreted as a generalization of the lowest-order
Raviart-Thomas finite element method, e.g. [88,282,305]. A posteriori error esti-
mates for the method of [90] where developed and analyzed in [41,53].

Different generalizations of the lowest-order scheme can be found in the literature.
In [48,54,192] a more accurate representation of the flux variable, with d degrees of
freedom per face, is introduced and analyzed. A larger number of degrees of freedom
for the flux is introduced also in [256], in order to obtain a matrix with a special struc-
ture so that all flux unknowns can be eliminated explicitly. The resulting scheme can
also be considered as a generalization of the multi-point flux approximation (MPFA)
methods [2,154]. Using again additional degrees of freedom for the flux, like in [256],
but relaxing the matrix sparsity structure requirements lead to schemes in [48,54,192]
that are second-order accurate for both p and u. Finally, a mimetic discretizations for
the convection-diffusion problem was developed in [45, 107].

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI 10.1007/978-3-319-02663-3_5, © Springer International Publishing
Switzerland 2014
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In Sect. 5.1 we present the mimetic discretization of problem (5.1)—~(5.4). In
Sect. 5.2 we carry out the convergence analysis and derive error estimates in mesh-
dependent norms. In Sect. 5.3 we reformulate the method using the exact reconstruc-
tion operator and derive a superconvergent estimate for p. In Sect. 5.4 we build a
residual-based error indicator that can be used to drive an adaptive mesh refinement
and derive the related a posteriori error estimates. In Sect. 5.5 we describe one exten-
sion of the scheme that has a better approximation of the flux. Throughout the chapter
we assume the mesh regularity conditions (MR1)—(MR3) of Sect. 1.6.2.

5.1 Mimetic discretization

In this section, we first introduce the degrees of freedom and the associated projection
operators. Then, we discuss two approaches based on Chaps. 2 and 4 which approxi-
mate the strong and weak forms of the equations. For exposition’s sake, we will focus
on the three-dimensional problem. The two-dimensional problem can be discretized
in an analogous way.

5.1.1 Degrees of freedom and projection operators

The mimetic approximation of (5.1)—(5.4) starts with a suitable definition of the de-
grees of freedom for scalar and vector fields. We use the discrete spaces from Sect. 2.2
illustrated in Fig. 5.1.

* The space of discrete scalar fields &7, is defined by attaching one degree of free-
dom to every mesh cell P € €. The value associated with cell P is denoted by
gp- The collection of all degrees of freedom form the algebraic vector g, € &),

qn = (qp)pegq,-

» The space of discrete flux fields .%, is defined by attaching one degree of freedom
to each mesh face f € #. The value associated with face f is denoted by us. The

L L

Fig. 5.1. Geometric location of degrees of freedom in the low-order MFD scheme: arrows
represent fluxes us (on four visible faces), dot represents pp
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collection of all degrees of freedom form the algebraic vector u;, € %,

U = (uf)fe?'

The value us represents the average normal flux of u across mesh face f in the
direction of n¢. It will be convenient to introduce the flux up ¢ across f in the direction
of np . Obviously, it holds that up f = Op f Us where Opf=MNpf-Nf.

The restriction of uy, to cell P € €, is denoted by up = (uf)scgp and represents
the collection of the normal fluxes in the directions ns. The set of these discrete fields
form a linear space .%), p which is the restriction of .%), to P. In contrast to the previous
chapters, we do not use in this chapter the longer notation u;, p for up.

The face-based projection operator IT” : X — .%, is defined by (2.16) and is sta-
ble for vector functions from the following space

X(Q) = {ve (L5(Q))7, s > 2, with divveLz(Q)}. (5.5)

In the sequel, it will be convenient to use a shorter symbol for the projection operator,

vl = IT7 (v). According to the definition of the projection operator, we have

1
vi= (‘%)fe% v} = m/fv-nde. (5.6)

The cell-based projection operator IT”: L?(Q) — 2, is defined by (2.17). To
case the notation, we will also use the new (compact) notation for this projection
operator, ¢' = IT”(g). According to the definition of the projection operator, we
have

1
7 =(qp)rer,  qp= ﬁ/qurV. (5.7)

As shown in Lemma 2.2, the projection operators (5.7) and (5.6) commute with
the discrete divergence operator defined in (2.23). This fact reflects the consistency
of definition (2.23) with the Gauss Theorem. We formally restate this property for
future reference in this chapter.

Lemma 5.1. For all v € X, it holds

(divv)' = divyv'. (5.8)

5.1.2 Strong and weak forms of the discrete equations

We endow the spaces .%), and &2, with the mimetic inner products that are constructed
in Sect. 3.4 for the case of the conventional Z?() inner product. In space 27, we
consider the inner product

[vah]_yh: Y. IPlppve. (5.9
PEQ},
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Note that formula (5.9) is exact for piecewise constant functions defined on mesh €2,.
On its turn, we endow .%;, with the inner product

[wivi] - = 3, [up,velp, (5.10)

PGQh

which is assembled from local inner products [-7 ] p in 5, p introduced in Sect. 3.4.
Later in this chapter, we generalize the construction of local inner products described
in Chap. 3 to the case of weighted L? inner products. For the moment, we only note
that the local mimetic inner product satisfies the stability and consistency conditions
that lead to a stable and accurate numerical scheme.

Let for a moment I'Y = 0 and g” = 0. We approximate the differential operators
“div” and “KV” by using the primary and derived discrete operators introduced in
Sects. 2.3 and 2.4:

divadiv, and  KV&V,=-M;'div] M, (5.11)

cf. equations (2.23) and (2.28). The matrices M » and M 5 are built by assembling
the local mimetic inner product matrices M » p and M # p respectively (see Sects. 2.3
and 2.4).

As pointed out in Chap. 2, the discrete operators allow us to write immediately a
mimetic approximation of equations (5.1)—(5.2) as

w, + Vypi =0, (5.12)
divju, = B, (5.13)

where b' = IT” (b). The linear system arising from (5.12)—(5.13) reads:

w, — M divj My p, =0, (5.14)
divyu, = b, (5.15)

Remark 5.1. In general, matrix M}l is a dense matrix. We can avoid the calculation
of this matrix by multiplying both sides of Eq. (5.14) by M ». The linear system can
be also symmetrized by multiplying both sides of Eq. (5.15) by M .

A numerical treatment of heterogeneous Dirichlet and Neumann boundary con-
ditions is possible but a bit awkward in the classical mimetic schemes due to their
finite difference nature. For example, for this purpose, extended discrete operators are
introduced in [206]. An alternative approach is based on employing the mimetic dis-
cretization technology for an approximation of the weak formulation (1.18)—(1.19).

We now introduce the variational, or weak, mimetic discretization of the problem.
Let the boundary data g” and g" be integrable on I'” and 'V, respectively. Then,
we introduce the space

1
%,gz{vhegzh: Vf:m/ngdS ergzN}
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where .#V C .7 is the set of mesh faces in I'V. Setting g = 0 in the previous def-
inition gives the linear space .Z,. For function g” € L'(I"?), we define a linear
functional

(&)= 2 w/ngdS, (5.16)

fe.7D

where .ZP C .Z is the set of mesh faces in I'°.
Let the loading term b be integrable on £2. Then, the mimetic discretization of the
weak formulation (1.18)—(1.19) reads:

Find (wy,pp) € Fp g X Py, such that

l:uh7vhj|d7[h — [pndivyv] 7, = (g°,v h Vi € Fho, (5.17)

[divy,uy, ] 7= 5,4 2, Van € P, (5.18)

where we use the inner products introduced in (5.9) and (5.10).

Remark 5.2. Formulation (5.17)-(5.18) does not require a discrete gradient operator.
However, such an operator can be deduced from the first equation using the duality
argument, similar to how it was done in Chap. 2. O

Remark 5.3. In the case of homogeneous Dirichlet boundary conditions, a linear sys-
tem arising from (5.17)—(5.18) is equivalent to (5.14)—(5.15) after its symmetrization
(see Remark 5.1). In the rest of this chapter, we will use formulation (5.17)—(5.18)
since it provides a simpler treatment of the boundary conditions.

5.1.3 Stability and consistency conditions

In this section, we detail the two fundamental conditions of stability (coercivity) and
consistency that must be satisfied by the inner product [-7 ] p in order to obtain a con-
vergent method [93]. Both conditions have been introduced in the general framework
of Chap. 4.

Let Kp be the approximation of the diffusion tensor K on cell P given by

Kp = i/ KdV. (5.19)
Pl /e

If K is sufficiently regular, its cell average could also be substituted by its value at the
barycenter of P, i.e., Kp = K(xp). Using (5.19), we define a discontinuous tensorial
field K such that Kjp = Kp.

Since [+, ]p is the inner product, it induces a norm on .%), p. This property is stated
by the stability condition (S1) below.

(S1) (Stability condition). There exist two positive constants o, and ™ indepen-
dent of the mesh size 4 such that for every P it holds

o.lP| Y, [v* < [ve,vp]p < 07IP| Y > Vvp € Fp.
feap feop
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Condition (S1) states that the inner product [-,-]p is coercive; in other words,
[vp,Vp|p = 0 if and only if vp = 0. Moreover, the lower and upper bounds force
the inner product to scale as |P|, which is natural because [-,-]p approximates a vol-
ume integral over P.

Let us define the following space:

Spp= ve(L(P), s> 2, withdivv = const, v-n; = const Vf € dP}.

According to the theory developed in Part I of this book, this space must satisfy
three assumptions (B1)—(B3). We recall the first two assumptions, while the third
assumption (B3) from Chap. 4 will be addressed below.

(B1) The local projection operator from Sy, p to %), p must be surjective.

(B2) The space Sj, p must contain the trial space of constant vector functions:
Fo = v:P— RYsuch thatv = KpVgq with ¢ € P (P) }.

It is immediate to verify that the space Sj, p above satisfies both conditions, The space
Sy p is used in the following condition.

(S2) (Consistency condition). For any vector function v € Sj, p, any linear polyno-
mial ¢, and every element P of €2, it holds

[(KeVa)hvh]p = [ Kp! (KeVg) vy (5.20)

We do not simplify Kp in order to stress the fact that the natural L? inner product in
the space of fluxes is defined with the tensorial weight K !, As discussed in Chaps. 3
and 4, consistency condition (S2) is the accuracy property. To make it useful, the
right-hand side of (5.20) must be computable easily and be independent of the values
of v inside P. Integrating by parts and using the properties of space Sy p, we obtain

/KP(K,;lvq).vdVZ/Vq-vdV
)

/qdlvvdV+ Z /v npsqdS

fedP
- —d1vaP/qu+ ¥ apfv}/qu, (5.21)
f

since divp V}; = (divv)‘P = const and v} = v-np¢ = const. Thus, average normal
components of v on faces f are all what is needed to calculate the integral. But, they
are our degrees of freedom and always available in the numerical scheme. This is the
property required by assumption (B3) in Chap. 4.

A property similar to (S2) has been used for the first time in [257] to build a one-
parameter family of inner product matrices for a triangular cell. This family includes
the mass matrix appearing in the lowest order Raviart-Thomas finite element method
on triangular meshes. In the next section, we show how to build a family of inner
product matrices for an arbitrary polyhedral element P.
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Remark 5.4. Note that we do not require the space Sy, p to be finite dimensional and
isomorphic to .7}, p. Nevertheless nothing forbids us to choose it such that, in addition
to the above conditions, we have

dim(Sh_p) = dim(c%,,p). (5.22)

This is, for instance, what happens when reconstruction operators are introduced in
Sect. 5.3. Each reconstruction operator defines a finite-dimensional space Sy, p that
is isomorphic to .%, p. The general form of the consistency condition (S2) shows
clearly that one does not need to build the space S p explicitly. Indeed, Eq. (5.21)
demonstrates that the right hand side of the consistency condition does not depend
on the shape of functions in S, p; hence, the explicit knowledge of a reconstruction
operator is not needed. ]

5.1.4 A family of mimetic schemes

Any inner product can be represented by a symmetric and positive definite matrix:
[up7Vp]P = ug MPVP. (5.23)

As discussed in Chap. 3, matrix Mp satisfies equation of type Mp Np = Rp, where Np
and Rp are rectangular matrices. Let us show that a similar formula holds the case of a
weighted inner product. More precisely, we use consistency condition (S2) to derive
the matrices Rp and Np. Since, only Vg is used by this condition, its simplification is
possible if we restrict the choice of the polynomials ¢ to the quotient space IP1(P) /R,
i.e., the linear space of polynomials of degree one with zero mean value on P. For
such a polynomial, the volume integral in the right-hand side of (5.21) is zero and
(S2) becomes

[(KeVe)' vblp = 3 ap ooy [gds. (5.24)

showing more explicitly that [-7 ] p depends only on boundary data. Discarding con-
stant functions is not at all restrictive because no new information is incorporated into
a scheme by taking g = 1. In fact, setting ¢ = 1 in (5.21) reproduces the definition of
the discrete divergence given in (2.23):

0=—|Pldivpvb + 3 op cvif].
feoP

Now, let us consider the three polynomial functions:
ql (xayvz) =X —Xp, qz(x7y7z) =Y=JIp, and 93(363/72) =Z—1Zzp,
where we recall that xp = (xp, yp, zp)” is the barycenter of P. We define a vector

N; = (KpV¢/)b =I5 (KpV ¢/). If we enumerate the faces of P by an index running
from 1 to N5~ (the number of faces of P), the explicit formula for the i-th component
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of N; is
1 . .
(N,); = m/nfi KpVq/dS=nlKp-Vg'.
il Jf !
Let us define the Ngy x 3 matrix Np = [Ny, N2, N3]. Since V ¢/ is the three-dimen-

sional vector with 1 at the j-th entry and zero elsewhere, the i-th row of this matrix
is nfT’_ Kp. Thus,

n,
nf,
- | Kp. (5.25)

Now we can reformulate (5.24) as follows:
[(KeVg/)',vp]p = (vb)'MpN; = (vp) R, (R))i=opy, /qudS’ (5.26)

which must hold for every discrete vector field v. The vector R; depends on ¢/ and
the geometry of cell P. Let Rp = [R1, Rz, R3]. As v}; is arbitrary, we obtain the three
matrix conditions:

MpN; =R;, for j =1,2,3, 5.27)

that can be written in the compact form
Mp Np = Rp. (5.28)

Finally, we provide the explicit formula for matrix Rp. The face integral (see (5.26))
of a linear function equals to its value at the barycenter x¢ times the face area. Thus,

ap s |fi] (xf, —xp)T

ap s, 2] (x, —xp)T

Rp = (5.29)

_ _ T
o £, Ifyg | (6, —xP)

The following result is the particular case of the general statement found in Lem-
ma4.1.

Lemma 5.2. For any polyhedral cell P, we have
NEZRp = Kp|P|. (5.30)

Proof. Without loss of generality, we place the origin of the coordinate system into
the barycenter of P, i.e. xp = (0, 0, 0)7. We denote the i-th spatial coordinate by x),
ie., x = (x(D x@ xCHT Let e; be the three-dimensional vector whose j-th compo-
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nent is 1 and others are 0. We write the j-th columns of |P|Kp as |P|Kpe; to start the
developments:

IPIKpe, :Kp/e,dV:Kp/va)dV:Kp/ npx) ds
P P P

= KP 2 aPanf/x(j) dS: KP 2 aP7fnf|f|x]£j)_
feoP f feoP

Comparison with (5.25) and (5.29) gives
IP|Kpe; = NZRpe;,  j=1,2,3.
This proves the assertion of the lemma. O

It is easy to verify by direct substitution that all the (symmetric and positive semi-
definite) matrices of the form below satisfy (5.28):

Mp = Rp (R”Np) ' RE+M{, (5.31)

where MS) is a symmetric and positive semi-definite matrix such that ker(MS)) =

img(Np). As the choice of M,(;,l) is not unique, formula (5.31) represents a family
of matrices, and, thus, a family of numerical schemes. As discussed in Sect. 4.5, an

(1)

effective choice of MPl is given by the scaled orthogonal projector:

1
MS) = yp (1= Np(NENp) 'NZ),  yp = NTmtrace(Rngle). (5.32)
P

Theorem 5.1. Let the mesh assumptions (MR1)—(MR2) of Sect. 1.6.2 hold. More-
over, let assumption (MR3) of Sect. 1.6.2 be satisfied with Xp = Xp, the barycenter
of P, and X¢ = xg, the barycenter of face f, for every face f € dP. Then, the inner
product matrix Mp given by (5.31) and (5.32) satisfies the stability condition (S1)
with constants 0, and 6" that depend only on the space dimension d, the mesh regu-
larity constants appearing in (MR1)—(MR2), and the ellipticity constants K, K™ that
bound the spectrum of Kp.

Proof. The boundness of Kp can be formalized as
kP <ETKpE <Kk|IEIP VEER,

where ||€||?> = ETE. In this proof, we indicate generic positive constants appearing in
various inequalities by ¢;, i > 1. These constants may depend only on k., k* and on
the regularity constants .4"* and p; of assumptions (MR1)—(MR2). Property (M2),
see Sect. 1.6.2, implies that all geometric objects of cell P have bounded measures:

ay <|P|<hp,  ahb <|f| <hp,

where we recall that Ap is the diameter of P and a, depends only on .4 and p;.
Using these results, we show a number of intermediate estimates. From the definition
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of matrix Np in (5.25) it follows

INpw|2 = 3 (0] Kpw)2 < A (2wl Vv e R (533)
fedP

Let now Xp and X be the points introduced in (MR3) of Chap. 1. By our assumption,
these points correspond to barycenters xp and Xy, respectively. From the definitions
of yp in (5.32) and matrix Rp in (5.29) we have

1
S 17 (x¢ —xp)T Kp! (x5 —xp).
NI5/|P|erB‘P :

trace(Rp Kp' RP)

P =7
Ny [P

The argument employed in the proof of (M2) can be used again to show that the

distance between xp and x; is bounded (up to positive uniform constants) from below
and above by the diameter /p. Therefore,

c1 |P| <7 §62|P|.

A similar argument can be used to derive the following upper bound:

d
T 2 T 2 2 2 2 2 2
IRpve[|> = Y IRV ve[* <3[lve[|* X [fI*[Ixs —xp|* < c3|P|*[lvell*.
i=1 fedP

Finally, we need a special lower bound for the Euclidean norm of RgvP. Let us now
decompose vp =vp N+ Vp |, Where vp y € img(Np) andvp | € (img(Np))l; hence,
IIve|l*> = [[ve.n|[> + |Ive. L ||*. Using (5.33), we obtain:

P| k. |P| .
REve n|| = [[RENpw|| = |P|||Kpw >|—Nw =——" |lvpn|-
IREve il = IRENewl = P/[Kpw| >~ Nowl =~ ey
Let us note that
Kp' 0
vEMpve = (RE (Ve +VP.L))ﬁ(RI§(VP7N +vp.1)) +Vvh Mp'vp 1.

With the above developments, it is easy to obtain the upper bound in the stability
estimate (S1) with a mesh-independent constant:

1

RIvp|]2 vpl|? < c4|P]l|vpll*.
|P|1<*H pvel|”+vellvel|” < calP|[lvel

VgMpr <

The lower bound requires a little bit more work. We recall the following vector in-
equality:

1
—2a-c<¢glal*+ g||c||2 Ve > 0.
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Using this inequality, we obtain

K
vEMp Ve = DR (Ve +¥p. I+ 7p Ve
K K !
> _|P*| IREve NP (1 —€) + ﬁHRgVP,LW (1 - E) +plvaLl?.

If we take € < 1 and apply the above inequalities, we get the following estimate:
T 2 1 2
v Meve > cs (1) Plvenl+ (a1 = ) +er ) PlIve. P

The lower bound is obtained by requiring both terms in the right-hand side to be
positive. This gives € = ¢6/(c6 + %07). This proves the assertion of the theorem. O

Example 5.1. This example shows how the accuracy of the mimetic discretization
depend on the choice of the parameter 9p other than that in formula (5.32). Let us
add a scalar factor ¥ > 0 to yp, so that the case ¥ = 1 gives the scheme described
above. Let us consider diffusion problem (5.1)—(5.4) in the unit square € with the
Dirichlet boundary condition on d€2. We define the diffusion tensor by

(14x)% +)? —Xxy >

K= -y (14x)*+)?

The source term b and the boundary function g” are defined by the exact solution

px,y) = x*y? + xsin(2mxy) sin(27y).

This example has been proposed in [93]. The computational mesh and profile of the
exact solution are shown in Fig. 5.2.

Figure 5.3 shows relative approximation errors for p and u in mesh-dependent
norms (see the next section) as functions of . There exists a quite big interval y €

09
0.8
0.7
06
0.5
0.4
0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1

Fig. 5.2. Computational mesh and solution profile in Example 5.1



128 5 The diffusion problem in mixed form

. —*—error(p)
| ~®@-error(u)

ol M Nl
1 ] 1 2
10 10 10 10

Fig. 5.3. Dependence of the approximation errors on the parameter ¥ (see Example 5.1)

[2,80] where the errors vary only 3 times. What is remarkable here is that for all
values of ¥ we observed the second-order convergence rate for p and 1.5 convergence
rate for u. This example shows that there exists a big room for various optimization
strategies like that discussed in Chap. 11. Finally, we note that similar conclusions
can be drawn for a large range of numerical tests.

5.2 Convergence analysis and error estimates

In this section we derive error estimates for the mimetic scheme (5.17)—(5.18). Error
bounds for the vector variable are proved in Sect. 5.2.3 and for the scalar variable
in Sect. 5.2.4. These estimates show the linear convergence of the method and are
similar to that for the lowest-order Raviart-Thomas finite element method [88, 282,
305] on simplicial meshes.

Superconvergence is proved in Sect. 5.3 for the scalar variable under a few ad-
ditional assumptions. For simplicity of exposition, we consider only the Dirichlet
boundary condition in the superconvergence analysis.

The errors estimated will be proved in the following discrete norms:

|||Vh|||§h = [Vh,Vh] Z, Vv, € %,

and

llgnllP,, = lanan] », = 3. IPllgel* Yan € P
PEQ},

Due to assumption (S1), the first norm is spectrally equivalent to
2 2
valll%, = 3 IPL Y, vl
PeQy, fedP

These proofs combine the steps in [90] with the ideas from [48].
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5.2.1 Preliminary lemmas

In this section, we collect technical results that are used in the convergence analysis.
We will use a stronger form of property (M5), see (1.65). The modified property
states that for any function ¢ € I°*!(P) with s € R and —1/2 < s < m for some

given integer m we can find a polynomial qg") of degree m such that

[s]
lg—ap” N2y + 3 Hbla —ap” |k < CH gl s ), (5.34)
k=1

where [s] is the integer part of s, and C™ is a positive constant independent of /p.
We will also need a stronger form of the trace inequality in assumption (M4),
see (1.65). It states [256] that for every g € H*(P) with s > 1/2, we have

m (7 — _ 2
ol < (o 161220, + 72" 9 Je) ) - (535)
S

In addition to the strong ellipticity condition expressed in (H1), see Sect. 1.4.1,
we assume that the diffusion tensor K is also locally Lipschitz continuous on £2;,.

(H1b) All entries of tensor K (and, hence, of K1) are in W= (P) for every P € £,
Assumption (H1b) implies that

max sup |(Kp),‘j — K;j(x)| < C}*(hp, (536)
ij=1.d xep

where Cy; is independent of /p and the polyhedron P. A similar bound holds for K;l
as it is a first-order approximation of K~

Lemma 5.3. Let us consider P € Qy, and v € (H'(P))?. Then, there exists a non-
negative constant C independent of h such that

IVBIIE < C(IVIEs ey + 7B 1¥En p) ) (537)

Proof. This lemma follows from the definition of the face projector, cf. (5.6), and
property (M4), see Sect. 1.6.2. |

The proofs of the following three lemmas can be found in [48].
Lemma 5.4. Let g € H*(Q) and q'") be a piecewise polynomial such that q(l)|p is

the linear approximation of q over P satisfying (5.34). Then, there exists a positive
constant Cy independent of q and h such that for every vy, € %}, it holds:

I
[(KV(a—¢")"vs] < CohlalynialIvill. (5.38)
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Lemma 5.5. There exists a positive constant C independent of h such that for every
v, € F;, and every q € H*(Q) it holds

(K=R)Va)' il 5, <Chllalsn o) +Hlalm@)ill 5, (5:39)

Lemma 5.6. Let ¢ € H*(Q) and gV be a piecewise polynomial such that q(l)|p is
the linear approximation of q over P satisfying (5.34). Then, there exists a positive
constant C| independent of q and h such that for every vy, € Fy, it holds:

1
Y 3 onpr [a dS—(gpa.vi), <Cihliglm@lvill,. (540
PeQ), fcoP f

where (-,-@ is the bilinear form introduced in (5.16), and op¢ = +1 takes into
account the orientation of the face f with respect to P.

We conclude this section by noting that the commuting diagram property (5.8)
characterizes the numerical solution uy, and the projection u! of the exact solution as
follows

divy,(u; —ul) = 0. (5.41)

Indeed, let x(P) be the piecewise constant function with value 1 over cell P and zero
over the other cells. Taking g = X(P) in (5.18), we have that divp up = b};, from which
we conclude that div,u;, = b!. Using (5.2) and (5.8) yield

divyu, = b' = (divu)' = divju’.
5.2.2 Stability analysis

The lemma below states a stability condition, namely, the inf-sup condition [88], that
is used in the convergence analysis. We present two different proofs of this lemma.
The first proof follows [48] and uses a result from the theory of mixed finite ele-
ments when the Raviart-Thomas RTy — Py scheme is applied on the submesh T,
of simplexes introduced in assumption (MR3), see Sect. 1.6.2. This proof is valid
for very general domains as no convexity assumption is required. The second proof
follows [90] and is based on the solution of an auxiliary problem that requires the
domain to be convex to have an H>-regular solution. This proof does not use any
regularity assumption on the submesh Tj,.

We recall that the lowest-order Raviart-Thomas finite element space on T}, is de-
fined as follows [88,305]:

RTo(T)) = {v € H(div,Q): vy —ar+brx VTET), areR? bre R}
and

Po(Ty) = {q cL*(Q): gt = const VT € T;,}.
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Lemma 5.7 (Inf-sup condition). There exists a positive constant B independent of
h such that for every cell-based mesh field q, € P, there exists a face-based mesh
field vy, € F), such that

divy vy, = qp, (5.42)
11Valll 5, < Blllgalll , - (5.43)

First proof. Let us consider the submesh T introduced in assumption (MR). The
submesh T, is a conforming partition of €2, into shape-regular simplexes T. Let us
identify g, with the discontinuous piecewise constant function g, € Po(T},) that takes
values gp inside P. From [88], we know that there exists a positive constant Cr,,
independent of /, such that for every scalar function g, € IPo(T) there exists a vector
function Hy, € RT(T}) satisfying

divH, =7, (5.44)
and
184122 )+ 1V EG 22 ) < Crry [l 20 (5.45)

Let us define the discrete field v;, = H}7 € %),. The commuting diagram property (see
Eq. (5.8)) gives

div, v, = divy, HI = (diVHh)I = (qh)[ =q.

Thus, v;, satisfies (5.42). Applying the result of Lemma 5.3 to the restriction of HL to
element P, an inverse inequality from /' (P) to L?(P), and inequality (5.45) yield:

Ivall, = 3 ICHBIE <C 3, (I8l ey + 43 il o))
PeQ,

PGQh

<C Y (Ml < Clghlsiq.
PGQ},

Inequality (5.43) follows by setting § = C. Note that 8 depends on the stability con-
stant Cr,- O

Second proof. For this proof, we assume that the problem is H2-regular, which is
true, for instance, when the domain Q is a convex polyhedron. Let y € H?*(Q) be
the solution of

div(KVy) =g, inQ, (5.46)
v=0 in 0. (5.47)

The regularity result states that

W20y < Coll@nllizo)- (5.48)
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We define v;, = (KVy)!. Using the commuting diagram property expressed in Lem-
ma 5.1 and the fact that g, is piecewise-constant on €2, gives

divy v, = divy (KVy)' = (div(KVy))' = (@,)" = -

This proves (5.42). A straightforward calculation applying the result of Lemma 5.3
and the regularity result (5.48) yields

IVAllL, = KV, < (Il ca) + Chll Wil ) )
<l @) < Cllgnll2q)-

This proves (5.43) since [[g,lz2(0) = lllgalll,, - m|

The uniform stability of the method can be shown by combining the stability prop-
erty (S1) and the inf-sup condition from Lemma 5.7 with the classical theory of mixed
discretizations of saddle-point problems, see [88]. In particular, a unique solution ex-
ists to problem (5.17)-(5.18).

5.2.3 Convergence of the vector variable

We prove the linear convergence of the numerical flux to the exact flux in Theo-
rem 5.2 below.

Theorem 5.2. Let (u, p) with p € H*(Q) be the exact solution of problem (5.1)~(5.4)
and (wy, pp) € Fp X Py, be the mimetic solution of problem (5.17)—(5.18) under
assumptions (MR1)—(MR3) and (S1)—(S2). Then,

I

w—w o <Chllpllpq) (5.49)

where C is independent of h.

Proof. Let pV) be a piecewise polynomial such that p,(:,l) = p(l)}p is the linear ap-

proximation of pjp over element P that satisfies (5.34). Let v, = u’ —u;,. We observe

that

|||“h—“1|||§h = [“h—lllﬂh];h = [wp,v4 5 — [u',v,] 7,

Let us develop further the last two terms. We use Eq. (5.17) (with pjyq instead of
gP) and Eq. (5.41) to obtain:

[“h»Vh] T [Ph»dthVh] 7, <P\aQ»Vh >h = <p\8527Vh >h-

Note that the discretization error v, is orthogonal to u, with respect to the inner
product of .7, if g” = 0.
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Substituting u' = (—KVp)!, and adding and subtracting the terms (KVp(l))I and
(KVp(1)' yields

i) 5, = (K- p ) il 5, (K- K)p) ],
- [(RVP(I))IvVh] T

The last term in the right-hand side is further developed by using the consistency
condition, more precisely equations (5.20)—(5.21) with ¢ = pp’, and noting again
that div;, v, = 0:

[(RVp(l))I,v] /pp)dlvhvth—i— Y op, fo/pg)dS)
Pth feadP

> Y opsve / pp’ dS. (5.50)

Pth fedP

Combining the above developments, we have

w,—u' 2% :[uh—ul7vh]jh

=[(KV(p—p")) i) 5 + [(K=K)Vp) vi] 5

_|_( z z Otprf/pp ds— <P\39avh> )

Py, fcoP
=A; + A+ Az

Term A is bounded by Lemma 5.4. Term A; is bounded by Lemma 5.5. Term Aj; is
bounded by Lemma 5.6. This proves the assertion of the theorem. O

5.2.4 Convergence of the scalar variable

One estimate of |||p, — p'||| 2, 1s given in [90], where a linear convergence rate is
proved for convex-shaped domains. The convexity of the computational domain is
required since the analysis uses an H>-regularity estimate for solutions of elliptic
problems. The convexity assumption has been removed in [48] using the analysis
based on the inf-sup condition of Lemma 5.7. This approach is adopted in this section
to obtain a more general result.

Theorem 5.3. Let (u, p) with p € H*(Q) be the solution of the problem (5.1)~(5.4)
and (wy,, p) € F), x Py, be the solution of the mimetic discretization (5.17)—~(5.18) un-
der assumptions (MR1)—(MR3) and (S1)—(S2). Then, there exists a positive constant
C independent of h such that

llps =PI, < Chlplle)- (5.51)
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Proof Letv, € .%), be the discrete flux field provided by Lemma 5.7 for ¢;, = pj, — p".
Equation (5.42) implies that div;, v;, = p;, — p', from which we obtain that

2 .
ph—p" 2, =[pn—pon—p,, =[P divivi] , . (5.52)

Using the discrete Eq. (5.17) yields
[P, divy, v ] 2, = [w), Vi) 7, (Plpavn),- (5.53)

Let p'!) be a piecewise polynomial such that pl(;l) =pH p s the linear approximation
of p over element P satisfying (5.34). Let vp be the restriction of v;, to P. Using first
the definition of the inner product in &), then the definition of the projection operator

and the fact that divpvp is a constant, and finally adding and subtracting pg) yield

[pl,dthVh]th S |Plppdivevp = Y /deinvP dv

PGQ}, PGQ},
-y / (p—pp))divevp dV + Y, / pWdivpvp dv. (5.54)
pcq, /P Peq,’P

We transform the last term in (5.54) using the consistency condition, more precisely
. _ N ()
equations (5.20)«(5.21) with g = pp’, as

Y [ pdivevedr =— 3 [(KeVplbovelp+ T 3 appor [plds.
pe,’P Pe®, PeQ, feoP i

Now, we add and subtract KVp and KVp(! to obtain:

> [(KeVp) vp] = [(KVp ) vy] 7= [(KVD)', i) 2,
PEQh

+ [(KV(p = p)'va] 5 + [(K=K)VP ) w] .

Noting that u' = —(KVp)! and substituting the above developments into (5.54), we
have

[pl,divhvh]ﬂh = /(p—pg))divPvP av+y Y apﬁfo/pg)dS
peq,”’P PcQ, feoP f

+ [u', vs] 7~ [(Kv(p! —P)I7Vh]t;7h — [(K=K)Vp)) v 7, (655
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Finally, using relation (5.55) and (5.53) into (5.52), and suitably collecting the right-
hand side terms yield

prn—71" i@h: [llh—llI,thIt;h_ 2 /P(p p,(p))divPdeV
PEQ},
+ KV = p)vi] 5, + [(K=K)Vp ) vi] o,

+ <p\BQ7Vh z anVf/pP)dS>

PeQ), fcaP
=T +Ta+T3+Ts+Ts. (5.56)
We bound each term in (5.56) separately. The term T, is bounded by applying the

Cauchy-Schwarz inequality, the convergence result of Theorem 5.2, and the inf-sup

property (5.43) with g, = pj, — p":

T< w—ut Vil 5, < Chllpllw ) llpn =PI, - (5:57)

The term T, is bounded by applying twice the Cauchy-Schwarz inequality, the ap-
proximation result in (5.34), and property (5.42):

1 .
T2l < Y 125 ey divevell 2 )

PGQh
1
2 .
< (3 o= 1Bae) " Hdivivall,
PGQh
1
2
<(c 3 blplee)) Nlow =2,
PEQh
<CH |plipylllen =PI, - (5.58)

The term T3 is bounded by using the result of Lemma 5.4 with ¢ = p and ¢g(!) = p(1),
and the inf-sup property (5.43):

T3l < CohllpllnaylIvalll s, < Chllpllza)lllen =PI, - (5:59)

The term T4 is bounded by using Lemma 5.5 with ¢ = p and inequality (5.43) with
I
9h =Ph—P":

Tal <Ch(Iplmay+hpl@) IVl 5, < Chlplpa) s =PI, - (5.60)
The term T is bounded by using Lemma 5.6, with ¢ = p and inequality (5.43):

sl < Cuhlpll o) Ivalll 5, < Chlpl)llen— Pl - (561

The assertion of the theorem follows by combining inequalities (5.57)—(5.61) into
(5.56) and simplifying by [||p; — p'[||,, - O
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5.3 Exact reconstruction operators

In this section we prove a superconvergence estimate for the scalar variable under the
condition that an exact reconstruction operator exists for the mimetic scheme. The
exact reconstruction operator reproduces exactly the mimetic inner product; how-
ever, its existence can be shown only for a subfamily of mimetic inner products. An
exact reconstruction operator is more restrictive than the reconstruction operators of
Chap. 3.

Recall the space S, p used in the consistency condition (S2). It satisfies assump-
tions (B1) — (B3) and the additional restriction (5.22). A local exact reconstruction
operator Rp : @hyp — Sp,p must satisfy the three conditions below.

(L1) For every discrete field vp € %, p it holds

diVRp(Vp) = dinVp7 (5.62)
Rp(vp) -ng = vf vf e dP. (5.63)

(L2) The reconstruction operator Rp is the left-inverse of the projection operator
on the space 9p of constant vector functions:

Rp(ch)=c  Vee (L2(P))”. (5.64)

(L3) For a given mimetic inner product, the reconstruction operator Rp reproduces
it exactly:

[llp,Vp]P = A KEIRP(IIP) -Rp(Vp)dV Yup,vp € gh:p. (5.65)

A reconstruction operator satisfying (L.1)—(L3) is related to the reconstruction opera-
tors of Chap. 3. In fact, the first condition in (L.1) corresponds to the commuting prop-
erty (R3). The second condition is the right-inverse property (R1), i.e. I"[F;’)7 oRE;7 =1
Assumption (L2) is the accuracy property (R2).

In contrast, assumption (L3) is a stronger condition and does not correspond to
any assumption among (R1)—(R5). The existence of such an operator is not always
guaranteed, although it is often true in most practical cases, as we will discuss in
Sect. 5.3.1.

Remark 5.5. The reconstruction operator Rp defines a finite dimensional space of
functions, Sj, p = Rp(-#), p), that is isomorphic to .7, p. In the finite element frame-
work, the analog of such a space satisfies the unisolvency condition. In the mimetic
finite difference framework, this space and the related reconstruction operator are not
unique.

Remark 5.6. We show later that assumption (L3) is too strong and the exact recon-
struction operator is not the only functional analysis tool available for proving the
superconvergence of mimetic schemes.
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The global exact reconstruction operator R: %, — X(2) is defined such that
its restriction to every P € ), is the local exact reconstruction operator, R(V/,)‘p =
Rp(vp). From the definition of the mimetic inner product (5.10) and property (L3) it
immediately follows that

[wpva) 5, = /Q K 'R(w) RV AV Vup,vy € . (5.66)

We conclude this introductory part with two technical lemmas. The first lemma
states the uniform stability of the reconstruction operator. The second lemma gives
an approximation result.

Lemma 5.8. Let Rp be an exact reconstruction operator. Then, for every vector-
valued function v € (H®(P)) with 6 > 1/2 it holds

IRp (VB)ll12(p) < CIVllo.np, (5.67)

where C is apositive constant independent of P and || v||% ap =l 2 2e T hee|v|? o P

Proof Due to the trace theorem, the projection of a function v € (H°(P))? with
o > 1/2is well defined. We now recall the strong ellipticity of Kp and, hence, of Ks!,
see Assumption (H1) in Sect. 1.4.1. Using property (L3) and the stability property
(S1) of the inner product yield

el —1/2 . _
||RP(V{D)||%2(p) < k7||Kp / RP(V}D)HiZ(p) =K /PKPIRP(V}D) -Rp(vp)dV

= K" [vp,vp|p < K707 [P| Y V[
fedP

Applying the definition of the projection operator on .%#, p and using the Cauchy-
Schwarz inequality, yield

vl < |f|71/2||V||L2(f)-

Inserting this in the previous inequality and using property (M2) from Sect. 1.6.2, we
derive the following bound:

IR (v0) 720y <C X, hplIVI726)- (5.68)
fedP

The assertion of the lemma follows from the trace inequality (5.35) applied to each
component of v in (5.68) and property (M1). |

Lemma 5.9. Let Rp be an exact reconstruction operator. For every vector-valued
function v € (H°(Q)) with ¢ > 1/2 it holds

V=Rl 20 < CH [V](a), (5.69)

where t = min{1, 0} and the positive constant C is independent of h.
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Proof Let vy be the constant vector function whose components are the cell aver-
ages on P of the corresponding components of v. We use the triangle inequality, the
accuracy property (5.64) and bound (5.67) to derive

[V —=Re(vp)ll2p) < IIv—vollz2(p) + [Ivo — Re (vb) | 12p)

= [[v=vollz2p) + IRp (Yo =)'l .2p)
<Clv=vollgnp- (5.70)

Now, we apply the estimate (5.34) to every component of v:
[V =voll2(py < Clip V] (p) (5.71)

where = min(1, 5). The assertion of the lemma follows by first substituting (5.71)
into (5.70), then observing that [V — vo|z(p) = |V|x(p), and finally summing up all
inequalities for cells P of €2,. ]

5.3.1 Existence of exact reconstruction operators

Property (L3) can be reformulated as follows: given a symmetric positive definite ma-
trix Mp, which represents a mimetic inner product in the sense discussed in Sect. 5.1.4,
does it exist a reconstruction operator Rp such that

ug Mpvp = /P KEIRP(IIP) ‘Rp(vp)dV Yup,vp € yh:p. (5.72)

We consider a minimal reconstruction operator defined in Chap. 3, which is de-
noted here as Rp. Let S, p = Rp (%), p). In view of property (L2), the space Sy, p con-
tains all constant vector functions. Let ¢;, 1 <i < d, be linearly independent constant
functions. For example, in the three-dimensional case, ¢; = (1,0,0)7, ¢; = (0,1,0)7,

and ¢3 = (0,0,1)7. We will find it convenient to choose a special basis in Sp.p. The
basis functions w; are defined as follows:

(i) wi=c;fori=1,...,d;
(i) w;fori=d+1,... ,N,S? , are orthogonal to constant vector functions ¢; with
respect to the weighted L? inner product in (5.72):

/Kglw;-wjdV:O, 1<i<d<j<Ng.
P

From properties (7)-(ii) it follows that the weighted mass matrix Gp for the basis
{w;} has the block diagonal structure:

PIKp' 0

G:
P 0 Gp

), (/G\p),'_d‘j_dZ/ KEIW,“W/dV i,j>d. (5.73)
, P ;

Let us define a transformation matrix A with columns (w;)5 which form a new
basis in .%), p. In this new basis, the mimetic inner product matrix is given by Mp =
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AT MpA~!. Since §h,p satisfies properties (B1)—(B2), the consistency condition (S2)
implies that the matrix Mp must have the same block diagonal structure as matrix Gp:

. IPIKp' 0
Mp = ), (5.74)
0 Mp

where, of course, Gp and |\7|p are generally different. Indeed, the mimetic inner prod-
uct must return the exact value of the L? inner product when one of the entries corre-
sponds to a constant function and the other one is either from S, p or S p. Thus, the

first d rows and the first d columns in matrices Gp and |\7|p must coincide.

Lemma 5.10. Let ﬁp be the minimal reconstruction operator and Mp be a mimetic
inner product matrix. Furthermore, let matrices Mp and Gp be given by formulas
(5.74) and (5.73), respectively. If Mp — Gp is a symmetric semi-positive definite
matrix, then, there exists an exact reconstruction operator Rp satisfying (5.72).

Proof. Starting from Rp we will build an exact reconstruction operator by changing
its action on basis vectors (w,')}:, without breaking properties (L1)—(L2). Let ¢ be
independent functions such that

divep=0 1inP,
¢ -n;=0 vf € dP.

The space of such functions is infinite dimensional so that we can select a finite num-
ber of linearly independent functions @;,i =d+1,... ,N‘F? , such that

/K,;ltp,--(pja’V:&j and /Kgltpi-wjdV:O Vi j>d.
p p

Let us define a reconstruction operator that satisfies properties (L.1)—(L2) as follows:

i
Rp((Wi)p) =Wi+ Y, Ziiaj—a®;,
o1

where z;_4 ;4 are some real numbers. Since (wi){p form a basis in .%, p, the action of
this reconstruction operator can be calculated for any vp € .%), p. Let us define matrix
Mp with entries

(Me)is = [ Ko'Re(w)h)- Re((w)b) V.

The orthogonality properties of functions @; imply that

_ IP|Kp! 0
MP: = 9
0 Gp+2ZT
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where Z is the matrix with entries z;_y ;4. This matrix coincides with the given
matrix Mp when Mp = Gp +Z Z”. This proves the assertion of the lemma. O

Remark 5.7. An exact reconstruction operator is not unique, because we have many
options for selecting linearly independent functions @,.

Remark 5.8. The exact reconstruction operator may not satisfy some of the properties
(R1)—(RS5) that are not equivalent to (L1)—(L2).

5.3.2 Superconvergence of the scalar variable

The existence of an exact reconstruction operator Rp that fulfills conditions (L1)—
(L3) in each cell P of €2;, allows us to prove a better estimate (superconvergence) for
the discretization error p' — pj,. For simplicity of exposition, we consider the case of a
piecewise constant diffusion tensor and homogeneous Dirichlet boundary conditions.
The case of a general tensor satisfying (H1) and (H1b) (cf. Sect. 5.2.1) and heteroge-
neous boundary conditions also admits a superconvergent scheme but its analysis is
more involved. The superconvergence property will be used in Sect. 5.4.1 to derive
a post-processed discontinuous piecewise linear function with good approximation
properties.

Theorem 5.4. Let (u, p) with p € H*(Q) be the solution of problem (5.1)~(5.4) de-
fined on a convex polyhedral domain €2 with the homogeneous Dirichlet boundary
condition on 082. Furthermore, let K be the piecewise constant diffusion tensor,
K =K, and the source term b € H'(Q). Finally, let (wy,, pj,) € ), x 2}, be the solu-
tion of the mimetic discretization (5.17)—~(5.18) under assumptions (MR1)—(MR3),
(S1)—(S2), and (L1)—(L3). Then, there exists a positive constant C independent of h
such that

ln =P, < CH* ([Pl (o) +101m (@) (5.75)

Proof Let vy, € .7, satisfy the inf-sup condition of Lemma 5.7 for ¢;, = p;, — p". Let
v € H*(Q) be the solution of the auxiliary dual problem (5.46)—(5.47). It holds that
v, = (KVy)' and div,v;, = p; — p'. Using (5.42) and the Eq. (5.17) with g® =0
yields

llPn —PI|||2yh = [divivi, pn = '], = [wn,vi) 5, = [divevip'] , . (5.76)

The second term in the right-hand side of (5.76) is further developed by applying the
definition of the inner product, cf. (5.9), and integrating by parts element by element:

[dthVh,pI]th S [P|(diveve)pp = Y, /PdiVRP(VP)dV
PGQ}, PGQ}, P

= PEZQh (—/PVP-RP(VP)dVJr/aPpnp-Rp(vP)dV>. (5.77)
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Since p € H*(Q2) and R(v;,) - np ¢ is constant on each face f, the inter-element face
integrals sum up to zero and the boundary terms are zero due to the homogeneous
Dirichlet boundary condition. Now, Vp = —K~'u implies that

[dthVh,pI]_;ﬂh = —/QVp~RP(Vp)dVZ/QK_IU-RP(Vp)dV. (5.78)

Substituting (5.78) into (5.76) and using property (L.3), allows us to connect the error
for the scalar variable with that for the flux variable:

llon=pYIR, = [ K (R =) RO a7 (579)
By adding and subtracting KV, we break the error into two terms:
llpw =, = [ K (RGw) —w)- (R(vi) —KVy) dV
+ /Q K™ (R(w;) —u) -KVydV
=T +T,. (5.80)

To bound the term Ty, we first apply the Cauchy-Schwarz inequality and condi-
tion (H1) to obtain:

Tl < () I (R(wn) = ) [l 2(0) IR (VA) = KV 2y (5.81)

The first factor in the right-hand side is transformed by adding and subtracting R(u")
and using the triangular inequality:

1R(up) =)l 200 < [[R(w; — )| 200y + [[R(u") —ul| 2. (5.82)

We bound the first term in the right-hand side of (5.82) by using the strong ellipticity
of K, cf. (H1) in Sect. 1.4.1, property (L3), and the error estimate of Theorem 5.2:

IRy — ) Ry < 1K 2R (s — ) B g
_ x*/ K~ R(uy —u) - R(wy —u") dV
P
o e W2
— w2,

< ch? ||p||12q2(g)-

Bounding the second term in the right-hand side of (5.82) by using Lemma 5.9 with
o = 1, we obtain:

1R(wp) —ull20) < Ch|lpllp2(0)- (5.83)

The second factor in the right-hand side of (5.81) is estimated by recalling the def-
inition of vy, using the result of Lemma 5.9 with ¢ = 1, assumption (H1), and the
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elliptic regularity estimate (5.48):
IRV) = KVW2() = [RAKVY)) = KV 2
< Ch|KVylyi(q)
<Chlllpn—p'lll.,, - (5.84)

To bound the term T,, we first integrate by parts, note that the boundary integral
is zero due to (5.47), then substitute divR(uy,) = div, u;, = b (cf. property (L1)) and
divu = b (cf. Eq. (5.2)), and finally observe that (b' — b) is L*-orthogonal to constant
functions:

T, = / (R(up) —u) -VydV = — / wdiv(R(w) — u)dV
Q Q
—— [ v -nyar = [ -y e-ar.
Q Q
Applying the Cauchy-Schwarz inequality yields
ITal < v =201 = B2 ). (5.85)

We apply the standard estimate for the interpolation error and the /7%-regularity esti-
mate (5.48) to obtain:

v = ¥!l|2(0) < ChlYm(a) < Chllps—p'll20) = Chlllpn =PIl - (5.86)
Similarly, using again the estimate for the interpolation error, we have:
15" = bll 2@ < Ch1Bli (q). (5.87)

The assertion of the theorem follows by combining (5.83) and (5.84) in (5.81) to
obtain an estimate for T, then by combining (5.86) and (5.87) in (5.85) to obtain an
estimate for T, and finally using these two bounds in (5.80). O

5.4 A posteriori estimates

In this section we will derive an a-posteriori error estimator for the mimetic dis-
cretization described above. We refer to [8,9,355] for a detailed expositions of the a
posteriori error estimation methodology for finite element methods. We will discuss
the reliability and efficiency of our error indicator with respect to a suitably defined
energy-type norm. This indicator uses a post-processed solution pj, which is also
interesting on its own, as it provides a better approximation of p. The results of this
section are based on the work in [41,53].
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5.4.1 Post-processing of the scalar variable

The approximation property u;, ~ u = —KVp suggests that the discrete flux variable
uy, carries some knowledge of the gradient of the scalar variable p. Such knowledge
can be exploited to build a discontinuous piecewise linear functions pj; with better
convergence properties than pj, similarly to what is done in the Raviart-Thomas or
BDM finite elements on simplicial meshes [334].

The post-processed scalar field pj, is defined as the unique piecewise linear poly-
nomial that satisfies (c.f. [41, 106])

| pidv = Pl pe. (5.388)
[ Vpi-Vadv = ~[u,.(Vablp VaePi(P), (589)

for all P € €. The post-processed gradient solving (5.89) can be easily computed
by using the mimetic inner product matrix Mp. First note that

RT (V)b = 3 ap rlfl(x—xp)nf Vg = (3 [fl(xr —xp)nf ) Vg = V.
feoP fedP

Second, note that (Vq)}D is the linear combination of columns of matrix Np. Since
M(Pl) Np = 0 by the definition, we have

P1(Va) Vpije = (Va)b)" (Re Kp' RE+[PIME Jup = (Vo) K5 R up.
Since ¢ is arbitrary, we have

1
Ve = —757Kp RPup = —

|
P —Kp' Y |flow pus(x¢ —xp).

|P| feoP
This formula is applied element-wise and therefore carries negligible computational
cost. Moreover, the post-processed function pj; does not depend on the particular
inner product.

The proof of the following theorem, that is based on the superconvergence result
of the previous section, is found in [41,106].

Theorem 5.5. Let the hypotheses of Theorem 5.4 hold. Then, there exists a positive
constant C independent of h such that

125 = Pllzi@) < CH (Pl @) + 16l () - (5.90)
5.4.2 A residual-based a posteriori estimator

The difficulty in deriving a residual based a posteriori error estimator for the mimetic
discretization is related to the lack of complete knowledge of functions in space Sy p.
In [41], this problem is solved by using the post-processed solution introduced in the
previous section.
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Let.Z %" denote the set of boundary faces and .% " the set of internal faces of mesh
£,. We denote the jump of the post-processed function pj on an internal face f as
[}, Jls- Often, we will drop out the superscript f. Following [41,53], we consider the
error indicator 1 given by:

n*= 3 ng, (5.91)
PEQh

p = x|l (KVpj)p +up||[2 + 75 |16y — bplI}

Np P Ph up h — Up L2(P)

1 1y
+ B 2 hf 1||[[ph | ||L2 ) + 2 Kfzhf 1||ph _pb-,hHiZ(f)’ (5.92)
feoPn.zin fedPn.zex

where by, and p;, ;, are some piecewise polynomial approximations of the source term
b and the boundary function g”, respectively, and

d Kp fcoPnN.gFet,
Kp = VIS Kf = (593)
trace(Kp ") max(kp,kpr) fedPNIP.

The degrees of the piecewise polynomial approximations by, and pj, ;, depend in prac-
tice on the quadrature rule used, see Remark 5.9 below. The local coefficients kp and
Kr ensure that the indicator terms are properly scaled with respect to the magnitude of
the diffusion tensor K. The error indicator 7 mimics the energy-like error err given by

er’ = Y errp, (5.94)

PGQh
errp = |lu—Rp(up) 72 p) + /15 [|div(u—Re (up)) |72 p)
* 1 - *
+ KI% ||V(P_Ph)||i2(p) + 3 z K'fz he ! lp—ps ]]HiZ(f)’ (5.95)
feoP

The local coefficients kp and k¢ are again included to achieve a uniform scaling of
the error terms with respect to K.

Remark 5.9. We do not need to compute the polynomial approximations b, and py 5.
In theory, the quantities ||b;, — b|| 12(py and [|pj, — pp nll 2 (s are defined as the result
of a quadrature rule, exact for polynomial of high order, applied to ||b — b || 2(p) and

\p; — &P 12(f)» respectively. The higher the order of the quadrature rule, the smaller
will be in general the oscillation terms introduced below.

Let us introduce the oscillation terms:

osc’= Y o0scp+ D, 0sCf,
PeQ, fezex

OSC%’ = hl23 16— bhHiZ(p) VP € £y, (5.96)

oscf = he i [8° — poalipg VEE T
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These oscillation terms are of higher order with respect to np, provided that the source
term and boundary data are sufficiently regular. The theorem below states the relia-
bility and local efficiency of the proposed a posteriori error indicator. Its proof can
be found in [41, 53].

Theorem 5.6. There exist two positive constants C,, and C; depending only on K and
the constants appearing in assumptions (MR1)—(MR2) (see Sect. 1.6.2) and (S1)
such that

err<C,(n+ osc). (5.97)
and
np <C/ermp+osco+ Y osc) VP EQ, (5.98)
feapn.zex

The constant C, is homogeneous of degree zero with respect to the magnitude
of K, i.e. it is not changed if K is multiplied by a positive constant on the whole
domain Q. Likewise, the constant C; is homogeneous of degree zero with respect to
the magnitude of K|p for each element P € €.

The reliability and efficiency estimates (5.97)—(5.98) give the upper and lower
bounds, respectively, of the numerical error (5.94)—(5.95). The first two terms
in (5.95) compare the exact flux u with its numerical approximation R(uy) involving
the reconstruction operator R which is never built explicitly. Even if R(uy,) is in gen-
eral unknown, the flux error norm in (5.95) is still meaningful. In fact, Lemma 5.3
give

lu' = sl - < C(1[w—R(wn)llj2(q) +hlu—R(w) g1 (q))-

We infer from this inequality that the convergence of R(uy) to u in the L2-norm
implies the convergence of uy, to u'.

From the computational standpoint, it would be more efficient to avoid storing the
elemental inner product matrices that are required by the first term in the right-hand
side of (5.92). Using the stability condition, we can replace the local inner product
by the equivalent quantity:

2
II(KVp)p +upll2 =~ Pl Y, (KVP))i+ur (5.99)
fedP

The error indicator 1p is reliable, efficient, local and computable; hence, it can be
used to develop adaptive strategies for mesh refinement. The mesh refinement pro-
cess turns out to be simpler and efficient than in the case of standard finite element
methods since the MFD method works on non-conforming meshes such as meshes
with “hanging nodes”. This claim is verified with extensive numerical tests in [53].
In particular, the adaptive strategy driven by the indicator 1p shows optimal conver-

gence rates with respect to the number of degrees of freedom.

Example 5.2. In this example we consider the Poisson problem on the L-shaped do-
main, see Fig. 5.4. The source term b = 0 and the Dirichlet boundary conditions are
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Fig. 5.4. Adaptive mesh (left), convergence rates for p (middle) and u (right). Dashed line
corresponds to adaptive strategy. The continuous line corresponds to the uniform refinement
strategy

set by the exact solution written in cylindrical coordinates:
p(r,0) =1*/*sin(20/3).

It is easy to check that the exact solution is only in H°/3(£) due to the presence
of the re-entrant corner. Thus, the expected asymptotic rates of convergence on uni-
formly refined meshes are

~1/3 —2/3
u' —u, thNP/ and pI—ph ﬂhNNP /,
where Np is the number of mesh cells. A successful adaptive strategy should recover
the optimal convergence rates similar to that for a regular problem:
~1/2 _
W, N 2 and Plepn L~ N (5.100)

The adaptive mesh in Fig. 5.4 shows the correct behavior of the adaptive strat-
egy, the mesh is refined near the re-entrant corner. Note, that the computational mesh
contains polygonal cells with four to seven edges. All these cells are shape-regular
according to mesh assumptions (MR1)-(MR2). The numerically calculated conver-
gence rates agree with the predictions (5.100).

5.5 Second-order approximation of the flux

We illustrate the flexibility of the mimetic discretization framework by building a
scheme that is second-order accurate for both the scalar p and vector u unknowns.
The new scheme uses the same space &), to approximate p and an enriched space .7
to approximate u. The major difference between .%, and .%; is that the latter has more
degrees of freedom on each face f, which are sufficient to represent a linear function.
This enrichment resembles the BIDIM mixed finite element method [86,87,283]. The
construction of the new mimetic scheme is based on a new consistency condition that



5.5 Second-order approximation of the flux 147

uses linear vector functions as test functions, in contrast to the low order case that
uses constant vector functions. The new scheme also requires a special treatment of
non-constant diffusion tensors.

We present a short description of the new scheme and formulate main theoretical
results without proofs. Additional details concerning the scheme implementation and
analysis can be found in [48, 54, 192].

5.5.1 Derivation of the mimetic scheme
5.5.1.1 Degrees of freedom and projection operators

Discrete spaces for the scalar and vector unknowns are formally defined as follows,
see also Fig. 5.5.

» The space of discrete scalar fields &), is defined by attaching one degree of free-
dom to every mesh cell. The value associated with cell P is denoted by gp. The
collection of all degrees of freedom form the algebraic vector g, € &),

an = (qp)Peg,-
The dimension of #?;, equals the number of mesh cells.

* The space of discrete vector fields %, is defined by attaching & degrees of freedom
to each mesh face. The values associated with face f are denoted by v? € R and
v} € R?"1. The collection of all degrees of freedom form the algebraic vector
\7ES 7 ;: ,

Vi = (V¥ ) pe 5

The dimension of . equals to d times the number of mesh faces.
The restriction of v;, € .%;" to a mesh face f can be associated with a linear function:
1 &6
)

vi(§) =V‘f’+vf-h—f (5.101)

Fig. 5.5. Geometric location of degrees of freedom in the low-order MFD scheme: arrows
represent fluxes us (on four visible faces), dot represents pp
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where & € R?~! is the position vector in the local coordinate system on face f and
& c R is the barycenter of f with respect to such coordinate system. Note that
setting all vf for f € Z to zero gives a subspace of .%; that is isometric to space .%,
of Sect. 5.1. Since the degrees of freedom are uniquely defined on each mesh face,
the discrete flux continuity across inter-element faces is naturally embodied into the
definition of .%;

The projection operator from L'(Q) onto 2, is given by (5.7):

1
ap=q'p= W/quV-

The projection operator from X (£2) (see (5.5)) onto .%" is defined as follows. For
any v € X, v! € .Z/ is defined by the linear functions v} living on f:

/fv}(g)q(g)dsz /fnf.vq(f;)ds Vfe F,qePi(f). (5.102)

When g € Py(f), we obtain the definition of the projection operator in the low-order
mimetic scheme, see Eq. (5.6),

1
(VI)? = m/{v-nf ds.

When g € Py (f)/Po(f), we obtain the additional condition defining the high-order
components of the discrete flux:

ey

5.5.1.2 The primary divergence operator

The mimetic discrete divergence operator divj, : .%,; — &), is analogous to the one
of the low order case. It is defined element by element as div;, v;, = {divpVp }pcq,
where vp is the restriction of vy, to cell P and

Y ap,f/fvf(é al fz op ¢ [fV. (5.103)

edP cdP

1
divpvp = |P|
f

This definition is consistent with the Gauss divergence theorem. Furthermore,

divv /leVdV_ / v-npdlV = /v np s dS
(div¥)p = [P] |P| IPIfeap

1 .
= P| z aP.f/fo(g)'ndeZdev};,
feoP

and the commuting property of the projection operators still holds:

(divv)" = divy, (vh). (5.104)
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Let us now introduce the L?-orthogonal projector 99) : (L2(P)? — (Py(P))“.
Letu € (L*(P))?, then

/F)(@él)(u)—u) vdV =0 e (P (P)). (5.105)

This operator is clearly bounded, i.e. gzé,l) (u) P = ||lul|;2(p and its approxima-
tion properties are characterized by the following lemma.

Lemma 5.11. Under the mesh shape-regularity assumptions (MR1)—(MR2) of
Sect. 1.6.2, the projection operator 9’,&1) provides a second-order accurate approxi-
mation of vector functions from (H*(P))?:

u— 2 (u) 2y T U= 20 (w) Py < Chplulpp).- (5.106)

The proof of this lemma is the direct consequence of property (5.34), see [48] for
more details.

5.5.1.3 Mimetic inner products

We equip spaces & and .7 with the inner products [+,-] », and [-,-] 7. Let ||| - ]|,

and ||| -[|| . be the norms induced by these inner products. The inner product on &
“h

is the same one already introduced in (5.9). The inner product of .%; is given by

[wp, Vil 7 = D, [up,ve]p, (5.107)
PEQ},

where we keep the same notation for the local inner product [-,-]p. It is required to
satisfy the stability and consistency conditions. Let

Spp= ve(L(P), s>2, withdivv = const, v-ns € Py (f) Vf€aIP}.

According to the theory developed in Part I of this book, this space must satisfy the
following properties.

B1) The local projection operator (-)! from Sj, p to .%;*, must be surjective.
proj p , WP ]

(B2) The space Sj, p must contain the trial space
Ip={v:P =R suchthat v= ﬂé,l)(KVq) with g € P,(P)}.

Note that the space Zp is contained in [IP1 (P)]¢ but may not be the whole [P (P)]¢
(see Remark 5.10).

It is immediate to verify that the space Sj, p above satisfies both conditions. The space
Sy, p is used in defining the consistency condition here below.
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(S1) (Stability condition). There exist two positive constants o, and ¢* indepen-
dent of /p such that for all vp € .7, 5 and for every element P we have

o.hp 2 / Vf dS < Vp,Vp] < o*hp 2 / Vf dS, (5.108)
fedP fedP
where v¢(&) is the local linear function defined on f by (5.101).

(S2) (Consistency condition). For every element P and every g € P,(P), we have

(7 (k9g))p.vb] = /PVq-vdV W € Spp. (5.109)
Integrating the right-hand side of (5.109) we obtain

(74 (kVa))p / gdivav + ¥ / vonpg)gds.  (5.110)
fedP

The definition of space Sy, p implies that the integral arguments in the right-hand side
are polynomials. Hence, they can be calculated using components of v}, (our degrees
of freedom), that is property (B3) from Chap. 4. In particular, this allows us to write
the right hand side of (5.110) as R(g)”vp, where R(¢)7 is the computable vector
from .%, . To ensure the symmetry of the resulting inner product, condition (S2)
uses the prOJected function 92 (KVq) instead of KpVgq as it is done in the low-
order scheme, see (5.19). This approximation is critical for proving the second-order
convergence of the flux in the new scheme [48].

As we already did a few times in this book, once the consistency condition is
specified, we follow the standard path. First, we select a few basis functions ¢’ in
IP,(P). Second, we define vectors N; = (9’(1)(KVq )) and R; = R(g’). Then, the
consistency condition can be written in the equivalent forrn as the system of matrix
equations,

MpN; =R;,

with respect to unknown inner product matrix Mp. Solution of this system of alge-
braic equations has been discussed in Sect. 5.1.4 and also in Part L.

The following bilinear form, whose arguments are a function from L' (I'°) and a
vector from .%;, is introduced in order to take into account non-homogeneous Dirich-
let boundary conditions:

&), = /vf £)ds=Y, <vf/ngS+ /gD 55de)

ferp fer?

Remark 5.10. Note that, even in the case where Kp is constant, the trial space Jp does
not cover all functions in [P;(P)]“. For instance, in the case K equal to the identity,
the space Jp is given by all vectors v = Vg with g € IP,(P). Since all such vectors v
satisfy curl(v) = 0, the space p will not contain the whole [IP; (P)]?. Nevertheless,
since the solution to the problem satisfies u = —KVp, the approximation provided
by the test space Jp turns out to be sufficient to obtain the desired order of accuracy.
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5.5.1.4 Weak formulation

Let the boundary data g” and g be integrable on I'® and I'V, respectively. Moreover,
let (gV )f, for all f € 'V, represent a linear approximation to g" on face f. Using this,
we introduce the following space:

Fi={we i &) =" vier'}.
As usual, .#  indicates the space given by setting gV =0o0nTI". The weak mimetic

formulation of problem (5.1)—~(5.4) reads as
Find (W, pp) € Fj;; x Py such that

[uh, Vh]y; - [ph,divhvh] 2, = —<gD,Vh >h VV;, € 9;0, (5.111)
divjup,q5] 7, = b',q1] 7, Vg, € Py (5.112)

5.5.2 Convergence analysis

We prove that the new numerical approximation of the vector variable converges
quadratically. Regarding the scalar variable, since the discrete space is the same as
in the low order case, a better rate cannot be expected in principle. Nevertheless, in
Theorem 5.10 we show that some improvement can be still obtained for the scalar
variable, using a piecewise quadratic post-processed solution.

Let us consider a local reconstruction operator Rp : .%,, — Sj, p that satisfies
three conditions. As usual, the global reconstruction operator R combines all local
reconstruction operators.

(L1a) Forall vp € 7p, it holds
divRp(vp) = divpvp inP, (5.113)
RP(VP)“:'IIf:Vf vf € dP. (5.114)

(L2a) The reconstruction operator is the left-inverse of the projection operator
given by (5.102) on the space of linear vector functions:

Rp(ch)=c, Vee (Py(P)). (5.115)

(L3a) The reconstruction operator is uniformly bounded from below and above,
i.e. there exist positive constants p, and p* independent of P such that

piie 3 [IW(EPAS< Re(ve) Jipy <phe 3, [(E)PdS (5.116)
feop/f feop/f
for any vp € F ) p.

Requirements (L1a)—(L3a) are weaker than requirements (L1)—(L3) used in the
analysis of the low-order scheme. Indeed, the new reconstruction operator does not
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reproduce the mimetic inner product. Instead, it has to be stable with respect to the
elemental norm as expressed by (5.116). In contract to the low-order case, the ex-
istence of a reconstruction operator satisfying (L1a)—(L3a) can be always proved
using only the mesh shape-regularity assumptions (MR1)-(MR3) of Sect. 1.6. For
example, one could immediately build Rp by solving an discrete BDIM ;| — P prob-
lem on an auxiliary simplicial partition of element P, see [42,192,240]. We have the
following approximation result [48].

Lemma 5.12. There exists a constant C independent of hp such that

v—Rp(Vh) <Chp|[V|zpy Vv e (HA(P)). (5.117)

L2(P)

Let g be a function such that gp € H (P). We denote the jump of ¢ across the
internal face f by [¢]lf and extend this definition to the boundary faces by setting
[q]lf = g for f C dQ. All a priori estimates will be given using the mesh-dependent

norm: 5 5 5
9 1= z ( Vq LZ(p)+ z hI;l [ql¢ LZ(f))' (5.118)
PeQ, fedP

When ¢ is continuous across the internal faces and zero on the domain boundary,
the norm ¢ |, coincides with the I_seminorm of ¢ which is also the norm on
H} (). Thus, norm (5.118) can be interpreted as a discrete extension of the //'-
norm to the “broken” H' Sobolev space. Indeed, both the reconstructed and post-
processed numerical solutions are discontinuous functions on £2;, and for this reason
do not belong to H'(Q).

Since the space &), is unchanged with respect to the low-order case and the space
-, is only enriched (it contains the flux space of the low-order scheme), the inf-sup
condition proved in Lemma 5.7 holds immediately in the high-order case.

Lemma 5.13. There exists a positive constant C independent of h such that for any
qn € Py there exists a discrete flux field v, € F; satisfying

[divi Vi, qn] 5, = |||qh|||i»h and ||[Valll . < Cllgnlll,,- (5.119)
Furthermore, an inf-sup condition holds with respect to the norm || - ||, 4, see [48].

Lemma 5.14. There exists a positive constant C' independent of h such that for any
qn € Py there exists a discrete flux field v, € .7, satisfying

[divivi,an] 5, = lanllin and — R(VA) 120y < C'llgullin. (5.120)
Remark 5.11. From the inf-sup condition of Lemma 5.13 and the stability assumption
(S1) in Sect. 5.5, using the standard theory of mixed discretization methods [88], the

uniform stability of the proposed scheme follows.

The following convergence result holds for the vector variable [48].
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Theorem 5.7. Let (u,p) with p € H3(Q) be the exact solution of (5.1)~(5.4), and
(wp, pp) € F; X Py be the mimetic solution of (5.111)~(5.112) under assumptions
(MR1)~(MR3) and (S1)—(S2). Then,

u'—w, 7 S ch 1Pl ) (5.121)
where C is independent of h.

Inserting the projection of the exact solution on .#; x 2, i.e. (ul, p!), in equa-
tions (5.111)—(5.112), we obtain the consistency error of the mimetic scheme. By
comparing the result with the mimetic scheme, we can write explicitly the error equa-
tion for pj, — p' (see Lemma 5.15) and then prove an estimate of the flux consistency
error (see Theorem 5.8).

Lemma 5.15 (Error equation). Let (u, p) be the solution of problem (5.1)—~(5.4) and
(wp, pi) € F; x Py be the solution of the mimetic scheme (5.111)—(5.112). Under
assumptions (L1a)—(L3a), for every v, € !, there holds:

[Pa=pldivivi] , = lwvil s+ [ Vp-Ri V. (5.122)

Theorem 5.8 (Consistency flux error). Let (u, p) with p € H>(Q) be the solution of
problem (5.1)~(5.4) , and (wy, py) € F;; X Py, be the solution of the mimetic scheme
(5.111)«5.112) under assumptions (MR1)—(MR3), (S1)—(S2). and (L1a)—(L3a).
Then, there exists a constant C independent of h such that for every v;, € F;’ there
holds:

1/2
2 [llh,Vp] p +/ VP'RP(VP)dV < Chz p H3(Q) ( 2 RP(VP) 22(p)) .
PeQ, P PeQ,

(5.123)

Theorem 5.9 below states the discretization error estimates for p in the mesh-
dependent norms || -||1,5 and || -[|| ,, . Its proof relies on Lemma 5.15 and Theo-
rem 5.8. Theorem 5.9 is more general than the similar approximation result given
in Theorem 5.4. More precisely, here we do not require that € is convex, that the
mimetic inner product is reproduced by an exact reconstruction operator, and that
the source term belongs to /7! (£2). Nonetheless, the higher-order approximation of
the fluxes requires the H>-regularity of the exact solution in order to achieve the opti-
mal convergence rate. This requirement is needed for both ||-||; , and ||| - | 5, horms
of the error.

Theorem 5.9. Let p € H3(Q) be the exact solution of problem (5.1)~(5.4), and py, €
Py, be its mimetic approximation. Then,

pr=p' ,SCH P g, (5.124)
P =PI, SCH p sy (5.125)

where constant C is independent of h.
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Since the new mimetic formulation approximates the scalar solution by a piece-
wise constant function, the convergence rate of pj to the solution p cannot exceed
that for the low-order scheme [48]. The advantage of Theorem 5.9 with respect to
Theorem 5.4 lays in the weaker assumptions and in the stronger norm, but not in the
order of convergence.

5.5.3 Solution post-processing

The post-processing technique is based on an element-by-element reconstruction of
a solution gradient from the discrete flux solution. It generalizes the analogous tech-
nique for the low-order mimetic scheme in Sect. 5.4.1. Using the higher-order scheme
we can get a better approximation of the gradient within each mesh element by ex-
ploiting the more accurate representation of the discrete flux solution.

The post processed scalar field pj is defined as the unique piecewise quadratic
polynomial that satisfies

/PpZdVZ |P|pp, (5.126)
/PVPZ VgdV =—[w,,(Vo)plp Vg €P1(P), (5.127)

for all P € Q.

Note that the computational cost of the post-processing procedure is negligible
since it is calculated element-by-element and, in addition, the related local matrix to
be inverted turns out to be diagonal. Details concerning the implementation can be
found in [54].

We close this section with an error bound for pj, see [48].

Theorem 5.10. Let pj be defined by (5.126)~(5.127). Then,

lp=pillin <CH |plls ), (5.128)

where constant C is independent of h.
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The diffusion problem in primal form

Diffusion is one of the fundamental
processes by which material moves.

The diffusion problem in primal form for the scalar variable u is governed by the
Poisson problem, which we rewrite from Sect. 1.4.1:

—div(KVu)=b in Q, (6.1)
u=gP on I'?, (6.2)
(KVu) -n=g" on 'V, (6.3)

Here, Q C R? is a polyhedral domain with the Lipschitz boundary ' = TP UIN, K
is the symmetric and strongly elliptic diffusion tensor, b is the forcing term, g” and
g" are the given boundary data.

The primal mimetic low-order discretization of (6.1)—(6.3) proposed in [84] can
be considered as an extension of the linear Galerkin method for simplicial meshes to
general polygonal and polyhedral meshes. Later, an extension of the mimetic frame-
work to arbitrary-order discretizations was introduced in [50] for polygonal meshes.
Both low-order and arbitrary-order discretizations were unified in a Galerkin frame-
work dubbed as the virtual element method [43].

In Sect. 6.1, we present the main idea of the mimetic finite difference (MFD)
method for problem (6.1)—(6.3) from two points of view. The low-order and arbitrary-
order discretizations are described in Sects. 6.2 and 6.3, respectively. In Sect. 6.4,
we carry out the convergence analysis and derive a priory error estimates in mesh-
dependent norms. In Sect. 6.5, we present a residual-based error indicator [16] that
can be used to drive adaptive mesh refinement algorithms and derive a posteriori error
estimates.

6.1 Overview of the method

In this section, we introduce two approaches to the construction of the mimetic method
for the diffusion problem in primal form. The first approach is based on the discrete
vector and tensor calculus, see Chap. 2. The second approach is based on the results
of Chap. 4 and starts with the variational formulation of the diffusion problem.

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI10.1007/978-3-319-02663-3_6, © Springer International Publishing
Switzerland 2014
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For the considered diffusion problem, the second approach is computationally
more efficient. Both approaches complement each other and in general selection of a
particular discretization strategy must be driven by the application at hand.

6.1.1 Discretization of the strong form of the equations

In this short section, for simplicity, we assume that 'Y = 0. Let us rewrite Eq. (6.1)
in rather unusual mixed form:

F=Vu, (6.4)
—div(KF) = b, (6.5)

subject to the Dirichlet boundary conditions (6.2). In contrast, to the mixed formula-
tion considered in the previous chapter, the vector function F has continuous tangen-
tial components across material interfaces.

We discretize (6.4)—(6.5) using a pair of primary and derived operators from
Chap. 2. The discrete unknowns are given by (see Fig. 6.1)

* the node-based field u;, € ¥}, whose components u, approximate the nodal values
of u,i.e. up = (uy)yey;

+ the edge-based field F;, € &, whose components F approximate the tangential
components of F on mesh edges e, i.e. Fj, = (Fe)ecs-

With such a selection of degrees of freedom, it is natural to use the primary
mimetic gradient operator V;,: ¥}, — &), and the derived mimetic divergence oper-
ator divy,: &, — ¥, as approximations of the continuum operators V and div(K-),
respectively:

V~V, and  div(K:)xdiv,.

The primary gradient operator is given by Eq. (2.19). According to the main prin-
ciples of the discrete vector and tensor calculus developed in Chap. 2, the derived
divergence operator is dual to the primary gradient operator with respect to inner

<o

Fig. 6.1. Geometric location of degrees of freedom in the low-order MFD scheme: dots rep-
resent u, and arrows represent e (on 11 visible edges)
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products in spaces ¥, and &}, (see also Remark 2.5). This gives formula (2.32):
div, = —M;' VI Mg, (6.6)

where matrices My and M« represent inner products in the corresponding discrete
spaces. The mimetic operators allow us to write down the following discrete problem:

Fh — Vh Uup = 07 (6.7)
—div, Fy =117 (b), (6.8)

subject to the Dirichlet boundary conditions. Here IT” is the vertex projection oper-
ator defined by (2.14).

In a finite difference setting, the boundary conditions are imposed by setting pre-
scribed values g”(x, ) to the components of u), at the boundary nodes x, and eliminat-
ing the corresponding equations from the global system. Formally, equations (6.7)—
(6.8) have the same structure as equations (5.12)—(5.13).

Remark 6.1. There exist two approaches for treating heterogeneous Neumann bound-
ary conditions. The first one is based on an extension of the mimetic operators and
a modification of the inner products [206], which is not pursued in this book. The
second approach is based on the direct approximation of a weak formulation and is
presented in subsequent sections.

The linear system arising from (6.7)—(6.8) reads:
M V] Mg Vyuy, =17 (b),
subject to the Dirichlet boundary conditions. The last formula can be written as
Au,=b, where A=VIMsV, and b,=M,II" (b). (6.9)

A more elegant way for treating boundary conditions that avoids the convoluted
statement “subject to the Dirichlet boundary conditions” is to write (6.9) in a varia-
tional-like form. Let ¥, .o C ¥, be a subspace of mesh functions whose values at
boundary vertices x, are set to g (x,). First, we define a semi-inner product on ¥,
through the bilinear form:

%(Vh,uh) = [thh7thh]£h = v,{V,{ M/;‘ thh-

The bilinear form 7, represents the energy semi-norm in space ¥. Then, the dis-
crete problem (6.9) subject to the Dirichlet boundary conditions is equivalent to the
variational formulation:

Find uy, € ), oo such that
(Vhun,Viwa] ., = 1" (b)va] . Vv € Yo, (6.10)
where we recall that the scalar product [-,-]

1 is given by matrix My .
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According to the discrete Helmholtz decomposition Theorem 2.65, the discrete
gradient operator acts from ¥}, onto a proper subspace of &},. This subspace is much
smaller than &}, and only the action of matrix M« in this subspace is needed to de-
fine matrix A. In the following section we will show that A can be calculated more
efficiently, bypassing the calculation of M.

6.1.2 Discretization of the weak formulation

Let us derive a mimetic discretization of problem (6.1)—(6.3) using the framework
developed in Chap. 4. Let

X(Q)= veH (Q): vro=¢"}.

The weak formulation of problem (6.1)—(6.3) reads:
Find u € Xy(82) such that

/KVu~VvdV:/ bvdV+/ MvdS  WweX(Q). (611
Q Q v

Under assumptions (H1)—(H2), see Sect. 1.4.1, the existence and uniqueness of the
weak solution u can be proved [190].

The numerical approximation of (6.11) is performed on a sequence of polygonal or
polyhedral conformal partitions {€2; }, of the domain £ for the mesh size parameter
h — 0. The mesh size parameter is given by # = maxpcq, #p Where Ap is the diameter
of element P. We assume that each mesh in the sequence is shape-regular, i.e. it
satisfies assumptions (MR1)—(MR2) of Sect. 1.6. On a mesh €2;,, we approximate
the scalar functions from X, through a set of suitable degrees of freedom:

uve H'(Q)NC"(Q) —  upv, €%, (6.12)

The definition of the linear space ¥}, for the low-order and the high-order methods is
different and is described in the next sections. It will be convenient to use a shorter
notation for the formal projection operator IT” : H'(Q)NC%(Q) — #;,. The degrees
of freedom of function v are given by a discrete field v! € ¥, which means that
vl = IT” (v). Now, we introduce a bilinear form .27, : ¥, x ¥}, — R that approximates
the left-hand side of (6.11),

PACRLES / KVu-VvdV,
Q
and a linear functional .%}, : ¥}, — R that approximates the right-hand side,
2 z/ bvdV+/ 2vds. 6.13)
Q v
The construction of <7, and .%), is described in the next sections.

The Dirichlet boundary conditions are embedded in the definition of the subspace
Vg of ¥4, which is formed by the discrete scalar fields of 7#;, whose degrees of free-
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dom associated with the Dirichlet boundary are calculated explicitly using function
gP. The mimetic finite difference method for problem (6.11) reads:

Find wy, € Vj, 4 such that:
szh(uh,v;,) = ;,%(Vh) Yy, € 4///770. (6.14)

As proved in the next sections, the coercivity and the continuity of the bilinear form
o7, imply the well-posedness of discrete problem (6.14).

Remark 6.2. At this moment, the second mimetic approach resembles a finite element
method. The essential difference between the two methods lies in the construction of
the bilinear form 7.

6.2 Low-order mimetic method

6.2.1 Degrees of freedom

In the low-order MFD method, the linear space ¥, coincides with that introduced in
Chap. 2, i.e. the degrees of freedom are associated with mesh vertices. A discrete
scalar field v;, € ¥}, consists of one real number v, = vy for every vertex v € 7.
Thus, the dimension of ¥}, equals the number of mesh vertices.The restriction of v,
to element P is denoted by vp and includes values v, at vertices of P:

vp = (Vv)ve Ip-

We say that vp belongs to the local approximation space 7}, p := ¥} p, whose dimen-
sion is #(¥p), the number of items forming the local set ¥p, see Fig. 6.1. We will
treat non-homogeneous boundary conditions by using the space 7}, ; C 7j,:

Yhe= Vh € Vh: VV:gD(XV) VXVGI:D}.
The subspace %, ¢ is defined by setting g” = 0 in the definition of Vg

Remark 6.3. The definition of ¥}, ; requires more regularity of function 2P than it is
needed to prove the well-posedness of the continuum problem. This limitation can be
mitigated by using an average value of g” in a neighborhood of vertex x, to define
Yy

Let v and v/ be two vertices connected by an edge e, i.e e = (v,V'). The space of
the discrete scalar fields 7, is endowed with the H!-like mesh-dependent norm

vl n =3 Ivalli s (6.15)
PEQh
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where each local norm in the right-hand side must be equivalent (with constants that
are uniformly bounded on the mesh) to

Yy — Vy 2

lfae=lPl 3 =

e=(v,v')edP

The assumption (M2) of mesh shape-regularity implies that |P|/|e|? = hg—z. Thus,
the local norm can be defined also as follows:

vy —w 2 ford =2,

5 e=(v,v')edP
||Vh||1,h,P = 2 (6.16)
p Yy — Wy ford =3.
e=(v,v')eof

We define the projection operator (-)': H'(Q)NC%(Q) — ¥ as the unique dis-
crete scalar field v! € ¥, associated with the function v and such that

vl = vl‘v =v(xy) Wev.

The local projection operator from /'(P) NC%(P) to ¥, p is denoted by using the
symbol vh.

6.2.2 The consistency and stability conditions

The bilinear form 27, is built element-by-element using the following representation
that reflects the additivity of the integration:

Ay (up,vy) = Y, Ayp(up,vp).
PeQ
€42

To derive an accurate local bilinear form 7, p and characterize its properties, we
proceed along three steps. In the first step, we introduce a face quadrature rule . (vp)
that satisfies two conditions of data locality and P -exactness.

(Q1.A) Data locality: The quadrature rule .# uses only the degrees of freedom
{w }veor at the vertices forming the polygonal boundary of face f.
(Q1.B) Py-exactness: The quadrature rule .# is exact for linear functions.

Assumption (Q1.B) implies that . yields at least a second-order accurate approxi-
mation of the face integral of a sufficiently smooth scalar function y:

[wds=siub) +1fl0 (). 617)

In the second step, we approximate the diffusion tensor K on the element P by the
constant tensor Kp, which is either K evaluated at the center of gravity of P or the
(component-wise) average of K over P. Although assumption (H1) (see Sect. 1.4.1) is
sufficient to ensure the existence and uniqueness of the numerical solution, a stronger
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regularity assumption on K that holds often in practice assumes that each component
Kj; is locally Lipschitz continuous. This stronger assumption allows us to derive the
following upper bound:

max sup|(Kp);; — Ki;(x)| < Cghe, (6.18)

1<i,j<d xcp

where Cy is a non-negative constant independent of #p and P. In this chapter, we use
the modified assumption (H1).

(H1a) The diffusion tensor K : Q@ — R?*? is a d x d bounded, measurable, and
symmetric tensor. Its components K;; belong to W1 (P) for every P € €2, More-
over, K is strongly elliptic, i.e., there exist two positive constants k. and k™ such
that for every x € €2 it holds

|V <v-KEx)v<«*||v|*  VWveR?, (6.19)

1/2

where ||v|| = (v-v)'/* is the Euclidean norm of vector v.

In the third step, we require that the bilinear form <7, p satisfies two conditions
of spectral stability and local consistency. Let S, p be a subspace of H!'(P)NC°(P)
that satisfies assumptions (B1)—(B3) formulated in Part I of this book. For the con-
sidered mimetic discretization, they read as follows.

(B1) The projection operator (-)/ is surjective from Sj, p to ¥, p.
(B2) The space Sj, p contains the space of linear functions.

(B3) Functions from S}, p are integrated exactly on faces f of P with the quadrature

rule (Q1).

In general, a space Sp, p satisfying all assumptions is infinite dimensional. How-
ever, as we noticed in Chaps. 3 and 4, it is not restrictive (and often useful) to assume
that

dim(Syp) = dim(¥;,p). (6.20)

In such a case the projection operator (-)! restricted to Sy p becomes an invertible
mapping (-)! : S, p — ¥, p and thus the two spaces are isomorphic.

(S1) Spectral stability: There exists two positive constants o, and o* such that for
every vp € ¥}, p there holds:
2 2
o:lvellinp < hp(ve,ve) < o”(lvellip-

(S2) Local consistency: For every y € IP(P) and every v € Sj, p there holds:

o (vh V) = [ KeVv-Vydr.
’ P



162 6 The diffusion problem in primal form

Note that, for any sufficiently regular function v and for any y € P (P), the inte-
gration by parts gives

/Kva-Vt[/dV: KeVy- 3 np,f/vds. 6.21)
P feaP f

Condition (S2) expresses the exactness of the discrete bilinear form when one of its
arguments is the projection of a linear polynomial and the other one belongs to Sy, p.
Due to property (B3) the right-hand side of (6.21) can be computed exactly. For-
mula (6.21) will be used in Sect. 6.2.5 to derive an algebraic form of the consistency
condition.

Remark 6.4. Let us write an explicit form of the integration formula .% using weights

{@ry bveor:
Filvp) = 3, wru. 6.22)
veof

Then, assumptions (Q1.A)—(Q1.B) are equivalent to the assumption (Q1.AB) intro-
duced in [84].

(Q1.AB) For every face f there exists a set of non-negative weights {wr, },cof
associated with the vertices v of face f such that

Y wry=|f|  and Y (xv —x¢) wry =0, (6.23)
veof veof

where x, is the position vector of vertex v and X is the barycenter of face f.

We can find weights wy , satisfying assumption (Q1.AB) by expressing Xy as a linear
combination of the vectors x, for v € df.

Remark 6.5. In the two-dimensional case the obvious choice for the numerical inte-
gration rule .% is given by the trapezoidal rule:

f
Fi(vp) = %(vv ), (6.24)
where v and V' are the end-points of edge f.

6.2.3 Discretization of linear functional ¢,
To discretize the volume integral in (6.13), we need one additional quadrature rule.
Note that the quadrature below is not unique.

(Q2) For every polyhedron P € €2, there exists a set of non-negative weights
{opy } cop associated with its vertices v such that their sum equals |P|.

The corresponding numerical integration formula,

/Pdez Y w(x)opy, (6.25)
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is exact for constant function y. A simple choice of weights that satisfy (Q2) is given
by wp, = P /N,;’/, where N,;/,/ is the number of vertices in P.

Using (Q2), we approximate the forcing term in (6.13) by a linear functional
(b,)n : ¥, — R given by

(byvn), = Pz (ﬁ /P de) S o, (6.26)

[S973 veTlp

Only a low-order approximation of the integral of b is required. For instance, using
the barycenter of P, we obtain

1
I /P bdV =~ b(xp). (6.27)

The boundary integral in (6.13) corresponding to the Neumann boundary condi-
tion is approximated using the quadrature rule .% for faces f € I'V. This leads to a
linear functional (gV,-), : ¥, — R given by

(& vn), = Y, orug (xo)n. (6.28)

fery

Summarizing, the right-hand side of (6.11) is approximated by the linear functional
%, © ¥V, — R that is defined by

Zh(vn) = (Bva), + (" vy

6.2.4 Convergence theorem

The convergence of the low-order mimetic method has been analyzed in [84] for
the case of homogeneous Dirichlet boundary conditions. Here, we present only the
main result. In Sect. 6.4 we will prove a more general convergence theorem for the
arbitrary order mimetic method of [50].

Theorem 6.1. Let IT'N = 0 and gP = 0. Furthermore, let u € H}(Q) N H?*(Q) be
the solution of variational problem (6.11), and u, € ¥}, be the solution of discrete
problem (6.14) under assumptions (MR1)—(MR2) (see Chap. 1), (H1a), (Q1)—(Q2),
and (S1)—(S2). Then, there exists a positive constant C independent of h such that

ety — 2| 1.n < Ch (|u|H1(Q) + |ul 2 () + ||b||L2(Q)) :

6.2.5 Derivation of bilinear form <7,

Let us consider the stiffness matrix Mp associated with the local bilinear form
Ay p (up,vp):

yp(up,vp) = (up) Mpvp  Vup,vp € ¥,p. (6.29)
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We assume that the quadrature rule in (6.17) is given in Assumption (Q1.AB). Using
it in Assumption (S2) and rearranging the summation terms, we obtain:

yp(Wpovp)= 2 w3, wrynps-KpVy VYop € %p. (6.30)
vedP  fedP: veof

This relationship must hold for every linear polynomial y. Since 27, p is bilinear, it
is sufficient that (6.30) is true for a finite number of linearly independent functions

and y3 = z. Note that for yp we have
(vP)TMp(y/O)}Dz/ KpVv-V(1)dV = 0. 6.31)
P

Since (wo)b = (1,1,...,1)T, Eq. (6.30) implies that the constant vector is in the ker-
nel of matrix Mp. Following the same arguments as in Chap. 4, we combine equa-
tions (6.29) and (6.30) to obtain

(vp)"Mp (yi)p = (vp)" Ry,

where R; € ¥, p and its components (each one associated to a vertex v € dP) are
given by

(R),= Y ormps-KpVy;.
fedP.vedf

LetN; = (t//,')}g, where i = 0,...,d. We define the rectangular matrices Rp and Np of
size N,;’" x (d + 1) that collect the columns R; and N;, respectively. Then, the local
consistency condition can be written in the compact matrix form:

Mp Np = Rp. (6.32)

Lemma 6.1. The matrices Np and Rp satisfy the following identity:

v (0 0
NZRp = <0 Plke ) (6.33)
Proof. Since Vx = (1,0,0)7, Vy = (0,1,0)7, and Vz = (0,0, 1)7 it holds that
/vawwjdV: IP|(Kp)yj, i) >0. (6.34)
P

Now, we apply (6.21) for v = y; and y = y; then, we use Assumption (Q1.B) and,
finally, we re-arrange the summations to obtain

/PKle;fi-ijdV:Kle[/i- D /fllP,f‘Ifde

fedP
=KpVyi- D nps Y, o yj(x)
fcoP veof

=Y wix) Y orynps-KeVyi=(N)"R:.
vedP fedP: veodf
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This proves the assertion of the lemma for i,j > 0. If i = 0 or j = 0 the asser-
tion follows from the symmetry of matrix N R, e.g., (N;)"R; = (N;)" R, and
Ro = (0,...,0)T. 0

Matrix Np has the following explicit form

1 (le)T

1 (XVZ)T

1 (XVNv )T
P

which holds for any number of spatial dimensions. The expression for matrix Rp
depends on the quadrature weights introduced in (6.22). In two-dimensions, a simple
formula, which is the consequence of the trapezoidal rule, is available. Let the edges
and vertices of polygon P be ordered either clockwise or counter clockwise. Then,

|fN/ |Ilf + f] ng;

|f1|nf —I— fa nf2
T
|ng 71|an;, fNy nf

According to the general theory (see Lemma 4.7), a solution to (6.32) is given by

Mp =MD +MY MO = |P|RpK o'RE, MU)—DpUpDE,  (6.36)

where Dp isa NJ x (N§ — (d+1))-sized matrix such that NEDp = 0, and Up a sym-
metric and positive definite (N3 — (d+1)) x (N — (d + 1))-sized matrix. Formula
(6.36) can be verified by a direct substitution.

Matrix Up cannot be totally arbitrary. To comply with the stability condition (S2),
the positive eigenvalues of matrix Mg) should be uniformly bounded by that of ma-
trix M |(30). There are many ways to achieve that. For example, after making the columns
of Dp orthonormal, we can use the scalar matrix Up = A" (M (0)) | where A" (M (0))

is a positive eigenvalue of M,(;?).

Remark 6.6. Let us consider the two dimensional case with Kp = |. Then, formula

(6.33) implies that N/R j = 8;;|P| for i, j > 0. This vector-vector products coincide
with the shoe-lace formula for the calculation of the area of polygon P. For example,

Np
1
|P| = N{Rl = ZXiE ( fi1 nf_ xt f; nf,.,x) .
i=1
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Let Xy, = (x;, y;) and the vertices be ordered counter clockwise. From a simple geo-
metric argument we find that |fi_i g, | = (yi—yi—1,%i—1 —x;) T anda similar formula
holds for |f;|n¢,. Using the above formula, we obtain:

N 1%
Pl = ini((yi_)ﬁ'—l) + ir1 —yi)) = 7 > xi (vie1 —yi-1)
=1 i-1

1 R R 1
=5 zxinl -5 inyifl =5 inyiH -5 in+1yi
25 25 25 25
1
= 5 2 (xiJ’i+1 —xi+1yi)-
i=1

6.2.6 A family of mimetic schemes

The size of matrix Up grows linearly with the number of vertices in element P, and the
number of its entries grows quadratically. A treatment of these entries as parameters
leads to the development a new adaptation strategy dubbed m-adaptation [249]. For
example, each element in a hexahedral mesh contributes 10 parameters. In this sec-
tion, we consider a few simple examples showing the potential of the new adaptation
strategy and leave the in-depth discussion to Chap. 11.

6.2.6.1 Admissible parameters

If matrix Up satisfies the stability condition with uniformly bounded constants o, and
o™, the corresponding mimetic discretization has the optimal convergence properties.
However, it is intuitively clear that the constant C in the convergence estimate of
Theorem 6.1 depends on ratio 6*/ 0,. The effectiveness of the m-adaptation depends
on how much the stability constants affect the accuracy of a mimetic scheme.

Let us consider again the model problem from Example 5.1. In particular, we
consider formula (6.36) where matrix Dp has orthonormal columns and Up is the
scalar matrix,

Up = ?L,trace(M(O)) l.
NS P
By varying the scaling factor ¥, we affect the stability constants. We apply this scheme
to the numerical resolution of the diffusion problem (6.1)—(6.3) in a unit square {2
with the Dirichlet conditions. The diffusion tensor is given by

X 2442 —x
K(x,») = <( +i§cy+y (x+i})2> .

The source term b and the boundary function g” are defined by the exact solution

p=x>y* 4 xsin(2mxy) sin(27y).
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1| =#*=error(u) I
| —@=error(v u) |

10 |

2
10 |

10 10 10 10

Fig. 6.2. Dependence of the approximation errors on the parameter y

Figure 6.2 shows the dependence of the approximation errors for # and Vu on
the scaling parameter 7. The errors are calculated using discrete L?-norms that are
independent of the definition of matrix Mp. The error for Vu remains almost flat when
7 changes 300 times. The error for # has a well-defined minimum around y = 2. This
example shows that if the error in the gradient is our primary objective, there is a big
room to optimize the method.

6.2.6.2 Special cases

Applying the previous formulas on meshes of rectangles having size 4, X h,, we re-
discover several well-known finite difference and finite element schemes [303,304].
Thus, these schemes belong to the family of mimetic schemes. Let us introduce two
auxiliary quantities:

_1 hy /’ly _1 hy hy
D_2<hy+hx> and E_2<hy hx>.

A straightforward calculation shows that

+D +E —-D —E 1 0 0
M(O):l +E +D —-E -D No — 1 h O
P=2| b -E +D +E |’ P 1 he by
~E -D +E +D 1 0 h

The rank of matrix Mg)) is 2. Indeed, we have that M(F?)z0 = Mg))z1 =0, where z2° =
(1,1,1,1)7 and z' = (1,—1,1,—1)7. The matrix Dp has a single column, and Up
is a 1 x 1 matrix. Let Up = (s) and Dp = (a,b,c,d). The orthogonality condition
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yields:
11 1 1 Z
NEDp=1| 0 A he O .
0 0 hy h 4

6 The diffusion problem in primal form

a+b+c+d

0
= heb+ hyc =10
0

hyc+hy,d

Taking ¢ = 1 yields b=d = —1 and @ = 1. Hence, Dp = (1,—1,1,—1)7 and

1
-1

-1

The formula of matrix Mp becomes:

%—I—s E_s
%—s Dy

Mp = D
—5+s —5—s

1 (s)(l—ll—l):s 1

1 -1 1 -1
-1 I -1 1
-1 I -1

-1 I -1 1

—%—I—s —%—S
—%—s —§+S
%—I—s —S
7= %+S

Let us enumerate the vertices in rectangles as shown in Fig. 6.3. Let v be the
central vertex marked by a filled circle. When a global assembly is performed, the
diagonal entry in the equation of v takes contributions from matrix entries (Mp);;,
i=1,...,4. Summing up these entries, we obtain 2D + 4s which is the central term of
the stencil shown in Fig. 6.4. The other entries in the stencil are calculated similarly.
For example, when we consider the global entry connecting vertex v with vertex
v/ being the top-middle node, we sum up entries (Mp)z3 and (Mp);4. This gives
—E — 2s. Different schemes are presented in Figs. 6.6-6.9.

4 3[4 3
211 2
\ d

4 3[4

1 2|1 2

Fig. 6.3. Local numbering of a rectangle vertices
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—D/2+s

E—2s

—D/2+s

Fig. 6.4. The two parameter stencil for a mesh of rectangles; 4, may differ from 74,

s—1/2
—2s
s—1/2

—E —2s
2D +4s
—E —2s

—2s

4s 42

—2s

—D/2+s

E—2s

—D/2+s

s—1/2
—2s
s—1/2

169

Fig. 6.5. The one-parameter stencil for a mesh of squares; 4, = /), implies D =1 and E = 0

~1/2

0

~1/2

Fig. 6.6. The stencil for a square mesh with s = 0 corresponds to the hourglass scheme

Fig. 6.7. The stencil for a square mesh with s = 1/2 corresponds to the 5-point Laplacian

0

2
0

-1

4

-1

~1/2

0

~1/2
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-1/6 —— —2/3 ——— _1/6
| | |
—2/3 ——— 10/3 —— -2/3
| | |
-1/6 — -—2/3 ——— —1/6

Fig. 6.8. The stencil for a square element with s = 1/3 corresponds to the 9-point Laplacian

-1/3 — -1/3 — —1/3
| | |
-1/3 ——  8/3 — 173
| | |
-1/3 — -1/3 — -1/3

Fig. 6.9. The stencil for a square element with s = 1/6 corresponds to the bilinear FEM

6.3 Arbitrary-order mimetic method

In two dimensions, the arbitrary-order mimetic method has been formulated in [50].
In three dimensions, the construction is also feasible, as noted without detailed ex-
planations in [50]. In the present section, we focus on the two dimensional case.

The theoretical convergence analysis of the arbitrary-order discretization requires
to modify mesh regularity assumption (MR) by including assumption (MR3) as dis-
cussed in Sect. 1.6.2. With a slight abuse of notation, in the rest of this chapter, we
will refer to the extended set of mesh regularity conditions (MR1)-(MR3) as as-
sumption (MR).

Assumption (MR3) limits slightly the set of admissible polygonal meshes by re-
quiring each polygon to be star-shaped with respect to a special point Xp € P. How-
ever, a great generality of cell shapes is allowed, e.g. non-convex polygons are still
admissible. Also, a mesh may contain degenerate polygons like those encountered
in the AMR methods [339] which divide a straight edge in two or more sub-edges.
When P is a convex polygon, the arithmetic average of the position vectors of its
vertices, Xp = (1/N} ) S,cop Xy, provides a convenient choice for the special
point.

To extend the low-order mimetic method to an arbitrary-order method, we have
to enrich the original set of the degrees of freedom. For simplicity of exposition, we
assume temporary that K is a constant tensor inside each polygonal cell P. We remove
this restriction in the next subsection. Integrating by parts and splitting the boundary
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integral into a sum of face/edge contributions, we obtain the fundamental relation:

/ KVy-Vvdl = — / div(KVy) vV + ¥ / KVy npevdS.  (637)
P P feaf/f

If y is a given polynomial of degree m on P, then

+ div(KVy) is a polynomial of degree m — 2;
* KVy - np; is a polynomial of degree m — 1.

We express the divergence of KV y as a linear combination of the canonical basis of
IPm_z (P), i.e,

div(KVy) =apl +aix+ayy+... € Py 2(P). (6.38)

Since w and K are known, so is div(KVy) and the coefficients ag, a;, a2, etc.
A different basis with better properties is considered in the formal construction
in the next subsection, but right now, the monomials of the canonical basis, e.g.,
{1,x,y,x%,xp,%, ...}, are making a good job. Using (6.38), allows us to reformulate
the integral over P in terms of the moments of the function v as

/diV(KVl//)vdV:ao/ 1vdV+a1/xvdV+a2/yvdV+...
P P P P

= aol’}p,o —l—all’}p,] —l—a2\9p72 +...

Since v is known, the expression above is exact for any function v once we know
its moments Vp g, Vp 1, Vp 2, etc. This fact suggests us to take these quantities as the
degrees of freedom. By doing so, the integration of the divergence term introduces
m(m — 1)/2 degrees of freedom, as many as there are linearly independent polyno-
mials in P,,,_»(P).

Each face integral in (6.37) is evaluated by using the Gauss-Lobatto formula with
m+ 1 nodes x¢ , and weights we ;:

m+1
/f vip - KVydl m Y weg v(xeg) mps- KV (xg,). (6.39)
q=0

Since KVy/(x¢4) - np ¢ is a known polynomial on degree m — 1, we can calculate this
integral exactly when the trace of function v on f is a polynomial of order at most m.
We introduce a subspace S, p of functions v € Hj (P) N C°(P) with such polynomial
trace on faces f so that (6.39) becomes the identity. This suggests us to define the
following degrees of freedom

veg =V(Xg), ¢=0,1,...m, (6.40)
where x¢ o and Xf ,, are the end-points of edge f.

Remark 6.7. We emphasize two important steps in the construction of this and other
mimetic schemes, see Chaps. 3 and 4 for a general discussion. First, the degrees of
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freedom are selected to support polynomials of order m. Second, the test space S, p
is selected to be rich enough and integrate exactly all integrals in the right-hand side
of (6.37).

Remark 6.8. The MFD method has enough flexibility to mix and match various de-
grees of freedom. For instance, face-based moments can be used instead on point-
based values (6.40). Such a selection leads to a new family of mimetic schemes [247].

6.3.1 Degrees of freedom

Let m be a positive integer number. We define a new discrete space 7. A discrete
field vy, € ¥}, is written as

vi = ((Whvers (VEi)se 7 im1,m—15 (VP i) PE 2 k=0,...m—2,i=0,... & ) » (6.41)

where

(1) (w)vey consists of one real number v, per mesh vertex v € ¥;
(ii) (Vfi)fe.7,i=1,...m—1 consists of (m — 1) real numbers v ; per mesh face f € .7

(iil) (VP ki)Pe7 k=0,...m—2,i=0,... k consists of m(m —1)/2 real numbers VP ki Per

mesh element P € 2.

Examples for m = 2,3,4,5 are shown in Fig. 6.10 for the case of a single pentago-
nal element. The first two sets of degrees of freedom can be combined together and
written as (V¢ ;)fc 7 i-0,...m- Their represent the nodal values of a scalar field. The last

G
ofa

Fig. 6.10. Degrees of freedom for m = 2,3,4,5; vertex degrees of freedom are symbolically
denoted by circles, nodal degrees of freedom at the Gauss-Lobatto nodes inside each face are
denoted by squares, and interior moment degrees of freedom are denoted by diamonds



6.3 Arbitrary-order mimetic method 173

P. We will refer to them as the internal degrees of freedom. In a computer program,
they can be eliminated locally.

The nodal values are associated with the Gauss-Lobatto numerical integration rule
with m + 1 nodes, cf. Formula 25.4.32 and Table 25.6 of [6]. The Gauss-Lobatto
quadrature nodes are defined uniquely and symmetrically on face f and the first node
and the last node always coincide with the end-points of f. Consistently with our
notation, the values at the end-points are labeled by v¢ o and v¢ ,. Furthermore, the
(m + 1)-sized set (vf;)i—o,...m of the nodal values can be identified with a polyno-
mial v, ¢ € IP,,(f), which is the unique one-dimensional polynomial of degree m that
interpolates these values along f.

The dimension of the global approximation space % is equal to N” + N7 (m —
1)+ N7 m(m—1)/2, where N’ is the number of mesh vertices, N the number of
mesh faces, and N the number of mesh elements. Let Vj,p denote the restriction
of 7} to element P. The discrete field vp € 7}, p collects the degrees of freedom as-
sociated with the vertices, faces and interior of P. The dimension of ¥} p is equal
to my, , = Ng m+m(m—1)/2, where N is the number of faces in P, N5’ = 5 in
Fig. 6.10.

Let us define, for every P, a local projection operator ()5 : H'(P)NC*(P) — ¥ p.
As usual, a global projection operator (-)! is a combination of all the local ones so that
for any v € H'(Q)NC°(Q) and any P € €, it holds that V[‘p = vL. For simplicity,
we shall write v}, instead of (VIP)V and v?,. instead of (V};)f.i for particular vector
components. For the nodal degrees of freedom, we set '

vl =v(x,) Vv € dP; (6.42)
vii=v(xe;)  VFEIPi=12,....m—1. (6.43)

For the internal degrees of freedom, we set

1
\}P‘k‘i:ﬁ/wpk_;dV k=0,...,m,i=0,1,... .k, (6.44)
k, b

where ¢y ; are linearly independent polynomials forming a basis of IP,,_»(P). In this
section, we introduce a different basis than before. It turns out that a very convenient
choice for such functions is given by the following construction:

» for k =i = 0 we take the constant function ¢g o = 1;
o fork=1,...,mandi=0,...,k we choose (k+ 1) polynomial functions ¢y ; that
form an L?-orthogonal basis for

~

Py(P) = {(p € P4 (P) such that / oydl =0 VYye ]Pk—l(P)}-
p

The linear space If’k(P) is formed by the polynomials of degree exactly equal to
k. The polynomials ¢y ; are normalized by imposing that || @[ ;2(p) = hp.
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Since the polynomials in If’k(P) for k > 1 are orthogonal to all the polynomials of
lower degree, they are also orthogonal to ¢po = 1 and, consequently, to constant
functions. Furthermore, we have that IP,,,(P) = @KZOIAP;C(P).

The convergence analysis in Sect. 6.4 measures the approximation error in the
mesh-dependent norm:

valli =" lvelli e, (6.45)
PEQ},

where each local term ||vp||? , ; is designed to mimic the /! seminorm on the element
P. We consider the following seminorm:

dvps 2 2 m2d
||VP||%,h.P:feza,PhP P Lz(f)+(VP7070_VP) + Z Z vp il (6.46)

where dvy, ¢ /ds is the derivative along edge f of the one-dimensional polynomial vy, ¢
of degree (m+ 1) that interpolates the values v¢; fori =0,...,m, and

Vp=— D . (6.47)

To enforce the Dirichlet boundary condition on I'?, we consider the subset Vg
of discrete fields from ¥}, whose restriction to a Dirichlet boundary edge is fully
specified by function g”. Assuming that g” is continuous, we require that for each
vertex v € I'? and each face f € I'” it holds that

W :gD(XV)7 Vfi :gD(Xf,i)7 i= 1,2,..,7’}’1

6.3.2 The consistency and stability conditions

The local bilinear form 7, p is defined in three steps. In the first step, we introduce
the L? orthogonal projector on the linear space of two-dimensional vectors of poly-
nomials of degree £:

75 (I2(P))’ — (Pu(P)).

For w € H'(P) and K € L*(P), the divergence div(2% '(KVw)) belongs to
P,,_»>(P) and its expansion in the polynomial basis functions ¢y ; € IP,,—»(P) takes
the form

m—2 k

div(Z5 L (KVw) = 3. Y o ipris (6.48)
k=0 i=0

where the coefficients oy ; depend on w.
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In the second step, we define the quadrature formula %p (vP,w) by

m—2 k

p(vp,w) =Y, z |Plow.ive k.is (6.49)

k=0 i=

where vp . ; are the internal degrees of freedom of the discrete field vp and the co-
efficients oy ; are those used in expansion (6.48). The following argument explains
the meaning of this quadrature rule. Let vIP be the projection of the scalar function
ve H (P)NCP) in ¥,p (see Sect. 6.3.1). Recalling (6.44) and inserting (6.48)
in (6.49) yields

m 2 k
Ip(vh,w 2 zakl/V(pkldV / Zakl(pkl)
k=0 i= k=0 i=
_ / vdiv( 22 (KVw))dV, (6.50)
P

Thus, the bilinear operator .#p (v};, , w) is an approximation of the last volume integral
in (6.50).

In the third step, the discrete symmetric bilinear form 27, p on ¥, p x %, p is re-
quired to satisfy the stability and consistency conditions. Let Sj, p be a subspace of
H'(P)NCP(P) that satisfies assumptions (B1)~(B3) formulated in Part I of this book.
For the considered mimetic discretization, they read as follows.

(B1) The projection operator (-)} is surjective from Sy, p to %, p.
(B2) The space Sj, p contains the space of polynomial of degree at most m.
(B3) The trace of v € Sy, p on face f of P is a polynomial of degree at most 1.

In general, a space S, p satisfying all requirements is infinite dimensional. How-
ever, the complete convergence theory can be built using a finite dimensional space
such that dim (S, p) = dim(%},p), i.e. S p is isomorphic to ¥, p. In the sequel, we
assume the latter.

(S1) Spectral stability: There exists two positive constants o, and ¢* such that for
every vp € ¥ p there holds:

o:l|vel[tnp < e (ve,vp) < 0¥|vellip-
(82) Local consistency: For every y € IP,,(P) and every vp € S, p there holds:
p (Vo yh) = / Vo 28U (KVy) V. 6.51)
’ P

Note that, for any v € S, p, the integration by parts gives

/vv.@g*I(Kvw)de—yp(vm 2/ P01 (KVy) - np gds.
P feop
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The one-dimensional polynomial 9;,”’1 (KVy)-np ¢ has degree at most m — 1 and the
trace of v on f is a polynomial of degree at most m. Since the Gauss-Lobatto formula
of order m mentioned above is exact for polynomials up to degree (2m — 1) [6], it
integrates exactly the product of 3”;,”_1 (KVy) -np ¢ and v. Thus,

[V 2 KV dr == 7o (s, w) + 3, Tk ni(F (KVy)-me ) (x5,

fedPi=0
(6.52)
where wy ; are the weights in the Gauss-Lobatto formula. Thus the right hand side of
(6.51) is exactly computable on the basis of the existing degrees of freedom.
Letnow v, ¢ € IP,,(P). Since ¢ € S, p then we can take v = ¢ in the consistency
condition. Using the fact that 9’3”1 is the orthogonal projection onto the polynomials
of degree at most m — 1 yields:

Ao (b wb) = /P Vo 20 (KVy)dy = /P Vo KVydv. (6.53)

This relation implies that the bilinear form .27, p (-, ) is exact for polynomials of order
at most m and does not violates the symmetry requirement. Moreover, property (S1)
combined with the boundary conditions allows us to prove that the bilinear form 27,
is coercive on the vector space ¥}, from which we can deduce that there exists a
unique solution to the discrete problem (6.14).

6.3.3 Discretization of linear functional 2,

In the present section we focus on the m > 2 case since for m = 1 one can follow the
same construction shown in Sect. 6.2.3. Let us consider the L2-orthogonal projector
2% . L*(P) — Px(P) onto the space of polynomials of degree at most k. With a
small abuse of notation, we use the same symbol for this projector as in Sect. 6.3.2,
since its action is always clear from the type of its argument. Let bp = @,ﬁ”z(b) be
the projection of the forcing term b in (6.11) on the polynomial space. We expand bp
as a linear combination of the basis functions ¢ ; fork=0,...,m—2andi=0,...,k

m—2 k

bp="Y"3 cripri (6.54)
k=0 i=0
This expansion uses m(m — 1) /2 coefficients ¢ ; depending on b. Using these coef-
ficients and the internal degrees of freedom vp ; 4 of the discrete field vp, we define
the local linear functional

m—2 k

Zp(vp) =P Y, Y criveii

k=0 i=0

and the global one by the assembly process:

Lvn) =Y, Lp(vp).
Pegy,
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Remark 6.9. For any v € L*(P) and any loading term 5 € L2(€) it holds that
Lo(vh) = / P2 () P (v)dV = / bpvdV  YPE Q. (6.55)
P P

6.3.4 Derivation of bilinear form <7,

The construction of the arbitrary-order method coincides with that of the low-order
method when we simply set m = 1. Again, we will follow the guidelines described
in Chap. 4. Given P € €, we will build an elemental stiffness matrix Mp such that

T
pp(up,vp) =upMpvp  Vup, vp € ¥,p.

The global stiffness matrix is obtained by the standard assembly process.
The construction of the elemental stiffness matrix is reduced to an algebraic
equation of the form MpNp = Rp, as in all other mimetic discretizations. Let
VI, V2,..., Wy} withn = (m+1)(m+2)/2 be a basis for polynomial space IP,,(P).
We select the following basis functions:

vi(x,y) =1,
X—X —
valey) = ysly) =0,
P P
x—xp)? X—Xx — _ 2
valry) = CTBN ey = ETIRIITIR) oy R
2 2 2

Here xp = (xp, yp)” is the barycenter of P.

Remark 6.10. Note that ||y;||;2p) ~ hp, so that the theory developed later still ap-
plies, but these basis functions suit better for the practical implementation of the
method than the orthogonal basis used in the theory. Of coarse, the coefficients oy ;
(see (6.48)) and ¢y ; (see (6.54)) must be calculated with respect to the basis {y;}7_.

Let N; = (y;)} be the i-th column of matrix Np. This matrix is easily calculated
by evaluating y; at the Gauss-Lobatto points and computing its moments over poly-
gon P. Using the divergence theorem, the calculation of the moments is reduced to
integration of polynomials over edges f of P.

A formula for the matrix Rp follows from the right-hand side of (6.52). For a
given y;, it represents a linear functional of v}, i.e. it can be written as (vh)” R;.
Let &) denote the vector in ¥, p whose j-th component equals to one and the other
components are zero. Then,

(Ri)j = I (eh,wi)+ 3, D &l org( L (KVY) - mpg) (xg).
fcaPq=0
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This implies that R; is the zero vector. Combining formulas (6.51), (6.52) and using
the matrix representation of the local bilinear form, we obtain

(VB MpN; = (Vb)'R;  Wh € ¥,p.
These n matrix equations can be written in the compact form
MpNp =Rp (6.56)
with rectangular (NFq’,' x n)-sized matrices Np and Rp.

Lemma 6.2. The matrices Np and Rp satisfy the following identity:
(NERp),, = /P KVy; Vg dV (6.57)
fori,j=1,...,n. The matrix Ng Rp is symmetric and semi-positive definite.

Proof. The first assertion of the lemma follows from Eq. (6.53). The second assertion
is the direct consequence of the first one. m|

Let Qp = Ng Rp. This matrix represents the bilinear form &7 (-, ) restricted to
space P,,(P). It is clear from (6.57) that matrix Qp has the form

0 oF
QP - ( Q > ’
0 Qp
where Qp is a positive definite (n—1) x (n— 1)-sized matrix. More precisely, the

entries of Qp are given by (6.57) for i > 1 and j > 1, i.e., when we exclude the
constant polynomial v (x,y) = 1. Let QL € R™" be the pseudo-inverse of matrix Q,

which we define as
T
QL = 000
P 0 QEI
Since, the first column of matrix Rp is zero, we can easily verify that the solution of
the matrix Eq. (6.56) is given by
Mp = Rp Q}, RE + DpUp DE, (6.58)

where Up is an arbitrary positive definite matrix of size (N3 —n—1) and Dp is a
rectangular matrix with the largest rank such that Dg Np is the zero matrix.
The stability condition (S1) imposes bounds on positive eigenvalues of DpUp Dg
as discussed in Chap. 4. In practice, a simple formula can be used:

Mp = Rp QL RE + up Pp, (6.59)
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where Pp is the orthogonal projector on ker(N g) and positive scalar up is determined
by the consistency term:

_ 1
P:I—Np(Nng) lNg, up = Wtrace(RpQL Rg).
p

6.4 Convergence analysis

The main result of this section is given in Theorem 6.2. This theorem provides an esti-
mate for the discretization error in the mesh-dependent norm || - || 5 defined in (6.45)-
(6.46). For simplicity of exposition, we assume that problem (6.1)—(6.3) is formulated
with the homogeneous Dirichlet boundary conditions. Thus, we assume that I'N =
in (6.3) and g” = 0 in (6.2). Consistently, we have u € H} () and u;, € ¥0.

Theorem 6.2. Let u € H™"'(Q) N H}(Q) be the solution of variational prob-
lem (6.11) under assumptions (H1)—(H2), TN = 0 and g° = 0. Let u' € Vho be
its projector defined by (6.42)—(6.43) and (6.44). Let u, € ¥}, be the solution of the
mimetic problem (6.14) under assumption (MR1)—(MR3) and (S1)—(S2). Let us as-
sume that Kjp € W™= (P) for any polygonal element P. Then, there exists a positive
constant C, which is independent of h, such that

otn — ' 15 < CH” |t g1 (- (6.60)

The proof of Theorem 6.2 uses two theoretical tools, the reconstruction operator and
the stability Lemma 6.5, that are presented in Sects. 6.4.1 and 6.4.2, respectively. For
this reason, the proof is postponed to Sect. 6.4.3.

6.4.1 Reconstruction operator
In this subsection, we prove the existence of a local reconstruction operator
Rp : Vhp — Spp

with the following three properties.

(L1) The reconstruction operator Rp is the right-inverse to the projection operator
on ¥, p:

(Re(vp)) ' =vp  Vvp € Vip.

(L2) The trace of the reconstruction operator Rp on face f coincides with the inter-
polation polynomial of degree m that is uniquely defined by the degrees of freedom
associated with the Gauss-Lobatto quadrature nodes:

RP(VP)H‘ =Vnf € Pm(f) Vf e 8P7 VYvp € 7/;,7p.
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(L3) The reconstruction operator Rp is stable with respect to the mesh-dependent
norm (6.46), i.e., there exists a positive constant C independent of P such that

|Rp(Vp)|H1(p) < CHVPHI,h,P-

Assumption (L1) is equivalent to assumption (R1) discussed in Chap. 3 (see also
[67]). Assumption (L2) is much weaker than assumption (R2) stating that the recon-
struction operator is the left-inverse of the projection operator on a polynomial space
over element P.

Let us write the reconstruction operator as the sum of two distinct terms:

Rp(vp) =R (vp) +RY (ve). (6.61)

The term Rg)(\/p) is built as follows. Let us consider the auxiliary decomposition
Ty p, which is provided by the mesh assumption (MR3). This decomposition con-
tains a unique triangle for each face f of dP, which is labeled as T¢. For each triangle
Ts, we consider the function Vﬁ.f defined on J T that has the following properties:

» on face f, function Vi.f coincides with the polynomial vy, ¢;

« on the to other edges connecting the internal point Xp with vertices of f, function
v;if is the linear interpolant between Vp at Xp (see (6.47)) and vf g OF V¢ ;.

Now, we consider a linear map .7 : T— T¢ from the reference triangle T onto Ts.

On T, we first solve the harmonic problem

—A(H (vp)) =0 inT, (6.62)
H(vp)=vjgoF ondT, (6.63)

and then, set
RY (ve)y, =7 (vp)o. 7" Vi€ aP. (6.64)

A stability result holds for R,g) (vp), whose proof is omitted since it is a consequence
of a simple scaling argument and the mesh regularity assumptions (MR).

Lemma 6.3. There exists a constant C, independent of hp and of the shape of P, such
that

IVRS (ve)ll2(p) < Cllvellinpg Yvp € Fip- (6.65)

This lemma is used below to prove condition (L3). For the moment, let us note
that, by construction, the reconstruction operator R, is exact for constant fields:

RY(ch)=c  VeePy(P). (6.66)

Furthermore, it also satisfies condition (L2). Nonetheless, we cannot consider RS)

as the final reconstruction operator because condition (L1) is satisfied only for the
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nodal degrees of freedom but not for the internal ones. In order to fix this deficiency,
we need the second operator R,(;, ), which is built as follows.

Let us consider the m(m — 1) /2 functions %y ; € H]} (P) labeled by the index pair
(k,i), where k=0,...,m—2andi=0,...,k, that are such that

/%k_i(p;‘j: |P|6x6;j  forl=0,....m—2and j=0,...,/[; (6.67)
p ZHi?

(i) [VBeill2p) <C fork=0,...,m—2andi=0,....k.  (6.68)

Note that relations (6.67)—(6.68) are consistent with ||@y || ;2(p) = /p. The existence
of such functions can be proved using, for instance, reference polygons; details are
found in [51]. The second term of the reconstruction operator is given by

m—2 k

R ()= Y, Y. ckiPi (6.69)
k=0 i=

where the coefficients ¢ ; are such that the condition (L1) holds true, i.e.

! (1) (2) B A
P /p (R (vp) + RE (vp) ) @i dV = v (6.70)
Substituting (6.69) in (6.70) and using the orthogonality relations (6.67) yield:

1
=k /P RY (vp) r sV ©.71)

Similarly to Lemma 6.4, a stability result holds for R(Pz) (vp). This result is also needed
to prove condition (L3).

Lemma 6.4. There exists a constant C, which is independent of hp and of the shape
of P, such that

IVRS (ve)ll2p) < Cllvellie- (6.72)

Proof. We start by taking the gradient of both sides of (6.69):

m—2 k
||VR ve)llz2p z ch,V%’k, ) [apply the triangle inequality]
k=0 i=
m—2 k
<Y D leril [VBrill2py  [use inequality (6.68)]
k=0 i=0
m—2 k

<Ccy 2 |ckil- (6.73)

k=0 i=

To estimate |cy ;| we reformulate (6.71). Let us identify the real number Vp pro-
vided by (6.47) with the constant field taking this value over P. For (k,7) = (0,0), we
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apply the exactness property (6.66), which gives

1 (1) /=1 1 /_ _ 1 / —
Pl /PRP (Vp)@oodV P L VP00 V =vp ] o, P0.0 V =vp

It allows us to write
co0=vp00—7p — ~ [ RV (vp — ()Y dV. 6.74
00 =vpoo = Ve 5 [ Rp (vp —(vp)")dV. (6.74)

For any pair (k,i) withk=1,...,m—2andi=0,... £, the corresponding polynomial
@y ; is orthogonal to constant fields by construction. Thus,

1
T /P RY (vp — (3p) g1V (6.75)

Now, we use the Jensen and Cauchy-Schwarz inequalities, and the trivial geometric
bound |P| < A} to start the development:

1 2
W/PRS)(VP—(VP)I)%J dav

< hp?||RY (vp — ) z2p) l@rillzey  [use [|@eill2(p) = A

< h;l ||R(P1)(VP — (Vp)I)HLz(P) [Rg) preserves constants]

< g IR (vp) =l 2(p) [sce below]

< CHVR'(;,])(VP)HLz(p) [use Lemma 6.3]
<Clvell1np- (6.76)

Let us show the fourth bound above for each triangle T. By the construction of R(l),
it holds that vp = R,g) (vp)(Xp). The space of harmonic functions .7 (vp) defined by
(6.62)—(6.63) is finite dimensional and is independent of the particular triangle Ts.
Assuming that Xp is mapped to point (0,0), a scaling argument gives
1 1 - 1/2 (1 1
IR (ve) = R (vo) (Rp) [ 20ry = T "2 IIRE (ve) 0. 7 — RE (vp) 0.7 (0,0) |2 5,
1/2 1S p(1
<cT 2 IVRY ()0 T ) a3,

< Chp VRS (v0) | 21

We substitute (6.76) into (6.74) and (6.75) to derive upper bounds for the coeffi-
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cients ¢y ;:

1 2
el <€ (v + (57 LR 0n = Go)yons) ) <Clhllone, 677

with the obvious modification for £ = i = 0. The assertion of the lemma is proved by
applying estimate (6.77) in the final step of (6.73). ]

Eventually, property (L.3) follows from definition (6.61), the triangle inequality
1 2
IVRe (v0) | 2(p) < IVRG (0) | 2qp) + IVRE ()| 2p).

and the stability results in Lemmas 6.3 and 6.4.

6.4.2 Stability of the projection operator

The stability of the projection operator is proved in Lemma 6.5 using the mesh-depen-
dent norm of Sect. 6.3.1.

Lemma 6.5. Let v € H*(P). Then, there exists a constant C independent of h such
that for any P € €y, we have

Wbl 4p < C (V2 o) + IV Enp) )

Proof. We estimate separately each one of the three terms in (6.46) that form
|Ivb |13 ,, p- For the first term we apply a scaling argument that provides an estimate
that holds for every polynomial g in IP,,(f):

@ 2
ds I2(f) 0,....m

<CIf7" max |g(xe;)]’, (6.78)

where the right-hand side is evaluated at the Gauss-Lobatto nodes x¢;. Let V¢ =
‘}—‘ J¢ vds be the average of v evaluated over f. We identify vf with a constant function
over f, consequently, Vs takes the same value at the Gauss-Lobatto nodes. Inequal-
ity (6.78) and a scaling argument yield:

avhf 2 a(vhf—vf) 2 . ,
> = -~ 7 < N o

ds  I2(f) s Lz(f)—CIfI I,j&??fmh/(xf,,) |

SC|f|7l||"_‘_’f||%m(f)

dv 2
<Clf| —
< CIfl ds L)
dv 2

(6.79)

ds 12(f)
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Let T¢ be the triangle in T, p associated with face f € JP. We use (6.79) and the
Agmon inequality (see (M3) of Sect. 1.6.2) to obtain:

e 2
h : <C hp —
era'P P s 12(F) — z P o5 L2(f)

<C Y (Vs +HBIVVEn )
fedP

e (|V|H1 —|—hp|v|H2(P)) (6.80)

We estimate the second term in (6.46) by using the definition of vp o ¢ and (6.47).
Let us select any vertex v/ € dP. Applying a standard inequality and Jensen’s in-
equality, we obtain

2

1 1
hao el = 5 [y = 3 v(x)
0 P

€dP
2

! 1
= WA(V—V(XV’))dV—N—gVZ (V(Xv)—V(XV/))

€dP

# > IV(xv)—v(xv/)P). (6.81)

1
<C oillv=v(x)ljae) +
|P| ® A% vedP

Now, the standard approximation result [78] gives us the following estimate:
Iy =v(s)lize) < C (el oy + Al o)) -

For every vertex v of dP, we apply first Jensen’s inequality and then Agmon’s
inequality (cf. property (M3) in Sect. 1.6.2) to obtain:

v 2
x) )P <o [ 5 ds=he 3.

feaP

v 2
ds I2(f)

< g (|V|H1 +hP|V|H2(p))

Using the last two inequalities in (6.81) together with the normalization relation
Sveopl = NF> give us the estimate

Voo —7e> <C (Ivlip(P) +h%|v|§,2(P)). (6.82)
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To estimate the third term in (6.46), we use the fact that the basis functions ¢ ;
fork=1,...,m—2and 0 <i <k are orthogonal to the constant fields:

m—2 k . 5 m—2 k 2
IZIZ()|VP.k.i| 2 2 <|P| / wpk,idV>
2
- 2 2 <|P|/ v— VP,0,0)<Pk,idV> . (6.83)
k=1 i=0

Using the Cauchy-Schwarz inequality, the normalization ||@y[|,2(p) = Ap, the fact

that C,Jz,zD < |P| for some constant C, independent of 4#p (which is a consequence of
properties (M2)—(M3), see Sect. 1.6.2), and the estimate of the interpolation error
in (M5) yield:

-2 k m—2 k 2
S5 bbal < T3 (371 eaolie ol )
k=1i=0 =1i=0
m—2 k
2 (m+1)(m+2)
<Ccy Z|V|H1(P) :chHl(P). (6.84)
k=1i=0
The assertion of the lemma follows from estimates (6.80), (6.82) and (6.84). |

6.4.3 Proof of the convergence theorem

Let ™ be a piecewise polynomial over £2;, such that its restriction, 5, to P belongs
to IP,,(P). Letalso («™)}, € 7, p be the projection of u™ defined by (6.42)—(6.44) and
restricted to P. Let e, = u;, —u' denote the discretization error and v, = e5,/||ex||1 .-
The left inequality in the stability condition (S1) leads to the following developments:

o.llenllin < < (en,vn) [use ey = up — ']

=), (uh7 vh) — ), (ul7 vh) [use (6.14)]

= Zy(vi) — Ay (u,vy) [add/subtract (u™)b]

= L) +Ti— Y “p((W")p,vp) (6.85)
PGQh

where
= Y, p (" —u)p,vp). (6.86)

PGQh

Using the consistency condition (S2) (see formula (6.51)) with y = u} and v =
Rp(vp) yields:

S e (e, @) = Y / V(Rp(v1))- 20~V (KVadl) dV. (6.87)
PeQy, Pegy,
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Substituting (6.87) in (6.85) and adding/subtracting V(Rp(vp)) - KVu, we obtain:

olellin <L) +Ti-Ta= ¥ [KVu-VRe(p))dV,  (639)
PGQh
where
T,= Y / (221 (KVult) — KVu) - VRp(vp) dV. (6.89)
PGQh P

The variational formulation (6.11) with vjp = Rp(vp) allows us to write:
/ KVu-VRp(vp)dV — / bRp(vp)dV,
PGQh PGQ},

which substituted in (6.88) gives the final inequality
lenll1n < C(ITil+[T2| +[T3]), (6.90)

where

Ts=Z(m)— D, /bRP(VP)dV- (6.91)
PeQ,

Estimate of term T. Using the continuity of the bilinear forms 7, p(-,-) with re-
spect to the local mesh-dependent norms || -| 4,p, then applying the Cauchy-Schwarz
inequality, and finally using the fact that ||v;||; , = 1 leads to the following chain of
inequalities:

2

1/2
MI< Y @ =wb pelulie< (X @ =wb §,0) Il

PcQy, Pegy,

1/2
(3 -wb ) (692)

PGQ},

Now, we define uf; as the L?-orthogonal projection of # on IP,,(P). Applying
Lemma 6.5 to each summation argument of (6.92), and using the interpolation er-
ror estimate of (M5) (see Sect. 1.6.2) gives the following upper bound:

1/2
T < ( z lup u|H1 —I—h2|up —u|H2 ) < ( 2 hém|ug_u|§-1m+l(p))
PcQ, PeQy,
(6.93)

1/2

Estimate of term T,. Assumption (L3) and the fact that ||v,||; , = 1 imply that

> IVRe () ey <C X llvelsp = Clival}, = (6.94)
Pegy, Pegy,
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To bound T;, we apply the Cauchy-Schwarz inequality and estimate (6.94):

Tol <C Y, |28 (KVup) = KVaul| 2 p) [IVRR (v0) || 12p)
PGQ},

B " 1/2
gc( RIS I(Kvup)—KVuuiz(P)) . (6.95)
PGQ},

In order to estimate the summation arguments of (6.95) we first add and subtract the
quantity @,2"71 (KVu), then apply a standard inequality, and finally note that

128 DIy < V2 Vv e L2 (P).
We obtain the following development:
|78 (KVup) — KV |72 )
<2 (||£2|’3”_1(KV14’,£’) — 28 {(KVu)||[ 2y + 1| 28 (KVu) — Kvu||§2(P))
<2 (||KVu’F’,’ —KVul%y ) + | 28 (KVu) — Kvu||§2(,3)) . (6.96)

Finally, we substitute (6.96) into (6.95), and apply the interpolation error estimate
from (M5) (see Sect. 1.6.2) to obtain:

" " 1/2
Tal <C( 3 IKIG oy g o) + 48| KV ) )
€82y

" 1/2
<C(( 3 B IKme o) [Vellnge)) - 697
PEQh

Estimate of term T3. Assumption (L1) implies that vp = (RP(VP))[ for any discrete
field vp. In particular, we have

1
VP ki = W/PRP(V’?)(pkvidV k=0,....m—2and i=0,1,... k.

Consequently,
m—2 k 1
Zp(vp) = |P] 2 ch,i (ﬁ/PRP(VP)(pk’idV> [rearrange the terms]
k=0 i=0
m—2 k
:/RP(VP) NS cioni | AV [use (6.54)]
P =0 i=0
= / Rp(vp)bpadV.
P

Inserting this into definition (6.91) yields:

=Y /P (b—bp)Rp (vp) dV. (6.98)

PEQh
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The definition of bp in (6.54) implies that / bdV = / bpdV . Thus, the integrand
P P

function (b — bp) is L*(P)-orthogonal to every constant function. Let Rp(vp) denote
the average of the reconstructed function Rp(vp) over P. Then,

Ti< 3 [(b-br)(Re(ve) - Relm))a .

PEQh

Using the Cauchy-Schwarz inequality, the error estimate for ||b — bp|| [2(P)» aSsump-
tion (L3), and the fact that ||v;||; » = 1, give us the following development:

T3 < 3 [[b—brllp2p)lIRe(vp) —Re (vp)l|2(p)

PEQh
<C Y, hp|blgm-1py VR (vP) [l 2Py
PGQh
. 1/2
<c( 3 mblpre) Il
PGQh
. 1/2
<c( X ) (6.99)
PEQh

The estimate (6.60) stated in Theorem 6.2 is deduced by combining inequali-
ties (6.93), (6.97) and (6.99) in (6.90). |

6.4.4 L*-estimate of the approximation error

In this subsection we discuss how to estimate the discretization error in the arbitrary-
order mimetic method in the L? norm. The convergence analysis of this section is
based on the existence of an exact reconstruction operator

Rp : Vhp — Spp
that satisfies the three conditions (L1)—(L3) of Sect. 6.4.1 plus the two additional
conditions.

(L4) The reconstruction operator reproduces the mimetic bilinear form:
/PVRP(VP)'VRP(MP)G'V = alyp(up,vp) Vup,vp € Vjp.

(L5) The reconstruction operator provides a proper approximation of scalar func-
tions on every polygon P:

[v—Re(vp)llr2(p) + e |v—Re (V) |1 (p) < ChBVlno(py Vv e HO(P),
where C is a uniformly bounded constantand 2 < o <m+1, 0 € N.

The qualifier "exact" in front of the reconstruction operator indicates that for a
given mimetic scheme, there exists a reconstruction operator that produces the same
stiffness matrix. We refer to Sect. 5.3 where the existence of the exact reconstruction
operator is analyzed for the diffusion problem in the mixed form. Existence of such
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an operator has been shown for a subfamily of mimetic schemes. We expect that a
similar conclusion holds for the mimetic discretization of the diffusion problem in
the primary form; however, a formal proof has not been yet published.

Theorem 6.3. Let Q be a convex domain and the loading b € H"'(Q). Let u €
H"1(Q) be the solution of the variational problem (6.11) under assumptions (H1)—
(H2), and uy, be the solution of the mimetic problem (6.14) under assumptions (MR1)—
(MR3), (S1)—(S2), and (L1)—(L5). Then, there exists a positive constant C indepen-
dent of h such that:

[l —R(un) |2y < CH" " [ul g ()
where the integer vy, =0 for m =2 and v,,, = 1 for m > 3.

The proof can be found in [51]. Note that the error estimate in the L? norm is subop-
timal in the case m = 2, a phenomenon confirmed by numerical tests. The reason for
that is the approximation of the source term b. Indeed, as shown in [44], a more accu-
rate approximation of this term allows one to prove the optimal O(/*) convergence
rate in the L? norm.

6.5 A posteriori estimates

In this section, we present an a posteriori error estimator for the low-order mimetic
scheme in the space dimension d = 2 described in Sect. 6.2. This error estimator,
together with the associated reliability and efficiency theory, was introduced in [16];
we refer to this work for the proofs of the results shown below. In contrast to the error
estimator from Sect. 5.4, the estimator in this section is of a non-residual type. More
precisely, it falls in to the class of hierarchical error estimators, see e.g. [9,37] and
the references therein for the finite element methods. In the following, we state also
some preliminary key results concerning the mesh refinement.

6.5.1 Mesh refinement and related results

Let as usual €2, represent a polygonal mesh. We start by showing how to build a
uniformly refined mesh €2, that will be used to compute the error indicator. We
make an additional mesh regularity assumption that holds only for the end of this
chapter.

(MR4) All polygons P € €, are convex.

Let us define point Xp € P as follows:

Xp = — 2 Xy . (6.100)
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Fig. 6.11. The refinement strategy: coarse element P and the related fine element P. Circles
denote vertices in the coarse, while diamonds refer to new vertices in the finer mesh

Note that assumption (MR4) is made essentially for the sake of exposition sim-
plicity. The subsequent derivations can be modified in order to cover the case of more
general meshes, for instance, meshes with polygons that are star-shaped with respect
to a ball. The definition of point Xp has to be modified and (6.103) below has to be
changed in such a way that the operator preserves linear functions.

We build the uniformly refined mesh €2, by subdividing each element P of €2,
into quadrilaterals. The midpoint x of each edge e € P is connected with the point
Xp, as shown in Fig. 6.11. The quadrilaterals for all P € €2, form the new mesh £€2,.
In the sequel, we will use the symbol "hat" for objects associated with mesh €2, to
distinguish them from similar objects associated with the original mesh. For example,
P will stand for a generic element of Qh, ¥ will denote the set of all mesh vertices,
and % will indicate the maximum element size. Note that the edge midpoints xe and
the internal points Xp become additional vertices in the new mesh €2, i.e.

V =7 U{Xe}ecs U{Xp}pPcq,-
Let us employ the construction described in Sect. 6.2 on /{neshAfzh. We introduce a
discrete space ¥, associated with €, a bilinear form <7, : ¥, X ¥}, — R and a suitable

discrete loading term. The fine-grid discrete mimetic problem (compare with (6.14))
reads:

Find uy, € “//Ahg such that
;2/7}1\(1/4\11, Vh) = z(vh) Vvh S ’7//\;,70. (6.101)

Let us introduce two operators mapping the fine-grid space onto the coarser one
and viceversa. Let IT : ¥, — ¥}, be defined by

(), =w WEV, Vv €%, (6.102)

Given edge e € & and its midpoint Xe, we denote by ve and v,, the mesh vertices which
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are the endpoints of e, see Fig. 6.11. We then define IT" : %}, — ‘//Ah by

Yy YWev,
1 L
= + fxy =Xe,e€ &,
(HT(Vh))V_ 2(vh(ve) vp(ve)) ifXy =Xe, e (6.103)
1 Y ow ifx, =Xp,P € Q.
ke vedP

Thus, the operator IT' interpolates a coarse- space discrete field v, by the linearity
preserving averaging of its vertex values. Let 7/¢ denote the subspace of “//h given by
the image of operator I1"; T we will refer to it as to the interpolated coarse-grid space.
As a complement to 7, we consider the fluctuation space

“//Ahf: vh€“17h: v =0 VVE“//}.

It clearly holds that PN

The global and local mesh-dependent norms on space 7//;; are denoted by 17

and | 7, p> Tespectively (see also (6.15)). In addition, we introduce an intermediate
norm P which is the restriction of the global norm to a coarse element P € €,
2 2 -~
P oe= 2 Ve e VP €T
F’GQ}, PcP

We have the followmg lemma, stating the minimum angle condition between the
spaces "//hcp and “// P that are the restrictions of the related global spaces in (6.104)
to element P.

Lemma 6.6. There exists a positive constant C,, independent of h such that

% oaet 1ip =Cn P +vp 1P (6.105)
Jor all P € €, and all v§, € “//Ah‘_’P and v’; cv!

Let H; denote restriction of the operator IT" to element P. The following simple
lemma holds [16].

Lemma 6.7. There exist positive constants C and C' independent of mesh such that
Jor all P € &, we have

Cvp up< 11} (vp) <C' vp |,p WP ETip (6.106)

1,hP
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6.5.2 A consistent coarse-grid problem

In this section we introduce a particular coarse-grid bilinear form 7, consistent with
the fine-grid bilinear form «7,. This will allow us to simplify the a posteriori error
analysis, see Corollary 6.1. Although such choice is convenient, it is not mandatory
and the generality of the analysis is not affected by it.

As usual, the bilinear form .oz, is defined as the sum of local forms 42% for

Pe Qh, that satisfy the consistency and stability conditions of Sect. 6.2.2 or, more
precisely, their counterparts for the new discrete space and refined mesh. The local
forms can be assembled over coarse-grid elements P € €2, into bilinear forms 7, p.
For all P € ©Q;,, we then define a coarse-grid bilinear form .27, p as follows:

Ay p (viywi) = S p (T (vp), ITH (wp))  Wvp, wp € Yip. (6.107)

Note that the bilinear form (6.107) satisfies both the consistency and stability condi-
tions; the proof can be found in [16]. Using the same argument, we define the fol-
lowing coarse-grid loading term:

L) =Y Zp(IT5(ve)),
Pegy,

with g; p(l'[;(~)) being the local linear functional built using a construction analo-
gous to Sect. 6.2.3.

We can now define a coarse-grid mimetic problem (6.14) by assembling the global
bilinear form .27, from the local forms (6.107) and taking the load term defined above.
The advantage of such a coarse-grid problem is to be fully consistent with the fine-
grid problem, in a sense that will be clarified in the next section.

6.5.3 A posteriori error analysis

Let us consider the following fluctuation discrete mimetic problem:

Find?,: € “//Ahf such that
d@l vy = L) - (T ) V) wl e (6.108)

We observe that the right-hand side in (6.108) represents the residual of the approx-
imate solution #;, when tested with the fluctuation space ‘//

We assume that the exact solution  is sufficiently regular e.g. it belongs at least
to H3/2(Q). In such a case, the vertex-based projection ' € “1/;, is well defined. In the
following, we assume that the following saturation assumption holds true.

(SAT) There exists B < 1 such that
[ ]|, 7, < Bll@ — 11" ()] 7- (6.109)

Assumption (SAT) means that the fine-grid solution 7, converges (uniformly) more
rapidly to #' than the coarser solution ;. Although such an assumption is not negli-
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gible, it is widely accepted in the a posteriori error analysis of finite element meth-
ods [9,38,71].

Theorem 6.4 (Upper bound). Let assumptions (MR1)—(MR4) and (SAT) hold. Fur-
thermore, let u solve the continuum problem (6.1)—(6.3), uy, solve the discrete problem

(6.14), and?,: solve (6.108). Finally, let ¢* = (C,y(1—B)c1) " with Gy from (6.105).
Then,

(1T () — (1T (u
Aot <c*(c ?f + su U
Jit =1l < (@0l -+ sup O

1), 11T (v)) )
(6.110)

The above result holds for any bilinear forms <7, and ﬂ?h\ If we choose the con-
sistent bilinear 7, introduced in (6.107), we obtain the following simpler result.

Corollary 6.1 (Upper bound). /n addition to the assumption of Theorem 6.4, let the
coarse-grid bilinear form <), be given by (6.107). Then,

@ — 11 @n)ll, 5 < callef |, 5 (6.111)

7

Observe that
@ — T (uy) = v —uy,.

Using the triangle inequality applied edge-by-edge, we can show easily that
2 2 ~
p(vp) 1,p <C vp 15p YvpEThp.

The above two observations, allow us replace the left-hand sides of the upper
bounds (6.110) and (6.111) by a slightly more natural error || — uy,|| -

Theorem 6.5 (Lower bound). Let assumptions (MR1)—(MR4) and (SAT) hold true.
Furthermore, let u solve (6.1)~6.3), uj, solve (6.14), and ?,: solve (6.108). If ¢, =

&(14B)(@) ", then
el 7 < el = ()], 5 (6.112)

The upper bound (6.111) can be rewritten as follows:

I =l < (e@)” Y nd (6.113)
PGQh
with the local terms
= ¥ eyl 5 (6.114)
Pth PcP

Therefore, we can use quantities 1p as the local a posteriori error indicators in a mesh
refinement strategy of an adaptive algorithm.
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6.5.4 An inexpensive error indicator

The computation of the error indicator np in (6.114) requires to solve the fluctuation
problem (6.108). Since the cost of solving such a problem is comparable to that of
solving the original one, the computation of 1)p turns out to be quite demanding. Here,
we present an inexpensive estimate of 1p.

We make a preliminary observation. Let (6.108) be replaced by a more general
fluctuation problem of the form

@l V) = L)) — (T ) vy W] e 7, 6.115)

with a suitable bilinear form th satisfying the stability assumption (S1). Then, the
upper bound (6.110) and the lower bound (6.112) still hold, but possibly with differ-
ent constants. We define this bilinear form as follows:

@h(v;ﬁwh): z Vg Wy. (6.116)
AV

This form is continuous and coercive on the space ‘//Ahf ‘, with respect to the discrete
energy norm, as stated in the lemma below.

Lemma 6.8. The bilinear form ,@h defined in (6.116) satisfies (S1), i.e.

BV, i) ~ vall} 5 Vo € 7. (6.117)

We are now ready to introduce an new inexpensive error indicator nFD, :

e = X 1Ief1f; ;.5 (6.118)

PcP
with ?,; being the solution to the generalized fluctuation problem (6.115) with the bi-

linear form %/?h instead of ,sz/%; Due to definition (6.116), the matrix of the induced al-
gebraic problem is the identity matrix. Hence, the cost of computing n,? isnegligible.

The numerical results presented in [16] for both estimators, np and n,? , indicate
a satisfactory behavior of ng. Therefore, the estimator né) may be preferable to np
in many problems of practical interest.

Example 6.1. We close this chapter by presenting a single adaptive test. We con-
sider the same L-shaped domain problem studied in Example 5.2. We remind that
the solution  is in //°/3 and not better; therefore, uniform adaptive strategies are
expected to yield a sub-optimal convergence rate (in terms of degrees of freedom)
when compared to more regular problems. We solve the problem applying a fixed
fraction refinement strategy (with fraction set at 30%, see [16] for the details) driven
by the inexpensive error estimator nFD, . The initial grid is a regular mesh composed
mainly of hexagons. In Fig. 6.12, we plot the total error estimator n° and the true
error || — ITVuy|| | 7» both with respect to the total number of degrees of freedom N.
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0

e ——pPD
= up = Muy |, »
107"
N-1/2

-2
10

10° 10* 10°

N

Fig. 6.12. Estimator n°. Left picture shows a sample mesh after 3 refinement steps. Right
picture shows the actual and estimated errors versus the number of degrees of freedom

From this figure, we conclude that the adaptive method is able to recover the N~1/2

rate of convergence typical of regular problems.
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Maxwell’s equations

“Maxwell’s equations have had a greater impact
on human history than any ten presidents”
(Carl Sagan)

Maxwell’s equations together with the Lorentz force law form the foundation of clas-
sical electrodynamics, optics, and electric circuits. Maxwell’s equations are named
after the Scottish physicist and mathematician James Clerk Maxwell. In this chapter,
we consider three problems derived from original Maxwell’s equations. Numerical
treatment of these problems will exercise most tools of the discrete vector and tensor
calculus from Chap. 2.

7.1 Maxwell’s equations

Let H be the magnetic field and E the electric field. The constitutive relations give
the magnetic flux density B = uH, where u is the magnetic permeability, and the
dielectric displacement D = €E, where € is the electric permittivity. The magnetic
permeability p and the electric permittivity € can be full tensors discontinuous at
material interfaces. The basic laws of electromagnetics in differential forms are sum-
marized by these four equations:

Coulomb’s law: divD = p, (7.1)
JB
Faraday’s law: curlE = e (7.2)
2)))
Amperes’s law: curlH=J+ 5 (7.3)
Gauss’s law: divB =0, (7.4)

where J is the current density and p is the charge density.

Let €2 be a bounded domain. The first problem that we consider in this chapter
is that of the Maxwell’s equations for a perfect conductor. We consider the four
equations (7.1)~(7.4) with J = 0 and p = 0 and the homogeneous boundary condition
nxE=0o0n0dQ.

The second problem is the magnetic diffusion. Let us take the divergence of (7.3)
and use the Coulomb’s law. A straightforward calculation yields the charge continu-

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI 10.1007/978-3-319-02663-3_7, © Springer International Publishing
Switzerland 2014
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ity equation divJ + dp /dt = 0. Following a general magnetohydrodynamics (MHD)
assumption, we assume that the materials of interest are sufficiently conducting so
that the assumption of quasi-neutrality (negligible charge density, i.e., dp /dt ~ 0) is
reasonable. With this assumption, the charge continuity Eq. (7.1) reduces to divJ = 0.
Additionally, the displacement current term dD/d¢ in Ampere’s law is neglected so
that we can use the classical Ampere’s law to relate the magnetic field to the current
density. Finally, the MHD form of Ohm’s law relates the electric field to the current
vector and is derived from a simplified form of the electron momentum equation,
E = 6~ 'J. The resulting governing equations are

JB
curlE = > and o 'culH=E in Q (7.5)
where the conductivity o can be a symmetric positive definite discontinuous tensor,
and the divergence-free conditions (7.1) (for p = 0) and (7.4). We consider again the
homogeneous boundary condition n X E = 0 on Q.

The third problem is the magnetostatic problem in div-curl form. We assume that
the charges are either fixed or move as a steady current. Thus, the governing equa-
tions are

divB =0, culH=1J in Q.

The boundary condition is obtained by approximating the radiation condition that
H vanishes at infinity by taking the non-homogeneous condition n x H = g on
dQ. More details on the magnetostatic problem in div-curl form can be found in
Sect. 1.5.4.

We will discuss a mimetic discretization of the first two problems in Sect. 7.2 and
a mimetic discretization of the third problem in Sect. 7.3. This presentation is mailny
focused on the three dimensional case.

7.2 Mimetic discretizations

7.2.1 Degrees of freedom and projection operators

In electromagnetism, the tangential component of E and the normal component of
B are continuous across media discontinuities [218,241,335]. Thus, these compo-
nents are the natural choice for the discretization of these fields. We recall briefly the
definition of the degrees of freedom, see also Chap. 2 and Fig. 7.1.

» The space of edge-based vector fields &), is defined by attaching one degree of
freedom to every mesh edge e € &. The value associated with edge e is denoted
by E.. The collection of all the degrees of freedom forms the algebraic vector
E;, € &,

E,= (Ee)eefh
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Lt Lot

Fig. 7.1. Geometric location of degrees of freedom in the low-order MFD scheme: arrows on
edges represent E. (on thirteen visible edges), arrows on faces represent By (on four visible
faces)

* The space of face-based vector fields .%, is defined by attaching one degree of
freedom to every mesh face f € .%. The value associated with face f is denoted
by Bs. The collection of all the degrees of freedom forms the algebraic vector
B, € %,

B, = (Bf)e.7-

The restriction of E, to cell P is denoted by Ep = (E.).cyp and represents a collec-
tion of degrees of freedom on the edges of P. The set of these discrete fields forms the
linear space &), p. The restriction of By, to cell P is defined similarly, Bp = (Bf)¢cop,
and Bp belongs to the linear space %, p.

The edge-based projection operator from a sufficiently smooth space to &), is de-
fined by (2.15). In the sequel, it will be convenient to use a shorter symbol for this
projection operator, E! = IT (E). According to the definition of the projection oper-
ator, we have

e

1
E = (E)ey, El = H/E-realL, (7.6)
e

where T, is a unit vector describing the fixed orientation of mesh edge e.

The face-based projection operator IT7 : X() — .7 is defined by (2.16) and is
stable for vector functions in (L*(£2))? with s > 2 and divergence in L?(£2). Again, it
will be convenient to use a shorter symbol for the projection operator, B! = IT” (B):

1
B'=(B)tcr, Bi= m/fB'nde, (7.7)

where ng is the unit vector normal to mesh face f. Its orientation is fixed once and for
all.

The edge-based mesh functions are natural for discretizing the primary mimetic
curl operator curly,: &, — %, (see Chap. 2, Sect. 2.3.2):

1
(curl, E;), = G Y Ofele| Ee, (7.8)
ecdt

where o . = £1 is determined by the mutual orientation of the tangent vector 7. and
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the normal vector np ¢. The discrete curl operator restricted to cell P is denoted by
curlp Ep € .%), p and uses only the degrees of freedom in Ep.

The face-based mesh functions are natural for discretizing the primary mimetic
divergence operator divy,: %), — &, (see Chap. 2, Sect. 2.3.3):

. 1
(dlvh Bh)P = F 2 op £ |f|Bf, (7.9)

where op s = ng-np¢ = %1 is determined by the mutual orientation of the fixed
normal vector n¢ and the exterior normal vector np s to face f.

| fe7p

7.2.2 Strong form of discrete equations

Let us consider the first problem given by (7.1)—(7.4) with J = 0 and p = 0. Inserting
the constitutive relations of fields D and H, we reformulate equations (7.2)—(7.3) as
follows:

B E
curlE = —%—t and & 'curl(u~!'B) = %—t in Q. (7.10)

The primary mimetic operator curl, can be used to discretize the curl operator in
the first equation, while a derived mimetic operator, denoted by curl;,, must approx-
imate the differential operator £ ~'curl u~!, which includes the material properties.
To derive curly, according to the framework of Chap. 2, we need a discrete analog of
a Green formula that yields a duality relation between curl and e 'curl u~'. Let us
start by establishing the relationship between the differential operators. Due to the
homogeneous boundary conditions, the integration by parts formula reads:

/curlE-u’leV:/ (eE)-& 'curl(u " 'B)dV. (7.11)
Q Q

Thus, the operator £ 'curlu~! is dual to the operator curl with respect to the
weighted inner products in (7.11) that use the tensorial coefficients u~! and £ as

weights. To build a discrete analog of (7.11), we introduce two modified inner prod-
ucts for spaces &), and .%, that approximate the weighted inner products:

(B, By, ~ / E-eEdV and [B),B); ~ / B-u 'Bav, (1.12)
0 Q : Q

where E;, = (E)!, E;, = (E)!, B, = (B)!, and B}, = (B)". In the mimetic method, the

duality relation between the primary operator curl; and the derived operator curly, is

formulated with respect to these inner products:

[curl;, Eh,Bh] Eh,gﬁﬂh Bh] &, VB, € 9;7, E, € &,. (7.13)

Ty [
This is the discrete analog of Green’s formula (7.11) mentioned above. The accuracy
of this approximation depends on the accuracy of the inner products. The theory
presented in Chaps. 3 and 4 requires these inner products to satisfy the consistency
and stability conditions. We consider them in details in the subsequent sections. For
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the moment, we assume that the matrices M and M 2 representing the inner products
are known:

[Eh, Eh] & = E;Mg Eh and [B;“ ﬁh] 7 = BZ;M]‘ Eh. (7.14)

Inserting these formulas into (7.13), we obtain the explicit matrix formula for the
derived curl operator:
curl, = M curl] M 5. (7.15)

The conditions divB = 0 and div €E = 0 are discretized using the discrete analogs
of the operators div and div €. To this purpose, we use the integration by part formula
with the weight € and the natural homogeneous boundary condition D-n = 0 on 9Q:

/udiv(eE) dV:—/ Vu-€E dV. (7.16)
Q Q

This suggests us to define the discrete analog of operator div € as the negative adjoint
of the primary mimetic operator V,,: ¥, — &}, (see Chap. 2, Sect. 2.3.1):

(Vhph)e = Py |_e|pV/ 5 e= (V7 VI). (717)

Space ¥}, is defined in Sect. 2.2 and contains all vertex-based functions of the form
qh = (QV)vef'a

which associates a value with each mesh vertex v € #. The derived divergence op-
erator is given implicitly by

[y, div, Ep) = [thmEh]ésh Vu, € ¥, Ej € &, (7.18)

which is a discrete analog of (7.16). Let matrix My represents the inner product
[-,-]7, in ¥4, so that the left-hand side of (7.18) can be written as the vector-matrix-
vector product:

[qhaph] 1, = Q;{M/Ph VCI/nPh S 7//7 (719)

Using (7.19) and the first relation of (7.14) in (7.18) yields the matrix form of the
derived divergence operator:

div, = —M, ' VI M. (7.20)

The derived operators curl;, and div;, are different from those introduced in Chap. 2
as they incorporate the material properties. Nonetheless, they still satisfy important
relations of the DVTC; in particular, a discrete analog of div curl = 0 holds true again:

divjeurly, = —M ' VIMe M eurl] My = —M ! (curl, Vi)' M7 =

It is easy to verify that analogs of Lemmas 2.6 and 2.4 also hold true.
We use the derived operators curl, and div, in combination with the primary op-
erators curl, and divy to build a mimetic approximation of the Maxwell’s equations.
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More precisely, let 5’,? denote a proper subspace of &, consisting of the edge-based
mesh functions whose values are zero at the boundary edges. The mimetic discretiza-
tion of the first problem reads:

Find E;, € & and B, € %), such that

By, — JE,
Curlh Eh = —77 Curlh Bh = 7 (721)
and
&F/h Eh = 07 dth Bh =0. (7.22)

A mimetic discretization of the second problem, which is given by (7.5), (7.1)
and (7.4) with homogeneous boundary condition, is derived similarly. We reformu-
late the two equations in (7.5) as

JB
curlE = —o and o 'curly'B=E. (7.23)
To discretize (7.23), we use the primary mimetic operator curl;, and define a new de-
rived operator curl;, that approximates the differential operator ! curlyu ! instead
of e~ curl ! as before. As the development is identical (just substitute £ with & in
the previous formulas), we omit it. The mimetic semi-discretization of problem (7.23)
reads:

Find E;, € & and B, € %), such that

Curl;, Eh = —%7 Eﬁﬂh Bh = Eh (7.24)
and the divergence-free constraints (7.22). Note that the divergence-free constraint
for the discrete analog of the electric field E; follows from the second relation
in (7.24). Indeed, using the second equation in (7.24) and Lemma 2.6, i.e, div; o
curl, = 0, yields div; E; = div,curl, B, = 0. This condition is satisfied exactly at
any time moment ¢ > 0.

We will present a mimetic discretization and detailed analysis of the third problem
in Sect. 7.3.

7.2.3 Divergence constraints and energy conservation

An important property of these mimetic discretizations concerns the invariance of
the divergence constraint. As a consequence, if the divergence-free condition holds
at the initial time # = 0, it is exactly preserved at any subsequent time moment. Let
us consider the various cases. Using the second equation in (7.21) and Lemma 2.6,
i.e, div, o curl, = 0, yields

. OB, .
= (div, E,) = div, a_zh — div, curl, B, = 0.
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If we use, for example, the backward Euler time discretization, we obtain

- En+l _E”
di h h
1Vy —At

which implies that the divergence of the electric field is conserved. Similarly, using
the first equation in (7.21) and Lemma 2.4, we obtain

:07

ad .. . OB .
— (div;, By,) = divy, oh —divy, curl, B, = 0. (7.25)
dt ot

The property of invariance of the divergence constraints also holds for the second
problem as div, E, = 0 for any # > 0 as discussed in the final comments of the pre-
vious section. The condition on By, is the same of the first problem.

Another important property of the mimetic method is the conservation of the elec-
tromagnetic energy. The electromagnetic energy is defined as

1
:§</QE-DdV—|—/QB-HdV>. (7.26)

The energy conservation for a conducting medium is connected with the fundamental
mathematical property that the operator curl is self-adjoint. Let us multiply Faraday’s
law (7.2) by u~'B and Ampere’s law (7.3) by E. Then, we sum them up, and integrate
the result over the computational domain €2. In the left-hand side we easily recognize
the time derivative of the electromagnetic energy. The right-hand side is zero due

to (7.11):
/E dV+/ B —dV

= —/ curlE-HdV—I—/ E-curlHdV = 0. (7.27)
Q Q

Since the primary and derive discrete curl operators mimic this property, we may
expect that some discrete analog of (7.27) holds true. We define the discrete electro-
magnetic energy as

1
Er = ([EnEil, + [BiBil ). (7.28)

where the inner products, which include the material properties, are defined in (7.14).
The conservation of the discrete electromagnetic energy Ej, is stated by the following
theorem.

Theorem 7.1. The discrete electromagnetic energy Ej, defined by (7.28) is conserved
in the mimetic scheme.

Proof. The argument used in this proof is very similar to the argument that shows
the conservation of electromagnetic energy (7.26) in the continuous case. We take the
product of By, with both sides of the first equation in (7.21) using the inner product
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in %}, and the product of E;, with both sides of the second equation using the inner
product in &}, to obtain:

[th

JE,
ot ’

Bh:| 5, = — [curlEh,Bh] Z 8t

Eh} — [cul By, Ky

h

Summing up these equations and using definition (7.28) and the duality property of
mimetic operators (2.29), we obtain:

JE, 0By,
ria [ ot Bh]

Zh

,E
ot h} S

= — [curlEh,Bh] 2, + [Eﬁ/ﬂhBh7Eh] 7= 0.

This proves the assertion of the theorem. ]

A fully discrete method can be obtained by introducing a suitable time-stepping
scheme for the time derivative, which can be either implicit, semi-implicit, or explicit.
The effectiveness of the resulting mimetic discretizations is shown by numerical ex-
periments on logically rectangular meshes in [207].

7.2.4 Stability and consistency conditions

In this section we extend the fundamental conditions of stability and consistency
to the inner products with tensorial weights. The case of space .%), is considered in
Chap. 5; therefore, here we will focus on space &j,.

Let ep be the approximation of the permittivity tensor € on cell P:

!
= — / edv. (7.29)
Pl Jp

Using (7.29), we define a discontinuous piecewise constant tensorial field € such that
E‘p = €Ep.

Let [-, -] 5, p be the inner product on the local space &, p. The global inner product
is assembled from local ones in the usual manner. The local inner product induces a
norm that must satisfy the stability condition below.

(S1) (Stability condition). There exist two positive constants o, and ¢* indepen-
dent of the mesh size 4 such that for every P it holds

o.|P| 2 |Ee|2 [EP7EP]{ P<0' P Z |Ee|2 VEp € &p-
ecoP ecoP

Let us define the functional space
Spp= E € H(curl,P): /P(curlE)-qu =0 Vqe ﬁ,‘f,
E-t. € Py(e) VecdP, curlE-nf€Py(f) VfedP,
/fEf~p1dS=0 vp! € 6F Vf e aP). (7.30)
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Here, ﬁf is the space of polynomials ¢ X (x — xp) where ¢ is a constant vector; ﬁf/
is the space of linear polynomials p' (&) = c¢(& — &;) defined on the plane (&, &) of
face f where c is a constant, & is the centroid of f, and the two-dimensional vector
E; =E — (E - np¢)np is the orthogonal projection of E onto f. This selection of
space Sj p has been inspired by the definition of the reconstruction operator Ré in
Chap. 3.

Note that Sj, p is an infinite dimensional space. The conditions imposed on it are
consistent with the definition of the reconstruction operator Ré in Chap. 3. Note, that
Sy, p does not depend on the material properties.

According to the theory developed in Part I of this book, this space must satisfy
three assumptions (B1)—(B3). We recall the first two assumptions, while the third
assumption will be addressed below.

(B1) The local projection operator from Sy, p to &), p must be subjective.

(B2) The space S, p must contain the trial space of constant vector functions.
It can be checked that that the space S, p above satisfies both conditions.

(S2) (Consistency condition). For any vector function E € S, p, any linear vector
function q = ¢ X (x —xp), and every element P of €, it holds

(5" curlq)p, Ep] :/(curlq)-EdV. (7.31)
P

The consistency condition is an exactness property, since it ensures the accuracy
of the resulting mimetic scheme. To make it useful, the right-hand side of (7.31) must
be computable easily and be independent of the values of E inside P. Integrating by
parts and using the properties of space S;, p, we obtain

/(curlq)-EdV:/qcurlEdV—l— D /(qu)-nprde
P P feop”f

-y /f (np % q) - EdS. (732)

fedP

Here, we used only the first property of space S, p to eliminate the volume integral.
The other properties are designed to calculate explicitly the right-hand side of (7.32),
so to have property (B3) of Chap. 4 satisfied by the bilinear form

Bp (E7 Q) = [(curlq)};,EH &P

for any E € ), p and any linear vector function q.
To prove this statement, we need the result of the following lemma.

Lemma 7.1. Let f be a face of P. Then, for any E € S),p and q(x) = ¢ x (X — X¢),
c € R3, it holds that

/ (npsxq)-EdS— / ¢; - ErdS, (7.33)
f ' f
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where the two-dimensional vectors ¢¢ and E¢ are the orthogonal projections of np 5 x
(e x (xf —xp)) and E onto {, respectively.

Proof. Adding and subtracting q(xs) yields:

np ¢ X q(X) = np ¢ X q(xf) +np ¢ X (q(x) — q(xf)). (7.34)
Using (7.34) in the left-hand side of (7.33)

Jmesxa)-Eds= [(mexax)-Eds+ [ (nes x (a(x) -a(x))) - EdS.
(7.35)

Vector np s x q(X¢) =np ¢ X (¢ X (xf —xp)) lies on face f; hence, it holds that np ¢ x
q(xf) - E = ¢ - Ef, with the definitions of ¢f and E¢ given in the lemma. Then, we
rewrite the first integral in the right-hand side of (7.35) as

/(np‘f x q(xf))-EdS = /Cf -E¢dS,
f ' f

which is the right-hand side of (7.33)
To complete the proof we must show that the second integral of the right-hand
side of (7.35) is zero. A useful property of the cross product implies that

np ¢ % (q(x) —q(xr)) = nps x (e x (x—xr))
= C(llpyf' (X—Xf)) — (X—Xf) (Ilp.yf -c). (7.36)

The first term in the right-hand side of (7.36) is zero for every x € f because X — X¢
lies on f and np 5 is orthogonal to f. Thus,

JEmesx (a(x) —a(x0) dS = = [ - (x—x;) (np.-¢) dS.

As x — x¢ lies on f for any x € f, we can write x —x¢ = & — &, where & and &;
are the two-dimensional vectors on f that points to the same position of x on f and
X, respectively. The vectors & and & are defined with respect to a local coordinate
system (&1, &) and an arbitrary origin that we can take at x¢ for convenience. From
a simple geometric argument, we note that E- (x —x¢) = E¢ - (& — &), where E¢ is
the two-dimensional projection of E onto f. Therefore, we have

/f E-np¢ x (q(x) — q(x)) dS = — /f Ei-(E &) (nps-¢)dS=0  (737)

due to the second orthogonality property of space Sy, p (take ¢ =np¢ - €). |

As the previous lemma suggests, the right-hand side integral of (7.33) can be cal-
culated in the local two-dimensional coordinate system & = (&, &) associated with
the plane of f. Using a two-dimensional curl operator, we have ¢f = (c1,¢2) = Curlggs
where g¢ (&) = —c1(& — & 2) +c2(&1 — & 1). Inserting this expression in the right-
hand side of (7.33), integrating by parts, and using the remaining properties of space
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Sp.p, we obtain

/(np,f xq)-EdS= /Curlzj%(é) ‘EfdS=Y [ q¢(&)Es-Tre
f f ecof’®
= lelgs(Ee) 0 cEe.
ecof

To return back to the global coordinate system, let us first note that

g5(&e) = (c2,—c1) (?’1 - ?’1 > = Rnpaei (e —&f) = ¢t %y )2 (8o — &5),
e,2 .2
(7.38)
0 1Y). . . .
where %/, = ( 1 0) is a 2 x 2-sized rotation matrix in the (&;,&;) plane of face
f. Let @ﬂ /2 be the 3 x 3 rotation matrix that rotates the vectors lying in the (&;,&2)

plane of .face f, so that @;{ 1 (xe —x¢) and %’7{ 1 (€. — &) actually represent the same
geometric vector. Let us also denote

Ef =npfX (c X (Xf —Xp)) = —(Ilp.’f 'C)(Xf —Xp).

Vector ¢ lies on face f and geometrically coincides with ¢¢. This construction allows
us to express gf(€,) as

qf(ge) =¢f '%g/z(ge - gf) = Ef '@;/2(’% - Xf)-

Returning back to global coordinate system and using the definition of ¢¢, we obtain

/(Ilpf xq)-EdS= 2 le|'cs ~,%7;/2(xe —X¢) 0 cEe
f ecof

=-—nps- c@ﬂ/z(xf —Xp)- 2 le| (Xe —x¢) 0 cEe.  (7.39)
ecof
This formula shows that the right-hand side of the consistency condition depends
only on c, the geometry of cell P and the degrees of freedom E..

Remark 7.1. Combining (7.31) with (7.32) and (7.39), recalling the surjectivity prop-
erty (B1), we therefore obtain a more practical form of the consistency condition. For
all Ep € &), p and for all ¢ € R? it holds

2[(ep" ¢)p,Ep]p = _fza,PnP,f . C@n/z(xf —Xp)- Ea‘f le| (xe — X¢) 0 o Ee,
c ec

where, as usual, Ep = (Ee).cop and where we used that q = ¢ X (x — xp) and thus
curlq = 2¢. The auxiliary space S, p is needed only for constructive purposes and
has completely disappeared from the consistency condition.
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Remark 7.2. Note that space S, p is infinite dimensional. However, nothing forbids us
from choosing its finite dimensional subspace, still denoted by S}, p, e.g. by requiring
that

dim(Sh_p) = dim(é”hﬁp). (7.40)

Such an assumption moves the mimetic framework closer to the finite element frame-
work with the important difference that we never calculate the basis functions in Sy, p
explicitly.

7.2.5 A family of mimetic schemes

Let us consider a polyhedron P. The local inner product in &, p can be represented
by a symmetric and positive definite matrix Mp:

[Ep,Ep] P — ELMpEp. (7.41)

We have shown in Chap. 3 that the local inner product matrix satisfies the algebraic
equation Mp Np = Rp where Np and Rp are rectangular matrices. Let us show that a
similar matrix equation holds for the weighted inner product. Combining Remark 7.1
with (7.41) yields

20Bp) " Mp (g5 )b =— Y | (ps-€) Zra(X¢—Xp)- Y, le] (Xe — X¢) O eEe
feoP ecof

= z Reee, (7‘42)
ecdP

where the final term is given by switching the summations on f and e and including
all summations on f in the definition of the column vector Re = (R¢e)ecop. We have

Ree = —le| Y (nps-€)Zr/a(Xf —Xp) - (Xe — Xf)Olf e (7.43)
f:ecof

Let us consider three constant vectors that form the canonical basis of R, i.c.,
¢ =(1,0,0)7, ¢2 = (0,1,0)7, e3 = (0,0,1)”. We define vectors N; = 2(e5 ' ¢/)b. If
we enumerate the edges of P by an index running from 1 to N5 , the explicit formula
for the j-th component of N; is

KT AR

Let us define the Ng x 3 matrix Np = (N1, N2, N3). Note that we can pull out
the full tensor & ! (like we did in Chaps. 5 and 6) to get a simpler representation of
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this matrix:

Let us define the Né x 3 matrix Rp = (R, Rz, R3) from (7.43) by setting R; = R,
fori =1,2,3. Now formula (7.42) gives us the desired algebraic equation

Mp Np = Rp.

Lemma 7.2. For any polyhedron P, matrix Ng Rp is symmetric and positive definite.
Moreover,
NERp = 4|Plep .

Proof. Note that constant vector functions belong to space Sj, p. Let q; = ¢; X (x —
xp), i < 3, where ¢; form the canonical basis of RRY. Then, the consistency condition
gives

N/ R; =N/ MpN; = [(g5 " curlq:)p, (g5 ' curlq;)p]p
:/curlqi-(eglcurlqj)dV.
p

Since curlq; = 2¢;, the last integral is nothing else but 4|P|(¢5');;. This proves the
assertion of the lemma. O

Example 7.1. In two dimensions, the derivation of matrices Np and Rp becomes
much simpler. Let us consider a polygon P. In two dimensions there are two curl
operators:

JB
T . JE; 0E,
CurlB = gTB> and curlE = a—xz — a—x]
x1

for B € H'(P) and E € H(curl,P). The space S, p has a much simpler form:
Spp= E€H(curl,P): curlE € Py(P), E-Tc € Po(e) Vec dP}.
The consistency condition is transformed as follows. For any vector function E € S, p

and any linear function ¢ = ¢- (x — xp), it holds

[(8,31Curlq)lp,EHP:/(Curlq)-EdV: Y [ qE-tedS= Y le[q(xe)Ee.
P ecoP”¢ ecoP

Following the arguments used in three dimensions, we can write down explicit for-
mulas for matrices Np and Rp. Let T, be the unit tangent vector oriented counter-
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clockwise and np ¢ be the exterior normal to edge e. Note that

_ _ —C _ C
£P1Cur1q-'te = 8P1 ( CT) ‘Te :%;/25;’1%71/2 (Ci) ‘Dp e,

where %y, is the 2 x 2-sized rotation matrix by /2. Then,

T

Dp o, le1] (xe1 —xp)”
T
np., B |eZ| (Xe2 - XP)T
Np = : %75/2 &p ' Hr ), Rp = :
T‘ ' T
nP‘eNé |eNS (XeNg _XF’)

These matrices differ from similar matrices in Chap. 5 by a rotation of the tensor £ l
Thus, in two dimensions, in the case of a scalar tensor, the mimetic inner product in
spaces .%;, and &), are defined by the same matrix. m|

7.3 Magnetostatics equations

Let Q C R? be asimply connected domain with the Lipschitz continuous boundary I'.
In this section, we consider in more details the magnetostatics problem:

curlH=J in Q, (7.44)
div(uH) =0 inQ, (7.45)
Hxn=g onT, (7.46)

for the unknown magnetic field intensity H. We assume that J is a divergence-free
current density.

From a physical standpoint, the domain £ should be the whole space R¥, and the
magnetic field should satisfy a radiation condition like H — 0 at infinity instead of
the Dirichlet boundary condition. In practice, we assume that €2 is a bounded domain
and approximate the radiation condition.

The divergence-free condition allows us to introduce the vector potential u such
that curlu = pH. The choice of u is not unique as we can always add the gradient of
a scalar function to the vector potential u and leave the relation with H unaltered. To
obtain a weak formulation that admits a unique solution we consider the Coulomb
gauge, which leads to a divergence-free vector potential. More precisely, we require
the vector field u to be the solution of the set of equations:

curl (u tcurlu) +Vp =1J in Q, (7.47)
divu=0  inQ, (7.48)
uxn=0 ondQ, (7.49)
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where p is the Lagrange multiplier. The variational formulation of this problem reads
(see, e.g. [225]):
Find u € Hy(curl,Q) and p € H} () such that

/u‘lcurlu-curlva’V+/ v-VpdV:/J-vdV Vv € Hp(curl, Q2), (7.50)
Q Q Q
/u-quVzO Vg € H (). (71.51)
Q

Under assumptions (H8)—(H9) (see Sect. 1.5.4) the well-posedness of (7.50)—(7.51)
can be proved in the framework of Brezzi-Babuska theory for saddle-point problems.

Let us choose v = Vp € Hy(curl, ) in (7.50). Then, the first integral of (7.50) is
zero due to the exact identity curl o V = 0. If current density J is a sufficiently smooth
function, we also have

/J-VpdV:—/ pdideV+/pn-JdS:0 (7.52)
Q Q r

since J is a divergence-free field and p is zero on the boundary. Thus, the right-hand
side of (7.50) is zero, and this equation becomes:

[ vpRar —o.
Q

from which it follows that p is constant. The homogeneous Dirichlet condition im-
plies that p = 0 in Q2. This fact ensures that (7.50)—(7.51) are weakly consistent with
the strong formulation (7.47)—(7.49).

7.3.1 Strong and weak forms of discrete equations

We use the following spaces to approximate u and p, see Fig. 7.2:

* The vector uy;, belongs to the space &), of edge-based fields defined in Sect. 7.2.1:

u, = (Ue)ecs-

The value associated with edge e is denoted by #, and may represent the tangential
component of a vector field defined on €.
» The scalar py, belongs to the space ¥}, of vertex-based fields:

Ph = (pv)ve Y-

The value associated with node v is denoted by p, and may represent the pointwise
value of a scalar field defined on 2. We also use the symbol ‘//ho to denote a proper
subspace of ¥, consisting of vectors whose components are zero at the boundary
nodes.

The restriction of uy, to cell P € ), is denoted by up = (¢e)ecgp- Similarly, we de-
fine the restriction pp = (py)vegp- Note that up € &, p and pp € ¥, p. These degrees
of freedom are illustrated in Fig. 7.2. For the cell shown in this figure, the dimensions
of the spaces &, and ¥}, are 17 and 11, respectively.



212 7 Maxwell’s equations

A ey

Fig. 7.2. Geometric location of degrees of freedom in the low-order MFD scheme for magne-
tostatics problem: arrows on edges represent ue (on 13 visible edges), dots at nodes represent
pv (at 10 visible nodes)

We use again the symbol (-)! to denote the projection operators from the functional
spaces to the discrete spaces &, and ¥},. The edge-based projection operator is given
by (7.6). The vertex-based projection operator is given by

P'=0er, P =px)

We represent the differential operators curl and curl u~! that appear in Eq. (7.47)
by the primary discrete operator curl defined by (7.8) and the derived operator curl;,
defined as in (7.15) using € = 1. We represent the gradient operator in (7.47) by the
primary discrete operator V;, defined in (7.17) and the divergence operator in (7.48)
by the derived operator div;, defined as in (7.20) using £ = 1. Using these operators,
the mimetic discretization of (7.47)—(7.49) in strong form reads:

Findu, € 5’,? and py, € Vho such that

curly, curl,uy, + Vipn = J[7 (7.53)
(ﬁ{/h u, = 07 (7.54)

where J' € &, is the projection onto &, of the current density vector J. Due to the
Dirichlet boundary conditions, equations (7.53) should be considered only for the
interior mesh edges. Similarly, equations (7.54) should be considered only for the
interior mesh nodes.

The linear algebraic formulation follows immediately by using the definition of
the primary and derived operators:

Mgl curl”M 7 curlu, + V,,p, = I,
M 'VIMsw;, = 0.

Since M;l is in general dense on an unstructured mesh, a computationally tractable
system is obtained by multiplying the first equation by M. A symmetric system is
obtained by multiplying the second equation by M.

A weak formulation of (7.53)—(7.54) is obtained by multiplying (through the &,
scalar product) the first equation by v;, € é",? and multiplying (through the ¥}, scalar
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product) the second one by g5 € Vho. Then, also using the definitions of the derived
mimetic operators, we obtain:

Findwy, € éa,? and pj, € “//ho such that

[curly wy, curl, vy 7, T [Vh,Vhph]é;h = [JI7vh] 5 Y€ &Y, (7.55)
=0

[wr, Vadn] ., Yan € 4. (7.56)

The well-posedness of the mimetic scheme is stated by the following theorem.

Theorem 7.2. Let €, be a simply connected mesh. Then, problem (7.53)—(7.54) ad-
mits a unique solution.

Proof LetJ' = 0. We have to prove that u;, = 0 and pj, = 0. To this purpose, let us
consider Eq. (7.55) with v;, = u, and Eq. (7.56) with ¢, = p;. We have

[curlh uy, curly, uh] 7, = 0.

Since the mimetic inner product defines a norm on .%, this implies that curl, u;, = 0.
Substituting this back into Eq. (7.55) and taking v, = V,,p;, yields:

(Vion Vipn] 5 =0

which implies that V,p, = 0. Lemma 2.3 states that the null space of V), consists of
constant mesh functions. From the homogeneous Dirichlet conditions it immediately
follows that p, = 0.

Then, we observe that the condition curl,u, = 0 and the result of Lemma 2.4
imply that there exists a node function wy, € ¥}, such that u, = V,wy,. From Eq. (7.56)
with g;, = wy,, we have V,wy, = 0. Thus, we obtain u;, = V,w;, = 0 which proves the
assertion of the theorem. O

From Theorem 7.2, we derive a discrete analog of the weak consistency between
the variational and the strong form of the magnetostatic equations, which is discussed
at the end of Sect. 7.3. We state such property in the following corollary.

Corollary 7.1. Let us assume that divyJ' = 0. Then, p, = 0.

Proof. We take v;, = Vjp;, and observe that [J',v,] s = [div,d", ps]y, = 0. Since
curly, V;,pj, is also zero, Eq. (7.55) becomes

(Vaph, Vipn] 5 =0

which implies that V;p;, = 0. By repeating the argument used in the proof of the
theorem, we obtain the result. O

Remark 7.3. The first term in (7.55) shows that the inner product needs to be defined
only on a proper subspace of .%), given by the image of the primary mimetic curl
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operator. We met a similar problem in Chap. 5; however, the same approach does
not work here. Direct calculation of the triple product curlZM_,@ curly, that bypasses
the calculation of matrix M » is an open problem.

7.3.2 Stability and consistency conditions

The proposed method makes use of the scalar product on the space .%, introduced in
Chap. 3 and extended to general material tensors in Chap. 5. In the present section we
focus in particular on the framework of Chap. 5. Note that here we have a different
notation for the material tensor (up instead of Kp). To avoid discussion of many
technical details, herein and in the theoretical analysis of the next section we assume
that u is a positive definite piecewise constant tensor, e.g., (L = Up, over each mesh
cell P.
Let us define the following norm on the space .%),:

2 2
Vil = X IIvel%, =P vl
Peq, feaP

for all v, = (vf)fes € %, The stability condition (S1) of Chap. 5 reads:

(S1) (Stability condition). There exist two positive constants o, and ¢* indepen-
dent of the mesh size 4 such that for every P it holds

G*||VP||-257},.P < [Vp,Vp] 7P < G*HVPH%;}'P Yvp € Fpp.

The above condition states that the discrete bilinear form [curl, -, curly - | 7, P

pearing in (7.55) has the correct kernel. In fact, Lemma 2.4 restricted to cell P 1mphes
that ||curlp vp|| 7, , is zero if and only if vp = V,gp where gp € 7}, p.

We now present a simple consequence of the consistency condition (S2) of Chap. 5
that will be useful in the theoretical analysis. Let us define the spaces

To = {q € (P1(P))® : qx) =¢ +¢" x (x—xp), ¢, ¢ € (IPO(P))3}
and
Spp = {v € H(curl,P) : (curlv) -ns € Py(f) Vf € dP, v-T. € Py(e) Ve € aP}.
Lemma 7.3. For every q € Ip and every v € Sy p there holds:

[curlhq};,curlhvlp] Z, :/u;lcurlq-curlvdV. (7.57)
: P

Proof. We start from the consistency condition (5.20) in Chap. 5 with up = Kp. By
taking ¢ = ¢+ (x — xp) for ¢ € R? (and thus V g = ¢) we obtain

[(1pe)b,wh] —/c wdV (7.58)
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for all functions w € (L*(P))?, s > 2, and such that
divw = const, w-ng; =const VfecdP, (7.59)

see Sect. 5.1.3. For any function q € p, it clearly holds up 'curlq = const. More-
over, for all v € S, p, curlv satisfies all the conditions for the test space appearing
in (7.59). Therefore, we can take ¢ = lcurlq and w = curlv in (7.58) to obtain:

[(curlq)};,(curlv)};]P:/u;lcurlq-curlvdV. (7.60)
P

The assertion of the lemma follows from the commuting diagram property in
Lemma 2.2. m]

7.3.3 Convergence analysis

The main result of this section is the convergence Theorem 7.3. We consider the
mesh conditions (MR1)-(MR3) of Sect. 1.6.2. The proof of this theorem requires
some tools that are introduced below. The first one is a reconstruction operator

Rp : &p — Sip

that satisfies the following six properties.

(L1) The reconstruction operator Ré is a right inverse of the projection operator
defined by (7.6):

vp = (R (VP))b  YVp € &p.
(L2) The reconstruction operator is exact Rg on constant functions:
Rp(ch)=c  Vee (Po(P))>.

(L3) The reconstruction operator Ré and the minimal reconstruction operator RE;7
defined in Chap. 3 commute with the continuum and discrete curl operators:

R]s?(curlp vp) = curlRé (vp) Vvp € & p.

(L4) The reconstructed functions are orthogonal to a special subspace of linear
polynomials with zero average. Let Xp be the barycenter of P, then

/PRé‘(vP) PV =0 ‘vpeip, Wpl €O = c(x—xp),VeER).
(L5) The trace of the reconstructed function on a face f of P (respectively, on an
edge e of P) depends only on the degrees of freedom associated with f (respec-

tively, with e):

Rg(VP)\f = Rf(vP‘f), Rf (VP)je " Te = Ve,
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where R{ is the face-based reconstruction operator defined in Chap. 3.

(LL6) The reconstruction operator satisfies the following stability condition: there
exists a constant C independent of / such that

[eurl(RS (vp )l 2(p) < Cllcurlpvpl| 7, VVP € &ip.

The reconstruction operator Rg above is the one defined in Chap. 3. Indeed, the
first five properties (L1)~(L5) were already proved there. The fact that Rj (vp) € Sy, p
follows from (L5) (the second condition states that the tangent components on cell
edges are constant) and (L3) (the normal components of functions in the image of
R',";O,; are constant on faces of P, see Chap. 3). Finally, due to (L3), in order to show
property (L6), we need to prove

IRE (curlp vp)||2(p) < Cllcurlp Ve 7, VVp € &,
that is guaranteed if we show that
||R§(WP)||L2(P) <C|wellz,,  Ywp e Fp.

This continuity property of Rf;Z can be easily proved using the definition of RE;7 and
scaling arguments that make use of the mesh shape regularity assumptions (MR1)—
(MR3) of Sect. 1.6.2. Therefore we omit the proof.

In Sect. 7.2.1, we introduced a projection operator (v)! from the space of contin-
uous functions to the discrete space &j,. It will be convenient to perform the conver-
gence analysis using a different projection operator that preserves the divergence free
condition.

Let divv = 0 in £, then there exists a vector potential y, € (H'(£2))? such that
v =curl y, (see, e.g. [184]). Moreover, div y, = 0. We define the second projection
as follows:

V][ = E’i\lﬁh WE,"
where ! is given by (7.7).

Thus, calculation of a divergence-free mesh function J' requires a global solver

with the mimetic mass matrix M, . In practice, we may use J' which leads to pj, # 0.

Theorem 7.3. Let 2 be a simply connected Lipschitz polyhedron and £y, be a simply
connected polyhedral mesh that satisfies the hypotheses (MR1)—(MR3) of Sect. 1.6.2.
Furthermore, let (u, p) be the solution of problem (7.44)~(7.46) withu € (H*(2))>N
Hy(curl, ) and J = curl wy where yy € (H'(Q))>. Finally, let (uy, p) € &0 x ¥,
be the solution of mimetic scheme (1.55)~(7.56) with the discrete current density J'
in place of J'. Then,

[curly(u' — )| 7, < Ch (lulr20) + Wslmia)-

Proof Let us define the approximation error as €, = u' — u,. Note that g, € é‘}?
since the Dirichlet condition implies that #e = 0 and (u)L = 0 for any mesh edge e
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that is on the boundary of Q. Recall that J* = curl,, l[/}, where I[IIJ € %, is the discrete
vector potential. Since div;, JU = div, curl, y} = 0, Corollary 7.1 implies that p, = 0,
and using Assumption (S1) and (7.55) with €, instead of v;, and the discrete current
density JU in place of J' yields

Cl|curly, £h||?;rh < [curl, &, curly &5] 7z,
= [curl, u',curl, &] 7~ [curly uy,, curly, €] 7,
T, T e,
=T, -Ts. (7.61)

Let v = curlu. Let v p be the piecewise constant function defined on P whose
value is the cell-average of v on P and (Vo’p.)}; = ((Vo.p)§) segp its local projection
on .Z,p. Let €p = €, p.- We split term T, into the sum of the local contributions
from each mesh cell, then use the commutative property stated by Lemma 2.2, i.e.,
curlp ub = (curlu)}, = vk, and finally add and subtract (vo p)h to obtain:

Ti= ) [Curlpulpvcmlpsp];hp: Y [(curlu){;,curlpep]jhrp

PGQh PGQh
=Y ([(V}; —vo.p)p,curlp ep]y}np + [(Votp)lp7cuﬂp ep] -%P)
PEQh
=Tia+Tip. (7.62)

In view of the Cauchy-Schwarz inequality, we have

1/2 1/2
|T1a|sc( y ||<v—vo_p>%>||?;h,,,) ( 3 ||cur1hep||?¢h,,,)

PeQy, PcQ,
1/2
= C( > II(V—Vo,P)HI.Z;h,P> |curly, €] 7, (7.63)
PeQ),
The spectral bound on the mimetic inner product [-,-] 7, , gives:

192 [12
|(v=vop)pll%,, <CIP| X [(v—vop)il
feaP

for some constant C independent of 4. Now, we apply the Agmon’s inequality (M4)
and the approximation result (M5) to each component of function v and we have

2
12 _ P

PLO—v0} = e [(v—vo)meds < Chelv ol

<C(IV=volZaip + iBIVE ) ) SCHAMEp)  (7.64)
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Combining the last three estimates, we obtain
ITial < Chlulp2q)llcurl, €| 7. (7.65)

Letv(x) = %Vo_P X (x—xp), so that vo p = curl v. In view of property (R1) of the
reconstruction operator R it holds that £p = (Rj (€p))5. We use the commutative
property stated by Lemma 2.2 to obtain:

curlp £p = curlp (R (ep))p = (curl RE (£p))p, (7.66)

where the last projection operator acts to space .-%;, p. Now, we split T, in the sum
of the local contributions from each cell P, then substitute vo p = curlvy, use (7.66),
and finally apply the consistency condition of Lemma 7.3:

Tl= 2 [(VO,P)churlPsP]f}”P = [(curlvl)lp,(curlRé(ep))L] R

PeQ), PeQ), TP
= Z /u;lcurlvl-curlR‘é(ep)dV. (7.67)
PGQh P

Then, we add and subtract v = curlu and note that curl(vi —u) =vop —v:

[Tip| = Z (/P/,t;lcurl(vl —u)-curlR‘é(ep)dV+/P/,tFTlcurlu-curle(EP)dV)

PEQ},

= Z (/y;l(vo—v)-curlRé(ep)dV—k/,uFTlcurlu.curlR‘,g(ep)dV)
P, /P P

=Tic+ Tia. (7.68)

Each integral in T . is bounded using the Cauchy-Schwarz inequality, the assumption
that pp is uniformly bounded from above and below, the approximation results (M5),
and property (L6):

Tl <C S Ivo— Vil llcurl RE(en)2(p) < Chlulie o lewrly sl 5,
PGQ},

where all constants denoted by C are independent of /2 and may depend only on the
mesh shape regularity constants and the approximation constant of (M5).
Let ¥, be a piecewise constant function on mesh €2, with values ¥, p on cell

P. We define y p as the L? projection of the vector potential ¥y onto Po(P). Let

v, (x)= %( UpWop) X (x—xp). Using again (7.66) and the consistency condition in
Lemma 7.3, the same argument used to develop T, gives the identities:

/I[IO_P-curle(sp)dV:/u;lcurlwl-curle(ep)dV
P P
¢ I
— [(curl vk, (CUI‘IR(;(EP))P} o

= [(woﬁp)lmcurlh ep] . (7.69)



7.3 Magnetostatics equations 219

Using Eq. (7.50) with v = R’ (g,), the observation that p = 0, and J = curl g,
we obtain

Tle/ [,L_lcurlu-curle(eh)dV:/ J-Rg(eh)dV:/ curl yy - R” (&5,) dV.
Q Q Q

Then, we split the integral in the sum of the local contributions from each cell P, and
we integrate by parts

Tia= Y /curle-Ré(ep)dh by

/WJ-curlRé(ep)dV.
Pc,’P Pe,”P

The last step holds because the sum of the boundary terms of dP is zero. Indeed, the
internal faces gives integrands with opposite signs, while on the mesh faces of the
domain boundary Rg(eh) is zero as it interpolates all zero values. Finally, we split
T, in the sum of the local contributions from each cell P, combine terms T;; and T,
together, and subtract both sides of (7.69) to obtain

Ta—-Ta= Y, (A(WJ_WO’p)'Curle(ep)dV

PGQh

7|

- [(V’J - 'I’O,P)}mcurlP EP} .P> =Ty —Top.

Term Ty, is bounded like term T1.. Term T, is bounded like term T,. Thus,

I T2a| + [ Tas| < ChIWy| 1 (q) llcurly €4 7,
The assertion of the theorem follows by combining all estimates in (7.61). ]
Remark 7.4. Extension of error analysis to the L? norm is currently a work in

progress. It requires to prove the discrete Maxwell inequality stating that for any
mesh function v, € & we have

IVall.s, < C (llcurly val| 2, + | divavall 1),

with constant C independent of v;, and the mesh.
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The Stokes problem

When working toward the solution of
a problem, it always helps to know the
answer. Provided, of course, you know

there is a problem.
(Known as the “rule of accuracy”)

The incompressible Stokes problem for the vector field u and the scalar pressure field
p is governed by the following equations:

—div(ve(u)) +Vp=b in Q, 8.1)
divu =0 in Q, 8.2)

u=g’ onIP, (8.3)

ve(u)-n=g"  onI?V, (8.4)

where v > 0 is the fluid viscosity, the vector-valued field b is the forcing term, the
vector-valued fields g” and g" are the boundary data, and £(u) = (Vu+ (Vu)7)/2
is the symmetric strain tensor. We refer the reader to Sect. 1.5.1 for a more detailed
presentation of the Stokes problem.

The numerical approximation of the Stokes problem with the finite element and
the finite volume methods has raised much attention in the literature over the years.
Since it is impossible to mention all the papers on the subject, we cite only [31, 59,
95,125, 173,204, 332] and address the reader to the references in [88] for a more
complete list. From the numerical standpoint, the main difficulty in the approximation
of the Stokes problem is the incompressibility condition (8.2). An abrupt approach
most certainly leads to a bad approximation and possibly spurious pressure modes.
In stable finite elements (that satisfy the inf-sup condition), the discrete spaces for
u and p are chosen carefully in order to derive a stable and converging scheme, see
for example [88]. Other viable numerical approaches leading to good results use a
stabilization technique, see e.g. [175].

The Stokes problem is a starting point for more complex models such as the
Navier-Stokes equations [184]. It moreover shares similar numerical difficulties with
the displacement-pressure formulation of incompressible and almost-incompressible
elasticity (see Sect. 9.1).

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI 10.1007/978-3-319-02663-3_8, © Springer International Publishing
Switzerland 2014
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In this chapter, we will introduce and analyze a mimetic discretization the Stokes
problem. It does not adopt any stabilization procedure and the robustness of the re-
sulting scheme follows from a careful choice of the degrees of freedom. The mimetic
scheme presented here will be extended to the linear elasticity problem in Sect. 9.1.
We will also present a modified mimetic scheme which attains the same convergence
rate but uses a smalled number of degrees of freedom. The discussion in this chapter
is mainly based on [46,47,49].

8.1 The mimetic formulation

In this section, we mostly focus on the three-dimensional case. A two-dimensional
scheme can be derived in a straightforward way by repeating the presented argu-
ments using mesh edges in place of mesh faces. Without loss of generality, when the
viscosity Vv in (8.1) is constant, we assume that its value equals to one.

Let us consider the functional space ¥ = (H'(£))? and its subspace

Ve= ueV suchthatu=gonTI"}. (8.5)

The space Q of admissible pressures depends on the Neumann boundary condition:

o {L2(Q) it TN £0, 56)

L3(Q) if rv=o,

where
Lg(Q)ELz(Q)/R:{qeLz(Q): /quV:o}.

By multiplying equations (8.1)—(8.2) by the test functions v € } and ¢ € Q, respec-
tively, and integrating by parts we obtain their weak variational formulation:

Findw € Vyp and p € Q such that

/Q ve(u):e(v) dV—/deivvdV = (b, v + <gN, V) v Ywer, (8.7

/quivudV:O Vg€, (8.8)

where the symbol “:” stands for the standard contraction operator between two ten-
SOrS.

8.1.1 Degrees of freedom and projection operators

To discretize (8.7)—(8.8), we select the following degrees of freedom for scalar and
vector functions.
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» The space of discrete scalar fields &2, is defined by attaching one degree of free-
dom to every mesh cell. The value of g;, € &7, associated with cell P is denoted
by gp:

qrn = (qp)Peq,-

+ The space of discrete vector fields X}, = (%},)® x .%, is defined by attaching three
degrees of freedom to each mesh vertex and one degree of freedom to each mesh
face. For v, € X, the values associated with vertex v form a three-dimensional
vector denoted by v, and the value associated with face f is denoted by v:

Vi, = (v, Vf)ver;, fe 7, -

Remark 8.1. In two-dimensions, a similar definition of the degrees of freedom asso-
ciates two numbers with each mesh vertex and one number with each edge. This is
sufficient to define, for each edge, a unique vector-valued function that has a linear
tangential and a quadratic normal components.

The dimension of space Z7;, equals to the number of mesh elements. This space
can be identified with the space of piecewise constant functions defined on €,. We
consider the cell-based projection operator IT” : L' (Q) — 27, defined by (2.17):

1
b= = oy [aav. (8.9)

To ease the notation, we will use the symbol (-)! for this operator, i.e. ¢' = IT” (¢).

The dimension of space X, equals to three times the number of mesh vertices plus
the number of mesh faces. We assume that for every face f there exists a set of non-
negative weights {ar , }, ¢ associated with the vertices v of f such that

> o, =If| and Y (xv —x¢) wry =0, (8.10)
veof veaf

where x, is the position vector of vertex v and xs is the centroid of face f. For in-
stance, we can determine this set of weights by taking coefficients in the well known
expression of x¢ as a linear combination of {xy }.

Remark 8.2. In two dimensions, a natural choice for the weights is provided by the
trapezoidal rule, i.e., wey = |e|/2.

Remark 8.3. This set of weights satisfies the conditions (Q1.AB), see Chap. 6, after
Remark 6.4. By using these weights, we can derive a second-order accurate approx-
imation of integrals over face f. |

The degrees of freedom of X}, contains both nodal and face values. Due to this the
projection operator () from (H'(£))* N (C°(Q))? into X}, is a combination of two
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projection operators IT” and IT” introduced in Chap. 2. We define it in two steps.
In the first step we define the nodal and face projection operators.
+ Forany ve (H'(2))n(C%(Q))3, the nodal projection operator returns vector
vl € X, such that
vf,:vl‘\,:v(xv) Ywe? and v}:vl‘f:O vfe Z#. (8.11)
« The face projection operator returns vector v° € Xj, such that

W=v,=0 We? (8.12)

and the face-based components v'fJ = Vb‘f are defined by the relation:

/v-nde: ZV(XfAV)'nf(l)fAV+|f|V? vf e %, (8.13)
f veof ’

In the second step, we define the aforementioned projection operator:

vi=vl4v0, (8.14)

The vector v! clearly satisfies:

vi=vl wev and V=1 viecZ.

v

As the integration rule provided by the face weights {w,} is exact for linear
functions, we see from (8.13) that y® = 0 for any linear function y € (P{(P))3.
Therefore,

vi=y'  vye(P(P)’. (8.15)

Boundary conditions. For the numerical treatment of the Dirichlet boundary con-
dition (8.3), we need the subspaces Xj, o and X}, o of X;,. A mesh function v, € Xj,
if

Q) v =gP(x,) foreveryveI'?;

(1) vy is given by

/ng'ndeZ > &P (xe) mpoxy +flve VTP
veof

The subspace Xj, o is defined by setting g” = 0. When I'? =T, i.e. 'V = 0, instead
of L?(Q), we consider the space of pressures with zero average on Q denoted by
L3(Q).1f g € L3(RQ), we have

oz/qu: y /qu: S Plgh.
Q Peq,”P P

€Qy,
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In the discrete setting, instead of &), we consider its subspace &7, o formed by pro-
jection of functions from L3(Q) to 2

Pho = {Qh €Py: Y |Plgp 20}-
PEQ},

Consistently with (8.6), we define the discrete space

2, if TN #0,
Qh:{ h 1 #

8.16
Py if TV =0. (8.16)

As usual, we will indicate the restrictions of the degrees of freedom to a geometri-
cal object by using either one or two indices. For instance, given P € €, the symbol
Xy p represents X, p, while vp represents v, p, v, € Xj. The symbol vp , indicates
the degrees of freedom related to vertex v for vp € Xj, p.

8.1.2 Mimetic operators, inner products and bilinear forms

We endow the space Q;, with the inner product constructed in Sect. 3.4:

(Pnan],, = Y, IPlopap  Ypu.qn € On- (8.17)
e

Formula (8.17) can be interpreted as the L?(£2) inner product of piecewise constant
functions on £2;,. This inner product induces the following norm:

lhz Vg, € Op. (8.18)

lallo, = [anan]g,

A discrete bilinear form on Xj, x X, is defined by the summation of local discrete
bilinear forms:

y(wpvy) = Y yp(up,vp) Vuy, v, € X
PEQh

It requires a proper definition of the mimetic bilinear form o, p : X, p x Xjp — R
that approximates the continuum form and satisfies the stability and consistency con-
ditions (see Sect. 8.1.4). For sufficiently regular functions u, v, and the related pro-
jections ub, vk, we have

yp(up,vp) :::/va(u):s(v)dV. (8.19)

We will show the construction of the bilinear form 7, p in Sect. 8.1.4. The dis-
crete divergence operator divy, : X, — &7, is the primary mimetic operator and its
definition follows from the divergence theorem:

1 .
W/PdIVVdV_ 2 /fV'llprdS.

fedP
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By using the face weights {wy, }, for any v;, € X}, we define

. . . 1
divy vy = (divevp)p. ,, divpvp = Pl fZB,PSP,f( Za,fvf,v - Fy + |f|Vf),
€ veE
(8.20)

where sp s = ng - np . The consistency of this definition with the Gauss theorem is
reflected in the commuting property that we state for future reference in the following
lemma.

Lemma 8.1. The projection and the divergence operators commute for every suffi-
ciently regular vector-valued function v:

divy, vt = (divv)L. (8.21)

Proof. Using definition (8.20), we start the following developments:

RN G
divpvp =

D SP,f( Y Ve -npox, + |f|Vf) [use (8.13)]

cdP veof

~ L Y sps / v-ngdS [use Gauss theorem|
[P| feap U

_ ﬁ /P divvdy [use (8.9)]

= (divv)k.

1
P

This proves the assertion of the lemma. ]

Remark 8.4. The incompressibility condition (8.2) implies that the velocity solution
u satisfies

div,u® = (divu)! = 0. (8.22)

8.1.3 Discrete strong and weak formulations

The conventional mimetic approach leads to a strong form of discrete equations. It
requires two pairs of primary and derived mimetic operators and three approximation
spaces; therefore, it is less efficient than the approach based on a weak formulation.
However, there exist applications where the closed form representation of the derived
operators is needed. The strong formulation will be derived for the case of constant
viscosity v, Dirichlet boundary conditions and X}, = (#},)3. Under the above condi-
tions, it is well known that the first operator in (8.1) can be replaced by the vector
Laplacian operator vA. Note that while the first assumption is condidered only for
the sake of a simpler exposition, the remaining conditions are not immediate to han-
dle with the strong formulation; this is one of the reasons why we will focus on the
weak formulation for the rest of the chapter.
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Let us define an inner product [, -], in space Xj as the generalization to the

X
vector case of the inner product in space ¥}, described in Chap. 3. The trivial gen-
eralization consists in applying this inner product to each component of the velocity
vector. The derived gradient operator Vj, : X, — Oy, dual to the primary mimetic

operator (8.20) is given through the duality relationship;

Wh%ﬂh]Xh = [gn,div, Vh]Qh Van € On, Vi € Xp-

The mimetic discretization of the vector Laplacian starts with writing it as a com-
bination of two first-order operators:

Au — o =divu, o=Vu

We select discrete gradient Vj, : Xj, — é"; as the primary mimetic operator. Let X, =
é‘}f Again V), is the trivial generalization to the vector case of the similar operator
defined in (2.18). The inner product in space %, is define by replicating three times
the inner product in space &, derived in Chap. 3. The vector case of the derived
divergence operator is given by the discrete duality relationship:

(04, ViVils, = [dIvy, 04, Vilx, VO, € X, YV, X

Once the above ingredients have been established, the mimetic approximation of
the Stokes problems (8.1)—(8.2) reads:

Find w;, € X g and pj, € Qy, such that:

—vdiv, Vyuy, + ﬁhph = bI,

dth u, = 0.

The nodal approximation of the vector Laplacian provided by this construction
requires to know only the part of the inner product in X, restricted to gradients of
mesh functions in Xj,. A more efficient construction of this operator is discussed in
the rest of this chapter using a different framework.

Remark 8.5. The above strong formulation may be unstable on some meshes. In two
dimensions, a stable scheme is obtained through the enrichment of space %}, by adding
additional mesh vertices to the selected mesh edges, see Sect. 8.3. In three dimen-
sions, additional velocity unknowns can be introduced on mesh faces (like in the
weak formulation) and the primary gradient operator can be generalized accordingly.

Now we drop-off all assumptions made for the strong formulation. Let us consider
the weights {®f, },cor in (8.10). Similarly, for every P there exists a set of non-
negative weights {wp , },cyp associated with the vertices v of P such that

Y wpy=|P| and > (xv—xp)op, =0, (8.23)
vEIP veIP
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where xp is the centroid of P. Using these weights, we define two linear operators
that represent the loading and the Neumann boundary condition terms:

bv),= 3 (ﬁ /P de)- S Vouopy, (8.24)

Pegy, veTp

<gNa Vh>h (|f| /gNdV> . z Vp v ¥y, (825)
fe. ?‘%F“

veof
The mimetic discretization of the Stokes problem reads:

Find w, € X4 and py, € Qy, such that:

oy (wy,vi) — [divy, vi, pi] 0, = (b,vi), +(g", Vi), VVp € Xpo,  (8.26)
[leh uh,qh] =0 th € Qh- (8.27)

Remark 8.6. Since divjuy, € &), we obtain immediately the identity divjyu; = 0
which is the discrete counterpart of the incompressibility constraint (8.2).

8.1.4 Stability and consistency conditions

In this section, we derive the explicit representation of the discrete bilinear form
Ty p (up,vP). First, we introduce the mesh-dependent semi-norm:

lvallly, = 3 llivells o,

PGQh

|
2 _va’_"'v||2"‘|VF|2 ifd=2,
e (vv)eaf 2 (8.28)

1|lvy —V .
v (|P| 3 Eumpw) ifd =3,
feaP ©  e(vy)eaf lef?

Ivell2,, =

where v and v/ are the end-points of edge e. This is the discrete /'-type semi-norm
on space X, and coincides with the semi-norm appearing in (6.15)—(6.16), except for
terms that take into account the face degrees of freedom. Since it becomes a norm on
the space X}, o, we will often refer to it as a norm.

In the coming theoretical developments, we will also use a slightly weaker semi-
norm. Let O represent the space of (linearized) rigid body rotations:

span (—y,x,0)7,(—z,0,x)7,(0,—z,y)"} ifd=3,

span (—y,x)"} ifd=2,

where x,y,z are the Cartesian coordinates with the origin at the centroid of P. Using
the projector (8.14), we define

Ivall%, = X llvelly,p where |[|lvplly,p = [nf v = OBl - (829)
PEQ},
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Then, we require that the symmetric bilinear form 7, p satisfies the stability and
consistency conditions.

(S1) (Stability conditions). For every vp € X, p it holds:

ou|[vel%, p < hp(ve,ve) < o”[Ive%, p.

where o, and o* are two positive constants independent of # and P.

This condition states that the bilinear form is coercive on a subspace of Xj, p. We
employ the norm || - ||y, , and not ||| - ||| x, p» Since the latter one does not have the cor-

rectkernel. Also, using || -[||, here would lead to a contradiction with the consistency
condition below.

Let vp be a constant approximation of v in cell P, e.g. vp = v(xp). We define the
following space:

Syp = ve(H' (P)NC(P))’ : /v.rfdsz S vy Trox, VY EP, Vie).
’ f veaf /

According to the theory in Chap. 4, this space must satisfy three conditions (B1)—
(B3). The first one states that S, p is rich enough, so that the local projection oper-
ator from S, p to Xj, p is surjective. The second condition states that this space has
some approximation properties, e.g., it contains linear functions. The last condition
must allow us to compute easily the consistency condition for any v € S p. It can
be checked that the selected space satisfies conditions (B1) and (B2). Note in partic-
ular that condition (B2) follows from the fact that formula (8.10) is exact for linear
functions.

(S2) (Consistency Condition). For every y € (P{(P))3 and every v € S, p there
holds:

e (VB Wh) = [ vee(v):e(y)dr. (830)

The consistency condition is an exactness property, i.e., the discrete bilinear form
returns the exact value when their arguments are the projections of a linear function
and a function from Sy, p. To verify the condition (B3), we integrate by parts in (8.30):

Dyp (VP Wp) = Y, /fV'(VPS(‘I’)'ﬂPAf)dS= D (VPS(‘I’)’“P,f)‘/deS-
fedP fedP (8 31)

Due to the linearity of the dot product, it is sufficient to enforce the integrability
property of functions in S, p for a fixed pair of orthonormal vectors 7¢; and 7y, for
each face f. Recall that

T T T
353 = mg ne + 75 T 1 + T, Tr o
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We use the definition of Sy p to integrate the tangential components of v and the
definition (8.13) to integrate its normal components:

‘/deV:llf/va'llde—FTfyl/fV'Tf.’]dV‘l'ff:z‘/fV'Tf:de

= z (I)f’VV\]} + |f|V}:[llp7f.
feoP

Inserting this into (8.31), we obtain:

Dy (Vh W) = Y, . Vo (VPE(W) mpy) oy + [f[ving- (VP £(W) -mpy).
fedPveodf (8 32)

The right-hand side of this formula depends on the degrees of freedom, cell geometry
and fluid properties, e.g. it is computable.

Remark 8.7. Making use of (8.32) and recalling the surjectivity property (B1), the
consistency condition (S2) can be written in the following more practical form. For
all vp € X;,p and y € (P (P))?

e (ve,Wp) = X, Y Vo (VP E(W) nps) wr, + [flvens - (vp (W) -mpy),
fedPveodf

where we follow the usual notation v, = (Vy,Vf)ycop scop- The above condition
shows that the space S, p is only introduced for constructive reasons but does not
appear in the practical definition of the bilinear form.

8.1.5 Formula for the stiffness matrix
Given P € €, the local stiffness matrix Mp satisfies
pp(up,vp) =upMpvp  Yup, vp € X;p.

The global stiffness matrix is assembled from these matrices in the usual manner.

Letm = 3N,Z’/ —I—N,‘;;? be the number of degrees of freedom in cell P, i.e. the dimen-
sion of the discrete velocity space Xj, p. Let pi,p2,...,pr, With k =d(d+1) form a
basis for the space (IP1(P))“ of linear vector-valued functions. We assume that that
the first k/2 functions span the kernel of the symmetric gradient operator:

e(pi)=0 i=1,2,...,d(d+1)/2. (8.33)
Let N; = (p;)b. Using the basis functions in (8.32), we obtain
p(ve,N;)) =vEMpN; =vER;  Vvp € X,p, (8.34)
where R; = (R;v,Rif)vep sep and

Riv =2 (vp&(pi)-mps) wry, Rif=|fIns-(vpe(p;) npg). (8.35)

f=v
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Let us define rectangular matrices Np = (N1,...,N,,) and Rp = (R1,...,Rp). Then,
Eq. (8.34) can be written as the typical mimetic matrix equation

MpNp = Rp.

Analyzing (8.35), we observe that the first k/ 2 vectors R; are zero vectors. Hence,
we can write Rp = (0, Rp) and Np = (Np, Np) where the columns of matrix Np
correspond to the vector-valued linear functions that are in the kernel of £(-).

Now, we can apply the theory in Chap. 4 (see Sect. 4.3) to write the general solu-
tion of the matrix equation as

Mp = Rp (NLRp) 'RE+MY, (8.36)
where MS) is a symmetric and positive semi-definite matrix such that ker(Ml(;l)) =

img(Np). As the choice of M(Pl) is not unique, formula (8.36) represents a family
of admissible stiffness matrices, and, thus, a family of numerical schemes. As dis-
cussed in Sect. 4.5, the stability condition limits the number of good choices. The
recommended choice is given by

Mg’ =70 (1= Np(NENp) 'NF), 7o = %trace(ﬁp@%ﬁp)—‘ﬁ.@). (8.37)

Furthermore, from Chap. 4 we know that the symmetric £ X k& matrix Nng rep-
resents the bilinear form restricted to the space (IP(P)). Due to condition (8.33), it
can be easily checked that this matrix has the form

0
NIRp )’

where matrix ﬂg Rp has size (k/2) x (k/2) and is symmetric and positive definite. It
represents the bilinear form restricted to the polynomials of (P (P)) /ker(g).

NERp =

[

Example 8.1. Let P be a quadrilateral with vertices x; = (x;, y,-)T, i=1,...,4, enu-
merated counter-clock wise. We assume that its centroid is at the origin, xp = (0, 0)7.
Let vp = 1. The linear functions forming a basis (IP;(P))? are

o) Q) v (2)me () ) me)

The first three functions correspond to the rigid-body translations and rotation and
generate the kernel of the bilinear form <7, p. The columns of matrix Np are obtained
by applying the projection operator to these functions. We enumerate the degrees of
freedom as follows: first we consider all the x-components of vertex vectors, then
the y-components and finally the edge degrees of freedom. A straightforward calcu-
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lation yields:
»y x1 0 »n
2 x2 0 »
v x3 0
ya x4 0

SO0 R =~ OO0 0O
|
=
S}

SO OO OO OO ==

The first four rows are obtained by evaluating the x components of p; at the vertices
of P. The next four rows are obtained by evaluating the y components of p; at the
vertices of P. The last four rows contain only zeroes due to property (8.15).

To calculate the entries of matrix Rp, we start with the formulas for symmetrized
gradients:

) —eom) —ee) = (o ) e = (g o). es)= (7 7))

e =} o)-

Thus, according to (8.35), the first three columns of matrix Rp are zero vectors. Let
e; = (X, X;;1) be the i-the edge of P,i=1,...,4, np ¢, = (n,}x,n,-,y)T be its exterior
normal vector, and s; = np ¢, - ne; = 1 denote the orientation of the fixed normal
vector ne,. We use the trapezoidal quadrature rule which is exact for linear functions.
Its weights are given by e,y = %|e,~|. Now, formula (8.35) gives

nl,x|e1| —I—n4,x|e4| 0 niy e1| —I—n47y|e4|
nyxlex| +ni e 0 nyylea| +niyle|
n3cle3| +moler| 0 n3yles| +na e
n4x|ea] +n3 x|es) 0 nayles| +n3yles
0 n13y|e1| +n4,y|e4| n1,x|e1| +n4ﬁx|e4|
/F\;P: l 0 nz,y|e2|+n1,y|e1| n27x|e2|+n1,x|e1|
2 0 n3yles| +mylea|  m3xles| +moxler|
0 nayles| +n3yles|  naxles| +n3xles)

2s1 leq|(n1x)? 2s1ler|(n1,)? 251 leq]

253 |ea|(m2x)? 253le2|(n2,)? 257 |ea

253 |e3](n3.1)? 2s3les|(n3,)? 253 |es|

254 |e4|(n4,x)2 2s4]e4](nay 2 254 |ea|
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The formulas for matrices Np and /R;p show once again that the construction of the
mimetic scheme is not limited by the shape complexity of polygonal cells. The min-
imal required geometric information includes the position of mesh vertices and their
enumeration. O

8.2 Convergence analysis and error estimates

In this section, we prove optimal convergence of the mimetic discretization, see Theo-
rem 8.1. The convergence analysis is performed on a sequence of meshes that satisfy
the shape regularity conditions (MR1)-(MR3) stated in Sect. 1.6.2. Thus, we can
use properties (M1)—(MS5) discussed in this section. For the sake of presentation, we
consider the three-dimensional case; analysis of the two-dimensional case follows
readily.

8.2.1 Preliminaries and technical lemmas

The mesh property (M2) implies that the discrete norm (8.28) is spectrally equivalent
to

1
2

a2 o=he ¥ (%

2
vy — Wl + vf ) (8.38)
fedP “e=(v,V/)edf

We present three technical lemmas that are used in the proof of Theorem 8.1. The
first two lemmas are the vector versions of the similar lemmas proved in [84] for the
scalar case. Their extension to the vector case is discussed in [49] and we omit the
proofs here.

Lemma 8.2. For every polyhedron P, every face f of P, and any vertex vV € {, there
exists a positive constant |, which depends only on N and p, and is independent
of h, such that

3 liv - volPor, < nellvellE e € Xip.
veodf ’

Let @ € (H?*(Q))? be a vector-valued function and y be the discontinuous piece-
wise linear on £, vector-valued function such that its restriction to cell P is the
L?(P)-projection of ¢ onto (IP;(P))>. The projections of these functions satisfy the
following lemma.

Lemma 8.3. For every vector-valued function @ € (H*(Q))?> and its piecewise linear
approximation Y there holds

llph— whll,, , < 1hell@lme).

where v, is a positive constant that depends only on the constants A and ps appeared
in assumption (MR1).
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Let f be an internal mesh face and Py, P; be the two polyhedra that share this face,
so that f C dP| N dP;. Furthermore, let us define the jump of the normal component
of the strain £(y) across f as follows:

Ji(y) = €(¥p,) np, s +&(Yp,) - Np, 1. (8.39)

Lemma 8.4. For every vector-valued function ¢ € (H*(Q))?> and its piecewise linear
approximation Y there holds:

Y, W)l < BAI9l52 o) (8.40)
fe.z0

where the positive constant 3 depends only on A and ps of assumption (MR1).

Proof. We add and subtract ¢ and we apply the triangular inequality to obtain
le(Wp,) mp, s+ &(Wp,) me, fl12: ) < 3(llE(We, — @) ne, 422,
+||e(wp2—«p)npz,flliz(f)+||e(<p)-npl,f+6(<p)~np2,f||§z(f))- (8.41)

All components of ¢ belong to //2(2) and their normal derivatives are continuous
across the mesh faces. Thus, the last term in the right-hand side of (8.41) is zero.
For i = 1,2, from the Cauchy-Schwarz inequality and the Agmon inequality (M4) it
follows that

le(Wp, — @) mp e, < lle(Wp, — @),
< e (hE,.l HE(WP,- - ‘P)HiZ(P,-) +hPi||£(‘VP,- - q))Hill(Pi)) ’ (8.42)

The interpolation error estimate of assumption (MS5) and the inequality ||&(yp. —
O)llin ey <@l (e, give:

m 2
||8(WP,- - ‘P) 'nP,-,fH%Z(f) < CAg (C[ + 1)hP,- ¢ H2(P;)’ (8‘43)

To prove the lemma, we combine bounds (8.42)—(8.43) with (8.41), then apply the
resulting inequality to the left-hand side of (8.40), and finally change the summation
from faces to polyhedra. The assertion follows immediately with y3 = 3C4€"(C! +
)N 7 where N7 is the uniform bound on the number of faces in a cell (see assump-
tion (M1)). O

8.2.2 Stability analysis

In this section, we prove the discrete inf-sup condition and the discrete Korn-type
inequality. According to the theory of mixed methods [88], the uniform stability of
the mimetic discretization follows from these two properties. For simplicity of expo-
sition, we consider the homogeneous Dirichlet boundary conditions, i.e. I'® = I" and

g” = 01in (8.3). Hence, we search for the discrete velocity field uj, € X0
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8.2.2.1 The reconstruction operator

A reconstruction operator Rp associated with the polyhedral cell P is a useful the-
oretical tool for the stability analysis. It is never constructed in the practical imple-
mentation of the mimetic scheme. Let

Rp : X,p — (H'(P)N C°(P))’.

We assume that this operator satisfies the six conditions listed below.
(L1) The reconstruction operator is the right-inverse of the nodal projection oper-
ator on a subspace of Xj, p:

(Rp(Vp))IPN =Vpy Vvp € thp. (8.44)

(L2) The reconstruction operator is stable with respect to the mesh dependent
norm (8.28), i.e. there exists a constant CX independent of #p and P such that

Rp(ve) gy < C¥lIvellly, . Vvp € Xip. (8.43)

(L3) The reconstruction operator has minimal approximation properties, specifi-
cally, for every vp € X}, p it holds:

IRe(ve) ~Vullizp) < Cohpllvelll,, W eP. (8.46)

(L4) For every vp € X}, p it holds:
/ divRp(vp)dV = |P|diveve. (8.47)
P

(L5) The reconstruction operator is exact for linear vector-valued functions:

Re(yp) =y  VYye (P(P))°. (8.48)

(L6) The restriction of the reconstructed function Rp(vp) to a face f of P depends
only on the degrees of freedom vp .

Collecting all local operators yields the global reconstruction operator R such that
Rip(vi) = Rp(vp).

Let us discuss a few properties of these assumptions. Condition (L6) implies that
the local reconstructions inside any two adjacent cells have the same trace on the
common interface; hence, the global reconstructed function is continuous. Conse-
quently, the range of the global reconstruction operator is inside the functional space
(H'(Q2)NC%Q))*. Equation (8.47) implies that the reconstruction operator pre-
serves the discrete divergence in the following sense:

(Rp(vp))p = divp vp. (8.49)

Equation (8.48) guarantees that Rp preserves the kernel of the symmetrized gradient
operator. Indeed, the kernel of € contains the constant functions (rigid-body transla-
tions) and the subspace @ C (IP{(P))? (rigid-body rotations) defined by (8.29). The
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existence of a reconstruction operator is proved in Sect. 8.4. We have the following
Lemma proved in [49].

Lemma 8.5. There exists a positive constant Y4, which depends only on the constants
N and py appeared in assumption (MR1), such that for every b € (L*(Q))? and
vy, € X}, there holds

(b7Vh)h—/Qb'R(Vh)dV < Wh|bllz20)lllvallly, - (8.50)

8.2.2.2 A discrete inf-sup condition

A key condition in the convergence analysis of mixed schemes is the inf-sup condition
that is stated and proved in the following lemma.

Lemma 8.6. There exists a positive constant 3 independent of h such that for every
gn € Py, there exists a discrete velocity vj, € X, o satisfying:

[dthVh7‘1h]Qh =B an g, (8.51)
lIlvallly, < 1. (8.52)

Proof. Let us identify the mesh function g, with the piecewise constant function
Gn € L*(Q). We prove this lemma using the inf-sup condition (1.32) of the continuum
problem which states that there exist a positive constant § and a vector field v €
(H}(€))? such that

/P Gidivvad? = Bllill ) and [Vl < 1. (8.53)

Let v° be a piecewise linear Clément-type interpolant of v built on the tetrahedral
sub-mesh T, (see assumption (M2)). As shown for instance in [322], there holds

he IV = Vll2 ey + [[VVE |2y < ClIVVI2py VP € £ (8.54)

Let (v¢)! be the nodal projection of v¢ into Xp.0. We define the vector v, € X, o such
that

vy = vi(xy) Y e, (8.55)
/v-nde: 2 vy - D¢ @y + |f|ve vfe Z0. (8.56)
f veof ’

Since the integral argument in the left-hand side of (8.56) is not v° - n¢, vector vy,
differs from (v°)'. To show that v;, satisfies (8.51) we insert (8.55)—(8.56) into the
definition of the discrete divergence operator (8.20):

P diveve = 3 spy / v-ngdS = / divvd. (8.57)
feP f P
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In view of the scalar product definition (8.17), Eq. (8.57), and the first inequality in
(8.53), we derive:

[divh Vh,qh] 0, = Pg) |P|(dinVp)qp = Pezé /P(diVV)qp dav (8.58)
h h
— [ Gudivvar =BGl = Bligslo,- (8.59)

To show that v, satisfies (8.52), we consider a polyhedron P and note that

2
livellls, = IOBIIE,  +he 3 v, (8.60)

X,
P feaP

since the edge-based degrees of freedom of the nodal projection are zero. For an edge
e = (v,vy) of P, let f be a face containing e. Let K, be a specific triangle (chosen once
and for all) which belongs to the triangular partition Ty ¢ of f and contains at least
a part of e. Let Ke be a tetrahedron of T, p containing Ke. We denote the tangential
derivative of v¢ along e by dv°/dT. and the two-dimensional gradient of v¢ with
respect to a local coordinate system & on f by Veve.

By construction, Vv is constant in each tetrahedron of T. The standard scaling
arguments and property (M3) give the following bound:

¢ ¢ ov° 1/2 ove 2 1/2
IV (%) v(xv)|_/e = as<hl < - dS)

e

—1/2
< VeVl < Chp IV 2 - (8.61)

The face-based components of (v¢)! are zero, c.f. (8.11). Hence, using defini-
tion (8.38), inequality (8.61), and the continuity property of the Clément inter-
polant (8.54), yields the upper bound for the first term in (8.60):

NOVRIR o =he 3, V() = V(&) < CIVV|[Lop) < ClIVVII ) (8.62)
ecdP

To control the second term in (8.60), for every face f of P we choose a vertex v¢ € f
and fix it for the following developments. We recall that the quadrature rule provided
by the set of weights { ¥, } is exact for linear polynomials. Starting from (8.56), we
add and subtract v° and then the constant vector function v°(xy, ):

IF||ve| = /v nedS— Y V(%) neor, < /f(v(x)—vc(x))-nde

veof

+ / Ve(xgp)) medS + Y, (VE(xg) — vO(xy)) - meaxy
veof

=R;+Ry;+R3. (8.63)
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We bound the term R; by using the Cauchy-Schwartz inequality, inequality (M4)
and, finally, inequality (8.54):

3/2
Ri < Ch?(|V¥]| o). (8.64)
To estimate the term R, we consider the continuous piecewise linear function
@r(x) = (V(x) = v°(xg)) -mg  Vx ef. (8.65)

Let y be a polygonal curve that connects the points xy, and x € f. If f is convex, y
is simply the straight segment. Otherwise, ¥ can be built such that its length |y| is
bounded, |y| < Chp, where C is a positive constant independent of %. Let y(s) be a
parameterization of y such that y(0) = xy, and ¥(|y|) = x. Then,

_ [ 9%(s)
<pf(x)_/y M ar wxef.

Using this, we obtain the following bound:

dps(s
o1 < [ O a < ¥l < Chel Vol 666)

Since ¢@(x) is piecewise linear on f, its gradient is piecewise constant. Due to defini-
tion (8.65), we have |@¢[1(5) = |[V°| g1 (). Using this and (M3), we continue the chain
of inequalities:

[pr(x)] < Chpl[V el =) < Chpmax |Vl =r) < Chp max i ™| Vel |2
< Chp'"* max [V orl 27 < Chp ¥l o), (8.67)

where C is the generic constant that may change at any occurrence. We use inequal-
ity (8.67), the scaling |f| ~ h,zp provided by (M2) and the continuity of the Clément
interpolation (8.54) to derive the following bound for R,:

Ry = /f(vc—vc(xvf))-nde S/f|(pf(x)|dS

< C|f|h|;l/2|vc|H1(P) <cr/? Vi) (8.68)

To estimate term R3, we use the triangular inequality, the Cauchy-Schwartz in-
equality, the result of Lemma 8.2, equations (8.10), the scaling |f| ~ h%, given by
(M2), and inequality (8.62):

Rs = Z (ve(xvp) = Ve(x)) -meary, < ) VO(xy) — V(X)) @y

vedf vedf
12 1/2
<(Z k- tPon) (X o)
veof veof

1/2 3/2 3/2
< 1)l o 172 < RPN, o < Ch Ve (8.69)
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Thus, all terms in the right-hand side of (8.63) have similar bounds. We use once more
the scaling |f| ~ 4} and recall that the number of faces in P is uniformly bounded.
We have

h 2 _ 2
he X il = 3 (fllvel)” < Chp® (Ri+Re+Rs) < CIV ) (8.70)
fedP feaP| |
Inserting (8.62) and (8.70) in (8.60), and summing over cells, we obtain:
vallly, = X llivells <€ ¥ Ve <C. ®8.71)
PGQh ’ PGQh

The lemma’s inequality (8.52) follows by scaling the discrete velocity v;, by v/C,
where C > 0 is the mesh independent constant appeared in (8.71). m|

8.2.2.3 The discrete Korn-type inequality

By assumption (S1), the discrete bilinear form 7, (~, ) is coercive with respect to the
weaker semi-norm || - ||y, . In the convergence analysis, we need a stronger coercivity
which is the consequence of the discrete Korn-type inequality stated in the following
lemma.

Lemma 8.7. It exists a positive constant C' independent of h such that

|||Vh|||Xh < o vy X, VVh EXh,O . (872)

Proof. This proof uses the results of Sect. 8.4. Note that, since the space © used
in (8.29) is contained in (P1(P))?, it holds @F = 0 for all @ € © and all f € .Z,
see (8.15). Thus, both norms have a common part related the face-based degrees of
freedom. Therefore, in order to prove (8.72) it is sufficient to show that

[Valll, <C vi . Vi €Xpo, (8.73)
where
11w v, ||?
I — Vv
Ivall2= 3 Ivall?o, vallZo =PI Y, Y 3 V|e| (8.74)
PeQ, fedPe=(v,v)edf

Consider a polyhedron P. Let Rp be the reconstruction operator introduced at the
beginning of Sect. 8.4.2. One of its properties is that the function Rp(vp) is linear on
all mesh edges. Also, Rp satisfies condition (L.1). Thus,

1 ~
valll?, = PLY, Y, SIIVRp(vR) - Trell. (8.75)
fedPecof
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Since VRp(vp) - Tf ¢ is constant on each edge, we can also write

1 ~
NI, =1PL S 3 5 IVRe(vA) - el Bz (876)
fedPecof <7
Every edge e € dP can be split into edges of tetrahedra of the submesh T p. By

the construction, function Vﬁp(vh) is constant inside each tetrahedron; hence, the
usual scaling argument allows us to obtain the following bound:

vall?, <CIP| Y, Y e IVRe(vVA) - TrellF2enar)
ecdP TeT),: eNdT#0
<SCPIY Y kIR () g,

ecdP TeT),: eNdT#0

where A7 is the diameter of 7. From this equation, using first (M2) (|P| ~ h-’,’;) and
then (M3) of Sect. 1.6.2 yields

Ivalll2, < ClIVRe(ve)|[7p)- (8.77)

By the construction, R(v;) € (Hj (€2))*. Therefore, applying bound (8.77) in (8.74),
summing up the terms, and using the conventional Korn inequality, see for instance
[116], we have

Ivalll? < CIVR(VA)|2 ) < ClIEREM)IZ2 () (8.78)

Recall that £(8) = 0 for all 8 € ©. By the construction Rp preserves linear func-
tions. Hence, we can continue (8.78) as follows:

2<c inf ||&(R —0)|%,,, =C inf ||&(Rp(vp — OL))|?
Ivalll; < pthOHGl@H (Rp(vp) = 0)ll2(p) Pe%h;g@ll (Re(ve — 0p))ll72(p)

<C inf |V(Rp(vp — O5)|1% o 8.79
< pg‘zhf;g@” (Re(ve — 0p))ll72(p) (8.79)

The final property of Rp that we are going to use is (L3s) which states

IVRe (ve)ll2py < CliIvellly, , -

Inserting this bound into (8.79) and using definition (8.29), we have

2 : L2 2
[lvalll; <€ 5,2 [nf [|[ve —8plll}, , < Cllvallx,- (8.80)
This proves the assertion of the lemma. ]

Remark 8.8. Combining Lemma 8.7 with the stability assumption (S1), we obtain

(V) Z ClIVallly, Vi € Xio, (8.81)
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which represents the discrete coercivity property of the bilinear form. In accordance
with the theory of mixed methods [88], this coercivity property combined with the
inf-sup condition proved in Lemma 8.6 yield the uniform stability of the mimetic
discretization with respect to the norm (8.28) for X}, o and the norm (8.18) for Q. O

8.2.3 Error estimates

We now prove the main convergence result for the mimetic discretization. The ap-
proximation error is measured using the mesh-dependent norm (8.28) for the velocity
solution and the mesh-dependent norm (8.18) for the pressure solution.

Theorem 8.1. Let u € (H*(2) N H} (2))? and p € H'(Q) be the solution of prob-
lem (8.7)—(8.8) with I'® = 9Q and gP = 0. Furthermore, let uj, € X0 and pj, € Oy,
be the solution of the mimetic scheme (8.26)—~(8.27) under the assumptions (MR1)—
(MR2) (see Sects. 1.6.2) and (S1)—(S2) (see Sect. 8.1.4). Then, there exists a positive
constant C independent of h such that

s =iy, +11pn —Pligy < Ch (Iallzqay +Ipllingay ) - (8:82)

Proof. As observed in Remark 8.8, the mimetic discretization is uniformly stable
with respect to the mesh size /. Hence, according to [88], there exist a positive con-
stant ¢ and two discrete fields v, € X;, ¢ and g5, € &), such that

vallly, <1, llaallg, <1, (8.83)
and

or(|llun —wllly, +[lpn = p'llo,) < h(wy—u',vi) = [divivi, oo —p'] o,
+ [divy(uy —u'), 1], - (8.84)

Equations (8.22) and (8.27) imply that divj(uj, —u") = 0. Thus, inequality (8.84)
becomes:

afllwn—u"lll, + pr—p' ,) SA-B+C, (8.85)

where we set (using also (8.26))

A = o (wp,vp) — [divy Vi, pa) 0, = (b,vi),, (8.86)
B= ,sth(u vh)7 (8.87)
C = [div vy, p'] 0, (8.88)

Let y be a discontinuous piecewise linear function on £, such that yp = yp is the
L?-projection of u onto (IP1(P))*. We define y}, as the nodal projection of yp into
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Xp.p. We developed further the term B by adding and subtracting I[/IP:

B= 3 (Zhp(u'— b, ve) + e (Wb, Vi) =Ti+ 3 Shp(Wp,va)-
PEQ}, PEQ},
(8.89)

For each face f € .%, we choose and fix one of its vertices v, and indicate the corre-
sponding degrees of freedom, v,y € R?, by v¢ y. We use the consistency property (S2)
to transform the last term of (8.89) by adding and subtracting v¢ y:

S dp(Wpvi)= Y Y, Y (Viv—Viw) - (E(Wp) nps) ory

PeQ, PeQy, fcaP veof
+ 2 Y Iflvng-(e(wp) mpg)+ D Y, D iy (E(Wp) mpg) wry
PeQ), feodP PcQ), fedP vedf
=To+ T3+ > D Y viv- ((wp) -npy) ax,. (8.90)
PeQy, fedPvedf

We recall that the quadrature rule for face integrals provided by the set of nodal
weights {ax, } is exact for linear functions. Since, the derivative £(yp) - np ¢ is con-
stant over f, we have

S vio- (E(wp) mpy) @y = |fvey - (E(Wh) mpg) = /fo,v~(£(‘I’p) “npg)dS.
veof

We insert this in the last term of (8.90), then add and subtract Rp(vp), integrate by
parts, and finally observe that div(€(yp)) = 0 as £(yp) is constant:

> D viw “Dpf) Wfy = /va )-npg)dS
PeQy, fedPvedf PthfeaP
/ Ves —Re(ve)) - (6(wp) - nes)dS
PthfeaP
/RP (ve)- (e(¥p) -mps)dS
PthfeaP
T+ Y /E(RP(VP)):E(WP)dV. 8.91)
PGQh P

Finally, adding and subtracting €(u) yields

Y, [ eRe(ve))ie(vp) v

Pecq,’P

=Y (/PE(RP(VP)):(e(wp)—£(u))dV+/Pe(RP(VP));£(u)dV)

PEQh

. / wdV = Ts+A. (8.92)
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Now, we develop term C in (8.88) by using definition (8.17), condition (L4), and
adding and subtracting the pressure solution p:

C= [avivipg, = 3 [Pl(@veve)rb= 3 /P divRp (ve)ph dV
[S19/A cQ,

= 3 [(avRe(ve) (0 =p)dr + 3, [ (@ivRe(ve)pdr

PGQ}, PGQ},
— Te+ A, (8.93)

Using (8.7) with v = R(v},), we obtain
A=Ay = /Qe(R(vh)) ce(u)dV — /deivR(vh)dV _ /Q b-R(v))dV
and
A— (Al —Ay) = (b,vh)h—/gb-R(vh)dV:n. (8.94)

Finally, we substitute the expressions for the terms Ty,..., T7 into the terms A,
B, C and the resulting expressions into (8.85) to derive the error bound

7
o (ws = w¥ly, + 117w — 'llg, ) < X ITil (8.95)

i=1

Estimate of T;. We apply the Cauchy-Schwarz inequality and bound (8.83) to have

Til< 3 e —wpve) < X (" —wpllly,, lIvelly, ,

PEQh PEQh
1/2 1/2
T 02 12
< [ S - WPH'X;,,p] vl < [ S lu —up|||Xh_,,] . 699
PcQ), PcQ),
Since u" = u' + u® with u' ¢ = 0 for every face f and u®,, = 0 for every vertex v, in

accordance with norm definition (8.38), it follows that

[T S (A Y (8.97)

X,
hP fedP

The first term is bounded by Lemma 8.3:

' = wbllly, . < rhelulleq)- (8.98)
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To bound the second term, we apply definition (8.13) with u(x¢,) = “%,v instead of
v(X¢,,) and recall that the quadrature rule is exact for linear functions:

2
IF2 2P = /u-nfa’S— S u(xey) g o,
f veof

<2 /f(“—'lfp) neds” +2 Y (u(xsy) — Wp(xsy)) -mf r,y ’ (899
veof

We use Jensen’s inequality, the Cauchy-Schwarz inequality, the Agmon inequality
from (M4), the estimate of the interpolation error from (MS), and finally the scaling
a,h% < |f| from (M2) to obtain

2 Agm [ 7—1 2 2
Jw=we)-neds ™ < (F1C (! lu— ol +helu— Wl

< CHMCI|f| 1 fulZs ) < CIFPhp [ulp,

P)

where C is the generic constant independent of the mesh. Now, we apply an L*-
estimate of the interpolation error extended to polyhedrons (see for instance [78,115])
to obtain an upper bound for the second term in (8.99):

2
Y (u(xry) —Wp(xsy)) -max, < [ [|u — WPH%“(P) < CIf*hp |“|12qZ(p)-
veof

Inserting the last two estimates into (8.99) yields

b > < Chp lul3np)- (8.100)

Since the number of faces in a polyhedron is uniformly bounded by N7, c.f. (M1),
from Eq. (8.100) we obtain

Y e X P <CNT Y ipluffpe < CR G . (8.101)
Peq;, fedP Pegy,

We use inequalities (8.98), (8.101) in (8.97) and substitute the resulting expression
into (8.96) in order to obtain the final estimate of T:

ITi| < Chlullp2q)- (8.102)

Estimate of T,. Let us change the summation over the polyhedra into the summation
over the mesh faces. To this purpose, we define the jump of the normal strain across
mesh faces. Let f be an internal mesh face shared by polyhedra Py and P;. Then, we
set

Ji(y) = €(yp,) np, s +E(Yp,) Dp, , (8.103)
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which is a constant vector. The boundary faces do not contribute to T, because v, €
Xp0. Thus,

T2 = 2 z wav(vfﬁv_Vf,V) Jf('l’)
fe.70vedf

We apply the Cauchy-Schwarz inequality twice, note that Jr () is the same quantity
for all vertices of f, and use the first relation in (8.10) to obtain:

T2l < 30 X Ivew — vesll e () @x.y

fe70veof
1/2 1/2
< (2 X Ivee-violPers) (X WP Y or)
fc.Z0vedf fe.z0 veof
1/2 1/2
(3 3 vee—vislPony) (3 WP
PeQy, fcoPvedf fe70
Due to Lemma 8.4, it holds
X W = X W)l < Bhlule o (8.104)
fe.70 fe.70

Lemma 8.2 allows us to estimate the other factor. Recall that the number of faces in
P is uniformly bounded by N, c.f. (M1). We use this, Eq. (8.104) and inequality
[I[vallly, , <1 to obtain the estimate:

7 1/2 1/2
T2l < (Nn Y kellvalll} Bhlulieg ) <Chlullpg). (8.105)
P ()
PGQ}, ’

Estimate of T3. We start with definition (8.103) and note again that v¢ = 0 on the
boundary faces. This allows us to reformulate T3 as

Ts= Y Y [flven-(e(wp) -mpg) = Y, [flveng-Ji(y). (8.106)

PeQ, feoP fe70

Now, by applying the Cauchy-Schwarz inequality twice, we immediately obtain

mi< X Al < (3 ) (3 mer) . o)

fe.z0 fe.70 fe.70

We note that |f| 2 42 due to (M2) and ||| v,||| x, < 1. The definition of this norm given
in (8.38) leads to a chain of simple inequalities:

Y < ¥ hp 3 P <C X hellviallf  <Cho (8.108)
fe 70 PeQ, fedP PeQ,

Substituting (8.108) and (8.104) into (8.106) provides the final bound on Tj:

T3] < Chllul[p2(q)-
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Estimate of T4. Due to (L6), the traces of Rp, (vp,) and Rp,(vp,) on the common
face f C dP; N dP; coincide. Therefore, we consider again the jump of the normal
strain and rewrite T4 as

Ty= Y / (Vew — R(vi)) - Je(w) dS. (8.109)

We apply the Cauchy-Schwarz inequality twice to obtain

ITal < Y Nvew = ROV 2¢e) 16 (W) [l 2s)

fe70

12
< (2 Ive—R(w) ||Lz(f) ( S W) (8.110)
fe.70 fe.70

We develop (8.110) further by using the Agmon inequality from (M4) with the
constant function v¢y. Also, we use the reconstruction properties (L2)-(L3) and
[I[vallly, <1 to obtain:

||nyv - R(Vh)”iZ(f) < clem (hgl vaﬁ - R(Vh) ||22(P) +hp |R(Vh) |3—[1(F’))
<RV hp a5, < C*E"(CT) e 8.111)

The second factor in the right-hand side of (8.110) is bounded by Lemma 8.4. Ap-
plying this upper bound and (8.111) yields

ITa| <Chlul[p2).- (8.112)

Estimate of Ts. To estimate this term, we apply the triangular inequality, the Cauchy-
Schwarz inequality, and property (L2) of the reconstruction operator. Again, we use
[I[vallly, <1 and the interpolation error estimate given by (MS). This yields

TI< Y [ eRelve)):eWp—wdV < 3 Re(ve) e [¥e —uline

PGQ}, PGQ},
1/2 1/2
[Rp(vp)7n W —uliy
(3, woonie) (3 o vin)
R Int 172
< ¥l (c 2 e |u|H2(P) < Chluliq). (8.113)

Estimate of Tg. To estimate this term, we use the triangular inequality, the Cauchy-
Schwarz inequality, and property(L2) of the reconstruction operator. In addition, we
use |[[vy|[[, <1 and the interpolation error estimate from (MS5), but now for a scalar
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function:

ITel < Y, /P(diVRP(VP))(PI—P)dV < Y IRe(vP) ey 1P — Pllr2ee)

PGQh PEQ},
1/2 1/2
<( X Re(veine)) (3 10" plise)
€Ly €y,
R Int 2 2 1/2
<CRlIwilll, (€™ 3, B lplne) " < Chlplna): (8.114)
PEQh

Estimate of T7. To estimate the last term, we apply Lemma 8.5:

[T21 < vkl 20 IVallly, < Ch(l[ullg2) +12llm @)- (8.115)

Combining all estimates in (8.95), we prove the theorem. 0

8.3 Reduced edge bubbles formulation

In the mimetic formulation of the previous sections, the discrete velocity space Xj,
contains both the vertex-based and face-based degrees of freedom. The latter are
referred to as bubbles and are introduced only to stabilize the numerical scheme, i.e.
to prove the discrete inf-sup condition (8.51)—(8.52). This condition asserts that the
velocity space Xj, is sufficiently rich to control the pressure space Q. Although the
resulting mimetic scheme is stable, there is a subtle issue.

The number of vertices in a polyhedral mesh is usually bigger than that in a tetra-
hedral mesh with a same number of cells. If the number of vertices increases without
a significant change in the number of cells, the velocity space gets richer while the
pressure space stays essentially the same. Hence, on a polyhedral mesh the fulfillment
of the inf-sup condition may be expected to be easier and the face degrees of freedom
might not be necessary. In two dimensions, this is often the case and we can modify
the mimetic discretization so that the bubble degrees of freedom are added only when
they are really necessary, thus yielding a more efficient numerical scheme. As shown
in Fig. 8.1, on the mesh of square cells, the edge bubbles are needed roughly to every
fourth edge and on the polygonal mesh they are not needed at all.

To determine sufficient conditions for adding edge bubbles to the discretization,
we extend the macroelement technology of [333] to polygonal meshes. In the de-
velopments of this section, we require the mesh to satisfy assumption (MR3) from
Sect. 1.7 in addition to assumptions (MR1)-(MR2). For simplicity of the exposi-
tion, we consider the homogeneous Dirichlet boundary conditions, i.e. '’ = 9Q
and g” = 0 in problem (8.1)~(8.4). The notation introduce earlier are easily adjusted
to the two-dimensional case by using edges instead of faces. For example, X}, still de-
notes the space of the discrete velocity fields and JX;, ¢ is its subspace corresponding
to zero boundary conditions.
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Fig. 8.1. Dots mark the location of bubble-type degrees of freedom on three different meshes

We note that even if this section considers the two-dimensional case, the argu-
ments used herein can be extended to the three-dimensional case. The results of this

section are based on [47].

8.3.1 The modified mimetic discretization

Formally, the modified mimetic scheme reads exactly as in (8.26)—(8.27). The major
difference is in the definition of the discrete velocity field Xj,. This difference requires
some adjustments in the mimetic framework that we discuss below.

Let us decompose &, the set of the internal edges of a polygonal mesh, in the
union of two disjoint subsets, namely, & and &%, so that £° = £? U &*. A practical
construction of & and &~ is discussed later in the section.

» The space of discrete velocity fields X, is defined by attaching two degrees of
freedom to each vertex and one degree of freedom to each edge from &°. For v;, €
Xp,, the degrees of freedom associated with vertex v form a two-dimensional vector
v, that approximates velocity at the vertex. The edge-based degrees of freedom
Ve represent corrections to the normal velocity components on mesh edges:

Vi = (VV’ Ve)veV’,eeo‘b'

Similarly to Remark 8.1, the edge-based degrees of freedom can be used to define
a continuum vector-values function v, . of each mesh edge e such that:

(A1) On edge e € &9, the tangential component of Vh.e is linear and is uniquely

determined by the values of v, at two end-points of e.

(A2) On edge e € &%, the normal component of v ¢ is linear and is uniquely de-

termined by the values of v, at two end-points of e.

(A3) On edge e = (v,v]) € &?, the normal component of Vi.e 1S a quadratic func-
tion and is uniquely determined by the values of v, at the end-points of e and

edge-based value ve. The following relationship holds

€
/th.e'nedSZ >

(v +Vy,) e+ [e]ve. (8.116)
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The first term in the right-hand side of (8.116) is the one-dimensional analog of the
face integration rule in (8.13).

We define the projection operator (-)T from a sufficiently smooth space into Xj, by
restricting (8.14) to the edges of &?. A mesh-dependent energy-like norm on Xj, is
defined by

8vh 2
2 _ 2 e
Ivall, = 3, ivell? o livell?, = eezap|e|H =

2
PeQ, L*(e)

Wi, € Xy, (8.117)

where s is the local coordinate along e. This norm is equivalent to the norm given
in (8.28) for d = 2.

The space of the discrete pressures is equipped with norm (8.18), which is induced
by the mimetic inner product (8.17). We also need the mesh-dependent semi-norm

lanli =2 leflanlle  Van€ P,

ecs0

where (g5 le = gp, —gp, is the jump of g, across the internal edge e shared by two
polygons P; and P,. The assume that the normal vector ne points from P; to P,.

The discrete divergence operator divj,: Xj, — Qj, restricted to cell P can be written
using the old and new definitions:

1 Vy +Vy
L o (2 ) =
Pl 2 e V) =

e=(v,vi)

dinVp =

}; L/”Vhe npds.

ecdP

The bilinear form 27, : Xj, x Xj;, — R is required to satisfy the same stability and
consistency conditions (S1) and (S2) of Sect. 8.1.4.

8.3.2 Stability of the modified scheme

As noted in Remark 8.8, the uniform stability of the mimetic discretization is guar-
anteed provided that the following inf~sup condition holds [88]:

Condition 8.2. There exists a positive constant 3, independent of h, such that

divy vy,
sup 0vi V- G1lo > Bllgnllo,  Yan € P (8.118)
viex oy vallly,

This condition is crucial. If it holds, the convergence of the solution (uy, p;) €
X, x Oy, of the modified mimetic scheme to the exact solution can be proved as shown
in Sect. 8.2.3. Conversely, when it fails, spurious pressure modes may pollute the
numerical solution leading to an unsatisfactory result.

The equivalent inf-sup condition in Lemma 8.6 is proved for the case &2 = &°.
A key role in the analysis is played by the edge-based degrees of freedom that are
introduced to stabilize the scheme. Later, we show that Condition 8.2 may hold when
& is mush smaller than &°.
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8.3.3 A macroelement technique

In this section, we extend the finite element results of [333] for simplicial meshes to
mimetic discretizations on polygonal meshes that satisfy (MR1)—~(MR3). The main
result of this section, Theorem 8.3, follows from four preliminary lemmas, whose
proofs can be found in [333] and [47].

Let us introduce the concepts of a macroelement and the equivalence class of
macroelements. In view of Aassumption (MR1), for each integer 3 <n < .4 ¢ there
exists a reference polygon P, such that the following results hold. Each cell P € €,
with exactly » edges is the image of an invertible and continuous map

&p: P, — P. (8.119)

Furthermore, map @p and its inverse are piecewise W !*-regular with respect to the
triangular partition T p introduced in (MR2)~(MR3).

To prove these results, we define P, as a convex regular polygon with n edges
and build a triangulation of P, by connecting its vertices with its centroid Xp. Then,
for every element P € €2, with n edges, the mapping ®p is the only T, p-piecewise

linear function that maps the ordered vertices of P, to the ordered vertices of P and
Xp to the point Xp defined in (MR3). The W' regularity of ®p can be proved by
using the standard arguments from the finite element literature (see, e.g. [78, 115])
based on the shape-regularity assumption (MR2).

A macroelement M is a connected collection of polygons P. Let .# denote a set
of macroelements that cover completely the mesh €2y, i.e. for any P € €2, there exists
M € . containing it. Given M € .#, we introduce the local spaces:

X ={wieXm: w=0 WernM, vw=0 Vecsnomf,
Onm = Py -

Let v be the restriction of v;, to macroelement M. Furthermore, let &M indicate the
set of all the internal edges of M. We will make use of the following local norm and
seminorm:

lvmllly = X Hlivelll - ¥vwm € Xy,
PeM
qumlin =Y, lel’[am]le  VYam € Onm.

ecsM

Now, we introduce the equivalence class of macroelements. Note that the reference
macroelement used the definition below is not necessary formed by the reference
polygons.

Definition 8.1. We say that a macroelement M is equivalent with a given reference
macroelement M if there exists a continuous and invertible map @y : M — M that
satisfies four conditions below.

+ The map is surjective, @y (M) = M.
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e LetM= ur lﬁi and M = U | P;. Moreover, let P; and 5,' have the same number
of edges, n;. Then P; = @y (P;).

* Foreachi=1,2,...,m, we have (®Py)5 = Pp, 0 <D5__1, where @p, and @ are

P;
the maps from the reference element P, introduced in (8.119), onto P; and P;,
respectively.

« If&is an interior edge of M, then e = Py (e) is an interior edge of M.

We say that two macroelements are equivalent when they are equivalent to the same
reference macroelement. |

The following lemma has been proved in [333, Lemma 1].

Lemma 8.8. Assume that there exists a macroelement partition .# such that each
e € &Y is an interior edge of at least one and not more than L, macroelements, where
L, is independent of h. Moreover, assume that there exists a positive constant 3
such that

lam, divmVm]g,

sup

> Bilgmim  Vam € Onm
WweX? ,\ (0} [Ivmll[\y

Jor all M € .. Then, there exist a positive constant B such that

, di
sup [qn, divyvilo,

> Bolanln  Van € Pp. (8.120)
viex oy Vallly,

The following result extends [333, Lemma 2] to the case of mimetic discretizations
on polygonal meshes. Its proof can be found in [47].

Lemma 8.9. There exist two positive constants 3 and By, independent of h, such that

[gn, divyvp]
sup PTG > Bllgillo, — Balanls  Van € P
wiexnioy  lvallly,

The next result follows easily using Lemma 8.9. The proof, which is identical to
the finite element case, can be found in [333, Lemma 3].

Lemma 8.10. Let the stability estimate (8.120) hold. Then, condition (8.118) is true.
The following fundamental lemma is the extension of [333, Lemma 4] to the
mimetic discretization on a polygonal mesh. Its proof based on the compactness ar-

gument can be found in [47].

Lemma 8.11. Let X be a class of equivalent macroelements. Suppose that for every
M € X the space

M= gqu € Qh,M : [q|\/|7 divm VM]Qh.M =0 VYvm EX;?M} (8.121)
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is one dimensional and consist of mesh functions that are constant on M. Then, there
exists a constant s, independent of h, such that

[qM7 divM VM]Q},_M

sup > Bslgmlm  Vgm € Onm (8.122)
oty Tl

holds for all M € X.
The main result of this section follows by combining Lemmas 8.8, 8.10 and 8.11.

Theorem 8.3. Let .4 be a macroelement partition of €,. Suppose that

1. A is composed of a finite set of equivalence classes X;, i = 1,2,...,1, of macroele-
ments.

2. For each M € X; for some i, the space My in (8.121) is one-dimensional and
consists of mesh functions that are constant on M.

3. There exists L, € N such that each e € £° is an interior edge of at least one and
no more than L, macroelements.

Then, the inf-sup condition (8.118) holds.

8.3.4 Sufficient conditions for the stability

The results in this section provide a practical tool for identifying the stabilizing set &
of edge bubbles. Given a polygonal mesh €2, satisfying (MR1)—(MR3), we construct
a macroelement partition .# that verifies the hypotheses of Theorem 8.3. Let v € 7
be an internal mesh node that shared by at least three mesh edges and M, be the
macroelement collecting all polygons P that have vertex v, see Fig. 8.2. All such
macroelements M, v € 7°, cover (possibly with overlaps) the mesh €,.

For any internal edge e € &9, there exists at least one macroelement M such that
e is an internal edge of M. The only exceptions are meshes which include cells with
all vertices on the boundary, a case which is always possible (and wise) to avoid. In
addition, it is easy to verify that each internal edge e € &° belongs to at most two
macroelements. Thus, the third condition of Theorem 8.3 is verified.

— Frontiers ~

Fig. 8.2. Two examples of macroelements
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In order to check the first condition of Theorem 8.3, we need to count the number
of equivalence classes ; in .#. Two macroelements M, and M, are equivalent if

1. The number of polygons in M,, equals to the number of polygons in M,,. We
denote this number by &(v).

2. The number of edges in polygons Pi,P2,...,Py), ordered counter-clockwise
around vertex v, is the same as that in polygons P{, P, ..., P’ k(v)> ordered counter-
clockwise around vertex v'.

3. The number of edges in dP;NdP;, | is equal to the number of edges in dP;NIP} |
fori=1,2,...,k(v) (modulo k(v)).

4. The number of internal edges in M, which are in &2 is equal to that in M,,. The
same holds for their relative positions.

Due to assumption (MR1) of Chap. 1, each polygon has no more than .4 edges and
any set dP; N dP; has at most .4 ¢ —1 edges. The shape regularity assumption (MR2)
implies that all angles in the mesh are uniformly bounded from below. Therefore,
k(v) < K, with K, independent of /. As the consequence of the above arguments,
there exist a finite number of equivalence classes in .#, i.e. the first condition in
Theorem 8.3 is satisfied.

The second condition of Theorem 8.3 is more involved and we need additional
notations. Given an internal node v and the respective macroelement M,,, we denote
by &, the set of mesh edges that join at v. We also introduce subsets & = & N &>
and éab &,NEL. Let the integers Ny, N}, and N\’,’ indicate the cardinality of the sets
&, &, and &L, respectively.

Lemma 8.12. Assume that v is the only internal vertex in M. Let either (a) Nj <3
or (b) Nj = 3 and the three angles naturally defined by the three edges in & be less
or equal than w. Then, the space My defined in (8.121) consists of constant mesh
functions.

Proof. The proof is divided into three steps. Step 1. Let Nj = 3 as shown, for exam-
ple, on the left panel in Fig. 8.2. We enumerate the three edges in &7 as ej,e;, €3,
their normals as ny,ny,n3 and their tangents as 7, T, T3. We assume that 7; points
outwards of v and the corresponding normal n; is obtained by its clockwise rotation
by the angle 7/2:

T = (Tix, Tiy) = (— iy, Mix)-

Thus, the jump of g across e; is given by [[gm Jle; = gp,,, —¢p;- Without loss of gen-
erality, we can assume that 7| and 7, are linearly independent. The remaining edges
in &, are enumerated as ey, es, ..., and the same indices are used for their tangents
and normals.

Let g € A)y. Since arbitrary vector vy, in the definition of .4}, is zero on the
boundary of M, the straightforward calculation yields

0=[gm, divmvmlg,m = D>, D, QP/Vhe np.dS= Y [lqum] /Vh,e~lled5-
PeMecoP € ecéy
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We define w = v,. Using identity (8.116), the above equation gives

0=3 Y lellgulewnet 3 lellguleve  WweXly  ($129)

ecdy 665\;7

The formula for the jump mentioned above gives immediately

> lgmle=0. (8.124)

ecdy

Thus, in order to prove the lemma, we need to show that equations (8.124) and (8.123)
with respect to the jumps have only the trivial solution, [gm Jle = 0.

Step 2. By taking w = 0, v, = 1 for any particular edge in &2, and v, = 0 for all
the remaining edges, it follows that [[gy ] = 0 for all edges in &2.

Let now wy, w, form a basis in R?. We test condition (8.123) separately for wi and
w;. Combining the resulting equations with condition (8.124), we obtain a system of
equations

Sq=0, (8.125)

where q = ([gmJe; [qM Jley, [gMm s )» and the R3*3 matrix S has the form

lerlwi-ny Jealwi-my  |es|wy-m3
S=|leilw2-n;  |ealwa-my  e3[wy-m3
1 1 1

We need to show that S is the full rank matrix. Since that 7| and 7, are linearly
independent by the hypothesis, it holds

‘l,'1~111:‘l,'2'l12=07 1,'1-n2:—1:2-n17é0. (8.126)

We set w; = 7| and wy = 75, calculate the determinant of S and use (8.126), to
obtain the equivalent condition

lesnz - (Je2| T2 —[e1|T1) # [e1][e2] T2 - my. (8.127)

Due to the angle hypothesis of the lemma, there exist two non-negative numbers o
and o such that

T3=—01T1 — 0272, o >0, 0p > 0.

This equation immediately yields that n3 = —ojn; — opny. Inserting this identity
into (8.127) and applying (8.126), we obtain another equivalent condition:

les|(—oulez| —azler])T2-my # ler][f2]| 72 - my. (8.128)

Since o) and o are non-negative, (8.128) holds true. Therefore, the matrix S is non-
singular, which proves the lemma for N = 3.
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Step 3. The case N = 2 is actually simpler. Repeating the above arguments, we
end up with showing that the matrix

let|wi-ng  |ex[wy-mp

S=|leilw2-n; |ezlwz-my (8.129)
1 1

has full rank. Note that it could be rank deficient only when n; = nj, which is the
impossible condition. Finally, the cases N = 0 and N} = 1 are even more simpler
and therefore are not shown. O

Remark 8.9. Let N} = 3 and assume that the triple 71,72, 73 does not satisfy the
angle condition. Then, there exists a macroelement with edges ej,e;,e3 that have
the tangents 7; such that the matrix S is singular. Therefore, the angle condition in
Lemma 8.12 is sharp.

A stronger result can be obtained from Lemma 8.12. We define a fiontier Easa
collection of at least two adjoint edges such that E = dP; N dP; and P;,P, € M,,.
An example of two frontiers is given on the right panel in Fig. 8.2.

In Lemma 8.12 we assume that v is the only internal vertex of M,; thus, the
macroelements have no frontiers. In the case of more general macroelements, when
the frontiers appear, a distinction must be made: every internal boundary between
polygons in M is either a frontier or a standard (single) edge. The result below shows
that the frontiers can be essentially ignored.

Lemma 8.13. Let Ny indicate the number of edges in & which which are not a part
of afrontier. Let either (a) Nj < 3 or (b) Nj =3 and the three angles naturally defined
by the three respective edges be less or equal than 1. Then, the space My defined
in (8.121) consists of constant mesh functions.

Proof. Let E indicate any frontier in M, and E = dPNJP, with P;,P, € M,. More-
over, let v/ # v be one of the interior vertices in E and ey, e; be two edges in E adjacent
to v/. We take vy € X,?_M to be zero in all interior vertices except v/, and ve = 0 for
all edges in &°. We set w = v,/ for clarity of notation. By testing condition (8.121)
with the selected vy, we obtain

0 = [gm, divm VM]Q},.M = [qm ]]E (/ Vhe, 1P e dS+/ Vhe, "MP; e dS)
€] €
1 2
= [amlg §<|el|W'HP1,e1 +|e2|w-npltez) vw e R?,

where [[gm [lg = gp, —gp, denotes the jump across the frontier. It is obvious that this
equation holds true only when the jump is zero, i.e. gp, = gp,. Thus, for the purpose
of this proof the polygons Py and P; can be considered as a single element, and the
frontier E can be completely ignored.



256 8 The Stokes problem

This argument does not use any degree of freedom related to v nor the degrees
of freedom related to edge bubbles. Applying it to all frontiers in M,,, we conclude
that all of them can be ignored and the respective pairs of polygons treated as single
elements. The rest of the proof follows the proof Lemma 8.12. o

We have shown that, when the set &% is defined such that the conditions of
Lemma 8.13 are satisfied, the second condition in Theorem 8.3 holds true and thus
the inf-sup condition (8.118) is satisfied. This in turn implies the stability and (linear)
convergence of the mimetic scheme, following essentially the proofs in Sects. 8.2.2
and 8.2.3 for the three dimensional case.

The results of this section indicate that there exists a large variety of polygonal
meshes for which no bubble-type degrees of freedom are needed in order to have
stability. This is true, for instance, for any mesh with convex polygons where each
node belongs to at most three edges. The Voronoi meshes satisfy often this property.
For such meshes, we can set & = 0, i.e. use only the nodal degrees of freedom in
the mimetic discretization.

For a general mesh, it is sufficient to add bubble-type degrees of freedom only
where they are needed, as dictated by Lemma 8.13. A few such degrees of freedom
are often sufficient to stabilize the scheme and kill spurious pressure modes. For
example, on a logically square mesh one needs to add them approximately to every
fourth edge.

8.4 Existence of the reconstruction operator

Here, we construct a reconstruction operator Rp of Sect. 8.2.2 that satisfies properties
(L1)—~(L6). The construction starts with an auxiliary scalar reconstruction operator
and then extends it to the vector case to obtain Rp.

8.4.1 Construction of the scalar reconstruction operator

Let us shows that for every cell P € €, there exists a reconstruction operator Rp :
Yhp — H'(P)NC°(P) satisfying the five properties below. We remind that 7, p
denotes the restriction of the vertex-based space ¥, to cell P. Let vp = (v, )ycop be
the restriction of the discrete field v, € ¥, of P. A two dimensional version of the
present reconstruction operator is shown later in Sect. 10.2.3.

(L1s) The reconstruction operator Rp is the right inverse of the nodal projection
operator:

Rp (VP)(XV) =W Yv € ¥p. (8.130)
(L2s) The reconstruction operator is exact for linear functions:
Re(W)=y  VyeP(P).

(L3s) The reconstruction operator is stable with respect to the H'-type mesh de-
pendent norm defined by equations (6.15)—(6.16), i.e. there exists a positive con-



8.4 Existence of the reconstruction operator 257

stant C®, independent of / and P, such that

Rp (ve) |1 py < CR||vp 1P

(L4s) The reconstruction operator has minimal approximation properties, specif-
ically, for every vp € ¥}, p we have:

Rp(vp) — vy 2y < Cfhpllvellinp W E 5. (8.131)

(L5s) The restriction of Rp(vp) to a face f of P depends only on the values v, at
the vertices v of f.

Letvp € ¥}, p. We construct a scalar function Rp (vp) which is globally continuous
and piecewise linear on the auxiliary simplicial partition T, p of (MR2). Partition
Th‘p may have additional nodes inside element P, in the interior of its faces, and in
the interior of its edges. _

__ For each vertex v of P, we naturally set that Rp(vp)(xy) = vy. The restriction of
Rp(vp) to edge e = (v, V') is the linear interpolation of the vertex values v, and v,/

For a face f of P we proceed as follows. Let v of T, s be a node located inside it
and Ey be the set of all the other nodes in T ¢ that share an edge of T, s with v. Node
v belongs to the convex hull of the nodes in =, ; hence, its position is a convex linear
combination of the positions of these nodes. Thus, there exists a set of nonnegative
numbers {e@, s} such that

Xy = 2 Wy v Xy z = 1. (8.132)

vieE, VIeE,
We use these coefficients to define the reconstructed function inside f:

Rp(vp)(x,) = 3, @R (vp)(xys) =0. (8.133)

VIieE,

Repeating this construction for all the internal nodes of Ty ¢ yields a linear system
with as many unknowns as Egs. (8.133). The unknowns are the values of the recon-
structed function Rp(vp) at the internal nodes of f. The matrix of this linear system
is an M-matrix by the construction. It is nonsingular, and its inverse has nonnegative
entries [60]. Thus, a unique solution exists; moreover, it satisfies a discrete maximum
principle. ~

Similarly, we determine the values of Rp(vp) at the internal nodes of Typ. For
any such node v, we consider the set (denoted again by Z,) of the other nodes in T, p
connected to v by an edge. The node v belongs to the convex hull of the nodes in =,
and we can write:

Xy = z @,v’xv’y z (T)v,v’ =1, aj\/,v’ > 0. (8.134)

VeE, VieEy
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We use these coefficients to define the reconstructed function inside P:

Rp(vp)(x z @y Rp(vp)(xy) = 0. (8.135)

VER,

The reconstructed function is already defined on the boundary dP and we can use its
values there. Repeating this construction for all the internal nodes of Tjp yields a
linear system with an M-matrix. Thus, it has a unique solution that satisfies a discrete
maximum. _

Once the values Rp(vp)(xy) have been determined for all nodes of T p, the re-
constructed function inside each simplex of T p is given by the linear interpolation
of its nodal values. The maximum principle implies the following property:

max |Rp(vp)(xy) = Rp(vp)(xy/)| < max_ v —vy|  Vvp € ¥jp. (8.136)
\"A

VVGT;“P

Properties (L1s), (L2s), and (LS5s) follows immediately from the construction. To
show property (L3s), we use the fact that Rp(vp) is the piecewise linear function,
inequality (8.136), and the estimates (M2)—(M3) from Sect. 1.6.2:

IR (ve) 1 p) < CIP ma ||VRP(VP)||L“

( max |Rp(vp)(xy) _EP(VP)(XV')P)

< C|P| max 5
vveT |XV _X\/|

TeThlp

§C|_2|< max |VV_VV’|2> <C||VP||1hP
[

VAYES

Property (L4s) is the consequence of the following chain of inequalities,

~ 2 ~
Rp(vp)=w pap) < |P|ng12};<‘P IRp(vp) = vullf=r

<[Pl max (‘max|Re(ve)(x/) — Re(v)(x,)?),

TET},“: veT

and the argument used in the proof of (L3s).

8.4.2 Construction of the vector reconstruction operator

Let us construct a reconstruction operator Rp that satisfies properties (L1)—~(L6) of
Sect. 8.2.2. With a slight abuse of notation, we now use the symbol Rp to indicate the
reconstruction operators of Sect. 8.4.1 applied separately to each component of “1/,73

b (hp) — (H'(P)NC(P)) .

This operator ignores the bubble-type degrees of freedom associated with mesh faces.
It is easy to verify that, for any face f € JP, there exists a function (p}’ :P—R
satisfying the four properties below.
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(a) Function (p}’ is non negative and continuous on P.

(b) Function (p}’ is zero on dP /f. The trace of (p}’ on f depends only on the geometry
of f (and not the whole P).

© /f(deSzl.

(d) Function (p}’ is scaled uniformly for all P and f:

1/2 3/2
1= (1981116 = g 0Pl 20y ~ 082 -
Let vp € X;, p. We define Rp(vp) = EP(VP) +RtF’,(vP), where

RR(vp) € span{@fn}ec 7ongp

and is such that:

/R(VP) ‘nedS = z vy -ngoxy, +I[flvye Ve Z°noP, (8.137)
f veof
where o, are the weights in the integration rule (8.10).

It is immediate to see that property (L4) follows from the above definition and the
divergence theorem. Property (L1) follows from the construction, since the functions
(p}’ are zero at all mesh vertices. To show property (L2), it is sufficient to bound R%,

since the H'-seminorm of Rp is already bounded by (L3s) of the previous section. It
holds

Rp(vp)= Y oarefne  withof €R, (8.138)
fe.70noP
which implies
RR(VR) 71 (py SC X losPloF I ) SC 3 losPhp?, (8.139)
feoP feoP

where C is the generic constant independent of #p and P. The coefficient o can
be bounded by repeating some of the arguments used frequently in the convergence
analysis of Sect. 8.2.3. More precisely, first noting that

og| = /fOtquPnf'nf as< 'y Vv’nfwfﬁv_v/fEP(VP)'nde +[fl[vel, (8.140)
vedf

then adding and subtracting v y in the first term, using Lemma 8.2, the approximation
properties of Rp and finally applying the scaling |f| ~ 43, we derive

o] < 1 |[velll, .- (8.141)
Inserting this bound into (8.139) yields
RB(ve) ey <CllIvellly,, VP e (8.142)
To show property (L3), we observe that

1Re(ve) ~ wulPapy = IRe(ve) —woltap) + IRR (R By (8.143)
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The first term in the right hand side is controlled by using the approximation property
(L4s) of Rp. The second term is bounded as follows:

2 _
RR(VR) ) SC X sl 9P ll72p) < C 3 loxhp! < Chlllvelll}, -
fedP fedP '

Let us consider property (L5). Recall that y = 0 for any y € (P1(P))? and any
f € .Z. Thus, using definition (8.137) and observing that Rp preserves linear func-
tions, we obtain that RE,(WH) is zero. Hence, property (L5) follows directly from the
analogous property (L2s) of Rp.

Finally, property (L6) follows from (LSs) and property (b) of (pP.
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Elasticity and plates

“All progress is precarious, and the
solution of one problem brings us
face to face with another problem”
(Martin Luther King, Jr)

In this chapter we consider two different linear problems in structural mechanics. The
first one is the /inear elasticity problem, which we study in both the displacement-
pressure and the stress-displacement formulations. In both cases, we take a particular
care in devising mimetic schemes that are also stable in the incompressible limit. As
the second problem, we consider the bending of Reissner-Mindlin plates, which is a
very popular problem in engineering applications.

9.1 Displacement-pressure formulation of linear elasticity

Let us remind the equations for the mixed displacement-pressure formulation of the
linear elasticity (see Sect. 1.5.2 for more details):

—div(2ue(u)) +Vp=b inQ, 9.1)
divu—A"'p=0 in Q, 9.2)
u=g’ onIP, 9.3)

(2ue(u) +1Ip)-n=g" onTV, 9.4)

where u is the displacement and €(u) its symmetric gradient, p the pressure, b the
forcing term, pt, A the two positive Lamé functions describing the material properties,
g the boundary displacement, and g" the boundary force.

The mimetic finite difference scheme for the Stokes problem introduced and ana-
lyzed in Sects. 8.1 and 8.2 can be easily extended to the displacement-pressure for-
mulation (9.1)—(9.4).

Let us define the space ¥ = (H'(Q))?, where d as usual is the dimension of the
problem, and its subspace Vo of functions that equal to g” of I'”. Let O = L*(€)
if TV 5 0 or Q = L3(Q) otherwise. These spaces are defined in (8.5) and (8.6). The
variational formulation of problem (9.1)—(9.4) reads:

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI10.1007/978-3-319-02663-3_9, © Springer International Publishing
Switzerland 2014
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Findu € Vyp and p € Q such that
/ 2ue(u):e(v) dV—/ pdivvdV = (b, v, +(g", Vv el (93)
Q Q
/qdivua’V—/ A pgdv =0 Vge0.  (9.6)
Q Q

Let it and A ! be the piecewise constant functions defined on £, whose restriction
to a given polyhedral cell P is given by

1 — 1
= — -1 = — —1
Up |P|/pudV’ (A= Dp |P|/pl dv.

To discretize the linear elasticity problem (9.5)—(9.6), we consider the same discrete
spaces Xj, and Oj, of Sect. 8.1. We also consider the same bilinear form 27, p, but with
the slightly modified consistency condition given below (that we describe briefly,
referring to Sect. 8.1 for more details).

(S2) Consistency condition. Let v € [H'(P) N C°(P)]? be a vector field with the
property that the integration rule associated to the weights in (8.10) is exact for
any tangent component v- 7p ¢ on every face f € JP, see the definition of the space
Sy.p in Sect. 8.1.4. For every such function and every y € (IP{(P))? there holds:

e (VB Wh) = [ 2Mpe(v):e(w)dV. ©.7)

where the projection operators (-)! and (-)! are defined in Sect. 8.1.

In order to show that the right hand side in (9.7) is computable, we follow the same
identical steps as in Sect. 8.1.4. Integrating by parts, recalling (8.13) and applying the
quadrature rule (8.10) to each face f of P, we have

Ay p(Vh, W) = 2Mp /3P (e(w)-np) -vdS

=2y Y ope( X veur (W) me) @xy + [flvene- (2(w) mp) ),
fedP veof

where the coefficient op f = np ¢ - nf = £1 takes into account the orientation of the
outward face normal np ¢ with respect to the fixed face normal ns. As in all mimetic
schemes, the right-hand side can be calculated using the degrees of freedom of the
discrete space X}, ¢. The discrete weak mimetic formulation of problem (9.5)—(9.6)
reads as (we refer again to Sect. 8.1 for notation):

Find wy, € X ¢ and p;, € Oy, such that:
y(up,vi) + [divy, thph]Qh = (b,v), + (", Vi), Vi € X0, (9-8)

[diviup,qn], — X (2~ D)p[Plppge =0 Yan € On- .9
PEQh
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Due to the similarity of the discrete weak formulations for the Stokes and linear
elasticity problems, the stability and convergence of the mimetic scheme (9.8)-(9.9)
can be proved repeating the arguments of Sect. 8.2. Thus, we have the following
convergence result.

Theorem 9.1. Let u € (H*(Q))9 N Vo and p € H'(Q2) be the solution of the varia-
tional problem (9.5)~(9.6), with the material coefficient u € W'=(P) for all P € .
Furthermore, let ), € X), g and py, € Oy, be the solution of the mimetic finite difference
Jormulation (9.8)—(9.9). Under assumptions (MR1)—(MR2) (see Sect. 1.6.2), (S1)
(see Sect. 8.1), and (S2) there exists a positive constant C independent of h and A,
such that

Il = u"lly, + 1P = 2'llo, <Ch( 0 20+ P i)-

This convergence result is uniform in A, thus guaranteeing the good behavior of
the discretization scheme in the limiting case of incompressible elasticity (i.e., A =
+e0) and almost incompressible elasticity (i.e., A > ).

Remark 9.1. In [44] a VEM scheme of arbitrary polynomial order on general polyg-
onal meshes is proposed for the linear elasticity problem (9.1)+9.4). Such scheme,
that for the velocity variable makes use of a vector version of the discrete space in-
troduced in Sect. 6.3, can be easily recast in the mimetic framework, thus leading to
a MFD scheme of arbitrary order for the elasticity problem.

9.2 Stress-displacement formulation of linear elasticity
In this section we present a mimetic discretization of the linear elasticity problem fol-

lowing the mixed, or Hellinger-Reissner, formulation. Such a formulation, presented
in Sect. 1.5.2, uses stresses and displacements as the primary unknowns:

o =Ce(u) in Q, 9.10)
—divo=b in Q, 9.11)
u=g? onIP, 9.12)
ocn=g" onTV, 9.13)

where © is the stress tensor, b the external loading term, u the displacement vector,
C the tensor of elastic moduli, g” the boundary displacement, and g" the boundary
force.

This problem has a strong similarity with the mixed formulation of the diffusion
problem. Indeed, up to a substitution of vectors with tensors and scalars with vectors,
the structure of the two problems is very similar. On the other hand, there are two
obstacles that make the numerical discretization and analysis of the elasticity problem
more involved. The first one is the symmetry of the stress tensor, which in most
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methods is enforced weakly through a variational equation rather than directly in the
discrete space. The second one is the lack of uniform coercivity of the main bilinear
form in the important case of almost incompressible materials.

The approach considered here allows us to construct a mimetic scheme that is
uniformly stable and convergent. In particular, we have to derive new discrete anti-
symmetry and trace operators that respect given properties and develop an inner prod-
uct that mimics properly the non-uniform coercivity of the inverse elastic moduli
(1.41). The results in this section are based on [42].

The advantage of the stress-displacement formulation with respect to the displa-
cement-pressure formulation of Sect. 9.1 is a better approximation of the stress. In
addition, the numerical stress satisfies a discrete form of the equilibrium condition
(9.11) on each mesh cell P € €. The price to pay for these properties is that we have
to use a larger number of degrees of freedom. This trade-off between accuracy and
complexity is observed in many discretization methods.

Let as be the anti-symmetric operator defined in (1.40). The weak formulation of
the problem is as follows:

Find (6,u,s) € Hyy (div, Q) x (L*(R2))? x (L*(2))“ such that:

/(C_lozrdV+/ u-divdV
Q Q

+/Qs~as(1:)dV:<gD,r-n>1_D VT € Ho(div, Q), (9.14)
/Qdivo-vdV:<b7v@2 Wy e (L2(Q))4, (9.15)
/Qas(o)-qu:O Vg € L*(Q). 9.16)

In the rest of this section we focus on the three-dimensional problem, i.e. d = 3. The
numerical analysis of the two-dimensional problem follows the same steps.

9.2.1 Assumptions on mesh and data

We consider the mesh shape regularity assumptions introduced in Chap. 1. For sim-
plicity, we assume that the material properties it and A are piecewise constant func-
tions on mesh ), with values pp and Ap, respectively, P € €),. This assumption can
be interpreted as a data approximation. Moreover, we assume that there exist two
positive constants (1, and p* independent of / such that

e <p(x) < p* VxeQ. (9.17)

We do not make any further assumption on A4 in order to include the important case
of almost incompressible materials.
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The above assumptions imply that the tensor C is piecewise constant with respect
to mesh €,. Let Cp be its value over cell P. Moreover, we have

1
2u*

-1

T:T:iﬂdevtﬂz—i— (O > ——|deve|? Ve,  (9.18)

—|tr
2u+3A |
where dev stands for the deviatoric operator and || - || is the standard Eucleadian norm
on tensors.

Finally, for simplicity of exposition we assume homogeneous boundary condi-
tions, i.e. g” =0 and g¥ = 0.

9.2.2 Degrees of freedom and projection operators

Let us introduce the discrete spaces for stresses, displacements and anti-symmetry
Lagrange multipliers. These finite dimensional spaces are represented by a set of
degrees of freedom associated with mesh elements or faces.

* Let Q) denote the finite dimensional space whose degrees of freedom are collec-
tions of discrete vectors in R> associated with the elements P of Q:

4y € O => q = (qp)peq,, qp € R’. (9.19)

The dimension of Oy, is three times the number of elements, and each vector q;, €
0Oy, can be naturally associated with a piecewise constant vector function whose
restriction to P coincides with qp. With a small abuse of notation, we identify the
discrete fields in Q) with the respective piecewise constant vector functions.

» Let X}, denote the finite dimensional space whose degrees of freedom are a collec-
tion of vectors in R? associated with the mesh faces f:
~ <l 2 ) 3
Ty Xy = Th= (T, Ts, T¢ ) e p» T T5, Tf R, (9.20)
The dimension of Xj, is nine times the number of mesh faces. The restriction of 7,
to P is denoted by Tp = (75, ?}7 :E%)fep and Tp belongs to the linear space X, p.

The projection operator from (L' ())? onto 0y, is defined by

1
qI‘p:—/qu VP € ),
Pl /P

where the integrals of vectors are interpreted componentwisely. Hereafter, we will
use a shorter notation qp.

Given a mesh face f € .7, let & = (£1,&) € R? denote the position vector of
face points with respect to a local coordinate system chosen on f with the origin at
the barycenter of f. Each local vector (%f, 7y, T¢) can be associated with the linear
vector field defined on face f as follows:

1

~ 1.
(&) = T+ — 111 + — T 6o 9.21)
he he
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Hereafter, the symbol 75 may denote both the vector (%¢, 7f, 7;) and the respective
linear function (9.21). Thus, any discrete field T, € X}, can also be written as T, =
(T¢)feq, and for any face f it represents the normal component of a piecewise regular
stress tensor field defined on £2. In this respect, we also use the notation

Tps = (npf-Nf) Tr = Op £ T 9.22)

which represents the outward normal component of the discrete tensor field with re-
spect to the element P.

For any tensor field T € (L*(£2))**3, s > 2, with div T € (L?(Q))?, we define the
projection 7! in X}, by

[eepdg = (e plag  wle®ih) eT, (02

where P (f) is the space of polynomial of degree at most one defined on f. The
tensor-vector dot product 7 - n¢ is the conventional matrix-vector product:

3

(T-llf)i = 2 Tij ns 5.
j=1

Even if we use the same notation (-)! for the projection operators in Xj, and Oy, no
confusion is possible between them since in the former case the projection operator
is applied to tensor fields while in the latter case the projection operator is applied to
vector fields. Finally, the symbol X}, ¢ denotes the subspace of the discrete fields in
X), that vanish on all Neumann boundary faces f € I'V.

9.2.3 Discrete mimetic operators

We define three discrete operators acting on X}, that mimic the divergence, trace,
and anti-symmetry operators. Consistently with the Gauss divergence theorem, the
discrete divergence operator divy,: X; — Oy, is defined by

1
(divy, 7)) p = divp(Tp) = =7 Y, [ Tps-nedS VP € Q. (9.24)
P |fe¢9P f

=P
Following the same argument as in (2.25), we can easily prove the following com-
muting diagram property:

3x3

div,t' = (divt)' vz e (L5(Q))7 nH(div,Q), s > 2. 9.25)

Letx = (x,y,z) represent the coordinates in the global Cartesian coordinate system
and xp = (xp,yp,zp) the barycenter of element P in this coordinate system. For each
P, we consider the vector-valued linear functions

op(x)=| y—p 9.26)
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and

1 y—yp , z—zp X 0
yp(x)=|xp—x |, Wp(x)= 0 , Yp(x)=|z—2zp |. (927)
0 xXp—x yp—y

Note that V@p is the identity matrix. Until the end of this section, we assume that
T < (L°(P))**3, s > 2, and its divergence is constant. Using the integration by parts
and observing that the integral of @ on P is zero yield:

/Ptr(r)a’V:/PT:VrppdV:fgp/f(t-np,f)-fppdS. (9.28)

Consistently, we define the discrete trace operator trj, from Xj, to the space of scalar
functions that are piecewise constant on £2;:

1
t(Th)p = p(70) = o 3 /frp,f @pdS P EQ, (9.29)
fedP

From definition (9.23) and observing that @p is linear, it follows that

> [(xne)-ppds— ¥ [th-gpds. (9.30)

fedP feoP
By combining definition (9.29) with identities (9.28) and (9.30), we have

1
(T = 15 /Ptr(‘r)dV VP € Q. ©9.31)
Recalling definition (1.40) of the anti-symmetry operator, we now observe that
(as(0)), = 0:VyL VO cR¥3 =123

Therefore, the same argument as in (9.28) gives
/ (as(T))idV = ¥, / (T-npy)- Wb ds. 9.32)
P feop/f

This formula leads to the consistent definition of the discrete anti-symmetry operator
acting from JXj, into Qj:

1 .
(a5 (T0) )i = (a5 (0))i = o 3 [terwhds, i=1.23,vPe Q. 033)
feoP

By applying the same argument used to show (9.31), we obtain
1
as (7)) p = ﬁ/ as(T)dV WP e Q. (9.34)
p

In the next sections, we will use the restrictions of the aforementioned discrete oper-
ators to cell P denoted by divp, trp and asp.
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9.2.4 Weak form of discrete equations

We equip space O, with the following inner product:

[anpi]y, = 2. [ap.Pplp.  [ap.Pr]p =[Plap-pr. (9.35)
PGQh

We denote the global and local norms induced by (9.35) by ||| - ||| o, and Il {llp» re-
spectively. Regarding space X, we define the following norm

Ilwlly, = X lltelle, lizelle = 3 Arllwellfzp- (9.36)
PeQ, fcoP

Definition of a consistent inner product on space X, requires more work. This inner
product must mimic the natural form of the continuous problem as explained below.
For a moment, we assume the existence of an inner product with special properties
and leave its detailed construction to the next subsection. Let

[Th,5h]Xh = [w.8p]p VT,,8,€X, 9.37)
PEQ},
where the local bilinear forms [, -]p satisfy the stability and consistency conditions.

(S1) (Stability Condition). There exist two positive constants C,,C* independent
of 4 and A such that

[tp,8p], <C*|lzpllp [|8pllp VTP, 8p € Xpp, (9.38)

and
1
C. tp— gtrp(fp)ﬂ}: 2 <[tp.Tp]p VTP € Xyp with divpTp =0, (9.39)

where ]1}D is the projection of the constant tensor I.

This condition enforces the correct scaling of the inner product with respect to the
size of the element and the coercivity of the deviatoric part of the tensor, mimicking
the continuum bilinear form.

Let us define the following space

Sup ={t € (L*(P))*3 5>2, divt € (Po(P))*, 7-n¢ < (Pi(f))® VfeP}.

(S2) (Consistency Condlition). For all T € Sp, p and any function p' € (P(P))}
there holds

[(CoVP )b 7h]p = [ V' ey (9.40)
P

The consistency condition states that the inner product is exact when one of its two
entries is the projection of a linear function. The space Sy, p is infinite dimensional
and its functions cannot be calculated explicitly. Following the general approach de-
scribed in Chap. 4, the space Sj, p has been designed to be rich enough in order to
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satisfy (B1) (the interpolation operator is surjective from S, p to X}, p) and (B2) (con-
tains the constant tensors CpVp! with p! € (P;(P))?). At the same time the space
Sy, p must allow us to calculate the right-hand side of (9.40) using only the degrees
of freedom of Tp and the fact that p' is a linear vector-valued field (property (B3)).
Indeed, integrating by parts, using the properties of this space and recalling (9.23),
(9.25), we casily have

[(CpVp! )P,TP] —(divT)- /pldV—l— Y /1.’ npf)
fedP
—(divPT};)-/pldV+ Y /T{;.ppldS. (9.41)
P feop”’f

We can now present the weak formulation of the mimetic scheme:

Find (0p,wp,8) € Xpo X Op % Op such that

O:—|O

VT, € tho, (9.42)
"Vilg, TAEQN  (943)
Yq, € Op- (9.44)

[O‘h,’l’h] + [uh7divh1h] + [sh,ash(rh)]
X On
[dlvhoh,vh]

[35 1O, Qh]
Note that the second two equations are equivalent to divj,c;, = b’ and as 05, = 0.

Remark 9.2. Making use of (9.41) and recalling the surjectivity property (B1), the
consistency condition (S2) can be written in the following more practical form. For
all Tp € X, p and p' € (P;(P))?

[(CPVpl)}DaTP]P —(divpTp) /p dv + 2 /‘tpf
fedP

where we follow the usual notation = (Tp ¢)fcop. The above condition shows that
the space Sy, p is only introduced for constructive reasons but does not appear in the
practical definition of the bilinear form.

Remark 9.3. To ease the presentation, we assume that the measures of both I'” and
'V are strictly positive. The first condition avoids a floating domain. Regarding the
second condition, when the measure of I'" is zero, the discrete stresses must be re-
stricted to the subspace

{‘th € X, suchthat Y |P|trh(1:h)‘P:0}
PeQ;,

and the subsequent statements (including their proofs) have to be modified accord-
ingly, see [42] for details.
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9.2.5 Practical construction of the scalar product

The inner product (9.37), which satisfies properties (S1) and (S2), can be built follow-
ing essentially the same steps of the previous chapters. Let p}, i = 1,2,..,12, be basis
functions in (IP;(P))? such that the first three ones are constants and the remaining
ones have zero mean value on P. Let N; = (CpVp} )b and Np = (N, No,...,Nj2) be
the 9NP x 12 rectangular matrix. Then, the left-hand side of (9.40) can be written as

[(CpVP))p:Th]p = () Mp N, (9.45)

Since the (Cpr} is constant over the element, 6N‘F:7 components of vector N; vanish,
see (9.23). The remaining components can be easily computed using the mid-point
quadrature rule on each face f of P.

Using definition of the discrete divergence operator, the right-hand side of
Eq. (9.41) can be written as a dot product of two vectors:

~(@iveh)- [plav+ 3 [cheoplds—(th)R,

fedP
where
Rio
R = | R (9.46)
Ri2
and
| Sk 1
- dS = p;dS
/f : p; f hﬁ |\
Rio = : . Ri= , k=12 (947
/ p; dS / @ plds
fNPf hg NF

P

LetRp = (Ry, Ry, ..., R12). Inserting (9.45)—(9.47) into the consistency condition
(9.40), we obtain the matrix equation

Mp Np = Rp.

The following property follows immediately from the consistency condition and
is a consequence of the more general result of Lemma 4.1.

Lemma 9.1. The matrices Np and Rp satisfy
NERe = [P[Kp, (9.48)

where Kp is the symmetric semi-positive definite matrix:

o ® _
Kp = (K; );, 1> Kij:ﬁ/P(vap} :ijl.dV,
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Once the local matrices Np and Rp are computed, the local stiffness matrix Mp can
be built following the construction shown in Corollary 4.2:

Mp = Rp (RONp)"RE + 76 (1— Np(NINp) 'NE)

where (-)T is a pseudo-inverse matrix and 9p is a positive parameter. To satisfy the
stability condition (S1), we can take

1 ¥
P = Wtrace(Rp (Rg Np) Rg).

The theory developed in Chap. 4 guarantees the upper bound (9.38). To show the
lower bound (9.39), we need to modify slightly the proof of Theorem 4.2 using the
following lemma.

Lemma 9.2. Let Mg = Rp (RD Np)T RL. Then, there exists a positive constant C,
independent of h, A, and W, such that

C 1
5 Mp Tp = [Tp, Tp]p > ol = Stre(ee) [ (9.49)
Jor all Tp € img(Np).
Proof. The first identity in (9.49) follows immediately from the properties of the A-

term in matrix Mp. Moreover, since Tp € img(Np), it exists a linear function p! such
that Tp = (Cp Vp')L. The consistency condition (see also Lemma 4.6) gives

TEMS 7 = /P Vp': (CpVp')dV. (9.50)

Recall that Cp T = 2up T + Ap tr (7)1 for any tensor . Inserting this expression for
7 = Vp! in (9.50) and noting that tr (Vp') = Vp':1 = divp', we obtain

TH M Tp = 20p || VD' (|72 ) + Ap|[divp' |72 p) = 20p (VD' (|72 p)- 9.51)

Using property (9.31) of the discrete trace operator and the definition of interpolant
in (9.23), we have

1 .
trp(Tp) = ﬁ/Ptr(cpvpl)dr/ — tr(CpVp') = (2up +32p) divp.
Using this formula, we obtain
1 1 .
70 — 3up(Tp) Thl[3 = [|(CoVP! — 5 (2115 +3p) (divp Db 3

1 ..
=443 | (Vp' + 5 (divp' Db
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Finally, using the standard projection-scaling arguments based on Agmon’s inequal-
ity and the mesh shape regularity assumptions, we conclude that

1 .
2o~ yup(2e)Th b < CBlIVD! + 5 (divp )l p) < CUB VR ooy 9.52)

The assertion of the lemma follows by combining bounds (9.51) and (9.52). |

9.2.6 Stability and convergence analysis

Let us show the uniform stability of mimetic scheme (9.42)—(9.44) on X), o X Q) X Op,
and discuss its convergence properties. The discrete spaces are equipped with the
norms introduced above. Following the general theory of saddle-point systems [88],
the stability result stems directly from the discrete inf-sup condition (Lemma 9.3) and
the coercivity condition on the kernel (Lemma 9.4). Detailed proofs of these results
can be found in [42].

Lemma 9.3. (inf-sup condition). There exists a positive constant 3 independent of h
such that, for all vj,,qy, € Oy, there exists T, € Xj, such that

[Vhadivhth] o + [qhvash(rh)] o > B (|||Vh|||gh + |||(Jh|||Qh)7 (9‘53)
||Th||Xh <. (9.54)
We note that proof of this lemma uses the auxiliary simplicial partition T, intro-

duced in assumption (MR) and the stability result similar to (9.53)—(9.54) for the
BDM finite elements of order 1, see Theorem 4.6 in [82] and Example 7 in the same

paper.

Lemma 9.4. There exists a positive constant o, independent of h and A, such that for
all T, € Xy o with div, T, = 0 it holds

[Th7Th]Xh ZO(HT/;H/z\zh. (9.55)

By combining Lemmas 9.3 and 9.4 with the classical theory of [88], we can prove
the uniform stability of the method.

Lemma 9.5. The solution to problem (9.42)—(9.44) exists and is unique. Moreover, it
holds

ol + lllunlll, + llisallly, <C sup Lo <Cbllz2(q), (9.56)

v4€0) ||| |||

where constant C is independent of h and A.
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The convergence of the mimetic scheme is shown in the following theorem that
uses the broken semi-norm [42]

|b|§{1‘h(9): z |b|§]1(p)
PEQ},

Theorem 9.2. Let (0,u) be the solution of continuum problem (9.14)—(9.16) with
o € (H'(2))>3 and u € (H*(Q))>. Furthermore, let (6;,u;) € X, 0 x Oy, be the
solution of the discrete problem (9.42)—(9.44) under assumptions (MR) and (S1)—
(S2). Then, it holds that

o4 —a'lly, < Ch(|lullg2(q) + 1615 @) + blng)), (9.57)
div;,6), = (dive)', 9.58)
llws —u'llly, < Ch(l[ullg2iq)+blyisg)): (9.59)

where the constant C is independent of h and A.

Since the constant C is independent of A, the scheme is robust at the limit A — o,
i.e., for almost-incompressible materials. Note moreover that Eq. (9.58) implies that

ldivi (a5 —6")[ll,, < Chlblgaq)- (9.60)

The solution regularity required for Theorem 9.2 is the standard one for the dis-
cretization methods converging with the linear order. For example, such regularity
holds on all convex domains whenever b € (L?(£2))3, see Theorem 1.3. Here, in ad-
dition, we are assuming that b € /' (P) for all P € Q. This condition is expected to
be satisfied for most problems, since it still allows the load to jump across mesh faces.

Let us assume the existence of an exact reconstruction operator, i.e. an operator

RP: Xh,p — Shﬁp.

that satisfies the following properties
(L1) For every discrete field T, € X, p it holds

divRp(Tp) = divpTp,
Rp(‘t'p) -ng =1 VfedP.

(L2) The reconstruction operator Rp is the left-inverse of the projection operator
on the space of constant tensors:

Rp(ch) =¢ Vee (Py(P))>3.

(L3) For the considered mimetic inner product, the reconstruction operator Rp
reproduces it exactly:

[TP,5P]pZ/P(CEIRP(TP)iRP(5P)dV V1Tp,8p € Xjp.
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The label “exact” refers to property (L.3). We recall that the above operator is usually
not unique and not always guaranteed to exist, see Sect. 5.3 for a deeper study of exact
reconstruction operators. Under this exactness assumption, it is possible to show the
superconvergence of the discrete solution, like in Sect. 5.3.

Theorem 9.3. For any P € €y, let Rp be the reconstruction operator satisfying prop-
erties (L1)—(L3). Then, under assumptions of Theorem 9.2, it holds

[lwg —u'lllg, < CA™ (|ull2(q) + blaiacq)), (9.61)

where the constant C is independent of h and A, and 0 < s < 1 depends on the domain
Q and tensor C. In particular, s = 1 if Q is convex and C is constant.

9.3 Reissner-Mindlin plates
In this section, we present the mimetic discretization of the Reissner-Mindlin plate

bending problem, described in Sect. 1.5.3. We remind the strong form of the equa-
tions for a clamped plate subjected to a normal loading b:

—div(Ce(B))—y=0 in Q, (9.62)
—divy=1b in Q, (9.63)

y=xt 2(Vw—B) in Q, (9.64)

B=0 on 9%, (9.65)

w=0 on dQ, (9.66)

where B = (B, B2) represents the rotations, w is the transverse displacement, ¥ =
(71, 72) denotes the scaled shear stress, and C is the tensor of bending moduli,

Ct= ﬁ((l—\/)fﬁ‘vtr(f)l) (967)

This problem has attracted much attention in the last decades both in the engineer-
ing and mathematical communities, mainly due to its wide applicability and many
difficulties hidden in its numerical approximation. Nowadays, there exists a large va-
riety of finite element schemes for the Reissner-Mindlin plate bending problem, the
most famous and popular ones being the Mixed Interpolation of Tensorial Compo-
nents (MITC) class of methods.

The mimetic scheme presented below is based on [57] and follows the MITC phi-
losophy. As usual for mimetic discretizations, the scheme can be applied to general
polygonal meshes with possibly non-convex elements. The scheme uses one degree
of freedom per mesh vertex to represent the scalar displacement variable and two
degrees of freedom per mesh vertex plus one additional degree of freedom per mesh
edge to represent the vector rotation variable. Under certain mesh assumptions, the
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degrees of freedom associated with the edges can be dropped out, leading to a scheme
that uses only vertex degrees of freedom for displacement and rotations. Inspired by
the MITC approach, the mimetic scheme adopts a reduction of the shear energy in or-
der to avoid locking. All the reductions and differential operators, bilinear forms, and
degrees of freedom are defined carefully in order to preserve the important properties
of the continuum problem.

Let 7 = (H}(Q))? x H} (). We recall the weak formulation of the problem
stated in Chap. 1:

Find (B,w) € 5 and y € (L*())? such that

cz(B,11)4—/Qy-(Vv—n)dV:(b,v@2 v(n,v) € 2, (9.68)

/(Vw—B)~8a’V—K‘lt2/ y-8dV =0 V6 € (I(Q))%.  (9.69)
Q Q
where
a(B.m) = [ Ce(B):e(m)ar
E

:m/ﬂ((l—v)s(B):s(n)+vdideivn)dV. (9.70)

9.3.1 Assumptions on mesh and data

We consider again the mesh shape regularity assumptions (MR1)—(MR3) introduced
in Chap. 1. Let Tp . be the unit tangent vector to edge e of cell P. We assume that
these vectors are oriented counter-clockwise in each cell P.

We assume that the Young modulus £ and the Poisson ratio v in (9.67) are piece-
wise constant functions on mesh €2;,. Moreover, there exist two positive constants C,
and C* such that

C.<E(x)<C* VxeQ.

This uniform bounds are sufficient for many applications, while the condition of be-
ing piecewise constant can be interpreted as an approximation of the data and is in-
troduced only for simplicity. In general, it is enough to assume that £ and v are
(piecewise) W' and use their cell averages in the numerical scheme.

The above assumptions imply that the tensor C is piecewise constant with respect
to mesh €,. Let Cp be its value over cell P.

9.3.2 Degrees of freedom and projection operators

To discretize problem (9.68)—(9.69), we introduce a linear space of discrete trans-
verse displacements, ¥}, a linear space of discrete rotations, Hj, and a linear space
of discrete shears, I}, (see Fig. 9.1).

» The space ¥, is defined by attaching one degree of freedom to each mesh vertex
v. The value associated with v is denoted by v,. The collection of all degrees of
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Fig. 9.1. Degrees of freedom for the transverse displacement (left), rotations (center) and shear
stress (right)

freedom form the vector v, € ¥:
Vi = (W)ver
The number of unknowns is equal to the number of mesh vertices.

» The space H), is defined by attaching two degrees of freedom (i.e., a vector 1, €
RR?) to each mesh vertex v and one degree of freedom 7p . to each mesh edge of
each cell P:

N, = (N )yero U(MPe)peay,ecop-

For each edge e shared by two elements P; and P, we assume

nPl,e = _nP27e7 (971)

so that, effectively, we have only one degree of freedom per edge. The scalar
Np. Tepresents a bubble-type correction to the tangent component of the rotations
on edge e. The total number of unknowns is equal to twice the number of mesh
vertices plus the number of mesh edges.

» The space I}, is defined by attaching one degree of freedom Op . to every edge e
of every element P:

6= (Ope)Pcy,ecop-
Again, we assume that for each edge e shared by two elements P; and P,, we have
Op,e = —0p,e- 9.72)

The scalar Jp . represents the average of the tangential shear on edge e. The total
number of unknowns is equal to the number of edges.

The negative sign in (9.71) and (9.72) is due to the opposite orientation of tangent
vectors Tp, . and Tp, .. The restrictions of the above spaces to cell P are denoted
by ¥p, Hyp, and I}, p. We also introduce the proper subspaces %, 0 C %, p, Hyo C
Hyp,and I} o C I p that collect the vectors whose components associated with the
boundary vertices and edges are zero.
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Now, we define the projection operators from spaces of sufficiently smooth func-
tions to the discrete spaces %, Hj, and Ij,. For every function v € C°(Q) N H'(Q),
we define V! € ¥, by

V= (vi)\,eyf7 v\I, =v(xy)-

For every vector-valued function 1 € (C°(Q)NH'(Q))?, we define n' € Hj, by

nI = (nfx)vef U (nllz’,e)PGQh,eEBP7 ﬂ}/ = n(xv)7

and
n{; ———1 /n-rpedL—l(n[ +n! )-Tpe
€ |e| e ’ 2\ V2 ©

where v; and v, are the vertices of edge e. For every vector-valued function é €
H(curl, Q)N (L5(R))?, s > 2, we define 8" € I, by

1
8" = (8p c)pcay, ccp, &= H/‘S -TpedL.
e

Remark 9.4. The edge-based degrees of freedom for space H), are included for a sta-
bility reason. As for the analysis of the mimetic scheme for the Stokes problem in
Sect. 8.3, these degrees of freedom can be omitted for the same class of polygonal
meshes. On such meshes, we obtain a scheme where only vertex-based degrees of
freedom (for both the displacement and rotations) are used. We refer to [57] for a
thorough investigation.

9.3.3 Discrete operators and norms

Let vi and v; be the vertices of edge e such that Tp  points from v; to v2. We endow
the space ¥, with the following norm:

1 2
2 2 2
Wall7, = 2 Ivells,es lIvell,p =Pl Y, {H(sz _Vvl)] . (9.73)
PeQ, ecoP
In space Hj,, we consider the norm
1 2
2 2 2
Ml = 3 el Imell2, =P S (i (Im ~msll+Ine))
PEQh ecoP

where || - || is the Euclidean norm on vectors. Finally, in space Ij,, we consider the
following norm:

1845, = 3 18pl7p,  [18plFp =PI X, [6pel (9.74)

PeQ, ecdP

The norms on ¥, and Hj, are H'-type discrete semi-norms. They become norms on
the subspaces ¥}, and Hj, ¢ due to the homogeneous Dirichlet boundary conditions.
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Indeed, the finite differences appearing in both norms represent gradients on edges
and the scaling factors |P| were chosen to mimic the 77! (P) local semi-norms. Note
that for the edge-based degrees of freedom in H, no finite difference is needed since
it already represents a bubble correction. The norm on I}, is a discrete L*-type norm.

Let " = (yp —y,x —xp)T represent the linearized rigid body rotation about the
centroid of P. We define he following L>-type discrete seminorm on Fj,:

411, ZPZQ InelZ,p [InellZ,p =§gi£||lnp—c(n’”’){slll,z,hp- (9.75)
€42

Due to this definition, we have

mplla,p <llinell, e YNe < Hp. (9.76)

The primary discrete gradient operator Vj, : ¥}, — I}, is defined as

VVZ — VV]

(thh)\P,e - le|

It is immediate to check that
il = IVavallg,- 9.77)

The primary discrete curl operator curly, : I}, — &7, is defined as
(curl,8,)p = B Y Spelel.

In two dimensions, this operator can be considered as a rotated version of the discrete
divergence operator of Chap. 2. We also have the modified version of the commuting

property:
curl,8" = (curld)', (9.78)

where the second projection operator on &, in defined in (2.17).
The reduction operator I, : H, — I, is defined as

1
(M) jpe =MNpe+ z[nvl +1,,]-Tpe VP €L, VYecP.

9.3.4 Mimetic inner products and bilinear forms

We equip the space I}, with the inner product:

[7]17611]171: z [YP78P]17,.P’ (979)
PEQ}, :

The local inner product product on the element P must satisfy the stability and con-
sistency conditions.
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(S1) (Stability Condition). There exist two positive constants o, and ¢*, which
are independent of /, such that for every 8p € I, p and every P € €, it holds

0. /|8p|[F,p < (81 84]p, p < 0"(|8p[F, p- (9-80)

This condition mimics the coercivity of the continuum L? product and ensures the
stability of the mimetic scheme.
Let us define the following space:

Spp= 6 cH(curl,P): curld € Py(P), §-7p. € Po(e) Veec dP}.

According to the constructive path developed in Chap. 4, this space must satisfy three
assumptions (B1)—(B3). It is easy to verify the first condition (B1) that the local pro-
jection operator from Sy, p to I}, p is surjective, by building ad-hoc poblems on P. The
second condition (B2) is also trivial, since clearly S;, p contains the smallest approxi-
mation space consisting of constant vector functions. The third condition (B3), stating
that the right-hand side of the consistency condition can be calculated explicitly us-
ing only the degrees of freedom of 8 and the fact that p{!) is a linear polynomial, is
verified below.

(S2) (Consistency Condition). For every element P, every scalar linear function
p, and every 8 € S, p, it holds

[(Curlp™)!, 85] / Curlp) - 8 V. ©.81)

This condition asserts that the mimetic inner product is exact when one of its argu-
ments is the curl of a linear function (i.e. a constant vector field) and the other is a
function from S, p. Integrating the right hand side of (9.81) by parts, using the prop-
erties of S p and (9.78), we have

[(CurlpM)! 811] /Pp(l)curlﬁdV Y /p(l) (6-Tpe)

ecdP

— curlp &) /pl)dV Y 8l /p<‘>dL (9.82)
ecdP

Thus, the right hand-side can be calculated using only the degrees of freedom of the
discrete field 8 € I, and various integrals of a linear function.

Let a;, : Hy x H, — R denote an approximation of the bilinear form a defined
in (9.70). We break it into the sum of discrete local forms:

an(Bysny) = Y, anp (Bp,np) VBj.My, € Hy, (9.83)
PEQh

where

arp (Bp.mp) = [ Ce(B):e(m)dr.
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According to the general theory developed in Chap. 4, the local bilinear form a p
is required to satisfy the stability and consistency conditions. The stability condition
ensures the coercivity property on the subspace orthogonal to its kernel. It also uses
the correct scaling with respect to the cell size.

(S1a) (Stability Condition). There exist two positive constants o, and ¢*, which
are independent of 4, such that for every Np € H;, p and each P € €, it holds

o.|npll,p < anp (Mp,np) < ™[Nl p- (9-84)

Note that we make use of the weaker norm (9.75) in order to guarantee that the dis-
crete bilinear form has the correct kernel, spanned not only by the constant vector
fields but also by the “linearized rotation” n"’.

Let us define a functional space S, p of test functions (with a slight abuse of nota-
tion, we use the same name for all problems):

Spp = {n S (HI(P))Z D MN-npe € IPl(e) Ve € P}

This space is rich enough so that the projection operator () on Hy p is surjective,
which gives property (B1) of Chap. 4. It contains the space of linear functions (prop-
erty (B2)). The last property is verified below.

(S2a) (Consistency Condition). For every element P, every linear vector-valued
function p!, and every 1) € Sp.p, it holds

arp ((0)b,b) = [ Cre(p!)ze(m)ar. (9.85)

The consistency condition is the exactness property; namely, the discrete bilinear
form is exact when one of its arguments is a linear vector-valued function and the
other one is from space S, p. The integration by parts yields

Y [(Coe®")neo) mL

ecdP

= Y (Cpe(p') mp)- / ndL.

ecdP

app ((PI)I»HIP)

Using I, = ngyenp,e + L . Tp.e, we develop the edge integral as follows:

/ndL:nP.e/n'nP,edL+TP,e/n'TP,edL
e e e
= nP,e<|2£|(nvl +nv2) 'nP,e) +Tpe <|e|nP,e+ |2i|(71v1 +nv2) “Tpe)-
(9.86)

Inserting the last two formulas in (9.85), we conclude that the right-hand side of the
consistency condition can be calculated exactly using the degrees of freedom in Hj,
the cell geometry, and the linear function p', which is the property (B3) of Chap. 4.
The construction of the discrete bilinear form will be completed in Sect. 9.4.
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We finally note that we do not need to build an inner product for the deflection
space ¥}, in order to formulate the numerical scheme.

Remark 9.5. Making use of (9.82), (9.86) and recalling the surjectivity properties
(B1), the consistency conditions (S2), (S2a) can be written in the more practical form
that does not make use of the spaces S, p, exactly as in Remark 8.7. Therefore, as
usual, the spaces S, p are introduced for constructive reasons but do not appear in the
practical definition of the bilinear form.

9.3.5 Weak form of discrete equations

The mimetic scheme for the Reissner-Mindlin plate is defined as follows. First, we
introduce the following approximation of the loading term:

(bov),= X bp Y wpyw YW EY, 9.87)
PeQ;, vedP

where bh = [P|~! / bdV by the definition of the projector and {@p , },cop is a set of
o :

positive weights such that ¥, yp wp, = |P|. This approximation of the loading term
is exact for constant loads. Then, the mimetic scheme reads:

Find (B, wn,¥y) € Hpo X Vo x Ijo such that
ap (ﬂhvnh) + [Yh,Vth - thh]r}l = (bavh)h V(ﬂhv"h) € Hh,O X 7//1,0a (988)
[Viwn — By, 84] . —x ' 2[¥,,8,] . =0 V8, € L. (9.89)

It is immediate to check that the scheme (9.88)—(9.89) is equivalent to the follow-
ing scheme:

Find (B),,wn) € Hpo X Vho such that

K
ap (Bp:Mp) +t_2 (Viwn — I8y, Vivy — thh]l—h
= (b,vh)h V(‘nh, Vh) € Hh70 X 4//;170. (9.90)

The discrete operator associated with scheme (9.90) is positive definite and in-
volves only two unknowns, namely the displacement and rotation variables. There-
fore, it is generally more suitable to practical implementations.

9.3.6 A priory error estimates

The stability conditions (S1) and (S1a) imply that the bilinear form in the left-hand
side 0of (9.90) is semi-positive definite on ), x ¥},. Moreover, again due to the Dirich-
let boundary conditions, it is easy to verify that

K
ay (ﬂh,ﬂh) + t_2 [thh - thmvh"h - thh]rh =0
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only when both 1, and v, are zero mesh functions. Therefore, the bilinear form is
positive definite on Hj, ¢ X ¥}, o and scheme (9.90) has a unique solution for all /# and
t>0.

We now present the following convergence result. The proof makes use of the
analysis tools discussed in the previous chapters combined with technical arguments
from the MITC Finite Element literature and can be found in [57].

Theorem 9.4. Let (B,w,7y) be the solution of (9.68)~(9.69) with B € (H*(2) N
H}(2))%, we HX(Q)NH}(Q), and y € (H}(2))*. Furthermore, let (B, ws, 7))
be the solution of the mimetic problem (9.88)—(9.89) under the assumptions (S1)—
(S2), (S1a)—(S2a), and the mesh shape regularity assumptions (MR1)—-(MR2) of
Sect. 1.6.2. Then, there exists a constant C independent of h and t such that

I
1B = Bolla, + W' = wall v, +2ll¥' =¥y, < Chl|bll 2 .91

This theorem states the linear convergence of the method uniformly in the thickness
parameter ¢. The approximation properties of the method do not deteriorate when
the (relative) thickness of the plate is small. The scheme presented here is therefore
locking free. Extensive numerical verification of the converge estimate can be found
in [52], together with an extension to plate vibration and plate buckling problems.

9.4 Implementation of the method

In this section, we complete the construction of the local bilinear forms introduced in
the previous sections. We assume that the mesh satisfies the conditions of Remark 9.4,
i.e. we consider the case of only vertex-based degrees of freedom.

Let P be a polygon. In order to shorten the notation, we will use the symbol m
to denote the number of vertices in P, i.e. m = NF’,/. The vertices are enumerated
counter-clockwise as vy,..., vy, and v,,.1 = v;. The polygon edges are also enumer-
ated counter-clockwise and e; = (vj, vj+1).

In total, 3m degrees of freedom are associated with P, three with each vertex. We
order them as follows: first all the rotations, then all the deflections. The local vector
of unknowns (Np € H;, p and wp € W), p) becomes

{nvlanv27~~~7nvm7WV17WVz7~~'7me}'

According to (9.90), the matrix that represents the local bilinear form, denoted by
Mp € R33" can be broken into two terms:

Mp = Mp , + Kt *Mp ;. (9.92)

The first matrix is associated with the bilinear form g, p; the second matrix is associ-
ated with the shear energy term. Once the elemental matrices Mp are built, the global
stiffness matrix is assembled in the conventional finite element way.



9.4 Implementation of the method 285
9.4.1 Stiffness matrix for the bilinear form a; p

The local bilinear form a;, p uses only 2m degrees of freedom. Therefore, it can be
represented by a 2m X 2m matrix still denoted by Mp :

ah,P(BP7nP):BgMP,anP VBp.Np € Hyp.

The construction of matrix Mp , is based on the stability and consistency conditions
(S1a)—(S2a). Let q1,qq, . - -, qe form a basis in (P (P))?, for example,

() () ) ) () ()

where xp = (xp,yp)T is the barycenter of P. Let N; = (q;)b. Since, according to
Remark 9.4, no edge-based degrees of freedom are considered here, the explicit ex-
pression of vector N; is available:

(Ni2j—1 = (@i(vj))x,  (Ni)2j = (qi(v}))y,  j=1,...,m.

Thus, the components of vector N; are the x and y values of the linear polynomial q;
at the vertices of P.
Formulas (9.85)—(9.86) imply that

anp ()b Mp) =N/ Mponp =R mp  VOp € Hyp, (9.93)

where the components of vector R; are defined implicitly by

Rimp =

N —
M=

|ei| (CPe(ql) nP,e,-) : (nv,- + nv,-+1 ) :
i=1

Since £(q;) = 0 for i = 1,2,3, the column vectors R, R,, and Rj are the zero vector.
Let us introduce two rectangular 2m x 6 matrices Np = (Ny,...,Ng) and Rp =
(R1,...,R¢). Due to the arbitrariness of 11{;,, Eq. (9.93) implies that

Mp,N;=R;, i=1,...,6,
which can be written in the compact matrix form:
Mp ,Np = Rp. (9.94)

Matrix equations of this type appear in every mimetic scheme. Typically, it has a fam-
ily of solutions, whose derivation is discussed in Chap. 4. Here, we present the mem-
ber of this family that leads to the simplest practical implementation of the mimetic
scheme.

Remark 9.6. If edge-based degrees of freedom are required for stability, additional
rows are added to matrices Np and Rp. The remaining derivations are modified ac-
cordingly.
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Let us introduce the 6 x 6-sized real matrix Kp =N g Rp. According to Lemma 4.1,
this matrix is symmetric and semi-positive definite. Moreover, it has the following

block structure:
Ko — 03 O
P = 0 K* )

where K, is positive definite, O is a generic zero rectangular matrix, and O3 is a zero
3 x 3 square matrix. Then, Corollary 4.2 gives

M.« = Rp Kb RE + 7 (1= Np (N5Np) ~INB),

where ¥ is a scaling coefficient and KE is a pseudo-inverse matrix:

1 b= (%2
Yo = 5.-trace(Rp KL RE), KP:(O KQ)’

It is immediate to check that Mp , satisfies Eq. (9.94). The uniform semi-positive def-
initeness expressed by the stability condition (S1a) can be proved with the techniques
described in Chap. 4.

Note that matrix Mp , € R?7x2m i defined for the rotational degrees of freedom,
since the bilinear form a;, p is independent of the deflection variable. When it comes

to building the local matrix Mp in (9.92) one simply needs to augment Mp , with m
zero rows and m zero columns.

9.4.2 Stiffness matrix for the shear energy term

The matrix Mp ; for the shear energy term is obtained as a product of matrices rep-
resenting the operators V, and ITj, with the inner product matrix Mp € R”*™ repre-
senting the local bilinear form [, -|r; ., see (9.90):

[YP78P Ip = YTMP5P V’}'P78p eth

We enumerate the local degrees of freedom in I p following the enumeration of
edges in P. The construction of Mp repeats the steps of the previous section and
therefore is presented briefly.

Let g1 =x—xp, g2 =y —yp, and g3 = 1 denote the basis functions of the space
of linear polynomials on P. We set N; = (Curlq,) The consistency condition (S2)
(see formulas (9.81) and (9.82)) and the definition if the discrete curl operator imply

(N)"Mp&p=(R)"8p  VOpcThip.

where el
— e;
Ry =T foad” = [z = e} (axe) ~alxe,)).

Since | N; = ﬁi = 0, the consistency condition is trivially satisfied for ¢3. Let Np =
(N1,N,) and Rp = (R, Ry). Due to arbitrariness of vector 8p, we have two matrix
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equations: L

MpN; =R;, i=1,2,
that can be written as Mp Np = Rp.

. . L . . ~T=
Next, we introduce the symmetric semi-positive definite matrix Kp = N; Rp.
Now, Corollary 4.2 gives the solution to the matrix equation:

— = —l=T < T~ 1T
Mp =RpKp Rp+7p(I—Np(NpNp)'Np),

where 7p = trace(Rp R;lﬁ,ﬁ). The consistency condition (S2) gives immediately
that Rp = |P|]Iz.

The matrix Mp , appearing in (9.92) can be built by combining Mp with a matrix
Cp € R™*3" representing both the discrete gradient operator V), and the reduction
opertaor IT;,. Therefore, we set

Cr=(-GC,G)

where matrix C; € R”*?" represents the ITj, operator,

T T T
TP,el Tl;.el 01T><2 0152 ... TP,el
01x2 The, T?7e2 01T><2 vee 01x2
Cl:l 012 Oix2 Tpe, Tpe, - O1x2 ’
2 . . . . . .
Tgyem 012 01x2 012 ... Tg,em
and matrix C; € R”*" represents the V), operator,

—ler|™" e/t 0 0 ... 0

0 —lez|™! ea| ! o ... 0

0 0 —les|'les]'... 0

C, = les[ " es]

—len|™" 0 0 ... 0 ey

Finally, the local matrix for the shear energy term is given by

Mp , = Cf Mp Cp.
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Other linear and nonlinear mimetic schemes

“Classification of mathematical problems as
linear and nonlinear is like classification of
the Universe as bananas and non-bananas”

(Unknown source)

10.1 Advection-diffusion equation

Let © be a bounded, open, polygonal (polyhedral) subset of R, d = 2,3, with the
Lipschitz continuous boundary I". We consider the mimetic discretization of the
advection-diffusion equation for the scalar field p introduced in Sect. 1.4.3:

div(Bp—KVp)=b in Q, (10.1)
p=g” onT, (10.2)

where K is a bounded, measurable, symmetric and uniformly elliptic tensor, b €
L2(Q), g € H'/2(I'), B € C'(2)7 is such that divB > 0, cf. assumptions (H1)—
(H3) in Sect. 1.4.1. The diffusive and the total fluxes are given by

u=-KVp and u=u+fp. (10.3)

For simplicity, we will restrict the presentation of the mimetic schemes and their
theoretical analysis to the case of the homogeneous Dirichlet boundary condition
gP = 0. However, we will consider non-homogeneous boundary conditions in the
numerical experiments in Sect. 10.1.4.

Under these assumptions, the existence and uniqueness of a weak solution in
H(} (Q) follows from the fact that the bilinear form associated with problem (10.1)-
(10.2) is continuous and coercive. The advection-diffusion equation can be dis-
cretized by considering various techniques from the literature on finite volume and
finite element schemes. There are two possible approaches:

1. The diffusive flux is approximated by the low order mimetic discretization of
Chap. 5 and the advective term is treated numerically using a centered or an up-
wind discretization.

2. The total flux is selected as the primary variable, which leads often to a scheme
with a centered-type approximation of the advection term.

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI 10.1007/978-3-319-02663-3_10, © Springer International Publish-
ing Switzerland 2014
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The first approach is, seems, more popular in the finite difference and finite volume
(FV) communities, cf. [113,147]. The second one is often used in the finite element
community. Nevertheless, it is worth mentioning that both approaches have been
considered in the framework of mixed finite element methods, see [143, 144, 220].
In the mimetic finite difference framework, a numerical discretization of the total
flux has been proposed in [107]. A proper reformulation of the mimetic scheme as
a conforming method, using a finite dimensional subspace of H(div,Q), makes it
possible to perform the convergence analysis in a way very similar to that presented
in [143].

A systematic study of the two possible approaches, their advantages and draw-
back, has been carried out in [45], in which the advective term is treated numerically
using the unified formulation for the hybrid FV, the mixed FV and the MFD meth-
ods dubbed as the hybrid mimetic method (HMM), cf. [148]. We review the main
approaches in the next subsections. In Sect. 10.2.3, we present the convergence anal-
ysis and a priori error estimates. In Sect. 10.1.4, we illustrate the shock-capturing
behavior of the various mimetic discretizations.

10.1.1 Discretization of the advective term

We introduce a few geometric quantities that will be useful in the definition of the
numerical advection flux. Let dp ¢ be the distance between centroid xp of cell P and
the hyperplane containing the face f. Furthermore, let

g dpg-+dp ¢ forany internal face f € .#° shared by P and P’,
e dp¢ for any boundary face f € .Z7.

As in Chap. 5, the degrees of freedom of the vector variable u are associated with
the mesh faces and approximate the normal component of u on each face. In contrast
to Chap. 5, here, we prescribe one flux value up ¢ to each pair (P,f). Thus, each
internal face f shared by cells Py and P; has two fluxes, up, ¢ and up, . We denote

the linear space of the discrete fields collecting these fluxes by .%,:

Vi € Fp = Vi = (Vpf)pes feap-

Let .%), p denote the restriction of .%), to cell P. Note that the discrete space .%), in-

troduced in Chap. 5 is isomorphic to a subspace of ?/;h which is given by

Gy = {Vh € %, VP f = VP, f Vi=PiNP,fe jo}
In each cell P, we approximate the velocity field by a vector 8 Ip € %:pl

1
Bh = (BLoeor, Bhi= g /f B-npds. (10.4)
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FV-inspired mimetic discretizations. Several discretization schemes for the advec-
tion term are available in the FV literature including the second-order cell-centered
scheme, the first-order upwind scheme, the 8-scheme, and the Scharfetter-Gummel
scheme. In these schemes, the advective ﬂu/x\ of the exact solution p is approximated
by the numerical advective flux u?(py,) € .%), of the discrete scalar field p, € Z:

w(on) = (WP )pe s seom Cones i [Bponpgds.  (103)
We list below the schemes that we will consider in the section with numerical exper-

iments. Let f = PN P’ if f € .9 and that ppr = 0 if f € .F

» The second-order cell-centered scheme is given by the approximation

p + pp’
(u(pn))ps = ﬁP,f}%-

» The first-order upwind scheme is given by the approximation
(u’(pn))p.s = Bp trp — Bp ¢rprs

where s© = max(=£s,0).

* The 6-scheme is given by the approximation

(“a(ph))P.f:ﬁ;:f((l —O)pp—i—epp/) ﬂPf(( )pP/+6pP)
= (1 - 26)((ﬁ;fPP _Bp.’fpp/) + 9ﬂp7f(pp —l—pp/),

where 0 € [0,1/2]. This scheme is clearly intermediate between the cell-centered
and the upwind schemes.

* The Scharfetter-Gummel scheme [321] is given by the approximation

(W (pr))ps = dif(Asgwfﬂp,f)pp —Ag(~diBor)pp),  (10.6)
where s

Note that the first three scheme above can be also found in the FE literature, see
for instance [128,219]. As pointed out in [113], the Scharfetter-Gummel scheme
was written for an isotropic homogeneous material, i.e., K = |. This definition of the
advective flux is somewhat basic in the general case K # |, especially if some eigen-
values of K are small. Although the above definition of 4, ensures the L?-stability
of the scheme, it can produce quite bad solutions in the advection-dominated cases.
A better choice is provided by scaling 4, locally in accordance with the smallest
eigenvalue of K. If As is the smallest eigenvalue of Kp and Kp/, we take

Asg,K,f(S) = min(1, )“f)Asg <m> (10.8)
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instead of A (s) in (10.6). In this way, the numerical flux automatically and locally
adjusts the upwinding of the advection term depending on its relative strength with
respect to the diffusive term, without perturbing the consistency property of 45, More
details and background of this choice can be found in [45].

Once a FV-based discretization of the advective term has been chosen, the term
divBp in (10.1) is approximated by

(divBp)p ~ = 3 FI(u(ps))ps = dive (u'(pi)) o

1
|P| feadP
where divp is defined as in Sect. 2.2. The inner product on space %, introduced in
Chap. 5 is the sum of cell-based contributions; therefore, it can be naturally extended
to an inner product on space .%,. The mimetic approximation of the problem (10.1)-
(10.2) reads:

Find (wy, pp) € 5’7;, x Py, such that

[, Vil 7, = [divy, v, pp] 2, YR E T, (10.9)
divy, (w, +u(pp)) . qn) 2, = 5,94 2, Van € Py (10.10)

FE-inspired discretizations. In [107] a different approach, that uses the total flux
as the primary variable, is considered. The authors start with the mixed variational
formulation of problem (10.1)—(10.2) that reads (see [88]):

Find (W, p) € H(div, Q) x L*(Q) such that

(K 'a,v) — (p,divv) — (K 'Bp,v) =0 Vv e H(div, ),  (10.11)
(diva,q) = (b,q) Vg€ L*(Q), (10.12)
where u is the total flux defined in (10.3).

The mimetic discretization of the first term in (10.11) is considered in Chap. 5. To
discretize the advection term, we approximate the variational term as

(K'Bpv) = 3 [K'Bpvar = 3, pe[Bhvhlp,
Peq,”P

PEQ},

where the interpolated velocity field [31 € :/O:h is given by (10.4) and the local inner
products are the same inner product used to assemble |-, ]Z. . The weak form of the
mimetic scheme proposed in [107] reads: '

Find (uy,, pp) € Fp x Py, such that

(w, vi] 5 — [n,diviva] , — > pp[Bp.vilp=0 Vv, € Fy, (10.13)
PGQh

[diviy.gi] , = [0'q] ,  Van € Py (10.14)
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The convergence analysis of this scheme is carried out in [107] under certain as-
sumptions on the mesh shape regularity. When p € H?(Q), this analysis provides
the following estimate:

[ —ﬁllllfh +llen =P, <ChIPlq), (10.15)

where ||| -

is worth meh%ioning that the approximation of the scalar variable is superconvergent,
the result that can be shown theoretically under additional assumptions on the domain
shape, the source term, and the velocity field.

The convergence is proved for # — 0, but for larger / the scheme is expected to
become unstable when the problem is advection-dominated. This instability mani-
fests itself through various numerical artifacts such as undershoots, overshoots, and
especially oscillations. To improve the stability of the scheme, we modify the di-
vergence equation by adding a stabilization term that depends on the solution jumps
across mesh faces. Let f = PN P’ be an internal mesh face and np ¢ - n¢ = 1. The jump
of the discrete scalar field g, € &7, is defined by

_ and [[|- |||7h are the norms induced by the respective inner products. It

7

[gnlle = {qp — g: i jig (10.16)
Now, Eq. (10.14) is substituted by
[diviy +Jn(pn)san] ., = [B'an] ,,  Yan € P (10.17)
The stabilization term J,,(p;) € &), is given by
Ipile =7 X M8 2al (10.18)
P

where ¢ is a non-negative parameter that can be tuned to control the amount of nu-
merical dissipation added to the scheme.

The scheme (10.13), (10.17) formally differs from the scheme introduced earlier,
since the advection term is now imbedded in the total flux. However, it is still possible
to extract an explicit form of the numerical advection flux and reformulate the new
scheme like a FV scheme. To this purpose, we define the vector

U, = (Upf)pe7, feop, UPf=1UpPf —PPﬁé,f- (10.19)

with this definition, Eq. (10.13) resembles Eq. (10.9); therefore, uy, plays the role of a
pure diffusive flux. Noting that the stabilization term Jj,( ph)‘P is written as a balance
of fluxes, allows us to identify the advective flux as

(u(pn))p.s = prBps +% Be ¢ [onlls, (10.20)

so that (10.17) is equivalent to div,(u, + u’(ps)) = b/. The stabilized
scheme (10.13), (10.17) can therefore be written as:
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Find (wy, pp) € % x Py, such that

ll;77 Vh [dlvh thph] 7, Vv, € %, (10.21)
[dth (uh —|—ua(ph)) qh] [ ] Yqn € Py, (10.22)
(wp + (' (pn)) p ¢+ (s + (u(P1))pr g = 0 vfe 7% (10.23)

Note that the diffusive flux u;, and the advective flux u“(p;,) are not conservative

when considered separately and, therefore, belong to the linear space .%), but not to
7). However, their sum is conservative in view of Eq. (10.23).

10.1.1.1 Unified setting

We present a unified formulation for the numerical discretization of the advection
term. It includes the FV-based discretizations, as was noted in [113], and the MFD-
based discretization (10.21)—(10.23). The unified formulation allows us to simplify
the software implementation and carry out a unified theoretical analysis.

Let us consider two functions 4,B : R — R and define the numerical advective
flux as the collection of real numbers

u’(pa) = (w(Ph)P.f) pe 5, seop (10.24)

such that .
(u’(pn))ps = Z (A(deBp +)pp + B(diBb ¢)ppr). (10.25)

We consider the scheme (10.21)—(10.23) with this definition of the advective flux.
The schemes presented earlier correspond to different choices of 4 and B:

* Centered scheme: A(s) = 5 and B(s) = 5

» Upwind scheme: A(s) =s* and B(s) = —s.

o O-scheme: A(s) = (1—260)s" + Os and B(s) = —A(—s).

* Scharfetter-Gummel scheme: A(s) = Ag(s) is defined by (10.7) and B(s) =
—Asg(—s). The locally scaled Scharfetter-Gummel scheme is obtained by using
Asg k. defined by (10.8) instead of 4.

* Stabilized MFD scheme: A(s) = s+ %|s| and B(s) = —§|s|.

The first four choices lead to a conservative definition of the numerical advective
flux, whereas the last one does not. However, in all five cases, the total conservation
is ensured by (10.23). Note that functions 4 and B have the following properties:

(AB1) 4 and B are Lipschitz-continuous functions and 4(0) = B(0) = 0.
(AB2) A(s) + B(s) = s for any real number s.
(AB3) One of the following two alternatives holds:

(AB3s) A(s) + B(—s) = 0 and A(s) — B(s) > 0 for any s.
(AB3w) The function s — A(s) + B(—s) is odd and there exists C > 0 such that
A(s) — B(s) > —C]s| for any s.
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We will refer to (AB3s) as the strong (AB3) condition, and to (AB3w) as the weak
(AB3) condition. Condition (AB3s) is satisfied by all FV-based discretizations listed
above, whereas the MFD-based discretization satisfies (AB3w). In fact, condition
A(s) + B(—s) = 0 is the one that ensures the conservation of the numerical advective
flux (10.25). As noted in [45], conditions (AB1)-(AB3) are sufficient to carry out
the theoretical analysis of the scheme (10.21)—(10.25), with slightly different results
depending on which alternative in (AB3) is satisfied.

Remark 10.1. Equation (10.22) can be rewritten in the finite volume form as the local
(cell-based) flux balance equation:

31 (up s+ (u(pn))p ) :/de VP e Q, (10.26)
feoP ' P

Remark 10.2. Nothing prevent us from choosing in (10.25) different functions 4 = A*
and B = Bf for different edges f, provided that they satisfy conditions (AB1)~(AB3)
and that their Lipschitz constants remain uniformly bounded as # — 0. This setting
would allow us to make a finer tuning of the scheme, e.g. to reduce the numerical
diffusion due to upwinding or to adapt the scheme to the mesh geometry.

10.1.2 An alternative hybrid discretization of the advection term

Another discretization of the advection term is obtained by using face-based values
pr in (10.25) instead of pp/. These values appear in the hybrid mimetic scheme (see
Chap. 11) and approximate average value of p on mesh edges. Let p; = (pf)fc.7,-
We define

u (i, Pn) = (W (Phs PR))PA) pe s, scop (10.27)
such that
((pn,pn))pf = dlf (A(ds Bp.¢)pp + B(ds Bp £) ) - (10.28)

The substantial difference with the previous choice (10.25) is that no property
imposed on 4 and B ensure that the fluxes u?(pj,p;,) are conservative. However,
this does not bring additional difficulties in the theoretical analysis provided that the
following weaker form of property (AB3) holds.

(AB3h) One of the following two alternatives holds:
(AB3hs) A(s) — B(s) > 0 for any s.
(AB3hw) There exists C > 0 such that A(s) — B(s) > —Cl|s| for any s.
The hybrid-mixed mimetic formulation can then be written as:
Find (pp,wp, pp) € P, x % X Ay, such that

[llp,Vp] = |f|VP7f(pP — pr) Vvp € %:p, (10.29)
P
feoP
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S 1] (up £ + (0 (1 1) )P :/de VP e, (10.30)
feoP P
(i + (0 (pns ) p g+ (Wi + (0 (p1s B1))pr g =0 W€ F°, (10.31)

where the local inner product is the same as above.

Remark 10.3. An important advantage of using (10.27)—(10.28) instead of (10.24)—
(10.25) is that the unknowns pj, and uy, can be eliminated locally by the static con-
densation. This procedure is common for hybrid-mixed discretizations and provides
a reduced linear system with respect to the unknown pj. Moreover, when the dis-
cretization of the advection term leads to a significant numerical diffusion, as for
example in the case of the upwind scheme, the hybrid-mixed formulation is likely to
be less diffusive.

10.1.3 Convergence analysis

The convergence analysis is based on the mesh regularity assumptions (MR1)—
(MR3) of Sect. 1.6.2. Let us introduce the following mesh-dependent norms for the
space Fy:

vl =i val, llvell =[ve,vel Vv, € .7 (10.32)
h h.P

The mesh functions in &), can be identified with the €,-piecewise constant func-
tions and the inner product in 22, is, in fact, the L2-scalar product for such functions.
Therefore, it is quite natural to consider the > norm. However, we will also find it
useful to carry out the analysis by using the discrete /] -like norm:

2

p—qp’

o= 3 3 e (E20) vpem a0y
PeQy, fedP f

where P’ is the cell on the other side of f € 9P N.% 0 and, to ease notation, we assume
that gpr = 0 if f € 9P N.Z?. We will also need a discrete ' norm on 2, x Ay:

~ f ~
IgdliZ, = 3 3 ige g Vigndi € Zx A (1034
PeQ), fcoP P.f
It is easy to see that this norm is stronger than (10.33). More precisely, there exists a
constant C that dependents only on the mesh regularity constants in (MR1)-(MR2)
such that

llgnllin < CllI(gnsgu)llly,,  Y(qn,qn) € Pnx Ap. (10.35)

In the following, we will use the symbol < to indicate an upper bound that holds up
to a positive multiplicative constant independent of /4. Also, we will trace explicitly
the constants that may be zero depending on which alternative, (AB3s) or (AB3w),
is considered. The proofs of the results in this section can be found in [45].
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Lemma 10.1. Assume that (H1)—(H3) of Chap. 1 hold. Let €y, satisfy the mesh as-
sumptions (MR1)—(MR3) in Sect. 1.6.2. Furthermore, let w?(qy) be the advective
Slux, g, € Py, given by (10.24)—(10.25) with A and B satisfying conditions (AB1)—
(AB3). Then, there exists a constant Cy > 0 that only depends on 3,4, B and the mesh
regularity constants such that

1 , Y ~
> [ advBar < 3 (@ @)pilap a0+ ChllandnllE, (1036
Q PeQ), fcoP

Jor all (qn,qn) € Py x Ap. Moreover, Cy = 0 if (AB3s) holds.

The lemma below is the key point in the a priori error analysis of scheme (10.21)—
(10.25). To state it, we first notice that, thanks to (10.21), we can introduce the set
of face values p;, € Ay, such that (10.29) holds even if uy, is not conservative. To this
purpose, we simply define ps through |f|(pp — pf) = [up, Vp|p where vp ¢ = 1 and

vp ¢ = 0 for f' # f. Then, taking the vector v;, € .%, in (10.21) that vanishes on all
mesh faces except f and is such that vp ¢ = 1 and vpr = —1 allows us to show that

ps does not depend on P. This definition also ensures that p¢ = 0 whenever f € .%.

Lemma 10.2. Assume that (H1)—(H3) of Chap. 1 hold. Let £y, satisfy the mesh as-
sumptions (MR1)—(MR3) in Sect. 1.6.2. Furthermore, let u?(qy,) be the advective flux
given by (10.24)—(10.25) with A and B satisfying conditions (AB1)—(AB3). Then, for
the solution (py,uy,) to scheme (10.21)~(10.23) and py, introduced above, we have:

1 . -
Y lwpuelp+ 5 [ divBpiav < [ bpavCinllmnpll?, (1037
PGQh 2 Q Q '

where C| is the constant of Lemma 10.1.

Corollary 10.1. Under the assumptions of Lemma 10.2, we have

1 ns B, < 161120 lPall 20y + Ci (o, Bu)IIZ - (10.38)

Inparticular, for all h small enough (or any h if (AB3s) holds), the scheme (10.21)—
(10.23) has a unique solution.

Remark 10.4. For the hybrid-mixed mimetic scheme (10.27)—(10.31) with 4 and
B satisfying (AB1)-(AB2) and (AB3h) there hold results similar to that given in
Lemma 10.2 and Corollary 10.1.

The main convergence result for (pj,uy, pp) € Pp, X fh X Ay, is stated in the fol-

lowing theorem. This theorem uses projections p' € 27, and u' € 5“7, of the exact
solutions and the projection p' € A, given by

1
P =(pher, pi= m/{pd& (10.39)
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Theorem 10.1. Let p € H*(Q) be the solution of the continuous problem (10.1)-
(10.2) under assumptions (H1)—(H3) and u be given by (10.3). In addition, let K
be locally Lipschitz continuous on £y, Furthermore, let (wy, pj,) be the solution of
problem (10.21)—(10.22) under assumptions (MR1)—(MR3) and (AB1)—(AB3) with
either h small enough if (AB3w) holds or any h if (AB3s) holds. Then,

wi—u' = +pn— P+ en =P r =PI, S Blplle ). (10.40)
From Theorem 10.1 we get immediately two corollaries.
Corollary 10.2. Under the hypotheses of Theorem 10.1, it holds
u,—u 7 S hllpllaz ), (10.41)
where W' = —(KVp —|—[3p)I and uy, = u, +u(py).
Corollary 10.3. Under the hypotheses of Theorem 10.1, it holds
1p' = pillr @) S APl ),

where r = dz—_dz ifd>2andr < 4ooifd=2.

Remark 10.5. Repeating the arguments used in [45] for proving Theorem 10.1, it
possible to show that a similar error estimate holds for the hybrid-mixed formula-
tion (10.29)—(10.31), which is based on the numerical advective flux (10.27)—(10.28).

Remark 10.6. It must be noted that the results of this section are not uniform with
respect to the Peclet number, i.e., the estimates degenerate when the advection be-
comes dominant. Uniform estimates cannot be derived under the unified framework
considered here, since it includes the methods that are not stable in this limit. Never-
theless, numerical tests show the good behavior of the methods also in the advection-
dominated case, see Sect. 10.1.4

10.1.4 Shock-capturing behavior

The shock-capturing capability of the discretization methods is illustrated with two
test cases where strong layers are developed in the advection-dominated regime.
More numerical tests can be found in [45]. We solve the advection-diffusion equation
in  =]0, 1[x]0, 1] using the mesh shown in Fig. 5.2.
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For convenience, we use short labels for the schemes introduced above. Recall
that these schemes use the same discretization of the diffusion term as described in
Chap. 5 and differ by the numerical treatment of the advective flux:

» Cnt, two-point centered flux formula;

» Upw, first-order upwind flux formula;

» SG, the Scharfetter-Gummel flux formula with the local adjustment (10.8);
» NoStab, central mimetic scheme without any form of stabilization;

» Jmp, central mimetic scheme with the jump stabilization (10.17).

Exponential boundary layers. We study experimentally how different schemes ap-
proximate a solution with an exponential boundary layer, which is formed on the
downwind sides (with respect to ) of the domain boundary. To this purpose, we
solve problem (10.1)—(10.2) with the scalar diffusion tensor, K = vI, v = 1074, and
velocity field B = (2,3)”. The Dirichlet boundary conditions and the loading term
are such that the exact solution is:

plxy) = (x - ez(H)/V) (y2 - 33@—1>/v) .

This problem is strongly advection-dominated and the solution has two exponential
boundary layers near the top and right sides of 2.

In Fig. 10.1, we compare the numerical solutions produced by four scheme: SG,
Upw, NoStab and Jmp. Panel (a) and (b) show non-oscillatory solutions produced
by schemes Upw and SG. From panel (¢) it is evident that without a stabilization, the
numerical solution produced by the NoStab scheme suffers from severe oscillations.
These oscillations disappear (see panel (d)) when we add a stabilizing term to the
divergence equation based on the solution jumps across mesh edges. However, this
stabilization introduces significant numerical diffusion leading to a poor resolution
of the boundary layers, worst than in the FV-based schemes.

Exponential and parabolic boundary layers. Now, we solve problem (10.1)—(10.2)
with the Dirichlet boundary conditions on I':

p(x,O):(l—x)3, p(xvl):(l_x)27 p(O,y)Zl, p(lay):()'

Again, we take the scalar diffusion tensor, K = vI, v = 10~*, but change the velocity
field to B = (1,0)7. The solution has one exponential boundary layer at the side x = 1
and two parabolic boundary layers at y = 0 and y = 1. Figure 10.2 shows the discrete
solutions produced by four schemes: SG, Upw, NoStab, and Jmp. The conclusions
are similar to that in the previous case of the single exponential layer.
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Fig. 10.1. The exact solution has two exponential boundary layers on the right and top sides

of 2. Numerical solution is displayed at mesh vertices using a linear interpolation of cell-

centered data. Severe oscillations are visible in plot (

for the central mimetic scheme without

)

C

any stabilization (note the different scale along the axis Z). These artifacts disappear in plot

(d) where the jump stabilization is turned on
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=

(¢) - NoStab (d) - Jmp

Fig. 10.2. The exact solution has the exponential boundary layer on the right side and two
parabolic layers on top and bottom sides of £2. Numerical solution is displayed at mesh vertices
through a linear interpolation of cell-centered data. Severe oscillations are visible in plot (c)
when we use the central mimetic scheme without any stabilization (note the different scale
along the axis Z). These artifacts disappear in plot (d) where the jump stabilization is turned on
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10.2 Obstacle problem

The elliptic obstacle problem can be considered as a model problem for variational
inequalities (see, e.g, [176]). It is the problem of finding the equilibrium position of
an elastic membrane which is constrained to lie above a given obstacle and whose
boundary is held fixed. This problem has found applications in a number of different
fields as structural and fluid dynamics. The examples include fluid filtration in porous
media, optimal control, and financial mathematics [221,226]. In this section we in-
troduce a lower order mimetic scheme for the obstacle problem that is an extension of
the mimetic scheme for the diffusion problem described in Sect. 6.2. The presented
results are based on [17].

10.2.1 The problem formulation

Let Q be an open, bounded, convex set of R2, with either a polygonal or a C>-smooth
boundary I'. Let g := & with g € 2(Q). We define the linear space

VYy={veH' (Q): v=gonT}.

Let us introduce the function y € H?(£) such that y < g on I, representing an
obstacle, and the related convex space of admissible solutions:

H ={veV;:v>yae inQ}. (10.42)
We are interested in solving the following variational inequality:

Findu € % such that
o (u,v—u) > b(v—u) Yve x. (10.43)

where the bilinear form 7 (-,-) : H'(2) x H'(2) — R and the linear functional
b(-): H'(Q) — R are defined by

o (u,v) :/ Vu-VvdV, b(v) :/ bvdV.
Q Q

Under the above data regularity assumption, the elliptic obstacle problem (10.43)
is well posed (see e.g. [81] and [308, Corollary 5:2.3]) and has the unique solution
uc H*(Q)N Y.

10.2.2 A mimetic discretization

LetQ C Qbea polygonal approximation of £ such that all the vertices of Q that are
on the boundary of €2 are also on the boundary of £2. We denote a polygonal partition
of Q by €2, and we assume that this partition satisfies the assumptions (MR1)-(MR2)
introduced in Chap. 1. Let, as usual, ¥ and & denote the set of mesh vertices and
edges. In addition, we denote the set of internal vertices and edges by #© and &°,
and the set of boundary vertices and edges by ¥ and .Z7.
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10.2.2.1 Degrees of freedom and projection operators

To discretize problem (10.43), we employ the construction of Sect. 6.2 which is sum-
marized below. The first step is to select the degrees of freedom for the approximation
space ¥, a vector v, € ¥}, consists of vertex-based degrees of freedom, one per mesh
vertex:

Vhp = (Vv)ve’//-

Its restriction to cell P is denoted by vp € ¥}, p. The dimension of 7}, is equal to the
number of mesh vertices. We also define the discrete space 7, o C 7,

Ve =1 € : vV:g(xv)Vve7/‘9}

of the functions that satisfy the Dirichlet boundary condition. Accordingly, %, de-
notes the space of discrete functions that vanish at the boundary nodes.

We finally introduce the projection operator from the spaces of continuous func-
tions v € C°(Q) N H'(Q) to the discrete space 7

V= (vi)\,eyf7 v\I, =v(xy)-

10.2.2.2 Discrete norms and bilinear forms

We endow the space ¥, with the following discrete seminorm

1 2
ald= 3 wle=3 P Y [Hm—m} L (1049)

PeQ, PeQ, ecdP

where v and v; are the two vertices of edge e. The finite difference (V2 —v'1)/|e|
represents the tangential gradient along the edge. Therefore, || - |1  is a H'()-type
discrete seminorm, which becomes a norm on % ¢.

Let %, : ¥, x ¥, — R denote the mimetic approximation of the bilinear form 7.
The discrete form 7, is identical to the one introduced in Sect. 6.2 for the Poisson
equation. It is built element-by-element:

Ay (up,vp) = Y, yp(up,vp).
PEQ},

The local discrete bilinear forms satisfy the consistency and stability conditions. Let
Spp be a subspace of H'!(P) N C?(P) of functions that are linear on the edges e of P.

(S1) (Stability Condition). There exists two positive constants ¢, and ¢* such that
for every vp € ¥, p it holds:

G*HVPH%.h.P < %,P(VPWP) < G*”VPH%,}:,P
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(S2) (Consistency Condition). For every y € IP{(P) and every v € S, p it holds:
Ayp (v wb) = / V- VydV =Vy- Y npﬁ/vds.
P ecdP €

Let @p1,- s Op N be positive weights associated with vertices VIse Vg of

04
polygon P and such that 2?1’1 wp ; = |P|. We use them to approximate the loading

term:
24
Ny

1
b= 3 b Ywops, b= —/de. (10.45)
PEQ}, i=1 |P| P

10.2.2.3 The numerical scheme
Let us introduce the discrete convex space that approximates .7
T ={Vh € Vg : Ww2>v(x,) We 7V}
The mimetic discretization of problem (10.43) reads:
Find uy, € %, such that
427;,(14;77\);7—14;7) > (b,vy —up)p Yy, € J&). (10.46)

Due to the stability property (S1), the bilinear form .27, is coercive on the subspace
of ¥, of the mesh functions that are orthogonal to constant functions. Therefore,
since ., C ¥}, is convex and closed, the existence and uniqueness of a solution for
the discrete problem (10.46) follows from standard arguments [115]. The uniform
stability of the discrete problem with respect to /4 is an implicit consequence of the
analysis that follows.

10.2.3 Convergence of the method

In this section, we prove the linear convergence of the proposed mimetic scheme.
In order to shorten the notation, we will use the symbols >, <, and 2 to represent

>~

equivalences and bounds that hold up to a constant uniformly in the mesh size.

10.2.3.1 A reconstruction operator
Let us show that for all P € €, there exists a local reconstruction operator
Rp: Yp — H'(P)NCO(P),

that satisfies the six properties listed below. The global reconstruction operator R is
defined such that R(v4) p = Rp(vp). A three dimensional version of this same recon-
struction operator has been presented in Sect. 8.4.1.
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(L1) The reconstruction operator is the right inverse of the projection operator:
RP(VP)(XV) =w W€ 4//;,7|:>7 Vv € dP.

(L2) The reconstructed function Rp(vp) is linear on every edge e of P.
(L3) The reconstruction operator is exact on linear functions:

Rp((p")p) =p' Vp' €Pi(P).
(L4) The reconstruction operator is uniformly bounded in the energy norm:
IR (ve) | py S lIvellinp  Yve € Vp.

(L5) The reconstruction operator is uniformly bounded in the L? norm:
2
[Ro (B By < X i ey v € HA(P),
k=0

(L6) The reconstruction operator satisfies the maximum principle: if v, > 0 for all
v € dP, then Rp(vp) > 0 in P.

A local reconstruction operator satisfying these properties has been built in [57].
Let P € ), and vp € ¥}, p be given. We define Rp(vp) as a globally continuous and
piecewise linear function on the triangulation T, introduced in Sect. 1.6.2. Since such
a reconstruction operator is uniquely defined by its values at the vertices of T, it is
sufficient to provide an algorithm to compute these values.

For each vertex v of P we set Rp(vp)(x,) = w. On each edge e of P, the recon-
structed function is defined by the linear interpolation of the two vertex values. Let v
be the internal node of T p and Z, denote the set of other internal nodes connected
to v by and edge of T p. By construction, v is in the convex hull of the set of nodes
{v}vez,. Therefore, we have

xo= Y ogxs, Y oi=1 ag>0. (10.47)

VEE, VEEy

Using these weights, we define

Rp(vp)(xv) — D, @vyRp(vp)(xy) =0. (10.48)
VEE,
This set of equations leads to a square linear system. The associated matrix is an M-
matrix, which implies the existence of a unique solution and the discrete maximum
principle. Thus, the resulting reconstructed function satisfies assumption (L6).
Properties (L1) and (L2) are satisfied by construction. Property (L3) follows im-
mediately from the linear relationship (10.47). Furthermore, the maximum principle
implies the stability condition (L4). This can be verified following the same argu-
ments used in the proof of (L3s) in Sect. 8.4.1.
We are left to show property (L5). The mesh shape regularity assumptions (MR1)
and (MR2) imply that
hp Shy<hp VTE Th‘p. (10.49)
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Due to the maximum principle, for any v € H/%(P) we have that
Rp(vh) || 1=(py < W= < |Vllz=(p)- 10.50
IRo (vb) ey < max vt = max ()] < [Wll=py (10.50)

We now use (10.50), (10.49) and apply the standard scaling argument on each triangle
T € Tpp, to obtain

IRe b Bqey < IPIIMI3-qe) =[Pl max [v]B
|P
2 2k—21,,2 2 2k—21,,2
< |P| max th_ |V|Hk(-|-) S |P| th_ |V|Hk(p)'
TeThp =0 =0

Property (L5) follows from this bound and |P| < /3.

We end this subsection with two bounds showing the approximation properties of
Rp that will be useful later. Let be given P € Q), v € H?(P), and v!) € P;(P), the
linear approximation of v defined by (M5) after setting m = 1. We apply (L3), (L5),
and, then, the approximation property (MS5) to obtain

v Ro (b)) < 2y = v V22 p) +IRR () = )b)I22(p) )

2
< =V ey SRR p)- (10.51)
k=1

The definition of the discrete H'-norm in (10.44) and the maximum principle prop-
erty (L6) give

IRp(v6) — wl1(p) < max sy =] S el
and, as its immediate consequence, also

IRp(ve) =wll2py S Apllvellis- (10.52)

10.2.3.2 The main convergence result

In this subsection, we prove convergence of the mimetic scheme (10.46), see [17] for
more details.

Theorem 10.2. Letu € ¢ N H?*(Q) be the solution to the continuous problem (10.43)
anduy, € £}, be the solution of the discrete problem (10.46) under assumption (MR1)—
(MR2) and (S1)—(S2). Then,there exists a constant C independent of h such that

||uh —uI||1,h <Ch.

Proof. Let e, = u;, —u'. We consider a discontinuous piecewise linear function z(!)
on £, such that for every P € €, the restriction u!) p is the L (P)-projection of  on
the space of polynomials of degree at most 1. With a little abuse of notation, we denote
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by ()" a collection of vertex values for all elements P such that the restriction
(u(l))}p is well defined and is given by the local projector. We further observe that the
mesh dependent norm || - ||; 5 and the bilinear form 27, can be immediately extended
to (1)1, since both operators are defined by summation of local terms. We now use
(S1)—(S2) and the discrete problem (10.46) to derive the inequality chain:

ollenlli 5 < < (en,en)
< (b,en)n — A (u',ep)
= (b,en)n — (' — () &) — 7 (), e5) (10.53)

Assumption (L3) states that ep = (Rp(ep)) ! assumption (L2) states that Rp(ep) . is
a linear function on any edge e of P; hence, assumption (S2) implies that

JuD

;z{qu((u(l))};,ep) :JZ{hrp((u(l))IP’(RP(eP))I) - z anPe e

ecdP

Rp(ep)dS. (10.54)

Using the integration by parts twice and noting that function R(ej,) vanishes on
the boundary of €2;,, we obtain

Rp(ep)dVZ— z /VRp(ep)~Vu(l)dV
PGQ}, P
-y /VRp(ep)-V(u—u(l))dV—/~VR(e;,)-VudV
PGQ}, P Q

:Pg,)h/PVRP(eP)'V(u—u(l))dV—l—/ﬁAuR(eh)dV. (10.55)

We substitute (10.54)—(10.55) into (10.53), we use the Young inequality, we add
and subtract [5b R(e;)dV and we introduce the quantity w = Au + b. From such
manipulation it follows that

ol < ((.en— [ oRG@a )+t = Gl

Yy oD
+P§2h /P VRp(ep) - V(u—uD)dy + /ﬁ wR(e)dV.  (10.56)

Thus, we need to bound four terms in the right hand side of (10.56). By recalling

(10.52) and using essentially the same steps as in the estimate of the First Piece
in [84], it is easy to derive the following bound

(beewhn— [ bRV S hlBl 2 lenllin S hllenln (10.57)
Q
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To bound the second term, we set v = u — u!), use definition (10.44), and the
Cauchy-Schwarz inequality:

MiR= 3 Pl S [é(m—m]z s Py [L %;edSr

PeQ,  ecoP PeQ,  ecoP le]
< SRS |glvolig|-
PEQ}, ecoP

The trace inequality (M4) applied to Vv and the approximation error estimate (M5)
give
N a3 S 3 [V a D) Pagpy + ey | < P gy 17
PEQ},
(10.58)

To bound the third term, we use the Cauchy-Schwarz inequality, property (L4)
and the approximation result (MS5):

Y, [ VRe(er) Viu—uV)av < |VR(en) 21V =) 25
PEQh
S hllenllinlul e gy S Allenllin- (10.59)
Finally, let us bound the fourth term in (10.56). There holds, as shown in [79],
w<0 and w(y—u)=0 ae. inQ. (10.60)
where v is the function representing the obstacle according to the definition given

in (10.42).
By a simple addition and subtraction of terms, we obtain

/ﬁwR(eh /w )—u dV—|—/ w(y—u)dV

+/~W(R(uh)—R(l,(/))dV+/~w(R(q/I)—q/)dV. (10.61)
Q Q

Due to (10.60), the second term in the right hand side is zero. Furthermore, since for
every v € ¥ there holds u, > v, recalling assumption (L6) we have

R(up— ') >0 inQ.

This and (10.60) imply that the third term in the right-hand side of (10.61) is non-
positive. Thus, we can bound (10.61) as follows:

ﬁ wR(ep)dV < / w(u—R@))dV + / w(R(WY) = y)dV. (10.62)
Q Q Q
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To bound the integrals in (10.62), we use the Cauchy-Schwarz inequality, estimate
(10.51), and recall the definition of w = Au + b:

2 2
,/f) WR(eh)dV 5 h ”WHLZ(ﬁ) (|W|H2(§) + |u|H2(§)) 5 h”. (10-63)
We now insert bounds (10.57), (10.58), (10.59) and (10.63) in (10.56) to obtain
llexllT s S Allenllin + 72,

which proves the theorem. ]

The convexity assumption on €2 can be relaxed to include a more general class of
domains. Indeed, we only need to know that the solution u belongs to /7%(£2) and that
Q can be inscribed in Q for every A. The latter is true, for instance, in the case of non-
convex polygonal domains. After that, the convergence theorem can be generalized
by following the argument in [89], which is based on a suitable extension of the mesh
and the solution.

Remark 10.7. When the homogeneous Dirichlet boundary conditions are imposed,
i.e. ¥, coincides with 1} (£2), Theorem 10.2 can be proved in a different way by using
the idea proposed in [166]. The details of this proof is found in [15, Appendix A].

10.2.4 Numerical test

We close our discussion with a numerical test for the obstacle problem that confirms
the main convergence estimate, which was originally introduced in [290]. Other tests
are found in [17]. Let Q = Q =] — 1, 1[> and the obstacle be given by y(x,y) = 0.
For a given parameter 0 < » < 1, we define the continuous load

b.y) —8(2x* +2% — 1) if Vx2+y2 >,
X,y) =
—82(1—x*—y* 4+ ifVx2+y2<r

The Dirichlet boundary data is set in accordance with g(x,y) = (x* +3* —r%)2. The
analytic solution of problem (10.43) with the above data is known and given by

(10.64)

u(x,y) = (max{x* +1% — %, 0})%. (10.65)

The discrete obstacle problem has been solved numerically by the Projected Suc-
cessive Over Relaxation (PSOR) method, see [126, 156, 185]. We present the results
for two different sequences of meshes that we label as median-type 1 and median-
type 2. The examples of these meshes are shown in Fig. 10.3.

In Fig. 10.4 (log-log scale) we plot the relative errors &f .h(ul, uy) in the discrete
energy norm, '
o —up|[1n

'],

81r,h (ul7 uh) =
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Fig. 10.3. Two samples of the considered meshes: median-type 1 (left) and median-type 2
(right)
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Fig. 10.4. Left panel: numerical solution. Right panel: relative error & h(ul,u;,) as a function
/np for two the median-type 1 and median-type 2 polygonal meshes

for the two sequences of meshes. In this figure np denotes the number of polygons
in the mesh. The results indicate the linear convergence of the scheme which verifies
our theoretical developments.

Remark 10.8. Numerical tests that make use of an adaptive strategy and mesh refine-
ment for the obstacle problem has been presented in [18].
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Analysis of parameters and maximum principles

“There is no smallest among the small
and no largest among the large;

but always something still smaller
and something still larger”
(Anaxagoras)

A major property of the solutions of elliptic problems is the existence of the maxi-
mum and minimum principles [190,203]. The strongest form of the minimum prin-
ciple states that solution p cannot have a minimum in £2 when the source term is
nonnegative. More precisely, if p takes a minimum value at point xo € €2, then p
is constant in £2. This classical result, also known as Hopf's lemma [203], has been
proved for p € C?(Q) and locally uniformly positive definite tensor K.

The existence of discrete maximum or minimum principles (DMP) for a numerical
approximation py, of p may be crucial for robustness and accuracy of simulations.

We recall a few other classical results. Let €2 be a bounded, simply-connected
open subset of R? with the Lipschitz continuous boundary I". We split the boundary
into two parts, I'p and I'y such that I' = Ip U Iy.

Theorem 11.1 (Strong Maximum Principle). Let p € C?(Q) satisfy
—div(KVp) <0 in Q

under assumption (H1) (see Sect. 1.4.1) on K. If p attains a nonnegative maximum p
at a point of 2, then
p=p inQ.

Theorem 11.2 (Weak Maximum Principle). Let p € C?(Q) N C%(Q) satisfy
—div(KVp) <0 inQ
under assumption (H1) (see Sect. 1.4.1) on K. Then,

max p(x) < max p(x).
XGE xell

Remark 11.1. For functions with less regularity, e.g., p € H'(2)NC%(Q), the weak
maximum principle remains true by replacing max with sup (see, e.g. [182]).

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI 10.1007/978-3-319-02663-3_11, © Springer International Publish-
ing Switzerland 2014
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From the weak maximum principle it is immediate to derive a monotonicity prop-
erty for the Dirichlet boundary value problem. In case of mixed boundary conditions,
the monotonicity property is as follows [223].

Corollary 11.1 (Monotonicity Property). Let p € C*(Q)NC°(Q) satisfy

—div(KVp) >0 in Q,
n-KVp>0 onI"N7
p>0 orzFD7

under assumption (H1) (see Sect. 1.4.1) on K. Then,

p>0 inQ.

The possibility of reproducing these fundamental properties of the continuum so-
lutions at the discrete level has been extensively investigated in the literature concern-
ing the finite volume and finite element methods for linear and nonlinear parabolic
and elliptic PDEs [77,99,157,223,234,291,353].

Since we may find different formulations of the maximum principle in the contin-
uum [217], it is not surprising that there may exist a number of different formulations
of the DMP. For example, another formulation of a DMP is based on the requirement
that the inverse of the stiffness matrix arising from a discretization is a nonnegative
matrix, i.e., a matrix with nonnegative coefficients. A sufficient condition for that is
an M-matrix property [60], i.c. building a numerical scheme that leads to an M-matrix
ensures the monotonicity of the discrete solution.

Definition 11.1. A matrix A is called a Z-matrix if (A);; <0 for i # j. A nonsingular
Z-matrix A is called an M-matrix if (A~!);; > 0.

In this chapter we show how to build an M-matrix in the context of mimetic
schemes. In Sect. 11.2, we discuss the sufficient conditions that ensure the existence
of monotone schemes in the family of mixed mimetic approximations. In Sect. 11.3,
we present similar developments for the low order nodal mimetic schemes of Chap. 6.
The development of monotone mimetic schemes is work in progress and the theo-
retical results are available only for a class of meshes. Therefore, in Sect. 11.4 we
present a non-linear optimization strategy that allows us to analyze the family of
mimetic schemes numerically.

11.1 Hybridization techniques

Let us consider again the diffusion problem and the family of mimetic schemes in-
troduced in Chap. 5:

u+KVp=0 in Q, (11.1)
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divu=5 in Q, (11.2)
p=g" on I'P, (11.3)
—u-n=g" on I'V, (11.4)

where the vector variable u represents the flux of the scalar unknown p, K is the
diffusion tensorial coefficient, b, g, g are given functions, and n is the unit normal
vector to I pointing out of Q. We assume that I'® = I'® C I' is non-empty. Under
the assumptions introduced in Chap. 1, this problem is mathematically well-posed,
cf. [190].

11.1.1 The mixed-hybrid mimetic formulation

The hybridization of the mixed mimetic schemes of Chap. 5 is the exact algebraic
transformation of discrete equations. It introduces two new linear spaces, A; and
7, for the discrete scalar and vector fields. The former complements the cell-based
degrees of freedom while the latter is used in place of space .%;,. The unknowns in
Ay, called the Lagrange multipliers, approximate the scalar variable on mesh faces.
The use of the additional degrees of freedom makes it possible to reduce the mixed
mimetic discretization to an algebraic problem for the Lagrange multipliers through
the process known as the static condensation.

Thus, the degrees of freedom for the scalar variable p are associated with cells P
and mesh faces f and denoted by pp and py, respectively, As in Chap. 5, we denote
the linear space of cell-based discrete fields pj, = (pp)pec.» collecting pp by &7,. The
space &, is equipped with the inner product [-,-] », defined in (5.9). Similarly, we
denote the linear space of face-based discrete fields A, = (ps)se.z collecting ps by
Ay. The restriction of Ay, to a cell P is denoted by Ajp.

As in Sect. 10.1, the degrees of freedom of the vector variable u are denoted by
up ¢. Each up ¢ approximates the normal component of u on a face f of P. We denote

the linear space of face-based discrete fields collecting all up ¢ by ;@t;, The restriction

of 5"; to a cell P is denoted by %’p which coincides with .%), p. The space % is
equipped with the inner product |-, ] A that is assembled form the same local inner

products introduced in Chap. 5 for .%),:

[, Vil 3, = Y [up, vplsz,p YV, vy € Fp,
PEQ},

where up, up € .%), p are the restrictions of global vectors to cell P, e.g.
up = (up f)fcp-

The space .%), uses two flux unknowns per interior mesh faces, e.g., up, s and up, s,
that are related to the cells Py and P, sharing face f. The flux continuity condition is
imposed as the trivial constraint:

up, f+up, =0 Vfe 79
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Note that such flux continuity condition is not enforced in the space %, that is there-
fore richer than the space .%;, of Chap. 5.

A numerical treatment of the Dirichlet and the Neumann boundary conditions
in (11.3) and (11.4) requires to introduce proper subspaces of the linear spaces Ay,
and .%,. Let IT; be the L? orthogonal projector onto the space of constant functions
defined on face f:

Mi(g) = %/fqu. (11.5)

The Dirichlet boundary condition (11.3) is taken into account by setting prescribed
values to the components of A, corresponding to the boundary faces:

ps=1IL(g%) vfer?®. (11.6)

Let A, oo be the subspace of A of the discrete fields satisfying (11.6). The case of

the homogeneous boundary conditions, g” = 0, leads to the linear space Ay .
The Neumann boundary condition (11.4) is taken into account by setting the pre-
scribed values to the numerical fluxes on boundary faces:

ups = IIe(g") VeV nP. (11.7)

Let %’g\r be the subspace of % of the discrete fields satisfying (11.7). The case of

the homogeneous boundary conditions, g = 0, leads to the linear subspace %70.
Let b' = (bp)peq, € P4 be the approximation of source term b. The primary
mimetic divergence operator is defined locally like in Chap. 5:
. 1
lepllp = F z |f|up7f.
| | feP

With the above definitions, the mixed-hybrid mimetic scheme reads:
Find (pn, Aps Wp) € Py X Ay gp X Fy, v such that:

[, Vil 7, — divy,vi, pa) 2, > Y [flvpsps =0 Vv, € Fn, (11.8)
PeQ), feadP

divy, us, g5 2, = [b',q1] 2, Vgn € Py, (11.9)
upstup =0 Ve F%  (11.10)
Remark 11.2. Using the last Eq. (11.10) in the consistency Eq. (11.8) and the mass

balance Eq. (11.9), we can verify that the mixed-hybrid formulation is equivalent to
the mixed mimetic formulation (5.17)—(5.18).

11.1.2 Convergence analysis for Lagrange multipliers

Let .#P be the set of mesh faces where we impose a Dirichlet boundary condition.
The face degrees of freedom A, provide an accurate approximation of p on the mesh
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faces as stated in the following theorem. We need to assume the existence of an exact
reconstruction operator, see Sect. 5.3.

Theorem 11.3. Let RS (up) be the exact reconstruction operator defined in Sect. 5.3.
Let p' € 2}, be the projection of the exact solution p using the projection operator

defined by (5.7). Then, there exist a constant C independent of hp such that for every
face f € IP ) FP it holds

1 P 3 _1
e = (P2 < € (g 1w —RE (u)l 2y + 13 [l 2p) + i [1Pb — Pllizqe))
(11.11)

Proof. Let f be a face of cell P and vp € %’p be the vector associated with this face
such that

pi—I(p) iff' =f,
) = 11.12
Ml {0 otherwise. ( )

Since Ry (vp) € H(div,P), multiplying (11.1) by K~'RJ (vp), integrating over P,
and then integrating by parts, give

/K_1u~R‘,f(vP)a’V—/pdivR‘,f(vP)dV—i—/pRp?(vP)-npAde:O. (11.13)
P P f /

Letvy, € % be the discrete vector field whose restriction to cell P coincides with vp
and is zero elsewhere. By using v;, in (11.8) and the definition of the exact recon-
struction operator (5.65), we obtain

/KEIR‘,f(uP)-R‘,’f(Vp)dV—/ppdiva}(vP)dV—i—/pr'g(vP)-npAde:O.
p p f ’

Taking the difference of this equation with (11.13) and adding and subtracting K;l u
yields

/PK,;I(u_R-,—;?(up)).Rg“(vP)dm/P(K—l “Kp')u-RE (vp)dV
—/P(p—pp)divRé“(VP)dVJr/f(p—pf)Ré’(vP)-np,de:o. (11.14)

By the definition of the reconstructed function, its divergence is constant on P. Thus,
we can transform the third integral in (11.14) as:

[ pr)divRE (ve)dV = PI(pb — pr)divRE (ve).  (1L15)
By the same definition, R];? (vp) -mp ¢ = v¢, and we have

/f(Pf—P)REf(VP)'HP,deZ/f(Pf—Hf(P))VdeZ ||pf_Hf(p)||iZ(f)' (11.16)
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Now, we rearrange the terms in (11.14), use (11.15)—(11.16), the Cauchy-Schwarz
inequality, and the bound provided by assumption (H1b) (see, formula (5.36)) to
obtain:

Ips = TP = [ K" (u=RE (up) - R (ve) ¥
+/P(K*1 “KsY)u-RE (vp)dV + P|(pp — pb) divRE (v)
<C( (u=RE (up)) pap)+hplullze) IRE (ve)ll 2(p)
+|P| pp—pb divRE (vp) . (11.17)
Note that we have the following upper bound:
IRE (vo)lli2p) < C K RE(v6) 2oy = lIvelL s,

where norm ||| - 5, 18 induced by the local mimetic inner product [-,]7,p- Using
property (S1) from Sect. 5.1.3 and the definition of vp yields

) : <[P
[vp.vplp <0 |P|f§,P|Vf|2 = o*|P|lps — Ik(p)|* = © = llpe — I (p) |72 ¢)-
€

Combining the last two formulas, and using the mesh regularity property (M2) (see,
Sect. 1.6.2) we obtain

> 1
IRe (ve)ll2(py < Chpllps — e (p)ll 25 - (11.18)

To estimate the last term in (11.17), we recall the definition of the mimetic diver-
gence operator and apply again the mesh regularity property (M2):

. T . 1 f
|divRp (ve)| = [diveve| = = D [flyr = il pi—1II(p)
Pl ¢&p IP|

1
< Chp||ps — I (p) ] 126 - (11.19)
The assertion of the theorem follows by inserting (11.18) and (11.19) into (11.17)
and simplifying ||ps — IT¢(p)||2(s) from both sides of the resulting inequality. |

It is worth mentioning that a simple modification of the previous proof (just ap-
ply the Cauchy-Schwarz inequality to the left-hand side of (11.15)) gives another
estimate:

1 3 1
lpe = It (P) |l 26y < C (hé lw—Rp(wi)l 2(p) + hpllull2p) +hp* [P —PP||L2(P))-

We introduce the following mesh-dependent norm to measure the discretization
error for the Lagrange multipliers:

12— (D)7 = X hillpe =T (p) 72 (11.20)
fe.7 | 7D
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where 1, ,fy is the global projection operator whose restriction to face f is Ilf. A bound
for this error follows immediately from Theorem 11.3.

Corollary 11.2. Under the assumptions of Theorem 11.3, it holds:

12 =117 ()7 < C (llw =R (i)l 2y + 7 lull 2y + 117 = L, )

It is remarkable that under the assumptions of Theorem 5.4, we also have the super-
convergence result for the Lagrange multipliers:

14 =117 ()7 < CH* (|1l r2) + 1Bl ) (11.21)

where C is independent of 4.

11.2 Monotonicity conditions for the mixed-hybrid formulation

In this section, we discuss sufficient algebraic conditions for selecting monotone
schemes within the family of mimetic schemes.
We consider a cell P and define two matrices

Ifi] If1]
If2] If2]
Bp = . and Cp= .. )

g |
where N,‘;/ is the number of faces in P. Let us define a mesh function v;, € % such
that vp is zero for all cells except P. Inserting this function in (11.8), we obtain
Mpup —Bppp + CpAp = 0. (11.22)

Let us define a mesh function g, € 2, such that gp is zero for all cells except P.
Inserting this function in (11.9), we obtain the local mass balance equation

BLup = |P|bp. (11.23)

It can be shown that the algebraic system appearing from the mixed-hybrid formula-
tion (before applying the Dirichlet boundary conditions) is assembled from cell-based
systems

Mp —Bp Cp up 0
-BL 0 0 pp | =| —IPIB} |,
Cg 0 0 lp gp

where the components of vector gp are non-zero only for boundary faces on Iy and
equal to the given Neumann fluxes. The Dirichlet boundary conditions can be en-
forced after any step of our derivations by prescribing given values to the Lagrange
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multipliers and eliminating the corresponding equations. Typically, it is done after
the last step.

Note that only the Lagrange multipliers share values across cell interfaces. The
other unknowns can be eliminated locally. Elimination of up ads to the following
local systems that have to be assembled into the global system:

BIMp'Bp —BIMp'Cp (pp>:(|P|b}3> (11.24)
—CIM'Bp  CEMG'Cp ) \ 2Ap g ) '

We denote the matrix of this system by Sp. Let Wp = M Uand Wp = (w;j)?/;’zl.

Direct derivation of matrix Wp is possible and discussed in details in Sect. 4.6. We
make two assumptions.

(W1) Matrix Wp satisfies the geometric constraint
z W,'j|fj| Z 0 Vi,
J
and the inequality is strict for at least one matrix row.
(W2) Matrix Wp is a Z-matrix, i.e., w;; < 0 fori# j.

Lemma 11.1. Under assumption (W1)—(W2), the matrix Sp in (11.24) is a singular
M-matrix. Moreover, its null space consists of constant vectors.

Proof. Let us consider the matrix V~\/p = CngCp. This matrix has entries w;; =
wij[fi| [f;] and is a weakly diagonally dominant Z-matrix by our assumptions. Matrix
Wp is symmetric and positive definite; hence, its diagonal entries are strictly positive.
Multiplying the i-th inequality in (W1) by |f;|, we obtain

Dowilfillfil >0 = a; =Y wi; >0 Vi
J J

One of the inequalities must be strict, i.e. ay > 0.
Let us consider the column-matrix Bp = Cng Bp. Its i-th entry is —a; < 0; hence,

aH—ZﬁU =0 = |wi| = |a;i| — 2 |W,‘j| Vi.
J i#j
Finally, let us consider matrix Bng Bp =Y a; > 0. Since Yai=% ||, the entries

1 1 1
in the first row of Sp sum up to zero. We conclude that a constant vector is in the null
spaces of matrix Sp.
Letb = o1 + ¢ be a non-constant vector in the null space of Sp and ¢” = (cy, €]).
Direct calculations show that

0=b"Spb = (Bpci — Cpea)” Wp (Bper — Cpea).

Hence, Bpc; = Cpey. The structure of these matrices implies that ¢ is a constant
vector, hence, the null space of Sp consists of only constant vectors.
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We show by contradiction that matrix Sp is irreducible. Let us assume the op-
posite. Then, the matrix can be reduced to a block-diagonal matrix by re-arranging
rows and columns. Since, we proved that the constant vector is the eigenvector, the
block-diagonal matrix can have two distinct eigenvectors (1,...,1,0,...,0)” and
(0,...,0,1,...,1)T, which leads to the contradiction.

Observe, that if we add a small positive number to any diagonal entry of Sp, it
becomes weakly a diagonally dominant irreducible Z-matrix with positive diagonal
entries. This is the definition of a singular M-matrix. O

Let S be the matrix obtained by assembling the elemental matrix Sp and apply-
ing the Dirichlet boundary conditions. A proof of the following results is left as an
exercise, see [249] for details.

Theorem 11.4. Let, for every element P € €, the matrix Wp satisfy assumptions
(W1) and (W2). Furthermore, let mesh €2, be face-connected and |I"'P| # 0. Then, S
is an irreducible weakly diagonally dominant M-matrix.

Now, we state two monotonicity results that we study in detail in the next sub-
sections. The proofs are straightforward and are based on the properties of an M-
matrix and the observation that the right-hand side vector is either non-negative or
non-positive.

Theorem 11.5 (Discrete Maximum Principle). Let p, = (pp)peq, and A, =
(pf)fes be the solutions of the mixed-hybrid mimetic scheme under the assumptions
of Theorem 11.4. If b is a nonnegative function in Q and g° and g are nonnegative
functions on ' and T'N, respectively, then pp > 0 and pg > 0 for all P and f.

Theorem 11.6 (Discrete Minimum Principle). Let p, = (pp)pecq, and A, =
(pf)fez be the solutions of the mixed hybrid mimetic scheme under the assumptions
of Theorem 11.4. If b is a nonpositive function in Q and g° and g are nonpositive
functions on ' and T'N, respectively, then pp < 0 and pg < 0 for all P and f.

Using both Theorems 11.5 and 11.6, we obtain a discrete version of Theorem 11.2.

Theorem 11.7. Let p;, = (pp)pcaq, and A, = (pf)se.7 be the solutions of the mixed
hybrid mimetic scheme under the assumptions of Theorem 11.4. Furthermore, let
b =0 and I'N = 0. Then, for all P and f, values pp and ps are bounded by the
maximum and minimum values of the set {IT;(g°) }sco-

Let us recall the general formula of matrix Wp as stated by Eq. (4.67):

K71
WPZNpﬁNg—FDpUng, (11.25)

where matrices Rp and Np for cell P are given by (5.29) and (5.25), respectively.
Recall also that Dp is the full rank matrix such that Dng = 0 and the size of matrix
Up is Ng" —d where Ny~ is the number of faces in P.
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In accordance with the spectral analysis of the mixed mimetic scheme, cf. Chap. 5
and also [93], matrix Wp is an SPD matrix and satisfies a stability condition similar
to (S1) of Sect. 5.1.3:

1 1
O'*ﬁngp < VngVp < G*—vgvP Vvp.

P

To satisfy these inequality, we can take a matrix Up which is spectrally equivalent to
|P|~!Ip and enforce uniform bounds on the norms of the columns of Dp.
Conditions (W1) and (W2) combined with the positive definiteness of matrix Up
allow us to obtain a set of inequalities forming a local optimization problem for every
element P. These optimization problems can be solved analytically for a class of
polygonal and polyhedral cells. In general, they have to be solved numerically.

11.2.1 Triangular and tetrahedral cells

If P is a simplex, then Nf =d-+1and Up is a 1 x 1 matrix, i.e. we have a one-
parameter family of matrices Wp in accordance with (11.25):

1

Wp
P

NpKp!' NP +upDpDE,

where matrix Np is given by (5.25). The column matrix Dp must be orthogonal to
column of matrix Rp given by (5.29). It is easy to verify that

DE = (Ifi |71 1R s [l )

The assumption (W1) is reduced to up > 0. The assumption (W2) reproduces
the well established angle conditions for the RTy — Py finite element discretiza-
tion [250]:

nfTiKpnfj <0 i#].

For example, when P is a triangle and the diffusion tensor Kp is isotropic, the mono-
tonicity requirement is that the angles are less than 7. For a tetrahedron P, the mono-

tonicity requirement is that the dihedral angles are less than 7.

11.2.2 Parallelograms

Let us consider a parallelogram P. The formulas for the local matrices Rp, Np, and
Dp depend on the order in which we take the edges of cell P. A different enumeration
of the edges corresponds to a permutation of the rows in these matrices. We consider
the enumeration given in Fig. 11.1. Let xp¢, X4p, etc, be the midpoint of edge fzc,
f4p, etc., respectively, and npc, ngp, etc, be the unit orthogonal vector to edge fzc,
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Fig. 11.1. Geometry of a parallelogram; the numbers in parenthesis, e.g., (1)-(4), indicate the
order of the edges used in the construction of matrices Rp, Np, Dp, and Wp

f4p, etc., respectively, pointing out of cell P. We have:

\fac|(xpc — XP)T 1 0
[fap|(x4p — xp) |P| -1 0
Rp = = . 11.26
P fpe|(xpe —xp) T 2sin(0) cos(B)  sin(0) ( )
|f48](x45 — xp)” —cos(B) —sin(0)
and
ngc sin(8) —cos(0)
T .
Np = n/TlD Kp — sin(@)  cos(0) Kp. (11.27)
np- 0 1
T 0 -1
Nyp

The definition of matrix Dp is not unique, and among the simplest ones we select the

following:
r (1100
Dp = < 001 1) (11.28)

For any 6 € (0,7/2), this matrix satisfies the orthogonality condition REDp = 0 and
the columns of the 4 x 4 matrix (Rp, Dp) form a basis of R*. Regarding the 2 x 2-
sized parameter matrix Up = (u;;)? j—1-the hypothes1s that this matrix is SPD implies
that w12 = up1, uip > 0, upp > 0, and w1 uy > ulz.

To simplify notations, we set n; = ngc, np = npc, f| = fBC, and f, = fpc. We
define the transformed diffusion tensor K% = (Ke) by setting K =n!Kpn;:

o _ K161 Sin(G)K12 —COS(G)Kzz
N <sin(6)K21 —cos(0)Kp Koy ) (11.29)

where

K% = sin(8)Ki1 + cos?(8)Kay —sin(6) cos(0) (K2 + Kay ).
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From the strong ellipticity of K it follows immediately that matrix K® is semi-positive
definite. A direct calculation shows that

det(K%) = det(Kp)sin®(8) > 0,

i.e. K% is the SPD matrix.

Using formulas (11.26)—(11.28), we can calculate matrix Wp. It turns out that it
has a very peculiar block structure characterized by the entries of the transformed
diffusion matrix K?:

W wlil w2z Wi K?j 1 —1 11
PTowa w2 ) :ﬁ(—l 1>+”"f(1 1>'

Note that W'2 = W?! and each matrix block W/ is a symmetric matrix. Let us analyze
conditions (W1) and (W2). We set o := |fi| = |f3], B := |f2| = |f4] and define vector
f= (o, ,B,B)7. Note that |P| = o Bsin(8). Condition (W1) gives

Wpf > 0.
This and similar inequalities mean that all vector components are nonpositive and at

least one is strictly positive. Let @ = (o, )7, B = (B,B8)7, and 1 = (1,1)7. Then,
we have

wit wi2 o (s + Puiz)1
Wef= "\ o W22><ﬁ>:2<(au;—|—ﬁu;)ﬂ>>o' (11.30)

We write these inequalities in the compact form:

Up (g) > 0.

Let us introduce the 2 x 2-sized matrix

R(-): K101 _|K162|
—IK K

Condition (W2) requires Wp to be a Z-matrix. Thus, the off-diagonal blocks W/ for
i # j must be nonpositive matrices and the diagonal blocks W must be Z-matrices.
These requirements lead to the following matrix inequality:

IPlUp < K®. (11.31)

Combining conditions (W1) and (W2) together gives

0 < |P|Up <g> <K <g> :
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from which we derive the necessary condition for parallelograms:
R"(B‘) >0. (11.32)

This condition imposes constraints on both the lengths of edges f; and the range of
values of entries in Kp. It is necessary because there cannot exist a parameter matrix
Up that satisfies (W1) and (W2) if condition (11.32) is violated.

By going one step further into the analysis, we recover the condition "C" for par-
allelograms, which is the monotonicity result for the family of nine-point difference
schemes published in [291]. Let us introduce the three parameters a, b, ¢ as follows:

(Z Z) = (Ifulmy, |f2lm2) " K (|fi[mi, [f2]na). (1133)

As matrix K? is SPD, matrix K¢ is also SPD. We multiply the first equation in (11.32)
by o, the second equation by 3, and use definition (11.33). It follows that a matrix
Up satisfying (W1) and (W2) can exist only if |¢| < min(a, b), which is the condition
"C" for parallelograms proposed in [291].

Let K?j’i for i # j denote the positive and negative part of K%, i.e., K?j’i = (K?/. +

ij’
|K?j|) /2. Due to matrix symmetry, K?j’i = K?{i. To maximize the sparsity structure
of Wp, we may consider a matrix Up given by

0.~ 6,
K?l 0 Kis _K12+
- 0 0.+ 6,—
K¢ 2 0 K | —Ka K
Up=— = Wp=— 5 o (11.34)
Pl PIL k8 —k&T kS, 0
0.+ 10—
Kyt Ky 0 K%,

With this choice, matrix Wp is reducible. Indeed, if K?Z < 0 exchanging the second
and third rows and, then, the second and third columns gives a block diagonal matrix
where each 2 x 2 diagonal blocks is equal to K%. Similarly, when K?z > 0 we obtain
a block diagonal matrix with 2 x 2 diagonal blocks by exchanging the second and the
fourth rows and, then, the second and the fourth columns. Nonetheless, irreducibility
is not lost for matrix Sp, as can be verified by direct calculations.

The special case of a scalar diffusion coefficient, Kp = kp |, worth detailed com-
ments. By definition, we have that

n’n;  —[nTny| . 1 —cos(0)
—~fng| nlnp, | TP —cos(0) 1 ’
and the necessary condition for parallelograms (11.32) becomes

{ o —Bcos(0) >0,

K = kp

—acos(0)+p > 0. (11.35)
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Without loss of generality, let o« > 3 (for B > o we will just exchange the role of o
and f). The first inequality in (11.35) is obviously satisfied. The second inequality
gives cos(0) < B/a. Since 0 varies between 0 and 7/2, we have

arccos (g) <6< 5 (11.36)

This necessary condition constrains the shape of the parallelogram and does not in-
volve the diffusion coefficient kp. Moreover, it is always satisfied for the whole range
of the parameter O when o = 3, i.e. when arccos ([3 / a) = 0. Therefore, the mixed
mimetic scheme defined by (11.34) always provides a monotone discretization on a
tilted mesh of originally square cells regardless of the angle of inclination.

Finally, let us analyze another special case of an elliptic problem with a scalar
diffusion tensor and a mesh of rectangles, i.e., 0 = /2. In view of Eq. (11.34),
matrix Wp takes a very simple form:

2kp

Wp =P
Ld

Ip. (11.37)

Inserting formula (11.37) in (11.22), we obtain a simple formula for the numerical
flux in terms of edge and cell pressures:

upf, = — |P| |f|( pP) l:1,,4

Let f be the edge shared by rectangles P and P’. The numerical fluxes for this edge
are given by:

upf = |P| |f|( ) and up/7f = |PI| |f|( pp/).

Since up s +upr s = 0 and |P| = |P’| we solve for pf and substitute the result in the
formulas above. Since |xpr — xp| |f| = |P|, we obtain the well-known two-point flux
approximation formula:

PP — PP . 2kpkp
|X|:>/—XP|7 kP‘l‘ij.

up f = —k¢

11.2.3 Oblique parallelepipeds

Let us consider a parellelepiped P. The formulas for local matrices Rp, Np, and Dp
depend on the order in which we consider the faces of P. We take the enumeration
of faces shown in Fig. 11.2.

We denote the centroid of face fzcgr by Xpcegr, of face f4pyr by X4prE, and so
on. Similarly, we denote the unit vector orthogonal to face fgcgr by ngcgr, and so



11.2 Monotonicity conditions for the mixed-hybrid formulation 325
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Fig. 11.2. Geometry of an orthogonal (left) and oblique (right) parallelepipeds. The labeling
of points and normal vectors is the same for both plots and, for readability, is given only on the
left plot. The numbers in parenthesis on the right plot, e.g., (1)-(6), indicate the enumeration
of faces

on, and assume that all the normal vectors point out of P. Let

p' = (sin® y +cos” y (cos B sin ¢ — sin O cos ¢)?) 12
p" = (1 —cos*ycos’ (1))1/2,
p" =sinBcosy,
 LeLyL
pPP=—5
Then, matrix Rp takes the form:
\facer| (xpeor —xp)T p’ 0 0
{faprE| (Xapre —xp)T —p’ 0 0
Re — | |focen| (xpcGn —xp)" | _ p’cos®  p”sind 0
o |fABFE| (XABFE — XP)T =pp —p” cos 0 —p” sin@ 0
[fercu| (Xerea —xp)T p"cos¢p  p”sing  sin@siny
|fABCD| (XABCD - XP)T —p/” cos ¢ —p/” sind) — sin@sint[/

Matrix Np takes the form:

sin O siny cos Osiny cos y(cos B sin g —sin 6 cos ¢)
- 7

p’ p’
NpcGr __sin@siny cos@siny  cosy(cosBsing—sin6cos¢)
! ! 7
N4DHE p p P
n 0 siny __cosysing
7 "
Np= | 7997 [ Kp = P o Kp.
\ABFE 0 _ sle[/ cos l[/sm ¢
NEFGH 0 (? pl
n4pcDp
0 0 —1
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Matrix Dp is not defined uniquely. Among many possible choices, we select the fol-

lowing one which is also one of the simplest:

DE = (11.38)

— o O
—_ o O

1 0 O
0 1 1
0 0 O

S O~

It is easy to verify that matrix Dp satisfies the orthogonality condition RgDp =0.
Indeed, the first couple of rows of Rp are formed by opposite vectors and the same
is true for the second and the third couple of rows. Moreover, the columns of matrix
(Rp, Dp) form a basis of RS.

We assume that the 3 x 3-sized parameter matrix Up = (u; 1)13 = is SPD, i.e. u;j =
uji, wii > 0, upyuy — u2, > 0, and det(Up) > 0. For convenience, we shorten our
notation:

Ny =NgcGr, M2 =N0pCcGH, N3 =NEFGH,
and define the transformed diffusion tensor K = (K,ej)f’ j—1 with entries K?j =
n/Kpn ;. Straightforward calculations using the matrices Np and Dp provides us with

the matrix Wp. Similar to the two-dimensional case, this matrix has a very peculiar
3 x 3 block structure:

Wll W12 W13

0
WP_ W21 W22 W23 Wl]_&( I -1 >+u< 11 >
= R = i .
W3l w32 w33 |P| -1 1 AT

Each block W/ is a symmetric matrix and W/ = W/’ for i # j. Let us define a vector
f=(o,a,B,B,7,7)" where o := |fgcar| = [fapuz|, B = |focon| = |fasrE|, and
Y:=fercr| = |f4cp|- Applying the same arguments as in the two-dimensional case,
we can show that condition (W1) implies

Wp f > 0. (11.39)

Let again @ = (o, )7, B = (B,B)7, and y = (7,7)” (and recall that 1, = (1,1)7).
We have

W“a+W12B —I—le}’ (au11 +l3u12+}/u13)]l
Whpf = W21a+W22B —|—W23’}’ =2 (Otuzl + Buxpy +yux3)l | >0,
W3la +W32B + W33y (o3t + Busa + yuss) 1

which is equivalent to

o
Up [3 > 0.
Y

Condition (W2) states that matrix Wp must be a Z-matrix. According to the block
structure shown above, the off-diagonal blocks W for i # j must be nonpositive
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matrices and the diagonal blocks W# must be Z-matrices. We define matrix KO =

(R?j)ijzl by setting Rg =KY and Rg = —|K?j| for i # j. Then, condition (W2) can
be restated in the compact form:

P|Up < KP. (11.40)

Combining conditions (W1) and (W2), we obtain two inequality:

a [«
0<[PlUp| B | <K% B
Y Y

From this and the assumptions on Up, we derive two necessary conditions for paral-
lelepipeds:

o
KEL B | >0 and KPisSPD. (11.41)
Y

Note the difference with the two-dimensional case: the matrix K? is not always an
SPD matrix. Conditions (11.41) constrain both the areas of faces f; and the values of
entries in Kp. They are necessary because no parameter matrix Up satisfying (W1)
and (W2) exists if these conditions are violated. The first inequality in (11.41) can
be interpreted as an extension of the condition "C" derived in [291] to meshes of
parallelepipeds.

Let K® be an SPD matrix. To maximize the sparsity structure of Wp, we can take
a matrix Up given by

KG
Up = ﬁ, which implies
KG 0 | KY KL KT =Ky
0.+ 00,— 0.+ 16—
0 K?l -Kit Ky K K
0.— 0.+ P 0,— 0.+
2 Kai —K3i K2 0 Ky —Ky
szﬁ 0.+ 10— o+ 60— |’ (11.42)
K Ky 0 K |-Ki' K
0,— 0.+ 10— 0.+
K —Kii | Ky —K33 K§3 0
0.+ 100,— 0.+ 00,—
K Ks | Kyg Ky 0 K363

0.£ _ (Kb 0
where K;7™ = (Kl.j + |Kl.j|)/2.
We have three off-diagonal entries in matrix K® that may be positive or negative;
thus, we have six possible combinations of signs. In a special case of a scalar diffusion
coefficient and a mesh of orthogonal bricks, we obtain the diagonal matrix (11.37).
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Fig. 11.3. Geometry of the AMR cell

11.2.4 AMR cells

In this subsection, we consider a special type of quadrilateral meshes that is used
in the adaptive mesh refinement (AMR) strategy. The resulting AMR meshes have
degenerate cells (see Fig. 11.3) and a discretization method should handle such cases.
This makes the definition of discrete operators more challenging than that on regular
quadrilateral meshes. In the MFD method, the AMR meshes are treated as general
polygonal meshes and no special treatment of degenerate cells is required.

Let us consider the pentagon P shown in Fig. 11.3 as ABECD. The angle between
the edges BE and EC is r; therefore, we refer to this cell as the degenerate pentagon.
We enumerate the cell edges as shown in this figure.

The size of the parameter matrix Up is 3 x 3; hence, there are six parameters to be
determined. Due to complexity of the analysis, we will focus on rectangular meshes
and diagonal diffusion tensors. To further simplify the analysis, we impose additional
constraints on the matrix Wp which mimic the geometric symmetry of P. Let us
consider the following discrete solution:

pp=0, py=pr,=1, and p; =py=ps=0.

This solution is symmetric with respect to the line parallel to edge 4B and passing
through the vertex E£. We require that the discrete fluxes have the same symmetry,
which means that upf, =Upf, and Up f; = —UP f5. Let Wp = (W,’j)ijzl . Substituting
the discrete solution into formula (11.22), we rewrite the first flux symmetry con-
straint as follows:

—up g, = wiilfi| Fwilf2| = war[fi| +wanlf2| = —upy,.

Since |f;| = |f,] and w1, = wy], we obtain that wy; = wyy. We repeat this argument
to derive symmetry constraints for the other entries of Wp:

w33 = W55, W23 = W]5, and Wi4 = W24. (11.43)
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Without loss of generality, we assume temporarily that |P| = 1 and later rescale the

matrix of parameters Up to get a general formula. Let 72 = ;AD denote the aspect
AB
ratio of P. Then, matrix Rp takes the form:
|fBE| (XBE — XP)T 2 —}”2
fec| (xec —xp)T 1 2 7
Rp = |ch|(XDc—Xp)T = g 0 4 . (11.44)
|fap| (x4p —xp)” -4 0
|f48] (x45 — xp)” 0 —4
Matrix Np takes the form:
T
n
" Ki 0
n
EC Kll 0
Np = an)C Kp = 0 Kp |. (11.45)
ol -Kip 0
ATD 0 —Kpxn
Nyp

Matrix Dp is not defined uniquely. Among many possible choice, we select the fol-
lowing:

2 22 0 0
DL = 1 1 0 1 0]. (11.46)
-2 2 0 0 2

It is easy to check that DERp = 0. Let Up = (u;;)] j—1- By calculating matrix Wp and
using the symmetry relations (11.43), we prove that u;; = u33 and u)3 = up3. These
two conditions allows us to reduce the number of parameters from six to four. With

this relations, the matrix Wp is given by:

wil w12 w13 up — Ky W15

w21 w2 wa3 up — Ky Was

w3 w32 upr* + Ko uppr? usr* — Ko
up — Ky un —Ky uppr? un +Kig uipr?

ws1 w52 usr* — Ko upr? upr* + Ky

where the remaining entries in the first row are given by

wit = K1 4 8uir — 8uz +u, wiz = Ky — 8uyp + 8us +uao,
W13 = w31 up Fupp —2u3)re,  wis = wsg u13 + w12 —2un)re,

and in the second row by

wo1 = Ky — 8uyy + 8upz +up, wyp = Ky + 8uyy — 8uys +upp,
was = wsyp = (—2upy +upn +2ui3)r?,  was =wsy = (—2uy3 +upp + 2upp )2
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Let us define a vector f whose components are thTe edge lengths of the pentagon.
Since |P| = 1, we have f= (0.5r, 0.5, ', r, ¥~ !)". Condition (W1) implies that

2r (uxp +u12)
2r (ux +ur2)
Wpf = " Quiz +un +uz) | >0.
2r(u22 —|—u12)
7 (Quiz +uy +ur3)

This gives the first set of inequality constraints:

uyp +upp >0, uyp +upp >0,
11.47
{2u12+u11+u1320 or {2u12+u11+u13>0. ( )

Condition (W2) adds the second set of inequality constraints:

Ui >07

urz < Koor 4,

0 <upy <Ky, (11.48)
upp <=2 up —u3 ,

upy —ui3 > g (un +Kipp).

The third set of inequalities state that the matrix Up is SPD, i.e., all major minors of
Up must be positive:
{ 14%2 <ujuz2,

11.49
why < Suna(uyy +uis). ( )

By combining the third and fifth inequalities in (11.48), we conclude that u; —u3 >
K11/8 . Thus, the solution to the second inequality in (11.49) is always the solution of
the first one. Analysis of the combined system of inequalities (11.47)—(11.49) results
in the following lemma.

Lemma 11.2. 4 matrix Wp satisfying conditions (W1) and (W2) exists if and only if

r4<4@. (11.50)
Kui

For each aspect ratio r satisfying (11.50), we obtain a family of monotone mimetic
schemes. The closer the aspect ratio to the limiting value 4K, /K|, the narrower this
family. Among many of possible choices, we present two particular members of this
family including the proper scaling for |P| # 1. The first one reduces the number of
nonzero entries in the matrix Wp. The matrix Up and the sparsity structure of the

matrix Wp are

AKn+ K 2Ky 4K
AKyn 2K FKn+Kp

Up , Wp=

4Pl

XX O O O X
SO X X O
S X X X O
X X X O O
X X O O X
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This choice requires a stronger condition on the aspect ration,

8K2s

4

< —=.
3K

Otherwise, when the aspect ratio is close to this limiting value, we suggest another
member in a family:

| %Kzz—l-Kn —2K11 %Kzz
Up = 6P| —2Kii 2K 2K ,
EKn  —2Ki SKn+Kp

z

Il
* ok © O F
O * * ¥ O
O * * ¥ O
* ok Ok ok
* ok © O F

11.3 Monotonicity conditions for the nodal formulation
For a nodal mimetic discretization developed in Chap. 6, the sufficient condition for

the monotonicity is that the global stiffness matrix is an M-matrix. This property can
be achieved by requiring that each local stiffness matrix Mp is an M-matrix.

11.3.1 Geometric notation for a quadrilateral cell

Following [264], we define a few geometric objects on a quadrilateral cell P. Let

d;,i=1,...,4, be four oriented diagonal vectors; T; and T; be four related pairs of
triangles, P = T;UT;, see Fig. 11.4 for details. By definition, it holds that d; = —d;
and d4 = —dy; therefore, later we will use only d; and d,. Furthermore, T1 =Ts,

Tz T4, T3 Ty, and T4 = T,. To ease the notation, we denote the oriented areas
of the triangles T; and T by the same symbols T; and T,, respectively. Thus,

|P| =:|:1—|—:|:3 ::|:2—|—:|:4.

Fig. 11.4. The left picture shows the diagonal vector d; in a convex quadrilateral and the
triangles T; and T; associated with the vertex v;. The right picture shows the diagonal vectors
d; and d; and the triangles T, T3, and T4 in a concave quadrilateral. The triangle T (not
shown) is defined by vertices v, v,, and v4. Note that the oriented area of T3 is negative. In
both pictures, the subscript i/ runs from 1 to 4 counter clock-wise
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When P is a nonconvex quadrilateral, one and only one of the four oriented areas T,
is negative.

11.3.2 Sufficient monotonicity conditions on quadrilaterals cells

Let Rp be the rotated permeability tensor Kp:

Rp :%%Kpggo with  Zog = <_(1) (1)> (11.51)
As mentioned in Chap. 6, the total number of parameters appearing in matrix Mp is
equal to k= (N3 —d)(N) —d—1)/2, where N§ is the number of vertices in P. For
a quadrilateral, N,;" =4 and d = 2, so that k = 1 and we have a one-parameter family
of stiffness matrices Mp. Furthermore, we have a special representation of entries of
matrix Mp derived in [264].

Lemma 11.3. The ij-entry in the matrix Mp has the following representation:

o~ ~

T,T,
—d;- Kpd +(— 1)l+/

(Mp),; = (M) + (M) = E

11.52
4|P| L, ( )

where uy| is a nonnegative parameter.

Matrix Mp may be an M-matrix for some values of parameter #. Let us discuss how
the range of such values of u;; depends on the shape of P and permeability tensor
Kp.

Note that matrix M l()o)’ which is the consistency term in matrix Mp, has the block-
structured form:

MO — ! < 5 _S> where S = leEPdl leEsz
P 4P| S d’Kpd; dIKpd,

As stated in the next theorem, cell convexity is the necessary condition for Mp to
be an M-matrix.

Theorem 11.8. (i) Let P be a convex quadrilateral cell and parameter uyy satisfy two
inequalities

—d”"Kpd d’ Kpd 4
max Site2 o Gie® L M (11.53)
min(T T4, ToT3) min(T T2, T3T4) P

4 d’Kpd; d!Kpd
“u <min{ L P71 P 2} (11.54)

7T TTa

Then, matrix Mp is an M-matrix.
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Fig. 11.5. A sketch of the monotonicity region (shaded region) for Kp = | and three fixed
vertices 4, B, C

1) Let P be a non-convex quadrilateral cell. Ihen, there exist no parameter u
q p
fOl” which Mp is an M-matrix.

Proof’ From representation (11.52) it follows readily that inequalities (11.53)-
(11.54) are sufficient conditions for Mp being an M-matrix. If P is a non-convex
cell, then it holds that either T T3 < 0 or T2 T4 < 0. In such a case, the right-hand
side of inequality (11.54) is strictly negative for a non-degenerate cell P. Therefore,
it is impossible to find a positive number u1; that satisfies these inequalities. o

Using Theorem 11.8, we introduce the concept of monotonicity region, which is
illustrated in Fig. 11.5. Let us fix three vertices of the quadrilateral cell, for example,
A, B and C, and vary the position of the fourth vertex D. The shaded region represents
the monotonicity region of vertex D: when it lies inside this region, a non-empty set
of values of u); satisfying inequalities (11.53)—(11.54) exists for the quadrilateral
cell ABCD. Otherwise, if vertex D lies outside the shaded region, as D’ on the figure,
inequalities (11.53)—(11.54) cannot be satisfied. Therefore, there is no value of u;;
for which Mp can be an M-matrix for the quadrilateral cell ABCD'. -

The shape of the monotonicity region depends on the angle 8 = ABC and the
diffusion tensor Kp. In Fig. 11.6, we plot monotonicity regions for the identity tensor
and different angles 6. In Fig. 11.7, we plot monotonicity regions for the same angles
but a full diffusion tensor Kp. By comparison of the plots in two figures, we observe
that the full diffusion tensor rotates the monotonicity region.

For the identity diffusion tensor, the monotonicity region tends to an infinite strip
whose base is the segment AC when 8 becomes a very acute angle. Moreover, an
infinite part of the ray originating at point B and orthogonal to segment AC is always
inside the monotonicity region for any value of 6 from very obtuse to very acute.
Indeed, when D lies on this ray, the right-hand side of (11.54) is strictly positive and
the left-hand side of (11.53) is always zero.
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Fig. 11.6. Monotonicity regions (shaded area) for Kp = | and different angles 6 = ABC which
take values 147°, 119°, and 98° in the top row, and 20°, 47° and 90°, in the bottom row

Fig. 11.7. Monotonicity regions (shaded area) for a full tensor Kp and the same angles 6 =
ABC as in Fig. 11.6. The full tensor rotates the monotonicity region. Note the existence of a
limiting angle beyond which the monotonicity region is empty

Remark 11.3. The above analysis can be used in mesh generation algorithms to for-
mulate an additional quality metric.

11.4 Non-linear optimization
In Sect. 11.2 we presented a set of results that hold for specially shaped cells

such as simplexes, parallelograms, tilted parallelepipeds, and degenerate pentagons.
Nonetheless, the theoretical developments leading to conditions (W1)—(W2) are
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quite general and can be applied to arbitrarily shaped cells. In this section, we en-
force these conditions by solving a nonlinear optimization problem. To this end, let
us introduce two quantities:

E:m;‘?‘Wij and F:mjnZW;j|fj|. (11.55)
7] 1 _/

The quantity £ controls the off-diagonal entries of matrix Wp, and is thus related
to condition (W2). The quantity F' controls the property of Wp being a diagonally
dominant matrix and is thus related to condition (W1). The following simple lemma
shows that we have to minimize £ and maximize F to find an M-matrix.

Lemma 11.4. Let matrix Wp be given by (11.25) and such that E <0 and F > 0.
Then, Wp satisfies conditions (W1)—(W2).

To control the SPD property of the parameter matrix Up in the optimization strat-
egy, we employ its Cholesky factorization Up = Lp Lg, where Lp is a lower triangular
matrix. The diagonal entries of Lp = (¥;;) must be positive real numbers since Up is

SPD. Let % be the trace of Wg. We denote by Up one of the matrices listed below
(note that the last choice does not always give an SPD matrix):

@ Up=1ple;
(i) Up =1 (DpDg) s
(iii) Up is given by the least square solution of min; . ; |w;;|*.

Let Gp = [p[g be the Cholesky decomposition of Up. We consider the following
objective functional:

f(E,F,Lp) = v(E;ex) — erF +&||Lp — Lp |3, (11.56)

where €5 > 0, &7 > 0, g > 0 are tuning parameters, || - ||z is the Frobenius norm of
a matrix, and v(E; &g) is the wall function:

V(E)=E+\/€2 +E2. (11.57)

Now, we solve the following non-linear constrained optimization problem:

minimize  f(E,F,Lp)

subjectto:  w;; —E >0 Vi# J,
F—Y . w;;> Vi
2jwij =0 b (11.58)
and: E . FeR
0 <l < oo Vi,

g,’jER Vl?é]
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Let us introduce the compact notation for the constraints:

E—wpy, for p <gq,
gpq(EaFa LP) = {

ijpj|fj| —F forp=gq.
The Lagrangian of the minimization problem is given by:

Z(E7Fa I—Pa”’) :f(E7F7 LP) - z .u'qupq(EaFvLP)a (1159)
P=q

where U = (lpq)p<q 18 the vector of Lagrange multipliers. A part of the Jacobian
matrix related to the constraints has the following entries:

9gpq Igpp

3E =1 for p<gq and 3F =0

dg Jg

a_;;q =0 for p<gq and 8_11;17 =-1 (11.60)
agpq 8 Wpyq Igpp IWpg

afjj [M orp<4q and agij % agij | q|

The last two terms can be computed efficiently using the formula provided by the
following lemma.

Lemma 11.5. Let Wp = (w;;) be given by (11.25), where Dp = (dj;), Up = LpLT
and Lp = ({;;) is the low triangular matrix. Then,

OWpy

=Y (dgidypi + dpdyi) ;- (11.61)
aéij

k>j

Proof. Let e, be the p-th vector of the canonical basis of R”, i.e., this vector has 1
in the p-th position and zero elsewhere. Since w,, =w), + ((DpLp)(DpLp)"),, and
wgq does not depend on Lp, we have:

Iwpg _ 0 N 9 (7 r
FTRTS ((DPLP)(DPLP) )pq— T (ep(Dpr)(Dpr) eq)

Using the chain rule, the derivative becomes:

prq

8wpq al_p aLp
agij (Dp 8£,j ) (Dpr) €y —I—e (Dpr)(Dp af,j) €y

Since dLp/dl;j = = eje; T the straightforward calculations give:

awpq
af,'j

e/ (Dpejel )(Dplp) e, +e) (DpLp)(Dpejel ) e,

=(e;Dpe,~)ejT(Dpr) e, +e, 7 (DpLp)e;(e/ Dhe,)
=dyi (DpLp)gj + (DpLp)pj dyi- (11.62)



11.4 Non-linear optimization 337

Equation (11.61) follows by noting that

(DplLp)sj = Y, dsicl;

k>j

since Lp is a lower triangular matrix. O
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Diffusion problem on generalized polyhedral
meshes

The minimal surface area partition of space into
cells of equal volume is a tiling by truncated
octahedra with slightly curved faces.

(Lord Kelvin’s conjecture)

A generalized polyhedron is a topological polyhedron, i.e. a solid defined by a bi-
Lipschitz mapping of a polyhedron. The faces of a generalized polyhedron are usually
non-planar (or curved) but edges may remain straight line segments. A generalized
polyhedral mesh is a mesh containing generalized polyhedra. Such a mesh often ap-
pears in Lagrangian fluid flow simulations where the computational mesh moves with
flow.

It was shown experimentally in [254] that the MFD method for the diffusion prob-
lem in the mixed form described in Chap. 5 does not converge on generalized poly-
hedral meshes. A similar statement can be made for the lower-order Raviart-Thomas
finite element method, see Fig. 12.1 where we solve a simple Poisson equation in a
unit cube.

A straightforward solution is to approximate a strongly curved face by trian-
gles to get a polyhedral mesh where all elements have planar faces. The number of

—+—MFD new: pressure
=6—MFD old: pressure
. | ~—MFE: pressure
== MFD new: velocity
=i~ MFD old: velocity
=¥~ MFE: velodity
10 107

h

mesh l_2 norm of error

Fig. 12.1. Let picture shows a logically cubic mesh with randomly perturbed interior vertices.
The right picture shows convergence graphs for the MFD method (4 and x) described in this
chapter, mixed finite element method (triangles) and the MFD method described in Chap. 5
(squares and circles)

L. Beirdo da Veiga, K. Lipnikov, G. Manzini: The Mimetic Finite Difference Method for Elliptic
Problems, MS&A 11. DOI 10.1007/978-3-319-02663-3_12, © Springer International Publish-
ing Switzerland 2014
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flux degrees of freedom grows linearly with the number of these triangles. Potential
problem with such as approach is that an approximate piecewise-linear representa-
tion of smooth material interfaces and external boundaries may lead to profoundly
non-physical numerical effects including spurious dispersion, anisotropy and reflec-
tion/scattering in simulations of acoustic, visco-elastic and electromagnetic waves. It
may also break the symmetries of boundary and initial conditions and even change
convergence properties with mesh refinement.

Another approach is considered in this chapter. It incorporates the face curva-
ture into the discretization and uses only three degrees of freedom for every strongly
curved face regardless of the number of its vertices. The new mimetic scheme is de-
veloped for a diffusion problem; however, the underlying ideas can be extended to
other PDEs.

Other discretization schemes [2,276] can be also used to solve diffusion prob-
lems on generalized polyhedral meshes; however, to the best of our knowledge, the
convergent schemes result in non-symmetric discrete problems which reduces sig-
nificantly the number of available efficient algebraic solvers. The MFD method, by
its nature, results always in a symmetric discrete problem.

12.1 Diffusion problem in mixed form

Let Q be an open connected subset of R with a Lipschitz continuous boundary. We
consider the diffusion problem in the mixed form:

u+KVp=0 in Q, (12.1)
divu=5 in Q, (12.2)
p=g" on 0Q, (12.3)

where the vector variable u represents the flux of the scalar unknown p, K is a full
symmetric tensor, and b is a source function. The unknown p may be a pressure, a
temperature, or a flow density depending on the physical interpretation that we give
to this mathematical model.

We assume for simplicity that the homogeneous Dirichlet boundary condition,
gP =0, is imposed on 9 Q. Other types of boundary conditions can be also incorpo-
rated into the mimetic scheme, see for example [206] and Chap. 5. We also make the
following assumption.

(H1b) Every component of tensor K is in W1=*(Q) and K is strongly elliptic, i.e.
there exist two positive constants k, and x* such that

KJEIP <ETKME <K*|E|>? VEER, xeQ.  (124)
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12.2 Polyhedral meshes with curved faces

Let £, be a non-overlapping conformal partition of €2 into generalized polyhedra
P. For simplicity, we will often refer to them as polyhedra. Intersection of any two
distinct generalized polyhedra is either empty, or a few mesh vertices, or a few mesh
edges,or a few mesh faces. Two adjacent polyhedra may share more than one edge
or more than one face.

As usual, we denote by |P| the volume of P and by /4p its diameter. For every
face f, we denote by [f] its area of by 45 its diameter. We finally set # = supp /p and
consider a sequence of generalized polyhedral meshes {2}, where 7 — 0.

Since mesh faces can be curved, we cannot use the mesh regularity assumptions
(MR) of Chap. 1. An alternative way to characterize the shape properties of a gener-
alized polyhedron is based on the definition of a generalized pyramid.

Definition 12.1. Let £ > 3 be an integer, and ¥, and 7, be positive real numbers, with
% < 1. A generalized pyramid Q with £ lateral faces and shape-regularity constants
7. and T, is a subset of R> that can be constructed with the following three steps:

1. Take a pyramid Q whose base f is a convex polygon with k edges. Let v be the
vertex of this pyramid, g be its diameter, and Hy be its height (see Fig. 12.2).
Up to a rigid-body displacement, we can assume that va is in the origin andfisa
subset of the plane z = HQ. We also assume that Q contains a sphere of radius

r> Y*hé'

2. Define a radial one-to-one C' mapping @ of the pyramid Q into itself. In a radial
map a point x and its image x’ = @(x) lie on the same ray emanating from the
origin. We assume that

max |[VO(x)| <7, and max||V(® ()| <7, (12.5)
xeQ x'eQ

The norms in (12.5) are the usual Euclidean norms of 3 x 3 matrices.

3. Define the generalized pyramid Q = <15(CA2) The image of the base f isa C! surface

f, f = @(f), that we will refer to as the base of the generalized pyramid. Accord-
ingly, the images of the £ lateral faces of Q will be referred to as the lateral faces

of Q.

The convexity assumption of f could be replaced with a star-shaped assumption
(see [90] for more details). However, for simplicity of the presentation, we will not
do it here. Nevertheless, the following definition of a generalized polyhedron allows
us to keep the class of admissible generalized polyhedral meshes sufficiently large.

Definition 12.2. A generalized polyhedron P is formed by the generalized pyramids
that have the same vertex Xp. The vertex Xp lies strictly inside P. The boundary dP
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z

Fig. 12.2. Pyramid Q containing a sphere of radius

is the union of the bases of the generalized pyramids. These bases will be referred to
as the faces of P.

Consider a generalized pyramid Q. According to Definition 12.1, at each point of
its base f, we can define a normal unit vector ns pointing outward of Q and varying
continuously with the point. Thus, we can define the average normal vector n¢ as

o
B = — / ne ds. (12.6)
] J

It is not difficult to see that ||ng|| < 1. A lower bound for ||n¢|| depends on ¥, 7, and
is contained in the following technical lemma.

Lemma 12.1. Let Q be a generalized pyramid with shape regularity constants %,
and 7. Let f be its base and let n¢ be the average normal to f defined in (12.6). Then,

~ 2%
[[n¢]| > ‘c—j' (12.7)

Proof. Definition 12.1 implies that there exists a bijective mapping ¢: f— % such
that the restriction of @ to f can be written as

x/:x(p(x7y)7 yl:y(p(xvy)v ZI:HQ(p(x7y)' (12.3)

Using assumption (12.5), it is not difficult to check that for every pair of points x|
and x, on f, and their images x| = ®@(x;) and X, = @(x;) on f, we have

¥ =%l <zlxi—xf  and xi—xf <X —x. (12.9)
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By the basic vector calculus, we have
/nde: X % 2% ddy. (12.10)
f f dx 'y

Differentiating (12.8), we obtain

! /

g = ((P +X(P.\'7y(Px,HQ(Px) and a_y = (x(py7 (P+y(PyaHQ(Py)~

A lengthy but easy calculation gives

Jox'  Ix 5
ox "y _<‘H6‘P<Pm—H@<p<py7<p +(p(X(Px+y(Py))- (12.11)

Now, let & = (&, &, H &) be a point in fandg=¢ 2/2. Using (12.11) and (12.10)
in (12.6), and then 1ntegrat1ng by parts, we get

-8 = g [Hge (x—Ee + - Gl dedy

"2 (fag-g-gma [o c-gmro-gm}ar).

where (Vy, v, ) is the outward unit normal to f lying in the plane z = Hg. Since Eis

internal to f and f is convex, we have
(x=&ve+(r—E)v, >0

Let g,in be the minimum value of g on 8?. Using first the mean value theorem for
integrals and then the divergence theorem in the plane z = Hg, we obtain

f
llf é Emin g |f| / él Vx+(y 52 Vy} dl = )mmHQ :f:
Thus, the Cauchy-Schwarz inequality implies that
~ f
el > () min s il (12.12)

T

To complete the proof, we have to estimate three factors in the right hand side of
(12.12). From (12.9), we have easily that

If] < 2 f). (12.13)

Next, using (12.5) and taking any point x on 97, its image point x’ = @(x) on Jf, we
have ||x|| < 7, ||x/||. Thus, (12.8) implies that
1

((Pz)mm Z ? (1214)
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Finally, we recall that the pyramid Q contains a sphere of radius r > Y*hQ- Since
€]l < hg and 2r < hg, we deduce that

8] <hg < £ <20 (12.15)
T T ‘
The assertion of the lemma follows from estimates (12.12)—(12.15). O

Now we describe a class of shape-regular generalized polyhedral meshes. All con-
vergence error estimates will be proved for these meshes. A generalized polyhedral
mesh €2, is called shape-regular if it satisfies the following assumption.

(GR) We assume that there exist two positive constants 7, and 7,, and one integer
number .4, independent of the mesh, such that every element P is the union of at
most .4* generalized pyramids with at most .4 lateral faces and shape constants
% and T,.

Definition 12.3. (Moderately and strongly curved faces). Let 1, be a positive con-
stant independent of the mesh €,. We say that f is moderately curved if at every point
x € f it holds:

Ine(x) —ngl| < ne[f'/2, (12.16)

where ny is defined in (12.6). Otherwise, we say that the face f is strongly curved.

Remark 12.1. The meshes generated with a smooth mapping or by a uniform refine-
ment of a coarse mesh contain typically cells with moderately curved faces. In con-
trast, the meshes generated by moving mesh methods contain frequently cells with
strongly curved faces. Definition 12.3 gives a simple computable measure of face
curvature.

Assumption (GR) is close to the mesh shape regularity assumption (MR) intro-
duced in Chap. 1. It implies immediately that every element P is star-shaped with
respect to the common vertex Xp of the generalized pyramids that form it; compare
with the assumption (MR3). Additional consequences of assumption (GR) are stated
in the following lemma.

Lemma 12.2. Let €, be a generalized polyhedral mesh satisfying assumption (GR)
and P be any element in €2y,. Furthermore, let p, and a, denote positive constants
that depend only on the constants ¥, T., and N5. Then P is star-shaped with respect
to every point of a sphere centered at Xp with radius p, hp. Moreover, we have the
Jfollowing bounds:

a.hdy < |P|<hd and a.h} < |f| <h} (12.17)
for all faces f of P.

Proof. A conventional polyhedron P is star-shaped with respect to every point in
its feasible set. The feasible set is defined as the intersection of half-spaces formed



12.2 Polyhedral meshes with curved faces 345

by all faces of P and containing Xp. For a generalized polyhedron P, its feasible set
is the intersection of the infinite number of half-spaces containing the point Xp and
tangential to all internal points of faces f of P. The radius of a sphere inscribed in
the feasible set equals to the shortest distance from Xp to the tangential planes.
Without loss of generality, we assume that Xp is in the origin. Using the notation
of Lemma 12.1, we consider a generalized pyramid Q built from a regular pyramid
Q via map @. Let f be the base of Q, f the base of Q, and H@ the height of Q. Let

xefandx = ®(x). The normal vector to face f at point X’ is given by

ne(x') = (— Q@ P —Ha® ¢y, 97+ @(xg: +y<py)) ;

where map @(x,y) is defined by (12.8). Distance from the origin to the tangential
plane defined by the normal vector ng(x’) and passing through point x’ is

X one(x)| _ Hoo?l
e (I [me ()]

Since @ is a bounded operator, the absolute values of its components are bounded by
7,. Thus,

d(x') =

(12.18)

Ine ()1l < o (IHg@sl +[Haey| + vy +y¢, + 0l ) < |g]5t..

Inserting estimate (12.14) into (12.18), we obtain a lower bound for the distance
independent of the position of point x':

d(xX) > Hy/(5T3).

Using Definition 12.1, we obtain that HQ >2r> 2y*h6. Formula (12.9) implies that
hQ < 1.hq and hq < T*hé, where /q is the diameter of the generalized pyramid Q.
These formulas give us a different lower bound:
1 2)/*
d(x') > —<Hxy > —"h
(x) 2 513 Q_Sr“ @

Let us show that the diameters of the generalized pyramids Q € P are uniformly
bounded from below. Let Q| have the largest diameter among all generalized pyra-
mids and Q; be a generalized pyramid that has a common lateral face with Q. Note
that 7, hq, > h@l > H@l . Since these two pyramids have a common face, a pessimistic
estimate for the diameter of Q, is H@l /Ts. Thus,

Since the generalized pyramids are connected with one another, a pessimistic esti-
mate for the radius of a sphere inscribed in the feasible set is given by

2% _ 2% (2% et 2 (2" ke
N~ 20 el > - (I — =p,hp.
d(x) z 54 gleu';h =574 ( 72 ) ha, = 512\ 12 y PP
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The volume of P is bounded from below by the volume of the inscribed sphere
with radius p,. This gives a, = 47p} /3. The bound for |f| follows from an estimate
similar to (12.13) and the above arguments:

n? _ wy? 2
T2 QT g

1 ~
IfIZT—EIfIZ

which gives a, = n(5t*p, /4)%. The assertion of the lemma follows by selecting the
smallest of a,. O

A useful consequence of the proof of the last lemma is that

27* 2Y*P* =~
Hz > —hqg>—h v P. 12.19
Q= . Q= 7. P Qe ( )

12.3 Mimetic discretization

12.3.1 Degrees of freedom and projection operators

The mimetic approximation of (12.1)—(12.3) starts with the definition of the degrees
of freedom for scalar and vector fields.

* The space of discrete scalar fields &7, is defined by attaching one degree of free-
dom to every cell P € Q. The value associated with P is denoted by gp. The
collection of all degrees of freedom form the algebraic vector g;, € &),

an = (qp)Peq,-
The dimension of &7, is equal to the number of polyhedrons in €2;,.

* The space of discrete flux fields .%, is defined by attaching a vector vp ¢ to every
element P and every face f of P. The collection of all degrees of freedom form the
algebraic vector v, € %,

Vi = (VP.f)feP, Peq,-

The dimension of .%), is equal to three times the number of the boundary faces
plus six times the number of internal faces.

For a discrete flux field v, € .%;,, we denote by vp its restriction to P, i.e. vp =
(vp f)fep. The vectors vp form a linear space ., p, the restriction of .%, to element
P. To build a mimetic scheme, we need to reduce the number of independent flux
degrees of freedom by imposing some continuity conditions.

For every element P in €, and every face f of P, we define the vector np ¢(x) as
the unit normal at point x of f pointing outside of P. Let np ¢ be the average normal
vector,

o
s = o /f np £(x) dS. (12.20)
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np ¢

Fig. 12.3. A local coordinate system for the strongly curved face (top face) of a generalized
hexahedron

Lemma 12.1 gives the following lower bound:

~ 2%
el > 2. (12.21)

*

In addition, we assign to each mesh face f a pair of arbitrary unit vectors agl and
afgz orthogonal to np ¢ and orthogonal to each other. These three vectors form an or-
thogonal coordinate system for every face f as shown in Fig. 12.3, where the strongly

curved face is the top face of a hexahedron. We set, for convenience of notation,

f3 np ¢
ag” = ——.
P el

Hereafter, we assume that mesh functions v;, in space .%), satisfy the following
continuity conditions.

(C1) (Continuity of discrete fluxes). For each face f, shared by two polyhedrons
P and P,, we assume that

Vp,f-Mp, f = —Vp,¢-Np, f. (12.22)

Moreover, for every strongly curved face f, we assume the full continuity of the
local flux vector. This means that together with (12.22) we also have

Ve f-as =vp,real =12, (12.23)

The continuity condition (C1) reduces the number of independent flux unknowns.
On moderately curved faces, only the normal component of vp ¢ is continuous, and
the other two components can be treated as infernal degrees of freedom. In a computer
program, they are eliminated during the assembly process by the static condensation.

The necessity of using three independent flux unknowns on each strongly curved
face is an intrinsic property of a generalized polyhedral mesh and is the possible
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reason why nobody succeeded in development of a convergent method with only
one flux unknown per mesh face.

Remark 12.2. In the case of discontinous materials, we will have to replace the full
continuity of flux across strongly curved faces by continuity of the normal flux and
tangential components of the gradient.

The constant 7, in (12.16) is at our choice. If we choose it too large, then most
faces will be classified as moderately curved and the asymptotically optimal conver-
gence rate will be observed only on very fine meshes. Indeed, as we will show later,
the constant 7, enters the a priory estimates. Hence, in practice, we are likely to face
the usual trade-off between the cost of the method and the quality of the solution.

Let us define the projection operators (-)! from continuum spaces of sufficiently
smooth functions to discrete spaces. For a function ¢ € L'(Q), we define a cell-
centered scalar field ¢! € 22, by

1
ql = (Q}D)peyy Q}D = ﬁ,/quV (1224)
It is immediate to verify that for any P € €2, we have
/ (qb)*av < / Fdv NgeIL*P). (12.25)
P P

For every vector function v € (H'(£))3, we define a face-centered discrete flux
field v! € .%, as follows:

V'=(Vbf)ep. pe s (12.26)
where
pofi 1 £i .
Vpsrap = m/fvap ds for i=1,2, (12.27)
13 1
Voo 8 = e /f v-np £ dS. (12.28)

In Sect. 12.4.1, we will prove that this projection operator is well defined and
uniformly bounded. If function v is continuous across the interior mesh faces, it is
easy to see that the resulting 3-D vector VIPf satisfies the continuity property (C1).
The projection operator has three important properties. First, for a constant function
¢, we obtain from (12.27)—(12.28) that

che=rc. (12.29)

Second, the definition of the projection operator implies the flux conservation prop-

erty:

,/fv'np’de: ||’l‘ip7f|| |f|VIpf . 31;53 = |f|V};’f "l\ipyf = V}D:f -/fllp.’de: /fVL’f -ﬁprde.
(12.30)
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Note that in the last integral we consider VIPj as a constant vector field on f. Finally,
using estimate (12.21), we obtain the following upper bound:

4 1/2
I T 2
Ivbel < - (/f|v| as) . (12.31)

12.3.2 Strong and weak forms of discrete equations

The discrete divergence operator, divy,: %, — &2, arises naturally from the Gauss
divergence theorem and (12.30) as

S Ve g -ip|f] = |f| Y [vesoneds. (1232)
feoP

lep (V}7 |f|
fedP

Note that this primary mimetic operator uses only the normal component of the local
flux vector. A part of the communing diagram (see Lemma 2.2) holds true for this
operator.

I

Lemma 12.3. The projection operators (-)' commute with the discrete and continuum

divergence operators.

Proof. Let v be a sufficiently smooth vector-valued function. Using (12.32), (12.20),
(12.30), the Gauss divergence theorem, and (12.24) we obtain

. 1 ~
lep (VIP) = ﬁ z V};’f ‘Dp g |f| |P| /Vp f-pf das
feoP fedP

1
= ﬁ/an'n |P|/dlvvdV (divv)h

for every element P in €. This proves the assertion of the lemma. ]

(12.33)

According to the discrete vector and tensor calculus developed in Chap. 2, the
derived mimetic gradient operator, V,,: &), — %, is given by

V=M div] M,

where matrices M » and M are induced by the inner products in spaces .%), and
Py, respectively. In space &, we consider

[Phqn) 2, = > peaplPl  Vpwawe P (12.34)
PGQh

Thus, the matrix M . is diagonal with volumes |P| on the diagonal. The inner product
in space .%, is more involved and we will define it in the next subsection. Here, we
simply state that

T
[uh,vh] z = u, Mzv, Yy, v, € %,

The matrix M # is often irreducible, so that its inverse is a dense matrix. Fortunately,
in a computer code, this matrix is never calculated explicitly.
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Using the discrete flux and divergence operators, the mimetic approximation of
equations (12.1)—(12.3) with g” = 0 reads:

Find (uy, py) € Fj, x Py, such that

u,+V,pp, =0, (12.35)
dth u, = bl7 '
where b' € 2, is the cell-centered field with the mean values of the source function
b over elements P.
Now, we are able to present the weak form of the mimetic method. We multi-
ply the first equation in (12.35) by v,{ M 2z and use the duality of mimetic operators
(see (2.27)). Then, we multiply the second equation by qZM 2 to obtain

Find (uy, py) € Fj, x Py, such that

(Wi Vi) 7, — [P divavi] , =0 Vv, € T, (12.36)
[divy, Vi, qn] 2, = 6", q1) 2, Yan € Py ’

12.3.3 Stability and consistency conditions

In this section, we detail the two fundamental conditions of stability and consistency
that lead to a convergent mimetic scheme. Let us write the inner product in space .%,
as a sum of elemental inner products defined for every element P in €2:

[uh,vh] 7 = 2 [uP’VP]ﬁ},AP Yy, v, € %, (12.37)
PGQh )
According to the theory developed in Chap. 4, the inner product must satisfy the
stability and consistency conditions.
Let Kp be a constant tensor on P such that

sup sup |(K(X))i’j—(KP)i7j|§C&hp, (12.38)

xeP 1<i,j<3

where Ci is a constant independent of P. In practice, we use either the mean value
of K or we set Kp = K(xp).

(S1) (Stability condition). There exist two positive constants o, and o* which are
independent of mesh €2, and such that

o, |P|vhvp < [Vp,Vp]yh’P < o*|P|vbvp Vvp. (12.39)

The stability assumption states that the local inner product matrix must be spectrally
equivalent to the scalar matrix |P|l. In practice, the constants o, and 6* depend only
on the skewness of polyhedron P and on the tensor Kp. This assumption ensures
stability of a mimetic discretization.

Let us define the following space:

Spp= ve (W' (P))? 6/5<s<2, withdivvePy(P), ve (Po(f))’ VfecaP}.
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According to the theory developed in Part I of this book, this space must satisfy three
assumptions (B1)-(B3). We recall the first two assumptions.

(B1) The local projection operator (-)5 from S, p to %, p must be surjective.

(B2) The space S, p must contain the trial space of constant vector functions:
Fp = {v:P — R?such thatv = KpVg with g € P; (P)}.

It is possible to verify that the space S;, p above satisfies both conditions, while the
third assumption (B3) will be addressed below. In particular, in order to show condi-
tion (B2), it is sufficient to solve a local Stokes-like problem as shown in Eq. (12.89).

(S2) (Consistency condition). For every function v € S, p, any linear polynomial
', and every element P we have

[(KeVg')bvh] 5, p = [ Va' vl (12.40)

Consistency is an exactness property and guarantees the first order of accuracy of
the resulting mimetic scheme. By definition, if v € S, p then divv is constant on P
and from Lemma 12.3 we obtain that (divv)p = divp(vh). Likewise, since for all
f € dP it holds that v is a constant vector field, it is easy to check from definitions
(12.27)~(12.28) that

VIp’,f~af>'iZVIf-aEi vfedP,i=1,2,3.

Therefore V};‘f = v|¢ and we immediately have

/qlv-npvde:/qlv};f-np.de vf e dP.
f ’ f ’ )

We integrate by parts the right-hand side of (12.40) and use these formulas to obtain

[(vaql)}mv}p]%_P - _/qldivP(v}D)aIVJr Y /q‘v{pjf.npf ds. (12.41)
P feop/f
The terms in the right-hand side are explicitly computable and (B3) of Chap. 4 is
verified for the bilinear form

PBp (v, u) :/PK;lvudV.

More precisely, assumption (B3) of Chap. 4, adapted to the current case, reads:

(B3) Zp (v,u) with v € S, p and u = Kp Vg' can be computed exactly using only
g" and the degrees of freedom of v.

Integration over a curved face f requires an explicit representation of this face. The
most simple representation of f is made by its triangulation, which is an acceptable
face model for the majority of the internal mesh faces. When a curved face is located
on material or domain boundaries, a local parametrization of these boundaries can be
used to calculate the integral.
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Remark 12.3. The calculation of the boundary face integrals may require numerical
quadratures. The impact of the numerical integration error on the accuracy of the
mimetic schemes is not analyzed in this book, see [253,256] and references therein
for examples of theoretical and numerical analysis of approximate consistency con-
ditions.

Remark 12.4. Note that we do not require the space Sj, p to be finite dimensional and
isomorphic to .%;, p. Nevertheless nothing forbids us to choose it such that, in addition
to the above conditions, we have

dim(Shyp) = dim(ﬁhtp). (12.42)
12.3.4 Derivation of mimetic inner product

In this section we show in detail the construction of a mimetic inner product in the
space ., that satisfies assumptions (S1) and (S2). We refer to [93] for a complete
list of available results. By the definition of the inner product, each contribution in
(12.37) can be written in a matrix form:

[llp,Vp] 7P = llg Mpr, (12.43)

where Mp is a symmetric and positive definite matrix.

Let NF‘;}A be the number of faces in P, so that the size of vectors up and vp is
lp = 3N§? . For every positive integer number » < /p, we define two unique integer
numbers (r) and B(r) such that

1<a(r)<N§ and 1<pB(r)<3.

Weuse o(r) and B(r) to label the degrees of freedom of vp associated with the faces f

of dP and with the basis vectors a,fg;' that are defined on each face. In particular, we say
that the r-th component of vp is associated with face fy,) of polyhedron P and with

fo(m:B(r)
P

the basis vector a (this correspondance is practically implemented by taking,

for example, » = 3(a(r) — 1) + B(r)). Hereafter, we shall write a,(gr) to simplify the
notation.

Due to the bilinear structure of the integrals in the right-hand side of (12.41), it is
sufficient to consider only four linearly independent functions. Taking ¢' = 1, we re-
cover the definition of the discrete divergence operator divp. This adds no constraints
on the inner product matrix. For linear functions orthogonal to a constant, formula

(12.41) is simplified as:

[(Kp vql)}mvlp]jh’,: =Y /fql VosmpsdS  WES,p. (12.44)
feadP
The formula shows the remarkable property of characterizing the inner product using
only boundary integrals.
There are three linearly independent linear functions orthogonal to a constant.
They are x; —xp ;, i = 1,2,3, where X = (x1,x2,x3) is a 3-D position vector and xp =
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(xp1,xp2,xp3) is the centroid of P. Inserting these linear functions in (12.44), we
obtain

(KeVx)bvb] s p= ¥ [i—ven)vbemesds.  (1245)
' feoP

Let us introduce the matrices R and N, with size /p x 3, which are defined by

Ry = / (x;—xp)al) mps, S and  Ny=((KeVx)b), (1246)

o(r)

where r =1,2,... ¢p and i = 1,2,3. These matrices obviously depend on P but we
omit this subscript until the end of this section to ease the notation. Let R; and N;
denote columns of matrices R and N, respectively. Recalling the definition of the
inner product, we obtain

VYT MpN; = (VB)TR;  Vvh, i=1,2,3.

Since VIP is an arbitrary vector, the above formulas can be written as the matrix equa-
tion:
MpN = R. (12.47)

The theory developed in Chap. 4 gives us a parametric family of solutions to this
matrix equation. To show that this family contains symmetric and positive definite
matrices, we have to prove some of the properties of matrices N and R. The following
lemma relates to the general results in Sect. 4.3.

Lemma 12.4. The matrices N and R satisfy
R'N =NTR = |P|Kp. (12.48)
Proof. Let us first observe that

((KpVx;)b), = (Kp V)b -a%) = Kp Va;-a,

which follows from (12.29) because Kp Vzx; is a constant vector and ag) is an orthog-
onal set of unit basis functions. Using this relation and the definitions of matrices N
and R given in (12.46) we obtain:

N7R; = ¥ (KpVixi)- )/ —xp;)al) - mpds. (12.49)
oz(r)

7

For 1 <r < {p, there must exist three distinct values 7, 7 ad r3 that identify the same
face, i.e., f,, = f,, = f,,, and the three basis vectors agl), agﬁ, and ag3) associated
with that face, i.e., B(r;) = i for i = 1,2,3. We reformulate the summation in (12.49)
as a summation on the faces f € dP by collecting the three contributions from each

face that are associated with the basis vectors ap"”. ) Noting that ¥}, a,(:,)(ag))T =1

because {ag)} is a complete orthogonal set and using the Gauss-Green formula for
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the linear functions x; and x;, Eq. (12.49) becomes

N,.TRj:/a (KpVax;) - mp (x; —xp.) dS:/ KpVxi- Vx; dV = [P| (Kp), -
P ’ P :
(12.50)

Since i and j are arbitrary, this completes the proof. |

Since %, p is extension of a related space from Chap. 5, we have immediately a
few results such as the matrix N has the full rank. Using Lemma 12.4, we can rephrase
Lemma 4.7 as follows.

Lemma 12.5. Let D be an lp x ({p — 3) matrix whose £p — 3 columns span the null
space of N7, so that NTD = 0. Then, for every (£p —3) x (£p — 3) symmetric positive
definite matrix U, the symmetric matrix
1
Mp =M +DUDT, M(F?):WRKEIRT, (12.51)

satisfies (12.47) and is positive definite.

Since U has size {p — 3, a general symmetric positive definite matrix of this size
has (¢p —2)(¢p — 3)/2 free parameters, yielding a family of matrices. The liberty of
choosing U within this family can be used to tackle other computational problems,
e.g., to enforce the discrete maximum principle (see Chap. 11 for more detail).

One of the efficient ways for solving the diffusion problem in a mixed form is
based on the KKT theory of constrained minimization (see e.g. [289, Chap. 16])
where the constraints are given by (12.22) and (12.23). The solution of the KKT
system is reduced to the solution of a sparse system for Lagrange multipliers with a
symmetric positive definite matrix. In the finite element context this is often called
a hybridization and is usually attributed to Fraeijs de Veubeke [174] (see also [29],
or [88, pp. 178-181]).

The hybridization procedure uses only the inverse of matrix Mp, while the explicit
knowledge of the matrix itself is not required. Let Wp denote the inverse of matrix
Mp. Then

WpR =N. (12.52)

This equation differs from (12.47) only by swapping of matrices N and R. Thus, we
have the result similar to Lemma 12.5.

Lemma 12.6. Let D be a Lp X (€p —3) matrix whose €p — 3 columns span the null
space of RT, so that RT D = 0. Then, for every ({p — 3) x (£p — 3) symmetric positive
definite matrix U, the following symmetric matrix

1

Wp =
Pl

NK;INT +QUQT (12.53)

satisfies (12.52) and is positive definite.
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Since, in practice, we are interested only in the matrix M;l, we can build Wp
and define Mgl := Wp. Moreover, it is not difficult to show that such a matrix Mp
can still be written in the form (12.51), where the choice of the matrices U and D
obviously depends on the choice of U and D.

Let us look again at the stability assumption (S1) and show that the new mesh
shape regularity assumption (GR) leads to mesh independent bounds. We rescale the
matrices N and R and prove a technical lemma. Let us define

N:=NKy' and R:= |1?|R, (12.54)

so that o
RIN=N'R=1;. (12.55)

According to (12.46), the r-th row of N is (ag))TKp; thus, the 7-th row of N is (a,(gr))T.
Let C; be the 3 x 3 matrices associated with faces f; of P and located on the main
diagonal of matrix C:

C :diag{Cl,...,CNS;}, cr = (a,f:",’l a;c;",’z a,f:’;’3).
The orthogonality property of vectors ap gives,
CCl=ClCi=13 and CCT=CTC=1y. (12.56)

If we further introduce the £p x 3 matrix Ry by
(Ro)ri = /f Vxg () -0 £, (xi —xp ;) dS,
a(r)

wherer=1,...,fp and i = 1,2,3, then

R=CRy and N=| . |. (12.57)

Cys
Np

Lemma 12.7. Let P be a shape-regular generalized polyhedron. Then, for any w €
R3, we have

~ — 1 - 6
INW|[ = \/Ng" W[l and ——|w]| <|Rw] < 2% [[wll. (12.58)
P 7 2
N7 Y Px

P

Proof. Using (12.56)—(12.57), we obtain

INw||2 = w/N"Nw =w’ (CTC, + I, +...+C]{,P}~CN,P;)W = N5 w'w,
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which proves the equality in (12.58). To estimate the norm of matrix R, we note that

IP[2|[Rw|[2 = ||Row||> = ZH/npfA (x—xp)) dSH (12.59)

Note that ||x — xp|| < Zp for any point x € P. Thus,

Nf 2
PRI < IwIP S 6] [ x—xelPds < w2 2 / ds>. (12.60)

Now, we consider the pyramids Qk forming P and having /f\k as the bases. Using
formula (12.19) to bound the height H@k of the pyramid Qy, we obtain

N.; N']
1 & A 1 &2 ZY*p*hP 27*p*hP
|P|ZT—EIZ,1|Qk|:EI§1|fk|HQk 31.4 ]Z,| 2|

Inserting this in (12.60), gives

B2 3TE ? 2
[[Rwl|= < pn [[wl|%, (12.61)

which is the upper bound in (12.58). The proof of the lower bound starts with the
Gauss-Green formula

/npfk, (x—xp))dS = wi|P|.

Applying this result to (12.59), we obtain

2
- 3
|P|2||RW||22N Y Z/I’lpfk, (x— xP))dS>
=1 k=1

i 2

> I
NP? i=1

This proves the assertion of the lemma. 0

From Lemma 12.7, we may easily obtain estimates for the unscaled matrices R
and N and their products with the tensor Kp. In particular, using assumption (H1b),
we may prove that

—1/2
1 IKp “RTwl| _ 316

P Pl Vv 0. 12.62
e ST S gl e (26

Theorem 12.1. Let the assumptions of Lemmas 12.5 and 12.7 hold. In addition, we
assume that there exist two positive constants s, and s*, independent of P, such that

s|P|[ve|l* <|[U*DTvp|>  Vvp € img(D) (12.63)
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and
[UY2D ve | <s*IP[|lvp|*  Vvp € Fyp. (12.64)

Then, the matrix Mp in (12.51) satisfies assumption (S1). More precisely, we have
1
min { 50 a*} IP|||vel* < vEMpvp < max {s*, o} |P|||vp||*, (12.65)

where ) 12
_ 4’(*73’3* Sx and a* — 91-* .
N7 xc*(187)2 + 4s, Kk, 2p2) 4K.7ip?

a*:

The proof of this theorem follows closely the proof of Theorem 4.2 (see also Theo-
rem 3.6 in [93]); therefore, it is omitted. The rational is that the matrix U 12DT must
be scaled properly with respect to material properties and the volume of P.

Remark 12.5. Let us assume that a generalized polyhedron is close to a regular poly-
hedron but anisotropic, i.e. 7, ~ 1 and ¥ p, < 1. Then, the condition numbers of
matrices Mg)) and Mp grow as (%.p,) 2 and (¥.px) %, respectively. This shows that

the result of general Theorem 4.2 is optimal with respect to geometry.

Remark 12.6. In numerical computations, we recommend to orthonormalize the

columns of matrix D and select U = uly,, where u is the characteristics value of

matrix Mg)), for example, its mean eigenvalue or trace. The same applies to the con-

struction of matrix Wp based on Lemma 12.6.

Let mp # 0 be the number of the internal degrees of freedom for the flux, i.e., those
degrees of freedom that are associated with the basis vectors a,f;’l and agz for each
face f of dP. Due to static condensation, only part of matrix Wp has to be computed.
Let us show why it is true. After permutation of columns and rows, matrices Mp and
Wp may be written in a 2 x 2 block form:

My My

Mp = ) and Wp =

Wi Wi
My Mo, ’

W21 WZZ

where the first diagonal blocks correspond to the internal degrees of freedom. Ma-
trices U and U can be chosen such that Wp = M;l. The algorithms of static con-
densation and subsequent hybridization require the inverse of the Schur complement
M, —Ms; [My;]7" My, which is nothing but the matrix Wo,. The corresponding
block of D can be computed with 3(¢p — mp )% + O(¢p) flops. If all faces of element
P are moderately curved, we have mp = 2N,§7 and the above optimization becomes
essential.
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12.4 Convergence analysis and error estimates

Here, we prove optimal convergence estimates for both primary variables p and u.
Some of the proofs follow the pattern established in Chap. 5 where we proved the
optimal convergence estimates for meshes with planar polygonal faces. Therefore,
we shall omit some technical details which can be found there and focus more on the
careful treatment of curved faces.

For the sake of simplicity, we assume that p € H? (). However, this is not a seri-
ous restriction and, with an additional effort, it is possible to use a weaker regularity
and to obtain lower-order convergence estimates.

The convergence analysis will be performed in the mesh dependent L?(Q)-type
norms:

llgnllP, = lanan] ,, and [Ivall’, = [vavi] 5,-

We will also use the mesh dependent H(div, Q) norm for v, € %,

2 2 2 2 : 2
vallll, = X MvelllZ,e.  IIvelllS,p = [V va) 5, p + 56 [ diveve 72p).
PEQ}, )

and the mesh dependent /7! (Q)-type norm for v € H'(Q),

2 2 2 2 2 1v]2
Ve = X IVliae: IVIEae = IVlI72p) + A8V -
PGQh

12.4.1 Stability analysis

We analyze the stability of the mimetic discretization (12.36) following the well-
established theory of saddle-point problems [88]. We recall the result which is well
known for smooth domains and has been extended to Lipschitz domains by Bramble
(see [76] and the references therein).

Lemma 12.8. Let Q be a connected bounded Lipschitz domain in R>. There exists a

positive constant B = B(Q) such that: for every q € L*(2) with zero mean value in
Q there exists a vector-valued function v € (H} (Q))? such that

divv=q and B|v|mq) < ll9/l2q)
From this lemma we obtain almost immediately the following result.
Lemma 12.9. Let Q be a connected bounded Lipschitz domain in R>. There exists

a positive constant B = B(Q) such that: for every q € L*(Q) there exists a vector-
valued function v € (H'(Q))? such that

divv=q and B|v|mq) < ll9ll2q) (12.66)
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Proof. First, for every ¢ € L>(Q), we define g by

1
g=— [ qav.
q |Q|/Qq

Then, we consider the function v = (x> +3? +2%)g/6 and set v! = Vv. Thus,
divv' =g and  c1(Q) V') < 9ll:2(0)

for some constant ¢ (€2) depending only on Q. Since the mean value of ¢ — g is zero,
we can use Lemma 12.8 to find a vector-valued function v° such that

divv’ =g—7 and B[V 0) < l7-7l 20
Let v = v +v!. We have:

V21 = V4 12 < 208 gy + IV 12 )

< 2130 + (ﬂm 720

1

1 12 all?
< 2max (E, m) (”qHLZ(Q) +llg _Q||L2(Q)).

Using the L2-orthogonality of 7 and ¢ — g, we see that
121220y + g~ 02200y = 1220

and we have easily the desired result with 1/ = v2(max{1/f,1/c; ()2 o

Let P be a generalized polyhedron, and f be one of its faces. Definition 12.2 implies
that there exists a generalized pyramid Qs with the base f. Let Qs be the pyramid used
in Definition 12.1 (together with the map @) to construct the generalized pyramid Q,
ie Qf = (Qf) and f = (f) In view of Agmon’s inequality (see property (M4))
applied to pyramid Qf, there exists a constant C#2”, depending only on constant 7,
of Definition 12.1, such that

1222 < O (H Iy + Hg 2P0 g) X €H'Q)  (1267)

L2(f) — H! (Q))
Mapping back and forth from Q to Qand using (12.5), we can show that there exists a
constant C2&™ , depending only on the shape constants 7, and 7, of Assumption (GR),

such that

12220 < €2 (i g + e nqy) X €H'(P). (1268

The following results extends a bound, which is natural for continuum norms, to
the mesh dependent norms.
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Lemma 12.10. Let v € (H'(Q))? and v' € ), be its projection defined in (12.26).
Under assumptions (H1b), (GR) and (S1), there exists a positive constant B} inde-
pendent of the mesh such that

BV sy < V[l (12.69)

Proof. Using bound (12.31), applying Agmon’s inequality for pyramids (12.68) to
each component of v, and using bound (12.17) we get:

T 1/2
bl < gt ( IMIPas)

4
T Agm (1—11o12 2 12
< sy (G (o IVl g + v ay)

1/2
4 gm
@ —3)1¢/12 —1jy2
<oy e e Mg TR Vi) |
Recalling assumption (S1) and the definition of norm || - ||; 4 p, we have

[VIP,VIP]%_P <" Y, mpllvegll?

feadP
8 gm
%
<o Y s ——(hp VT2 + e IVl
feza‘P 42  a, ( P L*(Qf) ' P TIH (Qf))
8 ~gm
<o ZET S il
Yo @ geop
oridclem
= —=— . 12.70
4a, VI 5p ( )

Furthermore, from (12.33) and (12.25), we obtain
||diVP(V}D)||iZ(p) = ”(diVV)IP”iZ(p) < ”diVV”iZ(p) < 3|V|12L[1(p)-

Combining the last two estimates, we prove the assertion of the lemma with

1/(B;)? = max{3,0*13CL%" / (4¥2a.) }. O
Let W}, be the space of divergence-free discrete flux fields:
Wy=A{vye€%,: div,v,=0}.

We begin the stability analysis by noticing that the inner product (12.37) is continu-
ous. It is also obvious that it satisfies the W},-ellipticity condition:

Visval 2 2 IVallls, Vi € W (12.71)
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Lemma 12.11. Under assumptions of Lemma 12.10, there exists a positive constant
B independent of qy, vy, and h such that

inf sup [dvvnan] , > Bl llaall, . (12.72)
‘Ihe—'?hvhef;, h

Proof. Let us consider g5, = {gp }pcq, € &, and the piecewise constant function g
that takes the value gp over cell P. Applying Lemma 12.9, we find a function v €
H(div, £2) such that

divv=¢ and B|Vllgi(q) <lqll20)

We define a discrete flux field as v, = v'. The commuting property (12.33) implies
that div;,v;, = (divv)! = ¢;. Combining the last inequality with (12.69) and noting
that [v[[1 5, < B[|V] g1 (q), We obtain

BSBIValllay < BIVILa < Blvl ) < 11dllr2@) = [llgalll», -

This gives immediately the inf~sup condition (12.72) with 3, = BZB. m|

12.4.2 Convergence of the vector variable

According to Lemma 12.2, every element P is star-shaped with respect to a sphere
of radius p./Ap. Hence, the approximation property (M5) can be extended to a gen-
eralized polyhedron P that satisfies assumption (GR). More precisely, there exists
a positive constant C”, depending only on p,, such that, for every ¢ € H™*!(P),

m =0, 1, there exists a qg") € P,,(P) such that

S
la—a5”lizge) + X Hbllg = 8" ey < € g algminey- (12.73)
k=1
The proofs of the two following lemmas can be found in [91]. They are based
on standard arguments such as the Cauchy-Schwarz inequality, ellipticity property
(Hb), Lemma 12.10, and approximation result (12.73).

Lemma 12.12. Let ¢ € H*(Q) and q(Pl) be the linear approximation of q over P
satisfying (12.73). Then, there exists a positive constant C| independent of q and h
such that for every v, € %, it holds:

Y [(KV(g—g")p.ve]

< Cihlglga)llivalll 5, - (12.74)
PEQh

TP

Lemma 12.13. There exists a positive constant C, independent of h such that for
every vy, € Fy, and every q € H*(Q) it holds

[(K=RWVo)'wi] _ <Collamiay + b)) Ivall, (12.75)
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where K is a suitable piecewise-constant approximation of K on €y, .

Lemma 12.14. Let ¢ € H*(Q)NH}(Q) and q( ) be the linear approximation of q
over P satisfying (12.73). Then, under assumptions (H1b) and (C1), there exists a
positive constant C3 independent of q and h such that for every v, € Fy, it holds:

Y [k vesonesds <Conlglmlvill,. (12.76)
PthfeaP

Proof. In the proof we have to distinguish between boundary faces, strongly curved
faces, and moderately curved faces.

First, let f be a boundary face, and P be the only element containing f. Since ¢ = 0
on f, the contribution of this face to the sum in (12.76) can be estimated using (12.68)
and (12.39):

/(Jp Vpf-DpfdS = / q)Vpf-npgdS

1
< llg—a5 26 Ive sl = llg — a5 26 Ivell 1F]172

< a; ()2 hp gl | ve ]l P12

< Gah |q|H2(P) |||VP|||x;h.P7

where C3 , = (C#™)2(a,5,) .

Second, let f be a strongly curved interior face, and P and P; be the two elements
sharing f. Due to assumption (C1), all three components of v;, are continuous across
f, so that at every point of f we have

VP fMp, £+ Vp,£-1p, £ = 0.

Using the continuity of ¢, we can estimate the contribution of this face to the total
sum:

Z/QPVanPde Z/ q)Vp,f-Mp, ¢ dS

< z lg — qp ||L2 ) Ve, £ll 2 )

i=1

2
< 2.a . (C}ace)l/z hPi |Q|H2(PI-)”VP1‘;f” |Pi|l/2
=1

I

(S}

<Y Ciphlalpey lIvell 5, p - (12.77)

i=1

Third, let f be a moderately curved face f shared by two elements P; and P;. Due
to assumption (C1), only the component of v, in the direction of np ¢ is continuous
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across f. From (12.6) we obtain that
/ ") (np, s —np,)dS =0 (12.78)
. :

for i = 1,2 and every constant ¢(*). Adding and subtracting the average normal np, f,
and then using (12.78) in the first term and the continuity of ¢ and v, in the second
term, we obtain

: (1 2 (1 (0 ~
> /f‘JPi Vp.f-Dp, £dS = 2 / (gp, —ap,) Ve, (np ¢ —Mp,¢)dS
i=1

(12.79)
/ q)Vp,-Np, ¢dS.

The second term in (12.79) can be estimated exactly as in (12.77):
2

¥ (a8 = @) Ve, ie, dS < 3. o gy Ve, L5,
i=1 i=1

To estimate the first term, we finally use the fact that f is a moderately curved face,
and in particular inequality (12.16):

/f(flfal,.) —qg),.))vp,-.f-(ﬂP,-.f—ﬁPi,f)dS < n*|f|‘/2||qé” —qp)||L2 £ Vel 2
< a, L, ull o, Ve, o] P2
< Gyl Vel 5, 5.
where C/% depends only on C" and C/#" while 3. also depends on the constant
a, appearing in (12.17) and the constant 1, appearing in (12.16).

Collecting all the above estimates and noting that every element appears as many
times as the number of its faces, we prove the assertion of the lemma. |

Theorem 12.2. Let (p,u) with p € H*(Q) be the solution of (12.1)~(12.3) with
2P =0, and (py,w;) € P}, x F), be the solution of (12.36) under assumptions
(H1b), (GR), (S1)—(S2), and (C1). Moreover, let u' be the interpolant of u intro-
duced in (12.27)—-(12.28). Then,

' =yl -, < ChlPlr2q), (12.80)
where the constant C is independent of h and p.

Proof We define the error mesh function as £, = u! — uy,. From (12.2), (12.35), and
(12.33) we easily have:

divy, &, = divy,(u' —u,) ="' —p' = 0. (12.81)
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The first equation in (12.35) implies that

lleall’, = [(~=KVp)'en] 5, = [(~Vapn). &) 5,-
From Eq. (12.81) it follows that:

[Vipn€n] 7, = [pndivien] , =0.
Thus, we obtain

llenll?, = [(~KVp)'e] 5,

Let K be a piecewise constant tensor with value Kp in element P. Then, adding and
subtracting terms, we break the error into three parts:

llenlP, = [(—KVp)'+(KVp)en] ,, + ¥, [(~KVp+KVppb.ep] ;. o
PGQh

+ 3 [(-KVpp b, ep] ;- p =T+ +1s. (12.82)
PEQ},
Using (12.41) and (12.81), the third term can be developed as follows:

I; = z /p Epf- npde /pp)dIVpep dV}
Pegy, feaP

/ €pf-npg dS. (12.83)
Pth feoP

Term I is bounded by Lemma 12.12. Term I, is bounded by Lemma 12.13. Term I3
is bounded by Lemma 12.14. This proves the assertion of the lemma. |

12.4.3 Convergence of the scalar variable

The first estimate for the scalar variable mimics closely (but not exactly) the corre-
sponding result for polyhedral meshes derived in Chap. 5. The original proof of this
estimate given in [91] is based on a duality argument. To get the first-order conver-
gence rate, we assume that €2 is convex; however, a lower order convergence rate
could be obtained under less restrictive regularity assumptions.

Theorem 12.3. Let 2 be a convex domain. Under assumptions of Theorem 12.2, we
have

lew =l < Ch (1Pl + 1Bl ) (12:84)

where the constant C is independent of h, p and b.

Note that the load term in (12.84) can be also substituted with the more realistic
term

1/2
)y ||b||§,1(p)> : (12.85)

PEQ},
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12.5 Exact reconstruction operators

In this section, we prove a superconvergence estimate for the scalar variable under
the condition that an exact reconstruction operator exists for the mimetic scheme. The
exact reconstruction operator allows us to write the mimetic inner product as an L?
integral for functions in S p. The space S, p has been introduced in the consistency
condition (S2). It satisfies assumptions (Bl) (B3) and, for the present section, also
the additional dimensionality restriction (12.42).

We stress again that only the existence of an exact reconstruction operator has to
be shown, but it is not required for the practical implementation of the method.

12.5.1 Existence of the exact reconstruction operator

We assume that for every element P in £, there exists a reconstruction operator
Rp: Z),p — Sy p satisfying the following three properties.
(L1) For every discrete field vp € %, p, the reconstructed function has constant
divergence and preserves boundary data:
Rp (Vp) =Vpf onfedP
. P . ’ (12.86)
divRp(vp) = divpvp inP.
(L2) The reconstruction operator is a left inverse of the projection operator on the
space Jp of constant vector functions:

Rp(ch)=¢  Vee (Po(P))>. (12.87)

(L3) For a given mimetic inner product, the reconstruction operator reproduces it
exactly:

[llp7V|:> /K Rp llp) Rp(Vp)dV Yup,vp Gglhp. (12.88)

These assumptions mimic that in Chap. 5. Hence, a proof of the existence of Rp
is almost identical to the proof of Lemma 5.10 with minor modifications related to
the definition of a minimum reconstruction operator.

Let us fix a number s such that 6/5 <5 < 2 and for every vp € .%), p consider the
Stokes-like problem: Find B € (W'(P))3 and y € L*(P) such that

—AB+Vxy=0 inP,
divB =divpvp inP, (12.89)
ﬂZij onf e dP.

We define the minimum reconstruction operator by ﬁp(Vp) := B. We recall that in

three dimensions for s > 6/5, we have W'*(P) C L?(P). It is clear that this recon-
struction operator satisfies properties (L1) and (L2). It can be modified to satisfy

property (L3).
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Let S;h’p = Ep(ﬂh’p). We apply a change of basis in g},’p, taking the three constant
vectors in the first three positions, and we apply the corresponding change of variables
in.%, p. Let functions wy, ..., wy, form the new basis in Sj, p, where w; = (1,0,0)7,
wy = (0,1,0)7, and w3 = (0,0,1). Without loss of generality, we assume that the
basis functions are orthogonal in the following sense:

/K;lwi-w,-dV:o, 1<i<3<j</lp.
P

Thus, the weighted mass matrix Gp for the basis {w;} has the block diagonal struc-
ture:

PIKp' 0

G:
P 0 Gp

) R (/G\p),',37j,3 = /P KEIW,' -WjdV i,j>3 (12.90)

The corresponding change of basis in .7, p results in an equivalency transforma-

tion for the mimetic inner product matrix Mp. The transformed matrix, l\7|p, has the
following block-diagonal structure:

. IPIKp' 0
Mp = |, (12.91)
0 Mp

where, of course, GP and I\7Ip are generally different. This is due to the fact that the
mimetic inner product satisfies the consistency condition, i.e. it is exact when one of
the two arguments corresponds to a constant vector function.

Now, we can proceed like in the proof of Lemma 5.10 and modify the last £{p —3
basis functions still preserving properties (L1)—(L2). We formulate the final result
without a proof, see [91] for more detail.

Lemma 12.15. Let Rp be the minimal reconstruction operator and Mp be a given
mimetic inner product matrix. Furthermore, let matrices Mp and Gp be given by for-
mulas (12.91) and (12.90), respectively. If Mp — Gp is a symmetric semi-positive def-
inite matrix, then, there exists an exact reconstruction operator Rp satisfying (12.88).

Corollary 12.1. Let the conditions of Lemma 12.15 hold. Then, an exact reconstruc-
tion operator exists if

IME?vell > [IGH Vel Vvp € img(D).

The proof of this corollary is based on deriving an explicit form for the equivalency
transformation mentioned above.

When the columns of D are orthonormal vector and U = uly,, the above lemma
requires u to be sufficiently large. Indeed, since vp € img(D), we obtain DD vp = vp
since DD is the orthogonal projector onto img(D) and

1

P|1/2 1K 2R vp >+ [[ve * = ullve|*. (12.92)

VgMpr =
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On the other hand,
Vb Gp vp < Aax(Gp)[[ve 1, (12.93)

where Amax (Gp) is the maximum eigenvalue of Gp. Thus, it is sufficient to take u
larger than Ay (Gp) to satisfy Lemma 12.15 and hence, to guarantee theoretically a
superlinear convergence of the related mimetic scheme.

Remark 12.7. Since, the superconvergence is observed for a wider range of parame-
ters u, the existing theory, based on the exact reconstruction operator is not complete.

12.5.2 Superlinear convergence of the scalar variable

Let us assume that we an exact reconstruction operator Rp(vp) does exist. Then, a
better convergence estimate for the scalar variable can be derived in the mesh depen-
dent L2 norm.

Note that, from (S1) and (L3), we have the following stability property:

IRp(vp) [ 72(p) < 0" [PIVEV. (12.94)

Theorem 12.4. In addition to the conditions of Theorem 12.3, we assume that for
each element P there exists a exact reconstruction operator Rp(-) with the properties
(L1)—(L3). Furthermore, let K be piecewice constant tensor. Then, it holds

llpn =P, < € (1P li2() + [Blencay) (12.95)
where the constant C is independent of h, u and b.

Proof. Letv € (H'(P))? be specified later and v} be its projection to .%, p. Using
the continuity condition (12.94) and following closely the proof of Lemma 12.10,
especially inequality (12.70), we obtain

CruiCr"

2
v . 12.96
47a, IVIITnp ( )

1Re (ve) |1 22(p) <

Let v¥ be the mean value (component-wise) of function v over P. Using assumption
(L2), estimate (12.96) and the approximation result (12.73), we have

IRe(ve) = Vllz2py < IRp(ve — (¥))) |2y + IV0 = Vil 2p)
8 ~Agm
- (Cz*zT*Cf

1/2
0 0
V-V +v' —v
4)/3‘1* ) || H 1,h,P ” ||L2(P)

Hereafter all generic constants C are independent of 4 and P.
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Let &, = p' — pj, be the error mesh function. Let &, be a piecewise constant function
with value ep over element P. We consider the elliptic problem

—div(KVv) = &, in Q,

12.98
v=0 on 0Q. ( )

The convexity of Q implies that there exists a constant Cq,, depending only on €,
such that

IMlr2@) < Callénlliza) = Calllell], - (12.99)

We set v = KVv. Furthermore, let R(v') be the global exact reconstruction operator
such that its restriction to element P is Rp (VIP). Following essentially [143] and using
(12.36), then (12.24) with assumption (L1), then integrating by parts, and finally
using (12.1) and (12.88), we obtain

lewll, = [divavl,pn—p'] , = [wV1] 5, /qdlvR( Wydy
= [wnv'], + [ (K KO Vg-RO ¥

_ / K~ (R(wp) — w) RV V.
Q

Adding and subtracting v, we have
lleall>, :/ K~ (R(up) —u) (R(v dV+/ K (R(u;) —u)vdV
— 3+ / (up) —w) VodV = J) — / vdiv(R(wy) —u)dV
Q

:Jl—/ B —b)vav
Q

:Jl—/ (B b)Y (v— YV =T, +J,. (12.100)
Q

The terms J; and J, can be easily bounded using the previous estimates and usual
arguments. Indeed, the triangle inequality, then assumption (L3), and finally Theo-
rem 12.2 and estimate (12.97) imply that

IR(up) =l 2q) < Ry —u)l| 20 + IR —ull 20
< Ny —w'll] 5, + 1R —ull 20
< Chlpllm )
Using (12.97) and regularity result (12.99), we obtain
IRV =Vl 2@) < ChVll 0y < CCoAllll, -
The approximation property (12.73) gives the following estimates:

||b - b||L2(Q) <C"™h |b|H1(Q)
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and
v =20y < C"™ B Y]y < C™ Cohlllenlll,, -

Inserting the last estimates into (12.100), we prove the assertion of the theorem. I

Remark 12.8. Note that also in this case the load term in (12.95) can be easily sub-
stituted with the more realistic term

1/2
2 Iblél(p)> : (12.101)

PeQy,

Example 12.1. Let us consider a model diffusion problem in the unit cube with the
identify tensor K and the smooth solution

p(x,y,z) = x>z +3xsin(yz).

We measure the accuracy of the mimetic solution (pj, u;) in the mesh dependent
norms induced by the inner products (12.34) and (12.37). The mesh faces are classi-
fied on moderately and strongly curved using 1. = 0.2.

The convergence rate is calculated numerically using a sequence of generalized
hexahedral (see Fig. 12.1) and polyhedral (see Fig. 12.4) meshes. In Fig. 12.1 a part
of the unit cube was cut out to show the interior mesh. Each hexahedral mesh is
generated from an orthogonal cubic mesh with mesh step /# by moving each mesh
vertex v into a random position inside a cube C(v) centered at the vertex. The sides
of cube C(v) are aligned with the coordinate axes and their length equals to 0.8%.
Each polyhedral mesh is generated in a similar fashion from a Voronoi mesh. For the
chosen threshold 7., 68% of the interior mesh faces are classified as strongly curved.

mesh L, norm of error

=+ MFD new: pressure |
=8~ MFD old: pressure
“"| == MFD new: velocity |
3 i i =¥~ MFD old: velocity
10 107
h

Fig. 12.4. The trace of the generalized polyhedral mesh (left picture) and convergence graphs
(right picture) showing the optimal convergence rates for the new MFD method (4 and X)
and lack of convergence for the old MFD method (triangles and circles)
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The mimetic scheme uses the stability matrix W,(;,l) with the orthogonal D and

scalar U = iip|, where iip = trace(Kp)/|P|. The convergence graphs in Fig. 12.1 show
the optimal convergence rate for the new mimetic scheme and the lack of convergence
for the lowest order Raviart-Thomas finite element method with and the mimetic
scheme described in Chap. 5. Note that the last two scheme use one degree of freedom
per mesh face to approximate the flux on strongly curved faces.

A similar statement can be drawn from Fig. 12.4. The mimetic scheme from
Chap. 5 lacks convergence for both primary variables. The new scheme exhibits the
first-order convergence rate for the flux and the second-order convergence rate for
the scalar variables.
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