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Chapter 1
Introduction

Nowadays, the expression Variational Inequalities and Contact Problems can be
considered as a syntagm since the variational methods have provided one of the
most powerful techniques in the study of contact problems and, on the other hand,
the variational formulations of the contact problems are, in most cases, variational
inequalities.

We therefore considered a book on this subject as necessary, a book where the
reader will find many results on variational inequalities and, at the same time, a
detailed study of certain contact problems with non local Coulomb friction.

In the last 50 years, variational inequalities became a strong tool in the mathemat-
ical study of many nonlinear problems of physics and mechanics, as the complexity
of the boundary conditions and the diversity of the constitutive equations lead to
variational formulations of inequality type.

The theory of variational inequalities find its roots in the works of Signorini
[38] and Fichera [14] concerning unilateral problems and, also, in the work of
Ting [44] for the elasto-plastic torsion problem. The mathematical foundation of
the theory was widened by the invaluable contributions of Stampacchia [41] and
Lions and Stampacchia [26] and then developed by the French and the Italian
school: Brézis [3,4], Stampacchia [42], Lions [25], Mosco [28], Kinderlehrer and
Stampacchia [22]. Concerning the approximation of the variational inequalities, we
refer to the important contributions brought by Mosco [27], Glowinski et al. [17], or
Glowinski [16].

We do not claim that this book covers all the aspects in the study of the variational
inequalities. However, we intent to give the reader an overview on this huge subject
in a unified form, containing a detailed and justified description of the results on
existence, uniqueness, regularity or approximation of solutions of variational and
quasi-variational inequalities, in the linear and nonlinear cases, for the static and
quasistatic cases.

We also deal in this book with the study of certain static and quasistatic
problems with friction whose weak formulations are variational or quasi-variational

© Springer International Publishing Switzerland 2014 1
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2 1 Introduction

inequalities. More precisely, we address here frictional contact problems for a
linearly elastic body which, under the influence of volume and surface forces, is in
contact with a rigid foundation. The contact is modeled by Signorini’s law, except
for the last section where bilateral contact is considered. We also use a nonlocal
version of Coulomb’s friction law. Most of the results presented here are obtained
by applying abstract results on variational inequalities.

The first results concerning the mathematical study of this kind of problems, in
the case of Tresca’s friction (i.e., with given friction), are due to Duvaut and Lions
[12]. In the static case, important results concerning the study of contact problems
of Signorini type with local or nonlocal friction have been obtained by Duvaut [11],
Necas et al. [29], Oden and Pires [31,32], Demkowicz and Oden [10], and Cocu [7].
In the quasistatic case, the first existence results were given by Andersson [1], Han
and Sofonea [18], and Klarbring et al. [23] for problems with normal compliance.
Their approach is based on incremental formulations obtained from the quasi-
variational inequality by an implicit time discretization scheme. The same technique
was used by Cocu et al. [9], Rocca [36], Andersson [2], and Cocu and Rocca
[8] in their existence proofs for quasistatic problems of Signorini type with local
or nonlocal friction or with friction and adhesion. The works of Panagiotopoulos
[33,34], Glowinski et al. [17], Glowinski [16], Campos et al. [5], Kikuchi and Oden
[21], Haslinger et al. [19], Hlavacek et al. [20], Shillor et al. [37], Eck et al. [13], and
Sofonea and Matei [39] enriched, theoretically and numerically, the study of contact
problems. Among those who developed algorithms of resolution of the unilateral
contact problems with friction, let us quote Raous et al. [35], Sofonea et al. [40],
and Lebon and Raous [24].

The book is divided into III parts and 9 chapters.

Part I reviews, in a general way, the fundamental definitions, notation and
theorems of the functional analysis which will be essential to understand the
following parts. So, Chap. 2 is a potpourri of standard topics on functional spaces,
while Chap. 3 refers to spaces of vector-valued functions. The material we present in
these two chapters is a classical one and can be found in many monographs. Also,
throughout this book, when necessary, further basic results on functional analysis
will be recalled.

Part II is concerned with the study of variational inequalities.

Chapter 4 presents some generally known existence and uniqueness results. More
precisely, in Sect. 4.1 one considers elliptic variational inequalities of the first and
second kind involving linear and continuous operators in Hilbert spaces (Sect. 4.1.1)
or monotone and hemicontinuous operators in Banach spaces (Sect.4.1.2). The
results are established using projection or proximity operators, Weierstrass or
Lax—Milgram theorems, Schauder or Banach fixed point theorems.

Section 4.2 deals with elliptic quasi-variational inequalities. In Sect.4.2.1, we
refer to the case of monotonous and hemicontinuous operators: the existence is
obtained by using Kakutani fixed point theorem, while the uniqueness, only for
strongly monotone operators, is obtained using Banach fixed point theorem. In
Sect. 4.2.2 we consider the case of potential operators and we introduce and justify
the concept of generalized solution of a quasi-variational inequality. We then



1 Introduction 3

apply, in Sect. 4.2.3, these results to prove the existence and the uniqueness of the
generalized solution of a contact problem with friction for the operator of Hencky—
Nadai theory.

Section 4.3 presents a strategy, rather new, for the study of a class of abstract
implicit evolutionary quasi-variational inequalities which covers the variational
formulation of many quasistatic contact problems. The method used rests, as in the
typical cases, on incremental formulations.

In Chap. 5 we give two remarkable properties satisfied by the solutions of certain
variational inequalities. In Sect. 5.1 one highlights a maximum principle which is
then applied to a problem which models the flow of fluids through a porous medium
and also to an obstacle problem. In Sect. 5.2, using the method of the translations
due to Nirenberg [30] (as Brezis [4] did in his thesis for a scalar second order elliptic
operator), local and global regularity results of the solutions of a class of variational
inequalities of the second kind are established.

In Chap. 6 we present first a brief background on convex analysis, and we then
recall some classical results of the Mosco et al. [6] (M-CD-M) duality theory in its
form adapted by Telega [43] for the so-called implicit variational inequalities.

In Chap.7 one can find details results on the discrete approximation of two
general classes of variational inequalities. For the quasi-variational inequalities
considered in Sect. 4.2.1, the convergence of an internal approximation is obtained
in Sect. 7.1 and an abstract error estimate is given in Sect. 7.2. A convergence result
for an internal approximation in space and a back difference scheme in time of
implicit evolutionary quasi-variational inequalities introduced in Sect. 4.3 is proved
in Sect. 7.3.

In Part IIT we study, in an almost exhaustive way, the problem of Signorini with
nonlocal Coulomb friction in elasticity.

Chapter 8 deals with the static problem. The mechanical problem is described in
Sect. 8.1 and its variational formulation is obtained in Sect. 8.2. The existence and,
under certain assumptions on the data, the uniqueness of the solution are obtained
in Sect. 8.3 by applying the theorems established in Sect. 4.2.1. Using the regularity
results given in Sect. 5.2.2 and an argument due to Fichera [15], we get, in Sect. 8.4,
a local regularity result for the solutions of the static problem. In Sect. 8.5 we derive
two dual formulations, dual and dual condensed, which involve as unknown the
stress field instead of the displacement field like in the case of the primal problem,
i.e. the variational formulation considered in Sect. 8.2. The first dual formulation is
obtained, by using Green’s formula, from the mechanical problem in the same way
as for the primal formulation. The second dual formulation, i.e. the dual condensed
one, is a problem posed on the surface of possible contact only, obtained by applying
the M-CD-M duality theory developed in Sect. 6.2. This condensed dual formulation
could be useful in numerical calculations since one computes directly the stresses
on the contact boundary and usually these are the quantities of interest. In Sect. 8.6
we consider a finite element approximation of the primal problem. We first obtain
an error estimate, either directly or by applying the estimate given in Sect.7.3. We
then prove that a higher order of the approximation can be obtained for a suitable
choice of the regularization which describes the nonlocal character of Coulomb law.
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In Sect. 8.7 we consider the discretization by the equilibrium finite element method
of the two stress formulations, i.e. the dual formulation and the dual condensed one.
We prove the convergence of our approximations and we derive error estimates of
these discretized problems in different cases of the data. Section 8.8 is devoted to the
study of an optimal control problem related to the Signorini problem with nonlocal
Coulomb friction. More precisely, one characterizes the coefficient of friction which
leads to a given profile of displacements on the contact surface.

Chapter 9 deals with the quasistatic problem. In Sect. 9.1, using an implicit time
discretization scheme and applying the results of Sect.4.3, an existence result is
obtained. We then consider, in Sect. 9.2, a space finite element approximation and
an implicit time discretization scheme of this problem and, by using the results
of Sect. 8.3, we prove the convergence of the approximation. In the last section
we consider a mathematical model describing the quasistatic process of bilateral
contact with friction between an elastic body and a rigid foundation. Our goal is to
study a related optimal control problem which allows us to obtain a given profile
of displacements on the contact boundary, by acting with a control on another part
of the boundary of the body. Using penalization and regularization techniques, we
derive the necessary conditions of optimality.

This book was written in the framework of the author’s research activity within
the Institute of Mathematics of the Romanian Academy, and the results presented
here are partially based on the author’s own research.

The book is intended to be self-contained and it addresses mathematicians,
applied mathematicians, graduate students in mathematical and physical sciences
as well researchers in mechanics and engineering.
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Preliminaries



Chapter 2
Spaces of Real-Valued Functions

This chapter is a brief background on spaces of continuous functions and some
Sobolev spaces including basic properties, embedding theorems and trace theorems.
Hence, we recall some classical definitions and theorems of functional analysis
which will be used throughout this book. These results are standard and so they
are stated without proofs; for more details and proofs, we refer the readers to the
monographs [1,3-7,10, 11, 14].

In this book we only deal with real-valued functions. We assume that the reader
is familiar with the basic concepts of general topology and functional analysis.

For a point x = (x1,---,x4) € R4, we denote by D; the differential operator
d
— (1 <i <d).
8xi
If e« = (xy,---,y) is a multi-index, then D® denotes the differential operator

d
of order a, with || = Z o;, defined by

i=l1

olel
p*=p¥..pW—__%
! gy 9x e

Obviously, D? denotes the identity operator.

If A C R?, we denote by C(A) the space of real continuous functions on A.

Let © be an open set in R? with its boundary I'. We denote by Q = Q U T the
closure of 2.

For any nonnegative integer m, let C™(S2), respectively C"(Q), be the space
of real functions which, together with all their partial derivatives of orders o, with
|| < m, are continuous on €2, respectively, on the closure Qof QinRY, ie.

C"(Q)={veC(Q); D*v e C(RQ) for |a| < m}. (2.1)

© Springer International Publishing Switzerland 2014 9
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10 2 Spaces of Real-Valued Functions

When m = 0, we abbreviate C(£2) = C %(Q) and C(Q) = C°(Q). Any function
in C(£2) is bounded and uniformly continuous on £2, thus it possesses a unique,
bounded, and continuous extension to 2.

Let

C®@) =[] C"Q

m=0

be the space of infinitely differentiable functions on €2.

If K is a subset of 2, we shall write K cC Q if K C Q and K is a compact
(i.e., bounded and closed) subset of R,

The support of a function v : Q — R is defined as the closed subset

suppv = {x € Q; v(x) # 0}. 2.2)

We shall say that a function v has compact support in €2 if there exists a compact
subset K of 2 such that v(x) = 0 Vx € Q\K or, equivalently, supp v CC .

We shall denote by Cj"(€2) the subspace of C™(£2) consisting of all those
functions which have compact support in €2.

If m < +o00 and 2 is bounded, then C ’"(5) is a Banach space with the norm
given by

IWleng = D max|D*v(x)l. (23)

|ee| <m

In the sequel, for (X, || - [|x), (Y. | - |lv) two normed spaces with X C Y, we
shall write X < Y to designate the continuously embedding of X in ¥ provided
the identity operator / : X — Y is continuous. This is equivalent, since I is linear,
to the existence of a constant C such that

lully < Cllullx YueX.

We also say that the normed space X is compactly embedded in the normed space
Y and write X <. Y if the identity operator I is compact, i.e. every bounded
sequence in X has a subsequence converging in Y, or, equivalently, if {uy}; is a
sequence which converges weakly to u in X, and we write uy — u, then {uy }x
converges strongly to # in Y, and we write u; — u.

We denote by L?(R2), for 1 < p < 400, the space of (equivalence classes of)
real functions v defined on 2 with the p-power absolutely integrable, i.e.

/ [v(x)]? dx < oo,
Q
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where dx = dx;dx;...dx; is the Lebesque measure. The elements of L7 (2),
being equivalence classes of measurable functions, are identical if they are equal
almost everywhere (a.e.) on 2. Thus, we write v = 0 in L?(R2) if v(x) = 0 ae.
x € Q.

We also denote by L°°(£2) the space consisting of all (equivalence classes of)
measurable real functions v that are essentially bounded on €2, i.e. there exists a
constant C such that |[v(x)| < C a.e. on Q.

The space L?(£2) endowed with the norm

1/p

/|v(x)|pdx ifl <p<+4o0
e = 4\

ess sup [v(x)| = inf{C; [v(x)| < C ae.x € Q} if p = +00
XEQ

2.4)
is a Banach space. In addition, the space L”(2) is separable if | < p < 400 and
reflexive if 1| < p < 4o0.

If p € [1,¢], then the exponent conjugate to p is the number denoted by p’
defined by the relation

+—=1

1
I

SR

where we used the convention

, fooifp=1,
11 ifp=o0.

From Riesz representation Theorem 4.1 for Hilbert spaces it follows that, for
p € [, +00), the dual space of L?() is the space (L?(R2)) = L” () where
p’ is the exponent conjugate to p. The dual space of L>°(2) is a space larger than
L'(2) (for more details, see [14, p. 118]).

In the case p = 2, the space L?(R2) is a Hilbert space with respect to the inner
product

. V)12 = [ u(x)v(x)dx. (2.5)

Q

Definition 2.1. We say that a measurable function v defined a.e. on Q2 is locally
p-integrable on 2 if v € L?(A) for every measurable set A CC Q.
We shall denote by LY () the space of all locally p-integrable functions on .

loc

Theorem 2.1. Let Q@ C RY be an open set. The following assertions hold.

1) Let1 < p,q < oo.
_Pq
Ifue L?(Q)andv € L1(RQ), then uv € Lr+a(Q).
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Ifu, - uin L?(R2) and v, — v in L1(Q), then u,v, — uv in L%(Q).
Ifu € LP(Q) and v € L? () where p' is the exponent conjugate to p, then
uv € LY(Q) and the Holder’s inequality holds:

/ u( () dx < ull oy IVl o) - 2.6)
Q

When p = p’ = 2, we get the Cauchy-Schwartz inequality.

2) For 1 < p < oo, every Cauchy sequence in LP(2) has a subsequence
converging pointwise a.e. on SQ.

3) LP(Q)C Ll .(Q) VYpwithl <p < cc.

loc

4) Letv € L} () be such that/ v(x)p(x)dx =0 Vo e P(Q). Thenv(x) =0

loc

Q
a.e. on Q.

5) Cg°(R2) is dense in LP(2) Vpwithl < p < oo.

The following theorem gives an embedding result for the spaces L (£2) and some
of its consequences.

Theorem 2.2. Let @ C RY be an open set with vol () = / dx < oo. Then the

Q
following statements are valid.

1) Forall p, q suchthat1 < p < g < 0o, we have L1(2) — L?(S2) and
11
VllLr@) < ol )74 [Vl|Le@) YveLU(RQ).

2) lim [vlzr@) = Vlze@) Vv € L%(RQ).
p—00

3) Suppose that v € LP(R2) for any 1 < p < 0o and that there exists a constant C
such that |v||Lr@) < C. Thenv € L*(Q).

To better understand what is the meaning of the differential operator D*v for
functions v whose derivatives do not exist in the classical sense, we briefly remind
the definition of distributions on £2.

We denote by 2(S2), called the space of test functions, the space C;°(2)
equipped with the inductive limit topology as in the Schwartz theory of distributions

[11].

Definition 2.2. A sequence {¢; }x C C5°(£2) is said to converge to a function ¢ €
Cy°(R2) in (the sense of the space) Z(£2), provided the following conditions are
satisfied:

i) There exists a compact subset K of  such that supp (¢ —¢) C K, Vk
ii) D% — D%¢ uniformly on K, Ye multi-index .
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The dual space 2'(R2) of 2(Q) is called the space of (Schwartz) distributions
(or, generalized functions). Hence, any distribution 7 is a linear and continuous
functional on 2(R2), i.e. T(¢r) — T(¢) in R whenever ¢, — ¢ in Z(2). As dual
of 2(R2), the space 2'(R2) is equipped with the weak-star topology: Ty — T in
2'(Q) if and only if Ty (¢) — T(¢) in R, for every ¢ € 2(Q).

Every distribution is infinitely differentiable in the following sense: if T € 2'(R2)
then, for all multi-index e, the function D*T defined on Z(2) by

DT (p) = (=D T(D%) Vo e 2(Q). 2.7

is a distribution. In addition, the operator D* from 2’ ($2) into 2’(2) is continuous.
Any function u € L} (Q) generates a distribution 7, € 2’(R2) defined by

loc
T.(¢) = / u(@)px) dx Vg € 2(Q). 2.8)
Q

Therefore, for any multi-index e, there exists the a-th derivative of 7,, namely
the distribution D*T,, € 2'(Q2) defined by (2.7), i.e.

DT, (¢) = ()T, (D) Vo e 2(Q).

But not any distribution is generated by a locally integrable function.

Definition 2.3. We shall say that the function u € L] (S2) possesses the distri-
butional (or generalized or weak) partial derivative of order & on €2, denoted by
D%u, if there exists a function v, € L! (Q) which generates the distribution

loc
DT, € 7'(Q), ie.
DT, =T,, .

Thus, from the last three relations, it follows that D*u = v, is the distributional
partial derivative of u if v, € L! (Q) satisfies

loc
/u(x)D"‘q)(x)dx = (=) /vaw(x)dx Yo € 2(Q). (2.9)

Q Q

Obviously, the distributional derivative is uniquely defined up to a set of measure
zero.

In fact, this definition generalizes the classical partial derivative, obtained, for a
function u € C/(Q), by integrating by parts |a| times

/D"‘u(x)go(x)dx = (—1)|“|/u(x)D°‘(p(x)dx Vo € 2(Q). (2.10)
Q Q
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Of course, in this case, D%u is also a distributional partial derivative of u. However,
it should be noted that the derivative in the sense of distributions of a function, even
sufficiently smooth, may exist, even if it does not exist in the classical sense.

In particular, the relation (2.8) brings out a linear and continuous mapping u
T, from L?(RQ2) into 2'(2) and so, we may identify the distribution 7, with the
integrable function u. The same identification may be made for Z(2). Thus, we
have

2(Q) = LY (Q) — 2'(Q).

Using this result and the definition (2.9), Sobolev [12] expanded in a natural
way the space L7 (2) by considering those functions which, for some nonnegative
integer m, possess distributional partial derivatives of all orders |e| < m in L?(2).
This is the definition of the Sobolev space

W™P(Q) ={v; D% e L?(Q), for|a| <m}.

The space W7 (L2) is a Banach space with the norm

1/p
ID*VII7,q if pe(l,00),
Illwnri@) = gm @ @.11)
max ||DaV||L00(Q) lfp = 0.
lee|<m

Obviously, WO?(Q) = L?(Q) for p € [1,00). The seminorm over W"7(Q) is
defined by

1/p
ID*vI7 if pe[l,00),
Mwnr) = “Z=m e (2.12)
ll’l'llaX ”DaV”LOO(Q) lfp =0.

We denote by W,"”(€2) the closure of C{°(2) in the space W™?(Q2) for the
norm | - [[wm.r(q). For p € [1, 00), we have the following chain of embeddings

WP (Q) < W™P(Q) < LP(Q)

and, since C$°(£2) is dense in L7 (£2), it is clear that Woo’p(Q) = LP(Q2).

It is easy to see that, if the open set 2 is bounded, the seminorm | - |ym.r(q) is a
norm over W,""”(€2) equivalent to the norm || - ||ym.r(q).

In the case p = 2, we use the notation

H™(Q) = W"X(Q).
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Endowed with the scalar product

(u, V)HW’(Q) = Z(D“u, DaV)LZ(Q) s (213)

a<m

the Sobolev space H"(2) is a Hilbert space. Also we denote H["(2) = Wom’z(Q).
If ©2 is bounded, then, without any hypothesis on the regularity of €2, we have

Hy(Q) = L*(Q).

Many different symbols are being used to denote these norms, when no confusion
may oceur: || - ||, p.q or || - ||;m,, instead of || - [[wmr), || - lm.@ or || - || instead of
I Il m (@) and || - flo.q or || - [lo instead of | - [[12(g).

Ifm > land 1 < p < oo, we denote by W 7' (Q) the dual space of W,"” (),
p’ being the exponent conjugate to p (in fact, wm-r (2) is the notation for a space
of some distributions on € which is isometrically isomorphic to the dual space
(Wom’p (R2))’; for details, see [1]). Endowed with the norm

(f u)
I lhyeriy = st i
uew""(Q) wm-r(Q)
u#0

the space w—mr' (2) is a Banach space which is separable and reflexive if
1 < p < co. Here (-, -) is the duality pairing between W ="' (Q) and W,""? ().
We note that if X, Y are two Hilbert spaces such that X < Y dense, then (see,
for instance, [2, p. 51]) Y* <> X™* dense, where Y* and X™* denote their dual
spaces.
If © is bounded, then Z(£2) is dense in H{'(£2), and so, we can identify the dual
space H " (2) of H}'(2) with a subspace of Z'(R2):

2(Q) C H'(Q) C L*(Q) Cc H™(Q) C 7'(Q).

Now, we notice that most of the important results involving Sobolev spaces
are first obtained for regular functions and then extended to Sobolev spaces. The
density theorems and the embedding theorems show how and whether an element
of a Sobolev space can be approximated by smooth functions. Since these theorems
require additional regularity properties for the open set €2, we recall some definitions
of them. Later, in Chaps.5 and 8, we will use some of these assumptions on
Q for getting regularity properties of the solutions of some concrete variational
inequalities.

Definition 2.4. We say that the open subset £ of R? has the cone property if there
exists a finite open bounded cover {O, } e, of the boundary I" of Q and, for any j,
there exists a cone C; with the vertex at 0, such that, forallx € O; N Q, x + C;
do not intersect O; N T'.
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Definition 2.5. We say that the open set  C R? has the segment property if there
exists a locally finite open cover {U, }; of the boundary I" of €2 and a corresponding
sequence {y ;}; of nonzero vectors such that if x € QnNuU ; for some j, then
x +1ty; € Qfor0 <t < 1. In this case, & must have (¢ — 1)-dimensional
boundary and cannot simlutaneously lie on both sides of its boundary.

Definition 2.6. Let r > 1 an integer. An open bounded set @ C R is said to be
%" -smooth (or, of class €") if there exists a covering of the boundary I" of Q2 by a
finite number of bounded open subsets {U;};c; C R? and, for any j € J, there
exists a C"-homeomorphisms 6; such that:

() 6;(U)=S=1{y =" ya) eR% |y'| <1, [yal <1},
(i) 0;(U; N Q) =S4 ={y €S:ya >0},
(iii) 0;(U; NT) =Sy ={y € S; ya =0}.

Concerning the approximation by smooth functions, we have the following
results (see, for instance, [13, p. 11], [9, p. 44], or [8, p. 40]).

Theorem 2.3. Let @ C RY be an open bounded set. Then, the following approxi-
mation results are true.

1) C{R(Q) is dense in Wy"P (Q). .
2) If 2 has the cone property, then C*(R2) is dense in W™ 7 (§2).
3) If Q is €°°-smooth, then 2(R2) is dense in H"(R2) .

We now recall the following Sobolev embedding theorem (see [1,9, 13] for more
details and proofs) which will be used frequently in this book.

Theorem 2.4 (Sobolev Embedding Theorem). Suppose that the open bounded set
Q has the cone property and 1 < p < oco. Then, the following assertions hold.

1) If mp < d, then

* d
i) WnP(Q) — L? (Q) where p* = P_
d—mp

ii) WP(Q) <. L1(RQ) for any g with 1 < q < p*.

2) If mp = d, then
WmP(Q) <. L1(Q) forany 1 < q < oo.
3) If mp > d, then

i) WP (Q) <, L1(Q) forany 1 < g < oo.
ii) WP(Q) < CK(Q) for any integer k with

mp —d mp —d
P

As a consequence of this theorem we have the following particular cases that we
shall often use:

—-1<k<
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HY(Q) —.C(Q) ifd=1,

q €[l,00) ifd =2,
qg==6 ifd =3,
H*(Q) —. C(Q) ifd e{l1,2}.

HY(Q) <. L1(Q) where

We note that a function v € H () is not necessary continuous on €2, neither
on 2, and so, we may not define, in the classical sense, the values of v on the
boundary I" of Q. The trace theorems show how one can define, in the trace sense,
the restriction on the boundary I' of a function which is not necessary continuous.
Their purpose is to determine the space of functions defined on the boundary I" of
2 containing the traces of functions in W7 (Q2).

The next theorem (see [8, p. 40] or [13, p. 9]) allows to define every function
v € H'(Q) almost everywhere on I.

Theorem 2.5 (Trace Theorem for H'(Q)). Let Q be an open bounded set in R?
of class €' with its boundary T'. Then, one can uniquely define the trace yyv of
v e HY(R) on T such that yyv coincides with the usual definition

yov(x) =v(x) xeTl, (2.14)

ifv.e CY(Q). Moreover, the mapping yo : H'(Q) — L*(T") is linear continuous
and the range of yo(H'(R)) is a space smaller than L*(T") denoted by H'/>(T").

Now, if v € C™(Q), let yv be the linear mapping defined by

yv = YoV, ViV, ..., Ym=1V)

where yov is “the trace of v’ on I and y;v, j = 1,...,m — 1 is “the trace of
order j of v’ defined as the j-th order derivative in the direction of the outward
unit normal v to T, i.e.

yov(x) =v(x) xel,
GIAY (2.15)
yiv(x) = m(x) xerl.

The problem of characterizing the image of the space H™(£2) under the trace
operator involves Sobolev spaces of fractional order. These spaces can be defined in
different ways but, for €2 sufficiently smooth, these definitions give the same space.

A compact definition (see [1]) of H*(K2), for s a real number, is the space
obtained as the closure of C°°(£2) in the norm

|D*v(y) — D*v(x)|?
ly — x|d+2{s}

”V”%-I‘(Q) = ”V”i[[.v](g) + Z dy dx s

|‘¥\=[S]Q><Q

where s = [s] + {s} with [s] an integer and 0 < {s} < 1.



18 2 Spaces of Real-Valued Functions

Another approach (see [2, 10]) for the definition of the space H*(£2) uses the
Fourier transformation of a function.

Definition 2.7. The Fourier transformation of a function v € L?(R?) is the function
p € L*>(R?) defined by

v(y) = /v(x)exp(—ixy)dx

R4

1
(2m)d/2

where i = +/—1.

For any real number s > 0, the space .7 (R?), of test functions of rapid decay, is
defined by:

S RY) ={¢: x*DPp € L>(R?Y), Va, B multi-indices} ,

and .7 (R?)/, called the space of temperated distributions, is the dual space of
S (RY).
Then, the fractional order Sobolev space H*(R?) is defined by

H'RY) ={ve SRY ; (1+[y[)/* e L*RY)}
with the norm
VIl s ey = (1 + |J’|2)s/2f’||L2(Rd)-

If s < 0, one denotes by H*(R?) the dual space of H*(R?).

If 2 is sufficiently smooth, then we define H*(2) to be the space of restrictions
to Q of functions of H*(R?). The boundary T" of € can be identified, by means
of local coordinates, to R“~!, and we can define H*(I") to be isomorphic to the
Sobolev space H*(RY™1).

If the open bounded set © of R¥ is €*°-smooth, then () is dense in H" ()
and so, it is possible to extend by continuity the classical definition (2.15) to a
generalized one yv for v € H"(R2) (see, for instance, [9, p. 44], [10, p. 142]).

Theorem 2.6 (Trace Theorem for H(2)). Suppose that the open bounded set Q2
is C®°-smooth. Then, for any m > 0 integer, the trace operator

Y 2(Q) = (Z(I)"
can be extended to the continuous linear and surjective operator
m—1

y H™(Q)— [[H"/7VA(D). (2.16)
j=0
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Moreover, there exists a continuous linear inverse operator

m—1
}’_1 . 1_[ Hm—j—l/Z(F) = Hm(Q)
j=0
such that
m—1
vy, 'e=g; 0<j<m-1, Vge[[H"TVAD).
j=0

Therefore, the space H~/~1/2(T") can be seen as the space of traces of order
j of H"(£2). In addition, the kernel of the operator y is the space H{'(£2), the
completion of C°(2) in the norm | - || grm(e).-

Finally, we recall the following result (see [1, p. 114]).

Theorem 2.7. Suppose that Q2 is sufficiently smooth. Then

Wmr(Q) < L4(T)

dp —
whereqzuifmp<d,and1§q<ooifmp=d.
—mp

d

In particular, we have the following frequently useful results.

. Lor N q €[l,00) ifd =2,
() = LYT) where qzz(n—_l)ifdz3.

n —
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Chapter 3
Spaces of Vector-Valued Functions

In this chapter we will introduce additional tools which are fundamentals for the
study of evolutionary problems studied later in this book. We consider some spaces
of functions defined on a time interval / C R with values into a Banach or Hilbert
space X . The results are presented without proofs. For additional information about
the results stated below, we refer the readers to [1-9].

We consider a Banach space (X, || - ||x) and an open interval / = (0,7) C R
with 0 < T < oo fixed. We will use the notation 7 = [0, T].

Definition 3.1. A functionv : I — X is (strongly) continuous on [/ if it is strongly
continuous in X at every ¢t € I, i.e. for each € > 0, there exists § = §(¢), such that
lv(#) —v(s)||lx <e Vselwithl|t—s|<§.

We will denote by C(I; X), respectively, C(I; X), the space of all (strongly)
continuous functions from /7, respectively, from the closed interval 7, to X.

Definition 3.2. A subset 4 in a normed space V is said to be compact (respectively,
weakly compact) if every sequence {x,}, C A contains a subsequence {x,, }x such
that x,, — x strongly (respectively, x,, — x weakly)in V as k — oo, withx € A.

The following theorem provides useful criteria for compactness of subsets of
Cc(I:X).

Theorem 3.1. Let .#Z C C(I; X) be a family of functions such that:
(1) there exists a constant C > 0 such that |v(t)|y < C Vtel, Vve .4,
(2) M is equi-uniformly continuous, i.e. Ve > 0, 3§ = §(¢€) such that

lv(t) —v(s)|x <€ Yt.selwith|t—s|<8,Vve.#,

(3) Foreacht € 1, the set {v(t); Vv € M} is compact in X.
Then, A is compactin C(I; X).

© Springer International Publishing Switzerland 2014 21
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Definition 3.3. A function v : 7 — X is (strongly) uniformly continuous on 7 if
for each € > 0, there exists § = §(¢), such that

[v(t) —v(s)||lx <€ Vt.selwith|t—s|<3§.

Definition 3.4. A function v : I — X is said to be Lipschitz continuous on I if
there exists a positive constant C such that

[vt) —v(s)|lx <Clt —s| Vt,sel.

The smallest positive constant C which satisfies the above relation is called the
Lipschitz constant.

Proposition 3.1. Ifv € C(I; X), then v is uniformly continuous on 1.

Definition 3.5. We say that a function v € C (I; X) is (strongly) differentiable on
I if it is differentiable at any ¢ € I, i.e. there exists an element in X, denoted by
V/(t) and called the (strong) derivative of V' at ¢, such that

lim v(t + h) —v(t) 3
h

(¢ =0,
h—0 V()

X

for h sufficiently small such that ¢ + & € 1. It is natural that the derivative at 1 = 0
is defined as a right-sided limit while at # = T as a left-sided limit.

— d
If the function v is differentiable a.e. on I, then the function v' (denoted also d—‘;)

is called the (strong) derivative of v.
. d/v
The (strong) derivative of order j, for j > 2, denoted by v or FTTR is defined
) ) Y
by v/) = (WU =D)". Most often, we will use the notation v instead of v/ or En and
the convention v(¥ = v.

For m > 0 integer, let C"(I; X), respectively C™ (7; X) be _the space of
functions m times continuous differentiable defined on 7, respectively /, with values
in X.

Theorem 3.2. The space
C"I,X)={:T—>X: v ecCT;X)for0<k <m)}

is a Banach space equipped with the norm

IWlengn = 22 sup VO @)y = 3 max p® @)y 3.1)
T X€

kﬁmXEI k<m
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We also will denote by C*°(/; X) the space of all infinitely differentiable
functions defined on I with values in X, by Z(/; X) the space of all functions
of C*°(I;X) with compact support, and by %'(I;X) the space of vectorial
distributions defined on I with valuesin X,i.e. 2'(I; X) = L(Z(I; X); X) where
Z(U, V) denotes the space of all linear continuous functions from U to V.

Definition 3.6. A function v : I — X is said to be simple function if there exist
Leabesgue measurable subsets 1, I»,--- , I, of I and the functions a1, oy, , 00, €
X such that

n
v(t) = ey, () aetel,

Jj=1

where y;; is the indicator function of /;.
Definition 3.7. We say that a function v : I — X is (strongly) measurable if there
exists a sequence {v, },>0 of simple functions v, : I — X such that

lim ||v,(t) —v(?)||lx =0 ae.tel.
n—>00

It is easy to proven the following properties (see, e.g. [4]):
Proposition 3.2. The following assertions hold.

1) Ifv: 1 — X is a measurable function, then ||v|x : I — R is measurable.
2) Let {v,}n>0 be a sequence of measurable functions from I to X andv : 1 — X
be a function such that

lim ||v,(t) —v({@)|lx =0 aetel.
n—>o0
Then v is measurable.

3) Letv : I — X be a weakly continuous function, i.e. v(t,) — v(t) weakly in X
ast, — t. Then v is measurable.

Definition 3.8. We say that a function v : I — X is (Bochner) integrable if there
exists a sequence {v, },>0 of simple functions v, : I — X such that

lim ||v,(t) —v(@)|lx =0 aetel,
n—>00

and

lim /||vn(l)—v(t)||xdt =0.
n—00
1
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(as |lva(¢) — v(t)||x is measurable and nonnegative, it follows that / [lva(t) —
1

v(t)| x df makes sense).

Proposition 3.3. Letv : I — X be an integrable function and let be the sequence
{Vu}u>0 of simple functions v, : I — X such that

lim /Ilvn(t)—V(t)llx dr =0.
n—00
1

Then, there exists an element in X, denoted by / v(t) dt and called the (Bochner)

I
integral of v over I, such that

nll)n;o [vn(t)dt —/v(t)dt =0.

1 1 X

We note that the integral of v is independent of the sequence of simple functions
considered above. The properties of the Bochner integral are similar to those of the
Lebesgue integral of integrable real-valued functions.

Theorem 3.3 (Bochner’s Theorem). Let v : I — X be a measurable function.
Then v is integrable if and only if ||v| x is integrable. Moreover, we have

v(e)de|| < [ [v@®)lxde.
[ =

1

Theorem 3.4 (Lebesgue’s Dominated Convergence Theorem). Let {v,},>0 be a
sequence of integrable functions from I to X such that

1) There exists a integrable function u : I — X such that
va@)lx <u) aetel, VneN,
2) There exists a function v : I — X such that
lim [[v,(t) —v(@)||x =0 aertel.
n—00

Then v is integrable and

lim / Ve () —v(®)||xdt = 0.
n—>00
1
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Let p € [1,00]. We denote by L?([; X) the space of (equivalence classes of)
measurable functions v : I — X such that the mapping ¢ — ||v(¢)||x belongs to
L?(I). Endowed with the norm

1/p
[oigar | <oty £,
Vllra:x)y = i (3.2)

ess sup [lv(r)]lx if p=o00,
te(0,7)

L?(I; X) is a Banach space.
In particular, if (X, (-,-)x) is a Hilbert space, then L¥(I:X ) is also a Hilbert
space with respect to the inner product

W) 12n) = / (u(t). V(D)) x dr
I

Definition 3.9. We say that a measurable function v : I — X is locally
p-integrable, and we write v € L! (I3 X), if v € L?(J; X) for any closed interval
JClI.

The following theorem summarizes some basic properties of the space L?([; X).
Theorem 3.5. Let 1 < p < oc. Then
1) 9(I; X)CcLP(I;X)Cc 2'(I:X).
2) If p < oo, then P(1; X) is dense in LP(I; X).
3) If p < oo and X is reflexive or X is separable, then the dual space of L¥(I; X)
is L? (I, X*), p’ being the exponent conjugate to p, and X* denoting the dual
space of X.

In particular, if (X, (-,*)x) is a Hilbert space, then the duality pairing (-,-)
between LP(I; X) and its dual L? (I; X) is given by

(u,v) = /(u(t),v(l))x dt YueL”(I;X), Vve L'(I;X).
1

4) Ifue LP(I:X)and v € L? (I; X*), then t — (u(t),v(t))x*xyx is integrable
and

[ @)l dr = TVl e
1

where (-,-)x*xx denotes the duality pairing between the space X and its
dual X*.
5) Li(I; X)) — LP(I; X) for1 < p <gq < oc.
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6) Let {v,},en be a bounded sequence of L?(1; X) and v : I — X such that
vp(t) = v(t) weaklyin X asn — oo, ae. t €1.
Thenv e LP(I;X) and
IVilLea:x) < 1}1rggf||vn||u(1;x) .

7) Letv e L. (I:X) be such thatv = 0in 9'(1,X). Thenv = 0 a.e. on I.

loc
8) Letv € LP(R; X). If we put
! t+h
vi(t) = 7 / v(s)ds, foralmostallt e Randh #0,
t

then v, € L?(R; X) N Cp(R; X) and

lim ||v, —v||Lr®:x) =0,
h—0

lim ||vy(2) —v(@)|lx =0 aeteR,
h—0

Cp(R; X) denoting the space of all continuous bounded functions from R to X .

We now introduce a weaker notion of the differentiability of a vector-valued
function which is a natural generalization of the definition for real-valued functions.

Definition 3.10. Let v e L}

loc

differentiable if there exists u € L]

(1;X). We say that the function v is weakly
(I; X) such that

[row o =- [unewa voecrm,
1 1
where the integrals are understood to be Bochner integrals. The function u will be

d
denoted by V' or & and it is called the weak derivative of v. In a similar way, for

J = 2, we say that the function v possesses a j-th weak derivative if there exists a

function v/) € L] _

4/
(I; X) (denoted also #) such that
[roe0wa =7 [Wmpna vee e,
1 1

As in the case of strong derivatives, v/ and v(*) are usually denoted by v and,
respectively, v.
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As we will see below, the existence of the weak derivative of a vector-valued
function is related to the absolute continuity.

Definition 3.11. A function v : I — X is said to be absolutely continuous on 7 if
for any € > 0, there exists § = §(€) such that, for any finite set of disjoint intervals

{(t,, )}, C I with Z |ty — 1| < 8, one has Z Iv(t,) —v(t)llx <e.

It is known that a real-valued function v : 7 — R is absolutely continuous iff v

d
is a.e. differentiable on /, with the derivative d_‘t/ € L'(I), such that

N

v(s) :v(O)—l—/g(I)dt sel.
0

This property does not carry over to Bochner integrals in arbitrary Banach space.
A Banach space for which any absolutely continuous vector-valued function has
an integrable weak derivative is said to have the Radon—Nikodym property. One of
these spaces is given by the following result (see [7, p. 40]).

Theorem 3.6. Let X be a reflexive Banach space. Suppose that v : I — X is an
absolutely continuous function. Then v is a.e. differentiable on I, with the derivative
Ve Ll(I; X), such that

s

v(s) = v(0) + /\')(t) dt sel.

0

Form e Nand 1 < p < oo, let W™P(I; X) be the space of all (equivalence
classes of) measurable functions v : I — X whose weak derivatives of order 0 <
Jj < mbelong to L?([; X). Endowed with the norm

1/p

m
MM | P elloo),
IVllwmr;x) = =0
max ”V(j)”LOO(];X) lfp =00,
0<j=m

W™-P(I; X) is a Banach space.
The following result gives a characterization of W7 (I; X) spaces by means of
absolutely continuous functions.

Theorem 3.7. Form € Nand 1 < p < oo, letv € L?(1; X). Then the following
conditions are equivalent:

(1) ve Wmr(l: X),
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(2) there exists w € C"™'(I; X) such that:

v(it)=w() aetel,
the strong derivatives w) are absolutely continuous for1 < j <m —1,
the m-th strong derivative w™ exists a.e. and w™ € LP(I; X) .

Finally, we review some useful results on the space W7 (I ; X).

Theorem 3.8. Let p > 1. We have

) whr(I:X)c CcT;X).
2) C°°(I; X) is dense in WP (I; X).

Theorem 3.9. Let X be a reflexive Banach space and 1 < p < oo.

1) Letve LP(I; X). Thenv € WYP(1; X) if and only if there exists u € LP(I;R)
such that

T

[v(z) =v(@)llx < /u(s) ds| foralmostallt,t €.

t

In that case, one has ”“)”LP(I;X) < ||u||Lp(1;R).

2) Let v : I — X be a bounded and Lipschitz continuous function with C the
Lipschitz constant. Then v € W' (I; X) and ||V|| oo (1:x) < C.

3) Let p > 1, {vy}nen C WUP(I; X) be a bounded sequence and v : I — X be
such that v, (t) — v(t) weakly in X as n — oo, for almost all t € I. Then
ve WLP(I; X) and

Liminf ||V, || rr;x) = IVllzesx) -
n—oo
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Part 11
Variational Inequalities



Chapter 4
Existence and Uniqueness Results

This chapter deals with existence and uniqueness results for variational and quasi-
variational inequalities. With the intention of focusing the differences among
the proofs of results, we first consider elliptic variational inequalities of the
first and second kind with linear and continuous operators in Hilbert space or
monotone and hemicontinuous operators in Banach space. Next, we deal with
elliptic quasi-variational inequalities involving monotone and hemicontinuous or
potential operators. The last section concerns the study of a class of evolutionary
quasi-variational inequalities. The results presented here will be applied, in the last
part of the book, in the study of frictional contact problems.

4.1 Elliptic Variational Inequalities

In this section we recall some classical existence and uniqueness results for elliptic
variational inequalities of the first and second kind (see, for instance, [6,21,21,27,
30,31,37,38,40]).

4.1.1 Variational Inequalities with Linear Operators

Let V be areal Hilbert space with the inner product (-, -) and the associated norm ||-|.
As follows from the following result, we may identify the Hilbert space V' with
its dual V* (see, e.g. [1]).

Theorem 4.1 (Riesz’s Representation Theorem). Let V' be a Hilbert space, and
let f € V* be a given element. Then there exists a unique element uy € V such
that

© Springer International Publishing Switzerland 2014 31
A. Capatina, Variational Inequalities and Frictional Contact Problems,
Advances in Mechanics and Mathematics 31, DOI 10.1007/978-3-319-10163-7_4
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SW) =@yr,v) YveV.
In addition, we have
ILf = = lluglly -

Let K be a nonempty closed (i.e., K contains the limits of all strongly convergent
sequences {v,}, C K) convex subset of V.

Let us consider a bilinear forma : V x V — R. We assume that a is continuous,
that is, there exists a positive constant M such that

la(u.v)| < Mllul |Vl Vu,veV. 4.1)

We denote by j : K — R a proper, convex, and lower semicontinuous (l.s.c.)
function, i.e.

j is not identically + oo and j(v) > —c0 VveV, 4.2)

Jj=tu+tv)y<(1—=1t)ju)+tjlv) Vtel0,1], Yu,ve K, 4.3)

if {v,}, C K converges strongly to v € K then liII_l) inf j(v,) > j(v). 4.4)
n—oo

Let f € V be given. With the above notation, we consider the problem
Problem (P{): Find u € K such that

a(w,v—u)+ jv)—ju) > (fiv—u) Vvek, 4.5)

called elliptic variational inequality of the second kind.
As a particular case, for j = 0, we have the variational inequality of the first
kind defined by

Find u € K such that

a(u,v—u)>(f,v—u) Vvek. (4.6)

First, we prove the following equivalence result, due essentially to Minty [27].

Lemma 4.1. Let the above assumptions hold. We suppose, in addition, that the form
a is positive (i.e., a(v,v) > 0, Vv € V). Then, the variational inequality (4.5) is
equivalent to

Find u € K such that

av,v—u)+ jv)—jw) > (fiv—u) VveKk. “.7)

Moreover, the set of all solutions of the variational inequality (4.5) is a closed
convex (it could be empty) subset of K.
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Proof. 1f u is a solution of (4.5), then, since a is positive, it follows
a,v—u)+jv) —j@) = aw,v—u) + jv)—jw) = (f,v—u) VveKk,

i.e., u verifies (4.7).
Conversely, as the set K is convex, we may take v = (1 —t)u + tw € K in (4.7)
with w € K arbitrary, and ¢ € (0, 1). Then, by the convexity of j, one obtains

a((l=Hu+tw,w—u)+ jw)—ju) > (fiw—u) VYwek,

and, by passing to the limit with # — 0, we get (4.5).
This equivalence implies that the set of all solutions of the variational inequal-
ity (4.5) can be written as

y={uekK;av,v—u)+jv)—ju) > (f,v—u) VveK}.

Then, it is easy to verify that the set y is convex since the functional j is convex.
In order to prove that it is closed, let {u,}, C yx be a sequence such that u, — u
strongly in V. As K is closed, we have u € K, and

av,v—u)+ jv)—j) > lim a(v,v—u,) + j(v) — liminf j(u,)
n—oo n—oo

> limsup(a(v,v —u,) + jv) = j(,)) = lim (f,v—u,) = (fv—u) VveK,

n—00

i.e., u € y, which completes the proof. O
We also have the following equivalence result.

Lemma 4.2. Let the above assumptions hold. We suppose, in addition, that the
form a is symmetric (i.e., a(u,v) = a(v,u), Yu,v € V). Then, the variational
inequality (4.5) is equivalent to the following minimization problem

Find u € K such that

4.8
Ju)<J@v) VveKk, (4.8)
where the function J : V — R is defined by
1
J(v):za(v,v)-i-j(v)—(f,v) YveV. 4.9)

Proof. If u € K is a solution of the variational inequality (4.5), then we have

JO)=Jw) = a(u,v—u)+jv)—ju)—(f, v—u)—i—%a(u—v,u—v) >0 VveKk.
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Conversely, if u satisfies (4.8), then
Jw)<J(1—-tu+1tv) VYveK, Vte(0,1),

hence
%tza(u—v,u—v)—|—ta(u,v—u)+j((1—t)u+tv)—j(u)Zt(f,v—u).

Therefore, by using the convexity of j, dividing by ¢ and passing to the limit with
t — 0, we conclude that u is a solution of (4.5). O

Let us recall a Weierstrass type minimization theorem (see, for instance, [31,
p. 1181], [10, p. 62], [14, p. 596]) which will be used frequently in this chapter.

Theorem 4.2 (Weierstrass’s Minimization Theorem). Let (X, |- | x) be a reflex-
ive Banach space and let K be a nonempty weakly closed subset of X. Let
J : K — R be a proper function. Assume that J is weakly l.s.c., i.e.

if {vu}n C K converges weakly tov € K then liminf J(v,) > J(v).
n—o00

Suppose that one of the following three conditions holds:

1) K is bounded;

2) J is coercive, i.e. lim J(v) = +o0;
Ivll—o0

3) every minimizing sequence {v,}, C K of J is bounded in'V.

Then J is bounded below on K and it attains its minimum value on K.

In addition, if J is convex, then the set of all minimizers of J is closed convex
subset of K.

Moreover, if the functional J is strictly convex on K (i.e., J((1 —t)u + tv) <
1=0Jw) +tJW), Yt € (0,1), Yu,v e K, u # v), then the minimizer of J is
unique.

We now introduce two important classes of nonlinear operators defined in a
Hilbert space, namely the proximity operator and the projection operator (see, e.g.,
[28,29]).

Definition 4.1. Let ¢ : V — R be a proper convex Ls.c. function. The proximity
operator with respect to the function ¢ is the operator Prox, : V — V defined
by Prox,(w) = u, Vw € V, u being the unique element in V, called the proximal
element of w with respect to the function ¢, such that

q>w(u) = min qu(V)
vevV
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where
1 2
D,(v) = §||v|| +o(v)—(w,v) VveV. (4.10)

This definition is justified by the following existence and uniqueness theorem.

Theorem 4.3 (Proximity Theorem). Let ¢ : V — R be a proper convex Ls.c.
function. Then, for any w € V, there is a unique element u € V such that u =
Prox,(w).

Proof. It is easy to see that the function ®,, : V — R, defined by (4.10), is proper.
As ¢ is convex and the norm || - ||y is strictly convex, it follows that ®,, is strictly
convex. Moreover, since the norm and the function v — (w, v) are continuous, and
¢ is L.s.c., we deduce that ®,, is a L.s.c. function.

Next, the hypotheses on ¢ imply that there exist A € V and u € R such that

()= A, v)+u VYvelV,
and hence
L0 1 2 1 2
Ou) = S IV + A= wov) + 1 = 3y + 2= w2 = S =Wl + .
Therefore, the function ®,, is coercive. Applying Weierstrass Theorem 4.2, we

conclude the proof. O

The following results give a characterization of the proximity operator and some
of its properties.

Proposition 4.1. Let ¢ : V — R be a proper convex Ls.c. function and let w € V.
Then the following assertions are equivalent:

(1) u= Prox,(w),
(2) (u,v—u)+ o) —ew) > w,v—u) Vvel.

Proof. We apply Definition 4.1 and Lemma 4.2 for a(u,v) = (u,v), Vu,v € V. O
Proposition4.2. Let ¢ : V — R be a proper convex Ls.c. function. Then the

proximity operator Prox, : V — V is monotone and non-expansive, i.e.

(Prox,(wi) — Prox,(wi),wi —wz) >0 Vwi,wy eV
|Proxy,(wi) — Prox,(wi)|l < [lwi —wall VYwi,wreV.

Proof. Letw; € V andu; = Prox,(w;) fori = 1,2. Therefore, by Proposition 4.1,
we have

(i, uz—i —u;) + (uz—) — @) > Wi, u3—; —u;) i =1,2.
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By adding the two inequalities, we obtain
(Wi —wa,uy — 1) > |y — wa||*
thus

0<||Proxy(wi)— Pro;c(p(v1/2)||2 < (Prox,(w1) — Proxy,(wz), wi —ws)
< ||Prox,(wi) — Prox,(wa)|l [[wi — w2
which completes the proof. O
The proximity operator, being non-expansive, is continuous. In addition, by
Proposition 4.1, we deduce that

u= Prox,(u) <= ou) <p(v) VvelV. 4.11)

An important particular case of the proximity operator Prox, is obtained by
taking ¢ = Ix where Ix denotes the indicator function of K defined by:

0 ifve K,

I =
x() +o00 otherwise .

In this case, we will denote the proximity operator Prox;, by Pk, called the
projection operator.

Definition 4.2. The projection operator Px : V' — K is defined by Px(w) = u
where u € K, called the projection of w onto K, is the unique minimizer of the
functional W,,(v) = ||v — w| on K (i.e., the distance between the given element
w € V and the closed convex set K).

As Pg = Proxj,, we have the following existence and uniqueness result.
Theorem 4.4 (Projection Theorem). For any w € V there is a unique element
u € K such that

|l — w|| = min ||y —w| .
vek

From Propositions 4.2 and 4.1, we deduce the following results.

Proposition 4.3. The projection operator Px : V — K is monotone and non-
expansive.

Proposition 4.4. Let w € V. Then, the following assertions are equivalent:

(1) u= Pg(w),
(2) (u,v—u) > w,v—u) Vvek.
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It is easy to see that
u=Pru<—uck. “4.12)

We note that, in general, the projection operator is not linear. However, if
M is a closed subspace of V, then the projection operator P, is linear and
| Prllzwyy =1

We remind that a subset A of a normed space X is said to be compact
(respectively, weakly compact) if every sequence in A has a subsequence converging
strongly (respectively, weakly) in X to an element of A.

We recall now the following fixed point theorems (see, e.g., [3], [9, p. 12], [23,
p- 530], [36, p. 16]) that will be useful in the sequel.

Theorem 4.5 (Brouwer’s Fixed Point Theorem). Let K be a nonempty, convex,
compact subset of a finite dimensional normed linear space V. If the operator T :
K — K is continuous, then T has a fixed point, i.e. there exists u € K such that
T(u) = u

Theorem 4.6 (Schauder’s Fixed Point Theorem). Let V' be a Banach space, and
let K C V be a nonempty, convex, compact subset. If the operator T : K — K is
continuous, then T has a fixed point.

Theorem 4.7 (Banach’s Fixed Point Theorem). Let (V, |-|v) be a Banach space,
and let K be a nonempty closed subset of V. Suppose that the operator T : K — K
is a contraction, i.e. there exists a constant ¢ € [0, 1) such that

1T @) =TWllv < cllu—vly.

Then T has a unique fixed point.

In the finite dimensional case, we have the following existence result for the
variational inequality (4.5) (see [21]).

Theorem 4.8 (Hartman-Stampacchia’s Theorem). Let K be a nonempty com-
pact convex subset of a finite dimensional space V. If we suppose that A : K — V
is a continuous mapping and j : K —> (—00,400] is a proper Ls.c. convex
function, then there exists at least one u € K such that

(Au,v—u)+ jv)— jw) > (fiv—u) VveKk. (4.13)

Proof. We consider the proper L.s.c. convex function ¢ : V — (—00, +00] defined
by

jo) ifvek,

4.14
+00 otherwise . ( )

p(v) =
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Let the operator T : K — K be defined by T(w) = Prox,(w — Aw + f),
Vw € K, where Prox, is the proximity operator with respect to ¢. We first remark
that, from the definition (4.14) of ¢ and the definition of the proximity operator,
it follows that T(w) € K, Vw € K. Then, by Proposition 4.1, it follows that the
inequality (4.13) is equivalent to u = T (u).

The operators A and Prox, are continuous, hence T is itself on the compact
convex set K. Hence, from Schauder fixed point Theorem 4.6 or from Brouwer
Theorem 4.5, it follows that there exists at least one element u € K such that u =
T (1) which completes the proof. |

We have the following results (see, e.g., [16]) on the weak compactness in
reflexive Banach spaces.

Theorem 4.9 (Eberlein—-Smulyan Theorem). Let V' be a reflexive Banach space.
Then any bounded sequence in V contains a weakly convergent subsequence.

Corollary 4.1. Any nonempty, bounded, and weakly closed subset in a reflexive
Banach space is weakly compact.

The following existence result for variational inequalities holds.

Theorem 4.10. Suppose that the hypotheses (4.1)—(4.4) hold. In addition, we
assume that the form a is positive and that the closed convex set K is bounded. Then,
the set of all solutions of the variational inequality (4.5) is a nonempty, convex, and
weakly compact subset of K.

Proof. From Lemma 4.1, the set of all solutions of (4.5) is

X:ﬂS(v) where S(v)={ueK;av,v—u)+jv)—ju) > (fiv—u)}.
veK

The set y being closed convex, it is weakly closed (i.e., it contains the limits
of all weakly convergent sequences {v,}, C y) in V. On the other hand, as the
set K is bounded and weakly closed in V', by Corollary 4.1, it follows that it is
weakly compact. Therefore, we will prove that y #@ by proving that the family
{S(v)}yex has the finite intersection property, i.e. any finite subcollection K9 C K
has nonempty intersection. Let {v,--- ,v,} be a finite part of K and Ko = K N Q0
where Q is the finite dimensional space spanned by the family {v;,--- ,v,}. Then,
from Hartman—Stampacchia Theorem 4.8, it follows that there exists a solution u €
Ko C K of the inequality

a(,v—u)+ jv)—jw) = (f,iv—u) VveKp,

i.e., there exists u € S(v), Vv € K, hence ﬂ S©v) #@. |
vEKQ

We shall see below that, in the case of compact sets, the existence result is a
consequence of Schauder fixed point Theorem 4.6.



4.1 Elliptic Variational Inequalities 39

Proposition 4.5. Under the hypotheses of Theorem 4.10, if the set K is compact,
then the set of all solutions of the variational inequality (4.5) forms a nonempty
compact convex subset of K.

Proof. The set y of all solutions of (4.5) is closed and convex.

In order to prove that it is nonempty, let 7 : K — K be the continuous operator
defined by T(w) = Prox,(w — Aw + f), Yw € K, where the functional ¢ is
defined by (4.14), and A € Z(V,V) is the operator associated with the bilinear
continuous form a(-, -), i.e.

(Au,v) = a(u,v) Vu,velV. (4.15)

Hence, by Schauder fixed point Theorem 4.6, it follows that there exists u € K
such that u = T (u), that is

(u—Au+ f)—u,v—u) < jv)—jm) Vvek,

and thus, the set of the solutions of (4.5) is nonempty. Moreover, as y is closed in
the compact set K, it follows that y is compact.

Next, if we refer to the variational inequality of the first kind (4.6), then we have
to consider the continuous operator 7' : K — K defined by T'(v) = Px(v—Av+ f)
where Px : V — K is the projection operator on the nonempty closed convex
subset K. Therefore, by taking into account the characterization of the projection
given by Proposition 4.4, from u = T u it follows

u—u—Au+ f),v—u) >0 Vvek.

In fact, it is enough to remark that the projection operator is a particular case
of the proximity operator, namely Px = Prox;, Ix being the indicator function
of K. O

However, the most interesting cases involve unbounded sets K. Existence results
are obtained by requiring that the form a is coercive on V' (or, V-elliptic), that is,
there exists a positive constant « such that

a(u,u) > alul> YueV. (4.16)

We first recall an important surjectivity result (see, e.g., [10, p. 42], [9, p. 41]).

Theorem 4.11 (Lax-Milgram’s Theorem). Ler V be a real Hilbert space, and
leta : V xV — R be a bilinear, continuous, and coercive form. Then, for each
f € V*, there exists a unique element u € V such that

a(u,v)y ={(f,v) VveV,

with V* the dual space of V and (-, ) the duality pairing between V* and V.
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The mapping [ +> u is one-to-one, continuous, and linear from V* onto V.

Corollary 4.2. Let V be a real Hilbert space, and let A : V. — V* be a
bilinear, continuous, and coercive operator. Then, the operator A is bijective from
V onto V*.

We have the following existence and uniqueness result for unbounded sets.

Theorem 4.12. Suppose that the hypotheses (4.1)—(4.4) hold. If the bilinear contin-
uous form a is coercive, then there exists a unique solution u € K of the variational
inequality (4.5).

Proof. In order to emphasize the difference between techniques involved in the
proof, we are going to assume following cases:

1) If a(u,v) = (u,v), Yu,v € V, then, from Propositions 4.1 and 4.4, it follows
that the variational inequalities (4.5) and (4.6) are equivalent to u = Prox,(f)
and, respectively, u = Pg( f), the function ¢ being defined by (4.14). Therefore,
Theorems 4.3 and 4.4 conclude the proof.

2) If the form a(-,-) is symmetric, then, by Proposition 4.2, it follows that the
problem (4.5) is equivalent to the minimization problem

Find u € K such that
J(u) = inf J(v)
veK

where the function J : V — R is defined by (4.9).

Therefore, Theorem 4.12 takes the form of Weierstrass Theorem 4.2.

It is easy to verify that the hypothesis (4.16) implies that the form a is strictly
convex. Indeed, we have

a((l=t)u+tv, 1=t u+tv)y=(1-t)a(u, u)+ta(v,v)—t(1—t)a(u—v,u — v)
< —=ta(,u)+talv,v) —at(1 —1t)|ju—v|>
< (1 —=ta(u,u)+talv,v) Vte(0,1), VuveV, u#v.

Hence the function J is strictly convex.

From the hypotheses (4.2)—(4.4), it follows that there exist A € V and u € R
such that

JW) = @A) +p.
Thus, by using (4.16), we get

oa—e€
2

o 1
J) = 5|IV||2+ A= ) +p= IIVIIZ—ZIM—fII“rM, Ve € (0,2)
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and so, the function J is coercive. In addition, J is proper and weakly l.s.c.
(for convex functions, the lower semicontinuity is equivalent to the weakly lower
semicontinuity). Therefore, by Theorem 4.2 the assertion follows.

3) If K = V and j = 0, then, the variational inequality (4.5), or (4.6), becomes

Au=f

where A is the operator associated with the form a by (4.15). So, Theorem 4.12
expresses Corollary 4.2 of Lax—Milgram Theorem 4.11, and so, the operator 4 is
invertible (it satisfies the hypothesis || Av|| > «||v||, v € V and it is bijective), i.e.
the equation Au = f has a unique solution u = A~' f where A=! € Z(V,V)
is the inverse operator of A4.

4) In the general case, for any p > 0, the inequality (4.5) can be written as

(u—(u—p(Au— f)),v—u) = pp(v) — pp(u) VvevV

thatis u = Prox,,(u—p(Au— f)), and, respectively, u = Pg(u—p(Au— f)) in
the case of the variational inequality of the first kind (4.6). We define the operator
T,.: K — K by

T,(v) = Prox,,(v—p(Av — f)), 4.17)
and, respectively,
T,(v) = Px(v— p(Av — f)). (.18)

Now, the existence and uniqueness of u follow from Banach fixed point
Theorem 4.7 provided that there exists p such that the mapping 7, is a
contraction on the nonempty closed subset K of the Banach space V. Indeed,
since the proximity and projection operators are non-expansive, then by the
relations (4.1), (4.16), we have

1T,(vi) = T,(»)|| < V1+p*M?—=2ap|vi —va2f| Vvi,meK,

200
hence, by choosing p € (0, m), one obtains 1 + p?M? —2ap € (0,1),1.e. T,
is a contraction. O

4.1.2 Variational Inequalities with Nonlinear Operators

This section contains existence and uniqueness results for the solutions of varia-
tional inequalities involving a large class of nonlinear operators, namely monotone
and hemicontinuous operators (see [6,21, 30,37, 38]). These operators are consid-
ered in most of the applications of the elliptic boundary problems.
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Let (V, | - ||) be a real reflexive Banach space with its dual (V*, || - [|), and let
K C V be a nonempty closed convex subset. We consider a function j : K — R
satisfying the following conditions

Jjis proper l.s.c. convex , (4.19)

and a monotone hemicontinuous operator A : V — V*, i.e.
(Au— Av,u—v) >0 Vu,veV, (4.20)
Yu,v € V,themapt € [0,1] — (A((1 —t)u+tv,u—v) is continuous,  (4.21)

where (-, -) denotes the duality pairing between V* and V.

We will establish conditions which ensure the existence of the solutions of the
variational inequality
Problem (P}): Find u € K such that

(Au,v—u) + jv)—ju) > (fiv—u) Vvek, (4.22)
for f € V* given.

First, by proceeding in a similar way as in the proof of Lemma 4.1, one obtains:
Lemma 4.3. Under the above hypotheses, an element u € K satisfies the inequal-
ity (4.22) if and only if it satisfies the inequality

(Aviv—u) + jv)— ju) = (f,v—u) VveKk. (4.23)

Moreover, the set of all solutions of the variational inequality (4.22) is convex

closedinV.

The main result of this section is the following existence and uniqueness result
(see, e.g., [37]).

Theorem 4.13. Suppose the hypotheses (4.19)—(4.21) hold. If one of the following

conditions is satisfied

K is bounded 4.24)

Av,v) + ]
0cK.j(0) =0ad lim AWV TIO

+o00, (4.25)
Ivll=+o00 vl
vek

Av.y— o
vy € K such that  lim {Av,v = vo) + j () = j(vo) =
Il~>-o0 vl

400, (4.26)
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then, there exists at least one solution u € K of (4.22). Moreover, the set of all
solutions of the variational inequality (4.22) is convex closed bounded in V, and so,
it is weakly compact.

In addition, if j is strictly convex, i.e.

JAu+ A=) <Ajw)+ A —=21)j(v) VYAe(0,1),VuveV, u#v,
or A is strictly monotone, i.e.
(Au—Av,u—v) >0 VYuveV,u#v,

then the solution of the variational inequality (4.22) is unique.

Proof. By Lemma 4.3, the set of all solutions of (4.22) is the following closed
convex set

=[S0 C K where SW)=f{ucK: (Av.v—u)+j¥)—j@)=(fv—u)}.

veK

If the hypothesis (4.24) holds, then, obviously x is also bounded. Proceeding in
a similar way as in the proof of Theorem 4.10, we get y # @.

Now, we suppose that the hypothesis (4.25) or (4.26) is satisfied. We then
consider the following closed bounded convex subset of K

Kr = KN B(O,R)
where B(0, R) = {v e V; ||v| < R}. We may assume that R is large enough such
that the set Ky is not-empty. Therefore, from the first part of the proof, it follows
that there exists ug € Ky such that
(Aug,v—ug) + j(v) — j(ug) = (f,v—ug) Vve Kg. (4.27)
We shall show that any of the two coerciveness conditions (4.25) or (4.26) implies

llug|| < R. We suppose by contradiction that ||ug| = R.
If (4.25) holds, then

(Aug,ug) + j(ug) > (f.ur),
On the other hand, taking v = 0 € Ky in (4.27), we get
(Aug,ur) + jur) < (fiugr).

which represents a contradiction.
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If (4.26) is true, then

(Aug,ur —vo) + j(ug) — j(vo) > {fiur —vo) .

We may always suppose that R is large enough such that R > |vy|. Therefore,
from (4.27) with v = vy € K, we obtain the contradiction

(Aug,vo —ug) + j(vo) — j(ur) = (fivo — ug) .

We conclude that ||ug| < R.
We note that, for every w € K, there exists € = €(w) € (0, 1] such that v =
ugr + €(w —ug) € Kg. Indeed, if w € Kg, then we take ¢ = 1, and if w ¢ Kp,
R —
then, by taking 0 < ¢ < ]

— Wil = Jlug]]
from (4.27) and the convexity of j, it follows

€ (0, 1), one obtains v € Kg. Therefore,

(Aug,w—ug) + jw) — j(ug) > (f,w—ug) VweKk,

that is uy is a solution of (4.22).

Therefore, in order to prove the first part of the theorem, it is enough to prove
that the set y is bounded. If we suppose that, for all R > 0, there exists ug € y
such that |ug|| > R, then, for R sufficiently large, the coerciveness relations (4.25)
or (4.26), and the inequality (4.22) give, as we have seen above, a contradiction.

Finally, if j is strictly convex or A is strictly monotone, we wish to prove the
uniqueness of the solution of (4.22). Suppose that two solutions u;, u, € K exist.

Taking v = i

in the corresponding inequalities, by adding them, we deduce

0<

N =

. . fuwm+u
(Auy — Auz, uy — uz) + j(ur) + j(up) —2j (%) <0,

which, in any of the two hypotheses, implies u; = u5. O

In the following we shall see that the hypotheses (4.24)—(4.26) can be replaced
by a strong assumption on the operator A.

Corollary 4.3. Let j : K — R be a proper Ls.c. convex functionand A 1 V — V*
a hemicontinuous and strongly monotone operator, i.e. A satisfies (4.21) and

o > 0 such that (Au— Av,u—v) > a|u—v|*> VYu,velV. (4.28)

Then, there exists a unique solution u € K of (4.22).

Proof. We shall prove that the coerciveness hypothesis (4.26) is satisfied. From the
strongly monotonicity of A, we get
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Av,v—
im AV L v e K (4.29)
I—o0 [[v]]

On the other hand, the hypotheses on j imply that there exist A € V* and u € R
such that

JO) = A V) + = —[Al«lv| + 1 VveK. (4.30)

Now, by choosing vp € dom j = {v € K; j(v) < 400} (obviously, as the
function j is proper, one has: dom j #@), the relations (4.29) and (4.30) get (4.26).
O

It is known that (see, for instance, [17], p. 42) if a monotone hemicontinuous
operator A is bounded (i.e., A maps bounded sets into bounded sets), then it is
pseudo-monotone, that is

i) A is bounded
i) Y{u,}, C K, Yu € K s.t. u, — uweakly in V and lim sup(Au,,u, —u) <0,

n—>00

then liminf(Au,,u, —v) > (Au,u—v) VveKk.
n—o00

Finally, we note that Theorem 4.20 is still valid for a pseudo-monotone operator A
with a slightly modified proof (see, e.g., [30,31,40]).

4.2 Elliptic Quasi-variational Inequalities

The object of this section is to study the so-called quasi-variational inequalities,
initially introduced by Bensoussan and Lions [4] in connection with some stochastic
impulse control problems. The mathematical literature on quasi-variational inequal-
ities contains many notable contributions including a wide set of applications in
mechanics, engineering, economics, or game theory. We do dot claim to cover here
this huge subject, we only focus our attention on two classes of quasi-variational
inequalities involving monotone hemicontinuous operators and, respectively, poten-
tial operators.

4.2.1 Quasi-variational Inequalities with Hemicontinuous
Operators

Let (V, || - ||) be a real reflexive Banach space, (V*, || - ||«) its dual, and let K be a
nonempty closed convex subset of 1. We denote by (-, -) the duality product between
V*and V.
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For f € V* given, we consider the following quasi-variational inequality:
Problem (P3): Find u € K such that

(Au,v—u) + ju,v) — ju,u) > (f,iv—u) VveKk, (4.31)

where A : V — V*isanoperatorand j : V x V — (—o0, +00] a function.
In this paragraph we indicate a quite wide class of operators A and functionals j
which guarantees the existence and, eventually, the uniqueness of the solution.

Remark 4.1. The problem (4.31) is called (see, for instance, [31]) quasi-variational
inequality of the second kind.

Remark 4.2. Suppose that K = V (or, sufficiently, dom j = K x K where
dom j = {(u,v) € VxV; j(u,v) < +oo} is the effective domain of j) and

0 ifve Qu,

Juv) =Tow®M =1 L ity ¢ o)

where Q : V — 2" is a multivalued mapping such that for every u € V, Q(u)
is a nonempty closed convex subset of V. Then the variational inequality (4.31)
becomes

ue Q(u)
(Au,v—u) > (f,v—u) VYve Q(u).

This inequality is called quasi-variational inequality of the first kind (see [4, 39]).

We remark that this problem involves implicit constraints, i.e. constraints that
depend on the solution itself.

We recall that a functional ¢ : K — R is said to be weakly upper semicontinuous
(weakly u.s.c.) on K if

lim sup ¢(v,)<¢(v) for every sequence {v, }, CK converging weakly in V to veK.
n—od

Theorem 4.14. Suppose the following hypotheses hold.
A is a monotone hemicontinuous operator, (4.32)
the function j is weakly L.s.c. on K x K , (4.33)
Yv eV, the function j(-,v) : K — (—o0, 400] is weakly u.s.c.on K,  (4.34)

Yu € K, the function j(u,-) : K — (—00, 400] is proper convex. (4.35)



4.2 Elliptic Quasi-variational Inequalities 47

Then, the set of all solutions of the quasi-variational inequality (4.31) is a nonempty
weakly compact subset of K if one of the two conditions is satisfied:

K is bounded, (4.36)

vy — . .
vy € K s.t.  lim (Av,v = vo) + j(v,v) J(V’VO)z

l[vll—+o00 (vl
veK

+00. (4.37)

In order to prove this theorem, we introduce some useful definitions and
properties for multivalued mappings (for details and proofs, see [23], p. 541).

Let E and F be two topological spaces. We consider a multivalued mapping
S:E—2F.
Definition 4.3. We say that S is u.s.c. in a point xy € E if, for any open subset
U in F such that S(x¢) C U, there exists a neighborhood V' of x( in E such that
S(V) C U where S(V) = |_J Sm).

vevV

Definition 4.4. The multivalued mapping S is called u.s.c. on FE if it is u.s.c. in any
point x € E.

Definition 4.5. We say that the mapping S is closed if its graph
Ys ={(x.y) e ExXF:yeSx);}

is a closed subset of £ x F.

Definition 4.6. Let £ and F be two topological vector spaces. We say that the
multivalued mapping S : E — 2 is K-map (or, Kakutani map) if it satisfies the
following conditions:

(i) Sisu.s.c.on E;
(ii)) Vx € E, S(x) is a nonempty convex compact subset of F'.

Proposition 4.6. Let E be a locally convex topological space and C a compact
subset of E. Let S : C — 2€ be a closed multivalued mapping. Then, S is u.s.c. on
E and, for any x € E, S(x) is a compact subset of C.

The following theorem represents a generalization of the classical theorem due
to Ky Fan [24].

Theorem 4.15 (Kakutani Fixed Point Theorem). Let E be a locally convex
topological vector space and C a nonempty convex compact subset of E. Let
S : C — 2€ be a K-map. Then S has at least a fixed point in C, i.e. there exists
x € C such that x € S(x).

Proof of Theorem 4.14. Suppose that the hypothesis (4.36) is satisfied. For every
u € K, we put
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Sw) ={we K; (Aw,v—w)+ j(u,v)—j,w) > (f,v—w) Vve K}. (4.38)

From the hypotheses (4.32) and (4.35), proceeding as in Lemma 4.2, it follows
that

Su)={we K; (Av,v—w) + ju,v) — jlu,w) > (f,v—w) VveK}.

By applying Theorem 4.13, it follows that S(u) is a nonempty convex weakly
compact subset of K.

We prove now that the multivalued mapping S : K — 2K, defined above, is
weakly closed. Let {u,,w,}, C K x K be such that w, € S(u,), Vn € N and
u, — u, w, — wweakly in V when n — +o00. Therefore, we have

(Av,v —wy) + j(uy,v) = (fiv—wy) = ju,,w,) VYveKk,
hence, by passing to the limit and using (4.34) and (4.33), one gets

(Av,v —w) + j(u,v) — (f,v—w) > limsup[{Av,v —w,) + j(u,,v) — (f,v—wy,)]

n—-+o00

> liminf j(u,,w,) > j(u,w) Vve K,
n——+00

ie.,we Su).

We now apply Proposition 4.6 and Theorem 4.15 for E = V' endowed with the
weak topology, and C = K. Then, by taking into account (4.38), it follows that the
quasi-variational inequality (4.31) has at least one solution u € K.

Next we prove that the set of all solutions of (4.31) is a weakly closed subset of
K. Let {u,}, C K be such that u, — u weakly in V', and

(Aun»v_un)+j(unsv)_j(un»un)2(f’v_un) VveKk.

This means that u,, € S(u,), Vn € N, and hence, since the multivalued mapping S
is weakly closed, we deduce that u € S(u), i.e. u is a solution of the quasi-variational
inequality (4.31).

Finally, taking into account that K is a weakly compact subset of V', we conclude
the proof.

Next, we assume that the coerciveness condition (4.37) is satisfied. Let R > ||vo ||
be sufficiently large such that K = K N B(0, R) #@ where B(0,R) = {v €
Vvl < R}. By applying the first part of the proof for the nonempty convex
bounded closed set K, it follows that there exists an element ug € K such that

(Aug,v —ug) + j(ugr,v) — j(ug,ug) > (f,v—ug) Vve Kg. (4.39)

Proceeding as in the proof of Theorem 4.13, one shows that the coerciveness
hypothesis (4.37) implies ||ug|| < R.
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We shall prove that ug is a solution of (4.31). Let w € K\ Kg. Taking 0 < € <
R —|ug]

wll = llurll _
with this v, we obtain

and v = ug + €(w — ug), it follows that v € Kg. Then, from (4.39)

€(Aup,w—ug) + j(ur,ur + €(w —ugr)) — j(ug,ur) > e{(fiw—ug) Vwek.
Using now the convexity of j(ug,-) and dividing with € > 0, one deduces
(Aug,w —ug) + j(ug,w) — j(ug,ug) > (fiw—ug) Vwe Kk,

that is uy is a solution of the quasi-variational inequality (4.31).

Proceeding again as in the first part of the proof, we obtain that the set of all
solutions of the inequality (4.31) is weakly closed. On the other hand, every solution
u of the inequality (4.31) verifies the inequality (4.39) for any R > 0. If we choose
R > ||vo|| sufficiently large, then, from (4.39) and the coerciveness condition (4.37),
it follows that ||| < R. Therefore, we conclude that there exists R > 0 such that
the set of all solutions of the inequality (4.31) is weakly closed in the bounded set
KR, and so, it is weakly compact in V. O

Under more restrictive hypotheses on A, one obtains the following existence and
uniqueness result.

Theorem 4.16. Let A : V. —> V™ be a hemicontinuous and strongly monotone
operator, that is A satisfies (4.21) and

Ao > 0 such that (Au — Av,u —v) > allu—v|*> Yu,veV. (4.40)

We suppose that the functional j : V xV — (—o00, +09] satisfies the following
conditions:

YueV, jlu,): V — (—oo, +00] is a proper Ls.c. convex function, 4.41)
3k < a such that | j(ui,vi) + j(uz, v2) — j(uy, v2) — j(uz, v1)| (4.42)
§k||u1—u2|| ||V1—V2|| Yuy, uy,vi,v2 € K.
Then, the quasi-variational inequality (4.31) has a unique solution.
Proof. The proof is based on a fixed point theorem and on Theorem 4.13.
The operator A being strongly monotone, we obtain
(Aw, w — vp)
il > afwl = 2avoll — [[Avo|l«
(4.43)

afvoll> — [ AvollIvol

Yw,vy € K,
[[wl]



50 4 Existence and Uniqueness Results

hence

Aw, w —
i Aww—ve) (4.44)
lwll—>~+o0 [lw]|

From (4.41), it results that, for any v € K, there exists A € V*, A = A(v), and
1 € R such that

Jw) = (A, w) + = —[[Alllwl+ . Ywe K, (4.45)
which, together with (4.44), implies

<AW’ w— VO) + j(V, W) - j(V, VO)

im = +o0Vyy € dom j(v,:), Vve K,
lIwll—+o00 [wl|

(4.46)

and so, the coerciveness condition (4.26) holds.
Now, we denote by S the mapping S : K — K which associates with every
w € K the unique solution of the variational inequality of the second kind

SweK 4.47)

(A(SW),v—Sw) + j(w,v) — j(w,Sw) > (fiv—8Sw) Vvek. '

From (4.46) and (4.40)—(4.41), by applying Theorem 4.13, we conclude that the
inequality (4.47) has a unique solution, hence the mapping S is well defined.

We remark that the set of all fixed points of S coincides with the set of all
solutions of the quasi-variational inequality (4.31). Therefore, the question on the
existence and uniqueness of the solutions of (4.31) is reduced to the existence and
uniqueness of the fixed points of S

We shall prove that the mapping S is a contraction. Indeed, for wy, w, €
K arbitrarily chosen, let Sw; and Sw;, be the corresponding solutions of the
inequality (4.47). By adding the two inequalities for v = Sw, and, respectively,
v = Swy, by using (4.40) and (4.42), we obtain:

[Swi—Swa| < gqllwi —wa (4.48)

: k
withg = — < 1.
o
Hence, by Banach fixed point Theorem 4.7, it follows that the mapping S has a
unique fixed point. Therefore there exists a unique solution of the quasi-variational
inequality (4.31). O

The above proof suggests and justifies the application of the following algorithm
of Bensoussan—Lions type [4] for the approximation of the solution of the quasi-
variational inequality (4.31) : for u® € K given, we define the sequence 1" = Su"~!,
that is «” is the unique solution of the variational inequality:
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(Au v —u") 4+ j@" ' v) — j@ L u") > (fiv—u") VYvek. (4.49)
From (4.48), we deduce
lu" —ull < g"lu’ —ull < Cq" (4.50)

where u = Su is the unique solution of the quasi-variational inequality (4.31), C
is a positive constant independent of n, and ¢ < 1. Therefore, we have " — u
strongly in V.

4.2.2 Quasi-variational Inequalities with Potential Operators

Variational methods have proven to be a powerful tool in the study of linear and
nonlinear operator equations. The classical result of Friedrichs (see [18] or [14],
p. 134) on the extension of any linear positive definite and symmetric operator
A to an operator A, also positive definite but surjective, allowed to introduce the
concept of generalized solution (in the Sobolev sense) of the equation Au = f as
the classical solution of the equation Au = f. The class of operators for which the
generalized solution can be defined was enlarged with linear operators with positive
definite derivative [26, 33] and nonlinear operators [15,25]. Other generalizations
were obtained for multivalued operators; so, the equation Au+dj(u) > f is studied
in [35] and [13] for a linear and, respectively, nonlinear operator A with positive
definite and symmetric derivative, and in [22] are considered K-variational problems
of the type Pu > f.

In the variational theory, the variational inequalities have an important place
thanks to the characterization of the classical solution of the equation Au + dj(u) >
f as the solution of the variational inequality:

(Au,v —u) + j(v) = j@) = (f.v—u).

In this section, following [7], we introduce the concept of generalized solution
of nonlinear quasi-variational inequalities. Our approach differs from the standard
techniques since a quasi-variational inequality cannot be written as an operator
equation of the type Pu > f. More precisely, for u® € V arbitrarily and supposing
that "~ is known, we define " as the generalized solution of the variational
inequality

(Ad",v—u") + j,(v) — ju (") = (fiv—u") VveV,

where j,(-) = j(u" ).

We shall prove that the sequence {u"}, is convergent and that its limit is
independent of u°. This limit is called the generalized solution of the quasi-
variational inequality
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(Aw,v—w) + jw,v) — jw,w) = (f,v—w), Vve V.

This definition is justified by the properties given by Theorem 4.17 below.

We start by recalling some definitions and results concerning generalized
solutions.

Let (V,(-,-), ]| - ||) be a real Hilbert space and Z2(P) C V be a linear dense
subspace of V. For f € V given, we consider the problem

(P +0¢)(u) > f 4.51)

where P : 9(P) — V is a nonlinear operator, ¢ : Z(P) — (—o0,+0o0] is a
function and d¢ represents the subdifferential of ¢ at u, i.e. the set

do(u) ={weV;pv)—eu) > w,v—u) VveZ(P)}.
We suppose that the following hypotheses hold.

P is a potential, i.e. there exists a functional
B : 2(P) — Rsuchthat DB(u)v = (Pu,v) VYue 2(P),VvelV,

(4.52)
P is monotone , (4.53)
@ is proper L.s.c. convex, (4.54)

where DB denotes the Gateaux differential of B, i.e.

Bu+1v) — B(u)

; Yu,ve (P).

DB(u)v = lim
t—0

Remark 4.3. Under the hypotheses (4.52) and (4.53) one proves (see, for instance,
[13]) that

1

Bv) = /(P(sv),v) ds + const. Vve P(P),
4 (4.55)

1
ﬁ(v+h)—ﬁ(v)=/0 (P(v+sh),h)yds Yv, he D(P).

Definition 4.7. A classical solution for the Eq. (4.51) is an element u € Z(P)
which verifies the variational inequality of the second kind

(Pu,v—u) + o) —ew) > (f,v—u) VYveDP).

We have the following characterization of the classical solution.
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Proposition 4.7. An element u € 2(P) is a classical solution for the equa-
tion (4.51) if and only if u minimizes on Z(P) the functional

Frv) =B + o) —(fiv). (4.56)

Proof. If u € 2(P) is a classical solution of (4.51), then, by using (4.55), and the
hypothesis (4.53), we get

1

Fr(v) = Fr(u) = /(P(M+S(v—u)),v—u)ds + o) — o) = (f.v—u)
0

1
2[(P(u—i—s(v—u)),v—u)ds—(Pu,v—u)
0

1
:/(P(u+s(v—u))—Pu,v—u)ds20 Vve ZP(P).
0

Conversely, if u € Z(P) is a minimizer of Fy on Z(P), then
Fru) < Fru+t(v—u)) VYveZ(P),Vte(0,1),
and so, by using the convexity of ¢, we get

Plu+1(v—u)— P

; +o)—pw)—(f,v—u) >0 VYve 2(P),Vte(0,1).

Thus, by passing to the limit with # — 0, the assertion follows. O

In the sequel we consider the following more restrictive hypothesis on P:

P is a strongly monotone operator: 3o > 0 such that

4.57
(Pu]—Puz,ul—uz)zaﬂul—uz”z VM],MQE.@(P), ( )

which, obviously, implies the uniqueness of the classical solution of (4.51).

Lemma 4.4. Assume that (4.52) and (4.57) hold. Then B is strongly convex, namely

(1=)Bw)+tB(v)—B((1—t)u+tv) > %l‘(l—l‘)”u—v”2 vVt €[0,1], Yu,ve2(P).
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Proof. From (4.55), and (4.57), we obtain

(I=0)Bw) +1B() — (1 —Du +1v)
= t(ﬂ(u + v —u) = Bw) — (B — u+1v) — fu))

/(P(u +s(v—u)— Pu+st(v—u),1—1)s(v—u))
1

> ar(1 —t)||u—v||2/sds - %m — ) flu—v|?.

0

(1—t)

O
Lemma 4.5. Suppose that the hypotheses (4.52), (4.54), and (4.57) are satisfied.
Let Fy be the functional defined by (4.56). Then,

(1) The functional Fy is lower bounded on 2(P).
(2) Every minimizing sequence for Fy on 9 (P) is convergent in V.
(3) All the minimizing sequences for Fy on 9(P) have the same limit in V.

Proof. (1) The hypotheses (4.54) on ¢ imply the existence of A € V and u € R

such that p(v) > (A,v) + u, Vv € Z(P). Therefore, by using (4.55),
and (4.57), we get

1
Fr(v) = [(P(sv),v)ds + () — (f;V)

0

1
> {((P(O),v) +as|v[?) ds + (A — fiv) + p
> %Ilvll2 — PO+ A= IVl +
>

1
5, 17O +A—fP+pu>—-cc Vve2(P)

and hence F is lower bounded on Z(P).
(2) Let{v,}, C 2(P) be aminimizing sequence for F,i.e.

lim Fr(vy)) =d = inf F
g, Frtn) = d = gty Fr ).

Using Lemma 4.4 and the convexity of ¢, we get

% it — > = Blu) + Blun) — 26

< Fplun) + Frlun) —2Fp(M2) < < ) ) + () — 0,

and so, by passing to the limit with n, m — oo, we find that {v, }, is a Cauchy
sequence.
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3) If {vp}n, {Wntn C Z(P) are two minimizing sequences for Fs, then we have
o 2
7 ln = wull” = (Fy(n) —d) + (Fy (wn) = d)
which obviously gives lim v, = lim w,in V.
n—>o0o n—>o0

Lemma (4.5) justifies the following definition:

Definition 4.8. The limit in V' of any minimizing sequence for the functional Fs
on Z(P) is called the generalized solution of the Eq. (4.51).

Proposition 4.8. Under the hypotheses (4.52), (4.54), and (4.57), the following
assertions hold.

(1) The generalized solution of the equation (4.51) exists and it is unique.

(2) Ifthe generalized solution of the equation (4.51) belongs to D (P), then it is the
classical solution.

(3) The classical solution (if there exists) is the generalized solution.

(4) If 2(P) =V, then, the classical solution of the equation (4.51) exists and it is
unique.

We now consider the following quasi-variational inequality:
Problem (Pj): Find u € Z(P) such that

(Pu,v—u)+ ju,v) — ju,u) > (f,v—u) Vve 2(P) (4.58)

where the operator P : Z(P) — V satisfies the hypotheses (4.52) and (4.57), and
Jj VX PD(P)— (—o0, +0o0] is a function such that

YueV, ju,): 2(P) — (—oo, +00] is proper L.s.c. convex (4.59)

o . . . .
Jk < 5 such that | j(u1, vi) + j(ua, v2) — j(ur,v2) — j(uz, v1)|

< k||u1 —Ltz” ||V1 —V2|| , Yui,ux,vi, vy € .@(P)

(4.60)

Remark 4.4. The hypotheses (4.57) and (4.60) ensure the uniqueness of the classi-
cal solution of the inequality (4.58). Indeed, if we have two solutions u;, uy; € Z(P),
then, by taking v = uj,, and, respectively, v = u; in the inequality (4.58) satisfied
by u;, and, respectively u,, one obtains

alluy —up||? < (Puy — Puz,uy —un) < j(ur,uz) + j(uz, uy)

. - 4.61)
—j @y, ur) — juo.u) < klluy —u||?

and so, as k < «, one follows that 1; = u,.
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In order to introduce the concept of generalized solution of the quasi-variational
inequality (4.58), we denote by S : V' — V the mapping which associates with
every element w € V' the generalized solution u = Sw € V, which there exists and
it is unique, of the following equation:

(P +9j,)w) > f, (4.62)

where j,,(v) = j(w,v), Vv € Z(P).
Lemma 4.6. The mapping S is a contraction.

Proof. Let wi, wy € V be arbitrarily chosen and let Sw;, Sw, € V be the
corresponding generalized solutions, i.e. Sw; (i = 1,2) is the limit in V' of any
minimizing sequence of the function F /l‘ : 9(P) — (—00, +00] defined by

Fi(v) = BO) + jwi,v) = (fiv), Vv € D(P).
If {wl},, {w2}, C 2(P) are two minimizing sequences for F}, and, respec-

tively, for F}, then w!, — Sw’ (i = 1,2) strongly in V when n — oc.
Using Lemma 4.4 and the convexity of j(w;,-), we easily deduce that the

functional Fj’} is strongly convex with the same constant > as B8, i.e.

tF W) + (1= 1) Fh@) = Fiv+ (1 =) = %t(l —)flu—v|?
i=1,2,Vt€0,1], Vu,v € Z(P).
Taking v = wi and u = w3~ (i = 1,2) in the above relation, we get:

o . . . .
2! (L= 0lwy =will® < tFy0wi)) + (1= Fp0n™)
—Fiaw, + (1 —0w, ) <tFiW) + (A=) Ffw, ) —d; i =12,

(4.63)
where
di = inf FL(v) < Figtw' + (1 —)w’™).
i F7 ) = Fylewiy + (=07
By adding the inequalities (4.63) for i = 1,2, we obtain:
_ 1 _ 22 1ooly 20,,2Y _
ar(1 = 0)wh = w2> < ¢ ((F}ouh) = d) + (F302) — ) o

+(1—1) (F} (W2) + F2(w)) —dy — dz) .



4.2 Elliptic Quasi-variational Inequalities 57
Now, from the definition of F ;, we have:
Fiwy ) =F7 ) 4 jwiwy ) — jwsw, ™) i =1.2
and, by using (4.60), this gives:

FL02) + F2wh) —dy — da < (FA(w)) — di) + (F2(w2) — do)

(4.65)
+kllwy —wa llwy —wi| .

On the other hand, from the definition of the generalized solution Sw;, fori =
1,2, we have:

lim [w, —wil| = [|Sw; — Swa| (4.66)
n—>oo
and
lim F{(w}) =d; . (4.67)
n—>00 “

By passing to the limit, with n — o0, in (4.64) and using (4.65)—(4.67), one
deduces

at|[Swi — Swall < kllw; —wall,
. 1 .
hence, by taking ¢ = x one obtains:
[Swi — Swall < gllwi —wa| (4.68)

2k
with ¢ = — < 1. This concludes the proof. O
o

Therefore, by Banach fixed point Theorem 4.7, it results that there exists a unique
fixed point, denoted by u, of the mapping S.

Lemma 4.6 suggests the definition of the following sequence: for u® € V given,
we put " = Su""!, i.e. u” is the generalized solution of the equation:

(P +0jn)) > [, (4.69)
where j,(v) = j(""',v), Yv € 2(P).

Remark 4.5. The sequence {u"},, defined above, is convergent. Moreover, for any

u®, every sequence {u"}, has the same limit, namely the unique fixed point u of the

mapping S. Indeed, from (4.68), one has

2k 2k\"
=l = 8w = Sufl < K —ul <. < (—) 1 — ]
0% o
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Definition 4.9. The limit u in V' of the sequence {u"}, of the generalized solutions
of the equations (4.69) is called the generalized solution of the quasi-variational
inequality (4.58).

This definition is justified by the following result:

Theorem 4.17. Suppose that the hypotheses (4.52), (4.57), (4.59), and (4.60) hold.
Then, we have:

(1) The generalized solution of the quasi-variational inequality (4.58) exists and it
is unique.

(2) If the generalized solution of the quasi-variational inequality (4.58) belongs to
D(P), then it is also the classical solution.

(3) If the quasi-variational inequality (4.58) has a classical solution, then it is the
generalized solution.

Proof. (1) It follows from Definition 4.9 and Remark 4.5.

(2) If u € 2(P) is the generalized solution of the quasi-variational inequal-
ity (4.58), then, from Remark 4.5, we have u = Su and hence, the generalized
solution Su of the Eq. (4.51), for ¢(v) = j(u,v) Vv € Z(P), belongs to
2(P). By applying Proposition 4.8(2), it follows that Su is also the classical
solution, i.e.

(P(Su),v—Su)+ j(u,v) — j(u,Su) > (f,v—Su) Vve Z(P).

and so, u = Swu is the classical solution of (4.58).
(3) If u is the classical solution of the quasi-variational inequality (4.58), then u is
the classical solution of the equation

(P+0j)(v)> f (4.70)

where j,(v) = j(u,v), Vv € 2(P). By applying Proposition 4.8(3) one
obtains that u is the generalized solution of the equation (4.70). On the other
hand, from the definition of the mapping S, the unique generalized solution
of the equation (4.70) is Su. We conclude that ¥ = Su which, again by
Remark 4.5, implies that u is the generalized solution of the quasi-variational
inequality (4.58).

O

Corollary 4.4. If 2(P) = V, then, there exists a unique classical solution of the
quasi-variational inequality (4.58).
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4.2.3 Example

We consider a frictional contact problem for the operator of Hencky—Nadai theory
(i.e., the theory of small elastic-plastic deformations (see, e.g., [12])). By applying
the variational method developed in the above section, we prove the existence and
the uniqueness of the generalized solution for this problem.

Let Q C R?, d = 2,3, be an open bounded set occupied by an elastic-plastic
body in reference configuration. Let us denote by I', supposed sufficiently smooth,
the boundary of €2 which is decomposed into three open disjoint parts Iy, I'j, I'
such that ' = Ty U T; UT, and meas(T'y) > 0. On T, the body is in contact with
a rigid foundation. We suppose that the foundation does not allow a detachment of
2 on I',, and so, the normal displacement is zero while the tangential displacement
is a displacement with friction. On I'y one supposes that the body is clamped. The
body is subject to the action of volume forces f, given in €2, and surface forces g,
given on I'}.

The classical formulation of this boundary problem is:

Problem (%, p): Find a displacement field u : Q — R such that

—dive = f inQ,
u=0 only,
o-v=g only,

u, =0 only,, “4.71)
lo;| < plo)| and
lo:| <plo)y| = u, =0 on I'p

lo.| =plo)| = IA >0, u;, = —Ao,

where u is the coefficient of friction and 0 = o (#) = (0j;) is the stress tensor
related by the strain tensor € = (¢;;) by the nonlinear Hooke’s law:

0 (u) = 2¢(y ()€ () + (k - %w(y(u))) € ()5 (4.72)

2
withk = A + =6, A and 6 being the Lamé coefficients of the material. We denoted
by ¢ a given function and by y the following form:

y@) =y@u.u),

2 473
(3) = 26 @)eiy () — 2@y ). 73

In (4.71), o represents a regularization for o, (for more details, see Sect. 8.1).
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In order to obtain a variational formulation of the problem (4.71), we make the
following hypotheses:

or(w) e C'\(Iy) Vue (H'(Q),
u € L®(I,) such that u > 0 ae.on Iy,
¢ € C?[0, +00),

f e @xQ)?, g e (LXT)).

(4.74)

By using a similar technique as in [32] or in Sect. 8.2, one obtains that the
variational formulation of the problem (4.71) is the following quasi-variational
inequality:

%u € 9(P), 475)

(Pu,v—u)+ ju,v)— ju,u) > Ly —u) VvePD(P)
where
V=4{peH Q) :v=0aeo0only, v, =0ae. onT,},
2(P) =V N (C*(Q)! N(CR))*,
(Pu,v) = /oij(u)e,-j(v) dx VYue P(P), VveV,

Q

/M|0:(U)| v;|ds YueV,6 Vve2(P),
jwn =174
400 VueV, VveV\YD(P),

L(v):/f-vdx+/g-vds VveV.

Q I

Remark 4.6. From Korn’s inequality (8.29), it follows that a norm on V, equivalent
to the norm || - ||;, is defined by

HM=[quwm ——
Q

Theorem 4.18. Suppose that the hypotheses (4.74) are satisfied. In addition, we
assume that there exist the constants ¢y and ¢, such that:

3
0<g@ <p(s) < Ek Vs >0, 4.76)

o(s) +2s5¢'(s) > @1 >0 Vs>0. 4.77)
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Then, there exists a constant (1 > 0 such that for any p € L°°(T;) with u >
0 ae. on Iy and ||| poo(ry) < w1, the problem (4.75) has a unique generalized
solution u € V. Moreover, if the generalized solution u belongs to Z(P), then u is
the classical solution of the problem (4.71).

Proof. We shall show that the hypotheses of Theorem 4.17 are satisfied.
Let 8 : 2(P) — R be the functional defined by:

r()
1
Bv)y= [ = kefi W+ | e(s)ds | dx.

By using the relations (4.72) and (4.73), we obtain the Gateaux derivative of S:

DBu) -v = tll_I}(l) w = / [keii(w)e;; (v) + (y@)7(u,v)] dx
Q
2
= / |:k€ii(u)€jj () + ¢(y(w)) (—361‘1'(”)61'] ) + 2¢; (w)e;; ("))] dx
Q

= / |:(k - %‘P(V(u))) €i()ej; (v) + 20(y(w))e;; (wei; (V)} dx
Q

= (Pu,v) Vu,ve P(P),
(4.78)
and hence, the operator P is potential.

In order to prove that the operator P is strongly monotone, by using (4.78),
we get:

D?B(u);w-v = lin(]) DB +tw) — DB () .

t— t
€i(u+1tw)—e€;(u)

= |k th_r)r(l) ; €;j(v)dx
Q
[ g SN 0D (o ) 2ere, )
Q

+ [ timetwe+ o0 (265 016,0) = Sentwre ) ax

Q
= /(kfii(w)fjj ) + 20" (y@)y @, w)y @, v) + o(y(w))y(w,v)) dx
Q

“4.79)
hence
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1
(P(u+v)— Pu,v)=DBu+v)-v—DBu)-v= /Dzﬁ(u+tv);v-vdt
0

1
= / (/ keZ () 4+ 2¢' (y(u + tv))y* (@ + tv,v) + o(y (@ + tv))y (v) dx) dr

0 \Q
1
=/ /E(x)dx+/E(x)dx dr
0 \et Q_
(4.80)
where

E(x) = (ke;;(v) +2¢"(y (@ + tv)y* (@ + tv,v) + o(y (@ + 1v) y () (x) .
Qp ={x €Q: ¢'(y@)(x) = 0},
Q_={xeQ: ¢'(y)(x) <0}.

For x € Q, from (4.76) and the definition (4.73) of y, we have
2
E(x) > §<P0€ii(V) + 0oy (v) = 2¢0€i; (v)€ij (v)
and so,

1
//E(x)dxdt zztpofeij(v)e,-j(v)dx. (4.81)

0 Q4 Q4
For x € Q2_ we have
E(x) = %woe,%- ) = 21¢' (r u + )12 @ + 1v.9) + 9y + 7))y (¥)
which, by the Schwartz inequality:
Yiu +tv,v) <y +tv)y(v)
and the condition (4.77) implies the relations
E) 2 S006h ) = 206/l + )y + 0)76) + oyt + 19)y0)

= Soui) = (0 1) + 20/ (/e + vy + 1) y0)
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2 2 2
> g(POEii(V) + @iy (v) = §<Po€ii(v) + ¢ (261‘2;' ) — gfz‘zi (V))

= 20— 9E0) + 20160065 0).

We may suppose that ¢y > ¢;, and thus

1
//E(x)dxdl 22g01/6,-j(v)e,-j(v)dx. (4.82)

0 Q— Q_

Therefore, by using (4.81) and (4.82) in (4.80), it results

(P(u+v)— Pu,v) >2¢ / €;(v)e;;(v)dx,
Q

hence, by Remark 4.6, it follows that the operator P satisfies the relation (4.57), that
is P is strongly monotone.
Finally, it is easy to see that the functional j satisfies the hypothesis (4.59).
Next, we remark that we can write

[j@i,v2) + j(uz,vi) — j(ui,vy) — j(uz, vo)|

< [ wllor @l = loZ @] T1v1cl =l s
I

< | wlo) () — o) ()] [vie —va | ds

I
< ClpllLooqryllur —ua|l luy — w2l VYur, uavy, va € 2(P).

If we choose u; < %, then, for any |[|p|zoor,) < w1, we obtain the

relation (4.60) satisfied with k = C ||| poo(ry) < 1.
Therefore, by applying Theorem 4.17, we deduce the assertion. O

4.3 Implicit Evolutionary Quasi-variational Inequalities

This section is concerned with the mathematical analysis, following the work [8], of
a class of abstract implicit evolutionary variational inequalities which constitutes
a generalization of variational inequalities related to various quasistatic contact
problems and of some parabolic variational inequalities of the second kind (see,
for instance, [11, 19,20, 34]).



64 4 Existence and Uniqueness Results

As usual for quasistatic and dynamic problems, by an implicit time discretization
scheme, the incremental formulation of the considered problem is obtained. We
prove that the incremental formulation has a unique solution and some a priori
estimates are obtained. Next, by using the incremental solution, we construct a
sequence of piecewise constant functions which verify the variational formulation
forall ¢ € [0, T], T being the time interval considered. The existence of a solution
of the implicit evolutionary problem is obtained by proving that some subsequences
of the above sequence have a weak limit which verifies this problem.

The results obtained here will be applied, in Chap.9, to quasistatic contact
problems with nonlocal friction in linear elasticity. We mention that these results
can be used in the study of a large variety of contact conditions, as, for instance, the
unilateral or bilateral contact with nonlocal friction between two elastic bodies, the
frictional contact with normal compliance or the corresponding frictionless cases.

We denote by (V, (+,-)) a real Hilbert space with the associated norm | - ||. Let
K be a convex closed cone contained in V' with its vertex at 0, i.e. pv € K, Vv €
K, Vp=>0.

We mention that, if C C V is a cone of vertex at 0, then C is a convex cone if

and only if u + v € C, Vu,v € C. Indeed, if C is a convex cone, then 4

C, Vu,v € C. Since the vertex of C is at 0, it results that ZMTH =u+v e
C, Yu,v € C. Conversely, if u,v € C, then, C being a cone with its vertex at 0, it
follows that —v € C, and thus, u — v € C. Then p(u —v) € C, Vp > 0, and so,
plu—v)y+veC,Vp=>0.

We consider a bilinear symmetric form a : V x V — R. We suppose that the
form a(-,-) is V-elliptic (or, coercive) and continuous, that is

there exists & > 0 such that a(v,v) > «||v||? Vv eV,

4.83
there exists M > 0 such that a(u,v) < M ||ul| |v|| Yu,veV. (4.83)

We also consider a family {K(g)},ey of nonempty convex subsets of K such
that 0 € K(0). We denote Dg = {(g,v)/g€V,ve K(g)} CV x K.

In the sequel we assume that the set Dk is strongly-weakly closed in V' x V' in
the following sense:

V(gn,vn) € Dg s.t.
gn — g strongly in V = (g,v) € Dg. (4.84)
v, — v weakly in V

Remark 4.7. Under the above hypothesis, it follows that, for any g € V, the set
K(g) is weakly closed in V.
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We denote by (H, (-, ) iy ) areal Hilbert space with its norm ||-|| y and we consider
the operator 8 : Dx — H which satisfies the hypotheses:
B is strongly—weakly continuous, i.e.

V(gn,vn) € Dg s.t.
gn —> g strongly in V ; = B(gn,vs) — B(g,v) strongly in H , (4.85)
vy, — vweakly in V

and

1B(g1,v1) — B(g2,v2)llm = ki(ligr — gall + lvi — v2lD) V(g1,v1). (82, v2) € Dk,
(4.86)
with k| a positive constant.
Let j : Dg xV — Rbe a functional such that for all (g, v) € D, the functional
j(g,v,-) : V. — Ris sub-additive and positively homogeneous, i.e.

Jj(g.viwi +wa) < j(g,v,w1) + j(g,v,wa) Ywi,wy eV, (4.87)
jlg,v.Aw) = Aj(g,v,w) YweV, VA >0. (4.88)
In addition, we suppose that
Jj(0,0,w) =0 YweV, (4.89)
and
|7 (g1, viow2) + j(g2.v2, wi) — j (g1, vi.wi) — j (&2, v2, w2)|
<ka(lg1 — g2l + 1B(g1.v1) — B(g2, v2) ) w1 — wa | (4.90)

YV (g1.v1),(g2,v2) € Dk, Ywi,wp €V,

where k; is a positive constant.
Lemma 4.7. The functional j has the following properties:
(i)

j(g,V,O):O V(g’v)EDK’
“4.91)

(ii)

V(g,v) € Dk the functional j(g,v,-) : V — Ris convex, (4.92)
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(iii) V(g,v) € Dk, the functional j(g,v,-) : V — R is Lipschitz continuous. More
precisely, we have

|j(g,V,W1)—j(g,V,W2)|§|j(g,V,W1—W2)| (493)
= (M +kpkaigll + kikz vl [wr —wall - Ywi,wa €V,

(iv) The functional j has the following continuity properties:

V(gu,vn) € Dk s.t.
gn — gstronglyinV, ; = lim j(gu,vy,w) = j(g,v,w) VYwev,
v, = vweakly inV, e
(4.94)
V(gu,vn) € Dk, Yw, € V s.t.
gn — g strongly in 'V,
vy — vweaklyinV,
w, — wweaklyinV,

= liminf j(g,, vy, wn) = j(g,v,w).
n—>o0

(4.95)

Proof. It is easy to see that hypothesis (4.88) implies (i) and the hypotheses (4.87)
and (4.88) imply (ii).
In order to prove (iii), we first note that the hypothesis (4.87) implies

Jjg.v,wi) —j(g,v,w2) = j(g. viwi —wa +w2) — j(g,v.,w2) < j(g,v,w1 —wa),

and hence, by taking in (4.90), g1 = 2,22 = 0,vi = v, v, =0, w; = w;—wy, wp =
0 and using (4.86), we obtain (4.93).

Now, if we take gy = gu, &2 = &, Vi = v, Vo = v, w; = 0, wp = win (4.90),
it follows

7 (gnsvnswa) = j (v )| < ka(llgn — &Il 4+ 1B(&nva) = B(g- W)Wl

hence, by taking into account (4.85), one obtains (4.94).

Finally, from (ii) and (iii), it results that, for every (g,v) € Dk, the functional
j(g,v,-) is weakly l.s.c. On the other hand, from the hypothesis (4.90) written for
g1 = 8n, 82 = g, VI =V, v = v, w =0, wp = w,, by using (4.85) and taking
into account the boundedness of the sequence {w, },, it follows

im (j(gn,Vn,wa) — j(g,v,w,)) = 0.

n—oo

Concluding, we obtain

Hminf j(gn, va, wa) = M (7 (gns Vi, Wa) = j (g, v, wn)) + liminf j(g, v, wy)

z j(g.v.w).
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We also introduce a functional b : Dg x V' — R which satisfies the following
conditions

V(g,v) € Dk, b(g,v,-)islinearon V, (4.96)

Y(gu,vn) € Dk Yw, € V sit.
gn — g strongly in V|

v, — vweakly in V,

w, — w strongly in V'

= lim b(g,, vy, wy) = b(g,v,w), (4.97)
n—>od

[b(g1,vi,w) — b(g2,v2,w)| < ka(llgr — g2ll + [[vi —v2[D [[w]]
(4.98)
vV (g1,v1),(g2.v2) € Dk, YweV,

where k3 is a positive constant.
Forany g € V, d € K, we define the mapping S, : K(g) — Kby S;qa(w) =

u,, Yw € K(g) where u,, is the unique solution, according to Theorem 4.12, of the
variational inequality

u, € K

4,
a(uy,v—u,) + jlg,w,v—d)— j(g,w,u,—d) >0 VveK. (4.99)

We shall suppose that, for all g € V, d € K, the set K(g) is stable under the
mapping S, 4 : K(g) — K, thatis

Sga(K(g)) C K(g). (4.100)
In the following we suppose that the constants k, k, and « satisfy the relation
kiks <a. (4.101)

Lemma 4.8. Forall g € V, d € K, there exists a unique u € K(g) such that
u=Sgq(u)),ie

u€ K(g)
4.102
aw,v—u)+ j(g,u,v—d)— j(g,u,u—d)>0 VveKk. ( )
Proof. Let wi,wy, € K and uy = S;q(w1), un = Sga(w). By adding the

inequalities (4.99) corresponding to u; and u, for v = uy, and, respectively, for
v = uy, from (4.83), (4.90), and (4.86), one obtains

alluy —w|* < a(uy —uzouy —wp) < j(g. wiup —d) + j(g, waur —d)
—jgwi,ur —d) — j(g, wa,uy —d) < koki|[wy —wal| [lur — uz|
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hence

klkz

[Sg.a(w1) = Sga(w2)ll < [wi — wall.

Consequently, from the hypothesis (4.101), it follows that the mapping S, 4 is a
contraction, and hence, by Theorem 4.7, there exists a unique u € K(g) such that
u= Sg,d (u). O

Forall g € V,d € K, we consider the following auxiliary problems
Problem (Q%): Find u € K(g) such that

aw,v—u)+ j(g,u,v—d)— j(g,u,u—d) > b(g,u,v—u) Vvevr,
b(g,u,z—u)>0 VzeK

(4.103)
and _
Problem (R“): Find u € K(g) such that
a(u,v—u)+ j(g,u,v—d) — j(g,u,u—d) >0 VveKk. (4.104)
We make the hypothesis
If u is a solution of (R?), then u is a solution of (Q%). (4.105)

Remark 4.8. 1f u satisfies (Q%), then u obviously satisfies (R?).

Let f € W'2(0,T; V), with T > 0, be given and let uy € K(£(0)) be the unique
solution, according to Lemma 4.8, of the following elliptic variational inequality

a(ug,w —ug) + j(f(0),ug,w) — j(f(0),up,up) >0 VweK. (4.106)

Remark 4.9. Taking into account that K is a cone with the vertex at 0, we may take
in (4.106) w = 2uy and w = 0. We conclude that the variational inequality (4.106)
is equivalent to the system

a(uo, uo) + j(f(0),uo,uo) =0,
a(ug,w) + j(f(0),up,w) >0 VweK.

We consider the following evolutionary system of coupled variational
inequalities:
Problem (Q%): Find u € W'2(0, T; V) such that

W) = uo, u(t) € K(f()) Vie[0,T],
a(u(t),v—a@)) + j(f @), u(®),v) — j(f (), u(t), i(t)) 4.107)
>b(f(t),u(t),v—u(t)) VveVaeinl0,T], '
b(f(@),u(t),z—u®) >0 VzeK, Vt€[0,T]

. u
where the dot denotes the time derivative, that is i = FTS
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Our goal is to prove the existence of a solution for the problem (Q¢). In a first
step, we shall consider an incremental formulation obtained by an implicit time
discretization scheme.

Forn € N*, weput At = T/n and t; = i At fori = 0,1,...,n. If O isa
continuous function of ¢ € [0, T' |, we use the notation

) ) 9i+1 _ 91‘

0 =0(), Vi e{0,1,....,n}, 090" = A Vie{o,1,...,n—1}.

We alsoput K/ = K(f(#;)) Vi €{0,1,....,n} andu® = uy. We then approximate

.....

problems
Problem (Q¢)i: Find ' *! € K'*! such that

a(ui-l—l?v_a'ui)_’_j(f'i-‘rl’ui-‘rl’v)_j(fl'-‘rl’ui-‘rl’aui)
2b(f’+1,u’+1,v—8u’) VveV, (4.108)

b(fi+l,ui+1,z—ui+l) >0 VzeKk.

Lemma 4.9. [fu is a solution of (Q%) and u'*' is a solution of (Q%)}, then

b(f(),u(),u(t)) =0 on [0,T] (4.109)
b(f Wt Wty =0 Vie{0,1,....n—1}. (4.110)
b(f(1),u(t),i(r)) =0 a.e on [0,T], (4.111)

Proof. Since K is a cone with the vertex at 0, we may take in the second inequalities
of (Q7) and (Q%)}, z = 2u(¢) and z = 0, respectively, z = 2u'*! and z = 0, thus
we obtain the relations (4.109) and (4.110).
Also, from the second inequality of (Q¢), we deduce that, for all # €]0, T[ and
for all At > 0 sufficiently small, we obtain
O e L

and

<0,

b (a0, =20

which imply the relation (4.111). O
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Now, for any i € {0,...,n — 1}, we introduce the following problem
Problem (R%)!: Find ' *! € K'*! such that

a(ui+1,w—ui+1)+j(fi+1,ui+1,w—ui) (4112)
— LA A W)y >0 Ywe K. '
Lemma 4.10. The problem (Q%) is equivalent to the problem (R%)i..

1

Proof. By takingv = i with w arbitrarily chosen in V, it is easy to prove that

the first inequality of (Q%)! is equivalent to

a@it w— u Y bGP W w— i) — JOPH W i )
>b T w—u'th) VYweV.

Therefore, from Remark 4.8 and the hypothesis (4.105) for g = fi*'and d = ',
the assertion follows. ]

Proposition 4.9. Under the above hypotheses, there exists a unique solution u' *' €
K1 of the problem (Q%)\.

Proof. By applying Lemma 4.8, for g = f*! and d = u', it results that the
problem (R%)} has a unique solution. Hence by Lemma 4.10, the problem (Q“)i
has. O

By using the fact that the function f is absolutely continuous, we give the
following estimates.

Lemma 4.11. Let '™ € K™ be the solution of (Q*)i, i € {0,1,...,n —1}.
Then

1]l < Coll fllcqorvy, ™M < Coll fllcqoryvy » (4.113)
ti41
I+ i < Gy f 1@l dt < CoV/ATl Fll 2070 - @.114)
ti
n—I1 .
Dol =i P < CEAL gy - (4.115)
i=0
where
k Dk
c, = Kit Dk (4.116)

Ol—klkz '
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Proof. From Remark 4.9, by using the relations (4.83), (4.91), and (4.93) for w; =

u®, wy = 0, we get

all w1 < 1O u )] < (4 k)kall £l + kakallu®]) 1]
Since f € W'2(0,T; V) c C([0,T]; V), we have

LA =1fel < max, IO =1/ lleqo.ryivy . Vi €{0.1,....n},

thus the first part of the estimate (4.113) is true.
In the following we take into account Lemma 4.10, that is &/ ™! is the unique
solution of (R%)i. By taking w = 0 in (R?)i, it follows

a(ui-i-l,ui-‘rl) < |j(fi+1,ui+l,—ui) —j(fi+1,ui+1,ui+1 _ul)|

which, together with (4.83) and (4.93), gives the second part of the estimate (4.113).
Next, if we take w = « in (R, and w = ' *! in (R%)IL, then, by
using (4.87), (4.90), (4.91), and (4.86), we get

oe||ui+1 _ ui”Z < j(fi,ui,ui—"_l _ui—l) —j(fi,ui,ui _ui—l)
_j(fi+1 ui+l ui+1 _ui)
< j(fi,ui,ui—H —Mi) —j(fi+l,bti+l,ui+l _ui)
< (L4 k)kall £ = £ + kikollu ' = )+ —ad .

This implies (4.114). Indeed, by taking into account the regularity of f, Bochner
Theorem 3.3 and Cauchy—Schwartz inequality, we have

1f@) = f&)l =1 [ f(ode] < / I£ (0l dr

(4.117)
<G/t —s ”f”SLZ(O,T;V) VS»ISG [0,7], s <t
The last estimate (4.115) is easily obtained by writing
tit1 ti41 li+1
Wt =P <[ [ 1f@pa || [ o) =ciar [1ioira.
1 1 i
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Now, if we define the functions

uy (0) = i1, (0) = u°,

£ (0) = £°,
u,,(t)zui'H
() =u +(t—t;)0u }Vie€{0,1,...n—1} Vi€t tit1],
fn(t) zfi+1

(4.118)

then we obviously have u, , f, € L>(0,T; V) and i, € W'2(0, T; V). From (Q“)i
we deduce that these functions satisfy, for all # € [0, T'], the following incremental
formulation

Problem (Q%),: Find u,(¢) € K(f,(¢)) such that

‘ (un(n,v— %anm) i ), ) — j (fn(z) un (). un(r))

(fn(t) u, (t),v— iun(t)) YveV,

b(fu(®),un(t),z—u,(t)) >0 VzeK.
(4.119)

Remark 4.10. From (4.118), (4.96) and the second inequality of (Q“)L, we get

(fn(t) (1), v = i”"(t)) =b(f Tt v — 0wy = b(f T W y)

+A—tb(f’+l,ui Ll —u ™Y > b(f(t), un(t),v) Yt € (titiga], YV eV,

(4.120)
and hence,

(fn(t) u, (1), u,,(l)) <0Vte(0,T), VveV. (4.121)

Lemma 4.12. We have the estimates
un N = Coll fllcqoryyy, Yt €[0.T], (4.122)

T

min{l + —, T}
n
[t (5) — u, ()| < Co / ||f(r)||dr, Vs,t €[0,T],s<t,

' (4.123)

litn | L207:v) < C0ﬁ||f||C([O,T];V)7 (4.124)
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At .
wy, — vyl 1200717y < Co—= 20TV » 4.125)
[ 220,77 Oﬁ”f”L ©.T;V)
d . .
— Uy < Goll fll20,7:v) s (4.126)
dr 207wy

where Cy is the constant defined by (4.116).

Proof. The estimate (4.122) follows from the definition (4.118) and the esti-
mate (4.113).

For proving (4.123), let s, ¢ € [0,T | withs <tand0 <i < j <n —1such
thats € (4, t41], t € (t;,1j41]. Then, from (4.114), we have

ltn () — (O] = [+ — I+

= —w)+ @ -+ .+ @ —d )
j j k41

< Y Wl s Y / 1/ @)l de

k=i+1 k=i+1 ;

Lji+1

~ / I £ (@)l de
i1

min{f + At, T}
Co / 1/ (@]l dr.

A

IA

The estimate (4.124) is easily obtained by the following computations

i+1
=1 St —t
A N2 _ _ i i I j+1
||Mn||L2(0,T;V) _Z/ H(] At )” + At u

n—1 lit1

2
[_ti i t—ti i
SZ[ ((1——A, )Hu I+ = ||u+1||) dt < CETI f 210 -
i=0

where we have used (4.113).
Next, from (4.118) and (4.115), we get

2
dr

n—I1 lit1 2
lleen — ﬁ”"iz(O,T;V) = Z / Wt —u — %(MH_I — Lti) dr
i=0 }
1 n—1 . . fit At n—1 ) )
=7 2 it — il |2 /(li+1 —)2dt = = 2 it — i |2
i= Ui i=

CeAt?, .,
= T”JC”LZ(O,T;V)’

that is (4.125).
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Finally, by taking into account that

] i VY
= — lUn — UnllL2(0,T;V)>
dt LZ(O,T;V) At
we also deduce the estimate (4.126). |

Lemma 4.13. There exist a subsequence {(up, , ity, ) }ken+ of {(ty, ity) }nen+ and an
element u € W'2(0, T; V) such that

Un, (2) = u(t) weaklyin V. Vte[0,T], 4.127)
fty, — u  weakly in W0, T; V). (4.128)

In addition, for all s € [0,T ], we have

s

I}Cminf/a (unk ®), %ﬁnk (z)) dr > /a(u(t),it(t)) dr, (4.129)
0

0

s A

timin [ (f (1), (1), %ankm) ar= [ JOu i @0
0

0

Proof. Applying a process of diagonalization, from (4.122) and (4.123), we deduce
that we can extract a subsequence {u, }x C {u,}, such that u,, (f) — u(t) weakly
inV,Vt € [0,T] withu € L>(0,T;V). Indeed, let E = {t;};en C [0,T] be
a countable dense subset. From (4.122) it follows that, for all j € N and for all
n € N* we have |u,(z;)|| < C; where C; = C| flcqor;v). Therefore, by a
process of diagonalization, we can extract {u,, }x C {u,}, such that, for all j € N,
the sequence {u,, (t;)}x converges weakly towards an element of V' denoted by
u(t;). For the sake of simplicity we shall omit the subscript k& from now.

We shall prove that, for all ¢ € [0, T'], the sequence {u,(t)}, is weakly Cauchy.
Foro e V,t €[0,T),q > 0and t; € E arbitrarily chosen, we have

|(“n+q(t) —up (1), @) < |(“n+q(t) - un-‘rq(fj)v @)+ |(un+q(fj) - un(fj)wﬁo)l
+|(“n(fj) —uy (1), )| < ”‘P”(”un-i-q(l) _un-&-q(fj)” + ||un(fj) —un ()]
H|(Wn+4(tj) — un(z;), )|
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Taking 7; > ¢ and using (4.123), we deduce

min{z;+ n_,_q T}

10 (1) — (1) )] < Collol / 1 @)l de

t
min{rj+§,T}

+ f L/ @I de | + [@n+q (7)) = ua(z7), 9)] (4.131)

min{rj+%,T}

< 2G| / 1@ AT + g (1)) — 1 (2. 0)]

15

T .
< 2Co||§0||\/ P + 1 =t fll 2oy + [Wntq(T)) —ua (), @)1

As E = {1j}jen is dense in [0, T], we can choose t; > ¢ such that t; — ¢
is sufficiently small. On the other hand, the sequence {u,(z;)}, being weakly
convergent it is also weakly Cauchy. Therefore, from (4.131), it follows that the
sequence {u,(t)}, is weakly Cauchy, and so u, () — u(t) weakly in V. As K is
weakly closed, it follows that u(f) € K and u, — u weakly in L2(0, T; V).

Next, from (4.124) and (4.126), one obtains that there exists a subsequence {i, },,
still denoted by {i,},, and an element & € W'2(0, T; V) such that 1, — & weakly
in W1'2(0, T; V) (in fact, one considers that ||it,, || wi2(0,7;vy is bounded for the same
indices nj for which the subsequence u,, (¢) is weakly convergent, and one extracts
from this sequence a subsequence zinkp which converges weakly in W'2(0,T; V)
towards ). We show that u = . Indeed, we have

n—1 ti41
[ e Z/( SV u’)—u’“,w(t)) a
i=0 1
n—1 ti41
=3 [t =t ewa
i=0 ;
lit1 1/2 fi 1/2
n_ 02 = 2
< ! ||~ de > | lle@ldr
i=0
ti
< Co—||f||L2(or nllellL2o.7:v)

that is, &, and u, have the same weak limit in L%(0, T; V).
In order to prove (4.129), let s €]0,7] andi € {0,...,n — 1} be such that
s € (t;, t;+1]. Using the definitions (4.118) and the properties of a, we obtain
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Li+1

(un .55 0) 0t = [ a (0 5,0 0 -
0
il 41 j 1 i
Z / (”]H %) di =Ry > 23 (a@ /™) —a! . u)))
j=0 j=0
_Rn — a(ul+ls i+1) _a(uosuo) _ Rn — a(un(s)» Mn(s))_a(uovuo) _Rn
2 2
(4.132)
li+1
where R, = / a (un (1), u,,(t))
First, due t(X) (4.83), (4.113), and (4.114), we have
tit1
|R | — L / a(uH—l ui+1 _ui)dt < Mlm—_s||ui+l||||ui+l _ui”
AL - At

T .
= Con . I/ leqo.rin LS ez o.7;v)
which implies
lim R, =0.
n—>oo
Therefore, as the form a is symmetric, from (4.132), we get
i 1 1
liminf/a (un (1), un(t)) dt > — liminfa(u,(s), un(s)) — =a(®, u®)
n—00 2 n—00 2

0

o alu(s), u(s)) —a(u(©0),u©0) _ 1
- 2 )

A

/ %a(u(t),u(l)) dt = / a(u(t), i(t)) dt ,

0 0

and thus, the relation (4.129) holds.
Next, since, for all f,u € V, the functional j(f, u,-) is Ls.c. convex on V,
N

it follows (see [5], p. 160) that the mapping v [j(f(t), u(t), v(t))de is Ls.c.

convex on LZ(O, T:;V). Thus

s

I?Eior.}f/ (f(t) u(t), un(t)) dr > /j(f(t),u(t),u(t)) de. (4.133)
0

0
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On the other hand, from (4.90), (4.91), and (4.126), one obtains
[ (. d. . d. ;
/ (J (fn(r), . S, (r)) iy (f(r), ul), 5“”(’))) r
0

<k / (1fn @) = SOOI+ 1BCfa (@) un (1)) = B @), u@) ][ 1) d
0

d.
‘Eun(l‘)

=

< Cokall f 2009 / 1) — ()P di
0

=

[ IBCS(0), () — BCS(0), u(@)) I, dr
0

from which, since f,u € W'2(0,T;V) c C([0,T];V) and f,(t) — f(t)in V
V't € [0, T], by using the property (4.85) of 8, one has

Jim / ( (n(z) un ). un<z)) (f(t) (o), un(r))) ~o.

(4.134)
Combining the relations (4.133) and (4.134), we deduce
liminf [ (A0 500) o
= lim / (7 (A0, ) = (0100, 1 0)) )
+timinf [ f (700 i) ar = / JF@), ute), i) ds
0 o
which completes the proof. o

We now prove the following strong convergence result together with the main
result of this section, namely the existence of a solution for the problem (Q?).

Theorem 4.19. We suppose that the hypotheses (4.83)—(4.90), (4.96)—(4.98),
(4.100), (4.101), and (4.105) are satisfied. Then the problem (Q®) has at least
one solution. More precisely, there exists a subsequence {(up,,iy, )} kens Of
{(up, tty) }nen* such that

up, (t) = u(t) stronglyinV Vte[0,T], (4.135)
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iy, — u  strongly in L*(0,T; V), (4.136)
d. . R
Eunk — 1t weaklyin L=(0,T;V), (4.137)

as k — oo, where u € W12(0, T; V) is a solution of the problem (Q).

Proof. Let {u,},en+ be the subsequence given by Lemma 4.13. We first prove that
its weak limit u is a solution of the problem (Q%).

It is easy to show that u(t) € K(f(t)), Vt € [0,T]. Indeed, since
(fu(t),u,(t)) € Dk, YVt € [0, T], then, the convergences f, (1) — f(t) strongly
inV,Vt € [0,T] and u,(t) — u(t) weakly in V, V¢ € [0, T] imply, due to the
hypothesis (4.84) on the set Dk, the assertion.

Let s € [0,T]. Integrating the first inequality of (Q“), over [0,s] and
using (4.120), we obtain

: d : d
/a (un(t), 5%0)) dt +/j (fn(t),un(t), 5%0)) dr
0 0

N s

S/a(un(f),V(l))df+/j(fn(t),un(l)7V(l))dl (4.138)

0 0

—/b(fn(t),un(t),v(t)) dt YveL*0,T;V).
0

On the other hand, from (4.94) and (4.97), we have

N

Jim [ OO0 = [ @00 dr
0

0

nl_ipgo/b(fn(t),un(t),V(t))dl = b(f (1), u(t).v(1))dr.
0

Therefore, by passing to the limit in (4.138) and by using the convergences (4.129)—
(4.130), we deduce that

s N N

/ a(u(t). v(t) — i(t)) di + / P ). v(e) di — / JOF@) (). i) dr

0 0 0
s

> /b(f(t),u(t),v(t))dt YveL*0,T;V), Vsel0,T].

0
(4.139)
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Now, by taking v € L2(0, T; V) defined by

w ift €[s,s + h]
1) =
V@) {it(t) otherwise
with w € V arbitrarily and s € [0, T], 2 > O such that s + h < T, we get
s+h s+h s+h
[ awrw=iena+ [ jcro.uema - [ o0,
N N s
s+h

> /b(f(t),u(t),w)dt VweV, Vsel0,T]

which gives, by passing to the limit with # — 0, the inequality

a(u(t),w —u(t)) + j(f @), u(®), w) — j(f (1), u(t), i()) (4.140)
>b(f(t),u(t),w) YweV aeonl0,T]. '

In order to show that u satisfies the second inequality of (Q¢), let us remark that,
from the second inequality of (Q%)y, it follows

b(fu (@) un(t).2) = D(fu (), un (1), un(t)) Vze K,

from which, by passing to the limit and taking into account the hypotheses (4.95)
and (4.94), one obtains

b(f(t),u(t),z—u))>0 VzeK, Vtel[0,T]. (4.141)
Therefore, proceeding as in the proof of Lemma 4.9, one obtains

b(f (1), u(t).u(r)) = 0. (4.142)

From (4.140), (4.141), and (4.142) we conclude that u is a solution of (Q%).
In order to prove the convergences (4.135)—(4.137), we shall use an argument
due to Andersson [2]. We first prove that

s

lim | a (un(t), d%ﬁ,,(z)) dr = /a(u(t),it(t)) dt Vsel[0,T]. (4.143)
0 0

n—o0
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Taking v = 0 in the first inequality of (Q“), and w = 0, w = 2i(¢) in (4.140), and
integrating these inequalities on [0, s] for s € [0, T'], one obtains

0 > lim sup / ( (un(t) un(t)) (f,m (1), un(r)))
oo ()S
> limint / (a (un(t) unm) (fn(r) n 0), un(z>))
0
> liminf a(un(n una)) d +limin (fn(r) un (0), un(r))
/ [

s s

> f a(u(t). ile)) dr + [ J@O)uo). i) di = 0

0 0

where we used (4.88), (4.96), (4.142), (4.129), (4.121), and (4.130). Therefore, we
conclude

lirggf a (un (1), un (t)) a(u(t),n(t))dt, (4.144)

/ -/

timia [ J (fn(r) un ). unm) = [i@uoiena. @14
0 0

On the other hand, taking v = i(¢) in the first inequality of (Q“), and integrating
on [0, 5], from (4.145), (4.97), (4.142), (4.120), and (4.144), we have

lim sup/a (un(t), %ﬁn(t)) dr < nl_i)rgofa(un(t),u(z))dt
0

n—>oo

+ im0, i0) @ timin [ 5 [ (£Om0. 50,0 o
0

~ tim f b(f(t). (1), (1)) dt = / a(u(t). ile)) dr
0

0
N
o d.
= hmmf/a (un(t), —u,,(t)) dr
n—>00 dr
0
(4.146)
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and thus, (4.143). Obviously, from (4.143) and (4.132), we deduce

s

a(u(s), u(s)) —a(u’,u’)

5 = /a(u(t),u(t)) dr = nli)rgo/a (un(t), %ﬁn(t)) dr
0

0
1 1
— 1im a(uy(s), un(s)) — —a@®,u®) Vs €[0,T]
2 n—>c0 2

which gives

Jima(uy(s), un(5)) = au(s), u(s)) Vs e[0,T].

Therefore, using the coerciveness of a, we deduce the strong convergence (4.135)
which, obviously, implies

u, — u dans L2(0, T;V) fort.

Thus, from (4.125), we obtain (4.136). Finally, the sequence {i,}, being bounded
in W'2(0,T; V), the convergence (4.136) implies the convergence (4.137) which
completes the proof. O
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Chapter 5
Some Properties of Solutions

In this chapter one studies some properties of solutions of various variational
inequalities of the first and second kind. We first consider a class of variational
inequalities of the first kind and we emphasize, following the work [19], a property
of solutions, namely a maximum principle. We illustrate it by a problem which
models the flow of fluids through a porous medium and an obstacle problem. Next,
following the work [10], we use the method of the translation to derive local and
global regularity results of solutions of a class of variational inequalities of the
second kind. In Sect. 8.4, these results will be applied to a frictional contact problem.

5.1 A Maximum Principle for a Class of Variational
Inequalities

5.1.1 A General Result

The class of variational inequalities considered in this paragraph is characterized by
the bilinear form

a(u,v) =/ Vu-Vvdx  Vu,ve HY(Q) (5.1
Q
where 2 is a bounded open subset of R?, with its boundary 9Q sufficiently smooth.
We denote by K the set of constraints of our problem, defined by
K={ve H(Q);v>0ae.inQandv = g a.e. on 0Q}, (5.2)
where g is a given function such that

g€ H?3Q), g=0ae.only, (5.3)
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I’y being an open subset of 92 such that meas (I'y) > 0. Thus, the set K can be
written as

K={eV;v>0ae.inQandv=gae. onl} 54
where
V ={ve H(Q);v=0ae.on Ty}, (5.5)

I’y and I'; being open and disjoint sets such that 02 = ToUT,.
For f € L?(R2) given, we consider the following variational inequality

Find u € K such that (5.6)

aw,v—u)>(fiv—u) VYvek ’
where a : H'(Q) x H'() — R is the bilinear form defined by (5.1) and (-, )
denotes the usual inner product on L?(2).

Proposition 5.1. Suppose that the hypothesis (5.3) is true. Then the variational
inequality (5.6) has a unique solution.

Proof. We show that the hypotheses of Theorem 4.12 are satisfied.

It is easy to see that the set K is convex subset of V.

For proving that it is closed, let us consider a sequence {v, },en C K such that
v, — v strongly in H!(2). It follows that v, — v strongly in L?(£2), and hence,
there exists a subsequence {v,, }xen such that v,, converges pointwise a.e. on 2
towards v (see, for instance, [1], p. 27). As v,, (x) > 0 for almost everywhere x € €,
it results that the pointwise a.e. limit v has the same property, i.e. v > 0 a.e. in Q.
As the trace operator y : H'(Q) — H'/2(3Q) is continuous (in fact, y = y, from
Theorem 2.5, p. 17) and H'/2(dQ) — L?(3R), it follows that the convergence
v, — vin H'(Q) implies the convergence yv, — yvin L?(32), and so yv = g
a.e. on I';. We conclude that u € K and so, K is closed.

We shall show that the set K is nonempty. Let § € H'(Q) be the extension
of g € H'/2(3R2) given by the surjectivity of the trace operator y : H'(Q) —
H'2(0Q), i.e. y§ = g. Therefore, the positive part of g, denoted by g+ =
max{g,0} € H'(Q), is such that §* > 0 a.e. on Q and yg+ = rralgx{yg,O} =

rrggx{g,O} = g.Hence, g7 € K.
Next, by using the Schwartz inequality, we have

a5 [ (z !(;;)de) (z Q/(;;)zdx)

|u|1 IVI1 < llully -1l VuveVv.
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where | - |; and || - ||; denote the seminorm and, respectively, the norm on H ().
Moreover, from the Poincaré—Friedrichs inequality

Vv e H'(Q) such thatv = 0on Ty,

v
ey <€ Y | o e
it follows that y/a(u, ) is a norm on V equivalent to the norm || - ||, i.e.
va(,u) = |u|; < |lull; < Clul; YueV, (5.8)

with C a positive constant depending only on €2 and on the dimension d. Thus, the
bilinear continuous form a(-,-) is coercive on V. By applying Theorem 4.12, we
conclude the proof. O

Let u € K be the solution of the variational inequality (5.6). We denote by K|,
the following set

K,={we HY(Q); 3v € K and Je € Ry such that w = e(v — u)}. (5.9)

It is easy to verify that the set K, is nonempty closed in H'(Q) and K, C
H(Q).

Lemma 5.1. The solution u € K of the variational inequality (5.6) satisfies:
a(u,w) > (f,w) Vwe K,. (5.10)

Proof. Letw € K, and the corresponding v € K, € > 0 such that w = (v — u).
By writing (5.6) for this choice of v, the assertion is immediate. O

The following result shows that the solution u € K of (5.6) satisfies the same
inequality on a set which is independent of g or u, namely on the cone of all non-
negative elements of H, (£2).

Proposition 5.2. The solution u € K of the variational inequality (5.6) verifies:
a(u,w) > (f,w)  Ywe Hy(Q) withw > 0a.e. in Q. (5.11)
Proof. 1t is easy to verify
{(we Hi(Q);w>0ae. inQ}CK,. (5.12)

Indeed, if w € HO1 (2) with w > 0 a.e. in 2, then, it follows thatv = w + u € K,
and hence w € K,,. O

We now prove the main result of this section.
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Theorem 5.1. Under the hypothesis (5.3), let i € H'(Q) be a function which
satisfies

a(@,w) > (fiw) VYwe HJ(Q) w=>O0ae. in,
u>0 aeinQ, (5.13)
u>g ae onofQ.

Then
u<u aeinS,
u being the unique solution of the variational inequality (5.6).
Proof. We first remark that
min{z,v} € K Vve K.
Thus, by taking v = min{u, u} = u — (u — u)* in (5.6), we obtain
a(,~(u—m") = (f~@u-n)7"). (5.14)

On the other hand, since (u — %)™ = u — min{u, i}, it follows that (u — %)™ €
H{ (S2). Obviously, one has (u — #)* > 0 ae. in Q. By taking w = (u — )"
in (5.13);, we get

a@ (w-m") = (fLu-m"). (5.15)
By adding the relations (5.14) and (5.15), one obtains
a(u—1,(u—m7*) <0. (5.16)

We now remark that a(v™,v") = 0, Vv € HYQ), and thus a(v,vt) =
a(vt,vT), Vv € H'(Q). This leads, thanks to the coerciveness of a(-, ), to

Jo > 0 such that a|[vT |2 < a(v,vT) Vve H'(Q) withvT e V. (5.17)
Therefore, from (5.16) and (5.17), we have

all@=—m)"| < a@—u (u-m") <0, (5.18)

and thus (u—u)* = 0 a.e.in Q,i.e. u < ua.e. in Q which completes the proof. 0O

Remark 5.1. A function € H'(2) which satisfies (5.13) is called a supersolution
of the variational inequality (5.6) (for general results and details, see [9]). Therefore,
Theorem 5.1 asserts that the solution of the variational inequality (5.6) is the
smallest supersolution of (5.6).

If the given function f € L?(R) is negative, we deduce the following maximum
principle.
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Corollary 5.1. Let u € K be the solution of the variational inequality (5.6) for
f < 0in Q. Suppose that the function g € H'?(3Q) is bounded above by a
positive constant C. Then u < C a.e. in Q2.

Proof. The hypothesis on f implies (f,w) < 0 Vw € Hj(Q2) with w > 0 ae.
in €. This shows that # = C is a supersolution of (5.6). Hence, by Theorem 5.1,
the assertion follows. O

In the sequel, we shall consider a slightly generalization of the above results. Let
the set of constraints of the problem (5.6) be defined by

KW, g)={ve H(Q); v>Yae.inQ, v=gae. oniQ} (5.19)
with ¥ a given function such that
Vv e H(Q)NC%R), ¥ <0ond. (5.20)

Proposition 5.3. Suppose that the hypotheses (5.3) and (5.20) hold. Then, the
variational inequality

Findu € K(, g) such that

5.21
a(u,v—u) > (f,v—u) VYve K, g) (>21)
has a unique solution.
Proof. We first remark that the set K (i, g) can be written as
K, g)={veV; v>vaeinQ,v=gonl}. (5.22)

Proceeding as in the proof of Proposition 5.2, one proves that the set K(, g) is
convex and closed in V. In order to prove that K(v, g) is nonempty, let § € H'(Q)
be such that yg = g. Therefore, v = gt + vt € K(¥,g). By applying
Theorem 4.12, the assertion follows. m]

By similar proofs, we also obtain the analogous results to Theorem 5.1 and
Corollary 5.1.

Theorem 5.2. Suppose that the hypotheses (5.3) and (5.20) hold. Let u € K(¥, g)
be the unique solution of the variational inequality (5.21) and let u € H'(Q) be a
function which satisfies the conditions

a(@,w) > (f,w) VYwe H(Q) w>O0ae inQ,
u>vy aeinf, (5.23)
u>g ae ondf.

Thenu <ua.e. in Q.
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Corollary 5.2. Let u € K(, g) be the solution of the variational inequality (5.21)
for f € L>(Q) such that f < 0 a.e. in Q. We suppose that the functions ¥ and g
are bounded above in 2, respectively, on 0$2, by a constant Cy, respectively, by a
constant Cy. Then u < max{Cy, C;} a.e. in 2.

Remark 5.2. The co_nditions of the above corollary are satisfied if, for instance, g €
C(OQ)andy € C(Q)ory € H>(Q) and d = 2.

5.1.2 Examples

In the sequel, we shall consider applications of the above results to a dam problem
and an obstacle problem.

1. A dam problem

We consider the problem of stationary flow of an incompressible fluid through
a dam of an isotropic homogeneous porous media on a horizontal impervious base
(see, for instance, [3, 5, 6, 18]). We suppose that the dam separates two tanks of
different levels H and h with H > h and that it is bounded by parallel vertical
walls, so that the flow may be considered to be two-dimensional. The geometry of
this problem, taking into account that the flow is the same for any normal section in
the porous medium, is given in Fig. 5.1.

The dam cross-section is assumed to be the rectangle D = (0,a) x (0, H), i.e.a
is the width of the dam. The flow region is a subset of D, with its boundary partially
unknown, defined by

Q={x,y)eD; 0<x<a,0<y<opx)}. (5.24)

where ¢ : [0,a] — [0, H] is a continuous and strictly decreasing function such that
90) = H ,¢(a) = h.

y
\% F(0,H) E(a,H)
Col(a,p(a))
\%
C(a,h) =
A(0,0) B(a,0)

S S S S S

Fig. 5.1 A dam problem
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If v denotes the velocity of the fluid, then by the continuity equation divy = 0
and the Darcy’s law v = —Vu (the permeability coefficient of the porous medium
is supposed equal to 1), we deduce

—Au=0 inQ, (5.25)

where u is called a “potential velocity”.
It is known (see [4]) that the above physical description leads to the following
boundary conditions (according to Fig.5.1):

u=H on[AF],

u=h on[BC],

— =0 onFC, U (AB),
u=y onI*/“Z’(/,U[CCw],

(5.26)

where the curve fap and the closed segment [C C,] are, respectively, the free line

and the seepage line, and — denotes the outward derivative normal.

The problem (5.25)—(5.56) has as unknown the triplet (¢, <2,u). As in many
free boundary problems, the solution cannot be directly written as the solution of
a variational inequality. However, Baiocchi [3] introduced a change of unknown
functions which allows to reduce this problem to a variational inequality of
the type (5.6). Namely, supposing that the solution u, in the weak sense, of
the problem (5.25)—(5.26) belongs to H'(Q) N C(R), one defines the Baiocchi
transformation:

H
w(x,y) = /(ﬁ(x,t) —t)det V(x,y)e D (5.27)
y
where
- _fulx,y) if (x,y) € Q,
w(x.y) = % y if(x,y) e D\ Q. (5.28)

It is easy to show (for instance, see [6]) that w belongs to H'(D) N C(D) and it
is the unique solution of the variational inequality

[Vw-V(v—w)dxdyz—/(v—w)dxdy Vve K (5.29)
D D

where

K={veH'(D);v>0aeonD, v=gondD} (5.30)
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and

g(x,y) =wx,y) V(x,y)e€dD. (5.31)

From (5.26), (5.28), and (5.27), it is immediate that

HTZ—#X on (AB),
1 4
g = —(H —Yy) on [AF],
E(h—y)2 on [BC],
0 ondD \ ([AF]U(AB) U[BC)).

Now, if w € H'(D) N C(D) is the unique solution of the variational
inequality (5.29), then if we put

Q ={(x,y); (x,y) € D; w(x,y) >0},
o(x) = sup{y; (x,y) € Q} 0O<x<a,

9(0) = lim () p(@) = lim p(x).
0 _

u(x,y>=y—3—w(x,y> V(x,y) € Q,
y

then, it follows that the triplet (¢, 2, u) is the unique solution of the
problem (5.25)—(5.26).

The function g has the properties: g > 0on dD, g =0on [y = (FE]U [EC),
g is Lipschitz continuous and hence g € H'/?(0Q) (see, e.g., [14]). Therefore, the
problem (5.29) is a variational inequality of (5.6) type with f = —1.

Finally, by Corollary 5.1, we conclude that the unique solution of the variational
inequality (5.29) satisfies:

2

H .
w(x,y)fT inD.

2. An obstacle problem.

We consider an elastic membrane, occupying an open bounded subset Q of R?,
which is fixed along its boundary I" and must lie over an obstacle which is
represented by a function ¥ : € — R. The membrane is subject to the action
of a vertical force of density f. We suppose that when f = 0, the membrane is in
the plan of coordinates (x, y)) (Fig.5.2).
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Fig. 5.2 An obstacle
problem

The problem consists in finding the position of the membrane u and the free
boundary y such that:

—Au>f inQ,

u>y inQ,

(—Au— fHlu—y)=0 inQ, (5.32)
u=0 onl,

ut =ulony.

We mention that y is the part of the membrane which touches the obstacle, that is
y =0+t NaR% where Q" = {x € Q; u(x) > ¥y (x)}and Q° = {x € Q; u(x) =
Y (x)}. We also denoted u™ = u/ Q" and u® = u/ QO.

Suppose that f € L?(Q) and ¥ € H'(Q) N C(Q) with v < 0 on T. Then, it
can be proved (see, for instance, [13], p. 26) that the variational formulation of this
problem is a variational inequality of the form (5.21) with the notation

V =Hy(Q).
g=0,
K,0) ={veV;v>1yae onQ}, (5.33)

a(u,v):/Vu-Vvdxdy Yu,velV.
Q

Applying Theorem 5.2 we find that the unique solution u of the variational
inequality

au,v—u) >0 VveK({,0)
is the smallest supersolution of the above variational inequality. In addition, for
f < 0(we always may suppose f < 0), by applying Corollary 5.2, we deduce the

expected physical result:

u <max ¥(x) a.e. onS.
XEQ
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5.2 Regularity Properties

As the theory of variational inequalities represents a generalization of the theory of
boundary value problems for partial differential equations, then it is of great interest
to study the regularity of the solutions of variational inequalities.

Brézis and Stampacchia [8] studied this problem from an abstract point of
view, considering a variational inequality of the first kind. The question is to
find the conditions that ensure Au € W if f € W, with # a subspace
of V*. Regularity results for the solutions of variational inequalities for a scalar
second order elliptic operator have been obtained by many authors as, for instance,
Lions [15], Necas [16], Duvaut [11].

In this section we study the regularity of the solutions of a class of variational
inequalities of the second kind. We shall show, in Sect. 8.4, that these results allow
us to obtain a local regularity for the solution of the quasi-variational inequality
which models the Signorini problem with nonlocal Coulomb friction.

The section starts with some rappels on standard results which will be useful in
what follows. Then, we state the variational inequality for which we obtain local
and global regularity results. Our proof is based on the method of translation, due
to Niremberg [17], as Brézis did in his thesis [7] for a scalar second order elliptic
operator.

5.2.1 Notation and Preliminary Results

For a function v defined on R?, one introduces the notation
Vi(x) = v(x + he;) i € {1,....d},

where e; is the unit vector (8;, 82, ..., 84;), 8;; being the Kronecker’s symbol and
h is a real number.
We first recall some standard results (for proofs, see, for instance, [2]).

Proposition 5.4. Let Q be an open set in R%. If v € H'(Q) and ¢ € C'(Q), then
vo € H'(Q) and

ad av g
— = — —, iefl,....d}.
ox (vp) A R { }
In the sequel we denote by C or C; positive constants which we distinguish by
subscripts if necessary.

Proposition 5.5. Let Q be an open set in R? which has the segment property (cf.
p. 16) and v € H™ () with m > 0 an integer. If, fori € {1,...,d}, there exists a
constant C > 0 such that
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i
v, =V

h

<C, (5.34)
Hm(Q)

for every Qca and for all h # 0 with |h| sufficiently small, then
<C.

‘ v
H™ ()

ax;
If (5.34) holds for everyi € {1,...,d}, thenv € H"T(Q).

Proposition 5.6. Let Q be an open set in R?. Suppose that v € H™(Q), m > 1,
and let @ C Q. Then

i
v, =V

h

< llam@)

Hm—l(Q/)
for all h # 0 such that dist (Q', Q) > |h|.
From the above proposition, we derive the following.

Corollary 5.3. Let n € C%°(S) be such that supp n C S U X, where S = {§ =

i, E) eRY;|E < 1,8 >00,d>2andS ={§ eRY; |E] <1, £ =0}
Then, for everyv € (H'(S))?, we have

nv; —v)

HT < Clvllaisye »

(L2(8))?

forall h # 0 with |h| < dist (OS\Z, supp n) andi € {1,2,...,d — 1}.

Proof LetS; = {£ € S, n) # 0}, S ={& e R, |&] < 1}and S, =

SIUENS)ULE = (61.....60) €RY, (&1, a1, =) € Si).
For any function w, we put

- w(£) if§; =0,
W(E) = , (5.35)
® w(i, ... §a—1, =€) if§a <O,
It is easy to see that, if w € (H'(S))¢, then w € (H'(S5))? and
||‘7’||me(§)),1 = 2|Wl{yms)e  form €{0,1}. (5.36)

Let ﬁ,fiandﬁﬁl (i €{l,...,d—1}) be defined as in (5.35). Then supp 7} = S'c§
and

H i, —v) _ ”u
b ey he ey (5.37)
1 Hn(v}l—v) - 1 v, =V
V2 h 2@l V2 he N2 '
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Applying Proposition 5.6 and using the relations (5.36) and (5.37), we conclude

1
<—C
syl V2

~i ~
V), —v
h

n(v,—v)
h

—C||V|| m@yd = Clvllasy-
(L2Go V2 (H'(S)) (H1(S))

ad

5.2.2 Setting of the Problem and Regularity Results

Let Q be an open bounded set in R¢ with I" an open subset of its boundary 9. Let
xo € I'. Suppose that 2 is C?3-smooth in x (see Definition 2.6, 16), i.e. there exists a
neighborhood 7 of xg such that the set € N7 can be mapped C3-homeomorphically
onto S where S = {£ e RY; |&| < 1, £; > 0}, such that the set 92 N 7 is mapped
onto the set ¥ where © = {& = (§,....&;) e R?, |§| < 1, & = 0}. Without
loss of generality, we may assume that 92 N/ C T.

Let 6 be the C3-homeomorphism from N 7 to S. If w is a function defined on
Q N I, we shall denote by w the function

wE) =wO~'(§) VEeS.
Letv € (H'(R))?. For n € 2(I) and h a real number, we set

Vo (x) = { v(x) + n(x) (7,(0(x)) —v(x)) if x € suppn N Q,
7 v(x) if x € Q\ supp 7,

where i € {1,...,d — 1} and f)}; = (17)2. It is immediate that, for || sufficiently
small, v}, . is well defined and v}, | € (H'(Q))".

In the sequel we use the summation convention.

We now define the bilinear form

Juy 0
b(u,v)=/( o b ) o+ ot ) 2

—I—dkl(x)us;jv;) dx Vu,v e (H'(Q))?

Whereak/ b, K dkl e CY(Q) andal]fjl = /z» Vi, j k,le{l,....d}.
In the matrix form, we can write

b(u,v) = Aiji(x)u;v; +B;(x)u;v + C;(x)uv; + D(x)uv) dx
[ @y, )

ow ow,
wi= oot ) Ay = @ Bi= (08 €= (s, D= (@)
8xi 8xi
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For any open set @ in R?, we shall denote by || - ||, the norm on the product
space (H™(w))?.
We suppose that there exists a constant o > 0 such that

b,v) = a|v|i Vv e (H'(Q))? withsuppy Cc QN T . (5.38)

We consider the functional J : (H'(R2))? — R defined by

) = f FEY ) ds Vv e (H'(Q),

r

where 7 € H'(T') with r > 0 a.e. on I" and ¥ is a seminorm on R?.
We denote by Q a nonempty closed convex subset of (H'(£2))? such that

ifve Qthenv) €Q,Vie{l,...d—1}, Vne 2(I)with0 <n <1,
and VA # 0 with |h| < dist (dS\Z, supp 1),
(5.39)

where 7j(§) = n(67'(§)). V& € S.
With the above notation, we consider the following variational inequality of
second kind

ueQ,
{b(u,V—u) +J0)—J@w) > (L,v—u) VYveQ (5.40)

where L € (L*(R2))¢ is defined by

(L,v) = / Lividx Vve (H'(Q))?.
Q
We can state our local regularity result.

Theorem 5.3. Suppose that there exists a solution u of the variational inequal-

ity (5.40). Then, for any open set 1’ containing x( such that 7 c I, we have
ue(HXQnNI1) and

lul2.enrr < Clullions + 71z eary + 1L lo.onr) - (5.41)
Proof. Let 8" = 6(Q2 N I’). We shall prove that

lall2.s < Cllallis + [Fllaics) + I1LNo.s) -

First, let n € 2(2) with 0 < n < 1. It is easy to see that, if we take in (5.40)
v = uﬁm and, respectively, v = ul_h.n, [ €{l1,...,d — 1}, we obtain by using local
coordinates
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b it~ + [ Fivyao — [Fv@d = Lo -a) 6542
p) D)

E(ﬁ,ﬁ(f/_h—ﬂ))+/?ﬁw(ﬁ’_h)do—/7ﬁw(ﬁ) do > (L.i@ , —a) (5.43)

z z

where

b(a,v) = / (Ayjit; ¥ ; + Byt ;¥ + C;iiv; + Dav) d§
S

(L,%) = /L,»a,- d§ .

N

Here, for the sake of simplicity, we do not change the notation for A;;, B;, C;, D
and L;.

Letp € 2(I)besuchthat 0 < ¢ < 1 and ¢ = 1in I’. Taking 7j = @? in (5.42)
and 7) = @2, in (5.43), by adding the two inequalities, we get for |A| sufficiently
small

0 < b(ut, 9>y — w)) — blat, 92, (1 — u_y)) + / ro* (¥ up) — ¥ (@) do
>
+ / ro? (P () — ¥ @) do + (L. g% @ —u_p)) — (L. "y —u))

by
(5.44)

where, for simplicity, we omitted the ‘~” and the index /. Therefore, from (5.44), we
deduce that

b —u). p(uy — ) < blp(uy — ). oy — ) + b, o*(uy — )
b, @ —u_y)) + / r (W (wy) — ¥ (@) do

)
+ [ r @y (W) — Y @) do + (L. @%@ —u_y)) — (L. @y — ).

)
(5.45)

We now estimate the right-hand side of the inequality (5.45). First, from
Proposition 5.4, we have



5.2 Regularity Properties 97

b(p(uy —u). (uy —u)) + b, ¢*(uy —u)) — b 92, — u_y))

— [ Aot~ wlilotw, — ] + Bl G, — ) lo —w)]
S
+Cilp(un —w)lp@y —u)); + Do (uy, —u)(wy, —u) — Ajju [, @ —u_p)) ;
—Biu [, —u_p)] — Ciulp2, (w —u_p)]; — Dug?,(u—u_)
+Au [0 wn —w)] j + B [0 (wn — w)] + Ciu[e® (uy, —u))

+Dug w0} dg = [ 14050, — ), ~ )

3
+Aij@iow, —u)(u, —u) ; +Ajjop ;(u, —u),;(u, —u)
+A; 0 (y —u) ;i (uy —u) j + Bilp@, —w)l o, —u)
+Cip(uy —w)p@y —u)]; — [(Aij)nuni — Ayjui]lp* @y —u)]
—[Bi)nun; —Biu 10>y —u) — [(Ci)puy — Ciul[p*(uy — )]

—(Dy, — D)uy* (uy, —u)} dé = /{A,»j @ip.j(up —u)(up —u)
3

—[(Ai))n — Aijluni [0 @y —w)] ; + Bilp@y —u) o, — u)

+Cip(up —u)p@y —u)]; — [(Bi)aup; — Biw 1o (wy, — u)

—[(CHnup — Ciu] - [ ipup —u) + o, —u)),;l

—(Dy, — D)y (uy, —u)} dk .

Now we can apply Corollary 5.3 by taking n = ¢ and n = ¢;. It follows that,
for all & # 0 such that |h| < dist (dS\ X, supp ¢), we give

ﬁ[b(w(uh ). oty — ) + b, >ty — ) — blats o2 (1t — )]

< Cillullislle@n —u)lls -
(5.46)

On the other hand, from Proposition 5.6, we have

/ r [ (un) — Y (@) do + / ro? [0 ) — ¥ )] do
by = (5.47)
- f (r = )1y — Y (@) do < Cal| [l s 0 (atn — )]s

>

and

(L, @2 (u—u_p) = (L,¢*(up —w)) = —(L, ¢ —u) + 2, (u_y —u))

= G|l I Lllosllo(@n —wll1s -
(5.48)
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Combining (5.45)—(5.48) and using the coerciveness condition (5.38), one
deduces

” eu, —u)
h

< Cy(llullis + Irll mr(zy + I Lo.s) »
1S

and hence

Huh—u

—| = Culluls + Il + L os) (5.49)

We then conclude from Proposition 5.5 that

2

u
— e (L*8")? forie{l,....d —1 Y and j € {1,...,d}.
96 O, (L~(S")) { } J et }

Let us remark that u solves the system

0 u u 0
(A2 B L (Cu)+D-u=L inS'. (5.50)
as,»( fasi) 9 o O

The coerciveness condition (5.38) implies that det (Ay4(§)) # 0, V& € §/,
2

0 0’u
and so, 8; can be calculated from (5.50). Thus f € (L*(S"))?, and, from (5.49),

d d
we obtain

lulz.s = Clllullis + lrll #1s) + [IFlo.s) -

Therefore, by transformation back to the xy, x,,--- , x4 coordinates, we get the
estimate (5.41). O

Remark 5.3. Using a similar technique as in the above theorem, we can obtain
the known regularity result of the solution of the variational inequality (5.40) in
a neighborhood of an interior point of €2. Indeed, for any point x € €2, by taking
I ={yeQ; |y—x| < R} with R sufficiently small such that I C €, we can
repeat the above proof with no need of using local coordinates, by requiring that

ifve Qthen(1—nyw+nl e 0, Vie{l,....d}, Yne 2(1) (5.51)
with0 <75 <1, Vh # 0 such that || < dist (31, supp 7). '

If Q is C3-smooth in x € 32, one denotes by I, the corresponding neighbor-
hood of x, and, if x € 2, one denotes by I, the set {y € R¢ ; |y — x| < R} with R
sufficiently small such that 7, C Q.

Finally, from the local regularity result given by Theorem 5.3 and the above
remark, we can easily obtain the following global regularity for the solution of the
inequality (5.40).
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Theorem 5.4. Suppose that Q is C3-smooth in any point x € dQ and T = 0Q.
Moreover, we suppose that the following assumptions hold

ifve Qthenv, € Q, V¥l =1,....,d =1, Vne () with0<n<1,
and Vh # 0 with |h| < dist (0S\X, supp ), Vx € 0Q2,
(5.52)

2
{ 3o > 0 such that b(v,v) > a|v|i g . (5.53)

Vv e (HY(Q))? withsuppv C I, N Q, Vx € Q,
and

ifve Q then(1—ny+mnleQ,Vi=1,...d, Vne ()
with0 <n <1, Vh # 0 such that |h| < dist (1, suppn), Vx € Q.
(5.54)

If there exists a solution u of the variational inequality (5.40), then u € (H*(R2))?
and

lulle < C (lullie + Irllmiw + 1Llog) - (5.55)

= .. -/
Proof. For every x € , let I, be an open set containing x such that /, C I,.

Therefore, from Theorem 5.3 and the above remark, we get

ue(HNQNI))!

and

lulbanr, = G (lulhenr, + Irlmeon, + 1Llens,) - (5.56)
foralli € {1,...,n}, C; being a constant which depends on i. It follows that u €
(H*(R2))? and, by adding the relations (5.56) for all i, we obtain (5.55). O

Note that Theorems 5.3 and 5.4 still hold under a less restrictive assumption
on 2.

Remark 5.4. In more restrictive assumptions on » and €2 and for J = 0, analogous
regularity results were obtained by Fichera [12].
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Chapter 6
Dual Formulations of Quasi-Variational
Inequalities

The aim of this chapter is to derive dual formulations for quasi-variational inequali-
ties. First, we present a brief background on convex analysis and, then, we recall the
main ideas of the Mosco, Capuzzo-Dolcetta, and Matzeu (M—CD-M) duality theory
[3] in its form adapted by Telega [14] for implicit variational inequalities.

As we saw in Lemma 4.2, for A symmetric (i.e., (Au,v) = (u, Av), Yu,v € V),
a variational inequality of the form (4.22) is equivalent to the minimization of the
functional J defined by

T0) = 3(Av3) +j6) ~ (£0)

Generally speaking, the duality theory allows to associate with a minimization
problem

inf J(v), 6.1)

called primal problem, a maximization one, called dual problem, and to study the
relationships between the two problems.

A large number of duality theories have been developed. The main idea in any
duality theory is that a proper convex l.s.c. function is the upper envelope of its
affine minorants, and so, we can write

J(v) =sup L, 7).
reA

for various choices of .Z, called the Lagrangian function, and of the set A of
Lagrange multipliers A. Hence, the primal problem (6.1) can be written as

inf sup Z (v, A). (6.2)
veK ren
© Springer International Publishing Switzerland 2014 101
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The dual problem is defined by

sup inf Z (v, A). (6.3)
A€ veEK

The oldest of the theories of duality is that based on the classical theorems of
minimax of Fan [7] and Sion [13]. They studied the existence of saddle points for
the Lagrangian function .Z (a saddle point for .Z is an element (v*,1*) € K x A
such that Z(v*, 1) < Z(*,1*) < Z(v,A*), Vv € K, VA € A) and they give

criteria (see also [5]) which ensure that sup inf .Z (v, A) = inf sup £ (v, ).
reA VEK VEK 3 e

Another theory has been developed by Fenchel [6] and Rockafellar [11]. In their
theory, the minimization problem is approached by a family of perturbed problems
and the dual problem is defined by means of the conjugate functions. More details
can be found in Rockafellar [12], Céa [4], Ekeland and Temam [5].

The duality theory has many applications in mechanics, numerical analysis,
control theory, game theory, or economics. In addition, the so-called primal-dual
algorithms are often used in solving the primal problem. Nevertheless, classical
duality approaches do not apply to quasi-variational inequalities since they cannot
be formulated as extremum problems. For this reason, within this chapter we do not
want to develop classical duality methods, our intention is only to recall some results
of the M—CD-M [3] duality theory for the so-called implicit variational problems. In
Sect. 8.5, we will use this theory to derive the so-called condensed dual formulation
for a frictional contact problem.

6.1 Convex Analysis Background

We recall some definitions and standard results which will be useful in the
subsequent paragraph. Let V' be a reflexive Banach space with its dual V* (we
note that almost all the results remain valid if IV and V* are two topological vector
spaces which are in duality; see, for instance, [1,5,8, 10]). We denote by (-, -}y *xy
the duality pairing between V* and V.

Let f : V — R be a function.

Let us recall that the effective domain of £, the epigraph of f and, forany a € R,
the level sets are defined by

dom f={veV : f(v) < oo},
epi f ={(v,a) e VxR : f(v) <al,

and, respectively,

E.(f)y={eV : fv) <a}
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The function f is said to be proper if dom f # @ and f(v) > —oo,Vv € V.
The convexity and the lower semicontinuity of functions can be characterized in
the following way.

Proposition 6.1. Let f : V —> R be a function. Then the following statements
are equivalent:

(i) the function f is convex and l.s.c. on V; _
(ii) the set epi f is a convex and closed subset of V x R.

Proof. For convexity, we only use its definition for functions and sets.

If f is Ls.c., then it is easy to show that epi f is closed in V x R. Conversely,
if the set epi f is closed in V x R, then, for any a € R, the level sets E,(f) are
closed in V and so, the sets {v € V : f(v) > a} are open, i.e. the function f is
Ls.c.on V. O

Definition 6.1. The function f* : V* — R defined by

froN = %25{(v*,V)V*xV aAGL

is called the Fenchel conjugate (sometimes also called convex conjugate, conjugate
function, or polar function) to f.

In the particular case V' = R, f* is the Young conjugate function to f.
An elementary property is the following Young inequality
FO) 4+ F50%) = (5 V) pexy Vv eV, Vv* e V™ (6.4)
Remark 6.1. Let C C V be aset such that 0 € C. Then

150" = sug{(v*,v)v*xv} = Ic+(v¥)
Ve

where C* = {v* € V* : (v*,v)y=xy <0, Vv € C} is the polar cone of C and 14
is the indicator function of the set A.

We give below a separation theorem (see, e.g., [8]) which will be frequently used
in the sequel.

Theorem 6.1. Let M be a convex closed subset of V and let be vy € V such that
vo & M. Then there exists v* € V*, v* £ O, strictly separating M and vy, i.e. there
exists ¢ € R such that

(Vv yexy > ¢ > (V5 V)yexy Vv e M.

Proposition 6.2. Let f : V —> R be a function. Then

1) The conjugate function f* is convex L.s.c. on V*.
2) If f is proper convex Ls.c. on'V, then f* is proper.
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Proof. 1) Letu*,v* € V andt € [0, 1]. We have

SHA=Du*+1v") = sup{(1=) (", )y = f W)+ (O )y = ()}

veV

IA

(=0 f5@) + 1/ (%),

ie. f*is convex.

In order to prove that f* is Ls.c., let be the sequence {u}, C V'* and let be
u* € V* such that u; — u* strongly in V*. Applying Young’s inequality (6.4),
we get

fry) = (uy v)yexy — f(v) VveV,
and hence
liminf £ ;) > (", v)yexy = f(v) VveV.
This yields
liminf £ () > f*(u").

2) As f is proper, there exists vy € V such that f(vg) < oco. Hence, Young’s
inequality (6.4) yields

FrO") = (vVvo)yrxy — f(vg) > —oco Vv' e V*,

Letd > 0. Since (vg, f(vo)—d) ¢ epi f andepi f is convex closed in V xR,
by the Separation Theorem 6.1, it follows that there exist vi € V'*, vj # 0, and
o € R such that

(o vo)vexy +a(f(vo) —d) > (v, v)v*xy +aa V(v,a) €epi f.  (6.5)

It is easy to prove that @ < 0. Indeed, if we suppose that « > 0, then, for any
(v,a) € epi f,wecantake (v,a+n) € epi f in (6.5), for any n > 0. Thus the right-
hand side of (6.5) tends to 400 which is in contradiction with the relation (6.5). If
o = 0, then we obtain (vy,vo)y+xy > (vj,V)v*xy, Vv € V which contradicts
vo€E V.

1
Therefore, if we put vi = ——v; in (6.5), in particular we deduce that
o

(VT,VO)V*XV — f(vo) +d > (VT»V)V*XV —fv) Vvev,
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and so, as vy € dom (f), we get

+00 > (v, vo)vexy — f(vo) +d > sup{{(v] . V)y=xy — f(V)} = f*(v]),

vevV

and hence, f* is proper. |

Definition 6.2. Let f* : V* — R be the conjugate function to f. Then the
function f** : V — R defined by

S = sup {0 v)yexy — [T

VEey*
is called the biconjugate function to f.
From Young’s inequality (6.4), we always have f**(v) < *sup*{(v*, VivExy —
0F Wy + fO)} = ), ie. e
fTW = fv) Yvel (6.6)
The following statement gives conditions which ensure the equality between a

function and its biconjugate.

Theorem 6.2 (Fenchel-Moreau Duality Theorem). Let f : V — R be a proper
function. Then, f is Ls.c. and convex if and only if f** = f.

Proof. Suppose that f is l.s.c. and convex. By Proposition 6.2, it follows that f* is
a proper l.s.c. convex function, and so, f** is a proper L.s.c. convex function.
As we always have f**(v) < f(v), suppose that there exists vo € V such

that f**(vo) < f(v). Thus (vo, f**(vo)) ¢epi (f). Applying the Separation
Theorem 6.1, it follows that there exist vy € V*, v§ # 0, and « € R such that

o voyvexy +af ™ (vo) > (v3), vyv=xy + aa Y(v,a) € epi f.

Proceeding as in the proof of Proposition 6.2 we conclude that « < 0. If we put

* 1 *
vi = ——V,, then we deduce
o

(vEovo)vexy — ™ (vo) > sup  {{(V]), V)yrxy —a}
(v.a)€epi f

= sup{ (V). V)vexy — f)} = f707)

vevV

which contradicts the definition of f**(vg).
Conversely, if f = f** then, by Proposition 6.2, it follows that f, as the
conjugate to f*, is l.s.c. convex on V. O
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Remark 6.2. If f 1V — R is a convex Ls.c. function which takes the value —oo,
then f is identically equal to —oco. Therefore it is natural to consider convex L.s.c.
functions f : V — (—o0, +0].

Definition 6.3. Let / : V — (—o0, +0o0] be a proper function and u €dom ( f).
An element u* € V* is said to be subgradient of f at u (according to e.g., [9]) if

fW) = fw) = (W, v—u)yrxy, YveV.

The set of all subgradients of f at u is called the subdifferential of f at u and is
denoted by df (u),

fw) ={u* eV*;, f(v)— flu) > Ww*,v—u)y*xy, VYveV}

So, the subdifferential of f is the multivalued mapping f : V — 2"" which
associates with every u € V the subset df (u) of V*.
The function f is said to be subdifferentiable at u, respectively, on V, if

df (u) # @, respectively, 0f (u) # @, Yu e V.
The next result follows immediately from the definitions.

Theorem 6.3. Let [ : V — (—o00, +00] be a proper function. Then, the following
two conditions are equivalent:

(1) f(w) =min fO),

(2) 0€df(u)

Theorem 6.4. Let f : V — (—00, +00] be a function. Then the following two

conditions are equivalent:

(1) f)+ f*W*) = (u*, u),

(2) u* € af(u).
Moreover, any of the above conditions implies

(3) uedf*w*).
In addition, if f is proper l.s.c. and convex, then the three above conditions are
equivalent.

Proof. “(1) = (2)” By using the hypothesis (1) and Young’s inequality (6.4), we
obtain

W uyyexy — f) = f*W") = (W vyyey — f(v) VveV,

i.e. the condition (2).
“2) = ()" If u* € df (u), then

W u)yexy = f) = (W V)yexy — f(v) YveV
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and so,

(U u)yrxy — f(u) = sup {(u”, viyxy — f(n)} = f*@”).

YvevV

Therefore, by Young’s inequality (6.4), the assertion follows.
“(1) = (3)” By the definition of f* and the hypothesis (1), we have

FrO) = 1) = sup {0 vy — fO)} 4 f) = (™ u)yexy

YvelV
(v vy — fu) + f@) — (U u)yexy

= —u" u)yxy YV e VT,

v

ie.uedf*(u*).
Suppose now that f : V' — (—00, 4+00] is a proper l.s.c. convex function.
“3) = (1)’ If u € 3f *(u*), then we have

W* uyyexy — fFW) > 0 u)pexy — fFOF) YW e VT,
which implies

(U uhyexy — f5W*) = sup AW u)yey — fRO0)E = W),

Vvker*
As Theorem 6.2 provides f**(u) = f(u), by Young’s inequality (6.4), we conclude
that f*(u*) + f(u) = (u*, u)y*xy. o
Let f1, f2 : V — (=00, +00] be two proper functions.

Definition 6.4. The infimal convolution of functions f| and f3, denoted by f1V f3,
is the function defined by

(iV L) () = Vigé{fl M + folwu—v)} = v1—|i—Iv12f=u{fl (vi) + fa(v)} YuelV.

Vi, EV

Definition 6.5. We say that the infimal convolution £}V f, is exact at u if there
exists v € V such that (f1V f2)(u) = f1(v) + f>(u —v) or, equivalent, if there exist
vi,va € Vsuchthat vi + v, = uand (/1V f2)(w) = fi(v1) + f2(n2).

Proposition 6.3. Let fi, f>: V — (—o0, +00] be proper functions. Then
(D) (hV )" ="+

(2) If 1V f2 is exact at u, i.e. there exists uy,u, € V such that uy + uy = u and
(iV )W) = fi(ur) + fa(ua), then 3(/iV f2)(u) = 3f (1) N 3f2(u2).
(3) If f1, f> are convex, then iV f5 is convex.
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Proof. (1) By definitions, we have

(AV L) ) = igg{w*, Vvexy = nf{fi() + f(v —w)}}
= 335{<u*, My £ Sup{=fi() — folv —w)}}
= :Vuepv{(u*,v)v*xv — fiw) — (v —w)}
= 525{@*, u)yexy—fi(u)+ 525{(14*, v=u)yexy—fr(v—u)}}
= 325{<u*, wyexy — fiw}+ L") = 7@’ + £ W),

(2) Theorem 6.4, the relation (1) and the hypothesis yield that we have the following
sequence of equivalent assertions

u* € 0(fiV f2)(u)
= (IVL)* W) + (AV L)) = (W u)yxy
= fFW) + L)+ filw) + L) = W w)yexy + (W w)vexy

As from the Young inequality (6.4) we have

ST + filuy) = (W ur)yexy,
Lr*) + folun) = (u*, uz)yexy,

it follows that we must have f;*(u*) + fi(u;) = (u*, u;)y*xy, fori = 1,2.
Again Theorem 6.4 provides u* € df;(u;), fori = 1,2,i.e. u™ € dfi(u;) N
df2(u2). _

(3) As fi, f> are convex, it follows that epi f and epi f, are convex sets in V' x R.
We prove that

epi (/1V f2) = epi (f1) + epi (f2).
from which the assertion follows. Indeed, we have

(u,a) € epi (/iV /o)
— Vlilngzu{fl(vl) + f2(n)} <a
vi,mevV
<~ Juj,up €V, uy +u; = us.t. f](M]) =+ fz(l/lz) <a
> filwm) <a\, filw) <ax, wy+u =u, ay+a =a
< (u1,a1) €epi fi, (u2,a2) €epi fo, i +up =u, a1 +ay=a

> (u,a) = (u,ar) + (u2,az) € epi fi +epi f.
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We now recall the Fenchel’s duality theorem. The proof is available in [9], so we
omit here.

Theorem 6.5 (Fenchel’s Duality Theorem). Let f,—g : V — (—00, +00] be two
proper convex L.s.c. functions. Suppose that there exists uy € dom(f) N dom(—g)
such that f or g is continuous at uy. Then

inf{ f(v) —g(v)} = max {g.«(v*) — f*()}. (6.7)
veV vEeV*
where g is the concave conjugate function to g, i.e.
g+(v*) = (" V)yexr = g0}

Proposition 6.4. Let fi, /» : V — (—o00,+00] be two proper convex Ls.c.
functions. If there exists uy € dom( fi) N dom( f2) such that f or f, is continuous
at ug, then

(i 2" W)=V L)) =17+ 5" wg)  YueV™ with uj +uy=u*
i.e. f*V f;¥ is exact on V*.
Proof. Letu* € V*. We apply Fenchel’s Duality Theorem 6.5 for
fO) = L), g0) = W V)yexy — i) Vv eV.

It is easy to verify that

W f() = g0} = —supt(* Wy — (fi + L0} = —(f* + )W)

veV

and

max {g0°) = £*07)} = = min (70" =)+ £ 07

v¥ey*

_fl*(“;k) - fz*(“;)v “T + “; =u".

On the other hand, from the definition of the infinimal convolution, we have
vgéilr/l*{ﬁ* W —v*) + 07 = (VL) W).

Therefore, by (6.7), we get (f;* + £, ) (™) = (ff*VL)W) = fi7u]) + £ u5),
VYu* € V*, and u} + u5 = u*, which completes the proof. O
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Theorem 6.6. Let fi, > : V — (—o0, +00] be two proper convex l.s.c. functions.
Suppose that there exists uy € dom( fi) Ndom( f,) such that fi is continuous at uy.
Then

0(fi + o)) = dfi(u) + dfa(w) VYuelV.

Proof. Letue V.
We first prove that 0(f1 + f2)(u) C 9f1(u) + df2(u). Let u™ € a(f1 + f2)(u).
Applying Theorem 6.4 and Proposition 6.4, we get

(W ey = (fi + )W) + (fi + )" (")

= fiw) + fF W) + o) + £ wy) withul +u = u”(6.8)

Since from the Young inequality we have

Si@) + 5 u7) = (uf, u)yexy,
fow) + 5 (u3) = (u3, u)yexy,

the relation (6.8) implies

Ji(w) + fiFuy) = (i u)yexy,
fa(w) + 5 (u3) = (5 u)ysxy,
and so, again by Theorem 6.4, u} € 0fi(u) and u3 € df>(u) with u} + uy = u™*, ie.
u* € 0fi(u) + df2(u).
The reverse df; (u) + df>2(u) C d(f1 + f2)(u) holds without any hypotheses on

JSior fo. Indeed, if u* € dfi(u) + 9f>(u), then there exist uf,u5 € V* such that
u* =uf +u3, uf € 9fi(u) and uj € 9f>(u), ie.

H0) = filw) = (uf,v—u)ysxy VYveV,
) = fa(u) > (U3, v —u)y=xy Vv eV.

By adding them, we have

(fi + DO) = (i + L)) = W v —u)y=xy YveV,

which means u* € 3(f1 + f2)(u). |

6.2 M-CD-M Theory of Duality

We present here the main ideas for obtaining a dual formulation in the sense of
M-CD-M (see [3, 14]) of an abstract problem.
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Let (V,V*, {-,-)y*xy) and (Y,Y ™, (-, -}y*xy) be two reflexive Banach spaces
with their duals and their duality pairings. We consider the following primal
problem:

Find u € V such that

o(Lu,u) + ¥ (u,u) < o(Lu,v) +¥w,v) YveV 6.9)

where the operator L : V' — Y and the functions ¢ : ¥ x V — (—o00, +00] and
YV x V — R satisfy the following hypotheses:

L is a linear continuous operator, (6.10)
Yu €V, ¢(Lu,-) is proper convex l.s.c. (6.11)
Yu €V, ¥ (u,-) is convex and v (u, u) is continuous (6.12)

Yu € V, the mapping v — ¥ (u, v) has a Gateaux derivative D,y (u, v)
with respect to the second variable at v = u such that, for any
vi e V*, theset{u € V; Dyy(u,u) = v*} contains at most one

element denoted by (D)~ (v¥).
(6.13)

We recall that the Gateaux derivative with respect to the second variable of v (u, -)
at v is defined by

(Do (u, v), w)yrxy = ,liron+ Y, v+ tv:) - Ip(u,v)'

The dual problem of (6.9) is constructed by means of Fenchel conjugates of ¢*
and ¥ * with respect to the second variable, defined by

P* 1Y x V* - (o0, +o0],  ¢*(Lu,v*) = sup ((v*,v)y=xy — @(Lu,v)),

vevV

YV X V* = (—o0,+00], ¥*(u,v*) = sup ((v*,v)V*XV — Y (u,v)).

vevV

We also denote, for all u € V, the subdifferentials of ¥ (u, -) and ¢*(Lu, -) with
respect to the second variable by 0, (u, -), and respectively, by d,¢*(Lu, -), where

Y (u,z) ="V vu,v) —v@u,z) > (V' v—2)ysxy, YveV} VzeV,
00" (Lu,z) ={v eV ¢*(Lu,v*) —¢*(Lu,z")

> (V=25 Vs, YW e VY VR eV,
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With the above notation, the dual problem of (6.9) is

Find (u, u™) € V x V* such that
—u* € 0¥ (u, u) (6.14)
u € dr*(Lu,u*)

or, equivalently

Find (u, u™) € V x V* such that
Y, v) —vu,u) > (—u™,v—u)y*xy Vv eV, (6.15)
©*(Lu,v*) — @*(Lu,u*) > (v —u™, u)y*xy Yv* e V>,

The relationship between the primal problem and the dual problem is given by
the next result (see, e.g., [2, 15]).
Theorem 6.7. Suppose the hypotheses (6.10)—(6.12) are satisfied.

(i) If u is a solution of the primal problem (6.9), then there exists u* € V* such
that (u, u™*) is a solution of the dual problem (6.14).

(it) If (u,u*) is a solution of the dual problem (6.14), then u is a solution of the
primal problem (6.9).

In addition, the following extremality conditions hold:

o(Lu,u) + ¢*(Lu,u*) = (u*, u)y*xy,

¢(u, I/l) + w*(u’ —M*) — _(u*7 M)V*XV~ (616)

Proof. (i) Let u be a solution of (6.9) and f(v) = ¢(Lu,v) + ¥ (u,v). It follows
that

fw < fv) YveV,
and so, by using Theorems 6.3, 6.4 and Proposition 6.4, we get
0€edf(w) <= uecdf*0)=af"V5L)N0), (6.17)

where f1(v) = ¢(Lu,v) and f2(v) = ¥ (u,v).

On the other hand, from Proposition 6.4, the infimal convolution f*V f,* is
exact at 0. Hence, by Proposition 6.3,, we deduce that 9( f;*V £,*) is exact at 0,
i.e. there exists u* € V* such that

SV £,(0) = f7" (u™) N Afy" (—u™). (6.18)

Now, the relations (6.17) and (6.18) yield that there exists u* € V* such that
u € 0™ (Lu,u*) N ¥ *(u, —u™). We conclude, by Theorem 6.4, that u €
020 (Lu,u*) and —u* € 0, (u, u), i.e. (u,u™) is a solution of (6.14).
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(1) If (u,u™) is a solution of (6.14), then, from Theorem 6.4, we obtain
u € 3™ (Lu,u™) N ™ (u, —u™)

and, proceeding as in the first part (i), the assertion follows.
Finally, as

—u* € 0,y (u,u) and u € dp*(Lu,u*),
Theorem 6.4 provides the extremality conditions (6.16).

a

The first variable u from the solution (u,u*) of the dual problem (6.14) is
eliminated by using the assumption (6.13).

Theorem 6.8 (M—CD-M Theorem). Let the hypotheses (6.10)—(6.13) be satisfied.
Then, u is a solution of the primal problem (6.9) if and only if u* = — D,y (u, u) is
a solution of the following dual problem

Find u* € V* such that
@* (L(D2y) ' (—u*),v*) — o™ (L(Da2yp) ™' (—u*), u*) (6.19)
> (v —u* (DoY) (—u*))pexy YV e V™
Moreover, the extremality conditions (6.16) hold.

Proof. We first remark that the hypothesis (6.13) implies
—u* = Dy(u,u) = u= (D) (—u*). (6.20)

Now, if u is a solution of the primal problem (6.9), then, by Theorem 6.7, one
has u € d,¢*(Lu, u*), and hence, by the characterization (6.20), one obtains

(D2y) ™" (—u™) € Do (L(D2y) ™ (—u™), u™).

Therefore, from the definition of the subdifferential of i with respect to the second
variable, we conclude that u* solves (6.19).

Conversely, if u* = —D,(u, u) is a solution of the dual problem (6.19), then
(DY)~ (—u*) € 3,0* (L(D2y) ™ (—u*), u*) which, together with (6.20), gives

u € 9™ (Lu,u*),
—u* = Dy (u, u) = 023 (u, u),

that is (u, u™*) is a solution of (6.14). Finally, from Theorem 6.7, we conclude the
proof. O
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Chapter 7
Approximations of Variational Inequalities

This chapter is devoted to the discrete approximation of abstract elliptic and
implicit evolutionary quasi-variational inequalities. We restrict ourselves to present
convergence results for internal approximations in space of elliptic quasi-variational
inequalities together with a backward difference scheme in time of implicit evo-
lutionary quasi-variational inequalities. For more details we refer the reader to
Glowinski, Lions and Trémolieres [6], Glowinski [5], and the bibliography of these
works. Here, following the works of Capatina and Cocu [7] and Capatina, Cocou
and Raous [1], numerical analysis is carried out on general problems. Also, a
general error estimate is derived. The results obtained in this chapter, representing
generalizations of the approximations of variational inequalities of the first and
second kinds, can be applied to a large variety of static and quasistatic contact
problems, including unilateral and bilateral contact or normal compliance conditions
with friction. In particular, static and quasistatic unilateral contact problems with
nonlocal Coulomb friction in linear elasticity will be considered in Chaps. 8 and 9.

7.1 Internal Approximation of Elliptic Variational
Inequalities

In this section one considers the internal approximation of the following abstract
quasi-variational inequality.

Problem (P?): Find u € K such that
(Au,v—u) + ju,v) — ju,u) > (f,v—u) Vvek, (7.1)

where (V, || - ||) is a real reflexive Banach space with (V*, | - ||«) its dual and (., -)
the duality product between V* and V. We denote by K a nonempty closed convex

© Springer International Publishing Switzerland 2014 115
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subset of VV and let f € V* be given. One supposes that the operator 4 : V — V'*
is Lipschitz continuous and strongly monotone, i.e.

AM > Osuchthat ||[Au — Av||x < M||lu—v| VYu,velV, (7.2)

Jo > 0 such that (Au— Av,u—v) > aflu—v||> YuveV. (7.3)

In addition, we assume that the function j(-,-) : V x V — (—o00, +00] satisfies
the conditions of Theorem 4.16, so

YueV, j(u,-) : V— (—o0o, +00] is a proper convex l.s.c. function, (7.4)

dk < o such that | j(uy, vi) + j(ua, v2) — j(ui, va) — j(uz, vi)| (7.5)
§k||u1—u2|| ||V1—V2|| Yuy, uy,vi,v2 € K.
From the existence and uniqueness proof of Theorem 4.16, the following
algorithm of Bensoussan—Lions type for the numerical approximation of Problem
(P%) follows: let u® € K be arbitrary and

W=Su"h, n>1 (7.6)

where S : K — K is the mapping which associates with every w € K the unique
solution Sw € K of the following variational inequality of the second kind:

(ASw),v—(Sw)) + jw,v) — jw, (Sw)) = (f,v—(Sw)) VveK.

The hypothesis k < « implies (see p. 50) that the quasi-variational inequal-
ity (7.1) has a unique solution ¥ = Su and

u' —u strongly in V asn — oo. (7.7)

We shall consider an internal approximation of Problem (P¢).

Let & be a parameter which converges to zero. Let us consider a family {V},}; of
closed subspaces of V' (in applications, we often take V}, to be finite dimensional),
and a family {K},};, of nonempty convex closed subsets of 1}, which approximates
K in the following sense (see, e.g., [6]):

(i) Vve K, 3rpv € Kj such that rpy — v strongly in V', (7.8)
(ii) Vv, € Kj, withv, — v weaklyin V,thenv € K . '

Often one uses approximations Aj, f,, and j, for A, f and j, usually obtained

by a process of numerical integration. Nevertheless, since the use of approximations

Aj, and f;, does not bring any major change comparatively with the use of 4 and f,

here we only consider an approximate of the function j(-,-) by a family {j,}, of
functions which, for every u € V, satisfies the following conditions (see also [5]):
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VYh, ju(u,-) : Vy — (—oo, +00] is a convex l.s.c. function, (7.9)

the family {j,(u, -)};, is uniformly proper, i.e.
AL = A(u) € V*, 3u = pu(u) € R such that (7.10)
Jn(u,ve) = (A vi) + @ Yy € Vi, Vh,

li}rln i(l)lfjh(u,vh) > j(u,v) Vv € Vj such that v, — v weakly in V', (7.11)
—
lim j,(u,rpv) = j(u,v) VveKk. (7.12)
h—0
In addition, we suppose that, for every #, jj satisfies

. 1 .2 . 2 1 . 1 .1 . 2 .2
|.]h(uh’ Vh) + .]h(uh’ Vh) - .]h(uh7 vh) - ]h(uh’ Vh)l (7 13)
1 2 1 2 1.2 1 2 .
< klluy, = wyll vy, = vill - Yoy vy, v € Kip

Under the previous assumptions, one formulates the following discrete problem.
Problem (P?), : Find u, € K, such that
(Aup, v —up) + jnQun.vi) — juCup,un) = (fovw —up)  Vvw € K. (7.14)

Arguing as in the proof of Theorem 4.16, it follows that the mapping Sj, : K, —
K, defined, for every wy, € Kj, as the unique element S,w;, € K; which verifies

(ASEwR), va—=Shwn)+ jnWh, vi)— jnWhy Spwn) = (fovie — Spwn) Y, € Ky,
is a contraction:
k
||ShW1 — Sth” < a”Wl — W2|| Ywi,wy € K, . (7.15)

Hence, the following existence and uniqueness result holds.

Proposition 7.1. The discrete quasi-variational inequality (7.14) has a unique
solution u, = Spuy, € Kj,.

As in the continuous case, we approximate the discrete solution u;, by the
sequence {u} },> defined by
uy = Shu’;l_l, n>1

where u) € K is given such that the sequence {u)}, is bounded. Obviously, we

have
k n
I =l = 130~ = S = (5 ) 1w (1.16)

Thus, in order to prove that the sequence {u}}, is uniformly bounded in 4, it is
enough to prove the following result.
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Lemma 7.1. The sequence {up}, of the solutions of the quasi-variational
inequality (7.14) is bounded.

Proof. Letv € K and r,v € K, such that r,v — v strongly in V' as h — 0. Taking
vy, = rpvin (7.14), we obtain

o|luy, — rhv||2 < (Aup, — A(rpv), up — rpv) < (A(rpv), rpv — up)
+n(up, riv) = jn(up, up) + Jon(u, upy) — ju(u, rv)) (7.17)
_j/1(u’ uh) + jh(”h rhv) - (fv rpy — uh) .

From (7.12) we have
Ljn(u, rpv)| < Cy,
and, since the sequence {r, v}, is bounded, from (7.2), we get

A« < Ca

with C; and C; positive constants independent of /. Therefore, from (7.17), (7.10)
and (7.13), we obtain

allup — rpv > = M llunll = |2l < (Aup — A(ryv), up — riv) + jn(u )
< Gollrpv — up|l + kllup, — ull lrpy — un |l + Ci + L f s llrny — unll,
(7.18)

hence

[ ALl
St vl A1

€3 (7.19)
+Ci+pul=C

llup — rav|* <

( kel + e+ e
o—k-——

k G + 2
+_||rhv_u||2+ ( 2 ||f||*)
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kei + e+ €3 .
where €1, €, €3 > 0 are chosen such that @« — k — f > ( (for instance,

—k 5
€ = oz_, € = g(oc —k), &3 = E(a — k)) and C is a positive constant

independent of /. Therefore, according to the choice of {r;v};, we conclude that the
sequence {uy — v}y is bounded, and so, the sequence {uy} is. O

Now, from (7.16), the above lemma and the boundedness of {u2 }, it follows that
lluj — unll = Cq" (7.20)
. k .. . . .
withg = — < 1 and C a positive constant independent of n and h, i.e. {u}}, is
o
uniformly bounded in /. Hence, for all € > 0, there exists N = N, such that
luf —upl| <€ VYn>=N., Vh>0. (7.21)

We recall that, for any n > 1, u", respectively uj, are defined as the unique
solutions of the following problems:
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Problem (P“),: Find u" € K such that
(Au v —u"y + j@" vy — j™ L u")y = (fv—u") VveKk, (7.22)

respectively,
Problem (P%)y, ,: Find u}, € K, such that

(A}, v — ) + ju @ ) — jn @ ul) > (fovn—ul) Vv, € Ky (7.23)

This means that Problem (P%),, is an iterative approximation of Problem (P“), while
Problem (P“),, is an iterative approximation of Problem (P%)y,.

In order to obtain the convergence of the sequence {uy}, to u, as h — 0, we

introduce an auxiliary sequence of problems. So, for wg € Kj given such that the

sequence {W?, }n is bounded, we denote by w} € Kj the solution, that there exists
and is unique, of the following problem.

Problem (P%), : Find w} € K}, such that
(Awhovn—wi)+ jn @ ) = jn @ W) = (fove—wi) Vv € Ky, (7.24)
where the sequence {¢"}, C K is defined by (7.6). We note that Problem (P%),, is

an internal approximation of Problem (P%),.
We have the following convergence result.

Proposition 7.2. The sequence {w}};, defined by (7.24), approximates the solution
u" of (7.22) in the sense

wy — u" strongly in'V as h — 0.
Moreover, we have
lim ji ("~ wi) = ).
Proof. Letv € K be arbitrarily chosen. Taking v;, = r;v in (7.24), it results
(Awi i)+ "= owi) < (AWl mv) + jn ) = (forv—w)) . (7.25)
By using the hypotheses (7.3), (7.2), (7.10), and (7.12), one gets

alwill® < AL Wi+l +MIWg v HC L e Urnvli+lIwil) < Crllwgll + Co

with C, C;, and C, positive constants independent of /4. Hence, the sequence
{w} }i is bounded and we can extract a subsequence {whp }p such that wh — Wy
weakly in V, with w" € K (from (7.8),). Now, from (7.25), by using (7. 3) (7.11),
and (7.12), we obtain
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(Aw", w"y + j" !, w") < liminf({(Aw}, ,wj ) + jh(u"_l,wzp))

hp—>0

< {(AW' V) + j" vy = (fiv—w") VYveK.

This implies w" = u", where u" is the unique solution of the variational
inequality (7.22). Therefore, w} — u" weakly in V as h — 0.
Finally, from (7.25) and using the hypotheses (7.11) and (7.12), we have

J@ =t w"y < liminf j, (""", wi) < liminf(a|w} —u"||* + jn(@"~", w}))
h—0 h—0
< limsup(a|w} — u"|* + jn(@" " w})
h—0
< }%i_r)r})((AwZ,rhv) + Jn @ ) = (fo v — Wi — (AW}, d") — (Al W)
+HAW" W) = (Ad" v —u") + j" ) = (fiv—u") VveK.
The proof is completed by taking v = u". O

We are now prepared to prove the main result of this section.

Theorem 7.1. We suppose that (7.2)—(7.13) hold. Let u and u; be the unique
solutions of (7.1) and, respectively, (7.14). Then, we have

up, — u stronglyinVash — 0. (7.26)

Proof. We observe that we have
e — ull < llun — wy |l + Ny — | + " —ul ¥n =0. (7.27)

First, from (7.7) and (7.21), it results that, for ¢ > 0 given, there exists No > 0
such that

€

gy — unll + " —ull < 5 VYnzNe. (7.28)

In order to estimate the second term in the right-hand side of (7.27), we deduce,
form the definitions of u; and w}, that

o|luy — WZ”Z < (Aw} — Auj, wj — uj)
< Jjn@" ) 4+ ja Gl owh) = o wh) — g )
from which, using (7.13), we deduce
luf —wh| < flup™" —u" Y. (7.29)
Now, by choosing WZ = ”2’ we shall prove by recurrence, that

Iy — | < fwj, —u'| Yn=0. (7.30)
i=0
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Indeed, for n = 0 the result is obvious. If we suppose that (7.30) holds for n — 1,
then, from (7.29), we get

n
ot =1l < Nt = wh |+ oy = ) < =" ==+ = < D Il — ]
i=0

It follows that the relation (7.30) holds for every n > 0.
Choosing n = N, in (7.27) and taking into account (7.30) and (7.28), we obtain

Ne
€ . .
letn —ull = 5 + > llw, — . (7.31)
=0

But, from Proposition 7.2, it follows that, for every i, there exists H E’ > 0 such
that

€ < H!. (7.32)

Wi—lzti <—— Vh
=l < 5oy Yhs

N,

Concluding, from (7.31) and (7.32), for € > 0 given, there exists H, = mfg Hei
i=
such that

lup —u|| <€ Vh<H,

hence u;, — u strongly in V as h — 0. O

7.2 Abstract Error Estimate

The purpose of this section is to obtain a priori error estimate for the approxima-
tion (7.14) of the quasi-variational inequality (7.1). This estimate generalizes the
estimates obtained by Cea [2, 3] and Falk [4] for the approximation of variational
equations and, respectively, variational inequalities of the first kind.

Theorem 7.2. Let u and u; be the unique solutions of the quasi-variational
inequality (7.1) and, respectively, (7.14).

We suppose that (7.2)—(7.13) hold. Moreover, we assume that there exists a
Hilbert space (H, || - | ) and a Banach space (U, || - |v) such that V- — H dense,
V CU and

Au— f e H, (7.33)

[jn@,vi) — j,v)| < Cillvp —=vlly Yvp € Kp, Vv e K, (7.34)



122 7 Approximations of Variational Inequalities

where Cy is a positive constant independent of h. Then, there exists a positive
constant C, independent of h, such that the estimate

lup —ull < C vhiglfo, (lu = vil* + 1 Au = f e lu—villa + Cillu—vallo)
1/2
+inf (| Au = fllmllun = vl + Cilluy —vilv)
(7.35)
holds.

Proof. From (7.1) and (7.14), we get

(Aup — Au,up —u) < (Au— fov —up + vy —u) + (Auy — Au, vy — u)
—i—jh(uh,vh) - jh(u;,,uh) + j(u,v) - ](u, u) Vve K Vv, € K.
(7.36)

Evaluating each term in the right-hand side, we have
(Au— fov—up vy —u) < |Au— flalv—uplle + lvi —ullz).  (7.37)
(Aup — Au, vy —u) < Mluy — ul| vy — ull (7.38)
and

JnCun, vi) = ju(up, up) + j(u,v) — j(u, u)
< \JnCunvi) = juCunswn) + jn Qs up) — juQu,vi)| =+ | ja(u,vi) — ju, w)|
+ 7, v) = jn(u, up)| < kllup —ull v — up || + Cr(llvi —ullv + [Iv —unllv)
< kllwp — ull® + kllwp — ull vy — ull + Cir(llve — ullo + v —unllv) .
(7.39)

By using (7.37)—(7.39) in (7.36), with (7.3), it follows

(a = k) [lup — ull> < (M + k) [lup — ull v — ull + |Au— f (v —unlla
+vi —ullg) + Ci(|lvik —ully + |v—urlly) VYveK, Vv, € Ky,
(7.40)

2 p? —k
which, by Young’inequality : ab < % + 7% fore = ]\(fl i

a = ||lup, — ul| and

b = ||vi, — u|, implies

oa—k M+ k
o, — ull® lvw = ull® + | Au— flla(lv —unllu

PO
2 = 2a—k) (7.41)
+lvin —ullg) + Ci(llvi —ully + v —unllv) VYve K, Yv, € Ky,

ie. (7.35). O
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Remark 7.1. 1f K; C K, then the term
inf (1 u— £l lw = vl + Cillun = vlo) .

which is expected to have the highest weight in (7.35), vanishes, thus one obtains

1/2
s = ull < € inf (=i + A= 1l e =vall i + Collu=villo)
h h

This means that an optimal error estimate ||u;, — u|| depends of the distance
between the exact solution u and the finite dimensional subspace V, of V.
Hence, the more suitable construction of the space V}, is, the better order of the
error estimate will be. As we shall see on concrete examples in Sect. 8.6, the
order of approximation essentially depends on the chosen type of finite element
approximation for the space V.

Remark 7.2. 1f j(-,-) = 0, therefore, by taking C; = 0, we deduce
o —ul] < c{ inf (lu—vall> + 4w — £ = villr)
vhEK}
1/2
+||Au—f||Hinf||uh—v||H} ,
veEK

so, the estimate obtained by Falk [4] for the internal approximation of variational
inequalities of first kind with A a linear and continuous operator.

Remark 7.3. 1f j(-,,-) = 0 and K = V, then, by taking K;, = V}, from (7.35),
we get

lluep — ull

IA

C inf |u—wvp|

vLEV)
so, the result given by Céa [3] for the operator equation Au = f with A a linear and
continuous operator.

Finally, the following form of the error estimate is obvious.

Theorem 7.3. We suppose that the hypotheses of Theorem 7.2 are satisfied but with
the condition (7.33) replaced by

(Au— fiv) < Glvllu VveV. (7.42)

Therefore, we have the estimate

s = < € § i (= a4+ €1+ Colu =il

1/2 (7.43)
HC1 4 € inf vl

with C a positive constant independent of h.
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7.3 Discrete Approximation of Implicit Evolutionary
Inequalities

This section is concerned with the numerical analysis of a class of abstract implicit
evolutionary variational inequalities. Convergence results are proved using a method
based on a semi-discrete internal approximation and an implicit time discretization
scheme.

More precisely, for f € W12(0, T; V) given, one considers the problem (4.107)
(p. 68), i.e.
Problem (Q¢): Find u € W'2(0, T; V) such that

u0) =uo, ut) € K(f(t)) Veel[0,T]

a((t),v—u(t)) + j(f @), u(),v) — j(f (@), u(®), u(t)) (7.44)
> b(f(t). u(t).v—i(t)) YveV aein]0, T, '
b(f(t).u(t).z—ut)) >0 VzeK, Yire[0,T],

where (V, (-, +)) is a real Hilbert space with the associated norm || - || and K C V is
a closed convex cone with its vertex at 0.

We suppose that a(:,-), j(-,- ), b(-,--) and K(g) satisfy the hypotheses
(4.83)—(4.90), (4.96)—(4.98), (4.100), (4.101), and (4.105). We recall that
up € K(£(0)) is the unique solution of the following elliptic variational inequality

a(uo, w —uo) + j(f(0), uo, w) = j(f(0), uo, u0) 20 Vwe K. (7.45)

In order to obtain the discretization of Problem (Q“), we first consider a semi-
discrete approximation of it. For a positive parameter & converging to 0, let {V},};
be a family of finite dimensional subspaces of V' and let { Kj };, be a family of closed
convex cones with their vertices at O such that K, C V}, and (Kj);, is an internal
approximation of K in the sense specified in Sect. 7.1, i.e.

(i) VveK,3rpv € K, such that rv — v strongly in V',

7.46
(ii) Vv, € Kj avecv, — vweaklyin V,thenv € K . ( )

For any i > 0, let {K;(g)}¢ev be a family of nonempty convex subsets of K,
such that 0 € K,(0). We put Dk, = {(g,vy) € V x Kj,; vy € Kj(g)} and we
assume the following conditions hold:

Y (&n,vin) € Dk, such that

= (g.vw) €D 7.47
gn — g strongly in V', v, — vj, weakly in V/ (8. va) € Dk, (7.47)

V(g.vn) € Dk, such thatv, — v weaklyin V = (g,v) € Dk (7.48)
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We assume that the functional j : Dg x V — R is approximated by a family
{Jn}n of functionals jj, : Dg, x Vj, — R satisfying

Vg e C(0,T];V), Yv; — v weakly in W'2(0, T, V) such that

(g(1),vi(1)) € D, , V1 € [0,T] ‘

= liznigf/jh(g(t)»Vh(t)v‘.’h(l))d[ > fj(g(t),v(t),v(t))dt, Vs €[0,T],
n)

0 0
(7.49)

and

Y(g,vi) € Dg,, Ywy € V}, such that
vy — vweaklyin V', = %13(1) Ju(g, v, wp) = j(g, v, w).
wy, — w strongly in V'
(7.50)

Furthermore, we suppose that, for all %, the following conditions are fulfilled:

Y(g.vn) € Dk,, ju(g.vn,*) : V4 — Ris a sub-additive and

7.51
positively homogeneous functional, (7.51)
Jn(0,0,w,) =0 Vw, €V, (7.52)
|7n (g1 vins win) + Jn(g2. van, wan) — ju(g1. vins wan) — jun(g2. van, win)|
< ka(llgr — g2ll + 1Bn(g1,vir) — Bu(g2, va)ll ) lwin — wan |
Y(gi,vin) € Dg,,Ywip, € Vi, i =1,2
(7.53)
where the operator 8 : Dk, — H is such that
1Br(g1,vin) — Bn(g2, va) lw < ki(llgr — gall + [[vin — vanl) (7.54)

Y(g1,vin), (82,van) € Dg,,

with ky, k, the positive constants from (4.86), (4.90) such that k1k, < « (e,
condition (4.101) from p. 65).

From the properties of a, j; and Kj and proceeding as in the continuous case,
it follows that, for any g € V, d;, € Kp, w;, € Kj(g), the elliptic variational
inequality

Find u;, € K}, such that

a(up, v —up) + ju(g - wn, v — dp) — ju(gwhn.up —dp) 20 Vv, € K
(7.55)

has a unique solution u;, = u;,(g, d;, w;,). Hence, we can define the mapping
St Kn(g) > Kiby S (wa) = u, (7.56)

and, as in Remark 4.8, one obtains that it is a contraction.
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We suppose that, for all g € V and dj, € K,
Sta,(Ki(8)) C Ki(g). (7.57)

Let ug;, be the unique fixed point of the mapping S }(0).0, SO

uon € Ki(f(0)),

a(uop, wi, — uop) + jr(f(0), uop, w) — jr(f(0), uop, uop) = 0V wy, € Kj.
(7.58)

From Theorem 7.1, it follows that
uop — ug strongly in V| (7.59)
as h — 0, ug being the unique solution of (7.45).

Now, for all g € V and d, € K}, we introduce the following two auxiliary
problems.

Problem (Qﬁ): Find u;, € Kj(g) such that

a(up, vy — up) + ju(g un, vip — di) — ju(g, un, up — dp)
2 b(g,l/lh,Vh - Mh) vvh S I/hv (760)
b(g,up,zn —up) >0 Vz, € Ky,

and
Problem (ﬁﬁ): Find u;, € K;,(g) such that

a(up, vy —up) + jn(g, un, v —dp) — ju(g, up, up—dp) =0 Vv, € K. (7.61)
We will suppose that
If uy, is a solution of (Rﬁ), then uy, is a solution of (Q;‘,). (7.62)

Remark 7.4. 1t is obvious that, if u;, satisfies (Q;’l), then uy, satisfies also (ﬁﬁ).

Let us consider the following semi-discrete problem.
Problem (Qf): Find u, € W'2(0, T; V) such that

up(0) = uon, up(r) € Kp(f(1)) Vit e[0,T],

a(up(t), vy — i (t)) + jr(f @), un (), vi) — ja(f (), up(t), i, (1))
>b(f (), un(t), vy, —iup(t)) Vv, €Vyae in]0, T,

(7.63)

b(f(t),un(t),zn —un(t)) 20 Vz, €K, Vtel[0,T].
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The full discretization of (Qf) is obtained by using a backward difference scheme

as in Sect. 4.3 for (Q“): for uz =ugppandi € {0,1,...,n — 1}, we define u’+1 as

the unique solution of the following problem.
Problem (Q{)}: Find u, "' € K} such that
aGu, ™ vy = 3ul) 4+ ja (S ) = (U g )
> b(fiF T v —0ul) Y, eV, (7.64)
(w20 Yz € Ky,
where Ki+1 Kp(fi ).

By (7. 62) and Remark 7.4, it is easy to see that Problem (Qf)! is equivalent to
the following quasi-variational inequality.

Problem (R{)i : Find uf’l K ,’;H such that

a(u’+l Wh_uh+l)+]h(fz+l i+1 Wh_”fl)
. ‘ (7.65)
— (LT T ) >0 Ywy, € K

From (4.83), (4.86), (4.90), (4.101), and (7.57), it follows that the mapping

Sh

. i+1 i+1
f"+1,u; . Kh - Kh ’

defined by (7.56), is a contraction, so that (Rﬁ)il has a unique solution.
We now define, as in the continuous case, the functions

Upn (0) = lpy (O) = Uopn »

uhn(t) = MZ—H .
oY 0,1,....,.n—1} Vte@,tiv].
uhn(t) = Mh + (t— t,~)8u§1 Le { n } € ( +1]
(7.66)

Then, the functions u;,, € L*(0,T;V;) and &, € W12(0,T; V) satisfy the
following problem.

Problem (Qf)n: Find up, (t) € K(f,(¢)) such that

a (uhn(t), Vh — %ﬁlzil(t)) + jh(fn(t)a uhn([)v Vh)

d
—Jh (fn @), upn (1), Mhn (t)) (fn (@), upn(t), v — 51"\1%0)) (7.67)
Vv, €V,

b(fu(t), upn(t),zn —upa(t)) >0 Vzy € Ky.




128 7 Approximations of Variational Inequalities

Moreover, we have the analogues of Lemmas 4.12 and 4.13. Hence, we conclude,
as in Theorem 4.19, that the following convergence and existence result holds.

Theorem 7.4. Assume that the hypotheses (4.83)—(4.90), (4.96)—(4.98),(4.100),
(4.101), (4.105), (7.46), (7.57), and (7.62) hold. Then, the problem (Qg) has at
least one solution. In addition, there exists a subsequence of {(upy, lpn) nen*, still
denoted by {(upy, Upy) nen*, such that

up,(t) > up(t) in V. Vtel[0,T] asn— oo, (7.68)
U = up, in WY20,T;V) asn — oo, (7.69)

where w, € W'2(0, T; Vy,) is a solution of (Qf).

We now proceed to find a priori estimates for the solutions of u;, of (Qf) which
are limits of subsequences of {uy,, },.

Lemma 7.2. For h > 0, let u, be the solution of (Qy},) given by Lemma 7.4. Then,

lun (] < Coll flcqorivy YE€[0,T], (7.70)
t

() — up (@) < CO/ | f(0)ldt Vs, te[0,T] s<t, (7.71)
N

lsllwizorsvy < Coy/ T o revy + 1/ Baorars - (7.72)

where Cy is the constant, independent of h, given by the relation (4.116).

Proof. Using the same arguments as in the proof of Lemma 4.12, we obtain the
estimates

lunn DI = Coll flleqory Vi €[0.T],

min{t+A¢, T}
letn (8) — upn () || < Co / ||f(r)||dr Vs, t€[0,T] s<t,

N

~ 2 2 2 F 12
”uhn”Wl,Z(o,T;[/) = C() (T”f”C([O,T];V) + ”f”LZ((]’T;[/))‘

Combining these results with (7.68), (7.69) and taking into account that the norm
is weakly lower semicontinuous, the estimates (7.70)—(7.72) follow. O

Now, we have in position to prove the following convergence result.

Theorem 7.5. Under the assumptions (4.83)-(4.90), (4.96)—(4.98), (4.100),
(4.101), (4.105), (7.46), (7.57), and (7.62), there exists a subsequence of {uj}p,
still denoted by {uy}y, such that
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up(t) = u(t) stronglyin V. Vte[0,T] ash—0, (7.73)
i, =~ it weaklyin L*©0,T;V) ash—0, (7.74)

where u € WY2(0, T; V) is a solution of (Q%).
Proof. From Lemma 7.2, it follows that there exists a subsequence of {u,};, and an
element u € W12(0, T; V) such that
up(t) — u(t) stronglyin V Vte[0,T], (7.75)
wp, —u weaklyin W'20,T:V).. (7.76)

Moreover, from (7.75) and (7.59), we get
N

. . L. . .
11}1115(1)1f/ a(up(t), uy(t))dr > E(h;r,ll:(r,lfa(uh (s), un(s)) — %E)r%)a(uoh, Uop))
0

N

> %(a(u(s),u(s)) — a(uo, o)) = /a(u(l),it(t)) dt ¥se[0,T]

0

(7.77)
On the other hand, from the hypothesis (7.49), we have
s s
1ilgrlj(1)1f/ Jn(f (@), un (@), iy (1)) dr = f JOF@) u(), i(t))de . (7.78)
0 0

Next, we prove that u satisfies (7.44). In order to pass to the limit in (Qf ), we will
make a convenable choice of v, in Vj,. Let 7, : L*(0, T; V) — L*(0,T; V},) be the
projection operator defined by a (v, wy,) = a(v,wy,) Yv € L*(0,T; V), Yw, € V.
Obviously, the operator mj, is well defined and 7;v(t) — v(¢) in V a.e.on [0, T ],
hence, by (7.49) and (4.97), it follows that, for all s € [0, T'], we have

s

%i_rf(l)/jh(f([)v”h(t),”hv(t))d[ = /j(f(t),u(t),V(t))dt Vv e L*0,T;V)
0

0

and

hnn})/b(f(z),uh(t),m,v(z)) dr = /b(f(t),u(t),v(t))dt Vv e LX0,T;V).
0 0
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Since b(f(t),un(t),u5(t)) = 0 ae. on [0,T], by integrating (Qf) over [0, s]
for v, = s and passing to the limit, we obtain that u satisfies the first inequality
of (7.44).

Now, we prove the strong convergence (7.73). Using the same argument as in the
proof of Theorem 4.19, by taking v = 0, v = 2it in (7.44), v, = 0, v, = 2u;,(¢) in
(Qf) and using (7.77), (7.78), for all s € [0, T ], we have

s

lim inf / a(u (1), i (1)) di = / alu(), i(r)) dr, (1.79)
0 0

limint f Jn(F @) un(e). ion(e)) dt = / JCF@)u(e). i) dr. (7.80)
0 0

and, by taking v, = m,u(t) in (Qp), we obtain

s s

limsup/a(uh(t),ith(t)) dr < /a(u(t),u(t))dt Vse[0,T]. (7.81)
0

h—0
0

From (7.79) and (7.81), it follows

S s

lim / aup(0). i (1)) d = / a(u(t). il0)) dr,
0 0

or
Lim (a u (5)., un(5)) — a(un(0), ux (0))) = a(u(s). u(s)) — a(uo, uo).
We recall that uy, (0) = ug;, and up, —> u strongly in V. Hence, we conclude
lim a(uy(s). un(s)) = alu(s),u(s)) Vs €[0.T]

which, with the ellipticity of a, implies the strong convergence (7.73).
Finally, we prove that u satisfies the second inequality of (7.44). From (Qy),
as j(f(t),un(),-) is sub-additive, we deduce that, for all ¢ € [0, T' ], we have

a(up(t),vip —up(t)) + ja(f @), up(t),vi —up(t)) =0 Vv, € Kj. (7.82)

Let v € K be arbitrarily chosen. Then, from (7.46), there exists r;v € K;, such
that r,v — v strongly in V. By passing to the limit in (7.82) for v, = ryv and
using (7.73) and (7.50), we get that u satisfies

a(u@),v—u@)+ j(f@),u),v—u()) >0 VveKkK
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which, by the hypothesis (4.105), implies that u satisfies the second inequality
of (7.44). From (7.73) and (7.48), it results that u € K(f) which completes the
proof. O

Using Theorems 7.4 and 7.5, we conclude with the following main approxima-
tion result.

Theorem 7.6. Under the assumptions of Theorem 7.5, the sequence {uj, }nn of all
solutions of complete discrete Problem (Qg)n has a subsequence, still denoted by
{tthn }nn, such that

up,(t) —> u(t) stronglyin V. Vte[0,T] ash—>0,n— o0, (7.83)
i — it weaklyin L*(0,T;V) ash — 0,n — oo, (7.84)

where u € WY2(0,T; V) is a solution of Problem (Q%).
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Part I11
Contact Problems with Friction
in Elasticity



Chapter 8
Static Problems

In this chapter we study, in an almost exhaustive way, a contact problem with
friction which models the contact between an elastic body and a rigid foundation.
The contact is modeled upon the well-known Signorini conditions and the friction
is described by a nonlocal Coulomb friction law. The classical formulation of the
model is described, and a variational formulation of the problem is derived. Under
appropriate assumptions on the data, existence, uniqueness and regularity results are
provided. We also derive two dual formulations of this problem. Numerical analysis
is carried out and convergence results are proved. Finally, a related optimal control
problem is studied.

Most of these results are obtained by applying abstract results on variational
inequalities presented in Part II.

8.1 Classical Formulation

We study here a static unilateral contact problem with nonlocal Coulomb friction in
linear elasticity.

Let us consider a linearly elastic body occupying a bounded open set Q C R¢,
d = 2,3, with a sufficiently smooth boundary I" which is decomposed into three
open and disjoint parts Iy, I'y, I such that I' = fo UT; UT,. The body
is subjected to the action of volume forces of density f given in 2 and surface
tractions of density g given on I'j. The displacements are prescribed on I'y. For
the sake of simplicity we suppose that the body is clamped on I'y and, so, the
displacement vector vanishes here. On I'; the body is in unilateral contact with a
rigid foundation (Fig. 8.1).

We denote by u, €, and o the displacement vector, the infinitesimal strain tensor
and, respectively, the stress tensor related, in the framework of linear elasticity, by
the constitutive law:
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////

Fig. 8.1 The contact with a rigid support

0ij = ajjxnexn (W) .
This law expresses a linear relationship, the generalized Hooke’s law, between

the stress tensor and the small strain tensor (also, called linear, infinitesimal, or
Cauchy’s strain) defined by:

1 [ Oy, ouj
gy == (2 ) 1<ij<d.
Ej(u) 2 (an + Bxi) =hJ

Here and below we adopt the usual summation convention. We suppose that the
elasticity coefficients a;;x; satisfy the usual symmetry conditions

Qjjkh = Ajink = aghij 1 =<1i,j,k,h <d, (8.1)
and the ellipticity condition
Jo > Osuch thatagiséy & = alE>, V& = (&) e RY . (8.2)

We use a classical decomposition in the normal and the tangential components
of the displacement vector and of the stress vector on T, i.e.

uy, = u;v; , U, =u—u,v
o, = Uijl)il)j , O = O',‘j\)j — OyV;
where v is the exterior unit normal to I" with the components v = (v;).
The unilateral contact on I'; is described by the Signorini’s conditions (see, e.g.,

[51,52]):

u, <0, o0,<0, wuo,=0 onl,. (8.3)
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We see that, in the unilateral contact, the non-penetration condition (x, < 0)
of the body into the obstacle, which is assumed to be rigid and fixed, is taken into
account. The Signorini’s conditions express the fact that two cases are possible: the
case when there is no contact between the body and the foundation (characterized
by u, < 0 and 0, = 0) and the case when there is contact (characterized by u, = 0
and o, < 0). Hence, the effective surface on which the body comes into contact
with the obstacle is not known in advance and it is a part of I',. But these conditions
are not smooth since o, is a multivalued application of u,,. In fact, we have

oy(uy) =0 ifu, <0,
0,(0) € (—00,0].

We can regularize the Signorini’s conditions by using the compliance model of
[36, 45] in which o, is considered to be a nonlinear function of u,. In fact, the
condition of non-penetration, u, < 0, is relaxed, i.e. the penetration is allowed but it
is penalized with a normal compliance term. Though this model has the advantage of
being simpler from mathematical point of view and having a mechanical meaning,
it is not convenient for dealing with problems where the penetration into the obstacle
is small: in this case o0, is a very stiff function of u,, i.e. 0, becomes almost a
multivalued application of u, (see [49]).

We suppose that the contact on I', is with friction which is modeled by
Coulomb’s law. Outlined initially by Amontons [3], this law, which became famous,
was presented to the Academy of Sciences of Paris in 1785, by the French engineer
Charles-Augustin de Coulomb [19] under its form for static dry friction: “the
relative sliding between two bodies in contact along plane surfaces will occur when
the net share force parallel to the plane reaches a critical value proportional to the
net normal force pressing the two bodies together”. The constant of proportionality
is called the coefficient of friction and it is dependent on the nature of the materials
in contact. It should be mentioned that at the time when Coulomb has formulated
his law, the concept of constraint and the general equations of the linear elasticity
had not emerged. This law describes the effects of friction between two bodies and
the raw slipping of the body relative to the foundation. The future developments of
this law are written in terms of velocities: the frictional force required to initiate
and to maintain the sliding is proportional with the magnitude of the normal force
of contact and the tangential velocity is collinear to the tangential force. However,
the static case, which is considered in this chapter, is a very convenient approach
for problems describing monotonic loadings and, also, it can be considered as
an intermediate problem in solving evolutionary problems by using incremental
formulations (see Sects. 4.3 and 9.1). Therefore, the Coulomb’s law is given by the
following conditions:

lo:| < nloy] = u, =0

onl’, (8.4)
o] = ulov] = u, = —Ao, ?

lo:| < ploy| and
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where u is the coefficient of friction and |- | denotes the absolute value if it is applied
to a scalar or the Euclidean norm if it is applied to a vector.
This law shows that ¢, is a multivalued application of u, :

o'r(ur) = —MOy ifur < Os

.(0) € (no,, —puo,)
o.(u;)=po, ifu,>0.

As in the case of unilateral contact, a regularization of this law may be obtained
by considering a normal compliance penalization term (see [4,32,33]).

Finally, the classical formulation of this static unilateral contact problem with
friction is given by the equations of equilibrium, the constitutive relation (linear
elasticity), the kinematic equations (the linearized strain tensor), the boundary
conditions on I'y and I'; and the unilateral contact conditions of Signorini and the
friction law of Coulomb on I';.

Find a displacement field # = u(x) such that

—dive = f inQ,
1
o =€, e:E(Vu+VuT) in Q,

u=0 only,

c-v=g only,

u, <0, 0,<0, uo0,=0 only,,

loc| < ploy| = u, =0
lo.| = ploy] = IA >0, u, = —Ao,

(8.5)

on Fz,

o] < oy | and {

where &7 = (a;jx;) is the fourth order tensor of elasticity.

Remark 8.1. Obviously, the Coulomb law with unilateral contact should be written
under the form

u, <0, 0,<0, uo0,=0 only,
lo:| < —po, = u, =0

only.
lo.| =—po, = IA >0, u, = Ao, 2

|Gr| = —HOy and {

However, we shall prefer to keep the formulation (8.5) unless a few special cases
when the above formulation is more convenient (see Sects. 8.4 and 8.8). For the
strengths and the weaknesses of the formulation (8.5), see also Remark 8.3 below.

Unfortunately, the writing at each point of the Coulomb law leads to great math-
ematical difficulties. Indeed, as we will see later, the variational formulation of this

problem is a quasi-variational inequality which contains the term / uwloy@)||v.|ds

I

or f wo,@)|v.|ds. But, if
)

ueUs={veH(Q);v=0ae onTy},
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then o, (u) is not defined on I',. Moreover, even if u € (H'(R2))? satisfies Eq. (8.5);
for f € (L*(Q))¢, then o, (u) is defined as a distribution only, and |0, ()| has no
mathematical meaning. More precisely, it is known (see, for instance, [23]) that

o,(w)e HVX('), Vue H, (Q) ={veH(Q)!; diva@) e (L* ()},

where H~'/2(T") denotes the dual space of H'/?(T"). Also, the stress vector o - v is
defined, via an extension of the Green formula, by

(0ij@)v;, y(vi))ij2r = /Oij(u)fij(v)dx+/0ij,j(u)vi dx

& (8.6)

Q
Yue Hi (Q) VYve (HY(Q)!,

the symbol (-, )12, denoting the duality pairing between H~Y2(T") and H'*(I).
Obviously, if u is a regular function, then we have the classical Green formula:

/o,j(u)vj v;ds = /oij(u)eij(v) dx + /oij,j(u)vi dx Vve (HI(Q))d
r Q Q
8.7)
where ds is the surface measure element.

Therefore, if u € (H'(R))? satisfies Eq.(8.5); for f € (L*(R2))?, then
0ij.; € L*(Q), which implies 0, (v) € H~Y2(T") and |0, ()| has not a mathematical
meaning on I'. One can avoid this difficulty by using a nonlocal version of the
Coulomb law. This law, introduced by Duvaut [22], stipulates that the motion at a
point of contact between two deformable bodies may occur when the magnitude of
the tangential stress vector at that point reaches a value proportional to an average of
the normal stress vector in a neighborhood of the point. The character of the effective
neighborhood and the manner in which the neighborhood stresses contribute to
the slipping condition depend on the micro-structure of materials in contact. The
nonlocal character of this law is given by the regularization of the normal stress
vector 0, which is defined (see [20,22,46,47]) at each point as a convolution on a
small area surrounding the point:

o () (x) = f wp(1x = y)) (=0, () dy
I
where

0

wp(x) = CeX*—p? if 0 < |x| <p,
0 if |x| > p,
with C a constant such that / wp(x)dx = 1.

—e
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Hence, the local contact between the asperities is taken into account. So, in the
sequel, we will consider the following problem.

Problem (#): Find a displacement field u : Q — R? such that

—dive = f inQ,
1
o =0() =€, ezz(Vu—i—VuT) in Q,

u=0 only,

o-v=g only,

u, <0, o0,<0, wuo0,=0 onl,,
lo.| < pu|%Zoy| = u, =0 on T
lo.| = ul%Zo,| = AL >0, u, = Ao, '

(8.8)

lo:| < u|#ao,| and

where Zo, denotes a regularization of o, which will be specified later.

8.2 Displacement Variational Formulation

From now on, we will suppose that the elasticity coefficients a;;x, satisfy the usual
symmetry and ellipticity conditions (8.1) and (8.2).

In order to obtain the variational formulation of the mechanical problem (&),
we make the following regularity hypotheses on the data:

f e LX), g e (LX),

aijrr € L*(RQ), i,j.k, 1 =1,....d,

ne LX), p>0ae. only

X : H™Y/2(T,) — L*(T',) is a linear continuous operator

(8.9)

where H~'/2(T",) is the dual space of H'/2(T;) = {v/T2:v € HY/*(): v =
0a.e.on I'\I',}.
Let us introduce the following linear subspace

V={peH'(Q):v=0ae onTy} (8.10)

of the Hilbert space (H'(£2))? and the set of statically admissible displacement
fields defined by

K={veV;v,<0ae. only}. (8.11)
We shall use the notation:
aw,v) = fa(w)e(v) dx Vw,veV,

@ (8.12)
jrw,v) = /ul%av(wa)l lv/|ds VYw,veV

I
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where Py : V — C ; is the projection operator onto the closed convex set

Cr=(peVi.ar.9)=(f.9) Vo< (2(Q)}.

Remark 8.2. Since o, (w) € H™Y*(T'), for any w € Hclﬁv(Q), we may define the
functional

Jjw,v) = //L|,%crv(w)| v,|ds Ywe HL (Q), VveV. (8.13)
I
It is obvious that we have
Jrwv)=jwywy) YweCy, VvelV.
Remark 8.3. As mentioned in Remark 8.1, the functional j ¢ (-, -) can be defined by
jrw,v) = —/u%ou(wa) v/|[ds Vw,veV
I

but, in this case, we will make the following additional assumption on the
regularization operator %:

Z(r) <0 Vre H VXD,

and so, Z must be more regular. However, the above assumption seems to be too
strong taking into account that in problem (£?) one imposes o, (#) < 0 only for the
solution u.

We denote by F the element of V' given by

(F.v)y = (f.v)o+ (g,v)or, =/f-vdx+/g-vds YweV, (8.14)
Q

Iy

where (-, -)y denotes the inner product over the space V.
The variational formulation of (£?), in terms of displacements, is the following
one.

Problem (P): Find u# € K such that
aw,v—u)+ jrw,v)—jrwu)>F,v—u)y VYVvek. (8.15)

Remark 8.4. The condition of non-penetration is taken into account by the appurte-
nance of the displacement to the cone K of the Hilbert space V.
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Remark 8.5. 1f u is a solution of the problem (P), then, by taking v = u + ¢, with
¢ € (2(Q))7, we getu C s, and so,

jr,v)=jm,v) VYveV.
Remark 8.6. Forany v € C s, we have

low @) l-1/2.0 < CAWIT + LA 19, (8.16)
where C is a positive constant depending only on Q and || - [|=12,r, || - [l and || - [|o
denote the norms on H~Y/2(T"), (H'())¢ and, respectively, on (L*(2))?.

Remark 8.7. For any u,v € V, we have
low(Pru) — 0, (Psv)|-1/2r < Cllu—vl;. (8.17)

Indeed, if u,v € V, then Pru — Pyv € Co = {v € V;a(v,9) =0, Vo €
(2(2))?}. From the relation (8.16), taking into consideration that v > o, (v) is
linear and the projection operator is non-expansive, we obtain

low(Pru) —ou(Pyv)|-1/2r < Cl[Ppu— Pyvli < Cllu—v|.

Theorem 8.1. The problem (2?) is formally equivalent with the problem (P) in the
following sense:

(i) If u is a sufficiently smooth function which verifies (), then u is a solution of
the quasi-variational inequality (P).

(ii) Ifu is a regular solution of the quasi-variational inequality (P), then u satisfies
(2) in a generalized sense.

Proof. (i) As usual, for obtaining a variational formulation, we suppose that all
the functions are sufficiently smooth so that all the mathematical operations are
justified. From (£?); we deduce directly thatu € C s, so Pyu = u and

Jrwy) = jv)y VYveV. (8.18)

Multiplying the equation (&), with v —u for v € K and integrating by parts
over 2, we get the Green formula:

(f,v—u)y=a(u,v—u) —/Ui_,(u)vj(vi —u;)ds. (8.19)
r

Now, by using the conditions (#?);—(Z?); and taking into account that u and v
belong to K, we have
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/Ul'j (ll)l)j (V,‘ — u[)dS = /aij (ll)l)j (V,’ — M,’)dS + / O'[_/‘ (u)vj (V[ — M,‘)dS

r T I
4@ vmuytam—uas= [¢-0-ua
) I
-I—/(U,,vU 40, (v, —u;))ds > /g -(v—u)ds
) I
+/ar-(v,—u,)ds, Vve K.
I
(8.20)
Combining the relations (8.19) and (8.20), one obtains
a(w.v—u)+ j@.v)— j@.u)—(F.v—u)y
> /(u|<%’av(u)|(|vz| —|u ) +o,-(v.—u))ds Vvek. (8.21)
)
Next, we will prove that the conditions (£?)4 imply
E = p|Zo,@)|(|ve| — lu:]) + 0 - (v —u;) =20 ae.onTy, 8.22)

Vv smooth function.
Indeed, if |0 ;| < u|Zo,(u)|, then u, = 0 and, so
E = p|Zoy )| |ve| + 0 -ve = (n|Zoy ()| — o) v:[ = 0.
If |o.| = u|Z#o, ()|, then u, = —Ao, and, thus

E = p|Zo, )| |v:| — Apu|%o, )| |o | + 0 -ve + Alo|?
=lo¢||ve|+0,-v.>0.

Finally, from (8.21), (8.22), and (8.18), it follows
aw,v—u)+ jrwv)—jrwu)—(F,v—u)y >0 Vvek.

(i1) If u is a solution of the variational problem (P), then, by taking v = u + ¢ with
0 € (2(R))?, one obtains

a,9) = (f,9), Yo e (2(2)".

On the other hand, from the Green formula (8.7), one has

a(u, ) =—/diva-¢dx, Vo € (2(Q))°,
Q

which gives (), in a generalized sense.
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We multiply now (£), with v —u, forv € K, we integrate over 2 and we
use the Gauss divergence theorem. This leads to

a(u,v—u)—(f,v—u)o=/(a-v)-(v—u)ds
T

and so, from the variational inequality (P), we have

j(u,v)—j(u,u)—/g-(v—u) ds—l—/(or-v)-(v—u) ds>0 Vve K, (823)

where we took into consideration the Remark 8.5, ie. jr(u,v) =
j(u,v), Vv € V, with j defined by (8.13).
Choosing v = u & ¢ with ¢ € (H'/>(I"))? and supp ¢ C T, it follows

[(a-v—g)-gods=0

I

hence (), holds. Therefore, keeping in mind the inequality (8.23), one obtains

j(u,v)—j(u,u)—l—/[av(vv—uv)—|—0,~(vf—ur)] ds>0 VveK. (8.24)
)

Now, we choose v = @, +u,v with ¢ € (H'/2(T"))¢ such that supp ¢ C T',.
Since v, = u,,v; = ¢, and 0 .¢, = 0.9, we deduce

/[u|%(ov)|(|wf| D) +or gl ds = /a, u, ds

I I

thus, as |@| > |@,|, we have

/(Mlﬂ’(m)l lo| +0.-9)ds —/(MI%(%)I lur| + 00 u)ds=0.

Taking ¢ = A¢ with A > 0, we get
AT, —T, >0 VA>0

where

T = /(M(om o + 00 @)ds.

T, = / (W2 (0,)| Jue] + 00 -u.)ds

I
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Therefore, we have
T\>0, T,<0 Ve e (H"Y*T)) such thatsupp ¢ C I'.

This implies, by taking ¢ = ¢,

/ o] Lol ds < / (W% (o)) lplds Vo € (H'(T)) with supp @ C T,

I I
and so, |0 ;| < u|Z(0,)|. Since T, < 0, it follows that 7, = 0 and, thus
wlZ )| |lu| +0,-u, =0 ae.only. (8.25)

This gives (#)¢. Indeed, if |o0.| < w|Z(0,)| then, assuming u, # O,
from (8.25), one obtains o, - u, = —u|%(0,)||u.| < —|o.||u.| and, so, it
is necessary to have u, = 0. If |0 .| = u|%(0,)|, then, from (8.25), it follows
0, -u;, = —|o.||u.|, and so, there exists A > 0 such thatu, = —Ao,.

In order to obtain the Signorini conditions (£?)s, we recall (8.24) and we
take v = @,v + u, where ¢ € (H'(I"))¢ with supp ¢ C I'; and ¢, < 0 ae.
on I',. We obtain

[UU% ds — [ oyu,ds >0 Ve e (Hl(l"))d with supp ¢ C I'; and

T2 T2 ¢y, < 0ae.only.

By taking, as we made in the cases of the conditions ()¢, ¢ = A@ with A > 0,
we recover the conditions (£?);. Obviously, as u € K, the condition u#, < 0
a.e. on I', is satisfied. O

8.3 Existence and Uniqueness Results

In this section we give existence and, for a small enough coefficient of friction,
uniqueness results for the solutions of the static unilateral contact problem with
nonlocal Coulomb friction (P).

The beginning of the general theory of contact problems can be attributed
to Duvaut and Lions [23] which gave a first mathematical formulation of the
contact problem with friction in linear elasticity and proved an existence and
uniqueness result for the solution of a bilateral contact problem (the contact is
maintained independently of the direction of the efforts) with given friction (often
called, by analogy with the corresponding plasticity law, Tresca friction). The first
existence result for static unilateral contact problems with local Coulomb friction
was obtained by Necas et al. [41] and then extended by Jarusek [30]. Concerning the
static problem where the contact is described by a normal compliance law, we quote
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the results of Oden and Martins [45], Klarbring et al. [32, 33] and, for unilateral
contact problems with nonlocal Coulomb friction, the results of Demkowicz and
Oden [20], Oden and Pires [47], and Cocu [17].

We consider the case d = 3. We first prove the following existence result.

Theorem 8.2. Let the hypotheses (8.9) hold. We assume that one of the following
two conditions is satisfied:

meas (I'y) > 0, (8.26)

To=0@and ¥ NK = {0}, (8.27)

where . = {v; v(x) = a+bAx witha,b € R?} is the set of rigid displacements.
Then, the set of all solutions of the quasi-variational inequality (P) is a nonempty
weakly compact subset of K.

Proof. We shall show that the hypotheses (4.32)—(4.35) and (4.37) of Theorem 4.14
are satisfied. First, we remark that the operator A : V — V™ defined by

(Au,v) = a(u,v) Vu,veV,

is linear and continuous. Here, (-, -} denotes the duality pairing between V* and V.
We will prove that any of the two conditions, (8.26) or (8.27), implies the
existence of a constant C > 0 such that

(Av,v) > C|v|} VveK, (8.28)

i.e. the operator A is strongly monotone (|| - ||; denotes the norm on (H'(2))?).

If meas (I'y) > 0, then ./ N ¥V = {0}. On the other hand, if v € V such that
a(v,v) = 0,then¢;;(v) = 0,Vi, j € {1,2,3}. Hence there exist {a;; }; jeq123 CR
such that

Vi = a;; + Zainj i €{1,2,3}
J#i
a,-j—i-aj,-:O Vl?é],
and so,v = a+ b A x with a = (a1,a2,as3) and b = (as;, a3, asz). Thus we
have

av,v) =0 veVi=vrve.”.
The above relation and the symmetry condition (8.1) imply that /a(v,v) is a

norm on ¥ which is equivalent to the norm ||v||;. Indeed, as meas (I'y) > 0, Korn’s
inequality (see, e.g., [27]) holds, i.e.

[estemar+ [vnar=cpii wev. (8.29)
Q Q
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Hence, arguing by contradiction (see, for instance, [23, p. 116]), one proves that:

/Ei./‘ (ei;j()dx = C / vividx VveV,

Q Q

with C a constant depending only on €2 and I'.
Therefore, from the ellipticity condition (8.2), it follows that there exists a
constant C = C(«, 2, I'y) > 0 such that

aw,v) > Clpv|? VveV,

where « is the ellipticity constant from the relation (8.2).

IfTy =@ and.” N K = {0}, then we decompose V = . & .+ where
St represents the orthogonal complement of . in V' and, taking into account that
Korn’s inequality (8.29) still holds in . Lie.

aw.w) = Clw|? VYwe.7t,
it follows that
aw,v) > C||v||f Vve K.

Concluding, the condition (8.26) or (8.27) is enough to ensure that the operator A,
corresponding to the bilinear form a(-,-), verifies (8.28). Therefore, by using the
positivity of the function j ¢, by taking vo = 0, it follows that the condition (4.37)
is satisfied.

It is easy to verify that, for any u# € V, the mapping v +— jr(u,v) is proper
convex continuous.

Next, we will show that, for any v € V, the mappings u + j,(u,v) and u
Jr(u,u) are weakly continuous on K. Let {u;}; C K be a sequence which is
weakly convergent to an elementu € K.

For any arbitrary element u* € C s, we can write C y = u* + C,. Hence, we
have

Pyv=u*+ Pyv—u*) VveV, (8.30)

where Py : V —> C is the projection operator on the linear subspace Cg of V.
Indeed, for every v € V, by denoting v = u* + Py(v —u*), one has v € C ¢ and

G—vw—v)y =(Pov—u*)—(v—u*),z— Pyv—u*))y >0 VweCy

where z € C such that w = u™* + z. Therefore, the relation (8.30) is a consequence
of the uniqueness of the projection of v by the operator Py .
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The relation (8.30) implies, Py being linear continuous, that Pru;y — Pru
weakly in V. In addition, the mapping u +— o, () is weakly continuous, the trace
operator from V to H'/?(T") is compact and, so it is Z. It follows that the mappings
u — js(uv)and u — jr(u,u) are weakly continuous. Hence, by applying
Theorem 4.14, the proof is complete. O

Remark 8.8. The existence of a solution for the problem (P) under the hypothe-
sis (8.26) or (8.27) or

To=0 . (F.v) <0, Vve.”NK\{0} (8.31)

is obtained in [17] by using the Ky-Fan inequality (see, for instance, [40,44,55]).

An uniqueness result for problem (P) is obtained in the case of a small enough
coefficient of friction (see also [17]).

Theorem 8.3. We assume that the assumptions (8.9) are satisfied and meas (I'y) > 0.
Then there exists 1 > 0 such that for any p € L*®(Ty) with u > 0 a.e. on I’ and
|l Loo(ry) < 1, the problem (P) has a unique solution.

Proof. This existence and uniqueness result can be obtained by applying
Theorem 4.16. We will show that the functional j ¢ (-, -) satisfies the relation (4.42).
By using Schwartz’s inequality (2.6) in L?(I';) and taking into account that the
operator Z is linear continuous, we obtain

ljr@i,va) + jr(ua,vi) — jr(ui,vi) — jruz,va)l
= |/M(|=@(0v(1’fu1))| —|Z (0, (Pruz)))(|va:| — [vic]) ds|

I

<1 [ WP = Pru)lva; - vl as (8.32)
I

< pllzoe@pllZ (0 (Prur — Prua))ll2mp) IV — v2ll (12(rp))e

< Cil|pllzeerpllov(Prur — Pruz)|—1/2.1, Vi = vall(r2qroyye »

with C; a positive constant.
So, since the trace operator from V into (L?(I';))? is continuous, with (8.17) we
deduce that there exists a positive constant C; = C»(£2, I';) such that

|y @i, v2) + jrua,vi) — jri,vi) — jr(uz,v)| (8.33)
= C2||M||L°°(r2)||u1 —u2||]||v1 —V2||1 Yuy, uy, vi, v €V,

ie. jr(-,-) satisfied (4.42) with k = Cy||it|| Loo(r,)- Then, if we choose

o

) 8.34
G (8.34)

O<[L1<

it follows that, for any u € L®°(I';) with u > O a.e. on I'; and || u|lzoory) < 1,
we have k < «. Hence, the result follows from Theorem 4.16.



8.4 A Regularity Result 149

Let us also note that, using Theorem 8.2, this uniqueness result can be directly
derived from the quasi-variational inequality (8.15). Indeed, supposing that there
exist two solutions u; and u, of Problem (P), we take v = u3_; in the inequal-
ity (8.15) corresponding to u;, i = 1,2. Then, by adding the two inequalities and
taking into account that j s (u;,v) = j(u;,v), Vv € V, we obtain

alluy—us |} < |Gy, ua)+ (o ur)—j @y, u)—j W, us)| < Cllpll ooy lur—ual?

o
with C a positive constant. Hence, for 0 < p; < Il and ||| Loo(ry) < pi, we get
u, = u. O

8.4 A Regularity Result

The solution of the quasi-variational inequality (P) is not, in general, enough
smooth and, therefore, by Theorem 8.1, this solution does not satisfy the classical
problem (£?). For this reason, it is called weak solution. Thus, it is very useful to
find necessary conditions which ensure a good regularity for the solutions of the
problem (P).

In this section, following the work [18], we give a local regularity result for the
solutions of the problem (P). This result is obtained in more restrictive hypotheses
on the data, namely

I #0, (8.35)
aijk € CH(Q) , (8.36)
weC'(Ty), w=0o0nT,, (8.37)

# : H™'/>(T';) — C'(T',) is a linear continuous operator such that (8.38)
Z(t) <0, YT e HVX(T) '

feL*(Q), ge X ()!. (8.39)

In what follows we also suppose the problem (P) has at least one solution (for
instance, if one of the conditions (8.26), (8.27), or (8.31) is satisfied).

We remark that, if u is a solution of the problem (P), then the functional j s (u, -),
defined by (8.12)3, can be rewritten under the form

Jjru,v) = —/M%(Gv(u)) [v/|ds VveV.

I
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Theorem 8.4. Let u be a solution of the problem (P). Suppose that Q is C3-smooth
in all x € T,. Then, under the above hypotheses, for every open set U such that
U C QUTY,, we have

uec (H*U) .

Proof. For obtaining this result, we will apply Theorem 5.3.

Let x € T',. From the definition of the C3-smoothness of Q at x, it follows
that there exists a neighborhood / of x such that @ N 7 can be mapped by a
C3-homeomorphism onto S and the set 9Q N T can be mapped onto the set ¥ where
the sets S and X are defined in Sect. 5.2.2 (see p. 94). We may assume, without loss
of generality, that 0Q2 N I C T,.

Let u be a solution of the problem (P). Then, we remark that u verifies the
following variational inequality

/ ajjri€ij w)ex (v) dx + / r(s)|v,|ds — / r(s)|u,|ds
Qni NI NI (8.40)
> / fi(vi —u;)dx Vve K,,

Qn!
where 7 (s) = —u(s)%(0,())(s), Vs € T', and
K,={weH' QNI :w=uinQNdI, w,<0onT,NI}.
Indeed, for any w € K, it follows that w’ € K where

, _fwonQnNlI,
~|lu onQ\I.

Thus, by taking v = w’ in (P), we get (8.40).

In order to apply Theorem 5.3, we use an argument due to Fichera [24]. The C?
smoothness of €2 at x implies that, in every y € € N [, there exists an orthogonal
system of unit vectors w'(y),...,w?(y) such that w' € (C*(Q NT1)¢, i =
1,....,d andw?(y) = v(y) fory € T, N 1. Hence, foranyv € (H' (2N 1)), we
can write

v(y) =v(yw'(y) VyeQnl.

We put ¥ = (v1,---,vq). Let X be the closed convex subset of (H'(Q N 1))¢
defined by

X={peHQNN): v=ainQNdlandvy <OonT,NI}.

It is obvious thatv € K, iff v € X.
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Now, let us define the following forms:

v 9V, v B
b, V) = / (af-‘,-l(y)ﬂl ) BALSA y dd
oh dy; dy; ayi ay;

+d“(y)vka;) dy Vi eX,

J&) = / r(s)y@)ds VieX,
LNl

(L,i')Z/Lj\_ﬁdy Vv e X,
QNI

where

ki k. 1 ki kool
aj; = QijgrwgW, bi" = aijgrwg(W,)
ki k I ki k I

¢ = a,-jqr(wq),jwr d™ = aijq{'(wq),i (w,).j

Y) = |01, a-1,0)| Ly = fiw].

We directly obtain that

b V) = / aijri€ij e (vV)dx Vo, v e X,
QnI

J) = / r(s)|v,|ds VveX,
NI

(L,f:):/fividx Vv e X,
Qni

hence, the variational inequality (8.40) becomes
bw,v—u)+Jv)—J@m) > (L,v—u) VveX. (8.41)

It is easy to verify that J, L, and X, defined above, satisfy the hypotheses of
Theorem 5.3 with 2 replaced by 2 N /. Moreover, from Korn’s inequality (8.29)
it follows that b satisfies the relation (5.38) for any ¥ € (H'($2 N I))? with supp
v C QN 1. Therefore,u € (H2(Q N 1.))4, VI, 5 x with T, C I.

Arguing as in the proof of Theorem 5.3, we conclude that u € (H*(U))?. O

8.5 Dual Formulations for the Frictional Contact
Problem (&)

The variational formulation (P) (see p. 141) of the Signorini problem with nonlocal
Coulomb friction is called the primal formulation of the mechanical problem ()
(see p. 140), and has as unknown the field of displacements. In this formulation,
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the compatibility equations are verified in a strong manner while the equilibrium
equations are verified in a weakly sense.

In what follows we will consider dual formulations of (&) where the unknown
will be the field of stresses defined on €2 or only on a part of I'. The first dual
formulation (P}) is obtained from problem (£?) in a similar way as in the case of
the formulation in terms of the displacement, and it is dual in the sense that the
unknown, instead of the field of displacements, is the field of stresses. In contrast
with the primal formulation (P), the dual formulation (P}) verifies the compatibility
equations in a weakly sense and the equilibrium equations in a strong one.

The second dual formulation (P}) is obtained from the primal formulation (P)
by applying the M—CD-M duality theory (see Sect. 6.2, p. 110), and it involves as
unknown the stress field on the contact surface I'; only. This is why it is called the
dual condensed formulation.

We will suppose that the assumptions (8.9) are satisfied and that meas (I'y) > 0.
Then, from Korn’s inequality (8.29), it results that there exists a constant C =
C (2, T'y) such that

leWlla = Clvlli VYveV, (8.42)
where H is the Hilbert space
H={t=(t); w=1;€l*Q), 1<i,j<d},
endowed with the inner product

(o,7)g = /O[j(x)fi_j(x)dx Vo, € H,
Q

and the corresponding norm || - || g. Thus, the space V endowed with the inner
product (-, )y defined by

(u,v)y = (e(u),e(v)y Vu,veV,
is a Hilbert space, and
vl is equivalent with |v||y Vv e V.
Also, we consider the following Hilbert space
H ={r e H;divt € (L}(Q))},
equipped with the inner product
(0,7)w = (0,1)yg + (dive, div 1),
and the corresponding norm | - || ,». Here, (-,-)¢ denotes the inner product on

(L*(R2))".
Now, we define the set of statically admissible stress fields by
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X(s)={t € H; (r,e®)n + j(s,v) > (F,v) VveK},

where
f<s,v):[ 1l ()| Ivelds V(s.v) € 2 x V.
I

This definition implies that, for every s € 7, the set X (s) is nonempty. Indeed,
since

(e(F),e)u =(F,v)y VYvevV,
and
j(s,v) >0 V(s,v) el xV,

it follows that € (F) € X (s), Vs € 2.
We consider the following variational formulation in terms of the stress

Problem (P}): Find a stress field o : & —> Sy such that

{UGZW) (8.43)

b(oc,t—0)>0 VteX(o)

where S is the space of second order symmetric tensors on R and

b(a,r)z/ga-rdx Vo,e c W,
Q

¢ = o/~ being the compliance fourth order tensor.

Remark 8.9. 1If the condition u = 0 on I'y is replaced by u = u with u( given, then
the dual formulation becomes

{a € X (o)
b(o,t—0)>L(t—0) VteX(o)

where

L(t) = /uo‘t -vds.

To

Following a similar approach as in [21], one obtains the following relation
between the primal formulation (P) and the dual formulation (P}).
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Theorem 8.5. (i) If u is a solution of the primal problem (P), then o defined by
o = A/ e(u) is a solution of the dual problem (P}).

(ii) Conversely, let 0™ be a solution of the problem (PY). Then, there exists a unique
function u € V such that 6* = o/e(u) = o (u). Moreover, u is a solution of
the problem (P).

Proof. (i) If u is a solution of (P), then, by taking v = u + ¢ with ¢ € (2(Q))?,
we deduce that —o;; ; = f; a.e.on Q,ie. 0 € .
In addition, putting v = 0 and v = 2u in (P), we obtain the equivalence
between the problem (P) and the following one

(@, €)u +j(@.v) = (Fv)y VveV,

(0.€@)n + j(o.u) = (F.u)y. (8.44)

thus, o € X (0).
We now prove that o verifies (P]). From (8.44), and the definition of the set
¥ (o), we have

bo,t—0)=(ecw), T —0)g =(r.€ew)y — (0,em)n
> (F.u)y — j(o.u)—(0,em)y =0 VYt eX(o),

which concludes the proof of the assertion.
(ii) Let o™ be a solution of the dual problem (P}) and p = ¥¢*. Then, one has

(p.t—0")g >0 VreX(c?). (8.45)

We denote by (e(V))* the orthogonal complement in H of the closed
subspace €(V) = {e(v); ve V}.Letp € (e(V))4, ie.

P, ev)p =0 VveV.

Then, from the definition of X (¢ *), we have
(U* + f’vG(v))H + ]T(a*vv) = (0'*,6(17))1.1 + ]T(o'*vv) > (Fvv)V Vv e K ’
and, hence 0* = p € X(0*). By taking T = ¢* £ p in (8.45), we obtain
(p,p)r = 0, and thus p € ((¢(V))1)+ = €(V). This implies that there exists
an element # € V such that p = €(u), and, from the consequence (8.42) of the
Korn inequality, we deduce the uniqueness of u. Therefore,

" =dew) =0, (8.46)

and the relation (8.45) can be written as

(ew), T —0)y >0, VreX(c"). (8.47)
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Now, arguing by contradiction, we prove that u € K. For this reason we consider
the following inner product on V

w.v)a=aw.v)=(cw).e0)y = (Few).e®W)y YwyveV, (848)
and we denote by | - || 4 the corresponding norm which is equivalent, thanks to the
properties of a(-, -), with the norm || - ||y. Hence, (V, || - || 4) is a Hilbert space.

Let us suppose that u ¢ K. If Pg : V — K denotes the projection operator of
(V, || - | 4) onto the nonempty closed convex subset K of V, then we have

(Pgku—u,v), > (Pgu—u, Pku)y > (Pku—u,u)y, Vve kK,
and so, there exists & € R such that
(Pxku—u,v)y >a > (Pgku—u,u)y Vvek.

Putting 0 = 0 (Pxu —u) = o/e€(Pgu—u) € H, we get

(6.€()n = (0 (Pxu—u).e()n

= (Pgku—u,v)y>oa>(Pxku—u,u)y = (6,e(w))g VYveKk, (8.49)
and, by taking v = 0, we deduce
(06,€(w))g <a <O0. (8.50)
On the other hand, we will prove that
(6,e()g >0 VveKk. (8.51)
Indeed, let us suppose that there exists vo € K such that
(6,e(vo))g <O. (8.52)

Since Avg € K, YA > 0, then, from (8.49), we obtain
AMo,e(vo))g >a, VA =>0.

By passing to the limit with A — 400, together with (8.52), we deduce that
a < —oo which contradicts the hypothesis « € R. Thus, the relation (8.51) is
proved, and, since 6* € X (0'*), one has

(6*+6,e0))g+j@*v)= (0" e0)g+j@*vV)V+G.e0)g > (F,v)y VYvek,
hence 0* + 6 € X (6*). Therefore, by choosing T = ¢* + & in (8.47), we obtain

(0,€)y >0, (8.53)

which is in contradiction with the relation (8.50). We conclude thatu € K.
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Next, we will see that u verifies (P). First, from ¢* € X (¢*), one has
(6. eW)u +j@*v) = (F.v)y Vvek, (8.54)
and hence, also
(c*. €@ + j(*.u)> (F.u)y. (8.55)
Putting

j(a*,v)ifve K,

J * =
o*(¥) +o00o otherwise,

we deduce that the function Jz+ : V —> R is subdifferentiable on V, and hence
there exists 01 € H such that

(01, ev—u)yg+j@*v)—jc*u)>(F,v—u)y Vvek.
By taking v = 2u and v = 0, we deduce
(01, €@)n + j(o*u) = (F,u)y, (8.56)
(1. €W+ j@*v)>(F,v)y VYvek. (8.57)

The second relation involves o1 € X (6 *). Therefore, we can take T = o in (8.47),
and so

(01, €@)n > (0", e@)n. (8.58)
From (8.56) and (8.58), we have
(F.u)y — j(c*.u)> (0", ew)y .
which, thanks to (8.55), gives
(0" €@)n + j(o*.u) = (F.u)y. (8.59)

Keeping in mind the relations (8.46), (8.54), (8.59), and (8.48), we conclude the
proof. O

In the following we give an existence and uniqueness result for the solutions of
the dual problem (P}).

Theorem 8.6. Suppose that meas (I'y) > 0. Then, under the hypothesis (8.9),
there exists a constant 1 > 0, depending only on 2, such that, for every | with
il ooy < 1, the dual problem (P}) has a unique solution a. Moreover; this
solution is o (u) where u is the unique solution of the primal problem (P).
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Proof. Following Theorems 8.3 and 8.5, the result is immediate. Nevertheless, we
give here a proof which puts into evidence two useful mappings for the study of the
problems (P) and (P}).

Let the mappings 7 : Z —> ¢ and U : & —> J¢ be defined, for any
s € ,by T(s) = o(uy) = e(us) and U(s) = a5 where uy is the unique
solution of the problem (P§*), defined below by

Problem (Pi¥),: Find u; € K such that
a(ug,v—ug) + j(s,v) — j(s.us) = (F.v—u,)y Vvek (8.60)

and, respectively, o is the unique solution of the following problem

Problem (P3*),: Find 6, € X (s) such that
b(og, T —05) >0 Ve X(s). (8.61)

We note that the auxiliary problems (P§*), and (P5*) are the variational formu-
lations of contact problems with given friction. The existence and the uniqueness of
ug, and respectively o, follows from Theorem 4.12.

First, because oy € X (5), we have

(0s.€W)g +j(s,v)>(F,v) YvekK

hence, by taking v = +¢ € (Z(R2))”, we obtain that —div o, = fa.e. on Q, i.e.
0 € 7, and thus the mappings U is well defined.
On the other hand, by taking v = 2u, and v = 0 in (P{¥), we get

(0 (uy), €y))m + j(s,us) = (Fuy)y (8.62)
(0(us). €W)u +j(s,v) = (F.v)y VveKk, '

hence o (uy) € X(s), and so o (uy) € S, i.e. the mapping T is well defined.
We will prove that U(s) = T'(s) ,Vs € . Lets € 7 and T € X (s), i.e.

(t.€W)nu + j(s,v) > (F,v)y Vvek.
Choosing v = ug, we obtain
(v.e@)m + j(s.u) = (F.uy)y
which, together with the first relation of (8.62), gives
(t —o(us). €(ms))g =0,

or

b(o(ug), T —o(ug)) >0 Vt e X(s). (8.63)
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Since o (u;) € X(s), from (8.63) we deduce that o (uy) is a solution of the
problem (P5¥),. Hence, taking into account that the problem (P5¥); has a unique
solution, we conclude that o (uy) = o, i.e. U(s) = T(s).

The mapping T is a contraction on 7. Indeed, if 51, s, € JZ, then, from (P§¥),,,
i €{1,2}, we have

—div o (uy,) = —divo(u,,) = f a.e.on 2,
and so,

IT(s1) =T llr = llo(us,) — o (us)|lr = |0 (us, —us,) || n
(8.64)
< Cille(us, —us,)|lm = Cillus, —us,|ly < Cllus, —us,|l .

Now, by adding the inequalities (P{¥),,, i € {1,2}, forv = uy,_,, we obtain
a”usl _uSz”% = a(usl — Usy, Usy _uSZ) = |]T(sl»uS2) - ]T(slvuh) + ]T(SZ’uﬂ)

—ﬂuwme/M%@m—@amu%»—wwam

I
< Clipllzooyllst — sallellus, — g, |l

thus

IT(s1) = T(s2)llr < Cllpllooryllst —s2llr -

Therefore, for p sufficiently small, it follows the mapping 7 is a contraction,
which, together Banach’s fixed point Theorem 4.7, implies the existence of a unique
element s* such that 7'(s*) = s*. Taking in mind that the set of all fixed points of
the mappings 7 and U is the same with the set of all solutions of the problem (P),
and, respectively, (P}), we proved the existence and the uniqueness of the solution
u* of (P), and respectively o * of (P}) witha* = o (u™). |

In the sequel, by applying the Mosco—Capuzzo-Dolcetta—Matzeu (M—-CD-M)
duality theory, described in Sect. 6.2, we obtain, following [14] (see, also [56,57]),
the so-called dual condensed formulation of the problem (P).

Let u be a solution of the problem (P). According to Remark 8.5 we have

nww=ﬂmw=/w%mwmwm eV,
I

and hence, u is a solution of the following problem

Find u € V such that
o(Lu,u) + ¥ (w,u) < o(Lu,v) + ¢y @u,v) Vv eV
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where

Yvw,v)=aw,v—u)—(F,v—u)y Vu,veV,
L:V —Y=L*T,, Lv=Z0,v) VYveV,

/(0,v)=/u|0||vrlds VoeY,VveV,
I
o(Lu,v) = Z(Lu,v)+1Ig(v) = jw,v)+Ig(v) Yu,veV.

It is easy to verify that iy, L and ¢, defined above, satisfy the hypotheses
(6.10)—(6.12) from p. 111.
In order to derive the dual formulation, we take

CO) = {t* e (HVXT)); (x*v)ijar < Z(0,v), VveV} VOeY
={ze H/*(I,); z=yz/ Ty withze H'(Q),z=00nTy, z < 0},
(8.65)

where (-, -)1/2.1, denotes the inner product between (H~'2(T,))? and (H'/?(T,))4,
or between H ™Y/ 2(1"2) and H/2 (I';), and Ik denotes the indicator function of the
set K.

An easy computation gives the following form for the Fenchel conjugate of ¢
with respect to the second variable

e*(Lu,v*) = sup {0 v — F (Lu,v) — Ig(v)}
vE(H/2(Ip))4

= sup (Vi wdijan — Ik, W) + (W vo)ijar, — Z (Lu,v))}
ve(H/2(I))4

= 1£,00) + Ieaw ) = Ikr OF) + Ie@ewy 7)€ (HT'2(0)!
where K¥ denotes the polar cone of the set K, in H'Y2(T,), ie.
K} ={" e H'VX([y): (*.21jar, 0. Vze K}

From the definition of the set C(6), and taking into consideration that
Z(0,(u)) € L*>(T,), we obtain

0 ifv]eK}
*(L , *) v
¢"(Lu,v7) +00 otherwise.

vi e C(L)). 5.6

We now compute the Fenchel conjugate of ¢ with respect to the second variable:

v @.v*) = sup{(v*,v) —a(w.v —u) + (F.v —u)y}
veV
=a(u,u) — (F,u)y +sup{(v*,v) —a(u,v) + (F,v)y}
vev
= a(u,u) — (F,u)y + sup(v* — Au + Fv) (8.67)

veV
0 ifv*=Au—-F,

= ) - F?
au) = (F.u)y + + o0 other,

Vv e V*
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where (-,-) denotes the duality pairing between V* and V and A € L(V,V*) is
the operator defined by

(Au,v) = a(u,v) Vu,veV.

It is easy to verify that, for every u € V, the function v — ¥ (u,v) is Gateaux
differentiable at u and

Dy (u,u) = Au— F .

Since A € Z(V,V*), we can define the Green’s operator G = A~ for
the boundary value problem in linear elasticity, and G € Z(V*,V). Thus,
u = G(F) + G(Dyy¥(u,u)), and, if we put u* = —D,(u,u), it follows that
u= (DY)~ (~u*) = G(F) + G(~u*).

If we suppose that the solution u of the problem (P) is smooth enough such that
o0,(u) € L*(I',), then, by Theorem 6.8, the dual abstract formulation (6.19) applied
to the problem (P) takes the form

W —u*u)r, <0 W= (), v)) € K x C(0y).

By putting 6* = —u™ and t* = —v*, it follows that the dual condensed formulation
of the problem (P) can be written as the following quasi-variational inequality

Problem (P3): Find 6* = (0,,0;) € (—K}) x C(0,) such that
(t*=6*,G(6™)+G(F))ior, 20 V¥ =(1,,7,) € (—K])xC(0,). (8.68)
The extremality conditions (6.16) become

a(w,u) — (F,u)y = (oy,u,)1/20, + (0, U )1/215,
Jw,u) = —(o.,u)ir,, (8.69)
(ov, u)1j2m, = 0.

Concluding, by Theorem 6.8, we have the following result.

Theorem 8.7. If meas (I'y) > 0 and the hypotheses (8.9) hold, then there exists
a constant iy > 0, depending only on 2, such that, for every pu € L% (I';) with
1> 0ae onTyand || p||Loory) < (i1, the dual problem (Py) has a unique solution
o*. Moreover,u = G(0*)+ G(F) is the unique solution of the primal problem (P).

Since (P3) is a problem for the stresses on the contact surface I'; only, it is called
the condensed dual formulation of the problem (P).

We remark that the problem (P}) cannot be separated into two inequalities in
order to determine the contact normal stress o, and the contact tangential stress o ,
on I'; independently, their coupling being imposed by the appurtenance of o , to the
set C(0,). However, if we suppose that the Green’s operator is known, the problem
(P5) is very useful for the numerical determination of contact normal and tangential
stresses (see [9, 10]). The same happens in particular cases, as we shall see in
Sect. 8.7.
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Finally, let us note that the M—CD-M duality theory can be applied to many other
unilateral or bilateral contact problems as quasistatic or dynamic frictional problems
for elastic materials or frictional problems involving contact normal compliance
conditions for viscoelastic materials.

8.6 Approximation of the Problem in Displacements

In this section we consider (see, also [48]) the finite element approximation of
the primal problem (P), p. 141. In order to derive some error estimates of this
approximation, we limit our study to the case where the solution is unique.
Therefore, we suppose that the regularity hypotheses (8.9) are satisfied and, in
addition, we assume that

Q is a bounded Lipschitzian domain in R¢ ,
meas (I')) >0, I, 20, (8.70)
il ooy =

with p; satisfying the relation (8.34) from the proof of Theorem 8.3.

Let u denote the unique solution of the problem (P). Then, by Remark 8.5, we
have j(u,v) = j(u,v), Vv € V, with j defined by (8.13).

Let /1 be a given parameter converging to 0. We consider a family {V j,};~0 of
closed subspaces of V and a family {Kj},~o of nonempty convex closed subsets
of V', which approximates K in the sense of the internal approximation defined
in Sect.7.1, i.e. the conditions (7.8), from p. 116, are satisfied. Also we can
approximate the functional j by a family { "}, which satisfies (7.9)~(7.13).

Proposition 7.1 and Theorem 7.1 lead to the following existence and uniqueness
result.

Proposition 8.1. The discrete quasi-variational inequality
a(uy, vy —uy) + j "y vy) — j wp ) = (F vy, —uy) Vv, € Ky,
has a unique solution uy, € K. Moreover, we have
u, — u stronglyinV,
u being the unique solution of the problem (P).

Now, we suppose that there exists an operator I1;, : ¥V — V', such that

Ty = vl < Chlvll, ¥y e (HX Q) NV, 8.71)
1Ty —vllor, < CR|vl2 Vv e (HX Q) NV, (8.72)
where || - [lo.r, and | - ||, denote the norms on (L?(2))¢, and, respectively, on

(H*(Q))".
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Remark 8.10. Let I1; be, as usual, the interpolation operator I1, : ¥V — V. Then,
it is known that the conditions (8.71) and (8.72) are satisfied (see, e.g., [5, 16]), if,
for instance, € is a polygonal domain of R?, and V', is defined by

Vi={peVn(C' Q) :v/T e(P)’. VT € F},

where Py is the space of all polynomials of degree less than k in the variables
X1,-++ ,Xxq with k > 1. Here, we assume that .7, is a regular triangulation of the
domain €2 such that

We say that a triangulation .7}, is regular if all the angles of any element 7' € .9, are
bounded below from a positive constant, and there exists a positive constant § such
that the length of any side of any T' € .7, is at least §/.

We make the following additional assumptions about K j:
K,CcK, (8.73)
Myu € Ky (8.74)

where u is the unique solution of the problem (P).

Remark 8.11. The conditions (8.73), (8.74) are satisfied if, for instance, we take
d=2k=1,and

Kh = {vh (= Vh; th(a,') < Oifa[ 7é A/ 5 V] = 1, »NQ and
V7 +viavy ) (@) = 0, vy +viavy ) (@) =0 if there exists j=1,--- , No
suchthata; = A;, i =1,--- , N>}

where ay,--- , ay, are the nodes of the triangulation .7, lying on Iy, Ay, --- , Ay,

are the vertices of 2 and v~ = (v, vy), vt = (vl"’, v2+) are the outward unit
normal vectors on two adjacent edges (see [29]).

In the following, for simplicity, we shall consider that j h(v,ll,v,%) =
jOh.vi) ¥vi,vi € V. It is easy to verify that the conditions (7.9)—(7.13)
are fulfilled in this case. Hence, we will consider the following finite element
approximation of the problem (P).

Problem (P),: Find u;, € K such that
a(wp, vy, —up) + jwp,vy) — j@p,up) > (F,vy —up)y Vv € K. (8.75)

Theorem 8.8. Suppose that the conditions (8.9), (8.70)~(8.74), and (7.8) hold.
Then, if the unique solution u of the problem (P) belongs to (H*(2))? N K, one
has the error estimate

lup —ully < ChY*||u]; (8.76)

where uy, is the unique solution of the problem (P),, and C is a positive constant
independent of h.
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Proof. Taking v = uy, in (P) and v, = I1,u in (P),, by addition we get

o|w, — u||% <aw—upu—uy) <al, —u,yu—u)+ (a(u, u —u)
— (F, Myu—u)y) + (j(w,up) + j@p, D) — jup, up) — j(u, i)
+(j(u, u) — ju,u)).

(8.77)

Since u € (H?*(R))?, from the Green’s formula, and the trace theorem, we
deduce

a(,Mpu —u) — (F, Iu—u)y = /Gij (@)v; (Iyu —u); ds

r, (8.78)
< llo - vllorlMu —ullor, < Cillul| I —ulor, -
We also have
. Tyn) = j.w) < €320, @) o Tl = ullor, 579

< Gllov@ |l =12y 1T — ullor, < Collull2 T —ulfor, -

Now, combining (8.78)—(8.79), (8.33), (8.77), and using the continuity of the
forma(-,-), we get

(@ — k) llup —ullt < (M + k) llwy, —ully [|TThu —ull + Csllul2 || Thu —ullor, -
(8.80)

Hence, by using the Young’s inequality

2 b2
abfi—i—— Ve >0, VYa,b e R
2 2¢

2(ax — k)
fore < ————, we deduce
M+ k

(o= ) b=l < 2 =l ol = o,
(8.81)
Therefore, from (8.71), (8.72), and (8.81), the estimate (8.76) follows. O
Remark 8.12. The estimate (8.76) can be also obtained from Theorem 7.3. Indeed,
by taking U = (L*(2))“, and proceeding as in (8.78) and (8.79), we have
(Au—F.,v) < Cillul2llvllor, VveV,
| @.vi) = j@v)| = [j@.vi) = j@.v)| < Clul2lvi —vllor, Yvw € Ky, Vv eV,

and so, the hypotheses (7.42) and (7.34) are satisfied.
Therefore, by applying Theorem 7.3 for v;, = IT,u and putting v = u;, in (7.43),
we obtain (8.76).
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Now, we shall show that a higher order of approximation can be obtained for a
suitable choice of the regularization operator %, namely, we consider the mapping
Z given by the convolution

(@) =wx¢  Yoe H VD) (8.82)

8
where w € 2(-6,8), with § € R, § > 0, is such that /w(t) dr = 1 (see,
-

e.g., [46]).

Theorem 8.9. Let the assumptions (8.9), (8.70)—(8.74), and (7.8) hold. We suppose
in addition that the mapping % is given by (8.82), and that the interpolation
operator satisfies

T = vl =12y < CR2 VIl Vv € (HXHQ) NV (8.83)
Then, ifu € (H*())? N K, we have the estimate

ey, — ully < Chllull,. (8.84)

Proof. 1f the solution u of (P) belongs to H?(£2))?, then it follows that %(c, (u)) €
H'2(T), and so

J, pu) — ju,u) < Col|Z(ov @) 12,0 | | Thw —ul |-1/2.r - (8.85)
From the definition of the norm in H'/?(T"):
19 1l 12y = inf{[vll: ve HY(Q), ¢ =y},

where y : H'(Q) — H'/?(I) is the trace operator, we deduce

2

12 @)y 5, < Il @l = [ | [ ot = yD@ @)@y | ax

Q \I
2
d
ad
+Z/ /8_)([0)(|x _y|)(0v(u))(y) dy dx < CSHO_U(M)”(%T )
T Q r

i=1

(8.86)
We also have

a(u,Myu—u)— (F,TTu—u) = faij (w)v;(Ilyu —u); ds
r
—/g,-(l'[hu —u);ds < CG/ (||‘T : V||(H1/2(r))d + ||g||(H1/2(r))d) [ TLu —u”(H*l/Z(r))d
I

< Gslull2I Tl pu — ull 1121y
(8.87)
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where we have used the relation
g lrape < o - vilarmy -
It is easy to verify that

1/2
Izl M2y < lzllgriaey Yze H (1),

and thus
v 9 v bl
IW -1y = sup 10v]. 2)or| < sup (I, 1zDo.r Vy e (HY2(T)).
Z€H/2(T) ||Z||H1/2(I‘) Z€HY2(T) [ Iz] ||H‘/2(F)
(8.88)
On the other hand, we have
v 5 v ’
Wl -1y = sup M = sup M Vy e (HY2()).
2€H2(T) ||Z||H1/2(F) Z€H/2(T) [l 1zl ||H‘/2(F)
>0
(8.89)
From the last two relations, we get
4B
o = sup Do oz iy (8.90)
v > (vl |
Z€HV2(T) Izl ||H1/2(r)
and, thus
VIl cg—120rye < dll vl =120y Vv € (H'2(1))". (8.91)

Finally, from (8.33), with (8.77), (8.85)—(8.87), and (8.91), the assertion follows.
O

8.7 Approximation of Dual Problems by Equilibrium
Finite Element Method

This section is concerned with the discrete approximations of the dual problem (P}),
given by (8.43), and of the dual condensed problem (P3), given by (8.68). In our
approach we use the equilibrium finite element method introduced in [25].

We suppose that hypotheses (8.9) and (8.70) hold.

We first recall the space

A =H(iv; Q) ={r € H; divt € (L>(Q))%},
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where
H={t=(u); u=1,€l*Q), 1<i,j<d}.

In the equilibrium methods, the finite dimensional spaces V', and ¢}, are chosen
such that the following condition is satisfied.

V1 € 5}, such that
/(dm)vh dx=0 Yy eV, — divi=0inQ. (8.92)
Q

Moreover, we need to be able to construct a suitable interpolation operator ITj, :
H —> ), such that

[div (Iyt)vpdx = /(divr) vidx Vv, eV,, VYt e 7. (8.93)
Q Q

For the sake of simplicity, we shall assume that the open bounded set Q@ C R?is a
convex polygonal. Let .7, be a regular family of triangulations of €2, as in Sect. 8.6,
such that

Q= (JrT.

Teg,

Johnson and Mercier [31] have proposed two different choices of the spaces
A, and V), using low degree polynomials which meet the requirements (8.92)
and (8.93). In both cases, they used composite piecewise linear finite elements,
called macro elements (see Fig.8.2), for the stresses, one triangular and one
quadrilateral, together with piecewise linear discontinuous displacements.

We briefly recall one of these choices. We consider a composite triangle 7, i.e.
T is divided into three subtriangles 77, T», T3.

For each T € .9}, we define the finite dimensional space of piecewise linear
stress tensors by

Fig. 8.2 Composite
triangle 7 1 3
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Hr ={t € %A” T; T - v is continuous across the subtriangle boundaries
1—4,2—-4,3—-4} C H(div;T),

where
Hr =1{t = (1) vy =1 € LAT), i,j = 1,2, ©/Tp € (PI(Te)*, k =1,2,3},

Py denoting the space of all polynomials of degree less than 1 in the variables x1, x;.
The stress space 57 is then approximated by

Hy =t € Hy; divt € (LX)} C A,
with

Hp={teH;1/T € Hr, VT € T},
and the displacement space V is approximated by

Vi={eV;v/T e(P(T))>*, VT € ).

The interpolation operator I1, : S — J¢), is uniquely defined by the
following two requirements:

/v -((r = TT)v)ds =0 Vv e (Pi(S))?, VT € (H'(Q))*, (8.94)
S

for any side S of .7}, v being the outward normal to S, and

/(r ~M7)dx =0 VYT € . (8.95)
T

We shall use || - ||,, and |- |,, to denote the usual norm and, respectively, seminorm
on (H™(£2))? with m and q integers.

By Green’s formula, it follows that this interpolation operator satisfies the
condition (8.93), and, in addition, we have the estimates

Idiv Tz o < Clldivelo VT € N (H'(Q)*
It = Myzllo < Ch2|z), T € 2N (HA(Q))

Proceeding as in [31] or [16], we obtain

|t —Myz|le < Chlt], VYt e n(H* Q). (8.96)
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In the sequel we shall give two error estimates for the equilibrium finite element
approximations ., and V), of the dual problems (Py) and (P}). First, let us
consider the following abstract variational inequality of the first kind:

oeXCX
8.97
%b(a,r—a)zL(r—a),VTGE, ( )

where X is the set of the constraints of this problem. Then, for any internal
approximation of this problem, we have the a priori error estimate (see Remark 7.2,
p. 123 or [16, p. 292]):

1/2

lo —oullr <C ( inf (o —74l% + alle — T4llw) + o inf [lo) — 7|0
THEX), T€X

(8.98)

where C is a constant independent of s, X, is the discrete set corresponding to X
and o = ||Bo — L || with # a Banach space such that 77 C # and B —L € ¥/,
B being the continuous linear operator associated with the form b.

The difficulty in deriving an error estimate, obviously by using the properties of
the interpolation operator Iy, is to construct an approximation X of the set ¥ such
that [1,0 € X ;. We note also that the third term from the a priori estimate (8.98),
which is presumed to have the greatest weight, vanishes if £, C X (a condition
satisfied if, for instance, X, = X N J).

We shall consider two particular cases (see [14]):

(a) the problem without contact and without friction, i.e. the classic problem of
linear elasticity;
(b) the problem with given friction.

For the general case, we only prove the convergence of the approximation.
As usual, for deriving error estimates, we will suppose that the solution ¢ of the
problem (P}) is sufficiently smooth.

(a) Linear elasticity

In this case, the problem (P}) can be written under the form (8.97) with
Y={te; —divt = fae.inQ, T-v=gaeonl} (8.99)
By applying the estimate (8.98), as « = 0, one obtains

lo —oullr =C inf |lo—1zplle. (8.100)
ThEX),

A natural choice of the discrete set X, is to take the functions of 7#;, which
satisfy the conditions of ¥ only in the nodes of the triangulation, i.e.
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Yy={tp€); —divty(x;) = f(x;), Vx; € A () and
(t-n)(yi) =g, Yyi € /(T1)}

where .4 (2) and .4 '(I';) denote the set of the nodes of .7, lying on 2, and,
respectively, on I'j.
Then, we have the following result.

(8.101)

Theorem 8.10. Under the above hypotheses, there exists a constant C, indepen-
dent of h, such that

lo —oullr < Chlol,. (8.102)

Proof. From (8.100) and (8.96), it follows that we must only prove that [1,0 € X,.
In fact, we have even much more

Myr e, VreX.

Indeed, if T € X, then, from the definition (8.99), using (8.93) and (8.94) for a
suitable choice of v;,, we obtain, from the definition (8.101), that 1,7 € X,. O

Proposition 8.2. If the volume force f is constant (weight) and the surface traction
g is linear (linear distribution of forces), then X, = X N ).

Proof. The assertion is immediate taking into account that the approximation .7,
of the stress space 7 is constructed with piecewise linear finite elements, and so,
if a such stress satisfies the condition of ¥ in the nodes of the triangulation, then it
satisfies these conditions in €2, and, respectively, on I';. O

(b) Signorini problem with given friction

As in the above case, the problem (P}) can be written under the form (8.97) with
Y={re; (t,ev))g + Jo(v) > (F,v)y, Vv e K}, (8.103)

where 6 is a given friction (the problem of Tresca) and
Jo) == [ 18 as.
I

We consider the approximation of ¥ defined by
Xp=Atn € Hn: (vn.€wn)u + Jon) = (F.vp)y. Vvy € K} (8.104)

Then, we have the following estimate results.

Theorem 8.11. We assume that f is constant, g is linear, and 0 is concave or
piecewise linear. Then, there exist the constants C, which are independent of h,
such that
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lo —onllr < Ch'lols, (8.105)
low — @)l g-12y < Ch o2, (8.106)
lor = (@ )nll 12y < Ch'lo.ls, (8.107)

where o is the unique solution of the dual problem (P}) and 6* = (0,,0) is the
unique solution of the dual condensed problem (P}).

Proof. By using the same arguments as in the proof of Proposition 8.2, we obtain
¥, = X N ). Taking now in (8.98), T = o and t;, = II,0, we deduce the
estimate (8.105).

Finally, in the dual condensed problem (P}), the unknown ¢* = (0,,0) is
searched in the set (—K) x Cy where

Co = {t* e (H™V2(M))?: (z*.vo)r, < Jo(v). Vv € V}.

Hence, in this case with given friction, we can decompose the inequality (P3) into
two inequalities for obtaining independently o, and o .. Therefore, from (8.100),
and the trace theorem, the assertion follows. ad

(c) Signorini problem with nonlocal Coulomb friction

We remark that, in the general case, in order to derive an error estimate for the
equilibrium finite element approximation of the problem (P}), we must construct
the approximation of X (7 ) such that the following conditions are satisfied:

Hh()' € Zh(O'h),

ppny (8.108)

It is the case, for instance, if the solution ¢ is concave, but this condition cannot
be imposed or controlled. The same conclusion we obtain for the dual condensed
formulation (P} ). Hence, the obtaining of an optimal error estimate, for the general
case, is an open problem as long as we are not able to construct an approximation
which ensures the above conditions. However, in the general case, we shall obtain a
convergence result of the approximation.

Before detailing the approaches we made for this convergence, it must be
mentioned that we can approximate the dual condensed problem (P3) in two
different ways:

(i) We can consider an internal approximation (P), of the primal problem (P)
(as, for instance, in [48]), and then we apply the M—CD-M duality theory to
obtain the discretized dual formulation (P);;

(ii) We obtain, by the M—-CD-M duality theory, the dual condensed formula-
tion (P3) of the primal problem (P), and then, by using the equilibrium
finite element method on plane surface, we deduce the discretized dual
formulation (P3);.
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We now consider the following approximation by the equilibrium finite elements
of the problem (P}).

Problem (P})y: Find 6, € X (0 ;) such that
b(on,Th—04) =0 Yz, € Zy(0y)
where
Zu(s) ={zn € Hn: (Th€vi))m + j(s.vn) = (F.vp)y . Vv, € Kp}.

(8.109)

Our goal is to study the behavior of the discrete solution o, when i — 0.
The proof of Theorem 8.6 suggests the approach that we are going to do next.

For u’ € K and 6° € 7 given, we consider the sequences {u"}, and {o"},
defined by:

Problem (P),: Find #" € K such that
a@",v—u") + jf(u”_l,v) — jf(u”_l,u") >(F,v—u")y Vvek,
Problem (P}),: Find 0" € X (0"~") such that
b(e", Tt —¢")>0 VreX(c")
i.e. u" and, respectively, " is the unique solution, no matter the coefficient of
friction is, of the problem with given friction (P), and, respectively, (P7)n.

We may suppose that u’ € C s. Hence, we have jr(u",v) = j(u",v),Vv € V,
Vn > 0. Also, as u is the unique solution of the problem (P), we have j(u,v) =
ju,v),VveV.

Taking v = u in (P), and v = u” in (P), by adding the two inequalities and by
using (8.33), we obtain:

allu—u"||} <a(w—u" u—u") < j@u")+ j@ " u)— juun)
—j@" " u") < Collpllpooqry llw — w1 [l — w4

hence
e — "y <kl —u"")s
with k < 1 for u chosen as in (8.70) and (8.34). It follows
e —u"lly < K"l — w1 . (8.110)

The relationship between the two problems (P), and (P}), is given by the
proposition below.
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Proposition 8.3. Leru’ € C  and 6° = o (u°) € A be given. Then, we have

o"=0@W"), Vn eN (8.111)
lim |j6" -0, =0 (8.112)
n—oo

Proof. First, let us remark that the condition o (#’) € # is not too restrictive.
Indeed, a natural choice is to take #° € K as the unique solution of

a@’,v—u’) > (F,v—u)y Vvek,

which implies that div o (#°) = — f a.e. in @, and so, o (u°) € 7.
We shall prove by recurrence the relation (8.111). If we suppose that ¢"~! =
o (u"~") holds, then, taking v = 2u" and v = 0 in (P),, we obtain

(c@"),e@ )y + j(@" " u") = (F.u")y, (8.113)
(o), ey + j@" ',v)>(F.v)y Vvek. (8.114)

The last relation gives
o@") e X(a" ). (8.115)
On the other hand, for every T € X (6"™'), one has
(z.e@"))m + j(e" " u") = (F.u")y. (8.116)

From (8.113) and (8.116), we get
b(oc@w"), T —o@") >0 VreX(@@"). (8.117)

Since the solution of the problem (P}), is unique, the relations (8.115)
and (8.117) imply the assertion (8.111).

Finally, taking into account that dive” = dive = —f a.e. in 2, and using the
relations (8.64) and (8.110), we obtain

lo" —ollw=llo@ —w)|n < Clu" —ul, < Ck", (8.118)

with C a constant independent of n, and k < 1. Then, the relation (8.112) follows.
O

In the same way, we approach the discrete problems (P), and (P})y by the
following sequences of problems {(P)nn}, and {(P})nn}n-

Problem (P)y, ,: Find u) € K, such that

a(y,vp —uy) + j@; ™ vp) — j@p ")) = (F v —up)y Vv, € Ky,
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Problem (P})p5: Find 6 € X (0/") such that
b(o},ty—01)>0 Vr,eX(o) ).

withu) € K, and ¢) € 5, given.

We remark that, for any n € N*, the problem (P)y, , and respectively, (P})nn
has a unique solution. Arguing as in the continuous case, we find that the sequence
{(P})h.n}nen+ approximates the problem (P})y in the following sense.

Proposition 8.4. We suppose that f is linear and 02 = a(ug). Then, we have

o, =0(@y) VneN, (8.119)
and
lim |67 — ol = 0. (8.120)
n—>-:00

Proof. The hypothesis on f and the definition of the spaces Vj and 57 imply
that div 6, = div o (u}) = —f ae. in Q. Therefore, by a similar proof as for
Proposition 8.3, the assertion follows. O

We are now prepared to prove the main convergence result of this section.

Theorem 8.12. [f we suppose that f is linear, then
o0, —> o strongly in 5. (8.121)

Proof. In order to obtain the convergence, we write
lon—ollz <llon—ohlr+lo,—0"llr+Ilo6"—allr Yn>=0. (8.122)

From Propositions 8.3 and 8.4, it follows that, for any € > 0, there exists N > 0
such that

Vn > N. (8.123)

NN}

lon —oplle +llo" —ollr <

In order to estimate the second term in the right-hand side of (8.122), we recall
that the construction of the spaces V', and ¢, was obtained with polynomials of
degree one, f is linear, and so

o} —o" e = llo@y) —o@)|r = llo@;) —o@")|a
n

< Clug—u'l, <CY W, —uill ¥n=0.
=0

(8.124)

In the last inequality we used the relation (7.30), W;; being the unique solution of
the problem (P%);), defined by (7.24).
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Finally, from (8.123), (8.124) and Proposition 7.2, by taking n = N, in (8.122),
we deduce that, for ¢ > 0 given, there exists H, > 0 such that

lon—ollw <€ Yh<H., (8.125)

and so, the convergence (8.121). O

8.8 An Optimal Control Problem

In the optimal control theory, the problems which are of interest concern the
existence and, when possible, the uniqueness of an optimal control, and also the
derivation of the necessary conditions of optimality or, better, the necessary and
sufficient optimality conditions. This means to find an equation or an inequality
that characterizes the optimal control. We remark that, if the relation control-state
is linear, then the cost functional is convex differentiable, and so, the optimality
conditions are easy to obtain.

For a better understanding of the problem we shall study in this section, we
briefly recall the main ideas of the optimal control theory (see, for instance, [34,35]),
in the simplest case of a system governed by a continuous linear operator.

We consider two Hilbert spaces: the space V' of states and the space % of
controls. Let A € Z(V,V*)and B € Z(% , V™) be two operators, and f € V* be
a given element. Then, if v € %/ is a given control, the state is defined as the solution
u € V, which, obviously, depends on v, of the following system (mechanical,
physical, etc.) governed by the operator A:

Au= f + Bv.

We also suppose that there exists another Hilbert space W where one can obtain
some observations of the state u = u(v), i.e. one has w(v) = C(u(v)) where C €
ZL(V, W). It is natural to call W the space of observations.

Therefore, to any control v, we associate the cost functional defined by

J) = |C @) —wal}y + Jo()

where wy, € W is a given observation. The additional term Jy(v) is usually
introduced to enrich the properties of the functional J . For instance, if the functional
Jo is coercive, then so is the functional J.

The control problem is the following constrained minimization problem

inf J(v)

V€U ad

where the set %4, called the set of admissible controls, is convex closed in % .
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We say that v* is an optimal control iff v* achieves the minimum, i.e.

JO*) = veigzlzfd J()

From the above example, it is obvious that an infinity of problems can be
considered by taking into account the complexity of the involved systems, the
diversity of the boundary conditions, the nature of the controls or observations
(distributed or boundary).

The work of Lions [34] on the optimal control of systems governed by partial
differential equations represents the foundation of the optimal control theory.
The subject was developed by the contributions of Sprekels and Tiba [54] and
Neittaanmaki and Tiba [43]. For the optimal control of variational inequalities, we
refer to Friedman [26], Mignot [38], Barbu [6], Mignot and Puel [39], Barbu and
Tiba [7], or Neittaanmaki et al. [42].

Despite the fact that there are many applications of the optimal control theory
in mechanics (see, for instance, Abergel and Temam [2], Abergel and Casas [1],
Capatina and Stavre [15]), the optimal control of contact problems is not very often
addressed in the literature. We mention here the results obtained by Bermudez and
Saguez [8], Capatina [13], Sofonea and Tiba [53], Matei and Micu [37] for static
contact friction problems.

In this section we study, following the work [13], an optimal control problem
governed by the problem (P), p. 141. From the physical point of view, it is of
great interest to determine the coefficient of friction, which depends on the nature
of the materials in contact, such that one obtains certain displacements on the part
of the contact boundary. The mathematical formulation of this mechanical model
is an optimal control problem governed by the quasi-variational inequality (8.15).
In such an approach one encounters considerable mathematical impediments,
and the standard methods (see, for instance, [6, 35, 38]) cannot be applied for
deriving the necessary optimality conditions. The difficulties in our problem are
involved by: the state is the solution of a quasi-variational inequality, the control is
a coefficient defined only on a part of the boundary, and the relationship between
the control and the state is nonsmooth and nonconvex. In order to surpass these
difficulties, we will approximate the given problem by a family of penalized control
problems governed by a variational inequality, and then we will approximate each
penalized problem by a family of regularized problems governed by an equation.

We assume that the following hypotheses hold:

I, #0,
meas (I'g) > 0,
f e (LZ(QD‘I . g € (LA(T)?,
aiu € C'(Q). (8.126)
we LTy, pn>0ae only,
# : H™'/>(T') — C(T',) is a linear continuous mapping such that
Z(0,w) <0, Ywe W,

where W = {w € V ; div a(w) € (L3(Q))“}.
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Then, it is easy to see that Theorem 8.2 is still valid. In addition, instead of
relations (8.32) and (8.33), used in the proof of Theorem 8.3, we have

ljr@i,va) + jr(ua,vi) — jp(up,vi) — jr(uz, v)l
< lull2@y 12 (00 (Prur — Pruz)) oy lve = v2ll (z2ry))e
< CllpllLamy) lluy —walli|lvi —=valli Yuy, uz, vi, v €V,

C
and so, by choosing @ < — and by applying Theorem 4.16, it follows that for any
o

p € L*(Iz) with o > 0 ae. on T and ||ullz2r, < 1, the problem (P) has a
unique solution, denoted by u*.
The mathematical formulation of our optimal control problem is the following.

Problem (CP): Find u* € M such that

J(u*) = ;13313 J (1) (8.127)
where
M ={pe L*(T2); Nz < mibs (8.128)
and
J(p) = %/(u" —ug)*ds, (8.129)
I

with u; € L?(R2) given, representing a desired profile for displacements on I'.
Also, to better highlight the dependence of the solution u* of the coefficient of
friction p, we put

o(n,w,v) = —/u%(av(w))|vz| ds YweW, VveV, (8.130)
I
and thus, the problem satisfied by u,, will be written under the following form.

Problem (P)”: Find u* € K such that
a(w,v—u) + o(u,u,v) —o(u,u,u) > (F,v—u)y Vvek. (8.131)

The first result to prove is the existence of an optimal control.
Theorem 8.13. The optimal control problem (CP) has at least one solution.

Proof. The set M is bounded convex closed in the reflexive Banach space L?(T),
and so it is weakly closed. Then, taking into account that the functional J is weakly
lower semicontinuous on M, the assertion of the theorem follows by applying
Weierstrass Theorem 4.2. O
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Since the state u* is the solution of a quasi-variational inequality and the control
M is a boundary coefficient which occurs only in the term defined on I';, we have
less informations about the relationship control-state. Hence, we cannot used the
differentiability of J for deriving a characterization of an optimal control. For this
reason, we will approximate the problem (8.127) by a family of penalized problems
governed by a variational inequality.

More precisely, let us fix a solution 1 of the problem (CP). Then, for any € > 0,
we define the functional

1 1
Sy =5 [ @ = s + 5t - iy
¥ (8.132)
1
+§”M - I’LOHiZ(rz) YueM, Vwe w

where the state u*" is, this time, the unique solution of the following variational
inequality of the second kind:

Problem (P)"": Find u € K such that
aw,v—u)+ o(u,w,v) —o(u,w,u) > (F,v—u)y Vvek. (8.133)

Now, we consider the following family of penalized problems

Problem (CP),: Find (1}, w}) € M x W such that

* kY :
JE(Me’we) - (/L,wr)rénﬁxw Jé(l‘l‘vw) (8134)

From the definition of the functional J, it follows that, if (1}, w}) is an optimal
control for the problem (CP), then the corresponding solution u} = uhe e s
forced to be very closed to w’, and also, the control 1} will be not far from the
chosen optimal control ;1° of the initial problem (CP).

Remark 8.13. In our approach it is enough to consider only the constraint w € W
instead of w € K N W . In addition, this constraint is convenient since it leads, as
one see below, to an equation in the optimality system (obviously, the appurtenance
to K would generate an inequality).

The first result for the family (CP), is an existence one.

Proposition 8.5. For any € > 0 there exists at least one solution (Jie,w.) of the
optimization problem (CP)..

Proof. Every minimizing sequence for the functional J, is bounded. Indeed, let
{(u?,w)}, be a minimizing sequence for J. on M x W, i.e.

lim J.(u”,w!) = inf Je(,w).
nggo (e, we) (;L,w)lélMXW (- w)
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Ifu" = w"<* then, by taking v = 0 and v = 2u in the problem (P)“Z’w’g , and using
the positivity of ¢, we get the estimate
a;,ul) < a u;)+ e, w; ul)=(F.u)y. (8.135)

It follows, by using the coerciveness of a, that the sequence {u’}, is bounded
in V. Taking into account that div o(u)) = —f, a.e. on ©, we deduce that
{u"}, is also bounded in W. As the sequence {i”}, is bounded in L?(T;), the
boundedness of the sequence {w}, in W is a consequence of the fact that the
functional J is proper.

Now we prove that the functional J. is weakly lower semicontinuous. Let
{(u?,wh)}, C M x W be a weakly convergent sequence to an element (., w.) €
M x W. From (8.135), it follows that the sequence {u}, is bounded in V' where
u! = uté¥e Thus, we can extract a subsequence, denoted in the same way, such
that u?! — u. weakly in V, withu, € K.

By passing to the limit in (P)"?'WQ, from the uniqueness of the solution of
(P)#<™<, it follows that u, = w/<¥<. This implies that u! — u. weakly in W.
Thus, from the lower weakly semicontinuity of the norm, we get

timin lu? — w3, > e —wel3, (8.136)
which, together the strong convergence u" — u, in (L*(I"))?, gives

liminf Jo(ul, wl) > Je(the, We) . (8.137)
n—>oo

Finally, since the set M x K is weakly closed, by applying Weierstrass
Theorem 4.2, the assertion follows. a

The following result establishes the relationship between the family of penalized
problems (CP), and the control problem (CP).

Proposition 8.6. Foranye > 0, let (1}, w}) € M xW be a solution of the problem
(CP).. Then, we have

wr — pu®  stronglyin L*(Ty) ,
w* —>u’  stronglyin W, (8.138)
u* —>u’  stronglyin W,

when € — 0, where u®

0
=ut andu’ = uHewe Moreover, we get
. 1 * *
lim —|lu; —wl|lw =0, (8.139)
e—>0 €

and

lim J(u*, w*) = J(u°) = min J (). (8.140)
e—0 HEM
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Proof. Lete > 0, and let (1), w)) € M x W be a solution of the problem (CP),
and u¥ = w'¥<. Since {iu*}. C M, and u’ is a solution of (P)"< ™ | it follows
that the sequences {11} }. and {u*}. are bounded in L?(I';), and, respectively, in V.
Hence, there exist the subsequences { ,ujp }p and {ujp }»» and the elements u* € M

and u € K such that

ok eakly in L2(T,) ,
M:,, po weaklyd (I'2) (8.141)
u; —u weakly in V

when p — oo. Since u* is a solution of (P)"<™¢ | one deduces that there exists
u; € W such that
u:p —u; weaklyin W . (8.142)

The sequence {w}. is also bounded in W . Indeed, since u" is also a solution of
(P)“O'"O, ie u® = u’ = u"" we have
lw* —w* |3, <2eJc(u*,w¥) < 2eJ (u°,u’) = 2¢J(1°) . (8.143)
From (8.142) and (8.143), we conclude that

w:p —~u; weaklyin W . (8.144)

Now, by passing to the limit in (P)“» "%, we obtain that u satisfies
a(w,v—u) + o(u*, uy,v) —o(p*,u,u) > (F,v—u)y Vvek,

and hence, u € W. Therefore, from (8.141) and (8.142), we get u; = u and then, u
is the unique solution of (P)*", i.e.u = ut".
In addition, since i is a solution of (CP), we get

1 1 1
1) = 5 [@=usas < 5 [ as + 5w = s,
S , (8.145)

<liminf J, (uf Wi < liminf J, (1.u’) = J(u®) < J(u*)

which implies u* = u° u = u®. Therefore, the whole sequence {(u*, w’, u})}.
converges to (1, u®, u®) weakly in L2(I;) x W x W.
On the other hand, from (8.143), we have

1 1

1 1
=5 [ —uas < 360 - 5 [ @ - upias (8140
Fz I‘2
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hence

. 1 2 1 02 oy Lo . 2
timsup (5l <y -+ 7 = 0y ) < 000 it [ a5 <0,
¥

and, so
. 1 * * 1 * 0 _
lim = lug —wellw = lmflpg — 17l 2y =0 . (8.147)

i.e. the relations (8.138); and (8.139) hold.
0 * %k
Next, by choosing v = u* in (P)" and v = u® in (P)"< "<, by adding them, we
obtain

alimsup |u* —u®|} <limsupa(u’ —u’, u* —u°)
e—>0 €—~>0

S SIE)I}) (@(/L:, w:» uO) - (p(M:’ W:, u:) + QD(MO, uo’ u:) - (p(/’LO’ uo’ uo)) = O
(8.148)

thus (8.138)3, which, together with (8.143), leads to (8.138),. We remark that we
have always used the fact that u} = ue v and u® = u”’, hence lur —ulllw =

e —ully .
Finally, from the definitions (8.132) and (8.129) of J., and respectively of J, by
using (8.138); 3 and (8.147), we obtain (8.140). O

Until now we have reduced the constraints of our control problem to a variational
inequality of the second kind. Unfortunately, even if the problem (CP), is more
simple than the original problem (CP), it does not enable us to obtain the optimality
conditions for an optimal control since the functional J. is not differentiable.
In order to avoid this difficulty, for every € > 0, we consider a family {(CP),,},>0
of regularized problems.

Problem (CP),,: Find (1f,,w?,) € M x W such that

Jepuly Wh) = | min ey (g1, w) (8.149)

where {J.,}, is the family of functionals defined by

1 1
Sty = 5 [ @l = ds + Sl = wlfy
a (8.150)

1
+5”“_“0”2L2(r2) YueM, Vwe W

uﬁ " being the unique solution of the variational equation defined below.

Problem (P){": Find u € V such that

a@,v) + (Ve ,, @),v) + (Bp(w),v) = (F,v)y VveV. (8.151)
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We have denoted by B, : V — V™ the Yosida approximation of the
subdifferential dlx : V — 2V" of the indicator function Ix of K, ie.

1
Bo(v) == — R,)(v), Vv € V,* where [ denotes the identity operator on V
P

and R, : V — V is the resolvent of the maximal monotone operator d/x defined
by R,(v) = (I + pdlx)~'(v), Vv € V (for more details, see [50,58]). Also, we
denoted by {(pﬁ,w}p a family of convex functionals (pﬁ,w : ¥V — R which are of
class C? weakly, i.e. Vol : V — V* and V3¢, ,, : V — Z(V, V™) are weakly
continuous, and, in addition, satisfy the following conditions

(n,w) — ‘/’Z.w is linear, (8.152)
lim @ y) = W, v) VYveV
lim @ppm, V) = @(.w.v) (8.153)
Y (ip wp) = (1, w) weakly in L*(T) x W,
liminfg?  (v,) > WY
mir Pppw,Vp) = (1w, v) (8.154)
V(i Wp,vp) = (1, w,v) weakly in L* () x W x V
I — 0P
@i, V) = € (V) (8.155)
Y (s Was Vi) = (i, w,v) weaklyin L>(I) x W x V

Remark 8.14. We may choose
) = 942w, 8,00) = = [ 0G0 00)ds
I
where the function 0, : (L*(T,))¢ — L?(I,) is an approximation (see, e.g., [45]) of

the function | - | : (L*(T,))¢ — L?*(T",) which is defined, for p > 0, v € (L*(T,))?
and almost everywhere x € I';, according to

Qp(v(x)) - (lv(x)| 1)
0

o 3 if p(x)| zp.

In this case, it is easy to verify that

Vel 0)p = — / UG, W) O,(v) - pods Vv, peV,
I

where 9/', S (L2(T))Y — (L*(I'))?, for a.e. x € Iy, is given by
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l (2_ |V(X)|) V()C) if |V(X)| <p,
o= ° & P (8.156)
if v(x)|=>p.
v ()]

In addition, for every v, p € (L*(T';))? and for a.e. x € T';, one obtains

1 ((2_ M)p_ lv(x)-pv(x)) if v(x)| <p,

6/ (v) - p(x) = pl ( p p Iv()]

v(x)-p . N
v \P 7 P v(x)) if p(x)]=p.
(8.157)

and

(V25 ,0) - p.q) = f U@, W) 610 (p, g )ds V. p.geV .
I

Now we prove that each problem (CP),,, has at least one solution and the family
(CP),, approximates (CP), in a sense that we shall precise.

Proposition 8.7. For every p > 0, there exists at least one solution (7, w?,) €
M x W of the problem (CP),,. Moreover, there exist the elements (17, w7, u;) €
M x W x K such that

Hi, — wr weaklyin L3(T2)

w:‘p —w} weaklyin W, (8.158)
u, —>u; stronglyin V,
when p — 0, where u, = uggp ™ In addition, we have
ur = uhe v (8.159)
and
. * *\ * kN :
})1_1;[‘(1) JGP(Mep’ wgp) - JG(M{ ’ wg) - (;L,wl;rell]lI}XW J€ (I’Lv w) . (8160)

Proof. The functional J, has the same form as J. with u satisfying a more simple
and regularized constrain. So, arguing as in the proof of Proposition 8.5, one obtains
the existence of an optimal control for (CP),,,. We remark that the existence and the
uniqueness of the solution uly " of (P)g " is easy obtained by applying the Browder’s
surjectivity theorem (see, for instance, [11, 12,28]) the operator A + Vgoﬁ,w + B :
V — V* being strongly monotone, hemicontinuous, and coercive on V, and so,
it is bijective.
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Let us prove the second part of the proposition. Let (u:‘p, w;‘p) € M x W bea

* ok
HepWep

solution of (CP),,. Since u?, = u, € W and {i,}, C M, it follows that the
sequences {u;,}, and {;1{,}, are bounded, and so, there exist the elements u? € M
and u. € W such that, on the subsequences, we have

* ¥ weaklyin L2(T) ,
Hepy ™ He yin LAT2) (8.161)

ul, —uc weaklyin W
when p — +o0.
For the sake of simplicity we shall omit the subscript p in what follows.
On the other hand, since ¢(u.0,v) = 0, Y(u,v) € L*(Iy) x V, it follows

*.0 *
up” = whe ¥, and thus, we have

e}, — w5 < 2eJ2(ul,.wh) < 2eJP(uk,0) = 2eJ (1}, 0)
which implies that the sequence {w} }, is bounded. Hence there exists w; € W

such that, on a subsequence, still denoted by wjp, one has

* * .
wo, —~w; weaklyin W,

when p — 0.
1w,

Now, by passing to the limit in (P), with p — 0, we obtain that
u. =u’ € K whereu? = uhewe

*

Further, from (P)”j Me | (P)g“’ e , (8.153), (8.154), and taking into account that
@(u,w,-) is weakly continuous, we get

. 2 . p
o hlzlj(l)lp gy —uelli < lim g e @) =g Wl )

s P * . * * ok
_ <
hf)n lélf‘puz;,w;; (u,) + gln‘(l) plps we u;,) <0,

i.e. the relation (8.158)5.
In order to prove (8.160), let (u2,w%) € M x W be a solution of (CP),,

0,,0
0 _ 10w 0 _ , HeWe 0 : :
u;, = wu'<" andu;, = u,""*. The sequence {u.,}, being bounded in W, from the

uniqueness of the solution of (P)"g’wS and the properties (8.153)—(8.155) of (pﬁ_w,
we deduce that ugp — u? strongly in W when p — 0. Hence

: 0 0 0 0
lim [ug, —welw = llue —welw .
p—0

Therefore
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*

Je(ue.we) = liminf J2 (g, wey) < lim sup J¢ (T

p—>
1 1
<1 JP 0’ 0<_1' 0o _ 2d i 0o _ .,0¢2
< u;lj:)lf) S(peswe) < 2pgn10F/(u€p uq)~ds + 2e Jim e, —wellw
2

1
+§”H‘2 _I‘LO”iZq‘z) = JG(IU/(G)’W(S)) = JE(/‘L:»WZ)

and, by (8.160), the proof is completed. O

Finally, by using all the previous convergences, we obtain that /L:p is a suboptimal
for the problem (CP).

Proposition 8.8. Let (17, w;,) € M x W be a solution of the optimal control
problem (CP),,. Then, we have

lim J(uk) = J(u°). (8.162)
€, p—>0

Proof. Let @i, = ue and u® = w*’. By taking v = ° in (P)*% and v = i, in
(P)“O, by adding them and by using the properties of a and ¢, it follows

a”ﬁep - uOH%/ = a(i‘ep —u, Uep— ”0) = |‘/’(M:p» Ucp, uO) - (p(l’l’:(p’ Ucp, ﬁep)
+o(u’ u’ i) — (. u® u®)| < [(@(°, 4’ dtep) — o (u°, u’, u’)

‘HP(MO’ Uep, uO) - @(Mov Uep Uep))| + |((p(l’l’:p7 Ucp, uO) - (P(MO» Uep, uO))
_((p(l’l’:p’ &epv ﬁsp) - ‘P(M()’ ﬁep» ﬁsp))| =< k||/LO||L2(1~2) ”ﬁsp - u0||%/

ki, = 10Nl 2oy leplly e, —ully .

Now, by using the boundedness of the sequence {i.,},, and by taking u; < %

(the same condition as in Sect. 8.3, Theorem 8.3, p. 148, for the uniqueness of the
solution of the problem (P)*), it follows

lize, —u’llv < Clluk, — 1l 2y

with C a constant independent of € and p.
Hence, the convergences (8.158) and (8.138) allow us to obtain (8.162). O

In order to obtain the necessary conditions of optimality for a solution of the
problem (CP),, , we shall use the G-differentiability of the functional Je,.

Lemma 8.1. The functional J., is G-differentiable and, for any (u*,w*) € M x W,
we have

aJ.
8—“’(#*,W*) (- pt) = / 2, (" —ug)ds

‘1‘ Iy (8.163)
Fo@ =Wy (=l =), Ve M
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and

0J, 1
—L o w*)ow= | hi@* —uy)ds + —(hEi—w.u*—w* )y VYweW
w I €

a
(8.164)
where u* = u}, ™ is the unique solution of (P)g*’w and zy,, hy € W are the
unique solutions of the problems

*

a(@y.v) + (V2. @) 25, v) + (VB ™) 25 v)

H 8.165
= <V(p£*—p.,w* @w*),v) ¥YveV, ( )

and, respectively,
all ) + (VG e ) ) + (VB,@) I v) 8166

= _(V‘Pﬁ*,w(u*)’ﬂ VveV

Proof. Let (u*,w*)e M x W.
For every t € (0,1) and u € M, let us denote u, = u* + t(u — u*) and

u, = up"" . From (P)ﬁ”w*, and using the positivity of V(Dﬁt.w* and f8,, we get

lu:lly = C (8.167)

with C a constant independent of 7.
. u; — u* . * w*ow* .
Putting z; = ; withu™ = u,, ™ , we obviously have z; € W, and, from

(P)," ™" and (P)"™", it follows thatz, satisfies

(Ve o @ +12,) = Vol (), v)
a(zhv) + L : B

(Bolu® + 1) — Bo(*). )

t

+ = (V(pZ*_u'w* W +1z,),v) VYveV.
(8.168)

Taking v = u, — u™* in (8.168), and thanks to the monotony of VgoZ*_w* and B,,
we get

ol|u; —u*||%, <a(w —u*u, —u*) <alw, —u*,u, —u*)
+(V(P£*,w* () — V‘Pﬁ*,w* (™), u;, —u*) + (,Bp(ut) - ,Bp(u*)ﬂt —u”)
= (Vo) —u®) = Ctllu —u®y gy
(8.169)

which, together with (8.167), gives

lz:lly = C. (8.170)
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Then, we can extract a subsequence {z;, } such thatz, — z;‘: weakly in V, and,
thus, u,, — u* weakly in V. By passing to the limit in (8.168) with t — 0, and
taking into account that the operator V(pﬁ*_ L is hemicontinuous, it follows that
z; satisfies (8.165).

The uniqueness of the solution of (8.165) is immediate. Indeed, from the
properties of V¢!, ,, and V,, we have

a@ — 22,21 —22) = ~(V?¢) o (@) - (21 —22).21 — 22)
—(VB,(u*) - (z1 —22),21 —22) <0 Vz;,0€ W.

Now, we shall compute the Gateaux differential of J¢, at point (p*, w*) in the
direction p. We have

(w, —ug)? — (W —ug)?
ds

aJ. . % . 1.
—p(u,W)-(u—M)=—hm(/r
2

o 2 i—0 t
Ul — w2, — [l —w* |3 N e = 10072y = I = 1012y,
€ t t

1 t
zl2 ds + ;(u* —w* . z)w + Z”Zt“%if

t
=1li *— ds + >
iy (f 0" w3 [

* * t * * *
(1" = 1 = 1) ey + = IIiz(rz)) =/r2zﬂ(u —ug)ds

1
o =W (-t - 12wy YmeM,

i.e. (8.163).
u;, —u*
Next, forevery t € (0,1) andw € W, we metw, = w* + twand h, =
with it, = uﬁ*’w’. It is easy to prove that k, satisfies
(Ve o @* +1h) — Vol . (u*).v)
a(h, v) + —2 ’t (el
*4+th,)— *), v
+(,3p(u ) = @) v) = —(V(pﬁ*.w(u* +th,),v) VYveV.

t

Hence, by proceeding as in the first part of this proof, we deduce (8.164) where the
weak limit &, of the sequence {h,}, in W satisfies (8.166). O

The main result of this section gives the necessary optimality conditions for each
problem (CP),,.

Theorem 8.14. Let (u?,,w;,) € M x W be a solution of the control problem

(CP),,. Then, there exist the unique elements (u?,, p?)) € W x W such that

a@l, )+ (Vope e (2,).0) + (Bpi,) ) = (Fy) YveV.  &171)
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a(p:p, V) + (Vz sz,w:‘p(u:p) : p;k/o7 V)
+(V¢Z:‘p,v(urp) : p:o? V) + (vﬂp(u:p) : p:p’ V)
_ —/(u:p —ugwds Vre W,

I

(8.172)

(VO e, W) P + (= 18y il — )12y 20 Ve M. (8.173)

Proof. Let u;, be the unique solution of (8.171), i.e. u?, = u/;‘” “’ . We denote by

p, the unique solution (we remark that V2, ., (u) + VB,(u) € L(W,W*)is a
positive operator) of the following problem

Cl(p:p» V) + (Vzwu w* (qu) pep’ ) (Vﬁp(u:p) . p:p,v)
1
_/(u:‘p—ud)vds—g(uep Ep,v)W Vye W. (8.174)

Since (/"Lep’ ul ») is a solution of (CP),,, it follows

dJ.

a—J(MZp,w;) (u—pl)=0 VYueM,
Jep

aw( ep’wp -w=0 VYweW.

Therefore, from (8.163), by using the relation (8.174) with v = z, and the
relation (8.165) with v = p;*p, we get

8J€p

( WepWep) - (W — p,) = /Fzz;i(u —ug)ds + - (zw =W w
+(M Wéps ey — I )LZ(FZ) = —a(p:p,zﬂ)

(Ve e 2,) - Pl 2) = (VB (ul,) - PLye2u)

- M:P’ M:p o “O)LZ(FZ) = (V(pﬁ—ui‘p,w;*p(”:p)v P:p)

=l 1l = 1)@, =20 VpeM,

ie. (8.173).
Finally, takingv = h,, in (8.174) andv = p:‘p in (8.166), from (8.164), we obtain

(8.175)

aJ,
Sty ow = [ o ) ds 4 2w,

- _a(pep7hw) - (VZ p* w* (u(p) N pep’ W)

l
_(Vﬁp(u:p) . p:p’h ) (W u wsp)W

(8.176)

= (Vo W @E,). pL) = —Ow.uly —wiw =0 Vwe W,

which, together with (8.174), leads to (8.172). ad
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We finally remark that, taking into account the convergences given by
Propositions 8.6 and 8.7, Theorem 8.14 gives an approximating process for
computing the optimal control u° of the problem (CP).
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Chapter 9
Quasistatic Problems

This chapter deals with the study of quasistatic contact problems with a nonlocal
Coulomb friction law. We first consider that the unilateral contact is modeled by
the Signorini conditions. In this case, a variational formulation (see [7]) involves
two inequalities with the simultaneous presence of the displacement field and of
the velocity field. More precisely, the friction law generates an inequality with the
velocity field as test function while the Signorini conditions lead to an inequality
with the displacement field as test function. Applying Theorem 4.19 (p. 77), aknown
existence result (see [7]) is provided. We then prove, following the work [5],
convergence results for a space finite element approximation and an implicit time
discretization scheme of this problem. The last section is devoted, as in the work [6],
to the study of a boundary control problem related to a quasistatic bilateral contact
problem with nonlocal Coulomb friction.

Concerning the study of quasistatic contact problems in elasticity, we mention
the existence and/or uniqueness results obtained, in the case of a normal compliance
law, by Andersson [3] and Klarbring et al. [9], and, in the case of a local or nonlocal
Coulomb law with unilateral contact, by Cocu et al. [7], Andersson [4], Cocou
and Roca [8], Rocca [14]. For the study of quasistatic bilateral contact problems
involving viscoelastic or viscoplastic materials, we refer to Shillor and Sofonea [15],
Shillor et al. [16] and Amassad [1].

9.1 Classical and Variational Formulations

The quasistatic evolutionary of an elastic body in unilateral contact with a rigid
foundation is considered. We suppose that the volume forces f = f (x,¢) and the
surface tractions g = g(x,t) are applied so slowly that the inertial forces may be
neglected.
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With the notation adopted in Sect. 8.1, the classical formulation of the quasistatic
problem is obtained, as in the static case, by considering the equilibrium equations,
the constitutive equation, the kinematic relation, the boundary conditions, and the
initial condition.

Problem (2): Find a displacement field u = u(x, 1) : Q x [0, T] — R such that

—dive = f inQx(0,7), 9.1)
1
o=0u)= e, €= E(Vu—kVuT) inQx(0,7), 9.2)
u=0 onlyx(0,7), 9.3)
o-v=g onlx(0,T7), 9.4)
u, <0, 0,<0, wuo,=0 onl,x(0,7), 9.5)

lo:| < w|Zoy| = u, =0

| = v d . Iy x 0, T s
ol = el o | = g = A= 0., = —da, O
(9.6)
u0) =uy inQ. 9.7)
where o/ = (ajjk;) is the fourth order tensor of elasticity with the elasticity
coefficients satisfying the symmetry and ellipticity conditions:
@jjkh = Qjipk = Qkpij » Y1 <1, j,k,h < d,
Ja > 0 tel que ajnisEn > al€?, V& = (&) e RY . 9.8)

In order to derive a variational formulation of the problem (9.1)-(9.7), we
suppose that

[ eW0.T:(L2(@)).

g € WO, T: (LX),

ajjk € L¥(Q), i, j, k.l =1,....d,

u e L®(T,), w>0ae. only

Z : H™Y2(I';) = L*(I') is a linear continuous operator. 9.9)

We shall use the notation

V={veH(Q)?:v=0ae. onTy},
K={eV;v,<0ae. only},

a(u,v) = /o(u)e(v) dx VYu,veV. (9.10)
Q
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Let F € W'2(0,T;V) where, for all t € [0,T], F(t) is the element of V
defined by

(F(ty,vy=| f@®)-vdx+ | gt)-vds VveV, 9.11)
[ |

I

where we have denoted by (-, -) the inner product over the space V.
We also put

W ={weV;diva(w) e (L}%(Q))}. 9.12)

For simplicity, we denote by (-, -) the duality pairing between (H ~'/?(T',))? and
(H'*(T,))? or between H~'/?(T,) and H'/*>(T';). Then, as we have precise in
Sect. 8.1, we have

(o(w)-v,v) = /a(w)e(f)) dx + /div ow)yvdx Vwe W, Vve (H*(T,)?
Q Q

where v € (H'(Q2))? satisfies ¥ = v almost everywhere on T',.
Therefore, we define the normal component of the stress tensor o,(w) €
H~'/2(I,) by

(oy(w),v) = /a(w)e(f))dx —+—fdiv owywdx VYwe W, Vve HY ()
Q Q

where ¥ € (H'(Q))¢ satisfies ¥, = 0 and v, = va.e. on I',.

It is easy to verify that, for any w € W, the above definitions of o (w) - v and
o, (w) are independent on the choice of v.

For all ® € V, we introduce the functional jg : K (®) x V — R defined by

Jo(u,v) = /ul%au(u)l lv|]ds VYue K(®) VveV, (9.13)

T
where
KO®)={weK;aw,¥)=(0.,¢¥), V¢ € V suchthat y = 0a.e.onI,}.

A variational formulation of this problem (see [7]) involves two inequalities and
the simultaneous presence of the displacement field and of the velocity field. More
precisely, the friction law generates an inequality with the velocity field as test
function while the Signorini conditions lead to an inequality with the displacement
field as test function. So, we shall consider the following weak formulation of
Problem (2).
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Problem (Q): Find u € W'2(0, T; V) such that

u0) =uy, u() e~K vVt € [0, TJ
a(u(t),v —a(1)) + jro@),v) — jre @), u(t))
> (F(t),v—u()) + (o,(m()),v, —it,(t)) VveV aete(0T)
(o, ((t)),z0 —uy(t)) >0 Vze K, Vte(0,T).
9.14)

Remark 9.1. 1f u verifies the first inequality of Problem (Q), then u(¢) € K (F (1)),
vVt €[0,T].

We suppose that the initial displacement uy € K satisfies the following
compatibility condition

a(uo,v) + jro(mo,v) > (F(0),v) VveKkK. 9.15)

In order to show that the classical formulation (2) and the variational formula-
tion (Q) are equivalent, we first prove the following result.

Lemma9.1. Let u € K N W be a regular function. Then, the following two
conditions are equivalent:

u, <0, o,(m) <0, u,0,(m) =0 onl, (9.16)
(oy(@#),zy —uy) >0 Vze K. (9.17)

Proof. If the unilateral contact conditions (9.16) hold, then we have

(ov@). 20 —iy) = (0v(@). 20) — (00 @), y) = (0, (@).2,) =0 Vze K.
Conversely, if (9.17) is satisfied, then, by taking z = 0 and z = 2u, we obtain
(ov (@), i,) =0, (9.18)
and hence, by the inequality (9.17), we get

(0,(@),z,) >0 Vze K. (9.19)

Finally, from the relations (9.18), (9.19) and the definition of K, we conclude the
proof. O
Following the standard procedure, we derive the next result.

Theorem 9.1. The mechanical problem (2) is formally equivalent to the weak
formulation (Q) in the following sense:

(i) If u is a sufficiently smooth function which verifies the mechanical problem
(9.1)—~(9.7), then u is a solution of the variational problem (9.14).
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(ii) If u is a regular solution of the variational problem (9.14), then u verifies
(9.1)—(9.7) in the distributional sense.

Proof. For simplicity, we shall omit the variable ¢.

(i) Multiplying Eq. (9.1) by v — &z with v € V and integrating by parts over €2, we
obtain

a(u,v—it)—/a-v(v—it)ds:/f(v—it)dx YveV,
Q

r

and so, by using (9.3) and (9.4), we get

a(u,v—it)—/(ov(vv—itv)%—orz(vf—itr)) ds = (F,v—u) VveV. (9.20)

r;

Hence, forv = ¢ + & with ¥ € V such that y = 0 a.e. on I',, we deduce that
ueK(F).
On the other hand, the Coulomb friction law (9.6) implies

fp (u,v)—fp (u,it)+/ o.(v.—1ut;)ds > 0 Vvsmooth function. (9.21)
I
Indeed, let us denote £ = u|Zo,|(|[v.| — |it.|) + 0. (v, —it;).
If |o.| < u|%o,|, thenit, = 0, and hence

E = —[o|[v:| + plZoy| |v:| = 0.
If |o.| = n|#o,|, then we have i1, = —Ao , and so
E=0v.+|o.||v:|] >0.

Combining (9.20) and (9.21), we deduce that u verifies the first inequality
of (9.14).

The second inequality of (9.14) is obtained from (9.5) and Lemma 9.1 for
u=u.

(ii) If we take v = & & ¢ in the first inequality of Problem (Q), with ¢ € (2(R2))¢
and we apply Green’s formula (8.7), then we obtain (9.1) in the distributional
sense.

It is immediate, from Lemma 9.1 and the second inequality of (9.14), that
the Signorini contact conditions (9.5) are satisfied.

In order to obtain (9.4), we multiply the relation (9.1) by v — &t withv € V,
and so, by integrating by parts and using the first inequality of (9.14), we obtain

Jr@.v)— jr.a)+ | (0 -v)(v—a)ds— | g(v—ir)ds
/ /

I

> (oy(w),vy, —it,) VYveV. 9.22)
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By choosing v = it + ¢ with ¢ € (C*®(RQ))¢ and supp ¢ C T'j, we deduce

/((a-v)—g)-sods=0,
I

that is the relation (9.4). Thus, the relation (9.22) becomes

Jr@v) — jr (i) + / 6 e —it)ds =0 VweV. (9.23)
I

We now take v € V such that v, = =8¢ with§ € R;, ¢ € (C®(R))? and
supp ¢ C I'2. Aso,v;, = £60.¢, = £60.¢, we obtain

8/ (%o, | o] £ 019) ds —/ (10, | ity + 0 i) ds = 0 W5 = 0
Fz FZ
which gives

/(iw 4 1|%oy| gl ds = 0

)
/(afll, + w|Zo,| i |)ds <0
I

or, equivalently to
lo.| < p|%o,| (9.24)
and
0t + p|%oy| || <0. (9.25)
It is easy to see that the relations (9.25) and (9.24) give
ol + wlZo,| i | =0. (9.26)
Indeed, if |o0.| < w|#o,|, then, supposing that &, # 0, it follows that

0> o, + |0, |it;| > 0, which is a contradiction. It follows that &z, = 0.
If |o.| = u|%o,|, then it follows that 0 = o .it, + |0 .| |it,|, and so, there

exists A > 0 such that #, = —Ao .. Therefore, the friction conditions (9.6)
are satisfied and, by taking into account that u(0) = ug et u(¢) € K for all
t € [0, T], we conclude the proof. |

Using an implicit time discretization scheme (as in Sect. 4.3, p. 69), we obtain

.....
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Problem (Q)\: Find ' ™' € K'*' such that

a@ 'y — o) + jrin @) — jpin @t ul)
> (F'y—ou') + (o,@*),v, —3ul) VveV, 9.27)
(0@ th),z, —uity >0 Vze K

where K't! = K(F'*') and u® = u,. By setting w = VAL + u', we deduce that
the problem (Q)! is equivalent to the following problem (Q)i.

Problem (Q): Find u’*' € K'*! such that

a@ ' w— ) + Jp @ w — ') — Jen @ u ! — i)
> (F ' w—u*)) + (0, ), w, —ult') VweV, (9.28)
(o,(W' T, z, — uiv"’l) >0 VzeKk.

In order to obtain an existence result for the problem (Q) (by applying The-
orem 4.19), we first prove the following equivalence result which states that the
hypothesis (4.105) of Theorem 4.19 is satisfied.

Theorem 9.2. For alli € {0,...,n — 1}, the problem (Q);l is equivalent to the
problem (R)} defined below.

Problem (R)}: Findu'*! € K'™! such that
a@ ' w—uithy 4 fpf+1 @t w—u')— fFf+| @ ui )
> (F*'w—ut) Vwek. (9.29)
To help the reader acquire a better understanding of the proof of Theorem 9.2, we

divide it into two steps, Propositions 9.1 and 9.2 below. For this reason we introduce
the following mechanical problem.

Problem (.2)' : Find a displacement field u' ! : @ — R such that

—dive@ ™) = £t inQ, (9.30)

ut'=0 only, (9.31)

o t).v=g*t onl, 9.32)

dtl <0, o,@*) <0, uo0,@t)=0 only, (9.33)

o @' *h)| < u|%o,@*")| and
lo ()| < u|%Zo, W' th)| = ut!' =ul onT,.
lo. @ ™) = p|%o,@™)| = IA >0, vt —ul = Ao ('t

(9.34)



198 9 Quasistatic Problems

Lemma 9.2. Let ® € V andd € K be given and let u € K(®) be a regular
function such that

Jo@,w—d)— jo(@,i—d)+ /orf(ft)(w, —i,)ds>0 Vwe K. (9.35)
I

Then u verifies (in the distributional sense)

o, (@)| < | %o, @) = i, =d. onTy.  (9.36)

{ lo.(@)| < u|Zo, ()| and
lo.(@)| = p|Zo,@)| = IA>0, i, —d, = —ro.(&t)

Proof. If we take w = d + ¢ _ in (9.35), with ¢ € (C*®(RQ))?, supp ¢ C I'; and
§ > 0, we obtain

/MI%’(OU(ﬁ))I(IWr —d:|—|a; —d.|) + o (@)W, —i)ds

I

_s f (L]0, @)] |0, | + 0 (@)p) ds

/(M%(Ov(u)ﬂ lu, —d.|+o. (@)@, —d,;)ds>0 V§>0,

which gives, as |¢| > |@.|,

/ (W% (0, @) 0] + 0. (@)@)ds = 0 Vg € (C®(Q). suppe C T,

I
9.37)

and
[ @i @ .| + o @@ - do)as <o. 938)
I
Putting ¢ = £¢ in (9.37), it results
[ o2 @)] o] ds < [ WZ@,@)llplds Vo € (C(@)" . suppp C ;.
I I
i.e.

lo @) < ul|Z(o,@))]| . (9.39)
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Therefore, (9.38) implies
0> ulZ(o,@))| |t —d |40 (@)(u,—d ) > (u|Z%(0,@))|—|o . (@)]) |tt,—d | > 0

that is
wl%(o,@)| |u, —d .|+ o (@)@, —d.;)=0. (9.40)

If o, ()| < u|Z%(0,(@))|, then, supposing &, # d ., (9.40) gives
0= u|%Z(o,@))| |, —d | +0o (@)@, —~d.) > |o (@) |u,~d|+o. (@), ~d,)>0,
and so, we must have u, = d ;

If |o. ()| = n|%(o,(@))|, then (9.40) implies

lo (@) |, —d.|+ o (@)(u,—d.;)=0

and thus, there exists A > O such thatu, — d, = —1o . (u). O

Lemma 9.3. Let ® € V andd € K be given. Let u € K(O) be a sufficiently
smooth function which verifies (9.36). Then

Jo(,w—d)— jo@i—d)+ /ar(a)(wf —it;)ds > 0 Yw smooth function .

I
9.41)

Proof. Let w be a smooth function.
If |o.(@)| < n|%(o,(@))| and &, = d,, then one has

Jola.w—d) — Joli—d)+ /afoz)(wr —d,)ds
I

f(MI%(Ov(u))I we —d.[+o.(@)w:—d;))ds

/(MI%(GU(M))I —lo- @) w: —d[ds =0

If lo. ()| = n|%(o,(m))| and u, —d, = —Ao (), then one gets

Jola.w—d) — joli—d) + /af(a)(wz ) ds
I

- f (62 0)] [Wr — d| + 02 @) ws — o) ds > 0.
I

which completes the proof of Lemma. O
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Proposition 9.1. The problem (())}1 is formally equivalent (in the sense considered
in Theorem 9.1) to the mechanical problem (2)!.

Proof. Let u'™! be a regular solution of (Q)i. If we chose, in the first inequality
of (9.28), w = u't! 4 ¢ with ¢ € (2(R))¢ and we apply the Green’s formula, then
we obtain (9.30).

From the second inequality of (9.28) and Lemma 9.1 for & = u'™!, we
deduce (9.33).

Multiplying (9.30) by w —u’*! for w € V, integrating by parts and using against
the Green’s formula and the first inequality of (9.28), we get

iFi+|(ui+l,W—ui)—iFi+l(ui+],ui+1 _ui) +/O’1—(ui+l)(wf —uir—H)dS
I
+f(o(ui+l) wv—gthw—uthds >0 vYweV,

I

(9.42)

and thus, by taking w = u'*! £ ¢ with ¢ € (C*®(Q))? and supp ¢ C T, one
obtains (9.32). Therefore, the relation (9.42) implies

fFi+1 @ w—u')— fFi+1 @ ut —u)

—i—/af(u”l)(w, —uthds>0 vweV. (9.43)
I

Therefore, by Lemma 9.2 for ® = F'™! d = u' and it = u'*' € K(F't"),
it follows that the conditions (9.34) are satisfied. As u'™! € K C V, it yields the
condition (9.31) holds which completes the proof.

Conversely, let ' ™! be a sufficiently smooth solution of the mechanical prob-
lem (2)' . Then, by applying Lemma 9.1 for # = u'*!, it follows that ' ™! satisfies
the second inequality of (9.28).

Next, from (9.34), by Lemma 93 for ® = F'*! . d = 4’ andt = u't', we
obtain

Jpn @ w—u) — jon @t a Tt —
+/ar(ui+l)(wf —uthds>0 vweV. 9.44)
I

On the other hand, multiplying (9.30) by w — u’*! with w € V, integrating by
parts and using (9.32), we deduce

a(ui+1,w—ui+l):(Fi+1,w—ui+])—|—/at(u"+l)(wr—u"{H)ds
r;

+ (o, @, w, —uit)y VYweV. (9.45)
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Combining (9.44) and (9.45), we obtain the first inequality of (9.28) which
completes the proof. O

Proposition 9.2. The problem (f{)il is formally equivalent to the mechanical
problem (2)!..

Proof. Tf w'*! is a regular solution of (R)i, then, with a similar proof as for
Proposition 9.1, one obtains (9.30). Therefore, from (9.30) and (9.29), one gets

Jpn @t w—u') — jon @ w T —ul) + /a(uH") v(w—u'Thds
Ir;
+ /(a(u"“) wv—gthw—uthds >0 VvYweKk, (9.46)

I

from which, by taking w = u'*! & ¢ with ¢ € (C*°(RQ))¢ and supp ¢ C I}, one
deduces (9.32). Thus, the relation (9.46) becomes

fFi+1(ui+l,w _ui) _ fFf+|(ui+l,ui+1 _ui)

+ /(Ov(ui+1)(wv - uf)‘H) +o (@ tHw, — ui“)) ds>0 Vwe K. (947)

I

By choosing w = 8¢, v +uit! with ¢ € (C*®(R))¢, ¢, <0on T, and§ > 0, it
follows

S/GV(uiﬂ)cpv ds > /av(ui+1)ui+1ds V6 >0

I‘2 Fz

which gives

/av(ui+l)¢vds20 VoeV, p, <0only,
I ' ' (9.48)
<7v(u’+1)u;Jrl ds <0,

r;

and, as u't! € K, we obtain (9.33).

Now, if we choose in (9.47), w = u’ !

n

v + v withv € K arbitrary, we obtain

fFf+1(ui+1,v—ui)—fFi+|(ui+l,ui+1—ui)+/of(ui""l)(v,—ui"'l)ds >0 VvekK
I

which gives, together with Lemma 9.2, for ® = F'™!, d = u’ and it = u'*' | the
conditions (9.34).
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Conversely, if ' ! is a sufficiently smooth function which verifies (2)’, then,

n’
from Lemmas 9.3 and 9.1, we obtain

fF;+1(ui+l,w —ul)— ]7Fi+l(ui+l’ui+l — )

Jr/orf(u"“)(wr —uthds>0 VweKk (9.49)
I
and
/av(ui"'l)(wu —uthds>0 vVweKk. (9.50)
I

Next, by arguing as in the proof of Proposition 9.1, we conclude that u'*" is a
solution of (R)! which completes the proof. O

Proof of Theorem 9.2. Using Propositions 9.1 and 9.2, the assertion follows.
However, we remark that if u'*! is a solution of (Q), then, obviously, u'*! is
a solution of (Ii);. Hence, in order to prove the condition (4.105), it would have
been enough to prove that (Ii):1 = (2) = (Q):1 |

In the sequel we shall use the similar definitions to (4.118) (p. 72), i.e.

u,(0) = @t,(0) = u”,

F,(0)=F(©0)=F",

(1) = u'+!

,t)=u + @ —t)ou' ;Vie{0,1,....n—1} Ve, tit],

F,@) = Fi*!

(9.51)

Therefore, u, € L>(0,T;V) and &, € W'2(0,T; V) satisfy, for all ¢ € [0, T], the
following incremental problem.
Problem (Q),: Find u,, € K(F ,(t)) such that

a (unm, v %anm) e (). 7)

~ d d
_jF,l(t) (un(t)9 d_tan(t)) 2 (Fn([)’v - Eﬁn(t)) (952)
+ <ov(un @), v, — %ﬁw(z)> YvevVv,
(0 (U, (t)). 20 —upy(t)) >0 Vze K.

We have the following convergence and existence result.

Theorem 9.3. Suppose the hypotheses (9.8) and (9.9) hold and that meas T'y > 0.
Then, there exists a constant (11 > 0 such that for any u € L*°(I';) with u > 0
a.e. on I'y and ||[t||Loory) < W1, the problem (Q) has at least one solution. More
precisely, there exists a subsequence {(u,, , uy,, }x such that
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u,, (t) = u(t) stronglyinV Vvtel0,T],
ft,, — u strongly in L*(0,T; V),

d
Eﬁ”" — @t weakly in L*(0,T; V)

as k — oo, where u is a solution of the problem (Q).
Proof. By putting

J(@®,v.w) = joe(r.w)—(O.w) VO eV, K VWweK(@®), VweV, (9.53)
it follows that

/(@1 v1,w2) + j(@2,v2,w1) — j(O1,v1.w1) — j(O2,v2,w))|

= /M(|%UV(V1)| - |%O—U(V2)|)(|wl‘[| - |w2r|)ds + (@)1 —O,,w; — w2)
I
< C ||M||L°°(Fz)/ | %oy (v1) — Zo,(v2)| w1 —wa|ds + [|©1 — Oy lwi —wa|
T

< GlpllLeo @y (1O1 — O + [[vi = walDl[wi — w2l
Vw,- € V, VV,' € K(@,), VW,’ € V, i=1,2,

(9.54)
where Cy, C, are positive constants and || - || denotes the norm over V.
In order to apply Theorem 4.19, we put
b(@O,v,w) = (0,(v),w,) VO eV, 6 Vvre K(®), VweV, (9.55)

H = L*(I),
B(®,v) = u|%o,(v)| VO eV, Vv e K(O).

Therefore, the problem (Q) can be written under the form (4.107) (p. 68) and the
problem (Q)il can be written under the form (4.103) (p. 68), i.e.

ui-H c K(FI-H)
a@ ' w—uwtY) + J(F it w—ul) — j(FH w1 it — )
> b(Fi+l’ui+1’w —ut) YweV,
b(Fi+1,ui+1,z _ ui-H) >0 VzeKk.
(9.56)
The hypothesis (4.105) is satisfied due to Theorem 9.2. The other hypothe-
ses (4.83)—(4.90), (4.96)—(4.98), (4.100), and (4.101) of Theorem 4.19 are easy to
prove, and so, the assertion follows. d
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9.2 Discrete Approximation

This section deals with the discretization of the problem (Q) written under the form

u(0) =uy, u(t) e K(F(t)) Vte[0,T],

a(t),v —a(t)) + j(F (1) u(r),v) — j(F (1), u(t),u(r)) 9.57)
>b(f(@),u(),v—u)) VYveVaein(0,T), '
b(F(t),u(t),z—u())>0 VzeK, Vte|[0,T],

with j and b defined by (9.53), respectively, (9.55).

We shall prove a convergence result for a method based on an internal approxi-
mation in space and a backward difference scheme in time.

Let 7, = (T}) e #, be a family of regular triangulations of € such that

Q= U T;,
J€In
iNT; =@ VNi,je f,i#].

We define the following sets
Vip="{m € (CO(Q)"; v/ T; € (PI(T;))*, Vj € I, v =00nTo},

K, = {vh eVyu: v fOOHFQ}
S, = {‘L’h € LZ(FZ); Th/Fzyj € P()(Fz_j) V] € fh such that Fg_j 75 @}

where Py (w) denotes the space of polynomials of degree lower or equal to k on
and F2,j = Fz N T]
As in Sect. 7.3, p. 128, we consider the following semi-discrete problem.

Problem (Qy): Find u;, € W'2(0, T; V) such that
uh(O) = Uoy, uh(t) [S Kh(F(t)) Vite [O,T],

a(up(t),vi —up(t)) + j(F @), up(t),vi) — j(F (1), up(t), (1)) (9.58)
> b(F(t),u(t), vy —up(t)) Vv, eVy,aete(0,T),
b(F@t),uy(t),zy —up(t)) >0 Vz,e K,, Vtel[0,T].

and, fori € {0,1,--- ,n — 1}, the following full discretization of Problem (Q).
Problem (Ry)i: Find u} "' € K *' such that

i+1 i+1 . i+1 i+1 i
{a(uh i = + JFT g owy, — ) (9.59)

—j(Fi+1,u2+l,u2+1 —u) >0 Vw,ecK,.
We also suppose that u2 = u, satisfies the compatibility condition

uop € Ky (F(0)),
a(uon,v) + j(F(0),upp,v) >0 VYve K.
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Theorems 7.5 (p. 128) and 7.6 (p. 131) give convergence and existence results
for these problems.

In order to solve the problem (Ry)i, we suppose that u is constant and we choose
as a regularization mapping &, the projection on the finite dimensional space Sy, for
a given hg (see [10]). Thus within finite element approximation, the regularization
can be considered as a natural consequence of the discretization.

In the sequel, for simplicity, we shall omit the index #. We shall denote the
solution #' ™! of (Ry)i by u! !, fori € {0,1,-,n — 1}. We also remark that, from
the definition of the set K i+ and Remark 9.1, it follows that for the solution z!*!
we have

JFTL ul T yy = /Mﬂav(u’+l)|v,|ds YveV.
)
Let us denote
j@thy) = —/,u%av(uffl) vi|ds VveV.
I

Therefore, the problem to solve can be written as
i+1 c Kit!,

a(u’Jrl w—u ™) + i@ w—ul) — j@ T uit —ul) (9.60)
>(F't'w—u)VwekK.

It is easy to see that the solution ' ™! € K i+1 6f (9.60) is the fixed point of the
mapping 7 : S — S defined by 7 (r) = u't!(r), forall r € S, where u!*1(r) is
the unique solution of the following variational inequality:

i+1(r) e Ki+1
Q@ (). w — ) + p(rw — (1) — (T ) — ) 06D
_(Fl+1’ ’+1(r))Vw€K

where
o(r,w) = —/M%av(r)|w,| ds VweV.
I

This problem is equivalent, for r € S given, to the following minimization
problem under constraints:

F (" (r)) = min 7 (v)



206 9 Quasistatic Problems

where
1 . .
F(v) = Ea(v,v) +o(r,y—u (r)— (F'ty) VveV.

This problem is very similar to a static problem except from the fact that the
known solution #!, of the previous step appears in the friction term. The influence of
the loading history, due to the velocity formulation of the friction, is characterized
by this extra term. The convex K remains unchanged from one step to the next. This
minimization problem can be solved by a Gauss—Seidel method with projection.
This method is robust and very easy to implement on this kind of problem when
dealing with the non-differentiable part relating to the friction term. Details on the
convergence of the algorithm by using an Aitken acceleration procedure can be
found in [5] or [13].

9.3 Optimal Control of a Frictional Bilateral
Contact Problem

We consider a mathematical model describing the quasistatic process of bilateral
contact with friction between an elastic body and a rigid foundation. Our goal is to
study a related optimal control problem which allows us to obtain a given profile
of displacements on the contact boundary, by acting with a control on another part
of the boundary of the body. Using penalization and regularization techniques, we
derive the necessary conditions of optimality.

As far as we know, there are few results concerning the optimal control of
quasistatic frictional contact problems. We mention here the work of Amassad et
al. [2] which treats a quasistatic bilateral contact problem with given friction, and
so, an optimal control problem governed by a variational inequality which has, in
addition, a unique solution.

9.3.1 Setting of the Problem

Let us consider a linearly elastic body occupying a bounded domain @ € R, d =
2,3, with a Lipschitz boundary I' = Ty UT; U T, where Ty, T';, T’ are open and
disjoint parts of I', with meas (I'y) > O.

The body is subjected to the action of volume forces of density f given in
Q x (0, T) and surface tractions of density g applied on I'y x (0, T'), where (0, T')
is the time interval of interest. The body is clamped on 'y x (0, 7T) and, so, the
displacement vector u vanishes here. On I'; x (0, T'), the body is in bilateral contact
with a rigid foundation, i.e. there is no loss of contact between the body and the
foundation. We suppose that the contact on I'; is with friction modeled by a nonlocal
variant of Coulomb’s law. We suppose that f and g are acting slow enough to allow
us to neglect the inertial terms.
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The classical formulation of this mechanical problem, with the notation of
Sect. 8.1, is:
Problem (.#): Find a displacement vector u = u(x,t) : 2 x [0, T] — R¢ such that

—dive = f inQx(0,7),
o=o0(u) =€,
u=0 onlyx(0,T),
o-v=g onl;x(0,7),
u, =0, (9.62)
lo:| < ulZo,| on T, x (0,T)
|o'r| <M|%0v| = u, =0 ' '
lo.| = u|Zo,| = IA >0, u, =—Aa,
u(0) =uy inQ.

with & = (a;jxs) satisfying the conditions (9.8).
In order to write a variational formulation for the problem (%), we define the
following Hilbert spaces:

V={pe[H Q)] :v=0ae.onTy;v, =0ae. only},
W ={eV:dve@) e (L*(R))?},

endowed with the inner products

(u,v)y = /e,j(u)eij(v) dx Vu,veV,
Q
@, v)w = W,v)y + (dive (u),dive (v)) 2@ Yu,veW.

We make the following regularity assumptions on the data

feWh0,T; (L))",

g € W20, T; (LX(T)?),

aijii € L*(Q), i, j. k.l =1,....d,

weL*®T,), w>0ae only,

# : H™Y/2(T,) — L*(T",) is a linear compact operator ,
uy eV,

(9.63)

where H~'/2(T,) is the dual space of HY*(I,) = {v € H*’(I"); v =
0 a.e. on I'\I'L}.

Let F € W'2(0,T;V), where, for all t € [0,T], F(¢) is the element of V
defined by (9.11) and let the symmetric, V -elliptic, continuous bilinear form a :
V x V — R defined by (9.10);. We also denote by j : W x V — R the functional
defined by
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ju,v) = /p,|%o,)(u)| v.|ds YueW VvelV. (9.64)
I

The weak formulation of problem (.%), in terms of displacements, is the
following quasi-variational inequality.

Problem (S): Find u € W'2(0, T; V) such that

a((@),v—u(r))+ j@),v) — j@),a@)) = (F(@),v—a))y
VveV,aete(0,T),
u(0) = uy.

We suppose that the initial displacement uy, € V satisfies the following
compatibility condition

a(ug,v) + j(uo,v) = (F(),v)y VveV. (9.65)

We have the following existence result.

Theorem 9.4. There exists u; > 0 such that for all p € L°°(I) with p > 0
a.e. on I'y and ||pt||oory) < 1, the problem (S) has at least one solution u €
W20, T: V).

Proof. In order to apply Theorem 4.19, we put

K=KO®)=W VO eV,

DKZWXV,

H=L*Ty), B(O,v)=pul%o,(r) YO eV, VveW,
JjO,v,w)=jlr,w)—(O,w)y VO, weV VveW,
b(O,v,w)=0 VO, weV VveW.

It is easy to verify that the hypotheses (4.83)-(4.90), (4.96)—(4.98), and (4.100)
are satisfied. In addition, both the problems (Q%) and (R%), p. 68, become the
following problem

ueWw
aw,v—u)+ ju,v—d)— jw,u—d) > (F,v—u) VveV,

and so, the hypothesis (4.105) is satisfied. As for p; sufficiently small the hypoth-
esis (4.101) is verified, the existence of a solution of the problem (S) follows from
Theorem 4.19. o

In the sequel we shall suppose that ||p|[zoory) < p1 with p; > 0 sufficiently
small such that the problem (S) has at least one solution.
The following results will be frequently used.
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Lemma 9.4. The functional j, defined by (9.64), has the properties:

jw,v)>=0 VweW,VveV, (9.66)
Jwov) —jw,v) < jw,vi—vy) YweW Vv,vmeV 9.67)
jw,0)=0 YweW. (9.68)

Moreover, for all s € [0, T], we have

S s
liminf f FOna (), va(0)) dt = [ Jon(e).v(0) dr
n—>oo

0 0
Yw, — w weakly in L*>(0,T; W), Yv, — v weakly in L*>(0,T; V),

(9.69)
and

5 N

Jim [ o @mar = [ oo 070)

0 0
Vw, — w weakly in L>(0,T; W), Yv, — v weakly in V.

Proof. The properties (9.66), (9.67), and (9.68) are obvious.
In order to prove (9.69), we write

/ (W (1), v (1)) — jW (1), v, (1)) dt
0

- / [ (10, (9, (1)) — B, WD) () ()] ds di

0 I

= O/I//'”%O'V(W”(l)—w([)” |(vn)r(t)|ds ds

N
< / el oo 120 09 (1) — W) 20 [0 (O g2y
0

< Cu|Zo,(Wn — W)l 120.7;200)) Wnll 200,70y < Cill ZowWn — W)l 200, 7502(1y) »

and hence, as the operator & is compact, it follows that

nlggo/ (Jwn (), vy (1)) — jw(2),v,(1))) dt =0 Vs €[0.T]. 9.71)
0
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On the other hand, for any w € L2(0,T;W), the mapping v +—

A

/ Jjw(t),v(t)) dt is convex l.s.c. on L2(0, T; V), thus
0

A A

lizrglgf/j(w(t),vn(t))dtz /j(w(t),v(t))dt. 9.72)

0 0
By combining the relations (9.71) and (9.72), we get:

N

linn_l)g.}f/j(wn([)’vn(l))d[ Znli)rgof(j(wn([)’vn(t))_j(w(t)vvn([))) d
0

0
K K

wiimint [ 000 a0)ar = [ )0 ar

0 0

Next, we have

s

[J(wn(t),vn)dt—/j(w(z),v)dt
0

0

s N A A

< / JOmn (1)) di — / J O (0).9) di| + / J O (t).v) d / JOow (o). v) dr
0 0 0 0
< Cillve = vllL2ryye + CollZovwy, — W)l L20,7;02(m0))

and hence, from the compactness of the trace map from V into (L?(I';))¢, the proof
is completed. o

Now, we are interested in finding the surface tractions g acting on I'; so that
the resulting displacement on the contact boundary I'; is as close as possible to
a given profile u,, while the norm of these surface forces remains small enough.
The mathematical formulation of this problem is a state-control boundary optimal
control problem where the state is solution of the implicit evolutionary quasi-
variational inequality (S).

We introduce the following control and, respectively, observation spaces:

Hy = W20, T (LA(T')?).

H, = L2(0, T; (L2(T)) ©.73)

and we define, for § > 0 and u, € H, given, the cost functional J : Hg x
W20, T;V) — R, by:

B

1
J(g.w) = Slu—uqlf, + el (9.74)



9.3 Optimal Control of a Frictional Bilateral Contact Problem 211

Due to the lack of uniqueness of solution for the quasi-variational inequality (S),
the cost functional J, instead of depending, as usual, only on the “real” control g,
depends also on the state u. For this reason, it is convenient to rewrite the variational
problem (8S), for g € Hyg, in the following form.

Problem (S)#: Find u € W'2(0, T; V) such that

a((t),v—u()) + j@(t),v) — j@),u@)) > (F@),v —u())y
VveV,aete(0,T)
u(0) =u,

where

(FE@),v)y = | f@)-vdx+ [ g(t)-vds VvelV.
[ oo

I

We formulate now the control problem as follows:

Problem (CS): Find (g*,u*) € ¥,4 such that

J(g*,u") = min J(g,u),
(g.u)€Y44

where
Yaa = {(g,u) € Hy x W'2(0, T; V) ;u is a solution of (S)¥ }.

Remark 9.2. Let us assume that there exist (g*,u™) € ¥, such that J(g*,u*) =

min J(g,u) and a function g, € Hg such that (g,,u4) € %,4. Then,
(&.u)€Y4a

B

1 B
J(g" u™) = S |lu” —ualq, + Ellg*llﬁg = J(gqua) = E”gd”%Ig

and, hence,

2 2 2
™ —ually, < BUlgaln, — g™ n,) -

Therefore, for B arbitrarily small, we may hope to obtain, on the contact boundary,
a displacement field u as closed as we want to the desired value u,.

As one can see, although the functional J has good properties on Hy X
W12(0,T;V), the existence of a solution of the control problem (CS) cannot
be obtained directly, since the correspondence control +— state is a multivalued
mapping. In order to overcome this difficulty, we approximate the optimal control
problem (CS) by a family of penalized optimal control problems, governed by a
variational inequality.
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We start by introducing a new control space:
H, = L*(0,T;W).
Now, for (g,w) € Hy x Hy,, we consider the variational inequality which models
the problem (%) in the case of Tresca friction.
Problem (S)®": Find u € W'2(0, T; V) such that
a(u(t),v—u()) + jw@).v) = jow(),u(1)) = (FE@),v — i)y

VveV,aete(0,T)
u0) =uy.
Using the same techniques as in [7] or Sect.4.3 and taking into account the
positivity of j, one can prove the following existence result.
Proposition 9.3. For (g,w) € Hg x H, given, there exists a unique solution u®""

of Problem (S)®™". Moreover, we have

. g - g
@5 "l 20,750y < CUF 20,750y + Wl 20.7:v) »

with C a positive constant.
In the sequel, for (g,w) € Hg x H,, given, we will denote by u#"* the unique

solution of Problem (S)%"".

Let us fix € > 0. We introduce the penalized functional J. : Hg x Hy — R by

1
Jo(g.w) = J(g.ut") + [ut" — wli, (9.75)

and we consider the control problem
Problem (CS).: Find (g7, w}) € Hy x Hy, such that
Je(gr.w)) =min{J(g.w); (g.w) € Hy x Hy}.
The following result establishes the existence of an optimal solution for this

penalized control problem.

Proposition 9.4. Let (9.63) and (9.65) hold. Then, for all ¢ > 0, there exists a
solution (g*,w¥) of problem (CS)..

Proof. Let{(gZ,w!)}, C Hg x Hy, be a minimizing sequence for the functional J.
Then, from the definition (9.75) of J,, we deduce

lim J.(g7.w!) = inf{J.(g.w). (g.%) € Hgx Hy} €[0.4+00).  (9.76)
n o0
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which implies that the sequence {g”}, is bounded in Hy. Obviously, the sequence
{F"}, defined by

(F2(t),v)v —/f(t) vdx+/g (t)-vds 9.77)

I

is also bounded in W12(0, T; V).
Thus, there exists (g*, F}) € Hg x W'2(0,T;V) such that, passing to a
subsequence still denoted in the same way, we have

g! — g7 weakly in Hy , (9.78)

F" —~ F* weakly in W'%(0,T; V), (9.79)

where

(FX(1), v)V—[f(t) vdx+/g (t)-vds.
I
Let u’ = u¢*: Taking v = 0 in (S)¥*"*, integrating by parts on [0, s] with
s € [0, T'] and taking into account the properties (9.66), (9.68) of the functional j,
we have

s s
[aw.azana < [Fraiopa. (9.80)
0 0
By using the V-ellipticity of a(-, -), we obviously obtain
N N

1 [d
a (1), i (o) de = = [ Saqr o), ure))de
/ 2 0/ d 9.81)
 au().u(5)) — alug. o) _ alul(s)[ — alup.u)
2 = 2 ‘

On the other hand, we have

s

: d .
/ (F (). i (1) di| = / SOy - [ B (). )y dr

0
= C | I(F(s).ul(s))y — (F(0). ul(0)y] +/||F (l)llvdf+/||u (O} d

IFEGI5 | Slul&I5 | IFLO)F L e O3
( % T 2 T 2

S
+ / VO dr + / )] dr
0 0

<C
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By choosing 0 < § < % in the last relation, from (9.80), (9.81) and Young’s

inequality, we get

S
g )15 < C | lluollyy + IFEGIT + IF O + / IF 2 @)1I5 de
0

4 / )13 de |
0

and hence, by using Gronwall’s inequality and the boundedness of {F”},, it
follows that

l 1 < € (14 IFLO} + 1E 20 rw) € Yse0.T]. (982

Therefore, the sequence {u’}, is bounded in L°°(0, T; V). In addition, from
(S)%<™<, we have

e 1, = luZl + [ dive @),

2
L2(0,T;V) 0,T5(L2(Q)9)

— nj2 2
- ”ug ”LZ(O,T;V) + ||f||L2(0.T;(L2(Q))d) S C s

which, from the definition of J. and the boundedness (9.76) of J,, implies that the
sequence {w” }, is bounded in Hy,.
Now, from Proposition 9.3, we obtain

N | 200,750y < C . (9.83)

Thus, we deduce that there exist the elements u} € W1'2(0, T;V)andw! € H,,
and the subsequences, still denoted by {u!}, and {w”},, such that

w! — w’ weakly in Hy , (9.84)
u" — u* weakly * in L>®°(0,T:V),
u§ - iti weakly in L2(0,T; V). ©-85)
Using the embedding W'2(0, T; V) < C([0, T]; V), we also have
u!(t) —u(t) weaklyinV VvVt €[0,T]. (9.86)

Now, we shall prove the strong convergence of u” to u in L*(0,T; V). Putting
v = 0andv = 2" (¢) in (S)¥<™*, one obtains:

a@l(@),v)+ jwi@),v) = (FL(t),v)y VYveV, aete(0,T),
Taking v = —v, it follows that

a@l(),v)—jwi(t),v) <(F.(t),v)y VveV, aete(0T). (9.87)
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Passing to the limit with » — oo in this inequality and taking into account the
convergences (9.85), (9.84), and (9.79), we obtain

a@l(t),v)— jwi(@),v) < (FX@).v)y VveV, 6 aet1te(0,T). (9.88)
Setting v = u! (t) —ul(¢) in (9.87) and v = u} (t) —ul(¢) in (9.88), we get

allul(t) —uF @)} < a@l () —ul(t),ul(t) —uk(t))
< Cllullzoo(ry) (120, W) I 12(ry) + 120 WEO) | 12(ry)) N0l (1) — wl @)l 12y
+lglt) - gf(f)”(LZ(rl))d fleel () — "j(f)”(LZ(rl))d < Cllui(t) — u:(f)”(LZ(F))d )

which, with (9.86) and the compactness of the trace map from V to (L*(T"))?,
implies

u!(t) — uX(t) stronglyin V.Vt €[0,7]. (9.89)

Hence, by Lebesgue’s Theorem 3.4, we obtain the strong convergence:
u" — u* strongly in L*(0,T; V). (9.90)

We shall prove that u} = u? Ewe and, from the uniqueness of the solution, we
shall conclude that the convergences (9.78), (9.84), (9.85), and (9.89) hold true for
the whole sequences.

For s € [0, T], from the convergences (9.85), (9.90), (9.84), (9.79) and the
properties (9.69), (9.70), we have

N

lim [ a@!@).al@))dt = [ a(@](z),a}(t))dt, (9.91)
o | f

0

s

li)rgofa(ug(t),v(t)) dt = [a(uj(z),v(z))dz Vv e L*(0,T;V), (9.92)
0 0

s

nli)n;c/(F’e’(t),v(t))V dt:/(F;‘(z),v(z))th Ve LX0,T;V),  (9.93)
0 0

A

nli)ngo/j(wZ(t),v(t))dt =/j(w:(t),v(t))dt Vv e L%(0,T;V), (9.94)
0 0

s s

lin;gf/j(wﬁ(t),ag(t)) dr > /j(wj(t),iaj(t)) dr. (9.95)

0 0
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Next, since we can write

N s

[ (F (). (1)) dt = (F"(s).u(5))y — (F"(0). o)y d — / E" (). (1) di |
0 0
it follows that

N N
Jim [(F20.a0w a = [(FI0.a O ar. (9.96)
0 0
Now, by passing to the limit in (S)%<™* with n — oo, one obtains

s S s

/ a(w? (). v(t) — () di + / JOOE (). v(1)) di — / JOOE (). i (1)) di

0 0 0

> /(Fj(z),v(z) —af(t)ydt VYvel*0,T;V), Vs e0,T].
0

(9.97)
Then, as usually, taking v € L?(0, T; V) defined by
z fort € [s,s + h],
1) =
v { u’ (1) otherwise,
with an arbitrary z € V and & > 0 such that s + & < T, one obtains
s+h s+h s+h
[ awoz-izoa+ [z [ wio.aoa
et s § (9.98)

> /(F:(r),z—a:(r))ydz VzeV, V¥sel0,T),

N

which leads us, by passing to the limit with 4z — 0, to the following inequality

>(F(t),z—u (t))y VzeV aer€(0,7). '

Moreover, the pointwise convergence (9.89) and the initial condition u?(0) = uo
. * _ * _ g¥ ¥ . % . .
give us u; (0) = uy and, so, u} = uf< "<, ie. u’ is the unique solution of problem

n

(8) .



9.3 Optimal Control of a Frictional Bilateral Contact Problem 217

In order to end the proof of our existence result, let us notice that, from (S)# ewe
and (9.99), it follows that

[l — ”: In, = llu; — u: ”LZ(O,T;V)y
which obviously, from (9.90), gives
u! — u’ strongly in Hy, .

Therefore, since the norm is weakly lower semicontinuous, from the conver-
gence (9.84), we get

TP S 1
l}lrg}gfzﬂwé —ulllf, = —€||w: —ul g, - (9.100)

Finally, by using the convergences (9.90), (9.78) and the relation (9.100), we
have

inf{Je(g.w): (g.w) € Hy x Hy}
n—00 n—>00

and hence, we conclude

Je(gX.wl) =min{J.(g.w); (g.w) € Hy x Hy}.

O
Lemma 9.5. If (gZ,wY) is an optimal control for (CS), and u¥ = u® W then
tim w? — u? |, = 0. (9.101)
Proof. Indeed, if (g,u) € ¥ 4, then@t € Hy, 1 = u8¥ and, hence,
Je(gX.w)) < Je(g.a) = J(g.0). (9.102)
Consequently, from the definition of J,, we get
W} —u?lf, < 2eJ(g2 w)) <2eJ(§.@),
which implies (9.101). O

We are now in the position to prove the main result of this section, the existence
of a solution to the optimal control problem (CS).
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Theorem 9.5. Fore > 0, let (g7, w}) € Hy x Hy, be an optimal control of (CS),
and u} = u8<We . Then, there exist the elements u* € W1’2(0, T;V)and g* € Hy
such that

gt — g weakly in Hg,
w* — u* strongly in Hy,

¢ ’ 9.103
u* — u* weakly in W'2(0,T;V), ( )
u* — u* stronglyin L*(0,T;V).

Moreover, (g*,u*) € ¥4 and

ling) J(gtwhH)=J(g"u") = ( min J(g.u). (9.104)
€—> g y

M)EVqd

Proof. From the definition and the boundedness (9.102) of J.(gZ,w}), it follows
that the sequence {g*}. is bounded in H,. Therefore, there exists g* € Hg such
that, up to a subsequence, we have

gr — g* weakly in Hy . (9.105)
So,
F* — F* weakly in W'(0, T, V), (9.106)
where
(FX(t),v)v :/f(t)-v dx+/g:(t)-v ds (9.107)
Q I
and

(F*@),vyyv=| f@)-vdx+ | g*@)-vds.
[rima- ]

I

Using the same arguments as in the proof of Proposition 9.4, we deduce

uf — uw* weakly * in L*(0,T:V),
i’ — u* weakly in L2(0,T; V),
u! — u* strongly in L*0,T;V),
wr — w* weakly in Hy, ,

(9.108)

with u* € W'2(0, T; V) and w* € Hy,.
Passing to the limit with € — 0 in the integral form of (S)% "¢, we deduce that
ut =uf " As

|uf —u*|ln, = llu} — u*”LZ(O,T;V)»
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we have
u’ — u* strongly in Hy ,
and thus, from (9.101), we get (9.103),, w* = u* and (g*,u™) € ¥,4.

Next, from the definition of J., we have

1
I R, = el W) — (g2 u)
< J(g*u*) = J(glul) =J(g" u")—J(gI u7),

50,
1
0 < lim sup 2—||w;’= —ul < J(g*.u") —limi(glfJ(g:,u:) <0,
e—>0 € v €—>
ie.
lim l||w* —u|} =0 (9.109)
e—~0¢e ¢ € 1Hy ’ '

Finally, it is easy to see that

J(g*. u*) < liminf J (g} . w)) < limsup J.(g7,w)) <limsup J.(g*,u™)
€0 €—>0 €e—>0

= J(g".u")
and
Je(gew) = Je(g.u)=J(g.u) V(g.u)€ Vo,
which give us
J(g" ") = lim Je(glwe) < J (&) V(i) € Vi -

So, (g*,u*) is an optimal control for the cost functional J and the minimal value
of J. converges to the minimal value of J. O

9.3.2 Regularized Problems and Optimality Conditions

Until now, we have reduced our optimal control problem to one governed by a
variational inequality of the second kind. Unfortunately, the problem (CS),, despite
the fact that it is simpler than the initial one, still involves a non-differentiable
functional J.. Therefore, to attain our main goal, the obtaining of the optimality
conditions, we shall consider a family of regularized problems associated with
(S)%", defined, for p > 0, by
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Problem (S)%™: Findu € W'?(0, T'; V) such that

p@(r).v —a(t))y +a(t),v —u(t)) + j (w),v) — jPw(t),u(t))
> (Fé@t),v—ut))y VveV,aete(0,T),
u(0) = uy,

where, forw € W, {j?(w,)}, is a family of convex functionals j*(w,-) : V — R,
of class C?2, i.e. the gradients with respect to the second variable, V,j?(w,") : V —
V*and V3jP(w,") : V — Z(V, V™), are continuous. In addition, we suppose that
the following conditions hold true:

JPw.0)=0 YweW, (9.110)

[jPw,v) — jw,v)| < Cplwlly YweW, VveV (9.111)
T T

nlggo/(sz"(wn(t),un(t)),V> dr = f(sz"(W(t),u(t)),v) d ©.112)

0 0
Y (W, u,) — (w,u) weakly in Hy x L*>(0,T;V), Vv eV,

where C is a constant independent of v and (-, -) denotes the duality pair between
V*and V.

Remark 9.3. 'We can choose
jPw,v) = /M%’av(w)l Op(v:)ds Y(w,v)e W xV, (9.113)
I

where the function 6, : R” — R is an approximation (see [12] or [1]) of the function
| -] : R?” — R, satisfying the following properties:

8, is a convex, nonnegative function of class C 2
6,(0) =0,

Op(u) — |u|| < Cop,

6,)v| < Cibl.

0/ @+ q)| = C:plvl gl

9.114)

with Cy, C;, and C;(p) positive constants.
Then, after some computations, it follows that

(257w} = [ ult, 018w -veds

I
(V3. wp.q) = [ W06 @0, - g,)ds

I
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For instance, if we take
1—'3”—') it <,
- p 1Y
%) = (|v|
0

1
?—5) if pl|=p,

[v|>

(9.115)

then 9;) and 9;)’ are defined by (8.156) and (8.157) (p. 182), and if we choose

6,00 = Vo2 + P2~ p. 9.116)

then one has:

and

) = e (v )
p = VP2 + lu(x)|? P>+ u(x)> )’

It is easy to see that, in both cases, the functional j,, defined by (9.113), satisfies
the properties (9.110)—(9.112) and, in addition, we have

[V2jPw.u)-v| < Ci|ly|l VYuv eV,
(V3jPw.u)-v.q)| < Colvll gl Vu,v.q eV,
with C; = Cy(w) > 0 and C, = Cy(w, p) > 0.

Obviously, the regularized problem (S)5™ can be equivalently written as the
following variational equality.

Problem (.)%": Findu € W'2(0, T; V) such that
p),v)v +a(r).v) + (V2 jP(w(t), u(t)).v)

= (Fé(@),v)y,VveV, 6 aete(0,T),
u0) =uy.

We have the following existence and uniqueness result.

Proposition 9.5. Let (g,w) € Hy x Hy, and p > 0. Then, there exists a unique
solution u3™ € W'2(0, T; V) of Problem ()5

Proof. Arguing as in [2], one can prove the following main steps of the proof.

(1) Forany & € W'2(0, T; V), the problem

Vie € WI2(0,T;V)
pOEY (), v)y + (Vo P (w(1),v8r (1)),v) = (F5©,») 9.117)
—a(ee(t),y) Vv eV, Vi e(0,T),

has a unique solution v5y" € W2(0, T; V).



222 9 Quasistatic Problems

(2) Letusy :[0,T] — V be the function defined by

1

uty () = / &L (s)ds +ug. (9.118)
0

Then uf),;,w e W22(0,T;V) and uf,',;tw(O) = uy.
(3) We denote by A, : W20, T;V) — W'2(0, T; V) the mapping defined by

Ap(@)(t) =udy(t)  Yee WY(0,T:V), Vi €[0.T]. (9.119)

One can prove that the map A, has a unique fixed point a*. Therefore, the
function ui&‘i defined by (9.118), is a solution of Problem (.#)5™. Finally, by
using Gronwall’ inequality and the properties (9.110)—(9.112) of the function
Jo» from the formulation ()5, the uniqueness follows. O

The regularized problem (S)5™ approximates the penalized problem (S)*" in
the following sense.

Proposition 9.6. Let (g,w) € Hy x Hy,. For p > 0, let us™ be the unique solution
of problem (S)5™. Then

us™ — uf"  strongly in L>(0,T;V),

9.120
uf” —af"  weakly in L*(0,T;V), ( )

uf" being the unique solution of (S)®™". Moreover, there exists a constant C > 0,
independent of p, such that

||“‘§'w - ug"w||L°°(0,T;V) <C.p (1 + ||ﬂg’w||2LZ((),T;V)) ) ©.121)

Proof. Using the property (9.111) of j and taking v = @5™ in (S)*™ and v = a*™"
in ()5, we get

p [ g™ @I at + 5 e 6) )1
0
< / PR (1) 8 (6)) — jOw0). i (1)) dr
0 N S
4 / R GE (1)) — P On(0). G (1) de + p [ @™ (1), a8 (1)) di
0 0
< Cp / WOl dt +p / & ()l 8 ©)lly de
0 0

S S
v ) 1 .
o|cot s [ligr ol a+ o [lar o). vse o).
0 0
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which implies, for v > 0 conveniently chosen, that
188 172072 < CA A+ 1811750, 79) (9.122)

and
™ () —uf* ()} < Co(l + 1@ 52 o) Vs €[0.7].

a

Now, we formulate an optimal control problem, governed by the regularized
problem (S)f;’w, in which the cost functional is defined similarly to J., the only
difference being that the state is, in this case, the solution of an equation. More
precisely, we introduce the regularized functional:

1
Jep(g’ W) =J(gv ug,W) + Z”w - ui’w”%Iw

B

1 » 1 ,
=§||u§’ —uylf, + 5||g||%1g + ZHW —ud” [, - (9.123)

us™" being the unique solution of the regularized problem (S)f) " or, equivalently,

of the variational equation (.)5".
For any p > 0, we consider the corresponding regularized optimal control
problem.

Problem (CS),,: Find (g7,.w,) € Hg x H,, such that
Jep(g2,w:,) = min{Je,(g,w); (g,w) € Hg x H,}.

Theorem 9.6. For p > 0, there exists a solution (g?,, w,) of Problem (CS).,.

Proof. Let{(g¢,,w¢,)}» be a minimizing sequence for the functional J.,. From the

definition of J,, it follows that there exists g:‘p € Hyg such that, up to a subsequence,
we have

g!, — g, weakly in Hy . (9.124)

Let u;, = ulo™e . Putting v = g, (1) in (Y)i“’ ™ and taking into account
that (9.110) implies

(VojP(w,u),u) >0, Vw,u) e W xV, (9.125)

we get
N 1 N
) o , )
p [Nty @ ar + S < Jatu.u) + [(FL0).it, o) o
0 0

s S
v . 1
<C+ 5/ i, () |I5 dr + 5/ IF 2,015 dr .
0 0
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where

(FI,0)v)yy=[ f@)-vdx+ | gl (t)-vds. (9.126)
= [ 10 v

Iy
Thus, with (9.124), it follows that
e, ()} = € Vs e[0.7T],
lw? o000y < C (9.127)
621250 70y < C-

with C and C, positive constants. So, up to a subsequence, we have

u' — u:p weakly *in L>®°(0,T;V),

€p
ug,(t) = ul (1) weaklyin V. Vi € [0,77], (9.128)
i"gp — il:p weakly in L2(0,T: V).

Therefore, since
2 . 2
”u’elp”%-[w = ”uZp”LZ(O,T;V) + ||pu2p - f ”LZ(O,T;(LZ(Q))d) ’
we conclude that the sequence {uZp }n 1s also bounded in Hy, and, from the definition

and the boundedness of {Jc,(g¢,, we,)}n, it follows that the sequence {w¢,}, is
bounded in Hy,. So, up to a subsequence, we have

Wi, = w:p weakly in Hy, , (9.129)
with w;"p € Hy,.
Now, passing to the limit with n — oo in (Y)i“’ " and using the conver-

gences (9.124), (9.129), (9.128), and (9.112), we obtain that u:p = u%™% . From
the uniqueness of the solution, we deduce that all the above convergences hold on
the whole sequences.

Next, from (S)%%* and (S)#%", we obtain

(ugp—u:p~¢)Hw = (ugp_u:p’¢)L2(O,T;V)+p(i‘2p_il:pv(p)LZ(O.T;(LZ(Q))d) Vo € Hy,
which, together with (9.128), 3, implies

*

u;, — u., weakly in Hy, .

n
€p
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Therefore, by using the convergence (9.129), one gets

o1 1
timinf 5w, =l |, = 5 Iw5, —ulyl, (9.130)

Finally, using the weakly lower semi-continuity of J¢, and (9.130), one deduces

inf{-]ep(ng) ) (g,w) € Hg X Hw}

= Illi>n010 Jép(gZp’ WZP) 2 l}llnj)gf Jép(g};lpw pr Z Jep(g:pv w:p)
and so, we conclude
Jep(gZ,,we,) = min{Je, (g, w); (g.w) € Hy x H )} .

a

The following property of the solution of the regularized problem (S)ﬁ'w will
allow us to prove an important result of this section, stated in Theorem 9.7, which
gives the asymptotic behavior of the regularized optimal controls of problem (CS),,.

Proposition 9.7. Let {(g,.w,)}, C Hg x Hy, be such that
(g,.wn) — (g.w) weakly in Hg x Hy, .

Then,

u/l‘s;nvw” N uf;*w weakly in Wl'z(O, T:V),

us"™" being the unique solution of (S)5*" and us™ the unique solution of S)5".

Proof. Letu, = u,"*". Takingv = it, in ()3""" and using the positivity (9.125),
we deduce, for all s € [0, T'], that

N s s
. o 1 v .
p [ im0t + Sl = 50 [ 1P O + 5 [ i@l ar+ .
0 0 0
which, for v > 0 conveniently chosen, implies
la () < CA+ [F& o) Vs € [0.T]

”un Iliz(O.T;V) f Cp(l + ”an ”iz(O,T;V)) .
Thus, there exists u € W'2(0, T; V) such that, up to a subsequence, we have

u, — u weakly *in L>°(0,T:;V),
u, — u weakly in W'2(0,T; V). (9.131)
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Finally, by passing to the limit in (#)5"™", with n — oo, and using (9.131),
(9.112) and the hypotheses on {g,,}, and {w, },, we getu = us". O
Now, we state the following convergence result.
Theorem 9.7. Let (g{,,w?,) be a solution of problem (CS),, and u?, = ui“’ e
Then,

g, — g weakly in Hy
w, = w; weakly in Hy , (9.132)
u¥ — u* weakly in W'2(0,T; V),

€p €
* * . .
where u¥ = uf< <. Moreover, (g*,w}) is an optimal control for J. and

fn 85y 02 = TG = )

Proof. Let (g.i) € ¥4q. Obviously, & = u#*¥ and, from Proposition 9.6, we have

— @ strongly in L=(0,T; V),
—~u weakly in L?(0,T;V).

us

S =™

O 0D I

s
Therefore, we obtain

B

‘ - N A I ea - - o -
tim o8 = timy (5 -y 5l + 5 g, ) = 8.

Since

Jep(g:pvw:p) E JE,D(gVﬁ) ’

it follows that the sequence {Jep(g:p,w:p)}p is bounded. Hence, the sequence
{g?,}, is bounded in H .

Next, putting v = 0 in (S)g:ﬂ’w:ﬂ, integrating by parts on [0, s] with s € [0, 7] and
taking into account the positivity and the property (9.110) of j,, we get

A

p [+ [as 0w < [Frozopa. 013
0 0

0

where

(FZ(0). )y = / F@) vy + /g:‘pm v ds.
Q

I



9.3 Optimal Control of a Frictional Bilateral Contact Problem 227

Proceeding like in the proof of Proposition 9.4, we deduce that the sequence
{(u},, pi},)}, is bounded in L>°(0,T; V) x L*(0,T; V).
Thus, since

2 2 ' 2
”u:p”Hw - ”u:P”Lz(O,T;V) + ”pu:p - f”LZ(O,T;(LZ(Q))d) ’

it follows that the sequence {u,}, is also bounded in Hy. From the definition of J,
and the boundedness of the sequence {J,, (gjp, w:p)} p» it follows that the sequence
{w?,}, is bounded in Hy. Thus, there exist the elements g7 € Hg and w? € Hy, and
the subsequences, still denoted by {g/,}, and {w{,},, such that

g, — g weakly in Hg,

w:p — w} weakly in Hy, . (9.134)

Applying Propositions 9.6 and 9.7, we deduce

u* —u* weaklyin W'2(0,T;V), (9.135)

€p €

* * . .
where u} = uf< <. An easy computation gives

u’ —u’ weaklyin H,, . (9.136)

€p €

Let (g, w.) be a solution of problem (CS),, it = u#<*< and U, = u%"fve. From
Proposition 9.6, we get
ite, — U strongly in L*°(0,T; V),
i, — . weakly in L*(0, T; V), (9.137)

which, using (S)f_)'f“;f and (S)%<™, give
uc, — u. strongly in Hy, . (9.138)

Therefore, the convergences (9.134)—(9.138) lead us

*

Je(g:, w:) = li/r)ni(r)lfJep(g:p, w:p) < lim sup Jep(g:piwgp
- 0

p—
= 1imS(l)lP Jep(ge»we) = élir(l] Jep(gnge) = Je(gevwe) =< Je(g:’w:) )
p—>
9.139)

ie.

lin}) Jep(g2,we,) = Je(gZ,w?) = min{J(g.w); (g.,w) € Hy x Hy}.
p—>
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Finally, coupling the results proven in Theorems 9.7 and 9.5, we conclude that the
regularized optimal problems represent a good approximation for the initial control
problem.

Corollary 9.1. Let €, p > 0 and {g7,.w,}¢, be the sequence of solutions for
problems (CS),,. Then, there exists (g*,u™) € ¥4q, such that, up to a subsequence,
fore, p— 0, we have

g:, — g" weakly in Hg,
w:p — u* weakly in Hy, , (9.140)

u:‘p — u* weakly in W'2(0,T; V),

* g* w*
whereu;, = u®<"<. Moreover,

: * * 0\ * ok .
E,I;on(g“”w“’) =J(g",u") =, min  J(g,u). (9.141)

8.u)€Yqa

In the sequel, we are concerned with the obtaining of the optimality conditions
for the problem (CS),,, which means to derive the equations characterizing an
optimal control from the fact that the differential of J, vanishes at an extremum.
We shall use the following result due to Lions [11].

Theorem 9.8. Let & be a Banach space and X, Y two reflexive Banach spaces.
We consider two functions of class C', F : #xX — Y, and I BxX— R
We suppose that, for allh € 2,
(i) there exists a unique solution u” € X of equation .F (h,u") = 0;
0F
(ii) the operator a—(h, u") : X — Y is an isomorphism.
u

Then, the function J : 8 — R, defined by J(h) = _# (h, uh), is differentiable
and

—(h)(6h) = —Z—(h, sh) —(¢q", —(h, sh vV 5h € £,
“(h)(8h) = “Z—(h.u")(5h) <q apy () Vs

(9.142)
where the adjoint state q" € Y* is the unique solution of

<[‘W (h,uh):|* -qh,v> = %(h, u(v) VveX. (9.143)

ou ey 0

First, let us remark that, for (g,w) € Hg x H,, the regularized problem (S)i »
has a unique solution u5™ € W'2(0, T; V) satisfying u$ ™ (0) = uo. Then, uf"” =
uy + lif)’w, where itf:’w € W'2(0, T; V) satisfies
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p@E™ (1), v)y + a@s™ (1) + uo.v) + (Vo (w(t). us™ (1)), v)
=(F@),v)y VveV, ae.te(0,T), (9.144)
us”(0)=0.

In order to apply Theorem 9.8, we take

% =Hg xH,,,
X={peWh>0,T:V)NL*0,T;W); v(0) =0},
Y = L2(0,T: V*),
F: ABxX =Y,

T T

(F (g wou).v) = / PG (1) v(0))y di + [ aut) + o, v(0)) dr

0 0

T
+(V2j P w (), (1)), v(1)) dt — /(f(t)vv([))(Lz(Q))d d
0

T
- [E@r O dr Vo e L2O.TV).
0

F  BxX >R,

1
/(ngvu) = §||u+u()_ud”%{u+ ﬁ

1
S gl + 5ol + o —wls, -

We remark that

/(g,w,ftf;w) = Jep(g’ W) V(g,w) € Hg 2 HW'

In the sequel, to simplify the notation, we shall omit to write explicitly the indices
€,p, g,and w.
We state now the main result of this section.

Theorem 9.9. Let (g*,w*) € Hy xH,, be a solution of the optimal control problem
(CS).,- Then, there exist the unique elements u* € X and q* € Y* such that

T

T
p | @ @0).v@)y dr + | a@*(t) + uo,v(t))d
J J

0

T T
+ [ @@ o) d = [FOrDepd ©145
0 0

T

+ /(g*(:),v(z))(wmd dt Vvel*0,T:V),
0
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T T

/p(ﬁ(t),q*(t))vdt +/a(v(t),q*(t)) dr

0 0

T

+/(V22j(w*(t),it*(l))ﬁ(l) = Vo j(0). 0" (1)), g (1)) d (9.146)
0
T

= /(u*(t) +uy—uy, V(t))(LZ(r2))d dt VreX

and

B&*. &u, = (@". &) 201:2mryyr) Vg € Hg. (9.147)

Proof. Let u* be the unique solution of (9.144) corresponding to (g*,w*). Some
easy computations give:

U7 (g w* )0 = L o —w wm, Y < H.
8/ .

@(g W u*)(g) =p(g". g)n, Vg € Hy,

0

1
W(g*s“’*s”*)(u) = (u* +uy—uq,u)n, + g(u* +ug—w" uy, ueX,

%(g*w*,u*)(w),‘» = /(sz(w(l),it*(l))w(l)) dr V(w,v) € Hy x L*(0, T V),

T
/(g(t),v(t))(Lz(l—l)d dt Vg e Hy Vv € L*(0,T; V),

T

ik i%

<
(57 & vy ce.0)
(

0
T
(" W™ u*) @), > ) f @) () dr + / au(t). v(1)) di
0

0

+ [ (V3jw(t),a*(t))a(t),v(t))dt YueX, Yve L*(0,T;V).

o Sy

F
Thus, the operator 8—(g*, w*,u*) : X — Y is an isomorphism.
u

Using Theorem 9.8, the adjoint state ¢* € Y™ is defined as being the unique
solution of the following equation:

<|:8i(g w* u):| -q*,v>=%(g*,w*,u*)(v) vy e X.
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Therefore, we have

T

/[p(f’(f),q*(f)) +a(t). q* () + (V3 jw* (). &* () (5(), ¢*(1))] dr

0 . 1

= / [(u*(r) +uo —uq,v(t)) 12y + E(u’; + uy — w(t),v(t))W:| dr Vv e X.

Next, since h* = (g™, w™) is a solution of the optimal control problem (CS),,,
using Theorem 9.8, we obtain

dl . 37 . o, v 07 e\
T ®=" (0" u )(h)—{q oy (0w )(h))—o Vh=(g.w) € Hy x Hy
which gives

T

T
1
[ 2w @ w0 dr + Be™ m, = [0 Vo500 @)
0 0
_(q*»g)LZ(O,T;(LZ(I‘l))d) V(g.w) € Hy x Hy, .

Taking g = 0, we deduce

T
f L@ @b OO dt = [(070), V200G @) di Vv € 120, T:W)
0

St~

and, so, we obtain (9.146) and (9.147). O

The asymptotic analysis (Corollary 9.1) of smoother problems (CS),,, provides
that the sequence of optimal regularized controls { gZp, ufp}ep converges to an
optimal control (g*, u*) of the initial problem (CS). Therefore, the system (9.145)—
(9.147) can be useful in the numerical analysis of an optimal control.
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