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Preface

Introductory Discrete Mathematics is a concise text for a discrete mathematics course at an introductory level for
undergraduate students in computer science and mathematics. The essential components of any beginning level discrete
mathematics curriculum are combinatorics, graph theory with applications to some standard network optimization problems,
and algorithms to solve these problems. In this book the stress is on these core components. Both the Association for
Computing Machinery and the Committee for the Undergraduate Program in Mathematics recognize the vital role of an
undergraduate course in discrete methods that introduces the student to combinatorial mathematics and to algebraic and
logical structures focusing on the interplay between computer science and mathematics.

The material in Chapter 0 serves as an introduction to the fundamental operations involving sets and the principle of
mathematical induction. For those students familiar with the topics discussed here, this is essentially a chapter for review.

The standard topics in combinatorics in any course on discrete mathematics are covered in Chapters 1, 2, and 3.
These topics include basic counting principles, permutations, combinations, the inclusion-exclusion principle, generating
functions, recurrence relations, and an introduction to the analysis of algorithms. The role of applications is emphasized
wherever possible. There are more than 200 exercises at the end of these chapters. Each counting problem requires its own
special insight, and it is advantageous for the student to work out several of these problems.

In the next three chapters is a survey of graphs and digraphs. We begin with treating graphs and digraphs as models of
real-world phenomena by giving several examples. The connectedness properties of graphs and digraphs are studied. Basic
results and applications of graph coloring and of Eulerian and Hamiltonian graphs are presented with a stress on applications
to coding and other related problems. Two important problems in network optimization are the minimal spanning tree
problem and the shortest distance problem; they are covered in the last two chapters. The approach to compute the
complexity of algorithms in these chapters is more or less informal.

A very brief nontechnical exposition of the theory of computational complexity and NP-completeness is outlined in the
appendix.

It is possible to cover the topics presented in this book as a one-semester course by skipping some sections if
necessary. Of course it is for the instructor to decide which sections she or he may skip.

My chief acknowledgment is to the students who have studied discrete mathematics with me at the University of
Maine during the past decade. They taught me how to teach. Their contributions and encouragement are implicit on every
page. In particular, I would like to mention the names of Rajesh and Thananchayan. My scientific indebtedness in this
project encompasses many sources including the articles and books listed in the bibliography. If there are errors or
misleading results, the blame of course falls entirely on my shoulders. Finally, it goes without saying that I owe a great deal to
the interest and encouragement my family has shown at every stage of this work.

V. K. Balakrishnan



Set Theory and Logic

0.1 INTRODUCTION TO SET THEORY

The concept of a set plays a very significant role in all branches of modern mathematics. In recent years set theory has
become an important area of investigation because of the way in which it permeates so much of contemporary mathematical
thought. A genuine understanding of any branch of modern mathematics requires a knowledge of the theory of sets for it is
the common foundation of the diverse areas of mathematics. Sets are used to group distinct objects together. It is necessary
that the objects which belong to a set are well-defined in the sense that there should be no ambiguity in deciding whether a
particular object belongs to a set or not. Thus, given an object, either it belongs to a given set or it does not belong to it. For
example, the first five letters of the English alphabet constitute a set which may be represented symbolically as the set {a, b,
c, d, e}. An arbitrary object belongs to this set if and only if it is one of these five letters. These five distinct objects can
appear in any order in this representation. In other words, this set can also be represented by {d, b, a, e, c}. The objects
that belong to a set need not possess a common property. Thus the number 4, the letter x, and the word “book” can
constitute a set S which may be represented as S = {x, book, 4}. A particular day may be cold for one person and not cold
for another, so the “collection of cold days in a month” is not a clearly defined set. Similarly, “the collection of large
numbers” and “the collection of tall men” are also not sets.

The term object has been used here without specifying exactly what an object is. From a mathematical point of view,
set is a technical term that takes its meaning from the properties we assume that sets possess. This informal description of a
set, based on the intuitive notion of an object, was first given by the German mathematician Georg Cantor (1845–1918)
toward the end of the nineteenth century and the theory of sets based on his version is known as naive set theory. In
Cantor’s own words, “a set is bringing together into a whole of definite well-defined objects of our perception and these
objects are the elements of the set.” The sets considered in this book can all be viewed in this framework of Cantor’s
theory.

Thus a set is a collection of distinct objects. The objects in a set are called the elements or members of the set. If x
is an element of a set A, we say that x belongs to A, and this is expressed symbolically as x  A. The notation 

denotes that y is not an element of the set A.

Finite and Infinite Sets

A set is finite if the number of elements in it is finite. Otherwise, it is an infinite set. The set of positive integers less than 100
is a finite set, whereas the set of all positive integers is an infinite set. If X is a finite set, the cardinality of X is the number of
elements that belong to X, and this nonnegative integer is denoted by N(X). A set of cardinality 1 is called a singleton set.

If a set is finite and if its cardinality is not too large, we can describe it by enumerating all its elements. For example,
the representation S = {a, e, i, o, u} describes the set of all vowels of the English alphabet. If the cardinality is too large, this
enumerative method is not very convenient. In some cases, if there is no ambiguity we make this enumerative description
more concise. For example, the set D of positive integers between 25 and 123 can be represented as D = {25, 26, 27, · · ·
, 121, 122, 123}. A better way of representing D is by stating the property for its membership. An object n is an element of
this set D if and only if n is a positive integer that is at least 25 and at most 123. In other words, we write

D = {n : n is a positive integer, 24 < n < 124}



The infinite set N of all natural numbers can be represented unambiguously as N = {1, 2, 3, . . .} or as N = {n : n is a natural
number} by stating its membership criterion. The notation of representing a set by stating the criteria of its membership as
described above is called the set-builder notation.

Subsets of a Set and the Empty Set

A set P is a subset of a set Q if every element of P is an element of Q. We use the notation P ⊂ Q to denote that P is a
subset of Q. A subset of a subset is no doubt a subset. When P is a subset of Q, we may say that Q contains P and that P
is contained in Q. By our definition every set is a subset of itself. The set P is a proper subset of Q if (1) P is a subset of
Q and (2) there is at least one element of Q that is not an element of P. The set of positive integers is a proper subset of the
set of all real numbers.

If A is a subset of B, the relative complement of A in B is the set of elements in B that are not elements of A. The
relative complement of A in B is denoted by B – A and it can be described by its membership criterion as

Two sets are disjoint if they have no elements in common. On the other hand, two sets are equal if they have the
same elements. We write X = Y when the sets X and Y are equal. Obviously, two sets are equal if and only if each is a subset
of the other. For instance, if X = {r : r is a root of the x2 – 5x + 6 = 0} and Y = {2, 3}, then X = Y.

A set is empty if it has no elements. A fact emerges that some people find surprising: there is only one empty set.
(Suppose that E and F are two empty sets. If they are not the same, they are not equal. So one of them should have at least
one element that does not belong to the other. So one of the two sets is not empty. This contradicts the assumption that both
E and F are empty.) The unique empty set (or null set) is denoted by ϕ. The fact that the empty set is a subset of any set
is established by “vacuous reasoning”: If it were not a subset of a given set S, there should be at least one element in the
empty set that is not in S. In particular, there should be at least one element in the empty set that is a contradiction. Of
course, a set is empty if and only if its cardinality is zero.

In some cases we will be considering sets that are all subsets of a set U which is called the universal set. For
example, if the sets under consideration are A, B, and C, where A = {3, 8, 6, 7, x}, B = {8, 4, y, t, 5}, and C = {3, 4, x, t,
9}, then any set containing the set D = {3, 8, 6, 7, x, 4, y, t, 5, 9} can be considered as a universal set as far as A, B, C,
and D are concerned. Once the universal set U is fixed, the relative complement of a subset A in U is called the absolute
complement of A and is denoted by Ac. Thus if the universe is the set of all nonnegative integers and E is the set of all even
numbers, then Ec is the set of all odd numbers. Observe that the absolute complement of the absolute complement of any
set A is the set A itself.

The Power Set of a Set

A set can have other sets as its elements. For instance, the set S consisting of the letter x, the set {a, b} and the number 4 is
represented as S = {x, {a, b}, 4}. A set of subsets is also known as a class or family of sets. The class of all subsets of a
given set X is called the power set of X and is denoted by P(X). For example, if X = {1, 2}, the elements of P(X) are the
empty set, the singleton set {1}, the singleton set {2}, and the set X. Thus P(X) = {ϕ, {1}, {2}, {1, 2}}.

Cartesian Products of Sets

The ordered n-tuple (a1, a2, a3, . . . , an) is a collection of the n objects a1, a2, . . . , an in which a1 is the first element, a2
is the second element, . . . , and an is the nth element. In an ordered n-tuple, the elements need not be distinct. A set with n
elements is thus an unordered n-tuple of n distinct elements, since in a set the order in which the elements are considered is
irrelevant. An ordered 2-tuple is called an ordered pair. Two ordered n-tuples (a1, a2, . . . , an) and (b1, b2, . . . , bn) are
said to be equal if ai = bi for i = 1, 2, . . . , n. The set of all ordered pairs (a, b), where a is an element of a set A and b is
an element of a set B, is called the cartesian product of A and B and is denoted by A × B. In other words,

A × B = {(a, b) : a  A and b  B}

For example, if A = {1, 2} and B = {1, 3}, then the cartesian product A × B is the set {(1, 1), (1, 3), (2, 1), (2, 3)}. More
generally, the cartesian product of the sets A1, A2, . . . , An denoted by A1 × A2 × · · · × An is the set of all ordered n-tuples
of the form (a1, a2, . . . , an), where ai is any element of Ai (i = 1, 2, . . . , n).

Intersections and Unions of Sets



There are two important constructions that can be applied to subsets of a set to yield new subsets. Suppose that A and B
are two subsets of a set X. The set consisting of all elements common to both A and B is called the intersection of A and B
and is denoted by A ∩ B. Obviously, the intersection of a set and the empty set is the empty set and the intersection of any
set A and A is A. Also, the intersection of a set and its absolute complement is empty since no element can be
simultaneously in A and not in A. Moreover, it follows from the definition that set intersection has the commutative property:
The intersection of A and B is equal to the intersection of B and A.

The set consisting of all elements that belong to either A or to B or to both A and B is called the union of A and B and
is denoted by A ∪ B. The union of a set A and the empty set is the set A and the union of A and A is also A. Set union also
is commutative: A ∪ B = B ∪ A. More generally, the intersection of a class of sets is the set of elements (if any) that belong
to every set of the class. The union of a class of sets is the set of those elements that belong to at least one set in the class. It
is an immediate consequence of the definition that both set intersection and set union possess the associative property: (1) A
∩ (B ∩ C) = (A ∩ B) ∩ C and (2) A ∪ (B ∪ C) = (A ∪ B) ∪ C. So the former can be written as A ∩ B ∩ C and the
latter as A ∪ B ∪ C unambiguously.

Two sets are disjoint if and only if their intersection is empty. A class of sets is pairwise disjoint if the intersection of
any two sets in the class is empty. A class C(X) of subsets of a set X is called a partition of X if (1) C(X) is pairwise
disjoint, and (2) the union of the sets in C(X) is the set X. For instance, the class {{2, 4}, (1, 3, 5}, {6}} is a partition of the
set {1, 2, 3, 4, 5, 6}.

Venn Diagrams of Sets

A very useful and simple device to represent sets graphically for illustrating relationship between them is the Venn diagram,
named after the English logician John Venn (1834–1923). In a Venn diagram, the universal set U that contains all the objects
under consideration is usually represented by a rectangle, and inside this rectangle subsets of the universal set are
represented by circles, rectangles, or some other geometrical figures. In the Venn diagram shown in Figure 0.1.1, we have
three sets A, B, and C which are subsets of the universal set U. The drawing of the ellipse that represents the set A inside
the ellipse that represents the set B indicates that A is a subset of B. The fact that A and C are disjoint is made clear by
representing them by two nonintersecting ellipses. The fact that the intersection of B and C is nonempty is made obvious by
showing that the two ellipses which represent these two sets overlap each other. The region in the rectangle (which
represents the universal set) that is outside the ellipses that represent the three sets is the absolute complement of the union
of these three sets.

FIGURE 0.1.1

Distributive Laws and De Morgan’s Laws

We conclude this section on sets with the following two theorems related to set operations involving intersections, unions,
and taking absolute complements. These theorems can easily be established by drawing Venn diagrams. However, it is
instructive to prove them without the aid of Venn diagrams, for in many cases it may not be possible to represent the sets
under consideration by such diagrams, as we will see later in the book.

THEOREM 0.1.1 (Distributive Laws)

(a) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
(b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Proof:



(a) One way of showing that two sets are equal is by establishing that each is contained in the other. Let t be an
element of A ∩ (B ∪ C). Then t is an element of A and t is either an element of B or an element of C. In either case, t is an
element of A ∩ B or A ∩ C. In other words, A ∩ (B ∪ C) is a subset of (A ∩ B) ∪ (A ∩ C). Next, suppose that t is an
element of (A ∩ B) ∪ (A ∩ C). This implies that t is either in A ∩ B or in A ∩ C. So t is necessarily in A and it is in at least
one of the two sets B or C. Thus t is in A and also in either B or in C. In other words, t belongs to the intersection of A and
to B ∪ C. Thus (A ∩ B) ∪ (A ∩ C) is a subset of A ∩ (B ∪ C).

(b) This is left as an exercise.

THEOREM 0.1.2 (De Morgan’s Laws)

(a) (A ∩ B)c = Ac ∪ Bc.
(b) (A ∪ B)c = Ac ∩ Bc.

Proof:

(a) Let t be an element of (A ∪ B)c. Then t belongs to neither A nor B. So t is necessarily in both Ac and Bc. Thus (A
∪ B)c is a subset of the intersection of Ac and Bc. On the other hand, if t is in the intersection of Ac and Bc, it is neither in A
nor in B. This implies that t is not in the union of A and B. Hence the intersection of Ac and Bc is contained in the
complement of A ∪ B.

(b) This is left as an exercise.

0.2 FUNCTIONS AND RELATIONS

In this section a brief review of the basic ideas involving functions and relations is presented. The concept of a function is
pivotal in mathematics.

The Domain and the Range of a Function

Let X and Y be two nonempty sets. A function f from X into Y, denoted by f: X → Y, is a rule that assigns to every
element in X a unique element in Y. The set X is the domain of the function and the set Y is its codomain. If y is the unique
element in Y assigned by the function f to the element x, we say that y is the image of x and x is a preimage of y and we
write y = f(x). The set f(A) of all images of the elements of a subset A of X is called the image of the set A. The set f(X) is
called the range of the function. The range of a function is a subset of its codomain. If y is an element in the range of f, the
set of all the preimages of y is denoted by f–1 (y). If A is a subset of the range f(X), the inverse image of the set A is the
set {x : x is in X and f(x) is in A}, which is denoted by f–1(A). If f is a function from X to Y, it is customary to say that f
maps the set X into Y.

Example 0.2.1

Let R be the set of all real numbers.
(a) Let f: R → R be the function that assigns the real number x + 1 to each real number x. In other words, f(x) =

x + 1. Here the domain, codomain, and range of f is R.
(b) Let f: R → R be the function defined by f(x) = x2. So every real number is assigned to its square. Here the

domain and codomain of f are R and its range is the set of all nonnegative numbers.

Example 0.2.2

Let A = {a, b, c} and B = {1, 2, 3, 4}. Then the rule f defined by f(a) = 1, f(b) = 1, f(c) = 4, and f(d) = 2 is a
function f from A to B. The range of f is {1, 2, 4}, which is a proper subset of its codomain B.

Surjections, Injections, and Bijections

A function f: X → Y is called a surjection if f(X) = Y and we say that f is function from X onto Y. A function f: X → Y is
called an injection (or a one-to-one mapping) if two different elements in X have two different images in Y. A function f: X
→ Y is a bijection if it is both a surjection and an injection. The bijection from a set X onto itself that maps every element in
the set into itself is called the identity mapping ix on X. Two sets are equivalent if there is a bijection from one to the
other. It is evident that two finite sets are equivalent if and only if they both have the same cardinality.

Example 0.2.3

(a) Let X = {a, b, c}, Y = {p, q}, and f: X → Y, where f(a) = p, f(b) = q, and f(c) = p. Then f is a surjection



and f maps X onto Y. Here f is not an injection.
(b) If X = {a, b, c}, Y = {p, q, r, s} and if g(a) = p, g(b) = q, g(c) = r, then g is an injection but not a

surjection. The range g(X) = {p, q, r} is a proper subset of the codomain Y.
(c) If X = {a, b, c}, Y = {p, q, r} and if h(a) = p, h(b) = q, and h(c) = r, then h is a bijection.
(d) If R is the set of real numbers and f: R → R the function defined by f(x) = x2, then f is neither a surjection,

because no negative number has a preimage, nor an injection, because the image of x and the image of –x are both
equal.

The Inverse of a Function

Let f: X → Y be a bijection. The inverse function of f is the bijection f–1: Y → X defined as follows: For each y in Y, we
find that unique element x in X such that f(x) = y. Then we define x = f–1(y). A function f: X → Y is said to be invertible
whenever its inverse exists.

Example 0.2.4

If X = {1, 2}, Y = {p, q}, f(1) = p, and f(2) = q, then f is a bijection from X onto Y and its inverse f–1 is the bijection
from Y onto X that maps p into 1 and q into 2.

A function f whose domain X and codomain Y are subsets of the set R of real numbers is strictly increasing if
f(x) < f(y) whenever x < y and strictly decreasing if f(x) > f(y) whenever x < y. It follows from the definition that
both strictly increasing functions and strictly decreasing functions are injections.

Compositions of Functions

Let g : X → Y and f: Y → Z. The composition of f and g, defined by f ○ g, is a function from X to Z defined by (f ○ g)(x)
= f(g(x)). In other words, the function f ○ g assigns to an element x in X that unique element assigned by f to g(x).

Example 0.2.5

(a) Let X = {a, b, c}, Y = {p, q, r, s}, and Z = {1, 2, 3}. Let g(a) = p, g(b) = q, and g(c) = r, so that g(X) =
{p, q, r}. Then if f: g(X) → Z is defined by f(p) = 1, f(q) = 2, and f(r) = 3, we have

(b) Let f and g be functions from the set of integers to the set of integers. If f(x) = 4x + 3 and g(x) = 2x + 5,
then

(f ○ g)(x) = f(g(x)) = f(2x + 5) = 4(2x + 5) + 3 = 8x + 23
(g ○ f)(x) = g(f(x)) = g(4x + 3) = 2(4x + 3) + 5 = 8x + 11

If f is a bijection from X onto Y, its inverse is a bijection from Y to X. If y = f(x), then f–1(y) = x. Thus f–1(f(x) = f–1(y)
= x and f(f–1(y)) = f(x) = y. In other words, the composition of a bijection from X onto Y and its inverse is the identity
mapping from Y onto itself.

Sequences, Strings, and Languages

A sequence is a function whose domain is a set of consecutive integers. If the domain X is a finite set of n integers, we may
take X = {1, 2, 3, . . . , n} or {0, 1, 2, . . . , n – 1}. Otherwise, we may take X as the set of natural numbers or as the set
of nonnegative integers. If f: X → Y is a sequence, the image f(i) of the integer i is sometimes written as fi and is called the
ith term of the sequence.

Notice that in representing a sequence s, the order in which the images under s appear is important. This is not so in
the case of a function. For example, if f is the function from X = {1, 2, 3} to Y = {p, q}, where f(1) = f(2) = p and f(3) = q,
the collection of the images of the three elements of X under f can be represented as p, p, q in any order. But the sequence f
is represented as (f(1)f(2)f(3)) or as (ppq). A sequence whose domain is finite consisting of n consecutive integers and
whose codomain is Y defines a string of length n in Y or word of length n in Y. In fact, any such sequence is an n-tuple.



Example 0.2.6

(a) Let X = {1, 2, 3, . . .} and R the set of real numbers. Consider the sequence f: X → R defined by f(n) = 1/n.
Then the nth term of the sequence denoted by fn is the image f(n) of the element n in X. This sequence is also denoted
by {1/n : n = 1, 2, 3, . . .}.

(b) Let X = {1, 2, 3, 4, 5} and Y = {a, b, c, d} and consider the sequence f: X → Y defined by f(1) = a, f(2) =
b, f(3) = a, f(4) = c, and f(5) = b. Then this sequence is the string abacb of length 5 in Y which is also the 5-tuple
(abacb).

Any mapping f from A × A into A is called a binary operator on A. For instance, if R is the set of real numbers, the
mapping f: R × R → R defined by f(a, b) = a + b (which is, in fact, the addition operator) is an example of a binary operator
on R.

If S is any nonempty set, we denote by Sn the set of all strings of length n in S and S* the set of all strings (including
the null string with no elements). Any subset of S* is called a language over the alphabet S. The union and intersection of
two languages over an alphabet are also languages over the same alphabet. If u = (u1u2u3 · · · um) and v = (v1v2 · · · vn)
are two strings of lengths m and n, respectively in S* then the concatenation of u and v is the string uv in S* of length m +
n defined as uv = (u1u2u3 · · · umv1v2 · · · vn). The mapping c: S* × S* → S* defined by c(u, v) = uv where uv is the
concatenation of u and v is a binary operator on S*.

Relations

We conclude this section with a brief comment on the concept of a “relation,” which is more general than that of a function.
If A and B are two sets, any subset of A × B is called a relation from A to B. For example, if A = {a, b, c} and B = {1, 2,
3, 4}, then R = {(a, 2), (a, 3), (b, 4), (c, 3)} is a relation from A to B. By definition, in each ordered pair in a relation from
A to B, the first element is an element in A and the second element is an element in B. A function from A to B therefore
defines a special kind of relation R from A to B such that whenever (a, b) and (a, b′) are in the relation R, then b = b′. In
other words, f: A → B defines the cartesian product {(x, f(x)) : x is in A}, which is a subset of A × B.

A relation R from a finite set A with m elements to a finite set with n elements can be represented pictorially by a
bipartite graph G with m vertices on the left side (corresponding to the m elements of A) and n vertices on the right side
(corresponding to the n elements of B) as in Figure 0.2.1. If (a, p) is an element in the relation R, an arrow is drawn from the
vertex a on the left side to the vertex p on the right side. For example, the graph in Figure 0.2.1 represents the relation R =
{(a, p), (b, p), (c, r)} from the set A = {a, b, c} to the set B = {p, q, r}.

A relation from a set A to itself is called a relation on A. An informative and useful way to represent a relation R on a
finite set A with n elements is by drawing a directed graph with n vertices representing the n elements of the set and drawing
an arrow from vertex u to vertex v if and only if the ordered pair (u, v) is in the relation. If (u, u) is in the relation, a loop
from u to u is drawn. For example, if R = {(a, a), (a, b), (b, c), (c, b)} is a relation on the set A = {a, b, c}, this relation R
can be represented by the directed graph shown in Figure 0.2.2.

FIGURE 0.2.1



FIGURE 0.2.2

A relation R on A is reflexive if (a, a) is an element of R for every a in A, it is symmetric if (a, b) is in R whenever
(b, a) is in R and it is transitive if (a, c) is in R whenever (a, b) and (b, c) are in R. A relation R on a set is antisymmetric if
whenever a and b are distinct, then (a, b) is in the relation R only when (b, a) is not in the relation R. Finally, the relation R is
said to have the comparison property if either (a, b) or (b, a) is in R for all a and b in A.

Suppose that R is a relation on a finite set A and let G be the directed graph that represents this relation. Then R is
reflexive if and only if there is a loop at every vertex of G and R is symmetric if and only if whenever there is an arrow from
a to b, there is an arrow from b to a. Furthermore, R is transitive if and only if whenever there is an arrow from a to b and
an arrow from b to c there is an arrow from a to c.

Example 0.2.7

Let A = {a, b, c} and let R be a relation on A.
(a) R = {(a, b), (b, a), (a, a), (b, b), (b, c), (c, c)} is reflexive because (u, u) is in R for all u in A. Here (a, a),

(b, b), and (c, c) are in R. These three elements will represent loops at the three vertices of the corresponding digraph.
(b) R = {(a, b), (b, a), (c, c)} is symmetric because whenever (u, v) is in R for any u and any v in A, then (v, u)

also is in R. Here both (a, b) and (b, a) as well as (c, c) are in R. In the digraph that represents this relation there will
be arrows from a and b and from b to a. There will be a loop at the vertex c.

(c) R = {(a, b), (b, c), (a, c), (b, b)} is transitive.
(d) R = {(a, c), (b, b), (a, b), (a, a)} is antisymmetric.
(e) If R = {(a, c), (b, b), (c, c), (a, b), (c, b)}, then R has the comparison property.

Equivalence Relations

A relation S on a set is called an equivalence relation on A if S is reflexive, symmetric, and transitive. For example, if S =
{(a, b) : a, b are real, a = b}, then S is obviously an equivalence relation on the set of real numbers.

Example 0.2.8

(a) Let A = {a, b, c, d, e} and C(A) be a partition of A defined by the class {{a, b}, {c, d, e}}. Let R be the
set of ordered pairs (x, y) in A × A such that whenever x is in one of the sets in the partition, then y is also in the same
set. Thus in this case R = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (b, a), (c, d), (d, c), (c, e), (e, c), (d, d), (d, e)}.
It is easily verified that R is an equivalence relation. Every partition of a set defines a unique equivalence relation on it.

(b) Conversely, it can easily be established that every equivalence relation on a set defines a partition on the set.
If the ordered pair (a, b) belongs to an equivalence relation on a set A, we take both a and b belong to the same
subset of A. The class of subsets thus formed constitutes a partition of X. For instance the equivalence relation R =
{(p, p), (q, q), (p, q), (q, p), (r, r)} defines the partition {{p, q}, {r}} of the set {p, q, r}.

Equivalence Sets and the Equivalence Class

Let R be an equivalence relation on a set A and let x be any element of A. The equivalence set [x] of the element x is the
set {y : (y, x)  R}. Observe that if [u] and [v] are two distinct equivalent sets, their intersection is empty. For if x is in both
[u] and in [v], then because of transitivity (u, v) is in the relation R that implies [u] = [v]. The class of distinct equivalent sets
of the elements in X is called the equivalence class of the relation. An equivalence class of a set is a partition of a set, and
vice versa. Thus there is no real distinction between partitions of a set and equivalence classes in the set. In practice, it is
almost invariably the case that we use equivalence relations to obtain partitions because it is usually easy to define an



equivalence relation on a set.

Partial Orders and Linear Orders

A relation R on A is a partial order if it is reflexive, antisymmetric, and transitive. A partial order R that has the comparison
property is called a total (or linear) order. A nonempty set A together with a partial order relation P defined on it is called
a partially ordered set (PO set) and is denoted by (A, P). A partially ordered set (A, P) is called a totally (linearly)
ordered set or a chain if P has the comparison property.

Example 0.2.9

(a) Let A be nonempty set and P(A) its power set. Let R be a relation on P(A) × P(A) defined by the “set-
inclusion” property; that is, if E and F are subsets of A, then (E, F) is in the relation R if E is subset of F. Then R is a
partial order on P(A) and (P(A), R) is a partially ordered set. But it is not a linearly ordered set for an arbitrary subset
of A need not contain another arbitrary subset of A.

(b) If x and y are two real numbers, we say that (x, y) is an element in the relation S on the set R of real numbers
whenever x is less than or equal to y. Then the relation S is a linear order on R.

Example 0.2.10

Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and S be the relation on X defined as S = {(m, n) : m divides n}. Then S is a
partial order on S. The set A = {2, 4, 8} is a chain in X, whereas the set B = {2, 5, 10} is not a chain since the
elements 2 and 5 are not comparable.

Hasse Diagrams of Partially Ordered Sets

Consider the directed graph G that represents a partial order R on a finite set A. Since R is reflexive, there is a loop at each
vertex of the graph. Since R is transitive, there is an arc from the vertex u to the vertex v whenever there is an arc from u to
w and an arc from w to v. So we can have a simplified pictorial representation of the partial order if we ignore the loops and
delete all arrows that are present due to transitivity. Furthermore, if the graphical representation is so oriented that all arrows
point in one direction (upward, downward, left to right, or right to left), we can ignore the direction of the arrows as well.
The resulting diagram is called a Hasse diagram of the partially ordered set.

Example 0.2.11

Let X = {1, 2, 3, 4, 5} and S = {(1, 1), (1, 2), (1, 3), (1,4), (1, 5), (2, 2), (2, 3), (2, 5), (3, 3), (3, 5), (4, 4), (4, 5),
(5, 5)}. It can be easily verified that S is a partial order on X. The Hasse diagram that represents S is shown in Figure
0.2.3.

Maximal and Minimal Elements

An element u in a partially ordered set A with a partial order R is called a maximal element in the set if whenever (u, x) is
in R, then x = u. Similarly, an element v in A is a minimal element if whenever (x, v) is in R, then x = v.

Example 0.2.12

Let X = {2, 3, 4, 5, 8, 12, 24, 25} and let R be the partial order on X defined by R = {(m, n) : m divides n}. Then 2
is a minimal element of R because no element in X divides 2. Similarly, 3 and 5 are also minimal elements of R.
Similarly, 24 is a maximal element because there is no number in X that is divisible by 24. Another maximal element in
X is 25.

The minimal and maximal elements of a partial order can easily be spotted using its Hasse diagram, in which the
minimal elements will be on the bottom and the maximal elements will be at the top if all the arrows are drawn upward.
See Figure 0.2.4, representing the Hasse diagram of Example 0.2.12, in which the vertices representing 24 and 25 are
at the top and the vertices representing 2, 3, and 5 are at the bottom.



FIGURE 0.2.3

FIGURE 0.2.4

Example 0.2.13

P(A) is the partially ordered set of all subsets of A with the partial order defined by set inclusion, and in this PO set, A
is the only maximal element and the empty set is the only minimal element.

A partially ordered set may have more than one maximal (or minimal), as we saw in Example 0.2.12. There are
partially ordered sets with no maximal or minimal elements. Consider the relation S = {(x, y) : x, y are integers, x ≤ y}. Then
S is no doubt a partial order on the set Z of integers, but this PO set has no maximal or minimal element.

Maximum (Greatest) and Minimum (Least) Elements

An element M in a partially ordered set A with a partial order S is called a maximum (or greatest element) in A if (x, M) 
 S for every x in the set A. Similarly, an element m is a minimum (or least element) if (m, x)  S for every x the set A.

[One should be very careful in distinguishing (1) between a maximal element and a maximum element and (2) between
a minimal element and a minimum element. If an element is a maximum or a minimum, all elements in the set must be
comparable to it. Of course, if a maximum element exists, it is no doubt a maximal element. Similarly, if a minimum element
exists, it is a minimal element. The converse implications are not necessarily true, as can be seen from the Hasse diagrams in
Example 0.2.14. In a multiparty government, each party leader can be considered as a maximal element, whereas in a
single-party system the unique party leader is both maximum and maximal.]



Example 0.2.14

Let A = {1, 2, 3, 4} and consider the four partial orders on A with Hasse diagrams as in Figure 0.2.5. In part (a), 4 is
the greatest element and 1 is the least element. In (b), 4 is the greatest element and the minimal elements are 1 and 2.
There is no least element in (b). In (c), 1 is a least element. There is no greatest element here; but 2, 3, and 4 are
maximal elements. There are no greatest or least elements in (d). The elements 1 and 2 are minimal and the elements 3
and 4 are maximal.

FIGURE 0.2.5

Example 0.2.15

In each of the following sets of positive integers, the ordered pair (m, n) is in a relation S if m divides n.
(a) A = {2, 4, 6, 8}. Here 2 is the least element. There is no greatest element. The maximal elements are 6 and

8.
(b) A = {2, 3, 4, 12}. The greatest element is 12. There is no least element. The minimal elements are 2 and 3.
(c) A = {2, 4, 8, 16}. The greatest is 16 and the least is 2.
(d) A = {2, 3, 4, 6}. Here 2 and 3 are minimal; 4 and 6 are maximal.

Well-Ordered Sets

A partially ordered set A in which every subset B has a least element m in B is called a well-ordered set. For example, if N
is the set of all positive integers, and if we say that (a, b) is in S whenever a is less than or equal to b, then S is a partial
order on N. Let B be any subset of N. Obviously, the smallest integer in B is the least element of B. Thus every subset of N
has a least element in it. So N is a well-ordered set. The set A of real numbers in an interval is not a well-ordered set under
the relation S, where (x, y) in S means that x is less than or equal to y. A subset of a well-ordered set is well-ordered. A
well-ordered set A is linearly ordered because any set of two elements in A has a first element and therefore the relation has
the comparison property.

Zorn’s Lemma

Let B be a subset of a partially ordered set A with the partial order relation S. An element u in A is called an upper bound
of B if (x, u) is in S for all x in B. Observe that u need not be in B. If there exists an upper bound for B, we say that B has
an upper bound. An arbitrary subset of a PO set need not have an upper bound.

One of the most important and exceedingly powerful tools of mathematics is Zorn’s lemma, which asserts that if A is
a partially ordered set in which every chain has an upper bound, then A has a maximal element. This lemma cannot be
“proved” in the usual sense of the term. However, it can be shown that it is logically equivalent to the celebrated axiom of
choice, which lies at the very foundation of set theory. Thus Zorn’s lemma is assumed as an axiom of logic and set theory.
Many important existence theorems are proved by invoking Zorn’s lemma. The axiom of choice is also logically equivalent
to the well-ordering theorem of Zermelo: Every set can be well-ordered. For a proof of Zorn’s lemma, using the axiom of
choice, see the book Naive Set Theory by P. R. Halmos.

0.3 INDUCTIVE PROOFS AND RECURSIVE DEFINITIONS

One of the most useful, elegant, and simple proof techniques in mathematics in general and in discrete mathematics in
particular is the technique known as mathematical induction, which is essentially an “algorithmic proof procedure.” The
origins of this technique can be traced to the days of the classical Greek period. But the term induction was coined by De
Morgan only in the nineteenth century.



The Principle of Mathematical Induction (Weak Form)

This principle is stated as follows: Suppose that P(n) is a statement about the natural number n and q is a fixed natural
number. Then an induction proof that P(n) is true for all n ≥ q requires two steps:

1. Basis step: Verify that P(q) is true.
2. Induction step: Verify that if k is any positive integer greater than or equal to q, then P(k + 1) is true whenever P(k)

is true.

Here P(n) is called the inductive hypothesis. When we complete both steps of a proof by mathematical induction, it
is obvious that we have proved that the statement P(n) is true for all positive integers n ≥ q. [A formal proof is along the
following lines: Suppose that P(n) is not true for all n ≥ q. Then there is at least one positive integer k ≥ q such that P(k) is
not true. So the set D of positive integers r for which P(r) is not true is nonempty, and therefore this set has a unique least
element because any set of positive integers is well-ordered. Let t be the first element of this set. Of course, t > q. Since t is
an integer, t – 1 also is an integer which is not in D. So P(t – 1) is true, which implies by the induction step that P(t) is true.
This is a contradiction.]

This version of induction given above is called the weak form because the induction step assumes that P(n) is true in
exactly one case. A strong form of induction is discussed later in this section.

Example 0.3.1

Prove that 1 + 2 + 3 + · · · + n = n(n + 1)/2 for all natural numbers.

Proof (By Mathematical Induction). Let P(n) be the statement that (1 + 2 + 3 + · · · + n) is equal to n(n + 1)/2.
The aim is to prove that P(n) is true for all n.

The basis step: We have to verify that P(1) is true. Here P(1) is the statement that 1 is equal to 1(1 + 1)/2. This
is true. So P(1) is true.

The induction step: We have to verify that if P(k) is true, then P(k + 1) is true. Now P(k) is the statement that 1
+ 2 + · · · + k is equal to k(k + 1)/2 and P(k + 1) is the statement that 1 + 2 + · · · + (k + 1) is equal to (k + 1)(k +
2)/2. If P(k) is true, 1 + 2 + · · · + k = k(k + 1)/2. Thus 1 + 2 + · · · + k + (k + 1) = k(k + 1)/2 + (k + 1), which
implies that 1 + 2 + · · · + (k + 1) = (k + 1) · (k + 2)/2. So P(k + 1) is true whenever P(k) is true.

[One has to be very careful in using the induction method to prove theorems. The meaning of the induction step is very
precise: If P(q) is true, P(q + 1) is true. If P(q + 1) is true, then P(q + 2) is true, and so on. In other words, the induction
should hold for every k greater than or equal to q. An erroneous “proof” justifying the statement that all roses are of the
same color is as follows. P(n) is the proposition that all roses in any collection of n roses are of the same color. Our aim is
to show that P(n) is true for all n. Obviously, P(1) is true. Suppose that P(k) is true for some positive integer k. So all the
roses in any collection of k roses are of the same colors. Now consider any arbitrary collection C of (k + 1) roses. Label
these roses as ri (i = 1, 2, 3, . . . , k + 1). Let A be the set {ri : i = 1, 2, . . . , k} and B be the set {ri : i = 2, 3, . . . , k, k +
1}. Both A and B have exactly k roses. So the roses in A are all of the same color. Similarly, the roses in B also are of the
same color. The rose labeled rk  is in both A and B. So all the k + 1 roses under consideration are of the same color. So if
P(k) is true, then P(k + 1) is true. Can we therefore conclude that P(n) is true for all n? The answer is “no” because when
the set C has two elements, the sets A and B are disjoint. So if P(1) is true, P(2) need not be true.]

Example 0.3.2

Use induction to prove that the sum of the first n odd positive integers is n2.

Proof. Let P(n) be the statement that the sum of the first n odd positive integers is n2. The aim is to prove that P(n) is
true for every n.

The basis step: P(1) is true because 1 = 12.
The induction step: We have to verify that P(k + 1) is true whenever P(k) is true for any positive integer k.

Since P(k) is true, 1 + 3 + 5 + · · · + (2k – 1) = k2. Consequently,

1 + 3 + 5 + · · · + (2k – 1) + (2k + 1) = k2 + (2k + 1) = (k + 1)2

So P(k + 1) is true. Thus P(n) is true for every n.

Example 0.3.3

Use induction to prove that n < 2n for any positive integer n.

Proof. Let P(n) be the statement that n < 2n for the positive integer n. We have to prove that P(n) is true for any
positive integer.

The basis step: P(1) is true since 1 < 2.



The induction step: Suppose that P(k) is true for an arbitrary positive integer, implying that k < 2k . Then k + 1
< 2k  + 1 < 2k  + 2k . Hence k + 1 < 2k  + 1, which implies that P(k + 1) is true. So P(n) is true for all positive integers
n.

The Principle of Mathematical Induction (Strong Form)

Suppose that P(n) is a statement about the natural number n and q is a fixed natural number. Then an induction proof that
P(n) is true for all n ≥ q requires two steps:

1. Basis step: Verify that P(q) is true.
2. Induction step: Verify that if k ≥ q and if P(q), P(q + 1), P(q + 2), . . . , P(k) are true, then P(k + 1) is true.

(This version of the induction principle is “strong” in the sense that the induction step here has more information than
that of the induction step in the “weak” version. As in the previous case, it can easily be shown that the strong version is also
a consequence of the fact that any set of natural numbers is well-ordered. So to prove a theorem using mathematical
induction, one can use either version of mathematical induction. In some cases it is more convenient to use the strong form,
as seen in the next example. The strong form of induction is also known as complete induction.)

Example 0.3.4

Prove that any natural number greater than 1 can be factored as a product of prime numbers.

Proof (By Complete Mathematical Induction). Let P(n) be the statement that when n is a natural number greater
than 1, then n can be factored as a product of prime numbers. The aim is to prove that P(n) is true for all n.

The basis step: P(2) is the statement that 2 can be factored as a product of primes. Obviously, P(2) is true.
The induction step: Suppose that P(2), P(3), . . . , P(k) is true. We have to verify that P(k + 1) is true. Now

P(k + 1) is certainly true when k + 1 is a prime number. If k + 1 is not a prime number, we can always find two
positive integers m and n such that k + 1 = mn, where both m and n are less than k. By the induction step, both m
and n can be expressed as the product of prime numbers. So k + 1 also can be factored as a product of prime
numbers. Thus P(k + 1) is true.

Recursive Definitions of Sets

The basic idea underlying the principle of induction is as follows. Once we describe the initial stage in some process and if
we are able to describe any subsequent stage in terms of the previous stages, we are in a position to describe the entire
process completely at all stages. The parallel concept in computer science is recursion, where we tend to think of the
process in the opposite direction. Informally, this is the process of solving a large problem by decomposing it into one or
more subproblems such that each such subproblem is identical in structure to the original problem but more or less simpler
to solve. So in both situations, one must (1) decide a set of simple cases for which the proof or computation is easily
handled, and (2) obtain an appropriate rule that can be applied repeatedly until the end. This concept underlying both
induction and recursion can be used to justify the definition of some collection of objects in stages. Such a description is
called aptly an inductive or recursive definition.

A recursive definition of a set consists of three parts:

1. Basis part: This part tells us that certain elements belong to the set we are going to define.
2. Inductive (recursive) part: This part tells us to use the elements currently in the set to obtain more objects that can be

included in the set.

3. Closure part: This part tells that the only elements in the set are those obtained by (1) and (2).

Example 0.3.5

To define the set A of positive integers divisible by the number 5 recursively, we have the recursive definition consisting
of the following three parts:

(a) 5 is an element of A.
(b) If n is an element of A, then n + 5 also is an element of A.
(c) An object is in A if and only if it is obtained by a repeated application of (a) and (b).

Recursive Definitions of Functions

Suppose that (1) each element i in the set S = {0, 1, 2, . . . , k} of the first k + 1 consecutive integers is assigned a real
number ri, and (2) if n is any integer greater than k, there is a rule f for defining a real number f(n) which can be expressed



uniquely in terms of some or all the terms from the set {f(n – 1), f(n – 2), . . . , f(n – k), f(n – k – 1)}. If we now define f(i)
= ri for each i in S, the rule f is a function whose domain is the set of nonnegative integers. A function defined by this method
is called a recursively defined function. The rule that defines f(n) in terms of the preceding values f(i) is called a
recurrence relation. The values f(0), f(1), f(2), . . . , f(k) are called the initial values of the recurrence relation.

We use the induction principle (strong form) to show that this definition does not violate the true definition of a
function, [i.e., f(n) is unique for every nonnegative integer n].

THEOREM 0.3.1

If f is recursively defined, then f(n) is unique for every positive integer n.

Proof:

P(n) is the proposition that f(n) is unique for every n.
The basis step: We assume that f(i) = ri is unique when i = 0, 1, 2, . . . , k. So P(0), P(1), . . . , P(k) is true.
The induction step: f(k + 1) is expressed uniquely in terms of these k + 1 numbers. So P(k + 1) is true.

Example 0.3.6

Suppose that N is the set of 11 nonnegative integers and R is the set of all real numbers.
(a) The function f: N → R that defines the sequence f(n) = 3n can be recursively defined as f(0) = 1 and f(n) =

3f(n – 1) when n > 0.
(b) The (factorial) function f: N → R, where f(n) = n!, can be recursively defined as f(0) = 1 and f(n) = nf(n –

1) when n > 0.
(c) The Fibonacci sequence f: N → R defined recursively by the relation f(n) = f(n – 1) + f(n – 2) when n > 1,

with the initial values f(0) = 0 and f(1) = 1 gives the sequence {0, 1, 1, 2, 3, 5, 8, 13, . . .}.

It is important that in a recursive definition, the set of integers in the basis step constituting the initial conditions is a
consecutive set of integers. Otherwise, the function may not be well-defined. Here is a counterexample: f(n) = 9f(n – 2),
with the nonconsecutive initial values f(0) = 6 and f(2) = 54, will yield f(n) = 2 · 3n + 1 as well as f(n) = 3 · 3n + 3 · (–3)n.

0.4 THE LANGUAGE OF LOGIC

At an introductory level, mathematical logic is very similar to set theory. Instead of sets, in logic we have propositions. A
proposition is a statement that is either true or false but not both. The truth value of a proposition p is T (or 1) if p is true;
otherwise, the truth value is F (or 0). Consider the following five sentences:

1. p: 3 + 2 = 5
2. q: 3 + 2 = 6

3. r: Is it 3 or 2?
4. s: Take 3
5. t: x + 2 = 5

Here p is a true proposition and q is a false proposition. Both r and s are not propositions, t is a proposition, but it is neither
true nor false since x is unknown.

In set theory we have the intersection and union of two sets and the complement of a set in a certain universal set. The
analogous concepts in logic are the three logical operations: the conjunction of two propositions, the disjunction of two
propositions, and the negation of a proposition.

The conjunction of two propositions p and q is a proposition that is true if and only if both p and q are true
propositions. The conjunction of p and q is called “p and q” and is denoted by p ∧ q. The disjunction of two propositions
p and q is a proposition that is false if and only if both p and q are false propositions. The disjunction of p and q is called “p
or q” and is denoted by p ∨ q. The exclusive disjunction of two propositions p and q is a proposition that is true if and
only exactly one of the two is true and is denoted by p ⊕ q. Finally, the negation of a proposition p is a proposition p′ which
is true if and only if p is false.

A truth table displays the relationships between the truth values of propositions. The following table displays the truth
values of conjunction, disjunction, exclusive disjunction, and negation of two propositions p and q:



Propositions that can be obtained by the combination of other propositions are known as compound propositions.
For example, if p, q, and r are three propositions, then “(p′ and q) or (q)” is a compound proposition. A proposition that is
not a combination of other propositions is called an atomic proposition.

The Implication Operation

There is another important way to construct a compound proposition from two propositions p and q. This is the implication
proposition: “if p, then q” (or “p implies q”) which is denoted by p → q. We define this compound proposition to be false
if and only when p is true and q is false. In all other cases the compound proposition p → q is true. In this case we say that
the proposition p is a sufficient condition for the proposition q and q is a necessary condition for p. Here p is called the
hypothesis (or antecedent or premise) and q is called the consequence (or conclusion). Obviously, the compound
proposition p → q and the compound proposition q → p both cannot be false at the same time. So irrespective of the truth
values of p and q, it is always the case that at least one of these two compound propositions p → q and q → p is always
true.

Observe that the mathematical concept of implication is more general than the concept of implication regarding
statements in the languages we use to communicate in our daily lives. In a general mathematical setting there is no cause-
and-effect relationship between the truth value of the hypothesis and the truth value of the conclusion. For example, if p is
the proposition that “it is raining today” and q is the proposition that “London is the capital of England,” then the implication
proposition p → q is true whether or not p is true. The implication that “if it rains today, then 3 + 4 = 8” is a true proposition
if it does not rain today. On the other hand, when I make the statement that “if it rains like this, I will not go fishing this
afternoon,” this statement is an implication proposition in which there is a definite causal relation between the hypothesis and
the conclusion.

It is also important to mention in this context that the implication proposition in many programming languages has a
different truth value. If a line in a program says “if n < 30 then S,” then when the execution of the program reaches this line,
the segment S is executed if n < 30 and not executed otherwise.

The compound proposition “p if and only if q,” which is denoted by p ↔ q, is the conjunction of the compound
proposition p → q and the compound proposition q → p. The compound proposition p ↔ q is true when both p → q and
q → p are true. In this case we say that p is both necessary and sufficient for q, and vice versa. Here is the truth table of
these implication operations involving two operations p and q:

If r is the proposition p → q, the proposition q → p is the converse of r, the proposition p′ → q′ is the inverse of r, and
the proposition q′ → p′ is the contrapositive of r. If two propositions p and q are such that p is true if and only if q is true,
the two propositions p and q are said to be equivalent. We write p = q when p and q are equivalent. In other words, two
propositions are equivalent if they have the same truth value. For example, the proposition that “Jane will be 18 years old in
1993” is equivalent to the proposition that “Jane was born in 1975.” The compound proposition p → q is equivalent to its
contrapositive proposition q′ → p′ since they both have the same truth value, as can be seen from the following truth table.



A compound proposition that is always true irrespective of the truth values of its component propositions is called a
tautology. A compound proposition that is always false is called a contradiction. As a simple example, the disjunction of a
proposition p and its negation is a tautology, whereas the conjunction of p and its negation is a contradiction. From the table
given above we notice that the proposition p ↔ q is a tautology if and only if p = q.

The commutative, associative, and distributive laws involving the conjunction and disjunction operation can easily be
verified by constructing the appropriate truth tables. These laws are:

1. The commutative laws: p ∧ q = q ∧ p and
                p ∨ q = q ∨ p

2. The associative laws: p ∧ (q ∧ r) = (p ∧ q) ∧ r and

                             p ∨ (q ∨ r) = (p ∨ q) ∨ r
3. The distributive laws: p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∨ r) and

                                            p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

The truth value of a compound proposition depends on the truth values of its component propositions. The subject of
constructing and simplifying compound propositions built from other propositions and obtaining their truth values is called
propositional calculus. This combination of propositions to yield new propositions bears a strong resemblance to the
combination of sets to form new sets. The following theorem is analogous to De Morgan’s laws on set theory.

THEOREM 0.4.1

(a) (p ∧ q)′ = (p′) ∨ (q′).
(b) (p ∨ q)′ = (p′) ∧ (q′).

Proof:

This is left as an exercise.

The Satisfiability Problem in Logic

The truth table of a compound proposition with n atomic propositions as its components will have 2n rows. The
satisfiability problem of a compound proposition p is the problem of (1) finding out whether there exist truth values for the
atomic components of p such that p is true, and (2) obtaining the true atomic propositions and the false atomic propositions
if they exist which make the compound proposition true. The only known procedure for testing the satisfiability of a
proposition with n atomic propositions is building a truth table enumerating all the 2n possibilities of truth values, and this is a
formidable task indeed when n is large.

0.5 NOTES AND REFERENCES

A systematic investigation of the theory of sets began with the contributions of Georg Cantor (1848–1918) in the nineteenth
century. Prior to that, set theory and more generally nonnumerical mathematics were not investigated in a formal manner
apart from the contributions of George Peacock (1791–1858), Augustus De Morgan (1806–1871), and George Boole
(1815–1864). Peacock and De Morgan generalized the usual algebraic operations beyond the realm of numerical
mathematics and Boole extended and formalized their contributions in his seminal work entitled “Investigation of the Laws of
Thought” in 1854. According to the great twentieth-century philosopher and mathematician Bertrand Russell (1872–1970),
it was George Boole who “discovered” pure mathematics.

More on the history and development of set theory can be found in Boyer (1968). For a detailed treatment of set
theory, including functions and relations, the books by Halmos (1960) and Stoll (1963) are highly recommended. The
technique of proof by induction was explicitly stated and used by Francesco Maurolycus in the sixteenth century when he



proved that the sum of the first n odd positive integers is n2. However, this technique was known to mathematicians as early
as the third century B.C. For example, in Euclid’s proof that there are an infinite number of primes, this technique was used
implicitly.

In the seventeenth century, both Pascal and Fermat used the induction method extensively. The term mathematical
induction was coined by De Morgan. In the nineteenth century, the principle of induction was investigated in detail by
Gottlieb Frege (1848–1925), Giuseppe Peano (1858–1932), and Richard Dedekind (1831–1916). The role of induction in
the formal development of mathematics became a primary focus of many mathematical logicians at the beginning of the
twentieth century, and two names worth mentioning in this regard are those of Bertrand Russell and Thoralf Skolem (1887–
1963). For an interesting survey on the topic of mathematical induction, see the article by Bussey (1917). Golovina and
Yaglom (1963), Poly a (1954), and Sominskii (1963) are three excellent references in this area. The article by Henkin
(1960) is also highly recommended.

The origins of a systematic study of logical reasoning can be traced to Aristotle, who lived in the fourth century B.C. It
was not until the seventeenth century, however, that symbols were used in the study of logic. The pioneering work in
symbolic logic was done by Gottfried Leibniz (1646–1716). No major developments took place until George Boole
published his outstanding work mentioned earlier. Since then Bertrand Russell and Alfred North Whitehead (1861–1947)
contributed considerably to the development of logic and the field of mathematical logic emerged when the discovery of
certain paradoxes led to an extensive examination of the place of logic, proof, and set theory in the foundations of
mathematics.

0.6 EXERCISES

0.1. Let A = {3, 5, 7, 9}, B = {2, 3, 5, 6, 7}, and C = {2, 4, 6, 8} be all subsets of the universe X = {2, 3, 4, 5, 6, 7, 8,
9}. Find (a) the union of A and B, (b) the intersection of B and C, (c) B – A, (d) A – B, (e) the absolute complement
C′ of the set C, (f) the absolute complement of X, (g) the absolute complement of the empty set.

0.2. Let A, B, C be as in Problem 0.1. Find the following sets: (a) (A ∪ B) – C, (b) the intersection of (A ∪ B)′ and (B
∪ C)′, (c) (A ∪ C) – (C – A)′

0.3. Which of the following sets are equal? (a) {a, b, c, c}, (b) {a, b, a, b, c}, (c) {a, b, b, c, d}

0.4. Which of the following sets are equal?
(a) {t : t is a root of x2 – 6x + 8 = 0}
(b) {y : y is a real number in the closed interval [2, 3]}
(c) {4, 2, 5, 4}
(d) {4, 5, 7, 2} – {5, 7}

(e) {q : q is either the number of sides of a rectangle or the number of digits in any integer between 11 and 99}

0.5. If A = {3, 4} and B = {p, q, r}, list all the elements of (a) A × A, (b) A × B, (c) B × A and (d) B × B.

0.6. Let A and B be as in Problem 0.5. List all the elements of (a) A × A × A and (b) A × A × B.

0.7. Let A and B be as in Problem 0.5. List all the elements of (a) A ∪ (B × A) and (b) (A × A) ∪ (B × A).

0.8. List all the sets in the power set of the following sets: (a) {a, b}, (b) {a, b, c}, (c) {ϕ, 0, {0}}

0.9. List all partitions of the following sets: (a) {a}, (b) {a, b}, (c) {a, b, c}

0.10. Determine whether each of the following statements is true in the case of three arbitrary sets P, Q, R.
(a) If P is an element of Q and if Q is a subset of R, then P is an element of R.
(b) If P is an element of Q and if Q is a subset of R, then P also is a subset of R.

(c) If P is a subset of Q and Q is an element of R, then P is an element of R.
(d) If P is a subset of Q and Q is an element of R, then P is a subset of R.

0.11. Prove the following assertions involving three arbitrary sets P, Q, and R.
(a) (P – Q) – R = P – (Q ∪ R)
(b) (P – Q) – R = (P – R) – Q
(c) (P – Q) – R = (P – R) – (Q – R)

0.12. Two sets A and B are such that their union and their intersection are equal. What can we say about A and B?

0.13. Suppose that A is a subset of B and C is a subset of D.
(a) Is it true that (A ∪ C) is a subset of (B ∪ D)?
(b) Is it true that the intersection of A and C is a subset of the intersection of B and D?

0.14. What can we say about two sets P and Q if P – Q is equal to Q – P?



0.15. Prove that A and B are nonempty sets such that if A × B and B × A are equal, then A = B.

0.16. What is the cardinality of P × Q if the cardinality of P is p and the cardinality of Q is q?

0.17. Prove that the intersection of the powerset of A and the powerset of B is the powerset of the intersection of A and B,
where A and B are two arbitrary sets.

0.18. What can we say if the operation “intersection” is replaced by the operation “union” in Problem 0.17?

0.19. What is the cardinality of the powerset of the empty set?

0.20. If the powerset of A is equal to the powerset of B, does it follow that A and B are equal?

0.21. The symmetric difference of two sets A and B is the set containing those elements of either A or B but not both A
and B and is denoted by A ⊕ B. Prove: A ⊕ B = (A – B) ∪ (B – A) = (A ∪ B) – (A ∩ B).

0.22. Draw a Venn diagram to represent the symmetric difference of two sets.

0.23. How many distinct regions are there in a Venn diagram that represents three sets in a universal set such that no
intersection is empty?

0.24. If the symmetric difference of two sets A and B is equal to the set A, what can we say about A and B?

0.25. If A and B are two arbitrary sets, under what conditions can we conclude that the symmetric difference of (A – B)
and (B – A) is the empty set?

0.26. Using Venn diagrams, investigate whether the following statements are true or false.
(a) A ⊕ (B ∩ C) = (A ⊕ B) ∩ (A ⊕ C)
(b) A ⊕ (B ∪ C) = (A ⊕ B) ∪ (A ⊕ C)
(c) A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C
(d) A ∩ (B ⊕ C) = (A ∩ B) ⊕ (A ∩ C)
(e) A ∪ (B ⊕ C) = (A ∪ B) ⊕ (A ∪ C)

0.27. If the symmetric difference of A and B is equal to the symmetric difference of A and C, is it necessary that B = C?

0.28. Prove the following assertions involving three arbitrary sets A, B, and C:
(a) A × (B ∩ C) = (A × B) ∩ (A × C)
(b) A × (B ∪ C) = (A × B) ∪ (A × C)
(c) (A ∩ B) × C = (A × C) ∩ (B × C)

(d) (A ∪ B) × C = (A × C) ∪ (B × C)

0.29. Let R be the set of all real numbers and f: R → R defined by f(x) = x2.
(a) What are the domain, codomain, and range of this function?
(b) Is f an injection?
(c) Is f a surjection?

(d) Find the set of all preimages of 4.
(e) Find the inverse image of the set {t : 1 ≤ t ≤ 4}.

0.30. If R is the set of all real numbers, explain why F(x) = 1/(x – 2) and F(x) = (the square root of x) are not functions
from R to R.

0.31. If N is the set of all natural numbers and if f: N → N is defined by f(n) = 2n + 5, show that f is an injection and find
the inverse function. Is f a surjection? Is the inverse function a surjection?

0.32. Suppose that f(x) = x2 – 4, where x is a real number. Find the images of the following sets: (a) {–4, 4, 5}, (b) {4,
5} (c) {t : t is a real number greater than or equal to zero}.

0.33. Let A = {a, b, c, d} and B = {p, q, r}.
(a) Find the number of functions from A to B.

(b) Find the number of injections from A to B.
(c) Find the number of surjections from A to B.
(d) Find the number of functions such that a is mapped into p and b is mapped into q.

0.34. If N is the set of all natural numbers, give an example of a function from N to N that is (a) an injection but not a
surjection, (b) a surjection but not an injection.

0.35. Find the domain and range of the function that assigns (a) each integer its last digit, (b) each integer the number of
digits in it.

0.36. Give an example of a function f from the set of real numbers to the set of real numbers such that (a) f is both an



injection as well as a surjection, (b) f is neither an injection nor a surjection.

0.37. Suppose that X = {p, q, r}, Y = {a, b, c, d}, and Z = {1, 2, 3, 4}. Let g: X → Y be defined by the set of ordered
pairs {(p, a), (q, b), (r, c)} and f: Y → Z be defined by the set of ordered pairs {(a, 1), (b, 1), (c, 2), (d, 3)}. Write
the composite function f ○ g as a set of ordered pairs.

0.38. If A = {p, q, r} and f: A → A is defined by f(p) = q, f(q) = p, and f(r) = q, describe f and f ○ f as sets of ordered
pairs.

0.39. Let A and f be as in Problem 0.38. Define fn = f ○ f ○ f ○ · · · ○ f as the n-fold composition of f with itself.
Describe fn as a set of ordered pairs when n is odd and when n is even.

0.40. Show that the set of all positive integers is equivalent to the set of all positive even integers.

0.41. Let f: B → C and g: A → B. Prove the following:
(a) If f and g are injections, then f ○ g is an injection.
(b) If f and g are surjections, then f ○ g is a surjection.

0.42. Let f and g be as in Problem 0.41.
(a) Suppose that f ○ g is an injection. Is it necessary that f be an injection? Is it necessary that g be an injection?

(b) Suppose that f ○ g is a surjection. Is it necessary that f be a surjection? Is it necessary that g be a surjection?

0.43. If f(x) = ax + b and g(x) = cx + d and f ○ g = g ○ f, find an equation relating a, b, c, and d.

0.44. Suppose that f: X → Y and A and B are subsets of X. Then prove: (a) f(A ∪ B) = f(A) ∪ f(B) and (b) f(A ∩ B) is a
subset of the intersection of f(A) and f(B).

0.45. Show that if f: X → Y is an injection, then f(A ∩ B) = f(A) ∩ (B) for all subsets A and B of X.

0.46. Show that there is an injection from A to B if and only if there is a surjection from B to A.

0.47. Suppose that f: A → B where A and B are two finite sets with the same cardinality. Prove that f is an injection if and
only if f is a surjection.

0.48. Let A be a subset of a universal set X. The characteristic function fA of A is the function from X to the set {0, 1}
such that the image of every element in A is 1 and the image of every element not in A is 0. Suppose that A and B are
two subsets of X. Prove the following for all x in X.
(a) fA∩B(x) = fA(x) · fB(x) for all x in X
(b) fA∪B(x) = fA(x) + fB(x) – fA(x) · fB(x)

(c) fA(x) + fA′(x) = 1
(d) If C is the symmetric difference of A and B, then fC(x) = fA(x) + fB(x) – 2fA(x) · fB(x).

0.49. Let S = {0, 1} and let Sn be the set of all strings of length in S. If u and v are two strings in Sn, we compare them
place by place and define the Hamming distance H(u, v) between u and v to be the number of places where they
differ. Find the Hamming distance between u and v if (a) u = 101100 and v = 111011 (b) u = 01010 and v =
11001.

0.50. Suppose that S, Sn, and H(u, v) are as in Problem 0.49. The function H: Sn × Sn → N (where N is the set of all
nonnegative integers) which maps the ordered pair (u, v) into H(u, v) is the Hamming distance function. Show
that for all u, v, and w in Sn, the function H satisfies the following metric axioms: (a) H(u, v) is nonnegative, (b)
H(u, v) = 0 if and only if u = v, (c) H(u, v) = H(v, u), and (d) H(u, v) ≤ H(u, w) + H(w, v).

0.51. Let A = {1, 2, 3, 4, 5}, B = {a, b, c, d}, and R be the relation {(1, a), (1, b), (3, c), (4, d), (5, d), (5, c)}.
Represent this relation by a bipartite graph and draw the appropriate arrows.

0.52. Give an example of a relation on a set that is (a) both symmetric and antisymmetric, (b) neither symmetric nor
antisymmetric.

0.53. Let A = {a, b, c, d}. Draw the diagraph corresponding to each of the following relations on A and decide whether
each relation is reflexive, symmetric, transitive, and antisymmetric. Examine whether the comparison property holds
in any of these relations.
(a) R = {(b, b), (b, c), (b, d), (c, b), (c, c), (c, d)}

(b) R = {(a, b), (b, a)}
(c) R = {(a, a), (b, b), (c, c), (d, d)}
(d) R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a)}
(e) R = {(a, c), (a, d), (b, c), (b, d), (c, a), (c, d)}
(f) R = {(a, b), (b, c), (c, d)}

0.54. Let R be a relation from A to B and S be a relation from B to C. Then the composite relation S ○ R of R and S is



the relation consisting of all ordered pairs of the form (a, c), where (a, b) is in R and (b, c) is in S. If A = {p, q, r, s},
B = {a, b}, C = {1, 2, 3, 4}, R = {(p, a), (p, b), (q, b), (r, a) (s, a)} and S = {(a, 1), (a, 2), (b, 4)}, find S ○ R.

0.55. Let R be a relation on the set A. The relation R2 on A is defined as R ○ R. Show that R2 ○ R is equal R ○ R2. Thus
R3 is the composite of R2 and R. More generally, the nth power Rn of the relation is the composite of Rn–1 and R. If
R = {(a, a), (a, b), (b, a), (c, b), (c, d)}, find the second and third powers of R.

0.56. Prove that if a relation on a set is reflexive, then any power of that relation is reflexive.

0.57. Prove that if a relation R on a set is reflexive and transitive, then Rn = R for all positive integers n.

0.58. Let R be a relation from A to B. The inverse relation R–1 from B to A is the set of all ordered pairs of the form (b,
a), where (a, b) is in R. Show that a relation R on a set is symmetric if and only if R and its inverse are equal.

0.59. Show that a relation on a set is reflexive if and only if its inverse relation is reflexive.

0.60. Prove that a relation R on a set A is antisymmetric if and only if the intersection of R and its inverse is a subset of the
diagonal relation D = {(x, x) : x  A}.

0.61. Let R be the relation on the set A = {1, 2, 3, 4, 5, 6, 7} defined by the rule (a, b)  R if the integer (a – b) is
divisible by 4. List the elements of R and its inverse.

0.62. Let R be the relation on the set N of all positive integers defined by (a, b)  R if b is divisible by a. Determine
whether R is reflexive, symmetric, antisymmetric, or transitive.

0.63. Let N be the set of all positive integers and let R be the relation on N × N defined by ((a, b), (c, d)) is in R if a ≤ c
and b ≤ d. Determine whether R is reflexive, symmetric, antisymmetric, or transitive.

0.64. Which of the following relations on the set {1, 2, 3, 4} are equivalence relations? If the relation is an equivalence
relation, list the corresponding partition (equivalence class).
(a) {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (3, 1)}
(b) {(1, 0), (2, 2), (3, 3), (4, 4)}
(c) {(1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4)}

0.65. Let R = {(x, y) : x and y are real numbers and x – y is an integer}. Show that R is an equivalence relation on the set
of real numbers.

0.66. Let a be an integer and m be a positive integer. We denote by a (mod m) the remainder when a is divided by m. If a
and b are two integers, we say that a is congruent to b modulo m if m divides a – b. The notation a ≡ b (mod m)
is used to indicate that a is congruent to b modulo m. Of course, if a is congruent to b modulo m, then b is congruent
to a modulo m. Prove that:
(a) a (mod m) = b (mod m) if and only if a ≡ b (mod m).
(b) a ≡ b (mod m) if and only if there exists an integer k such that a = b + km.
(c) If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ (b + d) (mod m) and ac ≡ bd (mod m).

0.67. Let Z be the set of all integers and let m be any positive integer greater than 1. Show that the relation R on Z defined
by the set {(a, b) : a ≡ b (mod m)} is an equivalence relation. This relation is called the congruence modulo m
relation on the set of integers. The equivalence classes of this relation are called congruence classes modulo m.
The congruence class of an integer x modulo m is dented by [x]m.

0.68. Find the congruent classes modulo 5: (a) [0]5, (b) [1]5, and (c) [2]5.

0.69. Prove that {[i]m : i = 0, 1, 2, . . . , (m – 1)} is a partition of the set of integers.

0.70. Let f be a function from A to A. Let R be the relation on A defined by {(x, y) : f(x) = f(y)}. Prove that R is an
equivalence relation on A. What is the equivalence class?

0.71. Suppose that R is an equivalence relation on a nonempty set A. Show that there is a function f with A as domain such
that (x, y) is in R if and only if f(x) = f(y).

0.72. Suppose that {(a, b), (c, d)} is in R whenever a, b, c, d are positive integers and ad = bc. Show that R is an
equivalence relation on the set of positive integers.

0.73. Let X = {1, 2, 3, 4, 5, . . . , 15}. Let R be the relation on X defined by (x, y)  R if (x – y) is divisible by 3. Prove
that R is an equivalence relation on X. Find the equivalence class.

0.74. Let R be a transitive and reflexive relation on a set A. If S is a relation on A such that (x, y) is in S if and only if both
(x, y) and (y, x) are in R, prove that S is an equivalence relation on A.

0.75. Prove that a reflexive relation R on a set A is an equivalence relation on A if and only if (x, y) and (x, z) in R implies
that (y, z) is in R.

0.76. If S is the relation defined on the set of real numbers as S = {(x, y) : x ≤ y}, show that S is a partial order on the set



of real numbers.

0.77. If S is the relation defined on the set of positive integers as S = {(x, y) : x divides y}, show that S is a partial order on
the set of positive integers.

0.78. Let X = {a, b, c} and S be the partial order defined on the powerset P(X) defined as S = {(A, B) : A is a subset of
B}. List the elements of S.

0.79. Draw the Hasse diagram of the partial order S of Problem 0.78.

0.80. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and S = {(m, n), where m divides n} be a partial order on X. Draw the Hasse
diagram that represents S. Locate a chain in X.

0.81. Prove that if R is a partial order on the set A, its inverse R–1 also is a partial order on A. The partially ordered set (A,
R–1) is called the dual of the partially ordered set (A, R).

0.82. Let A = {2, 3, 4, 6, 8, 12, 16, 24} and S be the partial order relation on A defined by S = {(a, b) : a divides b}.
Find (a) the minimal elements in A, (b) the maximal elements in A, and (c) the upper bounds of the set B = {4, 6,
12}.

0.83. Draw the Hasse diagram of the PO set in Problem 0.82.

0.84. Prove that (a) every finite partially ordered set has a maximal element and a minimal element, and (b) every finite
linearly ordered set has a greatest element and a least element.

0.85. Prove by induction that 1k  + 2k  + 3k  + · · · + nk  is equal to (a) n(n + 1) (2n + 1)/6 when k = 2, and (b) [n(n +
1)/2]2 when k = 3.

0.86. Prove by induction that 1.2 + 2.3 + 3.4 + · · · + n(n + 1) is equal to n(n + 1)(n + 2)/3.

0.87. Prove by induction that 1/1.2 + 1/2.3 + 1/3.4 + · · · + 1/n(n + 1) is equal to n/(n + 1).

0.88. Show that n3 + 2n is divisible by 3 for all positive integers n.

0.89. Prove that 1.2.3 + 2.3.4 + 3.4.5 + · · · + n(n + 1)(n + 2) is equal to n(n + 1)(n + 2) (n + 3)/4.

0.90. Prove that 12/1.3 + 22/3.5 + · · · + n2/(2n – 1)(2n + 1) is equal to [n(n + 1)]/2(2n + 1).

0.91. Show that the sum of the cubes of any three consecutive positive integers is divisible by 9.

0.92. Show that for any positive integer n greater than 1, the sum 
 is greater than .

0.93. Prove: (1 – 1/2)(1 – 1/3) · · · (1 – 1/n) = 1/n.

0.94. Prove: 2n > n2 whenever n > 4.

0.95. Show that 1/(n + 1) + 1/(n + 2) + · · · + 1/(2n) is greater than 13/24 whenever n is greater than 1.

0.96. Prove that 7n – 1 is divisible by 6.

0.97. Prove that 11n – 6 is divisible by 5.

0.98. Show that 6.7n – 2.3n is divisible by 4.

0.99. Prove: 3n + 7n – 2 is divisible by 8.

0.100. Prove De Morgan’s laws:
(a) The absolute complement of the intersection of n subsets of a universal set is equal to the union of the absolute

complements of these n sets.
(b) The absolute complement of the union of these n sets is the intersection of their absolute complements.

0.101. Show that the cardinality of the powerset of a set with n elements is 2n.

0.102. Prove that if S is a transitive relation on a set A, then Sn is a subset of S for n = 1, 2, 3, . . . .

0.103. Suppose that f is recursively defined as f(0) = 1 and f(n + 1) = 3f(n) + 5. Find f(1), f(2), and f(3).

0.104. Give a recursive definition of xn when x is a real number and n is a nonnegative integer.

0.105. Give a recursive definition of f where f(n) is the sum of the first n positive integers.

0.106. Give a recursive definition of the set of (a) all integers, (b) all positive odd integers, (c) all negative even integers and
(d) all even integers.

0.107. Construct the truth table of the statement p → (p ∨ q) and determine whether it is a tautology or a contradiction or
neither.

0.108. Show that (p′ ∨ q) ∧ (p ∧ (p ∧ q)) is equivalent to (p ∧ q).



0.109. Examine whether (p → q) → r is a tautology or a contradiction.

0.110. Construct the truth table of the statement [(p → q) ∧ (q → p)] ↔ (p ↔ q) and determine whether it is a
contradiction.

0.111. Construct the truth table of q ↔ (p′ ∨ q′).

0.112. Suppose that p and r are false statements and q and s are true statements. Find the truth values of
(a) (p → q) → r
(b) (s → (p ∧ r′)) ∧ ((p → (r ∨ q)) ∧ s)

0.113. Find the truth assignments of p, q, r, s, and t such that the following are satisfiable:
(a) (p ∧ q ∧ r) → (s ∨ t)
(b) (p′ ∧ q′) ∨ r′

0.114. Show that (p → q) → (p′ ∨ q) is a tautology.

0.115. Prove: (p ∧ q) ∧ (p ∨ q)′ is a contradiction.

0.116. Show that ((p → q) → q) ((p – q)′ ∨ q) is a tautology.



Combinatorics

1.1 TWO BASIC COUNTING RULES

Combinatorics is one of the fastest-growing areas of modern mathematics. It has many applications to several areas of
mathematics and is concerned primarily with the study of finite or discrete sets (much as the set of integers) and various
structures on these sets, such as arrangements, combinations, assignments, and configurations. Broadly speaking, three
kinds of problems arise while studying these sets and structures on them: (1) the existence problem, (2) the counting
problem, and (3) the optimization problem. The existence problem is concerned with the following question: Does there
exist at least one arrangement of a given kind? The counting problem, on the other hand, seeks to find the number of
possible arrangements or configurations of a certain pattern. The problem of finding the most efficient arrangement of a given
pattern is the optimization problem. In this chapter we study techniques for solving problems that involve counting. These
techniques form a basis for the study of enumerative combinatorics, which is really the theory of counting where results
involving counting are obtained without carrying out the exact counting process, which could be tedious.

Suppose that there are 10 mathematics majors and 15 computer science majors in a class of 25 and we are required
to choose a student from the class to represent mathematics and another student to represent computer science. Now there
are 10 ways of choosing a mathematics major and 15 ways of choosing a computer science major from the class.
Furthermore, the act of choosing a student from one area in no way depends on the act of choosing a student from the
other. So it is intuitively obvious that there are 10 × 15 = 150 ways of selecting a representative from mathematics and a
representative from computer science. On the other hand, if we are required to select one representative from mathematics
or from computer science, we have only 10 + 15 = 25 ways of accomplishing this. In the former case we used the
multiplication rule of counting and in the latter the addition rule. These two rules can be stated formally as follows.

MULTIPLICATION RULE (The Rule of Sequential Counting)

Suppose that there is a sequence of r events E1, E2, . . . , Er such that (1) there are ni ways in which Ei(i = 1, 2, . . . ,
r) can occur, and (2) the number of ways an event in the sequence can occur does not depend on how the events in the
sequence prior to that event occurred. Then there are (n1) · (n2) · . . . · (nr) ways in which all the events in the sequence can
occur.

ADDITION RULE (The Rule of Disjunctive Counting)

Suppose that there are r events E1, E2, . . . , Er such that (1) there are ni outcomes for Ei(i = 1, 2, . . . , r), and (2)
no two events can occur simultaneously. Then there are (n1) + (n2) + · · · + (nr) ways in which one of these r events can
take place.

These two elementary rules are very useful in solving counting problems without carrying out explicit enumeration.
However, if one is not careful, they are likely to be misused, producing erroneous results, as may be seen from some of the
examples we discuss in what follows.

Example 1.1.1

There are five characters—two letters of the alphabet followed by three digits—which appear on the back of one
series of a microcomputer made by an electronics company. The number of possible computers manufactured in this



series is (1) 26 × 26 × 10 × 10 × 10 = 676,000 if characters can repeat, (2) 26 × 25 × 10 × 10 × 10 = 650,000 if
letters cannot repeat, and (3) 26 × 25 × 10 × 9 × 8 = 468,000 if no characters can repeat. We use the multiplication
rule here.

Example 1.1.2

A professor has 25 students in her advanced calculus course and 31 students in her statistics course. Thirteen students
have signed up for both the courses. There are three events here, no two of which can occur simultaneously: (1) The
event that a student chosen at random has signed up for advanced calculus but not for statistics, and this can happen in
12 ways; (2) the event that a student chosen at random has signed up for statistics but not for advanced calculus, and
this can happen in 18 ways; and (3) the event that a student chosen at random has signed up for both the courses and
this can happen in 13 ways. By the addition rule one of these events can occur in 12 + 18 + 13 = 43 ways. In other
words, the professor has 43 students in both the courses together. Notice that the event that a student chosen at
random takes advanced calculus and the event that a student chosen at random takes statistics can occur
simultaneously. So we cannot apply the addition rule to the two events to conclude that the professor has a total of 25
+ 31 = 56 students.

Example 1.1.3

In a sightseeing group there are 8 Austrians, 5 Brazilians, and 6 Canadians. So by the multiplication rule there are 40
ways of choosing an Austrian and a Brazilian, 48 ways of choosing an Austrian and a Canadian, and 30 ways of
choosing a Brazilian and a Canadian. Next, by the addition principle, there are 40 + 48 + 30 = 118 ways of selecting
a pair of individuals of distinct nationalities from this group of tourists. A team of 3 tourists of distinct nationalities can
be chosen in 8 × 5 × 6 ways, whereas a typical representative can be chosen in 8 + 5 + 6 ways.

Example 1.1.4

The number of odd integers between 0 and 99 is obviously 50. We may invoke the multiplication rule to get this result.
Any integer between 0 and 99 has a unit digit and a tens digit if we write 0, 1, 2, . . . , 9 as 00, 01, 02, . . . , 09. Let E
be the event of choosing a digit for the unit digit. This can be done in 5 ways. Next, let F be the event of choosing a
digit for the tens digit. This can be done in 10 ways. Notice that the number of ways that E can occur does not
depend on how F can occur, and vice versa. So the sequence E, F (or for that matter, the sequence F, E) can occur
in 50 ways.

Example 1.1.5

Suppose that we are interested in finding the number of odd integers between 0 and 100 with distinct digits. Let E
and F be as in Example 1.1.4. E can be done in 5 ways as before. After that F can occur in 9 ways. The number of
ways that F can occur does not depend on how E occurs. So by the multiplication rule the sequence E, F can occur
in 45 ways, and consequently, there are 45 such integers. On the other hand, if F is the first event, it can occur in 10
ways. Subsequently, the second event E can be done in 5 ways if the tens digit is even, and in 4 ways if the tens digit is
odd. In other words, the number of ways in which E occurs depends on how the event F occurs. So we cannot apply
the multiplication rule to the sequence F, E in this case.

Example 1.1.6

Suppose that X is a set with n elements. List the elements of X as 1, 2, . . . , n and consider the following sequence of
n events: The first event is to decide whether or not to pick the first element, the second event is to decide whether or
not to pick the second elment, and so on. Each event can occur in 2 ways and the number of ways that any of these
events in the sequence can occur does not depend on how the previous events in the sequence occurred. Thus any set
with n elements has 2n subsets, by the multiplication rule. The class of all subsets of the set X is the power set of X
and is denoted by P(X) as mentioned in Chapter 0.

1.2 PERMUTATIONS

Consider a collection X of n distinct objects. An r-permutation of X is an arrangement in a row of any r objects from X.
Of course, r is at most n. Thus if X is the collection of the first 5 letters a, b, c, d, and e, then edcb, dbea, and bdca are
some of the several 4-permutations of X. The total number of r-permutations of a collection of n distinct objects is denoted
by P(n, r). Any r-permutation here can be considered as a sequence of r events in which the number of ways an event can
occur does not depend on how the events prior to that event occur. So we use the multiplication rule of counting to
conclude that P(n, r) is equal to n(n – 1)(n – 2) · · · (n – r + 1) since any arbitrary object from X can be chosen in n ways
and having chosen that, a second arbitrary object can be chosen in (n – 1) ways, and so on, until all r objects are chosen.



Permutations and the Allocation Problem

We can approach this process of making arrangements of objects from a different point of view. Consider a set of n distinct
locations arranged in a definite order and we are required to allocate r distinct objects to these locations such that no
location can receive more than one object. Then the number of ways of allocating these r objects to the n locations is also
P(n, r) by the multiplication rule since any arbitrary object can be sent to one of the locations in n ways, and subsequently
another one can be sent in (n – 1) ways, and so on.

Example 1.2.1

If X = {1, 2, 3, 4, 5, 6, 7} and r = 3, the number of r-permutations of X is 7 × 6 × 5 = 210.

Any n-permutation of a set X with n elements is simply called a permutation of X and the number P(n, n) of
permutations of X is n(n – 1)(n – 2) · . . . · 3 · 2 · 1, which is denoted by the factorial function n!. It is easy to see that P(n,
r) = n!/(n – r)!. (We define 0! = 1.)

[The positive integer n! can be extremely large even when n is a small two-digit number. It is more than 3.6 million
when n = 10 and it is approximately equal to (2.433)(1018) when n = 20.]

Circular and Ring Permutations

Example 1.2.2

Consider a collection of 5 stones of different colors: blue (B), green (G), red (R), pink (P), and white (W).
(a) The number of ways of making a tiepin on which these 5 stones are to be placed horizontally is, of course,

5!.
(b) In how many ways can we make a tiepin on which these stones are placed in a circular pattern? The answer

has to be less than 5! because some of the permutations considered in (a) are now not distinct. For example, if we
rotate the permutation BGRPW once in the clockwise direction, we get the permutation GRPWB, and these two
permutations are not distinct in a circular arrangement. If we fix one of the colors and then consider the permutations
formed by the remaining 4 colors, these permutations are all distinct. For example, if we fix B and consider RGPW
and RGWP, we get two permutations, BRGPW and BRGWP, which are distinct. Thus there are only (4!) such
circular permutations.

(c) In how ways can we make a ring in which these stones are mounted? In a ring, there is no difference
between a permutation and its “mirror image.” For example, BGRPW and BWPRG are the same. For every
permutation in (b), there is a mirror image. So the answer now is (4!)/2.

Thus the number of circular permutations of a set of n elements is (n – 1)! and the number of ring permutations is ((n –
1)!)/2.

Generalized Permutations

Let us now consider a collection X of n objects (not necessarily distinct) belonging to k different nonempty groups such
that (1) all the objects in a group are identical, and (2) an object in a group is not identical to an object in another group.
(For example, the letters in the collection a, b, a, b, b, d, e, e, d can be formed into four groups: one for a, one for b, one
for d, and one for e.) Assume that there are ni objects in group i where i = 1, 2, . . . , k. Any arrangement in a row of these
n objects is called a generalized permutation of X. (For example, LINISOIL is a generalized permutation of the letters
that appear in the word ILLINOIS.) The number of such generalized permutations is denoted by P(n; n1, n2, . . . , nk),
which will be n! if all the objects in X are distinct.

THEOREM 1.2.1

If the collection X of n objects consists of k distinct nonempty groups such that group i has ni identical objects (where
i = 1, 2, . . . , k), then the number of generalized permutations of X is (n!)/(n1!)(n2!) · · · (nk!).

Proof:

If the objects belonging to group i were all distinct, there would have been ni! permutations for the elements in this
group. So each generalized permutation gives rise to N = (n1!)(n2!) · · · (nk!) permutations of X if X had distinct objects. If t
is the total number of generalized permutations, we have (t)(N) = n!, from which the conclusion of the theorem follows.
[Observe that if k = n, each group has exactly one element that is equivalent to the statement that the objects in X are
distinct verifying that P(n; 1, 1, . . . , 1), where 1 is repeated n times, is equal to n!, as it should.]



Example 1.2.3

The 9 letters that appear in the word CONSENSUS can be grouped into 6 groups: the group consisting of three S’s,
the group consisting of two N’s, and four groups consisting of each of the four remaining distinct letters. The total
number of generalized permutations in this case is (9!)/(3!)(2!)(1!)(1!)(1!)(1!) = 30,240.

If the total number of objects in any (k – 1) of these k groups is r (where r ≤ n), the formula for the number of
generalized permutations can be expressed as P(n, r)/(n1!)(n2!) · · · (nk–1!) since n! = P(n, r) · (n – r)! and nk  = (n –
r). For example,

and so on. Thus if ni (i = 1, 2, . . . , k) are k positive integers whose sum is r where r ≤ n and if we define

we see that
(1) P(n; n1, n2, . . . , nk–1) = P(n; n1, n2, . . . , nk–1, m)

where m = n – (n1 + n2 + · · · + nk–1)
(2) P(n; r) = P(n; n – r) = P(n; r, n – r)
(3) (r!) P(n; r) = P(n, r)

Example 1.2.4

We now have the following generalization of Theorem 1.2.1, the proof of which is left as a simple exercise.

THEOREM 1.2.2

If there are ni identical objects in group i (i = 1, 2, . . . , k) and if r is the total number of the objects in these k groups,
these r objects can be placed in n distinct locations, so that each location receives at most one object, in t ways, where t =
P(n; n1, n2, . . . , nk). In particular, if each group has exactly one object, then t = P(n, r), which is the number of r-
permutations of a set with n elements.

Example 1.2.5

Suppose that there are 100 spots (marked serially from 100 to 199) in the showroom of a car dealership for
displaying new cars in which 15 sports cars, 25 compact cars, 30 station wagons, and 20 vans are to be parked for
display. Assume that the automobiles in each category are brand new and identical in all respects, including color. The
dealer can then park the collection of 90 vehicles for display (leaving 10 blank spots in the lot) in P(100, 90)/(15!)
(25!)(30!)(20!) ways.

1.3 COMBINATIONS

As in section 1.2, let X be a collection of n distinct objects. Any collection of r distinct objects from X is called an r-
combination of X. In other words, if X is a set with n elements, any subset of X with r elements is an r-combination of X.
In an r-combination the order in which the r elements are chosen is not important, unlike in the case of an r-permutation.
The number of r-combinations of a set with n elements is denoted by C(n, r), which is precisely the number of subsets of
cardinality r. Thus there are P(n, 2) ordered pairs and C(n, 2) unordered pairs of two elements in a set of n elements. Of
course, C(n, 0) = C(n, n) = 1.

What is the relation between C(n, r) and P(n, r)? Consider any subset A of X with r elements. These r distinct
elements can be arranged in (r!) ways. Thus there are (r!) permutations associated with every r-element subset of X. Of
course, by definition, the number of r-element subsets of X is C(n, r). Thus the total number of r-permutations is the
product of (r!) and C(n, r) by the multiplication rule. So we have the following important theorem.



THEOREM 1.3.1

C(n, r) · (r!) = P(n, r)

COROLLARY

C(n, r) = C(n, n – r)

Proof:

In other words, if X is a set with n elements, the number of subsets of X with r elements is equal to the number of
subsets of X with (n – r) elements.

Combinations and the Allocation Problem

As in the case of permutations, we can interpret combinations from a different point of view, as a problem of allocations. As
before, let X be a set of n distinct locations arranged in a definite order and consider a collection of r objects that are
identical. These objects are to be to allocated to these n locations such that no location receives more than one subject. Let
t be the total number of ways of allocating these r objects. If all the objects were distinct, each such allocation would give
rise to (r!) allocations. In that case the total number of allocations would have been (t)(r!). But the total number of
allocations if the objects were distinct is P(n, r). Thus t = P(n, r)/(r!) = C(n, r).

THEOREM 1.3.2 (Pascal’s Formula)

C(n, r) = C(n – 1, r) + C(n – 1, r – 1)

Proof:

Let X be a set with n elements and Y be any subset of X with (n – 1) elements. Let t be the element of X that is not in
Y. Every r-element subset of X is either a r-element subset of Y or the union of a subset of Y with (r – 1) elements and the
singleton set consisting of t. In the former category there are C(n – 1, r) sets and in the latter there are C(n – 1, r – 1) sets.
In other words, the total number of subsets of X with r elements is the sum of C(n – 1, r) and C(n – 1, r – 1).

Pascal’s formula is an example of a combinatorial identity, which was proved using a combinatorial argument.
This identity can be proved algebraically also. A few combinatorial identities are given at the end of this chapter as exercises.
Here is another example.

Example 1.3.1

C(2n, 2) = 2C(n, 2) + n2

Proof:

Let X be any set with 2n elements that is partitioned into two sets Y and Z, each containing n elements. The number of
subsets of X with two elements is C(2n, 2). Any subset of X has two elements if and only if it belongs to one of the following
three classes: (1) the class of all subsets of Y with two elements, (2) the class of all subsets of Z with two elements, and (3)
the class of all subsets of X with two elements such that each subset in this class has one element from Y and one element
from Z. Classes (1) and (2) have C(n, 2) sets each. An element from Y can be chosen n ways and an element from Z can
be chosen in n ways. So class (3) has (n)(n) sets. Thus the number of subsets of X with two elements is C(n, 2) + C(n, 2) +
(n)(n).

The Allocation Problem and Generalized Combinations



Now consider a collection of n objects (not necessarily distinct) belonging to k distinct groups, as in the hypothesis of
Theorem 1.2.1. The n1 identical objects of group 1 can be placed in the set of n locations (such that no location receives
more than one object) in C(n, n1) ways. Then the n2 objects of the next group can be placed in C(n – n2) ways. We
proceed in this way until all spots are filled. By the multiplication rule the total number of ways in which all the n spots can be
filled is

and this number is denoted by C(n; n1 n2, . . . , nk).
There is another way of looking at this allocation process. Suppose that X is a collection of n distinct objects and

these n objects are to be allocated to k locations so that location i gets ni objects (i = 1, 2, . . . , k) where n1 + n2 + · · · +
nk  = n. Then any n1 objects can be selected from X and allocated to location 1 in C(n, n1) ways. Next, from the remaining
(n – n1) objects in X, any n2 objects can be allocated to location 2 in C(n – n1, n2) ways. We proceed like this until all the
objects are exhausted.

We have the following result connecting generalized permutations and combinations.

THEOREM 1.3.3

P(n; n1, n2, . . . , nk) = C(n; n1, n2, . . . , nk)

where n1 + n2 + · · · + nk  ≤ n.

Proof:

Multiplying out the terms on the right-hand side of the equation, we get C(n; n1, n2, n3, . . . , nk) = (n!)/(n1)!(n2)! · · ·
(nk)!, and thus the theorem is established.

Observe that if all the objects in X are distinct and if we take r objects, we have P(n; 1, 1, . . . , 1) = C(n; 1, 1, . . . ,
1), where 1 is repeated r times. Now P(n; 1, 1, . . . , 1) = P(n, r)/(1!)(1!) · · · (1!) = P(n, r) and C(n; 1, 1, . . . , 1) = C(n,
1) · C(n – 1, 1) · · · C(n – r + 1, 1) = n(n – 1) · · · (n – r + 1) and we once again see that P(n, r) = n(n – 1)(n – 2) · · · (n
– r + 1).

COROLLARY

C(n; r) = C(n; n – r) = C(n; r, n – r) = C(n, r) = C(n, n – r)

Proof:

[Notice that C(n, r) = C(n; r) = P(n; r), but P(n, r) = (r!)P(n; r).]

Example 1.3.2



Also,

Thus

The Multinomial Theorem

THEOREM 1.3.4 (The Multinomial Theorem)

In a typical term in the expansion of (x1 + x2 + · · · + xk)n the variable xi (i = 1, 2, . . . , k) appears ni times (where
n1 + n2 + · · · + nk  = n) and the coefficient of this typical term is C(n; n1, n2, . . . , nk).

Proof:

The first part of the assertion is obvious since the expansion is the product of n expressions where each expression is
the sum of the k variables. A typical term here is nothing but a generalized permutation of n objects in a collection X
consisting of k groups, and therefore the coefficient of this typical term is the number of such generalized permutations.

Example 1.3.3

The coefficient of a3b2c6d4 in the expansion of (a + b + c + d)15 is (15!)/(3!)(2!)(6!)(4!).

Example 1.3.4 (The Binomial Theorem)

The multinomial theorem when k = 2 is known as the binomial theorem, which can be stated as

(x + y)n = Σ C(n, n – r)xn–ryr      where r varies from 0 to n

[The right-hand side of this equation is called the binomial expansion of (x + y)n. The coefficients C(n, r) that
appear in the binomial expansion are called binomial coefficients.]

The binomial coefficients of (x + y)n can be computed if we know the binomial coefficients of (x + y)n – 1 by
using Pascal’s formula: C(n, r) = C(n – 1, r) + C(n – 1, r – 1). So the binomial coefficients can be arranged in the
form of a triangle known as Pascal’s triangle:

In this representation, the (n + 1) consecutive binomial coefficients of the binomial expansion of (x + y)n appear in the



nth row. Notice that a typical element in a row (other than the first and the last) is the sum of the two terms just above that
element which appear in the preceding row—and that is exactly the content of Pascal’s formula. In each row the first
element as well as the last element is 1, indicating the fact that if A is a set with n elements, then there is only one subset of A
with n elements and there is only subset of A with no elements.

Partitioning of a Finite Set

Given a set A of cardinality n, a combinatorial problem of interest is to find the number of ways A can be partitioned into k
subsets such that subset Ai (i = 1, 2, . . . , k) has exactly ni, elements. For example, if A = {1, 2, 3, 4, 5, 6}, the problem
will be to find the number of ways of partitioning A into (1) two subsets such that one has 2 elements and the other has 4
elements or (2) two subsets such that each has 3 elements or (3) three subsets such that each has 2 elements, and so on.
This problem is equivalent to the allocation problem of allocating n distinct objects to k locations discussed earlier when the
cardinalities of each set in the partition are distinct as in (1). There are C(6; 2, 4) ways of allocating the 6 elements from A to
two locations so that location 1 gets 2 elements and location 2 gets 4 elements. The number of ways of partitioning A into
two sets so that one set has 2 elements and the other has 4 is also C(6; 2, 4). But when the subsets in a partition have equal
cardinalities, we have to take care of those situations where repetitions occur. For example, if P = {1, 2, 3} and Q = {4, 5,
6}, the partition {P, Q} and the partition {Q, P} are the same. But allocating P to location 1 and Q to location 2 is not the
same as allocating Q to location 1 and P to location 2. The number of partitions of A into two subsets of equal cardinality is
C(6; 3, 3)/2. More generally, we have the following result, which is an extension of the allocation theorem and the
multiplication rule.

THEOREM 1.3.5

The number of ways of partitioning a set of cardinality n into a class consisting of pi subsets each of cardinality ni (i =
1, 2, . . . , k) where no two of the numbers ni are equal is

Example 1.3.5

(a) The number of ways of allocating 43 students into 7 different dormitories such that the first two get 5
students each, the next three get 6 students each, the sixth dormitory gets 7 students, and the seventh dormitory gets 8
students is

(b) The number of ways of dividing 43 students into 7 groups such that there are 5 students in each of 2
groups, 6 students in each of 3 groups, 7 students in one group, and 8 students in one group is

1.4 MORE ON PERMUTATIONS AND COMBINATIONS

If X is a set with n elements, we know that an r-permutation of X is an arrangement of elements from X in which no
elements repeat. Similarly, an r-combination is a selection of elements from X in which no elements repeat. In both cases r
cannot exceed n. If we allow repetitions, there is no restriction on r. (Since X is a set, the n elements in it are all distinct.) An
r-sequence of X is an arrangement of r elements from X in which the elements may repeat, but the order in which these
elements appear is important. For example, aabdac and aadbac are two distinct 6-sequences from the set X = {a, b, c, d}.
Any r-permutation is obviously an r-sequence. On the other hand, any r-sequence with distinct elements is an r-
permutation. A simple application of the multiplication rule shows that the number of r-sequences in a set with n elements is
nr.

Any collection of r objects (not necessarily distinct) chosen from a set X of n elements is called an r-collection from
X. Unlike an r-selection, the order in which the elements are chosen is not important in an r-collection. The 4-collection [a,
a, b, c] is not different from the 4-collection [a, b, c, a]. Both represent the same 4-collection. Any r-combination is an r-



collection. If the elements in an r-collection are distinct, then it is an r-combination. For example, if X = {a, b, c, d} and if r
= 3, the set of all 3-selections from X will include every subset of X with 3 elements and selections such as {a, a, a}, {a, b,
b}, {d, a, d} and so on. On the other hand, if r = 5, the collection {a, b, b, b, d} is one of the ways of choosing 5 elements
from X, and no subset of X can be a 5-collection.

Given a set of cardinality n and an arbitrary positive integer r, in how many ways can one choose r elements (with
repetitions) from X? Here is the answer.

THEOREM 1.4.1

If X is a set of cardinality n, then the number of r-collections from X is C(r + n – 1, n – 1), where r is any positive
integer.

Proof:

Let X = {1, 2, 3, . . . , n}. Let u be an r-collection from X in which 1 repeats x1 times, 2 repeats x2 times, . . . , and n
repeats xn times. This r-collection can be represented as

where the notation i · · · i means that the symbol i repeats xi times. Similarly, let v be another r-collection in which 1 repeats
y1 times, 2 repeats y2 times, . . . , and n repeats yn times. Then

where the notation i · · · i means that the symbol i repeats y2 times. Observe that in the representation of u as well as in the
representation of v, there is a gap between 1 and 2, a gap between 2 and 3, . . . , a gap between (n – 1) and n. In each
representation there are (n – 1) gaps. What distinguishes one r-collection from another is where these blank spots are
located in a typical representation.

Each representation has r symbols and (n – 1) gaps. So each representation can be considered as set of r + n – 1
distinct locations. All the n – 1 blanks are identical. An allocation of these (n – 1) blanks to the (r + n – 1) locations defines
an r-collection. Thus the number of distinct r-collections is the same as the number of ways of allocating (n – 1) identical
objects to (r + n – 1) distinct locations so that each location receives at most one object. This number is C(r + n – 1, n –
1), as we saw in Section 1.3.

Example 1.4.1

Let X = {a, b, c, d}. The total number of 5-selections from X will be C(5 + 4 – 1, 4 – 1) = 56.

The following theorem is an equivalent version of Theorem 1.4.1.

THEOREM 1.4.2

(a) The number of distinct solutions in nonnegative integers of the linear equation (in n variables) x1 + x2 + · · · + xn =
r is C(r + n – 1, n – 1).

(b) The number of distinct solutions in nonnegative integers of the linear inequality (in n variables) x1 + x2 + · · · + xn ≤
r is C(r + n, n).

(c) The number of terms in the multinomial expansion of (x1 + x2 + · · · + xn)r is C(r + n – 1, n – 1).

Proof:

(a) Every solution xi = si (i = 1, 2, . . . . , n) in nonnegative integers corresponds to a collection of r elements (from
the set X consisting of the n variables) in which xi repeats si times, where si ≤ r, and vice versa. The number of such
collections is C(r + n – 1, n – 1) by Theorem 1.4.1.

(b) Let y be a nonnegative variable such that x1 + x2 + · · · + xn + y = r. (y is called the slack variable.) We now
have a linear equation in (n + 1) variables. A solution in nonnegative integers of this equation in (n + 1) variables is a solution
in nonnegative integers of the inequality in n variables, and vice versa. Thus the required number is C(r + n, n).

(c) Each term in the expansion can be considered as a product of the n variables in which the sum of the exponents of
the variables is r. Therefore, the number of terms in the expansion is equal to the number of collections of r elements from
the set X consisting of the n variables where repetitions are allowed.

Example 1.4.2



In an undergraduate dormitory there are several freshmen, sophomores, juniors, and seniors.
(a) In how many ways can a team of 10 students be chosen to represent the dormitory?
(b) In how many ways can a team of 10 be chosen such that it has at least one freshman, at least one

sophomore, at least two juniors, and at least two seniors?

Solution
(a) If p, q, r, and s are the number of students of each class in the team, then the number of ways the team can

be chosen is equal to the number of solutions in nonnegative integers of the equation p + q + r + s = 10. So the
answer is C(13, 3) = 286.

(b) In this case p > 0, q > 0, r > 1, and s > 1. Write p = p′ + 1, q = q′ + 1, r = r′ + 2, and s = s′ + 2. So the
number of ways will be equal to the number of solutions in nonnegative integers of the equation p′ + q′ + r′ + s′ + 6 =
10 and the answer is C(7, 3) = 35.

The Allocation Problem in the General Setting

We now consider the problem of allocating r identical objects to n distinct locations such that each location can
accommodate as many objects as necessary. In how many ways can we accomplish this? If the number of objects placed in
location i is xi (where i = 1, 2, . . . , n), any solution of the equation x1 + x2 + · · · + xn = r in nonnegative integers
corresponds to a way of allocating these r objects to the n locations, and vice versa. Thus there are C(r + n – 1, n – 1)
ways of placing r identical objects in n distinct locations. We combine this observation with the Theorems 1.4.1 and 1.4.2 to
make the following assertion:

THEOREM 1.4.3

Let

L = the number of ways of choosing r elements (with repetitions) from a set that has n elements
M = the number of ways of allocating r identical objects to n distinct locations
N = the number of solutions in nonnegative integers of the equation x1 + x2 + · · · + xn = r

Then

L = M = N = C(r + n – 1, n – 1)

We now summarize the four cases of permutations and combinations (without or with repetitions) of r elements from a
set of n distinct elements and interpret these results as two models of counting as follows.

The selection model

The number of ways of selecting r elements from a set of n elements is:

1. P(n, r) if the elements selected are distinct and the order in which they are selected is important.
2. C(n, r) if the elements selected are distinct and the order in which they are selected is not important.
3. nr if the elements selected are not necessarily distinct and the order is important.
4. C(r + n – 1, n – 1) if the elements selected are not necessarily distinct and the order is not important.

The allocation model

The number of ways of allocating r objects to n distinct locations is:

1. P(n, r) if the objects are distinct and no location can take more than one object.
2. C(n, r) if the objects are identical and no location can take more than one object.
3. nr if the objects are distinct and there is no restriction on the number of objects in a location.

4. C(r + n – 1, n – 1) if the objects are identical and there is no restriction on the number of objects in a location.

These conclusions can be summarized in Table 1.4.1.

We conclude this section with the following theorem, which summarizes the various cases of allocations considered so
far.

THEOREM 1.4.4



(a) If r is at most n, a collection of r distinct objects can be allocated to n locations, so that no location can receive
more than one object in P(n, r) ways.

(b) A collection of r distinct objects can be allocated to n locations in nr ways if there is no restriction on the number
of objects that a location can receive.

(c) If r is at most n, a collection of r identical objects can be allocated to n locations so that no location can receive
more than one object in C(n, r) ways.

(d) A collection of r identical objects can be allocated to n locations such that location f gets at least pi objects in C(r
– p + n – 1, n – 1) ways, where p = p1 + p2 + · · · + pn. (Theorem 1.4.3 is a special case when each pi is 0.)

TABLE 1.4.1

(e) Suppose that there are k types of objects such that type i has ni objects (i = 1, 2, . . . , k). Objects belonging to
the same type are identical and two objects belonging to two different types are not identical. Then these n1 + n2 + · · · + nk
objects can be allocated to n locations so that no location can receive more than one object in P(n; n1 n2, . . . , nk) ways.

(f) A collection of n1 + n2 + • • • + nk  distinct objects can be allocated to k locations so that location i receives
exactly ni objects (i = 1, 2,. . . , k) in C(n; n1 n2, . . . , nk) ways.

(g) P(n; n1, n2, . . . , nk) = C(n; n1 n2, . . . , nk) = P(n, r)/[(n1!)(n2!) . . . (nk!)] where n1 + n2 + · · · + nk  = r.

1.5 THE PIGEONHOLE PRINCIPLE

This is a principle that is very obvious and looks very simple, as though it has no major significance. However, in practice it
is of great importance and power since its generalizations involve some profound and deep results in combinatorial theory
and in number theory. We are using the pigeonhole principle when we say that in any group of three people at least two are
of the same sex. Suppose that the newly formed computer science department in a college has 10 faculty members and only
9 offices to accommodate them. Then the underlying idea behind the obvious assertion that at least one office will have more
than one occupant is again the pigeonhole principle. If there are 19 faculty members instead of 10, at least one office will
have more than two occupants. Similarly, if there are at least 367 students in a residence hall, it is equally obvious that at
least two of them will have the same birthday. It is reported that the scalp of a human being has at most 99,999 hairs. So in
any city whose population exceeds 4 million there will be at least 41 people (a bald scalp has no hair) with the same number
of hairs! We can cite several examples like this.

The basic idea that governs all these instances is the simple fact known as the Dirichlet pigeonhole principle, which
is stated formally as follows: If n + 1 or more pigeons occupy n pigeonholes, there will be more than one pigeon in at least
one pigeonhole. More generally, if kn + 1 or more pigeons occupy n pigeonholes, there will be more than k pigeons in at
least one pigeonhole, where k is a positive integer.



Here are some examples to illustrate this principle.

Example 1.5.1

In a round-robin tournament (in which every player plays against every other player exactly once), suppose that each
player wins at least once. Then there are at least two players with the same number of wins. Suppose that there are n
players. The number of wins for a player is 1 or 2 or 3 . . . or (n – 1). These (n – 1) numbers correspond to (n – 1)
pigeonholes in which the n players are to be housed. So at least two of them should be in the same pigeonhole and
they have the same number of wins.

Example 1.5.2

There are 18 residence halls in campus. The dean of students would like to conduct a survey in any one of these halls
about the use of microcomputers, and to do this she has to form a committee of 5 students from the hall chosen for the
survey. An advertisement in the campus paper asks for volunteers from these 18 halls. At least how many responses
to the advertisement are sufficient before the dean can choose a hall and form a committee?

Solution. The answer is (4) (18) + 1 = 73 by the pigeonhole principle.

Example 1.5.3

A bag contains exactly 5 red, 8 blue, 10 white, 12 green, and 7 yellow marbles. Find the least number of balls to be
chosen which will guarantee that there will be (a) at least 4 marbles of the same color, (b) at least 6 marbles are of the
same color, (c) at least 7 marbles are of the same color, and (d) at least 9 marbles are of the same color. (Here each
color represents a pigeonhole. The number of pigeonholes is n = 5.)

Solution
(a) If at least 4 marbles are of the same color, there is a pigeonhole whose occupancy is more than 3. So by

applying the generalized pigeonhole principle with k = 3, the number of marbles to be chosen is at least (3) · (5) + 1 =
16.

(b) n = 5 and k = 5. So the number is 26.
(c) n = 5 and k = 6. Notice that there is an upper limit on the number of red marbles. There are only 5 red

marbles. So in this case the required number is [(6) · (5) + 1] – (6 – 5) = 30.
(d) Now n = 5 and k = 8 with upper bounds of 5 for red and 7 for yellow. So the number is [(8) · (5) + 1] – (8

– 5) – (8 – 7) – (8 – 8) = 37.

If m and n are positive integers, then the floor of m/n is the largest integer that is less than or equal to m/n and the
ceiling of m/n is the smallest integer greater than or equal to m/n. (For example, the floor of 38/9 is 4 and the ceiling is 5.)

The following extension of the pigeonhole principle is easily established.

THEOREM 1.5.1

(a) If m pigeons are allotted to n pigeonholes, then at least one hole has more than k pigeons, where k is the floor of
(m – 1)/n.

(b) If m = p1 + p2 + · · · + pn – n + 1 pigeons (each pi is a positive integer) are allotted to n pigeonholes, then the first
pigeonhole has at least p1 pigeons, or the second pigeonhole has at least p2 pigeons, . . . , or the nth pigeonhole has at least
pn pigeons.

Proof:

(a) Now (n) · (k) ≤ (m – 1) < m. If the number of pigeons is exactly n · k, it is possible to allocate k pigeons to each
hole. But the number of pigeons is m, which is greater than n · k. So there is at least one hole with more than k occupants.

(b) Here k = floor of [(p1 + p2 + · · · + pn)/n] – 1. So (k + 1) is equal to or greater than at least one of the n integers.

Example 1.5.4

A bag contains exactly 6 red, 5 white, and 7 blue marbles. Find the least number of marbles to be selected which will
ensure that either at least 3 red or at least 4 white or at least 5 blue marbles picked.

Solution
First Method (Using Theorem 1.5.1). Here n = 3, p1 = 3, p2 = 4, and p3 = 5. So m = (3 + 4 + 5) – 3 + 1 =

10.
Second Method. Let the number of red, white, and blue marbles to be selected be x, y, and z, respectively. We

require that x is at least 3 or y is at least 4 or z is at least 5. This situation will not happen if x is at most 2 and y is at
most 3 and z is at most 4, which implies that x + y + z is at most 9. Thus we have to select at least 10 marbles.



Example 1.5.5

In any group of 6 people there are 3 people known to one another or there are 3 total strangers.

Proof. Let {A, B, C, D, E, F} be the set of 6 people and let Y be a room in which individuals known to A are seated.
Let Z be the room in which individuals not known to A are seated. The five individuals B, C, D, E, and F have to be
assigned to the two rooms Y and Z. So by the previous proposition either Y or Z has at least k + 1 individuals, where
k = floor of (5 – l)/2 = 2. See Figure 1.5.1. If there is a dotted line joining two names, these two individuals do not
know each other. If there is a line joining two individuals, they know each other.

(a) Suppose that room Y has 3 or more people. Let B, C, and D be three individuals in Y. There are two
possibilities: Either B, C, and D do not know one another, as in Figure 1.5.1(a), forming a group of 3 strangers, or at
least 2 of them (say, C and D) know each other, as in Figure 1.5.1(b). In the latter case, these two individuals, C and
D, along with A, form a group of 3 people who know each other.

(b) Suppose that room Z has 3 or more people. Let B, C, and D be 3 of the people in Z. There are two
possibilities: Either these 3 individuals know one another as in Figure 1.5.1(c), forming a group of 3 individuals known
to each other, or there are at least 2 individuals (say, C and D) who do not know each other. In the latter case, these 2
individuals, C and D, along with A, form a group of 3 strangers.

FIGURE 1.5.1

We conclude this brief exposition of the pigeonhole principle with two theorems due to Paul Erdös.

THEOREM 1.5.2

Let X = {1, 2, 3, . . . , 2n) and let S be any subset of X with (n + 1) elements. Then there are at least two numbers in
S such that one divides the other.

Proof:

Any number r in S can be represented as r = 2t · s, where t is a nonnegative integer and s is an odd number from X,
called the odd part of r. There are at most n choices for s since there are n odd numbers in X. The n odd parts can be
considered as n pigeonholes and the (n + 1) numbers of S are to be allotted to these holes. In other words, there are two
numbers x and y in S with the same odd part. Let x = 2t · s and y = 2u · s. Then either x divides y, or vice versa.

THEOREM 1.5.3

Any sequence of (n2 + 1) distinct numbers contains a subsequence of at least (n + 1) terms which is either an



increasing sequence or a decreasing sequence.

Proof:

Let the sequence be ai (i = 1, 2, . . . , n2 + 1) and let ti be the number of terms in the longest increasing subsequence
that starts from ai. If ti, = n + 1 for some i, we are done.

Suppose that ti ≤ n every i. Let Hj = {ai : ti = j}, where j = 1, 2, . . . , n. We thus have n pigeonholes H1, H2, . . . ,
Hn to which the (n2 + 1) numbers ti, are allotted. So by the generalized pigeonhole principle there is pigeonhole Hr
containing more than k of these numbers where k = floor of [(n2 + 1) – 1]/n = n. So among the numbers ti, at least (n + 1)
of them are equal.

We now establish that the (n + 1) numbers in the sequence which correspond to these numbers in the pigeonhole Hr
form a decreasing sequence. Let ai and aj be in Hr, where i < j. Either ai < aj or ai > aj since the elements in the sequence
are all distinct. Suppose that ai < aj. Now aj,  Hr implies that there is a subsequence of length r starting from aj. So ai < aj
implies that there is subsequence of length (r + 1) starting from aj. This is a contradiction, because there cannot be a
subsequence of length (r + 1) starting from ai since ai is an element of Hr. Thus ai > aj whenever i < j. So any (n + 1)
elements in Hr will give rise to a strictly decreasing subsequence.

Example 1.5.6

Illustrate Theorem 1.5.3 in the case of the sequences:
(a) 15, 12, 5, 7, 9, 6, 3, 4, 10, 14
(b) 15, 12, 9, 10, 7, 5, 4, 14, 3, 6

Solution
(a) Here n = 3, as there are 10 elements in the sequence and the corresponding ti (10 of them) are 1, 2, 5, 4, 3,

3, 4, 3, 2, 1. Since t3 is 5, there is an increasing subsequence of 5 elements starting from a3, which is 5, 7, 9, 10, 14.
(b) Here the corresponding ti are 1, 2, 3, 2, 2, 3, 2, 1, 2, 1. None of them exceeds 3. We get H1 = {15, 14,

6}, H2 = {12, 10, 7, 4, 3}, and H3 = {9, 5}. The sequence coming out of the second set is a decreasing subsequence
of the given sequence with 5 numbers.

1.6 THE INCLUSION–EXCLUSION PRINCIPLE

If X is any finite set, we denote by N(X) the number of elements in X. Suppose that A and B are two finite sets with no
elements in common. Then, obviously, N(A ∪ B) = N(A) + N(B). If, on the other hand, the intersection of A and B is
nonempty, in order to compute the cardinality of A ∪ B, we first find the sum N(A) + N(B) as before. In this sum, the
elements common to A and B are counted (included) twice—once while counting N(A) and then while counting N(B)—so
they have to be removed (excluded) once to obtain the total number of elements in their union.

For example, if there are 15 students in a class who take calculus, 12 students who take discrete mathematics, and 9
students who take both courses, then the number of students who take at least one of the two courses is 15 + 12 – 9 = 18.
See the Venn diagram in Figure 1.6.1 representing the universal set X of all students in the class, the set A of all students in
the class who take calculus, and the set of B of all students who take discrete mathematics. The fact there are students in the
class who take both the courses is made clear by showing that the set representing their intersection is the region common to
A and B. The set to be excluded because it is included once with A and then with B is the subset A ∩ B. Thus we can state
the inclusion-exclusion principle involving two finite sets as follows: If A and B are two finite sets, then N(A ∪ B) = N(A)
+ N(B) – N(A ∩ B).



FIGURE 1.6.1

Example 1.6.1

Obtain the inclusion–exclusion rule involving three finite sets. Let A, B, and C be three finite sets and let D = B ∪ C.
Now N(A ∪ B ∪ C) = N(A ∪ D) = N(A) + N(D) – N(A ∩ D) and N(D) = N(B ∪ C) = N(B) + N(C) – N(B ∩
C). So

But (A ∩ D) = A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). So

On substituting for N(A ∩ D) in (*), we get

which is the inclusion–exclusion rule for three sets.

Suppose that the sets we consider are all finite subsets of a certain finite set X with N elements. If A is a subset of X,
the complement of A is denoted by A′. Then A′ = X – A. So

Next let A and B be two subsets of X. Then by (i), N((A ∪ B)′) = N – N(A ∪ B). Now N(A ∪ B) = N(A) + N(B) –
N(A ∩ B) by the principle of inclusion and exclusion. And (A ∪ B)′ = A′ ∩ B′. Thus

Similarly,



We may consider (i), (ii), and (iii) also as the inclusion–exclusion rule involving one subset, two subsets, and three subsets of
a set with N elements, respectively.

Now suppose that ai (i = 1, 2, 3) are three distinct properties associated with the elements of the set X such that a
typical element may possess one or more of these properties or may have none of them. Let Ai be the set of all x in X such
that x has property ai. Let N(ai) be the number of elements in X with property ai N(ai′) be the number of elements in X that
do not have the property ai and N(a1 a2) be the number of elements in X possessing both property a1 and a2, and so on.
Then N(ai) = N(Ai), N(ai, aj) = N(Ai ∩ Aj), and N(ai, aj′) = N(Ai ∩ Aj′). The inclusion–exclusion rule (iii) given above
involving three subsets of X can be rewritten as follows:

This result is now extended to the case involving n distinct properties (which the elements in a finite set may have) as a
theorem that can be proved using a combinatorial argument. Before starting this generalization let us introduce the following
notation. Let Ai (i = 1, 2, . . . , n) be n subsets of X. A k-tuple intersection is the intersection of any k distinct subsets of
these n sets. The number of k-tuple intersections is, of course, C(n, k). Let Sk  be the sum of the number of elements of all
the k-tuple intersections. Thus

and so on.

THEOREM 1.6.1 (The Inclusion–Exclusion Formula)

Proof:

For any element x in X and for any subset A of X, the count of x in N(A) is 1 if x is in A. Otherwise, the count is 0. So
it is enough if we prove that the count of any element x in X is the same on both sides of the equation.

(a) Suppose that x is not in any one of the n sets. Then the count of x on the left-hand side (LHS) is exactly 1. And
this x has a count 1 on the right-hand side (RHS) because x is one of the N elements of X, and it is not in any one of the n
sets. Thus the count of any x that is not in one of the n sets is 1 on both sides.

(b) Suppose that x is in exactly one of the n sets. Then the count of this x on the left-hand side is 0. The count of x on
the right-hand side is computed as follows: Count of x in N = 1, count of X in S1 = 1, and count of Si = 0 when i is not
equal to 1. Thus count of x on the right-hand side is 1 – 1 = 0. More generally, let x be an element that is common to r of
the n sets. The count of x on the left-hand side is, of course, 0. Count of x in N = 1, count of x in S1 = C(r, 1), count of x in
S2 = C(r, 2), and so on. Thus the count of x on the right-hand side

= 1 – C(r, 1) + C(r, 2) – · · · + (– 1)rC(r, r) = (1 – 1)r = 0

Thus the count of x is the same on both sides of the equation, and this completes the proof.

Example 1.6.2

Each student in a freshmen dormitory takes at least one of the four introductory courses in biology (B), English (E),
history (H), and mathematics (M). There are 6 students who take all four courses. There are 25 students in each of
the four courses, 15 students in any two of the four courses, and 10 students in any three of four courses. How many
students are there in the dorm?

Solution. Let N be the number of students. Then S1 = C(4, 1) · (25) = 100, S2 = C(4, 2) · (15) = 90, S3 = C(4, 3) ·
(10) = 40, and S4 = C(4, 4) · (6) =6. Since each student takes at least one course, N(B′ ∩ E′ ∩ H′ ∩ M′) = 0. Thus,
by the inclusion–exclusion rule, 0 = N – 100 + 90 – 40 + 6. So N = 44.

If x is any positive integer less than or equal to the positive integer n, the number of multiples of x that do not exceed n
is the floor of n/x, which by definition is the smallest nonnegative integer less than or equal to n/x. For example, the number
of integers less than 1000 and divisible by 11 is 90, since floor of 1000/11 = 90. The number of integers less than 15 and
divisible by 11 is 1, which is the floor of 15/11.



Example 1.6.3

Let X = {1, 2, 3, . . . , 600}. Find the number of positive integers in X that are not divisible by 3 or 5 or 7.

Solution. Let A, B, and C be the sets of integers in X that are divisible by 3, 5, and 7, respectively. Then N(A) = floor
of 600/3 = 200, N(B) = floor of 600/5 = 120, and N(C) = floor of 600/7 = 85. So S1 = 200 + 120 + 85 = 405.
Next, N(A ∩ B) = number of integers in X divisible by 15 = floor of 600/15 = 40. Similarly, N(A ∩ C) = floor of
600/21 = 28 and N(B ∩ C) = floor of 600/35 = 17. Thus S2 = 40 + 28 + 17 = 85. Finally, S3 = N(A ∩ B ∩ C) =
floor of 600/105 = 5. Thus N(A′ ∩ B′ ∩ C) = 600 – 405 + 85 – 5 = 275. So there are 275 numbers in the set that
are not divisible by 3 or 5 or 7.

Two integers m and n are relatively prime if the only positive divisor they have in common is 1. The cardinality of the
set of positive integers less than n and relatively prime to n is called the totient function of n and is denoted by ϕ(n). For
example, ϕ(8) is the cardinality of the set {1, 3, 5, 7}, so it is equal to 4.

Example 1.6.4

Use the inclusion–exclusion rule to compute ϕ(60). The distinct prime divisors of 60 are 2, 3, and 5. Let N(A), N(B),
and N(C) be the number of integers less than or equal to 60 and divisible by 2, 3, and 5, respectively. Then N(A) =
(60)/2, N(B) = (60)/3, and N(C) = (60)/5. Also, N(A ∩ B) = (60)/(2) (3), N(A ∩ C) = (60)/(2)(5), N(B ∩ C) =
(60)/(3)(5), and N(A ∩ B ∩ C) = (60)/(2)(3)(5). Thus

This example has a straightforward generalization for any arbitrary integer, as follows.

THEOREM 1.6.2

Let n be any positive integer and let pi (i = 1, 2, . . . , k) be the distinct prime factors of n. Then ϕ(n) = (n/m) · (p1 –
1) · (p2 – 1) · . . . · (pk  – 1), where m is the product of the k distinct prime factors of n.

Example 1.6.5

There is a microcomputer in each of the 32 faculty offices in a department. Fifteen of them have color (C) monitors,
10 of them have laser (L) printers, and 8 of them have modems (M). Two of them have all three options. At least how
many have none of the three options?

Solution. If r is the number of offices with none of these options, r = 32 – [15 + 10 + 8] + [N(C ∩ L) + N(C ∩ M) +
N(L ∩ M)] – 2, where each unknown number is at least 2. Thus r ≥ 32 – 33 + 6 – 2 = 3.

Example 1.6.6

Find the number r of solutions in integers of the equation a + b + c = 25, where a is at least 2 and at most 4, b is at
least 3 and at most 6, and c is at least 4 and at most 8.

Solution. The required number r is the number of solutions in integers of the revised equation x + y + z = 16, where
the upper bounds for x, y, and z are 2, 3, and 4, respectively. Let

N = number of solutions of the revised equation

X = set of solutions such that x is at least 3

Y = set of solutions such that y is at least 4

Z = set of solutions such that z is at least 5



Then N = C(16 + 2, 2), N(X) = C(16 – 3 + 2, 2), N(Y) = C(16 4 + 2, 2), N(Z) = C(16 5 5 + 2, 2), N(X ∩ Y) = C(16 – 3
– 4 + 2, 2), N(X ∩ Z) = C(16 – 3 – 5 + 2, 2), N(Y ∩ Z) = C(16 – 4 – + 2, 2), and N(X ∩ Y ∩ Z) = C(16 – 3 – 4 – 5 + 2,
2). Thus

Derangements

Suppose that X is a finite set with n elements and each element in the set is assigned a unique positive integer (a label)
between 1 and n. The element that is assigned the label i is the ith element of the set. If in a permutation of these elements,
the ith element appears in the ith position, that element is in its original position for X. A derangement of X is a
permutation in which no element appears in its original position. For example, let X = {a, b, c, d} and the labels of a, b, c, d
be 1, 2, 3, 4, respectively. Then the permutation abdc is not a derangement, because a and b are in their original positions.
But the permutation bade is a derangement.

As a practical example, consider the following scenario: A student is sending out applications for employment to
various hiring agencies. She completed 10 different applications addressed to 10 different agencies and wrote the addresses
of these agencies on 10 identical envelopes. She then told her brother to put each application in the right envelope and mail
all the applications to the respective agencies. She has a derangement at hand if no application was inside the right envelope!

The total number of derangements of a set of cardinality n is denoted by Dn.

THEOREM 1.6.3

The total number of derangements of a set of cardinality n is

Proof:

Let N be the total number of permutations on X and let Ai be the set of permutations in which the ith object is in its
original place. The total number of permutations on X is n!. Thus Dn = n! – S1, + S2 + · · · + (– 1)nSn, where

and so on. So

Using the principle of inclusion and exclusion, we can obtain some important results involving the number of r-
sequences and the number of partitions of a finite set. The following two theorems are direct consequences of Theorem
1.6.1. We need a notation before these theorems are presented.

If n and r are two positive integers (n ≤ r), the Stirling number of the second kind, denoted by S(r, n), is defined
by the following relation:



THEOREM 1.6.4

The number of r-sequences that can be formed using the elements of a set with n elements such that in every such
sequence each element of the set appears at least once is (n!) · S(r, n).

Proof:

Let X = {xi : i = 1, 2. . . . , n} and Ai be the set of r-sequences that do not contain xi. Then Si, = C(n, i) · (n – i)r.
The stated result is an immediate consequence of Theorem 1.6.1.

THEOREM 1.6.5

(a) The Allocation Problem. The number of ways of allocating r distinct objects to n locations such that each location
receives at least one object is (n!) · S(r, n).

(b) The Set Partitioning Problem. (1) The number of partitions of a set of cardinality r such that each partition has n
nonempty sets is S(r, n) and (2) the number of partitions of a set with r elements such that each partition has at most n
nonempty sets is S(r, n) + S(r, n – 1) + · · · + S(r, 1).

Proof:

These two results follow from Theorem 1.6.1 and the definition of S(r, n).

[Notice the difference between the assertions in Theorem 1.3.5 and Theorem 1.6.5(b).]

Number of Functions from a Finite Set to Another Finite Set

Let X and Y be two finite sets with cardinality r and n, respectively. Suppose that f is any arbitrary function from X to Y. Any
one of the r elements from X can be mapped into any one of the n elements of Y in n ways. So by the multiplication rule
there are nr functions from X to Y. But if f is an injection, the number of ways the r elements can be mapped is much less: It
is, in fact, equal to n(n – 1)(n – 2) · · · (n – r + 1). If the mapping is a surjection, every element in Y has a preimage. So by
applying Theorem 1.6.5 (a), we see that the number of surjections is (n!) · S(r, n). We can summarize these results as a
theorem.

THEOREM 1.6.6

Let X be a set of cardinality r and Y be a set of cardinality n. Then there are (1) nr functions from X to Y, (2) P(n, r)
injections from X to Y, and (3) (n!) · S(r, n) surjections from X to Y.

A Generalization of the Inclusion–Exclusion Principle

(This part may be omitted without loss of continuity.)
We conclude this section with a theorem that is a generalization of Theorem 1.6.1. For this we need some notations.

With each element x of a set X with N elements, we associate a nonnegative real number w(x) called the weight of the
element. We have a set P of n properties. A typical element in X may or may not have some or all the properties listed in P.
V(r) is the sum of the weights of all elements x where x satisfies exactly r of these n properties. U(r) is the sum of the
weights of all elements x where x satisfies at least r of these n properties. For example, let a, b, c. d, e the elements of a set
X with weights 6, 7, 8, 9, 10, respectively. P is a set of four properties: s, t, u, v. It is known that a satisfies s and t; b
satisfies s, u, and v; c satisfies t and u; d satisfies s, t, and u; and e satisfies all the four properties. Then V(1) = 0, V(2) = 6
+ 8 = 14, V(3) = 7 + 9 = 16, and V(4) = 10; and U(1) = 6 + 7 + 8 + 9 + 10 = 40, U(2) = 40, U(3) = 26 and U(4) = 10.
Finally, if Q is a subset of P, we define the weight W(Q) of the set Q as the sum of the weights of all elements x where x
satisfies all the r properties listed in Q, and W(r) is the sum of all terms of the type W(Q), where Q is a subset of P with r
elements. For example, if Q = {s, t}, then W(Q) = w(a) + w(d) + w(e) = 25. W(2) is the sum of the weights of all the two-
element subsets of P. In this example P has six subsets of cardinality 2. Thus W(2) = 25 + 26 + 17 + 27 + 10 + 17 = 122.
W(0) by definition is the sum of the weights of all the N elements in X.

THEOREM 1.6.7 (Generalized Inclusion–Exclusion Formula)



Proof:

(a) Obviously, a typical element x contributes its weight w(x) to the left-hand side of (*) if and only if x satisfies
exactly r of the n properties. So it is enough if we prove that x contributes w(x) to the right-hand side if and only if x
satisfies exactly r of the n properties.

Suppose that x satisfies s of the n properties. If s = r, the element x contributes w(x) to W(r) in the right-hand side
and 0 to the other terms. If s < r, the contribution of x to the right-hand side is 0. It remains to be proved that the
contribution of x to the right-hand side is 0 when s > r. In this case, the contribution of x to W(r) is C(s, r)w(x). The
contribution of x to W(r + 1) is C(s, r + 1)w(x), and so on. Thus when s > r, the contribution of x to the right-hand side is

Now it is easily verified that

C(i, j)C(j, k) = C(i, k)C(i – k, i – j)

Thus the contribution of x to right-hand side is w(x) · C(s, r) · K where

This completes the proof of (a). If we put r = 0 and w(x) = 1 for each element x in X, we get the formula in Theorem
1.6.1 as a special case.

(b) This is left as an exercise.

Example 1.6.7

Verify the formula given in Theorem 1.6.7 for the following data: The elements of a set X are a, b, c, d, and e with
weights 6, 7, 8, 9, and 10. P is a set of four properties s, t, u, v. It is known that a satisfies p and q; b satisfies s, u,
and v; c satisfies t and u; d satisfies s, t, and u; and finally, e satisfies all the four properties.

Solution. We have already computed the following: V(1) = 0, V(2) = 14, V(3) = 16, V(4) = 10, U(1) = 40, U(2) =
40, U(3) = 26, U(4) = 10, and W(2) = 122. Next we find that W(1) = 32 + 33 + 34 + 17 = 116, W(3) = 19 + 10 +
17 +10 = 56, and W(4) = 10.

Formula (i) when r = 1:

Formula (i) when r = 2:

Formula (i) when r = 3:

Formula (i) when r = 4:



Formula (ii) when r = 2:

Formula (ii) when r = 3:

Formula (ii) when r = 4:

1.7 SUMMARY OF RESULTS IN COMBINATORICS

We now conclude this chapter with a complete list of all the important results involving permutations, combinations,
allocations, derangements, set partitions, and number of mappings between finite sets established in these pages.

1. A permutation is a linear arrangement of objects where the order in which distinct objects appear is crucial, whereas a
combination is just a collection of objects and the order in which objects are chosen for inclusion in it is not relevant.

2. (a) The number of r-permutations with r distinct elements that can be formed using the elements of a collection of n
distinct elements, (b) the number of ways of allocating r distinct objects to n locations such that no location can
receive more than one object, and (c) the number of injections from a set of r elements to a set of n elements are all
equal to P(n, r) = n!/(n – r)!

3. (a) The number of r-combinations with r distinct elements that can be formed using the elements of a collection of n
distinct elements and (b) the number of ways of allocating r identical objects to n locations such that no location can
receive more than one object are both equal to C(n, r) = n!/[r!(n – r)!] = C(n, n – r).

4. The coefficient of xr in (1 + x)n is C(n, r).
5. (a) The number of r-sequences with r elements (not necessarily distinct) that can be formed using the elements of a

collection of n distinct elements, (b) the number of ways of placing r distinct objects in n locations with no restriction
on the number of objects a location can receive, and (c) the number of functions from a set of r elements to a set of n
elements are all equal to nr.

6. (a) The number of r-collections with r elements (not necessarily distinct) that can be formed using the elements of a
collection of n distinct elements, (b) the number of ways of allocating r identical objects to n locations with no
restriction on the number of objects a location can receive, (c) the number of solutions in nonnegative integers of x1 +
x2 + · · · + xn = r, and (d) the number of terms in the expansion of (x1 + x2 + · · · + xn)r are all equal to C(r + n – 1,
n – 1).

7. If p1 p2, . . . , pn are nonnegative integers whose sum is p, then (a) the number of r-collections with r elements (not
necessarily distinct) that can be formed using the n distinct elements of X = {x1 x2, . . . , xn} such that in each
combination xi appears at least pi times (i = 1, 2, . . . , n), (b) the number of ways of allocating r identical objects to
n locations such that location i gets at least pi objects (i = 1, 2, . . . , n), and (c) the number of solutions in nonnegative
integers of x1 + x2 + · · · + xn = r where xi is at least p1 (i = 1, 2, . . . , n) are all equal to C(r – p + n – 1, n – 1).

8. Define P(t; t1, t2, . . . , tj) = P(t, s)/[(t1!)(t2!) · · · (tj!)] where s = t1 + t2 + · · · + tj.
9. If there are n objects of k different types such that the objects in each type are identical and if type i has ni objects (i =

1, 2, . . . , k) then there are P(n; n1, n2, . . . , nk) ways of arranging these n objects in a line.
10. If there are k types of objects and if type i has ni identical objects (i = 1, 2, . . . , k), then there are P(n; n1 n2, . . . ,

nk) ways of allocating these n1 + n2 + · · · + nk  objects to n locations such that no location can receive more than one
object.

11. There are P(n; n1 n2, . . . , nk) ways of allocating n distinct objects to k locations such that location i gets exactly ni
objects for each i = 1, 2, . . . , k.

12. The coefficient of  in (x1 + x2 + · · · + xk)n is P(n; n1, n2, . . . , nk).



13. A set of cardinality n can be partitioned into a class consisting of p1 subsets each of cardinality n1, p2 subsets each of
cardinality n2, . . . , and pk  subsets each of cardinality nk  in {n!)/{[(p1!)(n1!)p1][(p2!)(n2!)p2] · . . . · [(pk!)(nk!)pk]}
ways where the integers n1 n2, . . . , nk  are distinct.

14. When n and r are positive integers, the Stirling number of the second kind, denoted by S(r, n), is defined as (n!) · S(r,
n) = nr – C{n, 1) · (n – 1)r + C(n, 2) · (n – 2)r + · · · + (–1)n–1C(n, n – 1) · 1r.

15. The number of r-sequences (elements not necessarily distinct) that can be formed using the elements of a collection X
of n distinct elements such that in every permutation each element of X appears at least once is (n!) · S(r, n).

16. The number of ways of allocating r distinct objects to n locations such that every location receives at least one object
is (n!) · S(r, n).

17. The number of partitions of a set with r elements such that each partition has n nonempty sets is S(r, n).
18. The number of partitions of a set with r elements such that each partition has at most n nonempty sets is S(r, n) + S(r, n

– 1) + · · · + S(r, 1).
19. The number of surjections from a set of r elements to a set of n elements is (n!) · S(r, n).
20. The number of derangements of a set with n elements is Dn = (n!)[1 – 1/1! + 1/2! – 1/3! + · · · + (– 1)n/n!].

1.8 NOTES AND REFERENCES

Combinatorics is one of the most venerable branches of mathematics. Formulas involving arrangements, sequences, and
combinations were known to the Chinese, Hindu, and Greek mathematicians as early as the first century A.D. Combinatorics
is tied very closely with probability theory, and in the seventeenth and eighteenth centuries many European mathematicians
were interested in the study of combinatorial probability.

Some excellent general references in the area of combinatorics are the books by Aigner (1979), Anderson (1979),
Cohen (1978), Krishnamurthy (1986), Liu (1968), Riordan (1978), Roberts (1984), and Tucker (1984). There is also the
classic text by MacMahon (1960). The first comprehensive book dealing with permutations and combinations is by
Whitworth (1901). Chapter 1 of Grimaldi (1985), Chapter 3 of Liu (1985), and Chapter 2 of Townsend (1987) also deal
with the material of this chapter. Algorithms for generating permutations and combinations of a given finite set are given in
detail in Chapters 1 and 2 of Even (1973) and in Chapter 5 of Reingold et al. (1977).

One does not have to be a mathematician to know that if there are more objects (pigeons) than containers
(pigeonholes), there will be at least one container with two or more objects. Notice that this is an existential statement: It
simply asserts that there exists a container with at least two objects. Neither the container nor the objects are identifiable. It
goes on record that it was Gustav Dirichlet (1805-1858) who used this principle extensively in his investigation of problems
in number theory—hence the name Dirichlet pigeonhole principle, which is also known as the ‘shoebox principle.’ The
nontrivial generalizations of this deceptively innocuous principle involve some of the most profound and deep results in all of
combinatorial theory. Example 1.5.5 is a very special case of a result known as Ramsey’s theorem. References to Ramsey
theory include Chapter 5 of Cohen (1978), Chapter 8 of Roberts (1984), Chapter 4 of Ryser (1963), and the book on
Ramsey theory by Graham et al. (1980).

The pioneering work using the inclusion–exclusion principle was done by James Sylvester (1814–1897) and its
importance and usefulness were made public with the publication of the book Choice and Chance by Whitworth (1901).
For a discussion of this principle, refer to Chapter 5 of Anderson (1979), Chapter 5 of Cohen (1978), Chapter 7 of
Grimaldi (1985), Chapter 4 of Liu (1968), Chapter 3 of Riordan (1978), Chapter 6 of Roberts (1984), Chapter 2 of Ryser
(1963), and Chapter 8 of Tucker (1984).

1.9 EXERCISES

1.1. The social security number of a person is a sequence of nine digits that are not necessarily distinct. If X is the set of
all social security numbers, find the number of elements in X.

1.2. There are six characters—three letters of the English alphabet followed by three digits—which appear on the back
panel of a particular brand of a printer as an identification number. If X is the set of all possible identification numbers
for this brand of printer, find the number of elements in X if (a) characters can repeat in an identification number, (b)
digits cannot repeat, (c) letters cannot repeat, and (d) characters cannot repeat.

1.3. Find the number of ways of picking (a) a king and a queen, (b) a king or a queen, (c) a king and a red card, and (d)
a king or a red card from a deck of cards.

1.4. (a) Find the number of even numbers between 0 and 100. (b) Find the number of even numbers with distinct digits
between 0 and 100.

1.5. A sequence of digits where each digit is 0 or 1 is called a binary number. Each digit in a binary number is a



component of the number. A binary number with eight components is called a byte, (a) Find the number of bytes,
(b) Find the number of bytes that begin with 10 and end with 01 . (c) Find the number of bytes that begin with 10
but do not end with 01 . (d) Find the number of bytes that begin with 10 or end with 01.

1.6. A variable name in the programming language BASIC is either a letter of the alphabet or a letter followed by a digit.
Find the number of distinct variable names in this language.

1.7. A sequence of characters is called a palindrome if it reads the same way forward or backward. For example,
59AA95 is a six-character palindrome, and 59A95 is a five-character palindrome. Some other instances of
palindromes: U NU, LON NOL, MALAYALAM, NOW ON, PUT UP, TOO HOT TO HOOT, NEVER ODD
OR EVEN, ABLE WAS I ERE I SAW ELBA, and POOR DAN IS IN A DROOP. Find the number of nine-
character palindromes that can be formed using the letters of the alphabet such that no letter appears more than
twice in each of them.

1.8. Find the number of ways to form a four-letter sequence using the letters A, B, C, D, and E if (a) repetitions of letters
are permitted, (b) repetitions are not permitted, (c) the sequence contains the letter A but repetitions are not
permitted, and (d) the sequence contains the letter A but repetitions are permitted.

1.9. There are n married couples in a group. Find the number of ways of selecting a woman and a man who is not her
husband from this group.

1.10. Let X be the set of all polynomials of degree 4 in a single variable t such that every coefficient is a single-digit
nonnegative integer. Find the cardinality of X.

1.11. A variable name in the programming language FORTRAN is a sequence that has at most six characters such that the
first character is a letter of the alphabet and the remaining characters, if any, are either letters or digits. Find the
number of distinct variable names in this language.

1.12. There are 10 members—A, B, C, D, E, F, G, H, I, and J—in a fund-raising committee. The first task of the
committee is to choose a chairperson, a secretary, and a treasurer from this group. No individual can hold more than
one office. Find the number of ways of selecting a chairperson, a secretary, and a treasurer such that (a) no one has
any objection for holding any of these three offices, (b) C would like to be the chairperson, (c) B would not like to
be the chairperson, (d) A does not like to be either the chairperson or the secretary, (e) I or J would like to be the
treasurer, and (f) E or F or G would like to hold one of these three offices.

1.13. There are three bridges connecting two towns, A and B. Between towns B and C there are four bridges. A
salesperson has to travel from A to C via B. Find (a) the number of possible choices of bridges from A to C, (b) the
number of choices for a round-trip travel from A to C, and (c) the number of choices for a round-trip travel if no
bridge is repeated.

1.14. Compute (a) P(8, 5), (b) P(9, 2), and (c) P(6, 6).

1.15. Prove Theorem 1.2.2.

1.16. Find the value of the positive integer n if (a) P(n, 2) = 30, (b) P(n, 3) = 24 · P(n, 2), and (c) 10 · P(n, 2) = P(3n –
1, 2) + 40.

1.17. Compute 6!. Use this result to compute 7! and 8!.

1.18. A and B are two members in a party of 12. Find the number of ways of assigning these 12 people to 12 rooms
situated in a row such that each person gets a room and (a) A and B are next to each other and (b) A and B are not
next to each other.

1.19. Show that P(n, r + 1) = (n – r) · P(n, r) and use this result to find the value of n if P(n, 9) = 15 · P(n, 8).

1.20. Find the value of k if P(n + 1, r) = k · P(n, r). Use this result to find n and r if k = 5, n > r, and r is as small as
possible.

1.21. Four station wagons, five sedans, and six vans are to be parked in a row of 15 parking spots. Find the number of
ways of parking these vehicles such that (a) the station wagons are parked at the beginning, then the sedans, and
then the vans, and (b) vehicles of the same type are parked en bloc.

1.22. Consider a collection of six stones of different colors: blue (B), green (G), pink (P), red (R), white (W), and yellow
(Y). Find (a) the number of ways of making a tiepin on which these stones are to be placed in a row, (b) the number
of ways of making a brooch on which these six stones are to be mounted in a circular pattern, and (c) the number of
ways of making a ring using these six stones.

1.23. Eight people are to be seated around a large round table for a conference. Find the number of possible seating
arrangements.

1.24. A mother and her two small children join seven members of her family for dinner and they have to sit around a round
table. Find the number of possible seating arrangements so that the two children can sit on either side of the mother.



1.25. Six girls and six boys are to be assigned to stand around a circular fountain. Find the number of such assignments if
on either side of a boy there is a girl and on either side of a girl there is a boy.

1.26. If X and Y are two sets with n elements each and if there are no elements common to the two sets, find the number
of ways arranging the 2n elements of these two sets in a circular pattern so that on either side of an element of X
there is an element of Y, and vice versa.

1.27. Compute (a) P(10; 4, 4, 2) and (b) P(12; 5, 4, 3).

1.28. Compute (a) P(17; 4, 3, 2) and (b) P(17; 2, 2, 2).

1.29. Prove that if m and n are positive integers, (mn)!(m!)n is also a positive integer.

1.30. Find the number of ways in which the complete collection of letters that form the word MISSISSIPPI can be
arranged such that (a) there is no restriction on the location of the letters, and (b) all the S’s stay together.

1.31. Find the number of ways of (a) assigning 9 students to 11 rooms (numbered serially from 100 to 110) in a dormitory
so that each room has at most one occupant, and (b) installing nine color telephones (two red, three white, and four
blue) in these rooms, so that each room has at most one telephone.

1.32. Compute (a) C(9, 4), (b) C(10, 7), and (c) C(8, 4)

1.33. X is a set with nine elements. Find the number of (a) subsets of X, (b) subsets of cardinality 3, and (c) unordered
pairs in X.

1.34. Prove Pascal’s formula algebraically.

1.35. There are 4 women and 9 men in the mathematics faculty of a college. Find the number of ways of forming a hiring
committee consisting of 2 women and 3 men from the department.

1.36. There are 5 distinct white and 7 distinct blue shirts in a wardrobe. Find the number of ways of taking 4 shirts from
the wardrobe such that (a) they could be either white or blue, (b) they are all white, (c) they are all blue, and (d) they
are all of the same color, and (e) 2 are white and 2 are blue.

1.37. Find the number of ways of seating r people from a group of n people around a round table.

1.38. Find the number of ways of seating 14 people such that 8 of them are around one round table and the rest are
around another round table.

1.39. Find the number of ways of seating 14 people such that 8 of them are around a round table and the rest are on a
bench.

1.40. Find the number of bytes that can be formed using exactly six zeros.

1.41. Find the number of ways in which the letters that appear in MISSISSIPPI can be rearranged so that no two S’s are
adjacent.

1.42. In a state lottery, a ticket consists of six distinct integers chosen from the set X = {1, 2, 3, . . . , 42}. On every
Saturday at 8:00 P.M., six distinct integers are chosen from X by a computer. A ticket buyer wins (1) the first prize
(the jackpot) if the six numbers in the ticket are the same as the six numbers picked by the computer, (2) the second
prize if any five numbers in the ticket are picked by the computer, (3) the third prize if any of the four numbers in the
ticket are picked by the computer, and (4) the fourth prize if any of the three numbers in the ticket are picked by the
computer. Find (a) the number of distinct tickets that one has to buy which will definitely assure the buyer winning the
jackpot and the probability of winning the jackpot if a person buys 1000 tickets, (b) the probability of winning the
second prize if a person buys a single ticket, and (c) the probability of winning the third prize if the person buys a
single ticket.

1.43. Prove the following identity using a combinatorial argument:

1.44. If C(n, r) = C(r, 1) · C(n, r – 1), solve n in terms of r.

1.45. Prove that C(pn, pn – n) is a multiple of p.

1.46. Prove the identity C(3n, 3) = 3C(n, 3) + 6n · C(n, 2) + n3 using a combinatorial argument.

1.47. Let X be the set of all words of length 10 in which the letter P appears 2 times, Q appears 3 times, and R appears 4
times. Find the cardinality of X.



1.48. A mother bought 10 story books for her 3 children. The youngest gets 2 books and the other two get 4 each. Find
the number of ways she can pack them as gifts.

1.49. A linear algebra class consists of 10 mathematics majors and 12 computer science majors. A team of 12 has to be
selected from this class. Find the number of ways of selecting a team if (a) the team has 6 from each discipline, and
(b) the team has a majority of computer science majors.

1.50. Find the coefficient of a2b3c3d4 in the expansion of (a) (a + b + c + d)12 and (b) (2a – 3b + 2c – d)12.

1.51. Use Pascal’s triangle and list the coefficients of the terms which appear in the expansion of (x + y)n when n = 4, 5,
and 6.

1.52. Use a combinatorial argument to prove Newton’s identity: C(n, r) · C(r, k) = C(n, k) · C(n – k, r – k).

1.53. Prove the following identity:

1.54. Prove: C(n, 0) + C(n, 1) + C(n, 2) + · · · + C(n, n) = 2n.

1.55. Use a combinatorial argument to prove the following:

[C(n, 0)]2 + [C(n, 1)]2 + [C(n, 2)]2 + · · · + [C(n, n)]2 = C(2n, n)

1.56. Prove the following identity:

1.57. There are 18 students in a class. Find the number of ways of partitioning the class into (a) 4 groups of equal strength
and a minority group, (b) 2 groups of 5 students, 1 group of 4 students, and 2 groups of 2 students, and (c) 1 group
of 7 students, 1 group of 6 students, and 1 group of 5 students.

1.58. Find the number of r-sequences that can be formed using the elements of the set X = {A, B, C, D, E, F, G} if (a) r
= 4 and the elements in each sequence is distinct, (b) r = 4, and (c) r = 9.

1.59. Find the number of r-collections that can be formed using the elements of the set X = {A, B, C, D, E, F, G} if (a) r
= 4 and the elements in each collection are distinct, (b) r = 4, and (c) r = 9.

1.60. Find the number of distinct solutions in nonnegative integers of the equation a + b + c + d + e = 24.

1.61. Find the number of terms in the multinomial expansion of (a + b + c + d + e)24.

1.62. Find the number of ways of forming a team of 15 students from a large university to represent freshmen,
sophomores, juniors, seniors, and graduate students such that the team has (a) at least one from each group, (b) at
least two from each group, and (c) at least two graduate students.

1.63. Find the number of solutions of the linear equation a + b + c + d + e= 10 if (a) all the variables are nonnegative
integers, (b) all the variables are positive integers, and (c) all the variables are positive integers and the variable a is
odd.

1.64. Find the number of ways a mother can distribute 9 identical candy bars to her three children so that each child gets at
least 2 bars.

1.65. The sum of the four positive integers a, b, c, and d is at most 10. Find the number of possible choices for these
integers.

1.66. When a die is rolled, one of the first six positive integers is obtained. Suppose that the die is rolled five times and the
sum of the five integers thus obtained is added. The five throws constitute a trial. Find the number of possible trials
such that the sum is at most 12.

1.67. Establish the following identity:

1.68. Find the number of solutions in nonnegative integers of the equation x1 + x2 + x3 + 3x4 = 7.

1.69. If X = {x1, x2, . . . , xn} is a collection of n distinct objects and r any positive integer, find the number of r-



collections of X such that each such collection has the object xi repeated at least pi times where i = 1, 2, 3, . . . , n.

1.70. Find the number of ways of allocating r identical objects to n distinct locations such that location i gets at least pi
objects, where i = 1, 2, . . . , n.

1.71. Find the number of solutions in nonnegative integers of the (strict) inequality a + b + c + d + e < 11.

1.72. Solve Problem 1.71 if a is at most 6.

1.73. Show that it is possible to have a set of 5 people such that there is no subgroup of 3 strangers or a subgroup of 3
people known to one another in this set.

1.74. There are 4 commuter flights from city A to city B daily. For a particular day, it was noticed that the number of
vacant seats on these flights are 8, 10, 13, and 9, respectively. Find the minimum number of tickets that have to be
sold so that the number of vacant seats will be (a) at most 1 in flight 1 or at most 3 in flight 2 or at most 6 in flight 3
or at most 2 in flight 4, (b) at most 2 in flight 1 or at most 3 in flight 2 or at most 4 in flight 3 or at most 1 in flight 4.

1.75. Prove that in any group of 10 people either there is a subgroup of 3 strangers or a subgroup of 4 people known to
one another.

1.76. The numbers 1, 2, 3, . . . , n (n is at least 3) are randomly placed around a circle and r is any integer less than n. Let
Si be the sum of the r consecutive integers (considered clockwise) starting from i and including i, where i = 1, 2, . . .
, n. Show that there is at least one Si that is not smaller than the floor of r(n + 1)/2.

1.77. Show that in every finite set of numbers there is a number that is greater than or equal to the arithmetic mean of the
numbers in the set.

1.78. Let X = {1, 2, 3, . . . , 600}. Find the number of elements in X that are not divisible by 3 or 5 or 7.

1.79. (a) Obtain a formula to find the number of primes not exceeding a given positive integer, (b) Use this formula to find
the number of primes not exceeding 100.

1.80. A positive integer is squarefree if it is not divisible by the square of an integer greater than 1. (a) Obtain a formula to
compute the number of squarefree integers not exceeding a given positive integer, and (b) use this formula to
compute the number of squarefree numbers not exceeding 100.

1.81. If p and q are two distinct primes, find the totient function of pq.

1.82. There are six chairs marked 1 to 6 in the conference room of an office. Six people attend a seminar in this room in
the morning and again in the afternoon, (a) Find the number of permutations and derangements regarding the seating
arrangements, (b) find the probability that nobody sits in the same seat twice, (c) find the probability that exactly one
person sits in the same chair twice, (d) find the probability that at least one person gets the same seat twice, (e) find
the probability that exactly two people retain their seats, and (f) find the probability that all the six retain their seats.

1.83. Use a combinatorial argument to establish the identity:

C(n, 0) · Dn + C(n, 1) · Dn–1, + C(n, 2) · Dn–2 + · · · + C(n, n) · D0 = n!.

1.84. Find the number of solutions in integers of the linear equation p + q + r = 25 where p is at least 2 and at most 4, q is
at least 3 and at most 6, and r is at least 4 and at most 8.

1.85. Let X be the set of 4-sequences that can be formed using the letters A, B, C, D, E, and F such that every sequence
in X has the letters A, B, and C at least once. Find the cardinality of X.

1.86. There are 5 job openings in an office. On the basis of a written test and a personal interview, 4 candidates were
selected and each candidate is offered one of the available jobs. Find the number of ways of assigning these jobs to
the candidates.

1.87. Find the number of permutations of the nine digits 1, 2, . . . , 9 in which (a) the blocks 12, 34, and 567 do not
appear, and (b) the blocks 12, 23, and 415 do not appear.

1.88. Let D(n, r) be the number of permutations of a set of n elements in which exactly r of the n elements appear in their
“natural” positions and E(n, r) be the number of permutations in which at least r of the n elements appear in their
natural positions. Prove (a) D(n, 0) = Dn, (b) D(n, r) = C(n, r) · Dn–r, (c) D(n, n) = E(n, n) = 1, and (d) if S(i) =
C(n, i) · (n – i)!, then



Generating Functions

2.1 INTRODUCTION

In this chapter we introduce the concept of a generating function—a powerful tool that is very useful in solving counting
problems, particularly problems involving the selection and arrangement of objects with repetition and with additional
constraints. Consider the integer equation problem of Chapter 1, which asks for the number of nonnegative integer solutions
of x1 + x2 + · · · +xn = r, in which we imposed no other restrictions on the n variables. How do we solve this problem if we
now restrict each variable xi, to be an element of a set Vi? A typical problem: Find the number of ways to make 62 cents
involving quarters, dimes, nickels, and cents. The solution is the number of solutions in nonnegative integers of q + d + n + c
= 62, where q is in the set Q = {0, 25, 50}, d is in D = {0, 10, 20, 30, 40, 50, 60}, n is in N = {0, 5, 10, 15, 20, 25, + · · ·
+ , 60}, and c is in C = {0, 1, 2, 3, 4, + · · · + , 60, 61, 62}. Before we develop a procedure to solve this “change-making
problem” using generating functions, let us examine a simpler problem.

Example 2.1.1

Find the number of integer solutions of a + b + c = 10, where each variable is at least 2 and at most 4.

Solution (By Explicit Enumeration):

Thus there are six different solutions for this problem.

Now we introduce three polynomials pa, pb, and pc, one for each variable. Since each variable can be 2 or 3 or 4, in
this case each polynomial is defined as x2 + x3 + x4 and we multiply these three polynomials to obtain a polynomial p(x)
involving powers of x with exponents ranging from 6 to 12. This polynomial p(x) is an example of a generating function.
Since a + b + c = 10 we now look for the coefficient of the tenth power of x in the polynomial p(x). In how many ways can
we form the tenth power of x in p(x)? For example, we can choose x2 from pa, x4 from pb, and x4 from pc and multiply
them. This is just one way of getting the tenth power of x and this corresponds to the solution a = 2, b = 4, and c = 4. In
other words, every solution of the problem corresponds to exactly one way of obtaining the tenth power of x in p(x). So the
number of solutions of the problem is the coefficient of the tenth power of x in the function p(x) = (x2 + x3 + x4)3. By
ordinary polynomial multiplication we see that this coefficient is 6.



DEFINITION 2.1.1

(a) A power series is an infinite series of the form a0 + a1x + a2x2 + a3x3 + · · · , where ai (i = 0, 1, 2, . . .) are real
numbers and x is a variable.

(b) If a0 + a1x + a2x2 + · · · and b0 + b1x + b2x2 + · · · are two power series, then (1) the sum of the two power
series is a power series in which the coefficient of xr is ar + br and (2) the product of the two power series is a power
series in which the coefficient of xr is (a0br + a1br–1, + a2br–2 + · · · + arb0).

(c) If ar (r = 0, 1, 2, . . .) is the number of ways of selecting r objects in a certain combinatorial problem (or, more
generally, the number of solutions of a combinatorial problem), the ordinary generating function for this combinatorial
problem is the power series a0 + a1x + a2x2 + a3x3 + · · · + .

Any polynomial in x is a power series in x. For example, the polynomial 3x2 + 2x4 can be written as 0 + 0 · x + 3x2

+ 0 · x3 + 2x4 + 0 · x5 + 0 · x6 + · · · + . The addition and multiplication procedures in the definition are obvious
generalizations of ordinary polynomial addition and multiplication.

Now consider the problem a + b + c = r, where a, b, and c are at least 2 and at most 4. Then r varies from 6 to 12.
For a fixed choice of r, let ar be the number of solutions in integers. Then ar is the coefficient of xr in the generating function
g(x) of the problem where g(x) = (x2 + x3 + x4)3, which is equal to x6 + 3x7 + 6x8 + 7x9 + 6x10 + 3x11 + x12.

Example 2.1.2

The number of ways of choosing r elements from a set of n elements is C(n, r), and so the generating function for this
combinatorial problem is g(x), where

which is the binomial expansion for (1 + x)n.

Example 2.1.3

Find the generating function g(x) in which the coefficient of xr is ar, where ar is the number of solutions in nonnegative
integers of the equation 2a + 3b + 5c = r.

Solution. We write A = 2a, B = 3b, and C = 5c and seek the number of solutions of A + B + C = r, where A is in the
set {0, 2, 4, 6, . . .}, B is in {0, 3, 6, 9, . . .}, and C is in {0, 5, 10, 15, . . .}. Thus the generating function is g(x) = (1
+ x2 + x4 + x6 + . . .)(1 + x3 + x6 + x9 + . . .)(1 + x5 + x10 + x15 + . . .).

Example 2.1.4

The number of solutions in nonnegative integers of a + b + c = 4 (with no other constraints on the variables) is the
coefficient of x4 either in g(x) = (1 + x + x2 + x3 + x4)3 or in h(x) = (1 + x + x2 + x3 + x4 + x5 + . . .)3. Notice that
g(x) is a polynomial in x, whereas h(x) is a power series that is not a polynomial.

Example 2.1.5

If ar is the number of ways of selecting r marbles from a collection of red, blue, and white marbles such that the
number of red marbles selected is at most two, the number of blue marbles selected is at most three and the number of
white marbles selected is at most four, then ar is the coefficient of xr in the generating function

g(x) = (1 + x + x2)(1 + x + x2 + x3)(1 + x + x2 + x3 + x4)

Equivalently, the coefficient of xr in g(x) is the number of solutions in nonnegative integers of a + b + c = r, where a is
at most 2, b is at most 3, and c is at most 4.

2.2 ORDINARY GENERATING FUNCTIONS

In Example 2.1.1, we saw that the number of computational steps involved in finding the number of solutions by explicit
enumeration is exactly equal to the number of computational steps involved in finding the coefficient of the tenth power of x
in the generating function, and therefore the generating function method was in no way more efficient than the explicit
enumeration method. We shall now develop some simple techniques for calculating the coefficients of generating functions
without actually carrying out the polynomial (power series) multiplication procedure.

THEOREM 2.2.1



(a) Let ar be the coefficient of xr in g(x) = (1 + x + x2 + x3 + . . .)n. Then ar = C(r + n – 1, r).
(b) (1 – xm)n = 1 – C(n, 1)xm + C(n, 2)x2m – + · · · + (–1)nxnm.
(c) (1 + x + x2 + · · · + xm–1)n = (1 – xm)n(1 + x + x2 + . . .)n.

Proof:

(a) The function g(x) is the generating function associated with the combinatorial problem that seeks the number ar of
solutions in nonnegative integers of the equation y1 + y2 + · · · + yn = r and it was proved in Chapter 1 that the number of
solutions is C(r + n – 1, n – 1), which is equal to C(r + n – 1, r).

(b) Put t = (– xm) in the binomial expansion of (1 + t)n.
(c) It is easily verified (in a formal sense) that

1 + x + x2 + · · · + xm–1 = (1 – xm)(1 + x + x2 + . . .)

Now take the nth power on both sides of this equation.

Example 2.2.1

Find the number of solutions in integers of the equation a + b + c + d = 27, where each variable is at least 3 and at
most 8.

Solution. The number of solutions is the coefficient of the twenty-seventh power of x in g(x) = (x3 + x4 + · · · + x8)4,
and this number is the coefficient of the fifteenth power of x in h(x) = (1 + x + · · · + x5)4. By (c) of Theorem 2.2.1,

h(x) = (1 – x6)4(1 + x + x2 + · · · + )4

By (b) of this theorem,

(1 – x6)4 = 1 – C(4, l)x6 + C(4, 2)x12 + · · · +

and by (a) of the same theorem,

(1 + x + x2 + · · · + )4 = 1 + C(4, 1)x + C(5, 2)x2 + C(6, 3)x3 + · · · +

Thus the coefficient of the fifteenth power of x in h(x) is equal to

C(18, 15) – C(4, 1)C(12, 9) + C(4, 2)C(6, 3)

Example 2.2.2

Find the coefficient of the twenty-fourth power of x in (x3 + x4 + . . .)5.

Solution. The desired number is the coefficient of the ninth power of x in g(x) = (1 + x + x2 + . . .)5, which is equal to
C(13, 4).

If a0 + a1x + a2x2 + · · · + arx
r + · · · + is the power series expansion of a function g(x), then g(x) is the ordinary

generating function for the sequence ar. From a given generating function it is possible to build new generating functions for
different choices of ar, and this is the content of the next theorem, the proof of which is left as an exercise.

THEOREM 2.2.2

If g(x) is the generating function for ar and h(x) is the generating function for br then:
(a) Ag(x) + Bh(x) is the generating function for Aar + Bbr.
(b) (1 – x)g(x) is the generating function for ar – ar–1.
(c) (1 + x + x2 + . . .)g(x) is the generating function for (a0 + a1 + a2 + · · · + ar).
(d) g(x)h(x) is the generating function for (a0br + a1br–1 + a2br–2 + · · · + arb0).
(e) xg′(x) is the generating function for rar, where g′(x) is the derivative of g(x) with respect to x.

When the symbol x is a real number with absolute value less than 1 it can be actually verified that (1 – x)(1 + x +
x2+x3 + . . .) = 1. (For a proof, see the discussion of the convergence of geometric series in any introductory calculus book.
In this book we are more interested in the coefficients of the powers of x considered as a symbol than with issues of
convergence.) Thus we write



where g(x) is the generating function for ar = 1 and h(x) is the generating function for ar = C(r + n – 1, r).

Example 2.2.3

Find the generating function for ar = 3r + 5r2.

Solution. Let g(x) = 1/(1 – x). The generating function for 1 is g(x). So the generating function for r is xg′(x), by (e)
of Theorem 2.2.2. By applying this principle once more we see that the generating function for r2 is x(xg′(x))′. Thus
the desired generating function is 3xg′(x) + 5x(xg′(x))′, which is equal to

2.3 EXPONENTIAL GENERATING FUNCTIONS

The generating functions we have seen thus far are referred to as “ordinary” generating functions because they were
associated with selection problems in which order was not relevant. In other words, they are used to solve combinatorial
problems of distribution of identical (undistinguishable) objects into distinct locations. Now we turn to problems of
arrangements in which order plays a significant role. For example, the problem of finding the number of ways in which 5 red
(undistinguishable) marbles can be put in 3 distinct boxes is a problem in which order is not relevant, whereas the problem
of finding the number of ways of arranging 5 marbles in a row using three different types of marbles (red, blue, and white,
say) is a problem in which order plays a crucial role. The arrangement RRBBW (red, red, blue, blue, white) is not the same
as the arrangement RBRBW, even though both the arrangements use the same number of red, blue, and white marbles.
Generating functions that are defined in connection with such combinatorial problems, where order is relevant, are called
exponential generating functions. Let us analyze this example of arranging marbles before we give a formal definition of
exponential generating functions.

Example 2.3.1

Find the number of ways of arranging 5 marbles in a row using marbles of three colors (red, blue, and white) so that in
each arrangement there is at least one marble of each color, assuming that there are at least 3 marbles of each
color at our disposal.

Solution. Let the number of red, blue, and white marbles in a particular arrangement be r, b, and w. Then r + b + w =
5, where each variable is an integer that is at least 1. We know (from our discussion of generalized permutations in
Chapter 1) that with this particular choice or r, b, and w there are (5!)/(r!)(b!)(w!) ways of arranging 5 marbles in a
row. Thus the total number of arrangements will be the sum of all expressions of the form ((r + b + w!))/(r!)(b!)(w!),
where r + b + w = 5 and each variable is an integer that is at least 1. The choices of r, b, and w are as follows:

Thus the number of arrangements will be



Now it can easily be verified that the coefficient of x5/5! in the function g(x), where g(x) = (x/(l!) + x2/(2!) + x3/(3!))3

is precisely the sum of the six expressions obtained in the preceding paragraph giving the total number of arrangements. The
function g(x) is an example of an exponential generating function. As in the case of ordinary generating functions, we take
the third power of a polynomial (representing the three distinct colors), and the powers of the variable in the polynomial are
1, 2, and 3, indicating that the number of ways a marble of a particular color can appear in an arrangement is 1, 2, or 3. The
significant difference here is that unlike the ordinary generating function, the coefficient of the xr in the polynomial is l/(r!) and
the solution of the combinatorial problem is the coefficient of xr/(r!) in the exponential generating function. Is there an easier
method in this problem to find the coefficient of x5/(5!) in g(x)? Let h(x) = (ex – 1)3, where ex is the exponential function
(power series) defined by 1 + x + x2/(2!) + x3/(3!) + · · · + , where x is any real variable. Then the required coefficient is
that of x5/(5!) in h(x) = (e3x– 3e2x + 3ex – 1) and this coefficient is 35 – (3)25 + 3 = 150.

DEFINITION 2.3.1

If br (r = 0, 1, 2, . . .) is the solution of a combinatorial problem, the power series g(x) defined by b0 + b1x +
(b2x2)/(2!) + (b3x3)/(3!) + · · · + is called the exponential generating function for that problem.

Example 2.3.2

Find the exponential generating function for br, the number of ways of arranging r distinct elements from a set of n
elements.

Solution. Of course, br = P(n, r), so the exponential generating function for this problem is g(x), which is a power
series in which the coefficient of (x′) = [P(n, r)]/(r!) = C(n, r). Thus the exponential generating function for P(n, r) is
(1 + x)n, which is the same as the ordinary generating function of C(n, r).

Example 2.3.3

Find the number of ways of arranging 5 marbles in a row using marbles of three colors (red, blue, and white) so that
each arrangement has at least one marble of each color assuming that we have at most 3 red, at most 2 white, and at
most 2 blue marbles at our disposal. (Notice the difference between this example and Example 2.3.1.)

Solution. In this case the number of arrangements will be the coefficient of x5/5! in g(x) = (x + x2/2! + x3/3!)(x +
x2/2!)2 and this coefficient is the same as the coefficient of x5/5! in

The analysis in Examples 2.3.1 and 2.3.3 generalizes as follows:

THEOREM 2.3.1

Suppose that there are k types of objects.
(a) If there is an unlimited supply of objects in each of these types, then the number of r-permutations (r = 1, 2, . . .)

using objects from these k types is the coefficient of xr/r! in the exponential generating function

(b) If the supply of objects in type i is at most ni, (where i = 1, 2, + · · · + , k), the number of r-permutations will be



the coefficient of xr/r! in

(c) (n!) . S(r, n) = coefficient of xr/r! in (ex – 1)n where S(r, n) is a Stirling number of the second kind defined in
Chapter 1.

Example 2.3.4

(a) Find the number of r-permutations that can be formed using the letters I, M, S, and P, where r is a positive
integer.

(b) Find the number of r-permutations that can be formed using the letters that appear in the word
MISSISSIPPI so that the number of times a letter appears in a permutation is at most equal to the number of times the
letter appears in the word.

Solution
(a) The number of r-permutations is the coefficient of xr/r! in the exponential generating function g(x) = e4x,

and this coefficient is 4r.
(b) In the word, the frequencies of the letters are 4, 1, 2, and 4. Thus the number of r-permutations is the

coefficient of xr/r! in

where r is at most 11, the sum of the frequencies.

Example 2.3.5

Find the number of ways of accommodating 9 people in 4 rooms such that no room is left unoccupied.

Solution. If x denotes the number of people assigned to a room, then x is at least one and at most 6, and there are 4
rooms. Thus the exponential generating function for this combinatorial problem is

Now the number of ways of accommodating 9 people in 4 rooms is the coefficient of (x9)/(9!) in g(x) and this
coefficient is equal to the coefficient of (x9)/(9!) in

h(x) = (ex – 1)4 = e4x – 4e3x + 6e2r – 4ex + 1

Thus the number of arrangements will be 49 – (4)39 + (6)29 – 4. [Notice that the number of arrangements is equal to
(4!)S(9, 4) where S(9, 4) is the Stirling number of the second kind defined in Chapter 1.]

2.4 NOTES AND REFERENCES

The first comprehensive treatment of generating functions was given by Pierre Simon Marquis de Laplace (1749–1827).
But the method of solving problems using generating functions has its origin in the works of Abraham de Moivre (1667–
1754). Both Leonhard Euler (1707–1783) and Nicholas Bernoulli (1687–1759) also used this technique in their
investigation of certain combinatorial problems: Euler was interested, among other things, in partition problems and Bernoulli
was interested in derangement problems. For a thorough treatment of generating functions, see the books on combinatorics



by MacMahon (1960) or Riordan (1958). See also Riordan (1964). Other general references include the relevant chapters
in the books by Cohen (1978), Krishnamurthy (1986), Liu (1968), Liu (1985), Roberts (1984), Tucker (1984), and
Townsend (1987).

2.5 EXERCISES

2.1. Find the ordinary generating functions for the following sequences.

(a) {1, 1, 1, 1, 0, 0, . . .} (b) {0, 0, 0, 0, 1, 1, . . .}

(c) {1, 1, 1, 1, . . .} (d) (1, –1, 1, –1, . . .}

2.2. Find the ordinary generating functions for the following sequences.

(a) {1, 2, 3, 4, . . .}                         (b) {1, –2, 3, –4, . . .}
2.3. Find the sequence corresponding to the following ordinary generating functions,

(a) (2 + x)4 (b) x2 + ex (c) x3(1 – x)–1

2.4. Find the coefficient of x7 in (1 – x)k when k = 9 and k = –9.

2.5. Find the coefficient of x7 in (1 + x)k  when k = 9 and k = –9.

2.6. Find the coefficient of x23 in (x3 + x4 + . . .)5.

2.7. Find the ordinary generating function f(x) that can be associated with the combinatorial problem of finding the
number of solutions in positive integers of the equation a + b + c + d = r.

2.8. Find the ordinary generating function associated with the problem of finding the number of solutions in nonnegative
integers of the equation 3a + 2b + 4c + 2d = r.

2.9. Find the number of solutions in integers of the equation p + q + r + s = 27 where each variable is at least 3 and at
most 8.

2.10. Find the number of solutions of x1 + x2 + · · · + xn = r where each variable is either 0 or 1.

2.11. If three distinct dice (marked A, B, and C) are thrown, find the number of ways of getting a total of 13.

2.12. Solve Problem 2.11 if the first die (marked A) shows an even number.

2.13. Find the number of ways of allocating 9 identical objects to 3 different locations (numbered as first, second, and
third) such that each location gets at least one object and the third location does not get more than 3 objects.

2.14. Find the ordinary generating function associated with the combinatorial problem of choosing 9 marbles from a bag
that has 3 indentical red marbles, 4 identical blue marbles, and 5 identical green marbles such that in every choice all
colors are represented and no color has absolute majority.

2.15. Prove: (1 + xm)n = 1 + C(n, 1)xm + C(n, 2)(xm)2 + · · · + (xm)n.

2.16. Find the number of solutions in integers of the equation a + b + c + d + e + f = 20, where a is at least 1 and at most
5 and the other variables are at least 2 by (a) the method developed in Chapter 1, and (b) considering a suitable
generating function.

2.17. There are 10 identical gift boxes. Each box has to be wrapped with either red or blue or green or yellow wrapping
paper. The available red paper can be used to wrap at most 2 boxes and the available blue paper can be used to
wrap at most 3 boxes. Write down the ordinary generating function associated with the problem of finding the
number of ways of wrapping these 10 boxes.

2.18. There are 9 people in a group. Find the number of ways of collecting $9.00 from this group if the leader of the group
will give at least $1.00 and at most $2.00 and every other member will give at most $1.00.

2.19. Find the ordinary generating function associated with the problem of finding the number of solutions in integers of the
inequality a + b + c ≤ r, where each variable is at least 2 and at most 5.

2.20. A participant in a contest is rated on a scale of 1 to 6 by each of the 4 judges. To be a finalist a participant has to
score at least 22. Find the number of ways the judges can rate a participant so that she can be a finalist.

2.21. An Antarctic expedition group consists of scientists representing the United States, the USSR, and England. Find the
number of ways of forming a group of 9 scientists so that none of these three countries has an absolute majority in
the group.

2.22. Use a combinatorial argument to prove that the coefficient of x2n+1 in f(x) is equal to the coefficient of x2n–2 in g(x),
where f(x) = (1 + x + · · · + xn)3 and g(x) = (1 + x + x2 + · · · + xn–1)3. Find this coefficient.



2.23. Find the number of ways of distributing 8 apples and 6 oranges to 3 children so that each child can get at least 2
apples and at most 2 oranges.

2.24. Prove (a) 1 + 2 + 3 + · · · + r = [r(r + 1)]/2 and (b) 1 + 22 + 32 + · · · + r2 = [r(r + 1)(2r + 1)]/6.

2.25. Find the number of ways of storing p identical red marbles in m boxes in one shelf and q identical blue marbles in n
boxes in another shelf so that no box is empty. (Since no box will be empty p cannot be less than m and q cannot be
less than r.) Solve the problem when p = 6, q = 7, m = 3, and n = 4.

2.26. Find the ordinary generating functions for the sequences:

(a) {ar} where ar = kr, where k is a constant
(b) {br} where br = rKr

(c) {cr} where cr = k + 2k2 + 3k3 + · · · + rkr

2.27. The sum of four positive integers in nondecreasing order is r and ar is the number of ways of choosing these four
integers. Find the ordinary generating function associated with the sequence {ar}.

2.28. If X is a set with n elements, show that the number of subsets of X with (r – 1) elements is equal to the number of
solutions of the equation y1, + y2 + · · · + yr = (n – 1), where the first two variables are nonnegative and the other
variables are positive.

2.29. Let X = {1, 2, 3, + · · · + , n}. Find the number of subsets of X such that each subset has r elements and no two
elements in a subset are consecutive integers.

2.30. If r is a positive integer, a partition of r is a collection of positive integers whose sum is r. A partition is distinct if the
integers in it are distinct. For example {3, 1} is a distinct partition of 4, whereas {2, 2} is a partition of 4 that is not
distinct. The number of partitions of r is denoted by p(r) and the number of distinct partitions of r is denoted by
pd(r). Obtain the generating functions to compute p(r) and pd(r).

2.31. Show that the number of distinct partitions of a positive integer r is the same as the number of partitions of r into odd
positive integers.

2.32. Let p(r; n) be the number of partitions of r such that in each partition no element exceeds n. Show that p(r; r) =
p(r).

2.33. Show that every nonnegative integer can be written uniquely in binary form.

2.34. Find the exponential generating function associated with the following sequences.

(a) {1, 1, 1, 1, 0, 0, 0, 0, . . .} (b) {0, 0, 0, 0, 1, 1, 1, 1, . . .}

(c) {1, 2, 22, 23, 24 . . .} (d) {1, 1, 2 . 2, 3 . 22, 4.23, . . .}

2.35. (a) Use a combinatorial argument to prove that (ex)n = enx.

(b)  Prove that ex + e–x = 2(1 + x2/2! + x4/4! + · · ·).
(c)  Prove that ex – e–x = 2(x + x3/3! + x5/5! + · · ·).

2.36. Let X = {A, B, C, D}. Using exponential generating functions, obtain (a) the number of r-permutations that can be
formed using these four letters such that in each permutation there is at least one A, at least one B, and at least one
C, and (b) the number of r-permutations that can be formed such that in each permutation there is an even number of
A’s and an odd number of B’s.

2.37. Find the number of r-digit binary numbers that can be formed using an even number of 0’s and an even number of
l’s.

2.38. (a) Find the number of ways the headquarters of a company can allocate nine new identical computers to four
distinct branch offices so that each office gets at least one new computer.

(b) Find the number of ways the headquarters of a company can allocate nine new employees to four distinct branch
offices so that each office gets at least one new employee.

2.39. Find the number of (a) permutations of the letters which appear in the word MISSISSIPPI, (b) the number of 6-
permutations of letters that appear in this word, and (c) the number of 6-permutations of letters from this word such
that in each permutation every letter of the word appears at least once.

2.40. Find the number nine-digit sequences that can be formed using the digits 0, 1, 2, and 3 such that (a) each sequence
has an even number of 0’s, (b) each sequence has an odd number of 0’s, (c) each sequence has an even number of
0’s and an odd number of l’s, (d) the total number of 0’s and l’s is odd, and (e) no digit appears exactly twice.

2.41. Obtain the appropriate generating function associated with the combinatorial problem of finding the number of
codewords of length r from an alphabet consisting of five distinct letters such that in each codeword every letter of
the alphabet appears at least once and the first letter appears an even number of times.



Recurrence Relations

3.1 INTRODUCTION

Consider a sequence a0, au a2, . . . , where ar is the solution of a certain combinatorial problem that depends on the input
r. In Chapter 2 we discussed some methods to compute ar using generating functions. In some cases it will be possible to
reduce the computation of the rth term of the sequence to earlier members of the sequence if ar can be expressed as a
function of the earlier elements of the sequence. For example, consider the arithmetic progression sequence 4, 7, 10, 13,
16, . . . , where the initial number a0 is 4 and the common difference d is 3. Then the rth term of the sequence can be
expressed in terms of the (r – l)th term by the equation ar = ar–1, + d. This equation is an example of a recurrence
relation. The condition a0 = 4 is called the initial condition of this relation. Obviously, once the initial condition and the
common difference are known any arbitrary term can be obtained by computing a1, a2, . . . , sequentially. Or we can obtain
the rth term by solving the recurrence relation. In this case the solution is ar = 4 + 3r, where r is any nonnegative
integer. Similarly, if we take the geometric progression sequence 4, 4.3, 4.32, 4.33 . . . , the recurrence relation is ar = 3 .
ar–1, with initial condition a0 = 4 and the solution is ar = 4 . 3r.

Recurrence Relations and Difference Equations

The first difference d(an) of a sequence {an} of real numbers is the difference an –an–1.The second difference d2(an) is
d(an) – d(an–1), which is equal to an – 2an-1 + an–2. More generally the kth difference dk(an) is dk-1(an) – dk–1(an_x) .
A difference equation is an equation involving an and its differences. For example, 3d2(an) + 2d(an) + 7an = 0 is a
second-order homogeneous difference equation. Observe that every ai, (i = 0, 1, 2, . . . ,n – 1) can be expressed in terms
of an and these differences because an–1 = an – d(an);

and so on. Thus every recurrence relation can be formulated as a difference equation. On the other hand, using the definition
of these differences, any difference equation can be formulated as a recurrence relation. For instance, the difference
equation 3d2(an) + 2d(an) + 7an = 0 can be expressed as the recurrence relation 12an = 8an–1 – 3an–2. Thus some
authors use the terms difference equation and recurrence relation interchangeably. The methods for solving recurrence
relations were developed originally using the techniques used for solving difference equations. Difference equations are
commonly used to approximate differential equations when solving differential equations using computers.

Notice that in a relation of the type ar = ar–1, + ar–2 we need to know both a0 and a1, to obtain any ar (r > 1), and
therefore we need two initial conditions to solve this equation. Thus with the information available in the set of initial
conditions of a given recurrence relation in most cases one should be able to compute sequentially any arbitrary term of the
sequence. We shall study techniques for solving certain types of recurrence relations later in this section. There are no
general methods for solving all recurrence relations.

Example 3.1.1



The recurrence relation ar = rar–1, with the initial condition a0 = 1 has the solution ar = r! (r = 1, 2, . . .).

Example 3.1.2

Find a recurrence relation to obtain an, the number of ways of arranging n distinct elements in a row.

Solution. There are n ways of choosing an element to be placed in the first position of the row. After placing an
element in the first position the number of ways of arranging the remaining (n – 1) elements is an–1. Thus we have the
recurrence relation an = nan–1 with the initial condition a1, = 1, the solution of which (by the previous example) is an
= n!

Example 3.1.3

Suppose that the interest rate offered by a bank to the depositors is r% per year. If an is the amount on deposit at the
end of n years, obtain a recurrence relation for an if (a) the interest is simple, and (b) the interest is compounded
annually.

Solution, (a) If a0 is the initial deposit, at the end of year k, ra0 is added to ak  if the interest is simple. Thus the
recurrence relation is ak  + 1= ak  + ra0, where k = 0, 1, 2, . . . . By iteration we see that the solution is

ak+1 = ak–1 + ra0 + ra0 = ak–2 + 3ra0 = · · · = a0 + (k + 1)ra0

Thus the solution to the recurrence relation is an = (1 + nr)a0.
(b) If the interest is compounded annually, the recurrence relation is ak+1= ak  + rak  = (1 + r)ak , the solution of

which, by iteration, is an = (1 + r)na0.

Example 3.1.4

Find the recurrence relation for the Fibonacci sequence 1, 2, 3, 5, 8, 13, . . . in which the rth term is the sum of the (r
– l)th term and the (r – 2)th term. Obviously, the relation is an – an–1, – an–2 = 0 with initial conditions a1 = 1 and a2
= 2 . (The numbers that appear in the sequence are called Fibonacci numbers and they arise in many areas of
combinatorial mathematics. We discuss a solution technique later.)

Recursion and Recurrence

A recurrence relation as we see here is a recursive formula (see Section 3 of Chapter 0) to compute the number of ways to
do a procedure involving n objects in terms of the number of ways to do it with fewer objects. This recursive reasoning
involved in building a recurrence relation model of a counting problem is the same logic used in designing recursive computer
subroutines that call themselves. The basic idea of any recursive procedure in computer science is that it calls itself to solve a
problem by solving similar problems that are smaller than the original problem. An important feature of recursion is the
concept of working backward. However, we cannot use a recursive program to compute the values in a recurrence relation
because recurrence relations are meant for forward tabulation of values, not for backward recursive computation.

3.2 HOMOGENEOUS RECURRENCE RELATIONS

As mentioned before there is no general method of solution for an arbitrary recurrence relation. In what follows we study a
broad class of recurrence relations for which solution techniques are known.

DEFINITION 3.2.1

If ci (i = 1, 2, . . . , r) are constants, a recurrence relation of the form an = c1an–1 + c2an–2 + · · · + cran–r + f(n) is
called a linear recurrence relation with constant coefficients of order r. The recurrence relation is homogeneous if
the function f(n) = 0. If g(n) is a function such that an = g(n) for n = 0, 1, 2, . . . , then g(n) is a solution of the recurrence
relation.

Example 3.2.1

It can be verified by substitution that g(n) = A . 2n + B . n. 2n + n2 . 2n–1 (where A and B are arbitrary constants) is a
solution of the following second-order inhomogeneous linear recurrence equation with constant coefficients: an = 4an-

1 – 4an–2 + 2n. (We shall study solution techniques to obtain such general solutions in this section.)

THEOREM 3.2.1 (The Principle of Superposition)



If gi(n) , where i = 1, 2, . . . , are solutions of

an = c1an–1 + c2an–2 + · · · + cran–r + fi(n)

then any linear combination of the k solutions of the form A1g1(n) + A2g2(n) + · · · + Akgk(n) is a solution of the recurrence
relation

an = c1an–1 + c2an–2 + · · · + cran–r + A1f1(n) + · · · + Akfk(n)

where Ai (i = 1, 2, . . . , k) are real numbers. In particular, any linear combination of the solutions of a homogeneous
recurrence relation is again a solution of the homogeneous recurrence relation.

Proof :

Let

h(n) = A1g1(n) + A2g2(n) + · · · + Akgk(n)

Since gi(n) is a solution of

an = c1an–1 + c2an–2 + · · · + cran–r + fi(n)

we have

gi(n) = c1gi(n – 1) + c2gi(n –2) + · · · + crgi(n – r) + fi(n)

and therefore

h(n) = c1h(n – 1) + c2h(n – 2) + · · ·
                                               + crh(n – r) + A1f1(n) + · · ·+Akfk(n)

which proves our assertion.

There is a simple technique for solving homogeneous linear recurrence relations with constant coefficients. Let ar = xr

be a solution of the relation

an = c1an–1 + c2an–2 + · · · + cran–r

Then

xn = c1xn–1 + c2xn–2 + · · · + crx
n-r

If we ignore the trivial solution x = 0 we get the polynomial equation

xr – c1xr–1 – c2xr–2 – · · · –cr = 0

This polynomial equation of degree r is called the characteristic equation of the recurrence relations which has r roots in
general. It is quite possible that the equation has multiple roots or some roots are complex.

If xi (i = 1, 2, . . . , r) are the r roots of the characteristic equation then an = (xi)
n is obviously a solution of the

homogeneous recurrence relation and therefore by the previous proposition any linear combination of such solutions is also a
solution. For example, the second-order homogeneous recurrence relation an = 5an–1, – 6an–2 has the characteristic
equation x2 – 5x + 6 = 0 the roots of which are x1, = 2 and x2 = 3. Thus an = A(2)n + B(3)n, for any choice of the
arbitrary constants A and B, is also a solution of the recurrence relation.Conversely, if all the r roots x, (i = 1,2, . . . ,r) are
real and distinct, it can be proved that every general solution is a linear combination of these solutions (xi)

n.
The r arbitrary constants that appear in the general solution can be evaluated in some cases giving a complete solution

(not necessarily unique) to the problem if r initial conditions are known. Existence and uniqueness of the solution are assured
if r consecutive initial conditions are known. We state these results as a proposition the proof of which is omitted here.

THEOREM 3.2.2

If the r roots x, (i = 1,2, . . . , r) of the characteristic equation of an rth-order linear homogeneous recurrence relation
are real and distinct, every general solution of the recurrence relation is a linear combination of the solutions (xi)

n.
Moreover, if r consecutive initial values ak , ak+1 . . . , ak+r–1, of the recurrence relation are known, a solution can be
obtained by evaluating the r arbitrary constants using these r consecutive initial values and this solution is unique.

Example 3.2.2



Solve an – 9an–2 = 0, where:
(a)  a0 = 6, a1, = 12
(b)  a3 = 324, a4 = 486
(c)  a0 = 6, a2 = 54

(d)  a0 = 6, a2 = 10

Solution. The roots of the characteristic equation r2 – 9 = 0 are 3 and –3. Thus any general solution of the given
recurrence relation is of the form an = A(3)n + B(– 3)n, where A and B are arbitrary constants to be evaluated using
the two given initial conditions.

(a) If a0 = 6, then A + B = 6 . If a1, = 12, then 3A – 3B = 12.Solving these two simultaneous equations in A
and B we get A = 5 and B = 1, giving the unique (because the initial conditions are consecutive) solution to the
problem an = 5(3)n + (–3)n. Putting n = 2, 3, 4, . . . , we can compute a2 = 54, a3 = 324, and so on.

(b) If a3 = 324, then 27A – 27B = 324. If a4 = 486, then 81A + 81B = 486. Solving these two equations, we
get A = 9 and B = –3, once again giving a unique solution.

(c) This time the two given initial conditions are not consecutive. a0 = 6 implies that A + B = 6 and a2 = 54
implies that 9A + 9B = 54, giving one equation A + B = 6 to determine the two constants. For example, A = 2, B = 4
gives an = 2(3)n + 4(–3)n, which defines a0 = 6, a1 = –6, a2 = 54, a3 = –54, and so on. But A = 1, B = 5 gives an =
(3)n + 5(–3)n, which defines a0 = 6, a1 = –12, a2 = 54, a3 = – 108. Thus the solution is not unique.

(d) The nonconsecutive initial conditions imply that A + B = 6 and 9A + 9B = 10, showing that there is no
solution.

Example 3.2.3

Solve the Fibonacci recurrence relation an = an–1 + an–2 with the consecutive initial conditions a0 = 1 and a1 = 1.

Solution. The characteristic equation is x2 – x – 1 = 0, the two roots of which are 

and . Thus every solution is of the form an = A(x1)n + B(x2)n, where A and B are

arbitrary constants Using the initial conditions we get  and 

. On substituting these values of the arbitrary constants in the solution, we get the

unique solution , where t is the irrational number 

, known as the golden ratio.

Example 3.2.4

Find the number of subsets of a set that has n elements.

Solution. Let the set be X = {1, 2, 3, . . . , n} and suppose that the total number of subsets of X is an. Now every
subset of X belongs to one of the following two classes A and B: (a) n is not an element in any of the subsets in class A
and (b) n is an element in every subset in class B.

By our assumption class A has an–1, subsets of X. The only way we can get a subset of X that contains n is by
adjoining n to a subset from class A. So the number of subsets in class B is exactly equal to the number of subsets in
class A. In other words, we have the recurrence relation an = 2an–1, with the initial condition a0 = 1. Recall that the
empty set is a subset of every set. The characteristic equation is x – 2 = 0, giving the unique solution an = 2n.

Example 3.2.5

Find the unique solution of the recurrence relation an = 3an–1 + 4an–2 – 12an–3, where a0 = 2, a1 = 5, and a2 = 13.

Solution. The roots of the characteristic equation x3 – 3x2 – 4x + 12 = 0 are 2, – 2, and 3. So the general solution is
an = p(2)n + q(–2)n + r(3)n and the initial conditions imply that

On solving this linear system, we get p = 1, q = 0, and r = 1. Thus the unique solution is an = 2n + 3n.

We next examine the case when the characteristic equation of a recurrence relation has repeated (multiple) roots.
Consider, for example, the recurrence relation an = 4an-1 – 4an–2, which has the characteristic equation (x – |2)2 = 0 with



roots x1 = 2 and x2 = 2. In other words, 2 is a repeated root of multiplicity 2. Of course, A(2)n is a solution of the
recurrence relation, but every solution need not be of this form. It can easily be verified that B . n . (2)n is also a solution, so
by the principle of superposition A(2)n + B . n.(2)n is also a solution for any A and B. It turns out that every general solution
of the recurrence relation is of this form. The fact that A(2)n by itself cannot be a general solution is also obvious because if
we consider two consecutive initial conditions, say a0 = 1 and a1 = 4, we see that A = 1 and also A = 2 .

When the characteristic equation has multiple roots, the following result is a generalization of the previous theorem.
The proof is omitted here. For details, see Roberts (1984).

THEOREM 3.2.3

(a) Suppose that (x – t)s is a factor of the characteristic equation so that t is a root of multiplicity s. Then

u = (t)n(A1 + A2n + A3n2 + · · ·+ Asn
s–1)

is a solution of the recurrence relation where Aj (j = 1, 2, . . . , s) are arbitrary constants. This solution u is called a basic
solution of the relation with respect to the root t.

(b) Suppose that the roots of the recurrence relation are tk , where the multiplicity of tk  is sk(k= 1, 2, . . . , q) , and
suppose that uk  is a basic solution with respect to the root tk . Then every solution of the recurrence relation is the sum of
these q basic solutions.

Example 3.2.6

Find the general solution of the recurrence relation the roots of which are 2, 2, 2, –3, 4, and 4.

Solution. The basic solution for the repeated root 2 is u1 , = 2n(A1 + A2n + A3n2) . The basic solution for the root –
3 is u2 = A4(–3)n. The basic solution for the repeated root 4 is u3 = 4n(A5 + A6n). Thus the general solution is an =
u1 + u2 + u3.

3.3 INHOMOGENEOUS RECURRENCE RELATIONS

We now proceed to analyze linear recurrence relations with constant coefficients of the type an = hn + f(n) , where hn =
c1an–1 + c2an–2 + · · · + cran–r and f(n) is a function of n. Here the relation an = hn is called the homogeneous part of
the given inhomogeneous relation. If an = un is a solution of the homogeneous part and if an = vn is any solution of the given
inhomogeneous relation, then by the principle of superposition we know that an = un + vn is also a solution of the same
inhomogeneous relation. If un has r arbitrary constants, then un + vn also has r arbitrary constants. If r consecutive initial
conditions of the inhomogeneous relation are known, these initial conditions can be used to define a linear system of r
equations in r variables giving a unique solution. In other words, if un is a general solution of the homogeneous part of
an inhomogeneous recurrence relation, and if vn is a particular solution of the inhomogeneous recurrence relation,
then un + vn is a general solution of the same inhomogeneous relation.

Example 3.3.1

Find the general solution of an = 5an–1 – 6an–2 + 6(4)n.

Solution. The solution of the homogeneous part is un = A(2)n + B(3)n, where A and B are arbitrary constants. It can
be verified that vn = (48)(4)n is a particular solution of the given inhomogeneous relation. Therefore, the general
solution of the relation is an = un + vn.

Unlike the homogeneous case there is no general method to obtain a particular solution for an arbitrary
inhomogeneous problem. However, there are techniques available for certain special cases. We have two such special cases:
(l)f(n) = nk , where k is a nonnegative integer, and (2)f(n) = (q)n, where q is a rational number not equal to 1. The principle
of superposition is called for if there is a linear combination of functions of these two types. These techniques are as follows:

1. If f(n) = c(q)n (where c is a known constant) and if q is not a root of the characteristic equation, then the choice for
the particular solution is A(q)n, where A is a constant that is to be evaluated by substituting an = A(q)n in the
inhomogeneous equation. If q is a root of the characteristic equation with multiplicity k, the choice for the particular
solution is A(n)k(q)n.

2. If f(n) = c(n)k  and if 1 is not a root of the characteristic equation, a polynomial in n of degree k of the form A0 + A1n
+ A2n2 + · · · + Aknk  is the choice for the particular solution. If 1 is a root of multiplicity t, A0nt + A1nt+1 + · · · +
Aknt+k  is the choice.

Example 3.3.2



If the characteristic equation of a certain inhomogeneous recurrence relation is (x – 1)2(x – 2)(x – 3)2 = 0, find the
choice for the particular solution when

(a)  f(n) = 4n3 + 5n
(b)  f(n) = 4n

(c) f(n) = 3n

Solution. The roots of the characteristic equation are 1 (with multiplicity 2), 2 (with multiplicity 1), and 3 (with
multiplicity 2). Let un be the general solution of the homogeneous part and vn be the choice of a particular solution.
Then

Example 3.3.3

Discuss the solution of an = kan–1 + f(n) , where k is a constant.

Solution. As before, an = un + vn, where un is the solution of the homogeneous part and vn is a particular solution.
Case (1): k = 1. un = c, where c is an arbitrary constant, so an = c + vn, where the nature of vn depends on

f(n) and the fact that un is a constant. However,

Adding these n equations, we have

an = a0 +f(1) + f(2) + · · · +f(n)

Thus

f(l) + f(2) + · · · + f(n) = an – a0 = c + vn – a0

where the value of c can be evaluated using the initial condition a0.
Case (2): k not equal to 1. un = c . kn and as before, vn depends on f(n) and un.

Example 3.3.4

Evaluate the sum of the squares of the first n positive integers.

Solution. Write f(n) = n2. We have to compute f(l) + f(2) + · · · + f(n) . Consider the recurrence relation an = an–1 +
n2 with a0 = 0. The homogeneous part gives the solution un = c. The choice for the particular solution is vn = An +
Bn2 + Cn3. Thus an = c + An + Bn2 + Cn3. The initial condition implies that c = 0. Substituting for an in the
recurrence relation, we get

An + Bn2 + Cn3 = A(n – 1) + B(n – l)2 + C(n – l)3 + n2

Equating the coefficients of n, n2 and the constant term on either side we get , and 

 Thus



which is of course equal to the sum of the squares of the first n natural numbers.

Example 3.3.5

Solve an = an–1 + 12n2, where a0 = 5.

Solution. We see an = a0 + (12)(n)(n + 1)(2n + 1)/6 from Example 3.3.4. Thus, an = 5 + 2n(n + 1)(2n + 1).

3.4 RECURRENCE RELATIONS AND GENERATING FUNCTIONS

In many instances the nth term an in a recurrence relation can be obtained as the coefficient of xn in the power series
expansion of a function g(x) which may be considered as the generating function for the given recurrence relation. Quite
often the functional equation for g(x) can be solved algebraically and then an is obtained by expressing g(x) as a power
series. In other words, the recurrence relation is solved by means of an associated generating function.

Example 3.4.1

Solve the recurrence relation an = 2an–1 by using the associated generating function.

Solution. Let g(x) = a0 + a1x + · · · + anxn + · · · be the associated generating function. Multiplying both sides of the
recurrence relation by xn, we have anxn = 2an–1xn, where n = 0, 1, 2, . . . . Thus

On adding we see that g(x) – a0 = 2xg(x) , which is a functional equation for g(x) , and this equation can be solved
for g(x) . We get g(x) = a0/(1 – 2x) . Thus an = a02n, which is the coefficient of xn in the power series expansion of
g(x) .

Example 3.4.2

Solve an = 2an–1 – (n/3), where a0 = 1.

Solution. Since a0 = 1, the associated generating function is

g(x) = 1 + a1x + a2x2 + · · ·

By putting n = 1, 2, 3, . . . in anxn = 2an–1xn – (n/3)xn, we have

Thus on adding these equations, we have



where

[Recall that if u(x) is the ordinary generating function for pr, then u(x)/(1 – x) is the ordinary generating function for qr
= p1 + p2 + · · · + pr. In the present case 1/(1 – x)2 is the generating function for pr = 1. So 1/(1 – x)2 is the
generating function for qr = 1 + 1 + · · · + 1 = r.] Thus from the functional equation for g(x) we get

Now the function on the right-hand side can be expanded by the method of partial fractions. We then have

Thus

Example 3.4.3

Find the generating function for the recurrence relation an = c1an–1 + c2an–2 with a0 = A0 and a1, = A1.

Solution. The generating function is

g(x) = a0 + a1x + a2x2 + · · ·

Putting n = 2, 3, 4, . . . in anxn = c1an–1xn + c2an–2xn, we have

On addition, we have

g(x) – A0 – A1x = (c1x)[g(x) – A0] + (c2x2)g(x)

So g(x) = u(x)/v(x) , where u(x) = (A0 + A1x) – (A0)(c1x) and v(x) =1 – c1x – c2x2.

Notice the relation between the coefficients of the denominator v(x) and the coefficients of the characteristic function
p(x) = x2 – c1x – c2. We can generalize this observation for a linear homogeneous recurrence relation of order r with
constant coefficients as follows.



THEOREM 3.4.1

If p(x) and g(x) are the characteristic function and the generating function of the linear homogeneous recurrence
relation with constant coefficients an = c1an_1 + c2an-2 + · · · + cran-r with consecutive initial conditions ai, = Ai, (i = 0, 1,
2, . . . , r – 1), then p(x) = xr – c1xr–1 – c2xr–2 – · · · – cr and g(x) = u(x)/v(x) , in which the denominator is 1 – cxx –
c2x2 – · · · –crx

r and the numerator is

Example 3.4.4

If p(x) = x3 – 9x2 + 26x – 24, find g(x).

Solution. The generating function g(x) is u(x)/v(x) , where

v(x) = 1 – 9x + 26x2 – 24x3                          

                  u(x) = (A0 + A1x + A2x2) – (9x)(A0 + A1x) + (26x2)(A0)

3.5 ANALYSIS OF ALGORITHMS

We first make a distinction between “a problem” and “an instance of the problem.” For example, finding the product of two
integers is a problem, whereas finding the product of two given integers is an instance of the problem. If the problem is
finding the product of two square matrices, then finding the product of two n × n matrices is an instance of the problem. In
network optimization, the shortest-distance problem is the problem of finding the shortest distance from a vertex to the other
vertices in a network. An instance of this problem will then be to find the shortest distance from a vertex to the remaining
vertices in a given network with n vertices and m edges. In an informal and an intuitive sense, an algorithm for the problem,
as we all know, is a step-by-step procedure involving a finite sequence of instructions that can be used to solve every
instance of the problem.

From an informal point of view, the computational complexity of an algorithm for a problem is the cost,
measured in running time or storage or whatever units are relevant, of using the algorithm to solve the problem. This cost,
denoted by f(n), depends on the input size n of an instance of the problem. The function f is the complexity function of the
algorithm. In the analysis of algorithms, this cost requirement is usually expressed in terms of the number of elementary
computational steps, such as arithmetic operations, comparisons, and so on, needed for execution of the algorithm on a
(hypothetical) computer on the assumption that all these kinds of operations require unit time. It is quite possible that the
cost requirements for two different instances with the same input size could differ significantly. So we consider all instances
of a given input size n and then choose the cost requirement of that instance for which the cost is a maximum. In other
words, we are examining the worst-case behavior of the algorithm. If A is an algorithm to solve a problem, we denote by
f(A, n) the worst-case complexity of the algorithm, where n is the input size. For example, consider the problem of
choosing the smallest number from a set of n numbers. If we have no information about these numbers and if we choose the
smallest number after making all possible comparisons, the number of comparisons is (n – 1) and therefore the worst-case
complexity for this procedure of choosing is (n – 1).

As another example consider the ordinary matrix multiplication algorithm, with which we are all familiar. Let L and M
be any two n × n matrices such that no element in either matrix is zero. We thus have a worst-case scenario here. In finding
the product matrix we shall not worry about additions. Instead, we count the total number of multiplications involved in
implementing the algorithm. Notice that each element in the product matrix is the product of a row r of L and a column c of
M. Both r and c have n nonzero numbers. Thus the product involves n multiplications. Since there are n2 elements in the
product matrix the total number of multiplications is f(A, n) = n3 which is the worst-case complexity for matrix multiplication,
where A is the usual matrix multiplication algorithm.

Once an algorithm is specified for a problem, we shall write f(n) instead of f(A, n) to denote the worst-case
complexity of the algorithm. On the other hand, if we are comparing two algorithms A and A′ for the same problem, we
write f(A, n) and f(A′, n) to denote the respective complexities and in that case we say that A is more efficient than A ′ if
f(A, n) does not exceed f(A ′ , n) for all n when n ≥ n0 for some fixed positive integer n0. If f(A, n) = 5n2 and f(A ′ , n) =
n3 then A is more efficient than A ′ since f(A, n) ≤ f(A ′, n) for all n ≥ 5.

In many cases it is possible to divide a problem into several smaller nonoverlapping subproblems of approximately
equal size, solve these subproblems, and merge their solutions to obtain the solution of the original problem. This strategy of
solving a problem, known as the divide-and-conquer technique, is often more efficient than the usual straightforward
method. If f(A, n) is the computational complexity of such a divide-and-conquer algorithm (where n is the input size of an
instance of the problem) we have a recurrence relation expressing f(A, n) in terms of f(A, m) , where m is the input size of
an instance of the subproblem. On solving this recurrence relation using the initial conditions we obtain the complexity



function of the algorithm. We now turn our attention to an analysis of some of these recurrence relations that result from such
divide-and-conquer algorithms.

Example 3.5.1

If a and b are two n-digit numbers to obtain the product ab, we must perform at most n2 single-digit multiplications.
In other words, if we use the usual multiplication algorithm, its computational complexity is n2 if we ignore the number
of additions and take into account only the total number of multiplications. We can use a more efficient divide-and-
conquer algorithm to multiply the two numbers as follows.

Assume that n is even. Then both a and b can be subdivided into two parts:

a = a1(10)n/2 + a2

b = b1(10)n/2 + b2

where the parts a1, a2, b1, and b2 are all (n/2)-digit numbers. Then

ab = a1b1(10)n + [a1b2 + a2b1](10)n/2 + a2b2

The expression on the right involves four (n/2)-digit multiplications. We can reduce this into three multiplications if we
make use of the formula

(a1b2 + a2b1) = (a1 + a2)(b1 + b2) – a1b1 – a2b2

Thus we have the recurrence relation f(n) = 3f(n/2) with f(l) = 1. Of course, there is a possibility that (a1 + a2) or (b1
+ b2) may be (n/2 + 1)-digit numbers, but this does not affect complexity considerations. If we write n = 2k  in the
recurrence relation, we get

Thus the complexity of this recursive algorithm is nlog3, which is less than n2for all n ≥ 1.

More generally, let us consider a divide-and-conquer algorithm that splits a problem of size n into several subproblems
each of size n/b. We shall assume that n = bk  and that the number of subproblems is a, where a > 1. So if the complexity of
the algorithm for the problem is f(n), then the complexity of the same algorithm for the subproblem is f(n/b) . We thus have a
recurrence relation of the form f(n) = af(n/b) + h(n), f(1) = d, a > 1, n = bk , where h(n) represents the cost of dividing the
problem into subproblems plus the cost of merging the solutions of these subproblems to obtain the solution of the original
problem. Two special cases are of particular importance: (1) h(n) is a constant c and (2) h(n) = cn, where c is a constant.

Example 3.5.2

Solve f(n) = af(n/b) + c, f(l) = d, where a and b are integers that are at least 2, n = bk , and c is a constant.

Solution



where A = (ad – d + c)/(a – 1) and B = (–c)/(a – 1). Since n = bk , we have k = logb
n and ak  = nr, where r = logb

a.
Thus f(n) = Anr + B.

Example 3.5.3

Solve f(n) = af(n/b) + cn with the same conditions as in Example 3.5.2.

Solution. By iteration we have

Case (1): a = b

f(n) = akd + cnk = bkd + cnk = nd + cn logbn

Thus f(n) = c(n log n) + d(n) .
Case (2): a < b or a > b. After some simplification we get f(n) = Anr + Bn, where A = (bd – ad – bc)/(b – a)

and B = bc/(b – a) and r = logba. If a < b, then r < 1, so Bn is the dominating term in f(n) . If a > b, then r > 1, so
Anr is the dominating term in f(n).

Matrix Multiplication

We next consider the efficiency of matrix multiplication algorithms. As we noticed earlier, if A and B are two 2 × 2 matrices,
we usually perform at least eight (23 = 8) multiplications to obtain the product matrix C = AB. By a clever algebraic
manipulation, it is possible to reduce the number of multiplications from eight to seven. Let a(i, j) denote the element in A at
the ith row and jth column; similarly for B and C.

Now define the following seven products:

x1 = [a(1, 1) + a(2, 2)] · [b(1, 1) + b(2, 2)]

x2 = [a(2, 1) + a(2, 2)] · b(1, 1)                 

x3 = a(1, 1) · [b(1, 2) – b(2, 2)]                 

x4 = a(2, 2) · [b(2, 1) – a(2, 1)]                 

x5 = [a(1, 1) + a(1, 2)] · b(2, 2)                 

x6 = [a(2, 1) – a(1, 1)] · [b(1, 1) + b(1, 2)]

x7 = [a(1, 2) – a(2, 2)] · [b(2, 1) + b(2, 2)]



Then it is easy to verify that every element c(i, j) of the product matrix can be expressed as a sum or difference of some of
these seven numbers as follows:

c(1, 1) = x1 + x4 – x5 + x7 c(1, 2) = x3 + x5

c(2, 1) = x2 + x4 c(2, 2) = x1 + x3 – x2 + x6

Thus we obtain the product matrix by performing at most seven multiplications instead of eight. We utilize this information to
define a divide-and-conquer algorithm for matrix multiplication and solve the associated recurrence relation to obtain the
computational complexity of this algorithm in the next example.

Example 3.5.4

Let A and B be two n × n matrices where n = 2k . Obtain a divide-and-conquer algorithm to obtain the product matrix
AB and find the complexity of the this algorithm.

Solution. We partition each matrix into four submatrices where each submatrix is a (n/2) × (n/2) matrix. See Figure
3.5.1.

The four submatrices of A are: (1) A(l, 1) obtained by considering the first n/2 rows and the first n/2 columns of
A; (2) A(l, 2) obtained by considering the first n/2 rows and the last n/2 columns; (3) A(2, 1) obtained by considering
the last n/2 rows and the first n/2 columns; and (4) A(2, 2) obtained by considering the last n/2 rows and the last n/2
columns of A; similarly for B and C.

We now define the following seven submatrices:

X1 = [A(1, 1) + A(2, 2)] · [B(1, 1) + B(2, 2)]

X2 = [A(2, 1) + A(2, 2)] · B(1, 1)                  

X3 = A(1, 1) · [B(1, 2) – B(2, 2)]                  

X4 = A(2, 2) · [B(2, 1) – B(1, 1)]                  

X5 = [A(1, 1) + A(1, 2)] · B(2, 2)                  

X6 = [A(2, 1) – A(1, 1)] · [B(1, 1) + B(1, 2)]

X7 = [A(1, 2) – A(2, 2)] · [B(2, 1) + B(2, 2)]

Notice that each of these (n/2) × (n/2) submatrices is a product of two (n/2) × (n/2) submatrices. It can easily be
verified that

FIGURE 3.5.1

C(1, 1) = X1 + X4 – X5 + X7

C(1, 2) = X3 + X5                



C(2, 1) = X2 + X4                

C(2, 2) = X1 + X3 – X2 + X6

Thus if f(n) is the number of multiplications needed to multiply A and B using this divide-and-conquer strategy we have
the recurrence relation f(n) = 7f(n/2) with the initial condition f(1) = 1. On solving this we get f(n) = 7k  f(1) = 7k ,
where k = log2n. Equivalently, f(n) = nr, where r = log27. Thus the complexity of this algorithm is less than n3, so this
method is more efficient than the usual matrix multiplication method!

Evaluation of a Polynomial at a Given Point

We conclude our algorithm analysis with a discussion on the number of multiplications and additions involved to evaluate the
value of a polynomial p(x) for a given value of x. If the degree of p(x) is n, it is easy to see that a straightforward
nonrecursive evaluation of p(x) at x = t will involve (2n – 1) multiplications and n additions. For example, to evaluate p(x) =
5x3 + 8x2 + 4x + 7 at x = 27, we perform the five multiplications (1) a = 27 · 27, (2) b = a · 27, (3) c = 4 · 27, (4) 8 · a,
and (5) 5 · b and then three additions. A more efficient (recursive) method known as the Horner’s method (or Newton’s
method) requires only n multiplications and n additions. If we write the polynomial in a telescoping form as p(x) = (((5 · x +
8) · x) + 4) · x + 7, the number of multiplications is only 3.

Example 3.5.5 (Horner’s Method)

(a) If f(n) is the number of multiplications needed to evaluate a polynomial of degree n at a point, obtain a recursive
relation for f(n).

(b) If g(n) is the total number of multiplications and additions, find a recursive relation involving g(n) .

Solution. If p(x) is a polynomial of degree n, then p(x) = xq(x) + a, where a is a constant of q(x) is a polynomial of
degree (n – 1). (a) An evaluation of q(x) at a point will involve f(n – 1) multiplications. Thus f(n) = f(n – 1) + 1, with the
initial condition f(0) = 0. Thus f(n) = n.

(b) Obviously, g(n) = g(n – 1) + 2 with g(0) = 0. The solution is g(n) = 2n.

Finally, we discuss another recursive algorithm for polynomial evaluation, which is more efficient than Horner’s
method. [This method is explained in detail in Baase (1978).] First a definition and some properties of polynomials. A
polynomial p(x) is called a monic polynomial if the coefficient of the leading term is 1. We also assume that the degree n of
p(x) is equal to 2k  – 1. The number of multiplications needed for polynomial evaluation for p(x) is (n – 1) = 2k  – 2 by
Horner’s method.

Can we do better regarding the number of multiplications? Now it can be shown that if p(x) = xn + an–1xn–1 + ·· +
a1x + a0 is a monic polynomial of degree 2k  – 1, we can write p(x) as p(x) = (xj + b) · q(x) + r(x) where (1) both q(x) and
r(x) are both monic polynomials of degree (n – 1)/2 and j = (n + 1)/2, (2) b = aj–1 – 1, and (3) the coefficients of q(x) are
the first (n + 1)/2 coefficients of p(x) , starting from the highest term. If a power of x is missing, the corresponding
coefficient is taken as zero. For example, let

p(x) = x7 + 2x6 + 2x5 + 3x4 + 9x3 + 9x2 + 18x + 9

Here 2k  – 1 = 7. So k = 3 and j = 4. Also, b = a3 – 1 = 9 – 1 = 8. Thus p(x) = (x4 + 8)q(x) + r(x), where q(x) is a
polynomial of degree 3 whose coefficients are 1, 2, 2, 3 starting from the highest term. In other words, q(x) = x3 + 2x2 +
2x + 3 and

r(x) = p(x) – (x4 + 8)q(x) = x3 – 7x2 + 2x – 15

Proceeding similarly we write

q(x) = (x2 + 1)(x + 2) + (x + 1)

and

r(x) = (x2 + 1)(x – 7) + (x – 8)

Thus finally, we have

p(x) = (x4 + 8) · [(x2 + 1) · (x + 2) + (x + 1)] + (x2 + 1) · (x – 7) + (x – 8)

which involves five multiplications in all (three as shown with parentheses and two for computing x2 and x4). On the other
hand, if we use Horner’s method, the number of multiplications will be six instead of five. These observations are generalized
as follows.



THEOREM 3.5.1

Let p(x) be a monic polynomial of degree n, where n = 2k  – 1. Then the number of multiplications needed to evaluate
p(x) at a point is at most (n – 3)/2 + log(n + 1), and the number of additions/substractions needed is at most (3n – 1)/2.

Proof:

Let n = 2k  – 1. Also let f(k) be the number of multiplications needed to evaluate p(x) (without taking into account the
number of multiplications required to compute the various powers of x at the given point), and let g(k) be the number of
additions needed. Since p(x) = (xj + b)q(x) + r(x), we have the recurrence relation f(k) = 2f(k – 1) + 1 with the initial
conditional f(1) = 0 and the relation g(k) = 2g(k – 1) + 2 with g(1) = 1.

On solving these recurrence relations, we have

Next we consider the number of multiplications involved to compute the various powers of x. We have to compute x2, then
x4, then x8, and so on, until we reach the jth power of x, where j = (n + 1)/2 = 2k–1, and this process will involve (k – 1)
multiplications. But k = log(n + 1). Thus this algorithm will need at most (n – 1)/2 + log(n + 1) – 1 = (n/2) + log(n + 1) –
(3/2) multiplications and (3n – 1)/2 additions, whereas Horner’s method will need at most (n – 1) multiplications and n
additions.

3.6 NOTES AND REFERENCES

The pioneering work in the study of recurrence relations was done by Leonardo of Pisa (more popularly known as
Fibonacci) in the thirteenth century and subsequently by Jacob Bernoulli (1654–1705), his nephew Daniel Bernoulli (1692–
1770), James Stirling (1692–1770), and Leonhard Euler (1707–1783). Some useful references are the relevant chapters in
the books on combinatorics and discrete mathematics by Cohen (1978), Grimaldi (1985), Krishnamurthy (1986), Liu
(1968), Liu (1985), Roberts (1984), Townsend (1987), and Tucker (1984). The techniques for solving recurrence relations
were first used in the development of the theory of difference equations. See Levy and Lessman (1961) for a survey of
these methods. An excellent reference for the applications of difference equations is Goldberg (1958). For additional
reading on the analysis of algorithms, see the relevant chapters in the books by Baase (1978), Knuth (1973), Roberts
(1984), Stanat and McAllister (1977), and Wilf (1986).

3.7 EXERCISES

3.1. Suppose that there are n lines in a plane such that no two lines are parallel and no three lines are concurrent dividing
the plane into f(n) distinct regions. Find a recurrence relation for f(n) and solve for f(n). Find the value of f(9).

3.2. Find a recurrence relation for f(n), the number of n-letter words that can be formed using the letters A, B, C, D, and
E such that in each word the frequency of the letter A is an odd number.

3.3. (The Tower of Hanoi Problem.) Three vertical cylindrical poles of equal radius and height are placed along a line on
top of a table and n circular disks of decreasing radius, each with a hole at its center, are attached to the first pole
such that the largest one is at the bottom, the next largest is just above that, and so on, and finally the smallest is on
top the heap (Figure 3.7.1). The distance between the feet of any two poles is not less than the diameter of the
largest disk. A legal move is defined as the transfer of the top disk from any one of the three poles to another pole
such that no disk is placed on top of a smaller disk. Let f(n) be the number of legal moves required to transfer all the
disks from the first pole to one of the other two poles. Obtain a recurrence relation for f(n) and solve this relation.

3.4. In climbing up a staircase, an ordinary step covers at least one stair and at most two stairs. If f(n) is the number of
ways of climbing up a staircase (making only ordinary steps) with n stairs, find a recurrence relation for f(n) .



FIGURE 3.7.1

3.5.  Let S be the set of all binary words of length n such that two zeros do not appear consecutively in any word in the
set. Find a recurrence relation for the number of elements in S.

3.6. There are n personal checks made out in the name of n individuals whose names appear on n envelopes. Find a
recurrence relation for the number of ways these checks can be placed in the n envelopes so that no check is in the
right envelope.

3.7. Show that the recurrence relation f(n) = (n – 1)[f(n – 1) + f(n – 2)] with f(1) = 0 and f(2) = 1 can be simplified as
f(n) = nf(n – 1) + (–1)n with f(2) = 1.

3.8. Let f(n) be the number of subsets of a set that has n elements. Find a recurrence relation for f(n) .

3.9. Let f(n) be the number of elements in X that is the set of all n-symbol words formed by the symbols A, B, and C
such that no word has a pair of consecutive A’s.

3.10. Solve for k in the recurrence relation f(n + 1) = kf(n) if (a) f(1) = 5 and f(2) = 10, and (b) f(1) = 5 and f(3) = 20.

3.11. Solve: f(n + 3) = 6f(n + 2) – 11f(n + 1) + 6f(n), where f(0) = 3, f(1) = 6, and f(2) = 14.

3.12. Solve: f(n + 3) = 4f(n + 2) – 5f(n + 1) + 2f(n), where f(0) = 2, f(1) = 4, and f(2) = 7.

3.13. Solve: f(n + 3) = 3f(n + 2) + 4f(n + 1) – 12f(n) where f(0) = 0, f(1) = –11, and f(2) = –15.

3.14. The roots of the characteristic equation of a linear homogeneous recurrence relation with constant coefficients are 1,
2, 2, and 3. Write down the relation and its general solution.

3.15. Solve: nf(n) – (5n – 5) f(n – 1) = 0 where f(1) = 10. [Hint: Substitute g(n) = nf(n).]

3.16. Let A be the m × m matrix in which all the diagonal numbers are equal to 0 and all the nondiagonal numbers are
equal to 1. Then the diagonal numbers of An are all equal to a positive integer f(n) and the nondiagonal numbers of
An are all equal to a positive integer g(n) for any positive integer n. Prove that f(n + 1) = (m – 1)g(n) and g(n + 1) =
f(n) + (m – 2)g(n) and use this fact to obtain a recurrence relations for g(n) with appropriate initial conditions. Solve
the relation. Find g(n) and f(n).

3.17. Solve the following inhomogeneous recurrence relations involving f(n): f(n) – 4f(n – 1) + 4f(n – 2) = h(n) where (a)
h(n) = 1, (b) h(n) = n, (c) h(n) = 3n, (d) h(n) = 2n, and (e) h(n) = 1 + n + 2n + 3n.

3.18. Solve the relation f(n + 2) – 4/(n + 1) + 3f(n) = 16 with the initial condition f(0) = 4 and f(1) = 2.

3.19. Solve: f(n) = 4f(n – 1) + 5(3)n.

3.20. Solve: f(n) = 4f(n – 1) + 5(4)n.



3.21. Solve: f(n) = f(n – 1) + 2f(n – 2) + 4(3)n with the initial conditions f(0) = 11 and f(1) = 28.

3.22. Solve: f(n) = 4f(n – 1) – 4f(n – 2) + (2)n.

3.23. Solve the recurrence relation f(n) = f(n – 1) + 6n2, f(0) = 0, by (a) using the characteristic root, and (b) repeated
substitution. Hence find the sum of the squares of the first n natural numbers.

3.24. Find the constants p, q, and r in the recurrence relation f(n) + pf(n – 1) + qf(n – 2) = r if f(n) = A(2)n + B(3)n + 4.

3.25. If the ordinary generating function of a recurrence relation involving f(n) is g(x) = (2)/[(1 – x) (1 – 2x)], find f(n).

3.26. Solve the recurrence relation f(n) = f(n – 2) + 4n, f(1) = 2, f(0) = 3, by using the appropriate ordinary generating
function.

3.27. Prove that if g(x) is the ordinary generating function for the recurrence relation f(n + 1) = (n + 1)f(n) + (–1)n+1 with
the initial condition f(0) = 1, then g(x) satisfies the differential equation g′(x) + [(x – 1)/x2]g{x) + (1)/(x2) (1 + x) =
0. Solve the recurrence relation by using its exponential generating function.

3.28. The recurrence relation for a divide-and-conquer algorithm is f(n) = 9f(n/3) + 8n with the initial condition f(1) = 1,
where n = 3r. Solve for f(n) as a function of n.

3.29. Solve the recurrence relation f(n) = 5f(n/2) – 6f(n/4) + n with the initial conditions f(1) = 2 and f(2) = 1, where n =
2r.

3.30. Solve f(n) = f(n/b) + c with the initial condition f(1) = d, where n = br.

3.31. Find the ordinary generating function for the recurrence relation f(n + 1) = af(n) + bn with the initial condition f(0) =
c, where a, b, and c are constants.

3.32. Consider the example in this section that discusses the complexity of matrix multiplications. If f(n) is the total number
of multiplications involved in finding the product of two n × n matrices, it was proved that f(n) = nr, where r = log 7.
Find a recursive relation for the number of additions involved and solve it.

3.33. Find the recurrence relation (involving the number of comparisons) for the divide-and-conquer algorithm to find the
largest and smallest elements in a set of n numbers and solve it.

3.34. Let f(n) be the number of comparisons required to sort a list of n numbers in nondecreasing order. (a) Obtain a
recursive relation expressing f(n) in terms of f(n – 1) with appropriate initial condition. (b) Obtain a recursive relation
that expresses f(n) in terms of f(n/2) with appropriate initial condition, (c) Solve these two recurrence relations and
compare the efficiency of the two algorithms involved.



Graphs and Digraphs

4.1 INTRODUCTION

Even though the origins of graph theory can be traced back to the days of the great Swiss mathematician Leonhard Euler
(1707–1783), only since the 1930s has there been a sustained and intense interest in graph theory as a mathematical
discipline. These days, graph theory is one of the most popular and fertile branches in mathematics and computer science.
One important reason for this revived and renewed interest in graph theory is its applicability to many of the complex and
wide-ranging problems of modern society in such diverse fields as economics, facility location, management science,
marketing, energy modeling, transmission of information, and transportation planning to name a few. Quite often such
problems can be modeled as graphs or networks. In this respect graph theory is used first and foremost as a tool for
formulating problems and defining structural interrelationships. Once a problem is formulated in graph-theoretical language, it
becomes relatively easy to comprehend it in its generality. The next step will, of course, be to explore avenues to seek a
solution to the problem. The field of graph theory has two different branches: the algebraic aspects and the optimization
aspects. In Chapters 4, 5, and 6 we discuss the former. The area of network optimization, which is greatly advanced by the
advent of the computer, is the topic for the last two chapters.

A graph G = (V, E) is a structure consisting of a finite set V of vertices (also known as the nodes) and a finite set E
of edges such that each edge e is associated with a pair of vertices v and w. We write e = {v, w} or {w, v} and say that
(1) e is an edge between v and w, (2) e is incident on both v and w, and (3) e joins the vertices v and w. In this case both
v and w are adjacent vertices and they are incident on e. An edge joining a vertex to itself is a loop. If there is more than
one edge joining pairs of vertices in a graph, the graph is a multigraph. If two or more edges join the same pair of vertices
in a multigraph, these edges are called multiple edges. In a pictorial representation of a graph, a vertex is drawn as a small
circle with the name (or number) of the vertex written inside the circle. An edge between two vertices is represented by a
segment of a line or a curve joining the two circles that represent the vertices. In Figure 4.1.1 we have a pictorial
representation of a multigraph in which the vertex set is V = {1, 2, 3, 4, 5, 6, 7, 8, 9} with loops at vertex 2 and at vertex 8.
There are two edges between 7 and 9 and three edges between 4 and 5. A graph is simple if it has no loops or multiple
edges. If a real number is associated with each edge, then G is a network or a weighted graph.

A directed graph or digraph is a structure G = (V, E) where again V is a finite set of vertices and E is finite set of
arcs such that each arc e in E is associated with an ordered pair of vertices v and w. We write e = (v, w) and we say that
(1) e is an arc from v to w, (2) vertex v is adjacent to vertex w, (3) vertex w is adjacent from vertex v, (4) arc e is
incident from v, and (5) arc e is incident to w. Two vertices are adjacent if there is an arc from one to the other. We have
a weighted digraph or directed network whenever a real number is associated with each arc. If we treat every arc of a
digraph as an edge, the resulting structure is called the underlying graph of the digraph. In a pictorial representation of a
digraph an arc from vertex v to vertex w is drawn as a directed segment with the arrowhead pointing toward w. In Figure
4.1.2(a) we have a pictorial representation of a digraph the underlying graph of which is as in Figure 4.1.2(b). In a mixed
graph G = (V, E) at least one element of E is an arc and at least one element is an edge. An element in the former category
is a directed arc, whereas an element in the latter is an undirected edge. The real numbers associated with the edges and
arcs in networks are usually written along these edges and arcs.



FIGURE 4.1.1

FIGURE 4.1.2

Of special interest is the bipartite graph the vertices of which can be partitioned into two disjoint sets V and W such
that each edge is an edge between a vertex in V and a vertex in W and is denoted by G = (V, W; E). In Figure 4.1.3 we
have a pictorial representation of a bipartite graph in which V = {a, p, q} and W = {b, r}. G = (V, W; E) is a bipartite
digraph if every arc in E is from a vertex in V to a vertex in W.

FIGURE 4.1.3



A simple graph with n vertices is complete if there is an edge between every pair of vertices. The graph is then
denoted by Kn. A digraph is a complete digraph if its underlying graph is complete. A simple bipartite graph G = (V, W, E)
is a complete bipartite graph if there is an edge between every vertex in V and every vertex in W. The bipartite graph then
is denoted by Kp,q if there are p vertices in V and q vertices in W.

A graph G’ = (V′, E′) is a subgraph of G = (V, E) if V′ is a subset of V and E′ is a subset of E. If W is any subset of
V, the subgraph of G induced by W is the graph H = (W, F) where f is an edge in F if f = {u, v}, where f is in E and both
u and v are in W. In Figure 4.1.4, W = {1, 2, 4, 5} is a subset of the vertex set V of the graph G and the subgraph of G
induced by W is H. A complete subgraph of G is called a clique in G.

FIGURE 4.1.4

Example 4.1.1 (The Königsberg Bridge Problem)

The first publication in graph theory is that of Leonhard Euler in 1736. His paper presented a solution to what is
known as the Königsberg bridge problem. The city of Konigsberg (now known as Kaliningrad) in Russia, situated by the
Pregel River, consists of the north shore (N), the south shore (S), the west island (W), and the east island (E). Linking these
four parts were seven bridges: two between N and W, two between S and W, and one each from E to N, S, and W. (See
Figure 4.1.5.) The problem posed to Euler was whether it is possible to start from any location in the city and return to the
starting point after crossing each bridge exactly once. If each part of the city is considered as a vertex and if each bridge is
considered as an edge, we have a graph with four vertices and seven edges (see Figure 4.1.6), giving a graph model of the
problem that can be stated as follows: Given a graph (not necessarily simple), is it possible to trace the entire diagram of the
graph without going over the same edge more than once? That the answer is no in the case of the Konigsberg bridge
problem was easily established by Euler. More on this in our discussion of Eulerian graphs in Chapter 5.

FIGURE 4.1.5



FIGURE 4.1.6

Example 4.1.2 (Communication Digraphs)

Consider an organization consisting of several components. Let each component be a vertex. Draw an arrow from
vertex v to vertex w if component v can transmit signals to component w. The resulting digraph is known as a
communication digraph.

Example 4.1.3 (Transportation Networks)

Suppose that we let each vertex in a graph represent a city in the United States. Two vertices are joined by an edge if
there is direct nonstop air service between them. A natural question that arises is whether it is possible to start from a city
and return to the starting point after visiting each city exactly once. This problem is discussed in Chapter 5 when we
investigate Hamiltonian graphs, named after the nineteenth-century Irish mathematician Sir William Hamilton, who did
pioneering work in this area. If a nonnegative real number is assigned to each edge to represent the cost of using that edge, a
related optimization problem then is to find such a tour (if it exists) so that the cost of the tour is as small as possible. This is
the celebrated traveling salesman problem (TSP), which is a central topic in combinatorial optimization.

Example 4.1.4 (Tournaments)

In a round-robin tennis tournament each player must play every other player and no ties are allowed. Let each vertex
in a digraph represent a player. Draw an arrow from vertex v to vertex w if v defeats w. The resulting digraph is complete
and it is known as a dominance graph of a tournament. Such dominance digraphs arise frequently in social and biological
sciences. A basic problem here is to decide who the “winner” or “leader” is in a dominance graph. In Figure 4.1.7 we have
a tournament consisting of four players in which the player represented by vertex 2 is the winner. More on tournaments in
Chapter 5.

FIGURE 4.1.7

Example 4.1.5 (The Assignment Problem)

Suppose that there are m job applicants P1, p2, . . . , pm and n jobs q1 q2, . . . , qn. Let V be the set of job applicants
and W be the set of jobs. If pi is qualified for qj draw an edge between those two vertices and let cij represent the salary to
be paid to p, if she or he is hired for the job qs. The model we have in this case is a weighted bipartite network, and the
optimization problem then is to find a job assignment for the applicants such that (a) all the jobs are filled and (b) the total
salary to be paid is a minimum.



4.2 ADJACENCY MATRICES AND INCIDENCE MATRICES

For the purpose of inputting graphs into a computer it is necessary to describe graphs without resorting to their
pictorial representations. Moreover, such diagrams are not very practical when graphs with a large number of vertices and
edges are to be studied. There are several ways to represent a graph or a digraph without a pictorial representation, and in
this section we discuss some of them. The best way to input a graph depends on its properties and subsequent uses.
Furthermore, the efficiency of a graph algorithm depends on the choice of the method for representing the graph under
consideration.

FIGURE 4.2.1

Let G = (V, E) be a graph with no multiple edges where V = {1, 2, 3, . . ., n}. The adjacency matrix of G is the n
× n matrix A = (aij), where aij = 1 if there is an edge between vertex i and vertex j and aij = 0 otherwise. The adjacency
matrix of a graph is symmetric. Its diagonal elements are zero if and only if there are no loops. The adjacency matrix of the
graph in Figure 4.2.1 is the matrix A, where

The degree of a vertex in a graph is the number of edges incident on that vertex. A vertex is odd if its degree is odd;
otherwise, it is even. In Figure 4.2.1, vertices 1, 2, and 5 are odd, with degrees 3, 3, and 1, respectively. Obviously, the
number of nonzero elements in row i of the adjacency matrix of a graph is the degree of vertex i, which is also equal to the
sum of all the elements of row i or column i.

The adjacency matrix of a digraph with n vertices is also a square n × n matrix A = (aij), where aij = 1 is there is
an arc from i to j and is 0 otherwise. The adjacency matrix of the digraph in Figure 4.2.2 is A, where



FIGURE 4.2.2

Notice that the adjacency matrix of a digraph need not be symmetric.
The outdegree of a vertex in a digraph is the number of arcs incident from that vertex and the indegree of a vertex is

the number of arcs incident to that vertex. In Figure 4.2.2 the outdegree of vertex 2 is 3 and its indegree is 1. Notice that the
sum of the elements in row i is the outdegree of i and the sum of the elements in column j is the indegree of j. Notice also
that the outdegree of 3 is 2 and that its indegree is 4.

Another matrix that is useful for entering graphs and digraphs in a computer is the incidence matrix. Unlike the
adjacency matrix the incidence matrix is capable of representing multiple edges and parallel arcs. Let G = (V, E) be a graph
where V = {1, 2, . . . , n} and E = {e1 e2, . . . , em}. The incidence matrix of G is a n × m graph B = (bik), where each
row corresponds to a vertex and each column corresponds to an edge such that if ek  is an edge between i and j, then all
elements of column k are 0 except bik  = bjk  = 1. For example, the incidence matrix of the graph in Figure 4.2.3 is B, where

FIGURE 4.2.3

Notice that a column which corresponds to an edge has exactly two nonzero elements if it is not a loop and exactly
one nonzero element if it is a loop. Furthermore, the sum of the elements of row i is the degree of vertex i.

We also observe that in any graph with no loops the sum of the degrees of all the vertices is twice the number of edges
since each edge is accounted twice, once for each of its incident vertices. For example, in Figure 4.1.6 we see deg N + deg
S + deg W + deg E = 3 + 3 + 5 + 3 = 14 = twice the number of edges. We state this property as a theorem that is
sometimes known as the first theorem of graph theory.



THEOREM 4.2.1

If G is multigraph with no loops and m edges, the sum of the degrees of all the vertices of G is 2m.
COROLLARY
The number of odd vertices in a loopless multigraph is even.

Proof:

Suppose that the number of odd vertices is r. Let p be the sum of the degrees of all odd vertices and q be the sum of
the degrees of all even vertices. Then p + q is even by the theorem. Also, q is even, so p is even. But p is the sum of r odd
numbers. Therefore, r is even, which proves the assertion.

The incidence matrix B of a digraph (with no loops) is defined as follows: If ek  is an arc from i to j, all elements in
column k are zero except bik  = – 1 and bjk  = 1. For example, the incidence matrix of the digraph in Figure 4.2.4 is B,
where

FIGURE 4.2.4

Notice that the sum of all the elements in row i of the incidence matrix of a digraph is equal to the indegree of i minus
the outdegree of i. We also observe that in any digraph the sum of all outdegrees is equal to the total number of
arcs, which is again equal to the sum of all indegrees. This is because when the outdegrees are summed, each arc is
counted once since every arc is incident from one vertex. Similarly, when the indegrees are summed, each arc is counted
once since every arc is incident to a single vertex.

4.3 JOINING IN GRAPHS

A path between two vertices v1 and vr in a graph is a finite sequence of vertices and edges of the form v1, e1 v2, e2,
v3, e3, . . . , er, vr, where ek  is an edge between vk–1 and vk . In general, the vertices and edges in a path need not be
distinct.

A path is simple if its vertices are distinct. In a simple path, obviously all the edges are distinct. But a path with distinct
edges can have repeated vertices. A graph is said to be connected if there is a path between every pair of vertices in it.

A path between a vertex and itself is a closed path. A closed path in which all the edges are distinct is a circuit. A
circuit in which all the vertices are distinct is a cycle. Notice that v, e1, w, e2, v is a cycle but v, e, w, e, v is not a circuit and
therefore not a cycle. These two closed paths can be represented as

In Figure 4.3.1, 1 - - - - 2 - - - - 3 - - - - 2 - - - - 1 - - - - 5 is a path and 1 - - - - 2 - - - - 3 - - - - 2 - - - - 1 - - - -
5 is a simple path, and we can also see that 

 is a circuit and 



 is a cycle.

If v and w are connected (i.e., there is a path between them), then w and v are connected. In fact, the relation J
defined by vJw if v and w are connected is an equivalence relation partitioning the set V of vertices into pairwise disjoint
subsets of V. The subgraph induced by any such subset is a maximal connected subgraph called a component of the graph.
The number of components of a graph G is denoted by K(G) and is equal to 1 if and only if G is connected. The graph in
Figure 4.3.2 has two components, G′ and G′′, where G′ is induced by the subset {1, 2, 3, 4} and G″ is induced by {5, 6,
7}.

FIGURE 4.3.1

FIGURE 4.3.2

There is an interesting and useful relation between the number of paths between pairs of vertices in G and the elements
of the powers of its adjacency matrix. A path with k edges is called a k-path. A 1-path is an edge. In the n × n adjacency
matrix of the graph (with no multiple edges) with vertex set V = {1, 2, . . . , n}, the (i, j)-element is 1 if and only if the
number of 1-paths (edges) between i and j is 1. That this result can be generalized is the content of the following assertion.

THEOREM 4.3.1

If A is the adjacency matrix of a graph, the (i, j)-entry of the kth power (k ≥ 1) of A is the number of k-paths between
vertex i and vertex j.

Proof:

The proof is by induction on k. This is true when k = 1. Assume that this is true for (k – 1). Let  be the (i, j)-

entry of the rth power of A. Then

But

By hypothesis,  between i and p, and this will be equal to the

number of k-paths between from i to j, in which the vertex just prior to j is p. So the right side of (*) is the total number of



k-paths between i and j obtained after examining p = 1 to p = n consecutively.

COROLLARY

The (i, i) – entry in A2 is the degree of i.

Example 4.3.1

As an illustration, consider the matrices A, A,2 and A4 of the graph of Figure 4.3.3. We have

In A2 the (4, 4)th entry is 2 and the degree of vertex 4 is 2 and the two 2-paths between 4 and 4 are 4 - - - - 1 - - - -
4 and 4 - - - - 3 - - - - 4. From the fourth power of A we see that there are eight different 4-paths between 2 and 5.

FIGURE 4.3.3

Finally, three more definitions: An edge in a connected graph is called a bridge if the removal of that edge, but not its
end vertices, makes the graph disconnected. A graph with no cycles is an acyclic graph, also called a forest. A connected
forest is a tree. We study trees in detail in Chapters 6 and 7.

4.4 REACHING IN DIGRAPHS

A directed path from a vertex v to a vertex w in a digraph is a finite sequence v1, a1 v2, a2, . . . , vr, ar, vr+1 of vertices
and arcs, where the first vertex is v and the last vertex is w and ai is an arc from vi to vi+1. If there is a directed path from v
to w, then v is connected to w and w is connected from v. A pair of vertices is a strongly connected pair if each is
connected to the other. If one of them is connected to the other, it is a unilaterally connected pair. A digraph is strongly
connected if every pair of vertices is a strongly connected pair and it is unilaterally connected if every pair is unilaterally
connected. A digraph is weakly connected if its underlying graph is connected.

A directed path from a vertex to itself is a closed directed path. A closed directed path is a directed circuit if its
arcs are distinct and it is a directed cycle if its vertices are different. Notice the subtle difference between graphs and
digraphs: If the vertices of a closed directed path are distinct, its arcs are distinct. But if the vertices of a closed path in a
graph are distinct, its edges need not be distinct.

The relation defined by vRw if {v, w} is a strongly connected pair is an equivalence relation giving a partition of the
vertex set V into a class of pairwise disjoint subsets, and the subgraph induced by any one of these subsets is called a
strong component of the digraph. For example, in the digraph of Figure 4.4.1 we have two strong components induced by
the sets {1, 2, 3, 4} and {5, 6, 7}.

As in the case of graphs the elements of the kth power of the adjacency matrix A of a digraph can be used to compute
the number of k-paths between pairs of vertices. The proof of the following result is left as an exercise.



FIGURE 4.4.1

THEOREM 4.4.1

If A is the adjacency matrix of a digraph, then the (i, j)-entry of the kth power (k ≥ 1) of A is the number of k-
directed paths from i to j.

If G is a graph, then a digraph G′ obtained from G by changing each edge of G into an arc is called an orientation of
G. For example, in Figure 4.4.2 the digraphs of (b) and (c) are both orientations of the graph of (a).

An orientation of a graph is called a strong orientation of the graph if the orientation is strongly connected. In Figure
4.4.2 the digraph in (c) is a strong orientation of the graph in (a). A graph is said to be strongly orientable if it has a strong
orientation. It is easy to see that a strongly orientable graph is necessarily connected and bridgeless. The converse also holds
good: A graph is strongly orientable if and only if it is connected and bridgeless. This theorem is due to H. E.
Robbins (1939) and we omit its proof. Later in the chapter we discuss an algorithm to obtain a strong orientation of a graph
if such an orientation exists.

FIGURE 4.4.2

The reachability matrix of a digraph with n vertices is a n × n matrix R = (rij), where rij is 1 if there is a directed
path from i to j, and 0 otherwise. Obviously, a digraph is strongly connected if and only if every element of its reachability
matrix is equal to 1.

4.5  TESTING CONNECTEDNESS

Given a graph, it is natural to ask whether it is connected. Of course, from the diagram of a graph one can easily see
whether the graph has more than one component and thereby test its connectedness. For large graphs such diagrams are not
feasible. Moreover, if we input a graph into a computer, we need an algorithm to see whether it is connected. One such
algorithm is the depth-first search (DFS) technique, in which we relabel the vertices of the graph as follows.

Let the vertices of the graph G be v1, v2, . . . , and vn. Select an arbitrary vertex and label it as 1. Pick any vertex
adjacent to 1. This is not yet labeled; label it as 2. Mark the edge {1, 2} as a used edge so that it will not be used again.
Proceeding similarly, suppose that we label vertex vi with integer k. Search among all the unlabeled adjacent vertices of this
vertex, select one of them, and label it as (k + 1). Mark the edge {k, k + 1} as a used edge. Now it may be the case that all
the adjacent vertices of k are labeled. If so, go back to vertex (k – 1) and search among its unlabeled adjacent vertices. If
we find one such vertex, label it as (k + 1) and mark the edge {k – 1, k + 1} as a used edge. Continue the process until all
the vertices are labeled or we are back at vertex 1 with at least one vertex unlabeled. In the former case the graph is
connected and there will be exactly (n – 1) used edges. The acyclic subgraph consisting of the n vertices of the graph and
these (n – 1) used edges is called a depth-first search spanning tree of the graph. If it is not possible to label all the n
vertices by the DFS technique, we conclude that the graph is not connected. A similar procedure for testing the strong
connectedness of digraphs is given in Tarjan (1971).



FIGURE 4.5.1

Let us illustrate this DFS labeling technique to the graph of Figure 4.5.1 with eight vertices a, b, c, d, e, f, g, and h.
We select vertex b and label it 1. An adjacent vertex to 1 is g. Label it as 2. Mark the edge {1, 2} as a used edge. A vertex
adjacent to 2 and not labeled is f, and it is labeled 3. At this stage, edge {2, 3} is marked. We now see that c is the only
unlabeled vertex adjacent to 3. So c is labeled as 4 and {3, 4} is marked. Then d or e can be labeled as 5. The tie is
broken by labeling d as 5 and {4, 5} is marked. We notice that 5 has no unlabeled adjacent vertices, so we go back to 4
and label e as 6. At this stage we go back to 4, then to 3, and then to 2 in search of unlabeled adjacent vertices. We label h
as 7 and a as 8 and mark the edges {2, 7} and {7, 8}. At this point all the eight vertices are labeled, showing that the graph
is indeed connected. The seven marked edges are the edges of the DFS spanning tree as shown in Figure 4.5.2.

Now let us find the computational complexity of the DFS algorithm using the example just discussed. Notice that each
edge {i, j}, where i < j can be investigated in the forward direction from i to j or in the backward direction from j to i. In
our example we investigate {1, 2}, {2, 3}, {3, 4}, and {4, 5} in the forward direction. Since 5 had no unlabeled adjacent
vertices, we had to go back to 4, which meant that we had to investigate {4, 5} in the backward direction. So the edge {4,
5} is examined twice and will never be investigated again. Thus each edge is examined at most twice. So if there are m
edges, there will be at most 2m investigations, and there are n vertices to be labeled. Thus the complexity is at most n + 2m.
Since the maximum value for m is n(n – l)/2, the worst-case complexity of the DFS algorithm is n2.

FIGURE 4.5.2

4.6  STRONG ORIENTATION OF GRAPHS

Consider a graph model in which the vertices are the street corners of a large city. Two vertices are joined by an edge if
there is a street joining them. Suppose that the resulting graph G is strongly orientable. This is the case if and only if G is
connected and bridgeless. We are now interested in (temporarily) converting all streets in the city into one-way streets.
Since G is strongly orientable every corner can be reached from every other corner after this conversion. How is this
conversion carried out? We again resort to the DFS procedure and label all the vertices. If {i, j} is a marked edge where i
< j, convert this edge into an arc from i to j. On the other hand, if {i, j} is an unmarked edge where i < j, convert this edge
into an arc from j to i. The resulting digraph G′ is a strong orientation of G. For a proof of this assertion, see Roberts
(1976). In Figure 4.6.1 we have a connected bridgeless graph in (a), with a DFS spanning tree in (b), where the vertices are
appropriately labeled. A strong orientation of G is the digraph G′ of Figure 4.6.1(c).



When we use the DFS procedure there will be m unmarked edges in the worst case that have to be investigated. Thus
the complexity is at most n + 2m + m, which in the worst case will be equal to f(n) = (3n2 – n)/2.

4.7 NOTES AND REFERENCES

There are several excellent references on graph theory both at the introductory level and at the advanced level. Here is a
partial list: Behzad et al. (1979), Berge (1962), Bondy and Murty (1976), Carre (1979), Chartrand (1977), Deo (1974),
Gibbons (1985), Gondran and Minoux (1984), Harary (1969a), Ore (1963), Roberts (1976, 1978), Swamy and
Thulasiraman (1981), Wilson (1979), and Yemelichev, et al. (1984). The chapters on graphs in the books by Grimaldi
(1985), Liu (1985), Roberts (1984), Townsend (1987), and Tucker (1984) are also highly recommended. For a proof of
Robbins’s theorem, see Chapter 2 of Roberts (1978), which also contains a a complete discussion of strong orientations
and one-way street assignments.

FIGURE 4.6.1

4.8 EXERCISES

4.1. Draw a graph G = (V, E), where V = {1, 2, 3, 4, 5} and E = {{1, 2}, {1, 3}, {1, 5}, {2, 3}, {3, 4}, {3, 5}, {4,
5}}. Find the set W = {i : i is a vertex such that i and 2 are adjacent}.

4.2. Draw a digraph for which the underlying graph is the graph of Problem 4.1. Find the set of vertices (a) adjacent to
vertex 2 and (b) adjacent from vertex 2 in this digraph.

4.3. (a) Construct a complete graph with four vertices such that no two edges intersect, (b) Construct a complete graph
with five vertices, (c) Do you notice any difference between the graphs in parts (a) and (b)?

4.4. Find the number of edges in a complete graph with n vertices.

4.5. Draw an air transportation graph with Boston, New York, London, Paris, Moscow, Prague, and Rome as vertices
and an edge joining two cities if there is nonstop air service between them.

4.6. Draw the subgraph induced by V′ = {2, 3, 4, 5} in Problem 4.1.

4.7. Find the minimum number of bridges (a) to be constructed and (b) to be demolished so that the Königsberg bridge
problem becomes solvable.

4.8. (a) Draw the bipartite graph K2,2 such that no two edges intersect, (b) Draw the bipartite graph K3.3. (c) What is the
noticeable difference between these two bipartite graphs?



4.9. Find the number of edges in Kp,q.

4.10. Consider the graph G = (V, E) with V = {1, 2, 3, 4, 5} and E = {a, b, c, d, e, f, g, h}, where a = {1, 2}, b = {2,
3}, c = {3, 5}, d = {2, 5}, e = {2, 4}, f = {4, 5}, g = {1, 4}, and h = {1, 5}.

(a) Find the adjacency matrix of G.
(b) Find the degree of each vertex and find the set of of odd vertices.
(c) Find the incidence matrix of G.

4.11. Consider a digraph G′ the underlying graph of which is the graph G of Problem 4.1.

(a) Find the adjacency matrix of G′.
(b) Find the indegree and undegree of each vertex in G′.
(c) Find the incidence matrix of G′.

4.12. Give an example of a simple graph with (a) no odd vertices, (b) with no even vertices.

4.13. Construct a connected simple graph with n vertices such that the degree of each vertex is 2. Notice the structure of
the graph.

4.14. Construct a graph with n vertices and (n – 1) edges such that there are two vertices of degree 1 and (n – 2) vertices
of degree 2.

4.15. A graph G with the property that all of its vertices have the same degree r is called a regular graph of degree r.
Notice that a complete graph is regular but the converse is not true, (a) Construct a simple regular graph of degree 1
that is not complete, (b) Construct a simple regular graph of degree 2 that is not complete, (c) If G is a regular graph
of degree r and if G has n vertices, find the number of edges in G.

4.16. Prove that in a simple graph with two or more vertices, the degrees of the vertices cannot all be distinct.

4.17. Let G be a simple graph with n vertices with A as its adjacency matrix and B as its incidence matrix. Define the n × n
diagonal matrix C in which the ith diagonal element is the degree of vertex i in G. C is called the degree matrix of
G. Prove that B · Bt = A + C.

4.18. A square matrix in which each element is 0 or 1 is called a dominance matrix if (a) each diagonal number is 0 and
(b) the (i, j) element is 1 if and only if the (j, i) element is 0. Prove that the adjacency matrix of a tournament is a
dominance matrix.

4.19. Consider the digraph G = (V, E) where V = {1, 2, 3, 4, 5, 6} and E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6),
(2, 6), (5, 2)}.

(a) Find a 6-path from 1 to 6.
(b) Find a simple path from 1 to 6 using five arcs.

(c) Find a cycle with four arcs.
(d) Use the adjacency matrix of G to determine the number of 2-paths from 2 to 4.
(e) Find all the strong components of G.
(f) Find the reachability matrix R of G.

4.20. Let R be the reachability matrix of a digraph G = (V, E) where V = {1, 2, . . . , n}, P = (pij) be the element-wise
product of R and the transpose of R, and Q = R2 = (qij). Prove:

(a) pij = 1 if and only if i and j are strongly connected
(b) qii = the number of vertices in the strong component which contains vertex i.

4.21. Construct a graph with five vertices and six edges that consists of a circuit with six edges and two cycles with three
edges each.

4.22. Consider the graph of Problem 4.1.

(a) Find a 6-path between 1 and 4.
(b) Find a simple path between 1 and 4 with four edges.
(c) Use the adjacency matrix to determine the number of 2-paths between 2 and 4.

4.23. Define the reachability matrix of a graph.

4.24. Draw graph G with adjacency matrix A such that



4.25. Show that the sum of the diagonal elements of the second power of the adjacency matrix of a graph G is twice the
number of edges in G.

4.26. If G is a connected graph with n vertices, show that there exists a path with at most (n – 1) edges between every
pair of vertices.

FIGURE 4.8.1

4.27. If A is the adjacency matrix of a graph with n vertices and if a nondiagonal element of A + A2 + A3 + · · · + An–1 is
zero, what can you say about G?

4.28. Obtain a DFS spanning tree (starting from vertex 1) in the connected graph G of Figure 4.8.1.
4.29. The graph G in Problem 4.28 is connected and bridgeless. Find a strong orientation of G.
4.30. A triangle is said to be monochromatic if all its sides are of the same color. Show that no matter how we color the

edges of a complete graph with six vertices using two colors, there will always be at least one monochromatic triangle.
(See Example 1.5.5.) It can be shown that there will be at least two such triangles. Show also that it is possible to
color all the edges of a complete graph with five vertices using two colors such that there is no monochromatic
triangle.



More on Graphs and Digraphs

5.1 EULERIAN PATHS AND EULERIAN CIRCUITS

A path in a graph is an Eulerian path if every edge of the graph appears as an edge in the path exactly once. A closed
Eulerian path is an Eulerian circuit. A graph is said to be an Eulerian graph if it has an Eulerian circuit. There are
analogous definitions in the case of digraphs.

The idea of Eulerian circuits first arose from the famous Konigsberg bridge problem (Example 4.1.1), which asked
whether one could traverse all the seven bridges in the town, going over each one exactly once, and returning to the starting
location. In the course of demonstrating that it was impossible to do so, Euler produced techniques which, it is universally
believed, gave birth to graph theory. It is obvious that the problem can be solved if its graph model (see Figure 4.1.6) is an
Eulerian graph. The following theorem settled this question.

THEOREM 5.1.1

A connected graph G with no loops is Eulerian if and only if the degree of each vertex is even.

Proof:

Any Eulerian circuit in G leaves each vertex as many times as it enters. So each vertex of G is even. On the other
hand, suppose that G is a connected graph in which each vertex is even. We prove that G is Eulerian by actually
constructing an Eulerian circuit in it. There are several algorithms for this construction. For details, refer to Even (1979). We
adopt the following procedure, in which circuits are “spliced,” until we actually obtain an Eulerian circuit. Start from any
vertex v. Traverse distinct edges of G until we return to v. This is certainly possible since each vertex is even. Let C1 be the
circuit thus obtained. If this circuit contains all the edges of the graph, we are done. Otherwise, delete all the edges of this
circuit and all vertices of degree 0 from G to obtain the connected subgraph H1 in which each vertex is also even.
Furthermore, since G is connected, there is a vertex u common to both the circuit C1 and the subgraph H1. Now start from
u and obtain a circuit C2 by traversing distinct edges of the subgraph. Notice that the two circuits have no common edges,
even though they may have common vertices. If v = u, the two circuits can be joined together to form an enlarged circuit
C3. See Figure 5.1.1(a). If v and u are distinct, let P and Q be the two distinct simple paths between v and u consisting of
edges from C1 . Then P, Q, and C2 are spliced together to form a new circuit C3, as in Figure 5.1.1(b). If this enlarged
circuit has all the edges of G, we conclude that it is Eulerian. Otherwise, we continue until we obtain a circuit that has all the
edges of G.



FIGURE 5.1.1

FIGURE 5.1.2

To illustrate this procedure, let us try to construct an Eulerian circuit for the graph G of Figure 5.1.2 in which the edges
are labeled whenever there are multiple edges. Starting from vertex 1, suppose that we have the circuit C1, consisting of {1,
2}, {2, 3}, e3, e2, e1, and {6, 1}. Deleting all the edges of this circuit from G and then deleting all vertices of degree zero,
we get the subgraph H1 as in Figure 5.1.3 and we see that vertex 3 is common for both the subgraph and the circuit C1.
Starting from vertex 3 in this subgraph, we get the circuit C2 consisting of e4, e5 , and {5, 3}. Then we splice these two
circuits to get a circuit C3 consisting of {1, 2}, {2, 3}, all the edges of C2, e3, e2, e1, and {6, 1}. This new circuit also is not
Eulerian, leaving us with a new subgraph H2 as in Figure 5.1.4. The vertex 2 is common for this subgraph and C3 and we
have a circuit C4 in H2 consisting of {2, 5}, e6 , and {6, 2}. Finally, we splice C4 and C3 to obtain an Eulerian circuit of G
consisting of {1, 2}, {2, 5}, e6 , {6, 2}, {2, 3}, e4, e5, {5, 3}, e3, e2, e1, and {6, 1}.

Finding an Eulerian circuit by this method can be tedious, particularly in large graphs. The following procedure, known
as Fleury’s algorithm, is less complicated: Start from any vertex and delete an edge as soon as it is traversed. Also, never
cross a bridge if you can help it. If we are able to return to the starting point after deleting all the edges, the circuit is Eulerian
and we conclude that the graph is Eulerian as well. For example, in Figure 5.1.2 we start from 2 and traverse along {2, 3},
{3, 5}, {5, 2}, {2, 1}, and {1, 6} and stop at 6. If we delete all the edges traversed, we get the subgraph as in Figure
5.1.5, in which we start from 6 but we do not go along e7 since it is a bridge. So we traverse along e1, e2 , and e3 , reaching
3. Once these edges are deleted, e4 becomes a bridge that we are forced to cross, and similarly, we cross the bridges e5, e6
and finally {6, 2}. At this stage we have an Eulerian circuit.



FIGURE 5.1.3

FIGURE 5.1.4

FIGURE 5.1.5

Note: The presence of a loop at a vertex does not in any way influence the existence of an Eulerian circuit. Let G be
any connected graph and let G′ be the subgraph obtained after deleting all its loops. Then G is Eulerian if and only if G′ is
Eulerian. Unless otherwise stated, we assume that all graphs and digraphs in the remainder of this chapter are loopless.

A characterization of graphs with Eulerian paths can now easily be obtained as follows.

THEOREM 5.1.2

A connected non-Eulerian graph G with no loops has an Eulerian path if and only if it has exactly two odd vertices.

Proof:

If G has an Eulerian path from u to v, both u and v are odd and since this path passes through every vertex and
traverses each edge once, every other vertex is necessarily even. On the other hand, suppose that G is connected with
exactly two odd vertices, u and v. Now either u and v are adjacent or they are not. In the former case let e be an edge



between them. Delete e to get the graph G′ (with at most two components) in which each vertex is even. If G′ is connected,
obtain an Eulerian circuit in it starting from u and then adjoin the edge e to this circuit to get an Eulerian path between u and
v. If G′ has two components, let the component that contains u be G1 and the component that contains v be G2. Of course,
both these components are Eulerian. Now obtain an Eulerian circuit from u in the first component and an Eulerian circuit
from v in the second component. Then the path consisting of the edges of the first circuit, the edge (actually, the bridge) e,
and the edges of the second circuit constitute an Eulerian path between u and v. Finally, if u and v are not adjacent in G,
construct an arc e joining them, producing a new graph H, which is Eulerian. Obtain an Eulerian circuit in H from u in which
the last edge is e. If we delete e, we have an Eulerian path in G from u to v. This completes the proof.

We now state analogous results in the case of digraphs. For the straightforward proofs of these theorems, the reader is
referred to Behzad et al. (1979).

THEOREM 5.1.3

A weakly connected digraph has a directed Eulerian circuit if and only if the indegree of each vertex equals its
outdegree.

THEOREM 5.1.4

A weakly connected digraph with no directed Eulerian circuit has a directed Eulerian path if and only if the indegree of
each vertex equals its outdegree except for two vertices u and v such that the outdegree of u equals its indegree plus one
and the indegree of v equals its outdegree plus one.

5.2 CODING AND DE BRUIJN DIGRAPHS

There are several interesting and useful applications of Eulerian paths and circuits in many areas, such as computer science,
operations research, cryptography, and transportation problems, to name a few. We discuss some examples here. The
Chinese postman problem is a network optimization problem in which an arbitrary connected network is enlarged into an
Eulerian one. The problem can be stated as follows: A mail carrier starts from the post office, delivers mail to each block in
his beat, and returns to the post office. If we take each street corner in the route as a vertex and a street between two
corners as an edge, we have a graph G as a model of this problem. If G is Eulerian, the mail carrier has to traverse each
street exactly once. If it is not Eulerian, he has to repeat some edges. A typical optimization problem in this context is to
locate those streets which have to be repeated so that the total distance traversed is a minimum. This was first discussed by
the Chinese mathematician Kwan (1962) and so is known as the Chinese postman problem. In this section we discuss an
application of Eulerian graphs to coding theory.

Any word with m letters out of which n are distinct can be associated with a weakly connected digraph G with n
vertices and m – 1 arcs such that the word represents a directed Eulerian path if the first letter and last letter are different
and a directed Eulerian circuit if the first letter and the last letter are the same. For example, in the word “LETTERED” we
have m = 8 and n = 5, and this letter can be associated with the directed path from the vertex L to the vertex D in the
digraph of Figure 5.2.1 with five vertices and seven arcs represented by L- - -E- - -T- - -T- - -E- - -R- - -E- - -D, which is
a directed Eulerian path. Similarly, the word “ELECTIVE” can be associated with a directed Eulerian cycle E- - -L- - -E- -
-C- - -T- - -I- - -V- - -E in the digraph in Figure 5.2.2. Notice that even though a word defines a digraph uniquely, it is
possible that the same digraph can be associated with several words of equal length.

FIGURE 5.2.1



FIGURE 5.2.2

In any word with n distinct letters A1, A2, . . . , An, let f(Ai) be the frequency of the letter Ai in the word. Then the
sum of the frequencies of the n letters is m. Let mij denote the number of times Aj appears immediately after Ai, denoting
the number of arcs from Ai to Aj in the digraph. For example, in the word “MATHEMATICS,” mAT = 2, mTA = 0, mTH =
1, and so on. Let M = (mij) be the n × n matrix thus defined. The row sum of row i in M is the outdegree of vertex Ai, and
the column sum of column j is the indegree of Aj.

Thus, corresponding to each word with n distinct letters, we have a frequency set of n positive integers and a n × n
matrix whose elements are nonnegative integers. For example, in the word “LETTERED” the five distinct letters are D, E, L,
R, and T, with a frequency set {1, 3, 1, 1, 2}, and the 5 × 5 matrix is

In the word “ELECTIVE” the six distinct letters are C, E, I, L, T, and V, with a frequency set {1, 3, 1, 1, 1, 1}, and
the 6 × 6 matrix is

We now make the following easily verifiable assertions:

1. The digraph of any word is weakly connected.
2. If the first letter and the last letter are not the same, the row sum of the first letter equals the column sum of the first

letter plus one, the row sum of the last letter equals the column sum of the last letter minus one, and for all other letters
the row sum and the column sum are equal.

3. If the first letter and the last letter are the same, then row sum equals the column sum for all letters and the row sum of



the starting letter will be one less than its frequency.

All the information in a codeword is contained in the frequency set and the matrix M associated with the word.
Hutchinson and Wilf (1975) study codewords in their investigation of DNA and RNA molecules. Suppose that we are given
(a) a set of n letters A1, A2, . . . , An, (b) a set of n positive integers f1, f2, . . . , fn, and (c) a n × n matrix (mij) of
nonnegative integers. Does there exist a word in which Ai appears exactly fi times and Aj appears immediately after Ai
exactly mij times? The answer is “yes” if conditions corresponding to assertions (1)–(3) are satisfied because of Theorems
5.1.3 and 5.1.4. We thus have the following result.

THEOREM 5.2.1

Let M = (mij) be a n × n matrix with nonnegative integer components and let Ai (i = 1, 2, . . . , n) be a set of n
distinct letters such that Ai is associated with both row i and column i. Let

ri = sum of all the elements of row i of M
     cj = sum of all the elements of column j of M

(a) If rj = cj + 1, rk  = ck  – 1, where j and k are distinct and if ri = ci in all other cases, there exists a word beginning
with Aj and ending in Ak  in which the frequency of Aj is rj, the frequency of Ak  is ck , and the frequency of every other letter
is ri, which is also ci. Moreover, in the word, the letter Ap appears immediately after Aq exactly mpq times.

(b) If ri = ci for i = 1, 2, . . . , n, and if fi (i = 1, 2, . . . , n) are nonnegative integers such that rj = fj – 1 and ri = fi for
every i other than j, there exists a word that begins with Aj and ends with Aj in which Ak  appears exactly fk  times and Ap
appears after Aq exactly mpq times.

For example, suppose that the distinct letters in a word are A, B, C, and D and the matrix is

First we construct a digraph G with four vertices A, B, C, and D as in Figure 5.2.3. We observe:

1. The digraph is weakly connected.
2. (Row sum for B) = (column sum for B) + 1.

3. (Row sum for D) = (column sum for D) – 1.
4. Row sum = column sum for all other letters.

FIGURE 5.2.3

So there is a word that starts with B and ends in D which can be represented by an Eulerian path from B to D in the digraph
of Figure 5.2.3. One such word is BABCDACD. It is an easy exercise to show that if the frequency set is {4, 3, 5, 2} and



the matrix is

then a word is CCBCBAADBDACAC.
We conclude this chapter with a discussion of de Bruijn digraphs, another application of Eulerian digraphs. There are

2n–1 binary words of length n – 1. We construct a digraph with 2n–l vertices as follows. Let each word of length n – 1 be a
vertex. From each vertex of the form v = axa2 · · · an–1 draw two arcs: one to a2a3 · · · an–1 0 and the other to a2a3 · · ·
an–1 1 to represent two n-letter words v0 and v1, respectively. So the 2n arcs of the digraph thus constructed represent the
set of binary words of length n. This digraph G(2, n) known as the de Bruijn digraph, is weakly connected and is Eulerian
since the indegree of each vertex equals its outdegree. The digraph G(2, 3) is as shown in Figure 5.2.4.

More generally, for an alphabet of p letters, G(p, n) is a de Bruijn digraph with pn – 1 vertices and pn arcs such that
the indegree and outdegree of each vertex are both p. Thus G(p, n) is Eulerian. Now consider any Eulerian circuit in this
digraph that will contain all the pn arcs in a sequence. Construct the sequence of the first letters of all these words. Let us
denote this sequence by a1a2 · · · ar, where r = pn. Then the r distinct words of length n are all of the form aiai+1 · · · ai+n–

1, where the addition operation defined on the subscript is modulo r. For example, if p = 2 and n = 3, then a9 is a1. In the
digraph of Figure 5.2.4 a directed Eulerian circuit starting from 00 consists of the following sequence of eight arcs: 000,
001, 011, 111, 110, 101, 010, 100. The first letters of these arcs form the word 00011101, so that a1 = 0, a2 = 0, a3 = 0,
a4 = 1, a5 = 1, a6 = 1, a7 = 0, and a8 = 1. Any three-letter word is now of the form aiai + 1ai + 2. Thus a7a8a9 = a7a8a1 =
010, and so on.

FIGURE 5.2.4

We can formally define a de Bruijn sequence for two positive integers p and n. If S is any alphabet consisting of p
letters, then a sequence a1a2 · · · ar of r (r = pn) letters is called a de Bruijn sequence, denoted by B(p, n) , if every word
of length n from S can be realized as aiai+l · · · ai + n – 1 (i = 1, 2, . . . , r), where the addition operation in the subscripts is
modulo r.

We are now ready to summarize our observations as a theorem.

THEOREM 5.2.2

For every pair of positive integers there exists a de Bruijn sequence.

This was first proved by de Bruijn (1946) for p = 2 and later generalized for arbitrary p by Good (1946). These
sequences are very useful in coding theory. The state diagram of a feedback shift register (FSR) is a subgraph of a certain
de Bruijn digraph. FSRs have a wide range of applications in communications, cryptography, and computer science,
particularly so because of the randomness properties of the sequences they generate. Briefly speaking, if K is a field (of
order q) , and if f: Kn → K, then an n-stage FSR on K transforms the vector [x0  x1  · · ·  xn – 1] into the vector [x1  x2  · ·
·  xn] , where xn = f(x0, x1 , . . . , xn – 1).



5.3 HAMILTONIAN PATHS AND HAMILTONIAN CYCLES

A path between two vertices in a graph is a Hamiltonian path if it passes through each vertex exactly once. A closed path
that passes through each vertex exactly once and in which all the edges are distinct is a Hamiltonian cycle. A graph is a
Hamiltonian graph if it has a Hamiltonian cycle. In a digraph a directed path from a vertex to another vertex is a directed
Hamiltonian path if it passes through each vertex exactly once. A closed directed Hamiltonian path is a directed
Hamiltonian cycle. The adjective “Hamiltonian” is in honor of the famous Irish mathematician Sir William Hamilton (1805–
1865), who investigated the existence of a solution to a game called “all around the world,” in which the player is asked to
find a route along the edges of a dodecahedron (a regular polyhedron with 20 vertices, 30 edges, and 12 faces) visiting each
vertex exactly once and returning to the starting vertex. Now a dodecahedron can be represented as a graph G on the plane
(see Figure 5.3.1) with 20 vertices and 30 edges. Thus the game has a solution if and only if G is a Hamiltonian graph.

FIGURE 5.3.1

Even though the problem of determining the existence of Hamiltonian cycles appears similar to that of determining the
existence of Eulerian circuits, it is not at all easy to tell whether a given graph is Hamiltonian in general. In contrast with the
extremely tidy necessary and sufficient conditions obtained by Euler for the existence of Eulerian circuits, Hamiltonian graphs
seem to defy characterization. In many cases each graph must be considered individually since no easily verified necessary
conditions are known in general. Of course, a complete graph is Hamiltonian. In other words, a graph with n vertices is
Hamiltonian if the degree of each vertex is n – 1. The larger the degree of each vertex, the more likely it appears that the
graph is Hamiltonian. So the question is this: Does there exist a positive integer k (k < n – 1) such that the graph is
Hamiltonian whenever the degree of each vertex is at least k? The answer is yes, as proved by Dirac (1952), whose
theorem can also be obtained as a consequence of the following theorem of Ore (1963).

THEOREM 5.3.1

A simple graph with n vertices (where n is at least 3) is Hamiltonian if the sum of the degrees of every pair of
nonadjacent vertices is at least n.

Proof:

Suppose that a graph G with n vertices is not Hamiltonian. So it is a subgraph of the complete graph Kn with fewer
edges. Now keep on adding edges to G by joining nonadjacent vertices until we obtain a non-Hamiltonian graph H such
that the addition of one more edge to H will make it Hamiltonian. Let x and y be any pair of nonadjacent vertices in H. So
they are nonadjacent in G as well. Thus (deg x + deg y) is at least n in H. Since the addition of {x, y} as an edge to H will
make it Hamiltonian, there is a Hamiltonian path in H between x and y. If we write x = v1 and y = vn, then this path can be
written as v1- - -v2- - -v3· · ·vi – 1 - - - vi- - -vi + 1. . .vn – 1- - -vn. Notice that if v1 and vi are adjacent in H, then vn and
vi – 1 cannot be adjacent because if they are adjacent, we will have the following Hamiltonian cycle in H: vn- - -vi – 1, . . .
v1 - - -vi . . .vn, which is a contradiction. So if v1 has r adjacent vertices from the set {v2, v3, . . . , vn}, at least r vertices
from the set {v1, v2, . . . , vn – 1} cannot be adjacent to vn. In that case, deg v1 = r and deg vn ≤ (n – 1) – r and



consequently, deg v1 + deg vn ≤ (n – 1) < n, which contradicts the hypothesis.

COROLLARY (Dirac’s Theorem)

A simple graph with n vertices is Hamiltonian if the degree of each vertex is at least n/2 .

Note: The converse of Ore’s theorem is not true. For example, consider the graph of a polygon with six sides.

A sufficient condition for the existence of a Hamiltonian Path in a graph is as in the following result.

THEOREM 5.3.2

A simple graph with n vertices has a Hamiltonian path if the sum of the degrees of every pair of nonadjacent vertices is
at least (n – 1).

Proof:

This is an exercise.

COROLLARY

A simple graph with n vertices has a Hamiltonian path if the degree of each vertex is at least (n – l)/2.

Just as in the case of graphs, there is no known characterization of Hamiltonian digraphs. In fact, the situation becomes
more complex. We state here a few sufficient conditions for the existence of direct Hamiltonian cycles and paths in simple
digraphs which are more or less similar to the results in the case of graphs. See Behzad et al. (1979) for proofs.

THEOREM 5.3.3

(a) A strongly connected digraph with n vertices is a Hamiltonian digraph if (deg u + deg v) is at least 2n – 1 for every
pair of vertices u and v such that there is no arc from u to v and from v to u.

(b) A digraph with n vertices is Hamiltonian if (outdegree u + indegree v) is at least n for every pair of vertices u and v
such that there is no arc from u to v.

(c) A strongly connected digraph with n vertices is Hamiltonian if (outdegree v + indegree v) is at least n for every
vertex v.

(d) A digraph with n vertices is Hamiltonian if both the outdegree and indegree of each vertex is at least n/2.

THEOREM 5.3.4

(a) If (degree u + degree v) is at least 2n – 3 for every pair of vertices u and v such that there is no arc from one to
the other in a digraph G, then G has a directed Hamiltonian path.

(b) If (outdegree u + indegree v) is at least (n – 1) for every pair of vertices such that there is no arc from u to v in a
digraph G, then G has a directed Hamiltonian path.

(c) If (outdegree v + indegree v) is at least (n – 1) for every vertex v in a digraph with n vertices, the digraph has a
directed Hamiltonian path.

(d) If both the outdegree and indegree of each vertex is at least (n – l)/2 in a digraph G, then G has a directed
Hamiltonian path.

Hamiltonian-Connected Graphs

A graph is said to be Hamiltonian-connected if there is a Hamiltonian path between every pair of vertices in it. Obviously
any Hamiltonian-connected graph with three or more vertices is necessarily a Hamiltonian graph. The converse is not true: In
the Hamiltonian graph G = (V, E) where V = {1, 2, 3, 4} and E is the set {{1, 2}, {2, 3}, {3, 4}, {4, 1}} there is no
Hamiltonian path between the vertex 2 and the vertex 4. The following result due to Ore (1963) parallels the result of
Theorem 5.3.1.

THEOREM 5.3.5

If G is a simple graph with n vertices (n is at least 3) such that for all distinct nonadjacent vertices i and j, (degree of i)
+ (degree of j) exceeds n, then G is Hamiltonian-connected.

For more details on Hamiltonian-connected graphs, see the papers by Chartrand et al. (1969) and Lick (1970).



5.4 APPLICATIONS OF HAMILTONIAN CYCLES

Hamiltonian paths and cycles have several useful and interesting applications. We discuss some of them here.

Example 5.4.1 (The Traveling Salesman Problem)

In Example 4.1.3 we introduced the traveling salesman problem (TSP), in which a salesman has to make an itinerary
visiting each city on the tour exactly once and returning to the starting point. Any such tour is a Hamiltonian cycle.
Assuming that such a cycle exists, the optimization problem then is to find such a tour for which the total cost (or for
that matter, total distance) is a minimum. TSP is one of the best known problems of a class of those that are easy to
state but very difficult to solve. In general, there is no known efficient procedure for finding a solution to the problem.
If we adopt the exhaustive enumeration method in which we list all the (n – 1)! directed Hamiltonian cycles (in the
worst case) is a digraph with n vertices, and compute the cost for each cycle by performing the n additions, we will be
doing n(n – 1)! additions. If n = 20 and a computer can do 1 million additions per second, this method will take about
75,000 years. See Held and Karp (1970) for a discussion of the complexity considerations involved in this problem.

Example 5.4.2 (Scheduling)

Consider a machine shop with n different machines. A job has to be run through all these machines but not in any
particular order. Let each machine represent a vertex of a digraph. Draw an arc from each vertex to every other
vertex. Then any directed Hamiltonian path in the digraph is a schedule. If cij is the setup time required whenever the
job goes from machine i to machine j, the optimization problem is to find a schedule that takes the least amount of
time.

Example 5.4.3

In Example 4.1.4 we defined a tournament as a simple digraph in which for every pair of vertices v and w either there
is an arc from v to w or from w to v but not both. In other words, the underlying graph of a tournament is complete
and (v, w) is an arc in the tournament if and only if (w, v) is not an arc. If the vertices denote the different players, the
existence of an arc from v to w indicates that v defeats w in the game. The following questions arise: (1) Is it possible
to rank all the players as a sequence u1, u2, . . . , un such that ui, defeats ui+1 (i = 1, 2, . . . , n – 1)? In other words,
does the digraph have a directed Hamiltonian path? (2) If such a path exists, is it unique? (3) Is there a necessary and
sufficient condition to be satisfied by the digraph so that the path is unique, implying that the ranking is also unique?
The answers are: (1) yes, (2) no, and (3) yes.

Before we justify these assertions, let us consider the two tournaments (a) and (b), as in the digraphs of Figure
5.4.1. We see that both the tournaments have Hamiltonian paths. In (a) we have four different Hamiltonian paths,
whereas in (b) we have only one. What makes these two different? Here is a definition to resolve this. A tournament is
said to be transitive if whenever u defeats v and v defeats w, then u defeats w. Notice that a tournament is transitive
if and only if it has no directed cycles with three arcs. Even though “transitivity” appears to be normal in most situations
in life, in the real world most tournaments are not transitive. Maybe this is one reason they are exciting. In our
illustration, (b) is transitive but (a) is not. Our first theorem in tournaments is due to Redei (1934).

THEOREM 5.4.1

Every tournament G has a directed Hamiltonian path.

Proof:

This is an immediate consequence of Theorem 5.3.4(c). However, an independent proof using induction on the
number n of vertices is along the following lines. The theorem is true when n = 2. Suppose that it is true for n. Now consider
any tournament G′ with (n + 1) vertices. Let v be any arbitrary vertex of G′. Now consider the subgraph G of G′ obtained
from G′ by deleting v and all arcs from v and to v. Obviously, G is a tournament with n vertices and so it has a directed
Hamiltonian path v1 - - > v2 . . . > vi . . . > vn. If there is an arc in G′ from v to v1 or from vn to v, then G′ has a directed
Hamiltonian path and we are done. Otherwise let i be the largest integer such that there is no arc from v to vi. So there is an
arc from vi to v. Now our choice of i is such that there is no arc from vi+1 to v implying that there is an arc in the opposite
direction and consequently we have the directed Hamiltonian path in G′ as follows: v1. . . > vi- - - > v- - - > vi+1. . . > vn,
showing that the result is true for (n + 1).
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COROLLARY

A transitive tournament has a unique directed Hamiltonian path.

Proof:

If P and P′ are two distinct directed Hamiltonian paths, there is a pair of vertices x and y such that there is a path from
x to y in P and a path from y to x in P′. So, by transitivity, there is an arc, from x to y in P and an arc from y to x in P′. This
is a contradiction. So P = P′.

We conclude our discussion of tournaments with the following theorem on the existence of unique directed Hamiltonian
paths in tournaments. See Roberts (1976) for a proof.

THEOREM 5.4.2

In a tournament G the following properties are equivalent:
(a) G has a unique directed Hamiltonian path.
(b) G has no directed cycles of length 3.
(c) G is acyclic.
(d) G is transitive.

5.5 VERTEX COLORING AND PLANARITY OF GRAPHS

A graph is said to be colored if each vertex is assigned a color such that no two adjacent vertices have the same color. If
such an assignment of colors is possible using at most k colors, the graph is k-colorable. The smallest value of k such that a
graph G is k-colorable is the chromatic number of G.

The chromatic number of a graph is 1 if and only if it has no edges. The chromatic number of a complete graph with n
vertices is of course n, and the chromatic number of a bipartite graph is 2. In particular, the chromatic number of a tree is 2.
Any cycle with p vertices is 2-colorable if and only if p is even. Consequently, if a graph G has an odd cycle (i.e., a cycle
with an odd number of vertices), G is not 2-colorable. On the other hand, if there is no odd cycle in a graph G, the graph is
2-colorable. This is obvious if G is a tree because a tree is acyclic. More generally, assume that G is a connected graph with
no odd cycles. Start from any vertex v and apply a breadth first search (BFS) procedure to obtain a BFS tree as follows: v
is at level 0. All vertices adjacent to v are at level 1. We partition the vertices of the graph into sets of vertices at various
levels. Let vi1, vi2, . . . , vir be the vertices at level i. Consider all vertices adjacent to vi2 that are not in levels 0, 1, 2, . . . ,
i. Put these vertices in a new level (i + 1). Then consider all vertices that are adjacent to vi2 but not in levels 0, 1, 2, . . . , i,
(i + 1). Include these vertices in level (i + 1). Continue this process until all the vertices are examined. We now assign two
colors to the vertices: one color to all the vertices at the odd level and another color to all the vertices at the even level. In
Figure 5.5.1 we have a graph with no odd cycles and a BFS tree starting from vertex 3 is as in Figure 5.5.2.
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FIGURE 5.5.2

In the BFS procedure in the worst case we have to examine all the n vertices and all the m edges. So the worst-case
complexity is n + m. Since m is at most n(n – l)/2, the complexity is n(n + 1)/2.

From an earlier exercise we know that a graph is bipartite if and only if it has no odd cycles. Thus we have the
following theorem to characterize the 2-colorability of graphs.

THEOREM 5.5.1

In a connected graph G, the following are equivalent:
(a) G is bipartite.
(b) G is 2-colorable.
(c) G has no odd cycles.

There is no known characterization for the k-colorability of graphs when k > 2. In general, it is a hard problem to
compute the chromatic number of an arbitrary graph. There is no algorithm that always gives a coloring pattern using the
fewest possible colors. However, there are algorithms to color a given graph that “approximate” the best coloring in the
sense that it may sometimes use more colors than are absolutely necessary. Here is an algorithm, known as the largest first
algorithm, because it assigns colors to vertice with the largest degrees first. First we order the vertices according to
nonincreasing degrees. Use the first color to color the first vertex and then color, in sequential order, each vertex that is not
adjacent to a previously colored vertex of the same color. Repeat this process using the second color for the subsequence
of uncolored vertices. Continue this process until all vertices are colored.

Let us make use of the largest first algorithm to obtain a coloring for the graph in Figure 5.5.3. The nine vertices are
labeled as i = 1, 2, 3, . . . , 9, where the degree of i is greater than or equal to the degree of (i + 1). First assign color 1 to
vertex 1. Now vertices 8 and 9 are not adjacent for 1. So assign color 1 to vertex 8. We see that vertex 9 is not adjacent to
vertex 8. So assign color 1 to vertex 9 as well. Thus vertices 1, 8, 9 are assigned color 1. The remaining vertices are 2, 3, 4,
5, 6, 7. Assign color 2 to vertex 2. The uncolored vertices not adjacent to vertex 2 are 3, 4, 6. Assign color 2 to vertex 3.
We notice that vertices 3 and 4 are adjacent. So vertex 4 remains uncolored. Similarly, vertex 6 remains uncolored. Thus
vertices 2 and 3 are colored with color 2.
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The remaining uncolored vertices are 4, 5, 6, 7. Assign color 3 to vertex 4 and then to vertex 5 and vertex 7. Finally,
we are left with vertex 6, to which assign color 4. Thus the graph of Figure 5.5.3 does not need more than four colors. But
three colors will do the job. Assign color red to 1, color blue to 3, 5, 7, 8, and color green to 2, 4, 6, 9.

The idea of coloring a graph arises naturally in many scheduling problems. Suppose that the computer science
department in a university has decided to offer a certain number of graduate courses and there are a certain number of time
periods during which these courses can be offered. In scheduling these courses the department has to avoid conflicts. If a
graduate student is interested in taking two of these courses, these courses have to be scheduled at different times. We
construct a graph model of this scheduling problem as follows: Let each vertex represent a course. Join two vertices by an
edge if the courses corresponding to these two vertices cannot be offered at the same time. If the resulting graph is k-
colorable, the courses can be scheduled with k or more periods.

Planarity of Graphs

A graph is called a planar graph if it can be drawn so that no two edges intersect except at a vertex. A planar graph drawn
on a plane so that no two edges intersect is a plane graph. The two-dimensional regions defined by the edges in a plane
graph are the faces and the vertices and the various edges define the boundaries of these faces. In the plane graph of
Figure 5.5.4 there are five vertices, seven edges, and four faces. In this plane graph, we see that F1, F2 , and F3 are the
interior faces, and the unbounded region F4 is the exterior face. The boundary of F1 is the cycle 1- - - - -2- - - - -3- - -
- -1 and the boundary of F4 is 1- - - - -2- - - - -5- - - - -2- - - - -4- - - - -3- - - - -1, in which the last edge is e.

FIGURE 5.5.4

The classical (proved in 1750) result connecting the number of vertices, edges, and faces is the following theorem of
Euler.



THEOREM 5.5.2

If a connected plane graph has n vertices and m edges, then the number of faces is p, where n – m + p = 2.

Proof:

We use induction on m. When m = 0, we have n = 1 and p = 1 and the result is true. Suppose that the result is true
when m = k – 1. Consider any plane graph G with n vertices, k edges and p faces. We wish to show n – k + p = 2. This is
certainly true if the graph is a tree. If it is not a tree, let e be any edge of a cycle. If we delete e, we still have a connected
plane graph with n vertices, (k – 1) edges, and (p – 1) faces. Notice that if we delete an edge from a cycle two faces
coalesce into one. By our induction hypothesis, n – (k – 1) + (p – 1) = 2, so n – k + p = 2, as we wished to prove.

We now establish another useful result, which is an immediate consequence of what we already proved.

THEOREM 5.5.3

A simple connected planar graph with n vertices (n is at least 3) has at most (3n – 6) edges.

Proof:

If n is 3, the number of edges is at most three. Let n be greater than or equal to 3. We draw the plane graph with faces
F1 F2, . . . , Fp. Let ri be the number of edges that define the face Fi. Then ri is at least three for each i. So 3p ≤ (r1 + r2 +
· · · + rp) . Now in counting the total number of edges in the boundaries, each edge is counted at most twice. Thus the right
side of the inequality above is at most 2m, where m is the number of edges in the graph. Hence 3p is at most 2m. But by
Theorem 5.5.2 we know that p = 2 – n + m. The result follows.

We use this theorem to establish the nonplanarity of some famous graphs. If a simple graph with n vertices has more
than (3n – 6) edges, it is nonplanar. The complete graph K5 has five vertices and 10 edges, so it is not planar. We can
establish the nonplanarity of the complete bipartite graph K3, 3 by contradiction. For this graph we know that n = 6 and m =
9. So if it is planar, it should have exactly five faces according to Theorem 5.5.2. Recall that a bipartite graph has no odd
cycles. So there should be at least 20 edges to define the boundaries of these faces. Each edge is counted at most twice. So
the graph should have at least 10 edges. But there are only 9. Thus any graph that has K5 or K3,3 as a subgraph is
nonplanar. It turns out that every nonplanar graph contains one of these two as a subgraph in a certain sense which we now
make precise.

Two graphs are said to be homeomorphic (or identical to each other within vertices of degree 2) if they both can be
obtained from the same graph G by introducing new vertices of degree 2 on its edges. For example, the two graphs (a) and
(b) in Figure 5.5.5 are homeomorphic. Notice that insertion or deletion of vertices on edges does not affect considerations
of planarity. We now state the following celebrated theorem of Kuratowski (proved in 1930), which gives a necessary and
sufficient condition for a graph to be planar. See Bondy and Murty (1976) for a proof.

FIGURE 5.5.5

THEOREM 5.5.4

A graph is planar if and only if it contains no subgraph that is homeomorphic to K5 or K3,3.

Finally, a note on map coloring. When we color the different nations in a geographical map, two countries with a
common border cannot have the same color. The map coloring problem then is to color a given map with as few colors as



possible. No one has ever found a map that needs more than four colors. For more than 100 years it was conjectured that
no map needs more than four colors, but no correct proof was forthcoming. Finally, in 1976, this four-color conjecture was
settled. For a discussion, see Appel and Haken (1976).

Now given a geographical map we can construct a planar graph as follows. Consider each country as a vertex. Join
two vertices by an edge if the two countries corresponding to these two vertices have a common border. The minimum
number of colors required to color the map is the chromatic number of the graph thus constructed. Every map gives rise to a
planar graph, and vice versa. Thus the four-color theorem can be reformulated as the following important theorem in graph
theory.

THEOREM 5.5.5

The chromatic number of a planar graph cannot exceed four.

5.6 NOTES AND REFERENCES

Any book on graph theory will be a good reference for Eulerian and Hamiltonian graphs. The books by Behzad et al.
(1979), Bondy and Murty (1976), Chartrand (1977), Deo (1974), Gibbons (1985), Gondran and Minoux (1984), Harary
(1969a), Ore (1963), Roberts (1976, 1978), and Wilson (1979) are some of the standard ones. For the discussion of
graph algorithms some excellent references are the books by Aho et al. (1983), Baase (1978), Even (1979), Gondran and
Minoux (1984), Lawler (1976), and Reingold et al. (1977). The books by Minieka (1978), Papadimitriou and Steiglitz
(1982), and Syslo et al. (1983) contain elaborate discussion of some well-known graph algorithms. Applications of graph
theory to coding theory, operations research, computer science, and chemistry are presented in Deo (1974). For additional
details on feedback shift registers (mentioned in Section 5.2), refer to the books by Golomb (1967) and Ronse (1982). The
survey article by Ralston (1982) on de Bruijn sequences while demonstrating the connection between coding theory and
graph theory also shows how different areas of discrete mathematics impinge on computer science. The survey paper by
Bellmore and Nemhauser (1968) on the Traveling Salesman Problem is a good introductory reading, and the book on the
same topic by Lawler et al. (1985) is a complete and systematic study of this celebrated topic. For a more general
discussion on tournaments, see the book by Moon (1968).

Some excellent references on vertex coloring in graphs are the relevant chapters in the books by Behzad et al. (1979),
Berge (1962), Chartrand (1977), Grimaldi (1985), Gould (1988), Harary (1969a), Liu (1985), Roberts (1976, 1978,
1984), and Wilson (1979). Comparable coverage of the material presented in this chapter is contained in Chapter 3
(Sections 3 and 4) and Chapter 6 (Section 1) of Roberts (1984). See the papers by Birkhoff and Lewis (1960) and Read
(1968) for additional reading on chromatic numbers. The famous four-color conjecture originated in 1852 and was solved
124 years later when Appel and Haken (1976) demonstrated that every planar map can be colored with four or fewer
colors. See the paper by Haken (1977) for a description of the proof of this theorem. Since their proof depended on
dividing the problem into several cases depending on the arrangement of the countries in the map and analyzing the various
colorings of these arrangements by writing computer programs, there is a controversy over the nature of this proof. See the
paper by Tymoczko (1980) for some philosophical underpinnings regarding this controversy. Is there a purely mathematical
proof without using any computer analysis showing that every map can be colored with four or fewer colors? This is still an
open problem. An interesting historical account of this celebrated conjecture prior to its proof can be found in May (1965)
and Harary (1969b).

5.7 EXERCISES

5.1. Find an Eulerian circuit in the graph of Figure 5.7.1.
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5.2. Prove that a graph is Eulerian if and only if its set of edges can be partitioned into cycles.

5.3. Show that a weakly connected digraph with an Eulerian circuit is strongly connected.

5.4. Show that a weakly connected digraph with an Eulerian path is unilaterally connected.

5.5. Can there be a bridge in an Eulerian graph?

5.6. Can there be a bridge in a graph which has an Eulerian path?

5.7. Construct a word with four letters A, B, C, and D using the following matrix:

5.8. Construct a word with four letters A, B, C, and D with the frequency set {2, 1, 2, 4} using the following matrix:

5.9. Draw the de Bruijn digraph G(p, n) and obtain a de Bruijn sequence B(p, n) when (a) p = 3, n = 2, and (b) p = 3, n
= 3.

5.10. Draw a connected graph with five vertices that is Eulerian but not Hamiltonian.

5.11. Draw a connected graph with four vertices that is Hamiltonian but not Eulerian.

5.12. Draw a connected graph with four vertices that is both Eulerian and Hamiltonian.

5.13. Draw a connected graph with four vertices that is neither Eulerian nor Hamiltonian.

5.14. Prove Theorem 5.3.2.

5.15. Prove that a bipartite graph with an odd number of vertices is non-Hamiltonian.

5.16. If there is a Hamiltonian path from vertex i to vertex j in a digraph G, then i is a “winner” and j is a “loser” in G.
Construct a tournament with five players such that (a) each player can be a winner as well as a loser, (b) there is a
unique winner and a unique loser.

5.17. Is every tournament unilaterally connected? What can you say about the converse? Justify your answers.



5.18. Use the largest first algorithm to color the vertices in the graph of Figure 5.7.2.

FIGURE 5.7.2



Trees and Their Applications

6.1 DEFINITIONS AND PROPERTIES

A connected graph with no cycles is a tree. One of the more widely studied discrete structures is that of a tree. Trees are
especially suited to represent hierarchical structures and addresses and labels. Special types of trees are used in coding
theory and in searching. We will be seeing some of these applications in this chapter. Before doing this we shall establish a
few results pertaining to the characterization of trees.

1. In a tree there is a unique simple path between every pair of vertices. We prove this assertion as follows. Let u
and v be two vertices in a tree T. Since T is connected there is a path between u and v and therefore there is a simple path
between them. If possible, let P and P′ be two simple paths between them. If the two paths are not the same, there is an
edge in P that is not in P′. Let us assume that e is the first edge that we come across when we go from u to v that is in P but
not in P′.
Let

and

Let W be the set of intermediate vertices in P between ui+ 1 and v, and let W′ be the set of intermediate vertices in P′
between vi + 1 and v. If W and W′ have no elements in common, then we get a cycle starting from ui going through all the
vertices in W, vertex v, and then all the vertices in W′. On the other hand, if W and W′ have a common vertex, let r be the
least subscript of a vertex ur in P such that ur is in W′. So none of the intermediate vertices in P between ui and ur is in P′.
Then we have a cycle starting from ui which goes through all the vertices in W up to ur and then all the vertices in W′ from
ur to ui. Thus the existence of two distinct simple paths between two vertices implies the existence of a cycle. By definition,
a tree is acyclic. So there is a unique path between every pair of vertices in a tree.

2. Conversely, if there is a unique simple path between every pair of vertices in a graph G, then G is a tree.
Suppose that G is not a tree. Then there is at least one cycle C in G which implies that between any two vertices in C there
are two simple paths and this is a contradiction.

3. In a tree T, an edge between two vertices v and w is the unique path between them, and if we delete this edge from
T, then T is no more connected. In other words, every edge in a tree is a bridge.

4. Conversely, if G is a connected graph such that every edge is a bridge, then G is a tree. Suppose that G is not
a tree and let C be a cycle in G. Let e be any edge in C. Let G′ be the subgraph of G after deleting e. Since e is a bridge G′
is no more connected. Let p and q be any two vertices in G. There is a path P between p and q in G. If P does not contain
e, then P is a path between p and q in the (disconnected) graph G′ as well. On the other hand, if e = (v, w) is an edge in P
that is also in the cycle C which starts from the vertex t, we have the following path in G′ between p and q:

p. . . . .v. . . . .t. . . . .w. . . . .q

In other words, there is a path between every pair of vertices in G′, and this contradicts the fact that G′ is not connected.
5. A tree T with n vertices has (n – 1) edges. We prove this by induction on n. This is true when n = 1. Suppose that



it is true for all m, where 1 < m < n. Let e = {u, w} be an edge in T. Since T is a tree, e is a bridge. Delete e to obtain the
subgraph T′ which has two connected components, H and H′. Both H and H′ are trees with k and k′ vertices. Now k and k
′ are positive integers whose sum is n. So they both are less than n. By our induction hypothesis H has (k – 1) edges and H′
has (k′ – 1) edges, and together they have k + k′ – 2 = n – 2 edges. So T has (n – 2) edges, and consequently, T has (n –
1) edges.

6. The converse of (5) is true: any connected graph G with n vertices and (n – 1) edges is a tree. For if G = (V, E)
is not a tree, there is an edge e that is not a bridge. We delete e to get a connected subgraph G′ = (V, E′). Continue thus
until we get a subgraph H = (V, F) in which every edge is a bridge. So H is a tree with (n – 1) edges. Let k (> 0) be the
number of edges removed from G in this process. We see that after deleting k edges from (n – 1) edges we are left with (n
– 1) edges!

7. Our next assertion is that any acyclic graph G = (V, E) with n vertices and (n – 1) edges is connected and
therefore a tree. Suppose that G is not connected. Let the components of G be Gi (with ni vertices) for i = 1, 2, . . . , r.
Now each component Gi is acyclic and connected and therefore a tree with ni – 1 edges. Thus the total number of edges in
G = n1 + n2 + · · · + nr – r that is equal to n – r. But G has exactly n – 1 edges. So r = 1. That is, G has exactly one
acyclic component.

8. Let G be any graph with n vertices. If any two of the following statements are true, then the third is also
true: (a) G is connected, (b) G is acyclic, and (c) G has (n – 1) edges.

9. Let T be any tree. Join any two nonadjacent vertices v and w by a new edge, resulting in a graph G. Then G has
exactly one cycle, consisting of the new edge and the unique simple path in T between v and w. On the other hand, if G is
an acyclic graph such that whenever any two nonadjacent vertices are joined by a new edge the resulting graph has exactly
one cycle, then G is a tree. The proof is by contradiction. Suppose that G is not a tree. Then it is not connected. So there is
a pair of vertices p and q in G such that there is no path between them and so the addition of the new edge {p, q} does not
create a cycle.

10. Let G be any connected graph such that whenever two nonadjacent vertices are joined by a new edge, the
resulting graph has exactly one cycle. Then G is acyclic and therefore a tree.

We now summarize this relentless sequence of assertions as three theorems.

THEOREM 6.1.1

The following are equivalent in a simple graph G:
(a) G is connected and acyclic.
(b) G is connected and the number of edges in G is one less than the number of vertices in it.
(c) G is acyclic and the number of edges in G is one less than the number of vertices in it.
(d) G is connected and every edge is a bridge.
(e) There is a unique simple path between every pair of vertices in G.
(f) G is acyclic and if any two nonadjacent vertices are joined to construct G′, then G′ has exactly one cycle.
(g) G is connected and if any two nonadjacent vertices are joined to construct G′, then G′ has exactly one cycle.

DEFINITION 6.1.1

A subgraph T of a graph G with n vertices is a spanning tree in the graph if (a) T is a tree and (b) T has n vertices.

THEOREM 6.1.2

A graph G is connected if and only if it has a spanning tree.

THEOREM 6.1.3

Let G be a simple graph with n vertices. If a subgraph H with n vertices satisfies any two of the following three
properties, then it satisfies the third as well.

(a) H is connected.
(b) H has (n – 1) edges.
(c) H is acyclic.

(Notice that Theorem 6.1.3 characterizes spanning trees in a graph. In Chapter 4 we used the depth-first search
procedure to obtain a spanning tree in a connected simple graph.)

6.2 SPANNING TREES



In Chapter 4 we mentioned that graph theory was “born” in 1736. In the same vein one could say that trees were first used
by G. B. Kirchhoff (1824–1877) in 1847 in his work on electrical networks. Analysis of an electrical network actually
reduces to finding all spanning trees of the graph under consideration. Spanning trees also form the basis for a large number
of problems in network optimization. Some of these problems are taken up in Chapter 7. Even though Kirchhoff used trees
in his analysis, it was Arthur Cayley (1821–1895) who, a decade later, used trees systematically in his attempts to
enumerate the isomers of the saturated hydrocarbons (compounds of the form CkH2k+2), which can be represented as a
connected graph with 3k + 2 vertices (one for each carbon atom C and one for each hydrogen atom H). Since the valences
of C and H are 4 and 1, the sum of all the degrees is 4k + (2k + 2) and therefore there should be 3k + 1 edges. Thus the
graph under consideration is, in fact, a tree. In other words, the graph T of a hydrocarbon with k carbon atoms is a spanning
tree in an arbitrary graph with 3k + 2 vertices such that the degree of each C vertex is 4 and the degree of each H vertex is
1. The natural question to ask: How many distinct hydrocarbons can exist for a given value of k? In this context Cayley
proved a theorem on the number of spanning trees in a graph. A tree with n vertices is called a labeled tree if each vertex is
assigned a unique label i where i is a positive integer between 1 and n. Two labeled trees are distinct if their edge sets are
different. For example, 1- - -2- - -3, 1- - -3- - -2, and 2- - -1- - -3 are three distinct labeled trees when n = 3, whereas 1-
- -2- - -3 and 3- - -2- - -1 are not distinct labeled trees.

THEOREM 6.2.1

The number of distinct labeled trees (with n vertices) is nn–2 (where n is at least 2).

Proof:

Let N′ be the set of all (n – 2)-tuples of N = {1, 2, . . . , n}. Each element in N′ has n – 2 components and each
component can be chosen in n ways. So the cardinality of N′ is nn–2 . Our theorem is proved if we establish a one-to-one
correspondence between N′ and the set of distinct labeled trees with n vertices. Let T be any labeled tree with n vertices,
and let W be the set of vertices in T of degree 1. (A vertex of degree 1 in a tree is a leaf.) W has at least two and at most n
– 1 elements. Arrange the elements of W in an increasing order and let w1 be the first element in W. Let s1 be the unique
vertex adjacent to w1. Next, let T′ be tree obtained by deleting w1 from T, and let W′ be the set of vertices of degree 1 in T′
arranged in an increasing order. If w2 is the first element in W′, we take s2 as the unique vertex adjacent to w2 in T′. We
continue this process until we get a (n – 2)-tuple s of the form (s1  s2  s3  · · ·  sn–2) establishing that every labeled tree
corresponds to a unique element in N′.

Before we establish the result in the opposite direction, let us actually obtain a 10-tuple for a labeled tree T with 12
vertices as shown in Figure 6.2.1. W = {5, 6, 7, 8, 9, 10, 11, 12} and s1 = 1, which is the vertex adjacent to the first
element in W. Delete from T the vertex 5 and the edge joining 1 and 5 to obtain the tree T′ in which W′ is the set of all
vertices of degree 1 arranged in an increasing order. The first element in W′ is 1, so s2 is 4.

Next, delete vertex 1 and the edge joining 1 and 4. The first vertex of degree 1 in the new tree is 6, which is adjacent
to 2. Thus s3 is 2. We continue similarly and observe that s4 = 2, s5 = 4, s6 = 3, s7 = 3, s8 = 3, s9 = 4, and finally, s10 = 4.
Thus the labeled tree T corresponds to the 10-tuple (1 4 2 2 4 3 3 3 4 4).

FIGURE 6.2.1

Next, we prove that every (n – 2)-tuple s defines a unique labeled tree with n vertices. If



s = (s1  s2  s3  · · ·  sn–2)

we define

v1 = the first element in N that is not in s
v2 = the first element in N – {v1} that is not in s – {s1}
v3 = the first element in N – {v1, v2} that is not in s – {s1, s2} , etc.

We repeat this process until we get v, (i = 1, 2, 3, . . .. n – 2). The two remaining elements in N are denoted by x and
y. Now construct a graph whose vertex set is N for which the edges are the (n – 2) edges joining si and vi and the edge
joining x and y. The graph thus obtained is the unique labeled tree that corresponds to s.

For example, if

s = (1  4  2  2  4  3  3  3  4  4)

then n = 12 and N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Thus v1 = first element in N that is not in s. So v1 = 5. Next v2
= first element in N – {5} that is not in s – {1}. So v2 = 1. v3 = first element in N – {5, 1} that is not in s - {1, 4}. So v3 =
6. Continuing like this, we get v4 = 7, v5 = 2, v6 = 8, v7 = 9, v8 = 10, v9 = 3, and v10 = 11. Finally, x = 4 and y = 12.
Now construct the graph with vertex set N and edges joining si and vi (i = 1, 2, 3, . . . , 10) and the edge joining x and y.
This graph is precisely the labeled tree in Figure 6.2.1. Thus the one-to-one correspondence between N′ and the set of
distinct labeled trees with n vertices is established proving the theorem.

(Note: Cayley’s theorem is an existence theorem. It does not solve the problem of finding all the distinct labeled
trees.)

6.3 BINARY TREES

A digraph is called a directed tree if its underlying graph is a tree. A directed tree is a rooted tree if (1) there is exactly
one vertex (called the root) with indegree 0 and (2) the indegree of every other vertex is 1. A vertex in a rooted tree is a
terminal vertex (or a leaf) if its outdegree is 0. A nonterminal vertex is called an intermediate or internal vertex. The
root is thus an intermediate vertex. The number of arcs in the path from the root to a vertex is called the level of that vertex.
By definition the level of the root is 0. If the levels are 0, 1, 2, . . . , k, then k is the height of the tree. Vertex v is a
descendant of vertex u if there is an arc from u to v. If T is a rooted tree, a subtree T′ at vertex v is a rooted tree T′ =
(V′, E′) such that (1) the root of T′ is at v, (2) V′ consists of v and all its descendants in T, and (3) E′ contains all the arcs of
all the directed paths (in T) from v to all the leaves. A tree is pruned at vertex v if we delete all the descendants of v and
all the arcs of all the directed paths emanating from v so that v becomes a leaf of the pruned tree.

A rooted tree is a binary tree if the outdegree of each intermediate vertex is at most 2. In a regular binary tree the
outdegree of each intermediate vertex is exactly 2. A regular binary tree is full if all its leaves are at the same level. Many
discrete structures can be represented as binary trees. We discuss here an application in coding theory.

In a computer, since all information is stored in the form of binary numbers, whenever a letter in the alphabet or a
symbol is entered into the computer it is converted into a binary word by means of a character code that is a one-to-one
correspondence between the set of all characters and a set of binary numbers. For example, two of the most commonly
used character codes are the ASCII (American Standard Code for Information Interchange) and EBCDIC (Extended
Binary-Coded Decimal Interchange Code). In both these codes, each character is assigned a code of fixed length and
therefore they are known as fixed-length character codes. In ASCII the length is usually 8, and it is 6 in EBCDIC. Thus
to encode the number 247 we use a message of 24 bits: 011100100111010001110111. Decoding is also straightforward.
The number of bits in a message is a multiple of 8 and we use the code systematically to decipher the message.

The chief drawback of a fixed-length character code is that all characters, whether they are used frequently or not,
need the same number of bits. It is certainly advantageous to have a code in which more frequently used characters use
fewer bits so that the total length of the message is as small as possible. In other words, a variable-length character code
is more appropriate. But while using such a code, we have to make sure that the decoding is unambiguous. For example, if
the codes for 1, 2, and 3 are 01, 0, and 00, respectively, then the word 0001 can be decoded as 221 or 31. An obvious
reason for this ambiguity is the fact that the code for 2 appears as a part of the code for another number in its beginning. A
word w is a prefix of another word v if v = wp, where p is another word. A character code is said to have the prefix
property if no code for a symbol is a prefix of the code for another symbol. A character code is a prefix code if it has the
prefix property.

It is easy to see that a binary prefix code can be obtained straight from a regular binary tree. First we label the two
arcs incident from an intermediate vertex as 0 and 1. Then assign to each leaf a sequence of bits that is the sequence of
labels of the arcs from the root to that leaf. A character code that assigns each character into the sequence which
corresponds to a leaf is necessarily a prefix code. For example, the assignment A = 00, B = 010, C = 011, D = 100, E =



101, and F = 11 obtained from the regular binary tree of Figure 6.3.1 is a prefix code for the alphabet {A, B, C, D, E, F}.
Conversely, corresponding to a given prefix code we can construct a regular binary tree by pruning a full regular

binary tree of length k, where k is the length of the largest sequence in the code. For example, consider the code R = 00, E
= 01, A = 10, and D = 111 with the prefix property. Here k = 3 and first we construct a full regular binary tree of height 3
and label each arc emanating from any intermediate vertex as 0 or 1. Then assign to each vertex of the tree a sequence of
bits that is the sequence of labels of the arcs from the root to that vertex. Thus each binary sequence of length less than or
equal to k is assigned to a unique vertex. Locate those vertices whose binary sequences are precisely equal to the
sequences in the given prefix code and prune the tree at these vertices. Also delete leaves that do not correspond to
sequences in the code. The binary tree of Figure 6.3.2 is obtained for the given prefix code after locating the appropriate
vertices.

FIGURE 6.3.1

FIGURE 6.3.2

Thus given a prefix code an arbitrary string can be unambiguously decoded by proceeding from left to right in the
string, finding the first substring that is a character, then the subsequent substring, and so on. For example, if the prefix codes
are 00, 010, 011, 100, 101, and 11, the unique deciphering of the string 10111100100000100111110 is 101, 11, 100, 100,
00, 010, 011, 11. The last two bits are not used in this case.

Finally, for a given alphabet it is possible to have more than one prefix code. For example, both {00, 01, 10, 11} and



{0, 11, 100, 101} are prefix codes for {A, B, C, D}. So it is natural to ask whether one code is “better” than the other. It is
in this context that we consider the efficiency of a code.

Let {a1, a2, . . . , an} be an alphabet and let fi be the frequency with which ai appears on an average. Let C be any
prefix code for the alphabet and let li be the length of the code for ai. The weight w(C) of the code C is f1l1 + . . . + fnln.
The problem thus is to find a code C such that w(C) is as small as possible and it is equivalent to the following problem:
Given that fi (i = 1, 2, . . . , n) is the frequency of the character ai in an alphabet of n letters, find a regular binary tree with n
terminal vertices such that f1l1 + f2l2 + . . . + fnln is a minimum where li is the length of the path from the root to the ith
terminal vertex, which represents ai. Such a tree is known as an optimal binary tree for the given frequency distribution. We
now discuss an elegant procedure due to D. Huffman (1952) to obtain such a tree.

First we arrange the frequencies in nondecreasing order from f1 to fn. Huffman’s algorithm is based on the following
fact (see Theorem 6.3.1 below): If T′ is an optimal tree obtained using this procedure for the (k – 1) frequencies {f1 + f2, f3,
. . . , fk} with (k – 1) terminal vertices, the tree T obtained from T by introducing two new terminal vertices v1 (to represent
f1) and v2 (to represent

f2) and by joining the terminal vertex v in T″ which represents f1 + f2 to v1 and v2 is an optimal tree for the set {f1, f2,
f3, . . . , fk}. (The sum of f1 and f2 need not be less than f3. Tiebreaking is arbitrary in the sense that if f1 + f2 = f3, then v
can be either the vertex that represents f1 + f2 or the vertex that represents f3. Notice that v is not a terminal vertex in T.)

Here is an example that illustrates the construction of a Huffman code for an alphabet of six letters with a frequency
distribution S1 = {3, 5, 6, 8, 10, 14}. Add the first two numbers and rearrange to get S2 = {6, 8, 8, 10, 14}. Repeat this
process to get S3 = {8, 10, 14, 14}, S4 = {14, 14, 18}, and S5 = {18, 28}. Now construct an optimal tree for S5 as in
Figure 6.3.3. Now the frequency 28 is the sum of 14 and 14 in S4, and this will take us to S4 and the tree in Figure 6.3.4.
Then we use the decomposition 18 = 8 + 10 to get a tree for S3 as in Figure 6.3.5. After that we use the decompositions 14
= 6 + 8 (once) and 8 = 3 + 5 to get the desired Huffman tree, as in Figure 6.3.6.

Thus a Huffman code for the frequency distribution {3, 5, 6, 8, 10, 14} is {000, 001, 110, 111, 01, 10} with lengths
3, 3, 3, 3, 2, 2, and the weight of this code is 3.3 + 3.5 + 3.6 + 3.8 + 2.10 + 2.14 = 114, which is a minimum.

FIGURE 6.3.3

FIGURE 6.3.4

THEOREM 6.3.1

The regular binary tree obtained by using the Huffman algorithm is an optimal tree.

Proof:

Let the n frequencies fi (i = 1, 2, . . . , n) be in a nondecreasing order. The number of regular binary trees with n
terminal vertices representing these n frequencies is finite, and therefore there is a regular binary tree T′ with n vertices for
which the weight w(T′) is a minimum. Let v be an internal vertex of T′ such that the distance (i.e., number of edges in the
path) from the root of the tree to v is not less than the distance from the root to any other nonterminal vertex, and let the
descendants of v be the terminal vertices representing fi and fj . Now assign the value f1 to the vertex that represents fi and
the value fi to the vertex that represents fj. At the same time, assign the value fi to the vertex that represents fi and the value



fj to the vertex that represents f2. The weight w(T) of the resulting tree T cannot be more than w(T″) because of the choice
of v. At the same time w(T) cannot be less than w(T″) because T″ is an optimal tree. Hence we conclude that there is an
optimal tree T for which f1 and f2 are the descendants of the same nonterminal vertex that is at a maximal (in comparison
with other nonterminal vertices) distance from the root of T.

FIGURE 6.3.5

FIGURE 6.3.6

Next, let T″ be the regular binary tree with (n – 1) terminal vertices obtained from the tree T obtained above by
deleting the two terminal vertices that correspond to f1 and f2, so that the vertex v (from which these two vertices descend)
becomes a terminal vertex, which corresponds to the frequency f1 + f2 . It is easy to see that w(T) = w(T″) + f1 + f2 . Thus
T is optimal if and only if T″ is optimal. The conclusion of the theorem follows by induction on n.

We conclude this discussion by establishing that Huffman’s algorithm indeed gives a coding system that has the desired
property: The larger the frequency of a character, the shorter the length of the code that represents that character.

THEOREM 6.3.2

Let T be an optimal Huffman tree for the n characters ai with frequencies fi, and let di be the length of the code that
represents ai (i = 1, 2,. . ., n). If fi < fj, then di ≥ dj.

Proof:

The length from the root of T to the terminal vertex that represents ai is dj. Let the terminal vertex that represents fi be
given the code ai, and let the terminal vertex that represents fj be given the code ai. Even though the tree is the same, its
weight will change. Let w be the old weight and w′ be the new weight. Of course, w ≤ w′. Now w – w′ = (di – dj)(fi – fj) .
Thus di ≥ dj.

Binary Search Trees



An important operation that frequently arises in computer science is the use of binary trees to search through a list or a table,
the elements of which constitute a linearly ordered finite set. If T is a binary tree and if the outdegree of a vertex v is 2, then
v has two descendants—a left descendant and a right descendant. (If the out degree of v is 1, the unique descendant
may be considered as either the left descendant or the right descendant.) The tree rooted at the left descendant of a vertex is
called the left subtree of this vertex. The tree rooted at the right descendant of a vertex is called the right subtree of
this vertex.

Suppose that T is a binary tree. To each vertex v of the tree, a real number k(v) is assigned. This number k(v) is
called the key of the vertex. Assign keys to the vertices of T such that the key of a vertex is (1) larger than the keys of the
vertices in its left subtree and (2) smaller than the keys of the vertices in its right subtree. A binary tree with keys defined by
this rule is called a binary search tree. In Figure 6.3.7 we have a binary search tree with nine vertices in which the set of
keys is {9, 7, 13, 4, 8, 11, 15, 3, 5}.

If T is an arbitrary binary tree, it is possible to assign keys to the vertices of T such that T is a binary search tree. This
is proved in Reingold (1977), in which an algorithm to convert a binary tree into a binary search tree is also derived. To
search whether a particular item q is in a list, we use the binary search tree of the list as follows: First we start with the root.
At any stage, the key of the vertex x is examined. In the beginning, x is the root. If q = k(x), we found the desired item in
the list. If q < k(x), we ignore the right subtree rooted at x and look at the left descendant of x. If q > k(x), we ignore the
left subtree rooted at x and look at the right descendant of JC. We continue this process until we reach a tree with one
vertex.

In this search process, the number of comparisons to be made will be h + 1 in the worst case where h is the height of
the binary search tree. Thus the computational complexity of this algorithm is minimized if we can find a binary search tree of
minimum height. In this context, the following theorem is very handy.

FIGURE 6.3.7

THEOREM 6.3.3

The minimum height of a binary tree with n vertices is m – 1 where m is the ceiling of log(n + 1).

Proof:

Let T be any binary tree with n vertices, and let h be its height. There are at most 2k  vertices at level k, where k = 0,
1, 2, . . . , h. So

n ≤ 1 + 2 + 22 + 23 + . . . + 2h = 2h + 1 – 1

Hence h + 1 ≥ log(n +1), which implies that h ≥ m – 1, where m is the ceiling of log(n + 1).

A recursive procedure can be used to construct a binary search tree corresponding to a given linearly ordered list as
follows. Start with a tree containing just one vertex, which is the root. We assign the first file in the list as the key of this
vertex. To add a new file from the list, this file is first compared with the keys of the existing vertices in the tree, starting at
the root and moving to the left if the file is less than the key of the vertex under consideration and if this vertex has a left
descendant, or moving to the right if the file is greater than the key of the vertex under consideration and if this vertex has a
right descendant. When the current file is less than the key of a vertex and if this vertex has no left descendant, a new vertex
with this file as its key is inserted as a new left descendant. Similarly, when a file is greater than the key of a vertex and if this



vertex has no right descendant, a new vertex is added with this file as its key as a new right descendant. This procedure is
illustrated in the following example.

FIGURE 6.3.8

Example 6.3.1

Form a binary search degree to represent {4, 6, 2, 8, 5, 3, 7, 1}.

Solution The binary search tree is displayed in Figure 6.3.8. The key of the root is 4, which is the first element in the
set. The next element, 6, is more than 4. Since 4 has no right descendant at this stage, a new vertex with key 6 is
created as the right descendant of 4. The next element is 2. We start with the root and move left since 2 < 4. Since 4
has no left descendant, a new vertex is constructed as the left descendant of 4, and this vertex has the key 2. The next
element is 8. Compare 8 with 4 and we move right. Compare 8 with 6 and we move right. Now the vertex with key
as 6 has no right descendant. Now a new vertex with key 8 is constructed as the right descendant of the vertex with
key 6. We continue this process until we reach the last item in the list.

6.4 NOTES AND REFERENCES

Some useful general references on trees and their properties are the appropriate sections from the books by Behzad et al.
(1979), Berge (1962), Bondy and Murty (1976), Deo (1974), Gondran and Minoux (1984), Gould (1988), Grimaldi
(1985), Harary (1969a), Liu (1985), Roberts (1984), Townsend (1987), Tucker (1984), and Wilson (1979). Theorem
8.2.1 is due to Arthur Cayley (1821–1895), who used graph theory in connection with enumeration problems in physical
chemistry. For additional treatment of Huffman codes, see Huffman (1952), Markowsky (1981), and Standish (1980). See
Chapter 2 of Knuth (1973a) and Chapter 6 of Knuth (1973b) for a complete treatment of trees and search trees.

6.5 EXERCISES

6.1. If G is a forest with n vertices, m edges, and k components, obtain an expression for m in terms of n and k.

6.2. Suppose that a tree has two vertices of degree 5, three vertices of degree 4, six vertices of degree 3, eight vertices
of degree 2, and r vertices of degree 1. Find r.

6.3. G is a connected graph with 20 vertices. Find the minimum number of edges that G can have.

6.4. G is a connected graph with 20 edges. Find the maximum number of vertices that G can have.

6.5. Suppose G has four components, 20 edges, and r vertices, Find the maximum value of r.

6.6. Show that every tree is a bipartite graph. Which trees are complete bipartite graphs?

6.7. An edge e in G is in every spanning tree of G. What can you say about e?

6.8. An edge e in G is in no spanning tree of G. What can you say about e?

6.9. If T and T′ are two spanning trees in G, is it necessary that T and T′ have an edge in common? Either prove this or



produce a counterexample.

6.10. Show that a connected graph in which every vertex is even must have a cycle.

6.11. If e is an edge in a connected graph G (with no loops), then prove that there is a spanning tree T(e) which contains e.

6.12. If e and f are two edges in a simple graph, there is a spanning tree T(e, f) that contains both e and f.

6.13. Find the unique labeled tree that corresponds to s = (8 8 7 7 7 6 6).

6.14. If the edges of a labeled tree are {1, 2}, {2, 3}, {2, 4}, {4, 5}, {4, 7}, {5, 6}, {7, 8}, and {8, 9}, find s.

6.15. Use the prefix code A = 000, B = 001, C = 01, D = 10, E = 111, and R = 110 to decode the following word: 
000001110000010001000000111000011

6.16. If the frequencies of the six letters in the prefix code in Problem 6.15 are 8, 10, 4, 5, 12, and 10, find the weight of
the code.

6.17. Obtain an optimal prefix code for the data in Problem 6.16 and find the weight of this code. Encode the word that
appears in Problem 6.15 using this code. What is the length of this word if we use this optimal code in the worst
case?

6.18. Decode the word 11111011001001 using the optimal code obtained in Problem 6.17.

6.19. Find a regular binary tree of height k with 13 vertices such that (a) k is as small as possible, and (b) k is as large as
possible.

6.20. A rooted tree of height k is said to be a balanced tree if every terminal vertex is at level k or (k – 1). Construct a
balanced binary tree with n vertices when n = 11 and n = 12.

6.21. Construct a binary search tree (using alphabetical order) for the set {Hungary, Germany, Poland, Bulgaria, Romania,
Czechoslovakia, Albania, Yugoslavia}.



Spanning Tree Problems

7.1 MORE ON SPANNING TREES

If G is a connected graph with n vertices, a spanning tree in G, as we saw in Chapter 6, is an acyclic subgraph of G with (n
– 1) edges. If T = (V, E′) is a spanning tree in G = (V, E), the edges of G not in E′ are called the chords of T. If e is a
chord joining the vertices u and v, the edges in the unique path in T between u and v together with the edge e form a
unique cycle in G which is called the fundamental cycle of G relative to T with respect to the chord e and is denoted
by CT(e). Thus if G has m edges, it will have m – (n – 1) such fundamental cycles relative to every spanning tree. We
assume that G is a connected graph throughout this chapter unless otherwise stated.

A subset D of the set of edges of a graph G = (V, E) is called a disconnecting set of G if the deletion of the edges in
D from G makes G into a disconnected graph. If V is partitioned into two sets V′ and V″ and if D = (V′, V″) is the set of all
edges in E of the form {i, j}, where i  V′ and j  V″, then D is a disconnecting set.

A disconnecting set D is called a cutset of G if no proper subset of D is a disconnecting set. A disconnecting set
consisting of exactly one edge is, of course, a cutset known as a bridge.

If D is a cutset in G, the deletion of the edges in D disconnects G into exactly two components G′ (with V′ as the set
of vertices) and G″ (with V″ as the set of vertices), and thus D = (V′, V″). On the other hand, if V is arbitrarily partitioned
into two sets W and W′, the disconnecting set D = (W, W′) need not be a cutset. For example, let V = {a, b, c}, E = {{a,
b}, {a, c}}, W = {a}, and W = {b, c}. In this case the disconnecting set D = (W, W′) is not a cutset. So when will a
partition of the vertex set give rise to a cutset?

THEOREM 7.1.1

If the vertex set V of a connected graph G is partitioned into two subsets W and W such that every two vertices in W
(and W) are connected by a path that consists of vertices only from W (and W′), then D = (W, W′) is a cutset.

Proof:

Suppose that D is not a cutset. Then there is proper subset D′ of D that is a cutset. Let e = {w, w′} be an edge in D
that is not in D′, where w is in W and w′ is in W′. Suppose that u and v are any two vertices in G, where u is in W and v is
in W′. By hypothesis there is a path between u and w consisting of vertices from W only, and there is a path between w′ and
v consisting of vertices from W only. Thus there is a path between u and v using the edge e that is not in D′. Thus D′ is not a
disconnecting set, which is a contradiction.

COROLLARY

If T is any spanning tree in G = (V, E), the deletion of any edge in T makes T disconnected by creating two subtrees
with vertex sets W and W′ such that D(W, W′) is a cutset of G.

Thus corresponding to each edge e of a spanning tree T, there is a unique cutset DT(e) called the fundamental cutset
of T with respect to the edge e. Thus any connected graph with n vertices will have a system of (n – 1) fundamental cutsets
with respect to every spanning tree. For example, in the graph of Figure 7.1.1 we have a spanning tree T with edges a, b, c,
d, and e. The chords are p, q, r, and s. T thus has four fundamental cycles (one with respect to each chord of T) and five



fundamental cutsets (one with respect to each edge of T). We see that the edges in the fundamental cycle C(r) are r, c, d,
and e. The edges in the cutset D(b) are b, p, and q.

There is a close relation between the concepts of spanning trees, cycles, and cutsets, and this is the content of the next
two theorems.

FIGURE 7.1.1

THEOREM 7.1.2

Let T be a spanning tree in a connected graph G, and let C and D be a cycle and cutset, respectively, in G. Then:
(a) Either there are no edges in common between C and D or there are an even number of edges in common

between the two.
(b) At least one edge of C is a chord of T.
(c) At least one edge of D is an edge of T.

Proof:

(a) Let D = (W, W′). If all the vertices of C are in one of the two subsets, then of course C and D have no edges in
common. Suppose that w and w′ are two vertices in C where w is in W and w′ is in W. Then the cycle C that starts from w
and ends in w will necessarily use the edges from D an even number of times: Whenever an edge from D of the form {i, j},
where i is in W and j is in W′, is used, an edge of the form {u, v} is also used, where u is in W′ and v is in W.

(b) If no edge of C is a chord of T, then C is a subgraph of T, which is a contradiction since T is acyclic.
(c) If no edge of D is an edge of T, the deletion of the edges from D will not disconnect G because such a deletion

will not affect the spanning tree.

THEOREM 7.1.3

(a) Let D(e) be the fundamental cutset with respect to an edge e of a spanning tree T, and let f be any other element
in this cutset. Then (1) f is a chord of T defining the fundamental cycle C(f), (2) e is an element of C(f), and (3) if e′ is
another chord of T that is not in D(e), then e is not an element of C(e′) .

(b) Let C(e) be the fundamental cycle with respect to the chord e of a spanning tree T, and let f be any other edge in
this cycle. Then (1) f is an edge of the tree defining the fundamental cutset D(f), (2) e is an element of D(f), and (3) if e′ is
another edge of T that is not in C(e), then e is not an element of D(e′) .

Proof of (a):

(1) Any edge f in D(e)other than e, cannot be an edge in T since T is acyclic. So f is a chord defining a fundamental
cycle C(f)

(2) Let f be any edge in D(e) other than f. Then D(e) = {e, f} ∪ A, where A is a set of chords of T, and C(f) = {f}
∪ B, where B is a set of edges of T. The edge f is common for both D(e) and C(f). Recall that D(e) and C(f) should have
an even number of edges in common. Since A and B have no edges in common, we conclude that e is the only other edge
common to both D(e) and C(f). Thus e is an edge in the fundamental cycle C(f) .

(3) Let C(e′) be the fundamental cycle with respect to e′ that is a chord not in D(e). Thus C(e′) = e′ ∪ L, where L is
a set of edges of T, and D(e) = e ∪ M, where M is a set of chords of T. If e is in C(e′), then e′ will be in D(e), which is
against our assumption. So e is not in C(e′).

Proof of (b):

This proof is similar to that of (a) and is left as an exercise.



We can restate parts (a) and (b) of Theorem 7.1.3 as follows:

(a) If e is any edge of a spanning tree T in a connected simple graph G, then (1) there is a unique cutset D(e); (2) if f
is any edge in this cutset other than e, then f is a chord of T that defines a unique cycle C(f) such that e is an edge
in this cycle; and (3) if e′ is a chord of T that is not in D(e) defining a unique cycle C(e′) then e is not an edge in
C(e′).

(b) If e is any chord of a spanning tree T in a connected simple graph G, then (1) there is a unique cycle C(e); (2) if f
is any edge in this cycle other than e, then f is an edge of T that defines a unique cutset D(f) such that e is an edge
in this cutset; and (3) if e′ is an edge of T that is not in C(e) defining a unique cutset D(e′), then e is not an edge in
D(e′) .

If we associate a real number (called the weight) with each edge of a graph G so that G becomes a network, the
weight of a spanning tree T in G is then the sum of the weights of all the edges in T. A spanning tree T is a minimal
spanning tree (MST) if the weight of T does not exceed the weight of any other spanning tree in G. The MST problem
(also known as the minimal connector problem) is the problem of finding a MST in a connected graph G. This optimization
problem has several important practical applications. For example, it can be helpful in planning large-scale communication
and distribution networks when the most important consideration usually is to provide paths between every pair of vertices
in the most economical way. The vertices would be cities, terminals, or retail outlets, and the edges would be highways or
pipelines. The weights corresponding to these edges could be distances or costs or time involved in these processes. See
Graham and Hell (1982) for an exhaustive survey and many references. In this chapter we present two simple algorithms to
find a minimal spanning tree in a graph. One is due to Kruskal (1956), and the other is due to Prim (1957). The approach in
both the methods is greedy: It so happens that if we take the “choicest morsel” at each opportunity without violating any
rules, we will have eventually an optimal solution.

The minimal spanning tree problem has the following generalization. Let W be a subset of the set V of all vertices of a
connected simple graph G. A tree T = (U, F) in G, where W is a subset of U, is called a Steiner tree with respect to the
set W. The minimal Steiner network problem for the set W is the problem of finding a Steiner tree with respect to W of
minimum weight. Thus a minimal Steiner tree with respect to V is a minimal spanning tree in G. It is quite possible that a
minimal Steiner tree with respect to a proper subset W is a minimal spanning tree in G. There is no known efficient algorithm
to solve the Steiner tree problem. An efficient algorithm to obtain an approximate solution is presented in Chang (1972).

7.2 KRUSKAL’S GREEDY ALGORITHM

We list the edges of the connected network with n vertices in an ascending order of nondecreasing weights and then
construct a subgraph T examining these edges one at a time starting with an edge of the smallest weight. An edge will be
added to T as long as it does not form a cycle with some or all the edges of T. The construction halts when T has (n – 1)
edges. Obviously, this greedy procedure ensures that T is a spanning tree. That the T thus obtained is indeed a minimum
spanning tree is a consequence of the following result.

THEOREM 7.2.1

If e is an edge in a cycle C of a connected graph G such that the weight of e is more than the weight of any other edge
in the cycle C, then e is not an edge for any MST in G.

Proof:

Suppose that T is a MST in which e is an edge. Let D(e) be the fundamental cutset with respect to e. Since the edge e
is common for both the cycle C and the cutset D(e), there should be at least one more element f common to both these sets
because the number of elements common to a cycle and a cutset is even. Since f is in D(e), f is necessarily a chord of T. Let
C(f) be the fundamental cycle with respect to f. By Theorem 7.1.2 we know that e is an element of C(f). Now consider the
subgraph H obtained by adjoining f to T. The only cycle in T is C(f), and if we delete e from H, we get a spanning tree T′
with weight less than that of T. This contradiction establishes the fact that e is not an edge of T .

COROLLARY

If the weight of any other edge in C does not exceed the weight of e, there is a minimal spanning tree in which e is not
an edge.

In Kruskal’s algorithm we abandon an edge p in favor of another edge q for inclusion in T (when the weight of p does
not exceed that of q) only when the inclusion of p creates a cycle in which p is an edge with the largest weight. Thus
Kruskal’s algorithm correctly solves the MST problem. It is also an easy exercise at this stage to verify that if all the weights



of the edges in G are distinct, there is a unique MST in G.
As an example, consider the graph of Figure 7.2.1, where we have the sorted list L of all the edges of G as

L = {{1, 2}, (1, 5} {2, 5}, {2, 3}, {3, 5}, {3, 6}, {5, 6}, {1, 4}, {4, 5}}

in an ascending order. The algorithm examines {1, 2} and accepts it for the tree. Then it examines {1, 5} and accepts it.
After that it examines {2, 5} and does not accept it, to avoid the cycle C consisting of {1, 2}, {1, 5} and {2, 5}. Then it
proceeds further and accepts {2, 3}, {3, 6}, and {1, 4} in turn. At this stage it halts because the number of edges accepted
is one less than the total number of vertices. In this graph we have nine edges and we had to examine eight of them before
we stop.

How many computational steps (in this case, comparisons) are needed to arrange (to sort) the m edges of the graph
with nondecreasing order? The number of such comparisons no doubt depends on the algorithm we use to sort the m
elements of the edge set E. One obvious method is as follows: Successively compare the ith term to the (i + 1)st term in the
set, interchanging the two if the ith term is larger than the (i + 1)st term. This procedure is called the bubblesort because the
larger numbers “rise” to the top. The first number in the set has to be compared with at most (m – 1) numbers. Then the
second number has to be compared with at most (m – 2) numbers, and so on. Thus the total number of comparisons in the
worst case if we use the bubblesort algorithm is 1 + 2 + 3 + . . . + (m – 1) = m(m – l)/2, which is a polynomial in m of
degree 2. In other words the worst-case complexity of the bubblesort algorithm is O(m2). See the Appendix for notations
and concepts related to computational complexity of algorithms. On the other hand if we use the mergesort algorithm (see
Stanat and McAllister, 1977) the number of computations to sort m numbers in the worst case is O(m log m). In general,
there is no sorting algorithm that is more efficient than this. Another well-known algorithm known as heapsort has a worst-
case behavior of O(m log m), whereas the quicksort algorithm has an average-case behavior of O(m log m) and a worst-
case behavior of O(n2), where n is the number of vertices. See Aho et al. (1983) for more details. Under these
circumstances it is reasonable to conclude that the worst-case complexity of Kruskal’s algorithm is O(m log m). Notice,
however, that if m is very large in comparison with n [i.e., when m is O(n2)], it is not very economical to sort all the m edges
when we need only (n – 1) of these m edges. See Syslo et al. (1983) for implementation details of Kruskal ‘s algorithm
when m is large.

FIGURE 7.2.1

7.3 PRIM’S GREEDY ALGORITHM

In this procedure we start with an arbitrary vertex v in G and examine all the edges incident at v. Let e = {v, w} be an edge
with least weight among all these edges. We construct a subgraph T of G starting with e as an edge. Next examine all edges
(other than e) incident at v and all edges incident at w and choose an edge f of least weight among them. This newly found



edge is added to the subgraph T. The edge f is either between v and a new vertex or between w and a new vertex. Let u be
the new vertex. At this stage we have three vertices v, w, and u. Examine all the edges other than e and f that are incident at
v, u, and w and choose the one with the smallest weight such that the edges e and f and the newly selected edge g do not
form a cycle. At this stage g is added to T. We continue until all vertices are accounted for. This procedure obviously ends
up with a spanning tree. That this tree is indeed an MST is a consequence of the two corollaries of the following theorem.

THEOREM 7.3.1

If v is any vertex in a connected network G and if e is an edge incident at v such that the weight of e is less than the
weight of every edge incident at v, then e is an edge of every minimum spanning tree in G.

Proof:

Let T be a MST and suppose that e = {v, w} is not an edge of T. Let H be the subgraph of G obtained by adding e
to T. H has a unique cycle C(e) that can be represented as v- - - - v1 - - - - v2- - - - . . . . vr - - - - w - - - - - v, where e =
{v, w} and let f = {v, v1}. Now both e and f are incident at v and the weight of e is less than that of f. If we remove f from
H we get a spanning tree T′ with weight less than the weight of T, which is a contradiction.

COROLLARY 1

If v is any vertex of G and if e is an edge incident at v such that the weight of no edge incident at v is less than the
weight of e, there is an MST in G for which e is an edge.

COROLLARY 2

If a tree T′ that spans the vertices in a subset W of vertices in a connected graph G = (V, E) is a subtree of a minimal
spanning tree of G, there is a minimal spanning tree of G that contains T′ and the smallest edge connecting W and V – W.

At each iteration of Prim’s algorithm we have a partition of the vertex set V = {1, 2, . . . , n} into subsets P and Q
where P is the set of vertices already accounted for and Q is its complement. Initially, we take P = {1}. We associate a
label t(i) for each vertex i in Q. Initially, t(i) is the weight of the edge between 1 and i if there is an edge; otherwise, it is
infinity (a large positive number). In step 1 we choose a vertex v in Q with the smallest label. Then we locate a vertex u in P
such that the weight d(u, v) of the edge between u and v is t(v). At this point the edge {u, v} is accepted as an edge for the
MST and v is added to P. In step 2 we update the labels of the remaining vertices in Q as follows. If w is in Q, define t(w)
:= Min{t(w), d(v, w)}, where v is the latest entry in P. We continue similarly until P = V.

The worse-case complexity of the algorithm can be obtained immediately. Initially, Q has (n – 1) elements. So in step
1, there will be at most (n – 2) comparisons to start with. Thus this step entails (n – 2) + (n – 3) + . . . + 2 + 1
comparisons. In step 2 we have (n – 2) elements to start with. The label of each vertex w in Q has to be compared with
d(v, w), where v is the latest entry in P. This involves (n – 2) comparisons to start with and then (n – 3) comparisons. Thus
step 2 also entails in the worst case as many comparisons as in step 1. Thus the worst-case complexity of Prim’s algorithm
is twice the sum of the first (n – 2) natural numbers, which is O(n2). The different iterations of this algorithm for the network
of Figure 7.3.1 are as follows.

Iteration 1

Step 1:

A smallest label corresponds to vertex 2. So the edge {1, 2} is in T. The set P is updated as P = {1, 2}.

Step 2:
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Iteration 2

Step 1:

Vertex 5 is chosen for updating P. Since d(1, 5) = d(2, 5), we may take either the edge {1, 5} or the edge {2, 5} for
updating T.

Step 2:



Iteration 3

Step 1:

Vertex 3 is chosen for updating P and the edge {2, 3} is chosen for updating T.

Step 2:

Iteration 4

Step 1:

Vertex 6 is chosen for updating P and the edge {3, 6} is chosen for updating T.

Step 2:

Iteration 5

Step 1:
Vertex 4 is chosen for updating P and the edge {5, 4} is chosen for updating T.

Step 2:
P = {1, 2, 3, 4, 5, 6}               Q = the empty set.
Output: The edges of an M.S.T. are {1, 2}, {1, 5}, {2, 3}, {3, 6}, and {4, 5}.

Prim’s Algorithm (Matrix Method)



Let D = (d(i, j)) be the n × n matrix, where n is the number of vertices of G and d(i, j) is the weight of the edge {i, j} if
there is an edge between i and j, Otherwise, it is infinity. Initially we delete all elements of column 1 and mark row 1 with a
*. All elements initially are with no underlines. Each iteration has two steps as follows.

Step 1: Select a smallest element from the entries (with no underlines) in the starred rows. Stop if no such element exists.
The edges that correspond to the underlined entries constitute a MST.

Step 2: If d(i, j) is selected in step 1, underline that entry, mark row j with a *, and delete the remaining elements in column
j. Go to step 1.

As an illustration, let us consider the network as given in Figure 7.2.1. Initially, we have

in which all entries in column 1 have been deleted and row 1 is starred. At this point no entry is underlined.

Iteration 1:

Iteration 2:

Iteration 3:



Iteration 4:

Iteration 5:

The procedure at this stage halts, giving the edges that correspond to the underlined entries in the matrix D of the last
iteration. Thus the edges {1, 2}, {1, 4}, {1, 5}, {2, 3}, and {3, 6} form a minimal spanning tree in G.

7.4 COMPARISON OF THE TWO ALGORITHMS

The execution time of Prim’s algorithm depends only on the number of vertices, but the time for Kruskal’s algorithm
increases as the number of edges is increased for a network with the same number of vertices. However, in general, it is not
possible to assert which one is more efficient. The efficiency depends on, among other things, the structure of the network
and the distribution of weights. Many variations, based primarily on data structures and implementation details, have been
suggested to improve the efficiency. It has been observed that for networks with vertices up to 100, Prim’s method appears
to be more efficient, particularly so when there is an abundance of edges. The following running times for the two algorithms
run on an AMDHL 470 V/8 computer are reported by Syslo et al. (1983).



7.5 NOTES AND REFERENCES

For a discussion of spanning trees in general, see any standard book on graph theory listed at the end of the book. See
Lawler (1976), where an algorithm (“not a very good one”) is described to solve the Steiner tree problem. For the MST
problem the earliest references are probably the classical papers of Kruskal (1956) and Prim (1957). The matrix
description of Prim’s algorithm is from Hu (1982). For a description of the implementation details of these two greedy
algorithms, a very good reference is the book by Syslo et al. (1983). Other general references are Cheriton and Tarjan
(1976), Graham and Hell (1982), and Gabow et al. (1986).

7.6 EXERCISES

7.1. Suppose that G is a graph in which T is a spanning tree, C is a cycle, and D is a cutset. Prove the following:

(a) C and D have an even number of edges in common.

(b) D and T have at least one edge in common.
(c) C and the complement of T have at least one edge in common.

7.2. Prove that if the weights of the edges in a connected graph are all distinct, there is a unique MST in the graph.

7.3. If e is the unique edge in a connected network with the smallest weight, prove that e is an edge in every MST in G.

7.4. (a) Obtain a Steiner tree with respect to the vertex set W = {1, 2, 4, 5} in the network shown in Figure 7.2.1.

(b) Suppose that the weights of the edges {1, 5}, {2, 5}, and {4, 5} are all 10 units each. What will be the Steiner
tree with respect to W?

7.5. Use Kruskal’s algorithm to obtain a MST in G with the following weight matrix:

7.6. Use Prim’s algorithm (matrix method) to obtain a MST in the graph of Problem 7.5. Do you get the same tree in
Problem 7.5 and in Problem 7.6? Find the weights of the two trees.
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7.7. Modify Kruskal’s algorithm to obtain a maximum spanning tree.

7.8. Obtain a maximum spanning tree in the graph of Problem 7.5.

7.9. Delete as many edges as possible from the graph G of Figure 7.6.1 to get a connected graph G′ such that the weight
of G′ is minimum.

7.10. A cycle in a connected network G that passes through every vertex of G is called a Hamiltonian cycle. An arbitrary
connected network G need not have a Hamiltonian cycle. The sum of the weights of all the edges in a Hamiltonian
cycle is the weight of the Hamiltonian cycle, and a Hamiltonian cycle with minimum weight is called a traveling
salesman (TS) cycle. Show that it is possible to obtain a lower bound for the weight of a TS cycle in a connected
network G using the MST algorithm whether or not G has a Hamiltonian cycle. Obtain such a bound for the network
in Problem 7.10.

7.11. Construct a network with 5 vertices and 5 edges of distinct weights in which the unique MST is the minimal Steiner
tree with respect to 4 of these vertices.



Shortest Path Problems

8.1 INTRODUCTION

If each arc of a digraph is assigned a numerical weight (i.e., a distance), it is a natural and intuitively appealing problem to
find a shortest path (if it exists) from a prescribed vertex to another prescribed vertex. Many optimization problems can be
formulated and solved as shortest path problems of this type, and many complex problems in operations research can be
solved by procedures that call upon shortest path algorithms as subroutines. Shortest path problems are in fact the most
fundamental and also the most commonly encountered problems in combinatorial optimization. According to Goldman
(1982), a shortest path algorithm developed by the U.S. Department of Transportation is regularly used billions of times
every year. We confine our attention to two types of problems: (1) the problem of finding a shortest path from a vertex v to
another vertex w, and (2) the problem of finding a shortest path from every vertex to every other vertex. Of course, (1) is a
special case of (2).

In what follows we discuss two polynomial algorithms to solve the shortest path (S.P.) problem. The first algorithm is
to find a S.P. and the shortest distance (S.D.) from a specified vertex to every other vertex. This algorithm is due to Dijkstra
(1959). Our next algorithm, known as the Floyd-Warshall algorithm, enables us to find the S.P. and S.D. from every vertex
to every other vertex. This procedure is due to Floyd (1964) and Warshall (1962). We assume that the weight function is
nonnegative in the case of Dijkstra’s algorithm even though it is possible to relax this restriction. It should be noted that there
is a real difference between problems involving nonnegative weight functions and problems involving arbitrary weight
functions. In the latter case the problem becomes unbounded if the network has a cycle with negative weight. The Floyd-
Warshall algorithm detects the existence of such negative cycles.

8.2 DIJKSTRA’S ALGORITHM

In the network G = (V, E), let V = {1, 2, . . . , n} and let the weight of the arc (i, j) be a(i, j), which is assumed to be
nonnegative. If there is no arc from i to j (i ≠ j), then a(i, j) is taken as infinity. We thus have the n × n weight matrix A =
(a(i, j)) for G, in which all diagonal numbers are 0. The problem is to find the S.D. and S.P. from vertex 1 to all other
vertices.

The procedure is as follows. Each vertex i is assigned a label that is either permanent or tentative. The permanent label
L(i) of i is the S.D. from 1 to i, whereas the tentative label L′(i) of i is an upper bound of the S.D. from 1 to i. At each stage
of the procedure, P is the set of vertices with permanent labels and T is its complement. Initially, P = {1} with L(1) = 0 and
L’(i) = a(1, i) for each i. When P = V the algorithm halts. Each iteration consists essentially of two steps, as follows.

Step 1 (Designation of a Permanent Label):
Find a vertex k in T for which L′(k) is minimal. Stop if there is no such k because then there is no path from 1 to any

vertex in T. Adjoin k to the set P. Stop if P = V.

Step 2 (Revision of Tentative Labels):
If j is a vertex in T, replace L′(j) by the smaller value of L’(j) and L(k) + a(k, j) . Go to step 1.

We now prove that the algorithm correctly solves the problem by induction on the number of elements in P.



THEOREM 8.2.1

Dijkstra’s algorithm finds the S.D. from 1 to each i.

Proof:

We prove by induction on the number of elements in P that for every i in P, L(i) is equal to the S.D. from 1 to i, and
for every j not in P, L′(j) is the length of a S.P. from 1 to j, every intermediate vertex of which is in P. This is true when P
has one element. Suppose that this is true when P has up to m elements. By induction hypothesis just before vertex k is
adjoined to the set P, L′(k) is equal to the length of a S.P. from 1 to k in which every intermediate vertex is a vertex in P.
Now k is adjoined to P and L(k) = L’(k) . We claim that L(k) is the S.D. from 1 to k. If not, let d be the S.D. from 1 to k.
Then d < L(k) = L′(k) . So any S.P. from 1 to k should have at least one vertex not from P as an intermediate vertex. Let v
be the first such vertex. Let d′ be the S.D. from 1 to v. Then, obviously, d′ ≤ d. But d < L′(k), which implies that d < L′(k) .
This contradicts the assumption that L′(k) is minimal.

The worse-case complexity of the algorithm is O(n2) . This can be established as follows. At most there are n
iterations. In Step 1, in the first iteration we have at most (n – 2) comparisons, in the next iteration we have at most (n – 3)
comparisons, and so on. Therefore, there will be at most (n – 2) + (n – 3) + . . . + 1 comparisons in Step 1. In Step 2 we
again have at most (n – 2) comparisons and also (n – 2) additions in the first iteration. Thus in Step 2 we have (n – 2) + (n
– 3) + . . . + 1 comparisons and an equal number of additions in the worst case. Thus in all we have (n – 1)(n – 2)
comparisons and (n – l)(n – 2)/2 number of additions, establishing the polynomial complexity of the algorithm.

Once the S.D. from 1 to i is known it is easy to find a S.P. from 1 to i by examining vertices j such that (1) L(j) is less
than L(i) and (2) there is an arc from j to i. Here is an illustrative example to find the S.D. and S.P. from vertex 1 to the
remaining vertices in a directed network as shown in Figure 8.2.1.

Iteration 1

Step 1:

FIGURE 8.2.1

Vertex 2 gets a permanent label.

Step 2:



Iteration 2

Step 1:

Vertex 3 gets a permanent label.

Step 2:

Iteration 3

Step 1:

Vertex 4 gets a permanent label.

Step 2:

Iteration 4

Step 1:



Vertex 6 gets a permanent label.

Step 2:

Iteration 5

Step 1:

Vertex 5 gets a permanent label.

Step 2:

Iteration 6

Step 1:

Vertex 7 gets a permanent label.

Step 2:



Once we obtain the S.D. from vertex 1 to each vertex, it is very easy to determine a shortest path from 1 to each vertex.
This is achieved by constructing a shortest distance tree rooted at 1 as follows.

For each vertex i (other than 1), find a vertex j such that (1) there is an arc from j to i in the network, (2) L(j) < L(i),
and (3) L(j) + a(j, i) = L(i) . Tie-breaking is arbitrary. Include arc (j, i) in the tree. In our example there are arcs from 3 and
4 to 6. We see that

L(3) + a(3, 6) = 5 + 4 = 9 = L(6)

and

L(4) + a(4, 6) = 7 + 5 = 12

FIGURE 8.2.2

Thus arc (3, 6) is in the tree. It is easily seen that there is a tie between (3, 5) and (6, 5) to be included in the tree and we
can take only one of them. In Figure 8.2.2 we have a S.D. tree rooted at 1, giving the shortest paths from 1 to all other
vertices.

Note:

Dijkstra’s algorithm need not solve the S.D. problem for an arbitrary weight function. Consider the network G = (V,
E) where V = {1, 2, 3} and the arcs are (1, 2), (1, 3), and (2, 3) with weights 10, 8, and – 3, respectively. In iteration 2 we
get L(3) = 8, but the S.D. from 1 to 3 is only 7.

8.3 FLOYD-WARSHALL ALGORITHM

We saw that Dijkstra’s algorithm is not suitable when the weight function is arbitrary. There are several polynomial
algorithms to solve the S.D. problem when the weight function is not restricted to be nonnegative. One well-known
algorithm is the Floyd-Warshall algorithm, which can be used to find the S.D. and S.P. from every vertex to every other
vertex for arbitrary weight functions and which locates the existence of negative cycles. If there is a negative cycle that starts
at i and ends in i, it does not make sense to consider the S.D. from i to any vertex in the network in a minimization problem.

Consider a directed network with n vertices and an arbitrary weight function. Let A = (aij) be the n × n weight matrix
and let P = (pij) be another n × n matrix where pij = j. We have n iterations during the execution of the algorithm.

Iteration j begins with two n × n matrices A(j–1) and P(j–1) (initially A(0) = A and P(0) = P) and ends with A(j) and



P(j) . The elements in these matrices are defined as follows:

If  then the (i, k) entry in A(j–l) equals the (i, k) entry in A(j) and the (i,

k) entry in P(j–1) equals the (i, k) entry in P(j) . Otherwise, the (i, k) entry in A(j) is the sum of the (i, j) entry and the (j, k)
entry in A(j–1) and the (i, k) entry in P(j) is equal to the (i, j) entry in P(j–1).

When the algorithm terminates we are left with two matrices, A′ = A(n) and P′ = P(n). It can be proved by induction
that the (i, j) entry in A′ is the S.D. from i to j. See Papadimitriou and Steiglitz (1982) for a proof. It can also be verified
that if the (i, j) entry in P’ is k, then (i, k) is the first arc in a S.P. from i to j and we use this fact to obtain a S.P. from i to j.

This procedure of updating the A-matrix (known as the triple operation) involves at most (n – l)2 comparisons and
an equal number of additions for each iteration, whereas the procedure to update the P matrix does not involve any work.
Thus the worst-case complexity is O(n3), as there are at most n iterations.

Let us illustrate this procedure in the case of the network shown in Figure 8.3.1. We compute the matrices

FIGURE 8.3.1

and



From A′ we see that the S.D. from vertex 3 to vertex 1 is the (3, 1) entry in that matrix, which is 6. From P′ we see
that the (3, 1) entry is 4. So (3, 4) is the first arc in the S.P. from 3 to 1. The (4, 1) entry is 2. So the next arc is (4, 2). Then
we see that the (2, 1) entry is 1. Thus the last arc is (2, 1).

Next consider a digraph with four vertices for which we have

At the end of the second iteration we have

We see a new development here: The diagonal element (4, 4) is negative instead of being 0, indicating the existence
of a negative cycle in the network. In the corresponding P matrix we see that the (4, 4) element is 2, giving the arc (4, 2);

the (2, 4) element is 1, giving the arc (2, 1), and the (1, 4) element is 4, giving the arc (1, 4) creating the cycle - - - - - - 

- - - - - - - - - - - - - - - - - -with total weight – 1.

8.4 COMPARISON OF THE TWO ALGORITHMS

To solve the all-pair (i.e., from every vertex to every other vertex) S.D. problem, it appears that on the average Dijkstra’s
algorithm will outperform that of Floyd-Warshall, as can be seen from the following table in Syslo et al. (1983).

Computing Times for All-Pair Shortest Path Algorithms on Complete Networks

8.5 NOTES AND REFERENCES

No other problem in network optimization has received as much attention as the shortest distance problem. For an excellent
review, see Dreyfus (1969). Some excellent general references are the relevant chapters in the books by Lawler (1976),
Minieka (1978), and Papadimitriou and Steiglitz (1982). The paper by Dijkstra (1959) is one of the earliest papers on this
topic. See Nemhauser (1972) for an extension of Dijkstra’s algorithm for networks with arbitrary weights. The Floyd-



Warshall algorithm was published as an ALGOL algorithm by Floyd (1964) based on the work of Warshall (1962). This
algorithm is by far one of the most efficient known algorithms for solving the all-pair shortest distance problem. For another
efficient algorithm, see Tabourier (1973).

8.6 EXERCISES

8.1. The distance matrix of a digraph is as follows:

Find A(7) and P(7) using the Floyd–Warshall algorithm.
8.2. Find the S.D. and a S.P. from vertex 4 to vertex 7 in Problem 8.1.

8.3. Construct a directed tree rooted at vertex 1 giving the S.D. from 1 to the other vertices in problem 8.1.

8.4. Replace the number – 1 that appears in the fourth column of the matrix in Problem 8.1 by – 3. You detect a negative
cycle now. What is this negative cycle?

8.5. Find a S.P. from 4 to 2 that does not pass through 5, 6, or 7 in problem 8.1.

8.6. Replace – 1 by 1 in the matrix of Problem 8.1 and find a tree rooted at vertex 1 giving the S.D. from vertex 1 to all
vertices using Dijkstra’s algorithm.

8.7. At a small but growing airport the local airline company is purchasing a new tractor-trailer train to bring luggage to
and from the airplanes. A new mechanized luggage system will be installed in three years and the tractor will not be
needed after that. However, it may be more economical to replace the tractor after one or two years because, due to
heavy use, running time and maintenance cost will increase rapidly with age. The following array gives the total net
discounted cost associated with purchasing a tractor (purchase price minus trade-in allowance plus running and
maintenance costs) at the end of year i and trading it in at the end of year j (assuming that year 0 is now).

The problem is to determine at what times (if any) the tractor should be replaced to minimize the total cost.
Formulate this as a shortest distance problem and solve it. (This problem is from Hillier and Lieberman, 1986.)

8.8. A garage sells used motorcycles for $500.00 each. The sale is only at the beginning of the academic year and the
purchase price is the same every year. A student can buy a vehicle and use it for four years or replace it after using it
for one year or two years or three years. The trade-in value of a vehicle is $100.00 after one year, $50.00 after two
years, $30.00 after three years, and $0.00 after four years. The maintenance costs for a used vehicle are $200.00,
$400.00, $600.00, and $800.00, respectively, for the four years. The problem for a student interested in buying a
motorcycle from the dealer for use for four years in college is to make a decision as to whether the cycle bought as a
freshman should be kept for all four years or it should be replaced so that the total cost is a minimum. If replacement
is necessary, at what intervals? Formulate this problem as a shortest distance problem and solve it.

8.9. If the weights of the edges of a connected graph are all distinct positive numbers, is it true that there is a unique
minimal spanning tree in the graph? Is it true that the shortest path between any two vertices is unique?

8.10. A network is said to satisfy the triangle inequality if for every three distinct arcs (i, j), (j, k), and (i, k) the weight of



the arc (i, k) does not exceed the sum of the weights of the other two arcs. A directed path P from vertex x to
vertex y is a minimum length path if the number of arcs in P does not exceed the number of arcs in any other path
from x to y. Is it necessary that the shortest path from x to y is a minimum length path?



What Is NP-Completeness?

A. 1 PROBLEMS AND THEIR INSTANCES

Informally, we always distinguish between a problem and an instance of the problem. For example, “solve a linear system
of equations” is a problem an instance of which will be “given a m × n matrix A and a m × 1 matrix B test whether there
exists a n × 1 matrix x such that Ax = B and if the answer is yes obtain the vector.” Here A and B are the “inputs” and x is
the “solution” or “output.” On the other hand, an instance of the decision problem “does a linear system have a solution?”
will be “is there a x such that Ax = B?” The output now is either “yes” or “no.” Problems and decision problems thus
viewed have an infinite number of instances.

A more formal approach to the concept of “ problem” and “an instance of the problem” as defined in Schrijver (1986)
is along the following lines. An alphabet is a finite set L the elements of which are symbols or letters. An ordered finite
sequence of symbols from L is called a string or a word. The set of all strings or words from L is denoted by L*. The size
or length of a string is the number of components in it. If L = {a, b, c}, the length of x = abbaa is 5 even though x consists
of only two symbols. The string of size 0 is called the empty string, denoted by ϕ.

There are several ways of encoding rational numbers, vectors, matrices, systems of inequalities, linear systems, graphs
(matrix representations), and so on, as strings of symbols from a fixed alphabet such as L = {0, 1}. In our present
discussion we shall skip the details of such encodings. For more details, see Garey and Johnson (1979).

A problem p is a subset of L* × L*. For any problem p we have the corresponding metamathematical problem:
Given a string z in L*, find a string y in L* such that (z, y) is in p or report that no such string y exists. Here the string z is
called an instance or input of the problem and y is called the solution or output. A problem p is called a decision
problem if whenever (z, y) is in p, then y is the empty string. If L*(p) = {z  L* : (z, ϕ)  p} , the corresponding
metamathematical problem is: Given a string z in L*, does it belong to L*(p)?

Thus the set {((A, B), x) : A is a matrix, B and x are column vectors such that Ax = B} is a subset of L* × L* (where
L = {0, 1}), defining the problem p for which (A, B) is an instance and x is a solution. This problem can be couched in
metamathematical language as follows: Given the string (A, B), find a string x (if it exists) such that Ax = B. Similarly, the set
{((A, B), ϕ) : A is a matrix, fi is a column vector such that Ax = B for at least one column vector x} is a decision problem the
metamathematical version of which is as follows: Given a matrix A and a column vector b, is there a column vector x such
that Ax = B?

A.2 THE SIZE OF AN INSTANCE

If the rational number q is of the form m/n (where m and n are relatively prime, m is an integer, and n is a positive integer),
the size of q is defined to be size (?) = 1 + ceiling of [log(m + 1)] + ceiling of [log(n + 1)]. There are other ways of defining
the size of a rational number. But it can be shown that most of these definitions are “linearly equivalent” (see Section A.5 for
a definition of linear equivalence). Thus the size of a positive integer is proportional to its logarithm and not to its value. See
Garey and Johnson (1979) again for sizes of instances and encodings. If A is a vector with n rational components, we define
size (A) = n + the sum of the sizes of all the components of A. Similarly, if M is a m × n rational matrix, define size (M) = mn
+ the sum of the sizes of all the elements of the matrix. The size of the linear equation ax = b or the linear inequality ax ≤ b is
1 + size(a) + size(b). The size of the linear system Ax = B is 1 + size(A) + size(B). The size of a graph is the size of its
incidence matrix.



A.3 ALGORITHM TO SOLVE A PROBLEM

An algorithm to solve a problem, in an informal sense, is a finite sequence of instructions to obtain an output for a given
input of the problem. It is a step-by-step procedure for solving the problem. Thus given the instance z in L*, an algorithm for
the problem p determines an output y in L* such that (z, y) is in p or terminates without delivering an output if there is no
such string y. It is possible to define an algorithm in a more formal sense in terms of Turing machines or computer programs
in some programming language. For our purpose this informal concept of an algorithm will be sufficient. We mention in
passing that there are well-defined problems in mathematics for which no algorithms exist. A problem is undecidable if
there is no algorithm that will solve every instance of the problem. It was proved in 1970 by the then 22-year-old Russian
mathematician Yuri Matiyasevich that the decision problem known as Hilbert’s tenth problem, which asks whether a
polynomial equation in more than one variable with integer coefficients has any integer solutions, is an undecidable problem.
The most famous undecidable problem in computer science is the halting problem: Given a computer program with its
input, will it ever halt? When we say that the halting problem is undecidable, we mean that there is no algorithm which will
decide whether an arbitrary computer program will get into an infinite loop while working on a given input. An excellent
reference for the topic of unde-cidability and related items of interest is the book by Lewis and Papadimitriou (1981).

A.4 COMPLEXITY OF AN ALGORITHM

If we have two algorithms at our disposal to solve every instance of a problem, it is natural to compare them to find out
whether one is better or more efficient than the other. For this purpose we have to measure the amount of work done by the
algorithm, which is the number of “basic operations” needed to solve the problem using the algorithm. Here are some
examples of basic operations. The basic operation in a sorting problem is the comparison of two numbers in a given list of
entries and thus the work done in a sorting problem is the number of comparisons. In a problem involving both multiplication
and addition, we may take multiplication as a basic operation since multiplication is more difficult than addition. Thus the
work done in multiplying two n × n matrices is at most n3 (See Section 3.5.)

If A is an algorithm to solve (every instance of) a problem and if x is an instance of the problem, the number of basic
operations needed to solve x using A is denoted by wA(x) . Since we are interested in the efficiency of the actual working of
the algorithm, it is important that this measure we choose to define the work done is independent of the computer used, the
particular computer program, programming language, and other implementation details. Usually, the work done is taken as a
function of the size of an instance of the problem. Now if two instances have the same size, it does not imply that the work
done is the same for both. Thus we have to aggregate in one way or other the work done for all instances of the same
length.

One way of doing this is by taking a worst-case approach. Thus the worst-case complexity of the algorithm A to
solve the problem p is defined to be fA(n), where fA(n) = Max {wA(x) : x is an instance of p and size of x is n} We may
take a different approach as follows. Let h(x) be the probability that an instance x of the problem is taken as a candidate for
input. Then the average-case complexity is the sum of all terms h(x) . wA(x) where x is an instance of size n. In what
follows complexity means complexity in the worst case.

A.5 THE “BIG OH” OR THE O(.) NOTATION

Let f and g be two functions from the set of natural numbers to the set of nonnegative real numbers. If there is a positive
constant c and a natural number n0 such that f(n) ≤ c · g(n) for all n ≥ n0, we write “ f is O(g)” or “f = O(g)” or “f(n) is
O(g(n))” or “f(n) = O(g(n))” and say (as in Wilf, 1986) that “f(n) is big oh of g(n).” Two functions f and g are linearly
equivalent if f = O(g) and g = O(f). We write f >< g if f and g are linearly equivalent. The relation >< thus defined is an
equivalence relation and the rate of growth of f is its equivalence class, which may be represented by a canonical member
from that class. For example, let f(n) = 5n2 + 9n + 7 and g(n) = 8n2 + 23. Then it is easy to show that f >< g and a typical
representative from the equivalence class to which f and g belong is the function p(n) = n2. Thus we write f(n) = O(n2) and
g(n) = O(n2). Now consider the function h(n) = 4n3 + 9n. Then f(n) is O(h(n)) but h(n) is definitely not of O(f(n)). Notice
that the big oh notation gives only an upper limit. If f(n) is O(nk), it is quite possible that f(n) is O(nr) for some r less than k.
At the same time f(n) is O(nr) for all r ≥ k.
Let c = lim [f(n)/g(n)] as n goes to plus infinity. Then it can easily be verified that:

1. If c is finite and nonzero, f and g are linearly equivalent.
2. If c is zero, f is O(g) but g is not O(f) .
3. If c is infinite, g is O(f) but f is not O(g) .

As a consequence, we say that f is of lower order than g (or equivalently, g is of higher order than f) if c = 0. Using this
ratio test one can establish that if k is a positive integer, nk  is of higher order than log n, 2n is of higher order than nk  and n!



is of higher order than 2n.

A.6 EASY PROBLEMS AND DIFFICULT PROBLEMS

An algorithm A to solve a problem p is called a polynomial algorithm or polynomial-time algorithm if its worst-case
complexity fA(n) is O(nk) for some fixed positive integer k. Thus an algorithm with complexity n log n is a polynomial
algorithm because n log n is O(n2) . An algorithm whose complexity violates all polynomial bounds is referred to as an
exponential algorithm. An algorithm with complexity f(n) is exponential if and only if there are positive numbers a and b,
numbers p and q greater than 1, and a positive integer n0 such that a . pn ≤ f(n) ≤ b . qn for all n ≥ n0 . Some examples of
rates of growth of exponential algorithms are kn (k > 1), n!, nn and nlogn. To discuss whether a problem is easy or not, it
should first be decided where to draw a line between easy and difficult problems. The distinction between exponential
functions and polynomials becomes clear if we take an asymptotic point of view: Polynomials grow more slowly than
exponential functions. So polynomial algorithms with growth rate nk  (even when k is large) are efficient in comparison with
exponential functions. In other words, for sufficiently large problems, a polynomial algorithm executed on the slowest
computer will solve a problem faster than an exponential algorithm on the fastest computer. Furthermore, in some cases an
algorithm to solve a problem may be obtained by combining several algorithms for simpler subproblems. If each of these
algorithms of subproblems is polynomial, then the algorithm of the main problem is also polynomial because the class of all
polynomials is closed under addition, multiplication, and composition of functions. Thus the consensus among computer
scientists is to say that a problem is easy if there is a polynomial algorithm that will solve every instance of the problem. This
idea is originally due to Edmonds (1965b). Observe that it does not make sense to say that an algorithm is good if its
complexity is O(nk) when k is large. In this connection the following comments from Papadimitriou and Steiglitz (1982) are
worth reproducing: “The thesis that polynomial-time algorithms are ‘good’ seems to weaken when pushed to extremes.
Experience, however, comes to its support. For most problems, once any polynomial-time algorithm is discovered, the
degree of the polynomial quickly undergoes a series of decrements as various researchers improve on the idea. Usually the
final rate of growth is O(n3) or better.”

To appreciate the difference in the rate of growth of a polynomial algorithm and the tyrannical rate of growth of an
exponential algorithm, consider the following scenario: Suppose that a basic operation (each step) in a computer requires
one millionth of a second of computer time. If n = 50, the computation times for algorithms with complexities n2, n3, 2n, and
3n will be 0.0025 second, 0.125 second, 35.7 years, and (2)(109) centuries, respectively. If n = 100, these times will be
0.01 second, 1 second, 248 centuries, and 370 centuries, respectively.

It was mentioned earlier that a problem is (provably) undecidable if it can be proved that there exists no algorithm that
will solve every instance of the problem. Instead of asking whether a problem is provably undecidable or not, the basic
question in computational complexity theory asks how difficult or hard it is to solve a problem provably difficult if it can be
proved that any algorithm which will solve (every instance of) the problem is an exponential algorithm. Such problems do
exist, but they are rather obscure. See Lewis and Papadimitriou (1981) for more details. A problem for which no
polynomial algorithm is known and for which it is conjectured that no such algorithm exists is called an intractable problem.

The problem of finding a shortest path between a vertex and another vertex in a connected graph is an easy problem
(the algorithm of Dijkstra is polynomial), but the problem of finding a longest simple path between two vertices is intractable
since no one knows an algorithm to solve this which is substantially faster than enumerating all possible paths between the
two and choosing the optimal one.

Thus if there is a polynomial algorithm to solve a problem p, we can say that “it is easy to solve p.” But how can one
show that “it is hard (not easy) to solve a problem”? One may prove that problem p is as hard as problem q. So whenever
there is no known polynomial algorithm to solve a problem, we have to examine that problem in this spirit. In other words,
to prove that a given problem is difficult, it is not enough to assert that no polynomial algorithm has been discovered so far to
solve it.

It requires some sophisticated mathematical techniques to show that the complexity of any algorithm conceivable for
the problem cannot be bounded above by a polynomial. Such techniques are now being discovered by computer scientists
with the advent of latest developments in computational complexity theory. The introduction of the concept of NP-
completeness is an important milestone in this field.

A. 7 THE CLASS P AND THE CLASS NP

Hereafter we shall assume that the problems we consider are all decision problems. These are problems whose output is
either “yes” or “no.” Examples of decision problems: (1) Is there a Hamiltonian cycle in a given connected graph? and (2) Is
there a simple path from a vertex v to another vertex w in a connected network such that the total length of this path does
not exceed a certain amount?

We are interested in classifying decision problems according to their complexity. A decision problem belongs to class
P if there is a polynomial algorithm to solve every instance of the problem. If a problem has a polynomial algorithm, then



obviously the corresponding decision problem also has a polynomial algorithm.
Notice that we can assert that an arbitrary problem is in the class P only after we have a proof that there is a

polynomial algorithm to solve it. The fact that the linear programming problem is a member of the class P was established
only a decade ago, when Khachiyan (1979) came out with his ellipsoid algorithm. Subsequently, a more efficient algorithm
was obtained by Karmarkar (1984) using interior point methods. For a lucid description of these developments, see
Schrijver (1986).

Now consider a decision problem the status of which is as follows: (1) there is at least one exponential algorithm to
solve it, and (2) no one has proved so far that every algorithm to solve is necessarily exponential. In other words, it is a
decidable decision problem and we do not know whether or not it is provably difficult. What do we do with problems in this
category?

It is at this stage that we introduce a class of decision problems containing the class P. A decision problem belongs to
class NP if there is a polynomial algorithm to verify the “yes” output of that problem. The acronym NP is for
“nondeterministic polynomial.” For details regarding nondeterministic algorithms, see Garey and Johnson (1979).
Nondeterministic algorithms are not in any sense probabilistic or random algorithms.

It is obvious that any decision problem with a polynomial algorithm is in the class NP. Regarding a typical problem p in
NP for which so far no one has obtained a polynomial algorithm, there are three mutually exclusive alternatives: (1) a
polynomial algorithm for p will be discovered, (2) it will be proved that p will not have a polynomial algorithm, and (3) the
status of p will never be settled.

So far no one has proved that there exists a problem in NP that is not in P. It is not known whether P = NP or whether
P is properly contained in NP. This is a frustrating situation because many practical problems belong to the class NP. If P =
NP, it makes sense to try to obtain a polynomial algorithm for a problem in NP for which no efficient algorithm has been
discovered so far. On the other hand, if we could establish that a particular problem in NP is not in P, we need not bother to
seek an efficient algorithm to solve it. But in the absence of a proof, we cannot abandon our efforts to obtain a polynomial
algorithm to solve this problem because there is always a remote chance that somewhere out there a polynomial algorithm to
solve the problem exists waiting to be discovered!

Here is an example of a problem in NP. Consider the decision problem an instance of which is as follows: “Is the
positive integer n a composite number?’’ When n is large, we cannot easily answer this question. However, if we are able to
exhibit two positive integers p and q (both greater than 1) such that n = pq, then anyone can easily say the answer is “yes”
since multiplication of two numbers can be performed in polynomial time. On the other hand, it is not at all obvious whether
the decision problem “is the positive integer n a prime number?” belongs to the class NP. It was proved by Pratt (1975) that
this is indeed the case.

Corresponding to each decision problem p, there is always a complementary decision problem p′. Each is
complementary to the other. The problems “is it true that n is prime?” and “is it true that n is not prime?” are complementary.
In a connected graph G the problems “is it true that there is a Hamiltonian cycle in G?” and “is it true that there is no
Hamiltonian cycle in G?” are complementary. Notice that the former problem in graph theory is in NP because it is easy to
verify the “yes” answer. But the latter problem is not in NP because to verify the “yes” answer in this case, we have to
enumerate all possible cycles. Incidentally, we have here a decision problem that is not in NP. Thus if a problem is in NP it is
not necessary that its complementary problem is in NP. A decision problem belongs to class Co-NP if its complementary
problem is in class NP. A decision problem is said to be well-characterized if it is in both NP and Co-NP. Obviously, any
problem in P is well-characterized. It is not known whether every well-characterized problem is in P. The problems “is n
prime?” and “is n composite?” are both well-characterized because of Pratt’s theorem.

It is also not known whether NP = Co-NP. If NP is contained in Co-NP (or if Co-NP is contained in NP), then NP =
Co-NP = NP ∩ Co-NP. Also, if P = NP, all the sets coincide.

A.8 POLYNOMIAL TRANSFORMATIONS AND NP-COMPLETENESS

The easy problems in NP are in P. They are on one side of the spectrum. Since it is not known whether P = NP or not, it is
natural to ask whether we can collect all the “hard” problems of NP in one class and put this class on the other side of the
spectrum. In the first place, what should be the name of this distinguished class? It seems that Donald Knuth of Stanford
University polled his colleagues in 1974 to find an appropriate name. There were many suggestions: formidable, Herculean,
arduous, prodigious, obstinate, and so on. Finally, a consensus: Call it the class of NP-complete problems—and this name
stuck among computer scientists, logicians, and mathematicians.

A basic idea in the theory of NP-completeness is that of polynomial transformation. A decision problem p is
polynomially transformable to a decision problem q if the following two conditions hold: (1) there exists a function f(x)
that will transform every instance x of p to an instance f(x) of q such that the answer to x is “yes” if and only if the answer to
f(x) is “yes” and (2) there is an efficient algorithm to compute f(x) for every x.

Here is an example of a problem that can be polynomially transformed into another. Recall that a clique in a graph G is
a complete subgraph of G. The number of vertices in a clique is its size. The clique problem p is stated as follows: Is there
a clique of a prescribed size in a graph? For a given finite set, a collection of subsets is said to cover the set if every element



in the set belongs to at least one set in the collection. The set covering problem q is stated as follows: Given a finite set X,
a collection C of subsets of X, and a positive integer m, is there a subcollection C′ consisting of m of these sets such that C′
covers X?

The problem p can be transformed into q as follows. Let G = (V, E) be a connected graph with m edges where V =
{1, 2, 3, . . . , n}. Then its complement G′ = (V, E′) has r edges, where r = [n(n – 1)/2]. Suppose that E’ = {e1 e2, . . . ,
er} is the set to be covered. Let Si be the set of edges in G’ that are incident at vertex i. We take C = {Si : i = 1, 2, . . . , n}
as a collection of available subsets of E’. It is easy to see that if G has a clique of size k, then a subcollection C′ of (n – k)
subsets can be chosen from C that will cover the set E’. In particular, if W = {1, 2, . . . , k} is a set of vertices that forms a
clique in G, the collection C′ = {Sk+1 Sk+2 , . . . , Sn} will be a cover for E′.

The definition of polynomial transformability suggests the following inequality: If p is polynomially transformable to q,
(complexity of p) ≤ (complexity of f) + (complexity of q) . Furthermore, if complexity of f is insignificant compared to the
complexities of p and q, we can write, in an asymptotic sense, (complexity of p) ≤ (complexity of q) .

A decision problem p is NP-hard if every problem in NP can be transformed into it polynomially. In other words, an
NP-hard problem cannot be easier than any problem in NP. A problem in NP that is NP-hard is said to be NP-compIete.
The class of NP-complete problems is thus the intersection of the class NP and and class NP-hard. Thus if there is an
efficient algorithm to solve every instance of a particular NP-complete problem, every problem in NP has a polynomial
algorithm. The class of NP- complete problems is denoted by NPC. To show that a problem p is in NPC it has to be
proved that (1) p is in NP and (2) every problem in NP can be polynomially transformed into p. Observe that the
complexity of a problem in NPC is inextricably related to the conjecture that P is a proper subset of NP.

The fact that the class NPC is nonempty was established by Cook (1971) in his seminal paper by exhibiting a problem
in NP such that every problem in NP can be transformed into it polynomially. This problem is known as the satisfiability
problem. This problem comes from mathematical logic and applications in switching theory. However, it can be stated as a
simple combinatorial puzzle as in Karp (1986):

Given several sequences of upper- and lowercase letters, is it possible to select a letter from each sequence without
selecting both the upper- and lowercase versions of the same sequence? For example, if the sequences are Abc, BC,
aB, and ac, it is possible to choose A from the first sequence, B from the second and third, and c from the fourth; note
that the same letter can be chosen more than once, provided we do not choose both its uppercase and lowercase
versions. An example where there is no way to make the required selections is given by the four sequences AB, Ab,
aB and ab.
The satisfiability problem is clearly in NP, since it is easy to check that whether a proposed selection of letters satisfies
the conditions of the problem. Cook proved that, if the satisfiability problem is solvable in polynomial time, then every
problem in NP is solvable in polynomial time, so that P = NP. Thus we see that this seemingly bizarre and
inconsequential problem is an archetypal combinatorial problem; it holds the key to the efficient solutions of all
problems in NP.

The “floodgate” was open once it was proved that the class NPC is nonempty. By constructing a series of polynomial
transformations Karp (1972a) produced a list of 20 or so problems in NPC. It was shown in this paper that most of the
classical combinatorial problems such as packing, covering, matching, partitioning, routing, and so on, are in NPC. His list
includes the following: (1) Is a given graph Hamiltonian?; (2) Is it possible to color the vertices of a graph with k colors so
that no two adjacent vertices have the same color?; (3) Given a set of numbers {ni : i = 1, 2, . . ., k} and a number s, does
some subset of the numbers add up to exactly s?; and (4) Is there a clique of a given size in a graph?

If p is a problem in NP, to show that p is in NPC it is enough if we prove that some known problem in NPC is
polynomially transformable to it. There are thousands of problems now known to be NP-complete and their “tribe” is
steadily increasing, as can be seen from the publications of new results in this field in recent years. For a fascinating account
of the world of NP-completeness, one shoud refer to the book by Garey and Johnson (1979) and Johnson’s column on this
topic entitled “NP-Completeness: An Ongoing Guide,” which appears regularly in the Journal of Algorithms. It is now
routine to investigate whether an apparently difficult problem is NP-complete.

Recall that a problem in NP is well-characterized if its complement also is in NP. If it can be proved that there exists a
problem in NPC that is well-characterized, it can be shown that NP = Co-NP. Attempts to show that complements of some
standard NP-complete problems are in NP have been fruitless. Also, there is no evidence to believe that these two classes
NP and Co-NP coincide. Hence the conjecture: The class NPC and the class W of well-characterized problems are
disjoint. (It was known for some time that the linear programming problem LP is a well-characterized problem. So it was
conjectured that LP is not in NPC even before the discovery of the ellipsoid algorithm, which proved that not only that LP is
not in NPC but that it is in P.) Similarly, if Co-NPC is the class of complements of all NP-complete problems, the class Co-
NPC and the class W are also disjoint. Thus the conjectured topography of the class of decision problems is as portrayed in
Figure A.8.1.

Finally, even if we assume that every NP-complete problem is provably difficult, there remains a class of problems of
unsettled status. For example, consider a decision problem p in NP such that (1) no polynomial algorithm has been obtained
so far to solve every instance of p, and (2) so far there is no proof that p is in NPC. In particular, the status of a well-
characterized problem (which is not likely to be in NPC) for which no polynomial algorithm has been obtained so far



remains unsettled. A typical member of this class: “Is the given positive integer a prime number?”

FIGURE A.8.1

A.9 COPING WITH HARD PROBLEMS

The problems considered thus far are decision problems. In a combinatorial optimization problem there may be many
solutions (feasible solutions) and each solution will have a real number associated with it called the value of the solution. The
aim of the problem is to obtain a solution (optimal feasible solution) whose value is optimum. Corresponding to any such
optimization problem, there is a decision problem of determining whether the optimization problem has a solution with a
value better than a given real number. Obviously, the decision problem associated with a combinatorial optimization problem
cannot be harder than the optimization problem itself. Thus if the problem “Is a graph Hamiltonian?” is hard, then the
problem “find an optimal Hamiltonian cycle in a graph” is also hard. Stated more precisely, this means that if the decision
problem associated with an optimization problem is NP-complete, the optimization problem is NP-hard.

Now a proposition which proves that the decision problem (which corresponds to an optimization problem) is in NPC
eliminates for all practical purposes the possibility of obtaining an efficient algorithm to solve every instance of the
optimization problem. But the fact remains that many combinatorial optimization problems which arise in several areas in
science, engineering, and operations research are NP-hard. So it is natural to ask: How do we cope with such hard
problems? Broadly speaking, there are two approaches. One is a heuristic approach: It is likely that the problem is hard
because of a small proportion of hard instances. Is it possible to obtain an efficient algorithm that will solve a large number of
instances of the problem? A heuristic algorithm always gives an optimal solution, but it need not be efficient in every instance.
The simplex method to solve the linear programming problem is an algorithm of this category. The other approach is to find
out whether there is an efficient approximation algorithm to obtain a feasible solution with value that is very close to the
optimal value. There are efficient approximation algorithms for some well-known NP-hard problems in combinatorial
optimization. Once again, see Garey and Johnson (1979) for more details.
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Answers to Selected Exercises

Chapter 0

0.1. (a) A ∪ B = {2, 3, 5, 6, 7, 9} (b) B ∩ C = {2, 6} (c) B – A = {2, 6} (d) A – B = {9} (e) C′ = {3, 5, 7, 9} (f) X′
empty set (g) Complement of the empty set X

0.3. {a, b, c, c} = {a, b, a, b, c}
0.5. (a) A × A = {(3, 3), (4, 4), (3, 4), (4, 3)} (b) A × B = {(3, p), (3, q), (3, r), (4, p), (4, q), (4, r)} (c) B × A = {(p, 3),
(p, 4), (q, 3), (q, 4), (r, 3), (r, 4)} (d) B × B = {(p, p), (q, q), (r. r), (p, q), (q, p), (p, r), (r, p), (q, r), (r, P)}
0.7. (a) A ∪ (B × A) = {3, 4, (p, 3), (p, 4), (q, 3),(q, 4), (r, 3), (r, 4)} (b) (A × A) ∪ (B × B) = {(3, 3), (4, 4), (3, 4), (4,
3), (p, 3), (p, 4), (q, 3), (q, 4), (r, 3), (r, 4)}
0.9. (a) {{a}} (b) {{a}, {b}} (c) {{a}, {b}, {c}}, {{a, b), {c}}, {{a, c}, {b}}, and {{b, c}, {a}}
0.13. (a) Yes (b) Yes
0.19. One
0.23. At most eight
0.25. Both (A – B) and (B – A) are empty. This means that A is a subset of B and at the same time B is a subset of A. So, A
= B.
0.27. Yes. Let x be an arbitrary element of B. Case 1: Suppose x is not in A. Then x is in the symmetric difference of A and
B. So x is in the symmetric difference of A and C. So x is in A ∪ C but not in A ∩ C. So x is in C. Case 2: Suppose x is in
A. Then x is not in the symmetric difference of A and B and therefore x is not in the symmetric difference of A and C. So x
is in A ∩ C which implies x is in C. Thus in any case B is a subset of A. Likewise C is a subset of B.
0.29. (a) Both the domain and the codomain are R and the range is the set of all nonnegative real numbers, (b) No (c) No
(d) {–2, 2} (e) The union of the two closed intervals I and J where I = {x: – 2 ≤ x ≤ – 1} and J = {x : 1 ≤ x ≤ 2}
0.31. The function f is not a surjection. The inverse function g(n) = (n – 5)/2 where n is in f(N) is a surjection.
0.33. (a) 3.3.3.3 (b) 0 (c) (3.3.3.3) – (3.2.2.2.2) + 3 (d) 1.1.3.3
0.35. (a) Domain = the set of all integers, range = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (b) Domain = the set of all integers, range =
the set of all positive integers
0.37. {(p, 1), (q, 1), (r, 2)}
0.39. {(p, p), (q, q), (r, p)} when n is even and {(p, q), (q, p), (r, q)} when n is odd
0.43. The four constants satisfy the equation ad + b = bc + d.
0.49. (a) 2 (b) 3
0.51. Draw five small circles on the left side one below the other such that no two circles touch each other and label them 1,
2, 3, 4, and 5. Then draw four small circles one below the other on the right side and label them a, b, c, and d. Draw
arrows (1) from 1 to a, (2) from 1 to b, (3) from 3 to c, (4) from 4 to d, (5) from 5 to d, and (6) from 5 to c.
0.53. No in all cases except in (c)
0.55. R2 = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)}
R3 = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)}
0.62. Reflexive, not symmetric, antisymmetric, transitive
0.64. (a) This is an equivalence relation. The corresponding partition is {{1, 3}, {2}, {4}}. (b) This is not an equivalence
relation, (c) This is an equivalence relation with the partition {{1,2}, {2}, {3}, {4}}.
0.68. (a) {5k : k  Z} (b) {1 + 5k : k  Z} (c) {2 + 5k : k  Z}
0.70. The preimages of the elements of the range of f
0.78. The set S has 27 pairs in all. There are 8 pairs in which the first element is the empty set and the second element is any
subset of X. There are 12 pairs in which the first element is a singleton set and 6 pairs in which the first element is a set of
two elements. Finally, ({a, b, c}, {a, b, c}) is in S.
0.80. {1, 2, 4, 8} and {1, 3, 6} are two chains.
0.82. (a) 2, 3 (b) 16, 24 (c) 12, 24
0.87. The induction hypothesis P(n) is the statement that the sum 1/1 · 2 + 1/2 · 3 + 1/3 · 4 + · · · + 1/n(n + 1) equals n/(n
+ 1). The aim is to prove that this statement is true for all n. Obviously, P(1) is true since 1/1 · 2 = 1/(1 + 1). So the basis



step is proved. Next we have to prove the induction step: if P(k) is true for any it, then P(k + 1) is true as well. It is easy to
see that P(k + 1) is true because k/(k + 1) + l/(k + 1)(k + 2) is equal to (k + 1)/(k + 2).
0.105. f(1) = 1 and f(n) = n + f(n-1)
0.107. It is a tautology.
0.109. Neither

0.111. 

0.113. (a) Satisfiable in all cases except when p, q, and r are true and s and t; are false (b) Satisfiable in all cases except
when p and q are true and r is false

Chapter 1

1.1. 109

1.3. (a) 16 (b) 8 (c) 102 (d) 28
1.5. (a) 28 (b) 16 (c) 48 (d) 112
1.7. There are 26 · 25 · 24 · 23 · 22 ways.
1.9. n(n – 1)
1.11. 26 + (26)(36) + (26)(36)2 + (26)(36)3 + (26)(36)4 + (26)(36)5

1.13. (a) 12 (b) 144 (c) 72
1.17. (6!) = 720; then (7!) = (7)(720) = 5040 and (8!) = (8)(5040) = 40,320
1.19. n = 23
1.21. (a) (4!)(5!)(6!) (b) (3!)(4!)(5!)(6!)
1.23. 5040
1.25. 86,400
1.27. (a) (10!)/(4!)(4!)(2!) (b) (12!)/(5!)(4!)(3!)
1.31. (a) P(11, 9) (b) P(11; 2, 3, 4)
1.33. (a) 512 (b) 84 (c) 36
1.35. There are 504 ways.
1.37. C(n, r) · (r – 1)!
1.39. The number of ways is r where r = C(14, 8) · (7!) · (6!).
1.41. P(7; 4, 2, 1) · C(8, 4)
1.47. P(10; 2, 3, 4, 1) · C(23, 1)
1.49. (a) C(10, 6) · C(12, 6) (b) C(12, 7) · C(10, 5) + C(12, 8) · C(10, 4) + C(12, 9) · C(10, 3) + C(12, 10) · C(10, 2)
+ C(12, 11) · C(10, 1) + C(12, 12) · C(10, 0)
1.57. (a) (18!)/[(4!) · (1!) · (4!)4 · (2!)’l (b) (18!)/[(2) · (2) · (5!)2 · (4!) · (2!)2] (c) C(18; 7, 6, 5)
1.58. (a) 840 (b) 74 (c) 79

1.61. C(28, 4)
1.63. (a) C(14, 4) (b) C(9, 4) (c) C(8, 3) + C(6, 3) + C(4, 3)
1.65. C(10, 4)
1.69. C((r – p) + n – 1, n – 1), where p = p1 + p2 + · · · + pn
1.72. C(15, 5) – C(8, 5)
1.74. (a) 25 (b) 27
1.78. 275
1.80. (a) Let X = {1, 2, . . . , n} and A be the set of numbers in X that are not squarefree. The number of squarefree
integers in X is obviously n – N(A). To compute N(A), proceed as follows. Let P = {p1, p2, . . . , pr}, where each pi is a
prime number that does not exceed the square root of n. Let Ai, be the set of those numbers in X that are divisible by the
square of pi Compute Si (i = 1, 2, . . . , r) as in Theorem 1.6.1. Then N(A) is equal S1 − S2 + . . . + (– 1)r−1. (b) 100 − (42
− 3 + 0 − 0)
1.82. (a) Number of permutations = 6! = 720, number of derangements = D6 = 265 (b) 265/720 (c) [C(6, 1) · D5]/(6!) =
0.366667 (d) 1 – 0.366667 (e) [C(6, 2) · D4]/(6!) (f) 1/720
1.84. The answer is 0.
1.86. There are 120 ways.

Chapter 2



2.1. (a) 1 + x + x2 + x3 (b) x4 + x5 + x6 + · · · (c) 1 + x + x2 + x3 + · · · (d) 1 – x + x2 – x} + x4 – · · ·
2.3. (a) {16, 32, 24, 8, 1, 0, 0, 0, . . .} (b) {1,1, 3/2, 1/3!, 1/4!, 1/5!, . . .} (c) {0, 0, 0, 1, 1, 1,1. . . .}
2.5. C(15, 8)
2.7. (x + x2 +x3 + · · · + x′)4

2.9. C(18, 3) – 4 · C(12, 3) + 6 · C(6, 3)
2.11. C(12, 2) – 3 · C(6, 2)
2.13. There are 18 ways.
2.17. Coefficient of the tenth power of x in f(x), where f(x) = (x + x2)(x + x2 + x3)(x + x2 + · · ·)2

2.19. The function is x6 (1 – x4)3 · (1 – x)–4.
2.21. 10
2.23. 6
2.25. 30
2.27. (x4 + x8 + · · · )(1 + x3 + x6 + · · ·)(1 + x2 + x4 + · · · )(1 + x + x2 + · · ·)
2.29. C(n – r + 1, r)
2.37. The number of such numbers is t, where t = (1/4)(2r + 2r) where r is even. If r is odd, t is necessarily zero.
2.41. (ex + e–x)/2 – l](ex – 1)4

Chapter 3

3.1. f(n) = f(n – 1) + n where f(1) = 2; f(9) = 46
3.3. f(n) = 2f(n – 1) + 1 with f(1) = l; f(n) = 2" – 1
3.5. f(n) = f(n – 1) + f(n – 2) with f(1) = 2 and f(2) = 3
3.8. f(n) = 2f(n – 1) with f(1) = 2
3.10. (a) k = 2 (b) The initial conditions are not consecutive.
3.12. f(n) = 1 + n + 2n

3.14. The characteristic polynomial is (x – 1) (x –2)2 (x – 3) and f(n) = A + B · 2n + C · n · 2n + D · 3n is the general
solution of the relation f(n + 4) = 8f(n + 3) – 23f(n + 2) + 28f(n + 1) – 12f(n).
3.16. g(n) = A(–1)n + B(m – 1)n, where A = (–1)/m and B = 1/m and
f(n) = (m – 1)g(n – 1)
3.18. f(n) = A + B · (3)n – 8n; where A = 1 and B = 3
3.20. A(4)n + 5n(4)n

3.22. A(2)n + B · n · (2)n + (1/2) · n2 · (2)n

3.24. p = –5, q = 6, and r = 8
3.26. f(n) = coefficient of xn in g(x) = 2/(1 + x) – 1/(1 – x)2+ 2/(1 – x)3

3.28. f(n) = 5n2 – 4n
3.30. f(n) = d + c log n
3.32. The relation is g(n) = 7g(n/2) + 18(n2)2 with g(1) = 0. The solution is 6 · nr – 6 · n2 where r = log 7.
3.34. (a) f(n) = 2f(n – 1) with f(1) = 0 (b) f(n) = f(n/2) + (n – 1) with f(1) = 0 (c) The two solutions are (1) n(n – 1)/2 and
(2) 2n – log n – 2. When n > 3, the second is more efficient than the first.

Chapter 4

4.1. W = {1, 3}
4.3. (b) It is possible to draw K4 such that no edges intersect. It is not possible to do so for K5.
4.5. Draw a simple graph as suggested. There are edges between every pair of cities except between Boston and Moscow,
and between Boston and Prague.
4.7. (a) Two (b) Two
4.9. pq
4.11. Suppose that the arcs of the digraph are (1, 2), (1, 3), (1, 5), (2, 3), (3, 4), (3, 5), and (4, 5).
(a) The adjacency matrix A = (aij) is a 5 × 5 matrix in which a12 = a13 = a15 = a23 = a34 = a35 = a45 = 1 and all the other
elements are zero.
(b) (Indegree of vertex 1) = 0, (outdegree of vertex 1) = 3
       (Indegree of vertex 2) = 1, (outdegree of vertex 2) = 1
       (Indegree of vertex 3) = 2, (outdegree of vertex 3) = 2
       (Indegree of vertex 4) = 1, (outdegree of vertex 4) = 1
       (Indegree of vertex 5) = 3, (outdegree of vertex 5) = 0
(c) (1, 2) (1, 3) (1, 5) (2, 3) (3, 4) (3, 5) (4, 5)



4.13. The graph looks like a bracelet or ring studded with stones such that each vertex is represented by a stone. Such a
graph with n vertices is denoted by Zn and is called an “odd hole” if n is odd and more than 3. It is an “even hole” if n is
even and more than 3.
4.15. (a) G = (V, E), where V = {1, 2, 3, 4} and E = {{1, 2}, {3, 4}}
(b) G = (V, E), where V = {1, 2, 3, 4} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}
(c) (nr)/2, so at least one of the two numbers is even.
4.19. (a) 1 → 2 → 3 → 4 → 5 → 2 → 6 (b) 1 → 2 → 3 → 4 → 5 → 6 (c) 2 → 3 → 4 → 5 → 2 (d) One (e) {1},
{6}, {2, 3, 4, 5} (f) This is a 6 × 6 matrix in which (1) all the elements in row 6 are 0, (2) all the elements in column 1 are 0
except the first element, and (3) all the remaining elements are 1.
4.21. G = (V, E), where V = {1, 2, 3, 4, 5} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 2}, {2, 5}, {5, 1}}
4.23. If the graph is connected, every element is 1. More generally, if G has n vertices and k components, the n × n
reachability matrix A of G will have k submatrices along the diagonal of A such that every element in each submatrix is 1 and
every other element in A is zero. If Gi is a component of G with ni vertices, the submatrix corresponding to this component
will be a ni × ni, matrix.
4.27. G is not connected.
4.29. The three vertices at the top are marked 1, 2, and 3. The three vertices are marked 8, 9, and 4 from the left to the
right. The three vertices at the bottom are marked 7, 6, and 5 from the left to the right. The arcs (i, j) in which i < j are (1,
2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), and (8, 9). The remaining arcs are (i, j) where i > j.

Chapter 5

5.3. There will be a directed path from every vertex to every vertex.
5.5. No
5.7. The word starts with C since its row sum 2 equals its column sum plus 1. The word ends with B since its column sum
equals its row sum plus 1. For the other two letters row sum equals column sum. The row sums of A and D are 2 and 3.
Thus the frequencies of A, B, C, and D are 2, 2, 2, and 3, respectively. Draw a digraph with 4 vertices A, B, C, D. Draw an
are from a letter X (X is one of these four letters) to a letter Y (Y is also one of these four letters, the letters X and Y need not
be distinct) if the element in the matrix corresponding to row X and column Y is 1. In the resulting digraph there will be a
directed Eulerian path (not necessarily unique) from C to B. Any such path will give a word.
5.9. (a) The digraph is G = (V, A) where V = {0, 1, 2} and A is the Cartesian product V × V. An arc from vertex i to
vertex j is assigned the word ij. The consecutive arcs in the following sequence will give an Eulerian circuit starting at vertex
0 and ending in vertex 0: < 00 01 11 12 22 21 10 02 21 >. The first letters of these nine words define the de Bruijn
sequence B(3, 2) = < a1 a2 a3 a4 a5 a6 a7 a8 a9 > = < 0 0 1 1 2 2 1 0 2 > and any two-letter word using the three symbols
0, 1, and 2 is of the form ai ai + 1, where i is any integer such that 1 < i < 9 and the addition of the subscripts is modulo 9.
5.11. V = {1, 2, 3, 4}; E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 3}}
5.13. V = {1, 2, 3, 4}; E = {{1, 2}, {1, 3}, {1, 4}}
5.15. The number of edges in a Hamiltonian cycle of a graph with n vertices is n.
The number of edges in any cycle of a bipartite graph is even. So a bipartite graph with an odd number of vertices cannot be
Hamiltonian.
5.17. Yes, by definition. The converse is not true, for consider the counterexample with V = {1, 2, 3} and A = {(1, 2), (2,
3)}.

Chapter 6

6.1. m = n – k
6.3. 19
6.5. 24
6.7. It is a bridge.
6.9. Not necessary. If the vertex set of the complete graph with five vertices is {1, 2, 3, 4, 5}, then T and T′ are two distinct
spanning trees with E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}} and E’ = {{1, 3}, {3, 5}, {2, 5}, {2, 4}}.
6.13. The tree is T = (V, E), where V = {1, 2, 3, 4, 5, 6, 7, 8, 9} and E = {(1, 8), (2, 8), (3, 7), (4, 7), (5, 7), (7, 6), (8,
6), (6, 9)}.
6.15. ABRACADABRA



6.17. A = 110, B = 00, C = 1110, D = 1111, E = 10, R = 01. The word is 110 00 01 110 1110 110 1111 110 00 01 110
The length is at most 31.
6.19. (a) n + 1 = 14 and 3 < log 14 < 4, so m = 3. So the height cannot be less
than 3. (b) The floor of 13/2 is 6, so the height is not more than 6.
6.21. The tree is rooted at H. The left tree has G, B, A, and C. The right tree has P, R, and Y. The left child of G is B. There
is no right child for G. The left child of fl is A and the right child of B is C. On the right subtree rooted at H, no vertex has a
left child.

Chapter 7

7.5. The edges are {1, 5}, {1, 4}, {3, 4}, {2, 6}, and {5, 6} . The weight of the tree is 31.

Chapter 8

8.1.

8.3. The arcs of this tree rooted at vertex 1 are (1, 5), (5, 7), (7, 6), (5, 2), (2, 3), and (3, 4).
8.5. In A(4) the element corresponding to the fourth row and second column is 4. So the S.D. from 4 to 2 without touching
5, 6, or 7 will be 4. Furthermore, in p(4), the element corresponding to the fourth row and second column is 2, indicating
that we go straight from 4 to 2.
8.7. Replace the tractor at the end of the first year. The total cost will be 12 + 32 = 44.
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Tabourier, Y., 205, 223
Tarjan, R. E., 134, 193, 220, 223
Tautology, 24



Thulasiraman, K., 135, 223
Totally ordered set, 13
Totient function, 63
Tournament, 125
Tower of Hanoi, 116
Townsend, M., 72, 90, 116, 135, 177, 223
Transitive relation, 11
Transitive tournament, 154
Transportation networks, 124
Traveling salesman problem (TSP), 125, 153
Trees, 131, 164–79

binary, 170
breadth first search (BFS), 156
binary search, 175
depth first search (DFS), 133
directed, 170
full binary, 170
labeled with n vertices, 167
leaf of, 170
regular binary, 170
rooted, 170
root of, 170
spanning, 167
terminal vertices of, 168
Triple operation, 203
Truth function, 22
Truth table, 22
Truth value, 22
Tucker, A., 72, 90, 116, 135, 177, 223
Tymoczko, T., 161, 223

U

Ullman, J. D., 219
Underlying graph of a digraph, 122
Undecidable problem, 209
Unilaterally connected digraphs, 132
Union of sets, 4–5
Universal set, 3
U Nu, 73
Upper bound, 16

V

Venn, J., 5
Venn diagram, 5
Vertex (vertices):

adjacent, 121
adjacent from, 121
adjacent to, 121
coloring of, 155–61
degree of, 126
even, 126
indegree of, 122
odd, 126
outdegree of, 122

W

Warshall, S., 223
Weakly connected digraphs, 132
Weighted graphs (See Network) Well-characterized problem, 214
Well-ordered set, 16
Well-ordering property, 16, 17
Whitehead, A. N., 26



Whitworth, W. A., 72, 223
Wilf, H. S., 116, 146, 223
Wilson, R. J., 135, 161, 177, 223
Word of length n, 10
Worst case analysis, 108
Worst case complexity, 108

Y

Yaglom, 26, 221
Yemelichev, V. A., 152, 223

Z

Zermelo, 17
Zorn’s lemma, 17
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