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Preface

Over the last half century, deep connections between representation theory and auto-
morphic forms have been established, using a wide range of methods from algebra,
geometry and analyis. In light of these developments, Changho Keem, Toshiyuki
Kobayashi and Jae-Hyun Yang organized an international symposium entitled “Rep-
resentation Theory and Automorphic Forms”, with the hope that a broad discussion
of recent ideas and techniques would lead to new breakthroughs in the field. The
symposium was held at Seoul National University, Republic of Korea, February 14—
17, 2005.

This volume is an outgrowth of the symposium. The lectures cover a variety of
aspects of representation theory and autmorphic forms, among them, a lifting of el-
liptic cusp forms to Siegel and Hermitian modular forms (T. Ikeda), systematic and
synthetic applications of the original theory of “visible actions” on complex mani-
folds to “multiplicity-free” theorems, in particular, to branching problems for reduc-
tive symmetric pairs (T. Kobayashi), an adaption of the Rankin—Selberg method to
the setting of automorphic distributions (S. Miller and W. Schmid), recent develop-
ments in the Langlands functoriality conjecture and their relevance to certain conjec-
tures in number theory, such as the Ramanujan and Selberg conjectures (F. Shahidi),
cuspidality-irreducibility relation for automorphic representations (D. Ramakrish-
nan), and applications of Borcherds automorphic forms to the study of discriminants
of certain K3 surfaces with involution that arise from the theory of hypergeomet-
ric functions (K.-I. Yoshikawa). By presenting some of the most active topics in the
field, the editors hope that this volume will serve as an up-to-date introduction to the
subject.
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short. Our thanks go to Hyuk Kim, Director of BK21-MSD-SNU, and to Chong-
Kyu Han, Chairman of Department of Mathematics at SNU, for their support. We
are especially indebted to Sung-Hoon Park, President of the JEI Corporation, and to
Jee Hoon Park, President of JEI Distribution Co., LTD — and coincidentally a friend
of the last-named editor; without the very generous financial contribution of the JEI
Corporation the symposium would have been far more modest in scale.

Jaeyeon Joo and Eun-Soon Hong, secretaries of BK21-MSN-SNU, and Dong-
Soo Shin did a splendid job preparing the symposium and catering to the needs of the
participants. We are grateful also to Ann Kostant and Avanti Paranjpye of Birkhiduser
Boston for their work in publishing this volume.
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Wilfried Schmid
Jae-Hyun Yang
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Irreducibility and Cuspidality

Dinakar Ramakrishnan

253-37 Caltech
Pasadena, CA 91125, USA
di nakar @al t ech. edu

Summary. Suppose p is an n-dimensional representation of the absolute Galois group of Q
which is associated, via an identity of L-functions, with an automorphic representation z of
GL(n) of the adele ring of Q. It is expected that 7 is cuspidal if and only if p is irreducible,
though nothing much is known in either direction in dimensions > 2. The object of this article
is to show forn < 6 that the cuspidality of a regular algebraic & is implied by the irreducibility
of p. Forn < 5, it suffices to assume that 7 is semi-regular.

Key words: irreducibility, Galois representations, cuspidality, automorphic repre-
sentations, general linear group, symplectic group, regular algebraic representations

Subject Classifications: 11F70; 11F80; 22E55

Introduction

Irreducible representations are the building blocks of general, semisimple Galois
representations p, and cuspidal representations are the building blocks of automor-
phic forms 7z of the general linear group. It is expected that when an object of the
former type is associated to one of the latter type, usually in terms of an identity of
L-functions, the irreducibility of the former should imply the cuspidality of the latter,
and vice versa. It is not a simple matter to prove this expectation, and nothing much is
known in dimensions > 2. We will start from the beginning and explain the problem
below, and indicate a result (in one direction) at the end of the introduction, which
summarizes what one can do at this point. The remainder of the paper will be devoted
to showing how to deduce this result by a synthesis of known theorems and some new
ideas. We will be concerned here only with the so-called easier direction of showing
the cuspidality of 7 given the irreducibility of p, and refer to [Ra5] for a more dif-
ficult result going the other way, which uses crystalline representations as well as a

*Partially supported by the NSF through the grant DMS-0402044.
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refinement of certain deep modularity results of Taylor, Skinner—Wiles, et al. Need-
less to say, easier does not mean easy, and the significance of the problem stems
from the fact that it does arise (in this direction) naturally. For example, 7 could
be a functorial, automorphic image r(#), for # a cuspidal automorphic representa-
tion of a product of smaller general linear groups: H(A) = Hj GL(mj, A), with
an associated Galois representation o such that p = r (o) is irreducible. If the auto-
morphy of 7 has been established by using a flexible converse theorem ([CoPS1]),
then the cuspidality of z is not automatic. In [RaS], we had to deal with this ques-
tion for cohomological forms 7z on GL(6), with H = GL(2) x GL(3) and r the
Kronecker product, where « is automorphic by [KSh1]. Besides, the main result
(Theorem A below) of this paper implies, as a consequence, the cuspidality of 7 =
sym*(#) for  defined by any non-CM holomorphic newform ¢ of weight > 2 rel-
ative to I'o(N) C SL(2, Z), without appealing to the criterion of [KSh2]; here the
automorphy of 7 is known by [K] and the irreducibility of p by [Ri].

Write Q for the field of all algebraic numbers in C, which is an infinite, mys-
terious Galois extension of Q. One could say that the central problem in algebraic
number theory is to understand this extension. Class field theory, one of the tower-
ing achievements of the twentieth century, helps us understand the abelian part of
this extension, though there are still some delicate, open problems even in that well
traversed situation.

Let G denote the absolute Galois group of Q, meaning Gal(Q/Q). It is a pro-
finite group, being the projective limit of finite groups Gal(K /Q), as K runs over
number fields which are normal over Q. For fixed K, the Tchebotarev density the-
orem asserts that every conjugacy class C in Gal(K /Q) is the Frobenius class for
an infinite number of primes p which are unramified in K. This shows the impor-
tance of studying the representations of Galois groups, which are intimately tied
up with conjugacy classes. Clearly, every C-representation, i.e., a homomorphism
into GL(n, C) for some n, of Gal(K/Q) pulls back, via the canonical surjection
Gg — Gal(K/Q), to a representation of Gg, which is continuous for the profinite
topology.

Conversely, one can show that every continuous C-representation p of Gg is
such a pullback, for a suitable finite Galois extension K/Q. E. Artin associated
an L-function, denoted L(s, p), to any such p, such that the arrow p — L(s, p)
is additive and inductive. He conjectured that for any non-trivial, irreducible, con-
tinuous C-representation p of Gg, L(s, p) is entire, and this conjecture is open
in general. Again, one understands well the abelian situation, i.e., when p is a 1-
dimensional representation; the kernel of such a p defines an abelian extension of
Q. By class field theory, such a p is associated to a character ¢ of finite order of
the idele class group A*/Q*; here, being associated means they have the same L-
function, with L(s, &) being the one introduced by Hecke, albeit in a different lan-
guage. As usual, we are denoting by A = R x Ay the topological ring of ade-
les, with Ay = 7Z® Q, and by A* its multiplicative group of ideles, which can
be given the structure of a locally compact abelian topological group with discrete
subgroup Q*.
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Now fix a prime number ¢, and an algebraic closure Q, of the field of £-adic
numbers Q¢, equipped with an embedding Q < Q,. Consider the set R¢(n, Q) of
continuous, semisimple representations

pe 9o = GL(n, Qp),

up to equivalence. The image of Ggy in such a representation is usually not finite, and
the simplest example of that is given by the {-adic cyclotomic character y, given by
the action of Ggy on all the £-power roots of unity in Q. Another example is given
by the 2-dimensional £-adic representation on all the {-power division points of an
elliptic curve E over Q.

The correct extension to the non-abelian case of the idele class character, which
appears in class field theory, is the notion of an irreducible automorphic represen-
tation = of GL(n). Such a 7 is in particular a representation of the locally compact
group GL(n, Ar), which is a restricted direct product of the local groups GL(n, Q,),
where v runs over all the primes p and oo (with Qo = R). There is a correspond-
ing factorization of 7 as a tensor product ®, 7,, with all but a finite number of 7
being unramified, i.e., admitting a vector fixed by the maximal compact subgroup
K, . At the archimedean place 0o, 7, corresponds to an n-dimensional, semisimple
representation ¢ (7~) of the real Weil group Wg, which is a non-trivial extension
of Gal(C/R) by C*. Globally, by Schur’s lemma, the center Z(A) >~ A* acts by a
quasi-character w, which must be trivial on Q* by the automorphy of 7, and so de-
fines an idele class character. Let us restrict to the central case when 7 is essentially
unitary. Then there is a (unique) real number ¢ such that the twisted representation
7y :=r(t) = 7 ®|-|" is unitary (with unitary central character w, ). We are, by abuse
of notation, writing | - | to denote the quasi-character | - | o det of GL(n, A), where
| - | signifies the adelic absolute value, which is trivial on Q* by the Artin product
formula.

Roughly speaking, to say that z is automorphic means =, appears (in a weak
sense) in L%(Z(A)GL(n, Q)\GL(n, A), @,), on which GL(n, Ar) acts by right
translations. A function ¢ in this L>-space whose averages over all the horocy-
cles are zero is called a cusp form, and = is called cuspidal if r, is generated by
the right GL(n, A f)-translates of such a . Among the automorphic representations
of GL(n, A) are certain distinguished ones called isobaric automorphic representa-
tions. Any isobaric 7 is of the form 7y H 7, 8 - - - B x,, where each 7 is a cuspidal
representation of GL(n, A), such that (ny, na, ..., n;) is a partition of n, where H
denotes the Langlands sum (coming from his theory of Eisenstein series); moreover,
every constituent x j is unique up to isomorphism. Let .A(n, Q) denote the set of iso-
baric automorphic representations of GL(n, A) up to equivalence. Every isobaric 7
has an associated L-function L(s, ) = HU L(s, m,), which admits a meromorphic
continuation and a functional equation. Concretely, one associates at every prime
p where 7 is unramified, a conjugacy class A(z) in GL(n, C), or equivalently, an
unordered n-tuple (a1, p, 02, p, - . ., 0y, p) of complex numbers so that

L(s,mp) = H(l - aj,ppﬂ)fl.

j=1
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If z is cuspidal and non-trivial, L(s, 7) is entire; so is the incomplete one LS (s, m)
for any finite set S of places of Q.

Now suppose py is an n-dimensional, semisimple ¢-adic representation of Gg =
Gal(Q/Q) corresponds to an automorphic representation 7 of GL(n, A). We will
take this to mean that there is a finite set S of places including ¢, oo and all the
primes where p, or 7 is ramified, such that we have

L(s,mp) = Lp(s,pc), Vp ¢S, (0.1)

where the Galois Euler factor on the right is given by the characteristic polynomial
of F'rp, the Frobenius at p, acting on p,. When (0.1) holds (for a suitable S), we will
write

pr < T.

A natural question in such a situation is to ask if 7 is cuspidal when py is irre-
ducible, and vice versa. It is certainly what is predicted by the general philosophy.
However, proving it is another matter altogether, and positive evidence is scarce be-
yondn = 2.

One can answer this question in the affirmative, for any n, if one restricts to those
pe which have finite image. In this case, it also defines a continuous, C-representation
p, the kind studied by E. Artin ([A]). Indeed, the hypothesis implies the identity of
L-functions

L5(s,pQpY)=L5@s,m xV), 0.2)

where the superscript S signifies the removal of the Euler factors at places in S, and
pY (resp. ") denotes the contragredient of p (resp. « ). The L-function on the right
is the Rankin—Selberg L-function, whose mirific properties have been established in
the independent and complementary works of Jacquet, Piatetski-Shapiro and Shalika
([JPSS], and of Shahidi ([Sh1, Sh2]); see also [MW]. A theorem of Jacquet and
Shalika ([JS1]) asserts that the order of pole at s = 1 of LS(s, T xnY)isliffz
is cuspidal. On the other hand, for any finite-dimensional C-representation z of G,
one has

—ordy—; L% (s, 7) = dimcHomg, (1, 7), (0.3)

where 1 denotes the trivial representation of Gg. Applying this with 7 = p ® p" ~
End(p), we see that the order of pole of L5(s, p ® p¥) at s = 1 is 1 iff the only
operators in End(p) which commute with the Gg-action are scalars, which means by
Schur that p is irreducible. Thus, in the Artin case, n is cuspidal iff p¢ is irreducible.

For general ¢-adic representations pg of Gg, the order of pole at the right edge
is not well understood. When p,; comes from arithmetic geometry, i.e., when it is a
Tate twist of a piece of the cohomology of a smooth projective variety over Q which
is cut out by algebraic projectors, an important conjecture of Tate asserts an analogue
of (0.3) for 7 = p¢ ® p;/, but this is unknown except in a few families of examples,
such as those coming from the theory of modular curves, Hilbert modular surfaces
and Picard modular surfaces. So one has to find a different way to approach the
problem, which works at least in low dimensions.
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The main result of this paper is the following:

Theorem A. Let n < 5 and let € be a prime. Suppose p; < =, for an isobaric,
algebraic automorphic representation © of GL(n, A), and a continuous, (-adic rep-
resentation p¢ of Gg. Assume

(i) pe is irreducible
(ii) w is odd if n > 3

(iii) m is semi-regular if n = 4, and regular ifn = 5
Then & is cuspidal.

Some words of explanation are called for at this point. An isobaric automor-
phic representation 7 is said to be algebraic ([C(1]) if the restriction of oo =
0 (oo 15")) to C* is of the form @7:1)(./, with each y; algebraic, i.e., of the form
7z — zPiz% with p;, q; € Z. (We do not assume that our automorphic representa-
tions are unitary, and the arrow 7, — 0o 1s normalized arithmetically.) Forn = 1,
an algebraic 7 is an idele class character of type Ag in the sense of Weil. One says
that 7 is regular iff oo |+ 1s a direct sum of characters y ;, each occurring with multi-
plicity one. And & is semi-regular (IBHR]) if each y; occurs with multiplicity at most
two. Suppose ¢ is a 1-dimensional representation of W. Then, since W]%b ~R* &is
defined by a character of R* of the form x — |x|* - sgn(x)?©, with a(&) € {0, 1};
here sgn denotes the sign character of R*. For every w, let 606[&] := 0 (700 ( 1;” NIE]
denote the isotypic component of &, which has dimension at most 2 (resp. 1) if 7 is
semi-regular (resp. regular), and is acted on by R*/R% =~ {41}. We will call a
semi-regular = odd if for every character ¢ of W, the eigenvalues of R* /R on the
&-isotypic component are distinct. Clearly, any regular 7 is odd under this definition.
See Section 1 for a definition of this concept for any algebraic «, not necessarily
semi-regular.

I want to thank the organizers, Jae-Hyun-Yang in particular, and the staff, of
the International Symposium on Representation Theory and Automorphic Forms in
Seoul, Korea, first for inviting me to speak there (during February 14-17, 2005),
and then for their hospitality while I was there. The talk I gave at the conference
was on a different topic, however, and dealt with my ongoing work with Dipendra
Prasad on selfdual representations. I would also like to thank F. Shahidi for helpful
conversations and the referee for his comments on an earlier version, which led to
an improvement of the presentation. It is perhaps apt to end this introduction at this
point by acknowledging support from the National Science Foundation via the grant
DMS — 0402044.

1 Preliminaries

1.1 Galois representations

For any field k with algebraic closure k, denote by Gy the absolute Galois group of k
over k. It is a projective limit of the automorphism groups of finite Galois extensions
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E /k. We furnish Gy as usual with the profinite topology, which makes it a compact,
totally disconnected topological group. When k = I, there is for every n a unique
extension of degree n, which is Galois, and Q]Fp is isomorphic to Z =~ lim, Z/n,
topologically generated by the Frobenius automorphism x — x?.

At each prime p, let G, denote the local Galois group Gal(Q,/Q),) with inertia
subgroup /,,, which fits into the following exact sequence:

1= 1, = Gp— Gr, — 1. (1.1.1)

The fixed field of Q,, under I, is the maximal unramified extension Q‘;,r of Qp, which
is generated by all the roots of unity of order prime to p. One gets a natural isomor-
phism of Gal((@‘;,r/ Qp) with Gp ,- I K /Q is unramified at p, then one can lift the
Frobenius element to a conjugacy class ¢, in Gal(K /Q).

All the Galois representations considered here will be continuous and finite-
dimensional. Typically, we will fix a prime £, and algebraic closure QQ; of the field
Q¢ of ¢-adic numbers, and consider a continuous homomorphism

pe: Gg — GL(Vp), (1.1.2)

where V; is an n-dimensional vector space over Q,. We will be interested only in
those p, that are unramified outside a finite set S of primes. Then p, factors through
a representation of the quotient group Gs := G(Qs/Q), where Qg is the maximal
extension of (Q which is unramified outside S. One has the Frobenius classes ¢, in
Gs forall p ¢ S, and this allows one to define the L-factors (with s € C)

Lp(s, pe) = det(I — p,p~* Vo) ™. (1.1.3)

Clearly, it is the reciprocal of a polynomial in p™* of degree n, with constant term 1,
and it depends only on the equivalence class of p;. One sets

L3, p0) = [T LpGs. po). (1.1.4)
PES

When py is the trivial representation, it is unramified everywhere, and L5 (s, p¢) is
none other than the Riemann zeta function. To define the bad factors at p in S — {(},

one replaces V¢ in (1.1.3) the subspace Vflp of inertial invariants, on which ¢, acts.

We are primarily interested in semisimple representations in this article, which
are direct sums of simple (or irreducible) representations. Given any representation
pe of Gg, there is an associated semisimplification, denoted p;*, which is a direct sum
of the simple Jordan—Holder components of p;. A theorem of Tchebotarev asserts
the density of the Frobenius classes in the Galois group, and since the local p-factors
of L(s, p¢) are defined in terms of the inverse roots of ¢, one gets the following
standard, but useful result.

Proposition 1.1.5. Let p¢, p, be continuous, n-dimensional {-adic representations
of Gg. Then

/88

L3(s, po) = L3(s, pp) = pJ° =~ p,™.
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The Galois representations py which have finite image are special, and one can
view them as continuous C-representations p. Artin studied these in depth and
showed, using the results of Brauer and Hecke, that the corresponding L-functions
admit meromorphic continuation and a functional equation of the form

L*(S,p) :S(S,p)L*(l _s’pV)’ (116)
where p" denotes the contragredient representation on the dual vector space, where
L*(S,p) :L(sap)LOO(syp)y (117)

with the archimedean factor Lo (s, p) being a suitable product (shifted) gamma
functions. Moreover,

e(s, p) = W(p)N(p)*~1/2, (1.1.8)

which is an entire function of s, with the (non-zero) W(p) being called the root
number of p. The scalar N(p) is an integer, called the Artin conductor of p, and
the finite set S which intervenes is the set of primes dividing N(p). The functional
equation shows that W (p)W (p¥) = 1,and so W(p) = +1 when p is selfdual (which
means p >~ p"). Here is a useful fact:

Proposition 1.1.9 ([T]). Let © be a continuous, finite-dimensional C-representation
of G, unramified outside S. Then we have

—ords=1LS(s, T) = HomgQ(l, 7).

Corollary 1.1.10. Let p be a continuous, finite-dimensional C-representation of G,
unramified outside S. Then p is irreducible if and only if the incomplete L-function
LS5(s, p ® pV) has a simple pole at s = 1.

Indeed, if we set
T :=p®p’ ~End(p), (1.1.11)

then Proposition 1.1.9 says that the order of pole of L(s, p @ p¥) at s = 1 is the mul-
tiplicity of the trivial representation in End(p) is 1, i.e., iff the commutant Endg, (p)
is one-dimensional (over C), which in turn is equivalent, by Schur’s lemma, to p
being irreducible. Hence the corollary.

For general ¢(-adic representations pg, there is no known analogue of Proposi-
tion 1.1.9, though it is predicted to hold (at the right edge of absolute convergence)
by a conjecture of Tate when p; comes from arithmetic geometry (see [Ra4], Sec-
tion 1, for example). Tate’s conjecture is only known in certain special situations,
such as for CM abelian varieties. For the L-functions in Tate’s set-up, say of mo-
tivic weight 2m, one does not even know that they make sense at the Tate point
s = m + 1, let alone know its order of pole there. Things get even harder if p, does
not arise from a geometric situation. One cannot work in too general a setting, and
at a minimum, one needs to require p, to have some good properties, such as being
unramified outside a finite set S of primes. Fontaine and Mazur conjecture ([FoM])
that py is geometric if it has this property (of being unramified outside a finite S) and
is in addition potentially semistable.
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1.2 Automorphic representations

Let F be a number field with adele ring Ar = Foo x Ap, s, equipped with the
adelic absolute value | - | = | - |o. For every algebraic group G over F, let
G(Afr) = G(Fx) x G(Af,r) denote the restricted direct product H; G(F,), en-
dowed with the usual locally compact topology. Then G (F) embeds in G(Af) as a
discrete subgroup, and if Z, denotes the center of GL(n), the homogeneous space
GL(n, F)Z,(Ar)\GL(n, Ar) has finite volume relative to the relatively invariant
quotient measure induced by a Haar measure on GL(n, Ar). An irreducible repre-
sentation 7 of GL(n, Ar) is admissible if it admits a factorization as a restricted
tensor product ®) 7, where each r, is admissible and for almost all finite places
v, m, is unramified, i.e., has a no-zero vector fixed by K, = GL(n, O,). (Here, as
usual, O, denotes the ring of integers of the local completion F, of F atv.)

Fixing a unitary idele class character w, which can be viewed as a character of
Z,(AF), we may consider the space

L*(n, w) := L*(GL(n, F)Z,(Ar)\GL(n, Ar), »), (1.2.1)

which consists of (classes of) functions on GL(n, Ar) that are left-invariant under
GL(n, F), transform under Z, (A r) according to w, and are square-integrable mod-
ulo GL(n, F)Z(Ar). Clearly, L?(n, ®) is a unitary representation of GL(n, Ar)
under the right translation action on functions. The space of cusp forms, denoted
L%(n, ), consists of functions ¢ in L*(n, w) which satisfy the following for every
unipotent radical U of a standard parabolic subgroup P = MU:

/ ¢ (ux) = 0. (1.2.2)
U(F)\U(AF)

To say that P is a standard parabolic means that it contains the Borel subgroup of
upper triangular matrices in GL(n). A basic fact asserts that L%(n, ) is a subspace
of the discrete spectrum of L (n, ).

By a unitary cuspidal (automorphic) representation z of GL,(Afr), we will
mean an irreducible, unitary representation occurring in L%(n, ). We will, by abuse
of notation, also denote the underlying admissible representation by 7. (To be pre-
cise, the unitary representation is on the Hilbert space completion of the admissible
space.) Roughly speaking, unitary automorphic representations of GL(n, Af) are
those which appear weakly in L?(n, w) for some . We will refrain from recalling
the definition precisely, because we will work totally with the subclass of isobaric
automorphic representations, for which one can take Theorem 1.2.10 (of Langlands)
below as their definition.

If z is an admissible representation of GL(n, Af), then for any z € C, we define
the analytic Tate twist of = by z to be

() =7 ®]|- %, (1.2.3)



1 Irreducibility and Cuspidality 9
where | - |* denotes the 1-dimensional representation of GL(n, Af) given by
g — |det(g)]F = g2 log(ldet()])

Since the adelic absolute value |-| takes det(g) to a positive real number, its logarithm
is well defined.

In general, by a cuspidal automorphic representation, we will mean an irre-
ducible admissible representation of GL(n, A r) for which there exists a real number
w, which we will call the weight of m, such that the Tate twist

Ty = m(w/2) (1.2.4)

is a unitary cuspidal representation. Note that the central character of z and of its
unitary avatar rr,, are related as follows:

wr = o, |- 7", (1.2.5)

which is easily checked by looking at the situation at the unramified primes, which
suffices.

For any irreducible, automorphic representation 7 of GL(n, Af), there is an
associated L-function L(s, 7) = L(s, moo) L(s, 7 r), called the standard L-function
([J]) of z. It has an Euler product expansion

L(s,7) =[] LGs. 7). (1.2.6)

convergent in a right-half plane. If v is an archimedean place, then one knows (cf.
[Lal]) how to associate a semisimple n-dimensional C-representation o (7, ) of the
Weil group Wg, , and L(s, x,) identifies with L(s, g,,). We will normalize this corre-
spondence m, — o (7,) in such a way that it respects algebraicity. Moreover, if v is
a finite place where 7, is unramified, there is a corresponding semisimple conjugacy
class A, () (or A(m,)) in GL(n, C) such that

L(s, m,) = det(1 — A, (1) T) |7, . (1.2.7)
We may find a diagonal representative diag(a1,, (), . . ., o, (7)) for A, (7), which
is unique up to permutation of the diagonal entries. Let [a1,,(7), ..., 0y, ()] de-

note the unordered rn-tuple of complex numbers representing A, (7). Since W;}-bv o~
FY, Ay(m) clearly defines an abelian n-dimensional representation o (7,) of Wr .

If 1 denotes the trivial representation of GL(1, A ), which is cuspidal, we have

L(s, 1) = Cr (),

the Dedekind zeta function of F. (Strictly speaking, we should take L(s, 1) on
the left, since the right-hand side is missing the archimedean factor, but this is not
serious.)

The fundamental work of Godement and Jacquet, when used in conjunction with
the Rankin—Selberg theory (see 1.3 below), yields the following:
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Theorem 1.2.8 ([J]). Letn > 1, and & a non-trivial cuspidal automorphic represen-
tation of GL(n, Ag). Then L(s, n) is entire. Moreover, for any finite set S of places
of F, the incomplete L-function

LS(S, T) = H L(s,m,)

vesS

is holomorphic and non-zero in R(s) > w + 1 if © has weight w. Moreover, there is
a functional equation

Lw+1—s,7Y)=e(s,n)L(s, ) (1.2.9)

with
e(s, ) = W(ﬂ)N,(r“"H)/z_S.

Here N, denotes the norm of the conductor Ny of =, and W (r) is the root number

of .

Of course when w = 0, i.e., when 7 is unitary, the statement comes to a more
familiar form. When n = 1, a 7 is simply an idele class character and this result is
due to Hecke.

By the theory of Eisenstein series, there is a sum operation H ([La2], [JS1]):

Theorem 1.2.10 ([JS1]). Given any m-tuple of cuspidal automorphic representa-
tionswy, ..., t,m of GL(ny1, Af), ..., GL(ny, AF) respectively, there exists an irre-
ducible, automorphic representation w1 8- - -HBx,, of GL(n, Ap),n = n1+---+ny,
which is unique up to equivalence, such that for any finite set S of places,

m
LS(s, @7 zj) = [[ L5, 7). (12.11)
j=1
Call such a (Langlands) sum 7 =~ EEI’,’?:lnj, with each z ; cuspidal, an isobaric au-
tomorphic, or just isobaric (if the context is clear), representation. Denote by ram(r )

the finite set of finite places where 7 is ramified, and let 9t(z ) be its conductor.
For every integer n > 1, set

A(n, F) = {z : isobaric representation of GL(n, Ar)}/~, (1.2.12)

and
Ao(n, F) = {r € A(n, F)| z cuspidal}.

Put A(F) = Uy>1A(n, F) and Ao(F) = Up>1.Ao(n, F).

Remark 1.2.13. One can also define the analogs of A(n, F) for local fields F, where
the “cuspidal” subset Ag(n, F) consists of essentially square-integrable representa-
tions of GL(n, F). See [La3] (or [Ral]) for details.
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Given any polynomial representation
r : GL(n, C) — GL(N, C), (1.2.14)

one can associate an L-function to the pair (7, r), for any isobaric automorphic rep-
resentation 7 of GL(n, Afr):

L(s,z;r) =[] LGs. m: 1), (1.2.15)

in such a way that at any finite place v where 7 is unramified with residue field I, ,
L(s,my;r) =det(l — Ay(x; V)T)_1|T:q;% (1.2.16)

with
Ay(m;r) =r(Ay(m)). (1.2.17)

The conjugacy class A, (x; r) in GL(N, C) is again represented by an unordered
N-tuple of complex numbers.

The Principle of Functoriality predicts the existence of an isobaric automorphic
representation r (7 ) of GL(N, Ar) such that

L(s,r(m)) = L(s, ;). (1.2.18)

A weaker form of the conjecture, which suffices for questions like those we are
considering, asserts that this identity holds outside a finite set S of places.
This conjecture is known in the following cases of (n, r):

(2, sym?): Gelbart-Jacquet ([GJ])
(2, sym?): Kim—Shahidi ([KSh1])
(2, sym*): Kim ([K])

4, A?): Kim ([K]).

(1.2.19)

In this paper we will make use of the last instance of functoriality, namely the
exterior square transfer of automorphic forms from GL(4) to GL(6).

1.3 Rankin-Selberg L -functions

The results here are due to the independent and partly complementary, deep works
of Jacquet, Piatetski-Shapiro and Shalika, and of Shahidi. Let 7, 7’ be isobaric au-
tomorphic representations in A(n, F), A(n’, F) respectively. Then there exists an
associated Euler product L(s, # x z’) ([JPSS], [JS1], [Sh1, Sh2], [MW], [CoPS2]),
which convergesin {!i(s) > 1}, and admits a meromorphic continuation to the whole
s-plane and satisfies the functional equation, which is given in the unitary case by

L(s,m xt')=e(s,m xa')L(1 —s, 7" x n/v), (1.3.1)
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with .
e(s,m xa)y=W( x )N xn')2~*,

where the conductor N(z x x’) is a positive integer not divisible by any rational
prime not intersecting the ramification loci of F/Q, = and z’, while W(z x z’) is
the root number in C*. As in the Galois case, W(z x #")W(z" x z’") = 1, so that
W(r x n') = =1 when &, =’ are selfdual.

It is easy to deduce from this the functional equation when 7, 7’ are not unitary.
If they are cuspidal of weights w, w’ respectively, the functional equation relates s to
w+w' +1—s. Moreover, since 7, 7" have respective weights —w, —w’, 7 x 7"
and 7’ x 7' still have weight 0.

When v is archimedean or a finite place unramified for z, z’,

Ly(s,7 xn')=L(s,0(m,) ® 0'(77.'1/))). (1.3.2)

In the archimedean situation, 7, — o (x,) is the arrow to the representations of
the Weil group W, given by [Lal]. When v is an unramified finite place, o (7,) is
defined in the obvious way as the sum of one dimensional representations defined by
the Langlands class A(x,).

Whenn = 1, L(s,7 x n’) = L(s,nx’), and when n = 2 and F = Q, this
function is the usual Rankin—Selberg L-function, extended to arbitrary global fields
by Jacquet.

Theorem 1.3.3 ([JS1], [JPSS]). Let & € Ao(n, F), ' € Ao(n’, F), and S a finite
set of places. Then L5 (s, w x ') is entire unless m is of the form '~ ®|.|", in which
case it is holomorphic outside s = w, 1 — w, where it has simple poles.

The Principle of Functoriality implies in this situation that given z, 7’ as above,
there exists an isobaric automorphic representation 7 Xz’ of GL(nn', Ag) such that

LG, Xr'y=L(s, 7 xx'). (1.3.4)

The (conjectural) functorial product X is the automorphic analogue of the usual
tensor product of Galois representations. For the importance of this product, see
[Ral], for example.

One can always construct 7 Xz as an admissible representation of GL(nn’, A r),
but the subtlety lies in showing that this product is automorphic.

The automorphy of X is known in the following cases, which will be useful to
us:

(n,n") = (2,2): Ramakrishnan ([Ra2])
(n,n") = (2,3): Kim-Shahidi ([KSh1]).

The reader is referred to Section 11 of [Ra4], which contains some refinements,
explanations, refinements and (minor) errata for [Ra2]. It may be worthwhile re-
marking that Kim and Shahidi use the functorial product on GL(2)xGL(3) which
they construct to prove the symmetric cube lifting for GL(2) mentioned in the pre-
vious section (see (1.2.11). A cuspidality criterion for the image under this transfer
is proved in [Ra-W], with an application to the cuspidal cohomology of congruence
subgroups of SL(6, Z).

(1.3.5)
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1.4 Modularity and the problem at hand

The general Langlands philosophy asserts that if p, is an n-dimensional £-adic repre-
sentation of G, then there is an isobaric automorphic representation 7 of GL(n, A)
such that for a suitable finite set S of places (including co), we have an identity of
the form

L5(s, pe) = L3(s, ). (1.4.1)

When this happens, we will say that p; is modular, and we will write
pr <> T. (1.4.2)

One says that pg is strongly modular if the identity (1.4.1) holds for the full L-
function, i.e., with S empty.

Special cases of this conjecture were known earlier, the most famous one being
the modularity conjecture for the ¢-adic representations p; defined by the Galois
action on the ¢-power division points of elliptic curves E over QQ, proved recently in
the spectacular works of Wiles, Taylor, Diamond, Conrad and Breuil.

We will not consider any such (extremely) difficult question in this article. In-
stead we will be interested in the following:

Question 1.4.3. When a modular py is irreducible, is the corresponding z cuspidal?
And conversely?

This seemingly reasonable question turns out to be hard to check in dimensions
n> 2.

One thing that is clear is that the 7 associated to any p, needs to be algebraic in
the sense of Clozel ([C{1]). To define the notion of algebraicity, first recall that by
Langlands, the archimedean component 7 is associated to an n-dimensional repre-
sentation o, Sometimes written o, of the real Weil group Wp, with corresponding
equality of the archimedean L-factors Loo(s, p¢) and L(s, o). We will normalize
things so that the correspondence is algebraic. One can explicitly describe W as
C* U jC*, with jzj~! = z and j? = —1. One gets a canonical exact sequence

]1>C"—> Wrp - Gp — 1 (1.4.4)
which represents the unique non-trivial extension of Gg by C*. One has a decompo-
sition

Oooler = @), (1.4.5)

where each £; is a (quasi-)character of C*. One says that 7 is algebraic when every
one of the characters y; is algebraic, i.e., there are integers p;, g; such that

xj (@) =2zPiz%. (1.4.6)

This analogous to having a Hodge structure, which is what one would expect if 7
were to be related to a geometric object.
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One says that 7 is regularif foralli # j, y; # x;.Inother words, each character
xj appears in the restriction of o (7 ) to C* with multiplicity one. We say (following
[BHRY]) that 7 is semi-regular if the multiplicity of each y; is at most 2.

When n = 2, any = defined by a classical holomorphic newform f of weight
k > 1 is algebraic and semi-regular. It is regular iff £ > 2. One also expects any
Maass waveform ¢ of weight 0 and eigenvalue 1/4 for the hyperbolic Laplacian to
be algebraic; there are interesting examples of this kind coming from the work of
Langlands (resp. Tunnell) on tetrahedral (resp. octahedral) Galois representations p
which are even; the odd ones correspond to holomorphic newforms of weight 1. We
will not consider the even situation in this article.

Given a holomorphic newform f(z) = >.02 anq", q = e>712_of weight 2, resp.
k > 3,resp. k = 1,level N and character w, one knows by Eichler and Shimura, resp.
Deligne ([De]), resp Deligne—Serre ([DeS]), that there is a continuous, irreducible
representation

pe: Go — GL(2, Q) (1.4.7)

such that for all primes p ¥ N¢,
tr(Frplpe) = ap

and
det(pr) = a))(éf_l ,

where y is the £-adic cyclotomic character of G, given by the Galois action on the

¢-power roots of unity in Q, and F'r,, is the geometric Frobenius at p, which is the
inverse of the arithmetic Frobenius.

1.5 Parity

We will first first introduce this crucial concept over the base field @, as that is what
is needed in the remainder of the article.

We will need to restrict our attention to those isobaric forms 7z on GL(n)/Q
which are odd in a suitable sense. It is instructive to first consider the case of a
classical holomorphic newform f of weight k > 1 and character w relative to the
congruence subgroup ['o(N). Since I'o(N) contains —/, it follows that w(—1) =
(—1)*. One could be tempted to call a 7 defined by such an f to be even (or odd)
according as w is even (or odd), but it would be a wrong move. One should look
not just at w, but at the determinant of the associated py, i.e., the £-adic character
0} Xé‘*l , which is odd for all k£ ! So all such 7= defined by holomorphic newforms are
arithmetically odd. The only even ones for GL(2) are (analytic Tate twists of) Maass
forms of weight 0 and Laplacian eigenvalue 1/4.

The maximal abelian quotient of Wg is R*, and the restriction of the abelian-
ization map to C* identifies with the norm map z — |z|. So every (quasi)-character
¢ of W identifies with one of R*, given by x — sgn(x)“|x|" for some ¢, with
a € {0, 1}. Clearly, ¢ determines, and is determined by (¢, a). If 7 is an isobaric au-
tomorphic representation, let o,,[¢] denote, for each such &, the &-isotypic compo-
nent of ooo. The sign group R* /R acts on each isotypic component. Let m (r, &)
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(resp. m_(z, ¢)) denote the multiplicity of the eigenvalue +1 (resp. —1), under the
action of R*/R* on g0 ($).

Definition 1.5.1. Call an isobaric automorphic representation = of GL(n, A) odd if
for every one-dimensional representation & of W occurring in 60,

Imy(w, &) —m_(w,d)] < 1.

Clearly, when the dimension of o[{] is even, the multiplicity of +1 as an eigen-
value of the sign group needs to be equal to the multiplicity of —1 as an eigenvalue.

Under this definition, all forms on GL(1)/Q are odd. So are the 7 on GL(2)/Q
which are defined by holomorphic newforms of weight k > 2. The reason is that
T 18 (for k > 2) a discrete series representation, and the corresponding oo (7) is
an irreducible 2-dimensional representation of W induced by the (quasi)-character
z — z~ &= of the subgroup C* of index 2, and our condition is vacuous. On the
other hand, if k = 1, 6o0(n) is a reducible 2-dimensional representation, given by
1 @ sgn. The eigenvalues are 1 on g(1) and —1 on o (sgn). On the other hand,
a Maass form of weight 0 and 4 = 1/4, the eigenvalue 1 (or —1) occurs with multi-
plicity 2, making the z it defines an even representation. So our definition is a good
one and gives what we know for n = 2.

For any 7, note that if 7 is algebraic and regular, it is automatically odd. If 7 is
algebraic and semi-regular, each isotypic space is one or two-dimensional, and in the
latter case, we want both eigenvalues to occur for z to be odd.

Finally, if F' is any number field with a real place «, we can define, in exactly the
same way, when an algebraic, isobaric automorphic representation of GL(n, Ar) is
arithmetically odd at u. If F is totally real, then we say that & is fotally odd if it is
so at every archimedean place.

2 The first step in the proof

Let p¢, © be as in Theorem A. Since py is irreducible, it is in particular semisimple.
Suppose 7 is not cuspidal. We will obtain a contradiction.

Proposition 2.1. Let p;, # be associated, with & algebraic, semi-regular and odd.
Suppose we have, for some r > 1, an isobaric sum decomposition

T EEI;Z1 nj, (2.2)

where each n; is a cuspidal automorphic representation of GL(nj, A), withn; < 2
(Vj). Then pg cannot be irreducible.

Corollary 2.3. Theorem A holds when T admits an isobaric sum decomposition such
as (2.2) with each nj < 2. In particular, it holds for n < 3.
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Proof of Proposition. The hypothesis that 7 is algebraic and semi-regular implies
easily that each #; is also algebraic and semi-regular. Let J,,, denote the set of j
where n; = m.

First look at any j in J;. Then the corresponding #; is an idele class character.
Its algebraicity implies that, in classical terms, it corresponds to an algebraic Hecke
character v;. By Serre ([Se]), we may attach an abelian £-adic representation v; ¢ of
G of dimension 1. It follows that for some finite set S of places containing ¢,

L5(s, V)= L5, nj) whenever n; =1. (2.4)

Next consider any j in Jo. If 0(7;,00) is irreducible, then a twist of #; must
correspond to a classical holomorphic newform f of weight & > 2. Moreover, the
algebraicity of 7; forces this twist to be algebraic. Hence by Deligne, there is a
continuous representation

tj,¢ 0 Gg — GL(2, Qy), (2.5)

ramified only at a finite of primes such that at every p # ¢ where the representation
is unramified,

tr(Frplzje) = ap(n;), (2.6)

and the determinant of 7; ¢ corresponds to the central character w; of #;. Moreover,
7j,¢ is irreducible, which is not crucial to us here.

We also need to consider the situation, for any fixed j € J>, when o (77;,00) is
reducible, say of the form y; @ y2. Since #; is cuspidal, by the archimedean purity
result of Clozel ([CL1]), x1x, ! must be 1 or sgn. The former cannot happen due to
the oddness of 7. It follows that #; is defined by a classical holomorphic newform f
of weight 1, and by a result of Deligne and Serre ([DeS]), there is a 2-dimensional £-
adic representation 7;,¢ of Gg with finite image, which is irreducible, such that (2.6)
holds.

Since the set of Frobenius classes Frj,, as p runs over primes outside S, is dense
in the Galois group by Tchebotarev, we must have, by putting all these cases together,

pr = (@jenvie) ® (@jesntje), 2.7

which contradicts the irreducibility of p¢, since by hypothesis, r = |J1| + |J2| > 2.
O

3 The second step in the proof

Let p¢,  be as in Theorem A. Suppose 7 is not cuspidal. In view of Proposition 2.1,
we need only consider the situation where 7 is an isobaric sum H;#;, with an #;
being a cusp form on GL(m)/Q for some m > 3.

Proposition 3.1. Let p;, & be associated, with © an algebraic cusp form on GL(n)/Q
which is semi-regular and odd. Suppose we have an isobaric sum decomposition
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T ~y@8y, (3.2)

where 1 is a cusp form on GL(3)/Q and ' is an isobaric automorphic representation
of GL(r, A) for some r > 1. Moreover, assume that there is an r-dimensional (-adic
representation t; of Gqg associated to n'. Then we have the isomorphism of Gg-
modules:

Pl ® (pe ® 1)) >~ N (pe) ® 17" @ sym®(z)). (3.3)

Corollary 3.4. Let pg, m be associated, with & algebraic, semi-regular and odd. Sup-
pose w admits an isobaric sum decomposition such as (3.2) with r < 2. Then py is
reducible.

Proposition 3.1 — Corollary 3.4. When r < 2, 5’ is either an isobaric sum of
algebraic Hecke characters or cuspidal, in which case, thanks to the oddness, it is
defined by a classical cusp form on GL(r)/Q of weight > 1. In either case we have,
as seen in the previous section, the existence of the associated £-adic representation
7;, which is irreducible exactly when 7, is cuspidal. Then by the proposition, the
decomposition (3.3) holds. If r = 1 or r = 2 with 7 Eisensteinian, (3.3) implies
that a 1-dimensional representation (occurring in 7;) is a summand of a twist of either
pe or p;. Hence the corollary.

0

Combining Corollary 2.3 and Corollary 3.4, we see that the irreducibility of p,
forces the corresponding 7 to be cuspidal when n < 4 under the hypotheses of The-
orem A. So we obtain the following:

Corollary 3.5. Theorem A holds for n < 4.

Proof of Proposition 3.1. By hypothesis, we have a decomposition as in (3.2), and
an {-adic representation 7, associated to 7’.

As a short digression let us note that if # were essentially selfdual and regular,
we could exploit its algebraicity, and by appealing to [Pic] associate a 3-dimensional
{-adic representation to #. The Proposition 3.1 will follow in that case, as in the proof
of Proposition 2.1. However, we cannot (and do not wish to) assume either that 7 is
essentially selfdual or that it is regular. We have to appeal to another idea, and here
1t 18.

Let S be a finite set of primes including the archimedean and ramified ones. At

any p outside S, let 7, be represented by an unordered (3 + r)-tuple {a1, ..., a3}
of complex numbers, and we may assume that 7, (resp. 17;,) is represented by
{a1, a2, a3} (resp. {a4, . .., a34,}. It is then straightforward to check that

L(s,mp; A%) = L(s, n;)L(s, np X n;)L(s, n's A?). (3.6)

One can also deduce this as follows. Let o (#) denote, for any irreducible admissible

representation f of GL(m, ), the m-dimensional representation of the extended

Weil group W@ = Wg, x SL(2, C) defined by the local Langlands correspondence
P
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(cf. [HaT], [He]). For any representation ¢ of W(’@ which splits as a direct sum 7 @7/,
V4

we have
Ao) = A2 ()@ (r ® 7)) ® A (7)), (3.7)

with A2(z’) = 0if 7’ is 1-dimensional and
A%*(r) ~ 7V when dim(z) = 3. (3.8)

In fact, this shows that the identity (3.6) works at the ramified primes as well, but we
do not need it.
Now, since 7 ~ 7V B #'", we get by putting (3.2) and (3.6) together,

L(s,w))L(s, mp x 1, L(s, 3 A?) = L(s, 7w p; A*)L(s, 7, VL(s, 7, x 11,). (3.9)

Appealing to Tchebotarev, and using the correspondences 7 <> p¢ and 1’ <> 7/, we
obtain the following isomorphism of Gg-representations:

P ® (pe @ 1)) & AN2(z) ~ N2(p)) D7)’ @ (1) ® 1)). (3.10)
Using the decomposition
1, ® 1 =~ sym?(z)) ® A*(z}),

we then obtain (3.3) from (3.10). O

4 Galois representations attached to regular, selfdual cusp forms
on GL4)

A cusp form IT on GL(m)/F, F a number field, is said to be essentially selfdual iff
ITY ~ IT ® A for an idele class character A; it is selfdual if A = 1. We will call such
a 4 a polarization. Let us call II almost selfdual if there is a polarization 4 of the
form x| - |" for some ¢ € C and a finite order character x; in this case, one sees that
(M ® u)Y ~ MO ul- |, or equivalently, I1 ® u| - |'/? is selfdual. Clearly, if IT is
essentially selfdual, then it becomes, under base change ([AC]), almost selfdual over
a finite cyclic extension K of F.

Note that when II is essentially selfdual relative to 4, it is immediate that A
occurs in the isobaric sum decomposition of 1y, X I, or equivalently, o (1) is a
constituent of ¢ (IToo)®2. This implies that if II is algebraic, then so is A, and thus
corresponds to an £-adic character 4, of Gg.

Whether or not II is algebraic, we have, for any S,

LS, I x @A=L, I, sym? @ A~ HL5(s, II; A2 @ A7), 4.1)

The L-function on the left has a pole at s = 1, since IIY ~ II ® 4 by hypothesis.
Also, neither of the L-functions on the right is zero at s = 1 ([JS2]). Consequently,
exactly one of the L-functions on the right of (4.1) admits a pole at s = 1. One says
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that IT is of orthogonal type ([Ra3)), resp. symplectic type, if LS (s, I1, sym?> ® A7 1),
resp. L5 (s, IT, A> ® 2~!) admits a pole at s = 1.

The following result is a consequence of a synthesis of the results of a number
of mathematicians, and it will be crucial to us in the next section, while proving
Theorem A forn = 5.

Theorem B. Let 11 be a regular, algebraic cusp form on GL(4)/Q, which is almost
selfdual. Then there exists a continuous representation

R¢ : Gg — GL(4,Qy),

such that
L (s, TI; A%) = L (s, A*(Ry)),

for a finite set S of primes containing the ramified ones. Moreover; if Il is of orthog-
onal type, we can show that Ry and 11 are associated, i.e., have the same degree 4
L-functions (outside S).

When II admits a discrete series component I1, at some (finite) prime p, a
stronger form of this result, and in fact its generalization to GL(n)/Q, is due to
Clozel ([C£2]). But in the application considered in the next section, we will not be
able to satisfy such a ramification assumption at a finite place.

In the orthogonal case, 11 descends by the work of Ginzburg—Rallis—Soudry (cf.
[So]) to define a regular cusp form S on the split SGO(4)/Q, which is given by a pair
(w1, m2) of regular cusp forms on GL(2)/Q. By Deligne, there are 2-dimensional
(irreducible) {-adic representations 7y ¢, t2,¢, With 7 ¢ <> 7, j = 1,2. This leads
to the desired 4-dimensional Q,-representation Ry := 71,¢ ® 72,7 of G associated to
I1, such that

L5(s, R¢) = L5(s, I0). 4.2)

It may be useful to notice that since the polarization is a square (under the al-
most selfduality assumption), the associated Galois representation takes values in
SGO(4, Qy), which is the connected component of GO(4, Q,), with quotient {+1}.
In the general case, not needed for this article, R, will need to be either of the type
above or of Asai type (see [Ra4]), associated to a 2-dimensional (Q,-representation
Gal(Q/K) for a quadratic extension K /Q.

In the (more subtle) symplectic case, this theorem is proved in my joint work
[Ra-Sh] with F. Shahidi. We will start with a historical comment and then sketch the
proof (for the benefit of the reader). Some years ago, Jacquet, Piatetski-Shapiro and
Shalika announced a theorem, asserting that one could descend any IT (of symplectic
type on GL(4)/Q) to a generic cusp form f on GSp(4)/Q with the same (incomplete)
degree 4 L-functions. Unfortunately, this work was never published, except for part
of it in [JSh2]. In [Ra-Sh], Shahidi and I provide an alternate, somewhat more cir-
cuitous route, yielding something slightly weaker, but sufficient for many purposes.
Here is the idea. We begin by considering the twist ITo := IT® x| - |'/? instead of I,
to make the polarization is trivial, i.e., so that I1y has parameter in Sp(4, C). Using
the backwards lifting results of [GRS] (see also [So]), we get a generic cusp form IT'
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on the split SO(5)/Q, such that ITp — TI’ is functorial at the archimedean and un-
ramified places. Using the isomorphism of PSp(4)/Q with SO(5)/Q, we may lift T’
to a generic cusp form I1” on Sp(4)/Q. By a suitable extension followed by induc-
tion, we can associate a generic cusp form IT; on GSp(4),/Q, such that the following
hold:
(i) The archimedean parameter of I1p := IT; @ x~!| - |7//?
regular; and
(ii) L(s, 2, p; A?) = L(s, IT,; A?) at any prime p where IT is unramified.
(4.3)

We in fact deduce a stronger statement in [Ra-Sh], involving also the ramified
primes, but it is not necessary for the application considered in this paper. To con-
tinue, part (i) of (4.3) implies that I, contributes to the (intersection) cohomology
of (the Baily—Borel-Satake compactification over QQ of) the 3-dimensional Shimura
variety Shk /Q associated to GSp(4)/Q, relative to a compact open subgroup K
of GSp(4, Ar); Shg parametrizes principally polarized abelian surfaces with level
K -structure. Now by appealing to the deep (independent) works of G. Laumon
([Laul, Lau2]) and R. Weissauer ([Wei]), one gets a continuous 4-dimensional ¢-
adic representation R; of Gg such that

is algebraic and

L5(s, o) = L5(s, Ro). (4.4)

The assertion of Theorem B now follows by combining (4.3)(ii) and (4.4). O

5 Two useful lemmas on cusp forms on GL(4)

Let F be a number field and # a cuspidal automorphic representation of GL(4, Ar),
where Ap := A ®q F is the Adele ring of F. Denote by w, the central character
of 5.

First let us recall (see (1.2.11)) that by a difficult theorem of H. Kim ([K]), there
is an isobaric automorphic form A2(5) on GL(6)/Q such that

L(s, A* () = L(s, 1: A?). (5.1)
Lemma 5.2. A2(n) is essentially selfdual. In fact
A" =~ N () @ o), (5.3)

Proof. Thanks to the strong multiplicity one theorem for isobaric automorphic rep-
resentations ([JS1]), it suffices to check this at the primes p where 7 is unramified.
Fix any such p, and represent the semisimple conjugacy class A, (#) by [a, b, ¢, d].
Then it is easy to check that

A,(A*(n) = A*(A,(n)) = [ab, ac, ad, be, bd, cd). (5.4)
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Since for any automorphic representation II, the unordered tuple representing
A, (ITY) consists of the inverses of the elements of tuple representing A ,(x), and
since A, (w,) = [abcd], we have

Ap(N2()Y ® wy) = [@b)™", (a0) ™!, (ad) ™", (be) ™!, (bd) ™, (ed) '] ® [abed],
(5.5)
which is none other than A, (A%(n)). The isomorphism (5.3) follows. O

Lemma 5.6. Let n be a cusp form on GL(4)/F with trivial central character. Sup-
pose ¥ % 5. Then there are infinitely many primes P in O where np is unramified
such that 1 is not an eigenvalue of the conjugacy class A p(A2(n)) of A2(np).

Proof of Lemma 5.6. Since 5 % 7, there exist, by the strong multiplicity one the-
orem, infinitely many unramified primes P where 5}, % #p. Pick any such P, and
write

Ap(n) =la,b,c,d], with abcd =1.

The fact that 7, # np implies that the set {a, b, c, d} is not stable under inversion.
Hence one of its elements, which we may assume to be a after renaming, satisfies
the following:

a¢fa b7 7 ahy.

Equivalently,
1 ¢ {a*, ab, ac, ad).

On the other hand, we have (5.4), which is used to conclude that the only way 1 can
be in this set (attached to A%(5p)) is to have either bc or bd or cd to be 1. But if
bc = 1 (resp. bd = 1), since abcd = 1, we must have ad = 1 (resp. ac = 1),
which is impossible. Similarly, if cd = 1, we are forced to have ab = 1, which is
also impossible. O

6 Finale

Let p¢, # be as in Theorem A. In view of Corollary 3.5, we may assume henceforth
that n» = 5, and that x is algebraic and regular. Suppose 7 is not cuspidal. In view of
Corollary 2.3 and Corollary 3.4, we must then have the decomposition

T ~nHy, (6.1)

where 7 is an algebraic, regular cusp form on GL(4)/Q and v is an algebraic Hecke
character, with associated {-adic character vy.

Note that Theorem A needs to be proved under either of two hypotheses. To
simplify matters a bit, we will make use of the following:

Lemma 6.2. There is a character v with vg = 1 such that for p = vov™', if 7 is

almost selfdual, then so isT @ u~ .
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Proof of lemma. When 7 is almost selfdual, there exists, by definition, an idele class
character u such that # ® u is selfdual. But this implies, thanks to (6.1) and the
cuspidality of #, that # ® u is selfdual and uv is 1 or quadratic. We are done by
taking vo = uv. O

Consequently, we may, and we will, replace 7 by 7 ® u, p¢ by pr @ ue, n by

n ® wu and v by vu, without jeopardizing the nature of either of the hypotheses of

Theorem A. In fact, the first hypothesis simplifies to assuming that w is selfdual.
Moreover,

2 =1. (6.3)

Proof of Theorem A when 7 is almost selfdual. We have to rule out the decomposi-
tion (6.1), which gives (for any finite set S of places containing the ramified and
unramified ones):

LS(S, T) = LS(S, n)LS(s, V). (6.4)

As noted above, we may in fact assume that 7 is selfdual and that v2 = 1. Then the
cusp form # will also be selfdual and algebraic. We may then apply Theorem B and
conclude the existence of a 4-dimensional, semisimple £-adic representation 7, asso-
ciated to 7. Then, expanding S to include ¢, we see that (6.2) implies, in conjunction
with the associations 7 <> p¢, 1 <> ¢,

L3(s, pr) = L (s, 1)L (s, ve). (6.5)
By Tchebotarev, this gives the isomorphism
pe = 1 D vy, (6.6)

which contradicts the irreducibility of p,. O

Proof of Theorem A for general regular . Suppose we have the decomposition (6.1).
Again, we may assume that v> = 1.
Let w = w, denote the central character of 7. Then from (6.1) we obtain

W = wyv. (6.7)

Proposition 6.8. Assume the decomposition (6.1), and denote by w the central char-
acter of m with corresponding (-adic character wy.

(a) We have the identity
L3(s,m; A2)LS (s, ¥ @ wv)S(s) = LS(s, Vs A2 @ w) LS (x @ v)L5 (s, wv).
(b) There is an isomorphism of Gg-modules

2 \2 20V
A (pe) @ (p; ®wr) ® 1= (A (p;) ® wpve) @ (pe @ ve) © weve.
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Proof of Proposition 6.8. (a) Itis immediate, by checking at each unramified prime,
that
L¥(s,m: A% = L (s, ()L (n ® v), (6.9)

and (since v = v~1)
L3, "3 A%) = L3(s, (") L3 (" @ ). (6.10)

Since w = w,v, we get from Lemma 5.2 that A%(n") is isomorphic to A% () ®w ™ 'v.
Twisting (6.10) by wv, and using the fact that

LS(n" @ o) = L5(s, 7" ® )/L5(s, wv), (6.11)
we obtain
LS(s, V;A’Q® a)v)LS(s, wv) = LS(s, Az(n))LS(s, Y @ ). (6.12)
Similarly, using (6.9) and the fact that
Lis,n®v) =L (s, @v)/c5(5),
we obtain the identity
L3@s, m; A2)5(s) = L5(s, A2(n)) L5 (s, © @ ). (6.13)

The assertion of part (a) of the proposition now follows by comparing (6.12) and
(6.13).
(b) Follows from part (a) by applying Tchebotarev, since p; <> 7. O

Proposition 6.14. We have

(a) wv = 1.
(b) p; = pe.

Proof of Proposition 6.14. (a) Since py is irreducible of dimension 5, it cannot admit
a one-dimensional summand, and hence part (b) of Proposition 6.8 implies that either
weve = 1 or

weve € A*(pe).

Since the first case gives the assertion, let us assume that we are in the second case.
But then, again since py is irreducible, and since A2(p¢) is a summand of p; ® py,
we must have

P = pe ® (wrve) ™

In other words, py is essentially selfdual in this case. Then so is 7. More explicitly,
we have (since v2 = 1)

BBy 21 Qo v hBe .
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As 7 is cuspidal, this forces the identity
v=o0"l.

Done.
(b) Thanks to part (a) (of this proposition), we may rewrite part (b) of Proposi-
tion 6.8 as giving the isomorphism of Gg-modules

N (pe) ® (pf ® wr) = (N*(p)) & (pe ® ve). (6.15)
We now need the following:

Lemma 6.16. Suppose p¢ is not selfdual. Then

pe®ve ¢ A*(pe). (6.17)

Proof of Lemma 6.16. The hypothesis on p; implies that 7 is not selfdual, and since
w = n By, 5 is not selfdual either.
Suppose (6.17) is false. Then, since p; <> 7, from (6.1) we must have (since
v2=1)
Ap(r ®v) C Ap(m; A%, Vpées, (6.18)

for a finite set S of primes. But we also have
Ap(r @v) =Ap(nQV) &1 (6.19)

and
Ap(m; AP = Ap(A° (1) @ Ap(n @ ). (6.20)

Substituting (6.19) and (6.20) in (6.18), we obtain
1CA,(A*(n) Ypés. (6.21)

On the other hand, since 7 is a non-selfdual cusp form on GL(4)/Q of trivial
central character, we may apply Lemma 5.6 with F' = @, and conclude that there is
an infinite set of primes T such that

1¢ Ap(A*(p)) VpeT, (6.22)
which contradicts (6.21), proving the lemma. O

In view of the identity (6.15) and Lemma 6.16, we have now proved all of Propo-
sition 6.14. |

We are also done with the proof of Theorem A because 7 is selfdual when the
decomposition (6.1) holds, thanks to the irreducibility of p,, and the selfdual case
has already been established (using the algebraic regularity of x). O
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Summary. In this article, we discuss a lifting of elliptic cusp forms to higher dimensional
symmetric spaces. We will consider two cases. The first case is the Siegel modular case, and
the second case is the hermitian modular case. The Fourier coefficients of our liftings are
closely related to those of Eisenstein series. When the degree is 2, our lifting reduces to the
classical Saito—Kurokawa lifting or hermitian Maass lifting.
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Introduction

In this article, we discuss a lifting of elliptic cusp forms to higher dimensional sym-
metric spaces. We will consider two cases. The first case is the Siegel modular case
[18], and the second case is the hermitian modular case [19]. The Fourier coefficients
of our liftings are closely related to those of Eisenstein series. When the degree is
2, our lifting reduces to the classical Saito—Kurokawa lifting or hermitian Maass
lifting.

The finite part of the automorphic representation generated by this lifting is iso-
morphic to a degenerate principal series. In particular, this is a non-tempered repre-
sentation.

Part I : Siegel modular case

1 Basic facts

We recall basic facts about Siegel modular forms. The Siegel upper half space ), of
degree n is defined by
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H, =1{Z = 7 e M, (C) | Im(Z) > 0}.

Here, Im(Z) > 0 means that Im(Z) is positive definite. We note that $; =
{r € C|Im(7z) > 0} is equal to the upper half plane. The symplectic group

On _]-n 0n _ln
Spn(R)zlgeSLgn(R) g(l 0 )’g:(l 0 )]

A B 1 t 1 1 t 1
=1\¢c b e SL,,(R) A'B=B'A, C'D=D'C, AAD-B'C=1,
acts on §),, b (A BY(z) = -1
wby (¢ 5)(Z)=(AZ+ B)(CZ+ D)~". Put
S, (Z) = the set of half-integral symmetric matrices
1
= IBe 2M2n(Z)‘ B='B,B;cZ (1 §i§2n)],

S(Z)" ={B € 8 (Z)| B > 0}.
A holomorphic function F on $),, is called a Siegel modular form of weight [ if

F((AZ+ B)(CZ+ D)™ = F(Z)det(CZ + D)

for any (2 ») € Sp,(Z). When n = 1, we need to impose that F has a Fourier
expansion
o0
F(Z) = Z ar(N)exp(2rv/—1NZ), Z € 9.
N=0

When n > 2, a Siegel modular form F automatically has a Fourier expansion

F(2)= > Ar(B)e(BZ).

BeS,(Z)
B>0

Here, e(X) = exp(2z +/—1tr(X)). The complex number Az (B) is called the B-th
Fourier coefficient of F'. A Siegel modular form F of degree n is called a cusp form
if Ap(B) = O unless B € S,(Z)". The space of Siegel modular (resp. cusp) forms
of degree n and weight / is demoted by M;(Sp,,(Z)) (resp. S;(Sp,, (Z))).

2 Fourier coefficients of the Eisenstein series

Now we assume k = n mod 2 and k > n + 1. Put

A B
rg;w:[(c D)eszn(Z),C:O :
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The Siegel-Eisenstein series on $)2, of weight k + n is defined by

EX(2) = > det(CZ 4+ D).

(& B)erl\spy, @)
As we have assumed k > n+1, E ,gr",z is absolutely convergent. Moreover, E ,gfn) isa
Siegel modular form of weight k + n. We define the normalized Eisenstein series by

EN@Z)=27"c(1 —k—m) [Jc( +2i =2k —2n) - EZ")(2).
i=1

For B € $,(Z)*, we put Dp = det(2B). The absolute value of the discriminant
of Q(+/(=1)"Dp) is denoted by dg. Put f = /Dp/0p. Let xp be the primitive
Dirichlet character modulo 9 corresponding to Q(+/(—1)"Dp)/Q.

For each prime p, lete, : Q, — C* be the additive character of Q, such that
e,(x) = e(—x) forany x € Z[1/p].

Recall that the Siegel series for B € S5 (Z)" is defined by

bp(B,s) = > ep (ir(BR)) p~ " (R)s,
ReSymy, (Q[?)/S)’mzn (Zp)
where
SymZn(Q[J) = {R = tR | R € MZH(QF)}J
Symy, (Z,) = {R =R | R € My, (Z))},
v(R) = [RZ} + 72 : 7]
Put

yp(B: X) = (1= X)(1 = p"xs(p)X)”' [](1 = p*X?).
i=1

Then there exists a polynomial F, (B; X) € Z[X] such that

bp(B,s) =7p(B; p~*)Fp(B; p~°).

Katsurada [20] proved the following functional equation
Fp(B: p~2" 71X 71 = (p¥ X)W Fy (B X).

In particular, we have degF, (B; X) = 2ord,fp.
It is known that for B € §), (Z)™, the B-th Fourier coefficient of Eﬁ"n) (2) is
equal to
L=k, xp)iy " [] FrB: p75™.
pIDp
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Put I:"p (B; X) = X~°mdnfs Fp(B; p~"~(1/2X). Then Katsurada’s functional equa-
tion implies B ~
Fy(B; X~1 = F,(B; X).

In terms of F »(B; X), the B-th Fourier coefficient of Elgi"n) (Z) can be expressed as

k—(1/2 ~ _
L=k, xp)fy VP T Fp(B: p7*+0/2),
plfs

3 Kohnen plus space

Let & the group which consists of all pairs (y, ¢ (7)), where y = (g Z) € SLa(R)
and ¢ (7) is a holomorphic function on § satisfying |¢(7)| = |ct + d|, with group

law defined by (y1, ¢1(7)) - (72, $2(7)) = (7172, ¢1(y2(7))¢2(2)). If h(7) is a func-
tionon H; and & = (y, ¢(7)) € &, we put

(h1E)(2) = (hlkra/2)E) () = p(0) F 7 h(y (2)).

Then (h|&1)|& = h|(E18), for &1, & € &. On the other hand, for y € SLy(R), we
put
(hllkr1/27) (@) = (et +d)"FFD2h( (2).
Then for y1, y2 € SL2(R), we have (k||y1)|ly2 = ¢t - h||(y1y2), for some t € C,
[t| = 1.
There exists an injective homomorphism I'g(4) — & given by y +— y* =
(7, J (7, 7)), where

. _ c -1 1/2 o ab
i =) e co+a)', V—(Cd)ero(4)-
Here,
] ifd =1mod4,
1T 1/=1, ifd=3mod4.

Recall that My, (1,2)(To(4)) (resp. Sk4(1/2)(F'o(4))) consists of all holomor-
phic functions /(z) on $); which satisfy i|i4.(1/2)y * = h for every y € I'o(4) and
which are holomorphic (resp. which vanish) at all cusps. The Kohnen plus space
M;+(1/2)(F0(4)) consists of all 4(7) € My (1,2)(I'0(4)) whose Fourier expansion is
of the form

h@) = > N, gq=expQav-I1).
N>0
(—=1)*N=0,1(4)

Similarly, the Kohnen plus space S,j +(1/2) (I'p(4)) is defined by

S;j__,_(l/z) (To4) = Sk+(1/2) (To@) N M]:_(l/g) (T'o(4)).
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Kohnen [24] proved that M,:“ H(1/2) (I'p(4)) has a basis that consists of Hecke eigen-
forms, and that the Shimura correspondence is one-to-one, i.e., there is a one-to-one
correspondence between Hecke eigenforms f(7) € M2 (SL2(Z)) and Hecke eigen-
forms in h(7) € M;+(1/2)(F0(4)), up to scalar multiplication. The form f(z) €
M>j (SL2(Z)) is a cusp form if and only if the corresponding 2 (7) € M,;:(l/z) (To(4))
is a cusp form.

Let

oo

F@) = aW)g" € My(SLa(2)), g =¥V
N=0
be a normalized Hecke eigenform of weight 2k. Let a[fl be the Satake parameter of
fatp,ie.,

(1= p e, X)(1 = pH= o1 x) =1 — a(p)X + p* ' X%

Let h(z) = ZNzO c(N)g" € M;+(1/2)(F0(4)) be a non-zero Hecke eigenform.
Then A (7) corresponds to f(7) by the Shimura correspondence if and only if for any
fundamental discriminant D such that (—1)"D > 0, we have

c(IDIf?) = c(IDN) D u(d)xip|(d)d* " a(f/d).
dif

Here 1 (d) is the Mobius function.

For any positive integer N such that (—1)*N = 0, 1 mod 4, we denote the ab-
solute value of the discriminant of Q(\/ (—1)XN)/Q by 0y and the positive rational
number such that N =0 Nf%\, by fn. Note that fy is an integer. Let yn be the primi-

tive Dirichlet character corresponding to Q(\/ (=D N)/Q.
We define ¥, (N; X)) € C[X, X~ '] by

Xe+1 _ X,e,1 X¢ — xX—¢
X—-x-1! X—-x-1

Here e = ord,fy. Note that ¥, (N; X) = 1 if ord,fy = 0. In terms of ¥, (N; X),
we have

¥, (N; X) = —p YN (p)

c(N) = cmiy P T2 WV: ap).
P

4 Lifting of cusp forms

Now we consider cusp forms. Let k be an arbitrary positive integer such that k = n
mod 2.
Choose a normalized Hecke eigenform

0]

f@) =D aN)g" € Su(SLa(Z),  a(l) =1

N=1
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and a corresponding Hecke eigenform

h@y= D eNg" €St To@),
N>0
(=DEN=0, 1 (4)

Let

o0

L(s, f)= D> a(N)N™*

N=1

— H[(l _ pk_(l/z)apX)(l _ pk—(l/Z)a;lX)]—l
p

be the L-function of f. The set {a), a;l} is called the Satake parameter of f.
Put

AB) =c@pfy VP Fp(Biay). B eSu@)*
p

F(Zy= Y. A(Be(BZ), ZeHy.
BeS,, (Z)*
B='B>0

Note that F,(B; @) does not depend on the choice of @, by Katsurada’s functional
equation. Then our first main theorem as as follows.

Theorem 1. Assume k = n mod 2. Then F € Sk4,(Sp,,(Z)) and F # 0. Moreover,
F is a Hecke eigenform whose standard L-function is equal to

2n

L(s, F.sty=¢) [[ LG +k+n—i, f).
i=1

5 Outline of the proof

We consider the Fourier—Jacobi expansion

(@) 5, E s

SeSo,—1(Z)*T 1e28) 1721 7201
S Si ;
x D> Ar ((%5 N)) e((N — 4SA)).
NeZN—"7.851>0

Here 6)(S;7,2) = D cpm1e('(x + 2)S(x + A)r + 2'(x + 1)Sz). For each
S € 8,_1(Z)*, A = 2detS, one can show that
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> Agen ((,fs ‘jvi)) e((N — 152)7)

NeZ
N—1281>0

= (degenerate terms)

, —(1/2) SA —K+(1/2)) N/A
+ZH(k o)y [17 ((%S %S/1+N/A)) P 9

PIN

is in the space generated by some translates of Hy(1/2)(7). Note that k" can be
arbitrarily large. From this, one can show that

- k—(1/2) = S SA . N/A
2, c@0fy T LTE A (is 524 wya) ) ion | 4

N=1 pIN

is in the space generated by some translates of /(z), and has the same K-types.
It follows that F(Z) is modular with respect to both the Siegel parabolic and with
respect to Jacobi parabolic subgroup. Since these two parabolic subgroups generates
Sp,, (Z), we have the desired modularity of F(Z).

6 Relation to the Saito—-Kurokawa lifts

We shall show that when n = 1, F(Z) is equal to the Saito—Kurokawa lift of f (7).
Let k be an odd integer.
Recall that a Siegel modular form F(Z) = ZBeSé(Z) Ar(B)e(BZ) of weight

k + 1 satisfies a Maass relation if there is a function fr : Z=>o — C such that

ArBY = Y - ﬁp(DB).

d>0
d~'BeSy(Z)

The space of Siegel modular forms of weight k£ 4 1 which satisfies the Maass relation
is called the Maass spezialschar. The Maass spezialschar is canonically isomorphic
to the Kornen plus space M /j H(1/2) (Fp(4)) by

QK F2)= D Ar(BeBZ)— D prnenr).

i ESé o nznOz30 4)

Put () = QSK(F) e M + a 2)(1“0(4)) Then F(Z) is a Hecke eigenform if and
only if /() is a Hecke elgenform and F(Z) is called the Saito—Kurokawa lift of
h(z). If

h(r)= > cmenr),

n>0

n=0,3(4)
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then B-th Fourier coefficient of F'(Z) is equal to

5 )
d>0 d
d~'BeS(2)

Let k" be a sufficiently large odd integer. It is well known that £ @

Z) satisfies
s
the Maass relation. Put H (k', n) = 8 o) (n). The function

K +1

QSKET @) =Hurap@) = >, HEK . nemr)
n>0

n=0,3(4)

is called the Cohen—Eisenstein series (cf. Cohen [8]. [9]).
Since SIE,J)FI(Z) satisfies the Maass relation, the B-the Fourier coefficent of
(Z) is equal to

/ D
k / B
E dH(k’dZ)

@
gk’+1

d>0
d~'BeS}(Z)
—(1/2) 1/2 Dp  v_ap
— HE, ) > d/H‘PP(dz’P (/)),
d>0 P
d~'BeS)(Z)

Since k' is arbitrary, we have

Maox= 3 e Tin(2)
P d>0
d~'BeS,(Z)
It follows that

AB) = c@p)fy P T] Fo(B:ap)
P

=cenfy 7 3 I (%)

d|(m,r,0)
- dkc(DB)
, |-
d>0 d
d~'BeSy(Z)

This agrees with the well-known Fourier coefficient formula for the Saito—Kurokawa
lift.
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Part II : Hermitian modular case

7 Hermitian modular forms and hermitian Eisensetein series

Now we consider the hermitian modular case. Let K = Q(+/— D) be an imaginary
quadratic field. We denote the ring of integers of K by O. The non-trivial automor-
phism of K is denoted by x — x. The primitive Dirichlet character corresponding
to K /Q is denoted by y. We denote by Of = (v/—D)~'O the inverse different ideal
of K/Q. For each prime p, weset K, = K ® Q, and O, = O Q Z),.

The special unitary group SU(m, m) is an algebraic group defined over (Q, whose
group of R-valued points is given by

0, —1,\,- 0, —1

for any (Q-algebra R.
The special hermitian modular group I g") is defined by SU (m, m)(Q)NSLy,, (O).

1
Note that T} = SL,(2).

Put
(m) A B (m)
Ty _—I(C )er,;” C_—O].

We define the hermitian upper half space H,, by

Hmz{ZeMm((C)|2 ! 1(z—fZ)>0}.

v
The action of SU(2, 2)(R) on H,, is given by

. A B
¢(Z) = (AZ+ B)(CZ + D)™ !, ZGHm,gz(C D).

We put
An(O) = {h = (hij) € Mu(K) | hij € Z, hij = hji € OF, (i # ))),
Am(O)F = {h € Ay (O) | h > 0.
For H € A,;,(O), det H # 0, we put
7 (H) = (=Dg)""* det(H).
A holomorphic function F on H, is called a hermitian modular form of

weight [ if
F((AZ+ B)(CZ + D)™ = F(Z)det(CZ + D)
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for any (2 g) € 1"2”). Again, we need a condition on Fourier expantion when

n = 1. When m > 2, a hermitian modular form F automatically has a Fourier
expansion
F(Z) = Z Ar(H)e(HZ).

HeA,(O)
H=>0

The complex number A g (H) is called the H -th Fourier coefficient of F'. A hermitian
modular form F of degree m is called a cusp form if Ap(H) = 0 unless H €
Ay (O)T. The space of hermitian modular (resp. cusp) form of degree m and weight

is demoted by S;(I'?™) (resp.S;(I'7)).
The Siegel series for H € A, (O)7 is defined by

bp(H.s5) = 2 ep(tr(H R)) p~ (R
ReHn (K p)/FHn(ORZLp)

for Re(s) > 0. Here, H,,(K ) (resp. H;, (O ® Zp)) is the additive group of all
hermitian matrices with entries in K, (resp. O ® Z).

The ideal v(R) C Z, is defined as follows: Choose an element g = (é g) €

SU(2,2)(Qp) N SLy, (O ® Z)) such that det D # 0, D~'C = R. Then v(R) =
det(D) € Z,.
We define a polynomial ¢, (K /Q; X) € Z[X] by

[(m+1)/2] [m/2]

pK/QX) =[] a-p"x) [TA=p""2(pX).
i=1 i=l1

Then there exists a polynomial F,,(H; X) € Z[X] such that
bp(Ha 5) = tp(K/Q; PiS)Fp(H; Pis)-
degF,(H; X) =ord,y (H).
The functional equation of F,(H; X) is as follows:

Fp(H: p=2" X~ =y (r (H)" (p" X)o7 WO Fy (H: X).

Here, 1, is the p-component of the idele character Aa /Q* — C* corresponding
to .
Put
Fy(H; X) = X7 p (5, p7mX %),

Then
Fy(H; XY= F,(H; X), 2fm
Fp(H; x(p)X™") = Fy(H; X), 2|m, and x(p) # 0.
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Assume k > 0. Put n = [m/2]. We define the Eisenstein series

ES),.(2) = > det(CZ + D) 2=2n

(A B)eriary”

and its normalization

m
eyl (Z)y =27 [T LA +i =2k —2n, 7Y - ES}),(2).

i=1

Then for each H € A,,(O)*, the H-th Fourier coefficient of Sézllzn is equal to

k+n—(m/2) I . —k—n+(m/2)
ly (H)| Fp(H; p )-
ply (H)

8 Thecase m=2n+1

When m = 2n + 1, the H -th Fourier coefficient of Sz(i':grll)(Z) is equal to
ly ()2 T Fp(a: p7++01/2)
ply (H)

forany H € A 1(O)T.
Now let f(z) = > N, a(N)g" € S (SL2(Z)) be a normalized Hecke eigen-
form, whose L-function is given by

o0

L(f,s) = D aNN~ =it = p= e, x)(1 = p*~2a X))
N=1 p

Put
AH) =y I T] FoH,ap)
ply (H)

for H € Az, +1(O)T and
F(Zy= Y. A(H)e(HZ)

HeAy1(0)F

for Z € Hap+1.
Then we have

Theorem 2. Assume thatm = 2n+1is odd. Then F € Syt (Fg"+l)) and F # 0.
Moreover, F is a Hecke eigenform.
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9 The case m = 2n

When m = 2n, the H-th Fourier coefficient of 52%1)2 . (Z) is equal to

ly (E)IF T Fp(H: p™
ply (H)
forany H € Ay, (O)T.
Now let f(r) = >3- a(N)g"N € Su41(To(Dg), x) be a primitive form,
whose L-function is given by

L(f,s)= D a(N)N™*
N=1
=[] G=ap™ +x)p™ )" x []0—ap)p™"
PTDK r|Dk

For each prime p t D, we define the Satake parameter {a,, f,} = {a,, X(p)aljl}
b
Y 2k 32y _ k k
(I—a(p)X + x(p)p~X7) = (1= piap,X)(1 — p B, X).
For p | Dk, weputa, = p~*a(p).
Put ~
AH) =y ) T] Fp(H,ap)
ply (H)
for H € Ay, (O)T and

F(2)= > A(H)e(HZ)

HeAr, ((9)+
for Z € Hjy,. Then we have

Theorem 3. Assume that m = 2n is even. Then F € Syya, (Fg")). Moreover, F
is a Hecke eigenform. F = 0 if and only if n is odd and f(t) comes from a Hecke
character of some imaginary quadratic field.

10 L-functions

For simplicity, we assume the class number of K is one. Then, the L-function of F
is as follows.

2n+1
L(s, F.p) =[] L6 +k+n—i+(1/2),f)

i=1
2n+1
x H L(s+k+n—i+(1/2), f, %)

i=1
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form = 2n + 1, and

2n
L(s,F.p) =[] LG +k+n—i+(1/2), f)
i=1
2n
< [[LG+k+n—i+1/2),f 1)

i=1

form =2nand F # 0.
Here, p is a 2m-dimensional representation of the L-group of U (m, m).

11 The case m = 2

The case m = 2 was first considered by Kojima [27] for K = Q(+/—1) and later by
Krieg [28] and Sugano [43] for arbitrary imaginary quadratic field. For simplicity,
we assume Dk # 3, 4.

Recall that

G(Z)= > Ac(H)e(HZ) e My (Ty)
HeAy(O)

satisfies the Maass relation if and only if there is a function
ag Lo — C

such that

Ag(H) = 3 d*Mlag ('V;I)l)

dle(H)

Here
e(H) = max{q € Z-o|q~"H € A2(O)}.

We denote the space of elements of M2k+2(1“§2)) satisfying the Maass relation by

aass 2
My, (T5Y). We put

apg(N) = [ (1 + xp(=N)).

pIDk

Here, y =[] pIDg Xp 18 the decomposition to a product of Dirichlet characters with
prime power conductors. The linear map

Q: My, (T — Moy (To(Dk), 1)
is defined by

Q(G)(2) = D ap (N)ag (H)q".
N=0
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(This definition is slightly modified by a scalar from Krieg’s definition.) Then Krieg
proved that the image of Q is equal to the space

M;k+1(rO(DK)a X)
=1/=> aN)g" € My11(To(Dk), x) a(N) = 0forap, (N) =0
N=0

Moreover, Q induces an isomorphism between My, (I'; &) ) and M7, 1 (Lo(Dk), X)
For each primitive form f € So4+1(Io(Dk), x), there exists an element f*
S5+1(Lo(Dk), ) such that

ag+(n) = apg (May (), (0, Dg) = 1.

When G is equal to the normalized hermitian Eisenstein series

£9 (z)= Boj2Bok+1,y EQ (7).
2k+2 8(k+ 1)(2k+ ) 2k+2
then we have (cf. Krieg [28], p. 679)
0 ap,(N)=0
Boji1,4 N =0

ag(N) =1— 4k+2
aDK(N) Zdw ZQcQDK XQ( )XQ(d)de N > 0,ap, (N) #0.

Using these results, one can calculate the polynomial F),(H; X) as follows: If

pt Dk, then
a—2i

Fy(H:; X) = ZPSIXI Z;{ (p) p*/ X7
If p|Dg, then
Z?:O p3iXi(1+X (V (H))pZ(a72i)Xa72i) 2% <a
Fy(H; X) = - . .
p3bXb + Zz‘b:_()l(p3le + p4b—tX2b—t) 2b = a.

Here a = ord, y (H), b = ord, ¢(H). When the class number of K is one, this
has been already calculated by Nagaoka [35]. Using this result, one can show that
Q~1(f*) is the lift of the primitive form f € Sy41(To(Dk), x).
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1 Introduction and statement of main results

The purpose of this article is to give a quite detailed account of the theory of
multiplicity-free representations based on a non-standard method (visible actions on
complex manifolds) through its application to branching problems. More precisely,
we address the question of restricting irreducible highest weight representations @
of reductive Lie groups G with respect to symmetric pairs (G, H). Then, our main
goal is to give a simple and sufficient condition on the triple (G, H, =) such that the
restriction 7 | i is multiplicity-free. We shall see that our method works in a uniform
way for infinite- and finite-dimensional representations, for classical and exceptional
cases, and for continuous and discrete spectra.
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This article is an outgrowth of the manuscript [44] which I did not publish, but
which has been circulated as a preprint. Since then, we have extended the theory, in
particular, to the following three directions:

1) the generalization of our main machinery (Theorem 2.2) to the vector bundle case
([49D,

2) the theory of ‘visible actions’ on complex manifolds ([50, 51, 52]),

3) ‘multiplicity-free geometry’ for coadjoint orbits ([53]).

We refer the reader to our paper [47] for a precise statement of the general results
and an exposition of the related topics that have recently developed.

In this article we confine ourselves to the line bundle case. On the one hand,
this is sufficiently general to produce many interesting consequences, some of which
are new and others which may be regarded as prototypes of various multiplicity-
free branching theorems (e.g., [5, 10, 46, 54, 58, 66, 68, 81, 90, 92]). On the other
hand, the line bundle case is sufficiently simple, so that we can illustrate the essence
of our main ideas without going into technical details. Thus, keeping the spirit of
[44], we have included here the proof of our method (Theorem 2.2), its applica-
tions to multiplicity-free theorems (Theorems A-F), and the explicit formulae (The-
orems 8.3, 8.4, and 8.11), except that we referred to another paper [50] for the proof
of some algebraic lemmas on the triple of involutions of Lie algebras (Lemmas 3.6
and 7.5).

1.1 Definition of multiplicity-free representations

Let us begin by recalling the concept of the multiplicity-free decomposition of a
unitary representation.

Suppose H is a Lie group of type I in the sense of von Neumann algebras. Any
reductive Lie group is of type I as well as any algebraic group. We denote by H
the unitary dual of H, that is, the set of equivalence classes of irreducible unitary
representations of H. The unitary dual H is endowed with the Fell topology.

Suppose that (z, H) is a unitary representation of H defined on a (second count-
able) Hilbert space H. By a theorem of Mautner, 7 is decomposed uniquely into irre-
ducible unitary representations of H in terms of the direct integral of Hilbert spaces:

% :/ﬁmn(mﬂda(u), (1L1.1)

where do (1) is a Borel measure on H, and the multiplicity function m, : H —

N U {oo} is uniquely defined almost everywhere with respect to the measure do .
Let End(H) be the ring of continuous operators on H, and Endy (/) the subring

of H-intertwining operators, that is, the commutant of {z (g) : g € H} in End(H).

Definition 1.1. We say that the unitary representation (z,H) is multiplicity-free if
the ring Endy (H) is commutative.

It is not difficult to see that this definition is equivalent to the following property:

my (1) < 1 foralmostall u € H with respect to the measure do (u)
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by Schur’s lemma for unitary representations. In particular, it implies that any irre-
ducible unitary representation u of H occurs at most once as a subrepresentation of
.

1.2 Multiplicities for inductions and restrictions

With regard to the question of finding irreducible decompositions of unitary repre-
sentations, there are two fundamental settings: one is the induced representation from
smaller groups (e.g., harmonic analysis on homogeneous spaces), and the other is the
restriction from larger groups (e.g., tensor product representations).

To be more rigorous, suppose G is a Lie group, and H is a closed subgroup of G.
The G-irreducible decomposition of the induced representation L2-Indg (7 € H )
is called the Plancherel formula, while the H -irreducible decomposition of the re-
striction 7 |y (7w € 6) is referred to as the branching law.

This subsection examines multiplicities in the irreducible decomposition of the
induction and the restriction for reductive symmetric pairs (G, H) (see Subsec-
tion 3.1 for the definition).

Let us start with the induced representation. Van den Ban [2] proved that the
multiplicity in the Plancherel formula for L2—Indf1 7 is finite as far as dim7 < oo.
In particular, this is the case if 7 is the trivial representation 1. Over the past several
decades, the induced representation L2-Indg 1 has developed its own identity (har-
monic analysis on reductive symmetric spaces G/H) as a rich and meaningful part
of mathematics.

In contrast, the multiplicities of the branching law of the restriction 7 |y (7 € G)
are usually infinite. For instance, we saw in [36] that this is the case if (G, H) =
(GL(p +¢,R),GL(p,R) x GL(g,R)) where min(p, g) > 2, for any tempered
representation 7 of G. In this article, we illuminate by Example 6.3 this wild behav-
ior.

In light of such a wild phenomenon of branching laws for reductive symmetric
pairs (G, H) with H non-compact, we proposed in [38, 40] to seek a ‘nice’ class
of the triple (G, H, ) in which a systematic study of the restriction z | could be
launched.

Finiteness of multiplicities is a natural requirement for this program. By also
imposing discrete decomposability on the restriction 7 | 7, we established the general
theory for admissible restriction in [38, 40, 41] and found that there exist fairly rich
triples (G, H, 7) that enjoy this nice property. It is noteworthy that new interesting
directions of research in the framework of admissible restrictions have been recently
developed by M. Duflo, D. Gross, J.-S. Huang, J.-S. Li, S.-T. Lee, H.-Y. Loke, T. Oda,
P. PandZi¢, G. Savin, B. Speh, J. Vargas, D. Vogan, and N. Wallach (see [45, 48] and
references therein).

Multiplicity-freeness is another ideal situation in which we may expect an es-
pecially simple and detailed study of the branching law of 7 |g. Thus, we aim for
principles that lead us to an abundant family of multiplicity-free cases. Among them,
a well-known one is the dual pair correspondence, which has given fruitful examples
in the infinite-dimensional theory in the following setting:
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a) G is the metaplectic group, and 7 is the Weil representation.
b) H = H; - H, forms a dual pair, that is, H; is the commutant of H in G, and vice
versa.

This paper uses a new principle that generates multiplicity-free representations. The
general theory discussed in Section 2 brings us to uniformly bounded multiplicity
theorems (Theorems B and D) and multiplicity-free theorems (Theorems A, C, E
and F) in the following setting:

a) r is a unitary highest weight representation of G (see Subsection 1.3).
b) (G, H) is a symmetric pair (see Subsection 1.4).

We note that we allow the case where continuous spectra occur in the branching
law, and consequently, irreducible summands are not always highest weight repre-
sentations.

We remark that our bounded multiplicity theorems for the restriction 7 |y (7:
highest weight module) may be regarded as the counterpart of the bounded multi-
plicity theorem for the induction L2—Indg 7 (7: finite-dimensional representation)
due to van den Ban.

1.3 Unitary highest weight modules

Let us recall the basic notion of highest weight modules.

Let G be a non-compact simple Lie group, # a Cartan involution of G, and K :=
{ge G : 0g =g} We write g = ¢ + p for the Cartan decomposition of the Lie
algebra g of G, corresponding to the Cartan involution 6.

We assume that G is of Hermitian type, that is, the Riemannian symmetric space
G/K carries the structure of a Hermitian symmetric space, or equivalently, the center
c(€) of € is non-trivial. The classification of simple Lie algebras g of Hermitian type
is given as follows:

5u(p5 q) 5 5p(”9 R) 5 50(7’]1, 2) (m ;é 2) s €6(—14), €7(=25) -
Such a Lie algebras g satisfies the rank condition:
rank G = rank K, (1.3.1)

or equivalently, a Cartan subalgebra of £ becomes a Cartan subalgebra of g. By a the-
orem of Harish-Chandra, the rank condition (1.3.1) is equivalent to the existence of
(relative) discrete series representations of G. Here, an irreducible unitary represen-
tation (7, H) is called a (relative) discrete series representation of G if the matrix
coefficient g — (7 (g)u,v) is square integrable on G (modulo its center) for any
u,v € H.

If g is a simple Lie algebra of Hermitian type, then there exists a characteristic
element Z € ¢(£) such that

gc =gQC=tc®pL Dp_ (1.3.2)
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is the eigenspace decomposition of ad(Z) with eigenvalues 0, V=1 and —+/—1,
respectively. We note that dimc¢(€) = 1 if g is a simple Lie algebra of Hermitian
type, and therefore ¢(f) = RZ.

Suppose V is an irreducible (gc, K)-module. We set

VPti:={peV:Yo=0 forany Y € py}. (1.3.3)

Since K normalizes p., VP+ is a K-submodule. Further, VP+ is either zero or an
irreducible finite-dimensional representation of K. We say V is a highest weight
module if VP+ #£ {0}.

Definition 1.3. Suppose © is an irreducible unitary representation of G on a Hilbert
space H. We set Hx := {v € H : dim¢ C-span{r (k)v : k € K} < oo}. Then, Hg is
a dense subspace of 'H, on which the differential action dr of the Lie algebra g (and
consequently that of its complexified Lie algebra gc) and the action of the compact
subgroup K is well defined. We say H is the underlying (gc, K )-module of (z, H).
We say (z, H) is a unitary highest weight representation of G if H’;}+ # {0}. Then,
7 is of scalar type (or of scalar minimal K-type) if H';(+ is one-dimensional;  is
a (relative) holomorphic discrete series representation for G if the matrix coefficient
g — (m(g)u,v) is square integrable on G modulo its center for any u,v € ‘H. Low-
est weight modules and anti-holomorphic discrete series representations are defined
similarly with p4 replaced by p_.

This definition also applies to G which is not simple (see Subsection 8.1).

The classification of irreducible unitary highest weight representations was ac-
complished by Enright—-Howe—Wallach [12] and H. Jakobsen [30] independently; see
also [13]. There always exist infinitely many (relative) holomorphic discrete series
representations of scalar type for any non-compact simple Lie group of Hermitian

type.

1.4 Involutions on Hermitian symmetric spaces

Suppose G is a non-compact simple Lie group of Hermitian type. Let z be an invo-
lutive automorphism of G commuting with the Cartan involution #. We use the same
letter 7 to denote its differential. Then 7 stabilizes £ and also c(£). Because 72 = id
and c(£) = RZ, we have the following two possibilities:

1 Z=127, (1.4.1)
1Z=-7. (1.4.2)
The geometric meanings of these conditions become clear in the context of the em-

bedding G'/K*® — G/K,where G" :={ge G:1g=g}and K7 := G" N K (see
[14, 27,28, 35]). The condition (1.4.1) implies:

1-a) 7 acts holomorphically on the Hermitian symmetric space G/K,
1-b) G*/K* — G/K defines a complex submanifold,
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whereas the condition (1.4.2) implies:

2-a) 7 acts anti-holomorphically on G/K,
2-b) G'/K' < G/K defines a totally real submanifold.

Definition 1.4. We say the involutive automorphism t is of holomorphic type if
(1.4.1) is satisfied, and is of anti-holomorphic type if (1.4.2) is satisfied. The same
terminology will be applied also to the symmetric pair (G, H) (or its Lie algebras
(g, b)) corresponding to the involution t.

Here we recall that (G, H) is called a symmetric pair corresponding to 7z if H
is an open subgroup of G (see Subsections 3.1 and 3.2). We note that the Lie al-
gebra b of H is equal to g := {X € g : X = X}. The classification of symmetric
pairs (g, g”) for simple Lie algebras g was accomplished by M. Berger [6]. The
classification of symmetric pairs (g, g*) of holomorphic type (respectively, of anti-
holomorphic type) is regarded as a subset of Berger’s list, and will be presented in
Table 3.4.1 (respectively, Table 3.4.2).

1.5 Multiplicity-free restrictions — infinite-dimensional case

We are ready to state our main results. Let G be a non-compact simple Lie group of
Hermitian type, and (G, H) a symmetric pair.

Theorem A (multiplicity-free restriction). If = is an irreducible unitary highest
weight representation of scalar type of G, then the restriction |y is multiplicity-
[ree.

The branching law of the restriction 7 | 7 may and may not contain discrete spec-
tra in Theorem A. If (G, H) is of holomorphic type, then the restriction 7 | g is dis-
cretely decomposable (i.e., there is no continuous spectrum in the branching law);
see Fact 5.1. Besides, the following theorem asserts that the multiplicities are still
uniformly bounded even if we drop the assumption that 7 is of scalar type.

Theorem B (uniformly bounded multiplicities). We assume that the symmetric
pair (G, H) is of holomorphic type. Let @ be an irreducible unitary highest weight
representation of G.

1) The restriction & |y splits into a discrete Hilbert sum of irreducible unitary rep-
resentations of H :

53]
Tln > D me(wu,

ueH

and the multiplicities are uniformly bounded:

C(m) := sup mz (1) < 00.
/teﬁ

2) C(m) = 1ifn is of scalar type.
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The second statement is a direct consequence of Theorems A and B (1). As we
shall see in Section 6, such uniform boundedness theorem does not hold in general
if 7 is not a highest weight representation (see Examples 6.2 and 6.3).

Here are multiplicity-free theorems for the decomposition of tensor products,
which are parallel to Theorems A and B:

Theorem C (multiplicity-free tensor product). Let 7| and n) be irreducible uni-
tary highest (or lowest) weight representations of scalar type. Then the tensor prod-
uct m\@ms is multiplicity-free as a representation of G.

Here, 71®5 stands for the tensor product representation of two unitary represen-
tations (71, H1) and (72, H>) realized on the completion H1®H, of the pre-Hilbert
space H1 ® H>. (We do not need to take the completion if at least one of H; or H> is
finite dimensional.) Theorem C asserts that multiplicities in the direct integral of the
irreducible decomposition are not greater than one in both discrete and continuous
spectra. We note that continuous spectra appear in the irreducible decomposition of
the tensor product representation &7, only if

{n 1 is a highest weight representation, and

7o is a lowest weight representation,

or in reverse order.

If 71 and 7, are simultaneously highest weight representations (or simultane-
ously lowest weight representations), then the tensor product 7;®z> decomposes
discretely. Dropping the assumption of ‘scalar type’, we have still a uniform esti-
mate of multiplicities:

Theorem D (uniformly bounded multiplicities). Let 7| and 7> be two irreducible
unitary highest weight representations of G.

1) The tensor product 1@ splits into a discrete Hilbert sum of irreducible unitary
representations of G:

~ 2]
7T1®7T2 = Z mﬂl,ﬂz(#)lua
,4e6

and the multiplicities my, z, (1) are uniformly bounded:

C(my, m2) 1= sup mz, 7, (1) < 00.
neG

2) C(m1,m2) = 1ifboth x| and wy are of scalar type.

Remark 1.5. For classical groups, we can relate the constants C(z) and C (1, 72) to
the stable constants of branching coefficients of finite-dimensional representations
in the sense of F. Sato [77] by using the see-saw dual pair correspondence due to
R. Howe [23].
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Our machinery that gives the above multiplicity-free theorems is built on com-
plex geometry, and we shall explicate the general theory for the line bundle case
in Section 2. The key idea is to transfer properties on representations (e.g., unitar-
ity, multiplicity-freeness) into the corresponding properties of reproducing kernels,
which we analyze by geometric methods.

1.6 Multiplicity-free restrictions — finite-dimensional case

Our method yields multiplicity-free theorems not only for infinite-dimensional rep-
resentations but also for finite-dimensional representations.

This subsection presents multiplicity-free theorems that are regarded as a ‘finite
dimensional version’ of Theorems A and C. They give a unified explanation of the
multiplicity-free property of previously known branching formulae obtained by com-
binatorial methods such as the Littlewood—Richardson rule, Koike-Terada’s Young
diagrammatic methods, Littelmann’s path method, minor summation formulae, etc.
(see [25, 55, 62, 68, 73, 80] and references therein). They also contain some ‘new’
cases, for which there are, to the best of our knowledge, no explicit branching for-
mulae in the literature.

To state the theorems, let gc be a complex simple Lie algebra, and j a Cartan
subalgebra. We fix a positive root system AT (gc,j), and write a1, ..., a, for the
simple roots. Let w1, . . ., @, be the corresponding fundamental weights. We denote
byr, =n=x fc the irreducible finite-dimensional representation of g¢ with highest
weight 4.

We say =, is of pan type if 1 is a scalar multiple of some w; such that the
nilradical of the maximal parabolic subalgebra corresponding to a; is abelian (see
Lemma 7.3.1 for equivalent definitions).

Theorem E (multiplicity-free restriction — finite-dimensional case). Let = be an
arbitrary irreducible finite-dimensional representation of gc of pan type, and let
(g¢, be) be any symmetric pair. Then, the restriction | is multiplicity-free.

Theorem F (multiplicity-free tensor product — finite-dimensional case). The
tensor product 1 @ my of any two irreducible finite-dimensional representations
71 and my of pan type is multiplicity-free.

Theorems E and F are the counterpart to Theorems A and C for finite-dimensional
representations. The main machinery of the proof is again Theorem 2.2.

Alternatively, one could verify Theorems E and F by a classical technique: find-
ing an open orbit of a Borel subgroup. For example, Littelmann [61] and Panyushev
independently classified the pair of maximal parabolic subalgebras (p1, p2) such that
the diagonal action of a Borel subgroup B of a complex simple Lie group G¢ on
Gc /Py x Gg/ P> has an open orbit. Here, P1, P, are the corresponding maximal
parabolic subgroups of G¢. This gives another proof of Theorem F.

The advantage of our method is that it enables us to understand (or even to
discover) the multiplicity-free property simultaneously for both infinite- and finite-
dimensional representations, for both continuous and discrete spectra, and for both
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classical and exceptional cases by the single principle. This is because our main ma-
chinery (Theorem 2.2) uses only a local geometric assumption (see Remark 2.3.2
(2)). Thus, we can verify it at the same time for compact and non-compact complex
manifolds, and in turn get finite and infinite-dimensional results, respectively.

Once we tell a priori that a representation is multiplicity-free, we may be tempted
to find explicitly its irreducible decomposition. Recently, S. Okada [68] found ex-
plicit branching laws for some classical cases that arise in Theorems E and F by
using minor summation formulae, and H. Alikawa [1] for (g, h) = (e, fa) corre-
sponding to Theorem E. We note that the concept of pan type representations in-
cludes rectangular-shaped representations of classical groups (see [58, 68]).

There are also some few cases where 71 ® 7> is multiplicity-free even though
neither 71 nor 75 is of pan type. See the recent papers [46] or [81] for the complete
list of such pairs (7, 72) for gc = gl(n, C). The method in [46] to find all such
pairs is geometric and based on the ‘vector bundle version’ of Theorem 2.2 proved
in [49], whereas the method in [81] is combinatorial and based on case-by-case
argument.

We refer the reader to our papers [50, 51, 52] for some further results relevant to
Theorems E and F along the same line of argument here.

1.7 SL, examples

We illustrate the above theorems by SL, examples.

Example 1.7. 1) We denote by 7,, the holomorphic discrete series representation of
G = SL(2, R) with minimal K -type y, (n > 2), where we write y, for the character
of K = SO(2) parametrized by n € Z. Likewise 7_, denotes the anti-holomorphic
discrete series representation of SL(2, R) with minimal K-type y_, (n > 2). We
note that any holomorphic discrete series of SL(2, R) is of scalar type.

We write nf'/_ . (¢ = £1,v € R) for the unitary principal series representations

of SL(2,R). We have a unitary equivalence ni‘/_lv ~r’ Il We write y for the
unitary character of SOg(1, 1) >~ R parametrized by ¢ € R.
Let m > n > 2. Then, the following branching formulae hold. All of them are

multiplicity-free, as is ‘predicted’ by Theorems A and C:

o0
777n|S00(1,1):/ xcde, (1.7.1) (a)
—0o0
(&)
Talso@) > D Ant2k (1.7.1) (b)
keN
o0 —n
nm@r,n:/ nf/_va dv @& > Tmenk, (1.7.1) (¢)
0

keN
0<2k<m—n-2

~ 2]
T @7 = D Togns2k (1.7.1) (d)
keN
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The key assumption of our main machinery (Theorem 2.2) that leads us to Theo-
rems A and C is illustrated by the following geometric results in this SL; case:
i) Given any element z in the Poincaré disk D, there exists ¢ € R such that
V197 = z.In fact, one can take ¢ = —2argz. This is the geometry that explains
the multiplicity-free property of (1.7.1) (b).
ii) Given any two elements z, w € D, there exists a linear fractional transform 7" on
D such that T (z) = z and T (w) = w. This is the geometry for (1.7.1) (d).

These are examples of the geometric view point that we pursued in [50] for sym-
metric pairs.
2) Here is a ‘finite-dimensional version’ of the above example. Let 7, be the ir-
reducible n + 1-dimensional representation of SU(2). Then we have the following
branching formulae: For m,n € N,

Tnlso@) = Xn ® n2® - ® x> (1.7.1) (e)

Tm @ T = Tnpm @ Tntm—2 D -+ - ® Tjn—m) - (1.7.1) ()

The formula (1.7.1) (e) corresponds to the character formula, whereas (1.7.1) (f) is
known as the Clebsch—Gordan formula. The multiplicity-free property of these for-
mulae is the simplest example of Theorems E and F.

1.8 Analysis on multiplicity-free representations

Multiplicity-free property arouses our interest in developing beautiful analysis on
such representations, as we discussed in Subsection 1.6 for finite-dimensional cases.
This subsection picks up some recent topics about detailed analysis on multiplicity-
free representations for infinite-dimensional cases.

Let G be a connected, simple non-compact Lie group of Hermitian type. We
begin with branching laws without continuous spectra, and then discuss branching
laws with continuous spectra.

1) (Discretely decomposable case) Let (G, H) be a symmetric pair of holomorphic
type. Then, any unitary highest weight representation # of G decomposes discretely
when restricted to H (Fact 5.1).

1-a) Suppose now that z is a holomorphic discrete series representation.
L.-K. Hua [26], B. Kostant, W. Schmid [78] and K. Johnson [32] found an explicit
formula of the restriction 7 |x (K-type formula). This turns out to be multiplicity-
free. Alternatively, the special case of Theorem B (2) by setting H = K gives a new
proof of this multiplicity-free property.

1-b) Furthermore, we consider a generalization of the Hua—Kostant—Schmid for-
mula from compact H to non-compact H, for which Theorem B (2) still ensures
that the generalization will be multiplicity-free. This generalized formula is stated in
Theorem 8.3, which was originally given in [39, Theorem C]. In Section 8§, we give
a full account of its proof. W. Bertram and J. Hilgert [7] obtained some special cases
independently, and Ben Said [5] studied a quantative estimate of this multiplicity-
free H-type formula (see also [90, 91] for some singular cases).
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1-c) The branching formulae of the restriction of singular highest weight rep-
resentations 7 are also interesting. For instance, the restriction of the Segal-Shale—
Weil representation w of Mp(n, R) with respect to U (p, n — p) (more precisely, its
double covering) decomposes discretely into a multiplicity-free sum of the so-called
ladder representations of U (p, n—p) (e.g., [33, Introduction]). This multiplicity-free
property is a special case of Howe’s correspondence because (U (p,n — p), U(1))
forms a dual pair in Mp(n, R), and also is a special case of Theorem A because
(sp(n, R), u(p,n — p)) forms a symmetric pair. Explicit branching laws for most of
classical cases corresponding to Theorems B (2) and D (2) (see Theorems 8.3, 8.4,
8.11) can be obtained by using the ‘see-saw dual pair’, which we hope to report in
another paper.

2) (Branching laws with continuous spectra) Suppose 7 is a highest weight mod-
ule and 77 is a lowest weight module, both being of scalar type.

2-a) If both 71 and 7, are discrete series representations in addition, then
the tensor product 71® is unitarily equivalent to the regular representation on
L*(G/K, y), the Hilbert space of L’-sections of the G-equivalent line bundle
G xx C, — G/K associated to some unitary character y of K (R. Howe [23],
J. Repka [74]). In particular, Theorem C gives a new proof of the multiplicity-
free property of the Plancherel formula for L>(G/K, y). Yet another proof of the
multiplicity-free property of L?(G/K, x) was given in [47, Theorem 21] by still
applying Theorem 2.2 to the crown domain (equivalently, the Akhiezer—Gindikin
domain) of the Riemannian symmetric space G/K. The explicit decomposition of
LZ(G/ K, x) was found by J. Heckman [20] and N. Shimeno [79] that generalizes
the work of Harish-Chandra, S. Helgason, and S. Gindikin-F. Karpelevich for the
trivial bundle case.

In contrast to Riemannian symmetric spaces, it is known that the ‘multiplicity-
free property’ in the Plancherel formula fails for (non-Riemannian) symmetric
spaces G/H in general (see [3, 8] for the description of the multiplicity of the most
continuous series representations for G/ H in terms of Weyl groups).

2-b) Similar to the case 2-a), the restriction 7 |z for a symmetric pair (G, H) of
non-holomorphic type is multiplicity-free and is decomposed into only continuous
spectra if 7 is a holomorphic discrete series of scalar type. This case was studied by
G. Olafsson—B. @rsted ([69]).

2-c) Theorem C applied to non-discrete series representations 71 and 7> (i.e.,
tensor products of singular unitary highest weight representations) provides new set-
tings of multiplicity-free branching laws. They might be interesting from the view
point of representation theory because they construct ‘small’ representations as dis-
crete summands. (We note that irreducible unitary representations of reductive Lie
groups have not been classified even in the spherical case. See [4] for the split case.)
They might be interesting also from the view point of spectral theory and harmonic
analysis which is relevant to the canonical representation in the sense of Vershik—
Gelfand—Graev. Once we know the branching law is a priori multiplicity-free, it is
promising to obtain its explicit formula. Some special cases have been worked on in
this direction so far, for G = SL(2, R) by V. FE. Molchanov [64]; for G = SU(2, 2)
by B. @rsted and G. Zhang [70]; for G = SU(n, 1) by G. van Dijk and S. Hille
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[10]; for G = SU(p, ¢) by Y. Neretin and G. Ol’shanskii [66, 67]. See also G. van
Dijk—M. Pevzner [11], M. Pevzner [72] and G. Zhang [92]. Their results show that
a different family of irreducible unitary representations (sometimes, spherical com-
plementary series representations) can occur in the same branching laws and each
multiplicity is not greater than one.

1.9 Organization of this article

This paper is organized as follows: In Section 2, we give a proof of an abstract
multiplicity-free theorem (Theorem 2.2) in the line bundle setting. This is an ex-
tension of a theorem of Faraut-Thomas [15], whose idea may go back to Gelfand’s
proof [17] of the commutativity of the Hecke algebra L' (K\G/K). Theorem 2.2 is
a main method in this article to find various multiplicity-free theorems. In Section 3,
we use Theorem 2.2 to give a proof of Theorem A. The key idea is the reduction of
the geometric condition (2.2.3) (strongly visible action in the sense of [47]) to the
existence problem of a ‘nice’ involutive automorphism ¢ of G satisfying a certain
rank condition. Section 4 considers the multiplicity-free theorem for the tensor prod-
uct representations of two irreducible highest (or lowest) weight modules and gives a
proof of Theorem C. Sections 5 and 6 examine our assumptions in our multiplicity-
free theorems (Theorems A and C). That is, we drop the assumption of ‘scalar type’
in Section 5 and prove that multiplicities are still uniformly bounded (Theorems B
and D). We note that multiplicities can be greater than one in this generality. In Sec-
tion 6, we leave unchanged the assumption that (G, H) is a symmetric pair, and relax
the assumption that 7 is a highest weight module. We illustrate by examples a wild
behavior of multiplicities without this assumption. In Section 7, analogous results
of Theorems A and C are proved for finite-dimensional representations of compact
groups. In Section 8, we present explicit branching laws that are assured a priori
to be multiplicity-free by Theorems A and C. Theorem 8.4 generalizes the Hua—
Kostant—Schmid formula. In Section 9 (Appendix) we present some basic results on
homogeneous line bundles for the convenience of the reader, which give a sufficient
condition for the assumption (2.2.2) in Theorem 2.2.

2 Main machinery from complex geometry

J. Faraut and E. Thomas [15], in the case of trivial twisting parameter, gave a suffi-
cient condition for the commutativity of Endy (/) by using the theory of reproducing
kernels, which we extend to the general, twisted case in this preliminary section. The
proof parallels theirs, except that we need just find an additional condition (2.2.2)
when we formalize Theorem 2.2 in the line bundle setting.

2.1 Basic operations on holomorphic line bundles

Let £ — D be a holomorphic line bundle over a complex manifold D. We denote
by O(L) = O(D, L) the space of holomorphic sections of L — D. Then O(L)
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carries a Fréchet topology by the uniform convergence on compact sets. If a Lie
group H acts holomorphically and equivariantly on the holomorphic line bundle
L — D, then H defines a (continuous) representation on O(L) by the pullback of
sections.

Let {U,} be trivializing neighborhoods of D, and g, € O* (U, N Ugp) the tran-
sition functions of the holomorphic line bundle £ — D. Then an anti-holomorphic
line bundle £ — D is a complex line bundle with the transition functions g,z. We
denote by O(L) the space of anti-holomorphic sections for £ — D.

Suppose ¢ is an anti-holomorphic diffeomorphism of D. Then the pullback
c*L — D is an anti-holomorphic line bundle over D. In turn, 6*£L — D is a
holomorphic line bundle over D (see Appendix for more details).

2.2 Abstract multiplicity-free theorem

Here is the main machinery to prove various multiplicity-free theorems of branching
laws including Theorems A and C (infinite-dimensional representations) and Theo-
rems E and F (finite-dimensional representations).

Theorem 2.2. Let (n, H) be a unitary representation of a Lie group H. Assume
that there exist an H -equivariant holomorphic line bundle L — D and an anti-
holomorphic involutive diffeomorphism o of D with the following three conditions:

There is an injective (continuous) H -intertwining map H — O(L). (2.2.1)
There exists an isomorphism of H -equivariant holomorphic line bundles

Y.L S5 o*L (2.2.2)
Given x € D, there exists g € H such that o (x) = g - x. (2.2.3)

Then, the ring Endy (H) of continuous H -intertwining operators on 'H is com-
mutative. Consequently, (x, H) is multiplicity-free (see Definition 1.1).

2.3 Remarks on Theorem 2.2

This subsection gives brief comments on Theorem 2.2. First, we consider a special
case, and also a generalization.

Remark 2.3.1 (specialization and generalization). 1) Suppose L — D is the triv-
ial line bundle. Then, the condition (2.2.2) is automatically satisfied. In this case,
Theorem 2.2 was proved in [15].

2) An extension of Theorem 2.2 to the equivariant vector bundle V — D is the main
subject of [49], where a more general multiplicity-free theorem is obtained under an
additional condition that the isotropy representationof Hy = {h € H : h-x = x} on
the fiber V), is multiplicity-free for generic x € D. Obviously, the H,-action on Vy
is multiplicity-free for the case dim Vx = 1, namely, for the line bundle case.

Next, we examine the conditions (2.2.2) and (2.2.3).
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Remark 2.3.2. 1) In many cases, the condition (2.2.2) is naturally satisfied. We shall
explicate how to construct the bundle isomorphism ¥ in Lemma 9.4 for a Hermitian
symmetric space D.

2) As the proof below shows, Theorem 2.2 still holds if we replace D by an
H -invariant open subset D’. Thus, the condition (2.2.3) is local. The concept of
visible action (see [46, 49, 51]) arises from the condition (2.2.3) on the base space
D.

3) The condition (2.2.3) is automatically satisfied if H acts transitively on D. But
we are interested in a more general setting where each H -orbit has a positive codi-
mension in D. We find in Lemma 3.3 a sufficient condition for (2.2.3) in terms of
rank condition for a symmetric space D.

2.4 Reproducing kernel

This subsection gives a quick summary for the reproducing kernel of a Hilbert space
"H realized in the space O(L) of holomorphic sections for a holomorphic line bundle
L (see [49] for a generalization to the vector bundle case). Since the reproducing
kernel K7, contains all the information on the Hilbert space H, our strategy is to
make use of K7 in order to prove Theorem 2.2.

Suppose that there is an injective and continuous map for a Hilbert space H into
the Fréchet space O(L). Then the point evaluation map

OL)YODOH—- L, ~2C, fr f(2)

is continuous with respect to the Hilbert topology on H.
Let {¢,} be an orthonormal basis of H. We define

Kp(x,y) = K(x,y) = > 0,(x)gu(y) € O(LBOL).

Then, K (x,y) is well defined as a holomorphic section of L — D for the first
variable, and as an anti-holomorphic section of £ — D for the second variable.
The definition is independent of the choice of an orthonormal basis {¢,}. K (x, y) is
called the reproducing kernel of H.

Lemma 2.4. 1) Foreachy € D, K(-,y) e HQ Ly (=H) and (f(-), K(-, y))n =
F(v) forany f € H.

2) Let Ki(x,y) be the reproducing kernels of Hilbert spaces H; C O(L) with
inner products (, )y, respectively, fori = 1,2. If K| = K», then H; = H> and

oy =0, )
3) If Ki(x,x) = Ka(x,x) forany x € D, then K| = K.

Proof. (1) and (2) are standard. We review only how to recover H together with
its inner product from a given reproducing kernel. For each y € D, we fix an iso-
morphism £, =~ C. Through this isomorphism, we can regard K(-,y) € H® L,
as an element of . The Hilbert space H is the completion of the C-span of
{K(-,y) : y € D} with pre-Hilbert structure



3 Multiplicity-free Restrictions to Symmetric Pairs 59

(K, V1), K(, yZ))'H = K()’Z, Y1) € Eyz b2 ‘Cyl (~ (C) . 24.1)

This procedure is independent of the choice of the isomorphism £, ~ C. Hence, the
Hilbert space H together with its inner product is recovered.

3) We denote by D the complex manifold endowed with the conjugate complex
structure on D. Then, £ — D is a holomorphic line bundle, and K (-, -) = K-, -)
is a holomorphic section of the holomorphic line bundle £L X £ — D x D. As the
diagonal embedding:: D — D x D, z — (g, z) is totally real, (K| — K2)|,(p) =0
implies K1 — K> = 0 by the unicity theorem of holomorphic functions. O

2.5 Construction of J
Suppose we are in the setting of Theorem 2.2. We define an anti-linear map
J:O0L)—->0KL), [f—Jf

by Jf(z) := f(o(z)) (z € D). Jf is regarded as an element of O(L) through the
isomorphism ¥, : O(L) >~ O(c*L) (see (2.2.2)).

Lemma 2.5. In the setting of Theorem 2.2, we identify H with a subspace of O(L).
Then, the anti-linear map J is an isometry from 'H onto 'H.

Proof. We put H := J (H), equipped with the inner product

(i, Jf2) g = (fa, f)n for fi, reH. (2.5.1)

If {p,} is an orthonormal basis of H, thenfl is a Hilbert space with orthonormal basis
{Jpv}. Hence, the reproducing kernel of H is given by K7 (x, y) = Ky (o (y), o (x))
because

K, y) =D Jou(0)JIpu(y) = D pu(0(x)) pu(0 () = Kn(o(y), 0 (x)).

(2.5.2)
We fix x € D and take g € H such that o (x) = g - x (see (2.2.3)). Substituting x for
y in (2.5.2), we have

Kp(x,x) = Kx(o(x),0(x)) = Kn(g-x,8-x) = Knlx,x).

Here, the last equality holds because {¢, (g - )} is also an orthonormal basis of H as
(w,’H) is a unitary representation of H. Then, by Lemma 2.4, the Hilbert space H
coincides with H and

Jfi, JR)H = (fo, fi)yn for fi, L e™. (2.5.3)

This is what we wanted to prove. O
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2.6 Proof of A* = JAJ!

Lemma 2.6 (see [15]). Suppose A € Endy (H). Then the adjoint operator A* of A
is given by
A*=JAJ . (2.6.1)

Proof. We divide the proof into three steps.

Step 1 (positive self-adjoint case). Assume A € Endy (H) is a positive self-adjoint
operator. Let H 4 be the Hilbert completion of H by the pre-Hilbert structure

(f1, D), = (Af1, f)n for f1, e H. (2.6.2)
If f1, f» € Hand g € H, then

(m (&) f1, m () )1, = (Am(g) f1, m (&) f2)H
= ((g)Af1, 7 (g) )1 = (Af1, f2)n = (f1, ), -

Therefore, (7, H) extends to a unitary representation on H4. Applying (2.5.3) to
both H 4 and H, we have

(Afr, f)n = (1, 2r, = U, JfD)H, = (Adf2, Tf)n
= (Jfo, AT = (U fo, JT T A* T fp = UM ARTfL, )
Hence, A = J~1A*J, and (2.6.1) follows.

Step 2 (self-adjoint case). Assume A € Endy (H) is a self-adjoint operator. Let A =
f AdE, be the spectral decomposition of A. Then every projection operator E; €
End(H) also commutes with 7 (g) for all g € H, namely, E; € Endy(H). We

define
At :=/ AE) A_ :=/ AE) .
A>0 A<0

Then A = A4 + A_. Let I be the identity operator on H. As a positive self-adjoint
operator Ay + I is an element of Endg (M), we have (AL + 1)* = J(Ay + I)J !
by Step 1, whence A% = JA,J~!. Applying Step 1 againto —A_, we have A* =
JA_J~!. Thus,

A*= A + A = JAL T JATT =T A+ AT = gATT
Step 3 (general case). Suppose A € Endy (H). Then A* also commutes with 7 (g)
(g € H) because 7 is unitary. We put B := %(A + A*) and C := ‘/271 (A* — A).
Then, both B and C are self-adjoint operators commuting with 7 (g) (g € H). It

follows from Step 2 that B* = JBJ ! and C* = JCJ~'. As J is an anti-linear
map, we have

(V-1C) = —/=1C* = —V/—=1JCI ' = J(/-1C)J .
Hence, A = B + /—1 C also satisfies A* = JAJ L. o
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2.7 Proof of Theorem 2.2

We are now ready to complete the proof of Theorem 2.2. Let A, B € Endy (H). By
Lemma 2.6, we have

AB =J"Y(AB)*J = (J~'B*J)(J"'A*J) = BA.

Therefore, End g (H) is commutative. m|

3 Proof of Theorem A

This section gives a proof of Theorem A by using Theorem 2.2. The core of the proof
is to reduce the geometric condition (2.2.3) to an algebraic condition (the existence
of a certain involution of the Lie algebra). This reduction is stated in Lemma 3.3.
The reader who is familiar with symmetric pairs can skip Subsections 3.1, 3.2, 3.4
and 3.5.

3.1 Reductive symmetric pairs
Let G be a Lie group. Suppose that 7 is an involutive automorphism of G. We write
G':={geG:1g=g)

for the fixed point subgroup of 7, and denote by Gy its connected component con-
taining the unit element. The pair (G, H) (or the pair (g, h) of their Lie algebras) is
called a symmetric pair if the subgroup H is an open subgroup of G?, that is, if H
satisfies

Gy CHCG".

It is called a reductive symmetric pair if G is a reductive Lie group; a semisimple
symmetric pair if G is a semisimple Lie group. Obviously, a semisimple symmetric
pair is a reductive symmetric pair.

We shall use the same letter 7 to denote the differential of 7. We set

gt ={Y eg:1Y =Y},

Then, it follows from 72 = id that we have a direct sum decomposition

g=g"@g "

Suppose now that G is a semisimple Lie group. It is known that there exists a
Cartan involution § of G commuting with 7. Take such 6, and we write K := G =
{g € G : g = g}. Then, K is compact if G is a linear Lie group. The direct sum
decomposition

g=top=g @g”’
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is called a Cartan decomposition. Later, we shall allow G to be non-linear, in par-
ticular, K is not necessarily compact. The real rank of g, denoted by R-rank g, is
defined to be the dimension of a maximal abelian subspace of g 7.

As (70)? = id, the pair (g, g*?) also forms a symmetric pair. The Lie group

G’ ={geG:(t0)(g) =g}

is a reductive Lie group with Cartan involution 0|;-¢, and its Lie algebra g’ is
reductive with Cartan decomposition

g‘t0 — 919,9 @gré),—é) — 91,0 @ g—‘t,—0 X (311)

—7,—0

Here, we have used the notation g and alike, defined as follows:

g =(reg: ()Y =(-0)Y =Y}.

Then the dimension of a maximal abelian subspace a of g="~¢ is equal to the real
rank of g°’, which is referred to as the split rank of the semisimple symmetric space
G/H. We shall write R-rank G/H or R-rank g/g° for this dimension. Thus,

R-rank g’” = R-rank g/g° . (3.1.2)

In particular, we have R-rank g = R-rank g/¢ if we take 7 to be 6.

The Killing form on the Lie algebra g is non-degenerate on g, and is also non-
degenerate when restricted to ). Then, it induces an Ad(H )-invariant non-degenerate
bilinear form on g/b, and therefore a G-invariant pseudo-Riemannian structure on
the homogeneous space G/H , so that G/H becomes a symmetric space with respect
to the Levi-Civita connection and is called a semisimple symmetric space. In this
context, the subspace a has the following geometric meaning: Let A := exp(a), the
connected abelian subgroup of G with Lie algebra a. Then, the orbit A - o through
0 :=eH € G/H becomes a flat, totally geodesic submanifoldin G/H . Furthermore,
we have a (generalized) Cartan decomposition:

Fact 3.1 (see [16, Section 2]). G = KAH.
Sketch of Proof. The direct sum decomposition of the Lie algebra
g=teog " 'og-"
lifts to a diffeomorphism:
g 4+g7 5 K\G, (X,Y) KeXe'.
Since exp(g™~?) C H, the decomposition G = K A H follows if we show

AdHNK)a=g 7. (3.1.3)

The equation (3.1.3) is well known as the key ingredient of the original Cartan de-
composition G*? = K7 AK® in light of (3.1.1). O
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Furthermore, suppose that ¢ is an involutive automorphism of G such that o, 7
and 8 commute with one another. We set
G :=G"NG"={geG:0g =18 =g}.

Then (G?, G°7) forms a reductive symmetric pair, because ¢ and 7 commute. The
commutativity of ¢ and € implies that the automorphism ¢ : G — G stabilizes K
and induces a diffeomorphism of G /K, for which we use the same letter o.

3.2 Examples of symmetric pairs
This subsection presents some basic examples of semisimple (and therefore, reduc-
tive) symmetric pairs.

Example 3.2.1 (group manifold). Let G’ be a semisimple Lie group, and G := G’ x
G’. We define an involutive automorphism 7 of G by 7 (x, y) := (y, x). Then, G* =
{(g, g) : g € G'}is the diagonal subgroup, denoted by diag(G”), which is isomorphic
to G'. Thus, (G’ x G', diag(G")) forms a semisimple symmetric pair.

We set

. 0 I,
-1, 0
Example 3.2.2. Let G = SL(n, C), and fix p, g such that p + ¢ = n. Then,

7(g) 1= Ipq g*[p,q (g €G)

defines an involutive automorphism of G, and G* = SU (p, ¢) (the indefinite unitary
group). Thus, (SL(n, C), SU(p, q)) forms a semisimple symmetric pair.

Example 3.2.3. Let G = SL(n, C), and 6 (g) := g. Then ¢ is an involutive automor-
phism of G, and G° = SL(n,R). We note that & commutes with the involution 7 in
the previous example, and

G ={geSLn,C):g=g=1p4'g1pq}

=S0(p.q).

Thus, (SL(n,C), SL(n,R)), (SU(p,q), SO(p,q)), (SL(n,R), SO(p, q)) are ex-
amples of semisimple symmetric pairs.

Example3.2.4.Let G := SL(2n,R), and 7(g) = J'g~'J~!. Then, G* =

Sp(n, R) (the real symplectic group). Thus, (SL(2n,R), Sp(n, R)) forms a semi-
simple symmetric pair.



64 Toshiyuki Kobayashi

3.3 Reduction of visibility to the real rank condition

The following lemma gives a sufficient condition for (2.2.3). Then, it plays a key
role when we apply Theorem 2.2 to the branching problem for the restriction from
G to G* (with the notation of Theorem 2.2, D = G/K and H = G). This
lemma is also used in reducing ‘visibility’ of an action to an algebraic condition
([50, Lemma 2.2]).

Lemma 3.3. Let ¢ and t be involutive automorphisms of G. We assume that the pair
(o, 7) satisfies the following two conditions:

o, T and 6 commute with one another. (3.3.1)
R-rank g* = R-rank g%%/. (3.3.2)
Then for any x € G/K, there exists g € G, such that ¢ (x) = g - x.

Proof. 1t follows from the condition (3.3.1) that |- is a Cartan involution of a re-
ductive Lie group G’ and that 7 |G+ is an involutive automorphism of G’ commuting
with 0|go . Take a maximal abelian subspace a in

g 9o .=y eg: (-0)Y =cY =10Y =Y} .

From the definition, we have dim a = R- rank g”>*’, which in turn equals R- rank g*¢
by the condition (3.3.2). This means that a is also a maximal abelian subspace in

g—é),r(‘) ={Ye g: (_H)Y =10Y = Y}.

Let A = exp(a). Then it follows from Fact 3.1 that we have a generalized Cartan
decomposition
G = GyAK . (3.3.3)

Leto := eK € G/K.Fixx € G/K. Then, according to the decomposition (3.3.3),
we find 2 € G and a € A such that

x=ha-o.

We set g := o (h) h~!. We claim g G In fact, by using 6t = 70 and th = h,
we have

7(g) =10 (h) t(h™Y =ot(h) r(h)_l =) h ! = g.
Hence, g € G*. Moreover, since the image of the continuous map
Gy — G, hsa(h)h™!

is connected, we have g € Gj.
On the other hand, we have ¢ (a¢) = a because a C g
have

—0.0.=7 < 4% Therefore we

ocx)y=0c)o(a)-o=0c(h) h'ha o= g-x,

proving the lemma. O
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3.4 Hermitian symmetric space G/K

Throughout the rest of this section, we assume that G is a simple, non-compact, Lie
group of Hermitian type. We retain the notation of Subsection 1.3.

Let G¢ be a connected complex Lie group with Lie algebra gc, and Q™ the
maximal parabolic subgroup of G with Lie algebra ¢ 4 p_. Then we have an open
embedding G/K < Gg¢/Q~ because gc = g + (bc + p—). Thus, a G-invariant
complex structure on G/K is induced from G¢/ Q™. (We remark that the embedding
G/K — G¢/Q™ is well defined, even though G is not necessarily a subgroup of
Gc.)

Suppose 7 is an involutive automorphism of G commuting with 6. We recall
from Subsection 1.4 that we have either

tZ =27 (holomorphic type), (1.4.1)
or

tZ = —Z (anti-holomorphic type). (1.4.2)

Here is the classification of semisimple symmetric pairs (g, g*) with g simple such
that the pair (g, g”) satisfies the condition (1.4.1) (respectively, (1.4.2)). Table 3.4.2

Table 3.4.1.

(g, g%) is of holomorphic type
T

g g
su(p, q) s(u@, j)+ulp—i,g—j))
su(n, n) 50%(2n)
su(n, n) sp(n, R)
50%(2n) 50*(2p) + 50" (2n — 2p)
50%(2n) u(p,n —p)
s50(2,n) 50(2, p) +so(n — p)
50(2,2n) u(l, n)
sp(n, R) u(p,n — p)
5P(">R) 5p(p>R)+5p(n_p>R)
e6(—14) 50(10) 4+ s0(2)
e6(—14) 50*(10) + 50(2)
e6(—14) 50(8,2) +50(2)
e6(—14) su(5, 1) +sl(2, R)
€6(—14) su(4,2) + su(2)
€7(-25) e6(—78) + 50(2)
€7(—25) e6(—14) T 50(2)
€7(-25) 50(10,2) +s((2, R)
€7(-25) 50%(12) + su(2)

€7(—25) su(6, 2)
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Table 3.4.2.

(g, g") is of anti-holomorphic type
T

g g
su(p, q) s0(p,q)
su(n, n) sl(n,C) + R
su(2p, 2q) sp(p, q)
50%(2n) s0(n, C)
50*(4n) su*(2n) + R
s0(2,n) so(1, p) +so(l,n — p)
sp(n, R) gl(n, R)
sp(2n, R) sp(n, C)
e6(—14) fa(—20)
e6(—14) sp(2,2)
€7(-25) e6(—26) +50(1, 1)
€7(=25) su*(8)

is equivalent to the classification of totally real symmetric spaces G /K" of the
Hermitian symmetric space G/K (see [14, 27, 28, 35]).

3.5 Holomorphic realization of highest weight representations

It is well known that an irreducible highest weight representation 7 of G can be
realized as a subrepresentation of the space of global holomorphic sections of an
equivariant holomorphic vector bundle over the Hermitian symmetric space G/K.
We supply a proof here for the convenience of the reader in a way that we shall use
later.

Lemma 3.5. Let (n, H) be an irreducible unitary highest weight module. We write y
for the representation of K on U := HII? (see Definition 1.3). Let L := G xxg U —
G/K be the G-equivariant holomorphic vector bundle associated to y. Then, there
is a natural injective continuous G-homomorphism H — O(L).

Proof. Let (, ) be a G-invariant inner product on H. We write ( , )y for the
induced inner producton U. Then, K acts unitarily on H, and in particular on U. We
consider the map

GxHxU—C, (g,0,u)— (n(g)flv,u)H = (v, w(g)u)y .

For each fixed g € G andv € H, themap U — C, u +— (z(g)" v, u)3 is an
anti-linear functional on U. Then there exists a unique element F,(g) € U by the
Riesz representation theorem for the finite-dimensional Hilbert space U such that

(Fy(),w)y = (x(8) "o, u)y foranyu e U.
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Then it is readily seen that F, (gk) = y (k)" F,(g) and Frgnw(g) = F, (g’_lg) for
any g,¢' € G,k € K and v € H. As u is a smooth vector in H, (F,(g), u)y =
(v, (g)u)y is a C*°-function on G. Then F, (g) is a C°*°-function on G with value
in U for each fixed v € H. Thus, we have a non-zero G-intertwining operator given
by

F:H—C®GxgU), v F,.

As U is annihilated by p4, F, is a holomorphic section of the holomorphic vec-
tor bundle G xx U — G/K, thatis, F, € O(G xg U). Then, the non-zero map
F : " H - O(G xg U) is injective because H is irreducible. Furthermore, F is
continuous by the closed graph theorem. Hence Lemma 3.6 is proved. O

3.6 Reduction to the real rank condition

The next lemma is a stepping stone to Theorem A. It becomes also a key lemma to
the theorem that the action of a subgroup H on the bounded symmetric domain G/ K
is ‘strongly visible’ for any symmetric pair (G, H) (see [50]).

Lemma 3.6. Suppose g is a real simple Lie algebra of Hermitian type. Let T be an in-
volutive automorphism of g, commuting with a fixed Cartan involution 8. Then there
exists an involutive automorphism o of g satisfying the following three conditions:

o, T and 6 commute with one another. (3.6.1)
R-rank g? = R-rank g”7?. (3.6.2)
cZ=—-Z7. (3.6.3)

Proof. We shall give a proof in the special case ¢ = 6 in Subsection 4.1. For the
general case, see [50, Lemma 3.1] or [44, Lemma 5.1]. a

3.7 Proof of Theorem A

Now, we are ready to complete the proof of Theorem A.

Without loss of generality, we may and do assume that G is simply connected.
Let (z, H) be an irreducible unitary highest weight representation of scalar type. We
define a holomorphic line bundle by £ := G xg H’;}+ over the Hermitian symmet-
ric space D := G/K. Then it follows from Lemma 3.5 that there is an injective
continuous G-intertwining map H — O(L).

Suppose (G, H) is a symmetric pair. We first note that for an involutive automor-
phism 7 of G, there exists g € G such that 7860 = 07¢ if we set

1 1

t8(x) = gr(g” xg)g~

for x € G. Then G = gHg™! is O-stable. Since the multiplicity-free property of
the restriction 7 |z is unchanged if we replace H by g Hg ™!, we may and do assume
that 9 H = H, in other words, 07 = 6.
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Now, by applying Lemma 3.6, we can take o satisfying (3.6.1), (3.6.2) and
(3.6.3). We use the same letter o to denote its lift to G. It follows from (3.6.3) that the
induced involutive diffeomorphismo : G/K — G/K is anti-holomorphic (see Sub-
section 1.4). In light of the conditions (3.6.1) and (3.6.2), we can apply Lemma 3.3
to see that for any x € D there exists g € H such thato (x) = g - x.

Moreover, by using Lemma 9.4 in the Appendix, we have an isomorphism
o*L ~ L as G-equivariant holomorphic line bundles over G/K. Therefore, all the
assumptions of Theorem 2.2 are satisfied. Thus, we conclude that the restriction 7 | i
is multiplicity-free by Theorem 2.2. O

4 Proof of Theorem C

In this section we give a proof of Theorem C.

Throughout this section, we may and do assume that G is simply connected so
that any automorphism of g lifts to G. We divide the proof of Theorem C into the
following cases:

Case I. Both 71 and 7 are highest weight modules.
Case I'. Both 7 and 7, are lowest weight modules.
Case II. 7 is a highest weight module, and 7, is a lowest weight module.
Case Il'. 7 is a lowest weight module, and 7 is a highest weight module.

4.1 Reduction to the real rank condition

The following lemma is a special case of Lemma 3.6 with = = 6. We shall see that
Theorem C in Case I (likewise, Case I') reduces to this algebraic result.

Lemma 4.1.1. Suppose g is a real simple Lie algebra of Hermitian type. Let 6 be a
Cartan involution. Then there exists an involutive automorphism o of g satisfying the
following three conditions:

o and 6 commute. 4.1.1)
R-rank g = R-rank g°. (4.1.2)
cZ=-Z7. (4.1.3)

Proof. We give a proof of the lemma based on the classification of simple Lie alge-
bras g of Hermitian type.

We recall that for any involutive automorphism ¢ of G, there exists g € G such
that 080 = 0o 8. Thus, (4.1.1) is always satisfied after replacing ¢ by some ¢ &. The
remaining conditions (4.1.2) and (4.1.3) (cf. Table 3.4.2) are satisfied if we choose
o € Aut(G) in the following Table 4.1.2 for each simple non-compact Lie group G
of Hermitian type:
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Table 4.1.2.

(g, g7%) satisfying (4.1.2) and (4.1.3)
o

g g R-rank g = R-rank g

su(p, q) s0(p, q) min(p, q)
50%(2n) s0(n, C) [%n]

sp(n, R) gl(n, R) n

s0(2,n) so(l,n—1)+so(l,1) min(2, n)
e6(—14) sp(2,2) 2

€7(—25) su*(8) 3

Here, we have proved lemma. m]

Remark 4.1.3. The choice of ¢ in Lemma 4.1.1 is not unique. For example, we may
choose g° = eg(—26) ® R instead of the above choice g” ~ su*(8) for g = e7(25).

4.2 Proof of Theorem C in Case I

Let G be a non-compact simply-connected, simple Lie group such that G/K is a
Hermitian symmetric space.

Let (71, H1) and (72, H2) be two irreducible unitary highest weight representa-
tions of scalar type. By Lemma 3.5, we can realize (;, H;) in the space O(L;) of
holomorphic sections of the holomorphic line bundle £; := G xg (Hi)';(+ i=1,2)
over the Hermitian symmetric space G/K. We now define a holomorphic line bun-
dle £ := L1 X Ly over D := G/K x G/K as the outer tensor product of L
and £,. Then we have naturally an injective continuous (G x G)-intertwining map
H\®H2 — O(L).

Let us take an involution ¢’ of g as in Lemma 4.1.1 (but we use the letter ¢’
instead of ¢), and lift it to G. We set ¢ := ¢’ x ¢'. Then it follows from (4.1.3) that
o’ acts anti-holomorphically on G/K, and so does ¢ on D. Furthermore, we have
isomorphisms of holomorphic line bundles (¢/)*L; >~ L; (i = 1,2) by Lemma 9.4
and thus o *L >~ L.

We now introduce another involutive automorphism z of G x G by 7(g1, g2) :=
(g2, g1). Then (G x G)' = diag(G) := {(g, g) : g € G}. We shall use the same
letter & to denote the Cartan involutiond x 8 on G x G (and 6§ @ 6 on g @ g). Then
we observe the following isomorphisms:

@ ={(X.0X): Xeg} =g,

(0@ )" ={(X.0X): X g’} =g
Thus, the condition (4.1.2) implies

R- rank(g @ g)* = R-rank(g & g)*"? .

Therefore, given (x1,x2) € D >~ (G x G)/(K x K), there exists (g, g) € (G x G)°*
satisfying (g - x1, g - x2) = (6’ (x1), ' (x2)) (= o (x1, x2)) by Lemma 3.3.
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Let us apply Theorem 2.2 to the setting (£ — D, H1®Ha, diag(G), o). Now
that all the assumptions of Theorem 2.2 are satisfied, we conclude that the tensor
product 71 ®x is multiplicity-free as a G-module, that is, Theorem C holds in the
case L. O

4.3 Proof of Theorem C in Case I1

Let us give a proof of Theorem C in the case II. We use the same 7 as in Subsec-
tion 4.2, that is, 7 (g1, g2) := (g2, g1) and define a new involution ¢ by ¢ := 70, that
is, (g1, g2) = (0g2,0g1) for g1, g2 € G. Obviously, o, 7 and the Cartan involution
6 of G x G all commute.

We write M for the Hermitian symmetric space G/K, and M for the conjugate
complex manifold. Then ¢ acts anti-holomorphically on D := M x M because so
does 7 and because 6 acts holomorphically.

By the obvious identity (g @ g)* = (g ® g)”*?, we have R-rank(g @ g)*’ =
R-rank(g @ g)>% (= R-rank g). Therefore, it follows from Lemma 3.3 that for any
(x1,x2) € D there exists (g, g) € (G x G)7 such that o (x1, x2) = (g, &) - (x1, x2).

Suppose 7 (respectively, 72) is a unitary highest (respectively, lowest) weight
representation of scalar type. We set L1 := G xg (Hl)';(+ and £y == G xg (Hz)’;{.
Then, L1 — M and L, — M are both holomorphic line bundles, and we can realize
71 in O(M, L), and 72 in O(M, L), respectively. Therefore, the outer tensor prod-
uct 71 X7y is realized in a subspace of holomorphic sections of the holomorphic line
bundle £ := L X Loover D = M x M.

Now, we apply Theorem 2.2 to (£ — D, H;®H.,, diag(G), o). The condition
(2.2.2) holds by Lemma 9.4. Hence, all the assumptions of Theorem 2.2 are satisfied,
and therefore, Theorem C holds in the case II. O

Hence, Theorem C has been proved.

S Uniformly bounded multiplicities — Proof of Theorems B
and D

This section gives the proof of Theorems B and D. Since the proof of Theorem B
parallels that of Theorem D, we deal mostly with Theorem D here. Without loss of
generality, we assume G is a non-compact simple Lie group of Hermitian type.

5.1 General theory of restriction

A unitary representation (z, H) of a group L is discretely decomposable if  is
unitarily equivalent to the discrete Hilbert sum of irreducible unitary representations

of L: o
T~ > ma ()
uel
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Furthermore, we say 7 is L-admissible ([38]) if all the multiplicities m, (1) are
finite. In this definition, we do not require m () to be uniformly bounded with
respect to 4.

Suppose L’ is a subgroup of L. Then, the restriction of 7 to L’ is regarded as
a unitary representation of L’. If x is L’-admissible, then 7 is L-admissible ([38,
Theorem 1.2]).

We start by recalling from [42] a discrete decomposability theorem of branching
laws in the following settings:

Fact 5.1. 1) Suppose 7 is of holomorphic type (see Definition 1.4) and set H := Gj.
If 7 is an irreducible unitary highest weight representation of G, then 7 is (H N K)-
admissible. In particular, 7 is H-admissible. The restriction 7 | i splits into a discrete
Hilbert sum of irreducible unitary highest weight representations of H:

®
Ty > Z mq (u)u (discrete Hilbert sum), (5.1.1)
ueH

where the multiplicity m, (u) is finite for every u.

2) Let 71, w2 be two irreducible unitary highest weight representations of G.Then
the tensor product 7;®m; is K -admissible under the diagonal action. Furthermore,
m1®m> splits into a discrete Hilbert sum of irreducible unitary highest weight repre-
sentations of G, each occurring with finite multiplicity. Furthermore, if at least one
of w1 or 72 is a holomorphic discrete series representation for G, then any irreducible
summand is a holomorphic discrete series representation.

Proof. See [42, Theorem 7.4] for the proof. The main idea of the proof is taking
normal derivatives of holomorphic sections, which goes back to S. Martens [63].
The same idea was also employed in a number of papers including Lipsman ([60,
Theorem 4.2]) and Jakobsen—Vergne ([31, Corollary 2.3]). o

Remark 5.1. Fact 5.1 (1) holds more generally for a closed subgroup H satisfying
the following two conditions:

1) H is O-stable.

2) The Lie algebra by of H contains Z.
Here, we recall that Z is the generator of the center of €. The proof is essentially the
same as that of Fact 5.1 (1).

Theorem B (2) follows from Theorem A and Fact 5.1 (1). Likewise, Theorem D
(2) follows from Theorem C and Fact 5.1 (2). What remains to show for Theorems B
and D is the uniform boundedness of multiplicities.

5.2 Remarks on Fact 5.1

Some remarks about Fact 5.1 are in order.
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Remark 5.2.1. A Cartan involution @ is clearly of holomorphic type because 0Z =
Z.If 0 = 7, then H = K and any irreducible summand g is finite dimensional.
In this case, the finiteness of m, («) in Fact 5.1 (1) is a special case of Harish-
Chandra’s admissibility theorem (this holds for any irreducible unitary representation
7 of G).

Remark 5.2.2. Fact 5.1 asserts in particular that there is no continuous spectrum in
the irreducible decomposition formula. The crucial assumption for this is that (G, H)
is of holomorphic type. In contrast, the restriction 7 |y is not discretely decompos-
able if (G, H) is of anti-holomorphic type and if 7 is a holomorphic discrete se-
ries representation of G ([38, Theorem 5.3]). In this setting, R. Howe, J. Repka,
G. (jlafsson, B. @rsted, G. van Dijk, S. Hille, M. Pevzner, V. Molchanov, Y. Neretin,
G. Zhang and others studied irreducible decompositions of the restriction z |y by
means of the L?-harmonic analysis on Riemannian symmetric spaces H/H N K
([9, 10, 11, 23, 64, 66, 69, 70, 74]). The key idea in Howe and Repka [23, 74] is
that a holomorphic function on G/K is uniquely determined by its restriction to the
totally real submanifold H/H N K (essentially, the unicity theorem of holomorphic
functions), and that any function on H/H N K can be approximated (in a sense) by
holomorphic functions on G/K (essentially, the Weierstrass polynomial approxima-
tion theorem).

Remark 5.2.3. A finite multiplicity theorem of the branching law (5.1.1) with respect
to semisimple symmetric pairs (G, H) holds for more general = (i.e., 7 is not a
highest weight module), under the assumption that 7 is discretely decomposable as
an (hc, H N K)-module (see [41, Corollary 4.3], [45]). However, the multiplicity
of the branching law can be infinite if the restriction is not discretely decomposable
(see Example 6.3).

Remark 5.2.4. Theorems B and D assert that multiplicities m, (u) in Fact 5.1 are
uniformly bounded when we vary x. This is a distinguished feature for the restric-
tion of highest weight representations 7. A similar statement may fail if 7 is not a
highest weight module (see Example 6.2).

5.3 Reduction to the scalar type case

In order to deduce Theorem D (1) from Theorem D (2), we use the idea of ‘coherent
family’ of representations of reductive Lie groups (for example, see [85]). For this,
we prepare the following Lemma 5.3 and Proposition 5.4.1.

Lemma 5.3. Suppose that (r, H) is an irreducible unitary highest weight represen-
tation of G. Then there exist an irreducible unitary highest weight representation r’
of scalar type and a finite-dimensional representation F of G such that the underly-
ing (gc, K)-module mk occurs as a subquotient of the tensor product nj, @ F.

Proof. Without loss of generality, we may and do assume that G is simply con-
nected. Since G is a simple Lie group of Hermitian type, the center c(€) of € is
one-dimensional. We take its generator Z as in Subsection 1.4, and write C for the
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connected subgroup with Lie algebra c(¥). Then, K is isomorphic to the direct prod-
uct group of C and a semisimple group K.

As (7, ’H) is an irreducible unitary highest weight representation of G, H’;}+ is
an irreducible (finite-dimensional) unitary representation of K. The K-module H’;}+
has an expression ¢ ® yo, where o € K such that o |c is trivial and yp is a unitary
character of K.

Let y’ be a unitary character of K such that y’ is trivial on the center Zg of
G (namely, y’ is well defined as a representation of Adg(K) =~ K/Zg). For later
purposes, we take y’ such that —v/—1dy’(Z) > 0. There exists an irreducible
finite-dimensional representation F of G such that FP* ~ ¢ ® x’ as K-modules
because ¢ ® y’ is well defined as an algebraic representation of Adg (K).

We set y 1= yo0 ® (x')* of K. Because —v/—1dy(Z) <« 0, the irreducible
highest weight (g¢, K)-module V' such that (V')P+ ~ y is unitarizable. Let (z', H’)
denote the irreducible unitary representation of G whose underlying (gc, K)-module
H'; is isomorphic to V'. Since H; is an irreducible (g¢, K)-module, H} ® F is a
(gc, K)-module of finite length. Furthermore, as 1 is a highest weight module, so
are all subquotient modules of 1, ® F. Then, H arises as a subquotient of H} ® F

because the K-module HIIJ{+ occurs as a subrepresentation of (H} ® F)P+ in view of
Hy =0 ® %0~z ®@®y) = (Hy)P @ F* C (M ® F)*.

Hence, we have shown Lemma 5.3. m|

5.4 Uniform estimate of multiplicities for tensor products

Let (7, X) be a (gc, K)-module of finite length. This means that 7 admits a chain
of submodules
O=YyCcY1C---CY¥y=X (5.4.1)

such that Y;/Y;_; is irreducible fori = 1, ..., N. The number N is independent of
the choice of the chain (5.4.1), and we will write

m(z):= N.

That is, m(x) is the number of irreducible (gc, K)-modules (counted with multi-
plicity) occurring as subquotients in 7. Here is a uniform estimate of m (z ) under the
operation of tensor products:

Proposition 5.4.1. Let F be a finite-dimensional representation of a real reductive
connected Lie group G. Then there exists a constant C = C(F) such that

mr ®F)<C

for any irreducible (gc, K)-module .
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Before entering the proof, we fix some terminologies:

Definition 5.4.2. We write F(gc, K) for the category of (gc, K)-modules of finite
length. The Grothendieck group V(gc, K) of F(gc, K) is the abelian group gener-
ated by (gc, K)-modules of finite length, modulo the equivalence relations

X~Y+2Z
whenever there is a short exact sequence
0-Y—->X—->2Z—->0

of (gc, K)-modules. Then
m: F(gce,K) > N

induces a group homomorphism of abelian groups:
m:V(ge, K) - Z.

The Grothendieck group V(gc, K) is isomorphic to the free abelian group having
irreducible (gc, K)-modules as its set of finite generators.

Suppose (7, X) is a (gc, K)-module of finite length. Then, in the Grothendieck
group V(gc, K), we have the relation

X=Pm. ()Y, (5.4.2)
Y

where the sum is taken over irreducible (g¢, K)-modules. Then we have

m(z) = > mg(Y). (5.4.3)
Y
Suppose (7, X') is also a (g, K)-modules of finite length. We set
[z : 7] := dimHomg. k) (@ my (Y)Y, @ My (Y)Y) (5.4.4)
Y Y
= Z My (Y)mg (Y). (5.4.5)
Y

The definition (5.4.4) makes sense in a more general setting where one of Xor X’ is
not of finite length. To be more precise, we recall from [41, Definition 1.1]:

Definition 5.4.3. Let A(gc, K) be the category of (gc, K)-modules (z, X) having
the following properties:
1) (K-admissibility) dimHomg (z, w) < oo forany t € K.
2) (discretely decomposability, see [41, Definition 1.1]) X admits an increasing
filtration

O=YyCcY1CcYrC---

of gc-modules such that Y; / Yi—y is of finite length and that X = |J72, Y;.
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We refer the reader to [41] for algebraic results on discretely decomposable
(gc, K)-modules such as:

Lemma 5.4.4. Suppose X € A(gc, K).

1) Any submodule or quotient of X is an object of A(gc, K).

2) The tensor product X @ F is also an object of A(gc, K) for any finite-
dimensional (gc, K)-module.

For X € A(gc, K), we can take the filtration {Y;} such that Y; / Y;_ is irreducible
as a (gc, K)-module for any i. Then, for any irreducible (gc, K)-module,

#{i : Y;/Y;_1 is isomorphic to Y}
is finite and independent of the filtration, which we will denote by m  (Y).

Definition 5.4.5. Suppose X € A(gc, K). We say the (gc, K)-module X is multiplicity-

free if
mz(Y) <1 forany irreducible (gc, K)-module Y .

This concept coincides with Definition 1.1 if X is the underlying (g¢, K )-module
of a unitary representation of G. The point of Definition 5.4.5 is that we allow the
case where X is not unitarizable.

Generalizing (5.4.5), we set

[z :7']:= D ma (Y)mq(¥)
Y

for 7, 7’ € A(gc, K). Here are immediate results from the definition:

Lemma 5.4.6. Let 7, 7' € A(gc, K).

1) [z :7'] < oo ifatleast one of m and n’ belongs to F(gc, K).
2) dimHomy. k)(w,7") < [z : '].

3) [z :7n'l=[x":7]

4) mi(Y)= [z :Y] ifY isanirreducible (gc, K)-module.

5) [r:x'l<m(zx) ifr’is multiplicity-free.

Now, we return to Proposition 5.4.1.
Proof of Proposition 5.4.1. We divide the proof into three steps:
Step 1 (7 is a finite-dimensional representation). We shall prove
m(r ® F) <dim F (5.4.6)

for any finite-dimensional representation 7= of G.

Let b = t 4 u be a Borel subalgebra of gc with u nilradical. We denote by
H/(u, V) the jth cohomology group of the Lie algebra u with coefficients in a u-
module V. Since the Lie algebra b is solvable, we can choose a b-stable filtration
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F=F.DF_1D> D F={0)

such that dim F; / F;—1 = 1.
Let us show by induction on i that

dimH'(u, 7 @ F}) <i . (5.4.7)

This will imply m(z ® F) = dim Ho(u, 7 ® F) < k = dim F.
The inequality (5.4.7) is trivial if i = 0. Suppose (5.4.7) holds for i — 1. The
short exact sequence of b-modules

0>7Q®F_1>n®F —>rnQ®(F/F-)—0
gives rise to a long exact sequence
0> HurQF_1)— Huz®F)— Hu 7z ® (F/F_1))
— Hl(u,n ® Fi—1) = ...
of t-modules. In particular, we have
dim Ho(u, 7 ® F;) <dim H'(u, 7 ® Fi_1) +dim H'(u, 7 ® (F;/Fi_1)). (5.4.8)
Because F;/F;_ is trivial as a u-module, we have
Ho(w, 7 ® (Fi/Fi-1) = H'(u, 1) ® (Fi/ Fi-1) . (5.4.9)

By definition H°(u, ) is the space of highest weight vectors, and therefore the di-
mension of the right-hand side of (5.4.9) is one. Now, the inductive assumption com-
bined with (5.4.8) implies dim HO(u, 7 ® F;) < i, as desired.

Step 2 (rr is a principal series representation). In this step, we consider the case
where 7 is a principal series representation. We note that £ may be reducible here.

Let P = LN be a Levi decomposition of a minimal parabolic subgroup P of G,
W an irreducible (finite-dimensional) representation of L, and Indg (W) the underly-
ing (gc, K)-module of a principal series representation induced from the represen-
tation W X1 of P = LN (without p-shift). Then, the socle filtration is unchanged so
far as the parameter lies in the equisingular set, and thus, there are only finitely many
possibilities of the socle filtration of Indg(W) for irreducible representations W of
L. We denote by m(G) the maximum of m(Indg (W)) for irreducible representations
W of L.

Let F be a finite-dimensional representation of G. Then we have an isomorphism
of (gc, K)-modules

nd§ (W) ® F ~ nd$(W ® F),

where F is regarded as a P-module on the right-hand side. We take a P-stable filtra-
tion
Wy =WFD>W,.1 DD Wy= {0}
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such that each W;/W;_1 is irreducible as a P-module. We notice that n < dim F
by applying Step 1 to the L-module F|;. As Indg(W ® F) is isomorphic to
b, Indg (W;/W;_1) in the Grothendieck group V(gc, K), we have shown that

m(Ind§ (W) ® F) < n m(G) < (dim F) m(G)
for any irreducible finite-dimensional representation W of L.

Step 3 (general case). By Casselman’s subrepresentation theorem (see [87, Chap-
ter 3]), any irreducible (gc, K )-module 7 is realized as a subrepresentation of some
induced representation Indg (W). Then

m(z ® F) < m(z ® Ind$(W)) < C

by step 2. Thus, Proposition 5.4.1 is proved. O

5.5 Proof of Theorem D

Now let us complete the proof of Theorem D.

Let # = m; X 7, be an irreducible unitary highest weight representation of
G’ := G x G. Tt follows from Lemma 5.3 that there exist an irreducible unitary
highest weight representation 7" = 7| X z/, of scalar type and a finite-dimensional
representation F of G’ such that 7 x occurs as a subquotient of 7 ® F.

By using the notation (5.4.4), we set [V : V1] := [(VI)k : (Va)k] for G-
modules V; and V> of finite length. Then, for u € 5, we have

Mzy,z, (1) = dim Homg (1, 7 |diag(G))
< [p : 7ldiag(6)]
< [u: (@' ® F)ldiag(c)]
= [1 ® (F*ldiag(c)) : ' ldiag(c)]
<m(u ® (F*|diag(G))) (5.5.1)
< C(F").

Here the inequality (5.5.1) follows from Lemma 5.4.6 (5) because ' ldiag(G) ==
n{@né is multiplicity-free (see Theorem D (2)). In the last inequality, C (F*) is the
constant in Proposition 5.4.1. This completes the proof of Theorem D (1). O

Remark 5.5. The argument in Subsections 8.8 and 8.9 gives a different and more
straightforward proof of Theorem D.

6 Counterexamples

In this section, we analyze the assumptions in Theorems A and B by counterexam-
ples, that is, how the conclusions fail if we relax the assumptions on the representa-
tion 7.
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Let (G, H) be a reductive symmetric pair corresponding to an involutive auto-
morphism 7z of G, and 7 an irreducible unitary representation of G. We shall see that
the multiplicity of an irreducible summand occurring in the restriction x |5 can be:
1) greater than one if 7 is not of scalar type (but we still assume that 7 is a highest
weight module);

2) finite but not uniformly bounded if 7 is not a highest weight module (but we
still assume that 7 |z decomposes discretely);
3) infinite if 7 |y contains continuous spectra.

Although our concern in this paper is mainly with a non-compact subgroup H,
we can construct such examples for (1) and (2) even for H = K (a maximal compact
subgroup modulo the center of G).

Case (1) will be discussed in Subsection 6.1, (2) in Subsection 6.2, and (3) in
Subsection 6.3, respectively. To construct an example for (3), we use those for (1)
and (2).

6.1 Failure of multiplicity-free property

Let G = Sp(2,R). Then, the maximal compact subgroup K is isomorphic to
U(2). We take a compact Cartan subalgebra t. Let {fj, f>} be the standard basis
of /—1t* such that A(g, t) = (£ f1 £ f>, £2f1, £2 f>}, and we fix a positive sys-
tem AY(E, t) := {fi — f»}. In what follows, we shall use the notation (11, 42) to
denote the character Ay f; + A2 f> of t.

Given (p, q) € Z* with p > ¢, we denote by 7 g,(f])) the irreducible representation

of U(2) with highest weight (p, g) = pfi + ¢qf>. Then dim ng)(fl)) =p—qg+1.

The set of holomorphic discrete series representations of G is parametrized by
A= (A1, 42) € N2 with Al > A2 > 0. Weset u = (ug, u2) = A1+ 1,224+2)
Sp(2,R)

G —
and denote by 7,/ = 70y 102)

characterized by

the holomorphic discrete series representation of G

Z (g)-infinitesimal character = (41, A2) (Harish-Chandra parameter),

minimal K-type = ”54(12,342) (Blattner parameter).

We note that 7 f is of scalar type if and only if u1 = uo.

We know from Theorem B that multiplicities of K-type 7 occurring in nf are
uniformly bounded for fixed = (u1, u2). Here is the formula:
Example 6.1 (upper bound of K -multiplicities of holomorphic discrete series).
- 2
supdimHomK(r,nflK)z |:/“ 52+ :| . (6.1.1)
rek

The right side of (6.1.1) = 1 if and only if either of the following two cases holds:

U1 = o (.e., nf is of scalar type), (6.1.2) (a)

G

u is of two-dimensional minimal K -type). (6.1.2) (b)

ur=u2+1 (@e,x
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Thus, the branching law of the restriction x /(l;l x 1s multiplicity-free if and only if
u1 = ppor uy = uo+ 1. The multiplicity-free property for 1 = w2 (i.e., for nf of
scalar type) follows from Theorem A. The multiplicity-free property for 1 = p2+1
is outside of the scope of this paper, but can be explained in the general framework
of the ‘vector bundle version’ of Theorem 2.2 (see [47, Theorem 2], [49]).

Proof. Tt follows from the Blattner formula for a holomorphic discrete series repre-
sentation ([32], [78]) that the K -type formula of n/? is given by

wllk ~ (P ®S(C)

(1, 12)
_ U@ UQ)
= Turoun @ @ T(2a,2b) > (6.1.3)
a>b>0
(a,b)eN?

where K = U(2) acts on C3 ~ S§%(C?) as the symmetric tensor of the natural
representation. We write n, (p, ¢) for the multiplicity of the K -type . ve )) occurring

G _ _Sp(2,R)

0 =T, ),thatls,

inz

nu(p,q) = dimHomK(n(I;,q), ﬂfh{) .
Then, applying the Clebsch—Gordan formula (1.7.1) (f) to (6.1.3), we obtain
nu(p,q) =#(a,b) N2 : (a, b) satisfies a > b > 0, (6.1.4) and (6.1.5)},
where

p+q=p+ u2+2a+2b, (6.1.4)
max(2a + u2,2b+ u1) < p <22a+uj. (6.1.5)

In particular, for fixed (u1, u#2) and (p, ¢), the integer b is determined by a from
(6.1.4), whereas the integer a satisfies the inequalities p — u; < 2a < p — uo.
Therefore,

n/t(Pa q) <

2

[(P—#z)—
2

(p—m)}H:[m—ﬂerZ] a

6.2 Failure of uniform boundedness

We continue the setting of Subsection 6.1. Let B be a Borel subgroup of G¢ =~
Sp(2, C). Then, there exist 4 closed orbits of K¢ >~ GL(2, C) on the full flag vari-
ety Go/B. (By the Matsuki duality, there exist 4 open orbits of G = Sp(2, R) on
G/ B. This observation will be used in the proof of Example 6.3.) By the Beilinson—
Bernstein correspondence, we see that there are 4 series of discrete series representa-
tions of G. Among them, two are holomorphic and anti-holomorphic discrete series
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representations, that is, nf and (7 E)* (the contragredient representation) with nota-
tion as in Subsection 6.1. The other two series are non-holomorphic discrete series
representations. Let us parametrize them. For 1 := (41, 12) € 72 (A > —Ja > 0),
we write W, for the discrete series representation of G characterized by

Z(g)-infinitesimal character = (11, 42) (Harish-Chandra parameter),

UQ)

minimal K-type =« (111.22) (Blattner parameter).

Then, non-holomorphic discrete series representations are either W; or its contragre-
dient representation W} for some 1 € 72 with 4; > —1o > 0. We define a O-stable
Borel subalgebra q = t¢ + u of gc = Ec + pc such that

Aunpe, t) =211, i+ f2, =2/}, Aunte,t) ={fi— f2}.

Then, the Harish-Chandra module (W,) is isomorphic to the cohomological par-
abolic induction Ré (C(4,,2,)) of degree 1 as (g¢, K)-modules with the notation and
the normalization as in [86]. We set ¢1 := A1 + 1 and up := A».

Example 6.2 (multiplicity of K-type of non-holomorphic discrete series W,). We

write m (p, q) for the multiplicity of the K -type ”5(3)) occurring in W, that is,

m;i(p, q) := dimHomg (z ()2, W; |).

Then, m, (p, q) # 0 only if (p, q) € Z? satisfies

p=p1, p—q=ur—prand p—q €27+ 1 + 2. (6.2.1)
Then,

mz(p,q)=1+min([p_2”1},p_q_2“1+”2). (6.2.2)
In particular, for each fixed 4, the K-multiplicity in W, is not uniformly bounded,

namely,

sup dim Homg (7, W, |x) = sup m;(p,q) =o0.
ek (p,q) satisfies (6.2.1)

Proof. For p,q € Z, we write C, 4 for the one-dimensional representation of t¢
corresponding to the weight pfi + gf2> € t. According to the tc-module isomor-
phism:

unpc = Cpo,0 ®Cu,1y @ Co,-2),
the symmetric algebra S(u N pc) is decomposed into irreducible representations of
tc as

Sunpe) > P $(Cro) ® S"(Car.1) ® 5 (Clo,-2)
a,b,ceN

~ P Coutbibae)- (6.2.3)
a,b,ceN
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We denote by H/(uN€c, ) the jth cohomology group of the Lie algebra unc with
coefficients in the uN€c-module 7. If 7 is a tc-module, then H/ (uN€c, 7) becomes
naturally a tc-module. Then, Kostant’s version of the Borel-Weil-Bott theorem (e.g.,
[85, Chapter 3]) shows that

Cia =0,
' 2 :
H'(untc, ”((;fq))) =1Cq¢-1p+n G=1D, (6.2.4)
{0} (#0,1).

By using the Blattner formula due to Hecht—Schmid (e.g., [85, Theorem 6.3.12]), the
K -type formula of W) is given by

m)(p,q) _dlmHomK(n W;lk)

(p, q)’
1

= > (=1)/ dim Homy. (H' (u N tc, 7, D). S@ N pe) @ Cpuypn) -
j=0

Now, comparing (6.2.3) with the above formula (6.2.4) as tc-modules, we see
mi(p,q) = #{(a,b,¢) €N’ : p=2a+b+pu1,q =b—2c+ u)
—#{(a,b,c)eN} g —1=2a+b+pu,p+1=>b—2c+ us}

=#{(a,b,c)eN’ 1 p=2a+b+pu1,q=>b—2c+ )

— 1 +min P — K ’P—q—/ll-i-#z '
2 2

Thus, the formula (6.2.2) has been verified. |

6.3 Failure of finiteness of multiplicities

Multiplicities of the branching laws can be infinite in general even for reductive sym-
metric pairs (G, H). In this subsection, we review from [43, Example 5.5] a curious
example of the branching law, in which the multiplicity of a discrete summand is
non-zero and finite and that of another discrete summand is infinite. Such a phenom-
enon happens only when continuous spectra appear.

Example 6.3 (infinite and finite multiplicities). Let (Gc, G) be a reductive symmetric
pair (Sp(2,C), Sp(2, R)). We note that (G, G) is locally isomorphic to the sym-
metric pair (SO(5, C), SO(3, 2)). We take a Cartan subgroup H = T'A of G¢. We
note that 7 ~ T2 and A ~ R?, and identify T with Z2.

Letw = w(Sp % O be the unitary principal series representation of G¢ induced
unitarily from the character y of a Borel subgroup B containing H = T A such that

X|H Z(C(a,b)gl.
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We assume a, b > 0 and set
c(ur, paia, by :=#{(s,t,u) e N’ ta=p1+25+1, b= pp+1+2u}.

Then, the discrete part of the branching law of the restriction w(‘zp g,C)| Sp2,R) 18
given by the following spectra:

3
P clur, n2;a,b) (”&pl(,zx;za)) ® (ﬂ(ifl(j;]}))) ) ® Z® co(W; & W),
u1=p2>3 A1>—42>0
(6.3.1)

with the notation as in Examples 6.1 and 6.2.

The first term of (6.3.1) is a finite sum because there are at most finitely many
(w1, p2) such that c(u1, pa; a, b) # 0 for each fixed (a, b). For instance, the first
term of (6.3.1) amounts to

Sp2,.R Sp(2,R)\* T
@ ”(/51(,3) )69 @ (n(!fl(@ )) (multiplicity-free)
3spi=a 3<ui=a
1=a mod 2 u1=a mod 2

if b = 3.

The second term of (6.3.1) is nothing other than the direct sum of all non-
holomorphic discrete series representations of G = Sp(2, R) with infinite multi-
plicities for any a and b.

Sketch of Proof. There exist 4 open G-orbits on G¢ /B, for which the isotropy sub-
groups are all isomorphic to T =~ T?2. By the Mackey theory, the restriction w((a;fcb) lc
is unitarily equivalent to the direct sum of the regular representations realized on
L2-sections of G-equivariant line bundles G x7 C(+4,45) — G/T. That s,

woSle = D LHG/T,Clpaem)-

e1,60==%1

Therefore, an irreducible unitary representation o of G occurs as a discrete spectrum
in wgcb) |G if and only if o occurs as a discrete summand in L2(G /T, Cza,6,p)) for
some €1, &2 = 1. Further, the multiplicity is given by

dim Homg (o, w(aﬁ))k;) = Z dim Homp2 (Cz,a,6,0), 0 I12)s
e1,60==%1

by the Frobenius reciprocity theorem.

Since T is compact, ¢ must be a discrete series representation of G = Sp(2, R) if
o occurs in LZ(G /T, C(¢ya,,p)) as a discrete summand. We divide the computation
of multiplicities into the following two cases:

Case 1. o is a holomorphic series representation or its contragredient representation.
Leto == 5” @R Combining (6.1.3) with the weight formulae
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S(C)|p2 @ $*(C2,0) ® S'(C(1,1)) ® $“(C0,2)) =~ @ Castt.r42u)
s,t,ueN s.t,ueN
U@ ~
ﬂ(/ll,/lz)sz - @ C(P,q) >
pra=p1tpn
Ho=p=pu]

we have
dim Homz (Cap), 757 @ |p2) = c(u1, pai a, b) .

Case 1l. ¢ is a non-holomorphic discrete series representation. Let ¢ = W,. It fol-
lows from the K -type formula (6.2.2) of W, that we have

dim Homq> (C(a,b), Wilr) = Z m;(p, q) dim Homp» ((C(a,b); ﬂ(LIIJSZ))) =00.
r=q

Likewise for 0 = W} (the contragredient representation).
Hence, the discrete part of the branching law is given by (6.3.1). O

7 Finite-dimensional cases — Proof of Theorems E and F

7.1 Infinite v.s. finite-dimensional representations

Our method applied to infinite-dimensional representations in Sections 3 and 4 also
applies to finite-dimensional representations, leading us to multiplicity-free theo-
rems, as stated in Theorems E and F in Section 1, for the restriction with respect to
symmetric pairs.

The comparison with multiplicity-free theorems in the infinite-dimensional case
is illustrated by the following correspondence:

a non-compact simple group G a compact simple group Gy

a unitary highest weight module a finite-dimensional module
scalar type (Definition 1.3)

Theorems A and B

“pan type” (Definition 7.3.3)
Theorems E and F.

et e

The main goal of this section is to give a proof of Theorems E and F by using The-
orem 2.2. Geometrically, our proof is built on the fact that the Hy action on the
Hermitian symmetric space is strongly visible if (Gy, Hy) is a symmetric pair (see
[50D.

7.2 Representations associated to maximal parabolic subalgebras

Let gc be a complex simple Lie algebra. We take a Cartan subalgebra j of g¢, and
fix a positive system AT (gc,j). We denote by {a, ..., a,} the set of simple roots,
and by {w1, . .., w,} (Cj*) the set of the fundamental weights.
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We denote by 7 f(c irreducible finite-dimensional representation of g¢ with high-
est weight 1 = Z;’zl miw; for my,...,m, € N. It is also regarded as a holo-
morphic representation of G, a simply connected complex Lie group with Lie
algebra gc.

We fix a simple root «;, and define a maximal parabolic subalgebra

p;@ = [i(C + Tl;(c

such that the nilradical n;~ and the Levi part [;c ( D j) are given by

A, §) = Z-span of a1, ..., &y, ..., an) N AGCs i) »
A, i) = A™(gc. )\ Allic, j) -

We shall see that irreducible finite-dimensional representations realized on general-
ized flag varieties G¢/ Pc is multiplicity-free with respect to any symmetric pairs if
Pc has an abelian unipotent radical.

We write P, = L;c N, for the corresponding maximal parabolic subgroup of
Gc.

Let Hom(p;, C) be the set of Lie algebra homomorphisms over C. Since any
such homomorphism vanishes on the derived ideal [p;¢, p;c], Hom(p;, C) is natu-
rally identified with

Hom(p;./[p;c» Pic)s ©) = Co.

Next, let Hom(P;, C*) be the set of complex Lie group homomorphisms. Then,
we can regard Hom(P,, C*) C Hom(p;, C). As its subset, Hom(P,~, C*) is iden-
tified with Zw; since G is simply connected.

For k € Z, we write Cy,, for the corresponding character of Pl.jc, and denote by

Lioy = Ge % p Choy =~ G/ Pic (7.2.1)

the associated holomorphic line bundle. We naturally have a representation of G¢
on the space of holomorphic sections O(Ly,). Then, by the Borel-Weil theory,
O(Lkw, ) is non-zero and irreducible if k > 0 and we have an isomorphism of repre-
sentations of G¢ (also of g¢):

Ty = O (Liay) - (7.2.2)

7.3 Parabolic subalgebra with abelian nilradical

A parabolic subalgebra with abelian nilradical is automatically a maximal parabolic
subalgebra. Conversely, the nilradical of a maximal parabolic subalgebra is not nec-
essarily abelian. We recall from Richardson—Rohrle—Steinberg [75] the following
equivalent characterization of such parabolic algebras:
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Lemma 7.3.1. Retain the setting of Subsection 7.2. Then the following four condi-
tions on the pair (gc, a;) are equivalent:

1) The nilradical N is abelian.

ii) (gc, lic) is a symmetric pair.

iii) The simple root a; occurs in the highest root with coefficient one.

iv) (gc, @;) is in the following list if we label the simple roots ay, ..., o, in the
Dynkin diagram as in Table 7.3.2.

Type A, 01,02, ...,0y, (7.3.1)
Type By, o1 (7.3.2)
Type C, an, (7.3.3)
Type D,, o1, Ap—1, Un (7.3.4)
Type Eg a1, dg (7.3.5)
Type E7 o7 (7.3.6)

For types G, Fy, Eg, there are no maximal parabolic subalgebras with abelian
nilradicals.

Proof. See [75] for the equivalence (i) < (iii) < (iv). The implication (iv) = (ii)
is straightforward. For the convenience of the reader, we present a table of the sym-
metric pairs (gc, [;c) corresponding to the index i in (iv).

Type gc lic i

A, sln+1,C) s, C)+sln+1-i,C)+C i=1,2,...,n

B, so2n+1,0C) s02n—1,C)+ C i=1

Cy sp(n, C) gl(n, C) i=n

D, s0(2n, C) s0(2n—2,C)+ C i=1
s50(2n, C) gl(n, C) i=n—1,n

Eg 6 50(10,C)+ C i=1,6

E; e7 e +C i=1

If (gc, lic) is a symmetric pair, then Mo el C nye Nlic = {0}, whence (i) =
). O

Definition 7.3.3. We say the representation ”1?5,- (k =0,1,2,...) is of pan type,
or a pan representation if (gc, a;) satisfies one of (therefore, all of) the equivalent
conditions of Lemma 7.3.1. Here, pan stands for a parabolic subalgebra with abelian
nilradical.
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Table 7.3.2.
(Ap) o——o— —o0—o0
ap  ap Op—1 On
(Bn) o——o— ——0
ap ap Up—1 On
ap  ap Op—1 Cn
0 0p—1
D o—o— ...
( n) ap  ap Op—2 On

oap

(Eg) o———o———l———o———o

ap o3 a4 as ag

oo

(E7) D—O—(L—O—O—O

ay o3 a4 as ag a7

7.4 Example of pan representations

Example 7.4. Let gc = gl(n,C)and A = (A1, ..., 4,) € Z" with A1 > 1p > --- >
An- (This g is not a simple Lie algebra, but the above concept is defined similarly.)
Then, 7, is of pan type if and only if

==L =iyl == ln,

for somei (1 <i <n — 1). Then, ();c =~ gl(i, C) + gl(n — i, C).

In particular, the kth symmetric tensor representations S¥(C") (k € N) and the
kth exterior representations AK(C") (0 < k < n) are examples of pan representa-
tions since their highest weights are given by (k, 0, ..., 0) and (1, ceey l, 9, e, 9),

Tk
respectively.

S. Okada [68] studied branching laws for a specific class of irreducible finite-
dimensional representations of classical Lie algebras, which he referred to as
‘rectangular-shaped representations’. The notion of ‘pan representations’ is equiv-
alent to that of rectangular-shaped representations for type (A,), (By), and (C,,). For
type (Dy), Tkw, > Tko, (k € N) are rectangular-shaped representations, while 7y,
(k € N) are not.
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7.5 Reduction to rank condition

Suppose (gc, @;) satisfies the equivalent conditions in Lemma 7.3.1. Let 6 be the
complex involutive automorphism of the Lie algebra g¢ that defines the symmetric
pair (gc, l;c). We use the same letter # to denote the corresponding holomorphic
involution of a simply connected G¢. We take a maximal compact subgroup Gy
of G¢ such that Gy = Gy. Then K := G% = Gy N L;c becomes a maximal
compact subgroup of L;c.

Let 7 be another complex involutive automorphism of gc, and (gc, hc) the sym-
metric pair defined by 7. We also use the same letter 7 to denote its lift to G¢. We
recall from Subsection 3.7 that the ‘twisted’ involution 78 for g € G is given by

1

t8(x) = gr(g 'xg)g”! (x €Go).

Lemma 7.5. Let (0, ©) be as above.
1) There exist an involutive automorphism o of Gy and g € Gc¢ satisfying the
following three conditions (by an abuse of notation, we write t for t8):

gy = gy, 00 = 00,01 =10. (7.5.1)
The induced action of o on Gy /K is anti-holomorphic. (7.5.2)
(gv)? "~ contains a maximal abelian subspace in (gy)~ "7, (7.5.3)

2) Foranyx € Gy/K, there exists h € (Gy;)o such that o (x) = h - x. In particular,
each (Gy;)o-orbit on Gy /K is preserved by o.

Proof. 1) See [50, Lemma 4.1] for the proof.
2) The second statement follows from the first statement and a similar argument of
Lemma 3.3.

7.6 Proof of Theorem E

We are now ready to complete the proof of Theorem E in Section 1.
Letnr = nlgg, be a representation of pan type. As in Subsection 7.2, we consider

the holomorphic line bundle Lo, — G/ P, and realize = on the space of holo-
morphic sections O(Lq, ). We fix a Gy-invariant inner product on O (L, ). With
notation as in Subsection 7.5, we have a diffeomorphism

Gu/K = Gc/P,

through which the holomorphic line bundle Ly, — Gg/Pc is naturally iden-
tified with the Gy-equivariant holomorphic line bundle £ — D, where we set
L:= Gy xg Cgy, and D := Gy /K (a compact Hermitian symmetric space).
Now, applying Lemma 7.5, we take ¢ and set H := (Gp;)o. We note that the
complexification of the Lie algebra of H is equal to hc up to a conjugation by G¢.
By Lemma 7.5, the condition (2.2.3) in Theorem 2.2 is satisfied. Furthermore, we
see the condition (2.2.2) holds by a similar argument of Lemma 9.4. Therefore, the
restriction 7 | (g 0% is multiplicity-free by Theorem 2.2. Hence, Theorem E holds by
Weyl’s unitary trick. O
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7.7 Proof of Theorem F

Suppose 71 and 7y are representations of pan type. We realize 7; and 72 on the
space of holomorphic sections of holomorphic line bundles over compact symmetric
spaces Gy /K1 and Gy /K>, respectively. We write 6; for the corresponding involu-
tive automorphisms of Gy that define K; (i = 1,2). In light of Lemma 7.3.1 (iv),
we can assume that 616, = 6,6;. Then, applying Lemma 7.5 to (61, 62) we find an
involution ¢’ € Aut(Gy) satisfying the following three conditions:

c'6; =0 (i =1,2). (7.7.1)
The induced action of ¢’ on Gy /K; (i = 1, 2) is anti-holomorphic. (7.7.2)
(g[/)”/’_el’_g2 contains a maximal abelian subspace of (gy) =% ~%. (7.7.3)

We remark that the condition (7.7.2) for i = 2 is not included in Lemma 7.5, but
follows automatically by our choice of .

We define three involutive automorphisms 7, and 0 on Gy x Gy by 7(g1, g2) :=
(g2,81), 0 = (01,0)) and ¢ := (o¢/,0’), respectively. Then (Gy x Gy)* =
diag(Gy). By using the identification

Gu®ar) " =X, -X): X egu} > v, (X,-X)— X,
we have isomorphisms
(ov ® gv) " = (gu) ™",

(ov ® gu)” =0 = (gu)7 0

Thus, the condition (7.7.3) implies that (gy @ gy)”> "¢ contains a maximal abelian
subspace of (gy @ gy)~ " 7. Then, by Lemma 7.5 and by a similar argument of
Lemma 3.3 again, for any (x,y) € Gy /K] x Gy/K> there exists a g € Gy such
thato’(x) = g-x and ¢’ (y) = g - y simultaneously. Now, Theorem F follows readily
from Theorem 2.2. O

7.8 List of multiplicity-free restrictions

For the convenience of the reader, we present the list (see Table 7.8.1) of the triple
(gc, be, i) for which we can conclude from Theorem E that the irreducible finite-
dimensional representation 7 kgf)l_ of a simple Lie algebra g¢ is multiplicity-free when
restricted to hc for any k € N by Theorem E.

Some of the above cases were previously known to be multiplicity-free by case-
by-case argument, in particular, for the case rankgc = rankhc. Among them,
the corresponding explicit branching laws have been studied by S. Okada [68] and
H. Alikawa [1].

There are some few representations 7 that are not of pan type, but are multiplicity-
free when restricted to symmetric subgroups H. Our method still works to capture
such cases, but we do not go into details here (see [46, 51, 52]).
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Table 7.8.1.
ac bc i
sln+1,C)  sl(p,C)+sln+1—p,C)+C 1,2,...,n
sl(n+1,C) so(n+1,C) 1,2,...,n
s5l(2m, C) sp(m, C) L,2,....2m—1
s02n+1,C)  so(p,C)+s02n+1—p,C) 1
sp(n, C) sp(p, C) +sp(n — p,C) n
sp(n, C) gl(n,C) n
s0(2n, C) s0(p,C) +s0(2n — p,C) I,n—1,n
s0(2n, C) gl(n,C) I,n—1,n
¢6 50(10,C) + s0(2,C) 1,6
€6 51(6, C) + 512, C) 1,6
¢6 fa 1,6
e6 sp(4,C) 1,6
e7 e +50(2,C) 7
7 s50(12,C) +51(2,C) 7
e7 51(8,C) 7

8 Generalization of the Hua-Kostant—Schmid formula

This section discusses an explicit irreducible decomposition formula of the restric-
tion 7 |y where the triple (7, G, H) satisfies the following two conditions:

1) 7= is a holomorphic discrete series representation of scalar type (Defini-
tion 1.3).

2) (G, H) is a symmetric pair defined by an involution 7 of holomorphic type
(Definition 1.4).

We know a priori from Theorem B (1) that the branching law is discrete and
multiplicity-free. The main result of this section is Theorem 8.3, which enriches
this abstract property with an explicit multiplicity-free formula. The formula for the
special case H = K corresponds to the Hua—Kostant—Schmid formula ([26, 32, 78]).
We also present explicit formulas for the irreducible decomposition of the tensor
product representation (Theorem 8.4) and of the restriction U(p,q) | U(p — 1, q)
(Theorem 8.11).

Let us give a few comments on our proof of Theorem 8.3. Algebraically, our
key machinery is Lemma 8.7 which assures that the irreducible G-decomposition
is determined only by its K-structure. Geometrically, a well-known method of tak-
ing normal derivatives (e.g., S. Martens [63], Jakobsen—Vergne [31]) gives a gen-
eral algorithm to obtain branching laws for highest weight modules. This algorithm
yields explicit formulae by using the observation that the fiber of the normal bun-
dle for G*/K* C G/K is the tangent space of another Hermitian symmetric space
G /K*. The key ingredient of the geometry here is the following nice properties of
the two symmetric pairs (G, G?) and (G, G™):

A KNG'=KNGY,

byp=@png)® (png™.
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Unless otherwise mentioned, we shall assume H is connected, that is, H = G(’)
throughout this section.

8.1 Notation for highest weight modules

We set up the notation and give a parametrization of irreducible highest weight mod-
ules for both finite and infinite-dimensional cases.

First, we consider finite-dimensional representations. Let us take a Cartan subal-
gebra t of a reductive Lie algebra £ and fix a positive system AT (€, t). We denote by
”5 the irreducible finite-dimensional representation of £ with highest weight y«, if u

is a dominant integral weight. A £-module 7 j will be written also as & 5 if the action
lifts to K.
Next, let G be a connected reductive Lie group, € a Cartan involution, K =
{g € G:0g = g}, g =t +p the corresponding Cartan decomposition and gc =
€c + pc its complexification. We assume that there exists a central element Z of £
such that
gc =tc+p++p- (8.1.1)
is the eigenspace decomposition of \/1_ | ad(Z) with eigenvalues 0, 1, and —1, respec-
tively. This assumption is satisfied if and only if G is locally isomorphic to a direct
product of connected compact Lie groups and non-compact Lie groups of Hermitian
type (if G is compact, we can simply take Z = 0).

We set
1

= Z.
V-1
As in Definition 1.3, we say an irreducible (gc, K)-module V is a highest weight
module if

Z: (8.1.2)

VP ={veV:Yo=0 forallY € p}

is non-zero. Then, VP+ is irreducible as a K-module, and the (gc, K)-module V is
determined uniquely by the K -structure on VP+. If u is the highest weight of V ¥+,
we write V as & 3. That is, the irreducible (g¢, K )-module 7 3 is characterized by the
K -isomorphism

TP =l (8.1.3)
An irreducible unitary highest weight representation 7 of G will be denoted by # f if
the underlying (gc, K)-module of 7 is isomorphic to = 3 . Let A be the totality of u
such that = 3 lifts to an irreducible unitary representation of G. For simply connected
G, irreducible unitary highest weight representations were classified, that is, the set
Ag (C v/ —1t*) was explicitly found in [12] and [30] (see also [13]). In particular,
we recall from [12] that

/I(Z) € R forany . € Ag

and

cG = sup AMZ) < oo (8.1.4)
EEAG

if G is semisimple.
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The highest weight module z 3 is the unique quotient of the generalized Verma
module

¥ is regarded as a module of the maximal parabolic subalgebra tc + p by

u
making p4 act trivially. Furthermore, 7 3 has a Z(gc)-infinitesimal character u +

pg € t¢ via the Harish-Chandra isomorphism

where 7

Hom(C—algebra(Z(g(C), C) ~ t&k:/ w,

where Z(gc) is the center of the enveloping algebra U(gc), W is the Weyl group
of the root system A(g, t), and pg is half the sum of positive roots AT (g, t) =
A+(Ea t) U A(p+5 t)

8.2 Strongly orthogonal roots

Let G be a non-compact simple Lie group of Hermitian type, and 7 an involution of
holomorphic type which commutes with the Cartan involution 6.
We take a Cartan subalgebra t* of the reductive Lie algebra

Fo={Xet: X=X}

and extend it to a Cartan subalgebra t of £. We note that t* = &% N t. The pair (¢, £°)
forms a reductive symmetric pair, and t plays an analogous role to the fundamental
Cartan subalgebra with respect to this symmetric pair. Thus, using the same argument
as in [84], we see thatif o € A (¥, t) satisfies a|¢ = 0 then @ = 0. Thus, we can take
positive systems A1 (€, t) and AT (£, t7) in a compatible way such that

alg € AT, ) ifae AT(E ). (8.2.1)

Since 7 is of holomorphic type, we have tZ = Z, and therefore 7p, = p,.
Hence, we have a direct sum decomposition py = p% @ p*, where we set

pE = (X epy X = +X).

Let us consider the reductive subalgebra g7 Its Cartan decomposition is given
by
0’ =@"Nng)+ @ ng =t +p",

and its complexification is given by
g =t ep T @p ", (8.2.2)

The Cartan subalgebra t* of £ is also a Cartan subalgebra of g7%.

Let A(p. ", t7) be the set of weights of p, " with respect to t*. The roots o and
p are said to be strongly orthogonal if neither a + f nor o — f is a root. We take a
maximal set of strongly orthogonal roots {v, va, ..., v} in A(p ", t*) such that
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i) v1 is the lowest root among the elements in A (pf, th),

ii) v; 41 is the lowest root among the elements in A(p ", t*) that are strongly
orthogonal to vy, ..., v;.

A special case applied to 7 = 6 shows €* = £, t* =t,p™" =p,and A(p] ", t*) =
A(p4, t). In this case, we shall use the notation {vy, V2, ..., v;} for a maximal set of
strongly orthogonal roots in A (p., t) such that

i) vy is the lowest root among A (py, t),
ii) V41 is the lowest root among the elements in A(p., t) that are strongly orthog-
onaltovy,...,v; (1 <j <I).

Then, [ = R-rank g by [57]. Likewise, in light of (8.2.2) for the Hermitian symmetric
space G /G N K = G*?/G"Y, we have | = R-rank g*’. In general, [ < 1.

8.3 Branching laws for semisimple symmetric pairs

It follows from (8.1.3) that the highest weight module = ,5’ is of scalar type, namely,
(m 5)p+ is one-dimensional, if and only if

(u, o) =0 foranya € A(E, 1) . (8.3.1)

Furthermore, the representation nf

sentation of G if and only if

is a (relative) holomorphic discrete series repre-

(u+pg,a) <0 forany a € A(p4, t). (8.3.2)

We are now ready to state the branching law of holomorphic discrete series repre-
sentations nf of scalar type with respect to semisimple symmetric pairs (G, H):

Theorem 8.3. Let G be a non-compact simple Lie group of Hermitian type. Assume
that u € «/—1t* satisfies (8.3.1) and (8.3.2). Let t be an involutive automorphism
of G of holomorphic type, H = G| (the identity component of G*), and {v1, ..., v}
be the set of strongly orthogonal roots in A(p*, t*) as in Subsection 8.2. Then, ﬂ/?
decomposes discretely into a multiplicity-free sum of irreducible H-modules:

b
G H . .
Vs ~ T discrete Hilbert sum). 8.3.3
o | E dlie =" ap; ( ) (8.3.3)
ay=->a;=0
ag,...,a;eN

The formula for the case H = K (that is, 7 = ) was previously found by
L.-K. Hua (implicit in the classical case), B. Kostant (unpublished) and W. Schmid
[78] (see also Johnson [32] for an algebraic proof). In this case, each summand in
the right side is finite dimensional.

For t # 0, some special cases have been also studied by H. Jakobsen, M. Vergne,
J. Xie, W. Bertram and J. Hilgert [7, 30, 31, 89]. Further, quantitative results by
means of reproducing kernels are obtained in [5]. The formula (8.3.3) in the above
generality was first given by the author [39].

We shall give a proof of Theorem 8.3 in Subsection 8.8.
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8.4 Irreducible decomposition of tensor products

As we saw in Example 3.2.1, the pair (G x G, diag(G)) forms a symmetric pair.
Correspondingly, the tensor product representation can be regarded as a special (and
easy) case of restrictions of representations with respect to symmetric pairs. This
subsection provides a decomposition formula of the tensor product of two holomor-
phic discrete series representations of scalar type. This is regarded as a counterpart
of Theorem 8.3 for tensor product representations.

We recall from Subsection 8.2 that {vy, ..., 7} is a maximal set of strongly or-
thogonal roots in A(p,, t) and [ = R-rank g.

Theorem 8.4. Let G be a non-compact simple Lie group of Hermitian type. Assume
that uy, uy € V=1t satisfy the conditions (8.3.1) and (8.3.2). Then, the tensor
product representation nfl ®7r/?2 decomposes discretely into a multiplicity-free sum
of irreducible G-modules:
G5, G G
T, Qmr, >~ T 7 .
“i 2 alszZale ,ul+,u2729=1 ajv;

ai,....a;eN

The proof of Theorem 8.4 will be given in Subsection 8.9.

8.5 Eigenvalues of the central element Z

Our proof of Theorems 8.3 and 8.4 depends on the algebraic lemma that the K-
type formula determines the irreducible decomposition of the whole group (see
Lemma 8.7). This is a very strong assertion, which fails in general for non-highest
weight modules. This subsection collects some nice properties peculiar to highest
weight modules that will be used in the proof of Lemma 8.7.

For a K-module V, we define a subset of C by

Specz (V) := {eigenvalues of ZonV},

where we set |

Z = Z.
V-1
For instance, Spec (V) is a singleton if V is an irreducible K-module. We also note
that Specz (g¢) = {0, £1} by (8.1.1).

Lemma 8.5. Suppose V is an irreducible (gc, K)-module. Then,

1) Specz (V) C ag + Z for some ag € C.

2) IfsupRe Specz (V) < oo, then V is a highest weight module.

3) If V is a highest weight module nf, then Specz(V) C —-N + MZ) and
sup Re Spec (V) = Re A(Z).

4) If V is a unitary highest weight module, then Spec (V) C (—o00, ¢gl, where cg
is a constant depending on G.

5) Ifboth V and F are highest weight modules of finite length, then any irreducible
subquotient W of V. ® F is also a highest weight module.
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Proof. 1) For a € C, we write the eigenspace of ZasV, = foeV: Zv = av}.
Then, it follows from the Leibniz rule that

p+Va CVar1, tcVaCVy, and p_V,CV4y.
An iteration of this argument shows that
Specz (U(gc)Ve) Ca+ 7.

Now we take aq such that V,,, # {0}. Since V is irreducible, we have V = U (gc) V.,
and therefore Specz (V) C ag + Z.

2) Suppose sup Re Specz (V) < oo. Since Re Specz (V) is discrete by (1), there
exists a € Specz (V) such that Re a attains its maximum. Then

p+Va C Vat1 = {0}.

Thus, V, C VP+. Hence, V is a highest weight module.

3) The highest weight module z f is isomorphic to the unique irreducible quotient
of the generalized Verma module N¥(1) = U(gc) ®v (tc+p.) nf. By the Poincaré—
Birkhoff—Witt theorem, N9(4) is isomorphic to S(p—) ® nf as a -module. Thus, any
t-type 7 j occurring in 7 f is of the form

u=7r+ Z maoc

aeA(p—,

for some m, € N. As a(Z) = —1foranya € A(p_, t), we have
w(Z)=MZ) - Z Mg . (8.5.1)
acA(p-,t)
In particular, we have the following equivalence:
Reu(Z)=Rel(Z) < u=21, (8.5.2)
and we also have

Specz () C{M(Z)— D my:mg €N} =-N+i(2). (8.5.3)
acA(p-,t)

Furthermore, since the £- type n occurs in n , we have /I(Z) € Specz (7 ). Here,
supRe Specz(nl ) = Re A(Z).

4) This statement follows from (8.1.4) and from (3).

5) For two subsets A and B in C, we writte A+ B :={a+beC:ae€ A,b € B}.
Then, Specz(V ® F) C Specz (V) + Specz (F) . Therefore,

sup Re Specz (W) < supRe Spec (V)
< supRe Spec (V) + sup Re Spec (F) < oo.

Hence, W is also a highest weight module by (2). O
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8.6 Bottom layer map

The following lemma finds an irreducible summand (‘bottom layer’) from the K -type
structure.

Lemma 8.6. Let V be a (gc, K)-module. We assume that V decomposes into an al-
gebraic direct sum of (possibly, infinitely many) irreducible highest weight modules.
We set

Suppp(V) = {1 € v/—1t*: Homg(n;', V) # {0}}.

If the evaluation map
Suppe(V) = R, u+— Re u(Z)
attains its maximum at [, then
Hom(g. x)(z 2, V) # {0}
4

o>
irreducible highest weight modules, there exists a projection p : V — 7 f for some

A such that p o ¢ # 0. This means that ”/E , occurs in 7 f , and therefore we have

Proof. Take a non-zero map ¢ € Homg(x,, , V). As V is an algebraic direct sum of

Re ,uo(Z) < supRe Specz(nf) = Re /I(Z).

Here, the last equality is by Lemma 8.5 (3). _ _
Conversely, the maximality of xo implies that Re x0(Z) > Re A(Z). Hence,
Re 19(Z) = Re A(Z), and we have then uo = 4 by (8.5.2). Since nf is an irreducible

summand of V, we have Hom(g. k) (7, V) # {0}. |

8.7 Determination of the gc-structure by K-types

In general, the K -type formula is not sufficient to determine the irreducible decom-
position of a unitary representation even in the discretely decomposable case. How-
ever, this is the case if any irreducible summand is a highest weight module. Here
is the statement that we shall use as a main machinery of the proof of Theorems 8.3
and 8.4.

Lemma 8.7. Suppose (x, H) is a K -admissible unitary representation of G, which
splits discretely into a Hilbert direct sum of irreducible unitary highest weight rep-
resentations of G. Let Hg be the space of K -finite vectors of 'H. Assume that there
exists a function ny : tt. — N such that Hg is isomorphic to the following direct
sum as €-modules:

Hg =~ @nﬂ (/1)711g (algebraic direct sum). (8.7.1)
A

Then, ny (1) # 0 only if 1 € Ag, that is, nf lifts to an irreducible unitary rep-
resentation nf of G. Furthermore, the identity (8.7.1) holds as a (gc, K)-module
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isomorphism, and the unitary representation © has the following decomposition into
irreducible unitary representations of G:

(7]
T~ Z Ny (/l)nf (discrete Hilbert sum). (8.7.2)
A

Proof. We write an abstract irreducible decomposition of H as

&
H ~ E mﬂrf (discrete Hilbert sum).
AeAG

Since H is K -admissible, the multiplicity m, < oo for all 4, and we have an isomor-
phism of (g¢, K)-modules with the same multiplicity m, (see [43, Theorem 2.7]):
Hig =~ @ m; nf (algebraic direct sum). (8.7.3)
AEAG

Let us show n, (1) = m; for all 1. For this, we begin with an observation that

Specy (Hk) = U Specz(nf)
Am 0

is a subset in R and has an upper bound. This follows from Lemma 8.5 (4) applied
to each irreducible summand in (8.7.3).
First, we consider the case where there exists a € R such that

/I(Z) =amodZ forany A satisfying n, (1) # 0. (8.7.4)

Then, the set B
AVARW RS t(*(‘:, ng (1) # 0} (8.7.5)

is contained in Specz(Hg) by (8.7.1), and is discrete by (8.7.4). Hence, it is a
discrete subset of R with an upper bound. Thus, we can find uo € tz such that
nz(uo) # 0 and that ,uo(Z) attains its maximum in (8.7.5). In turn, the evaluation
map Suppg(Hg) = R, u — «(Z) attains its maximum at uo € Suppe(Hk) by
(8.7.1) and Lemma 8.5 (3). Therefore, Hom(g, k) (nﬁo, ‘Hk) # {0} by Lemma 8.6.
Thus, we have shown m ,, # 0, that is, nGO occurs as a subrepresentation in .

u
Next, we consider the unitary representation 7’ on

D
H = Z m,urf @ (my, — 1)7150 ,
AF# o

the orthogonal complement of a subrepresentation 7 EO in H. Then, the K-type for-
mula (8.7.1) for (z’, H') holds if we set

ng(A) —1 (A= po),

(A =
) {nﬂu) G # o).
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Hence, by the downward induction on sup Specz (Hg ), we have n, (1) = m, for all
A.

For the general case, let A be the set of complete representatives of {X(Z) eC
mod Z : ny (1) # 0}. For each a € A, we define a subrepresentation H, of H by

®
Hy = Z m Mrf (discrete Hilbert sum).
MZ)=amodZ

Then, we have an isomorphism of unitary representations of G:

H ~ Z®Ha.

acA

Since Specz(nf) C a+Zifand only if A(Z) = a mod Z by Lemma 8.5 (3), we get
from (8.7.1) the following K -isomorphism

(Ho) kg =~ @ ne (M f, (8.7.6)

(Z)=a mod Z

for each a € A. Therefore, our proof for the first step assures n, (1) = m, for any 4
such that A = @ mod Z. Since a € A is arbitrary, we obtain the lemma in the general
case. |

8.8 Proof of Theorem 8.3

In this section, we give a proof of Theorem 8.3. This is done by showing a more
general formula in Lemma 8.8 without the scalar type assumption (8.3.1). Then,
Theorem 8.3 follows readily from Lemma 8.8 because the assumption (8.3.1) makes
dim nﬁ =land S, . q)(1) ={u — le=1 ajv;} (see (8.8.1) for notation).

For the discussion below, it is convenient to use the concept of a multiset. Intu-
itively, a multiset is a set counted with multiplicities; for example, {a, a, a, b, c, c}.
More precisely, a multiset S consists of a set S and a functionm : § — {0, 1,2, ..., co}.
If S = {S, m’} is another multiset on S such that m’(x) < m(x) for all x € S, we
say S' is a submultiset of S and write S’ C S.

Suppose we are in the setting of Subsection 8.2 and recall 7 is an involution of
holomorphic type. For a A (€, t)-dominant weight u, we introduce a multiset S(u)
consisting of A1 (€7, t*)-dominant weights:

Sw = J  Swap(),

ay=->a;>0
a,...,ajeN

where we define the multiset S, 4) (1) by

{highest weight of irreducible £*-modules occurring in

® 715 |gz counted with multiplicities}. (8.8.1)

T
xt .
*Zj:l“j"j
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Because the central element Z = \/17 |
”5 by the scalar 1(Z) and because V; (Z) =1forall j (1 <j <), any element v
in Squy,...q) (1) satisfies U(Z) = — le=1 aj + ,u(Z). Therefore, the multiplicity of
each element of the multiset S(x) is finite.

Z of £¢ acts on the irreducible representation

Lemma 8.8. Let t be an involution of G of holomorphic type, and H = G. If 77;(4;
is a (relative) holomorphic discrete series representation of G, then it decomposes
discretely into irreducible H-modules as

@
”f'H ~ Z n,fq (discrete Hilbert sum).
veS(u)

Proof of Lemma 8.8. 1t follows from Fact 5.1 (1) that 71!? is (H N K)-admissible,
and splits discretely into a Hilbert direct sum of irreducible unitary representations
of H.

Applying Lemma 8.7 to H = G, we see that Lemma 8.8 is deduced from the
following ¢*-isomorphism:

mg @ nvgr (algebraic direct sum). (8.8.2)
veS(u)

The rest of the proof is devoted to showing (8.8.2).
Since nf is a holomorphic discrete series, @ S is isomorphic to the generalized
Verma module N%(u) = U(gc) ®uec+ps) ”/E as a g-module, which in turn is
isomorphic to the £-module S(p_) ® 712.
According to the decomposition p— = p” @ p_" as £’-modules, we then have

the following €7 -isomorphism:
78 S(po) @l =SE)®SP )@k (8.8.3)

Now, we consider the Hermitian symmetric space G*?/G%?, for which the com-
plex structure is given by the decomposition gg} =t ® p" @ p_’ (see (8.2.2)).
Then, the Hua—Kostant—-Schmid formula ([78, Behauptung c]) applied to G*/G*Y
decomposes the symmetric algebra S(p_") into irreducible £”-modules:

Sep-H~ P e . (8.8.4)
ay>->a;>0 Tt 47
a,...,ajeN

It follows from the definition of S(x) that we have the following irreducible decom-
position as 7 -modules:

S(p:r)®7r£ ~ @ nfr.
veS(u)
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Combining this with (8.8.3), we get a £* -isomorphism

i~ P spHer .
veS(u)

Next, we consider the Verma module N9 (v) = U (8g) QU (e.+p7) nff of the subal-

gebra g°. Then, nvgr is the unique irreducible quotient of N9 (v). We shall show
later that N9 (v) is irreducible as a g’-module, but at this stage we denote by
nvgr, nvg,r, nvg;, ... the totality of irreducible subquotient modules of N g (v). (There
are at most finitely many subquotients, and all of them are highest weight modules.)

Then, as £*-modules, we have the following isomorphisms:
Spy @l ~ N¥ (1)
:nvgr@nf,r@nf:@--~ .
Therefore, we get a €7 -isomorphism:

- T g° g°
77.'3_ @ (7[/3 @7[‘)/ @7[‘)// @)
veS(u)

Accordingly, the restriction nf |7 splits discretely into irreducible unitary represen-
tations of H by Lemma 8.7:

(7]
= S e orle ).
veS(u)

Since nf is a (relative) holomorphic discrete series representation of G, all irre-

ducible summands in the right-hand side must be (relative) holomorphic discrete
series representations of H by Fact 5.1 (1). Therefore, N9 (v) is irreducible, and the
other subquotients « vg,r , T vg,f , . .. do not appear. Hence, the £*-structures of the both
sides of (8.8.2) are the same. Thus, Lemma 8.8 is proved. o

8.9 Proof of Theorem 8.4

For two irreducible representations ”5 , and ”/Ez’ we define a multiset S(u1, u2)

consisting of A™ (€, t)-dominant weights by

S(ﬂ], #2) = U S(al ..... ai)(:uly /12),
ay=-->a;=0
ai,...,a;eN
where Sq, ..., ay) (u1, u2) is the multiset consisting of highest weights of irreducible
£-modules occurring in wt i @zt @nt counted with multiplicities.

I 12
T 2j=19jVj
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Theorem 8.4 is derived from the following more general formula:

Lemma 8.9. The tensor product of two (relative) holomorphic discrete series repre-

sentations ¢ and t€

! 1, decomposes as follows:

veS(u1.u2)
Proof. We define two injective maps by
diag:pr —> p+ ®pyr, X (X, X),
diag' :py - pr @y, X (X,-X).
It then follows that we have £-isomorphisms:
Sp-) @ Sp-) = S(p-Sp-)
~ S(diag(p-)) ® S(diag'(p_))
~ P Sdiagp e’

ay=--za;=0
This brings us the following £-isomorphisms:

~ 4 14
T ®Te, = Sp)®m,, @Sp-) @7,

~ D Sdiaghp-) @

veS(ui,ua)

P .

veS(u,u2)

[

The rest of the proof goes similarly to that of Lemma 8.8.

j=14jVj

8.10 Restriction U(p, q) | U(p—1, g) and SO(n,2) | SO(n —1,2)

Suppose (G, H) is a reductive symmetric pair whose complexification (gc, hc) is
one of the following types:

(sl(n, C), gl(n — 1, C)) (or (gl(n, C), gl(1, C) + gl(n — 1, C))),
(so(n,C),s0(n — 1, 0C)).

As is classically known (see [83]), for compact (G, H) such as (U(n), U(1) x
U(n — 1)) or (SO(n), SO(n — 1)), any irreducible finite-dimensional representa-
tion 7 of G is multiplicity-free when restricted to H . For non-compact (G, H) such
as(U(p,q), U(l)xU(p—1,q))or(SO(n,2),SO(n—1,2)), an analogous theorem
still holds for highest weight representations z .
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Theorem 8.10. If (g, h) = (u(p, q), u(l)+u(p—1,q)) or (so(n,2),so(n —1,2)),
then any irreducible unitary highest weight representation of G decomposes dis-
cretely into a multiplicity-free sum of irreducible unitary highest weight representa-
tions of H.

In contrast to Theorem A, the distinguishing feature of Theorem 8.10 is that
7 is not necessarily of scalar type but an arbitrary unitary highest weight module.
The price to pay is that the pair (G, H) is very special. We do not give the proof
here that uses the vector bundle version of Theorem 2.2 (see [49]). Instead, we give
an explicit decomposition formula for holomorphic discrete series 7. The proof of
Theorem 8.10 for the case (G, H) = (SO¢y(n,2), SOp(n — 1, 2)) can be also found
in Jakobsen and Vergne [31, Corollary 3.1].

8.11 Branching law for U(p,q) | U(p—-1,Q)

This subsection gives an explicit branching law of a holomorphic discrete series rep-
resentation nf of G = U(p, q) whenrestrictedto H = U(1) x U(p — 1, q). Owing

to (8.3.2), such nf is parametrized by p = (u1, ..., fip+q) € ZPT9 satisfying

M1 = = Up, Upt] = 2 Uptgs Bptg = M1+ P+ QG
Here is the formula.

Theorem 8.11 (Branching law U (p, q) | U(p — 1, q)). Retain the above setting.
Then, the branching law of © E of the restriction to the subgroup H is multiplicity-
free for any u; it is given as follows:

o]

5] D _
G| .~ Z Z U(p—1,9)
= Csr =30, 2= BTG iptsipid)

a=0 1=lzur==lp=pp
Ap+1Z fhp 1= = Aptq= U ptq
Z?=1 (Ap+i7ﬂp+i)=a
8.11.1)

Proof. For (G,H) = (G,G") = (U(p,q),U(1) xU(p —1, q)), we have
GY~U(,q)xU(p—1),
HNK (=K =K ~U1)xU(p—1)xU(q),

t' =t,and

AT(pI5 ) =f{e1 —epyi s 1 <i <q},
by using the standard basis of A(g,t) = {£(e; —ej) : 1 <i < j < p+gq}.
Thus, ! = R-rank G™ = 1 and v; = ¢] — ep+1. Hence, the £°-type formula (8.8.4)
amounts to
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o0
—T\ HNK
S(pfr) — @ ﬂ—a(el—epH)

~€B<c xlgn"@ 0 (8.11.2)

a=0

as HNK >~ U(l) x U(p — 1) x U(q) modules. Here, 1 denotes the trivial one-
dimensional representation of U (p — 1).
On the other hand, we recall a classical branching formula U(p) | U(p — 1):

U(p) ~ U(p—=1)
n(lll,wsﬂp)|U(1)XU(,’_1) - @ CZ,— Hi— Zi i ®r (/12 wAp)?

M1 Z;QZ”ZZ"'ZAPZ,“]?

)

whereas the classical Pieri rule says that

U(q) U(q) ~ U(q)
7 (@.0,0) B T (pitoatiprg) = EB T ptrestpta)

;bp+l Zﬂ]HIZ"'Z/lpﬂ]Zﬂpﬂ[
q
Zi:l (/1p+i7:“p+i)=a

These two formulae together with (8.11.2) yield the following €* -isomorphisms:

S @7 hler

00
- U(p U(q) U(q)
= @((C*“ XD ”(ﬂ ﬂ;:)'U(l)XU(P n) M@, g 0) ® n(ﬂpq+l,~wﬂp+q))
a=0
o0
~ -1 U(q)
- @ @ CZP 1 Hi— Zp Ai—a X ﬂ:(/1 ws%p) X n-(/lp+ls~~,/1p+q) '

a=0  u1=h>ur>>Ap>pp
ApH1Z U pp1 == Aptq > ptq
Z?:l(ﬂpﬂ'_ﬂpﬂ'):a
In view of the £*-isomorphisms

78> SP) @SSP @7yl

and N9 (v) =~ S(p7)®7 ', we have now shown that the €° -structure of 7 § coincides
with that of

[e¢) P p
@ Ngr(z#i_zii_a5/127°"7/1[7+q)'
a=0 ,1412122/122"'2/1[72/41) i=1 =2
Ap+1Zhpt1 =2 hpyq> M ptq
Z?:l (4 p+i—H 17+i):a
As in the last part of the proof of Theorem 8.3, we see that any generalized Verma
module occurring in the right-hand side is irreducible (and is isomorphic to the un-
derlying (g, H N K)-module of a holomorphic discrete series of H). Therefore,
Theorem follows from Lemma 8.7. |
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9 Appendix: Associated bundles on Hermitian symmetric spaces

In this appendix, we explain standard operations on homogeneous vector bundles.
The results are well-known and elementary, but we recall them briefly for the con-
venience of the reader. The main goal is Lemma 9.4 which is used to verify the
condition (2.2.2) in Theorem 2.2.

9.1 Homogeneous vector bundles

Let M be a real manifold, and V a (finite-dimensional) vector space over C. Suppose
that we are given an open covering {U, } of M and transition functions

gap :UgNUp — GLc(V)
satisfying the following compatibility conditions:
8ap 88y &ya=1d onU,NUgNU, ; goo=1d onU,.

A complex vector bundle V over M with typical fiber V is constructed as the equiva-
lence class of [ [, (Ug x V), where (x,v) € UgxV and (y, w) € U, x V are defined
to be equivalent if y = x and w = gqp(x)v. Then, the space of sections I'(M, V) is
identified with the collection

{(fa) : fa € C®WUq, V), falx)= gaﬁ(x)fﬂ(x), forx € U, NUg}. (9.1.1)

If M is a complex manifold and if every g,z is holomorphic (or anti-holomorphic),
then YV — M is a holomorphic (or anti-holomorphic, respectively) vector bundle.
Next, let G be a Lie group, K a closed subgroup of G, and M := G/K the
homogeneous manifold. Then, we can take an open covering {U,} of M such that
for each a there is a local section ¢, : U, — G of the principal bundle G — G/K.
Given a representation y : K — GLc(V), we define the homogeneous vector
bundle, V := G xg (y, V). Then V is associated with the transition functions:

gap : Us NUp = GLc(V),  gap(x) 1= 2 (pa(®) " 9p(x)).
The section space I'(M, V) is identified with the following subspace of C*°(G, V):
(f €C¥G,V): f(gk) ="' (K)f(g). forg € G,k € K}. 9.1.2)

9.2 Pullback of vector bundles

Let G’ be a Lie group, K’ a closed subgroup of G’, and M’ := G’/K’ the homo-
geneous manifold. Suppose that ¢ : G’ — G is a Lie group homomorphism such
that o (K’) C K. We use the same letter ¢ to denote by the induced map M" — M,
g'K' + o (g)K. Then the pullback of the vector bundle V — M, denoted by
o™V — M/, is associated to the representation

yxoo:K' — GLc(V).
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Then we have a commuting diagram of the pullback of sections (see (9.1.2)):
o*: TM,V) - TM',6*V), (f)ar+> (fu00)a,

N n
c*:C®(G,V)—> C®(G,V), f +— foo.

9.3 Push-forward of vector bundles

Suppose that V and W are complex vector spaces and that £ : V — W is an anti-
linear bijective map. Then, we have an anti-holomorphic group isomorphism

GLc(V) > GLe(W), g+ g5 :=Cogod !,

Let V — M be a complex vector bundle with transition functions g, : Uy, N Up —
GLc(V). Then, one constructs a complex vector bundle ¢,V — M with the transi-

tion functions gé K U, NUg — GLc(W). We have a natural homomorphism
S*F(M,V)%F(M,f*V), (fa)|_) (gofa),

which is well defined because the compatibility condition in (9.1.1) is satisfied as
follows: If x € U, N Ug, then

85500 f1) () = 0 gup() o0& N(E 0 f)(X) = & 0 gup) f5(x) = € o fulx).

If V is the homogeneous vector bundle G X g (', V') associated to a representation
x : K — GLc(V), then &V is isomorphic to the homogeneous vector bundle
G xk (x<, W) associated to the representation

1<K —> GLc(W), k> y~(k):=¢Eo0y(k)oc .

9.4 A sufficient condition for the isomorphism £.0*V ~ 'V

We are particularly interested in the case where G’ = G, K’ = K,V = W = C and
&(z) := z (the complex conjugate of z) in the setting of Subsections 9.2 and 9.3.

By the identification of G L¢(C) with C*, we have g¢ = g for g € GL¢ (V) ~
C*. Then, x¢ coincides with the conjugate representation

x:K— GLc(W)>~C*, k> y(k)

for y € Hom(K, C*). Thus, we have an isomorphism of G-equivariant holomorphic
line bundles:
6oV >~ G xg (xoo,C) (9.4.1)

with the following correspondence of sections:
Soad™:T(M,V) > T(M,&0™V), (fa)r> (faoo).

We now apply the formula (9.4.1) to the setting where M = G/K is an irre-
ducible Hermitian symmetric space.
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Lemma 9.4. Let y : K — C* be a unitary character. We denote by V the ho-
mogeneous line bundle G xg (x, C). Suppose o is an involutive automorphism of
G of anti-holomorphic type (see Definition 1.4). Then we have an isomorphism of
G-equivariant holomorphic line bundles: &,o™V >~ V.

Proof. In view of (9.4.1), it suffices to show y o 0 = y. As the character y of K is
unitary, we have y (k) = y(k~!) for any k € K. Let Z be a generator of the center
(k) of €. Since o is of anti-holomorphic type, we have 0 Z = —Z, and then

x oo(exptZ) = y(exp(—tZ)) = y(exptZ) (t e R).

On the other hand, if k € [K, K], then y oo(k) = 1 = y(k) because [K, K]
is a connected semisimple Lie group. As K = expc(f) - [K, K], we have shown
x oo = y.Hence the lemma. O
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Summary. This paper describes our method of pairing automorphic distributions. We present
a third technique for obtaining the analytic properties of automorphic L-functions, in addi-
tion to the existing methods of integral representations (Rankin—Selberg) and Fourier coeffi-
cients of Eisenstein series (Langlands—Shahidi). We recently used this technique to establish
new cases of the full analytic continuation of the exterior square L-functions. The paper here
gives an exposition of our method in two special, yet representative cases: the Rankin—Selberg
tensor product L-functions for PGL(2,Z)\PGL(2,R), as well as for the exterior square
L-functions for GL(4, Z)\GL(4, R).
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1 Introduction

We recently established the holomorphic continuation and functional equation of
the exterior square L-function for G L(n, Z), and more generally, the archimedean
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theory of the G L(n) exterior square L-function over (Q. We refer the reader to our
paper [15] for a precise statement of the results and their relation to previous work
on the subject. The purpose of this note is to give an account of our method in the
simplest non-trivial cases, which can be explained without the technical overhead
necessary for the general case.

Let us begin by recalling the classical results, about standard L-functions and
Rankin—Selberg L-functions of modular forms. We consider a cuspidal modular form
F, of weight k, on the upper half plane H. To simplify the notation, we suppose that
it is automorphic for I' = SL(2, Z), though the arguments can be adapted to congru-
ence subgroups of SL(2, Z). Like all modular forms, F has a Fourier expansion,

F(z) = Z ape(nz), with e(z) =qef e2riz (1.1)
n>1
For a general modular form, the Fourier series may involve a non-zero constant term
ap; it is the hypothesis of cuspidality that excludes the constant term. The Dirichlet
series o
L(s, F) = Z apn= S 1.2)
n>1
converges for Re s >> 0, extends holomorphically to the entire s-plane, and satisfies
a functional equation relating L(s, F) to L(1 —s, F). This is the standard L-function
of the modular form F.
Hecke proved the holomorphic continuation and functional equation by express-
ing L(s, F) in terms of the Mellin transform of F' along the imaginary axis,

o0 o0
/ Fiy)y* 'dy =7 a,,/ e 2y ldy
0 0

n>1

o0
= Z an n_s/o e 2™y ysTlgy (1.3)

n>1

2

at least for Re s > 0. The transformation law for the modular form F under z +—
—1/z,

=Q2r) " T'(s)L (s — k;l, F) ,

F(=1/2) = (-)" F(2), (1.4)
implies that F(iy) decays rapidly not only as y — oo, but also as y — 0. That
makes the Mellin transform, and hence also F(s + kgl )L(s, F), globally defined
and holomorphic. The Gamma function has no zeroes, so L(s, F) is entire as well.
The transformation law (1.4), coupled with the change of variables y — 1/y and the
shifts — s + ]%1, gives the functional equation

Q)T T (s + k;—l) L(s, F)
(1.5)
— lk (271,)5‘—1—]{;—1 1" (1 — 5+ %) L(l — S, F) .
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The factor i¥ comes up naturally in the computation, yet might be misleading since
I' = SL(2, Z) admits only modular forms of even weights.
In addition to F, we now consider a second modular form of weight k, which
need not be cuspidal,
GR) =Y byez). (1.6)
n>0
The Rankin—Selberg L-function of the pair F, G = complex conjugate of G, is the
Dirichlet series
L(s, F® G) =((2s) D anbyn'™*". (1.7)
n>1
Its analytic continuation and functional equation were established separately by
Rankin [17] and Selberg [ 18]. The proof depends on properties of the non-holomorphic
Eisenstein series

Eiz)=n"T(s)¢2s) > (m(y2)*
7 €loo\l (1.8)
(o ={y €' | yoo = o0}).
This sum is well defined since I'« acts on H by integral translations. It converges for
Re s > 1 and extends meromorphically to the entire s-plane with only one pole, of

first order, at s = 1. The function E(z) is I'-invariant by construction, has moderate
growth as Im z — o0, and satisfies the functional equation

Es(z) = EI—S(Z) . (1.9)

Both F(z) and G(z) transform according to a factor of automorphy under the action
of T, but (Im z)*F(z)G(z) is [-invariant, as is the measure y~>dxdy. Since G(z)
and E,(z) have moderate growth as Im z — oo, and since F(z) decays rapidly, the
integral

1(s) = / (Im 2)*"2F(2) G(z) Es(z) dx dy (1.10)
NH
converges. From E(z), the function 7 (s) inherits both the functional equation
I(s)=1(1—y) (1.11)

and the analytic properties: it is holomorphic, with the exception of a potential first
order pole ats = 1.

The definition (1.8) of E;(z) involves a sum of Im yz, with y ranging over
I'oo\T". But the rest of the integrand in (1.10) is I'-invariant. That justifies the process
known as “unfolding”,

75 (T (s) ¢(25)) " 1 (s)

= Imz2)*2F () G(z) (1 Sdx d
/r\Hyeer\r(mZ) OTE mGoydrdy

= / (Imz)'™*2F(z) G(z) dx dy,
Too\H
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at least for Re s > 1, in which case the integral on the right converges. Since I'
acts on H by integral translations, the strip {0 < Re z < 1} constitutes a fundamental
domain for this action. Substituting the series (1.1, 1.6) for F(z) and G(z), one finds

7* (D (s) ¢(25)) "1 (s)

0o 1
= / / E an by e((n — m)x) e 2Ty ys+h=24, gy,
0 0
>0

m>0
s (1.13)
n>1 0
= @) MG +k—1) Z ap by n S kL
n>1
again for Re s > 1. Equivalently,
I1(s) =2""F @)% 2 T()I(s +k—1)L(s, F® G). (1.14)

The Gamma factors have no zeroes, so L(s, F ® G) extends holomorphically to all
of C, except possibly for a first order pole at s = 1. In effect, (1.11) is the functional
equation for the Rankin—Selberg L-function. With some additional effort one can
modify these arguments, to make them work even when F and G have different
weights.

Maass [12] extended the proofs of the analytic continuation and functional equa-
tion for the standard L-function to the case of Maass forms, i.e., ['-invariant eigen-
functions of the hyperbolic Laplacian on H; see section 2 below. Jacquet [6] treats
the Rankin—Selberg L-function for Maass forms. We just saw how the Gamma fac-
tors in (1.3) and (1.13) arise directly from the standard integral representation of the
Gamma function. In contrast, for Maass forms, the Gamma factor for the standard
L-function arises from the Mellin transform of the Bessel function K, (y),

/ooKv(y)y*‘lzzszr(s;”)r(s;”) (Res>>0), (115
0

and for the Rankin—Selberg L-function of a pair of Maass forms, from the integral

/0 Ko () Ko(y) y* ' dy

I () T () () T ()
I'(s)

(1.16)

_ 53 (Re s > 0).

Though (1.16) can be established by elementary means, it is still complicated and its
proof lacks a conceptual explanation.

In the case of Rankin—Selberg L-functions of higher rank groups, the integrals
analogous to (1.16) become exceedingly difficult, or even impossible, to compute.
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In fact, it is commonly believed that such integrals may not always be expressible
in terms of Gamma functions [1, §2.6]. If true, this would not contradict Langlands’
prediction that the functional equations involve certain definite Gamma factors [10,
11]: the functional equations pin down only the ratios of the Gamma factors on the
two sides, which can of course be expressed also as ratios of other functions.

Broadly speaking, the existing approaches to the L-functions for higher rank
groups overcome the problem of computing these so-called archimedean integrals
in one of two ways. Even if the integrals cannot be computed explicitly, it may be
possible to establish a functional equation with unknown coefficients; it may then be
possible to identify the coefficients in some special case, or by an analysis of their
zeroes and poles. The Langlands-Shahidi method, on the other hand, often exhibits
the functional equation with precisely the Gamma factors predicted by Langlands.
Both methods have one difficulty in common: ruling out poles — other than those at
the expected places — of the L-functions in question requires considerable effort, and
is not always possible.

We are approaching the analytic continuation and functional equation of L-
functions from a different point of view. Instead of working with automorphic
forms —i.e., the higher dimensional analogues of modular forms and Maass forms —
we attach the L-functions to automorphic distributions. In the case of modular forms
and Maass forms, the automorphic distributions can be described quite concretely as
boundary values. Alternatively but equivalently, they can be described abstractly; see
[14, §2] or section three below. Computing with distributions presents some technical
difficulties. What we gain in return are explicit formulas for the archimedean inte-
grals that arise in the setting of automorphic distributions. This has led us to some
new results.

In the next section we show how our method works in the simplest case, for
the standard L-functions of modular forms and Maass forms. We treat the Rankin—
Selberg L-function in section four, following the description of our main analytic
tool in section three. Section five, finally, is devoted to the exterior square L-function
for GL(4,Z). That is the first not-entirely-trivial case of the main result of [15]. It
can be explained more transparently than the general case for two reasons: the main
analytic tool is the pairing of distributions, which for G L(4) reduces to a variant of
the Rankin—Selberg method for G L(2). Also, the general case involves a somewhat
subtle induction, with G L(4) representing merely the initial step.

2 Standard L-functionsfor SL(2)

Holomorphic functions on the disk or the upper half plane have hyperfunction bound-
ary values, essentially by definition of the notion of hyperfunction. Holomorphic
functions of moderate growth, in particular modular forms, have distribution bound-
ary values:
7(x) = lim F(x+iy) (2.1)
y—07F
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is the automorphic distribution corresponding to a modular form F for SL(2, Z), of
weight k. The limit exists in the strong distribution topology. From F, the distribution
7 inherits its SL(2, Z)-automorphy property

() = (cx+d)* ¢ (Z’iiz) for all (‘CI Z) eSLR,Z). (22

In terms of Fourier expansion (1.1) of the cuspidal modular form F(z), the limit (2.1)
can be taken term-by-term,

T(x) = Z ape(nx). (2.3)

n>0

We shall argue next that it makes sense to take the Mellin transform of the distribution
7, and that this Mellin is an entire function of the variable s. The argument will be a
special case of the techniques developed in our paper [13].

Note that the periodic distribution 7 has no constant term. It can therefore be
expressed as the (-th derivative of a continuous, periodic function ¢, for every suf-
ficiently large integer ¢,

t(x) = ¢\ (x), with ¢ € C(R/Z)

(2.4)
(gzﬁg(x) = Z (27rin)_[ a e(nx)).

n>0

Using the formal rule for pairing the “test function” x*~! against the derivative of a
distribution, we find

0o oo d[ oo df
/ »*lr(x)dx = / T pe(x) dx = (—1)5/ de(x) — x*"ldx.

0 0 dx[ 0 dx[
(2.5)
As a continuous, periodic function, ¢, is bounded. That makes the expression on
the right in (2.5) integrable away from x = 0, provided £ > Re s. Indeed, if we
multiply the Mellin kernel x*~! by a cutoff function y € C®(R), with y(x) = 1
near x = oo and y(x) = 0 near x = 0, the resulting integral is an entire function
of the variable s — we simply choose ¢ larger than the real part of any particular s.
Increasing the value of ¢ further does not affect the integral, as can be seen by a
legitimate application of integration by parts. The identity (2.2), witha = d = 0,

b= —c=1,gives

t(x) = (—=x) ¥z (=1/x), (2.6)

so the behavior of 7 (x) near zero duplicates its behavior near oo, except for the factor
(—x)* which can be absorbed into the Mellin kernel. The expression on the right in
(2.5) is therefore integrable even down to zero, and

o
S / 7(x) x*7Vdx is a well defined, entire holomorphic function. 2.7)
0
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The change of variables x +— 1/x and the transformation law (2.6) imply

/Oo t(x)x* " ldx = (=¥ /Oo t(—=x) x5 "Vax. (2.8)
0 0

The integral on the right is of course well defined, for the same reason as the integral
2.7).

In view of the argument we just sketched, it is entirely legitimate to replace 7 (x)
by its Fourier series and to interchange the order of integration and summation: for
Res >0,

x 1 * 1
t(x)x* " dx =/ ane(nx)x*" dx
J | 2o

n>0

= Z an /Ooe(nx) xldx (2.9)
0

n>0

k—1 > .
= (s - —,F)/ e(x)x*Vdx;
2 0

recall (1.2). The integral on the right makes sense for Re s > 0 if one regards e(x)
as a distribution and applies integration by parts, as was done in the case of 7 (x). In
the range 0 < Re s < 1 it converges conditionally. This integral is well known,

/ooe(x) 2 "ldx = Qr) " T(s) e(s/4) (0 <Res < 1). (2.10)
0

Since T'(s)e(s/4) has no zeroes, (2.7) and (2.9-10) imply that L(s, F) is entire.
Replacing 7(x) by 7(—x) in (2.9) has the effect of replacing e(x) by e(—x), and
accordingly the factor e(s/4) by e(—s/4) in (2.10). Thus (2.7-10) imply

Q2r) Se(s/4)T(s) L (s — kz;l, F)
@2.11)
=(=D*Qr)*e((s —k)/4)T(k —s) L (1 -5+ %, F) .

Since e(—k/4) = i, this functional equation is equivalent to the functional equa-
tion stated in (1.5).

A Maass form is a I'-invariant eigenfunction F € C*(H) for the hyperbolic
Laplacian A, of moderate growth towards the boundary of H. It is convenient to
express the eigenvalue as (1> — 1)/4, so that

02 02 21
2
—+—)F="—F. 2.12
y(6x2+6y2) 4 2.12)
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Near the real axis, the Maass form F has an asymptotic expansion,

Flx+iy)~y 7 > )y  +y7 D w400y (2.13)
k>0 k>0

as y tends to zero from above, with distribution coefficients 74 ; x. In the exceptional
case A = 0, the leading terms y(!=4/2 y(14+4)/2 must be replaced by, respectively,
y1/2 and y'/? log y. The leading coefficients

T) =def T2,0, T—) =def T—2,0 (2.14)

determine the others recursively. They are the automorphic distributions correspond-
ing to the Maass form F. Each of the two also determines the other — in a way we
shall explain later — unless / is a negative odd integer, in which case the 7_, ; all van-
ish identically. To avoid making statements with trivial counterexamples, we shall not
consider 7_; when 1 € Z-o N (2Z + 1), and for 4 = 0, we shall only consider the
coefficient of y!/2, not the coefficient of y!/?log y.

Unlike modular forms, Maass forms are I'-invariant as functions, i.e., without
a factor of automorphy. However, because of the nature of the asymptotic expan-
sion (2.13), the I'-invariance of F' translates into an automorphy condition on the
automorphic distributions,

b
000) = lex +d)* gy (zid) for all (‘C’ Z) er. (2.15)

To simplify the discussion, we suppose I' = SL(2, Z), as before. Then (2.15), with
a=b=d=1,c=0implies 7;(x) = 7,(x 4+ 1), so 7, has a Fourier expansion

7,(x) = Z ap e(nx). (2.16)
nez

From the point of view of L-functions, cuspidal Maass forms are more interesting
than non-cuspidal forms. The condition of cuspidality on F is equivalent to two
conditions on the automorphic distribution 7;, namely

ap =0, and 7, vanishes to infinite order at x = 0 2.17)

[13]. To explain the meaning of the second condition, we note that the discussion
leading up to (2.4) applies also in the present context, since ag = 0. The automorphy
condition (2.15), witha =d = 0,b = —c = —1, asserts

() = [xI* o (=1/x). (2.18)

Combined with (2.4) and the chain rule for the change of variables x — —1/x, this
implies

{
0 (x) = |x|*7! (x2 %) (¢¢(—1/x)) on R — {0}, (2.19)
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for every sufficiently large { € N, with some ¢, € C(R — {0}) which remains
bounded as |x| — oo. Moving the factor |x|#~1 across the differential operator and
keeping track of the powers of x shows that the right hand side of (2.19) defines a
distribution even on a neighborhood of the origin — a distribution with the remarkable
property that for each m € N it can be expressed, locally near x = 0, as

d
x" P, (x d_x) Wm (x), with y,, defined and continuous near the origin;  (2.20)

here P, denotes a complex polynomial, whose coefficients depend on m and A. In
[13] we introduced the terminology vanishing to infinite order at x = 0 for the
property (2.20) of a distribution defined on a neighborhood of the origin in R.

To summarize the discussion so far, we have shown that a distribution 7, sat-
isfying the automorphy condition (2.15) for I' = SL(2, Z), and additionally the
condition ap = 0, agrees on R — {0} with a distribution that vanishes to infinite order
atx = 0. Thus either 7, itself vanishes to infinite order at x = 0 — this is the meaning
of the second condition in (2.17), of course — or else differs from such a distribution
by one with support at the origin. A distribution supported at the origin is a linear
combination of the delta function and its derivatives, and cannot vanish to infinite
order at x = 0 unless it is identically zero. If, contrary to our standing hypothesis,
I' is a congruence subgroup of SL(2, Z), the conditions (2.17) must be imposed at
each of the cusps of T'. In that case the second condition (2.17) must also be stated
slightly differently.

If F(x 4 iy) is a Maass form, then so is F(—x + iy). It therefore makes sense
to speak of even and odd Maass forms, i.e., Maass forms such that F(—x +iy) =
+F(x + iy). Every Maass form can be expressed uniquely as the sum of an even
and an odd Maass form. If F' is cuspidal, then so are the even and odd parts. The
parity of F affects the Gamma factors in the functional equation of L(s, F). We
shall therefore suppose that F, and hence also 7,, has a definite parity,

7(—x) = (—=1)"7,(x), orequivalently
(2.21)
a_p = (—=D"a, foralln (yeZ/27).

We also suppose that F is cuspidal, so that 7, satisfies (2.17). As one consequence
of the parity condition, the L-function

Lis, )= ayn™*:  (Res > 0) (2.22)

n>1

completely determines all the a,, and therefore also r; and F. We had remarked
earlier that 7, and 7_, play essentially symmetric roles unless 4 is a negative odd
integer or 4 = 0. Outside of those exceptional cases, the Fourier coefficients of 7,
and 7_; are related by the factor of proportionality c; [n|*, with ¢; # 0. Switching z;
and 7_, has the minor effect of renormalizing the L-function (2.22) by the non-zero
constant c,. It is not difficult to eliminate the remaining ambiguity in normalizing
L(s, F), but we shall not pursue the matter here.
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Arguing exactly as in the case of a modular form, we see that the signed Mellin
transform

My (5. 73) = /R £(x) sgnx)” |~ dx (2.23)

is a well defined entire holomorphic function. It is legitimate to substitute the Fourier
series (2.16) for 7, and to interchange the order of summation and integration, again
for the same reasons as in the case of modular forms, hence

My (s, 1;) = 22 a, n’ / e(x) (sgnx) |x|* ' dx
R

= (2.24)
A
=2G,7(S)L (S+ E,F) 5
with
%22(;2 cos(5) if n=0
Gy(s) = / e(x) (sgnx)" x| tdx = 1 ° (2.25)
R 2o sin () if =1

the explicit formula for G, (s) follows from (2.10). Since M, (s, F) is entire, (2.24-
25) show that L(s, F) extends meromorphically to the entire s-plane.

The change of variables x - —1/x in (2.23), combined with the transformation
rule (2.18), gives the functional equation

My(s,7t;) = (=D)"M,(1 -5 —1,13), (2.26)

which in turn implies the functional equation

G, (s - %) L(s, F) = (-1)" G, (1 —5— %) L(1 —s, F) (2.27)

for L(s, F)). Standard Gamma identities establish the equivalence between Maass’
version of the functional equation and (2.27).

Though we know that the product Gq(s - %)L(s, F) is entire, we cannot yet
conclude that L(s, F') is also entire: unlike I'(s), G,(s) has zeroes. To deal with
this problem, we consider the Fourier transform 7, of the tempered distribution
7;. We use the normalization f(y) = I]R f(x)e(—xy)dx. Then e(nx), considered as
tempered distribution, has Fourier transform Fe(nx) = d,(x) = Dirac delta function
at x = n, and

T =D andn(x). (2.28)
n#0
This distribution visibly vanishes in a neighborhood of the origin, in particular van-
ishes to infinite order at x = 0. According to [13, theorem 3.19], the fact that 7,
vanishes to infinite order at x = 0 — cf. (2.17) — implies that 7 (1/x) extends across
the origin to a distribution that vanishes there to infinite order. Since both 7, (x) and
7,(1/x) have this property, the signed Mellin transform
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My(s, 7)) =2 Z apn®”! (Res < 0)

n>0

=2L|(1 —i-/lF
= Ky >

is a well defined, entire holomorphic function. In other words, L(s, F') is entire, as
was to be shown.

The preceding argument essentially applies also to the case of modular forms,
except that one is then dealing with automorphic distributions that are neither even
nor odd, but have only positive Fourier coefficients. In fact, if one considers modular
forms and Maass forms not for SL(2) but for GL(2), a single argument treats both
types of automorphic distributions absolutely uniformly. However, the case of mod-
ular forms is simpler in one respect: the fact that the L-function has no poles requires
no special argument.

(2.29)

3 Pairings of automor phic distributions

In the last section we encountered automorphic distributions as distributions on the
real line, obtained by a limiting process. For higher rank groups, it is necessary to
take a more abstract point of view, which we shall now explain.

Initially in this section G shall denote a reductive Lie group, ZOG the identity
component in the center Zg of G, and I' C G an arithmetically defined subgroup.
Note that G acts unitarily on L>(I'\G/Z %), via right translation. We consider an irre-
ducible unitary representation (z, V) of G which occurs discretely in L>(I'\ G/ Z%),

iV e LAT\G/Z2). (3.1)

Recall the notion of a C* vector for z: a vector v € V such that g — 7 (g)v is a
C°° map from G to the Hilbert space V. The space of C* vectors V> C V is dense,
G-invariant, and gets mapped to C*°(I'\G/Z OG) by the embedding (3.1). That makes

t=1:V¥ —C, 7(®) = jo(e), (3.2)

a well defined linear map. It is T-invariant because jo € C®(I'\G/ ZOG), and is
continuous with respect to the natural topology on V. One should therefore think
of 7 as a I'-invariant distribution vector for the dual representation (z’, V') —i.e., 7 €
((V)~=°)I'. Very importantly, z determines j completely. Indeed, j is G-invariant,
so the defining identity (3.2) specifies the value of jo, v € V', not only at the
identity, but at any g € G. Since V' is dense in V, knowing the effect of j on V>
means knowing j.

The space L>(I'\G/ ZO(;) is self-dual, hence if V occurs discretely, so does its
dual V’. Since we shall be working primarily with 7, we switch the roles of V and
V’. From now on,

e (V™) (3.3)
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shall denote a I'-invariant distribution vector corresponding to a discrete embedding
V' — L2(I'\G/Z OG). Not all I'-invariant distribution vectors correspond to embed-
dings into L>(I'\G/ Z%); some correspond to Eisenstein series, and others not even
to those.

The arithmetically defined subgroup T is arithmetic with respect to a particular
@-structure on G. If P C G is a parabolic subgroup, defined over QQ, with unipotent
radical U, then I' N U is a lattice in U; in other words, the quotient U/(I' N\ U) is
compact. One calls 7 € (V~>°)! cuspidal if

/ r(w)tdu =0, (3.4
U/(rnu)

for the unipotent radical U of any parabolic subgroup P that is defined over Q.
Since there exist only finitely many I'-conjugacy classes of such parabolics, cus-
pidality amounts to only finitely many conditions. Essentially by definition, cusp-
idal embeddings V' — L*(I'\G/ ZO(;) correspond to cuspidal distribution vectors
7 € (V™)L and conversely every cuspidal automorphic 7 arises from a cuspidal
embedding of V' into L2(T'\G/Z2).

To get a handle on 7 € (V™)1 we realize the space of C* vectors V> as
a subspace V®° «— Vf,% of the space of C*° vectors for a not-necessarily-unitary
principal series representation (7 ; 5, V,,5). The Casselman embedding theorem [3]
guarantees the existence of such an embedding. For the moment, we leave the mean-
ing of the subscripts 4, 0 undefined. They are the parameters of the principal series,
which we shall explain presently in the relevant cases. A theorem of Casselman-
Wallach [3,22] asserts that the inclusion V>®° Vf,% extends continuously to an
embedding of the space of distribution vectors,

IS (3.5)

This allows us to consider the automorphic distribution t as a distribution vector for
a principal series representation,

re (V" (3.6)

When G = SL(2, R), cuspidal modular forms correspond to embeddings of discrete
series representations into L*(I'\G), and cuspidal Maass forms to embeddings of
unitary principal series or complementary series representations. The realization of
discrete series representations of SL(2, R) as subrepresentations of principal series
representations is very well known, making (3.6) quite concrete. For general groups,
the Casselman embeddings cannot be described equally explicitly, nor do they need
to be unique. Those are not obstacles to using (3.6) in studying L-functions. In fact,
the non-uniqueness is sometimes helpful in ruling out poles of L-functions.

Our tool in studying Rankin—Selberg and related L-functions is the pairing of
automorphic distributions. In this paper, we shall only discuss Rankin—Selberg L-
functions for G L(2) and the exterior square L-function for G L(4). Both involve the
pairing of automorphic distributions of GL(2). To minimize notational effort, we
shall work with the group
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G = PGL(2,R) = SL*¥(2,R)/{£1}
3.7
(SL*(2,R) = {g € GL,R) | detg = £1}),

rather than G = GL(2, R), for the remainder of this section. We let B C G denote
the lower triangular subgroup. For 4 € C and 6 € Z/2Z, we define

) N a0 _( ayo
Xi5: B — c*, )(,1,(5(6‘ d)_ Sgnd)

The parameterization of the principal series involves a “p-shift”, i.e., a shift by the
half-sum of the positive roots. In our concrete setting

a

d

4
2

(3.8)

p=1, (3.9)

and we shall write y,—, s instead of y;_1 ¢ to be consistent with the usual notation
in the subject. The space of C* vectors for the principal series representation 7 s is

Vs ={F € C®(G) | F(gh) = Ji—ps(b"YF(g) forallg € G, b e B}, (3.10)
with action
(T.5(Q)F) ) =F(g™'h)  (FeV, g.heG). (3.11)
Quite analogously
V0=t e C"™(G) | t(gh) = xi—p.s(b”") 7 (g) forall g € G, b € B} (3.12)

is the space of distribution vectors, on which G acts by the same formula as on V.

The tautological action of GL(2, R) on R? induces a transitive action of G =
PGL(2,R) on RP'; in fact RP' = G/B, since B is the isotropy subgroup at the
line spanned by the second standard basis vector of R%. According to the so-called
“fundamental theorem of projective geometry”, the action of G on RP' induces a
simply transitive, faithful action on the set of triples of distinct points in RP! x
RP! x RP!. Put differently, G has a dense open orbit in

RP! x RP' x RP' = G/B x G/B x G/B, (3.13)

and can be identified with that dense open orbit once a base point has been chosen.
The three matrices

n=(o4): 2=(01) ~=(17) (3.14)

lie in distinct cosets of B, so
G — G/BxG/BxG/B, g+ (gfiB, gf2B, gf3B), (3.15)

gives a concrete identification of G with its open orbit in RP' x RP! x RP!.
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Formally at least, the existence of the open orbit can be used to define a G-
invariant trilinear pairing

o0 o0 o0
Vﬂlﬁl X Vizﬁz X V3.0 C,

(3.16)
(F1, F2, F3) — P(F1, F2, F3) =def/GF1(gf1)F2(gf2) F3(gf3)dg,

between any three principal series representations. Although the G-invariance of the
pairing is obvious from this formula, it is not clear that the integral converges. Before
addressing the question of convergence, we should remark that the “fundamental
theorem of projective geometry” is field-independent. The same ideas have been used
to construct triple pairings for representations of PGL(2, Q). We should also point
out that a different choice of base points f; would have the effect of multiplying the
pairing by a non-zero constant.

The question of convergence of the integral (3.16) is most easily understood in
terms of the “unbounded realization” of the principal series, which we discuss next.

The subgroup
N=Im=(50|xeR]ER (3.17)

of G acts freely on G/B, and its image omits only a single point, the coset of

s=(?5§. (3.18)

It follows that any F' € Vﬁ% is completely determined by its restriction to N = R;
the defining identities (3.8—10) imply that ¢9 = restriction of F to R is related to
¢Poo = restriction of 7, 5(s)F to R by the identity ¢oo(x) = |x|*~1¢(—1/x). This
leads naturally to the identification

VS = {pe COM) | [xI*1p(—1/x) € CPR)}, (3.19)

with action

‘ B - s lex+d| A=l ax +b
(1,5(8)¢)(x) = (sgn(ad — bc)) (ﬁ) ¢ (cx +d)

for g_lz(CClZ) eG.

If (¢1, ¢2, $3) € (C®(R))? correspond to (F, Fa, F3) € Vile, X Ve X Vivs
via the unbounded realization (3.19),

(3.20)

P(F1, F2, F3) =/R3 ¢1(x) ¢2(y) ¢3(2) k(x, y,2) dxdydz, with

k(x,y,2) = sgn((x — y)(y — 2)(z — )1 T2+
X o=yl y el e
(3.21)
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This can be seen from the explicit form of the isomorphism (3.19), coupled with the
definition (3.10) of Vﬁ%. We should point out that in the setting of Maass forms, ¢
plays the role of the parity # in (2.21).

Contrary to appearance, the integral (3.21) is really an integral over the compact
space RP! x RP! x RP': the integral retains the same general form when one or
more of the coordinates x, y, z are replaced by their reciprocals; this follows from
the behavior of the ¢; at co specified in (3.19). The convergence of the integral is
therefore a purely local matter. Near points where exactly two of the coordinates
coincide, absolute convergence is guaranteed when the real part of the correspond-
ing exponent is greater than — 1. To analyze the convergence near points of the triple
diagonal {x =y = z}, it helps to “blow up” the triple diagonal in the sense of real al-
gebraic geometry — or equivalently, to use polar coordinates in the normal directions.
One then sees that absolute convergence requires not only the earlier condition

Re (hi —Aj— i) > —1 if i#j, j#k k#i, (3.22)

but also
Re (L1 +124+723) < 1. (3.23)

Both conditions certainly hold when the V;, 5 belong to the unitary principal series,
i.e., when all the 4; are purely imaginary.

The argument we have sketched establishes the existence of an invariant trilinear
pairing between the spaces of C*° vectors of any three unitary principal series rep-
resentations. The pairing is known to be unique up to scaling [16]. Even when the
Ai are not purely imaginary, one can use (3.21) to exhibit an invariant trilinear pair-
ing by meromorphic continuation. Indeed, for compactly supported functions of one
variable, the functional f fR f(x)|x|*~'dx extends meromorphically to s € C,
with first order poles at the non-positive integers, but no other poles. As was just
argued, the integral kernel in (3.21) can be expressed as |u|*® or |u|*!|v|*2, in terms of
suitable local coordinates, after blowing up when necessary. Localizing the problem
as before, by means of a suitable partition of unity, one can therefore assign a mean-
ing to the integral (3.21) for all triples (11, A2, 43) € C3 outside certain hyperplanes,
where the integral has poles. Even for parameters (41, 12, 13) on these hyperplanes
one can exhibit an invariant triple pairing by taking residues.

Let us now consider the datum of distribution vectors z; € V;i?, for three prin-
cipal series representations V 12675 1 < j < 3. The unbounded realization of the
VA«;‘,’% is slightly more complicated than the C° case (3.19): unlike a C*° function, a

distribution is not determined by its restriction to a dense open subset of its domain.
The distribution analogue of (3.19),

V5% = {(00,000) € (CT®(R))? | 000 (x) = Ix[" ' o0(=1/x)},  (324)
therefore involves a pair of distributions on R that determine each other on R — {0}.
Suppose now that 7; = (0,0, 0j,00) Via (3.24). Then

(¥, 3,2) > 01,0(x0) 92,0() 03,0(2) sgn((x — Y)(y = 2)(z = x)) 124

A —Apti3+l hy—in—iz+1 A +ig—i3+l
Xlx =yl 7 ly—zl" 7 =zl 2

(3.25)
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extends naturally to a distribution on {(x, y,z) € (RP')? | x # y # z # x}; as
one or more of the coordinates tend to oo, one replaces those coordinates by the
negative of their reciprocals, and simultaneously the corresponding o0 by 0} .
Since {(x, y,z) € RPYHY? | x # y # z # x} = G via the identification (3.15), we
may regard (3.25) as a distribution on G. In fact, this distribution is

{g = ulgf)n(gf)a(gf3)} € CT(6), (3.26)

although the latter description has no immediately obvious meaning without the steps
we have just gone through. The apparent discrepancy between the signs in the expo-
nents in (3.21) and (3.25) reflects the fact that

Ix —y| "y —zI 'z = x| 'dxdydz = dg = Haar measureon G (3.27)
via the identification (3.15). Let us formally record the substance of our discussion:

3.28 Observation. For 7 € VA;";],, 1<j<3,

g = n(gf) n(gf) 13(ef)
is a well defined distribution on G.

To motivate our result on pairings of automorphic distributions, we temporarily
deviate from our standing assumption that I' C G be arithmetically defined; in-
stead we suppose that I' C G is a discrete, cocompact subgroup. In that case, if
Tj € (V;ji%)r, 1 < j < 3, are I'-invariant distribution vectors, (3.26) defines a
distribution on the compact manifold I'\G. As such, it can be integrated against the
constant function 1, and

/ w1 (gf) (e f2) 13 (ef3) dg (3.29)
G

has definite meaning. The value of the integral remains unchanged when the variable
of integration g is replaced by gh, for any particular 2 € G. Thus, if y € C°(G)
has total integral one,

/ w1 (g ) (e f2) 13 (ef3) dg
JONE;
- / / t1(ghft) r2(ghf2) v (ghfs) v (h) dg dh (330)
G JI\G

_ / ( / r1(ghf1) 12(ghfs) ra(ghf3)v/(h)dh) dg.
ne \JG

The implicit use of Fubini’s theorem at the second step can be justified by a partition
of unity argument. In short, we have expressed the integral (3.29) as the integral over
I'\G of the I'-invariant function
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¢ > [ nehf) nlght a(ehss) v dh. (331)
G

This function is smooth, like any convolution of a distribution with a compactly sup-
ported C* function. Note that the integral (3.31) is well defined even for parameters
(11, A2, 23) € C3 which correspond to poles of the integral (3.21).

We now return to our earlier setting, of an arithmetically defined subgroup I' C
G = PGL(2,R), specifically a congruence subgroup

I' c PGL(2,Z). (3.32)

In this context, the integral (3.29) has no obvious meaning, since we would have to
integrate a distribution over the noncompact manifold I'\G. The “smoothed” inte-
gral, however, potentially makes sense: if the integrand (3.31) can be shown to decay
rapidly towards the cusps of I'\ G, it is simply an ordinary, convergent integral. That
is the case, under appropriate hypotheses:

3.33Theorem. Let 7; € (Vljogj)r, 1 < j < 3, be I'-automorphic distributions, and
w € C°(G) a test function, subject to the normalizing condition

/Gw(g)dg=1-

If at least one of the t; is cuspidal, the T'-invariant C* function

Flg) = /G 11 (gh 1) ta(ghfs) 73 (ghfs) w (i) dh

decays rapidly along the cusps of I'; in particular fr\G F(g)dg converges ab-
solutely. This integral does not depend on the specific choice of y. If, in addition,
one of the tj depends holomorphically on a complex parameter,

/ F(g)dg=/ /Tl(ghfl)fz(ghfz) t3(ghf3) w(h)dhdg
G neJe

also depends holomorphically on that parameter.

Why does F decay rapidly? It is not a modular form — the Casimir operator of G
does not act on it finitely. Nor does F satisfy the condition of cuspidality. However,
F can be expressed as the restriction to the diagonal of a modular form in three
variables:

(81,82, 8) — /GTl(glhfl)TZ(gthZ) t3(g3hf3) w(h) dh (3.34)

is a C* function on G x G x G; this follows from the fact that the cosets f; B lie
in general position. Since 7; € (V;jog’_)r, (3.34) is a I'-invariant eigenfunction of
the Casimir operator in each of the variables separately. It is cuspidal in the variable
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corresponding to the cuspidal factor 7, hence decays rapidly in this one direction.
It has at worst moderate growth in the other directions, and therefore decays rapidly
when restricted to the diagonal. The remaining assertions of the lemma are relatively
straightforward.

We shall need a variant of the theorem in the last section, for the analysis of the
exterior square L-function for G L(4). Two of the 7; then occur coupled, as a distri-
bution vector for a principal series representation of G x G, I'-invariant only under
the diagonal action, not separately. These two 7; arise from a single cuspidal auto-
morphic distribution 7 for GL(4, R). In this situation the rapid decay of F reflects
the cuspidality of 7.

4 The Rankin—Selberg L-function for GL (2)

The argument we are about to sketch parallels the classical arguments of Rankin [17]
and Selberg [18], and of Jacquet [6] in the case of Maass forms. We shall pair two
automorphic distributions against an Eisenstein series. In our setting, of course, the
Eisenstein series is also an automorphic distribution.

We recall the construction of the distribution Eisenstein series from [15], special-
ized to the case of G = PGL(2, R). To simplify the discussion, we only work at full
level — in other words, with

I = PGL(2,Z) ~ SL*(2,Z)/{+1}. 4.1

We define o € Vv_oOO in terms of the unbounded realization (3.24): d, corresponds
to (00, 0x0), With o9 = 0 and o, = Dirac delta function at 0. Then 7, 0(y )doo = do
forally €e I'oo ={y €' | y oo = oo}. In particular, the series

E,eVy®, Ev=¢0+1) D m0()de, 4.2)
7€l T

makes sense at least formally. It is I'-invariant by construction. Hence, when we
describe E), in terms of the unbounded realization (3.24), it suffices to specify the
first member oy of the pair (0¢, 0 ). This allows us to regard E,, as a distribution on
the real line,
E, ~ Z g0, 00). (4.3)
p.q€Z, ¢>0

To see the equivalence of (4.2) and (4.3), we note that J, /4 (x), with p, g € Z rela-
tively prime, corresponds to the translate of do, under

(5 :) eI', withr,s € Z chosen so that sp —rqg =1. “4.4)

The disappearance of the factor ¢ (v + 1) in (4.3) reflects the fact that we now sum
over all pairs of integers p, ¢, with g > 0, not over relatively prime pairs.
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The integral of the series (4.3) against a compactly supported test function con-
verges uniformly and absolutely when Re v > 1. Hence E, € V, ;° is well defined
for Re v > 1, and depends holomorphically on v in this region. The periodic distri-
bution (4.3) has a Fourier expansion,

E, ~ ape(nx). 4.5)
nez

To calculate the Fourier coefficients, we reinterpret the sum as a distribution on R /Z.

Then
we[ T s
R/Z P.q€Z, ¢>0
S 4 ifn 20 4.6)
—y— d iIrn
- ¥ qv1e<-np/q>:| wd™
>0 0<p<q c) ifn=0.

The ay, n # 0, are entire functions of v, whereas ap = ¢(v) has apole atv = 1, so

E, extends meromorphically to the entire complex plane, @7)
with a single pole at v = 1, of order one. ’

We should remark that do, is even with respect to the involution x + —x. This is the
reason why at full level there is no Eisenstein series of odd parity —i.e., no Eisenstein
series in V.

The Elsenstem series (4.2) satisfies a functional equation, which relates E_, €
Vot Ey € Vio ° via the intertwining operator

L VIZe — Vo (4.8)

On the level of C° vectors, and in terms of the unbounded realization (3.19), the
operator is given by the formula

(L) (x) = /R $O) 1y —x|""dy. “9)

Because of the condition on ¢ at infinity, this integral has no singularity at y = co.
At y = x, the integral converges when Re v > 0, but continues meromorphically to
the entire complex plane. It is known that the integral transform (4.9) extends con-
tinuously from an operator J, : V> 200 Voo between the spaces of C* vectors, to
the operator (4.8). Alternatively and equlvalently, (4.8) can be defined as the adjoint
of J, : 0~ Vv"%, using the natural duality! between V°° and V_ °° . Either way
one sees that

Vo 2 e(nx) L> Go(v) In|™ e(nx) € V, 5 (n#0). (4.10)

! The dua?ity which extends the G-invari'ant ‘pairing Vv‘i% X Vf?}’o — C given by integration
over R, in terms of the unbounded realization.
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Here Go(v) refers to the Gamma factor described in (2.25), and e(nx) is shorthand
for the pair (e(nx), |x|F"~le(—n/x)) — cf. (3.24); the second member of the pair
can be given a definite meaning even at the origin, using the notion of vanishing to
infinite order that was discussed in section 2.

In view of the relation (4.10), J, maps the Fourier series (4.5) for E_, to Go(v)
times the corresponding series for E,, except possibly for the constant term and
a distribution supported at infinity. However, no non-zero linear combination of a
constant function and a distribution supported at infinity can be I'-invariant. This
proves

LE_, =Go(v) E,. (4.11)

That is the functional equation satisfied by the Eisenstein series. The parameter v is
natural from the point of view of representation theory. In the eventual application,
we shall work with

s=@w+1)/2 (4.12)

instead. Note that v — —v corresponds to s — 1 — s.
We now fix two automorphic distributions, either of which may arise from a
modular form or a Maass form,

eV, YWoand o € .5 ", (4.13)

of which at least one is cuspidal. According to (4.7) and theorem 3.33, the integral
P} (11,72, E)) = / / 11(ghf1) 12(ghf2) Ev(ghf3) y(h)dhdg  (4.14)
NGJG

depends meromorphically on v € C, with a potential first order pole at v = 1 but
no other singularities. The subscript v is meant to emphasize the fact that the third
argument lies in the space (V. .0 I, and the superscript I distinguishes this pairing
of I'-invariant distribution vectors from the pairing (3.21) between spaces of C*
vectors.

We shall derive the Rankin—Selberg functional equation from the functional
equation (4.11) of the Eisenstein series. Since the latter involves the intertwining
operator, we need to know how J, relates PL to P!. First the analogous statement
about the pairing (3.21): for F; € V°,, F, € V PP F3e V™ 200>

21,01

P(Fy, F2, J, F3)

A—=Ar—v+1 —A1+Ar—v+1
G(51+(52 ( L 22 ) G51+(52 ( L 22 )

—_ (_1)\%1+%
=D Go(l—v)

P(Fy, F2, F3).

(4.15)
Note that P(...) on the left and the right side of the equality refer to the pairing
Vf"bl x V© o X Voo — C, respectively V . 61 X VA 5y X vee 0.0 — C.The Gamma
factors Ga( .) have the same meaning as in (2.25). Smce both sides of the equality
depend meromorphically on v, it suffices to establish it for values of v in some non-
empty open region. In view of (3.21) and (4.9), the assertion (4.15) reduces to the
identity
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(sgn(y — 1)(r — x))1t% |
k Gen(y — )@ —x0)IFe

0 G(51+(52 (OL)G51+(52 (ﬂ)
Gola + f)

with a = (A1 +42—v+1)/2, p = (41 — A2 —v + 1)/2. The integral converges
in the region Rea > 0,Ref > 0, Re (« + f) < 1. The uniqueness of the
triple pairing ensures that (4.15) must be correct up to a multiplicative constant.
But then (4.16) must also be correct, except possibly for the specific constant of
proportionality. That constant can be pinned down in a variety of ways; see, for
example, [15, Lemma 4.32].

A partition of unity argument shows that the quantities Pvr (1, 72, JVE_)) and
PL (21,12, E_,) are related by the same Gamma factors as the global pairings in
(4.15). Combining this information with (4.11) and the standard Gamma identity
Gs()Gs(1 —v) = (—1)%, we find

P\)F (1:17 72, EU)

—t* Ny =t Nz =7 P ar
(4.16)

= (=12 Ix — y1*P i — 2y — 2%,

Al — A2 — 1
:(_1)51+52G(51+(52( 1 2—V+ )

2 (4.17)

—M+—v+1
X G51+()‘2 ( ) ) PI\)(le 72, E*\)) .

Once we relate Pvr (71, 72, Ey) to the Rankin—Selberg L-function, this identity will
turn out be the functional equation.

We begin by substituting the expression (4.2) for E,, in (4.14). Initially we argue
formally; the unfolding step will be justified later, when we see that the resulting
integral converges absolutely:

P])r(‘[la 127 E\))

=/ /Tl(ghfl)TZ(ghfZ) Ey(ghf3) w(h)dhdg
neJe

—co+n > | . | e eaehf bty ghss) wh) dndg

[/Too

=C(V+1)/r \G/Gfl(ghfl)TZ(ghfZ) 0oo(ghf3) w(h)dhdg .

(4.18)
The integrand for the outer integral on the right is no longer I'-invariant, but it is
(I' N N)-invariant, of course, and has all the other properties of the integrand in
(4.14). Those are the properties used in the proof of theorem 3.33 to establish rapid
decay. In other words, the same argument shows that the integrand in (4.18) decays
rapidly in the direction of the cusp. However, I'o,\ G is not “compact in the directions
opposite to the cusp”, and we still need to argue that the integral converges in those
directions as well.
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Together with the upper triangular unipotent subgroup N C G, the two sub-
groups

t
K=5S0Q2)/{£1}, A= I ar = (eo 89,) te IR{] (4.19)
determine the Iwasawa decomposition
G’ = NAK (4.20)

of the identity component G" ~ SL(2,R)/{#1} of G. Since I's, meets both com-
ponents of G, and since ['so N G° = I' N N, we can make the identification
I'so\G =~ (I N N)\G. Hence, and because

dg =e ? (a)dndadk, with e’ (a;) =¢", (4.21)
the identity (4.18) can be rewritten as

P\)r(rla 127 E\))

=¢(v+ 1)/ / / / e_2p(a) t1(nakhfy) to(nakhf,) (4.22)
kJaJaonnw JG
X Ooo(nakhf3) w(h)dhdndadk .

As the ¢ tends to +00, the point g = na;k moves towards the cusp. In the opposite
direction, as t — —o0, the integrand in (4.22) grows at most like a power of e~'. To
see this, and to determine the rate of growth or decay, we temporarily regard the three
instances of the argument nak as independent of each other, as in the discussion
around (3.34). In the case of the z;, the maximum rate of growth is e(—IRe Z;1+1)t s
and in the case of dg, it is eRe v+ without absolute value sign around Re v. The
reason for the latter assertion is that we know the behavior of d(g) when g is
multiplied on the left by any n € N — unchanged — and when g is multiplied on the
left by any a; € A — by the factor eRev+D1 ¢f (4.28) below. In short, the integrand
in (4.22) can be made to decay as t — —oo by choosing Re v large enough. That
makes the integral converge absolutely and justifies the unfolding process.

The smoothing function y € C2°(G) in theorem 3.33 is arbitrary so far, except
for the normalization fG w(g)dg = 1. We can therefore require y to have support

in G9, and also impose the condition
w(kg) = y(g) forallk e K, g e G; (4.23)

the latter can be arranged by averaging the original function y over K. The analogue
of (4.21) for the K AN decomposition is dg = %’ (a) dk da dn. Hence

/ / e*(a) y(an)dnda =1, or equivalently / val@)da=1,
AN A (4.24)
with w4 (a) =e2p(a)/ w(an)dn :/ v (na)dn,
N N

restates the normalization condition for the K -invariant function .
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We had argued earlier that the function e(£x), for ¢ # 0, has a canonical exten-
sion — now viewed as distribution — across infinity. That allows us to regard e({x) as
a well defined element of the unbounded model (3.24). We can also make sense of
the constant function 1 as element of the unbounded model for Re 4 > 0, and for
other values of 4 by meromorphic continuation. Whether or not £ equals zero, we let
Br s e V/l_,go denote the distribution vector that corresponds to e(£x). Then

7),5(nx)Bes,s = e(—€x) Be 5, and By, s(ny) =e(lx). (4.25)

The latter equation has meaning since N C G/B is open and By, s, like any vector
in V/l_,go, transforms according to a character under right translation by elements
of B. We had assumed that at least one among 71 and 77 is cuspidal — 7y, say, for
definiteness. Then

T = Z arBe e, 2= Z be By jy, + -+ (4.26)
££0 teZ
are the Fourier expansions of 71 and 7. Here ... stands for a vector in V[zog’z that is

N-invariant and supported on s B C G/B; recall (3.18) for the definition of s € G.
The series for 71 has no such singular contribution on s B, as was explained in (2.17)
and the passage that follows it.

In (4.22), the process of averaging over I'\T's, from the left and smoothing from
the right commute. Thus, using the fact that o and ... in (4.26) are N-invariant,
we find

/ / 11 (nakhfy) to(nakhfs) dso(nakhfz) w(h)dhdn
(CNN)\N JG

=>a bff/G By jy,0,(akhft) B—¢ 25,6, (akhf2) doc(akhf3) y (h) dh
10

(4.27)

= S atber | Brovo @hfi) Bor.isn(ahfa) d(ahfs) wih) b

140 G

=>arb g / Br.;,.5,(ah) B_¢ i,.6,(ahny) doo(ahs) w (k) dh ;
G
(#£0

at the second step we have used the K-invariance of y, and at the last step, we have
inserted the concrete values f1 = e, f>» = ni, f3 = s —cf. (3.14) and (3.17).

When we substitute (4.27) into (4.22), we can make several simplifications. The
expression on the right in (4.27) no longer depends on the variable k, so the integral
over K in (4.22) can be omitted. The distribution d«, is supported on s B C G. Hence,
when the variable & in (4.22) is written as 1 = kna, withk € K,n € N,a € A, and
dh = dkdnda, the k-integration reduces to evaluation at k = e. Since A acts via
% on the cotangent space at sB € G/B,

doolaks) dk = e*(a) doo(ksa™ ) dk = yy4,(a) dso(ks) dk for a € A. (4.28)
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It follows that doo (ahs) dk = doo (aknds) dk = dso(aks(s~'ns)a=") dk contributes
the factor yyy,(a) xv—p(a@) = 2P (a) Xv+p(aa) when it is integrated over K. Ef-
fectively we have replaced the integrals over 4 € G in (4.22) and (4.27) by integrals
over NA. But the integrand being smoothed in (4.27) is already N-invariant. Thus,
instead of smoothing over G with respect to y, we only need to smooth over A with
respect to w4, as defined in (4.24):

P (t1, 0, Ey) =¢(w + 1) Z arb_ g/ / e~ ”(aa)
£#£0 (4.29)

X B 3,.5,(aa) B_¢ ;, a,(aany) yvyp(aa) ya(a)dada.

We parametrize a,a € A asa = a;, a = a;, as in (4.19), with ¢, f € Rand da = dt,
da = df. Then, in view of the definition (3.12) of VL‘;X’ and the characterization
(4.25) of By ;5.

(1=A1)(t+1) By

o (e) = =40+ >

By, j,6 (araz) = e

By 0 (@any) = 1D B s (aanja~ta")

. 3 (4.30)
= (I=42)(+D) e(—¢ eZ(H-t)) ,
pr(ata )= e(u+1)(z+t) e—Zp(ata;) _ e—2(z+i) _
This leads to the equation
Py (r1, 12, E) =¢(w+ 1) Z arb—¢
{£0
4.31)
x / / e(\)+17/117/12)(l+;) €(—€€2(t+;)) l//A(a;) dfdt
RJR
To simplify this expression further, we set x = %,y = ¢, and
pala) = yr(y) (y=e"). (4.32)
Then dx = 2% dt, dy = 2e2;dt~, and the normalization (4.24) becomes
/ yr(y)— =2. (4.33)
0 y

Putting all the pieces together, we find

P‘)F(Tl, T25 EU)

+1 oo oo vl—7y d
DS v [T et i T2
120

(4.34)
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We know from the derivation of this formula that the integral and the sum must
converge for Re v > 0, and indeed they do. Since the smoothing function wp has
compact support in (0, 00), the inner integral is the Fourier transform of a compactly
supported C* function on R. The resulting function of x is smooth at the origin and
decays rapidly at infinity. That makes the outer integral converge, provided Re v is
large enough. A change of variables then shows that the double integral has order of
growth O ([¢|Re(1+42-v=1)/2) ‘56 the sum does converge, again for Re v >> 0.

If we regard e(—{x), £ # 0, not as a function, but as a distribution that vanishes to

infinite order at infinity, the integral fooo e(—fx)x— 2 dx converges for Re v >

0, and the smoothing process in (4.34) becomes unnecessary. Taking this approach,
we make the change of variables x +— x/y, which splits off the integral (4.33).
Hence

P])r(Tl) T25 EU)

cw+1) /OO [ e ) dx
=— b_ Z —{x)—
3 Zaf of, * e(—={x) B

{40
1 i —v—1 [0 vyl—iy—i d 4.35
Ut Y /.x*zlzd—@@aurf 39
2 120 0 X

2
_ 5(;) > b ]
1£0

A+ 00 R d
. z—f/ T e(—(sgn O)x) -
0 X

At the last step, we have expressed v in terms of s, as in (4.12).
By definition, the Rankin—Selberg L-function of the pair of automorphic distrib-

utions 71, 72 i
Alt+ip _

L(s,11 ®72) =¢(2) D anbyn 2 ~°. (4.36)

n>0

Recall that the Fourier coefficients a,, b, depend on the choice of the embedding
parameter A; over —A;. The standard L-function (2.22), and (1.2) in the case of
modular forms, with 4 = 1 — k, are defined in terms of the renormalized coefficients
an|n|*/?. For the same reason the renormalized coefficients appear in the Rankin—
Selberg L-function. To make the connection between (4.35) and the L-function, no-

tice that translation by the matrix
-10
r= ( 0 1) (4.37)

transforms z; € (VA«_]_O(%)F, realized as 7;(x) in terms of the unbounded model, to

(=1)%;(—x). Since r € T, that means z;(—x) = (—1)% 7 (x), i.e.,

aen = (=D%a,, b_y=(=1)%2b,. (4.38)
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Hence o
c@9) > b 1017 = (D2 Ls,n ® 1),

>0
] N (4.39)
c@s) > arb_ 17T = (=) L(s, 11 ® ).
<0
This allows us to re-write (4.35) as
2 Pvr(‘[ly 72, Ev)
=L(s, 11 ® 12)
.0 ) d . [o° A+h d
x {(—1)"2 [ e S [Tt e(x)—x}
—0 X 0 X
A+ 4
= (=D Gy, 45, (S A 5 2) L(s,71 @ 12);
(4.40)

recall (2.25), and also the relationship v = 25 — 1 between v and s.
To complete the proof of the functional equation, we combine (4.40) with (4.17)
and appeal to the standard Gamma identity G5(s)Gs(1 — 5) = (—1)°:

4.41 Proposition. The Rankin—Selberg L-function satisfies the functional equation

A1 22
Ll-s,11®n)= Hel,b‘z::l:l Goi+6 (S +817 +827) L(s, 71 @ 12).
We have shown that (4.40) has a holomorphic continuation to C — {1}, with
at most a simple pole at s = 1. Traditionally one states the functional equation
and analytic continuation not for the expression in (4.40), but rather for Langlands’
completed L-function

Als, 71 ® 12) = Loo(s, 71 @ 12) L(s, 71 @ 12), (4.42)

whose “component at infinity” is a product of Gamma factors that depend on the
type of the z;. If both 71 and 7, correspond to Maass forms, then

A1 A2
Maass case: Loo(s, 71 ® 72) = Hel,b‘z::l:l I'r (s + 817 + 827 + 77) ,
with # € {0, 1}, n=6] + J (mod2).
(4.43)
Here I'p denotes the Artin I'-factor 7 ~*/2I'(s/2). If one of the 7, say 72 for defi-
niteness, corresponds to a holomorphic cusp form of weight &, then

2 2 2 2
(4.44)

. At k=1 A1 k=1
mixed case: Loo(s,71® 1) = Icls+ =4+ — ) Icls——+—),



4 The Rankin—Selberg Method for Automorphic Distributions 137

where I'c(s) = 2(27)~*T'(s). Finally, when both 7| and 7, correspond to holomor-
phic cusp forms, of weights k1 and k3, respectively,

2

(4.45)
In all cases, the functional equation of the previous proposition directly implies the
equality of A(s, 71 ® 70) and A(1 — s, 7] ® 72), up to a sign; this follows from
standard Gamma identities, in particular the identity Gs(s)Gs(1 — s) = (—1)? and
the Legendre duplication formula.

Just as important as the functional equation is the assertion of holomorphy: both
L(s, 71 ® 2) and A(s, 71 ® 72) are holomorphic except for potential first order poles
ats = 0 and s = 1. For the uncompleted L-function this follows from a classical
argument of Jacquet [6, Lemma 14.7.5]. His argument does not require any detailed
calculations, and holds in great generality.

Once L(s, 71 ® 72) is known to be holomorphic on C — {0, 1}, one can deduce
the holomorphy of A(s, 71 ® 72) on C — {0, 1} from the results of this section, as
follows. Because of the functional equation, it suffices to rule out poles in the region
{Res > 1/2,s # 1}. In effect, we must show that all poles of Ly (s, 71 ® 72) with
Re s > 1/2 are compensated by zeroes of L(s, 71 ® 72). This is an issue only in
the Maass case: modular forms have weights at least 2, and the parameter 4 of a
Maass form necessarily lies in the region {|Re 4] < 1/2}. In the Maass case, only
one of the four Gamma factors in (4.43) can have a pole with Re s > 1/2. Maass
forms correspond to irreducible principal series representations, which involve 4
and —A; symmetrically. We can therefore assume that Re 4; > 0, in which case the

ki +k ki —k
modular forms case: Lso(s, 71®712) = I'¢ (s + ! > 2 1) I'c (s + M) .

pole can only come from the factor I'g (s - @), with # = 0, and must occur at
- —A';h. But then | = d2, and G4, (s — 2522) = Go(s — 23%2) also has a

pole ats = ’“JFT“ We know that (4.40) is holomorphic on C — {0, 1}, thus forcing
A+42
2

L(s, 71 ® 12) to vanish at s = , as was to be shown.

5 Exterior Squareon GL (4)

Recall that if F is a Hecke eigenform on G L(n, Z)\GL(n, R), or more generally,
on the quotient of G L(n, R) by a congruence subgroup, the standard L-function of
F has an Euler product

n
L, F) =[] [Ja-apjp™". (5.1)
p j=1
The exterior square L-function is then defined as an Euler product

L(s, F, Ext?) = H L,(s, F, Ext?), (5.2)
P
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whose factor at any unramified prime p equals

Lpy(s, F, Extz) = H (I —ap,joapk p_s)_l . (5.3)

1<j<k<n

The appropriate definition of the factors L, (s, F, E x1%) corresponding to the finitely
many ramified primes is still a subtle issue. Harris and Taylor recently exhibited local
factors for the ramified primes that are consistent with Langlands functoriality prin-
ciples, in their proof of the local Langlands conjectures for G L (n). However, Shahidi
had much earlier given a separate definition, which by all expectations agrees with
the one provided by Harris-Taylor, though the agreement of the two definitions is not
obvious. Shahidi furthermore proved that the L-function with his definition of the
ramified factors satisfies a functional equation of the type Langlands predicted. Since
there can only be one definition which obeys this functional equation, the potential
discrepancy between the Harris-Taylor and Shahidi definitions poses no problem
from the point of view of L-functions, though it still is a problem for the group-
theoretic definition of the Langlands conjectures. In any case, an argument which
produces the analytic continuation and functional equation of L(s, F, Ext*) must
give a definition which agrees with Shahidi’s.

In our paper [15], we carry out the archimedean analysis of the exterior square L-
function for GL(n); we establish the holomorphy of the partial L-function
Ls(s, F, Ext?) and its completion at infinity Ag(s, F, Ext?), in both cases with
the factors in (5.2) corresponding to the set S of ramified primes omitted. To keep
the discussion simple, we avoid the problem of ramification in the present paper by
treating only the full level subgroup GL(4,7Z) C GL(4,R).

By necessity, the notation in this section will not completely agree with that of
the earlier sections; in particular, we now set

G=GL#4,R), Go=SL*(2,R), T =GL(4,Z), To=SL*2,Z). (5.4)

We shall also work with the subgroups

ai={(% o) mecrem] c 6.
82

I = (% 3)‘ y € GL(2, Z)} cr, (5.5)

)

Note that G; ~ GL(2,R) x GL(2,R) contains 'y >~ GL(2,Z), but not as an
arithmetic subgroup.

Again we let B C G denote the lower triangular Borel subgroup, and we define
B1 = G1 N B. Each pair

MEMZXZ(R)} c G.

(u,n) € C* x (2/22)* (5.6)
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determines a character y, , : B — C*,

Aunlaif) =[] laiil (sgnai)™ (5.7)

1<i<4

and by restriction also a character y, , : Bj — C*. For G = GL(4, R),

31 1 3
=(2, -, -2, -2 58
p (29 25 29 2) ( )

represents the half sum of the positive roots. In analogy to (3.12),
Wﬂ_ff ={t e C™™(G) | t(gh) = Xﬂ_p,”(b_l) 7(g) forall g € G, b € B} (5.9)

is the space of distribution vectors for a generic principal series representation of G.
Principal series representations of G| >~ GL(2,R) x GL(2,R) are induced from
B1, and hence also parameterized by pairs (u, ) € C* x (Z/27)*,

= {1 € C™(G1) | t(gh) = yu—p (b H1(g)forallg € G1,b € By}.
(5.10)
Our current use of the notation Vﬂ " is not consistent with (3.12). Not only is G
a product of two copies of GL(2, R), but the representations we consider need not
be trivial on the center of GL(2,R), in contrast to the situation in section 3, where
we considered only automorphic distributions for PG L(2, R). However, the p-shift
in (5.10) is consistent with (3.12): the quantity p defined in (5.8) restricts to the
corresponding quantities for the two factors of G| >~ GL(2,R) x GL(2, R).
The arithmetic group I intersects U ~ R* in a lattice, so (I’ N U)\U is compact.
That makes it possible to define the operator

A (W, — (v,
(5.11)
Az(g) =/ t(ug)e(—tru)du (geGy).
(CNU))\U

What matters is the fact that the U - G-orbit of the identity coset in G/B is open.
One can therefore restrict any z € (W, ?f)r to this open subset, and then further to
G1, once the dependence on the variable # € U has been smoothed out by taking
a single Fourier component. The restriction to G still transforms according to X/?Z
under right translation by elements of B; = G N B. This makes Az lie in V’
Conjugation by any y € I'y preserves the character u +— e(—tru) of U and the
lattice ' N U. Since I'; C I, the I'-invariance of 7 ensures the I'{-invariance of Az.

We now consider a particular cuspidal t € (Wﬂ_, ?10 I Since I contains the center
of SL*(4, R), any such 7 must vanish identically unless

> nj=0 inZ/2Z. (5.12)
I<j<4
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We shall also suppose that
> uj=0. (5.13)

l<j=4

This is not a serious restriction: it holds automatically when 7 arises from a discrete
summand of L>(I'\G/ ZOG), asin (3.1). Even when that is not the case, we can make
(5.13) hold by twisting 7 with an appropriate character of Z%, without destroying
the I'-invariance.

In section 3, we described the pairing of three PG L(2, Z)-automorphic dis-
tributions on PGL(2,R). By limiting ourselves to the case of PGL(2,R) we
avoided some notational complications in (3.21) and (3.24), without essential loss
of generality: in the case of full level, —1 € GL(2,Z) must act trivially on
any automorphic distribution. In the current setting, we do need the pairing for
triples of automorphic distributions on GL(2,R). Theorem 3.33 remains correct
as stated in this more general situation, provided the integration is performed over
SL*(2, Z)\SL*(2,R) — the center of GL(2, R) is noncompact and remains non-
compact even modulo G L(2, Z). The statement requires the I'-invariance of all three
of the arguments 7; of the pairing P. Formally, at least, invariance under the diagonal
action of I' on the three arguments suffices to produce a I'-invariant integrand for the
outer integral in theorem 3.33. It is the proof of rapid decay that forces us to assume
I'-invariance of each factor. In the present setting, At arises from a cuspidal auto-
morphic distribution 7 on GL(4, R). It is not difficult to adapt the proof of theorem
3.33 to this case: after smoothing by some y € C2°(Gy), the product of Az with the
Eisenstein series E, does decay rapidly along the cusp.

We again define the Eisenstein series E, by the formula (4.2), but now summing
over ['g/(I'0)oo; since —1 € (I'g)oo, (4.5-7) remain correct. We should remark that
the pairing of three automorphic distributions on G L(2, R) vanishes identically un-
less —1 € GL(2,R) acts trivially under the diagonal action. The parity condition
(5.12) implies that —1 acts trivially under the diagonal action on Az. But —1 also
acts trivially on delta function d~, and hence on the Eisenstein series E),. In short,
the parity condition imposed by the action of the center is satisfied in our situation.
We have assembled all ingredients to make sense of

I _ ghfi 0 )
pPoAr, E)) = FO\GO/GOAT( 0 ghpy) Evghf) wdhdg.  (5.14)

As a function of v this is holomorphic, except for a potential first order pole atv = 1.
What we said in section 3 about the intertwining operator J, and its interaction with
the pairing remains valid, except for the parity subscripts of the Gamma factors in
(4.15) and (4.17), since we now work on G L(2, R). The roles of A1 and 4, are played
by, respectively, u1 — p2 and p3 — pa, as can be seen by comparing the definition

(5.10) of V/j‘,’f to the definition (3.12). Thus, and because of (5.13), ’1‘?2 corre-

sponds to s + u4 and % corresponds to u2 + u3. This explains the arguments
of the Gamma factors in the identity
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Plo(Az, E)) = (=1)”t

v—1 v—1 To
X Gpipng |1+ a4 — ——) Gpgns | 2 + 13 — — P_j(At, E_)),

2
(5.15)
which takes the place of (4.17) in the current setting. In the special case when 71 =
n2 and 73 = n4 —i.e, when the actionof G| = GL(2, R) x GL(2,R) on Az drops to
PGL(Q2,R) x PGL(2,R) —(5.15) agrees with in (4.17), as it must. In the remaining
cases the identity is deduced from the appropriate variant of (4.16); for details see
[15].

The identity (5.15) is the source of the functional equation of the exterior square
L-function, just as (4.17) was the source of the functional equation for the Rankin—
Selberg L-function L(s, 71 ® 72). To make the connection between the identity (5.15)
and the exterior square L-function, we need to consider the Fourier expansion of 7

1 xyup v

01
N =1 n(x,u,v)= ooxfﬁi

00 0 1

Since the N-orbit through the identity cosetin G /B is open, it is legitimate to restrict
7 to N. This restriction is (I' N N)-invariant, which allows us to regard 7 as lying in
C°(('NN)\N). Every (I N N)-invariant smooth function on N, and dually every
(I' N N)-invariant distribution, has a Fourier expansion with components indexed
by — roughly speaking — the irreducible unitary representations of N. For the one
dimensional, or abelian, representations this is literally true, but typically infinite
dimensional representation contribute more than once, but finitely often. The non-
abelian Fourier components will turn out not to matter for our purposes. Thus we
write

xeR3,ueR2,ueR]. (5.16)

t(n(x,u,v)) = Z Any oy emjxj)+..., (5.17)
1<j=<3

with ... denoting the sum of the non-abelian Fourier components of 7. The @, 1,15
with positive indices n; determine all the others:

n o m-tm  n+n+n3
Qeiny,exny,ezny = €1 €y €3 Anymynsy (€5 € {E£1}). (5.18)

Indeed, 7 is invariant under the action of all diagonal matrices with entries 1, since
I" contains these. Each of them acts on N by conjugation, which has the effect of
reversing the signs of some of the coordinates. One can then use (5.7) to determine
how the ay, »,,n, change when the signs of one or more of the indices is flipped.

When 7 is a Hecke eigendistribution, the Fourier coefficients a;, ,,, are related
to the Hecke eigenvalues. Specifically, k*1%#2a; j | is the eigenvalue of the Hecke
operator 71 x,1. The eigenvalues for Hecke operators indexed by unramified primes
can be expressed in terms of the a; , in (5.1) [20]. Jacquet and Shalika [7, §2] have
used this expression to identify the factors L, (s, 7, Ext?) for unramified primes p
in terms of the Hecke eigenvalues — in complete generality for all n, not just n = 4.
In the case of GL(4),
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Ly(s,t, Extz) = (- p—ZS)—l Z ay pk(mﬂtrs)_ (5.19)
k>0

At full level, when there are no ramified primes, the Euler product of the local factors
for all primes, as in (5.2), expresses the exterior square L-function as

L(s, 7, Ext®) = £(25) D ajpan o (5.20)

n>1

One can use this as the definition of the exterior square L-function whether or not ¢
is a Hecke eigendistribution.

5.21 Lemma. When s and v are related by the equation 2s = v + 1,
Pvr(’ (A7, E)) =2(=1)"" G yyyp, (s — 1 — 12) Gy gy (s — p1 — p13) L(s, 7, Ext?).

Since the proof is lengthy, we shall first deduce the functional equation, which
follows from the lemma in combination with (5.15), (5.12-13), and the standard
Gamma identity Gs5(s)Gs(1 — s) = (—1)%:

5.22 Proposition. L(1—s, 7, Ext?) = [1,<; - j<aG 4y, (s—pi—pj) L(s, T, Ext).

This result is originally due to Kim [9] and, in the special case when W, , be-
longs to the spherical principal series, to Stade [21]. We refer the reader to our paper
[15] for a discussion of the history of the exterior square L-function for G L (n).

The usual statement of functional equation relates the exterior square L-function
L(s, 7, Ext?) for GL(n) to that of the dual automorphic distribution 7. In our case,
with G = GL(4, R), these two L-functions coincide; that makes it possible to state
the functional equation without reference to 7.

Just as in the case of the Rankin—Selberg L-function for GL(2), Jacquet’s gen-
eral argument implies that L(s, 7, Ext?) is holomorphic, except for possible first
order poles at s = 0 and s = 1 [15]. The fact that Pvro (A7, E,) is holomorphic,
together with an analysis of the poles and zeros of the Gamma factors, establishes
the holomorphy of the completed exterior square L-function, again with the possible
exception of first order poles at 0 and 1. We conclude our paper with the proof of the
lemma.

Proof of Lemma 5.21. Recall the notational conventions (5.4); in particular G) =
SL(2, R) denotes the identity component of Gy = SL*(2, R). We shall suppose that
the smoothing function y is supported on Gg, as we did in section 4. We also impose
the K -invariance condition (4.23) and define y4 as we did in (4.24). In section 3 we
had pointed out that the expression (3.34) is smooth as function of all three variables.
For the same reason

h
Grgnen > [ A (glofl o fz) doclgshfs) p (W)l (5.23)
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is a C* function on Gg x G X Go. It is also an eigenfunction of the Casimir operator
in each of the three variables, of moderate growth since 7 and J, are distribution
vectors. The cuspidality of 7 implies that the restriction of this function to the triple
diagonal decays rapidly in the cuspidal directions. We can therefore set g1 = g» =
g3 = g and integrate with respect to g over the quotient I'g, 0o\ Go, With T'g o0 =
{y €T'o | yoo = oo}.

In analogy with (4.18), we insert the definition (4.2) of E,, into (5.14) and unfold:
forRev > 0,

PIO(AT, E)) = c(v + 1) ghfi O )5oo(ghf3>w(h>dhdg,

At
Lo,00\Go /Gy ( 0 ght> (5.24)

The justification of this step hinges on two facts. First of all, the function (5.23) has
moderate growth, as was just pointed out Secondly, we know the behavior of du
under left translation by elements of A. From here on we can justify the unfolding
exactly as in section 4. In (5.24) we can replace Gy in the inner integral by the
identity component G8 on which y is supported. Since I'g,» meets both connected
components of Go, we can also replace Gy by G in the outer integral, provided
we simultaneously replace I'g oo by F 0.00 = 10,00 ﬂ G We parameterize GO by the
Iwasawa decomposition g = nyak — recall (3.17)and (4 20-21).To avoid confuswn
we now let Ny, Ag, Ko denote the subgroups of G = SL(2,R) analogousto N, A,
K in sections 3 and 4. Note that I" N Ny has index 2in T 8, 0> Which also contains

—1, 50 (T N No)\NoAoKj covers T __\G twice. Thus

PIO(AT,E,) =20+ 1)

1 .
X/ / / e—ZP(Q)AT(nx%hfl mfhfz)aoo(nxahﬁ)W(h)dhdxda;
A0 J0 JG§

(5.25)
we have legitimately omitted the integration over the Iwasawa component k because
w is K-invariant.

Recall the definition (5.11) of Az. It will be convenient to replace z by 7, defined
by the formula

1 1000
(9) =/ t(ng)dn :/ T ((8 30 8) g) dv, (5.26)
(T'NZN\ZN 0 0001

with Zy = center of N. Then 7" is invariant under left translation by elements of
Zy, and by elements of I' N N. We shall also need to know that

1000
1%(s238) = 7%(g) forallg € G, with 553 = (8%8) . (5.27)
0001

Indeed, 57,3 is contained in I' and commutes with the one parameter group over
which 7 is averaged to produce 7°. The passage from z° to Az involves averaging
over three more variables,
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10u; O
Az(g) =/ 10((8 1x Oz) g) e(—uy — uz) dxy duy dus . (5.28)
R3/23 000 1

10u; O 1x00 1 xup—xxy wupx 1000

01 xp up 0100)—_f Ol 0 up+xxy 01x0 (5.29)
001 O 00LxfJ ™~V o0 1 X 0010 J° :
000 1 0001 00 0 1 0001

the equations (5.25-26) and (5.28) imply
Py O(At,E)) =2¢(v +1)

1 1 0 1000
x/ / / / 70 0)1“401142 01x0 (ahfl 0 ) (5.30)
Ao Jag Jre 000 1/ \0001/)\ 0 anf2
X efz”(a)e(—ul — u2) Osc(nyahf3) w(h)dxy duy duydhdxda.

We appeal to the invariance of 7° under the center of N to justify setting the (1, 4)-
entry of the first matrix in the argument of 7% equal to zero.

The variable of integration x occurs three times in (5.30). Since do is Np-
invariant, we may as well drop the factor n, in its argument. When we omit the
integration with respect to x and treat the remaining instances of x as two separate
variables, the integrand — after averaging over R3/Z> and smoothing with respect to
w —is a C* function of those two variables; this follows from the fact that (5.23)
is separately smooth in all three arguments. We can therefore replace the single in-
tegral with respect to x by a double integral, provided we multiply the integrand by
the delta function, evaluated on the difference of the two variables. Since

1500 1xyup O 1xi+kuy O

0100 01 0 u — 01 0 u

(O 1[) 00 1 x3 - 0 0 1 x3+¢ (5'31)
0001 000 1 0 0

modulo the center of N, the integrand in (5.30) is separately periodic when the re-
maining instances of the variable x are uncoupled. The sum

do(xt —x3) = D e(C(x1 — x3)) (5.32)

el

oo~

represents the “delta function along the diagonal” in R?/Z2. Thus, in view of what
we just said,

Plo(Az, E))=2¢c(v+ 1) E/Ao /]RZ/ZZ /GS /]1&3/238(5()” —x3))

0
X2
1
0
X e(—uy — up) dso(ahf3) w(h)dxyduydurdhdxy dxsda .

(5.33)
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We use the matrix identity

1000 Lxpup 0 0 Lxpuy—tx; 0 10 0 0

01¢0 01 0 u 0O)y_fJ01 0 uy+€x3 01 x+¢0 (5 34)
0010 00 1 x3 oJ 00O 1 X3 00 1 0}~ :
0001 00 0 1 1 00 0 1 00 0 1

the (I' N N)-invariance of 7°, and the change of variables u; — u; + €{xy,
uy — uy — £x3 to eliminate the factor e(£(x; — x3)) in (5.33) while simultaneously
replacing x; by xp + €. We then combine the x-integral over {0 < x, < 1} with the
sum over ¢ into a single integral over R :

100
X

W
)

0
01
00 1
000

PI(AT, E) =200 + 1)

1 X1 Uy 0
offor o
okl ot (5
Ao JR/22 JG§ JR JR? /22 00 0 i
X eiZP(a) e(—uy —uz) doo(ahfz) w(h)duy durdydhdx;dxzda.
(5.35)
The symbol y instead of x, is meant to emphasize the new role of this variable.
Recall the invariance of z° under 52,3, as defined in (5.27). Conjugating s7 3
across the first matrix in the argument of 7° has the effect of switching the roles
of the x; and the u,

Plo(Ar,E)) =2¢(v+ 1)

1 0 1000
Sl L (5
Ao JR2/72 JGY JR JR2) 22 00 0% \ooot 0 ahf
X eiZP(a) e(—x1 — x3) doo(ahfz) w(h)dxi1 dx3dydhduy dusda .
(5.36)
The congruence
1xiu O 10u; 0 1x100
010 — 010 0100
(oo 12):(001“02)(001);3) (3:37)
00 0 1 000 1 0001

modulo the center of N implies that we can view the integral with respect to du| dus
as projecting 79 to the trivial Fourier components with respect to those two variables,
whereas the other integrations operate from the right. Right translation commutes
with projection onto the trivial Fourier components, thus allowing us to shift the
integration with respect to du; duy all the way to the inside. The passage from 7 to
70 already involves a projection. Together with the du| du,-integral, this gives us
the projection

T > Tabelian> Tabelian(g) = / t(ng)dn, (5.38)
(I'N[N,N])\N

onto the sum of the abelian Fourier coefficients — equivalently of invariants for the
derived group [N, N] C N. Thus (5.37) reduces to
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Plo(AT, E) =200 + 1) x

Now we argue as we did in the passage from (4.27) to (4.35). First we substitute
e, ny, s for fi, f2, f3 as in (3.14). We then parameterize h € G8 as h = kanz, and
observe that the argument of d, must lie in NgAgs{=£1} to give a non-zero contribu-
tion. At this point the argument diverges slightly from our earlier argument, where
we worked modulo the center of SL(2, R). There are three instances of the variable
h in (5.39). When £ is replaced by (—1) -/, d, remains unchanged, and the other two
instances of & effect a hypothetical sign change of (—1)"1+72%13+414 _ hypothetical
only since 21554 n;j = 0;cf. (5.12). Thus k = e and k = —1 contribute equally, in
effect doubling the factor 2 in (5.39). Since

1x00 1000 1500 1-%y0 0 1x00 1000
0100 0010 0100y —fo0 1 00 0100 0010} (5 40)
00 Lx; 01y0 001x)] =Y o0 0 1xy 00 1x3 01y0 .
0001 0001 0001 00 01 0001 0001

modulo a left factor lying in [N, N], the variable n; can simply be absorbed into the
dx dxz-integration. We can therefore replace y (h) dh by wa(a)da and the other
instances of & by a, as in (4.29). The smoothing by y has now been replaced by
smoothing with respect to 4, in the single variable a. This reflects the fact that the
A-direction is the only non-compact direction for the integral (5.30), aside from the
smoothing integral over 1 € G8, of course?. Just as in section 4, the smoothing in
the variable a will turn out to be unnecessary when we interpret the integrand —

effect, a Fourier series in one variable, without constant term — as a distribution which
can be made convergent by integration by parts, under our standing assumption that
Rev > 0. To summarize, we can eliminate the integration over & and the factor
w (h) in (5.39), provided we double the factor 2, set & = ¢ in the argument of z°, and
replace o (ahf3) by xvip(a), in analogy to (4.28) and the comment that follows
it. Finally we combine the factors e ~2”(a) and Xv+p(a) into the single expression

vap(a) :

Plo(AT, E) =47 +1) x

1300 1

0

X/ // Tabelian 8(1)(1))?3 0
Ao JRJR?/Z? 0001 0

X yv—pla)e(—x1 —x3)dx1dxzdyda.

For each n € (Z — {0}), there exists a unique Bnuy € W, ?10 characterized by
the properties

2 The integration with respect to y € R in the equivalent integral (5.39) was obtained by
unfolding an integral over R/Z.
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ﬂ/l,l](n(xa u, 0))Bn,/4,;7 = e(—n1x| — naxa — n3x3) Bn,u,iy >
(5.42)
Bn,u,q(n(xa u, 0)) = e(n1x1 + nax2 4+ n3x3)

[5]; these identities are analogous to (4.25) and use the notation (5.16). The B, , ,
corresponding to different values of n are related by the action of the diagonal sub-
group A C G, but this need not concern us here. The cuspidality of 7 implies that the
Fourier coefficients in (5.17) vanish whenever one or more of the indices are zero.
Explicitly,

an # 0 = ne(Z-{0})°>. (5.43)
Comparing (5.42) to (5.16) and the definition (5.38) of tapelian, One finds
Tavelian = D, @n Bu - (5.44)
ne(Z—{0)3

The inner integral in (5.41) picks out the terms in the sum corresponding to n; =
n3 = 1. Hence

Plo(A7, E)

=4cv+ DD aie
(0 (5.45)

8 a 0
0 ( ) xv—pla)dyda.
1 0 ani

We parameterize Ao as in (4.19), Ag = {a; | t € R}. Then y,_,(a;) = ev—hr,
ctf. (4.30). Conjugating a; across nj and using the transformation rule (5.9) that de-

fines Wﬂ_, ?70, we can re-write (5.45) as follows:

Plo(A7, E))

=4c0v+1) D ai
= (5.46)

1000\ /1 0O
X / B, 8(1) i 8 ( ) VFI=20=23)0 gy
R? 0001 0 ania—;

The passage from (5.45) to (5.46) also depends on the identity (5.13), which implies
(I —p1 4+ u2)+ A — pu3 4+ ua) =2 —2(u1 + u3). Note that ainja—; = no; cf.
(3.17). We appeal to the matrix identity

0—1/y 00
o O) , (5.47)
0 01

with z = e?, the characterization (5.42) of By . and once more to (5.9), to con-
clude
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PloAr, E
v ) U)

=4(=DR¢w+1) D ai
£#0

* /]Rz e(C/y +ye) (sgny)rtis y|ramria=t QUHI=2m=213)1 gy gy

(5.48)
We simplify the integrand by making the change of variables y — ¢/y, followed by
the substitution x = |€| |y|~! €%'. Then dx = 2 x dt, hence

PVFO(AT’ EU)

=2+ 1) Y aneglereT T
040 (5.49)

/ / @(y + (Sgngy)x) u—[ul—[ll} |y|%—ﬂ1—ﬂ2 dydx
(sgn fy)’?2+’73 ’

Recall the definition (5.20) of the exterior square L-function. We now separate the
terms in (5.49) corresponding to positive and negative values of £. Appealing to
(5.12) and (5.18), we find

Pvro (AT, E\))

1
=2L(v—; ,T,Extz)

H( 1)’72/ / €()’+(Sgn)’)x)| |__,”l 3 |y| 2 —u— ”zdydx

(sgn y)’72+773
e(y + (sgny)x) w1
+( 1)’74/ / (Sgny)nz_;’_’ﬁ | | H1—H3 |y| 2 —H1—H2 dy dx
(5.50)

The factor in curly parentheses equals

(D" elx +y) |x |**/11 |yl U - "2 dy dx
R2 (sgnx)M+7s (sgn y) i

n .
/ CORED |3t ommrngy x/ )yt oy

(sgnx)m+us R (sgny)n+n

v+1 v+1
= (=" Gyy1y; (T —p1 = us) Gni+m (T —p1 = uz)
(5.51)
That completes the proof of the lemma. O
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Summary. We discuss several applications of the recent developments in the Langlands func-
toriality conjecture such as the automorphy of the symmetric powers of 2-dimensional com-
plex representations of Galois groups of number fields, lattice point problems, Ramanujan—
Selberg and Sato—Tate conjectures. We conclude by explaining how these recent developments
are established.
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1 Introduction

Recent developments in establishing Langlands functoriality conjecture has led to
breakthroughs towards certain important conjectures in number theory, most notably
those of Ramanujan and Selberg. The present cases of functoriality [4, 5, 16, 17,
44, 46, 49] are proved by applying appropriate converse theorems of Cogdell and
Piatetski-Shapiro [14, 15] to analytic properties of certain automorphic L-functions
mainly obtained from the Langlands—Shahidi method [10, 25, 41, 55, 56, 70, 72, 73,
74, 75, 79]. We refer to [1, 11, 12, 13, 24, 31, 40, 65, 66, 77, 78, 80, 81] for some
recent expository articles and book chapters on the subject.

The purpose of this paper is to explain these conjectures and the progress made
towards them, as well as an exposition of the techniques involved in establishing
functoriality.

Here is an overview of the paper. Section 2 is devoted to a review of modu-
lar forms, Galois representations and Artin L-functions with the goal of producing
new instances of the Artin conjecture for these L-functions [42, 48]. Section 3 cov-
ers certain applications of recent progress (cf. [48]) made in the Selberg conjecture
[67]. More precisely, we show how the estimate already proved in [48] regarding
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the conjecture resolves completely the problem of asymptotically counting the num-
ber of lattice points inside a hyperbolic circle and that of estimating shifted sums of
Fourier coefficients of holomorphic cuspidal eigenforms. The best estimates in the
conjecture and that of Ramanujan are due to Kim and Sarnak [46]. The Ramanujan
conjecture for Maass forms themselves is treated in Section 4. Section 5 is devoted
to a treatment of the Sato—Tate conjecture [68] and explains the progress that follows
from the analytic properties of higher symmetric power L-functions which are now
available [47] as a consequence of the new cases of functoriality [43, 48], following
Serre’s criterion ([69], appendix to [76]). Sections 6 and 7 cover an exposition of
the functoriality conjecture through its recent instances established in [4, 17, 43, 48],
including both symmetric powers and the transfer from classical groups to appro-
priate general linear groups. On the other hand, Section 8 explains what the general
Ramanujan conjecture for classical groups is and how it can be deduced from the
conjecture for appropriate G L,’s, when cuspidal representations are globally generic
[62, 74, 80, 83]. Finally, we have devoted the last section of this paper to explain the
techniques involved in proving the functoriality. This we have done by explaining
very briefly the steps of the proof in the case of functoriality for GL(2) x GL(3)
from which the functoriality for the third symmetric powers of cusp forms on G L(2)
are deduced.

This paper is based on two lectures given at the International Symposium on
Representation Theory and Automorphic Forms at the Seoul National University,
Seoul, Korea, over the period of February 14-17, 2005. I would like to thank the
organizers and particularly Professor Jae-Hyun Yang for their kind invitation and
hospitality. The author is partially supported by the NSF grant DMS—-0200325.

2 Modular forms, Galoisrepresentations and Artin L-functions

Let h denote the Poincaré upper half plane of complex numbers z for which Im(z) >
0. For a positive integer N let I'g(N) be the Hecke subgroup of level N, i.e.,

To(N) = [y = (2’ Z) € SLy(Z)|c = O(N)] .

This is an example of a congruence subgroup of SL;(Z), i.e., any subgroup I" with
I'y ¢ T' C SLy(Z), where

Iy ={y € SLa(Z)ly = I(N)}.

Let f be a (holomorphic) cusp form of weight k > 1 with respect to I'g(N) of a
given character (Nebentypus) ¢, where ¢: (Z/NZ)* — C* is a character extended
to Z/NZ by vanishing on integers m with (m, N) # 1. Then

f@o -2 =ce@ ez +d) f(2),
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where y = (¢5) € I')(N) and

az+b

7= s
Y cz+d

i.e., defined through the action of I'g(N) on § by fractional linear transformations.
Similar actions hold for any congruence subgroup of SL>(Z). We shall finally as-
sume that f is a new form and an eigenform for all the Hecke operators [21, 84],
normalized by a; = 1, where

0]

f(Z) — Zanehinz

n=1

denotes its Fourier expansion at infinity. We recall that a,,,, = aa, it (m,n) =1
and point out that if ¢ is primitive, then every member of S (I'g(N), ¢) is a new form.

Next let I' = Gal(Q,/Q) be the Galois group of an algebraic closure Q, of
Q. Let F/Q be a finite Galois extension, and for a rational prime p in Q which
remains unramified in F, write pOf = p1 ... p,, with distinct prime ideals in OF,
the ring of integers in F. Let p = p; and let Fy be the completion of F at p. Let
G = Gal(F/Q). The decomposition group Gy, i.e., the set of all the ¢ € G which
fix p is canonically isomorphic to Gal(Fy/Q,). The inertia group

Iy = {o € Gylo(x) =x(p), x € Op}

is trivial since p is unramified in F. If F and Q, are the corresponding residue
fields Op/p and Z,/ pZ,, then

The isomorphism is defined by ¢ + ¢, 0(x) = o(x), x € Fy representing x €
Op. The preimage of a fixed generator of the cyclic Galois group Gal(Fp/Q,), its
Frobenius element o, is called a Frobenius element. It is defined by

Frp(x) = x?(mod p)

which is the preimage of ¢ € Gal(Fp/Q),) satisfying o : x > x”, x € Fp. Chang-
ing p to another prime dividing p, one then obtains a well-defined conjugacy class
of Frobenius elements.

Let p: ' — GL2(C) be a two-dimensional continuous representation of I' =
Gal(Q,/Q). By continuity it factors through a finite Galois extension F/Q. Then
for each prime p unramified in F'

Trace p(Fryp)

is independent of the choice of p dividing p.
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Conjecture 2.1. Assume det p(c) = —1, where ¢ denotes the image of complex con-
jugation in I'. Then there exists a new eigenform f of weight 1 such that for all
unramified p

Trace p(Frp) = ap,

where

f(Z) — ZaneZﬂmZ-

n>1

The conjecture is a theorem when the image of p in PG L, (C) is solvable, i.e., is
isomorphic to either a dihedral group (D2,), A4 (tetrahedral type), or S4 (octahedral
type) (cf. [22, 47, 52, 86]).

On the other hand, when the image is As (icosahedral type), the conjecture is
known only in special cases (cf. [9]). The even case, i.e., when det p (c) = 1, is com-
pletely out of reach. This should correspond to Maass forms with 4 = }‘ (cf. Sec-
tion 3).

The converse of the conjecture is due to Deligne and Serre [19]. In fact, if

feSiTo(N),¢)

with character ¢, then the two-dimensional irreducible representation p is of con-
ductor N and det(p) = . We note that ¢ should be considered as a character of I"
through class field theory.

Given a continuous representation » of I' acting on a finite-dimensional repre-
sentation V, one can define the corresponding Artin L-function by

L(s,r) = Hdet(lv — r(Frp)|VIp . p_‘v)_l,
p

where s € C. Here Iy is the identity matrix for V and V¥ is the subspace of V
fixed by the inertia subgroup I, for some p|p. Consequently, the choice of Fry in
its Ip-coset is irrelevant which matters if p ramifies. Also observe that L(s, r) is
insensitive to conjugation which comes in as we change p to another prime dividing
p. In particular, for each p the corresponding local factor is independent of the choice
of prime p|p, giving a well-defined Artin L-function (cf. [53]).

Conjecture 2.2 (Artin conjecture). The Artin L-function L(s,r) is entire unless r
contains the trivial representation.

When r is odd and two dimensional, then clearly Conjecture 2.1 implies Con-
jecture 2.2 since L(s,r) = L(s, f), where f is the form attached to r. It follows
from Booker’s recent converse theorem [6] that for G L(2), Artin Conjecture 2.2 also
implies its strong form (Conjecture 2.1). Thus Conjecture 2.2 is already valid for all
the two-dimensional solvable representations (cf. [22, 47, 86]).

It is an important problem to prove Conjecture 2.2 for different representations.
Given an integer m, let

Sym™: GLy(C) - GLy+1(C)
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be the (m + 1)-dimensional irreducible representation of GL2(C) on the space of
symmetric tensors of rank m. Simply said, given g € GL2(C), Sym™ g is the matrix
of change of coefficients in a homogeneous polynomial of degree m in two variables
(x, ¥) under the change of coordinates (x, y) — (x, y)g. Up to a twist every finite-
dimensional irreducible representation of GL2(C) isa Sym” for some non-negative
integer m.

Now let p be a two-dimensional representation of I' = Gal(Q,/Q). Then
Sym™p = Sym™ - p defines a (m + 1)-dimensional representation of I" which is
of quite a bit of interest and one likes to know whether L(s, Sym” p) satisfies the
Artin conjecture. We have the following result proved in [48].

Theorem 2.3 ([48]). Suppose p is odd and of either octahedral type or icosahedral
type for which Conjecture 2.1 is valid. Then L(s, Sym®p) is entire. It is primitive if
and only if p is icosahedral. Here primitive simply means that it is not induced from
a proper subgroup.

Similar results are proved for certain Artin L-functions of degrees 6 and 12 in
[48] (see also [64].)

A much more general result has been proved in [42] which we shall now explain.

Let Ag be the ring of adeles of Q. Theory of automorphic forms for GLy (Ag)
concerns irreducible constituents of LZ(A(BGL N(@\GLy(Ag)). One of the cor-
nerstones of Langlands program is that one must be able to attach in a canonical
way to every N-dimensional continuous representation of I" an irreducible automor-
phic representation of GLy (Ag), i.e., an irreducible constituent of L? (AZ’@GL N (Q)\
GLN(Ag)), either discretely or continuously.

Theorem 2.4 ([42]). Assume the two-dimensional continuous representation p sat-
isfies Conjecture 2.1. Fix m € Z. Given a rational prime number p not dividing the
conductor of p, let H;m) be the G L, 1(Zp)-spherical irreducible representation of
GLu1+1(Qp) defined by the conjugacy class of Sym™ p(Fry), p|p, in GLjy11(C).
Then for every other prime p including p = oo, Q, = R, there exist an irreducible
admissible representation H;m) of G Ly+1(Qp) such that ™= p H;m) appears

in LZ(AaGLm+1(Q)\GLm+1(AQ)). If the form f attached to p by Conjecture 2.1
generates the cuspidal automorphic representation  y = @, of GL2(Ag), we set
H;m) = Sym™rn, and O = Sym™zx. In this notation Sym™z is an automorphic
representation of G Ly +1(Ag).

To prove Theorem 2.4, one basically needs to consider the icosahedral cases.
Then one needs to show that irreducible representations of G=S L>(Fs), the 2-fold
cover of As, the image of p in PG L,(C), are all automorphic. The group G has
two 2-dimensional irreducible representations o and o». Its three-dimensional irre-
ducible representations are Sym’o; and Sym?o and thus are automorphic by [23].
The other irreducible representations are as follows. The 4-dimensional irreducible
representations are Sym>o; = Sym’o; and o1 ® o2. They are both automorphic by
recent results in [48] and [63]. There is only one 6-dimensional representation of G.
It is isomorphic to Sym?s| ® 02 = 01 ® Sym?a> which was recently proved to be
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automorphic in [48]. The remaining irreducible representation is of dimension 5. It
is basically the induced representation Indﬁi x from a character y. Its automorphy
is then proved in [42].

3 Lattice point problems and the Selberg conjecture

Counting the number of integral points inside a circle of radius +/X in the euclidean
plane is an estimation of the sum

> rim,

m<X

where r(m) is the number of ways a positive number m can be written as a sum of
squares of two integers, i.e., the cardinality of the set

{(a, b) € Z*|a* + b*> = m).
It is then clear, using an area calculation, that

> rm) =X + 0(x'/?),
m<X
solving Gauss’s circle problem. It is conjectured that the error term can be replaced

by O(X 411“'). The best estimate so far is O (X iE *) due to Huxley.
Given a congruence subgroup I', the hyperbolic Riemann surface I'\f carries the
metric |dz|/y. This leads to the distance function

|z —w|+ |z — w|

d(z, w) = log : 3.1)
lz —w| — |z — w|
whose cosh can be written as
coshd(z, w) = 1 4 2u(z, w),
where
u(z, w) = |z — w|*/4Im(z)Im(w). (3.2)

Clearly u(y - z,y - w) = u(z, w).
The corresponding lattice problem can be formulated as:

Problem 3.1. Fix X > 0, z and w in . Consider the lattice generated by I acting at
z,1.e., the orbit I' - z. Count the number of lattice points in I" - z inside the hyperbolic
circle of radius X centered at w, i.e., find the cardinality P(X) of

{y eT1244u(y -z, w) < X}.
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Example. Suppose 7z = w = +/—1 and T’ = SL,(Z). Then P(X) will be the cardi-
nality of

{(a,b,c,d) € Z"ad — bc =1, a* + b*> + * +d* < X}.

For arbitrary I', this counts the number of elements in I" for which a2 4+b2+c2+d? <
X.

One is able to find an asymptotic formula for P(X) in terms of eigenvalues of
the hyperbolic Laplacian A = —y?(82/0x? 4 62/dy?) on L%(F\b), the L?-space of
Maass cusp forms on I'\ b (cf. [33, 81]).

Let 4 denote an eigenvalue of A. For convenience write 1 = s(1 — s) for 0 <
A<1/4o0rl/2 <s < 1. We have

Conjecture 3.2 (Selberg [67]). Assume T is a congruence subgroup. Then there are
no Maass forms which are eigenfunctions of A having an eigenvalue A with0 < 1 <
1/4, or equivalently for é <s <1

This is a very hard conjecture and even the small improvements are of particular
interest (cf. [33, 48, 65, 66, 81]). It is well known that there are only a finite number
of normalized eigenfunctions for which 0 < 1 < 1/4. Let % < sj < 1 denote the
corresponding s, A; = s;(1 —s;) and let {u ;} denote an orthonormal set of (Maass)
cuspidal eigenfunctions for all the Hecke operators and A, where the norm is that
of Petersson. In particular, if |F| denotes the volume of the fundamental domain
F = T'\b, then the constant Maass forms u¢, corresponding to so = 1, 1o =0, is
simply uo(z) = |[F|71/2,z € b.

As explained in [33], one can then calculate, using an appropriate kernel function
for a certain trace formula, to get

1
12 T(sj =)

(s 5 2/3
F(s; 4 1) I @H@XT + 0K, (33)

P(X) = PZ,IH(X) = Z

1/2<sj<1

where ¢ = 2,if —1 € I', and ¢ = 1, otherwise.
It is now clear that if there are no cuspidal eigenfunctions for 2/3 < s; < 1 or
equallyno0 < 4; <2/9=0.222..., then

P(X) = |C;f| X + 0(X¥3). (3.4)

It is a consequence of the recent results of Kim—Shahidi [48] that:

Theorem 3.4. The eigenvalues A j > 26869 =0.228.... Thus (3.4) is valid.

One can then conclude

card{(a, b, c,d) € Z*\ad — bc = 1, a> + b*> + * + d*> < X} = 6X + O(X*/?)

since |F| =% which is of course not new since the validity of Conjecture 3.2

is known for SLy(Z); but the fact that (3.4) is valid for an arbitrary congruence



158 Freydoon Shahidi

subgroup I is quite new. We refer to [33] for other number-theoretic consequences
of the lattice point problem such as

> rmyr(m+1) =8X + 0(X*).

m<X

Another problem whose solution follows from the eigenvalue estimate stated in
Theorem 3.4 is that of shifted sums for Fourier coefficients of cusp forms [26, 48].
More precisely, let

f(Z) — Zaf(n)eZIinZ
n=1

be a new normalized eigenform as discussed in Section 2. Let & € Z, h # 0 and
consider

Dyn(X)= D armas(n+h), (3.5)

n<X

where X is a large positive real number. Then again this sum can be asymptotically
estimated by means of eigenvalues of Maass cusp forms in L(I'\h) and the estimate
stated in Theorem 3.4 shows that

Dgn(X) = Opn(X*3). (3.6)

It is conjectured that in both problems the error term can be improved to X !/2,
but this is presently out of reach.

We conclude this section by stating the best present estimate for 1; due to Kim
and Sarnak [46].

Theorem 3.5 ([46]). 2; > | — (/,)* = 0.2380371.

4 Ramanujan conjecture for Maass forms

Let f be a normalized Maass cusp form for I'g(~N) which is an eigenfunction for all
the Hecke operators and A = — yz( 60;2 + airzZ ) Write

Af:i(l—sz)f. 4.1
Then (cf. [34], pg. 132 or [33], equations (1.26), (1.34) and (3.4))
fe+iy) =D (nly)2ay Ky p @ |n|y)e™ ™, (4.2)
n#0
where K, is the Whittaker—Bessel function satisfying

d’K dK
2 Pz (240K, =0 (4.3)

Loae dz
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and

K, (2) ~ \/;Tz e ¢ (z € R). (4.4)

Here the a,,’s are the Fourier coefficients of f, although f is only real analytic.
The Ramanujan conjecture which was proved by Deligne for holomorphic forms
[18] is expected to be valid for these functions so that (cf. [34], pg. 132):

Conjecture 4.1. Suppose p is a prime. Then |a,| < 2p~1/2,
If we write
ap = p_l/z(a,, +a;l),

with a, € C, then Conjecture 4.1 is equivalent to
lap| = 1. (4.5)

It should be pointed out that the Selberg’s conjecture 3.2 is the archimedean analogue
of that of Ramanujan, i.e., Conjecture 4.1, which can easily be shown to be equivalent
to s being pure imaginary.

Over Q, i.e., for classical Maass forms, the best estimate at present is due to
Kim-Sarnak as follows (cf. [46]). It is again a consequence of recent progress in
Langlands functoriality (cf. [1, 43, 48, 54]).

Theorem 4.2 ([46]). Suppose p is a prime. Then
lapl < p~ 2 (7% + pTT (4.6)

or equivalently, s s
p~ 1% < layl < p 4.7

We will discuss the best estimates over an arbitrary number field later in Sec-
tion 6.

Remark 4.3. The lower bound in the inequality (3.12) in page 390 of [81] is neither
expected, nor implied by (4.7). It should be considered as a typo and disregarded. It
is not clear to us how it appeared! It was noticed only when the volume was already
in press.

5 Sato-Tate conjecture

Let f be a holomorphic cuspidal normalized new eigenform of weight k¥ > 1 and
level N. Assuming that f satisfies the Ramanujan conjecture, we may even include
Maass forms. Moreover, assume that the Nebentypus ¢ of f is trivial and that f is
not of CM-type. Then, given a rational prime p { N, let a,, denote the corresponding
Fourier coefficient of f. Write

k—1
ap=rp 2 (ap+a,), (5.1)
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with a, € C. Then, the Ramanujan conjecture is equivalent to |a,| = 1. Write
o p = eiHP (52)

where 0 < 6, < «. Then the conjecture is equivalent to

a,/p'2 e[-2,2]. (5.3)
Note that the matrix
e 0
@)=y ,iv, ) €5UQ (5.4)

forall p t N, where

SUQ) = [(_”b i’) € GL,(C)

la|* + |b)* = 1] . (5.5)

Every conjugacy class in SU(2) has a unique element of the form e(7) for some
t € R. The Haar measure on SU (2) gives

2
du = " sin’tdt (5.6)
T
as the measure on the conjugacy classes X of SU(2),0 < < z (cf. [69, 76]).

A sequence {t;}, t; € R, is equidistributed with respect to measure d u defined by
(5.6) if for any ¢ € C(X)

/ ”(p(e(t))z sinrdt = lim | > ole(®)). (5.7)
0 T n—o0 n P

One can then conjecture:

Conjecture 5.1 ((Sato-Tate) (cf. [69])). The sequence {0} is equidistributed with
respectto d u.

As explained in [68, 76], to prove these conjectures one needs to know certain
properties of the symmetric power L-functions

LG, ) =[][]0 =appy " p™" (5.8)

ptN j=0

for all m € Z*, where S p = a;l. More precisely, one needs to know the holomor-
phy and non-vanishing for each L,, (s, f) on Re(s) = 1. Observe that by validity
of the Ramanujan conjecture |a,| = |B,| = 1, each infinite product in (5.8) is ab-
solutely convergent for Re(s) > 1. Incidentally, as explained by Langlands in [54],
this absolute convergence for all m will by itself imply the validity of the Ramanujan
conjecture (cf. [76] for a survey of both these conjectures).



5 Langlands Functoriality Conjecture and Number Theory 161

While some progress is made in [47, 76] on proving the non-vanishing of
Ly (s, f) on Re(s) = 1 for m < 9, again based on recent progress on functori-
ality [43, 48], we are still quite far from proving Conjecture 5.1. (We also refer to
[47, 82] for the holomorphy on the line which is no longer guaranteed if f is of CM-
type or k = 1.) On the other hand, following certain ideas of Serre [69], explained as
an appendix in [76], the following result is proved in a recent paper of Kim—Shahidi
[47], using the holomorphy and non-vanishing results for L,, (s, f) on Re(s) = 1
for m < 9 discussed above. It may be interpreted as evidence towards the validity of
Conjecture 5.1.

Proposition 5.2 ([47]). For every ¢ > 0, there are sets S| and Sy of prime numbers
of positive lower density such that a, > ¢ — ¢ for p € Sy and a, < —c + ¢ for
p € S, where c = 2cos(2r/11) ~ 1.68 ...

Remark. Richard Taylor now seems to have a proof of this conjecture for elliptic
curves (weight two modular forms) with at least one multiplicative reduction over Q
(or any totally real field).

6 Functoriality for symmetric powers

Theorems 2.3, 2.4, 3.4, 3.5, 4.2 and Proposition 5.2, which are all of arithmetic sig-
nificance, are all consequences of recent cases of functoriality established in [43, 48]
which we shall now explain.

It is well known [21, 35] that each normalized cuspidal newform f which is an
eigenform for all the Hecke operators and the hyperbolic Laplacian, holomorphic or
not, can be realized as a subrepresentation 7 y = 7w of LZ(GLQ(Q)\GLQ(AQ), ),
for a grossencharacter w of Q. It is therefore natural to consider the constituents of
L*(GLy(F)\GL2(AF), w) for any number field F. Infinite-dimensional irreducible
subrepresentations of these L2-spaces (as o varies) are the so-called cuspidal auto-
morphic representations of G Ly (Ar). Given such a representation 7, one can write
T = ®,m, in which 7 determines the class of each =, an irreducible unitary repre-
sentation of G L, (F),), uniquely. Here F,, is the completion of F at a place v and if
0, is thering of integers of F,, for each finite place v, then 7, will have a vector fixed
by G L2(0,) for almost all such v. Such a representation is called an unramified or
spherical (sometimes class one) representation of G Lo (F). If 7, is unramified, then

Ty = IndgzL(%SSU)le ® y ® 1,

where y;,,i = 1,2 are unramified quasi-characters of F,\, with y1, ® y2, consid-
ered as a character of diagonal subgroup of the upper triangular elements B(F},) of
GLy(Fy). Set o, = y1,(wy) and f, = y2,(w,), where @, is a uniformizing para-

meter of O, or a generator of its maximal ideal. Then the (semisimple) conjugacy

class of
P (au O)
"o
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in GL,(C) determines the class of 7, uniquely. Note that when F = QQ and f is a

normalized new eigenform of weight k, thena, = p ' (ap + Bp).
Now, let Sym™ denote the m-th symmetric power representation of GL>(C)
discussed in Section 2. Then

Sym™(1,) = diag(a]))', af)"_l,[)’,), s .

The conjugacy class of Sym™(z,) in GL,,+1(C) then determines a unique class of
unramified representations Sym™z, of GL,,+1(F,).

Now, let S be a finite set of places of F including archimedean ones, such that for
every o ¢ S, m, is unramified. The Langlands functoriality conjecture in this case
can be formulated as

Conjecture 6.1. There exists an automorphic representation Sym”z =[] = ®, [],
of GL;+1(AF), i.e., an irreducible constituent (either discrete or continuous) of
LZ(A}GLmH(F)\GLmH(AF)) such that IT, = Sym™x, forallo ¢ S.

The transfer from z to Sym”z corresponds to the homomorphism
Sym™: GLy(C) - GLpy+1(C)

from the L-group G L,(C) of GL; to the L-group G L, +1(C) of GL,+1 as usually
used to formulate the conjecture. Functoriality for the pair (GL2, GL,,+1) predicts
that every homomorphism between G L, (C) and G L,,+1(C) must lead to a transfer
of automorphic forms from G Ly (Ar) to those of G Ly,+1(AF).

The present state-of-the-art allows us to prove a very precise version of functo-
riality conjecture for m = 3 and 4. More precisely, let at each place v, W, be the
Weil-Deligne group at v, a natural extension of Gal(F,/F,) (cf. [85]).

The local Langlands conjecture proved in [28, 31, 50, 57] attaches a two-
dimensional representation

¢v: W, — GL2(C)

to each 7, (in fact, every irreducible admissible representation of G L>(F,)), pre-
serving Artin root numbers and L-functions.
The composite
Sym"¢,: W, — GLy+1(C)

is then a (m + 1)-dimensional representation of W, and the recent results of Harris—
Taylor [28] and Henniart [30] then attaches an irreducible admissible representa-
tion Sym™z, of GL,,+1(F,). The precise version of functoriality conjecture then
demands that

Sym"z = ®, Sym"r,

be an automorphic representation of G Ly, +1(AF).
While this conjecture was proved for m = 2 in [23] in 1978, the following theo-
rem is quite recent (2002) and is proved in [43, 48].

Theorem 6.2 (Kim-Shahidi [48] and Kim [43]). The representation Sym™r is an
automorphic representation of G Ly, +1(AF) form =3 and m = 4.
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In the case m = 3, it is proved in [47, 48] that Sym’z is cuspidal unless 7 is
dihedral or tetrahedral in which case both the Ramanujan and the Selberg conjectures
are valid for 7.

When Sym?®7 is cuspidal, one can use the estimates in [58] to prove that

_(1_1) 1
2 17

1
3 -3 -
qv = |av| = |IBU | < qu Y

leading to
5/34

—5/34
9y / <layl and |By] < g,

at the finite places.
When F = Q and F, = R, the archimedean analogue of these estimates is

1[5\ 66
i J Z - = ]
4 34 289
stated as Theorem 3.4 in Section 3. As explained in that section, this leads to a proof
of (3.4).
The best estimate for |a,| and |f,| for forms over an arbitrary number field re-
quires the automorphy of both Sym>z and Sym*z . It gives [47]

1/9

[

g, "? < layl and |B,] < ¢

with similar estimates at archimedean places [44] which is slightly weaker than 7/64
in [46] proved for Maass forms (over Q).

7 Functoriality for classical groups

Langlands functoriality conjecture is expected to be valid in the generality of every
pair (G, G’) of connected reductive groups over a local or global field F. For sim-
plicity of exposition, let us assume that G’ = G Ly for some positive integer N. Let
LG denote the (complex) L-group of G. Then G’ = GLy(C). Let us recall that
LG = Spya(C), $02,(C) and SO2,.1(C), for G = SO2,+1, SO2, and Sp,, with
all the groups split over F, respectively (cf. [7, 12, 54]).

An irreducible admissible representation 7 = ®, 7, of G(AF) is called automor-
phic if it appears in L>(G(F)\G(AF)) (either continuously or discretely). Again, as
in the case of G Ly, classes of almost all z,,’s (called unramified representations), are
parametrized by semisimple conjugacy classes in -G, the L-group of G as a group
over F,. Let t, denote this conjugacy class for each such z,. (They will have vectors
fixed under the action of G(O,) which makes sense since G will be quasisplit and
defined over O, for almost all v). To make matters even easier let us assume that
G is split over F. Let LG denote the connected component of ©'G. We shall now
formulate the functoriality conjecture as follows. Let S be a non-empty set of places
such that for each v ¢ S, 7, is unramified.
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Conjecture 7.1. Given a homomorphism
p:G° - GLN(C),

there exists an automorphic representation I1 = ®,I1, of GLy(Ar) such that II,
is the unramified representation of G Ly (F,) attached to the conjugacy class of
G Ly (C) generated by p(t,) forall o ¢ S. In other words, p is functorial.

Now, let G = SO2,+1, SO2, or Spa,, all split over F'; or even GSpin,,, the
general spin group of semisimple rank [ ]; a group whose derived group is Spin,,,
the two sheet algebraic covering of SO,,, defined by means of a particular central
element (cf. [3, 4]). Then LGSpinm =GSO,, or Gsz[rg] according as m is even or
odd, respectively. In particular, in each case we have an embedding

i:1G° - GLy(C). (7.1)

We shall assume N is minimal.

Finally assume x is globally generic, i.e., it has a non-vanishing Fourier coef-
ficient with respect to a generic character of the unipotent radical of the subgroup
of upper triangulars (a Borel subgroup). We refer to [62, 74, 75, 80] for appropriate
definitions. We then have:

Theorem 7.2 ([4, 5, 16, 17]). Assume F is a number field. The embedding i is func-
torial whenever t is globally generic.

The case of classical groups is due to Cogdell-Kim—Piatetski-Shapiro—Shahidi
[16, 17] and that of general spin groups was proved by Asgari—Shahidi [4].

While the transfer in [17] is strong in the sense that it is accomplished for even
7, with v € S, the case proved in [4] is still weak.

Remark 7.3. When G = GSpins = G Spa, this establishes the generic transfer of au-
tomorphic forms from GSp4(Afr) to GL4(AF). This is proved in [5] in its strongest
form where the cuspidality of the image is also determined. This, in particular, proves
the holomorphy of the 4-dimensional spinor L-functions for G Sp4 on all of C for
generic forms which is of considerable interest in number theory.

Remark 7.4. The general transfer for the classical groups where 7 is not necessar-
ily assumed to be generic is expected to follow from Arthur’s trace formula. This
requires different forms of fundamental lemma whose proofs are still in progress.

8 Ramanujan conjecture for classical groups

Let G be a connected reductive group over a global field F. Let 7 be a cuspidal
representation of G(Af). Write 7 = ®,7,. The representation 7 is tempered if and
only if each 7, is. This means that its matrix coefficients are in L2+e (Z(F)\G(Fy))
foralle > 0.
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When G = GL,, the Ramanujan and the Selberg conjectures are tantamount to
cuspidal representations 7 of G L, (Aq) being tempered; similarly for GL2(Af) for
any number field F. More generally, it is expected that cuspidal representations of
GL,(AF) are all tempered for any n and any number field F. (For a function field
this is a theorem due to Lafforgue [51] for any n. The case of n = 2 was established
earlier by Drinfeld [20].)

For a general reductive group this may not be true. Counter-examples ex-
ist already for Sps and U(2,1) (cf. [32, 49]). None are generic. On the other
hand one expects the following version of the Ramanujan conjecture to be true
(cf. [17, 62, 74, 80]).

Conjecture 8.1. Let G be a quasisplit connected reductive group over a global field
F. Let = be a globally generic cuspidal representation of G(Af). Then z is tem-
pered.

This is in agreement with the widely expected validity of the conjecture for
G L, (AF) as every cuspidal representation of GL, (Ar) is globally generic [83].
One of the consequences of Theorem 7.2 is the following result proved in [17].

Theorem 8.2 ([17]). a) Assume that the Ramanujan conjecture is valid for GL,, (A )
for all m < N; then it is valid for the globally generic cuspidal spectrum of
SO, (AF) and SOz, (AF) with N = 2n, as well as that of Spa,(AFr) with
N =2n+1.

b) Write 1 = ®,n,, where it is a globally generic cuspidal representation of

either SOy, (AF) or Spa, (AF). Write
7, ~ Ind(z1,,| det() " ® ... ® 77,0 | det()[" ® 70,0),

where by, > ... > b, with t;, irreducible tempered representations of appropri-
ate GL-groups and 1, is a generic tempered representation of a similar classical
group but of lower rank (Muic). Then

1 1 b < 1 1 | <i<t
- — i - , 1 <i<t.
2 N241) =" T2 N2
Here N is the minimal rank of GLy(C) in which ' G is embedded (cf. (7.1)).

We point out that in part b) of Theorem 8.2 no assumptions concerning the valid-
ity of the Ramanujan conjecture for G L, (A ) is necessary as this time one uses cer-
tain estimates of Luo—Rudnick—Sarnak in the Ramanujan conjecture for GLy (AF)
proved in [58].

We conclude this section by referring to [5] for results concerning globally
generic cuspidal spectrum of G Sp4(AF). In fact, besides the new estimates proved in
[5] towards the conjecture, we should mention that, as it is proved in [5], they are in
fact also weakly Ramanujan, i.e., that they come as close as possible to be tempered
at all their unramified places. This is done by using functoriality (Remark 7.3) to
reduce the question to forms on G L4(AF) for which the weak Ramanujan property
is proved in [43].
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9 The method

The cases of functoriality conjecture proved in [4, 5, 16, 17, 43, 45, 48] are all estab-
lished by applying converse theorems of Cogdell and Piatetski-Shapiro [14, 15] to
analytic properties of certain automorphic L-functions obtained from the Langlands—
Shahidi method (cf. [10, 25, 41, 55, 56, 70, 72, 73, 74, 75, 79]).

We will discuss this through the case of functoriality of Sym®z for a cuspidal
representation 7 of GL2(Ar). This is proved by establishing another transfer of
automorphic forms. More precisely, consider the homomorphism

p: GLy(C) x GL3(C) — GLg(C) ©.1)
(g1, 82) — g1 ® g2.

It is proved in [48] that p is functorial, again in the strongest possible form as we
now explain.

Let 71 = ®,71, and 7y = ®, 72, be cuspidal representations of GL2(Ar) and
G L3(AF), respectively. By the local Langlands conjecture proved in these cases by
Kutzko [50], Henniart [30] and Langlands ([57] for archimedean places and in full
generality), there exist homomorphisms

$iv: Wy — GLi1(C) (i =1,2), 9.2)
parametrizing 7;,, i = 1,2, preserving root numbers and L-functions. Then
P10 @ P2y WI/*",) — GL6(C) (9.3)

is a 6-dimensional representation of W}, for each ». By recent results of Harris—
Taylor [28] and Henniart [30] (and Langlands [57]) 10 ® o, defines an irreducible
admissible representation of G Le(F,) which we denote by 7, X p,. Set

m1 Wy = ®y (w1, M 7oy). 9.4)

Note that for all the unramified places 71, X 7, is the unramified representation
determined by p (f1, ®12, ), Where t;, is the semisimple conjugacy class parametrizing
Tip,1 = 1,2. The following theorem is one of the main results of Kim—Shahidi
proved in [48].

Theorem 9.1 ([48]). The irreducible admissible representation 11X 72 of G Le(AF)
is automorphic, i.e., it appears in L>(GLg(F)\GLe(AF), a)?,1 w?,z), where @y, is the
central character of i, i = 1, 2.

Corollary 9.2 ([48]). Let & be a cuspidal representation of G Ly(Ar). Then Sym>=
is an automorphic representation of G L4(AF).

Proof. One needs to use the identity

7 ® Sym’zr = Sym’z B (7 ® wy), (9.5)
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together with the classification theorem of Jacquet and Shalika [39] and a simple
argument using L-functions to conclude the automorphy of Sym>z.

We shall now give a sketch of the proof of Theorem 9.1.

Let S be a non-empty finite set of finite places such that for every v & S, my,
and 7y, are unramified. Let 5 be a grossencharacter of F which is highly ramified
at least at one place v € S. Given a positive integer n, let 7, (S) be the set of cuspidal
representations of G L, (A ), which are unramified at all v € S. Set

(1, §) = 12(S) ® (7 - det). (9.6)
Leto = ®y0, € 1,(n, S) forn = 1,2, 3 or 4. For each v, let
pIN Wl/% — GL,(C) 9.7)
be the n-dimensional representation of WI/% parametrizing o, ([28, 30, 57]). Set

L(s, (m1y X 7py) X 0y) = L(s, ¢11) ® ¢21} ® Zv), (9.8)

where the L-function on the right is that of Artin [53].
Given a non-trivial additive character ¥ = ®, v, of F\AF, we let

(s, (m1y M way) X 0y, W) = &(s, P10 @ P20 @ Ty, W) 9.9

be the corresponding Artin root number.

We recall that by the results in [28, 30, 57], both L(s, (z1, X 7p,) X oy)
and ¢(s, (1, X 7p,) X 0y, W) are factors defined for the Rankin products of
GLg(F,) x GL,(F,) by both the Rankin-Selberg method ([12, 36, 38, 39]) and
that of Langlands—Shahidi ([10, 55, 60, 71, 72, 73]).

Finally set

L(s,m1 X 7m) x0)= HL(S, (1, M 7py) X 0y), (9.10)
v

and
&(s, (1 B m2) x o) = [ [ e(s, (w1, B 7w2) x 00, ). ©.11)
v
An appropriate version of the converse theorems of Cogdell and Piatetski-Shapiro
[11, 12, 13, 14, 15] in this case can be formulated as:

Theorem 9.3 ([15]). Assume that for all o € t,(5, S) withn = 1,2,3 or 4

a) L(s, (m1 X ) x o) is entire,

b) is bounded in vertical strips of finite width and satisfies

c¢)L(s, (r1 X mp) x o) =¢(s, (my Rmp) xo)L(1 —s, (71 K73) X 0).

Then there exists an automorphic representation 1" = ®, 11/ of GLe(AF) such
that I = w1, R 7o, forallv & S.
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Therefore to apply Theorem 9.3 one needs to verify the validity of 9.3.a, 9.3.b
and 9.3.c. A priori, this seems quite out of reach since (9.10) and (9.11) are pro-
duced by multiplying together an infinite set of local factors, but a closer look proves
otherwise. In fact, these properties can all be verified using Langlands—Shahidi
method ([10, 25, 41, 55, 56, 70, 72, 73, 74, 75]) which we shall now explain in
this case.

Starting with (71, 72, o), one builds a cuspidal representation I1 = ®,II, of
M (AF), the adelic points of a maximal Levi subgroup of a connected reductive group
G over F, in such a way that

L(s, (m1y K@) X ay) = L(s, 1) 9.12)

forall v & S, where S is assumed large enough so that for all v ¢ S, 7;y, 0,, 7, and
v, are all unramified; and

Ls(s, 1) = [ | L(s. 1) (9.13)
vegS

appears in the constant term of the Eisenstein series built on (G(Ar), M(AFf)) by
means of II (induced from IT). Here is the table of possibilities in which Mp stands

for the derived group of M and “sc” denotes the simply connected form of the group
(cf. [48)):

n G Mp

1 SLs SLy x SLj

2 D3¢ SLy x SL3 x SLy
3 EG* SLy x SL3 x SL3
4 E;" SLy x SL3 x SL4

The machinary developed in [70, 71, 72, 73, 74, 75] defines appropriate local
factors from our method and proves the functional equation 9.3.c. The local L-
function L(s, I1,) is then what one usually calls a triple product L-function denoted
by L(s, w1, X w2, X 0y). These factors are defined by methods of harmonic analy-
sis through standard intertwining operators and Whittaker functionals and are very
much of analytic nature. One bi-product of our results is the equalities

L(s, w1y X oy X 0y) = L(s, P10 ® P2 ® 0y) (9.14)

and
e(s, w1y X Ty X 0y, W) = (s, P10 @ P20 @ 0v, Wo) (9.15)

which are quite subtle since the Artin factors on the right-hand side are defined com-
pletely by arithmetic means.

The validity of statement 9.3.a is due to the fact that twisting by a highly ramified
7, kills all the symmetries in I1,,, and thus I1, under the action of Weyl group which
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leads to an Eisenstein series with no poles ([27, 56, 59]). As this is equivalent to reg-
ularity of the constant term of the Eisenstein series, it reflects itself in the L-functions
appearing there and in particular L(s, IT). This is Kim’s observation (cf. [41], also
see Proposition 2.1 of [48]).

The boundedness in vertical strips is a special case of a general result of Gelbart
and Shahidi [25]. It exploits analytic properties of both the constant and the non-
constant terms of the Eisenstein series [27, 56, 59, 61].

In all of these, there is an induction, proved in [74, 75], since in most interesting
cases there are at least two L-functions appearing in the constant term. (In the cases
of E;¢ and E3° there are 3 and 4 L-functions, respectively). One then inductively
removes the L-functions other than the main L-function L(s, IT), using another triple
(GY(AF), MY (AF), ITY) for which a given other L-function of the setting (G (AF),
M (AF), IT) appears as the main one ([55, 74, 75]).

Finally, to show that

H:) =m, X, (9.16)

everywhere, a lot more work is required. One needs to use base change, both normal
and non-normal cubic [2, 37] as well as a result of Bushnell and Henniart [8] on local
Galois representations and types, which was prepared as an appendix to supplement
[48], to prove (9.16) everywhere. This is what is usually called the strong lift (or
transfer) as opposed to the weak lift (or transfer) proved by Theorem 9.2 as a first
step.

We refer to [12, 13, 80] for the sketches of the proofs of different parts of Theo-
rem 7.1. The proof of functoriality of Sym*z, due to Kim [43], is also sketched in
[31, 40, 77]. It requires establishing another functoriality, namely to show that

A%: GL4(C) = GLg(C)

is functorial.
Functoriality of Sym*z then follows from

A2(Sym’r) = (Sym*z ® w,) B> .

Incidentally, identifying GSping(C) as a covering of G L4(C), the (weak) functori-
ality of A% becomes a special case of the results proved in [4].
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Summary. In this article we study the discriminant of those K3 surfaces with involution
which were introduced and investigated by Matsumoto, Sasaki, and Yoshida. We extend sev-
eral classical results on the discriminant of elliptic curves to the discriminant of Matsumoto—
Sasaki—Yoshida’s K3 surfaces.

Key words: K3 surface, automorphic form, moduli space, discriminant, analytic
torsion

Subject Classifications: 5852, 14J15, 14J28, 11F55, 32N15

1 Introduction — Discriminant of elliptic curves

Let M (n, 2n; C) be the vector space of all complex n x 2n-matrices and consider the
following subset

M°(n,2n) ={(ai,...,a2,) € M(n,2n; C); aj; A---Aa;, #0,Viy <-- <ip}.
On M (n, 2n; C), the group GL,(C) x (C*)?" acts by
(g, A15---50m) - A=g-A-diag(y, ..., dan), A€ M(n,2n; C)

where diag(41, ..., 42,) denotes the diagonal matrix (4; J;;). The configuration
space of 2n points (or 2n hyperplanes) in the general position of P"~! is defined as

X°(n,2n) = GL,(C)\M°(n, 2n)/(C*)*".

*The author is partially supported by the Grants-in-Aid for Scientific Research for young
scientists (B) 16740030, JSPS.
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Let us consider the case n = 2. On M?(2, 4), we have a family of curves 7 : £ —
M?(2,4) with fiber

4
77N A) = Ea = {((x1 : %2),y) € Opi (2); y> = [ @i x1 +anx2)}, (11

i=1

where (x1 : x2) denotes the homogeneous coordinates of P!. The natural projection
pr;: Ea — P!is a double covering with 4 branch points, so that E, is an elliptic
curve. It is classical that X?(2, 4) is a moduli space of elliptic curves with level 2
structure.

We define the discriminant of A € M°(2,4) by

Ap.ay(A) = I1 det(a;, a;) det(a, a;). (1.2)
{i, jYUlk,[}={1,2,3,4}, i<j, k<l

Setdx = xodx1 — x1dxy = x%d(xl/xg), and define the norm of A2 4)(A) by

6
i d d
1A @4y (A)])2 =(21ﬁ/E yx A ( yx)) 1A .4y (A)]. (1.3)
A

Since ||A(2,4)||2 is invariant under the action of GL»(C) x (C*)*, it descends to a
function on X?(2, 4). There is an analytic expression of || A 4)]|.

Let det* (J4 be the regularized determinant of the Laplacian of E 4 with respect
to the normalized flat Kéhler metric of volume 1. Since the isomorphism class of E 4
is constant along the G L>(C) x (C*)*-orbit, det*[J4 is constant on each G L,(C) x
(C*)*-orbit. For all A € M°(2,4), by [11] we get

det* O = |A@.ay(A)] 713 (1.4)

In fact, Eq. (1.4) follows from the classical Kronecker limit formula, which can be
seen as follows. Forz e Candz e H:= {r € C; Im7 > 0}, let

1 1 1
#e9=2% B {cimeen mesne)
(m,n)€Z2\{(0,0)}
be the Weierstrass gp-function and set
0 1 1 1
A(r) = e M°(2,4).
© (1—50(5,1) —0(5:7) —so(lz’ﬂ)) @

By setting x; =uxpandy =0 x§/2 in (1.1), E 4(¢) is isomorphic to the cubic curve
in P? defined by the inhomogeneous equation in the variables u, v:

R [ e G

= 4u’ — g2(t)u — g3(7)
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with g2(7) = 60 E4(7) and g3(t) = 140 E¢(7), where Ex(7) denotes the Eisenstein
series of weight k (cf. [28, p. 11]). Hence the complex torus C/Z + t Z, = € H, is
isomorphic to E 4 () via the map

fiC/L+tZ3z— (p(): 1), 0 (2)x3/2) € Op(2). (1.5)

Since dx/y = 4 f*(dz) by (1.5) and since A4y (A(7))? = g2(z) — 27 g3(7)2,
Eq. (1.4) is deduced from the Kronecker limit formula:

det* Tagy = C1 |A ()75, (1.6)

where C; # 0 is an absolute constant, A(r) = (27) " ?(g2(7)? — 27 g3(7)?) is the
Jacobi A-function and || A(7)||?> = (Imz)'?|A(z)|? is its Petersson norm. Recall that
one has the following expressions of the Jacobi A-function:

8 o
A7) = (H Hab(r)) =q [[a-¢"*.  g=7", (1.7)
n=1

even

where 6,5, (1) denotes the theta constants.

In [39], we extended Eq. (1.6) to K 3 surfaces with involution. Let us explain our
results briefly. Let X be a K3 surface and let:: X — X be a holomorphic involution
acting non-trivially on holomorphic 2-forms on X. Let H_% (X, Z) be the invariant
part of the z-action on H?(X, Z). The free Z-module H>(X, Z) of rank 22 endowed
with the cup product is an even unimodular lattice of signature (3, 19) isometric to
the K 3 lattice Lx3. By Nikulin, the topological type of 1 is determined by H_% (X,72),
which is a primitive 2-elementary hyperbolic sublattice of H>(X, Z). Let M C L3
be a primitive 2-elementary hyperbolic sublattice with rank »(M). The pair (X, 1) is
called a 2-elementary K3 surface of type M if H_% (X,Z) = M. The period of a 2-
elementary K 3 surface of type M lies in Qf, = Qs \ Dy, where Q) is isomorphic
to a symmetric bounded domain of type IV of dimension 20 — r(M) and Dy, is a
divisor of Q) called the discriminant locus. The moduli space of 2-elementary K3
surfaces of type M is isomorphic to the quotient QS / I'ys, where Iy is an arithmetic
subgroup of Aut(Qy). We assume that r (M) < 17.

For a 2-elementary K3 surface (X, 1) of type M, we constructed an invariant
i (X, 1) by using the equivariant analytic torsion of (X, 1) (cf. [5]). We regard 7/
as a function on the moduli space Q9,/I'y;. The main result of [39] is that 7) is
expressed as the norm of the “automorphic form” ®j; on Q) characterizing the
discriminant locus Dj;. Here @, is an automorphic form with values in some I'j;-
equivariant coherent sheaf A, on Q. If the fixed point set of ; consists of only
rational curves, then 1y = Ogq,, and hence @y is an automorphic form in the
classical sense. By Nikulin [33], there exist only seven isometry classes of lattices
M with r (M) < 17 such that the fixed point set of a 2-elementary K 3 surface of type
M consists of only rational curves. Let Sg, 1 < k < 7, be those seven lattices, where
r(Sx) = 10+ k. In Section 6, we shall express @g, as a Borcherds product [8]. Thus
the infinite product expansion (1.7) shall be extended to 2-elementary K 3 surfaces
of type Sk.
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The case k = 6 is of particular interest. In [30], [31], [36], 2-elementary K3
surfaces of type Sg with level 2 structure were studied by Matsumoto, Sasaki,
Yoshida; they proved that the moduli space of 2-elementary K3 surfaces of type
Se¢ with level 2 structure is isomorphic to X°(3, 6). In Section 7.3, we shall ex-
tend the definitions (1.2), (1.3) to 3 x 6-matrices and get a function [|A3,¢)ll on
the configuration space X?(3, 6). By Freitag, there exist theta functions {®(Z)} on
the period domain Qg,, ten of which are called even. We define the Matsumoto—
Sasaki—Yoshida form Apsy(W) as the product of all even Freitag theta functions:
Amsy(W) := Heven @(‘b‘). Let || Amsy|| denote the Petersson norm of Apsy, which
descends to a function on X°(3, 6). The main result here is the following identity,
which can be regarded as an analogue of Egs. (1.4), (1.6), (1.7) in dimension 2:

Theorem 1.1. The following identity of functions on X°(3, 6) holds:
15, = C2 1A I 7/* = Cs llAmsy /2, (1.8)
where Co, C3 are non-zero absolute constants.

This article is organized as follows. In Section 2, we recall K3 surfaces with
involution and their moduli spaces. In Section 3, we recall automorphic forms on
the moduli space. In Section 4, we recall the invariant 7j;. In Section 5, we recall
Borcherds products. In Section 6, we give an expression of zg, as the Petersson norm
of an interesting Borcherds product, whose proof shall be given in the forthcoming
paper [41]. In Section 7, we prove Eq. (1.8). In Section 8, we prove that the discrimi-
nant of smooth quartic hypersurfaces of P3 is expressed as the norm of an interesting
Borcherds product.

2 K3 surfaces with involution and their moduli spaces

In this section we recall the definition of K3 surfaces with involution. We refer to
[39] for more details about K 3 surfaces with involution.

Let X be a compact, connected, smooth complex surface with canonical line
bundle Kx. Then X is called a K 3 surface if

H'(X,0x) =0, Kx = Oy.

Every K3 surface is Kihler [2, Chap.8 Th. 14.5]. By the second condition, there
exists a nowhere vanishing holomorphic 2-form 7y on X. Notice that 7y is uniquely
determined up to a non-zero constant. The cohomology group H>(X, Z) is a free Z-
module endowed with the cup product pairing. There exists an isometry of lattices:

a: H¥(X,Z) = Lg3 =U@ U U Eg @ Eg.

Here U = ((1) (1)) and Eg is the negative-definite Cartan matrix of type Eg under the
identification of a lattice with its Gram matrix. The isometry a as above is called a
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marking, and the pair (X, a) is called a marked K3 surface. For a marked K 3 surface
(X, @), the point

7(X,a) = [a(nx)] e P(Lx3c),  nx € HY(X, Kx)\ {0}

is called the period of X, where Lk := L ® K for a lattice L and a field K.

For alattice L with bilinear form (-, -), we denote by L (k) the lattice with bilinear
form k(-, -). The set of roots of L is defined by 4y := {d € L; (d,d) = —2}. The
isometry group of L is denoted by O(L). Let LY = Homgz/(L, Z) be the dual lattice
of L, which is naturally embedded into L¢. The finite abelian group Ay := LY /L is
called the discriminant group of L. For a primitive sublattice L C Lg3, L' denotes
the orthogonal complement of L in Lk3.

Definition 2.1. For a primitive hyperbolic sublattice S C LLg3, define
Qs = Qg1 = {[x] € P(5¢); (x,x) =0, (x,%) > 0}.

We set r(S) := rankzS. Then dim Qg = 20 — r(S). There are two connected
components of Qg, each of which is biholomorphic to a symmetric bounded domain
of type I'V of dimension 20 — r(S) (cf. [2, Chap. 8, Lemma 20.1]).

Definition 2.2. An even lattice S is said to be 2-elementary if there is an integerl > 0
with As = (Z)2Z)". For a 2-elementary lattice S, set [(S) := dimp, As.

Let M C L3 be a primitive 2-elementary hyperbolic sublattice. Let /) be the
involution on M @ M+ defined by

[M(-x9 )’) = ()C, _y)
Then Ij; extends uniquely to an involution on Lg3. Forl € M L we set
Hi = {lx] € Qu; (x,1) =0}.

Then H; # ¢ if and only if (/,I) < 0. We define

Dy:= |J Ma. QY :=Qu\Du.

de AMJ_
We regard D), as a reduced divisor of Q.

Definition 2.3. A K 3 surface X equipped with a holomorphic involutioni1: X — X
is called a 2-elementary K3 surface if

l*lHO(X,KX) = _1.

The pair (X, 1) is called a 2-elementary K 3 surface of type M if there exists a mark-
ing a of X with1* = o~ o Iy o a.
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Let (X, 1) be a 2-elementary K3 surface of type M and let o be a marking with
*=alolyoa.Let nx € HY(X, Kx) \ {0}. Then 7 (X, ) € QY,. The O(M™)-
orbit of 7 (X, &) is independent of the choice of a marking a with 1* = a~! o I}y o
o. The Griffiths period of (X, 1), which is denoted by ws (X, 1), is defined as the
O (M1)-orbit

oy (X,1) = 0O(M™Y) -z (X, a) € Q%/0O(M™b).

Theorem 2.4. The coarse moduli space of 2-elementary K3 surfaces of type M is
isomorphic to the analytic space Qf,/ O (M L.

Proof. See [39, Th. 1.8]. O

We set
My = Qy /O (M), o = Q%/0(M?b).

Let Qif[ be the connected components of Q; and set
0 (M) 1= {g € O(MH): g(Qy) = Q).

Then Ot (M) ¢ O(M%') is a subgroup of index 2 with My, = QL/O(MJ-)‘|r
and M9, = (QL \ D)/ O+ (M+). We consider QL as the period domain for 2-
elementary K3 surfaces of type M. By Baily—Borel-Satake, both of M, and M¢,
are quasi-projective algebraic varieties.

The topological type of the set of fixed points of (X,:) was determined by
Nikulin. We need the following partial result. See [33] for the general cases.

Lemma 2.5. Let (X, 1) be a 2-elementary K3 surface of type M and let
X' :={xeX; 1(x)=x}

Ifr(M) + (M) = 22, then X" is the disjoint union of (r (M) — 10)-smooth rational
curves.

By the adjunction formula, a smooth irreducible curve of a K 3 surface is rational
if and only if its self-intersection number is equal to —2.

3 Automorphic forms on the moduli space

Throughout this section we assume that M C L3 is a primitive 2-elementary hyper-
bolic sublattice. We recall the definition of automorphic forms on the period domain
QL and give its differential geometric characterization.

Let us fix a vector 1y, € MIJ{- with (Ip7, Ia7) > 0. We set

2.1
im(y,[z]) == (y<z Zle;ﬂ [z1€Qf, yeO0t(Mb).

Since Hy,, = 9, jm(y, ) is a nowhere vanishing holomorphic function on Q;}.
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Definition 3.1. Let I' € O (M™Y) be a cofinite subgroup. A holomorphic function
fe (’)(QIT,I) is called an automorphic form for I of weight p if

fG D =xG)iu@, 2D fz),  [21eQy, 7y €T,
where y : T — C* is a character.
Let Ky ([z]) be the Bergman kernel function of QJAC[:

(z,2)
Iz, )12

For an automorphic form of weight p, the Petersson norm of f is the function on
Qj, defined as

Ku([z]) :=

I zDI? := Km([2)? 1f (2D

If r(M) < 17 andif T ¢ O (M) is a cofinite subgroup, then || f||? is a I'-invariant
C* function on QJAC[, because the group I' /[T, I'] is finite and abelian in this case.
Let wys be the Kéhler form of the Bergman metric on QL:

wy = —ddlog Ky, (3.1

where d° = (& — 8)/4xi and hence dd® = 006/2xi for complex manifolds. For a
divisor D on QL, let dp be the Dirac J-current on QL with support D.

Theorem 3.2. Let p € N and let D be a divisor on QL LetT C O (M%) be a
cofinite subgroup. Let ¢ be a non-negative, I'-invariant C* function on Qp \ D

satisfying logp € LlloC (Qyy) and the equation of currents on Q;[:

ddlogp = dp — poy. (3.2)
If r(M) < 17, then there exists an automorphic form F for T’ of weight p with zero
divisor D such that ¢ = || F||%.

1
loc

Proof. Sety = ¢ Kﬁ}p .Thenlogy € L (QL). We get the following equation of

currents on QL by (3.1), (3.2):
dd‘logy = dp,

so that 0 log v is a meromorphic 1-form on QZT,I with at most logarithmic poles along
D. Fix a point [5o] € QZT,I \ D, and set

[n]
F([n]) := exp (/ dlog v/) . Ineqy.
[70]

Since the residues of 0 log y are integers, we get F € O(QL) and

dlog F = dlogy, div(F) = D.
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Let y €T. By the identity K (y[#]) = 1jm(y, 7)™ Kp([#]) and by the
I-invariance of ¢, we get w (y [7]) = |jm (v, [#DI*? w([5]), which yields that

y*ology =dlogy + p-dlog ju(y, ).
Namely, d log(y *F/ju(y, )P F) = 0 and hence

x ()= FQ D) jm(y, i) P F(g) ™"

is a non-zero constant on Qf{. Then y is a character of T' because forevery y, y’ € T,

F(yy'lnD
Jm Gy’ )P F([n])

_ F(yy'lnD L MG y IDPEG ) _ T
MGy IDPEQ ) ju(yy’s [n)P F([n]) '

1y =

Hence F is an automorphic form on QZT,I for I' of weight p with character y such
that div(F) = D. Since r(M) < 17, ||F| is I'-invariant. By the Poincaré-Lelong
formula, the following equation of currents on QL holds:

dd°log | F||> = 6p — pwy. (3.3)

By comparing (3.1) and (3.3), log(p/|| F %) is a T-invariant pluriharmonic function
on QJAC[, so that log(p /|| F %) descends to a pluriharmonic function on M ;. Since
My, the Baily—Borel-Satake compactification of My is a normal projective variety
with codim(M 7 \ Myy) > 2 when (M) < 17, log(e /|| F||*) extends to a plurihar-
monic function on M, by Grauert—-Remmert. Since M, is compact, log(¢ /|| F 1%)
is constant by the maximum principle for pluriharmonic functions. This proves the
existence of a positive constant C with ¢ = C || F||%. i

4 Equivariant analytic torsion and 2-elementary K3 surfaces

4.1 Equivariant analytic torsion

Let (X, k) be a compact Kéhler manifold. Let G be a finite group acting holomorphi-
cally on X and preserving x. Let [1; = (@ + 6*)? be the 4-Laplacian acting on C*®
(0, g)-forms on X. Let o (L;) be the spectrum of ;. For 4 € o (L), let E,(A) be
the eigenspace of [, with respect to the eigenvalue 4. Since G preserves x, E4(4)
is a finite-dimensional unitary representation of G. For g € G and s € C, set

G@6) = D Tr(glew) A
Aea(Dq)\{O}

Then ¢, (g)(s) converges absolutely when Re s > dim X admits a meromorphic con-
tinuation to the complex plane C, and is holomorphic at s = 0.
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Definition 4.1. The equivariant analytic torsion of (X, k) is the class function on G
defined by

76(X,1)(g) == expl— D (=g (e)O)].  geG.

q=0

When g = 1, 16 (X, k)(1) is denoted by (X, k) and is called the analytic torsion of
(X, ).

4.2 An invariant for 2-elementary K3 surfaces

Let (X,1) be a 2-elementary K3 surface of type M. Let Z, be the subgroup of
Aut(X) generated by 1. Let k be a Z,-invariant Kihler form on X. Set vol(X, k) :=
Qr)~? J: X x?/2!. Let nx be a nowhere vanishing holomorphic 2-form on X. The
L?-norm of 7y is defined as ||;7X||i2 = 27) 72 [y nx Adix.

Let X' = >; C; be the decomposition of the fixed point set of 7 into the con-
nected components. Set vol(C;, k|c;) = Qm)~! fCi k|c;. Let c1(Ci, k|c;) be the
Chern form of (T'C;, x|¢;).

Definition 4.2. Define

14—r(M)
(X, =vol(X, ) 1 1z, (X, ) @) []vol(Ci, kle)T(Cikle)

1

X exp 1/ log nx Aix  vol(X, x)
8.Jc 220 nxl3,

Obviously, 7p7(X, 1) is independent of the choice of 5x. It is worth remarking
that if « is Ricci-flat, then

Cl(Ci, K|C,‘)

Ci

14—r(M)
TM(Xa 1) :VOI(Xak) 4 TZQ(X,K)(l)HVOl(Ci,chi)T(Ci,chi).

1

Theorem 4.3. Let M C LLk3 be a primitive 2-elementary hyperbolic sublattice sat-
isfying 11 < r(S) < 17 and r(M) + (M) = 22. Then there exists an automorphic
form @y on QI,I for Ot (M) of weight (r (S)—6) with zero divisor Ds such that for
every 2-elementary K3 surface (X, 1) of type M and for every Z-invariant Kiihler
formk on X,

(X, 1) = [P (wag (X, 1)) 72

Proof. Theorem 4.3 follows from the following two claims:
e The number 7,/ (X, 1) is independent of the choice of a Z,-invariant Kéhler form,
and it gives rise to a function 7p; on M¢,.

e Regarded as a I'j;-invariant function on Q9,, log 7/ lies in Ll

1oc (1) and satisfies
the following equation of currents on Qy:
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r(M) — 6 1
4 M- 45DM. 4.1)

dd‘logty =
The first claim follows immediately from the curvature formula for equivariant
Quillen metrics [7], [29]. To prove the second claim, it suffices to determine the
singularity of 7j; near the divisor Dy;. Let y : A — Qj be a holomorphic curve
intersecting D? transversally at + = 0. Then Eq. (4.1) is deduced from the following
estimate:

1
logty(y (1)) = ~4 log |t|2 + O(log(—log|t])), t — 0. “4.2)

Under a certain technical assumption on the curve y, Eq. (4.2) follows from the em-
bedding formula of Bismut [5] for equivariant Quillen metrics. See [39] for more
details about the proof. O

In the cases M = U(2) @ Eg(2) and M = U@ Eg(2), an explicit formula for @y,
was given in [39, Sect. 8]; in the first case, ®, is given by the Borcherds ®-function
of dimension 10; in the second case, @ is given by the restriction of the Borcherds
®-function of dimension 26 to Q.

S The Borcherds products

In this section we recall Borcherds products. For simplicity, we restrict our explana-
tion to those lattices that splits into two hyperbolic lattices.
Let M p>(Z) be the metaplectic group (cf. [8], [9]):

Mps(Z) = [((‘CI 2) , Vet +d) ; (‘C’ 2) € SLy(Z), Vet +d e (’)(H)} ,

which is generated by the following two elements

(1)) = (6

Let K be an even hyperbolic lattice with signature (1,5~ — 1). Let N € N. Let
f, f' be a basis of U(N) such that

f-f=f.f =0, f-f'=N.

Set
L=UN)®K.

The signature of L is (2, 7). Let/ € N be the level of L; i.e., [ is the smallest natural
number such that[(y, y)/2 € Zand [{y,J) € Z forall y,d € Ay.

Let C[A] be the group ring of the discriminant group Ay. Let {e, },ca, be the
standard basis of C[A[]. Let pr: Mp2(Z) — GL(C[AL]) be the Weil representa-
tion. Namely, for the generators S and T of Mp,(Z), we define
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b -2

. 2 . N
pL(T) e, =e™e,.  pr(S)e, = ; 2 e (s
| | (;EAL

Here the bilinear form on L is denoted by x - y = (x, y) for simplicity. Then py,
extends to a group homomorphism from Mp,(Z) to GL(C[AL]).

Definition 5.1. A C[A]-valued holomorphic function F(t) on the complex upper-
half plane H is a modular form of weight 1 — b; of type py. if the following conditions
are satisfied:

(1) For all (“%), Vet +d) € Mpy(Z) and ¢ € H,

F (ar +b) = et +d27b7pL ((Z Z) Vet +d) - F(7).

ct +d

(2) F(r) is meromorphic at +ioco and admits the integral Fourier expansion:

F(ry= > e > c, (k)™

VEAL  kelz

where ¢y (k) € Z forall k € }Z and ¢, (k) = 0 for k < 0.

By [8, p.512 Th.5.3], F(7) induces an elliptic modular form Fx (7) of the same

weight 1 — 7, of type pk.
As before, define

Qp = {[x] € P(L¢); {x,x) =0, (x,x) > 0}.
For 4 € Lr with (4, A) < 0, we define H, as before in Section 2. Let
Ck ={v € Kg; (v,0) > 0}

be the light cone of K. Then the tube domain KRr + 1 Ck is identified with Q} by the
map
Z,2)

KR+iCK92—>|:f—(2

f+ z} e P(Lo). (5.2)
Since K is hyperbolic, Cg consists of two connected components. Let C;E be one of
them. Let Qz be the component of Qj corresponding to KR + i C; via the isomor-
phism (5.2).

By [8, p.517], Fx (7) induces a chamber structure of the cone C ;g Each chamber
of C Z is called a Weyl chamber. Let W be a Weyl chamber of CZ. The dual cone of
W is defined by

WY ={v € Kg; (v,w) >0, Yw e W}.
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Theorem 5.2. (Borcherds) There exists an automorphic form Yy (z, F) on Qz with
the following properties:

(1) Y (z, F) is an automorphic form of weight cy(0)/2 for a cofinite subgroup of
O (L).

(2) The divisor of Y1.(-, F) is given by

2
div(PL(. F) = . cl(iz)m.

€LV, 12<0

(3) There exists a vector p = p(K, Fg(t), W) € Kq determined by K, Fk(t)
and W such that Y1 (z, F) admits the following infinite product expansion for z €
KR +iW with (z,z) > 0:

. 22
W, (z, F) = ezn—ip.z H H (1 _ eZni(i~z+[’\’/))”+1’\1/f’(’“ /2) .
LeKVNWY neZ/NZ

The automorphic form ¥ (z, F) is called the Borcherds product associated with L
and F (t). The vector p is called the Weyl vector of Y (z, F).

Proof. See [8] and [12].

6 Borcherds products for odd unimodular lattices

Define the symmetric unimodular matrix Iy ,,, of rank m 41 and with signature (1, m)
by

100
0—1-- 0
]Il5m:= . . . .
00 0 —1

We identify I ,, with the corresponding unimodular hyperbolic lattice. Define 2-
elementary lattices Sg, Tx (1 < k <9) by

Ty :=UQR) ® T1.0-4(2), Sk = Ty
Then Sy, verifies the conditions in Theorem 4.3:

11 <r(Sp) =22 —r(Ty) <17, r(Sk) +1(Sk) =22 — r(Tr) + 1(Tx) = 22.
6.1)
By Nikulin [33, Th.4.2.2, P.1434 table 1], Si are the only 2-elementary hyperbolic
lattices satisfying (6.1), up to an automorphism of Lk3. In this section we give an
explicit expression of the automorphic form ®g, in Theorem 4.3 as a Borcherds
product.
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We define the Weyl vector of 11 9 (2) by

1
pk = 2(3, —1, ceey _1) S Hl,9—k(2)v'

We set
Vi=512s = ((_12 (1)) =21 + 1) € Mpy(Z)
and we define eo, €1, Vo, V1, V2, v3 € C[AT, ] by
€0 = €0,00), €l =€00,).  Vii= > e,
deAr, . 2(0,0)=i mod 4

where vectors in Ty are denoted by (m,n, 1), m,n € Z, 4 € Ij 9_(2).
Set ¢ = ¢2™7. For t € H, let n(r) = ¢/>*[[32,(1 — ¢") be the Dedekind
n-function and let

1,2 2 2
Oo(x) =D "t Gy =D ¢ ) =D ()"

meZ meZ meZ

be Jacobi theta functions. Notice that we use the notation ¢ = ¢! while ¢ = ¢™'*
in [13, Chap.4]. For ¢ € {0, 1/2}, let 04, 15/2(7) be the theta function of the A;-
lattice

0p, (1) :==03(21), O +12(7) := 02(27).
Define holomorphic functions fk(o)(r), fk(l)(r) and the series {c,(co)(l)}lez,
(et Oz 11/ by

O, . 120% 0 (@)F _ O 1~
S @)= ey —gz‘,ck (hg'=q~" +8+2+0(),

8 k

My, n(47)°0p,+1/2(7) W) 1

fk (r) :=—16 77(2.;)16 = z 2Ck Ors
lel/4+Z

We define holomorphic functions g,Ei) (t),i € Z/4Z by
@@= > 0"
I=i mod 4

By definition,

) 8 k
Z g,ﬁ’)(r)= n(z/2)°0p, (r/4) sz(O)(TM)_

8 8
iz n(@)°n(z/4)
Define a C[AT, ]-valued holomorphic function on H by

F(@) = fP@ e+ e+ > gl @)vi.
i€Z/AZ
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Theorem 6.1. For 1 <k <09, the following hold:

(1) Fi(z) is a modular form for M p>(Z) of type pt, and of weight (k — 8)/2;

(2) the Weyl vector of YT, (z, Fy) is given by 2pi;

(3) there exists a generalized Kac—Moody superalgebra with denominator function
Os, ;

@) if k < 8, then there exists a constant Cy # 0 such that

®s, (2)* = Cr Y1, (2, Fi).

The modular form F(7) for Mp>(Z) is induced from the modular form fk(o) (7)

for I'g(4). The modular form fk(o)(r) is reflective for Ty in the sense of Borcherds
[9, Sect. 11, pp. 350-351].

Remark 6.2. Theorem 6.1 (2) is closely related to an example of Borcherds [8, Exam-
ple 15.3]. Theorem 6.1 (3), (4) seem to be closely related to a problem of Borcherds
[8, Problem 16.2] and conjectures of Harvey—Moore [20, Sect.7 Conjecture] and
Gritsenko—Nikulin [17]. See [40, Sect.7] for more explanations. The automorphic
form @g, was already found by Gritsenko—Nikulin [19].

We shall give a detailed proof of Theorem 6.1 in the forthcoming paper [41]. In
fact, the norm of ®g, is regarded as an invariant of certain Calabi—Yau threefolds,
which was introduced by Bershadsky—Cecotti-Ooguri—Vafa [4] and by Fang-Lu—
Yoshikawa [15] using analytic torsion.

7 K3 surfaces of Matsumoto—Sasaki—Yoshida

In Sections 4 and 6, we extended Eqgs. (1.6) and (1.7) to 2-elementary K 3 surfaces
of type Si. In this section we consider an analogue of Eq. (1.4) in dimension 2. We
focus on 2-elementary K3 surfaces of type S¢. Those K3 surfaces were studied in
detail by Matsumoto—Sasaki—Yoshida [30], [31], [36].

7.1 The construction of Matsumoto—Sasaki—Yoshida
Recall that
M°(3,6) :={A=(al,...,a6) € M(3,6); a; Aaj Aay #0fori < j <k}.

For A € M°(3, 6), we define

6
Sa = {((x1: x2:x3), ) € Op2(3); y* = H(an x1 + az x2 + a3 x3)}.

i=1
The natural projection p = pr,: S4 — P? is a double covering with branch divisor

LagU---ULgag,
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where
Lpi={(x1:x2:x3)€ PZ; ajjx1t+axxo+azixz3 =0} = Pl

Set E4,ij = La,i N Ly, ;. Corresponding to the 15 points {E4 ;i # j} C P2, S4
has 15 ordinary double points. By [31], [36, Sect. 9.1], the minimal resolution of S4,
i.e., the blow-up of these 15 singular points, is a K3 surface. In fact, the following
2-form 574 on X 4 is nowhere vanishing:

dx dx (7.1)
na ‘= = s .
Y T8, (ani x1 + azi xa + az; x3)1/2

where
dx = x1dxy ANdx3 — xpdxy Adx3z + x3dx; Adxs.

Let84: S4 — Sa be the involution defined as the non-trivial covering transforma-
tion of the double covering p: S4 — P2.

Definition 7.1. Let X 4 be the minimal resolution of Sa, and let 14: X4 — X4 be
the involution on X 4 induced by 64.

(1) The pair (Xa,14) is called a Matsumoto—Sasaki—Yoshida (MSY) K3 surface
associated with A.

(2)Let Ly :== (La,1,...,La) be the ordered set of lines ofP2 associated with A.
The triple (X a,14, La) is called a MSY-K 3 surface with level 2 structure associated
with A.

Two MSY-K 3 surfaces with level 2 structure (X 4,14, L4) and (Xp,1p, Lp) are
isomorphic if there exists an isomorphism ¢ : X4 — X p such that

poipa=1BogQ, o(La) =

Let EA ,ij C X4 be the proper transform of E4 ;; by the blow-up of X4 — Syu. Let
Hy C P2 be a line which does not pass any points E4 ;;, and let HA C X4 be the
proper transform of p~!(Hy) by the blow-up of X4 — S4. Let L A,i be the proper
transform of p~!(La ;) by the blow-up of X4 — Sa. By [31, Prop.2.1.5], there
exists a system of generators £;; (1 <i < j <6), H,L; (1 <i < 6) of Sg such
that for every MSY-K 3 surfaces with level 2 structure (X 4,14, L4), there exists a
marking a with

a NEj) =ci((EayD), o '(H)=c1((Hal), o (L) =ci1((La,D).

Here [D] denotes the line bundle on X4 associated with the divisor D. The triple
(Xa,14,La) defines a Sg-polarized K3 surface in the sense of Dolgachev [14].
A marking of (X4, 14) satisfying these conditions is called a marking of MSY-K 3
surfaces with level 2 structure (X 4,14, L4).
Define
O(Te)(2) := ker{O(T¢) — O(AT()}.
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If o, p are markings of (X 4,14, L4), then
Boalls,=ids;,  Boalr, € O(Te)(2).

Since f o a_1|11~6 € O(Te)(2), the O(Te)(2)-orbit of the period 7 (X 4,14, ) is
independent of the choice of a marking of M SY-K3 surface with level 2 structure.
The O(Tg)(2)-orbit

O(T6)(2) - m(Xa,1a,0) € Q5 /O(Te)(2)
is called the Griffiths period of a M SY-K 3 surface (Xa, 14, La).
Lemma 7.2. A MSY-K 3 surface is a 2-elementary K 3 surface of type Sg.

Proof. Let (X4,14) be aMSY-K3 surface. Since X 4 /14 is the blow-up of P2 at the
15 points {E 4 ;j }i <j and is a rational surface, 14 acts non-trivially on H O(X A, Kx,).
The type of (X4, 14) is S¢ by [31, Prop.2.1.5]. |

We have a family of K3 surfaces with involution 7 : (X,1) — M?(3, 6) such
that 7 =1 (A) = (X4, 14). On M°(3, 6) the group GL3(C) x (C*)°, acts by

(g,/ll,...,/lg)-A:=g-A-diag(/11,...,/16).

Definition 7.3. Define the configuration space of six lines in general position on P?
by
X?(3,6) := GL3(C)\M"(3,6)/(C*)°.

The configuration space X°(3, 6) is a Zariski open subset of C*. In fact, every
element of X?(3, 6) has a unique representative of the form (cf. [36, Chap. 7 Sect. 2]):

ara 1100
azas 1010}, ai,...,aq € C.
1 11001

Hence there exists an embedding j: X?(3, 6) < M?°(3, 6) with

arax 1100
Jj(X°(@3,6)) = azas 1010) € M°(3,6); aj,az,a3,a4 € C} . (7.2)
1 11001

By the expression (7.2), there exist 15 hyperplanes Hy, ..., Hjs C C* and a hyper-
quadric Q € C* such that X°(3,6) = C*\ H{U---U H;5U Q.
The permutation group on 6 letters G¢ acts on M (3, 6; C) by

o-(ag,...,a6) = @s(1), .-, 56)), (ar,...,a5) e M(3,6: C), o € Gg.
Following [36, Chap. 7 Sect. 3], we define an automorphism of M? (3, 6) by

T(U, V) := (det(U) U, det(V) v, U,V € GL3(C).
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Notice that the (i, j)-entry of det(U)' U~ is the (i, j)-minor of U for U € GL3(C).
Forall A € M°(3,6), g € GL3(C), 11, ..., A¢ € C*, one has

0(gA) =go(A),  o(A-diag(dy,- -, 4)) =0 (A)-diag(4s(1), -, 4o (6))

T(gA)="g7'T(A), T(A-diag(i1,---,26)) = T(A)-diag(us(1), " » Lo (s))
where u; = A1A2A3/; fori =1,2,3 and u; = A4dske¢/Aj for j = 4,5,6. Hence
the actions of &g and T on M?(3, 6) descend to those on X?(3, 6).

Let (T') = Z, be the subgroup of Aut(X?(3, 6)) generated by 7. Let G be the
finite automorphism group of X°(3, 6) generated by Sg and 7. Since S commutes
with (T') by [36, Chap. 7 Prop.3.3], one has G = G¢ x Z;.

Set

8,2) = 08, /0(T)(2).

Theorem 7.4 (Matsumoto—Sasaki—Yoshida). The period map for the family of
M SY -K 3 surfaces with level 2 structure = (X, 1) — M°(3, 6) with fiber t ~'(A) =
(X 4,14, La), induces an isomorphisms of analytic spaces

X°(3,6) = Mg (2),  X°(3,6)/G = Mg.

In particular, X°(3,6)/G (resp. X°(3,6)) is a coarse moduli space of MSY-K 3
surfaces (resp. with level 2 structure).

Proof. By [31, Prop.2.10.1][36, Sect. 9.5], the period map for the family z : (X, 1) —
M? (3, 6) induces an isomorphism of analytic spaces ¢: X°(3,6) = M‘é() (2) such
that the following diagram is commutative:

M°(3,6) —4s M3, 6)
ql a{ (1.3)
X°(3,6) —— Mg (2),

where ¢g: M°(3,6) — X?(3,6) is the natural projection and ¢: M°(3,6) —
M§6 (2) is the period map for the family 7z : (X,1) — M?(3, 6). This proves the
first isomorphism. Since the isomorphism ¢ induces an isomorphism of groups G =
O(Te)/O(Te)(2) by [36, Prop.9.4], we have X°(3,6)/G = Q§6/0(']I‘6) = MgG.
This proves the second assertion. See [30], [31, Prop.2.10.1, p.22, 1.7], [36] for more
details. O

7.2 The Freitag theta functions

Let M (2, C) denote the vector space of 2 x 2 complex matrices. Then Qg is biholo-
morphic to a tube domain Hy C M (2, C) defined by

W - w*
H2:=A+iCA=[W€M(2,C); .

>0], W* ="W.
2i
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The isomorphism between Qg and Hy is given as follows. Let A be the real vector
space of 2 x 2 Hermitian matrices:

A::I(;w)eM(z C); u,v €R, weC]

Let Cp :={H € A : H > 0} be the light cone of A, where H > 0 if and only if H
is positive-definite. Let {h, d1, d2, d3} be the basis of A defined as

1 0 1 0
h = 1 1+ , d; = _1 1+i , dy= 4 1+i , dy= oL
( = ! - ! =i 0 5 0

We consider the following coordinates y = (yo, y1, y2, y3) on Hy = A +1Cx:
y=yoh+yidi +ydy + y3d3

_( Yo+ 2 . (—yo—yl—y2+iy3)/(l+i))€H

(=yo—y1 —y2 —iy3)/(1 = 1) Yo + 1

The period domain Qg, is isomorphic to the tube domain Hy by the map:
u:Hysy— (1:—det(y):yo:y1:y2:y3) € Qs (7.4)

Definition 7.5. (1) Fora, b € {0, lgi}z and W € Hy, define

a a \* a b \*
(C) W) = i w 2R .
(b)( ) %]zexpml(m+l+i) (m+1+i)+ e(l—i—i) m]

me4lj1

The Freitag theta function @( )(W) is said to be even if a*b € Z.
(2) Define the Matsumoto—Sasaki—Yoshida form Awmsy by

Avsy(W) =[] (Z)(W)-

(§) even

Let P be the set of all partitions (” k) of the set {1, ..., 6}, where

-
(” ) =i, kUL mny={1,...,6), i<j<k [<m=<n.
Imn

There exists a one to one correspondence between P and the set of even Freitag theta
functions. Since #P = 10, there exists ten even Freltag theta functions. The Freitag
theta function corresponding to the partition (/¥ ) is denoted by © (7% )(W). Hence

Imn
asyW) =[] @(”k)(m

’ !
kyep

Imn

See [30, Sect.2.3], [36, Sect.9.12.5] for the explicit correspondence between the
even characteristics {(})} and the partitions {(lmn)}
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~

Proposition 7.6. Under the identification p: Hy = Qgﬁ, the Matsumoto—Sasaki—
Yoshida form Amsy (W) is an automorphic form on Hy for O(Te)™ of weight 10
with

div(Amsy) =Ds, = . Hs.

5€AT6

Proof. See [30, Lemma 2.3.1 and Prop. 3.1.1]. O

7.3 The discriminant of MSY K3 surfaces
We introduce an analogue of the function A, 4) in the case M°(3, 6).

it .. iik
Z);ﬁnltlon 7.7.(1) For A = (ai,...,a6) € M°(3,6) and a partition ;') € P,
ejine

ik
D(” )(A) = det(a;, a;, ay) det(ay, a,, a,).
Imn
(2) Define a holomorphic function A 3.6y on M°(3, 6) by

ijk
A(3,6)(A) = H D(llj’m) (A) = H det(a;, aj, ay) - det(ay, a,,, a,).
TEYep TEYep

Imn Imn

(3) Define a real-valued function || A3 6)ll on M°(3, 6) by

| 10
IAG,6)(A) = ((271)2/;( na A 77A) [AG,6)(A)].
A

Lemma 7.8. (1) M°(3,6) = M (3, 6; C) \ div(A.6))
() 1AG.6)ll is GL3(C) x (C*)®-invariant.

Proof. (1) The first assertion follows from the definition of M (3, 6).

(2) Let A = (a;j) € M°(3,6) and g € GL3(C). We write gA = (ai(j‘g)). We identify
g with the corresponding projective transformation. Then the projective transforma-
tion P2 5 [x] — [’g’lx] € P2 lifts to an isomorphism f,: X4 — Xga such that

dx
fe(nga) = f¢
¢ S\, @9 x40 xp + 0¥ x3)12

l

d('g 'x _
= 4 s |, = det(®) "na.
T2, (a1 x1 + azi x2 + a3 x3)V/
This, together with A3 6)(gA) = det(g)%° A3,6)(A), implies the G L3 (C)-invariance
of ||A@,6)ll. Let us see the (C*)®-invariance of |A(3¢)l. Identify 2 = (1,)%_, €
(C*)6 with the invertible diagonal matrix 4 = (J;j4i)1<i,j<6 € GLg(C). Since
na, = (detA)~12y4 and Age(Ad) = det(2)!° Az6(A), we get the (C*)0-
invariance of || A3 ¢)l. |
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By Lemma 7.8, || A3,6) | descends to a function on X (3, 6). We identify || A3 ¢l
with the corresponding function on X (3, 6).

Theorem 7.9. (1) There exist non-zero constants C, C such that the following iden-
tity holds under the identification (7.4):

D, = C1 Amsy = C2 W, (-, Fo)'/2.
(2) There exists an absolute constant C3 # 0 such that for all A € M°(3, 6),
w5, (Xa,14) = C31A,6 (A%,

By Theorems 6.1 and 7.9 (1), we get an infinite product expansion of the
Igusa cusp form, i.e., the restriction of Aysy to the Siegel upper-half space G, =
{W € Hp; "W = W}. The infinite product expansion of the Igusa cusp form was
first obtained by Gritsenko—Nikulin [18].

For the proof of Theorem 7.9, we recall the results of Matsumoto—Saasaki—
Yoshida in more details.

7.4 A compactification of X°(3, 6)

Forl <i < j <k <6, we define

M;jk(3,6) := {A € M(3,6; C);

al‘/\a.j/\ak =0 lf(kalam)z(lajak)
aAay Aa, £0 if (k,1,m) # G, j, k)|’

Xijk(3,6) := GL3(C)\Myx (3, 6)/(C")°,
and we set
M*(3,6) :== M°(3,6) ULl <xM;jx (3, 6)
X*(3,6) := X°(3,6) ULli; <k Xijk (3, 6).
Notice thatifi < j <k,l <m <nand (i, j, k) # (I, m, n), then
M;jk(3,6) N My, (3,6) =0, Xijk(3,6) N X1, (3,6) = 0.

The subset M*(3, 6) is open in M (3, 6; C).

For A € L;<j<xM;jx(3,6), we define Sy and Ls;,i = 1,...,6 as in Sec-
tion 7.1. Then Sing S consists of only rational double points, i.e., 12 ordinary double
points and one A3z-singularity. For A € M*(3, 6), we define 74 as in (7.1). Since 74
is nowhere vanishing on the regular part of S4, the minimal resolution of S4, denoted
again by X4, is a K3 surface. We have a flat family of surfaces 7: S — M*(3, 6)
with fiber 7 "1 (A) = Sj.

With respect to the trivial GL3(C) x (C*)6-action on P?, there exists by [31],
[36] a GL3(C) x (C*)%-equivariant holomorphic map F: M*(3,6) — P? that
induces an injection f: X*(3,6) < P?°. We consider the topology on X*(3, 6)
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induced from the one on f(X*(3, 6)) via f; we identify X*(3, 6) with f(X™*(3, 6))
as a topological space. Let X (3, 6) be the closure of f(X*(3,6)) in P?° and let
Xk (3, 6) be the closure of f(X;;«(3,6)) in P¥.

Set Mg, (2) := Q"S: /0T (T)(2). Since O (T¢)(2) is generated by reflections
by [31, Prop.2.5.2], Mg, (2) is smooth.

Theorem 7.10. (1) X (3, 6) is a projective variety of dimension 4. The isomorphism
@ in (7.3) extends to an isomorphism ¢ between X (3, 6) and the Baily—Borel-Satake
compactification of Mg (2).

(2) X*(3,6) C X(3,6)ree := X(3,6) \ Sing X (3, 6).

(3) X*(3, 6) is a Zariski open subset of X (3, 6) with dim X (3, 6) \ X*(3,6) < 2.
(4) X;jk(3,6) N X*(3, 6) is a smooth hypersurface of X*(3, 6).

Proof. See [31, Th. A6.2] for the first part of (1) and [30, Th.3.2.4, Cor. 4.4.2] for
the second part of (1). Since X 4 is a K3 surface with at most rational double points
for A € L;<j<xM;jx(3,6), X;jx(3, 6) is identified with a divisor of Mg, (2) via ¢.
Hence X*(3, 6) is regarded as a subset of Mg, (2) via ¢. Since Mg (2) is smooth,
X*(3, 6) consists of smooth points of X (3, 6). This proves (2). See also [36, p.244]
for the proof of (2). See [31, Prop. A5.3, Cor. A5.4, Th. A6.2] for the proof of (3).
Consider the following subset of M*(3, 6):

10a01c
U := 01b01d) eM*@3,6); a,b,c,d,zeC
00z111

Let Ujp3 C X*(3,6) be the image of U by the natural projection M*(3,6) —
X*(3,6). By [31, Lemmas A6.8 and A6.9 and their proofs], Uj23 is an open sub-
set of X*(3, 6) containing X°(3,6) U X23(3, 6). Since Ujy3 is isomorphic to an
open subset of P2 x C2 and since X123 (3, 6) N U123 is defined by the equation z = 0,
X123(3, 6) is a smooth hypersurface of X*(3, 6). This proves (4). By [36, p.244],
Xijk (3, 6) is identified with a certain smooth hypersurface of Mg, (2), which also
proves (4). |

See [36, Chap.7 Sect. 5] for the interpretation of the boundary locus X (3, 6) \
X?(3, 6) in terms of degenerate matrices in M (3, 6; C).
Define a function K on M*(3, 6) by

K<A>:=/ A nia,  AeMG3,6).
XA

Lemma 7.11. K is a nowhere vanishing continuous function on M*(3, 6).

Proof. Let 81 = A'3 be a small neighborhood of A in M*(3, 6) such that £l N
;<j<xM;jx(3,6) = AT, By [25, Th.4.28], there exists a finite holomorphic
map h: U — 4 with branch divisor & N L; < ; <x M;jx (3, 6) such that the family
pry: S xg (¥ — Yinduced from 7 : S — M*(3,6) by h: U — U admits a simul-
taneous resolution. Namely, there exist a complex manifold X, holomorphic maps
p: X = S xgyUand 7 : X — U such that the diagram
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X—p>8xu‘1]

il Przl
id

L— U

is commutative and such that p: Xp := 7~ (B) — Sp is the minimal resolution
for all B € . Hence {p*np}pey is a nowhere vanishing relative holomorphic 2-
form on X. Since every fiber of 7 is smooth and since h/*K(B) = fXB pinp A
p*np for all B € ¥, h*K is a continuous function on ¥. Since p*np # 0 for all
B € U, h*K is nowhere vanishing on 5. This proves the assertion on 4l. Since
A € U;<j<«xM;jr(3,6) is an arbitrary point, K is a nowhere vanishing continuous
function on M*(3, 6). O

7.5 An intermediate modular variety

Letz = (z (lijk))(ijk) P be the homogeneous coordinates of P? and define

mn Imn
Z = {z € PY; Plk;;(z) = 0 foralli < j},

where Plk;;(z) := z iy~ Z( il +z (imy ~ z (i) are the Plucker relations. Then

Z < P? is a linear subspace of dimension 4.
After Matsumoto, we define

ijk
Pr: X(3,6) 5 [A] > (---: D(lmn)(A) : .“)(I%)EP € P9

and 5
N ey o
lmn) W) : )(zlfn]fl)ep cP.

Recall that the period map ¢: M°(3,6) — ./\/lg6 (2) induces the isomorphism
p: X°3,6) — M§6 (2) in (7.3). Let I'yy (1 4+ 1) C Aut(Hz) be the subgroup cor-
responding to 07 (Te)(2) C Aut(Qg,) via the isomorphism x: Hy = Qg,. Let
H,/ Ty (1 + 1) be the Baily—Borel-Satake compactification of Hy/ I'jz (1 + 1).

@:H23W—)(--':®(

Theorem 7.12. (1) The images of Pr and © are contained in Z;

(2) Pr extends to a double covering Pr: X(3,6) — Z;

(3) ® induces a double covering ®: Hy/ Ty (1 +1) — Z;

(4) The period map for the family « . (X,1) — M°(3, 6) induces an isomorphism
w: X(3,6) > Hy/ Ty (1 + 1) such that the following diagram is commutative:

X(3,6) —— Hy/ Ty (1 +1)
Prl QJ (7.5)

z 4. Z

Proof. See [30, Th.4.4.1, Cor.4.4.2] and [36, Chap. 7 Prop. 6.2, Chap.9 Th. 12.7].
0
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We regard the monomial [[p Z(ijky as an element of HO(P?, Ops(10)). Let
Imn
I - ||(9P9(10) be the standard hermitian metric on Opo (10) whose Chern form is pro-

portional to the Fubini—Study form on P°. Then
1A .6 (A2 _ K(4)*
* 2 - ijk 10°
PriTp (i) 10,5 10/(A)  (Zp ID(5,) (D)

Since K(A)ZO/( >p |D(l%z) (A)|2)lO descends to a nowhere vanishing continuous
function on X™*(3, 6) by Lemmas 7.8 and 7.11, there exists a continuous hermitian

metric || - || on Pr*(’)Pg(lO) such that

[Pt Hz(lfjk)ll/ =lAgel-
P

A€ M*(3,6).

Lemma 7.13. Let y: A — X*(3,6) be a holomorphic curve that intersects
L; < j <k Xijx (3, 6) transversally at y (0). Then as t — 0,

log | A,6)(y O)II* = log [t]* + O(1).

Proof. Let y (0) € X;;x(3,6). Let f be a local holomorphic function defining the
divisor X;;x (3, 6) near y (0). Since || - ||" is a continuous metric on Pr*Opg(IO) and
since [[p 2(iiky € HY(X(3,6), Pr*(’)Pg(lO)), we get
Imn
/)2

= (mult—oy* f) log|z]> + O(1).

log | A,6)(y ) = log(

P e 0 @)
P

Since y intersects X;;x (3, 6) transversally at y (0), we get mult;—oy * f = 1. O

Proof of Theorem 7.9. We keep the notation in (7.3) and (7.5).

(1) The identity s, = C2 ¥, (-, Fs) follows from Theorem 6.1. We compare the
weights and the zeros of ®g, and Apgsy. By Theorem 4.3 and Proposition 7.6, both
of ®g, and Apsy have the same weight 10 and the same zero divisor Ds,. From the
Kocher principle, the assertion follows.

(2) By Theorems 4.3 and 7.9 (1), it suffices to prove that

1AG.6)I* = Const. * | Amsy |I*. (7.6)
Let IT: Qg — Qs,/ O™ (Te)(2) be the natural projection, and set
fi=1p ) log A6l

We compute the (1, 1)-current dd€ f on Qg,. By Definition 7.7 (3) and the definition
of the Bergman metric, we get on M?(3, 6)

g*dd log||AG 6> = —20 p*ws,.



198 Ken-Ichi Yoshikawa

Since X°(3, 6) is regarded as a subvariety of M?(3, 6) via the embedding (7.2), we
geton X°(3,6)
dd“log || A6l = =20 p*ws, (7.7)

because
L.H.S. = j*¢"dd log ||A(3,6)||2 = —20 "¢ ws, = —20 j*q"p*ws, = RH.S.
Since IT™! 0 ¢(X°(3, 6)) = Qé’ﬁ, we deduce from (7.7) the following equation on
QU
Se .
dd‘ f = =20 ws,. (7.8)
By the commutativity of (7.5), we get the equation of sets on Hp/ "7 (1 + 1):
(y~H*divA.6) = divAmsy. (7.9)

Let u: Hy/ Ty (1 +1) — Mg, (2) = Q§6/0+(T6)(2) be the isomorphism induced
from the isomorphism x : Hy = Qg, . Set Ds, := Ds, /O (Te)(2). Since ¢ = poy,
we get by Proposition 7.6 and (7.9)

(0~ divAges = (1) (y D divAg.e = (1) *divApsy = Ds,,
which yields the equation of sets
(9~ ")*divA 3.6, = D, (7.10)

Set D§6 =i <kH*(¢’1)*(X,-jk(3, 6)). By Theorem 7.10 (3), D§6 is smooth
and it is a dense Zariski open subset of Dg,. Let x € Dgﬁ be an arbitrary point. Let
y: A — X*(3, 6) be a holomorphic curve intersecting L; - j <4 X;;x (3, 6) transver-
sally at y (0). By [39, (2.3)], there exists a holomorphic curve c: A — Qg inter-
secting D§6 transversally at ¢(0) such that

Hoc(r)=¢poy), teA.
By Lemma 7.13, we get
flc()) =2loglt]> + 0(1) (7.11)
because
log [[AG.e) (9" o TToc)* =log | Ag,e(y (D) = 2log|t]* + O(1).

Since ¢(0) is an arbitrary point of Dg and since c(¢) intersects Dgﬁ transversally at
¢(0), we deduce from (7.8), (7.11) the following equation of currents on Qg :

dd* f = —20 s, +20p,, . (7.12)

Since f is O (T)(2)-invariant, it follows from Theorem 3.2 and (7.12) the exis-
tence of an automorphic form F for O (Te)(2) of weight 20 with zero divisor 2Dsg,

such that f = log || F||>. Comparing the weights and the zeros of F and Alzwsy’ we
get F = Const. AI%ASY. This proves (7.6). O
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Question 7.14. Recall that the constant C3 was defined as the ratio of rg, and
||A(3,6)||’1/4 in Theorem 7.9. Is it possible to compute log C3 in R/Qlog2 by us-
ing the arithmetic Lefschetz—Riemann—Roch theorem [5], [23]? The corresponding
question for the family of elliptic curves over the configuration space 7: & —
M°(2,4; C) was considered by Bost [11], who obtained Eq. (1.4) from the arith-
metic Riemann—Roch theorem [6], [16].

Question 7.15. Let L be an even lattice of signature (2, »7). In [8, Th. 14.3], Bor-
cherds constructed a correspondence from modular forms for Mp,(Z) of type py,
with weight 1 +m™ — b~ /2 to automorphic forms on Q. for some cofinite subgroup
of OT (L) of weight m™. We call this correspondence the Borcherds additive lifting,
while we call the correspondence in Theorem 5.2 the multiplicative Borcherds prod-
uct. Is it true that the even Freitag theta functions {® ( 1%1)} are the Borcherds additive

lifting of some modular forms for Mp>(Z) of type pr,? If it is the case, Theorem 7.9
(1) may be expressed as follows:

H (additive Borcherds lifting) = (multiplicative Borcherds product)™°ger,

finite

(7.13)

There are some examples of Eq. (7.13) given by Allcock—Freitag [1] and Kondo [26];
Allcock-Freitag gave an example where the multiplicative Borcherds product is the
one given by Borcherds [10] characterizing the discriminant locus on the moduli
space of cubic surfaces; Kondo gave an example where the multiplicative Borcherds
product is the Borcherds @-function of dimension 10 characterizing the discriminant
locus on the moduli space of Enriques surfaces. It may be worth asking whether the
existence of additive Borcherds liftings such that Eq. (7.13) holds for the automor-
phic forms ®g, in Theorem 6.1. Are there many examples of Eq. (7.13)?

Question 7.16. In [27], Krieg studied automorphic forms on the period domain Qg, .
There exist analogues of the Freitag theta functions on the period domain Qg,. Is it
true that the automorphic form @g, has an expression in terms of those theta func-
tions similar to the Matsumoto—Sasaki—Yoshida form Apisy?

Question 7.17. In [24], the moduli space and the period map for 2-elementary K3
surfaces of type S4 were studied by Koike, Shiga, Takayama, and Tsutsui. They
proved that a general 2-elementary K 3 surface of type S4 is obtained as the minimal
resolution of the following double covering of P! x P!:

4
S(x) = [ ((5,1), w) € Op1 (4) ¥ Op1 (4); > =[xV st4+250 5420 t+x§"))] ,
k=1

where s, t denote the inhomogeneous coordinates of the first P! and the second P!,
respectively. Following Koike—Shiga—Takayama—Tsutsui, we set

' xgk) xék)
Xi = e M(2,C), 1<k<4
MONO] -
3
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and define for x = (x1, x2, x3, x4) € M(2, C)*
4 ds Ndt
0
Ny 1= € H'(S(x), Ks@x)) \ {0}.
St | PRI SN PN v

Then the following function seems to be an analogue of A3 ) in the case of 2-

elementary K3 surfaces of type Sy:
4 2 ! 4
det(xg) ( / Ny A1 ) .
kl:[l Q)2 Jsey

Let S(x) be the minimal resolution of S(x). It may be worth asking if an analogue
of Theorem 7.9 (2) holds in this case, i.e., the existences of a rational number v and
a non-zero real number C with

| AksTr ()% :=

75,(S(x)) = C | AgsTr()]]".

Question 7.18. Let A € M°(3, 6). Assume that there exists a smooth conic Q 4 such
thatall the six lines L1 4, ..., L, 4 are tangentto Q 4. Then X 4 is a Kummer surface.
Let C4 be the double covering of Q4 with 6 branch points L1 4 N Qa, -+, Le,a N
Q4.Then Cy4 is acurve of genus 2 and X 4 is the Kummer surface associated with the
Jacobian variety of Cy, i.e., X4 = Km(Jac(Cy)). Let 7(Cy4) be the analytic torsion
of C4 with respect to the metric induced from the flat Kdhler metric on Jac(C4). By
e.g., [38], 7(C4) is expressed as the Petersson norm of the Igusa cusp form. Explain
the coincidence of 7(C4) and 75, (X 4, 14).

8 Discriminant of quartic surfaces

8.1 Discriminant of quartic hypersurfaces of P

Let (Zo : Z1 : Z3 : Z3) be the homogeneous coordinates of P3.Let H = Op3(1) be
the hyperplane bundle over P3. We identify Zq, ..., Z3 as a basis of H(P3, H).
qu an index I = (ig,i1,02,i3), we set |I| = igp + --- + i3 and define 7zl =
Z0Z\'Z3 Z . Then {Z'}|)=4 is a basis of HO(P3, 4H). Let {&] })/=4 be the coordi-
nates of HO(P3, 4 H) with respect to the basis {ZI}|1‘:4. Then {&1}7=4 is regarded
as a basis of the dual vector space HO(P3, 4H).

Let ®upy: P33 Z < (Z) € P(H°(P?,4H))" be the projective embedding
associated with the very ample line bundle 4H . Let @4z (P3)Y c P(H(P3,4H))
be the projective dual variety of (I)‘4H|(P3) (cf. [22]). Then (I)\4H|(P3)V is a hyper-
surface of P(H(P3, 4H)). The discriminant of quartic hypersurfaces of P? is the
reduced homogeneous polynomial A p3 44)(¢) € Z[<] such that

Dy (P = divA pa g (&), (8.1)
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The choice of Aps 47)(£) is unique, up to a constant. We fix one polynomial
A p3 411y($) satistying (8.1).
We define

F(z,&) = > &z' e H'P,4H)Y @ H(P*,4H).

[1]=4
Set
P:=P(H"(P?,4H)),
Xe:={[Z]1e€P’ F(2,5) =0}, (eP,
and

X :={(Z],&) e PP xP; F(Z,&) =0), T = pr,.

Then 7: X — P is a universal family of quartic hypersurfaces of P*> with fiber
(¢ = X¢. Let © be the discriminant locus of the family 7 : X — P:

D = {¢ € P; Sing X¢ # 0},
which is an irreducible divisor of IP such that
D = divAps 47)(&) = Qam (P,

By a formula of Katz [22, Cor. 5.6], we have

3
deg® = deg A s = (-1° [ STV <08 s2)

ps (1 +4ci(H))?

where ¢(TP?) = (1 + ¢1 (H))* denotes the total Chern class of TP>.
For ¢ € P\ D, (Xe, H|x,) is a polarized K3 surface of degree 4, i.e., a K3
surface equipped with an ample line bundle of degree 4. For & € P\ D, set
2.0e6, 5800 Zo(1)dZo ) NdZo(3) A dZo(4))
F(Z,$) '

Then #¢ is a non-zero holomorphic 2-form on X¢.

ne = Resx, (

Definition 8.1. The norm of A ps 4p($) is defined by

108
1 _
1A @3 4127 = ((Zn)z/x ne A '75) 1A @3 a1 1.
¢

By (8.2), [Aps 4yl isa C®° function on P\ ©. In this section, we prove that
1A ps 4 H) (&)|l is expressed as the norm of a Borcherds product on the period domain
for polarized K 3 surfaces of degree 4 (cf. Theorem 8.11).



202 Ken-Ichi Yoshikawa
8.2 The polarized period for quartic surfaces

Fix a primitive vector h € Lk3 of norm 4. The choice of h is unique up to an auto-
morphism of Lg3. Set

T:=ht=ZUaU@E;®Es® (—4).

A marking of (X, H) is an isometry a: H*(X¢, Z) = Lg3 with a(c1(H)) = h.
There exists a marking of (X, H). The triple (X¢, H, a) is called a marked polarized
K 3 surface of degree 4. The polarized period of (X, H, ) is the point of QT defined
by
m(Xe, H, a) := [a(ne)].
We define
My = Qr/0(T).

The Griffiths period of (X, H) is then defined as the orbit
w (X, H) := O(T) - [a(n:)] € Ma.

Letw?: P\® — My be the period map for the universal family of quartic surfaces
m: (X, (pr)*H)lpo — P\D

o(&) = w(Xs, H), EeP\D.

As in Section 2, we define the discriminant locus of Qr by

and set Dy := Dp/O(T) C Ma. We regard D as a reduced divisor of Q.
Lemma 8.2. One has w°(P\ D) C My \ Dr.

Proof. Let¢ € P\ ® and assume that w (¢) € Dr. There is a marking o of X+ and
aroot 0 € A such that 7 (X¢, H, a) € Hs. By the Riemann—Roch theorem, there
exists an effective divisor E of X¢ with a(ci([E])) = %4. Since (h, ) = 0, we get
deg H|g = 0, which contradicts the ampleness of H.Hence w (¢) € M4\ Dr. O

Define
D?:= {¢ € P; Sing X¢ consists of a unique ordinary double point}.

Let D7, := D\ Sing ©° be the regular part of ©°. Since © is a dense Zariski open
subset of © by [22, Prop. 3.2], s0 is Dy,,. By the Borel-Kobayashi—Ochiai extension
theorem, the period map w? extends to a holomorphic map from (P \ ©) U D¢,
to My, the Bail-Borel-Satake compactification of My4. This extension of w? is

denoted by w.
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Let us make a geometric construction of the Borel-Kobayashi—Ochiai extension
w.Let Z C P? x A be a smooth complex threefold such that p :=pry: Z — A'is
a proper, surjective holomorphic function without critical points on Z \ p~!(0). Set
Z, = p~l(t) fort € A. Then p: Z — A is called an ordinary singular family of
quartic surfaces if p has a unique, non-degenerate critical point on Zj and if Z; is a
quartic surface forall 7 € 4.

We define

Hy=Hs\ |J Har Dii= D H;

de Ap\{£5) de At

and set DT =D3/0(T).

Lemma 8.3. Let p: Z — A be an ordinary singular family of quartic surfaces. Let
¢ A* — Muy\ Dr be the Griffiths period map for p: Z — A. Let 11 : Q1 — My
be the natural projection. Then there exist a holomorphic curve c: A — Qr and a
root 0 € AT satisfying

(D) Moc(t) =c(?) forallt € A and c(0) € HY;

(2) c intersects H§ transversally at c(0).

Proof (1) Let A be another disc and let Z x A A be the induced family over A by the
map / Ast—12eA. By e.g., [25, Th.4.28], there exists a simultaneous resolution
T :Z — Z xa A, ie., aresolution satisfying the commutative diagram

— L > ZxAA

L

A

such that 7 [5-1(;: ) — pr;l(t) is an isomorphism for t # 0 and it is the
minimal resolution for 7 = 0. In partlcular p is a smooth morphism. Set 7 :=
prjom: Z — Z.Fort € Z weset Z; := p~'(t) and 7, := w7, Zt —> Z;. Then
7, is an isomorphism for z € A* and is the minimal resolution for ¢ = 0.

Since the family p : Z > Ais differentiably trivial, it admits a marking a such
that (Z;, 7*H, a; :=a |7,) is a marked polarized K 3 surface of degree 4 for 7 € A*.
Letc: A — Q be the period map for the marked family (p : Z > A, a). Since
(Zi,T*H) = (Z2, H) for t # 0, we have IT o c(r) = c(t?).

Let Eg C Zg be the exceptional curve of pg. Since Z¢ has a unique ordinary
double point, the self-intersection number of Ey is equal to —2. Set

0 :=ap(c1([Eo])) € ALys-

Since Ey is an algebraic cycle, we have ¢(0) € Hs. By the same argument as in [39,
p.70 Claim 2], we get ¢(0) € Hg. This proves (1).

(2) Let Kz be the canonical line bundle of Z. Since Kz is trivial by e.g., [39,
Lem. 2.3], there exists a nowhere vanishing 3-form & on Z. For ¢ € A, set
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M 1= Resg, | € H(Zi, Kz)\ (0} (8.3)

¢
p@) —
Then 7; := 7,2 is regarded as a holomorphic 2-form on Z, fort # 0. There exists a
system of coordinates (z1, z2, z3) near the critical point of p with

p(z) = z% + z% + z%. (8.4)

In the local expression (8.4), the vanishing cycle a, ! 0)e H Z(Z, Z) is realized as
the following embedded 2-sphere E; C Z; under the identification Z; = Z,»:

212 22\2 23\2 71 22 23
E = . . EC3,( ) +( ) +( ) =1, s s GR
/ (21,22, 23) . . . PRI

(8.5)
By (8.3), (8.4), (8.5), there exists a germ €(z) € C{r} with

<a,(‘ﬁt>,5>=/En,z=re(r), €(0) £0.

Fix [ € Tg with (/,1) > 0. Since (-, d)/(-, 1) is an equation defining H¢, c¢(t) inter-
sects Hg transversally at ¢(0). This proves (2). O

Lemma 8.4. The following hold:
(%

(1) @ (D) C Dr;

(2) D} € My \ Sing My and D} C Dr \ Sing Dr;

(3) ®2,, is an irreducible divisor of (P \ ©) U D¢

reg reg’

Proof. (1) The result follows from Lemma 8.3 (1).
(2) One can prove the result by the same argument as in [39, Prop. 1.9].
(3) The result follows from the irreducibility of the divisor ® of P. |

Let L C P be aline, i.e., a smooth rational curve of degree 1. Then L is general
if the induced family 7 |, : X, — L is a Lefschetz pencil, i.e.,
(i) X[z is a smooth threefold;
(i1) all the critical points of the projection 7 | are non-degenerate;
(iii) any singular fiber of 7 | has only one critical point of 7 | ..

By [22, Cor. 3.2.1], the set of general lines of IP is a dense Zariski open subset of
the set of all lines of IP.

Lemma 8.5. Let L C P be a general line. Let w|: L — (Ma\ D) U D% be the
period map form | : X|p — L. Then w |, intersects D% transversally at w (LND).

Proof. The result follows from Lemma 8.3 (2). o

Let coT be the Kihler form of the Bergman metric on Qr:

wr(tn)) = —ddlog "7 e an, (8.6)
{7, )
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where 1 € TR is a fixed vector with (I, 1) > 0. Since wr is invariant under the action
of Aut(Qr), it descends to a Kihler form w4, on My in the sense of orbifolds.
By (8.6) and the definition of the period map w, we get the following equation of
(1, 1)-formson P \ ©:

dd®10g || A s 451y (E)* = —108 (@) *w g, (8.7)

Lemma 8.6. The semi-positive (1, 1)-form (w?)*waq, on P\'D has Poincaré growth
along Dreg. In particular, (w)*waq, extends trivially to a closed positive (1, 1)-
current on IP.

Proof. By the same argument as in [39, Prop.3.8 and Th.3.9] using the Schwarz
lemma for Bergman metrics on symmetric bounded domains, the semi-positive
(1, 1)-form (w)*wpq, has Poincaré growth along ®peg. It extends trivially to a
closed positive (1, 1)-current on (P \ ®) U Dy by an extension theorem of Skoda.
Since Sing® is a subvariety of P with codimension > 2 and with (P \ D) U Dy, =
P\ Sing ®, the result follows from Siu’s extension theorem [34, p. 53 Th. 1]. O

The trivial extension of (w?)*w a4, from P\ D to P is denoted by w* w4, .

Lemma 8.7. The function10g | A p3 44y ($) |2 is locally integrable on P and satisfies
the following equation of (1, 1)-currents on P:

dd®10g || A ps 41y (O)* = dp — 108 T*w . (8.8)

Proof. By (8.7) and Siu’s extension theorem, it suffices to prove the assertion on
P\ D) U DY, . By the same argument as in [39, Prop. 3.11], it suffices to prove the

reg*
following: let y : A — PP be a holomorphic curve intersecting ’D;’eg transversally at

7 (0). Then
10g | A3 451y (7 O)1> = log [t]* + O (D). (8.9)

Since X (o) has only one ordinary double point as its singular set, the function
log(fX o Ty A 7y (r)) is bounded as t — 0 by [37, Proof of Theorem 8.1]. By
y(t

Definition 8.1, we get (8.9). |
8.3 A Borcherds product

Let D7 be the root lattice of type D7, which is assumed to be negative-definite. Then
D7 is a primitive sublattice of Eg with ]D)% = (—4). Hence T is regarded as the
orthogonal complement of D7 in U @& U @ Eg @ Eg & Eg:

T={(x,y,a,b,c) cUU®Eg ®Eg @ Eg; (c, D7) =0}.
Since U @ U @ Eg @ Eg @ Eg is unimodular, we get

1 1 23
Ar=Ap, = Ay = 4Z/Z = IO, 404 4] . (8.10)
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In what follows, 0, i, ﬁ, 3 often denote the corresponding elements of the discrimi-

nant group At = Ap, = A(—4).
Let eq, €1 /4, €2/4, €34 be the standard basis of C[Ap,]. Let ®p, (r) be the theta
series of the lattice D7:

Op, (7) := Op,(t) €0 + O, 11/4(7) €174 + Op,12/4(7) €2/4 + Op,43/4(7) €34,

where |
Opaa(t) = D ¢ 0 g=e

leD7+5/4
Notice that D7 is negative-definite.

Lemma 8.8. Op, (r)/A(t) is a modular form for Mp>(Z) of type pr of weight
—17/2.

Proof. Since A(t) is a modular form for SL;(Z) of weight 12 and since p = pp,
by (8.10), it suffices to prove that ®@p,(z) is a modular form for Mp>(Z) of weight
7/2 and of type pp,. This follows from [8, Th.4.1]. O

Lemma 8.9. The following identity holds:
Op,(1)/A(t) = (g7 +108)eg +20¢g /B er s + 147 ers +2%€3 mod g.

Proof. Recall that the Jacobi theta functions 6>(7), 63(z), 64(r) were defined in
Sect. 6. By [13, Chap. 4, p.118, Eqgs. (8.7), (8.8), (8.9)], we get

6’3(7)7-1-6’4(1)7e +92(T)7e +93(T)7 — O04(7)’ e +92(T)7e
) 0 5 el ) /4 5 e
8.11)

Op;, (1) =

By the definitions of the Jacobi theta functions, we get

92(,[)7 — 27 q7/8 + 7. 27q15/8 + 0(q2),
03(t) =1+ 1492 +84q + 0(4°?),

O4(r) =1 —14¢"2 + 849+ 0(¢*?),
which, together with (8.11), yield that
Op, () = (1+84¢) eg+2°¢" 8 e1a+14 ¢ % e24+2%¢"3 ¢35 mod ¢*/%. (8.12)
The result follows from (8.12) and the identity 1/A(7) = ¢~ + 24 4+ 0(q). |

By Lemma 8.8, we can apply Theorem 5.2 to the lattice T and the modular form
Op, (7)/A(7).

Lemma 8.10. Let Y'1(-, Op,/A) be the Borcherds product associated with T and
Op,(t)/A(z). Then Y1 (-, Op,/A) has weight 54 and the zero divisor

div¥r(-, ©p,/A) = D +2’ > Ha+14 D Ha
deT+1/4,d?>=—1/4 deT+2/4,d?=—1
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Proof. By Theorem 5.2 (1) and Lemma 8.9, the weight of (-, ®p,/A) is given by
¢0(0)/2 = 108/2 = 54. By Theorem 5.2 (2) and Lemma 8.9, we get

divWr(-, Op,/A) = > Hq+2° > MHa+14 D Ha
de At deT+1/4, d>=—1/4 deT+2/4, d?=—1

+26 Z Ha

deT+3/4, d2=—1/4

=Dr+2 > Ha+14 D> Ha,
deT+1/4, d>=—1/4 deT+2/4, d>=—1

where we used Hy = H_4 to get the second equality. O

Define the effective divisor D’ on QT by

D =27 Z Hqg + 14 Z Ha

deT+1/4,d2=—1/4 deT+2/4, d2=—1

andset D =D’ /O(T). Then D' is an effective divisor of Ma.
The discriminant A ps 47 (<) is expressed as the Borcherds product:

Theorem 8.11. There exists a non-zero constant C such that the following identity
of C* functions on P\ © holds:

1A @3 411> = C ™[ W (-, Op,/AM)|*.

Proof. By the Poincaré-Lelong formula and Lemma 8.10, we get the following
equation of currents on Qr:

dd“log |¥1(-, Op,/A)|* = dp, + 6p — 54 or,

which descends to the following equation of currents on My:

. 1
dd*1og |¥1(-, Op, /A = dp_+dpy — S4onm,. (8.13)

2
In (8.13), the coefficient 1/2 of 5qu is necessary because the natural projection
Qp — M4 doubly ramifies along D (cf. [39, Prop. 1.9 (4)]).

Since w*D% C Dr, by Lemma 8.4 (1) and since Df,, is an irreducible divisor

of (P\ ®)U DY, by Lemma 8.4 (3), there exists an integer v > 1 with

reg

w* Dy = v D° (8.14)

reg*

Let L C P be a general line. We compute the intersection number of L and the
divisor w*D7. Since the period map w |y : L — (Mg \ Dr) U D7 intersects D
transversally at w (L N D¢,,) by Lemma 8.5, we get by (8.14)

reg

VH#(LNDC,) =#(L N w*D]) = #(w (L) N D7) = #(L N D%,

reg reg

which yields thatv = 1.
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Let x be an arbitrary point of My. Let f = 0 be a local equation near x defining

the divisor D +2 D (Whenx & Dy +2 D/, we can choose f to be a non-zero con-
stant function.) By (8.13), log(||¥1(-, ®D7/A)||4/|f|2) is a local potential function
for —108 wp,:

dd log(|'¥1(-, Op,/A)[I*/1f1?) = =108 wpy, (8.15)

as currents on an open subset of My. Let £ € P be a point with @ () = x.
Since log(||¥T(-, ®D7/A)||4/|f|2) is locally bounded near x, we deduce from [39,
Prop. 3.11] the following equation of currents near ¢:

dd“@* log(P1 (-, Op,/ M)/ £17) = =108 w*w g, (8.16)

Since x is an arbitrary point of My and hence ¢ is an arbitrary point of (P\ D) UDf,,
we deduce from (8.16) and v = 1 the following equation of currents on (P\D)UD?, :

reg*
. 1
dd‘w* log [|¥1(-, Op,/A)|*> = 5 0D, 0y — 54 TroMm,. (8.17)
Comparing (8.8) and (8.17), we get the equation of currents on (P\ D) U D,
A p: 2
dd* log 14@.aml L= =20 .. (8.18)
I¥7(, Op,/A)l “

Set F := 10g(||A(P3,4H)||2/||‘I’T(~, ®D7/A)||4). Since © \ ’D;’eg is a subvariety of P
whose codimension is strictly greater than 1, we deduce from Siu’s extension the-
orem [34, p.53 Th. 1] that F € L'(P) and that Eq. (8.18) holds on PP. Assume that
oD # (). Let L C P be a general line. By (8.18), 0 F|, is a logarithmic 1-form on
L withdiv(0F|r) = (w*D/) N L. Since w*D' is an effective divisor and hence so is
(w*D/) N L, the sum of the residues of 6 F'|; does not vanish, which contradicts the

. / . . .
residue theorem. Hence w*D = ¢ and F is a constant function on P. This proves
the theorem. O

We do not know if || A ps 44 Il admits an analytic expression using (equivariant)
analytic torsion. After Beauville [3, Sect. 6], Voisin [35], Huybrechts [21, Exam-
ple 2.7], it is possible to associate to X an irreducible compact holomorphic sym-
plectic 4-fold with anti-symplectic involution as follows.

For a smooth quartic surface X C P3, let Hilb® (X) denote the Hilbert scheme
of zero-cycles of degree 2 of X, which is a symplectic resolution of the second sym-
metric product of X. Since X is a quartic surface, Hilb® (X ) has a natural invo-
lution defined as follows. Let Py + P>, P # P>, be a point of @y , the sec-
ond symmetric product of X. Let L be the line of P3 connecting P; and P». Then
there exist P3, P4 € X such that X N L = {Py, P2, P3, P4}. Let A be the diag-
onal locus of @ X. We define the involution #: T@X \ A — T@x\ A by
6(P) + P) := P3 + P4. By [3, Sect. 6 Prop. 11], 8 extends to an anti-symplectic
holomorphic involution on Hilb® (X). As an analogue of Theorem 4.3, it may be
worth asking the following:
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Question 8.12. Is it possible to express || A p3 4 H) |? as a combination of the equivari-
. . p > ‘7
ant analytic torsions of the bundles ‘QHilb(z) xy P = 07
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