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Preface

If you are an instructor, why should you choose this text-
book for your students? If you are a student, why should you
read this text? The material included in this text provides
an introduction to discrete mathematics and is intended for
first year students so that their later courses in mathematics
and/or computer science can be covered in more depth than
they could be without this foundational background. The text
is not intended to be a comprehensive collection of discrete
mathematics topics, but rather it ties selected topics to con-
cepts in computer science and it includes programming prob-
lems along with written exercises. Unlike the large, comprehen-
sive texts, this one can be covered in a semester. For computer
science students, there are programming exercises. For math
students without an interest in programming, there are plenty
of exercises of different levels to challenge them.

This text evolved over a 10-year period from notes for
our second semester freshman course for computer science stu-
dents. This course has included about two-thirds mathematics
and about one-third programming. Our students have found
immediate benefits in their next course, Data Structures and
Algorithms Analysis, as well as all other upper level courses.
You will find the style focused on the chosen topics; we make
no attempt at a complete coverage of those concepts. We chose
the topics with two goals in mind: to lay a strong mathemat-
ical foundation and to show that mathematics has immediate
application in computer science.

There is little, if any, controversy over whether or not
computer science students should study mathematics. The re-
sounding consensus is that mathematics is critical to the study
and practice of computer science. It is not so easy to gain
agreement among academicians and practitioners as to exactly
what areas of mathematics should be studied, how rigorous the
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presentation should be, and at what points in the curriculum
these ideas should be introduced.

Having been involved in the education of computer science
students and having been responsible for teaching students who
have taken a variety of mathematics courses, it is our belief
that it is wise to include some fundamental mathematics in
the first-year computer science curriculum. We believe that
there are enough topics for which students can see immediate
applications that it is worthwhile to make those topics a part
of the CS1 or CS2 course. This is not to say that students
would not need or benefit from other courses in mathematics
in addition to what they learn at this point. Rather, we believe
that students will enjoy and get more from later mathematics
courses because they have some background in basic ideas.

This book is not intended to be “the” math course for
computer science students. It is intended to help students un-
derstand the importance of mathematics and see its relevance
in a variety of applications. Indeed, most students will take
some sort of discrete mathematics course later in their careers.
The most immediate application for students is in analyzing
algorithms, something they will start doing in earnest in their
next course or two. To understand not only standard arith-
metic algorithms but also important algorithms in cryptology,
students must understand modular arithmetic and basic num-
ber theory. Concerns arise later that require a foundation in
mathematics.

Precision of expression is the key to carrying out the tasks
of both program specification and program correctness, and
mathematics provides the foundation for this precision. Math-
ematics teaches us to be exact in what we say and how we
think. It gives us the capability to express our ideas in such a
way as to avoid being misunderstood. The study of mathemat-
ics in general, regardless of specific content, promotes precision
of expression and attention to detail in reasoning. However, we
have chosen particular mathematical structures that have di-
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rect applications in computer science, hence addressing two
goals. First, we concern ourselves with the task of helping
students develop reasoning skills and exactness of expression.
Our second goal is to provide the fundamental mathematics
necessary for computer scientists.

Many exercises are included at the end of each chapter.
Some suggestions for programming problems have been in-
cluded. Most are easily embellished or altered to meet the
needs of the course. Some exercises and programming problems
have been starred. These indicate more challenging problems.

v Throughout the text you will find questions dis-
played like this. These are usually straightforward ques-
tions to be done as the student reads the text to check
if the material is understood.

Many people aided in the creation of this text. We’d like
to thank first our students who, over many semesters, pointed
out errors in the text (typographic and other) and offered sug-
gestions about exercises. We'd like to mention particularly
Rohit Bansal and Tony Fressola in this regard.

The editorial staff at Prentice-Hall has been particularly
helpful: Patricia Daly, Jeanne Audino and George Lobell. The
original manuscript has come a long way thanks to them.

And finally, we’d like to thank our spouses, Robin and Gil,
for their encouragement and support.

Any errors and typos are, of course, our responsibility. We
would like to hear from you if you find any. Please email us
with any errors you find or comments you have about the text.

Todd Feil
feil@denison.edu

Joan Krone
krone@denison.edu



Chapter 0
Introduction to Proofs

Throughout this text, we have provided proofs for many
of the theorems presented and have assigned some proofs in
the exercises. Proofs are an important part of mathematics.
But figuring out how to start a proof and how to proceed is
especially difficult for someone new to this activity. The pur-
pose of this chapter is to present a couple of proof techniques
used in the text, give some simple yet illustrative examples,
and supply some justification on why these techniques work.
There are many other techniques used besides the ones we in-
clude here; this is only a starting point. Please note that one
of the most important techniques, induction, is delayed until
later; we have devoted Chapter 4 to this powerful method.

A proof is a convincing argument. Outside of mathemat-
ics, what constitutes a proof differs from the high standards set
in mathematics. For example, if you wanted to prove that you
climbed Mount Everest, you might supply photos of yourself
taken on the summit or a letter from someone attesting to the
fact or even the results of a lie detector test. A skeptic might
protest that the photos and letters could be faked and the lie-
detector fooled and therefore the evidence offers no proof at
all. The courtroom is a source of many such “proofs.” Bear in
mind that mathematicians are the most skeptical of people, at
least when it pertains to mathematics.

One of the things that separates mathematics from other
intellectual endeavors is the preciseness of the claims made.
This requires a certain formality in the language, and the
proofs of these claims usually require the same formality. But
it’s true that not all proofs are formal. A goal of a proof is
to communicate to someone the argument being made. (That
someone may be yourself.) So the level of detail offered de-
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pends on the audience. If you are a professional mathematician
and you are communicating a proof to another mathematician
who is an expert in the field, a proof might be a few sentences
or paragraphs. The details that to an expert are well-known
or easily worked out are skipped. This “handwaving” is com-
mon. An expert needs the main ideas of the proof. A less
sophisticated audience needs more details to see the connec-
tions between steps in the proof. Indeed a very naive audience
would be so ignorant of the subject that a great deal of effort
would be necessary to make the terms intelligible. The real
test here would be to keep the audience’s interest maintained
over the days and weeks (or longer) required.

What differs in the level of sophistication in various ver-
sions of a proof is the size of the steps used. The audience must
believe that each step is justified. A mathematician believes
that every theorem can be reduced to a series of formal state-
ments, starting from a system of axioms, whose steps would
be so simple that they would be easy, even trivial, to justify.
However, the argument would be so long that the essence of
the proof would be lost.

At the other extreme, a proof given in conversation be-
tween experts would involve huge steps, leaving a great deal
of “detail” for the listener to justify. These steps, you could
argue, give only the essence of the proof.

Fortunately, over the years, mathematicians have devel-
oped a style that is a blend of natural language and formalism
that has evolved into a balance of preciseness and readability so
you believe it would be possible to reduce the proof to a series
of strictly formal statements (even though this would be a Her-
culean task). Your ability to read and produce proofs partly
involves learning this style. We start with a short introduction
to logic.

Propositional Logic

A proposition is a statement that has an associated truth
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value. That is, a proposition is either true or false. Examples
are: 3 + 5§ = 7. Wood comes from trees. There are 53 states.
(The first and last propositions are false and the second one
is true.) Not all statements are propositions: Red is a pretty
color. This sentence is false. The former statement is a matter
of opinion; it might be true for some people and false for others.
The latter statement is a logical paradox; assuming it is true
would lead you to conclude it is false, and assuming it is false
would lead you to conclude it is true. In either case, you have a
contradiction. We are not concerned with statements of either
of these two types.

v State three propositions. State three sentences
that are not propositions and tell why.

Propositions may occur in more complicated forms: If it
rains, we will cancel the picnic. His mother is a doctor, and
his father is a painter. Either you will complete your work or
you will not get credit. Several propositions may be consid-
ered together: If a function is not continuous, then it is not
differentiable. If a function is not integrable, then it is not
continuous. fis not differentiable. f is not continuous.

To assign a truth value to a proposition it is necessary that
some context or interpretation be established. For example
Today is Monday must be assigned a truth value based on
the use of some calendar system. But once truth values have
been assigned to simple propositions, we can progress to more
complicated statements. We can reason about these compound
and complex propositions once we know the truth value for
their simple components.

To reason about propositions, we use a syntax for repre-
senting propositions and a set of rules for manipulating these
representations. These rules are called the propositional calcu-
lus.

To talk about propositions it is convenient to introduce
some standard symbols. We’ll use the symbols “t” and “f”
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for truth symbols (standing for “true” and “false”) and A, V,
and — for connectives. (These are called and, or, and not
respectively. Sometimes and is called conjunction and or is
called disjunction.) Propositional variables will be indicated
by p, g, r, ... and parentheses will be used in the usual way for
punctuation. Propositional variables may have a value of “t”
or “f.”

The connectives can be explained by the following truth
table:

P q —p PAq pVgq
t t f t t
t f f f t
f t t f t
f £ f f

Another possible connective is one called “xor,” suggesting
exclusive or. The meaning of “xor” is that one or other of two
propositions must be true, but not both, in order for p xor ¢
to be true.

v Make a truth table for xor.

We illustrate these with two simple propositions: Let p be
the proposition “The sun is shining” and let ¢ be the proposi-
tion “It is raining.” Then —p is “The sun is not shining”, pAg¢
is “ The sun is shining and it is raining” and pVq is “The sun is
shining or it is raining.” Of course whether each of these more
complex complicated propositions is true or false depends on
the truth value of p and gq.

v Use the propositions for p and g as given in the
previous paragraph. Look outside and determine if p
is true or false. Do likewise for ¢. Now determine the
truth of p A q, pV q, —p, and —g.

There are two important special propositions: the propo-
sition that always has the value of true, which we’ll write as T,
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and the proposition that always has the value of false, which
we'll write as F. (Note the difference between t and f (low-
ercase), which are possible values for propositions, and T and
F, which are propositions that are always true or false, respec-
tively. It is important to note this difference.) The symbols T
and F are sometimes referred to as truth symbols.

As with arithmetic, we have rules of precedence for eval-
uating a logical expression: Whatever is in parenthesis should
be evaluated first; — has the highest priority, followed by A,
and then V.

For example, —p A ¢ is different in meaning from —(p A q).
In the first expression, — is applied only to the proposition p,
but in the second expression, the negation applies to the entire
conjunction.

To give meaning to these expressions, we note that for
any logical expression there is a unique truth table. Indeed,
a logical expression is completely described by its truth table.
Two expressions are said to be equivalent if and only if they
have the same truth table. For example, suppose we want to
show the distributivity of A over V. That is, p A (¢ V r) =
(pAq)V (pAr). To show this equivalence we simply give
the truth table for the expression on the left-hand side and
the truth table for the expression on the right-hand side and
observe that they are the same. We combine these two truth
tables into one, also giving some intermediate values. The last
two columns are the ones we wish to compare.

p g r pAg pAr qVr pA(gVr) (pAgV(pAT)

t t t t t t t t
t t f t f t t t
t f t f t t t t
t f f f f f f f
ft t f f t f f
f t f f f t f t
T S f f t f f
f f f f f f f f
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Note that the truth values for the expressions p A (¢ V )
and (pAq) A(pVr) are the last two columns of the truth table
and these two columns are identical. Thus the two expressions
are equivalent and we write pA (gVr)=(pAg) A(pVr).

It is important to observe that all the reasoning about the
complicated propositions can take place without knowing what
they say. The truth table indicates the truth values for every
possible truth assignment to the simple statements p and gq
whatever they are.

v If p is the statement “Bob is over six feet tall”,
q is the statement “Sally is hungry”, and r is the state-
ment “Tom has blue hair”, write the two statements
pA(gVvr)and (pAq)V (pAr) as English sentences.

The following are some important facts about proposi-
tional logic. You are asked to prove these assertions in the
Exercises.

e A and V are commutative; that is, p A ¢ = ¢ A p and
similarly for V.

e A and V are associative; that is, pA(gAT)=(pAq)AT)
and similarly for V.

e V distributes over A; that is, pV (gA7r) = (pVg)A(pV 7).
(We’ve just shown that A distributes over V; that is, p A
(gvr)=®@AqQV(pAT).)

e T acts as an identity for A and F acts as an identity for
V. (That is, T Ap = p and F Vp = p for every proposition
p.)

e pA(-p)=F and pV (-p)=T.

Implication

There is one more fundamental connective: implication,
which uses the symbol =. We write p = ¢ and say “p implies
g.” This connective is important because most theorems will
be of the form p = ¢q. As with the connectives and, or, and
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not, the meaning of implies follows the usual English usage, as
is given by the following truth table.

P 9 pP=4¢
t ¢ t
t f f
f t t
t f t

You should not have any difficulty understanding this truth
table, which we’ll take as the definition of implies, except per-
haps with the third line, which says that false = true is a true
statement. We will postpone discussing why this is so for a few
paragraphs. First let’s look at some slightly more complicated
expressions involving implies.

When evaluating an expression, = has the lowest prece-
dence; that is, we evaluate it last. For example, consider the
expression —q = p A q. By the rules of precedence, we eval-
uate —, then A and finally =. (You may wish to parenthe-
size this expression to be sure to make the precedence clear:
(=q) = (p A q).) So the truth table for =¢ = p A ¢ would be

p q q pNqg —¢q=>pAg

t t f t t
t [t f f
f t f f t
f f ¢t f f

Notice that this is equivalent to the expression q. Now
consider the expression —q = —p, whose truth table is

p 9 ¢ "p —q=>"P

t t f f t
t £t f £
£t £ t t
f f t t t

Notice that this expression is equivalent to p = ¢. This is
an important observation. We call —q = —p the contrapositive
of p = ¢, and we will discuss this more later.
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Most theorems in mathematics are statements of the form
A = B, where A and B are propositions. We would say “A
implies B” or “If A then B.” A is called the hypothesis and
B is called the conclusion. We wish to prove the proposition
A = B is always true. For example, consider the statement “If
n is an even integer then n? is also.” Here, A (the hypothesis)
is the proposition “n is an even integer” and B (the conclusion)
is the proposition “n? is an even integer.” Thus this statement
is of the form A = B.

When we say the theorem A = B is true, we mean it is
always true. For this to be the case, obviously we need to show
that if A is true, it follows that B must be true also—this is
where the work is involved in proving the theorem. But what
if A is false? In this case we don’t care what the truth value
of B. But we still want the theorem A = B to be true. This
is a justification why false = true and false = false are both
ture statements.

Thus to show that A = B is true, we need only establish
that if we assume A is true it must follow that B is true.
The argument that establishes this is called the proof of the
theorem. There are many techniques for proving a theorem.
We will show examples of the most common techniques.

In the assertion A = B (A implies B), A is called the
hypothesis and B is called the conclusion. You wish to prove
this proposition A = B is always true. For example, consider
the statement If n is an even integer, then n? is also. Here,
the hypothesis is the proposition n is an even integer, and the
conclusion is the proposition n? is an even integer.

Direct Proof

A direct proof of the assertion A = B is to assume the
hypothesis (proposition A) is true and then argue that the
conclusion (proposition B) must then be true.

Let’s try a direct proof of the statement “If n is an even
integer then n? is also.” We assume that n is an even integer.
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That means that n = 2k, for some integer k. This is typical
of the first step in a direct proof. You ask the question “What
does it mean to say ‘n is an even integer’?” Or you ask “What
is an immediate consequence of ‘n is an even integer’?” An
answer to the first type of question is usually the definition of
the proposition in question. (That’s what we’ve done in our
case.) The answer to the second type of question is usually
the result of another theorem you already know to be true.
(Imagine you knew the theorem “every even integer is a floo-
zlewhopper.” Then a first step might be to say that “n is a
floozlewhopper.”)

Now that we know n = 2k, we wish to show n? is even.
How could that be done? If we could show that n? = 2m, for
some integer m, that would show that n? is even. Notice that
we've started at the beginning (proposition A) and seen what
we can easily derive from it. Then we go to the end (proposition
B) and see what we need to show in order to conclude B is
true. This forward-backward thinking continues until we close
the gap between beginning and end and are able to supply
an argument to justify a jump from our series of propositions
derived from A to our series of propositions leading to B. In
many cases this could be quite difficult, of course. Our example
is fairly simple, though. For if n = 2k, then n? = 4k? = 2(2k?).
So, letting m = 2k2, we have written n?> = 2m and so n? is
even.

Let’s review this technique: We wish to show A = B.
We first find a statement A; so that A = A,;. Maybe we can
continue getting statements A, As,...A; so that A = A4; =
Ay = - = A;. We go as far as is reasonable. Then we find
By so that By = B. Again maybe we find more statements
so that B; = -+ = B; = B. Eventually we’ll add to the
A,’s and B;’s until we can show A; = B;. We then have that
A = B. (This follows since A = C and C = B implies that
A = B.) This completes the proof.

Usually when writing a proof of this type no forward-
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backward thinking is evident; the proof appears to be a straight-
forward series of implications. Here’s a more “polished” version
of our proof.

Theorem. If n is an even integer, then so is n?.

Proof: Since n is even, there is an integer k such that n = 2k.
Then n? = 4k? = 2(2k?) and so n? is even.

The Contrapositive

Another important proof technique uses the contraposi-
tive. The basis for this technique is to see that A = B is
equivalent to its contrapositive =B = —A, which we’ve seen.
Instead of proving the original implication, we prove the con-
trapositive, which is equivalent. So we assume that —B is true
and then prove - A must also be true. This would establish the
truth of =B = —A, which is equivalent to A = B.

Let’s use the contrapositive to prove the statement “If n? is
even, then so is n.” The contrapositive to this statement is “If
n is not even, then n? is not even.” But since an integer that is
not even must be odd, we can restate the contrapositive as “If n
is odd, then n? is odd.” This statement is fairly straightforward
to prove directly. Recall that if an integer is odd then the
integer is of the form 2k 41 for some integer k. Thus, we start
our proof by assuming that n is odd and so there is an integer
k so that n = 2k + 1. Then n? = (2k+1)? = 4k? + 4k + 1 =
2(2k? 4 2k) + 1 and so n? is odd, as desired.

Proof by Contradiction

Another technique closely related to the contrapositive is
proof by contradiction. When using this technique to prove
A = B, let Abe true (as usual) but also assume that B is false.
From these assumptions we conclude that another statement
C is true, but in fact we know that C' is false. Or we show that
C is false when we know that C is in fact true. (We say, here,
that we’ve contradicted C.) Thus our assumption (that B is
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false) must have been in error. Hence B must be true. That is
A = B, as we wish.

The difficulty with this technique, in contrast to the direct
approach and proof by using the contrapositive, is that you
do not know what the statement C is that you are going to
contradict. Note that any statement C whose truth we know
will serve as a statement to contradict. This prevents us from
using the forward and backward arguments when developing
a proof. Nonetheless it is a very important technique. Proof
by contradiction is a good choice to prove a theorem of the
form “every such-and-such is not a so-and-so.” In this case,
we assume we have a such-and-such that is a so-and-so and
proceed to show this leads to a contradiction. We’ll give two
examples to illustrate this proof technique.

Our first example is to show that /2 is irrational. Since
irrational means “not rational” we see that this is a good can-
didate for proof by contradiction. We start by assuming that
V2 is rational. A number is rational if it can be written as a
quotient of two integers, a/b. We may assume that a/b is in
lowest terms; otherwise we simply reduce a/b.

But if v/2 = a/b, then bv/2 = a, and so by squaring both
sides we see that 2% = a%. Thus a? is even. But then a is even
also. (We've shown this in a previous example.) So a = 2k,
for some integer k. Thus a? = 4k? and so 2b% = 4k2. But then
b2 = 2k? and so b? is even, and hence b is even also. But then
both a and b are even and this contradicts the fact that a/b is
in lowest terms. Our assumption, that v/2 is rational, must be
false and so /2 is irrational.

Notice that the statement we contradicted in the last proof
was that a/b was in lowest terms. You should agree that when
starting the proof it was not obvious that this was the state-
ment to be contradicted.

Another example of using proof by contradiction is to
prove that there are an infinite number of primes. Again, infi-
nite means “not finite,” so you see this is a good candidate for
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proof by contradiction. We assume that there are only a finite
number of primes. Suppose there are n primes; we’ll index
them pq,p2,...,pn. Now consider m = p1ps - - -p, + 1. By the
Fundamental Theorem of Arithmetic (see the Chapter 5) m is
either prime or divisible by a prime. But clearly m is not divis-
ible by any of the p; since dividing m by any of them results in
a remainder of 1. This contradicts the Fundamental Theorem
of Arithmetic and so our assumption is false; we conclude that
there is an infinite number of primes.

If And Only If

Finally, many theorems we see will be of the form A is
equivalent to B, which is sometimes written A < B. This
means that both A = B and B = A. So when proving A & B,
you must prove two implications. When stating a theorem
of this type, we frequently say “A if and only if B.” Or we
abbreviate by writing “A iff B.” Earlier, we showed that n
even implies that n? is even and we also showed that n? is
even implies that n is even. Thus we have shown that n is
even if and only if n? is even. (That is, n is even iff n? is even.)

Exercises

1. Prove that A and V are commutative; that is, pAg = qgAp
and similarly for V.

2. Prove that A and V are associative; that is, pA (g A r) =
(p A q) Ar and similarly for V.

3. Prove that V distributes over A. That is, show that p v
(grr)=@mVaApVr).

4. Prove that T acts as an identity for A and that F acts as
an identity for V. (That is, TAp=pand FV p = p for
every proposition p.)

5. Prove that pA (—p)=F and pV (—p) =T.

6. Show that if n is odd then so is n?. (An odd integer is one
of the form 2k +1.)
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7. Show, by contrapositive, that n? is odd implies n is odd.

8. Show that /3 is irrational. (Use a technique similar to

10.
11.

12.
13.

14.

15.

16.

our proof that /2 is irrational.)

Show that /2 is irrational.

Show that n3 is odd iff n is odd.

Let p; be the ith smallest prime. (So p; = 2, p2 = 3, and
so on.) Note that 2+ 1 = 3 is prime, 2-3+1 = 7 is
prime, and 2-3-54 1 = 31 is prime. But if you calculate
p1p2 - - - Pn + 1 for various n, you don’t always get a prime.
Find the smallest n where this fails.

Prove, by contradiction that the set of integers is infinite.
Suppose the average of three different integers is 20. Prove
that at least one of the three must be greater than 20.
(What technique will you use here?)

Suppose the average of four different integers is 20. Prove
that at least one of the four must be greater than 21.
Show that at least one of the digits 1, 2,...,9 must appear
infinitely often in the decimal expansion of .

Prove by contradiction that if there are n (> 2) people at

a party, then at least 2 people have the same number of
friends at the party.



Chapter 1
Sets

The language of set theory is used to express ideas in all
of mathematics. Most questions about the nature of mathe-
matics can be reduced to questions in set theory. The concepts
and symbols provide tools for reasoning in most areas of math-
ematics. A formal approach to axiomatic set theory, such as
the Zermelo-Fraenkel system, requires a significant amount of
time and background. It is not our intent to pursue a formal
approach here. Rather, we want to become familiar with basic
concepts and symbols of set theory to the extent that we will
be able to use them in expressing the mathematics throughout
the rest of the text. The concepts and notation of set theory
provide students with important skills for reading and express-
ing ideas.

What Are Sets?

Sets are very simple mathematical objects. For an object
S to be a set, it is necessary only that we can tell for any item
x whether or not z isin S. If z is in S, we say z is an element
of S and write z € S. If z is not in S, we write z ¢ S.
One way of expressing a set is to list the elements of a set
between the symbols { and }, such as {2,5,6,8} or {2,3,4,...}.
Another way is to use the so-called set-builder notation, where
we list the properties the items in the set should have, such
as {r € R : 2% < 100z + 10}. We will not always be able
to do this, however. Indeed, we will see later that the use of
set-builder notation may lead to descriptions for entities that
are not sets!

For any particular discussion, items for membership con-
sideration come from what we call a universal set. For example,
we might restrict our consideration to the set of integers, which

14
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would then be our universal set. Frequently, the universal set
will be understood, but sometimes we will need to state explic-
itly our universal set. Computer scientists frequently deal with
more than one universal set in a program—this is analogous
to using different data types. For programming, these various
universal sets need to be identified explicitly.

v There may be many choices for a universal set.
If a computer program is written to sort numbers, what
are some appropriate universal sets for the numbers?

New Sets from Old

If A is a set whose elements are from universal set U, then
{z|]x € U and z ¢ A} is called the complement of A, often
denoted A’, A¢, or A. For example, if U is the set of integers
and A is the even integers, then A’ is the set of odd integers.
Note that it is important to be clear on the universal set when
finding a complement. The symbol () stands for the empty set,
the set with no elements. It follows that ¢/ = U and U’ = §.
Also note that A” = A, for every set A. (We leave the proof
of this for an exercise.)

v Suppose A is the set of odd digits. What is the
complement of A in the universal set of digits? What is
A’ in the set of all nonnegative integers? What is A’ in
the set of all integers?

Given two sets, A and B, we define binary operations U
(union) and N (intersection) as follows:

AUB = {z|zr € Aor z € B}, and
ANB={z|r € Aand z € B}.

For example, if A = {2,3,5} and B = {2,5,7} then AU B =
{2,3,5,7} and AN B = {2,5}. We say A and B are disjoint
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if AN B = (. Note that if U is the universal set and A is any
set, then DUA=A UUA=U,dNA=0and UNA= A

v Suppose A is the set of all even integers and B
is the set of all integral multiples of four. Find AN B.
Find AU B.

We say that A is contained in B or A is a subset of B,
and write A C B, if and only if every element of A is also in B.
So, to show that A C B, we need to show that x € A implies
that x € B.

We can now define set equality by saying A = B if and
only if A C B and B C A. Let’s restate that: to show that
A = B, we need to do two things, (1) show that z € A implies
that € B, and (2) show that x € B implies x € A.

Associated with a given set A there is another important
set, the power set of A, denoted P(A), which is the collection of
all subsets of A. Note that the elements of P(A) are themselves
sets. For example, if A = {a,b,c}, then P(A) has eight ele-
ments: P(A) = {0, {a}, {b}, {c}, {a,b},{a,c}, {b,c}, {a,b,c}}.

In general, if A has n elements, then P(A) will have 2"
elements. We will prove this fact in Chapter 4.

There are some other ways of making new sets from old;
these are given in the Exercises.

Properties of Sets

Using the definitions for equality, intersection, and union,
it is easy to infer that AN A = A and AUA = A. (Why?)
It is also evident from the definition of C that if B C A, then
AUB = A and AN B = B. In particular, if A and C are any
two sets, then (AUC)NA = A and (AUC)UA = (AUC), since
ACAUC. Also, (ANC)UA=Aand (ANC)NA=(ANC),
since ANC C A.

Some additional facts about sets follow. We prove one of
these facts as an example and ask you to prove the other facts
in the Exercises.



Chap. 1 Sets 17

e U and N are commutative. That is,
AUB=BUA and ANB=BnNA.
e U and N are associative. That is,
(AUB)UC = AU(BUC) and (ANB)NC = AN(BNC).
e U distributes over N and N distributes over U. That is,

AU(BNC)=(AUB)N(AUC)

and

AN(BUC)=(AnB)U(ANCQO).

e For any set A, AUA'=U and AnA" =0.
e (AUB) = A NB and (AN B) = A’ U B’. These are
known as DeMorgan’s laws.

Let’s prove that N distributes over U. That is, we wish to
show that AN (BUC) = (AN B)U (ANC). Recall that to
show two sets equal we must show that each is a subset of the
other. We’ll first show that AN(BUC) C(ANB)U(ANC).
We see that,

r€AN(BUC)=>z€Aandzc BUC
=>zrcAand (xr€ BorzeC)
= (r€Aandz € B)or (r€ Aand z € C)
=z €ANBorze ANC
=z (ANB)U(ANC(C),

as desired. To complete the proof, we now need to show that
(ANB)U(ANC) C AN (BUC). Note that in this case, the
reasoning is the reverse of what we just did.
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r€(ANB)U(ANC)=>x€ ANBorxec ANC
= (zx€ Aand z € B) or
(x € Aand x € C)
=>z€Aand (r€ Borze()
=zr€Aandze BUC
=€ AN(BUC)

The preceding five facts, along with those given in the
preceding paragraphs about the empty set and the universal
set, can be used to simplify more complicated expressions. For
example, consider the expression (ANB) NA. We can simplify
this in the following steps (with reasons for each step listed):

(ANBYNA=(A'UB)YNA (DeMorgan’s Law)
=(A'NA)U(B'NA) (N distributes over U)
=QuU(B'NA) (A'NA=10)
=B'NA BuC=0)

You'll agree that B'NA is a simpler expression than (ANB)'NA.

A Paradox

It is interesting to note that not all collections of objects
are sets. Some collections are not well-defined: the collection
of all pretty colors, for example. But there are collections that
are not sets for more mathematically fundamental reasons. We
show a classic example here.

Recall that what is required of a set is to be able to deter-
mine whether or not any given item is an element of the set.
That is, if A is a set, and x is any item, it should possible to
determine that either z € A or x ¢ A. To show that not all
collections are sets, we need to show that for some collection of
items and some particular item, it is impossible to determine
whether or not that item is a member of that collection. We’ll
use proof by contradiction.
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Let’s assume that all collections of objects are indeed sets
and divide these into two parts: one consisting of those sets
that are members of themselves and the other consisting of
those sets that are not members of themselves. The latter
contains most of the “normal” sets you are familiar with and
is apparently quite large. The first collection seems a little
strange at first, but there is nothing at first blush prohibiting
a set from being an element of itself. Now if all collections
are sets, then the second collection (those sets that are not
members of themselves) is itself a set. Let’s call it B. Now
we ask the question “Is B an element of itself?” That is, is
B e B?

If the answer is yes, then, by the definition of B (all the
sets that are not elements of themselves), we must conclude
that B ¢ B, since B must satisfy the requirement for a set
to be in B. This is a contradiction, so we conclude that the
answer is not yes. On the other hand, if the answer is no, that
is, B is not a element of itself, we conclude that B is indeed
an element of B, since it now meets the defining requirement
for being in this set; again a contradiction. In either case, we
arrive at a contradiction. It must be that B is such that we can
not always determine if a given set is an element of B or not.
But this is exactly what is required of a set; we must be able
to tell whether or not an item is in the set. We must conclude
that B is not a set. The problem here is, intuitively, that B is
just too large. We call collections too large to be sets proper
classes. We will not deal with proper classes here, only with
sets.

Large Collections of Sets

Union and intersection can be extended to more than just
two sets. We write the union and intersection of the finite col-
lection of sets A;, Ag,..., A, as U, A; and N, A;, respec-
tively. The union and intersection of the infinite collection of
sets A1, Aa, ... can be written U2 A; and N2, A;, respectively.
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Note that an element is in U2, A; if it is in any one of the sets
A; and an element is in N2, A; if it is in all of the sets A;.
We can generalize to the union and intersection of any set of
sets, regardless how they’re indexed. If A is a set of sets, then
UacaA = {z|x € A for some A € A}.

We can define the intersection of an arbitrary set of sets
in a similar way. For example, let A; = [2,3 + 1/n). Then
N2, A; = [2,3]. (Convince yourself this is true.)

We may be interested in the size of a set. This is sometimes
referred to as the cardinality of a set and denoted |A|. As noted
previously, if [A| = n, then |P(A)| = 2". For infinite sets, there
are other ways to express cardinality, but we will not cover that
topic here.

Exercises

1. Suppose A is the set of distinct letters in the word ELE-
PHANT. B is the set of distinct letters in the word SY-
CHOPHANT. C' is the set of distinct letters in the word
FANTASTIC. D is the set of distinct letters in the word
STUDENT. The universe U is the set of 26 capital letters.
Find AUB, ANB, AnNC, DUA, (AnC)U (BN D),
AN(CUD), (BuC)n(CuD)),and (AUBUCUD)".

2. Give an explicit representation for the set of all prime
numbers less than 50.

3. Give an implicit representation for the set of all prime
numbers less than 50.

Prove that U distributes over N.

Prove that union and intersection are commutative.
Prove that AU(ANB) = A.

Prove that if A C B, then B’ C A’.

What can you conclude about A and C if A C B and
B C C'?7 Prove your answer.

9. Prove that if AC Band C C D, then AUBCCUD.

S A
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10.
11.
12.
13.
14.
15.

16.

17.

18.

19.
20.
21.
22.

23.

24.

Prove that for every set A, § C A.

Prove that AN A =AU A = A for all sets A.

Show that A” = A for any set A.

Prove DeMorgan’s laws.

Prove that AN B C AU B for all sets A and B.

Prove that the following are equivalent: (1) A C B, (2)
ANB=A,(3) AUB=B.

Recall that sets A and B are disjointif ANB = (). If A and
B are disjoint, what can you say about the relationship
between A, A’, B, and B’ (in terms of certain sets being
subsets of others)? Find as many relations as you can
here.

Define A — B = A\B = {z|z € Aand z ¢ B}. Show
that the union of any two sets is the union of disjoint sets.
Hint: Show that AU B = AU (B\A). This operation is
called set difference.

Define the universal set U = the set of integers. Let A =
{z|z is even}, B = {z|z is odd}, C = {z|z < 5}. Find
ANB,AUB, AnC, AuC, C\(AuUB), C\(AUC\B),
C\ANC\B, A\(A\C), U\(ANC), U\(AUU\C), U\AN
U\C,AnBnC.

If A and B are sets, prove that A C B iff B’ C A'.
Provethat AC Bif ANB =0

IfU=AUBand ANB =, then A =U\B.

What can you conclude about the intersection of A and B
if ACU\B and B C U\A? Prove your answer.

Suppose for a fixed set A in universe U, AN B = A for

every set B. What can you conclude about A? Prove your
answer.

Suppose for a fixed set A in universe U, AU B = B for
every set B. What can you conclude about A? Prove your
answer.
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25.

26.

27.

28.

29.

30.

31.

32.
33.

34.
35.
36.

37.
38.
39.
40.
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The set A x B = {(a,b)|a € A,b € B} is called the Carte-
sian product of sets A and B. If A = {1,2} and B = {2, 3},
find A x B.

Prove or disprove: A x B = B x A. What is |A x B| in
terms of |A| and |B|?

Is the Cartesian operator x commutative? If your answer
is yes, prove it. If your answer is no, give a counterexam-
ple.

How would you define A x B x C? Is x associative?
Describe explicitly the set of all integral solutions to the
equation 22 + 5z + 6 = 0.

Using H to stand for heads and T to stand for tails, give an
explicit representation of the set of all possible outcomes
when three coins are tossed. For example, one outcome is
HHH.

Rewrite the following set using set-builder (implicit) nota-
tion: {...,—2,0,2,4,...}. Why is the set-builder notation
preferred here?

Show that B\(UaecaA) = Naca(B\A).

Simplify the expressions (A’ U B)' N (AU B). Simplify
(AU (A’uU B)).

List the elements of P({a, b}).

Give the power set of {z, {z}}.

Which of the following is true for all sets S?

a. 0 € P(S)

b. 0 C P(S)

c.he s

d0cCsS

List the elements of P(P(S)) where S = {a, b}.

What is |[P(P(S))| when |S| = n? (See Exercise 37.)

|AU B| = |A| + | B| under what conditions?

Suppose A; = {2, 8,16,32}, A2 = {3,9,27}, A3 = {2, 3,12,
19,27}, Ay = {4,16}. Find N}_, A;. Find UL, A;.
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41.

*42.

43.

44.

45.
46.

47.
48.

49.
50.
51.
52.

53.
54.
99.
56.

57.

Suppose S; = {z|xr € R and 0 < z < 1/n}. Find N$2,S;.
Extend DeMorgan’s laws to a theorem about U}_; A, and
for NI, A;. Can you do the same for U2, A% and N2, AL?

Use set notation to describe the set of all ordered pairs of
real numbers such that the second element of the pair is
the square of the first element.

Does set union have the property of cancellation, i.e. is it
true that if AUB = AU C, then B = C? Explain your
answer.

Does set intersection have the property of cancellation?

Using theorems of set theory, simplify (AU B)N (A’ U B).
By simplify we mean to write the expression using fewer
symbols if possible.

Simplify: AN(BU(AN(B'U(AN(BU (A" NB")))))).
The total number of elements in three sets, A, B, and C
is 200. 70 are in A, 120 in B, 90 in C, 50 in AN B, 30 in
ANC,40in BNC, and 20 in AN BNC. Find how many
arein AUB, AUBUC, A nBnNC, ANB'NC’, and in
ANnB' NnC.

Prove or disprove: If AUB = AUC, then B = C.

Prove or disprove: If ANB = AUC, then B =C.

Prove or disprove: If A x B=A x C, then B = C.

Using the definition of Exercise 17, prove or disprove: If
A—B=A-C,then B=C.

Prove (A~ B)U(B—A)=(AUB)—-(ANB).

Prove (A-B)N(A-C)=A-(BUC).

Prove (Ax C)N(B x D)= (ANB)x (CND,).

Under what conditions does AN B = A? Justify your
answer.

Under what conditions does A— B = B — A? Justify your
answer.
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28.
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Prove or disprove: (A—B)—-C=A—-(B-C).

Programming Problems

1.

* 2.

Devise some method for representing a (finite) set of inte-
gers. Write a program that inputs two sets (call them A
and B) and then prints A, B, AUB, AN B, and A — B.

Write a program to list the elements in the power set of a
given (finite) set.

. Write a program that outputs the number of subsets of

each possible size. For example, a set of two elements has
one subset of two elements, two subsets of one element
each, and one subset with no elements.

Write a program that inputs two sets and determines
whether one is contained in the other.

Write a program that inputs a set and then randomly
chooses an element from that set. Write a program that
inputs a set and then displays the elements of the set in a
random order.

Write a program that inputs two sets and then displays
their cartesian product.

. Write a program that defines abstract data type (ADT)

Set. The operations should include union, intersection, set
difference, and complement, as well as some way to input
and display sets. Programmers should be able to use your
ADT to declare variables of type Set.



Chapter 2
Functions and Relations

The idea of associating an element from one set with an
element (or elements) from another is a fundamental one in
mathematics. There are many different kinds of associations
and a wide variety of notations used for expressing them. We
will examine two kinds of associations: functions and relations,
both of which have significant applications in computer sci-
ence. We begin with functions, since you are more familiar
with them, before considering the more general idea of rela-
tions.

Recall that a function from A to B is a mapping from one
set (the domain of the function) to another (the range of the
function) where each element of the domain is mapped to one
element of the range. For example, we could map each element
in the set of integers to twice its value. In this case, if we call
the function f, one way of expressing the mapping is to write
f(z) = 2z. It is important to specify the domain and range of
a function. For example, if we wanted to restrict the preceding
example to the integers, we could write f : Z — 7Z such that
f(x) = 2z. Here, Z stands for the set of integers. On the
other hand, we could have a function g : R — R defined by
g(z) = 2z. (R is the set of real numbers.) The functions g and
f are different but they agree on the set of integers.

The critical idea is that a function maps each element in its
domain to a unique element in its range. What is not allowed
is for an element in the domain to be mapped to more than
one element in the range. An example of a mapping that is not
a function is one that maps each non-negative real number a
to the real numbers z such that z? = a. This mapping is not
a function since, for example, 4 would get mapped to 2 and
to —2. (There are many examples where this mapping fails to

25
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be a function. If it fails for just one value in the domain, we
cannot call the mapping a function.)

We illustrate a mapping that is a function and one that is
not in the following diagrams:

A B A B

| { =
L [

A function from A to B Not a function from Ato B

v Give three representations for the idea of associ-
ating any given real number with that number squared
plus one. Is this association a function?

There are so many functions that are important to us in
computer science that we can’t possibly list them all. We’ll
give a few examples of the most important ones used not only
for carrying out computations, but also for analyzing the per-
formance of programs.

Exponential and Log Functions

An important class of functions for us are the exponential
functions: f(z) = b®. We call b the base of the exponential.
Two bases are of particular importance for us: e (Euler’s con-
stant ~ 2.718128...) and 2. When you graph e or 2* (or
any exponential with base larger than 1), you should notice
that the function grows very rapidly after a short while. The
graphs of all exponential functions, with base greater than 1,
have similar shapes. The following graph plots the functions
4%, e” and 2% on one axis. (The function 4% is plotted with
a line of crosses and 2% is plotted with a dashed line.) Notice
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that the scales on the two axes are not the same. Also notice

how fast these functions grow as the value of x increases, even
though we’ve only shown the values up to x = 3.

60 |
50
40

30

2 /
10 : ,_

v Use a symbolic computation software package
or a graphing calculator to compare the graphs of the
identity function, the function that takes a real number
and squares it, and an exponential function that takes
any real number and raises 2 to that power.

Recall that a polynomial over the reals, p, in the variable
z can be thought of as a function of the form p(z) = a¢ +
a1z + asz® + -+ - + a,x™, where the coefficients ag, ..., a, are
real numbers. The degree of p(z) is the largest n such that
an, # 0. (If p(z) = 0 then we say p(xz) has degree —1.) As
mentioned, exponential functions grow very rapidly. Indeed,
if p(x) is any polynomial and b > 1, then there is a number
N such that if x > N, then b® > p(x). That is, eventually b*
is greater than p(z). This is true regardless of the degree of
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p(x) or its coefficients, although for polynomials of particularly
large degree, the first time b® exceeds p(x) (that is, the value of
the smallest N mentioned previously) might be a rather large
number. For example, e* > 1000z!° 4 323 for all z > 45. (You
can check that 45 is the smallest such value where this is true.)

Another important class of functions is the collection of
logarithm (or log) functions. The log functions “undo” the
mappings of the exponential functions. We need to make this
idea of “undoing,” or inverse, precise.

The inverse of a function f is another function, denoted
by f~!, such that f~!(f(z)) = z for all z in the domain of f.
Since f~! must itself be a function, f has an inverse only if f
is one-to-one; that is, only if f(z) = f(y) implies z = y. The
following are two functions; the first one is not one-to-one and
but the second one is.

A B A B

v Find the inverse of f(z) = 3z + 5.

The inverses of the exponential functions are the logarithm
functions. The logarithm base b is written log,(x) and so is
defined by log,(z) = y if and only if ¥ = z. Thus log,(8) = 3,
since 22 = 8. Note that since the range of an exponential
function (with positive base) is the set of positive reals and the
domain is the set of all reals, the domain of the corresponding
log function is the set of positive reals and the range is the set
of all reals. The logarithm base e is called the natural logarithm
and usually written In and the logarithm base 2 will be written
simply log with no subscript. The following are the graphs of
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Inz and logz. (The graph of log z is in dashes.)

Notice how slowly the log functions grow, in sharp contrast

to the exponential functions. Indeed, lim log,(z) = oo, but
r— 00

lim (slope of log,(x)) = 0. In other words, the value of log, (x)

gets as large as you wish, but at a progressively slower rate.
Contrast this with the exponential functions, which go to oo
at a progressively faster rate.

v Using computer software, compare the graphs of
the linear functions ax + b for various a’s and b’s with
the log functions alog,(z) for various a’s and b’s.

Since logs and exponentials are inverses of each other, we
have that

blogs(®) — g for £ > 0 and log, (b®) = =, for all .
Recall the following properties of exponentials:
by = pTpY, b*™¥ = b"/bY, and (b)Y = b"Y,
which give rise to the corresponding properties of logarithms:
logy, (xy) = logy,(x) + log,(y),

logy (x/y) = logy(x) — log,(y), and
log,(z¥) = ylogy(x).
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Changing bases of logarithms is simply a matter of dividing by

a constant: log,, ()
og,(x
08(%) = o0, ()
That is, to change from log, to log,, simply divide by log, (b).
So, logs(x) = logy(x)/ log, 3. This last property is easily shown
from the definition and elementary properties of log: Sup-
pose y = logy(z). Then b¥ = x and so log,(z) = log,(b¥) =
ylog,(b). Therefore, y = llzi“((cg)).
Note that log;on is ap;)roximately the number of digits
in n. With the help of the floor or ceiling function (given in
the following section), you should be able to come up with an

exact formula. (See the Exercises.)

Floor and Ceiling Functions

Two other examples of useful functions are the floor and
ceiling functions, written |x| and [z], respectively, which are
defined for all real = as follows:

|z| = the largest integer less than or equal to x

[x] = the smallest integer greater than or equal to x

Thus, |2.7] = 2 and [2.7] = 3. Note that |z] = [z] if and
only if z is an integer, in which case the value of both of these
functions is x. Note the following for integer n and real x:

|z =nifand only if n <z <n+1,
|x] =nifandonly if z — 1 < n < z,
[z] =nifand only if n — 1 <z < m,
[r] =nifandonly if z <n <z + 1.

Sometimes we call the floor of x the integer portion of x
and x — |z] the fractional portion of z. Note that the trun-
cation function available in most programming languages (for
instance, the trunc function in Pascal) is the floor function.
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Neither the floor nor the ceiling function is additive or
multiplicative. That is, it is not always the case that |z +y| =
|z] + |y] and similarly it is not always true that [z + y] =
[2] + [y]; this is also the case for multiplication. (This is left
as an exercise. )

Note that integer division can be written |n/m|, where
n and m are integers. Thus n mod m = n — |n/m]m. Most
programming languages use the floor function applied to the
quotient for integer division.

v Compare the integer division of your favorite pro-
gramming language with the formula given previously
using the floor function to see whether or not your lan-
guage uses the floor function for doing integer division.
Test both versions for various values of n and m.

Relations

We have seen that a function associates elements of one
set (the domain) with elements of another set (the range). But
these associations must satisfy a very special requirement: each
element of the domain is associated with exactly one element
in the range. A more general association is called a relation.

The Cartesian product of A and B, denoted A x B, is
the set of ordered pairs {(a,b) : a € A,b € B}. Any subset
of A x B is called a relation from A to B. For example, if
A ={1,2,3} and B = {2,4}, consider R = {(1,2), (1,4), (2,2),
(2,4),(3,4)}. It is possible to observe that the relation R just
given is the “less than or equal to” relation.

v. ~A={a,b}and B ={cd,e}. Find five different
relations from A to B.

Some relations have special properties. For example, func-
tions are relations. It is sometimes worthwhile to think of a
function as a set of ordered pairs. Indeed, if D is the domain
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and R is the range of a function f, then we can think of f
as a set of ordered pairs (d,r), where d € D and r € R with
the property that if (d,71) € f and (d,7r2) € f, then r; = ro.
This is simply restating, in the language of relations, the crit-
ical defining fact about functions: A value in the domain gets
mapped to a unique element of the range. Thinking of a func-
tion in this way, the function on the integers f(z) = z? would
be

f=1{..,(-24),(-1,1),(0,0),(1,1),(2,4),(3,9),.. .}.

This way of expressing a function could obviously be cumber-
some or even impossible, but sometimes it is convenient.

If we look at a function as a set of ordered pairs, the inverse
of a function is just the pairs with the coordinates reversed.
That is, if f = {(a,b)la € D,b € R}, then f~! = {(b,a)la €
D,b € R}, provided f is one-to-one. That is, (a1,b) € f and
(ag,b) € f implies that a; = ao. Note that when viewing f
as a set of ordered pairs it is easy to see why f needs to be
one-to-one in order for f~! to be a function. For if f were not
one-to-one, (ai,b) € f and (ag,b) € f, where a; # ag, then
(b,a1) € f~! and (b,a2) € f~! and so f~* would not be a
function, since b would get mapped to two distinct values.

v For the sets A and B in the last check box, find
all functions from A to B.

While we can have relations between elements of two dif-
ferent sets, frequently we are interested in a relation between
elements of the same set. For any set A, a relation on A is
a subset R of A x A. (A x A is the set of ordered pairs
(a,b) where a,b € A.) For example, if A = {1,2,3} and
R ={(1,2),(2,3),(1,3)}, then R is the usual “less than” rela-
tion. This method of expressing a relation as a set of ordered
pairs is correct, but frequently a more common method is that
of using a symbol between two elements of A. For example,



Chap. 2 Functions and Relations 33

we usually write 1 < 2 and 2 < 3 to express the relation R
we just gave. Sometimes it is convenient to think of a rela-
tion as ordered pairs, sometimes not. We will choose the more
appropriate notation, depending on the circumstances.

Relations may enjoy certain properties. A relation R on
the set A is reflexive if (a,a) € R for each a € A. Evidently,
the relation < on the reals is not reflexive, while < is.

R is symmetric if (a,b) € R implies that (b,a) € R. Nei-
ther < nor < on the reals is symmetric. For example, 3 < 4
but 4 £ 3. But the relation ~ on the integers given by a ~ b
if a — b is even is symmetric, since a — b is even implies that
b—a is also (being negations of each other). Thus a ~ b implies
b ~ a. The relation “is similar to” on the set of triangles is
symmetric.

R is antisymmetricif (a,b) € R and (b, a) € R implies a =
b. Said another way, R is antisymmetric if whenever (a,b) €
R and a # b, then (b,a) ¢ R. Clearly, < is antisymmetric
but the relation ~ just given is not. To see that ~ is not
antisymmetric, we see that 3 ~ 7 (since 3 — 7 = —4) but also
7 ~ 3. There are many other such examples where the relation
fails to be antisymmetric. Keep in mind that you only need one
counterexample to show that the relation is not antisymmetric.

Finally, R is transitive if whenever (a,b) € R and (b,c) €
R, then (a,c) € R. All three relations just given are transitive,
as you can check. However, let z ~ y if |x — y| < 1. This
relation on the reals is not transitive, since 1 ~ 1.8 and 1.8 ~
2.5 but 1 £ 2.5. The relation is symmetric, however, as you
can check.

If a relation is reflexive, symmetric, and transitive, we call
it an equivalence relation. Frequently, the symbol = is used for
an equivalence relation because an equivalence relation acts
much like equality. (By the way, the relation “equal” is an
equivalence relation on the real numbers.) Another example
of an equivalence relation on the integers is a =5 b if a — b is
even. Note that =5 is reflexive (¢ —a = 0), symmetric (if a — b
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is even, so is b — a), and transitive (if a — b and b — ¢ are even,
then a — ¢ = (a—b) + (b—c) is also, being the sum of two even
integers).

v If A=/{a,b,c}, find all equivalence relations on A.

Note that =, partitions the integers into two disjoint sets
(called equivalence classes), the even integers and the odd in-
tegers. To describe it another way, the two classes are those
integers that are equivalent to 0 and those that are equivalent
to 1. Similarly, if we defined the relation =3 by a =3 bifa — b
is a multiple of 3, then =3 is an equivalence relation. Fur-
thermore, =3 partitions the integers into three classes, those
integers equivalent to 0, those integers equivalent to 1, and
those integers equivalent to 2. This partitioning always hap-
pens with equivalence relations.

Let’s state the preceding explicitly: If = is an equivalence
relation on the set A, then A is partitioned into equivalence
classes such that a and b belong to the same class if and only if
a = b. This is easy to show. A partition of a set is a collection of
disjoint subsets whose union is the entire set. The equivalence
class for = that contains a (let’s call this set E,) is all the
b € A such that a = b. First note that every element a of A
is in some class, namely F,, since = is reflexive. Now all we
must show is that if F, and E}, overlap, they are identical. But
if c € E; N Ep, then a = c and b = c¢. But then ¢ = b (since
= is symmetric) and so a = b (since = is transitive). That is,
be E,. It follows that E, C E,. (Why? If ¢c € E}, then b = c.
But b € FE, and so a = b. Since = is transitive, a = ¢ and
so ¢ € E,.) A similar argument shows that F, C Ej and so
E, = E,.

The simplest equivalence relation “equals” on any set has
rather trivial equivalence classes. Indeed, E, = {a}, for ele-
ment a. At the other extreme, consider the equivalence relation
on any set where every element is related to every other ele-
ment. How many equivalence classes are there for this relation?
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Another special type of relation is one that is reflexive, an-
tisymmetric, and transitive. Such a relation is called a partial
order. The canonical example of a partial order is the relation
“subset” on the power set of a given set. That is, the set A
is related to the set B if A C B. In the Exercises, you will
be asked to verify this. Note that when considering this rela-
tion on all subsets of a given set with more than one element,
not every pair of subsets are related. For example, if we con-
sider the subset relation on the power set of {1,2,3,4,5}, then
{1,2,3} and {2,4} are not related. However, a partial order
where each pair is related is called a total order. Note that <
on the reals (or on any subset of the reals, such as the integers)
is a total order. To verify this you must first check that it is a
partial order, then check that every pair of elements is related.

When writing a program, you may wish to arrange items
in a special order that is different from a usual numeric or
alphabetical order. You may wish to sort a collection of records
where no order is obvious or where the order is more complex
than, say, Social Security numbers or zip codes. You must
first establish an order. That is, indicate what it means for
one record to be “greater than” another. When establishing
this relation, you must guarantee it is indeed at least a partial
order, and probably a total order. See the Exercises for some
additional examples of orders.

Finally, the examples we’ve given naturally arise from
some well-known concepts. But recall that a relation on a
set A is any subset of A x A. So if A is finite and large or
infinite, you have a large number of possible relations. Thus
you may have a particular relation in mind, but no easy way
to describe it.

Exercises

1. Graph the functions y = €*, y = 2%, y = 3%, y = In(z),
y = logy(x), and y = logz(x).
2. Find the smallest integer N so that 2% > 223 + z2 + 1 for
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10.

11.
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all z > N.

Show that if n is an integer, then
i.  <nif and only if |z]| < n,
ii. n <z if and only if n < [z],
iii. z < n if and only if [z] < n, and
iv. n <z if and only if n < |z].
Give instances of z and y that make the following true and
instances that make the following false.

lz+yl=lz]+ 1y, [z+yl=T[z]+][y]
Can you replace the equal signs with inequalities of some

sort so the statements will always be true? Repeat the
exercise for multiplication.

. Give a precise formula for the number of digits in an inte-

ger n.

. While most programming languages have some sort of

built-in floor function, not all have a ceiling function. Write
one.

Assuming only the floor function is provided, write a round
function.

Show that the relation ~ on the reals given by z ~ y if
|z—y| < 1isnot transitive. Is it reflexive? Is it symmetric?
Is it antisymmetric?

Define a relation on the reals that is reflexive but not sym-
metric or transitive; one that is symmetric but not tran-
sitive or reflexive; one that is transitive but not reflexive
or symmetric.

If T is the set of all triangles, let triangle A be related
to triangle B if A is similar to B. Is this an equivalence
relation? Why or why not?

For the equivalence relation equals on the real numbers,
what is F, for each real number a?
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12.

13.

14.

15.
* 16.

*17.

18.

Consider the relation on the reals where every real is re-
lated to every other real. Describe the equivalence class
FE, for each real number a.

For each relation, indicate if it is reflexive, symmetric,
antisymmetric, or transitive. Which of the following are
equivalence relations? If it is an equivalence relation, list
(or describe) the equivalence classes.

On the integers: a ~ b if a > b.

On the integers: a ~bifa=b+1ora=>0-1.

On the reals: a ~ b if |a — b| is an integer.

On the reals: a ~ b if b = a™ some integer n.

On all rectangles: a ~ b if area of a = area of b.

On all rectangles: a ~ b if one side of a has same
length as one side of b.

On all people: a ~ b if a and b have the same parents.
On all people: a ~ b if @ and b have at least one
parent the same.

On all college grads: a ~ b if @ and b are alums of the
same school.

On all college grads: a ~ b if a and b had the same
major (allowing double majors).

Show that C is a partial order on the power set of a given
set S.
Show that < is a total order on the reals.
Let Z be the set of integers and let Z x Z = {(a,b) : a,b €
Z} be the set of ordered pairs with coordinates from the
integers. Now set (a,b) < (¢,d) if a < c or a = ¢ and
b < d. Show that < is a total order on Z X Z.
Here’s another relation on Z x Z: set (a,b) < (¢,d)ifa < ¢
and b < d. Show that < is a partial order. Is it a total
order?
For the sets A = {z,y} and B = {r, s, t},

a. find all functions from A4 to B.

b. find all functions from B to A.
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19.

20.

21.
22.
23.

24.

25.

26.

*27.
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. find all relations on A.

find two relations from A to B that aren’t functions.

e. find how many different relations there are from A to
B. (Can you generalize?)

f. find a relation on B that is a equivalence relations.

Find one that is a partial order. Find one that is a

total order.

oo

Can an equivalence relation be an order relation? Why or
why not?

Can an order relation be an equivalence relation? Why or
why not?

Is every function a relation? Why or why not?
Is every relation a function? Why or why not?

Give an example of a relation that is reflexive, but not
symmetric and not transitive.

Give an example of a relation that is symmetric, but not
reflexive and not transitive.

Give an example of a relation that is transitive, but not
reflexive and not symmetric.

Suppose you have a collection of computer network nodes
and you know which nodes have direct connections to
which other nodes. For example, if the nodes are called
A, B, C, D, and E, you might know that there are connec-
tions between A and B, between A and C, between D and
B, between D and E, between A and E, between C and
D. Show that the relation on the set of nodes defined by
”can communicate with” is an equivalence relation.

Consider the following definition about functions: Given
functions f and g, f is called “big Oh of g,” written
f = O(g), iff there exist constants ng and ¢, ng a nat-
ural number and ¢ a real number, such that f(n) = cg(n)
for all n > ng. Using this definition, answer the following
questions:
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28.

29.

30.
31.

32.

33.

a. If f(z) = z and g(z) = z?, is it the case that f =
O(g)? Does g = O(f)?
b. If f(z) = log(z) and g(z) = z, does f = O(g)? Does
g=0(f)?
c. If f(z) = 322 +5x+12 and g(z) = 22, does f = O(g)?
Does g = O(f)?
d. If f(z) = y/z and g(z) = log(z), does f = O(g)?
Does g = O(f)?
Suppose f and g are functions. f has domain A and range
B. g has domain B and range C. Define the composition
of f and g, written g o f, to mean the function that first
applies f to a value in A (which results in a value in B)
and then applies g to that value. Suppose f is a function
from integers to integers and that f(n) = 2n. Suppose g is
a function from integers to rationals and that g(n) = 1/n.
Find (go f)(7). Find (g o f)(z) for any integer z. Is fog
defined? Explain.
Suppose f and g are both functions from reals to reals.
f(z) =5z +3and g(x) =6 —z. Find go f. Find fog.

Find the inverse of g o f when it exists.

Show that when defined, (hog)o f = ho(go f), assuming
that f, g, and h are functions. Note: This shows that o is
associative.

Define relation R by xRy iff 2 = y?. Show that R is
an equivalence relation. What are the equivalence classes
defined by R?

A function f : A — B is onto if for each b € B there is
an a € A such that f(a) = b. If a function is one-to-one,
it is sometimes called injective. If a function is onto it is
sometimes called surjective. For each of the five following
functions, determine if it is injective and if it is surjective.
Find the inverse if it exists.
flz) = 5x
flz) = ,m
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34.

35.

36.
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f(z)=a®+1
flx)=2-3z
f(z) =27

Suppose A has m elements and B has n elements, where
m < n. How many one-to-one functions are there from A
to B?

Suppose f : A — B and g : B — C are both injective.
Prove that g o f is injective.

Suppose f: A — B and g : B — C are both surjective.
Prove that g o f is surjective.

Programming Problems

1.

* 3.

Write a program that inputs two polynomials and prints
their sum, difference, and product. You will need first to
decide how to store a polynomial.

. Write a program to compute the derivative of a polyno-

mial. You will need first to decide how to store a polyno-
mial.

Write a program that prints out all the functions on a
given set S. Here the input will be the elements in a, set.



Chapter 3
Boolean Algebra

Every area of mathematics and computer science depends
in some way on logic and the language of sets. We have al-
ready developed some notation for expressing ideas about sets.
In this chapter we will examine some concepts and properties
of sets, and we will make some observations about analogous
concepts and properties of propositional logic.

After studying properties of sets and properties of propo-
sitions, we will generalize from the two examples to provide a
set of axioms encompassing those properties common to both.
The resulting structure is called a Boolean algebra.

Interestingly enough, it turns out that switching circuits,
together with operations for connecting them, form a Boolean
algebra. This means that when designing a computer circuit
that carries out some operation such as addition, we can reason
about the circuit (and perhaps simplify it) by applying the
axioms and theorems of Boolean algebra, the abstraction that
encompasses sets, propositions, switching circuits and other
systems as well.

Propositional Logic

You should review propositional logic from Chapter 0. To
recap: Propositions have a value of t (true) or f (false). The
truth symbol T is the proposition that’s always true and F' is
the proposition that is always false. Propositional variables, p,
g, 7,..., and truth symbols may be combined by the connec-
tives - (not), A (and), and V (or). (There is also the connective
= (implies) but that will not play a big role here.)

The function connectives are given in the following truth
table:

41
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P 4 p PAG pVyq
t t f ot t
t £ f f t
ft t f t
f £t f f

For our purposes, the following are the important facts
about propositional logic. Instead of the equivalence sign (=)
we’ll use the equal sign (=) here.

e A and V are commutative. That is, p A g = ¢ A p and
pVqg=qVp.
A and V are associative. That is, pA (gAT)=(pA g AT
and pV (gvr)=(pVgVr.
V distributes over A. That is, pV (gAT) = (pV @) A(pVT).
A distributes over V. That is, pA(qgVr) = (pAgq)V (pAT).
T acts as an identity for A and that F' acts as an identity
for V. Thatis, TAp=pand F'Vp=np.
e pA(-p)=F and pV (-p)=T.

Sets

You might want to review quickly the preliminary chapter
on sets, Chapter 1. We will be using the terms and notation
from that chapter here. We will see a connection between V
and A of propositional logic and U and N of set theory. We
will consider a given set S as a universal set and all the sub-
sets of S (the power set of S, P(S)) together with U, N, and
complementation.

Given two sets, A and B, recall that we defined binary
operations U and N as follows:

AUB = {z|x € Aor z € B}, and
ANB={z|x € A and z € B}.

“r € A” is a proposition as is “z € B.” Thus the union of
sets A and B can be characterized by the proposition “x € A
orx € B.”



Chap. 3 Boolean Algebra 43

We noted the following properties of sets in the first chap-
ter. Notice that these are similar to the properties we listed
for propositional logic.

e U and N are commutative and associative.
e U distributes over N and N distributes over U.
e () serves as an identity for U and the universal set U serves

as an identity for N .

e For any set A, AUA' =U and ANA =0.

Boolean Algebras

In the late nineteenth century, George Boole noticed the
commonalities shared by collections of sets and collections of
propositions. He defined an abstraction, an algebra, with those
common properties. His abstract system has since been applied
in many areas of mathematics and computer science. The ab-
straction is now called a Boolean algebra. We will give a defini-
tion of this abstraction and then see some examples in addition
to sets and propositions where computer scientists use this ab-
straction. These common properties are collected into a set of
axioms.

Let B represent a set with two binary operations 4+ and
x. Then B is a Boolean algebra if the following axioms hold:

Axiom 1. Both + and * are commutative. That is, for all a
andbin B,a+b=b+aanda*xb="bx*a.

Axiom 2. There exist two special elements of B, 0 and 1, such
that for any a in B, a4+0 = a and ax1 = a. That is,
0 acts as an identity for + and 1 acts as an identity
for x*.

Axiom 3. For each element a in B there is special element a’
satisfying such that a + a’ = 1 and a*a’ = 0. This
element is called the dual of a.

Axiom 4. Each operation distributes over the other; that is,
for any a, band cin B, a*(b+c¢) =axb+axc
and a+b*c=(a+b)*(a+c).
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Here, the symbols 0 and 1, + and * are thought of as just
that, symbols, and must not be confused with their use in well-
known algebraic systems such as integers and reals. We know
that in mathematics we often use a single symbol to represent
more than one concept. Usually, it is not difficult to figure out
what the interpretation of a symbol ought to be by viewing it
in a given context.

For example, if we see 5 + 8, we interpret the + as that of
integers. If we see 2.75+ e, we interpret the + as that of reals.
And if we see 2 xi 4+ 7, we interpret the + as that of complex
numbers. Computer scientists refer to this use of a symbol for
multiple purposes as “overloading.”

It doesn’t take long for us to see that the set of integers,
together with addition and multiplication and the usual 0 and
1, will not satisfy the axioms for a Boolean algebra. For ex-
ample, in checking Axiom 4, we note that although multipli-
cation distributes over addition, addition does not distribute
over multiplication; for example, 2 + 3 % 5 is not the same as
(24 3) % (2+5).

To see that such a system can really exist—that is, to
show consistency of this set of axioms—we need an example of
a set with two operations satisfying the four axioms. Consider
the power set P(S), of a given set S, together with operations
union and intersection. Let’s have a look at the axioms one by
one.

Axiom 1: Both union and intersection are commutative.
Axiom 2: Let the empty set be 0 and the entire set S be 1.
For any set A, AUQ0=Aand ANS = A.
Axiom 3: Given a set 4, let A’ be the complement of A4 in S.
Then AUA' =S and AN A’ = 0.
Axiom 4: Union distributes over intersection and intersection
distributes over union.
You have proven these four properties in past exercises and
so we have now established that there is at least one Boolean
algebra, namely, the power set of a given set under U and N.
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It is also straightforward (and left as an exercise) to see that
propositional logic is a Boolean algebra. To see this, you must
decide what operation should be + and what should be %, what
propositions should be 0 and 1, what the dual of a proposition
should be and that the four axioms are satisfied.

v How many elements will be in a Boolean algebra
that consists of the subsets of a given finite set?

Some Boolean Algebra Theorems

One of the advantages of defining an abstract mathemat-
ical system is that we may discover and prove a variety of
theorems for the abstract system and then apply those theo-
rems to all of the models of that system. In this section we
will examine several theorems and later we will apply those
theorems. We will number the theorems so that they will be
easy to refer to when we use them. In each of these theorems,
B is a Boolean algebra.

Theorem 1. For alla in B, a+a = a.

Proof:
a=a+0, by Axiom 2
=a+axd, by Axiom 3
= (a+a)*(a+a’), by Axiom 4
=(a+a)=x1, by Axiom 3
=a+a, by Axiom 2

The property demonstrated by Theorem 1 is called the
idempotent property; here we say “every element is idempotent
under +.” Note that every step in the proof can be justified by
one of the axioms of Boolean algebra. The technique used is a
common one. We start with one side of an equation we want
to establish and then, using known facts (axioms, definitions,
or other theorems), we proceed to get the other side.
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Theorem 2. Foralla in B, a*xa = a.

Proof:
a=axl, by Axiom 2
=ax(a+a’'), by Axiom 3
=a*xa+ax*xa, by Axiom 4
=ax*xa+0, by Axiom 3
= a * a, by Axiom 2 //

Thus every element is also idempotent under x. Note that
Theorem 2 looks like Theorem 1 with all the + signs replaced
by * signs and all x’s replaced with +’s and that 0’s and 1’s
are interchanged. We call Theorem 2 the dual of Theorem 1.
We can form the dual of many theorems in Boolean algebra by
the same method. If a theorem about Boolean algebras is true
so is its dual. (An unfortunate conflict of terminology occurs
with dual. We now have the dual of an element and the dual
of a theorem. The context will always make clear which one
we're using, but you should be aware of this as you start your
study of Boolean algebras.)

The following are additional theorems true for all Boolean
algebras. All of these theorems come in pairs; the dual of each
is also a theorem and is given alongside. We leave the proofs
of these theorems and their duals to the Exercises. In each
theorem, B is a Boolean algebra.

Theorem 3. For allain B,a+1=1. (Dual: ax0=0.)

Theorem 4. For all a and b in B, a + (a xb) = a. (Dual:
ax*(a+b)=a))

Theorem 5. For all a, band cin B, (a+b)+c=a+ (b+c).
(Dual: (a*b)*c=ax(bxc).) That is, + and
* are assoctative.

Theorem 6. For all a in B, (a’)) = a. (Dual: same state-
ment.)

Theorem 7. 0/ = 1. (Dual: 1’ =0.)

Theorem 8. Forallaand bin B, (axb) = o/4+b'. (Dual: (a+
b)) = a’ xb'.) These are known as DeMorgan’s
laws.
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Switching Circuits

We turn now to a Boolean algebra application of special
interest to computer science. At the lowest level of digital com-
puters are circuits whose pathways (such as wires or paths on
circuit boards) each have one of two values. One way to think
of these values is to think of the pathway as being turned on
or off. Another way is to think of these values as having low
voltage or high voltage. We call the value of these pathways
bits. We will indicate the value of these pathways with a 0 (for
“off” or “low voltage”) and a 1 (for “on” or “high voltage”).
Pathways may pass through devices called gates. Gates have
one, two or more input pathways and one output, whose value
is determined by the values of its inputs. Gates come in differ-
ent types. We'll start with the three basic types of gates: the
and gate, the or gate and the not gate.

An and gate takes two inputs and produces one output.
The following table describes how the and gate functions:

inputl input2 output

0 0 0
0 1 0
1 0 0
1 1 1

Note the similarity to the truth table for joining two logical
propositions with an and (the logical operator A). We draw an

and gate as follows:

Similarly, we define an or gate with the following table:
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inputl input2 output

0 0 0
0 1 1
1 0 1
1 1 1

Here we see a strong similarity to an or (the logical operator
V) for logical propositions. The symbol for an or gate is:

T

A not gate can be defined by the following table:

input output

0 1
1 0
It is not surprising to see a similarity between the not gate
and the logical not operator, —. The symbol for a not gate is

o

By now you may have guessed that if we associate the
value 1 of switching circuits with T of propositional logic and
the value 0 with F, then the and gate and the and logical op-
erator correspond as do the or gate and the or logical operator
and the not gate and the not logical operator. Indeed switch-
ing circuits behave exactly like propositional logic, a fact we’ll
show soon by showing that switching circuits with these nat-
ural operations form a Boolean algebra. In fact, sometimes
switching circuits are called logic circuits.

Suppose that A and B are two bits. The algebraic (propo-
sitional logic) notation for the output of an or gate with inputs
A and B is A + B. The algebraic notation for the output of
an and gate with inputs A and B is simply juxtaposition: AB.
The algebraic notation for the output of a not gate with input
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Ais A'.

More complicated switching circuits can be expressed with
longer expressions. For instance, the switching circuit expres-
sion A+ (BC’)’ can be drawn as

Conversely, when given a more complex switching circuit,
we can easily find its expression. For example, the following
circuit,

has the expression (AB)" + BC".

Often when designing a circuit, we may find multiple ways
to put together gates to satisfy the requirements of the given
circuit. For a simple example, the circuit A+ A gives no more
than the simpler circuit A. When presented with a complex
circuit, we'd like to find a simpler one, if possible. This fre-
quently makes the circuit more efficient or less expensive to
build. If we know that switching circuits form a Boolean alge-
bra, we can use our Boolean algebra theorems to simplify the
expression for the circuit.
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For example, consider the following circuit diagram:

.

B .
1>

This circuit has eight gates and three inputs. We wonder
if it might be possible to simplify the circuit to get an equiv-
alent circuit with fewer gates. We have already noted several
similarities between circuits with switching gates and logical
propositions. This observation gives us reason to investigate
just how much in common these two systems share. Indeed,
we can show that switching circuits are Boolean algebras.

For example, if we examine the circuit drawn in the pre-
ceding figure, we can represent it by using the expression A(B+
C)+ B(A+C")+ CB given in terms of the names of the input
bits, using capital letters such as A to represent those bits.

To show we have a Boolean algebra here, we must desig-
nate what the two operations are and decide what the comple-
ment of A should be. As our notation suggests, we will let the
or gate (+) be addition in the Boolean algebra, the and gate
(juxtaposition) be the multiplication, and the not gate ( /) to
be complementation. In order to check that we do indeed have
a Boolean algebra we must also provide special gates that act
as the “0” and “1” and show that the axioms hold.

It is clear that given any two bits, A and B, connected
through an or gate with A first, then B, gives, by definition,
the same value as putting B first, then A; and similarly for bits

connected through an and gate. Thus Axiom 1 for Boolean
algebras holds.
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Since the 0 must act as an additive identity, we need a bit
that when we or it with any other bit A will yield the value of
A. Here we consider a permanently open (or off) bit using 0
as the symbol for it. It is easy to see that this value fills the
bill.

Analogously, for the 1, we identify a bit that is always
closed (or on). Consider the circuit in which we and any bit A
with 1; the result is A. Hence, the 1 acts as an identity for the
and gate.

These two observations establish that Axiom 2 for Boolean
algebras holds here. We illustrate these two facts in the fol-
lowing circuits.

A A—
A A

For each bit A, we note that if we call the opposite value
of A, A/, we find that A connected with A’ through an and
gate yields 0, whereas A connected with A’ through an or gate
yields 1; hence Axiom 3 for Boolean algebras is satisfied. These
facts are illustrated in the following circuits.

AW‘ ' LDO—}O

Axiom 4, distributivity, is left as an exercise, but it is
straightforward to draw the appropriate circuits and trace
through them to check that they function the same.

Having established that switching circuits (bits together
with the and, or, and not gates) form a Boolean algebra, we
are ready to have another look at the circuit on the bottom
of page 49. We can now represent it using the notation of
Boolean algebra and simplify the circuit from eight gates to
two gates using the axioms and theorems we have already seen.
This use of abstraction allows us to reason about circuits using
a mathematical system that allows us to manipulate symbols
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without needing to think about the meanings of the symbols.
A reduction of the expression for the circuit is given next. It
should be straightforward to supply the reasons for each step.

AB+C)+B(A+C'Y+CB=AB+ AC+BA+ BC'+CB
= BA+ BA+ AC + BC' + BC
= BA+ BA+ AC + B(C'+O)
= BA+ AC + B1
= BA+ Bl1+ AC
= B(A+1)+ AC

= Bl1+ AC
=B+ AC

v Confirm, by constructing the appropriate truth
tables, that B + AC' is indeed equivalent to the original
expression. You will certainly agree it is much simpler!

Storing Numbers in a Digital Computer

Our study of switching circuits has given us a glimpse at
design and simplification of circuitry, but we still have not ad-
dressed the question of how such circuitry can be used for more
complex computer operations. We will now find out how to
represent an integer in a computer and how to design circuitry
that can add two integers.

Integers in digital computers are usually stored using the
binary system. This system is analogous to the decimal system
we use for human computation. All decimal numbers are rep-
resented in terms of 10 digits (0 through 9). The digits take on
different meanings according to the position they hold. When
we write 3649, we mean three thousands, six hundreds, four
tens, and nine ones, or

3649 =3-10°+6-102 +4-10* +9 - 10°.
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Analogously, in the binary system, 100101 means one thirty-
two, zero sixteens, zero eights, one four, zero twos, and one
unit, or

100101 =1-2°40-2*+0-22+1-22+0-2' +1.2°

We call this the binary expansion of the number. In decimal
notation we would write this as 37, which we get by simply
calculating the binary expansion of the binary number 100101.

Thus converting from binary to decimal is a straightfor-
ward computation. Similarly, we can convert a number written
in any base to decimal. (Note that a number written in base b
uses digits 0 through b — 1.) For example, we can convert the
base 8 number 5036 to decimal:

5036 =5-83+0-82+3-8' +6-8° = 2590,

where 2590 is a decimal number. But we restrict our focus here
to binary integers. The following table shows how we count in
binary for the first few integers:

binary  decimal

0
1
10
11
100
101
110
111
1000
1001
1010
1011

© 00O ULk W = O

[S—Y
= o

v Represent the decimal integer 1000 using the bi-
nary system.
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Now let’s do some addition. Elementary school children
are taught to add two integers by using an algorithm. Begin-
ning with the unit position, add the digits. If the sum can be
written with one digit, write that digit in the unit position of
the answer. If the sum requires two digits, then the digit in the
unit position of the sum should be written in the unit position
of the answer and the second digit should be added to the two
digits in the tens position of the numbers being added. This is
called carrying the digit. This process continues from right to
left until all the positions have been processed. (If one num-
ber has more digits than the other, we simply pad the shorter
integer on the left with 0’s.)

The same algorithm works for adding numbers in any base.
For example, suppose we want to add two binary numbers,
10110 and 1111. We can write the numbers so that they are
right justified, filling in on the left with zeros, if needed.

010110
+ 001111

100101
Beginning at the right, we add 0 to 1. Since the sum takes
only one digit, we fill it in. When we move to the 2! column,
since the sum of 1 and 1 is 10, we write the 0 in the 2! column
and carry the 1 into the next column to the left. We continue,
arriving at the answer shown.

Circuitry to Add

Since digital computers use binary (base 2) representation,
addition must be done in binary. Before designing circuits that
do addition, we first consider how a computer might store in-
tegers. We will look here only at positive or unsigned integers.
In most computers positive integers are stored in words. Each
word has a fixed number of bits, usually 8, 16, or 32. The bits
in the word represent the value of the integer in base 2.

For example, if we want to represent 99 (expressed in base
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10) in a computer, we use 01100011, if the word size is 8, since
01100011 = 0-2741-2%+1-2°40-244+0-234+0-224-1-21 +1-2° = 99.

If the word size were 16, then 8 0’s would be used to fill out
the left part of the word: 0000000001100011.

v Suppose a computer uses one byte (8 bits) to rep-
resent each integer. What happens if you add 99 to 987

We’ve already seen that the same algorithm we learned for
base 10 addition works for base 2 as well. Thus we will need to
think of doing two operations for each position in an addition
problem. First we get the sum. Second we find the carry value.
The following table illustrates this process in binary. The z
and y represent the binary digits in a given position. The s
represents the sum bit and the ¢ represents the carry-out bit.

T y ¢ s
0 00O
01 01
1 0 01
1 110

This is the truth table for a circuit known as a “half
adder.” You probably have realized that this does not com-
pletely describe the process we need since there are really 3
bits to be added in each position: z and y as previously but
also the carry-in bit. We'll consider this problem after we've
designed the half adder.

We see that the carry-out bit is the value obtained by
using the z and y as inputs to an and gate, something we have
seen before. The sum value, however, requires us to look at
one more kind of gate, one that is called the zor gate, standing
for exclusive or. Given two inputs, the result of the zor is 1
if exactly one of the values of the inputs is 1. The output
is 0 otherwise. (This is in contrast to our usual or, which is
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sometimes called the inclusive or since the result of oring two
values is true if either one or both is true.) The symbol for the
zor operation in a Boolean expression is @. So the expression
for a zored with b would be a®b. In terms of switching circuits,

we express the zor as

Thus the circuit for a half adder is

>
}c

Note that instead of the zor gate we could have used the
equivalent z’y + xy’, but that would have required more gates.

Let’s expand and draw a full adder, one that has three
inputs: a carry-in bit as well as bits x and y. There are still
two outputs: carry-out and store. The truth table for the full
adder is

Cin L Y Cout S
0 06 0 0 O
0O 01 0 1
0 1 0 0 1
0 1.1 1 O
1 00 0 1
1 01 1 0
1 1.0 1 O
1 1 1 1 1

We would like to derive Boolean expressions for ¢y, and s.
Furthermore, we’d like these to be as simple as possible. What
these expressions are is not as obvious as for the half adder.
The method we’ll use here is applicable to all truth tables. So
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you’ll be able to easily get a Boolean expression for any truth
table.

We’'ll derive a Boolean expression for cg, first. The first
step is to write a Boolean expression for ¢,y in a standard
form called disjunctive normal form (DNF). To do this, look
at the 1’s in the coyy column. For each 1, make a conjunction
from the inputs that is true only for those inputs. That is,
the truth table for that conjunction would be 0’s everywhere
except for a 1 on that line. The conjunction for the first 1 in
the couy column is clearly ¢/ xy. The other conjunctions are
cinZ'y, cinzy’ and ciuxy.

Now make a disjunction of all these expressions; this will
be the DNF for cout:

/ / /
Cout = Cin XY + CinZT' Y + CinXY + CnTY.

It is important to note that the DNF for any truth table is
unique. (You find it using the technique just described.) Also,
once we have any Boolean expression for a truth table, we can
then draw a switching circuit for it. Furthermore, since we
can write a truth table for every switching circuit and every
truth table has a DNF, we can draw a switching circuit for any
Boolean function using only and, or, and not gates.

We could draw the circuit for ¢,y directly from its DNF,
but, as we’'ve seen, it’s usually worthwhile to simplify the ex-
pression first. There are different directions we could go here.
We'll use the following simplification which makes nice use of
the exclusive or:

Cout = CinZY + CinZ'Y + CinTY’ + CinTy
= (¢, + cin)zy + cin(z'y + zy’)
= lzy + cin(z © y)
=zy+ cin(z B y).
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Similarly, we can write the DNF for s and simplify:

5= C;n.l‘/y + C{nxy/ + Cinx’y/ + CinZY
= cin(¢'y + 2y') + cin(2'y + 2y)
= cin(z ®Y) + cin(z @ y)’
=cn®(®Y).
Note that there are other expressions possible for s and

Cout but these are convenient since one gate, x @ y, is used in
both circuits. Thus the circuit for a full adder is

Gn

y — D;DC
L/

We typically use simpler circuits to build up more complex
circuits. When doing this, the simple circuits are treated as
“black boxes” where the inputs and outputs are labeled, but
the internal circuitry is not given. This simplifies the design
process. For example, the black box units for the half adder
and the full adder might be drawn as

We can now string together four full adders to make a 4-
bit adder by connecting the cou; of a full adder to the ¢, of
the full adder to its immediate left. We connect the carry-in
to the rightmost adder to 0. The reason we don’t use a half
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adder for this rightmost bit is that then we can use this 4-bit
adder as a building block for larger adders. We'll leave this as
an exercise.

Exercises

1.

NS ;AW

* 8.

10.

For propositional logic, prove the following, if you have
not already done so:

a. A and V are commutative and associative.

b. V distributes over A.

c. T is the identity for A and F is the identity for V.
a. Write p = ¢ in DNF.
b. Simplify your expression (use only V, A, and -).
Construct a truth table for =(p V =q) = —p.
Construct a truth table for (p A ¢) = p.
Write the negation and simplify (gV r) A (—g V).
Write the negation and simplify pV qV (-=p A =g A 7).
The following are known as the absorption laws for logic:
pV(pAq) =pand pA(pVgq) = p. Prove these using truth

tables.
How would you write the corresponding statements for

Boolean algebras?

You can prove the absorption laws for all Boolean algebras
using just stuff you know about Boolean algebras. But
there’s a little trick. (There always is.) Here’s the first
step in showing that p+ (pxq) = p2 p+(p*xq) =
(p*1)+ (pxq) = --- . Now continue reducing until you
get p.

Use a similar trick to show the other absorption law for
Boolean algebras.

Simplify: AB + (B'C) + (D + C'). Draw the simplified
circuit.

It turns out you can construct the equivalent to an or
gate using just and and not gates. Do so. (Hint: Think
DeMorgan’s laws.)
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11. Likewise, you can construct the equivalent to an and gate
using just or and not gates. Do so.

12. What is the largest (unsigned) integer you can store in 4
bits? In 8 bits? in 16 bits? In n bits? (Give your answers
in decimal.)

13. Add these binary integers: 11010 + 1011, 1011 + 110,
11111110111 4 1001.

14. Convert these decimals to binary: 90, 52, 41.
15. Convert from binary to decimal: 111101, 100010, 111000000.

16. If an integer is written in binary, how can you easily tell
it is even? If it is odd?

17. When doing arithmetic in the base 10 system, multiplying
and dividing by 10 or powers of 10 can be done easily by
moving the decimal point. How can you do multiplying
and dividing by 2 and powers of 2 in the binary system?

* 18. Suppose you want to represent real numbers in binary
form. How would you represent one half? Hint: Since
on the right of the binary point, each position will stand
for a negative power of 2, the first position stands for 271,
the second position for 272, and so on.

*19. Given the base 10 numeral 234.75, represent the number
it stands for in base 2.

20. Add the binary numbers: 110101.101 + 1100011.011.

*21. If @ and b are integers, what is (a + b)2? (a + b5)3? (a +
b)"? If a and b are elements of a Boolean algebra, what is
(a+b)2? (a+b)3? (a+b)"? (Here, (a + b)? is shorthand
for (a +b) * (a+b). The other exponents stand for similar
expressions.)

* 22. Show that if B is a Boolean algebra, then there can be no
element a € B where a # 0 and a # 1 such that o’ = a.
(That is, a can’t be self-dualing.)

* 23. Show that there is no Boolean algebra with exactly three
elements. (Hint: Use the previous exercise.)
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*24.

25.

26.

27.
* 28.

29.

30.

* 31.
32.

Can you find a Boolean algebra with four elements? With
five elements? With six elements? For an extra challenge,
can you generalize?

You showed that the collection of subsets of any given
finite set can form a Boolean algebra with appropriately
chosen operations. Is the same true of an infinite set?

Suppose p is a proposition. What is the dual of p? (Note
that for your choice to work properly, Axiom 3 must be
satisfied.) Verify that Axiom 3 is indeed satisfied. Now
show that the well-formed expressions of propositional logic
form a Boolean algebra.

Write the duals of all the theorems in this chapter.

We noted that the dual of a Boolean algebra theorem is
one where the +’s and *’s are exchanged and the 0’s and
1’s are exchanged in the original theorem. The principle of
duality says that the dual of any Boolean algebra theorem
is also true. Prove that the four axioms of Boolean algebra
are self-dualing. That is, the dual of each axiom is itself.
Why does the principle of duality follow from this?
Consider the collection of all integers with the usual ele-
ments 0 and 1, together with the usual addition and mul-
tiplication. We’ve seen that this is not a Boolean algebra
since + does not distribute over x. Which of the other
axioms for Boolean algebras do the integers satisfy and
which do they not satisfy?

Let B = {0,1}, with + defined to be the usual addition
modulo 2 and * the usual multiplication. Is B a Boolean
algebra?

Prove Theorems 3 through 8 on Boolean algebras.

If a,b, and ¢ are elements in some Boolean algebra, show
that the following four expressions are equivalent:

(a+b)*(a'+c)*(b+c) axc+a xb+bx*c
(a+b) * (a’ +¢) axc+a xb
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33.

* 34.

* 35.

* 36.

*37.

* 38.

39.

*40.

41.

42.
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Show that axb+bxc+c*xa=(a+b)x(b+c)*(c+a),
where a, b, and ¢ are elements of a Boolean algebra.

If a,b and c are elements of some Boolean algebra, and if
both axb = ax*cand a+ b= a+ ¢, then show that b = c.
(Hint: Use the absorption laws from a previous exercise.)

If a,b, and c are elements of some Boolean algebra, then
show that if axx = bxx and axx’ = bxx’ for all x in the
Boolean algebra, then a = b.

If a, b, and c are elements of some Boolean algebra, define
a < bif and only if @ x b’ = 0. Show that if a < b, then
a+bxc=bx(a+c) for all c

For a, b, and ¢ in some Boolean algebra, show that

a. fa<band b<c thena<ec

b. If a <band a <c, then a < bc.

c. If a <b, then a < b+ ¢ for all c.

d. a<bifand only if ¥’ < a'.
For a,b, and ¢ in some Boolean algebra, show that a = b
if and only if a x b’ +a’ xb = 0.
Let S = {1,2...,n} for some positive integer n. On S
define = + y = max{z,y} and = * y = min{z, y}. Can you
find a way to make S a Boolean algebra with these two
operations?
Suppose a and b are elements of a Boolean algebra. Show
that the following are equivalent: ab = a , a + b = b,
a+b=1,ab =
Let S be the set of positive divisors of 110 (i.e., S =
{1,2,5,10,11,22,55,110}). Show that S together with the
operations ged (greatest common divisor) and lem (least
common multiple) forms a Boolean algebra. You will need
to figure out what the dual of each element is and what
the zero element and the one element should be.

Let S be the set of positive divisors of 18 (i.e., S = {1,2,3,

6,9,18}). Show that this set together with gcd and lcm
does not form a Boolean algebra.
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*43.

*44.

45.

46.

47.

48.

49.

50.

51.

52.

Based on the previous two exercises, make a conjecture as
to what sets of divisors do make Boolean algebras when
the operations are gcd and lem.

A set is called “cofinite” if its complement is finite. Let U
be the set of all finite and cofinite subsets of the natural
numbers. Prove that the subsets of U together with the
operations union, intersection, and complement, forms a
Boolean algebra.

Construct circuits for these expressions: (i) AB'+CB’'+A,
(ii) (A+C") (B + C")A.

Simplify the expressions in Exercise 45 and draw the cir-
cuits.

Draw a circuit with four inputs whose output is their sum
(in binary). Note that the possible outputs are 0, 1, 10,
11, and 100. Thus you need how many bits for output
here? (Recall that each output line means a new circuit.)
You may use full or half adders in your circuit, if you wish.

Draw a circuit with three inputs, call them A, B, and C,
whose output is 1 if A equals the sum of B and C.

Draw a circuit with three inputs whose output is 1 when
an odd number of inputs are 1. (Try to use XOR gates in
your circuit to make it simple.)

Draw a switching circuit for the expression A(B’ + A'C).
Same question for (B + A")(AC’ + B'C).

Simplify the two expressions in the previous exercise and
redraw the circuits.

Build a 4-bit adder from four full adders. The inputs for
this circuit will be the four bits for one 4-bit summand,
Ag, A1, Ay, Az; another four bits for the other summand,
By, By, B>, Bs; and the carry-in for the right-most bit, cin.
Note that ¢;, will be wired to 0 when using this as a stand
alone 4-bit adder. What should the outputs be? What
would the black box diagram for this 4-bit adder look like?
Using your black box diagram, design an 8-bit adder.
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Give a Boolean expression for each circuit shown.

B
c—

54. Simplify the Boolean expressions you got in the previous

* 55.

exercise and draw the circuits you get. Give the truth
tables for both the original circuit and the simplified ones
and check that they are indeed equivalent.

Suppose we call two circuits equivalent if they have the
same truth table. We have seen that for any one circuit,
there are many circuits equivalent to it. Call the collection
of all circuits that are equivalent an equivalence class of
circuits. Now consider all circuits with two inputs and
one output. How many equivalence classes are there for
these circuits? (This is the same as the question “How
many different truth tables are there with two inputs?”)
Answer the same question for three-input circuits. Answer
the same question for circuits with n inputs.

Programming Problems

1.

2.

Write a program that takes as input a number represented
in base 2 and produces as output the same number repre-
sented in base 10. Write a similar program for base b.

Write a program that takes as input two numbers, z, vy,
and a base, b, and produces as output the sum of z and y
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*4.

* 6.

(in base b, of course).

. Write a program that permits users to do arithmetic in any

base between 2 and 10. They should be able to add, sub-
tract, multiply, and divide. A user can select a base and
then perform whatever arithmetic operation is required.

Write a program that, given a logic expression for proposi-
tional logic, prints out the corresponding truth table. For
a simpler version, logic expressions may be restricted to
either the negation of a single proposition or two proposi-
tions connected with a single connective.

Write a program to exhibit all possible truth tables for
the propositional logic when only two propositions are in-
volved.

Write a program that serves as a binary adder for very
large integers. (There should be no limit to the number
of bits stored here.)



Chapter 4

Natural Numbers
and Induction

All mathematics begins with counting. This is the process
of putting the set of objects to be counted in one-to-one corre-
spondence with the first several natural numbers (or counting

numbers):
1,2,3,4,5,---.

We denote this infinite set by N. We should note here that
there is not general agreement on the definition of N; some
mathematicians also include 0 in N. You will encounter no
great trouble one way or the other; which definition you use is
merely a matter of convenience. Indeed, as we shall see, both
of these sets share the fundamental properties important to us
here. Many of the uses of natural numbers in computer science
are obvious, but their most powerful property, the principle of
mathematical induction (or simply induction), is the one we’ll
emphasize in this chapter. In the next chapter, we’ll focus on
the arithmetic of N.

The importance of induction cannot be overstated. Many
important facts about natural numbers are proved using this
technique, and we will do that in this chapter. But beyond
the mathematical proofs, induction offers a way of thinking
about processes—processes that you will want to program on a
computer. Using induction to write programs goes by another
name: recursion. This is a topic of a later chapter. Being able
to think recursively is an important step in your development
as a computer scientist. In this chapter we will discuss some
properties of natural numbers informally and then finally give
a formal set of axioms.

66
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Well-ordering and Mathematical Induction

A fundamental property of N is well-ordering, a property
that we state formally below, and that we shall accept as an
axiom about N. An axiom for any system is a statement we ac-
cept as true without proof. In order to reason about a system—
in this case the natural numbers—we must start by assuming
something about it. These baseline assumptions should be rea-
sonable and “obviously true,” although there is frequently more
than meets the eye. While we won'’t be strictly rigorous here,
we’ve included one set of axioms for N at the end of this chap-
ter. These are called the Peano axioms and they seem very
primitive indeed. From them we could prove all important
provable facts about N. Note, however, that there are other
sets of axioms for N that are equally as valid. But our pur-
pose here is to convince you that mathematical induction is
valid. We could simply ask you to accept it as a reasonable
assumption—that is, as an axiom—but the well-ordering prin-
ciple seems to be more intuitive as an axiom and so we’ll start
by asking you to accept it.

The Well-ordering Principle. Every nonempty subset of N
has a least element.

For any subset of N that we might specify by actually list-
ing the elements, this is obvious, but the principle applies even
to sets that are more indirectly defined. For example, consider
the set of all natural numbers expressible as 12z + 28y, where
x and y are allowed to be any integers. The extent of this set
is not evident from the definition. Yet the well-ordering princi-
ple applies, and since this set is nonempty (which is important
to note) there is a smallest natural number expressible in this
way. (Of course, finding the value of that smallest number is
another matter. Note that the well-ordering principle guaran-
tees existence of a smallest number but says absolutely nothing
about how to calculate it.)

Suppose we wish to apply the well-ordering principle to a
particular subset X of N. We may then consider a sequence of
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yes/no questions of the following form:

Iste X?
Is 2 € X7

Because X is nonempty, sooner or later one of these ques-
tions must be answered yes. The first such occurrence gives the
least element of X. Of course, it might not be easy to answer
such questions in practice. But nevertheless, the well-ordering
principle asserts the existence of this least element, without
identifying it explicitly.

The well-ordering principle allows us to prove one of the
most powerful techniques of proof that you will encounter.
(We'll save the proof until later in the chapter.) This is the
principle of mathematical induction:

Principle of Mathematical Induction. Suppose X is a
subset of N that satisfies the following two criteria:

(1) 1€ X, and

(2) Foralln>1,ke X foralll <k <n impliesn € X.
Then X = N.

The principle of mathematical induction is used to prove
that certain sets X equal the entire set N. In practice, the set
X will usually be “the set of all natural numbers with property
such-and-such.” For example, X could be all natural numbers
n that satisfy the equation 1 +3 + -+ + (2n — 1) = n? (which
we will prove soon). To apply it we must check two things:

(1) the “base case”: that the least element of N belongs

to X, and

(2) the “bootstrap” or the “induction step”’: a general

statement that asserts that a natural number belongs
to X whenever all its predecessors do.

You should find the principle of mathematical induction
plausible. First, the base case establishes that 1 € X. Then
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successively applying the bootstrap allows you to conclude that
2€eX,3€eX,4€X, ---.

Thus every natural number is in X. That is, X = N.

Let’s look at the induction step more closely. In the induc-
tion step we assume that n > 1, since the case when n =1 is
handled in the base case. Notice that the induction step is an
implication. Indeed, we could write it in the form IF k € X for
every 1 < k£ <n THEN n € X. The clause “k € X for every
1 <k < n” is called the induction hypothesis. This statement
you assume to be true when showing the induction step. Under
this assumption you need to show that it follows that n € X.
If you successfully do this and you establish the truth of the
base case, then mathematical induction says that X = N.

When checking the bootstrap, we assume that all prede-
cessors of n belong to X, and must infer that n belongs to X.
In practice we often need only that certain predecessors of n
belong to X. Specifically, many times we will need only that
n — 1 belongs to X. Indeed, the form of induction you may
have used before probably assumed only that n — 1 was in X,
instead of all 1 < k < n. It turns out that the version you
learned before and the version we will be using are equivalent,
although they don’t appear to be at first glance. We will find
the version given here of more use.

Before proving the principle of mathematical induction
itself, let us look at some examples of its use. As beginners
in using mathematical induction, we’ll carefully establish each
part necessary for the proof. Specifically, we’ll (1) explicitly
declare what the set X is, (2) state the base case, (3) prove the
base case, (4) declare explicitly the induction hypothesis, (5)
declare explicitly what we wish to show in the induction step,
and (6) prove that what we’ve stated in part 5 follows from the
induction hypothesis.

For our first example, let’s show that the sum of the first
n odd integers is n?. That is,

1+34+5+--4+(2n—1)=n? forn>1.
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Proof by Induction: Here the set X are those n > 1 for which
the equation 1 +3+5+---+ (2n — 1) = n? holds.

First we note that the base case is n = 1 here. The left of
the equation has one term, 2-1 —1. But 2-1—1 = 12, and
so our formula certainly holds for n = 1, thus proving the base
case that 1 € X.

We now do the induction step and so assume that n > 1.
The induction hypothesis is that £ € X for 1 < k < n. Using
the induction hypothesis, we must show that n € X. Explicitly,
we are assuming that if 1 < k < n, then

1+3+54---+(2k—1) = k%

Now we need to show that n € X, assuming our induction
hypothesis is true. That is, we need to show that

14+3+5+ -+ (2n—1)=n>

But by our induction hypothesis, by putting £k = n — 1,
we have

143454--4+2n—-1)—1)=(n-1)2
Thus,

1434+5+---+2n-1)~-1)+(2n-1) =
(n—1P2+@2n-1)=
n*—2n+1+(2n—1) =n?
which shows that the formula holds for n. That is, we’ve shown

n € X. Thus, by the principle of mathematical induction,
X = N; that is, the formula holds for all n > 1. //

Our next two examples prove something about full binary
trees. We need to describe these first. A binary tree consists
of a set of nodes (just points to us), connected by edges. The
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nodes are arranged in a hierarchy. The node at the top is the
root node, and the nodes directly beneath, which are connected
to it by edges, are the node’s children. These nodes can in
turn have children, which in turn can have children, and so on.
What makes this a binary tree is that any node can have at
most two children. The following are three binary trees.

Notice that every node in each of these three trees has
either zero, one, or two children. Now the nodes are at various
depths. The root node is at depth 1. The children of the root
node are at depth 2 and so on. The depth of the tree is the
maximum depth of any node in the tree. Thus the first two
binary trees are of depth 3 while the third one is of depth 4.
A full binary tree is one where every node has two children,
except those nodes at the deepest level. So the middle tree in
the preceding diagram is a full binary tree of depth 3. Notice
that a full binary tree of depth d has the maximum number of
nodes of all binary trees of depth d.

We’ll now prove a couple of facts about full binary trees.
We will first show that the number of nodes at level n of a full
binary tree of depth n is 2771.

v Before proceeding, draw the full binary trees of
depths 1, 2, 3, and 4 and check that indeed the preceding
statement is true.

Proof by Induction: Let X be the set of positive integers n
for which the preceding statement is true; that is, X is those
positive integers n where the number of nodes at level n of a
full binary tree of depth n is 277 L.
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The base case is when n = 1. We need to show that
the number of nodes at depth 1 in a full binary tree of depth
1is 217! = 1. But, of course, a full binary tree of depth one
consists only of its root node! (In fact this is true of any binary
tree of depth 1.) So we see that the base case is true.

Now let’s suppose n > 1. Our induction hypothesis is that
for 1 < k < n, a full binary tree of depth k has 2¥~! nodes at
depth k. We wish to show that this implies that a full binary
tree of depth n has 2"~ ! nodes at depth n. So let’s take a
full binary tree of depth n. If we strip away all the nodes at
depth n, we are left with a full binary tree of depth n — 1.
By our induction hypothesis with £k = n — 1, we are assuming
that there are 27~ 17! = 27~2 nodes at depth n — 1. But each
of these 2772 nodes has two children, and these children are
exactly all the nodes at level n of our original full binary tree.
Thus there are 2 - 272 = 27=2+1 — 27—1 nodes at depth n,
which is what we wanted to show. Therefore, we’ve established
that n € X and so the induction step has been proved.

Thus mathematical induction says that our statement holds
for all positive integers n. //

Now we’ll use induction, and the last fact we proved, to
show that a full binary tree of depth n has a total of 2" — 1
nodes. Before doing so, let’s look at the first few small ex-
amples just to see if this is correct for those. This is a good
idea in general since besides verifying the statement for small
examples, it frequently suggests how to progress in proving the

statement.

As we can easily see, these trees have 1, 3, 7, and 15 nodes
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and are of depths 1, 2, 3, and 4. We see that the formula 2™ —1
for the number of nodes in a full binary tree of depth n is true
at least for these four small cases. But we wish to prove it
in general. The last proof suggests that when trying to prove
the case for depth n, we can look at the next smaller instance,
which is of depth n» — 1. If we look at the case when n = 4,
we see that stripping off the nodes at depth 4 leaves a full
binary tree of depth 3. We know how many nodes are in that
tree. If we just add those nodes at depth 4, we will get the total
number of nodes. This way of thinking about this problem, as a
smaller instance of the problem with some additional nodes, is
the inductive way of thinking. The proof follows along exactly
those lines.

Proof by Induction: Let X be the set of positive integers n
where the full binary trees of depth n have 2”7 — 1 nodes. The
base case is when n = 1. That is, the full binary tree of depth
one has 2' —1 nodes. But this is 1, which is clearly the number
of nodes in a full binary tree of depth 1.

Now we do the induction step and so assume that n > 1.
Our induction hypothesis is that for 1 < k < n, a full binary
tree of depth k has a total of 2¥ — 1 nodes. Assuming this, we
must show that a full binary tree of depth n has 2™ — 1 total
nodes.

So let’s take a full binary tree of depth n. As in the last
proof, if we strip away all the nodes at depth n, we are left
with a full binary tree of depth n — 1. If we let k =n — 1, our
induction hypothesis says that we have a total of 2?~! —1 nodes
in our full binary tree of depth n — 1. Now, by what we last
proved, there are 27! nodes at depth n. If we add this to the
number of nodes for a full binary tree of depth n—1, we’ll have
the number of nodes of a full binary tree of depth n. This makes
atotalof 2771 —1 4271 =2.27"1 1 =27 141 1 97
nodes, as desired. Thus n € X and we’ve established the
induction step.

Therefore, by induction, there are a total of 2" — 1 nodes
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on a full binary tree of depth n, for alln > 1. //

Our next example is a more geometric problem and illus-
trates the surprising versatility of the induction method. Here,
we are concerned with tiling a figure. The tile we’ll be using is
an L-shaped piece as follows:

]

You can think of this tile as three boxes glued together,
and we can rotate it in any manner when using it to tile an
area. The area we’re interested in is a large square made up of
2™-by-2™ boxes, where one of the boxes has been removed. The
L-shaped tile we’ll use is made of three boxes. The question is
can we tile (that is, completely cover with no overlaps and no
pieces “sticking out”) all such squares using only the L-shaped
tiles. Note that the restriction to the dimensions is that they
must be powers of 2. The follwoing are two examples, one of
a 4-by-4 square with one box removed and one of an 8-by-8
square with one box removed. Note that there may be more
than one way to tile this object.

it

Before proceeding, try to tile an 8-by-8 square with a dif-
ferent box removed. The statement claims that this can be
done regardless of which box you remove.

Let’s restate our proposition: For n > 1, every square
of 2"-by-2" boxes with one box removed, can be tiled using
L-shaped tiles.
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v Before proceeding, state the base case clearly and
show that it is true.

Proof by Induction: Let X be the set of positive integers n for
which every square of 2"-by-2" boxes with one box removed,
can be tiled using L-shaped tiles. We first check that 1 € X.
That is, that every 2-by-2 square with one box removed can
be tiled with L-shaped tiles. But every such arrangement is a
rotation of the following figure. This is easily seen to be tiled

by one L-shaped tile.

Now let’s do the induction step. We assume n > 1. Our
induction hypothesis is that for 1 < k < n, every 2*-by-2*
square with one box removed can be tiled using L-shaped tiles.
We need to show that this implies that every square of 2™-by-
2™ boxes, with one box removed, can be tiled using L-shaped
tiles.

To prove this, we start with a 2™-by-2" square with one
box removed. We subdivide the large square into four squares,
each of dimension 2"~ !-by-2"~!. The missing box is in one of
these four smaller squares. Now take where the three 2"~ !-by-
2"~1 squares with no missing box join and place an L-shaped
tile so that it covers one box in each of the three 27~ 1-by-27~!
squares. This step is illustrated as follows:

2n

2n—] 2n—1

4

-l [ |

2”
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Note that now all four 2"~ 1-by-2"~! squares have one little
square removed, either by the L-shaped tile or the original
missing little square. So, letting & = n — 1, our induction
hypothesis says we can tile each of these using L-shaped tiles.
Those tiles, along with the one L-shaped tile we placed in the
middle, will tile the original 2"-by-2" square. And so we have
shown n € X. Thus mathematical induction implies we can do
this for any such squares. //

As a bonus, the proof of the last problem actually gives
you a method of doing the tiling. We leave it as an exercise to
do this.

As our next example, let’s show that a finite set with n
elements has exactly 2™ subsets. This important fact is used
frequently.

v Before proceeding, state the base case clearly and
show that it is true.

Proof by Induction: Let X be the set of those positive integers
for which a set with n elements has exactly 2" subsets. We
first check that 1 € X, which is the base case. But a set with
one element has itself and the empty set as subsets. This is
2 = 2! subsets, as required.

Now let’s do the induction step. So, suppose that n > 1.
Our induction hypothesis is that £ € X for all 1 < k& < n; that
is, a set with k elements has exactly 2* subsets, for all k where
1 <k <n . We must prove that n € X. Suppose then that S
is a set with n elements; we must show that S has 2" subsets.
Because S has at least one element, choose one of them and
call it s. Now every subset of S either contains s or it doesn’t.
Those subsets that don’t contain s are precisely the subsets of
S\{s} = {zx € S: x # s}. But this set has n — 1 elements, and
so by our assumption that n —1 € X, we know that S\{s} has
2"~1 subsets. Now those subsets of S that do contain s are
of the form A U {s}, where A is a subset of S\{s}. There are
also 2"~ of these subsets. Thus, there are 271 4 9n—1 = 9n



Chap. 4 Natural Numbers and Induction 77

subsets of S altogether. In other words, n € X. Thus, by
induction, X = N; that is, any finite set with n elements has
exactly 2" subsets. //

Note that the preceding theorem also holds when n = 0,
since we are talking about the empty set that has one subset.
(What is it?) Note that the set {0,1,2,3, -} is also well-
ordered (we've only added 0). Thus Mathematical Induction
applies to this set as well. (This is what we referred to at the
beginning of the chapter when saying that N and NU{0} share
the same fundamental properties.) So the induction of the
previous theorem could have started at n = 0 (the base case)
which is considering the subsets of the empty set. Check that
the induction step still works as written. The sets {2,3,4, -},
{3,4,5,---}, and so on are also well-ordered. Hence induction
can be applied to these sets, too. To use induction here means
only that our base case is when n equals the smallest element of
the set in question. With a base case of n = 2, say, remember
that we would then have proved that X = N\{1}.

We now look at a second form of induction. This form
allows us to handle situations with a slightly more complicated
base case.

Alternate Version of the Principle of Mathematical
Induction.

Suppose ng € N and X is a subset of N that satisfies the
following two criteria:

(1) 1,2,...,np € X, and

(2) For alln > ng, k € X for all 1 < k < n implies

neX.
Then X = N.

Note that the base case has been expanded to not one
but many (although finite) instances. The induction step then
starts by considering n greater than the largest instance han-
dled in the base case. As before, we can revise this to start
at any number, since the sets involved are still well-ordered;
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for instance, the sets {0,1,2...} and {6,7,8,...}. If we were
interested in proving something for all n > 6 using this version,
our two steps in an inductive proof would be to show, for some
ng > 6, that

(1) 6,7,...,n9€ X, and

(2) foralln > ng, k € X for all 6 < k < n impliesn € X.
If we do this then the alternate version of induction allows us
to conclude that {6,7,8,...} = X.

Let’s do an example. Let’s show that every integer larger
than 5 can be written as a sum of 3’s and 4’s. This problem is
a little different from the previous two because the base case is
more complex; this problem will nicely illustrate the alternate
version of induction. We’ll give the proof first, and then you’ll
see why the base case must be what it is.

Proof by Induction: Let X be the set of natural numbers that
can be written as a sum of 3’s and 4’s. The base case here is
to show the proposition holds for 6, 7, and 8. But you can see
that 6, 7, and 8 can all be written as sums of 3’s and 4’s. (We'll
leave it to you to fill in this detail.) Thus, 6,7,8 € X. Now
for the induction step, let n > 8 and assume that if 6 < k < n,
then k € X; that is, assume k can be written as a sum of 3’s
and 4s’. We want to show that it follows that n can also be
written as a sum of 3’s and 4’s. But if n > 8, thenn—-3>6
and so, by our assumption, n —3 can be written as a sum of 3’s
and 4’s. But then n can also since we just add a 3 to the 3’s
and 4’s that sum to n — 3. Son € X. Thus induction implies

that all integers greater than or equal to 6 can be written as a
sum of 3’s and 4’s. //

Note the base case here had to account explicitly for the
three smallest cases since our induction step had to dip down
ton — 3.

Students new to induction often feel that in verifying the
bootstrap they are assuming exactly what they are required to
prove. This feeling arises from a misunderstanding of the fact
that the bootstrap step is an implication: that is, a statement
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of the form p = ¢q. To prove such a statement, we must assume
p and then derive q.

Well-ordering Implies Mathematical Induction

As promised, we now prove the principle of mathematical
induction, using the well-ordering principle.
The Well-ordering Principle implies the Principle of Mathe-
matical Induction.

Proof: Suppose that X is a subset of N satisfying both criteria
(1) and (2). Our strategy for showing that X = N is “proof by
contradiction.”

In this case we assume that X is a proper subset of N, and
so Y = N\ X is a non-empty subset of N. By the well-ordering
principle, Y possesses a least element m. Clearly, m # 1 by
(1). All natural numbers £ < m belong to X, because m is the
least element of Y. However, by (2) we conclude that m € X.
But now we have concluded that m € X and m ¢ X; this is
clearly a contradiction. Our assumption that X is a proper
subset of N must have been false. Hence, X = N. //

Amazingly, perhaps, if you assume the principle of math-
ematical induction, then you can prove the well-ordering prin-
ciple. (We won'’t do that here, but you’re welcome to try your
hand at the proof.) Thus, the two ideas are equivalent! It is
simply a matter of which of the two ideas you are going to
accept as an axiom. It is largely a matter of taste, but it boils
down to which of the two ideas seems most obvious and so is
the easier to accept as an axiom. We picked well-ordering. In
the next section, we present the Peano axioms, a set of ax-
ioms from which you can rigorously deduce all the facts of the
natural numbers.

The Peano Axioms

Many of the properties of the natural numbers we’ve used
are taken for granted. It is possible to be rigorous in establish-
ing some basic properties of the natural numbers as opposed
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to relying on our intuition. We have taken this approach here
because it is induction that we want to focus on and not the
foundations of mathematics. But you should be aware that all
properties of natural numbers, such as associativity and com-
mutativity of addition and even the definition of addition itself,
can be established from a few basic axioms. We give you a lit-
tle taste of that in this section. By making our assumptions
clear and our proofs careful, we will be able to accept with
confidence the truth of statements about the natural numbers,
even if the statements themselves are not obviously true.

The first extended example of an axiomatic approach to
mathematics appears in The Elements of Euclid, who was a
Greek mathematician living circa 300 B.C. In his book he de-
veloped much of ordinary plane geometry by means of a careful
logical string of theorems, based on only five axioms and some
definitions. The logical structure of Euclid’s book is a model
of mathematical economy and elegance. So much mathematics
is inferred from so few underlying assumptions!

Note, of course, that we must accept some statements
without proof (and we call these statements azioms)—for oth-
erwise we’d be led into circular reasoning or an infinite regress.

One cost of the axiomatic method is that we must some-
times prove a statement that already seems obvious. But if we
are to be true to the axiomatic method, a statement we believe
to be true must either be proved or else added to our list of
axioms. And for reasons of logical economy and elegance, we
wish to rely on as few axioms as possible.

In our treatment of the natural numbers we accepted the
well-ordering principle as an axiom about the natural numbers.
But, in addition, we accepted as given facts your understanding
of elementary arithmetic: that is, addition, subtraction, and
multiplication. This won’t lead to any difficulties later, but
let’s see how we can develop N if we wanted to be very rigorous.

The following axioms are called the Peano azioms for the
natural numbers.
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Let N be a set with a special element 0 € N and a function
S : N — N that satisfy the following:

Axiom 1. For every natural number z, S(x) # 1.
Axiom 2. For every natural numbers z and vy, if
S(z) = S(y), then z = y.
Axiom 3. (Axiom of Induction) If T" is a set of natural num-
bers with the properties
A: 1 belongs to T’
B: If z belongs to T, then so does S(x)
then T contains all the natural numbers.

The function S is called the successor function. Note that
in the Peano axioms, we assume that induction holds for the
natural numbers (Axiom 3).

The way to proceed in this system would be first to estab-
lish a series of theorems, most of which you would agree are
obvious, but we’d want to be absolutely sure of their truth.
The first few theorems would be as follows:

Theorem 1: If z # y, then S(z) # S(y).
Theorem 2: S(z) # x.
Theorem 3: If x # 1, then there exists one u such that
x = S(u).
After these three theorems, we can now define inductively the
addition of two natural numbers:
To every pair of natural numbers x and y, we assign in a
natural number, called x + y, such that
A: z+ 1= S(z), for every z,
B: x4+ S(y) = S(z + y), for every = and y.
We quite naturally call z + y the sum of x and y.
From this definition, we could then establish that addition
is associative and commutative, and various other facts about
natural numbers that are well known to us.

Exercises

1. Describe how to do a tiling of the 2"-by-2" squares with
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6. Prove that 5+ 8+ 11+ ...+ (3n+2) =

Natural Numbers and Induction Chap. 4

one box removed using L-shaped tiles. Your method should
be inductive in nature.

Prove using mathematical induction that for all positive
integers n,

1
1+2+3+---+n:"(_”2_+).

Prove using mathematical induction that for all positive
integers n,
2 n2n+1)(n+1)

12 4+22 432+ 40 = - :

. Prove using mathematical induction that for all positive

integers n,

1142204 4n-nl=(n+ 1) - 1.

Prove using mathematical induction that for all positive
integers n,

21 1422.2428.3 4. 42" . n=2+(n—1)2""",

1
2(3n2+7n) "

7. A football quarterback’s contract states that for the first

game the team wins, the quarterback will get a $1000
bonus, for the second game won, a $2000 bonus, for the
third win a $3000 bonus, and so on. If the team wins 10
games, how much will the total bonus be?

Prove n! > 3" for all n > 7.

You probably recall from your previous mathematical work
the triangle inequality: For any real numbers x and y,

|z +yl <z + Jyl.
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10.

11.

12.

13.

14.

15.

Accept this as given (or see a calculus text to recall how it
is proved). Generalize the triangle inequality, by proving
that

1+ 22+ Tn| < x|+ 22| + -+ |20,
for any positive integer n. Hint: Use mathematical induc-

tion and the triangle inequality.

Prove that 2" < n! for all n > 4. (Note that here your
base case for induction is when n = 4. You can easily
check that this statement is false for n = 1, 2, and 3.)

Prove that for all positive integers n,

nr )’

13+23+---+n3=( 5

Prove the familiar geometric progression formula:

_ n
atartar4-tarnt=2"2 ,
1—7r
where 7 # 1.
Prove that for all positive integers n,
1 L+ 1 T 1 _n
1-2 2.3 nn+1) n+1

By trial and error, try to find the smallest positive integer
expressible as 12x + 28y, where x and y are allowed to be
any integers.

Consider the sequence {a,} defined inductively as follows:

a; = az = 1, Ap+2 = 2an—}—l — Gp.
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16.

17.

18.

19.

20.

* 21.
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Use mathematical induction to prove that a,, = 1 for all
natural numbers n.

If ay = 5 and a,, = 2a,_1, for n > 1, then prove that
a, =5-2""1 for alln > 1.

Ift4, =1andt, = 2t,1 +1, for n > 1, then prove that
t,=2"—1foralln>1.

If a; =2 and a, = 3a,,—1 + 1, for n > 1, then prove that
an = (5-3""1 -1)/2, for n > 1.

If by =24 and b, = 3b,,_1 + 1, for n > 1, then prove that
b, =3""! for all n > 1.

Consider the sequence {a,} defined inductively as follows:

a1 =95, ax=17, apnt+2 =3An+1 — 2ay.

Use mathematical induction to prove that a,, = 3+ 2" for
all natural numbers n.

Recall that (}) = n!/(k!(n — k)!).

a. Prove that
ny (n-1 n n—1
k) k k—1)’

where k < n and
ny n!
k) (n—k)kl

Hint: You do not need induction to prove this. Bear in
mind that 0! = 1.

b. Use part (a) and induction to prove the binomial theo-
rem: For nonnegative n,

(z+y)" = i (Z) aRyk,

k=0
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22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

Prove that %11 is an integer for all natural numbers n.

Suppose n > 2. How many diagonals in a regular polygon
with n sides are there? Prove your answer using induction.

Prove that all integers greater than or equal to 12 can be
written as a sum of 5’s and 3’s.

Prove that all numbers greater than or equal to 20 can be
written as a sum of 5’s and 6’s.

Suppose n is an odd number. Consider the statement “all
numbers greater than or equal to N can be written as a
sum of 2’s and n’s.” What is the smallest value for N
(written in terms of n) for which this statement is true?

At McDonald’s restaurants, you can purchase Chicken Mc-
Nuggets in boxes of 6, 9, and 20. What is the smallest N
for which you can buy exactly n McNuggets for alln > N7
Prove your assertion. (Hint: N is greater than 30.)

Suppose there is a country with coins of denominations 1,
3, 8, and 10 cents. Suppose a store clerk runs out of 1
cent coins but has an unlimited supply of the other three
coins. Show that the clerk can still make change for all
values greater than or equal to 8 cents.

Suppose the same clerk in Exercise 28 also runs out of 10
cent coins, leaving only 3 and 8 cent coins. Show that the
clerk can make change for any value 14 cents or higher.

Again, suppose the clerk has only 3 and 10 cent coins.
Show that the clerk can make change for any value 19
cents or higher.

Consider the statement “Every number greater > N can
be written as a sum of a’s and b’s.” For which of the
following values of a and b is this statement true? If false,
explain why. If true, find the smallest such N and prove
it is so.
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* 32.

33.

* 34.

Natural Numbers and Induction Chap. 4

a. 2and 5
b. 4 and 6
c. 2and 4
d. 3and 7

There are n teams that play a round-robin tournament
where there are no ties. (That is, every team plays every
other team.) A ranking is an arrangement of the teams
in a list, t1,t2,...,t,, where t; beats t5, to beats t3, and
so on. Prove that a ranking of teams is always possible
regardless of the outcome of the tournament. (Of course,
it may be true that for some outcomes, there may be more
than one ranking.)

Criticize the following “proof” showing that all cows are
the same color.

It suffices to show that any herd of n cows has the same
color. If the herd has but one cow, then trivially all the
cows in the herd have the same color. Now suppose that
we have a herd of n cows and n > 1. Pick out a cow
and remove it from the herd, leaving n — 1 cows; by the
induction hypothesis these cows all have the same color.
Now put the cow back and remove another cow. (We can
do so because n > 1.) The remaining n — 1 again must
all be the same color. Hence, the first cow selected and
the second cow selected have the same color as those not
selected, and so the entire herd of n cows has the same
color.

Prove that the principle of mathematical induction im-
plies the well-ordering principle. (This shows that these
two principles are logically equivalent, and so from an ax-
iomatic point of view it doesn’t matter which we assume
is an axiom for the natural numbers.) Hint for the proof:
Suppose that S is a subset of N that does not have a least
element. Prove that S is empty, by using induction on the

set N\S.
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* 35. Prove that addition is associative and commutative.

36. Give an inductive definition for multiplying two natural
numbers.

* 37. Show that multiplication, as defined in the last exercise,
is associative and commutative.

38. Give an inductive definition for n™.

Programming Exercises

1. Write a program that sorts a set of integers and keeps
track of the number of comparisons.

2. Write a program that displays a table with three columns:
n, n?, and the sum of the squares of all natural numbers
up to n.



Chapter 5
Number Theory

Number theory was once thought to be the “purest of the
pure” mathematics. But with the advent of the computer and
sophisticated encryption techniques, number theory has be-
come known as an applied area of mathematics. Certainly a
basic understanding of the principles of number theory—prime
factorization and modular arithmetic—should be part of every
computer scientist’s background. Here we will study enough
number theory to understand an encryption method called
RSA encryption (named after its inventors Rivest, Shamir, and
Adleman). This method relies on some old and well-known
theorems of number theory once only of interest to mathe-
maticians. As always, the mathematics we’ll learn along the
way has applications to situations other than the one we’ve
chosen here as an example.

If we take the additive inverses of the natural numbers,
N, together with N and 0, we get the set of the integers:

.,—2,-1,0,1,2,3,.... Note that if we add or multiply two
natural numbers, we get another natural number; we say the
set of natural numbers is closed under addition and multipli-
cation. However, N is not closed under subtraction or division.
(The integers are closed under addition, multiplication, and
subtraction but not division. Some values of Z do divide into
others, however.)

If a,b € N, we say that a divides b if there is a kK € N so
that a-k = b. We write a|b in this case. So 3|12 since 3-4 = 12.
If no such natural number k exists, we say a does not divide b
and write a /b. For example, 3 /10. If a|b, we also say a is a
factor of b or b is a multiple of a. Sometimes, to simplify the
language, if we refer to a as a number, we mean a is a natural
number.

88
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v List all natural numbers less than 10 that divide
10. Does 10107

If @ # 0, then a|0 since 0 = 0-a. So we’ll expand our
definition of “divides” to include this case. Thus our revised
definition of divides is: If a € N and b € NU {0}, we say that
a divides b if there is a k € NU {0} so that a - k = b.

The Division Theorem

A bedrock theorem in number theory is the Division The-
orem. This result is one you have known in some form since
grade school, but that doesn’t diminish its importance. You
learn early on that, although not every number divides every
other number, we can perform division by permitting a remain-
der. For example, when we divide 320 by 12 we get a quotient
of 26 and a remainder of 8. We can write this succinctly as
320 = 12 - 26 + 8. We formally describe this situation in the
following theorem:

The Division Theorem. Ifa and b are two natural numbers,
then there exist unique natural numbers q and r with0 < r < b,
such thata =b-q+r.

We will not prove this theorem here. Note the key points
of the theorem: The number r is between 0 and b, inclusive of
0, and the two numbers q and r are unique. That is, there are
no other numbers that have the properties given for g and r.

For example, if a = 39 and b = 4, then ¢ = 9 and r = 3,
since 39 =4-943. fa=5and b= 13, then g =0 and r = 5,
since 5 = 13 -0 4+ 5. We use the letter ¢ to indicate quotient
and r to indicate remainder.

Greatest Common Divisors

While it is a time-consuming problem in general to factor
a number, especially a large one, it turns out to be easy to
determine a common factor of two numbers. In fact we can
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easily and efficiently find the largest common divisor of two
numbers using an algorithm dating from the fourth century
B.C. due to Euclid.

Given two natural numbers, a and b, a common divisor of
a and b is any number d that divides both a and b. Notice that
1 is a common divisor of any pair of numbers. Two integers
may have many common divisors. For instance, 12 and 18 have
common divisors of 1,2, 3,4, and 6. If d is the largest common
divisor of a and b, we call d the greatest common divisor of a
and b (or simply the ged of a and b) and write d = ged(a, b). For
example, ged(42,18) = 6 while ged(24, 15) = 3. If ged(a,b) =
1, we say that a and b are relatively prime. (Two integers being
relatively prime does not imply that either one is prime. For
example, ged(4,15) = 1.)

v What is the value of gcd(20,45)? Of ged(21,16)?

Consider the special case, of ged(a,0), if @ # 0. Since
every nonzero number divides 0 (since 0 = 0-a), ged(a,0) = a.

Why should any pair of numbers have a gcd? We've al-
ready noticed that 1 is a common divisor of any pair a and b,
so the set of all common divisors of a and b is not empty. Now
the largest possible value for ged(a,b) is the smaller of a and
b. Thus, the set of all common divisors of a and b is a finite
set and so there must be a greatest element in it.

To find ged(a, b), we could simply start at the smaller of a
and b and work our way down to 1, stopping at the first number
we find that is indeed a common divisor of @ and b. But this
could be a lot of work if @ and b are large and relatively prime
or if their ged is small. Fortunately, there is a better method:
Euclid’s algorithm. (This first appears in Euclid’s Elements as
Proposition 2 of Book 7.)

Euclid’s algorithm is probably best presented by example.
Notice in the example that the algorithm repeatedly finds the
quotient and remainder of a succession of numbers and writes
out the corresponding equations using the Division Theorem.
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Let’s find ged(285, 255):

285 =255-1+30
2566 =30-8+415
30=15-240

We conclude that ged(285,255) = 15.

To compute ged(a, b), this algorithm first writes a = b-g+r
as guaranteed by the Division Theorem (so 0 < r < b). Then
repeat this step setting @ = b and b = r. We repeat this process
until » = 0. The last value for b we obtained is the ged of our
original a and b. (Note that we don’t need to compute g in
each step.) The algorithm is as follows:

function gcd(a,b)
% require: a & b positive integers
% ensure: returns gcd of a & b
repeat
r a mod b;
a =b;
b =r;
until (r = 0);
return(a) ;
end function;

Let’s do a more lengthy example by finding ged(110, 42):

110 =42-2+ 26

42=26-1416
26=16-1+10
16=10-1+6
10=6-1+4
6=4-142
4=2-240

So ged(110,42) = 2. Why does this algorithm work? It follows
from the fact that if a = b- ¢+ r, then ged(a, b) = ged(b, 7). To
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show this, we need only check that every common divisor of a
and b is also a common divisor of b and r, and vice versa, for
then the greatest element of this set will be the gcd we want.
But if d|a and d|b, then d|r since we can write r = a —b-q.
Likewise, if d|b and d|r, then d|a since a =b-q +r.

Now to see why this fact shows that Euclid’s algorithm
gives the desired ged, let’s look at the last example we did. By
our first line of computation (just the Division Theorem) we
see that ged(110,42) = ged(42,26). But the next line shows
that ged(42,26) = ged(26,16), so ged(110,42) = ged(26, 16).
Following this through, we see that ged(110,42) = ged(4, 2).
This last value is obviously 2 since 2|4, as we see because the
last remainder is 0.

v Use Euclid’s algorithm to compute ged(12,39)
and gecd(45,12).

There is one last thing that a slight modification of Eu-
clid’s algorithm allows us to compute. If ged(a,b) = d, then
we can find integers m and n so that d =a-m + b-n. This is
called the ged identity. For example, ged(110,42) = 2 and we
can write 2 = 110 - —8 + 42 - 21. In this case we say we can
write 2 as a linear combination of 110 and 42. While it is not
obvious how to compute m and n, Euclid’s algorithm allows us
to find these two integers m and n. The usefulness of this is
not apparent now, but will be when we get to RSA encryption.
We will illustrate using the last example of Euclid’s algorithm
given previously. A recursive version of the algorithm will be
given in the recursion chapter.

The scheme for finding the values for a and b is quite
simple. We start at the next to last line of the computation
in Euclid’s algorithm, 6 = 4 -1 + 2. Since 2 = ged(6,4) =
ged (110, 42), solving for 2 gives us

2=6-1+4--1.

Now we can solve the previous line for 4, substitute it into this
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last equation, and, with a little algebra, we have 2 as a linear
combination of 10 and 6:

2=6-1+(10+6-—-1).-—1
=10-(—1)+6-2.

Now we can solve the next line up for 6, substitute and
write 2 as a linear combination of 16 and 10. We continue
working our way up until we write 2 as a linear combination of
110 and 42. You should do this to see that you get the same
numbers we did.

Primes

It is easy to see that 1 divides every number (since 1-n =
n for every number n) and each number divides itself (since
n -1 = n for every number n). A number p is called prime if
p # 1 and the only numbers that divide p are 1 and p itself.
In other words, primes have the minimal number of divisors
possible. Note that 1 is not prime. If a number (greater than
1) is not prime, we call it composite.

v The first ten primes are 2, 3, 5, 7, 11, 13, 17, 19,
23, and 29. What are the next five primes?

An important property of primes is given in the following
theorem.

Theorem. Ifp is prime and p|ab, then either p|a or p|b.

Proof: If pla then we’re done. Suppose pfa. We need to show
plb. Let d be a common divisor of p and a. Since p is prime, d
is either p or 1. But pfa, so d = 1. The ged identity says there
exist integers z and y such that 1 = az + py. Multiplying by
b, we have b = abz + pby. Since p|ab and p|pby, p|(abz + pby).
That is, p|b as required. //

For example, 5/80 and since 80 = 20 - 4 and 5 is prime,
then either 5|20 or 5[4 (or both). Obviously, 5|20. Generalizing
this theorem, we note the following:
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Theorem. If p is prime and pl|aias---a, then pla; for
some 1.

Proof: This is a straightforward induction on n and is left as
an exercise. //

Primes are the basic building blocks of the natural num-
bers in the following sense: Every natural number (> 1) is ei-
ther prime or can be written uniquely as the product of primes.
By uniquely we mean that there is only one collection of primes
whose product is the number in question. (We ignore the order
in which we list the primes, since multiplication is commuta-
tive.) This fact is expressed in the following theorem:

Fundamental Theorem of Arithmetic. Every natural
number greater than 1 is either prime or can be written uniquely
as a product of prime numbers.

Proof: We prove this theorem in two parts: First we show
that each number greater than 1 can be written as a product
of primes. Then we show that when a number is written as a
product of primes, this product is unique (up to the order this
product is written). We prove the first part by induction.

Let X = {n : n is prime or can be factored into primes}.
It is clear that 2 is prime and so satisfies this theorem. Thus,
2 € X. Now let n > 2 and suppose that all numbers less than
n and greater than 1 satisfies this theorem. (That is, all these
numbers are in X.) Now we need to show that n satisfies this
theorem.

If n is prime, we are done. Otherwise, n is composite and
so we can write n = a-b, where a and b are two numbers greater
than 1 and less than n. Now by our induction hypothesis, both
a and b are in X; that is, they are either prime or can be written
as a product of primes. But then it follows that n = a - b can
be written as a product of primes; it is simply the product of
all the primes that make up the factorization of a with all the
primes that make up the factorization of b. Thus n € X and
so, by induction, X = {2,3,...}, as desired.
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It remains to show that this product is unique. That is,
there is no other collection of primes whose product is n. We
again use induction, but our argument will be a little less for-
mal than in previous cases. Specifically, we won’t formally
identify the set X. It’s still in the background but is under-
stood. This way of writing an induction proof is common.

Assume that n = ajag - - - @, = b1by - - - by, are two factor-
izations of n into primes. We wish to show that m = k and that
the b; may be rearranged so that a; = b; for i = 1,2,...,m.
We now use induction on m, the number of prime factors in
the first factorization. If m = 1, then n is prime and so k =1
also. So we assume m > 1. By the previous theorem, since
a; is prime and divides n, then a; divides one of the b;. By
renumbering if necessary, we can assume that a; divides b;.
But b, is also prime so a; = b;. So dividing both sides by a;
(=by) we get that agas - -amy, = babs---bg. But then by our
induction hypothesis m — 1 = k — 1 and by renumbering the
b; as necessary, a; = b; for ¢ = 2,3,...,m. This proves the
theorem. //

The Fundamental Theorem of Arithmetic is an existence
theorem. That is, it establishes that every natural number
(greater than one) can be factored into primes but does not
tell you how to go about finding the factorization. Indeed, fac-
toring is a very difficult problem in general and is the focus
of much current research. The security of the RSA encryption
method depends on factoring being a time-consuming prob-
lem. A breakthrough fast factoring method would make this
encryption method suspect, at least for the size of keys cur-
rently being used. Paradoxically, determining whether or not
a number is prime is an easier problem than factoring. That
is, you may determine fairly easily that a number is composite
but not be able to factor it! Later, we will see a theorem that
does exactly that, without giving a clue as to how to factor the
number.

The following algorithm is a straightforward method to
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determine whether or not a number n (> 1) is prime. We need
only check possible divisors up to |y/n|. (Why this is so is left
as an exercise. )
function Prime(n)
% require: n is an integer > 1
% ensure: function returns true
% if and only if n is prime
IsPrime = true;
for a = 2 to [y/n] do
if (a divides n) then
IsPrime = false;
endif;
endfor;
return(IsPrime);
end function;

v Use the function Prime to determine if 101 is
prime and if 91 is prime.

We could save some computation if we broke out of the
for loop once we found that a divides n; some programming
languages allow us to do that easily. You would use the mod
function in your language to determine if a divides n. For
instance, in Pascal, the boolean statement “a divides n” would
be written “(n mod a = 0)” and in C and C++, % is the mod
operater so “a divides n” would be written “(n % a == 0)".
A further refinement would be to only check those numbers a
that are prime, since n is composite if and only if it has a prime
factor. You might ponder the difficulties of doing this without
making the algorithm run slower.

For relatively small numbers, we can quickly determine all
the primes no greater than n using the sieve of Erastothanes,
which is one of the oldest recorded algorithms. An alternative
method is to call the preceding algorithm for each number,
which repeats many calculations unnecessarily, something the
sieve of Erastothanes avoids. This algorithm implements the
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sieve by using a boolean array IsPrime[2..n]. At the comple-
tion of the algorithm, IsPrime[i] is true if ¢ is prime and false
otherwise.

function Sieve(n, IsPrimel[])

% require: n is an integer > 1,

% IsPrime[2..n] is a boolean array

% ensure: IsPrime[i] = true if i is prime and
% IsPrime(i] = false if i is not prime
% for all i s.t. 1 < i < n+l

% initially mark all numbers as "prime"
for 1 = 2 to n do
IsPrimeli] = true;
endfor;
for i = 2 to |/n] do
% if ¢ is prime
if (IsPrime[]) then
% mark all multiples of 7 as "composite"
a =2 % i;
while (a <n) do
IsPrime[a] = false;

a=a + 1;
endwhile;
endif;
endfor;

end function;
As an example, let’s use Sieve to find all primes less than
38. Since |v/38| = 6, the main loop in the algorithm repeats for
i from 2 through 6. We’ll list all the elements from 2 through
37 and mark those n where we’ve set IsPrime[n|=false. We'll
mark by putting a line over the number, such as 20. We show
the list after each pass.

after i = 2:
234567891011121314151617181920
2122232425262728293031323334353637
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after i = 3:
234567891011121314151617181920
2122232425262728293031323334353637
after i = 4: (no change since IsPrime[4] = false)
234567891011121314151617181920
2122232425262728293031323334353637

after i = 5:

2122232425262728293031323334353637
after i = 6: (no change since IsPrime(6] = false)
234567891011121314151617181920

122232425262728293031 323334353637

So we see that the primes less than 38 are 2, 3, 5, 7, 11,
13, 17, 19, 23, 29, 31, and 37.

v Use the sieve to find all two-digit primes.

Of course, neither of these algorithms is effective if n is
large. The first algorithm for determining if n is prime takes
v/n steps. This works effectively for small numbers that can be
stored in a single word on a computer, but if n had 100 digits
or so, v/n would have about 50 digits, still a very large number,
making the first algorithm intractable. Other methods must
be used to determine if these very large numbers are prime.

Modular Arithmetic

Given a fixed number n (which we’ll call the base), there
are many numbers that have the same remainder when divided
by n. For example, 1,6,11, 16, and 21 all have a remainder of
1 when divided by 5. We say all these numbers are equal to 1
“modulo 5” (or just “mod 5”). To say that these numbers are
equal mod 5 means they are all equivalent under the relation ~s
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defined by a ~j5 b iff 5/(a—b). (You can easily show that this is
an equivalence relation.) Thus all the integers equal to 1 mod 5
are in the same equivalence class mod 5. The remainders mod
5 can be 0, 1, 2, 3, or 4. These are called the residues modulo
5. Hence there are five equivalence classes mod 5, each with
its unique residue. The residues are the smallest nonnegative
representatives in each of the classes.

This can be generalized. If n is any integer greater than
1, and the relation ~,, is defined by a ~,, b iff n[(a — b), then
~y is an equivalence relation. Furthermore, this relation has
n equivalence classes with residues 0,1,2,---,n — 1.

We can do arithmetic using these residues in a way similar
to the usual arithmetic with integers. Indeed, the five residues
of 5 are sometimes referred to as the “integers mod 5” and are
denoted Zs. Here’s how you add in Zs: To add two residues,
simply take two integers whose residue mod 5 are the residues
you wish to add, add these integers, and compute the residue
of the resulting sum. For instance, to compute 3 + 4 (mod 5)
we take any integer whose residue is 3 (say 8) and any integer
whose residue is 4 (say 4), add them (we get 12), and compute
the residue of this sum mod 5 (we get 2). So 3+4 = 2 (mod 5).
You might wonder what happens if we make another choice of
integers whose residues are 3 and 4; say we take 13 and 29. The
sum is 42, which is 2 (mod 5). Indeed, regardless of our choice
of integers with residues 3 and 4, the residue of the sum (mod 5)
will always be 2. Thus our definition of addition is well-defined.
In practice, you usually pick the smallest integers possible (that
is, the residues) when doing this calculation. Keep in mind that
we are really doing arithmetic on the equivalence classes, but
doing so using representatives of those classes.

Subtraction is handled a little differently. In the integers,
we can think of subtraction as adding the additive inverse of a
number. That is, we can think of m + n as m + (—n), where
—n is the number that we add to n to get 0. (We call —n the
additive inverse of n.) The number 0 is the additive identity
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since a + 0 = a (mod b) for all residues a. When we think
of subtraction this way, we see that to carry it over to Z, we
need to find the value of —a in Z; for every a € Z;, where
—a (mod b) is the residue we add to a to get 0 (mod b). For
example, in Zs, —3 = 2 since 3 + 2 = 0. Knowing this, we
can now subtract 3 from the other residues: 0 — 3 = 2 (since
0-3=0+2=2),1-3=3(since 1 -3=1+4+2=3),2-3=14
(since 2—3=2+2=4),3-3=0 (since3—-3=3+2=0),
and 4 —3 = 1 (since 4 —3 = 4+ 2 = 1). Similarly, we can
compute the additive inverses of the other residues: —0 = 0,
—1=4, -2 =3 and —4 = 1. We can now do subtraction mod
5. For example, 4 —2=4+3=2 (mod 5) and 2—4=2+1 =
3 (mod 5). When doing arithmetic in a given modulus, we
usually tack on (mod b) after the computation to make clear
in what modulus we are doing the arithmetic.

In general, it is very easy to compute —a (mod b); the
value is simply b — a (assuming that 0 < a < b). To verify this,
recall that —a is what we add to a to get 0 (where all arithmetic
is in Zp, of course). But, a + (b—a) = b =0 (mod b). And so,
—a = b—a. Thus, —23 (mod 26) = 3 and —15 (mod 100) = 85.

This allows us to solve certain equations in Zj;. Consider
the following: 5 + z = 2 (mod 7). We wish to solve for z.
The method is the same as usual arithmetic in the integers;
we simply add —5 to both sides. But in Z;, —5 = 2. Thus,
245+x=2+2 (mod 7), or z =4 (mod 7). We will examine
multiplication and division later.

A Cryptological Example

Cryptology is the study of taking a message, changing it
into a coded message, transmitting that coded message, and
finally uncoding it to reveal the original message. The simple
substitution encryptions you see in newspaper cryptograms are
examples of this. Changing the original message (called the
plaintext) into the coded message (called the ciphertext) is
call encryption. The inverse operation, recovering the plain-
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text from the ciphertext, is call decryption. If you know the
method of encryption, the extra information you need in order
to encrypt the plaintext is called the encryption key and the
extra information you need in order to decrypt the ciphertext
is called the decryption key. RSA encryption is the most popu-
lar of the methods of encryption called public-key encryption.
This means that the encryption key is made public, but even
this does not allow someone to figure out the decryption key!
The fact that such methods even exist are surprising.

Before learning about public-key encryption, we will look
at a simpler method. A very simple encryption method is
known as a shift cipher. Suppose the plaintext is MEET ME
AT NOON. We will assume that we only use the 26 letters of
the alphabet and do not distinguish between uppercase and
lowercase letters. The first step is to translate each letter into
a number. Since we have 26 letters, it is natural to do our
arithmetic in Zgg. Solet A=0,B =1,..., Z = 25. Then our
plaintext becomes the string of numbers 12 4 4 19 12 4 0 19
13 14 14 13. We consider these numbers as residues mod 26
and encrypt one number at a time. Using the shift method
of encryption, we must pick a shift—this is the encryption key
for this method. Let’s choose 15 as our shift. If we let p
be our plaintext letter and ¢ be our corresponding ciphertext
letter, then we compute ¢ from p with the formula p + 15 =
¢ (mod 26). Thus our ciphertext is 119198119158 233 2,
which would be converted to the letters BTTIB TPICD DC. It is
common practice to group the ciphertext letters in fives.

We could use any of the 26 shifts to encrypt this message.
(However, a shift of 0, which is equivalent to a shift of 26,
wouldn’t be very secure since the ciphertext would be the same
as the plaintext!) Historically, a shift of 3 is known as the
Caesar Cipher after Julius Caesar, who used it.
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v Encrypt the message  THIS MESSAGE IS
ENCRYPTED using the aforementioned scheme with a shift
of 5.

To decrypt, the receiver of the message needs to recover
the plaintext from the ciphertext. The receiver must know
the encryption key (15 here) and from that can compute the
decryption key, which is another shift. The receiver can do
this by solving the encryption equation, p + 15 = ¢ (mod 26),
for p, noting that —15 = 11 (mod 26): p+ 15+ 11 = ¢+
11 (mod 26), or p = ¢ + 11 (mod 26). Thus, the decryption
key is 11. Using this formula, the receiver can now recover the
original plaintext, as you can check.

v What is the decryption key for the message you
encrypted in the preceding example? Use it to decrypt
the ciphertext you created. Of course, you should re-
cover the original plaintext.

Of course, this is not a very secure encryption method
since there are only 26 possible shifts when using mod 26 (really
only 25 since a shift of 0 doesn’t conceal much!). Someone
intercepting the message could easily try all 25 shifts and find
the plaintext. With the aid of a computer, decryption could
be done very quickly.

Modular Multiplication and Division

Multiplication mod b is similar to addition: m -n (mod b)
is the residue mod b of m - n. Thus 5-7 = 8 (mod 9) and
5.7 = 5 (mod 10). Division is done in a manner similar to
subtraction. As 0 is the additive identity of Zj, 1 is the multi-
plicative identity of Zy, since 1-a = a (mod b) for all a in Z,.
When doing arithmetic with real numbers, m/n = m - (1/n),
where 1/n is the multiplicative inverse of n; that is, 1/n is
the number we multiply n by to get 1. We commonly write
n~! for 1/n. We carry this idea over to Zy. Let’s consider
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Zs: 27! = 3 (mod 5) since 2-3 = 1 (mod 5). Similarly,
17! = 1 (mod 5), 37! = 2 (mod 5) and 47! = 4 (mod 5),
since 1-1 (mod 5), 3-2=1 (mod 5) and 4-4 =1 (mod 5). As
in the usual arithmetic, 0 has no multiplicative inverse, since
0 times every number is 0.

This allows us to solve more complicated equations in Zg
in a manner similar to the way we solve them in our usual
arithmetic. For example, let’s find = that satisfies 3z + 2 =
4 (mod 5). Of course, we know that —2 = 3 (mod 5) and
371 =2 (mod 5), so

3z +2=4 (mod 5)
3z4+2+3=4+3 (mod 5)

3z =2 (mod 5)
2-3x=2-2 (mod 5)
=4 (mod 5).

Thus, z = 4 is the (unique) solution to our equation. You can
easily check that this value is correct.

If we try to compute the multiplicative inverses of the
nonzero elements of Zg, things are very different. We find
that 17! = 1 (mod 6), as usual, and 57! = 5 (mod 6), but no
multiplicative inverse exists for 2, 3, or 4. (Try the possibilities
and see for yourself.) In turns out that a multiplicative inverse
exists for a (mod b) if and only if @ and b are relatively prime.
(We will not prove this fact here, but you may want to think
about how to do so.) In Zyg, 1, 3, 7, and 9 have multiplicative
inverses but 2, 4, 5, 6, and 8 (as well as 0) do not. In particular,
if p is prime, then all nonzero elements of Z, have multiplicative
inverses.

v Find 57! (mod 7) and 37! (mod 8). Which num-

bers in Zg have multiplicative inverses?

To solve an equation such as 3z = 4 (mod 5), we multiply
both sides by the inverse of 3 (mod 5), which is 2. This yields
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z = 3 (mod 5). But what are we to do when faced with the
equation 4z = 7 (mod 10), if 4~ (mod 10) doesn’t exist? Two
things could happen; either there is no solution, or there is
more than one. Which occurs depends on the numbers involved
in the equation. There is no solution for 4z = 7 (mod 10),
but 4r = 6 (mod 10) has solutions of x = 4 and z = 9. In
other situations, there may be more solutions. For example,
13z = 13 (mod 26) has 13 different solutions. (Can you find
them all?)

v Solve 3z = 5 (mod 7) and 3z = 5 (mod 8).

When a multiplicative inverse does exist, there is no easy
formula for finding it as there was for finding additive inverses.
(We will be able to compute multiplicative inverses using a
theorem given later in the chapter. However, trial-and-error
may be your best strategy for a small modulus.)

More Cryptology

The shift cipher was too simple to be secure. Another
method along the same lines as the shift cipher is to take the
plaintext letter p (actually the residue mod 26 associated with
the letter) and multiply it before shifting. That is, the formula
for encryption is p-m+s = ¢ (mod 26), where m is a multiplier
and s is a shift. For example, let’s take a multiplier of 5 and
a shift of 18, giving us an encryption formula of p- 5+ 18 =
¢ (mod 26). Our standard message MEET ME AT NOON, or 12 4
419124019 13 14 14 13, would be encrypted as 0 12129 0
12 18 9 5 10 10 5, giving the ciphertext AMMJA MSJFK KF.

v What’s the encryption formula using the preced-
ing scheme with a multiplier of 3 and a shift of 57 Use it
to encrypt the message THIS MESSAGE IS ENCRYPTED.

To decrypt this message, the receiver must find the de-
cryption formula (knowing the encryption formula, of course).
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That is, the receiver must solve the equation p -5 + 18 =
¢ (mod 26) for p. Now —18 = 8 (mod 26), but we also need
to know 571 (mod 26). We know 57! (mod 26) exists since
ged(5,26) = 1. With a little trial and error, we find that
5-21 =105= 1 (mod 26). This allows us to solve for p:

p-5+ 18 = ¢ (mod 26)
p-5+ 184+ 8 = c+ 8 (mod 26)
p-5-21=(c+8)-21 (mod 26)

p=c-21+12 (mod 26).

And so we have the decryption formula. You should check that
this really does recover the plaintext from the ciphertext.

v What is the decryption formula when the encryp-
tion formula used a multiplier of 3 and a shift of 57 Use
this to decrypt the ciphertext you came up with in the
preceding example.

Some care must be taken when selecting the multiplier
m. An obvious requirement of any encryption scheme is that
once the ciphertext has been produced, you must be able to
reproduce the plaintext. In the scheme we’ve just described,
this means we must be able to solve for p. But this is only
possible if m™! (mod 26) exists, which only happens when
ged(m, 26) = 1. Thus the only multipliers we can legally use
here are 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, and 25. These 12
multipliers and 26 shifts give us 12 - 26 = 312 different encryp-
tion schemes. (Actually, only 311 since a multiplier of 1 and
shift of 0 gives us the plaintext as the ciphertext, which isn’t
what we want.) This is much better than using only shifts,
but still not very secure when we could easily try all possible
encryptions with the aid of a computer.

To illustrate what can go wrong when using a multiplier
that doesn’t have an inverse mod 26, consider the encryption
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scheme p -4+ 5 = ¢ (mod 26). (The shift could be any value
here.) For instance, plaintext letters D and Q both get mapped
to ciphertext letter M. So if the receiver is faced with decrypting
an M, there is a choice to be made, which is not what you want
when decrypting a message. Indeed, this happens for every
possible ciphertext letter. As you can check, the only letters
that can be ciphertext letters (that is, the only letters that
plaintext letters get transformed to) are A, C, E, G, I, K,
M, 0, Q, S, U, W, and Y; those with even values.
Sometimes three extra characters (blank, period, and maybe

a comma) are introduced to our alphabet so we do our arith-
metic in Zag. Since 29 is prime, all nonzero multipliers will
have inverses, eliminating the problem just encountered.

Fermat’s Little Theorem

We now give a theorem that will be useful to us, in a more
general form, in RSA encryption. It is about 300 years old.

Fermat’s Little Theorem. If p is prime and ged(a,p) = 1,
then
a?~! =1 (mod p).

We will not prove this theorem here, but refer you to any
introductory book on number theory; you should find the proof
accessible. If we multiply both sides of the congruence by a,
we get a? = a (mod p). Now if ged(a,p) > 1, then a must
be a multiple of p since p is prime. But then ¢ = 0 (mod p)
and so a™ = 0 (mod p) for any power n. In particular, a? =
a (mod p). Thus this last congruence holds regardless whether
or not a and p are relatively prime. Fermat’s Little Theorem
is sometimes stated in this form.

v Compute a?~! (mod p) for a = 3 and p = 5 and
also for a = 4 and p = 7 to verify that you do indeed
get 1. Check Fermat’s Little Theorem with other ap-
propriate values.
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We will use Fermat’s Little Theorem as a test to see if
a number is composite. If we want to know if n is compos-
ite, we choose a number a with ged(a,n) = 1 and compute
a™ ! (mod n). If this number is not 1, then n is composite.
For if it were prime, Fermat’s Little Theorem says the result
must be 1. Of course, if the result is 1, » may be prime or it
may be composite; the result of this test is inconclusive. (This
is the theorem we referred to earlier when we said you could
tell a number was composite but not know its factors.) If the
result of this calculation is 1, we usually keep trying for dif-
ferent values of a. As a matter of convenience, we usually let
a = 2 to start with and then increment a, if the result of the
computation is 1. If you find an a where the computation is
not 1, you stop and declare the number composite. This test
is usually performed on large n, so it would not be practical
to try all a < n. As a probabalistic primality test, you stop
after so many computations and declare n a “probable prime”
if all your choices of a yielded a”~! (mod n) = 1. For large
numbers, this is not a practical test to perform with paper and
pencil.

v Calculate a™~! (mod n) for all a < n where
ged(a,n) = 1 and n = 9. Do you conclude that 9 is
composite? Now test for n = 7.

You might think that if you calculated a™~! (mod n) for
all a < n where ged(a,n) = 1 and you got 1 each time, then n
would be prime. Indeed, the converse is true, by Fermat’s Little
Theorem. You’d almost be correct. Unfortunately, there are a
few such numbers that are composite, called Carmichael num-
bers, but they are rare. The three smallest Carmichael num-
bers are 561, 1105, and 1729. Indeed, there are only 105,212
Carmichael numbers less than 10'5. (See Mathematics of Com-
putation, 61:203 (July 1993), pp. 381-391.) Thus if the pre-
ceding test ever yields a calculation where a”~! (mod n) # 1,
you know with certainty that n is composite. If you never find
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such an a, you can only suspect n is prime. That’s why we call
this a test for composite numbers and not a primality test.

Fast Exponentiation

This test of composite numbers is all well and good, but
what if the n you’re checking is quite large? To compute
a™ ! (mod n) using the straightforward method of repeated
multiplication would take an inordinate amount of time. For-
tunately, there is an efficient method for computing any power
of a number, appropriately called fast exponentiation. To get
an idea for how this works, let’'s compute 3'*. (We'll do our
arithmetic in the natural numbers and consider the modulus
later.) We’ll cleverly write the exponent 11 as a sum of powers
of 2: 11 = 1+ 2+ 8. We will compute 3'! by doing as few
multiplications as possible. Note that 31+2+8 = 31.32. 38
We'll call these powers of 2 on the right the “desired factors
of 311” in the discussion that follows. To compute 3!, we will
computer higher and higher powers of 3 (the base). We start
with 3! and since this power of 3 is a one of the desired factors
of 311, we multiply our running total (initially equal to one) by
3!. The next power of 3 we might need is 32 = 9, which we get
by squaring 3'. This power of 3 is also a desired factor of 3!,
so we multiply our running total by this amount, getting 27.
We calculate the next power of 3 we might need, 3* = 81, by
squaring 32. But 3% is not a desired factor of 3'!, so we don’t
change our running total. The next power of 3 we might need
is 3% = 6561, which is a desired factor, and so we multiply our
running total by 6561 to get 177147. This ends our computa-
tion. Note that we needed only six multiplications to compute
3!!. Looping through repeatedly multiplying by 3 would take
10 multiplications. But this is a small exponent. The savings
are dramatic for large exponents, as we will see.

The remaining problem is to find what we called the de-
sired factors. We find the desired factors by expressing the
exponent as a sum of powers of 2. The algorithm for fast ex-
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ponentiation is given next. Notice how the desired factors are
picked off. Recall, |z] is the floor function (the greatest integer
no larger than x).
function fastexp(a,b)
% require: a & b positive integers
% ensure: function returns a’b
exp = b;
total = 1;
factor = a;
while (0 < exp) do
% do we have a "desired factor"?
if (exp mod 2 = 1) then
total = total * factor;
endif;
exp = |exp/2];
% square the factor
factor = factor * factor;
endwhile;
return(total);
end function;
Let’s trace through the calculation 52° using fastexp.
We'll trace the values of exp, total, and factor after each
pass through the while loop.

exp total factor
initially: 23 1 )
11 ) 25
) 125 625
2 78125 390625
1 78125 152587890625

0 11920928955078125 HK KK oK

The last value of total is what fastexp returns for the
value of 5%3. We do not show the last value of factor since
it is not used in any subsequent calculation and it is 23 digits
long! You should notice that since factor is squared each time
through the loop it grows at an increasingly rapid rate. This
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is a good example of exponential explosion.

During each iteration of the loop, we take the floor of
half the exponent. The loop stops when this value gets to 0.
Therefore, the number of times through the loop is about log, b,
where b is the exponent, as opposed to about b repetitions
for the straightforward algorithm of repeated multiplication.
For example, if b = 1000, fast exponentiation would loop 10
times as opposed to 999 times for the straightforward method.
Indeed, this algorithm deserves to be called fast.

v Compare the number of iterations of fast expo-
nentiation with the straightforward method if
b =1,000,000.

If we wish to compute a® (mod n), which we will want to
do for our encryption examples later on, we modify the fast
exponentiation algorithm to perform a “mod by n” operation
each time a multiplication is done; so two lines would need to be
modified. The size of the exponent that’s used in practice is on
the order of 200 digits! We certainly need fast exponentiation
in this case.

v Make the necessary modification to fastexp to
compute a® (mod n).

v Now use your modified fastexp to compute
350 (mod 10).

Euler’s Theorem

Euler later extended Fermat’s Little Theorem, introducing
a new function. This function seems a little off-beat and indeed
it is hard at first to see how it would be useful or why anyone
would be interested in the function to begin with. It illustrates
Euler’s genius.
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Euler’s phi function, written ¢(n) and defined for all nat-
ural numbers, is the number of natural numbers less than n
that are relatively prime to n. (This function is sometimes
called the totient function.) This function counts how many of
those numbers there are; it has nothing to do with what values
those numbers have. Since every number is relatively prime to
1, ¢(n) > 1. For example, ¢(10) = 4 since 1, 3, 7, and 9 are
relatively prime to 10. Also, note that ¢(8) = 4, ¢(11) = 10,
and o(15) = 8.

There are three facts that will aid in computing (n).
First, if n is prime, then ¢(n) = n — 1, since all numbers less
than n are relatively prime to n. The two other facts used
in calculating p(n) are not so obvious and we will only state
them: (1) If ged(n, m) = 1, then ¢p(n - m) = ¢(n) - ¢(m), and
(2) if p is prime, then p(p™) = p"™ — p"~!. These, along with
the Fundamental Theorem of Arithmetic, allow us in principal
to compute p(n) for all natural numbers; we first factor n into
a product of powers of primes, then use the three facts about
the phi function we just mentioned. For example, let’s compute

©(1200). First, we factor 1200: 1200 = 2* .3 - 52. But then

©(1200) = ©(2*) (3) p(5%)
= (2* - 2%)2(5* - 5)
= 320.

Note that the first step was due to rule (1), which we could
apply because the three factors listed were relatively prime.
You see that this method of determining ¢(n) requires that we
be able to factor n, which is difficult for large n.

v Calculate ¢(100) and ¢(40).

We can now state Euler’s theorem. This is a generalization
of Fermat’s Little Theorem (that is, Fermat’s Little Theorem
is a special case of Euler’s theorem) since if n is prime, then
p(n)=n-1.
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Euler’s Theorem. If gcd(a,n) = 1, then a¥™ =1 (mod n).

For example, if n = 10, ¢(10) = 4 so for every a such
that ged(a,10) = 1, a? = 1 (mod 10). Try this with a cou-
ple of values for a. While this example is easy to calculate
without this theorem, calculating some larger powers is not
so easy. For instance, 4932° (mod 1200) would take some te-
dious calculations by hand, even with fast exponentiation, but
Euler’s theorem tells us the value is 1. (Don’t forget the
requirement that 49 and 1200 be relatively prime.) Euler’s
Theorem can also be used as a shortcut for other calcula-

tions. For example, when calculating 73?2 (mod 1200), note
that 7322 = 732072 = 72 (mod 1200) = 49 (mod 1200).

v Use Euler’s theorem as an aid to speed the cal-
culating of 752 (mod 100).

RSA Encryption

We now have all the pieces in place to describe RSA en-
cryption. Before getting down to the details, we’ll give an
overview of the method. RSA encryption is an example of
public-key encryption, which means that the encryption key is
made public and the decryption key is held private. That is,
the receiver (whom we’ll call person A) makes known to every-
one the key to encrypt messages to person A. Despite knowing
this key, it is very unlikely that the senders will be able to fig-
ure out the decryption key, which person A keeps private. If
there are several people using this method, then each has his or
her own keys. Keep in mind that you use the public encryption
key of the person to whom you are sending the message. (The
receiver will, of course, know his or her own decryption key.)

The first step in RSA encryption is to translate the mes-
sage into a number M. (There are some restrictions on the size
of M.) The encryption key is a pair of numbers e and n. The
ciphertext C' is computed by M® mod n = C. The receiver re-
covers the plaintext M by applying the decryption key (again
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a pair d and n): C% mod n. This value will be equal to M,
because of our choices of e, d, and n, which we describe next.

Let’s go through the steps the receiver needs to perform
in order to find appropriate values e, d, and n. We’ll use some
very small numbers in our example to make the arithmetic
easier. In practice, these numbers need to be quite large, in
order to make this method is secure.

First, two primes p and ¢ are picked. (Let’s pick p =7
and ¢ = 11.) These are kept secret. Indeed, if anyone could
figure out these two primes, the cipher is easily cracked. In
practice, p and ¢ each have about 100 digits each. Compute
n=p-q. (Here, n = 77.) We now need ¢(n). (In our example,
o(77) =610 = 60.)

Now we find a number e that is relatively prime to ¢p(n);
there are many choices for e. (Let’s pick e = 53.) The encryp-
tion key, which is made public, is the pair e and n. (So e = 53
and n = 77.)

v Suppose you pick primes 5 and 7. Find an ap-
propriate value for e. There are many choices.

The next step is to calculate d, which will be the multi-
plicative inverse of e mod ¢(n). We use the extended Euclid’s
algorithm to do this: Since ged(p(n),e) = 1, we can find a and
bsothat 1 =e-a+p(n)-b. Thus, 1 —¢(n)-b=-e-a. In other
words, e -a = 1 mod (¢(n)); that is, a is the multiplicative
inverse of e. Thus this number a that we get from the extended
Euclid’s algorithm is the value for d we want. The decryption
key is then the pair d and n. (In our example d = 17, since
53-17 =1 (mod 60).)

v Using primes 5 and 7 and your aforementioned
choice of e, calculate d.

To encrypt a message, we first translate into a number. We
use some code to translate the characters to two-digit numbers.
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Let’s slightly change our scheme from before and let A= 01, ...
Z= 26, space = 27, and period = 28. Then we concatenate
the numbers to form a long string of digits. For example, sup-
pose or message was, again, MEET ME AT NOON. Then the en-
coded message would be 13050520130501201415151428. Since
the number encrypted must be less than the n of the keys, we
may need to break this long string of numbers into blocks of
numbers each less than n. For instance, if n = 7001940587, we
could split our message up into blocks 1305052013, 0501201415,
and 151428, and encrypt and send each block separately. The
receiver must then decrypt each block and reassemble them
to form the message. (In our example, n was unrealistically
small; n = 77. So our blocks would each be less than 77,
which amounts to one character. To encrypt, we take the
block, say M = 13, and encrypt according to the encryption
formula given previously: 13°3 (mod 77) = 41. To decrypt,
417 (mod 77) and you'll see this is 13, the original message.)

v For primes 5 and 7 and your choices for e and d,
encrypt the “message” 10. Then decrypt your result.
You should, of course, recover 10.

For more realistic examples, a computer algebra system,
like Maple or Mathematica, should be used. (Or, write your
own programs to handle large integer arithmetic.)

Let’s go through a small example, but one too large to do
by hand. We use Maple, and go through the same steps we did
in our first very small example. First we pick two primes, let’s
say p = 299011 and ¢ = 23417. Then n = 7001940587 and
w(n) = (p—1)(¢g — 1) = 7001618160. We then find a number
e relatively prime to ¢(n); we pick e = 234569. So we have
an encryption key of e = 234569 and n = 7001940587. We
find, using the extended Euclid’s algorithm, the multiplicative
inverse of e mod ¢(n) and assign that to d. We find that
d = 171042949 and so our decryption key is d = 171042949
and n = 7001940587.



Chap. 5 Number Theory 115

Our message MEET ME AT NOON was changed to numbers
and broken into three blocks, since the blocks must each be
less than n: 1305052013, 0501201415, and 151428. We then
encrypt each block, using our encryption key (e,n), and get
ciphertext blocks 5210600508, 2476435985, and 5003991730.
These are the ciphertexts that are sent. The receiver, who
is the only one to hold the decryption key, knows that d =
171042949, and decrypts each block to recover the three origi-
nal plaintext blocks. Note that the second block has a leading
0, which we don’t usually write. The receiver knows that there
should be a leading 0, however, since each letter corresponds to
two digits and a plaintext block with an odd number of digits
occurred after decryption. You should try out this example
on your own computer algebra system to see that you get the
same numbers.

Why does this work? That is, why does decrypting the
ciphertext guarantee the result is the original plaintext? Recall
that we picked e and d so that e-d (mod ¢(n)) = 1. That is, the
remainder when dividing e - d by ¢(n) is 1. So by the Division
Theorem, there is a number ¢ so that e-d = q- @(n)+1. Now,
let M be the plaintext. If we encrypt M, then decrypt it, we
are calculating

Me? (mod n) = MT¥M+! (mod n)
= M7% . M (mod n)
= (M#™)7. M (mod n).
But Euler’s theorem says that M#(™ = 1 (mod n), so this
last expression is 1+ M = M (mod n). Thus, the plaintext is
recovered.
Exercises

1. Show that the relation ~,, is an equivalence relation on
the set of integers. Recall that a ~, b iff n|(a — b).
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Find ¢ and r (the quotient and remainder) guaranteed by
the Division Theorem for a = 100 and b = 57. For a = 407
and b = 10. For a = 10 and b = 407.

Use Euclid’s algorithm to find ged (1001, 533), ged (330, 204),
and gcd (1000000, 7322).

Use the calculations you performed in the last exercise to
find the z and y so that gcd(a, b) = az + by for the various
a and b given.

Suppose you use the sieve of Erastothenes to find all primes
less than 1000. (Don’t do this.) You repeat the main loop
how many times? Same question for 1,000,000.

Show, using induction, that if p is prime and plaias - - - ay,
then pla; for some i, 1 <i < n.

7. Using the sieve of Eratosthenes, find all two-digit primes.

8. Using the function Prime, given in the text, determine if

10.

11.

563 is prime or not. How many iterations of the loop in
this function did you perform? Now determine if 389 is
prime or not.

Solve each of the following:

3+ 2 =7 (mod 8)
44z =3 (mod 10)
137 4+ = = 100 (mod 903).

Solve each of the following:

22 +3 =1 (mod 7)
4+ 7 =z + 2 (mod 10)
52 4+ 10 = 2z + 7 (mod 20).

List all solutions to 2z = 4 (mod 12). How many solutions
are there to 2z = 5 (mod 12)7
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12.

13.

14.

15.

16.
17.

18.

19.
20.
21.

22.

23.

24.

25.

26.

In the function Prime, we only checked if a divides n for
a < y/n. Why does this suffice?

Find the additive inverses of all the elements of Z;g9. Same
for Zg.

Find the multiplicative inverses for all numbers that have
them in Z7, in Z1q, in Z11, in Z12, in Z15 and in Zog.

Factor completely into primes: 30, 90, 100, 101, 1000 and
1002.

Find ¢(n) for n = 30, 71,99,999, 10° and 97.

Prove that ged(m,n) - lem(m,n) = mn. (lem(n,n) is the
least common multiple of n and m.)

Show that (3772—_1) is odd and composite. Hint: Find

3""mod 4.

Prove or disprove: ged(km, kn) = kged(m, n).

Prove or disprove: lem(km, kn) = klem(m,n).

Prove that a number is divisible by 3 iff the sum of its
digits is divisible by 3.

Prove that a number is divisible by 4 iff the number defined
by the 2 rightmost digits is divisible by 4.

Prove that a number is divisible by 9 iff the sum of its
digits is divisible by 9.

As illustrated in our discussion of RSA encryption, we can
calculate a~! mod n by using the extended Euclid’s algo-
rithm (provided a has an inverse mod n). Use this method
to calculate the following: 57! mod 7, 9=! mod 100, and
117! mod 26.

Use fast exponentiation to calculate 1232° mod 20 and
5210 mod 12.

What is the encryption formula for encrypting a shift ci-
pher when plaintext A is encrypted as E? What is the
decryption formula?



118

27.

28.

29.

30.

31.

32.

33.

Number Theory Chap. 5

Decrypt the ciphertext ZWTSW GOAMG HSFM if the shift ci-
pher was used with a shift of 14. What is the decryption
key?

Encrypt the message HELP IS ON THE WAY using the en-
cryption formula 3p+11 = ¢ mod 26. Find the decryption
formula and decrypt the ciphertext you got. (It should be
the original plaintext, of course.)

Find the decryption formula for the encryption formula
7p + 20 = ¢ mod 26. For 21p + 4 = ¢ mod 26.

Encrypt all 26 letters using the formula 13p = ¢ mod 26.
Now encrypt all 26 letters using 2p = ¢ mod 26. Why do
both of these multipliers pose a problem for decryption?

When using RSA encryption, suppose you start with the
small primes 5 and 11. Find appropriate values for e and
d. What’s the largest number you can encrypt with your
values?

When using RSA encryption, suppose you start with the
small primes 13 and 19. Find appropriate values for e and
d. What’s the largest number you can encrypt with your
values?

If you have access to a computer algebra system, such as
Maple or Mathematica, develop your own RSA encryption
key. Start by finding two primes of about 10 digits each.
This would make your message blocks about 20 digits long.
To be more practical, start with 50-digit primes. Test your
keys by encrypting and decrypting a short message.

Programming Problems

1.

2.

Write a program that inputs a positive integer n and out-
puts the prime factorization of n. For example, if n = 100,
the output should be 2, 2, 5, 5. If n = 101, the output
should be 101.

Write a program that prints all divisors of n.
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3.

10.

11.

12.

Write a program that inputs a positive integer n and prints
©(n). You’ll need to find the prime factorization of n.

. Write a program that inputs a, b and n and prints a® mod n.

Use fast exponentiation in your calculation.

Write a program that inputs positive integers n and m
and prints ged(n,n).

Using the gcd function you wrote in the last program-
ming problem, write a program that computes lem(n, m).
(lem(n, n) is the least common multiple of n and m.)

Write a program that inputs positive integer n and prints
all positive integers < n that have multiplicative inverses
mod n, along with their inverses. (Assume n is small
enough that you can find inverses by exhaustive search.
Later, in Chapter 6, we give an algorithm for the extended
Euclid’s algorithm.)

Write a program that solves congruences: Input a, b, c,
and n and prints the solution (if one exists) for the ax+b =
¢ mod n.

Write a program that encrypts messages using an encryp-
tion formula of mp + s = ¢ mod 26, where the user sup-
plies the values for m and s, making sure that m is a legal
multiplier. After entering m and s, have the user enter
a message. Ignore all nonalphabetic characters and print
your ciphertext in groups of five letters.

Write a program that prints all primes less than n, which

is entered by the user, using the sieve of Eratosthenes.
Assume n < 100000.

Write a program that adds fractions. The user should
enter the numerator and denominator (both positive inte-
gers) of two fractions. Output should be the sum of these
two fractions in reduced form. (You will need the gecd
function to reduce your sum to lowest terms.)

Write a program that produces a table with two columns:
n and p(n).
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13.

14.

15.
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Write a program that produces a table with two columns:
n and the factors of n.

A composite number n that satisfies "' =1 mod n for
every positive integer b such that ged(b,n) = 1 is called
a Carmichael number. Write a program that produces
Carmichael numbers. It’s interesting to see how high a
Carmichael number you can generate within the bounds
of the integers allowed by your programming language.

The EKG sequence is a sequence of positive integers gen-
erated as follows: The first two numbers of the sequence
are 1 and 2. Each successive entry is the smallest posi-
tive integer not already used that shares a factor with the
preceding term. So, the third entry in the sequence is 4
(being the smallest even number not yet used). The next
number is 6 and the next is 3. The first few numbers of
this sequence are given below.

1,2,4,6,3,9,12,8,10,5, 15,18, 14,7, 21, 24, 16, 20, 22
While the sequence has a general increasing trend, it gets

its name from its rather erratic fluctuations. Write a pro-
gram that prints the first n entries of the EKG sequence.



Chapter 6
Recursion

You are familiar with procedures and functions from your
beginning programming course. Procedures and functions can
be called by other procedures and functions. Most modern
programming languages allow procedures or functions to call
themselves. In this case we say that the procedure or func-
tion is recursive. Recursion is a very powerful technique for
designing algorithms and it has many important applications.
Recursion is an idea closely related to induction. Indeed, the
words inductively and recursively can be interchanged when
pertaining to the method of constructing or calculating some-
thing. We will only touch on some of the simpler examples.

Recursion has its good and bad points. In some cases, a
recursive procedure is much simpler to write than an iterative
version of the same. Moreover, when this happens it is often
easy to convince yourself that the program is correct. On the
other hand, debugging a recursive procedure sometimes takes
a little more patience than a nonrecursive one. Moreover, it
frequently takes a lot of thought initially to design, if you're
not in the habit of thinking recursively.

From the implementation point of view, there is an effi-
ciency question to consider. Any task accomplished by a re-
cursive program can also be done iteratively. Sometimes one
approach seems more natural than the other. In any case, the
recursive function or procedure requires more overhead than its
iterative counterpart during execution and results in a slower
program. When you study algorithm analysis, you will find
precise methods for comparing one algorithm to another.

Here, we will present some examples of recursion in order
to add this approach to our collection of design techniques
for algorithms. As a first example of recursion, let’s consider

121
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writing a function to compute n!, for nonnegative integers n.
While it is easy to write a function that computes n! iteratively,
the definition for n! is usually given recursively:

L ifn=0orn=1
"= 1n (n—1)!, otherwise.

This is the form that recursive definitions take. First, a
base case is presented. Here, this occurs when n is 0 or 1; the
value of n! is 1 in this case. The remaining cases are when
n > 1 and are defined in terms of factorial of a smaller value
of n. You should notice a strong similarity with induction in
this setup.

Writing a recursive function for it is a matter of translating
the mathematical definition into code:

function factorial(n)
% require: n is a non-negative integer
% ensure: function returns n!

if n < 2 then % base case
return(1)

else
return(n * factorial(n-1))

endif

end function

Here, the program is exactly the mathematical definition
and so we can assume the program is correct as long as the syn-
tax is correct. The iterative version of this function is probably
familiar to you. We show the iterative version next for com-
parison. In this case there is little difference between the two
implementations when it comes to understanding them.

function factorial-iterative(n)
% require: n is a non-negative integer
% ensure: function returns n!

fact=1

for i=2 to n do
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fact = fact * i
endfor
return(fact)
end function

The correctness of a recursive function is easy to see math-
ematically but it is not so obvious how this computation is
done on a computer. Let’s suppose you make the call fac-
torial(10). Note that the value returned for this call will
be 10 - factorial(9). To compute the value of factorial(9)
requires another recursive call, so the final computation (the
multiplication of 10 and whatever value factorial (9) returns)
must wait until the call to factorial (9) returns with its value.
But then, factorial(9) requires the value of factorial(8),
which requires the value of factorial(7), which requires the
value of ... you get the idea. These recursive calls keep going
until the base case factorial(1), which returns 1. Now, this
returned value can be used to compute factorial(2), which
returns its value so factorial(3) can be computed, and so
on until factorial(9) returns with its value and the value of
factorial(10) can be computed and returned.

v Trace through all the recursive calls for initial
call factorial(6). What value do you get? How many
recursive calls are made (not counting the initial call)?

This is a simple example of recursion. There are more
complicated recursive functions. All recursive functions have
two important requirements: A base case (or base cases) must
be provided, and the recursive calls (to “simpler” instances of
the computation) must be handled properly to compute the
value you wish. This means that the parameter(s) to the re-
cursive calls must be correct and that the resulting value of the
recursive call must be used correctly.

We emphasize the necessity of the base case: In a recursive
function it is critical that we have a condition (called the base
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case) that returns a value computed nonrecursively and that
this condition will always occur eventually regardless of what
the initial value of the parameter is. (Mathematically, this
means the function is well-defined.) If this condition is not
met, infinite recursion may occur and the function may never
return (until storage space for the call frame runs out; then
you’ll have abnormal termination). Here’s an example of a
recursive function that will not always return. In this case, it
doesn’t return when n < m. (Don’t try to “fix” this function;
there was nothing useful intended.)
function oops(n,m)
if (n>m) then
return(m)
else
return(oops(n~-1,m) + 1)
end function

v Explain why this function fails to return when
n <m.

Let’s look at a more complicated function, one that com-
putes the nth Fibonacci number. When you see the mathemat-
ical definition of the function, you’ll see that it isn’t any more
difficult to program than the factorial function. Recall that the
Fibonacci numbers form the sequence 1,1, 2,3,5,8,13,21,....
In general, you compute the next Fibonacci number by sum-
ming the previous two. Of course, we need to provide a starting
point for this sequence, and we start with the 1 and 1 as the
first two elements of the sequence. Here’s the mathematical
formula for the nth Fibonacci number:

fib(n) = 1, fn=1lorn=2
o) = ib(n — 1) + fib(n — 2), otherwise.

The code for this function is now just the straightforward
translation of this description:
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function fib(n)
% require: n is a positive integer
% ensure: function returns the nth
yA Fibonacci number

if n=1 or n=2 then
return(1)

else
return(fib(n-1) + fib(n-2))

endif

end function

Tracing back through the calls for this function is more
complicated than for factorial since the computation requires
two recursive calls. Thus the total number of calls required to
compute fib(n) approximately doubles as n increases by one.
Let’s trace through the calls if the initial call is £ib(4).

The value returned for £ib(4) is the sum of £ib(3) and
fib(2). Thus two recursive calls must be made. While it
makes no difference in the calculation, let’s assume that the
one listed first (that’s £ib(3) here) is called first. The call
to £ib(2) is not made until £ib(3) returns. Now the call to
fib(3) returns the sum of £ib(2) and fib(1). Thus, there
are two more recursive calls. The calls to £ib(2) and fib(1)
(three calls in total) are base cases and so each simply returns
1 to the calling function. This makes a total of four recursive
calls. (We don’t count the initial call here.) We can illustrate
the calls in the following tree diagram. The calling functions
are above the called functions:

fib(4)

/

£ib(3) £ib(2)

/ N\

fib(2) fib(1)
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v Trace through a call to £ib(5). Draw a diagram
of the recursive calls made. How many are there? How
many duplicate calls were made? Repeat for £ib(6).

An important point here is that the actual calls and com-
putation may be complicated, but the writing of the function
isn’t. We can let the built-in function calling mechanisms of
the computer (and the language you’re using) do the work for
us. As an exercise at the end of the chapter, you are asked to
write an iterative version of fib and compare it to the version
given previously.

Binary Search

One of the most frequent tasks that computers perform
is that of searching a list for an item. The item searched for
might be a complicated structure, but typically we search for
an item (or all items) with a value in a certain field. This value
is called the search key. If the list is sorted and stored in an
array, we can efficiently find an item with a given key value,
if it exists, or determine that no such item exists. The idea
is simple and is similar to the strategy used in the children’s
guessing game where you try to guess a number between 1
and 100 (or between any two bounds). After each guess, the
holder of the secret number responds with either “correct,”
“too high,” or “too low.” You quickly figure out that the best
strategy is to guess in the middle and, depending on the answer
you get, adjust your range upward or downward (if incorrect)
and repeat the process until you guess correctly. Note that
this scheme is recursive because you repeat the process with
different parameters. Here the parameters are the lowest and
highest possible values for the unknown number.

v Using the aforementioned scheme and starting
with a range from 1 to 100, what numbers would you
guess if the secret number were 187
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v If the range were initially 1 through 1000, how
many guesses would you make in the worst case if you
used this scheme? What if the range were 1 through
1,000,0007

Our problem here is to search for the indez of a particular
element in an array. It is assumed that the array is sorted in
nondecreasing order. This function will return an index where
a given value occurs (if it occurs at more than one index it will
return only one of those indices) or return a value of —1 if it is
not in the array. (We’ll assume indexing starts after —1.) This
algorithm is called binary search:

function bin-search(A, low, high, value)
% require: A[low..high] is an array in

% non-decreasing order, value is

% of the same type as the array

% ensure: function returns the index i, so
/A that low < i < high

/A and A[i] = value

% searching an empty list?,
% if so, then not there
if (low > high) then
return(-1)
else
mid = |(low + high)/2|
if (A[mid] = value) then
return(mid)
else
% value in low half of 1list?
if (A[mid] > value) then
return(bin-search(A, low, mid-1, value))
else 7 value in high half of list
return(bin-search(A, mid+1, high, value))
endif
endif
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endif
end function
As an example, let’s suppose the array A is indexed from
1 through 30 and the elements of the array are

3,4,7,9,10,11,12,13,15,17,19, 20, 23, 25, 26,
27,28, 30,33, 34, 37, 38, 40, 42, 50, 51, 52, 53, 54, 56.

Suppose we are searching for a key value of 17. Thus our
initial call is bin-search(A,1,30,17). The value for mid is
15, and since A[15]=26 is greater than 17, the next call is bin-
search(A,1,14,17). The next value for mid is 7, and A[7]=12
is less than 17. So the next call is bin-search(A,8,14,17).
The subsequent calls would be bin-search(A,8,10,17) and
bin-search(A,10,10,17). But A[10]=17, which is the key
value we are searching for, and so 10 is returned to the calling
function, which returns the 10 to its calling function and so on
until 10 is returned from the initial call.

Ve Trace through the recursive calls if the initial
call is bin-search(A,1,30,23). Now trace through the
calls if the initial call is bin-search(A,1,30,24). Note
that in the latter case, a —1 should be returned since
24 is not in the array.

Compare this with the linear search, that starts by com-
paring the given value with the first element of the list and
then proceeds to the second element and so on. The linear
search may have to examine every element of the list while the
binary search at each step cuts in half the number of elements
it needs to examine. Even without a very careful analysis of
these algorithms, we see that binary search is superior.

Euclid’s Algorithm

In Chapter 5 we used Euclid’s algorithm to find the ged
of two numbers. The algorithm was presented in an iterative
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manner, but it is also possible to think about this algorithm
recursively. This is true of many algorithms where you repeat
the same steps but each iteration uses values computed in the
previous step.
function gcd(n,m)
% require: n and m are non-negative

yA integers not both zero
% ensure: function returns the gcd
/A of n and m
if (m = 0) then
return(n)
else
return(gcd(m, n mod m))
endif

end function
Let’s trace through the calls if the initial call is gcd (12,63).
This call would call gcd(63,12), which would call gecd(12,3),
which would call ged(3,0), which would return 3. Compare
this with the iterative version from the previous chapter. You
should see that nearly the same calculations are taking place.

v Trace the execution of gcd(24,111). Do the same
for gcd(10,100).

In Chapter 5 we also saw the usefulness of the extended
FEuclid’s algorithm which not only finds the ged of two num-
bers n and m but also the numbers a and b so that ged(n, m) =
a-n+b-m. In the simple Euclid’s algorithm, we went from
computing ged(n,m) to computing ged(m,n mod m). Sup-
pose d = ged(m,n mod m). (Of course, d = ged(n, m) also.)
The problem here is, if we have found (recursively) values for
a’ and ¥ so that d = a’-m+b'-(n mod m), we need to compute
aand bsothat d=a-n+b-m.

Suppose we know not only d = ged(m,n mod m) but also
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a’ and b’ so that
d=a -m+b-(nmodm).

We now need to see if from these values we can find the corre-
sponding values for a and b. Of course, the answer is yes (or
why would we bring it up?). First we note that

n mod m =n — |n/mj-m,
and by substituting see that

d=a -m+b-(n—|n/m| -m)
=b-n+(a -V |n/ml]) m.

So we have that ¢ = ¥ and b = o’ —b'-|[n/m]. We can now give
a procedure for the extended Euclid’s algorithm. Note that the
ged is passed back in the parameter list here, unlike the plain
ged function, which returns the value.
procedure gcdext(n, m, d, a, b)
% require: n and m are positive

% integers
% ensure: compute d=gcd(n,m) and a
% and b so that d = a*n + b*m
if (m = 0) then
d=n
a=1
b=20
else
gcdext(m, n mod m, d, a, b)
c=5>
b=a-|n/m|l-b
a=c
endif

end procedure
This procedure is a little more difficult than the previ-
ous ones. Note that the purpose of a call to gcdext(n, m,
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d, a, b) is to find not only d, which is the gcd of n and m,
but also find the appropriate values of a and b. We illustrate
by making the call gcdext(12,63,d,a,b). As we’ve seen be-
fore, a series of recursive calls follows: gcdext(63,12,d,a,b),
gcdext (12,3,d,a,b), and gcdext (3,0,d,a,b). This last call
is a base case and calculates that d = 3, a =1 and b = 0 and re-
turns to its calling procedure. (We see that, indeed, 3 = 1-3+0-
0, as we wish.) The calling procedure is gcdext(12,3,d,a,b)
and this procedure takes these values of d, a, and b and calcu-
lates its values of a and b. (The value of d stays the same.) We
see that the procedure calculates that a =0 and b = 1. (Again,
we see that, indeed, 3 =0-12+1-3.) This procedure then re-
turns to its calling procedure, which is gcdext (63,12,d,a,b),
and this procedure calculates that a = 1 and b = —5. (We
see that 3 = 163 + (—5) - 12.) These values are returned
to the calling procedure, and that procedure calculates that
a= —b5 and b = 1. This is the initial call, and so we see that
3 = ged(12,63) and 3 =(—5) - 12+ 1-63. Whew!

v Trace through the call gcdext(24,111,d,a,b).

Tower of Hanoi

Finally, on a lighter note, consider the Tower of Hanoi
(TOH) game, which is played by moving disks from one peg to
another. The game starts with n disks of different diameters
stacked from largest on the bottom to smallest on the top on
the leftmost of three pegs. The object of the game is to move
the disks, one at a time from one disk to another, so that a disk
is never placed on top of a smaller disk, until the original stack
has been moved to the rightmost peg. (There is the myth of
Buddhist monks in heaven solving this puzzle with 100 golden
disks on three silver pegs. They make one move a second and
the claim is that when they finish the puzzle, the world will
end.)
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4 disk Tower of Hanoi

We can develop a recursive solution to this game. This
game can be solved for n disks in terms of solving the game
for n —1; reducing a problem to a smaller one is the essence of
a recursive solution to any problem. If we have a solution to
this smaller problem, then to solve the problem for n disks, we
first move the top n — 1 disks from the left peg to the middle
peg (this is the recursion), exposing the largest disk on the left
peg. We can then move this disk from the left peg to the right
peg. (Note that all the disks smaller than disk n are on the
middle peg.) Now we move the n — 1 disks from the middle
peg to the right peg (recursion again). Let’s write code for
this solution. Our procedure has four parameters: the number
of disks, the peg they start on, the peg they wish to move to,
and, finally, the other peg, thought of as a temporary storage
peg. The output for this procedure will be the instructions for
solving this puzzle.

procedure TOH(n, start, ending, intermediate)
%» require: mn a positive integer, start,

% ending, intermediate designate
% 3 different pegs

% ensure: print instructions to move n
pA disks from start peg to

% ending peg

if (n=1) then
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write("Move disk from ", start, " peg to ",
ending," peg")
else
TOH(n-1, start, intermediate, ending)
write("Move disk from ", start, " peg to ",

ending," peg")
TOH(n-1, intermediate, ending, start)
endif
end procedure

Here, the parameters start, ending and intermediate
could be integers, if the pegs are numbered, or strings, like
“left,” “middle,” and “right.” We’ll use the latter in the foll-
woing example.

For example, if you were solving this puzzle with five disks
on the left peg, you would make the initial call TOH(5, left,
right, middle). This is a little too complicated to trace
through as a first example, so we’ll try something simpler. The
results with n = 1 are obvious, so let’s trace through the call
TOH(2, left, right, middle). The important thing to no-
tice is the value of the parameters in each call. The first state-
ment executed is the call TOH(1, left, middle, right), so
execution in our original call is suspended momentarily, un-
til we return from the recursive call. Now the call TOH(1,
left, middle, right) is a base case, so Move disk from
left peg to middle peg is printed and we return from this
procedure call. Execution in our original call picks up where
that call left off, and so the next statement executed is the write
statement. So Move disk from left peg to right peg is
printed. The next statement to be executed is the recursive
call TOH(1, middle, right, left). Again, execution in our
original call is momentarily suspended until we return from
this call. This call is a base case, so Move disk from peg
middle to peg right is printed and we return from this call
to our original procedure, where execution continues. But
that’s the end of the procedure. Thus the entire output was



134

Recursion Chap. 6

Move disk from left peg to middle peg
Move disk from left peg to right peg
Move disk from middle peg to right peg

v Try the Tower of Hanoi with n = 4.

The number of moves increases rapidly, so unless you have

lots of patience and time, don’t start with too large of n. We
will calculate exactly how many moves are made in the next
chapter.

Exercises

1.

Trace through the binary search when searching for 18 in
the array A[1..100] where A[i] = 2i for ¢ = 1,2,...,100.
Try it when searching for 76. For 37.

Write an iterative version of binary search.

Write a iterative version of the function fib. Now compare
how much work is down by your version and the recursive
version given in the chapter. Specifically, count the num-
ber of additions performed by your iterative version and
by the recursive version when computing £ib(3), £ib(4),
fib(5), and £ib(6). Based on this very preliminary in-
formation, which version appears to be more efficient?

. Trace through the recursive ged function when computing

gcd(100,304), gcd(101,34), and gcd (1002, 248). How
many recursive calls are made for each of these?

Try the recursive extended gecd: gedext(100,304,d,a,b)
and gcdext(37,20,d,a,b).

Suppose m < n. If ged(n,m) = 1, then m~! mod n ex-
ists. Indeed, m~! modn = b, where l = a-n+b-m
(since clearly the value of b-m =1 mod n). Thus we can
find m~! mod n by using gcdext. Do this to calculate
117! mod 26. Check your answer.

Calculate 107! mod 91 and 57! mod 12. (See the previ-
ous exercise.)
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8.

10.

11.

12.

Use the TOH procedure to write out the solution for the
four-disk TOH problem you got in the reader check. How
many moves did you make? Repeat for three, two, one,
and five disks. Do you have a guess for how many moves
are necessary to solve the n disk problem?

How long will it take the Buddhist monks in heaven to
solve their puzzle? (Give your answer in convenient units.)
You’ll need your answer from the previous exercise to cal-
culate how many moves are necessary.

Suppose A[l..n] is an array of integers and target is an
integer. Write a recursive function that returns a count of
how many times target occurs in A[l..n]. The header for
this function should be
function Countem(A,n,target)

(Hint: The call to Countem(A,n,target) is to return a
count of how many times target occurs in A[l..n], so
what is the simplest situation? That is, for what value of
n is this easiest to do? This will be your base case. Now if
it’s not the base case, consider the number of occurrences
of target in A[l..n — 1] (How would you find that?) then
consider the value of A[n] to get the count you need.)

Trace through this procedure. What does it do? Imple-
ment it using your favorite programming language and run
it.
procedure probil()
if (not the end of line) then
read(c) % c is a character
prob1l ()
write(c)
endif
end procedure
What does this function do? Here A is an array of integers
indexed starting at 1.
function prob2(A, n)
if (n = 1) then
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return(A[1])
else
return(A[n] + prob2(A, n-1))
endif
end function

13. What does this function do? Here P is usually an array
of characters, although it could be an array of any type of
data.

function prob3(low, high, P)
if (low > high) then
return(true)
else
if (P[low] # P[high]) then
return(false)
else
return(prob3(low+1, high-1, P))
endif
endif
end function

14. Suppose A[l..n] is an array of integers. Write a recursive
function that returns the largest integer in A[l..n]. The
header for this function should be

function Max(A,n)
(Hint: Focus on the base case and the recursive call you
need to make if it’s not the base case.)

Programming Problems
1. Write an inductive definition for ™ for n > 0 and imple-
ment your definition with a recursive function.

2. Implement gcd in your favorite programming language.
Test your program well.

3. Implement gcdext in your favorite programming language.
Test your program well.
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4.

Implement bin-search in your favorite programming lan-
guage. Test your program well.

. Write a recursive guessing game program: The user picks a

secret number between 1 and 100 and your program does
the guessing. After each guess, the user responds with
“too high,” “too low,” or “correct.” Your main program
should simply be one call to your recursive procedure or
function.

Write a recursive program to implement the following def-
inition:

1, if k=0
B(n,k) =< 1, ifn=k
B(n—1,k—1)+B(n—1,k), if0<k<n.

Program the Tower of Hanoi. (Be careful when you run
this not to enter too large of a number or else prepare for
a large number of instructions!)
Given positive integers a and n (a < n), use gcdext to
find a=! mod n if ged(a,n) = 1.
Given a simple linked list, write a recursive procedure to

reverse the links in the list. The tail of the old list should
be the head of the new list.



Chapter 7
Solving Recurrences

In Chapter 6 we saw several examples of recursive defi-
nitions. These mathematical formulas are called recurrences.
It is easy to write a recurrence for the familiar geometric se-
quence. For example, consider the geometric sequence 5, 15, 45,
135,.... If a, is the nth element of the sequence and we start
indexing our numbers at 0, then we have the recurrence

ag =5, and

a, = 3an,_1, if n > 0.

We would like, if possible, to find a closed form for ay;
that is, a form that requires a fixed number of “simple” arith-
metic computations regardless of the value of n. Finding such
a form is called solving a recurrence. This is not an easy task
in general. Indeed, not all recurrences have closed forms, but
many of the recurrences we use do have closed forms.

There are many techniques, some very complex, for solv-
ing recurrences of different forms. Indeed, if you've taken a
differential equations course, you know of the many methods
that exist for solving differential equations. Solving recurrences
has a similar large collection of techniques. We will only be
concerned with one method (with many applications) in this
chapter, since this is an introduction to the subject: repeated
substitution (also called expansion). We’ll demonstrate on the
geometric sequence in the first paragraph of this chapter.

We make use of the observation that a,, = 3a,—; for all
n > 0. In particular, if n > 1, then n — 1 > 0, and so a,—1 =
3an_2. (We get this by substituting » = n — 1 in the original
equation.) Similarly, if n > 2, then n—2 > 0so ap—2 = 3a,_3,
and so on. The idea is to find a general pattern when making

138
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the substitutions. Assuming that n > 0,

ayn = 3an_1 = 3(3an_2)
= 3%a,_2 = 3%(3a,_3)

= 33an_3.

By now we see the pattern involving the exponent of 3 and
the subscript of a. If we repeat this substitution k£ times, we
see that a,, = 3*a,_x, a general form. Now if we let £k = n,
we have a,, = 3"a,_, = 3"ag. We picked k = n because the
general form then allows us to express a, in terms of the base
case ag. We know the value of ag and can now substitute that
value to get a, = 3"ag = 3"5, a closed form for a,,.

v Solve the recurrence where ag = 1 and a, =
2a,_1 for n > 0.

Note that this closed form is also valid for n = 0. Re-
peated substitution works well with many recurrences. Indeed,
it should be your first choice when trying to solve a recurrence.

Using this method, you should be able to derive a closed
form for the general form for a geometric sequence. (This is
an exercise at the end of the chapter.)

As a second example, let’s look at the Tower of Hanoi puz-
zle we wrote a solution for in the recursion chapter. We’d like
to know how many moves are made when solving this puzzle
with n disks. Since we wrote a recursive procedure to solve
this puzzle, finding a recurrence to count the number of moves
is easy. Let t,, be the number of moves to solve the Tower of
Hanoi puzzle with n disks. Clearly, t; = 1. If n > 1, we move
one disk and then solve the problem twice for n—1 disks. Thus,
t, = 2t,_1 + 1. Now let’s solve this recurrence:



140 Solving Recurrences Chap. 7

tp = 2tn_1 +1
=2%, o +2+4+1
=23, 3+224+2+1

=2k, +2F"1 41252 L ... 4 241 (this is the general for:

=2" 1 42024 2" 4241

n—1
=y 2
1=0
=2" -1

(This last inequality you can prove using induction. Do so if
you have not done so already.) Once we had the general form,
we let kK =n — 1, since then ¢, _x = t;, which is the base case.
Thus, from this closed form we see it takes 1023 moves to solve
the Tower of Hanoi puzzle with 10 disks. Of course, we’ve not
shown our scheme is optimal. (It is.)

Frequently, recurrences arise in the analysis of an algo-
rithm. That is, we wish to count the number of operations
performed during the execution of a procedure. For example,
let’s take the familiar Bubble Sort:

procedure BubbleSort(A, n)
% put A[1..n] in non-decreasing order
for top=n-1 downto 1 do
for i=1 to top do
if (A[i]>A[i+1]) then
swap(A[i],A[i+1])
endif
endfor
endfor
end procedure
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We wish to write a function that gives the number of state-
ments executed when executing Bubble Sort on the list A[1..n].
Of course, this depends on exactly what elements are stored in
this array. The usual position to take is to give the worst case,
which is then a sort of guarantee that no matter what data are
in the array, it will take no more than the number of steps we
compute. Before proceeding, we must decide exactly what is
meant by a statement. Certainly, there are more statements if
we implement this in assembly language than in a higher-level
language. We don’t fret about this detail too much, arguing
that the number of statements executed in one form compared
to the number in another is more or less some constant mul-
tiple that depends on the form of the statements and not the
algorithm. (For instance, it may be that the assembly ver-
sion of an algorithm is always three times the number of C++
statements, more or less, irrespective of the algorithm.) We
don’t worry about this constant. You will examine this issue
of analysis of algorithms in a later course.

Back to Bubble Sort: Let us just count the number of
times the statement swap(A([i],A[i+1]) is executed in the
worst case. Of course, here the worst case occurs when the list
is in inverted sorted order, and then this statement is executed
every time through the inner loop. (We are ignoring the other
statements here, partly to simplify the process, partly because
the other statements are all executed the same number of times
regardless of input, and partly because no other statement will
be executed more than the swap statement in the worst case.)

Let B,, be the number of time the swap statement is ex-
ecuted in the worst case on input of size n. One iteration of
the outer loop produces a list whose largest element is in A[n],
leaving the list A[l..n — 1] to be sorted on subsequent times
through the loop. The second time through this outer loop also
has the next-to-largest element in A[n —1]. In general, the kth
time through the outer loop puts the & largest elements in their
correct positions, A[n], Aln—1],..., A[n — k + 1].
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Note that in the worst case, the swap statement will be
executed every time we compare A[i] and A[i 4 1]. That is,
the boolean statement Afi] > A[i + 1] will be true each time
evaluated. This will happen, by the way, when the list is in
decreasing order. Note that if n = 1, the body of the loop
never executes (the list is already sorted since there is but
one element) so the swap statement never executes. That is,
B; = 0. Now notice that if n > 1, the inner loop repeats n — 1
times on the first time through the outer loop, and so the swap
statement executes n — 1 times on the first time through the
outer loop in the worst case. After this first pass, the largest
element is in A[n]. leaving us with the list A[l.n — 1] yet
to be sorted. This list is of length n — 1. In other words,
B, =n—1+ B,_;. We now have a recurrence for B,,. Let’s
restate it:

Blzo, and
B,=B,_1+n-1, ifn>1.

Again, this recurrence holds for all n > 1. So, in particu-
lar, if n > 2, then n — 1 > 1 and therefore if replacing n with
n — 1 in the recurrence, we get

Bn_lZBn_2+(7’L—1)—1:Bn_2+7’L—“2.

Similarly, if n — 2 > 1,

Bn_g:Bn_3+(n—2)—1:Bn_3+n—3,

and so on.
This is the key observation to solving this recurrence using
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repeated substitution:

Bn: n—1+n'—1
=B, 2+ (n—-2)+(n—-1)
=B, 3+(n—-3)+(n—-2)+(n—-1)

=Buk+(n—K) 4+ (n—1)

=Bit(n—(n-1) 4 +(n-1)
=142+ +(n—1)
=n(n—1)/2

Note that we got the third from last line from the general form
by letting k equal n — 1. The last equality is due to the well-
known formula for the sum of the first n positive integers you
proved using induction. (Here, we’re summing the first n — 1
positive integers, of course.)

As a final example, let’s analyze the binary search. We
call each examination of an element in the sorted list a probe.
We want to count approximately how many probes occur in
the worst case. The worst case occurs when the value we'’re
searching for is not in the list. For a list of length one, we
make one probe. If the list is of length n (larger than one),
we make one probe and then recursively search a list of length
n/2. That is, if P, is the number of probes (in the worst case)
when using the binary search to search a list of n items, then
we have the recurrence Py =1, P, = 1+ P, )5, for n > 1.

To solve this more easily, let’s assume that n is a power of
2, say n =27, Thus j = logn. Then

Pn=1+Pn/2
———1+1+Pn/22 =2+Pn/22
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:k‘l‘Pn/Qk

=j+ Pppi=j+ b
=j+1=logn+1

Thus when using the binary search to find an item in a sorted
list of 1,000,000 items, we will make no more than log 10641 =
21 probes. Contrast that to a linear search, which would take
1,000,000 probes in the worst case. Thus the binary search is
very efficient by comparison.

v If n = 1,000,000, approximately what is the most
probes necessary when using the binary search? When
n = 1,000,000,0007

Exercises

1. Solve the general recurrence for the geometric sequence:

a0=d

an = Man_1, if n > 0.

Solve these recurrences:

a1 =2,and a, = a,_1 +2, forn > 1.
Tvy=2,and T,, =T, 1+ 1, forn > 0.
a1 =3, and a, = ap_1 +n, forn > 1.
ap = 4, and a, = 3a,-1 + 1, for n > 0.
ap = 2, and a, = 2a,-1 + 10, for n > 0.

NS Ok W

ap = ¢, and a,, = a,—1 + b, for n > 0, where ¢ and b are
constants.
8. ap = ¢, and ap, = map—1 + b, for n > 1, where ¢, m and b
are constants.
*9. a9 = 2, and a, = 2a,-1 +n, for n > 0. (You will find
useful the formula in Exercise 5 from Chapter 4.)
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10.
11.

12.

13.

14.

15.

T, =1,and T,, =T,,_1 + 2n, for n > 2.

by =2, and b, = by, /5 + 2, for n > 1. (Assume that n is a
power of 2 in this problem.)

It is a tradition in your club for a new member to shake
hands with each of the current members. Suppose the
club starts with one member and new members are intro-
duced one at a time. Find a recurrence for determining
the total number of handshakes made when the club has
n members. Solve this recurrence. How many handshakes
are made if membership grows to 1007

Suppose you put $100 in a bank account that pays 8%
interest compounded at the end of each year. Find a re-
currence for the balance of your account after n years.
Solve this recurrence. How much will you have in your
account after 10 years? After 20 years?

Suppose you put $100 in an account every month with an
annual interest of 8% compounded every month. Find a
recurrence for the balance of your account after n months.
How much will your have in your account after 10 years?
After 20 years?

Suppose your credit card company charges you 1.5% per
month on any outstanding balance and you have an un-
paid balance of $1. You don’t pay this piddling amount
and forget about it, since you don’t use this credit card
anymore. Find a recurrence for how much you owe after
n months. How much will you owe after 1 year? After 5
years? After 10 years?



Chapter 8
Counting

In how many ways can you arrange 10 books on a shelf?
How many ways can you choose a basketball team from 8 play-
ers? How many 5-card poker hands are there? In how many
ways can we line up 5 red balls and 4 blue balls? How many
ways are there for interconnecting 15 computers? [t is not un-
common to ask “In how many ways can we do such-and-such?”
We will develop fundamental techniques to answer these types
of questions.

In many cases counting is surprisingly difficult, and often
the results of counts are surprisingly large. In some computer
programs we might wish to generate all instances of a certain
type and check some property of each instance—we call this
technique a blanket search. Frequently, the number of instances
is so large that the direct approach of examining every instance
is too inefficient to be practical. Programmers are challenged
to find an alternate method, one that need not check every
instance but somehow takes advantage of the kind of data being
processed in such a way as to use results of previously processed
data when handling new cases. When programmers analyze
their programs for efficiency, one aspect of their work is the
counting of how many instances their algorithm must process.

Thus counting is critical to determining the efficiency of
algorithms. To perform the task of counting, we’ll consider a
variety of techniques that take a large problem and break it
into more manageable subtasks.

The Rules of Sum and Product

There are two important rules in counting that may seem
obvious: the rule of sum and the rule of product.

The Rule of Sum: 1If the first task can be performed in m ways

146
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and the second task can be performed in n ways, and the two
tasks cannot be performed simultaneously, then performing ei-
ther task can be done in m + n ways.

For example, suppose there are 5 red books and 6 blue
books. Suppose the first task is to pick one red book, which
can be done in 5 ways. Suppose the second task is to pick one
blue book, which can be done in 6 ways. Therefore, there are
5+ 6 = 11 ways of picking a red or blue book. (Implicit here
is you can’t pick a book that is both red and blue, of course.)
This may be a trivial example, but be clear on when you can
use this rule; not all uses will be trivial.

This rule can be extended to n tasks: If we have n tasks
that can be performed and task 7 can be performed in m;
ways and no two tasks can be performed simultaneously, then
performing any one of the tasks can be done in m; +mgo+-- -+
My«

Here’s another situation where rule of sum is used: Sup-
pose we wish to find how many subsets of six books there are,
where each subset has at least four books. The task of picking
a subset of at least four books can be done in three different
ways: We could pick a subset of exactly four books, or pick
a subset of exactly five books, or pick a subset of exactly six
books. Note these can’t be performed simultaneously. Let B,,,
for n = 4, 5, or 6, be the number of subsets of size n. There-
fore, the count we’re interested in is By + Bs + Bg. (We will
find what the value of each of these is later.)

When programmers analyze sequential code, they use this

rule. For each task in the sequence of steps, the programmer
associates some performance expression, say execution time,
and then adds those expressions to get the total performance
expressions for that code segment.
The Rule of Product: If a task can be broken into a first and
a second stage and the first stage can be performed in m ways
and the second stage can be performed in n, then the task can
be performed in mn ways.
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For example, suppose there are 6 men up for the male
lead of a play and 8 women up for the female lead. We want
to know how many ways there are to cast the two leads. We
break this task into two stages: First cast the male, then cast
the female. There are 6 ways to do the first and 8 ways to do
the second, making 6 - 8 = 48 ways to cast the two leads. (We
could have first cast the female then the male, of course; the
result would be the same.)

This rule can also be generalized if a task can be decom-
posed into more than two stages. If the task can be broken
into n stages and task ¢ can be performed in m; ways, then
the task at hand can be done in mimsy - -m,. For example,
suppose a license plate is made up of 2 different letters fol-
lowed by 3 different digits. We break the task of making a
license plate into 5 stages: First pick the first letter, then pick
the next letter, then the first number, then the second, and
finally the third. The rule of product says this can be done
in 26-25-10-9 -8 =468,000 ways. If we don’t insist that the
letters and numbers be different, then the number of license
plates would be 26 - 26 - 10 - 10 - 10 = 676,000.

v In your closet you have eight shirts, four pants,
and three belts. In how many ways can you outfit your-
self if an outfit consists of a shirt, pants, and a belt?

Permutations

Suppose we have n distinct objects. That is, we can dis-
tinguish between any two of the n objects. How many ways can
we arrange these n objects in a row? We can break this task
into stages: Pick the first object, then the second, then the
third, and so on. Using the rule of product, we see that there
are n-(n—1)---2-1 = n! ways of arranging these n objects.
Such an arrangement is called a permutation. Thus, there are
10! = 3,628,800 ways of arranging 10 books on a shelf. (This
might be surprisingly large to you.)
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Now suppose we pick m objects from these n (m < n) and
arrange them. How many ways can this be done? Proceeding
as before, we see there are n-(n —1)---(n —m 4 1) ways to
do this. Note that this equals n!/(n — m)!. We call this the
number of permutations of m objects taken from n and denote
it by P(n,m).

v You have 10 shirts and are going to pack 3 shirts
in a suitcase for a trip. You'll be packing so the shirt
for the third day is on bottom, the shirt for the second
day is in the middle, and the shirt for the first day is on
top. In how many ways can you stack 3 shirts for your
trip?

How many permutations are there of the letters in COM-
PUTER? Since each letter is distinguishable, the preceding ar-
gument shows us that there are 8! permutations. How many
permutations are there of the letters BALL? This is different
since the two L’s are not distinguishable. To count this, let’s
first suppose the two L’s are distinguishable, count the per-
mutations, then adjust the count. So, let’s label one L; and
the other Ly. Then there are 4! different permutations of the
four distinguishable letters. However, now regarding the two
L’s as indistinguishable, we see that the 4! has counted some
permutations more than once. For instance, L;ABL, is indistin-
guishable from LoABL{, but we have counted it twice. Likewise,
we have counted every indistinguishable permutation twice.
Hence the total number of indistinguishable permutations of
the letters BALL is 4!/2.

Similarly, consider the total number of distinguishable per-
mutations of the letters RECEIVE. If we count the three E’s
as distinguishable, then there are 7! permutations. But no-
tice that each permutation of indistinguishable E’s has been
counted 3! times, since the three E’s can appear in any one of
3! orders. Thus there are 7!/3! different permutations of these
letters, that are distinguishable.
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To generalize further, consider the letters in PEPPER. There
are two E’s, three P’s, and an R. First thinking of all six let-
ters as distinguishable, then dividing by the number of times
we’ve counted each permutation, where the same letters ap-
pear but in different orders, we see we have a total of 6!/(2!3!)
distinguishable permutations.

In general, if n = ni1+ngs+...4+n and we have n objects of
k types and any two items of the same type are indistinguish-
able and there are n; objects of the ith type, for i =1,...,k,
then there are n!/(ni!na!. .. nk!) distinguishable permutations
of the n objects. For example, there are 11!/(1!4!4!2!) (dis-
tinguishable) permutations of the letters in MISSISSIPPI. This
formula has a surprising number of applications in counting.

Consider the problems posed at the beginning of the chap-
ter asking how many ways we can line up 5 red balls and 4
blue balls. This is equivalent to the problem of how many
words can be made from 5 R’s and 4 B’s. We now know this
is 91/(5!4!) = 126.

v How many distinguishable rearrangements are
there of the letters in BUTTERBALL?

Combinations

Suppose we have a standard deck of 52 cards and deal a
5-card hand. How many 5-card hands are there? Note that
we are interested in counting the number of hands, not the
number of ways we can deal 5 cards. The difference is that the
latter situation depends on the order the cards are dealt, while
in the former we are not concerned with the order the cards
were dealt to us, only what cards we end up with in our hand.
Keep in mind that the number of ways of dealing 5 cards is
P(52,5) =52-51-50-49-48.

Every 5-card hand can be dealt in 5! different ways. Thus,

5! x the number of 5-card hands
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= the number of ways of dealing 5 cards
=52-51-50-49-48.

So the number of 5-card hands is (52- 51 -50-49-48)/5!. Note
that this is equal to 52!/(47!5!).

Another way to think of this problem is to count the num-
ber of subsets of size 5 from a set of 52 objects. (We call subsets
of size 5, 5-subsets.) We call this count “52 choose 5” or “com-
binations of 52 things taken 5 at a time” and denote it (552) or
C(52,5).

In general, the number of k-subsets we can get from a set
of n items (k < n, of course) is

Note that () = 1. (Recall that 0! = 1.) Also, MH=0C =1

n

v Verify that (j) =1, (7) =1and () = 1.

Notice that (2)

<nﬁk) - (n—(n—z!))!(n—k)! T (nn!— I (Z)

This makes sense since whenever we pick k objects from n, we
are not picking the remaining n — k£ objects. If we think of
picking objects as putting them in basket A and putting the
remaining objects in basket B, then every k-subset in basket
A corresponds to a (n — k)-subset in basket B. Thus these two
counts should be equal.

To avoid confusion between permutations and combina-
tions remember that with permutations order matters. With
combinations order does not matter. Here are some more ex-
amples to illustrate the use of combinations:

(nf k) since
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1. How many arrangements of the letters in TALLAHASSEE are
there that have no adjacent A’s? We’ll count this by first ar-
ranging the other eight letters, then inserting the three A’s in
the nine available spots. Note that there are nine positions to
put the A’s after the other eight letters have been decided on:
at the beginning, between the first and second letters, between
the second and third, and so on. This will guarantee that there
are no adjacent A’s. Note that the rule of product applies here.
As we have seen before, there are 8!/(2!2!2!) ways of accom-
plishing the first task. Now we simply must choose three of the
available nine positions and there are C(9,3) = 9!/(6!3!) ways
of doing this for a total of

8! 9!
12121 gl 123300,

2. Suppose there are 53 students and you must pick a nine-
person volleyball team. How many ways can this team be
picked? This is just C(53,9) = 53!/(44!9!) = 4,431,613,550.
Now suppose we have 36 people that we must split into 4 vol-
leyball teams. How many ways can we do this? We can first
pick one team from the 36 people, then pick the next team from
the remaining 27, then the third team from the remaining 18,
and finally the last team from the remaining 9. By the rule of
product, this is

36\ [27\ [18)\ (/9
= 94,143,280 - 4 25 - 20-1
<9>(9)<9><9> 94,143,280 - 4,686,825 - 48,620

= 21,452,752,266,265,320,000.

Another way to count here is to think of naming the four
teams A, B, C, and D. The preceding solution assigns people
to teams. Instead we could assign teams to people. Think
of lining up the 36 people and assigning each a letter. This
is just counting the number of arrangements of four A’s, four
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B’s, four C’s, and four D’s. This is 36!/(9!9!9!9!), which is the
same number we calculated using the other method, as you can
verify.

3. Suppose there are 6 boys and 5 girls and you wish to choose
a basketball team that has either 2 or 3 boys on the team. How
many such teams are there? Here is an example where the rule
of sum applies. We will count how many teams with 2 boys,
how many teams with 3 boys, and then, by rule of sum, add
these counts to get how many teams with 2 or 3 boys. To pick
a team with 2 boys, we first pick the 2 boys, then pick the 3
girls. By the rule of product this is

6! 5!

C(6,2)-C(5,3)

Similarly, the number of teams with 3 boys and 2 girls is 200,
for a total of 350 different teams.

v Verify that the number of teams with 3 boys and
2 girls is 200.

4. How many 5-card poker hands are there with exactly one
pair and no higher? We will count this in the following way:
First we’ll pick the denomination for the pair, then pick the
two cards from the four in that denomination, then pick the
remaining three cards. The difficulty comes in picking the re-
maining three cards. We must make sure we don’t pick a card
that is the same as our pair, and we must not pair up any of
the three other cards. But we can count this by picking the
third card from the 48 remaining cards that don’t match the
first two cards, then picking the fourth card from the remaining
44 cards that match none of the first three cards picked, and
finally picking the fifth card from the remaining 40 cards that
don’t match the first four cards. This would give 48-44-40 ways
of picking the remaining 3 cards. But hold on—we’ve counted
permutations, not combinations, of these 3 cards here. That
is, each legal 3 card set has been counted 3! times. Thus there
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are (48-44-40)/3! legal 3-card hands. Putting this all together
(using the rule of product, of course), we get

4\ 48-44-40
13- L =1,098,24
3 <2> 2 ,098,240

different 5-card poker hands with exactly one pair.

v How many 5-card poker hands are there with ex-
actly one three-of-a-kind and no higher?

Calculation Considerations

When calculating (}), the most obvious approach is to
compute n!, (n — k)!, and k! and then perform the necessary
arithmetic. This is inefficient, and it may be that n! will cause
integer overflow while the final answer is relatively small. To
overcome this, observe that

(n B n! _nn—-1)(n-2).. (n—k+1)
k) e k(k—1).-
_nn-1H(n-2)-- (n—k+1)
1-2---(k=1)k

The form of the last expression is where we take our inspiration
for an efficient method of calculation. We start calculating
our total by initially assigning n as our temporary value, then
dividing by 1, then multiplying by n — 1, then dividing by 2,
then multiplying by n—2, then dividing by 3, and so on. Here’s
the algorithm:
function Comb(n, k)
combo = 1;
for i=1 to k do
combo = combo*(n+1-i);

combo = combo/i;
endfor;
return(combo) ;

end function



Chap. 8 Counting 155

There are two things to note: (1) The partial answers are
never much larger than the final answer, and (2) each partial
calculation is an integer. This later point is not immediately
obvious. But consider a couple of partial calculations. After
cycling through the for loop twice, we’ve calculated

n(n——l).
1-2

Note that n(n — 1) is even, so when we divide by 2, the result
is an integer. Likewise,

n(n — 1)(n — 2)
1-2.3

is an integer since n(n — 1)(n — 2) is divisible by 6. Why?
Because at least one of the consecutive integers n, n — 1, and
n—2 is even and at least one of the these integers is divisible by
3 (since these are three consecutive integers). This idea carries
through to all the intermediate calculations.

v Calculate (140) using the function Comb.

The Binomial Theorem

Another important aid in counting is the Binomial Theo-
rem. You may recall from algebra that

(@ +y)" = (g) Y™ + (T) zy™ ™ + (Z) 22y 4
+ (nf 1)x"_1y+ (Z)x"
_Z< ) bk,

For example, (z + y)® = 3 + 3zy? + 3z%y + 2. Since the
coefficients used in the expansion are (}), these are frequently
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called the binomial coefficients. As we've seen before, these
also count the number of combinations of n things taken k at
a time.

An important consequence of the Binomial Theorem is

that Z (Z) = 2". Why? Just let x =y =1 in the Binomial
k=0

Theorem. For instance,

)+ Q)+ ()

as you can easily check directly.

v Expand (z + y)* using the Binomial Theorem.

Applications of Counting to Probability

Suppose you draw a card from a shuffled standard deck of
52. You'd like to have some measurement of how likely it is for
that card to be a face card. We say that the act of drawing the
card from the 52-card deck is an experiment and the set of all
possible outcomes is the sample space. Here, the sample space
is {AS, KS, QS, JS, TS, 9S, ..., AC, KC, ..., 3D, 2D}, which
has 52 items. In this experiment, it is reasonable to assume
that each possible outcome is equally likely. There are certainly
many experiments where this is not the case. An example of
such an experiment is to draw the card and then record its
denomination, with the denomination of an ace being 1 and
the denominations of all face cards being 10. Here, the sample
space is {1,2,3,4,5,6,7,8,9,10}, but certainly the outcome of
10 is much more likely than any of the other outcomes. We will
limit ourselves to those cases where all outcomes are equally
likely.

An event is simply a subset of the sample space. In our
example, the event is the set of all face cards. Suppose S is
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the sample space and F is an event. (That is, E C S.) If each
outcome in S is equally likely, then the

probability that E occurs = Pr(F) = |—|£Si||
Thus to compute Pr (E), we need to count how many el-
ements there are in S and in E. In our example, |S| = 52

and E is the set of all face cards, so |F| = 12 and thus
Pr(E) = 12/52 = 3/13 = 0.231. Pr(F) indicates what per-
centage of time the experiment will yield an outcome in the
event I/ in the long run. In our example, we'd expect that
about 23% of the time we would draw a face card in the long
run.

v What’s the probability of drawing an even num-
bered card from the deck?

The probability of any event has to lie between 0 and 1,
inclusive. We call an event E where Pr (E) = 0 an impossibility
and an event E where Pr (E) =1 a certainty. If Pr(E) > 1/2,
then FE is more likely than not to occur; we sometimes say F
has a better than even chance of occurring. If Pr(E) < 1/2,
then E is more likely not to occur. From our previous example,
we see that it is more likely not to draw a face card than draw
one, since Pr (drawing a face card) = 3/13 < 1/2.

The complement of an event E, E, is all the outcomes not
in E. That is, E = S — E. Clearly, Pr(E) =1— Pr(E). Thus
the probability of not drawing a face card in our experiment is
1-3/13=10/13.

We’ll conclude this chapter by computing some probabil-
ities.

What'’s the probability of being dealt a 5-card poker hand
with exactly one pair and no higher? Here, S is the set of
all 5-card hands and E is the set of 5-card hands that contain
exactly one pair and no more. We’ve seen previously that |S| =
(%?) = 2,598,960 and [E| = 1,098,240. Thus, the probability of
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being dealt a hand with one pair and no more is

|E| 1,098,240
|S| — 2,598,960 0.4226,
which means that in the long run, you should expect to get
exactly one pair and no higher about 42% of the time.

If we have 6 boys and 5 girls and choose 5 students from
this group at random to form a basketball team, what’s the
probability that the team will have either 2 or 3 boys? Here,
E is the set of all possible basketball teams formed with either
2 or 3 boys on them. As we have seen before, |E| = 350. The
sample space, S, is the set of all possible teams formed from
the 11 students. Thus S = (151) = 462 an so the probability
that the team will have either 2 or 3 boys is 350/462 ~ 0.758.

What’s the probability that a 3-digit number picked at
random has distinct digits? The 3-digit numbers run from 100
through 999. Thus |S| = 900. E is the set of 3-digit num-
bers with distinct digits. We count these by first picking the
most significant digit, then the next digit, and finally the least
significant digit. There are 9 choices for the most significant
digit (0 can’t be the most significant digit). Once that digit
has been picked, there are 9 possible digits to pick for the next
digit that are different from the first digit. Once these two
digits have been picked, there are 8 possible digits to pick for
the last digit that differ from the first two digits. Thus, by
the rule of product, |E| = 9-9-8 = 648. So the probability
that a 3-digit number picked at random has distinct digits is
648/900 = 0.72.

Exercises

1. You go to the magazine table at your dentist’s office and
gather 5 magazines from the 12 on the table (all at least
one year old). How many different collections of magazines
can you gather?
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2.

10.

Braille symbols are made by raising up from one to six of

o O
the dots in a two-by-three grid e e. How many different
[ J ®

Braille symbols are there? How many symbols with at
least three raised dots? How many symbols with an even
number of raised dots?

A committee of 12 is picked from 10 men and 10 women.
How many committees are there? How many if there are
required to be 6 men and 6 women on the committee?
How many if there is an even number of women? How
many if there are more women than men? How many if
there are at least eight men?

If a committee in the previous exercise is picked at ran-
dom, what is the probability that the committee would
have more women than men on it?

How many 5-card poker hands are there that are a flush
(all five cards of the same suit)? What’s the probability
that a you would be dealt a flush?

How many 5-card poker hands are there that are 4-of-a-
kind? What’s the probability that you would be dealt
4-of-a-kind?

How many 5-card poker hands are there that have three
aces and two jacks?

How many 5-card poker hands are there that are full houses
(one pair and another 3-of-a-kind)? What’s the probabil-
ity that you would be dealt a full house?

How many ways can you get two pairs but nothing more?
(The pairs must be different denominations.) What’s the
probability that you would be dealt two pair but nothing
more?

You have 15 books. How many ways are there to arrange

them on two shelves so that each shelf must have at least
one book? If each shelf must have at least two books?
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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A computer operator has 12 rather long programs to run
on a machine that does not time share. The operator must
decide in which order to process the programs. In how
many ways can these programs be ordered if (a) there are
no restrictions? (b) four of the programs are high priority
and must be done before the others? (c) the jobs are
separated into 4 high priority, 5 middle priority, and 3 low
priority jobs?

Suppose we have 6 boys and 5 girls and we randomly select
a basketball team from among them. What’s the probabil-
ity that the team will have more girls than boys? What’s
the probability the team will have more boys than girls?
Are these two events complementary?

Which has more arrangements for all the letters in its
name, PENNSYLVANIA or MASSACHUSETTS?

How many different paths in the xy plane are there from
(0,0) to (7,7) if a path proceeds one step going either right
or up one unit?

How many integers can be formed using the digits 3, 4, 4,
5, 5, 6, 7 if we want the number to exceed 5,000,0007

How many 6-digit integers are there? How many if no
digit is repeated? Answer these questions if the number is
to be divisible by 5.

Assuming that a phone number has 10 digits in it, find
the probability of getting a phone number with a 3 in it,
assuming no restrictions on what digits are allowed.

How many two-digit numbers contain the digit 57 How
many such three-digit numbers? How many such four-
digit numbers? How many such n-digit numbers?

What’s the probability of an n-digit number containing
a digit 57 What does this probability approach as n ap-

proaches infinity? (Explain why your answer makes sense
here.)

Twenty slips of paper numbered 1 through 20 are placed
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21.

22.

23.

24.

25.

26.

27.

28.

29.

in a hat and two are drawn out. How many different pairs
of numbers can we draw out? How many of these are
adjacent numbers? What’s the probability that the two
numbers will be adjacent?

A bag has 24 balls—6 each of orange, white, red, and
yellow. A juggler randomly picks three balls to juggle.
How many ways can this be done? How many ways where
all three balls are the same color? What’s the probability
that all three balls are the same color?

Using the same bag of balls as in Exercise 21, how many
ways are there to pick three balls where all three balls
are different colors? What’s the probability that all three
balls are different colors?

How many distinct arrangements of the letters in mathe-
matics are there?

How many distinct license plates can be made if each
should have 3 digits followed by 3 letters?

How many distinct phone numbers (seven digits) can be
made if the first digit is not allowed to be one and all other
digits can be any of the values from zero to nine?

Gertrude bought six different CDs to give as gifts. How
many different ways can she distribute the CDs so that
each of her three boyfriends will receive two CDs?

A gallery owner plans to exhibit seven pieces of art in one
area of her gallery, three impressionist paintings, three
cubist paintings, and one realistic portrait. How many
different arrangements of types paintings can she make?

How many numbers greater than 50,000,000 can be formed
by rearranging the digits of the number 13,979,3977

There are three pennies, three nickels, and three dimes on
a table. A child picks three coins at random. What’s the
probability the child picks three different denomination of
coin?
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30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
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In planning the breakfast menus for the coming week, Don
notes that there are four different kinds of cereal in the
pantry. How many different choices for the seven-day pe-
riod can be made?

A box contains 20 crayons, no two of the same color. In
how many different ways can the crayons be given to four
children so that each gets five crayons?

Find the probability of getting a number divisible by 3
when a die is rolled.

If a coin is tossed four times, find the probability that it
will land on heads all four times.

If a coin is tossed five times, find the probability that it
will land on tails exactly three times.

If four coins are tossed, find the probability that all of
them land with the same side up.

Find the probability that a phone number (seven digits,
with all digits equally likely to appear) contains exactly
two 9’s.

Suppose three people are chosen at random from a group
of five men and six women. Find the probability that all
three are men.

In a consumer preference test, 10 people are asked to
choose their favorite fruit from among apples, bananas,
and oranges. What is the probability that nobody chooses
bananas? (Assume that each fruit is equally likely to be
chosen.)

What is the probability that a randomly chosen four-digit
number contains no repeated digits?

Suppose two dice are thrown. Find the probability that
both land with the same number of dots facing up.

When two dice are thrown, find the probability that the
sum of the dots is equal to 9.
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42. When two dice are thrown, find the probability that the
sum of the dots is greater than or equal to 6.

43. What’s the coefficient of z8°y?° in the expansion of
(x +y)'0?

44. How many eight-letter words (not necessary real words),
with no repeated letters, are there if the words have three,
four, or five vowels? (Assume the vowels are A, E, I, O,
and U.)

45. How many ways can you pick three books to buy from a
group of five?

46. Suppose you pick three books to buy from a group of five
and $10 has been secretly slipped into one of the books.
What’s the probability you’ll end up with that book given
that you select your three books at random?

47. How many ways can you divide eight blood samples into
two groups of four samples each? How many ways if each
group of the two groups must have at least one sample?

48. How many odd integers between 1000 and 9999 have dis-
tinct digits?
49. A fair coin is flipped 10 times.

a. How many sequences of heads and tails are there?
(Note that each sequence is equally likely, if the coin
is fair.)

b. How many different sequences have exactly three heads?
(Think of picking where the heads appear in the se-
quence.)

c. What’s the probability that a given sequence has ex-
actly three heads?

d. How many sequences have no more than three heads?

e. What’s the probability that a given sequence has no
more than three heads?

f. How many sequences have exactly five heads?

g. What’s the probability that a given sequence has ex-
actly five heads?
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Programming Problems

1. Implement the function Comb in your favorite program-
ming language.

2. Write a program that inputs a word and outputs a count
of how many distinguishable permutations of the letters
in the word there are.

3. Write a function that simulates the flipping of a coin. De-
sign a program that checks to see if your function seems
to be simulating a good coin (i.e., one that returns heads
roughly half the time and tails half the time).

4. Write a function that simulates the tossing of a die and
test to see if your function represents a fair die.



Chapter 9
Matrices

Rectangular arrays of numbers show up virtually every-
where in mathematics. We call these arrays matrices. For
example,

1 2 3
A=14 5 6
7 8 9
is a three-by-three matrix with integer entries. The three hor-
izontal collections of entries are called rows, while the vertical
ones are called columns. This particular example is a square
matrix, but it is not necessary that a matrix have the same
number of rows as columns. If a matrix has m rows and n
columns, we say it has dimension m by n, written m x n. The
following is notation often used to represent a general matrix
of m rows and n columns:

a1 ai1g N Qin

Gz Q22 ... Q2n
A=

aml am2 P amn

A matrix with only one row or column is called a vector.
For example, (1 3 0 —1) is a (row) vector of dimension 4,
sometimes called a 4-vector. The notation for a general (row)
vector of dimension n is (aj az ... a,).

The entries, a;j, in all of our applications will come from
numbers we are already familiar with, such as integers, reals,
and integers modulo n. For example, the first example we gave
of a matrix has entries from the integers. So we’ll say this is a
3 x 3 matrix over Z. In general, if the entries come from a sys-
tem S, we’ll talk of the m x n matrices over S. It is important

165
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to keep in mind the set from which the entries have been taken
when performing operations on matrices. In performing oper-
ations on matrices, it is necessary to use operations defined for
the sets over which the matrices are defined.

Matrix Operations

There are several operations on matrices, each depend-
ing on operations of the underlying sets in some way. We can
combine two matrices by adding or multiplying them, provided
their dimensions are compatible. We add two matrices as fol-
lows:

a1 Q12 ... Gl bir b2 ... bin
a1 Q2 ... Qz2p bor b2 ... b2,
+ ) . . . =
OGml Gm2 ... Omn b1 bm2 ..o bmn
ai1 + b1 a2 +bi2 ... ain+bin
ag1 +bax  ag2+bae ... aon+bon
Am1 + bml A2 + bm2 eor Qmp T+ bmn

This addition is probably just what you would expect.
Entries in the result matrix are obtained entry by entry using
the scalar addition of the underlying set. By now you are not
surprised at the use of the “+” symbol in two different ways.
The “+” between the matrices indicates matrix addition, while
the “+” inside the matrices indicates addition of the entry
elements. We have seen overloading of symbols before and
recognize that the distinction is important. One other note of
importance is that when two matrices are added, both must
have the same dimensions; otherwise addition is undefined.

For example,

3 5 79 21 40
if A=12 4 3 2 and B=[3 0 1 5]},
6 1 0 1 1 2 0 3
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5 6 11 9
then A+B=1|5 4 4 7
73 0 4

(2 5 8 2 /3610
v IfA‘(7 4 8 1>andB_<o 4 9 2)’
find A+ B.

When studying new operations of any system, we usually
ask about identities and inverses. Both questions make sense
with respect to matrix addition. For any collection of m x n
matrices there is an additive identity consisting of the m x n
matrix whose entries are each the additive identity of the entry
set. (The additive identity of the integers, reals, and integers
modulo n is 0, of course.) For example, if we are working with
3 x 4 matrices over Z;y, then the additive identity is the 3 x 4
matrix all of whose entries are the zero element in Z,7. We call
this the 3 x 4 zero matrix, naturally enough.

Every matrix has an additive inverse. If A is an m x n
matrix, then the additive inverse of A, written —A, is the mxn
matrix formed so that A+ (—A) is the m x n zero matrix. It is
easy to see that if a;; is an entry in A, then the corresponding
entry in —A is —a;;. For example, suppose we are considering
2 x 3 matrices over Zs.

1 2 0 210

since A+(—A):<g 8 (O])

The addition of the entries is done in Z3. It is of interest
to note that we have used the same symbol for adding integers,
“+”, as we used for adding elements of Z3. In fact, we used
the same symbol to indicate the addition of matrices. This is
not surprising, nor is it unusual. It is common practice to use
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a particular symbol, such as “4”, to indicate an operation in
some mathematical system. To be precise, we would need to
subscript the symbol or use a different symbol to clarify which
system we are applying it to. For example, when adding in Zg,
we could use +7 . While this is an excellent way to clarify
where the addition is taking place, readers usually know from
the context what is meant. We can just say that x and y
are members of Z3 and then use the expression z + y without
causing confusion. On the other hand, if we were in the midst
of a discussion involving both Z3 and Zs and we wanted to
write the expression 1 + 2, it would be necessary to make sure
that readers would know in which system the addition was to
take place.

Similarly, in writing computer programs, we often apply
this practice of using the same symbol to mean different things
depending on how its used. We call this practice “overloading.”
It’s a good word to express the idea that we have loaded a
particular symbol with more than one meaning. For example,
in C++, if we write int x,y; float r,s; and then later want
to perform addition, we can writex = x + y;r = r + s; and
get proper sums to be found, even though we are performing
integer addition in the first situation, but real number addition
in the second.

To make programs more user friendly and more readable,
programmers can overload operators for other types as well.
For example, if we want to write a program that adds matri-
ces, we can overload the operator “+” so that if A and B are
declared as matrices, we can write “A + B” to indicate that
matrix addition is to be performed. We will not put in the syn-
tax for that here, but you can easily find it in any programming
language manual.
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v Find the additive inverse of

2 5 6
A*(3 4 2>’

where the entries are from Zr.

Although there are many applications using matrix ad-
dition, matrix multiplication is a binary operation with more
interesting applications. If A and B are two matrices, their
product is defined only under the condition that the number
of columns of A is the same as the number of rows of B. Hence,
any square matrices with the same number of rows and columns
can be multiplied together.

To define AB = C, where A is an m x n matrix and B is
an n X p matrix, we note that C will be an m X p matrix with
each entry defined as follows:

n
Cik = E aijbik-
j=1

For example, suppose

1 2

A=|3 4] and B:(;1 3 2 ;)
5 6

Since A has three rows and two columns and B has two rows
and four columns, the number of columns of A is the same
as the number of rows and B, and so the matrix product AB
is defined and will have three rows and four columns. Using
the definition given, we obtain the product AB, a matrix with
three rows and four columns:

1-4+2-8 1-3+2.7 1-24+2-6 1-142-5
3-4+4-8 3:-3+4-7 3-2+4-6 3-1+4-5
5-44+6-8 5-3+6-7 5:246-6 5-14+6-5
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20 17 14 11
=44 37 30 23
68 57 46 35

v Find the products AB and BA, where

1 2 3 4 -3 O
A=13 4 5 and B=[0 -2 6
5 6 7 0 1 -1

As you have just seen from the preceding example, matrix
multiplication is not commutative. It’s even worse than that.
For example, if A is a 2 x 3 matrix and B is 3x4, AB is defined,
but BA is not even defined.

Finding a multiplicative identity for square matrices is not
difficult, although not so obvious as the additive identity. Con-
sider the matrix

1 0 0
0 1 0
=" .
0 0 1

I is called the identity matriz. As an exercise you will
show that for a given square matrix, a matrix of the form
given by I serves as a multiplicative identity; that is, Al =
IA = A for every matrix A with the same dimension as I.
So matrix I commutes with any square matrix of the same
dimensions. For matrices having a different number of rows
from the number of columns, multiplicative identities do not
exist. This is because multiplicative identities are required
to commute with all elements (in this case, matrices) in the
system. A technicality perhaps, but for this reason we will
only be speaking of square identity matrices.
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The problem of finding a multiplicative inverse for a square
matrix is considerably more difficult than finding an additive
inverse. Indeed, some square matrices do not even have mul-
tiplicative inverses! We’ll ask you to investigate this in the
Exercises. Before finding a way to determine if a matrix has
an inverse or not and how to find the inverse, if it does have
one, we need to learn how to solve a system of equations.

Before doing so, we define one more operation that in-
volves a matrix and a single element from the underlying sys-
tem S. In this context, a single element from § is called a
scalar. This operation is called scalar multiplication and is
defined as follows. If ¢ is an element from S (and assuming
multiplication is defined on S), then cA is defined by

ai a2 ... Qin
Q21 Q22 ... Q2n
cA=c . . .
OGm1 AGm2 ... Qmnp
Caii cai12 N Cain
Ca921 Cdoa ... CQaopn
Cmy CAmo2 ... CAmn

In scalar multiplication, each entry of the matrix is multiplied
by the scalar c. Consider, for example, multiplying the follow-
ing 2 x 3 matrix over the integers by the integer 3:

3(1 2 3)2(3 6 9)
4 5 6 12 15 18/

We can use scalar multiplication to find a vector whose
length is a multiple of another vector. For example, if V =
(103 2), then 2V = (2 0 6 4) will be twice as long as V. We
leave the idea of vector length and showing this fact in general
to the Exercises.

We now take a look at some common applications of ma-
trices.
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Systems of Equations

Linear equations and linear inequalities play an important
role in many fields of study. It is often possible to express a
variety of relationships by writing those relationships in the
form of one or more equations or inequalities to be considered
as a system. For example, we might be told that the sum of
the ages of two people is 49 and that the larger age minus the
smaller is 13. To find out what the two ages are, we might
represent them as z, and x;, 1 being the older. We can write
two relationships for x; and x3:

1 +1‘2:49
Il—I2:13.

There are several ways to solve this system of equations. By
adding the equations, a single equation in z; is found: 2z; =
62. From this equation z; is found to be 31. Substituting in
either of the original equations shows that 2 = 18. When the
number of unknowns is small, direct manipulation of the equa-
tions is a reasonable and effective way to get solutions. Using
elimination of a variable through addition or subtraction is one
step commonly used, while another is that of substituting the
solution of one variable in terms of another in an appropriate
equation.

However, if the number of unknowns is large, even larger
than two, these methods of elimination and substitution can be
cumbersome. Moreover, we desire a more methodical technique
for finding a solution.

Another way to look at this system of equations is to ex-
press the system in terms of a matrix equation AX = C, where
the A stands for a matrix whose entries are the coefficients of
the z;, X stands for a column vector whose entries are the z;,
and C stands for a column vector with the constants as its
entries. In the example about the ages we have
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/11 e (49
A_(l _1>,X—<x2>and0—(13>.

So our matrix equation AX = C is

1 1 Ty _ 49
1 -1 Io o 13 )
It is important to note that if we perform the matrix mul-

tiplication on the left of the equal sign, we get (xl t 5132)_

1 — T2
1+ T2 _ 49
ry — o - 13

is equivalent to the two equations we started with.

We can write a matrix equation for any system of equa-
tions, but it may happen that not all unknowns appear in every
equation. However, by filling in zero as the coefficients for un-
knowns not mentioned in a particular equation, we get an ap-
propriate coefficient matrix whose dimensions are the number
of equations by the number of unknowns.

For example, consider the equations

The resulting

1+ x3—x4 =12
2x1 + x4 =10
2r9 + x5 = 0.

We can express this as the matrix equation

Ty
1 01 -1 0 T2 12
200 1 0 rzs | = [ 10
02 0 0 1 T4 0

T5
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v For the following system of equations, write the
corresponding matrix equation:

2.%'2 — 4(1)3 + 51‘4 =12
3x1 — 3z =10
5x9 — 3x3 + 224 = 0.

Although there are several methods that can be used to
solve systems of equations, we will focus on two particular
methods, Cramer’s rule and Gaussian elimination. Both meth-
ods provide a solution for a system of n equations in n un-
knowns, if a solution exists. Before stating Cramer’s rule, there
are two topics we need to investigate. One is a special func-
tion, called the determinant, that maps matrices to the set of
their entries. The other is the question “Does every system of
n equations in n unknowns have a solution?”.

Let’s consider existence of solutions. Suppose we have the
following two equations in two unknowns:

201 +3x9 =12
4, + 629 = 5.

We note that the second equation has x; and zo coeffi-
cients that are twice the coefficients of x1 and z2, respectively,
in the first equation. In order for both equations to be com-
patible, the constant in the second equation should be twice
the constant in the first. If the 5 were replaced by 24, the two
equations would be compatible and any value of x; and x2 that
satisfied one of the equations would also satisfy the other. But
as the two equations stand, there are no values that can satisfy
both of the equations at the same time. Therefore, this system
of equations has no solution.

In this example it is easy to see the incompatibility. How-
ever, in general, if there are several equations in as many un-
knowns, it is not always obvious that the system is or is not
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consistent. By using the special function called the determi-
nant, we will be able to find out two important facts about any
system of n equations in n unknowns. First we will be able to
tell whether or not a unique solution exists, and secondly we
will be able to find the solution if it does exist. We note that
some systems may have many solutions, rather than only one
unique solution. We will not be looking at those systems here.

The Determinant

The special function, called the determinant, alluded to
in the previous paragraphs is a function that takes a square
matrix and assigns to it a scalar value in the set from which
the matrix entries were drawn. For example, if the matrix has
real numbers as entries, the determinant assigns a real number
as the determinant value. If the matrix has entries from Zr,
the determinant is a Z, value.

Since there is an infinite number of sizes of square matri-
ces, we will use a recursive approach to define the determinant.
The base case is the one that defines the determinant value for
a matrix that has only one row and one column (i.e., a single
entry). In this case the determinant value is whatever that
entry value is. Although the recursive part of the definition
can now be made having the base case defined, before doing
so, since the single entry matrices are not very revealing as
far as finding the determinant, to be more instructive, we will
show the determinant for matrices that have two rows and two

columns. If
a a
A= 11 12
G21 Aa22

we define the determinant of A, det A, as
det A = ajraze — aizag

where the operations of multiplication (juxtaposition) and sub-
traction (or adding the additive inverse) are the scalar opera-
tions in the set of entries.
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5 2
a=(13);
thendetA=5-3—-2-1=13.

Before proceeding to the general case of n x n matrices,
let’s look at the 3 x 3 case:

For example, if

A=

W o Ut
SN W
— - O

To get det A, we choose any row of A. We then use each entry
of the first row as a scalar, multiplying that entry times the
determinant of the 2 x 2 matrix that results when the row
and column containing the given entry in it is removed from
A. If the sum of the subscripts for the given entry is even,
we multiply the final answer by 1, and if the sum if odd, we
multiply it by —1. To see how this works, we will apply this
method to A.

Choosing the first row, 5 3 0, we take each entry and
perform a scalar multiplication on the resulting 2 x 2 matrix
as described:

2 1 4 1 4 2
5-det<0 1>—|—(—1)-3~det<3 1)+O-det<3 0).

Determinants for the resulting 2 x 2 matrices can be found
the way we showed previously:

5-(2:1—1-0)—3-(4-1—1-3)+0-(4-0—2-3) = 5(2)—3(1)+0 = 7.

If we have a 4 x 4 matrix, we first split it into 3 x 3 ma-
trices according to the preceding description. But to find the
determinant of these 3 x 3 matrices we need to split each into
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2 x 2 matrices and find their determinants. Notice that if we
start with, say, 10 x 10 matrices, we have to keep splitting the
matrices into smaller and smaller matrices. We can express
this idea with the following recursive formula:

n
det A= (~1)"ay; det Ay;
7=1

where A;; means the matrix obtained by removing the first
row and jth column from the matrix A, leaving a matrix with
one fewer rows and one fewer columns. The base case here is
n = 2, where the determinant is calculated as given previously.
We have chosen to use the first row for finding the determinant,
but we could have chosen any row. In the case of choosing row
i, simply replace the 1 in the formula with 3.

0 3 0 1
. ) 1 2 1 =2
v Find the determinant of A = 5 0 1 -1
3 0 —4 -2

The determinant function has many applications in a va-
riety of areas. We will use it for solving systems of equations
where we have as many equations as we have unknowns. There
is a theorem that tells when a solution exists and how to find
it when it does. The theorem is called Cramer’s rule.

Cramer’s rule says that if det A # 0, then the solution of
the system of linear equations AX = B is given by

A
i:___z, h ‘:1,2,...,71,
x A where 1
where A = det A and A; = det A*, where A? is the matrix
obtained by replacing the ith column of A by B.
Note that if det A = 0 we can not use Cramer’s rule. In-

deed, if det A = 0 then the system of linear equations does not
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have a unique solution. Thus either the system has no solu-
tions (that is, the equations are incompatible) or there is an
infinite number of solutions.

Let’s return to the example of a system of equations about
ages that we solved earlier:

Ty +x9 =49

1 — g = 13.

We used a method of eliminating unknowns to solve the
system, but such a method does not lend itself well to a com-
puter program. Cramer’s rule makes writing an algorithm
much simpler. Applying Cramer’s rule, we get

A:det(i _11>=(—1—1):—2

Ar = det (‘1*3 _11) _ (—49 — 13) = —62
Ay = det G ‘1*3) — (13— 49) = —36
So we get
xl——-__—622=31 and .’L'2—_~——_i26:18.
v Use Cramer’s rule to solve the following system

of equations:
2.731 + 53}2 =41

8z — 3z = 3.
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(Gaussian Elimination

Our second method for solving systems of equations is
called Gaussian elimination. Intuitively, this method applies
appropriate operations on rows of the coefficient matrix to re-
sult in transforming the matrix into the multiplicative identity
for that matrix. Since we can express a system of equations
as a matrix equation, AX = C, we note that if the 4 matrix
happened to be the identity, then the values in C would be the
solutions for the unknowns, respectively. As before, we will
concern ourselves with square matrices only. For example, if

TG00

it is easy to see that upon performing the matrix multiplication,
we get the result that 7y = 3 and zo = 2. Our goal will be
to transform a given coefficient matrix to the identity form
without changing the relationships expressed in the original
form.

Let’s consider the following system of equations

4331 — T2 = 10
1+ 30 =9.

The associated matrix equation is

4 -1 z1) _ (10

1 3 ' T2 a 9 )
The matrix operations we will use in Gaussian elimination
mimic operations we apply to equations. We’ll first look at
the equation operations and then move on to matrices. Exam-
ining the two equations, we note that if we were to interchange
the two equations, we would get a coefficient of 1 for z; in the

first equation. That exchange would obviously not in any way
affect the values of x; and x5. This gives us the equations:
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T +3.’1?2 =9
41 — 2o = 10.

We could now multiply the first equation through by —4
without changing the unknown values and then add the re-
sult to the second equation, causing the coefficient of z; in
the second equation to be 0 and eliminating the z; from that
equation. This gives us the following:

1+ 32 =9
—13xz5 = —26.

We can now multiply the second equation by —1/13 (the
multiplicative inverse of —13) to get

1+ 39 =9
.%'2—_—2.

Note that now the coefficient of x5 in the second equation
is 1. Finally, we add —3 times the second equation to the first
to get

Tr1 = 3
o = 2.

We have just seen three operations we can perform on
systems of equations without changing the values of the un-
knowns: interchanging any two equations, adding a multiple
of one equation to another, and multiplying any equation by a
fixed value.

Analogously, we can perform the same kind of operations
on the matrix form of the system of equations. We call these
operations row operations. Since the column vector of un-
knowns is simply used as a place holder, we can ignore that
part, looking only at what we call the augmented matrix. For
the preceding system, the augmented matrix is

4 -1 | 10
1 3 | 9)°
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Performing a sequence of row operations on the augmented
matrix, we transform it to a new form in which the left part
is the identity and the right part holds the solution to our
equations. In this example, a good first step is to interchange

the two rows:
1 3 | 9
4 -1 | 10/

Next we multiply the first row through by —4 and add it to

the second row:
1 3 | 9
0 —13 | —26)"

In the second row we would like to have a 1 where the —13 is
and so we multiply the second row by the multiplicative inverse

of —13:
1 3 | 9
01| 2/°

We almost have the identity matrix on the left, but we need
one more step to get it. We will multiply the second row by
—3 and add it to the first row. Note that to do so will not spoil
having a 1 in the first entry:

1 0 | 3
01 | 2/
We call this the row reduced echelon form of the matrix. On

the left we have the identity matrix. By converting back to the
equation form, we get

1 0 ) 1 _ 3
0 1 i) - 2 )
Matrix multiplication reveals that ;1 = 3 and zo = 2. We

notice that upon completion of our row reduction, we get the
identity as the left part of the augmented matrix. Now you
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should try this method on the two equations given earlier, for
which there was no solution, and see what happens. Do you
see why the augmented matrix you end up with(or rather the
equations that correspond to this matrix) is inconsistent?

Intuitively, this method of solution is equivalent to having
multiplied the original matrix of coefficients by its multiplica-
tive inverse. Indeed, a system of equations without a unique
solution will be one whose coefficient matrix has no inverse. In
fact, there is a method for getting the multiplicative inverse of
a given square matrix, if one exists, using row reduction.

Computing Multiplicative Inverses

For square matrices we know that there is a multiplicative
inverse. For n X n matrices it is

1 0 0
0 1 0
I=|. . .
0 0 1

It turns out that I commutes under multiplication with all
other matrices of the same dimension, even though, in general,
matrix multiplication is not commutative.

Recall that the multiplicative inverse (or just inverse) of
the (square) matrix A is the matrix denoted A~! with the
property that AA~! = I. Two facts follow from this: It’s also
true that A~'A = I even though matrix multiplication is not
in general commutative, and if A~! exists it is unique. Not
all square matrices have inverse. For instance, the zero matrix
(one with all zero entries) obviously does not have an inverse
since if we multiply any matrix by the zero matrix, we’ll get
the zero matrix. But there are other examples that do not have
inverses, such as one with one or more zero rows.

Let’s turn our attention to computing the inverse of a
matrix. Consider the coefficient matrix A in the example of a
system we solved using Cramer’s rule:
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()

Note the importance of finding A~!. If we knew the mul-
tiplicative inverse of A, then we could solve the system by mul-
tiplying both sides of the matrix equation AX = C by A~1,
yielding A7!C = A71AX = IX = X.

If
A~ = Ty T2
Ty T4 ’

then AA~! = I. That is,

)& 2)-61Y)

This gives us four equations in four unknowns. We could use
Gaussian elimination to find the solution. Instead of displaying
these four equations on four lines, we’ll modify the augmented
matrix so the right side starts as the identity matrix and per-
form row operations on A and the identity matrix at the same

time:
1 1 | 1 0
1 -1 | 0 1/°

We'll skip the intermediate steps here. (You should do
this.) After performing the necessary row operations to trans-
form the left side to the identity matrix, we get

(10| -;—)
0 1 | —3/

Consider the final matrix on the right side. This is the
multiplicative inverse of A. To confirm this, we multiply as

[ SIS S

follows:
G )0 0)=G10)-0Y)
b))\t )7 b)) T
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As stated before, it turns out that if a square matrix does have
a multiplicative inverse, that inverse is unique and serves as
both a left inverse and a right inverse. So, if we are given

matrix A and we find A%, then AA~! = A"1A = I. Check
this for the preceding example.

3 -2

v Find the multiplicative inverse of A = (2 1 ) .

We’ve seen that the zero matrix doesn’t have an inverse,
but others do not also. For example, consider the 2 x 2 matrix

2 0
A= .
To see if A has an inverse, we augment A with I and
perform the appropriate row operations:

2 0| 1o

3 0] 0 1)°
After performing the row operations, we see we do not end up
with the identity on the left side. Indeed, we end with

<10|§0>
00|~ 3/

If we transform this back to matrix equation form, we get

1 0 1 T2 _ % 0
0 O T3 T4 - —% 3 )

This multiplication yields four equations:

=

1 1
T = x3 =0, Oz—é,and 025.

57
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The last two statements are obviously false under any circum-
stances. This means that our system of equations has no solu-
tion and so our original matrix A has no multiplicative inverse.
There are many other 2 X 2 matrices without inverses.

Row reducing a matrix to its echelon form not only gives
us a methodical approach to finding a multiplicative inverse for
the matrix, but it also allows us to tell whether a multiplicative
inverse exists. If the row reduced form turns out not to be the
identity, but rather a matrix that looks like the identity for the
first few rows but has all 0’s for the final one or more rows, then
we can conclude that the matrix in question does not have a
unique multiplicative identity.

Encryption Revisited

Now that we know two methods for solving systems of
equations, we are ready to look at one more way to encrypt
messages, a method that employs a system of congruences with
as many congruences as there are unknowns. Since all congru-
ences, such as 3z = 5 mod n, are known to have a solution
when the modulus, n, is prime, we will choose a prime for the
congruences in our system.

In choosing the prime we will take into consideration the
number of symbols we may want to encrypt. For example,
suppose we want to send messages that consist of the 26 al-
phabetic letters, say all capitals, rather than needing 52 sym-
bols to accommodate both capitals and lowercase. We could
associate the letters, A, B,...,Z with 1,2, ..., 26, respectively.
The smallest prime larger than 26 is 29, so we select the Zog
system with its usual addition and multiplication. Since 29
is prime, all the nonzero elements have multiplicative inverses
and so any congruence has a unique solution.

Suppose we want to encrypt the word HELLO. We will
choose a system of congruences mod 29 as our key, the number
of congruences determining how many letters we can encrypt
at once. The method used here is called a digraphic cipher be-
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cause we'll encrypt a pair of letters at a time. (A pair of letters
is called a digram.) So we will need two congruences. We need
to pick the congruences so that they are not just multiples of
each other, for the reasons we saw in the previous section.

We could choose the coefficients of our unknowns at ran-
dom. Let p; and py be the pair of plaintext letters and ¢; and
co be the resulting ciphertext letters. Suppose we choose the
following set of congruences:

2p1 +3p2 =1
5p1 + 25p2 = co.

We’re doing all our arithmetic here in Zgyg, so we’ll use
equal signs in place of equivalence signs to simplify the notation
slightly. Note that all the coefficients can be positive. However,
it can simplify the arithmetic if we write the coeflicient 25 as
—4, since 25 is the additive inverse of 4. We can now write the
system in a matrix form:

2 3 Yy _[a
(2 2)G)-()

To encrypt, we will simply fill in the numbers associated
with the letters in our message, putting the number for the
first letter in place of p; and the number for the second letter
in place of po. We first encrypt HE from HELLO. H corresponds
to 8, while E corresponds to 5. Filling in the first equation
using 8 for p; and 5 for pg, we get 2:- 8+ 3 -5 = 31 mod 29 =
2. 2 corresponds to B. Similarly, the second equation yields
5-—4.5 = 20 mod 29. 20 is associated with S. Hence the
digram HE is encrypted as BS.

Of course, it is possible to get some number other than
those between 1 and 26, namely 0, 27, or 28. To complete the
association of symbols and numbers, let’s use a space for 0, a
comma for 27, and a period for 28. This allows us to put in
a symbol for any resulting integer mod 29. Having encrypted
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the first two letters, we are ready to continue the encryption
process.

The next pair of letters in our plaintext is LL. It is inter-
esting to note that even though the next two letters are both
the same, L, they will encrypt to different letters because the
two congruences yield different constants when the values are
filled in. This fact, that the same letter may encrypt to dif-
ferent letters in different parts of the message, makes such a
scheme particularly difficult to decrypt.

After encrypting LL, as are left with one letter, 0, to en-
crypt. Since our encryption method requires two characters to
encrypt, we simply choose another character to pair with 0.
This could be a space, for example. For security reasons, we
don’t want to be predictable in our choice of this extra letter,
so we pick one at random. Here, let’s pair 0 with X.

v Encrypt the diagrams LL and OX using the pre-
vious encryption matrix .

The decryption process also processes two letters at a time.
The purpose of decryption is to recover the plaintext, p; and
p2, from the ciphertext, ¢; and c;. But if F is the encryption
matrix, the encryption equation is

2(n)=():

But then, if we multiply both sides of the equation by the
matrix E~1, we get

E—IE (pl) :E—l <cl) ,
p2 C2

which implies that
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D1 ) — E—l <cl ]
D2 C2
Thus the decryption matrix is E~1. So our task here is to

compute the inverse of our encryption matrix. (Keep in mind
that we are doing arithmetic in Zgg.) Proceeding as before

2 3 | 10
5 -4 | 0 1)°

First we multiply the first row by 1/2. But here (in Zgg)
1/2 is the multiplicative inverse of 2, which by trial and error
is 15, since 2-15 = 30 = 1 mod 29. Doing this, our augmented

matrix becomes
1 16 | 15 0
5 —4 | 0 1)
Adding —5 times the first row to the second yields
1 16 | 15 0
0 3 | 12 1)
Multiplying the third row by 1/3 (which is 10, as you can easily
see) gives us
1 16 | 15 0
01 | 4 10/
Finally, adding —16 times the second row to the first yields
1 0] 9 14
0 1 | 4 10/

Thus E~1, our decryption matrix is

9 14
4 10/

and so
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We encrypted HE and got BT. If we decrypt BT we should
recover HE. Since B corresponds to 2 and T to 20

(3 00) () - (85a) = () - (3)

Since 8 corresponds to H and 5 to E, it works!

v Decrypt the diagrams you calculated above when
encrypting LL and 0X. You should recover your plaintext
digrams, of course.

Entire volumes are written on the theory and applications
of matrices. Here, we have concentrated on the basic oper-
ations on matrices, illustrating their uses with a few example
applications. The Exercises will give you a chance to test your-
self on your understanding of matrices.

Exercises

Use these matrices for the first seven exercises.

ein s
A= B=|4 3 0 1
3 103 00 1 1
5 0 0 1
31 1 1
2 0 0 8 B
o I D=(1 1 0 1)
01 3 3
7 6 4 2
E=|0 0 3 1 F:(i?)
3 92 4 0

1. What are the dimensions of the matrices?
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Which pairs of the given matrices can be added?
Which pairs can be multiplied?

Find all the sums defined.

Find all the products defined.

Find inverses for any of the matrices that have them.

A e

Find determinants for any of the matrices for which a de-
terminant is defined.

8. Let

A=

W = N
— N
S O =

1 3 5
and B=12 3 4
0 6 0

Assuming the entries are integers, find A + B.
Assuming the entries are integers, find 3 - A.
Assuming the entries are integers, find A - B.
Assuming the entries are integers, find det A
Assuming the entries are rationals, find the multi-
plicative inverse of A.

Assuming the entries are from Zr, follow the direc-
tions of a, b, ¢, d, and e.

> o TP

las}

9. Using Cramer’s rule, solve the following system of equa-
tions, assuming the coefficients are integers.

a.

T1+ 23 +x3 =06

T, — Ty +x3 =2

T1+ 222+ 33 =14

b. Solve the same equations by Gaussian elimination.
c. Why can’t the following be solved using Cramer’s

rule?
201 — 3x9+ 13 =4

31+ 229 —x3=9
JJ1+5.’L‘2—2:L'3=2
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10.

11.

12.

13.

14.

15.

d. Solve this system using Gaussian elimination (if there
are any solutions).
e. Why can’t the following be solved using Cramer’s

rule?
4x1 + o — dx3 =13

201 —3x2+ 23 =7
z1 + 229 — 3x3 =3

f. Solve this system using Gaussian elimination (if there
are any solutions).

Solve the system in Exercise 9a, assuming the entries are
from Z;.

Find the inverse in Zgg of the encryption matrix

(5 1)

Encrypt SUMMER using the encryption matrix given in Ex-
ercise 11.

Now decrypt the message you got in Exercise 12, using
the inverse of the encryption matrix. (You should recover
SUMMER, of course.)

Decrypt KVJY if this is the ciphertext encrypted by the
encryption matrix used in the text.

Suppose you want to use a trigraphic encryption scheme
in Zag. Use the following system of congruences:

201 +3p2+p3s =y
5p1 + 25po + 4ps
P1+ 22ps + Tp3 = c3

Cq.

(Note that this encrypts three letters (a trigram) at a
time.) Encrypt the message HELLO. (Pad this message
with a blank.)
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16. Using this same system as in Exercise 15, find the decryp-
tion matrix. (This will test your calculating skills in Zag.)
Check your result on the ciphertext from the previous ex-

17.

18.

19.

20.

21.

ercise.
Find det A, where

NN = O

-1

N WO N

O OO
—_— 0 O N

Recall that you can expand on any row. Make your work
as easy as possible by expanding on the row that has the

most 0 entries.
Find det A, where

I
—

Find det A, where

I
o

Find det A, where

2
Il
_— o O

[—Y

[o—y

o

oo =

Suppose AB = I, where A, B, and I are all square ma-
trices of the same size and [ is the identity matrix. Thus
B = A~!. Show that BA = I also.
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22.

23.

24.

25.

Show that A~! is unique. That is, show that if AB = I
and AC = I then B = C. (Use the fact from the Exercise
21.)

Verify, for 2 x 2 matrices, that I commutes with all ma-

trices.

Here’s a nice little formula for computing the inverse of a
2 X 2 matrix:

-1 d —b
<‘1 b> _ ( ad—bc  ad—bc )
—C a °
c d ad—bc  ad—bc
Verify this. Note that if ad—bc = 0, the inverse does exist.
But ad — bc is the determinant of the matrix. This is a

general fact: The inverse of a square matrix exists if and
only if its determinant is nonzero.

Show that matrix multiplication distributes over matrix
addition.

Programming Problems

1.

Write a program that adds, multiplies, and performs scalar
multiplication on 3 x 3 matrices with integer entries.

Write a program that adds, multiplies, and performs scalar
multiplication on square matrices with up to 20 rows and
columns.

Design and implement a matrix abstract data type (ADT)
(in C++ use a template class) that permits the declaration
of square matrices (in C++ this is a constructor), addi-
tion, multiplication, and scalar multiplication of square
matrices of any dimension.

Write a program that computes the determinant for 2 x 2
matrices.

Write a program that computes the determinant for 3 x 3
matrices.
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* 6.

10.

11.

*12.

13.

* 14.
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Write a program that computes the determinant for any
square matrix. Hint: Recursion may be useful here. If you
succeed with this program, insert the function you have
written into the ADT you wrote in Problem 3.

. Write a program to use Cramer’s rule to solve systems of

equations with integer coefficients in two unknowns. Hint:

You might use your determinant function from Problem
4.

. Write a program to use Cramer’s rule to solve systems of

equations with integer coefficients in three unknowns.

Write a program to use Cramer’s rule to solve systems of
equations with coefficients from Zog in two unknowns.

Write a program to use Cramer’s rule to solve systems of
equations with coefficients from Zsg in three unknowns.

Write a program to find the multiplicative inverse of a 2 x2
matrix. Try the same for a 3 x 3 matrix.

Write a program to find the multiplicative inverse of any
square matrix with integer coefficients (if the matrix has
one). You should write defensive code that checks first to
see if the matrix has an inverse.

Write a program that inputs an encryption matrix (as in
the text) and a message and outputs the decrypted mes-
sage. Have your program check that the encryption matrix
does indeed have an inverse.

Write a program that inputs a matrix, then performs Gaus-
sian elimination on this matrix and outputs the result.
(This program is challenging. You may have to exchange
rows if a coefficient is zero in the wrong place.)



Chapter 10
Graphs

Some of the most famous problems in computer science
are based in an area of mathematics known as graph theory.
Because there are so many such problems and because they are
about such a wide variety of topic areas, it is both difficult and
misleading to choose only a few of those problems to represent
the broad collection. For this reason we will not even attempt
to be representative or comprehensive. Rather, our goal here
is to introduce some basic concepts of graph theory, along with
a few examples, so that the reader will have the background
necessary to read and understand problems about graphs.

We begin with a problem that is well-known, practical
in nature, and solvable by some efficient algorithms. In fact,
our problem has been addressed so often that it has a name:
“the Euler circuit problem.” The problem is named for the
mathematician of the eighteenth century whose work is well
known is many areas of mathematics. In fact, we trace graph
theory to Euler.

Euler Circuits and Tours

It would not be surprising if at some time while you were
in elementary school, you were challenged to draw the following
figures without raising your pencil from the paper.

195
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Another way to state this problem is as follows: Find a
path that visits every edge in the graph exactly once. This
statement is called “the Euler tour problem.” A path that
visits every edge in the graphs exactly once and returns to the
starting vertex is known as “an Euler circuit.”

Originally, Euler introduced this problem by asking whether
or not it would be possible to visit every bridge in Konigs-
burg (now Kaliningrad) exactly once, returning to the starting
point. The city had seven bridges connecting the two sides of a
river and the two islands. The bridge problem is one instance
of the general Euler tour problem. The following is a drawing
of the bridges.

/

0T

Before finding a solutlon to this problem, if one exists,

we will have a look at some concepts and terms used when
describing graphs.

Symbols and Terms for Graphs

A graph is a pair of finite sets, V and E, where V is called
the set of vertices and E is called the set of edges. Each edge
consists of a pair of vertices. We often write G = (V, E), an
ordered pair of sets. We then talk about the graph G, meaning



Chap. 10 Graphs 197

the sets V and E. If A and B are vertices and (A, B) is an
edge, we often abbreviate the edge (A, B) as AB.

For example, suppose V = {A, B,C, D} and E = {(4, B),
(A4,C),(C,D),(A,D),(B,C)}. Here G = (V,E) is a graph
with four vertices and five edges.

C
In a case where every vertex is connected to every other
vertex in the graph, we have what is called a complete graph.
For example, the complete graph on four vertices must have

(2i6) edges and could be drawn as follows:

D C
We have drawn the edge between B and D so that it does
not cross the edge AC just to avoid the impression that another
vertex might exist where BD would cross AC. In general, the
complete graph on n vertices has (’2‘) edges.

v Draw all the graphs with four vertices.

The number of edges incident with a given vertex is called
the degree of the vertex. For example, in the picture of the
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complete graph on four vertices, the degree of vertex A is 3,
since edges AB, AC, and AD are all incident with vertex A.

A path in a graph is a sequence of vertices vy, va, ..., Uy
such that (v;,v;41) is in E for every i between 1 and n — 1.
The length of the path from some v to w is the number of edges
on the path. If all the vertices on a path are distinct, we say
that the path is a simple path.

In some graphs, called undirected graphs, the presence of
edge (v,w) implies that the edge (w,v) is also included. In
directed graphs, often called digraphs, (v, w) is considered an
ordered pair, so that the presence of (v, w) in E does not imply
that (w,v) is in E. We often dradeigraphs with arrows. For

example, /o\
v In the preceding graph, find all paths from each

vertex to every other vertex. How many paths are there
from D to B?

D

In the picture both ED and DF are edges. AB is an edge,
but not BA. Notice that there is a path from A back to A,
namely AC, CD, DA. Such a path is called a cycle. In this
case, since the cycle includes three edges, it is called a cycle
of length 3. Another cycle in the graph is AC, CD, DE, EA,
a cycle of length 4. A graph that has no cycles is called an
acyclic graph.

In some graphs each edge may have a number associated
with it. Such a graph is called a weighted graph. For example,
a graph used to represent streets as edges and intersections
as vertices may associate with each street a number of vehi-
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cles that can be accommodated at a given time on that street.
Many traffic flow problems can be represented as graph prob-
lems.

One other concept important for understanding graph prob-
lems is the idea of connectivity. An undirected graph is said
to be connected if there is a path from every vertex to every
other vertex. Remember that a path is a sequence of edges, not
just a single edge, so being connected is different from being
complete.

When a directed graph has this same property, a path from
every vertex to every other vertex, the graph is called strongly
connected. If a directed graph is not strongly connected, but
between every pair of vertices u and v there is either a path
from u to v or from v to u (but perhaps not both), then the
graph is called weakly connected.

A connected, acyclic graph is what we call a tree. A col-
lection of trees is called a forest. For example, the following
are trees:

A Return to Euler Circuits

Armed with our new concepts and terms, we are ready
to take another look at the Euler circuit and tour problems.
Let’s look first at the circuit problem, the one that requires
us to visit every edge exactly once and return to the starting
point. Since to get started it is necessary to choose an edge
leaving the starting point, S, we can conclude that it would be
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impossible to return to S unless another edge also is incident
with S. (Remember that we can visit each edge only once.)
But every visit to a node other than S must have an entry
edge and an exit edge. Thus, if a graph has an Euler cirucit,
the degree of every vertex must be even. We can look at the
three graphs from before (reproduced below) and conclude that
neither the first nor the second can have an Euler circuit, since
not all vertices have even degree.

Amazingly, the converse is true. That is, if every vertex
is even in a connected graph, then it has an Euler circuit. We
will not prove that here, but the reader should find an Euler
circuit in the third graph above and draw some other graphs
whose vertices have even degree and see that they also have
Euler circuits.

The requirements for a graph to have an Euler tour are
slightly different from those for a circuit. But given that we
know a connected graph has an Euler circuit if and only if each
vertex has even degree, it is easy to prove that a connected
graph has an Fuler tour if and only if all vertices have even
degree (in which case the tour is actually a circuit) or exactly
two vertices have odd degree.

First, suppose a graph has an Euler tour that is not a
circuit. Except for the starting and ending vertices, vertices
have even degree, by the argument given about circuits. But
the starting vertex has the edge initially used in the tour that
is not matched with an edge entering the starting vertex and so
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it has odd degree. Similarly, we see that the ending vertex has
odd degree. Conversely, suppose we have a connected graph
with exactly two vertices of odd degree. Call these vertices S
and E. Now add a new node, N, and the edges SN and EN.
We now have a connected graph where all vertices have even
degree and so this graph has an Euler circuit. If you remove
the edges SN and N FE from this circuit, you now have an Euler
tour with end nodes § and E. This proves our claim.

When you study algorithms, you will discover that there
is a simple, efficient solution to finding an Euler circuit or tour.

The Euler problems were about visiting edges of a graph
exactly once. It is natural to pose the analogous question
about visiting vertices: Can you visit each vertex of a par-
ticular graph exactly once? This problem also has a special
name, the Hamiltonian circuit problem. The surprise is that
although we were able to examine the indices of the vertices
of a given graph and know without doubt whether hunting for
an Euler tour or circuit was feasible, we cannot do the same
for the Hamiltonian problem. The only known solution for the
Hamiltonian problem is the one that requires us to try every
possible path through the graph to see if any of them visit each
vertex exactly once.

Minimal Spanning Tree

We have chosen one other graph problem to present here.
The choice is based on several interesting facts. The problem,
called the “minimal spanning tree problem,” has some efficient
solutions that are easy to understand without additional back-
ground. The problem also has some important applications
that are obviously useful. Finally, the problem makes use of
many of the fundamental concepts of graph theory.

This problem can be phrased in many ways, depending on
the domain in which we wish to apply it. We have chosen the
domain of weighted graphs, but you can easily find other do-
mains in which the problem makes sense. Here is the problem:
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We want to connect several sites with a network so that
those sites can communicate electronically. We have performed
an analysis on the sites and know how much it will cost to
connect any given pair of sites. The costs vary according to
circumstances. For example, some sites may be located in ar-
eas where making the connection is very cheap, such as sites
within the same room, while others require great expense, such
as those in remote locations. We can represent the situation
by placing dots to represent the sites and connecting lines to
represent the required connections. We can place the costs on
the lines to indicate how much it would be to connect any par-
ticular pair of sites. What we have is a weighted graph where
the vertices represent the sites and edges represent connection
between those sites. The weights for the edge are the costs of
the connections.

When we have found the cheapest way to allow all our ver-
tices to communicate, the resulting graph will have our original
set of vertices but only a subset of the edges. Moreover, the so-
lution will be a tree, hence the name of the problem. No cycles
will be allowed because any cycle would indicate some redun-
dancy and hence would not be the cheapest way to connect the
sites. We include one example to illustrate the situation:

One way to find the minimal spanning tree is to use an
algorithm made famous by Kruskal:
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1. Sort all the edges by cost from smallest to largest.

2. Repeat
Remove the next smallest edge from the collection of
edges.
If the vertices on that edge are not already connected,
then add that edge to the spanning tree.
Otherwise, discard the edge.

Until there are no more edges.

At each step we choose the cheapest possible edge to con-
nect two vertices that are not already connected. The result
is that we never put in a redundant connection and we always
pick the cheapest possible edge. Let’s apply this algorithm to
the graph we used to introduce the problem:

First we order the edges by cost:

HI:1, EF:2, AB:2, CH:2, DH :3, GH :3, CD : 4,
AG:4, DE: 4, GI :5, FI1:5, BC :5, BH :6, EI : 6,
FG:6, FH:7, AH : 8.

Those edges with identical weights could be listed in an order,
of course. The order could affect the minimal spanning tree
that results from applying the algorithm. In general, a given
weighted graph may have more than one minimal spanning
tree.

Next, we repeatedly add edges to our tree. The criti-
cal condition is that we not add an edge between vertices al-
ready connected in the tree we've built so far. That is, we do
not want to introduce a cycle. The first six edges added are
HI.EF, AB,CH,DH, and GH. When we come to edge CD,
we see that the tree we have so far constructed has C' connected
to D (C to H to D) and so we do not add edge CD to our
tree. You are asked to finish this example in the Exercises.
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Some Programming Considerations

Representing graphs in a computer program may be done
is a variety of ways. We will look briefly here at two possibil-
ities. The first is to use a two-dimensional array, say G. We
think of the indices in the array as ordered pairs of vertices.
In some languages the index set for arrays is not restricted to
integers but can be any set. In such languages (Pascal, for ex-
ample), it is possible to talk about G[B, C] to access an entry
in the array. For an unweighted graph, G, we store a 0 to mean
there is no edge between the two given vertices, whereas a 1
means that there is an edge. For example, if there is an edge
between B and C, then G[B,C| = 1.

If the graph is weighted, then each entry represents the
weight of the edge. For example, if G is a weighted graph
with an edge of cost 12 connecting vertex B to vertex C, then
G|B, C) = 12. For vertices that have no edge connecting them,
some particular fixed value is entered (such as —1), to indicate
“no edge.”

If we are using a language that permits only natural num-
ber indices (for example, C++), then we must represent all the
vertices as integers, choosing some way of mapping the actual
names of the vertices to the natural numbers.

A second common way of representing graphs is the use
of what are called adjacency lists. In this approach there is a
list for each vertex with entries for every vertex the given one
is connected to. For example, if in some graph, (G, there is an
edge from A to C, another from A to FE, and another from A
to B, then the list for A would contain C, E, and B. There
is no assumption made about the order, nor should there be
any assumption made about the entries relative to each other.
In other words, the fact that both C' and F appear on A’s list
does not imply anything about an edge between C and E. To
find out we would need to look at the list for C or for E.

To illustrate these two approaches, consider the following
unweighted, undirected graph, G:
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The two-dimensional array for G can be represented pic-

torially by
A

HOQW >
—o o= o

B

[ S S T Y

C

_ O = O

D FE
0 1
1 1
1 0
0 1
10

The list approach is shown as follows:

A — B —
B — A —
¢ — B —
D — B —
rF — B —

Exercises

— C — D

— O

—s

1. Complete the Kruskal’s algorithm for the example in the

text.

2. Another way to find a minimal spanning tree for a graph
is to start with any vertex, then choose the cheapest edge
coming out of that vertex. Next, considering the vertices
already in the spanning tree, find the cheapest edge out
of those vertices that doesn’t introduce a cycle. Write an
algorithm that captures this idea of starting with a vertex,
rather than starting with the cheapest edge the way that
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10.

11.

12.
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Kruskal’s algorithm does. Note that there is no need to
sort the edges in this approach. This approach is called
Prim’s algorithm.

Give an argument that Kruskal’s algorithm does give a
spanning tree with the least cost.

Give an argument that Prim’s algorithm does give a span-
ning tree with the least cost. (See Exercise 2.)

. Is it ever possible to get more than one cheapest cost span-

ning tree? If no, show why not. If yes, give an example to
illustrate your claim.

Prove that the relation “is connected to by an edge” is
an equivalence relation on the set of vertices for a given
graph.

How many edges are there in a complete graph of n ver-
tices?

Draw all possible connected graphs consisting of one ver-
tex, with two vertices, with three vertices, with four ver-
tices, with five vertices. Make a conjecture about numbers
of each.

Prove or disprove: Every graph has a unique minimal
spanning tree.

How many minimal spanning trees can a graph have?
Construct a graph where the vertices are you, your par-
ents, and your grandparents. The edges will mean born in

the same state.

Construct a graph where the vertices consist of the integers
from 1 to 10 and each edge (z,y) means that = divides y.
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13.

14.

15.

16.

Find a minimal spanning tree for the following graph:

@ 16 (IP
21 11

19

33 14

dE/“‘

Does the following graph have an Euler circuit? An Euler
tour? If one exists, find it.

If land areas are represented as vertices and bridges as
edges, the original Konigsburg bridge problem can not be
represented as a graph, strictly speaking, since there would
be more than one edge connecting two vertices. We call
this sort of “graph” a multigraph. Draw the multigraph
for the Konigsburg bridge problem.

How would you store a multigraph as a two-dimensional
array?

Suppose you are planning out what courses you need to
take in your major. Represent possible ways you might fit
them into your curriculum by drawing them on a graph.
Your graph should represent each course as a node. When
one course is required as a prerequisite to another, you
should put an edge from the prerequisite to the course it is
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17.

18.

19.

20.

21.

22.

* 23.

24.
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a prerequisite for. There should be at least one course for
which there is no prerequisite to get the graph started. Us-
ing the graph, determine at least three different sequences
of courses you could take.

Exhibit a matrix to represent the graph Exercise 14. Your
matrix will have 0’s and 1’s as entries, each entry repre-
senting whether or not there is an edge between the ver-
tices whose numbers are the row and column numbers of
the given entry.

Exhibit a matrix to represent the graph shown in the min-
imal spanning tree section of the chapter. Here the entries
will not be limited to 0’s and 1’s. Instead, the entries will
be the weights on the edges.

How many edges are in a graph of four vertices if every
pair of vertices has exactly one edge joining that pair?

How many edges are in a graph of n vertices if every pair
of vertices has exactly one edge joining that pair?

Suppose a connected graph has five vertices. What is the
minimum number of edges?

Suppose a connected graph has n vertices. What is the
minimum number of edges?

Suppose the National Football League has two conferences
each with 13 teams. It was decided that each team would
play a total of 14 games, 11 of which were to be with teams
in their own conference and the other three with teams in
the other conference. Why will this plan not work?

In a tree, because there are no cycles, there are some ver-
tices that have edges with degree 1 (the vertex has an
edge with only one other vertex). Those vertices are called
leaves. Draw a tree with 15 vertices arranged so that ev-
ery vertex in the tree (except for the root, which has two
edges, and the leaves, which have one edge) has exactly
three edges touching it. The tree you have drawn is called
a complete binary tree. 1t is said to have height 3 because
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25.

26.

*27.

the leaves are 3 edges away from the root.

How many leaves are in the complete binary tree of height
37

Draw a complete binary tree of height 4. How many
leaves? How many vertices?

How many leaves in the complete binary tree of height n?
Prove your answer using induction. How many vertices?

Programming Problems

1.

Write a program that reads in costs associated with the
edges of a particular graph and prints out the edges (as or-
dered pairs of vertices) in a minimal spanning tree. Hint:
It will be unnecessary to store the graph. You can test
your program on the graph we used to illustrate this prob-
lem.

Write a program that determines whether or not a partic-
ular graph has an Euler circuit.

Write a program that prints out the edges of a weighted
graph in order of their costs.

Write a program that, given two vertices in a directed
graph, determines whether or not there is a path from the
first vertex to the second. Will your program work for an
undirected graph? Why or why not?

Write a program that stores an unweighted graph using a
two dimensional matrix. Choose a vertex and find a path
from that chosen vertex to each of the remaining vertices.
Test your program on graphs of various sizes. Will your
program always get the “best” path? What if you wanted
paths that use the smallest number of edges?

. Write a program that stores an unweighted graph using

adjacency lists. Choose a vertex and find a path from that
vertex to each of the other vertices in the graph. Keep
track of how many edges your path requires. Test your
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program on various graphs. Will your program always get
the path with the least number of edges? If not, how can
you modify it to do so?

A graph is connected if there is a path from any vertex to
any other vertex. Write a program to determine whether
or not a given graph is connected. Be sure to test it on
graphs that are not connected as well as those that are.
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Chapter 1 13. The equivalence relations are:
|a — b| is an integer, a has the
1. {E,L,P,H,A,N,T,S,Y,C,0}, same area as b, ¢ and b have
{P,H,A,N,T}, {A,N,T}, the same parents

{E’L’P’ H’ A’ N>T1 Sv UaD}v 21. Yes
{A,N,S,T}, {E,A,N,T}, :
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Q,RUV,W XY, 7}, even”
{BanJaK7M7QaRa‘/aW7X’Z} 25.a~biffa<b
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31,37,41,43,47} Yes, Yes; (d)} No, Yes
25. {(1,2),(1,3),(2,2),(2,3)} 29. go f(z) = —5z + 3,
27. No: AxB#BxAif A#B fog(e)=33-5z
29. {-2,-3} 33. f(z) = 5z is injective and
31 ’ . . surjective with inverse
. {z|z is an even integer} g(z) = 1z,
33. AnNB', f(z) = —1/(|z| + 1) is neither,
2 . .
35. Az}, f(x) = z* 4+ 1 is neither,
0. (@, (=)}, (2}, { (a1} Ja) e
39. A and B are disjoint. withinverse g(z) = (2 — z)/3,
41. {0}, {z:0< 2z < 1} f(x) = 27 is injective but not
43. {(z,y) 1y = 332} surjective
45. N
© Chapter 3
47. A
57. A=B 5.1
9. B+C'+D
Chapter 2 13. 100101, 10001, 100000000000
15. 61, 34, 448
5. Uoglo nJ + 1 .
17. Move the binary point one
7. 2 +0.5] place to the right to multiply
11. {a} by 2. To the left to divide.
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19. 11101010.11
2l. (a+b)*=a+b

27. Theorem 1: For all a in B,
ax*xa=a.
Theorem 2: For all a in B,
a—+a=a.

29. Duals do not exist.
51. AB', ABC' + A'B'C

53. (-FAV B)V (AAB),
“(AAN(BV-C))VvC

55. 24, 28 922"

Chapter 4

7. $55,000
23. (n? — 3n)/2
27. 44

Chapter 5

3. 13,6, 2

5. 31, 1000

7. 11,13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97

9. 4, 9, 866

11. 2, 8; none

13. The additive inverses for
0,1,2,3,4,5,6,7,8,9in Zyq are
0,9,8,7,6,5,4,3,2,1. The
additive inverses for
0,1,2,3,4,5,6,7,8 in Zg are
0,8,7,6,5,4,3,2,1.

15.2-3-5,2-3%.5,22.52 101,
23.5% . 2.3.167

25. 16, 1

27. life is a mystery, 12
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29. 15¢c+ 12, 5c+ 6

Chapter 6
5.d=4,a=-3,b=1;

d=1,a=-7b=13
7. 82,5

9. 2100 _ 1 gec & 4 x 1020 centuries

Chapter 7

1. a, = m"d

3. T, =n+2

5. an =4-3"+ (3" — 1)/2

7. an=c+bn

9. 2" 42" —1)- 2+ (n—

2)2n) = 272 _'p 2
11. by = 2+ 2logyn
13. 100 * (1.08)"
15. ag = 1, an, = (1.015)ap—1

(So a, = 1.015™) a1 = 1.20,
aso ~ 244, aloo ~ 5.70

Chapter 8

1. () =792

3. (%) = 125,970,

10y = 44,100,

() + (D)D) +
(19) () = 63,090,
(0)(5) + () () +
0,935

) (5) + (o) (%) =

N

—~
(=
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9. ()@ G)(Y) = 123,552
11. 12! = 479,001,600,

418! = 967,680,

415131 = 17,280

13. 121/(3!21) vs 13!/(21412!) or
39,916,800 vs 64,864,800
So PENNSYLVANIA

15. 58 =720
17. 1 -9%19/10' ~ 65132
19. 1 —(8-9771)/(9-10m71),

limit as n — oo is 1
(%) = 2024,
(3) + ) + )+ (5) =80,

Q)+ G+ + /&
.0395

23. 111/(2!2!2!) = 4,989,600

25. 9-108

27. 7!/(3!3!) = 140

29. (DD Q)/(5) =9/28

31 (5)(5)(5) () = sritemr =
11,732,745,024

33. (1/2)* =1/16

35. (1/2)* 4+ (1/2)* =1/8

37. (3)/(%) =~ .0601

39.9-9-8-7/(9-10%) = .504

41. (2+2)/62=1/9

21.

Q

= O

©\20
535,983,370,403,809,682,970
45. (3 =10

47.() =70, () + ) + (5 + () +
(5) + (0) + () = 254

49. 21° = 1024, (%) = 120,
(10} /21° ~ 11719,
(g) + (7) + (2) + () = 176,
() + D)+ G+ (ED/20~

1719, (19) = 252,

(19) /210 ~ .2409

Chapter 9
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1. Ais4by4. Bis3by4. Cis4
by 4. Dis1by 4. Eis 3 by 4.

5.

Fis 2 by 2.
3. AA, AC, BA, BC, CA, CC,

DA, DC, EA, EC, FF

AA =

AC =

BA =

BC =

53
31
31
30
27
15
11
15
16
28

76
58
25
30
39
27
6
6
23
45
1
25

38
25
15
20
47
34
12
8
10
25
0
28
7
12
15
8
24
3
15
26
81
36
7
12
46
0
18
49
30
39

36
27
11
11
59
63
20
8
15
15
4
17
31
3
12
12
43
14
14
26
64
17
5)

)
40
10
22
61
3
19
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7. det A = 99, det C = 324,
det FF =2

9. a.x1=1,x9=2,23=3
c. No solutions.
1
e. I =¥+ZL‘3,1‘2:—7+(E3

2 23
(g %)
15. NJK T

17. 3
19. 1

Chapter 10

1. Add (in this order) AG, DE,
GI

5. Yes, if all edges have the same
cost (for example).

7. (3) =n(n-1)/2

9. false

13. AB, BC, BF, BD, DE
21. 4

25. 8

27. 2™ leaves, 271! — 1 total
vertices

Answers
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additive identity 100

and 4

antisymmetric 33

associative 6, 17, 42,
43

base 26

base case 68

binary 53

binary search 126, 143

binary tree 71

Binomial Theorem 155

bits 47

Boolean algebra 41, 43

bootstrap 68

bubble sort 140

byte 54

cardinality 19

carry-in, -out 54, 55,
57

Cartesian product 31

ceiling 30

cipher 100,101

closed form 138

column 165

combinations 150

common divisor 89

commutative 6, 16, 42,
43

complement 15

complement of an
event 157

complete graph 197

composite 93

Index

conclusion 8
connected 199
connective 6
contradiction 10
contrapositive 7, 10
counting numbers 66
Cramer’s rule 177
cryptology 100
decryption 100
degree 198
DeMorgan’s laws 17
depth of tree 71
det 174
determinant 174
digraph 198
digraphic cipher 185
dimension 166
direct proof 8
directed 198
disjoint 15
disjunctive normal
form (DNF) 57
distributes 6, 17, 42,
43
divides 88
division theorem 89
domain 25
dual 46
e 26
edge 196
element 14
empty set 15
encryption 100, 185
equivalence classes 34
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equivalence relation 33

Euclid’s algorithm 90,
128

Euler circuit 195

Euler tour 195

Euler’s constant 26

Euler’s theorem 110

event 156

experiment 156

exponential 26

expression 5

extended Euclid’s
algorithm 130

factor 88

factorial 122

fast exponentiation
108

Fermat’s Little
Theorem 106

Fibonacci 124

floor 30

forest 199

full adder 56, 58

full binary tree 71

function 25

Fundamental Theorem
of Arithmetic 94

gates: and, or, not 47

Gaussian elimination
179

ged 90, 128

ged identity 92

George Boole 43
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graph 195

greatest common
divisor (ged) 90

half adder 56

Hamiltonian circuit
201

hypothesis 8

idempotent 45

identity 6

identity matrix 170

implication 6

implies 41

inclusive or 55

induction 66, 68, 79

induction hypothesis
69

induction step 68

integers 88

intersection 15, 42

inverse 28

key 101

Konigsburg 196

Kruskal’s algorithm
202

least element 67

length 198

linear combination 92

logarithm 28

matrices 165

matrix addition 166

matrix multiplication
169

membership 14

multiple 88

multiplicative identity
102, 104, 170

multiplicative inverse
102, 182

n! 122

natural log 28

natural numbers 66

not 4, 41

one-to-one 28

or 4,41

paradox 18

partial order 35

partition 34

path 198

path length 198

Peano axioms 80

permutation 148

phi function 111

polynomial 27

power set 16, 42

propositional calculus
3

Prim’s algorithm 206

prime 93, 96

probability 156

proposition 2

propositional logic 2,
41

public key encryption
112

quotient 89

range 25

recurrence 138

recursion 121

recursive 121

reflexive 33

relation 31, 32

relatively prime 90

remainder 89

residues mod n 99

root 71

row 165

row operation 181

RSA 112

rule of product 146

rule of sum 146

sample space 156

Index

set-builder notation 14

set difference 21

sets 14, 42

shift cipher 101

sieve of Erastothanes
96

spanning tree 201

strongly connected 199

subset 16

successor 81

switching circuits 47

symmetric 33

systems of equations
172

tiling 74

total order 35

tower of Hanoi 131,
139

trace 123

transitive 33

tree 199

truth table 4

undirected 198

union 15, 42. 43

universal set 14

vector 165

vertex 196

weakly connected 199

weighted 198

well-ordering 67, 79

xor 4

xor gate 56
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