CHAPMAN & HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES

Handbook of
Approximation

Algorithms and
Metaheuristics

Edited by
Teofilo F. Gonzalez

* Chapman & Hall/CRC
Taylor & Francis Group

Handbook of Approximation
Algorithms and Metaheuristics

CHAPMAN & HALL/CRC
COMPUTER and INFORMATION SCIENCE SERIES

Series Editor: Sartaj Sahni

PUBLISHED TITLES

ADVERSARIAL REASONING: COMPUTATIONAL APPROACHES TO READING THE OPPONENT'S MIND
Alexander Kott and William M. McEneaney

DISTRIBUTED SENSOR NETWORKS
S. Sitharama lyengar and Richard R. Brooks

DISTRIBUTED SYSTEMS: AN ALGORITHMIC APPROACH
Sukumar Ghosh

FUNDAMENTALS OF NATURAL COMPUTING: BASIC CONCEPTS, ALGORITHMS, AND APPLICATIONS
Leandro Nunes de Castro

HANDBOOK OF ALGORITHMS FOR WIRELESS NETWORKING AND MOBILE COMPUTING
Azzedine Boukerche

HANDBOOK OF APPROXIMATION ALGORITHMS AND METAHEURISTICS
Teofilo F. Gonzalez

HANDBOOK OF BIOINSPIRED ALGORITHMS AND APPLICATIONS
Stephan Olariu and Albert Y. Zomaya

HANDBOOK OF COMPUTATIONAL MOLECULAR BIOLOGY
Srinivas Aluru

HANDBOOK OF DATA STRUCTURES AND APPLICATIONS
Dinesh P. Mehta and Sartaj Sahni

HANDBOOK OF SCHEDULING: ALGORITHMS, MODELS, AND PERFORMANCE ANALYSIS
Joseph Y.-T. Leung

THE PRACTICAL HANDBOOK OF INTERNET COMPUTING
Munindar P. Singh

SCALABLE AND SECURE INTERNET SERVICES AND ARCHITECTURE
Cheng-Ihong Xu

SPECULATIVE EXECUTION IN HIGH PERFORMANCE COMPUTER ARCHITECTURES
David Kaeli and Pen-Chung Yew

© 2007 by Taylor & Francis Group, LLC

Handbook of Approximation
Algorithms and Metaheuristics

Edited by
Teofilo F. Gonzalez

University of California
Santa Barbara, U.S.A.

a Chapman & Hall/CRC

Taylor &Francis Group

Boca Raton London New York

Chapman & Hall/CRC is an imprint of the
Taylor & Francis Group, an informa business

© 2007 by Taylor & Francis Group, LLC

Chapman & Hall/CRC

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2007 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-10: 1-58488-550-5 (Hardcover)
International Standard Book Number-13: 978-1-58488-550-4 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to
publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of
all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa-
tion storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Handbook of approximation algorithms and metaheurististics / edited by Teofilo F. Gonzalez.
p. cm. -- (Chapman & Hall/CRC computer & information science ; 10)
Includes bibliographical references and index.
ISBN-13: 978-1-58488-550-4
ISBN-10: 1-58488-550-5
1. Computer algorithms. 2. Mathematical optimization. I. Gonzalez, Teofilo F. IL. Title. III. Series.

QA76.9.A43H36 2007
005.1--dc22 2007002478

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2007 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com
http://www.copyright.com

DEDICATED

To my wife
Dorothy,

and my children
Jeanmarie, Alexis, Julia, Teofilo, and Paolo.

© 2007 by Taylor & Francis Group, LLC

Preface

Forty years ago (1966), Ronald L. Graham formally introduced approximation algorithms. The idea was
to generate near-optimal solutions to optimization problems that could not be solved efficiently by the
computational techniques available at that time. With the advent of the theory of NP-completeness in the
early 1970s, the area became more prominent as the need to generate near optimal solutions for NP-hard
optimization problems became the most important avenue for dealing with computational intractability.
As it was established in the 1970s, for some problems one can generate near optimal solutions quickly,
while for other problems generating provably good suboptimal solutions is as difficult as generating optimal
ones. Other approaches based on probabilistic analysis and randomized algorithms became popular in
the 1980s. The introduction of new techniques to solve linear programming problems started a new wave
for developing approximation algorithms that matured and saw tremendous growth in the 1990s. To
deal, in a practical sense, with the inapproximable problems there were a few techniques introduced in
the 1980s and 1990s. These methodologies have been referred to as metaheuristics. There has been a
tremendous amount of research in metaheuristics during the past two decades. During the last 15 or so
years approximation algorithms have attracted considerably more attention. This was a result of a stronger
inapproximability methodology that could be applied to a wider range of problems and the development
of new approximation algorithms for problems in traditional and emerging application areas.

As we have witnessed, there has been tremendous growth in field of approximation algorithms and
metaheuristics. The basic methodologies are presented in Parts I-III. Specifically, Part I covers the basic
methodologies to design and analyze efficient approximation algorithms for a large class of problems,
and to establish inapproximability results for another class of problems. Part II discusses local search,
neural networks and metaheuristics. In Part III multiobjective problems, sensitivity analysis and stability
are discussed.

Parts IV-VI discuss the application of the methodologies to classical problems in combinatorial opti-
mization, computational geometry and graphs problems, as well as for large-scale and emerging applica-
tions. The approximation algorithms discussed in the handbook have primary applications in computer
science, operations research, computer engineering, applied mathematics, bioinformatics, as well as in
engineering, geography, economics, and other research areas with a quantitative analysis component.

Chapters 1 and 2 present an overview of the field and the handbook. These chapters also cover basic
definitions and notation, as well as an introduction to the basic methodologies and inapproximability.
Chapters 1-8 discuss methodologies to develop approximation algorithms for a large class of problems.
These methodologies include restriction (of the solution space), greedy methods, relaxation (LP and SDP)
and rounding (deterministic and randomized), and primal-dual methods. For a minimization problem
P these methodologies provide for every problem instance I a solution with objective function value
that is at most (14 €) - f*(I), where € is a positive constant (or a function that depends on the instance
size) and f*(I) is the optimal solution value for instance I. These algorithms take polynomial time
with respect to the size of the instance I being solved. These techniques also apply to maximization

vii

© 2007 by Taylor & Francis Group, LLC

viii Preface

problems, but the guarantees are different. Given as input a value for € and any instance I for a given
problem P, an approximation scheme finds a solution with objective function value at most (1 +€)- f*(I).
Chapter 9 discusses techniques that have been used to design approximation schemes. These approximation
schemes take polynomial time with respect to the size of the instance I (PTAS). Chapter 10 discusses
different methodologies for designing fully polynomial approximation schemes (FPTAS). These schemes
take polynomial time with respect to the size of the instance I and 1/¢. Chapters 11-13 discuss asymptotic
and randomized approximation schemes, as well as distributed and randomized approximation algorithms.
Empirical analysis is covered in Chapter 14 as well as in chapters in Parts IV-VI. Chapters 15-17 discuss
performance measures, reductions that preserve approximability, and inapproximability results.

Part II discusses deterministic and stochastic local search as well as very large neighborhood search.
Chapters 21 and 22 present reactive search and neural networks. Tabu search, evolutionary compu-
tation, simulated annealing, ant colony optimization and memetic algorithms are covered in Chap-
ters 23-27. In Part II1, I discuss multiobjective optimization problems, sensitivity analysis and stability of
approximations.

Part IV covers traditional applications. These applications include bin packing and extensions, pack-
ing problems, facility location and dispersion, traveling salesperson and generalizations, Steiner trees,
scheduling, planning, generalized assignment, and satisfiability.

Computational geometry and graph applications are discussed in Part V. The problems discussed in
this part include triangulations, connectivity problems in geometric graphs and networks, dilation and
detours, pair decompositions, partitioning (points, grids, graphs and hypergraphs), maximum planar
subgraphs, edge disjoint paths and unsplittable flow, connectivity problems, communication spanning
trees, most vital edges, and metaheuristics for coloring and maximum disjoint paths.

Large-scale and emerging applications (Part VI) include chapters on wireless ad hoc networks, sensor
networks, topology inference, multicast congestion, QoS multimedia routing, peer-to-peer networks, data
broadcasting, bioinformatics, CAD and VLSI applications, game theoretic approximation, approximating
data streams, digital reputation and color quantization.

Readers who are not familiar with approximation algorithms and metaheuristics should begin with
Chapters 1-6, 9-10, 18-21, and 23-27. Experienced researchers will also find useful material in these basic
chapters. We have collected in this volume a large amount of this material with the goal of making it as
complete as possible. I apologize in advance for omissions and would like to invite all of you to suggest
to me chapters (for future editions of this handbook) to keep up with future developments in the area. I
am confident that research in the field of approximations algorithms and metaheuristics will continue to
flourish for a few more decades.

Teofilo F. Gonzalez

Santa Barbara, California

© 2007 by Taylor & Francis Group, LLC

About the Cover

The four objects in the bottom part of the cover represent scheduling, bin packing, traveling salesperson,
and Steiner tree problems. A large number of approximation algorithms and metaheuristics have been
designed for these four fundamental problems and their generalizations.

The seven objects in the middle portion of the cover represent the basic methodologies. Of these seven,
the object in the top center represents a problem by its solution space. The object to its left represents
its solution via restriction and the one to its right represents relaxation techniques. The objects in the
row below represent local search and metaheuristics, problem transformation, rounding, and primal-dual
methods.

The points in the top portion of the cover represent solutions to a problem and their height repre-
sents their objective function value. For a minimization problem, the possible solutions generated by an
approximation scheme are the ones inside the bottommost rectangle. The ones inside the next rectangle
represent the one generated by a constant ratio approximation algorithm. The top rectangle represents the
possible solution generated by a polynomial time algorithm for inapproximable problems (under some
complexity theoretic hypothesis).

ix

© 2007 by Taylor & Francis Group, LLC

About the Editor

Dr. Teofilo E Gonzalez received the B. S. degree in computer science from the Instituto Tecnoldgico
de Monterrey (1972). He was one of the first handful of students to receive a computer science degree
in Mexico. He received his Ph.D. degree from the University of Minnesota, Minneapolis (1975). He
has been member of the faculty at Oklahoma University, Penn State, and University of Texas at Dallas,
and has spent sabbatical leaves at Utrecht University (Netherlands) and the Instituto Tecnoldgico de
Monterrey (ITESM, Mexico). Currently he is professor of computer science at the University of California,
Santa Barbara. Professor Gonzalez’s main area of research activity is the design and analysis of efficient
exact and approximation algorithms for fundamental problems arising in several disciplines. His main
research contributions fall in the areas of resource allocation and job scheduling, message dissemination
in parallel and distributed computing, computational geometry, graph theory, and VLSI placement and
wire routing.

His professional activities include chairing conference program committees and membership in journal
editorial boards. He has served as an accreditation evaluator and has been a reviewer for numerous journals
and conferences, as well as CS programs and funding agencies.

X1

© 2007 by Taylor & Francis Group, LLC

Emile Aarts
Philips Research Laboratories
Eindhoven, The Netherlands

Ravindra K. Ahuja
University of Florida
Gainesville, Florida

Enrique Alba
University of Mélaga
Malaga, Spain

Christoph Albrecht
Cadence Berkeley Labs
Berkeley, California

Eric Angel
University of Evry Val d’Essonne
Evry, France

Abdullah N. Arslan

University of Vermont
Burlington, Vermont

Giorgio Ausiello
University of Rome “La Sapienza”
Rome, Italy

Sudha Balla

University of Connecticut
Storrs, Connecticut

Evripidis Bampis
University of Evry Val d’Essonne
Evry, France

Roberto Battiti
University of Trento
Trento, Italy

Alan A. Bertossi
University of Bologna
Bologna, Italy

© 2007 by Taylor & Francis Group, LLC

Contributors

Maria J. Blesa
Technical University of Catalonia
Barcelona, Spain

Christian Blum
Technical University of Catalonia
Barcelona, Spain

Vincenzo Bonifaci
University of Rome “La Sapienza”
Rome, Italy

Hans-Joachim Bockenhauer

Swiss Federal Institute of Technology
(ETH) Ziirich

Ziirich, Switzerland

Mauro Brunato
University of Trento
Povo, Italy

Gruia Calinescu
Illinois Institute of Technology
Chicago, Illinois

Peter Cappello

University of California,
Santa Barbara

Santa Barbara, California

Kun-Mao Chao

National Taiwan University
Taiwan, Republic of China

Danny Z. Chen
University of Notre Dame
Notre Dame, Indiana

Ting Chen

University of Southern
California

Los Angeles, California

Marco Chiarandini
University of Southern Denmark
Odense, Denmark

Francis Y. L. Chin
The University of Hong Kong
Hong Kong, China

Christopher James

Coakley

University of California, Santa
Barbara

Santa Barbara, California

Edward G. Coffman, Jr.
Columbia University
New York, New York

Jason Cong
University of California
Los Angeles, California

Carlos Cotta
University of Mélaga
Malaga, Spain

Janos Csirik
University of Szeged
Szeged, Hungary

Artur Czumaj
University of Warwick
Coventry, United Kingdom

Bhaskar DasGupta

University of Illinois at
Chicago

Chicago, Illinois

Jaime Davila
University of Connecticut

Storrs, Connecticut

Xiii

Xiv

Xiaotie Deng
City University of Hong Kong
Hong Kong, China

Marco Dorigo
Free University of Brussels
Brussels, Belgium

Ding-Zhu Du
University of Texas at Dallas
Richardson, Texas

Devdatt Dubhashi
Chalmers University
Goteborg, Sweden

Irina Dumitrescu
HEC Montréal
Montreal, Canada, and

University of New South Wales

Sydney, Australia

Omer Egecioglu

University of California, Santa
Barbara

Santa Barbara, California

Leah Epstein
University of Haifa
Haifa, Israel

Ozlem Ergun

Georgia Institute of
Technology

Atlanta, Georgia

Guy Even
Tel Aviv University
Tel Aviv, Israel

Cristina G. Fernandes
University of Sdo Paulo
Sao Paulo, Brazil

David Fernandez-Baca
Iowa State University
Ames, Jowa

Jeremy Frank

NASA Ames Research
Center

Moffett Field, California

Stanley P. Y. Fung
University of Leicester
Leicester, United Kingdom

Anurag Garg

University of Trento
Trento, Italy

© 2007 by Taylor & Francis Group, LLC

Daya Ram Gaur
University of Lethbridge
Lethbridge, Canada

Silvia Ghilezan
University of Novi Sad
Novi Sad, Serbia

Fred Glover

University of Colorado
Boulder, Colorado

Teofilo F. Gonzalez

University of California, Santa
Barbara

Santa Barbara, California

Laurent Gourves
University of Evry Val d’Essonne
Evry, France

Fabrizio Grandoni
University of Rome “La Sapienza”
Rome, Italy

Joachim Gudmundsson
National ICT Australia Ltd
Sydney, Australia

Sudipto Guha
University of Pennsylvania
Philadelphia, Pennsylvania

Hann-Jang Ho
Waufeng Institute of Technology
Taiwan, Republic of China

Holger H. Hoos
University of British Columbia

Vancouver, Canada

Juraj Hromkovié

Swiss Federal Institute of Technology
(ETH) Ziirich

Ziirich, Switzerland

Li-Sha Huang
Tsinghua University

Beijing, China

Yao-Ting Huang
National Taiwan University
Taiwan, Republic of China

Toshihide Ibaraki
Kwansei Gakuin University
Sanda, Japan

Shinji Imahori
University of Tokyo
Tokyo, Japan

Contributors

Klaus Jansen
Kiel University
Kiel, Germany

Ari Jonsson
NASA Ames Research Center
Moffett Field, California

Andrew B. Kahng
University of California at San Diego
La Jolla, California

Yoshiyuki Karuno
Kyoto Institute of Technology
Kyoto, Japan

Samir Khuller
University of Maryland
College Park, Maryland

Christian Knauer
Free University of Berlin
Berlin, Germany

Rajeev Kohli

Columbia University
New York, New York

Stavros G. Kolliopoulos

National and Kapodistrian
University of Athens

Athens, Greece

Jan Korst
Philips Research Laboratories
Eindhoven, The Netherlands

Guy Kortsarz
Rutgers University
Camden, New Jersey

Sofia Kovaleva
University of Maastricht
Maastricht, The Netherlands

Ramesh Krishnamurti
Simon Fraser University
Burnaby, Canada

Manuel Laguna
University of Colorado
Boulder, Colorado

Michael A. Langston
University of Tennessee
Knoxville, Tennessee

Sing-Ling Lee
National Chung-Cheng University
Taiwan, Republic of China

Contributors

Guillermo Leguizamoén
National University of San Luis
San Luis, Argentina

Stefano Leonardi
University of Rome “La Sapienza”
Rome, Italy

Joseph Y.-T. Leung
New Jersey Institute of Technology
Newark, New Jersey

Xiang-Yang Li
Illinois Institute of Technology
Chicago, Illinois

Andrzej Lingas
Lund University
Lund, Sweden

Derong Liu
University of Illinois at Chicago
Chicago, Illinois

Errol L. Lloyd

University of Delaware
Newark, Delaware

Ion Mindoiu
University of Connecticut
Storrs, Connecticut

Alberto Marchetti-

Spaccamela
University of Rome “La Sapienza’
Rome, Italy

>

Igor L. Markov
University of Michigan
Ann Arbor, Michigan

Rafael Marti
University of Valencia
Valencia, Spain

Wil Michiels

Philips Research Laboratories
Eindhoven, The Netherlands

Burkhard Monien
University of Paderborn
Paderborn, Germany

Pablo Moscato
The University of Newcastle
Callaghan, Australia

Rajeev Motwani

Stanford University
Stanford, California

© 2007 by Taylor & Francis Group, LLC

Hiroshi Nagamochi
Kyoto University
Kyoto, Japan

Sotiris Nikoletseas
University of Patras and CTI
Patras, Greece

Zeev Nutov
The Open University of Israel
Raanana, Israel

Liadan O’Callaghan
Google
Mountain View, California

Stephan Olariu
Old Dominion University
Norfolk, Virginia

Alex Olshevsky

Massachusetts Institute of
Technology

Cambridge, Massachusetts

James B. Orlin

Massachusetts Institute of
Technology

Cambridge, Massachusetts

Alessandro Panconesi
University of Rome “La Sapienza”
Rome, Italy

Jovanka Pantovié
University of Novi Sad
Novi Sad, Serbia

David A. Papa
University of Michigan

Ann Arbor, Michigan

Luis Paquete
University of the Algarve
Faro, Portugal

Vangelis Th. Paschos
LAMSADE CNRS UMR 7024 and
University of Paris—Dauphine

Paris, France

Fanny Pascual
University of Evry Val d’Essonne
Evry, France

M. Cristina Pinotti
University of Perugia
Perugia, Italy

Robert Preis
University of Paderborn
Paderborn, Germany

XV

Abraham P. Punnen
Simon Fraser University
Surrey, Canada

Yuval Rabani

Technion—Israel Institute of
Technology

Haifa, Israel

Balaji Raghavachari
University of Texas at Dallas
Richardson, Texas

Sanguthevar Rajasekaran
University of Connecticut
Storrs, Connecticut

S. S. Ravi

University at Albany—State
University of New York

Albany, New York

Andréa W. Richa
Arizona State University
Tempe, Arizona

Romeo Rizzi
University of Udine
Udine, Italy

Daniel J. Rosenkrantz
University at Albany—State

University of New York
Albany, New York

Pedro M. Ruiz

University of Murcia
Murcia, Spain

Sartaj Sahni
University of Florida
Gainesville, Florida

Stefan Schamberger
University of Paderborn
Paderborn, Germany

Christian Scheideler
Technical University of Munich
Garching, Germany

Sebastian Seibert

Swiss Federal Institute of Technology
(ETH) Ziirich

Ziirich, Switzerland

Hadas Shachnai

Technion—Israel Institute of
Technology

Haifa, Israel

XVi

Hong Shen
University of Adelaide
Adelaide, Australia

Joseph R. Shinnerl
Tabula, Inc.
Santa Clara, California

Hava T. Siegelmann
University of Massachusetts
Ambherst, Massachusetts

Michiel Smid

Carleton University
Ottawa, Canada

Anthony Man-Cho So
Stanford University
Stanford, California

Krzysztof Socha
Free University of Brussels
Brussels, Belgium

Roberto Solis-Oba

The University of Western
Ontario

London, Canada

Frits C. R. Spieksma
Catholic University of Leuven
Leuven, Belgium

Paul Spirakis
University of Patras and CTI
Patras, Greece

Rob van Stee
University of Karlsruhe
Karlsruhe, Germany

Ivan Stojmenovic
University of Ottawa
Ottawa, Canada

Thomas Stiitzle
Free University of Brussels
Brussels, Belgium

Mario Szegedy

Rutgers University
Piscataway, New Jersey

© 2007 by Taylor & Francis Group, LLC

Chuan Yi Tang
National Tsing Hua University
Taiwan, Republic of China

Giri K. Tayi

University at Albany—State
University of New York

Albany, New York

Tami Tamir
The Interdisciplinary Center
Herzliya, Israel

Hui Tian

University of Science and
Technology of China

Hefei, China

Balaji Venkatachalam
University of California, Davis
Davis, California

Cao-An Wang

Memorial University
of Newfoundland

St. John’s, Newfoundland, Canada

Lan Wang
Old Dominion University
Norfolk, Virginia

Yu Wang

University of North Carolina
at Charlotte

Charlotte, North Carolina

Weizhao Wang
Illinois Institute of Technology
Chicago, Illinois

Bang Ye Wu
Shu-Te University
Taiwan, Republic of China

Weili Wu
University of Texas at Dallas
Richardson, Texas

Zhigang Xiang

Queens College of the City
University of New York

Flushing, New York

Contributors

Jinhui Xu

State University of New York
at Buffalo

Buffalo, New York

Mutsunori Yagiura
Nagoya University
Nagoya, Japan

Rong-Jou Yang
Waufeng Institute of Technology
Taiwan, Republic of China

Yinyu Ye
Stanford University
Stanford, California

Neal E. Young

University of California
at Riverside

Riverside, California

Alexander Zelikovsky
Georgia State University
Atlanta, Georgia

Hu Zhang
McMaster University
Hamilton, Canada

Jiawei Zhang
New York University
New York, New York

Kui Zhang

University of Alabama
at Birmingham

Birmingham, Alabama

Si Qing Zheng
University of Texas at Dallas
Richardson, Texas

An Zhu
Google
Mountain View, California

Jovisa Zunié
University of Exeter
Exeter, United Kingdom

Contents

PART I Basic Methodologies

1 Introduction, Overview, and Notation Teofilo F. Gonzalez.............................. 1-1
2 Basic Methodologies and Applications Teofilo F. Gonzalez...................cceeeeenn. 2-1
3 Restriction Methods Teofilo F. Gonzalezc.....oeeeeiiieeiiiiiaaeiiiineeeannn. 3-1
4 Greedy Methods Samir Khuller, Balaji Raghavachari, and Neal E. Young 4-1
5 Recursive Greedy Methods Guy EVen.............c.ceveeiiiiiieiiiiiaeiiieeeiieeeeee, 5-1
6 Linear Programming Yuval RADANiccoiiiiiiiiiiiiiii e 6-1
7 LP Rounding and Extensions Daya Ram Gaur and Ramesh Krishnamurti............ 7-1
8 On Analyzing Semidefinite Programming Relaxations of Complex
Quadratic Optimization Problems Anthony Man-Cho So, Yinyu Ye, and
JIAWET ZHATIG ..o 8-1
9 Polynomial-Time Approximation Schemes Hadas Shachnai and Tami Tamir 9-1
10 Rounding, Interval Partitioning, and Separation ~ Sartaj Sahti......................... 10-1

11 Asymptotic Polynomial-Time Approximation Schemes Rajeev Motwani,
Liadan O’Callaghan, and An ZRuoiiiiiiiiii i 11-1

12 Randomized Approximation Techniques Sotiris Nikoletseas and
Pauil SPIrakiscoovuinin i 12-1

13 Distributed Approximation Algorithms via LP-Duality and Randomization
Devdatt Dubhashi, Fabrizio Grandoni, and Alessandro Panconesiccc.ouuu... 13-1

14 Empirical Analysis of Randomized Algorithms Holger H. Hoos and
TROMAS STULZIE. ..o 14-1

15 Reductions That Preserve Approximability ~Giorgio Ausiello and

Vangelis TH. PASCROS.cuuuiui i 15-1

16 Differential Ratio Approximation Giorgio Ausiello and Vangelis Th. Paschos 16-1
17 Hardness of Approximation Mario Szegedycouevuiieiiineeiiiaiineiiinnnn, 17-1
xvii

© 2007 by Taylor & Francis Group, LLC

XViii Contents

PART II Local Search, Neural Networks, and Metaheuristics

18 Local Search Roberto Solis-Oba................eieiiiiiiaeiiiiieeeiie e 18-1
19 Stochastic Local Search Holger H. Hoos and Thomas Stiitzle............................. 19-1
20 Very Large-Scale Neighborhood Search: Theory, Algorithms, and Applications

Ravindra K. Ahuja, Ozlem Ergun, James B. Orlin, and Abraham P. Punnen 20-1
21 Reactive Search: Machine Learning for Memory-Based Heuristics

Roberto Battiti and Mauro Brumarocoeuviuiiiiiiiiiiniiiiiiiiiiieieean 21-1
22 Neural Networks Bhaskar DasGupta, Derong Liu, and Hava T. Siegelmann............ 22-1
23 Principles of Tabu Search Fred Glover, Manuel Laguna, and Rafael Marti............. 23-1
24 Evolutionary Computation Guillermo Leguizamén, Christian Blum, and

Enrique AIDGo.ooinii 24-1
25 Simulated Annealing Emile Aarts, Jan Korst, and Wil Michiels........................... 25-1
26 Ant Colony Optimization Marco Dorigo and Krzysztof SOch@................cc.......... 26-1
27 Memetic Algorithms Pablo Moscato and Carlos COtacoeeevvueaeiinn, 27-1
PART III Multiobjective Optimization, Sensitivity
Analysis, and Stability
28 Approximation in Multiobjective Problems Eric Angel, Evripidis Bampis, and

Laurent GOUTVESooiuiiiiiii i 28-1
29 Stochastic Local Search Algorithms for Multiobjective Combinatorial

Optimization: A Review Luis Paquete and Thomas Stiitzle.............................. 29-1
30 Sensitivity Analysis in Combinatorial Optimization David Ferndndez-Baca

and Balaji Venkatachalam.....................iiiiiiii 30-1
31 Stability of Approximation Hans-Joachim Bockenhauer, Juraj Hromkovit, and

SEDASHIAN SEIDETT .. .ot 31-1
PART IV Traditional Applications
32 Performance Guarantees for One-Dimensional Bin Packing

Edward G. Coffman, Jr. and Janos Csirikcoooiiiiiiiiiiiiiiiiiiiiiiiiiiiee, 32-1
33 Variants of Classical One-Dimensional Bin Packing Edward G. Coffman, Jr.,

Janos Csirik, and Joseph Y.-T. LOUNGceiiiiuiiii it 33-1
34 Variable-Sized Bin Packing and Bin Covering Edward G. Coffman, Jr.,

Jéanos Csirik, and Joseph Yo-T. LEUNG.cocuiuiuiiiiniiiiii i 34-1
35 Multidimensional Packing Problems Leah Epstein and Rob van Stee 35-1
36 Practical Algorithms for Two-Dimensional Packing Shinji Imahori,

Mutsunori Yagiura, and Hiroshi Nagamochic.c.oooiiiiiiiiiiiiiiiiiiiiiiiinnnnn. 36-1

© 2007 by Taylor & Francis Group, LLC

Contents Xix
37 A Generic Primal-Dual Approximation Algorithm for an Interval Packing and

Stabbing Problem Sofia Kovaleva and Frits C. R. Spieksmacc.coeeuiien... 37-1
38 Approximation Algorithms for Facility Dispersion S. S. Ravi,

Daniel J. Rosenkrantz, and Giri K. TAYioooiiiii it 38-1
39 Greedy Algorithms for Metric Facility Location Problems

Anthony Man-Cho So, Yinyu Ye, and Jiawei Zhang...............cccooiiiiiiiiiiiiiinenan.. 39-1
40 Prize-Collecting Traveling Salesman and Related Problems Giorgio Ausiello,

Vincenzo Bonifaci, Stefano Leonardi, and Alberto Marchetti-Spaccamela.................. 40-1
41 A Development and Deployment Framework for Distributed Branch and

Bound Peter Cappello and Christopher James Coakleyc.ccocoeiiiiiniiiininn. 41-1
42 Approximations for Steiner Minimum Trees Ding-Zhu Du and Weili W 42-1
43 Practical Approximations of Steiner Trees in Uniform Orientation Metrics

Andrew B. Kahng, Ion Mandoiu, and Alexander Zelikovskyco.. 43-1
44 Approximation Algorithms for Imprecise Computation Tasks with 0/1

Constraint Joseph Y.-T. Leung.........c.ouuuiuiuiuiuiiniiiiii i 44-1
45 Scheduling Malleable Tasks ~Klaus Jansen and Hu Zhang....................c............ 45-1
46 Vehicle Scheduling Problems in Graphs Yoshiyuki Karuno and

Hiroshi NAGAMOCHTo.ouiii i 46-1
47 Approximation Algorithms and Heuristics for Classical Planning

Jeremy Frank and Ari JONSSOMc.iuiuiiii it 47-1
48 Generalized Assignment Problem Mutsunori Yagiura and Toshihide Ibaraki 48-1
49 Probabilistic Greedy Heuristics for Satisfiability Problems Rajeev Kohli and

Ramesh Krishinamurti..........ooveiiiiiiiii i 49-1
PART V Computational Geometry and Graph Applications
50 Approximation Algorithms for Some Optimal 2D and 3D Triangulations

Stanley P. Y. Fung, Cao-An Wang, and Francis Y. L. Chifi...........c.cooviiiiiiiiiiiinna... 50-1
51 Approximation Schemes for Minimum-Cost k-Connectivity Problems

in Geometric Graphs Artur Czumaj and Andrzej Lingas..............cc.coveveuniene.n. 51-1
52 Dilation and Detours in Geometric Networks Joachim Gudmundsson and

ChriStian KRAUETouiuiii i 52-1
53 The Well-Separated Pair Decomposition and Its Applications Michiel Smid 53-1
54 Minimum-Edge Length Rectangular Partitions Teofilo F. Gonzalez and

STQING ZREIG .ot 54-1
55 Partitioning Finite d-Dimensional Integer Grids with Applications

Silvia Ghilezan, Jovanka Pantovié, and Jovi$a ZumiC..........oeveeeseeeeeeeeeieeeeaea, 55-1
56 Maximum Planar Subgraph Gruia Calinescu and Cristina G. Fernandes 56-1
57 Edge-Disjoint Paths and Unsplittable Flow Stavros G. Kolliopoulos 57-1

© 2007 by Taylor & Francis Group, LLC

XX

58

59

60

61
62
63

64

Contents

Approximating Minimum-Cost Connectivity Problems Guy Kortsarz and

ZY INUEOV ..ot 58-1
Optimum Communication Spanning Trees Bang Ye Wu, Chuan Yi Tang, and

Kunt-Mao CRAOoooiiiiiiiiiii i 59-1
Approximation Algorithms for Multilevel Graph Partitioning

Burkhard Monien, Robert Preis, and Stefan Schamberger............c.c.ccoviiiiiiininann. 60-1
Hypergraph Partitioning and Clustering David A. Papa and Igor L. Markov......... 61-1
Finding Most Vital Edges in a Graph Hong Shen...........coooviiiiiiiiiiiiiiniiininn. 62-1

Stochastic Local Search Algorithms for the Graph Coloring Problem
Marco Chiarandini, Irina Dumitrescu, and Thomas Stiitzle...................c.cocoiien. 63-1

On Solving the Maximum Disjoint Paths Problem with Ant Colony
Optimization Maria J. Blesa and Christian Blumc.ccouviiiiiiiiiiiininn. 64-1

PART VI Large-Scale and Emerging Applications

65

66

67

68

69
70

71

72

73

74

75

76

77

Cost-Efficient Multicast Routing in Ad Hoc and Sensor Networks

Pedro M. Ruiz and Ivan Stojmenovicoooiiiiiiiiiiiiiiiiiiiiiiii 65-1
Approximation Algorithm for Clustering in Ad Hoc Networks Lan Wang and

SEEPRAN OIATIU. ...t 66-1
Topology Control Problems for Wireless Ad Hoc Networks

Errol L. Lloyd and S. S. RAVI.........ouiuiuiiiiii i 67-1
Geometrical Spanner for Wireless Ad Hoc Networks Xiang-Yang Li and

YuWango 68-1
Multicast Topology Inference and Its Applications Hui Tian and Hong Shen........ 69-1

Multicast Congestion in Ring Networks — Sing-Ling Lee, Rong-Jou Yang, and
Hann-JAng HOco.oouiiuii i e e 70-1

QoS Multimedia Multicast Routing Ion Mdandoiu, Alex Olshevsky, and
Alexander ZelTkOVSKYo.oui i 71-1

Overlay Networks for Peer-to-Peer Networks Andréa W. Richa and
Christian SCReideleruu it 72-1

Scheduling Data Broadcasts on Wireless Channels: Exact Solutions and
Heuristics Alan A. Bertossi, M. Cristina Pinotti, and Romeo Rizzi....................... 73-1

Combinatorial and Algorithmic Issues for Microarray Analysis Carlos Cotta,
Michael A. Langston, and Pablo MOSCATO «............cccuuiiuiuiiiiiiiiniiiiiiiiiininaan. 74-1

Approximation Algorithms for the Primer Selection, Planted Motif Search,
and Related Problems Sanguthevar Rajasekaran, Jaime Davila, and Sudha Balla 75-1

Dynamic and Fractional Programming-Based Approximation Algorithms for
Sequence Alignment with Constraints Abdullah N. Arslan and Omer Egecioglu 76-1

Approximation Algorithms for the Selection of Robust Tag SNPs
Yao-Ting Huang, Kui Zhang, Ting Chen, and Kun-Mao Chaoc.c........ 77-1

© 2007 by Taylor & Francis Group, LLC

Contents XX1

78
79
80

81

82

83

84
85
86

Sphere Packing and Medical Applications Danny Z. Chen and Jinhui Xu 78-1
Large-Scale Global Placement Jason Cong and Joseph R. Shinnerl 79-1
Multicommodity Flow Algorithms for Buffered Global Routing

Christoph Albrecht, Andrew B. Kahng, Ion Mdndoiu, and Alexander Zelikovsky 80-1
Algorithmic Game Theory and Scheduling Eric Angel, Evripidis Bampis, and

Fanny PAscual..........c.cooiiomiui e 81-1
Approximate Economic Equilibrium Algorithms Xiaotie Deng and

Li-SHA HUANG ...t 82-1
Approximation Algorithms and Algorithm Mechanism Design

Xiang-Yang Li and Weizhao Wang...........c.ccooiiiiiiiiiiiiiiiiniiiiiiiiiiineieen, 83-1
Histograms, Wavelets, Streams, and Approximation Sudipto Guha 84-1
Digital Reputation for Virtual Communities Roberto Battiti and Anurag Garg...... 85-1
Color Quantization Zhigang Xiang...........coceuuiuiiniiiniiiiiiniieniieiiaeenes 86-1

© 2007 by Taylor & Francis Group, LLC

Basic
Methodologies

Introduction, Overview,
and Notation

Teofilo F. Gonzalez L1 Introduction.........c.veeiuneeiieiniieieiieieennes 1-1
University of California, Santa Barbara 1.2 OVeIVIEW........coiuiiiiiiiiniiiiiiiiiiiiiieaan, 1-2
Approximation Algorithms * Local Search, Artificial Neural
Networks, and Metaheuristics * Sensitivity Analysis,
Multiobjective Optimization, and Stability
1.3 Definitions and Notation...........ccevvvueeiineanne... 1-10
Time and Space Complexity * NP-Completeness *
Performance Evaluation of Algorithms

1.1 Introduction

Approximation algorithms, as we know them now, were formally introduced in the 1960s to generate
near-optimal solutions to optimization problems that could not be solved efficiently by the computa-
tional techniques available at that time. With the advent of the theory of NP-completeness in the early
1970s, the area became more prominent as the need to generate near-optimal solutions for NP-hard op-
timization problems became the most important avenue for dealing with computational intractability.
As established in the 1970s, for some problems one can generate near-optimal solutions quickly, while
for other problems generating provably good suboptimal solutions is as difficult as generating optimal
ones. Other approaches based on probabilistic analysis and randomized algorithms became popular in
the 1980s. The introduction of new techniques to solve linear programming problems started a new wave
for developing approximation algorithms that matured and saw tremendous growth in the 1990s. To
deal, in a practical sense, with the inapproximable problems, there were a few techniques introduced
in the 1980s and 1990s. These methodologies have been referred to as metaheuristics and include sim-
ulated annealing (SA), ant colony optimization (ACO), evolutionary computation (EC), tabu search
(TS), and memetic algorithms (MA). Other previously established methodologies such as local search,
backtracking, and branch-and-bound were also explored at that time. There has been a tremendous
amount of research in metaheuristics during the past two decades. These techniques have been evalu-
ated experimentally and have demonstrated their usefulness for solving practical problems. During the
past 15 years or so, approximation algorithms have attracted considerably more attention. This was a
result of a stronger inapproximability methodology that could be applied to a wider range of problems
and the development of new approximation algorithms for problems arising in established and emerg-
ing application areas. Polynomial time approximation schemes (PTAS) were introduced in the 1960s
and the more powerful fully polynomial time approximation schemes (FPTAS) were introduced in the
1970s. Asymptotic PTAS and FPTAS, and fully randomized approximation schemes were introduced
later on.

Today, approximation algorithms enjoy a stature comparable to that of algorithms in general and the
area of metaheuristics has established itself as an important research area. The new stature is a by-product
of a natural expansion of research into more practical areas where solutions to real-world problems

1-1

© 2007 by Taylor & Francis Group, LLC

1-2 Handbook of Approximation Algorithms and Metaheuristics

are expected, as well as by the higher level of sophistication required to design and analyze these new
procedures. The goal of approximation algorithms and metaheuristics is to provide the best possible
solutions and to guarantee that such solutions satisfy certain important properties. This volume houses
these two approaches and thus covers all the aspects of approximations. We hope it will serve as a valuable
reference for approximation methodologies and applications.

Approximation algorithms and metaheuristics have been developed to solve a wide variety of problems.
A good portion of these results have only theoretical value due to the fact that their time complexity is a
high-order polynomial or have huge constants associated with their time complexity bounds. However,
these results are important because they establish what is possible, and it may be that in the near future
these algorithms will be transformed into practical ones. Other approximation algorithms do not suffer
from this pitfall, but some were designed for problems with limited applicability. However, the remaining
approximation algorithms have real-world applications. Given this, there is a huge number of important
application areas, including new emerging ones, where approximation algorithms and metaheuristics have
barely penetrated and where we believe there is an enormous potential for their use. Our goal is to collect
a wide portion of the approximation algorithms and metaheuristics in as many areas as possible, as well
as to introduce and explain in detail the different methodologies used to design these algorithms.

1.2 Overview

Our overview in this section is devoted mainly to the earlier years. The individual chapters discuss in detail
recent research accomplishments in different subareas. This section will also serve as an overview of Parts
L, II, and IIT of this handbook. Chapter 2 discusses some of the basic methodologies and applies them to
simple problems. This prepares the reader for the overview of Parts IV, V, and VI presented in Chapter 2.

Even before the 1960s, research in applied mathematics and graph theory had established upper and
lower bounds for certain properties of graphs. For example, bounds had been established for the chro-
matic number, achromatic number, chromatic index, maximum clique, maximum independent set, etc.
Some of these results could be seen as the precursors of approximation algorithms. By the 1960s, it was
understood that there were problems that could be solved efficiently, whereas for other problems all their
known algorithms required exponential time. Heuristics were being developed to find quick solutions
to problems that appeared to be computationally difficult to solve. Researchers were experimenting with
heuristics, branch-and-bound procedures, and iterative improvement frameworks and were evaluating
their performance when solving actual problem instances. There were many claims being made, not all
of which could be substantiated, about the performance of the procedures being developed to generate
optimal and suboptimal solutions to combinatorial optimization problems.

1.2.1 Approximation Algorithms

Forty yearsago (1966), Ronald L. Graham [1] formally introduced approximation algorithms. He analyzed
the performance of list schedules for scheduling tasks on identical machines, a fundamental problem in
scheduling theory.

Problem: Scheduling tasks on identical machines.

Instance: Setof ntasks (11, T, ..., T,) with processing time requirements #1, t, . . ., I, partial order
C defined over the set of tasks to enforce task dependencies, and a set of m identical machines.
Objective: Construct a schedule with minimum makespan. A schedule is an assignment of tasks to
time intervals on the machines in such a way that (1) each task T; is processed continuously for
t; units of time by one of the machines; (2) each machine processes at most one task at a time; and
(3) the precedence constraints are satisfied (i.e., machines cannot commence the processing of a
task until all its predecessors have been completed). The makespan of a schedule is the time at which

all the machines have completed processing the tasks.

The list scheduling procedure is given an ordering of the tasks specified by a list L. The procedure finds
the earliest time f when a machine is idle and an unassigned task is available (i.e., all its predecessors have

© 2007 by Taylor & Francis Group, LLC

Introduction, Overview, and Notation 1-3

been completed). It assigns the leftmost available task in the list L to an idle machine at time t and this
step is repeated until all the tasks have been scheduled.

The main result in Ref. [1] is proving that for every problem instance I, the schedule generated by
this policy has a makespan that is bounded above by (2 — 1/m) times the optimal makespan for the
instance. This is called the approximation ratio or approximation factor for the algorithm. We also say that
the algorithm is a (2 — 1/m)-approximation algorithm. This criterion for measuring the quality of the
solutions generated by an algorithm remains one of the most important ones in use today. The second
contribution in Ref. [1] is establishing that the approximation ratio (2 — 1/m) is the best possible for list
schedules, i.e., the analysis of the approximation ratio for this algorithm cannot be improved. This was
established by presenting problem instances (for all m and n > 2m — 1) and lists for which the schedule
generated by the procedure has a makespan equal to 2 — 1/ times the optimal makespan for the instance.
A restricted version of the list scheduling algorithm is analyzed in detail in Chapter 2.

The third important result in Ref. [1] is showing that list scheduling procedures schedules may have
anomalies. To explain this, we need to define some terms. The makespan of the list schedule, for instance,
I, using list L is denoted by f1(I). Suppose that instance I’ is a slightly modified version of instance I.
The modification is such that we intuitively expect that f7(I’) < fr(I). But that is not always true, so
there is an anomaly. For example, suppose that I’ is I, except that I’ has an additional machine. Intuitively,
fL(I') < fL(I) because with one additional machine tasks should be completed earlier or at the same
time as when there is one fewer machine. But this is not always the case for list schedules, there are problem
instances and lists for which fr(I’) > fr(I). This is called an anomaly. Our expectation would be valid
if list scheduling would generate minimum makespan schedules. But we have a procedure that generates
suboptimal solutions. Such guarantees are not always possible in this environment. List schedules suffer
from other anomalies. For example, relaxing the precedence constraints or decreasing the execution time
of the tasks. In both these cases, one would expect schedules with smaller or the same makespan. But,
that is not always the case. Chapter 2 presents problem instances where anomalies occur. The main reason
for discussing anomalies now is that even today numerous papers are being published and systems are
being deployed where “common sense”-based procedures are being introduced without any analytical
justification or thorough experimental validation. Anomalies show that since we live for the most part in
a “suboptimal world,” the effect of our decisions is not always the intended one.

Other classical problems with numerous applications are the traveling salesperson, Steiner tree, and
spanning tree problems, which will be defined later on. Even before the 1960s, there were several well-
known polynomial time algorithms to construct minimum-weight spanning trees for edge-weighted
graphs [2]. These simple greedy algorithms have low-order polynomial time complexity bounds. It was
well known at that time that the same type of procedures do not always generate an optimal tour for the
traveling salesperson problem (TSP), and do not always construct optimal Steiner trees. However, in 1968
E. E. Moore (see Ref. [3]) showed that for any set of points P in metric space L < L1 < 2Lg, where L)y,
Lt,and Lg are the weights of a minimum-weight spanning tree, a minimum-weight tour (solution) for
the TSP and minimum-weight Steiner tree for P, respectively. Since every spanning tree is a Steiner tree,
the above bounds show that when using a minimum-weight spanning tree to approximate a minimum
weight Steiner tree we have a solution (tree) whose weight is at most twice the weight of an optimal Steiner
tree. In other words, any algorithm that generates a minimum-weight spanning tree is a 2-approximation
algorithm for the Steiner tree problem. Furthermore, this approximation algorithm takes the same time as
an algorithm that constructs a minimum-weight spanning tree for edge-weighted graphs [2], since such an
algorithm can be used to construct an optimal spanning tree for a set of points in metric space. The above
bound is established by defining a transformation from any minimum-weight Steiner tree into a TSP tour
with weight at most 2L g. Therefore, LT < 2L [3]. Then by observing that the deletion of an edge in an
optimum tour for the TSP results in a spanning tree, it follows that L < L. Chapter 3 discusses this
approximation algorithm in detail. The Steiner ratio is defined as Lg/L). The above arguments show
that the Steiner ratio is at least % Gilbert and Pollak [3] conjectured that the Steiner ratio in the Euclidean
plane equals *2 (the 0.86603 . .. conjecture). The proof of this conjecture and improved approximation
algorithms for different versions of the Steiner tree problem are discussed in Chapters 42.

© 2007 by Taylor & Francis Group, LLC

1-4 Handbook of Approximation Algorithms and Metaheuristics

The above constructive proof can be applied to a minimum-weight spanning tree to generate a tour for
the TSP. The construction takes polynomial time and results in a 2-approximation algorithm for the TSP.
This approximation algorithm for the TSP is also referred to as the double spanning tree algorithm and is
discussed in Chapters 3 and 31. Improved approximation algorithms for the TSP as well as algorithms for
its generalizations are discussed in Chapters 3, 31, 40, 41, and 51. The approximation algorithm for the
Steiner tree problem just discussed is explained in Chapter 3 and improved approximation algorithms and
applications are discussed in Chapters 42, 43, and 51. Chapter 59 discusses approximation algorithms for
variations of the spanning tree problem.

In 1969, Graham [4] studied the problem of scheduling tasks on identical machines, but restricted
to independent tasks, i.e., the set of precedence constraints is empty. He analyzes the longest processing
time (LPT) scheduling rule; this is list scheduling where the list of tasks L is arranged in nonincreasing
order of their processing requirements. His elegant proof established that the LPT procedure generates a
schedule with makespan at most 3 —5L. times the makespan of an optimal schedule, i.e., the LPT schedul-
ing algorithm has a L. approximation ratio. He also showed that the analysis is best possible for all
mand n > 2m + 1. For n < 2m tasks, the approximation ratio is smaller and under some conditions
LPT generates an optimal makespan schedule. Graham [4], following a suggestion by D. Kleitman and
D. Knuth, considered list schedules where the first portion of the list L consists of k tasks with the longest
processing times arranged by their starting times in an optimal schedule for these k tasks (only). Then
the list L has the remaining # — k tasks in any order. The approximation ratio for this list schedule using
list L is 1 +1£r__(%_%' An optimal schedule for the longest k tasks can be constructed in O(km*) time by
a straightforward branch-and-bound algorithm. In other words, this algorithm has approximation ratio
1+ € and time complexity O(n log m + m™~1=€™/€)_For any fixed constants 7 and €, the algorithm
constructs in polynomial (linear) time with respect to n a schedule with makespan at most 1 + ¢ times the
optimal makespan. Note that for a fixed constant , the time complexity is polynomial with respect to #,
but it is not polynomial with respect to 1/¢. This was the first algorithm of its kind and later on it was called
a polynomial time approximation scheme. Chapter 9 discusses different PTASs. Additional PTASs appear in
Chapters 42, 45, and 51. The proof techniques presented in Refs. [1,4] are outlined in Chapter 2, and have
been extended to apply to other problems. There is an extensive body of literature for approximation algo-
rithms and metaheuristics for scheduling problems. Chapters 44, 45, 46, 47, 73, and 81 discuss interesting
approximation algorithms and heuristics for scheduling problems. The recent scheduling handbook [5]
is an excellent source for scheduling algorithms, models, and performance analysis.

The development of NP-completeness theory in the early 1970s by Cook [6] and Karp [7] formally
introduced the notion that there is a large class of decision problems (the answer to these problems is a
simple yes or no) that are computationally equivalent. By this, it is meant that either every problem in
this class has a polynomial time algorithm that solves it, or none of them do. Furthermore, this question
is the same as the P = NP question, an open problem in computational complexity. This question is
to determine whether or not the set of languages recognized in polynomial time by deterministic Turing
machines is the same as the set of languages recognized in polynomial time by nondeterministic Turing
machines. The conjecture has been that P # NP, and thus the hardest problems in NP cannot be solved
in polynomial time. These computationally equivalent problems are called NP-complete problems. The
scheduling on identical machines problem discussed earlier is an optimization problem. Its corresponding
decision problem has its input augmented by an integer value B and the yes-no question is to determine
whether or not thereisa schedule with makespan at most B. An optimization problem whose corresponding
decision problem is NP-complete is called an NP-hard problem. Therefore, scheduling tasks on identical
machines is an NP-hard problem. The TSP and the Steiner tree problem are also NP-hard problems. The
minimum-weight spanning tree problem can be solved in polynomial time and is not an NP-hard problem
under the assumption that P # NP. The next section discusses NP-completeness in more detail. There
is a long list of practical problems arising in many different fields of study that are known to be NP-hard
problems [8]. Because of this, the need to cope with these computationally intractable problems was
recognized earlier on. This is when approximation algorithms became a central area of research activity.
Approximation algorithms offered a way to circumvent computational intractability by paying a price
when it comes to the quality of the solution generated. But a solution can be generated quickly. In other

© 2007 by Taylor & Francis Group, LLC

Introduction, Overview, and Notation 1-5

words and another language, “no te fijes en lo bien, fijate en lo rapido.” Words that my mother used to
describe my ability to play golf when I was growing up.

In the early 1970s Garey et al. [9] as well as Johnson [10,11] developed the first set of polynomial time
approximation algorithms for the bin packing problem. The analysis of the approximation ratio for these
algorithms is asymptotic, which is different from those for the scheduling problems discussed earlier. We
will define this notion precisely in the next section, but the idea is that the ratio holds when the optimal
solution value is greater than some constant. Research on the bin packing problem and its variants has
attracted very talented investigators who have generated more than 650 papers, most of which deal with
approximations. This work has been driven by numerous applications in engineering and information
sciences (see Chapters 32-35).

Johnson [12] developed polynomial time algorithms for the sum of subsets, max satisfiability, set cover,
graph coloring, and max clique problems. The algorithms for the first two problems have a constant ratio
approximation, but for the other problems the approximation ratio is In nand »€. Sahni [13,14] developed
a PTAS for the knapsack problem. Rosenkrantz et al. [15] developed several constant ratio approximation
algorithms for the TSP. This version of the problem is defined over edge-weighted complete graphs that
satisfy the triangle inequality (or simply metric graphs), rather than for points in metric space as in Ref. [3].
These algorithms have an approximation ratio of 2.

Sahni and Gonzalez [16] showed that there were a few NP-hard optimization problems for which the
existence of a constant ratio polynomial time approximation algorithm implies the existence of a polyno-
mial time algorithm to generate an optimal solution. In other words, for these problems the complexity
of generating a constant ratio approximation and an optimal solution are computationally equivalent
problems. For these problems, the approximation problem is NP-hard or simply inapproximable (under
the assumption that P # NP). Later on, this notion was extended to mean that there is no polynomial
time algorithm with approximation ratio r for a problem under some complexity theoretic hypothesis.
The approximation ratio r is called the in-approximability ratio, and r may be a function of the input size
(see Chapter 17).

The k-min-cluster problem is one of these inapproximable problems. Given an edge-weighted un-
directed graph, the k-min-cluster problem is to partition the set of vertices into k sets so as to minimize
the sum of the weight of the edges with endpoints in the same set. The k-maxcut problem is defined as
the k-min-cluster problem, except that the objective is to maximize the sum of the weight of the edges
with endpoints in different sets. Even though these two problems have exactly the same set of feasible
and optimal solutions, there is a linear time algorithm for the k-maxcut problem that generates k-cuts
with weight at least k;kl times the weight of an optimal k-cut [16], whereas approximating the k-min-
cluster problem is a computationally intractable problem. The former problem has the property that a
near-optimal solution may be obtained as long as partial decisions are made optimally, whereas for the
k-min-cluster an optimal partial decision may turn out to force a terrible overall solution.

Another interesting problem whose approximation problem is NP-hard is the TSP [16]. This is not
exactly the same version of the TSP discussed above, which we said has several constant ratio polynomial
time approximation algorithms. Given an edge-weighted undirected graph, the TSP is to find a least weight
tour, i.e., find a least weight (simple) path that starts at vertex 1, visits each vertex in the graph exactly once,
and ends at vertex 1. The weight of a path is the sum of the weight of its edges. The version of the TSP
studied in Ref. [15] is limited to metric graphs, i.e., the graph is complete (all the edges are present) and the
set of edge weights satisfies the triangle inequality (which means that the weight of the edge joining vertex
iand j is less than or equal to the weight of any path from vertex i to vertex j). This version of the TSP is
equivalent to the one studied by E. E. Moore [3]. The approximation algorithms given in Refs. [3,15] can be
adapted easily to provide a constant-ratio approximation to the version of the TSP where the tour is defined
as visiting each vertex in the graph at least once. Since Moore’s approximation algorithms for the metric
Steiner tree and metric TSP are based on the same idea, one would expect that the Steiner tree problem
defined over arbitrarily weighted graphs is NP-hard to approximate. However, this is not the case. Moore’s
algorithm [3] can be modified to be a 2-approximation algorithm for this more general Steiner tree problem.

As pointed out in Ref. [17], Levner and Gens [18] added a couple of problems to the list of problems
that are NP-hard to approximate. Garey and Johnson [19] showed that the max clique problem has the

© 2007 by Taylor & Francis Group, LLC

1-6 Handbook of Approximation Algorithms and Metaheuristics

property that if for some constant r there is a polynomial time r-approximation algorithm, then there is
a polynomial time r’-approximation algorithm for any constant r’ such that 0 < r’ < 1. Since at that
time researchers had considered many different polynomial time algorithms for the clique problem and
none had a constant ratio approximation, it was conjectured that none existed, under the assumption that
P = NP. This conjecture has been proved (see Chapter 17).

A PTAS is said to be an FPTAS if its time complexity is polynomial with respect to # (the problem
size) and 1/e€. The first FPTAS was developed by Ibarra and Kim [20] for the knapsack problem. Sahni
[21] developed three different techniques based on rounding, interval partitioning, and separation to
construct FPTAS for sequencing and scheduling problems. These techniques have been extended to other
problems and are discussed in Chapter 10. Horowitz and Sahni [22] developed FPTAS for scheduling
on processors with different processing speed. Reference [17] discusses a simple O(#/€) FPTAS for the
knapsack problem developed by Babat [23,24]. Lawler [25] developed techniques to speed up FPTAS for
the knapsack and related problems. Chapter 10 presents different methodologies to design FPTAS. Garey
and Johnson [26] showed that if any problem in a class of NP-hard optimization problems that satisfy
certain properties has a FPTAS, then P = NP. The properties are that the objective function value of every
feasible solution is a positive integer, and the problem is strongly NP-hard. Strongly NP-hard means that
the problem is NP-hard even when the magnitude of the maximum number in the input is bounded by a
polynomial on the input length. For example, the TSP is strongly NP-hard, whereas the knapsack problem
is not, under the assumption that P # NP (see Chapter 10).

Lin and Kernighan [27] developed elaborate heuristics that established experimentally that instances of
the TSP with up to 110 cities can be solved to optimality with 95% confidence in O(#?) time. This was an
iterative improvement procedure applied to a set of randomly selected feasible solutions. The process was to
perform k pairs of link (edge) interchanges that improved the length of the tour. However, Papadimitriou
and Steiglitz [28] showed that for the TSP no local optimum of an efficiently searchable neighborhood
can be within a constant factor of the optimum value unless P = NP. Since then, there has been quite
a bit of research activity in this area. Deterministic and stochastic local search in efficiently searchable as
well as in very large neighborhoods are discussed in Chapters 18-21. Chapter 14 discusses issues relating
to the empirical evaluation of approximation algorithms and metaheuristics.

Perhaps the best known approximation algorithm is the one by Christofides [29] for the TSP defined over
metric graphs. The approximation ratio for this algorithm is %, which is smaller than the approximation
ratio of 2 for the algorithms reported in Refs. [3,15]. However, looking at the bigger picture that includes
the time complexity of the approximation algorithms, Christofides algorithm is not of the same order as
the ones given in Refs. [3,15]. Therefore, neither set of approximation algorithms dominates the other as
one set has a smaller time complexity bound, whereas the other (Christofides algorithm) has a smaller
worst-case approximation ratio.

Ausiello et al. [30] introduced the differential ratio, which is another way of measuring the quality of the
solutions generated by approximation algorithms. The differential ratio destroys the artificial dissymmetry
between “equivalent” minimization and maximization problems (e.g., the k-max cut and the k-min-
cluster discussed above) when it comes to approximation. This ratio uses the difference between the worst
possible solution and the solution generated by the algorithm, divided by the difference between the worst
solution and the best solution. Cornuejols et al. [31] also discussed a variation of the differential ratio
approximations. They wanted the ratio to satisfy the following property: “A modification of the data that
adds a constant to the objective function value should also leave the error measure unchanged.” That is, the
“error” by the approximation algorithm should be the same as before. Differential ratio and its extensions
are discussed in Chapter 16, along with other similar notions [30]. Ausiello et al. [30] also introduced
reductions that preserve approximability. Since then, there have been several new types of approximation
preserving reductions. The main advantage of these reductions is that they enable us to define large classes
of optimization problems that behave in the same way with respect to approximation. Informally, the class
of NP-optimization problems, NPO, is the set of all optimization problems IT that can be “recognized”
in polynomial time (see Chapter 15 for a formal definition). An NPO problem IT is said to be in APX,
if it has a constant approximation ratio polynomial time algorithm. The class PTAS consists of all NPO

© 2007 by Taylor & Francis Group, LLC

Introduction, Overview, and Notation 1-7

problems that have PTAS. The class FPTAS is defined similarly. Other classes, Poly-APX, Log-APX, and
Exp-APX, have also been defined (see Chapter 15).

One of the main accomplishments at the end of the 1970s was the development of a polynomial time
algorithm for linear programming problems by Khachiyan [32]. This result had a tremendous impact on
approximation algorithms research, and started a new wave of approximation algorithms. Two subsequent
research accomplishments were at least as significant as Khachiyan’s [32] result. The first one was a faster
polynomial time algorithm for solving linear programming problems developed by Karmakar [33]. The
other major accomplishment was the work of Grotschel et al. [34,35]. They showed that it is possible
to solve a linear programming problem with an exponential number of constraints (with respect to the
number of variables) in time which is polynomial in the number of variables and the number of bits used
to describe the input, given a separation oracle plus a bounding ball and a lower bound on the volume of
the feasible solution space. Given a solution, the separation oracle determines in polynomial time whether
or not the solution is feasible, and if it is not it finds a constraint that is violated. Chapter 11 gives an
example of the use of this approach. Important developments have taken place during the past 20 years.
The books [35,36] are excellent references for linear programming theory, algorithms, and applications.

Because of the above results, the approach of formulating the solution to an NP-hard problem as an
integer linear programming problem and then solving the corresponding linear programming problem
became very popular. This approach is discussed in Chapter 2. Once a fractional solution is obtained, one
uses rounding to obtain a solution to the original NP-hard problem. The rounding may be deterministic
or randomized, and it may be very complex (metarounding). LP rounding is discussed in Chapters 2, 4,
6-9, 11, 12, 37, 45, 57, 58, and 70.

Independently, Johnson [12] and Lovasz [37] developed efficient algorithms for the set cover with
approximation ratio of 1 4 In d, where d is the maximum number of elements in each set. Chvétal [38]
extended this result to the weighted set cover problem. Subsequently, Hochbaum [39] developed an
algorithm with approximation ratio f, where f is the maximum number of sets containing any of the
elements in the set. This result is normally inferior to the one by Chvatal [38], but is more attractive for the
weighted vertex cover problem, which is a restricted version of the weighted set cover. For this subproblem,
itis a 2-approximation algorithm. A few months after Hochbaun’s initial result,! Bar-Yehuda and Even [40]
developed a primal-dual algorithm with the same approximation ratio as the one in [39]. The algorithm
in [40] does not require the solution of an LP problem, as in the case of the algorithm in [39], and its time
complexity is linear. But it uses linear programming theory. This was the first primal-dual approximation
algorithm, though some previous algorithms may also be viewed as falling into this category. An application
of the primal-dual approach, as well as related ones, is discussed in Chapter 2. Chapters 4, 37, 39, 40, and
71 discuss several primal-dual approximation algorithms. Chapter 13 discusses “distributed” primal-dual
algorithms. These algorithms make decisions by using only “local” information.

In the mid 1980s, Bar-Yehuda and Even [41] developed a new framework parallel to the primal-dual
methods. They call it local ratio; it is simple and requires no prior knowledge of linear programming. In
Chapter 2, we explain the basics of this approach, and recent developments are discussed in [42].

Raghavan and Thompson [43] were the first to apply randomized rounding to relaxations of linear
programming problems to generate solutions to the problem being approximated. This field has grown
tremendously. LP randomized rounding is discussed in Chapters 2, 4, 6-8, 11, 12, 57, 70, and 80 and
deterministic rounding is discussed in Chapters 2, 6, 7, 9, 11, 37, 45, 57, 58, and 70. A disadvantage of
LP-rounding is that a linear programming problem needs to be solved. This takes polynomial time with

"Here, we are referring to the time when these results appeared as technical reports. Note that from the journal
publication dates, the order is reversed. You will find similar patterns throughout the chapters. To add to the confusion,
a large number of papers have also been published in conference proceedings. Since it would be very complex to
include the dates when the initial technical report and conference proceedings were published, we only include the
latest publication date. Please keep this in mind when you read the chapters and, in general, the computer science
literature.

© 2007 by Taylor & Francis Group, LLC

1-8 Handbook of Approximation Algorithms and Metaheuristics

respect to the input length, but in this case it means the number of bits needed to represent the input.
In contrast, algorithms based on the primal-dual approach are for the most part faster, since they take
polynomial time with respect to the number of “objects” in the input. However, the LP-rounding approach
can be applied to a much larger class of problems and it is more robust since the technique is more likely
to be applicable after changing the objective function or constraints for a problem.

The first APTAS (asymptotic PTAS) was developed by Fernandez de la Vega and Lueker [44] for the
bin packing problem. The first AFPTAS (Asymptotic FPTAS) for the same problem was developed by
Karmakar and Karp [45]. These approaches are discussed in Chapter 16. Fully polynomial randomized
approximation schemes (FPRAS) are discussed in Chapter 12.

In the 1980s, new approximation algorithms were developed as well as PTAS and FPTAS based on
different approaches. These results are reported throughout the handbook. One difference was the appli-
cation of approximation algorithms to other areas of research activity (very large-scale integration (VLSI),
bioinformatics, network problems) as well as to other problems in established areas.

In the late 1980s, Papadimitriou and Yannakakis [46] defined MAXSNP as a subclass of NPO. These
problems can be approximated within a constant factor and have a nice logical characterization. They
showed that if MAX3SAT, vertex cover, MAXCUT, and some other problems in the class could be ap-
proximated in polynomial time with an arbitrary precision, then all MAXSNP problems have the same
property. This fact was established by using approximation preserving reductions (see Chapters 15 and 17).
In the 1990s, Arora et al. [47], using complex arguments (see Chapter 17), showed that MAX3SAT is hard
to approximate within a factor of 1 + € for some € > 0 unless P = NP. Thus, all problems in MAXSNP
do not admit a PTAS unless P = NP. This work led to major developments in the area of approximation
algorithms, including inapproximability results for other problems, a bloom of approximation preserving
reductions, discovery of new inapproximability classes, and construction of approximation algorithms
achieving optimal or near optimal approximation ratios.

Feige et al. [48] showed that the clique problem could not be approximated to within some constant
value. Applying the previous result in Ref. [26] showed that the clique problem is inapproximable to within
any constant. Feige [49] showed that the set cover is inapproximable within In n. Other inapproximable
results appear in Refs. [50,51]. Chapter 17 discusses all of this work in detail.

There are many other very interesting results that have been published in the past 15 years. Goemans
and Williamson [52] developed improved approximation algorithms for the maxcut and satisfiability
problems using semidefinite programming (SDP). This seminal work opened a new venue for the de-
sign of approximation algorithms. Chapter 15 discusses this work as well as recent developments in this
area. Goemans and Williamson [53] also developed powerful techniques for designing approximation
algorithms based on the primal-dual approach. The dual-fitting and factor revealing approach is used
in Ref. [54]. Techniques and extensions of these approaches are discussed in Chapters 4, 13, 37, 39, 40,
and 71.

In the past couple of decades, we have seen approximation algorithms being applied to traditional
combinatorial optimization problems as well as problems arising in other areas of research activity. These
areas include VLSI design automation, networks (wired, sensor and wireless), bioinformatics, game theory,
computational geometry, and graph problems. In Section 2, we elaborate further on these applications.

1.2.2 Local Search, Artificial Neural Networks, and Metaheuristics

Local search techniques have along history; they range from simple constructive and iterative improvement
algorithms to rather complex methods that require significant fine-tuning, such as evolutionary algorithms
(EAs) or SA. Local search is perhaps one of the most natural ways to attempt to find an optimal or suboptimal
solution to an optimization problem. The idea of local search is simple: start from a solution and improve
it by making local changes until no further progress is possible. Deterministic local search algorithms
are discussed in Chapter 18. Chapter 19 covers stochastic local search algorithms. These are local search
algorithms that make use of randomized decisions, for example, in the context of generating initial solutions
or when determining search steps. When the neighborhood to search for the next solution is very large,

© 2007 by Taylor & Francis Group, LLC

Introduction, Overview, and Notation 1-9

finding the best neighbor to move to is many times an NP-hard problem. Therefore, a suboptimal solution
is needed at this step. In Chapter 20, the issues related to very large-scale neighborhood search are discussed
from the theoretical, algorithmic, and applications point of view.

Reactive search advocates the use of simple sub symbolic machine learning to automate the parameter
tuning process and make it an integral (and fully documented) part of the algorithm. Parameters are
normally tuned through a feedback loop that many times depends on the user. Reactive search attempts
to mechanize this process. Chapter 21 discusses issues arising during this process.

Artificial neural networks have been proposed as a tool for machine learning and many results have been
obtained regarding their application to practical problems in robotics control, vision, pattern recognition,
grammatical inferences, and other areas. Once trained, the network will compute an input/output mapping
that, if the training data was representative enough, will closely match the unknown rule that produced
the original data. Neural networks are discussed in Chapter 22.

The work of Lin and Kernighan [27] as well as that of others sparked the study of modern heuristics,
which have evolved and are now called metaheuristics. The term metaheuristics was coined by Glover [55]
in 1986 and in general means “to find beyond in an upper level.” Metaheuristics include Tabu Search
(TS), Simulated Annealing (SA), Ant Colony Optimization, Evolutionary Computation (EC), iterated
local search (ILC), and Memetic Algorithms (MA). One of the motivations for the study of metaheuristics
is that it was recognized early on that constant ratio polynomial time approximation algorithms are not
likely to exist for a large class of practical problems [16]. Metaheuristics do not guarantee that near-optimal
solutions will be found quickly for all problem instances. However, these complex programs do find near-
optimal solutions for many problem instances that arise in practice. These procedures have a wide range
of applicability. This is the most appealing aspect of metaheuristics.

The term Tabu Search (TS) was coined by Glover [55]. TS is based on adaptive memory and responsive
exploration. The former allows for the effective and efficient search of the solution space. The latter is used
to guide the search process by imposing restraints and inducements based on the information collected.
Intensification and diversification are controlled by the information collected, rather than by a random
process. Chapter 23 discusses many different aspects of TS as well as problems to which it has been applied.

In the early 1980s Kirkpatrick et al. [56] and, independently, Cerny [57] introduced Simulated Annealing
(SA) as a randomized local search algorithm to solve combinatorial optimization problems. SA is a local
search algorithm, which means that it starts with an initial solution and then searches through the solution
space by iteratively generating a new solution that is “near” it. Sometimes, the moves are to a worse solution
to escape local optimal solutions. This method is based on statistical mechanics (Metropolis algorithm).
It was heavily inspired by an analogy between the physical annealing process of solids and the problem of
solving large combinatorial optimization problems. Chapter 25 discusses this approach in detail.

Evolutionary Computation (EC) is a metaphor for building, applying, and studying algorithms based on
Darwinian principles of natural selection. Algorithms that are based on evolutionary principles are called
evolutionary algorithms (EA). They are inspired by nature’s capability to evolve living beings well adapted
to their environment. There has been a variety of slightly different EAs proposed over the years. Three
different strands of EAs were developed independently of each other over time. These are evolutionary
programming (EP) introduced by Fogel [58] and Fogel et al. [59], evolutionary strategies (ES) proposed by
Rechenberg [60], and genetic algorithms (GAs) initiated by Holland [61]. GAs are mainly applied to solve
discrete problems. Genetic programming (GP) and scatter search (SS) are more recent members of the EA
family. EAs can be understood from a unified point of view with respect to their main components and
the way they explore the search space. EC is discussed in Chapter 24.

Chapter 17 presents an overview of Ant Colony Optimization (ACO)—a metaheuristic inspired by the
behavior of real ants. ACO was proposed by Dorigo and colleagues [62] in the early 1990s as a method for
solving hard combinatorial optimization problems. ACO algorithms may be considered to be part of swarm
intelligence, the research field that studies algorithms inspired by the observation of the behavior of swarms.
Swarm intelligence algorithms are made up of simple individuals that cooperate through self-organization.

Memetic Algorithms (MA) were introduced by Moscato [63] in the late 1980s to denote a family of
metaheuristics that can be characterized as the hybridization of different algorithmic approaches for a

© 2007 by Taylor & Francis Group, LLC

1-10 Handbook of Approximation Algorithms and Metaheuristics

given problem. It is a population-based approach in which a set of cooperating and competing agents
are engaged in periods of individual improvement of the solutions while they sporadically interact. An
important component is problem and instance-dependent knowledge, which is used to speed-up the search
process. A complete description is given in Chapter 27.

1.2.3 Sensitivity Analysis, Multiobjective Optimization, and Stability

Chapter 30 covers sensitivity analysis, which has been around for more than 40 years. The aim is to study
how variations affect the optimal solution value. In particular, parametric analysis studies problems whose
structure is fixed, but where cost coefficients vary continuously as a function of one or more parameters.
This is important when selecting the model parameters in optimization problems. In contrast, Chapter 31
considers a newer area, which is called stability. By this we mean how the complexity of a problem depends
on a parameter whose variation alters the space of allowable instances.

Chapters 28 and 29 discuss multiobjective combinatorial optimization. This is important in practice since
quite often a decision is rarely made with only one criterion. There are many examples of such applications
in the areas of transportation, communication, biology, finance, and also computer science. Approximation
algorithms and a FPTAS for multiobjective optimization problems are discussed in Chapter 28. Chapter 29
covers stochastic local search algorithms for multiobjective optimization problems.

1.3 Definitions and Notation

One can use many different criteria to judge approximation algorithms and heuristics. For example the
quality of solution generated, and the time and space complexity needed to generate it. One may measure the
criteria in different ways, e.g., we could use the worst case, average case, median case, etc. The evaluation
could be analytical or experimental. Additional criteria include characterization of data sets where the
algorithm performs very well or very poorly; comparison with other algorithms using benchmarks or
data sets arising in practice; tightness of bounds (for quality of solution, time and space complexity); the
value of the constants associated with the time complexity bound including the ones for the lower order
terms; and so on. For some researchers, the most important aspect of an approximation algorithm is that
it is complex to analyze, but for others it is more important that the algorithm be complex and involve
the use of sophisticated data structures. For researchers working on problems directly applicable to the
“real world,” experimental evaluation or evaluation on benchmarks is a more important criterion. Clearly,
there is a wide variety of criteria one can use to evaluate approximation algorithms. The chapters in this
handbook use different criteria to evaluate approximation algorithms.

For any given optimization problem P, let A, A, ... be the set of current algorithms that generate a
feasible solution for each instance of problem P. Suppose that we select a set of criteria C and a way to
measure it that we feel is the most important. How can we decide which algorithm is best for problem P with
respect to C? We may visualize every algorithm as a point in multidimensional space. Now, the approach
used to compare feasible solutions for multiobjective function problems (see Chapters 28 and 29) can also
be used in this case to label some of the algorithms as current Pareto optimal with respect to C. Algorithm
Ais said to be dominated by algorithm B with respect to C, if for each criterion ¢ € C algorithm B is “not
worse” than A, and for at least one criterion ¢ € C algorithm B is “better” than A. An algorithm is said
to be a current Pareto optimal algorithm with respect to C if none of the current algorithms dominates it.

In the next subsections, we define time and space complexity, NP-completeness, and different ways to
measure the quality of the solutions generated by the algorithms.

1.3.1 Time and Space Complexity

There are many different ways one can use to judge algorithms. The main ones we use are the time and
space required to solve the problem. This can be expressed in terms on #, the input size. It can be evaluated

© 2007 by Taylor & Francis Group, LLC

Introduction, Overview, and Notation 1-11

empirically or analytically. For the analytical evaluation, we use the time and space complexity of the
algorithm. Informally, this is a way to express the time the algorithm takes to solve a problem of size n and
the amount of space needed to run the algorithm.

It is clear that almost all algorithms take different time to execute with different data sets even when the
input size is the same. If you code it and run it on a computer you will see more variation depending on
the different hardware and software installed in the system. It is impossible to characterize exactly the time
and space required by an algorithm. We need a short cut. The approach that has been taken is to count
the number of “operations” performed by the algorithm in terms of the input size. “Operations” is not an
exact term and refers to a set of “instructions” whose number is independent of the problem size. Then
we just need to count the total number of operations.

Counting the number of operations exactly is very complex for a large number of algorithms. So we
just take into consideration the “highest”-order term. This is the O notation.

Big “oh” notation: A (positive) function f(n) is said to be O(g(n)) if there exist two constants ¢ > 1
and ng > 1 such that f(n) < c¢- g(n) forall n > ny.

The function g(n) is the highest-order term. For example, if f(1n) = n®> +20n?, then g(n) = n’. Setting
ngp = 1 and ¢ = 21 shows that f(n) is O(n3). Note that f(n) is also O(n*), but we like g(n) to be the
function with the smallest possible growth. The function f(n) cannot be O(#n?) because it is impossible
to find constants ¢ and #g such that #> + 20n% < cn? forall n > ny.

The time and space complexity of an algorithm is expressed in the O notation and describes their
growth rate in terms of the problem size. Normally, the problem size is the number of vertices and edges
in a graph, the number of tasks and machines in a scheduling problem, etc. But it can also be the number
of bits used to represent the input.

When comparing two algorithms expressed in O notation, we have to be careful because the constants
¢ and ng are hidden. For large n, the algorithm with the smallest growth rate is the better one. When two
algorithms have similar constants ¢ and ng, the algorithm with the smallest growth function has a smaller
running time. The book [2] discusses in detail the O notation as well as other notation.

1.3.2 NP-Completeness

Before the 1970s, researchers were aware that some problems could be computationally solved by algo-
rithms with (low) polynomial time complexity (O(n), O(#n?), O(n?), etc.), whereas other problems had
exponential time complexity, for example, O(2") and O(n!). It was clear that even for small values of n,
exponential time complexity equates to computational intractability if the algorithm actually performs
an exponential number of operations for some inputs. The convention of computational tractability being
equated to polynomial time complexity does not really fit well, as an algorithm with time complexity
O(n'%) is not really tractable if it actually performs 7'
of “tractability,” there is a large class of problems that does not seem to have computationally tractable
algorithms.

We have been discussing optimization problems. But NP-completeness is defined with respect to decision

operations. But even under this relaxation

problems. A decision problem is simply one whose answer is “yes” or “no.” The scheduling on identical
machines problems discussed earlier is an optimization problem. Its corresponding decision problem has
its input augmented by an integer value B and the yes-no question is to determine whether or not there is
a schedule with makespan at most B. Every optimization problem has a corresponding decision problem.
Since the solution of an optimization problem can be used directly to solve the decision problem, we say
that the optimization problem is at least as hard to solve as the decision problem. If we show that the
decision problem is a computationally intractable problem, then the corresponding optimization problem
is also intractable.

The development of NP-completeness theory in the early 1970s by Cook [6] and Karp [7] formally
introduced the notion that there is a large class of decision problems that are computationally equivalent.
By this we mean that either every problem in this class has a polynomial time algorithm that solves it, or
none of them do. Furthermore, this question is the same as the P = NP question, an open problem in

© 2007 by Taylor & Francis Group, LLC

1-12 Handbook of Approximation Algorithms and Metaheuristics

computational complexity. This question is to determine whether or not the set of languages recognized
in polynomial time by deterministic Turing machines is the same as the set of languages recognized in
polynomial time by nondeterministic Turing machines. The conjecture has been that P # NP, and thus
the problems in this class do not have polynomial time algorithms for their solution. The decision problems
in this class of problems are called NP-complete problems. Optimization problems whose corresponding
decision problems are NP-complete are called NP-hard problems.

Scheduling tasks on identical machines is an NP-hard problem. The TSP and Steiner tree problem are
also NP-hard problems. The minimum-weight spanning tree problem can be solved in polynomial and it
is not an NP-hard problem, under the assumption that P NP. There is a long list of practical problems
arising in many different fields of study that are known to be NP-hard problems. In fact, almost all the
optimization problems discussed in this handbook are NP-hard problems. The book [8] is an excellent
source of information for NP-complete and NP-hard problems.

One establishes that a problem Q is an NP-complete problem by showing that the problem is in NP
and giving a polynomial time transformation from an NP-complete problem to the problem Q.

A problem is said to be in NP if one can show that a yes answer to it can be verified in polynomial
time. For the scheduling problem defined above, you may think of this as providing a procedure that given
any instance of the problem and an assignment of tasks to m