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PREFACE 

This book is about the algebraic notion of "structure". In mathemat-
ical thinking, a structure crystallizes whenever attention is focused 
either on combining elementary objects of some kind to form other 
objects of a similar kind, such as adding numbers to form new num-
bers, or on relating objects to each other, such as comparing num-
bers by magnitude. Instead of numbers, two points in space may be 
combined to define a line, a point and a line may be combined to 
define a plane, and these geometric objects may also be linked by 
relations such as inclusion and parallelism. Numbers represent a sig-
nificant abstraction from whatever is being weighed or enumerated, 
and straight lines miss much of the reality of land surveying. How-
ever, algebra involves a second shift in interest, from the things com-
bined to the ways of combination. 

Numbers with addition constitute the historical archetype of al-
gebraic structure. If negatives are included, we have a group; if not, 
we have a semigroup. If multiplication is taken into consideration as 
well as addition, then a more complex structure called a ring arises. 
There is the ring of integer numbers, and the ring of rational num-
bers, and so on. Most important for the algebraist is the realization 
that there are rings consisting of objects that are not numbers at all; 
objects that can be added and multiplied and that obey rules such as 
a(b + c) = ab + ac. 

This volume presents a basic theory of groups and rings and other 
algebraic structures. Like most algebra texts, it has a chapter on 

xiii 
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fields and one on vector spaces. Like some more recent texts, it in-
cludes lattices and universal algebras. The classical number systems 
Z, Q, R and C find their raison d'etre in abstract algebra, and not the 
other way round. 

The machinery is based on sets, order relations, and closure op-
erators. All mathematical objects are defined in terms of sets. The 
entire theory is derived from nine set-theoretical axioms. Sets can 
also be viewed as the simplest kind of all structures. They are the 
subject of Chapter I. 

There are two reasons to study order relations in algebra. First, 
more or less obvious order relations present in various algebraic 
structures provide simple explanations of what is going on. Second, 
the study of ordered sets, as a kind of structure, can be undertaken in 
the same spirit as the study of structures with a law of composition. 
To a lesser extent the same is true for graphs. 

Binary operations more general than those of groups are needed 
to discuss ring multiplication, lattices, and word concatenation. Par-
tial binary operations are needed for categories. However, in the last 
chapter on categories we do not enter into any generalization that is 
not directly relevant to the material in the preceding chapters, de-
spite (or rather because of) all the new algebra that could be thus 
presented. 

The fundamental role that closure operators play in algebra led 
us to view matroids and topological spaces as structures of an al-
gebraic nature. This is why we devoted a separate chapter to each, 
rather than confining them to subsidiary treatment under "geometric 
lattices" and "filters in Boolean lattices." 

Students of algebra and researchers in other areas will find in 
this book an introduction to, or a clarification of, the basic theories 
of the twelve kinds of structures. A comprehensive exposition of 
each particular theory is not the aim of this text. Rather, we seek to 
identify essentials and to describe interrelationships between par-
ticular theories. We hope that the specialist of commutative algebra 
will find matroids worth the reading and that the student of dis-
crete mathematics will find special relativity close to his or her own 
field. 

The material is self-contained. The reader need not know any 
mathematical definitions, results, or methods. However, the pace and 
density of exposition corresponds to those of graduate texts. 
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Selected advanced results are derived from weak rather than 
strong hypotheses, whenever this is compatible with the objective of 
simplicity. Also, several classical concepts are introduced relatively 
late, in order to demonstrate the simplicity of certain results estab-
lished without the use of these concepts. Thus, Zermelo's Theorem 
is proved before set intersections are introduced, elementary group 
theory (including Lagrange's Theorem) is developed before the the-
ory of integers, and a simple Galois theory is presented without call-
ing on vector space dimensions. And if some major algebraic con-
cept fails to appear altogether, the reader may conclude that it is not 
required for any of the theorems included in this short volume. 

Throughout the text the student is frequently prompted to per-
form exercises of verification and to explore examples. These inte-
grated exercises are indispensable for any reader not yet familiar 
with the theory. At the end of each section, there are additional 
numbered exercises from which to select. Many of these are open-
ended questions in the sense that while a satisfactory answer can be 
given without much difficulty, there is ample room for better and 
more complete answers. (An exact science mathematics may well be, 
but mathematical research is not more deterministic than any other 
intellectual endeavor.) 

Each chapter builds on key notions introduced in previous chap-
ters. However, if you are already conversant with some of the struc-
tures, then you may go directly to selected chapters or even sections 
and use the index whenever you suspect a divergence between your 
definitions and ours. 

In a course or seminar, the book should be used as reading ma-
terial before or after verbal presentations. If the syllabus is limited 
to certain chapters only, the instructor should summarize for the stu-
dents the definitions needed from the excluded chapters. In a sem-
inar, we recommend the use of a Socratic approach, with analysis 
of examples and blackboard exercises, to probe the students' under-
standing of how constructs relate to theorems and structures to each 
other. The ultimate object of probing, however, is not progress in 
learning a science, but the tools and concepts of science itself. It is 
in the spirit of such questioning that the book was written. 
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CHAPTER I 

SETS 

1. ELEMENTARY CONSTRUCTIONS AND AXIOMS 

The ability to think about collections of objects with precision and 
without ambiguity is indispensable in mathematics. Indeed, this is 
so in any exact science. Students of the physical world care about 
and count the collection of atoms in a given portion of matter, and 
chemists concern themselves with the collection of atoms forming a 
molecule, distinguishing various compounds according to what kind 
of molecules they contain and in what proportions. Biology in turn 
makes use of physics and chemistry and describes aggregates of mil-
lions of cells forming a tissue. Living and extinct creatures are clas-
sified into collections called species and their subcollections called 
varieties, and resembling species are grouped into families and kinds. 
Economists conceptualize and measure physical quantities of edible 
or otherwise useful goods, taking stock of grain, cattle, and money 
supply, distinguishing raw materials from work-in-process invento-
ries, and discussing such issues as whether home-baked cakes should 
be included in or excluded from the gross national product. Lin-
guists divide the collection of all words into subcollections such as 
nouns, pronouns, verbs, and adverbs, and they study small groups of 
words called sentences as they relate to the former subcollections. 

1 



2 SETS 

No other science, however, relies as much on the conceptual manip-
ulation of collections as mathematics. 

It was already realized by the reflective Greeks of pre-Christian 
times that some restraint must be exercised in talking about collec-
tions. The liar's paradox of Crete goes as follows. Let collection T 
be the collection of all true sentences uttered on the island of Crete, 
and let F be the collection of untrue (false) sentences. Then let a 
mathematician take a boat to Crete and upon disembarking declare: 
"This very sentence I am pronouncing at this moment belongs to 
F." Despite the apparent rigor employed in defining T and F, the 
rules of logic seem to break down. If the mathematician's declara-
tion is true, then the sentence being pronounced does indeed belong 
to F, and therefore it is false by definition of F. But if the declara-
tion is false, then it must belong to F by definition, and it therefore 
becomes a true statement. Modern mathematics deals with the para-
dox by imposing very stringent rules on how collections should be 
defined. Requiring a precise definition of any mathematical object 
before making statements about that object is what lends mathemat-
ics its reliability. (Look at the contractual text of an insurance policy 
for an analogy.) Although very restrictive, the rules of definition still 
allow all usual mathematical objects to be defined in terms of col-
lections. Indeed, the space of three-dimensional geometry will be a 
collection of vectors, of which points, lines, and planes will be sub-
collections. Moreover, the vectors themselves will be defined as col-
lections, and the numbers 0, 1, 2, etc., will be formally defined as 
collections of a most particular kind. 

The entire body of mathematical science can be viewed as a the-
ory about collections called sets. By using the technical word "set," 
mathematicians simply indicate that they are talking about a collec-
tion and that they strongly believe that they know what they are talk-
ing about. Accordingly, the mathematician may wish to avoid the un-
regulated word "collection." To what extent this suffices to exempt 
mathematics from the fundamental uncertainty that affects human 
knowledge is open to debate. First, every mathematical discourse has 
a small number of primitive concepts that are not defined rigorously 
but are used in the formal definition of more elaborate concepts. 
Second, a few simple mathematical propositions are based on belief 
and observation rather than proof, yet they serve as the very founda-
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tion of all further theory. Having disclosed these risk factors, let us 
proceed. 

An object x belonging to a set S is termed an element, or member, 
of 5, in symbols x € 5. If the object x does not belong to 5, we write 
x £ S. Sets are completely determined by their elements, i.e., if two 
sets A and B have the same elements, then the two sets are the 
same. In this case we write A = B. If A and B are not the same, 
then we write A f- B. If all elements of A are also elements of B, 
then A is called a subset of B, in symbols A C B. We also say that B 
is a superset of A and write B D A. The negation of A C B is written 
A g 5. Trivially, every set 5 has at least one subset, for B C B. A 
subset ,4 of 5 is a proper subset if A £ B, and we then write y4 c 
5. The following axiomatic propositions are adopted, without proof, 
entirely on the basis of their intuitive plausibility. 

(Al) Empty Set Axiom. There is a set 0 which has no element. 

The set 0 is called the empty set (or null or void set). Clearly 0 C A 
for every set A. 

(A2) Subset Axiom. / / A is any set, then those elements x of A that 
satisfy some given condition or possess a given property form a set. 

To designate "the set of those elements x of A that satisfy a certain 
condition," we usually write {x e A : x satisfies a certain condition}. 
This is of course a subset of A. In practice, the original superset 
specification "x e A" is often indicated in other, less explicit ways. 

(A3) Power Set Axiom. For any set A, there is a set V(A), whose 
elements are all the subsets of A 

The set V(A) is called the power set of A. Occasionally we write 
simply VA instead of V(A). 

Since A C A, we have A e V(A), and it follows from (A2) that 
V(A) has a subset containing A as unique element. This subset of 
V(A) will be denoted by {A} and called a singleton set. We have 
{A} = {xeV(A) :x = A}. 

(A4) Pair Axiom. / / A and B are sets, then there is a set {A,B} that 
has both A and B as elements but has no other elements. 
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The set {A,B} is called a pair. Note that {A,B} = {B,A}- UA = B, 
then the pair is a singleton, {A, B} = {A} = {B}. 

(AS) Union Axiom. Given any set A whose members are sets, there is 
a set \JA whose elements are the elements of the members of A 

The set U/l is called the union of A (or of the members of A), and 
it is also denoted by {JXZAX- The union of a pair {A,B} is usually 
denoted by A U B and called the union of A and B. Thus if we let 
/ = {A,B}, then 

AUB = 1)1 = (J X 
xa 

These few axioms immediately allow us to ask and answer a mean-
ingful question that is quintessentially algebraic. Suppose we have 
sets A, B, and C. Taking the union of A U B and C we get some 
set (A U B) U C. Proceeding differently, taking the union of A with 
Bl)C, we get some set ,4u(flUC). But are not (AUB)UC and 
y4 U (B U C) the same? Yes indeed, because it is easy to verify that 
they have the same elements. It is time to state the first theorem of 
algebra: 

Proposition 1 Let A, B, and C be sets. 

(i) (A U B) U C = A U (B U C) {associative law) 
(ii) A U B = B U A {commutative law) 

(iii) A U A = A {idempotent law) 

Proof. Associativity has just been observed. Commutativity follows 
from the earlier made observation that {A,B} = {B,A}, which is 
often referred to by saying that the pair {A, B} is "not ordered." 
Finally, idempotence is obvious by definition of the union. • 

Using axioms (Al) to (A5), we can define a great variety of sets. 
The reader should verify which particular axioms need to be called 
upon to construct the following specific examples: 

The empty set 0. 
The singleton {0}. 
The pair {0,{0}}. 
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The power set V({0,{0}}). 
The power set of the above, VV{{0,{0}}). 
The power set of the above. 

And so forth without end. What is remarkable here is that each of 
these examples is a set of sets, a set whose elements are themselves 
sets. Indeed we shall only consider sets of sets in this volume. It is 
the author's view, adopted in this book at least, that in mathematics 
we need not and should not speak about sets of atoms, molecules, 
animals, or true or false sentences unless these various objects can 
be precisely defined as sets themselves. In some cases this may be 
done meaningfully, such as in theoretical physics, or in mathematical 
logic where sentences can be defined as proper mathematical objects 
themselves, i.e., as sets. Neither should we speak about the set of 
even or odd numbers until these numbers have been defined as sets: 
this will be done in a while. 

It was pointed out that the elements of a pair {a,b} are "not 
ordered," {a, b} = {b,a}. The ordered pair (a,b) is defined by 

(a,b) = {{a},{a,b}} 

and it has the desired property that 

(a,b) = (c,d) if and only if both a = c and b = d 

Thus {a, b) = {b,a) if and only if a = b. The reader should verify that 
(a,b) is a subset of W{a U b). If a and b are elements of sets A and 
B, respectively, then 

aUb C (U/4)U(UB) 

and thus (a,b) is also a subset of 

VV((UA)U(UB)) 

Therefore those ordered pairs (x,y) for which x e A and y £ B form 
a subset A x B of 

VVP((UA)U(UB)) 

called a Cartesian product. A function, map, or mapping from A to 
B is then any subset / of Ax B such that for every x £ A there is a 
unique y £ B with 

(*.y)ef 
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The set A is called the domain, B a codomain of / . (A function 
can have many different codomains, for if B C B', then A x B C 
Ax B', and thus every function from A to B is also a function from 
A to 5'.) We use the shorthand / : A —> B for "a function / from 4̂ 
to 5." For x £ A, the unique element y of 5 such that (x,y) G / is 
called the /'mage o/x fey / , or the value of f on x, and it is denoted by 
f{x). It is also said that / associates f(x) with x, f maps x to f(x), 
or /(x) is obtained by applying f to x. The set of all functions from 
A to B is denoted by BA; it is a subset of V(A x B). For reasons 
to be seen later, we say that BA is obtained from B and A by set 
exponentiation. For f £ BA and 5 C /4 the function 

{{x,f(x)) :xeS} 

is called the restriction of / to 5. It is a function from S to 5, and 
it is denoted by f\S. We also say that / is an extension of g = f\S to 
/I, or that / extends g. 

Observe that two functions f,gEBA are identical if 

f(*) = S(x) f ° r every x £ A 

A function is thus completely determined by its values on the var-
ious elements of its domain, and usually that is how functions are 
specified. 

Informally, a function A —• B is often thought of as a "rule," "pro-
cedure," or "machine" that, given any input x e A, "allows us to 
find" or "produces" an element /(x) e B. Many functions seen in 
mathematics appear in fact to fit this notion. However, many other 
functions, perhaps not "seen" but existing nevertheless, have noth-
ing to do with computational procedures. (This issue is of great 
importance in mathematical philosophy and logic and of practical 
relevance in computer science. The interested reader is referred to 
the theory of recursive functions and to the theory of computational 
complexity.) 

For every set A the function i : A—> A defined by 

/ = {(x,x) 6 A x A : x £ A} 

[or equivalently by i(x) = x for x £ A] is called the identity function 
on A, often denoted by idA. In a nonempty set B let b e B. As-
sume also that A f- 0. The function c = A x {b} from A to B is said 
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to be constant because 

c(x) = b for all x £ A 

An arbitrary map / : A —• B is said to be constant on a subset S of 
its domain A if the restriction f\S is constant. 

The image of a set S C A by a function / : /I —• B is the set 

{y £ B : _y = f(x) for some £ 5} 

It is denoted by f[S]. The inverse image of a set T C B is 

{ * € / ! : / ( * ) €7-} 

It is denoted by ftm[T]. The /mage, or range, of the function / : 
A —c 5 is /L4]; it is denoted by Im/ . If I m / = B, then / is said to 
be surjective to B (or a function onto B). All identity functions are 
surjective onto their own domains. On the other hand, the image of a 
constant function is a singleton, and therefore a constant function c : 
A —• B is not surjective onto 5 unless the codomain B is a singleton. 

A function / : A —• B is infective (or an injection) if there are no 
distinct elements x ^ x1 of A with f(x) = f (*'). All identity func-
tions are injective. On the other hand, a constant function is not 
injective unless its domain is a singleton. (The reader should verify 
this.) 

An injective function surjective onto a codomain B is called bijec-
tive (or a bijection) to B. All identity functions are bijective to their 
own domains. For a nontrivial example, let 5 be any set and let the 
complementation function f : V(S) —> V(S) be defined by 

f(A) = {x £ S : x i A} for every A £ V(S) 

This complementation function is bijective from V(S) to V(S). 
There are two facts that we should take note of at this juncture. 

First, for any set 5 there is an injection / : S —* V(S). Indeed, / can 
be defined by f(x) = {x} for all x £ S, i.e., 

f = {(x,{x}) :x£S} 

Second, let us prove that there is no injection g : V(S) —• S from the 
power set of S into 5. Suppose that such a g exists: we shall derive 
a contradiction. Consider those subsets A of S for which g(A) 0 A. 
Let F be the set of the corresponding elements g{A), 

F = {x £ S : x = g(A) for some ACS such that g(A) g A) 
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If we had g(F) £ F, then by letting A = F, it follows from the defi-
nition of F that g(A) belongs to F, i.e., g{F) e F. And if g(F) e F, 
then g(F) = g(̂ 4) for some ACS such that g(A) $ A, again refer-
ring to the definition of F verbatim. Since g is supposed to be injec-
tive, g(F) =g(A) implies F = A. But then g(F) € F and J /4 
are contradictory, proving the absurdity of the alleged existence of 
an injective g. This argument is inspired by the liar's paradox. How-
ever, what is reduced to absurdity here is not the universal dichotomy 
of truth and falsehood but merely the possibility of injecting V(S) 
into S. The argument is indeed a domesticated variety of the liar's 
paradox of Crete. 

If / : A -> B and g : B —• C are functions, then the composition 
gofis the function from A to C defined by 

fe°/)(*)=*(/(*)) ^ all x€A 

i.e., g o / is the set of all ordered pairs (x,z) such that for some 
yeB, 

f(x) = y and g(y) = z 

Occasionally we shall write simply gf instead of g o f. The reader 
can see that the composition of two injective functions is injective 
and the composition of surjective functions is surjective. Hence, the 
composition of bijections is bijective. Observe further that a function 
/ : A —• B is bijective to B if and only if the set 

{(y,x)€BxA: (x,y) G f] 

is itself a function from B to A. Denoting this new function by /*, 
we have /* o / = idA and / o /* = ids, and /* is called the inverse 
of / . The reader should verify that /* itself is a bijection from B to 
A, having in turn / as its inverse. Moreover, a function / : A—> B 
is bijective if and only if there is a function g : B —> A such that 

gof = idA and f°g = idB 

and in that case g must coincide with /*. For all T C B we have 

f*[T] = fim[T] 

Note, however, that f*[T] is only defined for bijective / , while 
fim[T) is always defined. 

The following proposition, of constant use in mathematics, antici-
pates the subject of the last chapter on category theory: 
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Proposition 2 Let f : A —> B, g : B —• C, and h : C —• D be func-
tions. 

(i) h o (g o / ) = (/i o g ) o / (associative law) 

(ii) I '^A of=f and f o /a1^ = / (neutrality of the identities) 

Proof. Let x 6 A The image of x by /i o (g o / ) is given by applied 
to 

(W)00 = *(/(*)) 
i.e., it is «[g( / (x))] . But the image of x by (hog)of is hog ap-
plied to f(x), i.e., n[g(/(x))] again. Thus (hog)of and ho(gof) 

take the same value on every x e and therefore they are identi-
cal functions. The neutrality of the identities can be verified by the 
reader. • 

Here is now an early result in equational algebra: 

Proposition 3 Let f be a bijection of a set A into itself. Then for any 
function g : A —> A there is a unique function x : A —> A satisfying 
the equation 

g = fox (1) 

There is also a unique function y satisfying 

g = y°f (2) 

Proof. Since /* is the inverse of / , x - f* og is a solution of (1), 
because 

f°(f*°g) = if °D°g = idAog =g 

Also, if x is any function satisfying g = f ° x, then 

/ * o g = / * o(fox) = (f* of)o x = idAo x = x 

This proves that x must be equal to f* og and cannot be any other 
function. The unique solvability of (2) is shown similarly. • 

A set A is said to be equipotent to B if there is a bijection from 
A to B. We shall then write A ~ B. 

Proposition 4 Let A, B, and C be sets. 
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(i) A ~ A 
(ii) if A~B, then B~A 

(reflexivity) 
(symmetry) 

(iii) ifA~B and B ~ C, then A~C (transitivity) 

Proof Reflexivity results from the fact that the identity id A is a In-
jection. Symmetry follows from the observation, made earlier, that 
the inverse of any bijection is a bijection. Finally, since the composi-
tion of two bijections is again a bijection, we have transitivity. • 

A bijection / from a set A to a set B establishes what is often 
called a one-to-one correspondence between the elements of A and 
those of B. The elements of A and B are matched into ordered 
pairs (a,b) G / , with each element a of A being matched to a unique 
be B, and each b € B corresponding to a unique element of A. It 
is then tempting to say that A and B have the same number of el-
ements. While we must refrain from using the word "number" until 
it is defined, this is actually what the term "equipotent" is meant 
to convey. The following result on set exponentiation may then be 
thought of as the first theorem of arithmetic: 

Proposition 5 For any sets A, B, and C we have 

Proof Define a function F from (CB)A to CBxA as follows. If / G 
(CB)A, then for every element a £ A, f(a) is a function from B to 
C. Let then J be a function from B x A to C defined by 

Let F(f) be defined as / . The function F is injective for if F(f) = 
F(g), then 

f(a)(b)=g(a)(b) for all (b,a) G B x A 

i.e., for a G A fixed the functions f(a) and g(a) from B to C are the 
same function, f(a) = g(a). This being true for all a G A, f and g 
are one and the same function from A to CB. 

To prove surjectivity, let h G CBxA. Let hA : A C B be defined 
as follows. For a E A, hA(a) is the function from 5 to C specified by 

(CB)A ~ C 

f((b,a)) = f(a)(b) 

hA(a)(b) = h((b,a)) for all fcGfl 
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It can now be verified that F(hA) = h. Thus every h£CBxA belongs 
to Im F, and F is surjective onto CBxA. Since it was also shown to be 
injective, it must be bijective to CBxA, establishing the equipotence 
of its domain (CB)A and the codomain CBxA. • 

EXERCISES 

1. For any sets A, B, C verify that 

(a) ACB is equivalent to AUB = B, 

(b) A x (B U C) = (A x B) U {A x C), 

(c) Ax 0 = 0, 
(d) if / is a singleton, then A x I ~ A, 

(e) A x B ~ B x A, 

(f) Ax(B xC)~(Ax B)xC, 

(g) (A x Bf ~ (Ac) x (Bc), 

(h) A^ is a singleton, 

(i) 0^ = 0 unless A = 0, 

(j) if / is a singleton, then A1 ~ A and Z"4 is a singleton, 
(k) if A f- 0, then the set of constant functions A —• B is equipo-

tent to 5, 
(I) for Af<&, a function / : /I -> 5 is injective if and only if 

there is a function g : B —» A with go f = idA. 

2. Write and run a computer program that produces a complete list 
of members of the set WPVVV(0). Introduce any notation you 
wish to make the printout readable. 

2. CARDINAL AND ORDINAL NUMBERS 

An ordinal (or ordinal number) is a set a satisfying the following 
conditions: 

(i) every element of a is a subset of a, a C V(a), 

(ii) for b, c £ a, c c b if and only if c 6 b, 
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(iii) every nonvoid subset S of a, 0 C S C a, has a member /? £ 5 
that is a subset of all members s £ S, p C s; p is then called 
the first element of 5. 

Examples. The null set 0 , the singleton {0}, and the pair {0,{0}} 
are ordinals. There will be many more. 

Condition (i) tells us that for an ordinal a, if b £ a and c £ b, 
then c £ a. The reader can see that every element b of an ordinal a 
is again an ordinal. 

Condition (ii) implies that an ordinal never belongs to itself, be-
cause no set can be a proper subset of itself. Similarly, an ordinal 
never belongs to any of its own elements. 

From these facts it easily follows that for every ordinal a, the set 
a' = a U { a } is again an ordinal, called the successor of a. This al-
lows us to construct some very important ordinals. We define: 

0 = 0 "zero" 
1 = 0 ' = {0} "one" 
2 = 1 ' = {0,{0}} "two" 
3 = 2' "three" 
4 = 3' "four" 
5 = 4' "five" 
6 = 5' "six" 
7 = 6' "seven" 
8 = 7' "eight" 
9 = 8' "nine" 

Proposition 6 For any ordinals a and (5, we have a C P if and only 
ifaep. 

Proof. If a £ p, then a C f3 by the definition of an ordinal applied to 
(3. Also a.ffi because f3 £ p. Thus a c p. 

If a C p, then let y> be the first element of 

5 = {x £ j3 : JC i a} 

For any a e a, the first element of {a,<p} cannot be <p, for that would 
imply <p £ a, so it is a, and thus a £ y>. Hence a C y>. If we had the 



CARDINAL AND ORDINAL NUMBERS 13 

strict inclusion a C <p, then tp being a subset of the ordinal p, it would 
have as a member some element x of S, x e <p. But by definition of 
S and <p we would also have <p £ x, which is impossible because an 
ordinal never belongs to any of it own elements. Thus a = ip and 
therefore a 6 P, which proves the proposition. • 

In view of this proposition, instead of writing a C P or a G p when 
such is the case, it is customary to write a < /? and to say that a is 
less than p, or that p is greater than a. We write a < p to mean that 
"a < p or a = /3" and we say that a is //ww or equal to p, or p is 
greater than or equal to a. For example, every ordinal a is less than 
its successor a', but neither a' <a nor a' < a is true. The inequality 
a < p is equivalent to a C /3. 

A key property of the relation < is that it permits the comparison 
of any two ordinals. For assume that neither a < p nor p < a holds. 
The set a of common elements of a and p is easily seen to be an 
ordinal. By assumption, a is distinct both from a and p. But then, by 
Proposition 6, a belongs to both a and p, i.e., a belongs to a, which 
is impossible. This proves that at least one of a < p or p < a must 
hold. Combining with earlier remarks, we obtain: 

Proposition 7 Let a, p, and 7 be ordinals. 

(i) a < a (reflexivity) 

(ii) if at < P and p < a, then a = p (antisymmetry) 

(iii) if a < p and p < 7, then a < 7 (transitivity) 

(iv) at least one of a < p or p < a holds (total comparability) 

Indeed a property stronger than total comparability holds: 

Proposition 8 Every nonempty set S of ordinals has an element ip 
that is less than any other element of S. 

Proof. Take any a G S. Let Sa be the set of those elements of S that 
are less than a. If Sa = 0, then let tp = a. Otherwise Sa is a nonvoid 
subset of a, and we let tp be the first element of Sa. • 

Corollary. The union of any set of ordinals is an ordinal. 
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The ordinal p e 5 whose existence was established by Proposition 
8 is called the first element of 5, which is in accordance with the 
earlier use of this term. 

Every ordinal number a is a set, namely the set of ordinals less 
than a. The union Ua is always an ordinal and Ua < a. Now, either 
Ua < a or Ua = a. If Ua < a, then let p be an element of a that 
does not belong to Ua. We have Ua < p. But since pea, also p C 
Ua. Thus p = Ua, and the only element of a not in Ua is p = Ua, 
i.e., 

a = (Ua)U{Ua} 

which means that a is the successor of Ua. Can a be at the same 
time the successor of some other ordinal /3? The answer is no, be-
cause from a = f3 U {/?} it follows that 

Ua = (U/3)U/3 = /3 

This argument also shows that a is not the successor of any ordi-
nal (3 if Ua = a. There are two kinds of nonzero ordinals a. On the 
one hand, there are those for which Ua < a. Then a is the successor 
of Ua, and Ua is termed the predecessor of a. On the other hand, 
there are those ordinals a for which Ua = a. These have no prede-
cessor, and they are called limit ordinals. Every limit ordinal is the 
union of lesser ordinals. An ordinal a that is either 0 or such that 
Ua < a is said to be of the first kind, while nonzero limit ordinals 
are sometimes said to be of the second kind. We now arrive at a 
most important concept: an ordinal is called finite if it is of the first 
kind and all its elements are also of the first kind. An ordinal that 
is not finite is called infinite. Finite ordinals are also called natural 
numbers. 

Examples. The ordinals 0,1,2,...,9 defined earlier are natural num-
bers. The successor of any natural number is again a natural number. 

But does there exist any infinite ordinal? We are unable to prove 
it. We have seen how to make "one" out of "zero," "two" out of 
"one," and so on to trillions. However, even a megaquadrillion is 
just finite dust. It is time to postulate three new axioms. 

(A6) Axiom of Existential Infinity. There is a set to which all finite 
ordinals belong. 
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(A7) Axiom of Limited Infinity. There is no set having among its 
members sets equipotent to every ordinal. 

Otherwise stated, for every set 5, there is an ordinal a such that no 
set belonging to S is equipotent to a. 

(A8) Axiom of Choice. For every set of nonvoid sets S, there exists a 
function c : S —> US such that c(A) £ A for every A(E S. 

The function c is called a choice function; for each A £ S it is said 
to choose the element c(A) in the set A. 

An immediate consequence of the Axiom of Existential Infinity is 
that there is a set whose elements are precisely the natural numbers. 
In view of the paramount importance that it claims in the spiritual 
life of mathematicians, the set of all natural numbers is denoted by the 
Greek letter w. The Axiom of Limited Infinity, on the other hand, 
implies that the "set of all ordinals" is nonexistent. 

With the intention of using ordinal numbers for enumeration, we 
now further develop the theory of equipotence, in particular as re-
garding ordinals. For any sets 5 and R the difference S\R is defined 
by 

S\R = {x £ S : x £ R} 

Counting Lemma. If a set S is equipotent to a set T, and if s and 
t are elements of S and T, respectively, then S\{s} and T\{t} are 
equipotent. 

Proof. If / : S —• T is a bijection, and if f(s) = t, then 

g = {(x,y)£f : xjts, y + t) 

is a bijection from S\{s} toT\ {/}. If /(s) f t, then let r £ S such 
that f(r) = t. Now 

g = {(x,y)£f :x?s, y?t}u{(r,f(s))} 

is a bijection from S \ {s} toT\ {/}. • 

It is now easy to show that no natural number is equipotent to 
any other natural number. (If this is not true, let n be the first nat-
ural number equipotent to some natural number distinct from itself, 
say to m n. As no bijection can exist between the empty set and a 
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nonempty set, neither of n or m is 0. Then by the Counting Lemma, 
the predecessors of n and m are equipotent, contradicting the def-
inition of n.) Thus a natural number is not equipotent to any of its 
own elements. This is not true for ordinal numbers in general. For 
example, the successor of u>, the ordinal w ' = w U {u;}, is equipotent 
to w. A bijection / can be defined by 

f(n) = n for all n e w ' , n±u, and f(w) = 0 

This observation motivates the following definition. A cardinal (or 
cardinal number) is an ordinal that is not equipotent to any of its 
own elements (i.e., not equipotent to any ordinal less than itself). 
Thus natural numbers are cardinal numbers. Let us verify that so is 
w. Were this not so, there would be a smallest n e w equipotent to w. 
Obviously n f- 0, so let m be the predecessor of n. By the Counting 
Lemma, the sets 

m = n\{m} and w = u)\{0} 

would be equipotent. But ui is also equipotent to w, via the bijection 

/ = {(n,n) : n £ w } 

so by transitivity (Proposition 4) m would be equipotent to w, con-
tradicting the minimal choice of n. 

Zermelo's Theorem (First Formulation). Every set is equipotent to a 
cardinal. 

Proof. Observe first that it will be enough to prove that every set 5 
is equipotent to some ordinal a. For if a is not a cardinal, then let 
P be the first element of a that is equipotent to a. Obviously /9 is a 
cardinal equipotent to S. 

To prove that every set S is equipotent to an ordinal, we use the 
Axiom of Choice, which assures us of the existence of a choice func-
tion c from the set V*(S) of nonempty subsets of S into UP* (S) = S. 
With a fixed choice function c in mind, we call ordinal function into 
S any injection / : a —> S from some ordinal a into 5, such that for 
every p e a 

f(P) = c(S\f[p}) 

In particular, if a f- 0, then /(0) = c(S) for every ordinal function / : 
a —* S. Further, we claim that if / : a —> 5 and g : p —> S are ordinal 
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functions and a < p, then /(8) = g(8) for every 8 £ a. For if 8 were 
the first element of a for which / (8) f g(8), then /(7) = g(j) for all 
7 £ /3 and the sets 

S/ = S\/[/3] 

would be the same, hence c(Sf) = c(Sg). But f(8) = c(Sf) and g(8) 
= c(Sg), and then f(B)=g(8), proving our claim. This implies in 
particular that, with respect to a fixed choice function c, there can 
be at most one ordinal function a —> 5 for any ordinal a. 

Ordinal functions are injective. Therefore, their images are equi-
potent to their ordinal domains. Hence, by the Axiom of Limited 
Infinity, there is an ordinal a without ordinal function / : a —• 5. 
Then define the ordinal 8 as follows. If for every ordinal p < a there 
are ordinal functions from p to S, then let 8 = a. Otherwise let 8 be 
the first element of p for which no ordinal function exists from 8 to 
5. In either case, 8 has the following properties: there is no ordinal 
function 8 —> 5; and for every p< 8 there is an ordinal function p -* 
S. Observe that 8 cannot be a limit ordinal, for in that case we could 
define an ordinal function 8 —• S as the union of all ordinal functions 
with domains less than 8. Also, 8 cannot be 0 for the empty set is 
surely an ordinal function 0 —• S. Thus 8 has a predecessor a, and 
there is an ordinal function / from a to S. Is / surjective onto 5? If 
it were not, then letting 

a = c(S \ I m / ) 

we could define an ordinal function g by g = fu{(a,a)} on the 
domain 8, which is impossible. Thus / must be surjective, and since 
ordinal functions are injective, this implies that / is a bijection from 
a to 5. The proof is finished. • 

Since by definition no cardinal is equipotent to any other cardinal, 
it follows from Zermelo's Theorem that every set S is equipotent 
to a unique cardinal, called the cardinal (or cardinality) of S and 
denoted by Card 5. We also say that Card 5 is the number of elements 
of S. Note that AC B implies Card 5 < Card B. Sets are called finite 
or infinite according to whether their cardinal is finite or infinite. 
The following is now elementary: 



18 SETS 

Proposition 9 Two sets are equipotent if and only if they have the 
same cardinal. 

As, by an earlier remark, there is no injection, and therefore no 
bijection, from V(u>) to w, CardP(w) is distinct from w. Thus there 
are infinite cardinals other than u. 

We now introduce a terminological redundancy. A family is simply 
a function / : A —• B. The domain A is called the index set of the 
family, and / is said to be a family (of elements of B) indexed by (the 
elements of) A. For / £ A, the element f(i) of B is denoted by 6,-, 
while the family / itself is often denoted by (&,• : i £ A) or (bj)ieA. 
For example, for any set S, the identity function ids is nothing else 
but the family (x : x G 5). The image set of a family (fe, : /' G A) is 
denoted by {bj : / G A}. Families generalize the set concept. For ex-
ample, we define the union of a family of sets (bi)jEA, in symbols 
\JieA bt, as the set 

U{b G B : b = 6, for some / G A} 

It is important to notice that in a family (bj)i^A we may have 6, = 
bj even if the indices / and are distinct. A family indexed by an 
ordinal is usually called a sequence. A sequence indexed by a natural 
number n is called an n-tuple (couple, triple, quadruple, quintuple for 
n = 2,3,4,5) and it is usually written as a string of n elements of 
B, possibly in brackets and separated by commas, such as (u), (uv), 
(uvw), (uvwt) for n = 1,2,3,4 and 

in general. The position i of «,-, 0 < / < n, in the string indicates that 
the sequence in question, as a function from n to B, maps i to UJ. 
The image set of the sequence can be written accordingly as 

or explicitly as {u,v, w}, {u,v,w,t} for n = 3,4, etc. 
Let (Aj)iei be a family of sets indexed by a set /. The product 

n,e/ Aj of the family is the set of all functions / : / —• \Jiel A, such 
that 

/ ( / ) G Aj for every i G / 

For each j e I the function pr, : n A —• Aj defined on the product 
set by pr •(/) = /(j) is called the y'th projection. 
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Proposition 10 The product of a family of nonempty sets is not 
empty. 

Proof. By the Axiom of Choice there is a choice function c from the 
image set {Aj : i € /} of the family (/4,),€/ to the set (Jig/ Aj such 
that c(Aj) e At for every Aj, i e I- Then / : / -+ \Jiel

 Ai defined by 
/(/) = c(Ai) is an element of the product Aj. • 

Note that the product \\Ai is empty as soon as any one of the 
factors A\ is empty. 

Recall that for sets A,B the power AB was defined as the set of 
all functions from B to A. Consider now the constant family (v4,);eB 
where all Aj = A. 

Proposition 11 //each Aj is identical with A, then the sets n^s ^' 
and AB are identical, UieB Ai = A3. 

The cardinal product of a family (a,), 6/ of cardinals is defined as 
the cardinality of the set [ ] / G / ai- If / = 2, then the cardinal product 
is denoted by ao-a^. Clearly for any cardinals Q,^ there is a fam-
ily ( a , ) , e 2 indexed by 2 = {0,1} such that 8 = ao, 7 = ai, and thus 
the cardinal product 8 • 7 of any cardinals 8 and 7 is always well de-
fined. The following important proposition then becomes a matter 
of simple observation. 

Proposition 12 For any cardinal numbers a, 8, and 7 we have 

a • 8 = 8 • a (commutativity) 
(a • 8) • 7 = a • (8 • 7) (associativity) 
1 • a = a • 1 = a (neutrality of 1) 
0 a = a • 0 = 0 (absorption by 0) 

The role of cardinal numbers is to count the elements of sets. 
Cardinal products can be used to count the elements of a product 
of sets. Indeed, if (/1,),6/ is a family of sets and each Aj has a, 
elements, then the cardinality of A, is the cardinal product of 
the family (a,) , e / . Further, if 1 = 2, then 1X^2^1 is equipotent to 
the Cartesian product Ao x A\. Thus AQ x A] has aQ-a\ elements. 
If the two sets are finite, then ao-a\ is just the usual product of 
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the natural numbers ao and a i . The reader may find it instructive 
to prove rigorously such elementary-school theorems as 2 • 3 = 6. If 
a mule needs a bushel of forage every day, two mules on a three-day 
expedition need six bushels. This is more than pedestrian arithmetic. 
But we still do not know how to add natural numbers. 

Historical Note. The foundations of transfinite arithmetic were laid 
down toward the end of the last century by Georg Cantor. Mathe-
matical attempts both to negate and to comprehend infinity continue 
to this day. 

EXERCISES 

1. Is {{0},{{0}}} an ordinal? Is V(0) an ordinal? What about P ( l ) 
and 7>(2)? And V(n) for an ordinal n greater than 2? 

2. Show that 

(a) Q is the successor ordinal of a if and only if a < (3 and there 
is no ordinal 7 with a < 7 < /3, 

(b) if 5 is a finite set and x £ S, then Card 5 is the successor 
ordinal of Card(5 \ 

(c) (u> \ n) ~ w for all n £w, 

(d) every infinite subset of u> is equipotent to w, 
(e) A x A ~ A2 for any set A, 

(f) V{A) ~ 2A for any set A, 

(g) a set A is finite if and only if for every B c A we have Card B 
< Card ,4, 

(h) a function / : A -* B is surjective onto B if and only if there 
is a function g : B —» A with f °g = ids-

3. For any sets A,B,C verify that 

(a) ACB implies Ax CC B x C and Ac C Bc, 

(b) Card ,4 < Card B implies Card(C/ 1) < Card(C B ), 
(c) Cardv4 < Card/? if and only if there is an injection A —> B, 

or equivalently, if and only if there is a surjection B —> A. 

4. For nonempty sets A and B, show that the following conditions 
are equivalent: 
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(a) Card ,4 < Card fl, 

(b) there is no surjection A —• B, 
(c) there is no injection B —> A. 

5. Show that for any set A the following conditions are equivalent: 

(a) A is finite, 

(b) every injection A —• A is surjective, 

(c) every surjection A —• A is injective. 

6. Let X = 9U {9} and let S„ = {v G X" : v(0) ^ 0 if n f 1} for 
each n G w, n f 0. Let 

W = |J 5„ 

Show the existence of a bijection JV —• u. 

7. Call a natural number d a divisor of n G w if for some q G w we 
have n = d-q. Write a computer program that for any natural 
number input n finds all the divisors of n. 

8. Let D(n) denote the set of divisors of a natural number n. Verify 
that D(n) is finite. Define / : u - • u; by / ( n ) = Card D(n). Write 
a computer program that for input n calculates / (n) . What is the 
biggest number n you can find with f(n) = 2? 

3. INTERSECTIONS 

Let £ be a set of sets. By axiom (A2), UE has a subset f)E consisting 
of those elements which belong to all members of E. The set n £ is 
called the intersection of (the members of) E and it is also denoted 
by 

If this set is nonvoid, then the members of E are said to intersect. 
The intersection of a pair {A,B} is also denoted by An B and called 
the intersection of A and B. Thus 

ADB = D{A,B} 

Similarly to unions (Proposition 1) we have: 
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Proposition 13 Let A, B, and C be sets. 

(i) (A n B) n C = A n (B n C) (associativity) 
(ii) AnB = BOA (commutativity) 

(iii) A(1A = A (idempotence) 

Further, union and intersection are linked by several algebraic 
identities, some of which involve the concept of complementation. 
The Boolean sum, or symmetric difference of two sets A,B, is the set 

A + B = (A\B)U(B\A) 

If AD B, then the set A\B is called the complement of B in A, 
denoted by cAB. 

Proposition 14 Let A, B, and C be subsets of a set S. 

(i) (AnB)[JB = B and 
(A U B) n B = B (absorption) 

(ii) A D (B U C) = (A n B) U (A n C) (distributivity of 
A U (B n C) = (A U B) D (v4 U C) ww'on and intersection) 

(iii) n (5 + C) = (A n 5 ) + (v4 n C) (distributivity of inter-
section over the sum) 

(iv) cs(c$A) = A (involution of 
complementation) 

(v) c$(A f)B) = csA U csB (De Morgan's laws) 
cs(AUB) = csAC)csB 

Proof. Quite straightforward, based on the definitions. Let us just 
carry it out for (iii). A n (B + C) is the set of those elements of A 
that belong to either B or C but not to both. Thus each element of 
A fl (B + C) belongs either to (A n B) or to (A n C) but not to both, 

AD(B + C) C (ADB) + (ADC) 

Conversely, if x e (A n 5 ) + (A n C), then x belongs to either /I n 
or / I n C but not to both. U x £ AnB, then x £ C and thus x £ A 
n(B + C). Similarly, if x £ A n C, then x g 5 and x £ A n (fl + C). 
Thus 

(>4nfl) + ( i4nc)c >in(fl + C) 

This completes the proof of (iii). • 
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Statement (i) in the above proposition may be viewed as the first 
result of lattice theory, and distributivity of intersection over the 
Boolean sum (iii) is a precursor example of ring algebra. 

Two sets A and B are called disjoint if their intersection A n B 
is empty. Let a and 0 be two cardinals. Then A = {0} x a and 
B = {1} x 0 are disjoint, Card/1 = a and CardB = 0. We define the 
cardinal sum, or addition, a + 0 as the cardinality of A U B. Observe 
that if A' and B' are any two disjoint sets with a and 0 as respective 
cardinalities, then 

Card(/t' U B') = a + 0 

The reader should verify this by showing the equipotence of A' U B' 
to the union A U B used in the definition of the cardinal sum. 

Remark on Abusive Notation. We are using the same symbol " + " 
for cardinal sum as for Boolean sum. We really should not do this, as 
these concepts are distinct. However, we are running short of simple 
symbols. We trust that the context will always indicate what is meant 
by "+." 

Proposition 15 Let a, 0, and 7 be cardinals. Cardinal sum and car-
dinal product obey the following rules: 

(i) (a + 0) + 7 = a + (0 + 7) (associativity) 

(ii) a + 0 = 0 + a (commutativity) 

(iii) 0 + a = a (neutrality of 0 for addition) 

(iv) a-(0 + y) = a-0 + a-f (distributivity of product over 
sum) 

Proof. Associativity follows from the associativity of the union (Prop-
osition 1) if we take any three sets A, B, C with respective cardinals 
01,0,1 a n d such that 

ADB = ADC = ADC = 0 

Commutativity follows trivially from commutativity of set unions. 
The neutrality of 0 is obvious. For distributivity, let A,B,C be 
pairwise disjoint sets as just described and observe the identity of 
A x (BUC) and (A x B)U(A x C). • 
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A most important observation of arithmetic is that for each natu-
ral number n, n + 1 coincides with the successor of n. This fact can 
be used in the proof of such arithmetic statements as 2 + 2 = 4 or 
5 + 3 = 8. 

We have now seen a fair amount of algebra by example. The con-
cept of intersection leads us to general algebraic tools of great im-
portance: closure systems, closure operators, and generators. They 
will be recurrently called upon in the study of each particular alge-
braic structure. 

Let U be any set. A set C of subsets of U is called a closure system 
(on U) if U £ C and the intersection of each nonempty subset of C 
belongs to C. The members of C are then called the closed sets of 
C. Clearly for every subset A of U, the intersection of all closed 
supersets of A is closed. We denote it by A and call it the closure of 
A in C. Obviously A is a subset of A and A is the smallest closed 
superset of A (i.e., A C K for any closed superset K of A). Further, 
if AC B are both subsets of U, then every closed superset of B is 
also a superset of A, from which it follows that AC B. Finally, the 
closure of a closed set is always itself. Let us summarize: 

Proposition 16 With respect to any closure system on U we have, for 
any A,BCU: 

(i) AC A (extensive law) 
(ii) if AC B, then AC B (isotone law) 

(iii) A = A (idempotence) 

Otherwise stated, the function Fc : V(U) -• V(U) given by FC(A) 
= A for A C U is extensive, isotone, and idempotent. Any function 
F : V(U) —> V(U) having these three properties, i.e., such that 

A C F(A), AC B implies F(A) C F(B), and F(F(A)) = F(A) 

is called a closure operator onU. It is easily verified that the image of 
a closure operator F is always a closure system C in which the closure 
A of any subset A of U coincides with F(A). There is a bijective map 
from the set of closure operators on U to the set of closure systems 
on U, namely the map associating with each closure operator F its 
image set Im F. The members of Im F are also called the closed sets 
of the operator F. For a given closure system, a closed set K is said 
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to be generated by a subset G C K if G = K. In this case, G is also 
called a set of generators for K. Every closed set K has at least one 
set of generators, namely K itself. However, a typical task in algebra 
is to find proper subsets that generate a closed set K, proper subsets 
that contain as few elements as possible. Sometimes a closed set K 
is generated by a singleton {g}. In this important case we also say 
that K is generated by the element g, or g is a generator of K. We 
urge the reader familiar with other concepts of generation to adopt 
our nonalgorithmic, syntax-free concept as a working tool throughout 
this volume. 

In the subsequent chapters we shall see many examples of clo-
sure systems and generators. However, the theory presented so far 
already allows the following examples. 

Let / be any function from a set U to itself. Then 

C = {A C U : f(x) e A for all x e A} 

is a closure system. The members of C are said to be closed under 
the function f. For instance, let U = u>, and let / be the function 
mapping each n e u> to its successor n + 1. Then the closed sets are 
those of the form w \ m with natural numbers m. Every such closed 
set u) \ m is generated by its first element m. 

Let n be any natural number, U any set. A function / from U" 
to U is called an n-ary operation on U (in particular nullary, unary, 
binary, ternary, quaternary, for n = 0,1,2,3,4). The set 

C = {A C U : f(x) 6 A for all x e A"} 

is a closure system; its members are said to be closed under the op-
eration f. For instance, a binary operation / is defined on U = w by 
the cardinal sum of natural numbers, 

f(ab) = a+b 

We then have a large variety of sets closed under the cardinal sum. 
Sets closed under multiplication are defined similarly. 

Given any set 5, those sets of subsets of S that are closed under 
the binary operation "intersection," 

f{AB) = ADB 

form a closure system on U = V{S). Another closure system on V(S) 
is defined by the binary operation "union." It is worthy of notice that 
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Warning. The expression "A is contained in B" is ambiguous. It 
is widely used in mathematical literature to mean both A e B and 
AC B. The expression "A is included in B" is equivalent, in math-
ematical usage, to "A is contained in B." Note that we have so far 
refrained from using any of these two equally ambiguous expressions. 

for x e A 

for x £ C • 

the set of finite subsets of S is closed under both intersection and 
union. The set of infinite subsets of S is closed under union but need 
not be closed under intersection. 

Observe that the set of all closure systems on a set U is itself a 
closure system on V(U). 

Let 5 be any set. A nonempty set P of bijections from S to itself, 
such that for every f,g 6 P their composition fog belongs to P, 
and also the inverse of / belongs to P whenever / does, is called a 
permutation group on S. The set of permutation groups is a closure 
system on the set of bijections S -+ 5. 

A nonempty set R of subsets of a set 5 that is closed under both 
binary operations A + B (Boolean sum) and A n B (intersection) is 
called a ring of sets on S. The set of rings of sets is a closure system 
on U = V(S). 

The next two technical lemmas are often used implicitly in alge-
braic constructions. 

Disjoint Copy Lemma. If A and B are two sets, then there is a set 
A' that is equipotent to A and disjoint from B. 

Proof. Let O = {b e B : b is an ordinal}. The union UO is an ordi-
nal 0. Following the idea of Zermelo's Theorem, show the existence 
of an injective function / defined on a set of ordinals greater than 0 
and surjective onto A. Let A' be the domain of / . • 

Injection-Extension Lemma. If f : A —• B is an injection, then 
there is a set ED A and a bijection g : E —• B such that g\A = f. 

Proof. Let C be a set equipotent to 5 \ I m / and disjoint from A. Let 
h : C (B\lm f) be a bijection. Let E = A U C and define g : E -> 
B by 
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In the sequel we shall use them only if the context clearly indicates 
their meaning and often in the active voice, e.g., "B contains A." 

EXERCISES 

1. Verify that for any sets A,B,C 

(a) (AUB)n(AUC)n(BUC) = (AnB)u(AnQu(Bnc), 
(b) Ax(BDC) = (Ax B)D(AxC), 

(c) ABuC ~ (AB) x (Ac) if fln C = 0. 

2. Show that if a,f3 are cardinal numbers, then a < p if and only if 
there is a cardinal 6 with a + 6 = p. 

3. Show that for every cardinal a 

(a) a + a = 2 • a, 

(b) a is infinite if and only if a + 1 = a. 

4. Verify that for any nonempty set 5 of ordinals, the first element 
of S is ns. 

5. Let A and B be subsets of a set 5 on which a closure operator 
is defined. Does AilB = AnB or /TUT? = 7 u B hold? 

6. Suppose a unary operation is defined on a set. Consider the set 
of closed subsets under this operation. Is it true that any union 
of closed sets is closed? 

7. Let U = 5, A = {3,5 \ 2,1U {4}}. What are the elements of the 
closure system C on U generated by A? Determine CardC. 

8. For any natural number n greater than 2, show that 
(a) n is not closed under cardinal sum but w \ n is, 
(b) n is not closed under cardinal product but w \ n is. 

9. Call a set S of natural numbers closed if 0 e S and the successor 
of each member of S also belongs to S. What are the closed 
subsets of u>? 

10. Find all the permutation groups on the set 3 = {0,1,2}. How 
would you go about finding all the permutation groups on some 
larger n£w? 
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CHAPTER II 

ORDERED SETS 

1. RELATIONS, ORDERS, AND ZORN'S LEMMA 

Historical Note. It should already be clear that the notion of order 
is unavoidable, even in an elementary exposition of set theory. Some 
properties of the order of natural numbers were observed long be-
fore Cantor. The impossibility of infinite descent in u was explicitly 
noted, and exploited, by Pierre Fermat in the seventeenth century. 
However, the first broad study of order relations, for their own sake, 
was published only in 1908, by Felix Hausdorff. The historical con-
text included nascent set theory, Boolean algebra, ideals in rings of 
numbers, and of course Hausdorff's own preoccupation with topol-
ogy. Many of the concepts investigated by Hausdorff apply to rela-
tions other than order relations. 

For any set A, consider the set A1 of couples of elements of A. 
Any subset R of A2 is called a (binary) relation on A. The couple 
(A,R) is a relational structure. If B C A, then the restriction R\B 
is the relation RnB2 on B. The reader should verify that two rela-
tions R and S on A are the same if and only if their restrictions to 
each subset of A of cardinality at most 2 are the same. Only binary 
relations shall be studied in this volume. 

31 
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On any set A, we have the empty relation R = 0. We also have 
the identity relation 

I = {(a,a) :a£A} 

and the distinctness relation 

D = {{a,b)£A1 :a?b} 

As relations are subsets of A2, the union, as well as the intersec-
tion, of any set of relations on A is again a relation on A, and so 
is the difference of two relations. For the above examples, IDD 
= 0. 

A relational structure (a,R) many times encountered in the sequel 
is defined on any ordinal a by 

R = {(b,c)ea2 :b<c} 

More suggestively we write (a, <) for (a,R). 
Let (A,R) and {B,S) be two relational structures and let h : A —• 

5 be a function such that (h(a),h(b)) £ S whenever (a,b) £ R. Then 
h is said to be a relation-preserving function from (/4,i?) to (B,S), in 
shorthand n : (A,R) —• (5,5). If h is bijective to 5 and the inverse 
h* is also relation preserving, from (B,S) to (A,R), then /i is an 
isomorphism. The structures (A, 7?) and (B,S) are isomorphic if there 
is an isomorphism (A,/?) —»(B,5). An isomorphism of a relational 
structure to itself is called an automorphism. 

Examples. The function h : w —> a; given by /i(x) = x + 1 is rela-
tion preserving (w,<) —»(w,<). If D and / are the distinctness 
and identity relations on a nonempty set A, then a function h from 
/4 to /I is relation preserving (A, D) -> (A, / ) if and only if it is con-
stant. 

Proposition 1 The composition of two relation-preserving functions 
h : (A,R) -»(B,S) and g : (B,S) -»(C,T) is relation preserving from 
(A,R) to (C,T). For any relational structure (A,R) the identity map 
on A is relation preserving from (A,R) to itself 

Note that if (A,R) is any relational structure, then the set of all 
automorphisms of (A,R) is a permutation group on A. We shall de-
note it by Aut(A,R) or simply AutR. 
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For a relation R on a set A we generally write aRb instead of 
(a,b)£ R. The relation R is called 

reflexive on A if aRa for all a £ A 
irreflexive if aRa for no a £ A 
symmetric if aRb implies bRa 
antisymmetric if aRb and bRa together imply a = b 
transitive if aRb and bRc together imply aRc 

A reflexive and transitive relation R on a set A is called a /?re-
order. The relational structure (A,R) is called a preordered set. A 
symmetric preorder is an equivalence relation; an antisymmetric pre-
order is an order. In the latter case the structure (A,R) is also re-
ferred to as an order, or more properly, an ordered set and it is often 
suggestively denoted by (A,<). Often we refer to the "ordered set 
A" when it is implicitly understood which order relation on A we 
have in mind. The order < is total (or linear) if a < b or b < a holds 
for each a,b£ A. A totally ordered set is called a chain. Whether 
the order < on A is total or not, the term chain is also used to des-
ignate any subset B of A such that the restriction of < to B is a total 
order. If the restriction of < to B is the identity relation, then B is 
called an antichain. 

Examples. Identity relations are equivalence relations. Distinctness 
relations are irreflexive and symmetric. For any ordinal a, Proposi-
tion 8, Chapter I, implies that (a, <) is a chain, called the natural 
order on a. More generally, for any set of sets A, 

R = {(a,b)£ A2 :aCb} 

is an order. We write customarily (A,C) for (A,R) and we call it the 
inclusion order on A. In view of Proposition 4, Chapter I, for any set 
of sets A, 

R = {(a,b) £ A : a and b are equipotent} 

is an equivalence relation. 

A relation on a finite set can be represented by a diagram of 
points and arrows, an arrow from point a to b signifying the pres-
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R P Q 

FIGURE 2.1 Symmetric, antisymmetric, and transitive relations. 

ence of the couple (a,b) in the relation. In Figure 2.1, R is a sym-
metric relation, P is antisymmetric, and Q is antisymmetric as well 
as transitive. 

The members of a set C of sets are pairwise disjoint if no two 
distinct members of C have a common element. A partition of a set 
A is a set C of pairwise disjoint nonempty subsets of A such that 
UC = A. Then every a e A belongs to one and only one partition 
class C EC, called the class of a. Let E be an equivalence relation 
on a set A. Then there is a unique partition C of A such that a, ft £ /4 
belong to the same class if and only if aEb. (Verify.) This is called 
the partition associated with E. The partition classes are also referred 
to as equivalence classes. Conversely, it is easy to see that for every 
partition C of a set A, the relation 

E = {(a,b) £ A2 : a,b £ C for some C £ C} 

is an equivalence relation on A. It is called the equivalence associated 
with C. 

For every function / defined on a domain A there is an induced 
equivalence E on A, where aEb means f(a) = f(b). Every equiva-
lence E on A arises this way: let / : A —»"P(v4) map a £ ,4 to the 
class of a in the partition associated with E. The set of equivalence 
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classes is also called quotient set, denoted by A/E, and / : /4 —> A/E 
is called canonical surjection. Why the term "quotient set"? 

Proposition 2 If all classes of an equivalence E on A have the same 
cardinality k, then Card A = k • Card(/l/£). 

Proof Let C be any class and show the equipotence of A and the 
Cartesian product Cx(A/E). • 

A preorder R on a set A is usually denoted by the more sugges-
tive symbol <. We write a < b for "a<b and not b<a," a ~ b for 
"a<b and b<a," and a\\b for "neither a<b nor b<a." [Read a less 
(smaller) than b, a equivalent to b, a incomparable with b, respec-
tively.] The relation E defined by 

E = {(a,b)£A2 :a~b) 

is an equivalence relation, said to be associated with R. The relation 
O on A/E given by 

O = {(C,D) £ A/E : c<d for some ceC, d £ D} 

is an order, said to be associated with R. 
The dual R* of a binary relation R on A is given by aR*b if and 

only if bRa. If 7? is a preorder (order, linear order), then R* is also a 
preorder (order, linear order, respectively). We have (R*)* = R, and 
7? is symmetric if and only if R* = R. If R is a preorder <, or order 
<, then we write >, > for the duals of <, <. Instead of b < a we also 
write a > b and say "a greater (larger) than b." Figure 2.2 illustrates 
a relation and its dual. 

Example. Let (P(5),C) be the set of subsets of any set S, ordered 
by inclusion. It is isomorphic to its dual: consider h : V(S) —• V(S) 
given by h(X) = S\X. On the other hand, (u,<) is not isomorphic 
to its dual: what would the image of 0 be in a hypothetical isomor-
phism? 

Let (A,<) be a preordered set, and let B C A. An element be B 
is called minimal in B if no element of B is smaller than b, maximal 
in B if no element of B is larger. Stronger, b £ B is a minimum 
(smallest element, min) of 5 if b < JC for all x £ B \ {b}, and a max-
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R R* 

FIGURE 2.2 A relation and its dual. 

imum (largest element, max) of B if x < b for all x £ B \ {b}. An ele-
ment a £ A is a tower ftowrcd o/ B if a<b for all b £ B, and a greatest 
lower bound (gib) if in addition a'<a for every other lower bound a' 
of B. Dually, a £ A is an upper bound of B if fc<a for all b £ B, and 
a /eas/ «p/?er fcowmi (lub) if in addition a<a' for every other upper 
bound a'. Any two greatest lower bounds of a set are equivalent, 
and similarly for lub's. If B has a minimum (maximum), then it is 
also a unique gib (lub) of B. Every nonempty finite set B C A has a 
minimal element as well as a maximal element. (Verify this assertion 
by assuming its falsehood, taking the first natural number n such that 
some B with n elements has no minimal element, choose any b £ B, 
then see if B \ {b} has a minimal element c and compare c to b.) A 
set B can have several distinct minimal or maximal elements (exam-
ple?), but any two minima of B must coincide, and the same holds 
for maxima: we write minfl and max 5 for these unique elements of 
B if they exist. In an ordered set (A,<), a set B can have at most 
one gib and at most one lub: these are denoted by glb# and lubfl if 
they exist. 

Examples. For any set 5, gib's and lub's always exist in (V(S),C). 
For X C V(S) 

glbA' = nA' if X?0 and \ubX = uX 

In (u>,<) the entire set w does not possess any upper bound. 
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An ordered set (A,<) is well ordered if every nonempty BCA 
has a minimum. Applying this requirement to two-element subsets, 
we see that every well-ordered set is a chain. According to Propo-
sition 8, Chapter I, (a, <) is a well-ordered set for every ordinal a. 
Moreover: 

Proposition 3 An ordered set (A, <A) is well ordered if and only if 
it is isomorphic to the natural order (a, <) for some ordinal a. 

Proof (We denote the order on A by < A to clearly distinguish it 
from the ordinal inclusion order < on a.) If 

h:{a,<)^{A,<A) 

is an isomorphism, then for any nonempty B C A, the image by h 
of the first element of h* [B] is a minimum of B. The converse is 
proved just like Zermelo's Theorem (First Formulation, Chapter I). 
A choice function c : V*(A) -* A is defined by 

c(fl) = min5 for all nonempty BCA 

An ordinal function into A is defined as an injection / : 0 —» A from 
some ordinal 0 into A such that for every 7 6 0, 

/(7) = c({x £A:xf f{6) for any 6 £ 7}) 

Then a particular ordinal 0 is defined such that there is no ordinal 
function f3 —> A, but for the predecessor a of 0 there is one, say 
/ : a. —> A. Now / is not only a bijection but an order isomorphism 
as well. • 

Zermelo's Theorem (Second Formulation). Every set can be well or-
dered. 

Proof. Every set A is equipotent to some cardinal a, according to 
the First Formulation of Zermelo's Theorem given in Chapter I. Let 
/ : A —» a be a bijection. Define (A,<A) by 

a <A b if and only if f(a) < f(b) • 

Zorn's Lemma. Let (A,<) be an ordered set. If every chain BCA 
possesses an upper bound in A, then A has a maximal element. 



38 ORDERED SETS 

Proof. Once again we proceed along the lines of the proof of Zer-
melo's Theorem (First Formulation). Let c : V*(A) —• A be any 
choice function. For a totally ordered B C A let u(B) denote the set 
of its upper bounds in A. Observe that u(B) C B if and only if 
u(B) is a singleton consisting of a maximum of B. A function c' is 
defined, from the set C(A) of totally ordered subsets of A, to A, by 
letting 

. fmaxfl if u(B)CB 
c'(B) ={ 4

 K J~ 
[c(u(B)\B) otherwise 

Then ordinal functions are defined as order-preserving injections / : 
a—> A from an ordinal a to A such that for every /3 6 a, 

fiP) = c ' ({ / (7) : 7 € B}) 

Ordinal functions are fully determined by their domains, and their 
images are well-ordered subsets of A. 

The existence of an ordinal v is ascertained for which no ordinal 
function v -»A exists but such that ordinal functions exist from all 
ordinals less than v. These ordinal functions are shown to agree on 
the common elements of their domains. The ordinal v must have 
a predecessor A, or else an ordinal function could be defined on 
the whole of v by calling on the ordinal functions defined on the 
lesser ordinals. The image B of the ordinal function A —• A must 
have a maximum, and it can have no other upper bound in A, for 
else u{Bi)\B 0 and an ordinal function mapping A to c'(B) could 
be defined on v. Then maxfl is maximal in A. • 

The proofs of Zermelo's Theorem (First Formulation) and of 
Zorn's Lemma are often referred to as "proofs by transfinite induc-
tion." They rely on inference from lesser to greater ordinals. Any 
argument based on such inference but limited to finite ordinals is 
usually called "inductive" or "recursive." 

The reader will find it instructive to prove the following proposi-
tions: 

Proposition 4 For every preordered set (A, <) the following are equiv-
alent: 

(i) every nonempty subset B C A has a maximal element, 
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(ii) no restriction of < to a subset B of A is isomorphic to the 
natural order (w, <), 

(iii) if B C A and the restriction (B, <) is a chain, then the dual 
chain (B,>) is well ordered. 

Proposition 5 For every preordered set (A, <) the following are equiv-
alent: 

(i) every nonempty subset BCA has a minimal element, 

(ii) no restriction of < to a subset B of A is isomorphic to (u>,>), 

(iii) if BCA and the restriction (B, <) is a chain, then (B, <) is 
well ordered. 

A preordered set (A,<) obeying the conditions of Proposition 4 is 
said to satisfy the ascending chain condition. Dually, if the conditions 
of Proposition 5 hold, (A, <) is said to satisfy the descending chain 
condition. Note that a chain is well ordered if and only if it satisfies 
the descending chain condition. 

Let (A,<) be any order and let C(A) be the set of its chains (to-
tally ordered subsets of A). A maximal chain is a maximal element 
of the inclusion-ordered set (C(A),C). Observe that the union of the 
members of any chain in (C(A),C) is a chain in (A, <). Thus Zorn's 
Lemma applies to (C(A),C): 

Maximal Chain Theorem. Every order has a maximal chain. 

In contrast, the next application of Zorn's Lemma concerns the 
relationships of implication between different orders (A,R), (A,Q) 
on the same set A. If R C Q (i.e., aRb implies aQb), then Q is said 
to extend R or to be an extension of R. Indeed the definition applies 
not just to orders, but to any two binary relations on A. Of special 
interest are the preorders on A: the set of these preorders is denoted 
by Vr(A). We have 

Vr(A) C V(A2) 

In fact, Vr(A) is a closure system on A2. It is in describing this 
closure that the combinatorial concepts of path and cycle will first 
show their usefulness. 
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Warning. Restriction to a subset and extension of relations are not 
"opposite operations" in any reasonable sense. 

Let 
(a,- : i 6 n + 1) = (a0,...,a„) 

be a sequence of n +1 distinct elements (natural n > 1, a, ^ ay if 
i ^ y). The relation P defined by 

P = {(a,-,a I + 1) : i 6 n} 

is called apaf/i (of /engf/i n)from OQ to an. If n> 2, then 

PU{(a„ ,a 0 )} 

is called a cyc/e (of /engf/i n + 1). A binary relation 7? is called acyclic 
if no relation P C R is a cycle. 

Examples. {(1,5), (5,3), (3,6)} is a path of length 3, from 1 to 6, 
but the relation {(1,5), (3,5), (3,6)} is not a path. The relation {(1,5), 
(5,3), (3,1)} is a cycle of length 3, and {(1,5), (3,5), (3,1)} is acyclic. 

Let R be any binary relation on a set A. Let < be the preorder 
generated by R in the closure system Vr(A). Then a<b if and only 
if a — b or there is a path in R from a to b. 

A closure system related to Vr(A) consists of the set Tr(A) of all 
transitive relations on A. Obviously, Vr(A) C Tr(A), i.e., the pre-
order closure of any relation is an extension of the transitive closure. 
For reflexive relations, the preorder and transitive closures coincide. 

Linear Extension Theorem. Every order relation has a linear order 
extension. 

Proof. Let (A,R) be an ordered set. Let (O(R), C) be the set of 
all order relations on A extending R, ordered by inclusion. For any 
nonvoid C C 0(R) that is totally ordered by C, UC is again an order 
relation on A, and it is an upper bound of C in (0(7?),C). Thus 
Zorn's Lemma applies and (0(R),C) has a maximal element. We 
need only to show that every maximal member M of O(R) is a total 
order. Were this not so, for some a, b 6 A we would have neither 
aMb nor bMa. Consider the relation 

M' = M\J{(a,b)} 
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It is acyclic because M is acyclic and (a,b) cannot belong to a cycle 
(if it did, bMa would follow from the transitivity of M). The tran-
sitive (preorder) closure of Af' is then an order on A, contradicting 
the maximality of M. • 

This result can be restated by saying that linear orders are pre-
cisely the maximal members of the inclusion-ordered set of all orders 
on a given set. 

Linear Conjunction Theorem. A relation on a set A is an order re-
lation if and only if it is the intersection of some total orders defined 
on A. 

Proof The "if" part can be easily verified by the reader. To prove 
the converse, let R be an order on A. For incomparable a, b e A the 
transitive closure of Rli{(a,b)} is an order Rab on A. (Obviously 
Rab ^ Rba-) Let Cab be the set of linear extensions of Rab—a fortiori 
these are also linear extensions of R. Obviously Cab n Cba = 0- Let 

£ = U{Cab : a,b incomparable in (A,R)} 

(Obviously both £f l f c and £j,a are included in £ for incomparable 
a,b.) We have R = n£. [Check membership of (a, b) in R and in n£ 
according to whether aRb, bRa, or none of these holds.] • 

The set £ of linear extensions of R constructed in the above proof 
is generally not the only set of linear extensions that produces R by 
intersection. For example, if R is the identity relation on 3 = {0,1,2}, 
then £ contains all the six linear orders on 3. However, two linear 
orders will do: the natural order and its dual. The minimum cardi-
nality of a set of total orders the intersection of which yields a given 
order R is called the order dimension of R. All identity relations 
have order dimension 2. On the other hand, the research-minded 
reader now has all the tools required to demonstrate that the order 
dimension of any inclusion-ordered power set V(S) is Card 5. 

Zorn's Lemma is more than just a clever tool. Its depth is attested 
to by its axiomatic potential. If we postulated Zorn's Lemma with-
out proof, calling it the "Maximality Axiom" if you wish, we could 
deduce from it the statement of the Axiom of Choice as follows. 
For a set S of nonvoid sets, let A be the set of all choice functions 
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defined on subsets of 5. For example, for X € S and p e X the func-
tion c : {X} —> X given by c(X) = p belongs to A. Then order A by 
inclusion (remember that functions are sets), and apply Zorn. 

EXERCISES 

1. Show that given any preorder < on a set A, the associated equiv-
alence ~ is the largest symmetric relation contained in <. 

2. Determine the order-preserving functions 
(a) (2 ,<)->(2,<) , 
(b) from a chain to an antichain, 
(c) from an antichain to a chain. 

3. What are the minimal elements of (V(A)\{0},C)? Does this 
ordered set have a minimum? 

4. Verify that if A and B are equipotent sets, then (V(A), C ) and 
(V(B),C) are isomorphic orders, and conversely. 

5. Show that every finite chain is order-isomorphic to some natural 
order (n , < ) , n £ u. Show that this does not generalize to infinite 
chains. 

6. Let R and S be equivalence relations on sets A, B, respec-
tively. Show that a bijective map h : A -* B is an isomorphism 
(A,R)~* (B,S) if and only if both of the following conditions 
hold: 
(a) for every equivalence class C of R, h[C] is a class of S, 
(b) for every class K of S, h*[K] is a class of R. 
Verify that such an isomorphism h gives rise to a bijection be-
tween A/R and B/S. 

7. Show that a relation R on a set A is a preorder (order, equiva-
lence relation) if and only if every restriction of R to subsets of 
A with at most three elements is a preorder (order, equivalence 
relation, respectively). 

8. Verify that for every ordered set (A,<) we have Aut(A,<) = 
Aut(A>) . 

9. Show that the equivalence relations on a set A constitute a clo-
sure system on A2. 
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10. A nonempty set C of subsets of a set 5 is said to have finite char-
acter if A € C is equivalent to the condition that all finite subsets 
of A belong to C. Show that such a C must have a maximal mem-
ber. 

11. Let 5 be a set of sets and let < be the preorder closure of the 
relation 

{{x,y)eS2:xey} 

Can you affirm that the descending or the ascending chain con-
dition holds in (5,<)? 

12. Write a computer program that for any given order relation R 
on a finite set of natural numbers 
(a) computes a linear extension of R, 
(b) determines a set of £ of linear extensions such that n£ = R. 

13. Write a program to determine whether two binary relations, each 
on a finite set of natural numbers, are isomorphic. 

14. Write a program that for any binary relation on a finite set of 
natural numbers finds a path from any given a to any given b or 
determines that no such path exists. 

2. LATTICES AND CLOSURES 

An order (A, <) is called a lower (or meet) semilattice if every two 
elements x,y £ A have a gib. We write x Ay for glb{x,y}. Dually, 
in an upper (or join) semilattice every two elements x,y have a lub, 
denoted by x V y. A lattice is both a lower and an upper semilattice. 
In a lattice, every nonempty finite set has both a gib and a lub. The 
order (A,<) is a complete lattice if every subset B of A has both a 
gib and a lub, denoted by A B and Vfl, respectively. 

Examples. Consider the set O(A) of all order relations on a set 
A, ordered by inclusion: (0(A),C). This is a lower semilattice, but 
not an upper semilattice. For an example of a lattice that is not a 
complete lattice, take the well-ordered set (w,<). Complete lat-
tices are best exemplified by (V(S),C), the inclusion-ordered set of 
subsets of a set. Here VB = UB for all B C V(S) and AB = nB if 
fl*0. 
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Obviously every complete lattice (A, <) has both a minimum, 
gib/I, and a maximum, lub A It is remarkable that if in an ordered 
set (A,<) all subsets of A have a gib, then (A,<) is a complete 
lattice: for BCA, 

glb{x 6 A : J!) < JC for every be B} 

is a lub of B. In particular: 

Proposition 6 Every closure system, ordered by inclusion, is a com-
plete lattice, with AK = C\K for each nonempty set K of closed sets. 

Proposition 7 The inclusion-ordered set of all closure systems on any 
given set S is a complete lattice, with intersection as gib. The lub of 
any nonempty set k of closure systems is given by 

Vk = {Ha :0CaCUk} 

Proof The first statement follows by applying Proposition 6 to the 
closure system on V{S) formed by all closure systems on S. To prove 
the second statement, observe that 

G = {(la : 0Ca C \Jk} 

is a closure system on S. It is a superset of each member of k, i.e., of 
U/c. For any closure system C on 5 with Uk C C we have necessarily 
Q C C because C is closed under intersection. • 

Corollary. Let C and V be closure systems on a set S. In the lattice of 
closure systems on S we have 

CAV=cnv 

CMV = {cnD :CeC, DeV} 

Some closure systems play a distinguished role in the description 
of ordered sets (A,<). A subset U of A is called an upper section 
if x eU, x < y imply y G U. A lower section L is an upper section 
of the dual order, i.e., x e L, y < x imply y £ L. The set of upper 
sections is a closure system U on A, while the lower sections consti-
tute another closure system C. Consider now the least upper bound 
C = U V C in the lattice of closure systems on A. The closed sets in 
C are called convex (or order convex). Another synonym is interval. 
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It can be deduced from the Corollary of Proposition 7 that a subset 
C of A is convex if and only if x,y £ C and x < z < y imply z £ C. 
If x < y, then the convex closure of {x,y} is the set 

{z £ A : x < z < y} 

which is called a segment and is denoted by [x,y]. The upper and 
lower sections generated by any x £ A are the sets 

{z £ A : x < z} and {z £ A : z < x} 

denoted by [x,—>) and ( * - , J C ] respectively. For x < y we have 

[*,y] = [x,^)n(^-,v] 

Examples. In the linearly ordered set (w,<) of natural numbers, 

5 = {0,1,2,3,4} 

is a lower section. The complement 

w \ 5 = {5,6,7,...} 

is an upper section. The segment [3,6] is precisely 

{3,4,5,6} = [3,-On ( - , 6 ] 

In (P(w),C), the set {{2,4},{4,6},{2,6}} is convex, and the set 

{SCu : {2,4,6} C S C {2,4,6,7,8}} 

is a four-element segment. 

A closure system C on a set 5 and the corresponding closure op-
erator are called algebraic if the closure A of each A C S is 

U{F : F C A, F finite} 

Equivalently, in an algebraic closure system a set C is closed if and 
only if 7 C C for all finite F C C . The term "algebraic" will be fully 
justified only in Chapter XI. Here let us observe only that for any 
rc-ary operation on a set U, the set of subsets of U closed under the 
operation is an algebraic closure system. Permutation groups, rings 
of sets on a given set, seen is Chapter I, are examples of algebraic 
closure systems. Also the lower section, upper section, and convex 
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closure systems on any ordered set are algebraic. On the other hand, 
the reader can verify that for any infinite ordinal a of the first kind, 

{5 C a : S has a maximum in (a, <)} 

is a nonalgebraic closure system on a. 

Nested Union Theorem. A closure system C on a set S is algebraic if 
and only if the union of each nonvoid chain in (C, C) belongs to C. 

Proof. Assume that C is algebraic, and let K be a nonvoid chain in 
(C, C): a set of closed sets "nested by inclusion." Every finite F C U/C 
is the subset of some C E K,. (Were this not so, take the smallest 
n such that some F with n elements violates the claim, take any 
x € F, take C,6JC with x E Cx, and CiEK, with F\{x}C C2; then 
see whether Q is "nested" in C2 or the other way round.) If F C C 
with CG/C, then for the closure of F we must certainly have F C C 
and hence F C U/C. By definition of algebraicity, U/C is closed. 

Conversely, assume that U/C E C for every nonvoid chain K in 
(C,Q. Let C be a subset of 5 such that F C C for all finite F C C . 
Call a subset A of C admissible if 

AUFC C for all finite F C C 

All finite subsets of C are of course admissible. Denote by A the 
set of admissible subsets of C. If K is a chain in (-4,,C), then U/C is 
admissible because for any finite F C C , 

U KATF e C and (U/C) U F C (J TTuF C C 

Thus Zorn's Lemma applies to ( A C ) . Let A be a maximal admissi-
ble subset of C. We must have A - C, for if A C C, then for any 
x € C \ v 4 the set AU{x} would be admissible, contradicting the 
maximality of A. • 

An obvious case of algebraicity is at hand when every nonvoid 
subset of C possesses a maximal member, i.e., when (C,C) satisfies 
the ascending chain condition. 

Proposition 8 Let C be a closure system on a set S. The following 
conditions are equivalent: 
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(i) (C, C ) satisfies the ascending chain condition, 

(ii) C is algebraic and every closed set is generated by a finite set. 

Proof. Assume (i). Then C is obviously algebraic. Define the dimen-
sion of a closed set C as the smallest cardinality of a generating sub-
set of C. If not all closed sets had finite dimension, then let 7 be the 
smallest infinite dimension encountered among all closed sets of in-
finite dimension. We shall derive a contradiction. Let C be a closed 
set of dimension 7, let G C C be a generating set of cardinality 7, 
and let / : 7 —> G be a bijection. The cardinal 7 has no ordinal pre-
decessor: this may be a matter of course for insiders. Here it follows 
from the observation that for a predecessor 8 the closure of 

{f(a):ae0} 

would have a finite generating set F, and then the finite set 

would generate C. Thus, 7 = U7. For every Q G 7, the closure Cp of 

{f(a):ae0} 

has finite dimension, by the very definition of 7. The set 

{Cp : 0 G 7} 

is a chain in (C,C). By the assumption (i) it has a maximal member 
Cn,fi G 7, and then Cp C CM for all 0 G 7. But from 7 = U7 it follows 
that 

c = UCP 

and thus C = CM would have finite dimension, in contradiction with 
the definition of 7 and C. Thus no closed set can have infinite di-
mension, and (ii) holds. 

To establish the converse implication, assume (ii) and let A be a 
nonempty set of closed sets. Let K be a maximal chain in (A,C). By 
algebraicity U/C is closed. Let F be a finite set of generators for UK. 
and let c : F —• /C be a function with x G c(;c) for all x G F. (Is there 
any doubt that such a function c exists?) Then 

{ C ( J C ) : x G F} 
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is a subset of AC, it is a finite chain in ( A Q , and as such it has 
a maximal member c(y), y £ F. Since F generates U/C, we have 
c(y) = U/C. Thus c(y) is the maximum of the chain /C, and since K 
is a maximal chain in (A,C), c(y) is a maximal element in the order 

A closure system satisfying the conditions of the above proposi-
tion is called Noetherian. An example is provided by the upper sec-
tion closure system in (a, <) for any ordinal a. (What about lower 
sections?) More complex examples are afforded by rings, vector 
spaces, and matroids. 

EXERCISES 

1. Let (5, <) be an ordered set. Verify that 

(a) 0 has a lub if and only if S has a min, 

(b) 0 has a gib if and only if S has a max. 

2. Verify that every chain is a lattice. 

3. Let k be a nonvoid set of closure systems on a set 5. In the com-
plete lattice of all closure systems on S, verify that 

where F is the set of all choice functions on k. 

4. Let Vr(A) and £q(A) denote the set of preorders and the set 
of equivalence relations on a set A. Verify that, ordered by in-
clusion, these are lattices. Are these lattices complete? Observe 
that £q(A) C Vr(A) and show that for R,Q £ £q{A), the bounds 
RAQ and R V Q taken in £q(A) coincide with the bounds taken 
in Vr(A). Write a computer program to determine R V Q for fi-
nite A C w. 

5. Verify that the closure systems Vr(A), Tr(A) (transitive closure), 

6. Is the closure system of all closure systems on a set S an algebraic 
system on "P(S)? 

(AC) . • 

- j 
£q{A) are algebraic on A . 
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7. Verify that every finite closure system is algebraic. 

8. Verify that, in any ordered set, every antichain is convex. 

9. Find all order-convex sets of (V(2),C). 

3. COVERING RELATIONS 

Let us turn our attention to the set Vr(A) of preorders on a set A. 
Preorders constitute an algebraic closure system on the set A2 of 
couples. Order relations on A form a subset 0(A) of Vr(A). The 
preorder generated by any acyclic and antisymmetric binary relation 
is an order. We shall see that an important class of orders, including 
all finite ones, are canonically generated by certain acyclic relations 
having quite remarkable combinatorial properties. 

In a preordered set (A,<.) an element y is said to cover x if x < y 
and there is no z with x < z < y. The relation 

{(x,y) E A2 ; y covers x} 

is called the covering relation of the preorder, and the corresponding 
relational structure is denoted by (A,-<). For x x y we also write 
y y x. We shall be mainly interested in covering relations of ordered 
sets. Here x -< y if and only if x < y and {x,y} is convex. 

Examples. If a is any ordinal and 0, 7 £ a, then in (a, <) we have 
0 -< 7 precisely when 7 is the successor of 0. In the ordered set 
(V(S), C ) of subsets of a set S, a set A is covered by a superset 
B if and only if B \ A is a singleton. 

Let R be an arbitrary binary relation on a set A. If R is acyclic 
and so are the relations 

Ry* = [R\{(x,y)}]U{(y,x)} 

for all (xyy) £ R, then R is called strongly acyclic. 

Proposition 9 /I binary relation R is the covering relation of some 
order < if and only if R is irreflexive, antisymmetric, and strongly 
acyclic. 
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Proof. Acyclicity, irreflexivity, and antisymmetry of covering is obvi-
ous as x -< y implies x < y and orders are acyclic. Further, if xRy in 
a covering relation R, then for any cycle C in Ryx, 

P = C\{(y,x)} 

is a path from x to y in R, and this path excludes the couple (x,y). 
Therefore, this path P has length greater than 1, UP ^ {x,y}. For 
any 

ze(UP)\{x,y} 

P would contain a path from x to z, as well as a path from z to y. 
But then x < z < y, a contradiction with * -< y proving the nonexis-
tence of cycles in Ryx. 

Conversely, if R is irreflexive, antisymmetric, and strongly acyclic, 
then it is acyclic and generates an order. It is straightforward to ver-
ify that the covering relation of this order is actually R. • 

The covering relation of any order < is included in any relation 
R that generates the order <: this is because between two elements 
related by covering there can only be one path in R, a rather short 
one. 

Proposition 10 For any ordered set (A,<) the following are equiva-
lent: 

(i) among the relations on A that generate the order < there is a 
minimal one, with respect to inclusion between relations, 

(ii) every segment [x,y] in (A,<) has a finite maximal chain, 
(iii) the order < is generated by its covering relation. 

If these conditions hold, then the covering relation is actually the small-
est one among all relations that generate the order. 

Proof. Assuming (i), let R be a minimal relation generating < in the 
preorder closure system on A2. If x < y, then there is a path P in R 
from x to y: the restriction of < to UP is a maximal chain in [x,y]. 
The case x = y being trivial, (ii) is established. 

The implication of (iii) by (ii) is obvious. 
Finally, by the remark preceding the statement of the proposition, 

(iii) implies both (i) and the conclusive clause. • 
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FIGURE 2.3 An order and some of its linear extensions. 

In view of this proposition, an order is called discrete if it is gener-
ated by its covering relation. All finite orders are discrete. A simple 
example of an infinite discrete order is (ω, <). What about the inclu-
sion-ordered power set (V(w),C)? 

Finite orders are usually represented by an arrow diagram of their 
covering relation. The direction of an arrow is often indicated im-
plicitly only, by the relative position of the endpoints. If the end-
points a and b are joined by a nonhorizontal straight line and a is 
lower than b, then the arrow is understood to be directed from a to 
b. Figure 2.3 illustrates in this manner (the covering relation of) an 
order on five elements and three of the linear extensions. 

The concept of covering in finite orders has been used, with a 
somewhat different terminology, to model the consecutivity of ac-
tivities in scheduling large-scale industrial projects. The idea is to 
break down a project, such as building a rocket, into smaller activ-
ities, among which some may be design activities, others may in-
volve fabrication or procurement of components from vendors, and 
there would be numerous activities of assembly, testing, documenta-
tion, etc. Obviously, some activities would have to precede others, at 
least for technical reasons. Here are the basics of the Project Eval-
uation and Review Technique/Critical Path Method (PERT/CPM) in 
the language of ordered sets. 

" J i 

4 ii 4 i 
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I ii 
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Let A be a finite set, the elements of which are called activities. 
Let P be a binary relation on A. Every couple (x,y) £ P is called 
a (technical) precedence constraint. If P fails to be irreflexive, anti-
symmetric, and acyclic, then the constraints are called contradictory, 
and their meaning should be mulled over once again. Otherwise 
consider the preorder closure of P: it is an order on the set A 
of activities, called precedence order. By adding harmless kick-off 
and ribbon-cutting ceremonies to the set of activities, it may be as-
sumed that (A, <) has both a minimum (m\nA) and a maximum 
(max A). Finally, a duration function d : A-> UJ is supposed to be 
given, the natural number d(a) being called the duration of the ac-
tivity a G A. 

We look for a project schedule, i.e., a map s : A —• w giving for 
each activity a £ A its start date s(a) and such that if aPb, then 
s(a) + d(a) < s(b) in (<*/, <): these are the schedule implications of 
the technical constraints. Since rockets are urgent, we look for a 
project schedule with the completion date 

5 (max A) + d(max A) 

as early as possible: an optimal schedule is one whose completion 
date is less than or equal to that of any other schedule. The fol-
lowing is mathematically straightforward and allows project planners 
(with or without computers, depending on the number of activities 
involved) to find an optimal schedule. 

Forward Pass Scheduling Theorem. Given a set of activities A, a 
set of noncontradictory precedence constraints P generating a prece-
dence order on A, and a duration function d on A there is an optimal 
schedule s, and only one, such that 

(i) s(minA) = 0 

(ii) for every b G A 

s(b) = max{5(a) + d(a) : b covers a in the precedence order) 

The optimal schedule satisfying (i) and (ii) is called the early start 
schedule. An activity a is called critical if for any two optimal sched-
ules s,s' we have s(a) = s'(a): starting this activity any time later 
would delay the completion date. 
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FIGURE 2.4 Activity precedence order and project schedules. 

Let C be the completion date of an optimal schedule. Once C is 
known, we can easily find an optimal schedule a unique with the 
following properties (a is called the full slack schedule): 

(i) a (max A) + d(max A) = C 
(ii) c(a) + d(a) = ram{a(b) : b covers a} for every a £ A 

It is not difficult to show that the knowledge of the early start 
and full slack schedules (s and a) are sufficient to determine which 
activities a are critical: exactly those for which s(a) = <r(a). Project 
managers often focus their attention on critical paths: these are paths 
with critical activities only from min A to max A in the covering re-
lation of the activity precedence order. In the project represented in 
Figure 2.4, there is one critical path, consisting of A,B,D,F. 

Historical examples of the use of PERT/CPM include the Polaris 
missile and the cruiseship France. 

EXERCISES 

1. Verify that a relation is acyclic and antisymmetric if and only if its 
preorder closure is an order. 
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2. Write a computer program to determine (i) acyclicity and (ii) 
strong acyclicity of any relation on a finite set of natural numbers. 

3. Let A be any set. Show that there is a bijection between the set 
of all discrete orders on A and the set of irreflexive, antisymmet-
ric, strongly acyclic relations on A . Write a program to find the 
corresponding relations for finite Ac v. 

4. Write a program that for any acyclic and antisymmetric relation 
on a finite A C w finds the covering relation of the order it gen-
erates. 

5. Write a program that, given the covering relation of any order on 
a finite ACu, finds 
(a) the maximal elements of the order, 
(b) the mimimal elements, 
(c) a maximal chain, 
(d) a maximal antichain, 
(e) the order dimension. 
The program should also determine if the given order is a lattice. 

6. Design a PERT/CPM program package, including 

(a) verification of whether a given set of technical constraints is 
noncontradictory, 

(b) computation of the early start schedule, 
(c) determination of all critical paths. 

4. INTERSECTING CONVEX SETS 

In a closure system C, what does it take to guarantee that a given 
finite T C C has nonempty intersection, nT ^ 0? Finding a com-
mon element of the closed sets given may be viewed as a geomet-
ric "common point" version of algebraically specifying "simultaneous 
solutions." For example, a natural number x satisfying x > 1, x < 5, 
x > 2, x < 7 is a common point of the segments [1, 5] and [2, 7]. 

Given a finite nonempty set T of closed sets, obviously nT f 0 if 
and only if n,S f 0 for all 0 C S C T. But could the knowledge that 
nS ± 0 for certain S C T be sufficient to infer that f\T f 0? Before 
restricting our attention to convex closure in linear orders, we make 
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a general definition, to be called upon again in later chapters. We 
define the Helly number of a closure system C as the smallest nonzero 
cardinal h such that every nonempty finite T C C with f)T = 0 has 
a subset S with 

1< CardS </i and n S = 0 

In the worst case h = w. Helly number h = 1, on the other hand, 
means that every nonempty finite set T of nonvoid closed sets has 
nonempty intersection. Helly number h = 2 means that h f- 1, and if 
every pair of members of a nonempty finite set T C C have an ele-
ment in common, then there is an element common to all members 
of T. 

Helly Theorem for Intervals. The convex closure system on any lin-
early ordered set has Helly number at most 2. 

Proof. The convex closure system on a linearly ordered set (A, <) 
has Helly number 1 if and only if A is void or it is a singleton. Sup-
pose this is not the case. Let T be a finite nonempty set of convex 
sets and assume that 

B n C ^ 0 for B,C£f 

For every (B,C) G T1 let p(B,C) be an element of BDC. We do 
not care whether p{B,C) coincides with p(C,B). Let 

P = {p(B,C) : (B,C)£F2} 

Since T is finite, so are T1 and P, and for each B G T the set B n P 
is finite and has both a minimum and a maximum. For all B,C G T, 
we must have 

min(5nP) < max(Cf]P) 

Then 

max{min(5 HP):BeJr}< min{max(C n P) : C G T) 

and both the max-min and min-max belong to every member of T. 

• 
We conclude with establishing a lemma that clarifies the meaning 

of "Helly number 2" and that is often instrumental in proving Helly-
type theorems. 
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Lemma for Helly Number 2. The following conditions are equivalent 
for any closure system C: 

(i) the Helly number of C is at most 2, 
(ii) if A,B,C are closed sets, every pair of which intersect, then 

AnBnc?0. 

Proof. A priori (ii) is weaker than (i). But assume that (ii) holds. If 
the Helly number of C is greater than 2, then some finite nonempty 
set T of closed sets has empty intersection, even though ADB f-0 
for all A, B e T. Choose such an T with as few members as possible, 
say n members A\,Az,As,...,An. By (ii), we must have n > 4. Also 
by (ii) 

AinA2C\ A; f 0 

for every 3 < / < n. Let 

T' = {Ai n A2} U {Aj :3<i<n} 

Since T' has fewer members than T, and X n Y f 0 for X,Y e T', 
we must have f)T' f 0. But nj7' = r\T and thus OF f- 0, a contra-
diction showing that C cannot have Helly number greater than 2. • 

EXERCISES 

1. What is the Helly number of the upper section closure system on 
a chain? 

2. Verify that if C and JC are closure systems with CC/C, then the 
Helly number of C is at most that of K. 

3. What is the Helly number of the closure system V(S) on an infi-
nite set 5? 

4. Can you generalize the Lemma for Helly Number 2 to higher 
Helly numbers? 
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CHAPTER III 

GROUPS 

1. BINARY OPERATIONS, HOMOMORPHISMS, AND 
CONGRUENCES 

A groupoid is a set A together with a binary operation © : A2 -* 
A. Formally it is defined as the couple (A,®). When the operation 
is clearly understood, we speak simply of the "groupoid A." In a 
way analogous to binary relations, it is convenient to write x © y for 
Q(x,y). Sometimes the symbol 0 is omitted and the value of the 
operation on the couple (x,y) is simply denoted by the juxtaposition 
xy of the two operands. 

With the binary operation of cardinal sum (w, +) is a groupoid, 
and so is (u>,-) with the cardinal product operation. Other examples 
are (P(S),U) and (V(S),n) for any set S. All these four examples 
are associative, i.e., 

(x 0 y) © z = x 0 (y 0 z) 

for all elements x,y,z of the underlying set. Also the commutative 
law 

xQy = yQx 

holds in these groupoids. That this is far from being guaranteed in 
general is seen as follows. Let m and n be two fixed natural numbers 
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and define a binary operation on u by 

x 0 y = (m • x) + (n • y) 

Then O is commutative only if m = n, and it is associative only if 
neither m nor n is greater than 1: verification of this is an excellent 
exercise. 

Let (A,0) be a groupoid. According to an observation made in 
Chapter I, the set C of subsets of A closed under the operation 0 is a 
closure system, and it is indeed an algebraic closure system (Chapter 
II). Every closed set C, together with the restriction of 0 to C 2 , is 
then a groupoid. It is called a subgroupoid of (A,Q). The operation 
of the subgroupoid is usually denoted by the same symbol 0, and we 
often refer to (C,0) as the "subgroupoid C." 

Let (A,0) and (B,T) be two groupoids. (Later we shall not al-
ways bother to use distinct symbols ©, T for two groupoids if the 
context clearly indicates the distinctness of the operations.) A homo-
morphism from (A,Q) to (B,T) is a function h : A —• B such that 

In shorthand h : (A,Q) (B,T). 

Example. Let S be any set. A homomorphism h from CP(S),n) to 
the subgroupoid ({0,1},) of (a;,-) is given by 

If S is infinite, then this same function h is not a homomorphism 

Proposition 1 The composition of two groupoid homomorphisms 

is a homomorphism from {A,o\) to (C,o^). The identity mapping 
on the underlying set of any groupoid is a homomorphism of that 
groupoid to itself. The inverse of a bijective homomorphism is a ho-
momorphism. 

Proof. For the composition, using simplified notation, 

h(xQy) = h(x)Th(y) for all x,y £ A 

if S\B is infinite 

if S\B is finite 

from CP(S),U) to ({0,1},-). 

h:(A,ox)-^(B,o2) and g : (5,o 2 ) -> (C,o3) 

(gh)(xy) = g[h(x)h(y)] = g[h(x)]g[h(y)] 
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The statement about the identity is obvious. For the inverse, if h(x), 
h(y) are in Im/i, apply the inverse h* to both sides of the equation 
h(x)h(y) = h(xy). D 

A bijective homomorphism between groupoids is called an iso-
morphism. The groupoids (A,©) and (B,T) are called isomorphic if 
there exists an isomorphism (A,Q) —• (B,T). 

Example. For any nonzero natural number n £ w let 

Multn = {n • x : x £ cu} 

Then (Multn, +) is a subgroupoid of (w, +) and an isomorphism 

h : (Multn,+) 

is given by h(x) = n • x. 

Proposition 2 Let h : A —• B be a homomorphism between group-
oids. The image by h of any subgroupoid of A is a subgroupoid of B. 
The inverse image of any subgroupoid of B is a subgroupoid of A. 

A congruence relation on a groupoid (/I,©) is an equivalence re-
lation = on A such that x = x', y = y' together imply x 0 y = x' 0 / . 

Congruence Example. For any infinite set S, let = be the equiva-
lence relation on V(S) where x = x' if and only if either both x and 
x' are finite or both are infinite. This is a congruence relation on 
(V(S),KJ) but not on (P(5),n). 

An equivalence relation E on A is a congruence of the groupoid 
(A, 0) if and only if for any equivalence classes B, C the product set 

{bQc : b£B, c £ C} 

is included in some class D. As such a D is unique, this defines a 
binary operation B 0 C = D on the quotient set A/E of all equiva-
lence classes: (A/E,Q) is called the quotient groupoid of (A,Q) by 
the congruence E. The canonical surjection A—yA/E is a homo-
morphism. Conversely, if h is any homomorphism, then the induced 
equivalence defined on its domain by 

x = y if and only if h(x) = h(y) 

is a congruence of the domain groupoid. 
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Example. In the Congruence Example above, the quotient is iso-
morphic to ({0,1},) where "•" is the cardinal product. 

A neutral element in a groupoid (A, 0) is an element u £ A such 
that 

uQx = xQu = x for all x e A 

If we had another neutral w, then u 0 w would have to be equal to 
both u and w, implying u = w. Thus a groupoid has at most one neu-
tral element. It may have none: in (w, +) consider the subgroupoid 

[/!,-•) = {x£w : n<x} 

for any fixed nonzero n € u>. Zero is of course neutral in (UJ, + ) . 
A semigroup is an associative groupoid, i.e., one where 

(xQy)Qz = xQ(yQz) for all elements x, y,z 

The reader will then find the use of brackets superfluous, e.g., we 
can write x 0 y © z instead of (xQy)Qz or x © (y 0 z). A semi-
group with a neutral element u is called a monoid. 

A subgroupoid B of a semigroup ,4 is called a sub-semigroup. If y4 
is a monoid and B also contains the neutral element of A, then B is 
a submonoid. Not every sub-semigroup of a monoid is a submonoid. 
On the other hand, every quotient of a semigroup is a semigroup, 
and every quotient of a monoid is a monoid. 

Examples. (1) For any set 5, the function set Ss is a monoid with 
the usual composition of functions as binary operation. The set of 
constant functions from S to S is a semigroup under composition, 
but it is not a monoid if 5 has more than one element. (2) Both 
groupoids (w, +) and (uv) are monoids. (3) Let S be an infinite set. 
Then (V(S),U) and (P(5),n) are monoids. The set of finite subsets 
of 5 constitutes a submonoid of (V(S),U) but only a sub-semigroup 
in (P(5),D). 

By a semigroup homomorphism we simply mean a groupoid ho-
momorphism between semigroups. With monoids we must be more 
careful. If A and B are monoids and h : A —• B is a groupoid homo-
morphism that maps the neutral element of A to that of B, then 
h is called a monoid homomorphism. [For example, the constant 



B I N A R Y O P E R A T I O N S , H O M O M O R P H I S M S , A N D C O N G R U E N C E S 63 

zero function from (u>,-) to itself is not a monoid homomorphism to 

A homomorphism from a groupoid A to itself is called an endo-
morphism. The set End A of all such endomorphisms, together with 
composition as a binary operation, is a monoid. It is indeed a sub-
monoid of AA. 

For every element a of a monoid ( A O ) with neutral u, there is a 
unique function ea : u —• A such that 

ea(0) = u and ea(n + 1) = ea(n)Qa for all n £ w 

For example, if (A,Q) = (w, +), then ea(n) = n • a. If (>4,0) = (w,), 
then 

ef l(n) = Card(fl") for all a,n£w 

Remember that a" is the set of all maps n —• a. However, it is cus-
tomary to denote, in any monoid (A,Q), the element ea(n) simply 
by a", and we shall follow this tradition. The reader can then verify 
that the equations 

{an)m = anm 

and 
(an)Q(am) = an+m 

hold for all a £ A, n,m 6 w. Furthermore, if (A, 0) is a commutative 
monoid, then for all a,b e A and n f u w e have 

(fl0/))"=(fl")0(fe") 

Two elements a,b of a not necessarily commutative monoid A 
are said to commute if aQb = bQa. A finite family (a, : i £ I) of 
elements of y4 is called commutative if a, and a y commute for every 
i,j £ I. Let C be the set of all such commutative families. There is a 
unique function p : C -+ A that maps the empty family to the neutral 
element of A and such that 

p{ai :i£l) = p(a, : i £ I\{j})Qaj 

for every family (a, : i £ I) in C and index £ I. The value of p on 
(a, : i £ I) is called the product of that family and it is denoted by 
ri;e/ f l i- Observe that if / = {1,2}, then this product is the element 
a\ 0 « 2 = az®a\. On the other hand, let (a, : i £ I) be a constant 
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family, with a finite indexing set / . Now all the a, are equal to the 
same element a and 

n „ Card/ a, = a 

If S is a finite set of pairwise commuting elements of the monoid, 
then the family (a : a e 5) is commutative, and Hatsa *s a l s o re-
ferred to as the product of the set S. 

Let B be a set of pairwise commuting elements of a monoid A. 
Then the submonoid B generated by B consists of all products of 
finite families of elements of S. 

Note on Additive Notation. The binary operation of a monoid can 
be denoted by any symbol you wish. If this symbol is a straight cross 
" + " or some variant of it, such as in (u, +) or (V(S), +), then the 
product of a family of monoid elements is customarily denoted by 

y^a,- instead of J\a' 

and it is called "sum" rather than "product." Usually this is done 
only in commutative monoids. We also write na instead of a" in 
this case. But never mind the notation—if you never forget what it 
means. 

In a monoid with neutral u, an inverse of an element a is an ele-
ment a' such that 

aQa = a Qa = u 

If a had another inverse a", then we would have 

(a © a ) 0 f l " = uQa" = a' and a O ( a 0 a") = a1 0 u = a 

and by associativity a' = a". Thus every element a has at most one 
inverse; it shall be denoted by a*. It may have none: for any set 
S, (P(5),n) is a monoid with neutral element 5, and S is the only 
element that has an inverse, namely itself, 5* = S. Other examples 
of monoids with a scarcity of inverse elements are (w, +) and (w,-), 
the natural numbers with the cardinal sum and product, respectively. 
What about a map composition monoid Ss? 

A group is a monoid in which every element has an inverse. The 
fact that neither (u>, +) nor (a;,-) is a group proves to be the grand-
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mother of fundamental inventions in algebra. Groups do exist, how-
ever, in nature: with " + " the symmetric difference of sets, (V(S), +) 
is always a group. So is every permutation group on any set S, with 
the composition f o g as binary operation, justifying the terminology 
introduced in Chapter I. Note that on every singleton set there is a 
trivial group structure. 

Obviously the groups (P(S), +) are commutative. On the other 
hand, the permutation group of all bijections S —• S is not commu-
tative if Card5 > 3: for three distinct a,b,c in S define bijections / 
and g by 

f(a) = b, f(b) = a, f(x) = x for x + a,b 

g(b) = c, g{c) = b, f(x) = x for x f b,c 

and see if fog=gof. 
By a group homomorphism we simply mean a groupoid homomor-

phism h : A—* B where A and B are groups. The group structure 
forces h to be a monoid homomorphim as well between A and B, 
and to map the inverse JC* of any x £ A to the inverse of h(x) in B, 

h(x*) = [/,(*)]* 

An isomorphism from a groupoid A to itself is called an automor-
phism. The set of all automorphisms is a permutation group on A. 

Inverse elements in a group A obey the rules 

(x*)* = JC and (xy)* = y*x* 

For every a £ A, the mapping ha : A —• A given by 

ha(x) = axa* 

is an automorphism, called conjugation or inner automorphism. The 
element axa* is called a conjugate of x in the group A. Inner au-
tomorphisms form a permutation group on A. Every inner automor-
phism may also be viewed as a unary operation on A. Note that if 
A is commutative, then all inner automorphisms coincide with the 
identity mapping idA. 

If A is a group and a submonoid B of A contains the inverse b* 
for every b £ B, then B is called a subgroup. If B c A, then £ is 
called a proper subgroup of A Subgroups form an algebraic closure 
system on A. A subgroup of A is called normal if it is closed under 
every inner automorphism of the group A. Normal subgroups form 
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an algebraic closure system on A, included in the closure system of 
all subgroups. Both these closure systems, when ordered by inclusion, 
are of course complete lattices. The two systems coincide in commu-
tative groups, because here all subgroups are normal. 

Note that if B is a proper subgroup of A, then the definition of 
conjugacy permits two elements of B to be conjugates in A without 
being conjugates in B. 

For any normal subgroup N of a group A, consider the binary 
relation 

Tl(N) = {(x,y) £ A2 : x*y £ N} 

This is quite easily seen to be an equivalence relation. Let us show 
that Tl(N) is indeed a congruence of A. Assume xTZ(N)y, vTl(N)w: 
we need to show that xv1Z(N)yw. We have x*y 6 N and v*w £ N, 
and by conjugation v*(x*y)v £ N. Observe that 

v*w — v*(y*y)w 

By closure under the group operation, 

[v*(x*y)v][v*(y*y)w] £ N 

By associativity this element is equal to (v*x*)(yw) = (xv)*(yw), es-
tablishing xvTZ(N)yw. 

Let R be any congruence relation on a group A. Let JS(R) be 
the congruence class containing the neutral element u of A. It is not 
difficult to see that M"(R) is a normal subgroup. Let us just verify 
closure under conjugation: for x £ J\f(R), i.e., xRu and any a £ A, 
using aRa and a*Ra*,we get 

(ax)a* R(au)a* 

i.e., 

axa*Ru, axa* £j\f(R) 

It is quite obvious that for every normal subgroup N, 

J\f(R.(N)) = N 

and for every congruence R, 

Tl(Af(R)) = R 
The observation that N CM, for any two normal subgroups, is 
equivalent to R(N) C Tl(M) allows us to state the following result: 
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Proposition 3 Let A be any group. An order isomorphism is estab-
lished from the set of normal subgroups of A, ordered by inclusion, 
to the set of congruence relations of A ordered by inclusion (implica-
tion), by associating to each normal subgroup N the congruence 

TZ(N) = {(x,y)eA2 : x*y £ N} 

The normal subgroup N and the congruence H(N) are said to 
correspond to each other and 1l(N) is also called congruence modulo 
N. For xTZ(N)y we usually write 

x = ymodN 

The quotient groupoid A/K(N) is actually a group. It is also de-
noted by A/N and called the quotient group of A by the normal 
subgroup N. For a group homomorphism h : A —• B, the class of the 
neutral element in the congruence 71/, of A induced by h is a nor-
mal subgroup, called the kernel of h and denoted by Ker/i. (We have 
A/Kh = A/Kerh.) On the other hand, Imh is a subgroup of B, but 
it is not necessarily normal. 

Proposition 4 Let h : A—> B be a group homomorphism. Then 
A/Kerh is isomorphic to Imh. 

Proof. Let 7 be a choice function associating to every class C of the 
congruence induced by h on A an element of C. Consider 

/ : A/Kerh^ Imh 

given by 
/ (C) = A(7(C)) • 

EXERCISES 

1. Let R be any binary relation. Verify that the set of all relation-
preserving maps f : R—> R is a monoid under composition. Ver-
ify that AutR is a group. 

2. Find all possible group structures on a three-element set. 

3. Let 5 be a set of elements of a group G. Consider the relation R 
on G where xRy means x*y £ S. Show that 
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(a) R is an equivalence relation if and only if S is a subgroup, 

(b) R is a preorder if and only if 5 is a submonoid, 

(c) R is an order if and only if 5 is a submonoid in which only 
the neutral has an inverse. 

4. Let (G,-) be a group. Define a groupoid operation 0 on V(G) by 

AQB = {ab : a e A, b G B) 

Verify that this is a monoid. Verify that every quotient group of 
G is a subgroupoid of V(G). Is every quotient of G a submonoid 
of V(G)1 Verify that the set of normal subgroups of G is a sub-
monoid of V(G). Show that for any two normal subgroups N,M 
of G, N 0 M coincides with the least upper bound Af V M in the 
lattice of normal subgroups of G. 

5. Write a computer program to verify if a given equivalence re-
lation, on a group whose underlying set is a finite AQu), is a 
congruence. 

6. For a groupoid structure on a set A, show that the congruence 
relations form a closure system on A2, and hence they form an 
inclusion-ordered lattice. 

7. Show that, given a group G, the various cosets of the various 
subgroups plus the empty set 0 constitute a closure system on G. 

8. Verify that the kernel of a group homomorphism is the set of 
elements mapped to the neutral element of the codomain group. 

2. PERMUTATION GROUPS 

We have noted that for any set A, the set T,(A) of all bijections 
A —* A constitutes a group under the functional composition o. The 
members of T,(A) are called permutations of A, and T.(A) is often 
called the symmetric group on A. The permutation groups on A, as 
defined in Chapter I, are then simply the subgroups of T,(A). If B 
is any other set equipotent to A, say via a bijection / : A —• B, then 
the function F : T,(A) -> E(5) given by 

F(a) = / ocr of* 
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is an isomorphism between the two symmetric groups. Informally 
speaking this means that only the cardinality of A matters if we are 
interested in the structure of T,(A); the nature of the elements of 
A does not matter. In particular the symmetric group on any finite 
set of cardinality n £ CJ would be well understood by studying the 
symmetric group on the particular set 

Why [1, n] rather than the cardinal n itself? Tradition and notational 
convenience. We write E„ for E([l,«]). The composition of two pre-
mutations is often denoted by juxtaposition. 

A permutation a in E„ is traditionally denoted by a two-row table 
between brackets, the first row being simply the list of the numbers 1 
to n and the second row indicating, under each i £ [1, n] of the first 
row, the image element a(i). For example, for n = 4, if cr(l) = 4, 
a(2) = 2, <T(3) = 1, and a(4) = 3, then a is written as 

In this chapter, permutations may appear responsible for the wide-
ly held preconception that mathematics is about counting. Let us first 
count the permutations that make up a symmetric group. 

The factorial of a cardinal number n (finite or infinite) is defined 
as the cardinality of E(n). The factorial of n is denoted by n\ 

Observe that if A and B are equipotent sets of common car-
dinality n, then the set of bijections A —> B has cardinality nl as 
well. Indeed, let bi(A, B) be the set of these bijections. Choose any 
/ £ b\(A,B). The function 

[l,n] = {xen + l : \ <x <n} 

2 3 

2 1 

F : Y.{A) b\{A,B) 

given by 

F{<i) f oa 

is bijective onto bi(A, B). 

Proposition 5 0! = 1 and for every cardinal number n, 

(« + !)! = «!.(/» + 1) 
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Proof. For 0! = 1 observe that the empty function ("empty set of or-
dered pairs") is the sole bijection 0 —• 0. 

Let A be any set of cardinality n and {s} a singleton disjoint from 
A, s £ A. By definition, n + 1 is the cardinality of B = A U {s}. By 
the Counting Lemma of Chapter I, for every b £ B there is a bijec-
tion 

fb:A-+B\{b} 

Define a function F : T,(A) x B —> £ (£ ) by 

F{<r,b)(s) = b 
F(a,b)(x) = fb(a(x)) for x £ A 

This function F is bijective, establishing the equipotence of the 
Cartesian product T,(A) x B and E(5). But 

Card(E(v4) x B) = n\ • (n + 1) and CardE(B) = (n + 1)! 
• 

The equality 
(n + 1)! = n\• (n + 1) 

is often referred to as the "inductive definition" of factorials. It al-
lows the computation of finite factorials, e.g., 

1! = 1 1 = 1 

2! = 1 2 

3! = 1 2 3 

4! = 1 2 •3-4 

5! = 1 2 •3-4-5 

and so on, providing in particular a rigorous proof that for finite A, 
the set Y,(A) of permutations is also finite. 

Let G be any "abstract" group: a group that is not necessarily a 
permutation group. Let u be the neutral element of G and let the 
group operation be denoted by the dot symbol •. Let A be any set. 
An action of G on A is a mapping a : G x A—> A such that 

a(u,x) = x 

a(h,a(g,x)) = a(h-g,x) 
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for all h,g EG, x £ A. Often we write simply gx for a(g,x), and 
then 

h(gx) = (hg)x for all h,gEG, xEA 

Example. The two-element group 7^(1) = {0,1} with the symmetric 
difference operation " + " acts on any power set P(S) as follows: for 
X € V(S), let 

OX = X and IX = S\X 

Every group G can be made to act on G itself in a number of 
ways. Action by translation is defined by 

gx=g-x 

and action by conjugation is given by 

gx = g-x-g* 

for all g,x EG. Every permutation group G on a set A acts on A by 

gx=g(x) 

for gEG, xE A. 
Given an abstract group G acting on a set A, for every g e G the 

mapping ag : A —• A given by 

ffg(x)=8x 

is a permutation of A. The function / : G —• £(/!) given by 

is a homomorphism from the group G to E(^4). It is easy to see 
that different group actions give rise to different homomorphisms 
this way. Conversely, every homomorphism / from an abstract group 
G to a symmetric group T,(A) corresponds to a group action on A 
given by 

gx = U(g)](x) 

for g EG, x E A. Thus the theory of group actions is essentially 
the theory of homomorphisms from abstract groups to permutation 
groups. 
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For an abstract group G acting on itself by translation, the homo-
morphism / corresponding to the action is injective into E(G): this 
is because for the neutral element u of G, obviously 

gufgu if g^g 

Thus / is an isomorphism between G and the subgroup I m / of EG), 
yielding this century-old result: 

Cayley Representation Theorem. Every group is isomorphic to 
some permutation group. 

Given a group G acting on a set A, consider the binary relation 
R on A in which 

xRy if and only if gx = y for some g e G 

This relation R is easily seen to be an equivalence. The classes of R 
are called orbits. For x £ A, we say that a group element g e G sta-
bilizes x, or fixes JC , if = x. Alternatively, x may be called a /iced 
/?omt of g. The set of group elements g fixing a given x is a subgroup 
of G, called the stabilizer of JC , denoted by Sx. Assume that x and y 
are in the same orbit, say hx = y for some h (E G. For this group 
element /i consider the conjugation by h, an inner automorphism of 
G. For geSx, 

h-g-h* esy 

and it is not difficult to verify that the restriction of this conjugation 
to Sx is an isomorphism Sx —• Sy. Thus all stabilizers of elements in 
the same orbit are isomorphic and a fortiori equipotent. 

Orbit Counting Theorem. / / O is any orbit of a group G acting on 
a set A and if Sa is the stabilizer of any a &Ot then 

CardO-CardS f l = CardG 

Proof. For each JC 6 O let gx be an element of G such that gxa = x. 
Define a function / : O x Sa —• G by 

f(x,h)=gxh 

Is / injective? If f(x,h) = f(y,k), i.e., gx • h =gyk, then 

x=gxa= gx(ha) = (gx • h)a = (gy • k)a = gy(ka) = gya = y 
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and applying the inverse of gx = gy, 

h = g*x(gx-h) = g*-(gyk) = k 

Thus / is indeed injective. To see that it is also surjective, for g G G 
let 

x = ga and h=g*-g 

We have f(x,h)=g. Therefore / is bijective, proving the theorem. 
• 

Any group G can be made to act not just on G itself but also on 
the power set V(G), by letting 

gH = {g-x : xeH} for g £ G, H G V(G) 

Let H be a subgroup of G: what is the orbit O of HI By definition 

0 = {gH :g£G} 

The sets gH in O are called (left) cosets of H. For every coset g / / 
the map associating to each x G H the element g • x of g / / is a bi-
jection from H to gH. Thus every coset is equipotent to H. 

If two cosets intersect, gHng'H ^0, then for some h,h! G H, 

g-h=g -h' 

g=g -h' -h* 

and hence gH Cg'H. By the same argument we also have g'H C 
gH, and therefore any two intersecting cosets must coincide. Since 
every g G G belongs to some coset (namely to gH), the cosets con-
stitute a partition of G. The cardinality of the set O of cosets is 
called the index of / / in G, denoted by [G : H]. Observe that if H 
is a normal subgroup of G, then the cosets are precisely the congru-
ence classes modulo H. In this case [G : H] is equal to the cardinal 
number of elements of the quotient group G/H. 

Lagrange's Subgroup Counting Theorem. For any subgroup H of a 
group G we have 

C a r d / / [ G : / / ] = CardG 

// H is a normal subgroup, then 

Card// • Card(G/H) = CardG 
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Proof. Proposition 2 of Chapter II. (Alternatively, we may recognize 
here an instance of the Orbit Counting Theorem.) • 

Example of Application. Let G be a group of order 5. What are 
the subgroups of G? Obviously G itself and the trivial subgroup re-
duced to the neutral element are subgroups. Indeed there is none 
else. For if H were a subgroup with n elements, 1 < n < 5, then we 
would have 

n[G : H] = 5 

This can be ruled out by elementary arguments, without recourse to 
any number-theoretical concepts. 

EXERCISES 

1. Design a program that for any subset S of E« 

(a) finds the number of elements of the subgroup S of E„ gener-
ated by 5, 

(b) finds the stabilizer of any i e [l,n] in S, 
(c) determines the orbits of 5 acting on 

2. For a finite set 5, let E(S) act on V(S) by a A = a\A\ How many 
orbits do we have? 

3. Show that if S is any set and n, m two cardinals with n + m = 
Card 5, then 

n! • (ml) • Card{* C S : C a r d * = n} = (Card5)! 

4. Let a finite group G acting on a finite set have n different orbits. 
For every g e G let F(g) be the number of fixed points of g. 
Prove the "Burnside equation" 

«-CardG = £ f ( g ) 

5. Let S be any set of pairwise nonisomorphic binary relations on a 
finite, n-element set A. Show that 

Card5- n\= £ / ( g ) 
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where 1(g) is the number of relations R on A isomorphic to some 
member of S and such that g e Aut/?. 

3. INTEGERS AND CYCLIC GROUPS 

The set-theoretical definition of natural numbers and of u given in 
Chapter I should be clear in our minds at this point. Let OJ+ denote 
the set of nonzero naturals. Consider the set 

u~ = {w \ n : n 6 u+} 

Each u)\n coincides with the upper section [«,—») in (u>,<). Thus 
u>~ is disjoint from u. An integer is defined as an element of 

A nonzero integer is positive or negative according to whether it be-
longs to w + o rw" . The set of integers shall be denoted by Z. (Zahl 
means "number" in German.) 

Recall that (w,<) was defined as the inclusion order on u/. The set 
u~ can also be ordered by inclusion: ( u T , C ) is then isomorphic to 
the dual of (u> + , <) via the map associating w \ n to n. The entire set 
Z is ordered by the relation 

{(z,v) G w2 : z C v} U {(z,v) £ {u~f : z C v} 

U {(z,v) : z E u T , v EUJ} 

This integer order on Z is usually denoted by <. Restricted to w, it 
obviously yields the natural order on u, and restricted tow" it yields 
the inclusion order described above. All negative integers are less 
than any natural number. For any nonzero integer z, the negative of 
z is defined as u \ z, while the negative of zero is defined as zero 
itself. We write - z for the negative of z. Note the double negation 
rule 

- ( - z ) = z 

for all integers. The negative of a positive integer is negative and 
vice versa. The map associating to each integer its negative is an 
order isomorphism from (Z,<) to its dual (Z,>): we have 

x < y if and only if - y < -x 
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- 4 - 3 - 2 - I ( ! I 2 3 4 5 

FIGURE 3.1 Integers. 

The order (Z, <) is obviously total. A nonzero integer is positive or 
negative according to whether it is greater or less than 0. No negative 
integer is covered by a positive (or vice versa, obviously) because 
z < 0 < v for all negative z and positive v. For every n £ u>, n is 
covered by its successor n + 1 and by nothing else, and the negative 
-n covers -(n + 1) only. Thus the covering relation of (Z,<) is 

{(n,n + l) : n £ w) U {(-{n + 1) ,-n) : new} 

Using the fact, already noted in Chapter II, that the natural order 
(u, <) is discrete, we quickly realize that the preorder closure of this 
covering relation on Z is the full order (Z,<), i.e., the integer or-
der on Z is discrete too. This allows the familiar representation of Z 
given in Figure 3.1. 

If x,y £ Z, then {x,y} generates a convex segment 5 in (Z,<): the 
distance d(x,y) of the two integers is then defined as the number 
of couples in (5,-0, the covering relation of < restricted to 5. For 
example, if x = 2 and y = — 1, then 

5 = [-1,2] = {-1,0,1,2} 

and the couples in (S,<) are (-1,0),(0,1),(1,2). Thus d{2,-\) is 3. 
Obviously 

d(x,x) = 0 and d(x,y) = d(y,x) 

and less obviously 
d(x,y) = d(-x,-y) 

for all x,y £ Z. Note that if x < y, then in the covering relation (Z, -<) 
there is a unique path from x to y. The length of this path is d(x,y). 

Integer addition (sum) is defined as the binary operation 0 on Z 
given for x,y £ Z by 

(d(x,-y) if - min(x,y) < max(x,y) 

\ - d ( j t , - y ) if - min(jc,y) > max(jt,y) 
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The operation © is commutative. Note that if x,y £ u, then 

i.e., the restriction of © to a; coincides with the cardinal sum opera-
tion. The integer 0 is easily verified to be neutral not only in (w, +) 
but also in (Z,©). Integer addition is associative as well: verification 
of this is straightforward, if somewhat tedious. Further, 

for all integers x, and therefore (Z,©) is a group: the negative of 
each integer serves as its inverse. Instead of ©, we shall hencefor-
ward use the notation + for integer addition. For x,y £ Z we shall 
also write x — y instead of x + (-y), and call x-y difference. Note 
that y < x if and only if x-y is nonnegative. If A and B are any 
finite sets such that BCA, then 

In the group (Z, +) all translations are automorphisms of the order 
(Z,<). It follows that 

if x < y and z < v, then x + z < y + v 

What are the subgroups of Z? This question will benefit from the 
introduction of yet another binary operation on Z, called integer mul-
tiplication (or product), denoted by 0, and defined with reference to 
the cardinal product "•" of natural numbers as follows: 

It is a matter of simple verification that (Z,0) is a commutative 
monoid with the integer 1 as neutral element. (It is not a group, 
however.) The integer 0 also has a special role: 0© x = 0 for every 
integer x. Since integer multiplication coincides with the cardinal 
product when the former is restricted to natural numbers, we shall 
use the same symbol "•" for integer multiplication, instead of 0. 

The multiplicative monoid (Z,) is linked to the order (Z,<) as 
follows. If x < y and z > 0, then x • z < y • z, but x • z > y • z ii z < 0. 

x®y = d(x,-y) = x + y 

d(x,x) = 0 implies x@-x = 0 

Card(/1 \B) = Card A - Card B 

'x-y 

xQy = I (-x)-(-y) 

, -[(-min(x,y))max(x,y)] 

if x,y £ w 

if x,y£u) 

otherwise 
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Integer multiplication and addition are linked by distributivity: 

x-(y + z) = (x-y) + (x-z) 

This is essentially a consequence of the fact that for finite (as well 
as infinite) sets A,B,C, 

A x (B U C) = (A x B) U {A x C) 

and if B n C = 0, then 

(A x B) n {A x C) = 0 
What are then the subgroups of (Z,+)? For any fixed m e 1 the 

set of multiples 
ml = {m • x : x 6 Z} 

is a subgroup. (Use distributivity to verify closure under addition.) 
Indeed ml is the subgroup of Z generated by m, and for m ^ 0 it 
is isomorphic to the entire group Z via the map associating m • x to 
x e 1. Let us show that every subgroup G of Z is of this kind. If 
G is trivial, then G = OZ. Otherwise G has some positive elements 
because for every nonzero z £ G either z or -z is positive. Let m 
be the smallest positive element of G. Obviously ml C G. If we had 
ml G, then for every 

z 6 G \ m Z 

we would also have 
- z e G\ml 

and thus G \ wZ would have some positive elements. Let fi be the 
smallest of these. We cannot have ft < m because m is the smallest 
positive element of G. Thus m < \i and \i - m is positive. Clearly 
\i - m£G but 

\L- mfy ml 

for otherwise (fi - m) + m = /J, would belong to mZ. As 0 < /x - m < 
fj,, fi - m would be a positive element of G\ml smaller than /x, 
which is impossible by the definition of //. Thus ml = G. Observe 
that m and - m are the only generators of ml = -wZ. Note that 
1Z = Z. 

A group G is called cyclic if in the subgroup closure system on 
G the entire group G is generated by some element of G. We have 
shown that Z as well as all subgroups of Z are cyclic. On the other 



I N T E G E R S A N D C Y C L I C G R O U P S 79 

hand it is clear that every quotient of a cyclic group is cyclic (the 
congruence class of any generator generates the quotient). Thus we 
get more examples of cyclic groups by taking the various quotients 
Z/mZ. If m > 0, then we sometimes use the notation l m for Z /ml. 
The group l m has exactly m elements: 

(i) the m nonnegative integers less than m are all in distinct 
cosets of ml because if two such /,;' (with say / < j) were 
in the same coset, then - / would belong to ml, but 0 < 
j - i < m would contradict the minimality of m among the 
positive elements of ml, 

(ii) every coset C of ml contains a nonnegative integer less than 
m because for any z g C one of 

z + z- m or z - z - m 

is nonnegative, and the smallest nonnegative element /x of C 
must be less than m or else look at /x - m £ C. 

Thus the function associating to each / £ m its coset 

i = {i + m • x : x £ 1} 

is a bijection onto 1/ml whose inverse function 

c : 1/ml —• m 

is a choice function on the set of cosets. Using this bijective corre-
spondence, a group structure © isomorphic to 1/ml is defined on 
m - {(),...,m - 1} itself by 

i@j = c(7 + J) 
This group structure is called addition modulo m (mod m). Note that 
if m > 3, then the binary relation on m given by 

R = {(i.iei) : i € m) 
is a cycle (Figure 3.2). For i, j £ m, j > 1, there is in R a path of 
length j from / to i © / : indeed there is no other z £ m such that a 
path of length j would exist from i to z. 

For m = 2, addition mod2 on {0,1} coincides with the symmet-
ric difference on the power set V{{0}) = V(\) = 2. Every integer is 
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0 0 

2 

FIGURE 3.2 Integers modulo 3, 4, and 5. 

congruent modulo 2Z either to 0 or to 1, and it is called either even 
or odd accordingly. 

Let G be any cyclic group generated by an element g. Define a 
function e : Z —• G by 

This function e is a surjective homomorphism from the additive 
group Z to G. Let Kere = ml, m > 0. If m = 0, then e is an iso-
morphism from Z to G. If m > 0, then G is isomorphic to Z/mZ. In 
this case the restriction of e to m = {<),...,m - 1} is an isomorphism 
from (m,©) to G: 

Cyclic Group Structure Theorem. A cyclic group is isomorphic 
either to 1 or to the group (m,©) of integers modulo m for some 
m>l. 

Of course (m,©) is isomorphic to 1/ml = Z m . Let G be a sub-
group of 1/ml. Remember that G is a set of cosets. Clearly UG is 
then a subgroup nl of Z, with ml C nl. In fact the quotient group 

coincides with G. Since every quotient of a cyclic group is cyclic, G 
must be cyclic as well. Thus we have shown that every subgroup of a 
cyclic group is cyclic. 

Any element g of any group H generates a cyclic subgroup G of 
H. Let e : 1—> G be the surjective group homomorphism defined 

for new, 

for 

nl/ml 
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above. It is actually the only homomorphism e : Z —• G with e(l) = 
g. It is customary to denote e(z) by gz for any integer z. For z £ u 
this is compatible with the exponential notation introduced earlier in 
this chapter. Note the rules 

(gZ)(8y) = gZ+y 

(gzy=gzy 

as well as 
(gh)z=gzhz if gh = hg 

Note also that the inverse g* of g coincides with g~l. From now on 
we shall use this latter notation g~l in preference to g*. By analogy, 
we shall even take the notational liberty of designating the inverse 
map of any bijection / : A-+ B between two sets by the symbol f~x. 
[If A = B, then this makes good sense in the group T,(A) to which / 
belongs.] Further, for any map / : A —• B, not necessarily bijective, 
and any T C B, the inverse image /inv[r] is customarily denoted by 

EXERCISES 

1. Design a program that for any two integers m,n finds a generator 
of the subgroup tnlDnl in (Z,+) as well as a generator of the 
lub subgroup ml V nl. 

2. Describe a submonoid of (Z,) that is not generated by any single 
integer. 

3. Show that Aut(Z,<) is a group isomorphic to Z. Is there an anal-
ogous result for finite cyclic groups? 

4. Which are the generators of the group Z? 

5. Describe Aut(Z,+) and Aut(5,©). 

6. Let x,y el, x < y . Verify that 

Card[jc,_y] = y - x + 1 

7. Show that if g is any member of a finite group G with neutral 
element u, then £ C a r d G = u . 
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4. ALTERNATING GROUPS 

For k £ to, k > 2, a permutation cr e E n is called a k-cycle if there 
are & distinct elements e [l,n] such that 

<r(n,) = for all 1 < i < k, <r{nk) = «i 

and <r(m) = m for all other elements m of [l,n]. For example, the 
permutation 

is a 3-cycle; it is more commonly written as (1,4,3). Generally, since 
any k -cycle a is determined by the A:-tuple 

(«!,..., nk) 

this sequence-in-brackets notation of the A:-tuple is used, somewhat 
abusively, to denote the permutation a. 

Note that a -cycle is not a fc'-cycle for any k' fi k. A cycle is a 
permutation a that is a & -cycle for some k, and k is then called the 
length of <x. If <r is a A:-cycle, A > 3, then 

{(!>(/)) : 1 < * < «, <r(i) ̂  /} 

is a relational cycle of length k. A 2-cycle is called a transposition. 
Two cycles a and r in E« are called disjoint if 

{i e : <r(i) t /} D {i € [1,«] : T ( I ) ?t /} = 0 
In this case a and T commute: cr o r = r o cr. 

Proposition 6 77ie o/ transpositions of [I, n] generates, in the sub-
group closure system, the entire symmetric group E„. 

Proof. The proposition is obviously true for n = 1,2. Assuming it 
failed to hold for all n, let m be the first natural number such that 
E m is not generated by transpositions. Then m > 3 and E m _ i is gen-
erated by the transpositions of [l,m - 1]. This means that the stabi-
lizer Sm of m in E m is generated by those transpositions of [l,m] 
that leave m fixed. (Why?) Let now a e E m such that a is not in the 
allegedly proper subgroup 5 of E m generated by the transpositions 
of [l,m]. Then o £ Sm- Let r be the transposition of [l,m] such that 

T(m) = <r(m), T(er(m)) = m 

/ l 2 3 4 \ 

V4 2 1 3 / 
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Obviously r o a G Sm and therefore r o a G S. But also T G S and thus 

r o (T O U) G 5 

As T O(T oa) = a, this contradicts er £ 5. • 

Cycle Representation Theorem. Every permutation a G E,i w f/ie 
product of a unique set of pairwise disjoint cycles. 

Proof. Let a G £«. Let 

(<r) = {<rz : z G Z} 

This is the subgroup of £„ generated by <r. Consider the action of 
the permutation group (a) on [l,n]. For every nonsingleton orbit C 
define ac G £« by 

if J C G C , 

if x$C 

Then the various ac form a set of pairwise disjoint, commuting cy-
cles and their product is a. • 

A cycle appearing in such a product representation of a is called 
a cycle factor of a. The cycle structure of a permutation a G £« is the 
equivalence relation on [1,«] whose nonsingleton classes are the sets 

{ i€ [ l , n ] :T ( 0? f c i } 

corresponding to the various cycle factors T of a. For example, if 

_ / l 2 3 4 5 6 7 8 9 \ 
ff"\6 7 3 1 2 4 5 9 8 / 

then the cycle factors are (1,6,4), (2,7,5), and (8,9). We can write 

(7 = (1,6,4)(2,7,5)(8,9) 

and the cycle structure has four classes: 

{1,6,4},{2,7,5},{8,9},{3} 

Two permutations a, 7r g £« are said to have similar cycle structures 
if some bijection ip : [\,n] -+ [l,n] is an isomorphism from the cycle 
structure (equivalence relation) of a to that of tt. Almost obviously, 
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this means precisely that for every 2 < k < n the number of k -cycle 
factors of a equals the number of k-cycle factors of TT. 

Example. In E 5 , a = (1,3,5)(2,4) and TT = (1,2,4)(3,5) have distinct 
but similar cycle structures. This a and (1,5,3)(2,4) have the same 
cycle structure. What about a and (2,4)(3,5,1)? The latter is just an 
equivalent notation for a. 

In £„ any two k-cycles are conjugates. Indeed, let 

a = ( n b . . . , nk) and TT = (n'u..., n'k) 

be two k -cycles. There is some tp G £„ such that 

tp(ni) = n'j for i = \,...,k 

We have a = <p~lir(p. 
The above argument extends to arbitrary permutations a 

having similar cycle structures. There exists in this case some tp G En 
such that for every cycle factor (n],...,nk) of a and a corresponding 
cycle factor (n\,...,n'k) of 7r having the same length A, 

T ( « , ) = n'i for i = 1,...,A 

Clearly for such tp we have 

a = tp'^ntp 

A simple converse verification completes the proof of the following: 

Proposition 7 Two permutations a and TT of [1, n] have similar cycle 
structures if and only if they are conjugates in the symmetric group £„. 

Let S(n,2) be the set of two-element subsets of [\,n]. A pair 

{i,j}eS(n,2) 

is inverted by a a G E„ if 

/ < j and <T(;') < <r(i) 

or if 
< / and a(i) < <r(y) 

The number of pairs inverted by a is a nonnegative integer v(a), and 
cr is called odd or even according to whether v(a) is odd or even. For 
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example, all transpositions are odd, and the identity permutation is 
even. 

The function p : En —• Z/2Z mapping each a G T,„ to the congru-
ence class modulo 2Z of the number v(a) of pairs inverted by a is 
called the parity function. 

Proposition 8 The parity function p : E n —• I2 is a group homo-
morphism. 

Proof First, verify the following auxiliary fact: for any finite set S, 
the function 

P : V(S) - > Z 2 

mapping each A C 5 to the congruence class modulo 2Z of the inte-
ger Card A is a group homomorphism from the symmetric difference 
group (V(S),+) to Z2. Call this P the subset parity function of S. 

Consider any 0*1,02 € a n ( J their product 

0 3 = 0 2 o <Ti 

Let ri denote the subset of S(n,2) consisting of the pairs inverted by 
o\. Let 

ri = {{hj} € 5(n,2) : {o\(i),0\(j)} is inverted by o2} 

and let r 3 be the set of pairs inverted by 0 3 . Then r^ is the symmetric 
difference of rx and r2. Applying the subset parity function P of 
S(n, 2) we have in Z2 the equality 

P(r3) = P(r2) + P(ri) 

Finally, observe that the equality 

Pfrk) = P{rk) 

holds, obviously for k = 1,3, and less obviously for k = 2. • 

The kernel of the parity function E„ —• Z 2 , consisting of all even 
permutations, is called the alternating group A„. By Lagrange's Sub-
group Counting Theorem we have, for n > 2, 

2 • Card An = Card£„ = n! 
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Example. We have 2 • Card A4 = 4! = 2-3-4. Therefore 

Card A4 = 3-4 

Consider the four-element subset /V of AA consisting of the identity 
permutation, (1,2)(3,4), (1,3)(2,4), and (1,4)(2,3). The set N consti-
tutes a normal subgroup of E 4 and a fortiori of A4. (The Simplicity 
Theorem for Alternating Groups will show that this situation is quite 
exceptional.) 

All 3-cycles are even. Indeed any 3-cycle (a,b,c) can be written as 
the product 

(a,b)(b,c) 

of two transpositions and we can apply the parity function. [Alterna-
tive proof: (1,2,3) is even and all other 3-cycles are its conjugates.] 

The set of 3-cycles generates the alternating group An. Proof: Let 
A be the subgroup of generated by the set of 3-cycles. Obviously 
AC An. Assuming strict inclusion will lead to a contradiction. Let 
p be an element of An \ A with the greatest number of fixed points. 
No cycle factor a of p has length greater than 2, for otherwise take 
/ G [l,n] with cr(i) ^ i; let r be the 3-cycle 

(i ,<r(iV2(i)) 

and observe that r~xp G An \ A has more fixed points than p. Thus 
all cycle factors of p. are transpositions and obviously p has at least 
two such factors (a,b) and (c,d). Let 

T = (a,b)(c,d) = (a,b,c)(b,c,d) 

Again T - 1 / J G An \ A has more fixed points than p, which is absurd. 
For n>5, all 3-cycles are conjugates in An. (Do not say, "of 

course.") Proof: Let 

a = ( n i , n 2 , « 3 ) and 7r = {n\,n'2,n3) 

be 3-cycles. Let a G E,i be any permutation with 

a(n() = n'i for i = 1,2,3 

Let a and b be two distinct elements of [l,n]\{n\,n2,n^}. If a is 
even, a G An, then 

a = a _ 1 7ra 



A L T E R N A T I N G G R O U P S 87 

If a is odd, then let B be the product (composition) of a and {a,b), 

B = a(a,b) 

Clearly B is even, B £ A„, and a = B~xitB. 
If a = ( a i f l 2 ) ( « 3 f l 4 )

 and 7T = (61^2X^3^4)
 arepermutations in YZn, 

each being the product of two disjoint transpositions, then a and TT are 
conjugates in A„. Indeed, take any permutation a of with 

a(aj) = bi for / = 1,2,3,4 

If a is even, then a = a~XTra proves our claim. Otherwise B = 
a(fl!fl2) is even and a = B'^TTB. 

A group G is called simple if it has no normal subgroups other 
than G itself and the trivial subgroup reduced to the neutral element. 

Example. The two-element group Z2 is simple. The alternating 
group A* is not simple. 

Simplicity Theorem for Alternating Groups. The alternating group 
An is simple if n > 5. 

Proof. We shall show that every nontrivial normal subgroup N of 
An contains a 3-cycle. It would then follow that N contains all 3-
cycles (since these are all conjugates in A„) and N = A„ because 
the 3-cycles generate An. 

For each permutation a £ £„ the cycle structure of a is an equiv-
alence relation on [l,n]. Call the number of equivalence classes the 
cycle count of a. It is equal to the number of cycle factors plus the 
number of fixed points of a. The cycle count is n for the identity 
permutation, and it is less than n for all other permutations in £„. 

Among the elements of N other than the identity permutation, 
let /x have the highest possible cycle count. We may assume that \i is 
not a 3-cycle, for otherwise the proof is finished. 

First of all, \i has no cycle factor of length 5 or more. For if it had 
one, say a, then we would take any i £ [l,n] with <r(i) fi i, form the 
product of transpositions 

r = 0\<7(0)(<72(/),<r3(0) 

and compare the cycle count of r / i T _ 1 / i to that of /x. This construc-
tion also shows that if AT contains a 5-cycle, then it contains a 3-
cycle. We shall use this fact at the end of the proof. 
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Second, p has no cycle factor of length 4 either. For otherwise the 
cycle count of p} would be higher than that of p. 

Third, p cannot have cycle factors of length 2 and 3 simultane-
ously, for p} would contradict the choice of p in this case as well. 

Fourth, the cycle factors of p cannot all be 3-cycles. For in that 
case, by assumption, p would have at least two distinct cycle factors 
a and 7r. Then choose i,j e [1,/z] with a(i) \t i, 7r(y) ^ j . Let 

Compare the cycle counts of rpr~lp and p. 
Therefore all the cycle factors of p are transpositions, and obvi-

ously there are at least two of these, say (a,b) and (c,d). Let 

p = (a,b)(c,d)p 

We have p£ An and 
p = (a,b)(c,d)p 

Let 
T\ = (a,c)(b,d), T2 = (a,d)(b,c) 

These two permutations are conjugates of (a,b)(c,d) in An, and 
therefore both r\p and r2p are conjugates of p in An. Since yV is 
normal, both rxp and r2p belong to N. Then 

rxppr2p = rxpT2 = p 

also belongs to N and it has a higher cycle count than p. Therefore 
p must be the identity permutation, i.e., p = (a,b)(c,d). 

Let now 
e £ [\,n]\{a,b,c,d] 

Composing p with (b,c)(d,e), its conjugate in An, we obtain the 5-
cycle 

(b,c)(d,e)p = (a,c,e,d,b) 

as a member of N. By a previous observation, it follows that AT also 
contains a 3-cycle. • 

From the simplicity of An it follows that for n > 5, has no 
normal subgroups other than £„ itself, A„, and the trivial subgroup. 
For if N were some other normal subgroup, then N \~\A„ would be 
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a normal subgroup of A„, implying that either NC\An is trivial or 
that 

An C N C E„ 

In the former case, if 
<r,7r € / V \ / l „ 

then (T7r is even, an £ N C\A„, and o-7r is the identity, from which we 
conclude that ;V has only two elements. This is impossible because 
every nonidentity permutation in E„ has distinct conjugates belong-
ing to the same normal subgroups. In the latter case, An C N C E n , 
we have 

Cardan < CardyV < n\ 

and by Lagrange's Subgroup Counting Theorem, 

2 • C a r d A = Card N • Card(E„/A0 = n\ 

Since Card/V < n!, we have 

1 < Card(£„//V) 

Since Cardan < Card AT, we have 

Card(E„/W)<2 

But there is no integer between 1 and 2. 

Historical Comment. In historical order this third chapter should 
have been the first. If modern algebra is the arithmetic of non-
numbers, then modern algebra is 200 years old and it was born as 
group theory. While there was considerable algebraic manipulation 
of imaginary and unknown quantities in earlier times, this was more 
an extension of, rather than abstraction from, numerical mathemat-
ics. Permutation groups, on the other hand, are nonnumerical struc-
tures par excellence. It is puzzling that they were invented not to 
study the symmetry of geometric shapes, but to investigate the solv-
ability of equations in numerical fields. 

EXERCISES 

1. Write a computer program that from the two-row representation 
of any a 6 E n determines the cycle factors of a. 
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CHAPTER IV 

RINGS 

1. IDEALS 

A group is a set with a binary operation satisfying certain conditions. 
Similarly a ring can be defined as a set A with two binary operations, 
+ and •, satisfying certain conditions. Formally, a ring is a triple 
(A, + ,•) such that 

(i) (A,+) is a commutative group, with + called sum or addi-
tion, and with a neutral element denoted by 0A or simply 0, 

(ii) (A,-) is a commutative semigroup, with "•" called product or 
multiplication, 

(iii) the product is distributive over the sum, 

x • (y + z) = x • y + x • z for all x,y,z G A 

The product x • y is often denoted simply by juxtaposition of the 
factors as xy. When the context is clear, we can refer to the ring 
(A, +,-) as "the ring A." The additive neutral 0^ is called the zero 
element of the ring. In the group (A, +) the inverse of any x G A 
is denoted by -x. We write y - x for y + (-x). In the case where 
(A,-) is a monoid, the multiplicative neutral is generally denoted by 
\ A or simply 1, and it is called the ring's identity element. 

93 
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Examples. The set Z of integers, together with the integer sum and 
product operations defined in the previous chapter, is a ring (Z, +,•)• 
Another important example is A = V(S), the power set of any set, 
with + the symmetric difference and the product X • Y being defined 
as the intersection X n Y. Here 0 is the empty set 0 and 1 is the 
whole set S. 

Remark. Many texts consider rings with noncommutative multipli-
cation. 

We should point out at the outset that requiring the multiplicative 
semigroup to be also a group would not take us anywhere. Indeed, 
since in any ring Ox = 0 for all elements x (verify), the product of 
0 with its multiplicative inverse would be simultaneously the identity 
\ A and 0, implying \ A = 0. But then every element x would be zero, 

x = \Ax = OJC = 0 

and such a ring A is trivial, A = {0}. However, requiring A \ {0} to 
be closed under multiplication and to form a multiplicative group is 
meaningful, and such rings, to be studied in the next chapter, are 
called fields. Here let us just take note that the ring of integers is not 
a field, and (V(S), +,n) is not a field if Card5 fi 1. The two-element 
field 

(P(i),+,n) = (2,+,n) 

on the other hand, will be seen to be of recurring importance. 
A subring of (A, +,•) is any subgroup of (A, +) that is also a sub-

semigroup of (A, •)• The set of subrings constitutes an algebraic clo-
sure system on A. For example, the subrings of (V(S), +,n) are pre-
cisely the rings of sets on S defined in Chapter I. Note that the iden-
tity element of the ring, if it has one, does not have to belong to 
every subring. 

Every commutative group (A, +) can be made into a ring by defin-
ing the product JC • y as always 0. We then refer to (A, +, •) as the null 
product ring structure on (A,+). Here every additive subgroup is a 
subring. 

A homomorphism from a ring A to a ring B is a group homomor-
phism h : {A, +) —•(B, +) that is also a multiplicative semigroup ho-
momorphism from (A, •) to (B, •). For example, the constant function 
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A —• B mapping everything to the 0 of B is a ring homomorphism. 
As for groupoids, we have mutatis mutandis: 

Proposition 1 The composition of any two ring homomorphisms 
h : A—> B and g : B —• C is a ring homomorphism from A to C. The 
identity mapping on each ring is a ring homomorphism. The inverse 
of a bijective ring homomorphism is a ring homomorphism. 

A bijective ring homomorphism is called a ring isomorphism. 
Rings A and B are isomorphic if there is an isomorphism A —• B. 
Any isomorphism A —> A is called an automorphism of A. The set 
of all such automorphisms is a permutation group on A, denoted 
by Aut A. If A is a field, then Aut A is the cornerstone of Galois 
theory. 

An ideal is a subgroup / of (A, +) such that a £ I, c £ A imply 
ac £ I. For example, for every ring element a, the set 

is an ideal. An ideal is a fortiori a subring. Not all subrings are ide-
als: in the power set ring (V(S), +,n) of a set S with at least two 
elements, consider the subring {0,5} . The full ring A is always an 
ideal; all other ideals are called proper. The ideal reduced to the 
ring's zero element is called trivial. Ideals play a role similar to nor-
mal subgroups in group theory. Of course, all ideals are normal sub-
groups of (A, +) because (A, +) is commutative. Ideal cosets are the 
cosets of ideals viewed as subgroups of (A, +). If / is any ideal and 
a £ A, then the coset of / containing a is 

This coset is denoted by a + I. 
The key observation to make is that every congruence relation of 

the additive group modulo any subgroup that is an ideal is actually 
also a congruence of the multiplicative semigroup. Indeed, if a = a' 
and b = b' modulo an ideal /, then 

{ac : c £ A} 

{a + i :i£ 1} 

(a - a)b £ I and a'(b -b')£l 

Hence 
(a - a')b + a'(b b')£l 



96 R I N G S 

that is, ab = a'b' mod /. Thus we have a multiplicative quotient semi-
group structure on the additive quotient group A/1, where 

(a + I)-(b + I) = ah + I 

The multiplicative quotient is distributive over the additive quotient 
because 

(a + /) • [(b + / ) + (c + / ) ] = (a + I) • [(b + c) + I] 

= [a(b + c)] + I 

= (ab +ac) + I 

= {ab + I) + (ac + I) 

= [(« + /)•(& + /)] + [(« + / ) • (c + /)] 

Therefore the set of cosets of every ideal / has a quotient ring struc-
ture 

M/7,+,0 
The foregoing also shows that the canonical surjection g from A to 
A11 given by 

q(a) = a + I for a £ A 

is a ring homomorphism. Let now h : A —• B be an arbitrary ring 
homomorphism. The kernel of h, 

Ker/i = {x £• A : h(x) = 0} 

is not only an additive subgroup of A but also an ideal. Exactly as in 
the case of groups, we can see that Imh is a subring of B, and it is 
isomorphic to the quotient ring A/Kerh. 

Example. We have seen that every subgroup of (Z, +) is of the form 

mZ = {mc : c £ Z} 

for some nonnegative integer m. Thus every additive subgroup of 
Z is actually an ideal of the ring Z, and Z m = 1/ml is not only a 
quotient group but also a quotient ring. 

On any ring A, the set 1(A) of ideals of A is an algebraic closure 
system. The ideal generated by a single element a of A is called a 
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principal ideal, denoted by (a). If the ring has an identity element, 
then 

(a) = {ca : c £ A} 

The ideal generated by a nonempty finite set {ah...,an} of elements 
of A is denoted by (a\,...,an). In a ring with identity 

(ah...,an) = { c ^ i + ••• +cna„ : c\,...,cn £ A) 

If every ideal of A is principal, A is called a principal ring. The ring 
A is called Noetherian if the ideal closure system 1(A) is Noetherian, 
i.e., if every ideal is generated by a finite set of elements. 

Examples. The ring Z is a principal ring. For any finite set S, the 
ring (P(S), +,n) is principal. Every ideal / of V(S) has a unique 
generator S' C S, and 

/ = V(S') 

This is no longer true for infinite S, for in that case the set of finite 
subsets of S constitutes an ideal which is not principal. This ideal is 
not even finitely generated, so V(S) is not Noetherian if 5 is infinite. 

Since 1(A) is a closure system, 1(A) ordered by inclusion is a 
complete lattice. Given two ideals I,J £l(A), their greatest lower 
bound is their intersection IDJ, while their least upper bound is the 
set 

/ + J = {x £ A : x = a + b for some a £ I,b £j} 

We also refer to this as ideal addition or sum. Let us point out that, 
for all a,b £ A, we have 

(a) + (b) = (a,b) 

Two proper ideals / and J are called coprime, or comaximal, if / + J 
is A, the maximum of the lattice 1(A). An ideal / is called maximal 
if it is covered by A in 1(A), i.e., if it is a maximal member of the 
inclusion-ordered set of all proper ideals. Equivalently, this means 
that / is comaximal with every other proper ideal J not contained in 
/. In particular, every two distinct maximal ideals are comaximal. 

Examples. Let S be a finite set. In the ring V(S) consider two 
proper ideals /, J generated by A, B £ V(S). Then / n / is gener-
ated by A n B and the sum / + / is generated by A U B. Thus / and 
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J are comaximal if and only if A U B = S. Clearly / is maximal if 
and only if S\A is a singleton. 

Maximal Ideal Theorem. In a ring with identity, each proper ideal is 
contained in some maximal ideal. 

Proof. Observe that an ideal I is proper if and only if the identity 
element does not belong to / . Then apply Zorn's Lemma to the 
inclusion-ordered set of all proper ideals. • 

Proposition 2 Two proper ideals I and J of a ring A are coprime if 
and only if every coset of I intersects every coset of J. 

Proof. If I + J = A, then consider two cosets a + I and b + J. As 
the ring element a - b belongs to / + J, 

a - b = i + j for some i £ /, j £ J 

Then a - i = b + j is in both a + / and b + J. 
Conversely, assume that I+ J f A. Let a £ A \ (I + J). Then the 

coset a +1 is disjoint from / + / , and a fortiori disjoint from the 
coset 0 + 7. • 

Corollary. Two proper ideals I and J of a ring A are coprime if and 
only if for every a,b £ A there is a solution x £ A to the two simulta-
neous congruences 

x = a mod I 

x = b mod/ 

Proof. Clearly x is a solution if and only if x £ (a + 7)n (b + J). • 

For the proof of the next theorem it will be convenient to define 
the product IJ of two ideals I and / as the ideal generated by the 
set of all products ab, a £ I, b £ J. It is easy to see that IJ consists 
of all sums of the form 

axb\ + •• • + a„b„ 

where a,- £ I and bi £ / for 1 < i < n. Clearly 

IJ C Inj 
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Example. In a power set ring (P(S), + ,n) the product of any two 
ideals happens to coincide with their intersection, IJ = 7 n J. This is 
not so in Z, where, for example, (2)(4) = (8) and (2) n (4) = (4). 

The set 1(A) of ideals of any ring A is a commutative semigroup 
under ideal multiplication. Indeed 1(A) is a monoid, with A as the 
neutral element, as long as the ring A itself is assumed to have an 
identity. Ideal multiplication is distributive over ideal addition, that 
is, 

7(7 + K) = IJ + IK 

for all ideals I,J,K. 

Lemma. Let J and K\,...,Km be m + 1 ideals of a ring A Then 

(J + KX)(J + K2)• • • (J + Km) C J + (KXK2 • • • Km) 

Proof. By induction on m. For m = 2, we have, by distributivity, 

(J + KX)(J +K2) = JJ +JK2 + KXJ + KXK2 

which is contained in J + KXK2. Let m > 2. Assuming the statement 
true, by induction hypothesis, for J and K2,...,Km, we have 

(J + KX)(J + K2)--(J + Km) C(J + KX)[J + (K2Ks - Km)] 

But the latter product is equal, by distributivity again, to 

JJ +J(K2K3-Km) + KXJ +(KXK2K3-Km) 

which is contained in J + (KxK2---Km). • 

The following generalizes a 2000-year-old result of Sun Tse. 

Chinese Remainder Theorem. Let Ix,...,In be pairwise coprime ide-
als of a ring A with identity, Ij + Ik = A for j f- k. Then for every 
ax,...,an e A there is a solution x e A to the n simultaneous congru-
ences 

x = ax mod/j 

x = an mod /„ 
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Proof. Trivial if n = 1. If n = 2, apply the Corollary of Proposition 
2. If n > 2, then for each index fixed, 1 < j < n, consider the ideal 
product of AI - 1 sums, 

Since each sum 7, + 4 is equal to A, so is their product. But also, by 
the lemma, this product is contained in 

4 +II 7 * 
*/; 

Thus 

Ij + Y[lk=A 

which means that 7, and h are coprime. There is then a solu-
tion Xj to the two simultaneous congruences 

XJ = 1 mod Ij 

XJ = 0 mod Y[ h 

Such an xs exists for each 1 < j < n. Let 

x = a\X\ H + anxn 

Clearly the n desired congruences hold. • 

The Chinese Remainder Theorem can be restated by saying that 
if 11 is a set of pairwise coprime ideals of a ring with identity, and 
if C is the set of all cosets of the various ideals in TZ, then for each 
finite set F of cosets in C we have OF f- 0 as soon as every pair of 
members of F intersects. This is reminiscent of the Helly Theorem 
for Intervals. 

On any ring A, all ideal cosets plus the empty set 0 constitute 
a closure system, called the ideal coset closure system on A. For a 
broad class of rings we shall determine the Helly number of this 
closure system. 

In the remainder of this section, we shall assume that A is a ring 
with identity. The reader can verify that if 7 and / are coprime ide-
als, then IJ = 7 n J. Further, if we form the power ideals In and Jm 
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in the multiplicative monoid 1(A), then the ideals I" and Jm re-
main coprime for all positive integer exponents n,m. [To see this, 
write 1 = i + j for some i £ IJ € J, and consider (i + j)n+m. Alter-
natively, just consider (I + J)n+m.] Of course /" and Im are never 
coprime because /" D Im if n < m. 

Suppose there is a set of ideals M C 1(A) such that any two dis-
tinct members of M are coprime and the ideals in M plus the trivial 
ideal generate the full multiplicative monoid 1(A). This means that 
all proper nontrivial ideals of the ring A are of the product form 

jk\ jkn 

where the I\,...,l„ are n > 1 distinct members of M and the are 
positive integers. It is easily deduced from the Maximal Ideal The-
orem that M cannot be anything else than the set of all maximal 
ideals of A. The ring A is now said to have the ideal decomposition 
property. 

Example. For any finite set S, the power set ring V(S) has the ideal 
decomposition property. Other natural examples will appear in Sec-
tion 3 of this chapter. 

Helly Theorem for Ideal Cosets. / / a ring R has the ideal decom-
position property, then the ideal coset closure system of R has Helly 
member at most 2. 

Proof. First some local definitions. For any maximal ideal M of R, 
call the ideals of the form M", n > 1, M-primary ideals. Call an 
ideal / primary if it is A/-primary for some M; such an M is then 
called a radical of /. We know that primary ideals with distinct radi-
cals are coprime, and primary ideals with the same radical are com-
parable by inclusion. 

Let T be a nonempty finite set of ideal cosets. Assume that we 
have A n B fi 0 for all A, B e T. We shall show that OF fi 0. 

Let c be a choice function on T, c(A) eAforAeJ7. 
Each member A of T is the coset of precisely one ideal 1(A). For 

distinct A,B £T, the nondisjointness of A and B implies that 1(A) 
and 1(B) are distinct. Each 1(A) is of the product form 

Pv-Pn 
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where the P, are primary ideals such that />, and Pj are coprime for 
/ j . We also have 

/( / i) = p 1 n - n ? „ 

and 
^ = (c(^) + p1)n---n(c(>l) + / ' w ) 

Call each Pi a primary factor of 7(/4). Obviously if P is a primary 
factor of 1(A) and g a primary factor of 1(B), then 

(c(A) + P)n(c(B) + Q)t0 

Convince yourself that if P and Q have the same radical, then the 
cosets c(A) + P and c(5) + Q are comparable by inclusion. Thus for 
any given maximal ideal M for which M-primary factors appear, the 
inclusion-ordered set 

{c(A) + P : AeT and P is an A/-primary factor of 1(A)} 

is a chain, indeed a finite chain whose smallest member we denote by 
J(M). Clearly f\!F is nothing else but the intersection of the various 
J(M). Since J(M) and J(N) are cosets of coprime ideals if M f- N, 
the Chinese Remainder Theorem applies. • 

Historical Note. Ideals were invented by Richard Dedekind, a con-
temporary and friend of Georg Cantor. The reader should note the 
analogy between cardinals and ideals: these creatures are sets that 
can be added and multiplied in a manner that generalizes and ex-
plains the arithmetic of integers. Are mathematicians getting car-
ried away to an artificial paradise of abstract concepts? According 
to the down-to-earth theology of Kronecker (another contemporary 
and countryman of Cantor), "God created the integers" only. We 
could engage in a Byzantine argumentation about whether God cre-
ated positive integers only and left it to the engineers to invent zero 
and the negatives or if He created zero only and left to us the repe-
titious task of manufacturing successor ordinals. 

EXERCISES 

1. Verify that if x,y,z are elements of a ring, then x(-y) = (-x)y 
= -(xy) and x(y — z) — xy - xz. 
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2. For n£u>, let (£) denote the number of A:-element subsets of n. 
Let a ring A have an identity element. Show that for any x,y e A 

3. Verify that if the closure system generated by the ideal cosets of 
a ring with identity has Helly number 1, then the ring is a field 
or it consists of a single element. 

4. Verify that Aut(Z, +,•) is trivial. 

5. Show that in any ring with identity the product of any two prin-
cipal ideals is principal. 

6. In a power set ring (P{S), +,n), if A C V(S), then what can you 
say about the ideal generated by .4? 

7. Verify that if h : A -» B is a ring homomorphism and I is an 
ideal of B, then the inverse image h~x[I] is an ideal of A. What 
if / is only a subring? 

8. Verify that every quotient of a principal ring is principal. 

9. Verify that a ring is Noetherian if and only if the additive monoid 
of all ideals is generated by the set of principal ideals. 

10. Consider a simultaneous congruence system (modulo ideals in a 
ring that has the ideal decomposition property): 

Under what condition is there a unique solution? 

11. Write a computer program that for any finite set S C w deter-
mines all solutions of any given simultaneous congruence system 
in the power set ring (V(S), +,D). 

12. Write a computer program that determines all solutions of any 
given simultaneous congruence system in the ring Z6. 

13. Show that infinite power set rings V(S) do not have the ideal 
decomposition property. 

x = a i mod I\ 

x = a„ mod I, 
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2. POLYNOMIALS 

Our definition of polynomials may not at first sight correspond to 
what many users of mathematics have in mind. Kindly bear with 
us if this is your case—the abstraction is for simplicity's sake. All 
rings discussed in this section shall possess an identity element 1. A 
(formal) polynomial (in one indeterminate) over a ring A is a fam-
ily p = (pi)i£W of elements of A indexed by the ordinal w and such 
that, for some d £ u>, p,; = 0 whenever i> d. The first such index d 
is called the degree of the polynomial p, denoted by degp. The set 
P, or P(A), of all polynomials over A can itself be made into a ring 
by defining the sum of two polynomials p and q by 

(P + <l)i = Pi + <H f ° r a ' l ' £ w 

and their product pq by 

(P<l)i = Pkli-k for aH ' e w 
o<*<; 

The reader should verify that the ring axioms are indeed satisfied. 
Observe that the zero polynomial ( p i ) , - 6 w specified by 

Pi = 0A for all / £ u) 

is the additive zero of the ring P, while the degree zero polynomial 
p for which p0 = lA is the identity in P. Further, all degree zero 
polynomials form a subring of P isomorphic to A, the isomorphism 
being given by mapping each a £ A to the degree zero polynomial pa 

for which p$= a. Usually we refer to p" as the "polynomial corre-
sponding to a" or simply the "polynomial a." This abuse of language 
is quite harmless as long as we know from the context whether the 
symbol a refers to an element of A or to the corresponding degree 
zero polynomial. (Many texts call these constant polynomials.) Poly-
nomials of degree 1 are more commonly called linear. The linear 
polynomial p given by 

po = 0A and px = \ A 

is referred to as an indeterminate over A, and it is denoted by the 
capital letter X. Observe that for every natural number m, Xm is 
equal to the degree m polynomial p such that 

pm = 1 and pi = 0 for i' \t m 
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Proposition 3 Let c = (c,),-6a) be a polynomial of degree n. Then we 
have, in the ring P of polynomials, 

c = c„Xn +cn_lX"-'i +••• +cxX +c0 (1) 

Proof. The product of the degree zero polynomial (corresponding 
to) c, with X' is the polynomial p given by 

Pi - ci, Pj = 0 for jfi • 

Proposition 3 should explain why c is called a polynomial. The 
various c, are called the coefficients of c, each c, being the /th co-
efficient and cn the leading coefficient. Assume now that for some 
natural number m and zero-degree polynomials aa,a\,...,am such 
that am f- 0, we have in P an expression 

c = amX
m + am.\X

m~x + --- + axX +a0 

as well as the expression (1). Then m = n and a, = c, for all i < n. 
The reason is that, by definition of polynomial addition, each coeffi-
cient c, of c is obtained as the sum of the respective /th coefficients 
of the m + 1 polynomials 

amX
m, am-.\X

m~x, axX, a0 

But the ith coefficient of ajX* is aj if i = j ; otherwise it is zero. 
A polynomial with at most one nonzero coefficient is called a 

monomial. According to Proposition 3, every polynomial is the sum 
of monomials, and according to the above remarks, there is only one 
way to write a polynomial as a sum of monomials aX' of different 
degrees, except for the order of terms of the addition and the omis-
sion of zero terms. 

Example. Over the ring Z of integers, 

X3-2X2 = l -A , 3 + ( - 2 ) A - 2 + 0-A'-l-0 

is a polynomial with leading coefficient 1. 

On two occasions in this volume we shall need polynomials in 
more than one indeterminate, but not more than five. The ring of 
polynomials in two indelerminates over a ring A is defined as the 
ring P(P(A)) of polynomials in one indeterminate over P(A). The 
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indeterminate of P(P(A)) over P(A) is denoted by Y. [The letter X 
is already used to denote the indeterminate of P{A) over A.] Alter-
natively, we may use X\ and X2 instead of X and Y, respectively. 
As every a £ A is identified with a polynomial in P(A), it is further 
identified with a polynomial in P(P(A)). With this in mind, we can 
write every p £ P(P(A)) in the form 

where (a,-y : (i,)) G / ) is a uniquely determined family of nonzero 
elements of A indexed by a finite subset I of ui2. Let us go a few 
steps further. Abbreviate P(P(A)) as P 2 - Let 

Pi = P{Pi), Pa = P(Pi), Ps = 

Let Xj, be the indeterminate of P$ over P2> X» the indeterminate of 
P 4 over P3, and the indeterminate of P5 over P 4 . The members 
of Ps are called polynomials in five indeterminates over the original 
ring A. Every such polynomial p £ P5 can be written in the form 

P= Yl aijkimXlxixfxlXs1 

(i,; ,̂/,m)e/ 

where (a : (i,j,k,l,m)e I) is a unique family of nonzero ele-
ments of A indexed by a finite subset / of w5. For example, over 
A = Z, we have among the polynomials in five indeterminates 

3XiX2xf + 2X)X4xi and 3Xi X2X$ - 2X^XAxl 
Their sum is 6X\X2X^ and their product is 

9x?x2

2x$-4xix}x5

4 

In the remainder of this chapter we shall only consider polynomials 
in a single indeterminate X. 

Let A be a subring of a ring B. Let 6 be any element of B. Denote 
by A[b] the subring of B generated by Al){b}. Clearly A[b] = A if 
and only if b £ A. For every polynomial 

c = cnX" +--- + c^X +cQ 

the element 
cnb" + ••• +C]b + Co 
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of B is called the value of the polynomial c at b. Clearly this value 
belongs to A[b]. Conversely, the set of all polynomial values at b 
contains AU{b) (why?), it is closed under addition and multiplica-
tion (verify!), and hence it coincides with A[b]: 

Proposition 4 If A is a subring of a ring B and b £ B, then the set 
of values at b of all the polynomials over A constitute the subring A[b] 
of B generated by A and the element b. 

As a particular instance, if we abusively denote by A the set of 
corresponding zero-degree polynomials and if we let B = P(A), the 
set of all polynomials over A, then X £ B and P(A) coincides with 
A[X]. This explains the traditional notation A[X] for the ring of 
polynomials over A. 

Proposition 5 If A is a subring of B and b £ B, then A[b] is iso-
morphic to a quotient ring of A[X\ 

Proof. The function from A[X] to A[b] that maps each polynomial 
to its value at b is a ring homomorphism surjective onto A[b]. • 

Let p = pn Xn + • • • + p\X + po be a polynomial over a ring A. 
The function / : A —> A mapping each a £ A to the value of p at a, 

f(a) = p„an +••• + pxa + po 

is called the polynomial function defined by, or corresponding to, p. 
Accordingly, we shall write fp for / . (Many texts refer to fp simply 
as "the polynomial function p.") For example, all constant functions 
A —• A are polynomial functions; they are defined by the degree zero 
polynomials. Also, the identity function idA is a polynomial function, 
defined by the linear polynomial X. Polynomial functions constitute 
a subset of the set AA of all functions from A to A, and indeed a 
most noteworthy subset. To be more precise about this, let us define 
a ring structure (AA, + , ) on AA by letting, for f,g £ AA and a £ A, 

(/+*)(*) = /(«)+*(«) 
(f-g)(a) = f(a)g(a) 

The constant functions mapping all elements of A to 0 and to 1 are 
the additive and multiplicative neutrals, respectively, of the ring AA. 
(Verify that the ring axioms hold.) 
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Proposition 6 Polynomial functions form a subring of AA. This sub-
ring is generated by the set of all constant functions A —> A plus the 
identity function id A- The subring of polynomial functions is also 
closed under composition of functions. 

Proof. The subring property follows from the facts that for polyno-
mials p and q, 

fp+q = fp+fa and fpq = fp- fq 

in AA. Also f-p = -fp. The second statement then becomes clear, 
as every polynomial function defined by a monomial is either con-
stant or the product of a constant function and a function of the 
form 

idk

A = idA • • • idA (k factors, k > 1) 

If a polynomial function / is not defined by a monomial, then it is 
the sum of two or more functions, each defined by some monomial. 

Finally, to establish closure under composition, let fp and fq be 
defined by p,q £• A[X]. The polynomial p can be viewed as a poly-
nomial over the ring A[X]. As such, it defines a polynomial function 
Fp from A[X] to A[X\. The value of Fpatq£ A[X] is a polynomial 
Fp(q) in A[X]. The polynomial function A-> A defined by Fp(q) is 
then nothing else but the composition f p o fq. The verification of de-
tails is left as an exercise. • 

Examples. Every function 12 —• I2 is a polynomial function. There 
is actually only one function / : Z2 —• 12 that is neither constant nor 
the identity, given by 

f(0) = 1, / ( l ) = 0 

This function / is defined by the polynomial X + 1 as well as by 
many other polynomials, such as 

X3 + X2 + X + 1 

Thus different polynomials can define the same function. (We shall 
show in the next chapter that, in general, not all functions A —• A 
are polynomial functions.) 

Given some property of a ring A, the question arises whether the 
polynomial ring A[X] also has that property. For example, if the 
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equation 
a — -a 

holds for every element of A, then this property is transferred to 
A[X] because we shall also have 

p = pnX" +••• + pxX + po = -pnX
n P\X-p0 = -p 

for every polynomial p over A. On the other hand, the property of 
being finite is clearly not transferred from A to A[X]. One of the 
best known transferable properties is the Noetherian condition: 

Hubert's Transfer Theorem. If A is a Noetherian ring, then the poly-
nomial ring A[X] is also Noetherian. 

Proof. We shall prove that every ideal J of A[X] is finitely gener-
ated. For every natural number n, let the set /„ consist of 0 plus 
those elements of A that appear as leading coefficients of some 
degree n polynomial in / . For n < m, we have /„ C Im because if 
p£ J, p 7* 0, and p has degree n, then Xm~np also belongs to / , 
it has degree m, and its leading coefficient is the same as that of p. 
Since 

deg(/7 + q) < max(deg/?,dego) 

and for a £ A, 
deg(ap) < deg/> 

it is not difficult to see that every /„ is an ideal of A. As A is Noethe-
rian, the chain of ideals {/„ : n G lo} has a maximal member Im. For 
each n = 0, l , . . . ,m let G„ be a finite set generating the ideal /„. For 
each c E Gn let p(n,c) be a degree n polynomial in / with leading 
coefficient c. Let us show that the finite set 

P= IJ {p(n,c):ceGn} 
0<n<m 

generates the ideal J. If this is not so, let q 6 J be a polynomial of 
least possible degree d that is not in the ideal Jp generated by P. 
For some n between 0 and m, we have Id = /„, and let the choice 
of such n be minimal. Then n < d and Gn generates Since Id is 
nontrivial, Gn is nonempty. Let c^,.. .,ck be the elements of Gn, and 
let a be the leading coefficient of q. As a £ Id, 

a = a\C\ + • • • + a^Cfc 
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for some elements a\,...,aii of A. For / = \,...,k let the polynomial 
t(i) be defined by 

t(i) = Xd-np{n,a) 

All the t(i) belong to Jp and the leading coefficients of t(l),...,t(k) 
are c\,...,Ck, respectively. The polynomial 

<?- f l , / ( l ) akt(k) 

belongs to J, and since its degree is less than d, it must belong to 
JP. But then, adding back to it the polynomials a,-f(/) belonging to 
Jp, we would get q £ Jp, a contradiction completing the proof. • 

Corollary. If A is a subring of B and b £ B, then A[b] is Noetherian 
provided that A is Noetherian. 

Proof. The quotient of a Noetherian ring is always Noetherian. 
(Why?) And according to Proposition 5, A[b] is isomorphic to a 
quotient of A[X]. • 

We can now easily produce an example of a Noetherian ring that 
is not principal. By Hilbert's Transfer Theorem, l[X] is Noetherian. 
However, the ideal generated by 2 and X is not generated by any 
single polynomial, and thus 1[X] is not principal. This also shows 
that the property of being a principal ring is not transferred from A 
to A[X]. 

Finding ring elements JC at which a given polynomial p has zero 
value, p(x) = 0, has traditionally been a central concern of algebra. 
Such elements x are called roots of the polynomial p. The word al-
gebra itself, used by Mohammed ibn-Musa al-Khwarizmi in the title 
of his book published around the year 830, refers to an essentially 
combinatorial approach to finding roots of polynomials. 

EXERCISES 

1. Write a computer program for adding and multiplying polynomi-
als, in one as well as several indeterminates, over 

(a) Z, 
(b) Z„ for any positive integer n, 
(c) (V(S), +,n) for any finite subset S of w. 
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3. FACTORIZATION AND THE EUCLIDEAN ALGORITHM 

The object of our interest in this section is the multiplicative struc-
ture of a ring A. We assume, throughout the section, that this mul-
tiplicative structure is a monoid, with the neutral element denoted 
by 1. We define the binary relation a\b, in words "a divides b" or 
"b is a multiple of a," to mean that b = qa for some q £ A. Due to 
associativity, this divisibility relation is transitive, and it is reflexive 
since a = I- a. Thus it is a preorder on A, with the usual notation s , 
< (< but not >), and ~ for the associated equivalence (< and >), as 
introduced in Chapter II. Obviously l<a<0 for every ring element 
a, and a < 0 if a ^ 0. 

Examples. Divisibility is an order relation on any power set ring 
(V(S), +,n); here a\b is equivalent to a D b. It is not an order in Z, 
because 1| - 1 and - 1 | 1 , i.e., - 1 ~ 1. However, divisibility restricted 
to positive integers is an order, of which the usual integer order < 
is a linear extension. A lower section of the divisibility order of pos-
itive integers is displayed in Figure 4.1. The divisibility order on the 
power set ring V(3) is displayed in Figure 4.2. 

Write a program that, for any polynomial in one indeterminate 
over one of these rings, searches for roots of that polynomial in 
the ring being considered. 

2. Let A be a subring of a ring B. Show that those polynomials over 
A whose value is 0 at some fixed element b of B form an ideal Ib 

of A[X]. Can we have Ib = A[X]1 Show that if Ib is trivial, then 
A[b] is isomorphic to A[X]. 

3. Give examples of polynomial functions that are injective, bijective, 
or surjective from a ring A to itself and examples of polynomial 
functions that are not. 

4. Is it possible that the value of some polynomial over a ring A is 
not zero at any element of A? 

5. Can a linear polynomial have more than one root in a ring? 

6. Is a ring A necessarily Noetherian if A[X] is Noetherian? 
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FIGURE 4.1 Divisibility order of positive integers. 

Those elements u of a ring A for which an inverse exists in the 
multiplicative monoid of A form a group U under multiplication, 
with 1A as the neutral element. These elements are called the units 
of A. The inverse of a unit u is denoted by a - 1 . If « is a unit, then 
so is -u and 

The binary relation R defined on A by the condition that 

aRb if and only if a = ub for some unit u 

(« I 

I 0.1 1 

I 2 | 

I 1.2 I 

FIGURE 4.2 Divisibility order in a power set ring. 
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is an equivalence relation, called unit equivalence. Each element a 
of A is unit equivalent to - a . Any two unit-equivalent elements are 
also equivalent in the divisibility preorder. It follows that a nonzero 
element a covers 1 in the divisibility preorder of A if and only if 

a is not a unit and a = be implies a ~ b or a ~ c 

In this case a is called a prime element of the ring A. 

Examples. In Z, 2, 3, and -3 are prime elements; 0, 1, and 6 are 
not. In l[X], 2X + 1 is prime and 2X + 2 is not. In a power set ring 
(V(S), + ,n) a nonzero element (subset of S) is prime if and only if it 
is the complement of a singleton in S. In the subring of V(S) formed 
by S itself and its finite subsets, no element is prime if S is infinite. 

In any ring, the principal ideal (a) generated by a ring element 
a consists precisely of the multiples of a. Thus a\b is equivalent to 
(a) D (b). In a principal ring a nonzero element a is prime if and 
only if (a) is a maximal ideal. 

If two elements a and b of a ring have a greatest lower bound d 
in the divisibility preorder, i.e., 

d<a, d<b and c<d for every c<a, c<b 

then d is called a greatest common divisor (gcd) of a and b. Every 
other element unit equivalent to d is of course also a gcd. Dually, 
a least common multiple (1cm) is a least upper bound of a and b. 
Observe that the ideal (a)n(b) consists precisely of the common 
multiples of a and b. An element d of this ideal generates (a) n (b) 
if and only if d is an 1cm of a and b. Thus no 1cm exists if (a) n (fe) 
is not principal. A gcd of a and b, on the other hand, does not have 
to belong, in general, to the ideal (a) + (b) which is the lub of (a) 
and (b) in the lattice of ideals. For example, in Z[X], the gcd's of the 
zero-degree polynomial 2 and the monomial X are 1 and - 1 , which 
do not belong to the proper ideal (2,^). However: 

Proposition 7 If A is a principal ring and a,b £ A, then the greatest 
common divisors of a and b are precisely the generators of the ideal 
(a) + (b). 

Proof Let d be a generator of (a) + (b), 

(d) = (a) + (b) = (a,b) 
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Obviously d divides both a and b. But d is also of the form xa + yb 
for some x,y £ A, and thus every common divisor of a and b divides 
d as well. 

Conversely, let d be a gcd of a and b. Then (a1) contains the ideals 
(a) and (6); hence 

(d)D(a) + (b) 

Let g be a generator of (a) + (b). Since g is a common divisor of a 
and b, it must also divide d, that is, (g) D (d). But 

(*) = («) + (*) 

by definition, so (d) = (g) and d also belongs to and generates the 

ideal (a) + {b). • 

Corollary. The following conditions are equivalent for any two non-
unit elements a,b of a principal ring A: 

(i) / is a greatest common divisor of a and b, 
(ii) the ideals (a) and (b) are coprime, (a) + (b) = A 

Such two elements a and b of a principal ring A are called co-
prime elements. We then have, for some elements x,y £ A, the 
equality 

xa + yb = 1 

This result was first reported for the ring Z by Bachet de Meziriac in 
1624. No other rings were studied at that time. 

Returning to the general case of a not necessarily principal ring A, 
observe that a < b by divisibility if and only if the ideal (b) is strictly 
contained in (a), (b) C (a). Thus the divisibility preorder of every 
Noetherian ring satisfies the descending chain condition. Particular 
examples are Z, 1[X], and of course every finite ring. 

Proposition 8 / / the divisibility preorder of a ring A satisfies the de-
scending chain condition, then every nonzero nonunit element a of A 
is a product of prime elements, a — a\ • • • an, n>\. 

Proof. Call a nonzero nonunit element a of the ring nonfactorizable 
if a does not obey the proposition. If the set of nonfactorizable el-
ements of A is not empty, let a be one of its elements minimal in 
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the divisibility preorder. As a cannot be prime, a = be where none 
of b,c is a unit or zero and both b < a and c < a by divisibility. By 
the minimal choice of a, 

b = b\---bn and c = c\---cm 

where all the factors 6, and c, are prime. Thus 

a = bi-bnci---cm 

contradicting the assumption that a is nonfactorizable. • 

A ring A is called Euclidean if there is a function 6 : A —> W to a 
well-ordered set W with the following properties: 

(i) a < b in the divisibility preorder of A implies 6(a) < 6(b) in 
the well-ordered set W, 

(ii) for every a,b £ A, there is a q £ A such that a - qb = 0 or 
<5(a-<?&)< 6(b). 

Such a function <5 is called a Euclidean norm. Observe that in every 
Euclidean ring the divisibility preorder satisfies the descending chain 
condition. 

Example. A power set ring (P(S), +,n) is Euclidean if and only if 
S is finite. In that case a Euclidean norm 6 : V(S) —• w is defined by 

6(7) = Card(5\r) 

Proposition 9 Every Euclidean ring is principal. 

Proof. Let 7 be an ideal of a Euclidean ring A. Let b £ I be. minimal 
in the divisibility preorder, i.e., there is no c £ I with c < 6. If b = 0, 
then 7 is trivially principal, 7 = {0}. So let b f 0. We claim that every 
a £ 7 is a multiple of b. Let q £ Abe such that 

a-qb = 0 or 6(a - ofe) < 6(fe) 

By the definition of b we cannot have 

6(a-qb)<6(b) 

for the element a - qb of /. Thus a - qb = 0 and a is a multiple of 
6, as claimed. • 
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A ring A is said to be entire provided that ab = 0 only if a = 0 or 
b = 0. A nontrivial entire ring, i.e., where 1 fi 0, is called an integral 
domain. This means that A\{0} is a multiplicative submonoid. 

Examples. The ring Z is entire. Every field is entire. The power 
set ring (P(S), +,n) is not entire as soon as 5 has more than one 
element: the product (intersection) of two nonzero (nonempty) ring 
elements (subsets of S) can be zero (the null set). 

Let us observe that in an entire ring any two elements a, b equiv-
alent by divisibility are also unit equivalent. Indeed, if we have 

a = qb and b = ra 

for some ring elements q and r, then a = (qr)a and a(l - qr) = 0. 
If a = 0, then b = 0. If a fi 0, then we must have 

l-qr = 0 

and both q and r are units. 

Factorization Theorem. Let A be a principal entire ring. Let a £ A 
be a nonzero element that is not a unit. Then there exist prime elements 
a\,...,an, n>\, whose product is a, 

a = a\--an 

Further, this prime factorization is unique in the sense that if 

a = b\--bm 

is any other factorization with m prime factors, then m = n and there 
is a permutation a of {1 , . . . , n} such that for each i = 1,..., n, fe, and 
aa(i} are unit equivalent. 

Proof. Every principal ring is Noetherian, and therefore its divisibil-
ity preorder satisfies the descending chain condition. The existence 
of a prime factorization 

a = ai-a„ 

is therefore assured by Proposition 8. 
To prove uniqueness, let us first show that if a prime p divides 

a product cd, then it divides c or d. Suppose it does not divide c. 
Thus the ideal / generated by {p,c} contains the ideal (p) strictly. 
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As A is principal, for some g £ A we have I = (g). Then g\p but p 
does not divide g. Since p is prime, g must be a unit and therefore 
I = A. But then every element of A can be expressed as xp + yc 
with suitable x,y £ A, in particular 

1 = xp + yc 

Multiplying with d, we get 

d = xpd + ycd 

As p\cd, we must have 
It follows by induction that if a prime p divides a product cx • • • ck, 

then it divides one of the factors c,-. 
Suppose now that we do not have unique prime factorization in 

A. Let n > 1 be the smallest natural number such that some product 
of n prime factors, 

a =a\---a„ 

is not unique in the sense that a also has some other prime factor-
ization 

a = br • • bm 

not obeying the theorem. Clearly m> n. Also, m > 1, for otherwise 
we would have 

a = a\ = b\ 

Consider the prime element a\. It divides the product b\---bm and 
therefore it divides one of the b(. Without loss of generality we can 
suppose that a\\b\. Since b\ is also prime, b\ divides a\ as well. As 
A is entire, a\ and b\ are unit equivalent, « i = ub\ for some unit u. 
We cannot have n = 1, for then we would have 

a = ub\ = bi(b2---bm) 

bl(u-b2 — bm) = Q 

and hence, since &i ^ 0, 

M = b2 • • bm 

which is impossible since no prime can divide a unit. Thus n > 1. 
Let 

q = a2---an 

We have 

ub\q = a = b\(b2--bm) 
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and thus 

bx(uq - b2--bm) = 0 

Hence uq - b2---bm is zero, that is, 

uq = b2 • • bm 

Now 
uq = (ua2)--a„ 

is a product of n - 1 prime factors. By the minimal choice of «, this 
factorization of uq is unique, so that m = n and there is some per-
mutation r of {2,...,n} such that for each 2 <i < n, ft, is unit equiv-
alent to A t ( , ) . But then, since bx is unit equivalent to ax, the factor-
izations 

a = ax--an and a = bx-bm 

do not violate the uniqueness condition of the theorem, contrary to 
the hypothesis that they do. • 

Corollary. Let A be a principal entire ring. Then A possesses the 
ideal decomposition property and the ideal coset closure system of A 
has Helly number at most 2. 

Proof. For a prime factorization a = ax--an we have 

(fl) = ( f l i ) - ( f l « ) • 

Proposition 9 implies the unique factorization property in every 
Euclidean entire ring. Even without this we already knew that the 
ring Z of integers is principal and entire, and therefore it has unique 
factorization. However, let us restate this very important result as a 
consequence of the Euclidean property: 

Integer Factorization Theorem. The ring 1 of integers is Euclidean 
and entire. Therefore 1 is principal with unique prime factorization: 
every integer n greater than 1 has a unique expression 

where ax < • • < at are positive prime numbers and kx,...,kt > 1. 
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Proof. The function 6 mapping each nonzero integer a to its absolute 
value 

\a\ = max(a,-a) 

and 0 to u; is a Euclidean norm on Z. Let a,b£Z. If a = 0, then we 
have 

a-qb = 0 

for q = 0. If a f- 0 but b = 0, then for q = 0 we have 

6(a-qb)<6(b) 

Otherwise ab\£Q. Let q\ be the smallest natural number such that 
\a\ < q\\b\. If ab > 0, then for q = q\ - 1 we have 

a-qb = 0 or <5(a - < 6(b) 

If a t < 0, then for q = 1 - q\ we have 

fl - qb = 0 or 6(a - qb) < 6(b) • 

Let n = ax • • • a'p and m = b\x • • • bg1 be two integers greater than 
1 factorized according to this theorem. Then n divides m if and only 
if / < 5 and there is an injection a from [1,/] to [1,5] such that 

ai =
 ba(i) and k{ < ha^ 

for all 1 < i < t. The integers n and m are coprime if and only if 

{a1,...,a,}n{bh...,bs} = 0 

In that case n • m is an 1cm of n and m. 

Group Theory Revisited. (1) It is customary to call the cardinality 
of a group G the order of G. By the orrfer o/ a grow/j element a £ G 
we mean the order of the subgroup generated by a. If it is finite, 
then it is the smallest positive integer n such that a" is the neutral 
element of the group. Indeed the multiples in Z of the order of a 
are precisely the exponents z for which az is the neutral of G. For 
finite groups, Lagrange's Subgroup Counting Theorem says that the 
order of every subgroup divides the order of the entire group. Thus 
the order of every group element divides the order of the group. 
In particular, a finite group of prime order has no nontrivial prop-
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er subgroups, and it is generated by each of its nonneutral ele-
ments. (2) Let G be any group and let a,b£G be commuting 
elements with finite coprime orders n and m. Then the order of ab 
is n • m. 

Polynomial Factorization Theorem. If A is a field, then the poly-
nomial ring A[X] is Euclidean and entire. Therefore A[X] is prin-
cipal with unique prime factorization: every polynomial p £ A[X] of 
nonzero degree has an expression 

p = upv--pn 

where u is of degree zero and the pi are prime polynomials with lead-
ing coefficient 1. No other prime polynomial with leading coefficient 1 
divides p. 

Proof. We claim that the function 6 : A[X] —• UJ U {ui} given by 

6(p) = degp if p fi 0 and 6(0) = w 

is a Euclidean norm. Assume this is not so. We shall derive a contra-
diction. Let p fi 0 be a polynomial of least possible degree such that 
for some polynomial / fi 0 no difference p-qt, q € A[X], is zero or 
of degree less than degl. Clearly 

degp > degf 

for else we take q = 0. Let a and b denote the leading coefficients 
of p and respectively. Let 

q0 = ab-]X^p-^' 

Then p - qot fi 0 and deg(p - qot) < degp. But then there must ex-
ist, by the minimal degree choice of p, a polynomial qx such that 

(p-q0t)-q\t 

is zero or of degree less than /. Letting 

H = <7o + q\ 

this means that p-qt is zero or of degree less than /, contradicting 
the definitions of p and /. This proves that 6 is a Euclidean norm. 

• 
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In a Euclidean ring A with norm 6, for nonzero elements a,b we 
call an element of the form a - qb a remainder of a by b if 

a-qb = 0 or 6(a-qb)<6(b) 

A Euclidean algorithm is a sequence ( a , ) , < 7 of elements of /I in-
dexed by an ordinal 7, 3 < 7 < w, such that 

(i) for all 2 < i < 7, a,_2 and are not zero and a, is a re-
mainder of A , _ 2 by a,-_i, 

(ii) if the sequence ( a , ) ( < 7 is finite, then its last term a 7 _] is zero. 

The elements a 0 and ax are called inputs, and if the sequence is 
finite, 7 < w, then a 7 _ 2 is called the output. 

Euclidean Algorithm Theorem. Every Euclidean algorithm is finite. 
The output is a greatest common divisor of the inputs. 

Proof. An infinite Euclidean algorithm ( a , ) , < w would yield a set 

{<5(a,) :l<i<u} 

that would not be well ordered in the codomain W of the norm 6, so 
every Euclidean algorithm is finite. For i > 2, every common divisor 
of a/_2 and is also a common divisor of the remainder 

«< = a / -2 -qai-\ 

It easily follows, by induction, that all terms a,, /' > 2, are multiples 
of the greatest common divisors of a0 and a\. In particular the gcd's 
must divide the output. On the other hand, we claim that the output 
a 7 _ 2 divides every term a,. If this is not so, let i be the largest index 
such that the output does not divide a,. Obviously / < 7 - 3. But 

a, - = a,+2 for some q 

and as the output divides a , + 1 and ai+2, it must also divide a,, a 
contradiction proving our claim. It follows, in particular, that the 
output divides the inputs, and hence it divides every gcd of the in-
puts. The output is therefore equivalent by divisibility to the gcd's, 
which means that the output itself is a greatest common divisor of 
the inputs. • 
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Historical Note. The idea of this algorithm is over 2000 years old. 
It was first presented in Euclid's Elements, Book VII. 

EXERCISES 

1. In a power set ring (V(S), +,n) what is the gcd and the 1cm of 
two elements A,B £ V(S)7 

2. For any finite set S, show that for every nonempty A, B G V(S) 
there is a Euclidean algorithm of length 7 < 4 in the power set 
ring (V(S),+,<~)), with inputs A and B. Show that this is no 
longer true in the ring Z. 

3. Verify that two elements of a ring are equivalent in the divisi-
bility preorder if and only if they generate the same ideal. Show 
that the inclusion-ordered set of principal ideals is order isomor-
phic to the dual of the order associated with the divisibility pre-
order of the ring. 

4. Show that integer divisibility restricted to the set of natural num-
bers is order isomorphic to (T(Z),C) where 1(1) denotes the set 
of ideals of Z. 

5. Show that a nonzero integer b covers a in the divisibility pre-
order of Z if and only lib = pa for some prime integer p. 

6. Show that Z has an infinity of prime elements. 

7. Verify that two integers are coprime if and only if no prime in-
teger divides both of them. (Disregard 0,1,-1.) 

8. Describe the units of the ring Z m . Show that if x £ Z m is not a 
unit, then for some a G Z m , a fi 0, we have xa = 0. 

9. Show that the ring Z m is a field if and only if m is prime. 

10. Show that if a ring A is not trivial, then AA is not entire. 

11. Show that if A is an entire ring, then the units of A[X] are the 
zero-degree polynomials corresponding to the units of A. 

12. Is the property of being entire transferred from A to A[X]? 

13. Verify that two nonunit nonzero elements of a principal ring are 
coprime if and only if their only common divisors are the units. 
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14. Show that if A is a principal ring and F a nonempty finite sub-
set of A, then the greatest lower bounds of F in the divisibility 
preorder are precisely the generators of the ideal closure of F. 

15. Show that a ring A is Euclidean if and only if the following 
holds: the divisibility pre-order has a well-ordered linear order 
extension where for every a, b G A there is a q G A such that 
either a - qb = 0 or a - qb is less than b in the linear order 
extension. 

16. Write a computer program to execute the Euclidean algorithm, 
for inputs in the ring 

(a) Z, 

(b) lP[X], p prime integer. 

17. Write a computer program to determine divisibility between ring 
elements in Z and 1P[X] where p is prime, as well as to find 
gcd's and lcm's, and to express any given gcd of ring elements 
a,b in the form xa + yb. 

18. Write a computer program that performs prime factorization in 
the rings Z and ZpfA'], p prime. 
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CHAPTER V 

FIELDS 

1. RATIONAL AND REAL NUMBERS 

Fields were defined in the preceding chapter as rings of a particular 
kind. The nonzero elements of a field F form a group F* under 
multiplication. A field is necessarily an integral domain, and every 
subring of a field is entire, but some integral domains such as the 
ring Z of integers are not fields. 

Fraction Field Theorem. Every integral domain D is contained in 
some field Q as a subring. Moreover, D is contained in some field Q 
which is minimal in the sense that no proper subring T of Q contain-
ing D is a field Any two such minimal fields Q and Q' are isomorphic. 

Proof. Let S = {(a,b) G D 2 : b f- 0}. Define two binary operations 
+ and • on S by 

(a,b) + (c,d) = (ad + b-c,b-d) 

(a,b)-(c,d) = (a-c,bd) 

where " + " and "•" on the right-hand-side stand for sum and product 
in D. The reader should verify that (S, +) and (S,-) are commutative 
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monoids, with (0,1) and (1,1) as respective neutral elements. Define 
a binary relation R on S by 

(a,b)R(c,d) if and only if ad = bc in D 

This relation R is obviously reflexive and symmetric. Indeed it is also 
transitive: (a,b)R(c,d) and (c,d)R(e,f) mean 

(ad)f = (bc)f, (cf)b = {de)b 

implying 

(af)d = (be)d, (af - be)d = 0 

and since D is an integral domain and d fi 0, 

af - be = 0, af = be 

that is, (a,b)R(e,f). Thus R is an equivalence relation on S. Fur-
thermore, it is not difficult to verify that R is a congruence of both 
monoid structures (5,+) and (£,•). We can then form two corre-
sponding quotient monoids (S/R, +) and (S/R,-). The same symbols 
" + " and "•" are used to denote both the original and the quotient 
operations. We claim that (S/R,+,) is a ring, and indeed a field. 

First, (S/R,+) is a commutative group because 

(a,b) + (-a,b) = (0,b2) 

in 5 is always congruent to (0,1) modi?. 
Second, we note that (S/R, •) is a commutative monoid whose neu-

tral element is the #-class of (1,1). 
Third, product is distributive over sum in S/R, because in 5 we 

have 

[(a, b) + (c,d)]-(e,f) = ((aed + bce),bfd) 

(a,b) • (e,f) + (c,d)-(e,f) = {(aedf + cebf),bfdf) 

and in D we have 

(aed + bee) • bfdf = bfd • (aedf + cebf) 

Fourth, for nonzero a,b G D, in S the product (a,b)-(b,a) is al-
ways congruent to (1, l)modi?, proving that S/R is a field as claimed. 

The function f : D —* S/R that maps x e D to the R-class of (x, 1) 
is easily seen to be an injective ring homomorphism, establishing 
an isomorphism between D and the subring I m / of S/R. By the 
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aQd = bQc 

Injection-Extension Theorem, there is a set Q D D and a bijection 
g : Q -* S/R such that g\D = f. Define a field structure on Q as 
follows. For x,y £ Q let the sum of x and y be defined as 

g'\g(x) + g(y)) 

and let their product be defined as 

g-\g(*)-g(y)) 

If x and y are both in D, then this sum and product coincide with the 
sum and product in the original ring structure of D. Therefore the 
symbols " + " and "•" shall be used to denote the ring operations both 
in D and in Q. The multiplicative inverse of any nonzero q £ Q is 
denoted by q~x. Obviously g : Q —» S/R is an isomorphism between 
these fields, and D is a subring of Q. 

If q £ Q and (a,b) is any element of the R-class g(q), then 

(a,b) = (a,\)(\,b) 

in 5, which implies that = a-b~x in Q- If T is a subring of Q 
containing D, and if T is a field, then a • b~l E T for every a,b £ D, 
b \t 0, and thus every a e g belongs to 7\ This proves that £) is 
minimal in the sense that no proper subring T of Q containing D is 
a field. 

Finally, let 
(Q,+,-) and (0/ ,©,0) 

be two fields containing D as a subring and both minimal in the 
above sense. Define h : Q —> Q' as follows. Every q £ Q is of the 
form a • 6" 1 for some a,b £ D. We can form the element a 0 in 
Q'. Note that if 

q=ab~l 

has another expression in Q as 

q = c-d'x 

with c,d £ D, then 

a • d = b • c 

in D, which can also be written as 
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in Q' since D is also a subring of ( 2 ' ,© ,0 ) , and multiplying with 
b~xQd~x in Q' yields 

aQb~x = cQd~l 

We may therefore define h{q) as the element a © b~l in Q', indepen-
dently of the choice of a,b £ D to represent q in the form a f t - 1 

in Q. The verification that h is an isomorphism from ( (? ,+ , ) to 
(G',©,©) is straightforward gymnastics. • 

A field Q satisfying the conditions of the above theorem is called 
a field of fractions of the integral domain D. In the proof we have 
seen that every q £ Q is of the form a • b~l with a,b £ D: we shall 
also write a/b instead of a • b~x. Note that 

a/b = -a/-b 

and if a/b is not 0, then 

(a/by1 = b/a 

Let us choose once and for all a field of fractions of the integers Z, 
and let us denote it by Q (for "quotients"). The elements of Q shall 
henceforward be called rational numbers. 

Another important example of fraction field is based on the fol-
lowing transfer property: the ring of polynomials of an integral do-
main A is entire as well. (Proof: The leading coefficient of the prod-
uct of two polynomials is the product of the respective leading coef-
ficients of the two polynomials.) A field of fractions of such a ring 
A[X] is called a field of rational fractions over A. 

The order relation < on Z that we ordinarily use to compare inte-
gers is far from being arbitrary. The relation < is the only order on 
Z for which 0 < 1 and such that 

x < y implies x + z < y + z for all x,y,z£l 

Generally if (G,<g>) is a group, then an order < on G is said to be 
compatible with the group structure if 

x < y implies x <g> z < y <g> z and z ® x < z © y 

It is equivalent to require that 

x < y, x < y imply x ® x < y <g> y 
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The ordinary comparison order of the integers is thus compatible 
with the additive group (Z,+). As a particular aspect of the rational 
field (Q, +,•) consider now the additive group (Q, +). 

Proposition 1 There is a unique linear order on Q compatible with 
the additive group structure (Q, +) and in which 0 is less than 1. 

Proof. Let 

Q + = {q G Q : q = a/b for some positive integers a,b} 

Observe that P is closed under addition. Verify that for every non-
zero q G Q, exactly one of q or -q belongs to Q + . It follows that 

R = {(*>>0 € Q2 : x = y or y - x G Q + } 
is a linear order on Q. For x,y G Z, 

x < y if and only if xRy 

Obviously 0R\ and it is not difficult to verify that R is compatible 
with (Q, +). 

Uniqueness is proven by showing that if T is another compatible 
linear order in which 071, then 

G Q : OTq, 0 + q) 

coincides with the set Q + defined above and T = R. • 

Since the linear order on Q specified by the above proposition co-
incides on Z with the ordinary order of integers, it shall be denoted 
by the same symbol <. It is called the standard order on the rational 
numbers. Extending the notion of positive and negative integers, we 
say that q £ Q is positive if 0 < q and negative if q < 0. Positive ra-
t ional are exactly the members of the set Q + used in the proof of 
the above proposition. The set Q + of positive rationals constitutes a 
subgroup of the multiplicative group (Q*,) of all nonzero rationals. 
The order < restricted to Q + is compatible with the group ( Q + , ) . 
Moreover, if a,b,c,d are rationals and b,d are positive, then 

ab~x < cd~x if and only if ad < be 

This provides a particularly convenient criterion for comparing ra-
tionals expressed as quotients of integers. 
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For a chain (S,<) a cut is a couple (S\,S2) of disjoint nonempty 
subsets of S such that 

sx u s2 = s 

and 
*i < s2 for every s\ G S\, s2e S2 

Saying that for every such cut S\ has a maximum and S 2 has a min-
imum means precisely that (S, <) is discrete. If for each cut either 
S\ has a maximum or 5 2 has a minimum but not both, then (S,<) is 
called continuous. The chain (Z,<) is discrete, not continuous. The 
chain (Q,<) is not discrete: consider the cut 

( Q \ Q + , Q + ) 

Let us show that (Q, <) is not continuous either. Consider the cut 

(S ,Q\S) 

with 

S = (Q\Q + )USi where Si = {q G Q + : q1 < 2} 

First, let us verify that S has no maximum, i.e., that S\ has no maxi-
mum. Let q G S\. Write q = a/b with a,b positive integers. As2~q2 

is positive rational, let 
2-q2 =c/d 

with c,d positive integers. Let n be any integer larger than lad. The 
reader can verify, by elementary manipulations, that 

q + (1/n) G S, 

Consequently 5 has no maximum. Second, let us show that Q \ S has 
no minimum. Observe that 

q\S = {q G Q + : q2 > 2 or q2 = 2} 

If we knew that there is no rational q with q2 = 2, then for every 
q G Q \ S we could easily produce an even smaller element of Q \ S: 
just take any positive integer n greater than 

2q/(q2-2) 

and consider q - (1/n). We shall therefore establish that there is no 
rational q with q2 = 2. This fact, already known to Pythagoras and 
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Plato, is often referred to as the "irrationality of the square root of 
2." Seeking a contradiction, suppose we had a rational q with q2 = 2. 
Let 

q=a/b 

where a,b € Z. Then the integer a2 would be equal to the integer 
2b2. Note that 2 is prime in the ring Z. Let 

a= p\---pn and b = r\---rm 

be prime factorizations of a and b in Z. Obviously 

« = P\--'Pn- Pf-pn and 2ft' = 2 ^ • • • r m • ri • • • rm 

i.e., a 2 = 2b2 would be a product of 2n prime factors on the one 
hand and of 2m + 1 prime factors on the other hand. The Factoriza-
tion Theorem implies 

2/i = 2m + 1 

which is absurd. This completes the proof that in the cut (S, Q \ S) 
the set 5 has no maximum and Q \ 5 has no minimum: (Q,<) is 
neither discrete nor continuous. 

Proposition 2 There is a continuous linearly ordered set (R, <) such 
that 

(i) Q C R and the restriction of < to Q is the standard order of 
rational numbers, 

(ii) for every r\ < r2 in R there are q\,q2,q->, in Q such that 

q\<r\<qi<r2< q3 

Any two such continuous ordered sets are order isomorphic. 

Proof. Let CQ be the set of those cuts (5i,52) of the standard rational 
chain for which neither S\ has a maximum nor S2 has a minimum. 
Perhaps CQ is disjoint from Q, but our elementary development of 
set theory does not permit to conclude this. This is why we have the 
Disjoint Copy Lemma: take any set C equipotent to Co and disjoint 
from Q. Let / : C -> C0 be a bijection. For x e C write the cut f(x) 
as 

(h(x),f2(x)) 
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Let R = Q U C. Define the order < on R by letting a < b mean that 

a,b G Q and a < b in Q 

or a G Q, b E C and a G f\(b) 

or a G C, b G Q and G fi{a) 

or a , 6 G C and f\{a)Cf^(b) 

The rest of the proof is elementary. • 

Choose, once and for all, an ordered set (R,<) such as specified 
by the above proposition. Call the elements of R real numbers. The 
more distinctive notation for the set of real numbers is R; it will 
be used henceforth. Condition (i) of the proposition supports the 
continued use of the symbol < to compare, not just rationals, but 
real numbers as well. Consistently with the terminology for rationals, 
this order is called standard real order. A real number x is called 
positive if x > 0, negative if x < 0. However, we still do not know 
how to add and multiply real numbers! Behold: 

Real Field Structure Theorem. There is a unique field structure 
(R, + , ) on the set of real numbers such that 

(i) the field of rationals is a subring of (R, + ,•), 

(ii) (R, <) is compatible with the additive group (R, +), 

(iii) the set R + of positive real numbers is a subgroup of (R*,). 

REMARK. Condition (iii) implies that (R + ,< ) is compatible with 
( rV). 

Proof For r,t G R let 

S{rt) = { a G R : a <x + y (sum in Q) 

for some x,y G Q, x < r, y < /} 

Clearly S(rt) is a nonempty lower section of (R,<) and 

R\S( r / ) j* 0 

Thus 
(S(rt),R\S(rt)) 
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is a cut in (R, <). By continuity of (R, <) either S(rt) has a maximum, 
or R \ S(rt) has a minimum. Whichever is the case, let the real sum 
r + t be defined as this max-or-min. We have 

r + t =lubS(rO = glb(R\S(r/)) 

For positive real numbers r,t let 

P(rt) = {a £R : a < xy (product in Q) 

for some x,y G Q, 0 < x < r, 0 < y < t} 

Then 
(P(rt),R\P(rt)) 

is a cut in (R, <). Let the real product r • t be defined as the max of 
P(rt) or the min of R \ P(rt), whichever exists—in either case 

r-t = lubP(rf) = glb(R\P(rO) 

For r, / negative, the real numbers 

r = \ub{a £ R : a < x for some x £ Q with r < -x} 

and 
/' = lub{a G R : a < x for some JC G Q with t < - J C } 

are positive, and we define r • t as equal to r' • t'. For r negative, t 
positive, let r • t be the real number 

lub{a G R : a < x for some JC G Q with (-/•)•/ < - J C } 

Finally, if r or t is 0, then let r • t be 0. 
The rest of the proof is bearable tedium and low-level ingenuity. 

• 

The final result of this section will establish an important algebraic 
fact about the real field by making use of the continuous linear order 
structure of R. Observe that in any continuous linear order (R,<), if 
(A,B) is a cut, then both \ubA and glbB exist and they are equal. 
It can be deduced that in any continuous linear order (/?, <), if a set 
SCR has an upper bound, then it has a least upper bound: let S be 
the lower section generated by 5 and consider the cut 

(S,R\S) 
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Similarly, in any continuous linear order, if a set S has a lower 
bound, then it has a greatest lower bound. 

The result that we wish to prove concerns real numbers of the 
form J C 2 . Clearly x2 is positive if x > 0, but if JC < 0, then x2 is still 
positive because 

(-x)2 = ( - l ) V = x2 

We shall establish that all nonnegative real numbers are of the form 
x2. In the proof we shall rely on the elementary observation that 

if 0 < x < y, then x2 < y2 

Somewhat less elementary is the fact called "continuity of the square 
root operation" in real analysis. [Real analysis proceeds from the 
joint study of the structures (R, +,•) and (R,<).] If S is any nonempty 
set of nonnegative real numbers, then so is 

S2 = {s2 : s G 5} 

Therefore both S and S2 have a gib, and obviously 

(glbS)2 < glb(52) 

Could the inequality be strict? If it were, let 

a = (glbS)2, 6 = glb(S2) 

If gib 5 = 0, then the reader can easily show that glb(52) = 0 as well. 
Thus gib 5 > 0. By condition (ii) of Proposition 2 we would have a 
(rational) q such that 

0 < q < min{glbS, (b - a) /3 • gib 5} 

Since gib 5 + q is not a lower bound of 5, there is an s G S such that 

s < glbS + q 

We have 

* 2 < ( g l b S + o)2<Z> = glb(S2) 

which is impossible. Thus for every set 5 of nonnegative real num-

bers (glbS)2 = glb(52). 

Square Root Theorem. For every positive real number y there exists 
a positive real x such that x2 = y. 

Proof. Let 
S = {t G R + : y < t2} 
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Obviously y < glb(S2), i.e., 

V < (glb5)2 

Can the inequality be strict? In that case, let 

z = (glbS)2 

and let q be any rational number (indeed any real will do) such that 

0 < q < min{l,gibS,(z - y)/2 • gib5} 

We would have 

7 < ( g l b S - < 7 ) 2 < z = (glbS)2 

which is contradictory. Thus (glbS)2 = y. • 

For every positive real a there can only be one positive real x 
with 

x = a 

for if also 
z2 = a 

for some z G R + , then 

0 = x1 - z1 = (x - z)(x + z) 

which implies x - z = 0 by integrality, i.e., x = z. The unique posi-
tive real x with x2 = a is called the square root of a, and it is denoted 
by y/a. We also write \/0 for 0. Observe that for every r e R, 

\f~p- = max(r , - r ) 

We call \fr^ the absolute value of r and denote it by \r\. 
Every degree 1 polynomial aX +b over a field A has a (unique) 

root in A, namely the element -b/a. This is clearly not true if A is 
only a ring: the polynomial 

2X-lei[X] 

has no integer root. Indeed, a ring A is a field if and only if every 
degree 1 polynomial over A has a root in A: consider the polynomi-
als aX - 1 for a £ A. Degree 2 polynomials may fail to have roots 
even in a field: witness 

* 2 - 2 G Q [ J T ] 
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However, X2 -2 also belongs to R[X] and in R it does possess the 
roots y/2 and -\pl. So just because a polynomial over a field F does 
not have a root in F, this does not mean that it has no roots in some 
larger field E. No real number fits as a root of 

X2 + 1 G R[X] 

but would not roots in some larger field containing R be imaginable? 
In mathematics, wishful thinking can pay off, just like in philosophy, 
theoretical physics, economics, and everyday life. 

EXERCISES 

1. Adapt the computer programs specified in exercise 1 in Section 
2, Chapter IV, and exercises 16 and 17 in Section 3, Chapter IV, 
to handle polynomials over Q. 

2. Write a program to add and multiply rational fractions over Q. 

3. (a) Verify that every segment of (Z,<) or (R, <) is a complete 
lattice. What about the segments of (Q, <)? 

(b) Verify that any two nonsingleton segments of (R,<) are or-
der isomorphic and that the same is true for (Q,<) but not 
for (Z,<). 

4. Verify that if ( S i , $ 2 ) is a c u t m a chain, then Si is a lower section 
and S 2 is an upper section. 

5. Let p be a positive prime integer. Show that Jp g Q. Does y/6 
belong to Q? 

6. What can you say about roots of monomials in Q or R? 

7. Show that every finite integral domain is a field. 

8. Let D be an integral domain. What can you say about the num-
ber of roots in D of a polynomial p G D[X]? 

9. Describe the quotient rings of a field. 

10. Let a be a nonzero element of a ring with identity. Verify that a 
is prime if it generates a maximal ideal. 
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2. GALOIS GROUPS AND IMAGINARY ROOTS 

Throughout this section, all rings considered are still assumed to 
have an identity element. In any field E, the notation a/b will re-
fer to the element a • b~l where a,b e E, b ^ 0. By a subfield of E 
we mean any subring of E that is a field. Subfields form an algebraic 
closure system on E, contained in the closure system of subrings. 
Recall that by a maximal ideal we mean a maximal member of the 
inclusion-ordered set of all proper ideals. 

Proposition 3 For any ideal I of a ring A the following are equiva-
lent: 

(i) I is a maximal ideal, 
(ii) the quotient ring AjI is a field. 

Proof If / is maximal, then the difference set A \ I is closed under 
multiplication, because for every a e A \ I the proper ideal 

{be A : abel} 

includes I and therefore equals /. For every a e A \ I, the ideal gen-
erated by Iii {a} is the set 

{/' +ca : i e I, c e A} 

As it strictly includes /, it must be equal to A. In particular 

1 = / + ca for some i E I, c e A 

The coset of / containing c is then the multiplicative inverse, in the 
quotient ring A/1, of the coset containing a. 

If / is not maximal, let J be an ideal with / C / C A. Then 

A/mv(J) 

is a nontrivial proper ideal of A/1. But a field cannot have any non-
trivial proper ideals. (Why not?) • 

Example. The ring Z/pl, containing p elements, is a field for every 
positive prime integer p. 

In any principal ring A, the ideal (p) generated by a nonzero el-
ement p of A is maximal if and only if p is prime. We shall take 
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a particular interest in rings of polynomials over a field F. (Re-
call the Polynomial Factorization Theorem.) A polynomial p £ F[X] 
is usually called irreducible over F if it is a prime element of the 
ring F[X]. Every degree 1 polynomial is irreducible. The converse is 
false: witness X2 -2 over Q. Note that if a polynomial / divides a 
polynomial p in F[X], then every root that / may have in F is also 
a root of p. 

Proposition 4 Let F be a field, p be a nonzero polynomial over F, 
and a G F. Then a is a root of p if and only if the polynomial X - a 
divides p in F\X\ 

Proof. The "if" part is obvious. For the converse, recall that F[X] is 
Euclidean (Polynomial Factorization Theorem). Let 

r = p-q-(X-a) 

be a remainder of p by X - a. Obviously the value of r at a is 0. By 
definition of the remainder, either r = 0 or r fi 0 and 

degr < deg(A^ - a) 

i.e., r fi 0 and degr = 0. As the latter would contradict r(a) = 0, we 
have r = 0, and 

p = q(X-a) • 

If p is a polynomial over a field F, a G F a root of p, and p = 
f -g in F[X], then a must be a root of / or g: this follows from 

p(a) = f(a)-g(a) 

How many roots can p have? Since a is a root, 

p = q(X-a) 

for some q G F[X], and if p fi 0, then q fi 0 and 

deg/7 = 1 + degg 

The roots of p are a plus the roots of q. Using this as an inductive 
argument, one obtains the following: 

Proposition 5 A nonzero polynomial p over a field F has at most 
deg p roots in F. 
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As one consequence of this, we can see now that being a polyno-
mial function can be quite a restrictive condition for a mapping from 
a ring to itself. Consider functions such as / : Q —• Q given by 

(0 if J C < 0 

{1 otherwise 

Another important consequence concerns the structure of a field's 
multiplicative group. 

Proposition 6 Let F* be the multiplicative group of a field F. Every 
finite subgroup of F* is cyclic. 

Proof. Let G be a finite subgroup of F*. Let 

CardG = />?'•• .pk

m" 

where for / = l , . . . ,m the pt are distinct positive prime numbers and 
each kj is a positive integer. (Recall the Integer Factorization The-
orem.) Let g EG have largest possible order n. By Lagrange's Sub-
group Counting Theorem, n divides CardG, and therefore 

n = p]---p'm, 0<hi<kt for all i 

Let (g) denote the subgroup generated by g. Suppose (g) f- G: we 
shall obtain a contradiction. Let 

bec\(g) 

By Lagrange again, the cyclic subgroup (b) has 

" = PV--Pm 

elements, with 0 < e,- < fc, for all i. 
Consider the degree n polynomial X" - 1 over F. All the n el-

ements of (g) are roots of X" - 1. Since Xn - 1 can only have n 
roots, b is not a root. Thus v does not divide n and for some 1 < 
j < m we have e, > h}. Let 

¥i it) 

Write e for e,, h for hj, p for pj. Then the order of br is pe, 

while the order of g ^ is s. It follows that the order of brgiph) is 
pe • s > n, contradicting the choice of g. • 
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Suppose now that a polynomial p £ F[X] has no root in the field 
F and deg p > 1. Using the Factorization Theorem in the principal 
entire ring F[X], write p as a product p\---pn of n irreducible poly-
nomials. Clearly, none of the factors pt has a root in F. What if we 
are allowed to search for roots in some larger field E containing F 
as a subfield? The roots of p in E would still coincide with the roots 
of the various /?, taken together. To find a field E in which p has a 
root, we must find a field in which an irreducible polynomial p, has 
a root. 

For any irreducible polynomial p over a field F, the ideal (p) of 
F[X] generated by p is maximal. (This ideal consists of all product 
polynomials p-q, q e F[X].) The quotient ring F[X]/(p) is a field. 
The map 

f : F-* F[X]/(p) 

associating to each a £ F the coset of (p) containing the zero-degree 
polynomial corresponding to a is injective, and it is a ring homomor-
phism: call it the canonical injection of F into F[X]/(p). This injec-
tion establishes an isomorphism between the field F and the subring 
I m / of F[X]/(p), which subring must then itself be a field. Let a 
be the coset of (p) containing X, a e F[X]/(p). With 

p = c„X" + ••• + cxX + c n 

in F[X], let 

Pf=f(cn)X
n + --+f(c1)X+f(co) 

This is a polynomial over Im/ . Obviously a is a root of pf in the 
larger field F[X]/(p). Apply now the Injection-Extension Theorem 
to the canonical injection / . There is a set E D F and a bijection 

g:E^F[X]/(p) 

with g\F = / . Define a field structure (E, + , ) on E by 

<*+b=g-\g(a)+g(b)) 

a-b=g-\g{a).g{b)) 

Then F becomes a subfield of E, and p = g~x{a) is a root of p in £ : 
we have constructed a field £ larger than F in which /? has a root. 
Of course, E is isomorphic to /r[A^]/(/?): 
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Imaginary Root Theorem. For every polynomial p over a field F, 
there is some field E containing F as a subfield such that p has a root 
p in E. 

As a concrete example of the construction leading to this result, 
let 

F = R, p = X2 + \ 

The field E isomorphic to F[X]/(p) is then called the field of com-
plex numbers, denoted by C. It is also customary to denote a selected 
root of X2 + 1 in C by the letter i. Using the isomorphism 

g : C - F[X]/(p) 

it is then straightforward to verify that every complex number can 
be written, in a unique fashion, as 

a + bi with a,b £ R 

An element a of a field E is called root of unity if a" = 1 for 
some positive integer n. We also say that a is an nth root of unity 
in this case. For given n, the set of nth roots of unity forms a sub-
group of the multiplicative group E*. This subgroup has at most n 
elements, since these are exactly the roots of the polynomial X" - 1. 
The various roots of unity are precisely the finite order elements of 
E*. For every root of unity a, its order in E* is the smallest positive 
integer n with a" = 1. For example, C has four fourth roots of unity: 

Of these, only / and —i are of order 4. 
Let K be a subfield of a field E. An element a of £ is called a 

radical over K if for some positive integer n and b £ K, we have 

an =b 

Such an n is called an exponent of a over K. Every nth root of unity 
is obviously a radical over K with exponent n. On the other hand, 
y/2 is a radical in R over Q, but it is not a root of unity. 

If K is a subfield of E, then the couple (£, K) is called a field ex-
tension, and it is more commonly denoted by E : K. The extension 
E : K is called simple if for some a £ E, called primitive element, 
the subfield of E generated by K U {a} is the whole of E. (The sim-
plest case is K = E.) If some primitive element is the root of some 
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polynomial p G K[X\, then E : K is called simple algebraic. A sim-
ple algebraic extension can be obtained from any field K and any 
polynomial p G K[X] as follows: apply the Imaginary Root Theo-
rem, and consider the subfield generated by K and the new root. 
This is essentially the only way to obtain simple algebraic extensions 
E : K. Indeed, for a primitive element a of such an extension, let 

I = {/ G K[X] : a is a root of / } 

Clearly / is an ideal of the principal ring K[X]. Any generator of 
/ is irreducible, and it is called an irreducible polynomial of a over 
K. Let p be such an irreducible polynomial. (Obviously p is linear if 
and only if E = K.) The function h associating to each polynomial in 
K[X] its value at a is a surjective ring homomorphism from K[X] 
onto E, and its kernel is / = (p). The function g associating to each 
coset C G K[X]/(p) the value of any one member of C at a is a ring 
isomorphism K[X]/(p) —• E: 

Proposition 7 For every simple algebraic extension E : K with a 
primitive element a there is an irreducible polynomial p over K and 
an isomorphism 

g:K[X]/(p)->E 

mapping the class of X to a and such that for the canonical injection 
J-.K-* K[X]/(p) 

we have g o j = id^. 

For any set A of elements of a field E, those automorphisms 6 of 
E that fix every element of A constitute a subgroup G{A) of AutE: 

Q(A) = {6 G Aut£ : 6(a) = a for all a £ A} 

is called the fixing group of A. [In the full symmetric group £(£) , 
Q(A) is the intersection of Aut£ with all the stabilizers Sa, a G A.] 

For any subset B of Aut£, those elements a of E that are fixed 
by every automorphism in B constitute a subfield T(B) of E. It is 
called the fixed field of B. For the functions 

Q : V(E) — P(Aut£) and T : P(Aut£) -> V(E) 

we have 
ToQoT = T and QoJoQ = Q 
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Quite obviously also 

g(A)DG(A') if AC A' 

and 
F(B)DF{B') if BCB' 

It follows that QoT is a closure operator on Aut£ and ToQ is a 
closure operator on E. The corresponding closure systems are 

lm{g o = ImQ and Im(ToG) = ImJF 

These consist precisely of all possible fixing groups, and of all fixed 
fields, respectively. For any subfield K of E, the fixing group of K is 
called the Galois group of the extension E : K, and it is also denoted 
by Q(E : K). 

Let E : K be a simple field extension. We claim that if two auto-
morphisms 

<7,re£(£ : K) 

have the same value on a primitive element a, then <T = r. Clearly 
our claim is equivalent to saying that if 6 £ G(E : K) fixes a, then 
6 is the identity. Since the fixed field of {<5} includes KU{a}, this 
follows from the definition of a primitive element. 

Proposition 8 If a primitive element a of a simple field extension 
E : K is a root of unity of prime order p, then the Galois group of 
E : K is cyclic. 

Proof. Let R be the multiplicative group of pth roots of unity in E, 
and let n = Card/?. The case E — K being trivial, assume that E f-
K. Then a f- 1 and 1 < n < p. If n < p, then n and p are relatively 
prime: 

1 = an + bp 

for some integers a, b, and 

a = (a ) • (aF) 

would belong to K, which is not the case since EfK. Thus n = p 
and the element a must generate R. (A group of prime order has no 
nontrivial proper subgroups, by Lagrange.) 
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For every a 6 Q(E : K), <j(a) is in R, and therefore the set 

h(a) = {zez :az = a (a)} 

is not empty. Indeed h(a) must be a coset of the ideal pi of Z— 
other than pi itself because a 0 = 1 cannot be a(a) for any automor-
phism <T of E. Thus we have defined an injective function h from 
Q(E : K) to the set of nonzero elements of the ring 1/pi = l p . 
Since (lp, + , ) is a field, every nonzero element is a unit, and h is an 
injection to l*p. But (Z*,) is a cyclic group, and we shall show that h 
is a group homomorphism from Q(E : K) to (Tp,-). This will imply 
that G(E : K), being isomorphic to a subgroup of a cyclic group, is 
itself cyclic. 

Let 
T,<T 6 0(E : K), * e h(r), s e 

From 

( T O <r)(a) = T(a') = (r(a))' = a" 

we conclude that ts 6 /i(r o a), that is 

h(r) • h(cr) = h(r o a) in Zp 

This proves that h is a group homomorphism as claimed. • 

Proposition 9 If a primitive element a of a simple extension E : K 
is a radical with exponent n over K, and if E\K contains no nth root 
of unity, then the Galois group of E : K is cyclic. 

Proof. The result being trivial for E = K, assume E f- K. For every 
a in Q(E : K), we have 

<x(a)" =a(an) = a" 

therefore a (pi)/a is an nth root of unity, and as such it must belong 
to K. Let R„ be the multiplicative group of all nth roots of unity in 
K: this is a cyclic group. Define an injective map h from Q(E : K) 
to Rn by 

h(a) = a (a) I a. 

This is indeed a group homomorphism because 

h(r OG) - T(a(a))/a = r ( a • [a(a)/a])/a 
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and since r fixes o(a)/a £ K, 

h(r o a) = r (a ) • a(a)/a = h(r)h(a) 

The Galois group, being isomorphic to the subgroup Imh of R„, is 
then cyclic. • 

Let £ : K be a field extension and let p £ K[X]. Let R(p, E) be 
the set of all roots of p in E. The relative splitting field of p in E : K 
is the subfield F of £ generated by 

Ku/?(/?,£) 

The term "splitting" is justified by the observation that if deg p = 
n > 0 and /? has n roots in £ (the maximum number it can have), 
then the Polynomial Factorization Theorem in the ring F[X] yields 

P=c n ( * - « ) 

with some c £ K, i.e., p "splits into linear factors" in F[X]. 

Example. The relative splitting field of X4 - 4 in C : Q is strictly 
larger than in R : Q: 

X4 - 4 = (X - y/l)(X + V2)(X - iVl)(X + iy/l) 

and 

X4 - 4 = (X - y/2)(X + V2)(X2 + 2) 

are prime factorizations over the two relative splitting fields. 

Galois Quotient Theorem (For Relative Splitting Fields). Let E : K 
be a field extension. If F is the relative splitting field in E : K of 
some polynomial p £ K[X\ then Q(E : F) is a normal subgroup of 
G(E : K) and 

G(E : K)/G(E : F) 

is isomorphic to a subgroup of G(F : K). 

Proof Since the coefficients of p are fixed by every a £ G(E : K), 
a £ E is a root of p if and only if a(a) is a root. It follows that 
a[F] = F. Thus the restriction of every a £ G(E : K) to £ is a mem-
ber of G(F : K). The function h from G(E : K) to G(F : K) mapping 
each a £ Q{E : K) to its restriction to £ is quite obviously a group 
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homomorphism with kernel Q(E : F). The quotient 

G(E : K)/Q{E : F) 

is isomorphic to the subgroup Im/i of G(F : K). • 

A field extension E : K is a radical extension if there are subfields 
£ 0 , £ 1 , . . . , £ n of £ ,n > 1, with 

£ = £o D £ 1 D • • • D £„ = AT 

such that for every / = 0 , . . . , n - 1, £, : £ I + 1 is a simple extension 
with a primitive element a, that is a radical over £ , + 1 . 

A group G is called solvable if there are subgroups 

G 0 C ••• C G„ = G, n > l 

where Go is trivial and for every / = 0 , 1 , G, is a normal sub-
group of Gi+i with Gj+i/Gi cyclic. It is an excellent exercise in 
group theory to verify that every subgroup of a solvable group is 
solvable. 

Examples. (1) C : R is a radical extension. If £ is the subfield of C 
generated by Q U { \ / 2 , j } , then £ : Q is a radical extension. (2) Ev-
ery cyclic group is solvable. There are noncyclic solvable groups: for 
any finite set S with at least two elements, consider the symmetric 
difference group (P(S), +). 

Recall the Simplicity Theorem for Alternating Groups. Can An be 
solvable if n > 5? Obviously a simple group is solvable only if it is 
cyclic. We leave it to the reader to rule out this possibility for An, 
n>5. Thus the alternating group An is not solvable if n > 5. On the 
other hand, it is easy to verify that for n < 5, A„ is solvable. 

Solvability Theorem for Radical Extensions. The Galois group of 
every radical field extension E : K is solvable. 

Proof. Let 
E = EQ D Ex D • • • D En = K 

be subfields, £, : £ , + i simple for every i = 0,...,n - 1, with a radical 
a, € Ei over £ , + i as primitive element. For each / let m(i) be an 
exponent with 

a,- u G £ , + 1 
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For subfields F,H of E containing K, suppose that we have inter-
mediate subfields 

F = FQD FXD - O Fk = H, k>\ 

such that, for i = 0,..., k - 1, 

(i) the Galois group : F , + ] ) is cyclic, 

(ii) Fi is a relative splitting field in E : F , + 1 . 

Then let us call (Fo,...,Ffc) a cyclic normal extension sequence from 
H = Fk to F = F 0 . Obviously (ii) implies that F, is a relative split-
ting field (of some appropriate polynomial) in F : F , + 1 . Consider 
the subgroups 

G(F : FQ)C-CG(F : Fk) = G(F : H) 

The Galois Quotient Theorem implies that G(F: H) is a solvable 
group! 

To prove our theorem, we shall seek to establish that there is a 
cyclic normal extension sequence from K to the whole of E. Let 
us introduce some notation. For any set S C E, let K(S) be the sub-
field of E generated by KUS; for the case 5 = {a\,...,aj} write 
simply 

K(a-i,...,aj) 

As in the proof of Proposition 9, let /?, denote the multiplicative 
group of /th roots of unity in E. Each /?, is finite, and therefore 
cyclic. Any generator g of /?, is a primitive element of the extension 
K(Ri) : K and 

K(Ri) = K(g) 
is the relative splitting field of X1 - 1 in E : K. Let us now verify 
two claims. 

First Claim: For every positive integer m, there is a cyclic normal 
extension sequence from K to K(Rm). Let m be the smallest integer 
allegedly violating this claim. Obviously m > 1. Let p be any pos-
itive prime factor of m, and let q = m/p. Let 7 be a generator of 
Rm, 0 a generator of Rq. Clearly -yp e Rq. If the order / of 7 were 
less than m, then the claim would be true for K(R,). But R, = Rm: 
thus m is the order of 7. Two cases are possible: 
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Case 1. There is a pth root of unity 

P€K(i)\K(B) 

Then pB is in Rm and since 7 is a generator, 7 e = pB for some posi-
tive integer e. The prime p cannot divide e because pB is not in the 
subset Rq of K(B). Thus p and e are relatively prime, 

ap + be = 1 

for some integers a,b. We have 

7 = 7* V = (7 W ) ' = (7P) W 

Since 7 P G #09), this expression for 7 shows that 7 is in the subfield 
generated by K(B) and p, i.e., p is a primitive element of 

*(7) : K{3) 

By Proposition 8, the Galois group £(#(7) : K(B)) is cyclic. 
Case 2. The set K(y)\ K(3) contains no pth root of unity. Since 

1P e K(8), the group 
0 ( K ( 7 ) : K(B)) 

is cyclic in this case too, by Proposition 9. 
In both cases, by the minimal choice of m, there is a cyclic normal 

extension sequence 

(K(B),...,K) 

from K to K(fi) = K(R<,). But then 

(K(7),K(/J),...,K) 
is a cyclic normal extension sequence from K to #(7). This proves 
the First Claim. 

Second Claim: If m is any positive common multiple of the expo-
nents m(l),m(n), then there is a cyclic normal extension sequence 
from K(Rm) to E. For 1 = 0,..., n - 1 let 

Ki = K(RmU{ai,...,an_x}) 

and let K„ = K(Rm). For / = 0,...,n - 1 we have 

Ki = Kj+i(cti) and Kt D Et 
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Apply Proposition 9 to K{ : and consider the sequence 

(KQ,...,Kn_\,Kn) 

from K(Rm) = K„ to E = K0. This proves the Second Claim. 
To conclude the proof, for an appropriate m, concatenate any 

cyclic normal extension sequence 

(K(Rm),...,K) 

and a cyclic normal extension sequence 

(E,...,K(Rm)) 

to form a combined sequence 

(£,..., K (Rm),..., K) 

and behold. • 

Let F : K be a field extension and let p G K[X]. The field F is 
called an (absolute) splitting field of p over K if for every further 
extension E : F, F is the relative splitting field of p in the extension 
E : K. Equivalently, F D K is an absolute splitting field of p G K[X] 
if and only if all irreducible factors of p in F[X] are linear, and 

F = K(au...,a„) 

where the a, are the roots of p in F. 
An inductive application of the Imaginary Root Theorem yields: 

Splitting Field Theorem. Every polynomial p over a field K has an 
absolute splitting field F over K. 

If E, F are fields and <p any isomorphism from E to F, then an 
isomorphism ^ from the ring E[X] to F[X] is given, for p written 
as c 0 + c^X + • • • + cnX" in FLY], by 

Tp(p) = <p(c0) + <p(cx)X + ••• + ip(cn)X
n 

We shall write pv for p(p). Associating to every coset C G E[X]/(p) 
its image set Tp[C] establishes an isomorphism from E[X]/(p) to 
F[X]/(p<p). Combining with Proposition 7 we get: 

Proposition 10 If E' : E and F' : F are field extensions, tp : E —> 
F is an isomorphism, a G E' is a root of an irreducible polynomial 
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p £ E[X\ and 3 £ F' is any root of p^,, then tp can be extended to a 
unique isomorphism 

r:E(a)^F(3) 

that maps a to 3. 

Corollary. Let p be a polynomial over a field K, and let 

EJK, FDK 

be two absolute splitting fields of p over K. 

(i) There is an isomorphism tp : E -+ F whose restriction to K is 
the identity. 

(ii) The Galois groups Q(E : K) and Q(F : K) are isomorphic. 

Proof, (i) is obtained by recursive application of the proposition. 
The group isomorphism claimed by (ii) is constructed by taking 

the field isomorphism tp : E —> F and associating to every a in the 
group Q{E : K) the element tp • a -tp~x of Q(F : K). • 

Thus any two absolute splitting fields E, F over K of a polynomial 
p £ K[X] are isomorphic, and if E : K is a radical extension, then 
so is F : K. We can therefore call a polynomial p £ K[X] solvable by 
radicals over K if an absolute splitting field E of p over K defines 
a radical extension E : K. There is always an absolute splitting field 
and it does not matter which one we take. 

Consider, for example, 

p = IX1 + 3X + \ 

in Q,[X]. In the subfield Q( \ /2 ) of R generated by \fl it has the roots 

( - 3 + v / 2 ) / ( 2 - 7 ) and ( - 3 - \ / 2 ) / ( 2 • 7 ) 

The polynomial p, although having no rational root (why?), does 
have two roots in the radical extension Q( \ /2 ) : Q. It follows that 
Q(A/2) is a splitting field of p over Q, and p is solvable by radicals 
over the rationals. Indeed every degree 2 polynomial 

aX2 + bX + c 
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over Q is so solvable: both 

(-b + 6)/2a and (-b-6)/2a 

are roots in C where 

y/b2 - 4ac if b2 > Aac 

0 if b2 = 4ac 

i\jAac - b2 if 4ac > b2 

These roots belong to the subfield 

6=1 

E = q(i,^J\b2-4ac\) 

The field £ is a splitting field of aX2 + bX + c over Q and £ : Q is 
a radical extension. 

Let £ be a field of fractions of 

Q[Ai, X2, A3, X4, A5] 
i.e., of the ring of polynomials in five indeterminates over Q. In the 
ring E[X] let p be the product of the five polynomials 

X-Xi, / = 1,...,5 

Let c0,c\,...,c5 be the coefficients in £ of this p £ E[X], 

p = co + c\X + • • • + c$Xs 

For each / = 0,1, . . . , 5 we have 

C<= E ( - i ) 5 " ' n ^ 
yc{i,...,5} JU 

Card/ = 5 - i 

In particular co = -A1]A^A/jA^A^ and c$ = 1. (The reader may wish 
to calculate the other coefficients too.) Let K be the subfield of £ 
generated by 

CQ,CI,...,C5 

Obviously Q is a proper subfield of K, p £ K[X], and £ is an abso-
lute splitting field of p over K. We intend to show that Q(E : K) has 
a subgroup isomorphic to the symmetric group E 5 . First, observe that 
if h is any automorphism of an integral domain D and Q is a field 
of fractions of D, then h can be extended to a unique automorphism 
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Associating to a the extension ha of ha to the fraction field E yields 
an injective group homomorphism 

Since E 5 , which contains the alternating group A5, is not a solvable 
group, Q{E : K) is not solvable either. By the Solvability Theorem 
for Radical Extensions, the polynomial p £ K[X] is not solvable by 
radicals over K. 

Abel-Ruffini Theorem. Not all polynomials of degree 5 are solvable 
by radicals. 

A general theory of solvability by radicals, in group-theoretical 
terms, was first developed by Evariste Galois, early in the last cen-
tury. The group concept was invented by him. Galois had an excel-
lent high-school education in Paris, failed the entrance examination 
at France's top engineering school, and died in a duel at the age of 
21 the day after he committed his theory to writing. 

EXERCISES 

1. Let E : F be a simple field extension with primitive element 
a. Show that a is the root of some polynomial over F if and 
only if the subring F[a] of E generated by Fl){a} is the whole 
of E. Show that if F[a] is not a field, then E is isomorphic to 
the field of rational fractions over F. Conclude that if E : F is 

'1 '5 

E 5 -> G{E : K) 

h of Q, defined by 

h(a/b) = h{a)/h{b) for all a,b £ D, bfiO 

Second, observe that for each permutation a £ E 5 , there is an auto-
morphism h„ of q[Xh...,X5] given by 
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simple algebraic, then every element of E is the root of some 
polynomial over F. 

2. Show that every function from a finite field to itself is polyno-
mial. 

3. Show that, over any given field, there is an infinity of irreducible 
polynomials. 

4. Describe the Galois groups of C : R, C : Q, and R : Q. What is 
the fixed field of Aut C? 

5. Show that every field E has a subfield K such that Aut£ = 
G{E : K). 

6. Let H be a normal subgroup of a group G. Verify that G/H is 
cyclic if and only if there is an element a EG such that H U {a} 
generates the entire group G. 

7. Let h : G —• H be a surjective group homomorphism. Show that 
G is a solvable group if and only if both H and Kern are solv-
able. 

8. Verify that if a field element a is a radical over a subfield, then 
so is -a and I/a. Show that the exponents of a, together with 
zero and the negatives of these exponents, form a subgroup of Z. 

9. Is 1 + \fl a radical over Q? What about 1 + il Can you general-
ize? 

10. In the ring Z, show that ap~x = 1 mod pi if p is a positive prime 
that does not divide the integer a. 

11. Show that every element of the subring Z[i] of C generated by /' 
can be written in a unique fashion as a + bi with a,b £1. Show 
that Z[i] is Euclidean with norm a2 + b2 for nonzero elements. 
What are the units? See how far you can go in describing this 
ring of "Gaussian integers." 

12. Consider in Z[i] the equivalence relation = in which a + bi = 
c + di means that a = qc and b = qd for some positive ratio-
nal q. Show that = is a multiplicative semigroup congruence in 
which zero forms a class by itself and all other classes are in-
finite. Call the infinite classes Gaussian angles and denote the 
quotient semigroup operation by ©. Verify that © defines a com-
mutative group structure on the set of Gaussian angles. Verify 
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b/Va2 + b2=d/Vc2 + d2 

Define sin a as b/Va2 + b2 and cos a as a/Va2 + b2. Prove 

(sine*)2 + (cosa) 2 = 1 

sin(a©/3) = sin a cos B + cos a sin B 

cos(a ®B) = cosa cos B - sin a sin/3 
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CHAPTER VI 

VECTOR SPACES 

1. BASES 

For a commutative group (V,+) the set End^ of all group endo-
morphisms can be given a binary algebraic structure in at least two 
ways. With composition (EndV,o) is a monoid. With addition of en-
domorphisms defined for a,r 6 EndF by 

(u + T)(X) = <T(X) + T(X) for all x e V 

(EndK,+) is obviously a commutative group. Suppose we have a 
field (F, +,•) and a function p : F—>EndK that happens to be a 
monoid homomorphism both 

(F , - ) -» (EndK,o) and (F, +) (EndV, +) 

Then (V,+,p) is called a vector space over the field F. This is one 
short and unnatural way of defining vector spaces formally. The el-
ements of V are called vectors, those of F scalars. For a scalar a 
and a vector v, let us simply write a • v or av instead of [p(ot)](v), 
and call this element a vector space product. The original group op-
eration " + " on V is called vector addition or sum. Let us write 0 for 
the neutral null vector in the group V. The additive inverse of any 

157 
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v e V is denoted by -v. The fact that p is a function with codomain 
E n d ^ means that for all a e F,v,w e V 

a(v + w) = av + aw (left distributivity) 

The homomorphism properties of p mean that for all a, 3 £ F, v £ V 

(a + 3)v = av + 3v (right distributivity) 

(ad)v = a(0v) (mixed associativity) 

and we also have 

Ov = 0, lv = v, (-\)v =-v, 

aO = 0, a(-v) = (~a)v =-(av) 

In practice we simply refer to "the vector space V" when F and 
p are understood. A scalar multiple of a vector v is any vector of the 
form at; where a is a scalar. Obviously the null vector is a scalar 
multiple of every vector, but the only scalar multiple of 0 is 0 itself. 
Every vector is a scalar multiple of itself. 

Examples. (1) For any set 5, V(S) is a vector space over the two-
element field Z2: vector addition is the symmetric difference 

A + B = (A\B)U(B\A) 

and the vector space product is given by 

OA = 0, \-A = A 

The empty set is the null vector. (2) For any set S and any field F, 
the set Fs is a vector space over F: the vectors are functions, vector 
addition is given by 

(f+g)(x) = f(x)+g(x) 

and the vector space product by 

(ag)(x) = ag(x) 

The special case where S is a natural number interval [l,n] may be 
familiar to the reader. 
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A subset U of a vector space V is called a subspace if it is a sub-
group of (V, +) and av eU for every scalar a and v G U. Subspaces 
constitute an algebraic closure system on V. The smallest, trivial sub-
space consists of the null vector alone. The set of scalar multiples of 
any given vector is a subspace. 

Let M C V be any set of vectors, and let (a,f, : / G 7) be a finite 
family of scalar multiples of elements e Af. The sum 

is called a //near combination of elements of M. 
For n = 0 we have the null vector as a linear combination, for 

n = 1 we have scalar multiples. It is easy to see that the subspace 
M generated by a set M of vectors consists precisely of all linear 
combinations of elements of Af. 

Example. Let Af be the set of all singleton subsets of a given set S. 
The subspace Af of V(S) consists of all finite subsets of 5. 

A set Af of vectors is called (linearly) independent if no v G M 
belongs to the subspace generated by Af \ {v}, i.e., if no element of 
Af is a linear combination of the other elements. It follows that an 
independent set cannot contain the null vector, but for any nonnull 
vector v the singleton {v} is linearly independent. If Af consists of 
two distinct nonnull vectors v,w, then Af is independent if and only 
if w is not a scalar multiple of v. Clearly every subset of an inde-
pendent set is independent. 

Combinatorial Example. Let R be a binary relation on a set S, 
R C S2, and consider the vector space V(S). If R is a path, then the 
vector set 

{{a,b} : (a,b)£R) 

is independent. If R is a cycle, then it is not independent. More about 
this in graph and matroid theory. 

A set C of vectors is called (linearly) dependent if it is not inde-
pendent. A dependent set C is called a circuit if it is minimal (i.e., 
every proper subset of C is independent). 
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Example. If R is a relational cycle on a set S, as in the previous 
example, then 

{{a,b} : (a,b)£R) 

is a circuit in V(S). 

Since the subspace closure system is algebraic, a set M of vec-
tors is independent if and only if every finite subset of M is inde-
pendent. It follows that every circuit is finite and that a set M is de-
pendent if and only if it contains a circuit. It is also easy to see 
that a finite set M is independent if and only if a linear combina-
tion 

is null only when each au is zero. It follows that for every circuit C 
there are nonzero scalars au, u £ C, such that 

au • u = 0 

Basis Characterization Theorem. For any set B of vectors in a space 
V the following are equivalent: 

(i) B is a maximal independent set, 

(ii) B is a minimal generating set for the entire space V, 

(iii) B is independent and generates V. 

Proof. Assume (i). Let B be the subspace of V generated by B. If 
I j ^ K , then for any v G V\B the set BU{v} would be indepen-
dent: therefore B = V. The independence of B also implies that for 
every proper subset A of B, the members of B \ A are not in A. This 
proves (ii). 

Assume (ii). If B were dependent, some v e B would lie in B \ {v}. 
But then B C B\{v} and therefore 

V = BCB\{v} 

which is impossible by assumption. Thus B must be independent and 
(iii) is proved. 
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Assume (iii). If B were properly included in some larger indepen-
dent set C, the vectors in C\B could not be in B = V: this forces 
condition (i). • 

A set B satisfying the conditions of the above theorem is called a 
basis of V. 

Basis Existence Theorem. Every vector space has a basis. Each in-
dependent set of vectors is contained in some basis. 

Proof. Apply Zorn's Lemma to the set of all independent sets (or 
those containing a given independent set) ordered by inclusion. • 

Steinitz Exchange Theorem. Let V be a vector space, M C V an 
independent set, N a proper subset of M, and v £ V \ M a vector 
such that NU{v} is independent. Then for some vector w £ M\N 
the set (M \ {w}) U {v} is independent. 

Remark. A simpler, more familiar statement is obtained for N = 0. 
The reader is urged to reformulate without reference to N in this 
case. However, we shall prove and use the result in full. 

Proof If M U {v} is independent, we are home. Otherwise let 

CCMU{v} 

be a circuit. Obviously v must belong to C, C cannot consist of v 
alone, and 

CgNU {v} 

Let 
w£Cn(M\N) 

There are nonzero scalars au, u£C, such that £ a u • u = 0. We 
claim that 

M' = ( M \ { w } )U { v } 

is independent. Were this not so, M' would contain a circuit C'. Ob-
viously v EC', w •£ C'. There are nonzero scalars Qu, u £ C', with 

£ Bu • u = 0 
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Let us define 

'ATU/ATV if uGC\C 

lu = I -Qu/Qv if ueC'\C 

. o « / o « - P u / B V if uecnc' 

We have 

Y i»-u = \ Y,au'u) /av-\12p»-u) / P v = 0-0 = 0 

Observe now that j v = (av/av) - (Pv/Pv) = 0 but j w = aw/av is 
not zero. Since 

Y lu-u=0 
ue{Cuc)\{v} 

with not every fu zero, (Cl)C')\{v} C M is linearly dependent, 
which is absurd. • 

Basis Equipotence Theorem. Any two bases of a given vector space 
V are equipotent. Indeed any two maximal independent subsets of any 
set W of vectors in V are equipotent. 

Proof. We need only to prove the stronger second statement. Let 
W C V and suppose that two maximal independent subsets A and 
B of W have different cardinalities, say Card ,4 < Card B. We shall 
derive a contradiction by constructing a bijection A \ B -* B \ A. 

An exchange function is defined as a bijection / from a subset 5 
of A \ B to some subset I m / C B \ A such that 

( 5 \ I m / ) u 5 

is independent. The set £ of exchange functions is nonempty (why?), 
and it can be ordered by restriction: / < g means that the domain 
set S of / is a subset of the domain of g and g\S = f. The ordered 
set (£,<) satisfies the hypothesis of Zorn's Lemma: thus there is a 
maximal exchange function / . We claim that the domain S of / is 
A \ B and Im / = B \ A. It is easy to see that 

SfiA\B if and only if lmffiB\A 

For if we had S = A\B but I m / f B\A, then 

(B \ I m / ) U S = A U [(B \ A) \ Im/ ] 
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would be an independent set larger than A, which is absurd. On the 
other hand, if we had I m / = B \ A but S f A \ B, then the assump-
tion Card A < Card B would be contradicted. Therefore the only 
case we must be concerned with is 5 f- A \ B, I m / f- B\A. Take 
any 

ve(A\B)\S 

and apply the Steinitz Exchange Theorem with 

M = ( 5 \ I m / ) U 5 = SU(Ar\B)U[(B\A)\lmf] 

N = SU(AnB) 

This yields a vector 

w G M\N = (B\A)\lmf 

such that 
(M\{w})U{v} 

is independent. Define now an extension g of / to S' = SU {v} by 
g(v) = w. The set 

(B \lmg)US' = [B\ ( Im/ U { * } ) ] U (5 U {v}) = (M\{ w}) U {v} 

is independent and / < g in the ordered set €: a contradiction. 
The only remaining possibility is S = A \ B, I m / = B \ A, as 

claimed. • 

The cardinality of a basis of a vector space V is called its dimen-
sion, and it is denoted by dimK. The second statement of the Basis 
Existence Theorem implies that if U is a subspace of a vector space 
V, then dim(/ < dimK. If V has finite dimension and U \t V, then 
dim(/ < dimK. 

We conclude this section with an application of elementary linear 
algebra to vector spaces V over the real number field R. A set C of 
vectors in V is called convex if v,w G C, 0 < a < 1 imply 

an + (1 -ct)w G C 

Examples. The entire vector space V is convex. Every singleton is 
convex. The empty set is convex. Every subspace of V is convex. 

The set of convex sets constitutes an algebraic closure system on 
V. The closure of a set M of vectors is called the convex hull of M. 
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The reader should verify that this convex hull consists of all linear 
combinations 

a0v0 + ••• +aM--[Vm-i 

of elements u,- G M with all coefficients a, nonnegative and such that 

C*0 + ••• + a m - \ = 1 

(This latter requirement forces m > 1.) Assume now that V has fi-
nite dimension n, and let vo,...,vn+\ be any n + 2 vectors, all dis-
tinct. The n + 1 vectors 

(Vo-Vn + l),...,(vn - VH + i) 

cannot be linearly independent. We have 

<xo(vo-vn+i) + -- - +a„(v„ -vn+1) = 0 

for some scalars ao,...,a„, not all of which are zero. Define 

= - ( ao + -" + 

Obviously 
a0^o + ••• +a«u« + a „ + i v n + i = 0 

Let / be the set of indices i such that a,- > 0, and let / be the com-
plementary set of indices, J = (n + 2)\7. Both / and / are non-
empty; a = £ , e / a,- is positive and equals -ay . The vector 

£ ( a , / < 7 > , - = ^ ( -ay /cr )«y 

belongs to the convex hull of the set {v,; : / G /} as well as to that of 
{VJ : j G / } . We have proved: 

Radon's Theorem. In an n-dimensional vector space over R, n£u>, 
each set of n + 2 vectors is the union of two disjoint subsets whose 
convex hulls intersect. 

This theorem can be used to determine the Helly number of the 
convex closure system on a finite dimensional vector space over R. 
The corresponding result is Helly's Theorem, obtained by Eduard 
Helly just before World War I broke out and published by him, as 
well as by Radon and Konig, during the temporary peacetime of 
the 1920s. Helly-type theorems have been forthcoming ever since 
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and also some previously known results have been recognized as 
Helly theorems, describing remarkable combinatorial aspects of var-
ious mathematical structures. Some are included in this volume. 

Helly's Theorem. Let V be an n-dimensional vector space over R, 
n£uj. The Helly number of the convex closure system on V is n + 1. 

Proof. Let us show that if T is a finite nonempty set of convex sets 
such that for every nonempty subset S olT with Card S < n + 1 the 
intersection n<S is not empty, then C\T is not empty. Suppose this 
is not true and let T be a misbehaving set of convexes with the 
least possible number of members. We shall derive a contradiction. 
Certainly 

CardjF > n + 2 

For each K G F, n(F\{K}) is not empty: let 

c(K)£n(F\{K}) 

For distinct K,K' the sets 

n(r\{K}) and n(T\{K'}) 

are disjoint because (IF is supposed to be empty. Thus c(K) \t c(K') 
if K ? K'. It follows from Radon's Theorem that T is the union of 
two disjoint subsets Q and H such that the convex hulls of 

{c(K):KeG} and {c(K) : K G H] 

intersect. But any common element of these two convex hulls must 
belong to F\T, which is then nonempty, contrary to assumption. This 
shows that the Helly number sought is at most n + 1. 

On the other hand, if 

B = { u 0 , . . . , u „ _ i } 

is a vector space basis, then consider the n subspaces //, generated 
by the sets 

B\{vi}, i = 0,...,n-\ 

Let H be the convex hull of B. Obviously 

/ /n / / 0 n • • • • / / „ _ ! = 0 
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but the intersection of every n or less members of 

T = {//.//o,...,//„_i} 

is nonempty. Thus the Helly number cannot be less than n + 1. • 

Historical Note. The theory of n-dimensional vector spaces, includ-
ing but not limited to the three-dimensional geometry of everyday 
perception, was first developed by Hermann Grassmann. In the 1844 
and 1862 editions of "Ausdehnungslehre" the view is explicitly put 
forward that mathematics is not a science of quantities. Beyond bi-
nary operations on vectors, Grassmann explores algebraic properties 
of the lattice of subspaces. In parallel with, but apparently indepen-
dent of, contemporary Boolean algebra, this foreshadows, by some 
50 years, the emergence of formal lattice theory and universal alge-
bra. 

EXERCISES 

1. On a field F let < be a linear order compatible with the addi-
tive group structure of F and such that the set of field elements 
greater than 0 forms a multiplicative subgroup of F*. Develop a 
"convex closure" concept for vector spaces over F, and prove a 
Helly-type theorem. Give an example other than F = R. 

2. Show that no finite convex subset of a vector space over R can 
have more than one element. 

3. Consider R as a one-dimensional vector space over itself. Show 
that a subset is convex in this vector space if and only if it is order 
convex in the standard real order. What is the Helly number of 
this convex closure system? 

4. Referring to the formal definition (K, +,p) of a vector space over 
a field F, does p : F —• End V have to be injective? Assume 
dimK > 0. 

5. Give examples of vector spaces V where every additive subgroup 
of K is a vector subspace and give counterexamples. 

6. Design a program to perform the following tasks in the vector 
space V(S) over Z2 for finite S e w : 
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(a) Decide if a given set of vectors is independent. 

(b) Express any given vector as a linear combination of members 
of a given basis. 

(c) Find a basis containing a given independent set. 

(d) Given M C V(S) and an independent I CM, find an inde-
pendent set G with / CG CM and having as many elements 
as possible. 

2. LINEAR MAPS AND EQUATIONS 

Let V and W be vector spaces over the same field F. A mapping h : 
V —* W is called linear if it is a group homomorphism from (V, +) 
to (W, +) and if 

for all aeF, x G V, h(a-x) = a- h(x) 

Proposition 1 The composition of two linear mappings h : V —• W 
and g : W —• Z is linear from V to Z. The identity mapping on each 
vector space V is linear. The inverse of a bijective linear map is linear. 

It is easy to see that the kernel and the image of a linear map are 
not only subgroups but also subspaces of the domain and codomain 
vector spaces, respectively. Let U be a subspace of a vector space V 
over a field F. As U is a (normal) subgroup of V, we have a quotient 
group structure (V/U, +). Further, a vector space structure is defined 
on V/U by 

a • C = {av : v G C} 

for every nonzero scalar a and coset C of U. This is called quotient 
space. Clearly the canonical surjection 

is linear and its kernel is U. Thus every vector subspace is the kernel 
of some linear map. 

A bijective linear map h : V —> W between vector spaces is called 
an isomorphism from V to W, and if such an h exists, then V and W 
are called isomorphic. Any isomorphism h : V —• V is called an au-
tomorphism of V. Under composition the set of all automorphisms 
of V is a group; it is denoted by AutK. Obviously it is a subgroup 
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of S(K). As for the (not necessarily bijective) linear maps V —• V, 
these are called endomorphisms and they form a monoid under com-
position. The constant function V -> V mapping everything to the 
null vector is an endomorphism. For each scalar a the map ha : V -+ 
V given by 

ha(x) = a- x 

is an endomorphism, and it is an automorphism if a \t 0. Not all 
endomorphisms and not even all automorphisms are of this form: 
the reader can find a counterexample for the two-dimensional vector 
space V{2) over Z2. 

Linear Map Dimension Theorem. Let h : V —• W be a linear map 
between vector spaces. We have 

dim V - dim Ker h + dim Im h 

If dim V is finite and h : V -* V is an endomorphism, then h is injec-
tive if and only if it is surjective onto V. 

Proof. Let B\ be any basis of Ker/i, C any basis of Im/i. For every 
c eC, choose a bc € V with h(bc) = c. Then 

B2 = {bc:cG C} 

is independent in V and it has the same cardinality as C. The union 
B\ U B2 is a basis of V. • 

Coordinatization Theorem. A subset B of a vector space V over a 
field F is a basis if and only if for every vector v 6 V there is a unique 
finite family of nonzero scalars (au : u G / ) indexed by a subset I of 
B such that 

v = au • u 

The set / C B described by the above theorem is called the sup-
port of v in B. For every basis element u e B we define the uth 
coordinate function cu (with respect to B) from V to F by 

[<xu if u e I, 
Cu(V) = < 

I 0 otherwise 
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Consider now F as a vector space over itself: vector addition is field 
addition and vector space product is field product. Then every coor-
dinate function V —• F is linear. A linear function V —• F is usually 
called a linear form on V. The set of all linear forms on V is a sub-
space of Fv. Note that the null vector of this space is the zero-valued 
constant function V —• F. It is referred to as the null linear form. 

Dual Basis Theorem. Let V be a finite dimensional vector space over 
a field F. If B is any basis of V, then the coordinate functions with 
respect to B constitute a basis of the space of all linear forms on V. 

Proof. Let / be any linear form. For every v £ V we have 

/(^) = /(x>"( w )-") = E/(")-C«(Y) 
\ueB J u£B 

This shows that B* = {cu : «G B} generates all linear forms in Fv. 
To show the independence of the set B*, assume that for some family 
( k u : u £ B) of scalars, the function 

^ ] ku •Cu 
ueB 

is constant zero. For every w £ fi we have 

0 = ] T ku • cu(w) = k w • cw(w) + ^ k u - cu(w) 
u£B ufw 

and since cu(w) is zero for u fi w, 

0 = kw- cw(w) = kw-1 = kw • 

An important consequence of the Coordinatization Theorem is 
that any two spaces over the same field that have the same dimen-
sion are isomorphic. In particular any n-dimensional vector space 
V (n positive integer) over a field F is isomorphic to the space 
F [ 1 , " ] : the isomorphism is established by taking any bijection / from 

= {!,...,«} to a basis B of V and associating to every vector 
x £ F[X/l] the vector 

i'€[Ml 
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in V. Since isomorphism implies equipotence, V has (Card F)n ele-
ments. 

Application to Finite Fields. Let E be any finite field. The addi-
tive subgroup F of E generated by l£ is easily seen to be closed 
also under the field's product operation. (Use distributivity.) F is a 
subring of E, isomorphic to a quotient ring of Z. Since every sub-
ring of E is entire, F must be isomorphic to Z/pi for some prime 
number p. Thus F is a subfield of E and it has p elements. Con-
sider now £ as a vector space over F (the vector space product is 
the field product in E). As such, E has p" elements, where n is the 
dimension of E. Thus the number of elements of any finite field is a 
prime power. (Indeed for any field extension E : F, E can be con-
sidered as a vector space over F. This has far-reaching consequences 
in Galois theory.) 

Convention. Let F be any field and n a positive integer. Through-
out this chapter we shall reserve the short notation F" for the vector 
space F' 1 '" ' (as opposed to its original use to denote the set of func-
tions from the ordinal n to F). A typical vector 

(v(i):ie[l,n]) 

in F" shall also be written (v\,...,v„) like an n-tuple. 
The inner product (or dot product) of any two vectors v,w £ Fn is 

defined as the element 

E «(')• w(0 

of the field F, and it is denoted by v • w. We have 

v • w = wv (commutativity) 

and if u is any third vector in F", then 

u»(v + w) = (u»v) + (u»w) (distributivity) 

Two vectors are called orthogonal if their dot product is zero. This 
concept is of pervasive importance in geometry and physics: the 
reader will appreciate how natural it is by taking R2 as a model for 
a flat physical surface and by using a sheet of paper to represent 
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FIGURE 6.1 Orthogonality. 

vectors in R2 as in Figure 6.1. Of course for any field F, (x,y) and 
(y,-x) are always orthogonal in F2. 

Theorem of Pythagoras. Let F be any field. If v,w e Fn are orthog-
onal and u = v + w, then vv + w»w = u»u. 

Proof. By distributivity 

(v + w) · (v + w) = (v · v) + (w · w) + (v · w) + (w · v) D 

Let m and n be two natural numbers. An m x n matrix over a 
field F is a family 

a = (α,·;· : 1 < i < m, 1 < j < n) 

of elements of F indexed by the set of couples of integers (/',;') such 
that \ < i < m, I < j < n. The field element a,j is called the matrix's 
entry at position i,j (or in row i, column j). For each fixed /, 

(«i; : 1 < j < n) 
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is called the ith row vector of a (it is a vector in F") and it is denoted 

by a~\. For each fixed j , 

(a,j : 1 < i < m) 

belongs to Fm\ it is called the y'th column vector and it is denoted 
by C[yj. This terminology corresponds to the usual tabular represen-
tation of matrices. For example, the 3 x 4 matrix a over Q given by 
fl,-y = i - j is represented as follows: 

/ 0 - 1 - 2 - 3 \ 

1 0 - 1 - 2 

\ 2 1 0 - 1 / 

We have here T2 = (1 ,0 , -1 , -2) and a [ 2 ] = (-1,0,1). 
For every m x n matrix a and x € Fn, consider the family of dot 

products 

(a,- • x : 1 < / < m) 

Clearly this is an element of Fm. It is routine to verify that the map-
ping ha : Fn Fm given by 

ha(x) = («,•• x : 1 < i < m) 

is linear. Do we get every linear map h : Fn —• Fm this way? Indeed 
we do: let a be the m x n matrix whose jth column is 

h(6jk :l<k<n) 

where <5y* is 0 or 1 according to whether k f- j or k = We have 
h = ha. Also 

ha = hb implies a = b 

for the y'th column vector of a cannot be anything else but 

ha(6jk : 1 < k < n) 

and the y'th column vector of b is 

hb(6jk :l<k<n) 
Thus the map associating to each mxn matrix a over F the linear 
function ha \ F" -» Fm is a bijection. (It has many other interesting 
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properties!) The matrix a and the linear function ha are said to cor-
respond to each other. 

The theory of systems of linear equations can be developed in the 
language of matrices and corresponding linear functions. What are, 
for example, the real numbers u,y,z such that 

These are obviously given by the vectors (u,y,z) e R3 such that 

for the linear map ha : R3 -> R2 corresponding to the matrix 

The general question is then formulated as follows: given a n m x n 
matrix a over a field F and its corresponding linear map ha : F" -> 
Fm and given a vector w e Fm, what are the vectors JC in Fn such 
that 

It may happen that there are several solution vectors x, or that none 
exists, or that there is a unique solution. Trivial examples are given 
over the field Q, for m = n = 1, by the l x l matrices whose sole 
entry is 0 or 1, and the vector w e Q1 where w(l) is 0 or 1: please 
verify all four combinations. In general, the existence of a solution 
means that 

In this case let J C 0 be any solution, ha(x0) = w. The complete set of all 
solutions is 

This is the coset of Ksrha that contains the vector jcr> In the special 
case of m = n (square matrices) the Linear Map Dimension Theo-
rem implies that for any mx m matrix a the following conditions are 
equivalent: 

(i) whatever is the choice of w g Fm, ha(x) = w has at least one 
solution x G Fm, 

5u + 2y - z = 3 

u/3 - y/2 = 4 

ha(u,y,z) = (3,4) 

ha(x) = w 

w £ Im ha 

{ J C O + v : v £ Ker/ifl} 
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(i) whatever is the choice of w £ Fm, ha(x) = w has at most one 
solution JC, 

(iii) for the null vector 0 £ Fm, ha(x) = 0 has only the obvious so-
lution x = 0, 

(iv) ha £ Aut Fm. 

In the case where m < n ("more unknowns than equations") the 
Linear Map Dimension Theorem implies that ha : F" —• Fm cannot 
be injective, whether it is surjective or not. / / m < n, then for any 
w £ Fm either ha(x) = w has no solution x or it has several distinct 
solutions. 

Finally in the case m > n ("more equations than unknowns") 
ha : Fn —* Fm cannot be surjective, whether it is injective or not. 
If m> n, then for some w £ Fm there is no solution x £ F" satisfying 
ha{x) = w. 

Several algorithmic procedures are known to solve systems of lin-
ear equations. The one we shall outline here is usually referred to 
as Gaussian elimination. It consists of reducing the problem of find-
ing the solution vectors x £ F" of the system ha(x) = w to a similar 
problem for a simpler matrix b . First note that if all the rc-column 
vectors of a are null vectors, then ha(x) = w has a solution if 
and only if w is a null vector, and in this case every x £ F" is a sol-
ution of the system. If a has / > 1 nonnull column vectors, then 

take any nonzero entry a,y. For each row vector a*, k fi i, consider 
the vector 

bk = Ok- (akj/<*ij)-ai 

and the scalar 

Zk = wk- (akj/aij)-wi 

Form the (m - 1) x n matrix b whose row vectors are 

b\,...,bi-i,bi+i,...,bm 

and form the vector 

z = (zi , . . . ,z ,_i ,z,+i , . . . ,z m ) £ Fm 1 

Then x £ F" is a solution of ha(x) = w if and only if 

JC is a solution of «i(x) = z and a,• • x = w, 
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What did we gain? The matrix b has at most t - 1 nonnull column 
vectors because 

(i) if the /th column of a is null, then so is the /th column of b, 
1 < / <n, 

(ii) the y'th column of a is nonnull, but the y'th column of b is 

The nullity of the y'th column of b means in particular that in every 
solution x of hb(x) = z w e can replace XJ by any other scalar x'f. the 
vector x' so obtained is again a solution of hb(x') = z. On the other 
hand, a, • * = w, means that only the scalar 

will do in such a replacement: every solution of ha(x) = w is de-
rived from some solution of hb(x) = z, and every solution of the 
latter simpler system determines a solution of ha{x) = w. Now if b 
has only null columns (in particular it may be the empty matrix), 
then the solutions of hb(x) = z are obvious; otherwise we repeat the 
elimination process for a nonnull column of b. The reader is urged 
to write a computer program that for every input matrix a and vector 
w over the field Q either produces a solution vector x of the linear 
system ha(x) = w or determines its unsolvability. 

EXERCISES 

1. Show that every finite field F has infinitely many different simple 
algebraic extensions E : F. Is the extension field E finite in every 
such case? 

2. Design a program to perform the following tasks in the vector 
spaces Q" and ln

p: 

(a) Decide if a given finite set of vectors is independent. 

(b) Express any given vector as a linear combination in a given 
basis. 

(c) Find a basis containing a given independent set. 

null. 
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(d) Given a finite set of vectors M and an independent I CM, 
find a maximal independent set G with I CG C M. 

3. Verify that if V,W are vector spaces over the same field, B a 
basis of V and / : B any map, then there is a unique linear 
h :V —*W extending / . For the cases where V = W is Q" or l"p, 
write a program to compute the matrix of h from any given B 
and / . 

4. (a) Let F be a field, n a positive integer. If a and b are n x n 
square matrices with ha and hb as corresponding endomor-
phisms Fn —• F n , then define a • 6 as the matrix correspond-
ing to haohb. Show that this defines a monoid structure on 
the set of n x n matrices over F. 

(b) For F = Q or Z p , write a program to compute matrix prod-
ucts as defined above. 

5. Show that h : R2 -»• C given by h(x,y) = x + yi is a vector space 
isomorphism (vector spaces over the real field R). For z £ C what 
can you say about the inner product h~l{z)*h~l(z)7 

6. What simple connections can you see between linear polynomials, 
linear maps, and subspaces of dimension one? 

3. AFFINE AND PROJECTIVE GEOMETRY 

By a geometry we mean an inclusion-ordered closure system. The ge-
ometry of subspaces of a vector space V is called projective geometry 
on V: the term "projective" will be justified later. The set of cosets of 
the various subspaces, viewed as additive subgroups of V, together 
with the empty set 0, constitutes another geometry, called the affine 
geometry of V. Thus the affine geometry includes the projective ge-
ometry. We shall be interested here mainly in these two kinds of 
geometries. Our all too general notion of geometry is not universally 
standard, but it is a convenient common denominator for the partic-
ular geometries that we wish to study. In any geometry (Q,C) the 
closed sets (members of Q) are called flats, the smallest flat n£ is 
called the null flat (it may or may not be empty), the flats covering 
the null flat in the order (G,C) are called points, any flat covering a 
point is called a line, and any flat covering a line is called a plane. 
(This terminology finds its justification in the affine geometry of R3.) 
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The largest flat in any geometry (G,Q) is u£, it is called space, 
and any flat covered by it is called a hyperplane. For any three-
dimensional vector space V, planes and hyperplanes coincide in the 
affine geometry of V. This coincidence fails in higher dimensions. 
Observe that every singleton subset of a vector space V is a point 
of the affine geometry, but the points of the projective geometry on 
V are the one-dimensional subspaces of V, i.e., the affine lines con-
taining the null vector. As for the affine planes containing the null 
vector, these are precisely the projective lines. Generally, an affine 
flat belongs to the projective geometry if and only if it contains the 
null vector 0. Note that the null flat of the affine geometry is the 
empty set 0 , while the null flat of the projective geometry is the 
singleton {0}. The projective geometry on V is denoted by ProK. 

Power Set Examples. Let 5 be any set. Consider V(S) as a vec-
tor space over Z2. Then the points of the projective geometry on 
V(S) are the pairs {0,X} with 0 C X C S, while the lines are the 
sets 

{0,X,Y,Z} 

where X,Y,Z are any three distinct nonempty subsets of S and 
X + Y = Z. As for the affine geometry on V{S), its points are the 
singletons {X} with XCS, while the lines are the pairs {X,Y} 
where X and Y are any two distinct subsets of S. The affine planes 
are of the form 

{A,B,C,D} 

where A,B,C,D are distinct subsets of 5 and A + B = C + D. How 
would you describe affine hyperplanes? 

Two geometries 5 on a set S and H o n a set T are called simi-
lar if the orders (G,C) and (7i,C) are isomorphic. Note that this 
does not require the equipotence of S = UQ and T = U7i. (Counter-
example?) If I C H is any geometry contained in H and h is 
an order isomorphism from (G,C) to (I,C), then h is called an em-
bedding of (£,C) into (7i,C). In this case (£,C) and (X,C) are sim-
ilar. 

In a vector space V, for every v £ V, the set A V of affine flats 
containing v constitutes a geometry on V. For the null vector 6, AQ 
coincides with the projective geometry on V, and every other A V is 
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indeed similar to AQ: associate to every flat U £ AQ the coset of U 
containing v. Thus the affine geometry includes many similar copies 
of the projective geometry. 

We know that the additive group of any vector space V acts on 
V itself by translation, and it also acts on V(V) by translation. For 
every affine flat A and vector v the translate 

v + A = {v + x : x £ A} 

is again an affine flat. If U is a subspace, then v + U is the coset of 
U containing v. The nonempty affine flats are precisely the trans-
lates of the various subspaces of V. The translates of any given sub-
space form a partition of V. The additive group of V acts on the 
set A C V(V) of all affine flats by translation, and A is partitioned 
into translation orbits. Two flats in the same orbit are called parallel. 
Since the flats parallel to any given nonempty flat A are the cosets 
of some subspace U, these parallel flats partition V: every v £ V is 
contained in a unique flat parallel to A. For V = R2 and A any line, 
this is a widely known result in plane geometry. 

Parallelism in a Power Set. Consider again the affine geometry of 
the vector space V(S) over 1%, where S is any set. Two distinct affine 
lines {A,B} and {X,Y} are parallel if and only if A + X = B + Y, 
i.e., precisely when their union is a plane. 

Proposition 2 If A is any flat and H is any hyperplane of an affine 
geometry, then either A is contained in some hyperplane parallel to H 
or A intersects all hyperplanes parallel to H. 

Proof. Suppose first that A and H are subspaces of the vector space 
V underlying the affine geometry. Then either ACHor the sub-
space generated by A U H is the full space V. In the latter case every 
t £ V can be written as 

t = u + w with some u £ A, w G H 

If v is any element of a hyperplane H' parallel to H, i.e., of a trans-
late t + H, then 

v = t + z for some z £ H 

and we have 
V = u + w + z 
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with u G A, w e H. Clearly u and v are congruent modulo H, and 
thus u £• AC\H'. This shows that if A g H, then A intersects every 
hyperplane H' parallel to H. 

In the general case when A and H are not necessarily subspaces 
of V, take subspaces A0 and H0 parallel to A and H, respectively. 
If A0 C H0, then A is contained in some parallel translate of H0 

and therefore of H. If A0 g //<>, then A0 intersects every hyperplane 
parallel to H0, i.e., to H, and the parallel translate A must then also 
intersect every such hyperplane. • 

Corollary. Any two nonparallel hyperplanes of an affine geometry in-
tersect. 

In the affine geometry of a finite dimensional vector space V, let 
us now give a precise algebraic meaning to the concept of "projec-
tion." Let Aff V denote the affine geometry of V, and for any flat 
A in Aff V, let Aff A denote the geometry 

V(A)nAffV 

on A: this is obviously a geometry and we call it the affine geometry 
of the flat A. For any two flats A,B in Aff V we denote by AB the 
closure of Al) B in Aff V: this is the smallest flat containing both 
A and B. If A C B, then we say that A lies in B. The dimension of 
a nonempty affine flat A is defined as the dimension of the unique 
subspace A0 of V parallel to A; it is denoted by dim A. The geome-
tries Aff A and Aff A0 are similar. The reader is urged to use inner 
vision to represent what follows, in the special case V = R 3 , and to 
use paper-assisted vision in the case V = R 2 . Affine points and lines 
are well illustrated by points and lines drawn on paper. Let us fix a 
point O in Aff V, and let H be a hyperplane not containing O. If 
L is any affine line containing O, then L g H and either Ln 77 = 0 
or L n H is an affine point. We have L n H = 0 precisely when L 
lies in the hyperplane H0 parallel to H and containing O.li X is 
any affine point not lying in Ho, then OX is an affine line and 

OXnH 

is again an affine point, called the projection of the point X (from O 
to H). In general the projection ofa set SCV\H0 is defined as the 
union of the projections of all the points X contained in S. For any 
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affine flat 

ACV\H0 

the flat OA coincides with the union of all lines OX for points X 
lying in A. The projection of A is 

~OAnH 

For A \$ 0 we have 

dim(CMn//) = dim C M - 1 = dim A 

The projection of 0 is 0. The projection of a <i-dimensional flat is a 
d-dimensional flat. The map associating to each flat ACV\HQ its 
projection is surjective to Aff H, but it is generally not injective. 

Let us now consider projections from the origin: O is the singleton 
of the null vector, and H is a hyperplane not containing the null 
vector. In this case two flats 

A,BCV\H0 

have the same projection P from O to H if and only if they generate 
the same subspace of V. This subspace then coincides with 

OA = OB = 0~P 

These considerations lead us to consider the projective completion 
map 7r from Aff H to the projective geometry ?xoV on V, given by 

n(A) = OA 

It is an embedding of Aff H into Pro V because 

A = CMn H for every A £ Aff H 

It is not surjective onto VxoV: its image is 

?xoV\?xoH0 

The members of the subspace projective geometry ?roH0 are called 
flats at infinity. Every A 6 Aff H is parallel in Aff V to a unique flat 
at infinity, called the direction of A. Any two (or more) parallel flats 
in Aff H have intersecting projective completions: the intersection is 
their common direction, a flat at infinity. 
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FIGURE 6.2 The Fano piane. 

In particular, let L and D be two distinct parallel lines of Äff H. 
The intersection of their projective completions is 

ÖLnOD 

This is a line in Affi·' but a point (not a line) in ProK, and in 
?τοΗ0 as well, because it covers the nonempty null flat in these 
projective geometries. The familiar optical illusion that parallel lines 
meet at a point at infinity has now a precise mathematical meaning, 
and this has nothing to do with far-away distances. 

Points at infinity have nothing to do with infinite cardinalities ei-
ther. Consider the three-dimensional vector space V =l\ over the 
two-element field li. This space is isomorphic to the space V(3) 
over Z2 and it has eight elements. For each vector v, v + v is the 
null vector 

0 = (0,0,0) 
and thus {0,v} is a subspace of dimension 1 for each v ψ Ô: there 
are seven of these. Each two-dimensional subspace consists of the 
vectors orthogonal to a fixed v £ Ö. There are seven of these sub-
spaces, each consisting of 0 plus three nonnull vectors: the reader is 
urged to identify these in the ideogram of Figure 6.2. Proz| is usu-
ally called the Fano projective plane; it has seven points and seven 
lines. Verify that the parallel affine lines 

100, 001 and 111, 010 

have a common direction, generated by 101. 
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EXERCISES 

1. Prove a Helly-type theorem for the affine closure system of a fi-
nite dimensional vector space V over any field F. For F = Q or 
l p , design a computer program that for any finite set of affine 
flats locates a common point if the flats intersect. Show that every 
flat in Aff V is of the form h~1(y) where y G V and h : V -> V 
is linear. [To represent the data, use the fact that a flat h~x(y) is 
fully determined by y and the matrix of h.] 

2. Let V be a finite dimensional vector space over a field F. Show 
that A C V is an affine flat if and only if every linear combination 

aQVQ + --- + <xn_ivn_x 

of vectors v,- G A with ao + • • • + a„ = 1 belongs to A. 

3. Verify that Pro V is an upper section of (Aff V,C). 

4. Verify that the inclusion-ordered set of flats of any geometry is 
a complete lattice. Characterize lub's in projective and affine ge-
ometries. 

5. Show that if V is any vector space, then the smallest geometry 
on V containing all hyperplanes of Aff V is the whole of Aff V. 
What about ProK? 

6. Show that two distinct affine lines are parallel if and only if their 
union generates an affine plane. 

7. Let V be a three-dimensional vector space over a field with n 
elements. In ProK, show that 

(a) any two distinct points lie on a unique common line, 

(b) any two distinct lines contain a unique common point, 

(c) V is a plane, 

(d) every line contains n + 1 points, and every point is contained 
in n + 1 lines, 

(e) there are nz + n + 1 points and the same cardinal number of 
lines. 
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4. HYPERPLANES IN LINEAR PROGRAMMING 

Consider the vector space R" over the real numbers, where n is a 
fixed positive integer. Let (/, : / e / ) be a finite nonempty family of 
nonnull linear forms R" —» R, referred to as constraint functions, and 
let (bi : i e / ) be a family of real numbers indexed by the same set I. 
Let g be a nonnull linear form R" —• R; it shall be called the objec-
tive function. Linear programming is the theory and computational 
practice of finding vectors x = ( J C I , . . . , J C „ ) in R" subject to the con-
straints 

fi{x) < bj for all i e / 
and with the value g(x) as large as possible. In one typical indus-
trial application each fc, represents the maximum available quantity 
of some limited resource, such as a particular raw material. Each 
J C I , . . . , J C , I represents a quantified production level of a particular 
product that incorporates or otherwise consumes the various re-
sources considered. If the amount of the j'th resource used by the 
yth product is a, ;, then 

aixxx +--- + ainx„ = f(x) 

cannot exceed bi. Similarly, if the profit contributed by each unit of 
the y'th product is c ; , then the aggregate profit 

cxxi + ••• +c„xn =g(x) 

is to be maximized. A variety of seemingly different logistical prob-
lems can be formulated in the language of linear programming. Here 
let us just note that 

minimization of a cost objective function g can be modeled by 
maximizing —g, 

minimum production quotas and the "natural" nonnegativity of 
quantities to be produced are modeled by -Xj < -quota and 
-XJ < 0, 

generally it is unnecessary to work with constraints of the form 
fi(x) > bj for these are equivalent to - / / ( J C ) < -bj. 

Now back to mathematics. Formally a linear programming problem 
(LPproblem) is defined as the couple (g,C) where 

C = {(fi,bi):iel} 
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Each (fi,bi) is called a constraint. A feasible solution is a vector x in 
R" with 

f(x) < bi for all i G / 

and the LP problem is called feasible if such an x exists. If for every 
other feasible solution x' we have 

8(*')<g(x) 

then x is called an optimal solution. For every i G / the set 

Hi = { ^ R " : fi(x) = bi} 

is a hyperplane in Aff R"—it is called the hyperplane associated with 
the constraint (fi,bi). The latter is a tight constraint for a feasible 
solution JC if JC G Hi, and Hi is then called a constraining hyperplane 
of x. A feasible solution JC that has a tight constraint is called a 
constrained solution. For any J CI, the intersection 

a * 
i'e/ 

is obviously an affine flat; if it is not void, then it is called a boundary 
flat. For each constrained solution JC, there is a smallest boundary 
flat containing x, namely the intersection of all of its constraining 
hyperplanes: call this the minimal boundary flat of JC. 

We shall need the auxiliary notion of ordered lines. If L is any 
line in Aff R" and / a linear form R" —> R that is not constant on L, 
then an order < / is defined on L by 

x <f y if and only if f(x)<f(y) 

The restriction f\L is an order isomorphism from ( £ , < / ) to R. If 
g is another such linear form, then < g coincides either with <y or 
with the dual of <y. These orders on L are called natural orderings. 
If we fix any two distinct vectors x,y G L, take any basis of R" that 
includes 

u — y — x 

and let / be the nth coordinate function, then 

<y and <_f 

are the only two natural, mutually dual orders on L. We have x <f y 
if f(u) is positive. 
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Let x be any feasible solution with the largest possible number 
of tight constraints. Let B be the minimal boundary flat of JC if * is 
constrained; otherwise let B = R". Obviously if a constraint (/,,/>,) is 
tight for JC, then /, is constant on B. We claim that /, is constant on 
B for all nontight constraints as well. Nonconstancy of such an /, on 
B means that the hyperplane //,• associated with (/},&,•) intersects B. 
Let 5 C / be the set of indices i such that (f, &,•) is not tight for JC but 
fi is nonconstant on B. We shall derive a contradiction from S fi 0 . 
Take any j G S and take an element z of Hj n B. Let L be the line 
containing JC and z. Of course LCB. Take one natural ordering < 
of L. The set 

P = {i G 5 : Hi; n L fi 0 } 

is not empty. For every / G P, there is a y, G L with 

and the set 
{/ G L : / , (0 < 6/} 

is either the lower section («— ,y,] in (L, <) or the upper section 
[#,-») . Let 

y = {yi -i£P} 

If [JC,—>)n Y fi 0 , then let y be its minimum in the chosen order on 
L, else let y be the maximum of (<— ,jc]n V. Every vector in the in-
terval of (L, <) generated by {jc,y} is a feasible solution, and y has 
all the tight constraints that JC has, plus at least one more: contradic-
tion with the definition of x. As claimed, each nontight (and tight) 
constraint function f must be constant on B. Since x G B is feasible, 
all vectors in B are feasible. Of course B is the minimal boundary 
flat of all of its elements. 

Suppose in addition that x is an optimal solution. We claim that 
the objective function g too is constant on the minimal boundary flat 
B of JC . Consider the "optimal hyperplane" 

G = {t£Rn :g(t) = g(x)} 

If B £ G, then B would intersect every hyperplane parallel to G, i.e., 
l G B would exist with arbitrarily high values g(t). All t G B being 
feasible, this contradicts the optimality of x. Thus B CG and g is 
constant with value g(jc) on B, i.e., all vectors in B are optimal: 
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If an LP problem has a feasible solution, then every vector in some 
minimal boundary flat is a feasible solution. If it has an optimal so-
lution then every vector in some minimal boundary flat is an optimal 
solution. 

This means that since boundary flats can be described by simul-
taneous linear equations f(x) = bi, where the are some of 
the constraints, the feasibility of an LP problem can be determined 
by Gaussian elimination. Furthermore, if we know that an optimal 
solution exists, one can be found by taking an arbitrary vector in 
each minimal boundary flat: the one with the highest objective func-
tion value is an optimal solution. But how can we detect a situation 
where feasible solutions exist but none is optimal? 

Either the objective function g is constant on each minimal bound-
ary flat or some minimal boundary flat intersects every class of the 
equivalence induced on R" by g. (These classes are parallel hyper-
planes.) Whichever is the case, take an arbitrary representative vec-
tor in each minimal boundary flat: we have a finite set S of repre-
sentatives. Take a real number b greater than all g{x), x £ 5. Add to 
the original LP problem the new constraint {-g,-b)\ this new LP 
problem is feasible if and only if the original one is feasible without 
optimal solution. 

Identifying all minimal boundary flats and a representative in each 
by Gaussian elimination is a rather obvious computational proce-
dure, sure but rather slow. Better procedures have been known ever 
since linear programming was introduced to model problems of mil-
itary logistics at the end of World War II, and progress is still be-
ing made both in theoretical understanding and computational effi-
ciency. However, the reader should realize that some very basic prin-
ciples of affine geometry are responsible for the fundamental fact 
that the solution of LP problems is amenable to algorithmic compu-
tation. 

EXERCISES 

1. Verify that the set of feasible solutions of an LP problem (g,(/iA) 
: i £ I) is convex in R". Show that if for every J CI with Card/ < 
n + 1 the LP problem (g,(/,A) : i £ J) has a feasible solution, 
then the original problem has a feasible solution as well. 
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2. On a field F let < be a linear order compatible with the addi-
tive group structure of F and such that the set of x > 0 forms a 
multiplicative subgroup of F*. Develop a rudimentary theory of 
linear programming without real numbers. For F = Q, design a 
computer program to solve LP problems. 

3. Formulate PERT/CPM in LP language. 

4. Can you describe some connection between convexity in R" and 
natural order convexity on affine lines? 

5. TIME AND SPEED IN SPECIAL RELATIVITY 

Here is an axiomatic view of the where-and-when physics of the Ein-
stein railroad. 

The spacetime universe is defined as the set (vector space) R2: its 
elements are called worldpoints, or events. Choose any positive real 
number c: it may be called lightspeed. In R2 consider the two one-
dimensional subspaces L and L~ generated respectively by (c,l) and 
( -c , l ) : any line of the affine geometry Aff R2 parallel to either one 
of L or IT is called a photon. We define optical causality as the 
binary relation O on the spacetime universe in which (x,t)0(x',t') 
means that / < /' and some photon contains both worldpoints (JC, t) 
and (x',t'). Optical causality is reflexive, antisymmetric, and acyclic, 
but it is not transitive. However, its restriction to any line D of 
Aff R2 is an order: a chain coinciding with one of the two natural 
orders of D if D is a photon and an antichain otherwise. Indeed 
a subset D CR2 is a photon if and only if D is a maximal set of 
worldpoints on which optical causality is a total order. 

Causality is the order relation C defined on the spacetime uni-
verse as the transitive closure of optical causality. Material causality 
is the binary relation 

M = (C\0)U1 

where / is the identity relation on R2. With respect to the basis 

{(c, l ) , (-c , l )} 

of R2, every worldpoint w has a unique expression 

w = a-(c,l) + 0-(-cA) 
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In the order C the section [(00),->) consists of those worldpoints w 
whose coefficients a,0 are nonnegative. For u,v e R 2 , 

uCv if and only if v - u 6 [(00), -•) 

Let now S be the set of worldpoints consisting of the origin (00) and 
of those w with both coefficients a,0 positive. It is easy to see that 

(00)Mv if and only if v 6 S 

and in general 

uMv if and only if v - u G S 

It follows that material causality is an order relation. 
Every photon is an order-convex chain in the causality order C. 

Indeed a subset D C R 2 is a photon if and only if D is a maximal 
order-convex chain in the causality order. For any two distinct events 
u,v we have uMv if and only if uCv and the segment [u,v] is not a 
chain in the causality order C. Thus material causality can be defined 
directly from the causality order C, without explicit reference to op-
tical causality. Finally, optical causality can also be derived from ma-
terial causality: for u,v distinct, uOv holds if and only if «||i> in M 
but 

[u,^)D[v,^)\{v} 

where the upper sections refer to the material causality order M. 
The reader can now conclude that the three relations 0,C, and M 
have the same automorphisms, 

AutO = AutC = AutM 

Any bijection r : R 2 —* R 2 is called a reference system. For any 
worldpoint (event) w, if 

r(w) = (x,t) 

then w is said to have, or to occur at, location x and time l in the 
reference system r. The trace of the reference system r is the set of 
worldpoints having location 0 in r. Throughout this section we shall 
use T to denote the set 

{ ( 0 , 0 : * G R } 

The trace of any reference system r is thus the set r"l[T]. 
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An inertial line is a line E in AffR2 such that not all (x,t) in E 
have the same value /. In this case for every t E R there is a unique 
x(t) 6 R such that 

(x(0,0€£ 
The difference x(l) - x(0) is called the slope of E. For real numbers 
t\ < t2, the quotient [x(t2) - x(ti)]/(t2 - tx) equals the slope. Pho-
tons are precisely the inertial lines with slope c or -c. Given a refer-
ence system r, a subset D of R2 whose image r[D] is an inertial line 
is called an inertial motion in r. The slope of r[D] is then called the 
velocity of D in r. The absolute value of the velocity is called speed. 
The trace of any reference system r is an inertial motion of speed 
and velocity 0 in the system r itself. 

For any given u E R2 and positive real numbers a,b we can define 
a map r : R2 —• R2 as follows. Recall that every worldpoint w has a 
unique expression 

w = a-{c,l) + p-(-c,\) 

with a,0 E R. Define the map r by 

r(w) = u + a - a- (c,l) + h • 0- ( - c , 1) 

Obviously r is a reference system and it is an automorphism of each 
of the relations O, C, and M. We call r an optical reference system. 
Observe that a subset D of R2 is an affine line if and only if r[D] 
is one. In particular, the trace of r is an affine line. Also, in any 
optical reference system r, photons are precisely the inertial motions 
of speed c. 

Each affine line D in R2 is either a chain in the material causality 
order M or it is a material causality antichain: it is a chain if and 
only if it is an inertial line with slope strictly between —c and c. In 
this case the material causality order coincides with one of the two 
natural orders on D. 

Proposition 3 For any affine line D in R2 the following conditions 
are equivalent: 

(i) D is a chain in the order of material causality, 
(ii) D is the trace of some optical reference system, 

(iii) in some optical reference system, D is an inertial motion of 
speed less than c, 
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(iv) in all optical reference systems, D is an inertial motion of speed 
less than c. 

Proof. The equivalence of (i), (ii), and (iv) is clear, in view of the 
foregoing remarks. 

Condition (ii) means that for some optical reference system r, 

r[D] = {(0,t):teR} 

In this case obviously D is an inertial motion of velocity 0 in r, im-
plying (iii). 

Assume (i). We shall prove (ii). Choose two distinct elements u,v 
of D such that uMv. We have (0,0)M(v - u) and 

v - u = a • (c, 1) + b • ( -c , 1) 

for some positive real numbers a,b. Let p : R2 —• R2 be the map 
defined for each worldpoint 

w = a-(c,\) + 0-(-c,l) 

by 

p(w) = (a/a)-(c,l) + (/3/b)-(-c,l) 

Note that p is linear. Let r : R2 —• R2 be defined by 

r(w) = -p(u) + p(w) 

Then r is an optical reference system and its trace is D. • 

If a line D satisfies the conditions of Proposition 3, then D is 
called a material motion. See Figure 6.3. (Here the zero-slope line 
T is drawn vertically.) Of course a material motion D may have 
different velocities in different optical reference systems. 

Optical reference systems form a permutation group on R2 that 
we take the liberty of calling the Lorentz group C2. This group C2 is 
a subgroup of AutO. Within C2 those reference systems whose trace 
is the line 

T = {(0,t) : t £ R} 

i.e., r[T] = T, constitute a subgroup ST of C2. The reference systems 
r in ST have the rare property that (c,l) and ( - c , l ) occur at the 
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FIGURE 6.3 Photons, causalities, and material motion. 

same time in r. For every / £ R, the time shift st : R 2 — » R 2 given by 

s,(w) = (0,/)+ »v 

is in ST- For every positive real q, the dilatation dq given by 

dq(w) = q-w 

is in ST- Note that r,s £ £ 2 have the same trace if and only if 

rs'1 e ST 

Thus there are many different optical reference systems that have 
the same trace: for every r e £ 2 and g £ ST, the composition gr and 
r have the same trace. 

Let r £ £ 2 . Then h : R 2 - • R 2 , defined by 

h(w) = r(w) - r(0,0) for all w £ R 2 
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is linear, h £ C2, and 

h(c, 1) = (ca,a) and h(-c, 1) = (-cb,b) 

for some positive real numbers a,b. If w is the 2 x 2 matrix 

(a + b)/2 c(a-b)/2\ 

(a - b)/2c (a + b)/2 ) 

and if hm is the corresponding linear map R2 —• R2, then it is easy to 
verify that 

hm(c, 1) = h(c,l) and hm(-c, 1) = h(-c, 1) 

and consequently /zm = n. (The reader can probably find out how m 
was actually discovered.) Let us abbreviate 

(a + b)/2 = k, (a-b)/2 = l 

The matrix m can be rewritten as 

\l/c k) 

Observe that k > 0 and k2 > I2. It is then easy to verify that 

n(/c/( / 2 -A: 2 ) ,A:/(A: 2 - / 2 ) ) = (0,l) 

which implies that the common slope of / i _ 1 [T] and r - 1 [ T ] is 

[lc/(l2-k2)]/[k/(k2-l2)] = -lc/k 

Let p denote this slope. 
Consider now any material motion D and let 6 be its slope. The 

subspace E of R2 generated by (6,1) is parallel to D, and the images 

h[E], h[D], r[E], r[D) 

are all parallel. Their common slope is easily determined from the 
vector 

h{6,1) £ h[E] 

This vector is obviously 

(k6 + lc,l6/c + k) = (k(6 - p),k- k6p/cl) 

and thus the common slope of h[E], r[D], etc., is (6 - p)/(l - 6p/c2): 
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Proposition 4 Let r be an optical reference system and D a material 
motion with slope 6. If the trace of r has slope p, then the image line 
r[D] has slope 

(6-p)/(l-6p/c2) 

Let now r and s be two optical reference systems and D any ma-
terial motion. Then rs~l e £ 2 and s[D] is an inertial line. The slope 
of the trace of r s - 1 is by definition the slope of 

(sr-')[T} = s[rl[T)] 

It coincides with the velocity of the trace of r in the system s: let 
us write vrs to denote this relative velocity. The slope of s[D] is by 
definition the velocity of D in the system s; let us denote it by vs. 
Proposition 4, applied to the optical reference system rs~x and the 
inertial line s[D], says that 

(r^MZ)]] = r[D] 
has slope 

(Vs - Vrs)/(1 ~ VsVrs/c2) 

But this slope is the velocity of D in r—let us denote it by vr: 

Velocity Composition Theorem. Let r and s be two optical reference 
systems and D any material motion. If the velocities of D in r and s 
are vr and vs, respectively, and if vrs is the velocity of the trace of r in 
the system s, then 

Vr = (Vs - Vrs)/{1 - VsVrs/c
2) 

Experimental Remark. If standing by the rail track you see a train 
D going at vs = 100 km/hr and you see another, slow train following 
it at Vrs = 60 km/hr, then the formula shows that a physicist on the 
slow train will measure the velocity vr of D as somewhat more than 
40 km/hr. Accurate instruments to confirm such facts are only avail-
able since late in the last century, and to most poorly instrumented 
passengers of the slow train, the relative velocity of the fast train still 
seems to be not more than but equal to 40 km/hr. To them the Earth 
seems to be flat too, and these false perceptions cause admittedly 
very little inconvenience. 
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EXERCISES 

1. Is £ 2 a proper subgroup of AutO? 

2. What can you say about the structure of the Lorentz group? 

3. Can you develop a rudimentary theory of velocities without real 
numbers, using Q instead of R? 
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CHAPTER VII 

GRAPHS 

1. TREES AND MEDIAN GRAPHS 

Let V be any set and let E be any set of two-element subsets of 
V. Then G = (V,E) is called a graph. The elements of V are called 
vertices, those of E edges. Any two vertices forming an edge are 
called adjacent. 

Example. Let V = {1,2,3,4}, E = {{1,2},{2,3},{3,4},{4,1}}. The 
graph G = (V,E) is "graphically" displayed in Figure 7.1. 

If E consists of all non-singleton pairs of vertices, then (V,E) is 
called a complete graph. If V = 0, then E = 0 and (V,E) is called 
the empty graph. If V is finite, then (V,E) is called a finite graph. 

For any graph the binary adjacency relation R on V is defined by 
x7?y if and only if x and y are adjacent. This is an irreflexive and 
symmetric relation. Every irreflexive and symmetric binary relation 
R on a set V is the adjacency relation of a graph, namely whose 
edges are the pairs {x,y} with xRy. There is some truth to the view 
that the theory of graphs coincides with the theory of binary rela-
tions. 

Paths and cycles were defined for binary relations in Chapter II. 
Corresponding concepts in graph theory are of crucial importance. 
If P is a relation-theoretical path in the adjacency relation of a graph 
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I 

4 3 

FIGURE 7.1 A graph on four vertices with four edges. 

G = (V,E), from vertex a to b, then the edge set 

{U,y}:(x,y)eP} 

is called a path in the graph G from a to b, or simply between a and 
b. Similarly, if C is a cycle in the adjacency relation, then 

{{x,y} : ( x , y ) e C } 

is a cycle in the graph G. 

Historical Comment. A graph-theoretical argument was first used 
by Euler in 1735, in his "Solutio problematis ad geometriam situs 
pertinentis." It was an argument involving paths and cycles. 

The number of edges in a path, or a cycle, is called the length of 
the path, or the cycle. The vertices on the path, or on the cycle, are 
those belonging to the edges of the path, or cycle. If between two 
given vertices a and b a path exists (which is by no means guaran-
teed), then those with the least possible length are called geodesies 
between a and b. The distance of a and b, denoted by d(a,b), is 
then defined as the length of such a geodesic, or 0 if a = 6 . 

A graph is connected if between any two distinct vertices there is 
at least one path. The distance is then always defined, and for any 
a,b,c € V we have the triangle inequality 

d(a,b) + d(b,c) > d(a,c) 

(It is a simple but worthwhile exercise to verify this rigorously, say 
using induction.) The vertex interval between a and c, denoted by 
I(a,c), is the set 

{b £ V : d(a,b) + d(b,c) = d(a,c)} 

We say that K CV is a convex set of vertices if a,c e K implies 
I(a,c)C K. Convex vertex sets constitute an algebraic closure sys-
tem on V. 
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FIGURE 7.2 A graph with two connected components. 

The graph G' = (V',E') is a subgraph of G = (V,E) if 

V' C V and E' C E 

If G' fi G, then G' is a proper subgraph of G. If F ' = ^ , then G' is 
called a spanning subgraph of G. If 

£ ' = {{jt,y} <E £ : x,yeV'} 

then G' is called a /w// or induced subgraph of G (induced by the set 
V). For any graph G, the preorder closure of the adjacency relation 
is an equivalence relation on the set of vertices. The subgraph of 
G induced by each equivalence class is connected, and it is called 
a connected component of G. The graph of Figure 7.2 has two con-
nected components. (As a simple exercise in graphical observation, 
the reader may wish to verify also that this graph has 8 vertices, 9 
edges, 6 + 6 paths of length 2, 6 + 4 paths of length 3, 7 paths of 
length 4, no paths longer than that, 4 cycles, and maximal vertex dis-
tance 2.) 

A connected graph without a cycle is called a tree. A graph of any 
kind without a cycle is called a forest. A graph is a forest if and only 
if its connected components are trees. Let a be any vertex of a graph 
G: the graph G is a tree if and only if for every vertex b fi a there is 
a unique path from a to b. In a tree, a set of vertices is convex if and 
only if it induces a subgraph that is connected, i.e., a subgraph that 
is again a tree. Given any path P in a tree, from a to b, the vertices 
on P are precisely the members of the interval I(a,b). 

Observe that the edges of a graph G = (V,E) are particular vec-
tors in the space V(V) over Z2. The cycles of G are precisely those 
circuits of V(V) that consist of graph edges. Therefore G is a for-
est if and only if its edge set E is linearly independent in the vec-
tor space V(V). In any case, let T(G) be the set of forest sub-
graphs of G. This set is naturally ordered by letting F <H mean, for 
F,H e F(G), that F is a subgraph of H. By the second statement of 
the Basis Equipotence Theorem (Chapter VI) all maximal forests of 
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G have the same cardinal number of edges. Assume now that G is 
connected. A maximal forest F € F(G) is obviously a spanning sub-
graph. Could F fail to be connected? If so, then there are paths in 
G between vertices lying in different connected components of F. 
A shortest possible path of this kind can consist of no more than 
a single edge. By adding this edge to F we would obtain a larger 
forest F', with F as a proper subgraph of F', which is impossible. 
The reader can easily conclude that in any connected graph, maxi-
mal cycle-free subgraphs and spanning tree subgraphs coincide. 

An orientation of a graph G = (V, E) is an irreflexive and anti-
symmetric relation D on V such that 

E = {{x,y} :xDy} 

Orientations that are strongly acyclic are of interest because these 
generate, as covering relations, discrete orders on the vertex set V. 
Of course the covering relation of any order on a set V determines 
a graph on V with edge set 

E = {{x,y} : x is covered by y} 

This graph (V, E) is called the covering graph of the order in ques-
tion. Some graphs cannot arise as covering graphs because they pos-
sess no strongly acyclic orientation at all: consider any graph having 
a cycle of length 3. On the other hand, all orientations of a graph G 
are strongly acyclic if and only if all orientations are acyclic, and this 
is the case if and only if G is a forest. 

Among all the orientations of a tree T = (V,E) let us consider 
those that, as covering relations of a discrete order on V, correspond 
to an order with a minimum u e V. For each vertex u of T there is 
exactly one such orientation Du: we have xDuy for an edge {x,y} if 
and only if 

d(u,x) + 1 = d(u,y) 

(Observe first that no two adjacent vertices of a tree can have the 
same distance from a third vertex.) The orientation Du is referred 
to as a directed tree with basepoint u. The corresponding order (of 
which Du is the covering relation) is called the basepoint order <u. If 
P is any path in T between vertices a and b, then the vertex interval 
I (a, b) consists precisely of the vertices lying on P. Further, I(u,a) 
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FIGURE 7.3 A median graph. 

coincides with the order interval 

[u,a] = (*-,a] in < u 

and I(u,b) is [u,b] = (<— ,b] in this basepoint order. Observe that any 
order segment in < u is a finite chain. It follows that I(u,a)D I(u,b) 
is a finite chain: let m be its maximum. Then m G I(a,b), indeed 

I{u,a)nl(u,b)CiI{a,b) = {m} 

The reader can draw two conclusions from this. First, every base-
point order on a tree is a lower semilattice. Second, if u,a,b are 
any vertices of a tree T, then the vertex intervals I(u,a), I(u,b), and 
I(a,b) have a unique common point m(u,a,b). If T is any connected 
graph, not necessarily a tree, that enjoys this second property, then 
T is called a median graph and m(u,a,b) is called the median of the 
vertices u,a,b. Median graphs that are not trees do exist. For exam-
ple, let (V(S), C) be the lattice of all subsets of any finite set 5. Then 
the covering graph of this lattice is median. For subsets X,Y,Z 
of S, 

m(x,Y,z) = (xnY)u(X nz)u(Ynz) 

Another example is displayed in Figure 7.3. 
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Helly Theorem for Median Graphs. On the vertex set of any median 
graph, the closure system formed by all convex sets has Helly number 
at most 2. 

Proof Thanks to the Lemma for Helly Number 2 (Chapter II) we 
need only to show that in a median graph, if three convex vertex 
sets A,B,C intersect pairwise, then ADBnC f- 0. Let a e BP\C, 
beAOCceAHB. Then 

I(a,b)CC, I(a,c)CB, I(b,c)CA 

Since the intersection of these three vertex intervals is nonvoid and 
contained in A D B n C, this latter intersection cannot be void either. 

• 

EXERCISES 

Develop computer programs to perform the following tasks for finite 
graphs: 

1. Find the connected components. 

2. Find a shortest path between any two distinct vertices of a con-
nected graph. 

3. Construct a spanning tree in a connected graph. 

4. Decide if a given graph is median and, if so, find the median of 
any three vertices. 

5. Decide if a given graph is a forest. 

6. Find a maximum length cycle in a given graph that is not a forest. 

7. Determine if the edges of a given graph can be partitioned into 
disjoint cycles and exhibit such a partition if it exists. 

8. Determine if a given graph is a covering graph (of some order). 

2. GAMES 

Games with two opponents, a finite number of conceivable situa-
tions, alternating (rather than simultaneous) decision making by the 
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players, and a finite number of moves available to each can be quite 
well described by trees. Chess is such a game, and the model can 
be adapted as well to multiplayer chance-dependent games such as 
poker. Games of speculative gain, pathfinding, and strategic con-
quest have been played for ages in various social settings. Their 
symbolism has fascinated even the true professionals of military and 
economic pursuit, oriental kings, and gold-diggers of the West. The 
twentieth century mathematical theory of games too was developed 
in a military and economic context—witness the book The Theory of 
Games and Economic Behaviour by Morgenstern and von Neumann. 
Here we limit our exposition to what is usually called deterministic 
two-person zero-sum games in extensive form. 

Let T = (V,E) be a tree on a finite set of vertices, called posi-
tions, and let D be a basepoint orientation of T, where the base-
point u is called initial position. The couples (x,y) in D are called 
moves. The maximal vertices of the basepoint order are called ter-
minal positions. Let V\ and V2 be two complementary subsets of V, 
Vx u V2 = V, Vx n V2 = 0. For i = 1,2, let 

Di = {(x,y) G D : x G Vt} 

Clearly D\ U D2 = D, D\(lD2 = 0. Positions in K, and moves in Di 
are said to belong to player i. Let R be a linearly ordered set, called 
the set of outcomes. (For example, the outcomes may be real num-
bers with the standard order, each such outcome representing a pay-
ment due to player 1 by player 2. However, we shall not need any 
arithmetic property of the outcomes.) Let p be a function associ-
ating to each terminal position v an outcome p(v): we call this a 
payoff function. A game is formally defined as 

(D,Vx,V2,R,p) 

Note that the underlying game tree T is implicit, but it is fully deter-
mined by these data. A scenario is defined as a relation-theoretical 
path in the directed tree D from the initial position u to some termi-
nal position v: then p(v) is called the outcome of the scenario. [For 
a trivial game with a single position u, the empty set is defined to be 
a scenario with outcome p(u).] For given i (1 or 2) a relation oi con-
tained in Di such that for every nonterminal x G Vj there is a unique 
y G V with (x,y) G <x, is called a strategy of player i. A scenario 5 is 
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FIGURE 7.4 A strategic equilibrium. 

said to be compatible with <r, if 

S n Dj C tr,-

It is an excellent exercise in graph theory to verify that given strate-
gies <7i and <r2 of the two players, there is a unique scenario S(<7Xa2) 
compatible with ax and a2. The outcome of this scenario is called 
the result of the strategic couple (<J\<t2), and it is denoted by r(axa2). 
It is easy to see that if S is any scenario compatible with a strategy 
0 7 of player /, then there is a strategy ctj of the other player j with 
S = 5(<Tj <r2). A strategic equilibrium is a strategic couple (o^ <x2) such 
that for every other strategy a\ of player 1, 

r{a\a1)<r{axa1) 

and for every other strategy <r2 of player 2, 

r{<jxoi) < r{o-x<j2) 

The interpretation is that if player 1 wants to maximize the outcome 
and player 2 wants to minimize it, then by choosing <r„ player i can 
guarantee an outcome no worse for himself than r(ax a2), regardless 
of what the other player does. Figure 7.4 illustrates a strategic equi-
librium with the result 1. There are 1 + 7 + 7 positions belonging to 
player 1 ("white"), including the initial position. There are 3 + 1 + 3 
positions belonging to player 2 ("black"). There are 5 + 3 + 4 termi-
nal positions. There are 3 + 8 + 5 + 5 possible moves and 3 possible 
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outcomes. Moves marked with an arrow belong to a strategy of the 
equilibrium. At this game, it is easy to be a grandmaster. 

Equilibrium Theorem. Every game has a strategic equilibrium 

Proof. Consider a game Q = {D,Vx,V2,R,p) with the notation intro-
duced earlier. For every position v in V = V\ U V2 define the residual 
game 

gv = (D',V{,V2\R',p') 

as follows. The position set V of Qv is the section [v,-*) in the 
basepoint order of V (based on the initial position «). Let D' be 
the restriction of D to V'\ this is precisely the basepoint orientation, 
with basepoint v, of the subgraph T' of the game tree T induced by 
V'. (The basepoint order < v on V also coincides with the restriction 
to V' of the basepoint order < u of V.) Let 

v{ = vx n v', v[ = v2n v\ R' = R 

and let p' be the restriction of p to the terminal positions in V'. 
This fully defines Qv. Clearly Qu = Q. 

We shall prove, by induction, that every residual game of Q has 
an equilibrium, and this will apply to Qu = Q. Suppose the claim is 
false: let Qv be a residual game without an equilibrium and having as 
few positions as possible. Trivially, v cannot be a terminal position 
of Q. Let S be the set of those positions that cover v in the basepoint 
order < u , 

S = {w e V : (v,w) e D} 

For every w G S, Qw has an equilibrium since it has fewer positions 
than Qv\ let rw be the result of such an equilibrium Or}",^)- Ob-
serve that if y is another element of S, then cr™ Haf = 0 for i = 1,2, 
because the games Qw and Qy have no moves or positions in com-
mon. Now v belongs either to player 1 or to player 2. In the first 
case choose y G S with the largest possible value ry and let 

*i = {(«,y)}u L K . °i= I K 

In the second case choose y G S with the smallest possible value ry 

and let 

U^ r . ^ = {(«',y)}u L K 
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In both cases, (ax a2) is an equilibrium of Qv, refuting the assump-
tion that none exists. • 

A game may well have several equilibria. However, if (ax a2) and 
(Ti Ti) a r e two equilibria, then 

r(ax <x2) < r(ax r 2 ) < r(ri r 2) < r(rx a2) < r(ax a2) 

and therefore all strategic equilibria yield the same result. 
This does apply to chess. Players 1 and 2 are called white and 

black. A position is a map from a subset of 2 8 8 (the "chessboard") 
to a finite set of pieces, together with a repetition indicator of first, 
second, or third occurrence. (This ensures finiteness. In particular all 
chessboard maps on the third occurrence are terminal.) There are 
three outcomes in R: (1) black wins, (2) draw, and (3) white wins, 
ordered as follows: 

(1) < (2) < (3) 

Game theory tells us that of the three possible outcomes of the 
chess game, one and only one can be secured by a strategic equi-
librium. Which one then? The answer can be obtained by straight-
forward computation, and the knowledge of equilibrium strategies 
would be highly prized, by serious chess-players at least. Yet the so-
lution is not at hand; present-day computers are still not powerful 
enough to carry out the computation. Conceptually straightforward 
even though technically beyond reach: is that what the mathemati-
cally inclined Edgar Poe and the esthetically minded Hardy called, 
in turn, the frivolity of chess, trivial and unimportant mathematics, 
complexity mistaken for what is profound? Or did they miss the 
point and something else remains to be understood? 

EXERCISES 

1. Simplify the rules of chess to the point where you can settle the 
question of whether either black or white has a decisive initial 
advantage. You may reduce the number of pieces and the number 
of squares, impose maximum length-of-game rules, etc. 

2. Can you invent a reasonably interesting chesslike game in which 
neither black nor white has an initial advantage? 
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3. CHROMATIC POLYNOMIALS 

Let G = (V,E) and G' = (V',E') be two graphs. A function h from 
V to V' such that h[e] £ E' for every e 6 £ is called a graph homo-
morphism from G to G'. In shorthand we write h : G —» G'. 

Proposition 1 77ie composition of two graph homomorphisms 

ft : G -> G' arc/ g : G' -* G" 

is a homomorphism from G to G". For every graph G = (V,E) the 
identity mapping on V is a homomorphism from G to itself 

If h is bijective and its inverse is a homomorphism as well, then 
h is called an isomorphism. The graphs G and G' are isomorphic if 
such an isomorphism exists. 

Let us denote by Ky the complete graph on a vertex set V. If 
n is the cardinality of V, then Ky is isomorphic to Kn. Any homo-
morphism from a graph G to is called an n-coloring of G (or 
coloring with n colors). The term comes from thinking about assign-
ing "colors" to the vertices in such a way that no two adjacent ver-
tices get the same color. If m < n, then every m-coloring is also an 
n-coloring. If G has n vertices, then obviously it has an n-coloring. 
The least cardinal m such that G has an m-coloring is called the 
chromatic number of G. Only the graph with empty vertex set has a 
0-coloring, and only graphs with no edges have a 1-coloring. 

Proposition 2 A graph G has a 2-coloring if and only if G has no 
cycle of odd length. 

Proof. Let Ec be the set of edges in an odd-length cycle, say of 
length n = 2k + 1. Let Vc = U£ c . Any 2-coloring of G, restricted to 
Vc, would yield a 2-coloring of the subgraph Gc = (Vc, Ec). The graph 
Gc is isomorphic to the graph Zn on vertex set l„ whose edges are 
the pairs {z,z + 1}, z G Z„. Also, observe that K2 is isomorphic to 
the similarly defined graph Z 2 on Z2. Every graph homomorphism 
h : Zn —• Z 2 must obey the rule 

h(z + 1) = h(z) + 1 for all z e Z„ 

We leave it to the reader to verify that no such function h can exist. 
Thus a graph with a 2-coloring can have no odd cycles. 
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Conversely, assume a graph G = (V,E) has no odd-length cycle. 
Choose one vertex in each connected component of G. For each 
x £ V there is precisely one such chosen vertex c(x) that is in the 
same component as x. Define the 2-coloring h : V —> 12 by letting 
h(x) be the congruence class mod2Z of the distance d(x,c(x)). • 

Usually a graph with chromatic number 2 is called bipartite: its 
vertex set is the union of two disjoint sets V\,V2 such that no two 
vertices within the same part Vt are adjacent. 

The chromatic function of a finite graph G is the function PG 

associating with each natural number n the number of n-colorings of 
G. Thus 

Pq : w - t w 

If G = (V, E) has m vertices and no edges, then every map h : V —* 
n is an n-coloring. Therefore we have, for such edgeless graphs, 

PG(n) = nm for all n£u 

This suggests that the behavior of Pq in general may be described 
by some polynomial depending on G. 

For any finite graph G = (V,E) and e £ E we can form two new 
graphs from G. The edge-deleted graph G - e has the same vertices 
as G, and its edges are those of G except that e is removed. The 
edge-contracted graph G • e has vertex set (V\e) U {e} where e is any 
element not belonging to V\{e}, and the edge set 

{d £ E : dne = 0}l){{v,e} : v £ V\e, {v,x} £ E for some x £ e) 

The set H of n-colorings of G is a proper subset of the set He 

of n-colorings of G-e. We claim that there is a bijection from 
He\H to the set of n-colorings of G-e. Every h £ He\H has the 
same value on the two vertices x,y belonging to e. The desired bi-
jection is established by associating with each h £ He\H the map 
g : (V\e) U { e } - t n such that 

g\(V\e) = h\(V\e) and g(e) = h(x) = h(y) 

The maps g so obtained are precisely the n-colorings of G-e. The 
equipotence of He\H with the set of n-colorings of G • e means that 
we have the edge recursion formula 

PG(n) = PG-e(n)-PGe(n) 
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Chromatic Polynomial Theorem. The chromatic function of a finite 
graph G = (V ,E) is the restriction to w of a unique polynomial func-
tion on the ring I, defined by a unique polynomial p £ Z[X] of degree 
n = CardK 

Proof. By induction on the number of edges. For E = 0 we have 
p = Xn. If E fi 0, let e £ E. Assume that the result is true for the 
graphs G - e and G • e, both of which have less edges than G. Let 
the polynomials pd and pc of degree n and n - 1 correspond to the 
chromatic functions of G - e and G • e. Then by the edge recursion 
formula the polynomial p = pd- pc does the job for the chromatic 
function of G. 

Uniqueness follows from the observation that if q were another 
such polynomial, then p - q in Z[X] C Q[X] would have an infinity 
of roots (namely all the natural numbers) and therefore p-q would 
coincide with the zero polynomial, i.e., p = q. • 

The polynomial p £ Z[X] defined by the above theorem is called 
the chromatic polynomial of G. The edge recursion formula for the 
chromatic function can be restated in terms of polynomials: 

Recursion Formula (For Chromatic Polynomials). Let p(G) denote 
the chromatic polynomial of a finite graph G. If e is any edge of G, 
then we have 

p(G) = p(G-e)-p(Ge) 

Since no nonempty graph has a 0-coloring, 0 is a root of the chro-
matic polynomial, and X divides in Z[X] the chromatic polynomial 
p(G) of every nonempty graph G. Assume in addition that G has 
k connected components Gi,... ,G*. The reader should verify that 
p(G) is equal to the product of the various p(Gj), 

p(G) = p(Gl)--p(Gk) 

It follows that for any graph with k components, Xk divides the 
chromatic polynomial p(G). Using the Recursion Formula and the 
expression of the chromatic polynomial as the product of the chro-
matic polynomials of its components, one easily proves the following 
result. 
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Proposition 3 The chromatic polynomial of a forest F with k tree 
components and m edges is Xk(X - l ) m . 

This immediately yields many nonisomorphic graphs with the same 
chromatic polynomial. 

EXERCISES 

1. Design computer programs for finite graphs, 
(a) to find out if a graph is bipartite, 
(b) to determine the chromatic number of a graph, 
(c) to calculate the coefficients of the chromatic polynomial. 

2. (a) Verify that the set of isomorphisms from a graph G = (V,E) 
to itself is a permutation group on V. Let us denote it by 
AutG. Does every permutation group arise this way? 

(b) Let H be a cyclic group. Construct a graph G such that AutG 
is isomorphic to H. What if H is not cyclic? 

3. Call a finite graph G = (V, E) planar if there is an injection p : 
V —> R2 such that for e, de E we have the following relationship 
among convex hulls in R2: 

W]np~[d] = p[end] 

(The bar symbol on top of a set denotes its hull.) What can you 
prove or conjecture about planar graphs and their chromatic num-
bers? 
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CHAPTER VIII 

LATTICES 

1. COMPLEMENTS AND DISTRIBUTIVITY 

A lattice is by definition an ordered set (L, <) in which every pair 
of elements {x,y} possesses a least upper bound (lub) as well as a 
greatest lower bound (gib). Two commutative semigroup operations 
V (join) and A (meet) are then defined on L by 

x V y = lub{x,y}, x A y = g\b{x,y} 

The semigroups (L ,V) and (L ,A) are called the join semigroup and 
the meet semigroup of L, respectively. Join and meet are linked by 
the absorption laws 

x\/(xAy) = x, xA(x\/y) = x 

A purely algebraic approach to lattices is possible as well. Let 
(L ,V) and (L ,A) be two commutative semigroups on the same set 
L, nothing to do a priori with order relations. Assume that they are 
linked by the two absorption laws as above. The binary relation 

R = {(x,y)€L2 : XVy = y} 

is then an order on L in which every pair of elements has a lub 
as well as a gib. In fact lub{x,y} happens to coincide with x V y 
in the semigroup (L ,V) and glb{x,y} coincides with x A y in (L ,A). 

213 
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One may therefore think of lattices either as orders on which two 
algebraic operations are defined or as algebraic structures with a 
convenient order relation. Our terminology corresponds to the first 
conception. 

A subset S of a lattice L that is closed both under join and meet 
is called a sublattice. The restriction of the order < to S is then 
obviously a lattice. Note that this restriction (5,<) may well be a 
lattice without S being a sublattice: in the lattice (V(3),C) of all 
subsets of 3 = {0,1,2} consider 

5 = {0,{O},{1},{O,1,2}} 

The sublattices of L constitute an algebraic closure system on L. In 
contrast, the subsets S of L such that (5,<) is a lattice do not form 
a closure system: consider 5 in P(3) as in the preceding example, let 

r = {0 ,{O},{i},{o,i}} 

and note that ( 5 D J , C ) is not a lattice, even though both (5,C) 
and (T,C) are lattices. Every convex segment [x,y] of a lattice is a 
sublattice—the converse obviously need not be true. 

A lattice (L, <) is bounded if it has both a maximum and a min-
imum. Equivalently, it is enough to require that L have both a lub 
and a gib. Every nonempty finite lattice is bounded. The min and 
the max coincide only in the trivial one-element lattice. In any lattice 
L, every segment [x,y] constitutes a bounded sublattice. Note that 
a sublattice 5 of (L,<) may possess upper and lower bounds in L 
without (5, <) being a bounded lattice: in (R, <) consider 

S = {xeR:0<x<l} 

We therefore reserve the term bounded sublattice to mean a sublat-
tice that possesses a maximum and a minimum. Any two elements 
x,y of a lattice generate a finite, bounded sublattice, namely 

{x,y,x Ay,x Vy} 

Let x be any element of a bounded lattice (L,<) with minimum 
u and maximum w. Any y G L such that 

x Ay = u, xV y = w 

is called a complement of x in L. Complements need not always 
exist: look at any chain with at least three elements. For a more 
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j 

u 
FIGURE 8.1 A bounded lattice in which some elements have no complement. 

complex case, look at the lattice of Figure 8.1. In the bounded lattice 
(V(A),C), on the other hand, where A is any set, every X e V(A) 
has A\X as its unique complement. If B C C C A, then every X in 
[B,C], i-e., every set X such that B C X C C, has 

(C\X)UB 

as a complement in [5 ,C]. In any lattice L, if x,y e L, then JC and y 
are complements of each other in the sublattice {JC,_V,JCAy,x V y } . 

Unique Complementation Theorem. For any lattice L the following 
conditions are equivalent: 

(i) in every bounded sublattice S, each element has at most one 
complement in S, 

(ii) for all x,y,z£ L, x A (y V z ) = (JC A y) V (x A z), 
(iii) for all x,y,z e L, x V (y A z) = (x V y) A {x V z). 
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Proof. Observe first that (ii) implies 

(JC V y) A (x V z) = [(x V y) A JC] V [(JC V y) A z ] = JC V [(JC V y ) A z ] 

= x V [(JC A Z ) V (y A z ) ] = x V (y A z ) 

i.e., (ii) implies (iii). Similarly (iii) can be shown to imply (ii), yielding 
the equivalence of (ii) and (iii). 

Next, observe that if in some bounded sublattice S, with minimum 
u and maximum w, an element x has two distinct complements y 
and z, then using (ii), we get 

y = y A w = y A ( x V z ) = ( y A x ) V ( y A z ) = « V ( y A z ) = y A z 

that is, y < z. In the same way we can derive z < y too, forcing the 
equality y = z. Therefore (ii) implies (i). 

Conversely, assume (i). First, let us show that (iii) holds in the 
special case x < z. Were this not true, we would have 

JC V (y A z) < (JC V y) A (JC V z ) = (x V y) A z 

Let us abbreviate x V (y A z ) = a, (x V y) A z = fe. Then 

y V a = y = x V y 

and 

y A f l = y Ab = y A z 

This means that in the sublattice 

{ a , / ? , y , y A z , x V y } 

the element y has two complements, contradicting (i). Thus a must 
coincide with b, i.e., 

x V (y A z ) = (x V y) A z for all x < z 

This will be referred to as the modular identity. 

Second, let us show that (i) implies the median equality 

(x A y) V (x A z ) V (y A z) = (x V y) A (x V z ) A (y V z ) 

for all lattice elements x ,y , z. Were this not true, for some x,y,z, 

d = (xAy)V(xAz)y(yAz) 

would be distinct from 

e = (x V y ) A ( x V z ) A ( y V z) 
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As in any case d < e (because x A y, x A z, and y A z are all less than 
or equal to e), we must have d < e. Let 

A = ( i V ( x A e ) , b = dV(yAe), c = d V ( z A e ) 

We have 

a V b = d V (JC A e) V (y A e) = d V (JC A (y V z ) ) V [y A (JC V z)] 

By the modular identity and JC A (y V z ) < JC V z, this is equal to 

d V {[(JC A (y V z ) ) V y] A (x V z ) } 

and, in view of y < y V z within the square brackets, equal to 

d V {[(y V JC) A (y V z)] A (JC V z ) } = d V e = e 

Thus a V 6 = e. Similarly a V c = e and b\J c = e. As for meets, ob-
serve first that the modular identity implies, in view of d < e, that 

fl = ( ^ V J c ) A e , b = (dVy)A<? , c = (d\/z)Ae 

Now one can prove 

aAb = aAc = bAc = d 

in a way similar to the proof of 

a V f e = f l V c = f c V c = e 

(The role of A is taken by V.) In conclusion, the uniqueness of 
complements guaranteed by (i) would be violated in the sublattice 
{a,b,c,d,e}. Thus (i) must imply the median equality as claimed. 

To conclude the proof that (i) implies (ii), consider a = x A (y V z) 
for arbitrary lattice elements x,y,z. Trivially 

a = x A (JC V y ) A (x V z ) A (y V z ) 

By the median equality 

a = x A [ ( J C A y ) V (JC A z ) V (y A z)] 

and by the modular identity, in view of (JC A y ) V (x A z) < x, we ob-
tain 

[ ( J C A y) V (JC A z ) ] V [(y A z) A x] = a 
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But this latter expression of a is obviously equal to just the term 
(JC A y) V (JC A z ) , proving 

JC A (y V z) = a = (x A y) V (JC A z ) 

as intended. • 

A lattice satisfying the conditions of the above theorem is called 
distributive. The equivalence of (ii) and (iii) is one of the earliest 
published results of abstract lattice theory, in Schroder's Algebra der 
Logik, Teubner-Verlag, Leipzig, 1890. 

Examples. (1) Every chain is a distributive lattice. (2) The lattice 
of subsets of any set is distributive, by Proposition 14 of Chapter I. 
(3) Let A be any set, Card ,4 > 2. Let 0 c B C A and C = A\B. Let 

SA = {A,0}, SB = {B,0}, Sc = {C,0}, 

5 O = {0} , S = {A,B,C,0} 

Each of these five sets is a subgroup of the symmetric difference 
group (V(A), +). In the lattice of all subgroups, 

is a sublattice, and it is not distributive. On the other hand, the lat-
tice of subgroups of Z is distributive, and so is the lattice of sub-
groups of any cyclic group. 

One obvious consequence of the definition of distributivity is that 
every sublattice of a distributive lattice is distributive. It seems rather 
vacuous to restate this as follows: a lattice L is distributive if and 
only if every sublattice of L is distributive. But could this statement 
be strengthened so that the distributivity of some particular sublat-
tices of L would already suffice to infer the distributivity of L? For 
one thing, if all the bounded sublattices of L are distributive, that is 
sufficient. Birkhoff's Forbidden Sublattice Criterion goes much fur-
ther in this direction. 

Forbidden Sublattice Criterion (For Distributive Lattices). A lat-
tice L is distributive if and only if it has no five-element sublattice 
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D 5 Ms 
FIGURE 8.2 Nondistributive lattices. 

isomorphic to either one of the lattices D 5 or Ms illustrated in Fig-
ure 8.2. 

Proof. It is easily seen that D$ and M5 are nondistributive. Con-
versely, the construction of Ms or D5 using nondistributivity is essen-
tially contained in the proof of the Unique Complementation Theo-
rem. First, if the modular law 

x V ( y A z ) = ( x V y ) A z 

fails to hold for some x < z, then 

{ y , y A z , * V y , J c V ( y A z ) , ( j : V y ) A z } 

is a sublattice of type A/5. Second, if the modular law does hold, but 
the median law 

(x A y ) V (x A z ) V (y A z) = (x V y ) A (x V z ) A (y V z ) 

fails for some lattice elements x,y,z, then the five elements 

(JC A y ) V (x A z ) V (y A z ) = d 

(JC V y ) A (JC V z ) A (y V z ) = e 

a = a" V (JC A e ) = (d VJC)A<? 

b = dV (y f\e) = {dV y)f\e 

c = dV(zAe) = {dV z ) A e 

form a sublattice of type D 5 . (If neither the modular nor the median 
law fails, then the lattice is distributive according to the proof of the 
Unique Complementation Theorem.) • 
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One more noteworthy result can be easily extracted from the 
proof of the Unique Complementation Theorem. In that proof the 
median equality 

(JC A y ) V ( J C A z ) V ( y A z) = (JC V y ) A (x V z ) A (y V z ) 

was established for all elements JC , y ,z of any distributive lattice. 
Should, on the other hand, a lattice fail to be distributive, then in 
a five-element forbidden sublattice, whether of type D5 or M5, the 
reader can surely find elements JC, y, z violating the median law: 

Median Equality Theorem. A lattice L is distributive if and only if 
for every x,y,z in L we have 

(JC A y ) V ( J C A z ) V ( y A z ) = (x Vy) A (x V z ) A (y V z) . 

Covering Lemma. Let x and y be elements of a distributive lattice. 

(i) If x covers x Ay, then JC V y covers y. 

(ii) If xVy covers y, then x covers x Ay. 

Proof, (i) Assume that JC covers x A y. If y is not covered by the join 
JC V y, then let 

y < z < JC V y 

and look at 
{ J C Ay, jc ,y ,z , jc V y } 

It is a forbidden sublattice of the M5 type. Thus y must be covered 
by JC V y. 

The proof of (ii) is similar. • 

Remark. Why not state this result in "if and only if" form? The 
reader will see in the next section that the development of lattice 
theory benefits from splitting these lower (i) and upper (ii) covering 
conditions. 

Let a < b in a discrete order. The relative height of b above a, 
denoted by h(a,b), is defined for a < b as the length of the shortest 
path from a to b in the covering relation, or h(a,b) = 0 if a = b. 
Equivalently, if C is a maximal chain in [a,b] having as few elements 
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as possible, then 
«(fl,fo) = C a r d C - l 

A discrete order is said to satisfy the Jordan-Dedekind chain condi-
tion if for all a < b, every path from a to b in the covering relation 
has length h(a,b) and not more. Equivalently, this means that within 
each segment [a, b) all maximal chains have the same cardinality, 
namely h(a,b) + 1. For example, the lattice D5 in Figure 8.2 satisfies 
the Jordan-Dedekind condition, but M5 does not. 

Proposition 1 Every discrete distributive lattice satisfies the Jordan-
Dedekind chain condition. 

Proof. Suppose that for some a < b, some maximal chain K of [a, b] 
has more than h(a,b) + l elements. Among all such misbehaving 
couples (a, b) take one with smallest possible h(a,b). However, the 
segment [a, b] has a maximal chain C with 

CardC = h{a,b) + 1 < Ca rd* 

By the minimal choice of h(a,b), CD K = {a,b}. Let c £ C cover a, 
and let k £ K cover a. Then a = c A k, and according to the Cover-
ing Lemma c V k covers both c and k. We have 

h(c,b) = h(a,b) - 1, h(c Vk,b) = h(a,b) - 2, 

h(k,b) = h(a,b)-\ 

Therefore all maximal chains of [k,b] have cardinality h(k,b) + 1, in 
particular 

Card(K\{a}) = h(k,b) + \ 

which forces CardK = h(a,b) + 1. • 

Corollary. In a discrete distributive lattice, if a < b <c, then 

h(a,b) + h(b,c) = h(a,c) 

Let us turn our attention from covering relations to covering 
graphs. More precisely, we wish to analyze the behavior of geodesies 
in the covering graph G of a discrete lattice L. This graph is cer-
tainly connected. (We can concatenate paths from x to x V y and 
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from x V y to y.) The distance d(x,y) is at most 

h(x, x V y) + /i(y, JC V y) 

and similarly 

d ( * , y ) < « ( x A y , x ) + n ( x A y , y ) 

If /» is an x-to-y geodesic path in G, with vertices 

x = x0,xx x„ = y, where n = d ( x , y ) 

and if {x , , x , + i } are the edges of P for 0 < / < n - 1, then define the 
sfep differential sP(x,Xi) for i = 0,...,/t as the integer 

Card{; £ i : Xj < x] + l} - Card{y £ i : Xj > xJ + x} 

Define the x-based elevation of P as the sum £-L 0 . sp(x,x, ' ) , denoted 
by HX(P). Obviously 

-d(x,y)2 < HX{P) < d(x,y)2 

For 0 < i < n, call the vertex x, on P locally high if J C , - _ I < AT, and 
x, > J C / + I in L. Call x,- locally low if > x, and x, < x , + ] . We say 
that P is a high geodesic if it has no locally low vertices. Clearly P is 
high if and only if for some 0 < j < n, 

XQ < • • • < Xj and XJ > • • • > x„ 

We say that P is a low geodesic if it has no locally high vertex. Obvi-
ously P is low if and only if, for some 0 < j < n, 

XQ > • • • > Xj and x) < • •• < xn 

There is always a maximum in the set of vertices of a high geodesic, 
and there is always a minimum among the vertices on a low geodesic. 
Observe that a geodesic P in G is simultaneously high and low pre-
cisely when its vertices form a chain in L. 

In a distributive lattice L, an x-to-y geodesic P with maximum x-
based elevation must be high. (The reason is that if x, were a locally 
low vertex on P, x,_i > x,, x, < x,+i , then x, = x,-_i A x J + 1 would be 
covered by both x ,_i and x , + ] . Thus x\ = x,-_] Vx ,+ i would cover 
both x ,_ i and x , + i , and we could form a path P' of even higher 
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e levation if we replaced in P the vertex JC,- with x- and the edges 
{xi,xi+i} with {*,•_!,*{•}, { x - , x , + 1 } . ) Thus a high geodesic 

does exist be tween any two e lements x , y of a distributive lattice. 
Assume that P is any such high geodesic, say of length n. We claim 
that 

Xj = max{x , : 0 < / < n) 

coincides with x V y. Obviously x V y < xy, and therefore, by the Cor-

ollary of Proposition 1, 

h(x,x V y ) + h(x V y , x y ) = « ( x , x y ) = j 

h(y,x Vy) + h(xVy,Xj) = h(y,Xj) = n - j 

which add up to 

h(x,x V y ) + h(y,x V y ) + 2h(x V y , x y ) = « = <i(x,y) 

This forces h(x V y, xy) = 0, xy = x V y as claimed, and 

d ( x , y ) = /z(x,x V y ) + h(y,x V y ) 

Similarly w e can show, using a low geodesic, that 

d(x,y) = « ( x A y , x ) + h(x A y , y ) 

Combined with 

n ( x A y , x V y ) = h(x A y , x ) + h(x,x V y ) = n(x A y , y ) + « ( y , x V y ) 

this further implies 

n ( x , x V y ) = h(x A y , y ) and / i (y ,x V y ) = h(x A y , x ) 

and therefore 

d(x,y) = n (x A y , x ) + rt(x,x V y ) = h(x A y , x V y ) 

for all e lements x , y of a discrete distributive lattice. In particular 

d(x,y) = h(x,y) if x < y 

Proposition 2 Lef L be a discrete distributive lattice with covering 
graph G. Then a set C of lattice elements forms an order-convex sub-
lattice of L if and only if C is a convex set of vertices in the covering 
graph G. 
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Proof. Suppose C is an order-convex sublattice. Let x,y G C. We 
need to show that every vertex of every x-to-y geodesic P in G be-
longs to C. Clearly it suffices to show that every vertex x = x 0 , xx,..., 
xn = y on P belongs to the segment [xAy,x V y ] of L. Assuming 
this assertion false, let P be an x-to-y geodesic with maximum ele-
vation HX(P) among those that allegedly have some vertices outside 
this segment. Clearly P is not a high geodesic, for then its top vertex 
Xj would coincide with x V y, forcing all vertices on P to be in 

[ x , x V y ] U [ y , x V y ] C [ x A y , x V y ] 

Thus P has a locally low vertex x „ covered by x ,_ i and x , + 1 , 

x,- = x ,_ i A x , + 1 

A higher elevation x-to-y geodesic P' can then be constructed, as 
in an earlier argument, on the same vertices as P except that x, is 
exchanged for 

xi - xi-\ V X, + i 

Every vertex of this P' must belong to [x A y, x V y] because of the 
maximal-elevation choice of P. But from 

xi < x'i < xVy, * A y < x , - _ ! , x A y < x , + 1 

it follows that x,- = xi_x A x , + 1 is in [x A y, x V y] as well, a contradic-
tion proving that all x-to-y geodesies are within this segment. 

Conversely, suppose that C C L is convex in the covering graph 
G. If x < y are in C, then for any x < z < y we have the equality 
h(x,z) + h(z,y) = h{x,y), i.e., 

d(x,z) + d(z,y) = d(x,y) 

in G, and therefore z e C, proving the order convexity of C. To see 
that C is a sublattice of L, let x ,y G C. A highest elevation x-to-y 
geodesic contains x V y as a vertex, and thus x V y G C. • 

Remark. Distributivity is not necessary for Proposition 2 to hold. 
Consider the five-element lattice D5 of Figure 8.2. 

Interval Theorem. A discrete lattice L is distributive if and only if for 
all x,yeL the interval I(x,y) of the covering graph coincides with 
the order segment [x A y, x V y]. 
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Proof. Assume distributivity. Let z G [x A y, x v y ] , that is, 

x A y < z < x V y 

This implies x V z < x V y , y V z < x V y , and (x V z ) A (y V z) = z. 
We have 

d(x,y) = h(x,xVy) + h(y,xVy) 

= h(x, x V z) + / i (x V z, x V y ) + / i (y ,y V z ) + /i(y V z, x V y ) 

= n ( x , x V z) + « ( z , x V z) + / i (z ,y V z) + « ( y , y V z) 

= rf(x,z) + d ( z , y ) 

which means that z G / ( x , y ) . Thus [ x A y , x V y ] C I(x,y). The re-
verse inclusion follows from Proposition 2. 

Conversely, assume that / ( x , y ) = [x A y , x V y ] for all x,y £ L. If 
L were not distributive, then in some segment of L an element a 
would have two distinct complements b,c: 

flVfc = a V c and a Ab = a Ac 

We would have 6 6 [a A c , a V c ] , i.e., b£l(a,c), and thus, in the 
covering graph of L, d(a,b) < d(a,c). But from c G [a A b,a V fc] we 
would derive the opposite inequality, d(a,c) < d(a,b). This contra-
diction shows that L must be distributive. • 

Median Diagram Theorem. A discrete lattice L is distributive if and 
only if its covering graph is median. 

Proof. Let L be a discrete distributive lattice. Let x , y , z G L. Con-
sider the three intervals I(x,y), I(x,z), I(y,z) in its covering graph. 
By the Interval Theorem we have, e.g., / ( x , y ) = [ x A y , x V y ] , and 
therefore 

7 ( x , y ) n / ( x , z ) n / ( y , z ) 

is precisely the segment 
[(x A y ) V (x A z ) V (y A z) , (x V y ) A (x V z) A (y V z) ] 

According to the Median Equality Theorem, this segment is a sin-
gleton. 
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Conversely, suppose that the covering graph G of L is median. 
Let us show that for x,y G L, if Cx is any maximal chain in [x,x V y] 
and Cy is any maximal chain in [ y , x V y ] , then Card(Cc U Cy) - 1 
equals the distance d(x,y) in G. Let us abbreviate Card(Ct U Cy) - 1 
as |C*Cy|. Obviously 

cxncy = {xv y} 

and the inequality 
\CxCy\>d(x,y) 

holds in any case. Suppose equality is not always achieved, and 
choose x,y,Cx,Cy with strict inequality 

\CxCy\ > d(x,y) 

and \CxCy\ as small as possible. Since a covering graph cannot have 
a three-vertex complete subgraph, we have \CxCy \ > 3, and at least 
one of 

h(x,xVy)>2 or h(y,xVy)>2 

must hold. Assume h(x, x V y) > 2; in the alternative case the proof 
would be similar. Let s be the element of Cx covering x and let 

Ks = Cx\{x}, Ky = Cy 

We have s V y = x V y, = |C x C y | - 1, and therefore \KsKy\ = 
^(^.y). Consequently 

d(s,y)>d(x,y)-l 

Since JC and s are adjacent in G, d(s,y) is equal either to d(x,y) or 
to d (x ,y) + 1. The former alternative is impossible because 

l(x,s)nr(x,y)nl(s,y) = 0 

would contradict the median hypothesis. Therefore d(s,y) is equal 
too '(x ,y) + l. Let z be the element of Ks covering s and let 

Tz = Ks\{s}, Ty = Ky 

We have z V y = x V y and 

\TzTy\=\KsKy\-l = \CXCy\-2 

\TzTy\=d(z,y) = d(s,y)-\ 
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Thus d(x,y) = d(z,y) = d(s,y)- 1. Also d(x,z) = 2 and the reader 
can easily verify that 

I(x,z) = [x,z] 

Clearly x £ I(z,y) and zfl(x,y). Can any other element m of 
I(x,z) belong to / (z ,y) or I(x,y)7 Let 

Um = {m}UT2, Uy=Ty 

The element m is covered by z, mVy = JcVy, \UmUy \ = \KsKy\, 
and therefore d(m,y) = d(s,y). Obviously m cannot belong to 
7(z,y) or I(x,y). Thus 

l(x,z)nl(x,y)nl(z,y) = 0 

which contradicts the median property. The absurdity of the assump-
tion |CrCy| > d(x,y) has been demonstrated. For all maximal chains 
Cx in [JC, JC V y] and Cy in [y, x V y] we have 

Card(C, U Cy) - 1 = d(x,y) 

and thus Cx U C y C 7(jc,y). 
Since every element of [jc.jcVy] belongs to some maximal chain 

Cx and every element of [y, JC V y] belongs to some Cy, we must con-
clude that 

[x,xVy]U[y,xVy)CI(x,y) 

Similarly we can derive from the median property of the covering 
graph the inclusion 

[xAy,x]U[xAy,y] C I(x,y) 

How could L fail to be distributive if its covering graph is me-
dian? Then L would have a five-element forbidden sublattice F of 
the type D$ or Ms of Figure 8.2. If it is of type D5, then for the 
three pairwise incomparable elements JC, y,z of F we would have, as 
a consequence of the inclusion relations established above, 

{maxF.minF} C 7(jc,y)n/( jc,z)n/(y,z) 

which contradicts the singleton intersection property of median 
graphs. If F is of type M5, then for the two comparable complements 
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FIGURE 8.3 A distributive lattice. 

y < z of some x in F, we would have 

z£ [y ,xVy] , y£[xhz,z] 

and consequently {y,z} C I(x,y)D [(x,z)C\ I(y,z), which is again 
absurd. Thus L must be distributive if its covering graph is median. 

• 
It is perhaps using the Median Diagram Theorem that the distribu-

tivity of the lattice-looking lattice of Figure 8.3 can most insightfully 
be verified. Better, try the infinite grid lattice Z" for any positive in-
teger n, where the order is given by 

(x0, • • •. *n-1) < (yo, • • • , y n - 1 ) if and only if 

XQ < y 0 ) . . . ,*„_! < y„_ : 

EXERCISES 

1. Design programs 
(a) to compute h(a,b) for elements a < b in a finite ordered 

set, 
(b) to determine if a finite lattice is distributive, 
(c) to find a Mb and a A b for given elements a,b of a finite 

distributive lattice, 



C O M P L E M E N T S A N D D I S T R I B U T I V I T Y 229 

(d) to determine if a given element of a finite distributive lattice 
possesses a complement. 

2. Find all order-convex sublattices of (7?(3),C). 

3. What is the order dimension of the lattice of Figure 8.3? What 
is the order dimension of the infinite grid lattice Z"? 

4. Let R and Q be two order relations on the same set A. Show 
that if lub's in R coincide with lub's in Q, then R = Q. Verify 
that the same holds for gib's. 

5. Verify that if L is a lattice and x\,...,xn £ L, then xxV---Vx„ 
is a lub of the set {x\,...,xn }; verify that a similar observation 
holds for meets. 

6. Verify that the dual order of a lattice is a lattice and the dual of 
a distributive lattice is distributive. 

7. Do equivalence relations form a sublattice of the inclusion-
ordered lattice (P(A2),C) of all relations on a set A? What 
about preorders, transitive relations, or symmetric relations? 

8. Verify that the transitive relations on a given set form a lattice, 
of which the equivalence relations form a sublattice. Are these 
lattices distributive? 

9. Show that the congruence relations on a groupoid G form a sub-
lattice of the inclusion-ordered lattice of all equivalence relations 
on G. 

10. Show that 

(a) if G is a group, then the subgroups of G form a sublattice 
of the lattice of subgroupoids of G, 

(b) the normal subgroups of a group form a sublattice of the 
lattice of subgroups, 

(c) the ideals of a ring form a sublattice of the lattice of sub-
groups of the ring's additive group, 

(d) the subspaces of a vector space form a sublattice of the lat-
tice of subgroups of the vector addition group. 
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11. Show that if the lattice of subgroups of a group G is distribu-
tive, then the lattice of subgroups of any quotient group of G is 
distributive as well. 

12. Let S be any set of subgroups of a group G that constitutes a 
closure system on G. Show that the cosets of the various mem-
bers of S plus the empty set 0 constitute another, larger closure 
system on G. Give examples. 

13. Show that the lattice of ideals of a principal entire ring with 
identity is distributive. 

14. On R2 consider the causality order of special relativity. Is it a 
(distributive) lattice? What about material causality? 

15. Let L be a lattice and let S be the set of its sublattices. Verify 
that (5,C) is a lattice. Is it a sublattice of (P(L),C)? Describe 
the sublattice of S generated by the segments [x,y] of L. 

16. Show that a bijective map from a lattice to itself is an order 
automorphism if and only if it is an automorphism of the join 
semigroup of the lattice. (What about the meet semigroup?) 

2. BOOLEAN ALGEBRA 

A bounded distributive lattice L in which every element x has a 
complement x' is called a Boolean lattice. 

Examples. For any set S, (P(5),C) is a Boolean lattice. The sim-
plest interesting instance is 5 = 2 = {0,1}. On the other hand, let 
S = ui. The sublattice of V(u) consisting of the finite subsets of w 
and their complements is also a Boolean lattice. The sublattice of 
V(u) consisting of all lower sections of (w,<) is not Boolean. 

Boolean lattices were indeed studied before the emergence of 
abstract lattice theory. In George Boole's Investigation of the Laws 
of Thought (1854) collections consisting of collections are endowed 
with order and algebraic structure. Lattices and universal algebras 
have since proven to be powerful tools of mathematical metamathe-
matics. 
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Mathematical logic originates with the recognition that the truth 
or falsehood of certain composite sentences like 

"7 8 + 8 9 is prime and {s/l + V5 + 6 + if e Z" 

"7 8 + 8 9 is prime or (y/1 + y/5 + 6 + if e Z" 

depends quite predictably on the respective truth or falsehood of the 
statements 

"7 8 + 8 9 is prime" 

"(V/2 + v/5 + 6 + 7 ) 2 GZ" 

Thus the logical connectives "and," "or," "only if," etc., can be 
thought of as functions c : 2 2 —• 2. The function c for the connective 
"and" is given by 

c(00) = c(01) = c(10) = 0, c( l l ) = 1 

and the function for "only if " by 

Jfc(lO) = 0, it (00) = *(01) = *(11) = 1 

Expressed in the Boolean lattice 2 = {0,1} we have 

c(x,y) = x/\y and k(x,y) = x'\/y 

where x' denotes the complement of JC . Connectives combining three 
sentences such as "if ... then ... or ... " a r e modeled by functions 
c : 2 3 —• 2, in this instance 

c(x,y,z) = (JC A y ' A z')' 

This motivates the following concept of Boolean functions. 
Let n be a fixed natural number. A function c : 2n —* 2 is called a 

Boolean function in n variables. The characteristic set of c is defined 
as 

{x<E2" : c(x) = 1} 

The set B„ of all Boolean functions in n variables is ordered by 
letting c < k mean that the characteristic set of c is a subset of the 
characteristic set of k. Associating to each c 6 Bn its charateristic set 
establishes an order isomorphism between (Bn,<) and (V(2"),C). 
Thus the ordered set (B„,<) of n-variable Boolean functions is a 
Boolean lattice. We shall return to this in a moment. 
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The following classical result generalizes statement (v) of Propo-
sition 14, Chapter I. It is easy to prove and serves in turn as a useful 
tool for manipulating expressions in Boolean lattices. 

De Morgan's Laws. In any Boolean lattice, gib, lub, and complements 
are linked by the identities 

(JC A y) ' = JC' V y 

(JC V y) ' = JC' A y 

Let (L,<) be a Boolean lattice, with JC ' denoting the complement 
of JC 6 L. A ring structure (L, + , ) is defined on L by 

JC + y = (JC A y') V (JC' A y ) 

x • y = x A y 

In this ring associated with the Boolean lattice the idempotent law 
J C 2 = JC is obviously satisfied by every element JC . Obviously the lat-
tice maximum serves as ring identity. 

Conversely, let (/?,+,•) be any idempotent ring, i.e., 

J C 2 = JC for all JC e R 

We are assuming that the ring has an identity element. In this ring, 
the divisibility preorder is an order: a\b and b\a means 

b - qa, a = pb for some q,pER 

and hence 

b = qa = qpb, a = pb = pqa 

a = pqa = pq2a = qpqa = qpb = b 

Let < be the dual of the divisibility order on R. Now the ring zero 
OR is the smallest and 1^ is the greatest element. It is not difficult to 
verify that (R, <) is a lattice in which 

JcVy = JC + y + x - y 

x A y = x • y 
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for all elements x,y, and indeed a Boolean lattice, with the comple-
ment x' = x + lR. (Key: x + x = 0/j follows from ring idempotence.) 
This lattice (R, <) is called the lattice associated with the idempotent 
ring R. 

If Tl{L) denotes the ring associated with a Boolean lattice L and 
C{R) denotes the lattice associated with an idempotent ring R, 
then 

CTZ(L) = L and TZC(R) = R 

If L is isomorphic to L' as an order, then K(L) is isomorphic to 
Tl(L'), and conversely. The ring associated with a power set lattice 
(P(S),C) is nothing else than the familiar symmetric difference ring 
(V(S),+,n). 

In any lattice with a smallest element, the elements covering the 
minimum are called atoms. These will play an important role in this 
section and the next one. 

Representation Theorem (Finite Case). Every finite Boolean lattice 
is isomorphic to some power set lattice (P(S), C). 

Proof. Let S be the set of atoms of a finite Boolean lattice (L,<). 
With every A C S let us associate luby4 in L. This defines a mapping 
from V(S) to L. We claim that it is surjective onto L. For y e L let 

Ay = {a (E S : a < y} 

z = lub Ay 

and let z' be the complement of z in L. The reader should verify 
that y and z are both complements of z' in L, and therefore y = z. 
This shows surjectivity as claimed. 

Obviously if BCACS, then lub B < lub A. We shall show that, 
conversely, lub B < \\xbA for sets of atoms B,A implies BCA, and 
this will establish the desired isomorphism. If this is not true, let A 
be a set of atoms of smallest possible cardinality such that for some 
other set of atoms B, 

\ubB<\ubA but B£A 

The case of A being empty or a singleton is quickly ruled out. Let 
then A\,A2 be disjoint nonempty sets partitioning A,A\ U A2 = A. 
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Let Bo = B\A. By assumption this set is nonempty. Let 

Card A] = m, Card ,4 2 = n, Card Bo = t 

Let 

Ax = {an,...,aim}, A2 = {a2\,...,a2„}, B0 = {b\,...,b,} 

Using distributivity, we have 

lub,4, Alub>!2 = ( f l n V"-Vfl l M )A(f l 2 i V---Va 2 / I ) 

= lub{a!,- A a2j; : 1 < i < m, 1 < j < n} 

= minL 

as well as 
lub Ax A \ub(A2 U B0) = min L 

and of course 

lub,4i Vlub/42 = lub A 

lub y4i V lub(/l2 U B0) = lub A V lub fi0 = lub A 

Thus lubv4 2 and lub(/l2 U Bo) are complements of lub,4i in the seg-
ment sublattice [minL, lub A] and therefore 

lub(^ 2 UB 0 ) = lubv42 

Since Card /1 2 < Card ,4 , we must have A2D BQ C A2, which is ab-
surd. Thus the map associating with each set of atoms its lub in L is 
an isomorphism between the lattices (V(S), C) and (L, <). • 

The surjectivity of the lub map used in this proof deserves a sepa-
rate statement: 

Corollary. Every element x of a finite Boolean lattice is the least up-
per bound of the atoms a < x. 

In the Boolean lattice (B„,<) of all n-variable Boolean functions 
the atoms are those functions / : 2" —• 2 whose characteristic set is 
a singleton {x}, x e 2". For i 6 n, let the Boolean function x, 6 Bn 

be defined by 

*i(y) = y(0 f o r e v e r y y e 2" 
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(Remember that y is a function from the cardinal n to 2.) Let *7 
in Bn be defined by letting x7(y) = jc,(y)', the complement of jc,(y) 
in (2, <). Of course JC, and ~xj are complements in B„. Both these 
functions are called literals. A simple conjunction c in Bn is a gib of 
n distinct literals, 

c = / 0 A - - - A / „ _ i 

such that for each 0 < i < n - 1 the literal /, is either JC, or Yj. The 
reader can verify that simple conjunctions are precisely the atoms 
of Bn. In (B„,<) least upper bounds are usually called disjunctions. 
The Corollary of the Representation Theorem therefore implies that 
every Boolean function in n variables is the disjunction of a unique 
set of simple conjunctions. 

Examples. Let c be the three-variable Boolean function "if-then-
or" given earlier by c(jc,y,z) = (xAy'Az1)'. The complement of c 
in B3 is the simple conjunction XQAX^AXI. The function c itself is 
not an atom in By, it is the disjunction of no less than seven sim-
ple conjunctions. The two-variable "either-or" function ( J C 0 A J C Y ) V 

(JCO A JCJ ) is an example of a nonatomic member of Bj. 

Remark on Notation. In a Boolean lattice, the meet JC A y coincides 
with the product JC • y in the associated ring. Several texts use the 
product notation, to the exclusion of " A , " especially in the context of 
Boolean functions. Thus XQAY] Axj, can also be denoted by JCO • x~\ • 

JC2 or simply JCO *T*2-

Consider the covering graph H of a finite Boolean lattice. In view 
of the Representation Theorem, we assume that the lattice in ques-
tion is a power set lattice (P(S),C). Then A,B e V(S) are adjacent 
in H if and only if the symmetric difference A + B is a singleton. It 
is elementary to conclude that every vertex of H is adjacent to the 
same number of vertices. Such graphs in general are called regular. 
It turns out that this property of the covering graph distinguishes 
Boolean lattices from other distributive lattices. 

Regular Diagram Theorem. A finite lattice is Boolean if and only if 
its covering graph is median and regular. 
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Proof. In view of the Median Diagram Theorem and the preceding 
comments, only the sufficiency of the graphic conditions remains to 
be established. Let L be a finite lattice with median and regular 
covering graph. We already know that L is distributive; let us show 
that it must be Boolean as well. 

Let d be the number of atoms of L. By regularity, the number of 
elements covering or covered by any element x of L is d. 

We claim that the lub of the atoms of L, denoted by m, is the max 
of L. For every atom a let a' be the lub of all the other atoms of 
L. Then a and a' are complements in [min L, m]. According to the 
Covering Lemma, m covers a'. Because of unique complementation, 
a' f- b' if a f- b. Thus the number of elements covered by m is at 
least d. By the regularity of the covering graph, it cannot be more 
than d, and there is no more room for any element to cover m. Thus 
m is the max of L, as claimed. 

For any x G L, let x' be the lub of those atoms which are not less 
than or equal to x. Then x' is a complement of x in L. • 

EXERCISES 

1. How would a program decide whether a given finite lattice is 
Boolean? 

2. Does the Representation Theorem hold for infinite Boolean lat-
tices? 

3. Show that every ordered set is order isomorphic to some subset 
(restriction) of some Boolean lattice. 

4. Show that every Boolean lattice is order isomorphic to its dual. 

5. Show that every convex segment [a, b] of a Boolean lattice is 
again a Boolean lattice. 

6. Let L be a Boolean lattice. Show that those Boolean sublattices of 
L that contain both max L and min L form an algebraic closure 
system on L. 

7. Let c be any simple conjunction in n variables, c G Bn. Show that 
the complement of c in Bn is the disjunction of 2" - 1 simple 
conjunctions. Can you generalize? 
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y V ( x A z ) = y V ( x A y ) = y and ( y V x ) A z = z 

3. MODULAR AND GEOMETRIC LATTICES 

Among distributive lattices we defined Boolean lattices by adding a 
condition, the existence of complements: this proved to be quite re-
strictive. We now proceed by generalization to the broader classes of 
modular and geometric lattices. Some of our arguments are already 
contained in the discussion of distributive lattices, which we shall 
invite the reader to review as warranted. 

A lattice L is called modular if for every x < z we have the mod-
ular identity 

x V ( y A z ) = ( x V y ) A z 

The concept arose naturally in the proof of the Unique Complemen-
tation Theorem for distributive lattices. All distributive lattices are 
modular. On the other hand, the five-element nondistributive lattice 
D5 of Figure 8.2 is modular as well. Obviously, every sublattice of a 
modular lattice is modular. 

Modular Characterization Theorem. For any lattice L the following 
conditions are equivalent: 

(i) L is modular, 

(ii) both the lower and upper covering relations hold {i.e., x covers 
x Ay if and only if x V y covers y) in every discrete sublattice 
S of L, 

(iii) L has no five-element sublattice isomorphic to M$ of Figure 
8.2, 

(iv) no element of a bounded sublattice S has two distinct compa-
rable complements in S. 

Proof. Assume (i). Let -<, denote the covering relation of the lattice 
L. If (ii) failed, then either 

x A y -< x and y < z < x V y 

for some x,y,z in L or 

y •< x V y and x A y < z < x 

In the first case 
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even though >• < z, contradicting modularity. The absurdity of the 
second case is shown similarly. 

Condition (ii) implies (iii) and (iii) implies (iv) obviously. 
To close the circle, the argument to deduce (i) from (iv) is already 

contained in the proof of the Unique Complementation Theorem, 
where the modular identity was first introduced. • 

Example from Group Theory. Let Jsf be the set of normal sub-
groups of a group G. Ordered by inclusion, J\f is a closure system on 
G and therefore a lattice. For A,B e M we have 

AAB = ACiB and AVB = {a • b : a £ A, b € B} 

We leave it as an exercise to prove that the lattice (M", C) is modular. 
If G is commutative, then every subgroup is normal, and therefore 
the lattice of subgroups of a commutative group is always modular. 

Counterexample from Group Theory. Consider the symmetric 
group £ 4 of all permutations of {1,2,3,4}. Consider the following 
five subgroups: the alternating group A4 made up of all even per-
mutations; the trivial subgroup O; the three-element subgroup B 
generated by the permutation (123); the two-element subgroup C 
generated by (12)(34); and the four-element subgroup D generated 
by {(12)(34),(13)(24)}. Then {A4,0,B,C,D} in a sublattice of type 
M$ in the lattice of all subgroups of E 4 : this lattice is therefore not 
modular. 

Jordan-Dedekind Chain Theorem (For Modular Lattices). A lattice 
is modular if and only if every discrete sublattice satisfies the Jordan-
Dedekind chain condition. 

Proof. If a lattice is not modular, then the Jordan-Dedekind condi-
tion obviously fails in a five-element sublattice of type M5. 

Conversely, assume that L is a modular lattice. Let the reader 
review the proof of Proposition 1. Was distributivity fully used or 
would modularity have sufficed? • 

We wish to investigate bounded discrete lattices. Foremost in mind 
we have the affine geometry Aff V of a finite dimensional vector 
space V over a field F. The set of affine flats, ordered by inclusion, 
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is a lattice because Aff V is a closure system. Clearly ProK is a 
sublattice of Aff V. 

Let us explore first the sublattice ProK of (Aff K,C). It consists 
of all vector subspaces of V. It is a bounded lattice thanks to the 
trivial subspace {0} and the whole space K. For distinct comparable 
subspaces U CW we have 

dim*/ < dim IT < dimK 

which implies that every chain in every segment is finite and 
consequently (ProK.C) is a discrete lattice. In general it is not dis-
tributive: let dimK = 2 and consider the sublattice of ProK gener-
ated by three distinct one-dimensional subspaces of K. What about 
modularity? Note that in the lattice ProK, 

UAW = UnW and (JVW = {u + w: u£U,weW} 

Therefore Pro V is also a sublattice of the inclusion-ordered modular 
lattice of all subgroups of the additive group of K. Thus ProK is a 
modular lattice as well. 

Turning our attention to the full lattice (Aff K,C) we see that it is 
bounded by the empty flat 0 and the full space V. For fixed ( i n K , 
the translation map that associates with each flat A e Aff V the flat 
t + A is an order automorphism of (Aff K,C). Therefore, if n > 1 
distinct nonempty affine flats form a chain A\ C ••• C An, then for 
any v € A\ the translates 

(-V + y4i) C • • • C (-V + An) 

form a chain in ProV, and thus n cannot exceed dimK + 1 . Tak-
ing into account the empty flat as well, it follows that no chain in 
(AffK,C) has more than dimV +2 members. Consequently Aff V 
is a discrete lattice. 

In contrast with its sublattice ProK, the lattice Aff V is generally 
not modular. Indeed, in a two-dimensional space V take two distinct 
parallel affine lines L\,L2. Then V = L\ V L 2 covers L 2 , but L\ does 
not cover L\ A L 2 = 0. Thus the upper covering condition is not 
satisfied, and Aff V is not modular. 

However, the lower covering condition is always satisfied in Aff V. 
To prove this, let A cover AAB = A(1B. 
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Case 1. A A B \t 0. Choose any v £ AHB. Let / = -v. The meet 

(l + A)A{t + B) 

of the translates is covered by / + A. These translates belong to the 
modular sublattice ProK, and thus the join 

(t + A) V (/ + B) 

covers t + B. Retranslating by v, we find that 

(v + t + A) V (v + t + B) = A V B 

covers v +1 + B = B. 
Case 2. A A B = 0. Then ^ is a point {w}. If B = 0, then the 

join AVB = {w} covers B. So let B f- 0 and choose any v £ B. Let 
r = -v. The translate / + B is a vector subspace of V. The join 

(/ + A) V (/ + B) 

is the vector subspace of V generated by the set (t + B)\j {t + w}. 
As t + w ^ t + B, 

d\m[(t + A) V (t + B)] = dim(f + B) + 1 

and thus (/ + A) V (/ + 5) covers / + B. Retranslating by v, we find 
that A V 5 covers B in this case too. 

An additional remarkable property of the lattice Aff V is that ev-
ery flat is the union of points, i.e., every lattice element is the lub 
of a set of atoms. Let us remember how useful this property was in 
describing the structure of finite Boolean algebras. 

A geometric lattice is defined as a bounded discrete lattice L sat-
isfying the lower covering condition and such that every x £ L is the 
lub of the atoms a < x. 

Examples. Geometric lattices include all affine and projective ge-
ometries of finite dimensional vector spaces, all finite Boolean lat-
tices, and for any set 5 and natural number n, the inclusion-ordered 
set 

{A £ V(S) : A = S or Card,4 < n} 

Reviewing once more the proof of Proposition 1, the reader can 
see that the result hinges on the lower covering condition alone: 
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Jordan-Dedekind Chain Theorem (For Geometric Lattices). The 
Jordan-Dedekind chain condition is satisfied in every geometric lat-
tice. 

Corollary 1 In any geometric lattice, if a < b < c, then 

h(a,b) + h(b,c) = h(a,c) 

Corollary 2 Every geometric lattice is a complete lattice. 

Proof. Let o be the minimum and m the maximum of the lattice. Let 
A be any set of lattice elements. Let F be a finite subset of A with 
the value h(o,g\bF) as small as possible. Let G be a finite subset of 
A with the value n(lubG,m) as small as possible. Then glbF is a gib 
of A, and lub G is a lub of A. • 

Remark. Clearly the Jordan-Dedekind condition is not satisfied in 
every sublattice of every geometric lattice. (Consider any nonmodu-
lar geometric lattice.) Thus geometric lattices can have nongeomet-
ric sublattices. This contrasts sharply with distributivity and modu-
larity, as these properties are inherited by all sublattices. However, 
some sublattices do inherit the geometric property: every convex seg-
ment sublattice [a, b] of a geometric lattice is again geometric. (Veri-
fication of this is an excellent exercise in the application of the lower 
covering condition.) 

In any geometric lattice with minimum o, the relative height 
h(o,a) of an element a over o will be called simply the height of 
a, and it will be denoted by h(a). For a < b we have h(a,b) = 
h(b)-h(a). 

Examples. (1) In a finite power set lattice (V(S),C) the height of 
A G V(S) is Card A. (2) In the geometric lattice (ProK,C) of all sub-
spaces of a finite dimensional vector space, the height of a subspace 
A G Pro V is dim A Both in (ProK,C) and in (Aff V,C) the lattice 
elements of heights 1, 2, and 3 are the points, lines, and planes of 
the projective or affine geometry, respectively. 
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EXERCISES 

1. Is the lattice of ideals of a ring modular? 

2. Is the lattice of equivalence relations on a set modular? Under 
what conditions is it geometric? 

3. What is the simplest distributive nongeometric lattice you can 
think of? 

4. Verify that the covering graph of a geometric lattice is bipartite. 

5. Design a program to determine if a finite lattice is modular and 
if it is geometric. 

6. Design a program to find, in any finite geometric lattice L, a set 
A of atoms with as few elements as possible having the property 
that lub ,4 = maxL. 
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CHAPTER IX 

MATROIDS 

1. LINEAR AND ABSTRACT INDEPENDENCE 

In a vector space V, independence of a set of vectors was defined 
with reference to the subspace closure operator on V. With respect 
to any closure operator a on any set M, we can say that a subset 
I of M is independent if no x £ I belongs to the closure <r(/\{jt}). 
Obviously every subset of an independent set is independent. We say 
that a is a matroid closure operator if 

(i) the closed sets form a Noetherian closure system, 
(ii) for every A C M and x , y 6 M, 

if x£o(A) but x G CT(AU {y}), then y£(x(AU{x}) 

The corresponding closure system is called a matroid closure system 

on M. Recall that condition (i) means that the closure system is 
algebraic and every closed set is finitely generated. 

Examples. (1) The subspace closure system on a vector space is 
a matroid closure system if and only if the vector space has finite 
dimension. The verification of (ii) in a vector space hinges on the 
observation that 

if x C<r(A\j{y})\<T(A), then x = v + 0-y 

245 



246 M A T R O I D S 

where v is a linear combination of elements of A and 0 f- 0: this im-
plies y = 0~l • x - 0~x • v. (2) For natural n, the n-uniform matroid 
closure on any set M is defined by 

a(A) = 
if Card A < n 

otherwise 

If a is a closure operator on a set V, then for any M C V the 
relative closure operator aM on M is defined by letting, for ACM, 

aM(A) = o-(A)nM 

If a is a matroid closure operator on V, then the relative closure 
operator <rw is a matroid closure operator on M. For example, let 
<r be the subspace closure operator on a finite dimensional vector 
space F^,n\ and let M be the set of row vectors of some m x n ma-
trix. Then au defines a matroid closure on the finite set M. This is 
where the terminology comes from. In the research literature, ma-
troid closure systems on infinite sets are not always included in the 
matroid concept. 

A matroid is formally defined as a couple (M,cr) where a is a ma-
troid closure operator on M. To simplify the notation, we often write 
M instead of (M,a) and refer to the members of M as the elements 
of the matroid. A set C of elements is called dependent if it is not in-
dependent. If no proper subset of a dependent C is dependent, then 
C is called a circuit. This is consistent with vector space terminology. 
Further, if x e cr(A) for a set A of matroid elements, then let us say 
that x depends on A (or on the elements of A). 

Example. Let G = ( V , E ) be any finite graph. Consider V(V) as a 
vector space over Z2. The subspace closure operator a is a matroid 
closure operator on V { V ) . We have E C V ( V ) . Consider the relative 
matroid {E,OE) on the edge set of G. The circuits are precisely the 
cycles of G. Therefore (E,as) shall be called the cyc/e matroid of 
the graph G. 

Notation. Often we use the notation A instead of o(A) to denote 
the closure of a set A. With respect to a singleton {x}, we shall write 
A + x for All {x} and A - x for A\{x}. The property characterizing 
matroid closure systems among the Noetherian systems is then the 
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requirement that 

x £ A, x e A + y imply y e A + x 

Proposition 1 If C is a circuit of a matroid Af, then each element x 
of C depends on C - x. 

Proof. Some element a of C obviously depends on C-a, because 
otherwise C would be independent. But could some other element x 
of C fail to depend on C - x? Since C - x is independent, we have 
a £ C\{a, x} but a G C - a, i.e., a G (C\{a,x}) + x and therefore 

The Noetherian property of matroid closure systems postulates a 
fortiori that all matroid closure systems are algebraic. As in vector 
spaces, this implies that a set A of matroid elements is independent 
if and only if every finite subset of A is independent. Consequently, 
every circuit is finite. A set A is dependent if and only if it contains 
a circuit. Further, the proof of the Basis Characterization Theorem 
carries over, verbatim, to the general matroid context. Thus for any 
set B of matroid elements the following are equivalent: 

(i) B is a maximal independent set, 

(ii) B is a minimal generating set for the entire matroid set Af, 

(iii) B is independent and generates Af. 

Consistently with linear algebra, such a set B is called a basis of the 
matroid (A/,<r). For any subset S of M, a set / C 5 is independent 
with respect to a = OM if and only if it is independent with respect 
to the relative operator as- Thus the maximal independent subsets of 
5 are precisely the bases of the relative matroid (5,<T 5). By a basis of 
S we mean a basis of (S,as)-

Example. In the cycle matroid of a finite graph G = {V,E) a set 
B C E is a basis if and only if B is the union of the edge sets of one 
spanning tree in each connected component of G. 

The Noetherian property of matroid closure systems implies that 
all independent sets in a matroid are finite. It then becomes quite 
obvious that the Basis Existence Theorem for vector spaces remains 

x G C\{a,x} + a, x ec-x • 



248 M A T R O I D S 

valid in matroids: every matroid has a basis, and each independent 
set of matroid elements is contained in some basis. 

Let G be a set of elements that generate the entire matroid M. If 
B is a maximal independent subset of G, then the closure of B con-
tains G, and therefore B generates the entire matroid M. Thus every 
set of elements that generate the matroid M contains a basis. Even 
more generally, if G C M generates M and / C G is independent, 
then there is a basis B such that / C B C G. 

Let S be any set of matroid elements, and let x G S\S. Take any 
basis B of S. The finite set Bli {x} is dependent. Take any minimal 
dependent subset C of B U {JC}. Obviously C is a circuit, and C\S = 
{x}. The reader can conclude that in any matroid M, the closure of 
any set S C M is given by 

S = SU {x G M : for some circuit C, C\S = {*}} 

Proposition 2 If A,B are distinct circuits of a matroid and v belongs 
to AC\B, then there is a circuit C such that C C (A U B)\{v}. 

Proof. Could the set (A U B) - v be independent? Let w G Ob-
viously w belongs to (A U B) - v. We claim that w depends on 

(AUB)-v-w 

Observe that in the inclusion 

A — w C (A - w - v)U B - v 

the larger set has the same closure as 

(A - w - v) U (B - v) = (A U B) - w - v 

Therefore A - w is contained in the closure of (A U B) - w - v, and 
since w e A - w, w does belong to the closure of (A U B) — w - v as 
claimed. Thus (A U B) - v is dependent and it must contain a circuit. 

• 

Matroid Exchange Theorem. Let V be a matroid, M C V an in-
dependent set, N a proper subset of M, and v G V\M such that 
N U {v} is independent. Then for some w G M\N the set 

(M\{w})U{v} 

is independent. 
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Proof. (An abstract and therefore simpler version of the Steinitz Ex-
change proof.) 

The case where M + v is independent needs no discussion. Let 
therefore C C M + v be a circuit. We have {v} c C , C N + v. 
Let 

Let us show that M' = M — w + v is independent. Were this not so, 
take a circuit C' C M'. Obviously, v e C', w $ C. Thus 

According to Proposition 2, (CU C') - v would be dependent, which 

Basis Equipotence Theorem (For Matroids). Any two bases of a 
given matroid are equipotent. 

Proof. Review the proof of the vector space Basis Equipotence The-
orem. (In fact the situation is simpler. Since all matroid indepen-
dent sets are finite, so is the set £ of exchange functions and Zorn's 
Lemma is not really needed.) • 

A matroid closure system will also be referred to as a matroid 
geometry. This is consistent with the convention that any closure sys-
tem can be called a geometry. The closed sets of a matroid can be 
referred to as flats. The cardinality of any basis of a matroid (M,a) 
is called the geometric dimension of the matroid. For S C M the geo-
metric dimension of {S,as) is denoted by gdS. (The term rank used 
in many texts is synonymous.) If S is closed and 5 C T C M, then 
g d S < g d 7 \ 

Examples. (1) The projective geometry ProK on any finite dimen-
sional vector space V is a matroid geometry. For every flat W (sub-
space of V) we have gdH^ = dim If. (2) The inclusion-ordered power 
set V(S) of any finite set 5 is a matroid geometry. For every flat 
A (subset of S) we have g<\A = Card/4. (3) Let G = (V,E) be 
a finite graph with n vertices and k connected components. In the 
cycle matroid we have gdE = n-k. (Excellent exercise in graph 
theory.) 

w e Cn(M\N) 

C±C' and vecnc' 

is absurd. • 
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AC B if and only if lub A < lubB 

The inclusion-ordered set of flats of any matroid (Af,<r) is a lat-
tice, because it is a closure system. Let us show that this lattice is 
geometric. It is bounded by c(0) = 0 and a(M) = M = M. It is dis-
crete because every chain of flats comprises at most 1 + gd M flats. 
Does it satisfy the lower covering condition? Observe first that a flat 
G covers a flat F C G if and only if 

g d F + 1 = gdG 

Assume that F covers FAG = FDG. Let B be a basis of FAG, 
BQ a basis of G containing B, and b any element of F\G. Then 
BU{b} is independent, and since gdF = gd(FA G) + 1, Bl){b} is 
a basis of F. If follows that BQ U {6} generates F V G, and it is in 
fact a basis of F V G. Thus 

d imFVG = dimG + 1 

and F V G covers G. This proves that the lattice of matroid flats sat-
isfies the lower covering condition. Finally, observe that the atoms 
below any flat F are the flats A with gd A = 1 contained in F. For 
v e F either the singleton {v} is dependent, in which case the ele-
ment v belongs to 0 and thus belongs to every flat, or {v} is in-
dependent, in which case {v} C F and {v} is an atom. Obviously F 
is the least upper bound of all such atoms {v}. This completes the 
proof that the lattice of matroid flats is geometric. 

Matroid Lattice Theorem. The set of flats of any matroid, ordered 
by inclusion, constitutes a geometric lattice. Every geometric lattice is 
order-isomorphic to the lattice of flats of some matroid. 

Proof. The first statement was proved above. 
As for the second statement, let L be a geometric lattice, let M 

be the set of atoms of L, and define a : V(M) -* V(M) by 

<T(A) = { J C € M : x < \\xbA} 

Obviously a is a closure operator on M and we can write A for 
(j(A). For any closed sets A,B we have 
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For every / £ L, the set of atoms less than or equal to / is closed 
and the lub of this closed set is /. Thus associating with every closed 
set its lub defines an order isomorphism between the lattice C of 
closed sets and L. Therefore (C,C) is a geometric lattice as well. 
In particular every chain in (C,C) is finite. The closure system C is 
therefore Noetherian. 

Next, observe that the atoms of (C,C) are precisely the single-
ton subsets of M. To conclude that we have a matroid closure system, 
let _ 

ACM, x,yeM, x\tA but x£ A + y 

Obviously AcA + xCA + y. In the geometric lattice (C,C), the 
atom {y} = {y} covers 

{y}AA = {y}AA = 0 

and therefore {y }V A = A + y covers A. This forces 

A + x = A + y and y G A + x 

proving that C is a matroid closure system. We already know that 
(C,C) is order isomorphic to L. • 

Indeed a closure system constitutes a matroid geometry if and 
only if the inclusion-ordered set of closed sets is a geometric lat-
tice. Thus both the projective and affine geometries on any finite 
dimensional vector space are matroid geometries. 

In any matroid, the geometric dimension of a matroid flat is equal 
to its height in the geometric lattice of flats. A note of caution is in 
order regarding the geometric dimension concept in matroids aris-
ing from a vector space V. In the matroid geometry ProK we have 
gd F = dim F for every flat F (subspace of V). This is no longer true 
in the larger matroid geometry Aff V. Affine lines have geometric 
dimension 2 in the affine geometry, even though affine lines that 
belong to ProK have geometric dimension 1 in the projective ge-
ometry. When speaking about geometric dimension, it is important 
to specify in which geometry it is understood. When speaking of 
a nonempty flat F e Aff V, its dimension dim F as defined in Chap-
ter VI is sometimes emphatically called algebraic dimension. No one 
will then mistake an affine flat of algebraic dimension 1 for a single-
ton. 
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2. MINORS AND TUTTE POLYNOMIALS 

Let (M,cr) be a matroid and let 5 C M, T = M\S. Remember that 
the relative closure operator as

 w a s defined on S by 

as(A) = a(A) n S for all ACS 

EXERCISES 

1. Write a program that, given any matroid on a finite set M and an 
independent set /, finds a basis of M containing /. Use a list of 
circuits to specify the matroid. 

2. Show that if (M,a) is any matroid, then there is a (unique) ma-
troid (M,a*) on the same set of elements such that the bases of 
(M,a*) are the various sets M\B where B is a basis of (M,a). 
Describe ( £ , c r * ) if (E,a) is the cycle matroid of a graph. 

3. Describe those graphs (V,E) where the graphically convex sets 
form a matroid geometry on V. Are there lattices where the 
order-convex sublattices form a matroid geometry? 

4. Let E : F be a field extension. Call a subset K of E closed if 
no polynomial over the subfield of E generated by F U K has a 
root in E\K. Verify that this indeed defines a closure system on 
E. What is the smallest possible closed set? Describe situations 
when this closure system is a matroid, and situations when it is 
not. 

5. Let V be the set of bases of a matroid. Define a graph on vertex 
set V by letting a pair {B,C} of bases form an edge whenever 
Card (B + C) = 2. What can you say about this graph? 

6. A maximal proper flat in any matroid is called a hyperplane. Verify 
that this generalizes the affine hyperplane concept. What results 
of affine geometry involving hyperplanes can be carried over to 
matroids? 

7. Let a be a closure operator on a set V and let M CV. Verify 
that the closed sets of the relative closure opertor CM are the sets 
Kf\M, where AT is a closed set of a. 
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The matroid {S,crs) is referred to as the restriction of the matroid 
structure of M to S, or synonymously, as the matroid obtained by 
deletion of T. Another important derivative matroid on S is the con-
traction (S, r) where 

This matroid on 5 is said to be obtained by contraction to S or by 
contraction of the elements of T. Omitting the operator a from the 
notation, the restriction to S of a matroid M is simply denoted by 
M\S or M - T. The contraction to S is denoted by M : S or M • T. 
(Warning for insiders: this is not a universally accepted notation.) 
If T is a singleton {e}, then we write simply M - e or Me. This 
is made to look on purpose like deletion and contraction of graph 
edges. 

Let 5 be a set of elements of a matroid M. Observe that for ev-
ery A C S the geometric dimension of A in M\S coincides with its 
geometric dimension in M. 

For S C T C M the matroid (M\T)-S is called a minor of M. 
Most remarkable is the case where both 5 and T are closed: 

Matroid Interval Theorem. Let Abe a flat of a matroid M. For any 
matroid N, let C(N) denote the lattice of flats of N. 

(i) The lower section (<—,/!] in C(M) coincides with C(M\A). 

(ii) The upper section [A,—•) in C(M) is order isomorphic to 
C(M • A). 

(iii) If S CT are flats of M, then the segment [S,T] in C(M) is 
order isomorphic to C((M\T) • 5) 

Proof, (i) Closure in M\A is given by 

Since A is closed in M, X C A is closed in M\A if and only if X is 
closed in M. 

(ii) With B the set complement of A in M, closure in M A = 
M : fi is given by 

T(A) = a(AUT)nS for all ACS 

X =a(X)HA for all X C A 

X =(T(XUA)nB for XCB 
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Clearly X = X if and only if X U A is closed in M. The order iso-
morphism from [A,-*) to C(M • A) is given by associating with each 
flat F of M containing A the set FOB (the set of elements of F 
not in A). 

In the remainder of this section we restrict our attention to ma-
troids with a finite number of elements. We define the Tu tie poly-
nomial T(M) of a matroid as a certain polynomial in two indeter-
minates X,Y over Z. If M has geometric dimension gdAf = d then 
T(M) is 

Note that gdS < d and gdS < Card 5 for every S CM, and remem-
ber that (X - 1)° = (Y - if = 1. 

An element e of a matroid M is called an isthmus if it belongs to 
every basis of M, and it is called a loop if it belongs to no basis of 
M. Clearly e is an isthmus if and only if it does not belong to any 
circuit, and it is a loop if and only if the singleton {e} is a circuit. 
If e is an isthmus or a loop of a matroid M, then M • e = M - e. 
Otherwise 

gd(M • e) = gd M - 1 and gd(M - e) = gd M 

Example. In the cycle matroid on the edge set of a finite connected 
graph G, an edge e is an isthmus if and only if G - e is discon-
nected. There are no loops in graphic cycle matroids, according to 
our definition of graphs. 

Recursion Formulas. Let e be any element of a matroid M. Then the 
Tutte polynomial of M is expressed in terms of the Tutte polynomials 
of M — e and M • e as follows: 

(iii) Combine (i) and (ii). • 

Y,(X~ l)d~gdS(Y - 1)' 
Card 5 -gd S 

SCM 

T(M) = { 

X • T(M • e) if e is an isthmus 

Y • T(M — e) if e is a loop 

T(M — e) + T(M • e) otherwise 
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Proof. In the definition of T(M) the sum is taken over all S £ V(M). 
Let 

?! = {5 6 V(M) :e$S}, P2 = V(M)\PX 

Let us write d for gdAf and for any S C M let us abbreviate Card S 
as \S\ and the term (X - l)d~^s(Y - lf\-&iS as t(S). We have 

T(M) £ *(S) = £ [r(5) + /(SU{* })] 
5 e ? , se/>2 sePi 

If e is an isthmus, then gd(SU {e}) = gdS + 1 for every S £ P\ 
and 

«(5) + f (S U {e}) = (X - l y - s ^ y - i)l5l-8d 5 

+ (A' - i ) ' i - 8 d 5 - 1 ( y _ i)IS|-gdS 

^XiX-lf-^iY-lf^5 

Since e is an isthmus, we have gdM • e = d - 1, and for every S £ P\ 
the geometric dimension of 5 in M • e equals gdS in Af. Therefore 

T(M) = 1 ^ ( 1 - ^ - l i - g d ^ y _ jysi-gds = ^ . r ( M . g ) 

If e is a loop then gd(SU {e}) = gdS for every S £ P\ and 

t(S) + f (S U {<?}) = (X - l)d-^s(Y - i)l5l-sdS 

+ (X - i)d-^s(Y - i) l 5 l + 1 -8 d 5 

_ Y(X — i ) d ~ g d s ( y _ i y 5 l _ 8 d s 

Since e is a loop, we have gd(M - e) = d. Also, for every 5 £ P\ 
the geometric dimension of S in M-e coincides with gdS in M. 
Therefore 

T(M) = Y^2(X- l)d-^s(Y - \f\-zdS = Y • T(M - e) 

If e is neither a loop nor an isthmus, then gd(M - e) = d and for 
every 5 € Pi the geometric dimension of S in M - e coincides with 
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gdS in M. Therefore 

£ t ( S ) = T ( A f - 0 

We also have gd(M • e) = d - 1, and for every S G Pi the geometric 
dimension 76 S of S in A/ • e is 1 less than the geometric dimension 
gd(SU {e}) of SU{e} in Af. For every S G Pi we have 

d - gd(5 U {e}) = gdM • e + 1 - (765 + 1) = gdM • e - ydS 

\S U{e}\- gd(5 U {e}) = \S\ + 1 - (y6S + 1) = |5| - 7<55 

and therefore 

Y,t(SU{e}) = T(M-e) 
sePt 

We conclude that T(M) = T(M -e) + T(M • e). • 

The values of the Tutte polynomial of a matroid provide much 
combinatorial information. Here we discuss evaluations in the ring 
Z[X,Y] itself. Consider any polynomial P 6 Z[X,Y], 

P = ZdjXiYi 

If a,b 6 1[X,Y], then the value P(a,b) of P at a and is the ele-
ment 

«'.;' 

of ZfA'.y]. We also say that P(a,fe) is the value of P at Z = a and 
y = b. Of course P ( * , Y ) = P for all P G Z[*,Y]. For another ex-
ample, the value of XY + 3 at X - 1 and 2X + 2 is 2X2 + 1. The 
value of AT at 3 and - 2 is - 6 . The computation of values is greatly 
facilitated by the observation that the function mapping P to P(a,b) 
is a ring homomorphism from Z[A\.Y] to itself. This is all that we 
need to know about Z[X,Y] for the present purposes. 

Basis Counting Theorem. The number of bases of a finite matroid is 
the value of the Tutte polynomial at X = 1, Y = 1. 

Proof 0° = 1. • 
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If M is a finite matroid, L the set of its loops, and G = (V,E) 
a finite graph, then a surjective function g : M\L —• E is called a 
graphical representation of M in G provided the closed sets of M are 
precisely those of the form LL)g~l[K] where K is closed in the cycle 
matroid of G. Note that g is not required to be injective. Indeed, for 
e ' ^ e w e have g(e') = g(e) if any only if {e',e} is a circuit. In this 
case e' and e are said to be parallel. The element e' is then a loop 
in M • e. 

Examples. (1) Let M be the matroid on {1,2,3,4,5,6} with closed 
sets 

{5,6},{1,5,6},{2,5,6},{3,4,5,6},{1,2,3,4,5,6} 

Then a graphical representation of M in # 3 is depicted in Figure 
9.1 (top left). (Each edge is labeled by the matroid elements mapped 
to it.) (2) The two-uniform matroid on a five-element set has no 
graphical representation. 

For the cycle matroid of any finite graph G = (V, E) the identity 
mapping on E is a graphical representation in G, called the canon-
ical representation. Any matroid that has a graphical representation 
is called a graphic matroid. Obviously the cycle matroid of any finite 
graph is graphic. The proof of the following is left as an exercise. 

Proposition 3 In a graphic matroid M with loop set L and represen-
tation g in a graph G, let e e M\L. 

(i) / = g\(M\L)\{e} is a graphical representation of the matroid 
M — e, either in G or in the edge-deleted graph G — g(e), ac-
cording to whether M does or does not have an element parallel 
to e. 

(ii) The matroid M • e has a graphical representation h in G • g(e) 
given for every nonloop element a of M • e by 

*(«) = *(«) for g(a)ng(e) = 0, 

h(a) = {v,e} for g(a) = {v,x} with xeg(e), 

where e is the vertex of G • e not in V\{e). 
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1/ \ 3.4 

15.6) 

1 / \ 3 
2 

15,6) 

(5,6.3) 15.6,3.1) 

(5,6) (5,6.3.!| 

= X 2 Y 2 + X Y 2 + Y 3 + X Y 3 + Y 4 

FIGURE 9.1 Computing the Tutte polynomial. 

Readers are urged to visualize graphic matroids as if they were 
"graphs with multiple edges." 

The Recursion Formulas, together with the observation that the 
Tutte polynomial of the empty matroid (M = 0) is 1, allow the ac-
tual computation of T(M) for any matroid M. If M consists of m 
isthmuses and n loops and no other elements, then T(M) = XmYn. 
Otherwise we can start the computation with any element e that is 
neither a loop nor an isthmus. Let us illustrate this for a graphic ma-
troid on {1,...,6}. Proposition 3 should be kept in mind. In Figure 
9.1 graphical representations are specified pictorially by writing each 
nonloop matroid element next to the corresponding graph edge and 
listing the loop set underneath. In manual calculations, this lines-and-
numbers hieroglyph is used as a notation for the Tutte polynomial 
itself. 
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Let g be a graphical representation of a matroid Af in a graph G 
with k connected components. Since the chromatic polynomial p(G) 
is divisible by Xk, we have p(G) = XkQ for a certain Q G ZLY]. 
The chromatic polynomial Q(M,g) of the representation g of Af is 
defined by letting 

and letting Q(M,g) be the zero polynomial if Af has any loops. A 
matroid can have not only different representations in a given graph 
but also representations in different, nonisomorphic graphs. For ex-
ample, an m-uniform matroid on m elements has representations in 
every forest with m edges. However, in view of the form the chro-
matic polynomial of a forest takes, it is obvious that all these graph-
ical representations have the same chromatic polynomial. We shall 
see below that indeed any two representations of any matroid Af 
have the same chromatic polynomial depending on Af only. 

Let us show that if g is any graphical representation of a matroid 
Af in a graph G, then for the chromatic polynomial Q(M,g) we have 

where T(M;1 - A",0) denotes the value of the Tutte polynomial of 
Af at 1 - X and 0. We shall use induction on the number of nonisth-
mus elements of Af. 

The case of Af having any loop e is quickly disposed of, because 
in this case Q(M,g) is by definition the zero polynomial, and using 
loop recursion, 

If every element of Af is an isthmus, then G is a forest, and 
gdS = CardS for every S C Af. If CardAf = gd Af = m and G has 
k components, then m is necessarily the number of edges of G, 

Q(M,g) = Q if Af is loopless 

e(Af,£) = ( - l ) g a " r ( M ; l - * , 0 ) 

T(M;1- X,0) = 0 - r ( A f - e ; l - X,0) = 0 

p(G) = Xk(X - l ) m = XkQ{M,g) 

Q{M,g) = (X- l ) m 

and 

7 ( A f ; l - A - , 0 ) = m -Card 5 ( - 1 ) ° = ,m-CardS 

SCM SCM 
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Since for every finite set M we have the polynomial identity 

^ _ ^ C a r d A f _ ^ ^ _ ^ C a r d A / - C a r d S 

SCM 

(easily verifiable by induction on Card M), the desired equality 

Q(M,g) = (-l)mT(M; l-X,0) 

follows in the case where every element of M is an isthmus. 
Now let us proceed with the inductive step. Assume that 

Q(N,h) = (-lfNT(N;l-X,0) 

for every graphical representation h of any matroid N having less 
nonisthmus elements than M. We can assume that M is loopless. 
Let e be a matroid element that is not an isthmus. We have 

gd(M - e) = gdM = gd(M • e) + 1 

because e is neither an isthmus nor a loop. By Proposition 3, M - e 
has a representation / in G or G - g(e), and M • e has a represen-
tation h in G g{e). We distinguish two cases. 

Case 1. There is a parallel matroid element e f- e such that g(e') 
= g(e). In this case Q(M,g) coincides with the chromatic polynomial 
of the representation / = g\M\{e} of M - e in G. Also e' is a loop 
in M • e. Since M - e has less nonisthmus elements than M, 

Q(M,g) = Q(M - e,f) = (-Yf{M-e)T{M -e;l-X,0) 

= (-l)gdMT(M - e; 1 - * ,0 ) + 0 

= ( - l ) 8 d A / T ( M - e; 1 - X,0) + {-VfMT{M • e; 1 - *,()) 

= (-lfdMT(M;l-X,0) 

Case 2. There is no parallel e' \t e with g(e') = g(e). Then M • e 
is loopless as well. Both graphs G -g(e) and G g(e) have the same 
number k of connected components as G. We have 

p(G) = p(G-g{e))-p(Gg(e)) 

cQ(M,g) = XkQ(M -e,f)- XkQ(M 

Q(M,g) = Q(M-e,f)-Q(Me,h) 
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Since both M - e and M • e have less nonisthmus elements than M, 
the inductive hypothesis implies 

Q(M,g) = ( - l ) g d ( A f - e ) r ( M -e;l-X,0) 

- ( - l ) g d ( A / e ) r ( M - e ; l - * , 0 ) 

= ( - l ) 8 d A / r (M - e ; 1 - X,0) + ( - l ) g d M 7 / ( M -e\l-X,0) 

= ( - l ) g d M r ( M ; l - A - , 0 ) 

By applying this to the canonical representation of the cycle ma-
troid of a graph G, we obtain the following result. 

Proposition 4 Let T be the Tutte polynomial of the cycle matroid of 
a finite graph G with n vertices and k connected components. Then 
the chromatic polynomial of G is 

(-\)"-kXkT(l- X,0) 

Thus the Tutte polynomial of a graph's cycle matroid encodes the 
essence of the graph's chromatic polynomial. (In the literature, the 
reader may encounter this encoding via other related polynomials.) 
Also, for any connected graph, the Basis Counting Theorem, applied 
to the cycle matroid, implies, via the canonical representation that 
maps bases to edge sets of spanning trees, that the number of span-
ning trees is given by the value 7(1,1) of the Tutte polynomial. 

EXERCISES 

1. Let a be a closure operator on a set M, S C M, and T = M\S. 
Verify that a closure operator r is defined on S by 

T(A) = cr(AUT)nS for ACS 

Verify that the closed sets of T are the sets K OS where K is a 
closed set of a containing T. 

2. Let e be any element of a matroid M and let C C M\{e}. Show 
that C is a circuit of M - e if and only if it is a circuit of M. 
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3. Let S be any set of elements of a matroid M and let T = M\S. 
Show that a set D C S is dependent in M • T if and only if there 
is a set / C T, independent in M, such that D U / is dependent 
in M. 

4. Verify that the rank of any minor of a matroid M is at most 
gdM. 

5. Verify that an element e of a matroid M is an isthmus if and only 
if gd(M - e) = gd M - 1, and it is a loop if and only if gd(Af • e) 
= gdM. 

6. Verify that two elements e,d of a matroid M form a circuit if 
and only if neither one is a loop but d is a loop in M • e. 

7. Let g be a graphical representation of a matroid M. Show that 
/ C M is independent if and only if / contains no loops and no 
parallel elements and g[I] contains no cycle. 

8. Show that all minors of a graphic matroid are graphic. 

9. For a finite dimensional vector space V, show that every minor 
of Aff V is similar to YxoW or to Aff W for some subspace W. 
Conversely, verify that the affine geometry of each subspace W 
is a minor of Aff V. Is Pro IF similar to a minor of Aff K? 

10. Let T be the Tutte polynomial of a finite matroid M. What is 
the significance of the values r(0,0),r(l ,2),r(2 , l) ,r(2,2)? 

11. Write a program to compute the Tutte polynomial of any finite 
matroid. 

12. Write a program to decide if a given finite matroid is graphic. 

3. GREEDY OPTIMIZATION PROCEDURES 

For a finite set S, let I C V(S). A greedy procedure in S with respect 
to I is a finite sequence (a,- : i < n) = (ao,...,a„_i) of distinct ele-
ments of S such that 

(i) {a, : / < m} is in 1 for every m < n, 

(ii) {a; : i < n) U {b} is not in I for any b 6 5\{a,- : i < n}. 



G R E E D Y O P T I M I Z A T I O N P R O C E D U R E S 263 

Note that (i) applied to m = 0 implies 0 G X. The set 

{ai :/<«} = {fl0,...,fl„_i} 
is of cardinality n; it is called the output or result of the procedure. 
Obviously 

n < maxJCardA' : X el}. 

If equality holds, then the output is called optimal in S. 
The term "greedy" refers to the simple-mindedness of the step-

by-step enlargement process followed to find a maximal "interest-
ing" subset of S. Only those subsets of S that belong to X are inter-
esting. 

Example. Consider a graph whose edges form a path of length 5. 
Let S be the set of those five edges. Let X consist of those edge 
subsets whose members are pairwise disjoint. There are 3 + 2 + 2 + 
2 + 3 greedy procedures in S with respect to X. Of these only 6 result 
in a set of 3 = max{Card X : X GX} edges. 

A set H of sets is called hereditary if every subset of every mem-
ber of H belongs to H, i.e., if H is a lower section of (P(l)H),C). 

Examples. Every power set is hereditary. The set of independent 
sets of a matroid is hereditary. For any graph G = (V,E) the set of 
those subsets of V that induce in G a complete subgraph is hered-
itary. The set of those subsets of V that induce in G a cycle is not 
hereditary, unless it is void. 

For any set S, the set of all hereditary subsets of V(S) is a closure 
system on V(S). In particular, if X C V(S) is hereditary and ACS, 
then I n V{A) is hereditary as well. 

Proposition 5 For any hereditary set 1 of subsets of a finite set S the 
following are equivalent: 

(i) For every ACS, every greedy procedure in A with respect to 
lnV(A)yields a result optimal in A. 

(ii) For every ACS, all maximal members of the inclusion-ordered 
set I n V(A) have the same cardinality. 
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Proof. Assume (i). If M is a maximal member of lr\V(A), let 

M = {fl0,...,fl„-i} 

The sequence (a, : i < n) is a greedy procedure in A with the opti-
mal result M, and therefore 

CardM = maxjCardA' : X elnV(A)} 

Conversely, assume (ii). Take an M e 1C\V(A) with largest pos-
sible cardinality m, M = {aQ,...,am_x}. Certainly (o, : /' < m) is a 
greedy procedure with optimal output in A. If (bj : / < / ? ) is another 
greedy procedure in A, then the output set B = {b,• : i < n) is a max-
imal member of lnV(A). By (ii) n = m and therefore the output B 
is optimal as well. • 

A hereditary subset 1 of V(S) satisfying the conditions of the 
above proposition is called greedy optimizable in S. It follows from 
the Basis Equipotence Theorem for matroids that the set 1 of in-
dependent sets of a matroid M is greedy optimizable in M. This 
accounts for much of the attention matroid theory has received in 
operational research. However, the remarkable combinatorial prop-
erties of linear and other independence structures were identified by 
van der Waerden and Hassler Whitney in the 1930s, and it was only 
later that preoccupations with military and industrial optimization 
evolved into a paramathematical discipline of management science. 

Matroids are fully determined by their independent sets. In a ma-
troid M, a set C is closed if and only if for every independent set 
ICC and every x € M\C, the set IU {x} is independent. 

Greedy Characterization of Matroids. A nonempty set I of subsets 
of a finite set S is the set of independent sets of some matroid on S if 
and only if 1 is hereditary and greedy optimizable in S. 

Proof. Only the sufficiency of the conditions remains to be proved. 
Let 1C V(S) be nonempty, hereditary and greedy optimizable in S. 
Consider the set C of subsets C C S with the property that for every 
I £1, I C C, x e S\C, the set / U {x} again belongs to 1. Clearly C 
is a closure system on S. For every A C 5 let 

d(A) = max{Card/ : I el, I C A} 
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Obviously A el if and only if d(A) = Card/4. Using condition (ii) 
of Proposition 5, verify that the closure of any A C S in the system 
C is given by 

A = {x £ S : d(AU {x}) = d(A)} 

Note that d(A) = d(A) for all ACS. Do we then have a matroid 
closure? Let x e AU{y}, x £ A. 

Clearly 

If y did not belong to A U { x } , then 

«"(/4U{JC}U { y } ) = rf(y4U{x}) + 1 = d(AU { x } ) + 1 = d(A) + 2 

Since x e A U { y } , the sets ,4 U { x } U { y } and A U { y } have the same 
closure. This implies 

which is contradictory. Thus y must belong to A U { x } and C is a 
matroid closure system. The independent sets of this matroid are pre-

Matroids arising from graphs have application potential in opera-
tions research to the extent that graphs can be used to model oper-
ational situations. Trees are highly regarded as modeling tools, and 
thanks to the cycle matroid structure, spanning trees in any graph 
can be constructed by a greedy procedure. Another useful graph-
theoretical concept is that of a matching M in a graph G = (V,E). 
By definition this is a set of edges no two of which have a common 
vertex, such as in Figure 9.2. 

d(AU{x}) = d(A) + 1 = d(A) + 1 

d(A U { x } U {y } ) = d(A U { y } ) = d(A) + 1 

cisely the members of J . • 

FIGURE 9.2 A matching with three edges. 
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The example given at the beginning of this section shows that the 
set of matchings in a graph (V,E), while being a hereditary subset 
of V(E), is generally not greedy optimizable in E. However, let us 
consider those subsets S of V that are contained in the edges of 
some matching Af, 5 C UAf. Call such a set S matchable and say that 
Af is a matching for S. Clearly the set of matchable subsets of V is 
hereditary. The result that it is actually greedy optimizable in V is 
due to Edmonds and Fulkerson (1965). 

Matching Matroid Theorem. In any finite graph G = (V,E) the 
matchable subsets of V are the independent sets of a matroid on V. 

Proof. Preliminary observation: in a nonempty connected graph, if 
no vertex is in more than two edges, then the edges altogether must 
form either a path or a cycle. 

Let us show now that in any finite graph G = (V,E), if T C V, 
then any two maximal matchable subsets S\ and S2 of T contain the 
same number of vertices. Let Afi and Af2 be matchings for Sx and 
5 2 , respectively. Let 

V\ = UAfi, V2 = UAf2 

We have Si = V\ n T, S 2 = K2 n 7\ Consider the symmetric differ-
ence 

M = (Af1\Af2)U(Af2\Af1) 

Applying the preliminary observation to the components of the graph 
D = (UAf, Af), we see that the edge sets of the components of D are 
paths and cycles. If they are cycles only, that means V\ = V2 (because 
every vertex on every such cycle belongs to an edge in M\ as well as 
to an edge in Af2). Consequently we have 

sx = K , n r = v2nr = s2 

if Af is a union of cycles. Otherwise let P\,...,Pn be those maximal 
paths of D = (UAf,Af) that are not contained in a cycle. If Py is a 
path from vertex a,- to 6,, write = {fl/,6/}. Clearly neither a,- nor 
bi can belong to V\ n V2. All other vertices in UAf belong to V\ n V2. 
Could we have CardSi < C a r d 5 2 ? This would only be possible if for 
some ! < « < « , 

Card(£; n Si) < Card(£,- n S2) 
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Then one of the two vertices in say a,, would belong to 52\Si, 
without the other belonging to Si \S 2 : 

a t € S 2 \ S b bi i SX\S2 

(In fact bi e S2 or bi € V\T.) Certainly a, e T. Then 

M' = (Ml\Pi)U(PinM2) 

is a matching with Si U {a,} C UM', contradicting the maximality of 
the matchable set S\. This forces Card Si = CardS2 for any two max-
imal matchable subsets S\,S2 of T. • 

EXERCISES 

1. Let I be a hereditary set of subsets of a finite set S. Are the 
following equivalent? 

(a) Every greedy procedure in S with respect to 1 yields a result 
optimal in S. 

(b) All maximal members of the inclusion-ordered set 1 have the 
same cardinality. 

2. If M is a matching in a finite graph G, then a path P between 
vertices a,b is called an alternating path for M if a,b \t UAf and 
the symmetric difference M + P is a matching of higher cardinal-
ity than M. Show that for every matching of less than maximum 
size there is an alternating path in G. 

3. Write a computer program to find a maximum size matching in 
any finite graph. How would you sell this program to a marriage 
broker who complains about too much paperwork? 

4. (a) Explain how you can find a largest possible number of 
linearly independent rows in a given matrix, say over the 
field Q. 

(b) Given a finite set of points in R" (specified by rational coor-
dinates if you wish), how can you find the dimension of the 
affine flat that they generate? Down to earth, describe explic-
itly the case n = 3. 

(c) In a finite connected graph, how can you find the largest pos-
sible number of edges the removal of which does not discon-
nect the graph? 
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CHAPTER X 

TOPOLOGICAL SPACES 

1. FILTERS 

An upper section F of a lattice L that is closed under the meet 
operation, 

x A y 6 F for x,y 6 F 

is called a /i/rev m the lattice L. The set of filters in L constitutes 
an algebraic closure system on L. Thus, ordered by inclusion, the set 
of filters is a lattice. A proper filter is a filter that is distinct from L 
itself. For any x G L, the section [x, —•) is a filter, called the principal 
filter generated by x. It is proper if and only if x is not a minimum 
of L. In a finite lattice, every nonempty filter is principal. On the 
other hand, consider the power set lattice (V(S),C) of an infinite 
set S. Those subsets of S that have a finite complement in S form a 
nonprincipal filter. 

A filter's closure property under meet implies, by induction, that 
if B is a finite nonempty subset of a filter F, then gib B e F. 

Let L be a lattice with a minimum u. A filter F is proper if and 
only if u £ F. An ultrafilter is a maximal member of the inclusion-
ordered set of proper filters. Zorn's Lemma applies to this ordered 
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set: every proper filter is included in some ultrafilter. A principal 
filter [JC,—•) is an ultrafilter if and only if x is an atom. 

Let A be any nonempty set of elements in a lattice L with mini-
mum u. If A is contained in some ultrafilter, then obviously gib B f-
u for each finite nonempty subset B of A. Conversely, if glbfl ^ u 
for every finite nonempty BCA, then 

{ J C £ L : x > gib 5 for some finite nonempty BCA} 

is a proper filter containing A and contained in some ultrafilter. 
If L is a nontrivial Boolean lattice with minimum u, and x £ L, 

xfu, then clearly no ultrafilter can have as members both JC and 
its complement J C ' . On the other hand, suppose x' is not a member 
of some ultrafilter F. Consider the set A = FU { J C } . Could it be that 
for some finite subset B of A, gib5 = ul Only if x £ B. We would 
have 

x = JC' Vglbfl = glb{x' V b : b £ B} 

= glb{jc'vfe :b£B, b ? x} = x'Vglb(B\{x}) 

and therefore glb(5\{jc}) < x'. Since B\{x} C F, we have 

glb(fl\{jc})GF 

and JC ' would have to belong to F as well, which is contrary to as-
sumption. Thus gib5 \t u for all finite subsets B of A = FU {JC} and 
therefore AC F' for some ultrafilter F'. Since F C A is already an 
ultrafilter, we must have F' = F and x £ F. We have shown that if 
F is an ultrafilter in a nontrivial Boolean lattice L, and x £ L, then 
one and only one of x or its complement JC ' belongs to F. 

If F is a proper filter in a Boolean lattice L, but not an ultrafilter, 
then it is properly contained in some ultrafilter F', F C F'. For x in 
F'\F, neither x nor JC ' belongs to F. Thus a filter F in a nontrivial 
Boolean lattice L is an ultrafilter if and only if for each x £ L, one 
and only one of x or JC ' belongs to F. 

Let L be a Boolean lattice and let L* be its dual. Of course L* too 
is a Boolean lattice. Let R* be the ring associated with the Boolean 
lattice L*. The ideals of R* are precisely the nonempty filters in L. 
The principal ideals are the principal filters. The maximal ideals are 
the nonempty ultrafilters. 
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In the sequel we shall only be interested in filters in a power set 
lattice (V(S), C) . Such a filter F is called a filter on the set S. If S' is 
another set and g : S —* S' any function, then 

{g[A):AeF} 

generates a filter on S' that we call the image filter of F and denote 
by g(F). The reader should verify that if F is a proper filter, then so 
is g(F), and if F is an ultrafilter on S, then g(F) is an ultrafilter 
on S'. 

If F and F' are filters on a set S and F C F', then F' is called a 
refinement of F. For S fi 0, the ultrafilters F on 5 are characterized 
among all proper filters by the property that if 5 is expressed as a 
finite union of subsets 

AiU---UAn=S 

then some of the At must belong to F. The principal filters on S are 
the sets 

Fx = {Y 6 V(S) : X C Y) 

for I C 5 . The principal ultrafilters are the sets 

UX = {Y€ V(S) : x G Y) 

for x G S. There are nonprincipal ultrafilters if and only if S is infi-
nite. In this case all ultrafilter refinements of the cofinite filter 

{X G V(S) : 5\A- is finite} 

are nonprincipal. On the other hand, if an ultrafilter F on S has a 
finite member M, we can take one with least possible cardinality, 
and M must then be a singleton. This is so because otherwise 

f] (S\{x}) = S\M 

would belong to F, which is absurd. It follows that a nonprincipal 
ultrafilter has only infinite members. In conclusion, on any infinite 
set S, the nonprincipal ultrafilters are precisely the ultrafilter refine-
ments of the cofinite filter. 

Some discrete mathematics is definitely not finite mathematics. 
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EXERCISES 

1. Prove the "Stone Representation Theorem": every Boolean lat-
tice, finite or infinite, is isomorphic to a sublattice of a power set 
lattice. (Hint: consider the set of ultrafilters.) 

2. Verify that ultrafilters are characterized among all nonempty prop-
er filters F in a Boolean lattice L by the property that for all 
x,y 6 L, x V y G L if and only if x or y belongs to L. 

3. Verify that a nonempty proper filter F in a Boolean lattice L is 
an ultrafilter if and only if L\F is a filter in the dual lattice L*. 

4. Let L be any lattice. Is the lattice of filters in L a sublattice of 
the lattice of all sublattices of L? 

5. Describe the ultrafilter refinements of a given principal filter on 
a set 5. 

6. Let F be a filter on a set S and let g : S ~+ 5' be any map. Verify 
that the image filter g(F) on S' coincides with the upper section 
of (P(5 ' ) ,C) generated by the sets g[A], A£ F. 

2. CLOSURE, CONVERGENCE, AND CONTINUITY 

Algebra concerns itself, initially at least, with the question of how 
to obtain a result from certain "components" by applying certain 
operations: we get 5 from 1 and 4 by applying addition, we get 6 
from 2 and 3 by taking an 1cm. Topology's basic question is how to 
get to a result from certain "approximants" by applying some concept 
of closeness: we get to 0 from the approximants 1/n, n G w, and we 
get to a circle from a set of approximating polygons. The concept of 
closeness is clear when we approximate 0 with n G it is less 
obvious for the circle and the polygons. 

Let C be a closure system on a set T such that 

(i) the empty set is closed, 
(ii) the union of any two closed sets is closed. 

Then (T,C) is called a topological space. Abusively, we often refer 
to the "topological space T " when (T,C) is understood. The closure 



C L O S U R E . C O N V E R G E N C E , A N D C O N T I N U I T Y 273 

system C is also called a topology or topological closure system on 7. 
The elements of 7 are often called points. A point x of 7 is close 
to, or approximated by, a set .4 C 7 if JC belongs to the closure ,4 of 
A in the closure system C. We also say in this case that x is a closure 
point, or adherence point, of A 

A subset of 7 is called o/?e« if its complement in 7 is closed. 

Examples. Let 7 be any totally ordered set. Call a set C C 7 closed 
if no nonempty subset of C has a lub or gib outside C. The clo-
sure system thus defined is a topology on 7, called chain topology. 
If 7 = R, with the standard order, then we have the standard real 
topology. Here, indeed, 0 is approximated by the set {1/n : n £ UJ}. 
The interval [0,1] is closed in this topology, while the negative real 
numbers form an open set. The set Q of rationals is neither closed 
nor open, and the entire set R is of course both closed and open. 
The set Q approximates every real number. 

On any set 7, there is at least the discrete topology in which all 
subsets of 7 are closed and the trivial topology having only 0 and 7 
as closed sets. 

If CCC' for two topologies on the same set 7 , then C is said 
to be finer, or to be a refinement of C. This defines the refinement 
order on the set r of all topologies on 7 . The trivial and discrete 
topologies are the min and max of T , respectively. Also, the set r of 
all topologies on 7 is a closure system on the power set V(T), and 
thus it is a complete lattice under the refinement order. 

For any set 5 of points of a topological space (T,C) the inherited 
topology on S is by definition {SH C : C £ C}. When we refer to the 
topological properties of such a subset 5 of 7, it is understood that 
we have the inherited topology in mind. 

Example. The set of integers is discrete in the standard topology of 
the real numbers. 

Algebraic homomorphisms preserve operations. In topology, we 
are concerned with functions that preserve approximation. A func-
tion h : 7 —> 7 ' between topological spaces 7 and 7 ' is said to be 
continuous when for every x £ 7 and ACT, if A approximates JC, 
then h[A] approximates h(x). 
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Proposition 1 The following conditions are equivalent for any func-
tion h :T —*T' between topological spaces: 

(i) h is continuous, 

(ii) whenever B C T' is closed, the inverse image h~x[B] is closed 
in T, 

(iii) whenever B C T' is open, h~l[B] is open in T. 

Proof. Assume (i). If h~x[B] is not closed for some closed B C T', 
then h~x[B] approximates some x that is not in By continuity 
n[n _ 1 [B]] = B approximates h(x) and of course h(x) g B. But this is 
impossible since B is closed: we have proved (ii). 

Next, (ii) implies (iii) because 

h~x[T'\B] = T\h~l[B] for every B CT' 

Finally, assume (iii). Let x be a closure point of some ACT. If 
h(x) were not a closure point of h[A], then h(x) would belong to the 
open set B = T'\h[A]. The set 

h-1[B] = T\h-\h[A}] 

would be open and its complement «_ 1[«[/4]] would be closed. As a 
closed superset of A not containing x, it could not approximate x: a 
contradiction. Thus h(x) 6 h[A], proving (i). • 

The following is easy to verify: 

Proposition 2 The composition of continuous functions h :T —• R 
and g : R —> S is a continuous function from T to S. The identity 
function on each topological space is continuous. All constant func-
tions are continuous. 

In contrast with algebraic homomorphisms, the inverse of a bijec-
tive continuous function is not necessarily continuous: take any bi-
jection from a discrete topological space to a trivial one. Continuous 
bijections with continuous inverse are called homeomorphisms. The 
domain and codomain spaces are then said to be homeomorphic. 

Example. Every order isomorphism between totally ordered sets is 
a chain topology homeomorphism. In particular, any two real seg-
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merits [a,b], af-b, and [c,d], c \t d, are homeomorphic in the stan-
dard topology: map x G [a, b] to c + (d - c) • (JC - a)/(b - a). 

Topology is often defined as the study of continuous transforma-
tions. Which functions are continuous depends of course on the 
topological structure selected. Consider, for example, the set T of 
real numbers whose absolute value is not less than 1, with the topo-
logical closure system generated by sets of the form 

[-x,-y]U[x,y], \<x<y 

Then only one of the three functions illustrated in Figure 10.1 is 
continuous from T to the standard real space. 

Let T be a filter on a topological space T [i.e., a filter in the lat-
tice (V(T),C)]. We say that T approximates x e T if every member 
of T approximates x. Obviously, a set A C T approximates a point x 
if and only if the principal filter generated by A approximates JC . A 
proper filter T converges to JC if every proper filter refinement of T 
approximates JC . Then JC is said to be a limit point of T. The filter T 
is called convergent if it converges to some JC G T. An ultrafilter, of 
course, converges to a point JC if and only if it approximates JC . Every 
principal ultrafilter, generated by a singleton {JC}, converges to x. 

Examples. In the standard real topology, the filter generated by the 
sets 

[0,l/n]\{0}, new 

converges to 0. The principal filter generated by any nonempty non-
singleton subset of R is not convergent. Neither is the filter gener-
ated by the sets [«,—•), new. This latter filter does not even ap-
proximate any point whatsoever. For a different example, consider a 
trivial topology. Here every proper filter converges to every point. 

Let (xn : n e w) be a sequence of points in a topological space T. 
The sets 

{xm : n < m } , new 

generate a filter T on T. By convergence and limit points of the se-
quence we mean those of the filter T. Thus sequence convergence 
is a particular case of filter convergence. 

Example. The sequence (1/n : new) converges to the limit point 
0 in the standard real topology. 
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f"(.\) = Ixl 

« ( X ) = X- x / I xl 

h ( x ) = x 

FIGURE 10.1 Continuity and discontinuity. 

For each element x of a topological space T the open sets con-
taining x generate a filter J\fx on T. Any member of Afx is called a 
neighborhood of x. Observe that 

={N e V{T) : x E O and O C N for some open O} 

= {N EV{T) : x(£T\N} 
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By a neighborhood of a set A C T we mean any set N that is a neigh-
borhood of every point in A. 

Example. In standard real topology, the closed set [0,3] is a neigh-
borhood of 1. It is not a neighborhood of 0. 

Proposition 3 Let T be a proper filter on a topological space T and 
let x£T. 

(i) T approximates x if and only if in the lattice of all filters on T, 
TV Nx is a proper filter. 

(ii) T converges to x if and only if Mx C T. 

Proof. For the first assertion, note that the join of two filters is a 
proper filter if and only if no two filter members taken from the 
respective filters are disjoint. 

For the second assertion, note that if Afx g T, then for some 
neighborhood N of x the filter generated by ?u{T\N} is proper 
and it does not approximate JC. • 

Proposition 4 Let h : T -*T' be a function between topological 
spaces. The following conditions are equivalent: 

(i) h is continuous, 

(ii) for every x € T, Nn(x)
 a subset of the image filter h(Afx), 

(iii) if a filter T on T approximates a point x, then the image filter 
h(F) approximates h(x), 

(iv) if a filter T onT converges to a point x, then h(F) converges 
to h(x). 

Proof. Use Propositions 1 and 3, and remark that (ii) can be restated 
as follows: for every x £ T and every neighborhood Af of h(x), there 
is a neighborhood M of JC such that h[M] C N. • 

An open cover of a topological space T is a set O of open sets the 
union of which is T. A subcover is any subset 5 of O the union of 
which is still the whole of T. For example, in standar • real topology, 
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the set of open intervals 

(a,b) = [a,b]\{a,b}, a,b£R, a<b 

is an open cover of R, and those (a, b) for which both a and b are 
rational form a subcover. 

Proposition 5 For any nonempty topological space T the following 
conditions are equivalent: 

(i) Each proper filter on T approximates some point of T. 
(ii) Each ultrafilter on T is convergent. 

(iii) Each nonempty set of closed sets in T having empty intersec-
tion has a nonempty finite subset with empty intersection. 

(iv) Each open cover of T has a finite subcover. 

Proof, (i) clearly implies (ii), and (iii) is obviously equivalent to (iv). 
To show that (ii) implies (iii) assume that some nonempty set S 

of closed sets has no finite nonempty subset with empty intersection. 
Thus S generates a proper filter T. Take any ultrafilter refinement 
U of T and apply (ii) to show that nS \t 0. 

Finally, we derive (i) from (iv). Suppose that T is a proper filter 
that does not approximate any point of T. This implies that every x £ 
T has an open neighborhood N(x) disjoint from some member F(x) 
of T. The various N(x), x £ T, form an open cover of T. According 
to (iv) we can take a finite subcover N(x\),...,N(x„). But then 

F = F(*i)n •••(-! F(xn) 

is disjoint from each of the sets N(xi),...,N(x„), which contradicts 
the fact that F £ T cannot be empty. • 

A topological space satisfying the conditions of Proposition 5 is 
called compact. 

Examples. Every nonempty finite topological space is compact. The 
standard topology on R is not compact. (Why?) 

Let (T,,C,)/ e/ be a family of topological spaces. The product topol-
ogy is defined on the product set T = Y[iel T; as the smallest topol-
ogy on T generated by the set of all product sets fl/e/ G. where 
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Q G Ci. Indeed the closed sets of the product topology are the inter-
sections of sets of the form 

where n € u and Cu,...,Cni are in C,-. Clearly the projection maps 
pry- : (Uiei Ti) —• Tj are continuous. Indeed the product topology is 
the smallest topology on the set-theoretical product set fj^i f ° r 

which all projections pr;- are continuous. Moreover, the following is 
easy to verify: 

Proposition 6 A function h from a topological space Q to Y\Tj is 
continuous if and only if the compositions pr ; o h with the projection 
maps are continuous. 

Recall that in Chapter I, the Axiom of Choice was needed to es-
tablish that the product of nonempty sets is not empty (Proposition 
10 of Chapter I). There is a conceptual kinship between nonempti-
ness and compactness. Compactness means the nonemptiness of the 
set of filter-approximated points. Compare: 

Tychonoff Product Theorem. The product of any family of compact 
topological spaces is compact. 

Proof. Let 7 be any ultrafilter on UT,. Let A[ be the set of points 
approximated by the ultrafilter pr^F) on Tj. By Proposition 10 of 
Chapter I, the set fj/e/ has at least one element. This element is 
approximated by T. • 

Infinite products of finite spaces now naturally present themselves 
as examples of infinite compact spaces. The product topology R" = 
n,e/ R«, where n e w and each R, coincides with R (standard real 
topology), has of course no reason to be compact. 

Using condition (iii) or (iv) of Proposition 5, one can easily de-
duce the following: 

Proposition 7 The image of a continuous function defined on a 
compact domain is always compact. 
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Whence the well-known theorem of analysis that every real-valued 
continuous function defined on a compact domain "attains its 
bounds," i.e., the image set has a smallest and a largest element. 
Indeed, the reader should verify that the existence of such min and 
max is a necessary condition of compactness for any subset of R. 
More of this in the sequel. 

EXERCISES 

1. Show that every polynomial of odd degree in R[A"] has a real root. 

2. (a) Show that the binary operations of sum and product on the 
real numbers are continuous functions from R to R. Can you 
make analogous statements for integers or rationals? What 
can you say about polynomial functions? 

(b) Show that every linear map R" —> Rm is continuous. 

3. (a) Verify that the chain topology on a discrete chain is always 
discrete. Can the chain topology be discrete without the chain 
being discrete? 

(b) Let C be a chain, and let K CC. Verify that the chain topol-
ogy on K coincides with the chain topology of C inherited 
by A:. 

4. Verify that a set is open if and only if it is a neighborhood of it-
self. 

5. Verify that a set A approximates a point x if and only if A inter-
sects every neighborhood of x. 

6. Let (T,C) be a topological space. Verify that if a filter converges 
to a point x in some refinement topology, then it converges to x 
in (T,C). 

7. Verify that if a filter converges to a point x, then every refinement 
filter converges to x as well. 

8. Is the set of all topologies on a set T an algebraic closure system 
on P(T)7 



D I S T A N C E S A N D E N T O U R A G E S 281 

3. DISTANCES AND ENTOURAGES 

Consider a filter U on the set V2 of all couples of elements of a 
set V. Each member of U is a binary relation on V. We wish to 
think of these relations as expressing some measure of proximity, 
not necessarily in a numerical sense. Therefore, assume that 

(i) for every x G V and E G U, (x, x) G E, 

(ii) for every E G U the dual relation E* belongs to U as well, 
(iii) for every E G U there is some D G U such that for every 

x,y,z£V, (x,y)£D and (y,z)€D together imply that 
(x,z) G E. 

The couple (K,W) is called a uniform space, or uniformity, on K. 
(Abusively, we can refer to the "uniform space V" if it is clearly 
understood which filter U we have in mind.) The members of U are 
called entourages, or uniform entourages for emphasis. Condition (iii) 
should be reminiscent of epsilon-delta (E-D) argumentation used in 
analysis, although it involves no numerical reference whatsoever. For 
an entourage D, it will be convenient to denote by D o D the relation 

{(x,z) G V2 : (x,y) G D and (y,z) G D for some y G K} 

Condition (iii) then says that for every E there is some D such that 
DoDCE. 

The most natural example is the standard uniformity on V = R, 
where is the filter generated by relations of the form 

{ ( x , y ) G R 2 :\x-y\<e} 

for positive real e. Less natural but nonetheless obvious examples 
are the discrete uniformity on any set V, consisting of all reflexive 
relations, and the trivial uniformity, where U = {V2}. 

The standard uniformity on R belongs to a remarkable class of 
uniformities, arising from a generalization of the "absolute value of 
difference" concept. Precisely, let d be a function from V2 to R for 
any set V. Assume that for every x,y,z £V 

(i) d(x,y)>0, 

(ii) d(x,y) = 0 if and only if x = y, 
(iii) d(x,y) = d(y,x), 
( i v ) d(x,y) + d(y,z)>d(x,z). 
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for real positive e. The metric space defined on a connected graph 
by its graphic distance function gives rise to a discrete uniform-
ity. The distance \x - y\ on R gives rise to the standard uniformity 
on R. Not all uniformities arise from metric spaces: consider the 
trivial uniformity on any set with at least two elements. Those uni-
formities that do arise from metric spaces are called metric uniform-
ities. 

The inner (dot) product of the vector space R" allows us to define 
a metric space structure on R" as follows. The Euclidean distance 
d(x,y) is given, for x,y £ RM, by 

The reader who verifies that this is indeed a distance will have prov-
ed a form of the "Schwarz inequality." The resulting uniformity 
on R" is called Euclidean uniformity. By considering the case 
n = 1, one can see that we truly have a generalization to n dimen-
sions of the distance \x - y\ and of the corresponding standard uni-
formity. 

Let (T,U) be any uniform space. For E e U and x e T define 

{(x,y)eV2:d(x,y)<€} 

NE(x) = {y:(x,y)eE} 

and for A C T define 

NE(A) = (J NE(x) 

The map d is called a distance function on V, and (V,d) is called 
a metric space. Condition (iv) is usually referred to as the triangle 
inequality. 

Examples. For any connected graph (V,E) the graph-theoretical 
distance function on V2 makes the vertex set into a metric space. 
The function d(x,y) = \x - y\ makes R into a metric space. 

Every metric space (V,d) gives rise to a uniform space (VMd) 
where Ud is the filter on V2 generated by the set of relations of the 
form 
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Define the closure A of each subset A of T by 

A = fi NE{A) 

The reader should verify the closure operator properties. Further, 
the set 

C = {A: ACT} 

of closed sets is easily seen to be a topological closure system on 
T. The topological space (T,C) is called the uniform topology corre-
sponding to, or determined by, the uniformity U. If the uniformity U 
is metric, then the corresponding uniform topology is called a metric 
topology. In a uniform topology, an element x e T is approximated 
by a set A C T if there are elements of A "related to x" in every 
entourage relation. The uniform topology on R" arising from the 
Euclidean uniformity is called Euclidean topology on R". It is a met-
ric topology. By considering the case n = 1, it is immediately seen to 
be a generalization to n dimensions of the standard real topology. 

Note that discrete uniformities determine discrete topologies and 
trivial uniformities determine trivial topologies. 

Clearly, in a topological space T corresponding to a uniformity, 
for every x e T and entourage E, NE(x) is a topological neighbor-
hood of x. Also, for every subset ACT, NE(A) is a topological 
neighborhood of A. Assume now that A is closed and x £ A. Then 
there is a uniform entourage E such that NE(x)DA = 0. Let D 
be an entourage with DoD C E. For the uniform entourage G = 
Dr\D* we must have 

NG(A)nNG(x) = 0 

This motivates the following definition: a topological space in 
which every closed set and any point not belonging to it are con-
tained in disjoint respective neighborhoods is called regular. We also 
say that the point is "separated" from the closed set. It is a major 
concern of topology to ascertain which pairs of sets or points can be 
separated, meaning "enclosed in disjoint neighborhoods." Thus reg-
ular topological spaces are those where all closed sets can be sepa-
rated from all points not belonging to them. We can state: 

Regular Separation Theorem. All uniform topologies are regular. 
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It is now easy to see that not every topology is uniform. On any in-
finite set T, consider the topology whose closed sets are all the finite 
subsets of T plus T itself. All nonempty neighborhoods have finite 
complements in T, and no two can be disjoint. In this topology, tra-
ditionally called the cofinite topology on T, in reference to the open 
sets, not even pairs of distinct points can be separated. Topological 
spaces with pairwise separable points are called Hausdorff spaces. 

Hausdorff Separation Theorem. All metric topologies are Hausdorff. 

Proof. For two distinct points x,y, the set of points whose distance 
from x is less than d(x,y)/3 is a neighborhood of JC . Define a neigh-
borhood of y similarly, and separation is achieved. • 

Uniform and regular topologies need not be Hausdorff: the sim-
plest counterexamples arise from trivial uniformities. Thus regular-
ity does not imply Hausdorff separation. Conversely, are Hausdorff 
spaces necessarily regular? A counterexample would of course have 
to be nonmetric. Among the monumental constructions of mathe-
matical theories, topology is not unlike a gothic cathedral with many 
surprising representations of a countergeometric netherworld. Here 
is a beautiful gargoyle: 

Counterexample. On the set R of real numbers, consider the small-
est topology generated by the standard closed sets plus Q (the ratio-
nal) . Its closed sets are the sets of the form 

cu(Knq) 

where C and K are standard closed. Equivalently, these are also the 
sets of the form C n (K U Q). By De Morgan's rule, the open sets are 
the sets of the form 

OU(Pnl) 

or equivalently On(/'Ul), with 0,P standard open in R, and I = 
R\Q, the set of irrational numbers. Now try to separate Q from an 
irrational! 

In a topological space T arising from a uniformity, let £ be a 
uniform entourage and let x e T. For some entourage D we have 
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DoDCE.lt follows that for G = Dn D* and the topological neigh-
borhood NG(x) of x the inclusion 

NG(x)2 C E 

holds. Also, by Proposition 3, NQ(X) belongs to every filter on T 
that converges to JC . We conclude that every convergent filter T on 
T has the following property: for every entourage E there is a mem-
ber N of T such that N2 C E. In any uniform space, a proper filter 
T having this property is called a Cauchy filter. Thus, in any uniform 
space, every convergent filter is Cauchy. A uniform space where ev-
ery Cauchy filter is convergent is called complete. 

The classic examples of incomplete and complete spaces are Q 
and R, with the metric uniformities of the distance |x - y|. The aris-
ing topologies are also precisely the standard chain topologies. The 
uniform space Q is not complete: for any fixed irrational number a 
consider the filter on Q generated by the sets 

Fq = {x 6 Q : q < x < a} 

for rational q < a. The space R is complete: for a given Cauchy filter 
T and real positive e, let Fe be a filter member such that \x - y\ < e 
for all x,y £ Fe. Then T converges to 

lub{glbF£ : £ > 0 } 

The concept of completeness enables us to provide yet another 
characterization of compactness in uniform topologies. Call a uni-
formity on a set T bounded if for each uniform entourage E there 
is some finite subset A of T such that NE(A) = T. Obviously every 
finite uniform space is bounded, and it is easy to see that the Eu-
clidean uniformity on R" is not bounded. 

Compact Uniformity Theorem. A nonempty topological space aris-
ing from a uniformity is compact if and only if the uniformity is both 
complete and bounded. 

Proof. Assume compactness. First, let T be a Cauchy filter. If T did 
not converge, then for some proper filter Q D T the intersection of 
all the closures A , A E G , would be empty, and thus for some finite 
number of members A\,...,AN oiQ we would have 

A^n---n A~N = 0 
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and a fortiori 

AiD---r\A„=0 

But this is impossible since A\ fl • • • n An G Q. Second, take any en-
tourage E. For every element x of the space, let 0(x) be an open 
neighborhood of x contained in NE{x). [Any doubt that such an 
O(x) exists?] The various O(x) form an open cover of the entire 
topological space. Take any finite subcover 

{0(xl),...,0(xn)} 

Clearly NE({X\,...,X„}) is the entire space. 
Conversely, assume completeness and boundedness. Let T be any 

ultrafilter: we shall show that it is convergent. Let E be any uniform 
entourage. Let D be an entourage such that DoDCE and let G = 
D n D*. Let A be a finite set of points such that NG(A) includes the 
entire space. If A consists of x\,...,x„, then 

NG(A) = NG(x1)\J---UNG(xn) 

For some /, NG(xi)£T and NG(XJ)2 C E. This shows that T is 
Cauchy. By completeness, T is convergent. • 

We conclude this section by applying the concepts and results to 
the Euclidean uniform topologies R". These were defined with the 
Euclidean distance 

d{x,y) = yf(x-y)»(x-y) 

for vectors x, y G R", but the reader may wish to verify that they ac-
tually coincide with the topological product 

n * 
where each R, = R. For any subset S of R", the Euclidean distance, 
defined between elements of 5, makes S into a metric space and 
therefore into a uniform space that may or may not be bounded. 
The reader is urged to verify that this Euclidean uniformity on 5 
is bounded if and only if the image set of the distance function 
d : S2 —* R possesses an upper bound in R. The uniform topology 
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of S derived from its metric structure coincides with the Euclidean 
topology of R" inherited by the subset S: it may or may not be com-
pact. 

Borel-Heine-Lebesgue Theorem. A nonempty subset S of R" is com-
pact if and only if S is closed in R" and bounded. 

Proof. We show that being closed in R" is equivalent to complete-
ness under metric uniformity. The argument is an extension of the 
one used earlier to show that R is complete but Q is not. 

If S is not closed, S C S, let x e S\S. Let Mx be the neighborhood 
filter of x in R". Let 

T = {N(1S : N €Afx} 

Then T is a nonconvergent Cauchy filter on S. 
Conversely, assume that S is closed. Let T be a Cauchy filter on 

S. Let 
pn : R" —• R 

be the ith projection. For each i, l<i<n, the image filter 

* i = pn(T) 

on R is a Cauchy filter under standard uniformity. Since R is com-
plete, Tt converges to some real number JC , . The exercise of verify-
ing that T converges to JC = ( J C I , . . . , X , , . . . , J C „ ) is left to the reader. 

• 

Examples. Every segment [a,b] of R is compact. If a,b £ Q, a < b, 
then the segment [a,b] of Q is not compact. The set 

{1/n : neu}u{0} 

is compact. 

Historical Reference. We have presented a view of topological 
spaces in the spirit of Hausdorff's Foundations of Set Theory (1914). 
This corresponds to our preoccupation with the algebra of nonnum-
bers rather than with the geometry of nondistances. Nonnumeri-
cal algebra and nonmensurational geometry are components of the 
same Leibnizian research program. 



288 T O P O L O G I C A L S P A C E S 

BIBLIOGRAPHY 

Claude BERGE, Topological Spaces. Including a Treatment of 
Multi-Valued Functions, Vector Spaces and Convexity. Oliver & 
Boyd 1963. A natural progression of ideas from sets through 
topology to Banach spaces. 

James DUGUNDJI, Topology. Allyn & Bacon 1978. Graduate and 
undergraduate students alike can use this text to gain a well-
rounded general knowledge of topology. The only prerequisite 

EXERCISES 
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Let U be the filter on V2 generated by S. Show that (V,U) is a 
uniformity. 
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CHAPTER XI 

UNIVERSAL ALGEBRAS 

1. HOMOMORPHISMS AND CONGRUENCES 

The Romans were accomplished engineers of roads, bridges, and 
plumbing systems. They used letters to denote numbers, but this was 
notation only. They could add and multiply numbers, but not letters. 
If compared either with the earlier Euclid or the later al-Khwarizmi, 
the Romans may be said to have been algebraically illiterate. There 
was progress but no revolution in this respect until Galois's group 
theory. His was a century of structural inventions, rich in nonnu-
merical algebra. Whitehead's Treatise on Universal Algebra, published 
in 1898, was a first attempt at unification. (The second attempt is 
twentieth-century category theory.) 

A universal algebra, or simply algebra, is a couple (£/,(/! : / £ /)) 
where U is any set and (/,• : i £ I) is a family of operations, 

fi : U"(i) -» U, n(i) £ w 

for i £ / . The family (n( i ) : i £ / ) is said to be the type of the alge-
bra. For notational convenience we suppose that / is an ordinal. If 
n(i) = 0, then the nullary operation /,• is necessarily constant (since 
U° is a singleton) and it is completely determined by the unique ele-
ment c, £ U in the image of f. We shall refer to /, as the "constant 
operation c,." Another notational simplification consists in writing 

291 
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(U,fi :iel) instead of (£/,(/} : i £ /)). Often we refer to the "alge-
bra U" when the operations /, are understood from the context. 

If a subset 5 of U is closed under all the operations fi, i £ I, then 

(S,fi\Sn(i) :i£l) 

is also an algebra of type (n(i) : i £ I), called a subalgebra of U. 
We generally denote this subalgebra simply by (S,f : i £ I). By a 
slight abuse of terminology, the subset S itself may also be called a 
"subalgebra." 

Let (U,fi: i £ I) and (V,fj : i £ I) be algebras of the same type. 
A homomorphism from the algebra U to the algebra V is a map 
h:U -*V such that for all i £ I and (x0, ...,xn^)£ U"(i), 

h(fi(x0, ...,*„_!)) = fi(h(x0),... 

We shall write « : (£/,/,- : i£l)-+ (V,f- : i £ I) in this case. A bi-
jective homomorphism is called an isomorphism, and if such an iso-
morphism exists, then the algebras concerned are said to be isomor-
phic. 

Examples. A number of classical algebraic structures seen in pre-
vious chapters correspond to some universal algebra ((/,/ , : i £ I). 
For a groupoid 1 = 1 = {0} and /o is binary, n(0) = 2. A monoid 
with neutral element e corresponds to an algebra (£/,/n./i) where f0 

is the binary product and /j is the nullary constant operation e. A 
group with neutral element e corresponds to an algebra ( f / , / 0 , / 1 , / 2 ) 

of type (2,0,1) where f0 and fi are as for monoids and fi is the 
unary operation giving the inverse of each group element. A ring 
({/,+,•) corresponds to the algebra (U, +,0u,f2, •) of type (2,0,1,2) 
where 0^ is the nullary constant corresponding to the ring's zero el-
ement and f2 is the unary additive inverse ("negative") operation. 
It is better to write simply ( i / ,+ ,0 , - , - ) for this algebra. A lattice 
corresponds to an algebra (f / ,V,A) with the two binary operations 
of join and meet. Every median graph G = (V,E) gives rise to an 
algebra on V with a single ternary operation m that associates to 
every (x,y,z) £ K 3 the median vertex m(x,y,z). Subgroupoids, sub-
monoids, subgroups, subrings, and sublattices are precisely the subal-
gebras of the respective universal algebras. Among the subalgebras 
of the ternary algebra of a median graph G we find all convex sets of 
vertices of G, and more. Universal algebra homomorphisms and 
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isomorphisms for groupoids, monoids, groups, and rings are the same 
as the structure-specific homomorphisms and isomorphisms defined 
in Chapters III and IV. 

For any universal algebra (£/,/, : i G / ) the set of subalgebras con-
stitutes an algebraic closure system on U. We are now able to justify 
the term "algebraic." 

Algebraic Closure Theorem. A closure system C on a set U is alge-
braic if and only if C coincides with the suhalgebra closure system of 
some universal algebra (£/,/,- : i G / ) 

Proof. In view of the preceding observation, we need only to find the 
operations f for a given algebraic closure system C on U. As usual, 
we shall write A for the closure of any set A C U. Let F be the set of 
all possible choice functions c associating with each nonempty closed 
set K G C an element c(K) G K. Let / be an ordinal equipotent to 
F x w + and let 

g : F x w+ —• / 

be a bijection. For c G F and n > 1, let fg(c^) be the n-ary operation 
on U given by 

fg(cji)(x0>---,xn-\) ~ c ({jCOi---»Jf , i - l } ) 

Then refer to the definition of algebraic closure. • 

Many properties of homomorphisms between groupoids, monoids, 
groups, or rings remain valid in the universal algebra context. 

Proposition 1 The composition of two universal algebra homomor-
phisms 

h:(U,fi:i£l)^(V,f!:i£l) 

and 

g'(V,fi :itI)-*(W,f!' : i G / ) 

is a homomorphism from U to W. The identity mapping on any uni-
versal algebra is a homomorphism from that algebra to itself. The in-
verse of a bijective universal algebra homomorphism is again a homo-
morphism. 
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Proposition 2 Let h : U —> V be a homomorphism between univer-
sal algebras. The image by h of any subalgebra of U is a subalgebra of 
V. The inverse image of any subalgebra of V is a subalgebra of U. 

A congruence relation on a universal algebra (£/,/, : i £ I) is an 
equivalence relation = on U such that for every i £ I, with n(i) = n, 
if 

/ / 
*0 = XQ,...,X„^\ = X„-\ 

then 

/;(*o,...,*,!-i) = /i(*o> • • •>* , ! -1 ) 

For groupoids, groups, and rings, viewed as universal algebras, the 
congruences in the sense of universal algebra are the same as the 
congruences defined earlier in the respective theory of each struc-
ture. For a totally ordered set, viewed as an algebra with the oper-
ations V (max) and A (min), an equivalence relation is an algebra 
congruence if and only if each equivalence class is order convex. 
The reader can find a counterexample showing that this is not true 
in arbitrary lattices. 

An equivalence relation E on a universal algebra U with oper-
ations /,, i £ I, is a congruence if and only if for every i £ I and 
n = n(i) equivalence classes Co,.. . ,Q_i the set 

{fi(x0,...,x„-i) : Xj £ Cj for all £ n} 

is included in some class D. As such a class is unique, this defines an 
rc-ary operation /,• on the quotient set U/E of all equivalence classes 
by 

/,(Co,...,Cn_0 = Z) 

The algebra 

(U/Eji :i£l) 

is called the quotient algebra of (U,f : i £ I) by the congruence E. 
Often we use the same symbols /,• to denote the quotient operations 
/, as well. Note that the canonical surjection U —> U/E is a univer-
sal algebra homomorphism. Conversely, if h is any universal algebra 
homomorphism, then the induced equivalence defined on its domain 
is a congruence of the domain algebra. The corresponding quotient 
is isomorphic to the algebra Imh. 
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Examples. Groupoids, groups, rings. 

EXERCISES 

1. (a) Let (U,<) be any linear order. Verify that for a 1 , a 2 . ^ 3 € U, 
the intersection of the three segments generated by the pairs 
{o,,fl ;}, i f- j , is a singleton and indeed it is one of the {a*}. 
Write m(a\,a2,a7>) for this ak. Viewing m as a ternary oper-
ation on U, describe the algebra (U,m). In particular, what 
are the subalgebras, congruences, and quotients? What con-
nections do you see with median graphs? 

(b) Define a ternary operation fi on R" by 

pi(x,y,z) = ((m(xi,yhz:),...,m(xn,yn,Zn)) 

Describe the subalgebras, congruences, and quotients of 
(R",/i). 

2. Show that the algebraic closure systems on a set U constitute a 
closure system A on V(U). Is this closure system A algebraic? 

3. Review the chapters on groups, rings, and lattices and see what 
you can generalize to universal algebras. Take any book on uni-
versal algebra and see what you can particularize to groups. 

2. ALGEBRA OF SYNTAX 

We now develop a rudimentary theory of formal expressions. Take 
any set A, call it the alphabet, and call its elements letters. For n G u/, 
any n-tuple 

(aQ,...,a„_x) 

in An is called a word of length n over the alphabet A. We usually 
denote words by simple juxtaposition of the letters, as in 

a0---a„_x 

For a £ A, the word of length 1 whose only letter is a is called the 
word corresponding to a, and it is generally denoted, somewhat abu-
sively, by the same symbol a. 
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Example. Take the set 2 = {0,1} as alphabet. Then 1,10,101, 1101, 
and 0011 are words. Not numbers, just plain, meaningless words over 
{0,1}. Of course, 0 is a word as well, of length zero. 

Let A = A o " - f l « - i and B = feo-"^m-i be two words of length n 
and m. The concatenation AB is defined as the word CQ- • • c „ + m _ 1 of 
length n + m where 

a, for 0 < i < n - 1 

for n <i < n + m-\ 

Example. The concatenation of 101 and 1110 is 1011110. The con-
catenation of 01101 and 0 is 01101. 

Observe that the set of all nonempty words over a given alphabet 
forms a semigroup under concatenation. 

Consider a given algebra type (n(i): i £ / ) . Let (07 : i £ I) 
be an injective family indexed by /, that is, 07 f Oj for i ^ j . What 
the various 07 are does not matter. Call them operation symbols. 
Write O for {07 : i £ / } . Let V be any set disjoint from O: its mem-
bers shall be called variables. Consider the semigroup 5 of all non-
empty words over the alphabet A = O U V. For every /' £ / , with 
n(i) = n, an n-ary formative operation 5, is defined on the word set 
S by concatenation, 

Si(A0,...,An_i) = 0 7 v 4 o - - - v 4 „ _ 1 

If n(i) = 0, then is nullary too, and its value is the one-letter word 
07. If Aj has length /(/) , then SI(AQ,..., An^\) has length 

1 + / ( 0 ) + •• • + / ( , ! - 1) 

Consider the universal algebra (S,si : i £ / ) . It is of the given type 
(n(i) : i £ / ) as well. Let V be the set of all length 1 words with 
their single letter in V. The members of the subalgebra of (5,5, : 
i £ / ) generated by V are called terms for the algebra type under 
consideration and with variable set V. Terms constitute an algebra 
under the formative operations applied to terms, and this algebra of 
terms is naturally of the type originally given. 

Examples of Ring Terms. Consider the algebra type (2,0,1,2) of 
rings. Denote the operation symbols 0 'o,o'i ,0 '2 ,0 '3 more suggestively 
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by +, 0, —, •. Let V consist of two variables, x and y. Here are some 
terms: 

0 x y —x —0 +xy • +xy—y 

The reader may see in the last term an artificial way of saying "mul-
tiply the sum of x and y with the negative of y." 

Proposition 3 If A is a term and B is a nonempty word, then the 
concatenation AB is not a term. 

Proof. Let us first establish that every term is either a single variable 
or of the form <TIAQ--- An_\, where <r, is an n-ary operation symbol 
and A Q , . . . , An-.i are terms. Indeed, the set U of terms subject to this 
apparent constraint of form is already closed under all the formative 
operations s,-. Since U includes all terms corresponding to variables, 
which generate the algebra of terms, U must be the entire algebra of 
terms. 

Assuming the proposition false, let A be a term of minimal length 
for which it fails. Obviously A is not reduced to a single variable. 
Let 

A = (TiAQ---An-\ 

If AB = <TiA0--- An-\B is a term, then 

Ao---An-\B = Co--C„_i 

where the Cy are terms as well. The term Co cannot be longer than 
AQ, for then Q = AQD would be a term for some nonempty word 
D. Similarly, AQ cannot be longer than Co, and therefore AQ = Q . 
Inductively, Aj = Cj for j = 0,.. .,n - 1. But then B must be empty. 

• 

Corollary. Every term that is not reduced to a single variable can be 
written, in a unique fashion, as (TIAQ--- An_\ with some n-ary opera-
tion symbol <j[ and terms Aj. 

Let A = flo---^n-i be any word of length n over any given alpha-
bet. Take any segment [j,k] of the natural order on n = {0,..., 
n - 1}. Consider the word B = fly • • ak of length k - j + 1. The seg-
ment [j,k] is called an occurrence of the word B in A. The word B 
is said to occur in A. If A is a universal algebra term, the word B 
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Example. Consider the ring term A = + • xy—+x-y The term 
structure tree is displayed in Figure 11.1. 

Free Algebra Theorem. For a given universal algebra type and a vari-
able set V, let (T,Si: i £ /) be the algebra of terms, and let V CT be 
the set of one-letter words reduced to a variable. Then every mapping g 
from V to any algebra (U,f : i £ /) of the given type can be extended 
to a unique algebra homomorphism h from T to U. 

Proof. h(x) = g(x) for every x £ V and 

/ £ n • 

h(<JiAo •••An-i) = fi(h(A0),...,h(An-1)) 

where n = n(i). • 

may or may not be a term. If / = k, B consisting of a single letter b, 
then we also say that the letter b occurs at position j in the word A. 

Example. In the word singing, the word ing has two occurrences, 
namely {1,2,3} and {4,5,6}. The letter s occurs at position 0 only; 
other letters occur at two positions. Also occurring are gin and sin, 
but gig does not occur. 

Let A be a term. Let T(A) be the set of all occurrences of what-
ever terms may occur in A. Consider the dually inclusion-ordered 
set (T(A), 0) . Proposition 3 implies that incomparable occurrences 
of terms are disjoint. 

Term Structure Theorem. Let A be a term of length n. Let (T(A), D) 
be the dually inclusion-ordered set of all term occurrences in A. Then 
the covering relation of (T(A),D) is a directed tree with basepoint 
[ 0 , n - l ] = n. 

Proof. We proceed by induction on the length of A. The inductive 
step uses the observation that if A = <J{AQ• • • An-\, where the length 
of Aj is lj, then the term occurrences covering [0,n - 1] are precisely 
the segments 
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y 

A 

FIGURE 11.1 A term structure tree. 

EXERCISES 

1. Take the positive integers as variables. As operation symbols <r„ 
take couples of the form (n(i),i), i e w. For finite types of alge-
bras, write programs to 

(a) decide if a given word, composed of variables and operation 
symbols, is a term, 

(b) list all the terms occurring within a given term and determine 
the inclusion order of the occurrences, 

(c) decide whether a given term occurs in another given term. 

2. Show that the image of the homomorphism h :T -*U described 
in the Free Algebra Theorem coincides with the subalgebra of U 
generated by g[V]. 

3. Observe that the set of all words over a given alphabet is a semi-
group under concatenation. What can you say about this semi-
group? 

4. Why do we use brackets in mathematical expressions? Why do we 
use different kinds of brackets? 
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3. TRUTH AND FORMAL PROOF 

Over a given alphabet, consider words A and B of length n and m 
and a letter b. Let J be the set of positions j £ n at which b occurs 
in A. Let Card J = k. Then 

/ I = A0b--Ak_lbAk 

for A: + 1 words Aa,...,Ak_i,Ak in which b does not occur any more. 
The word 

A0B-Ak_xBAk 

is called the substitution of B for b in /4, and it is denoted by 
A{b : B). If b does not occur in A, k = 0, then ^(b : B) = A. Note 
also that /4(b : b) = A. 

Examples and Comment. If A is the ring word +x • xy and 5 is 
+xz, then : B) is ++xz«+xzy. The reader is correct in think-
ing of this as the substitution of x + z for x in x + x • y or x + (x • y), 
but our "Polish notation" has the advantage of being free of brackets 
and precedence rules. It is mathematically simpler. 

Proposition 4 If A and B are terms and b is a variable, then 
A(b : B) is a term. 

Proof. We can use induction on the length of A. If A is not of length 
1, then write 

A = aiA0---An_x 

and observe that 

A(b : B) = <TiA0(b : B)--An^(b : B) • 

Let = be a letter not in O U V, i.e., neither an operation symbol 
nor a variable: we shall call it the equality symbol. If A and B are 
terms, then the concatenated word A = B is called an equational 
sentence. Let S be any set of such sentences. We say that a sentence 
D = E is an immediate consequence of S if any one of the following 
holds: 

(i) D = E is in S, 
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(ii) D and E are identical words, 

(iii) E = D is in S, 

(iv) for some term F, both D = F and F = E are in 5, 

(v) for some A = B and F = G in 5 and a variable JC, D is 
A(x : F) and E is fl(x : G). 

A formal proof of a sentence A = B from <S is a sequence of n > 1 
sentences 

(So,...,S„_i) 

such that 5„_i is A = B and for each 0 < < n - 1, Sj is an imme-
diate consequence of 

Su{Sk :k<j} 

Obviously every member of S has a formal proof from S. If only 
members of 5 have a formal proof from S, then 5 is called an equa-
tional theory, or formal theory. The set of all equational theories is a 
closure system on the set of equational sentences. It is an excellent 
exercise in logic to verify that this closure system is algebraic: if a 
sentence has a formal proof from a set S of sentences, then it has a 
formal proof from a finite subset of S. 

A few general technical comments will help to understand the 
formal theory concept. Suppose that a sentence A = B belongs to 
a theory T, that J C I , . . . , X „ are all the distinct variables occurring in 
A = B, and that yi,...,y„ are some other variables, 

{jc1,...,x„}n{y1,...,y„} = 0 

Define terms A0,Ai,...,An by 

A0 = A and A,< = Aj_i(x,•• : y,) for i = \,...,n 

and terms B§,B\,...,Bn by 

B0 = B and Bi = fi,_i(x,- : y,) 

Then An = Bn belongs to T. Informally speaking, each variable JC, 
has been exchanged for y,. Let now F, = G, be a sentence in T for 
each «' = l , . . . ,n. If the set of variables is infinite, then y\,...,yn can 
be assumed to have been chosen so as not to occur in any of the F,-
or G,. Define terms C 0 ,Ci , . . . ,C by 

C0 = An and C, = C,_i(y, : F,) for / = ! , . . . ,« 
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and terms Do,D\,...,Dn by 

D 0 = Bn and D, = D ^ ^ y , : G,) 

Then the sentence Cn - Dn belongs to T. Informally speaking, to 
get Cn - Dn from A = B, each variable x, has been replaced by the 
term Fi in A and by the term G, in 5 . Note how convenient it is 
to have an infinite supply of variables. We assume henceforth the 
infinity of the variable set. 

The theory T generated by any set S of sentences consists of those 
sentences that have a formal proof from S. The generating set S is 
referred to as a set of formal axioms of the theory T. In all of the 
following examples, we assume that the alphabet contains an infinity 
of distinct variables, five of which are denoted by x,y,z,v,w. 

(1) Let O consist of a single binary operation symbol •. Let S 
consist of the single formal axiom »x *yz = • • xyz. The theory gen-
erated is called the formal theory of semigroups. 

(2) For the algebra type (2,0,1) let + , 0 , - be binary, miliary, and 
unary operation symbols. Take five formal axioms: 

+x+yz = ++xyz 

-t-xO = x 

+0x=x 

+ x - x = 0 

+ -xx = 0 

The theory generated is called the formal theory of groups. If we add 
as sixth axiom the sentence 

+xy = +yx 

then the theory generated is called the formal theory of commuta-
tive groups. (At the end of this section the reader should be able to 
demonstrate rigorously that these two theories are distinct, i.e., that 
the sixth axiom is not a sentence belonging to the formal theory of 
groups.) 

(3) For type (2,0,1,2) let the corresponding four operation sym-
bols be + , 0 , - , as in the formal theory of groups, plus the binary 
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symbol •. As axioms, take all the six formal axioms listed above for 
the formal theory of commutative groups plus the additional three 
axioms 

•x»yz = •• xyz 

•xy = «yjc 

•x+yz = + • xy xz 

The theory generated by these nine axioms is called the formal the-
ory of rings. The following sequence of sentences constitutes a for-
mal proof of »+yzx = +»yx»zx from these nine axioms: 

+yz= +yz 

•x+yz = »+yzx 

+vw = +vw 

+ • xyw = + • yxw 

+ • yxw = + • xyw 

z = z 

•xz = »zx 

•zx = »xz 

+ • yx • zx = + • xy • xz 

+ • xy • xz = •x+yz 

+ • yx • zx = »x+yz 

+•yx•zx—»+yzx 

•+yzx = + »yx • zx 

Fortunately it is not necessary to exhibit a formal proof in order to 
establish that one exists. The reader is challenged to show, beyond 
reasonable doubt, that 

•+xy+x-y = + •xx-»yy 

belongs to the formal theory of rings. In the course of this exer-
cise such creative notations as "(x + y)(x - y)" and " J C 2 - y 2 " may 
be used. 
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(4) For type (2,2) let the operation symbols be V and A. The 
formal theory of lattices is generated by the following axioms: 

VxVyz = Vxyz 

AxAyz = AAxyz 

Vxy = Vyx 

Axy = Ayx 

VxAxy=x 

AxVxv = x 

(5) Consider the type (2,2,1,0,0). Let the binary operation sym-
bols be those of the formal theory of lattices, V and A. Let - be the 
unary operation symbol and let 1 and 0 be the nullary symbols. Take 
as axioms all the six axioms of the formal theory of lattices given 
above plus the following: 

VxAyz = AVxyVxz 

AxVyz = VAxyAxz 

V x - x = 1 

Ax—x = 0 

The theory generated by all these axioms is called the formal theory 
of Boolean lattices. The terms are called Boolean lattice terms. 

Do all these formal theories mean anything? For a given type 
(n(i) : i £ / ) , operation symbols er,, / £ / , and variable set V, an in-
terpretation of the variables in a universal algebra (U,fi : i £ / ) is a 
function g : V -» U. According to the Free Algebra Theorem, g de-
fines a unique homomorphism h from the algebra of terms to U. For 
a term A, h(A) is called the semantic value of A under g. A sentence 
A = B is said to be true under the interpretation g if h(A) = h(B). 
It is said to be valid in (£/,/, : i e I) if it is true under every inter-
pretation of the variables in U. A model for a set S of sentences is 
an algebra (U,fi : i £ I) in which every member of S is valid. 

Examples. Groups, when viewed as type (2,0,1) algebras, are pre-
cisely the models of the set of five defining axioms of the formal 
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theory of groups. Rings are the models of the nine axioms of the 
formal theory of rings. 

UU is a model for a set S of sentences, then it is easy to verify 
that every immediate consequence of S is also valid in U. It follows 
by induction that every equational sentence that has a proof from <S 
is valid in every model of S. An equational sentence that is valid in 
every model of S is called a semantic consequence of S. 

A priori certain semantic consequences of S could fail to have 
a formal proof from 5, and this would in some sense indicate the 
logical inadequacy of the "formal proof" concept. But semantic con-
sequences turn out to be formally provable. The disturbing possibil-
ity of "truth without formal proof" was indeed ruled out for a much 
broader class of situations than those considered here, by Godel and 
Herbrand, independently, in 1930. The following theorem is more 
limited and mathematically less complex than the Godel-Herbrand 
result, but it does capture some of its philosophical essence. 

Remark. Let us point out that the result that follows, or the gen-
eral Godel-Herbrand theorem, does not say that the validity of any 
given sentence can be decided mechanically. Unjustified hopes in 
that sense were addressed by Godel's "incompleteness theorem" of 
1931. 

Completeness Theorem for Equational Calculus. Every semantic 
consequence of a set S of equational sentences has a formal proof 
from S. 

Proof. We show that every formal theory T has a model in which no 
sentence outside T is valid. Applying this to the set S of those sen-
tences that admit a formal proof from 5 yields the intended result. 

Consider the algebra of terms (7\s, : i e / ) . Define a congruence 
relation = on T by 

A = B if and only if A = B belongs to the theory T 

(Make sure to dispel any doubt that we have a congruence relation 
on the algebra of terms.) Take the quotient algebra of T by this con-
gruence. • 

Consequently, the formal theory of semigroups consists of all 
equational sentences valid in every semigroup, i.e., true under 
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every interpretation in any semigroup. The formal theory of groups 
consists of all sentences valid in every group. The formal theory of 
rings is precisely the set of sentences valid in rings. And the formal 
theory of lattices is the set of sentences valid in lattices. 

The formal theory of Boolean lattices is most remarkable. 
Let us view every Boolean lattice L as a type (2,2,1,0,0) alge-

bra. The binary operations are join and meet, the unary operation is 
complementation, and the nullary constant operations have as values 
the maximum li and the minimum QL of the lattice. Letting the op-
eration symbols V , A , - , 1 , 0 correspond to these operations, in this 
order, we can say that the formal theory of Boolean lattices con-
sists precisely of those equational sentences that are valid in every 
Boolean lattice. Such a sentence is called a tautology. 

Examples. The sentences x = x, —x = x, Vxx = x, and Axx = 
x as well as the sentence Vxy = —A-x-y are tautologies. 

Proposition 5 A sentence A = B is a tautology if and only if 

VAABA-A-B = 1 

is a tautology. 

Proof. Under a given interpretation of variables in a Boolean lattice 
L, let h(A) and h(B) denote the semantic values of A and B. If 
A = B is a tautology, then h(A) = h(B) for every interpretation, and 
the semantic value of VAABA-A-B is 

[h{A) A h(B)] V [h(A)' A h(B)'\ = h(A) V h(A)' = \ L 

under every interpretation. 
Conversely, if VAABA-A-B = 1 is a tautology, then under ev-

ery interpretation 

[h(A) A h(B)] V [h(A)' A h(BJ) = \ L 

[h(A) V h{A)'] A [h(A) V h(B)'] A [n(5) V h(A)'] A [h(B) V h(BJ] = 1L 

which means 

h(A)Vh(B)'= lL 

h(B)Vh(A)' = U 
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Therefore 

h{A) h{A)A\L h{A) A [h(B) V h(A)'] = h{A) A h{B) 

h{B) = h(B)A\L 

and consequently h(A) 

h(B) A [h(A) V h(B)'] = h(B) A h(A) 

h(B). • 

Proposition 6 A sentence of the form A = l is a tautology if and 
only if under every interpretation of the variables in the two-element 
Boolean lattice 2 = {0,1}, the semantic value of A is 1. 

Proof. The "if" part alone requires proof. Suppose we have a term 
A whose only possible semantic value in 2 = {0,1} is 1. If A = 1 is 
not a tautology, then under some interpretation g in some Boolean 
lattice L, the semantic value h(A) of A is not the lattice maximum 
U, h(A) < U- (Keep in mind that h is the one homomorphism, from 
the algebra of Boolean lattice terms to L, that extends g.) Let F be 
an ultrafilter in L that contains the complement h(A)1. Convince 
yourself that the map k : L —• 2 given by 

is a homomorphism from L to 2. 
Look at the semantic value of A under the interpretation k o g in 

It follows from the last two propositions that A = B is a tautology 
if and only if the terms A and B have the same semantic value un-
der every interpretation in the Boolean lattice 2. Since there are 
only a finite number of such interpretations to worry about, for 
any given candidate sentence A = B, the task of deciding whether 
A = B is a tautology becomes a matter of simple mechanical verifi-
cation. 

A further consequence is that tautologies can be characterized in 
terms of Boolean functions. Let us fix a finite number of variables, 
say n variables J C 0 , . . . , J C „ _ I G V, and consider those Boolean lattice 
terms whose variables are among the chosen JC,-. Every such term 
A defines a Boolean function fA : 2" —> 2, where fA(a0,...,an_i) is 
the semantic value of A under any interpretation g : V —> 2 of the 

for x G L\F 

for JC e F 

the Boolean lattice 2. • 
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variables such that = a,. Using the representation of a Boolean 
function as a disjunction of simple conjunctions, it is easily seen that 
every Boolean function / : 2" —> 2 is obtained as an fA. Two terms 
A,B give rise to the same Boolean function, fA = fs, if and only if 
A = B is a tautology. 

The equational sentences valid in the Boolean lattice 2 are often 
called "theorems of propositional calculus." Since they are precisely 
the sentences that make up the formal theory of Boolean lattices, 
each of them admits a formal proof from the simple axioms given 
earlier. This fact is customarily referred to as the completeness of 
propositional calculus. 

EXERCISES 

1. Write a program to verify the correctness of formal proofs from a 
given finite set of formal axioms. 

2. Write a program to verify tautologies. 

3. Write a program to exhibit a formal proof, from the ten axioms 
of the formal theory of Boolean lattices, for any given tautology. 

4. Can you develop analogues or generalizations of Propositions 5 
and 6 in the context of some other equational theories? 
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CHAPTER XII 

CATEGORIES 

Inside numbers we saw numbers. Sets were made up of sets. Order 
relations were compared in the framework of larger meta-orders. 
We have outlined the beginning of a theory of theories. The math-
ematician, like Archimedes, plays with mirrors and catapults. Struc-
tures are invented to hold and manipulate objects. At the end the 
structures themselves become objects of algebraic manipulation. The 
theory of categories is general enough to serve as a foundation for 
mathematics. Here it will be a looking-glass for a cursory retrospec-
tion on algebra. 

We saw in Chapter I that multiplication of numbers reposes on the 
set product concept. The language of categories will now be used to 
transfer the product concept to proper algebraic structures. Products 
will then be used in classifying algebraic structures according to for-
mal equational theories. We begin with a technical lemma and some 
definitions. 

Countable Universe Lemma. There exists some set U of sets with the 
following properties: 

(i) 0eu, 
(ii) if AeU and BCA, then BeU, 

311 
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( i i i ) if AeU, then V(A) G U, 
(iv) // A, Be U, then {A,B} G U, 

(v) if (Ai : i G / ) w a family of members of U indexed by a set 
I G U, then the union U{Ai : i G / } belongs to U. 

Proof Using induction on natural numbers, it is easy to verify that 
there is a family of sets (Un : n G w) such that 

Uo = 0 

Un = |J V(Um) for all new 
men 

Let t / = Ue,^-
The verification of properties (i) to (v) is left to the reader as an 

exercise in elementary set theory. A key fact to notice at the outset 
is that for m G n, Um is both a member and a subset of Un. • 

Any set U satisfying conditions (i) to (v) of this lemma is called a 
universe. 

Properties (i) to (v) are reminiscent of axioms (AI) to (A5) pos-
tulated in Section 1 of Chapter I. We shall not deal here with the 
significance of this resemblance. Note that every member of the par-
ticular universe constructed in the proof of the lemma is finite, even 
though the universe itself is infinite. For our purposes it is a poor 
universe. We shall once again postulate what we cannot prove, the 
existence of a much larger universe. The ninth and last axiom to be 
introduced in this volume would deserve to be called the "second 
axiom of existential infinity." We only refrain from this anabaptism 
in deference to the extensive literature on the subject. 

(A9) Inaccessibility Axiom. There is a universe having among its el-
ements the set w of natural numbers. 

Once and for all, we choose one such large universe and denote 
it by U. The reader should have no difficulty verifying the following 
facts. 

(1) If A,Be U, then every function / : A —» B belongs to U as 
well. Also BA, the set of all such functions, belongs to U. 

(2) Every natural number AI is a member of U. Every n-tuple of 
members of U belongs to U. Every n-ary operation on any mem-
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ber of U belongs to U. Every relation on any member of U belongs 
to U. 

A (partial) associative structure on a set C is a map from a subset 
Comp C C 2 to C, associating with every ( g , / ) G Comp the composi-
tion go f and such that 

( « , g ) G Comp and (h og,/) e Comp 

if and only if 

(#./) € Comp and (h,g o / ) G Comp 

and in this case (h og) o f = h o (g of). An identity is any element u 
of C such that 

Uof = f for all / such that (u,f) G Com/? 

and 
gou = g if (g,u)eComp 

The set C, together with its associative structure, is called a category 
if for every / G C there are identities u, w such that 

(w, / ) G Comp, (/,w) G Co/n/> 

The elements of a category C are called morphisms. For ( g , / ) G 

Comp we say that g and / are composable, or that "g o / is defined." 
Of course this does not mean that " / o g is defined" as well. The 
order of composition matters. 

Elementary Example. Every monoid, with its binary operation as 
an associative structure, is a category. This category has only one 
identity, namely the neutral element of the monoid. 

Category of Sets. Let C be the set of triples (B,f,A) where A,B 
are sets belonging to the universe U and / : A —* B is a function. 
Let (E,g,D) and (B,f,A) be composable if D = B and in that case 
let their composition be defined by 

(E,g,B)o(B,f,A) = (E,gof,A) 

where the same symbol o is used, somewhat abusively but accord-
ing to custom, to denote the usual composition of functions. The 
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identities are the triples (A,idA,A) with the familiar identity maps 
id A, A 6 U. This category is called the category of sets. Note that any 
statement like "the category of sets comprises all sets" is nonsense. 
The liar's paradox of Crete must be kept on a short leash. 

Consider universal algebras of a given type (n(i) : i £ I) with / in 
U. Let C be the set of all triples (B,h,A) where A,B are algebras 
of this type with underlying sets in U and h : A —• B is an algebra 
homomorphism. Define the composition of (E,g,D) and (B,h,A) as 
(E,g o h,A) if D = B; otherwise the composition is not defined. This 
is the category of algebras of type (n(j') : i £ I). 

Given a morphism h in a category C, the identity u with h o u = h 
is unique. Indeed, if u! is another such identity, h o u' = h, then 

h = (hou)ou 

Thus uou' is defined, and since both u and u' are identities, 

u = u o u = u 

The unique identity u with h o u = h is called the domain identity 
of h. Similarly, the identity w with woh = h is unique too, and it is 
called the codomain identity of h. 

Example. In the category of sets, the domain identity of a mor-
phism (B,f,A) is (A,idA,A). The codomain identity is (B,idB,B). 

Let S be a set of morphisms in a category C such that 

(i) whenever g and h are composable morphisms belonging to S, 
we have g o h £ S, 

(ii) for every h £ S, both the domain and codomain identities of 
h belong to S. 

Then S, together with the composition of morphisms restricted to 
Comp D S 2 , is a category. It is called a subcategory of C. Obviously, 
the set of all subcategories of C is an algebraic closure system on C. 

A subcategory S of C is said to be full if it contains every mor-
phism whose domain and codomain identities belong to S. 

Examples. (1) If a monoid is viewed as a single-identity category, 
then the subcategories are precisely the submonoids. (2) In the cate-
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gory of sets, those morphisms (B,f,A) for which h is injective con-
stitute a subcategory. This subcategory is not full. Given a cardinal 
number n, those (B,f,A) for which 

Card A = Card B = n 

form a full subcategory. 

Consider the category C of universal algebras of a given type 
(n(i) : i e / ) . Let T be any formal equational theory with the corre-
sponding operation symbols. Then 

V = {(B,h,A) e C : A,B are models of T} 

is a full subcategory of C. It is called the variety, or equational class, 
determined by the equational sentences in T. Take the groupoid 
type, for example (a single binary operation). The variety determined 
by the formal theory of semigroups (the theory generated by the 
formal axiom »x • yz = • • xyz) is called the category of semigroups. 
We hope the reader finds this terminology justified. For type (2,0,1), 
the category of groups is the equational class determined by the for-
mal theory of groups. The formal theory of commutative groups de-
termines a subcategory of this, called the category of commutative 
groups. For type (2,0,1,2) the formal theory of rings gives rise to the 
equational category of rings. For type (2,2) we get the category of 
lattices from the formal theory of lattices. 

Proposition 1 Let C be the category of universal algebras of a given 
type («(/) :/€/). Then the equational classes within C form a closure 
system on C. 

Proof. Let S be any set of equational classes. Each V € S is defined 
by some formal theory T(V). Let T be the set of the various 
theories T(V). Consider the theory generated by UT. Verify that 
the equational class defined by this latter theory coincides with n«S. 

• 

The category of sets, the category of universal algebras of a given 
type, and any of their subcategories are examples of what we call 
a category of structures. Also called concrete categories, these are by 
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definition categories in which 

(i) all moronisms are triples (B,h,A) where ft is a function, 
(ii) (E,g,D) is composable with (B,h,A) if and only if D = B, 

and their composition is then (E,goh,A) where g oh is the 
usual composition of functions, 

(iii) the identities are the triples (A,h,A) where h is an identity 
function. 

In a category of structures a morphism (B,h,A) is said to be a mor-
phism from A to B; A is called the domain structure and B is called 
the codomain structure of the morphism. Whatever appears as a do-
main or codomain structure is then called simply a structure of the 
concrete category under consideration. 

Example. As noted above, the category of sets is a category of 
structures. For a morphism (B,h,A) the sets A and B are the do-
main and codomain structures, respectively. Observe that if (E,h,D) 
is another morphism with the same function h, then A = D but B 
need not coincide with E. (Functions specify their images, but not 
their codomains. The author has adopted this view to facilitate the 
set-theoretical handling of functions.) 

Given a field F, whose underlying set belongs to the universe U, 
the category of vector spaces over F is the concrete category con-
sisting of triples (B,h, A) where A,B are vector spaces over F with 
underlying sets belonging to U and h : A —• B is linear. 

The concrete category of relational structures consists of the triples 
(B,h,A) where A,B are relational structures on sets belonging to 
the universe U and h : A —• B is relation preserving. Those (B,h,A) 
for which A and B are ordered sets form a subcategory, called the 
category of ordered sets. On the other hand, to every preordered set 
(S, <) corresponds a concrete category: the set of morphisms is 

{(B,h,A) : A,B 6 S, Ai~B and h = {(A,B)}} 

The category of graphs is the concrete category consisting of the 
triples (H,h,G) where G,H are graphs on vertex sets belonging to 
the universe U and h : G —• H is a graph homomorphism. 

The triples (P,h,T) where T,P are topological spaces with un-
derlying sets in U and h : T —> P is a continuous function form the 
concrete category of topological spaces. 
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Most of these categories, as well as the category of sets, are large 
enough to allow certain constructions to be carried out. This is ow-
ing to the richness of the universe U. Among such constructions we 
shall focus our attention on products, to be defined in a moment. 
Categories that are not so large may of course still be interesting 
from some algebraic point of view. The term small category will be 
reserved for those categories whose morphism set is a member of the 
universe U. For example, every monoid with underlying set in U is 
a small category. For any S G U, and preorder < on 5, the concrete 
category corresponding to as defined above is small. 

A functor from a category C to a category AT is a function F : 
C -+ K such that 

(i) if g and h are composable morphisms in C, then F(g) and 
F(h) are composable in K and F(g)o F(h) = F(g oh), 

(ii) if u is an identity in C, then F(u) is an identity in K. 

For example, if C and K are single-identity categories, i.e., monoids, 
then the functors are precisely the monoid homomorphisms. Func-
tors are a natural generalization of the homomorphism concept, from 
monoids to partial associative structures. 

Examples. (1) The power set functor is defined from the category of 
sets to itself by associating to each morphism (B,f,A) the morphism 

(V(B),J,V(A)) 

where _ 
f(S) = f[S] for every SCA 

(2) A stripping functor is defined from the category of universal al-
gebras of any given type (n(i) : i £ I) to the category of sets by as-
sociating to every algebra morphism 

{(s,fr.iei),h,(T,gr.iei)) 

the set morphism (S,h,T). This functor strips the domain and codo-
main structures of their algebraic operations. (3) Let us associate to 
every ring morphism 

((5, +,-),h, (T,+,-)) 

the group morphism 
((S,+),h,(T,+)) 
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and such that the codomain structure of each p , is Aj. 

Example. In the category of sets, if (Aj : i £ I) is a family of sets 
in the universe U, then with the projections pr- : [lye/ A j -* A , the 
family 

D(Pi :i£l) 

Such a functor is called a forgetful functor, from the category of rings 
to the category of groups, since it "forgets" the rings' multiplicative 
operation. 

Proposition 2 / / F : C —• K and G : K —> L are functors, then the 
composition G o F is a functor from C to L. For any category C, the 
identity map on C is a functor from C to itself. 

In view of this proposition, we can consider the concrete category 
whose morphisms are the triples (K,F,C) where K and C are small 
categories and F : C —> K is a functor. It is called the category of 
categories. 

Let C be a category of structures. A structure B is called terminal 
if for every structure A there is a unique morphism from A to B, 
and B is initial if for every structure A there is a unique morphism 
from B to A. 

Examples. In the category of sets, 0 is initial. Every singleton is a 
terminal structure in this category. In the category of groups, every 
one-element group is both initial and terminal. 

From any given category C, new categories can be constructed in 
many ways. In what follows we confine the exposition to categories 
of structures, but the development can be carried out for general cat-
egories without mathematical difficulty, and it may be even simpler, 
depending on notation. Let (Aj : i £ I) be a family of structures in 
C. Throughout the rest of this chapter, any such indexing set / for a 
family of structures is assumed to belong to the universe U. A pro-
jection cone to this family is a family (pi : i £ I) of morphisms that 
have the same domain structure 
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is a projection cone. An even simpler cone is 

((Ah0,0) : i £ I) 

The reader can similarly describe some projection cones in the cate-
gory of topological spaces. 

Given a family of structures (Aj : / € / ) in a concrete category C, 
the category of projection cones to (Aj : i £ I) is the concrete cate-
gory whose morphisms are the triples (p,h,r) such that 

(i) T = (/,• : i £ / ) and p = (/-,- : i £ I) are projection cones to the 
family (Aj : i £ /), 

(ii) (D(p),h,D(T)) is in C, 

(iii) the composition rio(D(p),h,D(r)) is defined in C and coin-
cides with tj, for each i £ I. 

Any terminal structure (/>, : i £ I) in the category of projection 
cones to (Aj : i £ / ) is called a product of the family (/I,- : i € /)• The 
common domain structure D(pi : i £ I) is called a product structure 

or product object of the y4,, / £ / . 

Examples. (1) In the category of sets, the cone 

is a product of the family of sets (Aj : i £ I) and flye/ -4/ ' s a P r o " 
duct object. Indeed any set in U that is equipotent to f[ Aj is a pro-
duct object, and there are no other product objects for a given family 
(Aj : i £ I) of sets. (2) In the category of topological spaces, the 
product space \\Ti ' s a product structure for a given family of 
spaces (Tj : i £ I). (3) In the concrete category corresponding to a 
preordered set (S, <) the structures are the elements of S. A projec-
tion cone to a family («, : / £ I) of elements is any family of the 
form 

such that 6<a, for each i. A product object, if there is one, is any 
greatest lower bound of the a,-, /' £ I. 

Ai,pritl[Aj 

{{ai,{{b,ai)},b):i£l) 

Let C be the category of universal algebras of a specified type 
(«(/) : j £ J)- Let (A, : i £ I) be a family of algebras (structures) 
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in C. For i £ / we have 

A = (Si,fij :j£J) 

where the ffs are operations on the set 5,. Let the product set Y\St 
be denoted in short by S. For every j £ J define an operation // : 
5"0) _> 5 by 

[ / / ( ^ O , -,-«,,0)-l)](0 = /i;(-fo(0----.-c

nO)-l(0) 

Then the algebra A = (S,fj : j £j) is a structure in C, and it is a 
product object of the family (Aj : / 6 / ) with the cone 

((A,pr,,,4) : i e / ) 

as a product. The other product objects of (Ai : i £ I) are the differ-
ent algebras isomorphic to A, with underlying set in the universe U. 
We shall write Y\ieI Ai for the algebra A. Observe that every projec-
tion map 

Ph • Y[Ai-+Ak 

is an algebra homomorphism. If B is any algebra of the same type, 
and 

h:B^Y[Ai 

any function, then h is an algebra homomorphism if and only if every 
composition prfc o h is a homomorphism. (Compare this with Propo-
sition 6 of Chapter X.) 

Let now V C C be an equational class. If every Ai, i £ I, is a 
structure in V, then the product algebra JJAi is a structure in V as 
well: we say that every equational class is closed under the formation 
of products. 

Two further properties of equational classes are perhaps even 
more evident. First, equational classes are closed under the formation 
of subalgebras: every subalgebra of any structure of a variety V is 
again a structure in V. Second, equational classes are closed under 
the formation of homomorphic images: if A is a structure in V and h : 
A -* B is a surjective algebra homomorphism whose underlying set 
is in the universe U, then B is a structure in V as well. In particular, 
all quotient algebras of a structure A'mV are in V, and all algebras 
B with underlying set in U that are isomorphic to A are in V. 
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The following theorem states that the above three properties, clo-
sure under the formation of homomorphic images (H), subalgebras 
(S), and products (P), are characteristic of equational classes. 

HSP Theorem. Consider the category of universal algebras of a given 
type. A full subcategory V is an equational class if and only if it is 
closed under the formation of homomorphic images, subalgebras, and 
products. 

Proof. Only the "if" part needs to be proved. Suppose that V is 
closed under the formation of homomorphic images, subalgebras, 
and products. Consider the equational class closure V of V (Propo-
sition 1). We need to show that V C V. Let M be a structure in V. 
Keep in mind that the underlying set S of M belongs to the universe 
U. We shall prove that M is in V. Since V is full, this will suffice. 

The case Card5 < 1 is easily taken care of, so assume that S has 
at least two elements. We can actually assume that S is infinite, for 
otherwise we could replace M, in the argument that follows, by the 
product of an infinite number of factors identical with M. 

Take S as a set of variables and consider the algebra T of terms. 
Make sure the set of operation symbols and the symbols themselves 
are in the universe U. Let T be the set of equational sentences valid 
in every structure of V. Obviously T is a formal theory. Let = be 
the congruence on T defined by 

A = B if and only if A = B is a sentence in T 

(Any doubt that we have a congruence?) Let Af be the set of sen-
tences (with terms in T) that are not in the theory T. The reader 
should verify that M belongs to the universe U. For every a 6 jV 
there is an interpretation of the variables go \ S —• Go in some struc-
ture Go of V such that a is not true under go- We may assume that 
the algebra Go is generated by go[S]. The product algebra Y[oeJ^^a 

is a structure in V. Consider the interpretation g : S -> TJ Go given 
by 

g(x) = (go(x):aeM) 

Take the subalgebra P of \~\Go generated by the set {g(x) : x e S}. 
This too is a structure in V. We claim that it is isomorphic to the 
quotient algebra T/ =. By the Free Algebra Theorem of Chapter XI 
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we have a homomorphism h:T -* P such that 

h(x) = g(x) f ° r all x G S 

Obviously h is surjective onto P. We need to show only that 

h(A) = h(B) if and only if A = B 

If A = B, then A = B is a sentence in T; therefore it is valid in 
P and = h(B). \i A = B does not hold, then A = B coincides 
with a sentence v in jV*. Thus A = £ is not true under gi/ in Gi/ and 
therefore it cannot be true under g in FJ Ga, h(A) fi h(B). We have 
shown that P is isomorphic to Tj =. Therefore Tj = is a structure 
in K as well. 

Since the algebra M on the set S belongs to the equational class 
closure V, it is a model of the theory T. Let h be the homomorphism 
T -» M such that 

n(x) = JC for all JC G 5 

Obviously h is surjective onto M and /i = B implies h(A) = «(B). 
Therefore a surjective homomorphism h :T/ = —> M is defined by 
mapping each class of = to the element h(A) where A is any term 
in that congruence class. As a homomorphic image of T/ =, M must 
be a structure in V. • 

Products were defined as terminal structures in the category of 
projection cones of a given family (Ai : / G / ) of structures of a basic 
concrete category C. Dually, an injection cone is a family (p, : i E I) 
of morphisms with common codomain structure T(pi : i e / ) and 
such that the domain structure of each pt is Ai. The category of injec-
tion cones for ( A : « € / ) is the concrete category whose morphisms 
are the triples (p,h,r) such that 

(i) r = (ti : i e I) and p = (r, : i e I) are injection cones for 
Mi : ' € / ) , 

(ii) (T(p),hJ(T)) is in C, 
(iii) the composition (T(p),h,T(r))o ti is defined in C and coin-

cides with ri, for each i G /• 

An initial structure (pi: i G /) in the category of injection cones is 
called a coproduct of (Ai : i G I), and the common codomain struc-
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FIGURE 12.1 Product and sum. 

ture T(pi : i 6 / ) is called a coproduct object. We confine ourselves 
to illustrate the simplicity of this concept in the category of sets. 
Figure 12.1 shows a product and a coproduct construction for the 
cardinal number commonly known as twelve. 

The reader should be able to carry out the proof of the following 
theorem without difficulty. 

Product-Sum Duality Theorem. For any cardinal numbers A and 
B, the cardinal product A - B is their product object in the category of 
sets. The cardinal sum A + B is their coproduct object. 

This duality is all the more remarkable in that the traditional gen-
esis of product from sum, as in 3-4 = 4 + 4 + 4, places these arith-
metic operations in a definitely asymmetrical relationship. 

EXERCISES 

1. Clarify the meaning of injection cones in a category correspond-
ing to a given preordered set in particular when < is an 
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order relation. Examine the question of existence of products and 
coproducts. 

2. Develop an elementary theory of products in the category of or-
dered sets. What is the order dimension of a product of chains? 
What is the order dimension of a finite Boolean lattice? 

3. Develop an elementary theory of products and coproducts for 
vector spaces. What can you say about dimension? 

4. Characterize products in the category of graphs. Describe the 
product when all factors coincide with AT2. 

5. Given a universal algebra type, what connections can you find 
between the inclusion-ordered set of equational theories and the 
inclusion-ordered set of equational classes? 

6. What similarities and dissimilarities can you identify when you 
compare the categories of (a) sets, (b) ordered sets, (c) groups, 
(d) vector spaces, (e) graphs, and (f) topological spaces? 
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INDEX OF DEFINITIONS 

Absolute value, 135 
Absorption, 19, 22, 213 
Abstract group, 70 
Action of: 

group on set, 70 
permutation group, 71 

Activity, 52 
Acyclic relation, 40 
Addition: 

cardinal, 23 
ideal, 97 
integer, 76 
modulo an integer, 79 
in ring, 93 
of vectors, 157 

Adherence point, 273 
Adjacency, 197 
Affine geometry: 

of flat, 179 
on vector space, 176 

Algebra, 291 
of terms, 296 

Algebraic: 
closure, 45 
dimension, 251 
field extension, 142 

Algebras, category of, 314 
Alphabet, 295 
Alternating group, 85 
Antichain, 33 
Antisymmetry, 13, 33 
Approximation, 273, 275 
Ascending chain condition, 39 
Associative structure, 313 
Associativity, 4, 9, 19, 22, 23, 59, 158 
Atom, 233 
Automorphisms of: 

fields, 95 
groupoids, 65 
relations, 32 
rings, 95 
vector spaces, 167 

Axiom, 302 

Basepoint and basepoint order, 200 
Basis: 

in matroid, 247 
in vector space, 161 

Bijection, 7 
Binary operation, 25 
Binary relation, 31 
Bipartite graph, 208 

327 
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Boolean: 
function, 231 
sum, 22 

Boolean lattices, 230 
formal theory of, 304 

Boolean lattice terms, 304 
Boundary flat, 184 
Bounded: 

lattice and sublattice, 214 
uniform space, 285 

Bounds, upper and lower, 36 

Canonical: 
field injection, 140 
representation of cycle matroid, 257 
surjection, 35 

Cardinal, 16, 17 
Cartesian product, 5 
Category, 313 

equationally defined, 315 
Category of: 

categories, 318 
injection cones, 322 
projection cones, 319 
sets, 314 
various structures, 314-316 

Cauchy filter, 285 
Causality, 187 
Chain, 33 
Chain topology, 273 
Characteristic set, 231 
Choice function, 15 
Chromatic: 

function, 208 
number, 207 

Chromatic polynomial of: 
graph, 209 
matroid representation, 259 

Circuit: 
in matroid, 246 
in vector space, 159 

Class, 34 
Closed sets, 24 

under function, 25 
under operation, 25 
in a topology, 272-273 

Closeness, 273 
Closure point, 273 
Closure systems and operators, 24 

algebraic, 45 
matroid, 245 
Noetherian, 48 
relative, 246 
topological, 272-273 

Closure under HSP, 320-321 
Codomain, 6 

identity, 314 
structure, 316 

Coefficient, 105 
Cofinite: 

filter, 271 
topology, 284 

Coloring of graph, 207 
Column, 171, 172 
Comaximal ideals, 97 
Commutative groups: 

category of, 315 
formal theory of, 302 

Commutativity, 4, 19, 22, 23, 59, 170 
Commuting monoid elements, 63 
Compactness, 278 
Compatibility of: 

order with group, 128 
scenario with strategy, 203-204 

Complement: 
in lattice, 214 
of subset, 22 

Complete: 
lattice, 43 
graph, 197 
uniform space, 285 

Completion date, 52 
Complex number, 141 
Composition of: 

functions, 8 
morphisms, 313 

Concatenation, 296 
Concrete category, 315 
Cone: 

injection, 322 
projection, 319 
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Congruence: 
of groupoid, 61 
modulo a subgroup, 67 
of universal algebra, 294 

Conjugation, 65, 71 
Conjunction of literals, 235 
Connected graph, 198 

components, 199 
Consequence: 

immediate, 300 
semantic, 305 

Constant, 7 
Constraint: 

function, 183 
in linear programming, 184 
of precedence, 52 

Containment concept, 26 
Continuous: 

function, 273 
order, 130 

Contraction: 
of edge in graph, 208 
matroid, 253 

Contradictory constraints, 52 
Convergence, 275 
Convex hull, 163 
Convexity in: 

graphs, 198 
ordered sets, 44 
vector spaces, 163 

Coordinate function, 168 
Coprime: 

ideals, 97 
ring elements, 114 

Coproduct, 322-323 
Coset, 73, 95 
Couple, 18 
Covering conditions, 220 
Covering: 

graph, 200 
relation, 49 

Critical activity, 52 
Critical path, 53 
Cut, 130 
Cycle: 

in a binary relation, 40 

factor, 83 
in a graph, 198 
matroid, 246 
permutation, 82 
structure, 83 

Cyclic group, 78 

Deletion: 
of edge in graph, 208 
matroid, 253 

Dependence: 
linear, 159 
in matroid, 246 

Descending chain condition, 39 
Difference of: 

numbers, 77 
sets, 15 

Dilatation, 191 
Dimension: 

algebraic, 251 
geometric, 249 

Dimension of: 
affine flat, 179 
order, 41 
vector space, 163 

Directed tree, 200 
Discrete: 

order, 51 
topology, 273 
uniformity, 281 

Disjoint: 
permutation cycles, 82 
sets, 23 

Disjunction, 235 
Distance: 

of integers, 76 
in metric space, 282 
between vertices, 198 

Distinctness relation, 32 
Distributive lattice, 218 
Distributivity, 22, 23, 78, 93, 158, 170 
Divisibility, 111 
Domain, 6 

identity, 314 
structure, 316 
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Dot product, 170 
Dual relation, 35 
Duration, 52 

Early start schedule, 52 
Edge, 197 

deletion and contraction, 208 
recursion, 208 

Eight, 12 
Element, 3 
Elevation, 222 
Embedding of geometries, 177 
Empty graph, 197 
Empty set, 3 
Endomorphism of: 

groupoid, 63 
vector space, 168 

Entire ring, 116 
Entourage, 281 
Entry of matrix, 171 
Equality symbol, 300 
Equational: 

class, 315 
sentence, 300 
theory, 301 

Equilibrium strategies, 204 
Equipotence, 9 
Equivalence, 33, 35 

associated with a partition, 34 
associated with a preorder, 35 
induced by a function, 34 

Euclidean: 
algorithm, 121 
distance, 282 
norm, 115 
ring, 115 
topology, 283 
uniformity, 282 

Even: 
integer, 80 
permutation, 84 

Event, 187 
Exponent of radical, 141 
Exponentiation of sets, 6 
Extension of: 

function, 6 

relation, 39 
Extension of fields, 141 

radical, 146 
simple, 141 
simple algebraic, 142 

Extensive law, 24 

Factor, 19, 83 
Factorial, 69 
Family, 18 
Fano plane, 181 
Feasibility in LP, 184 
Field, 94 

extensions, 141, 142, 146 
Filter: 

in a lattice, 269 
on a set, 271 

Finer topology, 273 
Finite: 

graph, 197 
ordinal, 14 
set, 17 

First element, 12, 14 
First kind ordinal, 14 
Five, 12 
Fixed field, 142 
Fixed point, 72 
Fixing group, 142 
Flat, 176 

boundary, 184 
at infinity, 180 
lying in, 179 

Forest, 199 
Forgetful functor, 318 
Formal: 

axiom, 302 
proof, 301 
theory, 30! 

Formal theory of: 
lattices, 304 
rings, 303 
semigroups and groups, 302 

Formative operation, 296 
Four, 12 
Fraction field, 128 
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Full: 
subcategory, 314 
subgraph, 199 

Full slack schedule, 53 
Function, 5 
Functor, 317 

Galois group, 143 
Game, 203 
Gaussian elimination, 174 
gcd,113 
Generating an order, 49 
Generators, 25 
Geodesies, 198 

high and low, 222 
Geometric: 

dimension, 249 
lattice, 240 

Geometry, 176 
matroid, 249 

gib, 36 
Graphical representation, 257 
Graphic matroid, 257 
Graphs, 197 

category of, 316 
Greater element, 35 
Greater ordinal, 13 
Greatest: 

common divisor, 113 
lower bound, 36 

Greedy optimization, 264 
Greedy procedure, 262 
Grid lattice, 228 
Groupoid, 59 

as universal algebra, 292 
Groups, 64 

category of, 315 
formal theory of, 302 

Hausdorff space, 284 
Height: 

in geometric lattice, 241 
relative, 220 

Helly number, 55 
Hereditary set of sets, 263 
High geodesic, 222 

Homeomorphism, 274 
Homomorphism of: 

graphs, 207 
groupoids, 60 
groups, 65 
monoids, 62 
rings, 94 
semigroups, 62 
universal algebras, 292 

Hyperplane, 177 
constraint, 184 

Ideal decomposition property, 101 
Ideals, 95 

addition of, 97 
cosets of, 95, 100 
product of, 98 

Idempotence, 4, 22, 24 
Idempotent ring, 232 
Identity: 

function, 6 
morphism, 313, 314 
relation, 32 
ring element, 93 

Image, 6, 7 
filter, 271 

Immediate consequence, 300 
Inclusion concept, 26 
Inclusion order, 33 
Incomparable elements, 35 
Independence: 

in closure system, 245 
linear, 159 
in matroid, 245-246 

Indeterminates, 104-106 
Index set, 18 
Index of subgroup, 73 
Induced equivalence, 34 
Induced subgraph, 199 
Inertial line, 189 
Infinite: 

ordinal, 14 
set, 17 

Inherited topology, 273 
Initial: 

position in game, 203 
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Initial (Continued) 
structure, 318 

Injection, 7 
cone, 322 

Inner automorphism, 65 
Inner product, 170 
Inputs, 121 
Integer, 75 
Integral domain, 116 
Interpretation of variables, 304 
Intersection, 21 
Interval: 

in graph, 198 
of ordered set, 44 

Inverse: 
element, 64 
function, 8 
image, 7 

Inverted pairs, 84 
Involution, 22 
Irreducible polynomial, 138, 142 
Irreflexive relation, 33 
Isomorphism of: 

graphs, 207 
groupoids, 61 
relations, 32 
rings, 95 
universal algebras, 292 
vector spaces, 167 

Isotone law, 24 
Isthmus, 254 

Join, 43 
semigroup, 213 

Jordan-Dedekind chain condition, 221 

k -cycle, 82 
Kernel, 67, 96 

Larger element, 35 
Largest element, 36 
Lattices, 43 

associated with idempotent rings, 233 
bounded, 214 
category of, 315 
formal theory of, 304 
as universal algebras, 292 

lcm, 113 

Leading coefficient, 105 
Least common multiple, 113 
Least upper bound, 36 
Length of: 

cycle permutation, 82 
path or cycle in binary relation, 40 
path or cycle in graph, 198 
word, 295 

Lesser element, 35 
Lesser ordinal, 13 
Letter, 295 
Lightspeed, 187 
Limit: 

ordinal, 14 
point, 275 

Line, 176 
Linear: 

combination, 159 
form, 169 
map, 167 
map defined by matrix, 172-173 
order, 33 
polynomial, 104 
programming problem, 183 

Literals, 235 
Locally high and low vertices, 222 
Location, 188 
Loop, 254 
Lorentz group, 190 
Lower: 

bound, 36 
covering condition, 220 
section, 44 

Low geodesic, 222 
LP problem, 183 
lub, 36 

Mapping, 5, 6 
Matchable set of vertices, 266 
Matching, 265, 266 
Material causality, 187 
Matrix, 171 

of linear map, 172-173 
Matroid, 245-246 

graphical representation of, 257 
Matroid geometry, 249 
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Maximal: 
chain, 39 
element, 35 
ideal, 97 

Maximum, 35-36 
Median equality, 216 
Median graph, 201 

as universal algebra, 292 
Meet, 43 

semigroup, 213 
Member, 3 
Metric: 

topology, 283 
uniform space, 282 

Minimal element, 35 
Minimum, 35 
Minor of a matroid, 253 
Model, 304 
Modular: 

identity, 216, 237 
lattice, 237 

Modulo m addition, 79 
Monoid, 62 

as universal algebra, 292 
Monomial, 105 
Morphisms, 313 
Motion: 

inertial, 189 
material, 190 

Moves in games, 203 
Multiple: 

in a ring, 111 
vector by scalar, 158 

Multiplication: 
of ideals, 98-99 
of integers, 77 
in a ring, 93 

n-ary operation, 25 
Natural number, 14 
Natural order: 

on line, 184 
of ordinals, 33 

Negative, 75, 129, 132 
Neighborhood of: 

point, 276 

set, 277 
Neutral element, 62 
Neutrality, 9,19, 23 
Nine, 12 
Noetherian: 

closure, 48 
ring, 97 

Normal subgroup, 65 
nth root of unity, 141 
n-tuple, 18 
Null: 

flat, 176 
linear form, 169 
set, 3 
vector, 157 

Nullary operation, 25 
Null product ring, 94 
Number: 

cardinal, 16, 17 
complex, 141 
of elements, 17 
integer, 75 
natural, 14 
ordinal, 11 
rational, 128 
real, 132 

Object: 
coproduct, 324 
product, 319 

Objective function, 183 
Occurrence in words, 297 
Occurrence of event, 188 
Odd: 

integer, 80 
permutation, 84 

One, 12 
Onto map, 7 
Open cover, 277 
Open set, 273 
Operation, 25 
Operation symbol, 296 
Optical causality, 187 
Optimal: 

result of greedy procedure, 263 
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Optimal (Continued) 
schedule, 52 
solution, 184 

Orbit, 72 
Order, in group theory, 119 
Ordered pair, 5 
Ordered sets, 33 

category of, 316 
Order relation, 33 

associated with preorder, 35 
Ordinal, 11 
Orientation of graph, 200 
Orthogonality, 170 
Outcome of game, 203 
Output of: 

Euclidean algorithm, 121 
greedy procedure, 263 

Pair, 4 
Pairwise disjoint sets, 34 
Parallelism: 

of affine flats, 178 
in matroid, 257 

Parity function, 85 
Partial associative structure, 313 
Partition, 34 
Path: 

critical, 53 
in a graph, 198 
in relation, 40 

Payoff function, 203 
Permutation, 68 

cycle, 82 
group, 26 

Photon, 187 
Plane, 176 
Players in games, 203 
Point: 

geometric, 176 
in topological space, 273 

Polynomial, 104 
in several indeterminates, 105-106 

Polynomial function, 107 
Position: 

in game, 203 
of letter occurrence, 298 

in matrix, 171 
Positive, 75, 129, 132 
Power ideals, 100 
Power set, 3 

functor, 317 
Precedence, 52 
Predecessor ordinal, 14 
Preorder, 33 

closure, 40 
Preordered set as a category, 316 
Prime element, 113 
Primitive element, 141 
Principal: 

filter, 269 
ideal, 97 
ring, 97 

Product: 
cardinal, 19 
closure under, 320 
in concrete category, 319 
of groupoid subsets, 61 
of ideals, 98 
inner or dot, 170 
of integers, 77 
in monoids, 63-64 
in rings, 93 
of sets, 18 
topology, 278 
vector space, 157 

Projection, 18 
cone, 318 

Projections in vector space, 179-180 
Projective geometry, 176 
Project schedule, 52 
Proof, 301 
Proper: 

filter, 269 
ideal, 95 
subgraph, 199 
subgroup, 65 
subset, 3 

Quotient: 
group, 67 
groupoid, 61 
ring, 96 
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set, 35 
of universal algebra, 294 
vector space, 167 

Radicals, 141 
solvability by, 150 

Range, 7 
Rank, 249 
Rational fractions, 128 
Rational numbers, 128 
Real: 

numbers, 132 
topology, 273 
uniformity, 281 

Reference system, 188 
optical 189 

Refinement of: 
filter, 271 
topology, 273 

Refinement order, 273 
Reflexivity, 10, 13, 33 
Regular graph, 235 
Regular topology, 283 
Relation, 31 
Relational structures, 31 

category of, 316 
Relation-preserving map, 32 
Relative: 

closure operator, 246 
height, 220 
splitting field, 145 

Remainder, 121 
Representation of matroids, 257 
Restriction of: 

function, 6 
matroid, 253 
relation, 31 

Result of: 
game strategies, 204 
greedy procedure, 263 

Rings, 93 
associated with Boolean lattices, 232 
category of, 315 
formal theory of, 303 
of sets, 26 
as universal algebras, 292 

Root, 110 
of unity, 141 

Row, 171, 172 

Scalar, 157 
Scenario, 203 

compatible with strategy, 203-204 
Schedule, 52 
Second kind ordinal, 14 
Segment, 45 
Semantic: 

consequence, 305 
value, 304 

Semigroups, 62 
category of, 315 
formal theory of, 302 

Semilattices, 43 
Sentence, 300 
Separation in topological space, 283 
Sequence, 18 

limit point of, 275 
Sets, 2 

category of, 314 
Seven, 12 
Similar: 

cycle structures, 83 
geometries, 177 

Simple: 
group, 87 
field extension, 141 

Singleton, 3 
Six, 12 
Slope, 189 
Small category, 317 
Smaller element, 35 
Smallest element, 35 
Solution of: 

linear equations, 173 
LP problem, 184 

Solvability by radicals, 150 
Solvable group, 146 
Space: 

geometric, 177 
metric, 282 
uniform, 281 
of vectors, 157 
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Spacetime universe, 187 
Spanning subgraph, 199 
Speed, 189 
Splitting field: 

absolute, 149 
relative, 145 

Square matrix, 173 
Square root, 135 
Stabilizer, 72 
Standard: 

rational order, 129 
real order, 132 
real topology, 273 
real uniformity, 281 

Start date, 52 
Step differential, 222 
Strategic couple, 204 
Strategy, 203 

in equilibrium, 204 
compatible with scenario, 203-204 

Stripping functor, 317 
Strongly acyclic relation, 49 
Structures, 315-316 

category of, 315 
domain and codomain, 316 
initial and terminal, 318 
product, 319 

Subalgebras, 292 
closure under formation of, 320 

Subcategory, 314 
Subcover, 277 
Subfield, 137 
Subgraph, 199 
Subgroup, 65 
Subgroupoid, 60 
Sublattice, 214 
Submonoid, 62 
Subring, 94 
Sub-semigroup, 62 
Subset, 3 
Subspace, 159 
Substitution, 300 
Successor ordinal, 12 
Sum: 

Boolean, 22 
cardinal, 23 

ideal, 97 
integer, 76 
in a ring, 93 
of vectors 157 

Superset, 3 
Support, 168 
Surjection, 7 
Symmetric difference, 22 
Symmetric group, 68 
Symmetry, 10, 33 

Tautology, 306 
Term, 296 
Terminal: 

positions in games, 203 
structure, 318 

Ternary operation, 25 
Theory, 301 
Three, 12 
Tight constraint, 184 
Time, 188 

shift, 191 
Topological spaces, 272-273 

category of, 316 
Topology, 273 
Total: 

comparability of ordinals, 13 
order, 33 

Trace of reference system, 188 
Transitive closure, 40 
Transitivity, 10, 13, 33 
Translate, affine, 178 
Translation, 71 
Transposition, 82 
Tree, 199 

underlying a game, 203 
Triangle inequality: 

in graph, 198 
metric, 282 

Triple, 18 
Trivial: 

group, 65 
ideal, 95 
lattice, 214 
ring, 94 
subspace, 159 
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topology, 273 
uniformity, 281 

Truth, 304 
Tutte polynomial, 254 
Twelve, 323 
Two, 12 
Type of algebra, 291 

Ultrafilter, 269 
Unary operation, 25 
Uniform: 

matroid, 246 
topology, 283 

Uniformity, 281-282 
Union, 4, 18 
Unit, 112 
Unit equivalence, 113 
Universal algebras, 291 

category of, 314 
Universe, 312 
Upper: 

bound, 36 
covering condition, 220 
section, 44 

Validity, 304 
Value, 6 

of a polynomial, 107 
semantic, 304 
of Tutte polynomial, 256 

Variable, 296 
Variety of algebras, 315 
Vectors, 157 
Vector spaces, 157 

category of, 316 
Velocity, 189 
Vertex, 197 
Vertex interval, 198 
Void set, 3 

Well-ordered set, 37 
Word, 295 
Worldpoint, 187 

Zero, 12 
polynomial, 104 
in a ring, 93 
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AcB Proper subset 3 
V(A) Power set 3 
UA Union of the members of A 4 
(a,b) Ordered pair 5 
BA Function set, exponentiation 6 

idA 
Identity map 6 
Inverse image of a set 7 

r Inverse map 8 
A~B Equipotence of sets 9 
a' Successor ordinal 12 
< Less than 13, 35 
< Less than or equal to 13, 33, 75, 129, 132 
W Set of natural numbers 15 
V'(S) Set of nonempty subsets 16 
Card S Cardinality of a set 17 

(«") Couple 18 
(uvw) Triple 18 
( M 0 , « I , . . . ,«,,.. .) n-tuple 18 

Pri Projection map 18 

nE Intersection of the members of E 21 
+ Cardinal sum, Boolean sum 23 
A Closure of a set 24 
(A,R) Relational structure 31 
AulR Automorphisms 32, 95 
aRb Binary relation 33 
(A,<) Ordered set 33 

Inclusion-ordered set 33 

339 
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A/E Quotient set 35 
< Preorder 35 
a ~ b Equivalence in a preorder 35, 111 
a || b Incomparability 35 
R' Dual relation 35 
> Dual preorder 35 
> Dual order 35 
gib Greatest lower bound 36 
lub Least upper bound 36 
Vr(A) Set of preorders 39 
Tr(A) Set of transitive relations 40 
x f\y Meet in lower semilattice 43,213 
x V y Join in upper semilattice 43,213 
f\B gib in complete lattice 43 
vB lub in complete lattice 43 
[x,y] Order segment 45 
[*,->) Upper section 45 
(<—,*] Lower section 45 
x-<y Covering relation 49 
l[A/E,Q) Quotient groupoid structure 61 
End ,4 Endomorphism monoid 63 
a" Product of n identical factors 63 
a' Inverse of a monoid element 64 
x = y mod N Congruence modulo a normal subgroup 67 
A/N Quotient by a normal subgroup 67 
T,(A) Symmetric group 68 
E„ Symmetric group on n elements 69 
/ l 2 3 4 \ p e r m u t a t i o n 69 
\ 4 2 1 3 / 

Sx Stabilizer 72 
gH Coset of subgroup 73 
[G : H] Index of subgroup 73 
(j* Set of positive integers 75 
u~ Set of negative integers 75 
Z Set of integers 75 
-z Negative of an integer 75 
d(x,y) Distance 76, 198,281 
ml Subgroup of the group of integers 78 
l m Quotient of Z 79,96 
i © j Integer addition modulo m 79 
gz Group clement with integer exponent 81 
/ - 1 Inverse map 81 
f~l[T] Inverse image of a set 81 
(/i !,...,«*) Permutation 82 
An Alternating group 85 
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Ring structure 93 
Oa Zero element of ring 93 
Ia Identity element of ring 93 
a + I Ideal coset 95 
1(A) Set of ideals % 
(*) Principal ideal 97 
(a\,...,an) Finitely generated ideal 97 
I + J Sum of ideals 97 
IJ Product of ideals 98 
P(A) Ring of polynomials 104 
A[b) Subring generated by A and b 106 
A[X] Polynomials in indeterminate A' 107 

fp Polynomial function defined by p 107 
a\b Divisibility 111 
gcd Greatest common divisor 113 
1cm Least common multiple 113 
F* Multiplicative group of field 125 

Q Field of rational numbers 128 
R Field of real numbers 132 

Square root 135 
\r\ Absolute value 135 
C Field of complex numbers 141 
i Root of X2 + 1 141 
E : K Field extension 141 
G(A) Fixing group 142 
F(B) Fixed field 142 
Q(E : K) Galois group 143 
K(au...,aj} I Subfield generated by K and the a,'s 147 
0 Null vector 157 
dimK Dimension 163, 179 
cu Coordinate function 168 
F" n-dimensional vector space over F 170 
~al Row vector 172 
a\i\ Column vector 172 
ha Linear function defined by matrix a 172 
P r o ^ Projective geometry 177 
v + A Affine translate 178 
AffK Affine geometry 179 
(f.M) Linear programming constraint 184 
c Lightspeed 187 
L Photon of velocity c 187 
L- Photon of velocity - c 187 
O Optical causality relation 187 
C Causality 187 
M Material causality 187 
£2 Lorentz group 190 
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G = (V,E) Graph 197 
I(a,c) Vertex interval 198 

<u Basepoint order 200 
Kv Complete graph 207 
G-e Edge-deleted graph 208 
Ge Edge-contracted graph 208 

Ds Nondistributive lattice 219 
M5 

Nonmodular lattice 219 
h(a,b) Relative height in discrete order 220 

x' Complement in Boolean lattice 230 

Bn Set of Boolean functions 231 

X, Literal 235 
h{a) Height in geometric lattice 241 
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