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Preface 

Generalizations of convex functions have previously been proposed by 

various authors, especially to establish the weakest conditions required for 

optimality results and duality theorems in nonlinear vector optimization. 

Indeed, these new classes of functions have been used in a variety of fields 

such as economics, management science, engineering, statistics and other 

applied sciences. In 1949 the Italian mathematician Bruno de Finetti in-

troduced one of the fundamental generalized convex functions character-

ized by convex lower level sets, functions now known as “quasiconvex 

functions”. 

 Since then other classes of generalized convex functions have been de-

fined (not all useful at the same degree and with clear motivation) in ac-

cordance with the need of particular applications. In many cases such func-

tions preserve some of the valuable properties of convex functions. One of 

the important generalization of convex functions is invex functions, a no-

tion originally introduced for differentiable functions :f C R→ , C  an 

open set of 
nR , for which there exists some function nRCC →×:η such 

that ( ) ( ) ( , ) ( ),  ,Tf x f y x y f u x u Cη− ≥ ∇ ∀ ∈ . Such functions have the 

property that all stationary points are global minimizers and, since their in-

troduction in 1981, have shown to be useful in a variety of applications. 

However, the major difficulty in invex programming problems is that it 

requires the same kernel function for the objective and constraints. This 

requirement turns out to be a severe restriction in applications. In order to 

avoid this restriction, Jeyakumar and Mond (1992) introduced a new class 

of invex functions by relaxing the definition invexity which preserves the 

sufficiency and duality results in the scalar case and avoids the major dif-

ficulty of verifying that the inequality holds for the same kernel function. 

Further, this relaxation allows one to treat certain nonlinear multiobjective 

fractional programming problems and some other classes of nonlinear 

(composite) problems. According to Jeyakumar and Mond (1992) A vector 

function 
pRXf →: is said to be V-invex if there exist functions 

nRXX →×:η  and { }0: −→× +RXXiα  such that for each 



Xxx ∈, and for ,,...,2,1 pi = ( ) ( ) ( ) ( ) ( ).,,  xxxfxxxfxf iiii ηα ∇≥−
 

For 1=p and ( ) ( ) ( )xxxxxx i ,,, ηαη = the above definition reduces to 

the usual definition of invexity given by Hanson (1981).  

This book is concerned about the V-invex functions and its applications 

in nonlinear vector optimization problems. As we know that a great deal of 

optimization theory is concerned with problems involving infinite dimen-

sional normed spaces. Two types of problems fit into this scheme are 

Variational and Control problems. As far as the authors are concerned this 

is the first book entirely concerned with V-invex functions and their appli-

cations. 

 

Shashi Kant Mishra 

Shouyang Wang 

Kin Keung Lai 
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Chapter 1: General Introduction 

1.1 Introduction 

In many decision or design process, one attempts to make the best decision 

within a specified set of possible ones. In the sciences, “best” has tradi-

tionally referred to the decision that minimized or maximized a single ob-

jective optimization problem. But, we are rarely asked to make decisions 

based on only one objective, most often decisions are based on several 

usually conflicting objectives. 

In nature, if the design of a system evolves to some final, optimal state, 

then it must include a balance for the interaction of the system with its sur-

rounding-certainly a design based on a variety of objectives. Furthermore, 

the diversity of nature’s design suggests infinity of such optimal states. In 

another sense, decisions simultaneously optimize a finite number of crite-

ria, while there is usually infinity of optimal solutions. Multiobjective op-

timization provides the mathematical frame work to accommodate these 

demands.  

The theory of multiobjective mathematical programming since it devel-

oped from multiobjective linear programming has been closely tied with 

convex analysis. Optimality conditions, duality theorems, saddle point 

analysis, constrained vector valued games and algorithms were established 

for the class of problems involving the optimization of convex objective 

functions over convex feasible regions. Such assumptions were very con-

venient because of the known separation theorems resulting from the 

Hahn-Banach theorem and the guarantee that necessary conditions for op-

timality were sufficient under convexity. However, not all practical prob-

lems, when formulated as multiobjective mathematical programs, fulfill 

the requirements of convexity, in particular, it was found that problems 

arising in economics and approximation theory could not be posed as con-

vex programs. Fortunately, such problem were often found to have some 

characteristics in common with convex problems, and these properties 

could be exploited to establish theoretical results or develop algorithms. 

By abstraction, classes of functions having some useful properties shared 

with convexity could be defined. In fact, some notions of generalized con-
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vexity did exist before the need for it arose in mathematical programming, 

but it was through this need that researchers were given the incentive to 

develop a literature which has become extensive now, on the subject. At 

present there has been little unification of generalized convexity, although 

some notable exceptions are the  papers of Schaible and Zimba (1981) the 

wide ranging work of Avriel, Diwert, Schaible and Zang (1988) and Jeya-

kumar and Mond (1992). 

1.2 Multiobjective Programming Problems 

The general multiobjective programming model can be written as  

(VP)   ( ) ( )( )xfxfV p,...,Minimize 1−  

  ( ) ,0osubject  t ≤xg  

where piRXf i ,...,1,: 0 =→  and 
mRXg →0:  are differentiable 

functions on 
nRX ⊆0  open. Note here that the symbol “ −V Minimize” 

stands for vector minimization. This is the problem of finding the set of 

weak minimum/efficient/properly efficient/conditionally properly efficient 

(Section 4 of the present Chapter) points for (VP). When 1=p  , the prob-

lem (VP) reduces to a scalar optimization problem and it is denoted by (P). 

Convexity of the scalar problem (P) is characterized by the inequalities: 

( ) ( ) ( )( ) 0' ≥−−− uxufufxf  

( ) ( ) ( )( ) 0' ≥−−− uxugugxg , 

., 0Xux ∈∀  

Hanson (1981) observed that the functional form ( )ux −  here plays no 

role in establishing the following two well-known properties in scalar con-

vex programming: 

(S) Every feasible Kuhn-Tucker point is global minimum. 

(W) Weak duality holds between (P) and its associated dual problem. 

Having this in mind, Hanson (1981) considered problem (P) for which 

there exists a function 
nRXX →× 00:η  such that 

(I)         ( ) ( ) ( ) ( ) 0,' ≥−− uxufufxf η  

( ) ( ) ( ) ( ) 0,' ≥−− uxugugxg η ,   ,, 0Xux ∈∀
and showed that such problems (known now as invex problems [Craven 

(1981, 1988)]) also possess properties (S) and (W). Since then, various 

generalizations of conditions (I) to multiobjective problems and many 
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properties of functions that satisfy (I) have been established in the litera-

ture, e.g. Ben-Israel and Mond (1986), Craven (1988), Craven and Glover 

(1985), Martin (1985). However, the major difficulty is that the invex 

problems require the same kernel function ( )ux ,η  for the objective and 

the constraints. This requirement turns out to be a severe restriction in ap-

plications. Because of this restriction, pseudo-linear multiobjective prob-

lems (Chew and Choo (1984)) and certain nonlinear multiobjective frac-

tional programming problems require separate treatment as far as 

optimality and duality properties are concerned. In order to avoid this re-

striction, Jeyakumar and Mond (1992) introduced a new class of functions, 

which we shall present in the next Section. We have developed necessary 

and sufficient optimality conditions of the minimization problem involving 

differentiable and non-differentiable functions in the subsequent chapters. 

We have discussed nonsmooth problems and compared with minimax 

problems and further we have presented nonsmooth composite problems 

and discussed optimality, duality and saddle point analysis. We have also 

considered multiobjective continuous and control problems in Chapter six 

and established sufficient optimality conditions and duality results. 

1.3 −V Invexity 

Jeyakumar and Mond (1992) introduced the notion of V-invexity for a vec-

tor function ( )pffff ,...,, 21=  and discussed its applications to a class of 

constrained multiobjective optimization problems. We now give the defini-

tions of Jeyakumar and Mond (1992) as follows. 

 

Definition 1.3.1: A vector function 
pRXf →: is said to be V-invex if 

there exist functions 
nRXX →×:η  and { }0: −→× +RXXiα  such 

that for each Xxx ∈, and for ,,...,2,1 pi =  

( ) ( ) ( ) ( ) ( ).,,  xxxfxxxfxf iiii ηα ∇≥−  

For 1=p and ( ) ( ) ( )xxxxxx i ,,, ηαη = the above definition reduces to 

the usual definition of invexity given by Hanson (1981).  

 

Definition 1.3.2: A vector function 
pRXf →: is said to be V-

pseudoinvex if there exist functions : nX X Rη × →  and 

{ }: 0i X X Rβ +× → −  
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such that for each Xxx ∈, and for ,,...,2,1 pi =  

( ) ( ) ( ) ( ) ( ) ( ). ,  ,0  ,
111

∑∑∑
===

≥⇒≥∇
p

i

ii

p

i

ii

p

i

i xfxxxfxxxxxf ββη
 

 

Definition 1.3.3: A vector function 
pRXf →: is said to be V-

quasiinvex if there exist functions 
nRXX →×:η  and 

{ }0: −→× +RXXiδ  such that for each Xxx ∈, and for ,,...,2,1 pi =  

( ) ( ) ( ) ( ) ( ) ( ) . 0  ,,  ,
111

≤∇⇒≤ ∑∑∑
===

p

i

i

p

i

ii

p

i

ii xxxfxfxxxfxx ηδδ  

It is evident that every V-invex function is both V-pseudo-invex (with 

( ) ( )xx
xx

i

i
,

1
,

α
β = ) and V-quasiinvex (with ( ) ( )xx

xx
i

i
,

1
,

α
δ = ). Also 

if we set 

( ) ( ) ( ) ( ) ,,  and 1, , 1,  ,1, ,1 xxxxxxxxxxp iii −===== ηδβα
 

then the above definitions reduce to those of convexity, pseudo-convexity 

and quasi-convexity, respectively.  

 

Definition 1.3.4: A vector optimization problem:  

(VP)                 ( )
pfffV ,...,,min 21−   

subject to   ( ) ,0  ≤xg  

where 
m

i RXgpiRXf →=→ : and ,...,2,1  ,:  are differentiable 

functions on X ,  is said to be V-invex vector optimization problem if each 

,1f ,2f …, pf  and ,1g ,2g …, mg  is a V-invex function. 

Note that, invex vector optimization problems are necessarily V-invex, 

but not conversely. As a simple example, we consider following example 

from Jeyakumar and Mond (1992).  

 

Example 1.3.1: Consider 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

2

1

2

2

1

,
,min

21 x

x

x

x

Rxx
 

          subject to     ,11 1 ≤− x  
.11 2 ≤− x  
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Then it is easy to see that this problem is a V-invex vector optimization 

problem with ( ) ;, and 1,, 21

1

1
2

2

2
1 xxxx

x

x

x

x
−===== ηββαα but 

clearly, the problem does not satisfy the invexity conditions with the same 
.η  

It is also worth noticing that the functions involved in the above prob-

lem are invex, but the problem is not necessarily invex.  

It is known (see Craven (1981)) that invex problems can be constructed 

from convex problems by certain nonlinear coordinate transformations. In 

the following, we see that V-invex functions can be formed from certain 

nonconvex functions (in particular from convex-concave or linear frac-

tional functions) by coordinate transformations.  

 

Example 1.3.2: Consider function,
pn RRh →: defined by 

( ) ( )( ) ( )( )( ),,...,1 xfxfxh p φφ=
 

where ,,...,2,1  ,: piRRf n

i =→ are strongly pseudo-convex functions 

with real positive functions 
nn

i RR →:,φα  is surjective with ( )x'φ  onto 

for each 
nRx ∈ . Then, the function h is V-invex.   

 

Example 1.3.3: Consider the composite vector function 

( ) ( )( ) ( )( )( ),,...,11 xFfxFfxh pp=
 

where for each RXFpi i →= 0:,,...,2,1  is continuously differentiable 

and pseudolinear with the positive proportional function ( ),, ⋅⋅iα and 

RRf i →:  is convex. Then, ( )xh  is −V invex with ( ) ., yxyx −=η  

This follows from the following convex inequality and pseudolinearity 

conditions: 

( )( ) ( )( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )( ) ( )( ).,

,

'

''

'

yxyFfyx

yxyFyxyFf

yFxFyFfyFfxFf

iii

iiii

iiiiiiii

−=

−=

−≥−

Dα

α  

For a simple example of a composite vector function, we consider 

1 2 1 2
1 2

1 2

( , ) , ,
x x x x

h x x e
x x

⎡ ⎤−
= ⎢ ⎥+⎣ ⎦

 

where { }2

0 1 2 1 2( , ) : 1, 1 .x x x R x x= ∈ ≥ ≥  
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Example 1.3.4: Consider the function 

( ) ( )( )( ) ( )( )( )( ),,...,11 xgfxgfxH pp ψψ DD=
 

where each if  is pseudolinear on 
nR  with proportional functions 

( ),, yxiα ψ  is a differentiable mapping from 
nR  onto 

nR  such that 

( )y'ψ  is surjective for each ,nRy∈  and RRf i →:  is convex for each 

.i  Then H  is −V invex.  

Jeyakumar and Mond (1992) have shown that the −V invexity is pre-

served under a smooth convex transformation.  

 

Proposition 1.3.1: Let RR →:ψ  be differentiable and convex with 

positive derivative everywhere; let 
pRXh →0:  be −V invex. Then, the 

function ( ) ( )( ) ( )( )( )
01 ,,..., Xxxhxhxh p ∈= ψψψ is −V invex.  

Proof: Let ., 0Xux ∈  Then, from the monotonicity of ψ  and 

−V invexity of h , we get 

( )( ) ( ) ( ) ( ) ( )( )uxuhuxuhxh iiii ,, ' ηαψψ +≥  

    
( )( ) ( )( ) ( ) ( ) ( )uxuhuxuhuh iiii ,, '' ηαψψ +≥  

( )( ) ( )( ) ( ) ( ).,,
'

uxuhuxuh iii ηψαψ D+=  

Thus, ( )xhψ  is −V invex. 

Recall that a point 
nRu∈  is said to be a (global) weak minimum of a 

vector function 
pn RRf →:  if there exists no 

nRx∈  for which  

( ) ( ) .,...,1, piufxf ii =<  

The following very important property of −V invex functions was also 

established by Jeyakumar and Mond (1992).  

 

Proposition 1.3.2: Let 
pn RRf →:  be −V invex. Then 

nRy∈  is a 

(global) weak minimum of f  if and only if there exists 

( )∑
=

=≥∈≠
p

i

ii

p yfR
1

' .0,0,0 τττ  

Proof: ( )⇒  Suppose that u  is weak minimum for .f  Then the follow-

ing linear system ,nRx∈ ( ) ( ) ,..,.,1, pixfuf ii =< is inconsistenct. 

Hence, the conclusion follows from the Gordan Alternative Theo-

rem(Craven (1978)). 
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( )⇐  Assume that ( )∑
=

=
p

i

ii yf
1

' ,0τ  for some .0,0 ≥∈≠ ττ pR  Sup-

pose that the point u  is not a weak minimum for .f  Then there exists 

nRx ∈0  such that ( ) ( ) .,...,1,0 piufxf ii =<  Since f  is  −V invex, 

there exists ( ) piuxi .,..,1,0,0 =>α  and ( ) nRux ∈,0η  such that 

         
( ) ( ) ( )( ) ( ) ( ).,

,

1
0

'

0

0

uxufufxf
ux

iii

i

η
α

≥−  

So,   ( ) ( ) ( )( )∑
=

<−
p

i

ii

i

ufxf
ux1

0

0

,0
,

1

α
 

and hence  ( ) ( )∑
=

<
p

i

ii uxuf
1

0

' .0,ητ  

This is a contradiction. 

By Proposition 1.3.2, one can conclude that for a −V invex vector func-

tion every critical point ( )( )piyf i ,...,1,0i.e. ' ==  is a global weak 

minimum.  

Hanson et al. (2001) extended the (scalarized) generalized type-I invex-

ity into a vector (V-type-I) invexity.  

 

Definition 1.3.5: The vector problem (VP) is said to be V-type-I at 

Xx ∈ if there exist positive real-valued functions iα and jβ  defined on 

XX ×  and an −n dimensional vector-valued function 
nRXX →×:η  

such that 

( ) ( ) ( ) ( ) ( )xxxfxxxfxf iiii ,,  ηα ∇≥−
  

and 

( ) ( ) ( ) ( ),,,  xxxgxxxg jjj ηβ ∇≥−  

for every Xx∈ and for all pi ,...,2,1=  and .,...,2,1 mj =
 

 

Definition 1.3.6: The vector problem (VP) is said to be quasi-V-type-I at 

Xx ∈ if there exist positive real-valued functions iα and jβ  defined on 

XX ×  and an −n dimensional vector-valued function 
nRXX →×:η  

such that 

( ) ( ) ( )[ ] ( ) ( ) 0  , 0  ,
p

1i1

≤∇⇒≤− ∑∑
==

xfxxxfxfxx iiiii

p

i

i ητατ  
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and 

( ) ( ) ( ) ( ) ,0  , 0  ,
11

≤∇⇒≤− ∑∑
==

xgxxxgxx j

m

j

jjj

m

j

j ηλβλ  

for every Xx∈ . 

 

Definition 1.3.7: The vector problem (VP) is said to be pseudo-V-type-I 

at Xx ∈ if there exist positive real-valued functions iα and jβ  defined 

on XX ×  and an −n dimensional vector-valued function 
nRXX →×:η  such that 

( ) ( ) ( ) ( ) ( )[ ]  0  ,0  ,
1

p

1i

≥−⇒≥∇ ∑∑
==

xfxfxxxfxx iii

p

i

iii ατητ  

and 

( ) ( ) ( ) ( ) ,0  ,0  , 
11

≥−⇒≥∇ ∑∑
==

xgxxxgxx jj

m

j

jj

m

j

j βληλ  

for every Xx∈ .  

 

Definition 1.3.8: The vector problem (VP) is said to be quasi-pseudo-V-

type-I at Xx ∈ if there exist positive real-valued functions iα and jβ  de-

fined on XX ×  and an −n dimensional vector-valued function 
nRXX →×:η  such that 

( ) ( ) ( )[ ] ( ) ( ) 0  , 0  ,
p

1i1

≤∇⇒≤− ∑∑
==

xfxxxfxfxx iiiii

p

i

i ητατ  

and 

( ) ( ) ( ) ( ) ,0  ,0  , 
11

≥−⇒≥∇ ∑∑
==

xgxxxgxx jj

m

j

jj

m

j

j βληλ  

for every Xx∈ .  

 

Definition 1.3.9: The vector problem (VP) is said to be pseudo-quasi-V-

type-I at Xx ∈ if there exist positive real-valued functions iα and jβ  de-

fined on XX ×  and an −n dimensional vector-valued function 
nRXX →×:η  such that 

( ) ( ) ( ) ( ) ( )[ ]  0  ,0  ,
1

p

1i

≥−⇒≥∇ ∑∑
==

xfxfxxxfxx iii

p

i

iii ατητ  

and
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( ) ( ) ( ) ( ) ,0  , 0  ,
11

≤∇⇒≤− ∑∑
==

xgxxxgxx j

m

j

jjj

m

j

j ηλβλ  

for every Xx∈ . 

Nevertheless the study of generalized convexity of a vector function is 

not yet sufficiently explored and some classes of generalized convexity 

have been introduced recently. Several attempts have been made by many 

authors to introduce possibly a most wide class of generalized convex 

function, which can meet the demand of a real life situation to formulate a 

nonlinear programming problem and therefore get a best possible solution 

for the same.  

1.4 Efficient Solution for Optimal Problems with 
Multicriteria 

For the vector function ( ) ( ) ( )( )xfxfxf p,...,1=  and a set of feasible point 

nRK ⊆ for which it is desirable to ( )xfminimize , ( ( )xfmaximize ).
0x  

is defined to be efficient if Kx ∈0
 and there is no other Kx∈  such that 

( ) ( ) ( ) ( )( ).00 xfxfxfxf ≥≤  

The properness of the efficient solution of the optimal problem with 

multicriteria has been introduced at the early stage of the study of this 

problem (Kuhn and Tucker (1951)). Geoffrion (1968) defined the proper-

ness for the purpose of eliminating an undesirable possibility in the con-

cept of efficiency, namely the possibility of the criterion functions being 

such that efficient solutions could be found for which the marginal gain for 

one function could be made arbitrarily large relative to the marginal losses 

for the others. Geoffrion (1968) gave a theorem describing the relation of 

the Kuhn-Tucker proper efficient solutions and his proper efficient solu-

tion. 

In this section, we summarize briefly the known results of proper (im-

proper) efficient solutions for (VP), and apply them to five examples. 

The problems discussed in the papers of Kuhn-Tucker (1951), Geoffrion 

(1968), Tamura and Arai (1982) and Singh and Hanson (1991) are of the 

following nature: 

( )xfV Maximize−  

( ) ,0   subject to ≤xg  

where ( )xf  and ( ) ( )0xfxf ≤  are ( )xg  are −p dimensional and 

−m dimensional vectors. 
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Let K  denote the set of feasible solutions of the above vector maximum 

problem. 

 

Definition 1.4.1 [Kuhn-Tucker (1951)]: 

An efficient solution 
0x  is called a proper efficient solution if there ex-

ists no Kx∈  such that 

( ) ,00 ≥∇ xxf  ( ) ,00 ≥∇ xxg I  

where ( )0xg I∇  is a matrix whose row vector is a gradient function of an 

active constraint. We call this solution a KT-proper efficient solution. 

 

Definition 1.4.2 [Geoffrion (1968)]: An efficient solution 
0x  is called a 

proper efficient solution if there exists a scalar 0>M  such that, for each 

,i  

( ) ( )
( ) ( ) M

xfxf

xfxf

jj

ii ≤
−
−

0

0

 

for some j  such that ( ) ( ),0xfxf jj < whenever, Kx∈  and 

( ) ( )0xfxf ii >  

For minimization problem (VP) we have the following inequality for 

0>M  

( ) ( )
( ) ( ) M

xfxf

xfxf

jj

ii ≤
−
−

0

0

 

for some j  such that ( ) ( ),0xfxf jj > whenever x  is feasible for (VP) 

and ( ) ( ).0xfxf ii <  

We call this solution a G-proper efficient solution. 

 

Proposition 1.4.1 [Geoffrion (1968)]: Assume that the Kuhn-Tucker 

constraint qualification holds at 
0x . Then a G-proper efficient solution 

implies a KT-proper efficient solution. 

Now, let is examine the proper and improper efficient solutions of the 

following example in some detail. 

 

Example 1.4.1 [Kuhn-Tucker (1951)] The problem considered is as fol-

lows: 

( )xxx 2,Maximize 2 +−  

                                      subject to   .0,02 ≥≥− xx  
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The feasible region and the functions are shown in the fig 1a:  

 
In Geoffrion’s (1968) definition of proper efficiency M  is independent 

of x , and it may happen that if f  is unbounded such an M  may not ex-

ist. Also an optimizer might be willing to trade different levels of losses 

for different levels of gains by different values of the decision variable x . 

Singh and Hanson (1991) extended the concept to situation where M  de-

pends on x . 

 

Definition 1.4.3 [Singh and Hanson (1991)]: The point 
0x  is said to be 

conditionally properly efficient for (VP) if 
0x  is efficient for (VP) and 

there exists a positive function ( )xM  such that, for each i , we have 

( ) ( )
( ) ( ) ( ),

0

0

xM
xfxf

xfxf

jj

ii ≤
−
−

 

for some j  such that ( ) ( )0xfxf jj <  whenever Xx∈  and 

( ) ( ).0xfxf ii >  

For −V Min problem the above definition can be stated as: The point 
0x  is said to be conditionally properly efficient for ( −V Min) if 

0x  is ef-

ficient for ( −V Min) and there exists a positive function ( )xM  such that, 

for i , we have 

( ) ( )
( ) ( ) ( ),

0

0

xM
xfxf

xfxf

jj

ii ≤
−
−

 

for some j  such that ( ) ( )0xfxf jj >  whenever Xx∈  and  

( ) ( ).0xfxf ii <  

The following example is from Mishra and Mukherjee (1995a). 
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Example 1.4.4. [Mishra and Mukherjee (1995a)]: Consider the problem 

( ) ( )( )212211 ,,,Minimize xxfxxfV −  

where   ( )
2

1
211 ,

x

x
xxf =  and ( )

1

2
212 ,

x

x
xxf =  

subject to  ( ) .01,01,, 21

2

21 ≤−≤−∈ xxRxx  

It can be shown that every point of the feasible region is efficient. But, 

none of the point of the feasible set is properly efficient. 

Let ( )bax ,* =  be an efficient solution. By symmetry of the program, 

we may assume that .1 ba ≤≤  Let M  be any positive number. Choose 

( )21 , xxx =  so that 

.,
1

2 ⎟
⎠
⎞

⎜
⎝
⎛>

a

b
MMax

x

x
 

Then 

( ) ( ),*

2

1

2
2 xf

a

b

x

x
xf =>=  

but 

( ) ( )
( ) ( )

( )
( ) .

1

2

1

2

211

212

2

1

1

2

*

11

2

*

2 M
x

x

ax

bx

axbxax

axbxbx

b

a

x

x

x

x

a

b

xfxf

xfxf
>≥=

−
−

=
−

−
=

−
−

 

This shows that ( )bax ,* =  can not be properly efficient. But, every 

efficient solution is conditionally properly efficient: 

Choose ( ) ,
1

2

ax

bx
xM ≥  where ( ),, 21 xxx =  then 

( ) ( )
( ) ( ) ( ),

1

2

*

11

2

*

2 xM
ax

bx

xfxf

xfxf
≤=

−
−

 

( ) ( ),*

2

1

2
2 xf

a

b

x

x
xf =>=  where ( )21 , xx  is feasible and 

( ) ( ).*

1

2

1
1 xf

b

a

x

x
xf =<=  

Thus, 
*x is conditionally properly efficient. 



Programming 

2.1 Introduction 

Hanson’s (1981) introduction of invex functions was motivated by the 

question of finding the widest class of functions for which weak duality 

hold for dual programs, such as the Wolfe and Mond-Weir duals, formu-

lated from the necessary optimality conditions. Since then, various gener-

alizations of invexity have been introduced in the literature e.g. Craven and 

Glover (1985), Egudo (1989), Hanson and Mond (1982), Kaul and Kaur 

(1985), Martin (1983), Kaul, Suneja and Srivastava (1994), Jeyakumar and 

Mond (1992), Mond and Hanson (1984, 1989), Nanda and Das (1993, 

1994), Smart (1990), Weir (1988), Rueda and Hanson (1988), Mond and 

Husain (1989), Mond, Chandra and Husain (1988), Mishra and Mukherjee 

(1994a, 1994b, 1995, 1996, 1996a, 1996b). 

However, the major difficulty is that the invex problems require the 

same kernel function for the objective and the constraints. This require-

ment turns out to be a severe restriction in applications. Because of this re-

striction, pseudolinear multiobjective problems (Chew and Choo (1984), 

Rueda (1989), Kaul, Suneja and Lalitha (1993), Komlosi (1993), Mishra 

(1995c), Mishra and Mukherjee (1996b) and certain nonlinear multiobjec-

tive fractional programming problems require separate treatment as far as 

optimality and duality properties are concerned. 

In this Chapter, we consider the role of invexity and its generalizations, 

namely V-pseudo-invexity and V-quasi-invexity in standard multiobjective 

programming; in particular, the replacement is made of invexity in results 

related to necessary and sufficient optimality conditions, duality theorems 

symmetric duality results and vector valued constrained games. A vast 

number of theorems developed during the evolution of nonlinear pro-

gramming theory were stated with assumptions of invexity. In most cases 

it has been possible to generalize these results under the assumptions of V-

invexity. However, this has not been a direct process. Intermediate and 

overlapping results have been achieved using the various notions of gener-

alized convexity discussed in Chapter 1. 

Chapter 2: V-Invexity in Nonlinear Multiobjective 



Following Mangasarian’s (1969) use of pseudo-convexity and quasi-

convexity for optimality and duality theorems, duality theory has been 

constructed based on particular generalizations of convexity; see, for ex-

ample, the works of Crouzeix (1981) on quasi-convex functions, Avriel 

(1979) on (h, F)-convex functions, Preda (1992) on (F, p)-convex, Preda 

(1994) on (F, p)-quasi-convex Mangasarian, (F, p)-quasi-convex Ponstein. 

There has been substaintial progress made by authors such as Craven 

and Glover (1981), Mond and Hanson (1984), Martin (1985) in developing 

a complete duality theory using invex functions, and by Jeyakumar and 

Mond (1992), and Mishra (1995a) using V-invex functions. Here, we out-

line the relationship of V-invexity to Mond-Weir duals, via Kuhn-Tucker 

conditions. Next, the necessary and sufficient optimality conditions for a 

class of nondifferentiable multiobjective programming problem will be es-

tablished. In section six, vector valued infinite game is associated to a pair 

of multiobjective programming problem and finally in the last section a 

multiobjective symmetric duality theorem is established. 

The general nonlinear multiobjective program to be considered is: 

(VP):                 ( )1( ), , ( )pV Min f x f x− …  

( ) ,0   subject to ≤xg  

where piRXf i ,...,1,: 0 =→  and 
mRXg →0:  are differentiable 

functions on 
nRX ⊆0  open. When 1=p  , the problem (VP) reduces to a 

single objective case and gives (P) of Wolfe (1961), Avriel (1976), Kaul 

and Kaur (1985). 

It is assumed that the program (VP) contains no equality constraints; 

equality constraints of the form ( ) 0=xh  could be re-written as ( ) ,0≥xh  
( ) 0≥− xh in order to put an equality constrained optimization problem in 

form of (VP). 

The Fritz-John type necessary conditions for a feasible point 
*x  to be 

optimal for (VP) are (John (1948)) the existence of 
pR∈τ , 

mR∈λ  such 

that 

( ) ( )∑ ∑
= =

=+
p

i

m

j

jjii xgxf
1 1

*'*' 0λτ
 

(2.1)

( ) ,,...,1,0* mjxg jj ==λ  (2.2)

.0,0 ≥≥ λτ  (2.3)
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There are no restrictions on the objective or constraint functions apart 

from differentiability. 

However, by imposing a regularity condition on the constraint func-

tions, the 
pR∈τ  may without loss of generality, be taken as ,1

1

=∑
=

p

i

iτ  

and we obtain the Kuhn-Tucker type conditions (Kuhn-Tucker (1951)) or 

the weak Arrow-Hurwicz-Uzawa constraint qualification (Mangasarian 

(1969)): 

There exist 
pR∈τ , 

mR∈λ  such that 

( ) ( )∑ ∑
= =

=+
p

i

m

j

jjii xgxf
1 1

*'*' 0λτ
 

(2.4)

( ) ,,...,1,0* mjxg jj ==λ  (2.5)

.0,1,0
1

≥=≥ ∑
=

λττ
p

i

i

 

(2.6)

It is shown in Mangasarian (1969) that the Kuhn-Tucker type conditions 

are necessary for optimality regardless of any convexity conditions on .g  

2.2 Sufficiency of the Kuhn-Tucker Conditions 

Kuhn and Tucker (1951) prove that when f  is differentiable and convex, 

and g  is differentiable and concave, then a feasible point 
*x  of (P), for 

which there exists some 
mR∈*τ  such that ( )** , τx  satisfy the Kuhn-

Tucker conditions, is an optimal solution of (P). 

Mangasarian (1969) weakened the convexity requirements for this result 

to hold; it is sufficient that f  be pseudo-convex and , ,jg j J∈  

{ }*: ( ) 0jJ j g x= =  be differentiable and quasi-concave. 

The question of which is the widest class of functions giving sufficiency 

of the Kuhn-Tucker conditions is used to introduce −V invex functions in 

Jeyakumar and Mond (1992). There, it is shown that sufficiency follows 

when ii fτ  is −V pseudo-invex, ,,...,1 pi =  and  jj gλ  is −V quasi-

invex, ,,...,1 mj =  with respect to the same η . 

The concept of efficiency or Pareto optimality in multiobjective pro-

gramming has important role in all optimal decision problems with non-



comparable criteria. Geoffrion (1968) introduced a slightly restricted defi-

nition of efficiency called proper efficiency for the purpose of eliminating 

efficient points of a certain anomalous type that lends itself to more satis-

factory characterization. Many researchers have obtained necessary and 

sufficient conditions of Kuhn-Tucker type for a feasible point to be prop-

erly efficient, for example see Kaul, Suneja and Srivastava (1994) and ref-

erences therein. Singh and Hanson (1991) pointed out that M  involved in 

the definition of proper efficiency (Chapter 1, Section 4) is independent of 

x  and it may happen that if f  is unbounded such an M  may not exist. 

Hence they generalized the definition to cover situations where Geof-

frion’s (1968) definition does not apply. 

In light of above discussion we establish the following Kuhn-Tucker 

type sufficient optimality condition for a feasible point to be conditionally 

properly efficient. 

 

Theorem 2.2.1 (Kuhn-Tucker type Sufficient Conditions) 

Consider the multiobjective problem (VP). Let there exist
pR∈τ , 

mR∈λ such that (2.4)-(2.6) at a feasible point
*

0x X∈ .If ( )pp ff ττ ,...,11  

is −V pseudo-invex and ( )mm gg λλ ,...,11  is −V quasi-invex with re-

spect to .η  Then 
*x  is a conditionally properly efficient solution of (VP). 

Proof: Let x  be feasible for the problem (VP). Then, ( ) .0≤xg  Since 

,,...,1,0 mjg jj ==λ then 

( ) ( ).*

11

xgxg j

m

j

jj

m

j

j ∑∑
==

≤ λλ
 

Since ( ) ,,...,2,1,0, * mjxxj =∀>β we have 

( ) ( ) ( ) ( ).,, *

1

*

1

* xgxxxgxx j

m

j

jjj

m

j

jj ∑∑
==

≤ λβλβ
 

(2.7)

Then by −V quasi-invexity of ( )mm gg λλ ,...,11 , we get 

( ) ( ) .0, **'

1

≤∑
=

xxxg j

m

j

j ηλ
 

Therefore, from (2.4) we have

( ) ( ) .0, **'

1

≥∑
=

xxxf i

p

i

i ητ
 

Thus, from −V pseudo-invexity of ( )pp ff ττ ,...,11 , we have 
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( ) ( ) ( ) ( ) .,, *'

1

*'

1

* xfxxxfxx i

p

i

iii

p

i

ii ∑∑
==

≥ τατα
 

Since ( ) pixxi ,...,1,0, * =∀>α  and 0>τ , we have 

( ) ( ) ..,..,1,* pixfxf ii =∀≤
 

Thus, 
*x  is an efficient solution for (VP). 

Now assume that 
*x  is not a conditionally properly efficient solution for 

(VP). Therefore, there exists a feasible for (VP) and an index such that for 

every positive function ( )xM , we have
*( ) ( ) ( )j jf x M x f x>  for all j satis-

fying 
*( ) ( )j jf x f x>

 
whenever ( ) ( ).*xfxf ii <  

This means ( ) ( )xfxf ii −*
 can be made arbitrarily large and hence for 

0>τ  and ( ) .,...,1,0, * pixxi =∀>α  

The inequality ( ) ( ) ( )[ ] 0, *

1

* >−∑
=

xfxfxx ii

p

i

ii τα  is obtained. 

By −V pseudo-invexity of ( )
pp ff ττ ,...,11 , we get 

( )∑
=

<
p

i

ii xf
1

*' .0τ
 

(2.8)

Now from (2.8) and (2.4), we get 

( ) ( )∑
=

>
m

j

jj xxxg
1

**' .0,ηλ
 

(2.9)

By −V quasi-invexity of ( )mm gg λλ ,...,11  and (2.9), we get 

( ) ( ) ( ) ( ) ,,, *

1

*

1

* xgxxxgxx j

m

j

jjj

m

j

jj ∑∑
==

> λβλβ
 

which is a contradiction to (2.7). 

Hence, 
*x  is a conditionally properly efficient solution of (VP).

2.3 Necessary and Sufficient Optimality Conditions for a 
Class of Nondifferentiable Multiobjective Programs 

Mond (1974) considered a class of nondifferentiable mathematical pro-

gramming problems of the form: 

(NDP):               ( ) ( )2

1

Minimize Bxxxf T+  



( ) ,0tosubject ≥xg  (2.10)

where f  and g  are differentiable functions from 
nR  to R  and 

mR , re-

spectively and B  is an nn×  positive semi-definite (symmetric) matrix. 

Later Mond, Husain and Durga Prasad (1991) extended the work of 

Mond (1974) to multiobjective case: 

(NDVP): ( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ 2

1

2

1

11 ,...,Minimize xBxxfxBxxf p

T

p

T
 

( ) .0tosubject ≥xg  (2.11)

In the subsequent analysis, we shall frequently use the following gener-

alized Schwarz inequality [Riesz and Sz-Nagy (1955, pp. 262)] 

( ) ( ) ,,,2

1

2

1
nTTT RzxBzzBxxBzx ∈∀≤  

where B  is an nn×  positive semi-definite (symmetric) matrix. 

We now state Kuhn-Tucker type necessary conditions. 

 

Lemma 2.3.1. [Kuhn-Tucker type necessary condition] 

Let 
*x  be an efficient solution of (NDVP). Then there exist 

pR∈τ , 
mR∈λ  such that 

( )[ ] ( )
( )

∑ ∑
= ∈

=++
p

i xIj

jjiiii xgzBxf
1

*'*'

*

0λτ
 

(2.12)

( ) ,0* =xg jjλ  (2.13)

pizBz ii

T ,...,1,1 =≤  (2.14)

( ) ,*2

1

**

ii

T

i

T
zBxxBx =

 

(2.15)

,1,0,0
1

=≥> ∑
=

p

i

iτλτ
 

(2.16)

where ( ) ( ){ } .0: ** φ≠== xgjxI j  
 

Theorem 2.3.2 [Sufficient Optimality Condition] 

Let 
*x  be an efficient solution of (NDVP) and let there exist scalars 

pR∈τ  and λ  such that 
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( )[ ] ( )
( )

∑ ∑
= ∈

=∇++∇
p

i xIj

jxjiiixi xgzBxf
1

**

*

0λτ
 

(2.17)

( ) ,0* =xg jjλ  (2.18)

pizBz ii

T ,...,1,1 =≤  (2.19)

( ) ,*2

1

**

ii

T

i

T
zBxxBx =

 

(2.20)

,0,0 ≥> λτ  (2.21)

where ( ) ( ){ } .0: ** φ≠== xgjxI j  

If ( ) ( )( )pp

T

pp

T zBfzBf ⋅+⋅+ ττ ,...,1111  is −V pseudo-invex and 

( )mm gg λλ ,...,11  is −V quasi-invex with respect to the same η  and for 

all piecewise smooth 
n

i Rz ∈ . Then 
*x  is conditionally properly efficient 

solution for (NDVP). 

Proof: Let x  be feasible for problem (NDVP). Then ,Sx∈ ( ) .0≤xg  

Since ( ) ,,...,1,0* mjxg jj ==λ then  

( ) ( ) .*

11

xgxg
m

j

jj

m

j

jj ∑∑
==

≤ λλ
 

(2.22)

Since ( ) ,,...,1,0, * mjxxj =∀>β we have 

( ) ( ) ( ) ( ).,, *

1

*

1

* xgxxxgxx
m

j

jjj

m

j

jjj ∑∑
==

≤ λβλβ
 

(2.23)

Then by −V pseudo-invexity of ( )mm gg λλ ,...,11 , we get 

( ) ( )∑
=

≤∇
m

j

jxj xxxg
1

** .0,ηλ
 

Therefore, from (2.12), we have

( )[ ]∑
=

≥+∇
p

i

iiixi zBxf
1

* .0τ
 

Thus, from −V pseudo-invexity of ( ) ( )( )zBfzBf p

T

pp

T ⋅+⋅+ ττ ,...,111 , 

we have 



( ) ( )[ ] ( ) ( )[ ].,, **

1

*

1

* zBxxfxxzBxxfxx i

T

i

p

i

iii

T

i

p

i

ii +≥+ ∑∑
==

τατα (2.24)

That is 

( ) ( )[ ] ( ) ( )[ ] izBxxfxxzBxxfxx i

T

iiii

T

iii ∀+≤+ τατα **** ,,
, 

and 
* * * *( , ) ( ) ( , ) ( )T T

i i i i j j j jx x f x x B z x x f x x B zα τ α τ⎡ ⎤ ⎡ ⎤+ < +⎣ ⎦ ⎣ ⎦  for at 

least one j. 

Since, ( ) 0and0, * >∀> τα ixxi , we get 

( ) ( ) and** izBxxfzBxxf i

T

ii

T

i ∀+≤+  

( ) ( ) . oneleast at for ,** jzBxxfzBxxf j

T

jj

T

j +<+  

Thus, 
*x  is an efficient solution of (NDVP). 

Now assume that, 
*x  is not a conditionally properly efficient solution of 

(NDVP). Therefore, there exists Kx∈  and an index i  such that for every 

positive function ( )xM , we have: 

( ) ( ) ( ) ( ) ( ) satisfying,2

1

***2

1

*** jxBxxfxMxBxxf i

T

ii

T

i ∀⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+>+  

( ) ( ) ( ) ( ) ,2

1

***
2

1

xBxxfxBxxf j

T

jj

T

j +>+  

whenever 

( ) ( ) ( ) ( ) .2

1

***
2

1

xBxxfxBxxf i

T

ii

T

i +<+  

This means ( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+ 2

1
2

1

*** xBxxfxBxxf i

T

ii

T

i can be made 

arbitrarily large and hence for 0>τ  and ( ) ,,0, * ixxi ∀>α  the ine-

quality 

( ) ( ) ( ) ( ) ( ) 0, 2

1
2

1

***

1

* >⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+∑

=

xBxxfxBxxfxx i

T

ii

T

i

p

i

ii τα
 

is obtained. 

By −V pseudo-invexity of ( ) ( )( )⋅⋅+⋅⋅+ p

T

pp

T BfBf ττ ,...,111 , we get 

( )( ) ( )∑
=

<+∇
p

i

iixi xxzBxf
1

** .0,ητ
 

(2.25)
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Now from (2.12) and (2.25), we get 

( )
( ) ( ) .0, **

*

>∇∑
∈

xxxg jx

xIj

j ηλ  

By −V quasi-invexity of  ( )mm gg λλ ,...,11 , we have 

( )
( )

( ) ( )
( )

( ),,, ***

**

xgxxxgxx jx

xIj

jjjx

xIj

jj ∇>∇ ∑∑
∈∈

λβλβ
 

(2.26)

which is a contradiction to (2.23). 

Hence, 
*x  is a conditionally properly efficient solution of (NDVP).

2.4 Duality 

Several approaches to duality for the multiobjective optimization problem 

may be found in the literature. These include the use of vector valued La-

grangian, see for example Tanino and Sawaragi (1979), Weir (1987), 

White (1985) and Lagrangians incorporating matrix Lagrange multipliers, 

Bitran (1981), Corley (1981), Ivanov and Nehse (1985). Weir and Mond 

(1989) generalized the scalar duality results of Wolfe (1961), Mond and 

Weir (1981) and Bector and Bector (1987) to multiobjective optimization 

problem under the assumption of convexity. A vast number of works have 

appeared dealing with duality in multiobjective programs under different 

assumptions of convexity, for example, Preda (1992), Egudo (1989), Kaul, 

Suneja and Lalitha (1993), Rueda and Hanson (1988), Kaul, Suneja and 

Srivastava (1994) and Mond and Smart (1989) to mention a few. 

Jeyakumar and Mond (1992) established the duality results for (VP) 

considered above in Section 2.1 under generalized −V invexity assump-

tions. The dual problem for (VP) is: 

(VD):             ( ) ( )( )ufufV p,...,Maximize 1−  

subject to     ( ) ( )∑ ∑
= =

=+
p

i

m

j

jjii uguf
1 1

'' ,0λτ  (2.27)

( ) ,,...,1,0 mjug jj =≥λ  (2.28)

,0,1,0 ≥=≥ λττ e  (2.29)

where ( ) .1,...,1 pRe ∈=  

By considering the concept of weak minimum Jeyakumar and Mond 

(1992) demonstrated that −V pseudo-invexity of ( )pp ff ττ ,...,11  and 



−V quasi-invexity of ( )mm gg λλ ,...,11  with respect to the same kernel 

function η  was sufficient for weak duality to hold between the primal 

problem (VP) and its Mond-Weir type dual (VD) namely; 

 

Theorem 2.4.1. (Weak Duality) 

Consider the multiobjective problems (VP) and (VD). Let x  be feasible 

for (VP) and let ( )λτ ,,u  be feasible for (VD). If ( )pp ff ττ ,...,11  is 

−V pseudo-invex and ( )mm gg λλ ,...,11  is −V quasi-invex with respect 

to the same η , then 

( ) ( )( ) ( ) ( )( ) .int,...,,..., 11

pT

p

T

p Rufufxfxf +−∉−  

Mond and Weir (1981) proposed a number of different duals to the sca-

lar valued minimization problem. Here we show that there are analogous 

results for the multiobjective optimization problem (VP) with generalized 

−V invexity assumptions. 

 

Theorem 2.4.2 (Weak Duality) 

If for all feasible ( )λτ ,,,ux  
(a). pif i ,...,1, =  is −V pseudo-invex and ( )mm gg λλ ,...,11  is 

−V quasi-invex; or 

(b). ( )pp ff ττ ,...,11  is −V pseudo-invex and ( )mm gg λλ ,...,11  is 

−V quasi-invex; or 

(c). ( )pff ,...,1  is −V quasi-invex and ( )mm gg λλ ,...,11  is strictly 

−V pseudo-invex; or 

(d). ( )pp ff ττ ,...,11  is −V quasi-invex and ( )mm gg λλ ,...,11  is 

strictly −V pseudo-invex, then ( ) ( ).ufxf </  

Proof:  

(a). Assume contrary to the result, i. e., for x  feasible for (VP) and 

( )λτ ,,u  feasible for (VP), suppose ( ) ( ),ufxf ii <  for all .,...,1 pi =  

Since ( ) ,,...,1,0, piuxi =∀>α  we have 

( ) ( ) ( ) ( ) .,...,1,,, piufuxxfux iiii =∀<αα  

Therefore, ( ) ( ) ( ) ( ).,,
11

ufuxxfux i

p

i

ii

p

i

i ∑∑
==

< αα  

By −V pseudo-invexity of pif i ,...,1, = , we have 
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( ) ( )∑
=

<
p

i

i uxuf
1

' .0,η  

Since ,0≥τ
 

( ) ( )∑
=

<
p

i

ii uxuf
1

' .0,ητ
 

(2.30)

Since ( ) ( ) .,...,1, mjugxg jjjj =∀≤ λλ  

Again, since ( ) ,,...,1,0, mjuxj =∀>β  we have 

( ) ( ) ( ) ( )∑∑
==

≤
m

j

jjj

m

j

jjj uguxxgux
11

.,, λβλβ  

Now, −V quasi-invexity implies that 

( ) ( ) .0,
1

'∑
=

≤
m

j

jj uxug ηλ
 

(2.31)

Combining (2.30) and (2.31), gives 

( ) ( ) ( ) ,0,
1 1

'' <⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑ ∑

= =

uxuguf
p

i

m

j

jjii ηλτ  

which contradicts the constraint (2.27) of (VD). 

(b). Let x  be feasible for (VP) and ( ) ( ) ..,..,1, piufxf ii =∀<  Since 

0≥τ  and ( ) ,,...,1,0, piuxi =∀>α  it follows that 

( ) ( ) ( ) ( ),,,
11

ufuxxfux ii

p

i

iii

p

i

i τατα ∑∑
==

<  

and −V pseudo-invexity of ( )pp ff ττ ,...,11  implies 

( ) ( ) .0,'

1

<∑
=

uxuf i

p

i

i ητ  

Rest of the proof goes on the lines of the proof of part (a). 

(c). Let x  be feasible for (VP) and ( )λτ ,,u  feasible for (VD). Suppose 

( ) ( ) .,...,1, piufxf ii =<  Since ( ) ,,...,1,0, piuxi =∀>α  we have 

( ) ( ) ( ) ( ).,,
11

ufuxxfux i

p

i

ii

p

i

i ∑∑
==

< αα  

The −V quasi-invexity of ( )
pff ,...,1  implies that 

( ) ( )∑
=

≤
p

i

i uxuf
1

' .0,η  



Since ,0≥τ  

( ) ( ) .0,'

1

≤∑
=

uxuf i

p

i

i ητ  

By (2.27), 

( ) ( ) .0,'

1

≥∑
=

uxug j

m

j

j ηλ  

Since ( )mm gg λλ ,...,11  is strictly −V pseudo-invex, we have 

( ) ( ) ( ) ( )∑∑
==

>
m

j

jjj

m

j

jjj uguxxgux
11

,,, λβλβ  

which is a contradiction since ( ) 0≤xg jjλ and ( ) 0≥ug jjλ and 

( ) .,...,1,0, mjuxj =∀>β  

(d). Let x  be feasible for (VP) and ( )λτ ,,u  feasible for (VD). Suppose 

( ) ( ) .,...,1, piufxf ii =<  Since ( ) ,,...,1,0, piuxi =∀>α  and 

,0≥τ  we have 

( ) ( ) ( ) ( ).,,
11

ufuxxfux ii

p

i

iii

p

i

i τατα ∑∑
==

<  

The −V quasi-invexity of  ( )pp ff ττ ,...,11  implies that 

( ) ( )∑
=

≤
p

i

ii uxuf
1

' .0,ητ  

By (2.27) 

( ) ( ) ,0,'

1

≥∑
=

uxug j

m

j

j ηλ  

and since ( )mm gg λλ ,...,11  is strictly −V pseudo-invex, we get 

( ) ( ),
11

ugxg j

m

j

jj

m

j

j ∑∑
==

> λλ  

which is a contradiction since ( ) 0≤xg jjλ  and ( ) .0≥ug jjλ  
 

Theorem 2.4.3: If 
0x  is feasible for (VP) and ( )000 ,, λτu  is feasible 

for (VD) such that ( ) ( )00 ufxf =  and for all feasible ( )λτ ,,u  of (VD), 

one of the conditions (a)-(d) hold. Then 
0x  is conditionally properly effi-
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cient for (VP) and ( )000 ,, λτu  is conditionally properly efficient for 

(VD). 

Proof: Suppose 
0x  is not an efficient solution for (VP), then there ex-

ists x  feasible for (VP) such that ( ) ( ) .,...,10 pixfxf ii =∀≤  Using 

the assumption ( ) ( ) ,,...,100 piufxf ii =∀≤  a contradiction to Theo-

rem 2.4.2 is obtained. Hence 
0x  is an efficient solution for (VP). Similarly 

it can be ensured that ( )000 ,, λτu  is efficient solution for (VD). 

Now suppose that 
0x  is not conditionally properly efficient for (VP). 

Therefore, for every positive function ( ) ,0>xM  there exists Xx ∈  fea-

sible for (VP) and an index i  such that 

( ) ( ) ( ) ( ) ( )( ) satisfyingallfor  00 jxfxfxMxfxf jjii −>−

( ) ( )0xfxf jj > , whenever ( ) ( ).0xfxf ii <  

This means ( ) ( )xfxf ii −0
 can be made arbitrarily large and hence for 

,00 >τ  the inequality 

( ) ( )( ) ,00

1

>−∑
=

xfxf ii

p

i

iτ
 

(2.32)

is obtained. 

Now from feasibility conditions, we have 

( ) ( ) .,...,1,000 mjugxg jjjj =∀≤ λλ  

Since ( ) mjuxj ,...,1,0, 0 =∀>β  

( ) ( ) ( ) ( ).,, 00

1

00

1

0 uguxxgux jj

m

j

jjj

m

j

j λβλβ ∑∑
==

≤  

By −V quasi-invexity of ( )mm gg λλ ,...,11 , we have 

( ) ( ) .0, 00

1

0 ≤∑
=

uxug j

m

j

j ηλ  

Therefore, from (2.27), we get 

( ) ( ) .0, 0

1

00 ≥∑
=

uxuf
p

i

ii ητ  

Since ,0≥τ ∑
=

=
p

i

i

1

,1τ  we have 



( ) ( ) .0, 0

1

0 ≥∑
=

uxuf
p

i

i η  

By −V pseudo-invexity of ,,...,1, pif i =  we have 

( ) ( ) ( ) ( ).,, 0

1

0

1

0 ufuxxfux i

p

i

ii

p

i

i ∑∑
==

≥ αα
 

(2.33)

On using the assumption ( ) ( )00 ufxf =  in (2.33), we get 

( ) ( ) ( ) ( ).,, 0

1

0

1

0 xfuxxfux i

p

i

ii

p

i

i ∑∑
==

≥ αα  

Since ( ) piuxi ,...,1,0, 0 =∀>α  and ,,...,1,00 pii =∀>τ  we 

get 

( ) ( ),0

1

0

1

0 xfxf i

p

i

ii

p

i

i ∑∑
==

≥ ττ  

that is, ( ) ( )[ ] ,00

1

0 ≤−∑
=

xfxf ii

p

i

iτ  

which is a contradiction to (2.32). 

Hence 
0x  is a conditionally properly efficient solution for (VP). 

We now suppose that ( )000 ,, λτu  is not conditionally properly effi-

cient solution for (VD). Therefore, for every positive function ( ) ,0>xM  

there exists a feasible ( )λτ ,,u  feasible for (VD) and an index i  such 

that ( )0 0( ) ( ) ( ) ( ) ( )i i i if u f u M x f u f u− > −  for all j satisfying 

( ) ( )0ufuf jj > , whenever ( ) ( ).0ufuf ii <  

This means ( ) ( )0ufuf ii −  can be made arbitrarily large and hence for 

,00 >τ  the inequality 

( ) ( )( ) ,00

1

0 >−∑
=

ufuf ii

p

i

iτ
 

(2.34)

is obtained.

Since 
0x ,  ( )000 ,, λτu  feasible for (VP) and (VD), respectively, it fol-

lows as in first part 

( ) ( )( ) ,00

1

0 ≤−∑
=

ufuf ii

p

i

iτ  
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which contradicts (2.34). Hence ( )000 ,, λτu  is conditionally properly ef-

ficient solution for (VD). 

 

Remark 2.4.2: In the proof of above Theorem we have only used gen-

eralized invexity conditions of part (a) of Theorem 2.4.2. Theorem 2.4.3 

can be established for other −V invexity conditions mentioned in Theo-

rem 2.4.2. 

 

Theorem 2.4.4 (Strong Duality): 

Let 
0x  be efficient for (VP) and let one of (a)-(d) of Theorem 2.4.2 hold 

and the Kuhn-Tucker constraint qualification is satisfied. Then there exists 

( )λτ ,  such that ( )λτ ,,0x  is feasible for (VD) and the objective values 

of (VP) and (VD) are equal at 
0x , and ( )λτ ,,0x  is conditionally prop-

erly efficient for the problem (VD). 

Proof: Since 
0x  is an efficient solution for (VP) at which the Kuhn-

Tucker type necessary conditions, there exists ( )λτ ,  such that 

( )λτ ,,0x  is feasible for (VD). Clearly the values of (VP) and (VD) are 

equal at 
0x , since the objective functions for both problems are the same. 

The conditional proper efficiency of ( )λτ ,,0x  for the problem (VD) fol-

lows from Theorem 2.4.3. 

Programming 

Mond (1974) considered a class of nondifferentiable mathematical pro-

gramming problems of the form: 

(P):                         ( ) ( )2

1

Minimize Bxxxf T+  

( ) ,0tosubject ≥xg  

where f  and g  are differentiable functions from 
nR  to R  and 

mR , re-

spectively and B  is an nn×  positive semi-definite (symmetric) matrix. 

With the assumption that f  is convex and g  is convave, duality results 

were proved for a Wolfe type dual. 

Mond and Smart (1989) weakened convexity requirements to invexity 

and its generalizations. Mond, Husain and Durga Prasad (1991) considered 

the following multiobjective nondifferentiable programming problem: 
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(NDVP):   ( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ 2

1

2

1

11 ,...,Minimize xBxxfxBxxf p

T

p

T
 

( ) ,0tosubject ≥xg  

and presented Mond-Weir type (1981) dual given below and established 

various duality results, viz., weak, strong and converse duality theorems 

under convex assumptions. 

Lal et al. (1994) weakened convexity requirements to invexity and ob-

tained weak duality theorem. 

In relation to (NDVP) we associate the following dual nondifferentiable 

multiobjective maximization problem: 

(NDVD): ( ) ( ) ( ) ( )( )pp

T

p

T zBuufzBuuf ++ ,...,Maximize 111  

Subject to   ( )[ ] ( ) ,0
1 1

∑ ∑
= =

=∇++∇
p

i

jx

m

j

jiiixi ugzBuf λτ  (2.35)

  
pizBz ii

T ,...,1,1 =≤  (2.36)

( ) ,0
1

≥∑
=

ug j

m

j

jλ
 

(2.37)

,0,0 ≥> λτ ∑
=

=
p

i

i

1

.1τ  
(2.38)

Let H  denote the set of feasible solutions for (NDVD). 

The following Theorem generalizes the weak duality theorem of Lal et 

al. (1994). 

 

Theorem 2.5.1. (Weak Duality): 

Let Kx∈  and ( ) Hzzu p ∈,...,,,, 1λτ  and 

( ) ( )( )pp

T

pp

T zBfzBf ⋅+⋅+ ττ ,...,1111  
is −V pseudo-invex and ( )mm gg λλ ,...,11  is −V quasi-invex with respect 

to the same η  and for all piecewise smooth 
n

i Rz ∈ . Then the following 

can not hold: 

( ) ( ) ( ) pizBuufxBxxf ii

T

ii

T

i ,...,1,2

1

=∀+≤+  

and ( ) ( ) ( ) .oneleast at for , 0
2

1

00000
izBuufxBxxf ii

T

ii

T

i +≤+  

Proof: Let x  be feasibility conditions 
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( ) ( ) ,,...,1, mjugxg jjjj =≤ λλ  

and ( ) ( ) { } .,...,1  oneatleast  for  ,
0000

mjugxg jjjj ∈≤ λλ  

Since ( ) ,,...,1,0, mjuxj =∀>β we have 

( ) ( ) ( ) ( ).,,
11

uguxxgux
m

j

jjj

m

j

jjj ∑∑
==

≤ λβλβ  

Then by −V quasi-invexity of ( )mm gg λλ ,...,11 , we get 

( ) ( )∑
=

≤∇
m

j

jxj uxug
1

,0,ηλ  

And so from (2.35), we have 

( )[ ] ( )∑
=

≥+∇
p

i

iiixi uxzBuf
1

.0,ητ  

Thus, from −V pseudo-invexity of 

( ) ( )( )zBfzBf p

T

pp

T ⋅+⋅+ ττ ,...,111 , 

we have 

( ) ( )[ ] ( ) ( )[ ].,,
11

zBuufuxzBxxfux i

T

i

p

i

iii

T

i

p

i

ii +≥+ ∑∑
==

τατα  

But ( ) ( )2

1

2

1

ii

T

ii

T

ii

T zBzxBxzBx ≤ (By Schwarz inequality) ( )2

1

xBx i

T≤  

(by (2.14)). 

Now, from (2.15) and (2.38), we have  

( ) ( ) ( ) ( ) ( )[ ] .,,
1

2

1

1

zBuufuxxBxxfux i

T

ii

p

i

ii

T

ii

p

i

i +≥⎥
⎦

⎤
⎢
⎣

⎡
+ ∑∑

==

τατα  

That is, 

( ) ( ) ( ) ( ) ( )[ ] and,,, 2

1

izBuufuxxBxxfux ii

T

iiii

T

iii ∀+≥⎥
⎦

⎤
⎢
⎣

⎡
+ τατα

 

0 0 0 0 0 0 0 0 0

1

2( , ) ( ) ( ) ( , ) ( )T T

i i i i i i i i ix u f x x B x x u f u u B zα τ α τ
⎡ ⎤

⎡ ⎤+ ≥ +⎢ ⎥ ⎣ ⎦
⎣ ⎦

,.for at 

least one { }0 1, ,i p∈ … . 

Since, ( ) 0and0, ≥∀> τα iuxi , we get 

( ) ( ) ( ) and2

1

izBuufxBxxf i

T

ii

T

i ∀+≥+  
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( ) ( ) ( ) . oneleast at for , 0
2

1

00000
izBuufxBxxf ij

T

ii

T

i +>+  

Thus, the following can not hold: 

( ) ( ) ( ) pizBuufxBxxf ii

T

ii

T

i ,...,1,2

1

=∀+≤+  

and ( ) ( ) ( ) .oneleast at for , 0
2

1

00000
izBuufxBxxf ii

T

ii

T

i +≤+
 

 

Theorem 2.5.2. 

Let Kx∈  and ( ) Hzzu p ∈,...,,,, 1λτ  and the −V pseudo-invexity 

and −V quasi-invexity conditions of Theorem 2.5.1 hold. If  

,,...,1, pizBuuBu ii

T

i

T ==  (2.39)

and the objective values are equal, then x  is conditionally properly effi-

cient for (NDVP) and ( )pzzu ,...,,,, 1λτ  is conditionally properly effi-

cient for (NDVD). 

Proof: Suppose x  is not an efficient solution for (NDVP), then there 

exists Kx ∈0  such that 

( ) ( ) ( ) ( ) pixBxufxBxxf i

T

ii

T

i ,...,1,2

1

2

1

000 =∀+≤+  

and ( ) ( ) ( ) ( ) .oneleast at for , 0
2

1

2

1

000 0000
ixBxxfxBxxf i

T

ii

T

i +<+  

Using (2.15), we get 

( ) ( ) ( ) ,,...,1,2

1

000 pizBuufxBxxf ii

T

ii

T

i =∀+≤+
 

( ) ( ) ( ) .oneleast at for , 0
2

1

000 00000
izBuxfxBxxf ii

T

ii

T

i +<+  

This is a contradiction of weak duality Theorem 2.5.1. Hence x  is an 

efficient solution for (NDVP). Similarly it can be ensured that 

( )pzzu ,...,,,, 1λτ  is an efficient solution of (NDVD). 

Now suppose that x  is not conditionally properly efficient of (NDVP). 

Therefore, for every positive function ( ) ,0>xM  there exists Xx ∈0  

feasible for (NDVP) and an index i  such that 
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1 1

2 2
0 0

1 1

2 2
0 0

( ) ( ) ( ) ( )

           ( ) ( ) ( ) ( ) ( )

T T

i i i i

T T

i i i i

f x x B x f x x B x

M x f x x B x f x x B x

⎛ ⎞
+ − +⎜ ⎟

⎝ ⎠
⎛ ⎞

> + − +⎜ ⎟
⎝ ⎠

 

for all j satisfying

 ( ) ( ) ( ) ( ) ,2

1

2

1

000 xBxxfxBxxf j

T

jj

T

j +>+  

whenever 

( ) ( ) ( ) ( ) .2

1

2

1

000 xBxxfxBxxf i

T

ii

T

i +<+  

This means ( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+ 2

1

000
2

1

xBxxfxBxxf i

T

ii

T

i  can be made ar-

bitrarily large and hence for ,0>τ  the inequality 

( ) ( ) ( ) ( ) ,02

1

000
2

1

1

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+∑

=

xBxxfxBxxf i

T

ii

T

i

p

i

iτ
 

is obtained. 

Now from feasibility conditions, we have 

( ) ( ) .,...,1,0 mjugxg jjjj =∀≤ λλ  

Since ( ) mjuxj ,...,1,0, 0 =∀>β  

( ) ( ) ( ) ( ).,,
1

00

1

0 uguxxgux jj

m

j

jjj

m

j

j λβλβ ∑∑
==

≤  

By −V quasi-invexity of ( )mm gg λλ ,...,11 , we have 

( ) ( ) .0,0

1

≤∇∑
=

uxug jx

m

j

j ηλ  

Therefore, from (2.35), we get 

( ) ( ) .0, 0

1

00 ≥∑
=

uxuf
p

i

ii ητ  

Since ,0≥τ ∑
=

=
p

i

i

1

,1τ  we have 

( )( ) ( ) .0, 0

1

≥+∇∑
=

uxzBuf
p

i

iiixi ητ  

By using −V pseudo-invexity conditions, we have 
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( ) ( )( ) ( ) ( )( ).,,
1

00

1

0 ii

T

ii

p

i

iii

T

oii

p

i

i zBuufuxzBxxfux +≥+ ∑∑
==

τατα  

Since ( ) ,,...,1,0,0 piuxi =∀>α we have 

( )( ) ( )( ).
1

0

1

ii

T

i

p

i

iii

T

oi

p

i

i zBuufzBxxf +≥+ ∑∑
==

ττ  

Since the objective values of (NDVP) and (NDVD) are equal, we have 

( ) ( ) ( ) ( ) .2

1

1

2

1

00

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ ∑∑

==

xBxxfxBxxf i

T

i

p

i

ii

T

oi

p

i

i ττ  

This yields 

( ) ( ) ( ) ( ) ,02

1

00
2

1

1

≤
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+∑

=

xBxxfxBxxf i

T

oii

T

i

p

i

iτ  

which is a contradiction to (2.40). 

Hence x  is a conditionally properly efficient solution for (NDVP). 

We now suppose that ( )pzzu ,...,,,, 1λτ  is not conditionally prop-

erly efficient solution for (NDVD). Therefore, for every positive function 

( ) ,0>xM  there exists a feasible ( )00

1000 ,...,,,, pzzu λτ  feasible for 

(NDVD) and an index i  such that 

( )
( )

0

0 0

0

0 0

( ) ( )

         ( ) ( ) ( )

T T

i i i i i i

T T

i i i i i i

f u u B z f u u B z

M x f u u B z f u u B z

+ − +

> + − −
 

for all j satisfying 

( ) ( ) ,0

00 jj

T

jjj

T

j zBuufzBuuf +<+  

whenever 

( ) ( ) .0

00 ii

T

iii

T

i zBuufzBuuf +>+  

This means ( ) ( ) ii

T

iii

T

i zBuufzBuuf −−+ 0

00  can be made arbitrarily 

large and hence for ,0>τ  the inequality 

( ) ( )( ) ,00

00

1

>−−+∑
=

ii

T

iii

T

i

p

i

i zBuufzBuufτ
 

(2.41)

is obtained. 

Since x ,  ( )pzzu ,...,,,, 1λτ  feasible for (NDVP) and (NDVD), re-

spectively, it follows as in first part
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( ) ( )( ) ,00

00

1

≤−−+∑
=

ii

T

iii

T

i

p

i

i zBuufzBuufτ  

which contradicts (2.41). Hence ( )pzzu ,...,,,, 1λτ  is conditionally 

properly efficient solution for (NDVD). 

 

Theorem 2.5.3 (Strong Duality): 

Let x  be a conditionally properly efficient solution for (NDVP) at 

which a suitable constraint qualification is satisfied. Let the −V pseudo-

invexity and −V quasi-invexity conditions of Theorem 2.5.1 be satisfied. 

Then there exists ( )pzz ,...,,, 1λτ  such that ( )pzzux ,...,,,, 1λτ=  

is a conditionally properly efficient solution for (NDVD) and  

( ) ( ) ( ) .,...,1,2

1

pizBuufxBxxf ii

T

ii

T

i =+=+  

Proof: Since x  is conditionally properly efficient solution for (NDVP) 

and a constraint qualification is satisfied at x , from the Kuhn-Tucker nec-

essary condition Lemma 2.3.1, there exists ( )pzz ,...,,, 1λτ  such that 

( )pzzx ,...,,,, 1λτ  is feasible for (NDVD). Since 

( ) ,,...,1,2

1

pizBxxBx ii

T

i

T ==  

the values of (NDVP) and (NDVD) are equal at x . By Theorem 2.5.2, 

( )pzzux ,...,,,, 1λτ=  is conditionally properly efficient solution of 

(NDVD). 

2.6 Vector Valued Infinite Game and Multiobjective 
Programming 

Karlin (1959) observed that matrix games were equivalent to a dual pair of 

linear programs, see also Charnes (1953) and Cottle (1963). More recently, 

Kawaguchi and Maruyama (1976) formulated dual linear programs corre-

sponding to the linearly constrained matrix game. Kawaguchi and Maru-

yama (1976) considered a linearly constrained matrix game and using sad-

dle point theory established an equivalence between this game and a pair 

of mutually dual linear programming problems. 

Corley (1985) considered a two-person bi-matrix vector valued game in 

which strategy spaces are mixed and introduced the concept of solution of 



this game. He also established the necessary and sufficient conditions for 

the solution of such a game. 

Chandra and Durga Prasad (1992) considered a constrained two-person 

zero-sum game with vector pay-off and discussed its relation with a pair of 

multiobjective programming problems. Consider the following two mul-

tiobjective programming problems (P) and (D): 

(P):    

1 1

1

1

1

( , ) ( , ) , ,

( , ) ( , )

p
T

i i

i

p
T

p i i

i

K x y x K x y

V Min

K x y x K x y

τ

τ

=

=

⎛ ⎞⎛ ⎞
− ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟− ⎜ ⎟⎛ ⎞⎜ ⎟− ∇⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

…

 

subject to      ( ) ,0,
1

1 ≤∇∑
=

p

i

ii yxKτ  (2.42)

   .,0,0 Λ∈≥≥ τyx  (2.43)

(D):    

1 2

1

2

1

( , ) ( , ) , ,

( , ) ( , )

p
T

i i

i

p
T

p i i

i

K u v x K u v

V Max

K u v x K u v

µ

µ

=

=

⎛ ⎞⎛ ⎞
− ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟− ⎜ ⎟⎛ ⎞⎜ ⎟− ∇⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

…

 

subject to       ( ) ,0,
1

2 ≥∇∑
=

p

i

ii vuKµ  (2.44)

       ,,0,0 Λ∈≥≥ µvu  (2.45)

where ;, mRux ∈ ;, nRvy ∈ ;, pR∈µτ and 
pnm RRRK →×: . 

Corresponding to the multiobjective programming problems (P) and (D) 

as defined above, consider the following vector-valued infinite game 

{ },,,: KTSVG  where, 

(i) { }0: ≥∈= xRxS m
 is the strategy space for player I, 

(ii) { }0: ≥∈= yRyT n
 is the strategy space for player II, and  

(iii) 
pRTSK →×:  defined by ( )yxK ,  is the pay-off to player I. 

The pay-off to player II will be taken as ( )xyK ,  

In order to establish necessary and sufficient conditions we need the fol-

lowing definitions: 
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Definition 2.6.1 (Corley (1985)): A point ( ) TSyx ×∈,  is said to be 

an equilibrium point of the game G  if  

( ) ( ) ,,,, SxyxKyxK ∈∀≥/  and 

( ) ( ) .,,, TyyxKyxK ∈∀≤/  

Definition 2.6.2 (Tanino, Nakayama and Sawaragi (1985)): 

Let .: pn RRf →  A point ,Sx ∈  is said to be an efficient solution 

of the vector maximization problem. −V max ( )xf  over ,Sx∈  if there 

does not exist any Xx∈  such that ( ) ( )xfxf ≥ . 

Definition 2.6.3 (Rodder (1977)): A point ( ) TSyx ×∈00 ,  is called a 

solution of the max-min problem if  

(i) 
0y  is an efficient solution of ( ) .,,min 0 TyyxKV ∈−  

(ii) ( ) ( ) .and,,, 00 TySxyxKyxK ∈∈∀≤/  

Definition 2.6.4 (Rodder (1977)):A point ( ) TSyx ×∈00 ,  is called a 

solution of the min-max problem if  

(i) 
0x  is an efficient solution of ( ) .,,max 0 SxyxKV ∈−  

(ii) ( ) ( ) .and,,, 00 TySxyxKyxK ∈∈∀≥/  

Definition 2.6.5 (Rodder (1977)): A point ( ) TSyx ×∈00 ,  is called a 

generalized saddle point ( )00 , yx  solves both max-min and min-max 

problems.  

Definition 2.6.6 (Rodder (1977)): The following statements are equiva-

lent: 

(i) ( )00 , yx  is a generalized saddle point of ( )yxK ,  in TS × , 

(ii) 
0y  solves ( )yxKV ,min 0−  and 

0x  solves  

( ) ,,,max 0 TyyxKV ∈−  

(iii) ( ) ( ) SxyxKyxK ∈∀≥/ ,,, 000
 and 

( ) ( ) .,,, 000 TyyxKyxK ∈∀≤/  

Chandra and Durga Prasad (1993) established the following necessary 

conditions: 

If ( )yx,  is an equilibrium point of the game .VG  Then there exists 

0, ≠∈ + ττ pR  and 0, ≠∈ + µµ pR  such that ( )τ,, yx  and ( )µ,, yx  

are efficient to multiobjective programming problems (P) and (D) respec-

tively. 



Sufficient conditions are also established under concave-convex as-

sumption on iK  in Chandra and Durga Prasad (1993). The following 

Theorem is obtained under weaker convexity assumptions on iK . 

 

Theorem 2.6.1 (Sufficient Conditions): Let ( )τ,, yx  and ( )µ,, yx  

be feasible for (P) and (D) respectively with 

( ) ( )yxKyyxKx i

p

i

i

T

i

p

i

i

T ,0, 2

1

1

1

∇==∇ ∑∑
==

µτ  

and is an equilibrium point of the game .0,0 >> µτ  Also let, for each 

,,...,1 pi =  iK  be −V incave-invex. Then ( )yx ,  is an equilibrium 

point of the game .VG  

Proof: We have to prove that 

( ) ( ) ,,,, SxyxKyxK ∈∀≤/ and  ( ) ( ) .,,, TyyxKyxK ∈∀≥/  

If possible, let ( ) ( ) .ˆsomefor  ,,ˆ, SxyxKyxK ∈≤  Therefore, 

( ) ( ) .,,
11

yxKyxK i

p

i

ii

p

i

i ∑∑
==

< ττ
 

Now by −V incavity of ,at,,...,1, xpiK ii =τ we have 

( ) ( ) ( ) .0,ˆ,,ˆ
1

1 >∇∑
=

yxyxKxx
p

i

iii ητα  

Since ( ) ,,...,1,0,ˆ pixxi =∀>α  we have 

( ) ( ) .0,ˆ,
1

1 >∇∑
=

yxyxK
p

i

ii ητ  

Since x  is feasible, ( ) ( ) xxxxxxx −=⇒≥+ ,ˆ0,ˆ ηη  for some 

,0≥x  we get 

( ) ( )∑
=

>∇−
p

i

ii

T
yxKxx

1

1 ,0,τ  

that is,  

( ) ( )∑∑
==

∇>∇
p

i

ii

p

i

T

ii

T yxKxyxKx
1

1

1

1 .,, ττ
 

(2.46)

But (2.44) together with the hypothesis of the theorem yields 

( ) ,0,
1

1∑
=

>∇
p

i

ii

T yxKx τ  
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which contradicts (2.42). Hence  ( ) ( ) .,,, SxyxKyxK ∈∀≤/  Simi-

larly we can show that ( ) ( ) .,,, TyyxKyxK ∈∀≥/  





Chapter 3: Multiobjective Fractional 

Programming 

3.1 Introduction 

Numerous decision problems in management science and problems in eco-

nomic theory give rise to constrained optimization of linear or nonlinear 

functions. If in the nonlinear case the objective function is a ratio of two 

functions or involves several such ratios, then the optimization problem is 

called a fractional program. 

Apart from isolated earlier results, most of the work in fractional pro-

gramming were done since about 1960.  The analysis of fractional pro-

grams with only one ratio has largely dominated the literature until about 

1980. Since the first international conference with an emphasis on frac-

tional programming the NATO advanced Study Institute on “Generalized 

Concavity in Optimization and Economics” (Schaible and Ziemba (1981)), 

that indicates a shift of interest from the single to the multiobjective case, 

see Singh and Dass (1989), Cambini, Castagnoli, Martein, Mazzoleni and 

Schaible (1990), Komlosi, Rapcsak and Schaible (1994), Mazzoleni 

(1992). It is interesting to note that some of the earliest publications in 

fractional programming, though not under this name, Von Neuman’s clas-

sical paper on a model fo a general economic equilibrium [Von Neumann 

(1937)] analysis a multiobjective fractional program. Even a duality theory 

was proposed for this nonconcave program, and this at a time when linear 

programming hardly existed. However, this early paper was followed al-

most exclusively by articles in single objective fractional programming un-

til the early 1980s. 

Weir (1982) considered a multiobjective fractional programming prob-

lem with same denominators. Since then a great deal of work has been 

done with convexity and generalized convexity assumptions on the func-

tions. Some of the contributions are by Singh (1986), Egudo (1988), Weir 

(1986, 1989), Kaul and Lyall (1989), Suneja and Gupta (1990), Mukherjee 

(1991), Singh and Hanson (1991), Preda (1992), Suneja and Lalitha 

(1993), Kaul, Suneja and Lalitha (1993), Suneja and Srivastava (1994) and 

Mishra and Mukherjee (1996a). 
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Throughout this chapter (except sections 3.4 and 3.5) we consider the 

following multiobjective fractional programming problem: 

(MFP)        
( )
( )

( )
( )⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

xg

xf

xg

xf

p

p
,...,Minimize

1

1  

subject to    ( ) ,,...,1,0 mjxh j =≤ ,Xx∈  

where ,,...,1,:, piRXgf ii =→  and mjRXh j ,...,1,: =→  and 

differentiable functions, ( ) ( ) ,,,...,1,0,0 Xxpixgxf ii ∈∀=>≥ and 

minimization entails obtaining efficient solutions properly efficient solu-

tions/conditionally properly efficient solutions. 

We consider the following parametric multiobjective problem ( ) 'VFP  

for each ,pRv +∈  where 
pR+ denotes the positive orthant of .pR

 
 

( ) 'VFP
       

( ) ( ) ( ) ( )( )xgvxfxgvxf ppP −− ,...,Minimize 111  

subject to      ( ) ,,...,1,0 mjxh j =≤ .Xx∈
 

The following lemma from Singh and Hanson (1991) connects the con-

ditionally properly efficient solutions of (FP) and ( ) 'VFP . 

 

Lemma 3.1.1 [Singh and Hanson (1991)]: Let 
*x  be conditionally 

properly efficient solution of (FP). Then there exists 
pRv +∈*
 such that 

*x  

is conditionally properly efficient solution of ( ) *VFP . Conversely, if 
*x  is 

conditionally properly efficient solution of ( ) *VFP  where 

( )
( ) ,,...,2,1,

*

*

* pi
xg

xf
v

i

i

i ==  

then 
*x  is conditionally properly efficient solution for (FP). 

We consider on the lines of Geoffrion (1968), the following scalar pro-

gramming problem corresponding to ( ) *VFP : 

( )Ĳv*MFP          ( ) ( )( )∑
=

−
p

i

iiii xgvxf
1

*Minimize τ  

subject to  ( ) ,,...,1,0 mjxh j =≤ .Xx∈  

Then we have the following result from Singh and Hanson (1991): 

Lemma 3.1.2 [Singh and Hanson (1991)]: If 
*x  is an optimal solution 

of ( )Ĳv*MFP  for some 
pR∈τ  with strictly positive components where  
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( )
( ) ,,...,2,1,

*

*

* pi
xg

xf
v

i

i

i ==  

Then 
*x  is conditionally properly efficient solution of (MFP). 

3.2 Necessary and Sufficient Conditions for Optimality 

Let Xx ∈*
 be an efficient solution for (MFP). Then there exist 

pRv ∈** ,τ  and 
mR∈*λ  such that 

( ) ( )( ) ( )∑ ∑
= =

=∇+∇−∇
p

i

j

m

j

jiii xhxgvxf
1

*

1

***** ,0λτ
 

(3.1)

( ) ,0** =xh
T

λ
 (3.2)

( ) ( ) pixgvxf iii ,...,1,0*** ==−
 (3.3)

( ) .0,,0 *** ≥≥ λτpv
 (3.4)

Whenever we assume a constraint qualification for (MFP), we mean that 

(MFP) satisfies the Kuhn-Tucker constraint qualification or the weak Ar-

row-Hurwicz-Uzawa constraint qualification (Mangasarian (1969), p. 

102). Kuhn-Tucker type necessary conditions are as follows: 

For Xx ∈*
 an efficient solution for (MFP) and (MFP) satisfies a con-

straint qualification at 
*x . Then there exist 

pRv ∈** ,τ  and 
mR∈*λ  

such that 

( ) ( )( ) ( )∑∑
==

=∇+∇−∇
m

j

jjiii

p

i

xhxgvxf
1

*****

1

* ,0λτ
 

(3.5)

( ) 0** =xh
T

λ
 (3.6)

( ) ( ) ,,...,1,0*** pixgvxf iii =∀=−
 (3.7)

∑
=

=≥
p

i

iwv
1

**** .1,0,, ττ
 

(3.8)

The following necessary optimality criteria for a feasible point 
*x  of 

(MFP) to be conditionally properly efficient can be proved on similar lines 

as that of Theorem 2 of Weir (1988). 
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Theorem 3.2.1: Let 
*x  be a conditionally properly efficient solution for 

(MFP). Assume that there exists Xx ∈  such that ( ) 0,jh x <  

for 1, ,j m= …  and for ( ) ( ){ }0:* ==∈ xhjxIj j  any one of the follow-

ing conditions holds 

(i) jh  is −V invex 

(ii) jh  is −V pseudo-invex 

on X  with respect to η  and .,...,1,0 pii =>α Then there exist scalars 

( )*** ,0,,...,1,0 xIipi ii ∈≥=> λτ  such that 

( )
( ) ( )

( ) .0**

*

*

1

*

*

=∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇ ∑∑

∈=

xh
xg

xf
i

xIi

i

i

i
p

i

i λτ
 

(3.9)

Proof: Since 
*x  is conditionally properly efficient for  (MFP) therefore 

by Lemma 3.1.1 there exists 
pRv +∈*
 such that 

*x  is conditionally prop-

erly efficient for *v
(MFP)  where 

( )
( )*

*

*

xg

xf
v

i

i

i = , .,...,1 pi =  Since each 

mjh j ,...,1, =  satisfies (i) or (ii), there by proceeding on the same lines 

as in Theorem 2 of Weir (1988) we shall get the required result. 

The following example verifies the above theorem for a multiobjective 

fractional programming problem with .2== mp
 

 

Example 3.2.1: Consider the following multiobjective fractional pro-

gramming problem: 

(FP1)         
( )
( )

( )
( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
xg

xf

xg

xf

2

2

1

1 ,Minimize  

subject to  ( ) 2,1,0 =≤ jxh j  

where functions 212121 and,,,, hhggff  are defined on ( )2,2−=X  

as follows: 

The feasible region is the closed interval [ ] .1,0  We observed that 

1* =x  is an efficient solution of (FP1) because for any feasible solution 

x  of (FP1) 

( )
( )xg

xf

1

1
( )
( )*

1

*

1

xg

xf
− ( ) 0

23

1
2

2

≤
+
−

=
x

x
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( )
( )xg

xf

2

2 ( )
( )*

2

*

2

xg

xf
−

( )
( ) ,0

23

15
≥

+
−

=
x

x
 

and if 
( )
( )xg

xf

1

1
( )
( )*

1

*

1

xg

xf
< , 

Then 1<x  for which 
( )
( )xg

xf

2

2 ( )
( ).*

2

*

2

xg

xf
>  Now we will prove that 

1* =x  is a conditionally properly efficient solution of (FP1). 

For 1<x  

( )
( )

( )
( )

( )
( )

( )
( )⎟⎟⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

*

2

*

2

2

2

1

1

*

1

*

1

xg

xf

xg

xf

xg

xf

xg

xf

( )25

23
2

2

+
++

=
x

xx
 

is a function which attains a maximum value at 2=n  with value being 

( )234 + . Thus choosing ( ) ,
2

12* += xxM  it follows that 1* =x  is a 

conditionally properly efficient solution of (FP1). 

Now 1h  is the only constraint for which ( ) .0*

1 =xh  Define 

,η 2,1, =iiα and 2,1, =jjβ by ( ) ,
2

2
,

ux
ux

−
=η ( , )

2
i

u
x uα =

 
1,2i =

 
and ( , ) 1, 1, 2.j x u jβ = =  jh  is −V pseudo-invex with respect to 

η  and .jβ  Moreover, 
2

1
=x  is such that ( ) ( ) .0,0 21 << xhxh  Thus, 

by Theorem 3.2.1, there exist 0,0 ** ≥> ji λτ  such that 

( )
( ) ( ) .0*

1

*

1*

*2

1

* =∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇∑

=

xh
xg

xf

i

i

i

i λτ  

Clearly, 1,4,1 *

1

*

2

*

1 === λττ  satisfies the above equation. 

We now give a number of sufficient optimality criteria for a feasible 

point 
*x  of (MFP) to be conditionally properly efficient for (MFP) under 

the assumptions of −V invexity and its generalizations: 

 

Theorem 3.2.2: Suppose that there exists a feasible 
*x  for (MFP) and 

scalar ( )*** ,0,,...,1,0 xIipi ii ∈==> λτ  such that 
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( ) ( )( )
( )

( ) 0*****

1

*

*

=∇+∇−∇ ∑∑
∈=

xhxgvxf i

xIi

iiii

p

i

i λτ  

Where                      
( )
( ) pi
xg

xf
v

i

i

i ,...,1,
*

*

* ==   

and ( ) ( ){ } .0: ** φ≠== xhjxI i Then, if each ( ) pigvf iii ,...,1, =−  is 

−V invex and ( )*, xIjh j ∈  is −V invex with respect to the same η   

and ,,...,1, pii =α ( ),, *xIii ∈β  then 
*x  is conditionally properly ef-

ficient solution for (MFP). 

Proof: Since each ( ) pigvf iii ,...,1, =−  and ( )*, xIjh j ∈  are 

−V invex with respect to the same η  
and  

,,...,1, pii =α
 

( ),, *xIii ∈β
 

and 

( )*** ,0,,...,1,0 xIipi ii ∈==> λτ , 
( )
( ) pi
xg

xf
v

i

i

i ,...,1,
*

*

* == , 

we have 

( ) ( )( ) ( ) ( )( )***

1

**

1

* xgvxfxgvxf iii

p

i

iiii

m

i

i −−− ∑∑
==

ττ  

( ) ( ) ( )( ) ( )*****

1

* ,, xxxgvxfxx iiii

m

i

i ηατ ∇−∇≥∑
=

 

( )
( ) ( ) ( )**** ,,

*

xxxhxx ii

xIi

i ηβλ ∇−= ∑
∈  

( )
*

* *

( )

( ) ( )i i i

i I x

h x h xλ
∈

≥ −∑  

( )
( )xhi

xIi

i∑
∈

−≥
*

*λ        (Since ( ) ( )** ,0 xIixhi ∈= ) 

.0≥  

Therefore, 

( ) ( )( ) ( ) ( )( ) .,0***

1

**

1

* Xxxgvxfxgvxf iii

p

i

iiii

m

i

i ∈∀≥−−− ∑∑
==

ττ  
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This implies that 
*x  minimizes ( ) ( )( )xgvxf iii

m

i

i

*

1

* −∑
=

τ  subject to 

( ) 0,jh x ≤  1, ,j m= … . Hence 
*x  is an optimal solution for ( )Ĳv*FP . 

Therefore, 
*x  is conditionally properly efficient solution for (MFP) due to 

Lemma 3.1.2. 

 

Theorem 3.2.3 Suppose there exists a feasible 
*x  for (MFP) and scalar 

( )*** ,0,,...,1,0 xIipi ii ∈==> λτ  such that (3.1)-(3.4) is satisfied. 

Then, if ( ) φ=*xI , ( ) pigvf iii ,...,1, =−  and ( )*, xIjh j ∈  are 

−V quasi-invex with respect to the same η , then 
*x  is conditionally 

properly efficient solution for (MFP). 

Proof: Since for ( ) ( )** for,0 xIixhi ∈=
 
and ( ) ,,...,1,0 mixhi =≤  

we have 

( ) ( ) .,...,1,0* mixhxh ii =≤−  

Since ( ),,0 *xIii ∈≥λ  we have 

( )
( ) ( )( ) .0**

*

≤−∑
∈

xhxh ii

xIi

iλ  

Now, by −V quasi-invexity of ( )*, xIjh j ∈ , we have 

( )
( ) ( ) ( ) .0,, ****

*

≤∇∑
∈

xxxhxx ii

xIi

i ηβλ  

On using the above inequality in (3.9), we obtain 

( ) ( )( ) ( ) .,0, ****

1

* Xxxxxgvxf iii

m

i

i ∈∀≥∇−∇∑
=

ητ  

Since ( ) ,,...,1,0, * pixxi =>α  we have 

( ) ( ) ( )( ) ( ) .0,, *****

1

* ≥∇−∇∑
=

xxxgvxfxx iiii

m

i

i ηατ  

Now, by −V pseudo-invexity of ( ) pigvf iii ,...,1, =− , we have 

( ) ( )( ) ( ) ( )( ) .,0***

1

**

1

* Xxxgvxfxgvxf iii

p

i

iiii

m

i

i ∈∀≥−−− ∑∑
==

ττ  

Thus 
*x  is an optimal solution of ( ) *

*

Ĳ
vFP  for 

*τ  with strictly positive 

components. Hence, by Lemma 3.1.2, 
*x  is conditionally properly effi-

cient for (MFP). 
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Theorem 3.2.4: Suppose that there exists a feasible 
*x  for (MFP) and 

scalar ( )*** ,0,,...,1,0 xIipi ii ∈==> λτ  such that (3.1)-(3.4) is sat-

isfied. Then, if ( ) φ=*xI , ( )iii

p

i

i gvf −∑
=1

*τ
 

is −V quasi-invex 

and ( )** , xIihii ∈λ are −V strictly pseudo-invex with respect to the same 

η , then 
*x  is conditionally properly efficient solution for (MFP). 

Proof: The proof of the above theorem is similar to that of Theorem 

3.2.3. 

3.3 Duality in Multiobjective Fractional Programming 

In relation to (MFP) we associate the following Mond-Weir type multiob-

jective maximization dual problem: 

(MFD)              
( )
( )

( )
( )⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ug

uf

ug

uf

p

p
,...,Maximize

1

1

 
subject to 

( ) ( )( ) ( )∑ ∑
= =

=∇+∇−∇
p

i

j

m

j

jiii uhugvuf
1 1

,0λτ (3.10)

( ) ,0
1

≥∑
=

uh j

m

j

jλ
 

(3.11)

,Xu∈ .,...,1,0,,...,1,0,0 mjpiv jii =≥=≥> λτ  

Let W  denote the set of all feasible solutions of the dual problem (D) 

and let ( ){ } .,,,: WvuuY ∈= λτ   

We now establish weak duality and strong duality results between the 

primal problem (MFP) and its dual (MFD). 

 

Theorem 3.3.1: Let x  be feasible for (MFP) and ( )vu ,,, λτ  be feasi-

ble for (MFD). If ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

p

p

p
g

f

g

f
ττ ..,.,

1

1
1 is −V invex and ( )mmhh λλ ..,.,11  

is −V invex with respect to the same ,η  then the following can not hold: 
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( )
( )

( )
( ) ,,...,1, pi
ug

uf

xg

xf

i

i

i

i =∀≤  

( )
( )

( )
( ) { }.,...,1somefor  , 0

0

0

0

0 pi
ug

uf

xg

xf i ∈≤  

Proof: Since x  is feasible for (MFP) and  ( )vx ,,, λτ  is feasible for 

(MFD) 

( ) ( ) .,...,1,0 mjuhxh jjjj =∀≤≤ λλ
 (3.12)

−V invexity of ( )mmhh λλ ..,.,11  implies that 

( ) ( ) ( ) .0,,
1

≤∇∑
=

uxuhux jj

m

j

j ηβλ  

Since ( ) mjuxj .,.,.1,0, =>β , we get 

( ) ( ) .0,
1

≤∇∑
=

uxuh j

m

j

j ηλ  

From (3.10), and the above inequality, we get 

( )
( ) ( ) .0,

1

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇∑

=

ux
ug

uf

i

i
p

i

i ητ  

Since ( ) ,.,.,.1,0, piuxi =>α  we get 

( ) ( )
( ) ( ) .0,,

1

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇∑

=

ux
ug

uf
ux

i

i

i

p

i

i ηατ  

−V invexity of ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

p

p

p
g

f

g

f
ττ ..,.,

1

1
1  implies that 

( )
( )

( )
( ) .0

1

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

= ug

uf

xg

xf

i

i

i

i
p

i

iτ  

Thus, the following can not hold: 

( )
( )

( )
( ) ,,...,1, pi
ug

uf

xg

xf

i

i

i

i =∀≤  

( )
( )

( )
( ) { }.,...,1somefor  , 0

0

0

0

0 pi
ug

uf

xg

xf i ∈≤
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Theorem 3.3.2: Let x  be feasible for (MFP) and ( )vu ,,, λτ  be feasi-

ble for (MFD). If ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

p

p

p
g

f

g

f
ττ ..,.,

1

1
1 is −V pseudo-invex and 

( )mmhh λλ ..,.,11  is −V quasi-invex with respect to the same ,η  then the 

following can not hold: 

( )
( )

( )
( ) ,,...,1, pi
ug

uf

xg

xf

i

i

i

i =∀≤  

( )
( )

( )
( ) { }.,...,1somefor  , 0

0

0

0

0 pi
ug

uf

xg

xf i ∈<  

Proof: Since x  is feasible for (MFP) and  ( )vx ,,, λτ  is feasible for 

(MFD) ( ) ( ) .,...,1,0 mjuhxh jjjj =∀≤≤ λλ  

Since ( ) mjuxj .,.,.1,0, =>β , we get 

( ) ( ) ( ) ( ).,,
11

uhuxxhux jj

m

j

jjj

m

j

j βλβλ ∑∑
==

≤
 

(3.13)

−V quasi-invexity of ( )mmhh λλ ..,.,11  and (3.13)  implies that 

( ) ( ) .0,
1

≤∇∑
=

uxuh j

m

j

j ηλ
 

(3.14)

From (3.10), and (3.14), we get 

( )
( ) ( ) .0,

1

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇∑

=

ux
ug

uf

i

i
p

i

i ητ
 

(3.15)

−V pseudo-invexity of ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

p

p

p
g

f

g

f
ττ ..,.,

1

1
1  and (3.15) implies that 

( ) ( )
( )

( )
( ) .0,

1

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

= ug

uf

xg

xf
ux

i

i

i

i

i

p

i

iατ
 

(3.16)

Since ( ) ,.,.,.1,0and0, piux ii =>> τα  therefore the following 

can not hold: 

( )
( )

( )
( ) ,,...,1, pi
ug

uf

xg

xf

i

i

i

i =∀≤  
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( )
( )

( )
( ) { }.,...,1somefor  , 0

0

0

0

0 pi
ug

uf

xg

xf i ∈<
 

 

Theorem 3.3.3: Let 
*x  be feasible for (MFP) and ( )**** ,,, vu λτ  be 

feasible for (MFD) such that 
( )
( ) .,...,1,

*

*

* pi
xg

xf
v

i

i

i =∀= . Let for  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

p

p

p
g

f

g

f
ττ ..,.,

1

1
1  

and ( )mmhh λλ ..,.,11  the −V invexity assumption or its generalizations of 

Theorem 3.3.1 or Theorem 3.3.2 hold, then 
*x  is conditionally properly 

efficient solution for (MFP). Also, if for each feasible ( )vu ,,, λτ  for 

(MFD), then ( )**** ,,, vu λτ  is conditionally properly efficient for (MFD).  

Proof: The proof of the above Theorem is similar to the proof of Theo-

rem 2.4.3 of Chapter 2. 

 

Theorem 3.3.4 (Strong Duality): Let 
*x  be a conditionally properly 

efficient solution for (MFP). Assume that there exists Xx ∈  such that 

( ) 0<xh j and ( )mmhh λλ ..,.,11  is −V invex on X   with respect to ,η  

then there exist scalars mjpi ji ,...,1,0,,...,1,0 ** =≥=> λτ  such 

that ( )*** ,, λτx  is feasible for (MFD). Further, if for each feasible 

( )λτ ,,u  for (MFD), ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

p

p

p
g

f

g

f
ττ ..,.,

1

1
1 is −V invex at u  with re-

spect to η , then ( )*** ,, λτx  is a conditionally properly efficient solution 

for (MFD). 

Proof: Since 
*x  is conditionally properly efficient solution for (MFP), 

it follows from Theorem 3.2.1, that there exist scalars 

( )*** ,0,,...,1,0 xIjpi ji ∈≥=> λτ  such that 

( )
( ) ( )

( ) .0**

*

*

1

*

*

=∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇ ∑∑

∈=

xh
xg

xf
i

xIi

i

i

i
p

i

i λτ  

Set ( )** ,0 xIjj ∈=λ , then 
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( )
( ) ( ) .0*

1

*

*

*

1

* =∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇ ∑∑

==

xh
xg

xf
j

m

j

j

i

i
p

i

i λτ  

( ) ,0** =xh
T

λ  

,,...,1,0* mjj =≥λ  

.,...,1,0* pii =≥τ  

Hence ( )*** ,, λτx  is feasible for (MFD). 

We will now prove that ( )*** ,, λτx  is an efficient solution for (MFD). 

Suppose ( )*** ,, λτx  is not an efficient solution, then there exists a feasi-

ble ( )λτ ,,u  of (MFD) such that 

( )
( )

( )
( ) pi
xg

xf

ug

uf

i

i

i

i ,...,1,
*

*

=∀≥  

( )
( )

( )
( ) { }.,...,1somefor  , 0*

*

0

0

0

0 pi
xg

xf

ug

uf i ∈>  

This is a contradiction to weak duality Theorem 3.3.1. 

We will finally prove that ( )*** ,, λτx  is a conditionally properly effi-

cient solution for (MFD). 

Suppose ( )*** ,, λτx  is not a conditionally properly efficient solution 

for (MFD) then there exists a feasible solution ( )λτ ,,u  for (MFD) and 

an index i  such that for every ( ) 0* >xM
 

*

*

( ) ( )

( ) ( )

i i

i i

f u f x

g u g x
>  and 

* *
*

* *

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

i i i i

i i i i

f u f x f x f u
M x

g u g x g x g u

⎛ ⎞
− > −⎜ ⎟

⎝ ⎠
 

such that 
( )
( )

( )
( ) .

*

*

xg

xf

ug

uf

j

j

j

j <  

Thus 
( )
( )

( )
( )*

*

xg

xf

ug

uf

j

j

j

j −  can be made arbitrarily large and hence 

( )
( )

( )
( ) 0

*

*

1

* >⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∑

= xg

xf

ug

uf

j

j

j

j
p

i

iτ , 

which contradicts weak duality Theorem 3.3.1. Thus ( )*** ,, λτx  is a 

conditionally properly efficient solution for (MFD). 
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Theorem 3.3.5 (Strong Duality): Let 
*x  be a conditionally properly 

efficient solution for (MFP). Assume that there exists Xx ∈  such that 

( ) 0<xh j and ( )mmhh λλ ..,.,11  is −V pseudo-invex on X   with respect 

to ,η  then there exist scalars mjpi ji ,...,1,0,,...,1,0 ** =≥=> λτ  

such that ( )*** ,, λτx  is feasible for (MFD). Further, if for each feasible 

( )λτ ,,u  for (MFD), ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

p

p

p
g

f

g

f
ττ ..,.,

1

1
1 is −V pseudo-invex and 

( )mmhh λλ ..,.,11  is −V quasi-invex at u  with respect to η , then 

( )*** ,, λτx  is a conditionally properly efficient solution for (MFD). 

Proof: The proof follows on the lines of the proof of Theorem 3.3.4. 

We now consider the following Jagannathan type dual to multiobjective 

fractional programming dual problem: 

(MJD)           ( )
pvv ..,.,Maximize 1  

subject to 

                                

( ) ( )( ) ( )∑ ∑
= =

=∇+∇−∇
p

i

j

m

j

jiii uhugvuf
1 1

,0λτ
 

(3.17)

      

( ) ( )( )∑
=

≥∇−∇
p

i

iii ugvuf
1

,0τ
 

(3.18)

( ) ,0
1

≥∑
=

uh j

m

j

jλ
 

(3.19)

where .,, mp RRv ∈∈ λτ  Denote =v ( )pvv ..,.,1  and  

( ) =xF
( )
( )

( )
( ) .,...,

1

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

xg

xf

xg

xf

p

p
 

 

Theorem 3.3.6 (Weak Duality): Let  x  be feasible for (MFP) and 

( )vu ,,, λτ  be feasible for (MJD). If  ( ) pigvf iii ,...,1, =−  and 

( )mmhh λλ ..,.,11  are −V invex with respect to the same η ,  then 

( ) vxF ≤/ . 

Proof: Suppose to the contrary that there exist x  feasible for (MFP) 

and ( )vu ,,, λτ  feasible for (MFD) such that ( ) vxF ≤/ . Then  
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( )
( ) piv
xg

xf
i

i

i ,...,1, =∀≤  

and 

( )
( ) { }.,...,1somefor  , 00

0

0 piv
xg

xf
i

i ∈<  

That is,  

( ) ( ) pixgvxf iii ,...,1,0 =∀≤−  

and 

( ) ( ) { }.,...,1somefor  ,0 0000
pixgvxf ii ∈<−  

Therefore,  

( ) ( )( ) .0
1

<−∑
=

xgvxf iii

m

i

iτ  

Using the duality constraint (3.18), we get 

( ) ( )( ) ( ) ( )( ).
11

ugvufxgvxf iii

m

i

iiii

m

i

i −≤− ∑∑
==

ττ  

Using −V invexity hypothesis, we get 

( ) ( ) ( )( ) ( ) .0,,
1

≤∇−∇∑
=

uxxgvxfux iiii

m

i

i ηατ
 

(3.20)

Now from (3.6), (3.19) and −V invexity of ( )( )*, xIihii ∈λ , we get 

( )
( ) ( ) ( ) .0,,

*

<∇∑
∈

uxuhux ii

xIi

i ηβλ
 

(3.21)

Now, from (3.20) and (3.21), we reached to a contradiction of (3.17). 

Hence, ( ) vxF ≤/ . 

 

Remark 3.3.1: The above theorem holds under generalized −V invex-

ity assumptions used in Theorem 2.4.2. 

3.4 Generalized Fractional Programming 

Duality results for minimax fractional programming involving several ra-

tios in the objective function have been obtained by Crouzeix (1981), 

Crouzeix, Ferland and Schaible (1983, 1985), Jagannathan and Schaible 

(1983), Chandra, Craven and Mond (1986), Bector, Chandra and Bector 
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(1989), Singh and Rueda (1990), Xu (1988) and Chandra and Kumar 

(1993). 

Crouzeix, Ferland and Schaible (1985) have shown that the minimax 

fractional program can be solved by solving a minimax nonlinear paramet-

ric program. Bector, Chandra and Bector (1989) have developed duality 

for the generalized minimax fractional program, under generalized convex-

ity assumptions, using a minimax parametric program (see, Crouzeix, fer-

land and Schaible (1985)). 

Recently, Bector, Chandra and Kumar (1994) have extended minimax 

programs under −V invexity assumptions. The purpose of this section is 

to extend minimax fractional programs under −V invexity assumptions 

and its generalizations.  

Consider the following minimax fractional programming problem as the 

primal problem: 

(P)   
( )
( )⎥⎦

⎤
⎢
⎣

⎡
=

≤≤∈ xg

xf
v

i

i

piSx 1

* maxmin  

where 

(A1) ( ){ }mkxhRxS k

n ,...,1,0: =≤∈=  is nonempty and compact; 

(A2) if , pig i ,...,1, =  and mkhk ,...,1, =  are differentiable on 
nR ; 

(A3) ( ) ;,,...,1,0 Sxpixg i ∈=>  

(A4) if ig  is not affine, then ( ) 0≥xf i  for all i  and all .Sx∈  

Crouzeix, ferland and Schaible (1985) considered the following mini-

max nonlinear parametric programming problem in the parameter v : 

( )vP     ( ) ( ) ( )[ ]xvgxfvF ii
piSx

−=
≤≤∈ 1

maxmin . 

The following Lemma will be needed in the sequel: 

 

Lemma 3.4.1 (Crouzeix, Ferland and Schaible (1985)): If (P) has an 

optimal solution 
*x  with optimal value of the primal problem (P) as 

*v , 

then ( ) .0* =vF  Conversely, if ( ) ,0* =vF  then (P) and ( ) *vP  have the 

same optimal solution set. 

 

Remark 3.4.1: In case of an arbitrary set 
nRS ⊂ , Crouzeix, Ferland 

and Schaible (1985) showed that the optimal set of ( ) *vP  may be non-

empty. In (A1), however, we have assumed 
nRS ⊂  to be compact in ad-

dition to being nonempty. 
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To establish the optimality and duality, we shall make use of problem 

( )vP . We now have the following programming problem that is equivalent 

to ( )vP  for a given v : 

( )vEP                    qMinimize  

subject to  

                         
( ) ( ) ,.,..,1, piqxvgxf ii =≤−

 (3.22)

             
( ) ..,..,1,0 mkxhk =≤

 (3.23)

 

Lemma 3.4.2: If ( )qvx ,,  is ( )vEP -feasible, then x  is feasible for (P). 

If x  is feasible for (P), then there exist v  and q  such that ( )qvx ,,  is fea-

sible for ( )vEP . 

 

Lemma 3.4.3: 
*x  is optimal for (P) with corresponding optimal value 

of the objective function equal to 
*v  if and only if ( )*** ,, qvx  is optimal 

for ( )vEP  with corresponding optimal value of the objective function 

equal to zero, that is, 
*q . 

 

Theorem 3.4.1 (Necessary Optimality Conditions): 

Let 
*x  be an optimal solution for (P) with optimal value as 

*v . Let an 

appropriate constraint qualification hold for ( ) *EP v ; see (Mangasarian 

(1969), Craven (1978) and Kuhn and Tucker (1951). Then, there exist 
mp RRRq ∈∈∈ *** ,, λτ  such that ( )**** ,,, λτvx  satisfies: 

( ) ( )( ) ( ) ,0*

1

****

1

* =+∇−∇ ∑∑
==

xhxgvxf k

m

k

kii

p

i

i λτ
 

(3.24)

( ) ( )( ) ,,...,1,0***

1

* pixgvxf ii

p

i

i =∀=∇−∇∑
=

τ
 

(3.25)

( ) ,,...,1,0** mkxhkk =∀=λ
 (3.26)

( ) ( ) ,,...,1,0*** pixgvxf ii =∀≤−
 (3.27)

( ) ,,...,1,0* mkxhk =∀≤
 (3.28)
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,1
1

* =∑
=

p

i

iτ
 

(3.29)

,0* =q
 (3.30)

.0,0,,, ***** ≥≥∈∈∈ λτλτ mp RRRq  (3.31)

 

Theorem 3.4.2 (Sufficient Optimality Conditions): 

Let ( )***** ,,,, λτqvx  satisfy (3.24)-(3.31), and at 
*x let  

( ) ( )( )∑
=

−=
p

i

iii xgvxf
1

**A τ
 

(3.32)

be −V pseudo-invex and 

( )∑
=

=
m

k

kk xh
1

*B λ
 

(3.33)

be −V quasi-invex for all x  that are feasible for ( ) *EP v . Then, 
*x  is op-

timal for (P), with corresponding optimal objective value .*v  

Proof: From (3.27), (3.28), 
*x  is feasible for ( ) *EP v , and from (3.28), 

*x  is feasible for (P). Now, all x  that are feasible for ( ) *EP v  are also fea-

sible for (P). Therefore, for 
*x  and any x  which is feasible for ( ) *EP v , 

we have from (3.23), (3.31), (3.26) and since 

( ) ,,...,1,0, * mkxxk =∀>β
 

( ) ( ) ( ) ( ).,, **

1

**

1

* xhxxxhxx kk

m

k

kkk

m

k

k βλβλ ∑∑
==

≤
 

(3.34)

Using the −V quasi-invexity of B, we get 

( ) ( ) .0, **

1

* ≤∇∑
=

xxxhk

m

k

k ηλ  

This along with (3.24) gives 

( ) ( )( ) ( ) .0, *

1

** ≥∇−∇∑
=

xxxgvxf
p

i

iii ητ
 

(3.35)

Using the −V pseudo-invexity of A at 
*x , we get from (3.35), that for 

any x  that is feasible for ( ) *EP v , we have 

* * * * * * * *

1 1

( , )( ( ) ( )) ( , )( ( ) ( ))
p p

i i i i i i i i

i i

x x f x v g x x x f x v g xτ α τ α
= =

− ≥ −∑ ∑  (3.36)
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Using (3.22), (3.29), (3.30), (3.31) and (3.36), we get 

,0 *qq =≥
 (3.37)

for any x  and q  that is feasible for ( ) *EP v . 

Using (3.37) and Lemma 3.4.2, we get the result. 

 

Theorem 3.4.3 (Sufficient Optimality Conditions): Let 

( )***** ,,,, λτqvx  satisfy (3.24)-(3.31), and at 
*x let  

( ) ( )( )∑
=

−=
p

i

iii xgvxf
1

**A τ
 

be −V quasi-invex and  

( )∑
=

=
m

k

kk xh
1

*B λ  

be strictly −V pseudo-invex for all x  that are feasible for ( ) *EP v . 

Then, 
*x  is optimal for (P), with corresponding optimal objective value 

.*v  

Proof: From (3.27), (3.28), 
*x  is feasible for ( ) *EP v , and from (3.28), 

*x  is feasible for (P). Now, all x  that are feasible for ( ) *EP v  are also fea-

sible for (P). Therefore, for 
*x  and any x  which is feasible for ( ) *EP v , 

we have from (3.23), (3.31), (3.26) and since 

( ) ,,...,1,0, * mkxxk =∀>β  

( ) ( ) ( ) ( ).,, **

1

**

1

* xhxxxhxx kk

m

k

kkk

m

k

k βλβλ ∑∑
==

≤  

Using the strict −V pseudo-invexity of B, we get 

( ) ( ) .0, **

1

* <∇∑
=

xxxhk

m

k

k ηλ
 

(3.38)

From (3.38) and (3.24), we get 

( ) ( )( ) ( ) .0, *

1

** >∇−∇∑
=

xxxgvxf
p

i

iii ητ
 

(3.39)

Using the −V quasi-invexity of A at 
*x , we get from (3.39), that for 

any x  that is feasible for ( ) *EP v , we have 

( ) ( ) ( )( ) ( ) ( ) ( )( ).,,
1

*****

1

*** ∑∑
==

−≥−
p

i

iiii

p

i

iiii xgvxfxxxgvxfxx ατατ
 

(3.40)
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Comparing (3.40) with (3.36), we get the result. 

3.5 Duality for Generalized Fractional Programming 

On the lines of Mond and Weir (1981), for a given v , we have the follow-

ing dual to ( )vEP : 

( )vDEP
            ( ) ( )[ ]uvguf ii

p

i

i −∑
=1

*Max τ  (3.41)

                subject to    ( ) ( )( ) ( ) ,0
11

=+∇−∇ ∑∑
==

uhugvuf k

m

k

kii

p

i

i λτ  (3.42)

( ) ,0
1

≥∑
=

uhk

m

k

kλ
 

(3.43)

,1
1

=∑
=

p

i

iτ
 

(3.44)

.0,0,,, ≥≥∈∈∈ λτλτ mpn RRRu (3.45)

We shall now prove duality theorems relating ( )vEP  with ( )vDEP . 

 

Theorem 3.5.1 (Weak Duality): For a given 
*v , let ( )qx ˆ,ˆ  be feasible 

for ( ) *EP v , let ( )λτ ,,u  be feasible for ( )vDEP . Let  

( ) ( )( )∑
=

⋅−⋅=
p

i

iii gvf
1

*A τ  

be −V pseudo-invex and  

( )∑
=

⋅=
m

k

kk h
1

B λ  

be −V quasi-invex for all feasible solutions for ( ) *EP v  and ( ) *DEP v . 

Then ( ) ( ) .DEPsupEPinf ** vv ≥  

Proof: From feasibility of ( )qx ˆ,ˆ  and ( )λτ ,,u  and since 

( ) ,,...,1,0,ˆ mkuxk =∀>β  we have 

( ) ( ) ( ) ( ).,ˆ,ˆ
11

uhuxxhux kk

m

k

kkk

m

k

k βλβλ ∑∑
==

≤
 

(3.46)
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Using −V quasi-invexity and (3.46), we get 

( ) ( ) .0,ˆ
1

≤∇∑
=

uxuhk

m

k

k ηλ
 

(3.47)

From (3.42) and (3.47), we get 

( ) ( )( ) ( ) .0,ˆ
1

* ≥∇−∇∑
=

uxugvuf
p

i

iii ητ
 

(3.48)

Using the −V pseudo-invexity of A, we get 

( ) ( ) ( )( ) ( ) ( ) ( )( ).,ˆˆ,ˆ
1

**

1

* ∑∑
==

−≥−
p

i

iiii

p

i

iiii ugvufxxxgvxfux ατατ (3.49)

Using (3.44) in conjunction with (3.22) and (3.49), we get 

( ) ( )[ ],ˆ *

1

ugvufq ii

p

i

i −≥∑
=

τ  

that is,    ( ) ( ) .DEPsupEPinf ** vv ≥
 

 

Remark 3.5.1: The above theorem can also be establish with 

−V quasi-invexity assumption on A and  strictly −V pseudo-invexity as-

sumption on B. 

Theorem 3.5.2 (Strong Duality): Let 
( )
( ) ,maxmin

1

*

⎥
⎦

⎤
⎢
⎣

⎡
=

≤≤∈ xg

xf
v

i

i

piSx
 and let 

( )** , qx  be ( ) *EP v -optimal, at which an appropriate constraint qualifica-

tion holds (see, Mangasarian (1969), Craven (1978), Kuhn and Tucker 

(1951)). Then, there exists ( )** , λτ  such that ( )*** ,, λτx  is feasible for 

( ) *DEP v and the corresponding objective value of ( ) *EP v  and 

( ) *DEP v are equal. If also the hypothesis of Theorem 3.5.1 are satisfied, 

then  ( )** , qx  and ( )*** ,, λτx  are global optima for ( ) *EP v  and 

( ) *DEP v , respectively with each objective value equal to zero. 

Proof: Since ( )** , qx  is optimal for ( ) *EP v , by Theorem 3.5.1, there 

exists 
mp RR ∈∈ ** , λτ  such that ( )**** ,,, λτqx  satisfies (3.24)-

(3.31). From (3.24), (3.29), (3.31), we see that ( )*** ,, λτx  is feasible for 

( ) *DEP v . Also, we see that, from (3.25), (3.26), (3.29), (3.30), we have 
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( ) ( )( )***

1

** 0min xgvxfqq ii

p

i

i −=== ∑
=

τ
 

( ) ( )( ) .max *

1

xgvxf ii

p

i

i −= ∑
=

τ
 

From Theorem 3.6.1 using (3.50) along with (3.51), we infer that 

( )** , qx  is global optimum for ( ) *EP v  and ( )*** ,, λτx  is global opti-

mum for ( ) *DEP v , with each objective value equal to zero. 

 

Theorem 3.5.3 (Strict Converse Duality): 

For
( )
( ) ,maxmin

1

*

⎥
⎦

⎤
⎢
⎣

⎡
=

≤≤∈ xg

xf
v

i

i

piSx
 let ( )** , qx  be optimal for ( ) *EP v  at 

which an appropriate constraint qualification holds (see Mangasarian 

(1969), Craven (1978), Kuhn and Tucker (1951)). Let  ( )λτ ,,u  be opti-

mal for ( ) *DEP v and −V invexity hypothesis of Theorem 3.5.1 hold. 

Then, ;*xu =  that is, ( )*, qu  is ( ) *EP v -optimal with each objective 

value equal to zero. 

Proof: If possible, let ,*xu ≠  we now show a contradiction. Since 

( )** , qx  is optimal for ( ) *EP v , there exist 
mp RR ∈∈ ** , λτ such that 

( )*** ,, λτx  is optimal for ( ) *DEP v and  

( ) ( )( )***

1

** 0 xgvxfq ii

p

i

i −== ∑
=

τ ( ) ( )( ) .*

1

ugvuf ii

p

i

i −=∑
=

τ
 

From feasibility condition and −V quasi-invexity of B, we reach to 

(3.47); and from (3.42) and (3.47), we get (3.48). Using strict −V pseudo-

invexity of A, we get 

( ) ( )( ) ( ) ( )( ).
1

*

1

**** ∑∑
==

−>−
p

i

iii

p

i

iii ugvufxgvxf ττ
 

>*q ( ) ( )( ) ,*

1

ugvuf ii

p

i

i −∑
=

τ  

Following Schaible (1981) and Jagannathan (1973), we associate the 

following fractional (FD) and nonlinear program (D) with ( ) *DEP v : 

(3.50)

(3.51)

(3.52)

Using (3.44) in conjunction with (3.22) on (3.52), we obtain 

(3.53)

which contradicts (3.51). 
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(FD)  

( )

( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∑

∑

=

=

ug

uf

i

p

i

i

i

p

i

i

1

1Max

τ

τ
 

subject to  

( )

( )
( ) ,0

1

1

1 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+∇ ∑
∑

∑
=

=

= uh

ug

uf

k

m

k

k

i

p

i

i

i

p

i

i

λ
τ

τ
 

( ) ,0
1

≥∑
=

uhk

m

k

kλ  

,1
1

=∑
=

p

i

iτ  

.0,0,, ≥≥∈∈ λτλτ mp RR  

 

(D)   vMax  

subject to  

( ) ( )( ) ( ) ,0
11

=⎥
⎦

⎤
⎢
⎣

⎡
+−∇ ∑∑

==

uhuvguf k

m

k

kii

p

i

i λτ  

( ) ( )( ) ,0
1

≥−∑
=

uvguf ii

p

i

iτ  

( ) ,0
1

≥∑
=

uhk

m

k

kλ  

,1
1

=∑
=

p

i

iτ  

.0,0,,, ≥≥∈∈∈ λτλτ mpn RRRu  

We relate (FD) and (D) with ( )vDEP via the following theorems, the 

proofs are easy and hence omitted. 

 

Theorem 3.5.4: The following relation holds: 
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( )

( )

( )

( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

∑

∑

∑

∑

=

=

=

=

ug

uf

ug

uf

v

i

p

i

i

i

p

i

i

i

p

i

i

i

p

i

i

1

1

1

1 Max

τ

τ

τ

τ
, for all ( )λτ ,,u , feasible for 

(FD) if and only if 

( ) ( ) ( ) ( ) ,0Max
1111

=−=⎥
⎦

⎤
⎢
⎣

⎡
− ∑∑∑∑

====

ugvufugvuf i

p

i

ii

p

i

ii

p

i

ii

p

i

i ττττ
 

for all ( )λτ ,,, vu feasible for ( )vDEP . In view of Theorem 3.5.4, we 

can easily verify that, for optimal v , the constraint sets of (FD) and 

( )vDEP are equivalent. 

 

Theorem 3.5.5: If ( )λτ ,,u  is feasible for (FD) and  

( )

( )
,

1

1

ug

uf

v

i

p

i

i

i

p

i

i

∑

∑

=

==
τ

τ
 then ( )λτ ,,, vu  is feasible for (D). 

If ( )λτ ,,, vu  is feasible for (D) and ( ) ( ) ,0
11

=− ∑∑
==

ugvuf i

p

i

ii

p

i

i ττ  

then ( )λτ ,,, vu  is feasible for (D). 

 

Theorem 3.5.6: ( )*** ,, λτu  is optimal for (FD), with corresponding 

optimal objective value 
*v  if and only if ( )**** ,,, λτvu  is optimal for 

(D) with corresponding optimal objective value equal 
*v . Also, at the op-

timal solution, we get ( ) ( )( ) .0
1

>−∑
=

uvguf ii

p

i

iτ
 





Chapter 4: Multiobjective Nonsmooth 

Programming 

4.1 Introduction 

It is well known that much of the theory of optimality in constrained opti-

mization has evolved under traditional smoothness (differentiability) as-

sumptions, discussed in previous chapters. As nonsmooth phenomena in 

optimization occur naturally and frequently, the attempts to weaken these 

smoothness requirements have received a great deal of attention during the 

last two decades (Ben-Tal and Zowe (1982), Clarke (1983), Kanniappan 

(1983), Jeyakumar (1987, 1991), Rockaffelar (1988), Burke (1987), Egudo 

and Hanson (1993), Bhatia and Jain (1994), Mishra and Mukherjee (1996). 

Necessary optimality conditions for nonsmooth locally Lipschitz problems 

have been given in terms of the Clarke generalized subdifferentials (Jeya-

kumar (1987), Egudo and Hanson (1993), Mishra and Mukherjee (1996)). 

The Clarke subdifferential method has been proved to be a powerful tool 

in many nonsmooth optimization problems, see for example Giorgi and 

others (2004). 

Zhao (1992) gave some generalized invex conditions for a nonsmooth 

constrained optimization problems generalizing those of Hanson and 

Mond (1982) for differentiable problems. Following Zhao (1992), Egudo 

and Hanson (1993) generalized V-invexity concept of Jeyakumar and 

Mond (1992) to the nonsmooth setting and obtained sufficient optimality 

conditions for a locally Lipschitz multiobjective programming in terms of 

Clarke’s subdifferential. Wolfe type duality results are also obtained in 

Egudo and Hanson (1993). Mishra and Mukherjee (1996) generalized the 

V-pseudo-invexity and V-quasi-invexity concepts of Jeyakumar and Mond 

(1992) to nonsmooth setting following Egudo and Hanson (1993). 

This Chapter is organized as follows: In Section 3, we establish suffi-

cient optimality conditions to nonsmooth context using conditional proper 

efficiency. Using the concept of quasi-differentials due to Borwein (1979), 

Fritz John and Kuhn-Tucker type sufficient optimality conditions for a fea-

sible point to be efficient or conditionally properly efficient for a subdif-

ferentiable multiobjective fractional problem are obtained without recource 
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to an equivalent V-invex program or parametric transformation. In Section 

4, Mond-Weir type duality results are established for the nonsmooth mul-

tiobjective programming problem, under generalized V-invexity condi-

tions, using conditional proper efficiency. Further, various duality results 

are established under similar assumptions for subdifferentiable multiobjec-

tive fractional programming problems. In Section 5, a vector valued ratio 

type Lagrangian is considered and vector valued saddle point results are 

presented under V-invexity conditions and its generalizations.  

4.2 V-Invexity of a Lipshitz Function 

The multiobjective nonlinear programming problem to be considered is: 

(VP) ( )( )pixf i ,...,1:Minimize =  

subject to ( ) ,,...,1,0 mjxg j =≤  

where piRRf n

i ,...,1,: =→  and mjRRg n

j ,...,1,: =→  are 

locally Lipschitz functions. 

The generalized directional derivative of a Lipschitz function f  at x  in 

the direction d  denoted by ( )dxf ;0
 (see, e.g. Clarke (1983)) is: 

( ) ( ) ( )
.suplim;

0

0

λ
λ

λ

yfdyf
dxf

xy

−+
=

↓
→

 

The Clarke generalized subgradient of f  at x  is denoted by ( )xf∂ , is 

defined as follows: ( ) ( ){ } . allfor    ;: 0 nTn RdddxfRxf ∈≥∈=∂ ξξ  

Egudo and Hanson (1993) defined invexity for locally Lipschitz func-

tions as follows: 

 

Definition 4.2.1: A locally Lipschitz function  ( )xf  is said to be invex 

on 
nRX ⊆0  if for 0, Xux ∈  there exists a function  

( ) RXXux →× 00:,η  

such that 

( ) ( ) ( ) ( ) .,, ufuxufxf ∂∈∀≥− ξξη  
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Definition 4.2.2. [Zhao (1992)]: A locally Lipschitz function  ( )xf  is 

said to be pseudo-invex on 
nRX ⊆0  if for 0, Xux ∈  there exists a func-

tion ( ) RXXux →× 00:,η  such that 

( ) ( ) ( ) ( ) .,0, ufufxfux ∂∈∀≥⇒≥ ξξη
 

 

Definition 4.2.3. [Zhao (1992)]: A locally Lipschitz function  ( )xf  is 

said to be quasi-invex on 
nRX ⊆0  if for 0, Xux ∈  there exists a func-

tion ( ) RXXux →× 00:,η  such that 

( ) ( ) ( ) ( ) .,0, ufuxufxf ∂∈∀≤⇒≤ ξξη  

It is clear from the definitions that every locally Lipschitz invex func-

tion is locally Lipschitz pseudo-invex and locally Lipschitz quasi-invex. 

Using the results of Zhao (1992), Egudo and Hanson (1993) generalized 

the V-invexity concept of Jeyakumar and Mond (1992) to the nonsmooth 

case: 

 

Definition 4.2.4. [Egudo and Hanson (1993)]: A locally Lipschitz vec-

tor function  
pRXf →0:  is said to be −V invex if there exist functions 

( ) nRXXux →× 00:,η  and 

( ) { } piRXXuxi ,...,1,0\:, 00 =→× +α
 

such that for 0, Xux ∈ , 

( ) ( ) ( ) ( ) ( ) .,...,1,,,, piufuxuxufxf iiii =∂∈∀≥− ξηξα
 

 

Definition 4.2.5. [Mishra and Mukherjee (1996)]: A locally Lipschitz 

vector function  
pRXf →0:  is said to be −V pseudo-invex if there ex-

ist functions ( ) nRXXux →× 00:,η  and 

( ) { } piRXXuxi ,...,1,0\:, 00 =→× +α
 

such that for 0, Xux ∈ , 

1 1 1

( , ) 0 ( , ) ( ) ( , ) ( ),

( ), 1, , .

p p p

i i i i i

i i i

x u x u f x x u f u

f u i p

ξη α α

ξ
= = =

≥ ⇒ ≥

∀ ∈∂ =

∑ ∑ ∑
…
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Definition 4.2.6. [Mishra and Mukherjee (1996)]:  A locally Lipschitz 

vector function  
pRXf →0:  is said to be −V quasi-invex if there exist 

functions ( ) nRXXux →× 00:,η  and  

( ) { } piRXXuxi ,...,1,0\:, 00 =→× +α
 

such that for 0, Xux ∈ , 

1 1 1

( , ) ( ) ( , ) ( ) ( , ) 0,

( ), 1, , .

p p p

i i i i i

i i i

x u f x x u f u x u

f u i p

α α ξη

ξ
= = =

≤ ⇒ ≤

∀ ∈∂ =

∑ ∑ ∑
…

 

It is apparent from definitions that every −V invex function is 

−V pseudo-invex and −V quasi-invex.  

 

Example 4.2.1: Consider 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

+
−

−
21

21

21

21 2
,

2
Minimize

xx

xx

xx

xx
V  

subject to ,01,01,0 2121 ≤−≤−≤− xxxx ( , ) 1, 1,2i x u iα = =
 

1 2

1
( , ) ( ), 1, 2

3
i x u x x jβ = + =

 
and ( ) ( ) ( )

.
23

,
13

,
21

2

21

1

T

xx

x

xx

x
ux ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

+
−

=η  

As one can see that the generalized directional derivative of 

( )
21

21
1

2

xx

xx
xf

+
−

=  is: 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡

+
−

−
++
−+

= −

↓

→ 21

21

21

211

0

0 22
suplim;

11 xy

xy

xtdy

xtdy
tdxf

t

xy

 

( )( ) ⎥⎦
⎤

⎢
⎣

⎡

+++
= −

↓

→ 2121

21

0

3
suplim

11 xytdxy

tdx
t

t

xy

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

+
−

0
2

if
21

21

xx

xx
 

( )
.

3
2

21

2

xx

dx

+
=  

If we take 11 =x  and 22 =x  (i. e. for an efficient solution ( )2,1 ) 

( ) .
3

2
;0 d

dxf =  
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If ,22 xy →  then ( ) .
3

;0 d
dxf −=  Thus ( ) .

3
,

3

2
1 uf

dd
∂∈⎟

⎠
⎞

⎜
⎝
⎛ −  It is 

easy to see that ( ) .
9

1
,

9

2
2 uf∂∈⎟

⎠
⎞

⎜
⎝
⎛−  At these particular points one can 

easily see that above nonsmooth problem is −V invex. 

The following definitions will be needed in the sequel: 

 

Definition 4.2.7 [Borwein (1979)]: The functional f  is said to have an 

upper derivative at a point 
0x  (denoted by ( )hxfd ;0+

 if  

( ) ( ) ( )
.allfor    exists,lim;

0

0 Xh
t

xfthxf
hxfd

t
∈

−+
=

+→

+

 
 

Definition 4.2.8 [Borwein (1979)]: A functional f  is said to be quasi-

differentiable at 
0x  if ( )hxfd ;0+

 exists and there is some weak* closed 

set ( )0xT  such that 

( )
( )

.,max; *0

0*
Xhxhhxfd T

xTx
∈∀=

∈

+

 
(4.1)

The set ( )0xT  will be calledquasi-differentiable. 

 

Remark 4.2.1: If f  is −V invex and continuous at
0x , then (4.1) holds 

with ( ) ( ).00 xfxT ∂=  

The following Proposition can be established on the lines of Borwein 

(1979) and will be needed in the study of fractional programs. 

 

Proposition 4.2.1: Let RX →:1ψ  and RX →:2ψ . If 1ψ  is 

−V invex and non-negative at 
0x  and 2ψ−  is −V invex and positive at 

0x , then ( ) 21 ψψθ =x  is quasi-differentiable at 
0x  with 

( ) ( ) ( ) ( ) ( )[ ] .1 0

2

00

10

2

0 xxx
x

xT ψθψ
ψ

∂−∂=  

We now consider the following nondifferentiable multiobjective frac-

tional programming problem: 

(VFP) 
( )
( )

( )
( )⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

xg

xf

xg

xf

p

p
,...,Minimize

1

1

 
subject to
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( ) ,,...,1,0 mjxh j =≤
 (4.2)

,Xx∈
 (4.3)

where RXgf ii →− :,  are continuous and −V invex and 

pig i ,...,1,0 =>  and mjRXh j ,...,1,: =→  are continuous and 

−V invex. 

4.3 Sufficiency of the Subgradient Kuhn-Tucker 
Conditions 

In this section we show that the subgradient Kuhn-Tucker conditions are 

sufficient for conditionally properly efficient solutions.  

 

Theorem 4.3.1 (Kuhn-Tucker type Sufficient Optimality Condi-

tions): Let ( )µτ ,,u  satisfy the subgradient Kuhn-Tucker type necessary 

conditions 

( ) ( )∑∑
==

∂+∂∈
m

j

jji

p

i

i uguf
11

,0 λτ
 

(4.4)

( ) ,,...,1,0 mjug jj ==λ
 (4.5)

∑
=

≥=≥
p

i

jii

1

.0,1,0 λττ
 

(4.6)

If ( )pp ff ττ ,...,11  is −V pseudo-invex and ( )mm gg λλ ,...,11   is 

−V quasi-invex in nonsmooth sense, and u  is feasible for (VP), then u  is 

properly efficient for (VP). 

Proof: The condition (4.4) implies that, there exist ( ),i if uξ ∈∂  

1, , ,i p= … ( ), 1, ,j jg u j mς ∈ = …
 
such that ( )∑∑

==

+=
m

j

jji

p

i

i u
11

.0 ςλξτ  

Therefore,  

( ) ( ) ( )∑∑
==

+=
m

j

jji

p

i

i uxuux
11

.,,0 ηςληξτ  

From (4.5) and feasibility of x , we get 

( ) ( ) .,...,1, mjugxg jjjj =≤ λλ  
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Since ( ) ,,...,1,0, mjuxj =>β  we get 

( ) ( ) ( ) ( ) .,,
11

uguxxgux jj

m

j

jjj

m

j

j βλβλ ∑∑
==

≤  

Then by −V quasi-invexity of ( )mm gg λλ ,...,11 , we get 

( ) ( ) .,0,
1

ugux jjj

m

j

j ∂∈∀≤∑
=

ςηςλ  

Thus, we have 

( ) ( ) .,0,
1

ufux iii

p

i

i ∂∈∀≥∑
=

ξηξτ  

Then by −V pseudo-invexity of  ( )pp ff ττ ,...,11 , we get 

( ) ( ) ( ) ( )ufuxxfux ii

p

i

iii

p

i

i ,,
11

ατατ ∑∑
==

≥ . 

Since ( ) ,,...,1,0, piuxi =>α  we get 

( ) ( ).
11

ufxf i

p

i

ii

p

i

i ∑∑
==

≥ ττ  

Hence by Theorem 1 of Geoffrion (1968) u  is properly efficient solu-

tion for (VP). 

We now state Fritz John and Kuhn-Tucker type necessary conditions 

(see, Bector et el. (1994)) and then we prove that these conditions are also 

sufficient for an efficient/ conditionally properly efficient solutions for 

(VFP) for −V invex functions and its generalizations. 

 

Lemma 4.3.1 (Fritz John type Necessary Conditions): Let 
0x  be an 

efficient solution for (VFP), then there exist ( ) p

p R+∈= τττ ,...,1  and 

non-negative constant , 1, , ,j j mλ = …  not all zero such that 

( ) ( ) ( ),0 00

1

0

1

xNxhxT Cj

m

j

ji

p

i

i +∂+∈ ∑∑
==

λτ
 

(4.7)

( ) ,,...,1,00 mjxh jj ==λ
 (4.8)

where ( ) ( ) ( ) ( ) ( )[ ]000

0

0 1
xgxxf

xg
xT iii

i

i ∂−∂= φ  and 
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( ) ( )
( ).0

0

0

xg

xf
x

i

i

i =φ
 

(4.9)

To prove Kuhn-Tucker type necessary conditions, the following Slater’s 

constraint qualification similar to that of Kanniappan (1983) is needed in 

the sequel.  

For each ,,...,1 pi =  suppose that there exist Xx i ∈  such that 

( ) mjxh i

j ,...,1,0 =<  and ( ) ( ) ( ) ,for00 ikxgxxf i

kk

i

k ≠<−φ  

where 
0x  is assumed to be an efficient solution of (MFP). 

 

Lemma 4.3.2 (Kuhn-Tucker type Necessary Conditions): Let 
0x  be 

an efficient solution for (VFP), and the above constraint qualification is 

met, then there exist ( ) p

p R+∈= τττ ,...,1  and ,,...,1, mjj =λ  such 

that 

( ) ( ) ( ),0 00

1

0

1

xNxhxT Cj

m

j

ji

p

i

i +∂+∈ ∑∑
==

λτ
 

(4.10)

( ) ,,...,1,00 mjxh jj ==λ
 (4.11)

,0,0 ≥> λτ
 (4.12)

where ( ) ( ) ( ) ( ) ( )[ ]000

0

0 1
xgxxf

xg
xT iii

i

i ∂−∂= φ  and ( ) ( )
( ).0

0

0

xg

xf
x

i

i

i =φ
 

 

Theorem 4.3.2 (Fritz John Sufficiency): Assume that, there exists 

( )000 ,, λτx  where ( ) p

p R+∈= 00

1

0 ,..., τττ  and ( ) m

m R∈00

1 ,..., λλ  such 

that 

( ) ( ) ( ),0 00

1

00

1

0 xNxhxT Cj

m

j

ji

p

i

i +∂+∈ ∑∑
==

λτ
 

(4.13)

( ) ,,...,1,000 mjxh jj ==λ
 (4.14)

( ) ,,...,1,00 mjxh j =≤
 (4.15)

and pigf ii ,...,1,, =−  and mjh j ,...,1, =  are −V invex, for all 

sj ≠  and for sj = , 00 >sλ  and sh  is strictly −V invex. Then 
0x  is an 

efficient solution for (VFP). 

Proof: From (4.10), we have 
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( ) ( ) ( ).0 00

1

0

1

xNxhxT Cj

m

j

ji

p

i

i +∂+∈ ∑∑
==

λτ  

This implies that there exist some ( )00 xf ii ∂∈ξ  and ( )00 xg ii ∂∈ς  for 

each ,,...,1 pi = ( )00 xh jj ∂∈γ  for each ,,...,1 mj =  and ( )00 xNz C∈  

such that 

( ) ( )[ ] .
1

0 00

1

0000

0
1

0 zx
xg

j

m

j

jiii

i

p

i

i ++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

==

γλςφξτ
 

(4.16)

This yields 

( ) ( ) ( )[ ] .
1

,0 00

1

0000

0
1

00

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

==

zx
xg

xx j

m

j

jiii

i

p

i

i γλςφξτη
 

(4.17)

If 
0x  is not an efficient solution for (VFP), then there exists an x  is 

feasible for (VFP) such that 

( )
( )

( )
( ) ,,...,1,

0

0

pi
xg

xf

xg

xf

i

i

i

i =∀≤  

and  

( )
( )

( )
( ) .oneatleast  for  ,

0

0

k
xg

xf

xg

xf

k

k

k

k <  

That is,  

( ) ( ) ( ) ( ) ( ) ( ) ,,...,1,0000 pixgxxfxgxxf iiiiii =∀−≤− φφ  

and  

( ) ( ) ( ) ( ) ( ) ( ) .oneatleast  for  ,0000 kxgxxfxgxxf kkkkkk φφ −<−  

Using −V invexity of ( ) ,,...,1,0 pigxf iii =−φ  we have 

( ) ( )( ) ( ) ,,...,1,0,, 000 pixxxxx iiii =∀≤− ηςφξα  

and  

( ) ( )( ) ( ) .oneatleast  for  ,0,, 000 kxxxxx kkkk <− ηςφξα  

Since ( ) ,,...,1,0, 0 pixxi =>α  we have 

( )( ) ( ) ,,...,1,0, 00 pixxx iii =∀≤− ηςφξ
 (4.18)

and 

( )( ) ( ) .oneatleast  for  ,0, 00 kxxx kkk <− ηςφξ
 (4.19)
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Multiplying (4.18) and (4.19) by ( ) pi
xg i

i ,...,1,0
1

0

0 =≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ  and 

then adding, we have 

( ) ( )( ) ( ) .0,
1 00

0
1

0 ≤−∑
=

xxx
xg

iii

i

p

i

i ηςφξτ
 

(4.20)

From ( ) 0,00 ≤≥ xh jjλ  and ( ) ,,...,1,000 mjxh jj ==λ  we have 

( ) ( ) .0

1

0

1

0 xhxh j

m

j

jj

m

j

j ∑∑
==

≤ λλ  

Using −V invexity hypothesis on mjh j ,...,1, = , we have 

( ) ( ) .0,, 00

1

00 <∑
=

xxxx j

m

j

jj ηγλβ  

Since ( ) ,,...,1,0, 0 mjxxj =>β  we have 

( ) .0, 0

1

00 <∑
=

j

m

j

jj xx γλβ
 

(4.21)

Also, for ( ),00 xNz C∈  we have 

( ) .0, 00 ≤xxz η  (4.22)

Combining (4.20), (4.21) and (4.22), we obtain 

( ) ( ) ( )[ ] .0
1

, 00

1

0000

0
1

00 <
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑∑
==

zx
xg

xx j

m

j

jiii

i

p

i

i γλςφξτη
 

(4.23)

This contradicts (4.17). Hence the result follows. 

 

Theorem 4.3.3 [Kuhn-Tucker Sufficient Optimality Conditions]: 

Assume that there exists ( )000 ,, λτx  where ( ) p

p R+∈= 00

1

0 ,..., τττ  and 

( ) m

m R∈00

1 ,..., λλ  such that 

( ) ( ) ( ),0 00

1

00

1

0 xNxhxT Cj

m

j

ji

p

i

i +∂+∈ ∑∑
==

λτ
 

(4.24)

( ) ,,...,1,000 mjxh jj ==λ
 (4.25)

( ) ,,...,1,00 mjxh j =≤
 (4.26)
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.0,0 00 ≥> λτ
 (4.27)

pigf ii ,...,1,, =−  and mjh j ,...,1, =  are −V invex. Then 
0x  is 

a conditionally properly efficient solution for (VFP). 

Proof. Since  

( ) .,...,1,0
1

0

0 pi
xg i

i =>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ

 

(4.28)

Therefore, in this case (4.18) and (4.19) will yield (4.20), as the follow-

ing strict inequality 

( ) ( )( ) ( ) .0,
1 00

0
1

0 <−∑
=

xxx
xg

iii

i

p

i

i ηςφξτ
 

(4.29)

Combining (4.29), (4.21) and (4.22) we once again obtain (4.23), a con-

tradiction to (4.17), as before. 

We now suppose that 
0x  is not conditionally properly efficient solution 

for (VFP). Therefore, for every positive function ( ) 0>xM  there exists a 

feasible x  for (VFP) and an index i  such that 

( )
( )

( )
( )

( )
( )

( )
( )

( ),
0

0

0

0

xM

xg

xf

xg

xf

xg

xf

xg

xf

j

j

j

j

i

i

i

i

>

−

−
 

for all 
( )
( )

( )
( ) ,,...,1, satisfying

0

0

pi
xg

xf

xg

xf
j

j

j

j

j =∀< whenever 

( )
( )

( )
( ).0

0

xg

xf

xg

xf

i

i

i

i >  This means 
( )
( )

( )
( )0

0

xg

xf

xg

xf

i

i

i

i − , i. e., 

( ) ( ) ( )( ) ( ) ( ) ( )( )0000 xgxxfxgxxf iiiiii φφ −−−  

can be made arbitrarily large and hence for 0>τ  and  

( ) pi
xg i

i ,...,1,0
1

0

0 =≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ , 

we obtain 

( ) ( )( ) .0
1 0

0
1

0 >−∑
=

iii

i

p

i

i x
xg

ςφξτ
 

(4.30)
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This a contradiction to (4.29). Hence 
0x  is a conditionally properly ef-

ficient solution for (VFP). 

 

Remark 4.3.1: Fritz John and Kuhn-Tucker sufficiency can be establish 

under weaker −V invexity assumptions. Namely, pigf ii ,...,1,, =−  

are −V pseudo-invex and mjh j ,...,1, =  are −V quasi-invex. 

4.4 Subgradient Duality 

For the problem (VP) considered in present Chapter, consider a corre-

sponding Mond-Weir type dual problem: 

(VD)    ( )( )piufV i ,...,1:Maximize =−  

subject to  

( ) ( )∑∑
==

∂+∂∈
m

j

jji

p

i

i uguf
11

,0 λτ
 

(4.31)

( ) ,,...,1,0 mjug jj =≥λ
 (4.32)

∑
=

≥=≥
p

i

jii

1

.0,1,0 λττ
 

(4.33)

 

Theorem 4.4.1 (Weak Duality): Let x  be feasible for (VP) and let 

( )λτ ,,u  be feasible for (VD). If ( )pp ff ττ ,...,11  is −V pseudo-invex 

and ( )mm gg λλ ,...,11   is −V quasi-invex in nonsmooth sense, then 

( ) ( )( ) ( ) ( )( ) .int,...,,..., 11

pT

p

T

p Rufufxfxf +−∈/−  

Proof: From the feasibility conditions, 

( ) ( ) .,...,1, mjugxg jjjj =≤ λλ  

Since ( ) ,,...,1,0, mjuxj =>β  we get 

( ) ( ) ( ) ( ) .,,
11

uguxxgux jj

m

j

jjj

m

j

j βλβλ ∑∑
==

≤  

Then, by −V quasi-invexity of ( )mm gg λλ ,...,11 , we get 

( ) ( ) .,...,1,,0,
1

mjugux jjj

m

j

j =∂∈∀≤∑
=

ςςηλ  
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Since, ( ) ( )∑∑
==

∂+∂∈
m

j

jji

p

i

i uguf
11

,0 λτ then there exist 

( ) piuf ii ,...,1, =∂∈ξ  and ( ) ,,...,1, mjug jj =∂∈ς  such that 

∑∑
==

+=
m

j

jji

p

i

i

11

.0 ςλξτ  

This implies that 

( ) ( )∑∑
==

+=
m

j

jji

p

i

i uxux
11

.,,0 ηςληξτ  

Thus,  

( ) ( ) .,...,1,,0,
1

piufux iii

p

i

i =∂∈∀≥∑
=

ξηξτ  

Then, by −V pseudo-invexity of ( )
pp ff ττ ,...,11 , we get 

( ) ( ) ( ) ( ).,,
11

ufuxxfux ii

p

i

iii

p

i

i ατατ ∑∑
==

≥  

The conclusion now follows, since ∑
=

=
p

i

i

1

1τ and  

( ) .,...,1,0, piuxi =>α
 

 

Theorem 4.4.2 (Strong Duality): Let 
0x  be a weak minimum solution 

for (VP) at which a constraint qualification is satisfied. Then there exist 

,0 pR∈τ ,0 mR∈λ such that ( )000 ,, λτx  is feasible for (VD). If weak 

duality holds between (VP) and (VD), then ( )000 ,, λτx  is a weak mini-

mum for (VD). 

Proof: From the Kuhn-Tucker necessary conditions (see, e.g. Theorem 

6.1.3 of Clarke (1983)), there exist ,pR∈τ ,mR∈λ  such that 

( ) ( )∑∑
==

∂+∂∈
m

j

jji

p

i

i xgxf
1

00

1

,0 λτ
 

,0,0,0 ≥≠≥ ji λττ  ( ) .,...,1,00 mjxg jj ==λ  

Now since ,0,0 ≠≥ ττ i  we can scale the pii ,...,1, =τ  and 
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,,...,1, mjj =λ  thus 

∑
=

=
p

i

i

i

i

1

0

τ

τ
τ  and .

1

0

∑
=

=
m

j

j

j

j

λ

λ
λ  Now we have 

( )000 ,, λτx  that is feasible for (VD) such that 

( ) ( ).0xfuf ii >  

Since 
0x  is feasible for (VP), this contradicts weak duality Theorem 

4.4.1. 

 

Theorem 4.4.3: Let x  be feasible solution  for (VP) and ( )λτ ,,u  

feasible for (VD) such that ( ) ( )ufxf i

p

i

ii

p

i

i ∑∑
==

=
11

ττ . If ( )pp ff ττ ,...,11  is 

−V pseudo-invex and ( )
mm gg λλ ,...,11   is −V quasi-invex at u , then x  

is properly efficient for (VP). 

Proof: Let x  be any feasible solution for (VP). From the weak duality 

theorem, ( ) ( ).
11

ufxf i

p

i

ii

p

i

i ∑∑
==

≥ ττ  From the assumption, we get 

( ) ( ).
11

xfxf i

p

i

ii

p

i

i ∑∑
==

≥ ττ  Hence by Theorem 1 in Geoffrion (1968), x  is 

properly efficient for (VP). 

 

Theorem 4.4.4: Let x  be feasible for (VP) and ( )λτ ,,u  be feasible 

for (VD) such that ( ) ( )ufxf = . If ( )pp ff ττ ,...,11  is −V pseudo-invex 

and ( )mm gg λλ ,...,11  is −V quasi-invex at u  for each dual feasible 

( )λτ ,,u , then ( )λτ ,,u  is properly efficient solution for (VD). 

Proof: Assume that ( )λτ ,,u  is not efficient, then there exists 

( )*** ,, λτu  feasible for (VD) such that ( ) ( ) ,,...,1,* piufuf ii =∀≥  

and ( ) ( ) { } .,...,1somefor  ,* pjufuf jj ∈≥  

Therefore, ( ) ( ) .
1

**

1

* ufuf i

p

i

ii

p

i

i ∑∑
==

> ττ  

On using the assumption ( ) ( )ufxf = , we get 
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( ) ( ),
1

**

1

* xfuf i

p

i

ii

p

i

i ∑∑
==

> ττ  

a contradiction to weak duality theorem, since .,...,1,0* pii =≥τ Hence 

( )λτ ,,u  is an efficient solution for (VD). Assume now that it is not 

properly efficient. Then there exist a feasible solution ( )*** ,, λτu  and an 

{ }pi ,...,1∈ such that ( ) ( ),* ufuf ii >  and 

( ) ( ) ( ) ( )( ),** ufufMufuf jjii −>−
 

 for all 0>M  and all { }pij ,...,1∈≠  satisfying ( ) ( ) .*ufuf jj >  This 

means that ( ) ( )ufuf ii −*
 can be made arbitrarily large whereas 

( ) ( )*ufuf jj −  is finite for all { }pij ,...,1∈≠ . Therefore, 

( ) ( )( ) ( ) ( )( ),**** ufufufuf jj

p

ij

iiii −>− ∑
≠

ττ  

Or    ( ) ( ) .
1

**

1

* ufuf i

p

i

ii

p

i

i ∑∑
==

> ττ  

Using the assumption ( ) ( )ufxf = , we get 

( ) ( ) .
1

**

1

* xfuf i

p

i

ii

p

i

i ∑∑
==

> ττ  

This again contradicts the weak duality theorem since .1
1

* =∑
=

p

i

iτ  

Hence ( )λτ ,,u  is a properly efficient solution for (VD). 

 

Theorem 4.4.5 (Strong Duality): Let x  be a properly efficient solution 

for (VP) and ( )mm gg λλ ,...,11  satisfy the Kuhn-Tucker constraint qualifi-

cation at x . Then there exists ( ),, λτ  such that ( )λτ ,,xu =  is a feasi-

ble solution for (VD) and the objective values of (VP) and (VD) are equal. 

Also, if ( )
pp ff ττ ,...,11  is −V pseudo-invex and ( )mm gg λλ ,...,11  is 

−V quasi-invex at u  for every dual feasible solution ( )λτ ,,u , then 

( )λτ ,,x  is a properly efficient solution for (VD). 

Proof: Since x  is an efficient solution for (VP) at which the Kuhn-

Tucker condition is satisfied, there exist 
pR∈τ , 

mR∈λ , such that 
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( ) ( )∑∑
==

∂+∂∈
m

j

jji

p

i

i xgxf
11

,0 λτ
 

( ) 0,  0,  1, , ,  0,  0, 1, .j j j ig x j m i pλ λ τ τ∂ ≥ ≥ = ≠ ≥ =… …  

Now since ,0,0 ≥≠ iττ  we can scale 

∑
=

=
p

i

i

i

i

1

τ

τ
τ  and .

1

∑
=

=
m

j

j

j

j

λ

λ
λ  

Now we have ( )λτ ,,x  that is feasible for (VD). Also, since the objec-

tive functions for both problems are the same, the values of (VP) and (VD) 

are equal at x . Hence by Theorem 4.4.4 ( )λτ ,,x  is a properly efficient 

solution of the dual problem (VD). 

We now consider the following dual (VFD) to the primal problem 

(VFP). 

(VFD)       ( )ptt ,...,Maximize 1  

subject to 

( ) ( )[ ] ( ) ( )∑∑
==

+∂+∂−∂∈
m

j

Cjjiii

p

i

i yNyhygtyf
11

0 λτ (4.34)

( ) ( ) piygtyf iii ,...,1,0 =≥−
 (4.35)

( ) ,0≥yhTλ
 (4.36)

.0,0,0 ≥≥> tλτ  (4.37)

We denote the set of feasible solutions of (VFD) by .K
 

 

Theorem 4.4.6: (Weak Duality): Let x  be feasible for (VFP) and 

( )ty ,,, λτ  be feasible for (VFD) and let ( )pp ff ττ ,...,11  and 

( )pp gg ττ −− ,...,11  and ( )mmhh λλ ,...,11  be −V invex. Then 
( )
( ) .t
xg

xf
≤/  

Proof: Assume contrary to the result, i.e., 
( )
( ) t
xg

xf
≤  and exhibit a con-

tradiction. 

Now                
( )
( )

( )
( ) ,,...,1, pit
xg

xf
t

xg

xf
i

i

i =∀≤⇒≤  (4.38)
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and                        
( )
( ) .oneatleast for  kt
xg

xf
k

k

k <  (4.39)

From (4.35), (4.38) and (4.39), we have 

( ) ( ) ( ) ( ) ,,...,1, piygtyfxgtxf iiiiii =∀−≤−  

and 

( ) ( ) ( ) ( ) ,oneatleast  for  , kygtyfxgtxf kkkkkk −≤−  

which along with the hypothesis of −V invexity on ( )pp ff ττ ,...,11  and 

( )
pp gg ττ −− ,...,11 , we have 

( )[ ] ( ) ,,...,1,0,, piyxvtuyx iiii =∀≤− ηα
 (4.40)

and  

( )[ ] ( ) .oneatleast  for  ,0,, kyxvtuyx kkkk <− ηα
 (4.41)

where for each ,,...,1 pi =  ( )yfu ii ∂∈  and ( ).ygv ii ∂∈  Using 

,,...,1,0 pii =>τ  with (4.40) and (4.41) and summing over ,i  we ob-

tain 

( ) [ ] .0,
1

<−∑
=

iiii

p

i

i vtuyx τα  

Since ( ) ,,...,1,0, piyxi =∀>α therefore, we have 

[ ] .0
1

<−∑
=

iii

p

i

i vtuτ
 

(4.42)

The inequality ( ) ( )yhxh TT λλ ≤≤ 0  along with −V invexity on 

( )mmhh λλ ,...,11 , we have 

( ) ( ) ( ) .,...,1,,0,,
1

pjyhwyxwyx jj

m

j

jjj =∂∈∀≤∑
=

ηλβ  

Since ( ) ,,...,1,0, pjyxj =∀>β  we have 

( ) ( ) .,...,1,,0,
1

pjyhwyxw jj

m

j

jj =∂∈∀≤∑
=

ηλ
 

(4.43)

Also, since ( ) ,yNz C∈  therefore, 

( ) .0, ≤yxzTη
 (4.44)

From (4.42)-(4.44), we have 
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[ ] ( ) ,0,
11

<
⎭
⎬
⎫

⎩
⎨
⎧

++− ∑∑
==

yxzwvtu
m

j

jjiii

p

i

i ηλτ  

which contradicts (4.33). Hence the theorem. 

 

Theorem 4.4.7 (Weak Duality): Let x  be feasible for (VFP) and 

( )ty ,,, λτ  be feasible for (VFD) and let ( )pp ff ττ ,...,11  and 

( )pp gg ττ −− ,...,11  are −V pseudo-invex and ( )mmhh λλ ,...,11  be 

−V quasi-invex. Then 
( )
( ) .t
xg

xf
≤/  

Proof: From the feasibility conditions, we get 

( ) ( ).
11

yhxh
m

j

jj

m

j

j ∑∑
==

≤ λλ  

Since ( ) ,,...,1,0, pjyxj =∀>β  we have 

( ) ( ) ( ) ( ).,,
11

yhyxxhyx j

m

j

jjj

m

j

j βλβλ ∑∑
==

≤  

Then by −V invexity of ( )mmhh λλ ,...,11 , we have 

( ) ( ) .,...,1,,0,
1

pjyhwyxw jj

m

j

jj =∂∈∀≤∑
=

ηλ
 

(4.45)

Also, since ( ) ,yNz C∈  therefore, 

( ) .0, ≤yxzTη  (4.46)

Now, from (4.34), we have 

[ ] ,0
11

∑∑
==

++−=
m

j

jjiii

p

i

i zwvtu λτ
 

(4.47)

for ( )yfu ii ∂∈ and ( ) piygv ii ,...,1, =∂∈ and ( ),j jw h y∈∂  

1, ,j m= …  and ( ) .yNz C∈  

Now from (4.45)-(4.47), we have 

[ ] ( ) .0,
1

≥−∑
=

yxvtu iii

p

i

i ητ
 

(4.48)

By −V pseudo-invexity of ( )pp ff ττ ,...,11  and ( )pp gg ττ −− ,...,11 , 

we have 
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( ) ( ) ( )[ ] ( ) ( ) ( )[ ].,,
11

ygtyfyxxgtxfyx iiii

p

i

iiiii

p

i

i −≥− ∑∑
==

τατα  

This yields, 

( ) ( ) ( ) ( ) ,,...,1, piygtyfxgtxf iiiiii =∀−≥−  

and 

( ) ( ) ( ) ( ) .oneatleast  for  , kygtyfxgtxf kkkkkk −>−  

This implies,
( )
( ) ,,...,1, pit
xg

xf
i

i

i =∀≥ and 
( )

( )

k
k

k

f x
t

g x
>  for at least 

one k. Thus, 
( )
( ) .t
xg

xf
≤/

 
 

Corollary 4.4.1: Let 
0x  be feasible for (VFP) and ( )0000 ,,, ty λτ  be 

feasible for (VFD) such that 
( )
( )

( )
( )0

0

0

0

yg

yf

xg

xf
=  and the invexity hypothesis 

either of Theorem 4.4.6 or of Theorem 4.4.7 hold. Then 
0x  and 

( )0000 ,,, ty λτ  are conditionally properly efficient for (VFP) and (VFD), 

respectively. 

 

Theorem 4.4.8 (Strong Duality): Let 
0x  be an efficient solution for 

(VFP) and let the Slater type constraint qualification be met at 
0x . Then 

there exist ,0 pR∈τ mR∈0λ  and 
pRt ∈0

 such that ( )0000 ,,, tx λτ  is 

feasible for (VFD). If in addition, either Theorem 4.4.6 or Theorem 4.4.7 

holds, then ( )0000 ,,, tx λτ  is conditionally properly efficient solution for 

(VFD). 

Proof: Since 
0x  is an efficient solution for (VFP) and the Slater con-

straint qualification is met at 
0x , therefore, by Lemma 4..3.2, there exist 

,0 pR∈τ mR∈0λ  such that the following hold 

( ) ( ) ( ),0 00

1

0

1

xNxhxT Cj

m

j

ji

p

i

i +∂+∈ ∑∑
==

λτ
 

(4.49)

( ) ,,...,1,00 mjxh jj ==λ
 (4.50)

,0,0 ≥> λτ
 (4.51)
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where ( ) ( ) ( ) ( ) ( )[ ]000

0

0 1
xgxxf

xg
xT iii

i

i ∂−∂= φ  

We now choose 

( )0

0 1

xg i

i =τ  and ( ) ( )
( ) .,...,1,

0

0

0 pi
xg

xf
xt

i

i

ii === φ  (4.52)

Thus, we have 

( ) ( )[ ] ( ) ( ),0
1

000000

1

∑∑
==

+∂+∂−∂∈
m

j

Cjjiii

p

i

i xNxhxgtxf λτ  

( ) ( ) pixgtxf iii ,...,1,0000 =≥− , 

( ) ,,...,1,000 mjxh jj ==λ .0,0 ≥> λτ  

This implies that ( )0000 ,,, tx λτ  is feasible for (VFD). The condition 

(4.52) together with Corollary 4.4.1 gives that ( )0000 ,,, tx λτ  is a condi-

tionally properly efficient solution for (VFD). 

 

Theorem 4.4.9 (Strict Converse Duality): Let 
0x  be feasible for 

(VFP) and ( )0000 ,,, ty λτ  be feasible for (VFD) with 

0
0

0

( )

( )

i

i

f x
t

g x
=  

1, ,i p= …  for all feasible ( )tyx ,,,, λτ , let ( )pp ff ττ ,...,11  and 

( )pp gg ττ −− ,...,11  and ( )mmhh λλ ,...,11  be −V  invex, and at least one 

of these be strictly −V invex. Then .00 yx =  

Proof: Assume .00 yx ≠  Since ( )0000 ,,, ty λτ  is feasible for (VFD), 

therefore, we have 

( ) ( )[ ] ( ) .00

1

0000

1

0 ≥+− ∑∑
==

yhygtyf j

m

j

jiii

p

i

i λτ
 

(4.53)

Note that 

[ ] ( ) ,0,
1

000000

1

0 =
⎭
⎬
⎫

⎩
⎨
⎧

++− ∑∑
==

yxzwvtu
m

j

jjiii

p

i

i ηλτ
 

(4.54)

for some ( )00 yfu ii ∂∈
 
and 

0 0( ), 1, ,i iv g y i p∈∂ = …  and 
0 0( ),j jw h y∈∂  

1, ,j m= …  and ( ) .00 yNz C∈  

Using strict −V invexity, we get 
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0 0 0 0 0 0 0 0

1 1

0 0 0 0 0 0 0 0

1

( ) ( ) ( ) ( )

       ( , ) ( , ).

p p

i i i i i i i i

i i

p

i i i i i

i

f x t g x f y t g y

x y u t v x y

τ τ

τ α η

= =

=

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤> −⎣ ⎦

∑ ∑

∑
 

Since ( ) ,.,..,1,0, 00 piyxi =>α  we have 

0 0 0 0 0 0 0 0

1 1

0 0 0 0 0 0

1

( ) ( ) ( ) ( )

        ( , ).

p p

i i i i i i i i

i i

p

i i i i

i

f x t g x f y t g y

u t v x y

τ τ

τ η

= =

=

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤> −⎣ ⎦

∑ ∑

∑
 

(4.55)

Again, using strict −V invexity of ( )mmhh λλ ,...,11 , we get 

( ) ( ) ( ) ( ) .,, 00000

1

00

1

00

1

0 yxwyxxhxh jj

m

j

jj

m

j

jj

m

j

j ηβλλλ ∑∑∑
===

>−  

Since ( ) ,0, 00 >yxjβ  for each ,,...,1 mj =  we get 

( ) ( ) ( ) ., 000

1

00

1

00

1

0 yxwxhxh j

m

j

jj

m

j

jj

m

j

j ηλλλ ∑∑∑
===

>−
 

(4.56)

Now adding (4.55) and (4.56), we get 

0 0 0 0 0 0 0 0 0 0

1 1 1

0 0 0 0 0 0 0 0 0 0

1 1 1

( ) ( ) ( ) ( ) ( )

        ( ) ( , ).

p pm

i i i i j j i i i i

i j i

pm m

j j i i i i j j

j i j

f x t g x h x f y t g y

h y u t v w x y

τ λ τ

λ τ λ η

= = =

= = =

⎡ ⎤ ⎡ ⎤− + > −⎣ ⎦ ⎣ ⎦

⎧ ⎫
⎡ ⎤+ + − +⎨ ⎬⎣ ⎦

⎩ ⎭

∑ ∑ ∑

∑ ∑ ∑
 

Using (4.54) and since 
( )
( ) ,,...,1,

0

0

0 pi
xg

xf
t

i

i

i == ( ) ,00

1

0 =∑
=

xh j

m

j

jλ  

the above equation yields 

( ) ( )[ ] ( ) ,00

1

0000

1

0 <+− ∑∑
==

yhygtyf j

m

j

jiii

p

i

i λτ  

which contradicts (4.53). Hence the result follows. 

4.5 Lagrange Multipliers and Saddle Point Analysis 

Below we give, as a consequence of Theorem 4.3.1, a Lagrange multiplier 

theorem. 
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Theorem 4.5.1: If Theorem 4.3.1 holds, then equivalent multiobjective 

fractional programming problem (EFP) for (VFP) is given by 

(EFP)          
( ) ( )

( )
( ) ( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
xg

xhxf

xg

xhxf

p

T

p
T λλ

,...,Minimize
1

1  

subject to    ( ) mjxh jj ,...,1,00 ==λ  

.,...,1,0 mjj =≥λ  

Proof: Let 
0x  be an efficient solution for (VFP). Then, (4.7), we have 

0
0 0

0 0
1

0 0

1

( )1
0 ( ) ( )

( ) ( )

         ( ) ( ).

p

i
i i i

i i i

m

j j C

j

f x
f x g x

g x g x

h x N x

τ

λ

=

=

⎡ ⎤
∈ ∂ − ∂⎢ ⎥

⎣ ⎦

+ ∂ +

∑

∑
 

(4.57)

Also from (4.8), we have 

( ) .,...,1,000 mjxh jj ==λ
 (4.58)

Using (4.58) in (4.57) and without loss of generality, setting 

( ) 1
1

0
1

=∑
= xg i

p

i

iτ  yields 

0 0 0
0 0 0

0 0
1

0 0

( ) ( )1
0 [ ( ) ( )

( ) ( )

          ( )] ( )

T

T
p

i
i i

i i i

i C

f x h x
f x h x

g x g x

g x N x

λτ λ
=

⎛ ⎞+
∈ ∂ + − ⎜ ⎟⎜ ⎟

⎝ ⎠
∂ −

∑
 

(4.59)

Now applying the arguments of Theorem 4.3.2 by replacing ( )xf i  by 

( ) ( )xhxf T

i λ+  we get the result. 

Theorem 4.5.1 suggests the vector valued Lagrangian function ( )λ,xL  

as 
pm RRXL →× +:  given by  

( ) ( ) ( )( ),,,...,,, 1 λλλ xLxLxL p=  

where ( ) ( ) ( )
( ) .,...,1,, pi
xg

xhxf
xL

i

T

i

i =
+

=
λ

λ
 

 

Definition 4.5.1: A point ( ) mRXx +×∈00 , λ  is said to be a vector sad-

dle point of the vector valued Lagrangian function ( )λ,xL  if it satisfies 

the following conditions 
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( ) ( ) mRxLxL +∈∀≥/ λλλ ,,, 000

 (4.60)

and  

( ) ( ) .,,, 000 XxxLxL ∈∀≥/ λλ  (4.61)

 

Theorem 4.5.2: If  ( )00 , λx  is a vector saddle point of ( )λ,xL , then 

0x  is a conditionally properly efficient solution for (VFP). 

Proof: Since ( )00 , λx  is a vector saddle point of ( )λ,xL , therefore, 

we have ( ) ( ) m

ii RixLxL +∈∀≤ λλλ andoneatleast  for  ,,, 000
 

( ) ( )
( )

( ) ( )
( )0

000

0

00

xg

xhxf

xg

xhxf

i

T

i

i

T

i λλ +
≤

+
⇒ , for at least one i and

mRλ +∀ ∈  

( ) ( ) .,000 mT
Rxh +∈∀≤−⇒ λλλ This gives 

( ) .000 =xh
T

λ
 (4.62)

First we show that 
0x  is an efficient solution for (VFP). Assume con-

trary, i.e., 
0x  is not an efficient solution for (VFP). Therefore, there exists 

an Xx∈  with ( ) 0≤xh  and from (4.62) along with ( ) 00 ≤xh
T

λ yields 

( ) ( )
( )

( ) ( )
( ) Xxpi
xg

xhxf

xg

xhxf

i

T

i

i

T

i ∈∀=∀
+

≤
+

and,...,1,
0

0000 λλ
 

and
( ) ( )

( )
( ) ( )

( )0

0000

xg

xhxf

xg

xhxf

k

T

k

k

T

k λλ +
<

+
,for at least one k 

and
mRλ +∀ ∈ . 

That is, ( ) ( ) ,and,...,1,,, 000 XxpixLxL ii ∈∀=∀≤ λλ  

and ( ) ( ),,, 000 λλ xLxL kk <  for at least one k and
0 mRλ +∀ ∈ , which is a 

contradiction to(4.61). Hence 
0x is an efficient solution for (VFP). 

We now suppose that 
0x  is not a conditionally properly efficient solu-

tion for (VFP). Therefore, there exists a feasible point x  for (VFP) and an 

index i  such that for every positive function ( ) ,00 >xM  we have 
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( )
( )

( )
( )

( )
( )

( )
( )

( ),0

0

0

0

0

xM

xg

xf

xg

xf

xg

xf

xg

xf

j

j

j

j

i

i

i

i

>

−

−
 

for all j  satisfying 
( )
( )

( )
( ) ,0

0

xg

xf

xg

xf

j

j

j

j <  whenever 
( )
( )

( )
( ) .0

0

xg

xf

xg

xf

i

i

i

i >  This 

along with (4.58) and ( ) 00 ≤xh
T

λ  yields 

( ) ( )
( )

( ) ( )
( ) ,and,...,1,

0

0000

Xxpi
xg

xhxf

xg

xhxf

i

T

i

i

T

i ∈∀=∀
+

<
+ λλ

 

which is a contradiction to (4.61). Hence 
0x  is a conditionally properly ef-

ficient solution for (VFP). 

 

Theorem 4.5.3: Let 
0x  be a conditionally properly efficient solution for 

(VFP) and let at 
0x  Slater type constraint qualification be satisfied. If 

( )pp ff ττ ,...,11  and ( )pp gg ττ −− ,...,11  and ( )mmhh λλ ,...,11  be −V  

invex. Then there exists 
mR+∈λ  such that ( )00 , λx  is a vector saddle 

point of ( )., λxL  

Proof: Since 
0x  is a conditionally properly efficient solution for (VFP), 

therefore, 
0x  is also an efficient solution for (VFP) and since at 

0x  Slater 

type constraint qualification is satisfied, therefore, by Lemma 4.3.2, there 

exist 
pR∈0τ  with 00 >τ  and 

mR+∈0λ  such that the following hold: 

( ) ( ) ( ) ( )[ ] ( ) ( ) ,
1

0 00

1

0000

0
1

xNxhxgxxf
xg

Cj

m

j

jiii

i

p

i

i +∂+∂−∂∈ ∑∑
==

λφτ (4.63)

( ) .,...,1,000 mjxh jj ==λ
 (4.64)

These yields 

( ) [ ] ,0
1

1

000000

0
1

0 =++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑
==

m

j

jjiii

i

p

i

i zwvtu
xg

λτ  
(4.65)

for some ( )00 xfu ii ∂∈
 
and ( ) pixgv ii ,...,1,00 =∂∈  and

0 0( ),j jw h x∈∂  

1, ,j m= …  and ( ) .00 xNz C∈  
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Using the −V invexity assumption of the functions, we obtain 
0 0 0 0 0 0 0 0( ) ( ) ( ) ( , )( ( ) ) ( , ),

                      1, ,  and 

i i i i i i if x x g x x x u x v x x

i p x X

φ α φ η− ≥ −

∀ = ∀ ∈…

 

and 
0 0 0 0 0 0 0 0( ) ( ) ( ) ( , )( ( ) ) ( , ),k k k k k k kf x x g x x x u x v x xφ α φ η− > −  for at 

least one and .k x X∀ ∈
 

Since ( ) ,,...,1,0, 0 pixxi =∀>α  we get 

0 0 0 0 0 0 0( ) ( ) ( ) ( ( ) ) ( , ),

                 1, ,  and 

i i i i i if x x g x u x v x x

i p x X

φ φ η− ≥ −

∀ = ∀ ∈…

 (4.66)

and  
0 0 0 0 0 0 0( ) ( ) ( ) ( ( ) ) ( , ),k k k k k kf x x g x u x v x xφ φ η− > −  for at least 

one and .k x X∀ ∈  

(4.67)

Now for all pi ,...,1= , Xx∈∀ , we have 

( ) ( ) ( ) ( ) ( )
( )

( )
( ) .,,

00

000

xg

xh

xg

xgxxf
xLxL

i

T

i

iii

ii

λφ
λλ +

−
=−

 

(4.68)

Multiplying (4.68) by ,,...,1, pii =τ which is chosen as 

( )
( )0

0

xg

xg

i

ii

i

τ
τ =  and ( ) ,1

1
0

1

0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
= xg i

p

i

iτ  we have 

0 0 0

1

0 0 0

0
1

   ( , ) ( , )

1
  ( ) ( ) ( ) ( ),

( )

T

p

i i i

i

p

i i i i

i i

L x L x

f x x g x h x
g x

τ λ λ

τ φ λ

=

=

⎡ ⎤−⎣ ⎦

⎛ ⎞
⎡ ⎤= − +⎜ ⎟ ⎣ ⎦

⎝ ⎠

∑

∑
 

which because of (4.65) and (4.66) gives 

( ) ( )[ ] ( ) ( ) ,,,, 000

1

00000

1

xhzwxxxLxL
T

j

m

j

jii

p

i

i λληλλτ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≥− ∑∑

==

 

(because ( )⋅h is −V invex at 
0x  and ( )00 xNz C∈ ). 

Since ,0, >∈ ττ PR  therefore, 

( ) ( ) .,,, 000 XxxLxL ii ∈∀≥/ λλ  

The other part 

( ) ( ) m

ii RxLxL +∈∀≥/ λλλ ,,, 000
 of the vector saddle point ine-

quality follows from 
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( ) ( ) ( )
( ) .,...,1,0,,

0

0
000 pi

xg

xh
xLxL

i

T

ii =∀≤=−
λλλ  

Hence ( )00 , λx  is a vector saddle point of ( ) ., λxL  
 

Remark 4.5.1: Theorem 4.5.3 can be established under weaker −V in-

vexity assumptions, namely, ( )pp ff ττ ,...,11  and ( )pp gg ττ −− ,...,11  are 

−V pseudo-invex and ( )mmhh λλ ,...,11  is −V quasi-invex. 



Chapter 5: Composite Multiobjective Nonsmooth 

Programming 

5.1 Introduction 

Jeyakumar and Yang (1993) considered the following convex composite 

multiobjective nonsmooth programming problem 

(VP)          ( )( ) ( )( )( )xFfxFfV pp,...,Minimize 11−  

subject to   ( )( ) ,,...,1,0, mjxGgCx jj =≤∈  

where C  is a convex subset of a Banach space X , ,if 1, ,i p= … , ,jg  

1, , ,j m= … are real valued locally Lipschitz functions on 
nR  and ,iF  

1, ,i p= … , ,jG 1, , ,j m= …  are locally Lipschitz and Gateaux differenti-

able functions from X  into 
nR  with Gateaux derivatives ,iF ′  1, ,i p= … , 

,jG′ 1, , ,j m= …  respectively, but are not necessarily continuous Frechet 

differentiable or strictly differentiable see Clarke (1983). The problem 

(VP) with 1=p  (single objective function) and continuously (Frechet) 

differentiability conditions has received a great deal of attention in the lit-

erature, e.g., Ioffe (1979), Ben-Tal and Zowe (1982), Burke (1987),and 

Fletcher (1982, 1987). 

It is known that the scalar composite programming problem (see last 

Section of the present Chapter) provides a unified framework for studying 

convergence behaviour of various algorithms and Lagrangian conditions, 

e.g., see Burke (1985), Fletcher (1987) and Rockafellar (1988). Various 

first order optimality conditions of Lagrangian type were given in Jeyaku-

mar (1991) for single objective composite problem without the continu-

ously Frechet differentiability or the strict differentiability restrictions us-

ing an approximation scheme. 

The Composite model problem (VP) is broad and flexible enough to 

cover many common types of multiobjective problems, see in the litera-

ture. Moreover, the model obviously includes the wide class of convex 

composite single objective problems, which is now recognized as funda-
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mental for theory and computation in scalar nonsmooth optimization. To 

illustrate the nature of the model (VP), let us look at some examples. 

 

Example 5.1.1. [Jeyakumar and Yang (1993)]: 

Define ,:, mpn

ji RXGF +→ by  

( ) ( )( ) ,,...,1,0...,,...,0 pixlxF ii ==
( ) ( )( ) ,,...,1,0...,,...,0 mjxhxG jj ==  

where ( ) ,,...,1, pixli = and ( ) ,,...,1, mjxh j =  are locally Lipschitz 

and Gateaux differentiable functions on a Banach space X . Define 

,:, RRgf mp

ji →+
by  

( ) ,,...,1, pixxf ii ==
 

( ) .,...,1, mjxxg jpj == +  
Let XC = . Then the composite problem (P) is the problem 

(NP)  ( ) ( )( )xlxlV p,...,Minimize 1−  

subject to    ( ) ,,...,1,0, mjxhXx j

n =≤∈  

which is a standard multiobjective differentiable nonlinear programming 

problem. Lagrangian optimality conditions, duality results and scalariza-

tion techniques for the standard multiobjective nonlinear programming 

problem have been extensively studied in the literature under convexity 

and generalized convexity conditions, see, e.g., Chew and Choo (1984), 

Rueda (1989), Komlosi (1993), Rapesak (1991), Jahn (1984, 1994) and 

Sawaragi, Nakayama and Tanino (1985). For fractional case see, e.g., 

Kaul, Suneja and Lalitha (1993), Mishra and Mukherjee (1995) and Char-

acterizing the solution sets of pseudolinear programs, see, e.g., Jeyakumar 

and Yang (1994) and Mishra (1995). 

The idea of this Chapter is that by studying the composite model prob-

lem (VP) a unified framework can be given for the treatment of many 

questions of theoretical and computational interest in multiobjective opti-

mization. We have obtained results mainly for conditionally properly effi-

cient solutions of the composite model problem (VP). 

The outline of this Chapter is as follows: In Section 2, we present some 

preliminaries and obtain necessary optimality conditions of the Kuhn-

Tucker type for the composite problem(VP). In Section 3, we present new 

sufficient optimality conditions for feasible points which satisfy Kuhn-

Tucker type conditions to be efficient and conditionally properly efficient 

solutions of the problem (VP). These sufficient conditions are shown to 

hold for various classes of nonconvex programming problems. In Section 

4, multiobjective duality results are presented for the problem (VP) under 



5.2 Necessary Optimality Conditions         91 

the assumptions of generalized convexity. In Section 5, a Lagrange multi-

plier theorem is established for the problem (VP), and a vector valued La-

grangian is introduced and vector valued saddle point results are also pre-

sented. In Section 6, we provide a scalarization result and various 

characterization of the set of conditionally properly efficient solutions for 

composite problems. 

5.2 Necessary Optimality Conditions 

A feasible point 0x  for (VP) is said to be an efficient solution (Sawaragi, 

Nakayama and Tanino (1985), White (1992)) if there exists no feasible x  

for (VP) such that ( )( ) ( )( ) pixFfxFf iiii ,...,1,0 =≤ and 

( )( ) ( )( ) .somefor  ,0 ixFfxFf iiii ≠  The feasible point 0x  is said to 

be a properly efficient solution (Jeyakumar and Yang (1993)) for (VP) if 

0x  is efficient for (VP) and there exists a scalar 0>M  such that for each 

,i
 

( )( ) ( )( )
( )( ) ( )( ) ,

0

0 M
xFfxFf

xFfxFf

jjjj

iiii ≤
−
−

 

for some j  such that ( )( ) ( )( )0xFfxFf jjjj > whenever x  is feasible for 

(VP) and ( )( ) ( )( ) .0xFfxFf iiii <  The feasible point 0x  is said to be 

weakly efficient solution for (VP) if there exists no feasible point x  for 

which ( )( ) ( )( ) .,...,1,0 pixFfxFf iiii =>  In the definition of proper ef-

ficiency the scalar M  is independent of x , and it may happen that if f  is 

unbounded such an M may not exist. Also an optimizer might be willing 

to trade different levels of losses for different levels of gains by different 

values of the decision variable x . Thus, on the lines of Singh and Hanson 

(1991), we extend the definition of proper efficiency to conditional proper 

efficiency for the composite model (VP) as follows: 

The feasible point 0x  is said to be conditionally properly efficient solu-

tion for (VP) if 0x  is efficient for (VP) and there exists a positive function 

( ) 0>xM  such that for each ,i  

( )( ) ( )( )
( )( ) ( )( ) ( ),

0

0 xM
xFfxFf

xFfxFf

jjjj

iiii ≤
−
−
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for some j  such that ( )( ) ( )( )0xFfxFf jjjj > whenever x  is feasible for 

(VP) and ( )( ) ( )( ) .0xFfxFf iiii <  

Notice that if 
nRXF →:  is locally Lipschitz near a point Xx∈  and 

Gateaux differentiable at x  and if RRf n →:  is locally Lipschitz near 

( )xF  then the continuous sublinear function defined by  

( ) ( ) ( )( ) ,:max '

1 ⎭
⎬
⎫

⎩
⎨
⎧

∂∈= ∑
=

xFfwhxFwx k

n

k

k

h
 

satisfies the inequality ( ) ( ) .,,
'

XhhhxFf x ∈∀≤+ πD  

The function xπ  is called upper convex approximation of  Ff D  at x , 

(Jeyakumar and Yang (1993)). 

The following necessary condition is taken from Jeyakumar and Yang 

(1993): 

 

Theorem 5.2.1: For the problem (VP), assume that pif i ...,,1, =  and 

mjg j ...,,1, =  are locally Lipschitz functions, and that piFi ...,,1, =  

and mjG j ...,,1, =  are locally Lipschitz and Gateaux differentiable 

functions. If Cu∈  is a weakly efficient solution for (VP), then there exist 

Lagrange multipliers pii ...,,1,0 =≥τ  and mjj ...,,1,0 =≥λ  not all 

zero, satisfying 

( )( ) ( ) ( )( ) ( ) ( )+
==

−−∂+∂∈ ∑∑ uCuGuGguFuFf jjj

m

j

jiii

p

i

i

'

1

'

1

0 λτ  

and 

( )( ) .,...,1,0 mjuGg jjj ==λ  

The following Kuhn-Tucker type optimality conditions (KT) for (VP) 

are taken from Jeyakumar and Yang (1993): 

( )( ) ( ) ( )( ) ( ) ( )+
==

−−∂+∂∈ ∑∑ uCuGuGguFuFf jjj

m

j

jiii

p

i

i

'

1

'

1

0 λτ  

and 

( )( ) .,...,1,0,0,,0, mjuGgRR jjjj

m

i

p ==≥∈>∈ λλλττ  



Programs 

In this Section, we present new conditions under which the necessary op-

timality conditions become sufficient for efficient and conditionally prop-

erly efficient solutions. The following null space condition is as in Jeya-

kumar and Yang (1993): 

Let ., Xux ∈  Define 
( ) nmpn RRXK π=→ + ::  by  

( ) ( ) ( )( ) ( ) ( )( )( ).,...,,,..., 11 xGxGxFxFxK pp=
 

for each Xux ∈, , the linear mapping  
( )mpn

ux RXA +→:,  is given by  

, 1 1

1 1

( ( , ) ( ) , , ( , ) ( ) ,

           ( , ) ( ) , , ( , ) ( ) ),

x u p p

m m

A x u F u y x u F u y

x u G u y x u G u y

α α

β β

′ ′=

′ ′

…

…

 

where ( ) piuxi ,...,1,, =α  and ( ) mjuxj ,...,1,, =β  are real posi-

tive constants. 

Recall, from the generalized Farkas Lemma (Craven (1978)), that 

( ) ( ) ( )xAuKxK ux ,∈−  iff ( ) ( ) ( )( ) .00, =−⇒= uKxKyyA TT

ux  Let us 

denote the null space of a function H by [ ]HN . 

For each Xux ∈, , there exist real constants ( , ) 0,i x uα >  

1, ,i p= …  and ( , ) 0,j x uβ >  1, ,j m= … , such that  

[ ] ( ) ( )[ ]., uKxKNAN ux −⊂  

Equivalently, the null space condition mean that for each Xux ∈, , 

there exist real constant ( , ) 0,i x uα >  1, ,i p= …  and ( , ) 0,j x uβ >  

1, ,j m= …  and ( ) Xux ∈,µ  such that  

( ) ( ) ( ) ( ) ( )uxuFuxuFxF iiii ,, ' µδ=−  

and  

( ) ( ) ( ) ( ) ( ).,, ' uxuGuxuGxG jjJj µθ=−  

For our problem, we assume the following generalized null space condi-

tion (GNC): 

For each Xux ∈, , there exist real constant ( , ) 0,i x uα >  1, ,i p= …  

and ( , ) 0,j x uβ >  1, ,j m= …  and ( ) ( )uCux −∈,µ  such that  

( ) ( ) ( ) ( ) ( )uxuFuxuFxF iiii ,, ' µδ=−
 

and 
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5.3 Sufficent Optimality Conditions for Composite 
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( ) ( ) ( ) ( ) ( ).,, ' uxuGuxuGxG jjJj µθ=−  

Jeyakumar and Yang (1993) showed that the generalized null space 

condition is easily verified for nonconvex functions. 

 

Theorem 5.3.1.[Mishra and Mukherjee (1995a)]: For the problem 

(VP), assume that if  and jg  are −V invex functions, and iF   and jG  

are locally Lipschitz and Gateaux differentiable functions. Let u  be feasi-

ble for (VP). Suppose that the optimality conditions (KT) hold at u . If the 

generalized null space condition (GNC) hold at each feasible point x  for 

(VP) then u  is an efficient solution for (VP). 

Proof: The condition 

( )( ) ( ) ( )( ) ( ) ( )+
==

−−∂+∂∈ ∑∑ uCuGuGguFuFf jjj

m

j

jiii

p

i

i

'

1

'

1

0 λτ , 

implies there exist ( )( ) piuFfv iii ,...,1, =∂∈  and ( )( ) ,j j jw g G u∈∂  

1, ,j m= …  such that  

( ) ( ) ( ) .'

1

'

1

+

==

−∈+∑∑ uCuGwuFv j

T

j

m

j

ji

T

i

p

i

i λτ  

Suppose that u  is not an efficient solution for (VP). Then there exists a 

feasible Cx∈  for (VP) with ( )( ) ( )( ) ,,...,1, piuFfxFf iiii =≤ and 

( )( ) ( )( ) { } .,...,1somefor  , 00000
piuFfxFf iiii ∈<  

Now, by the generalized null space condition, there exists 

( ) ( )uCux −∈,µ , same for each iF  and jG , such that  

( ) ( ) ( ) ( ) ( ) piuxuFuxuFxF iiii ,...,1,,, ' ==− µδ
 

and 

( ) ( ) ( ) ( ) ( ) mjuxuGuxuGxG jjJj ,...,1,,, ' ==− µθ
 

and by −V invexity of if  and jg  there exists ( , ), ( , ) 0ix u x uη α >  

1, ,i p= …  and ( , ) 0, 1, ,j x u j mβ > = …  such that 

( ) ( ) ( )( ) ( ) ( , ) ( , ), ( ) , 1, ,i i i i i i i i if F x f F u x u x u f F u i pα ξη ξ− − ∀ ∈∂ = …  

and  

( ) ( )
( )

( ) ( ) ( , ) ( , ),

( ) , 1, , .

j j j j j j

j j j

g G x g G u x u x u

g G u j m

β ς η

ς

− −

∀ ∈∂ = …
 

Hence 



( ) ( ) ( )( ) ( )( )( )uGgxGg
uxux

jjjj

m

j jj

j −≥∑
=1 ,,

0
θβ
λ

   

 (by feasibility) 

( ) ( ) ( ) ( )( ) ( )( )uGguGxGux
ux

jjjjj

m

j

j

j

j ∂∈∀−≥∑
=

ςης
θ

λ
,,

,1

 

(by subdifferentiability) 

( ) ( ) ( ) ,,, '

1

uxuGux j

m

j

jj µηςλ∑
=

=   (by (GNC)) 

( ) ( ) ( ) ,,, '

1

uxuFux i

p

i

ii µηξτ∑
=

−≥   (by hypothesis) 

( ) ( ) ( )( ) ( )( )( )uFfxFf
uxux

iiii

p

i ii

i −≥∑
=1 ,, δα

τ

 
(by subdifferentiability)

 .0>  

This is a contradiction and u  is an efficient solution for (VP). 

 

Theorem 5.3.2: For the problem (VP), assume that ( ) ( )( )⋅⋅ pp ff ττ ,...,11  

is −V pseudo-invex and ( ) ( )( )⋅⋅ mm gg λλ ,...,11  is −V quasi-invex and iF  

and jG  are locally Lipschitz and Gateaux differentiable functions. Let u  

be feasible for (VP). Suppose that the optimality conditions (KT) hold at 

u . If the generalized null space condition (GNC) hold at each feasible 

point x  for (VP) then u  is an efficient solution for (VP). 

Proof: As in the proof of above theorem, we have 

( ) ( )( ) ( ) ( )( ) .,,
11

uFfuxxFfux iii

p

i

iiii

p

i

i τατα ∑∑
==

≤  

Now by −V pseudo-invexity of ( ) ( )( )⋅⋅ pp ff ττ ,...,11  and the general-

ized null space condition (GNC), we get 

( ) ( ) ( ) ( )( ) ,,0,, '

1

uFfuxuFux iiiii

p

i

i ∂∈∀≤∑
=

ξµηξτ  

with at least one strict inequality. 

So by hypothesis, we have 

( ) ( ) ( ) ( )( ) .,0,, '

1

uGguxuGux jjjjj

m

j

j ∂∈∀>∑
=

ςµηςλ  
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Then by −V quasi-invexity of ( ) ( )( )⋅⋅ mm gg λλ ,...,11  and the general-

ized null space condition, we get 

( )( ) ( )( ) .
11

uGgxGg jj

m

j

jjj

m

j

j ∑∑
==

> λλ  

This is a contradiction, since  

( )( ) ( )( ) .0,0 =≤ uGgxGg jjjjjj λλ
 

 

Theorem 5.3.3: If u  is an optimal solution of  

(VPτ)  ( )( )xFf ii

p

i

i∑
=1

Minimize τ  

subject to  ( ),  ( ) 0, 1, , ,j j jx c g G x j mλ∈ ≤ = …  

then u  is conditionally properly efficient solution for (VP). 

Proof: Obviously u  is efficient. Choose a function ( )xM  such that 

( ) ( ) ( )
( ) .max1

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

x

x
pxM

i

j

ji τ
τ

 

Suppose u  is not conditionally properly efficient. Then for some i  and 

j , ( )( ) ( )( ) ( ) ( )( ) ( )( )( ).xFfuFfxMuFfxFf jjjjiiii −>−  

That is, 

( )( ) ( )( ) ( ) ( )
( ) ( )( ) ( )( )( )xFfuFf
x

x
puFfxFf jjjj

i

j

ji
iiii −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−>−

τ
τ

,
max1  

( ) ( )
( ) ( )( ) ( )( )( )xFfuFf
x

x
p jjjj

i

j −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−>

τ
τ

1 . 

Thus, 

( ) ( )( ) ( )( )( ) ( )( ) ( )( )( ).
1

xFfuFfuFfxFf
p

jjjjjiiii

i −>−
−

τ
τ

 

Summing over ,ij ≠  

( )( ) ( )( )( ) ( )( ) ( )( )( ).xFfuFfuFfxFf jjjj

ij

jiiiii −>− ∑
≠

ττ  

That is, 

( )( ) ( )( ) ( )( ) ( )( ) ,uFfuFfxFfxFf jj

ij

jiiijj

ij

jiii ∑∑
≠≠

+>+ ττττ  

which, since ,,...,1,0 pii =>τ  contradicts the optimality of u . 

Hence u  is conditionally properly efficient. 



Theorem 5.3.4: Assume that the conditions on (VP) in Theorem 5.3.1 

hold. Let u  be feasible for (VP). Suppose that the optimality conditions 

(KT) hold at u . If the generalized null space condition (GNC) holds with 

( ) ( ) ,,,1,, jiuxux ji ∀== θδ  for each feasible x  of (VP), then u  is 

a conditionally properly efficient solution for (VP). 

Proof: Let x  be feasible for (VP). Then x  is also feasible for the scalar 

problem (VPτ). From the −V invexity property of pif i ,...,1, = , we get 

( )( ) ( )( )uFfxFf ii

p

i

iii

p

i

i ∑∑
==

−
11

ττ  

( ) ( ) ( ) ( )( ) ( )( ) .,,,
1

uFfuFxFuxux iiiiiii

p

i

i ∂∈∀−≥∑
=

ξηξατ  

Now, by the Generalized null space condition, we get 

( )( ) ( )( )uFfxFf ii

p

i

iii

p

i

i ∑∑
==

−
11

ττ  

( ) ( ) ( ) ( )( ) ( )( ) .,,,
1

uFfuFxFuxux iiiiiii

p

i

i ∂∈∀−≥∑
=

ξηξατ  

( ) ( ) ( ) ( )uxuFuxux iii

p

i

i ,,, '

1

µηξατ∑
=

=  

( ) ( ) ( ) ( )uxuGuxux jjj

m

j

j ,,, '

1

µηςβλ∑
=

−≥  

( )( ) ( )( )uGgxGg jj

m

j

jjj

m

j

j ∑∑
==

+−≥
11

λλ  

,0≥  

and so u  is minimum for the scalar problem (VPτ). Since 0 ,pRτ ≠ ∈  

0τ > , it follows from Theorem 5.3.3, that u  is a conditionally properly 

efficient solution for (VP). 

The following numerical example provides a nonsmooth composite 

problem for which our sufficiency Theorem 5.3.1 is satisfied. 

 

Example 5.3.1: Consider the multiobjective problem 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

+
−

−
21

21

21

21 2
,

2
Minimize

xx

xx

xx

xx
V  

subject to   1 2 1 20,1 0,1 0x x x x− ≤ − ≤ − ≤  
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Let ( ) ,
2

21

21
1

xx

xx
xF

+
−

= ( )
21

21
2

2

xx

xx
xF

+
+

=
1 1 2, ( ) ,G x x x= − ( ) 12 1 xxG −= ,

( ) ,1 23 xxG −= ( ) ,1 yyf = ( ) yyf =2 , ( ) ( ) ( ) ,321 yygygyg ===

( ) ,2,1,1, == iuxiα ( ) ( ) 3,2,1,
3

1
, 21 =+= jxxuxjβ

 
and 

( ) ( ) ( )
.

23
,

13
,

21

2

21

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+
−

=
xx

x

xx

x
uxη   

Then the problem becomes a nonconvex composite problem with an ef-

ficient solution ( )2,1 . It is easy to see that the null space condition holds 

at each feasible point of the problem. The optimality conditions (KT) also 

hold with 

,3,1,2,1,1 21 ==== ττξ ii .3,2,1,0,1 === jjj λς  

We shall now give some classes of nonlinear problems which satisfy our 

sufficient conditions. 

 

Example 5.3.2. ( −η Pseudolinear programming problem): Consider 

the multiobjective −η pseudolinear programming problem 

(GPLP) ( ) ( )( )xlxlV p,...,Minimize 1−  

subject to ( ) ,,...,1,0, mjbxhRx jj

n =≤−∈  

where RRl n

i →:  and RRh n

j →:  are differentiable and  −η pseu-

dolinear i.e., pseudo-invex and pseudo-incave (Kaul, Suneja and Lalitha 

(1993)), and Rb j ∈ , .,...,1 mj =  It should be noted that a real-valued 

function RRh n →:  is −η pseudolinear if and only if  for each 

,, nRux ∈  there exists a real constant ( ) 0, >uxα  and 

RRR nn →×:η  such that 

( ) ( ) ( ) ( ) ( ).,, ' uxxhuxxhuh ηα+=  

For further details about pseudolinear and −η pseudolinear functions 

and programs see, e.g., Chew and Choo (1984), Rueda (1989), Rapesak 

(1991), Komlosi (1993), Kaul, Suneja and Lalitha (1993), Mishra and 

Mukherjee (1996b), Mishra (1995c) and Mishra, Wang and Lai (2006-

2007). 



Define 
mpn

ji RRGF +→:,  by ( ) (0,0, , ( ),0, ,0),i iF x l x= … …  

1, ,i p= …
 
and ( ) ( )( ) .,...,1,0,...,0,,...,0,0 mjbxhxG jjj =−=  

Define RRgf mp

ji →+:,  by ( ) ,,...,1, pixxf ii ==
 

( ) ,j p jg x x +=
 

1, ,j m= … , Then, we can rewrite (GPLP) as the following nonconvex 

composite multiobjective problem: 

( )( ) ( )( )( )xFfxFfV pp,...,Minimize 11−  

subject to ( )( ) .,...,1,0, mjxGgRx jj

n =≤∈  

Now, our generalized null space condition is verified at each feasible 

point by the −η pseudolinearity property of the functions involved. It fol-

lows from our sufficiency results that if the optimality conditions 

( ) ( ) ( )( ) ,0,0
1

''

1

=−=+∑∑
==

jjj

m

j

jji

p

i

i bugugul λλτ  hold with 0,iτ >  

1, ,i p= …  and mjj ,...,1,0 =≥λ  at the feasible point 
nRu∈  of 

(GPLP) then u  is an efficient solution for (GPLP). 

We now see that the sufficient optimality conditions given in Theorem 

5.3.1 holds for a class of nonconvex composite −η pseudolinear pro-

gramming problem. 

 

Example 5.3.3: Consider the problem 

( )( )( ) ( )( )( )( )xhfxhfV p ψψ DD ,...,Minimize 1−  

subject to ( )( )( ) ,,...,1,0, mjxhgXx j =≤∈ ψD  

where ( )nhhh ,...,1=  is a −η pseudolinear vector function from X  to 

nR , ψ  is a Frechet differentiable mapping from X  onto itself such that 

( )u'ψ  is surjective for each Xu∈ , and ji gf ,  are −V invex. For this 

class of nonconvex problems, the generalized null space condition holds. 

To see this, let 
nRux ∈, , ( )xy ψ=  and ( )uz ψ= . Then, by the 

−η pseudolinearity, we get 

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ).,, ' zyzhzyzhyhuhxh iiiiii ηαψψ =−=−  

Since ( )u'ψ  is onto, ( ) ( ) ( )uxuzy ,, ' ξψη =  is solvable for some 

( ) ., nRuxG ∈  Hence, 
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( ) ( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) , ( , )

ˆ                              , ( , )

i i i i i

i i

h x h u y z h z w G x u

x u h U G x u

ψ ψ α ψ

α ψ

′ ′− =

′= D
 

where ( ) ( ) ( )( ) ;0,,ˆ >= uxux ii ψψαα thus (GNC) holds. 

We finish this Section by observing that any finite dimensional noncon-

vex programming problem can also be rephrased as a composite problem 

(VP) and it clearly satisfies the generalized null space condition. 

5.4 Subgradient Duality for Composite Multiobjective 
Programs 

For the composite multiobjective programming problem (VP) considered 

in Section 5.1 above, we have the following Mond-Weir type dual: 

(VD) ( )( ) ( )( )( )uFfuFfV pp,...,Maximize 11−  

subject to 

                  

( )( ) ( ) ( )( ) ( ) ( )+
==

−−∂+∂∈ ∑∑ uCuGuGguFuFf jjj

m

j

jiii

p

i

i

'

1

'

1

0 λτ  

( )( ) ,,...,1,0 mjuGg jjj =≥λ  

.0,,0,, ≥∈>∈∈ j

m

i

p RRCu λλττ  

The following Theorems 5.4.1-5.4.5 are from Mishra and Mukherjee 

(1995): 

 

Theorem 5.4.1 (Weak Duality): Let x  be feasible for (VP) and let 

( )λτ ,,u  be feasible for (VP). Assume that the generalized null space 

condition (GNC) holds. If ( )pff ,...,1  and ( )mgg ,...,1  are −V invex and 

piFi ,...,1, =  and mjG j ,...,1, =  are locally Lipschitz and Gateaux 

differentiable functions. Then,  

( )( ) ( )( )( ) ( )( ) ( )( )( ) { } .0\,...,,..., 1111

pT

pp

T

pp RuFfuFfxFfxFf +−∉−  

Proof: Since ( )λτ ,,u  is feasible for (VD), there exist  

( )( ) ,,...,1,,0,0 piuFfv iii =∂∈≥> λτ
( )( ) ,,...,1, mjuGgw jjj =∂∈   

satisfying ( )( ) ,,...,1,0 mjuGg jjj =≥λ  and 
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( ) ( ) ( ) .'

1

'

1

+

==

−∈+∑∑ uCuGwuFv j

T

j

m

j

ji

T

i

p

i

i λτ  

Suppose that ux ≠  and 

( )( ) ( )( )( ) ( )( ) ( )( )( ) { } .0\,...,,..., 1111

pT

pp

T

pp RuFfuFfxFfxFf +−∈−  

Then ( ) ( ) ( )( ) ( )( )( ) ,0
,,1

<−∑
=

p

i

iiii

ii

i uFfxFf
uxux δα

τ
 

Since ( ) ( ) .0
,,

>
uxux ii

i

δα
τ

 

Now, by the −V invexity of if  and by the generalized null space con-

dition (GNC), we get ( ) ( ) ( ) .0,, '

1

<∑
=

uxuFux ii

p

i

i µηξτ  

From the feasibility conditions, we get ( )( ) ( )( ),uGgxGg jjjjjj λλ ≤  

and so ( ) ( ) ( )( ) ( )( )( ) .0
,,1

≤−∑
=

m

j

jjjj

jj

j
uGgxGg

uxux θβ
λ

 

By −V invexity of jg , ( ) 0, >uxjβ , ( ) 0, >uxjθ  and the general-

ized null space condition (GNC), we get 

( ) ( ) ( ) ( )( ).,0,,
1

' uGguxuGux jjj

m

j

jjj ∂∈∀≤∑
=

ςµηςλ  

Hence ( ) ( ) ( ) ( ) .0,,
1

''

1

<⎥
⎦

⎤
⎢
⎣

⎡
+∑∑

==

uxuxuGuF
m

j

jjjii

p

i

i ηµςλξτ  

This is a contradiction. The proof is complete by noticing that when 

ux =  the conclusion trivially holds. 

 

Theorem 5.4.2 (Weak Duality): Let x  be feasible for (VP) and let 

( )λτ ,,u  be feasible for (VP). Assume that the generalized null space 

condition (GNC) holds. If ( )pp ff ττ ,...,11  is −V pseudo-invex and 

( )mm gg λλ ,...,11  is −V quasi-invex and piFi ,...,1, =  and 

mjG j ,...,1, =  are locally Lipschitz and Gateaux differentiable func-

tions. Then,  

( )( ) ( )( )( ) ( )( ) ( )( )( ) { } .0\,...,,..., 1111

pT

pp

T

pp RuFfuFfxFfxFf +−∉−  

Proof: From the feasibility conditions, we get 
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( ) ( ) ( )( ) ( )( )( ) .0
,,1

≤−∑
=

m

j

jjjj

jj

j
uGgxGg

uxux θβ
λ

 

Then by −V quasi-invexity of  ( )mm gg λλ ,...,11  and the generalized 

null space condition, we have 

( ) ( ) ( ) ( )( ).,0,,
1

' uGguxuGux jjj

m

j

jjj ∂∈∀≤∑
=

ςµηςλ  

Hence by the hypothesis, we have ( ) ( ) ( ) .0,, '

1

≥∑
=

uxuFux ii

p

i

i µηξτ  

The conclusion now follows from the −V pseudo-invexity of 

( )
pp ff ττ ,...,11 . 

 

The following two theorems can be proved as Theorem 2 and Theorem 

3 of Singh and Hanson (1991). 

Theorem 5.4.3: If u  is optimal for (VPτ), then there exists ν  such that 

( )ν,u  is optimal for (VDτ). 

Theorem 5.4.4: If u  is optimal for (VPτ), then u  is conditionally prop-

erly efficient for (VP), and there exists ν  such that ( )ν,u  is conditionally 

properly efficient for (VD). 

 

Theorem 5.4.5 (Strong Duality): For the problem (VP), assume that 

the generalized Slater constraint qualification in Section 2 holds and that 

the generalized null space condition (GNC) is verified at each feasible 

point of (VP) and (VD). If u  is conditionally properly efficient solution 

for (VP), then there exists 0,,0, ≥∈>∈ j

m

i

p RR λλττ such that 

( )λτ ,,u  is a conditionally properly efficient solution for (VD) and the 

objective values at these points are equal. 

Proof: It follows from Theorem 5.2.1 that there exist , 0,p

iRτ τ∈ >  

, 0,m

jRλ λ∈ ≥  such that 

( )( ) ( ) ( )( ) ( ) ( )+
==

−−∂+∂∈ ∑∑ uCuGuGguFuFf jjj

m

j

jiii

p

i

i

'

1

'

1

0 λτ  

( )( ) .,...,1,0 mjuGg jjj =≥λ  

Then ( )λτ ,,u  is a feasible solution for (VD). From the weak duality 

theorem, the point ( )λτ ,,u  is an efficient solution for (VD). 



5.4 Subgradient Duality for Composite Multiobjective Programs         103 

We shall now prove that ( )λτ ,,u  is a conditionally properly efficient 

solution for (VD). Suppose that ( )λτ ,,u  is not conditionally properly ef-

ficient solution for (VD). Then there exists ( )*** ,, λτu  feasible for (VD) 

such that 

( )( ) ( )( ) ( ) ( )( ) ( )( )( ),** uFfuFfuMuFfuFf jjjjiiii −>−  

for any ( ) 0>uM  and all j  satisfying ( )( ) ( )( ).*uFfuFf jjjj >   

Let ( )( ) ( )( ){ },: *uFfuFfIjA jjjj >∈=  where { }.,...,1 pI =
 

Let {}.\ iAIB ∪=  Choose ( ) 0>uM  such that 
( )

., Aj
A

uM

i

j ∈>
τ
τ

 

Notice that L  denotes the number of element in the set L . Then 

( )( ) ( )( )( ) ( )( ) ( )( )( ),** ∑
∈

−>−
Aj

jjjjjiiiii uFfuFfuFfuFf ττ  

Since ( )( ) ( )( ) .,0* AjuFfuFf iiii ∈∀>−  Therefore, 

( )( ) ( )( ) ( )( ) ( )( )∑∑∑
∈∈=

++=
Bj

jjj

Aj

jjjiiiii

p

i

i uFfuFfuFfuFf ττττ
1

 

( )( ) ( )( ) ( )( )∑∑
∈∈

++<
Bj

jjj

Aj

jjjiii uFfuFfuFf *** τττ  

( )( )*

1

uFf ii

p

i

i∑
=

= τ . 

This contradicts the weak duality property. Hence ( )λτ ,,u  is a condi-

tionally properly efficient solution for (VD). 

In the following Theorem it is assumed that if , jg  are −V invex and 

the generalized null space condition (GNC) holds with  

( ) ( ) .,,1,, jiuxux ji ∀== θδ
 

 

Theorem 5.4.6: If  ( )ν,u  is optimal for (VDτ) and a dual constraint 

qualification holds, then u  is optimal for (VPτ). 

Proof: Since ( )ν,u  is optimal for the dual problem and a constraint 

qualification holds at ( )ν,u  then ( )ν,u  satisfies the Kuhn-Tucker condi-

tions: 
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( )( ) ( ) ( )( ) ( ) ( )+
==

−−∂+∂∈ ∑∑ uCuGuGguFuFf jjj

m

j

jiii

p

i

i

'

1

'

1

0 λτ  

( )( ) ,,...,1,0 mjuGg jjj =≥λ  

.0≥jλ  

For any Xx∈ , 

( )
1

( ( )) ( ( ))
p

i i i i i

i

f F x f F uτ
=

−∑  

( ) ( )
1

( , ) ( ) ( ) , ( )
p

i i i i i i i i

i

x u F x F u f F uτ α ξ ξ
=

≥ − ∀ ∈∂∑  

( ) ( ) ( ) ( )uxuFuxux iii

p

i

i ,,, '

1

µηξατ∑
=

=  

( ) ( ) ( ) ( )uxuGuxux jjj

m

j

j ,,, '

1

µηςβλ∑
=

−≥  

( )( ) ( )( )uGgxGg jj

m

j

jjj

m

j

j ∑∑
==

+−≥
11

λλ  

.0≥  

Therefore, u  is an optimal solution for (VDτ). 

 

The proof of the following Theorem 5.4.7 follows from Theorem 5.4.3 

and Theorem 5.4.6. 

Theorem 5.4.7: If ( )ν,u  is optimal for (VDτ) and a constraint qualifi-

cation holds at ( )ν,u , then ( )ν,u  is conditionally properly efficient solu-

tion for (VD) and u  is conditionally properly efficient for (VP). 

5.5 Lagrange Multipliers and Saddle Point Analysis 

The Lagrange multipliers of multiobjective programming problem and the 

saddle points of its vector-valued Lagrangian function have been studied 

by many authors e.g., Corley (1987), Craven (1978, 1990), Henig (1982), 

Jahn (1985), Sawaragi, Nakayama and Tanino (1985), Tanaka (1988, 

1990), Vogel (1974), Wang (1984), and Weir,Mond and Craven (1986, 

1987). However, in most of the studies an assumption of convexity on the 

problems was made. 
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In this Section, we extend the relevant results using −V invex functions 

and its generalizations. As a consequence of Theorem 5.3.1, a Lagrange 

multipliers theorem is established and vector valued saddle point results 

are also obtained. The results of this Section and that of the next Section 

have appeared in Mishra (1996). 

 

Theorem 5.5.1: If Theorem 5.3.1 holds, then equivalent multiobjective 

composite problem (EVP) for (VP) 9s given by (EVP) 

( )( ) ( )( ) ( )( ) ( )( )( )xGgxFfxGgxFfV T

pp

T

Cx
λλ ++−

∈
,...,Minimize 11  

subject to   ( )( ) mjxGg jjj ,...,1,0 ==λ  

.,...,1,0 mjj =≥λ  

Proof: Let 
0x  be a Pareto optimum for (VP), from the optimality condi-

tions (KT), we have 

( )( ) ( ) ( )( ) ( ) ( )+
==

−−∂+∂∈ ∑∑ uCuGuGguFuFf jjj

m

j

jiii

p

i

i

'

1

'

1

0 λτ  

( )( ) .,...,1,0 mjuGg jjj ==λ  

Therefore, we have 

( ) ( ){ }
( )

1

1

0 ( ) ( ) ( )

( ) ( ) ( )

p
T

i i i i

i

m

j j j j

j

f F u F u g G u

g G u G u C u

τ λ

λ

=

+

=

′∈ ∂ +

′+ ∂ − −

∑

∑
 

Now applying the arguments of Theorem 5.3.1 by replacing ( )( )xFf ii  

by ( )( ) ( )( )xGgxFf T

ii λ+  yields the result. 

 

Theorem 5.5.1: suggests the vector valued Lagrangian function 

( )λ,xL  as 
pm RRCL →× +:  given by 

( ) ( ) ( )( ),,,...,,, 1 λλλ xLxLxL p=  

where ( ) ( )( ) ( )( ) .,...,1,, pixGgxFfxL T

iii =+= λλ
 

 

Definition 5.5.1: A point ( ) mRCx +×∈00 , λ  is said to be a vector sad-

dle point of the vector valued Lagrangian function ( )λ,xL  if it satisfies 

the following conditions 
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and  

( ) ( ) .,,, 000 CxxLxL ∈∀≥/ λλ
 (5.2)

 

Theorem 5.5.2: If  ( )00 , λx  is a vector saddle point of ( )λ,xL , then 

0x  is a conditionally properly efficient solution for (VP). 

Proof: Since ( )00 , λx  is a vector saddle point of ( )λ,xL , therefore, 

we have ( ) ( ) m

ii RixLxL +∈∀≤ λλλ andoneatleast  for  ,,, 000
 

( )( ) ( )( ) ( )( ) ( )( )00000 xGgxFfxGgxFf
T

ii

T

ii λλ +≤+⇒ , 

mRi +∈∀ λandoneatleast  for   

( ) ( )( ) .,000 mT
RxGg +∈∀≤−⇒ λλλ  

This gives ( )( ) .00 ≤xGg   

First we show that 
0x  is an efficient solution for (VP). Since 

0x  is fea-

sible for (VP), we have ( )( ) .000 ≤xGg
T

λ  But, by setting ,0=λ  then 

from ( ) ( )( ) ,000 ≤− xGg
T

λλ we get ( )( ) .000 ≥xGg
T

λ Thus 

( )( ) .000 =xGg
T

λ  

Assume contrary, i.e., 
0x  is not an efficient solution for (VP). There-

fore, there exists an Cx∈  with ( )( ) 0≤xGg  such that 

( )( ) ( )( ) CxpixFfxFf iiii ∈∀=∀≤ and,...,1,0
 

and  

( )( ) ( )( )0xFfxFf kkkk < , .andoneatleast  for  0 mRk +∈∀ λ  

These along with ( )( ) 000 =xGg
T

λ yields 

( ) ( ) ( ) ( )0 0 0 0 0( ) ( ) ( ) ( ) 0,

                       1, ,  and 

T T

i i i if F x g G x f F x g G x

i p x C

λ λ+ ≤ + =

∀ = ∀ ∈…

 

and  

( )( ) ( )( ) ( )( ) ( )( )00000 xGgxFfxGgxFf
T

kk

T

kk λλ +<+ , 

for at least one 
0 and .mk Rλ +∀ ∈  

That is, 

( ) ( ) mRxLxL +∈∀≥/ λλλ ,,, 000

 (5.1)
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( ) ( )

,,, 000 λλ xLxL kk <  ,andoneatleast  for  0 mRk +∈∀ λ  

0
is an efficient solution for (VP). 

We now suppose that 
0x  is not a conditionally properly efficient solu-

tion for (VP). Therefore, there exists a feasible point x  for (VP) and an 

index i  such that for every positive function ( ) ,00 >xM  we have 

( )( ) ( )( )
( )( ) ( )( ) ( ),0

0

0

xM
xFfxFf

xFfxFf

jjjj

iiii >
−
−

 

for all j
 
satisfying ( )( ) ( )( ),0 xFfxFf jjjj <

 
whenever  

( )( ) ( )( ).0 xFfxFf iiii >
 

This along with ( )( ) 000 =xGg
T

λ  and ( )( ) 00 ≤xGg
T

λ  yields 

( ) ( ) ( ) ( )0 0 0 0( ) ( ) ( ) ( ) ,

                     1, ,  and 

T T

i i i if F x g G x f F x g G x

i p x C

λ λ+ < +

∀ = ∀ ∈…

 

which is a contradiction to (5.2). Hence 
0x  is a conditionally properly ef-

ficient solution for (VP). 

 

Theorem 5.5.3: Let 
0x  be a conditionally properly efficient solution for 

(VP) and let at 
0x  Slater type constraint qualification be satisfied. If 

( )
pff ,...,1  and ( )

pgg −− ,...,1  are −V  invex on the set C  and 

piFi ,...,1, =  and mjG j ,...,1, =  are locally Lipschitz and Gateaux 

differentiable functions. Then there exists 
mR+∈0λ  such that ( )00 , λx  is a 

vector saddle point of ( )., λxL  

Proof: Since 
0x  is a conditionally properly efficient solution for (VP), 

therefore, 
0x  is also an efficient solution for (VP) and since at 

0x  Slater 

type constraint qualification is satisfied, therefore, by Theorem 5.3.1, there 

exist 
pR∈0τ  with 00 >τ  and 

mR+∈0λ  such that the following hold: 

( )( ) ( ) ( )( ) ( ) ( ) ,0 00'0

1

00'0

1

+

==

−−∂+∂∈ ∑∑ xCxGxGgxFxFf jjj

m

j

jiii

p

i

i λτ (5.3)

( ) .,...,1,000 mjxGg jjj ==λ
 (5.4)

( ) ( ) ,and,...,1,,, 000 CxpixLxL ii ∈∀=∀≤ λλ  

and  

which is a contradiction to (5.2). Hence x
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( ) ( ) ,0
1

00'00'

1

=++∑∑
==

m

j

jjjii

p

i

i zxGxF ςλξτ
 

(5.5)

for some ( )( )0xFf iii ∂∈ξ , pi ,...,1=  and ( )0( ) ,j j jg G xς ∈∂  

1, ,j m= …  and ( ) .00 +
−∈ xCz  

Using the −V invexity assumption of the functions, we obtain 

( ) ( )0 0 0 0 0( ) ( ) ( , ) ( , ) ( ) ( , ),

                     1, ,  and 

i i i i i i if F x f F x x x x x F x x x

i p x C

α ξη µ′− ≥

∀ = ∀ ∈…

 

and  

( ) ( )0 0 0 0 0( ) ( ) ( , ) ( , ) ( ) ( , ),k k k k k k kf F x f F x x x x x F x x xα ξ η µ′− ≥  

for at least one  and .k x C∀ ∈  Since ( ) ,,...,1,0, 0 pixxi =∀>α  

we get 

( ) ( )0 0 0 0( ) ( ) ( , ) ( ) ( , ),

                     1, ,  and 

i i i i i if F x f F x x x F x x x

i p x C

ξη µ′− ≥

∀ = ∀ ∈…

 
(5.6)

and 

( ) ( )0 0 0 0( ) ( ) ( , ) ( ) ( , ),k k k k k kf F x f F x x x F x x xξ η µ′− ≥  

for at least one  and .k x C∀ ∈  

(5.7)

Now for all pi ,...,1= , Cx∈∀ , we have 

0 0 0( , ) ( , )i iL x L xλ λ−  

( ) ( ) ( ) ( )0 0 0( ) ( ) ( ) ( )
T

i i i if F x f F x g G x g G xλ ⎡ ⎤= − + −⎣ ⎦  

( ) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−−≥

+

=
∑ 00'

1

000 ,, xCxGxxxx jj

m

j

jςλµη  

0≥  (because mjg j ,...,1, =  are −V invex and ( )+−∈ 00 xCz ). 

Since ,,...,1,0, piR i

p =>∈ ττ therefore, 

( ) ( ) .,,, 000 CxxLxL ii ∈∀≥/ λλ  

The other part 

( ) ( ) m

ii RxLxL +∈∀≥/ λλλ ,,, 000
 of the vector saddle point ine-

quality follows from 

( ) ( ) ( ) ( )( ) .0,, 00000 ≤−=− xGgxLxL
T

λλλλ  

These yields 
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Remark 5.5.1: Theorem 5.5.3 can be established under weaker −V in-

vexity assumptions, namely, ( )pp ff ττ ,...,11  and ( )pp gg ττ −− ,...,11  are 

−V pseudo-invex and ( )mmhh λλ ,...,11  is −V quasi-invex. 

5.6 Scalarizations in Composite Multiobjective 
Programming 

In this Section, we present a scalarization result for nonconvex composite 

problems. As an application of the scalarization result we also characterize 

the set of conditionally properly efficient solutions in terms of subgradi-

ents (Rockafellar (1969)) for −V invex problems. These conditions do not 

depend on a particular conditionally properly efficient solution, and differ 

from the conditions presented in Mishra and Mukherjee (1995a). 

For the multiobjective composite problem 

(VP)            ( )( ) ( )( )( )xFfxFfV pp,...,Minimize 11−  

subject to   ( )( ) ,,...,1,0, mjxGgCx jj =≤∈  

The associated scalar problem  

(VPτ)                   ( )( )xFf ii

p

i

i∑
=1

Minimize τ  

subject to   ( ),  ( ) 0,  1, , ,j j jx C g G x j mλ∈ ≤ = …  

where .0, ≠∈ ττ pR  The feasible set Ω  for (VP) is given by 

( )( ){ }.,...,1,0: mjxGgCx jj =≤∈=Ω  

The set of all conditionally properly efficient solutions for (VP) is de-

noted by CPE. For each ,pR∈τ the solution set τS  of the scalar prob-

lem (VPτ) is given by  

( )( ) ( )( ) .min:
11 ⎭

⎬
⎫

⎩
⎨
⎧

=Ω∈= ∑∑
=

Ω∈
=

yFfxFfxS ii

p

i

i
y

ii

p

i

i τττ

 
 

The following Theorem establish a scalarization result for (VP) corre-

sponding to a conditionally properly efficient solution. 

Hence ( )00 , λx  is a vector saddle point of ( ) ., λxL
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( )
( ) ( )

{ : , ( ) ,

( ) ( ) , }

i p i

i i i

j

i i j j i

z R x C f F x z

f F x f F x z j i

α

α

Γ = ∈ ∃ ∈ <

+ < ≠  

is convex. Then, 

1

0, 1

CPE
p

i i

i

Sτ

τ τ
=

> =

=

∑
∪  

Proof: Let CPE∈u . Then, there exists a positive function ( ) 0>uM  

such that, for each pi ,...,1= , the system ( )( ) ( )( ),uFfxFf iiii <  

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ,, ijuFfuMuFfxFfuMxFf jjiijjii ≠∀+<+  

is inconsistent. 

Thus, 

( ) ( )
( ) ( )
( ) ( )

( )

: , ( ) ( ) ,

0 ( )              ( ) ( ) ( ) .

             ( ) ( ) ( ) ,

p i

i i i i i

i

M u i i j j

i

i i j j i

z R x C f F x f F u z

u f F x M u f F x

f F x M u f F u z j i

⎧ ⎫∈ ∃ ∈ < +
⎪ ⎪⎪ ⎪∉Γ = + <⎨ ⎬
⎪ ⎪

+ + ≠⎪ ⎪⎩ ⎭

 

From the assumption, ( )( )ui

uMΓ  is convex, now on the lines of the proof 

of Theorem 5.1 of Jeyakumar and Yang (1993), we can show that there ex-

ists ∑
=

=>∈
p

i

ii

pR
1

1,0, τττ such that ;τSu∈  thus, 

.CPE

1

1,0

τ

ττ

S
p

i

ii ∑
=

=

=>

∪  

The converse inclusion follows as in the proof of Theorem 5.1 of Jeyaku-

mar and Yang (1993) without any convexity conditions on the functions 

involved. 

 

Using the above scalarization Theorem 5.6.1 and a result of Mangasar-

ian (1988) we show how the set of conditionally properly efficient solu-

tions for a nonconvex problem can be characterized in terms of subgradi-

ents. This extends the characterization result of Mangasarian (see Theorem 

1(a), Mangasarian (1988)) and that of Jeyakumar and Yang ( see Corollary 

5.1, Jeyakumar and Yang (1993)) for a scalar problem to multiobjective 

nonconvex problems. In the following, we assume that the functions 

piFi .,..,1, =  and mjG j .,..,1, =  in problem (VP) are linear func-

Theorem 5.6.1: For the multiobjective problem (VP), assume that, for 

each pi ,...,1= and 0>α  the set 
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(NCP)  ( )( ) ( )( )( )xAfxAfV pp,...,  Minimize 11−  

subject to   ( ),  ( ) 0,  1, , ,j jx C g B x j m∈ ≤ = …  

where : ,n m

iA R R→  1, ,i p= …  and : ,n m

jB R R→  1, ,j m= …  are 

continuous linear mappings, : ,n

if R R→  1, ,i p= …  and : ,n

jg R R→  

1, ,j m= …  are convex functions on 
mR . Note that the feasible set 

( )( ){ }mjxBgCx jj ,...,1,0: =≤∈=Ω  

is now aconvex subset of 
nR . 

The nonconvex scalar problem for (NCP) is given by  

(NCPτ)                ( )( )xAf ii

p

i

i   Minimize
1

∑
=

τ  

subject to   ( ),  ( ) 0,  1, , ,j jx C g B x j m∈ ≤ = …  

Let the convex solution set of (NCPτ) be ., pRCS ∈ττ  
 

Corollary 5.6.1: Consider the nonconvex problem (NCP). Suppose that 

for each ∑
=

=>∈
p

i

ii

pR
1

1,0, τττ , the relative interior of ,τCS
 

( )( ),ri τCS  is non-empty. Let ( ) .ri ττ CSz ∈  Then  

( )( ) ( ) .0,:CPE
11,0

1

⎭
⎬
⎫

⎩
⎨
⎧

=−∂∈∃Ω∈
∑

= ∑
==>

=

λ

ττ

τ zxAuxAfux i

T

i

p

i

iiii
p

i

ii

∪  

Proof: Proof of this Corollary follows the lines of the proof  of Corol-

lary 5.1 of Jeyakumar and Yang (1993). 

tions from 
nR  and 

mR , respectively. Thus, we consider the composite 

nonconvex problem 





Chapter 6: Continuous-time Programming 

6.1 Introduction 

The optimization problems in the previous Chapters have all been finite 

dimensional and functions have been defined on 
nR  and the number of 

constraints has been finite. However, a great deal of optimization theory is 

concerned with problems involving infinite dimensional normal spaces. 

Two types of problems fitting into this scheme are variational and con-

trol problems. An early result of Friedrichs (1929) for a simple variational 

problem has been presented by Courant and Hilbert (1948). Hanson (1964) 

observed that variational and control problems are continuous analogues of 

finite dimensional nonlinear programs. Since, then the fields of nonlinear 

programming and the calculus of variations have to some extent, merged 

together within optimization theory, enhancing the potential for continued 

research in both. In particular, Mond and Hanson (1967, 1968) gave dual-

ity theorems for variational and control problems using convexity assump-

tions. Chandra, Craven and Husain (1985) established optimality condi-

tions and duality results for a class of continuous programming problems 

with a nondifferentiable term in the integrand of the objective function. 

Mond, Chandra and Husain (1988) extended the concept of invexity to 

continuous functions. Mond and Smart (1988) established duality results 

using invexity assumptions and proved that the necessary conditions for 

optimality in the control problems are also sufficient . Mishra and Mukher-

jee (1994b) obtained various duality results for multiobjective variational 

problems. See also Kim and Kim (2002), Kim and Lee (1998), Kim et al. 

(1998), Kim et al. (2004). 

Mond and Husain (1989) obtained a number of Kuhn-Tucker type suffi-

cient optimality criteria for a class of variational problems under weaker 

invexity assumptions. As an application of these optimality results, various 

Mond-Weir type duality results are proved under a variety of generalized 

invexity assumptions. These results  generalize many well known duality 

results of variational problems and also give a dynamic analogue to certain 

corresponding (static) results relating to duality with generalized invexity 

in mathematical programming.  
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In this Chapter, we extend the concept of −V invexity to continuous 

functions and to continuous functionals and use it to obtain sufficient op-

timality conditions and duality results for different kinds of multiobjective 

variational and control problems. For this purpose the Chapter is divided in 

six sections. In Section 2, we extend the concept of  −V invexity to con-

tinuous functions and discuss some examples. In Section 3, we present a 

number of Kuhn-Tucker type sufficient optimality conditions. In Section 4, 

Mond-Weir type duality results are obtained under a variety of −V invex-

ity assumptions. In Section 5, we have presented multiobjective control 

problems and obtained duality theorems. In last Section, we have consid-

ered a class of nondifferentiable multiobjective variational problems and 

establish duality results mainly for conditionally properly efficient solu-

tions of the problem. 

6.2 −V Invexity for Continuous-time Problems 

Let [ ]baI   ,=  be a real interval and RRRI nn →××:ψ  be a con-

tinuously differentiable function. In order to consider ( ),,, xxt �ψ  where 

nRIx →:  is differentiable with derivative
.

x , we denote the partial de-

rivatives of ψ  by ,tψ  xψ ,  ..., ,
1 ⎥⎦

⎤
⎢⎣
⎡

∂
∂

∂
∂

=
nxx

ψψ
 .  ..., ,

1 ⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

=
nx

xx ���
ψψψ  The 

partial derivatives of the other functions used will be written similarly. Let 

X  denote the space of piecewise smooth functions x  with norm 

,
∞∞

+= Dxxx  where the differential operator D  is given by  

( ) ( )∫+=⇔=
t

a

iiii dssutxDxu , α  

where α  is a given boundary value. Therefore, 
dt

d
D = except at discon-

tinuities. 

Let RXFi →:  defined by ( ) ( ) pidtxxtfxF

b

a

ii ,...,1, ,, == ∫ �  be 

differentiable. The following definitions and examples have appeared in 

Mukherjee and Mishra (1994). 
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Definition 6.2.1 ( −V Invex): A vector function ( )
pFFF ,...,1=  is 

said to be −V invex if there exists differentiable vector function 
nnn RRRI →××:η with ( ) 0,, =xxtη  and { }0\ : +→×× RXXIiβ  

such that for each Xxx ∈,  and for pi ,...,1=  

( ) ( ) ≥− xFxF ii ( ) ( )( ) ( ) ( )( ) ( ) ( )( )[∫
b

a

i

xi txtxttxtxtftxtxt ,,,,,, ηα �
 

( ) ( ) ( ), ( ), ( ) , ( ), ( ) , ( ), ( ) .i

i x

d
t x t x t t x t x t f t x t x t dt

dt
η α ⎤+ ⎥⎦

�  

 

Definition 6.2.2 ( −V Pseudo-Invex):  

A vector function ( )
pFFF ,...,1=  is said to be −V pseudo-invex if 

there exists differentiable vector function 
nnn RRRI →××:η  with 

( ) 0,, =xxtη  and { }0\ : +→×× RXXIiβ  such that for each 

Xxx ∈,  and for pi ,...,1=  

( ) ( ) ( ) ( ) 0   ,,,,,,,, 
1

≥⎥
⎦

⎤
⎢
⎣

⎡
+∫ ∑

=

dtxxtfxxt
dt

d
xxtfxxt

b

a

i

x

i

x

p

i

�� ηη
 

( ) ( )

( ) ( )

1

1

, ( ), ( ) , ( ), ( )

    , ( ), ( ) , ( ), ( )

b p

i i

ia

b p

i i

ia

t x t x t f t x t x t dt

t x t x t f t x t x t dt

β

β

=

=

⎡ ⎤
⇒ ⎢ ⎥

⎣ ⎦
⎡ ⎤

≥ ⎢ ⎥
⎣ ⎦

∑∫

∑∫

�

�
 

Or equivalently; 

( ) ( )

( ) ( )

1

1

, ( ), ( ) , ( ), ( )

, ( ), ( ) , ( ), ( )

b p

i i

ia

b p

i i

ia

t x t x t f t x t x t dt

t x t x t f t x t x t dt

β

β

=

=

⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤

< ⎢ ⎥
⎣ ⎦

∑∫

∑∫

�

�
 

( ) ( ) ( ) ( ) .0   ,,,,,,,, 
1

<⎥
⎦

⎤
⎢
⎣

⎡
+⇒ ∫ ∑

=

dtxxtfxxt
dt

d
xxtfxxt

b

a

i

x

i

x

p

i

�� ηη
 

 

Definition 6.2.3 ( −V Quasi-Invex):  
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A vector function ( )
pFFF ,...,1=  is said to be −V quasi-invex if there 

exists differentiable vector function 
nnn RRRI →××:η  with 

( ) 0,, =xxtη  and { }0\ : +→×× RXXIiβ  such that for each 

Xxx ∈,  and for pi ,...,1=
 

( ) ( )

( ) ( )

1

1

, ( ), ( ) , ( ), ( )

, ( ), ( ) , ( ), ( )

b p

i i

ia

b p

i i

ia

t x t x t f t x t x t dt

t x t x t f t x t x t dt

β

β

=

=

⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤

≤ ⎢ ⎥
⎣ ⎦

∑∫

∑∫

�

�
 

( ) ( ) ( ) ( ) ;0   ,,,,,,,, 
1

≤⎥
⎦

⎤
⎢
⎣

⎡
+⇒ ∫ ∑

=

dtxxtfxxt
dt

d
xxtfxxt

b

a

i

x

i

x

p

i

�� ηη  

Or equivalently; 

( ) ( ) ( ) ( ) 0   ,,,,,,,,
1

>⎥
⎦

⎤
⎢
⎣

⎡
+∫ ∑

=

dtxxtfxxt
dt

d
xxtfxxt

b

a

i

x

i

x

p

i

�� ηη
 

( ) ( )

( ) ( )

1

1

, ( ), ( ) , ( ), ( )

   , ( ), ( ) , ( ), ( )

b p

i i

ia

b p

i i

ia

t x t x t f t x t x t dt

t x t x t f t x t x t dt

β

β

=

=

⎡ ⎤
⇒ ⎢ ⎥

⎣ ⎦
⎡ ⎤

> ⎢ ⎥
⎣ ⎦

∑∫

∑∫

�

�
 

It is to be noted here that, if the function f  is independent of t , Defini-

tions 6.2.1-6.2.3 reduce to the definitions of −V invexity, −V pseudo-

invexity and −V quasi-invexity of Jeyakumar and Mond (1992), respec-

tively and given in Chapter 2. It is apparent that every −V invex function 

is −V pseudo-invex and −V quasi-invex. 

 

The following example shows that −V invexity is wider than that of in-

vexity: 

Example 6.2.1: Consider 

( )
( )

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∫∫∈

b

a

b

a
Rxx

dt
tx

tx
dt

tx

tx

1

2

2

2

1

,
,min

21

 

subject to    ( ) ( ) .01,01 21 ≤−≤− txtx  

Then for  
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( ) ( )
( ) ,,

2

2
1

tx

tu
ux =α  ( ) ( )

( ) ,,
1

1
2

tx

tu
ux =α  ( ) 2,1for,1, == iuxiβ  and 

( ) ( ) ( )., tutxux −=η  We shall show that 

( ) ( )−−∫ uutfxxtf

b

a

i
�� ,,,,

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) .2,1,0  ,,,,,, =≥ idttutxttutxtftutxt i

xi ηα  

Now,  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )( )∫∫∫ −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−−

b

a

b

a

b

a

dtxx
tu

tu

tu

tu

tx

tu
dt

tu

tu
dt

tx

tx
11,

2
212

2

2

1

2

1

2

2

2

2

1

2

2

1  

( )
( ) ( ) ( )( )( )∫∫∫ −−−−−=

b

a

b

a

b

a

dtxx
tx

dtdt
tx

tx
111,2

1
1 21

22

2

1  

( )
( ) ( ) ( )∫∫∫ +−−−−=

b

a

b

a

b

a

dtxx
tx

dtdt
tx

tx
122

1
1 21

22

2

1  

( )
( ) ( ) ( )∫∫∫

⎭
⎬
⎫

⎩
⎨
⎧

−−−−=
b

a

b

a

b

a

dt
txtx

x
dtdt

tx

tx

22

1

2

2

1 1
1

2
1  

( )
( ) ( ) ( )∫

⎭
⎬
⎫

⎩
⎨
⎧

+−=
b

a

dt
txtx

x

tx

tx

22

1

2

2

1 12
 

( )( )
( )∫ ≥

⎭
⎬
⎫

⎩
⎨
⎧ −

=
b

a

dt
tx

tx
.0

1

2

2

1  

 

The following example shows that −V invex functions can be formed 

from certain nonconvex functions. 

Example 6.2.2: Consider the function 
pRXXIh →××:  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫∫

b

a

p

b

a

dttxtxtfdttxtxtftxtxth ��� ,,,...,,,,, 1  

where piRXXIf i ,...,1,: =→××  are strongly pseudo-convex 

functions with real positive functions ( ),,, uxtiα nRXXI →××:ψ  is 

surjective with ( )uut �,,'ψ  onto for each 
nRu∈ . Then the function 
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pRXXIh →××:  is −V invex. To see this, let ,, Xux ∈  

( )xxtv �,,ψ= , ( )uutw �,,ψ= . Then, by strong-pseudo-convexity, we get 

( )( ) ( )( ){ } ( ) ( ){ }dtwfvfdtuutfxxtf

b

a

ii

b

a

ii ∫∫ −=− �� ,,,, ψψ   

( ) ( )( ) ( )dtxxtwvwfwvt

b

a

xii∫ −≥ �,,,, ' ψα

( )( ) ( ) ( ) .,,,, ' dtxxtwfwvwvt
dt

d
xii

b

a

��ψα −+ ∫  

Since ( )uut �,,;ψ  is onto, ( ) ( )uxtuutwv ,,,,' ηψ �=−  is solvable for 

some ( ).,, uxtη  

Hence 

( ) ( ){ } ( )

( )

( , , ) ( , , ) ( , , )

                                                   ( , , ) ( , , )

b b

i i i i x

a a

b

i i x

a

f t x x f t u u dt t v w f dt

d
t v w t v w f dt

dt

ψ ψ α ψ

α η ψ

− ≥

+

∫ ∫

∫

� � D

D
 

Now consider the determination of a piecewise smooth extremal 

( ) ,, btatxx ≤≤=  for the following multiobjective variational prob-

lem: 

(VCP) ( ) ( ) ( )∫ ∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

b

a

b

a

b

a

p dtxxtfdtxxtfdtxxtf ��� ,,,...,,,,, Minnimize     1  

      subject to  

( ) ( ) βα == bxax      ,
 (6.1)

( ) .   ,0    ,, Itxxtg ∈≤�
 (6.2)

where { }, ..., ,1  ,: pPiRRRIf nn

i =∈→×× mnn RRRIg →××:  

are assumed to be continuously differentiable functions. 

Let K be the set of all feasible solutions for (VCP), that is, 

( ) ( ) ( ) ( )( ){ }. 0,   , , , , : IttxtxtgbxaxXxK ∈≤==∈= �βα  

Consider also the determination of nm +  dimensional extremal 

( ) ( ) ( )( ) ,,,, Itttuu ∈= λλ  for the following maximization problem: 
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(VCD)  ( ) ( ) ( )∫ ∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

b

a

b

a

b

a

p dtuutfdtuutfdtuutfMaximizeV ��� ,,,...,,,,, 1  

        subject to  

( ) ( ) ,     , βα == buau
 (6.3)

     

( ) ( )uutguutf j

u

m

j

j

i

u

p

i

i
�� ,,,,

11

∑∑
==

+ λτ
 

                        

( ) ( ) ( ) , ,,,,
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑∑

==

uutgtuutf
dt

d j

u

m

j

j

i

u

p

i

i
�� �� λτ  

(6.4)

                           

( ) ( ) ,,...,1,   ,0  dt  ,, mjItuutgt j

b

a

j =∈≥∫ �λ
 

(6.5)

             
( ) ,0,1,   , 0    ≥=∈≥ ττλ eItt

 (6.6)

where ( ) .1,...,1e pR∈=  

6.3 Necessary and Sufficient Optimality Criteria 

In this section, we present sufficient optimality criteria of the Kuhn-Tucker 

type for the problem (VCP). The following necessary optimality condi-

tions will be shown to be sufficient for optimality under generalized 

−V invexity assumptions. There exists a piecewise smooth 
mRI →:*λ  

such that 

( ) ( ) ( )**

1

***

1

,,,, xxtgtxxtf j

x

m

j

j

i

x

p

i

i
�� ∑∑

==

+ λτ
 

( ) ( ) ( ) , ,,,, **

1

***

1

'' ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑∑

==

xxtgtxxtf
dt

d j

x

m

j

j

i

x

p

i

i
�� λτ  

(6.7)

( ) ( ) ,,...,1,   ,0,, *** mjItxxtgt j

xj =∈=�λ
 (6.8)

( ) .   , 0    ,0,0, * IttR p ∈≥≥≠∈ λτττ
 (6.9)

 

Theorem 6.3.1 (Sufficient Optimality Conditions):  

Let 
*x  be a feasible solution for (VCP) and assume that  
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( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅ ∫∫ dttfdttf

b

a

pp

b

a

,,,...,,,11 ττ  

is −V pseudo-invex and  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅ ∫∫ dttgdttg

b

a

mm

b

a

,,,...,,,11 τλ  

is −V quasi-invex with respect to η. If there exists a piecewise smooth 
mRI →:*λ  such that ( ) ( )( )ttx ** , λ  satisfies the conditions (6.7)-(6.9), 

then 
*x  is a global weak minimum for (VCP). 

Proof: Suppose that 
*x  is not a global weak minimum point. Then there 

exists feasible Xx ∈0  such that 

( ) ( )( ) ( ) ( )( ) .,...,1,   ,,,,, 00 piItdttututfdttxtxtf

b

a

i

b

a

i =∈< ∫∫ ��  

Therefore,  

( ) ( )

( ) ( )

0 0 0

1

0

1

   , ( ), ( ) , ( ), ( )

, ( ), ( ) , ( ), ( )

b p

i i i

ia

b p

i i i

ia

t x t u t f t x t x t dt

t x t u t f t u t u t dt

β τ

β τ

=

=

<

∑∫

∑∫

�

�
 

Now, by the −V pseudo-invexity condition, we get 

                    

( ) ( )

( ) ( )

0

1

0

, ( ), ( ) , ( ), ( )

         , ( ), ( ) , ( ), ( ) 0

b p
i

i x

ia

i

x

t x t u t f t u t u t

d
t x t u t f t u t u t dt

dt

τ η

η

=

⎡
⎢
⎣

⎤+ <⎥⎦

∑∫ �

�
 

(6.10)

From (6.7), we have 

( ) ( )( ) ( ) ( ) ( ) dtuutgtuutftutxt j

x

m

j

j

i

x

p

i

i

b

a

⎥
⎦

⎤
⎢
⎣

⎡
+∑∑∫

==

�� ,,,,,,
1

*

1

0 λτη  

( ) ( )( ) ( ) ( ) ( ) dtuutgtuutf
dt

d
tutxt j

x

m

j

j

i

x

p

i

i

b

a
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑∑∫

==

�� ,,,,,, ''

1

*

1

0 λτη  

( ) ( )( ) ( ) ( ) ( )
b

a

j

x

m

j

j

i

x

p

i

i uutgtuutftutxt ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑∑

==

�� ,,,,,, ''

1

*

1

0 λτη  
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( ) ( )( ) ( ) ( ) ( ) dtuutgtuutftutxt
dt

d j

x

m

j

j

i

x

p

i

i

b

a
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+− ∑∑∫

==

�� ,,,,,, ''

1

*

1

0 λτη   

(integration by part). 

Thus, 

( ) ( )( ) ( ) ( ) ( ) dtuutgtuutftutxt j

x

m

j

j

i

x

p

i

i

b

a

⎥
⎦

⎤
⎢
⎣

⎡
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==

�� ,,,,,,
1

*
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0 λτη
 

( ) ( )( ) ( ) ( ) ( ) 0,,,,,, ''

1

*

1

0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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dtuutgtuutftutxt
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x
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j
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�� λτη
 

(6.11)

(Since ( ) .)0,, =uutη  

From (6.11), we have 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

*

0

1

*

0

0

1

0

, ( ), ( ) ( ) , ,

             , ( ), ( ) ( ) , ,

, ( ), ( ) , ,

             , ( ), ( ) , ,

b m
j

j x
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j

j x

b m
j

i x
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j

i x

t x t u t t g t u u

d
t x t u t t g t u u dt

dt

t x t u t f t u u

d
t x t u t f t u u dt

dt

η λ

η λ

η τ
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=
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=

⎡⎣
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= −

+

∑∫

∑∫
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(6.12)

From (6.12) and (6.10), we have 

( ) ( )

( ) ( )

*

0

1

*

0

, ( ), ( ) ( ) , ,
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Now (6.13) in view of −V quasi-invexity of 

( ) ( ) ⎟⎟
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⎞
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yields 
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This is a contradiction, since ( ) ( )( ) ( ) ( ) ,0,,,, 00

*

0 ≤xxtgttutxt jjj
�λβ  

( ) ( )( ) ( ) ( ) ,0,,,, *

0 =uutgttutxt jjj
�λβ

 
and 

( ) ( )( ) .,...,1,0,, 0 mjtutxtj =>β  

6.4 Mond-Weir type Duality 

In this Section we consider the dual (VCD) given in Section 2 of this 

Chapter and establish duality results under generalized −V invexity as-

sumption on the functions involved.  

Theorem 6.4.1 (Weak Duality): Let x  be feasible for (VCP) and let 

( )λτ ,,u  be feasible for (VCD). If ( ) ( ) ⎟⎟
⎠

⎞
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⎝

⎛
⋅⋅⋅⋅ ∫∫ dttfdttf

b

a

pp

b

a

,,,...,,,11 ττ  

is −V pseudo-invex and ( ) ( ) ⎟⎟
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⎞
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⎛
⋅⋅⋅⋅ ∫∫ dttgdttg

b
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mm
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,,,...,,,11 τλ  is 

−V quasi-invex with respect to η, then 
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Proof: From the feasibility conditions, 

( ) ( ) .,...,1,,,,, mjdtuutgdtxxtg

b

a

jj

b

a

jj =≤ ∫∫ �� λλ  

Since ( ) ,,...,1,0,, mjuxtj =>β  we have 
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Hence,  
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The constraint (6.4), as earlier, is equivalent to 
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(6.16)

From (6.15) and (6.16), we get 
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(6.17)

The conclusion now follows from the −V pseudo-invexity of 

( ) ( ) ⎟⎟
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⎞
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⎛
⋅⋅⋅⋅ ∫∫ dttfdttf

b

a

pp
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,,,...,,,11 ττ
 

and ( ) ( )( ) .1,,...,1,0,, 0 ==> epitutxti τα
 

 

Theorem 6.4.2 (Strong Duality): Assume that u  is a weak minimum 

for (VCP) and that a suitable constraint qualification is satisfied at u . 

Then there exist ( )λτ ,  such that ( )λτ ,,u  is feasible for (VCD) and the 

objective functions of (VCP) and (VCD) are equal at these points. If, also 

for all feasible ( )λτ ,,u , 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅ ∫∫ dttfdttf

b

a

pp

b
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,,,...,,,11 ττ  
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is −V pseudo-invex and 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅ ∫∫ dttgdttg

b

a

mm

b

a

,,,...,,,11 τλ  

is −V quasi-invex, then ( )λτ ,,u  is weak maximum for (VCD). 

Proof: Since u  is a weak minimum for (VCP) and a constraint qualifi-

cation is satisfied at u , from the Lagrangian conditions (Theorem 6.3.1), 

there exists ( )λτ ,  such that ( )λτ ,,u  is feasible for (VCD). Clearly the 

values of (VCP) and (VCD) are equal at u , since the objective functions 

for both problems are the same. By the generalized −V invexity hypothe-

sis, weak duality holds; hence if ( )λτ ,,u  is not a weak optimum for 

(VCD), there must exist ( )** ,, λτx  feasible for (VCD),  such that 

1

1

( , , ) , , ( , , )

             ( , , ) , , ( , , ) int .

T
b b

p

a a

T
b b

p

p

a a

f t x x dt f t x x dt

f t u u dt f t u u dt R+

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
− ∈−⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

� �…

� �…

 

contradicting weak duality. 

The results of present Section are extended to control problem in the 

next Section. 

6.5 Duality for Multiobjective Control Problems 

A number of duality theorems for single objective control problem have 

been appeared in the literature (see, e.g., Hanson (1964), Kreindler (1966), 

Pearson (1965), Ringlee (1965), Mond and Hanson (1968), and Mond and 

Smart (1988)). In general, these references give conditions under which an 

external solution of the control problem yields a solution of the corre-

sponding dual. Mond and Hanson (1968) established the converse duality 

theorem which gives conditions under which a solution of the dual prob-

lem yields a solution to the control problem. Mond and Smart (1988) ex-

tended the results of Mond and Hanson (1964) for duality in control prob-

lems to invex functions. Bhatia and Kumar (1995) extended the work of 

Mond and Hanson (1968) to the content of multiobjective control prob-

lems and established duality results for Wolfe as well as Mond-Weir type 

duals under −ρ invexity assumptions and its generalizations. The reader 

is refer to Kim et al. (1993) also. 
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In this Section we will obtain duality results for multiobjective control 

problems under −V invexity assumptions and its generalizations.  

The control problem is to transfer the state variable from an initial state 

( ) α=ax at at =  to a final state ( ) β=bx at bt =  so as to minimize a 

given functional, subject to constraints on the control and state variables, 

that is: (VCP) 

( ) ( ) ( )1Min , ( ), ( ) , ( ), ( ) , , , ( ), ( )

b b b

p

a a a

f t x t u t dt f t x t u t dt f t x t u t dt
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫ ∫ ∫…
 

subject to                   ( ) ( ) ,  , βα == bxax  (6.18)

( ) ( )( ) ,     ,0, , Ittutxtg ∈≤  (6.19)

( ) ( )( ) .  ,, , Itxtutxth ∈= �
 (6.20)

( )tx  and ( )tu are required to be piecewise smooth functions on I ; 

their derivatives are continuous except perhaps at points of discontinuity of 

( )tu , which has piecewise continuous first and second derivatives.  

Throughout this Section, 
nR  denotes an −n dimensional euclidan 

space. , Each RRRIf mn

i →××:  for  

,,...,1 pi =
 

: n m kg I R R R× × →
 

and for 
qmn RRRIh →××:  are continuously differentiable functions. 

Let 
nRIx →:  be differentiable with its derivative x�  and let 

mRIy →:  be a smooth function. Denote the first partial derivatives of 

if with respect to , and ,,, zyxxt �  by 
yixixiti ffff ,,, �  and

zif , respec-

tively; i.e. 
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,,...,2,1 pi =  where T  denotes the transpose operator. The partial deriva-

tives of the vector functions hg  and  are defined similarly, using qn×  

matrix and nn×  matrix, respectively. 
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For an −r dimensional vector function ( ) ( ) ( ) ( )( )tztytxtxtR ,,,, � , we 

denote the first partial derivative with respect to ( ) ( ) ( ) ( )tztytxtxt  and ,,, �  

by 
yixixiti RRRR ,,, �  and 

ziR , respect
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. 

Denote by X  the space of piecewise smooth control functions 
nRIx →:  

with norm
∞

x ; by Z the space of piecewise continuous control func-

tions 
mRIz →: with norm

∞
z ; by Y  the space of piecewise continuous 

differentiable state functions 
nRIy →:  with norm

∞∞
+= Dyyy , 

where the differentiation operator D  is given by 
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( ) ( ) ( )∫+=⇔=
b

a

dssuautxDxu ,  

where ( )au  is a given boundary value. Therefore D
dt

d
= except at dis-

continuities. 

Define ( ){ }.1,...,1,1,1,0: pTTp ReeR ∈==>∈=Λ+ τττ  Let 
pR+ be 

the non-negative orthant of
pR . 

Mond-Weir type dual for (VCP) is proposed and duality relationships 

are established under generalized −V invexity assumptions: 
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1

( ) 0, , 0, 1, , , 1
p

i i

i

t t I i pλ τ τ
=

≥ ∈ ≥ = =∑…  (6.26)

Optimization in (VCP) and (MVCD) means obtaining efficient solutions 

for the corresponding programs.       

Let  ( ) ( ) pidtuxtfxF

b

a

ii ,...,1, ,, == ∫  be Frechet differentiable. 

Let there exist functions 

( ) pRuuxxxxt ∈,,,,,, ��ν  

and 

( ) nRuuxxxxt ∈*** ,,,,,, ��η
 

with 0=η  at t  if ( ) ( )txtx =  and ( ) mRuuxxxxt ∈,,,,,, ��ξ . 

 

Definition 6.5.1 ( −V Invex): A vector function ( )pFFF ,...,1=  is 

said to be −V invex in uxx and,  with respect to αξη and,  if there 

exists differentiable vector function 
nnn RRRI →××:η  with 

( ) 0,, =xxtη , ( ) mRuuxxxxt ∈,,,,,, ��ξ  and { }0\ : +→×× RXXIiα  

such that for each Xxx ∈,  and Yuu ∈,  for pi ,...,1=
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Definition 6.5.2  ( −V Pseudo-Invex):  

A vector function ( )pFFF ,...,1=  is said to be −V pseudo-invex in 

uxx and,  with respect to βξη and,  if there exists differentiable 

vector function 
nnn RRRI →××:η  with ( ) 0,, =xxtη , 

( ) mRuuxxxxt ∈,,,,,, ��ξ  and { }0\ : +→×× RXXIiβ  

such that for each Xxx ∈,  and Yuu ∈,  for pi ,...,1=  
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Or equivalently; 
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Definition 6.5.3  ( −V Quasi-Invex):  

A vector function ( )
pFFF ,...,1=  is said to be −V quasi-invex in 

uxx and,  with respect to βξη and,  if there exists differentiable 

vector function 
nnn RRRI →××:η  with ( ) 0,, =xxtη ,  

( ) mRuuxxxxt ∈,,,,,, ��ξ  and { }0\ : +→×× RXXIiβ  

such that for each Xxx ∈,  and Yuu ∈,  for pi ,...,1=  
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Or equivalently; 
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Remark 6.5.1: −V invexity is defined here for functionals instead of 

functions, unlike the definition given in Section 1. This has been done so 

that −V invexity of a functional is necessary and sufficient for its critical 

points to be global minima, which coincide with the original concept of a 

−V invex function being one for which critical points are also global min-

ima (Craven and Glover (1985)).  

We thus have the following characterization result. 

 

Lemma 6.5.1:  ( ) ( )dtuxxtfxF

b

a

 ,,,∫= �  is −V invex if and only if 

every critical point F  is global minimum. 
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Note 6.5.1: ( ) ( )( )tutx ,  is a critical point of F  if 

( ) ( )uxxtf
dt

d
uxxtf i

x

i

x ,,,,,, ��
�=  and ( ) 0,,, =uxxtf i

u
�

 

almost everywhere in the interval [ ]ba , . If ( )ax  and ( )bx  are free, the 

transversality conditions ( ) 0,,, =uxxthx
�

�  at a  and b  are included. 

Proof of Lemma 6.5.1:  

 ( )⇒  Assume that there exist functions αξη and,  such that F  is 

−V invex with respect to αξη and,  on [ ]ba , . Let ( )ux ,  be a 

critical point of F . Then, for pi ,...,1=  

( ) ( ) ( , , , , , , ) ( , , , ) ( , , , , , , )

b

i

i i i x

a

F x F x t x x x x u u f t x x u t x x x x u uα η⎡− ≥ ⎣∫ � � �� �  

( , , , , , , ) ( , , , , , , ) ( , , , )

( , , , , , , ) ( , , , ) ( , , , , , , )

i

i x

i

i u

d
t x x x x u u t x x x x u u f t x x u

dt

t x x x x u u h t x x u t x x x x u u dt

η α

α ξ

+

⎤+ ⎦

�� � �� �

�� � �� �
 

( , , , , , , ) ( , , , ) ( , , , , , , )

b

i

i x

a

t x x x x u u f t x x u t x x x x u uα η⎡= ⎣∫ � � �� �  

( , , , , , , ) ( , , , , , , ) ( , , , )

( , , , , , , ) ( , , , ) ( , , , , , , )

( , , , , , , ) ( , , , )

i

i x

i

i u

i

x

d
t x x x x u u t x x x x u u f t x x u

dt

t x x x x u u f t x x u t x x x x u u dt

t x x x x u u f t x x u

η α

α ξ

η

−

⎤+ ⎦

+

�
� � �� �

� � �� �
�� ��

 

0=  

as ( )ux ,  is a critical point of either fixed boundary conditions imply that 

0=η  at a  and b  or free boundary conditions imply that 0' =xf �  at a  

and b . Therefore, ( )ux ,  is a global minimum of F . 

( )⇐  Assume that every critical point is a global minimum. 

If ( )ux ,  is a critical point, then if 
i

x

i

x f
dt

d
f �≠   at ( )ux , , put 

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ −

−
= i

x

i

x

i

x

i

x

T

i

x

i

x

ii

i f
dt

d
f

f
dt

d
ff

dt

d
f

uxxtfuxxtf
�

��

��

2

,,,,,,η  
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,1=α  or if ,i

x

i

x f
dt

d
f �=  put ;0=η  and if 0≠uh , put  

( ) ( )
( ) ( )

( )i

u
i

u

Ti

u

ii

i f
ff

uxxtfuxxtf

2

,,,,,, �� −
=ξ  

and ,1=α  or if ,0=i

uf  put .0=ξ   

Mond and Hanson (1968) pointed out that if the primal solution for 

(VCP) is normal, then Fritz-John conditions reduce to Kuhn-Tucker condi-

tions. 

 

Lemma 6.5.2. (Kuhn-Tucker Necessary Optimality Conditions): 

If ( ) YXux ×∈,  solves (VCP) if the Frechet derivative 

( )00 , uxFD i

x

−
 is surjective, and if the optimal solution ( )00 , ux  is nor-

mal, then there exist piecewise smooth ,:0 pRI →τ mRI →:0λ and 

,:0 kRI →µ  satisfying the following for all [ ]bat ,∈ : 

( ) ( ) ( )∑ ∑
= =

+
p

i

j

x

m

j

j

i

xi uxtgtuxtf
1

00

1

0000 ,,,, λτ
 

                   

( ) ( ) ( )  ,,0,, 000

1

0 Ittuxtht r

r

x

q

r

r ∈=++∑
=

µµ  

( ) ( ) ( )∑ ∑
= =

+
p

i

j

x

m

j

j

i

xi uxtgtuxtf
1

00

1

0000 ,,,, λτ
 

     

( ) ( )  ,,0,, 00

1

0 Ituxtht r

x

q

r

r ∈=+∑
=

µ  

( ) ( ) ,,0,, 00

1

0 Ituxtgt j

m

j

j ∈=∑
=

λ
 

( ) ∑
=

==>∈≥
p

i

ii piItt
1

000 .1,,...,1,0,,0 ττλ
 

We shall now prove that (VCP) and MVCD) are a dual pair subject to 

generalized −V invexity conditions on the objective and constraint func-

tions. 

 

Theorem 6.5.1 (Weak Duality): Assume that for all feasible ( )ux ,  for 

(VCP) and all feasible ( )µλτ ,,,, vy  for (MVCD). If 

(6.27)

(6.28)

(6.29)

(6.30)
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( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅⋅⋅ ∫∫ dttfdttf

b

a

pp

b

a

,,,,...,,,,11 ττ  

and 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅⋅⋅ ∫∫ dttgdttg

b

a

mm

b

a

,,,,...,,,,11 τλ
 

are −V quasi-invex and 

( )[ ] ( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅⋅−⋅⋅⋅ ∫∫ dtxthdtxth k

b

a

k

b

a

�� ,,,,...,,,,11 µµ  

is strictly −V quasi-invex. Then the following can not hold: 

( ) ( ) pidtvytfdtuxtf

b

a

i

b

a

i ,...,1, ,, ,, =∀≤ ∫∫
 

( ) ( ) { }.,...,1somefor, ,, ,, 000
pidtvytfdtuxtf

b

a

i

b

a

i ∈< ∫∫
 

by −V quasi-invexity, we get 

1

( , , , , , , ) ( , , , )

        ( , , , ) ( , , , , , , ) 0

b p
i

i y

ia

i

v

t x x x x u u f t y y v

f t x x u t x x x x u u dt

η τ

ξ
=

⎡⎣

⎤+ <⎦

∑∫ �� �

� ��
 

From the feasibility conditions, 

( ) ( ) .,...,1, ,,, ,,, mjdtuxxtgdtuxxtg

b

a

jj

b

a

jj =∀≤ ∫∫ �� λλ  

Since ( ) ,,...,1,0,,,,,, mjuuxxxxtj =∀>��β  we have 

1

1

( , , , , , , ) ( , , , )

       ( , , , , , , ) ( , , , )

b m

j j j

ja

b m

j j j

ja

t x x x x u u g t x x u dt

t x x x x u u g t x x u dt

β λ

β λ

=

=

≤

∑∫

∑∫

�� �

� ��
 

Then by −V quasi-invexity of 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅⋅⋅⋅ ∫∫ dttgdttg

b

a

mm

b

a

,,,,...,,,,11 τλ , 

(6.31)

(6.32)

(6.33)

Proof: Suppose contrary to the result that (6.31) and (6.32) hold. Then 
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Gives 

1

( , , , , , , ) ( , , , )

        ( , , , ) ( , , , , , , ) 0

b m
j

j x

ja

j

u

t x x x x u u g t x x u

g t x x u t x x x x u u dt

η λ

ξ

=

⎡⎣

⎤+ ≤⎦

∑∫ � ��

�� ��
 

Similarly, we have 

[ ]
1

1

( , , , , , , ) ( , , , )

        ( , , , , , , ) ( , , , )

b q

k k k

ka

b q

k k k

ka

t x x x x u u h t x x u x dt

t x x x x u u h t x x u x dt

γ µ

γ µ

=

=

−

⎡ ⎤≤ −⎣ ⎦

∑∫

∑∫

�� � �

� �� �
 

From strict −V quasi-invexity of 

( )[ ] ( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅⋅−⋅⋅⋅ ∫∫ dtxthdtxth k

b

a

k

b

a

�� ,,,,...,,,,11 µµ , 

we have 

1

1

( , , , , , , ) ( , , , ) ( , , , , , , )

        ( , , , ) ( , , , , , , ) 0

b q
k

k y k

ka

q
k

k v

k

d
t x x x x u u h t y y v t x x x x u u

dt

h t y y v t x x x x u u dt

η µ η µ

µ ξ

=

=

⎡ −⎣

⎤+ <⎦

∑∫

∑

� �� � �

�� �

By integrating ( ) kuuxxxxt
dt

d µη ,,,,,, ��  from a  to b  by parts and ap-

plying the boundary conditions (6.18), we have 

( ) ( ) .,,,,,,,,,,,, dtuuxxxxtdtuuxxxxt
dt

d
k

b

a

k

b

a

µηµη ���� ∫∫ −=
 

0

1

1

( , , , , , , ) ( , , , )

        ( , , , ) ( , , , , , , ) 0

b q
k

k y

ka

q
k

k v

k

t x x x x u u h t y y v

h t y y v t x x x x u u dt

η µ µ

µ ξ

=

=

⎡ +⎣

⎤+ <⎦

∑∫

∑

�� �

�� �
 

(6.34)

(6.35)

(6.36)

(6.37)

Using (6.36) in (6.35), we have 

From (6.33), (6.34) and (6.37), we have 
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1 1 1

1 1 1

( , , , ) ( , , , ) ( , , , )

( , , , ) ( , , , ) ( , , , ) 0

b p m k
i i r

i y j y r y

i j ra

p m k
i i r

i v j v r y

i j r

f t y y v g t y y v f t y y v

f t y y v g t y y v f t y y v dt

η τ λ µ

ξ τ λ µ

= = =

= = =

⎧ ⎡ ⎤+ + +⎨ ⎢ ⎥⎦⎣⎩
⎫⎡ ⎤+ + <⎬⎢ ⎥⎦⎣ ⎭

∑ ∑ ∑∫

∑ ∑ ∑

� � �

� � �
 

which is a contradiction to (6.22) and (6.23). 

 

Corollary 6.5.1: Assume that weak duality (Theorem 6.5.1) holds be-

tween (VCP) and (MVCD). If ( )vy ,  is feasible for (VCP) and 

( )µλτ ,,,, vy  is feasible for (MVCD), then ( )vy ,  is efficient for (VCP) 

and ( )µλτ ,,,, vy  is efficient for (MVCD). 

Proof: Suppose ( )vy ,  is not efficient for (VCP). Then there exists 

some feasible ( )ux ,  for (VCP) such that 

( ) ( ) pidtvyytfdtuxxtf

b

a

i

b

a

i ,...,1, ,,, ,,, =∀≤ ∫∫ �� , 

( ) ( ) { }.,...,1somefor, ,,, ,,, 000
pidtvyytfdtuxxtf

b

a

i

b

a

i ∈< ∫∫ ��  

This contradicts weak duality. Hence ( )vy ,  is efficient for (VCP). 

Now suppose ( )µλτ ,,,, vy  is not efficient for (MVCD). Then there ex-

ist some ( )µλτ ,,,, ux  feasible for (MVCD) such that 

( ) ( ) pidtvyytfdtuxxtf

b

a

i

b

a

i ,...,1, ,,, ,,, =∀≤ ∫∫ �� , 

( ) ( ) { }.,...,1somefor, ,,, ,,, 000
pidtvyytfdtuxxtf

b

a

i

b

a

i ∈< ∫∫ ��  

This contradicts weak duality. Hence ( )µλτ ,,,, vy  is efficient for 

(MVCD). 

 

Theorem 6.5.2 (Strong Duality): Let ( )ux ,  be efficient for (VCP) 

and assume that ( )ux ,  satisfy the constraint qualification of Lemma 6.5.1 

for at least one { }.,...,10 pi ∈  Then there exist 
pR∈τ  and piecewise 

smooth 
mRI →:λ  and 

kRI →:µ  such that ( )µλτ ,,,, ux  is feasi-
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ble for (MVCD). If also weak duality (Theorem 6.5.1) holds between 

(VCP) and (MVCD) then ( )µλτ ,,,, ux  is efficient for (MVCD). 

Proof: Proceeding on the same lines as in Theorem6.5.1, it follows that 

there exist piecewise smooth 
pRI →:τ , 

mRI →:λ  and 
kRI →:µ , 

satisfying for all It ∈  the following relations: 

( ) ( ) ( )∑ ∑
= =

+
p

i

j

x

m

j

j

i

xi uxxtgtuxxtf
1 1

,,,,,, �� λτ  

( ) ( ) ( )  ,,0,,,
1

Ittuuxxtht r

x

k

r

r ∈=++∑
=

��µ  

( ) ( ) ( )∑ ∑
= =

+
p

i

j

x

m

j

j

i

xi uxxtgtuxxtf
1 1

,,,,,, �� λτ

( ) ( )  ,,0,,,
1

Ituxxtht r

x

k

r

r ∈=+∑
=

�µ   

( ) ( ) ,,0,,,
1

Ituxxtgt j

m

j

j ∈=∑
=

�λ
 

( ) ∑
=

==>∈≥
p

i

ii piItt
1

.1,,...,1,0,,0 ττλ  

The relations 

( ) ( ) ,0,,,
1

≥∫∑
=

dtuxxtgt j

b

a

m

j

j
�λ

 
and  

( ) ( )[ ] 0,,,
1

≥−∫∑
=

dtxuxxtht r

b

a

k

r

r
��µ

 
are obvious.  

The above relations imply that ( )µλτ ,,,, ux  is feasible for (MVCD). 

The result now follows from Corollary 6.5.1.

6.6 Duality for a Class of Nondifferentiable Multiobjective 
Variational Problems 

In this Section, we consider a class of nondifferentiable multiobjective 

variational problem and establish various duality results under generalized 
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−V invexity assumptions on the functionals involved using the concept of 

conditional proper efficiency. The following definitions will be needed in 

the sequel: 

Consider the following vector minimization problem: 

(VCP) ( ) ( ) ( )∫ ∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

b

a

b

a

b

a

p dtxxtfdtxxtfdtxxtf ��� ,,,...,,,,, Minnimize     1  

      subject to  ( ) ( ) βα == bxax      ,     

  

   ( ) .   ,0    ,, Itxxtg ∈≤�      

where { }, ..., ,1  ,: pPiRRRIf nn

i =∈→×× mnn RRRIg →××:  

are assumed to be continuously differentiable functions. Let K be the set of 

all feasible solutions for (VCP), that is, 

( ) ( ) ( ) ( )( ){ }. 0,   , , , , : IttxtxtgbxaxXxK ∈≤==∈= �βα  

The following Definitions will be needed in the sequel: 

 

Definition 6.6.1: A point Kx ∈*
 is said to be an efficient solution for 

(VCP) if for all Kx∈  

( ) ( )( ) ( ) ( )( ) pidttxtxtfdttxtxtf

b

a

i

b

a

i ,...,1  allfor     , ,, ,, ** =≥ ∫∫ ��  

⇒ ( ) ( )( ) ( ) ( )( )∫ ∫ ==
b

a

b

a

ii pidttxtxtfdttxtxtf .,...,1  allfor    , ,, ,, ** ��  

Definition 6.6.2 [Borwein (1979)]: A point Kx ∈*
 is said to be a 

weak minimum solution for (VCP) if there exists no Kx∈  for which 

( ) ( )( ) ( ) ( )( ) . ,, ,, ** ∫∫ >
b

a

b

a

dttxtxtfdttxtxtf ��  

From this it follows that if an Kx ∈*
 is efficient for (VCP) then it is a 

weak minimum for (VCP). 

Definition 6.6.3: A point Kx ∈*
 is said to be a properly efficient solu-

tion for (VCP) if there exists scalar 0>M  such that, for all Kx∈ , 

,,...,1  allfor pi =  

( ) ( )( ) ( ) ( )( )∫∫ −
b

a

i

b

a

i dttxtxtfdttxtxtf  ,, ,, ** ��  
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( ) ( )( ) ( ) ( )( ) ⎟⎟
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⎝

⎛
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b

a

j

b

a

j dttxtxtfdttxtxtfM  ,, ,, ** ��  

for some j  such that ( ) ( )( ) ( ) ( )( )∫∫ >
b

a

j

b

a

j dttxtxtfdttxtxtf  ,, ,, ** ��  when-

ever Kx∈  and ( ) ( )( ) ( ) ( )( )∫ ∫>
b

a

b

a

ii dttxtxtfdttxtxtf . ,, ,, ** ��  

An efficient solution that is not properly efficient is said to be improp-

erly efficient. Thus for 
*x  to be improperly efficient means that to every 

sufficiently large 0>M , there is an Kx∈  and an index { }pi ,...,1∈  

such that 

( ) ( )( ) ( ) ( )( )∫∫ <
b

a

j

b

a

j dttxtxtfdttxtxtf  ,, ,, ** ��  
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( ) ( )( ) ( ) ( )( )∫∫ −
b

a

i

b

a

i dttxtxtfdttxtxtf  ,, ,, ** ��  

( ) ( )( ) ( ) ( )( ) ,,...,1, ,, ,, ** pjdttxtxtfdttxtxtfM

b

a

j

b

a

j =∀⎟⎟
⎠
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⎝

⎛
−> ∫∫ ��  

such that ( ) ( )( ) ( ) ( )( )∫ ∫<
b

a

b

a

ii dttxtxtfdttxtxtf . ,, ,, ** ��  

Definition 6.6.4: A point Kx ∈*
 is said to be a conditionally properly 

efficient solution for (VCP) if there exists scalar ( ) 0>xM  such that, for 

all Kx∈ , ,,...,1  allfor pi =  

( ) ( )( ) ( ) ( )( )∫∫ −
b

a

i

b

a

i dttxtxtfdttxtxtf  ,, ,, ** ��  
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⎜⎜
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⎛
−≤ ∫∫

b

a

j

b

a

j dttxtxtfdttxtxtfxM  ,, ,, ** ��  
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for some j  such that ( ) ( )( ) ( ) ( )( )∫∫ >
b

a

j

b

a

j dttxtxtfdttxtxtf  ,, ,, ** ��  when-

ever Kx∈  and ( ) ( )( ) ( ) ( )( )∫ ∫>
b

a

b

a

ii dttxtxtfdttxtxtf . ,, ,, ** ��  

 

We now consider the following Singh and Hanson (1991) type paramet-

ric variational problem for predetermined positive functions ( )xiτ  such 

that ( ) pibxa iii ,...,1, =<< τ , where piba ii ,...,1,and =  are 

specified constants. 

( )0

ĲCP  ( ) ( )dtxxtfx
p

i

i

b

a

i∑∫
=1

,,Minimize �τ  

subject to    ( ) ( ) βα == bxax      ,     

                               ( ) .   ,0    ,, Itxxtg ∈≤�   

Problem (VCP) and  ( )0

ĲCP  are equivalent in the sense of Singh and 

Hanson (1991). Theorems 6.6.1 and 6.6.2, are valid when 
nR  is replaced 

by some normed space of functions, as the proofs of these theorems do not 

depend on the dimensionality of the space in which the feasible set of 

(VCP) lies. For the variational problem in question the feasible set lies in 

the normed space ( )nRIC , . For completeness we shall merely state these 

theorems characterizing conditional proper efficiency of (VCP) in terms of 

solutions of ( )0

ĲCP . 

 

Theorem 6.6.1: If 
*x  is an optimal solution for ( )0

ĲCP  then 
*x  is con-

ditionally properly efficient for ( )0

ĲCP . 

Theorem 6.6.2: If 
*x  is conditionally properly efficient for (VCP) then 

*x  is optimal for ( )0

ĲCP  for some ( ) .,...,1,0* pixi =>τ  

In the subsequent analysis, we shall frequently use the following gener-

alized Schwarz inequality 

( ) ( ) ,2
1

2
1

BzzBxxBzx TTT ≤  

where B  is an nn×  positive semidefinite matrix. 

Consider the following nondifferentiable multiobjective variational 

problem: 
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(NVCP)       ( ( ))1

1Min ( , , ) ( , , ) ( ) ( ) ( ) ,

b b

T

a a

t x x dt f t x x x t B t x t dtψ
⎛

= +⎜
⎝

∫ ∫� �  

( ( ))1

1                               , ( , , ) ( ) ( ) ( )

b

T

a

f t x x x t B t x t dt
⎞

+ ⎟
⎠

∫ �…  

subject to  ( ) ( ) βα == bxax      ,  
( ) .   ,0    ,, Itxxtg ∈≤�  

where ( ) { }, ..., ,1  , pPitBi =∈  is a positive semi-definite (symmetric) 

matrix with ( ) { }, ..., ,1  , pPitBi =∈  continuous on I  .  

 

Proposition 6.6.1: If , ..., ,1  , pif i =  is −V invex with respect to 

pi  ..., ,1,, ηα with ( ) ( )uxyuxux ,, +−=η , where ( ) ,0, =uxyBi  

then wBf i

T

i ⋅+  is also −V invex with respect to η . 

Proof: Proof follows easily from the proof of Proposition 2 of Mond 

and Smart (1988). 

In view of Proposition 6.6.1, the Mond-Weir type dual for ( )τNVCP  is 

the following: 
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Now Theorem 6.2.1 and Theorem 6.2.2 motivate us to define the fol-

lowing vector maximization variational problem: 
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(6.43)

From (6.39), we have 
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(by integration by parts). 
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By −V pseudo-invexity of 

= 0  from (6.44), we have 

(6.44)

(6.45)

From (6.45) and (6.43), we have 

(6.46)
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Thus u  is an optimal solution for the scalarized problem (NCVPτ). 

Hence by Theorem 6.6.1, u  is a conditionally properly efficient solution 

for (NVCP). 

(6.47)

(6.48)

Proof:  From (6.46) and (6.47) it follows that for all x∈K
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contradicting weak duality. Hence ( )pzzu ,....,,,, 1λτ  is efficient. 

Now we show that ( )pzzu ,....,,,, 1λτ  is conditionally properly effi-

cient for (NVCD). Assume that it is not conditionally properly efficient 

i.e., there exist ( ) Hzzu p ∈,....,,,, 1λτ  such that for some i  and all 
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Thus, from (6.47), we get 
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( )p1  is conditionally properly 

efficient. 

 

Theorem 6.6.4 (Strong Duality): Let the −V pseudo-invexity and 
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(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

From (6.51) and (6.55) it follows that x

(6.52), by Proposition 6.6.1, u

ally properly efficient solution for (NVCD).Using (6.52), we have 
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