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Preface

Generalizations of convex functions have previously been proposed by
various authors, especially to establish the weakest conditions required for
optimality results and duality theorems in nonlinear vector optimization.
Indeed, these new classes of functions have been used in a variety of fields
such as economics, management science, engineering, statistics and other
applied sciences. In 1949 the Italian mathematician Bruno de Finetti in-
troduced one of the fundamental generalized convex functions character-
ized by convex lower level sets, functions now known as “quasiconvex
functions”.

Since then other classes of generalized convex functions have been de-
fined (not all useful at the same degree and with clear motivation) in ac-
cordance with the need of particular applications. In many cases such func-
tions preserve some of the valuable properties of convex functions. One of
the important generalization of convex functions is invex functions, a no-
tion originally introduced for differentiable functions f:C — R, C an

open set of R", for which there exists some functionz : Cx C — R" such

that f(x)— f(¥)=n(x,y) Vf(u), Vx,u € C. Such functions have the

property that all stationary points are global minimizers and, since their in-
troduction in 1981, have shown to be useful in a variety of applications.
However, the major difficulty in invex programming problems is that it
requires the same kernel function for the objective and constraints. This
requirement turns out to be a severe restriction in applications. In order to
avoid this restriction, Jeyakumar and Mond (1992) introduced a new class
of invex functions by relaxing the definition invexity which preserves the
sufficiency and duality results in the scalar case and avoids the major dif-
ficulty of verifying that the inequality holds for the same kernel function.
Further, this relaxation allows one to treat certain nonlinear multiobjective
fractional programming problems and some other classes of nonlinear
(composite) problems. According to Jeyakumar and Mond (1992) A vector

function f: X — R”is said to be V-invex if there exist functions
n:XxX —>R" and @,:XxX—>R"—{0} such that for each



vi Preface

x,xeX and for i=12,.,p, fi(x)-f(%)2a,(xx)Vf(x)m(x,x)
For p=1land ﬁ(x, f): a,; (x, )?)Iy(x, )?)the above definition reduces to

the usual definition of invexity given by Hanson (1981).

This book is concerned about the V-invex functions and its applications
in nonlinear vector optimization problems. As we know that a great deal of
optimization theory is concerned with problems involving infinite dimen-
sional normed spaces. Two types of problems fit into this scheme are
Variational and Control problems. As far as the authors are concerned this
is the first book entirely concerned with V-invex functions and their appli-
cations.

Shashi Kant Mishra
Shouyang Wang

Kin Keung Lai
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Chapter 1: General Introduction

1.1 Introduction

In many decision or design process, one attempts to make the best decision
within a specified set of possible ones. In the sciences, “best” has tradi-
tionally referred to the decision that minimized or maximized a single ob-
jective optimization problem. But, we are rarely asked to make decisions
based on only one objective, most often decisions are based on several
usually conflicting objectives.

In nature, if the design of a system evolves to some final, optimal state,
then it must include a balance for the interaction of the system with its sur-
rounding-certainly a design based on a variety of objectives. Furthermore,
the diversity of nature’s design suggests infinity of such optimal states. In
another sense, decisions simultaneously optimize a finite number of crite-
ria, while there is usually infinity of optimal solutions. Multiobjective op-
timization provides the mathematical frame work to accommodate these
demands.

The theory of multiobjective mathematical programming since it devel-
oped from multiobjective linear programming has been closely tied with
convex analysis. Optimality conditions, duality theorems, saddle point
analysis, constrained vector valued games and algorithms were established
for the class of problems involving the optimization of convex objective
functions over convex feasible regions. Such assumptions were very con-
venient because of the known separation theorems resulting from the
Hahn-Banach theorem and the guarantee that necessary conditions for op-
timality were sufficient under convexity. However, not all practical prob-
lems, when formulated as multiobjective mathematical programs, fulfill
the requirements of convexity, in particular, it was found that problems
arising in economics and approximation theory could not be posed as con-
vex programs. Fortunately, such problem were often found to have some
characteristics in common with convex problems, and these properties
could be exploited to establish theoretical results or develop algorithms.
By abstraction, classes of functions having some useful properties shared
with convexity could be defined. In fact, some notions of generalized con-
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vexity did exist before the need for it arose in mathematical programming,
but it was through this need that researchers were given the incentive to
develop a literature which has become extensive now, on the subject. At
present there has been little unification of generalized convexity, although
some notable exceptions are the papers of Schaible and Zimba (1981) the
wide ranging work of Avriel, Diwert, Schaible and Zang (1988) and Jeya-
kumar and Mond (1992).

1.2 Multiobjective Programming Problems

The general multiobjective programming model can be written as
(VP) V' —Minimize (fl (x),..., S, (x))
subject to g(x)<0,
where f.: X, > R,i=1,.,p and g:X, > R" are differentiable
functions on X, € R" open. Note here that the symbol “} — Minimize”

stands for vector minimization. This is the problem of finding the set of
weak minimum/efficient/properly efficient/conditionally properly efficient
(Section 4 of the present Chapter) points for (VP). When p =1, the prob-
lem (VP) reduces to a scalar optimization problem and it is denoted by (P).
Convexity of the scalar problem (P) is characterized by the inequalities:

S )= f )= f () —u)= 0
g(x)-g)-g'(u)x—u)>0,
Vx,uelX,.
Hanson (1981) observed that the functional form (x - u) here plays no

role in establishing the following two well-known properties in scalar con-
vex programming:
(S) Every feasible Kuhn-Tucker point is global minimum.
(W) Weak duality holds between (P) and its associated dual problem.
Having this in mind, Hanson (1981) considered problem (P) for which

there exists a function 77 : X, x X, = R" such that
(1) S )= ()= 1 whpx, u)2 0
gx)—glu)-g (whn(x, u)>0, Vx,ueck,,
and showed that such problems (known now as invex problems [Craven

(1981, 1988)]) also possess properties (S) and (W). Since then, various
generalizations of conditions (I) to multiobjective problems and many
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properties of functions that satisfy (I) have been established in the litera-
ture, e.g. Ben-Israel and Mond (1986), Craven (1988), Craven and Glover
(1985), Martin (1985). However, the major difficulty is that the invex

problems require the same kernel function 77(x, u) for the objective and

the constraints. This requirement turns out to be a severe restriction in ap-
plications. Because of this restriction, pseudo-linear multiobjective prob-
lems (Chew and Choo (1984)) and certain nonlinear multiobjective frac-
tional programming problems require separate treatment as far as
optimality and duality properties are concerned. In order to avoid this re-
striction, Jeyakumar and Mond (1992) introduced a new class of functions,
which we shall present in the next Section. We have developed necessary
and sufficient optimality conditions of the minimization problem involving
differentiable and non-differentiable functions in the subsequent chapters.
We have discussed nonsmooth problems and compared with minimax
problems and further we have presented nonsmooth composite problems
and discussed optimality, duality and saddle point analysis. We have also
considered multiobjective continuous and control problems in Chapter six
and established sufficient optimality conditions and duality results.

1.3 V —Invexity

Jeyakumar and Mond (1992) introduced the notion of V-invexity for a vec-
tor function f = ( FisSosens [, p) and discussed its applications to a class of

constrained multiobjective optimization problems. We now give the defini-
tions of Jeyakumar and Mond (1992) as follows.

Definition 1.3.1: A vector function f : X — R”is said to be V-invex if
there exist functions 77: X x X = R" and «, : X x X = R* —{0} such
that for each x,x € X and for i =1,2,..., p,

1,(x)= £,(&)z e, (x.2)Vf, (%)n(x. %),

For p =1land ﬁ(x, )_c) =q, (x,)_c)n(x,)_c) the above definition reduces to

the usual definition of invexity given by Hanson (1981).

Definition 1.3.2: A vector function f:X — R” is said to be V-
pseudoinvex if there exist functions 7: X x X — R" and
B XxX— R —{0}
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such that for each x,x € X and for i =1,2,..., p,

Zp:Vfi(E) xx >O:Zﬂ xx Z,B xx

i=1

Definition 1.3.3: A vector function f:X — R” is said to be V-
quasiinvex — if  there  exist functions 7:XxX — R" and
0, XxX—>R" - {O} such that for each x,x € X and for i =1,2,..., p,

Zé‘ xx 25 xx :ZVf x)?)gO.
It is eV1dent that every V—1nvex function is both V-pseudo-invex (with
1
o, (x, )?)
if we set
p=La,(x%)=1, B(x,%)=1,6,(x,x)=1and 5(x,X)=x-X,

then the above definitions reduce to those of convexity, pseudo-convexity
and quasi-convexity, respectively.

B (x, X ) = ;_ ) and V-quasiinvex (with o, (x, x ) = ). Also
a,(x,%)

Definition 1.3.4: A vector optimization problem:
(VP) vV —min(f,, £y, £, )
subject to g(x)§ 0,
where f,: X >R, i=12,..,pandg: X - R" are differentiable

functions on X, is said to be V-invex vector optimization problem if each
Jis foseon f, and g1, g5,..., g, isa V-invex function.

Note that, invex vector optimization problems are necessarily V-invex,
but not conversely. As a simple example, we consider following example
from Jeyakumar and Mond (1992).

Example 1.3.1: Consider

2
. xl Xl
min| —,—
Xi,X,€R xz _xz

subjectto  1-x, <1,
l-x, <.
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Then it is easy to see that this problem is a V-invex vector optimization

) X X, _ —
problem with @, =2, a, ==1,, =1=f, and(x,X)=x—X; but
X, 1
clearly, the problem does not satisfy the invexity conditions with the same
n.

It is also worth noticing that the functions involved in the above prob-
lem are invex, but the problem is not necessarily invex.

It is known (see Craven (1981)) that invex problems can be constructed
from convex problems by certain nonlinear coordinate transformations. In
the following, we see that V-invex functions can be formed from certain
nonconvex functions (in particular from convex-concave or linear frac-
tional functions) by coordinate transformations.

Example 1.3.2: Consider function, 2 : R" — R’ defined by
h(x) = (£, (B())os £, ($(6))
where f,:R" —> R, i=12,..., p, are strongly pseudo-convex functions
with real positive functions &,,@: R" — R" is surjective with ¢'(x) onto

for each X € R". Then, the function 4 is V-invex.

Example 1.3.3: Consider the composite vector function
hx)= (4 (F @)oo £, (F, ()
where for each i=1,2,...,p, F, : X, = R is continuously differentiable
and pseudolinear with the positive proportional function «, ( R ~), and
f;:R— R is convex. Then, h(x) is V — invex with n(x,y)=x—y.

This follows from the following convex inequality and pseudolinearity
conditions:

[i(F )= £ (F(0)= £, (F()NF (x) - F ()
= 1, (F.(»)e, (x, »)F; (yNx = ¥)
=a,(x,y)f; o F,) ()x - y).

For a simple example of a composite vector function, we consider

h(x,,x,) = [exl/xz,u}

X, + X,

where x, z{(xl,xz) eR’:x >1,x, 21}.
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Example 1.3.4: Consider the function
H(x)= (/g ov )x)).rs £, (g, W J)))
where each f, is pseudolinear on R" with proportional functions
a, (x,y), w is a differentiable mapping from R" onto R" such that
l//'(y) is surjective for each y € R", and f; :R — R is convex for each
i. Then H is V —invex.

Jeyakumar and Mond (1992) have shown that the V' — invexity is pre-
served under a smooth convex transformation.

Proposition 1.3.1: Let ¥ : R — R be differentiable and convex with
positive derivative everywhere; let #: X, = R” be V' —invex. Then, the
function h./, (x) = (t//(h1 (x)),...,l//(hp (x))), x e X,is V' —invex.

Proof: Let x,ue X,. Then, from the monotonicity of ¥ and
V' —invexity of &, we get

w(, (x) 2yl () + e, (x, )i ), )
>y () + v (), (e )y (g, )
=y (h, )+ e, (e uly o h) (e, ).

Thus, 4, (x) is V' —invex.

Recall that a point u€ R" is said to be a (global) weak minimum of a
vector function f: R" — R?” if there exists no x € R" for which
fi(x)< f,(u), i=1,..,p.

The following very important property of V' —invex functions was also
established by Jeyakumar and Mond (1992).

Proposition 1.3.2: Let f:R" — R” be V' —invex. Then y € R" is a
(global) weak minimum of f if and only if there exists

p
0£7eR”,r20, Zfiﬂ(y):
i=1
Proof: (= ( ) Suppose that u is weak minimum for f. Then the follow-
ing linear system x € R", f, ( ) < f ( ) .., P, 18 inconsistenct.

Hence, the conclusion follows from the Gordan Alternative Theo-
rem(Craven (1978)).
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P
(<) Assume that Zrifi (y)=0, for some 0% 7€ R”,z>0. Sup-
i=1
pose that the point u is not a weak minimum for f. Then there exists

X, € R" such that f,(x,)< f,(u),i=1,...,p. Since f is V — invex,
there exists 051.(360 ,u)> 0,i=1,...,p and n(xo ,u)e R" such that

;)(fi(xo)—fl( u))2 f; (uh(x, ).

a,(x,, u
S 1
So, ;m(ﬁ(%)—ﬁ(u))< 0,
and hence iz‘if; ()(x, ,u)< 0.

This is a contradiction.
By Proposition 1.3.2, one can conclude that for a ' — invex vector func-

tion every critical point (i.e. ﬂ(y)zO, i=l,...,p) is a global weak

minimum.
Hanson et al. (2001) extended the (scalarized) generalized type-I invex-
ity into a vector (V-type-I) invexity.

Definition 1.3.5: The vector problem (VP) is said to be V-type-I at
x € X if there exist positive real-valued functions &, and 3, defined on

X x X and an n — dimensional vector-valued function 7: X x X — R"
such that

15)= £,(%)z a, (6, 3)V/, (%)n(x. %)
and

~g,(¥)2 8, (xx)Vg, ()(x.x)
forevery x € Xand forall i =1,2,...,p and j=12,...m

Definition 1.3.6: The vector problem (VP) is said to be quasi-V-type-I at
X € X if there exist positive real-valued functions ¢, and ; defined on

X x X and an n — dimensional vector-valued function 7: X x X — R"
such that

3 )~ 1020 = 3 eV )20
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and
—Zz B;(x.%)g,()£0= 3 ,n(x.X)Vg, (¥)<0.
for every xeX.

Definition 1.3.7: The vector problem (VP) is said to be pseudo-V-type-1
at x € X if there exist positive real-valued functions ¢, and f3; defined

on XxX and an #n-— dimensional vector-valued function
n:XxX — R" such that

S e 2V (0202 Yo (e71 () (P

i=1
and

m

Z;/ljn(x,f)ng(f)gO: —Z;Ajﬂj(x,z)gj(f)go,
J= j=
forevery x e X .

Definition 1.3.8: The vector problem (VP) is said to be quasi-pseudo-V-
type-I at x € X if there exist positive real-valued functions ¢, and ﬂj de-
fined on XxX and an n— dimensional vector-valued function
n:XxX — R" such that

> ra (5.5 (x)- £ (D20 = 3 el )7, (1) <0

and

m m

lef]xx)Vg ( )>O:>—Zﬂ,ﬂ xx)gj( );0
J=1 j=1
forevery xe X .

Definition 1.3.9: The vector problem (VP) is said to be pseudo-quasi-V-
type-I at x € X if there exist positive real-valued functions «; and f3; de-
fined on XxX and an »n— dimensional vector-valued function
n:XxX — R" such that

22'77 X, X)Vf,(x )>O:Zra %) f(x)- £,(x)]20

i=1
and
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354,850k (2)20 5 34 e (R
J= J=
forevery x e X .

Nevertheless the study of generalized convexity of a vector function is
not yet sufficiently explored and some classes of generalized convexity
have been introduced recently. Several attempts have been made by many
authors to introduce possibly a most wide class of generalized convex
function, which can meet the demand of a real life situation to formulate a
nonlinear programming problem and therefore get a best possible solution
for the same.

1.4 Efficient Solution for Optimal Problems with
Multicriteria

For the vector function f (x): ( fi (x),..., f, (x)) and a set of feasible point
K < R’ for which it is desirable to minimizef’ (x) , (maximizef (x) ). x°

is defined to be efficient if x° € K and there is no other x € K such that

F)< ) 1)z 1))

The properness of the efficient solution of the optimal problem with
multicriteria has been introduced at the early stage of the study of this
problem (Kuhn and Tucker (1951)). Geoffrion (1968) defined the proper-
ness for the purpose of eliminating an undesirable possibility in the con-
cept of efficiency, namely the possibility of the criterion functions being
such that efficient solutions could be found for which the marginal gain for
one function could be made arbitrarily large relative to the marginal losses
for the others. Geoffrion (1968) gave a theorem describing the relation of
the Kuhn-Tucker proper efficient solutions and his proper efficient solu-
tion.

In this section, we summarize briefly the known results of proper (im-
proper) efficient solutions for (VP), and apply them to five examples.

The problems discussed in the papers of Kuhn-Tucker (1951), Geoffrion
(1968), Tamura and Arai (1982) and Singh and Hanson (1991) are of the
following nature:

V —Maximize f(x)
subjectto g(x)<0,

where f(x) and f(x)<f (xo) are g(x) are p— dimensional and
m — dimensional vectors.
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Let K denote the set of feasible solutions of the above vector maximum
problem.

Definition 1.4.1 [Kuhn-Tucker (1951)]:

An efficient solution x° is called a proper efficient solution if there ex-
istsno x € K such that

Vi 20, Vg, (x* k>0,
where Vg, |x”) is a matrix whose row vector is a gradient function of an
active constraint. We call this solution a K7-proper efficient solution.

Definition 1.4.2 [Geoffrion (1968)]: An efficient solution x’ is called a
proper efficient solution if there exists a scalar M > 0 such that, for each
i

0

fj(xo)_fj(x)_

for some j such that f, (x)< f p (xo),whenever, xe K and

£i(2)> £,)
For minimization problem (VP) we have the following inequality for
M >0

A)-16)
£,00-£,6")"

for some j such that f, (x)> f; (xo), whenever x is feasible for (VP)
and ﬁ(x)<ﬁ(x0).

We call this solution a G-proper efficient solution.

Proposition 1.4.1 [Geoffrion (1968)]: Assume that the Kuhn-Tucker

constraint qualification holds at x”. Then a G-proper efficient solution
implies a KT-proper efficient solution.

Now, let is examine the proper and improper efficient solutions of the
following example in some detail.

Example 1.4.1 [Kuhn-Tucker (1951)] The problem considered is as fol-
lows:

Maximize (x, —x’ + 2x)
subjectto 2—x2>0, x>0.
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The feasible region and the functions are shown in the fig la:

£ (x)
2 £, (x)
f(x7)
1 f2 (x) 1/\ Y = £(X)
o
X . I
o] i e x o I 2 — £, ()
efficient solution
(a) (b)
Fig. 1. (a) Functions fltx), fztx), and set of efficient

solutions. (b) Y = f£(X) in example 1.4.1.

In Geoffrion’s (1968) definition of proper efficiency M is independent
of x, and it may happen that if f* is unbounded such an M may not ex-

ist. Also an optimizer might be willing to trade different levels of losses
for different levels of gains by different values of the decision variable x .

Singh and Hanson (1991) extended the concept to situation where M de-
pends on X .

Definition 1.4.3 [Singh and Hanson (1991)]: The point x’ is said to be
conditionally properly efficient for (VP) if x° is efficient for (VP) and
there exists a positive function M (x) such that, for each i, we have

0
fi(x)_f( )<M( ),
£ 60)= 1)
for some j such that f; (x) <f; (x ) whenever x € X and
£1&)> £,°),
For V' —Min problem the above definition can be stated as: The point

x" is said to be conditionally properly efficient for (¥ —Min) if x° is ef-
ficient for (7 —Min) and there exists a positive function M (x) such that,

)16
f()(())c) ’

whenever x € X and

for i, we have

for some j such that f

£x)< £

The following example is from Mishra and Mukherjee (1995a).
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Example 1.4.4. [Mishra and Mukherjee (1995a)]: Consider the problem
V —Minimize (f,(x,, x,), f,(x,, x,))

x x
where filx,, x,)=""and £,(x,, x,)="%
X, X

subject to (xl,xz)eRz,l—xlSO,I—xZSO.

It can be shown that every point of the feasible region is efficient. But,
none of the point of the feasible set is properly efficient.

Let x = (a, b) be an efficient solution. By symmetry of the program,
we may assume that | <a <b. Let M be any positive number. Choose

X = (x] , xz) so that
x—2>Max(M, 2}

X, a
Then
b %
fz(x)_x_2 _—fz(x )’
X, a
but
b_ox
fz(X*)_fz(x): a X :bxz(bxl_axz)szz >X2 oy
fl(x)—fl(x*) X a axl(bxl—axz) ax, X
x, b

This shows that x* = (a, b) can not be properly efficient. But, every
efficient solution is conditionally properly efficient:

Choose M(x) > bﬁ, where x = (x1 , X, ), then
ax,

fz(X*)_fz(x)_bxz < X
e

£ (x)= s b 1 (x* ), where (x,, x, ) is feasible and
X, a
A=< T = 1)
2

Thus, x is conditionally properly efficient.



Chapter 2: V-Invexity in Nonlinear Multiobjective
Programming

2.1 Introduction

Hanson’s (1981) introduction of invex functions was motivated by the
question of finding the widest class of functions for which weak duality
hold for dual programs, such as the Wolfe and Mond-Weir duals, formu-
lated from the necessary optimality conditions. Since then, various gener-
alizations of invexity have been introduced in the literature e.g. Craven and
Glover (1985), Egudo (1989), Hanson and Mond (1982), Kaul and Kaur
(1985), Martin (1983), Kaul, Suneja and Srivastava (1994), Jeyakumar and
Mond (1992), Mond and Hanson (1984, 1989), Nanda and Das (1993,
1994), Smart (1990), Weir (1988), Rueda and Hanson (1988), Mond and
Husain (1989), Mond, Chandra and Husain (1988), Mishra and Mukherjee
(1994a, 1994b, 1995, 1996, 1996a, 1996b).

However, the major difficulty is that the invex problems require the
same kernel function for the objective and the constraints. This require-
ment turns out to be a severe restriction in applications. Because of this re-
striction, pseudolinear multiobjective problems (Chew and Choo (1984),
Rueda (1989), Kaul, Suneja and Lalitha (1993), Komlosi (1993), Mishra
(1995c¢), Mishra and Mukherjee (1996b) and certain nonlinear multiobjec-
tive fractional programming problems require separate treatment as far as
optimality and duality properties are concerned.

In this Chapter, we consider the role of invexity and its generalizations,
namely V-pseudo-invexity and V-quasi-invexity in standard multiobjective
programming; in particular, the replacement is made of invexity in results
related to necessary and sufficient optimality conditions, duality theorems
symmetric duality results and vector valued constrained games. A vast
number of theorems developed during the evolution of nonlinear pro-
gramming theory were stated with assumptions of invexity. In most cases
it has been possible to generalize these results under the assumptions of V-
invexity. However, this has not been a direct process. Intermediate and
overlapping results have been achieved using the various notions of gener-
alized convexity discussed in Chapter 1.
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Following Mangasarian’s (1969) use of pseudo-convexity and quasi-
convexity for optimality and duality theorems, duality theory has been
constructed based on particular generalizations of convexity; see, for ex-
ample, the works of Crouzeix (1981) on quasi-convex functions, Avriel
(1979) on (h, F)-convex functions, Preda (1992) on (F, p)-convex, Preda
(1994) on (F, p)-quasi-convex Mangasarian, (F, p)-quasi-convex Ponstein.

There has been substaintial progress made by authors such as Craven
and Glover (1981), Mond and Hanson (1984), Martin (1985) in developing
a complete duality theory using invex functions, and by Jeyakumar and
Mond (1992), and Mishra (1995a) using V-invex functions. Here, we out-
line the relationship of V-invexity to Mond-Weir duals, via Kuhn-Tucker
conditions. Next, the necessary and sufficient optimality conditions for a
class of nondifferentiable multiobjective programming problem will be es-
tablished. In section six, vector valued infinite game is associated to a pair
of multiobjective programming problem and finally in the last section a
multiobjective symmetric duality theorem is established.

The general nonlinear multiobjective program to be considered is:

(VP): V=Min( f,(x)..... f,(x))
subjectto g(x)<0,
where f,: X, > R,i=1,..,p and g:X, > R" are differentiable
functions on X, = R" open. When p =1, the problem (VP) reduces to a

single objective case and gives (P) of Wolfe (1961), Avriel (1976), Kaul
and Kaur (1985).
It is assumed that the program (VP) contains no equality constraints;

equality constraints of the form h(x) =0 could be re-written as h(x) >0,

- h(x) > 0 in order to put an equality constrained optimization problem in
form of (VP).
The Fritz-John type necessary conditions for a feasible point X to be

optimal for (VP) are (John (1948)) the existence of 7 € R”, A € R" such
that

Sl ) 3 )0 e

i=l1 Jj=1

/Ijgj(x*)zo, j=1,...,m, (22)

>0, 1>0. 2.3)
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There are no restrictions on the objective or constraint functions apart
from differentiability.
However, by imposing a regularity condition on the constraint func-

P

tions, the 7 € R” may without loss of generality, be taken as Zri =1,
i=1

and we obtain the Kuhn-Tucker type conditions (Kuhn-Tucker (1951)) or

the weak Arrow-Hurwicz-Uzawa constraint qualification (Mangasarian

(1969)):

There exist 7 € R?, A € R" such that
$ o) S )0 e
i1 =
/Ijgj(x*)zo, j=1,...,m, (2.5)

p
r20, Yz, =1, 120, (2.6)
i=1

It is shown in Mangasarian (1969) that the Kuhn-Tucker type conditions
are necessary for optimality regardless of any convexity conditions on g.

2.2 Sufficiency of the Kuhn-Tucker Conditions

Kuhn and Tucker (1951) prove that when f is differentiable and convex,
and g is differentiable and concave, then a feasible point x" of (P), for

which there exists some 7 € R” such that (x* , z'*) satisfy the Kuhn-
Tucker conditions, is an optimal solution of (P).

Mangasarian (1969) weakened the convexity requirements for this result
to hold; it is sufficient that f be pseudo-convex and g »JE€J,

J= { Jj:g; (x)= 0} be differentiable and quasi-concave.

The question of which is the widest class of functions giving sufficiency
of the Kuhn-Tucker conditions is used to introduce /' — invex functions in
Jeyakumar and Mond (1992). There, it is shown that sufficiency follows

when 7,f, is V — pseudo-invex, i =1,...,p, and ngj is V — quasi-

1
invex, j =1,...,m, with respect to the same 77.

The concept of efficiency or Pareto optimality in multiobjective pro-
gramming has important role in all optimal decision problems with non-
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comparable criteria. Geoffrion (1968) introduced a slightly restricted defi-
nition of efficiency called proper efficiency for the purpose of eliminating
efficient points of a certain anomalous type that lends itself to more satis-
factory characterization. Many researchers have obtained necessary and
sufficient conditions of Kuhn-Tucker type for a feasible point to be prop-
erly efficient, for example see Kaul, Suneja and Srivastava (1994) and ref-
erences therein. Singh and Hanson (1991) pointed out that A/ involved in
the definition of proper efficiency (Chapter 1, Section 4) is independent of
x and it may happen that if f is unbounded such an M may not exist.

Hence they generalized the definition to cover situations where Geof-
frion’s (1968) definition does not apply.

In light of above discussion we establish the following Kuhn-Tucker
type sufficient optimality condition for a feasible point to be conditionally
properly efficient.

Theorem 2.2.1 (Kuhn-Tucker type Sufficient Conditions)
Consider the multiobjective problem (VP). Let there exist 7 € R”,
A € R" such that (2.4)-(2.6) at a feasible pointx” € X, .If (Tlfl ,...,z'pfp)

is ¥V — pseudo-invex and (1,g,,...,4,g, ) is V — quasi-invex with re-

spectto 77 . Then x isa conditionally properly efficient solution of (VP).
Proof: Let x be feasible for the problem (VP). Then, g(x)S 0. Since
ljgj =0, j=1,...,m,then

Zig Zig( ).
Since ﬂ.(x,x*)>0, v ]=1,2,...,m,wehave

Z,B (x x )/1 g,(x Z,B (x x )ﬂjgj(x*), (2.7

Then by V' — quasi-invexity of (/1l s, 8 ), we get

S 4 (x nlx, x)<0.
=1

Therefore, from (2.4) we have

irifi'(x*)n(x,x*)z 0.

Thus, from V' — pseudo-invexity of (z’l SrseensT, 1, ), we have
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Zp:ai(x, x*)fiﬁ(x)z Zp:ai(x, x)flfl(x)
i=l1 i=1
Since al.(x, x*)> 0, Vi=1,...,p and 7 >0, we have

fi(x*)S filx), Yi=1,..,p.
Thus, x* is an efficient solution for (VP).

Now assume that x~ is not a conditionally properly efficient solution for
(VP). Therefore, there exists a feasible for (VP) and an index such that for

every positive function M (x), we have f](x*) > M (x) f,(x) for all j satis-
fying /,(x)> f,(x") whenever f,(x)< f(x").
This means fl.(x*)— fl(x) can be made arbitrarily large and hence for
7 >0 and ai(x, x*)> 0,Vi=1,..,p.
The inequality Zp:a[ (x, x )1[ [fl (x*)— /i (x)] > 0 is obtained.
i=1

By V' — pseudo-invexity of (Tlfl yeees Ty f ), we get

() <0. e8)
Now from (2.8) and (2.14:11), we get
3,8, e, x7)> 0. 9
j=1

By V — quasi-invexity of (/1l giseesy, gm) and (2.9), we get

iﬂj (x, x*)ﬂjgj(x)> iﬂj (x, x*)ﬂ.jgj (x*),

which is a contradiction to (2.7).
Hence, x  isa conditionally properly efficient solution of (VP).

2.3 Necessary and Sufficient Optimality Conditions for a
Class of Nondifferentiable Multiobjective Programs

Mond (1974) considered a class of nondifferentiable mathematical pro-
gramming problems of the form:

1
(NDP): Minimize f (x) + (xT Bx)5
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subject to g(x)>0, (2.10)

where f and g are differentiable functions from R" to R and R™, re-

spectively and B is an n x n positive semi-definite (symmetric) matrix.
Later Mond, Husain and Durga Prasad (1991) extended the work of
Mond (1974) to multiobjective case:

(NDVP): Minimize (fl (x)+ (xTle)E gees £ () + (xTBpx)Zj
subject to g(x)> 0. @.11)

In the subsequent analysis, we shall frequently use the following gener-

alized Schwarz inequality [Riesz and Sz-Nagy (1955, pp. 262)]
1

1
x"Bz < (xTBx)2 (ZTBZ)2 , V x,zeR",
where B is an n xn positive semi-definite (symmetric) matrix.
We now state Kuhn-Tucker type necessary conditions.

Lemma 2.3.1. [Kuhn-Tucker type necessary condition]
Let x  be an efficient solution of (NDVP). Then there exist 7 € R”,
A € R" such that

iri[f‘i'(x*)-’_Bizi]-i_ /ftjgyj(xyﬂ):o (2.12)
i=1 jellx"

e )=, e

z'Bz, <1, i=1,.,p (2.14)

1
(x*TBix* )2 = x*TBizi , (2.15)

>0,412>0, Zp:z-l.zl, (2.16)
i=1
where I(x*): {j :gj(x*)zo};,g 4.

Theorem 2.3.2 [Sufficient Optimality Condition]
Let x* be an efficient solution of (NDVP) and let there exist scalars
7€ R” and A such that



2.3 Nondifferentiable Multiobjective Programs 19

Zplri[vxﬁ(x*)+3[zi]+ ljvxgj(x*)zo

i=1 jellx"
lfgj(X*):O’
ZTB[Zi <1, i=1,.,p
(x*TB,.x*); :x*TBizi,
7>0,4120,
where I(x*): {j :gj(x*): 0};& 0.

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

If (Tl(fl +" Bz, ),...,Tp(fp + B,z, )) is V' — pseudo-invex and
(/11 gl ses Ay, gm) is V — quasi-invex with respect to the same 77 and for

all piecewise smooth z, € R". Then x" s conditionally properly efficient

solution for (NDVP).

Proof: Let x be feasible for problem (NDVP). Then x € §, g(x) <0.

Since 4,g; (x*)= 0, j=1,...,m, then

Zﬂ g (x Zﬂ g,lx).
Since ﬂ(x x*)>0 V j=1,...,m, we have
Z,B (x X )’1 g/ Zﬂ (x X )ﬂjgj(x*).
Then by V pseudo-invexity of (/11 g1 ses gm), we get
i/ljvxgj(x*)n(x, x*)é 0.
j=1
Therefore, from (2. 12),] we have
P
Zri[vxﬁ(x*)+3izi]20'
i=l

Thus, from V' — pseudo-invexity of(rl( ,+ TBIZ),...,

we have

(2.22)

(2.23)

Tp(fp +'TBpZ))’
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Zp:ai (x, x*)fi [f,. (x)+ xTBiz]Z Zp:ai(x, x*)fl. [fi(x*)+ x*TBiz]_ (2.24)
"li;lat is "
a, (x, x*)fl. |_fl (x*)+ x*TBl.zJS a; (x, x*)rl. [f, (x)+ xTBiz] Vi
and a,(x,x)r, [fi(x*) + X*TBI.Z] < a].(x,x*)rj [f].(x) + xTB].z] f(;r at
least one j.
Since, al.(x, x*)> 0 Vi and 7>0,we get
fi(x*)+ x*TBiz < fi(x)+ x"Bz Vi and
/; (x*)+ x*TBJ.z <f (x)+ xTsz, for at leastone ;.

Thus, x~ is an efficient solution of (NDVP).

Now assume that, X is not a conditionally properly efficient solution of
(NDVP). Therefore, there exists x € K and an index i such that for every
positive function M (x), we have:

1

fi(x*)+(x*TBl.x*); >M(x{fi(x*)+(x*TBix*)2J, V j satisfying

/i (x)+ (XTBJX)% > fj(X*)Jr (X*TBJX*T; )
whenever
1

ﬁ(x)-F(XTBiX)% < fl.(x*)Jr (x*TBl.x*F.

u 1
This means f(x*)+ ()C*TB[JC*)2 —(f, (x)Jr(xTB,.x)E J can be made

1

arbitrarily large and hence for 7 >0 and «; (x, x*)> 0, Vi, the ine-
quality

1

Salovr o 1l ol 8 f 107 |0

is obtained.
By V' — pseudo-invexity of (Tl (f1 +-'B, '),...,rp (fp +- TBp )), we get

Zp:ri (foi(x*)+ Biz)n(x, x*)< 0. (2.25)

i=1
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Now from (2.12) and (2.25), we get
*l_/ngj(x*)n(x, X*)> 0.
jellx

By V' — quasi-invexity of (/11 gises A8 ), we have
B, (x, x*)ﬂ’jvxgj ()> 28 (x, x*)/”tj.ngj (X*)’ (2.26)

jel X Jjel X
which is a contradiction to (2.23).
Hence, x  isa conditionally properly efficient solution of (NDVP).

2.4 Duality

Several approaches to duality for the multiobjective optimization problem
may be found in the literature. These include the use of vector valued La-
grangian, see for example Tanino and Sawaragi (1979), Weir (1987),
White (1985) and Lagrangians incorporating matrix Lagrange multipliers,
Bitran (1981), Corley (1981), Ivanov and Nehse (1985). Weir and Mond
(1989) generalized the scalar duality results of Wolfe (1961), Mond and
Weir (1981) and Bector and Bector (1987) to multiobjective optimization
problem under the assumption of convexity. A vast number of works have
appeared dealing with duality in multiobjective programs under different
assumptions of convexity, for example, Preda (1992), Egudo (1989), Kaul,
Suneja and Lalitha (1993), Rueda and Hanson (1988), Kaul, Suneja and
Srivastava (1994) and Mond and Smart (1989) to mention a few.

Jeyakumar and Mond (1992) established the duality results for (VP)
considered above in Section 2.1 under generalized V' — invexity assump-
tions. The dual problem for (VP) is:

(VD): V —Maximize (f;(),.... f, («))
abjectto 37,1 () + > Ag)lw)=0,  @2D
A,g,w)=0, j=1,.,m, (2.28)
7>0,7e=1,1>0, (2.29)

where e = (1,...,1)6 R? .
By considering the concept of weak minimum Jeyakumar and Mond
(1992) demonstrated that V' — pseudo-invexity of \z,f,,...,7, f, p) and
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V' — quasi-invexity of (/1l g1 s Ay gm) with respect to the same kernel
function 77 was sufficient for weak duality to hold between the primal
problem (VP) and its Mond-Weir type dual (VD) namely;

Theorem 2.4.1. (Weak Duality)
Consider the multiobjective problems (VP) and (VD). Let x be feasible

for (VP) and let (u,7,2) be feasible for (VD). If (¢, f,,....7, ) is
V' — pseudo-invex and (/11 gises Ay gm) is V' — quasi-invex with respect
to the same 77, then

(f1 (x),...,fp(x))T —(f] (u),...,fp(u))T ¢ —int R’ .

Mond and Weir (1981) proposed a number of different duals to the sca-
lar valued minimization problem. Here we show that there are analogous
results for the multiobjective optimization problem (VP) with generalized
V — invexity assumptions.

Theorem 2.4.2 (Weak Duality)

If for all feasible (x,u,7,1)

@@. f,, i=1,..,p is V — pseudo-invex and (llgl,...,/imgm) is

V — quasi-invex; or

(b). (rlf1 ,...,z'pfp) is V' — pseudo-invex and (xllg1 ,...,ﬁ,mgm) is
V — quasi-invex; or

(©). ( . ,...,fp) is V — quasi-invex and (/11g1 ,...,/’ngm) is strictly
V' — pseudo-invex; or

(d). (Tlfl,...,rpfp) is V- quasi-invex and (4,g,,....4,g,) is
strictly ' — pseudo-invex, then f (x) £ f (u)

Proof:
(a). Assume contrary to the result, i. e., for x feasible for (VP) and

(1,7, 1) feasible for (VP), suppose f,(x)< f,(u), for all i=1,...,p.
Since Oti(x, u)> 0, Vi=1,...,p, we have

a,(x, u)f,(x)<a,(x,u)f(u), V i=1,...p.
Therefore, 3 a,(x, u)f,(x) < 3 a, (x. 1)/, (w).

i=l1

By V — pseudo-invexity of f,

i

, i=1,...,p, wehave
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Since 7 >0,
S o (w)p(x, u)< 0. (2:30)
Since L. (1)< A g (), ¥ il
Again, since S,(x,u)>0, V j=1,..,m, wehave
Zﬁ x,u)i, g, (x) zﬂ x,u)d, g, (u).
Now, V' — quasi-invexity implies that
S 4,g,(whplx, u)< 0. (231)
Combining (2.30) a:d (2.31), gives
(er Zz gl j u)<0,

which contradicts the constraint (2.27) of (VD).
(b). Let x be feasible for (VP) and f,(x)< f(u), Vi=1,...,p. Since

720 anda(x u)>0 Vi=1,...,p, it follows that

Zaxu)rf Zaxu)rf)

and V —pseudo -invexity of (2' SrsensT, S, ) implies

er xu<0

Rest of the proof goes on the lines of the proof of part (a).
(c). Let x be feasible for (VP) and (u ,T,/l) feasible for (VD). Suppose

fi(x)< fi(u),i=1,..., p. Since a(x u)>0, ¥V i=1,...,p, we have

ZO(XM Zaxu

The V' — quasi-invexity of ( S p) implies that

IZi:fl.'(u)n(x u)<0
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Since 720,

Zplriﬂ(u)n(x, u)<0.

i=1

2ﬂjg}(u)f7(x, u)> 0.

Since (/11 F< S - g ) is strictly V" — pseudo-invex, we have

Zﬂj(‘x’ u)//ijgj(x) >ZIBj(x’ u)ﬂ‘jgj(u )9

J=1 J=1
which is a contradiction since ﬂjgj(x)SO and ﬂjgj(u)ZO and
ﬁ/(x, u)>0, Vji=1,.,m

(d). Let x be feasible for (VP) and (u ,T,/l) feasible for (VD). Suppose

fi(x)<f,.(u),i:1,...,p. Since ai(x,u)>0, Vi=1,.,p, and
720, we have

By (2.27),

Zaxu)rf Zaxu)rf)

The V' — quasi-invexity of ( T 1T, f, ) implies that

ZT f x u <0
By (2.27)

328 Wl 1) 0.
and since (ﬂl g ,ﬂmjém) is strictly V' — pseudo-invex, we get

Zﬂ & (x Zﬂ &

which is a contradlctlon since 4, gj( )S 0and 4,g; (u)>0.
Theorem 2.4.3: If x° is feasible for (VP) and (uo , 7’ /10) is feasible

for (VD) such that f (xo): f (uo) and for all feasible (u , T, /1) of (VD),
one of the conditions (a)-(d) hold. Then x’ is conditionally properly effi-
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cient for (VP) and (uo 70, /10) is conditionally properly efficient for
(VD).

Proof: Suppose x° is not an efficient solution for (VP), then there ex-
ists x feasible for (VP) such that fi(x)S f,.(xo) Vv i=1,...,p. Using
the assumption ﬁ(xo)ﬁ f,(uo) V i=1,...,p, a contradiction to Theo-

rem 2.4.2 is obtained. Hence x° is an efficient solution for (VP). Similarly
it can be ensured that (uo N /10) is efficient solution for (VD).

Now suppose that x° is not conditionally properly efficient for (VP).
Therefore, for every positive function M (x) > (), there exists x € X fea-
sible for (VP) and an index i such that

f (xo )— f,(x)> M(x)(fj (x)- f; (xo )) for all ;j satisfying
S (x)> S (xo ), whenever f,(xX)< f; (xo )
This means fl.(x0 )— /i ()?) can be made arbitrarily large and hence for

7” > 0, the inequality

2Ti(ﬁ(x0)—ﬁ(a‘c))> 0, (2.32)

is obtained.
Now from feasibility conditions, we have

ﬂ?gj(f)él(;gj(uo), vV j=1..,m.
Since ﬂj()_c,uo)> 0, Vj=1...,m

iﬂj(’?’ ”O)A(f)‘gj(f)s iﬂj(’?’ “Oyggj(uo)

By V — quasi-invexity of (/’L1 s, 8 ), we have
S 0 0 = 0
Z/ijgj(u )17(x, u )S 0.
j=1

Therefore, from (2.27), we get

Zp:riof[(uo)y()_c, uO)Z 0.

p
Since 7 >0, Zri =1, we have
i=1
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gﬁ(uoﬁ(f,uo)z 0.

By V' —pseudo-invexity of f;,7=1,..., p, we have

Zp:ai(f,w)fi(— Zp:“(f 0V 0. (2.33)

On using the assumption f° ( ) f ( ) in (2.33), we get

Safe ) 0= S o)

Since ai()_c,uo)>0, Vi=1,..,p and ri >0, Vi=1,..,p, we
get

Sl f®)z )
that is, ir?[ﬁ(xo)—ﬁ()_c)]ﬁ 0,

which is a contradiction to (2.32).

Hence x’ is a conditionally properly efficient solution for (VP).

We now suppose that (uo 0, /10) is not conditionally properly effi-
cient solution for (VD). Therefore, for every positive function M (x) >0,

there exists a feasible (L_t T, A ) feasible for (VD) and an index i such
that f,(i0)— f,(u’) > M(x)( f,(")— f,(@r)) for all j satistying
fj(I/T)> fj(uo),whenever fii)< fl(uo)

This means fl(ﬁ )— /i (uo) can be made arbitrarily large and hence for
7° >0, the inequality

if?(ﬁ(ﬁ)—f,-(uo))m, (2.34)
is obtained. -

Since x°, (uo , 0, /10) feasible for (VP) and (VD), respectively, it fol-
lows as in first part

S0 (@)~ £ () <0,

i=1
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which contradicts (2.34). Hence (uo 70, /10) is conditionally properly ef-
ficient solution for (VD).

Remark 2.4.2: In the proof of above Theorem we have only used gen-
eralized invexity conditions of part (a) of Theorem 2.4.2. Theorem 2.4.3
can be established for other ' —invexity conditions mentioned in Theo-
rem 2.4.2.

Theorem 2.4.4 (Strong Duality):

Let x° be efficient for (VP) and let one of (a)-(d) of Theorem 2.4.2 hold
and the Kuhn-Tucker constraint qualification is satisfied. Then there exists

(Z', ﬁ) such that (xo, T, /1) is feasible for (VD) and the objective values
of (VP) and (VD) are equal at x°, and (xo, T, ﬂ,) is conditionally prop-
erly efficient for the problem (VD).

Proof: Since x° is an efficient solution for (VP) at which the Kuhn-
Tucker type necessary conditions, there exists (Z', /1) such that
(xo, T, /1) is feasible for (VD). Clearly the values of (VP) and (VD) are

equal at x°, since the objective functions for both problems are the same.
The conditional proper efficiency of (xo , T, /1) for the problem (VD) fol-
lows from Theorem 2.4.3.

2.5 Duality for a Class of Nondifferentiable Multiobjective
Programming

Mond (1974) considered a class of nondifferentiable mathematical pro-
gramming problems of the form:

(P): Minimize f(x)+ (xTBx)%
subject to g(x)>0,
where f and g are differentiable functions from R" to R and R", re-
spectively and B is an nxn positive semi-definite (symmetric) matrix.
With the assumption that f* is convex and g is convave, duality results

were proved for a Wolfe type dual.

Mond and Smart (1989) weakened convexity requirements to invexity
and its generalizations. Mond, Husain and Durga Prasad (1991) considered
the following multiobjective nondifferentiable programming problem:
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(NDVP): Minimize [fl(x)+(xTB1x);,...,fp(x)+(xTBpx);j

subject to g(x) >0,

and presented Mond-Weir type (1981) dual given below and established
various duality results, viz., weak, strong and converse duality theorems
under convex assumptions.

Lal et al. (1994) weakened convexity requirements to invexity and ob-
tained weak duality theorem.

In relation to (NDVP) we associate the following dual nondifferentiable
multiobjective maximization problem:

(NDVD): Maximize ( 1(u)+(uTBlzl),...,fp(u)+(uTB z ))

Subject to Zr V fi(u)+Bz] 21vg1 _o, (233

i=l

ZTBizl. <1, i=1,.,p (2.36)
z)ljgj (u)z 0, (2.37)
=

v (2.38)
r>0,120, Y7, =1.

i=1

Let H denote the set of feasible solutions for (NDVD).
The following Theorem generalizes the weak duality theorem of Lal et
al. (1994).

Theorem 2.5.1. (Weak Duality):
Let x € K and (u,r,ﬁ,zl ,...,zp)e H and

(Tl(fl +" Bz, ),...,rp(fp +. B,z, ))
is V' — pseudo-invex and (2,1 Zises A& ) is V — quasi-invex with respect

to the same 77 and for all piecewise smooth z, € R". Then the following
can not hold:

1
f,.(x)—i-(xTBl.x)E <fiw)+u"Bz, ¥V i=1,.,p

1
and f, (x)+(xTBi0x)5 </ (u)+ u'B, z, , foratleastone i,.

Proof: Let x be feasibility conditions
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/ljgj(x)s/ijgj(u), j=1,....,m
and Ajogjo(x)ﬁﬁjogjo(u), for atleast one j e {l,...,m}.
Since ﬂj(x u)>0, V j=1,..,m, wehave

Zﬂxuig Zﬂxu )

Then by ¥ — quasi-invexity of (4,g, ,...,/1," gm), we get
szvxg_j (u)n(x,u)<0,
j=1
And so from (2.35), we have
Zr[Vf )+ B.z,|n(x, u)>0.

Thus, from V' — pseudo -invexity of

(e, (f, + "B,2),.r, (£, +- "B, 2)).

we have

Z::ai(x, u)ri[fi(x)+ xTBl.z]Z IZ::“"(X’ ”ﬁi[ﬁ(u)+uTBl.z]_

But x B z; < (x B, x) (z Bz, ) (By Schwarz inequality) < (xTBl.)c)E

(by (2.14)).
Now, from (2.15) and (2.38), we have

iZ::a[(x, u)f,-[f[(X)-i-(xTB[x);} > iai(x, u)fi [ff(”)-i-uTBiz],

i=l1

That is,

al.(x,u)r{fi(x)+(xTBix);}Zai(x, u)ri[fi(u)+uTBizi] V i, and

1

a, (x,u)r, [ £ 0+ (xTBiox)z} > a, (xu), | f, () +u'B,z, | for at

least one i, € {1,...,p} .

Since, a,(x, u)>0 Vi and 720, we get

1
fl.(x)Jr(xTBl.x)E > f(u)+u"Bz Vi and
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1
f, (x)+ (xTBiox)E > fi () + u'B,z, , foratleastone i,.
Thus, the following can not hold:

1
fi(x)+(xTB,.x)5 <fiu)+u"Bz, ¥V i=1,.,p

1
and f, (x)+(xTBi0x)5 <f. (u)+ u'B, z, , foratleastone i,.

Theorem 2.5.2.
Let x € K and (u, T, 4, z, ...,ZP)E H and the V' — pseudo-invexity

and V' — quasi-invexity conditions of Theorem 2.5.1 hold. If
u'Bu=u"Bz, i=1,..,p, (2.39)

and the objective values are equal, then x is conditionally properly effi-

cient for (NDVP) and (u s Ty Ay ZyyesZ p) is conditionally properly effi-

cient for (NDVD).
Proof: Suppose x is not an efficient solution for (NDVP), then there

exists x, € K such that

fi(x0)+(x0TBl.x0 )% £ ) (xTBix)%, Vi=L.,p

< flu)+
1 1
and f; (x0)+(x0TBi0x0 )2 <t (x)+ (xTBl.Ox)Z , foratleastone i, .
Using (2.15), we get

1
fi(x0)+(x0TBix0 )E <fw)+u'B z, ¥V i=1l,.,p,

1
£ (x0)+(x0TBl.0x0 )5 < f,(x)+u"B,z, , foratleastone i,.

This is a contradiction of weak duality Theorem 2.5.1. Hence x is an
efficient solution for (NDVP). Similarly it can be ensured that
(u , T, A, Zy, ...,Zp) is an efficient solution of (NDVD).

Now suppose that x is not conditionally properly efficient of (NDVP).
Therefore, for every positive function M (x)> 0, there exists x, € X
feasible for (NDVP) and an index i such that
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Ji(x)+ (XTB,-X)% - (ﬁ (%) + (x5 B,-X);J

>M(X)[f(xo)+(xTB x)* = f,(x)+(x"Bx)? j

for all j satisfying
1

1
f; (xo )+ (xOTBij )5 > f; (x)+ (xTBjx)E ,
whenever
1

£ (x0)+ (ngixO )% < fi(x)+ (xTBix)2 .

1 1
This means f,(x)+ ()CTB,.)C)E — (fl (x, )+ (xOTBixO )ZJ can be made ar-

bitrarily large and hence for 7 > 0, the inequality

S 1006 -t ]|

is obtained.
Now from feasibility conditions, we have

ﬂ_/gj(xo)é ﬁ,_jgj(u), VYV j=1....,m
Since ﬂ,(x u0)>0 vVj=1..

Zﬂ xoa”)&gjxo Zﬂ xo»”ﬁg,()

By V — quasi-invexity of (/”t]g1 yeres ﬂmgm ), we have

4,9 ¢, (. 1)<,
j=1

Therefore, from (2.35), we get
S0 f Y5 )2 0.
i=l

Since 720, ZP:TI. =1, we have

S0 (V. f )+ Bz (. u®)2 0.

By using V' — pseudo-invexity conditions, we have

(2.40)
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Za xo,u)r( (x0 +xTBz) Za xo,u)r( ()+uTBizi).

Smce ai(xo, )>0 Vz=1...,p,wehave

lZ::T(f(xo +XTBZ) ZT( +uTBz)

Since the objective values of (NDVP) and (NDVD) are equal, we have

z(f( (TBXO)}ZT( (xrB,.x)éj.

This yields

IZPI:% {f (x)+ (XTB[x);j—(ﬁ(x0)+ (x(,TB[x0 )% j}s 0,

which is a contradiction to (2.40).
Hence x is a conditionally properly efficient solution for (NDVP).

We now suppose that (u, T, 4,2 ,...,2 p) is not conditionally prop-
erly efficient solution for (NDVD). Therefore, for every positive function
M (x) > 0, there exists a feasible (uo s Tos A Zl0 R ...,22) feasible for
(NDVD) and an index i such that

fiu)+ug Bz~ (f,(u)+u"Bz,)

> M(x)(fz(”) +u' Bz, — f,(u,) _”oTBz‘Z?)
for all j satisfying
Sy +ugByzy < f(u)+u' Bz,
whenever
fl.(uo)+u0TB. "> fiu)+u"Bz,.
This means fl( )+ us Bz — fi(u)—uTBizi can be made arbitrarily

large and hence for 7 > 0, the inequality
P

3o (fi (g )+l Bz — f,(u)-u"B,z, )> 0, (2.41)
i=1
is obtained.
Since x, (u, T, 4,2z, ...,zp) feasible for (NDVP) and (NDVD), re-

spectively, it follows as in first part
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Zplri(fi(uo)"’ugBiZ? _fi(u)_”TBiZi )S 0,
i=1
which contradicts (2.41). Hence (u, T, 4, z, ...,Zp) is conditionally

properly efficient solution for (NDVD).

Theorem 2.5.3 (Strong Duality):

Let x be a conditionally properly efficient solution for (NDVP) at
which a suitable constraint qualification is satisfied. Let the V' — pseudo-
invexity and V' — quasi-invexity conditions of Theorem 2.5.1 be satisfied.
Then there exists (T, A,z,, ...,Zp) such that (x =u,7,4,z, ...,zp)

is a conditionally properly efficient solution for (NDVD) and

1
fl.(x)+ (xTBl.x)2 = fl.(u)+uTBizl. , i=1,...,p.
Proof: Since x is conditionally properly efficient solution for (NDVP)
and a constraint qualification is satisfied at x, from the Kuhn-Tucker nec-
essary condition Lemma 2.3.1, there exists (T, A,z, ...,Zp) such that

(x, T, A, z, ...,Zp) is feasible for (NDVD). Since

1
(xTBl.x)E = xTBl.zl. , i=1,...,p,
the values of (NDVP) and (NDVD) are equal at x. By Theorem 2.5.2,
(x =uU,7,A,2,..,2 p) is conditionally properly efficient solution of
(NDVD).

2.6 Vector Valued Infinite Game and Multiobjective
Programming

Karlin (1959) observed that matrix games were equivalent to a dual pair of
linear programs, see also Charnes (1953) and Cottle (1963). More recently,
Kawaguchi and Maruyama (1976) formulated dual linear programs corre-
sponding to the linearly constrained matrix game. Kawaguchi and Maru-
yama (1976) considered a linearly constrained matrix game and using sad-
dle point theory established an equivalence between this game and a pair
of mutually dual linear programming problems.

Corley (1985) considered a two-person bi-matrix vector valued game in
which strategy spaces are mixed and introduced the concept of solution of
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this game. He also established the necessary and sufficient conditions for
the solution of such a game.

Chandra and Durga Prasad (1992) considered a constrained two-person
zero-sum game with vector pay-off and discussed its relation with a pair of
multiobjective programming problems. Consider the following two mul-
tiobjective programming problems (P) and (D):

Kl(x’y)_xr (iﬂ“&@ﬁﬂja---:

i=1

P): V-—-Min
D
Kp (x’y)_xT [ZTiVIKj(xay)J
i=1
p
subject to ZTiVIKi (x, y) <0, (2.42)
i=l
x>0, y>20, 7eA. (2.43)
P
Kl(u,v)—xr Z,ul.VzKi(u,v) yeres
(D):  V —Max a
V4
Kp(u,v)—xT (z,uiVZKi(u,v)]
i=1
p
subject to ZﬂinKi (u , v) >0, (2.44)

i=1

u>20, v20, pueA, (2.45)

where x,ue R"; y,veR"; t,ueR”; and K:R" xR" - R" .
Corresponding to the multiobjective programming problems (P) and (D)
as defined above, consider the following vector-valued infinite game

VG: {S,T,K}, where,

i S= {x eR": x> O} is the strategy space for player I,

() T = {y eER":y> 0} is the strategy space for player I1, and

(iii) K :SxT — R’ defined by K(x, y) is the pay-off to player I.
The pay-off to player II will be taken as K (y , x)

In order to establish necessary and sufficient conditions we need the fol-
lowing definitions:
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Definition 2.6.1 (Corley (1985)): A point (X, y)€ Sx T is said to be
an equilibrium point of the game G if

K(x,v)2K(x,¥), V xe8, and

K(x,y)¢K(x,5), V yeT.

Definition 2.6.2 (Tanino, Nakayama and Sawaragi (1985)):

Let f:R" — R” . A point X €S, is said to be an efficient solution
of the vector maximization problem. V' —max f (x) over x € §, if there
does not exist any x € X such that f (x) > f ()7)

Definition 2.6.3 (Rodder (1977)): A point (x*, 3 )& Sx T is called a
solution of the max-min problem if

(i) »° is an efficient solution of ¥ —min K(xo , y), veT.

(i) K(x0 , yo)jéK(x, y), VxeS§ and yeT.

Definition 2.6.4 (Rodder (1977)):A point (xo, y0 )e SxT is called a
solution of the min-max problem if

(i) x° is an efficient solution of ¥ —max K(x, y° ), xeSs.

(ii) K(x0 , yo)iK(x, y), VxeS§ and yeT.

Definition 2.6.5 (Rodder (1977)): A point (xo, y0 )e SxT is called a
generalized saddle point (xo . yo ) solves both max-min and min-max

problems.
Definition 2.6.6 (Rodder (1977)): The following statements are equiva-
lent:

(1) (xo, y0 ) is a generalized saddle point of K (x, y) in SxT,

(ii) y° solves V —min K(x0 , y) and x° solves

V —max K(x, yo), yveT,

(iii) K(x, yo)i K()c0 , yo), VxeS§ and

K()c0 , y)j{ K()c0 , yo), Vyel.

Chandra and Durga Prasad (1993) established the following necessary
conditions:

If (x, y) is an equilibrium point of the game V'G. Then there exists
TeR’,7#0and e R”, i #0 such that (x, ¥, 7) and (X, ¥, 1)
are efficient to multiobjective programming problems (P) and (D) respec-
tively.
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Sufficient conditions are also established under concave-convex as-
sumption on K, in Chandra and Durga Prasad (1993). The following

Theorem is obtained under weaker convexity assumptions on K.

Theorem 2.6.1 (Sufficient Conditions): Let ()_c, Vv, T ) and ()_c, ¥, ,17)
be feasible for (P) and (D) respectively with
p P
'Y EVK (%, 7)=0=3" Y uV,K (%, ¥)
i=l i=1
and is an equilibrium point of the game 7 > 0, > 0. Also let, for each
i=1,...,p, K, be V — incave-invex. Then ()_c s )7) is an equilibrium
point of the game VG.
Proof: We have to prove that
K(x,7)¢K(x,7), YxeS,and K(X,7)2K(x,y), VyeT.
If possible, let K()_c, y ) < K(fc, y ), for some x € S. Therefore,

p p
ZTiKi()_Ca J’)< ZTiKi()_Ca Y )
i=1 i=1

Now by V' —incavity of 7,K,, i=1,...,p, at x,we have

P
Zai(fc, x)rilei()_Ca J_’)77()29 J_/)> 0.

i=1
Since al.(fc, x)>0, V i=1,...,p, wehave

P
Z Tilei(fa 5)77()%, f)> 0.

i=1
Since x is feasible, 7(%,X)+x¥>0=7(%, X)=x—X for some
x>0, we get
(x-3) Y2 V,K, (%, 7)> 0,
i=1
that s,

N N 2.46
Y VK (F 7)> 7YV K (%, 7). (2.46)
i=1 i=l
But (2.44) together with the hypothesis of the theorem yields

forile,.(x, y)>0,

i=1
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which contradicts (2.42). Hence K(f, y ) £ K(x, y ), vV xe€S. Simi-
larly we can show that K (X, ¥ )2 K(¥,y), V yeT.






Chapter 3: Multiobjective Fractional
Programming

3.1 Introduction

Numerous decision problems in management science and problems in eco-
nomic theory give rise to constrained optimization of linear or nonlinear
functions. If in the nonlinear case the objective function is a ratio of two
functions or involves several such ratios, then the optimization problem is
called a fractional program.

Apart from isolated earlier results, most of the work in fractional pro-
gramming were done since about 1960. The analysis of fractional pro-
grams with only one ratio has largely dominated the literature until about
1980. Since the first international conference with an emphasis on frac-
tional programming the NATO advanced Study Institute on “Generalized
Concavity in Optimization and Economics” (Schaible and Ziemba (1981)),
that indicates a shift of interest from the single to the multiobjective case,
see Singh and Dass (1989), Cambini, Castagnoli, Martein, Mazzoleni and
Schaible (1990), Komlosi, Rapcsak and Schaible (1994), Mazzoleni
(1992). 1t is interesting to note that some of the earliest publications in
fractional programming, though not under this name, Von Neuman’s clas-
sical paper on a model fo a general economic equilibrium [Von Neumann
(1937)] analysis a multiobjective fractional program. Even a duality theory
was proposed for this nonconcave program, and this at a time when linear
programming hardly existed. However, this early paper was followed al-
most exclusively by articles in single objective fractional programming un-
til the early 1980s.

Weir (1982) considered a multiobjective fractional programming prob-
lem with same denominators. Since then a great deal of work has been
done with convexity and generalized convexity assumptions on the func-
tions. Some of the contributions are by Singh (1986), Egudo (1988), Weir
(1986, 1989), Kaul and Lyall (1989), Suneja and Gupta (1990), Mukherjee
(1991), Singh and Hanson (1991), Preda (1992), Suneja and Lalitha
(1993), Kaul, Suneja and Lalitha (1993), Suneja and Srivastava (1994) and
Mishra and Mukherjee (1996a).
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Throughout this chapter (except sections 3.4 and 3.5) we consider the
following multiobjective fractional programming problem:

L&) S (x)J

g(x) g, x)
subject to h.(x)SO, j=1,....m xelX,

J

where f,, g, : X >R, i=1,..,p,and h, : X > R, j=1,..,m and
differentiable functions, f; (x)Z 0, g, (x) >0,i=1,...,p,V xe X, and

minimization entails obtaining efficient solutions properly efficient solu-
tions/conditionally properly efficient solutions.

We consider the following parametric multiobjective problem (FP)Vv

(MFP) Minimize {

for each ve R?

+ 9

where R” denotes the positive orthant of R”.

(FP),,~ Minimize ( | (x)— v, 8, (x),..., fr (x) -v,g, (x))
subject to hj(x)S 0, j=1,..m,xeX.
The following lemma from Singh and Hanson (1991) connects the con-
ditionally properly efficient solutions of (FP) and (FP),/ .

Lemma 3.1.1 [Singh and Hanson (1991)]: Let x" be conditionally
properly efficient solution of (FP). Then there exists v eR ” such that x

is conditionally properly efficient solution of (FP)V* . Conversely, if x" s

conditionally properly efficient solution of (FP)V* where

- fl(x*)

v, = =, i=1,2,..,p,
g:\x

then x~ is conditionally properly efficient solution for (FP).
We consider on the lines of Geoffrion (1968), the following scalar pro-
gramming problem corresponding to (FP)V* :

(MFP):. Minimize i T, ( filx)-v'g, (x))

i=l1
subject to hj(x)S 0, j=1,....m,xeX.
Then we have the following result from Singh and Hanson (1991):
Lemma 3.1.2 [Singh and Hanson (1991)]: If x" isan optimal solution

of (MFP):; for some 7 € R” with strictly positive components where
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:gj();_% i=1,2,..,p,

Then x” is conditionally properly efficient solution of (MFP).

3.2 Necessary and Sufficient Conditions for Optimality

Let x € X be an efficient solution for (MFP). Then there exist
7°,v € R” and A" € R™ such that

if*(vfi (x')-vivg, (x))+ i/l_’;vhj (x)=0, 3.1)
/’L*Th(x*)= 0. )

£ )-vig (' )=0, i=1..p o)

v 20, (¢, 2)20. 54

Whenever we assume a constraint qualification for (MFP), we mean that
(MFP) satisfies the Kuhn-Tucker constraint qualification or the weak Ar-
row-Hurwicz-Uzawa constraint qualification (Mangasarian (1969), p.
102). Kuhn-Tucker type necessary conditions are as follows:

For x* € X an efficient solution for (MFP) and (MFP) satisfies a con-
straint qualification at x . Then there exist 7 ,v° € R” and 1 € R"
such that

ir*(Vfi (x*)—v;Vgl (x )) 2/1 Vh;, (x*): 0, (3.5

i=1

/I*Th(x ) 0 (3.6)
fl.(x ) v g \x )=O, vV i=1,.,p, (.7)
SV w20, Yo =1 (3:8)

The following necessary optimality criteria for a feasible point x* of
(MFP) to be conditionally properly efficient can be proved on similar lines
as that of Theorem 2 of Weir (1988).
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Theorem 3.2.1: Let x* bea conditionally properly efficient solution for
(MFP). Assume that there exists xe€ X such that £,(X)<0,
forj=1,...,m and for j e I(x*)= {j: hj()_c)= 0} any one of the follow-
ing conditions holds

(i) A, is V —invex

(ii) h; is V — pseudo-invex
on X with respect to 77 and &, >0, 7=1,..., p. Then there exist scalars
T: >0,i=1,...,p, lj >0, ie I(x*) such that

ir;‘v[ff(x*)} AVi(x')=0. (3.9)
i=1 Hx_) ielly’)

Proof: Since x~ is conditionally properly efficient for (MFP) therefore
by Lemma 3.1.1 there exists v € R ? such that x" is conditionally prop-
£)
gl
h ;s J=1,...,m satisfies (i) or (ii), there by proceeding on the same lines

erly efficient for (MFP) . where v, = , i=1,..., p. Since each

as in Theorem 2 of Weir (1988) we shall get the required result.
The following example verifies the above theorem for a multiobjective
fractional programming problem with p =m = 2.

Example 3.2.1: Consider the following multiobjective fractional pro-
gramming problem:

NI fl(x) fz(x)
(FP1) Minimize (gl (x)’ o, (x)]

subject to hj(x)S 0, j=1,2
where functions f,, f,, g,, &,, h, and h, are defined on X = (—2, 2)

as follows:
The feasible region is the closed interval [0, 1]. We observed that

x" =1 is an efficient solution of (FP1) because for any feasible solution
x of (FP1)

fl(x)_fl(x*)= xt =1 <0
gl(x) gl(X*) 3(x2+2)
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_ L) si=x)
gz(x) gz(X*) 3(x+2)_ ’
andif 10 fl(x)
gl(x) &\x
Then x <1 for which /> (x) fz( ) Now we will prove that
gz(x) gz( )

x =lisa conditionally properly efficient solution of (FP1).
For x <1

Rt o) 55

is a function which attains a maximum value at n = \/5 with value being

(4+3\/§). Thus choosing M(x*): x° +%, it follows that x" =1 is a

conditionally properly efficient solution of (FP1).
Now /4, is the only constraint for which 4, (x*): 0. Define

n, 0{,-,i=1,2 and ;Bj,j=l,2 by U(xa”): — 2

u

, o (xu)=—

(x,u) 5

i=12 and B,(x,u)=1,j=1,2. h; is V — pseudo-invex with respect to
1

n and f,. Moreover, x—E is such that h( )<0 h ( )< 0. Thus,

by Theorem 3.2.1, there exist 7, >0, /f; > 0 such that

SV (7(—*%J+/1Vh( ")=o0.

i=1
Clearly, 7, =1, 7, =4, A, =1 satisfies the above equation.
We now give a number of sufficient optimality criteria for a feasible

point x of (MFP) to be conditionally properly efficient for (MFP) under
the assumptions of /' — invexity and its generalizations:

Theorem 3.2.2: Suppose that there exists a feasible x" for (MFP) and
scalar z'l.* >0,i=1,...,p, 4. =0, iel(x*) such that

1
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Zz‘ (Vf(x )—v Vgi(x*))+ ;:fth (x )=0
Where v; = fl(x:)’ i=1,..., p
g\x
and I(x*):{j h( ) 0}¢¢ Then, if each (f vg) i=1,.,pis

V —invex and h,, jellx ) is V' —invex with respect to the same 7
and a,, i=1,...,p, B, iellx ) then x~ is conditionally properly ef-

ficient solution for (MFP).

Proof: Since each (f -v.g, ) i=l,..,p and h,, je I(x*) are
V' —invex with respect to the same 77 and
a.,i=1,.., , Bi,iel (x )

and
r,.* >0,i=1,...,p, /lf =0, iel(x*>, v; = fi(x), i=1,...,p,

we have

> (71) vz ()= 2w (1) via o)

i=1

>Zw(x 57 )-vive (6 ol +7)
:_ie%*)ﬂiﬂi X, X )Vhi x )z7(x, x*)

2 Z ﬂ: (hi(X*)_hi(x))

iel(x")
> ;)—l}‘hi(x) (Since hi(x*)zO, iel(x*))
iellx”

>0.
Therefore,

,ir:(mx)-v;‘g,.(x))—ir:(ﬁ(x*)—v:gf(x*))z0, VrelX.
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This implies that x minimizes Zm:rl (fl(x)—v, gi(x)) subject to

i1
hj(x)SO, j=1L...,m . Hence x is an optimal solution for (FP)V* )

Therefore, x  is conditionally properly efficient solution for (MFP) due to
Lemma 3.1.2.

Theorem 3.2.3 Suppose there exists a feasible x~ for (MFP) and scalar
71 >0,i=1,..,p, A =0, iel(x") such that (3.1)-(3.4) is satisfied.
Then, if I(x*): ¢, (f-vg)i=1l,.,p and hi, J e](x*) are
V — quasi-invex with respect to the same 77, then x  is conditionally
properly efficient solution for (MFP).

Proof: Since forhi(x*): 0,for ie I(x*) andhl.(x)S 0,i=1,...,m,
we have

hi(x)—hi(x*)ﬁ 0, i=1,....,m.
Since 4, 20, ie I(x*), we have

2 (h(x) =1 (x"))<0.

. 0
iellx

Now, by V' — quasi-invexity of h]. , jel (x* ), we have

ﬂ,fﬂi(x, x*)Vhi(x*)Iy(x, x*)S 0.

X 0
iel\x

On using the above inequality in (3.9), we obtain
if: (Vfi(x*)—v:Vgi(x*))t](x, x*)Z 0, VxelX.
i=1
Since ai(x, x*)> 0, i=1,..., p, we have
ir?ai (x, x*)(Vﬁ(x*)—v:Vgi(x*)%(x, x*)Z 0.
i=1
Now, by V' — pseudo-invexity of (fl -v.g; ), i=1,...,p, wehave
e * * 2 * * * *
zri (fi(x)_vi gi(x))_zri (fz(x )_vi gi(x ))Z 0, VxelX.
i=1 i=1
Thus x* is an optimal solution of (FP)‘T, for 7~ with strictly positive

components. Hence, by Lemma 3.1.2, x" s conditionally properly effi-
cient for (MFP).



46 Chapter 3: Multiobjective Fractional Programming

Theorem 3.2.4: Suppose that there exists a feasible x" for (MFP) and
scalar z'l.* >0,i=1,...,p, A =0,ie I(x*) such that (3.1)-(3.4) is sat-

1

isfied. Then, if I(x) o , ZT —vg is V — quasi-invex

and /11 h ,iel (x* )are V' — strictly pseudo-invex with respect to the same
n, then x" s conditionally properly efficient solution for (MFP).

Proof: The proof of the above theorem is similar to that of Theorem
3.2.3.

3.3 Duality in Multiobjective Fractional Programming

In relation to (MFP) we associate the following Mond-Weir type multiob-
jective maximization dual problem:

o[ Al 1)
(MFD) Maximize [gl (u),..., ¢ (M)J

subject to
Zp:r(Vfi( —v,Vg.(u Zi Vh =0, 310
i=1
iﬁjhj(u)z 0, (3.11)
j=1

ueX,7,>0,v,20,i=1,..,p, 1,20, j=1,...m
Let W denote the set of all feasible solutions of the dual problem (D)
and let Y={u:(u,z',/”t,v)e W}.

We now establish weak duality and strong duality results between the
primal problem (MFP) and its dual (MFD).

Theorem 3.3.1: Let x be feasible for (MFP) and (u,r,ﬂ,v) be feasi-

ble for (MFD). If[rl(fl J,...,Tp (QD isV —invex and(/ilh1 ,...,/Imhm)
gl gp

is V' —invex with respect to the same 77 , then the following can not hold:
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fix) file)
gi(x)S gi(”)’ o
fio (x) < fo (u) for some Iy € {19'“9p}'

Proof: Since x is feasible for (MFP) and (x,r,/l,v) is feasible for
(MFD)
ﬂjh](x)SOS/ijhj(u), V]zl,,m (312)

V — invexity of (/11h1 yeees A, ) implies that
Zﬂjﬂj (x, u)th (u)p(x, u)<0.
=1

Since ﬂj(x, u)> 0, j=1,..,m, we get

S A4,Vh (wh(x, u) <0
Jj=1
From (3.10), and the above inequality, we get
iriV(M]n(x, u)Z 0.
i1 8i (”)
Since ai(x, u)> 0, i=1,.,p, we get

Sealon (f(”)},(x 2)20.

()
V' —invexity of [Tl ( D implies that

s (£i() fiw) }0
;T(gi(x) gw))
Thus, the following c(an) not hczld):
filx) _ filu -
&) gy TP

for some i, € {l,..., p}.
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Theorem 3.3.2: Let x be feasible for (MFP) and (u,z',/i,v) be feasi-

ble for (MFD). If {TI(AJ,...,TP[QD is V' — pseudo-invex and
gl gp

(/11}11 ,...,lmhm) is V' — quasi-invex with respect to the same 77 , then the
following can not hold:

, Vi=l,.,p,

for some i, € {l,..., p}.

Proof: Since x is feasible for (MFP) and (x,z',/”t,v) is feasible for
(MFD) 4,h;(x)<0<Ah,(u), V j=1,..,m
Since ﬂ(x u)>0, j=1,.,m,weget

Zﬂﬂxu Ziﬁxu (). (3.13)
V - quasi-invexity of (/Ilh1 ﬂm h,) and (3.13) implies that
i;thhj(u)n(x, u)<0. (3.14)
j=1

From (3.10), and (3.14), we get

e e

V' — pseudo-invexity of [2'1( [ D and (3.15) implies that

f0) fl
Sinal ’(() w
1,.

Since @ (x, u)>0 and 7, >0,

] 0. (3.16)

., D, therefore the following

IIOQ

can not hold:

<

i=1,..,p,
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—

/()
g, (u)

Theorem 3.3.3: Let x~ be feasible for (MFP) and (u*,r* ,/1* ,v*) be

S, (x

, for some i, €{l,..., p}.
g,(x

<

N—"

fi(x*)’ V i=1,...,p.. Let for

g \x

((£)--(2)

and (/Lh1 ,...,ﬂmhm) the V' — invexity assumption or its generalizations of

feasible for (MFD) such that v, =

Theorem 3.3.1 or Theorem 3.3.2 hold, then x" is conditionally properly
efficient solution for (MFP). Also, if for each feasible (u,r,/l,v) for

(MFD), then (u* T LA ,v*) is conditionally properly efficient for (MFD).

Proof: The proof of the above Theorem is similar to the proof of Theo-
rem 2.4.3 of Chapter 2.

Theorem 3.3.4 (Strong Duality): Let x* be a conditionally properly
efficient solution for (MFP). Assume that there exists X € X such that
h; (x)<0and (4h,,....A,h,) is ¥ —invex on X with respect to 77 ,

then there exist scalars T; >0, i=1,...,p, ﬂj >0, j=1,...,m such

that (x*, T, /1*) is feasible for (MFD). Further, if for each feasible

(u,r,/l) for (MFD), [rl(ﬁ],...,rp (QB is V' —invex at u with re-

gl gp
spect to 77, then (x* T, /1*) is a conditionally properly efficient solution
for (MFD).

Proof: Since x~ is conditionally properly efficient solution for (MFP),
it follows from Theorem 3.2.1, that there exist scalars

2':>0, i=1,...,p, /1;20, je](x*)suchthat
O ﬁ(x*) . £\
;ri V(ax_*ﬂ - 2 ;1 Vi, (x')=0.

Set 4, =0, jel(x), then
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ier(fT(—*%J—i-z/l vh,(x)=0.

=l g\X
2 h(x")=0,
Z;. >0, j=1,..m
T: >0, i=1,..,p.

Hence (x*, T, f) is feasible for (MFD).

We will now prove that (x* T, ﬂ,*) is an efficient solution for (MFD).
Suppose (x*, I f) is not an efficient solution, then there exists a feasi-
ble (u, T, /1) of (MFD) such that

filw) S .
mza(x—*;, Vi=l..,p
) £,x)
>
g,W) g )

This is a contradiction to weak duality Theorem 3.3.1.

for some i, € {l,..., p}.

We will finally prove that (x*, T, ﬁ,*) is a conditionally properly effi-
cient solution for (MFD).
Suppose (x*, T, /1*) is not a conditionally properly efficient solution

for (MFD) then there exists a feasible solution (u, T, /1) for (MFD) and
an index i such that for every M ( " ) >0

fi00 | L) g LD e )[f(x ) f(u)j

g @ g(x) g gK) g(x) g )
£ _£6)
o) g )

such that

can be made arbitrarily large and hence

: T;(fj(u) fj(x*)}o,

g_,-(u) gj(x*)
which contradicts weak duality Theorem 3.3.1. Thus (x*, T , /1*) is a
conditionally properly efficient solution for (MFD).

i=1
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Theorem 3.3.5 (Strong Duality): Let x bea conditionally properly
efficient solution for (MFP). Assume that there exists X € X such that
h; (x)<0and (44, ,..., A4, h,) is V — pseudo-invex on X with respect
to 77, then there exist scalars Ti* >0, i=1,...,p, lj. >0, j=1,...,m

such that (x*, ", /1*) is feasible for (MFD). Further, if for each feasible

(u,r,l) for (MFD), [Tl(i}m,q{ﬁj} is V — pseudo-invex and

gl gp
(Lhy ,..A b)) is V — quasi-invex at u with respect to 7 , then

(x* T, /7,*) is a conditionally properly efficient solution for (MFD).

Proof: The proof follows on the lines of the proof of Theorem 3.3.4.
We now consider the following Jagannathan type dual to multiobjective
fractional programming dual problem:

(MJD) Maximize (vl ,...,vp)
subject to
p m
> 2(Vf(u)-v, Vg, )+ D A, Vh,(u)=0, (3.17)
= =
iT(Vﬁ(u)—vng,.(u))z 0, (3.18)
Zmlfljhj(”)Z 0, (3.19)
=1

where 7, ve R? , A€ R"™. Denote v = (vl ,...,vp) and

)= [f](x),“ fp(x)}

&(x)" g, x)

Theorem 3.3.6 (Weak Duality): Let x be feasible for (MFP) and
(u,7,1,v) be feasible for (MID). If (f, -v,g,),i=1,..,p and

(4hy ... b, ) are V — invex with respect to the same 7, then

Flx)¢v.
Proof: Suppose to the contrary that there exist x feasible for (MFP)
and (u,7,A, v) feasible for (MFD) such that F(x) £ v. Then



52 Chapter 3: Multiobjective Fractional Programming

ﬁ(x)ﬁvl, Vi=l,.,p
gi(x)
and
ﬁ°(x)<v , for some ioe{l, ,p}
g,(x)
That is,
fl(x)—vlgl.(x)SO, Vi=1,.,p
and

f ()c)—viog0 (x)<0, for some i, €{l,..., p}.
Therefore,

S/, (6) - v, 2,(x) < 0.

i=l1

Using the duality constraint (3.18), we get
Y a0 -vig )< X7 () -v, g, w))
i=1 i=1

Using V' —invexity hypothesis, we get

>z, (x, w7, (x) v, Ve, (x))n . )< 0. (320
i=1
Now from (3.6), (3.19) and V' — invexity of (ﬂihi , 1€ I(x* )), we get
28,0, u)Vh, w(x, u)<0 . (3.21)
ielx”

Now, from (3.20) and (3.21), we reached to a contradiction of (3.17).
Hence, F(x)£v.

Remark 3.3.1: The above theorem holds under generalized V' — invex-
ity assumptions used in Theorem 2.4.2.

3.4 Generalized Fractional Programming

Duality results for minimax fractional programming involving several ra-
tios in the objective function have been obtained by Crouzeix (1981),
Crouzeix, Ferland and Schaible (1983, 1985), Jagannathan and Schaible
(1983), Chandra, Craven and Mond (1986), Bector, Chandra and Bector
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(1989), Singh and Rueda (1990), Xu (1988) and Chandra and Kumar
(1993).

Crouzeix, Ferland and Schaible (1985) have shown that the minimax
fractional program can be solved by solving a minimax nonlinear paramet-
ric program. Bector, Chandra and Bector (1989) have developed duality
for the generalized minimax fractional program, under generalized convex-
ity assumptions, using a minimax parametric program (see, Crouzeix, fer-
land and Schaible (1985)).

Recently, Bector, Chandra and Kumar (1994) have extended minimax
programs under } —invexity assumptions. The purpose of this section is
to extend minimax fractional programs under } — invexity assumptions
and its generalizations.

Consider the following minimax fractional programming problem as the

primal problem:
f,-(x)}

& (x )
where

(A1)S = {x eR": hk(x)é 0, k= 1,...,m} is nonempty and compact;
(A2)f,, g, i=1,...,p and h,, k =1,...,m are differentiable on R";
(A3)gi(x)> 0, i=1,..,p, xe8§;
(A4)if g, is not affine, then f;(x)>0 forall i andall x € S.

Crouzeix, ferland and Schaible (1985) considered the following mini-
max nonlinear parametric programming problem in the parameter v :

) FO)=minmas(, (o) ve, ()]

xe§ I<i<

xeS 1<i<p

(P) v’ =min max{

The following Lemma will be needed in the sequel:

Lemma 3.4.1 (Crouzeix, Ferland and Schaible (1985)): If (P) has an
optimal solution x~ with optimal value of the primal problem (P) as v,
then F' (v*)z 0 . Conversely, if F (v*)z 0, then (P) and (P)V»« have the
same optimal solution set.

Remark 3.4.1: In case of an arbitrary set S © R", Crouzeix, Ferland
and Schaible (1985) showed that the optimal set of (P)v* may be non-

empty. In (A1), however, we have assumed S < R" to be compact in ad-
dition to being nonempty.
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To establish the optimality and duality, we shall make use of problem
(P)V . We now have the following programming problem that is equivalent

to (P)V for a given v:

(EP), Minimize ¢
subject to
filx)-ve,(x)<q, i=1,..p, (3.22)
h(x)<0, k=1,..m. (3.23)

Lemma 3.4.2: If (x,v,q) is (EP)v -feasible, then x is feasible for (P).
If x is feasible for (P), then there exist v and g such that (x,v,q) is fea-
sible for (EP), .

Lemma 3.4.3: x is optimal for (P) with corresponding optimal value
of the objective function equal to v if and only if (x* WV ,q*) is optimal

for (EP)v with corresponding optimal value of the objective function

equal to zero, that is, q* .

Theorem 3.4.1 (Necessary Optimality Conditions):
Let x* be an optimal solution for (P) with optimal value as v'. Let an
appropriate constraint qualification hold for (EP)V* ; see (Mangasarian

(1969), Craven (1978) and Kuhn and Tucker (1951). Then, there exist
q* eR,7  €R”, 1 €R™ such that (x*,v* T, /1*) satisfies:

ifj(vﬁ(X*)—V*Vgi(X*))+i/ﬁhk(x*)z0, (3.24)
i=1 k=1
ZPZT:(Vfi(x*)— V*Vgi(x*)): 0, Vi=Il,..p, (3.25)
i=1
Ah(x)=0, Vik=1,..m, (3.26)
fl.(x*)—v*gl.(x*)ﬁ 0, Vi=1,..,p, (3.27)

hk(x*)SO, Vk=1,..,m, (3.28)
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iff _1, (3.29)

i=1

g =0, (3.30)
g eR,77eR’, X eR", 7 20,120, (3.31)

Theorem 3.4.2 (Sufficient Optimality Conditions):
Let (x",v".q", 7", A') satisfy (3.24)-(3.31), and at x" let

P
A= 271‘ (fi(x)_v gi(x)) (332)
i1
be V' — pseudo-invex and

B=Y 4 (x) (3.33)
k=1

be V' —quasi-invex for all x that are feasible for (EP)V* . Then, x" is op-
timal for (P), with corresponding optimal objective value v .

Proof: From (3.27), (3.28), x is feasible for (EP)V* , and from (3.28),
x" is feasible for (P). Now, all x that are feasible for (EP)V* are also fea-

sible for (P). Therefore, for x* and any x which is feasible for (EP)V* ,
we have from (3.23), (3.31), (3.26) and since
,Hk(x, x*)> 0, Vk=1,...,m,

S A x I ()< S A B (e 1 W (x7), (3.34)
Using he ¥ quasi-invexity of B, wo get
S 2 h (¢ )lx. x7)<0.
This along with (3.24) gives

$ 2 (97 (v)— Ve, (9l x°)> 0. 6.35)

Using the V' — pseudo-invexity of A at x, we get from (3.35), that for
any x that is feasible for (EP)V* , we have

3 7, (e NV g ()2 e (5 W) g () (30
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Using (3.22), (3.29), (3.30), (3.31) and (3.36), we get

q20=q , (3.37)
for any x and ¢q that is feasible for (EP)V*.
Using (3.37) and Lemma 3.4.2, we get the result.

Theorem 3.4.3 (Sufficient Optimality Conditions): Let
(x".v".q", 7", &) satisfy (3.24)-(3.31), and at x” let

p
A=Y (f(x)-v'g, ()
i=1
be V' — quasi-invex and
B= z I/i hy, (x)
k=1

be strictly /' — pseudo-invex for all x that are feasible for (EP)V*.

Then, x is optimal for (P), with corresponding optimal objective value

*

Vo
Proof: From (3.27), (3.28), x is feasible for (EP),., and from (3.28),
x" is feasible for (P). Now, all x that are feasible for (EP)V* are also fea-

sible for (P). Therefore, for x" and any x which is feasible for (EP)V* ,
we have from (3.23), (3.31), (3.26) and since
B (x, x*)> 0, Vk=1,...,m,

Zri:/ﬁ{ﬁk(x, x*)hk(x)é iﬂ;ﬂk(x, x*)hk(x*).

Using the strict /' — pseudo-invexity of B, we get

S 2V (5 Jlx, x)<0. (3.38)
From (3.38) and 12231.24), we get
32 (77,(0)-v Ve, ()l ) 0. (339)

Using the V' — quasi-invexity of A at x", we get from (3.39), that for
any x that is feasible for (EP)V* , we have

ir;a,-(x, x*Xf,-(x)—v*gi(x))z i,;ai(x, X*Xf,»(x*)—v*g,(x*)). (3.40)
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Comparing (3.40) with (3.36), we get the result.

3.5 Duality for Generalized Fractional Programming

On the lines of Mond and Weir (1981), for a given v, we have the follow-
ing dual to (EP)V :

(DEP), Max Zp:z'i* [£, () - vg, (u)] (3.41)
subject to Zp: 7,(Vf,(u)—wWg,(u))+ Zm:/lkhk (u)=0, (3.42)
i=1 k=1
S Ay ()2 0, (3.43)
k=1
=1, (3.44)

€R", 7eR’, AeR", 720, 120. 345

We shall now prove duality theorems relating (EP)V with (DEP)V .

Theorem 3.5.1 (Weak Duality): For a given v, let (fc, é) be feasible
for (EP)V* , let (L_l T, A ) be feasible for (DEP)V. Let
p
A=Y 7(f()-vg,0)
i=1
be V' — pseudo-invex and

Il
I
=
Nyl

be V' — quasi-invex for all feasible solutions for (EP)V* and (DEP)V* .
Then inf(EP),- > sup(DEP), .

Proof: From feasibility of ()2, é) and (17 T, A ) and since
ﬁk()e, LT)>O Y k=1,...,m, wehave

Zamxu sz (@), (3.46)
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Using V' — quasi-invexity and (3.46), we get

S 4Vh, @)n(z. 7)<0. (3.47)
k=
From (3.42) and (3.47), we get
37 (77, @) - vV, @)z, )= 0. 349
i=1

Using the V' — pseudo-invexity of A, we get

ZZ’CZ X, u ( ) ZZ'CZ (x X Xf )) (3.49)
Usmg (3.44) in conjunction w1th (3 22) and (3.49), we get
§2 Y ln@)-ve @)
i=1
that is, inf(EP),- > sup(DEP) .
Remark 3.5.1: The above theorem can also be establish with

V' — quasi-invexity assumption on A and strictly }" — pseudo-invexity as-
sumption on B.

* . X
Theorem 3.5.2 (Strong Duality): Let v = min max f’( ) , and let
xeS§ I<i<p gi (x)

(x* , q*) be (EP)V* -optimal, at which an appropriate constraint qualifica-
tion holds (see, Mangasarian (1969), Craven (1978), Kuhn and Tucker
(1951)). Then, there exists (Z'*, /1*) such that (x* T, /1*) is feasible for

(DEP)V* and the corresponding objective value of (EP)V* and
(DEP)V* are equal. If also the hypothesis of Theorem 3.5.1 are satisfied,
then (x* s q*) and (x* a /1*) are global optima for (EP)V* and
(DEP )V* , respectively with each objective value equal to zero.

Proof: Since (x* , q*) is optimal for (EP)V* , by Theorem 3.5.1, there
exists 7 € R”, A € R™ such that (x* , q* T, /1*) satisfies (3.24)-
(3.31). From (3.24), (3.29), (3.31), we see that (x* , T, /1*) is feasible for
(DEP)V* . Also, we see that, from (3.25), (3.26), (3.29), (3.30), we have
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ming=q ~0-35 (16 )vel) O

i=l1

= max Y (£,(0) g, (v).

From Theorem 3.6.1 using (3.50) along with (3.51), we infer that
(x* , q*) is global optimum for (EP)V* and (x* T, /1*) is global opti-

mum for (DEP)V* , with each objective value equal to zero.

Theorem 3.5.3 (Strict Converse Duality):

For v’ :minmax[fi (x)} let (x*, q*) be optimal for (EP) at
xeS 1<i<p gi(x)

which an appropriate constraint qualification holds (see Mangasarian
(1969), Craven (1978), Kuhn and Tucker (1951)). Let (iz, 7, 2 ) be opti-
mal for (DEP)V* and V — invexity hypothesis of Theorem 3.5.1 hold.
Then, # = x ; that is, (u, q*) is (EP)V* -optimal with each objective
value equal to zero.

Proof: If possible, let u # x", we now show a contradiction. Since
(x* , q*) is optimal for (EP)V* , there exist 7 € R?, A" € R™ such that
(x* . l*) is optimal for (DEP)V* and

p D
* * * * * — — * — . 1
¢ =0=Y (0 )-ve )= al@-ve@). G
i=1 i=l
From feasibility condition and V' — quasi-invexity of B, we reach to
(3.47); and from (3.42) and (3.47), we get (3.48). Using strict V' — pseudo-
invexity of A, we get

IZP:‘T; (fz (x*)_ V*gz- (x* ))> lzpl:fl (fz (17)_ V*gl— (ﬁ)) (3.52)

Using (3.44) in conjunction with (3.22) on (3.52), we obtain
* P .
9235 (@) -v'e, @), (3.53)
i=1

which contradicts (3.51).
Following Schaible (1981) and Jagannathan (1973), we associate the

following fractional (FD) and nonlinear program (D) with (DEP)V* :
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(FD) Max |Z——

=1

D) Max v
subject to

V| S0+ S a0 o
357 u) v () 20,

Zri =1,

i1
ueR", reR?, AeR”", 720, 120.
We relate (FD) and (D) with (DEP)V via the following theorems, the
proofs are easy and hence omitted.

Theorem 3.5.4: The following relation holds:
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)4 D
2.7/ () > 7./ (u)

‘—,:i;l—:MaX ’;l— , for all (u, T, /1), feasible for
> 7g,(@) PRFA)

(FD) if and only if
P P P P
Max | 3,7(0) 535, 0] - S10) 537 )=
i=1 i=1 i=1 i=1
for all (u, v, T, ﬂ)feasible for (DEP)V . In view of Theorem 3.5.4, we

can easily verify that, for optimal v, the constraint sets of (FD) and
(DEP)V are equivalent.

Theorem 3.5.5: If (L? , T, A ) is feasible for (FD) and

v=-l_ then (i, 7, 7, A) is feasible for (D).

if (12, v, 7, 7 ) is feasible for (D) and zp:a f,.(ﬁ)—vi 7,g,[w)=0,
i=1

i=l1

then (L_t, v, T, A ) is feasible for (D).

Theorem 3.5.6: (u* T, /1*) is optimal for (FD), with corresponding
optimal objective value v if and only if (u* LV, T, /1*) is optimal for
(D) with corresponding optimal objective value equal v'. Also, at the op-

timal solution, we get Zp: . (f,(u)-vg,(u))> 0.

i=1






Chapter 4: Multiobjective Nonsmooth
Programming

4.1 Introduction

It is well known that much of the theory of optimality in constrained opti-
mization has evolved under traditional smoothness (differentiability) as-
sumptions, discussed in previous chapters. As nonsmooth phenomena in
optimization occur naturally and frequently, the attempts to weaken these
smoothness requirements have received a great deal of attention during the
last two decades (Ben-Tal and Zowe (1982), Clarke (1983), Kanniappan
(1983), Jeyakumar (1987, 1991), Rockaffelar (1988), Burke (1987), Egudo
and Hanson (1993), Bhatia and Jain (1994), Mishra and Mukherjee (1996).
Necessary optimality conditions for nonsmooth locally Lipschitz problems
have been given in terms of the Clarke generalized subdifferentials (Jeya-
kumar (1987), Egudo and Hanson (1993), Mishra and Mukherjee (1996)).
The Clarke subdifferential method has been proved to be a powerful tool
in many nonsmooth optimization problems, see for example Giorgi and
others (2004).

Zhao (1992) gave some generalized invex conditions for a nonsmooth
constrained optimization problems generalizing those of Hanson and
Mond (1982) for differentiable problems. Following Zhao (1992), Egudo
and Hanson (1993) generalized V-invexity concept of Jeyakumar and
Mond (1992) to the nonsmooth setting and obtained sufficient optimality
conditions for a locally Lipschitz multiobjective programming in terms of
Clarke’s subdifferential. Wolfe type duality results are also obtained in
Egudo and Hanson (1993). Mishra and Mukherjee (1996) generalized the
V-pseudo-invexity and V-quasi-invexity concepts of Jeyakumar and Mond
(1992) to nonsmooth setting following Egudo and Hanson (1993).

This Chapter is organized as follows: In Section 3, we establish suffi-
cient optimality conditions to nonsmooth context using conditional proper
efficiency. Using the concept of quasi-differentials due to Borwein (1979),
Fritz John and Kuhn-Tucker type sufficient optimality conditions for a fea-
sible point to be efficient or conditionally properly efficient for a subdif-
ferentiable multiobjective fractional problem are obtained without recource
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to an equivalent V-invex program or parametric transformation. In Section
4, Mond-Weir type duality results are established for the nonsmooth mul-
tiobjective programming problem, under generalized V-invexity condi-
tions, using conditional proper efficiency. Further, various duality results
are established under similar assumptions for subdifferentiable multiobjec-
tive fractional programming problems. In Section 5, a vector valued ratio
type Lagrangian is considered and vector valued saddle point results are
presented under V-invexity conditions and its generalizations.

4.2 V-Invexity of a Lipshitz Function

The multiobjective nonlinear programming problem to be considered is:
(VP)  Minimize (f,(x): i=1,...,p)
subject to gj(x)S 0, j=1,...m,

where f,:R" > R, i=1,..,p and g; :R" >R, j=1,..,m are
locally Lipschitz functions.

The generalized directional derivative of a Lipschitz function f at x in
the direction d denoted by f 0(x; d ) (see, e.g. Clarke (1983)) is:

. +Ad ) -
yox

40
The Clarke generalized subgradient of f at x is denoted by Of (x), is
defined as follows: 0f (x) = {f eR":f°(x;d)>¢&"d foralld € R” }

Egudo and Hanson (1993) defined invexity for locally Lipschitz func-
tions as follows:

Definition 4.2.1: A locally Lipschitz function f (x) is said to be invex
on X, < R" iffor x, u € X, there exists a function
n(x, u): X,x X, >R
such that

f)=flu)znle,u)é, Vv Eeofu).
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Definition 4.2.2. [Zhao (1992)]: A locally Lipschitz function f(x) is
said to be pseudo-invex on X,  R" if for x, u € X, there exists a func-
tion 77(x, u): X, x X, = R such that

n(x,u)é20= f(x)2 flu), v Sedflu).

Definition 4.2.3. [Zhao (1992)]: A locally Lipschitz function f (x) is
said to be quasi-invex on X, < R" if for x, u € X, there exists a func-
tion 77(x, u): X, x X, = R such that

f(x)S f(u):>77(x, u)cf <0, V ¢e Gf(u).

It is clear from the definitions that every locally Lipschitz invex func-
tion is locally Lipschitz pseudo-invex and locally Lipschitz quasi-invex.

Using the results of Zhao (1992), Egudo and Hanson (1993) generalized

the V-invexity concept of Jeyakumar and Mond (1992) to the nonsmooth
case:

Definition 4.2.4. [Egudo and Hanson (1993)]: A locally Lipschitz vec-
tor function f : X, = R” is said to be V' —invex if there exist functions

n(x, u): X, x X, > R" and
a,(x, u): X, x X, >R \{0}, i=1,..,p
such that for x, u € X,

S 0)= W)z a,(x w)énlx.u), ¥ Eedflu) i=1....p.

Definition 4.2.5. [Mishra and Mukherjee (1996)]: A locally Lipschitz
vector function f: X, — R” is said to be V — pseudo-invex if there ex-

ist functions 77(x, u): X, x X, = R" and
a,(x, u): X, x X, >R \{0}, i=1,..,p
such that for x, u € X,

Zp:fln(x,u) >0=> iai(x,u)f[(x) Zzp:ai(x,u)fi(u),
véedf(u),i=1,...,p.
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Definition 4.2.6. [Mishra and Mukherjee (1996)]: A locally Lipschitz
vector function f: X, — R” is said to be V — quasi-invex if there exist

functions ﬂ(x, u): Xy xX, > R" and
a,(x, u): X,x X, >R \{0}, i=1,..,p

such that for x, u € X,
)4 P P
Zai(x,u)fi(x) < Za[(x,u)f,.(u) = 268,»77(3@”) <0,
i=1 i=1 i=1
véedf(u),i=1,...,p

It is apparent from definitions that every V — invex function is
V — pseudo-invex and V — quasi-invex.

Example 4.2.1: Consider

. |2x —Xx | x, —2x
V' — Minimize L -2 2
X, +x, ‘ X, + X,

subject to x;,—x,<0,1-x,<0,1-x,<0, a(xu)=1i=12

3(x, —1) 3(x, —2)]?

)
X4 +.x2 x1+x2

ﬁ,—(X,M)Z%(xl +x,),j=12 and n(x, u):(

As one can see that the generalized directional derivative of

2% x|
fl(x)— —Xl x, is:
f°(x; d)=1lim suptlpz(yl +id)- x| |2, - x, q
n-x ‘ » +td + x, ‘ ‘y1+x2‘
0
= lim sup¢™' | 3tdx2 | [ le—_xzz OJ
Y-, ‘(yl +x, +td y1 +)c2 ‘ X, +x,
40
_ 3dx,
(x +x,)’

If we take x;, =1 and x, =2 (i. e. for an efficient solution (l, 2))

O d)=%.
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If y, > x,, then fo(x; d):—%. Thus (%, —%]e@fl(u). It is

2 1
easy to see that (—5, 5) € of, (u) At these particular points one can

easily see that above nonsmooth problem is ¥ — invex.
The following definitions will be needed in the sequel:

Definition 4.2.7 [Borwein (1979)]: The functional f is said to have an
upper derivative at a point x° (denoted by d” f (xo ; h) if

. +th)- .
d*f(xo;h):hmf(x ) f(x)’ exists for all he X.
t—>0* t
Definition 4.2.8 [Borwein (1979)]: A functional f is said to be quasi-
differentiable at x° if d* f (xo ; h) exists and there is some weak* closed
set T (xo) such that
d+f(x°;h)= ma(ﬁ))th , V helX. (4.1)

¥
x €T

The set T (xo) will be calledquasi-differentiable.

Remark 4.2.1: If f is J —invex and continuous atx’, then (4.1) holds
with T(xo)z 8f(x0 )

The following Proposition can be established on the lines of Borwein
(1979) and will be needed in the study of fractional programs.

Proposition 4.2.1: Let y,: X >R and y,: X >R . If y, is
V —invex and non-negative at x° and —y/, is ¥ —invex and positive at
x", then 9(x) =y, /v, is quasi-differentiable at x° with

1
0 0 0 0
T )= vl )= o P o))

2
We now consider the following nondifferentiable multiobjective frac-

tional programming problem:
(VFP) Minimize [fl (x) s fP (x)j
& (x ) g, (x)

subject to
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h(x)<0, j=1,.,m, 4.2)

xelX, (4.3)

where f,, —g,: X > R are continuous and J — invex and
g >0, i=l,.,pand h,: X >R, j=1,..,m are continuous and

V —invex.

4.3 Sufficiency of the Subgradient Kuhn-Tucker
Conditions

In this section we show that the subgradient Kuhn-Tucker conditions are
sufficient for conditionally properly efficient solutions.

Theorem 4.3.1 (Kuhn-Tucker type Sufficient Optimality Condi-
tions): Let (u, T, ,u) satisfy the subgradient Kuhn-Tucker type necessary

conditions
P m
Oleiafi(u)+Zﬂj8gj(u), (4.4)
i=1 j=1
l(,gj(u)=0, j=1,...,m, (4.5)
7,20, Ep:z,:l, 4,20. (4.6)
i=1

If (rlfl,...,rpfp) is V — pseudo-invex and (xllgl,...,/lmgm) is

V' — quasi-invex in nonsmooth sense, and u is feasible for (VP), then u is
properly efficient for (VP).
Proof: The condition (4.4) implies that, there exist & e of,(u),

i=L...,p,5;,€g;u),j=1,...,m such that 0 = irléi +iijgj(u).

i=1 j=1
Therefore,

0= riénle u)+ > Ays, (v, u).

From (4.5) and feasibility of x, we get
ﬂjgj(x)ﬁ ijgj(u), j=1,...,m.
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Since ﬁj(x, u)>0, j=1,...,m, we get

leﬂxugj Z/Iﬁ'xugj()

Then by V' — quasi-invexity of (/”tlg1 yeres Ay & ), we get

m

Zﬁ,jgjn(x, u)<0, V ;€ 8gj(u).
=1
Thus, we have
irifin(xau)zoa v ‘fi Eaf;(U)
i=1

Then by V' — pseudo-invexity of (2'1 SrsesT, f, ), we get

Zz‘axu ZTOZ £ (u).

Since ai(x, u)>0, i =1,...,p, we get

> efi(02 Y e w)

Hence by Theorem 1 of Geoffrion (1968) u is properly efficient solu-
tion for (VP).

We now state Fritz John and Kuhn-Tucker type necessary conditions
(see, Bector et el. (1994)) and then we prove that these conditions are also
sufficient for an efficient/ conditionally properly efficient solutions for
(VFP) for V' — invex functions and its generalizations.

Lemma 4.3.1 (Fritz John type Necessary Conditions): Let x’ be an
efficient solution for (VFP), then there exist 7 =(Tl ,...,rp)e R?” and

non-negative constant /’tj, j=1,...,m, not all zero such that
OeiriT[(xO)+ilf.@hj(xo)+Nc(x°), @7
i=1 j=1
/%hj(xo)zoa j=L. (4.8)

wherez(x°)=a;—o)[aﬁ(x) x )6 ( )]and
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filx”

¢, (XO): ( 0)' 4.9)
g:\X

To prove Kuhn-Tucker type necessary conditions, the following Slater’s

constraint qualification similar to that of Kanniappan (1983) is needed in

the sequel.
For each i=1,...,p, suppose that there exist x' € X such that

hj(xi)<0, j=1,...,m and fk(xi)—¢k(x0)gk(xi)<0 for k#1,

where x° is assumed to be an efficient solution of (MFP).

Lemma 4.3.2 (Kuhn-Tucker type Necessary Conditions): Let x° be
an efficient solution for (VFP), and the above constraint qualification is

met, then there exist 7 = Tl,...,TP)E R’ and /lj, j=1,...,m, such
that

06iriﬂ(x°)+i/1j6hj(x0)+Nc(xo), (4.10)
i=1 Jj=1
Ah(x0)=0, j=1,.,m, @10

>0, 420, (4.12)

L e L R 0 PP TR

Theorem 4.3.2 (Fritz John Sufficiency): Assume that, there exists
(xo , 70, /10) where 7° = (2'10 ,...,rg)e R? and (/1? ,...,ﬂ?n)e R"™ such

that

0y 27 (*)+ > on (x* )+ N (x°) (4.13)
i=1 =1

Ah(x°)=0, j=1,..m, (4.14)

(x")<0, j=1,.,m, 4.15)

and f,,—g;, i=l,..,p and h,, j=1,..,m are V — invex, for all

j#sandfor j=s, A >0 and h, is strictly ¥ —invex. Then x° is an

efficient solution for (VFP).
Proof: From (4.10), we have
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0e Zp:riTi(xo)+ iljﬁhj(xo)+ Nc(x()).
i=1 j=1

This implies that there exist some & € of; (xo) and ¢! € 0g, (xo) for

eachi=1,...,p, 7/;) e@hj(xo) for each j=1,...,m, and z° eNC(xO)
such that
-S| ol ekl S @10
This yields

o=l (S gl -ab kb S| @

If x° is not an efficient solution for (VFP), then there exists an X is
feasible for (VFP) such that

L)L)
g (x) < ax—oj, 1=1,..., P,
and
/(%) < Ju (x(;) for atleast one k.
gk(x) gk(x )
That is,
£0)-6,()e, (1)< /() -4,")e, ). v i=1.p,
and
fk(x)—¢k(x°)gk(x)< fk(xo)— ¢k(x°)gk(x°), for atleast one k.

Using V' —invexity of f; — ¢( ) i=1,...,p, we have

(xxx(f ¢( )g) (xx)<0, Vi=l,.,p,

and
ak(x, x°X§k —¢k(x°)gk)77(x, x°)< 0, for atleast one k.
Since a(x X )>0 i=1,...,p, wehave
(& -0k ) nlx. x°)<0, ¥ i=1,..p, (4.18)
and

( f ¢k( ); ) (x X )< 0, for atleast one k. (4.19)
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1
Multiplying (4.18) and (4.19) by Tl.o( 5 ]20, i=1,...,p and
g:\X

then adding, we have

Z::T?T_)(g ~4,(< ), ) nlx, x°)<0. (4.20)

From 2.2 >0, hj(x)SO and /Ighj(x ):0, j=1,...,m, we have

Zl:/lf;hj(x)s szj.hj(x()).
Jj= Jj=

Using V' — invexity hypothesison 4, j=1,...,m, we have

38, (e, oyl )< 0.
j=1

Since ﬁj(x, x°)> 0, j=1,...,m, wehave

iﬂ (x X )/10 <0. (4.21)
Jj=1
Also, for z° € N, x’ ), we have
z n(x, X )S 0. (4.22)

Combining (4.20), (4.21) and (4.22), we obtain

m{zr e T R P

This contradicts (4.17). Hence the result follows.

Theorem 4.3.3 [Kuhn-Tucker Sufficient Optimality Conditions]:
Assume that there exists (xo , 7° , /10) where 7° = (2'10 ,...,72)6 R” and

(ﬁ? ,...,/1?”)6 R™ such that

0e ir?T[(xO )+ i/ﬁ}@hj (x°)+ N, (xo), (4.24)
i=1 Jj=1
lghj(XO):O, jzl,...,m, (425)

h()<0, j=1,.,m, (4.26)
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To>0, A>0. (4.27)

fi.—g,i=1,..,p and hj , j=1,..,m are V —invex. Then x" is
a conditionally properly efficient solution for (VFP).

Proof. Since
1
( : J>o, T (428)
8

Therefore, in this case (4.18) and (4.19) will yield (4.20), as the follow-
ing strict inequality

ZT 7—)(5 (), ) v, %)< 0. (4.29)

Combimng (4.29), (4.21) and (4.22) we once again obtain (4.23), a con-
tradiction to (4.17), as before.

We now suppose that x° is not conditionally properly efficient solution
for (VFP). Therefore, for every positive function M ()?) >0 there exists a
feasible x for (VFP) and an index i such that

£5)_ 16

, Vi=1,..., p, whenever

X

. This means

g,(%)" g x") gl(X) g lx
0

10)-(" ) ()= (16 )- 46" Je, ()

can be made arbitrarily large and hence for 7 > 0 and

1
rio( - JZO, i=1,..,p,
g:\x

éff gilx (& -4("))>0. (4.30)

we obtain
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This a contradiction to (4.29). Hence x° is a conditionally properly ef-
ficient solution for (VFP).

Remark 4.3.1: Fritz John and Kuhn-Tucker sufficiency can be establish
under weaker V' — invexity assumptions. Namely, f,,—g,, i=1,...,p

are V' — pseudo-invex and & i J= 1,...,m are V — quasi-invex.

4.4 Subgradient Duality

For the problem (VP) considered in present Chapter, consider a corre-
sponding Mond-Weir type dual problem:
(VD) V —Maximize (f,(u): i=1,...,p)

subject to
Oleﬁf +Zijag, (#4301
ﬂ,jgj(u)_(), _]—1,---: ’ (432)

(4.33)

IV

20, 37, =

i=1

Theorem 4.4.1 (Weak Duality): Let x be feasible for (VP) and let
(u, T, /1) be feasible for (VD). If (2'1f1 ,...,Tpfp) is V' — pseudo-invex

and (4,g,,....,4,g, ) is ¥ —quasi-invex in nonsmooth sense, then

(G, G = (@), £, ()] ¢ =it R

Proof: From the feasibility conditions,
ﬂjgj(x)s /Ijgj(u), j=1,...,m.
Since ﬂj(x, u)>0, j=1,.,m, we get

z/lﬂxu Zﬂ,ﬂxug]()
Then, by V' —qua51-1nvex1ty of ( (&1 s A, gm), we get

z&jn(x, u)gj <0,V G € ng(u), j=1,...,m.

J=1
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Since, OEZT Of Z/I 8g ; then there exist
& e@f( ) D and S; e@g}( ) j=1,...,m, such that

0= Zr,;. +z/1jgj :
This implies that - "
0= Zplrié‘in(x, u)+ izjgjn(x, u).
Thus, " "
irifl.n(x, u)>0, V& edfi(u), i LD

Then, by V' — pseudo-invexity of (Z‘l SrseensT, 1, ), we get
RLAHIVIOED RLACHINAD)
i=1 i=l

P
The conclusion now follows, since Z 7, =1 and
i=1

ai(x, u)> 0, i=1,..,p.

Theorem 4.4.2 (Strong Duality): Let x” be a weak minimum solution
for (VP) at which a constraint qualification is satisfied. Then there exist

" eR?, 2" € R", such that (xO, 7°, /10) is feasible for (VD). If weak

duality holds between (VP) and (VD), then (xo, 7°, /10) is a weak mini-

mum for (VD).
Proof: From the Kuhn-Tucker necessary conditions (see, e.g. Theorem

6.1.3 of Clarke (1983)), there exist 7 € R’ , A € R™, such that
N 0 S 0
0¥ r,af,(x*)+> 4,00,(x),
i=l1 =1

J
7,20, 720, 4,20, ﬂ_].g_].(xo):O, j=1,....m.

Now since 7; 20, 7#0, wecanscalethe 7,, i=1,...,p and
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A

T.
A, j=L..,m, thus riO: p’ and /1(}: mj . Now we have
zfi Z/i_,-
i1 =l
(xo , 70, /10) that is feasible for (VD) such that
f; (u) > f, (xo )

Since x' is feasible for (VP), this contradicts weak duality Theorem
44.1.

Theorem 4.4.3: Let x be feasible solution for (VP) and (1,7 , T, A )

feasible for (VD) such that ia f.(%)= ia fiW). 18 @07, 1)) i
i=1

i=l1

V' — pseudo-invex and (/11 gises Ay gm) is V' — quasi-invex at u , then X

is properly efficient for (VP).
Proof: Let x be any feasible solution for (VP). From the weak duality

theorem, Zp:i fi(x)> Zp:fl f,(). From the assumption, we get
i=1 i=1

Zp:fifi(x)z Zp:flfl()_c) Hence by Theorem 1 in Geoffrion (1968), X is
i=1 i=1

properly efficient for (VP).

Theorem 4.4.4: Let X be feasible for (VP) and (Z/_I , T, A ) be feasible
for (VD) such that f()_c) = f(zT) If (z_'lf1 ,...,z_'pfp) is V' — pseudo-invex
and (/T1 2 s Ay, gm) is V' — quasi-invex at u for each dual feasible
(L_l J T, A ), then (L_l J T, A ) is properly efficient solution for (VD).

Proof: Assume that (L_l, T, A ) is not efficient, then there exists
(u*, ", /1*) feasible for (VD) such that ﬁ(u)z fi(L_l), vVi=1,.,p,
and fj(u*)z f,(@), for some jeil,...,p}.

Therefore, Zp: . f; (u* ) > Zp: o fi(i).
i=1 i=1

On using the assumption f(X)= £ (ir), we get
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p p

Yo file)> X £,

i=1 i=1
a contradiction to weak duality theorem, since Z'l.* >0, i=1,..., p. Hence
(L_l , T, A ) is an efficient solution for (VD). Assume now that it is not
properly efficient. Then there exist a feasible solution (u*, T, ﬂ*) and an
i€ {1,...,p}such that f,(u*)> fi(ﬁ), and

S )= 1, > Ml )= 1, ).

forall M >0 andall j#ie{l,..,p} satistying f,()> f,(u"). This
means that fl.<u*)— fl(ﬁ ) can be made arbitrarily large whereas
fj(ﬁ)—fj(u*) is finite forall j #ie {l,...,p}. Therefore,

o ()= 1@)> 3 (7, @) - 7))

J#i

Or if:fl(u*)>irl*fl(ﬁ)

Using the assumption f(¥)= f(&), we get
p P
i=1 i=1

P
This again contradicts the weak duality theorem since Zri =1.
i=1

Hence (LT, T, A ) is a properly efficient solution for (VD).

Theorem 4.4.5 (Strong Duality): Let x be a properly efficient solution
for (VP) and (2,1 g5, gm) satisfy the Kuhn-Tucker constraint qualifi-
cation at X . Then there exists (f , A ), such that (17 =X, 7T, A ) is a feasi-
ble solution for (VD) and the objective values of (VP) and (VD) are equal.
Also, if (Z'lfl ,...,rpfp) is ¥V — pseudo-invex and (1,g,,...,4, g, ) is
V' — quasi-invex at u for every dual feasible solution (u, T, /1) , then
(x, T, /1) is a properly efficient solution for (VD).

Proof: Since x is an efficient solution for (VP) at which the Kuhn-
Tucker condition is satisfied, there exist 7 € R”, A € R™, such that
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OEZTﬁf Zﬂ, og ,(x

A4,0g,(x)=20, 4, ZO,]—I,...,m, t#0, 7,20,i=1...p.
Now since 7#0, 7, 20, we can scale

| 2
4 7

T,=—"—and 4= /

: —
ZTi Z:‘Zj
=

i=1

Now we have ()?, T, A ) that is feasible for (VD). Also, since the objec-
tive functions for both problems are the same, the values of (VP) and (VD)
are equal at x . Hence by Theorem 4.4.4 ()_c, T, /1) is a properly efficient

solution of the dual problem (VD).

We now consider the following dual (VFD) to the primal problem
(VEP).

(VFD) Maximize (tl yeees )

subject to -

0e i‘ri lof, (y)-t.02,(»)]+ i 2,0h,(y)+ No(y) 439
F0)-180)20, i=1,.0p .
FHb)2 0, (4.36)

>0, 420, r=20. (4.37)

We denote the set of feasible solutions of (VFD) by K.

Theorem 4.4.6: (Weak Duality): Let x be feasible for (VFP) and
(y, T, Z,t) be feasible for (VFD) and let (r]fl ,...,Tpfp) and

(— 7,8 ,...,—Tpgp) and (xllh1 ,...,ﬂmhm) be V —invex. Then &ﬁ_ ‘.
g(x)
/(x)

Proof: Assume contrary to the result, i.e., ( ) <t and exhibit a con-
glx

tradiction.

1, )

Now —<

g(x)

<t, Vi=l,.,p, (4.38)
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filx)
gk(x)

From (4.35), (4.38) and (4.39), we have
fi(x)-t.g.(x)< f,(y)-1.8.(»), Vi=1,..,p,

fk(x)_tkgk(x)gfk(y)_tkgk(y)’ for atleast one &,
which along with the hypothesis of V' — invexity on (’rl SrsenT, f p) and

(—rlgl,...,—rpgp),wehave
al.(x, y)[ui —tivi]n(x, y)SO, Vi=l1,.,p, (4.40)

and <t,  for atleast one k. (4.39)

and

and
(x y)[ —t vk]n(x, y)<0, for atleast one k. (4.41)

where for each i=1,...,p, uieﬁﬂ(y) and vieagi(y). Using

7,>0,i=1,..., p, with (4.40) and (4.41) and summing over i, we ob-
tain

Zp:ai(xa y)ri[ui _tivi]< 0
i=1
Since «; (x, y) >0, Vi=l1,...,p, therefore, we have
)4
_ (4.42)
T.u,; tv
z] 1 i

The inequality A h(x)S 0<A h(y) along with V — invexity on
(Ahy . A k), we have

z,b’j(x, y)/ljwjﬂ(x, y)SO , Vow, eahj(y), j=1,...,p.
j=1
Since ﬂj(x, y)>0 , V j=1,...,p, wehave

iﬂjwﬁ(xay)ﬁ(), Vw, eodh(y), j=1,...p. (4.43)
j=1
Also, since z € N (y) , therefore,

z'n(x, y)<0. (4.44)
From (4.42)-(4.44), we have
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D
{ZT,-[”[—IV Z/iw +z} y)<0,
i=1
which contradicts (4.33). Hence the theorem.

Theorem 4.4.7 (Weak Duality): Let x be feasible for (VFP) and

(y, T, /1,1‘) be feasible for (VFD) and let (z’l Sisee f ) and

(e

V —

lgl,...,—rpgp) are V' — pseudo-invex and (/th, AN ) be

M m!tm
g(x)ﬁt'

Proof: From the feasibility conditions, we get
ZMJ Zﬂ Hly
Since ﬂj(x y)>0, V j=1,..,p, wehave
Zz B, (x, ) Zz B, (x, y)h(y).

Then by V — 1nvex1ty of (ﬂl h,..., ﬂm h, ), we have

quasi-invex. Then

iljwjn(x, y)S 0, Vw, edh, ( ) =1,...,p. (4.45)
j=1
Also, since z € N (y) , therefore,
z'n(x, y)<0. (4.46)
Now, from (4.34), we have
O:iri[ui ]+Z/iw +z, (4.47)
i=1

for u, €df,(y) and v, €dg,(y ), i=1,..,p and w, €0h/(y),

j=1,...,m and ze N.(y).

Now from (4.45)-(4.47), we have
ZT ]77 x y) 0. (4.48)

By V — pseudo-invexity of (T]f] ,...,Tpfp) and (— 7,8, ,...,—Tpgp),

we have
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Za CRRYAVAC) >Za (v kA () -1 ))

ThlS yields,
fi(x)_tigi(x)zfi(y)_tigi(y)5 Vi=l,..,p,
and
fi(x)-1,8,(x)> f,(y)-t,g,(y), for atleast one k.
/(%) fi(x)
gl(x gk(x)
one k. Thus, (x; £t.

g(x

Corollary 4.4.1: Let x° be feasible for (VFP) and L0, A0t )

feasible for (VFD) such that ~E—% % and the invexity hypothesis
g\ gV

either of Theorem 4.4.6 or of Theorem 4.4.7 hold. Then x° and
(yo, Z'O,/io,to) are conditionally properly efficient for (VFP) and (VFD),
respectively.

This implies, >t, Vi=l,.,p,and >, for at least

N—"

Theorem 4.4.8 (Strong Duality): Let x° be an efficient solution for
(VEP) and let the Slater type constraint qualification be met at x”. Then
there exist 7° € R, 1° € R™ and ¢° € R? such that (xo, ro,/io,lo) is
feasible for (VFD). If in addition, either Theorem 4.4.6 or Theorem 4.4.7
holds, then (xo, %A ,to) is conditionally properly efficient solution for
(VFD).

Proof: Since x" is an efficient solution for (VFP) and the Slater con-
straint qualification is met at xo, therefore, by Lemma 4..3.2, there exist
7” e R”, 2’ € R" such that the following hold

06iz‘iTi(xO)+iﬂ,j8hj(x0)+Nc(xo), (4.49)
i=1 j=1
ljhj(xo)zO, jzl,...,m, (450)
>0, 120,

(4.51)
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where 7, (xo ) = Hlx_o)[afi (xo )_ &, (xo )agi (xo )]
We now choose
(4.52)

T _alx—()) and ¢, =¢i(x°)— g: ) i=1,..,p.

Thus, we have

0e Zp:q [8f, (xo - tiofigi (xo )]+ i/lgﬁhj (xo )+ N, (xo ),
i=1 j=1

ﬁ(x‘))—tfgl.(x‘))z 0, i=1,...,p,
Ah(x°)=0, j=1,..m,r>0, 220.
This implies that (xo, To,lo,to) is feasible for (VFD). The condition
(4.52) together with Corollary 4.4.1 gives that (xo, To,ﬂo,to) is a condi-
tionally properly efficient solution for (VFD).

Theorem 4.4.9 (Strict Converse Duality): Let x° be feasible for
M
g, (x")
i=1,...,p for all feasible (x v, T, l,t) , let (Tlfl,...,l'pfp) and
(— 7,8, ,...,—Tpgp) and (/llh1 yees Ayl ) be V' — invex, and at least one

m-m

(VFP) and (yo, To,io,to) be feasible for (VFD) with ¢° =

of these be strictly V' — invex. Then x’ = y°.

Proof: Assume x° # yo. Since (yo, To,io,to) is feasible for (VFD),
therefore, we have

iff[ﬁ(yo)—ffgi(yo)h iﬂﬂ.hj(y")z 0. (4.53)

Note that

{ [u —t]v; ]+z/”t°w +z} x,y)=0, (4.54)

for some u, e@ﬁ(y ) and v/ €9g,(y°),i=1,...,p and w;) eahj(yo),
j=1,...,m and z° eNC(yo).

Using strict V' — invexity, we get
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> [ﬁ(x°)—r?gi(x°)]—ir? (A0 -2'2,0") ]

i=1
P
> Zfl,oai(xo,yo)[uio —t,.ov?}ﬂ(xo,yo).
i=1
Since ai(xo , y0)> 0, i=1,...,p, wehave

7 [f’,-(x")—t,."g,.(x‘))]—zp:rf [ L0 -1g,0")] (4.55)

p
> 22'[0 [uf’ —tiov?]ﬂ(xo,yo).
i=1

Again, using strict V' — invexity of (ﬂulh1 ees A D ), we get

Z]:/I.?'h.f (xo)—z;ﬂf;hj (xo) > Z/igﬂj (xo ’ yo)w.? 77(x° ) yo)-

J= J= J=

Since ﬂj(xo , y0)> 0, foreach j=1,...,m, we get
S )3 0)> St ). @0
j= Jj= j=

Now adding (4.55) and (4.56), we get

)4 m )4

PRANACO R AC DI ES W NS EDRAFACDEFACD]

i=1 j=1 i=1

p
—

1

+i,1;’hj (y°)+{zp: A —tfv?]+f4§?wj?}n(x°,y°).
j=1 i=1 J=1

0 m
Using (4.54) and since ¢, = fl(x ), i=1,..,p, Zi(}h,(xo)zoy
j=1

0

&i\X
the above equation yields

ZPIT? ()=, (v )|+ iﬂ3hf(y°)< 0,

which contradicts (4.53). Hence the result follows.

4.5 Lagrange Multipliers and Saddle Point Analysis

Below we give, as a consequence of Theorem 4.3.1, a Lagrange multiplier
theorem.
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Theorem 4.5.1: If Theorem 4.3.1 holds, then equivalent multiobjective
fractional programming problem (EFP) for (VFP) is given by

A ) 1)
glx) 77 g,b)
subjectto  Ah, (xo): 0, j=1,...m
4,20, j=1,...m
Proof: Let x° be an efficient solution for (VFP). Then, (4.7), we have
» 0
(){ fg%a&@%} o

+ Zﬁjahj (x°)+ N (x").
j=1

(EFP) Minimize (

Also from (4.8), we have
0 0 .
ﬂjhj(x )zO, j=1,....m. (4.58)
Using (4.58) in (4.57) and without loss of generality, setting

L1
D 7, ——y =1 yields
=1 &;\X

OEZT [5f(x ")+ A% h(x")~ (

LGED+ATRE")) (4.59)
g (x")
ﬁ‘g,»(x )]—Nc(xo)
Now applying the arguments of Theorem 4.3.2 by replacing fl(x) b
/i (x) + ﬂrh(x) we get the result.
Theorem 4.5.1 suggests the vector valued Lagrangian function L(x, /1)
as L: X xR — R” given by
L(x, /”L)z (Ll(x, i),...,Lp(x, /1)),
f(x)+ 2 h(x)
Y2 ) 1= 1:
g, (x )

Definition 4.5.1: A point (xo ,A ) € X xR is said to be a vector sad-
dle point of the vector valued Lagrangian function L(x, /1) if it satisfies

where L, (x, 1)= v D

the following conditions
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L(x°, 2)2L(x*, 2),  Vier” (4.60)

and
L(x", 2°)% L{x, 2°), VxeX. (4.61)

Theorem 4.5.2: If (xo , /10) is a vector saddle point of L(x, 1), then

x° is a conditionally properly efficient solution for (VFP).
Proof: Since (xo s lo) is a vector saddle point of L(x, /1), therefore,

we have L, (xo , /1)3 L, (xo, A° ), for atleast one i and V 1eR”
_ S+ A () 60)+ 2 Al

, for at least one i and VA € R

& (xo) - & (xo
:>(/1—20)Th(x0)£0, V A€ R .This gives
2 h(x)=0. (4.62)

First we show that x° is an efficient solution for (VFP). Assume con-

trary, i.e., x° is not an efficient solution for (VFP). Therefore, there exists
an x € X with h(x) <0 and from (4.62) along with ﬂOTh(x) <0 yields
£)+ 27 hx) _ £ )+ 2 h(x)
& (x) 8i (x " )
i)+ 2 h(x) £+ 2 (")
2. (x) gx*)
andVAeR.

Thatis, L,(x, 2°)< L,(x*, 2), V¥ i=1,..,p and V xeX,
and L, (x, ZO)< L, (xo LA ), for at least one k and VA’ € R, which is a

, Vi=1l,...,pand V xe X

and for at least one &k

contradiction to(4.61). Hence x'is an efficient solution for (VEP).

We now suppose that x” is not a conditionally properly efficient solu-
tion for (VFP). Therefore, there exists a feasible point x for (VFP) and an

index i such that for every positive function M (xo ) > (0, we have
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fj (x )_ fj (x)
g,(x") g,()

for all j satisfying / (x 0) < fj (x), whenever fl(xz) > f’(x) This
) g, () glx")” g(x)

along with (4.58) and 2" h(x)<0 yields
y

(x)+ A" h(x (0 )+ 2" A(x

f’() ()<f’( ) 5 ( ), Vi=l,.,p and V xe X,
g,(x) 8i (x )

which is a contradiction to (4.61). Hence x° is a conditionally properly ef-

ficient solution for (VFP).

Theorem 4.5.3: Let x° be a conditionally properly efficient solution for
(VEP) and let at x° Slater type constraint qualification be satisfied. If

(Tlf1 ,...,Tpfp) and (— 7,8, ,...,—Tpgp) and (A4 ,....,A,h,) be V -
invex. Then there exists A € R" such that (xo, /10) is a vector saddle
point of L(x, /1).

Proof: Since x" is a conditionally properly efficient solution for (VFP),

therefore, x° is also an efficient solution for (VFP) and since at x” Slater
type constraint qualification is satisfied, therefore, by Lemma 4.3.2, there

exist 7° € R” with 7° >0 and A° € R" such that the following hold:
) ZT HIF)[“ (XO)_¢f(x°)5gf(X°)]+gﬁiahj(f’)+Nc(xO), (4.63)
ﬂ,?.hj(xo):()’ j=1,...,m_ (4'64)

These yields

Zrl«o(gix ][u — 1%y ]+Z,1°W 120 =0,

i=l1

(4.65)

for some u, € 6ﬁ(x°) and v! e@gi(xo), i=1,..,p andw? e@hj(xo),
j=1,...,m and z° eNC<x0).
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Using the V' — invexity assumption of the functions, we obtain
L) =4 g (x") 2 0, (o, x) @ = (X" ) (x, x°),
Vi=1l,...,pand Vxe X
and f,(x") =g (x") g, (x") > e (3, x" ) =4, (X" W) (x,x°), for at
least one k£ and Vx € X.
Since ai(x, x°)> 0, Vi=l,..,p, weget
L") =4, (") g, (x") = () — g ("W Im(x, X7, (4.66)
Vi=1,...,pand Vxe X
and
Lo ()= (x) g (x") > () =4, ("W (x, x°), foratleast  (4.67)
one k and Vx € X.
Now forall i=1,...,p, V xe€ X, we have

e #)pfe, 2)- PO B 2T e

Multiplying (4.68) by 7,, i=1,...,p, which is chosen as

0

(2] gi(x)

T, = Hx—oj and ZT?[HIX—O)J =1, we have

S e[ LA -1, A)]

which because of (4.65) and (4.66) gives
iri [L[ (x, A )— L, (xo , A )]2 —n(x, x’ {iﬂf;wf + ZOJ + /”LOTh(x) ,
i=1 j=1

(because h() is V —invex at x” and z° € N, (xo )).
Since 7 € R”, 7> 0, therefore,
Ll.(x0 , /10)% Li(x, /10), V xelX.
The other part
L. (xo , /l)l‘Li (xo , /10) V Ae€R! of the vector saddle point ine-
quality follows from
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A h(x")
0

gi\x
Hence (xo , /10) is a vector saddle point of L(x, A).

L(x, 2)-L,(x", 2°)= <0, Vi=1l,.,p.

Remark 4.5.1: Theorem 4.5.3 can be established under weaker V — in-
vexity assumptions, namely, (Tlf1 yeres Tpfp) and (— T\8 5es— Tpgp) are

V' — pseudo-invex and (/1l hy,....,Ah, ) is V — quasi-invex.



Chapter 5: Composite Multiobjective Nonsmooth
Programming

5.1 Introduction

Jeyakumar and Yang (1993) considered the following convex composite
multiobjective nonsmooth programming problem

(VP) V —Minimize (f,(F,(x)),..., £, (F, (x)))
subjectto x e C, gj(Gj(x))SO, j=1,....m,
where C is a convex subset of a Banach space X, f,,i=1,....p &5

j=1,...,m,are real valued locally Lipschitz functions on R" and F;,

i=1L...,p, Gj, j=1,...,m, are locally Lipschitz and Gateaux differenti-

able functions from X into R" with Gateaux derivatives E', i=1...,p,
G;, Jj=1,...,m, respectively, but are not necessarily continuous Frechet

differentiable or strictly differentiable see Clarke (1983). The problem
(VP) with p =1 (single objective function) and continuously (Frechet)

differentiability conditions has received a great deal of attention in the lit-
erature, e.g., loffe (1979), Ben-Tal and Zowe (1982), Burke (1987),and
Fletcher (1982, 1987).

It is known that the scalar composite programming problem (see last
Section of the present Chapter) provides a unified framework for studying
convergence behaviour of various algorithms and Lagrangian conditions,
e.g., see Burke (1985), Fletcher (1987) and Rockafellar (1988). Various
first order optimality conditions of Lagrangian type were given in Jeyaku-
mar (1991) for single objective composite problem without the continu-
ously Frechet differentiability or the strict differentiability restrictions us-
ing an approximation scheme.

The Composite model problem (VP) is broad and flexible enough to
cover many common types of multiobjective problems, see in the litera-
ture. Moreover, the model obviously includes the wide class of convex
composite single objective problems, which is now recognized as funda-
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mental for theory and computation in scalar nonsmooth optimization. To
illustrate the nature of the model (VP), let us look at some examples.

Example 5.1.1. [Jeyakumar and Yang (1993)]:
Define F;, G, : X" — R"™, by

F(x)=(0,...,7(x)..0), i=1,...,p,
G,(x)=(0,....n,(x)....0)  j=1,.,m,
where li(x), i=1,...,p,and hj(x), j=1,...,m, are locally Lipschitz

and Gateaux differentiable functions on a Banach space X . Define
fi> g iR —>R, by

fi(x): x, i=1,.,p, gj(x): X, J=le,m.
Let C = X . Then the composite problem (P) is the problem
(NP) V —Minimize ([, (x),..., (x))

ol
subject to xeX",hj(x)SO, j=1,..,m,

which is a standard multiobjective differentiable nonlinear programming
problem. Lagrangian optimality conditions, duality results and scalariza-
tion techniques for the standard multiobjective nonlinear programming
problem have been extensively studied in the literature under convexity
and generalized convexity conditions, see, e.g., Chew and Choo (1984),
Rueda (1989), Komlosi (1993), Rapesak (1991), Jahn (1984, 1994) and
Sawaragi, Nakayama and Tanino (1985). For fractional case see, e.g.,
Kaul, Suneja and Lalitha (1993), Mishra and Mukherjee (1995) and Char-
acterizing the solution sets of pseudolinear programs, see, e.g., Jeyakumar
and Yang (1994) and Mishra (1995).

The idea of this Chapter is that by studying the composite model prob-
lem (VP) a unified framework can be given for the treatment of many
questions of theoretical and computational interest in multiobjective opti-
mization. We have obtained results mainly for conditionally properly effi-
cient solutions of the composite model problem (VP).

The outline of this Chapter is as follows: In Section 2, we present some
preliminaries and obtain necessary optimality conditions of the Kuhn-
Tucker type for the composite problem(VP). In Section 3, we present new
sufficient optimality conditions for feasible points which satisfy Kuhn-
Tucker type conditions to be efficient and conditionally properly efficient
solutions of the problem (VP). These sufficient conditions are shown to
hold for various classes of nonconvex programming problems. In Section
4, multiobjective duality results are presented for the problem (VP) under
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the assumptions of generalized convexity. In Section 5, a Lagrange multi-
plier theorem is established for the problem (VP), and a vector valued La-
grangian is introduced and vector valued saddle point results are also pre-
sented. In Section 6, we provide a scalarization result and various
characterization of the set of conditionally properly efficient solutions for
composite problems.

5.2 Necessary Optimality Conditions

A feasible point x,, for (VP) is said to be an efficient solution (Sawaragi,
Nakayama and Tanino (1985), White (1992)) if there exists no feasible x
for (VP) such that f, (E (x)) < fl(Fl (xo )) , i=1,...,p and
fi(F(x))# f,(F(x,)), for some i. The feasible point x, is said to
be a properly efficient solution (Jeyakumar and Yang (1993)) for (VP) if
x, is efficient for (VP) and there exists a scalar M > 0 such that for each
i
)1
SE )= 17, )

for some j such that f; (F (x)) ( ( 0)) whenever x is feasible for

J

(VP) and fl( l.( )) (F ( )) The feasible point x, is said to be

1

weakly efficient solution for (VP) if there exists no feasible point x for
which fl(Fl (x0 )) > fl(F, (x)), i=1,..., p. In the definition of proper ef-
ficiency the scalar M is independent of x, and it may happen that if f is

unbounded such an M may not exist. Also an optimizer might be willing
to trade different levels of losses for different levels of gains by different
values of the decision variable x . Thus, on the lines of Singh and Hanson
(1991), we extend the definition of proper efficiency to conditional proper
efficiency for the composite model (VP) as follows:

The feasible point x,, is said to be conditionally properly efficient solu-
tion for (VP) if x, is efficient for (VP) and there exists a positive function
M (x) > 0 such that for each i,

FAE( )= £(F()
1, )- £, (7))

M(x),
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for some j such that f J.( ( ))> S\F ( ( 0)) whenever x is feasible for
(VP)and f,(F,(x)) < £,(F,(x,)).

Notice that if F': X — R" is locally Lipschitz near a point x € X and
Gateaux differentiable at x and if f : R" — R is locally Lipschitz near

F (x) then the continuous sublinear function defined by

—max{Zwk hiwe df (F ())}

satisfies the inequality (f ° F)+ (x, h)S th, YVheX.
The function 7 is called upper convex approximation of foF at x,

(Jeyakumar and Yang (1993)).
The following necessary condition is taken from Jeyakumar and Yang
(1993):

Theorem 5.2.1: For the problem (VP), assume that f,,i=1,...,p and
g;> J=1,...,m are locally Lipschitz functions, and that F;,i=1,...,p
and G,, j=1,..,m are locally Lipschitz and Gateaux differentiable

functions. If u € C is a weakly efficient solution for (VP), then there exist
Lagrange multipliers 7,>0,i=1,..,p and 4,20, j=1,...,m not all
zero, satisfying

P , m , .

0e Y 7,df (FW)F )+ 4,02, (G, )6, ()~ (C~u)

i=1 =1

and
/ljgj(Gj(u))z 0, j=1,...m

The following Kuhn-Tucker type optimality conditions (KT) for (VP)
are taken from Jeyakumar and Yang (1993):

0= 30,2 (F W) )+ 3 4,02, (6, ), ) (€ )

and
reR”,7,>0, 1eR", 1,20, ijgj(Gj(u))=0, j=1,...,m.
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5.3 Sufficent Optimality Conditions for Composite
Programs

In this Section, we present new conditions under which the necessary op-
timality conditions become sufficient for efficient and conditionally prop-
erly efficient solutions. The following null space condition is as in Jeya-
kumar and Yang (1993):

Let x, u € X. Define K : X — R""*") = zR" by
K(x): ((F1 (x),...,Fp (x)), (G1 (x),...,Gp(x)».
for each x, u € X, the linear mapping 4, , : X — R+ g given by
A, = (o (x,u)FKW)y,...,a,(x,u)F (u)y,
B (xuw)G(w)y,..., B,(x,u)G, )y),
where ai(x, u), i=1,...,p and ,Bj(x, u), j=1,...,m are real posi-

tive constants.
Recall, from the generalized Farkas Lemma (Craven (1978)), that

K(x)-K(u)e Ax,u(x) iff A (»)=0=y"(K(x)-K(u))=0. Let us
denote the null space of a function H by N [H ]

For each x, ueX , there exist real constants «,(x,u)>0,
i=L...,p and B,(x,u)>0, j=1,...,m,such that

N4, ,Je NK()- K@)

Equivalently, the null space condition mean that for each x, u e X ,
there exist real constant o, (x,u)>0, i=1L...,p and B(x,u)>0,
j=1,...,m and u(x, u)e X such that

Fi(x)=F ()= 6,0x, w)F (w)ulx, u)
and
Gj(x)— Gj(u): Gj(x, u)G}.(u)y(x, u)

For our problem, we assume the following generalized null space condi-
tion (GNC):

For each x, u € X, there exist real constant ¢, (x,u) >0, i=1,...,p

and ﬂj(x,u) >0, j=1,...,m and ,u(x, u)e (C—u) such that
F(x)=F(u)=6,(x, u)F (w)ulx, u)

and
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6,(+)~G, (u)= 0, (x, )G, (w)ulr. ).
Jeyakumar and Yang (1993) showed that the generalized null space
condition is easily verified for nonconvex functions.

Theorem 5.3.1.[Mishra and Mukherjee (1995a)]: For the problem
(VP), assume that f; and g ; are V' —invex functions, and F; and Gj.

are locally Lipschitz and Gateaux differentiable functions. Let u be feasi-
ble for (VP). Suppose that the optimality conditions (KT) hold at u . If the
generalized null space condition (GNC) hold at each feasible point x for
(VP) then u is an efficient solution for (VP).

Proof: The condition

0& 3 () 1)+ 32,28, (6, )G (0)~(C )

implies there exist v, € 0f, (F,(“)), i=1,..,p and w, eagj(Gj(u)),
j=1,...,m such that

Zp:riv,TF;' () + iﬂjwa_; (w)e(C-u).
i=l1 j=1
Suppose that # is not an efficient solution for (VP). Then there exists a
feasible x € C for (VP) with f,(F,(x))< f£,(F,(u)), i=1,...,p, and

/i (Fio (x))< 3 (Fio (u)), for some i, € {l,..., p}.
Now, by the generalized null space condition, there exists
u(x, u) e (C —u), same for each F, and G, such that

F(x)= Fu)=6,(x, w)F (w)u(x, u), i=1,..p
and
Gj(x)—GJ(u)zﬁj(x,u)G;(u)y(x,u), j=1,..,m
and by V — invexity of f, and g, there exists 7(x,u),;(x,u)>0
i=1,...,p and ﬂj(x,u)>0,j=1,...,m such that
1 (E@) = £ (F@) - a,(ru)én(eu), V& €3, (Fw).i=1,.... p

and
g,(G,®)-g,(G,w)-B,(x.u)s m(x,u),

Vs, edg,(G,w).j=1....m.
Hence
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0> ,i_;ﬁj (x, u};éj(x, u)(g’ (Gj( ))—gj (G ( ))) (by feasibility)
23 e (e 6, (-6, w). v <, 26,6, )

(by subdifferentiability)

= Z (e, w)a (uule, u), (by (GNC))
> —Z Tiéin(x, u)E (u),u(x, u) , (by hypothesis)

>3 e )W)

(by subdifferentiability)

This is a contradiction and u is an efficient solution for (VP).

Theorem 5.3.2: For the problem (VP), assume that (Tl f (), T, f, ())
is ¥ — pseudo-invex and (4,g,(-),...,4, g, (-)) is ¥ — quasi-invex and F,
and Gj are locally Lipschitz and Gateaux differentiable functions. Let u

be feasible for (VP). Suppose that the optimality conditions (KT) hold at
u . If the generalized null space condition (GNC) hold at each feasible
point x for (VP) then u is an efficient solution for (VP).

Proof: As in the proof of above theorem, we have

Za x, ul, fi(F, Za x, ), f,(F,(u).

Now by V pseudo-invexity of (2'1 f1 ( ),...,T o p()) and the general-
ized null space condition (GNC), we get

Sl (e, 0)<0, ¥ & e (F W),

with at least one strict inequality.
So by hypothesis, we have

Z:‘ijgj f](x, u)G}(u),u(x, u)> 0, Vg, e égj(Gj(u)),
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Then by V — quasi-invexity of (ﬂlgl(-),...,im g, ()) and the general-
ized null space condition, we get

ZZ;LJ& (Gj (x)) >Zr::’1jgj (Gj (”))

This is a contradiction, since

ﬂjgj(Gj(x))SO, ljgj(Gj(u)) 0.

Theorem 5.3.3: If u is an optimal solution of
P
(VP,) Minimize Z z.f.(F.(x))
i=1
subjectto x €c, /1ng]. (G_I.(x)) <0,j=1,...,m,
then u is conditionally properly efficient solution for (VP).
Proof: Obviously u is efficient. Choose a function M (x) such that

M(x) = (p - l)max[ 5 (x)]
AN (x)
Suppose u is not conditionally properly efficient. Then for some i and
J - SE)= £(E ) > MG, (F @) - 1, (F (x)))
That is,

S ()= £i(F () > (p —1)max

i, J

;%) (fj (F,- (u))—fj (F,- (X)))

7\
SN
—

)
N

Thus,
ﬁ(fz (Fl (x))— fi (Fl (”))) > 7, (fj (F] (“))_ /i (F] (x)))
Summing over j #1,
w (f(EG)-£E@N)> X, (7 (F,w)- £, (7, ()
That is, -
e (E )+ 27 1 ()> 7 (F )+ Xe, 1, (F, (),
which, since 7, > Oj# i=1,..., p, contradicts the olj):;mality of u.
Hence u is conditionally properly efficient.
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Theorem 5.3.4: Assume that the conditions on (VP) in Theorem 5.3.1
hold. Let u be feasible for (VP). Suppose that the optimality conditions
(KT) hold at u . If the generalized null space condition (GNC) holds with
é}(x, u)z 6’].(x, u)z 1, V i, j, for each feasible x of (VP), then u is

a conditionally properly efficient solution for (VP).
Proof: Let x be feasible for (VP). Then x is also feasible for the scalar

problem (VP;). From the V' — invexity property of f,, i=1,..., p, we get
p p
2 (F )= 27 £, (F ()
i=1 i=1

> z< W)en(e, u)E, ()= F ), ¥ & e of, (F,(u).

Now, by the Generalized null space condition, we get

S e f ) L (F )

7,0, (. w)en(e, ulF,(x) = Fw)), ¥ & e ofi(F(u).

™

I
—_

7y, (6, u)en(e, w)F; (u)ulx, u)

M

1

v

U

2,8, (5. wle nlx. )G, (). u)

j=1
>-> 4,8, (Gj (x))+ 248, (Gj (”))
J=1 j=1
>0,
and so u is minimum for the scalar problem (VP,). Since 7#0e R”,

7 >0, it follows from Theorem 5.3.3, that u is a conditionally properly
efficient solution for (VP).

The following numerical example provides a nonsmooth composite
problem for which our sufficiency Theorem 5.3.1 is satisfied.

Example 5.3.1: Consider the multiobjective problem
x, +2x,
X, +x,

subjectto x, —x, <0,1-x,<0,1-x, <0

|2x] - X,

V' — Minimize [

‘xl +x,
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LetFl(x)szl—_xzv Fz(x):ﬂ ,G(x)=x,—x,, Gy (x)=1-x,,
x1+x2 x1+x2

G,(x)=1-x,, £,(0)=h]. L0)=y . &a()=g.0)=g0)=y,
al.(x,u)zl, i:1,2,,6’j(x,u):%(xl+x2), j=1,2,3 and

(e )= (3(}61 —1)’ 3(x, —2)]_

X +X2 x1+x2

Then the problem becomes a nonconvex composite problem with an ef-
ficient solution (l, 2). It is easy to see that the null space condition holds

at each feasible point of the problem. The optimality conditions (KT) also
hold with

&=1,i=1,2,7,=1,7,=3,¢,=1,2,=0, j=1,2,3.

We shall now give some classes of nonlinear problems which satisfy our
sufficient conditions.

Example 5.3.2. (77 —Pseudolinear programming problem): Consider
the multiobjective 77 —pseudolinear programming problem

(GPLP) ¥ —Minimize (7, (x),....Z, (x))

el
subjectto x € R", hj(x)—bj <0, j=1,...,m,
where [, : R" — R and h, : R" — R are differentiable and 7 — pseu-
dolinear 1i.e., pseudo-invex and pseudo-incave (Kaul, Suneja and Lalitha
(1993)), and b, € R, j=1,...,m . It should be noted that a real-valued
function A:R" — R is 71— pseudolinear if and only if for each
x,uecR", there exists a real constant a(x, u) >0 and
n:R"xR" — R such that
h(u) = h(x)+al(x, w)h (x)n(x, u).
For further details about pseudolinear and 77 — pseudolinear functions

and programs see, e.g., Chew and Choo (1984), Rueda (1989), Rapesak
(1991), Komlosi (1993), Kaul, Suneja and Lalitha (1993), Mishra and
Mukherjee (1996b), Mishra (1995¢) and Mishra, Wang and Lai (2006-
2007).
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Define F,,G,:R" —R"™™ by F(x)=(0,0,....[;(x),0,...,0),
i=l..,p and G,(x)=(0,0,....h,(x)=b,,0,..,0), j=1,..m.
Define fl.,gj:R"”” —> R by f,-(x)an i=l,..,p, g,(x)=x,,

j=1,...,m, Then, we can rewrite (GPLP) as the following nonconvex
composite multiobjective problem:

V' —Minimize ( 1(Fl(x)),...,fp(Fp(x)))
subjectto x € R", gj(Gj(x))S 0, j=1,..,m.

Now, our generalized null space condition is verified at each feasible
point by the 77 —pseudolinearity property of the functions involved. It fol-

lows from our sufficiency results that if the optimality conditions
P m
Nrl(w)+Y 4,8,u)=0, 4(g,()-b,)=0, hold with 7,>0,
i=1 j=1

i=1,...,p and /1j20, j=1,...,m at the feasible point u € R" of

(GPLP) then u is an efficient solution for (GPLP).
We now see that the sufficient optimality conditions given in Theorem
5.3.1 holds for a class of nonconvex composite 77 — pseudolinear pro-

gramming problem.

Example 5.3.3: Consider the problem
V' —Minimize ( (o t//)(x)),...,fp (70 y/)(x)))
subjectto x € X, gj((how)(x))ﬁ 0, j=1,...m,
where h=(h, ,...,h, ) is a 1 — pseudolinear vector function from X to
R", v is a Frechet differentiable mapping from X onto itself such that
l//(u) is surjective for each u € X', and f;, g; are V' —invex. For this

class of nonconvex problems, the generalized null space condition holds.
To see this, let x,ueR", y= l//(x) and z = l//(u) . Then, by the
1 —pseudolinearity, we get

h; (W(x))_ h; (‘//(”)) = (y)_ h; (Z) =a; (ys Z)hz (2)77(% Z)'
Since (,//(u) is onto, 77(y, Z):l//'(u)gg(x, u) is solvable for some
G(x, u)e R". Hence,
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B (v () =k (v @) = (v, 2) B ()] (w) Glx,u)
=a, (x,u)(h o )’ (U)G(x,u)
where &, (x, u)=a,(w(x), w(u))> 0;thus (GNC) holds.

We finish this Section by observing that any finite dimensional noncon-
vex programming problem can also be rephrased as a composite problem
(VP) and it clearly satisfies the generalized null space condition.

5.4 Subgradient Duality for Composite Multiobjective
Programs

For the composite multiobjective programming problem (VP) considered
in Section 5.1 above, we have the following Mond-Weir type dual:

(VD) V —Maximize ( . (F1 (u)), s Sy (FP (u)))
subject to

0= 30,2 (F ) )+ 3 4,02, (6, ), ) - (€ ~u)

ﬁ(ig‘i(Gj(u))Z 0, j=1,..,m,
ueC,7eR”, 7,>0, 1eR", 4,20.
The following Theorems 5.4.1-5.4.5 are from Mishra and Mukherjee
(1995):

Theorem 5.4.1 (Weak Duality): Let x be feasible for (VP) and let
(u, T, /1) be feasible for (VP). Assume that the generalized null space

condition (GNC) holds. If( 1,...,fp) and (gl,...,gm) are V' —invex and
F,i=1,...,p and Gj , j=1,...,m are locally Lipschitz and Gateaux
differentiable functions. Then,

A (F s £, (E, @) = (A (F @)ns 7, (7, @) & ~R2\ o}

Proof: Since (u, T, /1) is feasible for (VD), there exist

7>0,120,v, € aﬁ(E(u)), i=1,.,p,
w, € 6gj(Gj(u)), j=1,...,m,

satisfying ﬂ‘igj(Gj(u))Z 0, j=1,...,m, and
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Zp:rivf F 2’1/ C u) .
i=l
Suppose that x # u and

GG £, (E, N = (A E@D-oos 1, (7, @) e =R2 Vo
Then Z - JUEE)-A(Ew) <0,

Sx, u)d,(x, u

Since iz >0
a,(x, u)s,(x,u) "

Now, by the V' —invexity of f, and by the generalized null space con-

1

dition (GNC), we get irifin(x, u)F, (u)pu(x, u)< 0.

i=1

From the feasibility conditions, we get 4, g, (G i (x)) <4g; (G i (u )),

and so Z (x, u)9 (x, u)(gj(Gj(x))_g.i(Gj(u)))S 0.

By V - 1nvex1ty of g, ﬂj(x, u)>0, Hj(x, u)>0 and the general-
ized null space condition (GNC), we get

iﬂjgjn(x, u)GJ (u),u(x, u)s 0, Vg, edg, (Gj (u))

Hence {ZT@F, z/l ;G j ulx, ulp(x, u)<0.

This is a contradiction. The proof is complete by noticing that when
x =u the conclusion trivially holds.

Theorem 5.4.2 (Weak Duality): Let x be feasible for (VP) and let
(u, T, /1) be feasible for (VP). Assume that the generalized null space

condition (GNC) holds. If (Tl SiseesT, fp) is V — pseudo-invex and
(llgl,...,/lmgm) is V- quasi-invex and F,,i=1,.,p and
G;, j=1,...,m are locally Lipschitz and Gateaux differentiable func-
tions. Then,

(A E @ £, F, @) = (F @)oo £, (F, @) 2 —R2\ {0}

Proof: From the feasibility conditions, we get
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m
ﬁ“j

/’Z—l: B (x, u)o,(x, u)(gf (Gf(x))_gj (Gj (”)))ﬁ 0.

Then by V' — quasi-invexity of (/11 sy, gm) and the generalized

null space condition, we have
Z;ﬂjgjn(x, u)G}(u)/J(x, u)<0, V G, €0g,; (G](u))
=

Hence by the hypothesis, we have Zp: rlﬁin(x, u)Fi'(u)y(x, u) >0.

i=1

The conclusion now follows from the V — pseudo-invexity of

(rlfl,...,rpfp).

The following two theorems can be proved as Theorem 2 and Theorem
3 of Singh and Hanson (1991).
Theorem 5.4.3: If u is optimal for (VP,), then there exists v such that

(u , V) is optimal for (VD,).

Theorem 5.4.4: If u is optimal for (VP,), then u is conditionally prop-
erly efficient for (VP), and there exists v such that (u . v) is conditionally
properly efficient for (VD).

Theorem 5.4.5 (Strong Duality): For the problem (VP), assume that
the generalized Slater constraint qualification in Section 2 holds and that
the generalized null space condition (GNC) is verified at each feasible
point of (VP) and (VD). If u is conditionally properly efficient solution

for (VP), then there exists 7 € R”, 7, >0, A€ R", /1j >0 such that

(u, T, l) is a conditionally properly efficient solution for (VD) and the
objective values at these points are equal.
Proof: It follows from Theorem 5.2.1 that there exist 7 € R”,7, >0,

A eR’”,/lj >0, such that

0= 30,2 (F () )+ 3 4,02, (6, ), ) ~(C—u)

2,g,(G,w)=0, j=1,..,m.
Then (u, T, l) is a feasible solution for (VD). From the weak duality
theorem, the point (u , T, /1) is an efficient solution for (VD).
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We shall now prove that (u , Ty /1) is a conditionally properly efficient
solution for (VD). Suppose that (u , T, /1) is not conditionally properly ef-

ficient solution for (VD). Then there exists (u* T, /1*) feasible for (VD)
such that

S )= 1 ) > MG @)= 7, )
forany M(u)>0 andall j satisfying f (Fl(u))> S (F] (u*))
Let A= {] e[:fj(Fj(u))> fj(Fj(u*))}, where [ = {1 ,p}

Let B=1\AU{i}. Choose M(u)>0 such that | |

Notice that |L| denotes the number of element in the set L . Then

Ti(f;' (F;(u*))_f;(F;(u)))> ZTJ (fj(Fj(u))—fj(Fj(u*))),

jed

Since fl(Fl(u))—fl(F (u*))> 0, V je A. Therefore,

1

S e f )= f E @) Xe, (6 w) s Se, 1, 7 w)

JjeB

<_Tifi(E(“*))+zT.fff(Ff(” >)+ZT f( ( ))

jed jeB

=iriﬁ(ﬂ(u*))-

This contradicts the weak duality property. Hence (u , T, /1) is a condi-

—, je A.

tionally properly efficient solution for (VD).
In the following Theorem it is assumed that f;, g are " —invex and

the generalized null space condition (GNC) holds with
3, (x, u)ij(x, u)=1, Vi, j.

Theorem 5.4.6: If (u, V) is optimal for (VD,) and a dual constraint
qualification holds, then u is optimal for (VP,).

Proof: Since (u, V) is optimal for the dual problem and a constraint
qualification holds at (u s V) then (u " V) satisfies the Kuhn-Tucker condi-
tions:
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0 Y (FW)E )+ 32,22, (6, ()G ()~ (€ ~u)

Forany x € X,
in (/CEGD £ (Fw)

ra,(x,u)é (F(x) - F,(u)),V ¢ €df, (F,(u))

7yt (x, ) (e, w)F (v, )

'Mﬁ FM@

1l
—_

1

3, 0 0 e
Z_ﬁﬂ g/( ) Zﬂ’ g/( )

>0.

Therefore, u is an optimal solution for (VD,).

The proof of the following Theorem 5.4.7 follows from Theorem 5.4.3
and Theorem 5.4.6.
Theorem 5.4.7: If (u , V) is optimal for (VD;) and a constraint qualifi-

cation holds at (u , V), then (u , V) is conditionally properly efficient solu-
tion for (VD) and u is conditionally properly efficient for (VP).

5.5 Lagrange Multipliers and Saddle Point Analysis

The Lagrange multipliers of multiobjective programming problem and the
saddle points of its vector-valued Lagrangian function have been studied
by many authors e.g., Corley (1987), Craven (1978, 1990), Henig (1982),
Jahn (1985), Sawaragi, Nakayama and Tanino (1985), Tanaka (1988,
1990), Vogel (1974), Wang (1984), and Weir,Mond and Craven (1986,
1987). However, in most of the studies an assumption of convexity on the
problems was made.
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In this Section, we extend the relevant results using ¥ — invex functions
and its generalizations. As a consequence of Theorem 5.3.1, a Lagrange
multipliers theorem is established and vector valued saddle point results
are also obtained. The results of this Section and that of the next Section
have appeared in Mishra (1996).

Theorem 5.5.1: If Theorem 5.3.1 holds, then equivalent multiobjective
composite problem (EVP) for (VP) 9s given by (EVP)

V- Mitiietglize( (F (x)+ A" g(G(x)), ..., f, (Fp (X))-I- ng(G(x)))
subject to /ljgj(Gj(x))zO, j=1..m
4,20, j=1L,..m

Proof: Let x° be a Pareto optimum for (VP), from the optimality condi-
tions (KT), we have

Oegnaﬁ(ﬂ +§1,6g,( )G, ()~ (C —u)'

/”ngj( u)) 0, j=1,..,m.

Therefore, we have

OeZ Ao (F@) F @)+ 2"¢(Gw)|

3 1,08,(G,(0))G! )~ (C ~uy’
J=1
Now applying the arguments of Theorem 5.3.1 by replacing f; (E (x))
by f.(F(x))+ A" g(G(x)) yields the result.

Theorem 5.5.1: suggests the vector valued Lagrangian function
L(x, /1) as L:CxR" — R” given by

L(x, /1): (Ll(x, l),...,Lp(x, ﬂ)),

where Ll.(x, /”L)z fl(Fl(x))+ /”LTg(G(x)), i=1,.,p.

Definition 5.5.1: A point (xo , /10)6 Cx R is said to be a vector sad-

dle point of the vector valued Lagrangian function L(x, ﬂ,) if it satisfies
the following conditions
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Lx®, 2)2 L(x, 2), vV AeR! (5.1)
and

L(xo , /10)2 L(x, ZO), VxeC. (5.2)

Theorem 5.5.2: If (xo , 2.0) is a vector saddle point of L(x, l), then

x" is a conditionally properly efficient solution for (VP).
Proof: Since (xo , /10) is a vector saddle point of L(x, i), therefore,

we have L, (xo , i)é L, (xo , A0 ), for atleast one i and V A€ R’
= SF )+ 27 el6l ) < 170+ 27 gl6l).

for atleast one i and V A€R

= (1-2) gl6(x"))<0, varerr.

This gives g(G(xO ))S 0.

First we show that x” is an efficient solution for (VP). Since x’ is fea-
sible for (VP), we have 2 g(G(xO))S 0 . But, by setting A =0, then
from (/1 ~ X )T g(G(x0 )) <0, we get AOTg(G(xO )) > (0 .Thus

/’LOTg(G(xO )) =0.

Assume contrary, i.e., x° is not an efficient solution for (VP). There-

fore, there exists an x € C with g(G(x)) <0 such that

ﬁ(E.(x))Sﬂ(E(xo)), Vi=1,.,pand V xeC
and
fi(F(x)< f (Fk (xo)), for atleast one k and V A’ e R .
These along with yd g(G(xO)):O yields
[(F)+ 2% g(G") < £(F(*))+ 2% g(G(x") =0,
Vi=1,..., pand VxeC

and

FlF @)+ 2 gl6le" )< 17 () + 2 2lG6).
for at least one k and VA’ € R”".
That is,
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Li(x,/io)SLi(xo,ﬁo), V i=1l,..,p and V xeC,
and

L, x,2 <L, x",2°, for atleast one k and V 2’ e R,

which is a contradiction to (5.2). Hence x’is an efficient solution for (VP).

We now suppose that x° is not a conditionally properly efficient solu-
tion for (VP). Therefore, there exists a feasible point x for (VP) and an

index i such that for every positive(ﬁlrzcti()))n M (xo ) >0, we have
S ()= £ilF :
I (F/ (xo))_fj (F/ (x)) ” M(x ),
forall j satisfying f, (F/ (xo))< J; (Fj (x)), whenever
AER)> £ ).
This along with A g(G(xO )) =0 and A" 2(G(x))<0 yields
L(F@)+2" g(G) < f,(F(")+ 2" g(G(:").
Vi=1l,...,pand VxeC

which is a contradiction to (5.2). Hence x° is a conditionally properly ef-
ficient solution for (VP).

Theorem 5.5.3: Let x° be a conditionally properly efficient solution for
(VP) and let at x° Slater type constraint qualification be satisfied. If
(1,...,fp) and (—gl,...,—gp) are V' — invex on the set C and

F,,i=1,.,pand G,, j=1,...,m are locally Lipschitz and Gateaux
differentiable functions. Then there exists A” € R” such that (xo , /10) isa
vector saddle point of L(x, /1).

Proof: Since x’ is a conditionally properly efficient solution for (VP),

therefore, x° is also an efficient solution for (VP) and since at x° Slater
type constraint qualification is satisfied, therefore, by Theorem 5.3.1, there

exist 7’ € R” with 7° >0 and A° € R" such that the following hold:
o< ol P ) S5, 6,04 ), 6
i=1 Jj=1

Agngj(xo):O, j=1,...,m. (5.4)
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These yields
Zplfif,-Fi'(xo)Jr iﬂgng}(xo)jtzo =0, (5.5)
i=1 =

for some & € 5f,(Fl(x°)) , i=1,..,p and G, € agj (Gj(xo)),

j=1,...,m and 2% e (C—xo)+ .
Using the V' — invexity assumption of the functions, we obtain
F(EG)= £ (FG) 2 a,(nx)En (e ) ) ulxx),
Vi=1l,...,pand VxeC
and
f(F(0)= £ (F(6N) 2 @, (e x)ém(, 2V B () a(e, ),
for at least one k and Vx € C. Since ai(x, x0)> 0, Vvi=l,.,p,
we get
F(E@) = £ (F() 2 En(x,x)F(x") u(x,x°), (5.6)
Vi=1,...,pand VxeC
and
L (F0)) = £ (F(") 2 EnCe,x”)F(x") u(x, x°), 5.7)

for at least one k and Vx e C.
Now forall i=1,...,p, V xeC, wehave

L(x, A= L(x",2%)
= [(E) - £,(FE6)+ 2" [ 2(G(x)-g(GG") ]

ol 2| 35,6 )
j=1

>0 (because g, j=1,...,m are V' —invex and 2’ e (C—xo) ).
Since re R, 7, >0, i=1,...,p, therefore,
Li(xo , /10)}& Li(x, /10), Y xeC.
The other part
L, (xo , ﬂ)l‘Li (xo , /10), V A €R] of the vector saddle point ine-
quality follows from

L(xo , i)—L(xO , /10): (ﬂ, A )Tg(G(xO ))S 0.
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Hence (xo , /10) is a vector saddle point of L(x, A).

Remark 5.5.1: Theorem 5.5.3 can be established under weaker V — in-
vexity assumptions, namely, (Tlf] yeees Tpfp) and (— T\81 5es— Tpgp) are

V' — pseudo-invex and (/1l hy,....,A,h, ) is V — quasi-invex.

5.6 Scalarizations in Composite Multiobjective
Programming

In this Section, we present a scalarization result for nonconvex composite
problems. As an application of the scalarization result we also characterize
the set of conditionally properly efficient solutions in terms of subgradi-
ents (Rockafellar (1969)) for /' —invex problems. These conditions do not
depend on a particular conditionally properly efficient solution, and differ
from the conditions presented in Mishra and Mukherjee (1995a).

For the multiobjective composite problem

(VP) V' —Minimize ( (F(x))sn f B (F Y (x)))
subjectto x € C, gj(Gj(x))S 0, j=1,....m,
The associated scalar problem
p
(VP,) Minimize Z . f.(F.(x))
i=1
subjectto xeC, A4,g,(G,(x))<0, j=1,...,m,
where 7 € R”, 7 # 0. The feasible set Q for (VP) is given by
Q={xeC:g,(G,(x)<0, j=1,..m|
The set of all conditionally properly efficient solutions for (VP) is de-
noted by CPE. For each 7 € R”, the solution set S_ of the scalar prob-
lem (VP,) is given by

s, - { O AR (y»}

yeQ o=

The following Theorem establish a scalarization result for (VP) corre-
sponding to a conditionally properly efficient solution.
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Theorem 5.6.1: For the multiobjective problem (VP), assume that, for
eachi =1,..., pand a > 0 the set

[ ={zeR’ :EIxeC,ﬁ(F;(x))<z;,

f(E@)+af,(F(x)<z/,j=i
is convex. Then, CPE = U S,
7,50, ;=1
Proof: Let u € CPE. Then, there exists a positive function M (u) >0
such that, for each 7 =1,..., p, the system f, (Fl (x)) < f (E (u)),
FEG)+M@)f(F ()< f(F @)+ M@)f,(F,w), v =i,

1s inconsistent.
Thus,

zeR":3xeC, f,(F(x))< f,(F(u))+z,
0e Ty, )= L (F(0))+ M) f,(F,(x)<
L(F@)+M@)f,(Fw)+z,j=i

From the assumption, F,;(u)(u) is convex, now on the lines of the proof

of Theorem 5.1 of Jeyakumar and Yang (1993), we can show that there ex-

P
iststeR”, 7, >0, Zr, =1 such that u € S_ ; thus,
i=1

CPE= U S

P

7;>0, ZT,:I
The converse inclusion follows as in the proof of Theorem 5.1 of Jeyaku-
mar and Yang (1993) without any convexity conditions on the functions

involved.

T

Using the above scalarization Theorem 5.6.1 and a result of Mangasar-
ian (1988) we show how the set of conditionally properly efficient solu-
tions for a nonconvex problem can be characterized in terms of subgradi-
ents. This extends the characterization result of Mangasarian (see Theorem
1(a), Mangasarian (1988)) and that of Jeyakumar and Yang ( see Corollary
5.1, Jeyakumar and Yang (1993)) for a scalar problem to multiobjective
nonconvex problems. In the following, we assume that the functions

F,i=1,..,p and Gj, j=1,...,m in problem (VP) are linear func-
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tions from R" and R", respectively. Thus, we consider the composite
nonconvex problem

(NCP) V ~Minimize (f, (4,(x))s.. £, (4, (x)))
subjectto xeC, g; (Bj(x))SO,jzl,...,m
where 4, :R" > R", i=1,...,p and B,:R" > R", j=1,...,m are
continuous linear mappings, f;:R" - R, i=1,...,p and g,:R" > R,
j=1,...,m are convex functions on R" . Note that the feasible set
Q= {x eC: gj(Bj(x))S 0, j= 1,...,m}

is now aconvex subset of R".
The nonconvex scalar problem for (NCP) is given by

(NCP,) Minimize iz’i £(4.(x))

i=l1

subjectto xeC, g; (B_].(x)) <0,j=1,...,m
Let the convex solution set of (NCP,) be CS,, 7 € R”.

Corollary 5.6.1: Consider the nonconvex problem (NCP). Suppose that

p
for each 7€ R”, 7, >0, ZTi =1, the relative interior of CS_,
i=1

(ri (CS . )), is non-empty. Let z_ €11 (CS ) . Then

P

7;>0, Zz’i—l

Proof: Proof of this Corollary follows the lines of the proof of Corol-
lary 5.1 of Jeyakumar and Yang (1993).

CPE= U {er Ju, €of,(4 ZTlul (x—z,)= O}.






Chapter 6: Continuous-time Programming

6.1 Introduction

The optimization problems in the previous Chapters have all been finite

dimensional and functions have been defined on R" and the number of
constraints has been finite. However, a great deal of optimization theory is
concerned with problems involving infinite dimensional normal spaces.

Two types of problems fitting into this scheme are variational and con-
trol problems. An early result of Friedrichs (1929) for a simple variational
problem has been presented by Courant and Hilbert (1948). Hanson (1964)
observed that variational and control problems are continuous analogues of
finite dimensional nonlinear programs. Since, then the fields of nonlinear
programming and the calculus of variations have to some extent, merged
together within optimization theory, enhancing the potential for continued
research in both. In particular, Mond and Hanson (1967, 1968) gave dual-
ity theorems for variational and control problems using convexity assump-
tions. Chandra, Craven and Husain (1985) established optimality condi-
tions and duality results for a class of continuous programming problems
with a nondifferentiable term in the integrand of the objective function.
Mond, Chandra and Husain (1988) extended the concept of invexity to
continuous functions. Mond and Smart (1988) established duality results
using invexity assumptions and proved that the necessary conditions for
optimality in the control problems are also sufficient . Mishra and Mukher-
jee (1994b) obtained various duality results for multiobjective variational
problems. See also Kim and Kim (2002), Kim and Lee (1998), Kim et al.
(1998), Kim et al. (2004).

Mond and Husain (1989) obtained a number of Kuhn-Tucker type suffi-
cient optimality criteria for a class of variational problems under weaker
invexity assumptions. As an application of these optimality results, various
Mond-Weir type duality results are proved under a variety of generalized
invexity assumptions. These results generalize many well known duality
results of variational problems and also give a dynamic analogue to certain
corresponding (static) results relating to duality with generalized invexity
in mathematical programming.
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In this Chapter, we extend the concept of V' — invexity to continuous
functions and to continuous functionals and use it to obtain sufficient op-
timality conditions and duality results for different kinds of multiobjective
variational and control problems. For this purpose the Chapter is divided in
six sections. In Section 2, we extend the concept of V — invexity to con-
tinuous functions and discuss some examples. In Section 3, we present a
number of Kuhn-Tucker type sufficient optimality conditions. In Section 4,
Mond-Weir type duality results are obtained under a variety of V' —invex-
ity assumptions. In Section 5, we have presented multiobjective control
problems and obtained duality theorems. In last Section, we have consid-
ered a class of nondifferentiable multiobjective variational problems and
establish duality results mainly for conditionally properly efficient solu-
tions of the problem.

6.2 7/ —Invexity for Continuous-time Problems

Let [ = [a, b] be a real interval and ¥ : I xR" xR" — R be a con-

tinuously differentiable function. In order to consider l//(t,x,)'c), where

x:1—> R" is differentiable with derivative x , we denote the partial de-
0 0 0 0

rivatives of ¥ by v,, v = —l'/f,..., v > Wi = _l/f,,_l// . The
ox ox”" ox ox"

partial derivatives of the other functions used will be written similarly. Let

X denote the space of piecewise smooth functions x with norm

[l = . + 1o

where the differential operator D is given by

t
u'=Dx' < x'(t)=a+ J.ui(s)ds,
a
: . d ,
where « is a given boundary value. Therefore, D = z except at discon-
t
tinuities.

b
Let F: X — R defined by F,(x)= [ f,(t.x,%)dt, i=1,..,p be

differentiable. The following definitions and examples have appeared in
Mukherjee and Mishra (1994).
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Definition 6.2.1 (7 — Invex): A vector function F' = (Fl,...,FP) is

said to be V — invex if there exists differentiable vector function
n:IxR"xR" — R"with n(t,x,x)=0 and S, : Ix X x X — R, \{0}
such that foreach x, x € X and for i=1,...,p

”0‘ t,x( (e, x(e), 5 (e, x(), %(2))
+it77 (£,x(0),%(0)) ex, (£, x(2),X(0)) (t,x(t),);c(t))} dt

Definition 6.2.2 (/' — Pseudo-Invex):
A vector function F' = (Fl,...,F p) is said to be V' — pseudo-invex if

there exists differentiable vector function 7:/xR" xR" — R" with
n(t,x,x)=0 and B, :IxXxX — R, \{0} such that for each
x,xe X andfor i=1,...,p

}{277@ x, f)f;(l,xaf)ﬂ“%n(t,x,f)f;(t,x,f)} dt>0

i=1

Bl

a

Bl

=N I[Z B (1, x(0),5(0)) £, (£, x(0), x;(t))} dt

ali=1

c__q-

, ﬂ, t, x(0), %(f) f(t,x(t),);c(t))}dt

Or equlvalently,

J{i B.(t,x(1),x(1)) f; (t,x(t),);c(t))}dt

al =1

<

R C— >

{iﬂl (. x(0.5(0) £,(1. x(t),?c(r))}dz

1

J‘{ t X, x t X x)+%n(t,x,f)f;(t,x,f)} dt<0.
i=1

a

Definition 6.2.3 (J — Quasi-Invex):
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A vector function F' = (F] 2 » ) is said to be V' — quasi-invex if there

exists differentiable vector function 7:/xR"xR" — R" with
n(t,x,x)=0 and B, :IxXxX — R, \{0} such that for each
x,xe X andfor i=1,...,p

I{Zp: B (t.x(0),X(0)) [, (£, x(1), );c(t))} dt

f{i,ﬁ (¢,x(2), x(t))ﬂ(t,x(t),);c(t))}dz

i=1

J.[Zn t,x, x (t X, x)+%77(t,x,)?)f;(t,x,);c)} dt<0;

Or equivalently;

T{Zp:n(t x,f)f;(t,x,);c)+%n(t,x,)_c)f;(t,x,);c)} dt>0
= j{zp: B.(6,x(0),3(1)) f; (t,x(t),);c(t))} dt

> | {Zp: B, (6,x(0),3(t)) f, (t,x(t),);c(t)):| dt

It is to be noted here that, if the function f is independent of ¢, Defini-
tions 6.2.1-6.2.3 reduce to the definitions of V' — invexity, V' — pseudo-
invexity and V' — quasi-invexity of Jeyakumar and Mond (1992), respec-
tively and given in Chapter 2. It is apparent that every }J —invex function
is V' —pseudo-invex and V' — quasi-invex.

The following example shows that J — invexity is wider than that of in-
vexity:
Example 6.2.1: Consider

i, U 0, ful)

Xi,X,€R

Then for
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al(x,u):%(l) az(x,u):ul(t) B.(x,u)=1, for i=1,2 and

77(x , u) = x(t) - u(t) We shall show that

_b[ 5 (1) dt —Jb' i (1) dt - _}i zz 8 ( 2::‘((;)) _u?zt(;)](xl —1)x, —1)de

2 b b
al (t)dz—jldt—j L2, —1)x, —1)x, —1)dt

xz(t)

Il
QLCe— T QN —T R — O R — O ] C—
® [ =
[\
~ "~

——
~—~
‘_‘k
—
~
~
|
—_
~—
9
—
<
v
<

The following example shows that J —invex functions can be formed
from certain nonconvex functions.

Example 6.2.2: Consider the function #:/x X x X — R?
b b
h(t, x(t), %(r)) = (J.fl(t, x(e), (o))t ..., [ £, (¢, x(t), )'c(t))dtJ

where f,:IxXxX >R, i=1,..,p are strongly pseudo-convex
functions with real positive functions «; (t,x,u), wilxXxX—>R"is

surjective with '(t,u,u) onto for each u € R" . Then the function
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h:IxXxX—>R? is V— invex. To see this, let x,ueX,

vV=y (t,x,)'c), w=y (l‘ ,u ,Ll). Then, by strong-pseudo-convexity, we get
b b

[Uilw(e,x,5) = £, (e i))de = [{£,(0) = £, (w)}de

a a

> ot (v, ), (ol — 0l 6, )

a

+i%ai(t,v,w)(v—w)ﬂ(w)y/).c(t,x,x)dt.

Since l//;(t,u,d) is onto, v—w:l//'(t,u,bl)n(t,x,u) is solvable for
some n(t,x,u).

Hence
b

{5 (e 0)= £y @ui)yde = [ a,v, w)(frow), de

a

b
d
+J.Eai(t,v, win(t,v,w)(f ow)_dt

Now consider the determination of a piecewise smooth extremal

X = x(l), a<t<b, for the following multiobjective variational prob-
lem:

b b b
(VCP)  Minnimize J-f(t, x,)'c)dt = [J-f1 (z‘, X, )'c)dt,...,.[fp (t,x,fc)dt]

subject to

(6.1)

6.2)
where f,:IxR"xR" >R, ieP={l,..,p}, g:IxR"xR" > R"

are assumed to be continuously differentiable functions.
Let K be the set of all feasible solutions for (VCP), that is,

K ={xe X :x(a)=a,x(b)= B, g(t. x(t), %(t))<0,t e I}.
Consider also the determination of m +#n dimensional extremal
(u , ﬁ,) = (u(t), l(t)), t € I, for the following maximization problem:

g(t,x,fc) <0, tel.
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b b b
(VCD) V — Maximize If(t,u,zl)dt = Ufl(t,u,d)dt,...,jfp (t,u,u ]

subject to
ulb)= B, (6.3)
(6.4)

b
J./lj(t)gj(t,u,d)dtz 0, tel,

/l(t)ZO, tel, e=1,

where e=(1,...,1)e R”.

6.3 Necessary and Sufficient Optimality Criteria

In this section, we present sufficient optimality criteria of the Kuhn-Tucker
type for the problem (VCP). The following necessary optimality condi-
tions will be shown to be sufficient for optimality under generalized

invexity assumptions. There exists a piecewise smooth 4 :/ — R"

V—
such that

i“r,fY (t X ,X )+ i/%j.(t)g){(t,x*,x*) (6.7)

i=l1 Jj=1

:%[er t,x" x) iﬂ;(l‘)gi(t,x*,x*)],
j=1
lj() (tx x) 0, tel, j=1,.,m, (6.8)
teR?’, t#0, 720, /”L*(t)ZO, tel. (6.9)

Theorem 6.3.1 (Sufficient Optimality Conditions):
Let x~ be a feasible solution for (VCP) and assume that
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@T‘f](t"")dt""’ifpfp(t,-,-)dtJ

a

is V' — pseudo-invex and

jf/tlgl(t,~,~)dt,...,_}ingm(t,-,-)dt
! |

is V' — quasi-invex with respect to m. If there exists a piecewise smooth
AT — R" such that (x*(t), A (t)) satisfies the conditions (6.7)-(6.9),

then x" isa global weak minimum for (VCP).
Proof: Suppose that x" isnota global weak minimum point. Then there
exists feasible x, € X such that

[Axale), 20OVt <[ £ (ol . <1, i=1p.

Therefore,

S8, (650 (0.0 2, (123 (0050 (O

i=1

<[22 B (6. x,(0,u()) 7. (£, u(2), (1) )t

w i=l

> 8 —

Now, by the V' — pseudo-invexity condition, we get

j{ifﬁ(h X (), u()) f1(2,u(t),u(t)) (6.10)

w L=l

dt (f xy (), ”(f))f (t u(t), u(t))}dt<0

From (6.7), we have

J.nt x, (¢ ){er 1,10+ Z/f;(t)g){(t,u,u)}dt

j=1

i (£,x,(¢) [er tuu)+i/1*] toudt

Jj=1

b
(e, x, (¢ ){if it i) Z/I/(t)g;(tuu)J



6.3 Necessary and Sufficient Optimality Criteria 121

b m
_J'i (¢,x,(2) {ertuu+2/1/ toudt
Yt <

(integration by part).
Thus,

jﬂt xo ){fo tu, u ilj(f)gf(t,u,u)}dt (6.11)
+J.% t,x,(t {er tu,1)+ Zﬂ (t)g){.(t,u,a)j di =0

j=1
(Since ﬂ(t,u,u) =0).
From (6.11), we have

> [n(t.5@0.u0) 2 (0! (1,01 (6.12)

J=1

a'—.@

+ %77 (£,%,(),u(1)) A, (1) g (tuu)} dt

b m

=3t D) (i)
L xO0) 7, (1)
From (6.12) and (6.10), we have

b m

[n(t.x,(0.u(0)) A (D] (t.u.1i) (6.13)

+ %n(t,xo(t),u(z))/i_j (gl (tuu)} dr>0

Now (6.13) in view of V' — quasi-invexity of

[I/Lg](t,.,.)dz,...,jfmgm(t,,,,)dt}

a

yields
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Zﬂ/ (t,xo(t),u(t))/ljgj (2, %, )dt

—_

iﬂf (£,%,(0),u(t)) A, g, (t,u,1i )dt

>

QD C—
~

This is a contradiction, since /3, (t , X, (t),u(t))/ij. (t)g ; (t,xo , X, ) <0,

ﬂj(t’ Xo(t),u(l))/lj(t)gj(t,u,d): 0,
and

ﬁj(t, xo(t),u(t))> 0, j=1,...m.

6.4 Mond-Weir type Duality

In this Section we consider the dual (VCD) given in Section 2 of this
Chapter and establish duality results under generalized V' — invexity as-

sumption on the functions involved.
Theorem 6.4.1 (Weak Duality): Let x be feasible for (VCP) and let

b b
(u, 7, 1) be feasible for (VCD). If Uz'lﬁ(t,-,-)dt,...,jrpfp(t,~,-)dtj

b b
is ¥V — pseudo-invex and U/Ilgl(t,-,-)dt,...,frmgm(t,-,-)dtJ is

a

V' — quasi-invex with respect to 1, then

[T fl(t,x,)'c)dt,...,i £, x)dzJ

b b r
_“fl(z,u,a)dz,...,jfp(z,u,u)dt] g —intR”.
Proof: From the feasibility conditions,
b b
I/ijgj(t,x,X)dtijljgj(t,u,zi)dt, j=1,...,m.

Since,b’j(t,x,u)>0, j=1,...,m, we have
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b m b o
IZ/%B, t,x,u)g,(t,x,x)d IZ B (e,x,u)g (¢ u,i)d . (6.14)
' ilence, o
b m
[ > [n(t.x0).u0) 4,(0g] (1.u.11) (6.15)
—ﬂ(fax(l),u(f))/ij(t)g,{(t,u,u)}dtso
The constraint (6.4), as earlier, is equivalent to
b m
[ [n(t.x0).60) A (0] (1) (6.16)
a J=1
+%77(t,x(t),u(t))/1_,(t)g; (l,u,u)}dt
b P A
=[S n(t.x @) 7 ! (tu,12)
a i=l

+%n(t,x(t),u(t))riﬁj (tuu)} dt
From (6.15) and (6.16), we get
d (6.17)
TS0 e £+ e )1 e 2 0.

a i=1

The conclusion now follows from the V' — pseudo-invexity of

Urlfl(t,.,.)dt,...,ifpfp(t,.,_)dtJ

a

and ai(t,xo(t),u(t))>0, i=1,.,p, re=1.

Theorem 6.4.2 (Strong Duality): Assume that u is a weak minimum
for (VCP) and that a suitable constraint qualification is satisfied at u .

Then there exist (T, 2,) such that (u , T, /1) is feasible for (VCD) and the
objective functions of (VCP) and (VCD) are equal at these points. If, also
for all feasible (u, 7, 1),

@”ﬁ““*“mfuﬁﬁfﬁmJ

a
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is V' — pseudo-invex and

b b
(J./"L]g](t,~,~)dt,...,Irmgm(t,-,-)dt)
is V' — quasi-invex, then (u , T, /”L) is weak maximum for (VCD).

Proof: Since u is a weak minimum for (VCP) and a constraint qualifi-
cation is satisfied at u, from the Lagrangian conditions (Theorem 6.3.1),
there exists (T, /1) such that (u, T, /1) is feasible for (VCD). Clearly the
values of (VCP) and (VCD) are equal at u, since the objective functions
for both problems are the same. By the generalized }J” — invexity hypothe-
sis, weak duality holds; hence if (u, T, /1) is not a weak optimum for

(VCD), there must exist (x, T, /1*) feasible for (VCD), such that

U‘ ﬁ(t,x,fc)dt,...,j (., x)dz)

b b r
_Ufl(t,u,d)dt,...,pr(t,u,u)dt} € —intR’.

contradicting weak duality.
The results of present Section are extended to control problem in the
next Section.

6.5 Duality for Multiobjective Control Problems

A number of duality theorems for single objective control problem have
been appeared in the literature (see, e.g., Hanson (1964), Kreindler (1966),
Pearson (1965), Ringlee (1965), Mond and Hanson (1968), and Mond and
Smart (1988)). In general, these references give conditions under which an
external solution of the control problem yields a solution of the corre-
sponding dual. Mond and Hanson (1968) established the converse duality
theorem which gives conditions under which a solution of the dual prob-
lem yields a solution to the control problem. Mond and Smart (1988) ex-
tended the results of Mond and Hanson (1964) for duality in control prob-
lems to invex functions. Bhatia and Kumar (1995) extended the work of
Mond and Hanson (1968) to the content of multiobjective control prob-
lems and established duality results for Wolfe as well as Mond-Weir type
duals under p —invexity assumptions and its generalizations. The reader

is refer to Kim et al. (1993) also.
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In this Section we will obtain duality results for multiobjective control
problems under V' — invexity assumptions and its generalizations.

The control problem is to transfer the state variable from an initial state
x(a)=aat t=a to a final state x(b)= Sat t =b so as to minimize a

given functional, subject to constraints on the control and state variables,
that iS‘ (VCP)

Min j f(tx(0),u(r))d U £ (6, x(0),u(0))d j £, (t,x(2), u(t))dt]

subject to x(a)=a, x(b)=p, (6.18)
glt, x(t)ult))<0, te1, (6.19)
h(t, x(t),u(t)) =x,tel. (6.20)

x(t) and u(t) are required to be piecewise smooth functions on/ ;
their derivatives are continuous except perhaps at points of discontinuity of
u(t) , which has piecewise continuous first and second derivatives.

Throughout this Section, R" denotes an n— dimensional euclidan

space. , Each f; : I xR" xR"™ — R for
i=1,..p, g:IxR"XR" > R*

and for A:IxR"xR™ — R? are continuously differentiable functions.
Let x:/ —> R" be differentiable with its derivative X and let
y:I — R" be a smooth function. Denote the first partial derivatives of
Jfi with respect to #,x,X,yand z, by f,,f. . [, f;, and f, , respec-
tively; i.e.

PO /R '
oo \ox, Tax, )
o o) o o) o o)
f;‘)'cz —l,a_l Jf;‘y: ia"" : f;‘zz ia"'a :
Oox, ox, oy, oy, 0z, oz,

i=12,.., p, where T denotes the transpose operator. The partial deriva-
tives of the vector functions g and / are defined similarly, using nx g
matrix and 7 X # matrix, respectively.
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For an 7 — dimensional vector function R(t,x(l‘), )'c(t),y(l‘), Z(l‘)), we
denote the first partial derivative with respect to 7, x(t), )'c(t , y(t and Z(t)

by Rit,Rix,Rix,Riy and R, _, respectR, = OR ’8R2 eres R j,
ot ot ot
oR' 0R'  OR' oR'" OR'  OR'
ox, ox, ox, ox,ox, ox,
OR* OR*  OR’ OR* OR®  OR’
ox, ox, " ox, ox, ~ox,  ox,
R = R, =
OR" OR"  OR’ OR" OR"  OR’
ox, ex,” ox, ) ox, ox, ok, )
OoR' OR'  OR' OoR' OR'  OR'
oy, oy, oy, 0z, 0z, oz,
OR* OR*  OR’ OR* OR>  OR’
ayl ,ay2,.”, ayn aZl ’822 ’“.,azn
R, = R =
OR" OR"  OR’ OR" OR"  OR’
oy, ’ oy, U oy, o 0Oz, ’ 0z, U 0Oz, o

Denote by X the space of piecewise smooth control functions
x:I—>R"

with norm ||x|

5 by Z the space of piecewise continuous control func-

tions z:/ — R" with norm”z| > by Y the space of piecewise continuous

differentiable state functions y:/ — R" with norm || y” = || y”oo +||Dy|

0 2

where the differentiation operator D is given by
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u=Dx < x(t)=ula)+ ju(s)ds,

d
where u(a) is a given boundary value. Therefore z = D except at dis-
t

continuities.
Define A" = {z- eR’:7>0,r"e=1e= (1,1,...,1)T S R”}. Let R” be
the non-negative orthant of R .

Mond-Weir type dual for (VCP) is proposed and duality relationships
are established under generalized V' — invexity assumptions:

(MVCD) Maximize U £t (e) () dt, j 1, y(t),v(t))dt]

subject to y(a) = v(a) =0, y(b) = v(b) =0, 621)
griﬁy (6, () V() + 2/1 (e, y@e) 622
2: (O, (6 (O 0) +a(e)=0, 1e1,

r=

D [Z A S (1u(t),0(0), v(1), w(1)) (6.23)

+ /J(t)gr (t>u(t)7d(t)a V(t)a W(t))
PO h (tu(®). (), v(0), W) |=0,t e 1

Zp:Tffiy (&0, v(0)) + iij (g, (1)) 6:24)

i=1

+Zq:'ur([)hrv (t’y(t): V(t)) =0,tel

i/ll gjty W(t))dt >0, tel,
Jj=1
q

> u, (fnle yO)e) - 5(ae 0, ez, O

r=I1

Q — > a'—.a-
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p
ﬂ(t)ZO,tel,riZO,izl,...,p,Zq:l (6.26)
i=1

Optimization in (VCP) and (MVCD) means obtaining efficient solutions
for the corresponding programs.

b
Let F,(x)= Ifi(t, x,u)dt, i=1,..,p be Frechet differentiable.

Let there exist functions
V(t,x,)?,x,)?,u,ﬁ)e R?
and
n(t,x,x*,x,x*,u,u*)e R"
with 7 =0 at ¢ if x(¢)=x(¢) and &(t,x,X,%,%,u,it)e R".

Definition 6.5.1 (7 — Invex): A vector function F = (Fl,...,Fp) is
said to be V' —invex in x,X and u with respectto 17, & and « if there
exists differentiable vector function 7:I/xR"xR" — R" with
n(t,x,x)z 0, §(t,x,)?,x,f,u,b7)e R" and a, :IxXxX >R, \{0}
such that foreach x, x€ X and u,u €Y for i=1,...,p

b
F(x) = F(X) 2 [[ @,(t,,%,%,%,u,0) £ (6, .5, 0)7(t, %, X, %, X, 1,11

d e _ N _
+z77(t,x,x,x,x,u,u)ai(t,x,x,x,x,u,u)fY(t,x,x,u)
; 3

o, (t, %, T, %, X u, ) (8, T, %, 0)E(t %, T, %, );c,u,ﬁ)}dt

Definition 6.5.2 (V' — Pseudo-Invex):
A vector function F' = (F],...,F p) is said to be V — pseudo-invex in

x,x and u with respect to 17, & and f if there exists differentiable

vector function 7: I x R" x R" — R" with 7(t,x,x)=0,
§(t,x,f,x,)?,u,ﬁ)e R" and B, :Ix X xX —> R, \{O}

such that foreach x, xe€ X and u,u €Y for i=1,...,p
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P

[ x %, 5% ) £ (8, %, 17)

i=1

Q C— >

d e _
+Zn(t,x,x,x,x,u,u)f;(t,x,x,u)
t

R F X T)E X, T f,u,ﬁ)} dt >0

b P )
= [ 2B Tk T, ) £ (tx, s

a i=1

b p
> [Y B(t.x 5.k 5,0.0) (1.7, D)1,
7 i=1

Or equivalently;

b p
[ 2 B.(x, %55 1) £,(t, x, %, u)dt

w il

b p . .
<[ B(.xF 5% 0, 0) £,(1.5. 5., Dt

u i=l

b
Ii[n(r,x,)_c,x,);c,u,ﬁ)ﬂ(t,x,);c,ﬁ)

i=1
d — .~ piy, = = —
+En(t,x,x,x,x,u,u)ff(t,x,x,u)

R (X T)EW X, T, x*,u,ﬁ)}dt <0

Definition 6.5.3 (V' — Quasi-Invex):

A vector function F :(Fl,...,F p) is said to be V — quasi-invex in
x,x and u with respect to 77, & and f if there exists differentiable
vector function 77: I x R" x R" — R" with 77(t, x,x) =0,

Elt,x, %, %, %,u,it)e R" and B, :1x X x X — R_\ {0}
such that foreach x, xe€ X and u,u €Y for i=1,...,p
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Zﬂi(t,x,)_c,fc,);c,u,LT)fi(t,x,)'c,u)dt

i=

R >

p
1

<

Qe

p . .
Z B(t, X%, X, %,%,u,ut) f,(t,%,%,u)dt
i=1

= [ Y[ n(tx. %55, w.i0) f1(¢,x,%,7)

1

? —
,Mﬁ

d — e X\ pig, — = —
+d—r;(t,x,x,x,x,u,u)ff(t,x,x,u)
t

R R R TDE X, T 5, f,u,ﬁ)}dz <0
Or equivalently;

b P ] . ‘
[ [n.x.% 5.5 0.0) £ (t.x.%.7)
=l
d — . gy, = = =
+Eﬂ(faxaxa%%“:”)f;(t,X,x,u)
+h (4, X, %, 0)E(L X, 7, 5, Y,u,ﬁ)} dt >0

b p ‘
= [Y B0 Tk T, D) £t x5 e

w =1

b p
> [0 B (x5, u,0) £,(4,F, %, W),

W i=l

Remark 6.5.1: V' —invexity is defined here for functionals instead of
functions, unlike the definition given in Section 1. This has been done so
that V' —invexity of a functional is necessary and sufficient for its critical
points to be global minima, which coincide with the original concept of a
V' —invex function being one for which critical points are also global min-

ima (Craven and Glover (1985)).
We thus have the following characterization result.

b
Lemma 65.1: F(x)= [ f(tx,%,u)dt is V' —invex if and only if

every critical point F' is global minimum.
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Note 6.5.1: ()_c(t), L_l(t)) is a critical point of F' if

filx %)= %f; (¢,%.%.it) and f:(,%,%,i1)=0
almost everywhere in the interval [a, b]. If x(a) and x(b) are free, the

transversality conditions 7, (t,)_c,);c,ﬁ ): 0 at a and b are included.
Proof of Lemma 6.5.1:
(:>) Assume that there exist functions 7, £ and « such that F' is

V — invex with respect to 77, & and « on [a, b]. Let (X, ) be a
critical point of F'. Then, for i =1,..., p

b
F(x) = F(X) 2 [[ @,(t,%,%,%,%,u,00) £ (6, .5, 0)7(t, %, X, %, X, 1,11

d L _ = _
+z77(t,x,x,x,x,u,u)ai(t,x,x,x,x,u,u)fY(t,x,x,u)

. 3
+ai(t,x,)?,5c,);c,u,ﬁ)h;(t,)_c,);c,ﬁ)ﬁ(t,x,)?,ic,);c,u,ﬁ)}dt

b
= j[ai(t,x,)?,fc,f,u,ﬁ)f:(t,x,f,ﬁ)n(t,x,)?,)'c,x;,u,ﬁ)

— . = f— — . = — d i —_——
—77(t,x,x,x,x,u,u)ai(l‘,x,x,x,x,u,u)d—ﬂ(l‘,x,x,u)
;7
o, (4%, XX, X, 0,0) £ (6,2, %, 0)E(E X, X, %,X,u,10) | dt
(1, X, %, X, %, u,10) f2(F,%,X, 1)
=0

as ()7 , LT) is a critical point of either fixed boundary conditions imply that
7=0 at a and b or free boundary conditions imply that f, =0 at a

and b . Therefore, ()_c , U ) is a global minimum of F .

(<:) Assume that every critical point is a global minimum.

f"(r,x,;,u)—Tf"(t,fj,ﬁ) ( pod fj
Z(f;—dtf;j (f;—dtf;)

- » . oo A -
If (x, u) is a critical point, then if f # jfl at (x, u), put
t

771’: dt X
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a=1,orif f! :—f;, put 7 =0; andif 4, # 0, put

_f(txxu) f(t)_cy_cﬁ)(fu)

Si
2 ()
and @ =1, orif f =0, put £=0 .

Mond and Hanson (1968) pointed out that if the primal solution for
(VCP) is normal, then Fritz-John conditions reduce to Kuhn-Tucker condi-
tions.

Lemma 6.5.2. (Kuhn-Tucker Necessary Optimality Conditions):
If ()7 , 1/7) e X xY solves (VCP) if the Frechet derivative

D_in (xo , uo) is surjective, and if the optimal solution (xo , uo) is nor-
mal, then there exist piecewise smooth 7°:7 — R”, A°:1 — R™ and
1’ 1 — R", satisfying the following for all ¢ € [a , b]:

ifff;(t,x",u”)+iﬂ_‘j(z)g;(;,xo,w) (6.27)
= <
+Zq:ﬂf(t)hi(f,xo,u‘))+y,‘?(t)=0, tel,
ifiof;(t,xo,u )+ 2/10 Y (t,x°,u°) (6.28)
I
iﬂ(}(tr)gj(t,xo,u‘)):o, tel, (6.29)

2(0)20, tel, 2250, i=l,.p, Yr'=1. (630

We shall now prove that (VCP) and MVCD) are a dual pair subject to
generalized V' — invexity conditions on the objective and constraint func-
tions.

Theorem 6.5.1 (Weak Duality): Assume that for all feasible (x, u) for
(VCP) and all feasible (y, v,7, 1, z) for (MVCD). If
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ﬁz’lfl(t,-,-,~)dt,...,irpfp(t,~,~,~)dt]

and

b b
U-ilgl(t,.’.’.)dt,...,jrmgm(t,.,.,.)dt]

a

are V' — quasi-invex and
b b
[l £ )=t |

is strictly V' — quasi-invex. Then the following can not hold:

b b
Iﬁ(t,x,u)dtﬁj.ﬁ(t,y,v)dt, Vi=1,.,p (6.31)

b b
Ifio (z‘,x,u)dt< Ifio (t,y,v)dt, for some i, € {1,...,p}. (6.32)

Proof: Suppose contrary to the result that (6.31) and (6.32) hold. Then
by V' — quasi-invexity, we get

b
J.Zp:[n(t,x, )T,x,);c,u,ﬁ)rifyi(t,y,y,v) (6.33)

u i=1
(XX )X, X, 5, X, u,T) [dE < 0

From the feasibility conditions,

j)./ljgj(t,x,ic,u)dtﬁ jl_jg_/(t,f,f,ﬁ)dt, vV j=1,..,m.

Since ﬂj(t,x,)?,x,);c,u,ﬁ)>0, VvV j=1,...,m, we have

b m

J-Zﬂj(t,x,f,x,f,u,ﬁ)ljgj(t,x,x,u)dt
a J=1
b m . .
<[ B, (tx, %, 4, %,u,0) A, g, (&, %, X, i )dt
a J=1

Then by V' — quasi-invexity of

b b
[J.ﬂ“lgl(t"a',')dt"""['[mgm(f,',',')dtJ,

a
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Gives

3 [t %%, %, %,u, )4, g (1,3,%.7) (6.34)

J=1

Q C— >

gl (4,7, %, 0)E(t, X, T 7, x;,u,ﬁ)}dt <0

Similarly, we have

'[ijk(t X, X, X, X,u, u),uk[h (t,x,x,u)— x]dt

w k=1

Sj-zq:yk(t,x,)? SRIRTHYIA [h (t,%,X,u)— x]

From strict V' — quasi-invexity of

b
(Iﬂl )'c]a’t,...,_[,uk[hk(t,~,~,~)—5c]dtj,
Wehave

J.z n(t,x, X, %, X,u ”)/ukh (¢, J’a)’av)— 77(t X, X, X, X, u S, (6.35)

7 k=1
q .
+ 3 (L y, 3 V)E X, X%, X, u,i0) JdE < 0
k=1

d L=
By integrating d—n(t,x,x,x,x,u,u),uk from a to b by parts and ap-
t

plying the boundary conditions (6.18), we have

b b
J’%’](taxjfyxpfgu,ﬁ)ﬂkdt = —J.n(t’x’f’x’);c’u’z/_l)ﬂk dt X (6.36)
Using (6.36) in (6.35), we have

b ¢ .

IZ[U(t,x, X,X,X,u,ul) ﬂkhf &, v, 7,v)+u° (6.37)

u k=l

q .
+ 3 by, 3 )E X, X%, Xu,i0) JdE < 0
k=1
From (6.33), (6.34) and (6.37), we have
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m

b p _ A . k ‘ .
I{n {Z Ty, VDA 6y hV D [ (Y, D, V)} +
" i=1 Jj=1 r=1

L i . < i . K I3 .
& {Z Ty, V) + D A gy, V) + D f (Y, B, V)}}dt <0
i=1 Jj=1 r=1
which is a contradiction to (6.22) and (6.23).

Corollary 6.5.1: Assume that weak duality (Theorem 6.5.1) holds be-
tween (VCP) and (MVCD). If (y, v) is feasible for (VCP) and

(y, v, T, A, ,u) is feasible for (MVCD), then (y, v) is efficient for (VCP)
and (y, v,r,/I,,u) is efficient for (MVCD).

Proof: Suppose (y, v) is not efficient for (VCP). Then there exists
some feasible (x, u) for (VCP) such that

b b
Iﬁ(r,x,x,u)dtﬁ Iﬁ(z,y,y,v)dt, Vi=1,..,p,

b b
J.fio(t,x,fc,u)dt<J.fl.o(t,y,y,v)dt, for some i, e{l,...,p}.

This contradicts weak duality. Hence (y, v) is efficient for (VCP).
Now suppose (y, v, T, A, ,u) is not efficient for (MVCD). Then there ex-
ist some (x, u,t,A, ,u) feasible for (MVCD) such that

b b
J.f,.(t,x,)'c,u)dtﬁ Iﬁ(t,y,y,v)dt, vVi=1,..p,

b b
J.fio(t,x,)'c,u)dt<J.fl.o(t,y,j/,v)dt, for some i, e{l,...,p}.

This contradicts weak duality. Hence (y, v,z’,/”t,,u) is efficient for
(MVCD).

Theorem 6.5.2 (Strong Duality): Let (X, i) be efficient for (VCP)
and assume that ()_c , U ) satisfy the constraint qualification of Lemma 6.5.1

for at least one i, € {1,..., p}. Then there exist 7 € R” and piecewise

smooth A4 : 7 — R™ and ﬁ:l—)Rk such that (x, u,z’,ﬂ_u,ﬁ) is feasi-
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ble for (MVCD). If also weak duality (Theorem 6.5.1) holds between
(VCP) and (MVCD) then (¥, 7,7, 4 , i) is efficient for (MVCD).

Proof: Proceeding on the same lines as in Theorem6.5.1, it follows that
there exist piecewise smooth 7:1 — R”, A :1 — R" and i :I — R",
satisfying for all # € [ the following relations:

P mo__
S e fiex5a) v (gl (6557
i=1 J=1

A(t)>0, tel, 7,>0, i=1,..,p, zp:f,.zl.

The relations
and

are obvious.
The above relations imply that ()? ,ULT A, ﬁ) is feasible for (MVCD).
The result now follows from Corollary 6.5.1.

6.6 Duality for a Class of Nondifferentiable Multiobjective
Variational Problems

In this Section, we consider a class of nondifferentiable multiobjective
variational problem and establish various duality results under generalized



6.6 Duality for Nondifferentiable Multiobjective Variational Problems 137

V' — invexity assumptions on the functionals involved using the concept of
conditional proper efficiency. The following definitions will be needed in
the sequel:

Consider the following vector minimization problem:

b b b
(VCP)  Minnimize [ £(¢,x, %)dt =[ [ £tx3)dt... [ £, (t,x,)'c)dt]
subjectto  x(a)=a, x(b)=p

g(t,x,fc)g 0, tel.
where f,:IxR"xR" >R, ieP={,..,p}, g:IxR"xR" - R"

are assumed to be continuously differentiable functions. Let K be the set of
all feasible solutions for (VCP), that is,

K={xeX:x(a)=a,x(b)= B, g(t,x(t), x(t))<0,t € I}.

The following Definitions will be needed in the sequel:

Definition 6.6.1: A point x" € K is said to be an efficient solution for
(VCP) if forall x € K

jﬁ(t,x*(t),x"(t))dt > i £(tx(e).5(¢)) de, for all i=1,....p

o [l O O)de = [ £0xle)5(0)dr, Forall i=1,...p

Definition 6.6.2 [Borwein (1979)]: A point x € K is said to be a
weak minimum solution for (VCP) if there exists no x € K for which

j.f(t,x*(t),x*(t))dt > j].f(t, x(2),x(¢)) dt .

From this it follows that if an x~ € K is efficient for (VCP) then it is a
weak minimum for (VCP).
Definition 6.6.3: A point x €K issaidtobea properly efficient solu-
tion for (VCP) if there exists scalar M > 0 such that, for all x € K,
forall i=1,...,p,

[ Al 05 )~ | 16 x(e) 5(0)
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b

< MU £ x50 e [ 7, (f,x*(f),x*(z))dtj

a

for some j such that j-fj (¢, x(¢), %(¢)) dt > j.fj (t,x*(t),x*(t))dt when-

ever x < K and [ /(6" () ()t > [ 1,(6,x(0) 1)) e

An efficient solution that is not properly efficient is said to be improp-
erly efficient. Thus for x" to be improperly efficient means that to every
sufficiently large M >0, there is an x € K and an index i € {1,...,p}

such that
b

jf_; (6, (), i(¢)) dr < if_,— (6, x" (1) %" (¢)) e

a

and
b

[ Al 05 )~ | £ex(e) 5(0)

a

b

> Mﬁfj (t,x(t),x(t))dt—jfj (t,x*(t),fc*(t))dtj, vV j=1,..,p,

a

wweh that [ (65" ()50t < [ £ (e, le) 5(0) e

Definition 6.6.4: A point x* € K is said to be a conditionally properly
efficient solution for (VCP) if there exists scalar M (x) > 0 such that, for
all xe K, foralli=1,...,p,

[ Ao 00 O)ae 1, 6x(0) 0)
< M(x)U £ x50 e [ 7, (t,x*(t),fc*(t))dt]

a
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for some j such that J. f t, x dt > J S\, x" , *(t))dt when-
ever x € K and Jfl.(t,x*(t),)'c* (t))dt > J-fl.(l‘,x(t), x(2))dt.

We now consider the following Singh and Hanson (1991) type paramet-
ric variational problem for predetermined positive functions 7, (x such
that a, < Z'i(x)<bl. , i=1,.,p, where a, and b, , i=1,...,p are

specified constants.
b

(CPT0 ) Minimize Zp:jr Ve, x,%)dt
subjectto  x(a)=a, x(b)=p
g(t xx) <0, tel

Problem (VCP) and ( ) are equivalent in the sense of Singh and

Hanson (1991). Theorems 6.6.1 and 6.6.2, are valid when R" is replaced
by some normed space of functions, as the proofs of these theorems do not
depend on the dimensionality of the space in which the feasible set of
(VCP) lies. For the variational problem in question the feasible set lies in

the normed space C (I , R" ) For completeness we shall merely state these
theorems characterizing conditional proper efficiency of (VCP) in terms of
solutions of (CPTO )

Theorem 6.6.1: If x" is an optimal solution for (CPT0 ) then x~ is con-
ditionally properly efficient for (CPT0 )

Theorem 6.6.2: If x is conditionally properly efficient for (VCP) then
x" is optimal for (CPTO) for some T[(x*)> 0,i=1,...,p.

In the subsequent analysis, we shall frequently use the following gener-
alized Schwarz inequality

1 1
x"Bz < (xTBx)A (ZTBZ)A s
where B is an n x n positive semidefinite matrix.

Consider the following nondifferentiable multiobjective variational
problem:
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(NVCP) Minjl//(r, X, %)dt = [T( 1%, 50)+(x" (0B (0x(0)) ) de

subject to x(a)=a, x(b)=p
g(t,x,fc) <0, tel.
where B, (t), ieP= {1,..., p}, is a positive semi-definite (symmetric)
matrix with B, (t), ie P= {1, s p}, continuous on / .

Proposition 6.6.1: If f,, i=1,..., p, is V' — invex with respect to

a,, n, l.., pwith n(x, u)=x—u+y(x, u), where Bl.y(x, u)=0,
then f, + -TBl.W is also V' —invex with respect to 7.

Proof: Proof follows easily from the proof of Proposition 2 of Mond
and Smart (1988).

In view of Proposition 6.6.1, the Mond-Weir type dual for (NVCPT) is
the following:

(NVCD.)  Maximize jir u)+u’ Bz, )dt
subject to u(a)—aal,:;(b)—ﬂ (6.38)
Zp:rl{ (¢,11)+ B,(0)z, (1)} + z/lgxtuu) (6.39)
- =
{Zr{ t,u,1)+ B (t }Zﬂgtuu}

z/Bz <1,i=1,..,p (6.40)
j/i (tu,u)dt 20, j=1,..,m (6.41)
/1()20, tel, =1, 20, (6.42)

Now Theorem 6.2.1 and Theorem 6.2.2 motivate us to define the fol-
lowing vector maximization variational problem:
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(NVCD)

Maximize (j{ﬁ(t,u,u)+uTBlzl }dt,...,j‘{fp (t,u,b't)+ uTszp }dtJ

a a

subject to (6.38)-(6.42)

Let K and H denote the sets of feasible solutions of (NVCP) and
(NVCD), respectively.

Theorem 6.6.3 (Weak Duality):
Let x€ K and (u,r,/”t,zl,.... )eHIf

2 Zp
b

[J{m( )+ B O Ot [ pfp<r,-,-,->+-pr<r>zp<t>}dr]

a

b b
are V — pseudo-invex and ('[/llgl(t,-,-,-)dt,...,jrmgm (t,-,-,-)dt] are
V' — quasi-invex. Then the following can not hold:

j‘{fi(t,x,x) (TBx }dt<j{ tuu)+uTBz}dt, Vi=1,.,p

a
b

j { A x,)’c)+(xTBl.0x)2}dt < i{ [, (tu,i)+u' Bz, {dt

a

for some i, € {1,...,p}
Proof: By the feasibility and since ﬂj (t,x, u )> 0, V j=1,....m
we get

Izﬂ t,x,u)ﬂ,g txx dt j.i Z,X,u)ﬂ,g tuu)d

a J=1 a J=1

Then by V' — quasi-invexity of

b b
{J./hgl(t,.,.’.)dt,...,‘[rmgm(1,.,.’.)‘#J’

a

we get

IZﬂ { t,x,u)g] f,u,u)+%n(t,x,u)gj(t,u,u)}dt <o. ©H)

a J=1

From (6.39), we have
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b m
In(t,x,u){zp:rif;(t,u,u)—i-Bizl. +z/1_l.g;'(t,u,u)}dt

i=l j=1
b

=J-77(t,x u [irlfx’ £, i) iﬂjg){(t,u,u)}dt
i=1 Jj=1

a

:n(t,x,u{zp:rif;(t,u,L’t)+Bl.z,. +Zm:ljg){(t,u,a)}
i=1 =1
b

_I%n(t,x,u{irif;(t,u,a)+ i/ljg){(t,u,u)}dt
" i-1

j=1
(by integration by parts).
Thus

b m
In(t,x,u){zp:rif;(t,u,uﬂBizi +Zijgf(t,u,a)}dt
Y i=1 =1

(6.44)

b m
+In(t,x,u)%{zp:rif;(t,u,uﬁ Zﬁ,jgﬁ(t,u,u)}dt
p =1 =

b » ,
a i=1 =
Since 77(¢,u,1)=0 from (6.44), we have

.[Z{ 2’ gx(t u “)+%U(I,X,u)ljg){(t,u,a)}dt (6.45)

a Jj=1

J-Zp: n(t,x,u)t. f (t,u,it)

q i=1
d ; .
+Bz + d—n(z‘, x,u)T, [ (t,u,u)}dt
t

From (6.45) and (6.43), we have

J-Zp:{n(t, x,u)T, [ (¢, u,)

Y i=l

(6.46)

+Bz + %n(t, x,u)T, [ (t,u, ) }dt >0

By V —pseudo-invexity of
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U{ﬂ File )+ B O Ot [, fp(t,-,-,-)+-TBp(t)zp(t)}dt]

we have

ji 7.0, (x,u, %,11) { £t.x,5)+(x" (0B (0)z,(0) ) e

w il

> jzp: To(x,u, X,u) {fi(t, X,X)+ (uT (t)B.(1)z, (t))}dt

u i=l

By using generalized Schwarz inequality, we get

jzp: T, (x,u,X,) {fi(t, X,X)+ (xT (1)B, (t)x(t)); }dt

=l

ii T.o, (X, u,x,10) {f, (t,x, %)+ (uT(t)Bi (t)u(t)); }dt

a i=1

The conclusion now follows, since ze =1 and B, (t , x,u) > 0.

Proposition 6.6.2: Let u € K and (u,r,/l, Zy s eeens Zp)e H . Let the

V' — pseudo-invexity and V' — quasi-invexity conditions of Theorem 6.2.3
hold. If

1
(uTBl.u)5 =uBz, Vi=l,.,p, (6.47)
Then wu is conditionally properly efficient for (NVCP) and
(u ST oAy Zy gy Z p) is conditionally properly efficient for (NVCD).

Proof: From (6.46) and (6.47) it follows that for all x € K

.[ ZT { (t,u u)+( (I)Bi(t)u(t));}dt (6.48)

a =1

[ S i+ (o 08 0= 0)a
2

3 { Flxi)+ (xT(t)Bi(t)x(t));}dt.

IN

Thus u# is an optimal solution for the scalarized problem (NCVP,).
Hence by Theorem 6.6.1, u is a conditionally properly efficient solution
for (NVCP).
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We first show that (u,r,/l, Zyy eeees Zp) is an efficient solution for
(NVCD). Assume that it is not efficient, i.e., there exists
U, T A, Z) ey Zp)e H such that
b

J{f@min + (7 0B 0z ) d

a

>

Qe >

{ ﬁ(r,u,u)+(uT(t)B,.(r)z,.(t))} dt,Vi=1,...,p
and

{1+ (@ (B, (0F, 1))} dt

Q C—

b
>[ { (i) +(u” (0B, (0)z, (r))} dt, for some j e {1,..., p}
Thus, ;rom (6.47), we get

ji{fi(tv”sa) + (MT(t)B,(t)u(t));}dt

< { fi(t,ﬁ,ﬁ)+(17T(t)Bi(t)Z(t))} dt,Vi=1,...,p

Q C— >

and

? {J‘j(w,u) +u" (0B, (t)u(t));}dt

<T{ 1,0 + (@ (6)B,(1)Z,(1))} dt. for some j & {1,...., p}

contradicting weak duality. Hence (u SToAy Zy s ooy 2 p) is efficient.

Now we show that (u SToAy Zy gy 2 p) is conditionally properly effi-

cient for (NVCD). Assume that it is not conditionally properly efficient
i.e., there exist \u,7,4, z,, ...., Zp)e H such that for some i and all

M(@)>0,
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? —

(i) +(@ 0B (0F 1))} de (6.49)

b

_j{fi(z,u,u) +(u" (0)B,(0)z, (t))} di

a

> | M(ﬁ){ (i) +(u” (0B, (0)z, (z))} dt

- [ M) { @i+ (i7" (0B, (1)Z, (t))} dt

forall j e {1,...,p} such that

b

j'{fj (t,u,00)+ (uT(t)Bj (t)z, (t))}dt > I{fj (¢, )+ (ET(t)BA,. (1), (t))}dt .

a a

> j.i? { S+ (u” (0B, (0)z (1)) .

w =l

Now from (6.50) and (6.47), we get

& { i)+ (T (0B,0)z (1))

Q C— >

i

> sz: T { ftui)+(u" (B, (t)u(t)); }dt.

a i=l
contradicting (6.46). Thus (u ToAy Zy s Z p) is conditionally properly
efficient.

Theorem 6.6.4 (Strong Duality): Let the V' — pseudo-invexity and

V — quasi-invexity conditions of Theorem 6.2.3 hold. Let x° be normal
and a conditionally properly efficient solution for (NVCP). Then for some

7 e A", there exists a piecewise smooth A°:7 — R™ such that
p

(uo =x',7, /10) is conditionally properly efficient solution for (NVCD)
and



146 Chapter 6: Continuous-time Programming

Hfi (t,x°,5°) + (xor ()B.(1)x" (z)); } dt

{f,- (t,u’,u’) +(u°r (t)B,(1)z° (z))} dt, vi.

Il
© a

Proof: Since x~ is conditionally properly efficient solution for (NVCP)
and generalized /' — invexity conditions are satisfied, by Theorem 6.6.2,

x* is optimal for the scalarized primal problem. Therefore, by Theorem
6.6.3, there exists a piecewise smooth A° : 7 — R™ such that for ¢ € I,

y fi{f;(t,uo,bl )+B( } z/logx(t u ,u ) (6.51)

{zf PITROR Z/IOg,{(t,uO,aO)}

i=1

1
(XOTB[xo)z :'XOTBiZ? > izl""’p (652)
z/ Bz} <1, i=1,..,p (6.53)
ﬂOT(t)g(t,uo,uo)dt=0, (6.54)
At)>0, tel, =1, £>0. (6.55)

From (6.51) and (6.55) it follows that (x°,7,4°)e H. In view of
(6.52), by Proposition 6.6.1, (uo =x’ ,z_',/io , Zl0 5 eenns Zg) is a condition-

ally properly efficient solution for (NVCD).Using (6.52), we have
b

[ { £t x50+ (xOT ()B,(0)x" (t));}dt

a

{f(t u,u )+(u ()B.(1)z] (t))} dt,Vi.

m'—.u—
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