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Preface

Generalized convexity and generalized monotonicity are the core of many
important subjects in the context of various research fields such as mathemat-
ics, economics, management science, engineering and other applied sciences.
After the introduction of quasi-convex functions by de Finetti in 1949, many
other authors have defined and studied several types of generalized convex
functions and their applications in the context of scalar and vector optimiza-
tion problems, calculus of variations and optimal control theory and financial
and economic decision models.

In many cases, generalized convex functions preserve some of the valuable
properties of convex functions. One of the important generalizations of convex
functions is invex functions, a notion originally introduced for differentiable
functions f : X → R, X an open set of Rn, for which there exists some func-
tion η : X×X → Rn such that f(x)−f(y) ≥ η(x, y)T∇f(u), ∀x, u ∈ X. Invex
functions have the property that all stationary points are global minimizers
and, since their introduction in 1981, have been used in many applications.

The interest in these topics is continuous, as shown by eight specific inter-
national meetings (the next one is scheduled in Kaohsiung, July 21–25, 2008,
along with 2nd Summer School for Generalized convexity from July 15–19,
2008 at the Department of Applied Mathematics, The National Sun Yat-
sen University, Kaohsiung, Taiwan) held to date (Vancouver in 1980; Canton
(USA) in 1986; Pisa in 1988; Pecs (Hungary) in 1992; Luminy (France) in
1996; Hanoi (Vietnam) in 2001; Varese (Italy) in 2005) and by the foundation
of the Scientific Committee of the Working Group on Generalized Convexity,
the group sponsored by the Mathematical Programming Society.

This book deals with invex functions and their applications in nonlinear
scalar and vector optimization problems, nonsmooth optimization problems,
fractional and quadratic programming problems and continuous-time opti-
mization problems. This book provides a comprehensive discussion on invex
functions and their applications, based on the research work carried out over
the past several decades.

Pantnagar, India, Shashi Kant Mishra
Pavia, Italy, Giorgio Giorgi
November, 2007
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1

Introduction

The convexity of sets and the convexity or concavity of functions have been
the object of many investigations during the past century. This is mainly due
to the development of the theory of mathematical programming, both linear
and nonlinear, which is closely tied with convex analysis. Optimality condi-
tions, duality and related algorithms were mainly established for classes of
problems involving the optimization of convex objective functions over con-
vex feasible regions. Such assumptions were very convenient, due to the basic
properties of convex (or concave) functions concerning optimality conditions.
However, not all practical problems, when formulated as mathematical prob-
lems, fulfill the requirements of convexity (or concavity). Fortunately, such
problems were often found to have some characteristics in common with con-
vex problems and these properties could be exploited to establish theoretical
results or develop algorithms. In the second half of the past century vari-
ous generalizations of convex functions have been introduced. We mention
here the early work by de Finetti [54], Fenchel [65], Arrow and Enthoven [5],
Mangasarian [142], Ponstein [203] and Karamardian [109]. Usually such gener-
alizations were introduced by a particular problem in economics, management
science or optimization theory. In 1980 the first International Conference
on generalized convexity/concavity and related fields was held in Vancouver
(Canada) and since then, similar international symposia have been organized
every year. So, at present we dispose of the proceedings of such confer-
ences, published by Academic Press [221], Analytic Publishing [222], Springer
Verlag [25, 52, 80, 129, 130], and Kluwer Academic Publishers [51]. Moreover,
a monograph on generalized convexity was published by Plenum Publishing
Corporation in 1988 (see [10]) and Handbook of Generalized Convexity and
Generalized Monotonicity was published by Springer in 2005 (see, [81]). A
useful survey is provided by Pini and Singh [202]. The Working Group on
Generalized Convexity (WGGC) was founded during the 15th International
Symposium on Mathematical Programming in Ann Arbor (Michigan, USA),
August 1994. It is a working group of researchers who carry on their interests
in generalized convexity, generalized monotonicity and related fields.
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The present monograph is concerned with one particular class of general-
ized convex functions, the invex functions, which were initially employed by
Hanson [83] and named by Craven [43]. There are many valuable contributions
to this class of functions, contributions appeared so far mainly in journals and
in proceedings of conferences. Perhaps this is the first monograph concerned
entirely with invex and related functions. In order to place this generalization
in perspective, we give here, for the reader’s convenience, the basic notions on
convexity and generalized convexity (in an n-dimensional real space Rn).

Definition 1.1. A set C ⊆ Rn is convex if for every x, u ∈ C and λ ∈ [0, 1]
we have

λx+ (1 − λ)u ∈ C.

Definition 1.2. A function f defined on a convex set C ⊆ Rn is convex (CX)
on C if ∀x, u ∈ C and λ ∈ [0, 1] we have

f (λx+ (1 − λ)u) ≤ λf(x) + (1 − λ)f(u). (1.1)

f is strictly convex (SCX) if the inequality in (1.1) is strict, ∀x 	= u and
λ ∈ (0, 1).

A function f : C → R,C ⊆ Rn convex set, is concave (strictly concave) if
and only if −f is convex (strictly convex).

An equivalent condition for the convexity of a function f : C → R that its
epigraph, defined by

epif = {(x, α) ∈ C ×R : f(x) ≤ α}

is a convex set in Rn+1. For concave functions it is considered the hypograph:

hypof = {(x, α) ∈ C ×R : f(x) ≥ α}.

If f is Frechet differentiable on the open convex set C ⊆ Rn, then f is convex
on C if and only if

f(x) − f(u) ≥ (x− u)T∇f(u), ∀x, u ∈ C,

where ∇f(u) is the gradient of f at u ∈ C (see, e.g., [143]).
Convexity at a point can also be defined: f is said to be convex at u ∈ C,

if ∀x ∈ C and λ ∈ [0, 1], we have

f (λx + (1 − λ)u) ≤ λf(x) + (1 − λ)f(u).

If in addition, f is differentiable at u, then f is convex at u if and only if

f(x) − f(u) ≥ (x− u)T∇f(u), ∀x ∈ C.

Another characterization of differentiable convex functions, generalizing the
monotonicity property of the first-order derivative of a single variable convex
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function, is possible (see, e.g., [143]): if f is differentiable on the open convex
set C ⊆ Rn, then f is convex on C if and only if

(x− u)T [∇f(x) −∇f(u)] ≥ 0, ∀x, u ∈ C.

Note that both characterizations of differentiable convex functions involve con-
ditions on two points. If the function under consideration is twice continuously
differentiable, there is a useful characterization by second-order derivatives at
only one point [65]: let f be twice continuously differentiable (i.e., of class
C2) on the open convex set C ⊆ Rn. Then f is convex on C if and only if its
Hessian matrix ∇2f(x) is positive semidefinite, for each x ∈ C.

This characterization cannot be strictly extended to strictly convex func-
tions by requiring that the Hessian matrix ∇2f(x) to be positive definite
∀x ∈ C. This is only a sufficient condition for strict convexity, but not a nec-
essary one: consider, e.g., the strictly convex function f(x) = x4 on R. Clearly
the second-order derivative vanishes at the origin.

Some basic properties of convex functions are as follows. Let f : C → R
be convex on the convex set C ⊆ Rn. Then:

1. The lower level sets L(α) = {x ∈ C : f(x) ≤ α} are convex sets in Rn for
each α ∈ R.

2. The maximum of f along any line segment occurs at an end point.
3. Every local minimum of f is a global minimum.
4. If f is differentiable (on the open convex set C), then every stationary

point is a global minimizer; i.e., ∇f(x̄) = 0 ⇒ f(x̄) ≤ f(x), ∀x ∈ C.

As it appears from the previous properties, convex (and concave) functions
play an important role in optimization theory (besides the role they play in
economics, management science, statistics, econometrics, etc.). More precisely
we can consider the following optimization problem under constraints (non-
linear programming problem):
(P)

Minimizef(x)

Subject to gi(x) ≤ 0, i = 1, . . . ,m,

where f : C → R, gi : C → R, i = 1, . . . ,m, and C ⊂ Rn. Such a problem
is called a convex program if all functions f, gi, i = 1, . . . ,m, are convex on
the convex set C. Convex programs have many useful properties, summarized
below.

Given a convex program (P), we have:

1. The set of feasible solutions is convex; the set of optimal solutions is convex.
2. Any local minimum is a global minimum.
3. The Karush–Kuhn–Tucker optimality conditions are sufficient for a (global)

minimum. As it is well known, assuming that the functions f and gi, i =
1, . . . ,m, are differentiable, if the nonlinear program (P) has an optimal
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solution x∗ ∈ C and a constraint qualification is satisfied, there must exist
a vector λ ∈ Rm such that

∇f(x∗) +
m∑

i=1

λi∇gi(x∗) = 0

λT g(x∗) = 0

λ ≥ 0.

(Karush–Kuhn–Tucker conditions).
4. Dual programs (D) of (P) and duality relations between (D) and (P) can

be established. For example we can consider the following dual problem of
(P), given by Wolfe [247]: (D)

Maximizef(u) + λT g(u)

Subject to ∇f(u) + λT∇g(u) = 0

λ ≥ 0.

Wolfe [247] showed that, if (P) is a convex program, every feasible solution
of the dual had an objective value less than or equal to the objective value
of every feasible solution of the primal. Such a result is known as weak
duality. Furthermore, under a constraint qualification, strong duality was
established, so that if x∗ is optimal for the primal, then there exists some
λ∗ ∈ Rm such that (x∗, λ∗) is optimal for the dual.

5. A minimum of (P) is unique if f is strictly convex.

At this point question arises whether there are non-convex functions which
share some of the useful properties of convex functions. For example if we take
a monotone transform h(f(x)) of a convex (concave) function f(x), where h
is increasing, we see that h(f(x)) is often not convex (not concave), however,
e.g., its lower level sets (upper level sets) are still convex. Indeed, property
(1) is a direct consequence of the convexity of the sets Lf (α). This convexity
is not an exclusive feature of convex functions: consider, e.g., the function
f(x) = x3, x ∈ R, which is not convex nor concave, but has convex lower
level sets. This fact motivated de Finetti [54] to introduce the important class
of quasi-convex functions, class which strictly contains the class of convex
functions.

Definition 1.3. A function f defined on a convex set C of Rn is quasi-convex
(QCX) on C if its lower level sets

Lf (α) = {x ∈ C : f(x) ≤ α}
are convex sets for every α ∈ R. f is quasi-concave if and only if −f is
quasi-convex, i.e., its upper level sets

Uf (α) = {x ∈ C : f(x) ≥ α}
are convex for every α ∈ R.



1 Introduction 5

We can show that if f is quasi-convex on a convex set C ⊆ Rn if and only if
for every x, u ∈ C and λ ∈ [0, 1]

f (λx+ (1 − λ)u) ≤ max {f(x), f(u)}

or, equivalently:

x, u ∈ C, λ ∈ [0, 1], f(x) ≤ f(u)
⇒ f (λx + (1 − λ)u) ≤ f(u).

Turning to differentiable functions, we have the following characterization due
to Arrow and Enthoven [5]:

Theorem 1.4. Let f be differentiable on the open convex set C ⊆ Rn. Then
f is quasi-convex on C if and only if

x, u ∈ C, f(x) ≤ f(u) ⇒ (x− u)T∇f(u) ≤ 0.

For twice continuously differentiable functions the characterization of quasi-
convexity is more complicated than the case of convex functions. We have the
following result, due to Crouzeix [48] and Crouzeix and Ferland [50].

Theorem 1.5. Let f : C → R be twice continuously differentiable on the open
convex set C ⊆ Rn. Then f is quasi-convex on C if and only if

1. x ∈ C, y ∈ Rn,
yT∇f(x) = 0 ⇒ yT∇2f(x)y ≥ 0;

and
2. Whenever ∇f(x) = 0, then ∀y ∈ Rn, the function ϕx,y(t) = f(x + ty) is

quasi-convex on the interval Ix,y = {t ∈ R : x+ ty ∈ C}.
We have to note that, contrary to convex functions, quasi-convex functions
can have local minima that are not global and that its stationary points are
not necessarily global minimum points: Consider again, e.g., the quasi-convex
function f(x) = x3, x ∈ R, for which f ′(0) = 0, but for which x∗ = 0 is an
efficient point.

In order to obtain some of the properties of convex functions, we have to
isolate certain subclasses of quasi-convex functions. We consider the following
ones.

Definition 1.6. A function f defined on a convex set C ⊆ Rn is strictly
quasi-convex (SQCX) on C if, for every x, u ∈ C, x 	= u, and λ ∈ (0, 1):

f (λx+ (1 − λ)) < max {f(x), f(u)}.

f is semi-strictly quasi-convex (SSQCX) if f(x) 	= f(u), instead of x 	= u is
assumed above.
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It is immediate to prove that f is SQCX if and only if

x, u ∈ C, x 	= u, λ ∈ (0, 1), f(x) ≤ f(u)
⇒ f (λx + (1 − λ)u) < f(u)

and that f is SSQCX if and only if

x, u ∈ C, λ ∈ (0, 1), f(x) < f(u)
⇒ f (λx + (1 − λ)u) < f(u).

Strictly quasi-convex functions are also called “strongly quasi-convex” in
Avriel [8], “unnamed convex” in Ponstein [203] and “X-convex” in Thompson
and Parke [235]. Strictly quasi-convex functions attain global minima over
their domain at no more than one point, and every local minimum is global.

The family of semi-strictly quasi-convex functions is between the fam-
ilies of quasi-convex and strictly quasi-convex functions, in case of lower
semi-continuity [109]. Every local minimum of a continuous semi-strictly
quasi-convex function is also global, but contrary to strictly quasi-convex
functions, the minimum can be attained at more than one point (see, e.g.,
[143]). Semi-strictly quasi-convex functions are also called “strictly quasi-
convex” by Mangasarian [143], Ponstein [203], Thompson and Parke [235]
and Avriel [8], “explicitly quasi-convex” by Martos [146] and “functionally
convex” by Hanson [82].

Two other special classes of generalized convex functions are here intro-
duced. We have already remarked that a stationary point of a (differentiable)
quasi-convex function is not necessarily a minimum point (recall the example
f(x) = x3, x ∈ R). For this reason Mangasarian [142] introduced the class
of pseudo-convex functions, which is a class of differentiable functions, wider
than the class of differentiable convex functions.

Definition 1.7. A differentiable function on the open set C ⊆ Rn is pseudo-
convex (PCX) on C if, for every x, u ∈ C

(x− u)T∇f(u) ≥ 0 ⇒ f(x) ≥ f(u),

or, equivalently
f(x) < f(u) ⇒ (x − u)T∇f(u) < 0.

f is strictly pseudo-convex (SPCX) if, for every x, u ∈ C, x 	= u,

(x− u)T∇f(u) ≥ 0 ⇒ f(x) > f(u).

For a pseudo-convex function a stationary point ū (∇f(ū) = 0) is obviously a
global minimum point. A function is pseudo-convex, but not strictly pseudo-
convex if f is constant over a line segment at the minimal level of f .

Ortega and Rheinboldt [191] have introduced pseudo-convexity also for
non-differentiable functions: A real-valued function f defined on an open set
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C ⊆ Rn is said to be pseudo-convex on C if for every x, u ∈ C and λ ∈ (0, 1)
we have

f(x) < f(u)
⇒ f(λx+ (1 − λ)u) ≤ f(u) + (λ − 1)λk(x, u),

where k(x, u) is a positive number, depending, in general on x and u. In
case of differentiability, the above definition collapses to the one already
given (see, e.g., [10]). For the twice differentiable case we have the following
characterization (see, e.g., [58]).

Theorem 1.8. Let f be twice continuously differentiable on the open convex
set C ⊆ Rn. Then f is pseudo-convex (strictly pseudo-convex) if and only if

1. x ∈ C, ‖v‖ = 1,
vT∇f(x) = 0 ⇒ vT∇2f(x)v > 0;

2. vT∇2f(x) = 0 and F (t) = f(x+ tv) attains a local minimum (a strict local
minimum) at t = 0.

Now we consider again the optimization problem
(P)

Minimize f(x)

Subject to gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ C ⊆ Rn.

This problem is called a quasi-convex program, if all functions f, gi are
quasi-convex on the convex set C. Given a quasi-convex program, the following
properties hold:

1. The set of feasible solutions is convex and the set of optimal solutions is
convex.

2. Any local minimum is a global minimum, if f is semi-strictly quasi-convex.
3. The Karush–Kuhn–Tucker optimality conditions are sufficient for a global

minimum (i.e., a solution for (P)), if f(x) is pseudo-convex.
4. Dual program (D) of (P) and duality relations between (D) and (P) can

be established (see, e.g., [49, 197]).
5. A minimum of (P) is unique if f is strictly quasi-convex.

Hanson [83] observed that the sufficiency of the Karush–Kuhn–Tucker con-
ditions and weak duality could be achieved by replacing the linear term
(x − u), appearing in the definition of convexity for differentiable functions,
by an arbitrary vector-valued function, usually denoted η(x, u) and also called
“kernel” provided the same kernel was employed for each f and gi. Craven [43]
noted that functions satisfying the inequality

f(x) − f(u) ≥ η(x, u)T∇f(u),
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could be generated by applying a differentiable injective domain transforma-
tion to a convex function and thus coined the term “invex” a contraction of
“invariant convex.”

This new generalization of convexity inspired a large number of papers
dealing mainly with analysis and applications of this functional class in
optimization theory and related fields. See the bibliographical reference at
the end of this monograph. The purpose of this volume is to present an
overview (together with some new results) of invexity theory and the extent to
which it has replaced convexity and generalized convexity in various types of
optimization problems, static and dynamic, with single-valued objective func-
tions and with vector-valued objective functions (Pareto or multi-objective
programming problems).

Chapter 2 features a discussion on the definition and meaning of invexity,
under the original differentiability assumption, including conditions for several
functions to be invex with respect to a common kernel. A section is concerned
with the analysis of restricted invexity and pointwise invexity. A comparison of
invexity with other classes of generalized convex functions is discussed. We also
consider the relationships of invexity with domain and range transformations.
Finally the question on the continuity of the kernel function is examined.

Chapter 3 is concerned with those functions are called η-pseudolinear (f
and −f both pseudo-invex). Another section of this chapter is concerned with
the links between invexity and generalized monotonicity.

Chapter 4 is concerned with various notions of invexity for non-differenti-
able functions; in particular, it is considered the relevance of the Lipschitz case,
in order to make use of Clarke’s theory on generalized directional derivatives
and subdifferentials.

The role of invexity in standard nonlinear programming is the subject of
Chap. 5. After a discussion of the use of invexity for necessary and sufficient
optimality conditions and a discussion on a sufficient condition for invexity and
on η-pseudolinear program, we examine the relevance of invexity to duality
theory. The two last sections of this chapter are concerned, respectively, to
second and higher order invexity and to saddle points, optimality and duality
for not necessarily differentiable invex functions.

Chapter 6 is concerned about the multiobjective programming problems
involving invex and generalized invex functions. We have presented optimality
conditions for multiobjective programming problems. Wolfe type, Mond–Weir
type and general Mond–Weir type duality are presented for multiobjective
programming problem. Nonsmooth case of multiobjective programming prob-
lems are also discussed. Nonsmooth multiobjective programming problems are
discussed on abstract space as well. Multiobjective composite programming
problems under invexity is presented. Saddle points and symmetric duality
relations are also discussed in this chapter.

Chapter 7 is concerned with the optimization problems in infinite dimen-
sional normal spaces. Two types of problems fitting into this scheme are
variational and control problems. An early result on variational problems
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is addressed by Friedrichs [66]. Hanson [82] observed that variational and
control problems are continuous analogues of finite dimensional nonlinear
programs. Since, then the fields of nonlinear programming and the calcu-
lus of variations have to some extent, merged together within optimization
theory, enhancing the potential for continued research in both. In Chap. 7,
we have considered scalar variational problems and invexity. We discussed
optimality and duality results for scalar problem in Sect. 7.1, multi-objective
variational problems involving invexity is studied in Sect. 7.2. Control prob-
lems with single-objective is considered in Sect. 7.3. Finally, in Sect. 7.4, we
have discussed multi-objective control problems with invex functions.

Finally, Chap. 8 is concerned with applications of invexity to some special
functions and problems. More precisely, we consider the case of quadratic func-
tions, the case of fractional functions and fractional programming problems,
the case of class of non-differentiable programs, non-differentiable symmet-
ric dual problems, symmetric duality for multi-objective fractional variational
problems and symmetric duality for non-differentiable fractional variational
problems.



2

Invex Functions (The Smooth Case)

2.1 Introduction

Usually, generalized convex functions have been introduced in order to weaken
as much as possible the convexity requirements for results related to opti-
mization theory (in particular, optimality conditions and duality results), to
optimal control problems, to variational inequalities, etc. For instance, this
is the motivation for employing pseudo-convex and quasi-convex functions
in [142, 143]; [228] use convexlike functions to give a very general condition
for minimax problems on compact sets. Some approaches to generate new
classes of generalized convex functions have been to select a property of con-
vex functions which is to be retained and then forming the wider class of
functions having this property: both pseudo-convexity and quasi-convexity
can be assigned to this perspective. Other generalizations have been obtained
through altering the expressions in the definition of convexity, such as the
arcwise convex functions in [8] and [9], the (h, φ)-convex function in [17], the
(α, λ)-convex functions in [27], the semilocally generalized convex functions
in [113], etc.

The reasons for Hanson’s conception of invex functions [83] may have
stemmed from any of these motivating forces, although in that paper Hanson
dealt only with the relationships of invex functions to the Kuhn–Tucker con-
ditions and Wolfe duality. More precisely, Hanson [83] noted that the usual
convexity (or pseudo-convexity or quasi-convexity) requirements, appearing
in the sufficient Kuhn–Tucker conditions for a mathematical programming
problems, can be further weakened. Indeed, in the related proofs of the
said conditions, there is no explicit dependence of the linear term (x − y),
appearing in the definition of differentiable convex, pseudo-convex and quasi-
convex functions. This linear term was therefore substituted by an arbitrary
vector-valued function, usually denoted by η and sometimes called “kernel
function.”
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2.2 Invex Functions: Definitions and Properties

Definition 2.1. Assume X ⊆ Rn is an open set. The differentiable function
f : X → R is invex if there exists a vector function η : X×X → Rn such that

f(x) − f(y) ≥ η(x, y)T∇f(y), ∀x, y ∈ X. (2.1)

It is obvious that the particular case of (differentiable) convex function is
obtained from (2.1) by choosing η(x, y) = x − y. The term “invex” is due to
Craven [43] and is an abbreviation of “invariant convex,” since it is possible
to create an invex function with the following method:
Let g : Rn → R be differentiable and convex and Φ : Rr → Rn(r ≥ n) be
differentiable with ∇Φ of rank n. Then f = g ◦Φ is invex, ∀x, y ∈ Rr, we have

f(x) − f(y) = g(Φ(x)) − g(Φ(y)) ≥ (Φ(x) − Φ(y))T∇g(Φ(y)).

As ∇f(y) = ∇Φ(y)∇g(Φ(y)) and ∇Φ(y) is of rank n, the equation (Φ(x) −
Φ(y))T∇g(Φ(y)) = η(x, y)T∇f(y) has a solution η(x, y) ∈ Rr. Hence, f(x) −
f(y) ≥ η(x, y)T∇f(y), ∀x, y ∈ Rr for some η : Rr × Rr → Rr.

This characterization of invexity is closely related to (h, F )-convexity,
a generalization of convexity based on the use of generalized means (see,
e.g., [146,169]). The class of (h, F )-convex functions, with h, h−1 and F differ-
entiable, from a subclass of invex functions. It was stated earlier that invexity
was used by Hanson [83] to obtain sufficient optimality conditions (in terms of
Kuhn–Tucker conditions) for a nonlinear programming problem. This is pos-
sible, an invex function shares with convex function the property that every
stationary point is a global minimum point. Craven and Glover [45] and Ben-
Israel and Mond [18] established the basic relationship between this property
and the function η of Definition 2.1.

Theorem 2.2. Let f : X → R be differentiable. Then f is invex if and only
if every stationary point is a global minimizer.

Proof. Necessity: Let f be invex and assume x̄ ∈ X with ∇f(x̄) = 0. Then
f(x) − f(x̄) ≥ 0, ∀x ∈ X, so x̄ is a global minimizer of f over X.
Sufficiency: Assume that every stationary point is a global minimizer. If
∇f(y) = 0, let η(x, y) = 0. If ∇f(y) 	= 0, let

η(x, y) =
[f(x) − f(y)]∇f(y)

∇f(y)T∇f(y)
.

Then f is invex with respect to η.
��

This is, of course, not the only possible choice of η. Indeed, if ∇f(y) = 0,
then η(x, y) may be chosen arbitrarily, and if ∇f(y) 	= 0, then

η(x, y) ∈
{

[f(x) − f(y)]∇f(y)
∇f(y)T∇f()y

+ v : vT∇f(y) ≤ 0
}
,

a half-space in Rn.
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This importance of functions with the stationary points as global mini-
mizers had been recognized also by Zang et al. [255], who however, did not
pursue any further analysis and applications.

Let us denote by Lf (α) the lower α-level set of a function f : X → R, i.e.,
the set Lf(α) = {x : x ∈ X, f(x) ≤ α} , ∀α ∈ R. Zang et al. [255] characterized
by means of the sets Lf (α) the functions whose stationary points are global
minimizers, i.e., the class of invex functions.

Definition 2.3. If Lf (α) is non-empty, then it is said to be strictly lower
semi-continuous if, for every x ∈ Lf (α) and sequence {αi} , with αi →
α,Lf (αi) non-empty, there exist k ∈ N, a sequence

{
xi
}
, with xi → x and

β(x) ∈ R, β(x) > 0, such that

xi ∈ Lf [αi − β(x)
∥∥xi − x

∥∥], i = k, k + 1, . . . .

The authors proved the following result.

Theorem 2.4. A function f : X → R, differentiable on the open set X ⊆ Rn,
is invex if and only if Lf (α) is strictly lower semi-continuous, for every α such
that Lf(α) 	= Φ.

Proof. See Zang et al. [255].
��

Another characterization of invex functions stemming from Theorem 2.2,
can be obtained through the conjugation operation. Let f : X → R, X ⊆ Rn;
given ξ ∈ Rn, we consider the collection of all affine functions ξTx − α, with
slope ξ, that minorize f(x), i.e., ξT − α ≤ f(x), ∀x ∈ X. This collection, if
non-empty, gives rise to the smallest α∗ for which the above relation holds.
If there is no affine function with slope ξ minorizing f(x), we agree to set
α∗ = +∞. In any case α∗ = f∗(ξ) = sup

x
{ξTx − f(x)} is precisely what is

called the conjugate function of f (see [211]). By reiterating the operation
f → f∗ on X, we get the biconjugate of f(x), defined by

f∗∗ = sup
ξ
{ξTx− f∗(ξ)}.

It can be proved (see [91]) the following result.

Theorem 2.5. Let f : X → R be differentiable on the open set X ⊆ Rn. Then
x0 ∈ X is a (global) minimum point of f on X if and only if: (i) ∇f(x0),
and (ii) f∗∗(x0) = f(x0). In such a case f∗∗ is differentiable at x0 and
∇f∗∗(x0) = 0.

Proof. See Hiriart-Urruty [91].
��

Thus Theorem 2.5 gives another characterization of an invex function: it is a
C differentiable function whose value at stationary points equals the value of
its biconjugate.
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Hanson and Rueda [89] sufficient conditions for invexity of a function are
established through the use of linear programming. We shall revert to this
question when we shall treat the applications of invexity to nonlinear pro-
gramming problems. From Theorem 2.2 we get immediately that if f has
no stationary points, then f is invex. Furthermore, Theorem 2.2 will be use-
ful to state some relationships between invex functions and other classes of
generalized convex functions. Some nice properties of convex functions are
however lost in the invex case. In fact, unlike convex (or pseudo-convex) case,
the restriction of an invex function on a not open set does not maintain the
local/global property. Let us consider the following example.

Example 2.6. Let f(x, y) = y(x2 − 1)2, considered on the closed set S ={
(x, y) ∈ R2 : x ≥ − 1

2 , y ≥ 1
}
. Every stationary point of f on S is a global

minimum point of f on S and therefore f is invex on S. The point (− 1
2 , 1) is

a local minimum point of f on S, with

f(−1
2
, 1) =

9
16

> f(1, y) = f(−1, y) = 0.

The points (1, y), (−1, y), y ≥ 1, are the global minimizers for f on S.

If f is invex on an open set X ⊆ Rn, contrary to what asserted in Pini [201],
it is not true that the set A = {x ∈ X,∇f(x) = 0} is a convex set (as for
convex functions). Let us consider the following example.

Example 2.7. Let f(x, y) = y(x2 − 1)2, defined on the open set S ={
(x, y) ∈ R2 : x ∈ R, y > 0

}
. The set of all its stationary points coincides

with the set of all its minimum points (i.e., f on S). This set is given by
{(1, y) : y > 0}⋃ {(−1, y) : y > 0} , which is not a convex set in R2.

As a consequence, for an invex function the set of all minimum points (the
set of all stationary points if f is defined on an open set) is not necessarily
a convex set. Ben-Israel and Mond [18] observed that there is an analogue of
Theorem 2.2 for pseudo-convex functions.

Theorem 2.8. A differentiable function on the open set X ⊆ Rn is pseudo-
convex on X if and only if

(x− y)T∇f(y) = 0 ⇒ f(y) ≤ f(y + t(x− y)), ∀t > 0. (2.2)

Proof. Necessity: Obvious from the definition of pseudo-convexity. Here (2.2)
holds for all real t.
Sufficiency: Suppose f is not pseudo-convex; that is, there exists (x, y) such
that (x− y)T∇f(y) ≥ 0 and f(x) < f(y). If (x− y)T∇f(y) = 0, then (2.2) is
contradicted. If (x− y)T∇f(y) > 0, then there exists v which maximizes f on
the line segment from y to x. Thus ∇f(v) = 0 and therefore (x−y)T∇f(v) = 0
and

f(v) ≥ f(y) > f(x) = f(v + 1(x− v)),

contradicting (2.2).
��
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We note that the class of functions differentiable on an open set X and all
invex with respect to the same η(x, y), is closed under addition on any domain
contained inX, unlike the classes of quasi-convex and pseudo-convex functions
which do not retain this property of convex functions. However, the class of
functions invex on an open set X, but not necessarily with respect to the
same η(x, y), need not be closed under addition. For instance (see, [178,224]),
consider f1 : R → R and f2 : R → R defined by f1(x) = 1 − e−(x+5)2. Both
f1 and f2 are invex, but f1 + f2 has a stationary point at x̄ = 0 which is not
a global minimizer. In fact, for a given η(x, y), the set of functions invex with
respect to η(x, y), form a convex cone; that is, the set is closed under addition
and positive scalar multiplication. Therefore, we can state the following result.

Theorem 2.9. Let f1, f2, . . . , fm : X → R all invex on the open set X ⊆ Rn,
with respect to the same function η(x, y) : X ×X → Rn. Then:

1. For each α ∈ R,α > 0, the function αfi, i = 1, . . . ,m, is invex with respect
to the same η.

2. The linear combination of f1, f2, . . . , fm, with nonnegative coefficients is
invex with respect to the same η.

Following Smart [224] and Mond and Smart [179], a natural question is now
the following: given two (or more) invex functions, how do we know if they
are invex with respect to a common η. It is convenient to first prove a result
characterizing functions for which no common η exists.

Lemma 2.10. Let f : X → R, g : X → R be invex. There does not exist a
common η, with respect to which f and g are both invex if and only if there
exists x, y ∈ X,λ > 0 such that ∇f(y) = −λ∇g(y) and f(x)−f(y)+λ(g(x)−
g(y)) < 0.

Proof. (a) Sufficiency: Assume there exist x, y ∈ X,λ > 0 such that ∇f(y) =
−λ∇g(y) and f(x) − f(y) + λ(g(x) − g(y)) < 0. We wish to show that the
system

f(x) − f(y) ≥ η(x, y)T∇f(y)

g(x) − g(y) ≥ η(x, y)T∇g(y)
has no solution η(x, y) ∈ Rn. Assume such an η(x, y) exists. Now, as λ > 0,
g(x) − g(y) ≥ η(x, y)T∇g(y) ⇒ λ[g(x) − g(y)] ≥ λη(x, y)T∇g(y). Therefore,

f(x) − f(y) + λ(g(x) − g(y)) ≥ η(x, y)T∇f(y) + λη(x, y)T∇g(y)
= η(x, y)T [∇f(y) + λ∇g(y)]
= 0,

which contradicts f(x)−f(y)+λ(g(x)−g(y)) < 0. Hence, no common function
η(x, y) exists.
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(b) Necessity: Assume no common function η(x, y) exists. Then there exists
x, y ∈ X such that the system

f(x) − f(y) ≥ η(x, y)T∇f(y)

g(x) − g(y) ≥ η(x, y)T∇g(y)
has no solution η(x, y)T ∈ Rn.

Rewrite the system as Aη(x, y) ≤ C, where A =
(∇f(y)T

∇g(y)T

)
, C =

(
f(x) − f(y)
g(x) − g(y)

)
.

By Gale’s Theorem of the alternative for linear inequalities (see, e.g.,
[143]), there exists y ∈ R2, y = (y1, y2)T , such thatAT y = 0, CT y = −1, y ≥ 0,
that is,

∇f(y)y1 + ∇g(y)y2 = 0,

[f(x) − f(y)y1] + [g(x) − g(y)y2] = −1,

y1 ≥ 0, y2 ≥ 0.

Now, if y1 = 0, then ∇g(y)y2 = 0, [g(x)− g(y)]y2 = −1, y2 ≥ 0, which implies
that ∇g(y) = 0 and g(x) − g(y) < 0, which contradicts the invexity of g.
Hence, y1 ≥ 0. Similarly, y2 > 0. Thus,

∇f(y) = −y2
y1

∇g(y) = −λ∇g(y), where λ =
y2
y1

> 0

and
f(x) − f(y) +

y2
y1

[g(x) − g(y)] = −1,

that is,
f(x) − f(y) + λ[g(x) − g(y)] < 0.

��
The negation of the Lemma 2.10 yields the next result.

Theorem 2.11. Let f : X → R, g : X → R be invex. A common η, with
respect to which both f and g are invex, exists if and only if ∀x, y ∈ X either

1. ∇f(y) 	= λ∇g(y) for any λ > 0 or
2. ∇f(y) = −λ∇g(y) for some λ > 0 and

f(x) − f(y) ≥ −λ[g(x) − g(y)].

Using Theorem 2.11, it is possible to give a more useful characterization of
invex functions with respect to a common η.

Theorem 2.12. Let f : X → R, g : X → R be invex. A common η, with
respect to which both f and g are invex, exists if and only if f + λg is invex
for all λ > 0.
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Proof. (a) Necessity: this follows since the set of functions invex with respect
to η is a convex cone.
(b) Sufficiency: assume f+λg is invex, for all λ > 0. Then, whenever ∇f(y) =
−λ∇g(y) for some λ > 0, we have

f(x) + λg(x) ≥ f(y) + λg(y), ∀x ∈ X,

by invexity of f + λg. That is,

∇f(y) = −λ∇g(y) ⇒ f(x) − f(y) ≥ −λ[g(x) − g(y)], ∀x ∈ X.

By Theorem 2.11, a common η exists.
��

Theorem 2.12 generalizes to any finite number of functions, and is useful for
the requirements of invexity in sufficiency and duality results in optimization.

Corollary 2.13. Let f : X → R, g1, g2, . . . , gm : X → be invex. A common
η with respect to which f, g1, g2, . . . , gm are invex, exists if and only if f +
λ1g1 + λ2g2 + · · · + λmgm is invex for all λ1 > 0, λ2 > 0, . . . , λm > 0.

Proof. By induction; the case m = 1 is proved in Theorem 2.12. Assume the
statement is true for some k ∈ N. Now f, g1, g2, . . . , gk+1 have a common η
if and only if f, g1, g2, . . . , gk have a common η with respect to which gk+1 is
also invex. Now f, g1, g2, . . . , gk have a common η if and only if f + λ1g1 +
λ2g2 + · · · + λkgk is invex for all λ1 > 0, λ2 > 0, . . . , λk > 0. Therefore,
f, g1, g2, . . . , gk+1 have a common η if and only if f +λ1g1 +λ2g2 + · · ·+λkgk

is invex with respect to same η independent of λ1 > 0, λ2 > 0, . . . , λk > 0, and
gk+1 is invex with respect to the same η. But f +λ1g1 +λ2g2 + · · ·+λkgk and
gk+1 have a common η if and only if f +λ1g1 +λ2g2 + · · ·+λk+1gk+1 is invex
for all λk+1 > 0. Therefore, f, g1, g2, . . . , gk+1 have a common η if and only if
f +λ1g1 +λ2g2 + · · ·+λk+1gk+1 is invex for all λ1 > 0, λ2 > 0, . . . , λk+1 > 0.

��
Since it is assumed in Corollary 2.13 that f is invex, the necessary and

sufficient condition could also be expressed as: f + λ1g1 + λ2g2 + · · ·+ λmgm

is invex for all λ1 ≥ 0, λ2 ≥ 0, . . . , λm ≥ 0.
Like convex functions, invex functions with respect to a certain η are

transformed into invex functions with respect to the same η, by a suitable
class of monotone functions.

Theorem 2.14. Let ψ : R → R be a monotone increasing differentiable con-
vex function. If f is invex on X with respect to η, then the composite function
ψ ◦ f is invex with respect to the same η.

Proof. By the fact that ψ(x+ h) ≥ ψ(x) + ψ′(x)h, ∀x, h ∈ R, we get

ψ(f(x)) ≥ ψ(f(y)) + ∇f(y)η(x, y)
≥ ψ(f(y)) + ψ′(f(y))∇f(y)η(x, y)
= ψ(f(y)) + ∇(f ◦ ψ)(y)η(x, y).

��
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Further generalizations of invexity are possible; indeed Hanson [83] intro-
duced also the following classes of generalized convex functions.

Definition 2.15. The differentiable function f : X → R is pseudo-invex if
there exists η : X ×X → Rn such that for all x, y ∈ X,

η(x, y)T∇f(y) ≥ 0 ⇒ f(x) − f(y) ≥ 0;

f is quasi-invex if there exists η : X ×X → Rn such that ∀x, y ∈ X,

f(x) − f(y) ≤ 0 ⇒ η(x, y)T∇f(y) ≤ 0.

We point out that if we do not specify the function η in the definition of quasi-
invexity, it turns out that every function f is quasi-invex: it is sufficient to take
η identically equal to zero. Definitions 2.1 and 2.15 can be further weakened if
we consider, as in Kaul and Kaur [114], pointwise characterization at a point
x0 ∈ X. In this respect we say that a differentiable function f : X → R is
invex at x0 ∈ X, if there exists η(x, x0) such that ∀x ∈ X,

f(x) − f(x0) ≥ η(x, x0)T∇f(x0).

f is pseudo-invex at x0 ∈ X, if there exists η(x, x0) such that ∀x ∈ X,

η(x, x0)T∇f(x0) ≥ 0 ⇒ f(x) − f(x0) ≥ 0.

f is quasi-invex at x0 ∈ X, if there exists η(x, x0) such that ∀x ∈ X,

f(x) − f(x0) ≤ 0 ⇒ η(x, x0)T∇f(x0) ≤ 0.

Craven [43] introduced further relaxations: the local invexity at a point and
the invexity with respect to a cone.

Definition 2.16. The differentiable function f : X → R,X ⊆ Rn, X open,
is said to be locally invex at x0 ∈ X, if there exist a function η(x, x0) and a
positive scalar δ such that

f(x) − f(x0) ≥ η(x, x0)T∇f(x0), ∀x ∈ X,
∥∥x− x0

∥∥ < δ.

Definition 2.17. Let f : X → Rk be a differentiable vector-valued function;
f is invex with respect to the cone K in Rk if

f(x) − f(y) −∇f(y)η(x, y) ∈ K.

If K is polyhedral convex cone and qj , j = 1, . . . , l, denote the generating
vectors of the dual cone K∗ such that

K =
{
x ∈ Rk : qjx ≥ 0, j = 1, . . . , l

}
,

the Definition 2.17 is nothing but the invexity with respect to η, Craven [43]
has given a characterization of local invexity with respect to a cone. Assume



2.2 Invex Functions: Definitions and Properties 19

f : Rn → Rk and η : Rn × Rn → Rn are functions of class C2. Given, y, we
write the Taylor expression of η(·, y) and f(·) up to quadratic terms as follows

η(x, y) = η(y, y) +A(x − y) +
1
2
(x− y)TQ0(x− y) +O(‖x− y‖2)

f(x) = f(y) +B(x− y) +
1
2
(x− y)TM0(x− y) +O(‖x− y‖2),

where A,B,Q and M0 have the obvious significance. Then the following holds.

Theorem 2.18. Let f : Rn → Rk be a function of class C2; denote by K a
closed convex cone in Rk such that K

⋂
(−K) = 0. If f is locally invex at y,

with respect to η and with respect to the cone K and η : Rn × Rn → Rn is a
function of class C2, for which η(x, x) = 0, then, after substitution of a term
in the null space of B, η has the form

η(x, y) = x− y +
1
2
(x− y)TQ0(x− y) +O(‖x− y‖2), (2.3)

where M0 −BQ0 is K-semidefinite. Conversely, if η has the form (2.3), and
if M0 − BQ0 is K-positive definite, then f is locally invex at y, with respect
to η and K.

Proof. See Craven [43].
��

Note that if f is a function defined on R and the cone K is the interval
[0,+∞], the positive semidefiniteness ofM0−BQ0 is nothing but the condition

f ′′(y) − f ′(y)η(y, y) ≥ 0.

The conditions of Theorem 2.18 are however, from a computational point of
view, difficult to apply. In Sect. 3, we shall see other sufficient conditions for
invexity in nonlinear programming, through the use of linear programming.
Further generalizations of invex functions can be obtained through notions
similar to the ones utilized by Vial [239] to define strong and weak convex
functions. On these lines Jeyakumar [100, 103] defined the following class of
generalized invex functions.

Definition 2.19. A differentiable function f : X → R,X ⊆ Rn, is called
ρ-invex with respect to the vector-valued function η and θ, if there exists some
real number ρ such that, for every x, y ∈ X

f(x) − f(y) ≥ η(x, y)T∇f(y) + ρ(‖θ(x, y)‖2).

If ρ > 0, then f is called strongly ρ-invex. If ρ = 0, we obviously get the usual
definition of invexity and if ρ < 0, then f is called weakly ρ-invex.
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It is clear that strongly ρ-invexity ⇒ invexity ⇒ weakly ρ-invexity.
Rueda [213] points out that, under the assumption that ‖∇f(x)‖ 	= 0,
Definition 2.19 is equivalent to invexity. Indeed, define

η1(x, y) = ηx(x, y) + ρ(‖θ(x, y)‖2)
∇f(x)

[∇f(x)]T∇f(x)
.

Thus, f is invex with respect to η1.

Definition 2.20. A differentiable function f : X → R, is called ρ-pseudo-
invex with respect to the vector-valued functions η and θ, if there exists some
real number ρ such that, for every x, y ∈ X

η(x, y)T∇f(y) ≥ −ρ(‖θ(x, y)‖2) ⇒ f(x) ≥ f(y).

Definition 2.21. A differentiable function f : X → R, is called ρ-quasi-invex
with respect to the vector-valued functions η and θ, if there exists some real
number ρ such that, for every x, y ∈ X

f(x) ≤ f(y) ⇒ η(x, y)T∇f(y) ≤ −ρ(‖θ(x, y)‖2).

Pointwise definitions follow easily. The above definitions can be used to obtain
general optimality and duality results for a nonlinear programming problem.

2.3 Restricted Invexity and Pointwise Invexity

The results characterizing invex functions as the class of functions for which
stationary points are global minimizers, may be viewed as a special case of
a more general theorem, due to Smart [224]; see also Mond and Smart [179],
Molho and Schaible [166] and Chandra et al. [33].

For given x, y ∈ Rn, let m(x, y) be a point in Rn and Λ(x, y) a cone of Rn

with vertex at 0 ∈ Λ. Let Λ∗(x, y) be the (positive) polar cone of Λ(x, y), i.e.,

Λ∗(x, y) =
{
v ∈ Rn : vT t ≥ 0, ∀t ∈ Λ(x, y)

}
.

Theorem 2.22. Let f : X ⊆ Rn → R be differentiable. A necessary and
sufficient condition for f to be invex with respect to η : X ×X → Rn, subject
to the restriction η(x, y) ∈ m(x, y) + Λ(x, y), ∀x, y ∈ X, is the following:

∇f(y) ∈ Λ∗(x, y) ⇒ f(x) − f(y) −m(x, y)T∇f(y) ≥ 0.

Proof. Necessity: Assume f is invex with respect to η(x, y) ∈ m(x, y)+Λ(x, y).
Then f(x) − f(y) ≥ η(x, y)T∇f(y) = (m(x, y) + t(x, y)T )∇f(y), for some
t(x, y) ∈ Λ(x, y). Thus

∇f(y) ∈ Λ∗(x, y) ⇒ f(x) − f(y) ≥ m(x, y)T∇f(y), ∀x ∈ X.
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Sufficiency: assume that

∇f(y) ∈ Λ∗(x, y) ⇒ f(x) − f(y) −m(x, y)T∇f(y) ≥ 0.

Case (a). ∇f(y) ∈ Λ∗(x, y). Then take η(x, y) = m(x, y). Since 0 ∈ Λ(x, y),
we have η(x, y) ∈ m(x, y) + Λ(x, y).
Case (b). ∇f(y) /∈ Λ∗(x, y). Then there exists t1(x, y) ∈ Λ(x, y) such that
t1(x, y)T∇f(y) < 0. If f(x) − f(y) − m(x, y)T∇f(y) ≥ 0, take η(x, y) =
m(x, y). On the other hand, if f(x)−f(y)−m(x, y)T∇f(y) < 0, take η(x, y) =
m(x, y) + t2(x, y), where

t2(x, y) =
f(x) − f(y) −m(x, y)T∇f(y)

t1(x, y)∇f(y)
t1(x, y).

Then

f(x) − f(y) − η(x, y)T∇f(y) = f(x) − f(y) −m(x, y)T∇f(y)
− t2(x, y)T∇f(y)

= f(x) − f(y) −m(x, y)T∇f(y)

−
(
f(x) − f(y) −m(x, y)T∇f(y)

t1(x, y)T∇f(y)

)T

× t1(x, y)T∇f(y)
= 0.

Since
f(x) − f(y) −m(x, y)T∇f(y)

t1(x, y)T∇f(y)
> 0

and Λ(x, y) is a cone, we have t2(x, y) ∈ Λ(x, y). Hence f is invex with respect
to η, subject to the restriction η(x, y) ∈ m(x, y) + Λ(x, y).

��
Let us apply the above results to some special cases:

(a) For convexity, take m(x, y) = x− y and Λ(x, y) = {0}. The necessary and
sufficient condition is f(x) − f(y) ≥ (x− y)T∇f(y), ∀x, y ∈ X.

(b) For arbitrary invexity, take m(x, y) arbitrary, Λ(x, y) = Rn, so the
necessary and sufficient condition is

y ∈ X,∇f(y) = 0 ⇒ f(x) − f(y) ≥ 0, ∀x ∈ X.

(c) For invexity with η(x, y) ≥ x−y, take m(x, y) = x−y, Λ(x, y) = Rn
+. The

condition is

y ∈ X,∇f(y) ≥ 0 ⇒ f(x) − f(y) ≥ (x− y)T∇f(y), ∀x ∈ X.
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(d) For invexity with η(x, y) + y ≥ 0, take m(x, y) = −y, Λ(x, y) = Rn
+. The

condition is

y ∈ X,∇f(y) ≥ 0 ⇒ f(x) − f(y) ≥ −yT∇f(y), ∀x ∈ X.

We remark that if there does not exist a y ∈ X such that ∇f(y) ≥ 0, then it is
immediate that f is invex with respect to the desired η in both cases (c) and
(d). Consider the following (non-convex) example: f : R2 → R, f(x1, x2) =
−x2(x2

1 + 1) + g(x1), where g : R → R is any differentiable function. As
∇f(x1, x2) = (−2x1x2 + ∇g(x1);−(x2

1 + 1)T ), there is no (y1, y2) ∈ R2 such
∇f(y1, y2) ≥ 0, so f is invex with respect to some η1 with η1(x, y) ≥ x − y,
and also with respect to some η2 with η2(x, y) + y ≥ 0.

A further special case of Theorem 2.22 concerns quadratic functions; we
postpone the analysis of this case to Chap. 8, due to its importance in math-
ematical programming. We have already given the definitions, due to Kaul
and Kaur [114], of invexity at a point x0. We now make some other consid-
erations on this case, under the assumption of twice differentiability of the
functions. Let us therefore consider invex functions that are twice continu-
ous differentiable. If ∇f(x0) = 0 for some x0 ∈ X, a necessary condition for
(global) invexity is that the Hessian matrix ∇2f(x0) of f at x0 is positive
semidefinite. Indeed, if ∇f(x0) = 0 and f is invex, then x0 is a point of global
minimum. Therefore, ∇2f(x0) is positive semidefinite.

2.4 Invexity and Other Generalizations of Convexity

In this section, we examine the main relationships between invexity definitions
and other forms of generalized convexity. Obviously, for any assertion on a
generalized convexity concept there is a generalized concavity counterpart.
For invexity, the “incavity” is defined in a natural way by replacing ≥ with ≤ .

First of all we note that:

(I) A differentiable convex function is also invex (take η(x, y) = x − y)
but the converse is not true. Take, for example, the function f(x) =
log x, x ∈ R, which has no stationary points and is therefore invex. Obvi-
ously f(x) = log(x), x ∈ R, is not convex (it is strictly concave) on its
domain.

(II) A differentiable pseudo-convex function is also pseudo-invex, but not
conversely. This property will be best precised in Theorem 2.25.

(III) A differentiable quasi-convex function is also quasi-invex, but not con-
versely (recall that every differentiable function is trivially quasi-invex).

For the reader’s convenience we recall the basic definitions and properties of
quasi-convex and pseudo-convex functions.
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Definition 2.23 (Mangasarian [143], Avriel et al. [10]). The function
f : X → R is said to be quasi-convex on the convex set X ⊆ Rn if for
each x, y ∈ X such that f(x) − f(y) ≤ 0 and for each λ ∈ [0, 1], we have
f(λx+ (1 − λ)y) ≤ f(y).

It is well known that f is quasi-convex on C if and only if the lower level sets
Lf(α) are convex sets in Rn for each α ∈ R. In case f is differentiable on the
open convex set X, then f is quasi-convex on X if and only if x, y ∈ X, f(x)−
f(y) ≤ 0 ⇒ (x − y)T∇f(y) ≤ 0; or equivalently, x, y ∈ X, (x − y)T∇f(y) >
0 ⇒ f(x) − f(y) > 0.

Definition 2.24. The function f : X → R, differentiable on the open set
X ⊆ Rn, is pseudo-convex on X if

x, y ∈ X, (x− y)T∇f(y) ≥ 0 ⇒ f(x) − f(y) ≥ 0;

or equivalently,

x, y ∈ X, f(x) − f(y) < 0 ⇒ (x − y)T∇f(y) < 0.

Furthermore, we say that f is strictly pseudo-convex on X if

x, y ∈ X, f(x) − f(y) ≤ 0 ⇒ (x − y)T∇f(y) < 0,

and we say that f is strongly pseudo-convex on X if f is pseudo-convex
and satisfies the following conditions: For every x0 ∈ X and for every
v ∈ Rn, ‖v‖ = 1, such that vT∇f(x0) = 0, there exist positive ε and α such
that

f(x0 + tv) ≥ f(x0) +
1
2
αt2,

for every t ∈ R, 0 ≤ t ≤ ε.

(IV) Every invex function is also pseudo-invex for the same function η, but not
conversely (see [114]). We have already remarked that a (differentiable)
function without stationary points is invex, thanks to Theorem 2.2.
Moreover, it results that the class of invex and pseudo-invex functions
are coincident. This is not in contrast with property (IV), which is estab-
lished with respect to the same η. We may note that some authors (see,
e.g., Hanson and Mond [87], Kim [118] still consider pseudo-invexity as a
generalization of invexity. We can therefore assert the following property:

(V) Every pseudo-convex function is invex; every pseudo-invex function is
quasi-invex, but not conversely. For what concerns property (II) or its
equivalent statement expressed by the first part of property (V), we have
the following results, due to Pini [201].

Theorem 2.25. The class of pseudo-convex functions on X ⊆ Rn is strictly
included in the class of invex functions if n > 1; if n = 1 the two classes
coincide.
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Instead of following the proof of Pini [201], it is more useful to prove the
following lemma [178,224]).

Lemma 2.26. Let f : X → R, where X is an interval (open, half-open or
closed) in R. If f is invex on X then it is also quasi-convex on X.

Proof. We show that for every α ∈ R, the lower level sets Lf (α) are convex.
Assume to contrary that there exists α ∈ R such that Lf (α) is not convex.
Then Lf(α) is the union of more than one disjoint intervals in X . Consider
any two such intervals, I1 and I2, which are consecutive. Without loss of
generality, x1 ∈ I1 and x2 ∈ I2 ⇒ x1 < x2. By continuity of f, I1 must be
closed on the right and I2 must be closed on the left.

That is, there exists x̄1 ∈ I1 such that x1 ≤ x̄1, ∀x1 ∈ I1 and f(x̄1) = α;
and there exists x̄2 ∈ I2 such that x2 ≥ x̄2, ∀x2 ∈ I2 and f(x̄2) = α. By
assumption, f(α) > α, ∀x ∈ (x̄1, x̄2). Since f is differentiable, then by the
Mean Value Theorem, there exists x̄ ∈ (x̄1, x̄2) such that ∇f(x̄) = 0. As
f(x̄) > α, then x̄ is not a global minimizer, which contradicts f being invex.

��
The converse of Lemma 2.26 does not hold: take, e.g., the function f : X →

R, f(x) = x3, which is quasi-convex (quasi-concave) on R, but not invex,
since x̄ = 0 is a stationary point which is not global minimizer. Moreover,
Lemma 2.26 does not hold when X ⊆ Rn with n > 1. Consider the following
example: f : R2 → R, f(x1, x2) = 1 + x2

1 − e−x2
2. The function f has one

stationary point, namely x∗ = (0, 0), and x∗ is a global minimizer of f, so f is
invex. However, f is not quasi-convex; take, e.g., x = (1.12, 2.32940995) and
y = (1.31, 1.64704975). Now, f(x) ≤ f(y), but (x− y)T∇f(y) > 0.

Another example is given by Ben-Israel and Mond [18]: The function f :
R2 → R, f(x1, x2) = x3

1 +x1−10x3
2−x2 is invex, since there are no stationary

points. Taking y = (0, 0), x1 = 2, x2 = 1, gives f(x) < f(y) < 0 but (x − y)T

∇f(y) > 0, so f is not quasi-convex.
Another result useful to detect the relationships between the different

classes of functions here considered is the following Theorem, due to Crouzeix
and Ferland [50] and Giorgi [69]. See also Smart [224] and Mond and
Smart [178].

Theorem 2.27. Let f be differentiable quasi-convex function on the open con-
vex set X ⊆ Rn. Then f is pseudo-convex on X if and only if f has a global
minimum point at x ∈ X, whenever ∇f(x) = 0.

Theorem 2.27 asserts, in other words, that, under the assumption of quasi-
convexity, invexity and pseudo-convexity coincides. So for an invex function
not to be pseudo-convex, it must also not be quasi-convex. Taking this result
into account, together with Lemma 2.26 and the related remarks, the proof
of Theorem 2.25 is immediate.

Proof (of Theorem 2.27 Giorgi [69]). The necessary part of the theorem fol-
lows from the definition of pseudo-convex functions. As for sufficiency, let
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x0 ∈ X,∇f(x0) = 0 ⇒ x0 is a global minimum point of f(x) on X , i.e.,
(x− x0)T∇f(x0) = 0 ⇒ f(x) ≥ f(x0), ∀x ∈ X. It is obvious that f(x) is then
pseudo-convex at x0 with respect to X. Let us now prove that: f(x) quasi-
convex on X ;x0 ∈ X,∇f(x0) 	= 0 implies f(x) pseudo-convex at x0, i.e.,
(x − x0)T∇f(x0) ≥ f(x) ≥ f(x0), ∀x ∈ X. Let us consider a point x1 ∈ X,
such that

(x1 − x0)T∇f(x0) ≥ 0 (2.4)

but for which it is

f(x1) < f(x0). (2.5)

Thus x1 belongs to the nonvoid set

X0 =
{
x : x ∈ X, f(x) ≤ f(x0)

}

whose elements, thanks to the quasi-convexity of f(x), verify the relation

x ∈ X0 ⇒ (x− x0)T∇f(x0) ≤ 0. (2.6)

Let us now consider the sets, both non-void,

W =
{
x : x ∈ X, (x− x0)T∇f(x0) ≥ 0

}
, and X00 = X0 ∩W.

the following implication obviously holds:

x ∈ X00 ⇒ x ∈ H0 =
{
x : x ∈ X, (x− x0)T∇f(x0) = 0

}
.

It is therefore, evident that X00 is included in the hyperplane (recall that
∇f(x0) 	= 0) H =

{
x : x ∈ Rn, (x− x0)T∇f(x0) = 0

}
, a hyperplane support-

ing X0 covering to (2.6). Relation (2.4) and (2.5) point out that x1 belongs to
W and X0 and hence to X00, H0 and H. Moreover, (2.5) says that x1 lies in
the interior of X0; therefore x1 at the same time belongs to the interior of a
set and to a hyperplane supporting the same set, which is absurd. So relation
(2.5) is false and (2.4) implies f(x1) ≥ f(x0).

��
We remark that the previous result states that a quasi-convex function

f(x) is thus pseudo-convex at every point x ∈ X whenever ∇f(x) 	= 0. Con-
sequently we note that those sufficient conditions to test the quasi-convexity
of a function in a convex set X where ∇f(x) 	= 0, ∀x ∈ X, really locate the
class of pseudo-convex functions. This is for example, the case of determinan-
tal conditions for twice continuously differentiable functions, established by
Arrow and Enthoven [5].
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We can therefore add to the previous result, the following ones:

(VI) The classes of invex and pseudo-invex functions coincide.
(VII) The classes of quasi-convex and invex functions have only a partial

overlapping.

We consider again pseudo-invex and quasi-invex functions. For what concerns
pseudo-invex functions, we already know that if we do not impose further
specifications on the choice of the kernel function η, this class coincides with
the class of invex functions. However, if we consider the properties of these two
classes of functions (invex and pseudo-invex) with respect to a specific function
η, these properties are not the same. For example, unlike invex functions, the
sum of pseudo-invex functions with respect to the same η is not pseudo-invex,
with respect to that η. Consider, e.g., the following functions: f(x) = log x and
g(x) = −2x2 both defined onX = {x ∈ R : x > 0}. Both functions are pseudo-
invex for η(x, y) = x− y. Indeed, f(x) = log x is strictly increasing function,
being f ′(x) = 1

x > 0, ∀x ∈ X ; therefore, η(x, y)f ′(x) ≥ 0 ⇔ η(x, y) ≥ 0. Thus
η(x, y) = x − y ≥ 0 ⇔ x ≥ y ⇒ f(x) ≥ f(y). So f is pseudo-invex with
respect to η(x, y) = x− y.

The function g is strictly decreasing on X, as g′(x) = −4x < 0, ∀x ∈ X.
We have η(x, y)g′(y) ≥ 0 ⇔ η(x, y) ≤ 0; η(x, y) = x − y ≤ 0 ⇔ x ≤ y ⇒
g(x) ≥ g(y), so g is pseudo-invex with respect to η(x, y) = x − y. The sum
z = f + g is z = log x − 2x2, x > 0. We have z′ = 1

x − 4x = 1−4x2

x . Thus
z′ ≥ 0 ⇔ 1 − 4x2 ≥ 0 ⇒ x ≤ 1

2 . Therefore z(x) has a maximum point at
x = 1

2 , so it is not pseudo-invex.
As for what concerns quasi-invex functions, we know that the class of

pseudo-invex functions (i.e., invex functions) is strictly contained in the class
of quasi-invex functions.

However, if we consider a pseudo-invex function f with respect to a certain
function η, it is no longer true that f is also quasi-invex with respect to the
same η. The converse also holds. Consider the following example.

Example 2.28. Let f(x) = x2 − 2x defined on R and

η(x, y) =

⎧
⎪⎨

⎪⎩

−1, ∀(x, y) = (2, 0)
1, ∀(x, y) = (x, 1)
(x−y)(x+y−2)

2(y−1) , ∀(x, y) 	= (x, 1).

Let us verify that f is pseudo-invex with respect to η(x, y); we have f ′(y) =
2y − 2. If (x− y) 	= (2, 0) and (x, y) 	= (x, 1), then

η(x, y)f ′(y) = (x− y)(x+ y − 2)
= x2 − 2x− (y2 − 2y) ≥ 0.

⇒ x2 − 2x ≥ y2 − 2y ⇔ f(x) ≥ f(y).

If (x, y) = (x, 1), then η(x, 1)f ′(1) = 0 and f(x) ≥ f(1), being x2 − 2x ≥
−1 ⇔ (x − 1)2 ≥ 0, ∀x ∈ R. If (x, y) = (2, 0), then η(2, 0)f ′(0) = 2 and
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f(2) = f(0) = 0. So, f is not quasi-invex with respect to the same η; indeed
if we choose x = 2 and y = 0, we have f(x) ≤ f(y), but η(2, 0)f ′(0) = 2 > 0.

To verify that a quasi-invex function f with respect to a certain η, may
not be pseudo-invex with respect to the same η, consider the function f(x) =
tanx, x ∈ (−π

2 ,
π
2 ) which is quasi-convex and also therefore quasi-invex with

respect to η(x, y) = x−y but not pseudo-convex. Choose, e.g., x = −π
4 , y = 0;

we have f(π
4 ) = 1 < f(0) = 0, but (x− y)f ′(y) = 0. So f is not pseudo-invex

with respect to η(x, y) = x−y (and it is not invex with respect to the same η).

We recall again that, if no specification is made on the choice of η, the class
of quasi-invex functions coincides with the class of differentiable functions.

Similar to pseudo-invex functions, the sum of quasi-invex functions with
respect to the same functions η, need not be quasi-invex with respect to that η.
For example:

Example 2.29. Consider the functions f(x) = arctan(x) and g(x) = −x2,
both defined on X = {x ∈ R : x ≥ 0}. Both functions are quasi-convex
and therefore quasi-invex with respect to η(x, y) = x − y. The sum z =
arctan(x) − x2 is not quasi-convex on X : Choose x = 0 and y = 0.8. We
have z(x) = 0 < z(y) = 0.03. Therefore, we should have z(x) ≤ 0.03 for every
x ∈ (0, 8

10

)
. But if we consider x = 0.5, we have z(x) = 0.21 > 0.03. So z(x)

is not quasi-invex with respect to η(x, y) = x− y.

We now give following results from Pini [201] which ensure that an invex
function is pseudo-convex or quasi-convex.

Theorem 2.30. Assume that X ⊆ Rn is an open convex set and f : X → R
is an invex function, with respect to η. If

(x − y)T∇f(y) ≤ η(x, y)T∇f(y), ∀x, y ∈ X, (2.7)

such that f(x) < f(y), then f is pseudo-convex. If

(x− y)T∇f(y) < η(x, y)T∇f(y), ∀x, y ∈ X (2.8)

such that f(x) ≤ f(y), then f is strictly pseudo-convex.

Proof. If x, y ∈ X and f(x) < f(y), by the hypothesis of invexity and (2.7),
we get

(x− y)T∇f(y) = [(x− y) − η(x, y)]T∇f(y) + η(x, y)∇f(y)
≤ [(x− y) − η(x, y)]T∇f(y) + f(x) − f(y)
< [(x− y) − η(x, y)]T∇f(y) < 0.

If x, y ∈ X and f(x) ≤ f(y), then (2.8) implies that

(x− y)T∇f(y) = [(x− y) − η(x, y)]T∇f(y) + η(x, y)∇f(y)
≤ [(x− y) − η(x, y)]T∇f(y) + f(x) − f(y)
≤ [(x− y) − η(x, y)]T∇f(y) < 0.

��
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Theorem 2.31. Assume that for every y ∈ Rn the function x → η(x, y) is
differentiable at the point x = y, η(x, y) = 0 and ηx(y, y) = 1. If f : X → R is
invex with respect to η and

f(x) < f(y) ⇒ η(x, y)T∇f(y) ≤ (x − y)T∇f(y)

and
vT∇f(y) = 0 ⇒ (vT ηxx(y, y)v)∇f(y) > 0,

then f is strongly pseudo-convex.

Proof. Choose x0 ∈ X and v ∈ Rn, with ‖v‖ = 1 such that vT∇f(x0) = 0.
Since f is invex, we have

f(x0 + tv) − f(x0) ≥ [η(x0 + tv, x0) − tv]T∇f(x0).

Since
d

dt
[η(x0 + tv, x0) − tv]T∇f(x0)t=0 = 0,

it is sufficient to prove that

d2

dt2
[η(x0 + tv, x0) − tv]T∇f(x0)t=0 > 0;

this is equivalent to
∇f(x0)[vT ηxx(x0, x0)v] > 0,

which is indeed true by assumption.
��

Theorem 2.32. Let f : X → R be invex on the open convex set X ⊆ Rn, with
respect to the kernel function η. If (x − y)T∇f(y) > 0 ⇒ η(x, y)T∇f(y) ≥
(x− y)T∇f(y), for every x, y ∈ X, then f is quasi-convex on X.

Proof. We estimate the difference f(x) − f(y) whenever (x − y)T∇f(y) > 0.
We readily get

f(x) − f(y) ≥ η(x, y)T∇f(y)
= [η(x, y) − (x− y)]T∇f(y) + (x− y)T∇f(y)
> [η(x, y) − (x− y)]T∇f(y) > 0.

��
Recall now the following definitions (see [10]).

Definition 2.33. Let f be a function defined on the convex set X ⊆ Rn. We
say that f is semi-strictly quasi-convex on X if

f(x) < f(y) ⇒ f(λx+ (1 − λ)y) < f(y), ∀x, y ∈ X,x 	= y, λ ∈ (0, 1).

Following Pini [201], we can give a sufficient condition for semi-strictly quasi-
convexity.
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Theorem 2.34. Suppose that f : X → R is invex with respect to η, and that
for every x0 ∈ X and v ∈ Rn, ‖v‖ = 1, such that v∇f(x0) = 0, one of the two
following conditions hold:

η(x0 + tv, x0)T∇f(x0) > 0, t ∈ [−a, b] (2.9)

or
η(x0 + tv, x0)T∇f(x0) ≥ 0, t ∈ (−a, b),

η(x0 − av, x0)T∇f(x0) > 0, η(x0 + bv, x0)T∇f(x0) > 0, (2.10)

for some suitable a, b > 0. Then f is semi-strictly quasi-convex.

Proof. By Theorem 3.34 of Avriel et al. [10], it is sufficient to show that if
v∇f(x0) = 0, then the function F (t) = f(x0 + tv) does not admit a one-sided
semi-strict local minimum at t = 0. Since f is an invex function, we have that

f(x0 + tv) − f(x0) ≥ η(x0 + tv, x0)T∇f(x0),

that is,
F (0) ≤ F (t) − η(x0 + tv, x0)T∇f(x0).

From (2.9), (2.10) it follows that F (0) < F (−a), F (0) < F (b) and F (0) ≤
F (t), ∀t ∈ (−a, b). The thesis follows from the definition of one-sided semi-
strict local maximum.

��

2.5 Domain and Range Transformations:
The Hanson–Mond Functions

We follow here the approach of Smart [224], Mond and Smart [178] and
Rueda [213]. These authors analyze in particular the article of Horst [94]
dealing with non-convex nonlinear programs which may be transformed into
convex programs via domain and/or range transformations in order to employ
algorithms developed for convex programs. Convex range transformable func-
tions, or F -convex functions, were first introduced by De Finetti [54].

Definition 2.35. Let f : X → R,X a convex set in Rn. f is said to be
convex range transformable or F -convex, if there exists a continuous, strictly
monotone increasing function F : range(f) → R, such that F ◦ f is convex
on X. That is:

F [f(λx+ (1 − λ)y)] ≤ λF [f(x)] + (1 − λ)F [f(x)] , (2.11)

∀x, y ∈ X, ∀λ ∈ [0, 1].



30 2 Invex Functions (The Smooth Case)

p-Convex functions (or power convex functions) and r-convex functions (see,
[6–8,94,127,146,169]) are included in the class of convex range transformable
functions. Concerning this subject we recall that the rth-generalized mean of
f(x) and f(y), with f(x) and f(y) real and positive, defined as follows:

Mr (f(x), f(y), λ) = Mr(f, λ)

= [λ(f(x))r + (1 − λ)(f(y))r ]
λ
r , (2.12)

if r 	= 0, λ ∈ [0, 1].
It is possible to generalize (2.12) to the following cases:

M0(f, λ) = lim
r→0

Mr(f, λ) = [f(y)]λ · [f(x)]1−λ

M+∞(f, λ) = lim
r→+∞(f, λ) = max [f(x), f(y)] .

M−∞(f, λ) = lim
r→−∞(f, λ) = min [f(x), f(y)] .

Definition 2.36. The function f(x) > 0 defined on the convex set X ⊆ Rn is
p-convex on X if there exists p ≥ 1 such that F ◦ f = fp is convex on X, i.e.,

f(λx+ (1 − λ)y) ≤Mp(f, λ), ∀x, y ∈ X, ∀λ ∈ [0, 1].

The previous inequality gives the usual definition of convexity for p = 1. If
1 < p < +∞, p-convexity is a special case of pseudo-invexity, i.e., of invexity.
Indeed, if f is p-convex, then fp is convex by definition and therefore it is
invex. Since pseudo-invexity is equivalent to invexity for real functions, then
there exists η such that

η(x, y)T (∇f(y))p ≥ 0 ⇒ (f(x))p ≥ (f(y))p.

Hence f(x) ≥ f(y), which proves that f is pseudo-invex. Note that invex
functions need not be p-convex.

Example 2.37. Let f :
(
0, π

2

)→ R be defined by f(x) = sinx. Then f is invex
but it is not p-convex as can be seen by taking y = π

4 , x = π
3 , p = 2 and λ = 1

2 .

In order to get rid of the restriction f(x) > 0, Avriel [6], Martos [146] and
others proposed the following definition.

Definition 2.38. The function f : X → R is r-convex on the convex set
X ⊆ Rn, if for all r, λ,−∞ ≤ r ≤ +∞, 0 ≤ λ ≤ 1, satisfies

f(λx + (1 − λ)y) ≤ logMr(e(f(x)), e(f(y)), λ).

Avriel [6] has proved that f(x) is r-convex, with r 	= 0, if and only if the
function erf(x) is convex for r > 0 and concave r < 0. For r > 0, this is just
the definition of r-convexity given by Horst [94]:
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f is said to be r-convex if there exists r > 0 such that F ◦ f = erf is
convex. For 0 < r < ∞, we shall show that r-convexity is a special case of
pseudo-invexity. If f is r-convex it follows that erf is convex and therefore it
is invex (differentiability is assumed).

From
erf(x) − erf(y) ≥ η(x, y)T erf(y)∇f(y)∇f(y)

it follows that
er(f(x)−f(y)) − 1 ≥ η(x, y)T .

Assume η(x, y)T∇f(y) ≥ 0. From the inequality above er(f(x)−f(y)) ≥ 1,
which implies r(f(x) − f(y)) ≥ 0. Since r > 0, it follows that f(x) ≥ f(y),
which proves that f is pseudo-invex. From the previous example it follows that
invex functions need not be r-convex. More generally, convex range trans-
formable functions are quasi-convex [54, 94]. If in addition, a differentiable
function f is convex range transformable with respect to a differentiable F,
then f is invex. This may be seen by noting that, ∀x, y ∈ X,

F ◦ f(x) − F ◦ f(y) ≥ (x− y)T∇(F ◦ f)(y) = (x− y)T∇F (f(y))∇f(y),

by convexity of F ◦ f and the by chain rule.
If ∇f(y) = 0, then F ◦f(x) ≥ F ◦f(y), ∀x ∈ X. By monotonicity of F, this

implies that f(x) ≥ f(y), ∀x ∈ X, so f is invex. By Theorem 2.27, f must also
be pseudo-convex. Thus the class of differentiable convex range transformable
(F -convex)functions, with F differentiable, form a strict sub-class of the invex
functions.

A more general classification is obtained by incorporating a domain
transformation [94].

Definition 2.39. Let f : X → R,X ⊆ Rn, X convex. f is said to be (h, F )-
convex if there exists a continuous one-to-one mapping h : X → h(X) ⊆ Rn,
and a continuous strictly monotone increasing function F : range(f) → R
such that h(X) is a convex set and F ◦ f ◦ h−1 is a convex function on h(X),
i.e., ∀x, y ∈ X, and λ ∈ [0, 1], we have

f
[
h−1(λh(x) + (1 − λ)h(y))

] ≤ F−1 [λF (f(x)) + (1 − λ)F (f(y))].

Horst [94] has shown that (h, F )-convex functions need not be quasi-convex;
the purpose of the domain transformation h is to obtain a quasi-convex func-
tion which is F -convex. Assuming that h and F are differentiable with ∇h of
full rank, so that h−1 is differentiable, (h, F )-convexity implies invexity. This
follows, since ∀x, y ∈ X,

(F ◦ f ◦ h−1)(x) − (F ◦ f ◦ h−1)(y)
≥ ∇(F ◦ f ◦ h−1)(y)
= ∇F (f ◦ h−1)(y) · ∇f(h−1(y))∇h−1(y).
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If ∇f(x∗) = 0, then as h is onto,there exists y ∈ h(X) such that h(x∗) = y
and h−1(y) = x∗. Therefore, (F ◦ f ◦ h−1)(x) − (F ◦ f)(x∗) ≥ 0, ∀x ∈ h(X).
As F is monotonic increasing, then (f ◦ h−1)(x) ≥ f(x∗), ∀x ∈ h(X). Since
h is onto, f(z) ≥ f(x∗), ∀z ∈ X. Hence, every stationary point of f yields a
global minimum on X, so f is invex on X.

Rueda [213] has shown that invex functions need not be (h, F )-convex.
For further considerations on the relationships between invexity and (h, F )-
convexity, see Smart [224] and Mond and Smart [178]. (h, F )-convex functions
are actually a special case of the arcwise convex functions described in
Avriel [8] and Avriel and Zang [9]. We can consider any continuous path
from x to y instead of the straight line between x and y. Let px,y(λ), where
px,y(0) = x and px,y(1) = y, represents a continuous path from x to y in Rn

such that f(px,y(λ)), 0 ≤ λ ≤ 1, is defined. Let h be a continuous strictly
increasing scalar function that implies f(x) and f(y) in its domain. Then f
is said to be arcwise convex or (p, θ)-convex if

f(px,y(λ)) ≤ h−1 [λh(f(x)) + (1 − λ)h(f(y))],

for all x, y in the domain of f , 0 ≤ λ ≤ 1. For (h, F )-convexity these paths
(or arcs) are h-mean value functions given by

px,y(λ) = h−1 [λh(x) + (1 − λ)h(y)].

Rueda [213] has shown that an arcwise convex function, with path and range
transformation assumed to be differentiable, is pseudo-invex, and hence invex,
but the converse does not hold.

We now briefly treat the so-called Hanson–Mond functions. Hanson and
Mond [86] introduced a generalization of convexity based on sublinear func-
tionals, intending to generalize both convex and invex functions. However,
this class of functions is in fact the class of invex functions.

Definition 2.40. The functional F : D → R,D ⊆ Rn is said to be sublinear
if

(i) F (a+ b) ≤ F (a) + F (b), ∀a, b ∈ D,
(ii) F (αx) ≤ αF (x), ∀x ∈ D, ∀α ≥ 0 such that x ∈ D,αx ∈ D.

Note that (ii) implies F (0) = 0.

Definition 2.41 (Hanson and Mond [86]). Let f : X → R be differen-
tiable; f is said to be a Hanson–Mond function if there exists a sublinear
functional F (x, y; ·) : X ×X ×Rn → R such that ∀x, y ∈ X,

f(x) − f(y) ≥ F (x, y;∇f(y)).

These functions are also called F -convex functions (see, e.g., [20, 32, 77, 185,
204]).

Invex functions are Hanson–Mond functions, since if f is invex with respect
to η, we can define F in Definition 2.41 by F (x, y; a) = η(x, y)T a. But,
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note also that if f is a Hanson–Mond function and ∇f(y) = 0, then since
F (x, y; a) = 0, ∀x ∈ X, y is a global minimizer of f, so f is invex. Therefore,
the Hanson–Mond functions correspond to the invex functions. Craven and
Glover [45] proved the equivalence between the two said classes. Caprari [26]
proved this equivalence also with regards to the Lipschitzian case and also
other type of equivalence involving pseudo-Hanson–Mond functions and quasi-
Hanson–Mond functions. In spite of this, there is still a lot of papers dealing
with (generalized) Hanson–Mond functions, with the conviction that these
classes are true generalizations of the corresponding classes of invex functions.

2.6 On the Continuity of the Kernel Function

The continuity of the kernel of invex functions was studied by Smart [224,
225]. Here we follow his analysis. Usually, in the main applications of invexity
(mathematical programming, variational and control problems, etc.) there are
no restrictions on the analytical properties on the kernel function η, such as
continuity or differentiability, etc. However, there are some type of problems
where assumptions about the kernel η need to be made. Smart [225] describes
two examples where continuity of η must be imposed.

In Parida et al. [195] a variational-like inequality problem is examined
and applied to an invex mathematical program with the condition that η be
continuous (in fact, continuity of η is included in the definition of invexity
in [195]). The variational-like inequality problem considered is as follows:

Given a closed convex set K of Rn, and two continuous maps F : K → Rn

and η : K ×K → Rn, find x̄ ∈ K such that

F (x̄)T η(x, x̄) ≥ 0, ∀x ∈ K.

For the applications of this problem to mathematical programming, they
assume f is a continuously differentiable real-valued function on K, invex
with respect to η and take F = ∇f. Consider the program (PSK) Min f(x),
Subject to x ∈ K.

Parida et al. [195] show that if x̄ solves the variational-like inequality
problem, then x̄ is an optimal solution of the program (PSK). The existence of
a solution to the variational-like inequality problem depends on the continuity
of η, allowing the Kakutani fixed-point theorem to be invoked.

Secondly, Ponstein [203] established six equivalent definitions of quasi-
convexity, of which two apply to differentiable functions. The problem is to
know whether the equivalence for these two can be extended to quasi-invexity.
In fact, this equivalence is possible under a continuity property of the kernel.
First, we recall Ponstein’s results: assume f : X → R differentiable on the
open convex set X ⊆ Rn. Then f is quasi-convex on X if either

f(x2) ≤ f(x1) ⇒ (x2 − x1)T∇f(x1) ≤ 0, (2.13)



34 2 Invex Functions (The Smooth Case)

or equivalently

f(x2) < f(x1) ⇒ (x2 − x1)T∇f(x1) ≤ 0. (2.14)

We recall the definition of a quasi-invex function:

f(x2) ≤ f(x1) ⇒ η(x2, x1)T∇f(x1) ≤ 0. (2.15)

Smart [225] gives a condition on η to guarantee that (2.15) is equivalent to

f(x2) < f(x1) ⇒ η(x2, x1)T∇f(x1) ≤ 0. (2.16)

Note that this result subsumes the results of Ponstein, taking η(x2, x1) =
x2 − x1.

Theorem 2.42. If the function f satisfies η(x2, ·) continuous at x1 whenever
f(x2) = f(x1) and f is continuously differentiable, then conditions (2.15) and
(2.16) are equivalent.

Proof. Clearly, if (2.15) holds then (2.16) holds. Conversely, if (2.16) holds
we need only establish that f(x2) = f(x1) → η(x2, x1)∇f(x1) ≤ 0. Assume
there exist x1, x2 ∈ X (not necessarily distinct) such that f(x2) = f(x1) and
η(X2, x1)∇f(x1) > 0. Then, by continuity of f, there exists λ̄ > 0, such that
∀λ < λ̄, λ 	= 0, we have

f(x1 + λη(x2, x1)) > f(x1) = f(x2).

By (2.16), this gives

η(x2, x1 + λη(x2, x1))T∇f(x1 + λη(x2, x1)) ≤ 0.

Taking limits as λ ↓ 0, we obtain by continuity of η(x2, ·) and ∇f that
η(x2, x1)T∇f(x1) ≤ 0, a contradiction. Thus, if (2.16) holds then (2.15) holds.

��
Now, given f : X → R(X ⊆ Rn), differentiable and invex, we know that

f is invex with respect to η : X ×X → Rn if for every x, y ∈ X

η(x, y) =
{

(f(x) − f(y))∇f(y)
∇f(y)T∇f(y)

+ v; vT∇f(y) ≤ 0
}
,

where ∇f(y) 	= 0. Under what conditions on f can a continuous η be chosen
subject to the above constraint? For a given f : X → R, one choice of η is
given in the proof of Theorem 2.2:

η(x, y) =

{
(f(x)−f(y))∇f(y)

∇f(y)T ∇f(y) , if ∇f(y) 	= 0
0, if ∇f(y) = 0
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For f : R→ R, f(x) = x2, this choice of η gives:

η(x, y) =

⎧
⎨

⎩

x2 − y

2y
, y 	= 0

0, y = 0.

Thus, for fixed x ∈ R, x 	= 0, limy→0 η(x, y) = limy→0
x2−y
2y which does not

exist, so η(x, y) is not continuous at 0 for any x ∈ R − {0}. An alternative
choice of η is

η(x, y) =

⎧
⎨

⎩

0, f(y) ≥ f(y)
(f(x) − f(y))∇f(y)

∇f(y)T∇f(y)
, f(y) < f(y).

This η is formed by choosing v so that vT∇f(y) = f(y) − f(x) whenever
f(y) ≤ f(x) with ∇f(y) 	= 0, choosing v = 0 whenever f(y) > f(x), and
putting η(x, y) = 0 when ∇f(y) = 0.

In the simple example above, we obtain

η(x, y) =

{
x2−y2

2y , if |y| > |x|
0, if |y| ≤ |x|

which is continuous in y for each x ∈ R and furthermore, is continuous on R2.
The following theorem due to Smart [224,225], gives a sufficient condition for
the continuity of the most recent choice of η.

Theorem 2.43. Let f : X → R be continuously differentiable and invex. The
function η : X ×X → Rn with respect to which f is invex, defined by

η(x, y) =

{
0, if f(x) ≥ f(y)
(f(x)−f(y))∇f(y)

∇f(y)T ∇f(y) , if f(x) < f(y)

is continuous if, given y such that ∇f(y) = 0, then for any sequence
{yn}, yn → y,∇f(yn) 	= 0, we have

lim
n→∞

|f(y) − f(yn)|
‖∇f(yn)‖ = 0,

where ‖·‖ is the usual Euclidean norm.

Proof. Let (x, y) ∈ X × X and assume {xn} and {yn} are sequences such
that (xn, yn) ∈ X × X xn → x and yn → y. We want to show that
limn→∞ η(xn, yn) = η(x, y). Three separate cases must be considered:
(a) From the definition of η, we have

η(x, y) =
(f(x) − f(y))∇f(y)

∇f(y)T∇f(y)
.
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By continuity of f , there exists an N ∈ ℵ such that ∀n ∈ N, f(xn) < f(yn).
Therefore, for n ≥ N,

η(xn, yn) =
(f(xn) − f(yn))∇f(yn)

∇f(yn)T∇f(yn)
.

by continuity of ∇f, limn→∞ η(xn, yn) = η(x, y).
(b) By hypothesis, η(x, y) = 0. Again, by continuity of f there exists an
N ∈ ℵ such that ∀n ∈ N, f(xn) > f(yn), and thus η(xn, yn) = 0. Therefore,
limn→∞ η(xn, yn) = η(x, y).
(c1) by continuity of f and ∇f, ∀ε > 0 there exists an N ∈ ℵ such that
∀n ≥ N,

|f(xn) − f(x)| < ε

2
, |f(yn) − f(y)| < ε

2
and f(yn) 	= 0.
Now, for n ≥ N, if f(xn) ≥ f(yn), then η(xn, yn) = 0 and if f(xn) < f(yn),
then

η(xn, yn) =
(f(xn) − f(yn))∇f(yn)

∇f(yn)∇f(yn)
.

We also have |f(xn) − f(yn)| < ε. Hence, for f(xn) < f(yn),

‖η(xn, yn‖) =
∥∥∥∥

(f(xn) − f(yn))∇f(yn)
∇f(yn)T∇f(yn)

∥∥∥∥

=
‖(f(xn) − f(yn))∇f(yn)‖

‖∇f(yn)‖2

=
|(f(xn) − f(yn))| · ‖∇f(yn)‖

‖∇f(yn)‖2

<
ε

‖∇f(yn)‖ .

As this holds ∀ε > 0 and ∇f continuous, then limn→∞ ‖η(xn, yn)‖ = 0, so
that limn→∞ η(xn, yn) = 0 = η(x, y).
(c2) If f(xn) ≥ f(yn), then η(xn, yn) = 0. If f(xn) < f(yn), then

η(xn, yn) =
(f(xn) − f(yn))∇f(yn)

∇f(yn)T∇f(yn)

and so
‖η(xn, yn)‖ =

|f(xn) − f(yn)
‖∇f(yn)‖ .

Note that ∇f(y) = 0 and f(x) = f(y) implies that x and y are global mini-
mizers, so that when f(xn) < f(yn), we have f(y) = f(x) ≤ f(xn) < f(yn).
This gives

|f(y) − f(yn)| ≥ |f(xn) − f(yn)|
and hence
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‖η(xn, yn)‖ ≤ |f(xn) − f(yn)|
‖∇f(yn)‖ .

Now if there exists an N ∈ ℵ such that ∀n ≥ N, f(xn) ≥ f(yn), then we
immediately have limn→∞ η(xn, yn) = 0 = η(x, y). Otherwise, there exists a
sub-sequence {yn

i } or {yn} such that yn
i → y, f(xn

i ) < f(yn
i ), and ∇f(yn

i ) 	= 0.
By the hypothesis of the theorem

lim
n→∞ ‖η(xn

i , y
n
i )‖ ≤ lim

ni→∞
|f(y) − f(yn

i )|
‖∇f(yn

i )‖ = 0.

Therefore, limn→∞ η(xn, yn) = 0 = η(x, y).
��

The next result gives a simple second-order sufficient condition for the
limit property of Theorem 2.43 to be satisfied.

Theorem 2.44. Let f : X → R be invex and assume ∇f(y) = 0. If f is
twice continuously differentiable in some open neighborhood of y and ∇2f(y)
is positive definite, then for any sequence yn, yn ∈ X, yn → y,∇f(yn) 	= 0, we
have

lim
n→∞

|f(y) − f(yn)|
‖∇f(yn)‖ = 0.

Proof. As f is twice continuously differentiable in some open neighborhood of
y, and y is a global and therefore local minimizer with ∇2f(y) positive definite,
then by continuity of ∇2f, there exists some ε > 0 such that ∀x ∈ N(y, ε)
(the open ball of radius ε centered at y), f is twice continuously differentiable
at x and ∇2f(x) is positive semi-definite. Now, consider x ∈ N(y, ε), x 	= y,
and define g : [0, 1] → R by g(t) = f(y + t(x − y)); g is twice differentiable,
and its derivatives are given by

g′ = (x− y)T∇f(y + t(x− y)), g′′(t) = (x− y)T∇2f(y + t(x− y))(x − y).

Let t ∈ [0, 1]. By the Mean Value Theorem, there exists ξ ∈ [0, t] such that

g′(ξ) =
g(t) − g(0)

t
,

that is, g(t)− g(0) = tg′(ξ). But, as ∇f(x) is positive semi-definite on ℵ(y, ε),
then g′′ ≥ 0 on [0, 1]. Hence g′ is a non-decreasing function, so g′(ξ) ≤ g′(t).
Therefore, g(t) − g(0) ≤ tg′(t). In particular, g(1) − g(0) ≤ g′(1); that is,
f(x)−f(y) ≤ (x−y)T∇f(x). Since the invexity of f implies that f(x) ≥ f(y),
then by Cauchy–Schwarz inequality,

|f(x) − f(y)| ≤ ∣∣(x− y)T∇f(x)
∣∣ ≤ ‖(x− y)‖ · ‖∇f(x)‖ .

Thus, if ∇f(x) 	= 0, then

|f(x) − f(y)|
‖∇f(x)‖ ≤ ‖x− y‖ .
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Now, for any sequence {yn}, yn ∈ X, yn → y,∇f(yn) 	=, there exists N ∈ ℵ
such that ∀n ≥ N, we have yn ∈ N(y, ε) and consequently

|f(y) − f(yn)|
‖∇f(yn)‖ ≤ ‖yn − y‖ .

Therefore, by the squeeze principle,

lim
n→∞

|f(y) − f(yn)|
‖∇f(yn)‖ = 0.

��
The limit property of Theorem 2.44 does not hold for all continuously dif-

ferentiable invex functions. In the following example, due to Smart [224,225],
the property does not hold. Furthermore, for invex functions of one variable if
there exists x̄ ∈ X such that x̄ is a strict minimum and limx→x̄

f(x)−f(x̄)
f ′(x) 	= 0,

then there is no continuous η with respect to which f is invex [225].

Example 2.45. Define f : R→ R by

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x = 0

n2 + n + 1

n + 1
x2 +

−2n2 − 2n − 1

(n + 1)2
x +

4n2 + 5n + 2

4(n + 1)3
,

1

n + 1
≤ x ≤ 2n + 1

2n(n + 1)
, n = 1, 2, . . .

1 − n2

n
x2 +

2n2 − 1

n2
x +

−4n2 + n + 1

4n3
,

2n + 1

2n(n + 1)
≤ x ≤ 1

n
, n = 1, 2, . . .

x − 1

2
, x ≥ 1

f(−x), x < 0.

It is very easy to check that f is continuously differentiable, with f ′(y) = 0 if
and only if y = 0, which is a global minimizer. Consider the sequence yn with
yn = 1

n , n = 1, 2, . . . . We have

f(yn) =
n+ 1
4n3

and f ′(yn) =
1
n2
.

Therefore,

lim
n→∞

|f(y) − f(yn)|
|f ′(yn)| = lim

n→∞
n2(n+ 1)

4n3
=

1
4
.

Therefore, for this example, there is no choice of η which is continuous.
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η-Pseudolinearity: Invexity and Generalized
Monotonicity

3.1 η-Pseudolinearity

Chew and Choo [36] considered pseudolinear functions, i.e., functions that
are both pseudo-convex and pseudo-concave. They showed that a function is
pseudolinear if and only if there exists a positive functional p (x, y) ∈ R such
that

f(x) = f(y) + [p(x, y)(x − y)]T∇f(y).

It is clear that every pseudolinear function is invex; however the converse is not
true. As Kaul and Kaur [114] called the invex functions “η-convex functions”
and pseudo-invex functions “η-pseudo-convex functions” it is quite natural to
call an η-pseudolinear function a function f such that f and −f are pseudo-
invex with respect to the same η. There is a sizable literature on pseudolinear
functions; see for example Chew and Choo [36], Bianchi and Schaible [23],
Bianchi et al. [22], Jeyakumar and Yang [107], Kaul et al. [115], Komlosi
[128], Kortanek and Evans [131], Kruk and Wolkowicz [132], Martos [146],
Mishra [153], Rapcsak [207]. η-Pseudolinear functions have been introduced
by Rueda [213] and studied in a more detailed way by Ansari et al. [3].

Definition 3.1. A differentiable function f defined on an open set X ⊆ Rn is
called η-pseudolinear if f and −f are pseudo-invex with respect to the same η.

Obviously every pseudolinear function is η-pseudolinear with η(x, y) =
(x − y) but the converse is not true (see a counter example in [3]). The next
two definitions will be considered again in the next chapter.

Definition 3.2 (Mohan and Neogy [165]). For a given η : K ×K → Rn

a non-empty set K ⊆ Rn is called η-convex or simply invex, if for each x, y ∈
K, 0 ≤ λ ≤ 1, y + λη(x, y) ∈ K.

Definition 3.3. The function η : K × K → Rn defined on the invex set
K ⊆ Rn satisfies Condition C [165], if for every x, y ∈ K: η(y, y + η(x, y)) =
−λη(x, y) and η(x, y + η(x, y)) = (1 − λ)η(x, y) for all λ ∈ [0, 1].
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The following proposition is a necessary condition for f to be η-
pseudolinear.

Theorem 3.4. Let f be a differentiable function defined on an open set X ⊆
Rn and K be an invex subset of X such that η : K × K → Rn satisfies
Condition C. Suppose that f is η-pseudolinear on K. Then for all x, y ∈ K,
η(x, y)T∇f(y) = 0 if and only if f(x) = f(y).

Proof. Suppose that f is η-pseudolinear on K. Then for all x, y ∈ K, we have

η(x, y)T∇f(y) ≥ 0 ⇒ f(x) ≥ f(y)

and

η(x, y)T∇f(y) ≤ 0 ⇒ f(x) ≤ f(y).

Combining these two inequalities, we obtain

η(x, y)T∇f(y) = 0 ⇒ f(x) = f(y), ∀ x, y ∈ K.

Now we prove that f(x) = f(y) implies η(x, y)T∇f(y) = 0 for all x, y ∈ K.
For that, we show that for any x, y ∈ K such that f(x) = f(y) implies that
f(y + λη(x, y)) = f(y), ∀ λ ∈ (0, 1). If f(y + λη(x, y)) > f(y) then by the
definition of pseudo-invexity of f with respect to η, we have

η(y, z)T∇f(z) < 0, (3.1)

where z = y + λη(x, y).
We show that η(y, z) = − λ

1−λη(x, z). From Condition C, we have

η(y, z) = η(y, y + η(x, y)) = −λη(x, y) = − λ

1 − λ
η(x, z).

Therefore, from (3.1), we obtain − λ
1−λη(x, z)

T∇f(z) < 0 and hence η(x, z)T∇
f(z) > 0. By pseudo-invexity of f , with respect to η, we have

f(x) ≥ f(z).

This contradicts the assumption that f(z) > f(y) = f(x).
Similarly, we can also show that f(y+λη(x, y) < f(y)), ∀ λ ∈ (0, 1) leads

to a contradiction, using pseudo-invexity of −f . This proves the claim that
f(y + λη(x, y) = f(y)), ∀ λ ∈ (0, 1). Thus

η(x, y)T∇f(y) = lim
λ→0+

f(y + λη(x, y)) − f(y)
λ

= 0.
��

Ansari et al. [3] gives an example where the converse of above theorem
does not hold, that is if for all x, y ∈ K, η(x, y)T∇f(y) = 0 if and only if
f(x) = f(y), then f need not be η-pseudolinear. The following result due to
Rueda [213] and Ansari et al. [3] generalizes the corresponding result of Chew
and Choo [36] quoted at the beginning of this section.
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Theorem 3.5. Let f be a differentiable function defined on an open set X ⊆
Rn and K an invex subset of X with respect to η. Then f is η-pseudolinear
on K if and only if there exists a function p defined on K × K such that
p(x, y) > 0 and

f(x) = f(y) + (p(x, y)η(x, y))T∇f(y), ∀x, y ∈ K.

Proof. Let f be an η-pseudolinear function. We have to construct a function
p on K ×K such that p(x, y) > 0 and f(x) = f(y) + (p(x, y)η(x, y))T∇f(y),
∀x, y ∈ K. If η(x, y))T∇f(y) = 0, ∀x, y ∈ K. Then we define p(x, y) = 1. In
this case we have f(x) = f(y), thanks to Theorem 3.4. On the other hand, if
η(x, y))T∇f(y) 	= 0, then we define

p(x, y) =
f(x) − f(y)

η(x, y))T∇f(y)
.

We have to show that p(x, y) > 0. Suppose that f(x) > f(y). Then by pseudo-
invexity of −f we have η(x, y))T∇f(y) > 0. Hence p(x, y) > 0. Similarly,
if f(x) < f(y) then we have η(x, y))T∇f(y) < 0 by pseudo-invexity of f .
Therefore, p(x, y) > 0. To prove the converse, we first show that f is pseudo-
invex with respect to η, i.e., for any x, y ∈ K, η(x, y))T∇f(y) ≥ 0 ⇒ f(x) ≥
f(y). If η(x, y))T∇f(y) ≥ 0, then we have

f(x) − f(y) = (p(x, y)η(x, y))T∇f(y) ≥ 0.

Thus f(x) ≥ f(y). Likewise, we can prove that −f is pseudoinvex with respect
to η. Hence f is η-pseudolinear.

��
A second-order necessary condition for η-pseudolinearity is given in the

next result due to Rueda [213] and which generalizes a similar result of Chew
and Choo [36].

Theorem 3.6. If f : X → R and −f pseudo-invex with respect to the same
η (f is η-pseudolinear) and f is twice continuously differentiable, then there
exists α ∈ (0, 1) such that

1
2
(x − y)T∇2f(y + α(x − y))(x− y) = (η(x, y) − (x− y))T∇f(y).

Proof. The Taylor’s expansion of f in terms of x − y gives, up to quadratic
terms

f(x) = f(y) + (x− y)T∇f(y) +
1
2
(x− y)T∇2f(y + α(x− y))(x − y)

for some α, 0 < α < 1. Since f and −f are invex with respect to the same η,
then

f(x) − f(y) ≥ η(x, y)T∇f(y)
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and

f(x) − f(y) ≤ η(x, y)T∇f(y).

It follows that

1
2
(x− y)T∇2f(y + α(x− y))(x − y) ≥ (η(x, y) − (x− y))T∇f(y)

and

1
2
(x − y)T∇2f(y + α(x − y))(x− y) ≤ (η(x, y) − (x− y))T∇f(y).

��
Other insights on η-pseudolinearity will be given in Chap. 5, when study-

ing the characterizations of the solution sets of mathematical programming
problems.

3.2 Invexity and Generalized Monotonicity

Several kinds of generalized monotone maps were introduced by various
authors, mainly by Karamardian [110], Karamardian and Schaible [111],
Karamardian et al. [112], Hadjisavvas and Schaible [78,79]. See also the book
edited by Hadjisavvas et al. [81].

These vector-valued functions (or maps) play a role in complementarity
problems and variational inequality problems and are related to generalized
convex functions. We assume that F denotes a map F : C → Rn, where C ⊆
Rn. In the special case of a gradient map F = ∇f , f denotes a differentiable
function f : C → R, where C is open and convex. The notion of monotone
map F : Rn → Rn is a natural generalization of an increasing (non-decreasing)
real-valued function of one variable.

Definition 3.7. F is monotone (M) on C if for every pair of distinct points
x, y ∈ C, we have

(x− y)T (F (x) − F (y)) ≥ 0.

F is strictly monotone (SM) on C if for every pair of distinct points x, y ∈ C,
we have

(x− y)T (F (x) − F (y)) > 0.

The following proposition due to Minty [150] is well known. See also
Mangasarian [143] and Avriel et al. [10].

Theorem 3.8. Let f : C → R be differentiable on the open convex set
C ⊆ Rn. Then f is convex (resp. strictly convex) on C if and only if ∇f
is monotone (resp. strictly monotone) on C.
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This theorem opens the door to the study of generalized monotonicity and
its relationships with generalized convexity. Karamardian [110] introduced the
following definition.

Definition 3.9. F is pseudo-monotone (PM) on C if ∀x, y ∈ C:

(x− y)TF (y) ≥ 0 ⇒ (x− y)TF (x) ≥ 0.

Obviously a monotone map is pseudo-monotone but the converse is not
true. Consider, e.g., the function

F (x) =
1

1 + x
, C = {x ∈ R : x ≥ 0}.

It can be proved (see [111]) that F is pseudo-monotone on C if and only
if the previous inequalities hold strictly, i.e., if and only if ∀x, y ∈ C(x 	= y):

(x− y)TF (y) > 0 ⇒ (x− y)TF (x) > 0.

Karamardian and Schaible [111] also introduced the following definitions.

Definition 3.10. F is strictly pseudo-monotone (SPM) on C if ∀x, y ∈
C(x 	= y):

(x− y)TF (y) ≥ 0 ⇒ (x− y)TF (x) > 0.

F is quasi-monotone (QM) on C if ∀x, y ∈ C:

(x− y)TF (y) > 0 ⇒ (x− y)TF (x) ≥ 0.

Every pseudo-monotone function is quasi-monotone, but the converse is not
true. Consider, e.g., the function F (x) = x2, C = R. More generally, the
following relationships between the previous definitions of generalized mono-
tonicity can be established.

(M) ⇒ (PM) ⇒ (QM)

(SM)⇑ ⇒ (SPM)⇑.

Karamardian and Schaible [111] show how the generalized convexity of
a differentiable function f defined on the open convex set C ⊆ Rn can be
characterized through the generalized monotonicity of the gradient map ∇f .
We have the following result.

Theorem 3.11. Let f : C → R be differentiable on the open convex
set C ⊆ Rn. Then f is convex (strictly convex, pseudo-convex, strictly
pseudo-convex, quasi-convex) on C if and only if the gradient map ∇f is
monotone (strictly monotone, pseudo-monotone, strictly pseudo-monotone,
quasi-monotone) on C.
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The extension of generalized monotonicity to the invex case are more
recent: see Ruiz-Garzon et al. [216], Yang et al. [248, 249], Peng [198]. The
concept of invex monotone maps appeared in Parida and Sen [196], when it
was called monotone. For the reader’s convenience we recall here the notions of
invex, pseudo-invex, strictly pseudo-invex and quasi-invex functions together
with the new notion of strictly invex functions.

A function f : X ⊆ Rn → R, differentiable on the open set X ⊆ Rn is
said to be:

(I) Invex (IX) on X if there exist η : X ×X → Rn such that ∀x, y ∈ X

f(x) − f(y) ≥ η(x, y)T∇f(y).

(II) Strictly invex (SIX) on X if there exist η : X × X → Rn such that
∀x, y ∈ X, x 	= y

f(x) − f(y) > η(x, y)T∇f(y).

(III) Pseudo-invex (PIX) on X if there exist η : X × X → Rn such that
∀x, y ∈ X,

η(x, y)T∇f(y) ≥ 0 ⇒ f(x) − f(y) ≥ 0.

(IV) Strictly pseudo-invex (SPIX) on X if there exist η : X ×X → Rn such
that ∀x, y ∈ X, x 	= y

η(x, y)T∇f(y) ≥ 0 ⇒ f(x) − f(y) > 0.

(V) Quasi-invex (QIX) on X if there exist η : X × X → Rn such that
∀x, y ∈ X,

f(x) − f(y) ≤ 0 ⇒ η(x, y)T∇f(y) ≤ 0.

We have (as already said) the following relationships

(IX) ⇒ (PIX) ⇒ (QIX)

(SIX)⇑ ⇒ (SPIX)⇑.

Now we shall introduce the various concepts of generalized monotonicity
by means of a kernel function and shall relate these concepts to invex and
generalized invex functions.

Definition 3.12. The function F : X ⊆ Rn → Rn is said to be:

(I) Invex monotone (IM) on X if there exist η : X × X → Rn such that
∀x, y ∈ X

η(x, y)T (F (x) − F (y)) ≥ 0.
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(II) Pseudo-invex monotone (PIM) on X if there exist η : X × X → Rn

such that ∀x, y ∈ X,

η(x, y)TF (y) ≥ 0 ⇒ η(x, y)TF (x) ≥ 0.

(III) Quasi-invex monotone (QIM) on X if there exist η : X ×X → Rn such
that ∀x, y ∈ X, x 	= y

η(x, y)TF (y) > 0 ⇒ η(x, y)TF (x) ≥ 0.

(IV) Strictly invex monotone (SIM) on X if there exist η : X × X → Rn

such that ∀x, y ∈ X, x 	= y

η(x, y)T (F (x) − F (y)) > 0.

(V) Strictly pseudo-invex monotone (SPIM) on X if there exist η : X×X →
Rn such that ∀x, y ∈ X, x 	= y,

η(x, y)TF (y) ≥ 0 ⇒ η(x, y)TF (x) > 0.

In accordance with the previous definitions, the following table of rela-
tionships between the various kinds of generalized invex monotonicity can be
established.

(IM) ⇒ (PIM) ⇒ (QIM)(SIM)⇑ ⇒ (SPIM)⇑.

We now connect the (following [216]) generalized invexity of f to the gen-
eralized invex monotonicity of its gradient map ∇f . We have to introduce the
following definition:

Definition 3.13. The function f : X ⊆ Rn → R is said to be skew symmetric
on X ×X if η(x, y) + η(y, x) = 0 ∀x, y ∈ X ⊆ Rn.

We describe hereafter some sufficient conditions for generalized invex
monotonicity.

Theorem 3.14. If the function f : X ⊆ Rn → R is invex on X with respect
to η : X×X → Rn, η skew symmetric on X, then ∇f is invex monotone with
respect to the same η.

Proof. As f is invex on X with respect to η, we have, ∀x, y ∈ X :

f(x) − f(y) − η(x, y)T∇f(y) ≥ 0 (3.2)

and

f(y) − f(x) − η(y, x)T∇f(x) ≥ 0.
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As η is skew symmetric, we have

f(x) − f(y) + η(x, y)T∇f(x) ≥ 0. (3.3)

By adding (3.2) and (3.3) one has

η(x, y)T (∇f(x) −∇f(y)) ≥ 0.

Therefore, ∇f is an invex monotone function with respect to the same η.
��

The converse of the above proposition is not true, as can be seen by con-
sidering the function f : X ⊆ R2 → R defined by f(x) = x1 − cos(x2) and
X =

{
x ∈ R2 : 4x2

1 + 4x2
2 − 9 ≤ 0, x ≥ 0

}
. We have that ∇f is monotone

with respect to η given by

η(x, y) =

{
sin (x1)−sin (y1)
cos (y1) cos (y2)

sin (x2) − sin (y2),

but f is not invex with respect to this η.
In a similar way one can prove the following result.

Theorem 3.15. If the function f : X ⊆ Rn → R is strictly invex on X with
respect to η : X×X → Rn, η skew symmetric on X, then ∇f is strictly invex
monotone with respect to the same η.

The converse of the above theorem is also not true as can be seen by
considering the following example:
Let f : (0, π/2) → R be defined by f(x) = −(x/2) − (sin (2x)/4); f ′(x) =
− cos2(x) here f ′ is η-strictly monotone, where η(x, y) = cos y − cosx but for
x = π/4 and y = π/6, we have f(x) − f(y) ≤ η(x, y)T∇f(y).

As invexity and pseudo-invexity coincide, the following result is immediate:

Corollary 3.16. If the function f : X ⊆ Rn → R is invex on X with respect
to η : X × X → Rn, η skew symmetric on X, then ∇f is pseudo-invex
monotone with respect to the same η.

Similarly to what remarked with reference to pseudo-monotone functions,
the following result holds.

Theorem 3.17. A map F : X → Rn is η-pseudomonotone on X if and only
if for every pair of distinct points x, y ∈ X we have

η(x, y)TF (y) > 0 ⇒ η(x, y)TF (x) > 0.

provided η is skew symmetric.
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Proof. η-pseudomonotonicity is equivalent to

η(x, y)TF (x) < 0 ⇒ η(x, y)TF (y) < 0, ∀x, y ∈ X.

As η is skew symmetric, so η-pseudomonotonicity of f is equivalent to

η(y, x)TF (x) > 0 ⇒ η(y, x)TF (y) > 0,

which is further equivalent to

η(x, y)TF (y) > 0 ⇒ η(x, y)TF (x) > 0, ∀x, y ∈ X.
��

Now we shall establish the relationship which exists between the strict
pseudo-invexity of f and the strict monotonicity of its gradient map ∇f .

Theorem 3.18. If the function f : X ⊆ Rn → R is strictly pseudo-invex on
X with respect to η : X × X → Rn, η skew symmetric on X, then ∇f is
strictly pseudo-invex monotone with respect to the same η.

Proof. Let f be strictly pseudo-invex, then ∀x, y ∈ X, x 	= y we have

η(x, y)T∇f(y) ≥ 0 ⇒ f(x) > f(y).

We want to show that ∇f is strictly pseudo-invex monotone, i.e.,

η(x, y)T∇f(x) > 0.

Suppose absurdly that

η(x, y)T∇f(x) ≤ 0.

As η is skew symmetric, then

η(y, x)T∇f(x) ≥ 0.

As f is strictly pseudo-invex, we would have

f(x) < f(y),

a contradiction with the assumption.
��

Now we shall relate quasi-invexity to quasi-invex monotonicity.

Theorem 3.19. If the function f : X ⊆ Rn → R is quasi-invex on X with
respect to η : X ×X → Rn, η skew symmetric on X, then ∇f is quasi-invex
monotone with respect to the same η.
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Proof. Suppose that f is quasi-invex, so ∀x, y ∈ X such that

η(y, x)T∇f(x) > 0

it holds f(x) < f(y). This last inequality together with quasi-invexity of f
imply

η(y, x)T∇f(x) ≤ 0.

As η is skew symmetric we have also

η(x, y)T∇f(x) ≥ 0.

Hence ∇f is quasi-invex monotone.
��

The converse of the above result is not true, as can be seen by the following
example. Consider f : R → R defined by f(x) = x3. Hence ∇f(x) is quasi-
invex monotone with respect to η(x, y) = sinx−sin y. But f is not quasi-invex
with respect to this η (take, e.g., x = π/3, y = π/6). Indeed f is not invex
for η.

The necessary conditions for generalized monotonicity given by Ruiz-
Garzon et al. [216] are not all correct. Correct conditions are given by
Yang et al. [249] by means of “Condition C” (see Definition 3.3), whereas
Peng [198] established correct necessary criteria for (strictly) pseudo-invex
monotonicity and quasi-invex monotonicity, following the approach of Ruiz-
Garzon et al. [216], i.e., without condition C. Here we follow the approach of
Peng [198].

Definition 3.20. Let X ⊆ Rn be a convex set. The function f : X → R is
said to be affine if

f(λx+ (1 − λ)y) = λf(x) + (1 − λ)f(y), ∀x, y ∈ X and ∀λ ∈ (0, 1).

Lemma 3.21. Let X be a convex subset of Rn and η : X × X → Rn be a
vector function. If η is affine in the first argument and skew symmetric, then
η is also affine in the second argument.

Proof. Since η is affine in the first argument and skew symmetric, ∀x, y1, y2 ∈
X and ∀λ ∈ (0, 1),

η(x, λy1 + (1 − λ)y2) = −η(λy1 + (1 − λ)y2, x)
= − [λη(y1, x) + (1 − λ)η(y2, x)

]

=
[
λη(x, y1) + (1 − λ)η(x, y2)

]
.

��
Theorem 3.22. Let X be an open convex subset of Rn. Suppose that:

(I) ∇f : Rn → Rn is strictly pseudo-invex monotone with respect to η :
X ×X → Rn;
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(II) η is affine in the first argument and skew symmetric;
(III) For each x 	= y for some f(x) ≥ f(y) ⇒ η(x, x̄)T∇f(x̄) ≥ 0 for some x̄

which lies on the line segment joining x and y,

then f : X ⊆ Rn → R is strictly pseudo-invex on X with respect to η.

Proof. Let x, y ∈ X, x 	= y be such that

η(y, x)T∇f(x) ≥ 0. (3.4)

It is needed to show that

f(y) > f(x). (3.5)

On the converse, we assume that

f(y) ≤ f(x). (3.6)

By hypothesis (III)

η(x, x̄)T∇f(x̄) ≥ 0, (3.7)

where x̄ = λ̄x + (1 − λ̄)y for some 0 < λ̄ < 1. By (3.7) and the strictly
pseudo-invex monotonicity of ∇f it follows that

η(x, x̄)T∇f(x̄) > 0. (3.8)

Now, from the hypothesis (II) and Lemma 3.21, we know that η is also affine
in the second argument. Hence, by (3.8), we have

λ̄η(x, y)T∇f(x) + (1 − λ̄)η(x, y)T∇f(x) > 0. (3.9)

The hypothesis that η is skew symmetric implies that η(x, x) = 0. Therefore,
by (3.9) and the fact that 0 < λ̄ < 1 it follows that η(x, y)T∇f(x) > 0. The
hypothesis that η is skew symmetric implies that

η(y, x)T∇f(x) < 0.

But this inequality contradicts (3.4), thereby proving that the assumption
(3.6) is false.

��
Theorem 3.23. Let X be an open convex subset of Rn. Suppose that:

(I) ∇f : Rn → Rn is pseudo-invex monotone with respect to η : X ×X →
Rn;

(II) η is affine in the first argument and skew symmetric;
(III) For x, y ∈ X f(x) > f(y) ⇒ η(x, x̄)T∇f(x̄) > 0 for some x̄ which lies

on the line segment joining x and y,

then f : X ⊆ Rn → R is strictly pseudo-invex on X with respect to η.
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Proof. The proof follows the same lines of the proof of Theorem 3.22.
��

Theorem 3.24. Let X be an open convex subset of Rn. Suppose that:

(I) ∇f : Rn → Rn is quasi-invex monotone with respect to η : X×X → Rn;
(II) η is affine in the first argument and skew symmetric;

(III) For each x 	= y x, y ∈ X f(x) ≤ f(y) ⇒ η(x, x̄)T∇f(x̄) > 0 for some x̄
which lies on the line segment joining x and y,

then f : X ⊆ Rn → R is strictly pseudo-invex on X with respect to η.

Proof. Assume that f is not quasi-invex with respect to η. Then, there exist
x, y ∈ X, such that

f(y) ≤ f(x). (3.10)

But

η(y, x)T∇f(x) > 0. (3.11)

By (3.10) and hypothesis (III),

η(x, x̄)T∇f(x̄) > 0, (3.12)

where x̄ = λ̄x + (1 − λ̄)y, for some 0 < λ̄ < 1. Since ∇f is quasi-invex
monotone, (3.12) implies

η(x, x̄)T∇f(x̄) ≥ 0. (3.13)

From the hypothesis (II) and Lemma 3.21, we know that η is also affine in
the second argument. Hence, by (3.13) we have that

λ̄η(x, x)T∇f(x) + (1 − λ̄)η(x, x)T∇f(x) ≥ 0. (3.14)

By the hypothesis that η is skew symmetric implies that η(x, x) = 0.
Therefore, by (3.14) and the fact that 0 < λ̄ < 1 it follows that

η(x, y)T∇f(x) ≥ 0. (3.15)

Since η is skew symmetric, (3.15) becomes η(y, x)T∇f(x) ≤ 0, which contra-
dicts (3.11). Hence f is a quasi-invex function with respect to η.

��



4

Extensions of Invexity to Nondifferentiable
Functions

4.1 Preinvex Functions

Since invexity requires the differentiabilty assumptions, in [18] and subse-
quently in [244], the class of preinvex functions, not necessarily differentiable,
has been introduced. For the reader’s convenience we recall Definition 3.2:
A subset X of Rn is η-invex with respect to η : Rn → R if x, y ∈ X,λ ∈
[0, 1] ⇒ y + λη(x, y) ∈ X.

It is obvious that the above definition is a generalization of the notion
of convex set. It is to be noted that any set in Rn is invex with respect to
η(x, y) ≡ 0, ∀x, y ∈ Rn. However, the only function f : Rn → R invex with
respect to η(x, y) ≡ 0 is the constant function f(x) = c, c ∈ R.

Definition 4.1. Let f be a real-valued function defined on an η-invex set X;
f is said to be preinvex with respect to η if

f [y + λη(x, y)] ≤ λf(x) + (1 − λ)f(y), ∀x, y ∈ X, ∀λ ∈ [0, 1] (4.1)

It is obvious that the class of convex functions is strictly contained in the class
of preinvex functions: take η(x, y) = x − y. The inclusion is strict as shown
by the following example, taken from [245]. Consider the function f(x) =
−|x|, x ∈ R. We show that f is preinvex with respect to

η(x, y) =
{
x− y, if xy ≥ 0
y − x, if xy < 0.

Let x ≥ 0, y ≥ 0, in this case we have, for the preinvexity of f :

−(y + λ(x − y)) ≤ λ(−x) + (1 − λ)(−y),
relation which is obviously true for any λ ∈ [0, 1]. The same result holds, if
x ≤ 0, y ≤ 0. Let now be x < 0 and y > 0 : we must have

−|y + λ(y − x)| = −y − λ(y − x) ≤ λx− (1 − λ)y, ∀λ ∈ [0, 1].
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We obtain λ(2y) ≥ 0, so being y > 0, relation (4.1) holds for all λ ∈ [0, 1].
Consider now the last case, i.e., x > 0, y < 0. We must have

−|y + λ(y − x)| = y + λ(y − x) ≤ −λx+ (1 − λ)y, ∀λ ∈ [0, 1],

i.e., λ(2y) ≤ 0. Being y < 0, relation (4.1) holds for all λ ∈ [0, 1]. The function
is therefore preinvex on R, but obviously it is not convex.

Similarly to convex functions, it is possible to characterize preinvex func-
tions in terms of invexity of their epigraph, however not with reference to the
same function η (first of all, one is an n-vector, the other is an (n+1)-vector).

Theorem 4.2. Let f : X → R, where X ⊂ Rn is an η-invex set. Then f is
preinvex with respect to η if and only if the set

epif = {(x , α) : x ∈ X , α ∈ R, f (x ) ≤ α}
is an invex set with respect to η1 : epif × epif → R(n+1), where η1((y, β),
(x, α)) = (η(y, x), β − α), ∀(x, α), (y, β) ∈ epif.

Proof. Necessity:

Let (x, α) ∈ epif and (y, β) ∈ epif, that is, f(x) ≤ α and f(y) ≤ β. From the
preinvexity of f, we have

f [x+ λη(x, y)] ≤ λf(y) + (1 − λ)f(x) ≤ (1 − λ)α + λβ, ∀λ ∈ [0, 1].

It follows that

(x+ λη(x, y), (1 − λ)α+ λβ) ∈ epif, ∀λ ∈ [0, 1],

That is,
(x, α) + λ(η(y, x), β − α) ∈ epif, ∀λ ∈ [0, 1].

Hence epif is an invex set with respect to η1((y, β), (x, α)) = (η(y, x), β − α).

Sufficiency:

Assume that epif is an invex set with respect to η1((y, β), (x, α)) = (η(y, x),
β − α). Let x, y ∈ X and α, β ∈ R such that f(x) ≤ α and f(y) ≤ β. Then
(x, α) ∈ epif and (y, β) ∈ epif. From the invexity of the set epif with respect
to η1((y, β), (x, α)) = (η(y, x), β − α), we have

(x, α) + λη1((y, β), (x, α)) ∈ epif, ∀λ ∈ [0, 1].

it follows that

(x+ λη(y, x), (1 − λ)α+ λβ) ∈ epif, ∀λ ∈ [0, 1].

That is
f(y + λη(x, y)) ≤ λα + (1 − λ)β.

Hence f is preinvex function with respect to η1(x, y) on X.
��
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Other important properties of preinvex functions are given in the following
results [244].

Theorem 4.3. Let f : X → R, with X ⊂ Rn an η-invex set. If f is preinvex
on X, every local minimum point is a global minimum point.

Proof. Let y ∈ X a local minimum point for f and suppose that y is not a
global minimum point. Then there exists x ∈ X such that f(x) < f(y). Being
f preinvex on X , there exists η : X ×X → Rn such that, for all λ ∈ [0, 1], we
have

f(y + λη(x, y)) ≤ f(y) + λ[f(x) − f(y)] < f(y). (4.2)

Being y a global minimum point there exists a neighbourhood I of y such that
f(z) ≥ f(y), for each z ∈ I ∩X. As y+ λη(x, y) ∈ X for each λ ∈ [0, 1], there
exists ε > 0 such that y + λη(x, y) ∈ X ∩ I for all λ ∈ [0, ε), in contradiction
with (4.2).

��
Similarly, it is easy to prove that if f is preinvex on the η-invex set X ⊂ Rn,
then every strict local minimum point of f is a strict global minimum point.

Another result on preinvex functions, that will be used afterwards, is given
here.

Theorem 4.4. Let f : X → R be preinvex. If f has a unique global minimizer
at x∗ ∈ X, then f is convex at x∗.

Proof. As f is preinvex, there exists η : X × X → Rn such that for any
x, y ∈ X,λ ∈ [0, 1]:

y + λη(x, y) ∈ X and λf(x) + (1 − λ)f(y) ≥ f(y + λη(x, y)).

In particular, when x = x∗ and λ = 1, we have

f(x∗) ≥ f(y + η(x∗, y)), ∀y ∈ X.

Since x∗ is unique global minimizer (that is, f(x∗) < f(x), ∀x ∈ X,x 	= x∗),
then y + η(x∗, y) = x∗, ∀y ∈ X, that is η(x∗, y) = x∗ − y, ∀y ∈ X. Thus
λf(x∗) + (1 − λ)f(y) ≥ f(λx∗ + (1 − λ)y), ∀y ∈ X,λ ∈ [0, 1]. Hence, f is
convex at x∗.

��
Now we use some algebraic properties of preinvex functions.

Theorem 4.5. If f : X → R is preinvex on the η-invex set X, then also kf
is preinvex with respect to η, for any k > 0.

Proof. We have, for any k > 0,

k(f(y + λη(x, y))) ≤ (λf(x) + (1 − λ)f(y))k, λ ∈ [0, 1],

from which

k(f(y + λη(x, y))) ≤ kλf(x) + k(1 − λ)f(y), λ ∈ [0, 1].
��
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Theorem 4.6. Let f, g : X → R be two preinvex functions, with respect to
the same kernel function η and let X be a η-invex set. The sum f + g is a
preinvex function, with respect to same η.

Proof. Being f, g preinvex with respect to η, we have

f(y + λη(x, y)) ≤ λf(x) + (1 − λ)f(y)

and
g(y + λη(x, y)) ≤ λg(x) + (1 − λ)g(y).

By adding the above relations, we obtain

f(y + λη(x, y)) + g(y + λη(x, y)) ≤ λ[f(x) + g(x)] + (1 − λ)[f(y) + g(y)].
��

As a direct consequence of Theorems 4.5 and 4.6, we get

Corollary 4.7. Let fi : X → R, i = 1, . . . ,m, be preinvex with respect to η.
Then

∑m
i=1 kifi(x) is preinvex with respect to same η, where ki > 0, i =

1, . . . ,m.

Theorem 4.8. Let f : X → R be preinvex with respect to η on the η-invex
set X ⊆ Rn; let ψ : R→ R be an increasing and convex function. Then ψ ◦ f
is preinvex with respect to η.

Proof. Being f preinvex with respect to η, we have for each x, y ∈ X,λ ∈ [0, 1],

f(y + λη(x, y)) ≤ λf(x) + (1 − λ)f(y).

Being ψ : R → R increasing and convex, we have

ψ(f(y + λη(x, y)) ≤ ψ(λf(x) + (1 − λ)f(y)) ≤ λ(ψ(f(x)) + (1 − λ)ψ(f(y)).
��

A differentiable preinvex function is also invex (this was proved by Ben-Israel
and Mond [18]) and this is the reason why functions satisfying Definition 4.1
are called preinvex by Weir and Mond in [245].

Theorem 4.9. Let f : X → R be differentiable on the open η-invex set X ⊆
Rn. If f is preinvex on X with respect to η, then f is invex with respect to the
same η.

Proof. Being f preinvex, we have

f(y + λη(x, y)) − f(y) ≤ λ[f(x) − f(y)],

which for λ ∈ (0, 1] implies

f(y + λη(x, y)) − f(y)
λ

≤ f(x) − f(y).

Taking limits for λ→ 0+, being f differentiable, we get

η(x, y)T∇f(y) ≤ f(x) − f(y).
��
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Preinvexity, for the differentiable case, is therefore a sufficient condition for
invexity. Indeed, the converse is not generally true, in the sense that if f is
invex with respect to a certain η, is not necessarily preinvex with respect
to that function η. For example, f(x) = ex, x ∈ R, is invex with respect
to η = −1, but not preinvex with respect to the same function η. Another
example is given by Pini [201]. A simple condition for the preinvexity of an
invex function is given in the following result.

Theorem 4.10. A function f : X → R,X ⊆ Rn open convex set, invex with
respect to η and concave on X, is also preinvex on X with respect to the
same η.

Proof. The concavity of the differentiable function f implies, ∀x, y ∈ X, ∀λ ∈
[0, 1]:

f(y + λη(x, y)) − f(y) ≤ λη(x, y)T∇f(y). (4.3)

The invexity of f implies

η(x, y)T∇f(y) ≤ f(x) − f(y).

Being λ ≥ 0, we have

λη(x, y)T∇f(y) ≤ λ[f(x) − f(y)],

And taking (4.3) into account,

f(y + λη(x, y)) − f(y) ≤ λ[f(x) − f(y)],

i.e.,

f(y + λη(x, y)) ≤ λf(x) + (1 − λ)f(y), ∀x, y ∈ X, ∀λ ∈ [0, 1].
��

More general conditions, assuming that a differentiable function invex on an η-
invex set X , is also preinvex onX , with respect to same η, are given by Mohan
and Neogy [165], by means of the so-called “Condition C” (see Definition 3.3).
For the reader’s convenience we recall that definition. Let η : K×K → Rn be
defined on the invex set K ⊆ Rn satisfies Condition C, if for every x, y ∈ K:

η(y, y + η(x, y)) = −λη(x, y) and η(x, y + η(x, y)) = (1 − λ)η(x, y).

There are many vector functions that satisfy Condition C, besides the trivial
case of η(x, y) = x− y. For example, let X = R− {0} and

η(x, y) =

⎧
⎨

⎩

x− y, if x ≥ 0, y ≥ 0
x− y, if x ≤ 0, y ≤ 0
−y, otherwise.

Then X is an invex set and η satisfies Condition C.
Yang et al. [248] proved that Condition C holds if

η(x, y) = x− y +O(‖x− y‖).
The main result of Mohan and Neogy [165] is the following.
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Theorem 4.11. Suppose that X ⊆ Rn is an η-invex set and suppose that
f : X → R is differentiable on an open set containing X. Further suppose that
f is invex on X, with respect to η and that η satisfies Condition C. Then f
is preinvex with respect to η on X.

Proof. Suppose that x1, x2 ∈ X. Let 0 < λ < 1 be given and look at x̄ =
x2 + λη(x1, x2).

Note that x̄ ∈ X. By invexity of f , we have

f(x1) − f(x̄) ≥ η(x1, x̄)T∇f(x̄). (4.4)

Similarly, the invexity condition applied to the pair x2, x̄ yields

f(x2) − f(x̄) ≥ η(x2, x̄)T∇f(x̄). (4.5)

Now multiplying (4.4) by λ and (4.5) by 1 − λ and adding, we get

λf(x1) + (1 − λ)f(x2) − f(x̄) ≥ (λη(x1, x̄)T + (1 − λ)η(x2, x̄)T
)∇f(x̄).

However, by Condition C, λη(x1, x̄)T + (1 − λ)η(x2, x̄)T = 0. Hence, the
conclusion of the theorem follows.

��
We have seen that an invex function, with respect to η, may not be prein-
vex, with respect to same η. However, Mititelu [164] and Udriste et al. [236],
state that for the case of an open set X ⊆ Rn, the two classes coincide, in
case of differentiability of f (obviously, with possible different functions η).
Theorem 4.4 can be used to demonstrate that the invex function (defined and
differentiable on R) in the following example is not preinvex.

Example 4.12. Consider f : R → R, f(x) = 1 − e−x2
, this function has a

unique global minimizer at x∗ = 0, where f ′(0) = 0 and is therefore invex
(f is also pseudo-convex and also strictly pseudo-convex). However, f is not
convex at x∗ and therefore not preinvex. As x∗ = 0 and f(x∗) = 0, we have

λf(x∗) + (1 − λ)f(y) = (1 − λ)f(y)

and
f(λx∗ + (1 − λ)y) = f((1 − λ)y).

Taking y = 5, λ = 0.5 for instance, we have (1−λ)f(y) ≈ 0.5 < f((1−λ)y) ≈
0.998.

Thus, (1 − λ)f(y) � f((1 − λ)y), ∀y ∈ R, so the function is not convex at
x∗ = 0.

We take the opportunity to correct an example in [75], built to show that
(under differentiability) preinvexity does not imply pseudo-convexity (from
the previous example we have that also the converse does not hold). Example 3
in [75] must be replaced by the following.
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Example 4.13. Let f(x, y) = (x2 − y2), defined on X = {y ≥ −x and y ≤ x}.
Consider the two points u =

(
x1

y1

)
; v =

(
x2

y2

)
. We now show that f is

preinvex with respect to η(u, v) = −v. We begin to show that for this η, X is
an η-invex set, i.e., ∀λ ∈ [0, 1], ∀(u, v) ∈ X, the vector

v + λ(−v) =
(
x2 − λx2

y2 − λy2

)
∈ X. (4.6)

Relation (4.6) may be written as
(

0
0

)
λ(1−λ)v+λ(−v) =

(
x2

y2

)
∈ X, being

X convex and the points (0, 0), (x2, y2) ∈ X. It follows that X is η-invex (with
respect to the chosen η). Now we have

f(v − λv) = f

(
x2 − λx2

y2 − λy2

)

= x2
2(1 − λ)2 − y2

2(1 − λ)2

≤ λf(u) + (1 − λ)f(v)
= λ(x2

1 − y2
1) + (1 − λ)(x2

2 − y2
2).

We obtain
−(x2

2 − y2
2)(1 − λ) ≤ (x2

1 − y2
1),

which is always verified ∀λ ∈ [0, 1], and ∀x, y ∈ X. So, f is preinvex on X ; we
now show that f is not pseudo-convex. Consider, e.g., the points (2, 1) and
(2, 0) for which f(2, 1) = 3 < f(2, 0) = 4, but (2, 0)T∇f(2, 0) = 0, so f is not
pseudo-convex.

So, we can say that there is a partial overlapping between the classes of (dif-
ferentiable) preinvex functions and pseudo-convex functions. But there is also
a partial overlapping between the classes of (differentiable) preinvex functions
and quasi-convex functions. Indeed, as already pointed out, there are quasi-
convex functions which are not invex, and therefore, not preinvex. On the
grounds of Example 4.13 we can also assert the existence of preinvex functions
that are not quasi-convex: recall Theorem 2.27 that a differentiable function
both preinvex (and therefore invex) and quasi-convex is pseudo-convex.

In the case of vector-valued functions, f : Rn → Rm is preinvex with
respect to η, if each component is preinvex with respect to that η. So, preinvex
vector-valued functions are convex-like, as defined by Fan [63]. We recall that
f : Rn → Rm is convex-like if there exists z ∈ Rn such that

f(z) ≤ λf(x) + (1 − λ)f(y), ∀λ ∈ [0, 1].

For scalar functions, this definition is not useful, as any scalar function
f : X → R is convex-like, which follows by taking z = x1 when f(x1) ≤ f(x2)
and z = x2 when f(x1) > f(x2).
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Other properties of preinvex functions are given in the paper of Yang
and Li [250]. Pini [201] has introduced the following generalisations of prein-
vex functions, following the ideas underlying the corresponding definitions of
pseudo-convex and quasi-convex functions.

Definition 4.14. A function f is said to be pre-pseudoinvex on an η-invex
set X ⊆ Rn if there exists a function η and a positive function b such that

f(x) < f(y) ⇒ f(y + λη(x, y)) ≤ f(y) + λ(λ − 1)b(x, y)

for every λ ∈ (0, 1) and x, y ∈ X.

It is obvious that the class of pseudo-convex functions is a subset of the
class of pre-pseudoinvex functions. Simply choose η(x, y) = x− y. Like in the
differentiable case, the following implication holds.

Theorem 4.15. If f is pre-invex, then f is pre-pseudoinvex, with respect to
the same kernel η.

Proof. If f(x) < f(y), for every λ ∈ (0, 1), we can write

f(y + λη(x, y)) ≤ f(y) + λ[f(x) − f(y)]
< f(y) + λ(1 − λ)[f(x) − f(y)]
= f(y) + λ(λ − 1)[f(y) − f(x)],

where b(x, y) = f(y) − f(x) > 0.
��

For pre-pseudoinvex functions, similarly to preinvex functions, local minimum
points are also global and a strict local minimum point is also the strict global
minimum point. We give the proof only for the first assertion.

Theorem 4.16. Let f : X → R,X ⊆ Rn is an η-invex set. If f is pre-
pseudoinvex, every local minimum point is global.

Proof. Absurdly suppose that y is a local minimum point, but not global.
Then there exists x ∈ X such that f(x) < f(y). From the definition of pre-
pseudoinvexity, it follows that there exists b(x, y) > 0, such that, for all λ ∈
(0, 1), we have

f(y + λη(x, y)) ≤ f(y) + λ(λ− 1)b(x, y) < f(y),

from which f(y) > f(y + λη(x, y)), ∀λ ∈ (0, 1), in contradiction with the
assumption.

��
Finally, we give the following definition [201].

Definition 4.17. A function f is said to be pre-quasi-invex on an η-invex set
X ⊆ Rn if there exists a function η such that

f(y + λη(x, y)) ≤ max{f(x), f(y)},
for every x, y ∈ X and for every λ ∈ [0, 1].
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Pre-quasi-invex functions, similarly to quasi-convex functions, can be charac-
terized in terms of lower level sets.

Theorem 4.18. Let X ⊆ Rn be η-invex and f : X → R; then f is pre-quasi-
invex with respect to η if and only if its lower level sets are η-invex.

Proof. Assume that f is pre-quasi-invex on X and denoted by Lf (α) the
subset of X given by {x : f(x) ≤ α}. If Lf(α) is empty or if it exhausts
X , then the result is trivial. If Lf (α) is neither empty nor the whole set X ,
choose two points x and y in Lf (α). We must show that the line segment
[y, y+ η(x, y)] ∈ Lf(α). Indeed, since f is a pre-quasi-invex function, we have
that

f(y + λη(x, y)) ≤ max{f(x), f(y)} ≤ α,

for every λ ∈ [0, 1], thereby proving the η-invexity of Lf (α).
Conversely, assume that for every real number α the set Lf (α) is η-

invex. Pick two points x, y ∈ X and suppose that f(x) ≤ f(y). Consider the
lower level set Lf(f(y)). Since Lf (.) is η-invex, the segment [x, x+ η(x, y)] ∈
Lf(f(y)). Thus

f(x+ λη(x, y)) ≤ max{f(x), f(y)} = f(y),

for every λ ∈ [0, 1].
��

Theorem 4.19. Assume that η(x, y) 	= 0 whenever x 	= y and that X ⊆ Rn

is an η-invex set. Let f be a pre-quasi-invex function on X with respect to η.
Then every strict local minimum of f is also a strict global minimum point.

Proof. Let y be a strict local minimum which is not global; then there exists
a point x∗ ∈ X such that f(x∗) < f(y). Since f is pre-quasi-invex, we have

f(y + λη(x∗, y)) ≤ f(y),

which contradicts the hypothesis that y is a strict local minimum.
��

Like in the quasi-convex case, the pre-quasi-invexity is preserved under
composition with non decreasing functions ψ : R → R.

Theorem 4.20. Let f be a pre-quasi-invex function with respect to η and
assume that ψ : R → R is a non decreasing function. Then ψ ◦ f is pre-quasi-
invex with respect to η.

Proof. Since f is pre-quasi-invex function and ψ is non decreasing we have

ψ ◦ f(y + λη(x, y)) ≤ ψ (max{f(x), f(y)})
= max{ψ ◦ f(x), ψ ◦ f(y)},

which says precisely that the composite function ψ ◦ f is pre-quasi-invex.
��

Similar to Theorem 4.11, the following result can be proved.



60 4 Extensions of Invexity to Nondifferentiable Functions

Theorem 4.21. Let X ⊆ Rn be an η-invex set and let f : X → R be differen-
tiable on an open set containing X. Suppose that f is quasi-invex with respect
to η on X and that η satisfies Condition C. Then f is pre-quasi-invex on X.

Proof. See Mohan and Neogi [165].
��

4.2 Lipschitz Invex Functions and Other Types
of Nonsmooth Invex Functions

The strong growth of nonsmooth analysis, inspired above all by the work
of Clarke [37, 38], (see Rockafellar [211, 212]) touched also the field of invex
functions and its applications. Following Clarke’s introduction of generalized
directional derivatives and generalized subdifferentials for locally Lipschitz
functions, it was natural to extend invexity to such functions. The main papers
involved with nonsmooth invex functions, both in the sense of Clarke and
following other treatments, are due to Craven [44], Craven and Glover [45],
Giorgi and Guerraggio [71, 72], Jeyakumar [102], Reiland [209, 210], Tanaka
[232], Ye [253]. We begin with the main concepts and definitions related to
Clarke’s theory (see, for a complete treatment of the theory, motivation and
applications, the fundamental book of Clarke [38]).

Definition 4.22. Let X be an open subset of Rn, the function f : X → R is
said to be locally Lipschitz at x◦ ∈ x if there exists a positive constant K and
a neighbourhood N of x◦ such that for any x1, x2 ∈ N,

|f(x1) − f(x2)| ≤ K‖x1 − x2‖.
Definition 4.23. If f : X → R is locally Lipschitz at x◦ ∈ X, the generalized
derivative (in the sense of Clarke) of f at x◦ in the direction v ∈ Rn, denoted
by f◦(x◦; v), is given by

f◦(x◦; v) = lim sup
y→x◦
t↓0

f(y + tv)
t

.

We shall say that a locally Lipschitz function at x◦ is C-differentiable at x◦,
with directional derivative given by f◦(x◦; v). By the Lipschitz condition it
follows that |f◦(x◦; v)| ≤ K‖v‖, so f◦(x◦; v) is a well defied finite quantity.
Moreover, f◦(x◦; v) is a sublinear function of the direction v and we have, for
any v ∈ Rn

f◦(x◦; v) = max{ξT v : ξ ∈ ∂cf(x◦)},
where ∂cf(x◦) is a convex and compact set of Rn, called the Clarke sub-
differential of f at x◦ ∈ X or Clarke generalized gradient of f at x◦,
given by

∂cf(x◦) = {ξ ∈ Rn : f◦(x◦; v) ≥ ξT v for all v ∈ Rn}.
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We summarize hereafter some of the fundamental results concerning ∂cf(x◦).

(a) If f is continuously differentiable at x◦ ∈ X , then ∂cf(x◦) = {∇f(x◦)} .
If f is convex, then ∂cf(x◦) = ∂f(x◦), where ∂f(x◦), denotes the usual
subdifferential of convex analysis (see [211]). For all Lipschitz functions,
∂cf(x◦) = ∂f(x◦, 0).

(b) ∂c(−f)(x◦) = −∂cf(x◦); if g : X → R is locally Lipschitz at x◦ ∈ X , then
∂c(f + g)(x◦) ⊆ ∂cf(x◦) + ∂cg(x◦).

(c) Let Df be the set of points in X at which f is not differentiable (by
Rademacher’s theorem Df has Lebesgue measure zero) and let S be any
other set of measure zero in Rn. Then

∂cf(x◦) = conv{ lim
k→∞

∇f(xk) : xk → x0, xk /∈ S ∪Df};

that is, ∂cf(x◦) is the convex hull of all points of the form lim∇f(xk),
where {xk} is any sequence which converges to x◦ and avoids S ∪Df .

(d) For Df and S as in (c),

f◦(x◦, v) = lim sup
y→x◦

{
(∇f(y))T v : y /∈ s ∪Df

}

The following result, due to Clarke and easy consequence of property (b),
gives a necessary condition for a local minimum of f.

Theorem 4.24. Let f : X → R be C-differentiable on the open set X ⊆ Rn

and let x◦ ∈ X be a point of local minimum of f over X; then 0 ∈ ∂cf(x◦).

We justify therefore the following definition.

Definition 4.25. The point x◦ ∈ X is said to be a C-min-stationary point
for the C-differentiable function f if 0 ∈ ∂Cf(x◦).

Definition 4.26. Let f : X → R be locally Lipschitz on the open set X ⊆ Rn;
then f is C-invex on X if there exists a function η : X ×X → Rn such that

f(x) − f(x◦) ≥ f◦(x◦, η(x, x◦)), ∀x, x◦ ∈ X.

We note that the previous definition can be equivalently given by the inequality

f(x) − f(x◦) ≥ ξT , η(x, x◦), ∀x, x◦ ∈ X, ∀ξ ∈ ∂Cf(x◦).

The above inequality was used for a more general case, by Jeyakumar [102].
Another important topic of nonsmooth analysis is the concept of DR-

quasidifferentiabilty, introduced by Demyanov and Rubinov [55, 56] and con-
taining, as a special case, the concept of P -quasidifferentiability, introduced
some years before by Pshenichnyi [205], perhaps the first author to present
in a systematic way a proposal for the study of nonsmooth and non-convex
optimization problems.
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Definition 4.27. The function f : X → R is said to be DR-quasidifferenti-
able at x◦ ∈ X,X ⊆ Rn open set, if for any g ∈ Rn the directional derivative

f ′(x◦; g) = lim
t→o+

f(x◦ + tg) − f(x◦)
t

exists (finite) and it holds

f ′(x◦, g) = max
v∈∂f(x◦)

{
vT g
}

+ min
w∈∂f(x◦)

{
wT g

}
,

where ∂f(x◦) and ∂f(x◦) are convex and compact sets of Rn.

The pair of sets
(
∂f(x◦), ∂f(x◦)

)
= Df(x◦) for which f is DR-

quasidifferentiable at x◦ is said to be a quasidifferential of f at x◦. Obviously
Df(x◦) is not unique, as the pair

(
∂f(x◦) + C, ∂f(x◦) − C

)
with C ⊆ Rn

convex and compact, is a quasidifferential too. The set ∂f(x◦) is called a sub-
differential and the set ∂f(x◦) is called superdifferential of f at x◦. It is easy
to see that equivalently f is DR-quasidifferentiable at x◦ if

f ′(x◦, g) = max
v∈∂f(x◦)

{
vT g
}− max

w∈−∂f(x◦)

{
wT g

}
,

i.e., if f ′(x◦, g) is given by the difference of two support functions of two
compact and convex sets, i.e., by the difference of two sublinear (i.e., convex
and positively homogeneous) functions (DSL functions) of the direction g.

Definition 4.28. The function f : X → R,X ⊆ Rn open set, is said to be
P -quasidifferentiable at x◦ ∈ X if for any g ∈ Rn the directional deriva-
tive f ′(x◦, g) exists (finite) and is a positively homogeneous function of the
direction g, i.e., we have

f ′(x◦, g) = max
v∈∂P f(x◦)

{
vT g
}
,

with ∂P f(x◦) convex and compact subset of Rn.

The set ∂P f(x◦) is called the Pshenichnyi subdifferential of f at x◦; obviously
every DR-quasidifferentiable function is P -quasidifferentiable, with ∂f(x◦) =
∂P f(x◦) and ∂f(x◦) = {0}.
Theorem 4.29 (Demyanov and Vasiliev [57]; Pshemichnyi [205]).

(a) If f : X → R is DR-quasidifferentiable and x◦ ∈ X is a point of local
minimum of f on X, then −∂f(x◦) ⊆ ∂f(x◦).

(b) If f : X → R is P -quasidifferentiable and x◦ ∈ X is a point of local
minimum of f on X, then 0 ∈ ∂P f(x◦).

��
The previous necessary optimality conditions justify the following definitions.
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Definition 4.30. Let f : X → R be DR-quasidifferentiable (respectively, P -
quasidifferentiable) on X; then f is DR-invex (respectively, P -invex) on X if
there exists a vector valued function η : X ×X → Rn such that

f(x) − f(x◦) ≥ f ′ (x◦, η(x, x◦)) , ∀x, x◦ ∈ X.

Theorem 4.31 (Giorgi and Guerraggio [71]). A DR-quasidifferentiable
function is DR-invex if and only if there exists a function η : X ×X → Rn

such that for each x, x◦ ∈ X the following inequality

f(x) − f(x◦) ≥ (v(x◦) + w∗(x, x◦)) η(x, x◦),

holds for any v(x◦) ∈ ∂f(x◦) and for some w∗(x, x◦) ∈ ∂f(x◦).

Proof. If f is DR-invex, obviously there exists an element w∗(x, x◦) ∈ ∂f(x◦)
such that

f(x) − f(x◦) ≥ max
v∈∂f(x◦)

{vη(x, x◦)} + w∗(x, x◦)η(x, x◦),

that is

f(x) − f(x◦) ≥ v(x◦) + w∗(x, x◦)η(x, x◦), ∀v(x◦) ∈ ∂f(x◦).

Conversely if, for some w∗(x, x◦) ∈ ∂f(x◦), the last inequality holds, we obtain

f(x) − f(x◦) ≥ max
v∈∂f(x◦)

{vη(x, x◦)} + w∗(x, x◦)η(x, x◦);

it follows

f(x) − f(x◦) ≥ max
v∈∂f(x◦)

{vη(x, x◦)} + min
w∈∂f(x◦)

{w∗(x, x◦)η(x, x◦)}.
��

If f is a P -quasidifferentiable function the above theorem states that f is
P -invex if and only if the inequality

f(x) − f(x◦) ≥ {v(x◦)η(x, x◦)} holds ∀v(x◦) ∈ ∂P f(x◦).

The next theorem extends to DR-quasidifferentiable (P -quasidifferentiable)
functions the result given in Theorem 2.2 for differentiable functions.

Theorem 4.32 (Giorgi and Guerraggio [71]). Let f : X → R be DR-
quasidifferentiable (P -quasidifferentiable), then f is DR-invex (P -invex) on
X if and only if every DR-min-stationary point (P -min-stationary point) is
a global minimum point of f on X.

Proof. We begin the proof for the more general case of DR-quasi-
differentiability. Let f beDR-invex and x◦ ∈ X be a DR-min-stationary point
of f , i.e., −∂f(x◦) ⊆ ∂f(x◦). Then it is possible to choose v = −w∗ in ∂f(x◦);
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therefore from Theorem 4.31 it follows f(x)− f(x◦) ≥ 0, ∀x ∈ X. Conversely,
suppose that every DR-min-stationary point of f is a global minimum point.
Let x, x◦ be two arbitrary points of X. If f(x) ≥ f(x◦), choose η(x, x◦) = 0.
If f(x) < f(x◦), x◦ cannot be a DR-min-stationary point; then there exists
w∗(x, x◦) ∈ ∂f(x◦) such that 0 /∈ w∗+∂f(x◦), where w∗+∂f(x◦), is a convex
and compact set. This implies that min{‖ξ‖ : ξ ∈ w∗ + ∂f(x◦)} = m > 0. If
ξ∗ is an element of minimum norm in w∗ + ∂f(x◦), then we have (see, e.g.,
Bazaraa and Shetty [12], Theorem 2.4.4) ξ∗ · ξ ≥ ξ∗ · ξ∗, ∀ξ ∈ w∗ + ∂f(x◦).
Let us now consider the function

η(x, x◦) =
f(x) − f(x◦)

ξ∗ξ∗
ξ∗

for which the necessary and sufficient condition of Theorem 4.31 is satisfied.
So the proof is complete.

��
Also for C-differentiable functions we have a result similar to the thesis of the
previous theorem.

Theorem 4.33. Letf : X → R be locally Lipschitz on X, then f is C-invex
on X if and only if every C-min-stationary point is a global minimum point
of f over X.

The proof of the above result is quite similar to the one of Theorem 4.32
and hence is omitted. We remark that Theorem 4.33 was also obtained by
Tanaka et al. [233] and by Reiland [209]. This author makes the superfluous
condition (for finite dimensional space) that the cone

K(x◦, x) =
⋃

λ≥0

(λ∂Cf(x◦) × {λ (f(x) − f(x◦)})

is closed. As corollaries we have that if f : X → R is C-invex on X, then
x◦ ∈ X is a global minimum of f over X if and only if 0 ∈ ∂Cf(x◦). Moreover
if f : X → R has no stationary point, then f is C-invex on X (f locally
Lipschitz on X). For f : Rn → R, f ′(x◦, v) denotes the usual directional
derivative of f at x◦ in the direction v:

f ′(x◦, v) = lim
λ→0+

f(x◦ + λv) − f(x◦)
λ

when this limit exists. If a Lipschitzian function has a directional derivative,
it is not necessarily true that f ′(x◦, v) = f◦(x◦, v). This justifies the following
definition.

Definition 4.34 (Clarke [38]). A locally Lipschitz function f : X → R is
said to be regular at x◦ ∈ X when:

(i) For each direction v ∈ Rn the directional derivative f ′(x◦, v) exists finite.
(ii) We have f ′(x◦, v) = f◦(x◦, v), for every v ∈ Rn.
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For a regular function we have therefore ∂P f(x◦) = ∂Cf(x◦). To better under-
stand the above definition it is useful to give also the following one based on
two important local cone approximations.

Definition 4.35. The set A ⊆ Rn is regular at x◦ ∈ Ā (Ā denotes the
conjugate of A) if

TC(A, x◦) = T (A, x◦),

where

TC(A, x◦) = {v ∈ Rn : ∀{xk} → x◦, xk ∈ A,

∀{λk} → 0, λk > 0, ∃{vk} → v : xk + λkv
k ∈ A}

is the Clarke tangent cone to A at x◦ and

T (A, x◦) = {v ∈ Rn : ∃{tk} → 0, tk > 0, ∃{vk} → v : x◦ + tkv
k ∈ A, ∀k}

is the contingent cone to A at x◦ (or Bouligand tangent cone to A at x◦).

The following Theorem is due to Clarke [38].

Theorem 4.36. Let f : X → R be locally Lipschitz at x◦ ∈ X; then f is
regular at x◦ if and only if epif is regular at (x◦, f(x◦)), i.e., if and only if

TC (epif, (x◦, f(x◦))) = T (epif, (x◦, f(x◦))) .
��

A sufficient condition for the regularity of a P -quasidifferentiable function on
X ⊆ Rn is that the multiplication ∂P (·) is upper semicontinuous [38].

The previous concept is useful for the following considerations. Zang
et al. [255] characterized the functions whose stationary points are global
minima (i.e., the invex functions) in terms of the strict lower semicontinuity
of the multifunction (lower level sets)

Lf (α) = {x : x ∈ X, f(x) ≤ α, α ∈ R}.
Following these authors we recall Definition 2.3. We say that Lf(α) is strictly
lower semicontinuous at a point α of its effective domain Ξ = {α : α ∈
R,Lf(α) 	= φ} if x ∈ Lf (α), {αi} ⊆ Ξ,αi → α imply the existence of a
natural number k, a sequence {xi} and a real number β(x) > 0 such that

xi ∈ Lf

(
αi − β(x)

∥∥xi − x
∥∥) , i = k, k + 1, . . . and xi → x.

If Lf(α) is strictly lower semicontinuous at every α ∈ Ξ, it is said to be
strictly lower semicontinuous on Ξ.

The result of Zang et al. [255] has been generalized by Tanaka [232] to the
nonsmooth case, under the regularity assumption on f.

Theorem 4.37. Let f : X → R be regular, then f is C-invex on X (i.e.,
P -invex on X) if and only if Lf(α) is strictly lower semicontinuous.

��
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Jeyakumar [102] introduced the notion of approximately quasidifferentiable
functions, according to the following definition.

Definition 4.38. The function f : X → R is said to be approximately qua-
sidifferentiable or J-differentiable at x◦ ∈ X if there exists a convex compact
subset ∂Jf(x◦) of Rn such that

fD(x◦, g) ≤ max
v∈∂J f(x◦)

{vg}, ∀g ∈ Rn,

where fD(x◦, g) is the Dini upper directional derivative at x◦ in the direction g:

fD(x◦, g) = lim sup
t→0+

f(x◦ + tg) − f(x◦)
t

.

The previous definition was also considered by Ioffe [96] who defines ψ : Rn →
R a first order convex approximation for f at x◦, if ψ is sublinear (i.e., convex
and positively homogeneous) and satisfies the condition

fD(x◦, g) ≤ ψ(g), ∀g ∈ Rn. (4.7)

The original definition of Ioffe contains, instead of (4.7), the equivalent
condition

lim sup
t→0+

f(x◦ + tg) − f(x◦) − tψ(g)
t

≤ 0.

We note that, according to Definition 4.38, every locally Lipschitz function
defined on X is J-differentiable, since

fD(x◦, g) ≤ f◦(x◦, g) = max
ξ∈∂Cf(x◦)

{ξg}, ∀g ∈ Rn.

Also every P -quasidifferentiable function is J-quasidifferentiable, since

fD(x0, g) = f ′(x0, g) = max
v∈∂P f(x◦)

{vg}, ∀g ∈ Rn.

In [102] it is also given a numerical example showing that the class of J-
quasidifferentiable functions strictly contains the classes of locally Lipschitz
and P -quasidifferentiable functions.

Theorem 4.39. Let f : X → R be J-quasidifferentiable; if x◦ ∈ X is a point
of local minimum for f , then we have 0 ∈ ∂Jf(x◦).

Proof. Being f J-quasidifferentiable, we have

fD(x◦, g) = max
v∈∂J f(x◦)

{vg}, ∀g ∈ Rn.

As x◦ ∈ X is a local minimum point for f , it holds fD(x◦, g) ≥ 0. Now let us
assume, absurdly, that 0 /∈ ∂Jf(x◦); so there exists a direction ḡ such that

max
v∈∂J f(x◦)

{vḡ} < 0.
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But this leads to the absurd conclusion

0 ≤ fD(x◦, ḡ) ≤ max
v∈∂J f(x◦)

{vḡ} < 0.

��
The above theorem justifies the following definition.

Definition 4.40. A point x◦ ∈ X is said to be a J-min-stationary point for
the J-quasidifferentiable function f : X → R if 0 ∈ ∂Jf(x◦).

Following Jeyakumar [102] we give the following definition.

Definition 4.41. The J-quasidifferentiable function f : X → R is J-invex if
there exists η(x, x◦) : X ×X → Rn such that

f(x) − f(x◦) ≥ vT η(x, x◦), ∀x, x◦ ∈ X, ∀v ∈ ∂Jf(x◦).

It is not difficult to prove (see [71]) the following result.

Theorem 4.42. Let f : X → R be J-quasidifferentiable; then f is J-invex
if and only if every J-min-stationary point is a global minimum point of f
over X.

��
Another class of nonsmooth invex functions has been introduced by Ye [253].
See also Craven and Glover [45].

Definition 4.43. The function f : X → R is said to be Y e-invex if there
exists the directional derivative f ′(x◦, g), ∀g ∈ Rn and if there exists η(x, x◦) :
X ×X → Rn such that

f(x) − f(x◦) ≥ f ′(x◦, η(x, x◦)), ∀x, x◦ ∈ X.

A well known result justifies the following definition.

Definition 4.44. Let f : X → R admit directional derivative for every direc-
tion ∀g ∈ Rn; a point x◦ ∈ X is said to be Y e-min-stationary point for f if
f ′(x◦, g) ≥ 0, ∀g ∈ Rn.

Theorem 4.45. Let f : X → R admit directional derivative for any g ∈ Rn;
then f is Y e-invex if and only if every Y e-min-stationary point is a global
minimum point of f over X.

Proof. If x◦ is a Y e-min-stationary point, the definition of Y e-invexity imme-
diately assures that

f(x) − f(x◦) ≥ 0, ∀x ∈ X.

Conversely, in order to prove that f is Y e-invex, we consider two cases. If
x, x◦ ∈ X and such that f(x) − f(x◦) ≥ 0, we can take η(x, x◦) = 0. But if
f(x) − f(x◦) < 0, x◦ cannot be a Y e-min-stationary point; this means that
there exists a direction ∀ḡ ∈ Rn such that f ′(x◦, ḡ) < 0. In this case it is easy
to verify that f is Y e-invex, with respect to

η(x, x◦) =
f(x) − f(x◦)
f ′(x◦, ḡ)

ḡ.

��
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We recall that in Demyanov and Vasiliev [57] it is shown that if f : X → R
is a locally Lipschitz DR-quasidifferentiable function, there is the following
relationship between the Clarke subdifferential of f at x◦ and the sets ∂f(x◦)
and ∂f(x◦):

∂f(x◦) ⊆ ∂Cf(x◦) − ∂f(x◦).

We note also that the proof of the Theorem 4.32 makes use of convex analy-
sis, namely a “projection theorem” (Theorem 2.4.4 of Bazaraa and Shetty [12])
for closed and convex sets. It turns out that it is possible to obtain results
similar to the ones presented in Theorems 4.32, 4.33 and 4.42 for those direc-
tional derivatives which are support functions of a nonempty closed convex
set, i.e., which are positively homogeneous sublinear functions of the direc-
tion g ∈ Rn. Besides the types already examined, this is also the case, e.g.,
of the Michel–Penot directional derivative and of the Rockafellar directional
derivative (see, [71]).

Following these lines, Castellani [28] proposes a unifying definition of
invexity for nonsmooth functions exploiting the concept of local cone approx-
imation, introduced in an axiomatic form by Elster and Thierfelder [61, 62].
See also Ward [240,241] and Giorgi et al. [74].

If K(A, x◦) ⊆ Rn is a local cone approximation at x◦ ∈ Ā (Ā denotes the
closure of A), such as, for example, the already introduced Bouligand tangent
cone and Clarke tangent cone, the set epif will be locally approximated at the
point (x◦, f(x◦)) by a local cone approximation K and a positively homoge-
neous function fK(x◦, ·) will be uniquely determined. More precisely, we have
the following definition.

Definition 4.46. Let X ⊆ Rn be an open set. Let f : X → R, x◦ ∈ X
and K(·, ·) a local cone approximation. The positively homogeneous function
fK(x◦, ·) : Rn → [−∞,+∞] defined by

fK(x◦, v) = inf{β ∈ R : (v, β) ∈ K(epif, (x◦, f(x◦)))}
is called K-directional derivative of f at x◦ in the direction v ∈ Rn.

By means of Definition 4.46 we can recover most of the generalized directional
derivatives used in the literature; for instance:

• The upper Dini directional derivative of f at x◦

fD(x◦, y) = lim sup
t→0+

f(x◦ + ty) − f(x◦)
t

is associated to the cone of the feasible directions

F (A, x◦) = {v ∈ Rn : ∀{tk} → 0+, x+ tkv ∈ A}.
• The lower Dini directional derivative of f at x◦

fD(x◦, y) = lim inf
t→0+

f(x◦ + ty) − f(x◦)
t
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is associated to the cone of the weak feasible directions

WF (A, x◦) = {v ∈ Rn : ∃{tk} → 0+, x◦ + tkv ∈ A}.
• If f is locally Lipschitz, the Clarke directional derivative of f at x◦,

f◦(x◦, v), already defined, is associated to the Clarke tangent cone
TC(A, x◦), already defined.

• The Hadamard lower directional derivative

fH(x◦, v) = lim inf
v′→v

t→0+

f(x◦ + tv′) − f(x◦)
t

is associated to the Bouligand tangent cone T (A, x◦), already defined.

Definition 4.47. Let f : X → R, x◦ ∈ X and K(·, ·) be a local cone
approximation.

• f is said to be K-sub-differentiable at x◦ if there exists a convex compact
set ∂Kf(x◦) such that

fK(x◦, v) = max
x∈∂Kf(x◦)

{x∗, v}, ∀v ∈ Rn;

the set ∂Kf(x◦) is called the K-sub-differential of f at x◦.
• f is said to be K-quasidifferentiable at x◦ if there exist two convex compact

sets ∂Kf(x◦) and ∂
K
f(x◦) such that

fK(x◦, v) = max
x∗∈∂Kf(x◦)

{x∗v} − max
x∗∈∂

K
f(x◦)

{x∗v}.

The sets ∂Kf(x◦) and ∂
K
f(x◦) are called the K-subdifferential and K-

superdifferential of f at x◦, respectively.

Definition 4.48. Let f : X → R and K(·, ·) be a local cone approximation;
x◦ ∈ X is said to be a K-inf-stationary point for f if fK(x◦, v) ≥ 0 for each
v ∈ Rn.

Castellani [28] proves the following result.

Theorem 4.49. Let f : X → R and K(·, ·) be a local cone approximation. If
f is K-quasidifferentiable, then x◦ ∈ X is a K-inf-stationary point for f if
and only ∂

K
f(x◦) ⊆ ∂Kf(x◦). In particular, if f is K-subdifferentiable, then

x◦ ∈ X is a K-inf-stationary point for f if and only if 0 ∈ ∂Kf(x◦).

In Castellani and Pappalardo [29] it was proved that if K(·, ·) is an isotone
local cone approximation (i.e., K(A, x◦) ⊆ K(B, x◦), for each A ⊆ B and
with x◦ ∈ A∪B). Then every local minimum of f over Rn is K-inf-stationary
point for f. In general however, the converse does not hold; so it makes sense
to introduce the following definition.
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Definition 4.50. Let K(·, ·) be a local cone approximation; the function f :
X → R is said to be K-invex if there exists a function η : X ×X → Rn such
that

f(x) − f(y) ≥ fK(y, η(y, x)), ∀y, x ∈ X.

The function η is said to be the kernel of the K-invexity.

Castellani [28] then proved the following result.

Theorem 4.51. Let f : X → R and K(·, ·) be a local cone approximation;
f is K-invex if and only if every K-inf-stationary point is a global minimum
point.

For applications of the K-invex functions to nonlinear programming prob-
lems, we refer the reader to the paper of Castellani [28]. Similarly to what
done for the differentiable case, it is possible to give extensions of the invexity
for the nonsmooth case. If we consider, e.g., the locally Lipschitz functions we
can define the C-pseudo-invex functions, as those functions for which we have

f◦(x◦, η(x, x◦)) ≥ 0 ⇒ f(x) ≥ f(x◦), ∀x, x◦ ∈ X ;

and the C-quasi-invex functions for which we have

f(x) ≤ f(x◦) ⇒ f◦(x◦, η(x, x◦)) ≤ 0, ∀x, x◦ ∈ X.

It follows easily from Theorem 4.33 that there is no distinction between C-
invexity and C-pseudo-invexity. We note, moreover, that the semi-convex
functions, defined by Mifflin [148] for regular Lipschitz functions, i.e., f is
semi-convex at x◦ ∈ X if for every d ∈ Rn such that x◦ + d ∈ X, we have
f ′(x◦, d) ≥ 0 ⇒ f(x◦ + d) ≥ f(x◦), are a special case of C-pseudo-invex func-
tions. Indeed, if f is semi-convex at x◦ for every x◦ ∈ X, (i.e., f is semi-convex
onX), then choosing d = x−x◦, where x ∈ X , shows that f is C-pseudo-invex
(i.e., P -pseudo-invex) on X with η(x, x◦) = x− x◦.

We have previously remarked [18] that if f : X → R is differentiable, then
preinvexity is a sufficient condition for invexity. We now prove a similar result
for the case of DR-quasidifferentiable functions.

Theorem 4.52. If f : X → R is a DR-differentiable preinvex function, then
it is DR-invex.

Proof. From the preinvexity of f , it follows

f(x◦ + λη(x, x◦)) − f(x◦)
λ

≤ f(x) − f(x◦), ∀λ ∈ [0, 1], ∀x, x◦ ∈ X.

Taking the limit as λ→ 0+ we obtain

f(x) − f(x◦) ≥ f ′(x◦ + λη(x, x◦)), ∀x, x◦ ∈ X.
��
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A result similar to Theorem 4.52 was given by Reiland [209] for C-invex func-
tions, but with the following more restrictive definition of a preinvex function:
there exists a neighbourhood N(x◦) of x◦ and η(x, x◦) ∈ Rn such that

f(y + λη(x, x◦)) ≤ λf(x) + (1 − λ)f(y),
∀y ∈ N(x◦), ∀λ ∈ [0, 1], ∀x, x◦ ∈ X.

(If f is differentiable, then the above definition collapses to the usual one.)
For other definitions and concepts of nonsmooth vector-valued functions,

the reader is referred to Reiland [210], Yen and Sach [254], Giorgi and
Guerraggio [70, 72] and to the literature therein quoted.
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Invexity in Nonlinear Programming

5.1 Invexity in Necessary and Sufficient Optimality
Conditions

Hanson’s [83] introduction of invex functions was motivated by the purpose
to weaken further the class of mathematical programming problems for which
the necessary optimality conditions are also sufficient. There was also the
related problem of finding the widest class of functions for which weak and
strong duality hold for the dual problems, such as the Wolfe dual problem or
the Mond–Weir dual problem. Let us consider the following basic nonlinear
programming problem:

(P)
Minimize f(x), x ∈ K

K = {x : x ∈ C, g(x) ≤ 0},
where f : C → R and g : C → Rm are (Frechet) differentiable on the open set
C ⊆ Rn (if we have a problem with equality constraints, of the type h(x) =
0, h : C → Rp, we could re-write these constraints as h(x) ≤ 0,−h(x) ≤ 0).

It is well known that under certain regularity assumptions on the vector
function g (constraint qualifications) the Karush–Kuhn–Tucker conditions are
necessary for optimality in (P), that is, if x∗ is a solution of (P) or even if it
is a point of local minimum of f on K, then there exists a vector λ∗ ∈ Rm

such that

∇f(x∗) + λ∗T∇g(x∗) = 0 (5.1)

λ∗T g(x∗) = 0 (5.2)

λ∗T ≥ 0. (5.3)

It is also well known that relations (5.1)–(5.3) become sufficient for optimality
if some (generalized) convexity assumption is made on f and g.
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More precisely, if (x∗, λ∗), with x∗ ∈ K, satisfies (5.1)–(5.3), then x∗ is
optimal for (P), provided one of the following assumptions is imposed:

(a) f(x) and gi(x) convex, i = 1, . . . ,m [133]
(b) f(x) pseudo-convex and gi(x) quasi-convex, with i ∈ I = {i : gi(x) = 0}

the set of the active or effective constraints at x∗ ∈ K [142, 143]
(c) f(x) pseudo-convex and λ∗T g(x) quasi-convex [169]
(d) f(x) + λ∗T g(x) pseudo-convex [169]

Hanson [83] noted that the (generalized) convexity requirements appearing
in the (a)–(d) above can be further weakened as in the related proofs of the
sufficiency for problem (P) there is no explicit dependence on the linear term
(x − m), appearing in the definition of differentiable convex, pseudo-convex
and quasi-convex functions. Thus this linear term can be substituted with an
arbitrary vector-valued function.

More precisely, if x∗ ∈ K and (x∗, λ∗) satisfies (5.1)–(5.3), then x∗ solves
(P) if any one of the following conditions is satisfied:

(a) f(x) and every gi(x), i ∈ I, are invex with respect to the same η.
(b) f(x) is pseudo-invex and every gi(x), i ∈ I, is quasi-invex with respect to

the same η.
(c) f(x) is pseudo-invex and λ∗g(x) is quasi-invex with respect to the same η.
(d) The Lagrangian function f(x) + λ∗T g(x) is pseudo-invex with respect to

an arbitrary η (i.e., the Lagrangian function f(x) + λ∗T g(x) is invex).

The proofs are easy. We give only the proof for (a), the original result of
Hanson [83]: For any x ∈ C satisfying g(x) ≤ 0, we have

f(x) − f(x∗) ≤ η(x, x∗)T∇f(x∗)

= −η(x, x∗)T∇(λ∗T g(x))

≥ −λ∗T (g(x) − g(x∗))

= −λ∗T g(x)
≥ 0.

So x∗ is minimal.
We stress the fact that f and every gi(x), i = 1, . . . ,m or also i ∈ I, have

to be invex with respect to a common η. By the remark to Corollary 2.13,
this is equivalent to f + λT g being invex for all λ ∈ Rm

+ . So, condition (d) is
more general, as it requires that f + λ∗T g is invex, without having f + λT g
invex for all λ ∈ Rm

+ (the proof of (d)) is quite immediate and left it to the
reader.

Jeyakumar [100] gives the following result that weakens the sufficient
optimality conditions for problem (P) by means of ρ-invex functions (see,
Definition 2.19).

Theorem 5.1. Let x∗ ∈ K and let (x∗, λ∗) satisfy (5.1)–(5.3); let f(x) be
ρ0-pseudo-invex at x∗ and let every gi(x), i ∈ I, be ρi-quasi-invex at x∗,
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with respect to the same function η and θ. Let ρ0 +
∑

i∈I λ
∗
i ρi ≥ 0. Then

x∗ solves (P).

Proof. As x∗ satisfy the Karush–Kuhn–Tucker conditions, we have

η(x, x∗)T∇f(x∗) −
∑

i∈I

λ∗i ρi (‖θ(x, x∗)‖)2

+
∑

i∈I

λ∗i η(x, x
∗)T∇gi(x∗) +

∑

i∈I

λ∗i ρi (‖θ(x, x∗)‖) = 0.

From the ρi-quasi-invexity of gi(x), i ∈ I, we have, ∀x ∈ K, ∀i ∈ I:

gi(x) ≤ gi(x∗) = 0 ⇒ η(x,X∗)T∇gi(x∗) + ρi (‖θ(x, x∗)‖)2 ≤ 0.

Being λ∗i ≥ 0, ∀i ∈ I, we can reformulate the above relation as follows:

x ∈ K ⇒
∑

i∈I

λ∗i η(x, x
∗)T∇gi(x∗) +

∑

i∈I

λ∗i ρi (‖θ(x, x∗)‖)2 ≤ 0.

Therefore, we have

η(x, x∗)T∇f(x∗) ≥
∑

i∈I

λ∗i ρi (‖θ(x, x∗)‖)2 , ∀x ∈ K.

Since ρ0 +
∑

i∈I λ
∗
i ρi ≥ 0, we have

η(x, x∗)T∇f(x∗) + ρ0 (‖θ(x, x∗)‖)2 ≥ 0, ∀x ∈ K.

That is, x∗ solves (P), thanks to the ρ0-pseudo-invexity assumption on f(x).
��

Note that the above theorem holds also with the assumption of the existence
of different functions θ0(x, x∗), θi(x, x∗), i ∈ I with

∑

i∈IY {0}
λ∗i ρi (‖θi(x, x∗)‖) ≥ 0, λ∗0 = 1.

Invexity also allows the weakening of necessary optimality conditions, in
the sense that we can weaken those constraint qualifications expressed in terms
of convexity. Ben-Israel and Mond [18] have used a modified or generalized
Slater constraint qualifications. This condition is described as follows:
Let g : C → Rm; g is said to satisfy the modified Slater condition if gi(x), i =
1, . . . ,m, is invex, with respect to a common η, and there exists x̄ ∈ K such
that g(x̄) < 0.

Ben-Israel and Mond [18] proved that the Karush–Kuhn–Tucker condi-
tions are necessary for optimality if the modified Slater condition is satisfied.
We prove the corresponding result by means of a generalized Karlin con-
straint qualification, not equivalent, for the invex case, to the Slater constraint
qualification.
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Theorem 5.2. Let x∗ be optimal for (P) and let the following generalized
Karlin constraint qualification be satisfied: there exists no vector p ∈ Rm,
p ≥ 0, p 	= 0, such that pT g(x) ≥ 0, ∀x ∈ C, and every gi(x), i = 1, . . . ,m, is
invex with respect to the same η. Then there exists λ∗ ∈ Rm such that (x∗, λ∗)
satisfies condition (5.1)–(5.3).

Proof. It is well known that x∗ satisfies the Fritz John conditions; that is,
there exists r∗0 ∈ R and r∗ ∈ Rm such that

r∗0∇f(x∗) + r∗T∇g(x∗) = 0

r∗T g(x∗) = 0

(r∗0 , r
∗) ≥ 0, (r∗0 , r

∗) 	= 0.

We have to prove that r∗0 > 0, so that we can put λ∗ =
(

1
r∗
0

)
r∗ and the

thesis follows. Assume to contrary that r∗0 = 0; then we have r∗T∇g(x∗) = 0,
r∗T g(x∗) = 0, r∗ ≥ 0, r∗ 	= 0 (i.e., r∗ is a semipositive vector). Since every
gi(x) is invex with respect to η, then

r∗T g(x) − r∗T g(x∗) ≥ η(x, x∗)T r∗T g(x∗), ∀x ∈ C,

i.e.,
r∗T g(x∗) ≥ 0, ∀x ∈ C.

But this contradicts the modified Karlin constraint qualification and therefore
r∗0 > 0.

��
Note that the modified Slater condition implies the modified Karlin condi-
tion, but the converse is not true, contrary to the convex case, where the two
conditions are equivalent (see, [143]). The proof of their equivalence is made
(for the convex case) by means of a generalized Gordon theorem of the alter-
native (theorem of Fan–Glicksberg–Hoffman [64]) and uses the fact that if g
is convex, then the set

M =
⋃

x∈C

{y : y ∈ Rm, g(x) < y}

is convex. A separation theorem for convex sets then yields the result. How-
ever, with gi(x), i = 1, . . . ,m, invex functions, the set M is not in general
convex, so the said separation theorem is not applicable.

Giorgi and Guerraggio [70] have considered in a more general setting
the problem of constraint qualifications involving invexity. Since the original
paper of Kuhn and Tucker [133] numerous constraint qualifications have been
proposed for problem (P) by several authors and the relationships between
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them have been thoroughly investigated: see Bazaraa et al. [13], Bazaraa and
Shetty [12], Giorgi et al. [74], Mangasarian [143], Peterson [199]. Some of the
said constraint qualifications involve (generalized) convexity assumptions on
the constraints gi.

Let us now reformulate these last qualifications under the weaker assump-
tions of invexity.

(a) Arrow–Hurwicz–Uzawa first constraint qualification (CQ), denoted
(A.H.U. − I)in, where “in” just stands for “invex”: the cone L1,in given
by the solution set of the system

yT∇gi(x0) ≤ 0, ∀i ∈ I1

yT∇gi(x0) < 0, ∀i ∈ I − I1,

is nonempty, where I1 = {i : i ∈ I,−gi is invex at x0} and x0 ∈ K. If we
denote by L the linearizing cone at x0 ∈ K:

L = {y : yT∇gi(x0) ≤ 0, ∀i ∈ I}.
It is easy to see that the (A.H.U.− I)in CQ can be equivalently expressed
as L ⊆ L̄1,in (L̄ denoting the closure of the cone L).

(b) Cottle CQ, denoted (Cottle). Define the cone

L0 =
{
y : yT∇gi(x0) < 0, ∀i ∈ I

}
.

Then Cottle CQ is expressed as L0 	= φ or equivalently as: the system
∑

i∈I

μi∇gi(x0) = 0, μi ≥ 0,

admits the zero solution only, i.e., the vector ∇gi(x0), i ∈ I, are positively
linearly independent. It is easy to see that Cottle CQ can equivalently be
expressed as L ⊆ L̄0.

(c) Slater CQ, denoted (S)in: the functions gi, i ∈ I, are invex at x0 ∈ K and
there exists a vector x̄ such that gi(x̄) < 0, ∀i ∈ I.

(d) Strict CQ, denoted (Strict)in: the functions gi, i ∈ I are invex at x0 ∈ K
and there exists at least two distinct points x1, x2 ∈ K such that

gi(x2) ≤ gi(x1) ⇒ gi(x1 + λη(x1, x2)) < gi(x1),

∀i ∈ I, ∀λ ∈ (0, 1).
(e) Reverse CQ (weak), denoted (R)in: the functions −gi, i ∈ I, are invex at

x0.
(f) Zangwill CQ, denoted (Z). To introduce this CQ let us denote by D the

cone of feasible directions at x0 ∈ K:

D = D(K,x0) =
{
y : ∃λ̄ > 0 : x0 + λy ∈ K, ∀λ ∈ (0, λ̄)} ;

note that this cone need not be either open or closed. Zangwill CQ is
expressed as L ⊆ D̄.



78 5 Invexity in Nonlinear Programming

Obviously Cottle CQ and Zangwill CQ have been given in their original for-
mulations, as they do not involve any generalized convexity assumptions. In
the other cases the assumption of invexity substitutes the original assump-
tion of convexity or pseudo-convexity. Moreover, in the (Strict)in CQ the
assumption

gi(x2) ≤ gi(x1) ⇒ gi(x1 + λη(x1, x2)) < gi(x1), ∀i ∈ I, ∀λ ∈ (0, 1)

substitutes the original assumption [13]

gi(x2) ≤ gi(x1) ⇒ gi(λx1 + (1 − λ)x2) < g(x1), ∀i ∈ I, ∀λ ∈ (0, 1) .

Theorem 5.3. The following implications hold:
(Strict)in ⇒ (S)in ⇒ (Cottle) ⇒ (A.H.U.− I)in ⇐ (R)in.

Proof. (Strict)in ⇒ (S)in : By assumption there exist two distinct points
x1, x2 ∈ K with gi(x2) ≤ gi(x1), i ∈ I, such that

gi(λx1 + λη(x1, x2)) < gi(x1) ≤ 0, ∀λ ∈ (0, 1) .

(S)in ⇒ (Cottle) : For each i ∈ I, we have

0 > gi(x̄) = gi(x̄) − gi(x0) ≥ η(x̄, x0)T∇gi(x0).

Therefore, η(x̄, x0) ∈ L0.
(Cottle) ⇒ (A.H.U.− I)in : The implication holds trivially.
(R)in ⇒ (A.H.U. − I)in : As every function −gi, i ∈ I, are invex at x0,
the system appearing in (a) reduces to yT∇gi(x0) ≤ 0, i ∈ I, system that
obviously always admits the solution y = 0.

��
The previous theorem generalizes to invex functions some implications which
are well known for the original definitions of those CQ’s involving generalized
convexity. For this last case (i.e., the non invex case) it is also true that it
holds (A.H.U.− I) ⇒ (Z).

Now, the implication (A.H.U. − I)in ⇒ (Z) does not hold, as shown by
the following counter example.

Example 5.4. Let C = R2, x0 = (0, 0); let g = (g1, g2), with g1(x, y) = −x −
y + y2; g2(x, y) = x + y − y2. It is easy to verify that −g(x, y) is invex at
x0 = (0, 0) with respect to the function η = (η1, η2) = (−g1, 0). In this case
the (A.H.U. − I)in CQ is satisfied, as every point (x, y), with y = −x, is
solution of the system y∇gi(x0) ≤ 0, i = 1, 2. On the contrary, Zangwill CQ
is not satisfied, as the linearizing cone L is given by all the points (x, y) such
that y = −x, but the cone of feasible directions D is empty.

We give now a sufficient condition for the validity of implication: (A.H.U. −
I)in ⇒ (Z).
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Theorem 5.5. If (A.H.U.−I)in holds with −gi, i ∈ I, invex at x0 with respect
to some η(x, x0) whose range contains L1,in, then also Zangwill CQ holds.

Proof. For i /∈ I and for i ∈ I − I1 the proof is same as in the modified
case: (A.H.U. − I)in ⇒ (Z). Now, let i ∈ I1 and y ∈ L1,in. As the last set
is contained in the range of η(x, x0), we have y = η(x, x0) for some x ∈ C.
Moreover, we recall that if a function f is invex at x0, then it is also pseudo-
invex at x0, i.e., x ∈ C, η(x, x0)T∇f(x0) ≥ 0 ⇒ f(x) ≥ f(x0). Then, thanks to
the pseudo-invexity of −gi, i ∈ I, from the inequality λη(x, x0)T∇gi(x0) ≤ 0,
we obtain

gi(x0 + λη(x, x0)) ≤ gi(x0) = 0, ∀λ > 0.

This implies that x0 + λη(x, x0) = x0 + λy is such that y ∈ D.
��

If we want to preserve the whole validity of the previous implications also in
the invex case, on the grounds of Theorem 5.5, we have to modify also (R)in,
by adding the same assumption made in Theorem 5.5 on the range of the
function η. So, we can assure that all the new weaker definitions introduced
are true constraint qualifications.

We have seen that invexity plays a non-trivial role in the sufficiency of
the Kuhn–Tucker optimality conditions for (P) and also, through constraint
qualifications, in the necessity of the same conditions. Martin [145] and Hanson
and Mond [88] observed that by weakening slightly the requirement that all
gi be invex (with respect to a same kernel η) the modified invexity (by itself)
not only remains sufficient for a Kuhn–Tucker point to be optimal for (P),
but also becomes necessary as well.

Following Martin [145], let us denote the invexity of f and g with respect to
the same function η(x, u) as HC-invexity (i.e., invexity in the sense of Hanson
and Craven).
HC-invexity: There exists η : C × C → Rn such that, ∀x, u ∈ C

f(x) − f(u) − η(x, u)T∇f(u) ≥ 0

gi(x) − gi(u) − η(x, u)T∇gi(u) ≥ 0, i = 1, . . . ,m.

Kaul and Kaur [114] proved that a pointwise version of the previous condition
is enough for Kuhn–Tucker sufficiency. So we can speak also of KK-invexity
for (P):
KK-invexity at u ∈ C : There exists η : C ×C → Rn such that for any x ∈ C

f(x) − f(u) − η(x, u)T∇f(u) ≥ 0

gi(x) − gi(u) − η(x, u)T∇gi(u) ≥ 0, i = 1, . . . ,m.

Martin [145] pointed out that KK-invexity is not a generalized condition as
it may at first sight appears to be (for problem (P)). As a matter of fact, if
the constraint of (P) are linear and feasible set is bounded, then the prob-
lem is HC-invex if and only if the objective function is actually convex.



80 5 Invexity in Nonlinear Programming

Therefore Martin [145] introduced some relaxations in the previous condi-
tions. He denoted this weakened condition as KT-invexity (i.e., Kuhn–Tucker
invexity).
KT-invexity: There exists η : C × C → Rn such that, ∀x, u ∈ K (the feasible
set for (P)), we have

f(x) − f(u) − η(x, u)T∇f(u) ≥ 0

−η(x, u)T∇gi(u) ≥ 0, i ∈ Iu, where, Iu = {i : gi(u) = 0}.
The restriction to the active constraints is due to the role of complementary
slackness property of a Kuhn–Tucker point. Moreover, since the sufficiency
proof concerns only feasible points, another weakening has been introduced
by requiring that the inequalities hold only in the feasible set of problem (P).
Finally, the condition on the constraint functions is changed with respect to
HC-invexity: indeed, as Mangasarian [143] proved for the convex case and
Kaul and Kaur [114] for the invex case, a quasi-invexity assumption on the
active constraints is sufficient. Martin [145] proved the following result.

Theorem 5.6. Every Kuhn–Tucker point (i.e., satisfying relations (5.1)–
(5.3)) of problem (P) is a global minimizer if and only if (P) is KT-invex.

Proof. See Martin [145].
��

However, there is an open question: KT-invexity is trivially satisfied at every
solution u of the problem (P), by letting η(x, u) = 0. This is a tautological
condition: it is coincident with the definition itself of solution for (P). Han-
son and Mond [88] were the first to study the problem of finding necessary
optimality conditions of invex type that were no trivial, i.e., with η(x, u) not
identically zero for each feasible x. Hanson and Mond [88] introduced Type I
invexity, a pointwise weakened notion of invexity for problem (P), which we
denote here as HM-invexity (Hanson and Mond [88] introduced also Type II
invexity for the study of the dual problem of (P)).
HM-invexity or Type I invexity at u ∈ K : There exists η : C → Rn such
that, ∀x ∈ K, we have

f(x) − f(u) − η(x, u)T∇f(u) ≥ 0

−η(x, u)T∇gi(u) ≥ 0, i ∈ Iu.

HM-invexity at u ∈ K is sufficient to obtain that the Kuhn–Tucker conditions
imply optimality at u. This result is a simple consequence of the definition of
HM-invexity and the Kuhn–Tucker conditions. Note that η depends only on
x. We have therefore the following theorem.

Theorem 5.7. Let (P) be a HM-invex problem at u ∈ K. Then u solves (P)
whenever u is a Kuhn–Tucker point for problem (P).

Proof. See Hanson and Mond [88].
��
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Hanson and Mond [88] also proved that, under an additional qualification
on the constraints, a vector η must exist, which is not identically zero.

Theorem 5.8. Let u be an admissible point for (P) with cardIu < n. If u is
a solution of problem (P), then (P) is HM-invex with respect to a function η
not identically zero for each x ∈ K.

Proof. See Hanson and Mond [88].
��

The following result is a trivial consequence of Theorems 5.7 and 5.8.

Theorem 5.9. If u ∈ K is a Kuhn–Tucker point for (P) and cardIu < n, then
u solves (P) if and only if (P) is HM-invex at u with respect to a function η,
not identically zero for each x ∈ K.

The condition cardIu < n cannot in general be relaxed, as it is shown by the
following example, where m = n = 1 :

Example 5.10. Minimize x, subject to 1 − x ≤ 0.
The point u = 1 is a Kuhn–Tucker point that solves the problem, but if
HM-invexity is imposed at u = 1, we get η(1) = 0, in contradiction with the
conclusion of the above theorem.

Now we want to weaken the modified invexity condition in the following sense:
We will no more assume the existence of a common η for all the functions
appearing in problem (P). We still have to impose invexity of all the functions
involved but we consider a weaker relationship between the η functions.

First of all, we recall Theorem 2.22 in its pointwise version:
Let x, u ∈ C,C ⊆ Rn open set, μ : C ×C → Rn and let Λ(x) ⊆ Rn be a cone
with vertex at zero, whose polar is denoted by Λ∗(x).

Theorem 5.11 (Pointwise version of Theorem 2.22). The function f :
C → R is invex at u ∈ C with respect to η : C → Rn such that η(x) ∈
μ(x) + Λ(x) if and only if the following implication holds, for each x ∈ C:

∇f(u) ∈ Λ∗(x) ⇒ f(x) − f(u) − μ(x)T∇f(u) ≥ 0.

We will consider the case Λ(x) = Λ, for a fixed u ∈ C. For some fixed u ∈ C,
let Λg = Λg(u) be the polyhedral cone generated by the vectors −∇gi(u), i =
1, . . . ,m and let Λi

f = Λi
f (u) be the polyhedral cone generated by the vectors

−∇f(u),−∇gj(u), j 	= i.
Let us introduce the following generalized version of invex problem.

Generalized KT-invexity at u ∈ K : There exists μ : C → Rn such that,
∀x ∈ C we have

f(x) − f(u) − η0(x, u)T∇f(u) ≥ 0

−ηi(x, u)T∇gi(u) ≥ 0, i ∈ Iu,

where η0(x, u) ∈ α0μ(x)+Λ∗
g and ηi(x, u) ∈ αiμ(x)+Λ∗

fi , αi > 0, i ∈ {0}⋃ Iu.
We can prove that under generalized KT-invexity assumptions the Kuhn–

Tucker conditions are sufficient for optimality in problem (P).
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Theorem 5.12. Let (P) be a generalized KT-invex problem at u ∈ K. Then,
whenever u is a KT-point, u solves (P).

Proof. If u is a KT-point, there exists λ ≥ 0 such that

∇f(u) +
∑

i∈Iu

λi∇gi(u) = 0.

Then, we have
∇f(u) = −

∑

i∈Iu

λi∇gi(u) ∈ Λg;

it follows that, ∀x ∈ K we have

f(x) − f(u) ≥ α0μ(x, u)T∇f(u).

Moreover, for each i ∈ Iu such that λi 	= 0, we have

∇gi(u) = − 1
λi

∇f(u) −
∑

j �=i

λj

λi
∇gi(u) ∈ Λi

f .

Then, we have
gi(x) − gi(u) ≥ αiμ(x, u)T∇gi(u),

and therefore,

f(x) − f(u)
α0

+
∑

i∈Iu

λi

αi
(gi(x) − gi(u)) ≥ μ(x, u)T∇f(u) +

∑

i∈Iu

λi∇gi(u) = 0.

It follows that f(x) ≥ f(u), ∀x ∈ K.
��

So, taking Theorem 5.1.7 of Hanson and Mond [88] into account, we have
proved the following result.

Theorem 5.13. Let x ∈ K and let cardIu < n. Then (P) is a generalized
KT-invex problem at u ∈ K, with ηi(x, u) 	= 0, ∀x ∈ K, i ∈ {0}⋃ Iu, if and
only if whenever u is a KT-point, u solves (P).

Other considerations on Type I invexity (i.e., HM-invexity) and Type II invex-
ity are made by Rueda and Hanson [214]. For example, these authors give
sufficient conditions for HM-invexity, here explored in the following result
(note the similarity with the result setting that a differentiable preinvex
function is invex).

Theorem 5.14. If f : C → R and g : C → Rm are differentiable at x0 ∈ C
and there exists an n-dimensional vector function η such that

f
(
(x0 + λη(x)

) ≤ λf(x) + (1 − λ)f(x0), 0 ≤ λ ≤ 1,

and
g
(
(x0) + βη(x)

) ≤ (1 − β)g(x0), 0 ≤ β ≤ 1,

for all x ∈ K, then f(x) and g(x) are HM-invex at x0.
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Proof. See Rueda and Hanson [214].
��

Moreover, Rueda and Hanson [214] introduced the notion of pseudo-type I
(pseudo-type II) invexity and quasi-type I (quasi-type II) invexity.

Another generalization which avoids the assumption of a common η for the
functions involved in (P) is presented (for a multiobjective programming prob-
lem) by Jeyakumar and Mond [105]. Following Jeyakumar and Mond [105],
a vector function f : C → Rp is said to be V -invex if there exist functions
μ : C ×C → Rn and αi : C ×C → R+ − {0} such that for each x, u ∈ C and
for i = 1, . . . , p,

fi(x) − fi(u) − αi(x, u)μ(x, u)T∇fi(u) ≥ 0.

With p = 1 the definition of V -invexity reduces to the usual definition of
invexity, by setting η(x, u) = α1(x, u)μ(x, u). With p = 1 and μ(x, u) = x−μ,
the definition reduces to strong pseudo convexity (see, [169]). With p > 1
the above notion states that it must be possible that the kernel η is given
by the product of a common part μ(x, u) and a not necessarily common part
αi(x, u) > 0.

These authors similarly introduced the notion of V -pseudo-invexity and V -
quasi-invexity and obtain optimality and duality results for a Multiobjective
Optimization Problem (see also [70, 163]).

Apart from all these special structures, we stress again that in the proof
of optimality theorems (and also duality theorems-see Sect. 5.3) it is required
that the functions involved in (P) are to be invex with respect to a common η
(or that the whole Lagrangian function is invex). Taking these considerations
into account, and following the paper of Phu [200], not always invexity is a
true and genuine generalization of convexity. Indeed, consider the following
functions:
φ(x) = x1−x2

2, φ(x) = −x1, x = (x1, x2) ∈ R2. These functions are of course
differentiable on R2, with ∇φ(x) = (1,−2x2) and ∇φ(x) = (−1, 0). For

η(x, y)T = x− y + μ(x, y)T , μ(x, y)T =
(−(x2 − y2)2, 0

)

for all x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2, we have

η(x, u)T∇φ(y) = x1 − y1 − (x2 − y2)2 − 2y2(x2 − y2)
= x1 − y1 − x2

2 + y2
2

= φ(x) − φ(y),

which implies that both φ and −φ are invex on R2 with respect to η.
Let us consider the problems

(P1) Minimize φ(x ), subject to ϕ(x ) ≤ 0

and

(P2) Minimize ϕ(x ), subject to φ(x ) ≤ 0.
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For x∗ = (0, 0) ∈ R2, we have φ(x∗) = ϕ(x∗) = 0 and ∇φ(x∗) + ∇ϕ(x∗) =
(1, 0) + (−1, 0) = (0, 0).

Thus, for λ∗ = 1, the Kuhn–Tucker conditions are satisfied for both
problems. Since φ(x∗) = 0 and φ(x) = −x2

2 < 0 for all x ∈ R2 satisfying
ϕ(x) = −x1 = 0 and x 	= x∗, x∗ is not a local minimizer of problem (P1).

Since ϕ(x∗) = 0 and ϕ(x) = −x1 < 0 for all x ∈ R2 satisfying φ(x) =
x1 − x2

2 = 0 and x 	= x∗, x∗ is not a local minimizer of problem (P2).
We have therefore seen that the invexity of φ and convexity of ϕ are not

sufficient for a Kuhn–Tucker point of (P1) or (P2) to be a global minimizer.
This situation may occur even if ϕ is a strictly convex function. For instance,
if φ(x) = −x1 + 1

2 (x2
1 +x2

2) then ϕ(x∗) = 0, φ(x∗)+ϕ(x∗) = (1, 0)+ (−1, 0) =
(0, 0) for x∗ = (0, 0), and for all x ∈ R2 satisfying x1 = x2

2 and 0 < x1 < 1,
we have −x1 + x2

2 < 0 and ϕ(x) = −x1 + 1
2 (x2

1 + x2
2) = 1

2 (−x1 + x2
2) < 0,

i.e., the Kuhn–Tucker point x∗ = (0, 0) is not a local (nor a global) minimizer
of the problem (P2). It is easy to show that this vector x∗ = (0, 0), is also
a Kuhn–Tucker point of the problem (P1), which is not a local minimizer.
Note that φ(x) = x1 − x2

2 is invex with respect to the several η which are
different from η(x, y)T = x − y + μ(x, y)T , μ(x, y)T =

(−(x2 − y2)2, 0
)
. For

instance, we can consider η(x, y)T = − (|x1| + x2
2 + |y1|

)∇ϕ(y) and for all
x = (x1, y1) ∈ R2, y = (y1, y2) ∈ R2, we have

φ(x) − φ(y) = x1 − x2
2 − y1 + y2

2

≥ − (|x1| + x2
2 + |y1|

)

≥ − (|x1| + x2
2 + |y1|

) (
1 + 4y2

2

)

= η(y, x)T∇φ(y),

which implies that φ is invex on R2 with respect to this kernel function η. But
there exists no function η such that both functions φ and ϕ are invex with
respect to the same η.

5.2 A Sufficient Condition for Invexity Through
the Use of the Linear Programming

Here we follow the constructive approach of Hanson and Rueda [89] to check
the existence of a kernel function η(x, u) in the nonlinear programming (P).
We have already mentioned that Craven [43] has given necessary and sufficient
conditions for a function f to be invex, assuming that the functions f and η
are twice continuously differentiable (see, Sect. 2.2). From application point
of view these conditions are difficult to apply. Hanson and Rueda [89] give a
sufficient condition for the existence of η(x, u) in problem (P), through the
use of linear programming, which is direct and efficient. It will be assumed
throughout this section that f is the objective function and g is the constraint
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vector function in problem (P) of the previous section. Assume further that
f and every gi, i = 1, . . . ,m, are twice continuously differentiable on C ⊆ Rn

and that for feasible points x, u, 1
2 (x − u)T · ∇f(z)(x− u) has a lower bound

K0 and 1
2 (x−u)T ·∇gi(z)(x−u) has a lower bound Ki for i = 1, . . . ,m, where

z = αu+ (1 − α)x, 0 < α < 1. Since, by Taylor’s theorem, we have

1
2
(x− u)T · ∇f(z)(x− u) = f(x) − f(u) − (x− u)T∇f(u)

for some z, then for a given u,K0 is easily found if lower bounds for f(x)
and x in the feasible set K are known. Similarly Ki, i = 1, . . . ,m, can be
found. It will also be assumed that for some fixed value of u the gradient
vectors ∇gi(u), i = 1, . . . ,m, are linearly independent. Then from the theory
of generalized inverses of matrices (see, e.g., [206]), it follows that each i there
exists a vector zi(u) such that

zi(u)T∇gi(u) = 1 (5.4)

and

zi(u)T∇gj(u) = 0, ∀j 	= i. (5.5)

A generalized inverse of the matrix ∇g(u) can be used to obtain relations
(5.4) and (5.5), but linear programming is better.

Theorem 5.15. A sufficient condition for the existence of η(x, u) at a given
feasible point u is that

K0 ≥
m∑

j=1

Kjz
j(u)T∇f(u). (5.6)

Proof. By Taylor’s theorem, we have

f(x) − f(u) = (x− u)T∇f(u) +
1
2
(x− u)T · ∇f(z)(x− u)

≥ (x− u)T∇f(u) +K0, (5.7)

and similarly

gi(x) − gi(u) ≥ (x− u)T∇gi(u) +Ki, i = 1, . . . ,m. (5.8)

We now construct an appropriate kernel function η(x, u). Let

η(x, u) = (x− u) +
m∑

j=1

Kjz
j(u). (5.9)
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Then

η(x, u)T∇gi(u) = (x− u)T∇gi(u) +
m∑

j=1

Kjz
j(u)T∇gi(u)(i = 1, . . . ,m)

= (x− u)T∇gi(u) +Ki(i = 1, . . . ,m)
≤ gi(x) − gi(u), i = 1, . . . ,m.

So every gi, i = 1, . . . ,m, satisfies the definition of invexity with respect to
η(x, u). Now

η(x, u)T∇f(u) = (x − u)T∇f(u) +
m∑

j=1

Kjz
j(u)T∇f(u) by (5.9)

≤ (x − u)T · ∇f(u) +K0 (by (5.6))
≤ f(x) − f(u) (by (5.7)),

which satisfies the definition of invexity with respect to η for f. So η(x, u)
exists for problem (P).

��
In general (again assuming u fixed), the vectors zi(u) are not unique. We
can find the best zi(u) in the above theorem, by use of linear programming,
namely, by solving the following problem:
Minimize

∑m
j=1Kjz

j(u)T∇f(u)
subject to zj(u)T∇gi(u) = 1, i = 1, . . . ,m,
and zj(u)T∇gj(u) = 0, j = 1, . . . ,m, j 	= i.

One approach to finding values for K0 and Ki, i = 1, . . . ,m, is through
the use of eigenvalues. If μ0 is the smallest eigenvalue of ∇f(z), then (x −
u)T∇f(z)(x− u) ≥ μ0 ‖x− u‖2

.
Similarly one could find smallest eigenvalues μi for the Hessian matrices

∇gi(z), i = 1, . . . ,m.

Corollary 5.16. A sufficient condition for the existence of η(x, u) in the
problem (P) at a given feasible point u is that

μ0 ≥
m∑

j=1

μjz
j(u)T∇f(u). (5.10)

Again linear programming can be used to find the best vector zi(u) in this
expression, namely

Minimize
m∑

j=1

μjz
j(u)T∇f(u)

Subject to zi(u)T∇gi(u) = 1, i = 1, . . . ,m,
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and
zi(u)T∇gj(u) = 0, i = 1, . . . ,m, j 	= i.

If we desire to test the optimality of a feasible point u, we have, by the Kuhn–
Tucker theorem, if u is optimal and a constraint qualification is satisfied, that
there exists some vector λ ∈ Rm such that

∇f(u) + λT∇g(u) = 0,

λT g(u) = 0, λ ≥ 0.

That is, ∇f(u) = −∑m
i=1 λi∇gi(u). So we have

m∑

j=1

Kjz
j(u)T∇f(u) =

m∑

j=1

Kjz
j(u)T

[
−

m∑

i=1

λi∇gi(u)

]
= −

m∑

j=1

Kjλj

and (5.6) becomes

K0 ≥ −
m∑

j=1

Kjλj . (5.11)

Similarly (5.10) becomes

μ0 ≥ −
m∑

j=1

μjλj . (5.12)

So, if u is optimal, conditions (5.11) or (5.12) will imply the existence of η(x, u)
for the problem (P), without the need for calculating the vectors zj(u), i =
1, . . . ,m.

5.3 Characterization of Solution Sets
of a Pseudolinear Problem

We consider again the contribution of Ansari et al. [3] who take into account
the following problem:

(P̄ )
Minimize f(x)

Subject to x ∈ K,

where f : C → R,C is an open subset of Rn and K is an η-convex subset of
C. Moreover, we assume that the solution set of (P̄ ), S̄ = argminx∈Kf(x) is
non-empty.

Theorem 5.17. If f is a preinvex function on K, then the solution set S̄ of
(P̄ ) is an η-convex set.
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Proof. Let x1, x2 ∈ S̄. Then f(x1) ≤ f(y) and f(x2) ≤ f(y) for all y ∈ K.
Since f is preinvex, we have

f(x1 + λη(x1, x2)) ≤ λf(x1) + (1 − λ)f(x2), ∀λ ∈ [0, 1]
≤ λf(y) + (1 − λ)f(y)
= f(y).

Hence x1 + λη(x1, x2) ∈ S̄, and so, S̄ is an η-convex set.
��

From the proof of Theorem 3.4, it is easy to show that the solution set S̄ of
the (P̄ ) is η-convex if f : C → R is η-pseudolinear, where η : K ×K → Rn

satisfies condition C of Mohan and Neogy [165].
Now we state the first order characterization of the solution set of a η-

pseudolinear program, in terms of any of its solutions. This may be viewed as
a generalization of results of Jeyakumar and Yang [107].

Theorem 5.18. Let f : C → R be differentiable on an open set C and let f be
η-pseudolinear on an open η-convex subset K ⊆ D where η satisfies condition
C (Definition 3.3) and moreover, η(x, y) + η(y, x) = 0, ∀x, y ∈ K. Let x̄ ∈ S̄.
Then S̄ = S̃ = Ŝ, where

S̃ =
{
x ∈ K : η(x̄, x)T∇f(x) = 0

}

Ŝ = {x ∈ K : η(x̄, x)T∇f(x̄) = 0}.
Proof. The point x ∈ S̄ if and only if f(x) = f(x̄). By Theorem 3.4, we have
f(x) = f(x̄) if and only if η(x̄, x)T∇f(x) = 0. Also f(x) = f(x̄) if and only
if η(x̄, x)T∇f(x̄) = 0. The latter is equivalent to η(x, x̄)T∇f(x̄) = 0, since
η(x̄, x) = −η(x, x̄).

��
Corollary 5.19. Let f and η be the same as in Theorem 5.18. Then S̄ =
S̃1 = Ŝ1, where

S̃1 = {x ∈ K : η(x̄, x)T∇f(x) ≥ 0},
Ŝ1 = {x ∈ K : η(x̄, x)T∇f(x̄) ≥ 0}.

Proof. It is clear from Theorem 5.18 that S̄ ⊆ S̃1. We prove that S̃1 ⊆ S̄.
Assume that x ∈ S̃1, that is, x ∈ K such that η(x̄, x)T∇f(x) ≥ 0. In view of
Theorem 3.5, there exists a function p defined on K×K such that p(x, x̄) > 0
and

f(x̄) = f(x) + p(x, x̄)η(x̄, x)T∇f(x) ≥ f(x).

This implies that x ∈ S̄, and hence S̃1 ⊆ S̄. Similarly we can prove that
Ŝ1 = S̄, using the identity η(x, x̄) = −η(x̄, x).

��
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Theorem 5.20. In problem (P̄ ), assume that f is differentiable on C and
η-pseudolinear on an η-convex set K ⊆ C, where η satisfies condition C (Def-
inition 3.3) and η(x, y) + η(y, x) = 0, ∀x, y ∈ K. If x̄ ∈ S̄, then S̄ = S∗ = S∗

1 ,
where

S∗ = {x ∈ K : η(x̄, x)T∇f(x̄)},
S∗

1 = {x ∈ K : η(x̄, x)T∇f(x̄) ≥ η(x, x̄)T∇f(x)}.
Proof. (1) S̄ ⊆ S∗. Let x ∈ S̄. It follows from Theorem 5.18 that

η(x̄, x)T∇f(x) = 0 = η(x̄, x)T∇f(x̄).

Since η(x̄, x) = −η(x, x̄), we have

η(x, x̄)T∇f(x) = 0 = η(x̄, x)T∇f(x̄).

Thus x ∈ S∗, and hence S̄ ⊆ S∗.
(2) S∗ ⊆ S∗

1 is obvious.
(3) S∗

1 ⊆ S̄. Assume that x ∈ S∗
1 . Then x ∈ K satisfies

η(x̄, x)T∇f(x̄) ≥ η(x, x̄)T∇f(x). (5.13)

Suppose that x /∈ S̄. Then f(x) > f(x̄). By pseudo-invexity of −f, we have

η(x, x̄)T∇f(x̄) > 0.

Since η(x̄, x) = −η(x, x̄), we have

η(x̄, x)T∇f(x̄) < 0.

Using (5.13), we have

η(x, x̄)T∇f(x) < 0 or η(x̄, x)T∇f(x) > 0.

In view of Theorem 3.5, there exists a function p defined on K ×K such that
p(x, x̄) > 0, and

f(x̄) = f(x) + p(x, x̄)η(x̄, x)T∇f(x) > f(x),

a contradiction. Hence x ∈ S̄.
��

5.4 Duality

Hanson [83] demonstrated that invexity of f and gi, i = 1, . . . ,m, with respect
to a common η was also sufficient for weak and strong duality to hold between
the primal problem (P) and its Wolfe dual, where the Wolfe dual is given by
Wolfe [247]:
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(WD)

Maximizeu,λf(u) + λT g(u)

Subject to ∇f(u) + ∇ (λT g(u)
)

= 0

λ ≥ 0.

More precisely, we have the following results.

Theorem 5.21 (Strong duality). Under the condition of a suitable con-
straint qualification for (P), if x0 is minimal in the primal problem (P), then
(x0, λ0) is maximal in the dual problem (WD), where λ0 is given by the Kuhn–
Tucker conditions and f and gi, i = 1, . . . ,m, are all invex with respect to a
common η. Moreover, the extremal values are equal in the two problems.

Proof. Let (u, λ) be any vector feasible for (WD). Then
(
f(x0) + λ0T

g(x0)
)
− (f(u) + λT g(u)

)

= f(x0) − f(u) − λT g(u)
≥ η(x0, u)T∇f(u) − λT g(u)
= −η(x0, u)TλT∇g(u) − λT g(u)
≥ −λT g(x0)
≥ 0.

So (x0, λ0) is maximal in the dual problem, and since λ0T
g(x0) = 0, the

extrema of the two problems are equal.
��

Theorem 5.22 (Weak duality). Let x be feasible for (P) and (u, λ) be fea-
sible for (WD) and let f and gi, i = 1, . . . ,m, be all invex with respect to a
common η. Then we have f(x) ≥ f(u) + λT g(u).

Proof. From the invexity assumptions, we have

f(x) − f(u) − η(x, u)T∇f(u) + λT
(
g(x) − g(u) − η(x, u)T∇g(u)

) ≥ 0.

By regrouping terms, and taking into account the feasibility assumptions, we
obtain

f(x) − (f(u) + λT g(u)
) ≥ (∇f(u) + λT∇g(x)) η(x, u) − λT g(x)

= λT g(u)
≥ 0,

which establishes the weak duality.
��
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Jeyakumar [100] considered the Wolfe dual to problem (P) and, by means of
generalized invexity, obtained various duality theorems. Martin [145] employed
invexity to derive conditions necessary and sufficient for weak duality to hold
between (P) and (WD).

The problem (P) is said to be weak duality invex if there exists a function
η : C × C → Rn such that, for all x, u ∈ C, with g(x) ≤ 0, it holds:
either

f(x) − f(u) − η(x, u)T∇f(u) ≥ 0,

and
−gi(u) − η(x, u)T∇gi(u) ≥ 0, i = 1, . . . ,m;

or
−η(x, u)T∇f(u) > 0,

and
−η(x, u)T∇gi(u) ≥ 0, i = 1, . . . ,m.

It is shown in [145] that weak duality holds between programs (P) and (WD) if
and only if (P) is weak duality invex. Again, as with Kuhn–Tucker sufficiency,
the idea of invexity has allowed a characterization of weak duality for the
Wolfe dual in terms of some function η. Other considerations on duality the-
orems by definition of Type II invexity, are made by Hanson and Mond [88].
Here, following Mond and Smart [179], we state two converse dual results.
The first of these requires that f and g be twice differentiable and does not
presuppose the existence of an optimal solution. It is based on the converse
duality theorem of Huard [95]. The second theorem is based on Mangasar-
ian [142], assumes the existence of an optimal solution and imposes a stronger
invexity assumption.

Theorem 5.23. Assume that f and g are twice differentiable, and that f and
gi, i = 1, . . . ,m, are invex with respect to a common kernel function η. Let
(x̄, λ̄) be optimal for (WD), and assume that ∇f(x̄) + ∇(λ̄T g(x̄)) is non-
singular. Then x̄ is optimal for (P).

Proof. From Huard [95], it follows that x̄ is feasible for (P) and λ̄T g(x̄) = 0.
The invexity hypothesis implies that weak duality holds, so x̄ is optimal for
(P).

��
The next theorem requires the notion of strict invexity at a point.

Definition 5.24. Let f : C → R be invex with respect to some function
η : C × C → Rn; f is said to be strictly invex at x̄ if

f(x) − f(x̄) > η(x, x̄)T∇f(x̄), ∀x ∈ C, x 	= x̄.

Let f : C → R be pseudo-invex with respect to some function η : C×C → Rn;
f is said to be strictly pseudo-invex at x̄ if

η(x, x̄)T∇f(x̄) ≥ 0 ⇒ f(x) > f(x̄), ∀x ∈ C, x 	= x.
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Theorem 5.25 (Strict converse duality). Assume f and gi, i = 1, . . . ,m,
are invex with respect to a common kernel function η. Let x∗ be optimal for
(P) and (x̄, λ̄) be optimal for (WD). If a constraint qualification is satisfied
for (P) and f is strictly invex for (P) at x̄, then x∗ = x̄.

Proof. We proceed by contradiction. Assume that x∗ 	= x̄. By Theorem 5.21
there exists λ∗ such that (x∗, λ∗) is optimal for (WD). Hence

f(x∗) = f(x∗) + λ∗g(x∗) = f(x̄) + λ̄T g(x̄). (5.14)

Now strict invexity of f at x̄ gives

f(x∗) − f(x̄) > η(x∗, x̄)T∇f(x̄), (5.15)

and invexity of gi, i = 1, . . . ,m, with λ̄ ≥ 0, gives

λ̄T g(x∗) − λ̄T g(x̄) ≥ η(x∗, x̄)T∇(λ̄T g(x̄)). (5.16)

Adding (5.15) and (5.16), we obtain

f(x∗) − f(x̄) + λ̄T g(x∗) − λ̄T g(x̄) > η(x∗, x̄)T
(∇f(x̄) + ∇ (λ̄T g(x̄)

))
= 0,

as (x̄, λ̄) is feasible for (WD).
But, as λ̄T g(x∗) ≤ 0, then

f(x∗) − f(x̄) − λ̄T g(x̄) > 0,

which contradicts (5.14). Therefore, x∗ = x̄.
��

Now, following Mond and Smart [179] we introduce the dual formulation for
(P) introduced by Mond and Weir [180]. The original version of the Mond–
Weir dual to (P) is defined as follows:

Maximize f(u)

Subject to ∇f(u) + λT g(u) = 0

λT g(u) ≥ 0, λ ≥ 0.

Several duality theorems with respect to this formulation are expounded by
Giorgi and Molho [75]. The advantage of this formulation over the Wolfe
dual is that the objective function of the dual model is the same as in the
primal problem and that the duality theorems are achieved by means of further
relaxations on the invexity requirements.

However, the most general form of the Mond–Weir dual is obtained by
partitioning the set M = {1, . . . ,m} into r + 1 subsets I0, I1, . . . , Ir , (r ≤
m− 1), such that Iα

⋂
Iβ = φ, α 	= β and

⋃r
α=0 Iα = M.
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The Mond–Weir general dual problem is now:
(MWD)

Maximize f(u) +
∑

i∈I0

λigi(u)

Subject to ∇f(u) + ∇ (λT g(u)
)

= 0 (5.17)

λ ≥ 0 (5.18)

∑

i∈Iα

λigi(u) ≥ 0, α = 1, . . . , r. (5.19)

We remark that if I0 = M, r = 1 and I1 = φ, then (MWD) reduces to the
Wolfe dual. If I0 = φ, r = 1 and I1 = M, then (MWD) yields the previous
version of the Mond–Weir dual.

A salient property of the Mond–Weir dual, and possibly one reason for its
inception, is that weak duality between (P) and (WD) implies weak duality
between (P) and (MWD). If we assume that weak duality for the Wolfe dual
holds and that x is feasible for (P) and (u, λ) is feasible for (MWD), then as
(u, λ) must also be feasible for (WD), we have

f(x) ≥ f(u) + λT g(u)

= f(u) +
∑

i∈I0

λigi(u) +
r∑

α=1

∑

i∈Iα

λigi(u)

≥ f(u) +
∑

i∈I0

λigi(u),

which gives weak duality for the Mond–Weir dual.
Weak duality between (P) and (MWD) is easily established under pseudo-

invexity and quasi-invexity assumptions.

Theorem 5.26 (Weak duality). If f +
∑

i∈I0
λigi is pseudo-invex with

respect to some η : C × C → Rn and
∑

i∈I0
λigi, for α = 1, . . . , r, is quasi-

invex with respect to the same η : C × C → Rn, for any λ ∈ Rm
+ , then

inf(P ) ≥ sup(MWD).

Proof. Let x be feasible for (P), and (u, λ) be feasible for (MWD). As g(x) ≤ 0,
then by (5.18) and (5.19)

∑

i∈I0

λigi(x) −
∑

i∈Iα

λigi(u) ≤ 0, α = 1, . . . , r.
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As
∑

i∈Iα
λigi is quasi-invex with respect to η, α = 1, . . . , r, then

η(x, u)T∇
(
∑

i∈Iα

λigi(u)

)
≤ 0, α = 1, . . . , r.

Summing over α, we have

η(x, u)T∇
⎛

⎝
∑

i/∈I0

λigi(u)

⎞

⎠ ≤ 0.

But by (5.17)

∇
⎛

⎝
∑

i/∈I0

λigi(u)

⎞

⎠ = ∇f(u) + ∇
(
∑

i∈I0

λigi(u)

)
.

Therefore,

η(x, u)T

(
∇f(u) + ∇

(
∑

i∈I0

λigi(u)

))
≤ 0.

Since f +
∑

i∈I0
λigi is pseudo-invex with respect to η, then

f(x) +
∑

i∈I0

λigi(x) ≥ f(u) +
∑

i∈I0

λigi(u).

Now, λi ≥ 0 and gi(x) ≤ 0, ∀i ∈ I0, so
∑

i∈I0
λigi(x) ≤ 0, and hence

f(x) ≥ f(u) +
∑

i∈I0

λigi(u).

As x and (u, λ) were arbitrary feasible solutions of (P) and (MWD) respec-
tively, then inf(P) ≥ sup(MWD).

��
Strong duality holds with the assumption of a suitable constraint qualification.

Theorem 5.27 (Strong duality). Let x∗ be optimal for (P), and assume
the invexity assumptions of Theorem 5.26 are satisfied. Assume also that a
suitable constraint qualification is satisfied for (P). Then there exists λ∗ ∈ Rm

such that (x∗, λ∗) is optimal for (MWD), and the objective values are equal.

Proof. As x∗ is optimal for (P) and a suitable constraint qualification is satis-
fied, then there exists λ∗ ∈ Rm such that the Kuhn–Tucker conditions for (P)
are satisfied. Since λ∗ ≥ 0 and g(x∗) ≤ 0, then the complementarity relations
λ∗i gi(x∗), i = 1, . . . ,m, implies that

∑

i∈Iα

λ∗i gi(x∗) = 0, α = 0, 1, . . . , r.
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Hence, (x∗, λ∗) is feasible for (MWD), with

f(x∗) +
∑

i∈I0

λ∗i gi(x∗) = f(x∗),

which implies that (x∗, λ∗) is optimal for (MWD), by Theorem 5.26.
��

Similar to Wolfe duality, two types of converse dual theorems will be given
here. The first generalizes that of Mond and Weir [180] to pseudo-invexity and
quasi-invexity, whereas the second is a strict converse duality theorem in the
spirit of Theorem 5.25.

Theorem 5.28. Assume that f and g are twice differentiable and that the
invexity assumptions of Theorem 5.26 hold. Let (x̄, λ̄) be optimal for (MWD).
Assume also that ∇2f(x̄) +∇2

(
λ̄T g(x̄)

)
is non-singular, and that the vectors∑

i∈Iα
∇λ̄gi(x̄) = 0, α = 1, . . . , r, are linearly independent. Then, x̄ is optimal

for (P).

Proof. Mond and Weir [180] demonstrated that x̄ is feasible for (P). Optimal-
ity of x̄ follows by weak duality (Theorem 5.26).

��
Theorem 5.29 (Strict converse duality). Assume the invexity assump-
tions of Theorem 5.26 hold. Let x∗ be optimal for (P) and (x̄, λ̄) be optimal
for (MWD). If a constraint qualification for (P) is satisfied and f+

∑
i∈I0

λ̄igi

is strictly pseudo-invex at x̄, then x∗ = x̄.

Proof. By contradiction. Assume that x∗ 	= x̄. From Theorem 5.27, there
exists λ∗ ∈ Rm such that (x∗, λ∗) is optimal for (MWD). Thus

f(x∗) = f(x∗) +
∑

i∈I0

λ∗i gi(x∗) = f(x̄) +
∑

i∈I0

λ̄igi(x̄). (5.20)

As g(x∗) ≤ 0 and λ̄ ≥ 0, then
∑

i∈Iα

λ̄igi(x∗) −
∑

i∈Iα

λ̄igi(x̄) ≤ 0, α = 1, . . . , r.

By quasi-invexity of
∑

i∈Iα
λ̄igi, α = 1, . . . , r, we have

η(x∗, x̄)T∇
⎛

⎝
∑

i/∈I0

λ̄igi(x̄)

⎞

⎠ ≤ 0.

By (5.17), this implies that

η(x∗, x̄)T

(
∇f(x̄) + ∇

(
∑

i∈I0

λ̄igi(x̄)

))
≤ 0.
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Now, strict pseudo-invexity of f +
∑

i∈I0
λ̄igi at x̄ gives

f(x∗) +
∑

i∈I0

λ̄igi(x∗) > f(x̄) +
∑

i∈I0

λ̄igi(x̄).

But λ̄ ≥ 0 and g(x∗) ≤ 0 imply that
∑

i∈I0
λ̄igi(x∗) ≤ 0, so

f(x∗) > f(x̄) +
∑

i∈I0

λ̄igi(x̄).

However, this contradicts (5.20), so x∗ = x̄.
��

Invexity can be used also to weaken the usual convexity assumptions for sym-
metric duality. A pair of program is said to be symmetric if, when the dual
is cast in the form of the primal, its dual is the primal. The simplest and the
classical example of this occurs for the case of linear programming. Dantzig
et al. [53] presented a more general nonlinear symmetric dual pair in terms of
bifunctions defined on Rn ×Rm.

Consider a differentiable bifunction K : Rn × Rm → R. Denote by ∇1K
the gradient with respect to the first vector and ∇2K the gradient with respect
to the second vector, so that ∇1K(x, y) ∈ Rn and ∇2K(x, y) ∈ Rm. When K
is twice differentiable, ∇11K and ∇22K denote the Hessians with respect to
the first and second vectors, respectively.

The pair of programs given by Dantzig et al. [53] are:

(SP)
Minimize K(x, y) − yT∇2K(x, y)

Subject to ∇2K(x, y) ≤ 0

x ≥ 0

y ≥ 0

(SD)
Maximize K(u, v) − uT∇1K(u, v)

Subject to ∇1K(u, v) ≥ 0

u ≥ 0

v ≥ 0.

Weak duality between (SP) and (SD) was established under the assumption
that K is convex-concave; that is, K(·, y) convex for each y ∈ Rm and K(x, ·)
concave for each x ∈ Rn. A more general convexity requirement for weak
duality, namely that K(·, y) is invex with respect to some function η1 : Rn ×
Rn → Rn (η1 need not be independent of y ∈ Rm

+ ,) −K(x, ·) is invex with
respect to some function η2 : Rm × Rm → Rm (η2 need not be independent



5.4 Duality 97

of x ∈ Rn
+) and whenever (x, y) is feasible for (SP) and (u, v) is feasible for

(SD),
η1(x, u) + u ≥ 0

and
η2(v, y) + y ≥ 0.

The invexity requirements may be weakened further by employing the approach
of Mond and Weir [180], using the idea of Mond–Weir dual with r = 1, I0 = φ
and I1 = M. This gives the pair of problems:

(MWSP)
Minimize K(x, y)

Subject to ∇2K(x, y) ≤ 0

yT∇2K(x, y) ≥ 0

x ≥ 0

(MWSD)
Maximize K(u, v)

Subject to ∇1K(u, v) ≥ 0

uT∇1K(u, v) ≤ 0

v ≥ 0.

We have the following results, whose proofs are left to the reader.

Theorem 5.30 (Weak duality). Assume that for each (u, v) is feasible for
(MWSD) for some u ∈ Rn,K(·, v) is pseudo-invex with respect to some func-
tion ηv : Rn ×Rn → Rn satisfying ηv(x, u) + u ≥ 0 whenever (x, y) is feasible
for (MWSP). Assume also that for each x ∈ Rn such that (x, y) is feasible
for (MWSP) for some y ∈ Rm,−K(x, ·) is pseudo-invex with respect to some
function ξx : Rm × Rm → Rm satisfying ξx(v, y) + y ≥ 0 whenever (u, v) is
feasible for (MWSD). Then inf(MWSP) ≥ sup(MWSD).

Theorem 5.31 (Strong duality). Assume the pseudo-invexity conditions of
Theorem 5.30 hold. Let (x∗, y∗) be an optimal solution of (MWSP) and assume
that ∇22K(x∗, y∗) is non-singular and ∇2K(x∗, y∗) 	= 0. Then (x∗, y∗) is an
optimal solution for (MWSD), and the respective objective values are equal.

For other treatments of symmetric duality with invexity, see, e.g., Nanda
[189] and Nanda and Das [190]. Balas [11] examined the symmetric dual-
ity results of Dantzig et al. [53] when some primal and dual variables are
constrained to belong to some arbitrary set for example, the set of integers.

Let Rn denote the n-dimensional Euclidean space and let Rn
+ be its non-

negative orthant. Let f(x, y) be a real valued thrice continuously differentiable
function defined on an open set in Rn × Rn. Let U and V be two arbitrary
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sets of integers in Rn and Rm, respectively. As in Balas [11] we constrain some
of the components of x and y to belong to arbitrary sets of integers. Suppose
the first n1(0 ≤ n1 ≤ n) components of x belong to U and the first m1(0 ≤
m1 ≤ m) components of y belong to V. Then we write (x, y) = (x1, x2, y1, y2),
where x1 = (x1, x2, . . . , xn1) ∈ U and y1 = (y1, y2, . . . , ym1) ∈ V, x2 and y2

being the vectors of the remaining components of x and y, respectively. Let
∇x2K(x̄, ȳ) denote the gradient vector of K(x, y) with respect to x2 at (x̄, ȳ).
Also let ∇x2x2K(x̄, ȳ) denote the Hessian matrix with respect to x2 evaluated
at (x̄, ȳ). ∇y2K(x̄, ȳ) and ∇y2y2K(x̄, ȳ) are defined similarly.

Let s1, s2, . . . , sr be elements of an arbitrary vector space. A vector func-
tion G(s1, . . . , sr) will be called additively separable with respect to s1 if there
exist vector functions H(s1) (independent of s1, . . . , sr) and K(s2, . . . , sr)
(independent of s1), such that

G(s1, . . . , sp) ≡ H(s1) +K(s2, . . . , sp).

With C1 = Rn−n1
+ , C2 = Rm−m1

+ and λ = μ = 1, the symmetric dual
formulation of Mishra et al. [152]:

Maxx1Minx2,yK(x, y) − (y2)T∇2K(x, y)

Subject to ∇2K(x, y) ≤ 0

x1 ∈ U, y1 ∈ V,

x2 ≥ 0, y2 ≥ 0,

Minv1Maxu,v2K(x, y) − (x2)T∇1K(x, y)

Subject to ∇1K(x, y) ≥ 0

x1 ∈ U, y1 ∈ V,

x2 ≥ 0, y2 ≥ 0.

The above formulation of Mishra et al. [152] is incorrect as pointed out by
Kumar et al. [135] as can be seen from the following example due to Kumar
et al. [135]

Example 5.32. Let K(x, y) = ex1
+ ex2−y be defined on some open set of

R2 × R containing R2
+ × R+.K(x, y) is pseudo-convex in x2 for fixed (x1, y)

and pseudo-concave in y for fixed x and satisfies all assumptions on the kernel
function of Mishra et al. [152]. With this K(x, y), the above pair of problem
take the following form:

Maxx1Minx2,ye
x1

+ ex2−y + yex2−y

Subject to − ex2−y ≤ 0,
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0 ≤ x1 ≤ L, x1integer,

x2 ≥ 0, y ≥ 0,

Minv1Maxu,v2ex1
+ ex2−y − x2ex2−y

Subject to ex2−y ≥ 0

0 ≤ x1 ≤ L, x1integer

x2 ≥ 0, y ≥ 0.

Here the arbitrary set U is taken to be the set of integers greater than or equal
to zero and less than or equal to L. Taking f(x, y) = ex1

+ex2−y +yex2−y and
g(x, y) = ex1

+ ex2−y − x2ex2−y, one may easily observe that the supremum
infimum of f(x, y) for any (x, y) feasible to the primal problem is eL and
infimum supremum of g(x, y) over all (x, y) feasible to the dual problem is
eL + 1. Obviously eL < eL + 1 and hence, the symmetric duality Theorem of
Mishra et al. [152] failed.

Kumar et al. [135] modified the model of Mishra et al. [152]:

(MMSP)
Maxx1Minx2,yK(x, y)

Subject to ∇2K(x, y) ≤ 0

yT∇2K(x, y) ≥ 0

x1 ∈ U, y1 ∈ V,

x2 ≥ 0, y2 ≥ 0,

(MMSD)
Minv1Maxu,v2K(u, v)

Subject to ∇1K(u, v) ≥ 0

uT∇1K(u, v) ≤ 0

u1 ∈ U, v1 ∈ V,

u2 ≥ 0, v2 ≥ 0.

Kumar et al. [135] established symmetric duality theorem for (MMSP) and
(MMSD) under pseudo-convexity/pseudo-concavity assumptions. We state
the theorem without proof.

Theorem 5.33 (Symmetric duality). Let K(x, y) be separable with respect
to x1 or y1 and twice differentiable in x2 or y2. Let K(x, y) be pseudo-convex
in x2 for each (x1, y) and pseudo-concave in y2 for each (x, y1). Let (x̄, ȳ)
solves (MMSP) and ∇2

1K(x, y) and ∇2
2K(x, y) be positive or negative definite

together with ∇1K(x̄, ȳ) 	= 0 and ∇2K(x̄, ȳ) 	= 0. Then (x̄, ȳ) also solves
(MMSD) and the two optimal values are equal.
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5.5 Second and Higher Order Duality

Consider the nonlinear programming problem introduced in Sect. 5.1:
(P)

Minimize f(x)

Subject to g(x) ≤ 0,

where x ∈ C,C open set C ⊆ Rn and f and g are twice differentiable functions
from C → R and Rm, respectively. The Wolfe dual of (P) is (see Sect. 5.4)

(WD)
Maximizeu,yf(u) + yT g(u)

Subject to ∇f(u) + yT∇g(u) = 0,

y ≥ 0,

where y ∈ Rm.
By introducing an additional vector p ∈ Rn, Mangasarian [144] formulated

the following second order dual:
(WD2)

Maximize(u,y,p)f(u) + yT g(u) − 1
2
pT∇2

(
f(u) + yT g(u)

)
p

Subject to ∇f(u) + yT∇g(u) + ∇2
(
f(u) + ytg(u)

)
p = 0,

y ≥ 0.

Under appropriate conditions on f and g involving convexity and rather com-
plicated restrictions on p, Mangasarian established duality theorems for (P)
and (WD2). At the same time Mond [168] gave rather simple conditions than
Mangasarian [144], using a generalized form of convexity. This type of gener-
alization was also studied by Mahajan and Vartak [141]. Here we follow the
approach of Hanson [84]; for another more general approach see Mishra [154].
One significant practical use of duality is that it provides bounds for the value
of the objective function when approximations are used. Second order duality
may provide tighter bounds than first order duality because there are more
parameters involved.

The dual considered is of the form
(WD3)

Maximize f(u) + yT g(u) − 1
2
qT∇2

(
f(u) + yT g(u)

)
r

Subject to ∇f(u) + yT∇g(u) + ∇2
(
f(u) + yT g(u)

)
p = 0, (5.21)

y ≥ 0, (5.22)
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where p, q, r ∈ Rn. In general, p, q, r can be regarded as functions, although
the operators ∇ and ∇2 in the above operate only on f and g. Note that the
constraints of (WD3) are the same as in (WD2).

Hanson and Mond [88] introduced a slight generalization of the class of
invex functions, when applied to problem (P), called by them Type I functions.
Here we generalize further to second order Type I functions.

Definition 5.34. Let Y be the constraint set of (WD3), and let η(x, u),
p(x, u), q(x, u) and r(x, u) be vector functions: Y × Y → Rn. The objec-
tive function f(x) is said to be a second order Type I objective function and
gi(x), i = 1, . . . ,m, is said to be second order Type I constraint function at
u ∈ Y with respect to the functions η(x, u), p(x, u), q(x, u) and r(x, u) if for
all x ∈ Y,

f(x) − f(u) ≥ η(x, u)T∇f(u) + η(x, u)T∇2f(u)p(x, u)

− 1
2
q(x, u)T∇2f(u)r(x, u) (5.23)

and

−gi(u) ≥ η(x, u)T∇gi(u) + η(x, u)T∇2gi(u)p(x, u)

− 1
2
q(x, u)T∇2gi(u)r(x, u), (5.24)

where i = 1, . . . ,m.

Note that if p, q, r are identically zero functions (i.e., zero vectors), then (5.23)
and (5.24) are the definitions of Type I functions (or Type I invexity or HM-
invexity) given by Hanson and Mond [88]. Now we obtain for (P) and (WD3)
weak and strong second order duality theorems.

Theorem 5.35 (Weak duality). Let x satisfy the constraints of (P) and
u, y, p, q, r satisfy the constraints of (WD3). Let f and gi, i = 1, . . . ,m, be
second order Type I functions defined over the constraint sets of (P) and
(WD3). Then inf(P) ≥ sup(WD3).

Proof.

f(x) − f(u) − yT g(u) +
1
2
q(x, u)T∇2

[
f(u) + yT g(u)

]
r(x, u)

≥ η(x, u)T∇f(u) + η(x, u)T∇2f(u)p(x, u) − 1
2
q(x, u)T∇2f(u)r(x, u)

− yT g(u) +
1
2
q(x, u)T∇2

[
f(u) + yT g(u)

]
r(x, u)

= η(x, u)T∇f(u) + η(x, u)T∇2f(u)p(x, u)

− yT g(u) +
1
2
q(x, u)T∇2

(
yT g(u)

)
r(x, u)
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= −η(x, u)T∇ (yT g(u)
)− η(x, u)T∇2

(
yT g(u)

)
p(x, u)

− yT g(u) +
1
2
q(x, u)T∇2

(
yT g(u)

)
r(x, u) by (5.21)

≥ 0, by (5.24) and (5.22).
��

Theorem 5.36 (Strong duality). Suppose x∗ is optimal in (P) and x∗ satis-
fies one of the usual constraint qualifications for (P). Then there exists y ∈ Rm

such that (x∗, y, p = q = r = 0) is feasible for (WD3) and the corresponding
values of (P) and (WD3) are equal. If in addition (5.23) and (5.24) are sat-
isfied for all feasible solutions of (WD3), then x∗ and (x∗, y, p = q = r = 0)
are optimal for (P) and (WD3), respectively.

Proof. The Kuhn–Tucker conditions for a minimum at x∗ are that there exists
y ∈ Rm such that

∇f(x∗) + ∇yT g(x∗) = 0,

yT g(x∗) = 0,

y ≥ 0.

Therefore, the points (x∗, y, p = q = r = 0) is feasible for (WD3) and the
values of (P) and (WD3) are equal, and it follows from Theorem 5.35 that x∗

and (x∗, y, p = q = r = 0) are optimal for (P) and (WD3).
��

Since p = q = r = 0 at the optimum, in which case the second order dual
reduces to the first order dual, there may seem to be no point in having the
additional complication of introducing the extra functions p, q and r. However,
if an appropriate value for x∗ is used then the optimal values for p, q and r
in the approximating dual are not necessarily zero, and the second order dual
may be used to give a tighter bound than the first order dual for the value
of the primal objective function. Note that in the proof of Theorem 5.36 it
would be sufficient for either q or r to be zero and not necessarily both.

Higher order duality problems and invexity have been examined by Mond
and Zhang [182] and by Mishra and Rueda [160]. Mishra and Rueda [161]
have also treated he case of higher order (generalized) invexity and duality
for a nondifferentiable mathematical programming problem.

For higher order duality the starting paper is Mangasarian [144]. If
(P)

Minimizex {f(x) : g(x) ≤ 0}
is the usual primal problem, the Mangasarian second order dual is (WD2). By
introducing two differentiable functions h : Rn ×Rn → R and k : Rn ×Rn →
Rm Mangasarian [144] formulated the following higher order dual:

(HD)
Maximizeu,y,pf(u) + h(u, p) + yT g(u) + yTk(u, p)

Subject to ∇ph(u, p) + ∇py
Tk(u, p) = 0

y ≥ 0,
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where ∇ph(u, p) denotes the gradient of h with respect to p and ∇p

(
yTk(u, p)

)

denotes the gradient of yTk with respect to p.
Note that if h(u, p) = pT∇f(u), k(u, p) = pT∇g(u), then (HD) becomes

(WD), and if h(u, p) = pT∇f(u) − 1
2p

T∇2f(u)p, and k(u, p) = pT∇g(u) −
1
2p

T∇2g(u)p, then (HD) becomes (WD2).
Mangasarian [144], however, did not prove a weak duality theorem for (P)

and (HD) and only gave a limited version of strong duality. The following
theorems and proofs are taken from Mond and Zhang [182].

Theorem 5.37 (Weak duality). Let x be feasible for (P) and (u, y, p) feasi-
ble for (HD). If for all feasible (x, u, y, p) there exists a function η : Rn×Rn →
Rn such that

f(x) − f(u) ≥ η(x, u)T∇ph(u, p) + h(u, p) + pT∇ph(u, p) (5.25)

and

gi(x) − gi(u) ≥ η(x, u)T∇pki(u, p) + ki(u, p) + pT∇pki(u, p), (5.26)

for i = 1, . . . ,m, then, inf(P) ≥ sup(HD).

Proof.

f(x) − f(u) − h(u, p) − yT g(u) − yTk(u, p)
≥ η(x, u)T∇ph(u, p) + pT∇ph(x, u) − yT g(u) − yTk(u, p) by (5.25)
= −η(x, u)T∇p

(
yTk(u, p)

)− pT∇p

(
yTk(u, p)

)− yT g(u) − yTk(u, p)

≥ −yT g(x) by (5.26)
≥ 0.

��
The following strong duality follows on the lines of Mond and Weir [181].

Theorem 5.38 (Strong duality). Let x0 be a local or global optimal solution
of (P) at which a constraint qualification is satisfied and let h(x0, 0) = 0,
k(x0, 0) = 0,∇ph(x0, 0) = ∇xf(x0),∇pk(x0, 0) = ∇xg(x0). Then there exists
y ∈ Rm such that (x0, y, p = 0) is feasible for (HD) and the corresponding
values of (P) and (HD) are equal. If (5.25) and (5.26) are satisfied for all
feasible (x, u, y, p), then x0 and (x0, y, p = 0) are global optimal solutions for
(P) and (HD).

5.6 Saddle Points, Optimality and Duality
with Nonsmooth Invex Functions

In Sect. 5.4, we have described the Wolfe and the Mond–Weir duals for prob-
lem (P). Another approach to duality, which does not necessarily require
that the functions involved have to be differentiable, is through Lagrangian
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duality and saddle points of the Lagrangian function. The general theory of
Lagrangian duality is concerned with functions f : C → R, g : C → Rm,
where C ⊆ Rn. The general Lagrangian function (suitable for problem (P))
may be written as

L(x, y) =

⎧
⎨

⎩

f(x) + yT g(x), x ∈ C, y ≥ 0
−∞, x ∈ C, y < 0
∞, x /∈ C.

Two problems associated with this Lagrangian function can be considered.

(P1)
inf

x∈Rp
sup

y∈Rm

L(x, y)

(D1)
sup

y∈Rm

inf
x∈Rn

L(x, y).

Weak duality holds between (P1) and (D1) without any convexity assump-
tions; it is of more interest to see how the properties of this pair of problems
related to Wolfe duality. Necessary and sufficient conditions for optimality of
(P) may be expressed using (P1) and (D1). First we require conditions for
optimality of (P1) and (D1), which calls for the notion of a saddle point.

Definition 5.39. The point (x0, y0), y0 ≥ 0, is said to be a saddle point of
L(x, y) if L(x0, y) ≤ L(x0, y0) ≤ L(x0, y), ∀x ∈ Rn, ∀y ∈ Rm.

Stoxer and Witzgall [228] have proved the following two properties with no
further assumption on L(x, y):

(a) If (x0, y0) is a saddle point of L(x, y), then (x0, y0) is optimal in programs
(P1) and (D1).

(b) If (x1, y1) is optimal in (P1), and (x2, y2) is optimal in (D1), with
L(x1, y1) = L(x2, y2), then (x1, y2) is a saddle point of L(x, y) (and
consequently, (x1, y2) is optimal in both (P1) and (D1)).

Now, program (P1) is actually equivalent to (P) since

L(x, y) =
{
f(x), x ∈ C, g(x) ≤ 0
∞, x ∈ C, g(x) � 0, or x ∈ C.

Now, program (P1) corresponds to minimize f(x) subject to x ∈ C and g(x) ≤
0. This leads to the conclusion that if (x0, y0) is a saddle point of L, then x0 is
optimal in (P). A converse result regarding conditions for an optimal solution
x0 of (P) to yield a y0 such that the pair (x0, y0) is a saddle point of L
has been given in Ben-Israel and Mond [18], using invexity of the Lagrangian
function L on C along with the modified Slater condition. That Theorem may
be extended to admit the modified Karlin condition.
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Theorem 5.40. Assume that x0 is an optimal solution of (P) and that a
suitable constraint qualification holds. If f and gi, i = 1, . . . ,m, are invex with
respect to a common η, then there exists y0 ≥ 0 such that

f(x0) + yT g(x0) ≤ f(x0) + y0T
g(x0) ≤ f(x) + y0T

g(x), (5.27)

∀x ∈ C, ∀y ∈ Rm, y ≥ 0 (i.e., (x0, y0) is a solution of the saddle point problem,
(here given in a less general formulation than before).

Proof. Since x0 is optimal for (P) and a constraint qualification is satisfied,
then by the Kuhn–Tucker necessary conditions, there exists y0 ∈ Rm such
that y0 ≥ 0 and ∇f(x0) + ∇(y0T

g(x0)) = 0, as well as y0T
g(x0) = 0. Since

f(x) and every gi(x), i = 1, . . . ,m, are invex with respect to a common η, the
Kuhn–Tucker conditions imply

f(x0) + y0T
g(x0) ≤ f(x) + y0T

g(x)

∀x ∈ C, which is the right-hand side of (5.27). The left side holds since y ≥ 0,
g(x0) ≤ 0, y0T

g(x0) = 0.
��

We note that the assumption that f(x) and gi(x), i = 1, . . . ,m, are invex
with respect to a common η, is equivalent to the assumption in Ben-Israel
and Mond [18] that f + yT g be invex for all y ∈ Rm

+ (recall what observed
after Corollary 2.13). Moreover, the invexity assumptions of Theorem 5.40
may be weakened. It is sufficient to suppose that f + yT g is invex only for
those y ∈ Rm

+ for which (x0, y0) is a Kuhn–Tucker point.
We now turn to the dual problem (D1) in order to relate it to the Wolfe

dual. Note that

inf
x∈Rn

L(x, y) =
{

infx∈C

(
f(x) + yT g(x)

)
, y ≥ 0

−∞, y � 0

Therefore, (D1) is equivalent to

sup
y∈Rm

inf
x∈Rn

(
f(x) + yT g(x)

)

Subject to y ≥ 0.

Now, if infx∈C

(
f(x) + yT g(x)

)
is attained, being C open and f and g differ-

entiable, then the infimum is attained at a stationary point x0; that is, for
some x0 ∈ C satisfying

∇f(x0) + ∇yT g(x0) = 0.
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If f and gi, i = 1, . . . ,m, are invex with respect to a common η, then this
condition is also sufficient for the infimum to be attained at x0. Thus, with
the invexity assumptions, (D1) is equivalent to

sup
y∈Rm

f(x) + yT g(x)

Subject to ∇f(x) + ∇ (yT g(x)
)

= 0, y ≥ 0,

which corresponds to the Wolfe dual (WD).
Another approach to the saddle point problem (5.27) may be given through

the assumptions of preinvexity of the functions involved. This has been done
by Weir and Jeyakumar [244] and by Weir and Mond [245]. We follow the
last two authors. Obviously in this approach no differentiability assumption
is required, so this approach is more alike to the original saddle point theorems
for problem (P), than Theorem 5.40.

We have already mentioned in Sect. 4.1 that every preinvex vector-valued
function is convex-like, i.e., f : S → Rm, S ⊆ Rn (S an η-invex set) satisfies
the property:

∃z ∈ S : f(x) ≤ λf(x) + (1 − λ)f(y), ∀x, y ∈ S, ∀λ ∈ [0, 1].

Hayashi and Komiya [90] and also Jeyakumar [101] developed theorems
of the alternative involving convexlike functions and in addition consid-
ered Lagrangian duality for convexlike programs. In particular, Hayasi and
Komiya [90] obtained, under convexlike assumptions, the Fan–Glickeberg–
Hoffman [64] theorem of the alternative (see also [143]) which is the nonlinear
version of the classical Gordan theorem of the alternative for linear inequal-
ities. Obviously the theorem of Hayashi and Komiya [90] holds also for the
preinvex case, but for the reader’s convenience we prove this theorem under
preinvexity assumptions. The saddle point theorem then follows easily, in the
same way it is obtained for the classical convex case (see, [143]).

Theorem 5.41. Let S be a non-empty η-invex set in Rn and let f : S → Rm

be a preinvex function on S (with respect to η). Then either

f(x) < 0 has a solution x ∈ S

or
pT f(x) ≥ 0, ∀x ∈ S, for some p ∈ Rm, p ≥ 0, p 	= 0.

But both alternatives are never true.

Proof. Following Mangasarian [143], the proof depends on establishing the
convexity of the set A =

⋃{A(x) : x ∈ S}, where A(x) = {u ∈ Rm : u >
f(x)}, x ∈ S. Under our assumptions this is immediate, for if u1 and u2 are
in A, then for 0 ≤ λ ≤ 1,

λu1 + (1 − λ)u2 > λf(x1) + (10λ)f(x2) ≥ f(x2 + λη(x1, x2)).
��
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We recall the problem (P):
(P)

Minimizef(x)

Subject to g(x) ≤ 0,

where f : S → R and g : S → Rm, S ⊆ Rn will be said to satisfy the
generalized Slater constraint qualification if g is preinvex (with respect to η)
on the η-invex set S and there exists x1 ∈ S such that g(x1) < 0.

Theorem 5.42. For the problem (P), assume that f is preinvex (with respect
to η) and g is preinvex (with respect to same η) on the η-invex set S. Assume
that the generalized Slater constraint qualification holds. If (P)attains a min-
imum at x = x0 ∈ S, then there exists v0 ∈ Rm, v0 ≥ 0, such that (x0, y0) is
a saddle point for the Lagrangian function L(x, v) = f(x) + vT g(x), i.e., it
holds

L(x0, v) ≤ L(x0, v0) ≤ L(x, v0), ∀x ∈ S, ∀v ∈ Rm, v ≥ 0. (5.28)

We recall also that if condition (5.28) is satisfied for some (x0, v0), then x0 is a
(global) minimum for (P); in other words, the saddle point condition (5.28) is
sufficient for global minimality without any (generalized) invexity assumption.

Another fruitful approach to investigate optimality, duality and saddle
point conditions for problem (P), under some invexity assumption, but in
absence of differentiability, is through nonsmooth analysis. For the Lipschitz
case (i.e., making use of Clarke generalized derivatives and generalized gra-
dients) this has been done by Reiland [209] and by Kaul et al. [116], even if
it must be said that also Jeyakumar [103] treated the case of a nonsmooth
nonconvex problem in which the functions are locally Lipschitz and satisfy an
invexity assumption. The reader is referred to Sect. 4.2 for the basic definitions
and properties. Consider the usual problem (P)

(P)
Minimize f(x)

Subject to g(x) ≤ 0,

where f : C → R, g : C → Rm, C ⊆ Rn is an open set in Rn and f and every
gi, i = 1, . . . ,m, are Lipschitz on C.

We have the following necessary optimality conditions; in terms of Clarke
generalized gradients (see, [37, 38, 92]).

Theorem 5.43. Let x0 be a local minimum for (P) and a suitable constraint
qualification be satisfied. Then the following nonsmooth form of the Kuhn–
Tucker conditions hold:

0 ∈ ∂Cf(x0) +
m∑

i=1

λi∂Cgi(x0) (5.29)

λigi(x0) = 0, i = 1, . . . ,m, (5.30)
λi ≥ 0, i = 1, . . . ,m. (5.31)
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Following Hiriart-Urruty [92], a constraint qualification assuring the thesis
of the previous theorem is the following one:

∃v ∈ Rn : g0
i (x

0, v) < 0, ∀i ∈ I(x0),

where I(x0) =
{
i : gi(x0) = 0

}
. In the presence of inequality constraints,

from Fritz John type optimality condition (always in terms of generalized
gradients), Clarke [37, 38] established Kuhn–Tucker type conditions (5.29)–
(5.31) under the assumptions of “calmness” of the optimization problem. This
regularity condition has the advantage to be present in most problems, even if
it seems difficult to verify it in general. For a more recent and general analysis
of constraint qualifications for the Lipschitz case see Jourani [108] and the
references there quoted.

The following theorem shows that if the functions involved in (P) and C-
invex (Definition 4.26) with respect to a common η, then (5.29)–(5.31) are
also sufficient for optimality.

Theorem 5.44. Suppose x0 is feasible for (P) and that the generalized Kuhn–
Tucker conditions (5.29)–(5.31) are satisfied at x0. If f and gi, i = 1, . . . ,m,
are C-invex on C for the same kernel η, then x0 is a global minimum for (P).

Proof. Let x be any other feasible point for (P); then

f(x) − f(x0) ≥ f(x) +
m∑

i=1

λigi(x) − f(x0) −
m∑

i=1

λigi(x0),

by feasibility of x and (5.30)

≥ f0
(
x0, η(x, x0)

)
+

m∑

i=1

λig
0
i

(
x0, η(x, x0)

)
,

by (5.29) there exists ξ ∈ ∂Cf(x0) and ςi ∈ ∂Cgi(x0), i = 1, . . . ,m, such that

ξ +
m∑

i=1

λiςi = 0.

Therefore,

f(x) − f(x0) ≥ ξT η(x, x0) +
m∑

i=1

λiς
T
i η(x, x

0)

=

(
ξ +

m∑

i=1

λiς
T
i

)
η(x, x0)

= 0.
��
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Hiriart-Urruty [93] obtained improved necessary optimality conditions for x0

to be a local minimum of (P) by substituting

0 ∈ ∂C

(
f +

m∑

i=1

λigi

)
(x0) (5.32)

for (5.29) with (5.30) and (5.31). We recall (Sect. 4.2) that it holds

∂C(f + g)(x0) ⊆ ∂Cf(x0) + ∂Cg(x0).

The equality being in general not satisfied (unless, e.g., f and g are regu-
lar). So (5.32) is a stronger requirement for x0 than (5.29). In fact, when
(5.32) is substituted for (5.29), we can weaken the C-invexity assumptions in
Theorem 5.44.

Theorem 5.45. Suppose x0 is feasible for problem (P) and the generalized
Kuhn–Tucker conditions (5.32), (5.30) and (5.31) are satisfied at x0. If f +∑m

i=1 λigi is C-invex on C, then x0 is a global minimum for (P).

Proof. Let x be any other feasible point for (P); then by (5.30) and (5.31)

f(x) − f(x0) ≥ f(x) +
m∑

i=1

λigi(x) − f(x0) −
m∑

i=1

λigi(x0)

≥
(
f(x) +

m∑

i=1

λigi

)0 (
x0, η(x, x0)

)

≥ 0, by (5.32).
��

We note, following Reiland [209], that also for the Lipschitz case, the
C-invexity assumption of Theorem 5.45 is weaker than the C-invexity assump-
tion in Theorem 5.44. Indeed, if f and gi : C → R are C-invex on C for the
same η, then since the limsup of sum is bounded above by the sum of the
limsups, for y ∈ Rm, y ≥ 0, we have

f(x) +
m∑

i=1

yigi(x) − f(u) −
m∑

i=1

yigi(u)

≥ f0 (u, η(x, u)) +
m∑

i=1

yig
0
i (u, η(x, u))

≥
(
f +

m∑

i=1

yigi

)0

(u, η(x, u));

hence f +
∑m

i=1 yigi is C-invex on C. Kaul et al. [116] have generalized the
results of Reiland [209] by introducing the following definitions for a Lipschitz
function f : C → R (C open set of Rn). See also Sect. 4.2.
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Definition 5.46. The Lipschitz function f : C → R is:

(a) C-pseudo-invex on C if there exists a function η : C ×C → Rn such that,
with x, u ∈ C,

f0 (u, η(x, u)) ≥ 0 ⇒ f(x) ≥ f(u);

(b) C-quasi-invex on C if there exists a function η : C × C → Rn such that,
with x, u ∈ C,

f(x) ≤ f(u) → f0 (u, η(x, u)) ≤ 0;

(c) C-strictly pseudo-invex on C if there exists a function η : C × C → Rn

such that, with x, u ∈ C, x 	= u,

f0(u, η(x, u)) ≥ 0 ⇒ f(x) > f(u).

The said authors proved various sufficient optimality conditions under
various assumptions. We report only the following one.

Theorem 5.47. Let x0 be feasible for (P) and the Kuhn–Tucker conditions
(5.29)–(5.31) be satisfied at x0; let I denote the set of the active constraints
at x0 (I = {i : gi(x0) = 0}). If any one of the following conditions hold:

(a) f is C-pseudo-invex on C and every gi, i ∈ I, is C-quasi-invex on C,
(b) f and every gi, i ∈ I, i 	= s, are C-quasi-invex on C, and gi is strictly

C-pseudo-invex on C, with λs > 0, for some s ∈ I,

with respect to the same η, then x0 is a global minimum of (P).

Further generalizations of sufficient optimality conditions for (P), obtained
by means of the K-directional derivatives (Sect. 4.2), are given by Castel-
lani [28].

Consider now the following dual problems related to problem (P):

(D1)

Maximize f(x) +
m∑

i=1

yigi(x)

Subject to 0 ∈ ∂Cf(x) +
m∑

i=1

yi∂Cgi(x),

yi ≥ 0, i = 1, . . . ,m.

(D2)

Maximize f(x) +
m∑

i=1

yigi(x)

Subject to 0 ∈ ∂C

(
f +

m∑

i=1

yigi

)
(x),

y ≥ 0, i = 1, . . . ,m.
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We note that the feasible region for (D1) is larger than the feasible region
for (D2), hence the optimal value of the objective function in (D1) will be
larger than the optimal value in (D2). Weak duality between (P) and (D1)
thus requires a stronger assumption than weak duality between (P) and (D2).

Theorem 5.48 (Weak duality).

(a) If for any fixed y ∈ Rm
+ , (f +

∑m
i=1 yigi) is C-invex on the open set C ⊆

Rn, then weak duality holds between (P) and (D2).
(b) If f and gi, i = 1, . . . ,m, are C-invex on the open set C ⊆ Rn for a

common η, then weak duality holds for (P) and (D1).

Proof. (1) Let x̄ and (x0, y0) be feasible for (P) and (D2), respectively. Then

f(x̄) − f(x0) −
m∑

i=1

y0
i gi(x0)

≥ f(x̄) +
m∑

i=1

y0
i gi(x̄) − f(x0) −

m∑

i=1

y0
i gi(x0),

since y0
i ≥ 0, for each i and x̄ is feasible for (P)

≥
(
f +

m∑

i=1

y0
i gi

)0 (
x0, η(x̄, x0)

)

≥ 0 (since 0 ∈ ∂C

(
f +

m∑

i=1

y0
i gi

)
(x0)).

(2) Let x̄ and (x∗, y∗) be feasible for (P) and (D1), respectively. Then

f(x̄) − f(x∗) −
m∑

i=1

y∗i gi(x∗)

≥ f(x̄) +
m∑

i=1

y∗i gi(x̄) − f(x∗) −
m∑

i=1

y∗i gi(x∗)

(since y∗i ≥ 0, for each i and x̄ is feasible for (P))

≥ f0 (x∗, η(x̄, x∗)) +
m∑

i=1

y∗i g
0
i (x

∗, η(x̄, x∗)).

Since (x∗, y∗) is feasible for (D1), there exist ξ ∈ ∂Cf(x∗) and ςi ∈ ∂Cgi(x∗)
such that 0 = ξ +

∑m
i=1 y

∗
i ς

∗
i , hence

f0 (x∗, η(x̄, x∗)) +
m∑

i=1

y0
i g

0
i

(
x8, η(x̄, x∗)

)

≥ ξT η(x̄, x∗) +
m∑

i=1

y∗i ς
∗
i η(x̄, x

∗)
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≥
(
ξT +

m∑

i=1

y∗i ς
∗
i

)T

η(x̄, x∗)

= 0.
��

Theorem 5.49.

(a) Assume that f+
∑m

i=1 yigi is C-invex on the open set C ⊆ Rn for y ∈ Rm
+ .

If x̄ is optimal for (P) and the Kuhn–Tucker conditions (5.30)–(5.32) are
satisfied at (x̄, ȳ), then (D2) is maximized at (x̄, ȳ) and the optimal values
of (P) and (D2) are equal.

(b) Assume f and gi, i = 1, . . . ,m, are C-invex on the open set C ⊆ Rn

for the same η. If x̄ is optimal for (P) and the Kuhn–Tucker conditions
(5.29)–(5.31) are satisfied at (x̄, ȳ), then (D1) is maximized at (x̄, ȳ) and
the optimal values of (P) and (D1) are equal.

Proof. (1) Since (x̄, ȳ) satisfies (5.32) and (5.31), (x̄, ȳ) is feasible for (D2).
By (5.30) and weak duality

f(x̄) +
m∑

i=1

ȳigi(x̄) = f(x̄)

≥ f(x) +
m∑

i=1

yigi(x), ∀(x, y) feasible for (D2).

Thus (x̄, ȳ) is optimal for (D2) and the optimal values of (P) and (D2) are
equal.
(2) The proof is similar to part (1).

��
(D1) and (D2) are Wolfe type dual problems for a Lipschitz primal problem

(P). Kaul et al. [116] consider a Mond–Weir type dual problem for (P), i.e.,
the problem:

(D3)
Maximizef(u)

Subject to 0 ∈ ∂Cf(u) +
m∑

i=1

yi∂Cgi(u)

yigi(u) ≥ 0, i = 1, . . . ,m,

yi ≥ 0, i = 1, . . . ,m.

These authors, under various C-invexity assumptions, obtained weak and
strong duality results for (P) and (D3).

The saddle point problem, when the functions involved are nonsmooth
and C-invex, has been treated by Jeyakumar [103] and by Brandao et al. [24].
In particular, the last authors obtain also a generalization of the Gordan
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theorem of the alternative (i.e., a Fan–Glicksberg–Hoffman theorem for C-
invex functions). The problem considered is the dual one:

(P)
Minimizef(x)

Subject to gi(x) ≤ 0, i = 1, . . . ,m, x ∈ C,

where C is a non-empty open subset of Rn, and f and gi, i = 1, . . . ,m,
are Lipschitz (or even locally Lipschitz) functions on C. Brandao et al. [24]
obtained necessary Kuhn–Tucker conditions for (P) under a Slater-type con-
straint qualification: every gi, i = 1, . . . ,m, is C-invex on C for the same η
and there exists x̂ ∈ C such that gi(x̂) < 0, i = 1, . . . ,m.

Brandao et al. [24] proved the following necessary optimality conditions.

Theorem 5.50. Let x̄ be an optimal solution for (P) and suppose that f
and gi, i = 1, . . . ,m, are C-invex on C, for the same η. If the constraints
of (P) satisfy the Slater-type constraint qualification, then there exists λ̄ =
(λ̄1, . . . , λ̄m) such that

0 ∈ ∂C

(
f +

m∑

i=1

λ̄igi

)
(x̄) (5.33)

λ̄igi(x̄) = 0, i = 1, . . . ,m, (5.34)

λ̄i ≥ 0, i = 1, . . . ,m. (5.35)

Then they proved that if x̄ is feasible for (P) and f and gi, i = 1, . . . ,m, are
C-invex on C for the same η, the previous Kuhn–Tucker type conditions are
sufficient for the global optimality of x̄.

Recall that a point (x̄, ȳ) ∈ C, λ̄ ∈ Rm
+ , is said to be a saddle point for

(P) if

L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄), (5.36)

for all x ∈ C and λ ∈ Rm
+ , being L(x, λ) = f(x) +

∑m
i=1 λigi(x). Following

Brandao et al. [24] we can prove the following saddle point theorem.

Theorem 5.51. Suppose x̄ is an optimal solution for (P), f and gi, i =
1, . . . ,m, are C-invex on C with respect to the same η, the constraints of
(P) satisfy the Slater-type constraint qualification. Then there exists λ̄ ∈ Rm

+ ,
such that (x̄, λ̄) is a saddle point for (P).

Proof. If x̄ is an optimal solution for (P), being the Slater-type condition
verified, by Theorem 5.50 there exists λ̄i ∈ R such that the Kuhn–Tucker
conditions (5.33)–(5.35) hold. Therefore, invoking the invexity assumptions
these conditions are also sufficient for x̄ to be a global minimum for f +∑m

i=1 λ̄igi(x) over C, that is the right side inequality of (5.36) holds. The left
side inequality of (5.36) follows from (5.34) since gi(x̄) ≤ 0 and λ ∈ Rm

+ .
��



6

Invex Functions in Multiobjective
Programming

6.1 Introduction

In general, the unconstrained vector optimization problem (VOP) is presented
as follows:

(VOP)
Minimizef(x) = (f1(x), . . . , fp(x))

Subject to x ∈ S ⊆ Rn.

Unlike problems with a single objective in which there may exist an opti-
mal solution to the effect that it minimizes the objective function, in the
multiobjective programming problem there does not necessarily exist a point
which may be optimal for all objectives. To this effect the solution concept
introduced by Pareto [194], where the concept of efficient points is given as
follows:

Definition 6.1. A feasible point x̄, is said to be an efficient solution if and
only if there does not exist another x ∈ S such that fi(x) ≤ fi(x̄) for i =
1, . . . , p with strict inequality holding for at least one i.

At times locating the efficient points is quite costly. As a result there appears
a more general concept such as that of weakly efficient solution, which under
certain conditions, presents topological properties that are not given in the
set of efficient points see, e.g., Naccache [186].

Definition 6.2. A feasible point x̄ is said to be a weakly efficient solution if
and only if there does not exist another x ∈ S such that fi(x) < fi(x̄), ∀i =
1, . . . , p.

It is easy to verify that every efficient point is a weakly efficient point.
The following convention for equalities and inequalities will be used. If

x, y ∈ Rn, then
x = y iff xi = yi, i = 1, . . . , n;
x � y iff xi = yi, i = 1, . . . , n;
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x ≤ y iff xi � yi, i = 1, . . . , n; with strict inequality holding for at least one i.
x < y iff xi < yi, i = 1, . . . , n.

The study of the solutions of a multiobjective problem may be approached
from two aspects:

(a) Trying to relate them with the solutions to he scalar problems, whose
resolution has been studied extensively (see, e.g., [238]). Vartak and
Gupta [238] have given three types of scalar optimization problems to
be associated with vector optimization problem (VOP) for this purpose,
namely the weighting problem, the k-th objective Lagrangian problem and
the k-th objective ε-constraint problem.

(b) Trying to locate conditions which are easier to deal with computationally
and which guarantee efficiency.

As much in one case as in the other, the convexity plays an important role
as a fundamental condition in obtaining the desired results. For the reader’s
convenience, let us provide the concept of invex function for p-dimensional
case.

Definition 6.3. Let f : S ⊆ Rn → Rp be a differentiable function on the open
set S. Then f is a vector invex function on S with respect to η if ∀x, y ∈ S
there exists η(x, y) ∈ Rn such that

f(x) − f(y) ≥ ∇f(y)η(x, y),

where ∇f(y) ∈ Mp×n whose rows are gradient vectors of each component
function valued at the point y.

Constrained multiobjective programming problem (CVOP) is more useful
than the unconstrained vector optimization problem:

(CVOP)
Minimizef(x) = (f1(x), . . . , fp(x))

Subject to g(x) � 0

x ∈ S ⊆ Rn,

where f : S → Rp and g : S → Rm are differentiable functions on the open
set S ⊆ Rn.

In Chap. 5, we studied the optimality conditions of invex functions
for scalar programming problems. In this chapter, we study Kuhn–Tucker
necessary and sufficient optimality conditions for differentiable and non-
differentiable vector optimization problems. Second and higher order duality
results are also discussed for multiobjective case. Moreover, we discuss multi-
objective symmetric duality involving invex and generalized invex functions.

In multiobjective (vector) optimization problems, multiobjectives are usu-
ally noncommensurable and cannot be combined into a single objective.
Moreover, often the objectives conflict with each other. Consequently, the con-
cept of optimality for single-objective (scalar) optimization problems cannot
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be applied directly to vector optimization problems. The concept of Pareto
optimality, characterizing an efficient solution, has been introduced for vector
optimization problems. Osuna-Gomez et al. [192] have characterized weakly
efficient solutions of a multiobjective programming problem with differen-
tiable functions via the generalization of the optimality conditions established
by Kuhn–Tucker for scalar programming problems. These authors have given
a necessary and sufficient optimality conditions under generalized convexity
characterizing weakly efficient solutions which is similar to that established
for optimal solutions in scalar programming problems.

6.2 Kuhn–Tucker Type Optimality Conditions

Osuna-Gomez et al. [193] established conditions for multiobjective problems,
similar to those given by Kuhn–Tucker for the scalar problems, for which
Osuna-Gomez et al. [193] provided a concept analogous to the stationary
point or critical point for the scalar function.

Definition 6.4. A feasible point x̄ ∈ S is said to be a vector critical point to
(VOP) if there exists a vector λ ∈ Rp with λ ≥ 0 such that λT∇f(x̄) = 0.

Note that stationary points for a scalar optimization problem are those whose
vector gradients are zero. However, vector critical points are those such that
there exists a non-negative linear combination of the gradient vectors of each
component objective function, valued at that point, equal to zero. Moreover,
every weakly efficient solution is a vector critical point (see, e.g., [193]).

Theorem 6.5. Let x̄ be a weakly efficient solution for problem (VOP). Then
there exists λ̄ ≥ 0 such that λT∇f(x̄) = 0.

For the converse of the above theorem, we need some convexity hypothesis.

Theorem 6.6. Let x̄ be a vector critical point to (VOP) and f is invex at x̄
with respect to η, then x̄ is a weakly efficient solution for (VOP).

Proof. See Osuna-Gomez et al. [193].

As mentioned before, one way to solve multiobjective programming problems
is to relate its weakly efficient solutions to the optimal solutions for scalar
problems whose resolution has already been studied. One of the most known
scalar problems associated with multiobjective programming problems is the
weighting problem (see [238]) whose formulation has the following form:

(Pλ)
Minimize λT f(x)

Subject to x ∈ S ⊆ Rn,

where λ ∈ Rp. It has been proved that every solution of weighting scalar
problem with λ ≥ 0 is a weakly efficient solution, but the converse is not
always true see, e.g., Geoffrion [67].
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Theorem 6.7. If f is invex on an open set S, then all weakly efficient
solutions solve a weighting scalar problem with λ ≥ 0.

Proof. Let x̄ be a weakly efficient point, then there exists λ ∈ Rp with λ ≥ 0
such that λT∇f(x̄) = 0. As f is invex at x̄ with respect to η, so is λT f, that is,

λT f(x) − λT f(x̄) ≥ λT∇f(x̄)η(x, x̄) = 0.

Then λT f(x) ≥ λT f(x̄). Therefore, x̄ is optimal solution for (Pλ) with λ ≥ 0.
��

It is interesting to note that under the invexity hypothesis, the vector criti-
cal point, the weakly efficient solutions and the optimal solutions for weighting
scalar problems coincide. Osuna-Gomez et al. [193] have shown that the invex-
ity hypothesis is not only a sufficient but also a necessary condition for all
these classes of points to be equivalent.

Theorem 6.8. Each vector critical point is a weakly efficient solution and
solve a weighting scalar problem if and only if the objective function is invex.

Proof. The sufficient part has already been proved in Theorems 6.6 and 6.7.
For the necessary part see Osuna-Gomez et al. [193].

��
Osuna-Gomez et al. [193] characterized weakly efficient solutions for the
constrained vector optimization problem (CVOP) using concepts similar to
Fritz-John and Kuhn–Tucker optimality condition concepts.

Definition 6.9. A feasible point x̄ ∈ S, is said to be a vector Fritz-John point
to the problem (CVOP) if there exists a vector (λ̄, μ̄) ∈ Rp+m with (λ̄, μ̄) ≥ 0
such that

λ̄T∇f(x̄) + μ̄T∇g(x̄) = 0 (6.1)

μ̄T g(x̄) = 0. (6.2)

Definition 6.10. A feasible point, x̄ ∈ S, is said to be a vector Kuhn–Tucker
point to the problem (CVOP) if there exists a vector (λ̄, μ̄) ∈ Rp+m with
(λ̄, μ̄) ≥ 0 and λ̄ 	= 0 such that

λ̄T∇f(x̄) + μ̄T∇g(x̄) = 0 (6.3)

μ̄T g(x̄) = 0. (6.4)

The following results due to Osuna-Gomez et al. [193] extend the scalar case
in a natural way. In fact, the above definitions coincides with the Fritz-John
and Kuhn–Tucker conditions when f is a real-valued function.

Theorem 6.11. Let x̄ be a weakly efficient solution for problem (CVOP);
then there exist λ̄ and μ̄ such that x̄ is a vector Fritz-John point for (CVOP).
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Theorem 6.12. Let x̄ be a weakly efficient solution for problem (CVOP) and
the Kuhn–Tucker constraint qualification is satisfied at x̄. Then there exist λ̄
and μ̄ such that x̄ is a vector Kuhn–Tucker point for problem (CVOP).

Many of the results given above in this section are even true under weaker
invexity assumption, namely pseudo-invex functions:

Definition 6.13. Let f : S ⊆ Rn → Rp be a differentiable function on the
open set S. Then f is pseudo-invex on S with respect to η if for all x, y ∈ S,
there exists η(x, y) ∈ Rn such that

f(x) − f(y) < 0 ⇒ ∇f(y)η(x, y) < 0. (6.5)

Osuna-Gomez et al. [192,193] obtained the Theorem 6.6 under pseudo-invexity
hypothesis.

Theorem 6.14. Let x̄ be a vector critical point for (VOP), and let f be a
pseudo-invex function at x̄ with respect to η. Then, x̄ is a weakly efficient
solution.

Proof. Let x̄ be a vector critical point for (VOP), i.e., there exists λ ≥ 0 such
that λT∇f(x̄) = 0. If there exists another x ∈ S such that f(x) < f(x̄), then
there exists η(x, x̄) ∈ Rn such that ∇f(x̄)η(x, x̄) < 0, i.e., the system

λT∇f(x̄) = 0,

λ ≥ 0, λ ∈ Rp,

has no solution for λ.
��

Osuna-Gomez et al. [192, 193] established a stronger result than that of
Theorem 6.14.

Theorem 6.15. A vector function f is pseudo-invex of and only if every
vector critical point of f is a weakly efficient solution on S.

Proof. See the proof of Theorem 2.2 of Osuna-Gomez et al. [192] or the proof
of Theorem 2.5 of Osuna-Gomez et al. [193].

��
Gulati and Islam [77] considered a constrained vector optimization prob-

lem with inequality and equality constraints. Even though as it is pointed out
in previous chapters that the equality constraints are already taken care by
inequality constraints as h(x) = 0 can be written as h(x) ≤ 0 and −h(x) ≤ 0.

Martin [145] established that it is not possible to infer (f and g)-invexity
from the equivalence of minimum points and Kuhn–Tucker points for scalar
programming problems. So Martin [145] defined KT-invexity, which is a con-
dition weaker than (f and g)-invexity. Similar question was investigated by
Osuna-Gomez et al. [192, 193]. KT-invex functions are extended to multiob-
jective case by Osuna-Gomez et al. [192, 193].
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Definition 6.16. Problem (CVOP) is said to be KT-invex on the feasible set
if there exists a vector function η : S × S → Rn such that ∀x, y ∈ S, with
g(x) ≤ 0 and g(y) ≤ 0,

f(x) − f(y) ≥ ∇f(y)η(x, y) (6.6)

−∇g(y)η(x, y) ≥ 0, ∀i ∈ I(y). (6.7)

Osuna-Gomez et al. [193] gave the following characterization for the weakly
efficient points.

Theorem 6.17. Every vector Kuhn–Tucker point is a weakly efficient solu-
tion if problem (CVOP) is KT-invex.

Osuna-Gomez et al. [193] used Theorem 6.17 to prove that if the problem
(CVOP) is KT-invex, then all weakly efficient solutions can be found as solu-
tions for a scalar problem. Thus under KT-invexity condition and if constraint
qualification is satisfied, vector-Kuhn–Tucker point, weakly efficient points
and optimal solutions for weighting problem coincides.

Theorem 6.18. If (CVOP) is KT-invex and the Kuhn–Tucker constraint
qualification is satisfied at all weakly efficient solutions, then every weakly
efficient solution solves a weighting scalar problem.

An analogous theorem for vector Kuhn–Tucker points is as follows (see, [193]):

Theorem 6.19. Every vector Kuhn–Tucker point solves a weighting scalar
problem if (CVOP) is KT-invex.

Even a stronger result is given by Osuna-Gomez et al. [193].

Theorem 6.20. Every vector Kuhn–Tucker point is a weakly efficient point
and solves a weighting scalar problem if and only if the problem (CVOP) is
KT-invex.

These authors have given a weaker KT-invexity namely, KT-pseudo-invexity
in [193], however the same definition is called KT-invex in [192].

Definition 6.21. The problem (CVOP) is said to be a KT-pseudo-invex with
respect to η if for any x, y ∈ S with g(x) ≤ 0 and g(y) ≤ 0 there exists
η(x, y) ∈ Rn such that:

f(x) < f(y) ⇒ ∇f(y)η(x, y) < 0 (6.8)

−∇gi(y) ≥ 0, ∀i ∈ I(y), (6.9)

where I(y) = {i : i = 1, . . . ,m such that gi(y) = 0}.
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It is interesting to see (see [193]) that this definition is necessary and sufficient
for the set of vector Kuhn–Tucker points and the set of weakly efficient point
to be the same.

Theorem 6.22. Every vector Kuhn–Tucker point is weakly efficient for the
problem (CVOP) if and only if (CVOP) is a KT-pseudo-invex problem.

For the proof, see [193] or [192].
It is worth noting that invexity allows us to give the necessary and suf-

ficient conditions for locating the solutions to the general problem starting
from the solutions of a scalar problem or verifying certain conditions of opti-
mality of the type defined by Kuhn–Tucker and Fritz-John. Several results
from scalar optimization problems can be extended to vector optimization
problem.

The properness of the efficient solution of the optimal problem with mul-
ticriteria has been introduced at the early stage of the study of this problem
[133]. Geoffrion [67] defined the properness for the purpose of eliminating an
undesirable possibility in the concept of efficiency, namely the possibility of
the criterion functions being such that efficient solutions could be found for
which the marginal gain for one function could be made arbitrarily large
relative to the marginal losses for the others. Geoffrion [67] gave a theo-
rem describing the relation of the Kuhn–Tucker proper efficient solutions and
his proper efficient solution. In this section, we summarize briefly the known
results of proper (improper) efficient solutions for (VP), and apply them to five
examples.

The problems discussed in the papers of Kuhn and Tucker [133],
Geoffrion [67], Tamura and Arai [231] and Singh and Hanson [223] are of
the following nature:

V −Maximizef(x)

Subject to g(x) ≤ 0,

where f(x) is p-dimensional vector function and g(x) is m-dimensional vector
function.

Let K denote the set of feasible solutions of the above vector maximum
problem.

Definition 6.23. An efficient solution x0 is called a proper efficient solution
if there exists no x ∈ K such that

∇f(x0)x ≥ 0, ∇gI(x0)x ≥ 0,

where ∇gI(x0) is a matrix whose row vector is a gradient function of an active
constraint.

This solution is also known as KT-proper efficient solution.
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Definition 6.24 ([67]). An efficient solution x0 is called a proper efficient
solution if there exists a scalar M > 0 such that, for each i,

fi(x) − fi(x0)
fj(x0) − fj(x)

≤M

for some j such that fj(x) < fj(x0), whenever, x ∈ K and fi(x) > fi(x0).

In case the problem is a minimization problem, we have the following inequal-
ities:

fi(x0) − fi(x)
fj(x) − fj(x0)

≤M

for some j such that fj(x) > fj(x0), whenever, x ∈ K and fi(x) < fi(x0).
Geoffrion’s [67] definition of proper efficiency M is independent of x, and
it may happen that if f is unbounded such an M may not exist. Also an
optimizer might be willing to trade different levels of losses for different levels
of gains by different values of the decision variable x. Singh and Hanson [223]
extended the concept to situation where M depends on x.

Definition 6.25. The point x0 is said to be conditionally properly efficient if
x0 is efficient and there exists a positive function M(x) such that, for each i,
we have

fi(x) − fi(x0)
fj(x0) − fj(x)

≤M(x),

for some j such that fj(x) < fj(x0) whenever x ∈ X and fi(x) > fi(x0).

If the problem is of vector minimization, we have:
The point x0 is said to be conditionally properly efficient if x0 is efficient and
there exists a positive function M(x) such that, for each i, we have

fi(x0) − fi(x)
fj(x) − fj(x0)

≤M(x),

for some j such that fj(x) > fj(x0) whenever x ∈ X and fi(x) < fi(x0).
For more discussion on different concepts of efficiency (properly efficient,
conditionally properly efficient, etc.) see Mishra [153].

In Chap. 4, Definition 4.1, we have discussed pre-invex functions for real-
valued functions. A p-dimensional vector-valued function f : S → Rp is
pre-invex on S with respect to η if each of its components is pre-invex on
S with respect to the same η. For other algebraic properties of pre-invex
functions, see Sect. 4.1 of Chap. 4. Geoffrion [67] showed that the properly
efficient solutions of (CVOP) may be characterized in terms of the solutions
to a scalar valued parametric programming problem under convexity assump-
tions. Weir and Mond [245] showed that Geoffrion’s assumption of convexity
may be replaced by pre-invexity to characterize properly efficient solutions of
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(CVOP). In relation to (CVOP), Geoffrion [67] considered the following scalar
minimization problem:

(CV OPλ)MinimizeλT f(x) Subject to x ∈ S,

where λ ∈ Λ+ = {λ ∈ Rp : λ > 0,
∑p

i=1 λi = 1}. Geoffrion established the
following fundamental result:

Theorem 6.26. Let λ > 0, i = 1, . . . , p, be fixed. If x0 is optimal in (CV OPλ),
then x0 is properly efficient for (CVOP).

Weir and Mond [245] established an extension of Gordna’s alternative theorem
involving pre-invex functions:

Theorem 6.27. Let S be a non-empty set in Rn and let f : S → Rm be a
pre-invex function on S with respect to η. Then either

f(x) < 0 has a solution x ∈ S

or
pT f(x) � 0 for all x ∈ S, for some p ∈ Rm, p � 0,

but both alternatives are never true.

Using above Theorem in place of Gordan’s alternative, Weir and Mond [245]
gave the converse of Theorem 6.26 under pre-invexity assumption thus extend-
ing “Comprehensive Theorem” of Geoffrion [67].

Theorem 6.28. Let f be pre-invex on S with respect to η. Then x0 is properly
efficient for (CVOP) if and only if x0 is optimal for (CV OPλ).

Later Weir [242] established the following result:

Theorem 6.29. Suppose there exists a feasible point x∗ and scalars λi > 0,
i = 1, . . . , p, μj ≥ 0, j ∈ I(x∗) such that

p∑

i=1

λi∇fi(x∗) +
∑

j∈I(x∗)

μj∇gj(x∗) = 0. (6.10)

Then, if each fi, i = 1, . . . , p and gj, j ∈ I(x∗) are invex with respect to the
same η, x∗ is a properly efficient solution for (CVOP).

Proof. Since the gradient of the invex function ψ(x) =
∑p

i=1 λifi(x) +∑
j∈I(x∗) μjgj(x) vanishes at x∗, then x∗ is an unconstrained global mini-

mizer of ψ. Since x∗ is feasible for (CVOP), it follows that x∗ minimizes∑p
i=1 λifi(x) subject to gj(x) � 0, j = 1, . . . ,m. The proper efficiency of x∗

for (CVOP) then follows as in Theorem 1 of [67].
��
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Weir [242] also obtained the following theorem:

Theorem 6.30. Assume that x∗ is a properly efficient solution for (CVOP).
Assume also, that there exists a point x̄ such that gj(x̄) < 0, j = 1, . . . ,m
and that each gj , j ∈ I(x∗) are invex with respect to the same η. Then there
exists scalars λi, i = 1, . . . , p and μj � 0, j ∈ I(x∗) such that (x∗, λi, μj), i =
1, . . . , p, j ∈ I(x∗) satisfies (6.10).

Remark 6.31. Geoffrion [67] established that (6.10) holds under the Kuhn–
Tucker constraint qualification without any convexity assumptions. Since
every convex function is invex, Geoffrion [67] established that (6.10) is a nec-
essary condition for x∗ to be properly efficient under the Slater constraint
qualification.

Kaul et al. [116] considered a multi-objective optimization problem involving
type I, quasi-type I, pseudo-type I, quasi-pseudo-type I, pseudo-quasi-type I
objective and constrained functions and discussed Kuhn–Tucker type neces-
sary and sufficient optimality conditions for a feasible point to be an efficient
or properly efficient solution. They have also obtained duality results for Wolfe
type and Mond–Weir type duals under the aforesaid weaker invexity assump-
tions. For the reader’s convenience let us recall the following concepts from
Kaul et al. [116].

Definition 6.32. For i = 1, . . . , p, (fi, g) is said to be type I with respect to
η at x0 ∈ S if there exists a vector function η(x, x0) defined on K × S such
that, ∀x ∈ K,

fi(x) − fi(x0) � ∇fi(x0)η(x, x0), (6.11)

−g(x0) � ∇g(x0)η(x, x0). (6.12)

If in the above definition, (6.11) is a strict inequality, then we say that (fi, g)
is semi-strictly-type I at x0.

Definition 6.33. For i = 1, . . . , p, (fi, g) is said to be quasi-type I with respect
to η at x0 ∈ S if there exists a vector function η(x, x0) defined on K ×S such
that, ∀x ∈ K,

fi(x) � fi(x0) ⇒ ∇fi(x0)η(x, x0) � 0, (6.13)

−g(x0) � 0 ⇒ ∇g(x0)η(x, x0) � 0. (6.14)

Definition 6.34. For i = 1, . . . , p, (fi, g) is said to be pseudo-type I with
respect to η at x0 ∈ S if there exists a vector function η(x, x0) defined on
K × S such that, ∀x ∈ K,

∇fi(x0)η(x, x0) � 0 ⇒ fi(x) � fi(x0), (6.15)

∇g(x0)η(x, x0) � 0 ⇒ −g(x0) � 0. (6.16)
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Definition 6.35. For i = 1, . . . , p, (fi, g) is said to be quasi-pseudo-type I
with respect to η at x0 ∈ S if there exists a vector function η(x, x0) defined on
K × S such that, ∀x ∈ K,

fi(x) � fi(x0) ⇒ ∇fi(x0)η(x, x0) � 0, (6.17)

∇g(x0)η(x, x0) � 0 ⇒ −g(x0) � 0. (6.18)

Definition 6.36. For i = 1, . . . , p, (fi, g) is said to be pseudo-quasi-type I
with respect to η at x0 ∈ S if there exists a vector function η(x, x0) defined on
K × S such that, ∀x ∈ K,

∇fi(x0)η(x, x0) � 0 ⇒ fi(x) � fi(x0), (6.19)

−g(x0) � 0 ⇒ ∇g(x0)η(x, x0) � 0. (6.20)

Kaul et al. [116] obtained necessary and sufficient conditions for a feasible solu-
tion to be efficient or properly efficient for the following vector optimization
problem:

(VP)
Minimizef(x) = (f1(x), . . . , fp(x))

Subject to g(x) � 0,

x ∈ S ⊆ Rn,

where f : S → Rp and g : S → Rm are differentiable functions on a set
S ⊆ Rn and minimization means obtaining efficient solutions of (VP). For a
feasible point x∗ ∈ K, we denote by I(x∗) the set

I(x∗) = {j : gj(x∗) = 0}.
We give some results from Kaul et al. [116].

Theorem 6.37. Suppose that there exists a feasible solution x∗ for (VP) and
scalar λ∗i > 0, i = 1, . . . , p, μ∗

j � 0, j ∈ I(x∗) such that

p∑

i=1

λ∗i ∇fi(x∗) +
∑

j∈I(x∗)

μ∗
j∇gj(x∗) = 0. (6.21)

If for i = 1, . . . , p, (fi, gI) are type at x∗ with respect to same η, then x∗ is a
properly efficient solution for (VP).

Proof. See Kaul et al. [116].
��

These authors have obtained several sufficient optimality conditions under
different types of generalized invexity assumptions (such as, semi-strictly-type
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I, pseudo-quasi-type I, etc.). They have also given the following necessary
optimality conditions.

Theorem 6.38. Assume that x∗ is a properly efficient solution for (VP).
Assume also that there exists a point x̄ such that g(x̄) < 0, i = 1, . . . ,m, such
that gj, j ∈ I(x∗), satisfies

−gj(x∗) > ∇gj(x∗)η(x, x∗), ∀x ∈ S. (6.22)

Then, there exist scalars λ∗i > 0, i = 1, . . . , p. μj � 0,∈ I(x∗), such that the
triplet (x∗, λ∗i , μ

∗
j ) satisfies

p∑

i=1

λ∗i ∇fi(x∗) +
∑

j∈I(x∗)

μ∗
j∇gj(x∗) = 0. (6.23)

Theorem 6.39. Assume that x∗ is an efficient solution for (VP) at which
the Kuhn–Tucker constraint qualification is satisfied. Then, there exist scalar
λ∗i � 0, i = 1, . . . , p,

∑p
i=1 λ

∗
i = 1, μ∗

j � 0, j = 1, . . . ,m, such that

p∑

i=1

λ∗i ∇fi(x∗) +
m∑

j=1

μ∗
j∇gj(x∗) = 0, (6.24)

m∑

j=1

μ∗
jgj(x∗) = 0. (6.25)

Invex, Type I invex and their natural generalizations require the same kernel
function for the objective and the constraints. This requirement turns out to
be a severe restriction in applications. Because of this restriction, pseudo-linear
multiobjective problems [36] and certain nonlinear multiobjective fractional
programming problems require separate treatment as far as optimality and
duality properties are concerned. In order to avoid this restriction, Jeyakumar
and Mond [105] introduced a new class of functions, namely V -invex functions.
See also Sect. 5.1 of the present monograph. For detailed study on V -invex
functions and applications see, Mishra [153]. The V -invex functions can be
formed from certain nonconvex functions (in particular from convex-concave
or linear fractional functions) by coordinate transformations,(see, e.g., [105,
153]). Following Kaul et al. [116] and Jeyakumar and Mond [105], Hanson
et al. [85], introduced V -type I functions, quasi V -type I functions, pseudo
V -type I functions, etc.

Definition 6.40. (fi, gj) is said to be V -type I objective and constraint func-
tions at y ∈ K if there exist positive real-valued functions αi and βj defined
on S × S and n-dimensional vector-valued function η : S × S → Rn such that

fi(x) − fi(y) � αi(x, y)∇fi(x, y)η(x, y) (6.26)
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and

−gj(x, y) � βj(x, y)∇gj(x, y)η(x, y), (6.27)

for every x ∈ K and ∀i = 1, . . . , p, and j = 1, . . . ,m.

If strict inequality holds in (6.26) (whenever x 	= y) we say (fi, gj) is of
semi-strictly V -type I at y.

Hanson et al. [85] have given other generalization namely, quasi V -type
I, pseudo V -type I, quasi-pseudo V -type I and pseudo-quasi V -type I on the
lines of Kaul et al. [116]. Hanson et al. [85] have obtained several sufficient
optimality conditions and a necessary optimality conditions similar to Kaul
et al. [116].

Later Aghezzaf and Hachimi [1] introduced new classes of functions called
weak strictly pseudo-quasi-type I and strong pseudo-quasi-type I be relaxing
the definitions of type I, weak strictly pseudoconvex (see, [147]), the classes of
weak quasi-strictly-pseudo-type I and weak strictly pseudo-type I functions are
introduced as a generalization of quasi-pseudo-type I and strictly pseudo-type
I functions [116]. However, these authors have only discussed duality results
under these new classes of functions. Aghezzaf and Hachimi [2] introduced
some new classes of nonconvex functions by relaxing the definitions of invex
and preinvex functions. Let us recall the definition of weak pre-quasi-invex
functions from [2].

Definition 6.41. A vector-valued function f is said to be weak pre-quasi-
invex at x̄ ∈ X with respect to η if X is invex at x̄ with respect to η and for
each x ∈ X,

f(x) ≤ f(x̄) ⇒ f(x̄+ λη(x, x̄)) � f(x̄), 0 < λ � 0.s

The following example shows that the converse of every pre-quasi-invex
function is weak pre-quasi-invex with respect to the same η is not true in
general.

Example 6.42. The function f : R → R2 defined by f1(x) = x(x − 2)2 and
f2(x) = x(x − 2) is weak pre-quasi-invex at x̄ = 0 with respect to η(x, x̄) =
x − x̄, but it is not pre-quasi-invex at x̄ with respect to the same η, because
f1 is not pre-quasi-invex at x̄ with respect to the same η.

Aghezzaf and Hachimi [2] further introduced weak strictly-pseudo-invex,
strong pseudo-invex, weak quasi-invex and weak strictly-pseudo-invex func-
tions and obtained various first order and second order sufficient optimality
conditions involving the newly introduced classes of functions. Let us give the
following second order optimality conditions for multiobjective optimization
problem (vector minimization problem):

Theorem 6.43. Suppose that f is weak pre-quasi-invex and g is pre-quasi-
invex with respect to the same η at x̄ ∈ A = {x ∈ S : g(x) � 0} and are twice
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continuously differentiable at x̄. Further suppose that η(x, y) 	= 0 for all x 	= y.
If for each critical direction y 	= 0, there exist ū ∈ Rp and v̄ ∈ Rl satisfying

λ̄T∇f(x̄) + μ̄T∇gI(x̄) = 0,
⎛

⎝
p∑

i=1

λ̄i∇2fi(x̄) +
∑

j∈I

μ̄j∇2gj(x̄)

⎞

⎠ η(x, y) > 0,

λ̄ ≥ 0, μ̄ � 0,

then x̄ is (weak) Pareto minimum for the vector minimization problem.

Mishra [155] considered the usual vector minimization problem:
(VP)

Minimize f(x) = (f1(x), . . . , fp(x))

Subject to g(x) � 0,

x ∈ S ⊆ Rn,

where f : X → Rp and g : S → Rm are differentiable functions and
minimization means obtaining efficient solution of (VP).

Mishra [155] obtained several sufficient optimality conditions for (VP)
under some new type of generalized convexity, by combining the concepts
of type I, pseudo-type I, quasi-type I, quasi-pseudo-type I, pseudo-quasi-type
I, strictly pseudo-quasi-type I (see above in this section and also [116]) and
the class of univex functions defined by Bector et al. [15]:

Definition 6.44. Let S be a non-empty open set in Rn, f : S → R, η :
S × S → Rn, φ : R → R, and b : S × [0, 1] → R+, the function f is said to be
univex at u ∈ S with respect to η, φ and b if ∀x ∈ X, we have

b(x, u)φ [f(x) − f(u)] � η(x, u)∇f(u).

For further discussion on univex functions see also Rueda et al. [215].

6.3 Duality in Vector Optimization

In this section we consider three different types of dual models for the vec-
tor minimization problem (VP) discussed in Sect. 6.2. The following Wolfe
type dual model is an extension of the Wolfe dual problem (see Sect. 5.4) to
multiobjective case. (WD)

Maximizef(u) +
m∑

j=1

μjgj(u)

Subject to
p∑

i=1

λi∇fi(u) +
m∑

j=1

μj∇gj(u) = 0, (6.28)
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μj � 0, j = 1, . . . ,m, (6.29)
λi � 0, i = 1, . . . , p, (6.30)

p∑

i=1

λi = 1. (6.31)

Assuming each fi, i = 1, . . . , p and gj, j = 1, . . . ,m to be invex for the
same η. Weir [242] proved that weak duality and strong duality hold for (VP)
and (WD).

Theorem 6.45 (Weak duality). Let x be feasible for (CVOP) and (u, λ, μ)
feasible for (WD). If each fi, i = 1, . . . , p and gj , j = 1, . . . ,m are invex for
the same η, then

f(x) � f(u) +
m∑

i=1

μjgj(u).

Theorem 6.46 (Strong duality). Let each fi, i = 1, . . . , p and each gj , j =
1, . . . ,m be invex with respect to the same η, and let x∗ be a properly efficient
solution for (CVOP). Assume that there exists an x̄ such that gj(x̄) < 0, j =
1, . . . ,m. Then there exist (λ, μ) such that (x∗, λ, μ) is properly efficient for
(WD) and the objective values of (CVOP) and (WD) are equal.

Weir and Mond [245] obtained the above two duality relation under pre-
invexity assumptions as well. Following Weir [242] Kaul et al. [116] proved
various duality results for (VP) and (WD) under weaker invexity conditions.

Theorem 6.47. Let x be feasible solution for (VP) and let the triplet (u, λ, μ)
be feasible for (WD). Let either (a) or (b) of below holds:

(a) For i = 1, . . . , p, λi > 0 and (fi, g) are type I objective and constraint
functions at u with respect to the same η;

(b) For i = 1, . . . , p, (fi, g) are semi-strictly-type I objective and constraint
functions at u with respect to the same η.

Then

f(x) � f(u) +
m∑

j=1

μjgj(u).

Proof. (a) Note that

p∑

i=1

λi

⎛

⎝fi(x) −
⎛

⎝fi(u) +
m∑

j=1

μjgj(u)

⎞

⎠

⎞

⎠

�
p∑

i=1

λi∇fi(u)η(x, u) +
m∑

j=1

μj∇gj(u)η(x, u)

= 0,
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by the type I invexity hypothesis of (a) and (6.28). Thus,

f(x) � f(u) +
m∑

j=1

μjgj(u).

The proof of part (b) is also based on the definition, see [116].
��

Kaul et al. [116] gave the following strong duality theorem under type I
invexity assumptions.

Theorem 6.48. Let (fi, g), i = 1, . . . , p, be type I with respect to the same η
at u and let x∗ be a properly efficient solution for (VP). Assume also that
there exists a point x̄ such that gj(x̄) < 0, j = 1, . . . ,m, and each gi, i ∈ I(x∗)
satisfying

−gj(x∗) > ∇gj(x∗)η(x, x∗), ∀x ∈ S.

Then, there exists (λ∗, μ∗) ∈ Rp×Rm such that (x∗, λ∗, μ∗) is properly efficient
for (WD) and the objective function values of (VP) and (WD) are equal.

The Mond–Weir type dual for (VP) has the advantage over the Wolfe dual
is that it allows further weakening of the invexity conditions in order to obtain
usual duality results. Note that the following Mond–Weir type dual for (VP)
is the vector case of the Mond–Weir dual discussed in Chap. 5. (MWD)

Maximizef(u) = (f1(u), . . . , fp(u))

Subject to
p∑

i=1

λi∇fi(u) +
m∑

j=1

μj∇gj(u) = 0, (6.32)

m∑

j=1

μjgj(u) � 0, (6.33)

μj � 0, j = 1, . . . ,m, (6.34)

λi � 0, i = 1, . . . , p,
p∑

i=1

λi = 1. (6.35)

Kaul et al. [116] established the following weak duality for (VP) and (MWD):

Theorem 6.49. Let x be feasible for (VP) and let (u, λ, μ) be feasible for
(MWD). Let either (a) or (b) of below hold:

(a) For i = 1, . . . , p, λi > 0 and (
∑p

i=1 λifi,
∑m

j=1 μjgj) is pseudo-quasi-type I
at u with respect to the same η;

(b) For i = 1, . . . , p, λi > 0 and (
∑p

i=1 λifi,
∑m

j=1 μjgj) is quasi-strictly-
pseudo-type I at u with respect to the same η.

Then, f(x) � f(u).
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Theorem 6.50. Let (
∑p

i=1 λifi,
∑m

j=1 μjgj) be pseudo-quasi-type I for all fea-
sible solutions (u, λ, μ) for (MWD) with respect to η at u. Let x∗ be properly
efficient solution for (VP). Assume that there exists a point x̄ such that
gj(x̄) < 0, ∀j = 1, . . . ,m, and each gj, j ∈ I(x∗) satisfying

−gj(x∗) � 0 ⇒ η(x, x∗)∇gj(x∗), ∀x ∈ S.

Then, there exists (λ∗, μ∗) ∈ Rp×Rm such that (x∗, λ∗, μ∗) is properly efficient
for (MWD) and the objective function values of (VP) and (MWD) are equal.

Kaul et al. [116] obtained strong duality under further weakened type I
invexity assumptions for (VP) and (MWD). Aghezzaf and Hachimi [2] con-
sidered the Mond–Weir type dual for (VP) and obtained weak, strong and
converse duality results under strong pseudo-invexity/quasi-invexity, weak
strictly pseudo-invexity/quasi-invexity. For the reader’s convenience, we recall
the new definitions from Aghezzaf and Hachimi [2]:

Definition 6.51. f is said to be weak strictly pseudo-invex with respect to η
at x̄ ∈ S if there exists a vector function η(x, x̄) defined on S × S such that,
∀x ∈ S

f(x) ≤ f(x̄) ⇒ ∇f(x̄)η(x, x̄) < 0.

Aghezzaf and Hachimi [2] have observed that every strictly pseudo-invex func-
tion is weak strictly pseudo-invex with respect tot he same η. However, the
converse is not necessarily true, as can be seen from the following example
from [2].

Example 6.52. The function f = (f1, f2) defined on S = R, by f1(x) = x(x+2)
and f2(x) = x(x+ 2)2 is weak strictly pseudo-invex with respect to η(x, x̄) =
x + 2 at x̄ = 0 but it is not strictly pseudo-invex with respect to the same η
at x̄ = −2

f(x) � f(x̄) but ∇f(x̄)η(x, x̄) = 0.

Now we are in position to state the weak duality given by Aghezzaf and
Hachimi [2].

Theorem 6.53. Let x be feasible for (VP) and let (u, λ, μ) be feasible for
(MWD). If λ � 0, f is weak strictly pseudo-invex and μT g is quasi-invex at u
with respect to the same η. Then, f(x) � f(u).

Proof. Suppose contrary to the result, i.e., f(x) ≤ f(u). By feasibility and
duality constraint (6.33), we have

∇f(u)η(x, u) < 0, (6.36)

and

∇μT∇g(u)η(x, u) � 0. (6.37)
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Since λ � 0, from (6.36) and (6.37), we get
(
λT∇f(u) + μT∇g(u)

)
η(x, u) < 0, (6.38)

which contradicts the duality constraint (6.32).
��

These authors have given several other weaker invexity conditions and
obtained weak duality under those weaker invexity assumptions. We refer
the reader to Aghezzaf and Hachimi [2]. We give the following strong and
converse duality theorems from Aghezzaf and Hachimi [2] under the invexity
assumptions used in the above weak duality theorem.

Theorem 6.54. Let x̄ be Pareto minimal for (VP) and assume that x̄ satisfies
a suitable constraint qualification for (VP). Then there exist λ̄ ∈ Rp and μ̄ ∈
Rm such that (x̄, λ̄, μ̄) is feasible for (MWD). If also the invexity hypothesis
used in the weak duality Theorem 6.71 holds, then (x̄, λ̄, μ̄) is Pareto minimal
(efficient) for (MWD).

Theorem 6.55. Let (x̄, λ̄, μ̄) be Pareto minimal (efficient solution) for
(MWD), and let the invexity hypothesis of weak duality Theorem 6.71 holds.
If the n× n Hessian matrix ∇2

[
λ̄T f(x̄) + μ̄T g(x̄)

]
is negative definite and if

∇μ̄T g(x̄) 	= 0, then x̄ is Pareto minimal for (VP).

These authors have given several strong and converse duality theorems under
various generalized invexity assumptions. Aghezzaf and Hachimi [1] have
extended the results of Aghezzaf and Hachimi [2] to generalized type I invex-
ity assumptions. Let us recall the following concept of weaker type I invexity
from [2].

Definition 6.56. (f, g) is said to be weak strictly-pseudo-quasi-type I with
respect to η at u if there exists a vector function η(x, u) such that ∀x ∈ S

f(x) ≤ f(u) ⇒ ∇f(u)η(x, u) < 0,

−g(u) � 0 ⇒ ∇g(u)η(x, u) � 0.

Aghezzaf and Hachimi [2] have shown that every strictly-pseudo-quasi-type I
functions are weak strictly-pseudo-quasi-type I but the converse is not neces-
sarily true. See, e.g., Example 2.1 of [2]. These authors have obtained several
weak, strong and converse duality for (VP) and (MWD) under various weaker
type I invexity assumptions. We give here one weak duality for (VP) and
(MWD) from [2].

Theorem 6.57. Assume that for all feasible x for (VP) and all feasible
(u, λ, μ) for (MWD) and (f, μg) is weak strictly pseudo-quasi-type I at u with
respect to the η. Then, f(x) � f(u).
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The proof is very similar to the proof of Theorem 6.53. Aghezzaf and
Hachimi [2] have obtained several other weak duality results under other
weaker invexity assumptions. Based on the Theorem 6.49, we give the fol-
lowing strong and converse duality theorems from [2].

Theorem 6.58. Let x0 be an efficient solution for (VP) and assume that x0

satisfies a constraint qualification ( [147]) for (VP). Then there exist λ0 ∈ Rp

and μ0 ∈ Rm such that (x0, λ0, μ0) is feasible for (MWD). If the generalized
invexity hypothesis of weak duality Theorem 6.49 holds, then (x0, λ0, μ0) is
efficient solution for (MWD).

Theorem 6.59. Let (x0, λ0, μ0) be efficient solution for (MWD), and let
the invexity hypothesis of Theorem 6.49 holds. If the n × n Hessian matrix
∇2
[
λ0f(x0) + μ0g(x0)

]
is negative-definite and if ∇μ0g(x0) 	= 0, then x0 is

an efficient solution for (VP).

Hanson et al. [85] obtained various duality results for (VP) and (MWD) under
different types of generalized invexity. They have extended the concept of
pseudo-quasi-type I functions to pseudo-quasi-V -type I by combining the con-
cept of pseudo-quasi-type I functions and V -invex functions. For the reader’s
convenience, let us recall the same over here from [85].

Definition 6.60. The problem (VP) is said to be pseudo-quasi-V -type I at u
if there exist positive real-valued functions αi and βj defined on S × S and
an n-dimensional vector-valued function η : S × S → Rn such that for some
λ ∈ Rp, λ � 0 and μ ∈ Rm, μ � 0, we have

p∑

i=1

λi∇fi(u) � 0

⇒
p∑

i=1

λiαi(x, u) (fi(x) − fi(u)) � 0, ∀x ∈ S (6.39)

and
m∑

j=1

μjβj(x, u)gj(u) � 0 ⇒
m∑

j=1

λjη(x, u)∇gj(u) � 0, ∀x ∈ S. (6.40)

Hanson et al. [85] obtained weak duality for (VP) and (MWD) under pseudo-
quasi-V -type I invexity.

Theorem 6.61. Suppose that x is feasible for (VP) and (u, λ, μ) is feasible
for (MWD) and the problem (VP) is pseudo-quasi-type I at u with respect to
αi, i = 1, . . . , p, βj , j = 1, . . . ,m and λ > 0. Then f(x) � f(u).

For proof, see Hanson et al. [85]. These authors have obtained weak duality
under several other weaker invexity assumptions. They also obtained usual
strong and converse duality theorems as well. Mishra [155] obtained usual
duality results for (VP) and (MWD) under type I univex (by combining type
I functions and univex functions) functions.
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Theorem 6.62. Let x be feasible for (VP) and let the triplet (u, λ, μ) be fea-
sible for (VD). Let for i = 1, . . . , p, λ > 0, μj � 0, j = 1, . . . ,m η, b0, b1, φ0, φ1

such that

b0(x, u)φ0

[
p∑

i=1

λifi(x) −
p∑

i=1

λifi(u)

]
�

p∑

i=1

λi∇fi(u)η(x, u), (6.41)

and

−b1(x, u)φ1

⎡

⎣
m∑

j=1

μjgj(u)

⎤

⎦ �
m∑

j=1

μj∇i(u)η(x, u), (6.42)

at u. Further suppose

a � 0 ⇒ φ0(a) � 0, (6.43)

φ1(u) � 0 ⇒ a > 0, (6.44)

b0(x, u) > 0, b1(x, u) � 0. (6.45)

Then, f(x) � f(u).

Mishra [155] obtained two more weak duality theorems and usual strong and
converse duality theorems under further weakened invexity assumptions on
the objective and constraint functions.

We continue our discussion on duality by considering the general Mond–
Weir type dual (see [180]):

(GMWD)

Maximizef(u) + μJ0gJ0

Subject to λ∇f(u) + μ∇g(u) = 0, (6.46)

μJtgJt(u) � 0, 1 � t � r, (6.47)

μ � 0, (6.48)

λ � 0, λT e = 1, e = (1, . . . , 1)T ∈ Rp, (6.49)

Jt, 0 � t � r are partitions of the set P = {1, . . . , p}.

6.4 Invexity in Nonsmooth Vector Optimization

Recently there has been an increasing interest in developing optimality con-
ditions and duality relations for nonsmooth multiobjective programming
problems involving locally Lipschitz functions; see, e.g., Egudo and Han-
son [60], Giorgi and Guerraggio [72, 73], Kim and Schaible [125], Lee [136],
Mishra and Mukherjee [158].
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In this section we consider the following nonsmooth multiobjective pro-
gramming problem involving locally Lipschitz functions: (NVOP)

Minimize f(x) = (f1(x), . . . , fp(x))

Subject to gj(x) � 0, j = 1, . . . ,m,

x ∈ Rn,

where fi : Rn → R, i = 1, . . . , p, gj : Rn → R, j = 1, . . . ,m are locally
Lipschitz functions.

Definition 6.63. Let fi : Rn → R be locally Lipschitz function for i =
1, . . . , p is invex with respect to η : Rn × Rn → Rn if for any x, u ∈ Rn

and ξi ∈ ∂fi(u),

fi(x) − fi(u) � ξiη(x, u), for i = 1, . . . , p.

Theorem 6.64 (Sufficient optimality conditions). Let (u, λ, μ) ∈ Rn ×
Rp ×Rm satisfy the following generalized Karush–Kuhn–Tucker conditions:

0 ∈
p∑

i=1

λi∂fi(u) +
m∑

j=1

μj∂gj(u),

gj(u) � 0, j = 1, . . . ,m,

λi � 0, i = 1, . . . , p, λT e > 0,
μj � 0, j = 1, . . . ,m.

If f and g are invex with respect to the same η, then u is a weak minimum
for (NVOP).

Proof. Since 0 ∈∑p
i=1 λi∂fi(u) +

∑m
j=1 μj∂gj(u), there exist ξi ∈ ∂fi(u) and

ζj ∈ ∂gj(u) such that

p∑

i=1

λiξi +
m∑

j=1

μjζj = 0. (6.50)

Suppose that u is not a weak minimum for (NVOP). Then there exists x ∈ X
such that fi(x) < fi(u), i = 1, . . . , p. So we have

ξiη(x, u) < 0, for each ξi ∈ ∂fi(u).

Therefore, we have
p∑

i=1

λiξiη(x, u) < 0.
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Hence, by (6.50), we have

m∑

j=1

μjζjη(x, u) > 0.

Then by the invexity of g, we have

m∑

j=1

μj [gj(x) − gj(u)] > 0.

Since μjgj(u) = 0, j = 1, . . . ,m, we have

m∑

j=1

μjgj(u) > 0,

which contracts the condition gj(x) � 0. Thus, u is a weak minimum for
(NVOP).

��
Definition 6.65. Let fi : Rn → R be locally Lipschitz function for i =
1, . . . , p is pseudo-invex with respect to η : Rn×Rn → Rn if for any x, u ∈ Rn

and ξi ∈ ∂fi(u),

ξiη(x, u) � 0 ⇒ fi(x) � fi(u), for i = 1, . . . , p.

Definition 6.66. Let fi : Rn → R be locally Lipschitz function for i =
1, . . . , p is quasi-invex with respect to η : Rn ×Rn → Rn if for any x, u ∈ Rn

and ξi ∈ ∂fi(u),

fi(x) � fi(u) ⇒ ξiη(x, u) � 0, for i = 1, . . . , p.

The subgradient sufficient optimality conditions given in above theorem
can be obtained under weaker invexity assumptions as well.

Theorem 6.67. Let (u, λ, μ) ∈ Rn×Rp×Rm satisfy the following generalized
Karush–Kuhn–Tucker conditions:

0 ∈
p∑

i=1

λi∂fi(u) +
m∑

j=1

μj∂gj(u),

gj(u) � 0, j = 1, . . . ,m,

λi � 0, i = 1, . . . , p, λT e > 0,

μj � 0, j = 1, . . . ,m.

If f is pseudo-invex and g is quasi-invex with respect to the same η, then u is
a weak minimum for (NVOP).
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Proof. As in above theorem, we have (6.50). Suppose that u is not a weak
minimum for (NVOP). Then there exists x ∈ X such that fi(x) < fi(u), i =
1, . . . , p. Then by pseudo-invexity of f, we get

ξiη(x, u) < 0, for each ξi ∈ ∂fi(u), i = 1, . . . , p.

Hence, we have

p∑

i=1

λiξiη(x, u) < 0. (6.51)

By feasibility and μjgj(u) = 0, j = 1, . . . ,m, we have

μjgj(x) � μjgj(u), j = 1, . . . ,m.

By quasi-invexity of g, we get

m∑

j=1

μjζjη(x, u) � 0, for each ζj ∈ ∂gj(u), j = 1, . . . ,m. (6.52)

From (6.51) and (6.52), we get

p∑

i=1

λiξiη(x, u) +
m∑

j=1

μjζjη(x, u) ≤ 0, (6.53)

which contradicts (6.50). Hence u is a weak minimum for (NVOP).
��

Egudo and Hanson [60] extended the concept of V -invex functions to non-
smooth case. Following Egudo and Hanson [60], Mishra and Mukherjee [158]
extended the concepts of V -pseudo-invexity and V -quasi-invexity to nons-
mooth case and obtained optimality and duality results for (NVOP) under
V -pseudo-invexity and V -quasi-invexity assumptions. Readers are suggested
to see Mishra et al. [163] for detailed study on V -invexity and related concepts
and results. Following Mishra and Mukherjee [158] Kuk et al. [134] obtained
optimality and duality results under V − ρ-invexity assumptions.

Definition 6.68. Let fi : Rn → R be locally Lipschitz function for i =
1, . . . , p is V −ρ-invex with respect to η : Rn×Rn → Rn and θ : Rn×Rn → Rn

if there exists αi : Rn × Rn → R+ − 0 and ρi ∈ R, i = 1, . . . , p such that for
any x, u ∈ Rn and ξi ∈ ∂fi(u),

αi(x, u) [fi(x) − fi(u)] � ξiη(x, u) + ρi ‖θ(x, u)‖2
, for i = 1, . . . , p.
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Kuk et al. [134], obtained the following sufficient optimality conditions:

Theorem 6.69. Let (u, λ, μ) ∈ Rn×Rp×Rm satisfy the following generalized
Karush–Kuhn–Tucker conditions:

0 ∈
p∑

i=1

λi∂fi(u) +
m∑

j=1

μj∂gj(u),

gj(u) � 0, j = 1, . . . ,m,

λi � 0, i = 1, . . . , p, λT e > 0,

μj � 0, j = 1, . . . ,m.

If f and g are V − ρ-invex with respect to the same η, then u is a weak
minimum for (NVOP).

Proof. See the proof of Theorem 2.1 in Kuk et al. [134].
��

Recall from Mishra and Mukherjee [158] the concept of V -pseudo-invexity and
V -quasi-invexity:
Let fi : Rn → R be locally Lipschitz function for i = 1, . . . , p is V - pseudo-
invex with respect to η : Rn×Rn → Rn if there exists αi : Rn×Rn → R+−0
such that for any x, u ∈ Rn and ξi ∈ ∂fi(u),

p∑

i=1

ξiη(x, u) � 0 ⇒
p∑

i=1

αi(x, u) [fi(x) − fi(u)] � 0, ∀ξi ∈ ∂fi(u).

Let fi : Rn → R be locally Lipschitz function for i = 1, . . . , p is V - quasi-
invex with respect to η : Rn×Rn → Rn if there exists αi : Rn×Rn → R+−0
such that for any x, u ∈ Rn and ξi ∈ ∂fi(u),

p∑

i=1

αi(x, u) [fi(x) − fi(u)] � 0 ⇒
p∑

i=1

ξiη(x, u) � 0, ∀ξi ∈ ∂fi(u).

Mishra [154] obtained the following more general result on sufficiency:

Theorem 6.70. Let (u, λ, μ) ∈ Rn×Rp×Rm satisfy the following generalized
Karush–Kuhn–Tucker conditions:

0 ∈
p∑

i=1

λi∂fi(u) +
m∑

j=1

μj∂gj(u),

gj(u) � 0, j = 1, . . . ,m,

λi � 0, i = 1, . . . , p, λT e > 0,

μj � 0, j = 1, . . . ,m.

If (λ1f1, . . . , λpfp) is V -pseudo-invex and (μ1g1, . . . , μmgm) is V -quasi-invex
with respect to the same η, then u is a properly efficient solution for (NVOP).
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Proof. See the proof of Theorem 3.1 in Mishra [154].
��

One can easily extend the above result of Mishra [154] to the class of functions
given by Kuk et al. [134] as well as the result of Kuk et al. [134] to weaker class
of functions, say V − ρ-pseudo-invexity and V − ρ-quasi-invexity. For more
results on optimality in nonsmooth multiobjective programming problems
involving invex and generalized invex functions see Kim and Schaible [125].

Mond–Weir type nonsmooth dual to (NVOP) is:
(NVD)

Maximize (f1(u), . . . , fp(u))

Subject to 0 ∈
p∑

i=1

λi∂fi(u) +
m∑

j=1

μj∂gj(u),

μjgj(u) � 0, j = 1, . . . ,m,

λi � 0, i = 1, . . . , p, λT e = 1,

μj � 0, j = 1, . . . ,m,

where e = (1, . . . , 1)T ∈ Rp. Weak duality for (NVOP) and (NVD) is:

Theorem 6.71. Let x be feasible for (NVOP) and (u, λ, μ) feasible for (NVD).
If f and g are invex with respect to the same η, then the following cannot hold:

fi(x) � fi(u), ∀i = 1, . . . , p

and
fi0(x) < fi0(u), for some i0 ∈ {1, . . . , p}.

Proof. From the first duality constraint, we get

0 =
p∑

i=1

λiξi +
m∑

j=1

μjζj ,

∀ξi ∈ ∂fi(u), ζj ∈ ∂gj(u), i = 1, . . . , p, j = 1, . . . ,m. (6.54)

From feasibility, we get

μjgj(x) � μjgj(u), j = 1, . . . ,m.

Then by invexity hypothesis on g, yields

m∑

j=1

μjζj � 0, ∀ζj ∈ ∂gj(u), j = 1, . . . ,m. (6.55)

Therefore, from (6.54), we get

p∑

i=1

λiξi � 0, ∀ξi ∈ ∂fi(u), i = 1, . . . , p. (6.56)
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By invexity hypothesis on f , we get

p∑

i=1

λifi(x) �
p∑

i=1

λifi(u).

Since λi � 0 and λT e = 1, we get the result.
��

Theorem 6.72. Let x̄ be a weak minimum for (NVOP) at which a constraint
qualification is satisfied. Then there exist λ̄ ∈ Rp and μ̄ ∈ Rm such that
(x̄, λ̄, μ̄) is feasible for (NVD). If also f and g are invex with respect to the
same η, then (x̄, λ̄, μ̄) is a weak minimum for (NVD).

Proof. Since x̄ is a weak minimum for (NVOP) and a constraint qualification
is satisfied at x̄, from the generalized Karush–Kuhn–Tucker theorem (see, for
example, Theorem 6.1.3 of [38]), there exist λ ∈ Rp and μ ∈ Rm such that

0 ∈
p∑

i=1

λi∂fi(x̄) +
m∑

j=1

μj∂gj(x̄),

μjgj(x̄) = 0, j = 1, . . . ,m,

λi � 0, i = 1, . . . , p, λT e > 0,

μj � 0, j = 1, . . . ,m.

Since λi � 0, i = 1, . . . , p and λT e > 0, we can write

λ̄i =
λi∑p
i=1 λi

and
μ̄j =

μj∑m
j=1 μj

.

Then (x̄, λ̄, μ̄) is feasible for (NVD). Since x̄ is feasible for (NVOP), it follows
from weak duality that (x̄, λ̄, μ̄) is a weak maximum for (NVD).

��
The above two theorems can be extended to pseudo-invexity/quasi-invexity
of f and g as well. Kuk et al. [134] extended the above results to the class of
V − ρ-invexity conditions.

Theorem 6.73. Let x be a feasible solution for (NVOP) and (u, λ, μ) feasible
for (NVD). Assume that

p∑

i=1

λiρi +
m∑

j=1

μjσj � 0.
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If f is V − ρ-invex and g is V − σ-invex with respect to the same η and θ,
then the following cannot hold:

fi(x) � fi(u), ∀i = 1, . . . , p

and
fi0(x) < fi0(u), for some i0 ∈ {1, . . . , p}.

For proof, see the proof of Theorem 2.2 of Kuk et al. [134].

Theorem 6.74. Let x̄ be a weak minimum for (NVOP) at which a constraint
qualification is satisfied. Then there exist λ̄ ∈ Rp and μ̄ ∈ Rm such that
(x̄, λ̄, μ̄) is feasible for (NVD). If also f is V − ρ-invex and g is V − σ-invex
with respect to the same η and θ, then (x̄, λ̄, μ̄) is a weak minimum for (NVD).

For proof see the proof of Theorem 2.3 of Kuk et al. [134]. Mishra and Mukher-
jee [158] have obtained weak and strong duality under V -pseudo-invexity and
V -quasi-invexity assumptions. Kim and Schaible [125] obtained weak and
strong duality under invexity conditions for a vector optimization problem
with inequality and equality constraints and its Wolfe and Mond–Weir type
dual models.

6.5 Nonsmooth Vector Optimization in Abstract Spaces

Vector optimization problems discussed in above sections deal with the finite
dimensional spaces and assume that the functions involved are differentiable.
But in many situations, we have to solve a non-differentiable and multiobjec-
tive optimization problem in abstract spaces. Several authors have discussed
optimality and duality in Banach spaces, see, e.g., Coladas and Wang [39],
Luc [140], Li [138], Minami [149]. Throughout this section let X be a real
Banach space with norm ‖·‖ and Y a real locally convex separable topological
vector space. We denote the topological dual space of X and Y by X∗ and
Y ∗ respectively, which are assumed to be equipped with the weak* topology.
Let ω be a non-empty subset of X and K a closed convex cone of Y. For set
A ⊂ Y, its interior and its closure are denoted by intA and clA respectively,
its dual cone A+ and its strict dual cone As+ are respectively defined as

A+ = {y∗ ∈ Y ∗ : 〈y, y∗〉 ≥ 0, ∀y ∈ A} (6.57)

and

As+ = {y∗ ∈ Y ∗ : 〈y, y∗〉 > 0, ∀y ∈ A− {0}}. (6.58)

The cone generalised by A is

P (A) = {αy : y ∈ A,α ≥ 0} (6.59)
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and the tangent cone to A at y ∈ clA is

T (A, y) = {d ∈ Y : ∃tk > 0 and yk ∈ A such that
yk → y and tk(yk − y) → d}. (6.60)

Let h be a locally Lipschitz function defined on X. We denote by h0(x; v) and
∂0h(x) the Clarke’s generalized directional derivative of h at x in the direction
v and the Clarke’s generalized subdifferential of h at x, respectively. For the
reader’s convenience, we quote the following properties of h0(x; v) and ∂0h(x)
from [38]:

(a) ∂0h(x) is a non-empty convex weak* compact subset of X .
(b) h0(x; v) = max{〈v, x∗〉 : x∗ ∈ ∂0h(x)}.
(c) h0(x; ·) is a positively homogeneous, convex and continuous function on

X .
(d) ∂0h(x) = ∂h(x), ∀x ∈ X when h is convex on X, where ∂h(x) denotes the

subdifferential of h at x.

The vector optimization problem considered in this section are like the one
given by Coladas and Wang [39]:

(AVP)
V −Minimizef(x)

Subject to x ∈ Ω,

where f : X → Y satisfies that k ∗ f = k ∗ ◦f is locally Lipschitz and regular
on ω for each k∗ ∈ K+, ω is a non-empty subset of X and K is a closed convex
cone in Y with intK 	= φ.

For further discussion we need he following definitions:

Definition 6.75 ([244]). f : X → Y is said to be K-pre-invex on ω if there
exists a function η : ω × ω → X such that for any x, y ∈ ω and λ ∈ [0, 1], y +
λη(x, y) ∈ ω and

λf(x) + (1 − λ)f(y) − f(y + λη(x, y)) ∈ K. (6.61)

Definition 6.76. f : X → Y is said to be K-convexlike on ω if for any
x, y ∈ ω and λ ∈ [0, 1] there exists a z ∈ ω such that

λf(x) + (1 − λ)f(y) − f(z) ∈ K. (6.62)

Definition 6.77. f : X → Y is said to be K-subconvexlike on ω if there exists
θ ∈ intK such that for any x, y ∈ ω, λ ∈ [0, 1] and ε > 0 we can find a z ∈ ω
satisfying

εθ + λf(x) + (1 − λ)f(y) − f(z) ∈ K. (6.63)

Note that K-convexity → K-pre-invexity → K-convex-likeness → K-
subconvexlikeness, see, e.g., [39]. The following properties of generalized
convex functions defined above are from [39]:
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(a) If f is K-pre-invex on ω and k∗ ∈ K+, then k∗f is R+-pre-invex on ω,
where R+ = {α ∈ R : α ≥ 0}.

(b) If f is K-subconvexlike on ω, then f(ω) + intK is convex.
(c) If f is K-subconvexlike on ω, then exactly one of the following holds:

(∃x ∈ ω) − f(x) ∈ intK; (6.64)

(∃k∗ ∈ K+ − {0})(k∗f)(ω) ⊂ R+. (6.65)

(d) Suppose that h : X → R is locally Lipschitz and regular on ω. If h is
R+-pre-invex on ω, then there exists an η : ω × ω → X such that for any
x, y ∈ ω, η(y, x) ∈ F (ω, x) = {v ∈ X : (∃t0 > 0)(∀t ∈ [0, t0])x + tv ∈ ω}
and

h(y) − h(x) ≥ 〈η(y, x), x∗〉 , ∀x∗ ∈ ∂0h(x). (6.66)

The convex cone K defines a partial order on Y. We give the following solution
concepts for (AVP).

Definition 6.78. Let x̄ ∈ ω.

• x̄ is called a weak minimum of (AVP) if

(∀x ∈ ω)f(x̄) − f(x) /∈ intK.

• x̄ is called a minimum of (AVP) if

(∀x ∈ ω)f(x̄) − f(x) /∈ K − {0}.
• x̄ is called a strong minimum of (AVP) if

(∀x ∈ ω)f(x) − f(x̄) ∈ K.

The following lemma from [39] is needed for further discussion.

Lemma 6.79. Suppose that h : X → R is locally Lipschitz and regular on
ω. Then h gets a minimum over ω at x if h is R+-pre-invex on ω and
∂0h(x)

⋂
F (ω, x)+ 	= φ.

For a weak minimum to the abstract vector minimization problem (AVP),
Coladas and Wang [39] gave the following sufficient and necessary conditions:

Theorem 6.80. If f is K-pre-invex on ω and if there exists a k∗ ∈ K+−{0}
such that ∂0(k∗f)(x)

⋂
F (ω, x)+ 	= φ, then x is a weak minimum of (AVP).

Proof. Suppose that f is K-pre-invex on ω then

〈f(x) − f(y), k∗〉 = k∗f(x) − k∗f(y) ≤ 0, ∀y ∈ ω.

Hence there exists no y ∈ ω such that

f(x) − f(y) ∈ intK

because k∗ ∈ K+ − {0} implies that 〈k, k∗〉 > 0, ∀k ∈ intK. Therefore, x is a
weak minimum to (AVP).

��
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Theorem 6.81. Suppose that ω is convex and that f is K-subconvexlike on
ω. If x is a weak minimum for (AVP), then there exists a k∗ ∈ K+−{0} such
that ∂0(k∗f)(x)

⋂
F (ω, x)+ 	= φ.

For proof see [39].
The following corollary extends Theorem 2.1 from [229], the proof of the

corollary is immediate from above discussions.

Corollary 6.82. Suppose that ω is convex and that f is K-pre-invex on ω.
Then x is a weak minimum for (AVP) if and only if there exists a k∗ ∈
K+ − {0} such that ∂0(k∗f)(x)

⋂
F (ω, x)+ 	= φ.

Coladas and Wang [39] have given a sufficient condition and a necessary
condition for a minimum for (AVP) as well.

Theorem 6.83. Let K be pointed and x ∈ ω. if f is K-pre-invex on ω and if
there exists a k∗ ∈ K+ −{0} such that ∂0(k∗f)(x)

⋂
F (ω, x)s+ 	= φ, then x is

a minimum for (AVP).

Coladas and Wang [39] extended Theorem 3.1 of [229] as the following
corollary to Theorem 6.83.

Corollary 6.84. Let x ∈ ω, Y = Rn,K = Rn
+ and f = (f1, . . . , fn). If f is

Rn
+-pre-invex on ω and if there exists an i such that ∂0fi(x)

⋂
F (ω, x)s+ 	= φ,

then x is a minimum for (AVP).

Theorem 6.85. Suppose that ω is convex and that f is K-subconvexlike on
ω. If x is a minimum of (AVP), then there exists a k∗ ∈ K+ − {0} such that
∂0(k∗f)(x)

⋂
F (ω, x)+ 	= φ.

These authors also proved a sufficient condition and a necessary condition for
strong minimum for (AVP) in [39].

Another approach in nonsmooth vector optimization is composite (see
[106]) multiobjective programming problem:
(CVOP)

Minimize(f1(F1(x)), . . . , fp(Fp(x)))

Subject to x ∈ C, gj(Gj(x)) � 0, j = 1, . . . ,m,

where C is a convex subset of a Banach space X, fi, i = 1, . . . , p, gj , j =
1, . . . ,m, are real valued locally Lipschitz function on Rn, and Fi, i = 1, . . . , p
andGj , j = 1, . . . ,m are locally Lipschitz and Gateaux differentiable functions
from X into Rn with Gateaux derivatives F ′

i and G′
j , but are necessarily

continuously Frechet differentiable, see Clarke [38].
The above composite model is broad and flexible enough to cover many

common types of multiobjective problems, seen in the literature. Moreover, the
model obviously includes the wide class of convex composite single objective
problems, which is now recognized as fundamental for theory and computation
in scalar nonsmooth optimization. To see the nature of the composite model,
let us look at the following examples:
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Example 6.86. Define Fi, Gj : Xn → Rp+m by

Fi(x) = (0, 0, . . . , li(x), 0, . . . , 0), i = 1, . . . , p,

Gj(x) = (0, 0, . . . , hj(x), 0, . . . , 0), j = 1, . . . ,m,

where li(x) and hj(x) are locally Lipschitz and Gateaux differentiable func-
tions on a Banach space X. Define fi, gj : Rp+m → R by fi(x) = xi, i =
1, . . . , p, and gj(x) = xp+j , j = 1, . . . ,m. Let C = X. Then the composite
multiobjective vector optimization problem (CVOP) is the problem:

Minimize(l1(x), . . . , lp(x))

Subject to x ∈ Xn, hj(x) � 0, j = 1, . . . ,m,

which is a standard multiobjective differentiable nonlinear programming
problem.

Example 6.87. Consider the vector approximation (model) problem:

V − Minimize(‖F1(x)‖1 , . . . , ‖Fp(x)‖p)

Subject to x ∈ X,

where X is a Banach space, ‖·‖i , i = 1, . . . , p, are norms in Rm, and for
each i = 1, . . . , p, Fi : X → Rm is a Frechet differentiable (error) function.
This problem is also the case of vector composite model, where for each i =
1, . . . , p, f : Rn → R is given by fi(x) = ‖x‖i , and conditions on Gj(x) = x
and gj(x) = 0. Various examples of vector approximation problems of this
type that arise in simultaneous approximation are given in [97, 98].

The idea of Jeyakumar and Yang [106] is that by studying the composite
model a unified framework can be given for the treatment of many questions of
theoretical and computational interest in multiobjective optimization. Jeyaku-
mar and Yang [106] presented new conditions under which the Kuhn–Tucker
optimality conditions becomes sufficient for efficient and properly efficient
solutions. The sufficient conditions in this section are significant even for scalar
composite problems as these conditions are weaker than the conditions given
by Jeyakumar [104].
Let x, a ∈ X. Define K : X → Rn(p+m) by

K(x) = (F1(x), . . . , Fp(x), G1(x), . . . , Gm(x)).

For each x, a ∈ X, the linear mapping

Ax,a(y) = (α1(x, a)F ′
1(a)y, . . . , αp(x, a)F ′

p(a)y,
β1(x, a)G′

1(a)y, . . . , βm(x, a)G′
m(a)y),

where αi(x, a), i = 1, . . . , p and βj(x, a), j = 1, . . . ,m are real positive
constants.
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Equivalently, the null space condition means that for each x, a ∈ X, there
exist real constants αi(x, a) > 0, i = 1, . . . , p and βj(x, a) > 0, j = 1, . . . ,m
and μ(x, a) ∈ X such that Fi(x) − Fi(a) = αi(x, a)F ′

i (a)μ(x, a) and Gj(x) −
Gj(a) = βj(x, a)G′

j(a)μ(x, a). For our composite vector optimization problem
(CVOP), Jeyakumar and Yang [106] proposed the following generalized null
space condition (GNC):
For each x, a ∈ C, there exist real constants αi(x, a) > 0, i = 1, . . . , p, and
βj(x, a) > 0, j = 1, . . . ,m, and μ(x, a) ∈ (C − a) such that Fi(x) − Fi(a) =
αi(x, a)F ′

i (a)μ(x, a) and Gj(x) − Gj(a) = βj(x, a)G′
j(a)μ(x, a). A condition

of this type is called representation condition, has been used in the study of
Chebyshev vector approximation problems in Jahn and Sachs [99].

Jeyakumar and Yang [106] proposed the following Kuhn–Tucker type opti-
mality conditions (KT) for (CVOP):

λ ∈ Rp, λi > 0, i = 1, . . . , p

μ ∈ Rm, μj � 0, μjgj(Gj(a)) = 0,

0 ∈
p∑

i=1

λi∂fi(Fi(a)) +
m∑

j=1

μj∂gj(Gj(a))G′
j − (C − a)+.

Jeyakumar and Yang [106] obtained the following result:

Theorem 6.88. For the problem (CVOP), assume that fi and gj are con-
vex functions, and Fi and Gj are locally Lipschitz and Gateaux differentiable
functions. Let a be feasible for (CVOP). Suppose that the optimality condi-
tions (KT) holds at a. If the generalized null space condition (GNC) holds at
each feasible point x of (CVOP), then a is an efficient solution of (CVOP).

For the proof, see [106].
The following example shows that the generalized null space condition

(GNC) may not be sufficient for a feasible point which satisfies the optimality
conditions (KT) to be a properly efficient solution for (CVOP).

Example 6.89. Consider the following simple multiobjective problem:

V − Minimize
(
x1

x2
,
x2

x1

)

Subject to (x1, x2) ∈ R2, 1 − x1 ≤ 0, 1 − x2 ≤ 0.

It is easy to check that (1, 1) is an efficient solution for the problem, but it
is not properly efficient. The generalized null space condition (GNC) holds at
every feasible point (x1, x2) with α1((x1, x2), (1, 1)) = 1

x2
, α2((x1, x2), (1, 1)) =

1
x1
, βi((x1, x2), (1, 1)) = 1, i = 1, 2.

The following example provides a nonsmooth convex composite problem for
which the sufficient optimality condition given in above Theorem holds.
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Example 6.90. Consider the multiobjective problem

Minimize
( |2x1 − x2|

|x1 + x2| ,
x1 + 2x2

x1 + x2

)

Subject to x1 − x2 ≤ 0, 1 − x1 ≤ 0, 1 − x2 ≤ 0.

Let F1(x) = 2x1−x2
x1+x2

, F2(x) = x1+2x2
x1+x2

, G1(x) = x1 − x2 G2(x) = 1 − x1,
G3(x) = 1− x2, f1(y) = |y| , f2(y) = y, and g1(y) = g2(y) = g3(y) = y. Then,
the problem becomes a convex composite problem with an efficient solution
(1, 2). It is easy to see that the null space condition holds at each feasible
point of the problem with αi(x, a) = 1, for i = 1, 2, βj(x, a) = x1+x2

3 , for

j = 1, 2, 3 and μ(x, a) =
(

3x1−3
x1+x2

, 3x2−6
x1+x2

)T

. The optimality conditions (KT)
hold with v1 = v2 = 1, λ1 = 1, λ2 = 3 and μj = 0, j = 1, 2, 3.

The following example shows that the pseudolinear programming problems
satisfy sufficient optimality conditions given in above theorem.

Example 6.91.
Minimize(l1(x), . . . , lp(x))

Subject to x ∈ Rn, hj(x) − bj ≤ 0, j = 1, . . . ,m,

where li : Rn → R and hj : Rn → R are differentiable and pseudolinear, i.e.,
pseudo-convex and pseudo-concave, see Chap. 3, and bj ∈ R, j = 1, . . . ,m.
Define Fi : Rn → Rp+m by

Fi(x) = (0, . . . , li(x), 0, . . . , 0), i = 1, . . . , p,

and
Gj(x) = (0, . . . , hj(x) − bj , 0, . . . , 0), j = 1, . . . ,m.

Define fi, gj : Rp+m → R by fi(x) = xi, i = 1, . . . , p, gj(x) = xp+j , j =
1, . . . ,m. Then the above minimization problem can be written as:

Minimize (f1(F1(x)), . . . , fp(Fp(x)))

Subject to x ∈ Rn, gj(Gj(x)) ≤ 0, j = 1, . . . ,m.

The generalized null space condition (GNC) is verified at each feasible point
by the pseudolinearity property of the functions involved. It follows from the
above sufficiency theorem that is the optimality conditions

p∑

i=1

λil
′
i(a) +

m∑

j=1

μjg
′
j(a) = 0,

μj (gj(a) − bj) = 0,

holds with λi > 0, i = 1, . . . , p with μj ≥ 0, j = 1, . . . ,m, at the feasible
point a ∈ Rn of the pseudolinear programming problem, then a is an efficient
solution for the pseudolinear programming problem.
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Jeyakumar and Yang [106] further strengthened the generalized null space
condition by constraining αi(x, a) = βj(x, a) = 1, ∀i, j, in order to get suf-
ficient conditions for properly efficient solutions for (CVOP). Jeyakumar
and Yang [106] gave the following sufficient optimality for properly efficient
solution.

Theorem 6.92. Assume that the conditions on (CVOP) in Theorem 6.88
hold. Let a be feasible for (CVOP). Suppose that the optimality conditions
(KT) hold at a. If the generalized null space condition (GNC) holds with
αi(x, a) = βj(x, a) = 1, ∀i, j, for each feasible x of (CVOP) then a is a properly
efficient solution for (CVOP).

It is well known that duality results have played a crucial role in the
development of multiobjective programming [140, 217]. Following the suc-
cess of multiobjective linear programming duality, various generalizations of
the duality theory have been given for multiobjective nonlinear program-
ming problems, see, e.g., [140,217]. For composite vector optimization model,
Jeyakumar and Yang [106] gave the following Mond–Weir type of dual model:

(CVD)
Maximize (f1(F1(u)), . . . , fp(Fp(u)))

Subject to 0 ∈
p∑

i=1

λi∂fi(Fi(u))F ′
i (u) +

m∑

j=1

μj∂gj(Gj(u))G′
j(u) − (C − u)+,

μjgj(Gj(u)) ≥ 0, j = 1, . . . ,m,

u ∈ C, λ ∈ RP , λi > 0, μ ∈ Rm, μj ≥ 0.

Note that the problem (CVD) is considered as a dual to (CVOP) in the sense
that

(a) (Zero duality gap) if x̄ is a properly efficient solution for (CVOP) then, for
some λ̄ ∈ Rp, μ̄ ∈ Rm, (x̄, λ̄, μ̄) is a properly efficient solution for (CVD),
and the objective values of (CVOP) and (CVD) at these points are equal.

(b) (Weak duality property) if x is feasible for (CVOP) and (u, λ, μ) is feasible
for (CVD) then

(f1(F1(x)), . . . , fp(Fp(x)))
T
, . . . , (f1(F1(u), . . . , fp(Fp(u)))T

/∈ −Rp
+−{0}.

Jeyakumar and Yang [106] obtained weak and strong duality results for
(CVOP) and (CVD) under invexity hypothesis and generalized null space
condition.

6.6 Vector Saddle Points

In this section we consider the vector valued optimization problem
(VP)

Minimizef(x), Subject to g(x) � 0,

where f : S → Rp, g : S → Rm and the related vector saddle point.
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By studying a natural generalization of the scalar Lagrangian

f(x) + μT g(x)

Tanino and Sawaragi [234] have developed a saddle point and duality theory
for convex (VP), generalizing that of the scalar case.

On the other hand Kuk et al. [134] studied weak vector saddle-point the-
orems for the nonsmooth multiobjective program (NVOP) in which functions
are locally Lipschitz. For the problem (NVOP), a point (x, λ, μ) is said to be
a critical point if, x is a feasible point for (NVOP), and

0 ∈ ∂

⎛

⎝
p∑

i=1

λifi(x) +
m∑

j=1

μjgj(x)

⎞

⎠,

μjgj(x) = 0, j = 1, . . . ,m,

λi � 0, i = 1, . . . , p, λT e = 1.

Note that

∂

⎛

⎝
p∑

i=1

λifi(x) +
m∑

j=1

μjgj(x)

⎞

⎠ =
p∑

i=1

∂

⎛

⎝fi(x) +
m∑

j=1

μjgj(x)

⎞

⎠.

Let L(x, λ) = f(x) + μT g(x), where x ∈ Rm and μ ∈ Rm
+ . Then, a point

(x̄, λ̄) ∈ Rn ×Rm
+ is said to be a weak vector saddle-point if

L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄), ∀x ∈ Rn, μ ∈ Rm
+ .

Kuk et al. [134] obtained the following saddle-point conditions:

Theorem 6.93. Let (x̄, Λ̄, μ̄) be a critical point of (VP). Assume that f(·) +
μ̄T g(·) is V − ρ-invex with respect to functions η and θ and

∑p
i=1 λ̄ρi � 0.

Then (x̄, λ̄) is a weak vector saddle-point for (VP).

For the proof, see Kuk et al. [134]. Further, they obtained:

Theorem 6.94. If there exists λ̄ ∈ Rm
+ such that (x̄, λ̄) is a weak vector

saddle-point, then x̄ is a weak minimum for (VP).

Li and Wang [139] presented several conditions for the existence of a Lagrange
multipliers or a weak saddle point in multiobjective optimization. They estab-
lished relationship between a Lagrange multiplier and a weak saddle point.
Let K be a cone in Rm. Denote K ′ = K

⋃{0}. K is said to be pointed if

K ′⋂(−K)′ = {0}.
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K is said to be acute if the closure clK is pointed. Let K be a pointed convex
cone of Rm with intK 	= φ, let Y be a non-empty subset of Rm. For y, z ∈ Rm,
the cone orders with respect to K is defined as follows:

y �K z ⇔ z − y ∈ K;

y ≤K z ⇔ z − y ∈ K − {0};
y <K z ⇔ z − y ∈ intK.

Li and Wang [139] considered the following multiobjective programming
problem:

(VP)
K − minf(x)

Subject to g(x) �K 0,

x ∈ X,

where X is a nonempty subset of Rn, f : Rn → Rm, g : Rn → Rp.

Definition 6.95. x̄ ∈ X0 = {x ∈ X : g(x) �K 0} is called a weakly effi-
cient solution for (VP) if f(x̄) ∈ W − MinKY = {ȳ ∈ Y : there is noy ∈
Y such that y <K ȳ}; x̄ ∈ X0 is called an efficient solution for (VP) if f(x̄) ∈
MinKf(X0) = {x̄ ∈ f(X0) : there is no y ∈ f(X0 such that y ≤K f(X0)).

Denote by Γ the family of all m× p matrices Λ satisfying ΛQ ⊂ K. For any
given η ∈ K0 − {0} and λ ∈ Q0, one can easily verify that Λ ∈ Γ if Λ = eλT ,
where e ∈ K satisfying ηT e = 1. Here K0 is positive dual cone of K.

Definition 6.96. The vector-valued Lagrangian function for problem (VP) is
defined as

L(x,Λ) = f(x) + Λg(x), (x,Λ) ∈ X0 × Γ.

Here X0 × Γ is the cartesian product of X0 and Γ.

Definition 6.97. A pair (x̄, Λ̄) ∈ X × T is called a saddle point of L(x,Λ) if

L(x̄, Λ̄) ∈ MinK{L(x, Λ̄) : x ∈ X} ∩ MaxK{L(x̄, Λ) : Λ ∈ Γ}.
Definition 6.98. A pair (x̄, Λ̄) ∈ X × T is called a weak saddle point of
L(x,Λ) if

L(x̄, Λ̄) ∈W − MinK{L(x, Λ̄) : x ∈ X} ∩W − MaxK{L(x̄, Λ) : Λ ∈ Γ}.
Li and Wang [139] used following result:

Theorem 6.99. (x̄, Λ̄) ∈ X×Γ is a weak saddle point of L(x,Λ) if and only if

(a) L(x̄, Λ̄) ∈ W − MaxK

{
L(x, Λ̄) : x ∈ X

}
.

(b) g(x̄) �K 0.
(c) Λ̄g(x̄) ≥K 0.
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Furthermore, Li and Wang [139] gave the following result to connect weak
saddle point of the vector-valued Lagrangian function and weakly efficient
solution of (VP).

Theorem 6.100. If the pair (x̄, Λ̄) is a weak saddle point of the vector-valued
Lagrangian function L and Λ̄g(x̄) = 0, then x̄ is a weakly efficient solution of
problem (VP).

Li and Wang [139] have further discussed connection between properly efficient
solution of (VP) and saddle point of the vector-valued Lagrangian function.

6.7 Linearization of Nonlinear Multiobjective
Programming

Consider the following nonlinear multiobjective programming problem:
(CVOP)

Minimize (f1(x), . . . , fp(x))

Subject to gj(x) � 0, j = 1, . . . ,m.

Let x∗ be a feasible solution for (CVOP), similar to Chew and Choo [36],
Bector et al. [16] considered the linearized multiobjective program LP(x∗)
given by

LP(x∗)
Minimize

(
xT∇f1(x∗), . . . , xT∇fp(x∗)

)

Subject to gj(x) � 0, j = 1, . . . ,m.

Using the following extensions of results of Chew and Choo [36], Bector
et al. [16] obtained connection of efficient solutions of the original problem to
the efficient solutions of the linearized multiobjective programming problem.

Lemma 6.101. Let x∗ be efficient solution for (CVOP) and Slater type con-
straint qualification holds for (CVOP). Let gj , j = 1, . . . ,m be convex. Then
x∗ is efficient for LP(x∗).

Lemma 6.102. Let fi, i = 1, . . . , p be pseudoconvex. Let x∗ be efficient to
LP(x∗), then x∗ is efficient for (CVOP).

In view of above lemmas, if f is pseudo-convex and g is convex then the
constrained vector optimization problem (CVOP) and LP(x∗) are equivalent.
Following Chew and Choo [36] and Bector et al. [16], Antczak [4] proposed
the following equivalent multiobjective program:

(CV OPη(x̄))

Minimize
(
η(x, x̄)T∇f1(x̄), . . . , η(x, x̄)T∇fp(x̄)

)

Subject to gj(x) � 0, j = 1, . . . ,m,
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where

X0 = {x ∈ X : gj(x) � 0, j = 1, . . . ,m}, η : X0 ×X0 → Rn.

Antczak [4] obtained the following result to connect (CVOP) and
(CV OPη(x̄)). For proof see, Antczak [4].

Theorem 6.103. Let x̄ be (weak) efficient for (CVOP) and Slater type con-
straint qualification holds at x̄ for (CVOP). Further, we assume that g is invex
with respect to η at x̄ on X0 and η(x, x̄) = 0. Then x̄ is (weak) efficient for
(CV OPη(x̄)).

Theorem 6.104. Let x̄ be a feasible point for (CV OPη(x̄)). Further, we
assume that f is invex with respect to η at x̄ on X0 and η(x̄, x̄) = 0. If x̄
is efficient for (CV OPη(x̄)) then x̄ is also efficient for (CVOP).

Thus, if we assume that f and g are invex with respect to the same η at
x̄ on the set of feasible solution X0 and η(x̄, x̄) = 0 then multiobjective
programming problems (CVOP) and (CV OPη(x̄) are equivalent.

Example 6.105. Consider the following multiobjective programming problem

Minimizef(x) =
(

1
3
x3

1 −
1
2
x2

1 + 5x1 +
1
6
, 5x1 + ex2

)

Subject to g1(x) = 1 − x1 ≤ 0,

g2(x) = 1 − x2 ≤ 0.

Note that x̄ = (1, 1) is an efficient point in the considered problem. Further,
it can be proved that f and g are invex at x̄ with respect to the same function
η defined by

η(x, u) =
(
x1 − u1

5
,
x2 − u2

eu2

)T

.

Then the problem CV OPη(x̄) for (CVOP) is the following linear multiobjec-
tive programming problem:

Minimize (x1 − 1, x1 + x22)

Subject to
g1(x) = 1 − x1 ≤ 0,

g2(x) = 1 − x2 ≤ 0.

It is not difficult to see, that x̄ = (1, 1) is also efficient in the above
optimization problem.

Antczak [4] introduced an η-Lagrange function for multiobjective program-
ming problem CV OPη(x̄).
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Definition 6.106. An η-Lagrange function is said to be a Lagrange function
for a multiobjective programming problem CV OPη(x̄)

Lη(x, ξ) =
(
η(x, x̄)T∇f1(x̄) + ξT g(x), . . . , η(x, x̄)T∇f1(x̄) + ξT g(x)

)
.

Definition 6.107. A point (x̄, ξ̄) ∈ X0 × Rm
+ is said to be a saddle point for

the η-Lagrange function if

Lη(x̄, ξ) � Lη(x̄, ξ̄) � Lη(x, ξ̄).

Antczak [4] obtained the following result to connect saddle point of the η-
Lagrange function and the efficient solution of the (CVOP), for the proof, see
Antczak [4].

Theorem 6.108. We assume that f is (invex) strictly invex with respect to
η at x̄ on X0 with η(x̄, x̄) = 0 and some constraint qualification holds at x̄ for
(CVOP). If (x̄, ξ̄) is saddle point for Lη, then x̄ is a (weak) efficient solution
for (CVOP).

6.8 Multiobjective Symmetric Duality

Dorn [59] defined a nonlinear programming problem and its dual to be sym-
metric if the dual of the dual is the original problem; that is, if the dual
program is recast in the form of the primal, its dual is the primal. A linear
program and its dual are symmetric in this sense. Symmetric dual quadratic
programs are given by Dorn [59] and Cottle [40]. Dantzig et al. [53] (see
also [167]) first formulated a pair of symmetric dual nonlinear programming
problems. The formulation given by Dantzig et al. [53] involves a scalar
function f(x, y), x ∈ Rn, y ∈ Rm that is required to be convex in x for
fixed y and concave in y for fixed x. Mond and Weir [180] have given a
different pair of symmetric dual nonlinear programs in which the convex-
ity and concavity assumptions of [53] are weakened to pseudo-convexity and
pseudo-concavity. Later Weir and Mond [246] presented multiobjective sym-
metric duality. Weir and Mond [246] proposed the following pair of nonlinear
multiobjective symmetric dual:

(MSP)
Minimizef(x, y) − [yT

(∇yλ
T f
)
(x, y)

]
e

Subject to ∇y

(
λT f

)
(x, y) � 0,

x � 0, λ ∈ Λ+.

(MSD)
Maximizef(u, v) − [uT∇x

(
λT f

)
(u, v)

]
e

Subject to ∇x

(
λT f

)
(u, v) � 0,

v � 0, λ ∈ Λ+,
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where f : Rn × Rn → Rp; Λ+ = {λ ∈ Rp : λ > 0,
∑p

i=1 λi = 1} and
e = (1, . . . , 1)T ∈ Rp. Weir and Mond [246] obtained the following weak
duality results.

Theorem 6.109. Let f(·, y) be convex for fixed y and let f(x, ·) be concave
for fixed x. Let (x, y, λ) be feasible for (MSP) and let (u, v, λ) be feasible for
(MSD). Then, the following cannot hold:

f(x, y) − [yT∇y

(
λT f

)]
e ≤ f(u, v) − [uT∇x

(
λT f

)]
e.

They also obtained strong duality result for (MSP) and (MSD). Weir and
Mond [246] proposed another symmetric dual pair known as Mond–Weir type
symmetric dual pair.

(MWSP)
Minimizef(x, y)

Subject to ∇y

(
λT f

)
(x, y) � 0,

yT∇y

(
λT f

)
(x, y) � 0

x � 0, λ ∈ Λ+.

(MWSD)
Maximizef(u, v)

Subject to ∇x

(
λT f

)
(u, v) � 0,

uT∇x

(
λT f

)
(u, v) � 0

v � 0, λ ∈ Λ+,

where f : Rn × Rn → Rp; Λ+ = {λ ∈ Rp : λ > 0,
∑p

i=1 λi = 1} and
e = (1, . . . , 1)T ∈ Rp. Weir and Mond [246] obtained the weak duality for
(MWSP) and (MWSD):

Theorem 6.110. Let (x, y) be feasible for (MWSP) and let (u, v) be feasible
for (MWSD). Let λT f(·, ·, y) be pseudo-convex for fixed y and let λT f(·, ·, x)
be pseudo-convex for fixed x. Then f(x, y) � f(u, v).

Gulati et al. [76] extended the results of Weir and Mond [246] to the case of
invex functions, but this was not a direct approach, they proposed a slightly
modified dual models for Mond–Weir dual models (MWSP) and (MWSP)
(however, the Wolfe type dual model (MSP) and (MSD) remains the same)and
an additional restriction was imposed on the kernel function η. Weak duality
for (MSP) and (MSD) under invexity given by Gulati et al. [76] is (for proof,
see [76]):

Theorem 6.111. Let f(·, y) be invex in x with respect to η and −f(x, ·) be
invex in y with respect to ξ, with η(x, u)+u ≥ 0 and ξ(v, y)+y ≥ 0, whenever
(x, y, λ) feasible for (MSP) and (u, v, λ) feasible for (MSD). Then

λT
(
f(x, y) − (yT∇y

(
λTK

)
(x, y)e

))

≥ λT
(
f(u, v) − (uT∇x

(
λTK

)
(u, v)e

))
.
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Gulati et al. [76] established strong duality for (MSP) and (MSD) under invex-
ity conditions. Further, these authors proposed a slightly different Mond–Weir
type symmetric dual as compared to Weir and Mond [246].

(MWSP1)
Minimizef(x, y)

Subject to ∇y

(
λT f

)
(x, y) � 0,

yT∇y

(
λT f

)
(x, y) � 0,

λ > 0.

(MWSD1)
Maximizef(u, v)

Subject to ∇x

(
λT f

)
(u, v) � 0,

uT∇x

(
λT f

)
(u, v) � 0,

λ > 0.

The weak duality relation for (MWSP1) and (MWSD1) under invexity
assumption given by Gulati et al. [76]:

Theorem 6.112. Let (x, y, λ) be feasible for (MWSP1) and (u, v, λ) feasible
for (MWSD1). Let λT f(·, y) be pseudo-invex with respect to η for fixed y, and
−λT f(x, ·) be pseudo-invex with respect to ξ for fixed x, with η(x, u) + u � 0
and η(v, y) + y � 0. Then

λT f(x, y) ≥ λT f(u, v).

Gulati et al. [76] also obtained strong and converse duality for (MWSP1) and
(MWSD1) under pseudo-invexity assumptions. These authors also discussed
self-duality under the generalized invexity assumptions. Later Kim et al. [123]
formulated a pair of multiobjective symmetric dual programs for pseudo-invex
functions and arbitrary cones. The model proposed by Kim et al. [123] unifies
the Wolfe vector symmetric dual model and the Mond–Weir vector symmetric
dual model.

(KSP)
Minimizef(x, y) − [yT∇y

(
λT f

)
(x, y)

]
e

Subject to (x, y) ∈ C1 × C2,

∇y

(
λT f

)
(x, y) ∈ C∗

2 ,

λ � 0, λT e = 1.

(KSD)

Maxmizef(u, v) − [uT∇x

(
λT f

)
(u, v)

]
e

Subject to (x, y) ∈ C1 × C2,

−∇x

(
λT f

)
(u, v) ∈ C∗

1 ,

λ � 0, λT e = 1,



156 6 Invex Functions in Multiobjective Programming

where Ci, i = 1, 2 are convex cones with nonempty interior in Rn. Recall that
C∗

i , i = 1, 2 is called the polar of Ci, i = 1, 2 if

C∗
i = {z : xT z � 0, ∀x ∈ Ci}.

Kim et al. [123] established the following weak duality relation for (KSP) and
(KSD).

Theorem 6.113. Let (x, y, λ) be feasible for (KSP) and (u, v, λ) be feasible
for (KSD). Assume that either

(a) x 	= u, (λT f)(·, y) is strictly pseudo-invex for fixed y with respect to η1
on C1 and −(λT f)(x, ·) is pseudo-invex for fixed x with respect to η2 on
C2; or

(b) y 	= v (λT f)(·, y) is pseudo-invex for fixed y with respect to η1 on C1 and
−(λT f)(x, ·) is strictly pseudo-invex for fixed x with respect to η2 on C2;
or

(c) λ > 0, (λT f)(·, y) is pseudo-invex for fixed y with respect to η1 on C1 and
−(λT f)(x, ·) is pseudo-invex for fixed x with respect to η2 on C2.

Then

f(x, y) − [yT∇y

(
λT f

)
(x, y)

]
e � f(u, v) − [uT∇x

(
λT f

)
(u, v)

]
e.

Kim et al. [123] also obtained strong and self-duality relations under pseudo-
invexity assumptions. For more results on symmetric duality, reader may see,
Suneja et al. [230], Mishra [156], Mishra and Lai [157].



7

Variational and Control Problems
Involving Invexity

7.1 Scalar Variational Problems with Invexity

The relationship between mathematical programming and classical calculus
of variation was explored and extended by Hanson [82]. Duality results are
obtained for scalar valued variational problems in Mond and Hanson [170]
under convexity. Mond and Hanson [170] considered the following problems
as continuous analogue of the usual primal and dual problems in nonlinear
programming problems:
Consider the determination of a piece-wise smooth extremal x = x(t), t ∈ I
for the following modified Lagrange problem:

Problem I. (Primal) ≡ P

Minimize
∫ b

a

f(t, x, ẋ)dt

Subject to x(a) = α, x(b) = β, (7.1)
g(t, x, ẋ) ≥ 0, t ∈ I. (7.2)

Consider also the determination of (m + n)-dimensional extremal (x, λ) ≡
(x(t), λ(t)), a ≤ t ≤ b, for the following maximization problem:

Problem II. (Dual) ≡ D

Maximize
∫ b

a

{f(t, x, ẋ) − λ(t)g(t, x, ẋ)}dt
Subject to x(a) = α, x(b) = β, (7.3)

fx(t, x, ẋ) − λ(t)g(t, x, ẋ) =
d

dt
f(t, x, ẋ) − λ(t)g(t, x, ẋ), (7.4)

λ(t) ≥ 0. (7.5)
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Here I = [a, b] be a real interval and f : I × Rn × Rn → R be a continu-
ously differentiable function. In order to consider f(t, x, ẋ), where x : I → Rn

is differentiable with derivative ẋ. Let g(t, x, ẋ) be an m-dimensional func-
tion which similarly has continuous derivatives up to and including second
order, x(t) is an n-dimensional piecewise smooth function and λ(t) is an m-
dimensional function continuous except possibly for values of t corresponding
to corners of x(t). For values of t corresponding to corners of x(t), (7.4) must
be satisfied for right and left hand limits.

No notational distinction is made between row and column vectors. Sub-
scripts denote partial derivatives, superscripts denote vector components.
Thus,

fx1 −
(

m∑

i=1

λig
i

)

x1

=
d

dt

{
fẋ1 −

(
m∑

i=1

λig
i

)

ẋ1

}
,

fx2 −
(

m∑

i=1

λig
i

)

x2

=
d

dt

{
fẋ2 −

(
m∑

i=1

λig
i

)

ẋ2

}
,

fxn −
(

m∑

i=1

λig
i

)

xn

=
d

dt

{
fẋn −

(
m∑

i=1

λig
i

)

ẋn

}
.

Remark 7.1. It was pointed out by Mond and Hanson [170] that if all the
functions are independent of t, the problems P and D reduce to nonlinear
programs,

Minimize f(x)
Subject to g(x) ≥ 0,

and its dual

Maximize f(x) − λg(x)
Subject to fx(x) − λgx(x) = 0,

λ ≥ 0.

Mond et al. [174] extended the work of Mond and Hanson [170] to the class of
invex functions by extending the concept of invex functions due to Hanson [83]
to continuous case as follows:

Definition 7.2.
∫ b

a f(t, x, ẋ) will be said to be invex with respect to η if there
exists a vector function η(t, x∗, x) with η(t, x, x) = 0 such that

∫ b

a

f(t, x∗, ẋ∗)dt−
∫ b

a

f(t, x, ẋ)dt

≥
∫ b

a

{
η(t, x∗, x)fx(t, x, ẋ) +

(
d

dt
η(t, x∗, x)

)
fx(t, x, ẋ)

}
dt.
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Remark 7.3. Mond and others pointed out that if the function f is indepen-
dent of t, the above definition of invex function reduces to the following:

f(x∗) − f(x) ≥ η(x∗, x)fx(x),

which is the original definition of invexity given by Hanson [83].

Definition 7.4.
∫ b

a
f(t, x, ẋ) will be said to be pseudoinvex with respect to η

if there exists a vector function η(t, x∗, x) with η(t, x, x) = 0 such that

∫ b

a

{
η(t, x∗, x)fx(t, x, ẋ) +

(
d

dt
η(t, x∗, x)

)
fx(t, x, ẋ)

}
dt ≥ 0

⇒
∫ b

a

f(t, x∗, ẋ∗)dt ≥
∫ b

a

f(t, x, ẋ)dt,

Or equivalently,

∫ b

a

f(t, x∗, ẋ∗)dt <
∫ b

a

f(t, x, ẋ)dt

⇒
∫ b

a

{
η(t, x∗, x)fx(t, x, ẋ) +

(
d

dt
η(t, x∗, x)

)
fx(t, x, ẋ)

}
dt < 0.

Definition 7.5.
∫ b

a f(t, x, ẋ) will be said to be quasiinvex with respect to η if
there exists a vector function η(t, x∗, x) with η(t, x, x) = 0 such that

∫ b

a

f(t, x∗, ẋ∗)dt ≤
∫ b

a

f(t, x, ẋ)dt

⇒
∫ b

a

{
η(t, x∗, x)fx(t, x, ẋ) +

(
d

dt
η(t, x∗, x)

)
fx(t, x, ẋ)

}
dt ≤ 0.

However, Mond et al. [174] established only weak duality theorem and dis-
cussed natural boundary values. We will report the weak duality of Mond and
others as follows.

Theorem 7.6 (Weak duality). If f and −g are invex for some function η,
then inf(P ) ≥ sup(D).

��
Assume that the necessary constraints (see, e.g., Valentine [237]) for the
existence of multipliers at an extremal of (P ) are satisfied. Thus for every
minimizing arc x = x∗(t) of (P ), there exists a function of the form

F = λ∗0f − λ∗(t)g
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such that

Fx =
d

dt
(Fẋ) (7.6)

λ∗igi = 0, i = 1, . . . ,m (7.7)
λ∗(t) ≥ 0 (7.8)

holds throughout a ≤ t ≤ b (except at corners of x∗(t), where (7.6) holds for
unique left- and right-hand limits). Here λ∗0 is a constant, λ∗(t) is continuous
except possibly for values of t corresponding to the corners of x∗(t), and
(λ∗0, λ

∗(t)) cannot vanish for any t, a ≤ t ≤ b.
Assuming that the minimizing arc x∗(t) is normal, i.e., λ∗0 can be taken

equal to 1, the following strong duality theorem is given in Mond et al. [174].

Theorem 7.7 (Strong duality). Assume that f and −g are invex for some
function η. If the function x∗(t) minimizes the primal problem (P ), then there
exists a λ∗(t), such that x∗(t), λ∗(t) maximizes the dual problem (D) and the
extreme values of (P ) and (D) are equal.

Proof. See Mond et al. [174].
��

Mond and others have further discussed the variational problems with nat-
ural boundary values rather than fixed end points, however, we will confine
ourselves to fixed end point variational problems.

Later Mond and Husain [172] considered the following minimization
problem:
Consider the determination of a piece-wise smooth extremal x = x(t), t ∈ I
for the following modified Lagrange problem:

Problem I. (Primal) ≡ P

Minimize
∫ b

a

f(t, x, ẋ)dt

Subject to x(a) = α, x(b) = β,

g(t, x, ẋ) ≤ 0, t ∈ I.

Consider also the determination of (m + n)-dimensional extremal (x, λ) ≡
(x(t), λ(t)), a ≤ t ≤ b, for the following maximization problem:

Problem II. (Dual) ≡ MWD

Maximize
∫ b

a

f(t, u, u̇)dt

Subject to x(t0) = α, x(tf ) = β,

fu(t, u, u̇) + y(t)gu(t, u, u̇)

=
d

dt
{fu̇(t, u, u̇) + y(t)gu̇(t, u, u̇)}, (7.9)
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∫ b

a

y(t)g(t, u, u̇)dt ≥ 0,

y(t) ≥ 0, t ∈ I.

Here I = [a, b] be a real interval and f : I ×Rn ×Rn → R be a continuously
differentiable function. In order to consider f(t, x, ẋ) where x : I → Rn is dif-
ferentiable with derivative ẋ. Let g(t, x, ẋ) be anm-dimensional function which
similarly has continuous derivatives up to and including second order, x(t) is
an n-dimensional piecewise smooth function and λ(t) is an m-dimensional
function continuous except possibly for values of t corresponding to corners of
x(t). For values of t corresponding to corners of x(t), (7.9) must be satisfied for
right- and left-hand limits. Notice that the dual problem is now Mond–Weir
type of dual and this allows further weakening of the invexity assumptions
in the duality results. Mond and Husain [172] obtained several Kuhn–Tucker
type sufficient optimality results and duality theorems under pseudo-invexity
and quasi-invexity assumptions.
Theorem 7.8 (Sufficient optimality conditions). Let x∗ be feasible for
(P) and assume that f is pseudoinvex at x∗ with respect to η and that for each
i ∈ I(x∗), gi is quasiinvex at x∗ with respect to η. If there exists a piecewise
smooth y∗ : I → Rm such that (x∗, y∗) satisfies the conditions

fx(t, x∗, ẋ∗) + y∗(t)gx(t, x∗, ẋ∗) =
d

dt
{fẋ(t, x∗, ẋ∗) + y∗(t)gẋ(t, x∗, ẋ∗)}

y∗(t)g(t, x∗, ẋ∗) = 0, t ∈ I,

y∗(t) ≥ 0, t ∈ I,

then x∗ is a global optimal solution of the problem (P ).

Proof. From feasibility and quasiinvexity assumption, we get

η(t, x, x∗)gi
x(t, x∗, ẋ∗) +

(
d

dt
η(t, x, x∗)

)
gi

ẋ(t, x∗, ẋ∗) ≤ 0,

and hence, by taking yi∗ = 0, for i /∈M(x∗),
∫ b

a

{
η(t, x, x∗)gi

x(t, x∗, ẋ∗) +
(
d

dt
η(t, x, x∗)

)
gi

x(t, x∗, ẋ∗)
}
dt ≤ 0.

On the other hand from the first necessary optimality condition, integration
by parts and the above inequality, one gets

∫ b

a

{
η(t, x, x∗)fx(t, x∗, ẋ∗) +

(
d

dt
η(t, x, x∗)

)
fx(t, x∗, ẋ∗)

}
dt ≥ 0.

This inequality together with pseudoinvexity gives
∫ b

a

f(t, x, ẋ)dt ≥
∫ b

a

f(t, x∗, ẋ∗)dt,

that is x∗ is a global optimal solution for (P ).
��
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Theorem 7.9 (Sufficient optimality conditions). Let x∗ be a feasible
point for (P ). If there exists a piecewise smooth y∗ : I → Rm such that
(x∗, y∗) satisfies the necessary optimality conditions given in Theorem 7.8,
and if the Lagrangian function Ψ(x, y∗) : X → R, defined by

Ψ(x, y∗) =
∫ b

a

{f(t, x, ẋ) + y∗(t)g(t, x, ẋ)}dt

is pseudoinvex at x∗ with respect to η, then x∗ is a global optimal solution
for (P ).

Proof. The proof is left as a simple exercise to the reader.
��

The following theorem is slight generalization of Theorem 7.6

Theorem 7.10 (Weak duality). If for all feasible x for (P ) and (u, y) for
(MWD), there exists a differentiable vector function η with η(t, x, x) = 0
such that, for all feasible (x, u, y), f is pseudoinvex at u with respect to η and
that for each i = 1, 2, . . . ,m, gi is quasiinvex at u with respect to η. Then∫ b

a
f(t, x, ẋ)dt ≥ ∫ b

a
f(t, u, u̇)dt.

Proof. The proof is very similar to the proof of Theorem 7.8.
��

Theorem 7.11 (Strong duality). Let x∗ be a normal solution for (P ).
Assume that a differentiable vector function η, with η(t, x, x) = 0, exists
such that the invexity hypothesis of Theorem 7.10 are satisfied. Then there
exists a piecewise smooth y∗ : I → Rm such that (x∗, y∗) solves (MWD) and
Minimum(P ) = Maximum(MWD).

Mond and Husain [172] have also given strict converse duality for (P ) and
(MWD) under several generalized invexity assumptions.

As discussed in Chaps. 5 and 6, the symmetric duality is one of the impor-
tant problems of interest for researchers. Mond and Hanson [171] extended
the symmetric duality to variational problems, giving continuous analogues of
the previous results in the literature on symmetric duality.

Consider the real scalar function f(t, x, ẋ, y, ẏ), where I = [a, b], x and
y are functions of t with x(t) ∈ Rn and y(t) ∈ Rm, and ẋ and ẏ denote
derivatives of x and y, respectively, with respect to t. assume that f has
continuous fourth-order partial derivatives with respect to x, ẋ, y and ẏ.

In symmetric duality, we consider the problem of finding functions x :
[a, b] → Rn and y : [a, b] → Rm, with (ẋ(t), ẏ(t)) piecewise smooth on [a, b],
to solve the following pair of optimization problems.
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(SP)

Minimize
∫ b

a

[f(t, x, ẋ, y, ẏ) − y(t)T fy(t, x, ẋ, y, ẏ)

+ y(t)T d

dt
fẏ(t, x, ẋ, y, ẏ)]dt,

Subject to x(a) = α, x(b) = β, y(a) = α, y(b) = β (7.10)
d

dt
fẏ(t, x, ẋ, y, ẏ) ≥ fy(t, x, ẋ, y, ẏ), t ∈ I, (7.11)

(SD)

Maximize
∫ b

a

[f(t, x, ẋ, y, ẏ) − x(t)T fx(t, x, ẋ, y, ẏ)

+ x(t)T d

dt
fẋ(t, x, ẋ, y, ẏ)]dt,

Subject to x(a) = α, x(b) = β, y(a) = α, y(b) = β (7.12)
d

dt
fẋ(t, x, ẋ, y, ẏ) ≤ fx(t, x, ẋ, y, ẏ), ∈ I, (7.13)

where (7.11) and (7.13) may fail to hold at corners of (ẋ(t), ẏ(t)), but must
be satisfied for unique right- and left-hand limits.

The above (SP ) and (SD) are problemsI and problemII stated in Mond
and Hanson [171] with the constraint x(t) ≥ 0 removed from ProblemI and
y(t) ≥ 0 removed from ProblemII.

Remark 7.12. If the time dependency of problems (SP ) and (SD) is removed
and is considered to have domain Rn × Rm, we obtain the symmetric dual
pair as follows:

(SP)

Minimize f(x, y) − yT fy(x, y)
Subject to fy(x, y) ≤ 0

(SD)

Minimize f(x, y) − xT fx(x, y)
Subject to fx(x, y) ≥ 0.

These are the programs considered in Chap. 5 (see also Dantzing et al. [53]),
except that the positivity constraints have been omitted.

The concept of invexity for symmetric dual problems needs a little exten-
sion as follows:
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Definition 7.13. The functional
∫ b

a f(t, x, ẋ, y, ẏ)dt is invexinvex functional
in x and ẋ if for each y : [a, b] → Rm, with ẏ piecewise smooth, there exists a
function η : [a, b] ×Rn ×Rn ×Rn ×Rn → Rn such that

∫ b

a

[f(t, x, ẋ, y, ẏ) − f(t, u, u̇, y, ẏ)]dt

≥
∫ b

a

η(t, x, ẋ, y, ẏ)T × [fx(t, u, u̇, y, ẏ) − d

dt
fẋ(t, u, u̇, y, ẏ)]dt

for all x : [a, b] → Rn, u : [a, b] → Rn with (ẋ(t), u̇(t)) piecewise smooth on
[a, b].

Similarly, the functional − ∫ b

a
f(t, x, ẋ, y, ẏ)dt is invex in y and ẏ if for each

x : [a, b] → Rn, with ẋ piecewise smooth, there exists a function ξ : [a, b] ×
Rm ×Rm ×Rm ×Rm → Rm such that

−
∫ b

a

[f(t, x, ẋ, v, v̇) − f(t, x, ẋ, y, ẏ)]dt

≥ −
∫ b

a

ξ(t, v, v̇, y, ẏ)T × [fy(t, x, ẋ, y, ẏ) − d

dt
fẏ(t, x, ẋ, y, ẏ)]dt

for all v : [a, b] → Rm, y : [a, b] → Rm with (v̇(t), ẏ(t)) piecewise smooth on
[a, b].

For the sake of simplicity, in the sequel, we will write η(x, u) for
η(t, x, ẋ, u, u̇) and ξ(v, y) for ξ(t, v, v̇, y, ẏ).

The following weak duality relating (SP ) and (SD) is established in Smart
and Mond [226].

Theorem 7.14 (Weak duality). If
∫ b

a
f is invex in x and ẋ and − ∫ b

a
f is

invex in y and ẏ with η(x, u) + u(t) ≥ 0 and ξ(v, y) + y(t) ≥ 0 for all t ∈
[a, b] (except perhaps at corners of (ẋ(t), ẏ(t)) or (u̇(t), v̇(t)) whenever (x, y)
is feasible for (SP ) and (u, v) is feasible for (SD), then inf(SP ) ≥ sup(SD).

Proof. Let (x, y) be feasible for (SP ) and (u, v) be feasible for (SD). Then
using the invexity assumptions, we get

∫ b

a

[{
f(t, x, ẋ, y, ẏ) − y(t)T fy(t, x, ẋ, y, ẏ) + y(t)T d

dt
fẏ(t, x, ẋ, y, ẏ)

}

−
{
f(t, u, u̇, v, v̇) − u(t)T fx(t, u, u̇, v, v̇) + u(t)T d

dt
fẋ(t, u, u̇, v, v̇)

}]
dt

≥
∫ b

a

η(x, u)T

[
fx(t, u, u̇, v, v̇) − d

dt
fẋ(t, u, u̇, v, v̇)

]
dt

−
∫ b

a

ξ(v, y)T

[
fy(t, x, ẋ, y, ẏ) − d

dt
fẏ(t, x, ẋ, y, ẏ)

]
dt
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+
∫ b

a

u(t)T

[
fx(t, u, u̇, v, v̇) − d

dt
fẋ(t, u, u̇, v, v̇)

]
dt

−
∫ b

a

y(t)T

[
fy(t, x, ẋ, y, ẏ) − d

dt
fẏ(t, x, ẋ, y, ẏ)

]
dt

=
∫ b

a

(η(x, u) + u(t))t

[
fx(t, u, u̇, v, v̇) − d

dt
fẋ(t, u, u̇, v, v̇)

]
dt

−
∫ b

a

(ξ(v, y) + y(t))T

[
fy(t, x, ẋ, y, ẏ) − d

dt
fẏ(t, x, ẋ, y, ẏ)

]
dt

≥ 0,

by (7.11) and (7.13) with η(x, u) + u(t) ≥ 0 and ξ(v, y) + y(t) ≥ 0. Hence,
inf(SP ) ≥ sup(SD).

��
Remark 7.15. If the invexity assumptions of Theorem 7.8 are replaced by con-
vexity and concavity, then the conditions η(x, u)+u(t) ≥ 0 and ξ(v, y)+y(t) ≥
0 become x(t) ≥ 0 and y(t) ≥ 0. These constraints may be added to prob-
lems (SP ) and (SD), respectively, to obtain the dual pair of Mond and
Hanson [171].

Smart [224] further developed strong and converse duality results for the pair
of problems (SP ) and (SD). Another important discussion on duality is self
duality:
Assume that m = n, f(t, x(t), ẋ(t), y(t), ẏ(t)) is said to be skew symmetric
(i.e., f(t, x(t), ẋ(t), y(t), ẏ(t)) = −f(t, y(t), ẏ(t), x(t), ẋ(t)) for all x(t) and y(t)
in the domain of f , such that (ẋ(t), ẏ(t)) is piecewise smooth on [a, b] and that
x(a) = y(a), x(b) = y(b).

It follows that (SD) may be written as a minimization problem:

(SD)

Minimize
∫ b

a

[
f(t, y, ẏ, x, ẋ) − x(t)T fx(t, y, ẏ, x, ẋ)

+ x(t)T d

dt
fẋ(t, x, ẋ, y, ẏ)

]
dt,

Subject to x(a) = α, x(b) = β, y(a) = α, y(b) = β

d

dt
fẋ(t, y, ẏ, x, ẋ) ≥ fx(t, y, ẏ, x, ẋ).

(SD) is formally identical to (SP ); that is, the objective and constraint func-
tions and initial conditions of (SP ) and (SD) are identical. This problem is
said to be self-dual.

It is easy to see that whenever (x, y) is feasible for (SP ), then (y, x) is
feasible for (SD), and vice-versa.
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Theorem 7.16 (Self-duality). Assume that (SP ) is self-dual and that the
invexity conditions of Theorem 7.14 are satisfied. If (x∗, y∗) is optimal for
(SP ) and the system

p(t)T

(
fyy(t, x∗, ẋ∗, y∗, ẏ∗) − d

dt
fyẏ(t, x∗, ẋ∗, y∗, ẏ∗)

)

+
d

dt

[
p(t)T d

dt
fyẏ(t, x∗, ẋ∗, y∗, ẏ∗)

]

+
d2

dt2

[
−p(t)T d

dt
fẏẏ(t, x∗, ẋ∗, y∗, ẏ∗)

]
= 0.

only has the solution p(t) = 0, a ≤ t ≤ b, then (y∗, x∗) is optimal for both
(SP ) and (SD) and the common optimal value is zero.

Proof. We leave the proof for the reader as a simple exercise.
��

Natural boundary (free boundary) conditions may be discussed as in Mond
and Hanson [171], since the extra transversality conditions required for the
formulation of (SP ) and (SD) are independent of any positivity constraints
on x and y.

Kim and Lee [121] formulated the following pair of symmetric dual vari-
ational problems different from the one presented by Smart and Mond [226],
that is different from the (SP ) and (SD) above in this section:

(SP1)

Minimize
∫ b

a

f(t, x, ẋ, y, ẏ)dt

Subject to x(a) = α, x(b) = β, y(a) = α, y(b) = β

fy(t, x, ẋ, y, ẏ) − d

dt
fẏ(t, x, ẋ, y, ẏ) ≤ 0, t ∈ I,

yT

[
fy(t, x, ẋ, y, ẏ) − d

dt
fẏ(t, x, ẋ, y, ẏ)

]
≥ 0.

(SD1)

Maximize
∫ b

a

f(t, x, ẋ, y, ẏ)dt

Subject to x(a) = α, x(b) = β, y(a) = α, y(b) = β

fx(t, x, ẋ, y, ẏ) − d

dt
fẋ(t, x, ẋ, y, ẏ) ≥ 0, t ∈ I,

xT

[
fx(t, x, ẋ, y, ẏ) − d

dt
fẋ(t, x, ẋ, y, ẏ)

]
≤ 0.
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If (SP1) and (SD1) are independent of t and f is considered to have domain
Rn ×Rm, we obtain the following symmetric dual pair

(MWSP)

Minimize f(x, y)
Subject to fy(x, y) ≤ 0

yT fy(x, y) ≥ 0.

(MWSD)

Maximize f(x, y)
Subject to fx(x, y) ≥ 0

xT fx(x, y) ≤ 0.

Notice that (MWSP ) and (MWSD) are the pair of problems given in
Chap. 5, Sect. 5.4.

Definition 7.17. The functional
∫ b

a
f(t, x, ẋ, y, ẏ)dt is pseudoinvex in x and

ẋ if for each y : [a, b] → Rm, with ẏ piecewise smooth, there exists a function
η : [a, b] ×Rn ×Rn ×Rn ×Rn → Rn such that

∫ b

a

η(t, x, ẋ, u, u̇)T ×
[
fx(t, u, u̇, y, ẏ) − d

dt
fẋ(t, u, u̇, y, ẏ)

]
dt ≥ 0

⇒
∫ b

a

[f(t, x, ẋ, y, ẏ) − f(t, u, u̇, y, ẏ)]dt ≥ 0

for all x : [a, b] → Rn, u : [a, b] → Rn with (ẋ(t), ẏ(t)) piecewise smooth on
[a, b].

Similarly, the functional − ∫ b

a
f(t, x, ẋ, y, ẏ)dt is pseudoinvex in y and ẏ

if for each x : [a, b] → Rn, with ẋ piecewise smooth, there exists a function
ξ : [a, b] ×Rm ×Rm ×Rm ×Rm → Rm such that

−
∫ b

a

ξ(t, v, v̇, y, ẏ)T ×
[
fy(t, x, ẋ, y, ẏ) − d

dt
fẏ(t, x, ẋ, y, ẏ)

]
dt ≥ 0

⇒ −
∫ b

a

[f(t, x, ẋ, v, v̇) − f(t, x, ẋ, y, ẏ)]dt ≥ 0

for all v : [a, b] → Rm, y : [a, b] → Rm with (v̇(t), ẏ(t)) piecewise smooth on
[a, b].

For the sake of simplicity, in the sequel, we will write η(x, u) for η(t, x, ẋ, u, u̇)
and ξ(v, y) for ξ(t, v, v̇, y, ẏ).
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Kim and Lee [121] established following duality results:

Theorem 7.18 (Weak duality). If
∫ b

a
f is pseudoinvex in x and ẋ and

− ∫ b

a f is pseudoinvex in y and ẏ, with η(x, u)+u(t) ≥ 0 and ξ(v, y)+y(t) ≥ 0
for all t ∈ [a, b] (except perhaps at corners of (ẋ(t), ẏ(t)) or (u̇(t), v̇(t))
whenever (x, y) is feasible for (SP1) and (u, v) is feasible for (SD1), then
inf(SP1) ≥ sup(SD1).

��
Notice that if f is independent of t and have the domain f is considered to
be Rn ×Rm, then the above Theorem 7.18 is Theorem 5.30 of Chap. 5.

Theorem 7.19 (Strong duality). Let (x∗, y∗) be a minimizing function for
(SP1). Suppose that

(
p(t)T

(
fẏy(t, x∗, ẋ∗, y∗, ẏ∗) − d

dt
fyẏ(t, x∗, ẋ∗, y∗, ẏ∗)

))

+
d

dt

[
p(t)T d

dt
fyẏ(t, x∗, ẋ∗, y∗, ẏ∗)

]

+
d2

dt2

[
−p(t)T d

dt
fẏẏ(t, x∗, ẋ∗, y∗, ẏ∗)

]
= 0.

Only has the solution p(t) = 0 for all t ∈ [a, b] and fy(t, x∗, ẋ∗, y∗, ẏ∗) 	=
d
dtfẏ(t, x∗, ẋ∗, y∗, ẏ∗).

Then, (x∗, y∗) is feasible for (SD1). If in addition, the pseudoinvexity condi-
tions of Theorem 7.18 are satisfied, then (x∗, y∗) is a maximizing function for
(SD1), and the extreme values of (SP1) and (SD1) are equal.

Proof. For proof we refer the reader to Kim and Lee [121].
��

The static case of the above Theorem is Theorem 5.31. Kim and Lee [121]
have also obtained converse duality result. However, Kim and Lee [121] did not
discuss self duality results. Later, Nahak and Nanda [188] obtained symmetric
duality results for the Wolfe type dual pair constraints in cone and using
pseudoinvexity assumptions.

7.2 Multiobjective Variational Problems with Invexity

Let I = [a, b] be a real interval and f : I × Rn × Rn → R and g : I ×
Rn ×Rn → Rm be continuously differentiable functions. In order to consider
f(t, x(t), ẋ(t)), where x : I → Rn with derivative ẋ. Let C(I,Rn) denote the
space of piecewise smooth functions x with norm ‖x‖ = ‖x‖∞ + ‖Dx‖∞ ,
where the differential operator D is given by

ui = Dxi ⇔ xi(t) = α+
∫ t

a

ui(s)ds,



7.2 Multiobjective Variational Problems with Invexity 169

in which α is a given boundary value. Therefore, D = d
dt except at disconti-

nuities.
For a multiobjective continuous-time programming:

(CMP)

Minimize
∫ b

a

f(t, x, ẋ)dt =

(∫ b

a

f1(t, x, ẋ)dt, . . . ,
∫ b

a

fp(t, x, ẋ)dt

)

Subject to x(a) = α, x(b) = β, (7.14)
g(t, x, ẋ) ≤ 0, t ∈ I, x ∈ C(I,Rn), (7.15)

where fi : I × Rn × Rn → R, i ∈ P = {1, . . . , p}, g : I × Rn × Rn → Rm are
assumed to be continuously differentiable functions. Let K denote the set of
all feasible solutions for (CMP ), that is K = {x ∈ C(I,Rn) : x(a) = α, x(b) =
β, g(t, x(t), ẋ(t)) ≤ 0, t ∈ I}.

Craven [46] obtained Kuhn–Tucker type necessary conditions for the above
problem and proved that the necessary conditions are also sufficient if the
objective functions are pseudoconvex and constraints are quasiconvex.

Definition 7.20. A point x∗ ∈ K is said to be an efficient solution of (CMP )
if for all x ∈ K

∫ b

a

fi(t, x∗(t), ẋ∗(t))dt ≥
∫ b

a

fi(t, x(t), ẋ(t))dt ∀i ∈ P

⇒
∫ b

a

fi(t, x∗(t), ẋ∗(t))dt =
∫ b

a

fi(t, x(t), ẋ(t))dt ∀i ∈ P.

Definition 7.21. A point x∗ in K is said to be a weak minimum for (CMP )
if there exists no other x ∈ K for which

∫ b

a

f(t, x∗(t), ẋ∗(t))dt =
∫ b

a

f(t, x(t), ẋ(t))dt.

Remark 7.22. From the Definitions 7.20 and 7.21 it follows that if x∗ in K is
efficient for (CMP ) then it is also a weak minimum for (CMP ).

Definition 7.23 (Geoffrion [67]). A point x∗ in K is said to be properly
efficient solution for (CMP ) if there exists a scalar M > 0 such that, ∀i ∈
{1, . . . , p}

∫ b

a

fi(t, x∗(t), ẋ∗(t))dt−
∫ b

a

fi(t, x(t), ẋ(t))dt

≤M

(∫ b

a

fj(t, x∗(t), ẋ∗(t))dt−
∫ b

a

fj(t, x(t), ẋ(t))dt

)
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for some j such that
∫ b

a

fj(t, x(t), ẋ(t))dt >
∫ b

a

fj(t, x∗(t), ẋ∗(t))dt

whenever x ∈ K and
∫ b

a

fj(t, x∗(t), ẋ∗(t))dt >
∫ b

a

fj(t, x(t), ẋ(t))dt.

An efficient solution that is not properly efficient is said to be improperly
efficient. Thus for x∗ to be improperly efficient means that to every sufficiently
large M > 0, there is an x ∈ K and an i ∈ {1, . . . , p}, such that

∫ b

a

fi(t, x(t), ẋ(t))dt <
∫ b

a

fi(t, x∗(t), ẋ∗(t))dt

and
∫ b

a

fi(t, x∗(t), ẋ∗(t))dt −
∫ b

a

fi(t, x(t), ẋ(t))dt

≥M

(∫ b

a

fj(t, x∗(t), ẋ∗(t))dt −
∫ b

a

fj(t, x(t), ẋ(t))dt

)
, ∀j ∈ {1, . . . , p},

such that ∫ b

a

fj(t, x(t), ẋ(t))dt >
∫ b

a

fj(t, x∗(t), ẋ∗(t))dt.

Now we consider the following Geoffrion type parametric Variational problem
for predetermined Geoffrion’s parameter λ ∈ Λ+, where

Λ+ = {λ ∈ Rp : λ > 0, λT e = 1, e = (1, . . . , 1) ∈ Rp}.
(CPλ)

Minimize
p∑

i=1

λi

∫ b

a

fi(t, x, ẋ)dt =
∫ b

a

λT f(t, x, ẋ)dt.

Subject to (7.14) and (7.15). The problems (CMP ) and (CPλ) are equivalent
in the sense of Geoffrion [67]. The following theorems are valid when Rn is
replaced by some normed space of functions, as the proofs of these theorems
do not depend on the dimensionality of the space in which the feasible set of
(CMP ) lies. For problem (CMP ) the feasible set K lies in the normed space
C(I,Rn). For proofs of the following Theorems we refer the reader to Nahak
and Nanda [187].

Theorem 7.24. Let λ ∈ Λ+ be fixed. If x∗ is optimal for (CPλ), then x∗ is
properly efficient for (CMP ).
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Proof. First we must prove that x∗ is efficient. Suppose contrary, i.e., there
exists x ∈ K such that

∫ b

a

f i(t, x∗, ẋ∗)dt ≥
∫ b

a

f i(t, x, ẋ)dt, i = 1, . . . , p

and ∫ b

a

f i0(t, x∗, ẋ∗dt ≥
∫ b

a

f i0(t, x, ẋ)dt, for at least one i0.

Since λi > 0 ∀i = 1, . . . , p, we have
∫ b

a

λif
i(t, x∗, ẋ∗)dt ≥

∫ b

a

λif
i(t, x, ẋ)dt, i = 1, . . . , p.

That is,
∫ b

a

λif
i(t, x, ẋ)dt ≤

∫ b

a

λif
i(t, x∗, ẋ∗)dt, i = 1, . . . , p,

which contradicts the optimality of x∗. Next we have to prove that x∗ is
properly efficient for (CMP ) with

M = (p− 1)Maxi,j
λj

λi

(we may assume that p ≥ 2). Suppose to the contrary that for every sufficiently
large M > 0 there is an x ∈ K and an i ∈ {1, . . . , p}, such that

∫ b

a

f i(t, x, ẋ)dt <
∫ b

a

f i(t, x∗, ẋ)∗dt

and
∫ b

a

f i(t, x∗, ẋ∗)dt−
∫ b

a

f i(t, x, ẋ)dt

> M

(∫ b

a

f j(t, x, ẋ)dt−
∫ b

a

f j(t, x∗, ẋ∗)dt

)
, ∀j ∈ {1, . . . , p}

such that ∫ b

a

f j(t, x, ẋ)dt >
∫ b

a

f j(t, x∗, ẋ∗)dt.

It follows that
∫ b

a

f i(t, x∗, ẋ∗)dt−
∫ b

a

f i(t, x, ẋ)dt

>
p− 1
λi

(∫ b

a

f j(t, x, ẋ)dt−
∫ b

a

f j(t, x∗, ẋ∗)dt

)
, j 	= i.
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Multiplying both sides by λi

p−1 and summing over j 	= i yields

λi

(∫ b

a

f i(t, x∗, ẋ∗)dt−
∫ b

a

f i(t, x, ẋ)dt

)

>

p∑

j �=i

(∫ b

a

f j(t, x, ẋ)dt−
∫ b

a

f j(t, x∗, ẋ∗)dt

)

which contradicts the optimality of x∗ in (CPλ).
��

Theorem 7.25. Let f and g be convex in (x, ẋ) on K. Then x∗ is properly
efficient for (CMP ) if and only if x∗ is optimal for (CPλ) for some λ ∈ Λ+.

The following necessary optimality conditions for (CPλ) from Bector and
Husain [14] will be needed in the sequel.

Proposition 7.26. If x is optimal for(CPλ) and is normal [31], there exists
a piecewise smooth y : I → Rm such that for t ∈ I

λT fx(t, x(t), ẋ(t)) + y(t)T gx(t, x(t), ẋ(t))
= D

[
λT fẋ(t, x(t), ẋ(t)) + y(t)T gẋ(t, x(t), ẋ(t))

]

y(t)T gẋ(t, x(t), ẋ(t)) > 0
y(t) > 0.

A Wolfe type dual to (CPλ) as suggested by Geoffrion [67] is:

(CDλ)

Maximize
∫ b

a

{
λT f(t, u, u̇) + y(t)T g(t, u, u̇)

}
dt

Subject to x(a) = α, x(b) = β,

λT f(t, u, u̇) + y(t)T g(t, u, u̇)e =
d

dt

[
λT fẋ(t, u, u̇) + y(t)T gẋ(t, u, u̇)

]

y ≥ 0, t ∈ I.

In view of Theorems 7.24 and 7.25, Bector and Husain [14] proposed the fol-
lowing Wolfe type dual to (CMP ):

(CWMD)

Maximize
∫ b

a

{
f(t, u, u̇) + y(t)T g(t, u, u̇)

}
dt

Subject to x(a) = α, x(b) = β,



7.2 Multiobjective Variational Problems with Invexity 173

λT f(t, u, u̇) + y(t)T g(t, u, u̇)e =
d

dt

[
λT fẋ(t, u, u̇) + y(t)T gẋ(t, u, u̇)

]

y ≥ 0, t ∈ I,

λ ∈ Λ+.

In problems (CPλ) and (CDλ) the vector 0 < λ < Rp is predetermined. Note
that if p = 1 problems (CMP ) and (CWMD) become the pair of Wolfe
type dual Variational problems studied by Mond and Hanson [170]. However,
Bector and Husain [14] obtained duality results for convex functions involved
in the problem. These authors also obtained Mond–Weir type duality results
for (CMP ) for convex case. Nahak and Nanda [187] extended the results of
Bector and Husain [14] to invex functions.

Theorem 7.27 (Weak duality). Let x(t) be feasible for (CMP ) and
(u(t), λ, y(t)) be feasible for (CWMD). Let f and g be invex with respect
to the same function η at (u, u̇) over K. Then the following cannot hold:

∫ b

a

f i(t, x, ẋ) ≤ {f i(t, u, u̇) + y(t)T gi(t, u, u̇)
}
dt, ∀i ∈ {1, . . . , p},

∫ b

a

f j(t, x, ẋ) <
{
f i(t, u, u̇) + y(t)T gj(t, u, u̇)

}
dt, for at least one j.

Proof. The proof follows from the invexity assumptions and integration by
part.

��
Proposition 7.28. Let u∗(t) be feasible for (CMP ) and (u∗(t), λ∗, y∗(t)) be
feasible for (CWMD). Let f and g be invex with respect to the same function
η and if y∗T g(t, u∗, u̇∗) = 0, t ∈ I, then u∗(t) is properly efficient for (CMP )
and (u∗(t), λ∗, y∗(t)) is properly efficient for (CMWD).

Proof. We leave the proof as an exercise.
��

Assuming the constraint conditions for the existence of multipliers at the
extrema of (CMP ) hold, Nahak and Nanda [187] established usual strong
duality for (CMP ) and (CWMD) under invexity assumptions. These authors
also stated duality results for (CMP ) and the following Mond–Weir type dual,
without proof:

(CMWMD)

Maximize
∫ b

a

f(t, u, u̇)dt

Subject to x(a) = α, x(b) = β,

λT fu(t, u, u̇) + y(t)T gu(t, u, u̇) =
d

dt

[
fu̇(t, u, u̇) + y(t)T gu̇(t, u, u̇)

]
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y(t)T gu(t, u, u̇) ≥ 0,
y ≥ 0,

λ ∈ Λ = {λ ∈ Rp : λT e = 1}.
We state the Theorem 6 of Nahak and Nanda [187] with few corrections.

Theorem 7.29 (Weak duality). Let x(t) be feasible for (CMP ) and
(u(t), λ, y(t)) be feasible for (CMWMD). Let f and g be invex with respect
to the same function η at (u, v̇) over K. Then the following cannot hold:

∫ b

a

f i(t, x, ẋ)dt ≤
∫ b

a

f i(t, u, u̇)dt, ∀i ∈ {1, . . . , p},
∫ b

a

f j(t, x, ẋ)dt <
∫ b

a

f j(t, u, u̇)dt, for at least one j.

��
In Theorem 6 [187] have taken (u(t), λ, y(t)) to be feasible for (CWMD)
instead of (CMWWD). Strong and converse duality theorems are also stated
by Nahak and Nanda [187].

On the other hand, Mukherjee and Mishra [183] obtained Wolfe and
Mond–Weir type duality results for (CMP ) and corresponding dual prob-
lems involving pseudoinvex and quasiinvex functions. In relation to (CMP )
Mukherjee and Mishra [183] considered the following Wolfe type multiobjec-
tive continuous-time dual problem:

(CWMD)

Maximize
∫ b

a

{
f(t, u, u̇) + y(t)T g(t, u, u̇)e

}
dt

Subject to x(a) = α, x(b) = β,

fu(t, u, u̇) + y(t)T gu(t, u, u̇)e =
d

dt

[
fu̇(t, u, u̇) + y(t)T gu̇(t, u, u̇)e

]

y ≥ 0,
λ ∈ Λ = {λ ∈ Rp : λT e = 1}.

Mukherjee and Mishra [183] established several weak duality results relat-
ing (CMP ) and (NWMD).

Theorem 7.30 (Weak duality). If for all feasible (x, u, y, λ),

(a)
∫ b

a

{
f(t, ·, ·) + y(t)T g(t, ·, ·)e} dt is pseudoinvex; or

(b)
∫ b

a

{
λT f(t, ·, ·) + y(t)T g(t, ·, ·)e} dt is pseudoinvex.

Then
∫ b

a f(t, x, ẋ)dt ≥ ∫ b

a

{
f(t, u, u̇) + y(t)T g(t, u, u̇)e

}
dt.

Proof. For the proof we refer to Mukherjee and Mishra [183].
��
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Mukherjee and Mishra [183] have also established strong duality between
(CMP ) and (CWMD). These authors have considered Mond–Weir type of
multiobjective dual for (CMP ):

(CMWMD)

Maximize
∫ b

a

f(t, u, u̇)dt

Subject to x(a) = α, x(b) = β,

λT fu(t, u, u̇) + y(t)T gu(t, u, u̇) =
d

dt

[
fu̇(t, u, u̇) + y(t)T gu̇(t, u, u̇)

]

y(t)T gu(t, u, u̇) ≥ 0,
y ≥ 0,

λ ∈ Λ = {λ ∈ Rp : λT e = 1}.

Various weak duality between (CMP ) and (CMWMD) are also obtained by
Mukherjee and Mishra [183].

Theorem 7.31 (Weak duality). If for all feasible (x, u, y, λ),

(a)
∫ b

a
f(t, ·, ·)dt is pseudoinvex and

∫ b

a
y(t)T g(t, ·, ·)dt is quasiinvex; or

(b)
∫ b

a
λT f(t, ·, ·)dt is pseudoinvex and

∫ b

a
y(t)T g(t, ·, ·)dt is quasiinvex; or

(c)
∫ b

a f(t, ·, ·)dt is quasiinvex and
∫ b

a y(t)
T g(t, ·, ·)dt is strictly pseudoinvex; or

(d)
∫ b

a λ
T f(t, ·, ·)dt is quasiinvex and

∫ b

a y(t)
T g(t, ·, ·)dt is strictly pseudoinvex,

then
∫ b

a
f(t, x, ẋ)dt ≥ ∫ b

a
f(t, u, u̇)dt.

��
Theorem 7.32 (Strong duality). Let x0 be a weak minimum for (CMP ) at
which the Kuhn–Tucker constraint qualification is satisfied. Then there exists
(y, λ) such that x0, y, λ) is feasible for (CMWMD) and the objective values
of (CMP ) and (CMWMD) are equal. If, also, the any one of (a)–(d) of
the invexity assumptions of Theorem 7.31 is satisfied then x0, y, λ) is a weak
minimum for (CMWMD).

��
Jeyakumar and Mond [105] introduced a new class of invex functions which

preserves the sufficient optimality and duality results in the scalar case and
avoids major difficulty of verifying that the inequality holds for the same
kernel function. Mukherjee and Mishra [183] extended this concept to the
continuous case and obtained sufficient optimality and duality results under
the assumptions of this new class of functions. The following definitions and
examples have appeared in Mukherjee and Mishra [184].

Let Fi : X → R defined by Fi(x) =
∫ b

a fi(t, x, ẋ)dt, i = 1, . . . , p be
differentiable.
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Definition 7.33 (V-invex). A vector function F = (F1, . . . , Fp) is said to
be V-invex if there exists differentiable vector function η : I ×Rn ×Rn → Rn

with η(t, x, x) = 0 and βi : I ×X ×X → R+\{0} such that for each x, x̄ ∈ X
and for i = 1, . . . , p

Fi(x) − Fi(x̄) ≥
∫ b

a

[
αi(t, x(t), x̄(t))f i

x(t, x(t), ˙̄x(t))η(t, x(t), x̄(t))

+
d

dt
η(t, x(t), x̄(t))αi(t, x(t), x̄(t))f i

x(t, x(t), ˙̄x(t))
]
dt.

Definition 7.34 (V-pseudo-invex). A vector function F = (F1, . . . , Fp) is
said to be V-pseudo-invex if there exists differentiable vector function η : I ×
Rn × Rn → Rn with η(t, x, x) = 0 and βi : I ×X ×X → R+\{0} such that
for each x, x̄ ∈ X and for i = 1, . . . , p

∫ b

a

[
p∑

i=1

η(t, x, x̄)f i
x(t, x, ˙̄x) +

d

dt
η(t, x, x̄)f i

x(t, x, ˙̄x)

]
dt ≥ 0

⇒
∫ b

a

p∑

i=1

βi(t, x(t), x̄(t))fi(t, x(t), ˙̄x(t))dt

≥
∫ b

a

p∑

i=1

βi(t, x(t), x̄(t))fi(t, x̄(t), ˙̄x(t))dt

or equivalently
∫ b

a

p∑

i=1

βi(t, x(t), x̄(t))fi(t, x(t), ˙̄x(t))dt

<

∫ b

a

p∑

i=1

βi(t, x(t), x̄(t))fi(t, x̄(t), ˙̄x(t))dt

⇒
∫ b

a

[
p∑

i=1

η(t, x, x̄)f i
x(t, x, ˙̄x) +

d

dt
η(t, x, x̄)f i

x(t, x, ˙̄x)

]
dt < 0.

Definition 7.35 (V-Quasi-invex). A vector function F = (F1, . . . , Fp) is
said to be V-Quasi-invex if there exists differentiable vector function η : I ×
Rn × Rn → Rn with η(t, x, x) = 0 and βi : I ×X ×X → R+\{0} such that
for each x, x̄ ∈ X and for i = 1, . . . , p

∫ b

a

p∑

i=1

βi(t, x(t), x̄(t))fi(t, x(t), ˙̄x(t))dt

≤
∫ b

a

p∑

i=1

βi(t, x(t), x̄(t))fi(t, x̄(t), ˙̄x(t))dt

⇒
∫ b

a

[
p∑

i=1

η(t, x, x̄)f i
x(t, x, ˙̄x) +

d

dt
η(t, x, x̄)f i

x(t, x, ˙̄x)

]
dt ≤ 0.
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or equivalently

∫ b

a

[
p∑

i=1

η(t, x, x̄)f i
x(t, x, ˙̄x) +

d

dt
η(t, x, x̄)f i

x(t, x, ˙̄x)

]
dt > 0

⇒
∫ b

a

p∑

i=1

βi(t, x(t), x̄(t))fi(t, x̄(t), ˙̄x(t))dt

>

∫ b

a

p∑

i=1

βi(t, x(t), x̄(t))fi(t, x̄(t), ˙̄x(t))dt.

It is to be noted here that, if the function f is independent of t, Defini-
tions 7.33–7.35 reduce to the definitions of V -invexity, V -pseudo-invexity and
V -quasi-invexity of Jeyakumar and Mond [105], respectively. It is appar-
ent that every V -invex function is V -pseudo-invex and V -quasi-invex. The
following example shows that V -invexity is wider than that of invexity:

Example 7.36 (Mukherjee and Mishra [184]). Consider

Minx1,x2∈R

(∫ b

a

x2
1(t)
x2(t)

dt,

∫ b

a

x2(t)
x1(t)

dt

)

Subject to
1 − x1(t) ≤ 0, 1 − x2(t) ≤ 0.

Then for

α1(x, u) =
u2(t)
x2(t)

, α2(x, u) =
u1(t)
x1(t)

,

βi(x, u) = 1 for i = 1, 2 and η(x, u) = x(t) − u(t),

we shall show that
∫ b

a

fi(t, x, u̇) − f(t, u, u̇)

−αi(t, x(t), u(t))f i
x(t, x(t), u(t))η(t, x(t), u(t))dt ≥ 0, i = 1, 2.

Now
∫ b

a

x2
1(t)
x2(t)

dt−
∫ b

a

u2
1(t)
u2(t)

dt

−
∫ b

a

u2(t)
x2(t)

(
2u1(t)
u2(t)

,
−u2

1(t)
u2

2(t)

)
(x1 − 1)(x2 − 1)dt

=
∫ b

a

x2
1(t)
x2(t)

dt−
∫ b

a

1dt−
∫ b

a

1
x2(t)

(2,−1)(x1 − 1)(x2 − 1)dt

=
∫ b

a

x2
1(t)
x2(t)

dt−
∫ b

a

1dt−
∫ b

a

1
x2(t)

(2x1 − 2 − x2 + 1)dt
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=
∫ b

a

x2
1(t)
x2(t)

dt−
∫ b

a

1dt−
∫ b

a

{
2x1

x2(t)
− 1 − 1

x2(t)

}

=
∫ b

a

{
x2

1(t)
x2(t)

− 2x1

x2(t)
+

1
x2(t)

}
dt

=
∫ b

a

{
(x1(t) − 1)2

x2(t)

}
dt ≥ 0.

The following example shows that V -invex functions can be formed from
certain nonconvex functions.

Example 7.37 (Mukherjee and Mishra [183]). Consider the function h : I ×
X ×X → Rp

h(t, x(t), ẋ(t)) =

(∫ b

a

f1(t, x(t), ẋ(t))dt, . . . ,
∫ b

a

fp(t, x(t), ẋ(t))dt

)

where fi : I ×X ×X → R, i = 1, . . . , p are strongly pseudo-convex functions
with real positive functions αi(t, x, u), ψ : I ×X ×X → Rn is surjective with
ψ′(t, u, u̇) onto for each u ∈ Rn. Then the function h : I × X × X → Rp

is V -invex. To see this, let x, u ∈ X, v = ψ(t, x, ẋ), w = ψ(t, u, u̇). Then, by
strong-pseudo-convexity, we get

∫ b

a

{fi(ψ(t, x, ẋ)) − fi(ψ(t, u, u̇))}dt =
∫ b

a

{fi(v) − fi(w)}dt

>

∫ b

a

αi(t, v, w)f ′
i(w)(v − w)ψx(t, x, ẋ)dt

+
d

dt
αi(t, v, w)(v − w)f ′

i(w)ψx(t, x, ẋ)dt.

Since ψ(t, u, u̇) is onto, v − w = ψ′(t, u, u̇)η(t, x, u) is solvable for some
η(t, x, u).
Hence

∫ b

a

{fi(ψ(t, x, ẋ)) − fi(ψ(t, u, u̇))}dt ≥
∫ b

a

αi(t, v, w)(fi ◦ ψ)xdt

+
∫ b

a

d

dt
αi(t, v, w)(fi ◦ ψ)xdt.

Mukherjee and Mishra [184] have shown that the following necessary optimal-
ity conditions will be sufficient for optimality under generalized V -invexity
assumptions. There exists a piecewise smooth λ∗ : I → Rm such that

p∑

i=1

τif
i
x(t, x∗, ẋ∗) +

m∑

j=1

λ∗jg
j
x(t, x∗, ẋ∗)

=
d

dt

⎛

⎝
p∑

i=1

f i
x(t, x∗, ẋ∗) +

m∑

j=1

λ∗j (t)g
j
x(t, x∗, ẋ∗)

⎞

⎠ , (7.16)
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λ∗j (t)g
j
x(t, x∗, ẋ∗) = 0, t ∈ I, j = 1, . . . ,m, (7.17)

τ ∈ Rp, τ 	= 0, τ ≥ 0, λ∗(t) ≥ 0, t ∈ I. (7.18)

Theorem 7.38 (Sufficient optimality conditions). Let x∗ be a feasible
solution for (V CP ) and assume that

(∫ b

a τ1f1(t, ·, ·)dt, . . . ,
∫ b

a τpfp(t, ·, ·)dt
)

is

V-pseudo-invex and
(∫ b

a λ1g1(t, ·, ·)dt, . . . ,
∫ b

a τmgm(t, ·, ·)dt
)

is V-quasi-invex
with respect to η. If there exists a piecewise smooth λ∗ : I → Rm such that
(x∗(t), λ∗(t)) satisfies the conditions (7.16)–(7.18), then x∗ is a global weak
minimum for (VCP).

Proof. We refer the reader to Mukherjee and Mishra [184].
��

Mukherjee and Mishra [184] also established Mond–Weir type duality results
under generalized V -invexity assumption on the functions involved.

Theorem 7.39 (Weak duality). Let x be feasible for (VCP) and let (u, τ, λ)
be feasible for (VCD). If

(∫ b

a
τ1f1(t, ·, ·)dt, . . . ,

∫ b

a
τpfp(t, ·, ·)dt

)
is V-pseudo-

invex and
(∫ b

a λ1g1(t, ·, ·)dt, . . . ,
∫ b

a τmgm(t, ·, ·)dt
)
is V-quasi-invex with respect

to η, then
(∫ b

a τ1f1(t, x, ẋ)dt, . . . ,
∫ b

a τpfp(t, x, ẋ)dt
)T

−
(∫ b

a τ1f1(t, u, u̇)dt, . . . ,
∫ b

a τpfp(t, u, u̇)dt
)T

/∈ −intRp
+.

Proof. Follows the lines of the proof of sufficient optimality conditions.
��

Theorem 7.40 (Strong duality). Assume that u is a weak minimum for
(V CP ) and that a suitable constraint qualification is satisfied at u. Then
there exist (τ, λ) such that (u, τ, λ) is feasible for (V CD) and the objective
functions of (V CP ) and (V CD) are equal at these points. If, also for all
feasible (u, τ, λ),

(∫ b

a τ1f1(t, ·, ·)dt, . . . ,
∫ b

a τpfp(t, ·, ·)dt
)

is pseudo-invex and
(∫ b

a λ1g1(t, ·, ·)dt, . . . ,
∫ b

a τmgm(t, ·, ·)dt
)

is quasi-invex, then (u, τ, λ) is weak
maximum for (V CD).

Proof. We leave the proof as an easy exercise.
��

Kim and Kim [120] extended the concept of invexity studied by Mukherjee
and Mishra [184] to the V -type I invex functions and other generalizations,
thus extending the V -type I and related functions of Hanson et al. [85] to the
continuous case. However, Kim and Kim [120] did not compare their results
with that of Mukherjee and Mishra [184].
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Definition 7.41. We say the problem (V CP ) to be V -type I invex at u ∈
C(I,Rn) with respect to η, αi and βj if there exist vector function η : I×Rn×
Rn → Rn with η(t, x, x) = 0 and real valued functions αi ∈ R+\{0} and
βj ∈ R+\{0} such that

∫ b

a

fi(t, x, ẋ)dt−
∫ b

a

fi(t, u, u̇)dt

≥
∫ b

a

[
αi(x, u, ẋ, u̇)η(t, x, u)

{
f i

x(t, u, u̇) − d

dt
f i

x(t, u, u̇)
}]

dt

and

−
∫ b

a

g(t, u, u̇)dt

≥
∫ b

a

[
βj(x, u, ẋ, u̇)η(t, x, u)

{
gj

x(t, u, u̇) − d

dt
gj

x(t, u, u̇)
}]

dt,

∀x ∈ K, and for all i ∈ P = {1, 2, . . . , p}, j ∈ M = {1, 2, . . . ,m}. If the
first inequality is strict (whenever x 	= x∗) we say that (VCP) is semi strictly
V -type I invex at x∗.

Definition 7.42. We say the problem (VCP) is quasi V -type I at u ∈
C(I,Rn) with respect to η, αi and βj if there exist vector function η : I ×
Rn ×Rn → Rn with η(t, x, x) = 0 and real valued functions αi ∈ R+\{0} and
βj ∈ R+\{0} such that for some vector τ ∈ Rp, τ ≥ 0, and piecewise smooth
function λ : I → Rm, λ(t) ≥ 0,

∫ b

a

p∑

i=1

τiαi(x, u, ẋ, u̇)fi(t, x, ẋ)dt ≤
∫ b

a

p∑

i=1

τiαi(x, u, ẋ, u̇)fi(t, u, u̇)dt

⇒
∫ b

a

p∑

i=1

τiη(t, x, u)
{
f i

x(t, u, u̇) − d

dt
f i

x(t, u, u̇)
}
dt ≤ 0,

and

−
∫ b

a

m∑

j=1

λj(t)βj(x, u, ẋ, u̇)gj(t, u, u̇)dt ≤ 0

⇒
∫ b

a

m∑

j=1

λj(t)η(t, x, u)
{
gj

x(t, u, u̇) − d

dt
gj

x(t, u, u̇)
}
dt ≤ 0,

whenever x 	= x∗, ∀x ∈ K, for all i ∈ P = {1, 2, . . . , p}, j ∈M = {1, 2, . . . ,m}.
Definition 7.43. We say the problem (VCP) is pseudo V -type I at u ∈
C(I,Rn) with respect to η, αi and βj if there exist vector function η :
I ×Rn ×Rn → Rn with η(t, x, x) = 0 and real valued functions αi ∈ R+\{0}
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and βj ∈ R+\{0} such that for some vector τ ∈ Rp, τ ≥ 0, and piecewise
smooth function λ : I → Rm, λ(t) ≥ 0,

∫ b

a

p∑

i=1

τiη(t, x, u)
{
f i

x(t, u, u̇) − d

dt
f i

x(t, u, u̇)
}
dt ≥ 0

⇒
∫ b

a

p∑

i=1

τiαi(x, u, ẋ, u̇)fi(t, x, ẋ)dt ≥
∫ b

a

p∑

i=1

τiαi(x, u, ẋ, u̇)fi(t, u, u̇)dt

and
∫ b

a

m∑

j=1

λj(t)η(t, x, u)
{
gj

x(t, u, u̇) − d

dt
gj

x(t, u, u̇)
}
dt ≥ 0

⇒
∫ b

a

m∑

j=1

λj(t)βj(x, u, ẋ, u̇)gj(t, u, u̇)dt ≤ 0,

hold ∀x ∈ K, for all i ∈ P = {1, 2, . . . , p}, j ∈M = {1, 2, . . . ,m}.
Definition 7.44. We say the problem (VCP) is pseudo quasi V -type I at
u ∈ C(I,Rn) with respect to η, αi and βj if there exist vector function η :
I ×Rn ×Rn → Rn with η(t, x, x) = 0 and real valued functions αi ∈ R+\{0}
and βj ∈ R+\{0} such that for some vector τ ∈ Rp, τ ≥ 0, and piecewise
smooth function λ : I → Rm, λ(t) ≥ 0,

∫ b

a

p∑

i=1

τiη(t, x, u)
{
f i

x(t, u, u̇) − d

dt
f i

x(t, u, u̇)
}
dt ≥ 0

⇒
∫ b

a

p∑

i=1

τiαi(x, u, ẋ, u̇)fi(t, x, ẋ)dt ≥
∫ b

a

p∑

i=1

τiαi(x, u, ẋ, u̇)fi(t, u, u̇)dt

and

−
∫ b

a

m∑

j=1

λj(t)βj(x, u, ẋ, u̇)gj(t, u, u̇)dt ≤ 0

⇒
∫ b

a

m∑

j=1

λj(t)η(t, x, u)
{
gj

x(t, u, u̇) − d

dt
gj

x(t, u, u̇)
}
dt ≤ 0,

∀x ∈ K, for all i ∈ P = {1, 2, . . . , p}, j ∈M = {1, 2, . . . ,m}.
Definition 7.45. We say the problem (VCP) is pseudo quasi V -type I at
u ∈ C(I,Rn) with respect to η, αi and βj if there exist vector function η :
I ×Rn ×Rn → Rn with η(t, x, x) = 0 and real valued functions αi ∈ R+\{0}
and βj ∈ R+\{0} such that for some vector τ ∈ Rp, τ ≥ 0, and piecewise
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smooth function λ : I → Rm, λ(t) ≥ 0,

∫ b

a

p∑

i=1

τiαi(x, u, ẋ, u̇)fi(t, x, ẋ)dt ≤
∫ b

a

p∑

i=1

τiαi(x, u, ẋ, u̇)fi(t, u, u̇)dt

⇒
∫ b

a

p∑

i=1

τiη(t, x, u)
{
f i

x(t, u, u̇) − d

dt
f i

x(t, u, u̇)
}
dt ≤ 0

and
∫ b

a

m∑

j=1

λj(t)η(t, x, u)
{
gj

x(t, u, u̇) − d

dt
gj

x(t, u, u̇)
}
dt ≥ 0

⇒
∫ b

a

m∑

j=1

λj(t)βj(x, u, ẋ, u̇)gj(t, u, u̇)dt ≤ 0,

hold ∀x ∈ K, for all i ∈ P = {1, 2, . . . , p}, j ∈M = {1, 2, . . . ,m}.
Theorem 7.46 (Sufficient optimality conditions). Let x∗ be a feasible
solution for (VCP) and assume that (VCP) is V -pseudo quasi type I with
respect to η. If there exists a piecewise smooth λ∗ : I ⇒ Rm such that
(x∗(t), λ∗(t)) satisfies the conditions (7.16)–(7.18), then x∗ is an efficient
solution for (VCP).

Proof. We refer the reader to Kim and Kim [120].
��

Further Kim and Kim [120] obtained Wolfe and Mond–Weir type duality
results under generalized V-type I and related functions. One can see the
results of Kim and Kim [120] as an extension of the results of Mukherjee
and Mishra [184] to generalized V-type I and related functions as well as the
results of Hanson et al. [85] to continuous case.

Now we turn towards multiobjective symmetric duality. Gulati et al. [76]
are the first to propose the symmetric duality for multiobjective variational
problems. However, these authors obtained Mond–Weir type symmetric dual-
ity results for convex and concave functions, they did not consider invexity
of the functions involved in the multiobjective symmetric dual models. Kim
and Lee [122] are the first one to discuss symmetric duality for multiobjective
variational problems with invexity assumptions on the functions involved in
the symmetric dual models. We state the problem considered by these authors
as follows:

(CMSP)

Minimize
∫ b

a

{f(t, x, ẋ, y, ẏ) − [y(t)T (λT fy(t, x, ẋ, y, ẏ)

− d

dt
λT fẏ(t, x, ẋ, y, ẏ))]e}dt
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Subject to x(a) = x0, x(b) = x1, y(a) = y0, y(b) = y1

λT fy(t, x, ẋ, y, ẏ) − d

dt
λT fẏ(t, x, ẋ, y, ẏ) ≤ 0

λ ≥ 0, λT e = 1,

(CMSD)

Maximize
∫ b

a

{f(t, u, u̇, v, v̇) − [u(t)T (λT fx(t, u, u̇, v, v̇)

− d

dt
λT fẋ(t, u, u̇, v, v̇))]e}dt

Subject to u(a) = x0, u(b) = x1, v(a) = y0, v(b) = y1

λT fx(t, u, u̇, v, v̇) − d

dt
λT fẋ(t, u, u̇, v, v̇) ≥ 0

λ ≥ 0, λT e = 1,

where first inequalities in constraints of (CMSP) and (CMSD) hold at corners
of (ẋ(t), ẏ(t)) and (u̇(t), v̇(t)) , respectively, but must be satisfied for unique
right- and left-hand limits, λ ∈ Rp, and e = (1, . . . , 1)T ∈ Rp.

Remark 7.47. If p = 1 in (CMSP ) and (CMSD) above, then we get (SP )
and (SD) discussed in Sect. 7.1.

Theorem 7.48 (Weak duality). Let (x, y, λ) be feasible for (CMSP ) and
(u, v, λ) be feasible for (CMSD). Assume that either for all t ∈ [a, b]

(a) x 	= u,
∫ b

a
f is strictly invex in x and ẋ, and − ∫ b

a
f is invex in y and ẏ,

with η(x, u) + u(t) ≥ 0 and ξ(v, y) + y(t) ≥ 0; or
(b) y 	= v,

∫ b

a f is invex in x and ẋ, and − ∫ b

a f is strictly invex in y and ẏ,
with η(x, u) + u(t) ≥ 0 and ξ(v, y) + y(t) ≥ 0; or

(c) λ > 0,
∫ b

a
f is invex in x and ẋ, and − ∫ b

a
f is invex in y and ẏ, with

η(x, u) + u(t) ≥ 0 and ξ(v, y) + y(t) ≥ 0 (except perhaps at the corners of
(ẋ(t), ẏ(t)) and (u̇(t), v̇(t)) ).

Then,
∫ b

a

{f(t, x, ẋ, y, ẏ) − [y(t)T (λT fy(t, x, ẋ, y, ẏ)

− d

dt
λT fẏ(t, x, ẋ, y, ẏ))]e}dt

�
∫ b

a

{f(t, u, u̇, v, v̇) − [u(t)T (λT fx(t, u, u̇, v, v̇)

− d

dt
λT fẋ(t, u, u̇, v, v̇))]e}dt
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Proof. For the proof we refer the reader to Kim and Lee [122].
��

Theorem 7.49 (Strong duality). Let (x∗, y∗, λ∗) be an efficient solution
for (CMSP ). Suppose that the system

(
p(t)T

(
λ∗T fyy(t, x∗, ẋ∗, y∗, ẏ∗) − d

dt
λ∗T fyẏ(t, x∗, ẋ∗, y∗, ẏ∗)

)

+
d

dt

[
p(t)T d

dt
λ∗T fyẏ(t, x∗, ẋ∗, y∗, ẏ∗)

]

+
d2

dt2

[
−p(t)Tλ∗T fẏẏ(t, x∗, ẋ∗, y∗, ẏ∗)

])
p(t) = 0.

only has the solution p(t) = 0 for all t ∈ [a, b] and

f i
y(t, x

∗, ẋ∗, y∗, ẏ∗) − d

dt
f i

ẏ(t, x
∗, ẋ∗, y∗, ẏ∗)

is linearly independent. Assume that λ > 0 and the invexity hypothesis of
Theorem 7.48. Then (x∗, y∗, λ∗) is an efficient solution for (CMSP), and the
optimal values of (CMSP) and (CMSD) are equal.

��
Kim and Lee [122] also established converse duality theorem. Further, these
authors have discussed self duality result as well.

Assume that m = n, f(t, x(t), ẋ(t), y(t), ẏ(t)) is said to be skew-symmetric
(i.e., f(t, x(t), ẋ(t), y(t), ẏ(t)) = −f(t, y(t), ẏ(t), x(t), ẋ(t))) for all x(t) and y(t)
in the domain of f , such that (ẋ(t), ẏ(t)) is piecewise smooth on [a, b] and that
x(a) = y(a), x(b) = y(b).

It follows that (CMSD) may be written as a minimization problem:

(CMSD)′

Minimize
∫ b

a

[f(t, y, ẏ, x, ẋ) − x(t)T (λT fx)(t, y, ẏ, x, ẋ)

+ x(t)T d

dt
(λT fẋ)(t, y, ẏ, x, ẋ)]dt

Subject to x(a) = α, x(b) = β, y(a) = α, y(b) = β

d

dt
(λT fẋ)(t, y, ẏ, x, ẋ) ≥ (λT fx)(t, y, ẏ, x, ẋ),

λ ≥ 0, λT e = 1.

(CMSD)′ is formally identical to (CMSP ); that is, the objective and con-
straint functions and initial conditions of (CMSP ) and (CMSD)′ are iden-
tical. This problem is said to be self-dual.

It is easy to see that whenever (x, y, λ) is feasible for (CMSP ), then
(y, x, λ) is feasible for (CMSD), and vice versa.
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Theorem 7.50 (Self-duality). Assume that (CMSP) is self-dual and that
the invexity conditions of Theorem 7.48 are satisfied. If (x∗, y∗, λ∗) is an
efficient solution for (CMSP) and the system

(
p(t)T

(
λ∗T fyy(t, x∗, ẋ∗, y∗, ẏ∗) − d

dt
λ∗T fyẏ(t, x∗, ẋ∗, y∗, ẏ∗)

)

+
d

dt

[
p(t)T d

dt
λ∗T fyẏ(t, x∗, ẋ∗, y∗, ẏ∗)

]

+
d2

dt2

[
−p(t)Tλ∗T fẏẏ(t, x∗, ẋ∗, y∗, ẏ∗)

])
p(t) = 0.

only has the solution p(t) = 0, a ≤ t ≤ b, and

f i
y(t, x

∗, ẋ∗, y∗, ẏ∗) − d

dt
f i

ẏ(t, x
∗, ẋ∗, y∗, ẏ∗)

is linearly independent, then (y∗, x∗, λ∗) is an efficient solution for both
(CMSP) and (CMSD) and the common optimal value is zero.

Proof. We refer the reader to Kim and Lee [122].
��

Kim and Song [126] presented two pair of nonlinear Multiobjective mixed
integer programs for the polars of arbitrary cones. Chen [34] formulated a pair
of multiobjective variational mixed integer programs for arbitrary cones and
established weak, strong, converse and self-duality theorems under partial-
invexity and separability assumptions on the functions involved. To discuss
minimax mixed integer variational problems we need the following notations
and preliminaries:
Let I = [a, b] be a real interval, x : I → Rn and y : I → Rm. We constrain
some of the components of x and y which belong to arbitrary sets of integers.
Suppose that the first n1 components of x and the first m1 components of
y(0 ≤ n1 ≤ n, 0 ≤ m1 ≤ m) are constrained to be integers and the following
notations are introduced:

(x, y) = (x1, x2, y1, y2) x1 ∈ U, y1 ∈ V, x2 ∈ C1, y2 ∈ C2,

where U and V are two arbitrary sets of integers in Rn1 and Rm1 , respec-
tively. Let C1 and C2 be closed convex cones in Rn2 and Rm2 with nonempty
interiors, respectively. n = n1 + n2 and m = m1 +m2.

Let fi(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t)), i = (1, . . . , p) be twice con-
tinuously differentiable functions at x2, ẋ2, y2 and ẏ2 where x1(t) ∈ U, y1(t) ∈
V, x2(t) ∈ C1, y2(t) ∈ C2, t ∈ I, x2 : I → S1 and y2 : I → S2 with
derivatives ẋ2 and ẏ2, respectively; S1 ⊂ Rn2 and S2 ⊂ Rm2 be open and
C1 ⊂ S1, C2 ⊂ S2. Denote by fix2 and fiẋ2 the first partial derivatives of fi

with respect to x2(t) and ẋ2(t), respectively; fix2x2 the Hessian matrix of fi

with respect to x2(t). Similarly, fiy2 , fiẏ2 denote the first partial derivatives
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of fi with respect to y2(t) and ẏ2(t), respectively; fix2ẋ2 , fix2y2 , fix2ẏ2 , fiẋ2x2 ,
fiẋ2ẋ2 , fiẋ2y2 , fiẋ2ẏ2 ,fiy2x2 , fiy2ẋ2 , fiy2y2 , fiy2ẏ2 , fiẏ2x2 , fiẏ2ẋ2 , fiẏ2y2 and fiẏ2ẏ2

denote the other Hessian matrices of with respect to x2(t), ẋ2(t), y2(t) and
ẏ2(t), respectively, for i = 1, . . . , p.

Let C(I,Rs) denote the space of piecewise smooth functions z : I → Rs

with norm ‖z‖ = ‖z‖∞ + ‖Dz‖∞, where the differentiation operator D is
given by

u = Dz ⇔ z(t) = u(α) +
∫ t

a

u(s)ds,

where u(a) is a given boundary value. Therefore d/dt = D except at discon-
tinuities. Consider the following multiobjective programming problem:

(MP)

Minimize g(x)
Subject to h(x) ≤ 0,

where g : C → Rp, h : C → Rm and C is a closed convex cone with nonempty
interior in Rn. Denote by Q the set of feasible solutions of (MP ).

Definition 7.51. A point x̄ ∈ Q is said to be an efficient solution of (MP )
if there exists no other x ∈ Q such that g(x) ≤ g(x̄).

Definition 7.52. A cone C∗
i is said to be polar of Ci for i = 1, 2 if

C∗
i = {z : zix ≤ 0, for all x ∈ Ci}.

Definition 7.53. A real valued function φ(t, x1, ẋ1, x2, ẋ2, . . . , xp, ẋp) is said
to be separable with respect to x1 and ẋ1 if there exist real valued functions
φ(t, x1, ẋ1) and θ(t, x2, ẋ2, . . . , xp, ẋp) such that

φ(t, x1, ẋ1, x2, ẋ2, . . . , xp, ẋp) = φ(t, x1, ẋ1) + θ(t, x2, ẋ2, . . . , xp, ẋp).

Definition 7.54 (Chen and Yang [35]). Let S ⊂ Rn be an open set. If there
exists a vector function η1(t, x(t), ẋ(t), u(t), u̇(t)) ∈ S with η1(t, x(t), ẋ(t), x(t),
ẋ(t)) = 0, such that for the scalar function h(t, x(t), ẋ(t), y(t), ẏ(t)) the
functional

H(x, ẋ, y, ẏ) =
∫ b

a

h(t, x(t), ẋ(t), y(t), ẏ(t))dt

satisfies

H(x, ẋ, y, ẏ) −H(u, u̇, y, ẏ) ≥
∫ b

a

{
ηT
1 hx(t, u(t), u̇(t), y(t), ẏ(t))

+ (Dη1)
Thẋ(t, u(t), u̇(t), y(t), ẏ(t))

}
dt
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then H(x, ẋ, y, ẏ) is said to be partially invex in x and ẋ on I with respect to
η1 for fixed y. If H(x, ẋ, y, ẏ) satisfies

H(x, ẋ, y, ẏ) −H(x, ẋ, v, v̇) ≥
∫ b

a

{
ηT
2 hy(t, x(t), ẋ(t), v(t), v̇(t))

+ (Dη2)
T
hẏ(t, x(t), ẋ(t), v(t), v̇(t))

}
dt,

where η2(t, y(t), ẏ(t), v(t), v̇(t)) ∈ S then H(x, ẋ, y, ẏ) is said to be partially
invex in y and ẏ on I with respect to η2 for fixed x. If −H(x, ẋ, y, ẏ) is partially
invex in x and ẋ on I with respect to η1 for fixed y, then H(x, ẋ, y, ẏ) is said
to be partially incave in x and ẋ on I with respect to η1 for fixed y and if
−H(x, ẋ, y, ẏ) is partially invex in y and ẏ on I with respect to η2 for fixed x,
then H(x, ẋ, y, ẏ) is said to be partially incave in y and ẏ on I with respect to
η2 for fixed x.

The following definition is a natural extension to the Definition 7.54.

Definition 7.55. Let s ⊂ Rn be an open set. If there exists a vector function
η1(t, x(t), ẋ(t), u(t), u̇(t)) ∈ S with η1(t, x(t), ẋ(t), x(t), ẋ(t)) = 0, such that for
the scalar function h(t, x(t), ẋ(t), y(t), ẏ(t)) ∈ S the functional

H(x, ẋ, y, ẏ) =
∫ b

a

h(t, x(t), ẋ(t), y(t), ẏ(t))dt

satisfies

∫ b

a

{
ηT
1 hx(t, u(t), u̇(t), y(t), ẏ(t)) + (Dη1)

T
hẋ(t, u(t), u̇(t), y(t), ẏ(t))

}
dt

≥ 0 ⇒ H(x, ẋ, y, ẏ) ≥ H(u, u̇, y, ẏ),

then H(x, ẋ, y, ẏ) is said to be partially pseudo-invex in x and ẋ on I with
respect to η1 for fixed y. If H(x, ẋ, y, ẏ) satisfies

∫ b

a

{
ηT
2 hy(t, x(t), ẋ(t), v(t), v̇(t)) + (Dη2)

T
hẏ(t, x(t), ẋ(t), v(t), v̇(t))

}
dt

≥ 0 ⇒ H(x, ẋ, y, ẏ) ≥ H(x, ẋ, v, v̇),

where η2(t, y(t), ẏ(t), v(t), v̇(t)) ∈ S then H(x, ẋ, y, ẏ) is said to be partially
pseudo invex in y and ẏ on I with respect to η2 for fixed x. If −H(x, ẋ, y, ẏ)
is partially pseudoinvex in x and ẋ on I with respect to η1 for fixed y, then
H(x, ẋ, y, ẏ) is said to be partially pseudoincave in x and ẋ on I with respect
to η1 for fixed y and if −H(x, ẋ, y, ẏ) is partially pseudoinvex in y and ẏ on
I with respect to η2 for fixed x, then H(x, ẋ, y, ẏ) is said to be partially incave
in y and ẏ on I with respect to η2 for fixed x, then H(x, ẋ, y, ẏ) is said to be
partially pseudoincave in y and ẏ on I with respect to η2 for fixed x.
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The following Lemma, which is said to be the generalized form of the Fritz-
John condition for the vector-valued functions proposed by Bazaraa and
Goode [13], play a main role in the proof of the strong duality.

Lemma 7.56. Let K be a convex set with nonempty interior in Rn and let
C be a closed convex cone in Rn having a nonempty interior. Let F and G be
two vector-valued functions defined on K. If z0 is an efficient solution of the
following problem:

Minimize F (z)

Subject to G(z) ∈ C, z ∈ K,

then there exists a nonzero vector (r0, r) such that

(rT
0 Fz(z0) + rTGz(z0))(z − z0) ≥ 0,

for all z ∈ K, and r0 ≥ 0, r ∈ C∗, and rTG(z0) = 0.

We consider the following Mond–Weir type symmetric dual minimax multiob-
jective variational mixed integer programs for arbitrary cones given by Chen
and Yang [35]:

(MSP)

Max
x1

Min
x2, y

(∫ b

a

f(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t)ẏ2(t))dt

=

(∫ b

a

f1(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t)ẏ2(t))dt, . . . ,

∫ b

a

fp(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t)ẏ2(t))dt

))

Subject to x(a) = 0 = x(b); y(a) = 0 = y(b), (7.19)

ẋ2(a) = 0 = ẋ2(b); ẏ2(a) = 0 = ẋ2(b), (7.20)

x1(t) ∈ U, x2(t) ∈ C1, y1(t) ∈ V, y2(t) ∈ C2, ∀t ∈ I, (7.21)

fiy2(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t)ẏ2(t))

−Dfiẏ2(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t)ẏ2(t)) ∈ C∗
2 , (7.22)

i = 1, . . . , p, ∀t ∈ I,

(y2(t))T [fiy2(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t)ẏ2(t))

−Dfiẏ2(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t)ẏ2(t))] ≥ 0, (7.23)

i = 1, . . . , p, ∀t ∈ I,
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(MSD)

Min
v1

Max
u, v2

∫ b

a

f(t, u1(t), u2(t), u̇2(t), v1(t)v2(t)v̇2(t))dt

=

(∫ b

a

f1(t, u1(t), u2(t), u̇2(t), v1(t)v2(t)v̇2(t))dt, . . . ,

∫ b

a

fp(t, u1(t), u2(t), u̇2(t), v1(t)v2(t)v̇2(t))dt

)

Subject to u(a) = 0 = u(b); v(a) = 0 = v(b), (7.24)

u̇2(a) = 0 = u̇2(b); v̇2(a) = 0 = v̇2(b), (7.25)

u1(t) ∈ U, u2(t) ∈ C1, v1(t) ∈ V, v2(t) ∈ C2, ∀t ∈ I, (7.26)

fix2(t, u1(t), u2(t), u̇2(t), v1(t)v2(t)v̇2(t))

− Dfiẋ2(t, u1(t), u2(t), u̇2(t), v1(t)v2(t)v̇2(t)) ∈ C∗
1 , (7.27)

i = 1, . . . , p, ∀t ∈ I,

(u2(t))T [−fix2(t, u1(t), u2(t), u̇2(t), v1(t)v2(t)v̇2(t))

+Dfiẋ2(t, u1(t), u2(t), u̇2(t), v1(t)v2(t)v̇2(t))] ≤ 0, (7.28)

i = 1, . . . , p, ∀t ∈ I,

where the function f(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t)ẏ2(t)) is a p-dimensional
vector-valued function. In (MSP ) and (MSD), if fi does not depend explicitly
for t for i = 1, . . . , p, then our problems become the pair of problems given by
Kim and Song [126]:

(MSP1)

Max
x1

Min
x2, y f(x, y)

Subject to x1 ∈ U, x2 ∈ C1, y1 ∈ V, y2 ∈ C2,

(λT f)y2(x, y) ∈ C∗
2 ,

(y2)T (λT f)y2(x, y) ≥ 0,
λ > 0.

(MSD1)

Min
v1

Max
u, v2 f(u, v)

Subject to u1 ∈ U, u2 ∈ C1, v1 ∈ V, v2 ∈ C2,
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(λT f)x2(u, v) ∈ C∗
1 ,

(u2(t))T (λT f)x2(u, v) ≤ 0,

λ > 0.

The pair of problems (MSP1) and (MSD1) are Mond–Weir type mixed
integer symmetric dual programs studied by Kim and Song [126] under
pseudo-invexity/pseudo-incavity assumptions and duality results are estab-
lished. Furthermore, if p = 1, C1 = Rn2

+ and C2 = Rm2
+ , then our problems

again become the pair of problems considered by Mishra and Das [151].
Denote by X and Y the set of feasible solutions of (MSP ) and (MSD),
respectively. In order to obtain the duality theorems in next section, suppose
that

(a) The functions fi(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t)) are separable with
respect to x1 or y1, i = 1, 2, . . . , p. Without loss of generality, we suppose
that fi(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t)) are separable with respect
to x1, that is, fi can be expressed as

fi(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))

= f1
i (t, x1(t)) + f2

i (t, x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t));

(b) The sets of feasible solutions X and Y having the properties that if
(x(t), y(t)) ∈ X and (u(t), v(t)) ∈ Y then

η1(t, x2(t), ẋ2(t), u2(t), u̇2(t)) ∈ C1 and

η2(t, y1(t), y2(t), ẏ2(t), v1(t), v2(t), v̇2(t)) ∈ C2.

Remark 7.57 (Chen and Yang [35]). Under the above assumptions, (MSP )
can be expressed as the following form:

Max
x1

Min
x2, y

∫ b

a

{
f1(t, x1(t)) + f2(t, x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))

}

Subject to (7.19)–(7.23)

where f1(t, x1(t), ẋ1(t)) =
(
f1
1 (t, x1(t), ẋ1(t)), . . . , f

p
1 (t, x1(t), ẋ1(t))

)T

and f2(t, x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))

=
(
f1
2 (t, x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t)), . . . ,

fp
2 (t, x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t)))

T
.



7.2 Multiobjective Variational Problems with Invexity 191

Let
(MP)

φ1(y1) =
Min
x2, y2

∫ b

a

{f2(t, x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))}dt
Subject to (7.19)–(7.20), (7.29)

f2
iy2

(t, x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))

−Df2
iẏ2

(t, x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t)) ∈ C∗
2 (7.30)

i = 1, . . . , p, ∀t ∈ I,

(y2(t))T
[
f2

iy2
(t, x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))

−Df2
iẏ2

(t, x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))
] ≥ 0 (7.31)

i = 1, . . . , p, ∀t ∈ I,

So, (MSP ) may be written as

Max
x1

Min
x2, y

{[∫ b

a

f1(t, x1(t))dt+ φ1(y1)

]
: x1 ∈ U, y1 ∈ V

}

Similarly, (MSD) can also be written as

Min
v1

Max
u, v2

{[∫ b

a

f1(t, u1(t))dt + ψ1(v1)

]
: u1 ∈ U, v1 ∈ V

}
,

where

(MD)

ψ1(v1) =
Max
u2, v2

∫ b

a

{f2(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t))}dt
Subject to (7.19)–(7.20), u2(t) ∈ Rn, v2(t) ∈ C2, (7.32)

− f2
ix2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t))

+Df2
iẋ2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t)) ∈ C∗
1 (7.33)

i = 1, . . . , p, ∀t ∈ I,

(u2(t))T
[−f2

ix2
(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t))

+Df2
iẋ2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t))
] ≤ 0 (7.34)

i = 1, . . . , p, ∀t ∈ I,
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Remark 7.58. Let ψ : I ×Rn ×Rn → R be a continuously differentiable func-
tion with respect to each of its arguments. Let x, u : I → Rn be differentiable
with x(a) = u(a) = α and x(b) = u(b) = β. Then

∫ b

a

d

dt
(η(t, x, u))Tψẋ(t, u, u̇)dt = −

∫ b

a

η(t, x, u)T d

dt
(ψẋ(t, u, u̇))dt

Theorem 7.59 (Weak duality). Let (x(t), y(t)) and (u(t), v(t)) be feasi-
ble solutions of (MSP ) and (MSD), respectively. Assume that the function
fi(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t)) is separable with respect to x1(t), and∫ b

a
f2

i (t, ·, ·, y1(t), y2(t), ẏ2(t))dt is partially pseudo-invex in x2 and ẋ2 for each
y1(t) and y2(t) on I with respect to

η1 = η1(t, x2(t), ẋ2(t), u2(t), u̇2(t)) ∈ C1, i = 1, . . . , p;

and
∫ b

a
f2

i (t, x2(t), ẋ2(t), ·, ·)dt is partially pseudo-incave in y1, y2 and ẏ2 for
each x1(t), x2(t) on I with respect to

η2 = η2(t, y1(t), y2(t), ẏ2(t), v1(t), v2(t), v̇2(t)) ∈ C2, i = 1, . . . , p;

and

η1(t, x2, ẋ2, u2, u̇2)T ξ + (u2)T ξ ≥ 0, ∀x2, ẋ2, u2, u̇2 ∈ C1, ξ ∈ C∗
1

η2(t, y1(t), y2(t), ẏ2(t), v1(t), v2(t), v̇2(t))T ζ + (y2)T ζ ≥ 0,
∀v2, v̇2, y1, y2, ẏ2 ∈ C2, ζ ∈ C∗

2 .

Then the following cannot hold:

∫ b

a

fi(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))dt

≤
∫ b

a

fi(t, u1(t), u2(t), u̇2(t), v1(t), v2(t), v̇2(t))dt,

∀i = 1, . . . , p, and

∫ b

a

fj(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))dt

<

∫ b

a

fj(t, u1(t), u2(t), u̇2(t), v1(t), v2(t), v̇2(t))dt,

for some j ∈ {1, . . . , p}.
Proof. Let (x(t), y(t)) and (u(t), v(t)) be feasible solutions of (MSP ) and
(MSD), respectively. In order to prove the Theorem, it suffices to prove that
the following cannot hold:
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∫ b

a

fi(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))dt

≤
∫ b

a

fi(t, u1(t), u2(t), u̇2(t), v1(t), v2(t), v̇2(t))dt,

∀i = 1, . . . , p, and

∫ b

a

fj(t, x1(t), x2(t), ẋ2(t), y1(t), y2(t), ẏ2(t))dt

<

∫ b

a

fj(t, u1(t), u2(t), u̇2(t), v1(t), v2(t), v̇2(t))dt,

for some j ∈ {1, . . . , p}. Now taking,

ξ = f2
ix2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t))

−Df2
iẋ2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t)).

By

η1(t, x2, ẋ2, u2, u̇2)T ξ + (u2)T ξ ≥ 0, ∀x2, ẋ2, u2, u̇2 ∈ C1, ξ ∈ C∗
1

and inequality (7.34), we have,

η1(t, x2, ẋ2, u2, u̇2)T (f2
ix2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t))

−Df2
iẋ2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t)))

> −(u2)T (f2
ix2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t))

−Df2
iẋ2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t))),

which implies that

η1(t, x2, ẋ2, u2, u̇2)T (f2
ix2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t))

−Df2
iẋ2

(t, u2(t), u̇2(t), v1(t), v2(t), v̇2(t))) ≥ 0.

By partial pseudo-invexity of
∫ b

a f
2
i (t, ·, ·, y1(t), y2(t), ẏ2(t))dt in (x2, ẋ2), we

get ∫ b

a

f2
i (t, x2, ẋ2, v1, v2, v̇2)dt ≥

∫ b

a

f2
i (t, u2, u̇2, v1, v2, v̇2)dt,

which along with

λ ∈ Λ =

{
λ = (λ1, . . . , λp) : λi ≥ 0, i = 1, . . . , p,

p∑

i=1

λi = 1

}
,
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implies that
p∑

i=1

λif
2
i (t, x2, ẋ2, v1, v2, v̇2)dt ≥

p∑

i=1

λi

∫ b

a

f2
i (t, u2, u̇2, v1, v2, v̇2)dt. (7.35)

By
η2(t, y1(t), y2(t), ẏ2(t), v1(t), v2(t), v̇2(t))T ζ + (y2)T ζ ≥ 0,

with

ζ = − (f2
iy2

(t, x2(t), ẋ2(t), v1(t), v2(t), v̇2(t))

− Df2
iẏ2

(t, x2(t), ẋ2(t), v1(t), v2(t), v̇2(t))
)

and inequality (7.31), and partial of pseudo-incavity
∫ b

a

f2
i (t, x2(t), ẋ2(t), ·, ·)dt

in y1, y2 and ẏ2 for each x1(t), x2(t) on I with respect to

η2 = η2(t, y1(t), y2(t), ẏ2(t), v1(t), v2(t), v̇2(t)) ∈ C2, i = 1, . . . , p,

we have,
p∑

i=1

λif
2
i (t, x2, ẋ2, v1, v2, v̇2)dt ≤

p∑

i=1

λi

∫ b

a

f2
i (t, x2, ẋ2, y1, y2, ẏ2)dt. (7.36)

From inequalities (7.35) and (7.36), we obtain
p∑

i=1

λif
2
i (t, x2, ẋ2, y1, y2, ẏ2)dt ≥

p∑

i=1

λi

∫ b

a

f2
i (t, u2, u̇2, v1, v2, v̇2)dt.

��
Remark 7.60. The above theorem is established under the assumption of par-
tial invexity/partial incavity assumptions by Chen and Yang [35]. The strong
duality theorem (Theorem 3.5) given in Chen and Yang [35] can be extended
to partial pseudo-invexity/partial pseudo-incavity assumptions as in the proof
of Strong duality, one needs the Weak duality result. Therefore, we omit the
strong duality theorem.

A mathematical programming problem is said to be self-dual, if when the
dual is recast in the form of the primal, the new problem so obtained is the
same as the primal problem. From Chen [34], we recall the following definition.

Definition 7.61. The function h : I×Rn1×Rn2×Rn2×Rn1×Rn2×Rn2 → R
is said to be skew symmetric if for all x and y in the domain of h where

h(t, x1, x2, ẋ2, y1, y2, ẏ2) = −h(t, y1, y2, ẏ2, x1, x2, ẋ2), t ∈ I,

where x1, x2 ∈ U, y1, y2 ∈ C, t ∈ I, U is an arbitrary set of integers in Rn1

and C is a closed convex cone in Rn2 with nonempty interior, n1 + n2 = n.
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One can easily establish the following self-duality theorem.

Theorem 7.62 (Self-duality). If fi is skew symmetric for i = 1, 2, . . . , p,
then (MSP) is self-dual. Moreover, the feasibility of (x(t), y(t)) for (MSP)
implies the feasibility of (y(t), x(t)) for (MSD) and vise-versa.

��
Theorem 7.63. Under the conditions of Theorem 7.59 if (x(t), y(t)) is an
efficient solution for (MSP), then (y(t), x(t)) is an efficient solution for
(MSD) and the common optimal value is zero and the converse.

��
Remark 7.64. Theorem 7.63 is obtained in Chen and Yang [35] under the
assumptions of partial invexity/partial incavity.

7.3 Scalar Control Problems

The control problem is to transfer the state variable from an initial state x0

at a to a final state xf at b so as to minimize a given functional, subject to
constraints on the control and state variables, that is:

(P)

Minimize
∫ b

a

f(t, x, u)dt

Subject to x(a) = α, x(b) = β, (7.37)
G(t, x, u) = ẋ, (7.38)
R(t, x, u) ≥ 0. (7.39)

x(t) and u(t) are required to be piecewise smooth functions on [a, b] = I; their
derivatives are continuous except perhaps at points of discontinuity of u(t),
which has piecewise continuous first and second derivatives. The constraints
(7.38) and (7.39) may fail to hold at these points of discontinuities of u(t).

Throughout this section x ∈ Rn, u ∈ Rm, t is the independent variable,
u(t) is the control variable and x(t) is the state variable; u(t) is related to
x(t) via the state equations G(t, x, u) = ẋ where ẋ denotes the derivative with
respect to t. If x = (x1, x2, . . . , xn)T , the gradient vector of f with respect to

x is denoted by fx =
(

∂f
∂x1 , . . . ,

∂f
∂xn

)T

. For an r-dimensional vector function
R(t, x, u) the gradient with respect to x is denoted as

Rx =

⎛

⎜⎝

∂R1

∂x1 · · · ∂Rr

∂x1

...
...

...
∂R1

∂xn · · · ∂Rr

∂xn

⎞

⎟⎠
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Remark 7.65. If f,G andR are independent of time (without loss of generality,
assume tf − t0 = 1), then the above control problem reduces to a static
mathematical programming problem:

Minimize f(z)
Subject to G(z) = 0,

R(z) ≥ 0.

In this section, we recall the concepts of invex and generalized invex function-
als instead of functions following Mond and Smart [176] and we will show that
invexity of a functional is necessary as well as sufficient for its critical points
to be global minima, which coincides with the concept of an invex function.

Definition 7.66. If there exist vector functions η(t, x, x∗, ẋ, ẋ∗, u, u∗) ∈ Rn

with η = 0 at t if x(t) = x∗(t) and ξ(t, x, x∗, ẋ, ẋ∗, u, u∗) ∈ Rm such that for
the scalar function h(t, x, ẋ, u) the functional H(x, ẋ, u) =

∫ b

a h(t, x, ẋ, u)dt
satisfies

H(x, ẋ, u) −H(x∗, ẋ∗, u∗)

≥
∫ b

a

(
ηThx(t, x∗, ẋ∗, u∗) +

dηT

dt
hẋ(t, x∗, ẋ∗, u∗) + ξThu(t, x∗, ẋ∗, u∗)

)
dt.

Then H is said to be invex in x, ẋ and u on I with respect to η and ξ.

Remark 7.67. (x∗, u∗) is a critical point of H if hx(t, x∗, ẋ∗, u∗) =
d
dthẋ(t, x∗, ẋ∗, u∗) and hu(t, x∗, ẋ∗, u∗) = 0 almost everywhere in the interval
I. If x(t0) and x(tf ) are free, the transversality conditions hẋ(t, x∗, ẋ∗, u∗) = 0
at t0 and tf are included.

Lemma 7.68. H(x, ẋ, u) =
∫ b

a
h(t, x, ẋ, u)dt is invex iff every critical point of

H is a global minimum.

Proof. Assume that H is invex with respect to η and ξ. Let (x∗, u∗) be a
critical point of H . Then

H(x, ẋ, u) −H(x∗, ẋ∗, u∗)

≥
∫ b

a

(
ηThx(t, x∗, ẋ∗, u∗) +

dηT

dt
hẋ(t, x∗, ẋ∗, u∗) + ξThu(t, x∗, ẋ∗, u∗)

)
dt

=
∫ b

a

(
ηThx(t, x∗, ẋ∗, u∗) − ηT d

dt
hẋ(t, x∗, ẋ∗, u∗) + ξThu(t, x∗, ẋ∗, u∗)

)
dt

+ ηThẋ(t, x∗, ẋ∗, u∗)|ba by integration by parts
= 0.

As (x∗, u∗) is a critical point, and either fixed boundary conditions imply that
η = 0 at t0 and tf , or free boundary conditions imply hẋ = 0 at t0 and tf .
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Therefore, (x∗, u∗) is a global minimum of H . Conversely, assume that every
critical point is global minimum. If (x∗, u∗) is critical point, put η = 0 = ξ. If
(x∗, u∗) is not a critical point, then if hx 	= d

dthẋ at (x∗, u∗) put

η =
h(t, x, ẋ, u) − h(t, x∗, ẋ∗, u∗)

2
(
hx − d

dthẋ

)T (
hx − d

dthẋ

)
(
hx − d

dt
hẋ

)

Or, if hx = d
dthẋ, put η = 0; and if hu 	= 0, put

ξ =
h(t, x, ẋ, u) − h(t, x∗, ẋ∗, u∗)

2hT
uhu

hu

Or, if hu = 0 put ξ = 0. Then H is invex on I with respect to η and ξ.
��

Definition 7.69. If there exist vector functions η(t, x, x∗, ẋ, ẋ∗, u, u∗) ∈ Rn

with η = 0 at t if x(t) = x∗(t) and ξ(t, x, x∗, ẋ, ẋ∗, u, u∗) ∈ Rm such that for
the scalar function h(t, x, ẋ, u) the functional H(x, ẋ, u) =

∫ b

a
h(t, x, ẋ, u)dt

such that
∫ b

a

[ηThx(t, x∗, ẋ∗, u∗)

+
dηT

dt
hẋ(t, x∗, ẋ∗, u∗) + ξThu(t, x∗, ẋ∗, u∗)]dt ≥ 0

⇒ H(x, ẋ, u) ≥ H(x∗, ẋ∗, u∗)(>),

then H is said to be pseudo-invex (strictly pseudo-invex) in x, ẋ and u on I
with respect to η and ξ.

Definition 7.70. If there exist vector functions η(t, x, x∗, ẋ, ẋ∗, u, u∗) ∈ Rn

with η = 0 at t if x(t) = x∗(t) and ξ(t, x, x∗, ẋ, ẋ∗, u, u∗) ∈ Rm such that for
the scalar function h(t, x, ẋ, u) the functional H(x, ẋ, u) =

∫ b

a h(t, x, ẋ, u)dt
such that

H(x, ẋ, u) ≤ H(x∗, ẋ∗, u∗)

⇒
∫ b

a

[ηThx(t, x∗, ẋ∗, u∗)

+
dηT

dt
hẋ(t, x∗, ẋ∗, u∗) + ξThu(t, x∗, ẋ∗, u∗)]dt ≤ 0

then H is said to be quasi-invex in x, ẋ and u on I with respect to η and ξ.

Remark 7.71. If h is independent of t, the above Definitions 7.66–7.70 reduce
to the definitions of invexity, (strict) pseudo-invexity and quasi-invexity,
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respectively of the static case, see Hanson [83] and Kaul and Kaur [114].
Mond and Smart [176] have shown that, for invex functions, the necessary con-
ditions of Berkovitz [19] are also sufficient with normality of the constraints.
The Berkovitz’s necessary optimality theorem for (P ) is:

Theorem 7.72. Assuming the constraint conditions for the existence of mul-
tipliers λ(t) and μ(t) at extrema of (P) hold, the necessary conditions for
(x∗, u∗) to be optimal for (P) are: there exist λ0 ∈ R, λ(t), μ(t) such that

F = λ0f − λ(t)T [G− ẋ] − μ(t)TR

satisfies Fx =
d

dt
Fẋ, (7.40)

Fu = 0, (7.41)

μ(t)TR(t, x∗, u∗) = 0, (7.42)
μ(t) ≥ 0. (7.43)

hold throughout the interval I (except that at t corresponding to discontinuities
of u∗, (7.40) holds for right and left limits). Here λ0 is a nonnegative constant,
λ(t) is continuous on I, and λ0, λ(t) and μ(t) can not vanish simultaneously
for any t ∈ I.

It is assumed from now on that the minimizing solution (x∗, u∗) of (P) is
normal; that is, λ0 is non-zero, so that without loss of generality, we can take
λ0 = 1.

Proof. We refer the reader to Mond and Smart [176].
��

Theorem 7.73 (Sufficient optimality conditions). If there exists (x∗, u∗,
λ∗, μ∗) such that conditions (7.40)–(7.43) hold, with (x∗, u∗) feasible for (P),
and

∫ b

a fdt,
∫ b

a −(λ∗)T (G − ẋ)dt and
∫ b

a −(μ∗)TRdt are all invex with respect
to the same functions η and ξ, then (x∗, u∗) is optimal for (P).

Proof. Assume (x∗, u∗) is not optimal for (P ). Then there exists (x, u) 	=
(x∗, u∗), (x, u) feasible for (P ), such that

∫ b

a

f(t, x, u)dt <
∫ b

a

f(t∗, x∗, u∗)dt.

As
∫ b

a
fdt is invex with respect to η and ξ, it follows that

∫ b

a

(
ηT fx(t, x∗, u∗) + ξT fu(t, x∗, u∗)

)
dt < 0. (7.44)

Now
(λ∗)T [G(t, x, u) − ẋ] = 0 = (λ∗)T [G(t, x∗, u∗) − ẋ∗]
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implies

∫ b

a

−(λ∗)T
(
G(t, x, u) − ẋ−G(t, x∗, u∗) + ẋT

)
dt = 0 ≤ 0.

Thus, by invexity of
∫ b

a −(λ∗)T (G− ẋ) dt, we get

−
∫ b

a

(
ηTGx(t, x∗, u∗)λ∗(t) − dηT

dt
λ∗(t) + ξTGu(t, x∗, u∗)λ∗(t)

)
dt ≤ 0.

(7.45)
Also, λ∗(t)R(t, x∗, u∗) = 0 ≤ λ∗(t)R(t, x, u) implies that

∫ b

a

− (μ∗(t))T (R(t, x, u) −R(t, x∗, u∗)) dt ≤ 0.

By invexity of
∫ b

a
−(μ∗)TRdt, we get

−
∫ b

a

(
ηTRx(t, x∗, u∗)μ∗(t) + ξTRu(t, x∗, u∗)

)
dt ≤ 0. (7.46)

Combining (7.44), (7.45) and (7.46), we get
∫ b

a

[
ηT fx(t, x∗, u∗) + ξT fu(t, x∗, u∗)

−
(
ηTGx(t, x∗, u∗)λ∗(t) − dηT

dt
λ∗(t) + ξTGu(t, x∗, u∗)λ∗(t)

)

− (ηTRx(t, x∗, u∗)μ∗(t) + ξTRu(t, x∗, u∗)
)]
dt < 0. (7.47)

Now, premultiplying (7.40) by ηT and (7.41) by ξT , adding and integrating
gives

∫ b

a

[ηT fx(t, x∗, u∗) + ξT fu(t, x∗, u∗)

− (ηTGx(t, x∗, u∗)λ∗(t) + ξTGu(t, x∗, u∗)λ∗(t)
)

(7.48)

− (ηTRx(t, x∗, u∗)μ∗(t) + ξTRu(t, x∗, u∗)
)− ηT d

dt
λ∗(t)]dt = 0.

But,
∫ b

a

ηT d

dt
λ∗(t)dt = ηTλ∗(t)|ba −

∫ b

a

dηT

dt
λ∗(t)dt = −

∫ b

a

dηT

dt
λ∗(t)dt,

as fixed boundary conditions give η = 0 at a and b. This contradicts (7.47).
Hence (x∗, u∗) is optimal for (P ).

��
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Later Kim et al. [119] extended the above Theorem to pseudoinvex and
quasiinvex functions.

Theorem 7.74 (Sufficiency). If there exists (x∗, u∗, λ∗, μ∗) such that con-
ditions (7.40)–(7.43) hold, with (x∗, u∗) feasible for (P ), and

∫ b

a fdt, is
pseudo-invex with respect to η and ξ, and

∫ b

a

(−(λ∗)T (G− ẋ) − (μ∗)TR
)
dt

is quasi-invex with respect to the same functions η and ξ, then (x∗, u∗) is
optimal for (P ).

Proof. The proof of this theorem is an exercise to the reader.
��

The following dual problem to primal problem (P) is from Mond and Han-
son [171]:

(D)

Maximize
∫ b

a

{f(t, x, u) − λ(t)T [G(t, x, u) − ẋ]dt− μ(t)TR(t, x, u)}dt
Subject to x(a) = α, x(b) = β,

fx(t, x, u) −Gx(t, x, u)λ(t) −Rx(t, x, u) = λ̇(t),
fu(t, x, u) −Gu(t, x, u)λ(t) −Ru(t, x, u) = 0,

μ(t) ≥ 0,

where λ : I → Rn and μ : I → Rk.

Remark 7.75. If f,G and R are independent of time (without loss of gener-
ality, assume b − a = 1), then the above control problem reduces to a static
mathematical programming problem:

Maximize f − λTG(z) − μTR(z)
Subject to fz(z) −Gz(z)λ−Rz(z) = 0

μ(t) ≥ 0,

where λ ∈ Rn and μ ∈ Rk.

Mond and Smart [176] proved that the problems (P ) and (D) are a dual pair
subject to invexity conditions on the objective and constraint functions.

Theorem 7.76 (Weak duality). If
∫ b

a
fdt,

∫ b

a
−(λ∗)T (G − ẋ)dt and∫ b

a −(μ∗)TRdt are all invex with respect to the same functions η and ξ, for
any λ(t) ∈ Rn and μ(t) ∈ Rk, then inf(P ) ≥ sup(D).
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Proof. The proof of this theorem is very similar to the proof of Theorem 7.73.
��

In the following Theorem, it is assumed that the minimizing solution (x∗, u∗)
for (P) is normal; that is, λ0 is non-zero, so that without loss of generality,
we can take λ0 = 1.

Theorem 7.77 (Strong duality). Under the invexity conditions of Theo-
rem 7.76, if (x∗, u∗) is an optimal solution for (P), then there exists λ(t) and
μ(t) such that (x∗, u∗, λ, μ) is optimal for (D), and the corresponding objective
values are equal.

Proof. Left to the reader as an exercise.
��

Similarly, converse duality holds if we further assume that f,G and R have
continuous third derivatives, and writing () as P (t, x, u, λ, μ) = 0 the matrix
dPi

dzi
, i = 1, . . . ,m, j = 1, . . . , n+m where z =

(
x
u

)
has rank m.

Theorem 7.78 (Converse duality). If (x∗, u∗, λ∗, μ∗) is optimal for (P),
and if (

fxx − (Gxλ)x − (Rxμ)x fux − (Gxλ)u − (Rxμ)u

fxu − (Guλ)x − (Ruμ)x fuu − (Guλ)u − (Ruμ)u

)

is non-singular for all t ∈ I, then (x∗, u∗) is optimal for (P), and the
corresponding objective values are equal.

Proof. See Mond and Hanson [171].
��

Kim et al. [119] introduced the Mond–Weir type dual problem for the problem
(P ) given in this section as follows:

(MWD)

Maximize
∫ b

a

f(t, x, u)dt

Subject to x(a) = α, x(b) = β,

fx(t, x, u) −Gx(t, x, u)λ(t) −Rx(t, x, u) = λ̇(t),
fu(t, x, u) −Gu(t, x, u)λ(t) −Ru(t, x, u) = 0,

∫ b

a

{λ(t)T [G(t, x, u) − ẋ]dt+ μ(t)TR(t, x, u)}dt ≤ 0

μ(t) ≥ 0, t ∈ I

where λ : I → Rn and μ : I → Rk.

Remark 7.79. If f,G and R are independent of time (without loss of gener-
ality, assume b − a = 1), then the above control problem reduces to a static
mathematical programming problem:
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Maximize f(z)
Subject to fz(z) −Gz(z)λ−Rz(z) = 0

μ(t) ≥ 0,

where λ ∈ Rn and μ ∈ Rk.

As it is well known that Mond–Weir type of dual allows further weakening of
the invexity conditions, therefore, Kim et al. [119] established some duality
theorems for (P ) and (MWD) under generalized invexity conditions.

Theorem 7.80 (Weak duality). If
∫
fdt, is pseudo-invex with respect to η

and ξ, and
∫ b

a
(−λT (G−ẋ)−μTR)dt for any λ(t) ∈ Rn and μ(t) ∈ Rm is quasi-

invex with respect to the same functions η and ξ, then inf(P ) ≥ sup(MWD).

Proof. See Kim et al. [119].
��

Kim et al. [119] have also proved the following usual strong and strict converse
duality theorems, we state these without proof.

Theorem 7.81 (Strong duality). Under the generalized invexity condi-
tions of Theorem 7.80, if (x∗, u∗) is an optimal solution for (P), then there
exists λ(t) and μ(t) such that (x∗, u∗, λ, μ) is optimal for (MWD), and the
corresponding objective values are equal.

��
Theorem 7.82 (Strict converse duality). Let (x∗, u∗) be optimal for (P).
Under the generalized invexity conditions of Theorem 7.80, if (x̄, ū, λ̄, μ̄) is
optimal for (MWD),

∫ b

a fdt, is quasi-invex with respect to η and ξ, and∫ b

a
(−λT (G − ẋ) − μTR)dt is strictly pseudo-invex at (x̄, ū) with respect to

the same functions η and ξ, then (x∗, u∗) = (x̄, ū), that is, (x̄, ū) is optimal
for (P).

��

7.4 Multiobjective Control Problems

Throughout this section fi, i = 1, 2, . . . , p be a function from I × Rn × Rm

into R,G be a function from I ×Rn ×Rm into Rn and R be a function from
I × Rn × Rm into Rk. Consider a multiobjective control problem (MVP):
Consider the following multiobjective control problem:

(VCP)

Minimize
∫ b

a

f(t, x(t), u(t))dt

Subject to x(a) = α, x(b) = β,
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ẋ(t) = G(t, x(t), u(t)), t ∈ I

R(t, x(t), u(t)) ≥ 0, t ∈ I.

Definition 7.83. A feasible solution (x∗(t), u∗(t)) for (VCP) is said to be an
efficient solution for (VCP) if for all feasible solutions (x(t), u(t)) for (VCP),

∫ b

a

fi(t, x(t), u(t))dt ≤
∫ b

a

fi(t, x∗(t), u∗(t))dt, ∀i = {1, 2, . . . , p}

and
∫ b

a

fj(t, x(t), u(t))dt <
∫ b

a

fj(t, x∗(t), u∗(t))dt, for some j.

Lee et al. [137] established the following sufficient optimality theorem for
multiobjective case:

Theorem 7.84. Suppose that (x∗, u∗) is feasible for (VCP) such that there
exist τ∗ ∈ Λ+, λ∗(t), and μ∗(t) such that

p∑

i=1

τ∗i fix(t, x∗(t), u∗(t)) −Gx(t, x∗(t), u∗(t))λ∗(t)

−Rx(t, x∗(t), u∗(t))μ∗(t) = λ̇∗(t),
p∑

i=1

τ∗i fiu(t, x∗(t), u∗(t)) −Gu(t, x∗(t), u∗(t))λ∗(t)

−Ru(t, x∗(t), u∗(t))μ∗(t) = 0,
μ∗(t)R(t, x∗(t), u∗(t))μ∗(t) = 0, and

μ∗(t) ≥ 0,

hold throughout the interval I (except that at t corresponding to discontinuities
of μ∗(t), () holds for right and left limits). If

∫ b

a fidt, i = 1, 2 . . . , p, are invex
with respect to η and ξ, and

∫ b

a
(−(λ∗)T (G − ẋ) − (μ∗)TR)dt, is invex with

respect to the same functions η and ξ, then (x∗, u∗) is an efficient solution for
(VCP).

Proof. Suppose that (x∗, u∗) is not an efficient solution of (V CP ). Then there
exists (x, u) 	= (x∗, u∗) such that (x, u) is feasible for (V CP ) and

∫ b

a

fi(t, x(t), u(t))dt ≤
∫ b

a

fi(t, x∗(t), u∗(t))dt, ∀ i = {1, 2, . . . , p}

and
∫ b

a

fj(t, x(t), u(t))dt <
∫ b

a

fj(t, x∗(t), u∗(t))dt, for some j.

Since fidt, i = 1, 2, . . . , p are invex with respect to η and ξ, we get
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∫ b

a

{ηT fix(t, x∗(t), u∗(t)) + ξT fiu(t, x∗(t), u∗(t))}dt ≤ 0,

∀ i = {1, 2, . . . , p}

and
∫ b

a

{ηT fjx(t, x∗(t), u∗(t)) + ξT fju(t, x∗(t), u∗(t))}dt < 0,

for some j.

Since τ∗i > 0 for all i,
∫ b

a

p∑

i=1

τ∗i η
T fix(t, x∗(t), u∗(t))dt <

∫ b

a

p∑

i=1

τ∗i ξ
T fiu(t, x∗(t), u∗(t))dt.

Since (λ∗)T [G(t, x, u) − ẋ] = 0 = (λ∗)T [G(t, x∗, u∗) − ẋ∗] and

(λ∗)TR(t, x∗, u∗) = 0 ≤ (λ∗)TR(t, x, u),

we get
∫ b

a

{−(λ∗)T (G(t, x∗, u∗) − ẋ∗) − (μ∗(t))TR(t, x∗, u∗)
}
dt

≥
∫ b

a

{−(λ∗)T (G(t, x, u) − ẋ∗] − (μ∗(t))TR(t, x, u)
}
dt.

By the invexity of
∫ b

a
(−(λ∗)T (G− ẋ) − (μ∗)TR)dt, we get

∫ b

a

{−ηTGx(t, x∗, u∗)λ∗(t) +
dηT

dt
λ∗(t) − ξTGu(t, x∗, u∗)λ∗(t)

− ηTRx(t, x∗, u∗)μ∗(t) − ξTRu(t, x∗, u∗)}dt ≤ 0. (7.49)

Therefore, we get
∫ b

a

{
p∑

i=1

τ∗i η
T fix(t, x∗, u∗) +

p∑

i=1

τ∗i ξ
T fiu(t, x∗, u∗)

−
(
ηTGx(t, x∗, u∗)λ∗(t) − dηT

dt
λ∗(t) + ξTGu(t, x∗, u∗)λ∗(t)

)

− (ηTRx(t, x∗, u∗)μ∗(t) + ξTRu(t, x∗, u∗)
)
}
dt < 0. (7.50)

On the other hand, we get
∫ b

a

{
p∑

i=1

τ∗i η
T fix(t, x∗, u∗) +

p∑

i=1

τ∗i ξ
T fiu(t, x∗, u∗)

− (ηTGx(t, x∗, u∗)λ∗(t) + ξTGu(t, x∗, u∗)λ∗(t)
)

− (ηTRx(t, x∗, u∗)μ∗(t) + ξTRu(t, x∗, u∗)
)− ηT d

dt
λ∗(t)

}
dt = 0.
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But,
∫ b

a

ηT d

dt
λ∗(t)dt = ηTλ∗(t)|ba −

∫ b

a

dηT

dt
λ∗(t)dt = −

∫ b

a

dηT

dt
λ∗(t)dt,

as fixed boundary conditions give η = 0 at a and b. From above we reach to
a contradiction to (7.50). Hence (x∗, u∗) is optimal for (VCP).

For more results on optimality see, Gramatovici [68].
��

Lee et al. [137] defined the following Mond–Weir [180] type dual problem
(MWVD) for the primal problem (V CP ):

MWVD

Maximize

(x, u, λ, μ)

(∫ b

a

f1(t, u, u̇)dt, . . . ,
∫ b

a

fp(t, u, u̇)dt

)

Subject to x(a) = α, x(b) = β,
p∑

i=1

τifix(t, x, u) −Gx(t, x, u)λ(t)Rx(t, x, u) = λ̇(t),

p∑

i=1

τifiu(t, x, u) −Gu(t, x, u)λ(t)Ru(t, x, u) = 0,

∫ b

a

{
λ(t)T [G(t, x, u) − ẋ] + μ(t)TR(t, x, u)

}
dt ≤ 0,

μ(t) ≥ 0, t ∈ I, τ ∈ Λ+ =

{
τ ∈ Rp : τi > 0 for all i and

p∑

i=1

τi = 1

}
,

where λ : I → Rn and μ : I → Rk. Lee et al. [137] established some duality
theorems between the multiobjective control problem (V CP ) and its Mond–
Weir type dual problem (MWVD).

Theorem 7.85 (Weak duality). If
∫ b

a
fidt, i = 1, . . . , p, are invex with

respect to η and ξ, and
∫ b

a (−λT (G − ẋ) − μTR)dt for any λ(t) ∈ Rn and
μ(t) ∈ Rm is invex with respect to the same functions η and ξ, then the
following can not hold; for any feasible solution (x∗, u∗) of (V CP ) and any
feasible solution (x, u, λ, μ) of (MWVD),

∫ b

a

fi(t, x∗, u∗)dt ≤
∫ b

a

fi(t, x̄, ū)dt, ∀i

and
∫ b

a

fj(t, x∗, u∗)dt <
∫ b

a

fj(t, x̄, ū)dt for some j.

Proof.
��
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Theorem 7.86 (Strict converse duality). Let (x∗, u∗) and (x, u, τ, λ, μ) be
feasible solutions of (VCP) and (MWVD), respectively such that

∫ b

a

p∑

i=1

τifi(t, x∗, u∗)dt <
∫ b

a

p∑

i=1

τifi(t, x, u)dt.()

If
∫ b

a fidt, i = 1, . . . , p are strictly invex with respect to η and ξ, and∫ b

a
(−λT (G− ẋ)−μTR)dt is invex with respect to the same functions η and ξ,

then (x∗, u∗) = (x, u).

Bhatia and Kumar [21] has given duality theorems for a similar problem to
(MCP ) under ρ-invexity, ρ-pseudo-invexity and ρ-quasi-invexity assumptions.

Zhian and Qingka [258] considered the same multiobjective control prob-
lem as given in this section above and defined the following two types of dual
models:

(VCD1)

Maximize
(∫ tf

t0

{
f1(t, x, u) + μ(t)T

ΣRΣ(t, x, u)
}
dt, . . . ,

∫ tf

t0

{
fp(t, x, u) + μ(t)T

ΣRΣ(t, x, u)
}
dt

)

Subject to x(t0) = x0, x(tf ) = xf ,
p∑

i=1

τifix(t, x, u) −Gx(t, x, u)λ(t)Rx(t, x, u) = λ̇(t),

p∑

i=1

τifiu(t, x, u) −Gu(t, x, u)λ(t)Ru(t, x, u) = 0,

∫ tf

t0

λ(t)TG(t, x, u) − ẋdt ≥ 0

∫ tf

t0

μ(t)T
Σ′RΣ′(t, x, u)dt ≥ 0,

μ(t) ≥ 0, t ∈ I, τ ∈ Λ+ =

{
τ ∈ Rp : τi > 0 for all i and

p∑

i=1

τi = 1

}
,

where λ : I → Rn and μ : I → Rk.

(VCD2)

Maximize
(∫ tf

t0

{
f1(t, x, u) + λ(t)T (G(t, x, u) − ẋ) + μ(t)T

ΣRΣ(t, x, u)
}
dt, . . . ,
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∫ tf

t0

{
fp(t, x, u) + λ(t)T (G(t, x, u) − ẋ) + μ(t)T

ΣRΣ(t, x, u)
}
dt

)

Subject to x(t0) = x0, x(tf ) = xf ,
p∑

i=1

τifix(t, x, u) −Gx(t, x, u)λ(t)Rx(t, x, u) = λ̇(t),

p∑

i=1

τifiu(t, x, u) −Gu(t, x, u)λ(t)Ru(t, x, u) = 0,

∫ tf

t0

μ(t)T
Σ′RΣ′(t, x, u)dt ≥ 0,

μ(t) ≥ 0, t ∈ I, τ ∈ Λ+ =

{
τ ∈ Rp : τi > 0 for all i and

p∑

i=1

τi = 1

}
,

where λ : I → Rn and μ : I → Rk.



8

Invexity for Some Special Functions
and Problems

8.1 Invexity of Quadratic Functions

There are few papers dealing with invexity of quadratic forms and functions;
we know only the contributions of Smart [224], Mond and Smart [177] and
Molho and Schaible [166]. The study of invex quadratic functions can improve
optimality and duality results for that important class of problems formed by
quadratic programming problems.

Consider the following quadratic program:
(QP)

Minx

{
1
2
xTMx+ qTx

}

Subject to Ax ≤ b,

where M is a symmetric n×n matrix, A is an m×n matrix, x ∈ Rn, q ∈ Rn,
b ∈ Rm.

The Wolfe dual of (QP) is the program:
(QD)

Maxx,u

{
bTu− 1

2
xTMx

}

Subject to ATu+Mx = −q
u ≥ 0, x ∈ Rn.

If M is nonsingular, then (QD) reduces to:
(QD)

Maxu

{
dTu+

1
2
uTEu− 1

2
uTAM−1q

}

Subject to u ≥ 0,

where E = −AM−1AT , d = −b−AM−1q = −b−Ax̄ with x̄ = M−1q.
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From Sect. 5.4 we know that under assumption of invexity (with respect
to a common η) of the objective function and the constraints of the primal
problem, then weak duality holds:

inf(QP ) ≥ sup(QD).

The invexity assumption on the functions involved in (QD) allows also to
establish a strong duality results, as the constraints of (QD) are linear and
no constraint qualification is needed:

inf(QP ) = sup(QD).

Here we follow the approach of Molho and Schaible [166]. Generalized
convexity of quadratic functions on convex subsets of Rn has been studied
extensively since the early works of Cottle, Ferland and Schaible (see, e.g.,
[10,41,218–220]). As said before, invexity of quadratic functions has not been
studied so extensively.

Consider f(x) = 1
2x

TMx + qTx, where M is a symmetric n × n matrix.
Let C be an open set in Rn. We want to study the invexity of f on C. The
following example shows that invexity of quadratic functions dos not trivially
reduce to convexity. Consider the quadratic function

f(x) =
1
2
xTMx+ qTx,

where M =
[−1 0

0 0

]
; q=

[
1

−1

]
;

f(x) is not convex since M is not positive semidefinite. However it is invex,
since it has no stationary points in Rn.

Now we prove that the absence of stationary points is a general feature
of invex quadratic functions which are nonconvex, i.e., of “properly invex”
quadratic functions. Let S = {x ∈ Rn : Mx+ q = 0} , i.e., S is the set of
stationary points of f in Rn.

Theorem 8.1. Let C ⊆ Rn be an open set and f : C → R be an invex
quadratic function on C. Then either C ∩ S = φ or f is convex on Rn.

Proof. Suppose C ∩ S = φ. Let x ∈ C ∩ S = φ. Suppose f is not convex
on Rn. Then M has at least one negative eigenvalue, say λ1 ≤ 0. Let x1 be
an associated normalized eigenvector. Since f is invex on C, x̄ is a global
minimizer of f on C. Now consider xi = x̄+ tx1, t 	= 0.

Since C is an open set, there exists t̄ > 0 such that for |t| < t̄, we have
xt ∈ C. Moreover, it holds

f(xT ) =
1
2
(xt)TMxt + qTxt

=
1
2
(x̄ + tx1)TM(x̄+ tx1) + qT (x̄ + tx1)
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= f(x̄) + t(x1)TMx̄+
1
2
λ1t

2 + tqTx1

= f(x̄) + t((x1)TMx̄+ q) +
1
2
λ1t

2

= f(x̄) +
1
2
λ1t

2, since x̄ ∈ S.

As λ1 < 0 we have f(xt) < f(x̄) for all t 	= 0 such that |t| < t̄, contradicting
the fact that x̄ is a minimum point of f on C.

��
Consequently, if a given quadratic function is considered on an open set

C which does not contain any stationary point, then the function is invex
on C (this is true for any differentiable function and therefore also for any
quadratic function, no mater how many negative eigenvalues M has). But if
a quadratic function is considered on a set C which does contain at least one
stationary point, then it can not be properly invex; in other words f is not
invex whenever M has at least one negative eigenvalue. This is very different
from the classical generalized convexity properties of quadratic functions. Let
us recall what happens for pseudo convex quadratic functions, a proper subset
of invex quadratic functions. If C ∩ S = φ, pseudo convexity can only occur
if M has at most one simple negative eigenvalue and some other conditions
are met (see Theorem 6.2 in [10]). On the other hand, if C ∩ S 	= φ, proper
pseudo convexity is impossible on C, just like proper invexity is impossible
in this case. Thus, the difference between pseudo convex and invex quadratic
functions is very large, in the first case and does not exist in the second one.

Let us point out that C ∩ S = φ for all sets C ⊆ Rn if rank (M, q) 	=
rank (M). Therefore we have the following.

Corollary 8.2. Any quadratic function f(x) = 1
2x

TMx+qTx with rank (M, q)
	= rank (M) is invex on Rn.

Since a proper invex quadratic function does not have a stationary point
on an open set, the minimum (if it exists) can only be obtained at the bound-
ary. The above characterization of invex quadratic functions may also be
viewed as a special case of Theorem 2.3.1 due to Smart [224] and Mond
and Smart [179]. Let us apply this result to the case of quadratic functions,
i.e., f(x) = 1

2x
TMx + qTx (M symmetric matrix of order n, q ∈ Rn).

The necessary and sufficient condition for invexity with respect to η, where
η(x, u) = μ(x, u) + Λ(x, u), is

∀x, u ∈ C Mu+ q ∈ Λ∗(x, u)

⇒ 1
2
xTMx+ qTx− 1

2
uTMu− qTu− μ(x, u)T (Mu+ q) ≥ 0.

That is, for all x, u ∈ C Mu+ q ∈ Λ∗(x, u) implies

1
2
xTMx− μ(x, u)TMu− 1

2
uTMu+ qT (x− u− μ(x, u)) ≥ 0.
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If μ(x, u) = x− u, the condition becomes: for all x, u ∈ C Mu+ q ∈ Λ∗(x, u),
implies

(x− u)TM(x− u) ≥ 0.

Consider the case where Λ is independent of (x, u), i.e., Λ(x, u) = Λ.
For any given u ∈ C for every ν ∈ Rn there exists x ∈ C such that

x − u = αν for some scalar α 	= 0 since C is open. Therefore if there exists
u ∈ C such that Mu+ q ∈ Λ∗ then M is positive semidefinite.

We analyze now the following special cases for Λ:

(a) Arbitrary invexity. If Λ = Rn, hence Λ∗ = {0}, M is positive semidefinite,
i.e., f is convex, whenever f has at least one stationary point in C and
f is invex if it does not have any stationary point in C. This result was
obtained in Theorem 8.1 using a different approach.

(b) Convexity. If Λ∗ = {0} hence Λ = Rn, (a) means that M is positive
semidefinite, i.e., we obtain the usual necessary and sufficient conditions
for the convexity of f on an open set.

We recall now the following results on twice continuously differentiable
generalized convex functions which will be useful for comparison between
invexity and pseudoconvexity.

Theorem 8.3. Let f be a twice differentiable quasiconvex function on the
open convex set C ⊆ Rn. Then x0 ∈ C, ν ∈ Rn and νT∇f(x0) = 0 imply
νT∇2f(x0)ν ≥ 0 (see [6,10,50]).

Theorem 8.4. Let f be a twice differentiable function on the open convex
set C ⊆ Rn. Suppose that x0 ∈ C, ν ∈ Rn and νT∇f(x0) = 0 imply
νT∇2f(x0)ν ≥ 0 and x0 ∈ C imply ∇f(x0) = 0 is positive definite. Then
f is pseudoconvex on C. (see [48,50]).

An immediate consequence of these results is the following corollary which
sheds light on the relationships between invexity and pseudoconvexity.

Corollary 8.5. Let f be an invex twice continuously differentiable function
on the open convex set C such that ∇2f(x0) is non-singular for all x0 ∈ C
such that ∇f(x0) = 0. Then f is pseudoconvex if and only if x0 ∈ C, ν ∈
Rn, νT∇f(x0) = 0 imply νT∇2f(x0)ν ≥ 0.

We now discuss some properties of locally invex C2-functions. Let f be a
C2-functions in a neighbourhood of x0. Then

f(x) = f(x0) + (x − x0)T∇f(x0)

+
1
2
(x− x0)T∇2f(x0)(x− x0)

+ o(‖x− x0‖)2.
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Let q(x) be the quadratic function approximating f in a neighbourhood of
x0, i.e.,

f(x) = f(x0) + (x− x0)T∇f(x0) +
1
2
(x− x0)T∇2f(x0)(x− x0).

Obviously

q(x) = f(x0), ∇q(x) = ∇f(x0), ∇2q(x) = ∇2f(x0).

As a trivial consequence we obtain the following result.

Corollary 8.6. Let f be a C2-function in a neighbourhood of X0. If f is invex
in a neighbourhood of X0, then q is invex in some neighbourhood of X0.

Consider a C2-function f . Recalling the results established for invex
quadratic functions, we see that if ∇f(x0) 	= 0 then there exists a neigh-
bourhood of x0 where f is invex. On the other hand, if ∇f(x0) = 0 then
the approximating quadratic function is convex, while f itself may be locally
nonconvex (see, e.g., p. 269 in [10]).

However, restricting ourselves to C2-functions where ∇2f(x0) is non-
singular if ∇f(x0) = 0 a locally invex function is locally convex. In such
a case, the notion of local invexity is scarcely significant: either it imposes no
restriction on the behaviour of f or it coincides with local convexity. Hence the
class of invex C2-functions (with ∇2f(x0) non-singular whenever ∇f(x0) = 0)
is made up of functions that are convex in a neighbourhood of their stationary
points.

8.2 Invexity in Fractional Functions and Fractional
Programming Problems

The literature on fractional programming is abundant; see, e.g., the book of
Stancu-Minasian [227] and Craven [42]. However, the papers on fractional
programming under invexity assumptions are quite few. We may quote the
seminal work of Craven [43], where the term “invex function” was proposed
and the papers of Singh and Hanson [223], Khan and Hanson [117], Reddy and
Mukherjee [208] and Craven and Mond [47]. Also Jeyakumar and Mond [105]
have applied their definition of invex functions to the fractional programming
problem.

The paper of Khan and Hanson [117] contains some errors and useless
assumptions. The same holds for the paper of Reddy and Mukherjee [208];
so here we follow also the treatment of Craven and Mond [47]. Consider the
nonlinear fractional programming problem

(FP)

max
f(x)
g(x)

Subject to h(x) ≤ 0,
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where f , g and h are all defined and differentiable on an open set C ⊆ Rn, f , g :
C → R, h : C → Rm. We extend now this nonlinear fractional programming
problem to the invex case; we establish sufficiency and duality theorems for
an invex fractional programming problem.

We recall the notion of V -invex functions already given for vector-valued
functions (see the comments after Theorem 5.14).

Definition 8.7. A differentiable function ϕ : Rn → R is V -invex at the point
y if there exist a positive weighting function β(., y) and a kernel function η(., .)
such that for all x

ϕ(x) − ϕ(y) ≥ β(x, y)∇ϕ(y)η(x, y).

Obviously if β(., .) = 1, we get the usual definition of invexity, which
is always included in the above definition, by choosing, as kernel function
η̃ = η

β . V -invex for a vector function means that each component is V -invex;
the kernel function must be the same, but the weighting functions may differ.

Theorem 8.8. If in (FP) we have f(x) ≥ 0, g(x) > 0 with f(x) and −g(x)
invex with the same kernel function η, then f(x)

g(x) is invex at y, with kernel

function η(., .) and weighting function g(y)
g(x) .

Proof. Assume that f(x) ≥ 0. Since also g(x) > 0 we have f(y)
g(y) > 0. Since

f(x) and −g(x) are invex with the same kernel function η and f(y)
g(y) ≥ 0 we

have that f(.) − f(y)
g(y) g(.) is also invex at y, with the same η. Thus

f(x) − f(y)
g(y)

g(x) =
[
f(x) − f(y)

g(y)
g(x)

]
−
[
f(y) − f(y)

g(y)
g(y)

]

≥
[
∇f(y) − f(y)

g(y)
∇g(y)

]
η(x, y).

Hence

f(x)
g(x)

− f(y)
g(y)

≥
[
g(y)
g(x)

]
∇
[
f(y)
g(y)

]
η(x, y).

��
Khan and Hanson [117] gave a similar result, but assuming, incorrectly,

that f(x) ≤ 0. If x0 ∈ C is a local minimum for problem (FP) and a constraint
qualification is satisfied, then the following Kuhn–Tucker conditions hold for
(FP):

∇f(x0)
g(x0)

+ λ0T ∇h(x0) = 0, (8.1)

λ0T

h(x0) = 0, (8.2)

λ0 ≥ 0. (8.3)
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The following theorem establishes sufficient optimality conditions for (FP)
under appropriate invexity and V -invexity assumptions.

Theorem 8.9. Suppose x0 is feasible for (FP) and that the Kuhn–Tucker
conditions (8.1)–(8.3) are satisfied at x0. Let f(x) ≥ 0, g(x) > 0 where f and
−g are invex functions with respect to η(x, x0), and let h be V -invex at x0

with respect to
(

g(x0)
g(x)

)
η(x, x0). Then x0 is a minimum for (FP).

Proof. Let x be any feasible point for (FP). Then we have

f(x)
g(x)

− f(x0)
g(x0)

≥
[
g(x0)
g(x)

]
∇
[
f(x0)
g(x0)

]
η(x, x0)

= −
[
g(x0)
g(x)

]
λ0T ∇h(x0)η(x, x0)

≥ −
[
g(x0)
g(x)

]
λ0T ∇h(x0)η(x, x0)

+ λ0T

h(x) − λ0T

h(x0)
≥ 0.

Therefore, x0 is a global minimum.
��

It should be noted that Jeyakumar and Mond [105] pointed out that the
convex-concave fractional programming problem is not an invex problem.
However, on the grounds of the previous results it turns out that (FP) is
an invex programming problem under suitable assumptions of invexity of the
objective function and of V -invexity of the constraints.

We turn now to duality for (FP). If f , −g and h are convex, then f(x)
g(x)

is pseudoconvex (see, e.g., [143]) but not necessarily convex and the usual
Wolfe duality results do not hold (see again [143]). This explains the various
different duals for (FP) considered in the literature. We note however, that
Hanson [83] has obtained duality results, with a Wolfe formulation for the
dual, under invexity assumptions (see Sect. 5.4).

Khan and Hanson [117] established duality between (FP) and a slight
variation of its Mond–Weir dual (see Sect. 5.4), namely the problem:

(FD)

max
f(u)
g(u)

Subject to ∇f(u)
g(u)

+ λT∇h(u) = 0, (8.4)

λTh(u) = 0, (8.5)

λ ≥ 0. (8.6)
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In the following two Theorems it is assumed that the functions f(x) ≥ 0
and f(x) ≥ 0 and that the functions f(.) and −g(.) are invex with respect
to η(x0, u), hence f(.)

g(.) (according to Theorem 8.8) is invex with respect to
g(u)
g(x0)η(x

0, u). It is assumed, moreover that λTh(.); λ ≥ 0 is invex with respect

to g(u)
g(x0)η(x

0, u).

Theorem 8.10 (Strong duality). Assume that x0 is minimal for (FP), then
x0 is maximal for (FD) and the optimal values of (FP) and (FD) are equal.

Proof. Suppose that any vector u, λ satisfies the constraints of (FD). For x0

to be maximal for (FD), we must show that

f(x0)
g(x0)

− f(u)
g(u)

≥ 0.

From the feasibility, we obtain

f(x0)
g(x0)

− f(u)
g(u)

≥ f(x0)
g(x0)

− f(u)
g(u)

− λTh(u)

≥ f(x0)
g(x0)

η(x0, u)∇f(u)
g(u)

− λTh(u)

(since
f(x0)
g(x0)

is invex with respect to
g(u)
g(x0)

η(x0, u)T )

= − g(u)
g(x0)

η(x0, u)T∇λTh(u) − λTh(u) by (8.4)

≥ λTh(x0),

(since λTh(.) is invex with respect to
g(u)
g(x0)

η(x0, u)T )

≥ 0, being h(x0) ≤ 0 and by (8.6).
��

Theorem 8.11 (Converse duality). If x0 is maximal for (FD) under the
assumptions of invexity already specified, then x0 is minimal for (FP).

Proof. Since x0 is maximal for the dual problem (FD), there exists λ0 ≥ 0
such that the constraints are satisfied at (x0, λ0), i.e.,

∇f(x0)
g(x0)

+ λTh(x0) = 0 (8.7)

λ0T

h(x0) = 0 (8.8)

λ0 ≥ 0. (8.9)
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For any x ∈ C satisfying the constraints of (FP) we have

f(x)
g(x)

− f(x0)
g(x0)

≥ g(x0)
g(x)

η(x, x0)∇f(x0)
g(x0)

(by invexity of
f(.)
g(.)

with respect to
g(x0)
g(x)

η(x, x0))

−g(x
0)

g(x)
η(x, x0)T∇λ0T

h(x0), by (8.7)

≥ −λ0T

h(x) − λ0h(x0)

(since λ0T

h(.) is invex with respect to
g(x0)
g(x)

η(x, x0))

≥ 0,

being h(x) ≤ 0 for any feasible x ∈ C, for problem (FP), and by (8.8) and
(8.9).

��

8.3 Invexity in a Class of Nondifferentiable Problems

Mond [168] considered the following class of nondifferentiable mathematical
programming problems:

(NDP)
MinF (x) = f(x) + (xTBx)

1
2

Subject to g(x) ≥ 0,

where f : Rn → R and g : Rn → Rm are differentiable functions and B is an
n × n symmetric positive semidefinite matrix. Assuming that f was convex
and g was concave, a Wolfe-type dual problems was formulated and duality
results proved. For other related studies and applications related to (NDP)
see the bibliographical references of Mond [168].

Subsequently, Chandra et al. [30] weakened the convexity requirements
for duality by giving a Mond–Weir type dual and assuming f(x) + xTBw is
pseudoconvex for all w ∈ Rn and that λT g(x) was quasiconvex for feasible
multiplier vectors λ ∈ Rm.

A continuous version of (NDP) was studied by Chandra et al. [30] and a
further weakening of the assumptions, both for (NDP) and for its continuous
version, was considered by Mond and Smart [177], through the use of invexity
and generalized invexity. In this section, we consider only the “static” version
of the problem, i.e., (NDP) itself.

Two duals for (NDP) are to be formulated, making use of the necessary
conditions for an optimal solution, due to Mond [168]. First, a regularity
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condition at feasible points is required. For each feasible x0 ∈ Rm define
I0 =

{
i : gi(x0) = 0

}
and the following set

Z0 = {z : zT∇gi(x0) ≥ 0 ∀i ∈ I0,

zT∇f(x0) + zTBx0

(x0Bx0)
1
2

< 0, if x0T

Bx0 > 0,

zT∇f(x0) + (zTBz)
1
2 < 0 if x0T

Bx0 = 0}.

Lemma 8.12. If x0 is an optimal solution for (NDP) and the corresponding
set Z0 is empty, then there exist λ ∈ Rm and w ∈ Rn such that

λT g(x0) = 0
λT∇g(x0) = ∇f(x0) +Bw

wTBw ≤ 1
(x0T

Bx0)
1
2 = x0T

Bw

λ ≥ 0.

The generalized Schwarz inequality will later be required:

x0T

Bw ≤ (x0T

Bx0)
1
2 (wTBw)

1
2 , ∀ x,w ∈ Rn.

Mond [168] considered the following Wolfe-type dual problem:

maxG(u, λ) ≡ f(u) − λT g(u) + uT [λT g(u) −∇f(u)]

Subject to λT∇g(u) = ∇f(u) +Bw

wTBw ≤ 1

λ ≥ 0,

where u ∈ Rn, λ ∈ Rm and w ∈ Rn. Then it was assumed that f was convex
and g was concave in order to prove weak, strong and converse duality.

This problem may be written equivalently as:
(NDD1)

max G(u, λ, w) ≡ f(u) − λT g(u) + uTBw

Subject to λT∇g(u) = ∇f(u) +Bw, (8.10)

wTBw ≤ 1, (8.11)

λ ≥ 0. (8.12)

Theorem 8.13 (Weak duality). Let f(.) + .TBw and −g be invex with
respect to the same function η for all w ∈ Rn. Then inf(NDP ) ≥ sup(NDD1).
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Proof. Let x be feasible for (NDP) and let (u, λ, w) be feasible for (NDD1).
Then

F (x) − G(u, λ, w) = f(x) + (xTBx)
1
2 − f(u) − uTBw

≥ η(x, u)T [∇f(u) +Bw] − xTBw + (xTBx)
1
2

+ λT g(u) (by invexity f(.) + (.)TBw)

= η(x, u)TλT∇g(u) − xTBw + (xTBx)
1
2 + λT g(u) by (8.10)

≥ λT g(x) − xTBw + (xTBx)
1
2 by invexity of g and (8.12)

≥ λT g(x) − xTBw + (xTBx)
1
2 + (wTBw)

1
2 by (8.11)

≥ 0.

by feasibility, (8.11) and the generalized Schwarz inequality, as x and u, λ, w
are arbitrary feasible solutions of (NDP) and (NDD1) respectively, then
inf (NDP ) ≥ sup (NDD1).

��
Strong duality also holds with the above invexity assumptions.

Theorem 8.14 (Strong duality). Assume the invexity conditions of The-
orem 8.13 are satisfied. If x0 is an optimal solution for (NDP) and the
corresponding set Z0 is empty then there exist λ0 ∈ Rm and w0 ∈ Rn, such
that x0, λ0, w0 is optimal for (NDD1), and the respective objective values are
equal.

Proof. Mond [168] shows the existence of λ0 and w0 such that x0, λ0, w0 is
feasible for (NDD1), and the objective values are equal. By Theorem 8.13,
x0, λ0, w0 is optimal for (NDD1).

��
Mond and Smart [177] require invexity of f(.) + (.)TBw and not just f ,

since, in general, the sum of two invex functions is invex with respect to η
only if they are both invex with respect to the same η. The term xTBw is
convex for each w ∈ Rn and hence invex with η(x, u) = x − u. Mond and
Smart [177] give a simple sufficient condition for f(.) + (.)TBw to be invex,
given that f is invex.

Theorem 8.15. If f is invex with respect to η, with η(x, u) = x− u+ y(x, u)
where By(x, u) = 0 then f(.) + (.)TBw is also invex with respect to η.

Proof. Let x, u, w ∈ Rn. Then

f(x) + xTBw − f(u) − uTBw

≥ (x− u+ y(x, u))T∇f(u) + (x− u)TBw

(since f is invex with respect to η)
≥ (x− u+ y(x, u))T∇f(u) + (x− u)TBw + y(x, u)TBw

≥ (x− u+ y(x, u))T (∇f(u) +Bw).

Therefore, f(.) + (.)TBw is invex with respect to η.
��
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Also the following example is taken from Mond and Smart [177].

Example 8.16. Consider (NDP) with f : R2 → R, g : R2 → R and B ∈ R2×2

defined by
f(x) = x3

1 + x1 − 10x3
2 − x2

and
g(x) = 2x1 + x2,

(
4 2
2 1

)
.

Now, y(x, u) = 0 if y(x, u) = (z,−2z)T for some z ∈ R Then, f(x) ≥ f(u) ≥
(x− u+ y(x, u))T∇f(u) is equivalent to

x3
1 + x1 − 10x3

2 − x2 − u3
1 − u1 + 10u3

2 + u2

≥ (x1 − u1)(3u2
1 + 1) + (x2 − u2)(−30u2

2 − 1)
+ (3u2

1 + 1 + 60u2
2 + 2)z.

Thus, z can be chosen as

z =
x3

1 − 10x3
2 + 2u3

1 − 20u3
2 − 3x1u

2
1 + 30x2u

2
2

3u2
1 + 60u2

2 + 3
,

also, as g is linear and y(x, u)T∇g(u) = 0 for all u ∈ R2, then g is also invex
with respect to this η.

Chandra et al. [30] dealt with the following Mond–Weir type dual of
(NDP):

(NDD2)

maxH(u,w) ≡ f(u) + uTBw

Subject to λT∇g(u) = ∇f(u) +Bw (8.13)

wTBw ≤ 1 (8.14)
λ ≥ 0, (8.15)

λT g(u) ≤ 0. (8.16)

There, weak duality was proved assuming that f(.)+ (.)TBw was pseudo-
convex for all w ∈ Rn and λT g quasiconcave for any feasible multiplier λ.

Theorem 8.17 (Weak duality). Let f(.) + (.)TBw be pseudoinvex for all
w ∈ Rn, and −λT g quasiinvex for all feasible multiplier λ, both with respect
to the same kernel η. Then inf(NDP ) ≥ sup (NDD2).

Proof. Let x be feasible for (NDP) and u, λ, w feasible for (NDD2). Then the
feasibility of x, (8.15) and (8.16) imply that λT g(x) − λT g(u) ≥ 0. Thus,
η(x, u)T∇g(x) ≥ 0, since −λT g is quasiinvex.
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Equation (8.13) then gives η(x, u)T (∇f(x) +Bw) ≥ 0. Therefore,

f(x) + xTBw ≥ f(u) + uTBw,

since f(.) + (.)TBw is pseudoinvex with respect to η. But

f(x) + xTBw ≤ f(x) + (xTBx)
1
2 (wTBw)

1
2

(by the Schwarz inequality)

≤ f(x) + (xTBx)
1
2 (by (8.14)).

Therefore, F (x) ≥ H(u,w) for all x feasible for (NDP) and (u, λ, w) feasible
for (NDD2), so inf (NDP ) ≥ sup (NDD2).

��
Theorem 8.18 (Strong duality). Assume the invexity conditions of The-
orem 8.17 are satisfied. If x0 is an optimal solution of (NDP), and the
corresponding set Z0 is empty, then there exist λ0 ∈ Rm and w0 ∈ Rn such
that (x0, λ0, w0) is optimal for (NDD2), and the respective objective values are
equal.

Proof. Chandra et al. [30] established the existence of λ0 and w0 such that
(x0, λ0, w0) is feasible for (NDD2), with the objective values equal. The
optimality of (x0, λ0, w0), then follows from Theorem 8.17.

��
Theorem 8.19 (Converse duality). Let (x∗, λ∗, w∗) be optimal for either
(NDD1) or (NDD2). Assume that ∇2f(u∗) − ∇2(λ∗

T

g(u∗)) is non-singular.
If either:

1. (x∗, λ∗, w∗) is optimal for (NDD1), and the invexity conditions of Theo-
rem 8.13 are satisfied,

2. (x∗, λ∗, w∗) is optimal for (NDD2), the invexity conditions of Theorem 8.17
are satisfied, and λ∗

T ∇g(u∗) 	= 0.

Then, u∗ is optimal for (NDP).

Proof. Mond [168] shows that if (x∗, λ∗, w∗) is optimal for (NDD1), then u∗

is feasible for (NDP), and the objective values are equal. By Theorem 8.13,
u∗ is optimal for (NDP).

��
Chandra et al. [30] showed that if (x∗, λ∗, w∗) is optimal for (NDD2) and

λ∗
T ∇g(u∗) 	= 0 then u∗ is feasible for (NDP) with the corresponding objective

values equal. Optimality of u∗, follows from Theorem 8.17.
Mond et al. [173] extended the work of Mond [168] to multiobjective case:



222 8 Invexity for Some Special Functions and Problems

(NDVP)

Min
(
f1(x) + (xTB1x)

1
2 , . . . , fp(x) + (xTBpx)

1
2

)

Subject to g(x) ≥ 0.

Mond et al. [173] formulated a Mond–Weir type dual to (NDVP) and estab-
lished weak, strong and converse duality theorems under convexity hypothesis.
These authors did not study optimality conditions for the (NDVP). We now
state Kuhn–Tucker type necessary conditions.

Lemma 8.20 (Kuhn–Tucker type necessary condition). Let x∗ be an
efficient solution of (NDVP). Then there exist τ ∈ Rn, λ ∈ Rm such that

p∑

i=1

τi [f ′
i(x

∗) +Bizi] +
∑

j∈I(x∗)

λjg
′
j(x

∗) = 0, (8.17)

λjgj(x∗) = 0, (8.18)

zTBizi ≤ 1, i = 1, . . . , p, (8.19)

(x∗
T

Bix
∗)

1
2 = x∗

T

Bizi, (8.20)

τ > 0, λ ≥ 0,
p∑

i=1

τi = 1, (8.21)

where I(x∗) = {j : gj(x∗) = 0} 	= φ.

Mishra [153] studied the problem (NDVP) and established sufficient opti-
mality conditions and duality results under a wider class of functions namely,
V-invex functions (see Jeyakumar and Mond [105], see also this book).

Theorem 8.21 (Sufficient optimality condition). Let x∗ be an efficient
solution of (NDVP) and let there exist scalars τ ∈ Rp and λ such that (8.17)–
(8.21) hold. If

(
τ1(f1 + .TB1z1), . . . , τp(fp + .TBpzp)

)
is V -pseudo-invex and

λ1g1, . . . , λmgm is V -quasi-invex with respect to the same eta and for all
piecewise smooth zi ∈ Rn. Then x∗ is an efficient solution for (NDVP).

Proof. Let x be feasible for problem (NDVP). Then x ∈ S, g(x) ≤ 0. Since
λjgj(x∗) = 0 then

m∑

j=1

λjgj(x) ≤
m∑

j=1

λjgj(x∗). (8.22)

Since βj(x, x∗) > 0, ∀ j = 1, . . . ,m, we have

m∑

j=1

βj(x, x∗)λjgj(x) ≤
m∑

j=1

βj(x, x∗)λjgj(x∗). (8.23)
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Then by V -pseudo-invexity of λ1g1, . . . , λmgm, we get
m∑

j=1

λj∇xgj(x∗) ≤ 0.

Therefore, from (8.20), we have
p∑

i=1

τi [∇xfi(x∗) +Bizi] ≥ 0. (8.24)

From V -pseudo-invexity of (τ1(f1 + .TB1z1), . . . , τp(fp + .TBpzp)), we have
p∑

i=1

αi(x, x∗)τi
[
fi(x) + xTBiz

] ≥
p∑

i=1

αi(x, x∗)τi
[
fi(x∗) + x∗

T

Biz
]
.

That is

αi(x, x∗)τi
[
fi(x∗) + x∗

T

Biz
]
≤ αi(x, x∗)τi

[
fi(x) + xTBiz

] ∀i

αi(x, x∗)τi
[
fi(x∗) + x∗

T

Biz
]
< αj(x, x∗)τj

[
fj(x) + xTBjz

]

for at least one j.

Since, αi(x, x∗) > 0 ∀i and τ > 0, we get

fi(x∗) + x∗
T

Biz ≤ fi(x) + xTBiz ∀i and

fi(x∗) + x∗
T

Biz < fj(x) + xTBjz for at least one j.

Thus, x∗ is an efficient solution of (NDVP).
��

In relation to (NDVP) we associate the following dual nondifferentiable
multiobjective maximization problem:

(NDVD)

max
(
f1(u) + (uTB1z1), . . . , fp(u) + (uTBpzp)

)

Subject to
p∑

i=1

τi [∇fi(u) +Bizi] +
m∑

j=1

λj∇xgj(u) = 0, (8.25)

zTBizi ≤ 1, i = 1, . . . , p, (8.26)
m∑

j=1

λjgj(u) ≥ 0, (8.27)

τ > 0, λ ≥ 0,
p∑

i=1

τi = 1. (8.28)

Let H denote the set of feasible solutions for (NDVD).
Following, Mond et al. [173] to invexity, we obtained the duality results to

V-invexity, following Mishra [153].
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Theorem 8.22 (Weak duality). Let x ∈ K and (u, τ, λ, z1, . . . , zp) ∈ H and(
τ1(f1 + .TB1z1), . . . , τp(fp + .TBpzp)

)
is V -pseudo-invex and λ1g1, . . . , λmgm

is V -quasi-invex with respect to the same η and for all piecewise smooth
zi ∈ Rn. Then the following can not hold:

fi(x) + (xTBix)
1
2 ≤ fi(u) + uTBizi ∀i = 1, . . . , p and

fi0(x) + (xTBi0x)
1
2 ≤ (fi0(u) + uTBi0zi0 for at least one i0.

Proof. Let x be feasible for (NDVP). Then x ∈ S, g(x) ≤ 0. Since λjgj(x∗) =
0, then

λjgj(x) ≤ λjgj(u), j = 1, . . . ,m,

and

λj0gj0(x) ≤ λj0gj0(u), for at least one j0 ∈ {i, . . . ,m}.
Since βj(x, u) > 0, ∀j = 1, . . . ,m, we have

m∑

j=1

βj(x, u)λjgj(x) ≤
m∑

j=1

βj(x, u)λjgj(u).

Then by V -quasi-invexity of λ1g1, . . . , λmgm, we get
m∑

j=1

λj∇xgj(u)η(x, u) ≤ 0,

and so from (8.25), we have
p∑

i=1

τi [∇xfi(u) +Bizi] ≥ 0.

Thus, from V -pseudo-invexity of
(
τ1(f1 + .TB1z1), . . . , τp(fp + .TBpzp)

)
,

we have
p∑

i=1

αi(x, u)τi
[
fi(x) + xTBiz

] ≥
p∑

i=1

αi(x, u)τi
[
fi(u) + xTBiz

]
.

But

xTBizi ≤ (xTBix)
1
2 (zT

i Bizi)
1
2 (by Schwarz inequality) (8.29)

≤ (xTBix)
1
2 by (8.26).

Now, from (8.21) and (8.29), we have

αi(x, u)τi
[
(fi(u) + (xTBix)

1
2 )
]
≥ αi(x, u)τi

[
(fi(u) + xTBiz)

]
.
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That is

αi(x, u)τi
[
(fi(x) + (xTBix)

1
2 )
]
≥ αi(x, u)τi

[
(fi(u) + uTBizi)

] ∀i,

and

αi0(x, u)τi0
[
(fi0(x) + (xTBi0x)

1
2 )
]

≥ αi0(x, u)τi0
[
(fi0(u) + uTBi0zi0

]
for at least one i0.

Since, αi(x, u) > 0, ∀i and τ ≥ 0 we get

fi(x) + (xTBix)
1
2 ≥ fi(u) + uTBizi ∀i = 1, . . . , p,

and

fi0(x) + (xTBi0x)
1
2 > (fi0(u) + uTBi0zi0 for at least one i0.

Thus, the following can not hold:

fi(x) + (xTBix)
1
2 ≤ fi(u) + uTBizi ∀i = 1, . . . , p,

and

fi0(x) + (xTBi0x)
1
2 ≤ (fi0(u) + uTBi0zi0 for at least one i0.

��
Remark 8.23. If we replace the V-invexity assumptions by invexity assump-
tions, we get:

Theorem 8.24 (Weak duality). Let x ∈ K and (u, τ, λ, z1, . . . , zp) ∈ H and
(τ1(f1 + .TB1z1), . . . , τp(fp + .TBpzp) is pseudo-invex and λ1g1, . . . , λmgm is
quasi-invex with respect to the same η and for all piecewise smooth zi ∈ Rn.
Then the following can not hold:

f(x) + (xTBix)
1
2 ≤ fi(u) + uTBizi ∀i = 1, . . . , p,

and

fi0(x) + (xTBi0x)
1
2 ≤ (fi0(u) + uTBi0zi0 for at least one i0.

If we take the convexity assumptions, we get the weak duality obtained by
Mond et al. [173]:

Theorem 8.25 (Weak duality). Let x ∈ K and (u, τ, λ, z1, . . . , zp) ∈ H
and (τ1(f1 + .TB1z1), . . . , τp(fp + .TBpzp)) and λ1g1, . . . , λmgm are convex for
all piecewise smooth zi ∈ Rn. Then the following can not hold:

fi(x) + (xTBix)
1
2 ≤ fi(u) + uTBizi ∀i = 1, . . . , p,

and

fi0(x) + (xTBi0x)
1
2 ≤ (fi0(u) + uTBi0zi0 for at least one i0.
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Theorem 8.26. Let x ∈ K and (u, τ, λ, z1, . . . , zp) ∈ H and the V-pseudo-
invexity and V-quasi-invexity conditions of Theorem 8.22 hold. If

uTBiu = uTBizi, for i = 1, . . . , p, (8.30)

and the objective values are equal, then x is properly efficient for (NDVP) and
(u, τ, λ, z1, . . . , zp) is properly efficient for (NDVD).

Proof. Suppose x is not an efficient solution for (NDVP), then there exists
x0 ∈ K such that

fi(x0) + (xT
0 Bix0)

1
2 ≤ fi(x) + (xTBix)

1
2 ∀i = 1, . . . , p,

and

fi0(x0) + (xT
0 Bi0x0)

1
2 < (fi0(x) + (xTBi0x)

1
2 for at least one i0.

Using (8.20), we get

fi(x0) + (xT
0 Bix0)

1
2 ≤ fi(u) + uTBizi ∀i = 1, . . . , p,

fi0(x0) + (xT
0 Bi0x0)

1
2 ≤ fi0(u) + uTBi0zi0 for at least one i0.

This is a contradiction of weak duality Theorem 8.22. Hence x is an efficient
solution for (NDVP). Similarly it can be ensured that (u, τ, λ, z1, . . . , zp) is an
efficient solution of (NDVD).

Now suppose that x is not properly efficient of (NDVP). Therefore, for
every positive function M > 0 there exists x0 ∈ X feasible for (NDVP) and
an index i such that

fi(x) + (xTBix)
1
2 −

(
fi(x0) + (xT

0 Bix0)
1
2

)

> M
(
fj(x0) + (xT

0 Bjx0)
1
2 − fj(x) + (xTBjx)

1
2

)

for all j satisfying

fj(x0) + (xT
0 Bjx0)

1
2 > fj(x) + (xTBjx)

1
2 ,

whenever

fi(x0) + (xT
0 Bix0)

1
2 < fi(x) + (xTBix)

1
2 .

This means fi(x)+(xTBix)
1
2 −
(
fi(x0) + (xT

0 Bix0)
1
2

)
can be made arbitrarily

large and hence for τ > 0 the inequality
p∑

i=1

τi

(
fi(x) + (xTBix)

1
2 −
(
fi(x0) + (xT

0 Bix0)
1
2

))
> 0, (8.31)

is obtained.
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Now from feasibility conditions, we have

λjgj(x0) ≤ λjgj(u), ∀j = 1, . . . ,m.

Since βj(x0, u) > 0, ∀j = 1, . . . ,m

m∑

j=1

βj(x0, u)λjgj(x0) ≤
m∑

j=1

βj(x0, u)λjgj(u).

Then by V -quasi-invexity of λ1g1, . . . , λmgm, we get

m∑

j=1

λj∇xgj(u)η(x, u) ≤ 0

Therefore, from (8.25), we get

p∑

i=1

τ0
i fi(u0)η(x̄, u0) ≥ 0.

Since τ ≥ 0,
∑p

i=1 τi = 1, we have

p∑

i=1

τi (∇xfi(u) +Bizi) η(x̄, u0) ≥ 0.

By using V-pseudo-invexity conditions, we have

p∑

i=1

αi(x0, u)τi
(
fi(x0) + xT

0 Bizi

) ≥
p∑

i=1

αi(x0, u)τi
(
fi(u) + uTBizi

)
.

Since αi(x0, u) > 0, ∀i = 1, . . . , p, we have

p∑

i=1

τi
(
fi(x0) + xT

0 Bizi

) ≥
p∑

i=1

τi
(
fi(u) + uTBizi

)
.

Since the objective values of (NDVP) and (NDVD) are equal, we have

p∑

i=1

τi

(
fi(x) + (xTBix)

1
2

)
≤

p∑

i=1

τi

(
fi(x0) + (xT

0 Bix0)
1
2

)
.

This, yields

p∑

i=1

τi

(
fi(x) + (xTBix)

1
2 −

p∑

i=1

τi

(
fi(x0) + (xT

0 Bix0)
1
2

))
≤ 0,

which is a contradiction to (8.31). Hence x is a properly efficient solution for
(NDVP).
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We now suppose that (u, τ, λ, z1, . . . , zp) is not properly efficient solution
for (NDVD). Therefore, for every positive function M > 0 there exists a
feasible (u0, τ0, λ0, z

0
1 , . . . , z

0
p) feasible for (NDVD) and an index i such that

fi(u0) + uT
0 Biz

0
i − (fi(u) + uTBizi

)

> M
(
fj(u) + uTBjzj − fj(u0) + uT

0Bjz
0
i

)

for all j satisfying

fj(u0) + uT
0 Bjz

0
j < fj(u) + uTBjzj ,

whenever

fi(u0) + uT
0 Biz

0
i > fi(u) + uTBizi.

This means fi(u0) + (uT
0 Biz

0
i − fi(u))− uTBizi can be made arbitrarily large

and hence for τ > 0 the inequality

p∑

i=1

τi
(
fi(u0) + uT

0 Biz
0
i − fi(u) − uTBizi

)
> 0, (8.32)

is obtained.
Since x, (u, τ, λ, z1, . . . , zp) feasible for (NDVP) and (NDVD), respectively,

it follows as in first part

p∑

i=1

τi
(
fi(u0) + uT

0 Biz
0
i − fi(u) − uTBizi

) ≤ 0,

which contradicts (8.32). Hence x, (u, τ, λ, z1, . . . , zp) is properly efficient
solution for (NDVD).

��
Theorem 8.27 (Strong duality). Let x be a properly efficient solution
for (NDVP) at which a suitable constraint qualification is satisfied. Let the
V-pseudo-invexity and V-quasi-invexity conditions of Theorem 8.22 be satis-
fied. Then there exists (τ, λ, z1, . . . , zp) such that (x = u, τ, λ, z1, . . . , zp) is a
properly efficient solution for (NDVD) and

fi(x) + (xTBix)
1
2 = fi(u) + uTBizi ∀i = 1, . . . , p.

Proof. Since x is properly efficient solution for (NDVP) and a constraint
qualification is satisfied at x, from the Kuhn–Tucker necessary condition
Lemma 8.12, there exists (τ, λ, z1, . . . , zp) such that (x, τ, λ, z1, . . . , zp) is fea-
sible for (NDVD). Since (xTBix)

1
2 = xTBizi, ∀i = 1, . . . , p the values of

(NDVP) and (NDVD) are equal at x. By Theorem 8.24, (x = u, τ, λ, z1, . . . , zp)
is properly efficient solution of (NDVD).

��
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Remark 8.28. If we replace V-invexity in Theorem 8.27 by invexity, we get the
following strong duality:

Theorem 8.29 (Strong duality). Let x be a properly efficient solution for
(NDVP) at which a suitable constraint qualification is satisfied. Let the (V-
pseudo-invexity and V-quasi-invexity conditions of Theorem 8.22 replaced by
invexity. Then there exists (τ, λ, z1, . . . , zp) such that (x = u, τ, λ, z1, . . . , zp)
is a properly efficient solution for (NDVD) and

fi(x) + (xTBix)
1
2 = fi(u) + uTBizi ∀i = 1, . . . , p.

If we take the convexity assumptions, we get Theorem 2 (Strong duality) of
Mond et al. [173].

Mangasarian [144] proposed the following second order dual model to
(NDP):

(ND2MD)

max f(u) − yT g(u) + uTBw − 1
2
pT∇2

[
f(u) − yT g(u)

]
p

Subject to ∇f(u) −∇yT g(u) +Bw + ∇2f(u)p−∇2yT g(u)p = 0
wTBw ≤ 1, y ≥ 0,

where u,w, p ∈ Rn and y ∈ Rm.

(ND2D)

max f(u) + uTBw − 1
2
pT∇2f(u)p

Subject to ∇f(u) −∇yT g(u) +Bw + ∇2f(u)p−∇2yT g(u)p = 0

yT g(u) − 1
2
pT∇2yT g(u)p ≤ 1

wTBw ≤ 1, y ≥ 0,

where u,w, p ∈ Rn and y ∈ Rm.
These authors established duality theorems between (NDP) and (ND2MD)

and (ND2D) under second-order convexity assumptions. Zhang [256] pro-
posed Mangasarian type and Mond–Weir type higher order duals to (NDP)
as follows:

(NDHMD)

max f(u) + h(u, p) + (u+ p)TBw − yT g(u) − yTk(u, p)p

Subject to ∇ph(u, p) +Bw = ∇p(yT k(u, p))
wTBw ≤ 1, y ≥ 0,
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where u,w, p ∈ Rn and y ∈ Rm.

(NDHD)

max f(u) + h(u, p) + uTBw − 1
2
pT∇ph(u, p)

Subject to ∇ph(u, p) +Bw = ∇p(yT k(u, p))
yT g(u) − yTk(u, p) − pT∇p(yTk(u, p)) ≤ 0

wTBw ≤ 1, y ≥ 0,

where u,w, p ∈ Rn and y ∈ Rm.
Zhang [256] obtained duality results under higher-order invexity and gener-

alized higher-order invexity assumptions between (NDP) and (NDHMD) and
(NDHD). Later Mishra and Rueda [161] considered the (NDP), (NDHMD)
and (NDHD) and established several duality theorems under generalized
invexity assumptions. Furthermore, Mishra and Rueda [161] considered the
following general Mond–Weir type higher order dual and obtained weak,
strong and strict converse duality results.

(NDHGD)

max f(u) + h(u, p) + uTBw − pT∇ph(u, p) −
∑

i∈I0

yigi(u)

−
∑

i∈I0

yiki(u, p) + pT∇p

∑

i∈I0

yiki(u, p)

Subject to ∇ph(u, p) +Bw = ∇p(yTk(u, p))
∑

i∈Iα

yigi(u)

+
∑

i∈Iα

yiki(u, p) − pT∇p

(
∑

i∈Iα

yiki(u, p)

)

≤ 0, α = 1, . . . , r

wTBw ≤ 1, y ≥ 0,

where u,w, p ∈ Rn and y ∈ Rm.
Throughout rest of this section we follow the following notations: if x and

y ∈ Rn, then by x � y we mean xi � yi for all i, x ≤ y means xi � yi for all i
and xj < yj for at least one j, 1 ≤ j ≤ n. By x < y we mean xi < yi for all i.

Mishra et al. [159] considered the following nondifferentiable multiobjec-
tive programming problem:

(VP)

Min (f1(x) + s(x : C1), . . . , fp(x) + s(x : Cp))

Subject to g(x) � 0, x ∈ D

where f and g are twice differentiable functions from Rn to Rl and Rm,
respectively; Ci for each i ∈ L = {1, . . . , l} is a compact convex set of Rn and
D is an open subset of Rn.

Let f : Rn → Rl be twice differentiable and η : Rn ×Rn → Rn.
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Definition 8.30. f is said to be higher order invex at u with respect to η and
h if for all x

fi(x) − fi(u) ≥ η(x, u)T∇phi(u, p) − pT∇phi(u, p), ∀i ∈ {1, . . . , l} .

These authors extend the Definitions 2.2–2.6 of Aghezzaf and Hachimi [2]
to the higher order context as follows:

Definition 8.31. f is said to be higher order weak strictly pseudo invex at u
with respect to η and h if for all x

fi(x) ≤ {fi(u) − hi(u, p) + pT∇phi(u, p)}
⇒ η(x, u)T∇phi(u, p) < 0, ∀i ∈ {1, 2, . . . , l}.

Definition 8.32. f is said to be higher order strong pseudo invex at u with
respect to η and h if for all x

fi(x) ≤ {fi(u) + hi(u, p) − pT∇phi(u, p)}
⇒ η(x, u)T∇phi(u, p) ≤ 0, ∀i ∈ {1, . . . , l}.

Definition 8.33. f is said to be higher order weak quasi invex at u with
respect to η and h if for all x

fi(x) ≤ {fi(u) + hi(u, p) − pT∇phi(u, p)}
⇒ η(x, u)T∇phi(u, p) � 0, ∀i ∈ {1, . . . , l}.

Definition 8.34. f is said to be higher order weak pseudo invex at u with
respect to η and h if for all x

fi(x) < fi(u) + hi(u, p) − pT∇phi(u, p)
⇒ η(x, u)T∇phi(u, p) ≤ 0, ∀i ∈ {1, 2, . . . , l} .

Definition 8.35. f is said to be higher order strong quasi invex at u with
respect to η and h if for all x

fi(x) � fi(u) + hi(u, p) − pT∇phi(u, p)
⇒ η(x, u)T∇phi(u, p) ≤ 0, ∀i ∈ {1, . . . , l} .

Mishra et al. [159] introduced the following higher order dual model in
relation to (VP):

(NDVHD)

V − Max(f1(u) + h1(u, p) + uTw1 − pT∇ph1(u, p), . . . ,
fl(u) + hl(u, p) + uTwl − pT∇phl(u, p))
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Subject to
l∑

i=1

λi [∇phi(u, p) + wi] −
m∑

j=1

yj∇pkj(u, p)

=
m∑

j=1

yj

[
gj(u) + kj(u, p) − pT∇pkj(u, p)

]
� 0,

y � 0, λ ∈ Λ =

{
λ ∈ Rl : λ ≥ 0,

l∑

i=1

λi = 1

}
,

wi ∈ Ci, i = 1, . . . , l,

where h : Rn ×Rn → Rl and k : Rn ×Rn → Rm are differentiable functions;
∇phi(u, p) denotes the n×1 gradient of hi with respect to p and ∇p(yTki(u, p))
denotes the n× 1 gradient of yTk with respect to p.

The problem (NDVHD) may be regarded as a multiple objective higher
order nondifferentiable Mond–Weir type [181] vector dual to (VP).

Remark 8.36. If hi(u, p) = pT∇fi(u), ∀i = {1, . . . , l} and kj(u, p) = pT∇gj(u),
∀j = {1, . . . ,m} (NDVHD) then becomes the Mond–Weir type vector dual of
Tanino and Sawaragi [234] for (VP). If hi(u, p) = pT∇fi(u) + 1

2p
T∇2fi(u)p,

∀i = {1, . . . , l} and kj(u, p) = pT∇gj(u)+ 1
2p

T∇2gj(u)p, ∀j = {1, . . . ,m} then
(NDVHD) becomes the second order nondifferentiable version of Mond–Weir
type vector dual of Zhang [257] for (VP).

Mishra et al. [159] established the following higher order duality results
under higher order generalized convexity assumptions:

Theorem 8.37 (Weak duality). Let x be feasible for (VP), (u, λ, y, w, p)
feasible for (NDVHD) and λ > 0. Assume that fi(.) + .Twi is higher order
strong pseudoinvex with respect to hi(., p) and −∑m

j=1 yjgj(.) is higher order
quasiinvex with respect to −kj(., p) then the following cannot hold:

fi(x) + S(x : Ci) � fi(u) + uTwi + hi(u, p)
− pT∇phi(u, p) ∀i ∈ {1, . . . , l}

fi0(x) + S(x : Ci0) < fi0(u) + uTwi0 + hi0(u, p)
− pT∇phi0(u, p) for some i0 ∈ {1, . . . , l} .

Proof. Suppose contrary to the result of the theorem that

fi(x) + S(x : Ci) � fi(u) + uTwi + hi(u, p)
− pT∇phi(u, p) ∀i ∈ {1, 2, . . . , l}

fi0(x) + S(x : Ci0) < fi0(u) + uTwi0 + hi0(u, p)
− pT∇phi0(u, p) for some i0 ∈ {1, 2, . . . , l} .
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Since xTwi ≤ S(x : Ci), ∀i = 1, 2, . . . , l by higher order strong pseudoinvexity
of fi(.) + .Twi with respect to hi(., p) and λ > 0, we get

η(x, u)T
l∑

i=1

λi [∇phi(u, p) + wi] < 0.

Since x is feasible for (VP) and (u, λ, y, w, p) is feasible for (NDVHD), using
higher order quasiinvexity of −∑m

j=1 yjgj(.) with respect to −kj(., p) we get

η(x, u)T
m∑

j=1

yj [∇pkj(u, p)] � 0.

From the above two inequalities, we get

l∑

i=1

λi [∇phi(u, p) + wi] −
m∑

j=1

yj [∇pkj(u, p)] < 0.

which contradicts the first duality constraint of the dual problem (NDVHD).
��

The proof of the following weak duality theorem is similar to the proof of
Theorem 8.37, so we state it without proof.

Theorem 8.38 (Weak duality). Let x be feasible for (VP), (u, λ, y, w, p)
feasible for (NDVHD) and λ > 0. Assume that fi(.) + .Twi is higher order
strictly pseudoinvex with respect to hi(., p) and −∑m

j=1 yjgj(.) is higher order
quasi-invex with respect to −kj(., p) then the following cannot hold:

fi(x) + S(x : Ci) � fi(u) + uTwi + hi(u, p)
− pT∇phi(u, p) ∀i ∈ {1, 2, . . . , l}

fi0(x) + S(x : Ci0) < fi0(u) + uTwi0 + hi0(u, p)
− pT∇phi0(u, p) for some i0 ∈ {1, 2, . . . , l} .

Theorem 8.39 (Weak duality). Let x be feasible for (VP), (u, λ, y, w, p)
feasible for (NDVHD) and λ > 0. Assume that fi(.) + .Twi is higher order
weak quasi-invex with respect to hi(., p) and −∑m

j=1 yjgj(.) is higher order
strictly pseudoinvex with respect to −kj(., p) then the following cannot hold:

fi(x) + S(x : Ci) � fi(u) + uTwi + hi(u, p)
− pT∇phi(u, p) ∀i ∈ {1, 2, . . . , l}

fi0(x) + S(x : Ci0) < fi0(u) + uTwi0 + hi0(u, p)
− pT∇phi0(u, p) for some i0 ∈ {1, 2, . . . , l}.
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Proof. Using the hypothesis given in this Theorem, we get

η(x, u)T
l∑

i=1

λi [∇phi(u, p) + wi] < 0.

η(x, u)T
m∑

j=1

yj [∇pkj(u, p)] > 0.

From the above two inequalities, we get
l∑

i=1

λi [∇phi(u, p) + wi] −
m∑

j=1

yj [∇pkj(u, p)] < 0.

which contradicts the first duality constraint of the dual problem (NDVHD).
��

Theorem 8.40 (Strong duality). Let x0 be an efficient solution for (VP)
at which a Kuhn–Tucker constraint qualification is satisfied and let

h(x0, 0) = 0, k(x0, 0) = 0,
∇ph(x0, 0) = ∇f(x0), ∇pk(x0, 0) = ∇g(x0).

Then there exist y ∈ Rm and λ ∈ Rl such that (x0, λ, p = 0) is feasible for
(VP) and (x0, y, w, λ, p = 0) is feasible for (NDVHD) and the corresponding
values of (VP) and (NDVHD) are equal. If for all feasible (x0, y, w, λ, p = 0)
the assumptions of Theorem 8.37 or Theorem 8.38 are satisfied, then (x0, y, w,
λ, p = 0) is efficient for (NDVHD).

Proof. Since x0 is an efficient solution and hence also a weak minimum for
(VP) at which a Kuhn–Tucker constraint qualification is satisfied, then by
Theorem 8.37 or Theorem 8.38 or Theorem 8.39, (x0, y, w, λ, p = 0) must be
an efficient solution for (NDVHD).

��
Mishra et al. [159] also considered the following general higher order

nondifferentiable dual to (VP):

(NDHGVHD)

V − Max

(
f1(u) + h1(u, p) + uTw1 −

∑

i∈I0

yigi(u) −
∑

i∈I0

yiki(u, p)

− pT

[
∇ph1(u, p) −∇p

(
∑

i∈I0

yiki(u, p)

)]
, . . . ,

fi(u) + hi(u, p) + uTwi −
∑

i∈I0

yigi(u) −
∑

i∈I0

yiki(u, p)

− pT

[
∇ph1(u, p) −∇p

(
∑

i∈I0

yiki(u, p)

)])
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Subject to
l∑

i=1

λi [∇phi(u, p) + wi] −
m∑

j=1

yj∇pkj(u, p) = 0

∑

j∈I0

yj

[
gj(u) + kj(u, p) − pT∇pkj(u, p)

]
� 0, α = 1, 2, . . . , r

y � 0, λ ∈ Λ =

{
λ ∈ Rl : λ ≥ 0,

l∑

i=1

λi = 1

}
,

wi ∈ Ci, i = 1, 2, . . . , l,

where Iα ⊆ M = {1, 2, . . . ,m} , α = 0, 1, 2, . . . , r with Iα ∩ Iβ = φ if α 	= β
and ∪r

α=0Iα = M .

Remark 8.41. If hi(u, p) = pT∇fi(u), ∀i = {1, 2, . . . , l} and kj(u, p) =
pT∇gj(u), ∀j = {1, 2, . . . ,m} (NDHGVD) then becomes the Mond–Weir type
vector dual of Tanino and Sawaragi [234] for (VP). If hi(u, p) = pT∇fi(u) +
1
2p

T∇2fi(u)p, ∀i = {1, 2, . . . , l} and kj(u, p) = pT∇gj(u)+ 1
2p

T∇2gj(u)p, ∀j =
{1, 2, . . . ,m} then (NDHGVD) becomes the second order nondifferentiable
version of Mond–Weir type vector dual of Zhang [257] for (VP).

The following duality theorems can be proved on the similar lines to that
of the proofs of Theorems 8.37–8.40, respectively therefore we omit the proofs
of following theorems.

Theorem 8.42 (Weak duality). Let x be feasible for (VP), (u, λ, w, y, p)
feasible for (NDHGVD) and λ > 0. Assume that fi(.) + .Twi −

∑
i∈I0

yigi(.)
is higher order strong pseudoinvex with respect to hi(., p) and −∑j∈I0

yjgj(.)
is higher order quasi-invex with respect to −kj(., p) then the following cannot
hold:

fi(x) + S(x : Ci)

� fi(u) + uTwi −
∑

i∈I0

yigi(u) + hi(u, p) −
∑

i∈I0

yiki(u, p)

− pT

(
∇phi(u, p) −∇p

∑

i∈I0

yiki(u, p)

)
∀i ∈ {1, 2, . . . , l}

and

fi0(x) + S(x : Ci0 )

< fi0(u) + uTwi0 −
∑

i∈I0

yi0gi0(u) + hi0(u, p) −
∑

i∈I0

yi0ki0(u, p)

− pT

(
∇phi0(u, p) −∇p

∑

i∈I0

yi0ki0(u, p)

)

for at least one i0 ∈ {1, 2, . . . , l}
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Theorem 8.43 (Weak duality). Let x be feasible for (VP), (u, λ, w, y, p)
feasible for (NDHGVD) and λ > 0. Assume that fi(.)+ .Twi−

∑
i∈I0

yigi(.) is
higher order weak strictly pseudoinvex with respect to hi(., p) and
−∑j∈I0

yjgj(.) is higher order quasi-invex with respect to −kj(., p) then the
following cannot hold:

fi(x) + S(x : Ci)

� fi(u) + uTwi −
∑

i∈I0

yigi(u) + hi(u, p) −
∑

i∈I0

yiki(u, p)

− pT

(
∇phi(u, p) −∇p

∑

i∈I0

yiki(u, p)

)
∀i ∈ {1, 2, . . . , l}

and

fi0(x) + S(x : Ci0 )

< fi0(u) + uTwi0 −
∑

i∈I0

yi0gi0(u) + hi0(u, p) −
∑

i∈I0

yi0ki0(u, p)

− pT

(
∇phi0(u, p) −∇p

∑

i∈I0

yi0ki0(u, p)

)

for at least one i0 ∈ {1, 2, . . . , l}
Theorem 8.44 (Weak duality). Let x be feasible for (VP), (u, λ, w, y, p)
feasible for (NDHGVD) and λ > 0. Assume that fi(.) + .Twi −

∑
i∈I0

yigi(.)
is higher order weak quasiinvex with respect to hi(., p) and −∑j∈I0

yjgj(.) is
higher order strictly pseudoinvex with respect to −kj(., p) then the following
cannot hold:

fi(x) + S(x : Ci)

� fi(u) + uTwi −
∑

i∈I0

yigi(u) + hi(u, p) −
∑

i∈I0

yiki(u, p)

− pT

(
∇phi(u, p) −∇p

∑

i∈I0

yiki(u, p)

)
∀i ∈ {1, 2, . . . , l}

and

fi0(x) + S(x : Ci0 )

< fi0(u) + uTwi0 −
∑

i∈I0

yi0gi0(u) + hi0(u, p) −
∑

i∈I0

yi0ki0(u, p)

− pT

(
∇phi0(u, p) −∇p

∑

i∈I0

yi0ki0(u, p)

)

at least one i0 ∈ {1, 2, . . . , l}
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Theorem 8.45 (Strong duality). Let x0 be an efficient solution for (VP)
at which a Kuhn–Tucker constraint qualification is satisfied and let

h(x0, 0) = 0, k(x0, 0) = 0,
∇ph(x0, 0) = ∇f(x0), ∇pk(x0, 0) = ∇g(x0).

Then there exist y ∈ Rm and λ ∈ Rl such that (x0, λ, p = 0) is feasible for
(VP) and (x0, y, w, λ, p = 0) is feasible for (NDHGVD) and the corresponding
values of (VP) and (NDHGVD) are equal. If for all feasible (x0, y, w, λ, p =
0) the assumptions of Theorem 8.42 or Theorem 8.43 or Theorem 8.44 are
satisfied, then (x0, y, w, λ, p = 0) is efficient for (NDHGVD).

8.4 Nondifferentiable Symmetric Duality and Invexity

Following the earlier work of Dorn [59], Cottle [40] and Dantzig et al. [53]
on symmetric duality, many researchers attempted to generalize the formula-
tion and weaken the convexity-concavity assumptions required on f(x, y). For
results on symmetric duality one can see Problems (SP), (SD), (MWSP) and
(MWSD) and discussions thereafter in Sect. 5.4 of Chap. 5.

In this section we discuss Nondifferentiable and fractional symmetric dual-
ity. Mond and Schechter [175] studied nondifferentiable symmetric duality as
follows:

If F is a twice differentiable function from Rn × Rn to R, then ∇xF
and ∇yF denote gradient (column) vectors of F with respect to x and y,
respectively and ∇yyF and ∇yxF denote, respectively, the m× n and n×m
matrices of second-order partial derivatives. Let C be a compact convex set
in Rn. The support function of C is defined by

s(x |C ) = max
{
xT y : y ∈ C

}
.

Yang et al. [251] presented the following pair of nondifferentiable fractional
symmetric dual pair:

(FP)

Min
f(x, y) + s(x : C) − yT z

g(x, y) + s(x : E − yT r

Subject to (∇yf(x, y) − z)(g(x, y) − s : (x : E) + yT r)
− (f(x, y) + s(x : C) − yT z)(∇yg(x, y) + r) ∈ Q∗

yT (∇yf(x, y) − z)(g(x, y) − s : (x : E) + yT r)
− (f(x, y) + s(x : C) − yT z)(∇yg(x, y) + r) ≥ 0,

z ∈ D, r ∈ F, x ∈ P.
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(FD)

max
f(u, v) + s(v : D) − uTw

g(u, v) + s(v : F − uT t

Subject to − (∇uf(u, v) + w)(g(u, v) + s : (v : F ) − uT t) + (f(u, v)
− s(v : D) + uTw)(∇ug(u, v) − t) ∈ P∗

uT (∇uf(u, v) + w)(g(u, v) + s : (v : F ) − uT t)
− (f(u, v) − s(v : D) + uTw)(∇ug(u, v) − t) ≤ 0,

w ∈ C, t ∈ E, v ∈ Q,

where f and g are twice differentiable functions from Rn × Rm to R, C and
E are compact convex sets in Rn, and D and F are compact convex sets in
Rm, P and Q are two closed convex cones with nonempty interiors in Rn and
Rm, respectively. It is assumed that in the feasible regions the denominator
of the objective function is nonnegative and the numerator is positive.

Remark 8.46. If A is a positive semidefinite matrix, it can be easily verified
that (xTAx)

1
2 = s(x |C ), where C =

{
Ay : yTAy ≤ 1

}
and that this set C is

compact convex.

(a) If P = Rn
+, Q = Rm

+ , g ≡ 1 and C = D = E = F = {0} we obtain the
fractional symmetric dual pair studied by Chandra et al. [30].

(b) If in the feasible regions g ≡ 1 , E = F = {0}, (xTBx)
1
2 = s(x |C ),

C =
{
By : yTBy ≤ 1

}
, (xTAx)

1
2 = s(x |C ) where D =

{
Ay : yTAy ≤ 1

}
,

P = Rn
+ and Q = Rm

+ , then the above programs (FP) and (FD) become
the symmetric dual nondifferentiable pair of problems studied by Chandra
et al. [30].

(c) If in (FP) and (FD), P = Rn
+, Q = Rm

+ , g ≡ 1, E = F = {0} and we obtain
symmetric dual pair of problems studied by Mond and Schechter [175].

Yang et al. [251] gave weak, strong and converse duality theorems for (FP)
and (FD):

Theorem 8.47 (Weak duality). Let (x, y, z, r) be feasible to (FP) and let
(u, v, w, t) be feasible for (FD). Let

(f(., v) + (.)Tw)(g(u, v) + s(v : F ) − uT t)
− (f(u, v) − s(v : D) + uTw

) (
g(., v) + (.)T t

)

be pseudoinvex with respect to η1 at u and

(f(x, .) + (.)T z)(g(x, y) − s(x : E) + yT r)
− (f(x, y) + s(x : C) − yT z

) (
g(x, .) + (.)T r

)
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be pseudoincave with respect to η2 at y. If η1(x, u)+u ∈ P and η1(v, y)+y ∈ Q
then

f(x, y) + s(x : C) − yT z

g(x, y) − s(x : E) + tT r
≥ f(u, v) − s(v : D) − uTw

g(u, v) + s(v : F ) − uT t
.

Proof. For the proof, the reader is refer to Yang et al. [251].
��

Yang et al. [251] have also established the following Strong duality theo-
rem:

Theorem 8.48 (Strong duality). Let x̄, ȳ, z̄, r̄ be a solution to (FP). Sup-
pose that all the conditions in Theorem 8.47 are fulfilled. Furthermore, assume
that

(a) ∇yyf(x̄, ȳ)
(
g(x̄, ȳ) − s(x̄ : E) + ȳT r̄

)

− (f(x̄, ȳ) + s(x̄ : C) − ȳT z̄
) ∇yyg(x̄, ȳ) is positive or negative definite;

(b) (∇yf(x̄, ȳ) − z̄)
(
g(x̄, ȳ) − s(x̄ : E) + ȳT r̄

)

− (f(x̄, ȳ) + s(x̄ : C) − ȳT z̄
)

(∇yg(x̄, ȳ) + r̄) 	= 0.

Then there exist w̄ ∈ Rn, t̄ ∈ Rm such that x̄, ȳ, w̄, t̄ is a solution of (FD).

Yang et al. [251] also stated the following converse duality theorem without
proof:

Theorem 8.49 (Converse duality). Let ū, v̄, w̄, t̄ be a solution of (FD).
Suppose that all the conditions in Theorem 8.47 are fulfilled. Furthermore,
assume that

(a) ∇uuf(ū, v̄)(g(ū, v̄)−s(ū : E)+ v̄T t̄)−(f(ū, v̄)+s(ū : C)− v̄T w̄) ∇uug(ū, v̄)
is positive or negative definite;

(b) (∇vf(ū, v̄) − w̄)
(
g(ū, v̄) − s(ū : E) + v̄T t̄

)

− (f(ū, v̄) + s(ū : C) − v̄T w̄
)

(∇vg(ū, v̄) + t̄) 	= 0.

Then there exist z̄ ∈ Rn, r̄ ∈ Rn such that ū, v̄, z̄, r̄ is a solution of (FP).

Later Yang et al. [252] extended the above results to Multiobjective case
by considering the following pair of problems:

(MFP)

max
(
f1(x, y) + s(x : C1) − yT z1
g1(x, y) − s(x : E1 + yT r1)

, . . . ,
fk(x, y) + s(x : Ck) − yT zk

gk(x, y) − s(x : Ek + yT rk)

)

Subject to

k∑

i=1

λi[∇yfi(x, y) − zi

− fi(x, y) + s(x : Ci) − yT zi

gi(x, y) − s(x : Ei) + yT ri
(∇ygi(x, y) + ri)] ≤ 0,
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yT
k∑

i=1

λi[∇yfi(x, y) − zi

− fi(x, y) + s(x : Ci) − yT zi

gi(x, y) − s(x : Ei) + yT ri
(∇ygi(x, y) + ri)] ≤ 0,

zi ∈ Di, ri ∈ Fi, 1 ≤ i ≤ k,

λ > 0, λT e = 1, x ≥ 0,

(MFD)

Min
(
f1(u, v) − s(v : D1) + uTw1

g1(u, v) + s(v : F1 − uT t1)
, . . . ,

fk(u, v) − s(v : Dk) + uTwk

gk(u, v) + s(v : Fk − uT tk)

)

Subject to

k∑

i=1

λi[∇ufi(u, v) + wi

− fi(u, v) − s(v : Di) + uTwi

gi(u, v) + s(v : Fi) − uT ti
(∇ugi(u, v) − ti)] ≥ 0,

uT
k∑

i=1

λi[∇ufi(u, v) + wi

− fi(u, v) − s(v : Di) + uTwi

gi(u, v) + s(v : Fi) − uT ti
(∇ugi(u, v) − ti)] ≥ 0,

wi ∈ Ci, ti ∈ Ei, 1 ≤ i ≤ k,

λ > 0, λT e = 1, v ≥ 0,

where e = (1, . . . , 1)T ∈ Rk; fi and gi i = (1, 2, . . . , k) are twice differentiable
functions from Rn × Rm to R. Ci, Ei, i = (1, 2, . . . , k) are compact convex
sets in Rn and Di, Fi, i = (1, 2, . . . , k) are compact convex sets in Rm. It is
assumed that in the feasible regions the denominator of the objective function
is nonnegative and the numerator is positive.

Remark 8.50. A frequently occurring example of a nondifferentiable support
function is (xTAx)

1
2 , where A, is a positive semidefinite matrix. It can be

easily verified that (xTAx)
1
2 = s(x : C) where C =

{
Ay : yTAy ≤ 1

}
, and

that this set C is compact convex.

(a) If in the feasible regions k ≡ 1, gi ≡ 1, (xT
i Bx)

1
2 = s(x : Ci) where Ci ={

Biy : yTBiy ≤ 1
}
, (xT

i Cx)
1
2 = s(x : Di) where Di =

{
Ciy : yTCiy ≤ 1

}
,

i = (1, . . . , k) then (MFP) and (MFD) become a pair of symmetric dual
nondifferentiable programs considered by Chandra et al. [30].
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(b) If in ((MFP) and (MFD), Bi = {0} and Ci = {0}, i = (1, . . . , k) and in
the feasible regions gi ≡ 1, i = (1, . . . , k), we obtain the symmetric dual
Multiobjective programming problems studied by Weir and Mond [246].

(c) If in (MFP) and (MFD), k = 1, gi ≡ 1, we obtain symmetric dual
problems studied by Mond and Schechter [175].

Yang et al. [252] established usual weak and strong duality results for (MFP)
and (MFD).

Kim et al. [124] introduced the following pair of symmetric dual multiob-
jective fractional variational problems:

(CMFP)

Min

(∫ b

a f1(t, x(t), x
.(t), y(t), y.(t))dt

∫ b

a
g1(t, x(t), x.(t), y(t), y.(t))dt

, . . . ,

∫ b

a fk(t, x(t), x.(t), y(t), y.(t))dt
∫ b

a
gk(t, x(t), x.(t), y(t), y.(t))dt

)

Subject to x(a) = 0 = x(b), y(a) = 0 = y(b)
x.(a) = 0 = x.(b), y.(a) = 0 = y.(b)

k∑

i=1

τi {[fiy −Dfiy. ]Gi(x, y) − [giy −Dgiy. ]Fi(x, y)} � 0,

∫ b

a

y(t)T
k∑

i=1

τi {[fiy −Dfiy. ]Gi(x, y) − [giy −Dgiy. ]Fi(x, y)} dt � 0,

τ > 0, τT e = 1, t ∈ I,

(CMFD)

max

(∫ b

a f1(t, u(t), u.(t), v(t), v.(t))dt
∫ b

a
g1(t, u(t), u.(t), v(t), v.(t))dt

, . . . ,

∫ b

a fk(t, u(t), u.(t), v(t), v.(t))dt
∫ b

a
gk(t, u(t), u.(t), v(t), v.(t))dt

)
(8.33)

Subject to u(a) = 0 = u(b), v(a) = 0 = v(b)
u.(a) = 0 = u.(b), v.(a) = 0 = v.(b)

k∑

i=1

τi {[fiu −Dfiu. ]Gi(u, v) − [giu −Dgiu. ]Fi(u, v)} � 0,

∫ b

a

u(t)T
k∑

i=1

τi {[fiu −Dfiu. ]Gi(u, v) − [giu −Dgiu. ]Fi(u, v)} dt � 0,

τ > 0, τT e = 1, t ∈ I,
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where fi : I × Rn × Rn × Rm × Rm → R+ and gi : I × Rn × Rn ×
Rm ×Rm → R+\{0} are continuously differentiable functions and Fi(x, y) =∫ b

a
fi(t, x, x., y, y.)dt and Gi(x, y) =

∫ b

a
fi(t, x, x., y, y.)dt.

Remark 8.51. If the time independence of programs (CMFP) and (CMFD) is
removed and f and g are considered to have domain Rn ×Rm, we obtain the
symmetric dual fractional pair given by Weir [243].

Kim et al. [124] established usual weak, strong and converse duality the-
orems as well as self-duality relations under invexity–incavity assumptions.
Later Mishra et al. [162] studied nondifferentiable Multiobjective fractional
symmetric duality under invexity–incavity assumptions, which extends and
unifies earlier results in literature on symmetric duality. Mishra et al. [162]
considered the problem of finding functions x : [a, b] → Rn, and y : [a, b] →
Rm, where (x.(t), y.(t)) is piecewise smooth on [a, b], to solve the following
pair of symmetric dual multi-objective nondifferentiable fractional variational
problems introduced as follows:

(MNFP)

Min

∫ b

a

(
f(t, x(t), x.(t), y(t), y.(t)) + s(x(t)|C) − y(t)T z

)
dt

∫ b

a (g(t, x(t), x.(t), y(t), y.(t)) − s(x(t)|E) + y(t)T r) dt

=

∫ b

a

(
f1(t, x(t), x.(t), y(t), y.(t)) + s(x(t)|C1) − y(t)T z1

)
dt

∫ b

a (g1(t, x(t), x.(t), y(t), y.(t)) − s(x(t)|E1) + y(t)T r1) dt
, . . . ,

∫ b

a

(
fk(t, x(t), x.(t), y(t), y.(t)) + s(x(t)|Ck) − y(t)T zk

)
dt

∫ b

a (gk(t, x(t), x.(t), y(t), y.(t)) − s(x(t)|Ek) + y(t)T rk) dt

Subject to x(a) = 0 = x(b), y(a) = 0 = y(b),
x.(a) = 0 = x.(b), y.(a) = 0 = y.(b),

k∑

i=1

τi {[fiy −Dfiy. − zi]Gi(x, y)

− [giy −Dgiy. + ri]Fi(x, y)} � 0,
∫ b

a

y(t)T
k∑

i=1

τi {[fiy −Dfiy. − zi]Gi(x, y)

× [giy −Dgiy. + ri]Fi(x, y)} dt � 0,

τ > 0, τT e = 1, t ∈ I,

zi ∈ Di, ri ∈ Hi, i = 1, 2, . . . , k.
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(MNFD)

max

∫ b

a

(
f(t, u(t), u.(t), v(t), v.(t)) − s(v(t)|D) + u(t)Tw

)
dt

∫ b

a (g(t, u(t), u.(t), v(t), v.(t)) + s(v(t)|H) − u(t)T s) dt

=

∫ b

a

(
f1(t, u(t), u.(t), v(t), v.(t)) − s(v(t)|D1) + u(t)Tw1

)
dt

∫ b

a (g1(t, u(t), u.(t), v(t), v.(t)) + s(v(t)|H1) − u(t)T s1) dt
, . . . ,

∫ b

a

(
fk(t, u(t), u.(t), v(t), v.(t)) − s(v(t)|Dk) + u(t)Twk

)
dt

∫ b

a (gk(t, u(t), u.(t), v(t), v.(t)) + s(v(t)|Hk) − u(t)T sk) dt

subject to u(a) = 0 = u(b), v(a) = 0 = v(b),
u.(a) = 0 = u.(b), v.(a) = 0 = v.(b),

k∑

i=1

τi {[fiu −Dfiu. + wi]G∗
i (u, v)

− [giu −Dgiu. − si]F ∗
i (u, v)} � 0,

∫ b

a

u(t)T
k∑

i=1

τi {[fiu −Dfiu. + wi]G∗
i (u, v)

× [giu −Dgiu. − si]F ∗
i (u, v)} � 0,

τ > 0, τT e = 1, t ∈ I,

wi ∈ Ci, si ∈ Ei, i = 1, 2, . . . , k,

where fi : I ×Rn ×Rn ×Rm ×Rm → R+ and gi : I×Rn ×Rn ×Rm ×Rm →
R+\{0} are continuously differentiable functions and

Fi(x, y) =
∫ b

a

{
fi(t, x, x., y, y.) + s(x(t)|Ci) − y(t)T zi

}
dt;

Gi(x, y) =
∫ b

a

{
gi(t, x, x., y, y.) − s(x(t)|Ei) + y(t)T ri

}
dt;

F ∗
i (u, v) =

∫ b

a

{
fi(t, u, u., v, v.) − s(v(t)|Di) + u(t)Twi

}
dt;

and

G∗
i (u, v) =

∫ b

a

{
gi(t, u, u., v, v.) + s(v(t)|Hi) − u(t)T si

}
dt.

In the above problems (MNFP) and (MNFD), the numerators are nonneg-
ative and denominators are positive; the differential operator D is given by

y = Dx⇔ x(t) = α+
∫ t

a

y(s)ds,
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and x(a) = α, x(b) = β are given boundary values; thus D = d
dt except at dis-

continuities. Let fx = fx(t, x(t), x.(t), y(t), y.(t)), fx. = fx.(t, x(t), x.(t), y(t),
y.(t)), etc.

All the above statements for Fi, Gi, F
∗
i and G∗

i will be assumed to hold
for subsequent results. It is to be noted that

Dfiy. = fiy.t + fiy.yy
. + fiy.y.y.. + fiy.xx

. + fiy.x.x..

and consequently
∂

∂y
Dfiy. = Dfiy.y,

∂

∂y.
Dfiy. = Dfiy.y. + fiy.y,

∂

∂y..
Dfiy. = fiy.y. ,

∂

∂x
Dfiy. = Dfiy.x,

∂

∂x.
Dfiy. = Dfiy.x. + fiy.x,

∂

∂x..
Dfiy. = fiy.x. .

In order to simplify the notations we introduce

pi =
Fi(x, y)
Gi(x, y)

=

∫ b

a

{
fi(t, x, x., y, y.) + s(x(t)|Ci) − y(t)T zi

}
dt

∫ b

a
{gi(t, x, x., y, y.) − s(x(t)|Ei) + y(t)T ri} dt

and

qi =
F ∗

i (u, v)
G∗

i (u, v)
=

∫ b

a

{
fi(t, u, u., v, v.) − s(v(t)|Di) + u(t)Twi

}
dt

∫ b

a {gi(t, u, u., v, v.) + s(v(t)|Hi) − u(t)T si} dt
,

and express problems (MNFP) and (MNFD) equivalent as follows:

(EMSP)

min p = (p1, . . . , pk)T

subject to x(a) = 0 = x(b), y(a) = 0 = y(b),
x.(a) = 0 = x.(b), y.(a) = 0 = y.(b),

∫ b

a

{
fi(t, x, x., y, y.) + s(x |Ci ) − yT zi

}
dt

− pi

∫ b

a

{
gi(t, x, x., y, y.) − s(x |Ei ) + yT ri

}
dt = 0;

k∑

i=1

τi {[fiy −Dfiy. − zi] − pi [giy −Dgiy. + ri]} � 0, t ∈ I;

∫ b

a

y(t)T
k∑

i=1

τi {[fiy −Dfiy. − zi] − pi [giy −Dgiy. + ri]} � 0, t ∈ I;

τ > 0, τT e = 1, t ∈ I,

zi ∈ Di, ri ∈ Hi, i = 1, 2, . . . , k.



8.4 Nondifferentiable Symmetric Duality and Invexity 245

(EMSD)

max q = (q1, . . . , qk)T

Subject to u(a) = 0 = u(b), v(a) = 0 = v(b),
u.(a) = 0 = u.(b), v.(a) = 0 = v.(b),

∫ b

a

{
fi(t, u, u., v, v.) − s(v |Di ) + uTwi

}
dt

− qi

∫ b

a

{
gi(t, u, u., v, v.) + s(v |Hi ) − uT si

}
dt = 0;

k∑

i=1

τi {[fiu −Dfiu. + wi] − qi [giu −Dgiu. − si]} � 0, t ∈ I;

∫ b

a

u(t)T
k∑

i=1

τi {[fiu −Dfiu. + wi] − qi [giu −Dgiu. − si]} � 0, t ∈ I;

τ > 0, τT e = 1, t ∈ I,

wi ∈ Ci, Si ∈ Ei, i = 1, 2, . . . , k.

In the above problems (EMSP) and (EMSD), it is to be noted that p and
q are also nonnegative.

Remark 8.52. If the time dependence of programs (MNFP) and (MNFD) is
removed and the functions involved are considered to have domain Rn ×Rm,
we obtain the symmetric dual fractional pair given by

(SNMFP) min
[
f1(x, y) + s(x|C1) − yT z1
g1(x, y) − s(x|E1) + yT r1

, . . . ,

fk(x, y) + s(x|Ck) − yT zk

gk(x, y) − s(x|Ek) + yT rk

]

subject to

k∑

i=1

τi[∇yfi(x, y) − zi

− fi(x, y) + s(x|Ci) − yT zi

gi(x, y) − s(x|Ei) + yT ri
(∇ygi(x, y) + ri)] ≤ 0,

yT
k∑

i=1

τi[∇yfi(x, y) − zi

− fi(x, y) + s(x|Ci) − yT zi

gi(x, y) − s(x|Ei) + yT ri
(∇ygi(x, y) + ri)] ≥ 0,

zi ∈ Di, ri ∈ Fi, 1 ≤ i ≤ k, τ > 0, τT e = 1, x ≥ 0.
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(SNMFD) max
[
f1(u, v) − s(v|D1) + uTw1

g1(u, v) + s(v|F1) − uT t1
, . . . ,

fk(u, v) − s(v|Dk) + uTwk

gk(u, v) + s(v|Fk) − uT tk

]

subject to

k∑

i=1

τi[∇ufi(u, v) + wi

− fi(u, v) − s(v|Di) + uTwi

gi(u, v) + s(v|Fi) − uT ti
(∇ugi(u, v) − ti)] ≥ 0,

uT
k∑

i=1

τi[∇ufi(u, v) + wi

− fi(u, v) − s(v|Di) + uTwi

gi(u, v) + s(v|Fi) − uT ti
(∇ugi(u, v) − ti)] ≤ 0,

wi ∈ Ci, ti ∈ Ei, 1 ≤ i ≤ k, τ > 0, τT e = 1, v ≥ 0.

The pair of problems (SNMFP) and (SNMFD) obtained above is exactly
the pair of problems (FP) and (FD) considered by Yang et al. [252], see also
this section above.

If we set k = 1, and our problems are time independent, we get the
following pair of problems:

(SNFP)

min
[
f(x, y) + s(x|C) − yT z

g(x, y) − s(x|E) + yT r

]

Subject to
[
∇yf(x, y) − z − f(x, y) + s(x|C) − yT z

g(x, y) − s(x|E) + yT r
(∇yg(x, y) + r)

]
≤ 0,

yT

[
∇yf(x, y) − z − f(x, y) + s(x|C) − yT z

g(x, y) − s(x|E) + yT r
(∇yg(x, y) + r)

]
≥ 0,

z ∈ D, r ∈ F, x ≥ 0.

(SNFD)

max
[
f(u, v) − s(v|D) + uTw

g(u, v) + s(v|F ) − uT t

]
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Subject to
[
∇uf(u, v) + w − f(u, v) − s(v|D) + uTw

g(u, v) + s(v|F ) − uT t
(∇ug(u, v) − t)

]
≥ 0,

uT

[
∇uf(u, v) + w − f(u, v) − s(v|D) + uTw

g(u, v) + s(v|F ) − uT t
(∇ug(u, v) − t)

]
≤ 0,

w ∈ C, t ∈ E, v ≥ 0.

The pair of problems (SNFP) and (SNFD) is exactly the pair of problems
(FP) and (FD) considered by Yang et al. [252], see above in this section as
well.

Mishra et al. [162] established usual duality results (for proofs, see, Mishra
et al. [162]:

Theorem 8.53 (Weak duality). Let (x(t), y(t), p, τ, z1, z2, . . . , zk, r1, r2, . . . ,
rk) be feasible for (EMSP) and let (u(t), v(t), q, τ, w1, w2, . . . , wk, s1, s2, . . . , sk)
be feasible for (EMSD). Assume that

∫ b

a (fi + .Twi)dt and − ∫ b

a (gi − .T si)dt
are invex in x and x. with respect to η(x, u) and − ∫ b

a
(fi − .T zi)dt and∫ b

a (gi+.T ri)dt are invex in y and y. with respect to ξ(v, y) and η(x, u)+u(t)� 0
and ξ(v, y) + y(t) � 0, ∀t ∈ I, except possibly at corners of (x.(t), y.(t)) or
(u.(t), v.(t)). Then one can not have p ≤ q.

Theorem 8.54 (Weak duality). Let (x(t), y(t), p, τ, z1, z2, . . . , zk, r1, r2, . . . ,
rk) be feasible for (EMSP) and let (u(t), v(t), q, τ, w1, w2, . . . , wk, s1, s2, . . . , sk)
be feasible for (EMSD). Assume that

∑k
i=1 τi

∫ b

a (fi + .Twi − qi(gi − .T si))dt
is pseudo invex in x and x. with respect to η(x, u) and −∑k

i=1 τi
∫ b

a
(fi −

.T zi − pi(gi + .T ri))dt is pseudo invex in y and y. with respect to ξ(v, y),
with η(x, u) + u(t) � 0 and ξ(v, y) + y(t) � 0, ∀t ∈ I, except possibly at
corners of (x.(t), y.(t)) or (u.(t), v.(t)). Then one can not have p ≤ q.

The following strong duality Theorem 8.55 and converse duality Theo-
rem 8.56 can be established on the lines of the proofs of Theorems 3.3 and 3.4
given by Kim et al. [124] in the light of the discussions given above in this
section.

Theorem 8.55 (Strong duality). Let (x̄(t), ȳ(t), p̄, τ̄ , z̄1, z̄2, . . . , z̄k, r̄1,
r̄2, . . . , r̄k) be a properly efficient solution for (EMSP) and fix τ = τ̄ in
(EMSD), and define

p̄i =

∫ b

a

{
fi(t, x̄, x̄., ȳ, ȳ.) + s(x̄(t)|Ci) − ȳ(t)T z̄i

}
dt

∫ b

a {gi(t, x̄, x̄., ȳ, ȳ.) − s(x̄(t)|Ei) + ȳ(t)T r̄i} dt
, i = 1, . . . , k
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Suppose that all the conditions in Theorem 8.53 or Theorem 8.54 are fulfilled.
Furthermore, assume that

(I)
k∑

i=1

τ̄i

∫ b

a

ψ(t)T [{[(fiyy − zi) − p̄i(giyy + ri)]

−D [(fiy.y − zi) − p̄i(giy.y + ri)}]
−D {[(fiy. − zi −Dfiy.y.) − p̄i(giyy. + ri −Dgiy.y. − giy.y)]}
+D2

{− [(fiy.y. − zi) − p̄i(giy.y. + ri)
]}

]ψ(t)T dt = 0

implies that ψ(t) = 0, ∀t ∈ I, and

(II)

[∫ b

a

{(f1y − z1) − p̄1(g1y + r1)} dt, . . . ,
∫ b

a

{(fky − zk) − p̄k(gky + rk)} dt
]

is linearly independent.
Then there exist w̄i ∈ Rn, s̄i ∈ Rm, i = 1, 2, . . . , k such that (x̄(t), ȳ(t), p̄, τ̄ ,
w̄1, w̄2, . . . , w̄k, s̄1, s̄2, . . . , s̄k) is a properly efficient solution of (EMSD).

Theorem 8.56 (Converse duality). Let (x̄(t), ȳ(t), p̄, τ̄ , z̄1, z̄2, . . . , z̄k, r̄1,
r̄2, . . . , r̄k) be a properly efficient solution for (EMSD) and fix τ = τ̄ in
(EMSP), and define p̄i as in Theorem 8.55. Suppose that all the conditions
in Theorem 8.53 or Theorem 8.54 are fulfilled. Furthermore, assume that
(I) and (II) of Theorem 8.55 are satisfied. Then there exist w̄i ∈ Rn, s̄i ∈
Rm, i = 1, 2, . . . , k such that (x̄(t), ȳ(t), p̄, τ̄ , w̄1, w̄2, . . . , w̄k, s̄1, s̄2, . . . , s̄k)
is a properly efficient solution of (EMSP).

Following Kim et al. [124], we also present self-duality for (MNFP) and
(MNFD) instead of for (EMSP) and (EMSD). Assume that x(t) and y(t) have
the same dimension.

The function f(t, x(t), x.(t), y(t), y.(t)) is said to be skew-symmetric if

f(t, x(t), x.(t), y(t), y.(t)) = −f(t, y(t), y.(t), x(t), x.(t))

for all x(t) and y(t) in the domain of f and the function g(t, x(t), x.(t), y(t),
y.(t)) will be called symmetric if

g(t, x(t), x.(t), y(t), y.(t)) = g(t, y(t), y.(t), x(t), x.(t)).

In order to establish the self-duality some conditions are required. We assume
that C = D, E = H , and

g(t, u(t), u.(t), v(t), v.(t)) + s(v|E) − u(t)T s

= g(t, v(t), v.(t), u(t), u.(t)) − s(u|E) + v(t)T s.
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Theorem 8.57 (Self-duality). If f(t, x(t), x.(t), y(t), y.(t)) is skew-symme-
tric and g(t, x(t), x.(t), y(t), y.(t)) is symmetric along with the assumptions
C = D, E = H, and g(t, u(t), u.(t), v(t), v.(t)) + s(v|E) − u(t)T s =
g(t, v(t), v.(t), u(t), u.(t)) − s(u|E) + v(t)T s, then (MNFP) and (MNFD)
are self-dual. If (MNFP) and (MNFD) are dual problems, then with
(xo(t), yo(t), po, τo, wo, so) also (yo(t), xo(t), po, τo, wo, so) are a joint optimal
solution and the common optimal value is zero.

Proof. As in Kim et al. [124], we have

fx(t, x(t), x.(t), y(t), y.(t)) = −fy(t, y(t), y.(t), x(t), x.(t))
fy(t, x(t), x.(t), y(t), y.(t)) = −fx(t, y(t), y.(t), x(t), x.(t))
fx.(t, x(t), x.(t), y(t), y.(t)) = −fy.(t, y(t), y.(t), x(t), x.(t))
fy.(t, x(t), x.(t), y(t), y.(t)) = −fx.(t, y(t), y.(t), x(t), x.(t))

and with g symmetric, we have

gx(t, x(t), x.(t), y(t), y.(t)) = gy(t, y(t), y.(t), x(t), x.(t))
gy(t, x(t), x.(t), y(t), y.(t)) = gx(t, y(t), y.(t), x(t), x.(t))
gx.(t, x(t), x.(t), y(t), y.(t)) = gy.(t, y(t), y.(t), x(t), x.(t))
gy.(t, x(t), x.(t), y(t), y.(t)) = gx.(t, y(t), y.(t), x(t), x.(t))

Expressing the dual problem (MNFD) as a minimization problem and making
use of above relations and conditions given in the Theorem 8.57, we have

min

∫ b

a

{
f(t, v(t), v.(t), u(t), u.(t)) + s(u(t)|C) − v(t)Tw

}
dt

∫ b

a {g(t, v(t), v.(t), u(t), u.(t)) − s(u(t)|E) + v(t)T s} dt

subject to u(a) = 0 = u(b), v(a) = 0 = v(b),
u.(a) = 0 = u.(b), v.(a) = 0 = v.(b),

k∑

i=1

τi {[fiv −Dfiv. − wi]Gi(v, u) − [giv −Dgiv. + si]Fi(v, u)} � 0,

∫ b

a

v(t)T
k∑

i=1

τi {[fiv −Dfiv. − wi]

×Gi(v, u) − [giv −Dgiv. + si]Fi(v, u)} � 0,
τ > 0, τT e = 1, t ∈ I,

wi ∈ Ci, si ∈ Ei, i = 1, 2, . . . , k,

which is just the primal problem (MNFP).
Thus if (xo(t), yo(t), po, τo, wo, so) is an optimal solution for (MNFD), then

(yo(t), xo(t), po, τo, wo, so) is an optimal solution for (MNFD).
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Since f is skew-symmetric, g is symmetric, C = D, E = H , and

g(t, u(t), u.(t), v(t), v.(t)) + s(v|E) − u(t)T s

= g(t, v(t), v.(t), u(t), u.(t)) − s(u|E) + v(t)T s,

we have
∫ b

a

{
f(t, yo(t), y.o(t), xo(t), x.o(t)) + s(xo(t)|C) − yo(t)Two

}
dt

∫ b

a {g(t, yo(t), y.o(t), xo(t), x.o(t)) − s(xo(t)|E) + yo(t)T so} dt

= −
∫ b

a

{
f(t, xo(t), x.o(t), yo(t), y.o(t)) − s(yo(t)|C) + xo(t)Two

}
dt

∫ b

a {g(t, xo(t), x.o(t), yo(t), y.o(t)) + s(yo(t)|E) − xo(t)T so} dt
Hence

∫ b

a

{
f(t, xo(t), x.o(t), yo(t), y.o(t)) − s(yo(t)|C) + xo(t)Two

}
dt

∫ b

a {g(t, xo(t), x.o(t), yo(t), y.o(t)) + s(yo(t)|E) − xo(t)T so} dt

=

∫ b

a

{
f(t, yo(t), y.o(t), xo(t), x.o(t)) + s(xo(t)|C) − yo(t)Two

}
dt

∫ b

a {g(t, yo(t), y.o(t), xo(t), x.o(t)) − s(xo(t)|E) + yo(t)T so} dt

= −
∫ b

a

{
f(t, xo(t), x.o(t), yo(t), y.o(t)) − s(yo(t)|C) + xo(t)Two

}
dt

∫ b

a
{g(t, xo(t), x.o(t), yo(t), y.o(t)) + s(yo(t)|E) − xo(t)T so} dt

,

and so
∫ b

a

{
f(t, xo(t), x.o(t), yo(t), y.o(t)) − s(yo(t)|C) + xo(t)Two

}
dt

∫ b

a
{g(t, xo(t), x.o(t), yo(t), y.o(t)) + s(yo(t)|E) − xo(t)T so} dt

=

∫ b

a

{
f(t, yo(t), y.o(t), xo(t), x.o(t)) + s(xo(t)|C) − yo(t)Two

}
dt

∫ b

a
{g(t, yo(t), y.o(t), xo(t), x.o(t)) − s(xo(t)|E) + yo(t)T so} dt

= 0.
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(α, λ)-convex, 11
(h, F )-convex function, 31
(h, φ)-convex, 11
F -convex function, 29, 32
K-inf-stationary point, 69
K-invex, 70
K-invex function, 18
P -quasidifferentiable, 62
V -invex, 212
V -type I function, 126
η-Lagrange function, 153
η-pseudolinear, 39
ρ-invex function, 19
ρ-pseudo-invex function, 20
ρ-quasi-invex function, 20
p-convex functions, 30
r-convex function, 30
r-convex functions, 30, 119, 142, 143,

163, 186

affine map, 48
approximately quasidifferentiable, 66
arcwise convex, 11
Arrow–Hurwicz–Uzawa constraint

qualification, 77

conditionally properly efficient, 122
constrained vector optimization, 116
control, 11
convex, 11
convexlike, 11

duality, 11

efficient solution, 115, 169

fractional programming, 211
fractional variational problems, 240

generalized derivative, 60
generalized Schwarz inequality, 216

higher order dual model, 228
higher order invex, 229
higher order strong pseudo invex, 229
higher order strong quasi invex, 229
higher order weak pseudo-invex, 229
higher order weak quasi-invex, 229
higher order weak strictly pseudo invex,

229

invex, 11
invex function, 12, 116, 158
invex monotone, 45
invex set, 39

KT-invex, 120
KT-proper efficient solution, 121
KT-pseudo-invex, 120

linearized multiobjective program, 151
locally invex function, 18
locally Lipschitz, 60

minimax, 11
minimum point, 13
mixed integer programs, 187
Mond–Weir type multiobjective

symmetric duality, 154
monotone map, 42
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multiobjective continuous-time
programming, 168

multiobjective symmetric duality, 153

nondifferentiable fractional symmetric
duality, 235

nondifferentiable mathematical
programming problems, 215

nondifferentiable multiobjective
maximization, 221

nonsmooth V − ρ-invex function, 137
nonsmooth invex, 67
nonsmooth multiobjective programming

problem, 135
nonsmooth pseudo-invex function, 136
nonsmooth quasi-invex function, 136

optimality, 11

Pareto, 115
partially invex, 186
partially pseudo-invex, 187
pre-pseudoinvex, 58
pre-quasi-invex, 58
preinvex, 51
properly efficient solution, 122, 169
pseudo-convex, 11
pseudo-invex, 44, 159
pseudo-invex function, 18
pseudo-invex monotone, 45
pseudo-monotone, 43
pseudo-quasi-V -type I, 133
pseudo-quasi-type I function, 125
pseudo-type I function, 124

quadratic programming, 207
quasi-convex, 11
quasi-invex, 44, 159
quasi-invex function, 18
quasi-invex monotone, 45
quasi-monotone, 43
quasi-pseudo-type I function, 125

quasi-type I function, 124

regular, 64

saddle point, 104, 153
self-duality, 248
semi-strictly quasi-convex function, 28
skew symmetric function, 45
Slater Constraint qualification, 77
stationary point, 61
strictly invex, 44
strictly invex monotone, 45
strictly monotone, 42
strictly pseudo-invex, 44
strictly pseudo-invex monotone, 45
strictly pseudo-monotone, 43
strongly ρ-invex function, 19
symmetric dual pair, 166

type I function, 124

unconstrained vector optimization, 115
univex function, 128

V-invex function, 175
V-pseudo-invex function, 175
vector critical point, 117
vector Fritz-John point, 118
vector Kuhn–Tucker point, 118

weak efficient, 115
weak minimum, 169
weak pre-quasi-invex, 127
weak strictly pseudo-invex, 131
weak strictly-pseudo-quasi-type I, 132
weak vector saddle-point, 149
weakly ρ-invex function, 19
Wolfe dual, 207

Zangwill constraint qualification, 77
zero duality gap, 148
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