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Preface

Protein crystallization usually requires many experiments that check combinations
of various factors such as pH, ionic strength, etc. for a successful crystalline out-
come. Nevertheless, as crystalline outcome especially for proteins to difficult
crystallize such as membrane proteins in the presence of lipids and detergents is
rare, many trials have been set up. These protein crystallization trials are usually
analyzed by an expert using a microscope. Going over thousands of unsuccessful
trials for a few successful (but important) outcomes has been tedious. In recent
years, automated robotic high-throughput systems are proposed to conduct many
experiments and fast detection of crystalline conditions. Initially, these
high-throughput systems were costly and accessible only by major research labo-
ratories. The significant cost of these systems made these research systems available
only big research laboratories. Recent advancements in computational aspects and
analysis of protein crystallization and decreasing cost of hardware architectures
make automated systems available to also small research laboratories. Moreover,
new protein crystallization techniques such as trace fluorescence labeling do not
only reduce the time for preparation and analysis of crystallization experiments but
also help to develop fast and accurate computational methods for protein crystal-
lization analysis. This book covers how to build low-cost but fairly accurate protein
crystallization analysis system thus enabling small research groups to build their
own robotic high-throughput systems and crystallization analysis systems.

This book covers various aspects of computational aspects of protein crystal-
lization. Previously, the computational aspects were usually covered as supple-
mentary information in major crystallization books or sometimes they were
ignored. This book unites important aspects of data analytics for protein crystal-
lization into a single book. The methods and programs were developed as a part of
collaborative research by iXpressGenes, Inc. and the University of Alabama in
Huntsville funded through NIH-STTR grants. These projects funded two Ph.D.
students, six M.S. students, and two part-time students along with other ongoing
contributors. We have developed a number of systems for analyzing protein crys-
tallization process while comparing our work with the state-of-art techniques. This
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book also covers relevant research that will help readers understand different
dimensions of protein crystallization analysis.

This book is relevant to researchers who would like to know about computa-
tional aspects and data analytics components of protein crystallization. While the
book is relevant to the community of structural biology, it also serves computer
scientists who would like to get into the protein crystallization field.

This data analytics book on protein crystallization analysis covers the complete
cycle of data analysis for protein crystallization. It starts from background infor-
mation on protein crystallization, setting up screens by analyzing prior crystal-
lization trials, building robotic setups, classifying crystallization trial images by
effective feature extraction, analyzing crystal growth in time series images, seg-
menting crystal regions in images, providing focal stacking methods for crystal-
lization images captures at varying fields of depth, and visualization of trials. The
book is organized as follows:

“Chapter 1: Introduction to Protein Crystallization” gives information about how
protein crystallization experiments are conducted in a wet lab. Besides traditional
experiments, we also cover trace fluorescence labeling that helps data analytics.

“Chapter 2: Scoring and Phases of Crystallization” covers scoring and catego-
rization of crystallization image trials. Researchers came up with their own way of
categorization in the literature. This chapter presents a variety of ways for
categorization.

“Chapter 3: Computational Methods for Protein Crystallization Screening”
presents computational methods for determining cocktails to be tested based on the
results of prior experiments and their scoring. While commercial screens enable
setting up plates with many successful cocktails, the analysis of unsuccessful trials
has been left to the experts. This chapter provides approaches for setting up plates
for successful crystalline outcomes.

“Chapter 4: Robotic Image Acquisition” presents the hardware and software
architectures for a basic high-throughput system.

“Chapter 5: Classification of Crystallization Trial Images” presents overview of
features used in protein crystallization image classification. As feature extraction
has been the bottleneck of high-throughput systems, this chapter categorizes fea-
tures and analyzes their running-time for real-time systems.

“Chapter 6: Crystal Growth Analysis” presents spatiotemporal analysis of pro-
tein crystal growth. This chapter analyzes the formation of new crystals as well as
the growth of crystals in size.

“Chapter 7: Focal Stacking for Crystallization Microscopy” presents how to
generate in focus crystallization images from a set of images that are captured as
varying depths of field of a microscope. Since crystals usually float in a 3D well,
some crystals may be out of focus and focal stacking may be necessary for proper
analysis.

“Chapter 8: Crystal Image Region Segmentation” presents how to extract
regions of crystals as thresholding or binarization has been one of the challenging
issues in image segmentation.
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“Chapter 9: Visualization of Crystallization Trial Experiments” introduces how
plates can be visualized before/after scoring, temporal visualization of wells under
different lighting conditions, and enabling/updating scoring by experts.

“Chapter 10: Other Structure Determination Methods” provides alternate
methods to obtain a 3D structure (neutron diffraction, cryogenic electron micro-
scopy, nuclear magnetic resonance, and X-ray free electron laser diffraction) and
methods suitable for more general structural information (chemical cross-linking,
fluorescence resonance energy transfer, and circular dichroism).

“Chapter 11: Future of Computational Protein Crystallization” provides over-
view of methods in progress and future trends for protein crystallization.

Huntsville, AL, USA Marc L. Pusey
August 2017 Ramazan Savaş Aygün
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Chapter 1
Introduction to Protein Crystallization

Abstract This chapter reviews the basics of the protein crystallization process.
As amply proven by the protein structure initiative, protein crystallization can be
carried out without any basic knowledge about the specific protein or how it behaves
in solution. However, when the goal is not just processing as many proteins as can
be produced, but is directed toward a better understanding of a specific biological
moiety, a better understanding of what is being done, what one is observing, and
how they all relate to the crystal nucleation and growth process is an invaluable
aid in translating the observed screening results to a successful outcome. Informed
observation is a key component to increased success. Similarly, there are a plethora of
approaches that can be taken to screening for crystals, and knowing the strengths and
weaknesses of each is key to matching them to the immediate goals to be achieved.

1.1 Introduction

Proteins are crystallized for several reasons. That of most importance to this work
is for use in determining the proteins structure by diffraction methods, such as
X-ray or Neutron crystallography.While a discussion of these methods is beyond the
scope of this treatise, the important point is that the ability to use them is dependent
upon the quality of the crystal. Diffraction data has been obtained from crystals of
< 1µm in size [5], and thus with increasingly powerful X-ray sources, the size of the
crystals is becoming less important. However, while size is not important, the qual-
ity of the crystal packing is very much so. Another reason for crystallizing proteins
is as a purification step [18], an application that will likely grow with advances in
biotechnology.

1.1.1 The Protein Molecule

Every protein is different, but that does not stop us from being able to describe
their general properties, which both add to the difficulty in their crystallization and
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2 1 Introduction to Protein Crystallization

lend tremendous utility in being able to obtain them in a crystalline state. To start
with, they are very large compared to what the small molecule world works with,
having monomeric molecular weights that can exceed 100,000+ kDa.When we start
adding complexes to the consideration, either through self-association or with other
macromolecules, these MWs can exceed 1,000,000 kDa.

The protein molecule is a linear polymer of amino acids, of which there are 20
that are coded for genetically and common to all life on Earth. It is the specific
sequence of these amino acids and the particular geometry with which the polymeric
chains fold that gives a protein its specific properties. A protein molecule’s shape
is not rigid, but flexes, in which flexibility is usually associated with its biological
function. Conformational flexibility can be amajor impediment to obtaining crystals,
particularly diffracting to higher resolution, for a protein under study.

Amino acids are not the only components commonly found in protein structure.
Many proteins undergo post-translational modification, the most common being gly-
cosylation. These covalently attached carbohydrate groups are typically not well
ordered and can be a major source of difficulty when trying to obtain crystals. It is
possible to remove them, either by judicious choice of an expression system, muta-
tion of the glycosylation sites, or chemical and/or enzymatic removal. However, the
presence of the glycosylation may be key to the protein’s biological function, with
that information being lost in its absence.

Among the many other possible post-translational modifications are phosphory-
lation, lipidation, S-nitrosylation, acetylation, and methylation. All play important
roles in protein function, and their presence, or absence, may affect one’s ability
to obtain crystals. A comprehensive review of post-translational modifications is
beyond the scope of this work. However, we note that reductive methylation, where
charged basic amino acid side chains are chemically modified to give hydrophobic
derivatives, is employed as a tool for obtaining crystals from difficult proteins [39].

The size of the protein molecule, and its irregular shape, results in crystals that
have considerable solvent channels. Protein crystals may be from ∼25% to >60%
solvent by volume, present as channels through the crystal. As a result, the crystals
are typically very fragile, and great care needs to be taken when getting them from
the growth conditions to diffraction analysis. On the plus side, the presence of these
solvent channelsmeans that the crystallographer can diffusematerials into the crystal,
an important consideration when carrying out ligand binding or drug development
studies.

1.2 The Phase Diagram

Any discussion about protein crystallization must start with the phase diagram.
Understanding this, and what it tells about the crystallization process, is key to
understanding what one is experimentally seeing and how the results should be
interpreted. Further, even in the case of crystallization screening failures, the most
common outcome, it gives us a tool for interpreting the results and some guidance for
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subsequent experiments. A typical phase diagram is shown in Fig. 1.1. The X-axis,
the crystallization variable, can be any factor that affects the protein in solution, such
as temperature, precipitant concentration, pH, etc. The Y-axis is the protein or, more
generally, the crystallizing solute, concentration. The phase diagram is divided into
three zones or regions: soluble protein, themetastable zone, and the labile zone. Only
one of the dividing lines shown between these regions is fixed and thermodynam-
ically defined, the solubility. This represents the equilibrium between the solute in
solution and that in the insoluble phase at the defined X-axis conditions and with all
other factors held constant. The crystallographic state has the lowest solubility, which
explains whywe often observe crystals growing out of an amorphous (nonstructured)
precipitate. In kinetic terms, the solubility concentration is where the attachment and
dissociation rates of the solute to the insoluble material (crystal) surface are equal.

The metastable zone falls between the solubility line and the nucleation line.
While it is often thought that this is a no nucleation zone, strictly speaking this is
not true. Nucleation rates may be low, essentially zero over the short term, but if one
defines the nucleation line as where nucleation begins, then one finds that the width
of the metastable zone progressively narrows with increasing time. It then becomes
intuitively obvious that the nucleation rate increases the further out one goes from
the solubility line, and thus the position of the nucleation line is dependent upon
how long one waits. Within this region, the nucleation rate is extremely low, and a
crystal in this solution tends to grow without formation of new nuclei. Proteins have
stability concerns over the longer term (from hours to weeks or months, depending
upon the protein), which make waiting for the nucleation line to move sufficiently
close to result in nucleation over a prolonged period is often not practicable.

Several notional crystallization pathways are shown in Fig. 1.1. Pathway A, the
ideal case, starts with the system in the solubility zone, and progressing through
the metastable to just within the labile zone as the drop comes to equilibration.
Once in the vicinity of the metastable zone boundary, it comes to equilibrium with
respect to the crystallization variable (X-axis) and a (in this case) single crystal is
nucleated. The nucleated crystal removes solute (protein) as it grows and follows the
line going down to the solubility, with the single crystal growing. The timescale is
not indicated in this pathway. From start to crystal nucleation may be on the order of
a few days. However, crystal growth rates are a function of the solute concentration,
and thus the rate of solute removal, crystal growth, becomes progressively slower
as one approaches the solubility line. Pathway B starts with the experiment being
set up in the metastable zone and passing into the labile zone before the precipitant
equilibrium concentration is reached. A single crystal is shown being nucleated once
the labile zone is entered, but as the precipitant concentration continues to increase
additional crystals are also nucleated. Once precipitant equilibrium is attained, the
crystals grow and the pathway follows the vertical pathway to B*. However, as it is
still in the labile zone, additional nucleation events occur, yielding still more crystals
that continue to grow until the system passes into the metastable zone.

Pathway C starts in the soluble zone, terminating either just inside the metastable
zone or still in the soluble protein zone. In both cases, the results will show as a clear
solution. Pathway D starts well into the metastable zone and rapidly passes into the
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Fig. 1.1 Phase diagram

labile zone. Crystals may or may not be formed here, as it is possible that desolu-
bilization kinetics manifesting as random self-associations can overtake the orderly
assembly of a faceted crystal surface, with the results showing as a precipitated solu-
tion, possibly with some crystalline material buried within. Pathway E starts in the
labile zone and typically shows up as amorphously precipitated proteinwhen the drop
is first set up. Other often occurring results for pathways D, E, and often also A and
B, are the growth of non-faceted crystals, often manifesting as “urchins”, dendritic
crystals, and spheroids. The presence of these outcomes infers that the protein can
potentially form an ordered faceted crystal if the conditions are sufficiently adjusted;
there is hope that the protein in its present form can be crystallized.

Several important points can be derived from Fig. 1.1. First, in the case of pathway
B→ B*, the crystals are nucleating at different supersaturation levels, and this may
have an effect on the resultant diffraction qualities. Second, results that give a clear
solution (line C) or an amorphous precipitate (lines D and E) are not indications
of not being a crystallization condition. An increase in the protein concentration
or crystallization variable may bring line C to crystallization conditions, while a
decrease in these parameters may bring lines D and E to a successful conclusion.
Third, reality and practical experience inform us that just being in the metastable
zone does not guarantee that a crystal will be nucleated. There are other parameters
at play, concerning the solution composition and how that affects the ability of the
protein to form an ordered array of contacts—the crystal lattice. Crystallization
screening experiments are carried out because we do not know a priori where we are
in the solubility diagram when first mixing a test protein with any given precipitant
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solution, and careful observation and interpretation of the observed outcomes can
often bring the investigator to a successful outcome. For a more in-depth review of
the phase diagram, the reader is referred to [30].

Most protein crystallization experiments are designed such that the solution hope-
fully transits a path shown by lines A or B in Fig. 1.1, where the solution just enters
the labile zone, and then proceeds on to growing a crystal. While this is the ideal,
the paths more often followed are shown by lines C, D, and E. Even the presumably
worst-case scenario, where one starts in the labile zone (line E), may not be a disaster.
It is entirely possible, and frequently observed, that one has an amorphous precipitate
immediately upon setting up the experiment, only to find after some time that crystal
nucleation has occurred and the amorphous protein has been replaced by crystals.
One also frequently observes crystals growing in a cleared zone in an amorphous
precipitate, indications that the crystal is “feeding” off of the precipitate for growth.

Assuming that the protein can be crystallized, a simple “fix” can be tried to obtain
crystals from the pathway C. If sufficient protein is available, we have found it useful
to increase the protein concentration 3 to 5 times that used in the initial screening
experiment. Crystallization trials are then set up using just those conditions that
were scored as a clear solution (see Chap.2). This effectively shifts the pathway C to
where their endpoints are more likely to be in the labile zone, possibly resulting in
crystals. By the same token, the protein concentration can also be reduced in cases
of pathways D and E, again shifting them to potentially more favorable endpoints.

1.3 The Second Virial Coefficient

No discussion of protein crystallization screening can be had without including the
insights providedby light scattering studies from theWilson laboratory [14].Whereas
light scattering studies on nucleating protein solutions had been carried out using
dynamic light scattering (photon correlation), Wilson used static light scattering (the
scattering intensity). The second virial coefficient B22 is a measure of two body,
protein–protein, interactions. The data was plotted according to the equation:

Kc

R(90)
= 1

M
+ 2B(22)c, (1.1)

where a plot of Kc/R90 versus C yields the second virial coefficient B22 as the
slope of the line. The B22 values at crystallization conditions were determined for
10 proteins, and all were found to fall between −1 × 10−4 and −8 × 10−4 mol ml
g−2, known as the crystallization slot. Values above this gave clear solutions, while
those below this range gave precipitated protein. The interpretation given of the
results is that solution conditions giving B22 values in the crystallization slot are
“moderately poor”, such that orderly interactions enabling formation of a crystalline
lattice can occur. Note, however, that being within the slot does not mean that lattice
formation will occur, although it was strongly postulated that solution conditions

http://dx.doi.org/10.1007/978-3-319-58937-4_2
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giving B22 values outside (below) the crystallization slot had a very low probability
for successful crystal formation.

1.3.1 Second Virial Coefficient Thought Experiments

The conclusions drawn from the light scattering experiments can be rethought as
shown in Fig. 1.2. Here, the Y-axis is the B22, or second virial coefficient, value
and the X-axis is the crystallization variable being manipulated to desolubilize the
protein. The crystallization slot region of the B22, which is necessary but not sufficient
for a successful outcome, is indicated. Starting with a solution at point A, with zero
precipitant, there is a range of possible outcomes as the concentration of the solubility
variable is varied. Note that these outcomes are dependent upon the protein, the other
(fixed) components present, and the nature of the solubility variable.

Three possible trajectories are shown, varying X to arrive at points B, C, or D. All
three points are outside and below the crystallization zone, and the end product in all
three cases is assumed to be amorphously precipitated (i.e., non-crystalline) protein.
While the trajectories shown are drawn as straight lines, in reality theymay be curved,
as shown by the dashed line going fromA to C. However, all trajectories pass through
the crystallization zone, and this must be true for any such experiment.We can reason
that in principle we should be able to control the crystallization variable such that
we can stop in the crystallization zone and increase our chances of success. That this
is not possible is because in some instances, such as the A→B pathway, the control
required to keep the system in the crystallization slot long enough for nucleation
to occur is difficult if not impossible to achieve. This control is graphically more
feasible for the A→C and A→D pathways, both of which provide sufficient range
for us to set our limit conditions to within the slot.

Fig. 1.2 Solubility
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1.3.2 But the Protein Still Does Not Crystallize!

The reason things are not so simple is the crystal packing process itself. The second
virial coefficients are definable as physical interactions between molecules [16, 40].
This says that the attractive interactions between two molecules need to fall within
a certain range for structure formation. Short-range attractive interactions are group
specific, which gives a basis for structure formation [41]. However, there may be
more than one set of interactions giving interactions having the appropriate strength.
In this case, more than one interaction may form, with a multiplicity of interactions
resulting in an aggregate structure comprising limited ordering on the molecular but
none at the macroscale. Alternatively, the protein may have toomuch conformational
flexibility or have extensive floppy or unstructured regions that interfere with the
formation of a lattice structure.

As mentioned above in Fig. 1.1, the labile zone boundary line is not fixed, but
over time moves toward the solubility line. For this reason, experiments to define
its position need to note the chosen endpoint time. Proteins are not rigid structures,
but flex and shift in their conformation. This conformational flexibility occurs both
normally and is often critical to their biological function. Further, they have a finite
lifetime both in vivo and in vitro. As a result, they degrade over time, both in storage
and crystallization experiments. One of the best ways of storing proteins is in a
precipitated form, preferably as a crystalline precipitate, for which one first has to
determine crystallization conditions.

1.4 Practical Considerations When Crystallizing Proteins

Proteins are typically stabilized by lower temperatures, and protein chemists almost
reflexively store their solutions at 4◦C. While protein solubility diagrams are not
routinely determined, for those that have been determined, it has been found that sol-
ubility usually goes down with decreasing temperature. Temperature has been long
recognized as an important variable in protein crystallization, and there are several
vendors selling variable temperature incubators specifically for protein crystalliza-
tion purposes. Despite the advantages of lower temperatures, it is perhaps a testament
to human psychology that most crystallization experiments are carried out around
ambient temperatures, not 4◦C. If one is to spend hours setting up, then observing
crystallization experiments, the preference is obviously to do so at more comfortable
temperatures.

1.4.1 Other Factors Affecting Protein Crystallization

Factors other than just temperature and the precipitant concentration affect the protein
crystallization process. Physical factors other than temperature include the vibra-



8 1 Introduction to Protein Crystallization

tional level of the experiment, the surfaces where the solution touches including
the presence or not of added nucleants, the pressure, and the rate at which the
system is brought to equilibrium. Considerations based on the protein molecule
itself include the purity of the protein, the presence or absence of naturally occur-
ring or experimenter-induced post-translational modifications, ligands, substrates, or
inhibitors, the molecular shape such as its inherent symmetry and the presence or not
of unstructured floppy regions, and the self-association state of the protein. Some of
these are properties inherent to the protein itself, while others are directly affected by
the experimenter, such as limited proteolysis and chemical or genetic modification.
Finally, there are those factors that are most often manipulated by the experimenter
to effect crystallization, including the solution composition such as precipitant(s),
ionic strength, and pH; the presence or not of specific ions, metals, or cross-linking
species; the protein concentration and purity; the presence or not of added solubility
modifiers such as detergents and amphophiles. All of the above factors, and more,
will affect the final outcome and the quality of the crystal obtained.

1.4.2 The Importance of the Protein

The protein crystallization process begins with the protein. How the protein is pre-
pared is a dominant factor in the eventual success, or not, of the crystallization
process. Planning for crystallization begins at the genetic level: which amino acids
tomodify, which domains to keep or leave off, etc. The source of the protein is impor-
tant; Is it purified directly from the source or is it obtained by recombinant methods?
If recombinant methods then what expression system is used? Does it provide post-
translational modification? Are all necessary disulfide bonds formed? Once a supply
of the raw protein is on hand, how is it purified? This is often a trial-and-error process
whenworkingwith native proteins from their source, and often a rote procedurewhen
purifying recombinant proteins having an affinity purification tag. At the end, how
pure is the final product? Some protein can tolerate the presence of considerable
impurities, while others are highly intolerant. Discussion of purification methods
and approaches is beyond the scope of this treatise. However, a final consideration
of the purification process is that variations from batch to batch of protein are often
present, and these may dramatically affect the ability of the protein to crystallize as
well as the quality of the crystals obtained.

1.5 The Protein Crystallization Screening Process

Given the myriad factors affecting crystallization, how does one typically set about
determining crystallization conditions? Themethod bywhich they are found is called
the screening process. The purpose of screening experiments is the determination
of the main factors of importance to the system under investigation. Once identi-
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fied, subsequent optimization tests are carried out to refine the effects of the main
factors [24, 25]. To this end, the current macromolecular screening methodology
often fails, as major factors are only taken to be revealed when crystals are obtained.
A consequence is that screening is often expanded to many hundreds or thousands
of conditions to maximize combinatorial chemical space coverage and the chances
of a randomly acquired successful (crystalline) outcome. This drives a reduction in
screening trial volumes to enable additional experiments and thus the need for robots
to set up and then monitor them. The cost of the latter puts the “survey everything”
approach out of the reach of many smaller sized structure groups. The reduction in
screening solution volumes also reduces the chances of finding hit conditions that
may be present in the screening experiments. From the classical definition, the crystal
nucleation rate is a function of the number of nuclei appearing in a given volume per
unit of time. As it is a stochastic process, experiments to determine nucleation rates
are typically set up multiple replicates, as one may have some that nucleate almost
immediately, some eventually, and some never over the course of the experiment.
As a result, setting up screening experiments where the volume is minimized, and
having only one experiment per condition, may lead to many missed crystallization
hits.

There is a practical limit to the screening process. For many labs, this is taken to
be the amount of protein and/or number of screening kits on hand combined with the
dispensing precision of their screening plate dispensing system. However, Segelke
[35] has calculated that for a protein having a 2% chance of successful crystallization
about 300 experiments would provide a sufficient screening base. He determined
that a better approach would be to focus more on protein purification, to have the
best possible material for screening. The best screening method was postulated to
be random sampling to maximize the chemical space surveyed. Another argument
in favor of a more limited screening approach is the effort involved. The results
from each screening experiment need to be tracked over time, and as a practical
consideration it is considerably less effort to follow 3 or 4 plates, giving a 2%
chance of success, than it is to track 7 or 8 plates which may only give a 1–1.5%
increase in the success rate.

The screening process is composed of two components: carrying out the screening
experiment itself and the subsequent analysis of the results obtained. For many, the
only good endpoint of the analysis is if there is a crystal, and as a result the rich lode
of experimental data that has been acquired is ignored. The bulk of this treatise is
directed toward approaches that can be taken to the subsequent analysis, to recovering
additional information thatmay lead to eventual successwhere one initially had none.
The actual screening experiments, which provides that information for analysis, can
and have been carried out in a variety of methods. Virtually any parameter control
method that will modify the desolubilization of protein in solution has been tried. At
their most fundamental, however, they comprise a means of introducing the protein
solution to a potential crystallization solution, aka the screening solution or cocktail.
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1.5.1 Screening Methods

Protein crystallization conditions were initially devised based on an understanding
of and familiarity with the protein under study. Prior to structural biology, they
were often developed as a purification step, under the philosophy that crystallization
represented the ultimate in purity. As the use of X-ray diffraction proliferated, newer
approaches have been developed to facilitate screening for obtaining crystals for
structural studies.

Despite the plethora of methods available for the controlled desolubilization of
proteins to obtain crystals, only a few methods now dominate the field. In large
part, this is because they must accommodate several requirements: They must be
easily scaled to a large number of experiments, involving a wide range of solution
conditions; the experimental results should be easily accessible for imaging and
analysis; it should be relatively easy to set up a large number of diverse solutions
in parallel, using either robotic or manual methods; and when crystals are obtained,
they should be readily accessible for subsequent diffraction analysis. Because of these
practical considerations, methods based on standard SBS size plates, 127.75mm ×
85.48mm—height variable, now dominate the field. The plates are made having an
array of experimental formats, from 24 wells to 1536 wells (or more), for use with
sitting drop, hanging drop, or dialysis experiments, having depressions for one or
more sitting drops connected to each reservoir, and designed for counter diffusion
experiments. The following discussion is limited to these more commonly employed
methods.

1.5.2 Experimental Design in Introducing the Protein
to Precipitant

Crystallization of screening approaches, the method by which combinatorial chem-
ical space is surveyed for crystallization conditions, can be broken down into four
methods: sparse matrix, random, grid (complete factorial), and incomplete factorial.
Variations on these approaches, for example, random sampling screens that vary pre-
cipitating agents over a limited grid screen range, aka the footprint screen [37] are
also extant. Sparse matrix screens [17], which are based upon known crystallization
conditions chosen to cover a broad range of crystallization space, predominate in the
commercial world. Random screens [35] avoid one of the pitfalls of sparse matrix
screens by enabling the inclusion of neglected areas or components of crystallization
space.

The approach that has been most successful is the sparse matrix screen, where
combinations of chemicals are used. The most significant, which set the pattern for
virtually all subsequent developments, was the devising of a screen based on analysis
of published crystallization conditions that had been developed to that time for pro-
teins. Developed by Jancarik and Kim [17], this set of 50, then expanded to include



1.5 The Protein Crystallization Screening Process 11

another 48, screening conditions is perhaps the most used screen to date. Virtually
all commercial screen manufacturers produce their own version of this screen. The
typical implementation is to use the first 48 conditions of the first screen and the 48
conditions of the follow-on screen as a 96-condition block of solutions, which for-
mat is directly compatible with the standard 96-well plate format for crystallization
screening.

Random screens may be thought of as a hybrid of incomplete factorial and sparse
matrix screens [35]. They avoid the pitfalls of sparse matrix screens by the inclusion
of neglected regions of chemical space. Like sparse matrix, they attempt to cover
as broad a range of chemical space as possible. Like IF screens, they attempt to do
this coverage in a balanced method, with no one or group of components being over
represented. However, they suffer in that one must be equipped with the ability to
readily compose the myriad solutions required on demand.

Grid screens systematically explore variations in the components of crystallization
solutions. This may be carried out in one or two dimensions, one dimension being the
concentration of a precipitant and the second of another precipitant or the solution pH.
Although grid screens are commercially available, because of the limited chemical
space covered, this is generally not a method of first choice for the crystallization
of a new protein. Typically, lead conditions derived by other methods are refined to
improved crystallization conditions using a grid screen.

The use of the incomplete factorial approach to screening for protein crystalliza-
tion conditions was first put forth by Dr. C. W. Carter [8] for the crystallization of
tryptophan tRNA synthetase. A 35-condition screen was used to define the important
variables, and then a complete factorial screen was carried out using four factors to
obtain crystals. The six variables and number of levels for each were precipitating
agent (7), pH (4), temperature (3), divalent cation (3), anion (4), and monovalent
cation (4). The method was shown to quickly be able to identify the factors impor-
tant to the proteins crystallization. The incomplete factorial approach was used in
subsequent crystallizations from this group [3, 4, 7], and elaborated on in a review
[6]. The program used to design the screen, INFAC, was available from Dr. Carter
upon request.

1.5.3 Screening Data Analysis

Analysis of screening results begins once the screens have been set up. It is advanta-
geous to look at the experiments as soon as possible after set up, to get a time 0 view
of the effects of mixing the protein with precipitant solution. Thereafter, one should
periodically review the results obtained. The purpose is to track and follow emerging
crystallizations, or developments in the precipitation in the well. A rule of thumb is
that salt crystals appear quickly, while protein crystals appear over time, although this
is not always the case. However, generally even quickly appearing protein crystals
will often grow over a few days, while salt crystals do not.
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Anumber of systemshavebeendeveloped and/ormarketed for the routine imaging
of crystallization screening plates, using a diverse range of imaging methods. Some
have included software for finding and identifying crystals in the experimental wells,
which is not a trivial process when using white light imaging. The ability of the
software to distinguish crystals from white light images then becomes paramount,
and this is not a trivial process. The myriad shapes and arrangements that occur (see
Chap.2) confound the image analysis process, and this before we consider separating
protein from salt crystals. However, the philosophical goal of this approach is that
crystal = good, no crystal = not good, and ignore those wells where there were no
crystals. In taking this approach, one discards a trove of data reflecting the protein’s
response to the imposed solution conditions, which data may eventually point to
crystallization conditions. Thus, the analysis of the results, beyond crystal/no crystal,
can be a powerful tool in proceeding to the goal of a diffracting crystal, and thus a
protein structure.

Several approaches to analysis of the screening results have been put forth. The
first of these was dependent upon use of the IF method, where use of a statistically
balanced approach enables the user to extract more than simple yes/no information
from the screening results. Several descriptions of use of the IF method have been
published [1, 8, 9, 31, 33, 34, 38]. However, this method has not significantly (as
determined by cited usage) caught on. One reason may be the absence of designed
incomplete factorial screens, complete with appropriate results analysis software. In
the absence of these tools, eachwould-be user is left to develop their own screen, then
their own software approach for the statistical analysis of the results obtained. The
1536 condition screen implemented by the Hauptmann-Woodard Institute [21] con-
tains an IF component, but analysis of the data is by visual methods using graphically
presented results [26, 36].

Saridakis [32] first suggested the use of a genetic algorithm for the analysis of
crystallization screening results obtained by more standard screening methods. This
approach is a “stochastic multiparameter optimization technique” which has found
utility in a range of applications, particularly when simultaneous optimization of
a number of parameters is required. In this case, the optimization process is evo-
lutionary, using recombination, mutation, and selective pressure, over a number of
generations.

Methods of better visualizing the results, beyond simple viewing with transmis-
sion microscopy, are highly useful when carrying out crystallization screening. A
number of methods have been described in the literature [11, 15, 18, 20, 22, 23, 27,
29], many of which are commercially available. We use the trace fluorescent label-
ing (TFL) method [11, 29], where a fluorescent probe emitting in the visible region
of the spectrum is covalently attached to the protein. The procedure is designed so
that ∼0.2% of the protein molecules are modified, with all free dye removed after
the binding reaction is carried out. An advantage of this method over the others is
that more than one color of the probe can be used, making this very useful for the
crystallization of macromolecular complexes. All fluorescent images shown in this
treatise are acquired using TFL protein.

http://dx.doi.org/10.1007/978-3-319-58937-4_2
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1.6 Introducing the Protein to the Precipitant—How
to Do It?

Once the means for exploring crystallization parameter space has been determined,
one is now left with the method to be taken for exploring that space. There are a
number of physical approaches that have been taken to setting up protein crystal-
lization experiments, and not surprisingly each comes with its own advantages and
disadvantages. The results obtained from each may vary. The method chosen will
determine the ease with which the experimenter can review the results. Some, partic-
ularly those that are based on standard plate geometries, are well suited to automated
methods of imaging and image data storage.

1.6.1 Dialysis

Historically crystallization was typically carried out by dialysis or by batch methods
as a final purification step. In the batch method, the protein is introduced to the
precipitant conditions, possibly by slow addition of the factors or adjustment of pH,
and left to sit or is then subjected to a temperature change to induce crystallization.
In today’s parlance batch, crystallization is carried out by mixing the protein with
the crystallization cocktail at a specified ratio of solutions, typically under an oil
layer to reduce evaporation of the small solution volume. Dialysis is where the
protein solution is placed within a dialysis bag, the material of the bag being a semi-
permeable membrane, which is then closed off at both ends and placed in a larger
volume of the solution to be used for crystallization. The membrane used is chosen
such that the precipitant chemicals can pass through but not the protein. The solution
is typically stirred and the protein solution comes to equilibrium with the external
dialysis solution, the end result hopefully being the crystallization of the protein.
Micro-versions of the dialysis approach are extant, with dialysis buttons having
volumes down to 5 µL available (www.hamptonresearch.com). In this case, the
protein solution is placed within the button cavity, and then covered over by a dialysis
membrane which is secured in place with an O-ring. The button is placed within a
precipitant solution in a crystallization plate (typically 24-well size). Advantages
are that the external solution can be changed over time, and one can readily track
progress of the experiment using standard microscopy systems. A disadvantage is
that this approach does not lend itself to high, or even moderate, screening rates.

1.6.2 Liquid–Liquid Diffusion

Dialysis is a version of liquid–liquid diffusion screening, whereby a precipitant solu-
tion is allowed to slowly diffuse into the protein solution to hopefully effect crys-
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tallization. The second implementation of this approach is called capillary counter
diffusion [12]. While there are a number of ways to physically set up a capillary
counter diffusion crystallization experiment, the basis is to put the protein solution
in a capillary, followed by a precipitant solution such that there is a starting inter-
face between the two. The capillaries are typically set up such that the lighter, less
dense, solution, usually the protein, is above the precipitant. The precipitant slowly
diffuses into the protein, and when crystallization occurs one often has a distribution
of increasingly larger crystals the further one goes from the starting interface. It is not
unusual to obtain crystals that totally fill the diameter of the capillary, and diffraction
data can be directly acquired without having to handle the crystal at all [13]. As with
dialysis, this technique is not well suited for large-scale screening trials, but more
for terminal crystal production for diffraction analysis.

1.6.3 Vapor Diffusion

Vapor diffusion is themost popularmethod used for protein crystallization screening.
The principle is relatively straightforward. Protein solution is mixed at some volume
ratio, usually 1 to 1, with the precipitant solution and then sealed in a chamber in
the presence of the precipitant solution at full concentration, known as the reservoir.
Water is generally the only volatile component in the system, and it moves from the
protein:precipitant mixture, through the vapor phase, to the reservoir solution. This
concentrates the protein and precipitant solution concentrations in the crystallization
drop. Refering to Fig. 1.1, all paths describe a possible vapor diffusion scenario.
There are two geometries extant shown in Fig. 1.3, hanging drop and sitting drop,
which basically describes the orientation of the crystallization trial solution with
respect to the precipitant solution. In hanging drop, the earliest implementation of
this technique, the protein and precipitant are mixed on a (usually) glass surface,
typically a microscope coverslip, which is then inverted over and sealed above a
reservoir solution, such that the drop is enclosed in the same volume. With careful
pipetting, several drops can be placed on a single coverslip to survey different volume
ratios. Sitting drop vapor diffusion involves incorporation of a support surface within
the well volume, which may have stations far from 1 to 5 drops. Again, the protein
and precipitant solution are mixed in each station and the wells are typically sealed
by a transparent film. There are advantages and disadvantages to each, most notably
limiting hanging drop size and stability.Byvirtue of itsmore reproducible positioning
format, the sitting drop approach better lends itself to roboticmethods for both setting
up and imaging.
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Fig. 1.3 Vapor diffusion approaches to macromolecule crystallization

1.6.4 Batch Method

The batch method is where one simply mixes the protein with precipitant, at some
volume ratio of the solutions, and waits for a result. It should be pointed out that
the starting protein + precipitant droplet in a vapor diffusion experiment is a batch
experiment. Whereas in the vapor diffusion the protein droplet varies in size and
composition, in a batch experiment the conditions are fixed at the outset. Batch
experiments are typically carried out under a layer of oil to reduce evaporation, and
because of this have an advantage in that one can set them up at a more leisurely
pace, without worrying about evaporation during the setup process. The typical oil
overlayer is paraffin oil, which is not water permeable. However, the composition
of this overlayer can be modified by mixing in silicon oil, typically at a 1:1 ratio.
The silicon oil is water permeable, and this mixture allows the slow loss of water
from the drop, making this a vapor diffusion experiment with the atmosphere as the
reservoir.

1.7 Following the Crystallization Experiment

Once the screen has been set up, the next task is to periodically review the experi-
ments to determine what progress, if any, has been made toward the macromolecule
crystallization goal. Finding crystals may seem to be a simple proposition, but this
is often not the case. Crystals may be anywhere in the drop, and it pays to be very
careful when examining each drop. Crystals may not be of the protein, but of other
solution components—the dreaded salt crystals. The typical tool for this is a low-
power microscope, preferably of the dissecting type, having a large support region
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for the crystallization plates, a comfortable working distance, transmission illumi-
nation, and a zoom feature to facilitate examination of regions of interest at higher
magnification. With practice, one can reduce the amount of time spent on manually
reviewing a plate to 5–10 min. The astute reader will realize that this can be the
downside to using as many screens as possible in their quest for a crystal. At some
point, one has to look at the plates, preferably multiple times as the evolution of
features can be a strong pointer to their being macromolecule, and not salt crystals
which tend to appear quickly.

1.7.1 Methods for Viewing the Crystallization Screening
Results

The logical response to having large numbers of plates or crystallization drops
to review was to automate the process. Over the years, a number of crystal plate
imaging systems have appeared on the market. Initially, they just used transmission
microscopy, with or without image processing, but in recent years, detection meth-
ods have diversified to the use of UV fluorescence [10, 19], visible fluorescence [11,
22], two-photon fluorescence [23, 27], and second-order nonlinear optical imaging
(SONICC) [20]. Prices and functionality vary, with some systems requiring manual
movement of the plate, some manual loading with subsequent automatic imaging of
the plate, and some having plate “hotels” that double as isothermal crystallization
incubators from which plates are robotically retrieved, scanned, and then returned,
on a programmed interval basis.

Having images periodically recorded of the plates does not alleviate the review
process. The crystal grower must still look at every image, if possible with reference
to previous images for that crystallization well. This is not an exercise that should
only be carried out at the end of some arbitrary plate incubation period.While crystals
may often develop over a time period of weeks or months, we have found it useful
to identify those conditions that give crystals within the first week or so after setup.
These conditions can then be used as the basis for optimization and/or production
experiments to generate crystals for an upcoming data collection trip.

1.8 Results Interpretation

Once the screening plates have been set up, the next problem is to interpret the results
obtained and find the macromolecule crystals if they are present. This topic is cov-
ered in greater depth in Chap.2. While one or more crystals growing in the center
of an otherwise clear crystallization drop are easily observed, the investigator is still
left with the problem of distinguishing whether they are protein or salt crystals, a
common occurrence given that components of the protein solution may react to form

http://dx.doi.org/10.1007/978-3-319-58937-4_2
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insoluble salts with components of the crystallization solution. The development of
fluorescence-based methods was a response in part to the problem of distinguishing
protein versus salt crystals. Historically, the most direct method to determine if the
crystal was protein or salt was the “crush test”, where one applies light pressure, or
even simply touches the crystal. If it is a salt crystal, it will remain intact, whereas
the considerably more sensitive protein crystals will fall apart, often as a brown pre-
cipitate. Subsequently, the use of the dye methylene blue was introduced, originally
marketed by Hampton Research under the name “Izit”. A small amount of the dye
is added to the crystal containing droplet. Macromolecule crystals have large water
channels running through them, whereas salt crystals do not. If the crystal takes up
the dye, becoming intensely blue as a result, then it is protein. A fluorescence vari-
ation on this has been described [15]. Also, crystals under white light illumination
may be obscured by their location in the well, or by being buried in precipitate. In
a fluorescence or SONICC-based system, the crystals stand out from the solution,
making their presence readily detectable when reviewing thewell images. All protein
crystallizations carried out in our laboratory use trace fluorescent labeling (TFL) as
an aid in interpreting the results [11, 29]. Most of the images in this treatise show
images using TFL’s crystals, many with their corresponding white light images for
comparison purposes.

1.9 Crystallization of Complexes

Crystallization of protein complexes presents another round of problems. While
the crystals may obviously (according to the standard tests) be protein, one is now
faced with the problem of whether or not all of the components of the complex are
present. Visible fluorescence offers a facilemeans ofmaking this determination. Each
component can be TFL with a different colored fluorescent dye prior to assembling
the complex in solution. The presence of each of these dyes in the crystal then verifies
the presence of that component in the crystal. This can be carried out for as many
colors (components) as one can clearly distinguish in the presence of the others.

1.10 Crystallization of Integral Membrane Proteins

A still more complex problem is the crystallization of integral membrane proteins
(IMPs). This group of proteins represents a higher level of difficulty in their produc-
tion, purification, and crystallization. IMPs, having extensive hydrophobic regions,
are not soluble without added detergents. The detergents must be present to extract
the proteins from the membranes and to keep them soluble throughout the purifica-
tion and crystallization process. Supply of IMPs, whether from the source organism
or by recombinant production, is often very limited relative to soluble proteins. Fur-
ther, the protein stability and the ease with which it can be crystallized is a function
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of the detergent(s) employed, and one must often switch from a purification to a
crystallization detergent. There is an ever-expanding range of detergents available
for use with IMPs, and in addition to the usual buffer and salt selection process, the
crystallographer must also optimize this additional and most critical component as
well. Result analyses are further confounded by the possibility that the detergent may
be coming out of solution in an ordered phase. The methods used for crystallizing
IMPs include the recent addition of the lipidic cubic phase (LCP) method [2, 28].

1.11 Summary

Protein crystallization is not a trivial process. The practitioner must balance a large
number of variables, both in the solution compositions employed and final protein
purity obtained, in their quest for a successful outcome.While it is possible to blindly
carry out a rote series of steps to obtain crystals, it is to the experimenter’s advan-
tage to understand the physical chemistry of what they are trying to accomplish and
to interpret their results in light of that understanding. The results obtained will be
dependent upon the pathway taken, both in purification and crystallizationmethodol-
ogy employed, and it is usually beneficial to use all of the tools at ones disposal in the
quest for well-diffracting crystals. The final results, the crystal diffraction resolution,
will be highly dependent upon how well those variables are managed.
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Chapter 2
Scoring and Phases of Crystallization

Abstract The practice of scoring of protein crystallization screening results is more
honored in the breach than in the observance. However, as we hope to show in the
balance of this treatise, it can lead to a means for extracting more information than
immediately apparent from a crystallization experiment. Scoring has advantages
beyond simple good scientific note-keeping practice; the act of objectively examining
one’s results, with some thought added, can lead to a deeper appreciation of what
led to those results, be it at the protein, screening solution, or mechanics of setting
up the plate level. The first goal is to have a system which reflects an increase in
the desirability of the results obtained with the numerical score. The scoring scale
does not have to be complex or extensive; a 10-point scale is elaborated on herein.
However, the scale should clearly distinguish between classes of desirable outcomes.

2.1 Introduction

The opening mantra of this chapter, and in fact for all successful protein crystal-
lization experiments, is that there is no substitute for careful visual observation of
crystallization plates. Even in the absence of a formal analysis methodology, such as
those outlined in subsequent chapters, an alert and careful observer will note patterns
emerging in the results, either from well to well or within the droplets of a given
well if that approach is taken. This chapter is written to give examples of how we
interpret crystallization results. Other interpretation schemes may be used, but the
primary importance is that one develops a familiarity with the results that are, or
could, be obtained.

Tracking protein crystallization results, particularly in smaller laboratory’s, is
often a matter of circling the found outcomes of interest with a Sharpie™. Notes
may be taken, but since the outcome of interest is a nicely faceted crystal then why
bother noting that this precipitation was gummy in appearance, that one was lightly
granular, and the one next to it was heavy and brown, while in between were several
clear wells? Thus, while over the years a number of scoring scales have been put
forth, they are rarely used when all that was deemed necessary was to circle the hits
on the plate with a Sharpie™.

© Springer International Publishing AG 2017
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2.2 Why Score Crystallization Drop Results?

There are several reasonswhy one should score their crystallization screening results,
not the least of which is that it is good scientific note keeping. In the absence of any
formal post screening analysis, knowing what happened as the protein was placed
in solution with a number of different chemicals, over a range of concentrations and
pH’s, may still serve as a basis in guiding subsequent optimization strategies when a
hit is finally obtained. Careful note taking, with respect to the solution compositions,
can serve to rule out the inclusion of specific chemicals, or suggest changes in the
protein concentrations used. However, the rationale that serves as the basis of this
treatise is that the scores can be used in the analysis of the results obtained, for
potentially extracting crystallization conditionswhere one previously had none, or for
expanding on the known conditions and identifying those that can more reproducibly
yield crystals. This latter point is of particular interest if one is going to extensively
work with the protein, such as for binding studies, and reliable crystalline conditions
are needed.

2.3 Our Scoring Scale

A practical scoring scale needs to reflect an improvement in outcomes with an
increase in the score. Many scales begin with a score of 0 for a clear solution.
Referring to Fig. 1.1, we see that clear solutions can be occur on either side of the
solubility line, and in fact are not the worst outcome that can occur. That distinction is
reserved for a heavy precipitate, and even here there are two types that can occur; one
where the protein is still “intact” and can be redissolved, and second where the pro-
tein is partially denatured and cannot be redissolved. Distinguishing between these
two precipitant types is not always easy, although having a heavy brown precipitate
is typically taken as an indicator of the second type. Regardless, it then is apparent
that changes in solution conditions that take an outcome from a precipitate to a clear
solution are not detrimental, but an improvement in the outcome. The scoring scale
that we have found best is provided revised score column of Table2.1. This scale
is the same as given by [3]. Figures2.1, 2.2, and 2.3 gives an illustration of these
scores.

2.4 Our Scoring Procedure

We follow a defined procedure for scoring crystallization screening results. All plates
use trace fluorescently labeled protein, which enables us to follow what the protein
is doing in response to the crystallization screening solution being tested [8, 11].
We use Corning 3553 CrystalEX™ sitting drop crystallization plates having 3 drop

http://dx.doi.org/10.1007/978-3-319-58937-4_1
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Table 2.1 Scores for protein crystallization images

General category Hampton’s score Revised score as in [3]

Non-crystals 1 2 Clear drop

2 3 Phase separation

3 0 Heavy precipitate

3 1 Light precipitate

Likely leads 4 4 Birefringent
precipitate or
Microcrystals

– 4 Bright spots
(Not present in
Hampton’s category)

Crystals 5 5 Urchins, spheroids,
dendrites - non-faceted
crystals

6 6 Needles

7 7 Plates - 2D crystals

8 8 3D crystals <µm

9 9 3D crystals >200µm

positions/precipitant well. The three positions are set up at protein:precipitant ratios
of 1:1, 2:1, and 4:1 (vol:vol) or, alternatively, 1:2, 1:1, and 2:1. Assuming the same
endpoint precipitant concentrations at equilibrium the varying drop ratio’s give an
indication of the effects of protein concentration on the outcome, and we frequently
have results that progress from precipitate or small crystals to large single crystals
across the three drops.

Typically, the plates are fluorescently imaged on a regular basis, and scoring is
carried out between the 6th and 8th week after setup. The first step is to manually
go through the plates well by well, using a standard low power microscope typically
used for crystal plate viewing, and note down a score for each well on a scoring
sheet. The score written down at this point is for what is observed under white light.
The second step is to review the scores written down with respect to the most recent
fluorescent images. The scores at this point are adjusted as necessary based uponwhat
the fluorescent image reveals. Thus, objects that scored as a crystal are downgraded
to what the background conditions show if they do not fluoresce, which indicates
that they are not protein but salt crystals. It is at this point that we identify outcomes
having a score of 4, the bright spots. The score for any given crystallization drop
is that of the highest scoring object within that drop. This often necessitates careful
examination of the drop contents, zooming in on features of interest and focusing
through the solution. One small faceted crystal within a drop containing precipitate,
granular precipitate, or apparently non-faceted crystals, will result in the drop being
scored as an 8. Similarly, if a cluster of crystals or rods that might otherwise be scored
as a 5 has one or more that protrude out sufficiently that it could be cleaved off and
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mounted for diffraction as a single crystal then the score is that of the piece that can
be cleaved off.

2.4.1 What You See Is Not Always Simply Classified

The first question when scoring a crystallization plate is “what is this”? While a
faceted crystal, a long rod, or a spikey urchin may be obvious, there are other out-
comes that are not so clearly defined. A good resource for interpreting one’s results
are the images on the Terese Bergfors website: http://xray.bmc.uu.se/terese. A guide
to the scoring used in our work is shown in Figs. 2.1, 2.2, and 2.3.

As can be inferred from Fig. 2.1, there are no hard and fast rules for scoring what
one observes. While most outcomes are easily scored, this is not always the case.
For example, as shown in Fig. 2.1, Panels A, B, and C, what distinguishes a heavy
vs. a light precipitate? This particularly when there may be occasions where the

Fig. 2.1 Outcomes and their scores. Each panel has awhite light and its corresponding fluorescence
image. Panels A and B, score = 0, heavy precipitate, however note the presence of bright spots in
Panel B, which would result in this being scored 4; Panel C, score = 1, light precipitate; Panel D,
score = 2, clear solution; Panels E and F, score = 3, phase transition, although the presence of the
bright spots in Panel F would result in this being scored 4. The protein in all images is canavalin,
purified from Jack Bean

http://xray.bmc.uu.se/terese
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Fig. 2.2 Outcomes and their scores, each panel showing awhite light and its corresponding fluores-
cence image. Panels A and B would have a starting score of 3, but due to the bright spots this would
be increased to a score of 4. In the case of B the larger areas of intensity correspond to observable
structures, and these may also be scored as 5. Panels C, D, and E, scores = 5, non-faceted crystals,
with C being “urchins”, D being spheroids, and E dendrites. Panel F, score = 6, needles. Proteins
are A, B - Canavalin; C, D, F - Klebsiella pneumoniae Inorganic pyrophosphatase, E - Tt36

precipitate is not clearly observable, unless one is using a non-white light imaging
method. This is often a judgement call on the observers part. However, when making
the distinction, one should attempt to be consistent in making that distinction for a
given set of plates where the outcomes will be analyzed together. Also note that Panel
A shows a heavy brown precipitate while B shows a heavy “white” precipitate. The
nature of the precipitate in these cases is likely totally different, with one, B, likely
being readily soluble while the other is likely not. Also note that the precipitate in B
has a number of “bright spots” distributed throughout. As a result, the drop shown in
panel B would be given a score of 0 during the manual examination, then that would
be revised to a score of 4 during the fluorescence review.

The next difficulty comes in distinguishing a very light precipitate from a clear
solution. While this is readily apparent in Fig. 2.1, Panels C and D, in many cases
very light precipitates may not be visible. This is again a case where consistency
in a set of plates is more important than accuracy. On occasion the results from
other drops for that crystallization condition may suggest whether the solution is a
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light precipitate or a clear solution. However, precipitate does often show up when
observing the plates with fluorescent illumination.

Panels E and F of Fig. 2.1 show drops that would be scored as phase transitions
during the initial white light scoring. Although not the case here, phase transitions
are often spherical in shape, and can on occasion be mistaken for spheroids. In the
case of Panel E the protein, which is fluorescent, has clearly separated from other
components of the solution. This underscores the importance of having a means
other than simple transmission microscopy for examining one’s results. One may
not know what solution components are separating out, whether they are the protein
or some other (probably polymer) component. This distinction is important as we are
most concerned with what the protein is doing in reaction to the solution conditions.
Figure2.1 Panel E shows the fluorescent image for a protein phase separation.

The white light image for Fig. 2.1, Panel F, shows an apparently “gummy” pre-
cipitate. We had initially scored this type of result as a heavy precipitate, but have
shifted to scoring it as a phase transition. In large measure this is due to this type of
precipitate often having bright spots, as shown in the fluorescent image, giving it a
score of 4. As bright spot results can often be optimized to crystallization conditions,
and as they are often associatedwith this type of precipitate, thenwe felt that it should
be upgraded in the scoring to reflect the increased likelihood that these conditions
may be on the path to crystallization.

The one novel scoring point, for our laboratory, is for the bright spots. Bright
spots do not show crystalline features when viewed at higher magnification, and
we currently assume them to be failed crystal nucleation’s, where non-specific self-
association kinetics have overtaken the orderly crystal self-assembly process. This is
a score that is not made during the initial manual analysis phase but instead assigned
when resolving those results with the fluorescent images. As we use trace fluorescent
labeling for all of our crystallizations, the first pass image interpretation mantra is
that intensity = structure. This is because the fluorescence intensity is a function
of the density of the probe concentration, and the greatest protein, and thus probe,
concentration will be had in the crystalline state. As shown in Fig. 2.2, Panels A and
B, the bright spots can show up in a variety of “background” outcomes. We have
found that in∼30% of the cases these conditions can be optimized to obtain crystals,
and thus this score represents a major source of previously unknown lead conditions.

The most common crystalline outcome is often non-faceted crystals, which we
assign a score of 5. Some of the most often observed of these are shown in Fig. 2.2,
panels C, D, and E. Panel E shows what is typically referred to as an “urchin”. These
are often also observed as a more linear spray of needles commonly referred to as a
“shaving brush”. Panel D shows spheroids. Smaller spheroids can often be mistaken
for phase separations. A distinguishing characteristic however is the presence of
surface features or roughness on the spheroids. Panel E shows a dendritic crystal
form. These may present as the stick-like crystal shown, as a snowflake-like feathery
structure, or some intermediate form. This score is essentially a “catch-all” for any
outcome that is crystalline, does not have clear facets, does not fit into one of the
other categories, or includes clusters of crystals. The clusters can be stacks of 2D
or agglomerations of 3D crystals. These sometimes have protruding single crystals,
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and our rule of thumb is that if we think we can cleave a clear faceted region off then
the structure, and thus the well, is given the score for that part.

Needles, a score of 6, often show up as shown in Fig. 2.2, Panel F. They can be
clearly resolvable as individual needles, or they may be present as a dense cluster,
or any outcome in between. Careful examination of the fluorescent image for Panel
F shows an interesting light pipe phenomena often associate with needle (and rod)
shaped crystals, where the ends fluoresce at a higher intensity than the body. This
phenomenon is sometimes also found with 2D plates, and to a lesser extent with 3D
crystals, where the edges are often more intense. We distinguish needles from rods
by the presence, or not, of facets. If the ends of the crystals are clearly flat or have
facets under higher magnification then they are scored as rods, 3D crystals, and not
needles. This also holds true for the body of the crystal; if it is faceted then it is a
rod, not a needle. Outcomes having a score of 5 or 6 are not suitable for diffraction
analysis, but can be used as a source of material for seeded crystal growth [7].

2DPlates, having a score of 7, are shown in Fig. 2.3, PanelA. The last questionable
distinction is between plates and 3D crystals. Again, this is often a judgement call.
In our hands, it becomes a 3D crystal when there are clearly visible faceted edges,

Fig. 2.3 White light and corresponding fluorescent images of scored plate outcomes. Panels A and
B, score = 7, plate crystals. Panels C and D, score = 8, small 3D crystals size ≤ 200µm, with the
crystals in Panel D being surrounded by precipitated protein. Panels E and F, large 3D crystals, size
≥ 200µm. All crystals are of Klebsiella pneumoniae inorganic pyrophosphatase
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similar to the distinction between needles and rods. This is illustrated in Fig. 2.3,
Panel B, where the plate-like crystals show a distinct edge, both in the white light and
fluorescent image. Note that the body of the plate-like crystals, in both Panels A and
B, fluoresces at a lower intensity. It is advantageous to have amicroscope with a scale
attached to gain some estimate of the thickness of the crystal. When imaging with
TFL the edge typically shows up as a more intense fluorescence, particularly when it
is partially or wholly oriented towards the viewing direction, while the body shows
up with a lower fluorescence intensity when it is perpendicular to the viewing axis.
However, the presence of straight fluorescent edges bordering a weaker fluorescence
signals the presence of 2D plates where one may not have observed them using white
light imaging.

Small 3D crystals, having a score of 8, are illustrated in Fig. 2.3, Panels C and
D. Smaller crystals, or crystalline appearing material, should be examined under
high magnification to look for the presence of faceted edges, which distinguishes
them from non-faceted crystalline material having a score of 5. Panel D shows small
crystals that are buried in precipitate. While they may not be apparent to cursory
examination under transmission microscopy, they become readily apparent when
viewed using fluorescence illumination.

The last category, and not surprisingly the least common, is large 3D crystals
≥200µm in size. Two examples of these are shown in Fig. 2.3, Panels E and F.
Obtaining crystals of this size was once the goal of crystallographers several decades
ago. However, as the X-ray technology has advanced these are not as desirable,
except maybe as an experimental trophy. One potential benefit is that they do show
that one can obtain larger crystals of that particular protein, thus suggesting that at
some future date one could carry out neutron diffraction studies on it.

2.4.2 Hierarchical Categories

Classifying protein crystallization trial images into a number of categories is one of
the main tasks in analysis. However, the key point in such analysis is to determine
the categories. The number of categories is usually determined based on the purpose
of the analysis. In the literature, we have observed that typically the number of cate-
gories is between 2 and 10. Since the most common goal is to detect the presence of
a crystal, the use of two categories as crystals and non-crystals is not rare (Zuk and
Ward [18], Cumba et al. [6], Cumba et al. [4], Zhu et al. [17], Berry et al. [2], Pan et
al. [9], Po and Laine [10]). Additional categories are typically obtained by using sub-
categories of these two main categories and erroneous/mistake/unclear or doubtful
categories. Clear, precipitate, and crystal categories are three categories used byYang
et al. [15]. The five categories analyzed by Bern et al. [1] are empty, clear, precipitate,
microcrystal hit, and crystal categories. Another group of five categories is formed as
clear drop, creamy precipitate, granulated precipitate, amorphous state precipitate,
and crystal categories by Saitoh et al. [12]. An example of six categories includes
experimental mistake, clear drop, homogeneous precipitant, inhomogeneous precip-
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Fig. 2.4 Hierarchy of crystallization categories [13]

itant, microcrystals, and crystal categories (Spraggon et al. [14]). Another example
of six categories includes phase separation, precipitate, skin effect, crystal, junk, and
unsure categories (Cumba et al. [5]). 10 categories used by [16] are (clear, precipitate,
crystal, phase, precipitate and crystal, precipitate and skin, phase and crystal, phase
and precipitate, skin, and junk categories.

There is not a perfect system that would classify crystallization trial images into
any number of categories. However, binary categorization as crystals vs. non-crystals
should be avoided where possible. The costly misclassification occurs when a crystal
is classified as a non-crystal. To detect such an error, the expert analyzes non-crystal
images in addition to crystal images categorized by the system to avoid missing
crystals. This would suggest checking all images in the experiment, thus losing the
value of a classifier. In our work, we have added one more category in between
crystals and non-crystals as likely-leads. Classifying crystals as likely-leads is not a
major problem as long as crystals are not labeled as non-crystals and false positive
rate where non-crystals labeled as crystals is low.

Depending on the depth of analysis of protein crystallization images, the classifi-
cation could be performed roughly as non-crystals, crystals, and likely-leads or for
the sub-categories of these categories as mentioned in the previous section. For ana-
lyzing protein crystallization trial images, we generally use two levels of hierarchical
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Fig. 2.5 Variations in crystallization drop outcome with changing protein:precipitant drop volume
ratios. Column A shows a progression of smaller to larger, while column B shows a progression of
crystals to precipitate

categorization as shown in Fig. 2.4. This hierarchy helps develop classifiers for the
first level and then classifiers for each category of the first level. Such a hierarchy
enables developing classifiers at two levels.

2.5 Even if You Are Not Going to Process Your Scored
Data...

Careful scoring requires attention to and consideration of what is being observed.
Insights beyond just the assignment of a numerical score can be obtained, which
can be utilized to direct subsequent crystallization optimization experiments. For
example, random, or limited grid, screens where one or two components are varied
would be expected to show a trend in the results with the changes in the components.
This is the reason for using such a screen, and justifies its utility. Similarly however
we can also observe trends in screen set-ups where we vary the protein:precipitant
drop ratio. Two examples of this are shown in Fig. 2.5, both coming from the same
screening plate for the protein concanavalin A. In both cases the protein:precipitant
drop volume ratios are 1:2, 1:1, and 2:1. A first pass assumption is that at equilibrium
the drop and well precipitant concentrations are equivalent to those of the reservoir
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solution for all three cases, although this assumption does not take into account
the protein contribution to the crystallization drop vapor pressure. For the 1:2 drop
the initial precipitant concentration is high relative to the protein and the equilibrium
protein concentration would be low. In the results shown for Panel A we find that this
results in many smaller crystals. At a 1:1 ratio, the “standard” crystallization drop,
we find fewer but larger crystals, while at 2:1 the starting precipitant concentration is
low and the equilibrium protein concentration higher, likely higher than the starting
protein concentration. In this case fewer nucleation events occur and there is more
protein available to feed the growth of larger crystals. These results can be mapped
directly onto the phase diagram in Fig. 1.1. The results in Panel B show an opposite
effect. Crystals are nucleated at higher precipitant and lower protein concentrations.
As the protein:precipitant ratio increases the results go to increased precipitation and
no crystals, the opposite of what is observed for the wells in Panel A. The precipitants
in Panel A are ethylene glycol and Polyethylene glycol 8,000, while those in Panel
B are sodium chloride and sodium citrate. The results give a good indication of how
one should adjust the protein and/or the precipitant concentration in both cases for
obtaining optimized crystallization results.

2.6 Summary

While it may appear to be tedious at the outset, the scoring of one’s crystallization
screening experiments can be a very productive exercise. Firstly, one has a more
detailed description of the results obtained for the experiment(s), which can always
be referred to in subsequent work. Secondly, the act of scoring directs the mind
towards considerations of how or why those results were obtained, possible new
approaches that can be tried to obtain crystals, and insights into how one can opti-
mize found crystallization conditions. Time spent carefully observing, and scoring,
one’s crystallization results can speed up progress towards the ultimate goal, well
diffracting crystals.
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Chapter 3
Computational Methods for Protein
Crystallization Screening

Abstract The goal of protein crystallization screening is to determine the main
factors of importance to crystallize a protein under investigation. The protein crys-
tallization screening is often expanded to many hundreds or thousands of conditions
to maximize combinatorial chemical space coverage for maximizing the chances of
a successful (crystalline) outcome. Available commercial screens may not generate
crystalline conditions for some proteins difficult to crystallize. Nevertheless, the pre-
vious crystallization trials could be analyzed to recommend screens with crystalline
conditions. This chapter presents computational methods for protein crystallization
screening.

3.1 Introduction

Crystallization is usually the bottleneck process in the determination of the three-
dimensional structure of a protein. One of the major difficulties in macromolecular
crystallization is setting up the cocktails that yield a single large crystal for X-ray
data collection [20, 21]. Physical, chemical, and biochemical factors such as the type
of precipitants, type of salts, concentrations, pH value of the buffer, temperature of
the environment, genetic modifications of the protein, etc., influence the crystalliza-
tion process. The large chemical space along with varying concentration values of
chemicals makes exhaustive trial of all possible combinations practically impossible.

For example, consider generating a screen using nine different salt concentration
values, 23 different salts, nine different buffers, 26 different precipitant concentra-
tion values, 38 different precipitants, and thre different protein concentration values.
The concentrations and pH values are continuous data and the other features are
categorical data. Full factorial design for this single protein would require setting
approximately 5,521,932 different experiments based on this set of factors without
considering the continuity of some of the variables, which is not feasible.

Moreover, since each protein has a unique primary structure, it is quite chal-
lenging to determine the parameters of the experiment that can yield a crystal for
a protein [19, 23]. The cost in time and materials renders exhaustive trial of all
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possible combinations of conditions practically impossible. As a result determining
the crystallization conditions is conducted using screening experiments.

One of themajor challenges for an experimenter is to analyze previous crystalliza-
tion trials to determine new conditions to be tested. This chapter firstly provides an
overview of how initial screens are prepared for crystallization experiments. These
initial experiments are critical and ideally should provide some likely-lead condi-
tions if not crystalline conditions. New screens could be generated by analyzing
encouraging conditions from these previous experiments. Nevertheless, this is not
computationally straightforward. As expected, the noncrystal conditions are signifi-
cantly dominant, and while there could be at most several likely-lead conditions, they
may not suitable for X-ray crystallography. Classifiers built for these few encour-
aging conditions cannot learn with such unbalanced and skewed data. Similarly,
regression methods cannot with fit data with satisfactory R2 [13]. Association rule
mining cannot generate association rules with enough support and confidence.

Three computational methods for screening are discussed in this chapter: neural
networks, genetic algorithms, and associative experimental design [13, 14]. Since
these methods provided successful results by analyzing crystallization trials of some
proteins, they are worthy to be analyzed here. Moreover, associative experimental
design is actively used for generating novel crystalline conditions. Optimization
of cocktails and its success for recommending novel conditions for a number of
proteins has been provided later in this chapter.

3.2 Overview of Experimental Design Methods
for Screening

If an experimenter would like to crystallize a protein, her question will be about
the parameters to evaluate in the wet lab. The parameters for protein crystallization
experiments are usually set by two main techniques [8, 34]: incomplete factorial
experiments (IFE) [4, 10] or sparse matrix sampling (SMS) [16, 20]. Systematic
grid screening (GS) of crystallization conditions is a complete factorial screen over
a defined range.

The incomplete factorial approach aims to determine the important factors of
the experiments and to significantly reduce the number of experiments compared to
full factorial design experiments [10]. The IFE is a beneficial tool especially when
there are not enough resources, such as available protein, to carry out those many
experiments or it is practically discouraging to set upmany experiments [22]. The IFE
method generates balanced experiments with respect to the important factors of the
experiments. In IFE, balanced crystallization screening experiments are generated
using selected reagents, which allows analysis of a broad chemical space. One of
the drawbacks of IFE, the occurrence of each reagent for a factor is equal in the
experiments; however, in the real world, some reagents might be more favorable for
the crystallization trials compared to others [24].
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The sparse matrix sampling (SMS) method [20] utilizes a wider range of major
reagents conditions (i.e., pH values, type of precipitants, type of salts, etc.) in experi-
ments. In SMS, type of salts, pH, and type of precipitants and their values are selected
based on past experience to have resulted in protein crystallization. The reagents
appear based on their frequency in the sparsematrix [16]. The sparsematrix approach
was first put forth by Jancarik and Kim (1991), and their original screen, plus a wide
range of variations, has been commercialized [33]. SMS tries to overcome the limi-
tations of IFE by increasing the occurrence of the reagents that are more favorable
for the experiments based on existing experimental results. The frequency of each
chemical used in SMS is generally calculated based on accumulated experimental
results.

Grid screening of crystallization conditions is an early method that methodically
varies a set of solution components over a range of conditions. This typically requires
some insight into those parameters likely to produce crystals and ismore often carried
out as part of the end game process following the successful determination of lead
conditions by sparse matrix methods. In GS, the experts generally focus on a small
chemical space and generate finer samples for a small set of reagents, making this
impractical for covering extensive chemical space.

Once the results of these methods are obtained, a set of optimization methods
can be applied [22]. The details of those optimization techniques can be found in
the literature. These studies in macromolecular crystallization try to generate new
cocktails or optimize available cocktails, which are supposed to yield crystals. The
optimization steps in the literature generally involve changing the pH, concentration,
and concentrations of precipitants and salts.

3.3 Using Neural Networks for Experimental Design

Researchers at Diversified Scientific Inc., the University of Alabama at Birmingham
and Interactive Analysis Inc. have utilized neural networks for protein crystallization
screening [12]. Neural networks are based on a real nervous system paradigm com-
posed ofmultiple neurons communicating through axon connections. Characteristics
of neural networks include self-organization, nonlinear processing, and massive par-
allelism. The neural network exhibits enhanced approximation, noise immunity, and
classification properties. The self-organizing and predictive nature of the neural net-
works allow for accurate prediction of never before seen crystallization conditions,
even in the presence of noise. The predictive neural network is trained via back prop-
agation using the incomplete factorial screen. If properly trained, the neural network
can be used to identify or recognize important patterns of crystallization. An input
pattern comprised of the incomplete factorial screen is presented to the network. The
outputs are compared to the known scores. Additional neurons are added and inter-
connect weights (basis functions) are adjusted to minimize the error and maximize
R2 between the actual versus the predicted values. This process is continued until the
average error across all the training sets is minimized. Eventually, if the correct vari-
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ables and sample size are chosen to adequately represent the crystallization nature
of the protein, a stable set of hidden neurons and basis function weights evolve. This
neural network can then be used to predict non-sampled complete factorial condi-
tions to be used for optimization, i.e., predicting the conditions that produce crystals
from the entire “crystallization space” of possible experimental conditions based
on the results from a much smaller number of actual experiments performed. This
approach has a higher probability of producing accurate predictions if the small test
set is statistical representative of the “crystallization space”.1

DeLucas et al. provide the results for 9C9 (C. elegans protein) to display perfor-
mance of neural networks [12]. For these initial experiments, the neural network was
trained using experiments 1–315 from the complete set of 360 screen conditions.
This partial sampling of the incomplete factorial design experiment was used to train
a neural network to recognize conditions that result in crystallization. The neural
network trained with all results, including failures. The 315 experiments (used for
training) allowed the neural network to converge with an acceptable R2 value of
0.604. The scoring system was modified from a linear scale with clear drops equal to
0 and crystals scored at 10, to a binary scheme. In the binary scheme any crystalline
result was given a mark of 2000, the other results (i.e., clear drop, phase sepa-
ration, precipitate, microcrystals/precipitate, and rosettes/spherulites) were scored
1–5, respectively. The input to the neural network is the indexed variables and the
output is the predicted score. The weights of the hidden neurons are determined by
back propagation. The remaining 12.5% (45 experiments) of the incomplete factorial
screen results were used for verification.2

Only one experiment had a crystalline condition in the training set. Similarly, only
one experiment had a crystalline condition in experiments 316–360. The proposed
neural network was able to detect the crystalline experiment while generating low
scores for unsuccessful experiments.

Their use of binary scheme with significantly different scores (0 and 2000) helped
the neural network to adjust for crystalline conditions. It would be interesting to
analyze how good neural networks cover crystallization space based on the scored
input screens.

1Reprinted from Progress in Biophysics and Molecular Biology, Volume 88, Issue 3, Lawrence
J. DeLucas, David Hamrick, Larry Cosenza, Lisa Nagy, Debbie McCombs, Terry Bray, Arnon
Chait, Brad Stoops, Alexander Belgovskiy, W. William Wilson, Marc Parham, Nikolai Chernov,
Protein crystallization: virtual screening and optimization, Pages 285–309, Copyright (2005) with
permission from Elsevier.
2Reprinted from Progress in Biophysics and Molecular Biology, Volume 88, Issue 3, Lawrence
J. DeLucas, David Hamrick, Larry Cosenza, Lisa Nagy, Debbie McCombs, Terry Bray, Arnon
Chait, Brad Stoops, Alexander Belgovskiy, W. William Wilson, Marc Parham, Nikolai Chernov,
Protein crystallization: virtual screening and optimization, Pages 285–309, Copyright (2005) with
permission from Elsevier.
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3.4 Genetic Algorithm for Protein Crystallization
Screening

Genetic algorithms are computational methods inspired by natural selection in bio-
logical evolution to solve constrained and unconstrained optimization problems.
Interesting enough, these algorithms could be used to solve back another biochemi-
cal process, protein crystallization domain. Genetic algorithm represents input as a
set of chromosomes of genes. Two fundamental operators are crossover andmutation.
The selection process of parent chromosomes for crossover as well as mutation rate
affects the performance of genetic algorithms. As the new population is generated
after each iteration, fitness score or in other words, survivability rate of an offspring
plays a critical role in selecting parents and ranking offsprings.

For protein crystallization screening, the mutation is critical to explore the large
chemical space or generate novel conditions. Saridakis presents a successful way of
applying genetic algorithms for protein crystallization [31]. The parameters to be
optimized can be thought of as genetic loci on a virtual chromosome. Each value of
the parameter is an allele. The whole “chromosome” is thus a full set of parameters
with specified values (in this case, a crystallization condition). A few “successful
chromosomes” (crystallization hits) are selected from a “parent generation” (a crys-
tallization screen) and their alleles (parameter values) are recombined to form the
next “generation” of “chromosomes” (candidate optimization conditions). From that
second generation, the most successful conditions are again selected and the process
is reiterated. Sometimes a ‘mutation’ is introduced, that is, a parameter is randomly
selected, and its value randomly changed to a completely new value, ideally one
that was not present in the original screen at all. Mutations can be simple, multiple,
or they can be mixed with recombinations. For the protein crystallization case, a
chromosome may be specified as follows:

C1a = {[protein]i, precipitantk, [precipitant]l, temeraturem, pHn, additiveo,
[additive]p, [ligand]q, . . .} (3.1)

where i, k, l,…are the different discrete or continuous, numerical or descriptive,
values that the respective parameters may take and the square brackets signify con-
centration. Thus a particular condition may for instance be:

C1a = {[proteinX]20mg/mL, precipitantNaCl, [precipitant]4%(w/v), temperature20◦C,

pH4.5, additivePEG4000, [additive]2%(w/v), . . .}
(3.2)

Another condition may be:

C1b = {[proteinX]20mg/mL, precipitantamm.phosphate, [precipitant]1.5M , temperature4◦C,

pH6.5, additiveKCl, [additive]0.1M , . . .}
(3.3)

Assuming that the above two conditions are hits (neither of which can be optimized
by conventional fine-tuning of the variables), one of the possible recombinations is
as follows:
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Fig. 3.1 Simplified schematic illustration for one cycle of a Genetic Algorithm-inspired procedure
as applied to only two “hits” from a standard crystallization screen, used to generate three 2nd
generation conditions. A mutation regarding the setup technique is also introduced. Reprinted
(adapted) with permission from Crystal Growth and Design 2011 11 (7), Emmanuel Saridakis,
Novel Genetic Algorithm-Inspired Concept for Macromolecular Crystal Optimization, 2993–2998.
Copyright (2011) American Chemical Society ©2016 IEEE

C2a = {[proteinX]20mg/mL, precipitantamm.phosphate, [precipitant]1.5M , temperature20◦C,

pH4.5, additivePEG4000, [additive]2%(w/v), . . .}
(3.4)

where the subscripts 1 and 2 denote the successive generations.
A few such “recombinant” (or “mutated,” or mixed) conditions are randomly

generated, by hand or with the help of a computer depending on the number and
complexity of the hits, and some or all are set up. Since it is easier to design a great
number of second generation conditions that to actually set them up, the experi-
menter’s intuition may be used to select the ones that are actually going to be set up.
Too much use of intuition nevertheless might lead to missing unlikely but successful
conditions. The second generation trials are inspected and the procedure may stop
there if interesting crystals are found in one or more drops, or the process can be
reiterated to form a new generation of conditions. A simplified schematic illustration
of one cycle of such a procedure is shown in Fig. 3.1.

Saridakis [31] analyzes each population after each iteration and decides experi-
ments to set up.When it is considered that a new population may not yield successful
experiments, the experimenter may stop (e.g., after the second iteration if desired).
In a typical genetic algorithm, populations are generated after a number of iterations
(e.g., 100). The latest population is used for experiments. The major challenge of
this approach for protein crystallization screening is to use a viable fitness function.
In other words, how can a new condition be given a score higher than others without
experimenting? When a reliable fitness score is defined, the genetic algorithm may
run a number of iterations, and the experiments may utilize the last population of
conditions.
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3.5 Associative Experimental Design

The associative experimental design (AED) [14, 15] analyzes possible interactions
between reagents to determine new crystallization conditions. By analyzing the out-
come of preliminary experiments, the AED generates candidate cocktails identifying
screening factors that are most likely to lead to higher scoring outcomes, crystals.
Thus, AED is not just an optimization method for crystallization conditions, since it
could generate novel conditions leading to crystals.

Associative experimental design generates a new set of experiment conditions
by analyzing the scores of screening experiments already carried out in the lab. Plate
results are scored over the range 0 to 9, as listed in revised scores column in Table2.1.
For trace fluorescent labeling (TFL) [17], a score of 4 is assigned to outcomes giving
“bright spot” lead conditions. For AED let

D = {(C1,H1) , (C2,H2), . . . , (Cn,Hn)} (3.5)

be the dataset containing the pairs that include features of the conditions Ci and their
scores Hi for the ith solution in the dataset. For simplicity, this version does not
include conditions that have more than one type of salt or precipitant. AED uses the
three main components of the remaining conditions: type of precipitant, type of salt
and pH value of the solution, while separating their concentrations. Let

Ci = {
Si [sci] , pHi,Pi

[
pci

]}
(3.6)

be the set of reagents of the ith crystal cocktail where n is the number of samples in
the dataset, 1 ≤ i ≤ n, Si [sci] represents type of salt with the concentration of sci,
pHi value represents the pH of ith solution, and Pi

[
pci

]
represents type of precipitant

with the concentration of pci. Let R be a subset ofD that contains the crystal cocktail
pairs with a score greater than or equal to lowH and less than or equal to highH :

R = {(Ci,Hi) | (Ci,Hi) ∈ D, lowH ≤ Hi ≤ highH , 1 ≤ i ≤ n} (3.7)

In the preliminary experiments, the low score is set to 4 (lowH = 4) and the high
score is set to 7 (highH = 7). Therefore, the samples that have a score of 8 or 9 are
excluded to generate unbiased conditions for proteins. However, there is no harm to
include these scores, as well. Similarly, for simplicity the samples with scores from
1 to 3 have not been included to the result set.

The AED analysis process consists of two major phases. In the first phase, the
data is processed to reduce its size as stated before. Let

Rc = {Ci | (Ci,Hi) ∈ R} (3.8)

denote the set of conditions of R, SCi = {sc1, sc2, . . . , sck} represents the all unique
concentration values of the ith salt, and PCi = {pc1, pc2, . . . , pck} represents the all

http://dx.doi.org/10.1007/978-3-319-58937-4_2
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unique concentration values of ith precipitant. Then, all Ci and Cj condition pairs
are compared in Rc where i �= j. If Ci and Cj have a common component, then the
candidate conditions’ setZ is generated based on these two sets. For example, assume
thatCi = {Si [SCi] , pHi,Pi [PCi]} andCj = {

Sj
[
SCj

]
, pHj,Pj

[
PCj

]}
where Si = Sj

(i.e., the type of salt is common in Ci and Cj). Two new conditions Z are generated
by swapping the other components among each other. Therefore,

Z = {{
Si [SCi] ,pHj,Pi [PCi]

}
,
{
Si [SCi] ,pHi,Pj

[
PCj

]}}
(3.9)

is the set of candidate crystal cocktails for the pair Ci and Cj. In a similar way, candi-
date cocktails can be generatedwhere pH value or precipitant is common between the
pairs as well. After generating candidate combinations using these components, con-
ditions that are replicated or already in the screening data (i.e., have known outcomes)
are removed. In the second phase of this method, unique values of concentrations
are assigned to generate SCi and PCi, and unique type of buffers that were used in
the preliminary data is assigned to generate finalized crystal cocktails. At the end,
the results from two phases of the method are merged. Then, if the number of can-
didate conditions are more than the desired number of cocktails or there are some
bad combinations which are proved empirically, an optimization method is applied
to generate a set of conditions as mentioned in the following section. Examples of
bad combinations are those known to result in a phase separation or where the two
reagents react to form salt crystals. The steps of AED before optimization is provided
below.

1. Data preprocessing.
2. Generate a list of cocktails score between 4 and 7.
3. Generate triplets of salt, type of precipitant, and pH value.
4. Find common reagents between each triplet pairs.
5. Generate two new cocktails by swapping different reagents.
6. Generate unique concentration values for each specific reagent.
7. Assign concentration values.

In order to increase robustness, after obtaining the preliminary results from AED,
the family of the conditions from the cocktails having score 7, 8, or 9 for some of the
proteins is generated. Basically, the cocktails in a family consist of the same type of
buffer, precipitant, and salt with different concentrations. In the experiments, it was
possible to get multiple crystals for a single family. In other words, the number of
crystals in a family shows the robustness, the stability, and the reproducibility of that
family. In Sect. 3.7.2, brief information about these family of conditions is provided.

Sample Scenario Fig. 3.2 shows the scores from four experiments using a com-
mercial screen. The figure shows a partial graph of scores for common pH value
of 6.5. These conditions generated four scores: 1, 1, 4, and 4. As it can be seen,
none of the conditions lead to a good crystallization outcome for these condi-
tions. The AED method determines the common reagent between solutions that
could lead crystallization conditions. In this example, there are only two



3.5 Associative Experimental Design 41

Fig. 3.2 Sample preliminary results of experiments for AED ©2016 IEEE

Fig. 3.3 Visual example for AED ©2016 IEEE

promising conditions (with score 4):
[
Zn(O2CCH3)2,PEG 8K, pH = 6.5

]

and
[
(NH4)2SO4,PEG MME 5K, pH = 6.5

]
. The AED draws a rectangle where

these conditions (with score 4) are the two corners of this rectangle (Fig. 3.3)
and the other corners represent the candidate conditions. This scenario has two
possible candidate conditions. One of them (

[
(NH4)2SO4,PEG 8K, pH = 6.5

]
)

already appeared in the commercial screen and yielded a low score.
After conducting the experiment for the other condition
(
[
Zn(O2CCH3)2,PEG MME 5K, pH = 6.5

]
), a score of 7 was obtained after opti-

mizations. The experiments have not been conducted for others in the figure since
they were not on the corners of conditions with promising scores.



42 3 Computational Methods for Protein Crystallization Screening

3.6 Optimization of Cocktails

Computationalmethods such as theAEDmaygeneratemany candidate cocktails. The
output of thesemethods should be optimized by eliminating prohibited combinations
and prioritizing reagents based upon their performance in the input screens. After
identifying initial screens from outputs of these methods, the combinations known
to produce a precipitate are eliminated. These combinations are identified either
from the literature (for example [5, 6, 30]) or by empirical observation based on lab
experiments. This section adopts the optimizations done by the AED and describes
optimizations with respect to the AED analysis.

In the AED analysis, the number of candidate cocktails depends on the number
of cocktails that have scores in a range (e.g., from 4 to 7) in the input data. When
AED generates more cocktails than the desired number (e.g., the number of wells
in a plate) of cocktails, the experts may want to try the most promising candidate
cocktails that need to be set. For example, if AED generates 150 candidate cocktails,
the expert may want to know 96 cocktails to be tried for a 96-well plate. To resolve
this problem, an optimization process is employed to eliminate cocktails having poor
combinations of reagents and to prioritize the remaining conditions based on ametric.
The following stages are described in the following sections:

1. Eliminate prohibited combinations.
2. Prioritize remaining combinations.
3. Optimize the concentration values.
4. Rank prioritized cocktails.

3.6.1 Elimination of Prohibited Combinations

The output from theAED analysis usually results in more solution combinations than
were present in the initial screen(s). The AED analysis indicates all of the possible
unique combinations, and these are reduced to the final solutions by two processes.
First is to remove “prohibited” combinations of reagents, such as mixtures known,
either from the literature (for example [5, 5, 6]) or by empirical observation, to
produce a precipitate, to produce a phase separation (e.g., high concentrations of PEG
and a salt), those known to produce a precipitate, such as mixtures of divalent cations
with particular anions such as phosphate or sulfate, or those thatwould tend to remove
one or more of the components as unique entities in the solution, such as mixing
divalent cationswith diacid chelators such asEDTAor citrate.Additional unfavorable
pairings are added to this list, as they are empirically determined. Additionally, the
output does not (yet) take into account the feasibility of attaining the final solutions
on the basis of the available stock solution used for formulation. Thus, for example,
stock trisodium citrate is 1.6M. A solution calling for 0.1M buffer, 1.6M citrate, and
possibly a third component cannot be made using the available stocks. Redundant
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outputs are also removed, such as 0.1M citrate buffer with citrate as precipitants 1
and 2.

3.6.2 Prioritization of Reagents

The second step of the optimization is a simple prioritization of the reagents for their
association with better scoring outcomes. In this stage, the list of the reagents and
scores is sortedwith respect to the class of reagent being analyzed (buffer, precipitant,
salt, etc.). For a candidate cocktail C that consists of precipitant p, buffer b, and salt s
as reagents, the ratio of the average of the scores for the component of interest versus
all other scores is determined by the ranking.

Let δp, δs, and δb represent the scores of the cocktails having precipitant p, salt
s, and buffer b for a given screen file, respectively. Let � represent all scores of the
input file. Then, the significance ratio, ρ(δr) for each class of reagent: precipitant,
salt, and buffer, is computed as μ(δp)

μ(�−δp)
,

μ(δs)

μ(�−δs)
, and μ(δb)

μ(�−δb)
, respectively. Those

with significance ratio greater than 1 (ρ(δr) > 1) perform better than the average
while those with significance ratio less than 1 (ρ(δr) < 1) perform worse. After
identifying the components with highest significance ratios for each category, those
components appearing with high significance ratios are tried in the wet lab.

Once the composition of the 96 conditions for the AED optimization screen has
been determined, a pipetting table is generated to produce a block of 96 solutions
of 1mL volume, using the desired final concentrations for each reagent and the
stock solution concentrations. In some cases, the stock reagent concentrations are
not sufficiently high to produce the desired final solutions, typically indicated by a
negative value for the calculated distilled water added to bring the solution to the final
volume. In such cases, either the concentration of one of the precipitants is reduced
or an alternative set of solutions are used.

3.6.3 Ranking of Prioritized Conditions

In screen designing, it is important to know that whether a result cocktail is close
to another cocktail in the input screen data to make a judgment about its outcome
or priority. Chemical distance is a useful tool to evaluate the relationship between
cocktails [25]. A ranking method based on closeness of the prioritized cocktails to
the crystal cocktails in the preliminary data is applied to sort the prioritized cocktails
generated by AED. For example, in Fig. 3.4, assume that the green points indicate the
crystal cocktails with scores 4, 5, 6, 7, or 8, and red points indicate the AED results.
The candidates close to the green points may have a higher chance to yield a good
crystal compared to the other candidates.
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Fig. 3.4 Selecting the candidate cocktails ©2016 IEEE

For analyzing crystallization likelihood, the distance from AED cocktails (red
points) to all crystal cocktails (green points) is calculated firstly. At this point, no
score from the input list is eliminated, because even if the AED generates candidate
cocktails using crystal conditions having score 4 to 7, it is still able to generate some
cocktails that are close to 3D crystals in the chemical space. To calculate the distance
between two cocktails, cocktail distance coefficient (CDcoeff ) [9] given in Eq.3.10
is used:

CDcoeff = 1

sum(ω)
((

|E(pHi) − E(pHj)|
14

)ω1 + BC(Fi,Fj)ω2) (3.10)

whereω = ω1, ω2,ωi ≥ 0, and sum(ω) > 0.E(pHi) is the estimation of the pH in the
cocktail, and BC(Fi,Fj) is the Bray–Curtis dissimilarity measure[7] of fingerprints
of the chemicals as in shown Eqs. 3.11 and 3.12:

BC(Fi,Fj) =
∑

k

|Fik − Fjk|/
∑

k

|Fik + Fjk| (3.11)
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and

Fk =
n∑

i=1

fik[ci] (3.12)

where fik is the frequency count of descriptor k from the extended-connectivity fin-
gerprints of component i, and ci is the molar concentrations of the ith component
of the chemical. The detailed information about the calculation of the CDcoeff is
provided in [9] and at the website.3

Once the distances are calculated, for each AED cocktail, the minimum distance
to each crystal class and also to all crystal classes in the preliminary data are taken.
In this way, a matrix of distances to each crystal in the preliminary data is obtained.
By using the minimum distance to any crystal, the lists are sorted in ascending order.
This analysis is performed on the prioritized candidate cocktails.

3.6.4 Optimizing Concentration Values

The goal of the optimization screen here is to test the leading combinations over
several concentrations. Thus, for precipitant X in buffer Y , with additive Z , the
concentration of buffer Y and additive Z are kept constant (typically at 0.1 and 0.2M,
respectively.) while the concentration of precipitant X is varied. Concentrations of
X are varied over three solutions, starting at the highest concentration indicated
from either the AED analysis or by reference to the original screen compositions,
and reducing by typically 20–25% for each of the next two solutions. Thus, a 96
condition screen results in 32 unique combinations of X, Y , and Z at three different
concentrations of X.

A rapid reduction in the AED analysis listing can be carried out using the meth-
ods given. Output conditions are listed in order of their calculated priority scores,
highest to lowest. Those with the highest priority scores are the mixtures containing
the components judged most likely to result in crystals, while those with the lowest
are the least likely. The final screen conditions are arrived at by going through the
AED analysis and working down the priority listing. The AED analysis on its own
gives new and unique combinations not present in the original screens, while the
prioritization process gives the reagents associated with the highest scores. Opti-
mization screens based solely on prioritization lead to a “cookie cutter” approach
to optimization screen generation, where the same mixtures of precipitants are used
with different buffers. Thus the use of both approaches together is necessary for the
most comprehensive optimization screen. Regardless, the initial screen conditions
are constantly referred to when generating the AED optimization screen, primarily
as a guide to reagent concentrations.

3https://github.com/ubccr/cockatoo/.

https://github.com/ubccr/cockatoo/


46 3 Computational Methods for Protein Crystallization Screening

Table 3.1 Parameters of the proteins ©2016 IEEE

Protein pI MW % a-Helix % SS-Sheet % Coil

Tt82 4.85 27,900 34 5.8 24.5

Tt106 5.71 22,500 31.9 7.7 18.8

Tt189 5.8 19,600 24.1 6.5 25.9

Three commercial screens were chosen to have a diverse array of precipitants with
some overlap as defined by the C6webtool [25]. Themeasured diversities are:HRHT
to JCSG+ = 0.527,HRHT toMCSG−3 = 0.489, JCSG+ toMCSG−3 = 0.367.
Some repetition of conditions is present, and these are used as internal controls for
scoring and reproducibility. The fourth, Screen 4a, was devised by examination of
the components of the three commercial screens. A number of components are only
present once or twice, and Screen4a was devised to increase the overall occurrence
of these low-frequency components so that conclusions about their efficacy are not
based upon a single result.

3.7 Experiments and Evaluation

This section briefly explains experiments done for evaluation of the AED method.
Proteins were originally subjected to crystallization screening using a single 96 con-
dition screen as previously reported [29]. Subsequent efforts have used four 96 con-
ditions screens; Hampton Research High Throughput (HRHT , cat. #HR2−130 [1]),
Molecular Dynamics JCSG+ screen (cat. #MD1− 40 [3]), MicrolyticsMCSG − 3
Screen (cat. #MCSG−3 [2]), and a 96 condition screen under development in-house
identified as Screen4a. All proteins were trace fluorescently labeled with the dye 5-
(and 6)-carboxyrhodamine 6G (Molecular Probes cat.#C − 6157) prior to screening
[17, 29]. Crystallization screening plates were set up using 96 well plates having 3
drop positions per well (Corning CrystalEX, cat. #3553), with the protein: precipi-
tant ratio’s (v/v) for the drops being 1:1, 2:2, and 4:1. Plates were imaged using the
in-house developed Crystal X2 imager [32] (iXpressGenes/Molecular Dimensions),
with the first set of images immediately after set up, on days 1, 2, 4, and thence
on a weekly basis for the next six weeks. Plates were scored by visual observation,
with the scores then adjusted by reference to the fluorescent images [29]. Thus the
primary function of the fluorescent images was to remove non-protein objects from
the data, the discovery of crystals that were missed by visual examination, and the
assignment scores of 4.
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3.7.1 Proteins for Preliminary Experiments

The proteins were chosen to have a range of scoring outcomes based upon a sin-
gle crystallization screen. The three proteins employed in collecting preliminary
data are: Tt189, annotated as a nucleoside diphosphate kinase; Tt82, annotated as
a HAD superfamily hydrolase, and Tt106, annotated as a nucleoside kinase. These
proteins were chosen as being facile, moderately difficult, and difficult crystalliz-
ers, respectively. Secondary structure predictions were made using NetSurfP [27].
Protein molecular weights and pI’s were calculated using the ExPASY server [18].
A cutoff prediction of 0.8 was used to estimate the percent of secondary structural
features for each protein. The protein parameters are given in Table3.1. In the case of
Tt106, no crystals were obtained in the initial screening experiments, which involved
six replicate plates [29].

3.7.2 Results for Preliminary Data

Optimization screenswere devised based upon theAED analysis of the scored screen-
ing results, the 96 condition AED screens were then prepared and set up. For these
preliminary data sets, the AED optimization screen conditions covered a broader
range, with both precipitants 1 and 2 being varied over a range of conditions. Each
grouping represents a family of screen conditions around a common theme, con-
sisting of the same buffer and precipitants 1 and 2. Results analysis, as shown in
Table3.3, count the “families” where crystals were found, not the individual con-
ditions. The results for Tt189 are shown in Fig. 3.5, with each family of conditions
outlined in red. For all three proteins the AED derived conditions were judged to be
novel relative to the starting screen. When compared to all commercially available
screens 7 of the 8 conditions were found to be novel, i.e., not occurring elsewhere.
For the protein Tt106, the AED optimization screen only resulted in crystals after a
second optimization round using additives with the AED-derived conditions.

Success and Novelty of AED Screens. The crystallization screen components that
were determined to have the greatest positive effect were determined by the AED
software, and a 96 condition optimization screen generated using those components
for each protein. Optimization was in 96 well sitting drop plates, with the protein
being TFL’d to facilitate results analysis. The successful conditions were identified
and scored. Those conditions giving 2D and 3D crystals were then used to search the
C6 database [25] for similar conditions across all commercially available screens as
a determination of their uniqueness. Some sample images are provided in Fig. 3.6. As
the optimization screens had different concentration ratios for the same precipitant
pairs, each ratio where a hit was obtained was searched and the lowest C6 score was
used.

Table3.2 shows the score distribution of preliminary data versus AED results.
According to the table, AED generated more crystals than the preliminary data.



48 3 Computational Methods for Protein Crystallization Screening

Table 3.2 Data distribution ©2016 IEEE

Tt189 Tt82 Tt106

Score AED % HSHT % AED % HSHT % AED % HSHT %

0 0.00 0.00 10.42 31.25 0.00 18.75

1 3.13 68.75 65.63 47.92 30.21 44.79

2 40.63 0.00 13.54 6.25 32.29 21.88

3 6.25 8.33 5.21 0.00 4.17 0.00

4 3.13 12.50 0.00 4.17 0.00 10.42

5 23.96 5.21 2.08 6.25 12.50 3.13

6 1.04 0.00 2.08 0.00 0.00 1.04

7 12.50 0.00 0.00 4.17 10.42 0.00

8 9.38 5.21 1.04 0.00 10.42 0.00

Although AED results generated more crystals, not all cocktails are novel compared
to all commercial cocktails. Table3.3 shows the number of novel conditions gener-
ated by AED. The numerical values in the first two columns after the protein name
refer to the number of conditions with that score in the original screening experiment
(numerator) versus those with that score in the optimization screen (denominator).
The third column lists the number of optimization conditions that are novel compared
to the original screen, while the last column lists those that are novel compared to
all available screens. All found conditions were judged to be novel compared to the
original screen on the basis of the cutoff score criteria. For Tt189, one optimiza-
tion condition was identical to an existing commercial screen condition, but had no
identity with any of the original input screen conditions.

Fig. 3.5 Results for the
preliminary data AED screen
of protein Tt189. The filled
black circles represent
conditions where 3D crystals
were obtained, while the
open circles are those where
2D plate crystals were
obtained. Each family of
conditions is outlined in red
©2016 IEEE



3.7 Experiments and Evaluation 49

Fig. 3.6 Sample protein images a, b Tt82, c–e Tt189 © 2016 IEEE

Table 3.3 Summary of Experiments ©2016 IEEE

Protein annotated function HSHT
screena

Optimize
screen

Novel
Cond.
versus

Novel
Cond.
versus

Score = 7 Score = 8, 9 HSHT
Screenb

All
Screensb

Tt189 (Nucleoside diphosphate kinase) 0 / 2 5 / 3 5 4

Tt82 (HAD superfamily hydrolase) 1 / 1 0 / 1 2 2

Tt106 (Nucleoside kinase) 0 / 0 0 / 1 1 1
aHSHT : Hampton Screen High-Throughput
bUsing C6 tool for scores of 7, 8, and 9 threshold value of 0.3

3.7.3 Expanded Screen Analysis

The proteins employed are a protein from the archaeal exosome complex RrP42
plus the three described above from the hyperthermophilic archaeon Thermococcus
thioreducens [28], an inorganic pyrophosphatase from Staphylococcus aureus, and
human holo-transferrin (hTFN, Sigma, cat.# T-4132).

The proteins were subjected to the expanded screen tests and the results obtained
are given in Table3.4. In this case, only outcomes giving faceted 3D crystals are used
for an endpoint. For these proteins, the AED optimization screen conditions were in
groups of three, and each condition giving a crystal was counted.

Protein Tt189, from the preliminary results, was repeated. The results (Fig. 3.7)
indicate that of the 32 families of conditions optimized 20 of them resulted in 3D
crystals (63%) compared to the 3 out of 7 (43%) from the preliminary data. The
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Fig. 3.7 AED optimization
screen for protein Tt189, the
screen, in this case, is
generated using the
combined results from four
different 96 condition
crystallization screens. The
individual families of
conditions are outlined in
red. Only those conditions
resulting in 3D crystals are
shown ©2016 IEEE

results are shown in Fig. 3.7 also indicate where the more “robust” crystallization
conditions are to be found, those where all three concentrations of precipitant 1
resulted in crystals.

For Staphylococcus aureus IPPase (SaIPP), two crystals were obtained in the
four screens or the AED optimized screen. However, the AED screen did result in a
number of conditions that had a score of 5, non-faceted crystals. The analysis had
indicated that low MW polyethylene glycols, divalent cations, and basic pH’s were
the lead factors for obtaining crystals. The AED-derived screen results confirmed the
high pH and low MW polyethylene glycols and further indicated that Ca++, but not
Mn++ or Mg++, was the best divalent cation. Every well containing Ca++ resulted
in spheroids or rough non-faceted crystals, while none of those containing Mn++ or
Mg++ had any. While these are not suitable for diffraction analysis, they can be used
as a source of seed crystals [11]. The optimization conditions were subsequently
tested using crystallization by capillary counter diffusion [26], which resulted in the
two hits obtained.

Table 3.4 Optimization results ©2016 IEEE

Protein # of Crystals 4X screens/AED conditions
(family’s)

Holo Human transferrin 1/5 (4)

RrP42 (archaeal exosome protein) 4/15 (7)

Tt189 (nucleoside diphosphate kinase) 10/33 (20)

Tt106 (nucleoside kinase) 1/9 (6)

Tt82 (HAD superfamily hydrolase) 8/3 (2)

Stapylococcus aureus inorganic
pyrophosphatase

0/2 (2)
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For three of the four proteins, more crystallization conditions were determined by
the AED screen than were found using the four “set” screens. In two of these cases,
more families of conditions were determined.

3.7.4 Evaluation of Ranked Results

Evaluation of ranked results is needed to compare several methods based on whether
they rank crystalline candidate conditions at the top of their list or not. Unfortunately,
there are not even handful of successful and actively used prevalent computational
methods that analyze previous experiments. However, such comparison of rankings
is still needed when there are competitive virtual screening methods.

The traditional ranking methods are sensitive to irrelevant samples appearing
before relevant samples. For protein crystallization, if all relevant cocktails are
included in a well plate, it is not critical to have screens leading to noncrystals.
The list of cocktails is partitioned into bins and then the number of relevant (crys-
talline) screens in each bin is analyzed. Ideally, the good candidate cocktails should
appear in bins that correspond to the top of the ranked list.Bin−Recall [15]measures
how “close” the cocktails that yield crystals to the top of the ranked list. It generates a
normalized value, which is close to 1 (or 100%) when the ranking results are similar
to the best case, and it is 0 when the results are far from the best case.

Bin − Recall is computed based on the formulation given in Eq.3.13:

Rbin =
∑|B|

j=1 δj(
∑Scmax

i=Scmin
ωini,j) − ∑n

i=1 Siδ� n−i
binSize�ω(Si)

∑n
i=1 Siδ� i

binSize�ω(Si) − ∑n
i=1 Siδ� n−i

binSize�ω(Si)
(3.13)

where |B| is the number of bins, δj is the weight of the bin j, ωi is the weight of
the score i, and ni,j is the number of score i in bin j. S is the list of ordered scores,
where cmin is the minimum crystal score and cmax is the maximum crystal score.
The denominator of the expression is used to normalize the measure dividing by the
best scenario (i.e., all crystalline conditions appear in the top bin) minus the worst
scenario (i.e., all crystalline conditions appear in the lower bins). The numerator
computes the value based on the distribution of the scores to the bins and subtracts
the worst case. Bin−Recall measure allows to give high weights (ωi) to cocktails or
samples having high scores. Similarly, bins can also be assigned weights (δj) based
on where all crystalline conditions should appear. In this case, the top bin having
low distances to crystals is given the highest weight. Ideally, the goal is to obtain
Bin − Recall value of 100%. It depends on the expert to determine the number of
bins for analysis.

The partitioning of scores into 3 binswith respect to distance to crystals is provided
in Table3.5. Protein Tt106 had high number of score 8 cocktails in Bin 1 when
considering distance to score 4 and all crystals. Its bin-recall measure with respect
to distance to score 4 (and also all crystals) is computed as follows:
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(3.14)

In this equation, the weights of bins are assigned as δ1 = 3, δ2 = 2, and δ3 = 1.
There are some score 8 cocktails in Bin 2 and Bin 3. Moreover, 6 of score 7 cocktails
appear in Bin 2. The presence of high scoring cocktails in lower bins reduced its
score.

3.8 Summary

In this chapter, we have provided an overview of protein crystallization screening
methods that analyze outputs of previously conducted experiments in the wet labs.
Three successful screening methods for analysis was based on neural networks,
genetic algorithms, and the new associative experimental design. The computational
methods may generate numerous cocktails and the output screens should be opti-
mized for wet lab experiments. The optimizations include the elimination of prohib-
ited conditions, prioritizing remaining conditions, optimizing concentration values
and ranking prioritized cocktails. Although obtaining crystalline conditions in the
newscreens is important, a rankingof cocktails basedon their likelihoodof crystalline
conditions is also critical if a number of screens are designed for wet lab experiments.
More computational methods are needed to help crystallographers design successful
experiments. Among these methods, the AED is actively used and generated a good
number of novel conditions that did not exist in commercial screens for a variety of
proteins. There are reasons beyond simply obtaining a crystal for using a method
such as the AED analysis:

• Finding more robust conditions. Crystal nucleation is a stochastic process, and
it is not uncommon to set up the same condition multiple times with varying out-
comes [25, 29]. The AED analysis approach not only helps to find new crystalliza-
tion conditions but also, as implemented herein, findsmore “robust” crystallization
conditions, i.e., those that are less sensitive to the concentration of one or more
of the components present. This is shown in Fig. 3.7, where for each family, there
are three different concentrations of precipitant #1. Those conditions that are more
sensitive are identified by only one outcome having 3D crystals in a family, and
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Table 3.5 3-Bin partition of the proteins based on different ranking schemes ©2016 IEEE

Score Bin 1 Bin 2 Bin 3

Protein Tt189 Min distance to score 4 5 9 6 8

6 1 0 0

7 4 5 3

8 2 2 5

Min distance to score 5 5 6 10 7

6 0 1 0

7 2 4 6

8 6 2 1

Min distance to score 8 5 7 10 6

6 1 0 0

7 0 4 8

8 2 5 2

Min distance to all crystals 5 10 7 6

6 1 0 0

7 2 4 6

8 4 3 2

Protein Tt82 Min distance to score 4 5 0 2 0

6 1 1 0

7 0 0 0

8 1 0 0

Min distance to score 5 5 1 1 0

6 0 2 0

7 0 0 0

8 0 0 1

Min distance to score 7 5 0 2 0

6 0 1 1

7 0 0 0

8 0 0 1

Min distance to all crystals 5 0 2 0

6 1 1 0

7 0 0 0

8 1 0 0

Protein Tt106 Min distance to score 4 5 4 6 2

6 0 0 0

7 3 6 1

8 6 2 2

Min distance to score 5 5 5 4 3

6 0 0 0

7 4 4 2

8 5 4 1

Min distance to all crystals 5 4 6 2

6 0 0 0

7 3 6 1

8 6 2 2
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those that are less sensitive have crystals in all three concentrations of precipitant
#1.

• Improving existing conditions. The existing found crystallization conditionsmay
not be readily repeatable, or may not give crystals diffracting to a sufficient reso-
lution. AED analysis can reveal an expanded range of conditions, some or many
of which may resolve these problems.

• Possibly new space groups (to facilitate binding analysis). Binding studies
where potential ligands are soaked into a crystal to determine their location upon
diffraction analysis require that the binding sites be available, not occluded by
crystallographic contents. Space groups obtained in initial screening experiments
may not be suitable for these studies, prompting a search for new packing arrange-
ments.

• Improved diffraction resolution. Having good looking crystals does not auto-
matically translate to good diffraction resolution. However, having crystals where
previously one had none, such as with the protein Tt106, does markedly improve
one’s chances of obtaining a structure. Thus, a primary reason for theAED analysis
is to find crystallization conditions where there previously were none. Addition-
ally, crystal nucleation is a stochastic process. From Figs. 3.5 and 3.7, we see
that there are families having many crystallization conditions, and families only
having 1 or none. It is intuitively apparent that those with many conditions are
more robust, less sensitive to component concentrations and more likely to result
in crystals, than those with few conditions. This is important when carrying out
additional screening trials and optimizations for improved diffraction resolution
and for studies such as for substrate binding or drug development.

• Improved crystal size (for neutron diffraction). Although not shown in the data
presented, the AED optimization results yielded a range of crystal sizes. Neutron
diffraction requires crystals ≤ 1mm3 in size. Conditions that favor larger crystals
can be determined from these results and are likely a more favorable starting point
for growth of large volume crystals.

As shown by comparing Figs. 3.5 and 3.7, using more screens in the initial search
gives a larger search space for the AED analysis. Commercially available screens
have a finite number of precipitants present. Increasing the number of screens results
in exposure to an expanded range of conditions, although some are only present in
1 or 2 of the conditions. For this reason, Screen 4a was formulated to increase the
occurrence of these occasional precipitants to complement the other three screens.

Not all proteins yielded crystals upon AED optimization screening. In the case of
Tt106, the crystals were obtained from theAED-identified conditions after additional
optimization using crystallization additives. In the case of SaIPP, the AED analysis
indicates those conditions, which should be most likely to result in crystals, and as
such is the starting point for subsequent screening experiments. AED analysis results
in screen conditions, thus screens, that are formulations of the components most
likely to yield crystals of that protein.

Acknowledgements The the first and second paragraphs (except the first sentences) of Sect. 3.3
are Reprinted from Progress in Biophysics and Molecular Biology, Volume 88, Issue 3, Lawrence



3.8 Summary 55

J. DeLucas, David Hamrick, Larry Cosenza, Lisa Nagy, Debbie McCombs, Terry Bray, Arnon
Chait, Brad Stoops, Alexander Belgovskiy, W. William Wilson, Marc Parham, Nikolai Chernov,
Protein crystallization: virtual screening and optimization, Pages 285–309, Copyright (2005) with
permission from Elsevier.

The second paragraph (except the first two sentences) and the third paragraph of Sect. 3.4 are
Reprinted (adapted) with permission from Crystal Growth and Design 2011 11 (7), Emmanuel
Saridakis, Novel Genetic Algorithm-Inspired Concept for Macromolecular Crystal Optimization,
2993–2998. Copyright (2011) American Chemical Society. ©2016 IEEE. Reprinted, with permis-
sion, from I. Dinç, M. L. Pusey, and R. S. Aygün, “Optimizing Associative Experimental Design
for Protein Crystallization Screening,” in IEEE Transactions on NanoBioscience, vol. 15, no. 2, pp.
101–112, March 2016. doi: https://doi.org/10.1109/TNB.2016.2536030.

References

1. Hampton Research Screen HT. https://hamptonresearch.com/documents/product/hr000783_
crystal_screen_2.xls. Accessed 1 November 2015.

2. Microlytics MCSG-3 Screen. http://www.microlytic.com/sites/default/files/MCSG3_
Formulations_0_0_0.pdf. Accessed 1 November 2015.

3. Molecular Dynamics JCGS+ Screen. http://www.moleculardimensions.com/applications/
upload/Md1-40%20JCSG%20Plus%20HT-96.pdf. Accessed 1 November 2015.

4. Abergel, C., Moulard, M., Moreau, H., Loret, E., Cambillau, C., & Fontecilla-Camps, J. C.
(1991). Systematic use of the incomplete factorial approach in the design of protein crystal-
lization experiments. Journal of Biological Chemistry, 266(30), 20131–20138.

5. Asenjo, J. A., & Andrews, B. A. (2011). Aqueous two-phase systems for protein separation: a
perspective. Journal of Chromatography A, 1218(49), 8826–8835.

6. Asenjo, J. A., & Andrews, B. A. (2012). Aqueous two-phase systems for protein separation:
phase separation and applications. Journal of Chromatography A, 1238, 1–10.

7. Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern
wisconsin. Ecological Monographs, 27(4), 325–349.

8. Brodersen, D. E., Andersen, G. R., & Andersen, C. B. F. (2013). Mimer: an automated
spreadsheet-based crystallization screening system. Acta Crystallographica Section F, 69(7),
815–820.

9. Bruno, A.E., Ruby, A.M., Luft, J.R., Grant, T.D., Seetharaman, J., Montelione, G.T., Hunt,
J.F., and Snell, E.H. Comparing chemistry to outcome: the development of a chemical dis-
tance metric, coupled with clustering and hierarchal visualization applied to macromolecular
crystallography.

10. Carter, C. W, Jr., & Carter, C. W. (1979). Protein crystallization using incomplete factorial
experiments. The Journal of Biological Chemistry, 254(23), 12219–12223.

11. D’Arcy,A., Bergfors, T., Cowan-Jacob, S.W.,&Marsh,M. (2014).Microseedmatrix screening
for optimization in protein crystallization: what have we learned? Acta Crystallographica
Section F: Structural Biology Communications, 70(9), 1117–1126.

12. DeLucas, L. J., Hamrick, D., Cosenza, L., Nagy, L., McCombs, D., Bray, T., et al. (2005). Pro-
tein crystallization: virtual screening and optimization. Progress in Biophysics and Molecular
Biology, 88(3), 285–309.

13. Dinc, I. (2016).AssocitiaveDataAnalytics and its Application to ProteinCrystallizationAnaly-
sis. Ph.D dissertation, University of Alabama in Huntsville.
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Chapter 4
Robotic Image Acquisition

Abstract Protein crystallization is a complex phenomenon requiring thousands of
experiments corresponding to different crystallization conditions for successful crys-
tallization. In recent years, high-throughput robotic setups have been developed to
automate the protein crystallization experiments, and imaging techniques are used
to monitor the crystallization progress. Having an automated system to classify the
images according to the crystallization phases can be very useful to crystallographers.
This chapter describes the design and implementation of a stand-alone, low-cost, and
real-time system for protein crystallization image acquisition and classification with
a goal to assist crystallographers in scoring crystallization trials.

4.1 Introduction

Protein crystallization is the core part of protein crystallography studies. Numerous
factors such as protein purity, pH, temperature, protein concentration, the type of
precipitant, and the crystallization methods play an important role in crystallization
[16]. The correct combination of all these factors is essential for the formation of
crystals. However, it is difficult to predict exact conditions for protein crystallization
[7]. Therefore, thousands of crystallization trials are often required for successful
crystallization. Several robotic systems have been developed to automate crystalliza-
tion process. Berry et al. [2] previously provided a review of the developments in
high-throughput robotic setups to automate the crystallization experiments.

Crystallization trials should be observed periodically to assess the evolving
progress of crystal growth or crystallization pathway. Knowledge about the crys-
tallization phase helps in making several decisions. For instance, unsuccessful crys-
tallization trials can be discarded. X-ray diffraction can be applied to single optically
clear crystal. Likewise, if a protein is in the pathway of crystallization, the condi-
tions can be optimized to get a crystalline outcome [15]. Therefore, high-throughput
robotic systems should not only distinguish between crystal and non-crystals but also
identify the likely-lead conditions for optimization.

© Springer International Publishing AG 2017
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Crystallization process may need to be monitored in different time spans (e.g.,
daily, weekly or monthly) depending on the protein and crystallization conditions.
Since a large number of crystallization trials is required and these trials should be
periodically assessed, manual analysis takes significant time. A number of research
and commercial systems have been developed to facilitate the imaging of crystalliza-
tion setups. In the past, commercial systems have been very large systems requiring
expensive setup. High-throughput systems can reduce the tedious work to be com-
pleted by experts by automating the overall process. There are three main factors
essential for practical use of these systems: (1) the results should be delivered fast,
(2) the analysis results should be reliable, and (3) the cost should be low. High-
throughput systems for protein crystallization analysis have in general the following
issues:

1. Existing automated systems are very expensive and not portable.
2. Crystal detection is a complex process and usually requires complex image

processing algorithms to extract features related to shapes of objects in an image.
This makes it difficult to process and classify images in real time.

3. While achieving a real-time and automated system, a good level of accuracy
needs to be maintained.

The scoring methods, image processing & feature extraction methods, classifica-
tion methods, running time of analysis, and the accuracy of the overall system play
critical role in usability of these systems in addition to the hardware components.

Levels of scoring Because of the high-throughput crystallization approach, manual
review becomes impractical. Therefore, automated image scoring systems have been
developed to collect and classify the crystallization trial images. The fundamental
aim is to discard the unsuccessful trials, identify the successful trials, and possi-
bly identify the trials which could be optimized. A significant amount of previous
work (for example, Zuk & Ward (1991) [26], Cumba et al. (2003) [5], Cumba et
al. (2005) [3], (4) Zhu et al. (2004) [25], Berry et al. (2006) [2], Pan et al. (2006)
[13], Po & Laine (2008) [14] has described the classification of crystallization trials
into non-crystal or crystal categories. Yang et al. (2006) [24] described classification
into three categories (clear, precipitate, and crystal). Bern et al. (2004) [1] classified
the images into five categories (empty, clear, precipitate, microcrystal hit, and crys-
tal). Likewise, Saitoh et al. (2006) [18] described classification into five categories
(clear drop, creamy precipitate, granulated precipitate, amorphous state precipitate,
and crystal). Spraggon et al. (2002) [22] described classification of the crystalliza-
tion imagery into six categories (experimental mistake, clear drop, homogeneous
precipitant, inhomogeneous precipitant, microcrystals, and crystals). Cumba et al.
(2010)[4] have developed the most optimistic system which classifies the images
into three categories or 10 categories. It should be noted that there is no standard
for categorizing the images, and different research studies have proposed different
categories in their own way.
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Image Processing and Feature Extraction Most of the proposed algorithms start
image processing by determining the region of interest (droplet boundary) to define
the search region for crystals, a computationally expensive process. The general
technique applied here is to first apply an edge detection algorithm such as Sobel
edge detection or Canny edge detection which is followed by some curve fitting
algorithms such as Hough transform (Berry et al. (2006) [2], Pan et al. (2006) [13],
Spraggon et al. (2002) [22], Zhu et al. (2004) [25]). Bern et al. (2004) [1] determined
the drop boundary by applying edge detection followed by dynamic programming
curve tracking algorithm. Yang et al. (2006) [24] used a dynamic contour method on
Canny edge image to locate the droplet boundary. Cumba et al. (2003) [5] applied a
probabilistic graphical model with a two-layered grid topology to segment the drop
boundary. Po & Laine (2008) [14] used multiple population genetic algorithms for
region of interest detection. Saitoh et al. (2004) [19] and Saitoh et al. (2006) [18]
simplified this process by defining a fixed 150[pixel] × 150[pixel] portion inside a
well as the region of interest for search of crystals.

For feature extraction, a variety of image processing techniques have been pro-
posed. Zuk &Ward (1991) [26] used the Hough transform to identify straight edges
of crystals. Bern et al. (2004) [1] extracted gradient and geometry-related features
from the selected drop. Pan et al. (2006) [13] used intensity statistics, blob texture
features, and results from Gabor wavelet decomposition to obtain the image fea-
tures. Research studies of Cumba et al. (2003) [5], Saitoh et al. (2004) [19], (14)
Spraggon et al. (2002) [22], and Zhu et al. (2004) [25] used a combination of geo-
metric and texture features as the input to their classifier. Saitoh et al. (2006) [18]
used global texture features as well as features from local parts in the image and
features from differential images. Yang et al. (2006) [24] derived the features from
gray-level co-occurrence matrix (GLCM), Hough transform and discrete Fourier
transform (DFT). Liu et al. (2008) [8] extracted features from Gabor filtersGabor
wavelet, filter, integral histograms, and gradient images to obtain 466-dimensional
feature vector. Po & Laine (2008) [14] applied multiscale Laplacian pyramid fil-
ters and histogram analysis techniques for feature extraction. Cumba et al. (2010)
[4] presented the most sophisticated feature extraction techniques for the classifica-
tion of crystallization trial images. Features such as basic statistics, energy, Euler
numbers, Radon-Laplacian features, Sobel edge features, microcrystal features, and
GLCM features are extracted to obtain a 14,908-dimension feature vector. Although
increasing the number of features may help improve accuracy, it may slow down the
classification process. In addition, the use of irrelevant features may deteriorate the
performance of some classifiers.

Running Time of Experiments Because of the high-throughput rate of image col-
lection, the speed of processing an image becomes an important factor. One of the
most time-consuming steps is the determination of a region of interest or the drop
boundary. Likewise, extraction of a large number of geometric and texture features
increases the time and image processing complexities. The system by Pan et al.
(2006) [13] required 30s per image for feature extraction. Po & Laine mentioned
that it takes 12.5 s per image for the feature extraction in their system [14]. Because
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of high computational requirement, they are considering implementation of their
approach on the Google computing grid. Feature extraction described by Cumba et
al. (2010) [4] is the most sophisticated, which could take 5h per image on a nor-
mal system. To speed up the process, they execute the feature extraction using a
web-based distributed computing system. Overall, the image processing and feature
extraction have been computationally expensive making it infeasible for real-time
processing.

Classification To obtain the decision model for classification, a variety of classifi-
cation techniques have been used. Zhu et al. (2004) [25] and Liu et al. (2008) [8]
applied a decision tree with boosting. Bern et al. (2004) [1] used a decision tree clas-
sifier with hand-crafted thresholds. Pan et al. (2006) [13] applied an SVM learning
algorithm. Saitoh et al. (2006) [18] applied a combination of decision tree and SVM
classifiers. Spraggon et al. (2002) [22] applied self-organizing neural networks. Po et
al. (2008) [14] combined genetic algorithms and neural networks to obtain a decision
model. Berry et al. (2006) [2] determined scores for each object within a drop using
learning vector quantization, self-organizing maps, and Bayesian algorithms. The
overall score for the drop is calculated by aggregating the classification scores of
the individual objects. Cumba et al. (2003) [5] and Saitoh et al. (2004) [19] applied
linear discriminant analysis. Yang et al. (2006) [24] applied hand-tuned rule-based
classification followed by linear discriminant analysis. Cumba et al. (2005) [3] used
association rule mining, while Cumba et al. (2010) [4] used multiple random forest
classifiers generated via bagging and feature subsampling.

Accuracyof theSystemWith regard to correctness of classification, the best reported
accuracy for the binary classification, i.e., classification into twocategories, is 96.56%
(83.6% true positive rate and 99.4% true negative rate, while classifying 8% of
crystals into non-crystal categories) using deep convolutional neural network (CNN).
Po et al. (2008) [14] achieved 93.5% average true performance (88% true positive
and 99% true negative rates). Saitoh et al. have achieved accuracy in the range of
80–98% for different image categories [19]. Likewise, the automated system by
Cumba et al. (2010) [4] detects 80% of crystal-bearing images, 89% of precipitate
images, and 98% of clear drops accurately. The performance of the various systems,
however, cannot be compared directly as they have used different datasets, different
class categories, and number of categories. The current systems are not fully reliable,
and there is still much room for improvement in terms of performance.

This chapter introduces how to build a low-cost, portable, real-time, and compara-
tively accurate robotic microscopy system for analysis of crystallization trial images.
A low-cost architecture should not require expensive hardware parts. The keyword
real-time has a semantics beyond fast computation. Real-time processes have dead-
lines. In this domain, the deadline is set as the time to move the microscope from one
well to another well. The processing and analysis should be completed within this
period. While achieving real-time analysis, the accuracy cannot be sacrificed. Later,
this chapter also covers how classifiers could be built to minimize missing detec-
tion of crystals. The feature set used in this chapter has 45 features obtained from
binarized images using three thresholding techniques. The use of small number of
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features helps achieve real-time analysis without sacrificing accuracy. The detailed
analysis of features is provided in Chap.5.

4.2 Components of a Robotic Setup

Several robotic systems have been developed to automate crystallization process.
Berry et al. (2006) [2] provide a review of the developments in high-throughput
robotic setups to automate the crystallization experiments. Many robotic setups col-
lect the images under white light. Processing and analysis of white-light images
might be challenging since crystal regions are not easily separable from the solution.
On the other hand, fluorescence microscopy may simplify image analysis signifi-
cantly by adding a few stages to screen preparation. This chapter discusses the use
of fluorescence microscopy for evaluating protein crystallization trials.

4.2.1 Well Plates

Crystallization trials setups use well plates that allow experimenting different combi-
nations of crystallization conditions. A typical well plate consists of wells arranged in
rows and columns. The experimental protein solution is placed in thewells. Figure4.1
shows a typical well plate.1 Some plates have several protein drop positions per pre-
cipitant reservoir. The structure of a well plate determines the scanning process for
robotic setup.

4.2.2 Fluorescence Microscopy

It has been shown that trace fluorescent labeling can be a powerful tool for visually
finding protein crystals [7, 15]. The design of a low-cost assembled fluorescence
microscopy system that utilizes trace fluorescent labeling of protein solution that
results in higher image intensity for the solution containing crystals, thereby sim-
plifying the feature extraction process, has been described in [21]. The commercial
model of the assembled microscopy system Crystal X2 from iXpressGenes, Inc. has
been used to collect the images shown in this treatise.

Studies on trace fluorescently labeled proteins have shown image intensity to
be proportional to the structure or packing density of the proteins solid state [7,
15]. The fluorescence approach considerably simplifies finding crystals in a droplet,
reducing the problem to one of finding the high-intensity regions, as opposed to
finding the straight lines or particular shapes of objects that are often of low contrast.

1https://commons.wikimedia.org/wiki/Main_Page

http://dx.doi.org/10.1007/978-3-319-58937-4_5
https://commons.wikimedia.org/wiki/Main_Page
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Fig. 4.1 Sample well plate

Fig. 4.2 Microscope structure. Reprinted (adapted)with permission fromCrystal Growth&Design
2013 13 (7), Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun, 2728–2736. Copyright (2013)
American Chemical Society

Morphological analysis can be carried on sufficiently intense regions to determine
if they can be formally classified as a crystal (presence of straight lines) or as a
“bright spot” lead condition. This makes the feature extraction phase simple and
faster than traditional pure image processing systems using white-light images for
protein crystal detection.
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The layout of an in-house assembled fluorescence microscopy system is shown
in Fig. 4.2. Excitation light is supplied by an ultrabright light-emitting diode (LED)
and emission filters. The light is focused and imaged by a 35mm imaging lens.
Image acquisition is done by a color camera connected to the computer through an
ethernet cable. Stepper motors are interfaced through serial port of the connected
PC. The motors control the position of the stages in the X- and Y-axes and of the
camera (focus) in the Z-axis. The X, Y, and Zmovements of the stepper motor-driven
stages allow the camera to be positioned the exact drop positions for each precipitant
condition. The crystallization plate is placedmanually in the plate holder. The system
supports standard plates and additional plate designs can be readily accommodated.

In Crystal X2, the standard “scope” is equipped with two high-intensity light-
emitting diodes (LEDs), having peak emission of 530 and 590nm. The light
source and filter set are optimized for use with carboxyrhodamine (CR, Molecular
Probes/Invitrogen cat. # C-6157) and Texas Red (TR, Molecular Probes/Invitrogen
cat. # T-10244). Other fluorescent probes can be used if the light source and fil-
ters are changed accordingly. Other available high-intensity LED-based excitation
wavelengths are 365, 385, 400, 420, 455, 470, 505, 530, 590, 617, 625, and 656nm.
Wavelengths below 400nm will require different optical elements and objectives.
Emission wavelengths above 650nm will require a camera without an IR filter.

When selecting alternative probes, care should be taken that they are not sensitive
to, e.g., pH, specific ions, etc. Many crystallization screens cover a broad range of
chemical conditions, and many of the available fluorescent probes are sensitive to
components or conditions present in the screening cocktails. However, while this
has not (yet) been rigorously shown, being buried within a crystal may also serve to
shield the probes from conditions that may negatively affect their fluorescence.

CRSE (succinimidyl ester) is available fromMolecular Probes/Invitrogen in 5mg
bottles. Other sized containers may be available from other vendors. It is useful
to directly add 1mL of anhydrous solvent to the contents of the bottle and use
the resulting solution. Between uses, the bottle can be stored at −20◦C. However,
experimenter should be careful to prewarm the bottle prior to opening and to avoid
introduction of water to the bottle.

PCR tubes containing pre-aliquoted reactive dye can be set up to avoid having to
subject the stock dye solution to repeated warming–cooling cycles, and the aliquots
should be stored in a freezer immediately after preparation. Before opening, the
tubes should be warmed to room temperature. The reactive dye is moisture sensitive,
and repeated warming–cooling cycles increase the likelihood that moisture will get
into the tubes, condense, and hydrolyze the dye. When removing a PCR tube of dye
for use, take care to not keep the remaining tubes out to where they warm up. The
advantage is that they are pre-measured, and one does not have to worry about the
long-term stability of a larger bottle over repeated trips to and from the freezer.

To derivatize the protein, the scheme described in Pusey et al. (2015) [17] is used.
This prepares the canonical 1mL of protein at concentrations around 10mg/mL
which is routinely prepared in our laboratory. If smaller quantities of protein are to
be derivatized, reduce the volumes that are buffer exchanged accordingly. Also, to
avoid over labeling the protein, dilute the aliquot of dye proportionately. Note that
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according to the manufacturer’s instructions, when desalting or buffer exchanging
solution volumes < 70 uL a chaser solution should be added on top to ensure that all
the protein is properly eluted (http://www.piercenet.com/instructions/2161729.pdf).
This may result in a final solution volume greater than desired, and thus an added
concentration step. A smaller desalting column is available from the manufacturer,
able to handle a maximum volume of 12 uL, about one-tenth the capacity of the
0.5mL volume columns. The proteins used in these studies are trace fluorescently
labeled. Carboxyrhodamine (Invitrogen) is favored as the covalent labeling probe of
choice due to its high absorptivity, quantum yield, and relative lack of pH sensitivity.

4.3 Image Acquisition

The basic flow of the image acquisition is shown in Fig. 4.3. The protein crystalliza-
tion screening plate is manually loaded into the assembled microscopy system. First,
the probe (light) configuration is loaded, and the camera is initialized with proper
settings. The plate configuration is then loaded to seek the coordinate of each well in
the plate. At the start, the camera is positioned to the top-left corner of the well plate.
For each well, the camera is positioned above the well, and the image is captured and
saved in the repository. This process is repeated until all the wells are scanned. The
commercial version of the microscopy system, Crystal X2, is developed by iXPress-
Genes, Inc. It takes around 12min to collect images from a 3-celled 96-well plate.
The Crystal X2 system also comes with a classification framework for categorizing
images automatically.

4.4 Image Processing and Segmentation

Expert-classified images are used to obtain a decision model for the classification of
new images. It is important to focus on fast and effective image processing techniques
so that the time for processing an image is less than the time between collecting two
images. The steps of the image processing and feature extraction are explained below.
Image feature extraction involves preprocessing steps such as color conversion, image
thresholding, edge detection, region segmentation, etc. The main goal here is to
extract useful features considering the feasibility for real-time analysis for the target
system. Deeper analysis of using various features for analysis of crystallization trial
images is provided in Chap.5.

Consider an image I of size H x W . Let I (x, y) represent the pixel at location
(x,y) where 1 ≤ x ≤ H and 1 ≤ y ≤ W. In a color image, each pixel consists of red
(R), green (G), and blue (B) components and can be described as a 3-tuple (R, G,
B). The red, green, and blue intensity values of a pixel at I (x, y) are represented as
IR(x, y), IG(x, y), and IB(x, y), respectively.

http://www.piercenet.com/instructions/2161729.pdf
http://dx.doi.org/10.1007/978-3-319-58937-4_5
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Fig. 4.3 Image acquisition
flow. Reprinted (adapted)
with permission from Crystal
Growth & Design 2013 13
(7), Madhav Sigdel, Marc L.
Pusey, and Ramazan S.
Aygun, 2728–2736.
Copyright (2013) American
Chemical Society

Figure4.4 shows the components of Crystal X2. First, images are down-sampled
and then median filter is applied for noise removal. Next, binary images are gener-
ated by three thresholding techniques. Then, image intensity features are extracted
by combining the binary image and median-filtered image. Likewise, blobs are gen-
erated from the binary images and features are extracted related to the shape or size of
the individual objects. Details on the feature extraction process are explained below.
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Fig. 4.4 Flowchart for image processing and feature extraction. Reprinted (adapted) with permis-
sion from Crystal Growth & Design 2013 13 (7), Madhav Sigdel, Marc L. Pusey, and Ramazan S.
Aygun, 2728–2736. Copyright (2013) American Chemical Society

4.4.1 Image Preprocessing

Image down-sampling A high-resolution image may keep unnecessary details
for image classification, especially, if the image has significant noise. In addition,
processing a high-resolution image increases the computation time significantly.
Therefore, the images are down-sampled before further processing. Suppose image
I (HxW ) is to be down-sampled by k times. Then, the resulting image ↓I is of size
hxw where h = H/k and w = W/k. In these experiments, the original size of the
images is 2560× 1920. By down-sampling it by eightfold, image size is reduced to
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320 × 240. For this dataset, the down-sampled images contain sufficient detail for
feature extraction.
Noise removal The down-sampled image ↓I is passed through a median filter to
remove random scattered noise pixels. Among different filters, median filter provided
the best results for noise removal. To apply the median filter, a neighborhood window
of size (2p + 1)x(2q + 1) around a point (x, y) is selected. Suppose x

p R
y
q represents

a region in the original image centered around (x, y) with top-left coordinate (x −
p, y − q). F maps a 2D data into 1D set and median (F(xp R

y
q )) provides the median

value in the selected neighborhood around (x, y). The red component in the resulting
region (image) is denoted by Mr (x, y) and is given by (4.1)

Mr (x, y) = median(F(xp↓ I yq )) (4.1)

Similarly, the components for green,Mg(x, y), and blue,Mb(x, y), are calculated.

Grayscale conversion The result from the median image M is a color image with
RGB values for each pixel. From this image, a grayscale image G is derived which
consists of a single intensity value for each pixel. The gray-level intensity at each pixel
is calculated as the average of the color values for red, green, and blue components
in M. The conversion can be expressed in the form of 4.2 [10].

G(x, y) = 0.2989 ∗ Mr (x, y) + 0.5870 ∗ Mg(x, y) + 0.1140 ∗ Mb(x, y) (4.2)

4.4.2 Segmentation

Thresholding is applied to create a binary (black and white) image from a color or
grayscale image. Essentially, the objective is to classify all the image pixels as a
foreground (object) or a background pixel. In basic thresholding, a threshold value
is selected. The set of pixels with gray-level intensity below the threshold τ are
considered as background pixels and the remaining are considered as foreground
pixels. A pixel in the binary image, B(x, y) ∈ 0, 1 is defined as in (4.3).

B = τ−→ (G)) =
{
B(x, y) = 0, if G(x, y) < τ

B(x, y) = 1 otherwise
(4.3)

If the threshold changes based on the content of an image, such thresholding is
called as dynamic thresholding. Images vary depending on crystallization techniques
and imaging devices. This makes it difficult to use a fixed threshold for binarization.
Therefore, dynamic thresholding methods are preferred. A single technique does not
produce desired results for all images. Therefore, it is helpful to investigate several
thresholding methods perhaps by varying the thresholding parameters. Comparison
of Otsu’s thresholding and green percentile thresholding is provided below. Later in
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Fig. 4.5 a, c, and f : median-filtered images; b, d, and f : the Otsu thresholded images for a, c, and
f, respectively. Reprinted (adapted) with permission from Crystal Growth & Design 2013 13 (7),
Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun, 2728–2736. Copyright (2013) American
Chemical Society

Chap.8, we introduce super-thresholding method on how to choose the best thresh-
olding method for a crystal image.

Otsu’s thresholdingOtsu’smethod [12] iterates through all possible thresholdvalues
and calculates a measure of spread of the pixel levels in foreground or background
region. The threshold value (τo) for which the sum of foreground and background
spreads is minimal is selected, and binary image (Botsu = τo−→ (G)) is constructed
applying this threshold. Down-sampled images and corresponding Otsu thresholded
images followed by the median filter are given in Fig. 4.5.

From the original and binary images in Fig. 4.5, it can be observed that the same
technique may not yield good results for all images. In the binary images shown in
Fig. 4.5b and d, the objects and background are distinguished well. However, in the
binary image shown in Fig. 4.5f for the original image in Fig. 4.5e, objects and the
background are not well separated. Hence, the result is not as desired. If the protein
solution drop is also illuminated, crystals are not distinguishable in the thresholded
image. This causes difficulty in extracting correct features from the image.

Green percentile image thresholding When green light is used as the excitation
source for fluorescence-based acquisition, the intensity of the green pixel component
is observed to be higher than the red and blue components in the crystal regions [21].
This feature can be utilized for green percentile image binarization. Let τp be the
intensity of green component such that the number of pixels in the image with green
component below τp constitutes p% of the pixels. For example, if p = 90%, τ90 is
the intensity of green such that 90% of the green component pixels will be less than

http://dx.doi.org/10.1007/978-3-319-58937-4_8
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Fig. 4.6 Results showing the application of the three thresholding techniques for a sample image.
a Original, b Otsu’s threshold, c Green percentile threshold (p = 90), d Green percentile threshold
(p= 99). Reprinted (adapted) with permission from Crystal Growth &Design 2013 13 (7), Madhav
Sigdel, Marc L. Pusey, and Ramazan S. Aygun, 2728–2736. Copyright (2013) American Chemical
Society

τ90. Image binarization is then done using the value of τp and a minimum gray-level
intensity condition τmin = 40. All pixels with gray-level intensity greater than τmin

and having green pixel component greater than τp constitute the foreground region,
while the remaining pixels constitute the background region. As the value of p goes
higher, the foreground (object) region in the binary image usually becomes smaller.
In the original Crystal X2, p = 90 and p = 99 are used as two green percentile
thresholding techniques. These are represented as G90 and G99. G99 threshold only
maintains the pixels of the highest intensity.

Figure4.6 shows the results of applying three thresholding techniques for a crys-
tallization trial image. In the binary image using Otsu’s method (Fig. 4.6b), the crys-
tal region information is lost. Hence, the result is not as desired. The G90 method
(Fig. 4.6c) performs slightly better. For this particular image, Fig. 4.6d provides the
best result as the crystal regions arewell separated from the background. If the protein
solution drop is also illuminated, crystals are not distinguishable in the thresholded
image. This causes difficulty in extracting correct features from the image. There-
fore, instead of relying on a single thresholding method, it is better to apply multiple
thresholding techniques and extract features.

These experiments show that different thresholding techniques provide good
thresholding for different images. Otsu’s method [12] produced results that were
useful to identify the large regions such as precipitates and solution droplet. How-
ever, the method performed poorly to separate the crystal objects. Note that the
objective here is to identify the objects in the images and then be able to extract
features related to those objects that help in classifying it to a particular category and
differentiate from others. In this regard, the features from Otsu’s method as well as
features from the percentile methods are useful. Therefore, combining the features
from multiple thresholding techniques can be helpful.
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Fig. 4.7 Separating background and foreground regions. aM (image after noise removal), b binary
image, c background pixels, d foreground pixels. Reprinted (adapted) with permission from Crystal
Growth &Design 2013 13 (7), Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun, 2728–2736.
Copyright (2013) American Chemical Society

4.5 Feature Extraction

Rather than extracting myriad features from images, features actually useful for
analysis should be analyzed. To recognize crystal categories, features related to inten-
sity and shapes of regions after applying thresholding help to complete analysis in
a short time. Chapter 5 provides in-depth comparison and analysis of features for
protein crystallization. This section covers how a small number of features could be
helpful to classify crystallization trial images if trace fluorescent labeling is used.

4.5.1 Intensity Features

The variation in intensity is a useful image feature. This is because crystals have
the highest illumination compared to precipitates. Once a binary image is obtained,
it is used as a mask to differentiate foreground and background region. After that,
the features related to intensity statistics in the background and foreground region
are extracted. The image in Fig. 4.7b is the binary image of the image in Fig. 4.7a
obtained by applying a thresholding technique. Figure4.7c shows the image with
background pixels from the original (median-filtered) image and foreground pixels
in black. Similarly, Fig. 4.7d shows the foreground pixels in the original image with
background pixels in black.

Using the original image and the binary image, the following image features are
extracted. Note that these features are dependent on a binary image. For feature
extraction, Otsu’s method, G90 method and G99 methods are applied to obtain the
binary image. Using each of these binary and the median-filtered images, binary
image features are obtained. The following is a set of features extracted for classifying
images.

(i) Threshold intensity (τ ) for the corresponding thresholding technique.
(ii) The number of white pixels in the binary image (N f )

http://dx.doi.org/10.1007/978-3-319-58937-4_5
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N f =
h∑

i=1

w∑
j=1

B(i, j) (4.4)

(iii) Average image intensity in the foreground region (μ f ):

μ f = 1

N f

h∑
i=1

w∑
j=1

G(i, j)·B(i, j) (4.5)

(iv) Standard deviation of intensity in the foreground region (σ f ):

σ f =
√√√√ 1

N f

h∑
i=1

w∑
j=1

((μ f − G(i, j))·B(i, j))2 (4.6)

(v) Average image intensity in the background region (μb):

μb = 1

h ∗ w − N f

h∑
i=1

w∑
j=1

G(i, j)(1 − B(i, j)) (4.7)

(vi) Standard deviation of intensity in the background region (σb):

σb =
√√√√ 1

h ∗ w − N f

h∑
i=1

w∑
j=1,B(i, j)=0

((μb − G(i, j))·(1 − B(i, j))2 (4.8)

4.5.2 Region Features

Thresholding should distinguish crystals as objects. However, other non-crystal
objects might appear in the foreground. The shape and sizes of these foreground
objects are important features to cluster the images into different categories.

Region Identification Connected component labeling [20] is applied on binary
images to extract high-intensity regions or blobs. The binary image could be obtained
from any of the thresholding methods. Let O be the set of the blobs in a binary image
B, and B consists of n number of blobs. The i th largest blob is represented by Oi

where 0 ≤ i ≤ n and area(Oi ) ≥ area(Oi+1). Each blob Oi is enclosed by a mini-
mum bounding rectangle (MBR) centered atmi (x, y) having widthwi and height hi .
Figure4.8b shows a binary image of the original image in Fig. 4.8a which consists
of four blobs. Extraction of the individual blobs is given in Fig. 4.8c. The minimum
size of the blob could be defined as 3× 3 pixels. The MBR of Oi is represented as
mi

x
wi/2R

mi
y

hi/2.
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For each Oi , skeletonization (�i = skel(Oi )) is applied to get the boundaries of
the blob. The skeletonization is a hit and miss morphological operation with the
structuring element S given in (4.9). Each point in a binary image of Oi where the
pixel’s neighborhood matches the structuring element is a hit and the corresponding
pixel in the output is zero; otherwise, it remains the same.The resulting image consists
of objects converted to single pixel thickness. Figure4.8d shows the skeletonization
of the blobs in Fig. 4.8c.

S =
⎛
⎝ 1 1 1
1 1 1
1 1 1

⎞
⎠ (4.9)

Region (blob) featuresMore information about the crystals is obtained by extracting
shape features like uniformity, symmetry, size, etc. of the regions. Using the original
image and extracted blobs, the following blob features are extracted. There might be
many number of blobs in the binary image. The large-sized blobs aremore interesting
than other blobs due to likelihood of being crystals. If the number of blobs is less
than the maximum number of blobs, the feature values for missing blobs are set to
0.

Area of the blob (a): The area or the number of white pixels in blob Oi is repre-
sented as ai and is calculated as in (4.10):

ai =
hi∑
x=1

wi∑
y=1

Oi (x, y) (4.10)

Measure of fullness (f): Measure of fullness indicates whether the blob completely
covers its MBR or not. It is calculated as the ratio of area of the blob to the area of
its MBR as defined by (4.11):

fi = ai
(wi ∗ hi )

(4.11)

Fig. 4.8 a I (image after noise removal) b Binary image, B c O:Objects (regions) using connected
component labeling d �: the skeletonization of object. Reprinted (adapted) with permission from
Crystal Growth & Design 2013 13 (7), Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun,
2728–2736. Copyright (2013) American Chemical Society
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Fig. 4.9 Blob uniformity and symmetry a Blob uniformity, b Blob symmetry. Reprinted (adapted)
with permission from Crystal Growth & Design 2013 13 (7), Madhav Sigdel, Marc L. Pusey, and
Ramazan S. Aygun, 2728–2736. Copyright (2013) American Chemical Society

Boundary pixel count (Nb): The skeleton image (�i ) is used to compute the
number of pixels in the boundary of the blob. This is calculated using (4.12):

Ni
b =

hi∑
i=1

wi∑
j=1

�i (x, y) (4.12)

Measure of boundary uniformity (u1, u2): A measure of boundary smoothness is
calculated by comparing the distance of each boundary pixel from the center of the
MBR to the assumed radius (r) = (wi + hi )/2 as shown in Fig. 4.9a. Let Pi be the
set of points on the perimeter of the blob Oi , i.e., the skeleton �i . Two measures
ui1 and ui2 are defined related to boundary uniformity defined by (4.13) and (4.14),
respectively,

ui1 = 1

Ni
b

∑
p∈Pi

|dist (p,mi
x,y) − r | (4.13)

ui2 = 1 − 1

Ni
b

∑
p∈Pi

zix,y (4.14)

where zix,y is defined as in (4.15).

zix,y =
{
0 if |dist (p,mi

x,y) − r | ≤ ε

1 otherwise
(4.15)

Here, ε is the allowable difference and set as (ε) = 0.15 ∗ wi/2 ∗ hi/2.
Measure of symmetry: Symmetry can be a useful measure especially in distin-

guishing irregular objects. The measure of left-right symmetry (symmetry along
Y-axis) is calculated as shown in Fig. 4.9b. Each blob is scanned row-wise. Let pk
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be the kth boundary pixel. Then, the measure of symmetry (ζi ) corresponding to the
blob Oi is calculated as in (4.16):

ζi = 1 − 1

Ni
b

∑
p∈Pi

zix,y (4.16)

where zix,y is defined as in (4.17)

zix,y =
{
0 if |dist (p,mi

x,y) − dist (pk+1,mi
x,y)| ≤ ε

1 otherwise
(4.17)

Using the above measures, nine blob-related features are computed as follows:

1. Number of blobs (η).
2. Area of the largest blob (a1) = ∑m

i=1

∑n
i=1 Bx, y

1.
3. The largest blob fullness ( f1) = (a1/(w1 ∗ h1)).
4. The largest blob boundary pixel count (N 1

b ) = ∑m
i=1

∑n
i=1 �1

x,y .
5. The largest blob boundary uniformity measure (u11) as defined in Eq.4.13.
6. The largest blob uniformity measure (u12) as defined in Eq.4.14.
7. The largest blob measure of symmetry (ξ 1

1 ) as defined in Eq.4.15.
8. Average area of the top five largest blobs excluding largest blob (aavg) =

(1/k)
∑k

i=2 ai and k = min(η, 6) where is the number of blobs.
9. Average fullness of the top five largest blobs excluding largest blob ( favg) =

(1/k)
∑k

i=2 fi and k = min(η, 6).

Table4.1 provides the nine blob-related features for the image in Fig. 4.8a with
thresholdingmethodG99. Six of these features are related to the largest blob. It should
be noted that the blobs may not necessarily represent crystals in an image. In some
binary images, the whole drop can appear as a large white region. Thus, the features
from the largest area are important not only to identify crystals but also to identify
falsely thresholded images. Besides the features from the largest blob, the average
area and average fullness from top five large-sized blobs excluding the largest blob
are extracted. These features provide aggregated information for the other large blobs
and are especially useful to distinguish precipitates where the binary image consists
of many blobs with nonuniform shapes.

For each image, three thresholding techniques are applied to obtain three binary
images. From each binary image, six intensity-related features and nine blob-related
features are extracted. Therefore, a total of 3*(6 + 9) = 45 features per image are
extracted.
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Table 4.1 The blobs and blob features for the image in Fig. 4.7a. Reprinted (adapted) with permis-
sion from Crystal Growth & Design 2013 13 (7), Madhav Sigdel, Marc L. Pusey, and Ramazan S.
Aygun, 2728–2736. Copyright (2013) American Chemical Society
# Features Feature values

Regions O1 O2 O3 O4

1 No of blobs (η ) 4
2 Area (a) 1065 1197 553 598
3 Fullness (f) 0.65 0.78 0.71 0.79
4 Boundary pixel count (Nb) 158 156 108 106
5 Boundary uniformity (u1) 0.49 0.39 0.87 0.65
6 Boundary uniformity (u2) 3.58 3.37 1.27 2.12
7 Measure of symmetry (ξ ) 0.62 0.80 0.71 0.74
8 Average area (aavg) 583.33
9 Average fullness ( favg) 0.50

4.6 Accuracy and Timing Analysis

The simplest classification of the crystallization trials distinguishes between the non-
crystals (trial images not containing crystals) and crystals (images having crystals).
However, misclassification of crystals as non-crystals leads to a critical miss. There
is no perfect classification system, and each classification system is susceptible to
missing crystals. If two classes (crystals and non-crystals) are defined, the expert
needs to go over images classified as (a) crystals to verify them and (b) non-crystals
to detect missing crystals. This would require the expert to check all images, and
this type of classification is not helpful for the expert. Instead, rather than using
two categories (i.e., crystals and non-crystals) a third category, likely-leads, between
crystals and non-crystals, could be added. The expert may need to scan “likely-leads”
class to detect missing crystals but not the images in non-crystals. This would save
significant effort in terms of manual scanning all images.

Hampton’s research defines a scoring system having a range of nine outcomes
for a crystallization trial. In this study, images are first categorized into three basic
categories: non-crystals, likely-leads, and crystals. The mapping of these phases
into image categories with respect to Hampton’s research is provided in Table2.1 in
Chap.2. The dataset used in experiments consists of 2250 images that are manually
classified by an expert. Most images belong to the non-crystal category. Additional
crystal images are added into the dataset to include all kinds of crystals and to reduce

http://dx.doi.org/10.1007/978-3-319-58937-4_2
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the class imbalance in the training. The distribution of the image categories is given
in Table4.2.

Testing is done by applying tenfold cross-validation. In this process, the entire
training set is first split randomly into 10 equal-sized subsamples. Each subsample
is used for testing, while remaining subsamples are used for training. This process
is repeated 10 times with each subsample being used exactly once for testing. The
results are combined to get a single estimation for the complete training set.

Ensemble classifiers can help reduce the risk of missing crystals. To show the
advantage of using an ensemble classifier, results usingMultilayer PerceptronNeural
Network (MLP) are compared with max-ensemble classifier [21].

4.6.1 Multilayer Perceptron Neural Network (MLP)

MLP is a widely used classification algorithm in pattern recognition problems [6].
The model consists of one or more hidden layers between input and output layers
and weights are associated with connecting nodes. Training is done using back-
propagation learning algorithm. MLP classifier is applied over a 45-dimensional
vector obtained using the features from all three thresholding methods (Otsu, G90,
G99).

The classification results using MLP with a single hidden layer, 24 nodes in the
hidden layer, and 0.3 learning rate are provided in the form of a contingency table in
Table4.3. The overall accuracy is 90% [(1469 + 299 + 262)/2250]. Table4.3 also
provides the precision–recall using one-vs-all for each category. The non-crystals are
fairlywell detected (97%).This category corresponds to the crystallization conditions
which are discarded from further experiments. Since most of the images belong to
this category, the effort for manual review of the classification results is greatly
reduced. Likewise, the recall for the likely-leads and crystals categories are 0.74
and 0.79, respectively. The system misses around 2% (6 out of 332) actual crystals.
The images classified as likely-leads and crystals are to be reviewed by an expert.
The misclassification of the non-crystal images to the higher categories leads to 6%
[(42 + 3)/(405 + 324)] unnecessary checks for the images that surely do not contain

Table 4.2 Distribution of images into different categories. Reprinted (adapted) with permission
fromCrystal Growth&Design 2013 13 (7),Madhav Sigdel,Marc L. Pusey, and Ramazan S. Aygun,
2728–2736. Copyright (2013) American Chemical Society

Category No of images Percentage %

Non-crystals 1514 67.3

Likely-leads 404 18.0

Crystals 332 14.8

Total images 2250
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crystals. The precision and recall for non-crystal category are very high compared
to the measures for the other two categories.

4.6.2 Max-Class Ensemble Method

Ensemble methods provide a model for combining predictions from multiple clas-
sifiers. Essentially, the goal is to reduce the risk of misclassification. Bagging and
boosting are two popular methods of selecting samples for ensemble methods [23].
Most often, majority voting or class-averaging is used to determine the result score
from an ensemble classifier. Protein crystallization has a class imbalance problem.
Not necessarily all classes are represented by the same amount. All precipitates start
with the first state and only successful crystallization process will lead to the last state
(crystalline outcome). The number of precipitates that lead to crystals is minority.
Typical classifiers are biased toward the crowded classes and try to predict themwith
high sensitivity. Although overall accuracy is improved, the crystalsmight bemissed.
The cost of missing a crystal is significantly high. A majority voting approach that
is used by traditional ensemble techniques might fail for these cases. The max-class
ensemblemethod that canminimize the risk ofmissing crystals works as follows. Let
Mt

k(pm) denote the class of the precipitate pm using classifier Mk at time instant t .
Then, the max-class ensemble method is defined as max1≤k≤w(max1≤t≤T Mt

k(pm)),
where 1 ≤ k ≤ w and 1 ≤ t ≤ T assuming w classifiers and T observations.

Feature extraction depends on the quality and correctness of the binary (or thresh-
olded) images. As mentioned earlier, the comparative performance of thresholding
techniques may vary for different images. Therefore, in this max-ensemble method,
three MLP classifiers are executed using the features from each thresholding method
(Otsu, G90, G99). Another MLP classifier is executed with all features combined.
Each image has now four predicted classes which could be the same or different.
The resulting class (or score) is the maximum class (or score) from all these classi-
fiers.

Table 4.3 Classification results using MLP classifier. Reprinted (adapted) with permission from
Crystal Growth & Design 2013 13 (7), Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun,
2728–2736. Copyright (2013) American Chemical Society

Actual/Observed 0 1 2 Actual total Recall

0 1469 42 3 1514 0.97

1 46 299 59 404 0.74

2 6 64 262 332 0.79

Observed total 1414 383 453 2250 0.83

Precision 0.97 0.74 0.81 0.84
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Table 4.4 Classification results using max-class ensemble classifier. Reprinted (adapted) with
permission fromCrystalGrowth&Design201313 (7),MadhavSigdel,MarcL.Pusey, andRamazan
S. Aygun, 2728–2736. Copyright (2013) American Chemical Society

Actual/Observed 0 1 2 Actual total Recall

0 1402 97 15 1514 0.93

1 8 270 126 404 0.67

2 4 16 312 332 0.94

Observed total 1414 383 453 2250 0.84

Precision 0.99 0.70 0.69 0.80

Fig. 4.10 a–d Crystals classified as non-crystal using max-class ensemble classifier. Reprinted
(adapted) with permission from Crystal Growth & Design 2013 13 (7), Madhav Sigdel, Marc L.
Pusey, and Ramazan S. Aygun, 2728–2736. Copyright (2013) American Chemical Society

Classifying a crystal as a non-crystal is a more critical problem than classifying a
non-crystal as a crystal. Because of the cost of missing a crystal, the critical perfor-
mance measure for protein crystallization dataset is the recall of the crystal category.
The recall using MLP classifiers is 0.79, which is not high. The max-class ensemble
classifier is biased toward high classes (or scores). The classification results using
a max-class ensemble classifier over four MLP classifiers (three MLP classifiers
with 15-dimensional feature inputs from Otsu, G90 and G99 thresholding methods,
and another MLP classifier with 45-dimensional feature input) is given in Table4.4.
The max-ensemble class chooses the highest score (or class) among these classifiers
(Table4.4).

The overall accuracy with max-class ensemble method is 88% [(1402 + 270 +
312)/2250]. In comparison to the first approach, the number of false negatives (i.e.,
classifying an image in a high class to a lower class) is decreased at the cost of
increase in false positives (i.e., classifying an image in a low class to a higher class).
Both the precision and recall for class 0 (non-crystals) are very high. The precision
for class 0 (non-crystals) is close to 99%. The recall for class 2 is increased from
0.79 (first method) to 0.94 (max-class ensemble method). Only 1.2% (4 out of 332)
actual crystals are predicted as non-crystals. Figure4.10 shows crystal images that
are predicted as non-crystal. The image intensity in the images in Fig. 4.10a, b is very
low. The crystal images missed have either very low image intensity or are blurred.
Higher intensity excitation lighting, camera gain settings, and adequate focusing can
help eliminate such errors.
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4.6.3 Computation Time

System Information A sample application is developed as a windows form-based
application in C#. Image feature extraction is implemented using AForge Imag-
ing library (http://code.google.com/p/aforge/). Training and classification is imple-
mented using Weka data mining library (http://www.cs.waikato.ac.nz/ml/weka/).
Visual Studio 2010 is used as the IDE. The user interface consists of a tabbed layout
for image acquisition, image scoring, and system settings. The repository of images
is maintained inside a directory and the records are maintained in MySQL database.
On a Windows 7 Intel Core i7 CPU @2.8 GHz system with 4 GB memory, it takes
around 1h 40min to process and classify 2250 images. This amounts to less than
3s to process and classify an image, and fits well into the average sample to sample
translation time of 6 s for the described system.

4.7 Summary

This chapter provided the design and implementation of a stand-alone system for pro-
tein crystallization image acquisition and crystallization. The image acquisition uti-
lizes a low-cost in-house assembled fluorescencemicroscopy system. Image analysis
is carried out on the fluorescence images. The main advantage of this approach is
the ability to rapidly identify crystals and potential lead crystallization conditions
by analyzing image intensity and high-intensity regions. The implementation of an
efficient (fast) and effective (with good accuracy) image classification system to
automatically classify the images into one of non-crystal, likely-leads, or crystal
categories is also explained.

The max-class ensemble method is able to reduce the risk of error, and the per-
centage of missing crystals as non-crystals is around 1.2%. This means that the
system only misses 1.2% of the crystals. Since the described system exhibits high
accuracy for the non-crystal category, this minimizes unnecessary reviews (images
in non-crystal category) by the expert. Therefore, the effort for manual review is
greatly reduced. Image processing for a 96-well plate with three cells in each well
takes less than 15min. This time is less than the time for acquisition which takes
around 30min to scan through the whole plate. This allows the image acquisition
and classification to be executed in parallel. Even though the correct classification of
non-crystal images is very high, the system does not distinguish between the likely-
leads and crystal categories very well. This makes the manual review essential for
the two categories.

Acknowledgements The majority of this chapter is Reprinted (adapted) with permission from
Crystal Growth & Design 2013 13 (7), Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun,
2728–2736. Copyright (2013) American Chemical Society. Some modifications have been made to
fit into this book.
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Chapter 5
Classification of Crystallization Trial Images

Abstract Large number of features are extracted from protein crystallization trial
images to improve the accuracy of classifiers for predicting the presence of crys-
tals or phases of the crystallization process. The excessive number of features and
computationally intensive image processing methods to extract these features make
utilization of automated classification tools on stand-alone computing systems incon-
venient due to the required time to complete the classification tasks. In this chapter,
we provide an analysis of combinations of image feature sets, feature reduction, and
classification techniques for crystallization images benefiting from trace fluorescent
labeling. Features are categorized into intensity, graph, histogram, texture, shape-
adaptive, and region features (using binarized images generated by Otsu’s, green
percentile, and morphological thresholding). The effects of normalization, feature
reduction with principal components analysis (PCA), and feature selection using
random forest classifier are also investigated. Moreover, the time required to extract
feature categories is computed and an estimated time of extraction is provided for fea-
ture category combinations. The analysis in this chapter shows that research groups
can select features according to their hardware setups for real-time analysis.

5.1 Introduction

Protein crystallization is a highly empirical process that depends on numerous factors
such as pH and temperature of the environment, protein concentration, the type of
precipitant, ionic strength of the solution, gravity, the crystallization methods, etc.
[24] A combination of all these factors suitable for the protein being crystallized is
critical for the formation of crystals, and the prediction of these parameters is quite
challenging since there is no prior information about the protein solubility [12, 14].
Therefore, thousands of experimental trials may be required for successful crystal-
lization. Today, high-throughput robotic systems are routinely used to increase the
chance of successfully obtaining crystals. Because of the high-throughput crystalliza-
tion trials, manual review of crystallization trials becomes practically discouraging
in terms of time and resources. Therefore, automated image scoring systems have

© Springer International Publishing AG 2017
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Computational Biology 25, https://doi.org/10.1007/978-3-319-58937-4_5
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been developed to collect and classify crystallization trial images. The fundamental
aim is to discard the unsuccessful trials, identify the successful trials, and possibly
identify those trials which could be optimized.

5.1.1 Challenges of Protein Crystallization Classification

Imaging techniques are used to capture the state change or the possibility of forming
crystals [25]. Building a reliable system to classify and analyze a crystallization
trial can be very helpful to the crystallographers by reducing the number of tedious
manual reviewsof unsuccessful outcomes or providing the phase of the crystallization
process. Such a system requires extracting features from images. After these features
are used to train a classifier, the classifier model is used to classify new trial images.
However, building a classifier model with high accuracy is challenging due to the
following reasons.

1. ManyPhases ofCrystallizationProcess. The instruction sheets with crystalliza-
tion screens from Hampton Research describe 9 possible protein crystallization
trial outcomes or phases1 [15] (Clear drop, Phase separation, Granular precipi-
tate, Microcrystals, Posettes/spherulites, Needles, 2D Plates, Small 3D crystals,
Large 3D crystals). Figure5.1 shows sample protein crystallization trial images
obtained using trace fluorescent labeling [32], where each image corresponds
to a specific phase of crystallization. In an analysis of the screening images,
it is important to predict/detect the current phase of the experiment. Phases that
yield crystalline outcomes or likely-leads are more valuable than other categories.
Misclassification of the images in a higher category (e.g., crystal category) into a
lower category (e.g., non-crystal category) is a serious problem as it results in a
lead condition being missed. The misclassification of a lower category result to a
higher is not as serious, and can be considered as a cost of capturing all possible
leads.

2. UnbalancedDistribution ofData. The distribution of data in different categories
(or phases) is unbalanced. Frequency of higher (crystalline) categories are less
than the frequency of lower categories. The classification models can be affected
adversely by the unbalanced distribution. They may classify in favor of more
frequent but less important categories.

3. Complexity of Image Analysis. Nonuniform shapes and varying orientation of
crystals impose complexity in image analysis. Intra-class diversity of a single
crystal subcategory is significantly high. It is difficult to build a classifier with
high accuracy that can model all variations.

4. Multiple Types of Crystals in a Single Image. A single image can consist of
objects (crystals) in different morphologies, such as dendrites and 3D crystals. In

1http://hamptonresearch.com.

http://hamptonresearch.com
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Fig. 5.1 Sample protein crystallization trial images. Reprinted (adapted) with permission from
Crystal Growth & Design 2013 13 (7), Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun,
2728-2736. Copyright (2013) American Chemical Society

such cases, the expected class for the image would be the class corresponding to
the highest class among all crystal objects.

5. Low and Varying Image Quality. Since crystals are floating in a 3D well, not
all crystals may be captured in focus. To observe the phases of crystallization,
images are captured a number of times during the process. The lighting conditions
may vary each time the images are collected. Varying illumination and focusing
affect the preprocessing of images and features used for classification.

6. Ambiguity in Labeling Trial Images. Protein crystallization is an evolving
process. In some scenarios, there is a semantic transition between categories,
meaning the images cannot be clearly assigned to one category. Similarly, ambi-
guities and subjectivity of the viewer or an expert can affect the labeling process
or expert scoring.
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5.1.2 Factors for Classification

In general, protein crystallization trial image analysis work is compared with respect
to the accuracy of classification. The accuracy depends on the number of categories,
features, and the ability of classifiers to model the data. Moreover, the hardware
resources, training time, and real-time analysis of new images are important factors
that affect the usability of these methods.

The Number of Categories A significant amount of previous work (for example,
Zuk and Ward [52], Cumba et al. [8], Cumba et al. [5], Zhu et al. [51], Berry et al.
[2], Pan et al. [29], Po and Laine [30]) classified crystallization trials into non-crystal
or crystal categories. Yang et al. [48] classified the trials into three categories (clear,
precipitate, and crystal). Bern et al. [1] classified the images into five categories
(empty, clear, precipitate, microcrystal hit, and crystal). Likewise, Saitoh et al. [34]
classified into five categories (clear drop, creamy precipitate, granulated precipitate,
amorphous state precipitate, and crystal). Spraggon et al. [43] proposed classification
of the crystallization images into six categories (experimental mistake, clear drop,
homogeneous precipitant, inhomogeneous precipitant, microcrystals, and crystals).
Cumba et al. [7] developed a system that classifies the images into three or six
categories (phase separation, precipitate, skin effect, crystal, junk, and unsure). Yann
et al. [49] classified into 10 categories (clear, precipitate, crystal, phase, precipitate
and crystal, precipitate and skin, phase and crystal, phase and precipitate, skin, and
junk). It should be noted that there is no standard for categorizing the images, and
different research studies proposed different categories in their own way. Hampton’s
scheme specifies 9 possible outcomes of crystallization trials. The classification in
this chapter is based on Hampton’s scale in Table2.1 in Chap.2.

Features for Classification. For feature extraction, a variety of image processing
techniques have been proposed. Zuk andWard [52] used theHough transform to iden-
tify straight edges of crystals. Bern et al. [1] extract gradient and geometry-related
features from the selected drop. Pan et al. [29] used intensity statistics, blob texture
features, and results fromGabor wavelet decomposition to obtain the image features.
Research studies by Cumba et al. [8], Saitoh et al. [35], Spraggon et al. [43], and Zhu
et al. [51] used a combination of geometric and texture features as the input to their
classifier. Saitoh et al. [34] used global texture features as well as features from local
parts in the image and features from differential images. Yang et al. [48] derived the
features fromgray-level co-occurrencematrix,Hough transform, anddiscrete Fourier
transform (DFT). Liu et al. [22] extracted features from Gabor filtersGabor wavelet,
filter, integral histograms, and gradient images to obtain 466-dimensional feature vec-
tor. Po and Laine [30] applied multiscale Laplacian pyramid filters and histogram
analysis techniques for feature extraction. Similarly, other extracted image features
included Hough transform features [30], discrete Fourier transform features [45],
features from multiscale Laplacian pyramid filters [47], histogram analysis features
[5], Sobel-edge features [46], etc. Cumba et al. [7] presented the most sophisticated
feature extraction techniques for the classification of crystallization trial images.
Features such as basic statistics, energy, Euler numbers, Radon–Laplacian features,

http://dx.doi.org/10.1007/978-3-319-58937-4_2
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Sobel-edge features, microcrystal features, and gray-level co-occurrence matrix fea-
tures were extracted to obtain a 14, 908-dimensional feature vector. They utilized a
web-based distributed system and extracted as many features as possible hoping that
the huge set of features could improve the accuracy of the classification [7].

Time Analysis of Classification. Because of the high-throughput rate of image col-
lection, the speed of processing an image becomes an important factor. The system
by Pan et al. [29] required 30s per image for feature extraction. Po and Laine men-
tioned that it took 12.5 s per image for the feature extraction in their system [30].
Because of high computational requirement, they considered implementation of their
approach on the Google computing grid. Feature extraction described by Cumba
et al. [7] is the most sophisticated, which could take 5h per image on a normal sys-
tem. To speedup the process, they executed the feature extraction using a web-based
distributed computing system. Yann et al. [49] utilized deep convolutional neural
network (CNN), where training took 1.5 days for 150,000 weights and around 300
passes and classification takes 86 ms for 128x128 image on their GPU-based system.

Classifiers for Protein Crystallization. To obtain the decision model for classifica-
tion, various classification techniques have been used. Zhu et al. [51] and Liu et al.
[22] applied a decision tree with boosting. Bern et al. [1] used a decision tree clas-
sifier with handcrafted thresholds. Pan et al. [29] applied a support vector machines
(SVM) learning algorithm. Saitoh et al. [34] applied a combination of decision tree
and SVM classifiers. Spraggon et al. [43] applied self-organizing neural networks.
Po et al. [30] combined genetic algorithms and neural networks to obtain a decision
model. Berry et al. [2] determined scores for each object within a drop using self-
organizing maps, learning vector quantization, and Bayesian algorithms. The overall
score for the dropwas calculated by aggregating the classification scores of individual
objects. Cumba et al. [8] and Saitoh et al. [35] applied linear discriminant analysis.
Yang et al. [48] applied hand-tuned rules-based classification followed by linear dis-
criminant analysis. Cumba et al. [5] used association rule mining, while Cumba et
al. [7] used multiple random forest classifiers generated via bagging and feature sub-
sampling. In [38], classification performance using semi-supervised approaches was
investigated. The recent study by Hung et al. [19] proposed protein crystallization
image classification using elastic net. Dinc et al. [13] evaluated the classification
performance using 5 different classifiers, and feature reduction using principal com-
ponents analysis (PCA) and normalization methods for the non-crystal and likely
lead datasets. Yann et al. [49] utilized deep convolutional neural networks (CNN)
with 13 layers: (0) 128×128 image, (1) contrast normalization, (2) horizontal mir-
roring, (3) transformation, (4) convolution (5×5 filter), (5) max pooling (2×2 filter),
(6) convolution (5×5 filter), (7) max pooling (2×2 filter), (8) convolution (5×5 fil-
ter), (9) max pooling (2×2 filter), (10) convolution (3×3 filter), (11) 2048 node fully
connected layer, (12) 2048 fully connected layer for rectified linear activation, and
(13) output layer using softmax.

Accuracy ofClassification.With regard to the correctness of a classification, the best
reported accuracy for the binary classification (i.e., classification into two categories)
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is 96.56% (83.6% true positive rate and 99.4% true negative rate) using deep CNN
[49]. Despite high accuracy rate, around 16% of crystals are missed. Using genetic
algorithms and neural networks [30], an accuracy of 93.5% average true performance
(88% true positive and 99% true negative rates) is achieved for binary classification.
Saitoh et al. achieved accuracy in the range of 80–98% for different image categories
[35]. Likewise, the automated system by Cumba et al. [7] detected 80% of crystal-
bearing images, 89% of precipitate images, and 98% of clear drops accurately. The
accuracy also depends on the number of categories. As the number of categories
increases, the accuracy goes down since there are more misclassifications possible.
For 10-way classification using deep CNN, Yann et al. [49] achieved 91% accuracy
with around 76.85% true positive rate for crystals and 8% of crystals categorized
into classes not related to crystals. While overall accuracy is important, true positive
rate (recall or sensitivity) for crystals may carry more value. As crystallographers
would like to trust these automated classification systems, it is not desirable to see
successful crystalline cases are missed by these systems.

Table5.1 provides an overview of factors that affect classification in the literature.
The analysis in this chapter will show whether it is possible to achieve high accuracy
with a small set of feature set using a proper classifier considering as many as 10
categories for real-time analysis. An exhaustive set of experiments using all fea-
ture combinations and representative classifiers are conducted to achieve real-time
analysis.

5.1.3 Feature Analysis for Building Real-Time Classifiers

The task of building classifier models with high accuracy in the presence of afore-
mentioned issues is challenging. To improve the classification performance, there
has been a trend to increase the number of image features and size of datasets. Since
it is not known which features may be helpful, all possible features that can be
extracted are used to train classifiers hoping that irrelevant features are automati-
cally eliminated or given low weights by the classifiers. For example, Cumba et al.
[7] extracted 14,908 dimensional feature vector per image for classifying protein
crystallization images. Overall, the image processing and feature extraction have
been computationally expensive for huge number of features making it unfeasible
for real-time processing. Such systems employ high-performance, grid, distributed,
or cloud computing systems for manipulating large feature sets. Acquisition of high-
end, high-performance, and expensive computing systems becomes a barrier for
small research labs with limited resources and budget to develop and experiment
new promising ideas in a timely manner.

Since extracting numerous features puts a significant computational burden on
a typical stand-alone computing system, experts may need to wait for hours before
seeing the classification results. Reduction of features is inevitable for building real-
time classifiers. A wide number of techniques used white light imaging for extract-
ing features. The feature extraction and image processing are cumbersome for white
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Table 5.1 Factors affecting classification

Work Image categories Feature extraction Classification
method

Classification
accuracy

Zuk and Ward
[52]

NA Edge features Detection of lines
using Hough
transform and
line tracking

not provided

Walker et al. [45] 7 Radial and
angular
descriptors from
Fourier
Transform

Learning vector
quantization

14–97% for
different
categories

Xu et al. [47] 2 Features from
multiscale
Laplacian
pyramid filters

Neural network 95% accuracy

Wilson [46] 3 Intensity and
geometric
features

Naive Bayes Recall 86% for
crystals, 77% for
unfavorable
objects

Hung et al. [19] 3 Shape context,
Gabor
filtersGabor
wavelet, filter,
and Fourier
transforms

Cascade classifier
on naive Bayes
and random forest

74% accuracy

Spraggon et al.
[43]

6 Geometric and
texture features

Self-organizing
neural networks

47–82% for
different
categories

Cumba et al. [8] 2 Radon transform
line features and
texture features

Linear
discriminant
analysis

85% accuracy
with ROC 0.84

Saitoh et al. [35] 5 Geometric and
texture features

Linear
discriminant
analysis

80–98% for
different
categories

Bern et al. [1] 5 Gradient and
geometric
features

Decision tree
with handcrafted
thresholds

12% FN and 14%
FP

Cumba et al. [5] 2 Texture features,
line measures,
and energy
measures

Association rule
mining

85% accuracy
with ROC 0.87

Zhu et al. [51] 2 Geometric and
texture features

Decision tree
with boosting

14.6% FP and
9.6% FN

Berry et al. [2] 2 NA Learning vector
quantization, self-
organizing maps,
and bayesian
algorithm

NA

(continued)
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Table 5.1 (continued)

Work Image categories Feature extraction Classification
method

Classification
accuracy

Pan et al. [29] 2 Intensity stats,
texture features,
Gabor wavelet
decomposition

Support vector
machine

2.94% FN and
37.68% FP

Yang et al. [48] 3 Hough transform,
DFT, GLCM
features

Hand-tuned
thresholds

85% accuracy

Saitoh et al. [34] 5 Texture features,
differential image
features

Decision tree and
SVM

90% for 3-class
problem

Po and Laine [30] 2 Multiscale
Laplacian
pyramid filters
and histogram
analysis

Genetic algorithm
and neural
network

Accuracy: 93.5%
with 88% TP and
99% TN

Liu et al. [22] Crystal likelihood Features from
Gabor filters,
integral
histograms, and
gradient images

Decision tree
with boosting

ROC 0.92

Cumba et al. [7] 3 and 6 Basic stats,
energy, Euler
numbers, Radon–
Laplacian,
Sobel-edge,
GLCM

Multiple random
forest with
bagging and
feature
subsampling

Recall 80%
crystals, 89%
precipitate, 98%
clear drops

Sigdel et al. [40] 3 Intensity and blob
features

Multilayer
perceptron neural
network

1.2% crystal
misses with 88%
accuracy

Sigdel et al. [38] 3 Intensity and blob
features

Semi-supervised 75–85% overall
accuracy

Dinc et al. [13] 3 and 2 Intensity and blob
features

5 classifiers,
feature reduction
using PCA

96% on
non-crystals, 95%
on likely-leads

Yann et al. [49] 10 Deep learning on
grayscale image

Deep CNN with
13 layers

90.8% accuracy
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light images. For experiments in this chapter, Crystal X2 [40] system developed at
iXpressGenes, Inc. is used, and then captured images of trace fluorescent-labeled
crystallization trials [32] are analyzed. The crystal regions have high intensity in
images when trace fluorescent labeling is used. The high contrast between the back-
ground and crystals alleviates the image processing and feature extraction. Hence,
the number of features can be reduced significantly. Another reason for feature reduc-
tion is that the use of irrelevant features may deteriorate the performance of some
classifiers. Therefore, it is very important to determine the minimal set of image
features that can be used to obtain a reliable classification performance.

Herein, the image features, feature reduction techniques and classification tech-
niques for the images captured using trace fluorescent labeling are investigated. A
number of feature set combinations are experimented, some new features are intro-
duced, and a combination of feature sets is proposed for a real-time classification
systemwhilemaintaining comparatively high accuracy. To identify the relevant set of
features for this problem domain, trying all combinations of features is not feasible.
Hence, features are categorized into intensity, region, graph, histogram, texture, and
shape-adaptive features. Region features are extracted using binarized images gener-
ated by Otsu’s [28], green percentile thresholding, and morphological thresholding.
The effects of normalization, feature reduction with principle components analysis
(PCA) [20], and feature selection using random forest classifier are also evaluated.
The time required to extract feature categories is computed and an estimated time of
feature extraction is provided for feature category combinations. In this way, research
groups may ignore some feature groups since they may not have significant effect on
the accuracy. This also enables research groups to select features according to their
hardware setups for real-time analysis.

In this chapter, a 9-point scoring system (Hampton’s scores) is used to classify
protein crystallization trial images using hierarchical classification. The first-level
of classification categorizes into non-crystals, likely-leads, and crystals. The total
number of subcategories is 10 (one more than Hampton’s scale to include a category
for unclear bright images as shown in Fig. 2.5). The complete feature set contains
around 300 features. Feature sets are categorized into 10 groups, and classifiers are
evaluated exhaustively on all combinations of these feature groups. Random forest
(RF), naïve Bayesian (BYS), support vector machine (SVM), decision tree (DT),
and artificial neural network (ANN) classifiers are utilized in these experiments.
Moreover, the performance of feature selection and normalization is investigated.
The goal is to identify a minimal set of feature sets that will achieve good accu-
racy for real-time applications. Around 8,624 experiments (different combinations
of feature categories, binarization methods, feature reduction/selection, normaliza-
tion, and crystal categories) are conducted and a summary of the experimental results
is provided. Based on the analysis of experiments, it is possible to answer the ques-
tion:“what set of features satisfies a minimum accuracy measure m within time t?”.

http://dx.doi.org/10.1007/978-3-319-58937-4_2
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5.2 Data Preprocessing

Data preprocessing may help to improve the performance of knowledge discovery
from the dataset. Data preprocessing may involve application of data reduction and
data transformation methods. To evaluate data reduction, a random forest feature
selection with mean decrease in accuracy (MDA − RF) [3] method was applied.
Normalization of feature vectors was also considered as some classifiers are sensitive
to the ranges of features. Individual effects of z-score normalization, PCA feature
reduction, and random forest feature selectionmethodswere examined. Then, various
state-of-the-art classification methods are employed in order to get benefit from
different types of classifiers in the literature such as probabilistic, categorical, and
ensemble classifiers.

5.2.1 Feature Normalization

Data values are measured in different scales or ranges since they have different
meanings. Some classification techniques suffer from range differences because the
distance metrics are highly sensitive to data range. In order to eliminate this negative
effect, normalization maintains a similar range for all data by mapping the data to
a predefined range or utilizing the mean and standard deviation of the data. Some
classifiers benefit from normalization significantly (such as neural networks), while
some of them are not affected by range differences (such as naïve Bayesian and
decision trees). Z-score normalization was employed to evaluate the effects of nor-
malization. For this, the data is normalized with respect to its mean (μv) and standard
deviation(σv). The new value (v’) of original data (v) is calculated as in Eq. (5.1).

v′ = v − μv

σv
(5.1)

5.2.2 Dimensionality Reduction and Feature Selection

It is possible to have a high number of features to represent a sample in classifica-
tion problems. However, some of these features may not be informative enough and
can be eliminated without any (or with minor) loss of accuracy. Some of them may
be highly correlated or some of them might be measured with high noise. In such
cases, data reduction techniques are offered to eliminate these useless features. PCA
is one of the widely accepted techniques to reduce dimensionality [20]. In simple
terms, PCA transforms complete dataset to a new subspace where every dimension
is connected to an eigenvalue. The new feature corresponding to the largest eigen-
value represents the most informative feature. Using this idea, a subset of the most
descriptive eigenvectors (or principal components) can be selected and rest of them
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can be eliminated. The original dataset is transformed into a lower dimensional space
using this subset of eigenvectors where a smaller size feature vector represents the
same sample.

Another common way to reduce the size of data is feature selection. To evaluate
feature selection, in this study, mean decrease in accuracy (MDA) algorithm [3] in
random forest classifier is used. MDA assigns rankings to the features by randomly
permuting the values of each feature and measuring the change in mean error.

5.2.3 Image Processing

Automatically determining the phase of crystallization trial images is a complex
process and requires sophisticated algorithms to extract features related to the shape
and size of objects in an image. Different image processing techniques are applied
to the original images and then image features are extracted from several stages of
these steps.

For the notations in the subsequent subsections, assume that (1) I represents an
image of size h x w, (2) I(x, y) represents the pixel at location (x, y)where 1 ≤ x ≤ h
and 1 ≤ y ≤ w, (3) IG is the green component of image I , (4) Igray is the graylevel
image of image I , (5) Bm represents the binary image of image I using method m, and
(6) E represents edge image using edge detection methods such as Sobel or Canny.

Image Thresholding The objective of image thresholding is to simplify the image
analysis by separating the foreground pixels from the background. Thresholding is
often the first step in image analysis. Obtaining a good binary image is very criti-
cal in image analysis because any error in the binary image will get propagated to
further processing steps. Numerous image binarization techniques have been pro-
posed in the literature. However, as described in [10, 11] and Chap.8 there is not
a single technique which works well in all image domains. In this chapter, 3 dif-
ferent image binarization techniques are investigated: Otsu’s threshold [28], green
percentile image binarization [40] with two percentiles, and morphological thresh-
olding [9].

Otsu’s thresholding.Otsu’smethod [28] iterates through all possible threshold val-
ues and calculates ameasure of spread of the pixel levels in foreground or background
region. The threshold value (τo) for which the sum of foreground and background
spreads is minimal is selected. The binary image (Botsu = τo−→ (Igray)) is constructed
by applying this threshold to the image.

Green percentile thresholding. This method utilizes green color component of
image pixels for thresholding. Let τp be the intensity of green component such that
the number of pixels in the image with green component below τp constitute p% of
the pixels. For example, if p = 90%, τ90 is the intensity of green such that 90% of the
green component pixels will be less than τ90. Image binarization is then done using
the value of τp and a minimum gray-level intensity condition τmin = 40. All pixels
with gray-level intensity greater than τmin and having green pixel component greater

http://dx.doi.org/10.1007/978-3-319-58937-4_8
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than τp constitute the foreground region while the remaining pixels constitute the
background region. As the value of p goes higher, the foreground (object) region in
the binary image usually becomes smaller. For the given value of p, the method is
represented asGp. For example,G90 is the green percentile thresholdingmethod with
p = 90%. G90 and G99 are applied for binarization of images in the experiments.

Morphological Thresholding. In this method, the images are binarized based on
mathematical morphological operations along with some preprocessing methods.
The method can be summarized as follows:

1. Apply image-opening function to get background surface: This is one of the basic
mathematical morphological operations as in Eq. (5.2):

A · B = (A � B) ⊕ B (5.2)

where � and ⊕ denote erosion and dilation, respectively. The basic effect of the
erosion operator on a binary image is to erode away the boundaries of regions
of foreground pixels. In other words, after this operation the foreground regions
generally shrink based on a structure element. On the other hand, after dilation
operation the foreground regions generally expand.

2. Subtract background image from grayscale image.
3. Adjust pixel intensities to enhance the images: Contrast stretching is applied to

increase the contrast between foreground and background.
4. Binarize the grayscale image using Otsu’s thresholding method.
5. Apply image-opening function to generate the final binary image.

Region Segmentation Connected component labeling [36] is applied on binary
images to extract high intensity regions or blobs. The binary image can be obtained
from any of the thresholding methods. Let O be the set of the blobs in a binary
image B, and B consists of n number of blobs. The ith largest blob is represented
by Oi, where 1 ≤ i ≤ n and area(Oi) ≥ area(Oi+1), ∀i. Each blob Oi is enclosed
by a minimum bounding rectangle (MBR) centered at (mi

x,m
i
y) having width wi and

height hi. �i represents the skeleton of blob Oi. Features related to the shape and
size of the top largest blobs are extracted.

5.3 Classifiers

Classification results are highly dependent on several factors such as data type or
distribution. In the literature, different classifiers are offered for different factors. In
this study, 5 different classifiers were examined to determine the best classifier for
this particular problem domain. The selected classifiers are described below.

1. Decision Tree (DT): Decision tree is a rule-based classifier that utilizes a tree-
based graph of features to decide the class of a sample. In the training stage, a tree
structure is constructed where internal nodes represent features and leaf nodes
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have class labels. In the testing stage, the test sample is classified by reaching the
leaf node from the feature hierarchy of the tree. The decision trees are effective
on categorical data types. It requires relatively less time to construct a training
model (tree) and testing is also quite fast once the tree is induced [44].

2. Random Forest (RF): Random forest is an ensemble-type classifier that com-
prises many decision tree classifiers (weak classifier). In the training stage, every
decision tree is constructed based on randomly selected samples (bootstrap).
Remaining samples (out-of-bag) are used in the testing stage. While constructing
a decision tree, not all features are used. A feature subset is also selected ran-
domly. For the final decision, results of all decision trees are combined based on
a voting mechanism [44]. MATLAB code was used for RF which is based on
algorithm by Leo Breiman et al.2 [33]. The number of trees for the random forest
classifier is set as 500. The square root of the total number of features is selected
as the number of candidate features at one node of a decision tree [6].

3. Support Vector Machines (SVM): Support Vector Machine is a binary supervised
classification method. In the training stage, a decision surface (hyperplane) is
determined based on boundary samples called support vectors. SVM tries to find
the optimal hyperplane that maximizes the margin between the two classes. If the
data is not linearly separable, SVM can be applied by transforming the input data
to high-dimensional feature spaces using kernel functions [44].

4. Naïve Bayesian Classifier (BYS): BYS is a probabilistic classifier technique that
decides the class of a sample by providing the probability of its membership to
the classes. The class with the highest probability is predicted as the result class.
In BYS, the features of the data samples are assumed to be independent of other
features. This assumption simplifies building a training model. The training stage
is fast and classification is independent of the range of the feature values [44].
Also, BYS is considered to be robust to the noisy samples.

5. Artificial Neural Networks (ANN): ArtificialNeuralNetworks is a supervised clas-
sification technique that is composed of interconnected nodes (neurons). Neurons
can be organized in layers depending on the complexity of the problem. It tries
to learn the weights of the connections between input and output neurons to min-
imize the error of classification as new data are evaluated in the training stage.
ANN is a commonly used technique for various classification problems such as
autonomous vehicle driving, speech recognition, face recognition, etc. [26, 44].
In this study, the MATLAB built-in neural network toolbox with two layers is
used. The hidden layer has n − 1 nodes where n is the number of features in the
dataset.

2https://code.google.com/p/randomforest-matlab/.

https://code.google.com/p/randomforest-matlab/
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5.4 Feature Sets

To analyze the classification performance for different features, the image features are
grouped into different groups such as intensity features, histogram, texture, region,
graph, and shape-adaptive features. Feature extraction stage was done mostly using
MATLAB programming language. However, in a small portion of the implementa-
tion, C# was also used.

5.4.1 Intensity Features

Features related to intensity distribution in an image can provide a basic feature
set to categorize images into different categories. In general, the images consisting
of crystals have high illumination compared to the images without crystals. Using
the grayscale image Igray, the 6 image intensity features (average image intensity,
minimum image intensity, maximum image intensity, standard deviation of intensity,
Otsu’s threshold intensity, and threshold effectiveness metric) listed in Table5.2 are
extracted.

5.4.2 Histogram Features

The intensity histogram of an image provides a graphical representation of the image
intensity distribution. The histogram provides information about the distribution of
all pixel values or group of values in the image. For the fluorescence-based images,
the green color channel carries the most information. Therefore, the intensity values
in this channel are used to compute the histogram features. The number of bins was
determined as 256 (between 0 and 255) for each green channel level. Histogram for
the green level is defined as

Table 5.2 List of intensity features

Symbol Description Formulation

iμ Average image intensity 1
w∗h

∑h
i=1

∑w
j=1 Igray(i, j)

imin Minimum image intensity min1≤i≤h,1≤j≤wIgray(i, j)

imax Maximum image intensity max1≤i≤h,1≤j≤wIgray(i, j)

σ Standard deviation of intensity σ =
√

1
h∗w

∑h
i=1

∑w
j=1(iμ − Igray(i, j))2

τo Otsu’s threshold intensity [28]

eo Threshold effectiveness metric [23]
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Table 5.3 List of histogram features

Symbol Description Formulation

μ Average image intensity 1
w∗h

∑k=255
k=0 k ∗ H[k]

σ Std devn of intensity
√

1
w∗h

∑k=255
k=0 (k − μ)2 ∗ H[k]

s Skewness 1
(w∗h)∗σ 1.0

∑k=255
k=0 (k − μ)3 ∗ H[k]

k Kurtosis 1
(w∗h)∗σ 2

∑k=255
k=0 (k − μ)4 ∗ H[k]

vE Entropy -
∑255

k=0 N[k]log(N[k]), where N[k] =
H[k]/(w ∗ h)

g11, g21, g31,.. g33 GLCM autocorrelation Equation5.5

ia1, ia2, ia3 Image autocorrelation Equation5.6

mg1, mg2, mg3 GLCM power spectrum
magnitude

mgi = mean2(|fftshift(fft2(Pi))|), 1 ≤ i ≤ 3

mi Image power spectrum
magnitude

mi = mean2(|fftshift(fft2(I))|.2)

H[k] =
w∑

p=1

h∑

q=1

⎧
⎨

⎩

1 ifIG(p, q) = k

0 otherwise
(5.3)

Green Level Co-occurrence Matrix (GLCM) is a matrix of distribution of co-
occurring values of green level intensity at a given offset �x,�y [16]. GLCMmatrix
P using the green color channel is defined as in Eq. (5.4).

P�x,�y(i, j) =
w−�x∑

p=1

h−�y∑

q=1

⎧
⎨

⎩

1 ifIG(p, q) = iandIG(p + �x, q + �y) = j

0 otherwise
(5.4)

With (�x, �y) as (1, 0), (0,1), and (1,1), 3 GLCMs are obtained and represented
as P1, P2, and P3, respectively. Using green channel image IG, intensity histogram H
and GLCMs P1, P2, and P3, the 21 image features listed in Table5.3 are extracted.
The average intensity, standard deviation, skewness, kurtosis, and entropy measure
are the image features related to intensity distribution. GLCM autocorrelation is a
measure of linear dependence between the elements of co-occurrence matrix with
offset of �m and �n. The GLCM autocorrelation gk with offset (�m, �n) using
GLCM Pk is defined as in Eq. (5.5).

gk�m,�n =
∑255

i=�m

∑255
j=�n Pk(i, j) ∗ Pk(i − �m, j − �n)

∑255
i=�m

∑255
j=�n max(Pk(i, j), Pk(i − �m, j − �n))2

(5.5)

UsingP1,P2, andP3 GLCMs, and (�m,�n) as (1, 0), (0,1), and (1,1), 3*3 = 9GLCM
autocorrelation features are obtained.
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Image autocorrelation is defined as the measure of linear dependence between
pixels of the image with offset of �m and �n and computed as in Eq. (5.6).

ac�m,�n =
∑255

i=�m

∑255
j=�n IG(i, j) ∗ IG(i − �m, j − �n)
∑255

i=�m

∑255
j=�n (IG(i, j))2

(5.6)

Three image aut-correlation features using (�m, �n) as (1, 0), (0,1), and (1,1) are
obtained. The green color channel of the image is used as the input. Similarly, the
power spectrum is calculated using P1, P2, P3, and I , and the magnitude is used as
the image feature.

5.4.3 Texture Features

A texture is a set of texture elements or texels occurring in some regular pattern. In this
study, a total of 23 texture features are employed, collected from 3 different studies
([16], [42], [4]), andMATLAB built-in functions [23]. The list of features is provided
in Table5.4. Since 4 angular GLCM matrices are generated for texture analysis, 4
values are computed for each of 23 features in Table5.4 leading to 4 ∗ 23 = 92
values. By taking the mean and the range of the 4 values per feature, the number of
features is reduced to 46.

Let Ng denote the number of distinct green levels in the quantized image; p(i, j)
represent the (i, j)th entry in the normalized GLCM, px(k) denote the kth entry of
the matrix obtained by summing rows of p(i, j), and py(k) represent the kth entry of
the matrix obtained by summing columns of p(i, j). The following notation is used
in the formulation of the features provided in Table 5.4.

• px+y(k) = ∑Ng

i=1

∑Ng

j=1 p(i, j)
∣
∣
∣ i + j = k

• px−y(k) = ∑Ng

i=1

∑Ng

j=1 p(i, j)
∣
∣
∣ |i − j| = k

• μx = ∑
i

∑
j i · p(i, j)

• μy = ∑
i

∑
j j · p(i, j)

• σx = ∑
i

∑
j(i − μx)

2 · p(i, j)
• σy = ∑

i

∑
j(j − μy)

2 · p(i, j)
• HXY = −∑

i

∑
j p (i, j) log (p (i, j))

• HX and HY are entropies of px and py

• HXY1 = −∑
i

∑
j p (i, j) log

{
px(i)py(i)

}

• HXY2 = −∑
i

∑
j px(i)py(i) log

{
px(i)py(i)

}

In Table5.4, the MATLAB homogeneity feature (f10) and inverse difference fea-
ture (f21) are actually two different labels and implementations of the same feature.
Although both features were extracted for the experiments, one of these features can
be eliminated based on the programming environment.
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Table 5.4 List of texture features

Feature Formulation

f1 Autocorrelation [16]
∑

i
∑

j(ij)p(i, j)

f2 Contrast [16]
∑Ng−1

n=0 n2
{∑Ng

i=1

∑Ng
j=1 p(i, j)

∣
∣
∣ |i − j| = n

}

f3 Correlation (MATLAB) [23]
∑

i
∑

j
(i−μx)(j−μy)p(i,j)

σxσy

f4 Correlation [16]
∑

i
∑

j
(ij)p(i,j)−μxμy

σxσy

f5 Cluster prominence [42]
∑

i
∑

j

(
i + j − μx − μy

)4
p (i, j)

f6 Cluster shade [42]
∑

i
∑

j

(
i + j − μx − μy

)3
p (i, j)

f7 Dissimilarity [42]
∑

i
∑

j |i − j| · p(i, j)

f8 Energy [16]
∑

i
∑

j p(i, j)2

f9 Entropy [42] − ∑
i
∑

j p (i, j) log (p(i, j))

f10 Homogeneity (MATLAB) [23]
∑

i
∑

j
p(i,j)

1+|i−j|
f11 Homogeneity [42]

∑
i
∑

j
1

1+(i−j)2
p (i, j)

f12 Maximum probability [42] MAX
i,j

p (i, j)

f13 Sum of squares: Variance [16]
∑

i
∑

j(i − μ)2p(i, j)

f14 Sum average [16]
∑2Ng

i=2 ipx+y(i)

f15 Sum entropy [16] − ∑2Ng
i=2 px+y(i) log

{
px+y(i)

}

f16 Sum variance [16]
∑2Ng

i=2 (i − f15)2px+y(i)

f17 Difference variance [16] var(px−y)

f18 Difference entropy [16] − ∑Ng−1
i=0 px−y(i) log

{
px−y(i)

}

f19 Information measure of
correlation 1 [16]

HXY−HXY1
max{HX,HY}

f20 Information measure of
correlation 2 [16]

(1 − exp [−2(HXY2 − HXY)])1/2

f21 Inverse difference (INV) [4]
∑

i
∑

j
p(i,j)

1+|i−j|
f22 Inverse difference normalized [4]

∑
i
∑

j
p(i,j)

1+|i−j|/Ng

f23 Inverse difference moment [4]
∑

i
∑

j
p(i,j)

1+((i−j)/Ng)2

5.4.4 Region Features

Image thresholding separates the foreground and background in the image.
By thresholding the protein crystal images, crystals are expected to be distinguished
as foreground objects. Although other non-crystal objects might also appear as the
foreground, features from the binary images can provide important information about
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Table 5.5 List of global binary image features

Symbol Description Formulation

Nf Number of white
pixels in B

∑h
x=1

∑w
y=1 B(x, y)

μf Foreground
average intensity

1
Nf

∑h
i=1

∑w
j=1 Igray(i, j).B(i, j)

σf Foreground
standard
deviation
intensity

√
1

Nf

∑h
i=1

∑w
j=1((μf − Igray(i, j)).B(i, j))2

μb Background
average intensity

1
h∗w−Nf

∑h
i=1

∑w
j=1 Igray(i, j)(1 − B(i, j))

σb Background
standard
deviation
intensity

√
1

h∗w−Nf

∑h
i=1

∑w
j=1,B(i,j)=0((μb − Igray(i, j)).(1 − B(i, j))2

N Number of blobs No. of connected components

rc Image fullness convexHullArea(B)/(h ∗ w)

the content of an image. Similarly, features related to the shape and size of individual
objects are useful to categorize the images into different categories.

Using the gray-level image Igray and binary image B, the 7 global binary image
features (the number of white pixels in B, foreground average intensity, standard
deviation of foreground intensity, background average intensity, standard deviation
of background intensity, number of blobs, and image fullness) listed in Table5.5
are extracted. More information about the objects is obtained by extracting features
related to intensity statistics and shapes of the individual blobs. Nine blob features
(average intensity, standard deviation of intensity, number of pixels, number of white
pixels, perimeter, convex hull area, blob eccentricity, blob extent, and equivalent
circular diameter) are extracted for each of the top k largest blobs. Table5.6 provides
the list of 9 blob features. If the number of blobs n is less than k, the value 0 is
used as the feature value for the blobs On+1..Ok . Since a single technique may not
always provide correct binary image, 4 different image binarization methods (Otsu,
G90, G99, and morphological thresholding) are applied. These images are used to
extract region based image features. From each binary image, 52 (7 + 5*9 = 52)
image features are obtained for the 5 largest blobs (i.e., k = 5). Region Otsu, Region
G90, Region G99, and Region Morph represent the features obtained using Otsu, G90,
G99, and morphological thresholding methods, respectively.
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Table 5.6 List of blob features

Symbol Description Formulation

μi
o Average intensity of Oi

1
wi×hi

∑mi
x+wi/2

j=mi
x−wi/2

∑mi
y+hi/2

k=mi
y−hi/2

Igray(j, k)

σ i
o Standard deviation of

intensity of Oi

√
1

wi×hi

∑mi
x+wi/2

j=mi
x−wi/2

∑mi
y+hi/2

k=mi
y−hi/2

(μi
o − Igray(j, k))2

Ni
o Number of pixels in Oi hi * wi

Nf i
o Number of white pixels in

Oi

∑hi
x=1

∑wi
y=1 Oi(x, y)

pi
o Perimeter of Oi

∑hi
i=1

∑wi
j=1 �i(x, y)

chi
o Convex hull area of Oi [23]

ei
o Blob eccentricity of Oi [23]

bei
o Blob extent of Oi [23]

bdi
o Equivalent circular

diameter of Oi

[23]

5.4.5 Graph Features

The structure of an object as a graph has a significant importance in image analysis
since it defines the boundaries of an object in the image. Edge detection followed by
some post-processing steps to extract features that are useful to define the shapes of
objects [39] is applied. In addition, Hough line transform is applied to extract line
features. Table5.7 provides graph-related features.

In Table5.7, S is the set of graphs in I , Si the ith graph in S, L is the set of edges
in I , |L(Si)| is the number of edges in graph Si, and α

(
li, lj

)
represents the angle

between li and lj.

5.4.6 Shape-Adaptive Features

Shape-adaptiveDiscreteCosineTransform (SA-DCT) is a 2DDiscreteCosineTrans-
form (DCT)method for coding arbitrarily shaped image segments [50]. Image coding
can be applied either to region of interest (blobs) or the background region. In this
study, SA-DCT is applied on the top largest blobs. Table5.8 provides the list of image
features extracted from each blob after applying the SA-DCT. Otsu’s thresholding is
applied to obtain the binary image. SA-DCT is then applied on top 5 largest blobs.
Thus, 15 DCT features are obtained from an image. If a binary image contains less
than 5 blobs, 0 is assigned to all feature values of missing blobs.
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Table 5.7 Graph features

Feature Symbol Description Formulation

Edge
[39]

η Number of graphs (connected edges) η = |S|

η1 Number of graphs with a single edge η1 = |Si|, where |L(Si)| = 1

η2 Number of graphs with 2 edges η2 = |Si|, where |L(Si)| = 2

ηc Number of graphs whose edges form a
cycle

ηc = |Si| ,whereSi is a cyclic
graph

ηp Number of line normals ηp = ∑ ⊥ (Sk) ,⊥ (Sk) =
⎧
⎪⎪⎨

⎪⎪⎩

1 ∃li ∈ Lkand∃lj ∈ Lkand

70 ≤ α
(
li, lj

) ≤ 90

0 otherwise

μl Average length of edges in all
segments

μl =
∑

i∈L li
|L|

Sl Sum of lengths of all edges Sl = ∑
i∈L li

lmax Maximum length of an edge lmax = max1≤i≤|L| (li)
co 1 if ηc > 0, 0 otherwise co = ∃S, Sis a cyclic graph

lo 1 if ηp > 0, 0 otherwise lo = (∃li ∈ Lkand∃lj ∈
Lkand70 ≤ α

(
li, lj

) ≤ 90)

ηhc Number of Harris corners [17]

Hough ηhl Number of Hough lines [18]

μhl Average length of Hough lines [18]

Table 5.8 Shape-adaptive DCT features

Symbol Description

Ci
m Maximum of nonzero coefficients of SA-DCT of Oi

Ci
μ Average of nonzero coefficients of SA-DCT of Oi

Ci
N Number of nonzero coefficients of SA-DCT of Oi

5.5 Analysis of Feature Sets

There are a number of difficulties for classifying crystallization trial images as men-
tioned in the introduction. First, there are many categories (9 categories according to
Hampton’s scale) to classify with high intra-class diversity. As the number of cate-
gories increases, developing a reliable classification model becomes more difficult.
Second, labeling the data is difficult due to the temporal transition between categories
and the presence of multiple types of crystals in images. Third, the low percentage
of representation of critical categories gives bias to more populated but less impor-
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tant categories. To overcome these problems, a 2-stage classification was considered
that divides the classification problem into 3-class classification (non-crystals, likely-
leads, and crystals) at the first level, and classification into subcategories in the second
level as shown in Fig. 2.5. To balance the data distribution, all available data from
critical categories was used while reducing the images from frequently occurring
image categories. For time analysis, the time to extract each feature set was com-
puted. The classification results based on overall accuracy and sensitivity of critical
categories were ranked. Fivefold and tenfold cross-validation was used for measur-
ing the accuracy in different tests. Accuracy measures along with time analysis for
classification help to select the best feature sets for real-time stand-alone computing
system.

In this study, the experiments are designed in an exhaustive manner to be able to
evaluate effectiveness of different factors for classification of protein crystal images.
Different feature sets, classifiers, normalization, and feature reduction techniques are
considered. Experiments are carried out for all possible cases, and the performance
is calculated for each case. The goal is to determine the best condition (feature
set/classifier/transformation tuple) that can yield the highest accuracy on protein
crystallization images. The selection of features for hierarchical classification is
provided in Sect. 5.5.2. The results with respect to the time complexity and real-time
processing are evaluated. A total of 8624 experiments are carried out to test 9 major
objectives, listed in Table5.9. According to the table, Exp. IDs from “1” through “4”
represent the first-level experiments that are described in Sect. 5.5.3, and Exp. IDs
from “5” to “7” describe the second-level experiments explained in Sect. 5.5.4. In
addition, Exp. IDs “8” and “9” correspond to timing calculation of the experiments
explained in Sect. 5.6.

5.5.1 Data

The images are collected using the Crystal X2 by iXpressGenes, Inc. This is a
fluorescence-based microscopy system for scanning protein crystallization screen-
ing trial plates. All the images are hand scored by an expert according to Hampton’s
scale. Table5.10 provides the distribution of the dataset into different categories.
The dataset includes a total of 2,756 images composed of 1,600 non-crystal images,
675 likely-lead images, and 481 crystal images. The image resolution is 320 × 240
reduced from the camera resolution of 2,560 x 1,920. Some images were difficult
to assign a subcategory due to blurriness, illumination problems, significant high
intensity in the image, and presence of crystals at different phases. Because of this,
doubtful subcategory is added to each category, and the images with ambiguous sub-
category were assigned to these doubtful subcategories. Doubtful images are used
for training at the first level, but these images are discarded while building a training
model for subcategory classification.

http://dx.doi.org/10.1007/978-3-319-58937-4_2
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Table 5.9 List of classification experiments

Exp ID Tasks No. of experiments a

1 Run all classifiers for 511 feature set (5 classifiers
with/without normalization)

2 * 5 * 511 * 1 = 5110

2 Run the best classifier 5 times and take the average for
the best 70-feature set (RF)

1 * 1 * 64 * 5 = 320

3 Run classifiers PCA for 10,20, ..,50 features 1 * 5 * 5 * 2= 50

4 Run classifiers using RF feature selection (10,20,...,50) 1 * 5 * 5 * 2 = 50

5 Run BYS, DT, and RF (with and without normalization,
with graph features) for crystal subcategories

2 * 3 * 511 * 1 = 3066

6 Run RF, DT, and BYS classifiers with and without
normalization for likely-lead subcategories

2 * 3 * 1 * 1 = 6

7 Run RF, DT and BYS classifiers with and without
normalization for non-crystal subcategories

2 * 3 * 1 * 1 = 6

8 Calculate training and testing time of the random forest
for the largest feature

1 * 1 * 1 * 5 = 5

9 Calculate timings for feature extraction of an image 1 * 1 * 11 *1 = 11

Total number of experiments 8624
a In the table, the notation to calculate the number of experiments for a task is ηn ∗ ηc ∗ ηf ∗ ηr . In
this notation, ηn refers to the number of normalizations that are applied to feature set, ηc refers to the
number of classifiers used, ηf refers to the number of feature sets that are used for the corresponding
experiments, and ηr is the number of repetition of the experiments

Table 5.10 Dataset image distribution

Category Total images Subcategory No. of images Percentage (%)

Non-crystals 1600 Clear drop 1273 46.19

Phase separation 1 0.04

Precipitate 204 7.4

Doubtful 122 4.43

Likely-leads 675 Microcrystals 122 4.43

Unclear bright images 369 13.39

Doubtful 184 6.68

Crystals 481 Dendrites/Spherulites 63 2.29

Needles 153 5.55

2D Plates 8 0.29

Small 3D crystals 129 4.68

Large 3D crystals 35 1.27

Doubtful 93 3.37

Total 2756
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5.5.2 Evaluating Features for Hierarchical Classification

Initially, the main goal of the experiments was to classify protein crystallization trial
images into the categories of the first level. Analyzing pixel intensities was generally
enough for the first-level classification. Once good results with the first level are
obtained, subcategory classification is applied for each category of the first level.
Ideally, it would be good if the feature set that works great for the first level also
works best for the second level. The experiments for the second level are not restricted
by the optimal feature set of the first level. For further subcategory classification, the
same feature set has been tested first. If the same feature set provides reasonable
performance, there would be no need to extract any more features. However, if the
accuracy of subcategory classification is not satisfactory, all combinations of feature
sets are run for the subcategory as well.

Intensity (Table5.2), histogram (Table5.3), texture (Table5.4), region (Tables5.5
and 5.6), Hough (Table5.7), and shape-adaptive (Table5.8) features are used for
the first-level classification. The boundaries of crystal regions may actually be criti-
cal to identify crystals. Using “Hough" features did not provide satisfactory results
for crystal subclassification. Adding edge features (Table5.7) in addition to Hough
features may improve the classification accuracy. The main factor for adding this
additional set is the diverse set of images in crystal categories (Panels C, D, and E in
Fig. 2.2 and Panels A–E in Fig. 2.3): dendrites/spherulites, needles, plates, small 3D,
and large 3D crystals. Later it was observed that graph features (Table5.7) turned
out to be important for crystal subclassification.

5.5.3 First-Level (3-Class) Classification

For the first level of classification, 5110 experiments are run for all possible feature
sets with and without normalization on 5 different classifiers (Exp. ID 1 in Table5.9).
There are 9 different feature sets as mentioned above. Based on those features,
29 − 1 = 511 different combinations of feature sets were generated for the first-
level classification. For the first-level classification, only Hough features of the graph
feature set in Table5.7 were utilized rather than the complete graph feature set. After
analyzing the results of Exp. ID 1, the best 64 feature sets were selected that provided
the highest accuracy. Using the selected feature sets, the experiments were rerun 5
times and the average was taken to ensure that the results are consistent (Exp. ID 2
in Table5.9). In addition to these experiments, the effects of feature reduction and
selection methods on the classification performance were investigated. PCA was
applied to the complete feature set (excluding 11 edge features which are added later
for crystal subcategories in Table5.7) by reducing from 298 features to 5 feature
subsets (10, 20, 30, 40, and 50 features). Later, the 50 experiments (Exp. ID 3 in
Table5.9) are run. Similarly, random forest feature selection algorithm was applied
to reduce the features (10, 20, 30, 40, and 50 features) (Exp. ID 4 in Table5.9) similar

http://dx.doi.org/10.1007/978-3-319-58937-4_2
http://dx.doi.org/10.1007/978-3-319-58937-4_2
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to the PCA experiments. Then 50 new experiments were run for new feature sets.
Totally 5530 experiments were carried out for the first level of classification.

Accuracy Measures. To evaluate the correctness of the classification four mea-
sures: accuracy, probabilistic accuracy (Pacc) [37], sensitivity, and adjusted sensi-
tivity were evaluated. Let matrix C represent the N × N confusion matrix for an
N-class problem. The value Cij refers to the number of items of class i predicted as
class j. For the first-level (3-class) classification, adjusted sensitivity is calculated as
in (5.7).

adjustedsensitivity =
∑i=3

i=2 C2i + C3i
∑i=3

i=1 C2i + C3i

(5.7)

Here, classes 1, 2, and 3 represent non-crystals, likely-leads, and crystal categories,
respectively. The adjusted sensitivity does not penalize if crystals are classified as
likely-leads since experts analyze the likely-lead category as well.

Best Performing Feature Sets. Table5.11 shows the best 10 results of 5110 exper-
iments in Exp. ID 1 in descending order with respect to the accuracy measure. Here,
the highest accuracy result (96.3%) is achieved by applying random forest classifier
on the following normalized feature sets: intensity features, region features using
Otsu, region features using G99, and histogram features. As can be seen in the table,
the other results are also satisfactory as much as the first one. Note that the DCT fea-
tures require significant extraction time and provide very little or no contribution to
the overall classification performance. Therefore, in the second level of classification,
DCT features are excluded from the experiments.

Re-evaluating the Best Results. After conducting 5110 experiments, the best 64
feature sets were selected to validate the consistency of their high performance. Then,
these particular experiments were repeated for these 64 feature sets 5 times and their
average performance was calculated. In Table5.12, the feature sets along with the
accuracies of the best 8 (out of 64) experiments are provided. The set of intensity
features, region features using Otsu, region features using G90, region features using
G99, and histogram features gave the best accuracy (96.1%) using random forest
classifier. According to the time analysis, the best feature set can be extracted in
1.080 s. This is not the lowest time in the table, but it is a reasonable time for real-
time applications.

Feature Reduction using PCA.Feature reductionwas also considered to determine
its effect on the classification performance. First, the size of complete feature set is
reduced using PCA. Five new feature sets (10, 20, 30, 40, and 50 features) were
generated that include the most representative ones in the new feature space. For
each feature set, the experiments were evaluated using all classifiers with andwithout
normalization (Exp. ID 3 in Table5.9). The accuracy measures were calculated and
the results are provided inTable5.13. The highest accuracy can be reached using 30 or
20 features (with PCA transformation) using random forest classifier after applying
normalization. The change in principal component variances with respect to the
number of features is shown in Fig. 5.2. By analyzing Table5.13, it can be inferred
that the number of features can be reduced to 20with a small loss of accuracy (around
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Table 5.11 Classification results for preliminary experiment using random forest classifier (Exper-
iment ID 1)

Feature set Norm. Acc Pacc Sensitivity Adjusted
sensitivity

Intensity, Region Otsu, Region G99,
Histogram

Yes 0.963 0.942 0.867 1

Intensity, Region Otsu, Region G99,
Region Morph, Histogram, DCT

No 0.963 0.942 0.871 1

Intensity, Region Otsu, Region G99,
Hough, Texture, Histogram, DCT

Yes 0.963 0.941 0.863 1

Intensity, Region Otsu, Region G99,
Histogram

No 0.962 0.94 0.881 1

Intensity, Region Otsu, RegionG90,
RegionG99, RegionMorph,Hough,
Histogram, DCT

No 0.962 0.94 0.867 1

Intensity, Region Otsu, RegionG90,
Region G99, Region Morph, Tex-
ture, Histogram

Yes 0.962 0.939 0.865 1

Intensity, Region Otsu, Region G99,
Hough, Histogram, DCT

Yes 0.962 0.939 0.871 1

Intensity, Region Otsu, Region G99,
Hough, Histogram, DCT

No 0.962 0.939 0.869 1

Intensity, Region G99, Hough, Tex-
ture, Histogram

Yes 0.962 0.938 0.861 1

Intensity, Region Otsu, RegionG90,
Region G99, Region Morph, His-
togram

No 0.962 0.938 0.861 1

3% lower than the best case in Table5.11). However, the sensitivity is almost 0.13
lower than the best sensitivity.

Feature Selection using Random Forest MDA. Similar to the feature reduction, the
effects of feature selection was also considered in the experiments. To select more
reliable features, MDA (mean decrease in accuracy) algorithm in random forest was
preferred. Five feature sets (having 10, 20, 30, 40, and 50 representative features)
were generated. For each feature set, the experiments were evaluated using all clas-
sifiers with and without normalization (Exp. ID 4 in Table5.9). Similar to the PCA
reduction results in Table5.13, four accuracy measures were calculated. The results
were reported in Table5.14. Best results were achieved using 30 features with ran-
dom forest classifier after normalizing the dataset. The comparison of the best results
in Tables5.13 and 5.14 shows that feature selection provides better accuracy than
feature reduction in the experiments.

Performance of Individual Feature Sets.Finally, the power of the individual feature
sets was investigated. The performance of each feature set was evaluated using all
classifiers with and without normalization. Table5.15 shows the best results for each
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Table 5.12 Classification results for the best 8 of 64 experiments using random forest classifier

Feature set Norm. Acc Pacc Sensitivity Adjusted
sensitivity

Time per
image (sec)

Intensity, Region Otsu,
Region G90, Region G99,
Histogram

No 0.961 0.938 0.87 1 1.08

Intensity, Region Otsu,
Region G90, Region G99,
Region Morph, Texture,
Histogram

No 0.96 0.935 0.857 1 1.31

Region Otsu, Region G90,
Region G99, Histogram

Yes 0.959 0.935 0.861 1 1.028

Region Otsu, Region G90,
Region G99, Histogram,
DCT

No 0.959 0.934 0.852 1 26.668

Region Otsu, Region G99,
Histogram

Yes 0.959 0.934 0.858 1 0.77

Region Otsu, Region G90,
Region G99, Histogram

No 0.959 0.934 0.859 1 1.028

Intensity, Region Otsu,
Region G90, Region G99,
Texture, Histogram, DCT

No 0.958 0.934 0.854 1 26.756

Region Otsu, Region G99,
Histogram, DCT

No 0.957 0.931 0.853 1 26.409

Table 5.13 Classification results after feature reduction by PCA

Classifier # Features Norm Acc Pacc Sensitivity Adjusted
sensitivity

RF 30 Yes 0.934 0.901 0.740 0.954

RF 20 Yes 0.934 0.905 0.744 0.944

RF 40 Yes 0.931 0.897 0.728 0.948

RF 50 Yes 0.930 0.896 0.719 0.950

RF 50 No 0.928 0.893 0.715 0.940

SVM 50 Yes 0.918 0.870 0.761 0.990

SVM 40 Yes 0.916 0.869 0.763 0.983

SVM 30 Yes 0.910 0.858 0.726 0.985

RF 40 No 0.909 0.880 0.688 0.861

SVM 50 No 0.909 0.858 0.765 0.983
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Fig. 5.2 Principal component variances of the best 50 features

Table 5.14 Classification results after feature selection by Random Forest

Classifier # Features Norm Acc Pacc Sensitivity Adjusted
sensitivity

RF 30 Yes 0.960 0.936 0.863 0.998

RF 40 No 0.958 0.933 0.852 0.994

RF 50 Yes 0.957 0.932 0.859 0.996

RF 50 No 0.956 0.930 0.859 0.996

RF 30 No 0.954 0.926 0.834 0.994

RF 30 Yes 0.952 0.925 0.817 0.994

RF 20 No 0.950 0.920 0.832 0.992

RF 20 Yes 0.946 0.915 0.817 0.996

SVM 30 Yes 0.938 0.901 0.854 0.996

SVM 50 Yes 0.934 0.895 0.844 0.996

feature set. Additional experiments for these results were not performed since Exp.
ID 1 already includes these cases. The best results are obtained using the histogram
feature sets with accuracy of 90.8%.

5.5.4 Second-Level Classification

Evaluating the second-level classification independently helps analyze and improve
the subcategory classification by ignoring the misclassification from the first level.
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Table 5.15 Classification performance with individual feature sets

Feature set Classifier Norm Acc Pacc Sensitivity Adjusted
sensitivity

Intensity ID3 No 0.877 0.836 0.701 0.950

Region Otsu BYS Yes 0.751 0.702 0.622 0.915

Region G90 SVM Yes 0.864 0.818 0.676 0.944

Region G99 SVM Yes 0.882 0.838 0.723 0.944

Region
Morph

BYS Yes 0.738 0.717 0.580 0.994

Hough SVM Yes 0.841 0.737 0.235 0.906

Texture ID3 Yes 0.822 0.778 0.605 0.877

DCT BYS Yes 0.691 0.647 0.480 0.775

Histogram SVM Yes 0.908 0.852 0.705 0.996

If the classification accuracy of the first level was low, this could have been risky.
However, the first-level accuracy is 96%, which is reasonably high. In the first-level
classification, protein crystallization trial images are classified into 3 categories:
non-crystals, likely-leads, and crystals. In the second level, each of these categories
are further classified into subcategories as shown in Fig. 2.5. For the first level,
the feature set composed of intensity features, region features using Otsu, region
features using G90, region features using G99, and histogram features (First row in
Table5.12) provided the best result was determined. The sensitivity for the highest
ranked category in each subcategory is provided. The highest ranked category is
precipitates for non-crystals, microcrystals for likely-leads, and large 3D crystals for
the crystals. For two-class classification, if both accuracy and sensitivity are available
along with the number of samples in each category, the other sensitivity value could
be computed easily.

Non-crystal classification Non-crystals are classified into 3 subcategories: clear
drops, phase separation, and precipitates. Phase separation is a relatively rare occur-
rence. Table5.16 provides the classification performance for 3 classifiers (Exp. ID
7 in Table5.9) with and without normalization. These experiments are conducted
on the best feature set combination for the first-level classification. Normalization
is done using z-score normalization. The sensitivity column refers to the sensitiv-
ity for precipitates. Random forest provided the best classification performance and
normalization did not make any major difference. The classification accuracy is 98%
and the sensitivity for precipitates category is 0.91.

Likely-lead classification In the likely-lead category, there are two subcategories:
unclear bright images and microcrystals. The classification performance with 3 clas-
sifiers (Naïve Bayes, decision tree, and random forest) is provided in Table5.17
(Exp. ID 6 in Table5.9). These experiments are again conducted on the best fea-
ture set combination for the first-level classification. The sensitivity column refers to
the sensitivity for microcrystals. The best performance (92% accuracy) is obtained

http://dx.doi.org/10.1007/978-3-319-58937-4_2
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Table 5.16 Non-crystal subclassification

Classifier Normalization Accuracy Pacc Sensitivity

Naïve Bayes No 0.88 0.71 0.59

Naïve Bayes Yes 0.88 0.72 0.68

Decision Tree No 0.96 0.79 0.85

Decision Tree Yes 0.96 0.79 0.85

Random Forest No 0.98 0.81 0.91

Random Forest Yes 0.98 0.81 0.91

Table 5.17 Likely-lead subclassification

Classifier Normalization Accuracy Pacc Sensitivity

Naïve Bayes No 0.59 0.62 0.86

Naïve Bayes Yes 0.58 0.63 0.93

Decision Tree No 0.87 0.85 0.74

Decision Tree Yes 0.88 0.86 0.76

Random Forest No 0.92 0.91 0.80

Random Forest Yes 0.91 0.89 0.78

using random forest classifier without normalization. The corresponding sensitivity
for microcrystals is 0.80.

Crystal subclassification In the crystal category, there are 5 subcategories: den-
drites/spherulites, needles, 2D plates, small 3D crystals, and large 3D crystals. Crys-
tals have geometric shapes that can be defined by edges. Therefore, edge-related
features are quite useful to distinguish the crystal subcategories. For crystal subclas-
sification, rather than using only Hough features of the graph feature set, the edge
features in Table5.7 were also included in the experiments to consider the diverse
crystal categories. In addition to the selected features useful for the first-level classifi-
cation and non-crystal and likely-lead classification, classification experiments were
performed (Exp. ID 5 in Table5.9) including graph features described in Sect. 5.4.
Table5.18 shows the top 7 classification performances based on the accuracy using
random forest classifier. The sensitivity column refers to the sensitivity of large 3D
crystals. The feature set of intensity, region features usingOtsu’s thresholding, region
features using G90, graph and histograms gave the highest accuracy of 74.2%. This
feature set can be extracted in 1.267 s. Alternatively, with slightly lower accuracy
(74%), the feature set of region using Otsu’s thresholding, region using G99, graph
and histogram features can be generated in less than a second. The fastest feature set
(region features using G90 and graph) with accuracy of 73.5% can be generated in
0.779 s.



112 5 Classification of Crystallization Trial Images

Table 5.18 Crystal subclassification

Feature set Norm Accuracy Pacc Sensitivity Time (s)

Intensity, Region Otsu, RegionG90,
Graph, Histogram

Yes 0.742 0.667 0.909 1.267

Region Otsu, Region G99, Graph,
Texture, Histogram

Yes 0.74 0.684 0.896 0.949

Region Otsu, Region G90, Region
G99, Graph, Histogram

Yes 0.737 0.658 0.896 1.408

Region G90, Graph No 0.735 0.659 0.902 0.779

Intensity, R_G90, R_G99, Graph,
Histogram

No 0.735 0.667 0.896 1.201

Intensity, R_Otsu, R_G90, Graph,
Histogram

No 0.735 0.657 0.89 1.267

Intensity, Region Otsu, Region G99,
Graph, Histogram

No 0.735 0.682 0.878 0.964

5.6 Timing Analysis for Classification

Feature extraction was run on a system with Intel Core i7 2.4 GHz CPU, and 12
GB RAM memory. The image feature extraction routines are implemented using
MATLAB 2013b. Some feature extraction modules were implemented using C#
on Visual Studio 2012. Classification of data was accomplished using MATLAB.
Table5.19 provides a summary of feature extraction timings for different feature
sets. Most of the features can be extracted in less than half a second. The set of
DCT features is the most computationally expensive feature set, since it took around
25.5 s to extract DCT features on an average per image. This may be due to inefficient
shape-adaptive DCT implementation. However, it is still used in the experiments to
observe its benefit to the accuracy of the classification. Texture and intensity features
can be extracted quite fast in about 0.037s and 0.052s, respectively.

In the timing analysis, the total time is calculated using individual extraction
times in Table5.19, when a combination of feature sets is selected. For example, if
the feature set combination involves intensity, region G90, and texture features, the
total time to extract these feature sets combination is computed as 0.052 + 0.258 +
0.037 = 0.347s.

The computation time must include the time to classify the provided feature sets.
The time to classify is based on the random forest classifier as it provided better
accuracy than other classifiers (to be explained later in the following subsection).
The random forest classifier also provides an upper-bound for classification time
as it is more complicated than other compared classifiers in terms of evaluation
due to the number of decision trees involved. Random forest takes roughly 0.361
s to test all features, which is less than a half second for the complete set. If the
feature set composed of intensity, region G90, and texture features is classified using
random forest classifier, the time to extract features and classify is computed as
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Table 5.19 Computation time for feature extraction

Feature group Description No of features Avg time per
feature

Avg time per
image

Intensity Intensity features 6 0.009 0.052

Region Otsu Region features
using Otsu

52 0.005 0.258

Region G90 Region features
using G90

52 0.010 0.495

Region G99 Region features
using G99

52 0.004 0.193

Region Morph Region features
using morph
thresh

52 0.006 0.311

Graph Hough features
and edge features

13 0.022 0.284

Hough Hough features
only

2 0.049 0.097

Texture Texture features 46 0.001 0.037

Histogram Histogram
features

21 0.009 0.178

DCT DCT features 15 1.709 25.639

0.347 + 0.361 = 0.708s. For the hierarchical classification, new features may need
to be extracted for the other levels, and again a classifier needs to be applied for these
levels. Hence, the timings for other levels should be added as well.

Real-time applications have deadlines to complete specific tasks. Reduction of
features is essential for building real-time computing systems. The Crystal X2
microscopy system was used to collect the images of protein crystallization exper-
iments benefiting from trace fluorescent labeling. Trace fluorescent labeling [31]
helps reduce the number of features significantly with respect to systems using white
light. Moreover, since trace fluorescent labeling yields high contrast between crystal
regions and the background in trial images, image processing can be done in a simple
and fast manner. The time to extract features from images and classify them can be
reduced significantly. The time between capturing two images of a crystallization
well plate using Crystal X2 is around 3 s. To be able to execute image acquisition and
classification in parallel, the feature extraction and classification should be less than
the transition time. However, there is a trade-off to consider between the best clas-
sification performance and minimum time for feature extraction. While extracting
less features may be desirable, it may reduce the classification performance. In the
discussions below, the first-level classification and crystal subcategory classification
for the second level of the classification are provided since the accuracy of crystal
classification is more important than other subcategories.
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The Best Feature Sets. Using all features provided almost the same accuracy for
the first level as the best feature sets. The best classification performance for the
first-level (3-class) classification had 96% accuracy and 0.87 sensitivity using region
features from Otsu’s, G90, and G99 thresholding, intensity, and histogram features.
The feature extraction can be completed in 1.08 s for this feature set. Deep CNN
[49] achieved 96.56% accuracy for binary classification by missing around 16% of
crystals for their dataset. Since the accuracy of the first-level classification is high
(around 96%), the misclassification at the first level should not have a significant
effect on the second level. The system does not misclassify a crystal as non-crystal at
the first level (i.e., the adjusted sensitivity is 1). The best classification performance
for crystal subcategories at the second level had 74.2% accuracy and 0.909 sensitiv-
ity using normalized intensity, histogram, graph features and region features from
Otsu’s and G90 thresholding. This set of features can be extracted in 1.267s. On the
other hand, by using all features, 69.6% accuracy with 0.618 sensitivity for crystal
subcategory classification is obtained. Using all features reduced the accuracy and
(more importantly) sensitivity significantly for the second level. The sensitivity of
classification using all features for crystal subcategories is unacceptably low.

Fast Feature Sets. The fastest feature extraction with the same accuracy for the
first level uses normalized histogram features and region features from Otsu’s and
G99 thresholding. This feature set can be extracted in 0.77s. The sensitivity of this
feature (0.86) is slightly less than the sensitivity of the best feature set (0.87). Since
the classification performance of the fast feature set is close to the performance
of the best feature set, this set of features can be preferred to reduce the time for
classification. For the crystal subcategory classification, the fastest feature set that
can be extracted with high accuracy has only region features from G90 and graph
features. This smaller feature set has provided 73.5% accuracy and 0.902 sensitivity
compared to 74.2% accuracy and 0.909 sensitivity of the best feature set.

Comparison of Feature Sets for Hierarchical Classification. If two levels of clas-
sification are run in a hierarchical way, the union of the best feature sets includes
intensity, graph, histogram features, and region features from Otsu’s, G90, and G99

thresholding. In other words, only graph features are added for the second level of
classification. The total time for feature extraction increases slightly from 1.08 s to
1.373 s. Note that the time to extract the best feature set was 1.267 s for the second-
level classification. If the fast feature sets from both levels are included, the union
of feature sets includes histogram, graph features, and region features from Otsu’s,
G90 and G99 thresholding. For the fast feature sets, the intersection for the first and
second levels is empty. The total time to extract features becomes 1.549s. Using
fast feature sets for each level did not improve the overall time at all. The union of
the best feature sets can be executed faster for the combination of two levels. If the
classifier model is run in a hierarchical way, the overall performance in terms of time
should be analyzed with respect to the common features between levels.
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5.7 Deep Learning for Protein Crystallization Images

In recent years, deep learning had many successful applications from image recogni-
tion to natural language understanding. In Chap.3, the application of neural networks
on protein crystallization screening is explained. Unlike traditional neural networks,
convolutional neural networks (CNNs) supports local receptive fields, sparse con-
nectivity, and shared weights. These properties of CNNs allow to learn particular
segments of the input, spatial local correlations, and detect same features at different
locations of the input. Moreover, layers such as pooling and normalization may be
added to support translation invariance and identify local features. In a deep CNN,
there are a number of convolution layers that could be followed by pooling and
normalization layers. At the end, these nodes are connected to one or more fully
connected layers.

CrystalNet is designed for detecting protein crystals and composed of 13 lay-
ers [49]. Deep learning methods require a large training dataset. After applying
contrast normalization in the first layer, the training set is increased by horizon-
tal mirroring in the second layer and then applying small 2D similarity trans-
formations in the third layer. These stages are followed by a sequence of three
convolution and pooling layers. Then these outputs are fed into another convo-
lution layer and fed into two fully connected layers. Their architecture is com-
posed of a sequence of the following layers:image (128×128), contrast normaliza-
tion (128×128) horizontal mirroring (128×128), transformation (112×112), convo-
lution1 (64,112×112,5), pooling1(64,56×56,2,max), convolution2 (64,56×56,5),
pooling2(64,28×28,2,max), convolution3 (128,28×28,5), pooling2(128,14×14,2,
max), convolution4(128,6×6,3), fully connected layer1(2048), fully connected
layer2(2048), and output(10). For image, contrast normalization, horizontal mirror-
ing, and transformation layers the numbers in paranthesis indicate the size of output
of that layer. For example, transformation layer reduces the size from 128×128 to
112×112.Convolution(m, w ∗ h, f ) indicates thatm number of filters or maps gener-
ate output ofwxh with a filter size of fxf . For example, convolution1(64, 112x112, 5)
generates the same size as the input.This also means that it uses a stride of 1.
Pooling(m, w ∗ h, f , max) indicates that there are m input maps and it generates
output of wxh by applying fxf max pooling filter. 2x2 max pooling will reduce the
size by 2 in each dimension. Each fully connected layer has 2,048 inputs from the
previous layers. The output is designed for 10-way classification in their architecture.
In the proposed design, element-wise nonlinearity is applied after convolutional and
matrixmultiplication of fully connected layers to satisfy nonlinearity of the classifier.

In CrystalNet, 150,000 parameters are learned with a learning rate parameter
as 0.01, momentum as 0.9, and L2 regularization constant as 0.0001. Initially, all
weights are assigned randomly by using Gaussian distribution with 0 mean and 0.01
standard deviation. Their training set had 68,155 images whereas the validating set
had 17,033 images using 80–20 split. Ten classes and the number images in each
class (in paranthesis) in the validating set are clear (5877), precipitate (5732), crystal
(1391), phase (1121), precipitate and crystal (1339), precipitate and skin (873), phase

http://dx.doi.org/10.1007/978-3-319-58937-4_3
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and crystal (393),phase and precipitate (83), skin (136), and junk (88). CrystalNet
achieved 90.8% accuracy with 0.7685 recall for the crystal category. Despite high
accuracy, relatively low recall value for crystal category indicates enhancements
needed for this deep CNN architecture.

5.8 Discussion

Accuracy for Hierarchical Classification using the Best Feature Sets. The accuracy
of hierarchical classification is computed using the best feature set by applying the
random forest classifier. Since fivefold cross-validation is used for evaluation, the
training samples used for the second level are also used in the training set of the
first level. Similarly, the same case applies for the test set. Such selection limits the
selection of training set for the first level. Doubtful images for subcategories are used
in training of the first level but not used for the second level. These new experiments
in a retrospective way and there could be some slight differences in datasets and their
categorization. Hence, the confusion matrices for these cascaded classifications are
provided to avoid confusion. Based on the experiments, the accuracies of the first
level and second level are 95.46% and 92.79%, respectively. The overall accuracy
of the hierarchical classification is 89.22%. The confusion matrix of both levels
is provided in Table5.20. The confusion matrix for the first level is provided in
Table5.21. The confusion matrices for non-crystals, likely-leads, and crystals are
provided in Tables5.22, 5.23, and 5.24, respectively. In the confusion matrices of the
second level, “*” indicates incorrect classification samples in the first level.

Time to Classify Images. In these experiments, random forest classifier consis-
tently yielded good accuracy for classifying images at both levels. It took around
0.361s to evaluate the largest feature set using random forest classifier. If the time to
classify using random forest classifier is included, the following timings provided in

Table 5.20 Confusion matrix of hierarchical classification (FL: the first level, SL: the second level)

SL = True SL = False

FL = True 2103 147

FL = False 84 23

Table 5.21 Confusion matrix for the first level

Actual

Class 0 1 2

Prediction 0 1474 1 1

1 2 461 73

2 2 29 314
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Table 5.22 Confusion matrix for non-crystal classification (*: first-level misclassification)

Actual

Non-crystals Clear drop Phase separation Precipitate

Prediction Clear drop 1265 0 20

Phase separation 0 0 0

Precipitate 8 0 181

* 0 1 3

Table 5.23 Confusion matrix for likely-leads classification (*: first-level misclassification)

Actual

Likely-Leads Microcrystals Unclear bright images

Prediction Microcrystals 97 14

Unclear bright images 16 334

* 9 21

Table 5.24 Confusion matrix for crystal classification (*: first-level misclassification)

Actual

Crystals Dendrites/Spherulites Needles 2D
plates

Small
3D

Large
3D

Prediction Dendrites/Spherulites 11 1 0 4 0

Needles 11 99 1 13 0

2D plates 0 0 0 0 0

Small 3D 32 7 2 95 12

Large 3D 0 0 1 5 21

* 9 46 4 12 2

parentheses for the following feature sets are obtained: the best feature set for the first
level (1.441s), the best feature set for the second level (1.628s), the fast feature set
for the first level (1.131s), the fast feature set for the second level (1.263s), the union
of the best feature sets (2.094s), and the union of the fastest feature sets (2.271s).
Note that for the union of feature sets, the random forest classifier is applied twice
(one for each level). These timings are promising for incorporating into real-time
stand-alone computing systems. Since Crystal X2 takes around 3 s to move from one
well to another well (including the time to move the plate and switching the light
source), an option for real-time scoring has been implemented into the Crystal X2
system.

The Number of Features. The total number of features used in the experiments is
309. The union of best feature sets had 196 features, which is approximately 36%
less than the total number of features. The fast feature set for the first level included
125 features, while the crystal subclassification had 65 features. If classifiers for the
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first-level and crystal subcategory classification are used independently, this leads to
around 60% and 80% reduction of features for the first-level and crystal subcategory
classification using fast feature sets, respectively.

Individual Feature Sets. The individual feature sets were evaluated for the first
level. The best classification performance was obtained by applying random forest
classifier to normalized histogram features. This yielded 90.8% accuracy with 0.705
sensitivity. Intensity features using decision tree provided 87.7%accuracywith 0.701
sensitivity.DCT features provided the lowest accuracy of 69.1%with 0.48 sensitivity.
The performance of histogram features is notable as it uses only 21 features, which
can be extracted in 0.178s. However, its relative low sensitivity (0.705) with respect
to the sensitivity of the best feature set (0.87) makes using histogram features alone
less desirable.

Use of Multiple Thresholding Methods. In the preliminary experiments, none of
the thresholding methods produced good binarization consistently for all images in
the dataset due to challenges mentioned in the introduction. Rather than choosing the
best thresholding method among these, region features from all thresholded images
were extracted and fed to classifiers. Among thresholding techniques, morpholog-
ical thresholding did not improve accuracy much and it did not appear in feature
sets leading to high accuracy. In other cases, good classifiers generally used region
features from the two of the thresholding methods. This shows that classifiers can
benefit from a set of thresholding methods if at least one of them provides good
separation of the background and foreground.

Feature Selection and Reduction. Random forest classifier was used to rank fea-
tures and PCA for feature reduction. The best accuracy for PCA and feature selection
was obtained using 30 features by applying random forest classifier. PCA yielded
93.4% accuracy, while feature selection provided 96% accuracy. The sensitivity of
PCA is low (0.74) with respect to the sensitivity of feature selection (0.863). The
performance of feature selection is remarkable and slightly less with respect to the
performance of the best classifier.

Performance of Classifiers and Generalizability. Random forest classifier consis-
tently performed better than other classifiers. After observing that random forest is
more reliable than other classifiers in Exp. ID 1, the best experimental conditions
were repeated in Exp. ID 2 using random forest to validate the consistency of their
high performance. Normalization barely affected the performance of random forest
classifier. There were cases where normalization slightly lowered the performance.
A small set of experiments has been performed to measure generalizability over 5
different test sets of 100 samples. SVM had the best generalizability followed by
the decision tree and then by the random forest classifier. However, the generaliz-
ability could still be an issue for diverse datasets. The experiments provide the best
set of feature sets for each classifier. The best model may need to be retrained for
a larger new dataset. If the best model cannot generalize well, the next best model
that could generalize could be selected for actual experiments. Overfitting is possible
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with random forest classifier if many features are used or too many terminal nodes
are allowedwhile building weak classifiers and the dataset does not cover all possible
cases. To avoid overfitting, the number of features or the number of terminal nodes
may be reduced for the random forest classifier.

5.9 Summary

In this chapter, feature analysis was performed for protein crystallization trial images
benefiting from trace fluorescent labeling. Trace fluorescent labeling along with fea-
ture analysis method helps enable real-time scoring for the Crystal X2 system. Fea-
ture extraction and classification can be completed in around 2 s. For hierarchical
classification, it may be reasonable to maximize the common feature sets between
levels of classification hierarchy. The best experimental results were obtained using
combinations of intensity features, region features using Otsu’s thresholding, region
features using green percentile G90 thresholding, region features using green per-
centile G99 thresholding, graph features, and histogram features. Using this feature
set combination, 96% accuracy was achieved for the first level of classification to
determine the presence of crystals and 74.2% accuracy for (5-class) crystal subcat-
egory classification using random forest classifier. The correctness of the first-level
classification should be given more weight since misclassification at the first level
affects the second level. The choice of the fastest feature set for each level does not
improve overall time if the set of common features is small or empty.

The use of all features may not only increase the processing time but may also
lower the accuracy. Using all features had an adverse effect on the crystal subcate-
gory classification. It reduced the accuracy from 74.2 to 69.6% and sensitivity from
0.909 to 0.618.The experiments show that protein crystallization classificationwould
benefit from feature reduction in terms of time and accuracy. The histogram autocor-
relation features ranked high when a feature selection method was applied. Graph
features were included in the best feature sets for crystal subcategory classification.
DCT features did not have significant positive impact on the accuracy despite its high
computational time. Intensity and region features were generally involved in high
accuracy feature sets and ranked high in the results of feature selection method. The
random forest classifier provided the best results among classifiers in most cases.

If there is no single thresholding method that works well for all images in the
dataset, classifiers may benefit from the outcomes of multiple thresholding methods
assuming at least one of them produces a good result for an image. The feature sets
that yielded high accuracy generally included region features from at least two of
the thresholding methods. It was also interesting to observe that the region features
from morphological thresholding were not included in the best feature sets.

The exhaustive method of trying different combinations of feature sets, classi-
fiers, crystallization categories, feature selection/reduction methods and normaliza-
tion helped observe overall performance about feature sets with different classifiers.
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Timing analysis for feature sets helps identify the best feature set to achieve a specific
accuracy within specific time.

The experiments have been conducted rigorously and improvements or updates
have been made as needed throughout the course of experiments. Such updates
include ignoring some unnecessary features, updating some existing features, and
adding new features as needed. The work mentioned in this chapter can be further
enhanced on two dimensions: (1) reduce time to classify and (2) improve accu-
racy/sensitivity. When feature extraction time per feature set was computed, the tim-
ings were computed individually. The feature extraction has common intermediate
steps among feature sets. For example, if the foreground and background intensities
are computed, the overall intensity of the image can be computed from these fea-
tures without processing the complete image again. The intermediate steps do not
need to be executed again if the outputs of intermediate results are stored. Moreover,
each feature set may have irrelevant features that may not improve the accuracy. If
irrelevant features are eliminated, the time to extract features is reduced as well. To
improve the accuracy/sensitivity, images that were not classified correctly should be
identified. A new set of features may need to be extracted and analyzed for those
images to improve the accuracy. It would be interesting to evaluate textons [21] that
were used to rank crystallization droplets for presence of crystals [27] as another
feature set. No significant advantage of using simpler approaches such as linear
discriminant analysis or other ensemble methods has been observed, however, they
could be tried by identifying best parameter combinations and determined if they
improve the overall performance.
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Chapter 6
Crystal Growth Analysis

Abstract In recent years, high-throughput robotic setups have been developed to
automate the protein crystallization experiments, and imaging techniques are used to
monitor the crystallization progress. Images are collected multiple times during the
course of an experiment. Huge number of collected images make manual review of
images tedious and discouraging. In this chapter, utilizing trace fluorescent labeling,
we describe an automated system for monitoring the protein crystal growth in crys-
tallization trial images by analyzing time sequence images. Given the sets of image
sequences, the objective is to develop an efficient and reliable system to detect crys-
tal growth changes such as new crystal formation and increase of crystal size. This
system consists of three major steps—identification of crystallization trials proper
for spatiotemporal analysis, spatiotemporal analysis of identified trials, and crystal
growth analysis.

6.1 Introduction

The success rate of crystallization can be as low as 2% depending on the protein and
how crystallization trials are set up [25]. The crystallization depends on numerous
factors such as protein purity, protein concentration, type of precipitant, crystalliza-
tion techniques, etc. Finding the right combination of these factors that would lead to
crystallization is challenging since it requires setting up thousands of crystallization
trials with different combination of conditions using techniques such as incomplete
factorial design [13].Moreover, protein crystallization is not an instantaneous process
but rather a temporal process. The time required for the growth of crystals can take
from several hours to many months. A crystallographer may thus be faced with hun-
dreds of thousands of images of crystallization experiments to be reviewed. Due to
the abundance of images collected, themanual review of the images is impractical. To
remove the burden of checking every trial image one by one by a group of experts and
to automate the crystallization experiments, high-throughput robotic setups coupled
with imaging techniques are used. Typically, the crystallization trials are prepared
in well-plates with hundreds of wells and multiple droplet locations at each well
corresponding to the different crystallization conditions. The robotic arrangement
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is made to scan the well-plates capturing images at each droplet location in each
well [17]. Most of these automated systems try to classify the crystallization trial
images according to the crystallization state of the protein solution. Trials with no
positive sign for successful crystallization may be discarded. On the other hand, the
likely crystals are further reviewed either to optimize the conditions to prepare better
crystals or to determine its suitability for use in X-ray crystallography.

A popular way of helping crystallographers using an automated system is to
classify and score images collected by the robotic systems. The number of categories
that are identified for crystal trial image classification may give different levels of
information about the crystal growth process or optimization of conditions for further
trials. Trial images are typically classified into crystal and non-crystal categories to
identify experiments leading to successful crystallization (Zuk and Ward (1991)
[35], Cumba et al. (2003) [7], Cumba et al. (2005) [5], Zhu et al. (2004) [34], Berry
et al. (2006) [3], Pan et al. (2006) [20], Po and Laine (2008) [21]). To provide
more information about the crystallization process, the protein crystal growth can
be divided into multiple phases. Yang et al. (2006) [33] classified the trials into
three categories (clear, precipitate, and crystal). In [26], images were classified into
non-crystals, likely leads, and crystal categories. Bern et al. (2004) [2] and Saitoh
et al. (2006) [24] classified images into five categories (empty, clear, precipitate,
microcrystal hit, and crystal). Likewise, Spraggon et al. (2002) [29] and Cumba et
al. (2010) [6] have proposed six categories for the classification. In [28], the focus
was on the classification of crystal categories only. In these research studies, each
image of a well-plate or droplet location is analyzed individually without considering
the previous collected images. For example, it is not possible to determine whether
crystals are growing or the number of crystals is increasing without comparing with
the history of images collected for that specific well or droplet location.

Besides the accuracy of classifying protein crystallization trial images, another
major issue is effective extraction of features for developing real-time stand-alone
systems. Systems that utilize high-performance, distributed, or cloud computing
extracted as many features as possible hoping that the huge set of features could
improve the accuracy of the classification [6]. Some of the most commonly extracted
image features are Hough transform features [21], gradient and geometry-related
features [21, 28], blob texture features [24], features from differential image [24],
DiscreteFourierTransform features [30], features frommultiscaleLaplacianpyramid
filters [32], histogram analysis features [5], Sobel-edge features [31], gray-level co-
occurrence matrix features [34], etc. While generating huge number of features may
help categorize images at a satisfactory level, it is not suitable for real-time systems
where results should be delivered instantly as the plates are scanned. As mentioned
in Chap.5, the image processing and feature extraction have been computationally
expensive making it infeasible for real-time processing using stand-alone systems.

This chapter describes the CrystPro system [27] for analysis of trace fluorescently
labeled (TFL) protein crystallization results. Prior to setting up the crystallization
trials, the proteins are trace fluorescently labeled (TFL) as described elsewhere [9,
18, 22]. The basis of this technique is to covalently label a low proportion, typically
0.2%, of the protein molecules with a fluorescent probe, then removing all probe
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molecules that are not attached to the protein. By removing all non-covalently bound
probe, all fluorescence originates from a subpopulation of the protein molecules.
Thus, the fluorescence is an indicator of the protein’s behavior in the crystallization
trial. When using the TFL approach, the fluorescence intensity is a function of the
packing density of the covalently labeled protein. As the crystalline phase is the
most densely packed, this leads to the principle that intensity equals structure. As the
fluorescence is in the visible wavelengths, both automated and manual observations
are feasible. As image analysis is dependent upon intensity and not wavelength then
this approach should be equally useful for images acquired using U.V. fluorescence.

In spatiotemporal analysis of protein crystallization trial images, it is important to
note that the growth of regions are not necessarily indicators of crystals. Spatiotem-
poral analysis may include comparing only sequential images or tracking regions in
a series of images and comparing their growth. Not all crystallization trial images
are relevant for growth analysis. Hence, in this chapter, we describe identifying trials
for spatiotemporal analysis and then show how growth analysis can be performed on
those images.

6.2 Is it a Protein—Rule of Thumb

The bane of protein crystallization is the propensity for the nonprotein components
of a solution to come out of solution as crystals. Even worse, the crystals are often
nicely faceted, satisfying the would-be structural biologists urge to getting highly
photogenic crystals onto the beamline for the collection of high resolution diffraction
data. Of course, there are several problemswith this scenario, the first of which is that
good looking does not translate into well diffracting. Nothing ruins a data collection
more than putting that well-faceted crystal into the X-ray beam and getting a salt
diffraction pattern. To avoid this, crystal growers over the years have developed
several rules, most of which are at least 50% true, for avoiding the mounting and
diffracting of salt crystals.

The first rule is that if it appears quickly it is probably not a protein crystal. Salt and
protein crystal growth kinetics follow the same principles, but their growth kinetics
are typically very different. Salt diffusivities will be 1–2 orders of magnitude (or
more) greater than protein, so just the transport to the growing surface for proteins
will be slower, and thus the growth rate. Salt crystals often appear soon after a plate
is set up, and may, likely will, appear within a day. Due to the faster growth kinetics
salt crystal growth will stop after a short period of time, so as a result a crystal that
appears within the first 24 hours and does not get any larger is most likely salt.

Salt crystals are also mechanically robust. Protein crystals are typically ∼ 25
to >65 % solvent channels, and are mechanically very fragile. This difference in
properties led to the use of the crush test, pyrrhic determination where one applies
mechanical pressure to the crystal. If it maintains its shape, or slips away without
being destroyed, then it is likely salt. If, on the other hand, it collapses and turns into
a cloud of brown dust, then you had a protein crystal, but do not anymore.
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The presence of the solvent channels led to the development of a dye-binding
assay. The dye typically employed is methylene blue, sold under the name of Izit by
Hampton Research. A small amount of the blue dye solution is added to the crystal
containing drop. If it is protein, within a few hours the dye will diffuse into the crystal
via the solvent channels and bind to the protein molecules. The higher bound dye
concentration in the crystals results in their acquiring a dark blue coloration. As salt
crystals have no solvent channels they will not turn blue. A fluorescence variation
on this approach has been described [11].

Our approach, as illustrated in this treatise, is to trace fluorescently label the
protein prior to setting up the crystallization plate [10, 23]. The fluorescent dye is
covalently attached to the protein, with the goal being to keep the labeled population
to≤ 0.5%. The key part of the labeling procedure is to then remove all free dyes after
the reaction, so that the observed fluorescence is only that of the label attached to the
protein. Because of this, one can than track what the protein is doing in response to
the added precipitant solutions, and that any increased fluorescence intensity is due to
higher (local) protein concentrations. Several other fluorescence-based approaches
are extant for identifying the protein, but not the salt, crystals in screening plates [1,
12, 14, 15].

6.2.1 Protein—Get it While it is Fresh

Proteins are derived from living organisms, and as such virtually all have a finite
lifetime. Protein stability over the course of a crystallization experiment is a major
concern of the crystallographer. While proteins are generally more stable in a closely
packed crystal form, they may still degrade over time. Trace amounts of a contam-
inating protease, insufficient to influence the experimental crystallization outcome,
may be present to degrade one’s results. The crystallization well may become conta-
minated with a fungus or other microorganism. For these and other reasons it is best
to harvest one’s crystals as soon as possible.

Harvesting the crystal at the most opportune time means tracking the crystalliza-
tion experiment. Asmentioned above, salt crystals appear fast and stop growing soon
after they appear. Protein crystals, on the other hand, may continue to slowly grow
over days or weeks. Thus, while knowing the rate at which a crystal is growing, or
not, may be key to determining if it is of salt or protein, this information can also
inform when to best harvest the crystal and mount it for diffraction analysis.

6.3 Temporal Analysis of Time Series Images

Analyzing temporal process of protein crystallizationmay alleviate the burden on the
experts. Recently, Mele et al. 2013 [17] described an image analysis program called
Diviner that takes a time series of images from a crystallization trial and returns an
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estimate of the crystallographically relevant change between the images of the time
course. Mele et al. used the intensity change between images in a temporal image
sequence as an indicator of crystallization (hopefully not dissolving of crystals).
Diviner proposes the difference score for the overall image as a means to determine
the importance of a crystallization trial. Their work leads researchers to work on
images where a change in the crystallization droplet has been observed. However,
the computational cost for the analysis is very high and not feasible for real-time
analysis. Moreover, the pre-processing step of droplet (or drop boundary) detection
proposed may not be effective for many crystallization trial images. For example, it
may not be possible to detect the drop boundary because either the drop boundary is
not present or the droplet is not circular.

Despite a few limitations,Mele et al. [17] have shown that time series analysismay
hint the experts about images to explore further. By analyzing the temporal images,
the changes in images can be visualized and some useful metrics regarding crystal
growth can also be derived. Information such as the appearance of new crystals,
changes in the size of crystals and change in the orientation can be tracked from
the temporal image sequences. In addition, time series analysis can also provide a
relatively easier method for determining whether a temporal image sequence leads
to crystal formation or not. In this chapter, the goal is to extract further information
beyond the detection of change from time series images of protein crystallization trial
images. The detection of change between images may not always carry useful image
for the experts. Identifying whether (1) crystals are growing and (2) the number
of crystals is increasing could be helpful information for crystallographers. Such
spatiotemporal analysis of crystallization trials involves identification of regions,
their growth, and matching them in the previous images. Since it depends on region
segmentation and analysis of regions, there are further complications when time
series images are analyzed due to the following reasons.

(i) Varying illumination, improper focusing, nonuniform shapes and varying orien-
tation of crystals impose complexity in image analysis.

(ii) Since too many experiments are set up and the images are collected many times
during the course of the experiment, image processing can take significant time.
Existing automated systems have very high computational cost.

6.3.1 Stages of Temporal Analysis

Time series analysis for checking the number of crystals and change in size of crystals
requires comparison of images collected at different time instances for a specific
well or a droplet location. Consider a sequence of protein crystallization trial images
captured at n different time instances represented as I = {I1, I2,…, In} where Ik
represents the image collected at the kth time instant and 1 ≤ k ≤ n. In Fig. 6.1,
crystallization trial images corresponding to 3 protein wells that are captured at 3
time instances are shown. In the first image sequence (Fig. 6.1a), all 3 images consist
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Fig. 6.1 Sample temporal images of crystallization trials. Reprinted (adapted) with permission
from Crystal Growth and Design 2013 15 (11), Madhav Sigdel, Marc L. Pusey, and Ramazan S.
Aygun, 5254–5262. Copyright (2015) American Chemical Society

of cloudy precipitates without crystals. Hence, this sequence is not interesting for the
crystallographers. In the second (Fig. 6.1b) and third sequences (Fig. 6.1c), crystals
are formed in the later stages of the experiments. In these images, the increase in
the number or growing size of crystals can provide important information for the
crystallographers. Since protein crystallization is very rare, only few experiments
lead to crystals. Therefore, it is important to first correctly identify such sequences.
Once such sequences are identified, an image in the sequence can be compared with
any other image in the sequence leading to a combination of C(n, 2) comparison of
images.

Figure6.2 shows the basic components of CrystPro, the crystal growth analysis
system. CrystPro consists of three major steps: (1) identification of trials for spa-
tiotemporal analysis, (2) spatiotemporal analysis of identified trials, and (3) crystal
growth analysis. Spatiotemporal analysis is especially relevant and useful on crys-
tallization trials having crystals. Therefore, first the trials that have crystals having
fair size in any image of a crystallization trial are identified. By doing so, the tri-
als which do not have crystals are eliminated or the crystals are very small where
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Fig. 6.2 Overview of CrystPro system. Reprinted (adapted) with permission from Crystal Growth
and Design 2013 15 (11), Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun, 5254–5262.
Copyright (2015) American Chemical Society

spatiotemporal analysis is hard to achieve.Next, spatiotemporal processing is done on
the selected trials and spatiotemporal metrics such as change in intensity, foreground
area, number of crystals, etc., are obtained. These metrics are used to identify crys-
tal growth such as new crystal formation, crystal size increase, etc., and to perform
further analysis.

6.3.2 Sample Dataset and Experimental Setup

The images of crystallization trials are collected using Crystal X2 software from
iXpressGenes, Inc. The proteins are trace covalently labeledwith a fluorescent probe.
As previously shown [9, 18, 22], the use of fluorescence significantly speeds the
crystallization plate review process. The primary search criteria is intensity, not
straight lines, which simplifies results interpretation by either software or direct
visualization. Additionally, crystals that are obscured by other features in the well,
such as buried in precipitate, growing in an out of focus location along the edge, etc.,
are readily apparent simply by the presence of their fluorescence intensity.

In these experiments, green light emitting diodes (LEDs) were used as the exci-
tation source. Carboxyrhodamine is used as the covalent labeling. Spatiotemporal
analysis has been performed on three datasets—PCP-ILopt-11, PCP-ILopt-12 and
PCP-ILopt-13. Each dataset is captured froma96-well platewith 3 sub-wells scanned
3 times at different dates leading to 864 images per dataset. In the experiments, the
time gap between the first and second captures for PCP-ILopt-11, PCP-ILopt-12,
and PCP-ILopt-13 are 2 days. The interval between the second and third captures for
PCP-ILopt-11, PCP-ILopt-12, and PCP-ILopt-13 are 3, 3, and 4 days, respectively.
The size of the dataset is limited due to the number of crystalline outcomes that can
have gradual growth in crystal sizes and new formation of crystals. In these exper-
iments, the hyperthermophile-derived protein pcp (pyroglutamate amino peptidase)
was being subjected to optimization trials using a series ionic liquids at 0.1M concen-
tration. The trace fluorescent labeling approach was necessary as the ionic liquids
also often crystallized, giving false positives under white light, but not fluorescence,
illumination. Expert scores are obtained by a knowledgeable observer (MLP) first
closely examining and then scoring each well under white light microscopy. The
scores are then reviewed by reference to the latest fluorescent images, to eliminate
salt crystals from the high scoring outcomes. Regions of high fluorescence intensity
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that are not reflected in the first pass white light score lead to a second scrutiny
under white light to resolve the source of the intensity. Thus for manual scoring,
fluorescence is used as a feedback mechanism to maximize the correct scoring.

The image processing routines are implemented in MATLAB. The user interface
for image visualization is developed usingWindowsPresentation Framework (WPF).
Microsoft Visual Studio 2012 is used as the IDE. On aWindows 7 Intel Core i7 CPU
@2.8 GHz system with 12 GB memory, it took around 40min (or 2400 sec) to
process (extract features from) 2592 images (3*864 images per dataset) in the first
stage. The average processing time per image is about 1s. Hence, the analysis for
spatiotemporal analysis between a pair of images takes around 2s.

6.4 Identifying Trials for Spatiotemporal Analysis

The first stage of spatiotemporal analysis is the selection of suitable crystallization
trials for the analysis. Image thresholding is often used in image analysis for the
separation of foreground regions from the background. Obtaining a good binary
image is very critical in image analysis because any error in the binary image will
propagate to further processing steps. For example, regions that belong to a crystal
shouldnot be cropped in the thresholding stage. If a crystal region is partially detected,
then the growth of a crystal may not be analyzed properly. Varying illumination,
improper focusing, nonuniform shapes and varying orientation of crystals impose
complexity in separating crystals correctly. Moreover, images with skin formation
should be identified in this phase and should not be evaluated for crystal growth in
size or new crystal formation. Otsu’s thresholding [19] is a very popular method for
thresholding images. Likewise, Canny edge detection [4] has been widely used in the
literature to detect shapes of objects. In this study, since new crystal formation and
growth of crystal size for spatiotemporal analysis are considered, the size of crystals
should be comparable and not sensitive to poor binarization of images. Therefore,
the likely crystals are expected to have closed regions and within a certain size range
for the spatiotemporal analysis. A single technique may not work properly for all
images. To identify images with crystals, the results from both techniques are used
for detecting trials with crystals. Instead of extracting large number of image features
and applying a training based system, this method is quick and effective.

6.4.1 Image Thresholding

Segmenting an image into regions and then determining the important regions for
further processing are important processes in image analysis. A thresholding algo-
rithm typically classifies pixels into two classes: background pixels (pixels having
intensity lower than a certain threshold) and the foreground pixels. Numerous image
thresholding techniques have been proposed in the literature. Otsu’s method [19]
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Fig. 6.3 Identifying images with crystals a original images, bOtsu thresholded images, c eliminat-
ing very small and very large regions, d Canny edge image, and e regions with closed components
in the edge image. Reprinted (adapted) with permission from Crystal Growth and Design 2013
15 (11), Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun, 5254–5262. Copyright (2015)
American Chemical Society

iterates through all possible threshold values and calculates a measure of spread
of the pixel levels in foreground or background region. Otsu’s image segmentation
method selects an optimum threshold by maximizing the between-class variance in
a grayscale image. Figure6.3b provides results using Otsu’s threshold on 2 images.
Here, the first image (I1) does not have crystals but the second image (I2) does.
By eliminating the very large non-crystal regions (for example, region size above
2.5% of image size), the binary images shown in Fig. 6.3c are obtained. These results
show that non-crystal regions might appear as the foreground as an outcome of the
thresholding method.

6.4.2 Canny Edge Detection

Canny edge detection algorithm [4] is one of the most reliable algorithms for edge
detection. The results show that formost cases, the shapes of crystals are kept intact in
the resulting edge image. In this study, crystals regions that have closed components
are considered. With this assumption, the unclosed edges are eliminated. Figure6.3d
provides the Canny edge image for the original images in Fig. 6.3a. Figure6.3e shows
the result after eliminating the unclosed regions. The final image (Fig. 6.3e) for the
first image is blank, which suggests that there are no crystals. The final image for the
second image has likely crystal regions.
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6.4.3 Merging Results of Thresholding and Canny Edge
Detection

The results from Otsu’s thresholding and Canny edge detection are used to identify
trials with large crystals. For reliable detection of crystal growth analysis, the region
of a crystal should have at least 10 pixels for 320x240 image resolution. The size can
be matched to other resolutions proportionally. Figure6.4 shows the basic flow of the
method. For every image, Otsu’s thresholding image is applied first and very small
and very large regions are eliminated. If the resulting binary image has foreground
objects, Canny edge image is applied and likely crystal regions are determined. An
image is considered to have a crystal if it has likely crystal regions from the results
from Otsu’s binary image as well as Canny edge image. A crystallization trial is
considered to have crystals if at least one instance of the trial image is found to have
crystal. Thismethod provides a quick and accurate approach to identify trials suitable
for spatiotemporal analysis.

Fig. 6.4 Process flow to identify crystallization images with crystals. Reprinted (adapted) with
permission from Crystal Growth and Design 2013 15 (11), Madhav Sigdel, Marc L. Pusey, and
Ramazan S. Aygun, 5254–5262. Copyright (2015) American Chemical Society
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Table 6.1 Results of crystal detection on the 3 datasets

Dataset TN FP FN TP ACC SENS PREC

PCP-
ILopt-11

261 2 3 22 0.98 0.88 0.92

PCP-
ILopt-12

273 6 1 8 0.98 0.89 0.57

PCP-
ILopt-13

273 3 1 11 0.99 0.92 0.79

6.4.4 Evaluation

The first stage of new crystal detection or crystal growth in size is the detection
of crystal regions in images. The classification results of identifying candidate trial
images for 3 datasets are provided in Table6.1. Each dataset has 864 images collected
from 288-well-plate-collected at 3 time instances. The predicted results from this
method are compared against expert scores. In Table6.1, true negative (TN), false
positive (FP), false negative (FN), and true positive (TP) refer to the number of
trials correctly predicted as non-crystals, the number of non-crystal trials predicted
as crystals, the number of trials incorrectly predicted as non-crystals, and the number
of trials correctly identified as crystals, respectively.

For PCP-ILopt-11, the system predicts 24 (2 FP + 22 TP) trials with crystals.
Similarly, for PCP-ILopt-12, the system predicts 14 trials (6 FP + 8 TP) with crystals.
Likewise, PCP-ILopt-13 has 14 (3 FP + 11 TP) crystallization trials predicted to have
crystals. The accuracy of the system is above 98% for all 3 datasets. Likewise, the
sensitivity for detecting trials with crystals is also very high. There are few false
negatives (missing trials with crystals). Those trial images are either blurred or have
illumination problem. The system is able to reject non-crystals trials with very high
accuracy. As successful trials are rare, this will help eliminate large proportion of
unsuccessful trials.

6.5 Spatiotemporal Analysis of Protein Crystal Growth

Given a set of images of a protein well captured at different time instances, the goal
is the analysis of the growth of protein crystals. This analysis requires matching
crystals in two images and identifying the changes. Information such as appearance
of new crystals, dissolving of crystals, changes in the size of crystals, etc. gives
useful information about the growth of crystals. Figure6.5 shows the overview of
the spatiotemporal analysis system. The first stage of this analysis is the registration
of images that are collected at different time instances. Since the robotic microscope
may not have the same exact position each time a well is captured, the images should



136 6 Crystal Growth Analysis

Fig. 6.5 Overview of
spatiotemporal analysis.
Reprinted (adapted) with
permission from Crystal
Growth and Design 2013 15
(11), Madhav Sigdel, Marc
L. Pusey, and Ramazan S.
Aygun, 5254–5262.
Copyright (2015) American
Chemical Society

be aligned to make proper analysis. For an image pair (Ip,Iq ), image Iq is aligned
with respect to Ip and is represented as I

p
q . Next, binary images are obtained for the

images Ip and I pq represented as Bp and Bp
q respectively. The binary images are then

matched and spatiotemporal metrics related to crystal growth changes are extracted.
These spatiotemporal metrics are used to predict the crystal growth changes. In this
system, in addition to comparing consecutive images, the first image in the sequence
is also compared with the last image in the sequence. This helps to detect overall
change in the solution. For n images in a sequence, this results in n comparisons
of images in the sequence. The steps of spatiotemporal analysis of protein crystal
growth are described next.

6.5.1 Identifying Crystallographically Important Regions

In general, the protein crystallization images containing crystals have 4 different
intensity regions: background region, droplet (the solution), high- intensity regions
around crystals and the crystal regions with the highest intensity. The background
is the least illuminated region. The droplet region has higher illumination than the
background. If crystals are present in an image, crystal regions will have the highest
intensity. Also, the regions around the crystals have high intensity because of the
presence of crystals. The spatiotemporal analysis of crystallization images include
analyzing the shape, size, and growth of the crystals. The main purpose is to separate
crystal regions from the rest of pixels. In the experiments, a single threshold produced
poor results for some images.

Otsu’s method [19] has been extended to generate multiple thresholds and catego-
rize multiple classes of pixels in an image. For example, given an image, k thresholds
can be used or computed to differentiate the image pixels into k + 1 classes according
to intensity. To separate pixels in an image into four classes, three thresholds need
to be calculated. Therefore, multilevel thresholding is applied with three threshold
levels to identify four intensity regions. The binary image is obtained by considering
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Fig. 6.6 Image binarization using muti-level Otsu’s thresholding, a original image, b image seg-
mentation into 4 classes using Otsu’s thresholding, c binary image obtained by selecting the last
class pixels as foreground and the rest as background, and d) final binary image after filtering
minimum (5 pixels) and maximum (2.5% of image size) sized regions. Reprinted (adapted) with
permission from Crystal Growth and Design 2013 15 (11), Madhav Sigdel, Marc L. Pusey, and
Ramazan S. Aygun, 5254–5262. Copyright (2015) American Chemical Society

the pixels above the highest threshold as the desired foreground. The rest of the pixels
are considered background. Furthermore, region segmentation is applied and very
small and very large regions are eliminated.

Figure6.6 shows the result of applyingmultilevelOtsu’smethodwith three thresh-
old levels on a sequence of crystallization trial images. In Fig. 6.6b, it is possible to
observe how the pixels are separated into 4 intensity regions. The red pixels have the
highest intensity and represent the foreground whereas the blue, cyan, and yellow
pixels represent the low-intensity regions. By considering the red pixel regions as
foreground, the binary images shown in Fig. 6.6c are obtained. It should be noted
that the white regions in the binary image (Fig. 6.6c) do not necessarily represent
crystals. Generally, if an image does not have crystals, the partial illumination of the
protein droplet yields large foreground region in the binary image. Those regions
are discarded by applying region segmentation and filtering out the regions that are
larger than a certain threshold (e.g., 2.5% of the image area). Figure6.6d shows the
final binary images after filtering the regions based on the region size. These binary
images are used for further analysis. For the majority, this method correctly identi-
fies the crystals. However, if in an image there are multiple crystals with different
illuminations, it is possible to miss the crystals having less illumination.
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6.5.2 Image Registration and Alignment

Since images are collected at multiple time instances, and also because of the inac-
curacy in the acquisition system, the images are not exactly aligned. Even though
there may not be any change in the image sequence, the pixels may not appear at
the same position in the consecutive images. To compare pixels of different images,
intensity-based image registration [16] is applied. Very slight rotation is possible if
the plate is not located exactly as it was positioned before. Rotation is ignored in the
registration a) since neither the plate nor the microscope can rotate and b) rotation by
positioning the plate is minor or can be covered by translations. The microscope lens
can usually maintain its distance to the plate properly, so scaling parameters are also
not considered. Hence, image registration only involves computation of translation
parameters (tx , ty) for the next image in the sequence. Figure6.7a,b shows images
of a protein well captured at two time instances. Figure6.7c shows the overlaying
of image in Fig. 6.7b on top of image in Fig. 6.7a after alignment. The translation
parameters are tx= −8 (8 pixels to the left) and ty=9 (9 pixels to the bottom) for this
example. For proper alignment, the second image is shifted to the left and bottom
with respect to the first image.

6.5.3 Spatiotemporal Features

Spatiotemporal processing and feature extraction from image pairs are applied to
analyze the crystal growth changes. Spatiotemporal features are compared for a pair
of images (Io and In). Bo and Bn represent the corresponding binary images. In this
system, the dominant feature for indication of forming crystals is the increase in
the intensity. The change of intensity (μo,n

d = μn − μo) on the overall image can be
used to determine whether crystals are forming. Similarly, the percentage change
in the size of foreground area is computed as Ao,n

d = 100 ∗ |An − Ao|/Ao. Since,

Fig. 6.7 Spatial alignment using intensity- based image registration a Image at time instance t1,
b Image at time instance t2, and c Image 2 mapped on top of Image 1. Reprinted (adapted) with
permission from Crystal Growth and Design 2013 15 (11), Madhav Sigdel, Marc L. Pusey, and
Ramazan S. Aygun, 5254–5262. Copyright (2015) American Chemical Society
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μd and Ad provide rough information about the overall change, the analysis can be
improved based on the segmented regions. The change in the number of regions is
computed as N

o,n = Nn − No. To get further information whether the size of the
regions increased or decreased, the number of matched pixels No,n

m , the number of
pixels in additional regions (No,n

a ), and disappeared regions (No,n
r ) are determined.

Table6.2 provides the list of spatiotemporal features and their descriptions. These
features are extracted for every pair of consecutive images and also for the first and
last image in the sequence. If there are k images in the sequence, 7 ∗ k features are
generated. These features are useful in the image review process.

Figure6.8 provides a sample sequence of images for spatiotemporal analysis.
Rather than providing a simple scenario having clear large crystals forming or grow-
ing, this example with small crystals and possible errors of segmentation is provided
to show that the combination of these spatiotemporal features can provide useful
information even for such cases. In Fig. 6.8, new crystals appear in the second image
(I2) and the growth of crystals is observed in the third image (I3). In I1, there is no
crystal but thresholding method identifies a foreground region (Fig. 6.8d) which has
higher intensity than its surrounding. Images I2 and I3 have many small crystals that
may or may not match (Fig. 6.8e,f). It is possible to see growth of some crystals in
I3. Therefore, the pair of (I1, I2) can be used to test new crystal formation, and the
pair of (I2, I3) can be used to test crystal size growth.

Table6.3 provides the spatiotemporal features for 3 image pairs.While the average
intensity difference (μd ) is not significant, other measures such as the percentage
change in foreground area (Ad ), difference in the number of regions (N ), etc., provide
important information about changes in the sequence. In I2, the number of regions
is increased by 15 compared to I1. Similarly, there are 3 new regions in I3 compared
to I2. The change between I1 and I3 is more significant. The number of additional
regions in I3 compared to I1 is 17. The increase in the foreground area indicates the
presence of crystal growth.

Table 6.2 Spatiotemporal analysis metrics

# Metric Description

1 μ
o,n
d Average intensity difference

2 Ao,n
d Percentage of change in the

foreground area

3 N
o,n

Difference in number of
regions |Nn − No|

4 No,n
m No of matched object pixels

5 No,n
a No of new object pixels

6 No,n
r No of disappeared object

pixels

7 I o,nf Size increment factor
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Fig. 6.8 Sample image sequence with new crystals as well as crystal size growth. Reprinted
(adapted) with permission from Crystal Growth and Design 2013 15 (11), Madhav Sigdel, Marc L.
Pusey, and Ramazan S. Aygun, 5254–5262. Copyright (2015) American Chemical Society

Table 6.3 Spatiotemporal metrics for image sequence in Fig. 6.8

Symbol (I1, I2) (I2, I3) (I1, I3)

(tx ,ty) (-8,12) (-7,11) (-6,13)

μd 1.8 -0.6 1.2

Ad 105 63 240

N̄ 15 3 17

Nm 35 824 52

Na 770 655 1287

Nr 358 82 341

I f 23 1.8 25.8

From results in Table6.3, it is possible to infer that new regions are forming in I2
and I3, and crystal growth in size is observed in I3. Such information is useful for
experts to gain knowledge about the phases of crystallization process after further
review of the corresponding images. It is important to extract such information in
challenging sequences as shown above where thresholding method may make mis-
takes. In the next section, these features are used to determine rules for predicting
crystal growth.
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6.6 Determining Crystal Growth

Consider an image pair (Io, In) from a time series image trial, where In is a new image
collected later than an old image Io. To compare the changes in crystal growth, the
binary images Bo and Bn are used. Bo

n represents the binary image after Bn is aligned
with respect to Bo. The background pixels are represented by 0 and object pixels are
represented by 1. The method from [8] is used for comparison of two regions. To
find the common object pixels, new object pixels in Bo

n and the disappeared object
pixels from Bo, first a sum image Bo,n is computed using Eq.6.1:

Bo,n = Bo + 2Bo
n (6.1)

As in [8], the binary image Bo
n is multiplied by 2 and added with the binary image

Bo. The sum image Bo,n consists of 4 different values—0, 1, 2, and 3. The object
pixels common in both images have value 3. They are referred as matched pixels.
The object pixels in Bn but not in Bo

n have the value 2. Such pixels are added pixels.
The object pixels in Bo but not in Bo

n have the value 1. These are considered removed
pixels. Likewise, the background pixels in both the images have the value 0. Using
this information, the following statistics is computed.

• The number of matched pixels (Nm) = ∑W
i=1

∑H
j=1(Bo,n == 3)

• The number of added pixels (Na) = ∑W
i=1

∑H
j=1(Bo,n == 2)

• The number of removed pixels (Nr ) = ∑W
i=1

∑H
j=1(Bo,n == 1)

• Size increment factor (I f ) to evaluate the growth of crystals:

I f =

⎧
⎪⎨

⎪⎩

0 if Nm < τ (τ is the minimum threshold to consider

a match; default value is 10)

Na/Nm otherwise

Figure6.9a,b provides an image pair I1 and I2 collected at two time instances.
Image I2 is aligned with respect to image I1. Figure6.9c,d shows the binary images
B1 and B2 obtained using multilevel Otsu’s thresholding method. Figure6.9e shows
the regions after B1 and B2 are matched. Here, the matched object pixels are shown
in white, the additional pixels in B1

2 are shown in green. The object pixels in B1

missing in B1
2 are shown in red. Numerically, the count of matched pixels is 2232

and the number of added pixels is 1223. Likewise, the size increment factor is equal
to 0.55. This provides an estimation for increase in the size of the crystals in the
second image.

Formation of new crystals or growing crystals lead to three types of changes: 1)
the overall foreground area, 2) the number of crystals, and 3) the size of a matching
region (hopefully a crystal). Therefore, this information is used to guide in identifying
the type of protein crystal growth. Table6.4 provides a list of rules used to predict
if there is a crystal growth in a pair of images. The first rule is used to identify new
crystal formation. The rule indicates that there must be some change in the number
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Fig. 6.9 Matching images to determine crystal growth changes, a original image I1, b original
image I2, c binary image B1, d binary image B2 (aligned with respect to I1), and e matching B1
and B1

2 (matched object pixels in white, new object pixels in B2 in green and removed object pixels
shown in red. Reprinted (adapted) with permission from Crystal Growth and Design 2013 15 (11),
Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun, 5254–5262. Copyright (2015) American
Chemical Society

Table 6.4 Prediction rules for crystal growth

Rule # Description Rule signifying growth

1 New crystal formation N >1

2 Increase in crystal size Ad >50% AND I f >50%

of crystals forming or disappearing. The second rule is used to identify changes in
the size of crystals. This has two conditions that should be both satisfied. The first
part states that the foreground area should increase by at least 50% for clear crystal
growth. Similarly, the second part states that the area of the matched regions should
increase by at least 50%. Any image sequence in which one of the rules given in
Table6.4 is satisfied is considered to have crystal growth and thus important from
the crystallographer’s point of view.

6.7 Detection of New Crystals

Formation of new crystals is an important outcome in crystallization experiments.
Once this system detects formation of crystals and growing crystals, a crystallog-
rapher may start from these cases for his or her analysis. In Fig. 6.10, each column
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shows sample image pairs of crystallization trial images. In the image pairs shown
in Fig. 6.10a,b, no additional crystals are formed in the second image in comparison
to the first image. On the other hand, Fig. 6.10c,d shows the image pairs where new
crystals formed in the second image. This crystal growth analysis system can dis-
tinguish these two scenarios and also provide the count of new crystals appearing in
the crystallization trials.

For the crystallization trials identified with crystals from Sect. 6.4.4, temporal
analysis for new crystal formation is carried out using Rule 1 in Table6.4. Let I1, I2,
and I3 correspond to images collected for a crystallization experiment at 3 different
time instances. For each dataset (PCP-ILopt-11, PCP-ILopt-12, and PCP-ILopt-13),
the temporal analysis for 3 image pairs (I1,I2), (I2,I3), and (I1,I3) are provided in
Table6.5. The objective is to determine the performance of the system to correctly
identify new crystal formation by comparing the predicted outcome with the actual

Fig. 6.10 Sample temporal trial images a–b Image pairs with no new crystals, and c–d Image pairs
with new crystals. Reprinted (adapted) with permission from Crystal Growth and Design 2013
15 (11), Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun, 5254–5262. Copyright (2015)
American Chemical Society

Table 6.5 Experimental results for new crystals detection

Dataset Image
pair

TN FP FN TP ACC SENS

PCP-ILopt-11 I1, I2 7 6 0 11 0.75 1.00

I2, I3 8 5 0 11 0.79 1.00

I1, I3 5 7 0 12 0.71 1.00

PCP-ILopt-12 I1, I2 5 4 0 5 0.71 1.00

I2, I3 7 3 0 4 0.79 1.00

I1, I3 0 6 0 8 0.57 1.00

PCP-ILopt-13 I1, I2 3 2 0 9 0.86 1.00

I2, I3 5 1 1 7 0.86 0.88

I1, I3 3 1 0 10 0.93 1.00
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expert score. Since this step is based on the candidate trial identification for analysis,
the candidate trials include both the true positive and the false positive trials. ThePCP-
ILopt-11 and PCP-ILopt-12 datasets did not yield any false negatives. The results
show that the system exhibits very high sensitivity for new crystal formation. Out of
78 total cases where new crystals are formed, 77 are identified correctly leading to
satisfactory accuracy (performance) of the system.

6.8 Detection of Crystal Size Increase

Analysis of the changes in the size of crystals is another important factor for crys-
tallographers. After identifying candidate crystallization trials for analysis, a spa-
tiotemporal analysis between image pairs is carried out for detecting increase in size
of crystals. Figure6.11a,b shows sample image pairs with no growth in the size of
crystals. On the other hand, Fig. 6.10c,d shows the image pairs where crystals grow
in size in the second images. This crystal growth analysis system can detect crystal
growth in size and distinguish these two cases using Rule 2 in Sect. 6.6. The results
for experiments for identifying increase in crystal size are provided in Table6.6. The
number of image pairs with observed crystal growth in size is 9, 5, and 4 for PCP-
ILopt-11, PCP-ILopt-12, and PCP-ILopt-13, respectively, considering pairs (I1, I2),
(I2,I3), and (I1,I3). CrystPro correctly identifies 7 out of 9 for the first dataset, 3 out
of 5 for the second dataset, and 2 out of 4 for the third dataset.

Besides growth detection, CrystPro also determines other metrics such as the
percentage of area change in the matched crystals. An expert may use these metrics
for further analysis of the crystallization conditions.

Fig. 6.11 Sample image sequences with increase in size of crystals in successive scan. Reprinted
(adapted) with permission from Crystal Growth and Design 2013 15 (11), Madhav Sigdel, Marc L.
Pusey, and Ramazan S. Aygun, 5254–5262. Copyright (2015) American Chemical Society
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Table 6.6 Experiments with crystal size increase

Dataset Image
pair

TN FP FN TP ACC SENS

PCP-ILopt-11 I1, I2 20 2 0 2 0.92 1.00

I2, I3 18 1 2 3 0.88 0.60

I1, I3 20 2 0 2 0.92 1.00

PCP-ILopt-12 I1, I2 10 2 0 2 0.86 1.00

I2, I3 8 5 0 1 0.64 1.00

I1, I3 11 1 2 0 0.79 0.00

PCP-ILopt-13 I1, I2 12 1 1 0 0.86 0

I2, I3 12 0 1 1 0.93 0.50

I1, I3 12 1 0 1 0.93 1.00

6.9 Discussion

6.9.1 Trace Fluorescent Labeling

Influence of Labeling on Crystallization. The trace fluorescently labeled (TFL)
approach requires the covalent attachment of a fluorescent probe to a subpopula-
tion of the protein. In the experiments, it is shown that at the trace derivatization
level (< 1%) the presence of the probe does not affect the nucleation process, crystal
growth, or crystal diffraction resolution. [9, 22] Other advantages that accrue from
this approach are that the probe wavelengths can be selected to avoid interfering
substances, one can use this method with direct visualization, and one can employ
more than one color of fluorescent probe for the crystallization of complexes. Trace
fluorescent labeling did not have an adverse effect on spatiotemporal analysis in the
experiments.

Possibility of Quenching. Protein crystallization screening involves trials over a
wide range of components in chemical space. Some of these are likely to be flu-
orescence quenchers. While strong quenching has not been observed, it is highly
likely that some may be taking place, manifested as reduced fluorescence intensity.
Quenching is a collisional process, with the degree of quenching being dependent
upon the strength and concentration of the quenching species and the accessibility
of the fluorescent probe. Fluorescent probes become shielded from the bulk solution
environment upon incorporation into a crystal. Thus, while quenchers may be active
on the probe in solution they will be far less effective once the probes are buried in
a crystal. Nonetheless, care should be taken when selecting a probe for TFL appli-
cations, particularly with respect to its pH sensitivity. In the experiments carried out
to date no evidence of quenching has been observed.

Comparison with UV Fluorescence. Plate imaging systems primarily use visible
light and UV fluorescence, which is dependent upon the protein having a tryptophan
residue, which is not always present. Protein crystallization plate analysis using UV
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fluorescence requires UV transmissive optics, a UV light source, a suitablyUV sensi-
tive camera, andwhich for safety reasons cannot be used for direct visual observation.
However, the UVfluorescence produces concentration-dependent intensity, the same
as for the TFL approach discussed here. Regardless, for both the UV and TFL meth-
ods, the signal of interest is the emitted intensity. Thus software methods developed
for intensity-based image analysis and interpretation will be equally applicable with
both UV and visible fluorescence. For this reason the CrystPro system should be
equally suitable for UV fluorescence-based image analysis.

6.9.2 Spatiotemporal Analysis

Increasing accuracy versus overfitting. This system is not a supervised method, and
hence is not affected by noise in expert scores. To improve the accuracy of results,
one might be tempted to extract many features and train a classifier. However, it is
very critical not to overfit the data by using irrelevant features to build the model.
Even careful selection of image features may not be sufficient to prevent overfitting
for classification models. For example, to detect new crystals, the difference in the
number of crystals is the only relevant feature. Likewise, to determine the growth
of crystals, the changes in the size of matched crystals is a useful feature while
the difference in crystal count is not. Table6.7 provides the classification results
using decision tree classifier with the features in Table6.3 as the input. Although
this decision tree has good accuracy, the classification model is finely tuned by using
irrelevant features automatically (observed after analyzing the decision tree). Such
a model may work on the training set but not on new crystallization trial images.
The performance of this system mentioned in the previous subsections is a better
indicator of the accuracy of this system. In addition, the performance can get better as
the number of simple image pairs increases or challenging image pairs are excluded.

Size of crystals. CrystPro focuses on first identifying the crystallization trials that
have crystals having someminimum size. Extremely small crystals are hard to match
and susceptible to matching incorrect regions due to poor thresholding. Figure6.12a
shows sample trial images where small sized crystals are grown but are missed by
CrystPro. However, if crystals grow in size, such images will be detected.

New crystal formation.CrystPro detects whether new crystals form or not. Hence,
as soon as the plate is set up, the plate should be scanned and images should be
captured before crystals grow. If the crystals are already grown in the first image,

Table 6.7 Classification results using decision tree classifier

Dataset Test Accuracy Sensitivity

PCP-ILopt-11 New crystals 0.94 0.73

Growth 0.97 0.83

PCP-ILopt-12 New crystals 0.89 0.90

Growth 0.99 0.91
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Fig. 6.12 Sample crystal images with no distinct crystal growth. Reprinted (adapted) with permis-
sion from Crystal Growth and Design 2013 15 (11), Madhav Sigdel, Marc L. Pusey, and Ramazan
S. Aygun, 5254–5262. Copyright (2015) American Chemical Society

CrystPro does not detect new crystal formation. Figure6.12b shows sample trial
image pair where crystals are fully grown in the first image and there is no apparent
growth in crystals in the second image. To useCrystPro effectively, the images should
be collected as soon as the plate is set up.

Proper thresholding. Having a proper binary image is very critical in automated
image analysis systems. If the images in a temporal sequence are not thresholded
properly, crystal regions may not be segmented properly. Hence, it cannot be deter-
mined whether those regions are growing or not. For some images, the proposed
thresholding technique does not provide the correct binary image. Varying illumina-
tion and improper focus are some of the factors for incorrect thresholding. Normal-
izing the illumination is not always a good idea since crystal formation is indicated
by the intensity increase in the experiments. If two images are normalized to have
the same illumination, crystal formation or growth may not be detected. Therefore,
effective thresholding is essential for the best results.

6.10 Summary

This chapter described the CrystPro system for automated analysis of protein crystal-
lization trial images using time sequence images. This approach involves generating
proper binary images, applying image segmentation, matching the regions and then
comparing the matched areas to determine the changes. Given the images of crys-
tallization trials collected at different time instances as the input, first the candidate
trials for spatiotemporal analysis are identified. Secondly, spatiotemporal analysis is
done on the selected trials and changes such as new crystal formation and crystal size
increase are identified. This information is helpful for crystallographers to find out
important conditions for crystal growth. The systemhas a very high accuracy and sen-
sitivity for detecting trials with new crystal formation. Likewise, the system exhibits
reasonable accuracy and high sensitivity for crystal growth detection. By analyzing
the temporal images, useful metrics are derived to help the crystallographers review
the images.

The image thresholding plays a critical role for spatiotemporal analysis described
in this chapter. Proper image thresholding will improve spatiotemporal analysis.
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Normalization of images based on intensity causes problems in identifying growing
crystals. If the images are normalized, the growing crystals may look like they shrink
in time series analysis. The background area can be used for normalization rather than
the complete image area. Such normalization may help generate proper thresholded
images.

Acknowledgements The majority of this chapter is Reprinted (adapted) with permission from
Crystal Growth and Design 2013 15 (11), Madhav Sigdel, Marc L. Pusey, and Ramazan S. Aygun,
5254–5262. Copyright (2015) American Chemical Society. Some modifications have been made to
fit into this book.
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Chapter 7
Focal Stacking for Crystallization
Microscopy

Abstract Automated image analysis of protein crystallization images is one of the
important research areas. For proper analysis of the microscopic images, it is neces-
sary to have all objects in good focus. If objects in a scene (or specimen) appear at
different depths with respect to the camera’s focal point, objects outside the depth
of field usually appear blurred. Therefore, scientists capture a collection of images
with different depths of field. Each of these images can have different objects in
focus. Focal stacking is a technique of creating a single focused image from a stack
of images collected with different depths of field. In this chapter, we analyze focal
stacking techniques suitable for trace fluorescently labeled protein crystallization
images but also applicable images captured under white light.

7.1 Introduction

Imaging technology has become a critical module of scientific analysis systems in
biochemistry, physics, and space sciences. Microscopy imaging enables researchers
and experts to visualize and analyze microscopic world. Although there have been
significant improvements inmany aspects of imaging technology, focusing on objects
is still a problem for many applications. Image acquisition systems are usually
equipped with a camera that can only capture objects in focus if they lay in the
depth of field of a camera. To capture other objects in focus, the microscope lens can
be moved up or down to update the depth of field accordingly. Changing the depth of
field does not solve the problem since there is no single in-focus image that covers
all objects. As such, scientists are required to analyze a series of images since each
image has only a section or region in focus.

Depending on the problemdomain, focusing problems are dealt with (1) by adjust-
ing the level or focal point of the camera to generate the best in-focus image using
a single depth of field, or (2) by fusing in-focus regions from multiple images that
are captured with different depths of field. The first method is usually named as
“auto-focusing”, while the second one is usually termed as “focal stacking” in the
literature.

© Springer International Publishing AG 2017
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Auto-focusing and focal stacking methods have limitations on protein crystal-
lization trial images. The microscopic images such as protein images may have 3D
objects that can appear at different levels of a solution. If objects appear at different
depths, passive auto-focusing methods that select the best image usually fail. Focal
stacking algorithms may also fail due to several assumptions made while fusing
images:

(a) The contrast of a region will be higher when it is in focus with respect to when
it is out of focus.

(b) The brightness of a region is higher when it is in focus compared to when it is
out of focus.

There are also a few challenges of focal stacking:

(a) There may be discontinuities in the final image, since pixel values are obtained
from a set of images.

(b) Since images are captured at different times, the lighting conditions may change.
(c) The size of an object when it is in focus and out of focus might be different.

Typically, perspective model as in pinhole camera model is observed when reg-
ular cameras capture images. However, the fused image follows orthographic
projection model.

Obtaining clear regions in images is important and necessary for image processing
needed for feature extraction, classification of crystallization phases, and crystal
growth analysis. This chapter provides an overview and evaluation of techniques
that could be used for protein crystallization microscopy. Especially, these methods
should yield in-focus images for trace fluorescently labeled images as well as images
captured under traditional light sources such as white light.

7.2 Typical Viewing Area ∼ 2 mm in Diameter

The crystal images shown in Chap.2 are cropped ∼50% from the actually recorded
images. Droplet positions for 96-well SBS format plates typically hold a volume of
∼2µL, and are on the order of 2mm in diameter. Some plates may have larger and/or
non-circular well positions. The region of interest is the drop position; for sitting drop
plates, this is the well(s) adjacent to the crystallization solution reservoir. The wells
may be circular or rectangular in shape, depending on the platemanufacturers design.
We favor a circular well designwhere there are no sharp angles or corners. Inevitably,
due to surface tension effects, sharp corners provide a place for liquids to pool, such
that the crystallization droplets are not centered in the well.

Several characteristics are highly desirable for a microscope to be used for man-
ually imaging crystallization plates. Dissecting-type microscopes are best for this
purpose as they often have most of the desired characteristics and are often relatively
low cost. Ideally, the microscope should have a zoom function, where one can go

http://dx.doi.org/10.1007/978-3-319-58937-4_2
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from viewing an entire set of drops associated with a crystallization condition to a
single crystallization drop. Still higher magnifications are also very useful for close
examination of features of interest that cannot be resolved at lower magnification
levels. An ocular with a built-in scale is useful for estimating crystal sizes. A long
working distance, the greater the better, is a necessity when mounting crystals from
the well for X-ray diffraction. It is also useful to have a glass platform above the
microscope base to provide an air gap for cooling purposes, as the transmission
lighting for many systems can cause the base to warm up, potentially leading to crys-
tal dissolution. Having polarization capability is also very helpful, with one polarizer
below and one above the sample, the upper polarizer usually being attached to the
objective. Protein crystals are birefringent, and rotation of the upper polarizer will
result in crystals that become brightly colored. This does not hold true for crystals
in the cubic space group. Finally, it is very desirable to have a port for attaching a
camera, to record images of one’s crystals.

Fewer ancillary capabilities are needed for a microscope to be used for automated
drop imaging.Most important of course is that the associated system be able to trans-
port the plate to position each drop position within the viewing area. The automation
of the image collection process makes it difficult for collection of “custom” views
for each drop.

7.2.1 Objective Characteristics

For our microscopy system, we routinely use either a 5X ultra-long working distance
(ULWD) microscope objective or a 35mm camera lens. The ULWD objective is
useful for crystallization plates or systems having an unusual geometry or depth,
while the camera lens enables focusing at the lens as well as a variable aperture for
controlling intensity and depth of field. All images for this volume were acquired
using the camera lens. A zoom function is only useful for collection of single image,
particularly since collecting well images at higher magnification means that a lot of
the drop volume, and possible features of interest, may be excluded. As a result, we
find that when higher magnification is needed, it is easier to switch out the objective
for those few images.

7.2.2 Depth of Field

The depth of field refers to that area on the sample side of the lens that is within a
nominally acceptable focus, while the term depth of focus refers to the corresponding
zone on the imaging side of the lens where the image is in focus. Depth of field is the
distance between the nearest and furthest objects that are in acceptably sharp focus.
Several factors, some of which are (hopefully) irrelevant such as subject movement,
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influence the depth of field for an image. The most important variables for our
considerations are the lens focal length and the aperture or lens f-number.

7.2.3 Drop Depth and Your Crystal Probably Isn’t
Where You Are Looking

Increasing the magnification decreases the depth of field. This informs that routine
serial image acquisition should be carried out at a magnification no greater than that
which just encompasses the subject regionof interest. Increasing the aperture size also
decreases the depth of field, and correspondingly decreasing the aperture increases
it; think pinhole camera’s here. For a digital camera having a 1/2” sensor, using
a 5X objective lens and a f/4 aperture, the approximate depth of field is between
∼23 and 34 µm, depending upon how one estimates the circle of confusion. A
reasonable estimate (obtained by inserting a mounting loop of known diameter) for
a crystallization drop depth is ∼150 µm. From this, we see that ∼1/5 of the drop
depth will be in focus.

It can reasonably be assumed that wherever one sets the focus of an automatic
imaging system, the crystals will not grow within that associated depth of field. This
is not a problem with larger crystals, but many times smaller crystals will grow on
the surface of sitting drops, or fall to the bottom of the well, usually under a layer of
precipitate. An advantage of fluorescence-based imaging methods is that when out
of the immediate depth of field zone the brighter emission light from a crystal will
be observed, even though the straight lines that would be used to identify it using
white light may not be.

7.3 Take Multiple Images to See Through the Drop

There are several approaches to getting around the single fixed focal point problem
for automated imaging. Most directly, one takes a series of images while focusing
through the drop. The downside of this is that reviewing the images then takes that
much more effort. In passive auto-focusing, once the series of images has been
obtained, they can then be processed to select the best for the series, assuming there
is a crystal present, and the rest discarded. Alternatively, in focal stacking, they can
be combined by one of several methods to produce an image having an increased
depth of field.

There are trade-offs with either of the above approaches. At the outset, taking
multiple images requires movement along the focusing axis for the imaging sys-
tem. The images must then be transferred to the controlling system for any subse-
quent processing. Even before the processing additional time is needed for imaging
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each crystallization drop position, along with the concomitant increased wear on the
focusing axis movement which must be translated up and down for each crystalliza-
tion drop.

Once multiple images are acquired, they can be processed to determine which is
the best, has features in the best focus, or to produce a composite image having an
extended depth of field. Again, both of these post-acquisition processing steps require
time. It is not likely that they can be accomplished “on the fly”, between acquisition
of those for the next drop position. As a result, they will either temporarily consume
memory if the processing is carried out after all images are acquired or they will slow
down the overall rate of image acquisition if processing is carried out immediately
after acquisition.

7.4 Auto-Focusing

Auto-focusing is a method of capturing an object of interest in focus by determin-
ing the depth of the object or by selecting the best image from a series of images
with different depths of field. Auto-focusing can be categorized as active or passive
depending on whether the camera position is determined ahead of time with respect
to the object distance or the selection of the best image from a series of images
captured at different depths of field.

7.4.1 Active Auto-Focusing

In an image acquisition system, if the system allows selection of the object of interest
and determines where the camera should be positioned with respect to its distance,
it is called active auto-focusing. An active auto-focusing system is equipped with a
special hardware that helps determine the correct position of the camera lens. Stauffer
[20] describes an active auto-focusing system in which a beam of modulated energy
is projected toward a subject. The system captures the image using a single depth of
field that is considered as the best depth of field. Bezzubik et al. [1] show how image
contrast varies depending on the position of the stage relative to a microscope objec-
tive. Active auto-focusing is generally expensive as it requires expensive hardware
modification. This system usually works well if there is a single object of interest.

7.4.2 Passive Auto-Focusing

An alternate to active auto-focusing is passive auto-focusing where the best-focused
image is selected from a series of images captured at different depths of field. Let I
represent an image set {I1, I2, I3, I4, ...., Ik} and |I| represent the number of images
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Table 7.1 Objective functions ©2016 IEEE

Name Objective Function (Fm(I ))

Vollath-F4 Fvol4(I ) = ∑W−1
x=1

∑H
y=1 I (x, y).I (x + 1, y)−

∑W−2
x=1

∑H
y=1 I (x, y).I (x + 2, y)

Vollath F5 Fvol5(I ) = ∑W−1
x=1

∑H
y=1 I (x, y).I (x + 1, y) − W.H.(I )2

Norm Variance Fnormvar (I ) = 1
WH(I )

∑W
x=1

∑H
y=1[I (x, y) − I ]2

Laplacian Flap(I ) = ∑W
x=1

∑H
y=1[I (x − 1, y) + I (x, y − 1) + I (x + 1, y)+

I (x, y + 1) − 4.I (x, y)]2

in the set I. These images are captured with varying depths of field. All images in
I have size W x H. The pixel at (x, y) in i th image Ii is represented as Ii (x, y). In
passive auto-focusing, an image is selected as the best-focused image from the image
set, I. To define the best-focused image, an objective function is used to provide a
value for an image according to its clarity and details. Let Fm(I ) be the function
that measures the quality of image I using objective functionm. Let I f represent the
best-focused image in I and BF(I, Fm) represent the function for finding the best-
focused image in I using objective measure Fm(I ). Then, BF(I, Fm) = I f where
Fm(I f ) = max1≤i≤|I| Fm(Ii ), I f ∈ I, and 1 ≤ f ≤ |I|.

In the literature, various quality measures have been proposed to evaluate image
focus. Objective functions such as Laplacian, variance, Vollath-F4 [24] , Vollath F5
[24], entropy, etc. are some basic examples of quality measures. Table7.1 provides
a list of some objective functions with their mathematical expression. Forero et al.
[2] stated that objective functions like Laplacian and variance do not benefit from
clear and sharp parts that appear in images. A quality measure may not help find
the best-focused image for all domains. Among these quality measures, Vollath-F4
has been shown to provide satisfactory results for images for medical and biological
images [8, 12, 15, 16, 22]. Mateos-perez et al. [13] evaluated autofocus algorithms
and point out that Vollath-F4 and mid-frequency discrete cosine transform measures
are suitable for real-time auto-focusing.

7.5 Focal Stacking

Focal stacking is a method of generating a focused image from images captured
at varying depths of field by fusing in-focus areas. The objective is to generate a
composite image with all regions in focus by selecting the in-focus pixels from
the different image slices. Six images captured at varying depths of field using the
microscopy system described in [18] are provided in Fig. 7.1. It may be observed
that regions R1 and R2 are best focused in images I2 and I6, respectively. The goal
of focal stacking methods is to fuse these in-focus images from multiple images
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Fig. 7.1 Images of a protein crystallization sample captured with different depths of focus. Image
resolution is 320x240 ©2016 IEEE
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to generate a single in-focus image. Focal stacking methods can be categorized as
pixel-based, neighborhood-based, and transform-based focal stacking methods.

7.5.1 Pixel-Based Focal Stacking (PBFS)

Themost basic focal stackingmethod is the pixel-based focal stacking (PBFS) where
each pixel value at the corresponding position in all images is compared to determine
the best in-focus pixel value. For an input stack image set I and pixel position
(x,y), the best representative pixel value is determined using an objective function
and selection criteria. Laplacian is one of the commonly used objective functions.
Using a certain kernel function, Laplacian (L) value for every pixel position (x,y) is
calculated. For each image Ii ∈ I, a Laplacian image Li is created. The maximum
selection criteria are then used to determine the best representative pixel for every
position.At any position (x,y), I f (x, y) = Ik(x, y)where Lk(x, y) = max

1≤i≤|I|
Li (x, y)

and 1 ≤ k ≤ |I|. This method can be used with different objective functions.

7.5.2 Neighborhood-Based Focal Stacking (NBFS)

Themajor limitation of PBFS is the discontinuity between neighboring pixels caused
by selection of pixels from different images. Neighborhood-based focal stacking
(NBFS) algorithms use neighborhood information to get appropriate value of a pixel
to minimize the inconsistency [4, 21]. NBFS benefits from surrounding pixels rather
than solely relyingonpixels on the sameprojection.As inPBFS, anobjective function
is necessary to choose the best pixel value.

7.5.3 Transformation-Based Focal Stacking

In this method, each input image in spatial domain is first transformed into another
domain. The image quality and details are then compared in that domain using
some objective functions and comparison methods. After determining appropriate
output results, the image is re-transformed to the spatial domain by applying inverse
transform. In the literature, image fusion using various transformation methods such
as discrete wavelet transform, complex wavelet transform, and curvelet transform
has been proposed [7, 9, 17, 23]. Forster et al. [3] proposed complex-valued wavelet
transform-based image fusion algorithm. This method utilizes real and complex
wavelet transforms to identify in-focus regions. The complex wavelet-based method
is shown to outperform focal stacking using real-valuedwavelet. One important thing
to note is that there is a trade-off between capability of obtaining spatial details and
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the sensitivity to noise in wavelet transform technique [11]. Image fusion algorithm
by combining curvelet and wavelet transform is described in [10]. A comparative
analysis of different multi-resolution transforms for image fusion has been presented
in [11].

7.6 Focal Stacking for Trace Fluorescently Labeling
Microscopy

Two assumptions on high intensity and high contrast for identifying in-focus regions
are not applicable to trace fluorescently labeled protein crystallization trial images.
Since the background area is dark, when the high-intensity regions are out of focus,
they form a blurry enlarged intensity around the perimeter of the region. These
artificial high-intensity regions are not part of the high-intensity region. These are
rather artifacts when objects are not captured properly. As the depth of field changes,
the size of the region changes as well. This section introduces an important focal
stacking algorithm, FocusALL [19], which has been shown to work well for trace
fluorescently labeled images. FocusALL is a neighborhood-basedmethod and selects
pixels based on the neighborhood information. Its pixel selection criteria are based
on modified Harris corner response measure as described as follows.

7.6.1 Modification of Harris Corner Response Measure
(HCRM)

Harris et al. [5] introduced a measure for detecting corners in an image. Harris corner
method uses the principal curvatures of a two-dimensional local autocorrelation
matrix based on the first derivatives of an image. Let this matrix A be represented as
in Eq.7.1:

A =
[
Sx Sx Sx Sy
Sx Sy Sy Sy

]

(7.1)

where Sx Sx , Sy Sy , and Sx Sy are obtained using product of first derivatives (Sx , Sy)
using a smooth circular window w such as Gaussian as follows:

Sx = (
∂ I
∂x

) ⊗ w Sy =
(

∂ I
∂y

)
⊗ w

Sx Sx = (
∂ I
∂x

)2 ⊗ w Sy Sy =
(

∂ I
∂y

)2 ⊗ w

Sx Sy =
(

∂ I
∂x

∂ I
∂y

)
⊗ w
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Then, Harris corner response measure at a specific pixel (x,y) is computed as in
Eq.7.2 where k is a constant:

M(x, y) = Det (A(x, y)) − k(Trace(A(x, y)))2 (7.2)

The value of M(x,y) is high for corner pixels. In an out-of-focus image, pixels are
smoothed by neighboring pixels. In a focused image, the variation from a pixel to its
neighbor is expected to be higher than variation in defocused image. Therefore, it is
reasonable to use this value as an objective function in focal stacking.

The M(x, y) is actually a function of eigenvalues (α and β) of the matrix A in
Eq.7.1. These eigenvalues are correlated with the principal curvatures of the local
autocorrelation function [5]. The determinant inM(x, y) can be computed as (α ∗ β),
whereas the trace is equal to (α + β). The contours of M(x, y) with respect to α and
β are shown in Fig. 7.2a. While HCRM can differentiate corners from edges, it gives
little weight to edge pixels that has strong gradient in one direction. However, in focal
stacking algorithm, both corners and edges are important. If corner and edge pixels

−1

−1

−1

−1

0

0

0

0
0

0
0

1

1

1
1 1

2

2

2 2

3

3

3
3

4

4

4
4

5

5

5

α

β

Contours of original Harris

0 1 2 3 4 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

(a) Contours of original Harris

1
2

2

3

3

3

4

4

4

4

5

5

5

5

α

β

Contours of trace

0 1 2 3 4 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

(b) Contours of trace

1

1

1

2

2

2

3

3

3

3
4

4

4

4

4

5

5

5

5

α

β

Contours of FocusALL

0 1 2 3 4 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

(c) Contours using FocusALL

Fig. 7.2 Variation of contours with eigenvalues ©2016 IEEE
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are given equal importance, M(x, y) can be represented with the trace of matrix A
or the summation of eigenvalues. In such a case, the contours of M(x, y) would be
as shown in Fig. 7.2b. However, using the trace only may give more weight to edges.
To give more weight to corner pixels than edge pixels, the modified HCRM value
that is given in Eq.7.3 is used as the objective function:

M(x, y) = Det (A(x, y)) + k(Trace(A(x, y)))2 (7.3)

The contours of this proposed measure are provided in Fig. 7.2c. The curve of
the contours is an indication of the emphasis on the corners pixels. A corner pixel
with two low eigenvalues may be preferred to an edge with (one) high eigenvalue.
FocusALL uses the modified HCRM in Eq.7.3 as the objective function in this
technique. The two major steps in FocusALL are described next.

7.6.2 Calculating Representative HCRM Value

In this step, for all images in the input stack I, HCRM value for every pixel is
calculated. Then, the best representative HCRM value is determined for every pixel
position. Let Mi (x,y) be the HCRM value for the pixel position (x,y) of an image Ii
calculated as in Eq.7.3. Once all Mi (x, y) values are calculated, maximum selection
criteria are applied to determine the best representative M for every position (x,y):
M(x, y) = max1<i≤|I| Mi (x, y). The pseudocode for this algorithm is provided in
Algorithm 1. The algorithm takes image stack I as the input and returns a list with
the attributes: HCRM value, image index i, and pixel position (x,y) for the best
representative HCRM values for all pixel positions.

Algorithm 1 Find representative HCRM value for every position (x,y)
1: Input: I (Image stack)
2: Output: Obj List (Object array with attributes HCRM, imgIndx, x and y)
3:
4: procedure Obj List = repHCRM(I)
5: // Mi (x, y) is HCRM at pixel (x,y) for image Ii
6: i = 0
7: for x = 1; x <= I.Width; x++ do
8: for y = 1; y <= I.Height; y++ do
9: Mmax = 0
10: maxIndx = 0
11: for k = 1 to |I| do
12: if Mk (x, y) > Mmax then
13: Mmax= Mk (x, y)
14: maxIndx = k
15: Obj List[i].HCRM = Mmax
16: Obj List[i].imgIndx = max Indx
17: Obj List[i].x = x
18: Obj List[i].y = y
19: i++
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7.6.3 Generating Focused Image

An image is generated by selecting best pixels from the images in input image stack
I. First, the best representative M(x, y) values obtained from the previous step are
sorted in descending order based on HCRM values. To obtain the final focused
image, the pixels having highest HCRM values are filled by in descending order. In
addition to assigning pixel values to the corresponding pixel with high HCRM value,
neighborhood pixels are also filled by analyzing the frequency of images used for
that neighborhood. Let us assume that the system processes the i th highest HCRM
value for the position (xm , yn) and its value is obtained from image Ik . Also, consider
that the neighborhood window size is dx x dy. To find the best pixels around (xm ,
yn), the most frequently used image in the region (xm-dx/2, yn-dy/2) to (xm+dx/2,
yn+dy/2) of the final focused image is first determined. In other words, the most
repeatedly used image slice is found to fill the pixels around the neighborhood of (xm ,
yn). If none of the pixels in the region is filled already, the pixel values for this region
are obtained from the image slice Ik . Otherwise, the pixels values for all non-filled
position in the region are filled with the pixels from mostly used image. Suppose
image I f is the most frequently selected image in this region. Then, the non-filled
pixels in the region (xm-dx/2, yn-dy/2) to (xm+dx/2, yn+dy/2) are filled with the
pixel values from I f . This process is repeatedwith the next highest HCRMvalue until
all the pixel positions are processed. At the end of the procedure, a focused image
which is referred as Full Harris Image (FHI) is generated. Using the neighborhood
information helps to maintain the spatial consistency.

The pseudocode for this algorithm is provided in Algorithm 2. The algorithm
takes image stack (I), neighborhood size (dx, dy), and the HCRM threshold, and
returns the final focused image. The HCRM threshold is used to determine the pixels
to be filled in the focused image. Only the pixels having HCRM values higher than
the HCRM threshold are filled on the focused image. The focused image obtained
using HCRM threshold 0 is called the Full Harris Image (FHI). Using 0 as the
HCRM threshold ensures that representative pixels are determined for every pixel
in the focused image. Algorithm 3 provides the FindMode function to find the most
repeated image within the neighborhood of a pixel coordinate and is called in Line
18 of Algorithm 2. Note that Algorithm 3 may return full Harris image (FHI) for
filling regions or output partial Harris image (PHI) for varying illumination images
discussed in Sect. 7.8. Figure7.3a shows the focused image for the protein crystalliza-
tion trial image set shown in Fig. 7.1. The focused image has very few discontinuities,
and all the objects are in focus.

For every pixel position (x,y), the final focused image I f contains the pixel from
an image Ii in the input stack I. Let Ci represent the color for image Ii . Depth color
image can be represented asCI (x, y) = Ci , if pixel(x, y) is chosen as Ii (x, y)where
1 ≤ i ≤ |I |. The depth color image gives an insight of the depth view of the objects.



7.6 Focal Stacking for Trace Fluorescently Labeling Microscopy 163

Blue, green, red, cyan, yellow, and pink colors represent pixels selected from images
I1, I2, I3, I4, I5, and I6, respectively. Fig. 7.3b shows the corresponding depth color
image.

Algorithm 2 Generate final focused image
1: Input: I (Image stack), (dx, dy) (Neighborhood size) and thresHCRM(HCRM

threshold)
2: Output: Iharris (FHI or PHI)
3: Note: If thresHCRM = 0, Iharris is FHI, else Iharris is PHI
4:
5: procedure Iharris = genImgHarris(I, dx , dy, thresHCRM )
6: // Mi (x, y) is HCRM at pixel (x,y) for image Ii
7: Obj List = repHCRM(I) //See Algorithm 1
8: // Sort ObjList in descending order using HCRM value
9: Sort (Obj List, ′HCRM ′, ′Descending′)
10: //Create a 2D array to keep track of selected image indices for each

coordinate
11: track[ ][ ] = NULL
12: //Generate Harris image
13: for i = 1 to Obj List.si ze() do
14: x = Obj List[i].x
15: y = Obj List[i].y
16: if ( Obj List[i].HCRM ≥ thresHCRM ) then
17: //Find index of most repeated image (Algorithm 3)
18: modeIndx = f indMode(x, y, dx, dy, track, |I|)
19: if ( modeIndx is NULL ) then
20: modeIndx = Obj List[i].imgIndex

21: for p = -dx/2 to +dx/2 do
22: for q = -dy/2 to +dy/2 do
23: if ( track(x + p, y + q) is NULL ) then
24: track(x + p, y + q) = modeIndx
25: Iharris (x + p, y + q) = (MmodeIndx (x + p, y + q)>thresHCRM)?ImodeIndx (x + p, y +

q):NULL

Algorithm 3 Find mode of representative images in the neighborhood
1: Input:(x, y) (Pixel Position), (dx, dy) (Neighborhood size), track (2D array of

image size that keeps track of selected image index for each coordinate, |I|
(Number of images in image stack)

2: Output: modeIndx (Best representative image index at (x,y))
3:
4: procedure modeIndx = findMode(x , y, dx , dy, track, |I|)
5: //Find frequency of image indices in the neighborhood
6: count List[ ] = NULL
7: for p = -dx/2 to +dx/2 do
8: for q = -dy/2 to +dy/2 do
9: ( count List[track(x + p, y + q)] + + )

10: //Find the mode image indexes in the neighborhood, return NULL if all
count is 0

11: maxCnt = 0
12: modeIndx = NULL
13: for k = 1 to |I| do
14: if ( count List[k] > maxCnt) then
15: maxCnt = count[k]
16: modeIndx = k



164 7 Focal Stacking for Crystallization Microscopy

Fig. 7.3 Applying basic FocusALL ©2016 IEEE

7.7 Handling High-Resolution Images

Automatic microscopic systems generally capture images in high resolution. The
experts prefer to analyze the images in their original resolution, since some infor-
mation or details may be lost after resizing or processing the images. As mentioned
in Sect. 7.5, focal stacking algorithms require processing every pixel in the image.
Hence, applying focal stacking algorithms on high-resolution images is time con-
suming. In addition, since the intensity difference between neighboring pixels is low
in high-resolution images, the objective function used for determining the clarity of
the pixels may fail for these images.

As the resolution of an image increases, the intensity difference between two
neighboring pixels decreases. Since HCRM measures the change in intensity of
neighbor pixels, edges and corner pixels may not be properly detected in high-
resolution images. Hence, the basic FocusALL algorithm may not generate desired
focused images for high-resolution images. Figure7.4a shows the final focused image
created by using basic FocusALL with 1280x960 resolution. Two regions are high-
lighted and the zoomed in versions are provided in Fig. 7.4b, c, which shows discon-
tinuities in the final focused image.

The FocusALL for high-resolution images (FocusALL-HR) is an enhanced ver-
sion of the basic FocusALL technique to solve this problem. FocusALL is applied
on a base low-resolution image as an initial step to obtain focused image in high
resolution. The base resolution that FocusALL works properly with is determined
empirically. First, the depth colormap of the base resolution image is generated.Next,
the depth color image is resized from base resolution to high resolution using inter-
polation. This step helps to generate appropriate depth color map for high-resolution
image. Then, using the enlarged depth color map and image slices in high resolution,
final focused image is generated. Figure7.5a shows the focused image of the base
resolution. Depth color map of the base resolution image is shown in Figs. 7.5b, c,
which shows the depth color image of high-resolution image. Using the enlarged
depth color map, the focused image is generated (Fig. 7.5d).
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Fig. 7.4 Applying FocusALL to high-resolution image ©2016 IEEE

Fig. 7.5 Applying FocusALL-HR on a high-resolution image. a Focused image at base resolution,
bDepth color image at base resolution, c Enlarged depth color image, and d Focused image at high
resolution ©2016 IEEE

7.8 Handling Varying Illumination

Another challenge in focal stacking is that the lighting conditions may change while
capturing the images. If focal stacking is applied on such image set, high disconti-
nuity may be observed in the focused image due to pixels picked from images with
different illuminations. For such cases, basic FocusALL generates a focused image
with discontinuities and artifacts.
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Combining pixels from images with varying illumination to generate smooth
focused image is quite challenging. Like any focal stacking algorithm, FocusALL
also may not produce proper focus for these types of images. Because of illumina-
tion changes, the resulting focused imagemay consist of artifacts and discontinuities.
Figure7.8c shows a set of six images collected under different illuminations. Here,
the top two images in Fig. 7.8c have high illumination, while the bottom four images
in Fig. 7.8c have comparatively lower illumination. This may result in several dis-
continuities and artifacts in the background. Discontinuities are critical if they are
observed inside object. FocusALL for varying illumination images (FocusALL-VI)
is an enhanced version of the basic FocusALL technique to deal with such cases.

There are two aspects of varying illumination handling. First, for each cluster of
images, the original FocusALL algorithm is applied and a fused image per cluster is
generated. Second, a template image that separates final focused image pixels into
three groups as object, background, and holes is obtained. This template image is
named as partial Harris image (PHI). The holes are inside an object and filled based
on the image of the closest pixel. The background pixels are filled with the full Harris
images generated for each cluster. The PHI and FHI generation is very similar to
each other. The main difference between them is that the PHI requires a threshold
higher than 0 and generates holes. Algorithm 2 is used for PHI generation but with
a threshold higher than 0.

Fig. 7.6 provides the basic flow of handling images for varying illumination. First,
partial Harris image is obtained which separates the image pixels as object, back-
ground, and holes. Next, images with similar illumination are grouped under each
cluster and full Harris image (FHI) is obtained from each cluster. To obtain the com-
plete focused image, object pixels are obtained from the partial Harris image (PHI),
holes are obtained using pixels from neighboring object pixel image and background

Fig. 7.6 Generating focused
image for varying
illumination ©2016 IEEE
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Fig. 7.7 Results of FocusALL-VI ©2016 IEEE

is filled using the full Harris image. k image clusters will yield k focused images.
The expert can select one of these images as the best-focused image.

The images in image stack I are grouped using k-means clustering [6]. First,
intensity histogram is obtained for each image. The intensity histogram is input
to the k-means algorithm as a set of features. After providing the desired number
of clusters as input to k-means clustering algorithm, the images are grouped into
each cluster. For the image set shown in Fig. 7.8c, k-means clustering with intensity
histogram with 25 bins and 2 clusters is applied. Using this procedure, the first two
images in Fig. 7.8c fall under group G1, and the rest of the images in Fig. 7.8c fall
under group G2. For each cluster of images, full Harris image is generated.

To generate the final focused image, the steps of basic FocusALL are followed
with somemodifications. First, the representativeHCRMvalues are calculated. Then,
the Full Harris image (focused image) is generated for each group using Algorithm
2. Here, the image stack G1 or G2 is the input to the FHI generating algorithm.
Figures7.7a, d show the FHI generated from group G1 and group G2 separately. Let
the FHI generated using group G1 be FHIG1 and the FHI generated using group G2

be FHIG2. The background regions in PHI are obtained from FHIG1 or FHIG2. The
holes inside objects are filled using the pixels of images of object pixels closest to
the hole pixel. The detailed explanation of this method is provided in [19].
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Fig. 7.8 Experimental dataset (images captured with different depths of field a Protein images 1
(PC1), b Protein images 2 (PC2), c Protein images 3 (PC3), d Retinal pigment epithelial (RPE)
images, and e Simulated texture images ©2016 IEEE

7.9 Evaluation of Focal Stacking Methods

The FocusALL algorithm has been evaluated on three protein crystallization image
test cases: PC1, PC2, and PC3 shown in Fig. 7.8. The images for protein crystal-
lization trial sets were captured using the acquisition system described in [18]. The
images are collected at a resolution 2560x1920. Each dataset consists of six images
collected with different depths of field. The protein crystallization datasets used in
evaluation contain random scattered noise pixels. Thus, median filtering with win-
dow size 3x3 is applied prior to using focusing algorithms. Figures7.8a, 7.8b, and
7.8c provide the images after median filter for the test cases PC1, PC2, and PC3,
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respectively. FocusALLmethod has also been evaluated on retinal pigment epithelial
(RPE) images.1 There are four images in the RPE image set provided in Fig. 7.8d.

Simulated data with different focal depths of a microscope from a single a texture
image2 was created for objective evaluation of methods. Gaussian smoothing is
applied for varying depth of field. The image is firstmapped to 3Dnormal distribution
model to create different focus levels for a 2D texture image. Then, using the height
of each pixel as a smoothing parameter, smoothing is applied partially to different
parts of the image. Figure7.8e shows the set of six images with simulated different
focal depths. The resolution of the images is 320x240.

The performance of the FocusALL technique is compared with other focusing
algorithms. Since Vollath-F4 [24] has usually performed well in diverse domains, it
is chosen as the objective function for the best-focused image selection method. As a
transformation-based method, the complex wavelet transform (EDF-CWT) method
is selected since it provided good results in fluorescence microscopy [3]. To evaluate
this, the extended depth of field (EDF) plugin for ImageJ application [3] is used. In
addition to the EDF-CWTmethod in the EDF program, the results using Sobel-based
method (EDF-Sobel), variance-based method with window size 5 (EDF-Var5) and
real-valuedwavelet transform (EDF-RW) are evaluated. For the real wavelet method,
the medium quality option is selected since it provided better result compared to the
real wavelet medium high-quality option. For the FocusALL algorithm, the default
neighborhood size is 15x15 pixels. HCRM threshold value is determined empirically
and chosen as 20.

7.9.1 Low-Resolution Image

For low resolution, the images in Fig. 7.8 are downsampled to 320x240 and then the
focusing algorithms are applied. The RPE images are of size 321x256. Figure7.9
provides the focusing results using different techniques on four image sets (PC1,
PC2, RPE , and SI M). The PC1 image set (Fig. 7.8a) has mainly two regions of
interest highlighted as region R1 in the second and third images, and region R2 in the
sixth image. The results of focusing results for this dataset is provided in Fig. 7.9a. In
otherwords, R1 is best focused in the second or third image, and R2 is the best focused
in the sixth image of the set. The Vollath-F4 method selects the third image in the
input set as the best-focused image. The selected image has only one region in focus
and the other region is barely noticeable. The focused images using EDF-Sobel and
EDF-Var5 methods introduce significant noise in the final images. Moreover, the
region R2 is not clear. The focused images using EDF-RW and EDF-CWT have
both the regions in focus. However, around the borders of region R1, there are noise
pixels and artifacts. The focused image using FocusALL has the regions of interest

1Images obtained from http://bigwww.epfl.ch/demo/edf/demo_5.html (Courtesy of Peter Lundh
von Leithner and Heba Ahmad, Institute of Ophthalmology, London).
2http://www.textureking.com/content/img/stock/big/DSC_3518.JPG.

http://bigwww.epfl.ch/demo/edf/demo_5.html
http://www.textureking.com/content/img/stock/big/DSC_3518.JPG.
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in good focus and has a good contrast with the background. Figure7.10 provides a
zoomed in view of region R1 from the focused images using EDF-RW, EDF-CWT,
and FocusALL methods. The result from EDF-RW method shows artifacts around
the region. The EDF-CWT method performed comparatively better than the EDF-
RWmethod. However, there is random noise around the object. The R1 region using
FocusALL has smooth boundary of the object and the discontinuity is minimized.

Figure7.9b provides the focusing results using different techniques for PC2

(Fig. 7.8b). This image set has mainly three regions of interest represented as R1,
R2, and R3. The region R1 is best focused in the fourth image of the set. Similarly,
regions R2 and R3 are best focused in the third image of the set. The Vollath-F4
method selects the third image from the set as the best-focused image. This image
looks satisfactory although the edges in region R1 are not very sharp. The focused
images from EDF-Sobel and EDF-Var5 have additional layers in R1 region. There
are lots of noise pixels around the regions of interest and the objects are distorted.
The EDF-RW and EDF-CWT methods perform reasonably well on this image set.
However, if R1 region is looked into closer, it is possible to see additional layers
around the borders of the object. In the focused image from FocusALL method,
all the regions of interest are clear. The edges of the objects are more noticeable
compared to other results.

On the retinal epithelial images (Fig. 7.8d), it is difficult to select the regions of
interest. Figure7.9c provides the focusing results using different techniques. Here,
the major problematic regions in the result images are highlighted. The focusing
result using Vollath-F4 has the most blurred regions. The EDF-Var5 method has the
best result. Other methods, EDF-Sobel, EDF-RW, EDF-CWT, and FocusALL have
relatively small blurred regions. All these methods result in a good focused image
compared to any single image in the input set.

On the simulated dataset (Fig. 7.8e), each image has different regions blurred.
It is difficult to show the regions of interest in this set. The focusing methods can
be evaluated by comparing the resulting focused images with the original texture
image. Similarly, the clarity of details and overall image sharpness can be analyzed.
Figure7.9d provides the focusing results with different techniques. For each image,
the problematic regions are shown in rectangular box. The outcome using best image
selection method with Vollath-F4 is the most problematic. Similarly, the results with
EDF-RW and EDF-CWT methods have large regions that are out of focus. The
focused images with EDF-Sobel and FocusALL (neighborhood size 3x3) have small
blurred regions in different parts of the images. Nevertheless, these are satisfactory
results and do not affect the details in the images very much. The focusing outcome
with EDF-Var5 has the least image portion that is out of focus. Therefore, variance
method provides the best outcome, and the results from EDF-Sobel and FocusALL
methods are of acceptable quality.
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Fig. 7.9 Focusing results using different techniques a Protein crystallization images 1 (PC1), b
Protein crystallization images 2 (PC2), c Retinal pigment epithelial (RPE) images, and d Simulated
texture images ©2016 IEEE

Fig. 7.10 Comparison of region R1 in focused images on PC1 a EDF-RW, bEDF-CWT,
and c FocusALL ©2016 IEEE
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7.9.2 High-Resolution Image

To evaluate the performance on high-resolution images, FocusALL-HR is tested on
PC1 and PC2 image sets at 1280x960 resolution. Figure7.11 provides the focusing
results on PC1 and PC2 for different techniques. To highlight the problems, only the
region R1 is provided for both the image sets. Since the best image selection method
does not benefit from focused regions in different image slices, the result from best
image selection method is not provided. Likewise, the EDF-CWTmethod performed
better compared to the EDF-RWmethod. Therefore, the result from EDF-RW is not
shown. The EDF-Sobel and EDF-Var5 methods introduce significant noise around
the objects. This can be observed in Fig. 7.11a, b and Fig. 7.11e, f. It is difficult to
distinguish the object boundary because of several artifacts around the object. This is
true for both the image sets. The results from EDF-CWTmethod and FocusALL-HR
provide good contrast between the foreground and background. For PC1, the results
from EDF-CWT and FocusALL are similar. On PC2, the EDF-CWT has some noise
on the border of the object (Fig. 7.11g). FocusALL performed better on this data as
the edges are clear, and the noise around the object is less. The outputs of EDF-
RW, EDF-CWT, and FocusALL on low-resolution images look to be like the lower
resolution of outputs generated from high-resolution images. When EDF-Var5 and
EDF-Sobel are applied on a high-resolution image, it was observed that the outputs
had more noise than the low-resolution outputs.

In terms of the computation time, the Vollath-F4 best image selection (Vollath-
F4), Sobel-based (EDF-Sobel), variance-based (EDF-Var5), and FocusALLmethods
complete in similar times. On a Windows 7 Intel Core i7 CPU @2.8 GHz system
with 4 GB memory, the processing time for all these methods for 1280x960 image
resolution was less than 10sec. The EDF-RW method took around 20sec to process

Fig. 7.11 Comparison of focusing results on high resolution a–d Results on region R1 of PC1
dataset, and e, f Results on region R1 of PC2 dataset ©2016 IEEE
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the same resolution, while the EDF-CWT method took around 40sec. As the image
resolution goes higher, the computation time for the RWandCWTmethods increases
significantly. For image resolution 2560x1920, the CWT technique takes at least 10
mins to generate the focused image. The complexity of the FocusALL algorithm does
not increasewith the increase in image resolution. This is because themain processing
is done in base resolution. The depth color image obtained for base resolution is
enlarged to determine the pixel selection on the desired high resolution.

7.9.3 Varying Illumination Images

For varying illumination analysis, the protein crystallization image set PC3 shown
in Fig. 7.8c for evaluating algorithms is considered. This test case has three regions
of interest. The image resolution is 320x240. Using the best-focused image selec-
tion method using Vollath-F4, the second image in the set (Fig. 7.12a) is selected as
the best-focused image. Here, the regions R1 and R3 are in good focus but region
R2 could be improved if it were picked from the fourth image in the set. Using
the Sobel technique, the resulting image shown in Fig. 7.12b introduces significant
noise throughout the image. The focused images using the variance method (EDF-
Var5) (Fig. 7.12c), realwavelet (EDF-RW) (Fig. 7.12d), and complexwaveletmethod
(EDF-CWT) (Fig. 7.12e) all have dark regions around regions R1 and R3. The prob-
lematic regions are marked by red rectangle. Using two clusters, the FocusALL-VI
generated two focused images as shown in Figs. 7.12f, g. Using this method, all three
regions are in good focus. The image in Fig. 7.12g looks better than the image in
Fig. 7.12f since it does not have an artificial boundary around the large object region
R2. The expert can make selection among the two images for further analysis. Exper-
iments were also conducted on varying illumination for high-resolution images and
get results similar to Fig. 7.12a–g. The region R2 for varying illumination on high-
resolution images is shown for EDF-Var5, EDF-RW, EDF-CWT, and FocusALL
(from G2 cluster) techniques in Fig. 7.12h–k. FocusALL generates sharper object
regions than EDF-RW and EDF-CWT, and it does not have the noisy regions in the
background as in EDF-Var5. However, FocusALLmay generate artificial boundaries
in the final focused image. Therefore, if the accuracy of the complete image is more
critical than individual in-focus regions, EDF-RW may be preferred to FocusALL.

7.9.4 Comparison of Different Methods

In the experiments provided earlier, Vollath-F4 method picks up the overall best
image from a given image set. The main problem for other methods is to pick up
the best pixel for each pixel position. While CWT and RWT use wavelet coeffi-
cients, Sobel and variance use intensity change within neighborhood. The FocusALL
method utilizes corner information to select the best pixel. For the discontinuity



174 7 Focal Stacking for Crystallization Microscopy

Fig. 7.12 Varying illumination results on PC3 (Fig. 7.8c), a–gResults on low resolution (320x240),
and h–k Region R2 in high resolution (1280x960) ©2016 IEEE

problem, CWT method checks consistency in sub-bands and spatial context (3x3
neighborhood). FocusALL method uses a window to fill the regions around a corner.
In addition, the window size in FocusALL is used to deal with blurriness caused by
high-intensity regions. These choices are the major differences between the tech-
niques. If a method does not perform well for a specific dataset, the pixel selection
strategy and/or dealingwith the discontinuity problems by that method does not work
well for that dataset.
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Focal stacking algorithms benefit by combining the in-focus pixels in different
images to get a clear composite image. However, the focal stacking algorithms have
added complexity and chances for discontinuities in the final focused image com-
pared to the best image selectionmethod. TheSobel, variance, realwavelet transform,
and complex wavelet transform-based focal stacking available in Extended Depth of
Field (EDF) [3] are evaluated in the experiments. Likewise, on the protein crystal-
lization images, the complex wavelet transform method performed good for some
images, while several discontinuities and artifacts were produced in other images.
On simple images all methods perform well. However, if images have artifacts that
affect the neighboring pixel values in an image, the basic methods such as Sobel and
variance start to perform poorly. EDF-RWT, EDF-CWT, and FocusALL can handle
image datasets with complexities due to blurring of pixels better than Sobel and
variance methods. However, EDF-RWT and EDF-CWT cause an additional layer or
border around the high-intensity regions.

7.10 Summary

Focusing is an important problem for protein crystallization analysis as crystals may
float at different depths in a liquid solution. Due to possible presence of multiple
crystals, in-focus images need to be generated for proper image analysis, feature
extraction, and classification methods.

In this chapter, focusing techniques for protein crystallizationmicroscopy are ana-
lyzed. Focal stacking techniques may yield discontinuities in the final image. Mini-
mization of discontinuities using the neighborhood information is explained. Espe-
cially, it has been noted that two assumptions for finding in-focus regions may not be
true always: a) high-contrast regions belong to in-focus regions and b) high-intensity
regions belong to in-focus regions. FocusALL method could generate good in-focus
images in a reasonable time (< 10 sec for high-resolution images), while somemeth-
ods generate results in minutes. For varying illumination images, transform-based
methods generated good results. FocusALL method yielded proper results for trace
fluorescently labeled images as well as other biological and synthetic images.

Acknowledgements ©2016 IEEE. Reprinted, with permission, from M. S. Sigdel, M. Sigdel,
S. Dinç, I. Dinc, M. L. Pusey and R. S. Aygün, “FocusALL: Focal Stacking of Microscopic Images
Using Modified Harris Corner Response Measure,” in IEEE/ACM Transactions on Computational
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Chapter 8
Crystal Image Region Segmentation

Abstract In general, a single thresholding technique is developed or enhanced to
separate foreground objects from the background for a domain of images. This idea
may not generate satisfactory results for all images in a dataset, since different images
may require different types of thresholding methods for proper binarization or seg-
mentation. To overcome this problem, this chapter explains “super-thresholding”
method that utilizes a supervised classifier to decide an appropriate thresholding
method for a specific image. This method provides a generic framework that allows
selection of the best thresholding method among different thresholding techniques
that are beneficial for the problem domain. A classifier model is built using features
extracted priori from the original image only or posteriori by analyzing the outputs
of thresholding methods and the original image. This model is applied to identify
the thresholding method for new images of the domain.

8.1 Introduction

Protein crystallization is a critical approach to understand the functionality and the
structure of a particular protein [16]. The images of protein solutions are acquired
and it is very important to detect well-shaped crystals since they provide important
information about the structure. Since the shapes of crystals are important for deter-
mining the usability of crystals for further analysis, proper segmentation is critical.
Moreover, image segmentation and thresholding may help determine the phase of a
protein image in automated systems. Usually, crystal images are expected to have
distinguishable features such as high intensity, sharp clear edges, and proper geo-
metric shapes. However, in some cases, these features may not be dominant due to
focusing or reflection problems even if there is a protein crystal in the image [28].
Therefore, a single type of thresholding technique may not provide an informative
binary image for classifying images. Moreover, binary images may lose some impor-
tant information or it may keep some unnecessary information leading to incorrect
classification. For example, incorrect thresholding method may not detect a blurred
crystal in an image. In [27], three thresholding techniques (Otsu’s threshold, 90th
percentile green intensity threshold, and max green intensity threshold) were used

© Springer International Publishing AG 2017
M. L. Pusey and R. S. Aygün, Data Analytics for Protein Crystallization,
Computational Biology 25, https://doi.org/10.1007/978-3-319-58937-4_8
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together to classify protein crystallization images not to lose any informative feature.
All these binary images were used regardless whether they were proper or not. How-
ever, when features of these three binary images are included, this may also involve
unnecessary features that may yield incorrect classification for some of the samples.

When each of these thresholding techniques is tried one at a time, it was noticed
that there is at least one thresholding technique that works for a sample image in
general. However, there is no single consistent technique that works for all images.
This leads to the idea to construct a system that selects proper thresholding method
for a specific sample. In this way, a protein crystallization analysis system may not
be bound to limitations of a single thresholding technique.

Protein crystallization images is a challenging problem domain for thresholding
due to following reasons:

1. No single thresholding technique works for all images in the protein crystalliza-
tion image dataset that is evaluated,

2. Since images are collected from different phases of protein crystal growth, crys-
tals may have varying sizes, shapes, and intensities,

3. The sizes and the number of crystals may vary,
4. Images may be captured under different illuminations, and
5. Since crystals may have 3D shapes or they may appear at different depths from

the camera, some crystals may be blurred or out of focus.

This chapter explains a supervised thresholding methodology that selects the best
thresholding technique for a particular image using a classifier. Super-thresholding
has two different feature extraction approaches to select the thresholding method:
priori and posteriori. In priori feature extraction approach, features are extracted
from original images only. In posteriori feature extraction approach, firstly different
thresholding methods are applied to original images. Then, the thresholded image is
mapped to the original image to extract some features from foreground, background,
and borders of the regions. Once the features are ready, the classifier is trained by
these features to select the best thresholding method. Super-thresholding technique
tries to select the most informative and reliable thresholding method for each protein
crystal image. This approach provides a generic framework for a set of thresholding
techniques that are suitable for the domain.

8.2 Image Binarization Methods and Limitations

There has been significant research on image thresholding (binarization) and seg-
mentation techniques. The thresholding techniques can be roughly categorized as
local thresholding and global thresholding. In global thresholding, a single threshold
is used for all pixels in the image. In local thresholding, the threshold value may
change based on the local spatial properties around a pixel.
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Global thresholding generally depends on maximizing variances [19, 33] or
entropy [5, 12, 13] between the classes and minimizing the error within the classes.
However, it does not use spatial information in an image [18]. Generally, the global
thresholding techniques benefit from the histogram peaks of the intensities of the
image. If there are two distinct peaks in the histogram of the intensities, finding the
optimal threshold value turns out to be straightforward. However, there are some
cases where it is not possible to obtain two separate peaks in the histogram. In such
cases, thresholding by iterative partitioning might be a good solution [25, 26].

Unlike global thresholding, local thresholding uses spatial features of a neighbor-
hood in an image [1, 3, 17, 21, 23]. Although local thresholding techniques look
more generic and superior to global thresholding, tuning parameters, partitioning
the image, and the time complexity are some issues to be considered [21]. First, the
parameters of non-automated local thresholding techniques are required to be set by
the user for images taken under different conditions. Second issue about local thresh-
olding is that it may classify background pixel as object pixel for poorly illuminated
images, even though there is no object in the sub-image.

This chapter focuses on binarization of the crystal images, which contains 3
types of the crystal objects (as described in Chap. 2): 2D plates, small 3D crys-
tals, and large 3D crystals. We have evaluated a number of thresholding methods.
Thresholding methods such as thresholding using component tree (Silva, 2011) [30],
image segmentation using double local thresholding (Chuang, 2011) [3], edge sen-
sitive thresholding [21], thresholding based on iterative partitioning [26], Otsu’s
thresholding [19], and Pylon [14] neither generated proper binary images for pro-
tein images nor improved super-thresholding accuracy. Therefore, these methods
were not included in the experiments for super-thresholding method. Nevertheless,
individual performances of these methods are still provided in the experiments. For
super-thresholding, three thresholding techniques are used: green percentile image
thresholding with p = 97 and p = 99 (g97 and g99) as explained in Sect. 4.4.2 and
modified Howe’s method [10], which is explained next. Note that we have used g99
and g100 interchangeably in the past.

Howe et al. proposed an automated document binarization method using Lapla-
cian energy [10, 11]. This technique tries to minimize the global energy function
which depends on the Laplacian of the image as well as edge discontinuities infor-
mation using Canny edge operator. Since this technique was proposed for document
binarization, it is hard to get proper results without any pre- or post-processing on
the image. Before this method is applied to the protein crystallization image the
dataset, the samples are negated, since the images have black background. When a
negative image is binarized, a frame effect is observed at the border of the image.
Those artifacts are removed from binary images. Interestingly, this method produced
proper binary images for 56% of the images. Figure8.1 (j–l) shows some of the
resulting binary images for this method. Since the image is reversed (or negated)
and pre-processed, this adapted method is referred as (R − Howe) in the rest of the
chapter.

http://dx.doi.org/10.1007/978-3-319-58937-4_2
http://dx.doi.org/10.1007/978-3-319-58937-4_4
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Fig. 8.1 Binarization results of different techniques: a–c original images, d–f g97, g–i g99, and
j–l R − Howe ©2017 IEEE

8.3 Supervised Thresholding

Binarization techniques are usually constructed based on some assumptions which
may or may not be suitable for every image on a dataset. Almost every threshold-
ing technique fails under some specific circumstances, and usually there is a better
alternative to that technique in the literature [24]. It is observed that some techniques
may generate better results for some images while others do a better job for other
images. The main goal was to exploit the powerful features of different binarization
methods and use them whenever they perform well.
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8.3.1 Building the Training Set

Since super-thresholding uses supervised classifiers before image binarization, a
training set is needed for building a model. After running available thresholding
techniques, the labeling can be done manually with the assistance of domain experts
for all images in the dataset. For instance, if one protein image is binarized more
accurately with the R − Howe’s method, that image is labeled as “1;” if the best
method is g97, the image as is labeled as “2.” If the best method is g99, the image
is labeled as “3.” Such a training set is satisfactory to build the model. In addition,
the correct regions of the foreground are manually identified to generate the actual
ground-truth binarized images. These ground-truth images are used to quantify how
effective the thresholding algorithms are. Since the ground-truth images are available,
the labels of images are generated automatically using the correctness measurement
provided next. Note that ground-truth images are not needed to build the classifier.

8.3.2 Correctness Measurement

It is usually a subjective task to evaluate the results of a binarization process. Since
a simple visual comparison of each binary image would not provide objective and
dependable results, in this study, the reference (ground-truth) binary images are
generated for all protein images in the dataset. The protein instances have been
manually identified using an image editing software [31] that has the capability of
auto selection of objects on the image. Once the rough object region is selected by
the software, domain experts manually edit the borders for fine level corrections.

Once the reference images are ready, it is possible to calculate the correctness of
any binary image by comparing with the reference image. The similarity between
an output binary image (generated by a binarization method) and the corresponding
reference binary image ismeasured using “weighted sum” of the images. Suppose the
pixels of protein instances (foreground) are represented by “1,” and the background
area is represented by “0” in a binary image. When the reference binary image
is multiplied by 2 and added to the output binary image, the sum image that can
represent all the pixels on the image as correctly classifiedormisclassified is obtained.
Following equation shows this idea:

IS = 2 × IR + IO (8.1)

where IS , IR, and IO are the sum image, reference binary image, and the output binary
image, respectively. The sum image includes 4 regions. These regions can easily be
referred as True Positive (TP), False Positive (FP), True Negative (TN), and False
Negative (FN). If the value of pixel pij on the sum image is “3,” it is a TP where both
output image and reference image have foreground pixel. If the pixel value is “2,” it
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Fig. 8.2 Sum image ©2017
IEEE

is a FN . Similarly, if the pixel value is “1,” it is a FP. Finally, if the pixel value is
“0,” it is a TN . Figure8.2 presents a sample sum image and its 4 regions.

TP, TN , FN , and TN are used to measure the correctness of an output binary
image. In the literature, there are several measures that offer correctness measures
from different perspectives. It is often a significant factor to select a proper measure
that is more relevant to the characteristics of the problem. For example, the classical
accuracymeasuremay not be a propermeasure in this type of evaluation. Because in a
typical protein binary image, there are usually very few number of foreground pixels
compared to the background pixels. In other words, TN pixels can easily suppress
the accuracy even if there are no TP pixels. In order to avoid bias toward a specific
measurement method, 4 well-known measures are used: Accuracy (ACC), F-Score
(F1) [22], Matthews’s correlation coefficient (MCC) [15], and Jaccard similarity
(JACC) [2].

8.3.3 Feature Extraction

Dinc et al. [7] previously used only three thresholding techniques and one classifier
(Decision Tree) using only one statistical feature. In the work presented here, more
number of thresholding techniques and features are analyzed to see whether new
methods and features can improve the accuracy of the results. 4 different feature sets
(FS) are generated to test the performance of the priori approach and 1 feature set
for the posteriori approach.

Table8.1 shows brief descriptions and formulas of the features where IGray, IGreen,
F, B, Fin, and Fout represent gray level image, green channel of original image,
foreground image, background image, inner boundary image, and outer boundary
image, respectively. i, j, and k represent indices of the corresponding set or image.
In addition, G represents the set of connected graphs of the canny edge image,
and li represents the length of the ith line in the set of lines, L, extracted from
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Table 8.1 Definitions of features for priori and posteriori approach ©2017 IEEE

Feature
name

Description Formulas

FS1 H(X)[2] Measures of vertical
(given formula) and
horizontal autocorrelation
of gray level
co-occurrence matrix

H(X) = −∑
p(xi)logp(xi)

σ
(
IGray

)
Standard deviation of the
gray level image

σ
(
IGray

) =
√
√
√
√

∑
(i,j)∈IGray

(
IGray (i, j) − μ

(
IGray

))2

∣
∣IGray

∣
∣ − 1

rk [2] Measure of horizontal and
vertical autocorrelation of
gray level co-occurrence
matrix

rk =∑
(i,j)(IGray(i,j)−μ(IGray))(IGray(i−k,j)−μ(IGray))

∑
(i,j)(IGray(i,j)−μ(IGray))2

L̂ Sum of all edge lengths in
the canny edge image

L̂ = ∑
i∈L li

FS2 rk Measure of horizontal
autocorrelation of gray
level co-occurrence
matrix

rk =∑
(i,j)(IGray(i,j)−μ(IGray))(IGray(i−k,j)−μ(IGray))

∑
(i,j)(IGray(i,j)−μ(IGray))2

μ
(
IGray

)
Average intensity level of
the grayscale image

μ
(
IGray

) =
∑

(i,j)∈IGray IGray (i, j)
∣
∣IGray

∣
∣

σ
(
IGray

)
Standard deviation of the
gray level image

σ
(
IGray

) =
√
√
√
√

∑
(i,j)∈IGray

(
IGray (i, j) − μ

(
IGray

))2

∣
∣IGray

∣
∣ − 1

k Measure of peakedness of
the histogram of the gray
level intensity of the
image

k =
∑

(i,j)∈IGray
(
IGray (i, j) − μ

(
IGray

))4

(∣
∣IGray

∣
∣ − 1

) (
σ

(
IGray

))4

H(X) Measure of horizontal
spatial disorder or spatial
randomness of gray level
co-occurrence matrix

H(X) = −∑
p(xi)logp(xi)

FS3 |G| Number of connected
edges (lines) in the edge
image

|G|

G̃ Number of graphs with
perpendicular edges in the
canny edge image

G̃ = ∑ ⊥ (Gk) where ⊥ (Gk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 ∃li ∈ Lk and ∃lj ∈ Lk and

70 ≤ α
(
li, lj

) ≤ 90

0 otherwise

μ (L) Average length of all
edges in the canny edge
image

μ (L) =
∑

i∈L li
|L|

(continued)
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Table 8.1 (continued)

Feature
name

Description Formulas

L̂ Sum of all edge lengths
in the canny edge image

L̂ = ∑
i∈L li

¯̄G Sum of all edge lengths
in the graphs with no
perpendicular edges

¯̄G = ∑
i∈Lk li where ⊥ Gk = 0

max(L) Length of the longest
edge in the canny edge
image

max1≤i≤|L| (li)

FS4 H(X)[2] Measures of vertical
(given formula) and
horizontal
autocorrelation of gray
level co-occurrence
matrix

H(X) = − ∑
p(xi)logp(xi)

k Measure of peakedness
of the histogram of the
gray level intensity of
the image

k =
∑

(i,j)∈IGray
(
IGray (i, j) − μ

(
IGray

))4

(∣
∣IGray

∣
∣ − 1

) (
σ

(
IGray

))4

lo 1 if ηp > 0, 0 otherwise lo = ∃li ∈ Lk and ∃lj ∈ Lk and 70 ≤ α
(
li, lj

) ≤
90

ηc Number of graphs
whose edges form a
cycle

ηc = |Gi| ,where Gi is cyclic graph

ηhc Number of Harris
corners

[9]

FS5 For each binary image:

μ (F) Mean intensity of
foreground region

μ (F) =
∑

(i,j)∈F IGreen (i, j)

|F|

σ (F) Standard deviation of
foreground region

σ (F) =
√∑

(i,j)∈F (IGreen (i, j) − μ (F))2

|F| − 1

μ (B) Mean intensity of
background region

μ (B) =
∑

(i,j)∈B IGreen (i, j)

|B|

σ (B) Standard deviation of
background region

σ (B) =
√∑

(i,j)∈B (IGreen (i, j) − μ (B))2

|B| − 1

μ (Fin) Mean intensity of inner
pixels of the foreground
region

μ (Fin) =
∑

(i,j)∈Fin IGreen (i, j)

|Fin|

μ (Fout) Mean intensity of inner
pixels of the foreground
region

μ (Fout) =
∑

(i,j)∈Fout IGreen (i, j)

|Fout |
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the edge image. In the beginning, 17 histogram features [8] and 12 edge features
[29] were extracted from the dataset. These features were tested and they generated
satisfactory results in earlier studies [27, 29]. However, to reduce the number of
features 2 feature selection methods were applied in priori approach experiments.
RandomForest feature selectionwasused in thefirst 3 feature sets. Thefirst feature set
(FS1) contains a subset of histogram and edge features. It has 1 edge feature, 4 texture
features and 1 histogram feature. ForFS2 andFS3, 5 of the histogram features and 6 of
the edge features were selected, respectively. In FS4, 6 of 29 combined features were
selected using minimal-redundancy-maximal-relevance criterion (mRMR) feature
selection method [20]. Finally, 6 statistical features were extracted for each binary
image in FS5 using posteriori approach.

8.4 Framework of Super-Thresholding

Once images are labeled, the features of the images were analyzed if there is a rela-
tionship between some features of the image and the thresholding techniques. After
trying some basic features such as mean, standard deviation of intensity, autocorre-
lation of the images, it was noticed that some of these features could be informative
to establish the relations between protein images and thresholding techniques. For
instance, Dinc et al. [7] concluded that if the standard deviation of the image is
less than 12.86, g90 thresholding method usually generates the best results. Simi-
larly, if the standard deviation is more than 40.22, Otsu’s method produces the most
promising results [7].

Presence of a relation between image features and thresholding methods lead to
an analysis of this relation. Thus, supervised classifiers (Bayesian classifier (BYS),
Decision Tree (ID3), Random Forest (RF), and Artificial Neural Network classifiers
(ANN)) were employed in order to construct a training model [32]. Since the clas-
sification process is sensitive to the factors such as data type or distribution, four
classifiers having different characteristics were examined. These methods can be
categorized as follows: Bayesian is a probability-based classifier, Random Forest is
an ensemble classifier, Decision Tree is a rule-based classifier, and finally, Neural
Networks is a powerful classifier particularly for non-linearly distributed data. The
goal is to determine the one that offers the best classification results for the dataset.

Super-thresholding can binarize fast compared to complex segmentationmethods.
Figure8.3 provides a general overview of super-thresholding. As shown in the figure,
super-thresholding consists of four main stages: preprocessing stage, training stage,
testing stage, and binarization stage. In the preprocessing stage, the dataset is labeled
by an expert. Later, the dataset is divided into training and test sets. In the training
stage, a classifier model is built using the features extracted from images. Feature
extraction is done by two approaches called “priori” and “posteriori.” Either of these
approaches can be used in the feature extraction stage based on the preference.



186 8 Crystal Image Region Segmentation

Images (Training)

Feature Extrac on

Classifier
(Training)

Labels

Feature Selec on
(Op onal)

Selected Binariza on Method Final Binary ImageResult Image

Selected features

Preprocessing

Training

Binariza on

Assign Labels

Posteriori Only

Decide promising method

Method 1

Method 2

Method N

…
…

.

Binary Image 1

Binary Image 2

Binary Image N

…
…

.

Training 
Model

Decision
m

odel

Classifier
(Tes ng)

Feature Extrac on

Features

Method 1

Method 2

Method N

…
…

.

Posteriori Only

Images (Tes ng)

Tes ng
Binary Image 1

Binary Image 2

Binary Image N

…
…

.

Pr
io

ri 
Po

st
er

io
ri

Pr
io

ri 
Po

st
er

io
ri

Fig. 8.3 The framework of Super-thresholding ©2017 IEEE

The classification model is trained based on the features coming from the preferred
approach. Table8.1 presents the features used in this chapter for both approaches.

8.5 Priori Approach

In the priori approach, the features are extracted from original images only. Any
type of feature extracted such as the mean intensity, standard deviation, etc. from the
original image can be included in this approach. This approach is relatively fast for
feature extraction, since no information is extracted from the output binary images.

The priori approach just analyzes the original image without applying any thresh-
olding method. Since no thresholding method is used in this approach, it is relatively
fast.
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8.6 Posteriori Approach

The posteriori approach requires running all thresholding methods to extract fea-
tures. When all thresholded images are generated, they are mapped to the original
images. Then foreground, background, inner and outer pixels of the object regions
are detected (see Fig. 8.4). Later, a set of statistical features are extracted from these
regions to feed classifiers (see FS5 in Table8.1). This approach is less efficient than
the priori approach due to the necessity of all binary images for feature extraction,
however, it can easily be parallelized, since each thresholding method can be run
independently.

The main idea behind the posteriori approach is that inner and outer boundary
regions can be used as an indicator whether a thresholded image is an accurate
binary image or not. Normally, a significant intensity change is expected between
inside and outside of the objects. Therefore, each image is both dilated and eroded
using 5× 5 structuring element to obtain information around the boundary pixels of
the foreground as in Eqs. 8.2 and 8.3:

Fout = I_Bin ⊕ S =
⋃

s∈S
I_Bins (8.2)

Fin = I_Bin � S =
⋂

s∈S
I_Bin−s (8.3)

where I_Bin is the input binary image and S is the structuring element. Figure8.4f
shows the total region that is of interest around the boundary.

Once features are extracted from the dataset using either the priori or posteriori
approach, a classifier model is generated in training stage. The same features are
used for classifying test images to determine the best thresholding method. In order
to evaluate the correctness of binary images, the results are compared with ground-
truth binary images generated by the research group at the University of Alabama
in Huntsville. This evaluation with respect to the ground-truth binary images is
explained in Sect. 8.7.

Alternatively, the binary image results could be combined or fused using a
weighted sum for the final decision. However, in the experiments, it was noticed
that this idea did not yield satisfactory binary images since in many cases, only one
method provides the correct result while all other methods fail (see Fig. 8.5). More-
over, the way of assigning weights to each method is not obvious and it may cause
biased decision toward higher weighted method even though it may fail.
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Fig. 8.4 Posteriori feature extraction: a original image, b foreground image, c outer pixels, d inner
pixels, e thresholded image, and f inner and outer boundaries of foreground (b) ©2017 IEEE

8.7 Evaluation of Super-Thresholding

In the experiments, three different thresholding methods (g97; g99; R −Howe) and
four classifiers (Bayesian classifier (BYS), decision tree (ID3), random forest (RF),
and artificial neural networks (ANN)) are evaluated to binarize protein crystal images.
The experiments were run using MATLAB 2014b on a 16GB 3.4GHz Quad-Core
CPU. For random forest classifier, the source code1 that is published by Jaiantilal et
al. was used. The number of trees for random forest classifier was set as 500, and
the square root of the total number of features is selected as the number of candidate
features at one node of a decision tree [4]. In addition, MATLAB built-in neural
network toolbox was used with two layers. The hidden layer has n−1 nodes where n
is number of features in the dataset. Super-thresholding technique is compared with
some other thresholding methods (g97; g99; R−Howe; Chuang, 2011; Silva, 2011;
and Otsu’s method [19]).

The dataset consists of 170 protein crystal images of size 320 × 240, and all
images have been captured by using Crystal X2 of iXpressGenes, Inc. The dataset
was labeled with 3 different thresholding techniques such that 29% of them were
labeled as g99, 15% of them were labeled as g97, and 56% of them were labeled as
R−Howe. In order to evaluate the size of the training set, the model is trained with
25, 50, and 75% of the data, respectively. The remaining are reserved for testing.

1https://code.google.com/p/randomforest-matlab/.

https://code.google.com/p/randomforest-matlab/
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8.7.1 Results

Dinc et al. [7] had a relatively small dataset and used only 3 thresholding methods
(g90, g100, and Otsu). When the dataset was extended and more thresholding meth-
ods were provided to the system, the best results were obtained using 3 methods
(g97; g99; R − Howe), and the other methods that do not contribute to the overall
performance were eliminated. 5 different feature sets are generated to evaluate the
performances of priori and posteriori approaches on super-thresholding. The first
four feature sets (i.e., FS1, FS2, FS3, and FS4) in Table8.1 were used to test the
priori approach. FS5 was used to evaluate the posteriori approach. Visual results
for 3 sample images are given in Fig. 8.5, which clearly shows the superiority of
super-thresholding over other methods.

In order to evaluate the performance of the methods, a comprehensive experi-
mental setup has been performed. The super-thresholding was tested for three dif-
ferent training set sizes, four correctness measures, and five feature sets. For each
case, the experiments were repeated five times to avoid biased results. Table8.3
shows the mean values of different correctness measures. According to the table,
super-thresholding gives the best results using Bayesian classifier on feature set FS5
(posteriori approach) regardless of the training set size. Super-thresholding achieved
ACC = 0.99, F1 = 0.86,MCC = 0.87, and JACC = 0.77 on the average (highlighted
bold in the table). These results are also the best results in overall experiments. With
respect to the best single thresholding method (R − Howe), the improvements are
86.2 − 81.0% = 5.2%, 86.2 − 78.6% = 7.6%, and 85.5 − 75.1% = 10.4% using
the F1 measure for training sizes of 25, 50 and 75%, respectively.

According to the results, the posteriori approach gives higher accuracy than the
priori approach. The priori approach yields best results using FS1 set. The F1 mea-
sures using Bayesian and random forest classifiers for FS1 are calculated as 0.811
and 0.805, respectively. Considering the feature extraction efficiency of the priori
approach, these results are also significant for real-time systems. Employing only his-
togram (FS2) or edge (FS3) features do not improve the performance significantly.
Similarly, FS4, which is generated from both histogram and edge features using
mRMR, did not improve performance as well. However, FS4 provides very close to
or slightly higher than R−Howe method. To compare super-thresholding with pre-
vious study DT-Binarize [7], the experiments were repeated for 3 different training
sizes. The results also show that super-thresholding following the posteriori approach
outperforms DT-Binarize around 5–6% in terms of F1 measure. These results show
that including new features, thresholding methods, and classifiers improves the bina-
rization accuracy.

Classficiation Accuracy. Considering only the classification accuracy might be
misleading in this problem domain. The classification accuracy is not a major indi-
cator in this problem, since the actual labels of images are considered based on only
the highest F1 measure. For example, for an image I , assume that F1 measures are
F1g97 = 0.865, F1g99 = 0.678, and F1R−Howe = 0.854. Based on this information, the
actual class label of the image I will be g97. However, if the system selects R−Howe
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Fig. 8.5 Results of super-thresholding: a–c original images; d–f g97, g–i g99, j–l R−Howe,m–o
super-thresholding priori, p–r super-thresholding posteriori, and s–u ground truth images ©2017
IEEE
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Table 8.2 Sample confusion matrix of the experiment using FS5 and Bayesian classifier ©2017
IEEE

Actual

G99 G97 R − Howe

Predicted G99 9 1 2

G97 1 6 0

R − Howe 2 1 20

method for that image, it is also acceptable in terms of thresholding. Giving higher
weight to a thresholdingmethodmay not improve the accuracy as well since there are
cases where one method is the only one that generates the correct binarized image.
Nevertheless, we provide the confusion matrix for the Bayesian classifier on FS5
feature set which resulted in 83.3% accuracy in Table8.2. However, this table may
not be a proper performance indicator since it does not check the completeness and
not measure how good thresholding is for each image.

Soundness and Completeness. Another important issue about the binarization
of protein crystal images is the soundness and completeness. It is very likely to
generate improper binary images due to illumination or reflection problems. For
some cases, binary images may have minor problems, which are acceptable for
this problem domain unless it affects the performance of the system that will use
these results. However, it is possible to have complete black or white images for
some of the binarization methods if the image has a blurred or a very bright large
sized object. This causes the system to miss those crystals in the analysis, which
cannot be acceptable. In this context, soundness is related whether the output of
thresholding is acceptable or not for an image. Here, soundness does not imply 100%
correctness. On the other hand, completeness is related whether a specified method
is able to generate sound (or acceptable) results for all images in the dataset. Here,
completeness is measured as the ratio of the number of sound outputs to the number
of all images. For our dataset, none of the thresholding methods have a completeness
ratio of 100%. The calculations show that the completeness ratio of R − Howe’s
method, g97, and g99 are calculated as 83, 40 and 70%, respectively. According to
the results, super-thresholding gave the best accuracy, and it also did not generate any
unacceptable results for the dataset with Bayesian classifier on feature set FS5 and
Bayesian classifier on feature set FS1 as long as the problematic images (mentioned
in the beginning of Sect. 8.7), which all thresholding methods failed were not in the
test set. Using Bayesian classifier, super-thresholding generally generated the best
results in the experiments. Moreover, super-thresholding for these sets has generated
unacceptable binary images for only 4% of the dataset (when problematic images
are included in the test set), while R − Howe’s method generated improper binary
images for 21% of the dataset. As stated before, generating proper binary images is
as important as the overall accuracy.

Upper Bound Performance Analysis. The performance of classification to select
the best technique depends on the success of the binarizationmethods that are selected
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Table 8.3 Correctness measure results of the experiments for each feature set and classifier ©2017
IEEE
Training size 25% 50% 75%

ACC F1 MCC JACC ACC F1 MCC JACC ACC F1 MCC JACC

g99 0.980 0.718 0.741 0.615 0.977 0.700 0.726 0.599 0.971 0.663 0.691 0.563

g97 0.981 0.771 0.789 0.661 0.979 0.761 0.781 0.652 0.972 0.727 0.752 0.614

Otsu 0.899 0.634 0.663 0.550 0.900 0.634 0.663 0.551 0.880 0.589 0.623 0.508

R − Howe 0.985 0.810 0.815 0.725 0.984 0.786 0.792 0.701 0.985 0.751 0.756 0.671

Silva, 2011 0.973 0.630 0.660 0.495 0.973 0.620 0.652 0.486 0.971 0.596 0.629 0.465

Chuang, 2011 0.968 0.697 0.717 0.564 0.968 0.690 0.710 0.559 0.969 0.669 0.691 0.534

Dinc et al. [7] 0.975 0.818 0.828 0.725 0.980 0.811 0.821 0.720 0.973 0.790 0.801 0.701

BYS,FS1 0.985 0.825 0.832 0.735 0.985 0.832 0.838 0.740 0.986 0.811 0.817 0.720

ID3,FS1 0.984 0.824 0.833 0.732 0.984 0.815 0.823 0.725 0.985 0.798 0.806 0.709

RF,FS1 0.985 0.829 0.836 0.739 0.984 0.823 0.829 0.733 0.986 0.805 0.811 0.718

ANN,FS1 0.981 0.766 0.786 0.662 0.978 0.726 0.749 0.625 0.972 0.706 0.730 0.606

BYS,FS2 0.985 0.824 0.830 0.736 0.985 0.833 0.838 0.743 0.986 0.812 0.817 0.723

ID3,FS2 0.985 0.820 0.827 0.727 0.982 0.793 0.801 0.704 0.983 0.762 0.769 0.677

RF,FS2 0.985 0.833 0.839 0.744 0.984 0.823 0.829 0.736 0.985 0.774 0.778 0.691

ANN,FS2 0.981 0.781 0.797 0.679 0.979 0.757 0.774 0.659 0.972 0.709 0.732 0.609

BYS,FS3 0.985 0.802 0.812 0.712 0.983 0.796 0.805 0.708 0.984 0.768 0.778 0.677

ID3,FS3 0.982 0.786 0.797 0.695 0.981 0.766 0.778 0.674 0.983 0.737 0.747 0.650

RF,FS3 0.984 0.799 0.808 0.711 0.982 0.770 0.780 0.682 0.984 0.736 0.746 0.652

ANN,FS3 0.982 0.741 0.761 0.638 0.978 0.714 0.737 0.612 0.972 0.688 0.713 0.588

BYS,FS4 0.985 0.811 0.818 0.723 0.984 0.803 0.808 0.718 0.985 0.765 0.770 0.684

ID3,FS4 0.984 0.808 0.815 0.717 0.987 0.800 0.808 0.711 0.984 0.767 0.775 0.678

RF,FS4 0.985 0.815 0.821 0.729 0.984 0.800 0.806 0.714 0.985 0.750 0.757 0.669

ANN,FS4 0.981 0.750 0.768 0.650 0.978 0.729 0.748 0.630 0.975 0.688 0.708 0.595

BYS,FS5 0.992 0.862 0.867 0.774 0.992 0.862 0.866 0.774 0.991 0.855 0.859 0.765

ID3,FS5 0.987 0.833 0.841 0.744 0.989 0.840 0.845 0.751 0.985 0.807 0.812 0.721

RF,FS4 0.988 0.845 0.850 0.758 0.985 0.842 0.847 0.756 0.986 0.824 0.828 0.740

ANN,FS5 0.981 0.768 0.786 0.664 0.977 0.772 0.790 0.671 0.973 0.743 0.765 0.639

Max-Limit 0.993 0.888 0.890 0.809 0.993 0.884 0.886 0.804 0.992 0.870 0.873 0.786

for the problem domain. This means that there is a practical limit of the performance
of super-thresholding. In other words, if none of the selected methods are able to
generate a proper binary image for a specific image, super-thresholding does not
produce an accurate binary image, as well. Figure8.5 shows sample cases where each
method fails. The upper boundwas computed by selecting the best three thresholding
methods for each image and compared with the results. In Table8.3, the last row
shows the upper bound for each correctness measure. Correctness measures of the
upper bound are calculated using the best binarization method for all images. Results
of super-thresholding are within 97.3% (0.765 ÷ 0.786) of the upper bound for
Bayesian classifier using 75% of training data with respect to the Jaccard coefficient.
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Table 8.4 Timings of feature extraction, classification, and binarization methodsa ©2017 IEEE

Category Method Time per image (ms)

Binarization g99 110.500

g97 108.900

Otsu 12.400

R − Howe 130.000

Silva, 2011 25.000

Chuang, 2011 83.000

Testing BYS 0.097

ID3 0.006

RF 0.051

ANN 0.005

Feature Extraction FS1 48.800

FS2 3.190

FS3 399.900

FS4 443.800

FS5 35.700
aThe total running time of an experiment is calculated by adding the times of feature extraction,
testing, and binarization stages. For example, in priori approach, if the selected method is R−Howe
using BYS on FS2, the total time of binarization for an image will be 130 + 0.097 + 3.190 =
133.287 milliseconds. However, in posteriori approach, the total time of the binarization will be
110.5 + 108.9 + 130 + 0.097 + 35.7 = 385.197 milliseconds using BYS on FS5. Please note that
in posteriori approach features are extracted using the output of all thresholding methods

Time Analysis. The run-time performance of super-thresholding has also been
evaluated on a 3.40GHz Intel i7 Quad Core 16GB RAM system using 320× 240
images. Table8.4 provides the timings of feature extraction, classification, and bina-
rization for an image in milliseconds. According to the table, the feature sets having
more edge features take more time than the others (i.e., FS3 consists of only edge
features). Once the classifier model is built, an image can be binarized in 133 mil-
liseconds using BYS on FS2 (the priori approach), and in 385 ms using BYS on
FS5 (the posteriori approach), and these timings are feasible for Crystal X2 system
developed at iXpressGenes, Inc.

8.7.2 Discussion

Performance of Thresholding Methods. A proper thresholding method is needed
for each image. If g97 and g99 methods are compared, g99 works better when
the foreground is separated better than the background. In protein crystallization
images, protein crystal regions are expected to have the highest intensity. Whenever
the protein crystal regions have higher intensity than other regions, g99 works fine.
Large 3D crystals are usually distinguishable in terms of intensity and have higher
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intensity than other regions. g99 works best for images containing large 3D crystals.
Since crystals float in a solution, the depth of crystals from themicroscopemay differ.
Only crystals at the depth-of-field appear in focus. Other crystals may be blurred
and may have lesser intensity than crystals in focus. In those cases, g99 may not
provide good binarization.Whenever the foreground intensity is not high, the sizes of
crystals are smaller, and crystals appear at different depths, the g97 method is likely
to perform better than the g99 method. R-Howe’s method has three components:
minimizing global energy for labeling pixels, use of Laplacian to distinguish ink
from the background, and use of edge detection to handle discontinuities. The edges
are critical factors on separation of crystals. The straight boundaries of crystal regions
are one of the important indicators for a crystal. For regions with clear boundaries,
R − Howe generally provides better results. If the intensity is lower or image is
blurred, g97 may be preferred. The advantage of g99 is that it can easily remove the
background since any pixel with low intensity is considered as the background.

Performance of Feature Sets. The feature sets for FS1, FS2, FS3, and FS4 are used
for the priori approach. FS3 contains mostly edge related features and performed
worst among these feature sets. Relying only edge related features is not satisfactory
for this domain. FS1 and FS2 containing texture-related features perform similarly
due to the similarity between feature sets. FS2 slightly outperforms FS1. Note that
FS2 has histogram related feature and does not have edge related features. This
difference between FS1 and FS2 has a positive impact on the accuracy for FS2. FS4
was generated using mRMR feature selection method. Although FS4 performs better
than FS3, it does not perform as well as FS1 and FS2. It looks like features based
on intensity statistics is important for the accuracy. The feature set for the posteriori
approach performs best among all feature sets. Although FS5 relies on intensity
features, it performed better than any other feature set. Comparison of pixels in the
foreground and background as well as comparing pixels at the boundaries of regions
are better features for analyzing the performance of thresholding methods.

8.8 Summary

This chapter presented a generic framework to combine different kinds of threshold-
ing techniques using a supervised classifier. A classifier model is constructed using
some image features such as autocorrelation, standard deviation, etc. of the protein
crystallization images that are labeled by the experts. The labels (or classes) of images
correspond to a binarization method which is proper for the image. A binarization
method is selected for a given test image using the same classifier, and the selected
method is applied to the protein crystallization image to generate a binary image.

Several results are concluded at the end of this study:

1. Single thresholding techniques may not be enough for some of the datasets that
have poorly illuminated, noisy and unfocused images,
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2. Super-thresholding can be considered the best in terms of soundness and com-
pleteness since it generated more proper binary images for protein crystal images
than any other method,

3. The success of super-thresholding depends on the success of the thresholding
techniques which are selected for the problem domain, and its success also
depends on performance of the classifier,

4. Since super-thresholding produces single binary image using only a few simple
features of the images for the priori approach, it is feasible for most of real-time
classification systems, and

5. The posteriori feature extraction approach of super-thresholding can be easily
parallelized since each thresholded image can be generated independently.

It is difficult to generalize or verify the soundness and completeness based on
the algorithmic approaches involved in developing the thresholding methods. Expert
opinion is usually needed to determine the correctness (or soundness) of a threshold-
ing method. When thresholding techniques are used in automatic analysis systems,
incorrect thresholding may lead improper decision making. Therefore, completeness
is a critical factor in this domain. Another issue is regarding the choice of the best
thresholdingmethod.When building the training set, a number of methods generated
good results for a specific image. In those cases, the best one is again selected using
the ground-truth images although the second-best is as good as the first one. This
significant similarity between methods for some images makes the training difficult.
This is the reason why we believe the optimal model is not reached.

Additional features can be extracted by comparing the output binary images and
the original images. These features can be used to build a more advanced model to
build a classifier and checked how much they improve the accuracy.

Acknowledgements ©2017 IEEE. Reprinted with Permission, from I. Dinç, S. Dinç, M. Sigdel,
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Chapter 9
Visualization

Abstract As high throughput, crystallization screening and analysis systems auto-
mate the processes starting from setting up plates to scoring, this enables conducting
thousands of experiments in a short time. Analysis of crystallization trial exper-
iments in the past has been cumbersome due to the physical environment where
an expert needs to look crystallization trial images one by one using a microscope
with the likelihood of the majority of experiments yielding unsuccessful outcomes.
The visualization of crystallization experiments on a display with some highlighted
information along with annotation capability can provide experts a user-friendly
and shared environment of collaborative analysis. In this chapter, we summarize
the methods and information displayed on various visualization software for protein
crystallization analysis.

9.1 Introduction

High throughput systems are capable of setting up many plates and analyzing the
solutions in those plates over a time course. With automation of setting up experi-
ments for crystallization trials, crystallographers are exposed to thousands of protein
crystallization images. Looking each plate well one by one through a microscope to
detect crystals has been a tedious task for crystallographers especially considering
very low success rate for some difficult proteins. Expert analysis is still at the core of
protein crystallization process despite automation of many states of crystallization
experiments. Expert analysis is especially required to validate scorings done by the
system, distinguish false classifications, eliminate false hits, and most importantly
detect crystals that could be missed by the system. Moreover, based on the results of
experiments, experts may design new screens to yield crystalline conditions. Exper-
iment visualization interfaces may help experts during this process.

The visualization software for protein crystallization experiments at least enables
experts to look at crystallization trial images on a browser or application interface and
annotate them in a relaxed environment than through a microscope in a somewhat
cold and fatiguing lab environment [4]. Besides providing a cozy environment, the
visualization system should assist experts in:
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M. L. Pusey and R. S. Aygün, Data Analytics for Protein Crystallization,
Computational Biology 25, https://doi.org/10.1007/978-3-319-58937-4_9

199



200 9 Visualization

1. browsing thousands of crystallization trial images in a single session [4],
2. identifying plate wells-containing crystals,
3. displaying images at high resolutions with zooming and repositioning of

images [4],
4. identifying cocktails that lead to crystalline conditions,
5. retrieving related or similar images from plates of the same protein [4],
6. manually scoring or updating automated scoring,
7. visualizing crystals under different lighting sources,
8. analyzing growth of crystals, and
9. developing new successful screens.

We have analyzed features of visualization software for crystallization trial
images. We briefly look into plate view, single well (or drop) view, scoring sup-
port and visualization, time course view for growth of crystals, sequential view of a
plate, multiple light source support, and chemical space mapping. In the following
examples, we briefly explain how various visualization software presents experiment
results and provide sample interfaces of some systems such as xtalPIMS [4], Visual-
X2 [6], and RoCKS [1]. We finally provide some future directions for visualization
of experiment results.

9.2 Plate Visualization

The main idea of plate visualization is to provide an overall view of an experiment
result typically on a grid layout similar to the experiment plate. Plate visualization
may quickly help crystallographers identify the wells containing crystals. Plate visu-
alization interface acts as an index. Once interesting wells are identified on plate
view, the expert may select a specific well and then get more detailed information
about the contents of that well.

In the literature, the most common of type of plate used for visualization displays
is a 96-well plate composed of 8 rows and 12 columns.When 96 images are resized to
fit on a screen, lots of details in those images are not visible whatsoever. Displaying
supportive information for eachwell such as the score of awell is a necessity. Cocktail
information does not fit into the screen. However, Visual-X2 [6] developed at the
University of Alabama in Huntsville for iXpressGenes, Inc. uses hovering option to
display the cocktail when the mouse hovers over a well on plate view. We briefly
describe several strategies of plate visualization below.

1. Thumbnails. Original images can be displayed as thumbnails on the plate. The
thumbnail images are bounded by a colored boundary to indicate the category
or score of an image [14] (Fig. 9.1). The viewing software in Hiraki et al. allows
users to select sizes of images to be displayed. The score of specific well is
displayed as a colored well-id on the top of each scored well (Fig. 9.2). Since
images can be selected at different sizes, the users have to scroll the window if
large sizes are selected. These methods work at an acceptable level if 96-well
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plate or smaller sizes are used. However, if 1536-well plate is used, displaying all
images on screen at the same time has little value to experts since images would
be too small to glean useful information. To solve this problem, MacroScope [9]
displays 1536-cocktail screen as 16 arrays of 96 thumbnail images.

2. Color coded grid. Each well on a plate could be represented with a color corre-
sponding to the score of that well (Fig. 9.3). The expert may choose a specific
colored well to see details of that well. This works satisfactorily if the number
of scores or classes is low. As the number of scores increases, the user may be
challenged to remember what each color represents.

Fig. 9.1 Scores as colored
boundaries for thumbnail
images [14]

Fig. 9.2 The plate view interface in [7]
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3. Glyphs. Alternatively, glyphs that represent different types of scores could be used
(Fig. 9.4). The thumbnails may be too small to visualize any well. In that case,
glyphs could be used to determine wells containing crystals (Fig. 9.5). The glyph
representation should be informative about the scores or phases of crystallization.

4. Region-of-Interest. Thumbnails might be too small to see anything in them and
glyphs are just symbolic representations that do not show the actual content.

Fig. 9.3 Color coded plate view in xtalPIMS

Fig. 9.4 The glyphs used in Visual-X2

Fig. 9.5 Plate view in Visual-X2
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Alternatively, image processing tools can be used for detecting regions that are
likely to contain the crystal in the image. Those regions-of-interest could be
displayed on the plate view.

The visualization software should support different types of plates of various
sizes. Moreover, since there are plates available having several drop positions per
well, the visualization software may need to consider those plates as well. Figure9.5
shows Visual-X2 interface showing 3 drop positions per well.

Fig. 9.6 Well view with well-ids score-colored [14]
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9.3 Well View

While plate view provides insight about overall success of experiments for a specific
plate, only well view may provide detailed information and high-resolution image
captured for a specific cocktail. In general, experts focus on a single well rather
than the complete well view. As mentioned earlier, the plate view may serve as an
index, where the user can choose or click a specific well on the plate interface to
see the image at a high resolution. Since the complete scene is dedicated for a single
cocktail, additional information such as the screen used for the experiment, cocktail,
the imaging system, temperature, date and time captured, and its score could be
displayed (Figs. 9.6 and 9.7). Moreover, while viewing a well at a high resolution,
the color coded wells of that plate (Figs. 9.6 and 9.7) are helpful to quickly access
other wells.

Visualization interface should provide a detailed view of specific regions on the
image. For example, RoCKS [1] allows users to drag a rectangle on the images to get a
more detailed view of the selected region of interest. Images can be zoomed to inves-
tigate regions in an image [4]. The interface should support selecting points on the
image and provide the length of chosen segments (Fig. 9.7). If electron microscopy
is used for crystallization trial analysis, image acquisition can be achieved at low
magnification (60x), medium magnification (1350x), high magnification (21,000x)
by the microscope computer [3]. The user may choose the number of images per
grid, the number of images per region of interest (ROI), and the frequency of focus
measurement for image processing. Hu et al. [8] proposed a system that associates
images collected from the electron microscopy with the screen conditions. Their

Fig. 9.7 The crystallization trial viewer interface in xtalPIMS
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Fig. 9.8 Scoring window of Visual-X2

interface maintains crystallization screen information such as crystallization trials,
target protein sequence, score, and conditions for expression and purification.

9.4 Scoring Crystallization Trials

Scoring crystallization trials could be automatic aswell asmanual. Ideally, since there
could be many trials that do not yield crystalline conditions, automation of scoring
is desired. Nevertheless, these automated scoring tools are not foolproof. The plate
visualization tool should enable to update scores by an expert. Once the scores have
been updated, the new scores should be stored in the database. The system should
maintain the automated score as well as the expert score to distinguish whether the
expert has changed the scoring or not. If the automated scoring is not correct, the
corresponding image may be used in training a new classifier. These systems do not
need to limit experts to assign a single score. MacroScope [13] allows experts to
assign multiple categories to images except for the clear category. RoCKS [1] allows
experts to choose a score as well as mark wells as salt, hit, or for future attention.
Figure9.8 shows the scoring window in Visual-X2.
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9.5 Multiple Crystallization Trial Analysis

Rather than analyzing a singlewell, observing outputs ofmultiple experiments simul-
taneously may help experts analyze crystallization conditions. Multiple images may
be displayed with respect to time course, their scores, positions in wells, or various
light sources used for capturing images.

9.5.1 Time Course Analysis

Protein crystallization is not an instant process once a plate is set up. Depending on
the type of protein, the crystal growthmay take from several hours to months. During
this process, the plate may be analyzed regularly to investigate crystal growth. The
time course [14] of a well could be displayed as a sequence (Figs. 9.9 and 9.10),
slideshow or movie to the user. xtalPIMS displays the earliest and latest images in
their crystallization trial viewer as a summary while supporting displaying of the full
time course (Fig. 9.7).

9.5.2 Support for Sequential View

Sequential view of a plate may provide the image, the cocktail, and the score simul-
taneously. The images may be sorted based on their position in the well as well on
their score [5, 14]. The sequential view may also sort the images based on the scores
so that the expert may focus only crystallization trials with high scores. The results
can be provided as a slideshow, movie, or list to the user. xtalPIMS allows a movie
mode for watching well images of a plate. xtalPIMS provides a color coded grid for
displaying scores of plate wells (Fig. 9.7).

9.5.3 Multiple Light Source Support

Previously, the protein crystallization trials were usually captured under white light.
Recently, trace fluorescent labeling has started to become popular. Depending on the
fluorescence dyes used, the plate wells can be captured using different light sources.
Trace fluorescent labeling may highlight crystals that would be difficult to detect
under white light. Figure9.8 shows multiple light support interface for Visual-X2.
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9.6 Chemical Space Mapping

Autosherlock [12] is based onMicrosoft Excel sheets. Its main goal is to help experts
develop new successful crystals by analyzing experiment results where each cell has
a numeric score and color. In Autosherlock the columns are first sorted based on
cations and each cation is sorted based on anions vertically. In other words, there
are vertical groups of cations. Horizontally, the groups are formed based on the
molecular weight of PEG and each PEG group is sorted based on pH values. Such a
representation provides an overview of conducted experiments as well as unsampled
experiments. The visualization of unsampled experiments along with neighboring
successful experiments may help crystallographer optimize conditions.

Fig. 9.9 The timecourse
view [7]
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Fig. 9.10 The timecourse view [14]

AutoSherlock generates four worksheets: (1) outputs of the incomplete factorial
cocktails, (2) outputs of commerical screens, (3) global view of outputs, and (4) a
listing of scores, image names, and conditions. AutoSherlock interface [12] can be
used to optimize conditions. For example, identifying the range of PEG concen-
tration or plotting the chemical space PEG vs. pH by keeping salt constant helps
identify crystalline conditions. Such plots give hints to experts about the outcomes
of unsampled conditions (Fig. 9.11). They provide examples of how their interface
could be used for apoferritin protein.

The web interface for PlateDB crystallization database [11] also lists occurrences
of common conditions for crystals.

9.7 Summary

Visualization of protein crystallization trial images may help crystallographers iden-
tify crystalline conditions and determine conditions to be tried in newer experiments.
The amount of information to be displayed on a regular display may not provide the
details an expert might be looking for. Moving away from microscope to a computer
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Fig. 9.11 Chemical space mapping [10]. Reprinted (adapted) with permission from Luft, Joseph
R., Jennifer R. Wolfley, and Edward H. Snell. 2011. “What’s in a Drop? Correlating Observations
and Outcomes to GuideMacromolecular Crystallization Experiments.” Crystal Growth and Design
11(3): 651–63. Copyright 2011 American Chemical Society

display may be comforting if plates of 96-well of smaller are being visualized. If the
number of wells goes over 1,000, the regular displays are not satisfactory. With high-
speed cameras capturing at high resolutions at 2 or 4K, the resolutions of displays for
showing more than 100 images is not satisfactory. For ideal visual investigation of
protein crystallization images, a display wall built of many high-resolution screens
could be more effective.

Time course analysis should focus on crystal images. Ideally, the visualization
software should track crystals in images and provide time course with respect to
individual crystals wherever possible.
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Chapter 10
Other Structure Determination Methods

Abstract There aremoreways of gaining insight intomacromolecular structure than
X-ray diffraction. Like X-ray diffraction, some of these are based on the generation
of ordered arrays of the molecule to be studied. For many reasons, based on either
the protein or its function, this is not always possible. Others, some of which are
currently enjoying a marked increase in popularity, do not require crystals. Many
of these come with the added advantage that they can be used to capture reaction
intermediates and/or enable the experimenter to observe changes in specific amino
acids,which is often not possiblewithX-ray diffractionmethods. This chapter divides
into two sections; those methods that can be used to obtain a 3D structure (neutron
diffraction, cryogenic electron microscopy, nuclear magnetic resonance, and X-ray
free electron laser diffraction) and those that are suitable for more general structural
information (chemical cross linking, fluorescence resonance energy transfer, circular
dichroism). Virtually all of the methods discussed below can be expanded for the
study of other aspects of macromolecular structure-function relationships, and some,
such as fluorescence and chemical cross linking, are a subset of a rich methodology
for the study of macromolecules.

10.1 Introduction

Merely having a pure protein and an understanding of how it behaves in solution
does not guarantee that it can be crystallized. Just as there are some proteins that
seemingly crystallize just because one wants them to, there are others that seem to
resist all efforts at getting them into an ordered array. Several programs have been put
forth where one inputs the proteins’ primary sequence, either as the genetic codons
or as the corresponding amino acids, and the program puts forth an assessment of
the likelihood of obtaining crystals (for example, [17, 28, 29]). This assessment
often comes with an output that indicates the location of the likely problematic
regions. This information can be used to either delete those regions at the genetic
level or, if the structural interest is centered on a specific interacting domain, to guide
the experimenter in the specific sequence to be expressed for crystallization of that
domain.
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The process of purifying a protein itself can provide basic structural informa-
tion useful for guiding the crystallization process. For example, sodium dodecylsul-
fate (SDS) gel electrophoresis can give the monomeric molecular weight(s), while
passage down a calibrated size exclusion column can yield information about the
oligomerization state. Native electrophoresis can be used to examine binding to
added solution components using a gel-shift assay [26], useful for crystallization of
protein-nucleic acid or protein-protein complexes. Concentration by ultrafiltration
can also give size information; a hexameric protein having a monomeric molecular
weight of 20 kDa should be retained by a membrane having a MW cut-off of 50 or
100 kDa, considerations that may speed up the purification process to enable getting
the crystallization trials startedwith themost freshly purified protein. Light scattering
studies can be an indication of the polydispersity of the protein preparation; while not
direct structural information per se, monodispersity is generally a pre-requirement
for successful crystallization. There are many more methods, not covered below, that
can be employed to gain some insight into a macromolecules structure. The presen-
tations are not meant to be exhaustive, but each includes references to one or more
comprehensive reviews as a starting point for readers who wish to know about them
in greater depth.

10.2 Neutron Diffraction (ND)

X-ray diffraction intensity is a function of the electron cloud around a diffracting
atom, and as a result the diffraction intensity is proportional to the size of that cloud.
Thismakes the diffraction from hydrogen, with just one electron, veryweak. Neutron
diffraction is from the nuclei of atoms, and the diffraction intensity will depend upon
the isotope of that atom. Neutron scattering intensity does not vary linearly with
atomic number. Of particular interest to biomolecular structure, both hydrogen and
deuterium are strong neutron scatterers, which results in the hydrogen positions being
much easier to determine by ND. As the scattering lengths for hydrogen and deu-
terium have opposite sign, and hydrogen scattering has a large inelastic component
which contributes to the background noise, it is common for biomolecule ND data to
be acquired from samples after exchanging hydrogens for deuterium. This exchange
can be carried out by deuteration where the more labile protons are exchanged by
dialysis of the protein solution or soaking of the crystals in D2O mother liquor. Less
labile hydrogens are deuterated by recombinant expression of the macromolecule in
a deuterated growth media

ND requires a neutron source,which is provided by a nuclear reactor or a spallation
source. The type of source used dictates the associated components of the instrument.
Neutrons from a reactor source are produced continuously, and monochromators and
filters are employed with a reactor source for selecting the wavelength. Neutrons
from spallation sources are produced in discrete bursts. As higher energy (lower
wavelength) neutrons are faster spallation sources use a time of flight approach to
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separate the different wavelengths. Currently, the most intense spallation neutron
source is that at Oak Ridge National Laboratory.

Neutrons only interact weakly with matter, and as a result a major drawback
of ND is the requirement for larger crystals, typically having a minimum size of
∼ 1mm3. For macromolecules obtaining crystals in this size range can be a daunting
task, requiring careful control of the growth conditions and environment, as well
as a large supply of protein, which must be kept stable during the growth of the
crystal. A second negative aspect of the weak interaction with matter, coupled with
the relatively low intensity (compared to X-rays) sources of neutrons, is the need
for long data collection times. Times of one week to acquire a data set are typical
[4], and depending upon the crystal symmetry data collection times exceeding 2–3
weeks are not uncommon. As with X-ray crystallography technological advances in
producing higher flux neutron sources, as well as improved detectors, are expected
to reduce these data collection times.

Half of the atoms of a protein are hydrogen and as a result, a neutron structure as
twice the number of atomic positions to be determined as from the corresponding X-
ray data set. While ND is presented here as an alternative method for macromolecule
structure determination, success is in fact highly dependent upon having X-ray data
in hand. Recent software advances have taken this into account, enabling joint X-
ray/neutron refinement strategies [2, 12].

Resolving hydrogen atoms by X-ray crystallography typically requires data col-
lected to a diffraction resolution of ≤ 1 Å. In contrast, after deuteration, these loca-
tions are visible by ND at resolutions in the 2.5 Å range. Neutrons do not cause
damage to the biomolecule, and as a result data collection can be carried out at room
temperature. The ability to locate hydrogen (deuterium) byND is important for deter-
mining the protonation states of active site residues. Suggested recent reviews for
further reading are: Blakeley et al. [3] and O’Dell et al. [24].

10.3 Nuclear Magnetic Resonance (NMR)

NMR is a non-crystal dependent method for determining macromolecule structure.
In practice, an aqueous solution of the sample is placed inside a strong magnet and
subjected to radio frequency signals. The nuclei absorb at frequencies that are depen-
dent upon their environment, which is affected by other atoms in close proximity.
Analysis of the signals is used to build a proximity map, and thus a model of the
protein structure. A strength of NMR is that, as a protein molecule may have many
conformational forms, structural models based on NMR may, in fact, be a better
representation of the protein than a “fixed” structure as obtained by X-ray crystal-
lography. This also makes NMR a useful technique for looking at subtle changes in a
macromolecule’s structure due to factors such as environmental changes or binding
to another molecule.

Isotopes having an odd number of protons and/or neutrons have a nonzero spin,
which spin is aligned in a magnetic field and can be perturbed by a radio frequency
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pulse. NMR signals are enhanced by isotopes such as 1H, 13C, 15N, and 31P. These all
have a magnetic dipole, with an associated orientation energy, which can be set in a
magnetic field. Except for 1H, used for 1D NMR, the samples must be enriched with
the other isotopes due to their low natural abundance. By inputting electromagnetic
radiation, i.e., radio waves, at specific frequencies these dipoles can be transitioned
to a new orientation, which is the measured NMR signal. The utility of NMR for
structure determination comes from the field strength of the observed resonance for
a given signal source (nucleus) being highly sensitive to its electronic environment.
Interactions with its neighboring nuclei cause the resonance band of a particular atom
to be split into a group that is determined by the number, distance, and symmetry of
those neighbors.

NMR formacromolecular structure studies requiresNMR-active, spin-1/2, atoms.
While the natural abundance of 1H is sufficient, samples must be enriched with
13C and/or 15N for NMR studies. This enrichment process can be carried out using
recombinant protein produced using E. coli grown in minimal growth media having
isotopically labeled carbon and nitrogen sources. While this approach is relatively
cheap, costs can increase significantly if protein expression requires a eukaryotic
expression system. These higher costs are somewhat ameliorated by more recent
instrumentationwhich requires sample volumes of 0.1mL at concentrations of∼0.05
mM. For a 20 kDa protein, this translates to∼0.1mg of protein, making NMR a very
attractive approach for the parsimonious structural biologist.

NMR spectrometers are characterized by their proton resonant frequency inMHz,
which is a function of the instruments magnetic field strength. Higher strength mag-
nets result in higher resonant frequencies. The resolution of a NMR instrument, the
ability to separate resonances, increases with the magnetic field strength. Complex
molecules have more crowded spectra, and as a result higher field strength magnets
are needed to resolve the chemical shifts in the spectra. Some useful starting reviews
of NMR and its capabilities for those interested would be Kwan et al. [18] and Ziarek
et al. [32]. NMR is particularly useful for determining the structure of membrane
proteins, particularly for their study in native lipid environments, as reviewed by
Opella and Marassi [25].

10.4 Cryogenic Electron Microscopy (Cryo-EM)

Cryo-EM, not surprisingly, has its origins in electron microscopy, where the sample
is placed on a grid in a high vacuum for imaging. An electron beam is emitted from a
filament and accelerated toward an anode, with lenses and apertures used to control
the shape and size of the beam. The electrons are deflected by interactions with the
sample, then the beam is passed through additional lenses and aperture(s) to reduce
scattering and magnify the image on a detector. While electron microscopes were
capable of achieving resolutions to the 5–10Årange, in practice “seeing” the contrast
from different protein domains was generally not possible. This led to methods for
enhancing contrast to provide the necessary intensity differences, using methods
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such as negative or positive staining and shadow casting. While these help, the harsh
treatment of the macromolecule led to a practical resolution limit of ∼15 Å. This is
usually sufficient resolution to determiningmolecular shape and the subunit structure
of multimeric proteins, but not the needed atomic resolution for detailed structural
information.

The advance to cryo-EM started with the use of liquid ethane to flash cool the
proteins to immobilize them on a grid in vitreous buffer solution for imaging [1]. By
flash cooling the experimenter avoids problems associated with dehydration (“clas-
sical” EM) or from ice crystals due to freezing. Flash cooling, aka vitrification, is
where the solution is cooled at a sufficiently fast rate that structured ice crystals
are not formed, but rather an unstructured glass-like state of the aqueous solution.
Dehydration of the sample in the vacuum of the electron microscope is prevented by
virtue of being embedded in a layer of vitreous solvent, which also reduces radiation-
induced damage to the protein. The next advance was in detector development, away
from film-based methods [23]. The detector advances, coupled with improved image
processing methods, enabled cryo-EM to move from large complexes and low reso-
lution to levels that are now approaching those of X-ray crystallography.

The image from a single particle is a 2D projection onto the imaging plane. By
rotation of the particle in the imaging beam one can obtain a series of 2D image
projections that can be processed to obtain a 3D structure. This rotation is virtu-
ally provided by each image typically having multiple randomly oriented particles
present. Each projected 2D image is defined by three rotational Euler angles that
define the molecular orientation, two positional angles, and the position of the mole-
cule in the z-axis (the focus or beam direction). Thus, the image is a field of randomly
oriented particles, the orientation of each of which is defined by the six orientational
parameters. Image processing in software is used to align each of the separate mole-
cular images to each other. Use of more images improves the signal to noise level
and provides an enhanced range of orientations to provide an improved 3D structure
reconstruction. The advances in cryo-EM to X-ray crystallographic level resolutions
have been driven by those for the detectors and image processing software.

The major advantage of cryo-EM is that one does not have to have crystals of the
molecule under analysis, enabling structures to be determined frommacromolecules
that have heretofore resisted crystallization. A major stumbling block for cryo-EM
is the high cost of the instrumentation, currently ∼ $7 million or greater. The field
is rapidly evolving, and ever higher resolution structures are now being obtained
by cryo-EM. Recent reviews in this rapidly evolving field are Elmlund et al. [9],
Takizawa et al. [30], Jonic [16].

10.5 X-Ray Free Electron Laser (XFEL)

Crystallization screening experiments often result in the growth of microcrystals
having sizes in the≤1µm size range.While this may constitute proof that the protein
can be crystallized, crystals in this size range are too small for use with conventional
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synchrotron X-ray sources. Use of smaller crystals is desirable as they are likely
to have fewer defects, to diffract to a higher resolution. However, smaller crystals
have fewer diffraction centers, and thus require a higher X-ray intensity to produce
a measurable diffraction signal, resulting in radiation damage which considerably
shortens the crystal lifetime in the beam. Thus “classical” X-ray crystallography
requires growth of crystals having sufficient size for use.

The recent development of femtosecond X-ray lasers having intensities ∼109
greater than synchrotron sources provides a means past this small size limitation.
The experimental approach taken was to collect a single diffraction image from a
crystal using the laser beam. While the intense beam does destroy the crystal, the
single image of diffraction data is collected before this destruction occurs. A steady
stream of small crystals is run through the beam as it is pulsed. The probability of
collecting a diffraction image from each beam pulse is proportional to the pulse rate
and the crystal density in the stream. A complete data set results from the collection
of thousands of diffraction images, and in actuality is derived from only a very small
percentage of the crystals that are passed through the beam path. As the crystals are
randomly orientedwhen in the beama complete diffraction data set can be assembled.
Diffraction has been observed from crystals ≤ 10 unit cells on a side [7]. The data is
collected from crystals in solution at room temperature, which enables time resolved
functional studies (references).

The immediate advantage of XFELs is that small crystals are often more readily
obtained than large. The exception to this of course being in those cases where one
only wants small crystals. A second advantage comes from being able to follow
enzyme kinetics. While optical triggering of photoactive proteins can be carried
out to high time resolution, following non-optical enzymatic action on a substrate
requires that the protein molecules simultaneously “see” the substrate at the same
time. Due to the diffusion rate of small molecules through the solvent channels this
is not feasible with larger crystals. However, with a very small crystal the diffusion
is very quick, and by varying the time interval between when a substrate solution is
mixed with a nanocrystalline stream and when it is diffracted by the FEL beam one
can build up a sequence of structural models as the reaction proceeds [6].

XFELs found immediate application in the field of membrane protein structure,
where small crystals, particularly as a result of LCP growth, are common. One of the
earliest structures solved using XFELs was for cyanobacterial Photosystem 1 [10].
The experiment consumed 14mg of protein, with the data being collected over a
24h period. It was estimated that at a beam pulse rate of 30-Hz diffraction data was
collected for only one out of every 25,000 nanocrystals that were passed through the
beam path Faster laser pulse rates and a higher crystal density in the flow will reduce
the time to collect a data set.

The small crystal size of XFELs is also a limitation. Crystals in the nanometer size
range are not easily identified by the usual microscopy instrumentation employed in
protein crystallization. Also, the amount of protein required leads to larger volumes
than usually set up in a crystallization experiment. Similar to ND, the available
facilities for conducting XFELs diffraction experiments is a limiting factor. Rapid
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advances in the field are increasing the utility of XFELs, resulting an increasing
demand for access to the few facilities extant. Some recent reviews for XFELs are
Johansson et al. [15], Martin-Garcia et al. [20], and Jain and Techert [14].

10.6 Other Approaches

Several of the above approaches, such as NMR and EM, can be used to determine
the 3D structure of a macromolecule without having to resort to its crystallization.
There are times, particularly at the start of a project, when the experimenter wants
to have some basic structural information without having to resort to a full-on struc-
ture determination. This information might be, for example, which domains of two
molecules interact with each other to form a complex, what is the overall shape of the
macromolecule, or which surface interacts with a membrane. This type of informa-
tion can be used to inform the selection of just those specific domains for subsequent
structural determination, or for the inclusion or not of a domain for deletion for a
structural study. Or they can be used to gain some understanding of how different
domains within a protein interact. An advantage of those presented here is that they
are not dependent upon the presence of major expensive pieces of capital equipment,
but can generally be carried out by resources that are likely to be available to many
laboratories or groups.

10.6.1 Chemical Cross linking

Chemical cross linking is often employed to determine the proximity of one mole-
cule to another. Crosslinkers are available having a range of sizes and chemistries.
Crosslinkers as one might imagine typically have two reactive groups separated by
a spacer group of a defined length which determines the reach of the agent, thus the
distance that can be probed. Thus, for a crosslinker specifically bound to a given
amino acid on the surface of a protein, its ability or not to react at the distal end
with another amino acid gives an indication of the distance between those two amino
acids. An obvious limitation to this approach is now does one keep the distal reactive
group from reacting to the same macromolecule, which is where reagent selection
and experimental design comes into play.

Cross linking studies are dependent upon knowing where the donor and acceptor
are located on the macromolecule, making the chemistry of their placement a critical
component of the measurement process. This is not trivial experimentally, unless
one has a reactive group that can be specifically targeted. Examples of such would
be active site residues, the N-terminal amine which has a different pKa than side
chain amines, and sulfhydryl groups. Another approach would be to form the desired
complex, reversibly block the exposed reactive groups, separate the complex, modify
the previously occluded reactive group(s), unblock the previously blocked groups,
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then proceed with the binding and cross linking experiment. Alternatively, a simple
approach where the complex is formed and random cross linking is carried out can
be taken.

Crosslinkers can be commercially obtained having a range of reactive chemistries,
aswell as a range of spacer arm lengths between the reactive groups. Those having the
same reactive group on both ends are known as homobifunctional, while those hav-
ing different reactivities are known as heterobifunctional. Trifunctional crosslinkers
are also available. The reactivities may be specific to amine, sulfhydryl, carboxyl,
hydroxyl, or aldehyde and ketone groups. Photoreactive groups are also available. An
excellent guide to cross linking, as well as other methods involving the modification
of macromolecules, can be had with Hermanson [13].

10.6.2 Fluorescence Resonance Energy Transfer

Fluorescence resonance energy transfer (FRET) is a means for determining the dis-
tance between a donor and acceptor fluorescent probe. The probe pairs are selected
such that the donor probe fluorescence emission spectrum overlaps the absorption
spectrum of the acceptor species. Energy transfer is by nonradiative dipole-dipole
coupling; emission and reabsorption of a photon is not involved. FRET efficiency
is a function of the spectral overlaps, the distance between the pair, their relative
orientation their emission and excitation dipole moments, and the quantum yield of
the donor in the absence of the acceptor. The distance range that can be measured
is a function of these factors, but the typical maximum range for a well-matched
donor-acceptor pair is ∼10nm.

When FRET occurs the donor fluorescence intensity decreases, with the energy
decrease showing up as an increase in the acceptor fluorescence intensity. In practice,
the acceptor can be just an absorbing species, as one typically measures the decrease
in the donor fluorescence intensity. The transfer efficiency is inversely proportional
to the sixth power of the distance between the donor and acceptor, and with a well-
chosen FRET pair very sensitive changes in distance between the two molecules,
and thus the parts of the macromolecule(s) to which they are attached, can be made.

Accurate FRET measurements are dependent upon knowing where the donor
and acceptor are located. Approaches that can be taken for this are similar to those
outlined above for cross linking. However, unlike cross linking, one does not have
to be concerned about the reactivity of a distal end while setting up an experiment.

FRET is only one of a broad range of fluorescence-based approaches to the studies
of macromolecules. For proteins having one or more fluorescent amino acids one can
often track changes in their conformational state by following the accessibility of
those amino acids to the bulk solvent, or deliberately added quenchers in the solvent,
as a function of imposed solution conditions such as pH, temperature, composition,
etc. Thermal stability studies are carried out on proteins to determine the optimum
solution conditions for stability by adding a hydrophobic-binding dye to the protein,
then raising the temperature while tracking the fluorescence intensity [5, 8]. The
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added dye is typically one that has little to no fluorescence in aqueous solution, with
the fluorescence increasing as it binds to hydrophobic surfaces exposed as the protein
unfolds. An upward shift in the melting temperature indicates solution conditions
that stabilize the protein. A very useful starting source for fluorescence methods is
Lakowitz [19].

10.6.3 Circular Dichroism (CD)

Circular dichroism (CD) is ameasure of the unequal absorptivity for left and right cir-
cularly polarized light. A molecule that differentially absorbs left- and right-handed
circularly polarized light is optically active, or chiral. A chiral molecule is one where
one cannot superimpose a mirror image of its structures, a standard example being
ones left and right hands. Chirality arises from the presence of one or more atoms
capable of having an asymmetric distribution of bound groups. For a tetrahedral car-
bon this requires that all 4 substituent groups be different. All amino acids, with the
exception of glycine, have a chiral alpha carbon atom, with the L-form being that
found in proteins.

CD only occurs at wavelengths that can be absorbed by a chiral molecule. In
a CD measurement, the linearly polarized light at the wavelength of an optically
active transition energy comes from the sample elliptically polarized because of
unequal absorption of the left and right-handed components. CD spectra may exhibit
both positive and negative peaks. The CD spectra of a biological macromolecule is
affected by the 3D structure of that molecule, and is not the sum of the spectra of
the constituent residues. More, the secondary structural elements of proteins, alpha-
helix, beta-sheets, random coil, have specific CD absorption bands, all below 260nm,
whichmakes CD spectroscopy a very useful tool for gaining a de novo understanding
of their structure. Not surprisingly changes in these structural elements as a function
of added solution parameters can also be followed.

CD instrumentation is generally available in most larger chemistry or biochem-
istry departments. Desktop instrumentation can typically measure down to ∼190nm
wavelength. As with all measurement techniques the performance limits are deter-
mined by the signal to noise characteristics. Other considerations for CD measure-
ments are the path length and the buffer employed; many common buffers and other
solution components absorb in the 185–250nm region, and their use can impose
limitations on the spectral range that can be studied. Protein concentrations inversely
vary with the cell path length, but as a rule of thumb the maximum absorbance
at any of the wavelengths to be investigated should be ≤0.9 OD. For performance
beyond desktop instrumentation it is possible to carry out CD measurements at syn-
chrotron facilities, which have higher light intensities extending down to much lower
wavelengths. However, at wavelengths <190nm water absorption becomes a critical
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consideration, as well as that of the method used to secure the sample. CD spectra
have been collected for single amino acids down to 120nm, using samples in the solid
state immobilized on MgF2 windows [21]. Some reviews for further exploration of
CD spectroscopy are Johnson [31], Gottarelli et al. [11], Ranjbar and Gill [27], and
Micsonai et al. [22].

10.7 Summary

There are a number of methods that can be used to obtain structural information
about a macromolecule. Some can be used early on in the study to obtain basic
solution data, such as the oligomeric state, gross molecular shape, and an indication
of what it may be bound to. Other methods can be used to study distances, between
domains on a single molecule or between regions on two molecules, and to better
determine the surfaces that are interacting. Most of these methods can be carried
out with bench-top equipment likely to be present in a laboratory or life sciences or
biochemistry department. Detailed structural studies can be carried out with methods
other than X-ray crystallography, and many of these methods can be used to gain
functional information that is not readily accessible to “standard” X-ray methods.
The negative aspect of this is that the instrumentation for these methods is generally
rather expensive, and not likely to be available in most departments but rather as a
central, often national laboratory, facility.
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Chapter 11
Future of Computational Protein
Crystallization

Abstract This book provides the lifecycle of data analytics for protein crystalliza-
tion.Awide rangeof topics starting fromsettingup screens to identifyingmacromole-
cular structure has been covered. In earlier chapters, the status-of-art and effective
low-cost and real-time techniques for protein crystallization analysis have been pro-
vided. This chapter provides some of the challenges and future directions for protein
crystallization.

11.1 Introduction

This book presents a diverse set of coherent methods related to data analytics for pro-
tein crystallization. The book includes almost complete lifecycle of protein crystal-
lization analysis starting from developing low-cost real-time microscope for image
acquisition, analyzing screening results, feature analysis, crystal growth analysis,
focusing, segmenting crystallization images, and the visualization of results to iden-
tifying macromolecular structure. Some methods such as spatio-temporal crystal
growth analysis are still in their infancy. Screening methods such as associative
experimental design should be evaluated in other research laboratories. The success
of these methods relies on their successful outcomes at different labs.

This book projected light on some of the problems crystallographers may face:

1. how to build a low-cost and real-time microscope that could capture crystalliza-
tion trial images,

2. screens to be tested for a protein based on the outcomes of prior experiments,
3. useful feature sets for classifying crystallization phases,
4. how to perform spatio-temporal crystal growth analysis in terms of the number

of crystals and size of crystals,
5. critical factors for focusing for protein crystallization microscopy,
6. how to benefit from existing thresholding or segmentation methods while work-

ing on protein crystal images, and
7. ways of presenting and visualizing results of crystallization experiments.

© Springer International Publishing AG 2017
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11.2 Challenges and Future Directions

Large chemical space Analysis of previous protein crystallization trials is essential
for effective setting up new screens. Identifying screens from the large chemical space
is challenging. Once chemicals to be tested are chosen, trying varying concentrations
for each chemical as in full-factorial design may generate myriad cocktails. Effective
ranking methods are needed for sorting recommended cocktails.

Workflow In terms of computational methods, there are not many screeningmethods
that analyze prior experiments. The outputs of computational screening methods
could be directly fed into a high-throughput system to simplify the process.

Accuracy and Trust The automated systems should gain the trust of protein crystal-
lization experts. It may not be possible to develop a system that has 100% accuracy
on classifying protein crystallization trials. Crystallographers do not want the auto-
mated systems miss crystals while they may accept misclassification of non-crystals
as crystals since those misclassifications have different impacts.

Feature sets and classifiersThe feature sets used in classification affect the accuracy
as well as overall running time. Our experience shows that using all available features
does not necessarily increase the accuracy, and there were cases where the accuracy
decreased when all features are fed to the classifier. The use of deep learning for
protein crystallization classification analysis may determine features automatically
by the deep learning system. Although high accuracy was obtained using deep learn-
ing, the likelihood of missing crystals was a down point for the existing proposed
CrystalNet architecture.

Necessity for low-cost real-time systems High-throughput systems become essen-
tial to conduct large number of experiments. Real-time and low-cost systems with
reliable analysis are needed for diverse and wide use of these systems. The transition
from systems that are hard to fit in large laboratories to small portable systems is
needed for just-in-time analysis of experimental results. Simple user interfaces with
any reasonable device should be possible. Universal access for analysis of experi-
mental results can be adopted in this context. The data should be able to analyzed
any time, anywhere and by any crystallographer.

Segmenting crystallization imagesWhile image thresholding or binarizing images
may help determine regions of interest, incorrect binarization yields incorrect analy-
sis. Segmentation is a challenging problem if the images that are captured are so
diverse as in protein crystallization domain. Nevertheless, it plays critical factors in
feature extraction, classification crystallization phases and crystal growth. A single
thresholding technique is expected to fail for some images. Using multiple thresh-
olding techniques to overcome the limitations of a single thresholding technique
introduces unnecessary and sometimes noisy results for methods relying on the out-
put of thresholding.Hence, thismay increase analysis time by several factors andmay
not be preferable for real-time analysis. Super-thresholding method selects the best
thresholding method for an image and it is likely to provide better results than single



11.2 Challenges and Future Directions 225

or multiple thresholding methods. This method can benefit from existing available
thresholding techniques. It is desired that whatever thresholding technique is used,
its completeness and soundness are important. In other words, it should generate
acceptable results for all images in the dataset. With a limited number of features
and thresholding techniques, super-thresholding provided satisfactory results. By
exploring additional features along with other thresholding techniques, its perfor-
mance could be improved further.

Focusing for trace fluorescence microscopy Focusing is an important problem
for the analysis of microscopically obtained protein crystallization images. There
may be several crystals in a liquid solution and they may appear at different depths
with respect to the microscope’s focal length. Moreover, large 3D crystals may have
different regions at different depths of field as well. For proper analysis of these
images, it is important to generate in focus images. Nevertheless, two assumptions
for finding in focus regions may not be true always in this domain: (a) high contrast
regions belong to in focus regions and (b) high intensity regions belong to in focus
regions. Especially, for trace fluorescencemicroscopy, since the background is black,
out-of-focus high intensity regions form highlighted regions around the boundaries
of objects. Moreover, changing the depth of the field also affects the size of visible
objects in images. In our experiments, FocusALL method has delivered satisfactory
results for both protein crystallization images and other biological images.

Naming inconsistency When analyzing screens from different companies, it was
observed that the same chemical appeared with different names. Such naming incon-
sistency is a handicap for multiple screen analysis for screen kits coming from differ-
ent companies. It would be great if these companies develop a standard for naming
chemicals and digitally storing screen kits.

Visualization displays Display technologies are behind capturing technologies.
While 4K displays are state-of-the-art, images captured at 4K could be considered
at low resolution considering maximum resolution capability of cameras. Moreover,
displaying multiple images on the same display screen may not present all details in
these images. Toovercome these limitations, large research laboratoriesmay consider
building display walls where each image can be displayed at their proper resolution.
It is unfortunate that images are captured at a very high resolution but cannot be
visualized at their native resolution on a display screen without zooming.

We would have a few suggestions for readers as well:

1. Avoid using binary classification as crystals versus non-crystals. There is no
trustable classification model that can achieve 100% accuracy for complex data
sets without overfitting. Such classification models are not trustable as they may
miss crystals. Having additional categories where doubtful categories may fall
into would be helpful for experts.

2. Identify the crystallization phases needed for the analysis. Having too many
categories could complicate the classification model. Hierarchical classification
models may be opted, however, an error at the higher levels of the hierarchy
propagate to the lower levels of the hierarchical classification model.
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3. Do not use all possible features for the analysis. Some features may act like
noise. Moreover, using too many features increase the processing time. Rather
identify the best set of features and use those features. Deep learning for protein
crystallization is promising, but is still at its early stages.

4. Repeat experiments with a family conditions. Evaluating a screen just once may
not yield a successful outcome although it may have the right set of chemicals
and concentrations. Crystal nucleation is a stochastic process, and just because
there are no crystals in one experiment does not mean that the conditions are not
good for crystallization. Too, subtle differences in protein preparations can lead
to different outcomes in crystallization screening trials.

5. Do not rely on a single thresholding technique. All thresholding techniques are
likely to fail for some image. Rather consider using composite techniques such
as super-thresholding that can benefit from multiple techniques.

11.3 Summary

The goal of data analytics for protein crystallization is to reduce the overhead on crys-
tallographers, help themmake critical decisions for successful protein crystallization,
develop new ideas for crystallization, and assist them by providing proper analysis of
crystallization experiments. There were two major reasons for the preparation of the
chapters in this book. Firstly, we show that it is not necessary to acquire significantly
high cost systems to perform research in this area. Secondly, by providing simple and
low-cost techniques, we provide the methodology of building automated systems for
small research groups so that motivated researchers in protein crystallization have
fair competition as large research groups. The goal of this book was to show the cur-
rent achievements, current limitations, and possible future work to be considered. In
this sense, this book should serve as a motivation for necessary work to be achieved
in the future by providing current accomplishments.

The trace fluorescent labeling for protein crystallization analysis may enhance
automated high-throughput systems by reducing their time to analyze results as well
as increasing their accuracy of the analysis. It is very likely that trace fluorescent
labeling will be an industry standard for protein crystallization analysis.
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