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Preface to the 2" Edition

This is the second edition of the textbook Mechanics of Composite Structural El-
ements published first in 2004. Since that time the course has been delivered at
several universities in Germany and abroad. Throughout the past years the authors
received a lot of suggestions for improvements from students and colleagues alike.
In addition, the textbook is recommended as the basic reading material in a relevant
course at the Otto-von-Guericke-Universitit Magdeburg.

In 2016 the first author was invited by Prof. Andreas Ochsner to present a course
with the same title at the Griffith University (Gold Coast campus) for third and
fourth year students of the bachelor program in the departments of Mechanical Engi-
neering and Civil Engineering. The two weeks’ course included 60 hours of lectures
and tutorials. Finally, the course was concluded with a written exam and a project.
Our special thanks are due to Dr. Christoph Baumann and Springer who provided
personal copies of the first edition of the book for the attendants of the course. As
the result of the discussions with the students the idea was born to prepare a second
edition.

By and large the preliminaries of the first edition remain unchanged: the presen-
tation of the mechanics of composite materials is based on the knowledge of the
first and second year of the bachelor program in Engineering Mechanics (or in other
countries the courses of General Mechanics and Strength of Materials). The focus of
the students will be directed to the elementary theory as the starting point of further
advanced courses.

There are some changes in the second edition in comparison with the first one:

e some problems are added or clarified (and we hope now better understandable),
e Chapter 11 is slightly shortened (some details are no more important),
e some details were adopted considering the developments of Springer’s templates.

Some references for further reading, but also some original sources are added and
the tables with material data are improved. Of course, we hope you will now find
fewer misprints and typos.

We have to acknowledge Dr.-Ing. Heinz Koppe (Otto-von-Guericke-Universitét
Magdeburg) and Dipl.-Ing. Christoph Kammer (formaly at Otto-von-Guericke-
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Universitdt Magdeburg) for finding a lot of typos. In addition, we have to thank
Dr. Christoph Baumann (Executive Editor Engineering, Springer Nature Singapore)
for the permanent support of the project. We appreciate for any comment and sug-
gestion for improvements which should be sentto holm.altenbach@ovgu.de.

Magdeburg and Bad Kleinen, Holm Altenbach
March 2018 Johannes Altenbach
Wolfgang Kissing



Preface to the 1* Edition

Laminate and sandwich structures are typical lightweight elements with rapidly ex-
panding application in various industrial fields. In the past, these structures were
used primarily in aircraft and aerospace industries. Now, they have also found ap-
plication in civil and mechanical engineering, in the automotive industry, in ship-
building, the sport goods industries, etc. The advantages that these materials have
over traditional materials like metals and their alloys are the relatively high specific
strength properties (the ratio strength to density, etc). In addition, the laminate and
sandwich structures provide good vibration and noise protection, thermal insulation,
etc. There are also disadvantages - for example, composite laminates are brittle, and
the joining of such elements is not as easy as with classical materials. The recycling
of these materials is also problematic, and a viable solution is yet to be developed.
Since the application of laminates and sandwiches has been used mostly in new
technologies, governmental and independent research organizations, as well as big
companies, have spent a lot of money for research. This includes the development
of new materials by material scientists, new design concepts by mechanical and
civil engineers as well as new testing procedures and standards. The growing de-
mands of the industry for specially educated research and practicing engineers and
material scientists have resulted in changes in curricula of the diploma and master
courses. More and more universities have included special courses on laminates and
sandwiches, and training programs have been arranged for postgraduate studies.

The concept of this textbook was born 10 years ago. At that time, the first edition
of ”Einfiihrung in die Mechanik der Laminat- und Sandwichtragwerke”, prepared
by H. Altenbach, J. Altenbach and R. Rikards, was written for German students
only. The purpose of that book consisted the following objectives:

e to provide a basic understanding of composite materials like laminates and sand-
wiches,

e to perform and engineering analysis of structural elements like beams and plates
made from laminates and sandwiches,

e to introduce the finite element method for the numerical treatment of composite
structures and

vii
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e to discuss the limitations of analysis and modelling concepts.

These four items are also included in this textbook. It must be noted that between
1997 and 2000, there was a common education project sponsored by the European
Community (coordinator T. Sadowski) with the participation of colleagues from
U.K., Belgium, Poland and Germany. One of the main results was a new created
course on laminates and sandwiches, and finally an English textbook ”Structural
Analysis of Laminate and Sandwich Beams and Plates” written by H. Altenbach, J.
Altenbach and W. Kissing.

The present textbook follows the main ideas of its previous versions, but has been
significantly expanded. It can be characterized by the following items:

o The textbook is written in the style of classical courses of strength of materials (or
mechanics of materials) and theory of beams, plates and shells. In this sense the
course (textbook) can be recommended for master students with bachelor degree
and diploma students which have finished the second year in the university. In
addition, postgraduates of various levels can find a simple introduction to the
analysis and modelling of laminate and sandwich structures.

e In contrast to the traditional courses referred to above, two extensions have been
included. Firstly, consideration is given to the linear elastic material behavior of
both isotropic and anisotropic structural elements. Secondly, the case of inhomo-
geneous material properties in the thickness direction was also included.

e Composite structures are mostly thin, in which case a dimension reduction of the
governing equations is allowed in many applications. Due to this fact, the one-
dimensional equations for beams and the two-dimensional equations for plates
and shells are introduced. The presented analytical solutions can be related to the
in-plane, out-of-plane and coupled behavior.

e Sandwiches are introduced as a special case of general laminates. This results in
significant simplifications because sandwiches with thin or thicker faces can be
modelled and analyzed in the frame of laminate theories of different order and
so a special sandwich theory is not necessary.

e All analysis concepts are introduced for the global structural behavior. Local
effects and their analysis must be based on three-dimensional field equations
which can usually be solved with the help of numerical methods. It must be
noted that the thermomechanical properties of composites on polymer matrix at
high temperatures can be essentially different from those at normal temperatures.
In engineering applications generally three levels of temperature are considered

— normal or room temperature (10°-30° C)
— elevated temperatures (30°-200° C)
— high temperatures (> 200° C)

High temperatures yield an irreversible variation of the mechanical properties,
and thus are not included in modelling and analysis. All thermal and moisture ef-
fects are considered in such a way that the mechanical properties can be assumed
unchanged.
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o Finite element analysis is only briefly presented. A basic course in finite elements
is necessary for the understanding of this part of the book. It should be noted
that the finite element method is general accepted for the numerical analysis of
laminate and sandwich structures. This was the reason to include this item in the
contents of this book.

The textbook is divided into 11 chapters and several appendices summarizing the
material properties (for matrix and fiber constituents, etc) and some mathematical
formulas:

o In the first part (Chaps. 1-3) an introduction into laminates and sandwiches as
structural materials, the anisotropic elasticity, variational methods and the basic
micromechanical models are presented.

e The second part (Chaps. 4-6) can be related to the modelling from single laminae
to laminates including sandwiches, the improved theories and simplest failure
concepts.

e The third part (Chaps. 7-9) discusses structural elements (beams, plates and
shells) and their analysis if they are made from laminates and sandwiches. The
modelling of laminated and sandwich plates and shells is restricted to rectan-
gular plates and circular cylindrical shells. The individual fiber reinforced lam-
inae of laminated structured elements are considered to be homogeneous and
orthotropic, but the laminate is heterogeneous through the thickness and gener-
ally anisotropic. An equivalent single layer theory using the classical lamination
theory, and the first order shear deformation theory are considered. Multilayered
theories or laminate theories of higher order are not discussed in detail.

e The fourth part (Chap. 10) includes the modelling and analysis of thin-walled
folded plate structures or generalized beams. This topic is not normally consid-
ered in standard textbooks on structural analysis of laminates and sandwiches, but
it was included here because it demonstrates the possible application of Vlasov’s
theory of thin-walled beams and semi-membrane shells on laminated structural
elements.

e Finally, the fifth part (Chap. 11) presents a short introduction into the finite el-
ement procedures and developed finite classical and generalized beam elements
and finite plate elements in the frame of classical and first order shear defor-
mation theory. Selected examples demonstrate the possibilities of finite element
analysis.

This textbook is written for use not only in engineering curricula of aerospace, civil
and mechanical engineering, but also in material science and applied mechanics. In
addition, the book may be useful for practicing engineers, lectors and researchers in
the mechanics of structures composed of composite materials.

The strongest feature of the book is its use as a textbook. No prior knowledge of
composite materials and structures is required for the understanding of its content.
It intends to give an in-depth view of the problems considered and therefore the
number of topics considered is limited. A large number of solved problems are
included to assess the knowledge of the presented topics. The list of references at
the end of the book focuses on three groups of suggested reading:
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e Firstly, a selection of textbooks and monographs of composite materials and
structures are listed, which constitute the necessary items for further reading.
They are selected to reinforce the presented topics and to provide information
on topics not discussed. We hope that our colleagues agree that the number of
recommended books for a textbook must be limited and we have given priority
to newer books available in university libraries.

e Some books on elasticity, continuum mechanics, plates and shells and FEM are
recommended for further reading, and a deeper understanding of the mathemati-
cal, mechanical and numerical topics.

e A list of review articles shall enable the reader to become informed about the
numerous books and proceedings in composite mechanics.

The technical realization of this textbook was possible only with the support of
various friends and colleagues. Firstly, we would like to express our special thanks
to K. Naumenko and O. Dyogtev for drawing most of the figures. Secondly, Mrs. B.
Renner and T. Kumar performed many corrections of the English text. At the same
time Mrs. Renner checked the problems and solutions. We received access to the
necessary literature by Mrs. N. Altenbach. Finally, the processing of the text was
done by Mrs. S. Runkel. We would also like to thank Springer Publishing for their
service.

Any comments or remarks are welcome and we kindly ask them to be sent to
holm.altenbach@iw.uni-halle.de.

June 2003
Halle Holm Altenbach
Magdeburg Johannes Altenbach

Wismar Wolfgang Kissing
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Part I

Introduction, Anisotropic Elasticity,
Micromechanics



In the first part (Chaps. 1-3) an introduction into laminates and sandwiches as
structural materials, the anisotropic elasticity, variational methods and the basic mi-
cromechanical models are presented.

The laminates are introduced as layered structures each of the layers is a fibre-
reinforced material composed of high-modulus, high-strength fibers in a polymeric,
metallic, or ceramic matrix material. Examples of fibers used include graphite, glass,
boron, and silicon carbide, matrix materials are epoxies, polyamide, aluminium, ti-
tanium, and aluminium. A sandwich is a special class of composite materials consist
of two thin but stiff skins and a lightweight but thick core.

The anisotropic elasticity is an extension of the isotropic elasticity. The geomet-
rical relations are assumed to be linear. The constitutive equations contain more
than two material parameters. In addition, the transition from the general three-
dimensional equations to the special two-dimensional equations results in more
complicated constrains. At the same time the introduction of reduced stiffness and
compliance parameters result in a powerful tool for the analysis of laminates.

The variational methods are the base of many numerical solution techniques (for
example, the finite element method). Here only the classical principles and methods
are briefly discussed.

There are many, partly sophisticated micromechanical approaches. They are the
base of a better understanding of the local behavior. In the focus of this textbook is
the global structural analysis. Thats way the micromechanical models are presented
only in the elementary form.
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Chapter 1
Classification of Composite Materials

Fibre reinforced polymer composite systems have become increasingly important in
a variety of engineering fields. Naturally, the rapid growth in the use of composite
materials for structural elements has motivated the extension of existing theories in
structural mechanics, therein. The main topics of this textbook are

e a short introduction into the linear mechanics of deformable solids with an-
isotropic material behavior,

e the mechanical behavior of composite materials as unidirectional reinforced sin-
gle layers or laminated composite materials, the analysis of effective moduli,
some basic mechanisms and criteria of failure,

e the modelling of the mechanical behavior of laminates and sandwiches, gen-
eral assumptions of various theories, classical laminate theory (CLT), effect of
stacking of the layers of laminates and the coupling of stretching, bending and
twisting, first order shear deformation theory (FOSDT), an overview on refined
equivalent single layer plate theories and on multilayered plate modelling,

e modelling and analysis of laminate and sandwich beams, plates and shells, prob-
lems of bending, vibration and buckling and

e modelling and analysis of fibre reinforced long thin-walled folded-plate struc-
tural elements.

The textbook concentrates on a simple unified approach to the basic behavior of
composite materials and the structural analysis of beams, plates and circular cylin-
drical shells made of composite material being a laminate or a sandwich. The in-
troduction into the modelling and analysis of thin-walled folded structural elements
is limited to laminated elements and the CLT. The problems of manufacturing and
recycling of composites will be not discussed, but to use all benefits of the new
young material composite, an engineer has to be more than a material user as for
classical materials as steel or alloys. Structural engineering qualification must in-
clude knowledge of material design, manufacturing methods, quality control and
recycling.

In Chap. 1 some basic questions are discussed, e.g. what are composites and how
they can be classified, what are the main characteristics and significance, micro-

© Springer Nature Singapore Pte Ltd. 2018 3
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4 1 Classification of Composite Materials

and macro-modelling, why composites are used, what are the advantages and the
limitations. The App. F contains some values of the material characteristics of the
constituents of composites.

1.1 Definition and Characteristics

Material science classifies structural materials into three categories

e metals,
e ceramics and
e polymers.

It is difficult to give an exact assessment of the advantages and disadvantages of
these three basic material classes, because each category covers whole groups of
materials within which the range of properties is often as broad as the differences
between the three material classes. But at the simplistic level some obvious charac-
teristic properties can be identified:

e Mostly metals are of medium to high density. They have good thermal stability
and can be made corrosion-resistant by alloying. Metals have useful mechanical
characteristics and it is moderately easy to shape and join. For this reason metals
became the preferred structural engineering material, they posed less problems
to the designer than either ceramic or polymer materials.

e Ceramic materials have great thermal stability and are resistant to corrosion,
abrasion and other forms of attack. They are very rigid but mostly brittle and
can only be shaped with difficulty.

e Polymer materials (plastics) are of low density, have good chemical resistance
but lack thermal stability. They have poor mechanical properties, but are eas-
ily fabricated and joined. Their resistance to environmental degradation, e.g. the
photomechanical effects of sunlight, is moderate.

A material is called homogeneous if its properties are the same at every point and
therefore independent of the location. Homogeneity is associated with the scale of
modelling or the so-called characteristic volume and the definition describes the
average material behavior on a macroscopic level. On a microscopic level all ma-
terials are more or less homogeneous but depending on the scale, materials can be
described as homogeneous, quasi-homogeneous or inhomogeneous. A material is
inhomogeneous or heterogeneous if its properties depend on location. But in the av-
erage sense of these definitions a material can be regarded as homogeneous, quasi-
homogeneous or heterogeneous if the scale decreases.

A material is isotropic if its properties are independent of the orientation, they do
not vary with direction. Otherwise the material is anisotropic. A general anisotropic
material has no planes or axes of material symmetry, but in Sect. 2.1.3 some special
kinds of material symmetries like orthotropy, transverse isotropy, etc., are discussed
in detail.
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Furthermore, a material can depend on several constituents or phases, single
phase materials are called monolithic. The above three mentioned classes of conven-
tional materials are on the macroscopic level more or less monolithic, homogeneous
and isotropic.

The group of materials which can be defined as composite materials is extremely
large. Its boundaries depend on definition. In the most general definition we can
consider a composite as any material that is a combination of two or more materi-
als, commonly referred to as constituents, and have material properties derived from
the individual constituents. These properties may have the combined characteristics
of the constituents or they are substantially different. Sometimes the material prop-
erties of a composite material may exceed those of the constituents. This general
definition of composites includes natural materials like wood, traditional structural
materials like concrete, as well as modern synthetic composites such as fibre or par-
ticle reinforced plastics which are now an important group of engineering materials
where low weight in combination with high strength and stiffness are required in
structural design.

In the more restrictive sense of this textbook a structural composite consists of
an assembly of two materials of different nature. In general, one material is dis-
continuous and is called the reinforcement, the other material is mostly less stiff
and weaker. It is continuous and is called the matrix. The properties of a composite
material depends on

The properties of the constituents,
The geometry of the reinforcements, their distribution, orientation and concen-
tration usually measured by the volume fraction or fiber volume ratio,

e The nature and quality of the matrix-reinforcement interface.

In a less restricted sense, a structural composite can consist of two or more phases
on the macroscopic level. The mechanical performance and properties of compos-
ite materials are superior to those of their components or constituent materials taken
separately. The concentration of the reinforcement phase is a determining parameter
of the properties of the new material, their distribution determines the homogeneity
or the heterogeneity on the macroscopic scale. The most important aspect of com-
posite materials in which the reinforcement are fibers is the anisotropy caused by the
fiber orientation. It is necessary to give special attention to this fundamental charac-
teristic of fibre reinforced composites and the possibility to influence the anisotropy
by material design for a desired quality.

Summarizing the aspects defining a composite as a mixture of two or more dis-
tinct constituents or phases it must be considered that all constituents have to be
present in reasonable proportions that the constituent phases have quite different
properties from the properties of the composite material and that man-made com-
posites are produced by combining the constituents by various means. Figure 1.1
demonstrates typical examples of composite materials. Composites can be classi-
fied by their form and the distribution of their constituents (Fig. 1.2). The reinforce-
ment constituent can be described as fibrous or particulate. The fibres are continuous
(long fibres) or discontinuous (short fibres). Long fibres are arranged usually in uni-
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Fig. 1.1 Examples of composite materials with different forms of constituents and distributions
of the reinforcements. @ Laminate with uni- or bidirectional layers, b irregular reinforcement with
long fibres, € reinforcement with particles, d reinforcement with plate strapped particles, € random
arrangement of continuous fibres, f irregular reinforcement with short fibres, g spatial reinforce-
ment, h reinforcement with surface tissues as mats, woven fabrics, etc.

or bidirectional, but also irregular reinforcements by long fibres are possible. The
arrangement and the orientation of long or short fibres determines the mechani-
cal properties of composites and the behavior ranges between a general anisotropy
to a quasi-isotropy. Particulate reinforcements have different shapes. They may be
spherical, platelet or of any regular or irregular geometry. Their arrangement may be
random or regular with preferred orientations. In the majority of practical applica-
tions particulate reinforced composites are considered to be randomly oriented and

Composite

fibre reinforced particle reinforced

random preferred

orientation orientation

continous fibre reinforced discontinous fibre reinforced
(long fibres) (short fibres)
unidirectional bidirectional spatial random . .
X . ; ) X preferred orientation
reinforced reinforced reinforced orientation

Fig. 1.2 Classification of composites
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the mechanical properties are homogeneous and isotropic (for mor details Chris-
tensen, 2005; Torquato, 2002). The preferred orientation in the case of continuous
fibre composites is unidirectional for each layer or lamina. Fibre reinforced compos-
ites are very important and in consequence this textbook will essentially deal with
modelling and analysis of structural elements composed of this type of composite
material. However, the level of modelling and analysis used in this textbook does not
really differentiate between unidirectional continuous fibres, oriented short-fibres or
woven fibre composite layers, as long as material characteristics that define the layer
response are used. Composite materials can also be classified by the nature of their
constituents. According to the nature of the matrix material we classify organic,
mineral or metallic matrix composites.

e Organic matrix composites are polymer resins with fillers. The fibres can be min-
eral (glass, etc.), organic (Kevlar, etc.) or metallic (aluminium, etc.).

e Mineral matrix composites are ceramics with metallic fibres or with metallic or
mineral particles.

e Metallic matrix composites are metals with mineral or metallic fibres.

Structural composite elements such as fibre reinforced polymer resins are of par-
ticular interest in this textbook. They can be used only in a low temperature range
up to 200° to 300° C. The two basic classes of resins are thermosets and thermo-
plastics. Thermosetting resins are the most common type of matrix system for com-
posite materials. Typical thermoset matrices include Epoxy, Polyester, Polyamide
(Thermoplastics) and Vinyl Ester, among popular thermoplastics are Polyethylene,
Polystyrene and Polyether-ether-ketone (PEEK) materials. Ceramic based compos-
ites can also be used in a high temperature range up to 1000° C and metallic matrix
composites in a medium temperature range.

In the following a composite material is constituted by a matrix and a fibre re-
inforcement. The matrix is a polyester or epoxy resin with fillers. By the addition
of fillers, the characteristics of resins will be improved and the production costs
reduced. But from the mechanical modelling, a resin-filler system stays as a ho-
mogeneous material and a composite material is a two phase system made up of a
matrix and a reinforcement.

The most advanced composites are polymer matrix composites. They are charac-
terized by relatively low costs, simple manufacturing and high strength. Their main
drawbacks are the low working temperature, high coefficients of thermal and mois-
ture expansion and, in certain directions, low elastic properties. Most widely used
manufacturing composites are thermosetting resins as unsaturated polyester resins
or epoxy resins. The polyester resins are used as they have low production cost.
The second place in composite production is held by epoxy resins. Although epoxy
is costlier than polyester, approximately five time higher in price, it is very popu-
lar in various application fields. More than two thirds of polymer matrices used in
aerospace industries are epoxy based. Polymer matrix composites are usually rein-
forced by fibres to improve such mechanical characteristics as stiffness, strength,
etc. Fibres can be made of different materials (glass, carbon, aramid, etc.). Glass fi-
bres are widely used because their advantages include high strength, low costs, high
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chemical resistance, etc., but their elastic modulus is very low and also their fatigue
strength. Graphite or carbon fibres have a high modulus and a high strength and
are very common in aircraft components. Aramid fibres are usually known by the
name of Kevlar, which is a trade name. Summarizing some functional requirements
of fibres and matrices in a fibre reinforced polymer matrix composite

fibres should have a high modulus of elasticity and a high ultimate strength,
fibres should be stable and retain their strength during handling and fabrication,
the variation of the mechanical characteristics of the individual fibres should be
low, their diameters uniform and their arrangement in the matrix regular,
matrices have to bind together the fibres and protect their surfaces from damage,
matrices have to transfer stress to the fibres by adhesion and/or friction and
matrices have to be chemically compatible with fibres over the whole working
period.

The fibre length, their orientation, their shape and their material properties are main
factors which contribute to the mechanical performance of a composite. Their vol-
ume fraction usually lies between 0.3 and 0.7. Although matrices by themselves
generally have poorer mechanical properties than compared to fibres, they influence
many characteristics of the composite such as the transverse modulus and strength,
shear modulus and strength, thermal resistance and expansion, etc.

An overview of the material characteristics is given in Sect. 1.4. One of the most
important factors which determines the mechanical behavior of a composite material
is the proportion of the matrix and the fibres expressed by their volume or their
weight fraction. These fractions can be established for a two phase composite in the
following way. The volume V of the composite is made from a matrix volume Vi,
and a fibre volume V; (V = V¢ + V). Then

Vi=—, Vm=— (1.1.1)
with

vitvp =1, vp=1—v¢
are the fibre and the matrix volume fractions. In a similar way the weight or mass

fractions of fibres and matrices can be defined. The mass M of the composite is
made from My and My, (M = M;+ M,,) and

Ms My,
M

Yo Mm= (1.1.2)

mg =
with
me+mym=1, myp=1—ms

are the mass fractions of fibres and matrices. With the relation between volume,
mass and density p = M/V, we can link the mass and the volume fractions
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p= % _ Mf+Mm _ prf+Pme
% % % (1.1.3)
= Pyt + PmVm = Prve+ Pm(1 —vr)

Starting from the total volume of the composite V = V¢ 4 Vi, we obtain

M My My
p pt Pm
and |
P = Ty (1.1.4)
Pr Pm
ith
wi or P
mg= —Vf, Mm = —"Vm
p p
The inverse relation determines
p p
VE= —mMmyg, Vy=—m (1.1.5)
f p f m Pm m

The density p is determined by Egs. (1.1.3) or (1.1.4). The equations can be easily
extended to multi-phase composites.

Mass fractions are easier to measure in material manufacturing, but volume frac-
tions appear in the theoretical equations for effective moduli (Sect. 3.1). Therefore,
it is helpful to have simple expressions for shifting from one fraction to the other.

The quality of a composite material decreases with an increase in porosity. The
volume of porosity should be less than 5 % for a medium quality and less than 1 %
for a high quality composite. If the density pexp is measured experimentally and
Ptheor 18 calculated with (1.1.4), the volume fraction of porosity is given by

Vpor = Ptheor — Pexp (1.1.6)
Ptheor

1.2 Significance and Objectives

Development and applications of composite materials and structural elements com-
posed of composite materials have been very rapid in the last decades. The mo-
tivations for this development are the significant progress in material science and
technology of the composite constituents, the requirements for high performance
materials is not only in aircraft and aerospace structures, but also in the develop-
ment of very powerful experimental equipments and numerical methods and the
availability of efficient computers. With the development of composite materials
a new material design is possible that allows an optimal material composition in
connection with the structural design. A useful and correct application of compos-
ite materials requires a close interaction of different engineering disciplines such
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as structural design and analysis, material science, mechanics of materials, process
engineering, etc. Summarizing the main topics of composite material research and
technology are

investigation of all characteristics of the constituent and the composite materials,
material design and optimization for the given working conditions,
development of analytical modelling and solution methods for determining ma-
terial and structural behavior,

e development of experimental methods for material characteristics, stress and de-
formation states, failure,
modelling and analysis of creep, damage and life prediction,
development of new and efficient fabrication and recycling procedures among
others.

Within the scope of this book are the first three items.

The most significant driving force in the composite research and application was
weight saving in comparison to structures of conventional materials such as steel,
alloys, etc. However, to have only material density, stiffness and strength in mind
when thinking of composites is a very narrow view of the possibilities of such ma-
terials as fibre-reinforced plastics because they often may score over conventional
materials as metals not only owing to their mechanical properties. Fibre reinforced
plastics are extremely corrosion-resistant and have interesting electromagnetic prop-
erties. In consequence they are used for chemical plants and for structures which
require non-magnetic materials. Further carbon fibre reinforced epoxy is used in
medical applications because it is transparent to X-rays.

With applications out of aerospace or aircraft, cost competitiveness with con-
ventional materials became important. More recently requirements such as quality
assurance, reproducibility, predictability of the structure behavior over its life time,
recycling, etc. became significant.

Applications of polymer matrix composites range from the aerospace industry to
the industry of sports goods. The military aircraft industry has mainly led the field
in the use of polymer composites when compared to commercial airlines which
has used composites, because of safety concerns more restrictively and frequently
limited to secondary structural elements. Automotive applications, sporting goods,
medical devices and many other commercial applications are examples for the appli-
cation of polymer matrix composites. Also applications in civil engineering are now
on the way but it will take some time to achieve wide application of composites in
civil engineering as there are a lot of prescribed conditions to guarantee the reliabil-
ity of structures. But it is clear that over the last decades considerable advances have
been made in the use of composite materials in construction and building industries
and this trend will continue.
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1.3 Modelling

Composite materials consist of two or more constituents and the modelling, analy-
sis and design of structures composed of composites are different from conventional
materials such as steel. There are three levels of modelling. At the micro-mechanical
level the average properties of a single reinforced layer (a lamina or a ply) have to
be determined from the individual properties of the constituents, the fibres and ma-
trix. The average characteristics include the elastic moduli, the thermal and mois-
ture expansion coefficients, etc. The micro-mechanics of a lamina does not consider
the internal structure of the constituent elements, but recognizes the heterogene-
ity of the ply. The micro-mechanics is based on some simplifying approximations.
These concern the fibre geometry and packing arrangement, so that the constituent
characteristics together with the volume fractions of the constituents yield the av-
erage characteristics of the lamina. Note that the average properties are derived by
considering the lamina to be homogeneous. In the frame of this textbook only the
micro-mechanics of unidirectional reinforced laminates are considered (Sect. 3).

The calculated values of the average properties of a lamina provide the basis
to predict the macrostructural properties. At the macro-mechanical level, only the
averaged properties of a lamina are considered and the microstructure of the lamina
is ignored. The properties along and perpendicular to the fibre direction, these are
the principal directions of a lamina, are recognized and the so-called on-axis stress-
strain relations for a unidirectional lamina can be developed. Loads may be applied
not only on-axis but also off-axis and the relationships for stiffness and flexibility,
for thermal and moisture expansion coefficients and the strength of an angle ply can
be determined. Failure theories of a lamina are based on strength properties. This
topic is called the macro-mechanics of a single layer or a lamina (Sect. 4.1).

A laminate is a stack of laminae. Each layer of fibre reinforcement can have
various orientation and in principle each layer can be made of different materi-
als. Knowing the macro-mechanics of a lamina, one develops the macro-mechanics
of the laminate. Average stiffness, flexibility, strength, etc. can be determined for
the whole laminate (Sect. 4.2). The structure and orientation of the laminae in pre-
scribed sequences to a laminate lead to significant advantages of composite materi-
als when compared to a conventional monolithic material. In general, the mechan-
ical response of laminates is anisotropic. One very important group of laminated
composites are sandwich composites. They consist of two thin faces (the skins or
sheets) sandwiching a core (Fig. 1.3). The faces are made of high strength materials
having good properties under tension such as metals or fibre reinforced laminates
while the core is made of lightweight materials such as foam, resins with special
fillers, called syntactic foam, having good properties under compression. Sandwich
composites combine lightness and flexural stiffness. The macro-mechanics of sand-
wich composites is considered in Sect. 4.3.

When the micro- and macro-mechanical analysis for laminae and laminates are
carried out, the global behavior of laminated composite materials is known. The last
step is the modelling on the structure level and to analyze the global behavior of a
structure made of composite material. By adapting the classical tools of structural
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Fig. 1.3 Sandwich materials with solid and hollow cores

analysis on anisotropic elastic structure elements the analysis of simple structures
as beams or plates may be achieved by analytical methods, but for more general
boundary conditions and/or loading and for complex structures, numerical methods
are used.

The composite structural elements in the restricted view of this textbook are lam-
inated or sandwich composites. The motivation for sandwich composites are two-
fold:

e If a beam is bent, the maximum stresses occur at the top and the bottom surface.
So it makes sense using high strength materials only for the sheets and using low
and lightweight materials in the middle.
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e The resistance to bending of a rectangular cross-sectional beam is proportional
to the cube of the thickness. Increasing the thickness by adding a core in the
middle increases the resistance. The shear stresses have a maximum in the mid-
dle of a sandwich beam requiring the core to support the shear. This advantage
of weight and bending stiffness makes sandwich composites more attractive for
some applications than other composite or conventional materials.

The most commonly used face materials are aluminium alloys or fibre reinforced
laminates and most commonly used core materials are balsa wood, foam and hon-
eycombs (Fig. 1.3). In order to guarantee the advantages of sandwich composites, it
is necessary to ensure that there is perfect bonding between the core and the sheets.

For laminated composites, assumptions are necessary to enable the mathematical
modelling. These are an elastic behavior of fibres and matrices, a perfect bonding
between fibres and matrices, a regular fibre arrangement in regular or repeating ar-
rays, etc.

Summarizing the different length scales of mechanical modelling structure ele-
ments composed of fibre reinforced composites it must be noted that, independent
of the different possibilities to formulate beam, plate or shell theories (Chaps. 7-9),
three modelling levels must be considered:

e The microscopic level, where the average mechanical characteristics of a lamina
have to be estimated from the known characteristics of the fibres and the ma-
trix material taking into account the fibre volume fracture and the fibre packing
arrangement. The micro-mechanical modelling leads to a correlation between
constituent properties and average composite properties. In general, simple mix-
ture rules are used in engineering applications (Chap. 3). If possible, the aver-
age material characteristics of a lamina should be verified experimentally. On
the micro-mechanical level a lamina is considered as a quasi-homogeneous or-
thotropic material.

e The macroscopic level, where the effective (average) material characteristics of a
laminate have to be estimated from the average characteristics of a set of laminae
taking into account their stacking sequence. The macro-mechanical modelling
leads to a correlation between the known average laminae properties and effec-
tive laminate properties. On the macro-mechanical level a laminate is consid-
ered generally as an equivalent single layer element with a quasi-homogeneous,
anisotropic material behavior (Chap. 4).

e The structural level, where the mechanical response of structural members like
beams, plates, shells etc. have to be analyzed taking into account possibilities to
formulate structural theories of different order (Chap. 5).

In the recent years in the focus of the researchers is an additional level - the
nanoscale level. There are two reasons for this new direction:

e composites reinforced by nanoparticles and
e nanosize structures.

Both directions are beyond this elementary textbook. Partly new concepts should
be introduced since bulk effects are no more so important and the influence of sur-
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face effects is increasing. In this case the classical continuum mechanics approaches
should be extended. More details are presented in Altenbach and Eremeyev (2015);
Cleland (2003).

1.4 Material Characteristics of the Constituents

The optimal design and the analysis of structural elements requires a detailed knowl-
edge of the material properties. They depend on the nature of the constituent mate-
rials but also on manufacturing.

For conventional structure materials such as metals or concrete, is available much
research and construction experience over many decades, the codes for structures
composed of conventional materials have been revised continuously and so design
engineers pay less attention to material problems because there is complete docu-
mentation of the material characteristics.

It is quite an another situation for structures made of composites. The list of
composite materials is numerous but available standards and specifications are very
rare. The properties of each material used for both reinforcements and matrices of
composites are very much diversified. The experiences of nearly all design engineers
in civil or mechanical engineering with composite materials, are insufficient. So it
should be borne in mind that structural design based on composite materials requires
detailed knowledge about the material properties of the singular constituents of the
composite for optimization of the material in the frame of structural applications
and also detailed codes for modelling and analysis are necessary.

The following statements are concentrated on fibre reinforced composites with
polymer resins. Material tests of the constituents of composites are in many cases a
complicated task and so the material data in the literature are limited. In engineering
applications the average data for a lamina are often tested to avoid this problem and
in order to use correct material characteristics in structural analysis. But in the area
of material design and selection, it is also important to know the properties of all
constituents.

The main properties for the estimation of the material behavior are

density p,

Young’s modulus! E,

ultimate strength o, and
thermal expansion coefficient c.

The material can be made in bulk form or in the form of fibres. To estimate proper-
ties of a material in the form of fibres, the fibre diameter d can be important.

Table F.1 gives the specific performances of selected material made in bulk form.
Traditional materials, such as steel, aluminium alloys, or glass have comparable

! Thomas Young (*13 June 1773 Milverton, Somersetshire - +10 May 1829 London) - polymath
and physician, notable scientific contributions to the fields of light, mechanics (elastic material
parameter, surface tension), energy among others
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specific moduli E/p but in contrast the specific ultimate stress o,/p of glass is
significantly higher than that of steel and of aluminium alloys. Table F.2 presents the
mechanical characteristics of selected materials made in the form of fibres. It should
be borne in mind that the ultimate strength measured for materials made in bulk form
is remarkably smaller than the theoretical strengths. This is attributed to defects or
micro-cracks in the material. Making materials in the form of fibres with a very
small diameter of several microns decreases the number of defects and the values
of ultimate strength increases. Table F.3 gives material properties for some selected
matrix materials and core materials of sandwich composites. Tables F.4 and E.5
demonstrate some properties of unidirectional fibre reinforced composite materials:
Ey is the longitudinal modulus in fibre direction, Et the transverse modulus, Gyt the
in-plane shear modulus, vit and vy, are the major and the minor Poisson’s ratio?,
OLu, OTu, OLTy the ultimate stresses or strengths, ap. and o the longitudinal and the
transverse thermal expansion coefficients.

Summarizing the reported mechanical properties, which are only a small selec-
tion, a large variety of fibres and matrices are available to design a composite ma-
terial with high modulus and low density or other desired qualities. The impact of
the costs of the composite material can be low for applications in the aerospace
industry or high for applications such as in automotive industry. The intended per-
formance of a composite material and the cost factors play an important role and
structural design with composite materials has to be compared with the possibilities
of conventional materials.

1.5 Advantages and Limitations

The main advantage of polymer matrix composites in comparison with conventional
materials, such as metals, is their low density. Therefore two parameters are com-
monly used to demonstrate the mechanical advantages of composites:

1. The specific modulus E/p is the Young’s modulus per unit mass or the ratio
between Young’s modulus and density.

2. The specific strength 6, /p is the tensile strength per unit mass or the ratio be-
tween strength and density

The benefit of the low density becomes apparent when the specific modulus and the
specific strength are considered. The two ratios are high and the higher the specific
parameters the more weight reduction of structural elements is possible in relation
to special loading conditions. Therefore, even if the stiffness and/or the strength
performance of a composite material is comparable to that of a conventional alloy,
the advantages of high specific stiffness and/or specific strength make composites

2 Siméon Denis Poisson (*21 June 1781 Pithiviers - +25 April 1840 Paris) - mathematician, ge-
ometer, and physicist, with contributions to mechanics, after Poisson an elastic material parameter
is named
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more attractive. Composite materials are also known to perform better under cyclic
loads than metallic materials because of their fatigue resistance.

The reduction of mass yields reduced space requirements and lower material and
energy costs. The mass reduction is especially important in moving structures. Be-
ware that in some textbooks the specific values are defined as E/pg and o0,/pg,
where g is the acceleration due to the gravity. Furthermore it should be noted that
a single performance indicator is insufficient for the material estimation and that
comparison of the specific modulus and the specific strength of unidirectional com-
posites to metals gives a false impression. Though the use of fibres leads to large
gains in the properties in fibre direction, the properties in the two perpendicular di-
rections are greatly reduced. Additionally, the strength and stiffness properties of
fibre-reinforced materials are poor in another important aspect. Their strength de-
pends critically upon the strength of the fibre, matrix interface and the strength of the
matrix material, if shear stresses are being applied. This leads to poor shear proper-
ties and this lack of good shear properties is as serious as the lack of good transverse
properties. For complex structure loadings, unidirectional composite structural ele-
ments are not acceptable and so-called angle-ply composite elements are necessary,
i.e. the structural components made of fibre-reinforced composites are usually lam-
inated by using a number of layers. This number of fibre-reinforced layers can vary
from just a few to several hundred. While generally the majority of the layers in the
laminate have their fibres in direction of the main loadings, the other layers have
their fibres oriented specifically to counter the poor transverse and shear properties.

Additional advantages in the material performances of composites are low ther-
mal expansion, high material damping, generally high corrosion resistance and elec-
trical insulation. Composite materials can be reinforced in any direction and the
structural elements can be optimized by material design or material tailoring.

There are also limitations and drawbacks in the use of composite materials:

1. The mechanical characterization of composite materials is much more complex
than that of monolithic conventional material such as metal. Usually composite
material response is anisotropic. Therefore, the material testing is more compli-
cated, cost and time consuming. The evaluation and testing of some composite
material properties, such as compression or shearing strengths, are still in discus-
sion.

2. The complexity of material and structural response makes structural modelling
and analysis experimentally and computationally more expensive and compli-
cated in comparison to metals or other conventional structural materials. There
is also limited experience in the design, calculating and joining composite struc-
tural elements.

Additional disadvantages are the high cost of fabrication, but improvements in pro-
duction technology will lower the cost more and more, further the complicated re-
pair technology of composite structures, a lot of recycling problems, etc.
Summarizing, it can be said that the application of composite materials in struc-
ture design beyond the military and commercial aircraft and aerospace industry and
some special fields of automotive, sporting goods and medical devices is still in the
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early stages. But the advancing of technology and experience yields an increasing
use of composite structure elements in civil and mechanical engineering and pro-
vides the stimulus to include composite processing, modelling, design and analysis
in engineering education.

1.6 Problems

1. What is a composite and how are composites classified?

2. What are the constituents of composites?

3. What are the fibre and the matrix factors which contribute to the mechanical
performance of composites?

4. What are polymer matrix, metal matrix and ceramic matrix composites, what are
their main applications?

5. Define isotropic, anisotropic, homogeneous, nonhomogeneous.

6. Define lamina, laminate, sandwich. What is micro-mechanical and macro-
mechanical modelling and analysis?

7. Compare the specific modulus, specific strength and coefficient of thermal ex-
pansion of glas fibre, epoxy resin and steel.

Exercise 1.1. A typical CFK plate (uni-directional reinforced laminae composed of
carbon fibres and epoxy matrix) has the size 300 mm x 200 mm x 0.5 mm (length
I x bright b x thickness d). Please show that the fibre volume fraction and the fibre
mass fraction are not the same. The estimate should be based on the following data:

e density of the carbon fibres pr = 1,8 g/cm?,
e diameter of the fibres is df = 6Um

e fibre volume fraction v = 0.8 and

e density of the epoxy py = 1,1 g/em?.

Solution 1.1. Let us assume that the fibres are parallel to the longer plate side. In
this case the volume of one fibre Vi r is

d? 6 um)?
Vip=mhl= n(“Tm) -300 mm = 8,48 - 10 mm’

The volume of the plate is
Volate = 300-200- 0,5 mm* = 3 10*mm*

With the fibre volume fraction v = 0.8 we can calculate the matrix volume fraction
Vm
vm=1—v=1-0.8=0.2

The volume of all fibres is

Vi = viVplate = 0,8 -3-10*mm® = 2,4 - 10*mm*
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which is equivalent to the following number of fibres n¢

Vi 2.4-10*mm?
ne= -1 ) — 10,2810

Vir 8,48 10 3mm
The fibre mass fraction can be computed as it follows

My My PeVe
M Mi+My  psVi+PmVim

myg
With
Vin = Volate — Ve = 3 10*'mm® — 2,4 10*mm® = 0,6 - 10*mm’
fibre mass fraction is

B 1,8g/cm’ 2,4 - 10*mm’ B
1,8g/cm®-2,4-10*mm3 + 1, 1g/cm’ - 0,6 - 10*mm3

mg 0,867

This value is slightly grater than the assumed fibre volume fraction.
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Chapter 2
Linear Anisotropic Materials

The classical theory of linear elastic deformable solids is based on the following
restrictions to simplify the modelling and analysis:

e The body is an ideal linear elastic body.
e All strains are small.
e The material of the constituent phases is homogeneous and isotropic.

These assumptions of classical theory of elasticity guarantee a satisfying quality
of modelling and analysis of structure elements made of conventional monolithic
materials. Structural analysis of elements composed of composite materials is based
on the theory of anisotropic elasticity, the elastic properties of composites depend
usually on the direction and the deformable solid is anisotropic. In addition, now the
composite material is not homogeneous at all. It must be assumed that the material
is piecewise homogeneous or quasi-homogeneous.

The governing equations of elastic bodies are nearly the same for isotropic and
anisotropic material response. There are equilibrium equations, which describe the
static or dynamic equilibrium of forces acting on an elastic body. The kinematic
equations describe the strain-displacement relations and the compatibility equations
guarantee a unique solution to the equations relating strains and displacements. All
these equations are independent of the elastic properties of the material. Only the
material relations (so-called constitutive equations), which describe the relations
between stresses and strains are very different for an isotropic and an anisotropic
body. This difference in formulating constitutive equations has a great influence
on the model equations in the frame of the isotropic and the anisotropic theory of
elasticity. Note that in many cases the material behavior of the constituents can
assumed to be homogeneous and isotropic.

The governing equations, as defined above, including so-called initial-boundary
conditions for forces/stresses and/or displacements, yield the basic model equations
for linear elastic solids such as differential equations or variational and energy for-
mulations, respectively. All equations for structural elements which are given in this
textbook, are founded on these general equations for the theory of elasticity of linear
elastic anisotropic solids.
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20 2 Linear Anisotropic Materials

The objective of this chapter is to review the generalized Hooke’s law', the con-
stitutive equations for anisotropic elastic bodies, and to introduce general relations
for stiffness and strains including transformation rules and symmetry relations. The
constitution of a unidirectional composite material and simplified approaches for
so-called effective moduli result in an engineering formulation of constitutive equa-
tions for fibre reinforced composites and will be considered in Chap. 3.

The theory of anisotropic elasticity presented in Sect. 2.1 begins with the most
general form of the linear constitutive equations, and passes from all specific cases
of elastic symmetries to the classical Hooke’s law for an isotropic body. The only
assumptions are

all elastic properties are the same in tension and compression,

the stress tensor is symmetric,

an elastic potential exists and is an invariant with respect to linear orthogonal
coordinate transformation.

In addition to the general three-dimensional stress-strain relationships, the plane
stress and plane strain cases are derived and considered for an anisotropic body and
for all the derived specific cases of elastic symmetries. The type of anisotropy con-
sidered in Sects. 2.1.1-2.1.5 can be called as rectilinear anisotropy, i.e. the homo-
geneous anisotropic body is characterized by the equivalence of parallel directions
passing through different points of the body. Another kind of anisotropy, which can
be interesting to some applications, e.g. to modelling circular plates or cylindrical
tubes, is considered in a comprehensive formulation in Sect. 2.1.6. If one chooses
a system of curvilinear coordinates in such a manner that the coordinate directions
coincide with equivalent directions of the elastic properties at different points of the
body, the elastic behavior is called curvilinear.

The chapter ends with the derivation of the fundamental equations of anisotropic
elasticity and the formulation of variational solution methods. In Sect. 2.2 the dif-
ferential equations for boundary and initial boundary problems are considered. The
classical and generalized variational principles are formulated and approximate an-
alytical solution methods based on variational principles are discussed.

2.1 Generalized Hooke’s Law

The phenomenological modelling neglects the real on the microscopic scale discon-
tinuous structure of the material. On the macroscopic or phenomenological scale the
material models are assumed to be continuous and in general homogeneous. In the
case of fibre reinforced composites, the heterogeneity of the bulk material is a con-
sequence of the two constituents, the fibres and the matrix, but generally there exists
arepresentative volume element of the material on a characteristic scale at which the

! Robert Hooke (*288"¢-/18u!- July 1635 Freshwater, Isle of Wight - ¥3 March 1703 London) -
natural philosopher, architect and polymath, first constitutive law for elasticity published as an
anagram ceiiinosssttuy which is in Latain ut tensio sic vis and means as the extension, so the force
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properties of the material can be averaged to a good approximation. The composite
material can be considered as macroscopically homogeneous and the problem of
designing structural elements made from of composite materials can be solved in an
analogous manner as for conventional materials with the help of the average mate-
rial properties or the so-called effective moduli. Chapter 3 explains the calculation
of effective moduli in detail.

Unlike metals or polymeric materials without reinforcements or reinforced by
stochastically distributed and orientated particles or short fibres, the material behav-
ior of an off-axis forced unidirectional lamina is anisotropic. In comparison to con-
ventional isotropic materials, the experimental identification of the material param-
eters is much more complicated in the case of anisotropic materials. But anisotropic
material behavior also has the advantage of material tailoring to suit the main load-
ing cases.

2.1.1 Stresses, Strains, Stiffness, and Compliances

In preparation for the formulation of the generalized Hooke’s law, a one-dimen-
sional problem will be considered. The deformations of an elastic body can be char-
acterized by displacements or by strains:

e Dilatational or extensional strains €: The body changes only its volume but not
its shape.
e Shear strains y: The body changes only its shape but not its volume.

Figure 2.1 demonstrates extensional and shear strains for a simple prismatic body
loaded by forces F' and T, normal and tangential to the cross-section, respectively.
Assuming a uniform distribution of the forces F and T on the cross-section, the
elementary one-dimensional definitions for stresses and strains are given by (2.1.1)

F
oc=— normal stress O,

Ao

-1y Al . .
&€ = l— = l_ extensional strain €,

TO 0 (2.1.1)
T =— shear stress T,

Ao

Au .
Y ~tany = o shear strain 7y
0

The last one definition is restricted by small strain assumption. This assumption
can be accepted for many composite material applications and will be used for both
types of strains.

The material or constitutive equations couple stresses and strains. In linear elas-
ticity the one-to-one transformation of stresses and strains yield Hooke’s law (2.1.2)
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Fig. 2.1 Extensional strain € and shear strain y of a body with the length /y and the cross-section
area Ao

oc=Feg E= E is the elasticity or Young’s modulus ,

)

am(q

(2.1.2)
T =Gy, G= v G is the shear modulus

For a homogeneous material £ and G are parameters with respect to the coordinates.
For the extensionally strained prismatic body (Fig. 2.1) the phenomenon of con-
traction in a direction normal to the direction of the tensile loading has to be con-
sidered. The ratio of the contraction, expressed by the transverse strain &;, to the
elongation in the loaded direction, expressed by &, is called Poisson’s ratio v
£
§=-VE, Vv=-—— (2.1.3)
£
For an isotropic bar with an extensional strain € > 0 it follows that & < 0.
Hooke’s law can be written in the inverse form

e=E 'oc=So (2.1.4)

S = E~! is the inverse modulus of elasticity or the flexibility/compliance modulus.
For homogeneous material, S is an elastic parameter.

Consider a tensile loaded prismatic bar composed of different materials
(Fig. 2.2). Since 0 = F /A and ¢ = E¢ then 0A = F = EA¢ and € = (EA)"'F.
EA is the tensile stiffness and (EA) ™! the tensile flexibility or compliance. The dif-

2 The class of auxetic materials that have a negative Poisson’s ratio that means when stretched,
they become thicker perpendicular to the applied force, is not in the focus of the present book.
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Fig. 2.2 Tensile bar with stiffness C; = E;A; arranged in parallel and in series

ferent materials of the prismatic bar in Fig. 2.2 can be arranged in parallel or in
series. In the first case we have

n n
F=YF, A=Y A, e=¢g (2.1.5)
i=1 i=1
F; are the loading forces on A; and the strains &; are equal for the total cross-section.
With
n n
F =EAe, F,=EdAe, Y F=F=) EAe (2.1.6)
i=1 i=1
follow the coupling equations for the stiffness E;A; for a parallel arrangement
n 1

EA=Y EA;,  (EA)'=
i=1

2.1.7)

-

EiA;
1

This equal strain treatment is often described as a Voigt® model which is the upper-
bound stiffness.
In the other case, we have

A=Y A
i=1

and F = F;, the elongation Al of the bar is obtained by addition of the Al; of the
different parts of the bar with the lengths /; and the tensile force is equal for all
cross-sectional areas. With

Al=1le =1(EA)"'F, Al =1lg=1L(EA)"'F

and

F (2.1.8)

n n
Y A= | Y L(EA)™
i=i i=1

3 Woldemar Voigt (*2 September 1850 Leipzig - 113 December 1919 Géttingen) - physicist,
worked on crystal physics, thermodynamics and electro-optics, the word tensor in its current mean-
ing was introduced by him in 1898, Voigt notation
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follow the coupling equations for the stiffness E;A; arranged in series

; L(EA;)™!
EA= 55—, (EA) ' =S (2.1.9)
Y L(EA)T

i=1

e

This equal stress treatment is described generally as a Reuss* model which is the
lower bound stiffness. The coupling equations illustrate a first clear insight into a
simple calculation of effective stiffness and compliance parameters for two com-
posite structures.

The three-dimensional state of stress or strain in a continuous solid is completely
determined by knowing the stress or strain tensor. It is common practice to repre-
sent the tensor components acting on the faces of an infinitesimal cube with sides
parallel to the reference axes (Fig. 2.3). The sign convention is defined in Fig. 2.3.
Positive stresses or strains act on the faces of the cube with an outward vector in
the positive direction of the axis of the reference system and vice versa. Using the
tensorial notation for the stress tensor o;; and the strain tensor &; for the stresses
and the strains we have normal stresses or extensional strains respectively for i = j
and shear stresses or shear strains for i # j. &; with i # j are the tensor shear coor-
dinates and 2¢;; = v;,i # j the engineering shear strains. The first subscript of o;;
and g;; indicates the plane x; = const on which the load is acting and the second
subscript denotes the direction of the loading. Care must be taken in distinguish-
ing in literature the strain tensor &; from the tensor e;; which is the tensor of the
relative displacements, ¢;; = du;/dx ;. An application of shear stresses o;; and 0j;
produces in the ij-plane of the infinitesimal cube (Fig. 2.3) angular rotations of the
i- and j-directions by e;; and e ;. These relative displacements represent a combina-
tion of strain (distorsion) and rigid body rotation with the limiting cases ¢;; = ej;,

[X]

022 €

[}

(]

Fig. 2.3 Stress and strain components on the positive faces of an infinitesimal cube in a set of axis
ep,ez,es

4 Andras (Endre) Reuss (* 1 July 1900 Budapest - +10 May 1968 Budapest) - mechanical engineer,
contributions to the theory of plasticity
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Fig. 2.4 Examples of distorsions and rigid body rotation. @ Pure shear, b pure rotation, ¢ simple
shear

i.e. no rotation, and e;; = —ej;, i.e. no distorsion (Fig. 2.4). From the figure follows
that simple shear is the sum of pure shear and rigid rotation. e;; is positive when
it involves rotating the positive j-direction towards the positive i-direction and vice
versa. Writing the tensor e;; as the sum of symmetric and antisymmetric tensors

1
(eij —eji) = &j+ (2.1.10)

Neiten +
¢ij = ,leijteji)+,

where g;; is the symmetric strain tensor and @j; is the antisymmetric rotation ten-
sor. For normal strains, i.e. i = j, there is ¢;; = &;, however for i # j we have
Yi; = 2&j = e;j + ej; with the engineering shear strains 7;; and the tensorial shear
strains &;;. Careful note should be taken of the factor of two related engineering and
tensorial shear strains, ¥;; is often more convenient for practical use but tensor oper-
ations such as rotations of the axis, Sect. 2.1.2, must be carried out using the tensor
notation §&;.

The stress and the strain tensors are symmetric tensors of rank two. They can be
represented by the matrices

011 O12 O13 €11 €12 €13
C= (0120003 |, €=|E&2 & &3 (2.1.11)
013 023 033 €13 €23 €33

The symmetry of the tensors (2.1.11) reduces the number of unknown components
for defining these tensors to six components. For this reason, an engineering matrix
notation can be used by replacing the matrix table with nine values by a column
matrix or a vector with six components. The column matrices (stress and strain
vector) are written in Egs. (2.1.12) in a transposed form
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_ _ — T
[011 022 033 003 =T3 O13=T13 O =Ti2] ,

]T (2.1.12)

(€11 €0 &3 283 =13 263 =Y13 280 = Y2

The stress and strain states are related by a material law which is deduced from
experimental observations. For a linear elastic anisotropic material, the generalized
Hooke’s law relates the stress and the strain tensor

Ojj :Cijklgkl (2.1.13)

Ciju are the material coefficients and define the fourth rank elasticity tensor which
in general case contains 81 coordinates. Due to the assumed symmetry of 0;; = 0;;
and ¢;; = €;; the symmetry relations follow for the material tensor

Cijt = Cjikt,  Cijia = Cijik (2.1.14)

and reduce the number of coordinates to 36. Introducing a contracted single-
subscript notation for the stress and strain components and a double-subscript nota-
tion for the elastic parameters, the generalized relation for stresses and strains can
be written in vector-matrix form

[(Fl‘]Z[C,‘jHEj]; i,j=1,2,...,6; Cl‘jsﬁcj‘i; 175] (2.1.15)

At this stage we have 36 independent material coefficients, but a further reduction
of the number of independent values is possible because we have assumed the exis-
tence of an elastic potential function.

The elastic strain energy is defined as the energy expended by the action of exter-
nal forces in deforming an elastic body: essentially all the work done during elastic
deformations is stored as elastic energy. The strain energy per unit volume, i.e. the
strain energy density function, is defined as follows

1
WZZGijgij (2.1.16)
or in a contracted notation
1 1
W(&) = 5 Oifi = 2Cij8j8i (2.1.17)
With
ow _ o PW . PW
de ' dede; 7 dgioe
and
*°W *W

88,-8£j - (981'(98,'

follow the symmetry relations

Cij=Cji; i,j=12,...,6 (2.1.18)
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and the number of the independent material coefficients is reduced to 21. The gen-
eralized relations for stresses and strains of an anisotropic elastic body written again
in a contracted vector-matrix form have a symmetric matrix for C;;

o) CiiCnCi3Ci4 Ci5 Cig | | &1
(7] Cp C3Coy Cos Cog | | &
o3 C33C34 G35 C36 | | &

— 2.1.19
(o Cys Cy5 Cys | | €4 ( )
O35 S Y M Css Csg Es
06 Cos | | &

The transformation rules for the contraction of the subscripts of ;;, &; and C;j; of
(2.1.13) are given in Tables 2.1 and 2.2.
The elasticity equation (2.1.19) can be written in the inverse form as follows

£ S11 512 813 S14 S15 S16 | | 01
& S22 523 S24 525 So6 | | 02
& 833 834 835 S36 | | O3

= 2.1.20
& Sa4 Sas5 Sa6 | | O4 ( )
& S YM Ss5 Ss6 | | Os
& Se6 | | O6

with
S 1i:k7 ..
[Cij][Sjx] = [0n] = 0itk ijk=1,....6

In a condensed symbolic or subscript form, Egs. (2.1.19) and (2.1.20) are (summa-
tion on double subscripts)

Gi:CijEj, Ei:SijGj; l'7j:17...76 (2121)
o =Cg, £=So

C = [Cj;] is the stiffness matrix and § = [S;;] the compliance or flexibility matrix. C;;
and S;; are only for homogeneous anisotropic materials constant material parameters

Table 2.1 Transformation of Table 2.2 Transformation

the tensor coordinates o;; and of the tensor coordinates

&;j to the vector coordinates Ciju to the matrix coordi-

0, and g, nates Cp,

Loy [op] & &) | Ciju | Cp |
O11 O €11 £ ij:11,22,33|p:1,2,3
(7)) (o2} [55%) & 23, 31, 12 4,5, 6
033 03 €33 & kl: 11, 22, 33 q: 1,2, 3

023 = 3| 04263 = P3|€s 23, 31, 12 4,5, 6

031 = T31| 05 (2831 = 31|85

012 = T12{06|2€12 = Y12| &6
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with respect to the coordinates. Their values depend on the reference coordinate
system. A change of the reference system yields a change of the constant values.
Summarizing the stiffness and the compliance relations, it can be seen that for
a linear elastic anisotropic material 21 material parameters have to be measured
experimentally in the general case. But in nearly all engineering applications there
are material symmetries and the number of material parameters can be reduced.
Section 2.1.2 describes some transformation rules for C and S following from the
change of reference system and the symmetric properties of anisotropic materials
discussed in Sect. 2.1.3. Furthermore the way that the material parameters C;; and S;;
are related to the known engineering elastic parameters E;, G;; and v;; is considered.

2.1.2 Transformation Rules

If we have a reference system which is characterized by the orthonormal basic unit
vectors e}, e, e3 and another reference system with the vector basis €/, €},e5. Both
systems are related by a rotation of the coordinate axis (Fig. 2.5), the transformation

rules are
/

¢ =Rijej, € =Rjiej, =123 (2.1.22)
Rij=cos(ej,e;), Rji=cos(e;e),
These relationships describe a general linear orthogonal coordinate transformation
and can be expressed in vector-matrix notation

¢ =Re, e=R '¢ =R"¢ (2.1.23)

R is the transformation or rotation matrix. In the case of an orthogonal set of axes
such as given in Fig. 2.5 the matrix R is symmetric and unitary. This means the
determinant of this matrix is unity (Det R = |R;;| = 1 and the inverse matrix R~
is identical to the transposed matrix (R~! = RT). In the special case of a rotation ¢

Fig. 2.5 Rotation of a refer-
ence system with the basic
vectors e; into a system with
the basic vectors €]
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about the direction e3, the rotation matrix R and the inverse matrix R ! are

3 cs0 371 37T c—s0
|:R,'j:| =|—-s5c0 s |:R,'j:| = |:Rij:| =|s c O 5 (2124)
001 001
and the transformation rules are
e c s0] [e e c—s0]| [¢€
el =|-scO| |e]|,|ea|=|s c O] |é
el 001] |e3 e3 001]|é

with ¢ = cos¢,s = sin¢. For rotations y or 6 about the directions e, or e; the
2 1
rotations matrices [R;;] and [R;;] are

5 c0—s 5 7-1 51T c Os
[R,,}: 010 |, [R,,} :[R,,} ool

s0 ¢ —s0c

{ 100 |11 11T 100
|:Rij:| =10c¢ s|, |:R,‘j:| = |:R,‘j:| =10c—s
0—sc O0s ¢

with ¢ = cos Y or cos O and s = sin y or sin 0 for rotations about e; or ej, respec-
tively.

The transformation rule (2.1.22) can be interpreted as a rule for vectors or first-
rank tensors. The generalization to second-rank tensors yields e.g. for the stress
tensor

Gl-lj = RikRﬂle, Ojj = RkileGIi[ (2.1.25)

For the following reflections the transformation rules for the contracted notation are
necessary. The nine tensor coordinates o;; are shifted to six vector coordinates Gj,.
The transformations
o, =TS0, o,=(T2) 'dl =1,...,6 (2.1.26)
P~ Tpqrq P rq qQ p,g=1... A
are not tensor transformation rules. The transformation matrices 75, and (Tp‘;)’]

follow by comparison of Eqgs. (2.1.25) and (2.1.26). In the same manner we can find
the transformation rules for the strains

/

/ -1
e, =Tyt &=(Ty) & pPg=1,...,6 (2.1.27)

The elements of the transformation matrices [7,7] and [T}, ] are defined in App. B.
Summarizing, the transformation rules for stresses and strains in a condensed
vector-matrix notation as follows

6 =T%, £ =T%, o=(T°) "o, e=(T%) "¢ (2.1.28)
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The comparison of

/ : o\—1 -~/
Oij = Rkilele with Op = (qu) (Fq
and

/ : eN—1g/
Eij:RkileEkl with EPZ(qu) Eq

yields an important result on the linkage of inverse and transposed stress and strain
transformation matrices

(T°)~"' =TT, (%) =(T°)" (2.1.29)

The transformation relations for the stiffness and the compliance matrices C and
S can be obtained from the known rules for stresses and strains. With ¢ = Ce and
o’ =C'¢, it follows that

(T°)"'6¢’ =0 =Ce=C(T?)"'¢,
o' =T°C(T¢) ¢ =C¢,

T°c = 06’ =C'e’ =C'T%e,

o = (T°)"'C'T¢e =Cs,

(2.1.30)

respectively.
Considering (2.1.29) the transformation relations for the stiffness matrix are

C' =T1°C(T°)", C=(T%)'C'T*® (2.1.31)

or in index notation
Cj=T{TjCu, Cij=TiTCy (2.1.32)

The same procedure yields the relations for the compliance matrix. With

e=So, £ =S¢ (2.1.33)
it follows
(T?)'¢’ = =86 =8(T°) o,
g =TS(T°) 'o' =S'c’,
Tée — ¢ =S'6’ =S'TCo, (2.1.34)
€= (T¥)"'S'T°0 = So,
ie.
e =TS(T°) '6', €= (T?)"'S'T°c (2.1.35)
The comparison leads to the transformation equations for S and S’
S =T*S(T°)"', §=(T%)"'S'T° (2.1.36)

or taking into account (2.1.29)

S’ =T:S(T)", S=(T°)'S'T°, (2.1.37)
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respectively, in subscript notation
/ e ool

In the special case of a rotation ¢ about the e3-direction (Fig. 2.6) the coordinates
of the transformation matrices T° and T¢ are given by the (2.1.39) and (2.1.40)

2 2000 2es

2 200 0 —2cs T
T36 _| 00100 0 T3G 7]— T3£ 2.1.39
Pal | 0 00c—-s O ’ Pq e (2.1.39)

0 00s ¢ 0
—cses 00 0 2—52

2 2000 oo
2 2000 —cs _1
3 0 0100 O 3 317
[qu] = 0 00c—s O , lqul = {qu} (2.1.40)
0 0O0s ¢ 0
—2¢s2cs00 0 ¢2—s2

By all rules following from a rotation of the reference system the stresses, strains,
stiffness and compliance parameters in the rotated system are known. They are sum-
marized in symbolic notation (2.1.41)

6'=T%, € =T¢,

o =190, e=(T°)¢,

C = TGC(TG)T7 S — TSS(T‘S)T7 (2.1.41)
C= (TS)TC/T87 S = (TO')Ts/TG
JEREER
| %
e3,e’3 - /{
e,z// /w X2
e e -
e
P
Fig. 2.6 Rotation about the i \‘ X

es-direction
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For special cases of a rotation about a direction e; the general transformation ma-

1 l
trices TC and T¢ are substituted by T° or T¢. The case of a rotation about the
e -direction yields the coordinates of the transformation matrices T° and T¢ which
are given in App. B.

2.1.3 Symmetry Relations of Stiffness and Compliance Matrices

In the most general case of the three-dimensional generalized Hooke’s law the stiff-
ness and the compliance matrices have 36 non-zero material parameters C;; or S;;
but they are each determined by 21 independent parameters. Such an anisotropic
material is called a triclinic material, it has no geometric symmetry properties. The
experimental tests to determine 21 independent material parameters would be diffi-
cult to realize in engineering applications. So it is very important that the majority
of anisotropic materials has a structure that exhibits one or more geometric sym-
metries and the number of independent material parameters needed to describe the
material behavior can be reduced.

In the general case of 21 independent parameters, there is a coupling of each
loading component with all strain states and the model equations for structure el-
ements would be very complicated. The reduction of the number of independent
material parameters results therefore in a simplifying of the modelling and analysis
of structure elements composed of composite materials and impact the engineering
applications. The most important material symmetries are:

2.1.3.1 Monoclinic or Monotropic Material Behavior

A monoclinic material has one symmetry plane (Fig. 2.7). It is assumed that the

x3
F 74/7 7/,/, 7/:,
el T
Fig. 2.7 Symmetry plane M A 2
(x1 — x2) of a monoclinic - ;/f 4 - :
material. All points of a e/ €2
body which are symmetric /7 y
to this plane have identical 7/74 Ve j7/f L
values of C;; and S§;;. Mirror
transformation (x; = x|, X x5
Xy = xh,x3 = —x})



2.1 Generalized Hooke’s Law 33

symmetry plane is the (x; —x,) plane. The structure of the stiffness or compliance
matrix must be in that way that a change of a reference system carried out by a sym-
metry about this plane does not modify the matrices, i.e. that the material properties
are identical along any two rays symmetric with respect to the (x; —x;) plane. The
exploitation of the transformation rules leads to a stiffness matrix with the following
structure in the case of monoclinic material behavior

CiiC2Ciz 0 0 Cys
CnCnCxn 0 0 Cyp

MC _ [Ci3C3 Gz 0 0 Cag
Gl =10 0 o Cis Cis 0 (2.1.42)
0 0 0 C45Cs5 O
Cis Co6 C36 0 0 Cgg
The compliance matrix has the same structure
S11 812813 0 0 Si6
S1252 83 0 0 Sy
MC _ [ S13823833 0 0 S36
[S,j] =10 0 0 SuSss 0 (2.1.43)

0 0 0 SgsSss 0
S16 526 S36 0 0 See

The number of non-zero elements C;; or S;; reduces to twenty, the number of in-
dependent elements to thirteen. The loading-deformation couplings are reduced.
Consider for example the stress component g = 71». There is a coupling with the
extensional strains €], &, €3 and the shear strain & = ¥, but the shear stress o4 or
o5 produces only shear strains.

If an anisotropic material has the plane of elastic symmetry x; — x3 then it can be

shown that _ _
Cii1C2Ci3 0 Ci5 0
CoCnCys 0 Gs 0
MC_[Ci3C3C33 0 Gss O
] = 0 0 0 Cy 0 Ci (2.1.44)
Ci5Cs5Cs 0 Css 0
0 0 0 Cus 0 Cos

[Cij

and for the plane of elastic symmetry x; — x3

[C11 C12 C13 Cig
Cia G Cr3 Cyy
MC _ | Ci3 23 C33 Cx4
I = CisCuC34Cyy 0 0 (2.1.45)
0 0 0 0 GCss5Cse
L0 0 0 0 GCseCes |

S OO
S OO
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A 3 A X3

X2 X2

7—;7

Fig. 2.8 Orthotropic material behavior. @ Symmetry planes (x; —x) and (x2 — x3), b additional
symmetry plane (x; —x3)

The monoclinic compliance matrices [S; j]MC have for both cases the same structure

again as the stiffness matrices [C; j]MC.

2.1.3.2 Orthotropic Material Behavior

An orthotropic material behavior is characterized by three symmetry planes that are
mutually orthogonal (Fig. 2.8). It should be noted that the existence of two orthog-
onal symmetry planes results in the existence of a third. The stiffness matrix of an
orthotropic material has the following structure

Ci1C2Ci3 0
CCpnCs 0O
O_|C3C3GCs3 O
0 0 0 Cyug O
0 0 0 O GCss
0 0 0 0 0 Cg

S OO

(2.1.46)

0
0
0
[Cij] 0
0

The compliance matrix has the same structure. An orthotropic material has 12 non-
zero and 9 independent material parameters. The stress-strain coupling is the same
as for isotropic material behavior. Normal stresses give rise to only extensional
strains and shear stresses only shear strains. Orthotropic material behavior is typ-
ical for unidirectional laminae with on-axis loading.
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2.1.3.3 Transversely Isotropic Material Behavior

A material behavior is said to be transversely isotropic if it is invariant with respect
to an arbitrary rotation about a given axis. This material behavior is of special im-
portance in the modelling of fibre-reinforced composite materials with coordinate
axis in the fibre direction and an assumed isotropic behavior in cross-sections or-
thogonal to the fibre direction. This type of material behavior lies between isotropic
and orthotropic.

If x; is the fibre direction, x, and x3 are both rectangular to the fibre direction
and assuming identical material properties in these directions is understandable.
The structure of the stiffness matrix of a transversely isotropic material is given
in (2.1.47)

Ci C2 Cr2 0 0 0
Ci2 C2 Cp3 0 0 0
LTI | Ci2 Gz G2 0 0 0
Gl =100 0 M) 0 0 (2.1.47)
00 0 0 Css 0
0O 0 O 0 0 Css

If x, is the fibre direction, x| and x3 are both rectangular to the fibre direction and
assuming identical material properties in these directions then

Ci1CpCi3 O 0 0
CipCypnCin O 0 0
TI_ [Ci3C2Ciy O 0 0
Gl =10 0 0 cu 0 0 (2.1.48)
0 0 00 ;(Cll—cn) 0
0 0 0 O 0 Cu

If x3 is the fibre direction, x| and x, are both rectangular to the fibre direction and
assuming identical material properties in these directions then

Ci1C2Ci3 0 0 0
CpCiiCiz 0 0 0

TI_ | Ci3Ci3G3 00 0

Gl =10 0 o Cu 0 0 (2.1.49)
0 0 0 0 Cy 0

0 0 0 0 0 ,(Cii—Cp2)

The compliance matrix has the same structure. For example for the case (2.1.47)

S11 812 S12 0 0 0
S12 522 823 0 0 O

TI | S12 823 S22 0 0 0

i 0 0 0 2Sn—53) 0 0 (2.1.50)
0 0 O 0 Ss5 0

00 0 0 0 Sss
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The number of non-zero elements reduces again to twelve but the independent pa-
rameters are only five.

2.1.3.4 Isotropic Material Behavior

A material behavior is said to be isotropic if its properties are independent of the
choice of the reference system. There exist no preferred directions, i.e. the material
has an infinite number of planes and axes of material symmetry. Most conventional
materials satisfy this behavior approximately on a macroscopic scale.

The number of independent elasticity parameters is reduced to two and this leads
to the following stiffness matrix in the case of isotropic material behavior

CnCi1C20 00
I C2C2Ci1 0 00

Gl = 00 0CO0O0 (2.1.51)
0 0 0 0C,0
0 0 0 0 O0C

with C, = %(C 11 — C12). The compliance matrix has the same structure but with
diagonal terms 2(S; — S1,) instead of ;(Cll —C1p). Tables 2.3 and 2.4 summarize
the stiffness and compliance matrices for all material models described above.

2.1.4 Engineering Parameters

2.1.4.1 Orthotropic Material Behavior

The coordinates C;; and S;; of the stiffness and compliance matrix are mathematical
symbols relating stresses and strains. For practising engineers, a clear understand-
ing of each material parameter is necessary and requires a more mechanical meaning
by expressing the mathematical symbols in terms of engineering parameters such as
moduli E;, G;; and Poisson’s ratios v;;. The relationships between mathematical and
engineering parameters are obtained by basic mechanical tests and imaginary math-
ematical experiments. The basic mechanical tests are the tension, compression and
torsion test to measure the elongation, the contraction and the torsion of a specimen.
In general, these tests are carried out by imposing a known stress and measuring the
strains or vice versa.

It follows that the compliance parameters are directly related to the engineering
parameters, simpler than those of the stiffness parameters. In the case of orthotropic
materials the 12 engineering parameters are Young’s moduli E1,E,, E3, the shear
moduli G»3,G13,G12 and Poisson’s ratios v;;,i,j = 1,2,3 (i # j). For orthotropic
materials one can introduce the contracted engineering notation
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Table 2.3 Three-dimensional stiffness matrices for different material symmetries

Material model

Elasticity matrix [C;;]

Anisotropy:
21 independent
material parameters

Ci1 Ci2 Ci3 Ci4 Cy5 Ci
Cy Cy3 Cog Cos Cog
C33 C34 G35 C36

Caq Cy5 Cye

S Y M Css5 Csg
Ces

Monoclinic:
13 independent
material parameters

Symmetry planexz =0
Ciy=Ci15=Cy=C5 =C34 =C35 =Cy =Cs56 = 0
Symmetry planex; =0
Ci3 =C16=Cr4 =Cr6 =C34 = C36 = Cy45 =Cs56 = 0
Symmetry planex; =0
Cis =Ci16 =Cp5 = Cr6 = C35 = C36 = C45s =C56 = 0

Orthotropic:
9 independent
material parameters

3 planes of symmetryx; =0,x =0,x3 =0

Ciy=C15=C16=Cr =C5 =Cy6 =C34
=C35 =C36 =Cy5 = Cy6 = C56 =0

Transversely isotropic:
5 independent
material parameters

Plane of isotropyx3 =0

1
C1 = Cp,Co3 = C13,Ch4 = Cs5,C66 = 2(Cll —C12)
Plane of isotropyx, =0

1
Ci1 =C33,C12 = Cp3,Cy4 = Co6,Cs5 = 2(C33 -Ci3)

Plane of isotropyx; =0

1
G2 =C33,C12 = C13,Cs5 = Ce6,Cas = ) (C2 —C3)
all other C;; like orthotropic

Isotropy:
2 independent
material parameters

C11 =Cyp =C33,C1p =C13 = (a3,
1

Cy4 =Cs5 =Cep = 2(Cll —Ci2)

all otherC;; =0

oy =E¢g, or=E&, 03=EFE3&,
Oy = Eq&4, 05 =Eses, 0p=EcE

with Go3 = E4,G13 = E5,G 1) = Eg.
The generalized Hooke’s law in the form (2.1.19) and (2.1.20) leads, for example,

to the relations

37

(2.1.52)
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Table 2.4 Three-dimensional compliance matrices for different material symmetries

Material model Compliance matrix [S;;]

S11 812 S13 S14 815 S16
822 S23 824 S25 S26
833 834 S35 S36

Saa Sas Sae

S Y M Ss5 Ss6
Se6

Anisotropy:
21 independent
material parameters

Symmetry plane x3 =0
S14 =815 = 824 = So5 = S34 = S35 = S46 = S56 = 0
Symmetry plane x, =0
S14=S16 = S24 = S26 = S34 = S36 = S45 = S56 = 0
Symmetry plane x; =0
S15s = S16 = S25 = S26 = S35 = S36 = S46 = S45 =0

Monoclinic:
13 independent
material parameters

Orthotropic: 3 planes of symmetry x; = 0,x, =0,x3 =0
9 independent 514 = 515 = Sl6 = 524 = S25 = S26 = S34
material parameters =835 = S36 = S45 = S46 = S56 =0

Plane of isotropyx; =0

S11 = 822,823 = S13, 544 = S55,566 = 2(S11 — S12)
Transversely isotropic: | Plane of isotropy x, = 0

5 independent S11 = 833,812 = 523,844 = Se6, 55 = 2(S33 — S13)
material parameters Plane of isotropyx; =0

S2 = 833,513 = S12,S55 = Se6, 544 = 2(S22 — $23)
all other §;; like orthotropic

Isotropy: S11 =82 = 533,512 = S13 = 523,
2 independent S44 = Ss5 = S = 2(511 — S]z)
material parameters all otherS;; =0

€ =81101 + 51200+ 81303, &€ = S4404,
& = 81201 + 5220, + 852303, & = S5505, (2.1.53)
& = 81301 + 52302+ 53303, & = S6606

For uniaxial tension in x;-direction, 67 #0,0; =0,i =2,...,6. This reduces (2.1.53)
to
€& =8101, &=3581201, &==51301, & =¢&=¢&=0, (2.1.54)

and the physical tensile tests provides the elastic parameters Eq, Vi3, Vi3
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(a3 1 & &
1| =— = — Vip = —— = —=SnE| Viz=——=-S13E; (2.1.55)

e Su’ € ’ €
Analogous relations resulting from uniaxial tension in x,- and x3-directions and all
S;; are related to the nine measured engineering parameters (3 Young’s moduli and
6 Poisson’s ratios) by uniaxial tension tests in three directions x1,x, and x3.

From the symmetry of the compliance matrix one can conclude

Vo _Va Vs _ Ve Vi _ Vi
E, E,” E, E3' E; E
or £
Vij _ Vi Vij [ .
= 7 =—, L,j=123 (i#}]) (2.1.56)
E; E Jj Viji E Jj
Remember that the first and the second subscript in Poisson’s ratios denote stress
and strain directions, respectively. Equations (2.1.56) demonstrate that the nine en-
gineering parameters are not independent parameters and that in addition to the three
tension tests, three independent shear tests are necessary to find the equations

&4 = 854404, & = S5505, € = S6606,

which yield the relations

1 1 1 1 1 1
Gy E4 Giz Es G,  Es
Now all §;; in (2.1.20) can be substituted by the engineering parameters
M1 v v ]
— 2 V3 g g 9
E; lEl E;
V23
£ E_2 —1E—2 0 0 0 G
€ o
82 - 0 0 cy2
| = 3 ’ (2.1.58)
&y L 0 O4
&s E,4 1 O35
€6 S Y M — 0 O6
Es
1
L Es |

As seen above, the relations between compliances S;; and engineering parameters
are very simple. This, however, is not the case for the relations between the stiffness
and engineering parameters. First we need to invert the compliance matrix S and
to express the stiffness C;; as a function of the compliances as follows. The shear
relations are uncoupled, and we obtain

1 1 1
Cyy=—=0Gn, Cs5=—-—=0G13, Ce6=—=0Cn (2.1.59)
S44 SSS 566
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So only a symmetric [3x3]-matrix must be inverted. The general formula is

L (=D S11 812 813
Cij =5 = ==L, Det[S;j] =|Si12 S22 S23 |, (2.1.60)
Det]Si] S13 823 533

where U;; are the submatrices of S to the element S;;, and yielding the relations

 S»S33— 8% 813523 — 512533
U= Tpegsy) 0 27T Desy]
ij 1
833811 — 813 S128513 — 823511
Cyp = Oy = 212202 2.1.61
2 DCt[Sij] 2 Det[S,-j] ( )
Con — S11822 =81, Crn— 812823 — 813522
33 DCt[Sij] ’ 13 Det[S,-j]

Substituting the relations between §;; and engineering parameters given above in
(2.1.58), we obtain

(1—v3vn)E, (Viz+ Vi3vn)Es

C]] = A 5 C12 - A )
1—v31vi3)E % i Vi3)E
C22=< 31V13) 2,C23=( 23+ Va1 vi3) 3 2.1.62)
A A
_ (I=wvp)E3 ~ (viz+viav)E3
Cy3 = > Ciz= —

with A = 1 — vy V12 — V3oVo3 — Vi3V31 — 2V21Vi3Vap. Considering E;/A = E;,

1/S; = E; we finally get two subsystems
o (1=va3v)Er (Via+Vi3va)E2 (Vi +viavas)E3 | [ &
0| = (I—=vsivi3)Ex (Vs +Vvavis)Es | | & |,
o3 SYM (1 — V21V12)E3 &
o4 Es 0O &4
O5 | = Es O &s (2.1.63)
Og SYM Eq &

2.1.4.2 Transversally-Isotropic Material Behavior

It should be noted that in the case of transversely isotropic material with the
(x2 — x3)-plane of isotropy

E;

Ey=FE;, vip=Vi3, G =G3, Gy = ————,
2 3, Via = V13, G12 13, G23 200+ va3)

(2.1.64)

and we get
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1 Vi2 1 2(1+V23)
Si=—, Sn=Sp=—F7", Su=—-=—-""5,
E, 1 E, G 1 E;
V23
S =833=—, Su=——, S855=35866=——,
EZ E; G2
(1—-v33)E; Va1 (1 + va3)E;
Cii = Cir = Cya = 21 T 123)71
11 Y , Cn 13 A )
1 —viova)Es Vo3 + Vo1 Vi2)E>
C22=C33=7< " ) ) C23=—< " ) )
A A
Cas = Gy = — 2 Css = Ce6 = G
44 = 23—2(1+v23)7 55 = Ce6 = G12

with A* = (14 va3)(1 — Va3 — 221 v12).
Similar expressions one gets with the (x; —x;)-plane of isotropy and considering

E,
Ei = E», Vi3 = Va3, G13 = Ga3, Gip = ————— 2.1.65
1 2, V13 = V23, G13 23, G12 20+ vn) ( )
or with the (x; — x3)-plane of isotropy and
Ey = Es, via = Va3, Gia = Gas, Gi3 = —L1. (2.1.66)
1 = E3, vio =23, G = Go3, 13_2(1+v]3) 1L

The Young’s modulus and the Poisson’s ratio in the plane of isotropy often will be
designated as Et and vrr. ET characterizes elongations or contractions of a trans-
versely isotropic body in the direction of the applied load in any direction of the
plane of isotropy and vt characterizes contractions or elongations of the body in
the direction perpendicular to the applied load, but parallel to the plane of isotropy.
The shear modulus Gt characterizes the material response under shear loading in
the plane of isotropy and takes the form

Et

Grr=—"1t
b 2(1—|—VTT)

i.e. any two of the engineering parameters Et, Vrr and Grr can be used to fully
describe the elastic properties in the plane of isotropy. A third independent primary
parameter should be Ep. This Young’s modulus characterizes the tension respec-
tively compression response for the direction perpendicular to the plane of isotropy.
The fourth primary parameter should be the shear modulus Gy in the planes per-
pendicular to the plane of isotropy. As a fifth primary parameter can be chosen v
or VL, which characterize the response in the plane of isotropy under a load in L-
direction or the response in the L-direction under a load in the plane of isotropy. The
stress-strain relations for an transversely isotropic body, if (x, — x3) is the plane of
isotropy and with the reciprocity relations

Vir V1L
EL  Er
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can be used in the following matrix form

M1 v v 1
_L M g 90 o
Ey {ET Et
VIT
—-—— 0 0 0
€] Et f?T O]
€ o
2 0 0 0 2
&1 = Er 9 (2.1.67)
— 0 0
& Grr | Os
€ S Y M — 0 O6
Grr
1
L Grr |
with the engineering parameters
Ey\ = Ey,Ey = By = Er,Es = Goy = Grr = ——
1=ELEy =E3=FEr,E4 =Gz = T_2<1+VTT)7
Vir V1L
Es = G13=E¢ = G12 =Grr,Vi2 = V13 = VLT, V23 = VIT, —— = ——
Er ET

With the (x; — x;)-plane of isotropy the engineering parameters are

E| =E; =Er,E3 = EL,E4 = Gy3 = E5 = G13 = G,

Ec =G, =Grr= , VI3 = V23 = V1L, Vi2 = VIT

_ =T
2(1 —+ VTT)

Notice that in literature the notations of Poisson’s ratios vyt and vy can be corre-
spond to the opposite meaning.

2.1.4.3 Isotropic Material Behavior

For an isotropic material behavior in all directions, the number of independent en-
gineering parameters reduces to two

Ey=E,=E3=E, Vip=Vx3=Vi3=V,

oo E (2.1.68)
12 —= U113 — U223 = _m

S = Sp=S3 =+, Spr=Si3=Sps = Y

11 =922 = 337E7 12 =013 =923 = E7

o1 20+ o (-VE
S44—S§5—S§6— Gi E ) C]l *C22*C33* A* 3

VE E

Cpy = Cp3 = Cos — Cos= Css = Cog = G = ————
2=Ci3=Cs= "1, Cu=Css=Ceo 20+ )
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assuming A*™* = (14+v)(1-2v).

With this, all three-dimensional material laws for various material symmetries
interesting in engineering applications of composites are known. The relations be-
tween S;;, C;; and engineering parameters are summarized in Table 2.5.

Consider that the elastic properties of an isotropic material are determined by two
independent parameters. The elastic parameters Young’s modulus £ and Poisson’s
ratio v are generally used because they are determined easily in physical tests. But
also the so-called Lamé coefficients’ A and U, the shear modulus G or the bulk
modulus K can be used if it is suitable. There are simple relations between the
parameters, e.g. as a function of E, v

L Ev _ E . ._ E
T2y FTaev T Py
LA g BGAE2M 0 (2.1.69)
T2 +p) T Aap 0 M

Summarizing the constitutive equations for isotropic, transversely isotropic and
orthotropic materials, which are most important in the engineering applications of
composite structural mechanics one can find that the common features of the re-
lationships between stresses and strains for these material symmetries are that the
normal stresses are not couplet with shear strains and shear stresses are not coupled
with the normal strains. Each shear stress is only related to the corresponding shear
strain. These features are not retained in the more general case of an monoclinic or
a general anisotropic material.

2.1.4.4 Monoclinic Material Behavior

In the case of monoclinic materials we have 13 mutually independent stiffness or
compliances. Therefore we have in comparison with orthotropic materials to intro-
duce four additional engineering parameters and keeping in mind, that the mono-
clinic case must comprise the orthotropic case, we should not change the engineer-
ing parameters of orthotropic material behavior. Assuming that (x; —x) is the plane
of elastic symmetry, the additional parameters are related to the compliance matrix
components S14,926,536 and Sae.

The first three pair normal strains &1, &, &€ to the shear stress og and vice versa
the shear strain & to the normal stresses 67, 0>, 03. The fourth one couple the shear
strain &4 to the shear stress 05 and vice versa the shear strain & to the shear stress o4.
In a compact notation the strain-stress relations for an anisotropic material having
one plane of elastic symmetry (x; —x) are

5 Gabriel Léon Jean Baptiste Lamé (*22 July 1795 Tours - 1 May 1870 Paris) - mathematician,
who contributed to the mathematical theory of elasticity (Lamé’s parameters in elasticity and fluid
mechanics)
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Table 2.5 Relationships between S;;, C;; and the engineering parameters

versely-isotropic and isotropic material

2 Linear Anisotropic Materials

for orthotropic, trans-

Orthotropic material
Si =Efl S12 =821 =*Vlefl7 S44=G{31=E;1
Sp=E;"', Si3=83=-VviE[', Ss5=G; :E§'
Sy =E;', Sn=Sn=-VvuE', Se=Gp, =E'
vij=Vi(Ei/Ej), Ei=(vij/vi)E;  i,j=123
522833 — 83 (1—vaava)E 1
Cy = = = = - , Cy= =Gy =L
1 det[S;] A R 23 =E4
SuSi =S,  (1—v31vi3)Es
Cyp = — = = — , Cs5 = =G3; = E.
2 det[S,] A G5 = g 31 5
S11852— 5%,  (1—va1vi2)E3
33 det[S;] A » oo =g 12=Es
Cr, = 513523 = S1283 (Vio+Vvaaviz)Er  (Var +Va1vai3)Er
2= = = =y
det[S,-j] A A
Cra = 512553 = S1352 _ (Vi3 +Viava3)Es (Va1 + Va1 Vi) p
13 det[S,-j] A A 31
_ SS13—=53S11  (vis+vaiviz)Es (v +vipvi)Ey
Cy3 = = = =Cx
det[Sij] A A
A=1-VpVy —Va3Vsy — V31V13 — 2V21 Vi3Va2
Transversely-isotropic material
(x2 — x3)-plane of isotropy
E
E,, Ey=E3;, Es=FEg, Vip=Vi3, E4j=—-—"—
1, Ex=E;, Es=E;, Vo=Vy3, E4 20+ va)
(x1 — x2)-plane of isotropy
E;
Ei=E,, E3, E4=FE5, Vviz=Vy, Eg=—"—"—
1 2, B3, Es=FEs, Vviz=Va3, Eg 20+ v)
(x1 — x3)-plane of isotropy
E3
Ei=E;, E), Es=Es, Vo=V, Es=—"—"——
1 3 2 4=Eg 2=V 5= 30+ via)
Isotropic material
Ey=E;=E3=E, Vo=V =Vi3=V31=Vi3=V =V,
4=E5=Eg 20+
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[ L v vag g Men ]
Li}] E> 53 #6
12 32 62
_2 - 22 9 o B
o v B 1 E | o
2 Vs Y3 Lo, g TNe 2
&|_| E E E; X Ee | | 03 (2.1.70)
€ 0o 0 o0 — M|l
& E4 11;5 Os
& 0 0 o Hs 1 Os
E, Es
Me Ms M6 ( o L
L Ep E, E; 6

with the following reciprocal relations

Mo _ Mo M _Me  Tes _ Mo fsa _ s

= , = , = , = (2.1.71)
Eq E; Eq E, Eq E3 Es E4
and the compliance components
Sig= L g= 2 g0 g b (2.1.72)

Ee Ee

Mes1, Ne2 and Me3 are extension-shear coupling coefficients indicating normal strains
induced by shear stress og and 1y¢, 26 and 136 the shear-extension coupling co-
efficients characterizing shear strain & caused by normal stresses. (45 and Ls4 are
shear-shear coupling coefficients.

The stiffness matrix for the monoclinic material can be found as the inverse of
the compliance matrix, but the expressions are unreasonable to present in an explicit
form. However, the inverse of a matrix can be easily calculated using standard nu-
merical procedures. Also for a generally anisotropic material the compliance can be
formulated with help of eight additional coupling parameters but the stiffness matrix
should be calculated numerically.

2.1.5 Two-Dimensional Material Equations

In most structural applications the structural elements are simplified models by
reducing the three-dimensional state of stress and strain approximately to a two-
dimensional plane stress or plane strain state. A thin lamina for instance can be
considered to be under a condition of plane stress with all stress components in
the out-of-plane direction being approximately zero. The different conditions for a
plane stress state in the planes (x; —x»), (x» —x3) and (x; — x3) are demonstrated in
Fig. 2.9.

In the following, the plane stress state with respect to the (x; —x;) plane (Fig.
2.9a) is considered. In addition, since in the case of unidirectional long-fibre rein-
forced laminae the most general type of symmetry of the material properties is the
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Fig. 2.9 Plane stress state. @ (x; —x;)-plane, 03 = 04 = 05 =0, b (x, —x3)-plane, 0] = 05 =
og=0,¢C (X| —x_;)—plane, o, =04=0c=0

monoclinic one the generalized Hooke’s law (2.1.20) is reduced taking into account
(2.1.43) to

€ S11812813 0 0 Si6| | O
) $283 0 0 S%| |02
& | S33 0 0 S36 0
al =1 s Sia Sus 0 0 (2.1.73)
& Y Ss5 0 0
& M Se6 | | O6

That means 63 = 04 = 05 = 0, and we have three in-plane constitutive equations

€ = 81101 + 51202+ S1606
& = 81201 + 82202 + 52606, Sij=Sji (2.1.74)
& = S1601 + 52602 + S6606

and an additional equation for strain &3 in x3-direction
& = 51301 + 52305 + 53606 (2.1.75)

The other strains &4, €5 are equal to 0 considering the monoclinic material behavior.
If the plane stress assumptions are used to simplify the generalized stiffness equa-
tions (2.1.19) taking into account (2.1.42), the result is

o) CiiCi2Ciz 0 0 Cig| | &
(7] CnCys 0 0 G| | &
0 o Cx3; 0 0 Cs &3
0ol =15 Cuu Cis 0 & (2.1.76)
0 Y Css 0 &s
Os M Cos | | &6

or again three in-plane equations
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o1 = C11& + C2& + C1383 + Cie8s,
0y = C12&1 +Cn& + G383 + Coes, Cij=Cj (2.1.77)
06 = C16€1 + Co6& + C36€3 + Co6E6

There are another three equations. At first we obtain
Oy = S4484+ 84585 =0, 05 = S4584 + S5565 =0

Since S44,845, 555 are arbitrary but the stiffness matrix should be positive definite it
is obvious that
2
S44855 — S45 >0

and from the 04 = 65 = 0 condition it follows that &, & must be equal to 0. Taking
into account the last condition

03 =C1381 +C38 +C3383+ C3666 =0

the strain &; can be obtained

1
(Cr3&1 + Ca382 + C368s) (2.1.78)

&g =———
33

and eliminated and substituted in Eqs. (2.1.77). After substituting &; using Eq.
(2.1.78) Egs. (2.1.77) leads to

CisCj3 ..
G — (Cij— 20 >£j7 =126 (2.1.79)
respectively

The Q;; are the reduced stiffness. For the three cases in Fig. 2.9 we obtain

CinC;
O; = Q,‘ij, Q,‘j = Cl‘j — i3 13, i,j = 1,2,6, (x1 —)CQ) —plane of symmetry,
CaCj . .
O; = Q,‘ij, Q,‘j = Cl‘j — , L, ] = 2,3,4, (xz —)C3) —plane of symmetry,
CnC;
o; = Qij€j, Qij =Cij — %, i,j=1,3,5, (x; —x3)— plane of symmetry
22

The number of unknown independent parameters of each of the matrices S;;, C;; or
Q;j is six. Itis very important to note that the elements in the plane stress compliance
matrix are simply a subset of the elements from the three-dimensional compliance
matrix and their numerical values are identical. On the other hand, the elements
of the reduced stiffness matrix involve a combination of elements from the three-
dimensional stiffness matrix and the numerical values of the Q;; differ from their
counterparts C;;, i.e. they are actually less than the numerical values for C;;. In
order to keep consistency with the generalized Hooke’s law, Eq. (2.1.78) should be
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used when calculating the transverse normal strain £; and the general case leads to
consistent relations for the transverse shear strains & and &s.

For an orthotropic material behavior under plane stress and on-axis orientation of
the reference system there are four independent parameters and for isotropic behav-
ior there are only two. The mathematical notations S;;, C;; or Q;; can be shifted to
the engineering notation. Tables 2.6 and 2.7 summarize the compliance and stiffness
matrices for the plane stress state.

Considering a plane strain state in the (x; — x,) plane we have the three non-zero
strains €, & and & but the four nonzero stress components 61,02, 03, Og. Analo-
gous to the plane stress state, here the stress o3 normal to the (x| —x;) plane is not
an independent value and can be eliminated

& = 81301 + 82302 + 53303 + S3606 = 0,

1
03 = —<— (81301 + 52302 + S3606)
$33
Therefore in the case of plane strain, the C;;,i, j = 1,2,6 can be taken directly from

the three-dimensional elasticity law and instead of S;; reduced compliances V;; have
to be used

Table 2.6 Compliance matrices for various material models, plane stress state

Material model =S80
Anisotropy: Compliances S;;
£ S11 S12 S16 o}
6 independentmaterial parameters | | & | = S22 Sz [e7)
& Se6 | | 96
Orthotropy: S16 =826 =0
1 1
4 independent material parameters|S;; = — ,S» = —
E E>
—Vi2 _ —V2
S = =—
12 E, A
1
Reference system: on-axis Se6 = —
G
Isotropy: S16 =826 =0
1 \Y
2 independent material parameters|S|; = Sy = B Sy = g’
2(1+v 1
Reference system: as you like Se6 =2(S11 —S12) = % =G
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Table 2.7 Stiffness matrices for various material models, plane stress state

Material model c=0¢
Anisotropy: Reduced stiffness Q;;
(o} 011 Q12 Qi6 | | &
6 independent material parameters| [ 02 | = 02 O &
o Ocs | | &
1
Orthotropy: Q16 =026 =0, Q66 = See G
. . S» E;
4 independent material parameters = =—
p p Qu= ;== ViaVar
S11 E,
Q2 = AT 1-vpvy
S Vo E:
Reference system: on-axis Qpn=— 12 _ 1272

A 1—vivy
A=5150-5%

Isotropy: O16=02%=0
2 independent material parameters|Qi; = Q2 = o

VE E
Reference system: as you like Qi = L2 (= m =G

Gi:Cij8j7 i7j:172767

Si3Sjz ..
& =Vijo;, Vij=Sij— 153;7 i,j=12,6

Table 2.8 summarizes for the three-dimensional states and the plane stress and strain
states the number of non-zero and of independent material parameters.

In the two-dimensional equations of anisotropic elasticity, either reduced stiff-
ness or reduced compliances are introduced into the material laws. These equations
are most important in the theory of composite single or multilayered elements, e.g.
of laminae or laminates. The additional transformations rules which are necessary
in laminae and laminate theories are discussed in more detail in Chap. 3. Tables 2.6
and 2.7 above shows the relationship between stress and strain through the compli-
ance [S;;] or the reduced stiffness [Q;;] matrix for the plane stress state and how the
S;j and Q;; are related to the engineering parameters. For a unidirectional lamina the
engineering parameters are:
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Table 2.8 Stiffness and compliance parameters for stress and strain equations ¢ = C€,
€ = So, C=8"", plane stress state 6 = Q¢, € = S6,Q =S|, plane strain state - ¢ = Cg,
e=Vo,C=V1,0 j and V;; are the reduced stiffness and compliances

Material model Number of non-zero |Number of independent
parameters parameters
Three-dimensional Cij;Sij Cij Sij
stress- or ij=1,...,6 ij=1,...,6
strain state
Anisotropic 36 21
Monotropic 20 13
Orthotropic 12 9
Transversely isotropic 12 5
Isotropic 12 2
Plane stress state 0isSij 0ijsSij
(x1 — x2)-plane i,j=1,2,6 i,j=1,2,6
Anisotropic 9 6
Orthotropic 5 4
Isotropic 5 2
Plane strain state Cij;Vij Cij;Vij
(x1 —x)-plane i,j=1,2,6 i,j=1,2,6
Anisotropic 9 6
Orthotropic 5 4
Isotropic 5 2

E;
E;

longitudinal Young’s modulus in the principal direction 1 (fibre direction)
transverse Young’s modulus in direction 2 (orthogonal to the fibre direction)

V12 major Poisson’s ratio as the ratio of the negative normal strain in direction 2

G

to the normal strain in direction 1 only if normal load is applied in direction 1
2 in-plane shear modulus for (x; — x7) plane

The four independent engineering elastic parameters are experimentally measured
as follows:

Pure tensile load in direction 1: 6; # 0,0, =0,06 =0
With € = 8101,& = S1201,& =0 are

0 1 &  Sp

€ S

Ey=—=5, Vi2
&g Sn

Pure tensile load in direction 2: 6; = 0,0, # 0,06 =0
With € = 81202,& = §52,02,& = 0 are
o 1 £ S12

i=——=

E2 = = — =
& S»n’ ) S

Vo1 is usually called the minor Poisson’s ratio and we have the reciprocal rela-
tionship V12/E1 = V21/E2.

Pure shear stress in the (x; —x;) plane: 6 = 6, = 0,06 # 0

With €, = & =0, & = Sg60¢ 1S
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O¢ 1
G &  Se6
With the help of Tables 2.6 and 2.7, the relating equations of stresses and strains
are given through any of the following combinations of four parameters: (Q11, 012,
022,066), (S11,512,5822,566), (E1, E2, V12, G12).

In Chap. 3 the evaluation of the four engineering elastic parameters is given ap-
proximately by averaging the fibre-matrix material behavior. There are different ap-
proaches for determining effective elastic moduli, e.g. in a simple way with ele-
mentary mixture rules, with semi-empirical models or an approach based on the
elementary theory.

2.1.6 Curvilinear Anisotropy

The type of anisotropy considered above was characterized by the equivalence of
parallel directions passing through different points of the homogeneous anisotropic
body and we can speak of a rectilinear anisotropy. Another kind of anisotropy is the
case, if one chooses a system of curvilinear coordinates in such a manner that the
coordinate directions coincide with equivalent directions of elastic properties at dif-
ferent points of an anisotropic body. The elements of the body, which are generated
by three pairs of coordinate surfaces possess identical elastic properties and we can
speak of a curvilinear anisotropy.

In the frame of this textbook we limit the considerations to cylindrical anisotropy,
which is also the most common case of this type of anisotropy. The generalized
Hooke’s law equations (2.1.21) are now considered in cylindrical coordinates x; =r,
x» = 0,x3 = z and we have the stress and strain vectors in the contracted single
subscript notation

[61 0, 03 04 Oj GG}T:[U;' Op Oz Op; Oy GrG}Ta 2.1.81)
[8] & & &4 & 86]T= [gr €9 & Eg; & gr(-)]T

In the specific cases of material symmetries the general constitutive equation
in cylindrical coordinates can be simplified analogous to the case of rectilinear
anisotropy.

In the specific case of an orthotropic cylindrical response there are three orthog-
onal planes of elastic symmetries. One plane is perpendicular to the axis z, another
one is tangential to the surface (0 — z) and the third one is a radial plane (Fig. 2.10).
Another case of material symmetry in possible practical situation is a transversely
isotropic cylinder or cylindrical tube with the plane of isotropy (r — 6). In this case
we obtain, as analog to (2.1.67)



52 2 Linear Anisotropic Materials

z-plane

)
Y

r —z-plane

I r [

CNE *
| N 0
|

0 — z-plane

Fig. 2.10 Cylindrical orthotropic material symmetry

[ 1 vt wir 0 0 0 ]
Et fT EL
VLT
—— 0 0 0
€ Er lEL (]
& (¢3)
. g 00 0 |G
— ) >, (2.1.82)
& — 0 0 4
&5 Grr ) o
€ S Y M rem 0 06
LT
I Grr |

where the index T is associated with the coordinate directions » and 6 and the index
L with the coordinate direction z and the reciprocal relations are

VT VIL
EL  Er

The stress-strain equations for the orthotropic case of cylindrical anisotropy are ob-
tained using engineering parameters
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(1 _Ver Ve 0O 0 0 |
Er 1Ee Er
Vz0
g Eq — fr 0O 0 O o
& (o)
— 0 0 O
& E, O3
& = 1 o (2.1.83)
0 0 4
&5 Go, | Os
€ S Y M G 0 Ob6
rz 1
L Gr@ J

The indices r, 8 and z of the engineering parameters are associated with the indices
1, 2 and 3 and the strain-stress equations may also be written in a different way by
using the numerical subscripts. Further notice the reciprocal relations
Eivji=E;vij, I,j= 10,z
and the Gy, G,; and G,¢ may be written in the more general form Ey4, E5, E¢.
There are two practical situations for a monoclinic material behavior. The first
case can be one plane of elastic symmetry (r — 6) which is rectilinear to the z-axis.
The case is interesting when considering composite discs or circular plates. The
stress-strain equations follow from (2.1.70) after substituting the subscripts 1,2 and
3 by the engineering parameters to r, 6 and z and the shear moduli E4,Es and Eg
by Gg.,G,; and G,g. The second case can be one plane of elastic symmetry (6 — z)
as a cylindrical surface with the axis r perpendicular to this surface. This situation
is of practical interest when considering e.g. filament wound cylindrical shells and
we get the strain-stress relations which couple all three normal strains to the shear
strain & and both shear strains &5, & to both shear stresses 05, Og

[l v vaima 0 0 |
E. E, E; Eg
1 v e 0 0
€ E, E; E, 01
& Lo g o ||
& E; E4 03
e | = i o4 (2.1.84)
— 0 0
&s E4 1 O5
& S Y M _ @ Og
Es Es
1
L Es |

The subscripts 1, 2, 3 of the Young’s moduli and the Poisson’s ratios will be shifted
to r,0,z and the moduli Ey4,Es,Eg to Gg,,G,;,G,g. There are as above reciprocal
relations for v;;,m;; and ;;
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E, E Ei, E
v.< v L.
; = ;’ i,j=1,2,3
i J

2.1.7 Problems

Mas _ M4
E. B3’
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Hes _ Hs6
Es Es’
6 3 (2.1.85)

Exercise 2.1. Calculate for the tensile bar consisting of three parts (Fig. 2.2) the
elongation A/, the strain € and the stress ¢ as functions of A,/ and F':

1. The stiffness are arranged in parallel:

Ey = E3 =70 GPa, E; =3GPa,A; = A3 = 0,14, Ay = 0,8A.

2. The stiffness are arranged in series:

Ey=E3=70GPa, E, =3GPa, [} =13=0,11,1, =0,8l.

Solution 2.1. The solution can be obtained considering the basic assumptions of the
iso-strain and the iso-stress models.

1.

Assumptions

3
g=¢€, ALi=Al, i=123 A=Y A;, F

i=1

From o = E¢ follows

o

Il
_

Fi

14

o, =E 1€ =70GPa¢,0p = Ere =3GPa ¢,03 = E3¢ =70GPa ¢

With F = 6A = EA€ and F; = E;A;€ follows

Mw

F=Y) (EA)e=16,4GPacA, E =16,4GPa,
i=1
F Al
£=—=—
EA l
yields
Fl 1 FlI
Al=— = —(GPa)™!
EA~T6.4a OF
and the solutions are
1 FlI _1
ANl = 1674X(GPa) = AI(F,1,A),
Al 1 F 1
=—=———(GPa)” ' =¢(F,A
1 EF
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2. Assumptions

3 JAV/ S
Al=Y Al F=F, &= i=1,273
i=1

i 1

1

1

3 3
From Al = Y Al;= Y ;g and F = EAe follows
=1 =1

3
3 /L\F (0,1 08 0,1\ Fl .
A=Y ()= = "L
i=1(E,~>A (70 3 +70)A( &)™
1 Fl Fl
l=¢l A 0, 695A (GPa)™ ", 3,71 GPa

The functions Al, € and o are

Fl
Al = 0,2695X(Gpa)*‘ = AI(F,1,A),

F
€= 0,2695Z(GPa)" = ¢g(F,A),

E F F.A
c=Ee=_= o(F,A)
Exercise 2.2. The relationship between the load F and the elongation A/ of a tensile
bar (Fig. 2.1) is
F = E4o Al=KAI
lo

E is the Young’s modulus of the material, Ag the cross-sectional area of the bar and
Iy is the length. The factor K = EA¢/lj is the stiffness per length and characterizes
the mechanical performance of the tensile bar. In the case of two different bars
with Young’s moduli E|, E>, densities py, P2, the cross-sectional areas Aj,A, and
the lengths I,/ the ratios of the stiffness K| and K, per length and the mass of the
bars are

K _EAih  m LAy

Ky ExAyly" my  bhAxp

Verify that for /; = I, and m; = m, the ratio K /K, only depends on the ratio of the
specific Young’s moduli E; /p; and E»/p.

Solution 2.2. Introducing the densities p; /p, into the stiffness ratio K; /K, yields
Ki _Ei/pim (Lz)z
Ky  Ex/pomy \ I

and withm; =my, [, =1
K _Ei/p:
Ky E/p>
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Note 2.1. A material with the highest value of E/p has the highest tension stiffness.

Exercise 2.3. For a simply supported beam with a single transverse load in the mid-
dle of the beam we have the following equation

F:48%f:Kf

F is the load and f is the deflection in the middle of the beam, [ is the length of
the beam between the supports and / the moment of inertia of the cross-section.
The coefficient K = 48E1 /I3 characterizes the stiffness of the beam. Calculate K for
beams with a circle or a square cross-sectional area (radius r or square length @) and
two different materials £, p; and E;, p; but of equal length /, moments of inertia
and masses. Verify that for m; = m; the ratio of the stiffness coefficients K /K, only
depends on the ratios E /p? and E»/p3.

Solution 2.3. Moments of inertia and masses of the two beams are

1. circle cross-sectional: I = 7r* /4,m = r’lp,
2. square cross-sectional: I = a*/12,m = a*Ip

In case 1. we have

_asEl_asEntase/p o
B B 4 4B m

:-28 (20 )
K, E2/P22 mo I

With [y = I,,m; = my we obtain

K

K\ _Ei/p?
Ky E»/ps

In case 2. we have
_48El 48Ea* 4E m?

B B 12 B pr

5 _ ot (m)" (1
K> E2/p22 my L

With [} = I,,m; = my we obtain

K

K Ei/p}
K  Ey/p;

Note 2.2. The best material for an optimal bending stiffness of the beam is that with
the highest value of E/ p>.

3 3
Exercise 2.4. Formulate explicitly the transformation matrices (T°)~! and (T¢)~!
for a rotation about the e3-direction (Fig. 2.6).
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3 3
Solution 2.4. With Egs. (2.1.29), (2.1.39) and (2.1.40) follows (T¢)~! = (T€)T and

3 3
(TE )—1 _ (TO')T

2 s2 000 —2cs
2 2000 2sc

3
0 0100 O

o\—1 _

(T~ = 0 00cs O ’
0 0 0—sc O
cs —cs0 0 0c2—s?
2 2 000 —cs
2 2 000 sc

3
0O 0 100 O

e\—1 _

(T~ = 0 0 O0cs O

0 0 O0-sc O
2¢s =2¢s0 0 0c2—s2

Exercise 2.5. Consider the coordinate transformation that corresponds with reflec-
tion in the plane x; — xp: x| = x1, x5 = X2, x; = —x3. Define for this case
1. the coordinate transformation matrix [R;;] and

(2 €
2. the stress and strain transformation matrices [7),4] and [T].

Solution 2.5. The solution contains two parts: the coordinate transformation and the
stress/strain transformation.

1. With R;; = cos(e}, e;) (2.1.22) follows
Ri1=1,Rp=0,R;3=0,Ry; =0,Rpn =1,Rp3 =0,
R31 =0,R3p=0,R33 = —1
and the transformation matrix takes the form

10 0
[Rij]=1]010
00 -1

2. With the help of the transformation matrix App. B we can see that both matrices

(e}

are diagonal with the following nonzero elements for 7},

2 _ 1 p2 1 p2 _
Rij=1,R3p =1,R3=1,
RR33+ Ry3R3 = —1,R11R33 + R13R31 = —1,R11R2 + R12Rp1 = 1

€

and for Ty,

2 2 2
R{, =1,R5, =1,R5; =1,
RR33+ Ry3Ro = —1,R11R33 + R13R31 = —1,R11R2 + Ri2Rp1 = 1
The transformation matrices take the form
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100 0
010 0
4 001 0
[TPQ]_ 000 —1
000 0 —1
000 0 01

SO OO

0

0

() £
0 = [qu]
0

Exercise 2.6. The engineering material parameters for an orthotropic material are
given by

E; =173GPa, E; =33,1GPa, E3 = 5,17GPa,

Ey =3,24GPa, Es = 8,27GPa, Es = 9,38GPa,

vip = 0,036, v;3 =0,25, vz = 0,171
Calculate the stiffness matrix C and the compliance matrix S.

Solution 2.6. With Table 2.5 we find the S;; and the C;;

Sy =E; ' =5,780 1073GPa ™,

Si2 = Sy = —VvipE; ' = 0,208 10 °GPa™',
Sy = E; ' =30,211107°GPa™",
Si3 = S31 = —viE; ' = —1,4451073GPa™ !,

Sy = E3 ' =193,424 1073GPa !,
Sy3 = S3p = —Va3E; ' = 5,166 10 3GPa™!,
Sys = E; " =308,642 10 3GPa™ !,
Sss = E5' = 120,919 103GPa !,
Ses = Eg ' = 106,610 103GPa !,

A =1—=VaVa — Va3V — V31 Vi3 — 2V Vi3 V30,

Va1 vi2(Ey/Er) = 0,0069, v3; = vi3(E3/E;) = 0,0075,
V32—V23(E3/E2) 0,027, A =0,993, E;, = E,/Al—l 2,3

Cn = (1 —V23V32) 1 = 173,415GPa,
Gy = (1—v31v13)E; = 33,271GPa,
C33 = (1 —vi2va1)E3 = 5,205GPa,
Cio = (Via + Vi3V3)Er = 1,425GPa,
Ci3 = (Vi3 + Vi2va3)E3 = 1,334GPa,
Co3 = (Va3 + V21 v13)E3 = 0,899GPa,

Caa=E4, Css=EFs5, Co6=E

With the values for C;; and S;; the stiffness matrix C and the compliance matrix §
can be written
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173,415 1,425 1,334 0 0 0
1,425 33,2710,899 0 0 0
1,334 0,899 5205 0 0 0O
= 0 o o0 32 0 o |9
0 0 0 0 827 0
0 0 0 0 0 9538
5,780 —0,208 —1,445 0 0 0
~0,208 30,211 —5,166 0 0 0
| —1,445 5,166 193,424 0 0 0 e
S=1 o 0 0 308,642 0 0 107"GPa
0 0 0 0 120,919 0
0 0 0 0 0 106,610

2.2 Fundamental Equations and Variational Solution Procedures

Below we discuss at first the fundamental equations of the anisotropic elasticity for
rectilinear coordinates. The system of equations can be divided into two subsys-
tems: the first one is material independent that means we have the same equations
as in the isotropic case. To this subsystem belong the equilibrium equations (static
or dynamic) and the kinematic equations (the strain-displacement equations and the
compatibility conditions). To this subsystem one has to add the constitutive equa-
tions. In addition, we must introduce the boundary and, may be, the initial conditions
to close the initial-boundary problem. At second, considering that closed solutions
are impossible in most of the practical cases approximative solution techniques are
briefly discussed. The main attention will be focussed on variational formulations.

2.2.1 Boundary and Initial-Boundary Value Equations

The fundamental equations of anisotropic elasticity can be formulated and solved
by a displacement, a stress or a mixedapproach. In all cases the starting point are the
following equations:

o The static or dynamic equilibrium equations formulated for an infinitesimal cube
of the anisotropic solid which is subjected to body forces and surface forces char-
acterized by force density per unit surface. In Fig. 2.11 the stress and the volume
force components are shown in the x;-direction. Assuming the symmetry of the
stress tensor, three static equations link six unknown stress components. In the
case of dynamic problems the inertia forces are expressed through displacements,
therefore the equations of motion contain both, six unknown stress and three un-
known displacement components
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Fig. 2.11 Infinitesimal cube
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o5 +do:
with lengths dxy,dxp,dxs: ’ °
stress and volume force com- | / 76
ponents in x;-direction l /
A X3 0'6//§ - 06 +dos
dx3| .~ //Pl
//
O] —/HdG] /// % dx
dxp
X2
X
861 366 865
= O7
8x1 8x2 + 8x3 +p1
dog dop, do. . .
8x6 8x2 + 8x4 +p2=0, static equations 2.2.1)
1 2 3
dos doy 003
+ +p3=0
8x1 8x2 aX3 ps ’
361 366 365 azul
+ P1L=P =75
dx;  dxy  Odxz ot
2
3;6 33; + 32 pr= p%, dynamic equations ~ (2.2.2)
dos doy Ido du
T+ T g =p s
3)61 8x2 a)C3 ot

The inertial terms in (2.2.2) are dynamic body forces per unit volume. The den-
sity p for unidirectional laminae can be calculated e.g. using the rule of mixtures

(Sect. 3.1.1).

The kinematic equations that are six strain-displacement relations and six com-

patibility conditions for strains. For linear small deformation theory, the six
stress-displacement equations couple six unknown strains and three unknown
displacements. Figure 2.12 shows the strains of an infinitesimal cube in the
(x1 —xp)-plane and we find the relations

8_3141 8_8142
1=5,8==5—"
ox;’ oxy’

_ 9w

1
—917 —9 ER=Y2 =

du duy
p%) a)Q

and analogous relations for the (x; — x3)- and (x; — x3)-planes yield
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aul
2y s 2y I
a | 275, b \\ 4/@ ____________ ,
c \ 1By
c 17 B
Y i
dx2 A B / e /f duy
up dJ'C]
f dxl B 5 A’ B 8x1
u
A+ u uj + a—XIIdJQ A

Fig. 2.12 Strains of the infinitesimal cube shown for the (x; — x;)-plane. @ extensional strains,
b shear strains

_du - L
]78)617 273)62’ 373)63’
(2.2.3)
dus  Jduy duz  Jduy Jur Jduy
&= 8x2 8x3 &= 8x1 T on 8x3 &= 8x1 ton, 8x2

The displacement field of the body corresponding to a given deformation state is
unique, the components of the strain tensor must satisfy the following six com-
patibility conditions

8281 8282 _ 8286 0 384 385 886 P 3283
9x3 + x;  Oxox’ 8_x3<8_x1+8_xz_8_x3> T T O0x10x]
8282 3283 _ 8284 0 385 886 884 . 8281
3)6 + 8x§ o 8X2(9X37 (9_)61 (8_)62 + (9_)63 B 8—x]> o (9)62(9)637
3283 8281 3285 0 <886 884 885> _ 8282

o2 T o2 " omidx’ 9 \dxm  dm  dx)  dmdxs

In the two-dimensional case the compatibility conditions reduce to a single equa-
tion

8281 i 8282 8286 _

ox}  ox? ox10xy

The material or constitutive equations which are described in Sect. 2.1 are

& =S§;j0j, o; = Gij§; 2.2.4)

The generalized Hooke’s law yields six equations relating in each case six un-
known stress and strain components. The elements of the stiffness matrix C and

the compliance matrix S are substituted with respect to the symmetry conditions
of the material.
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Summarizing all equations, we have 15 independent equations for 15 unknown com-
ponents of stresses, strains and displacements. In the displacement approach, the
stresses and strains are eliminated and a system of three coupled partial differential
equations for the displacement components are left.

In the static case we have a boundary-value problem, and we have to include
boundary conditions. In the dynamic case the system of partial differential equations
defines an initial-boundary-value problem and we have additional initial conditions.

A clear symbolic formulation of the fundamental equations in displacements is
given in vector-matrix notation. With the transposed vectors o1, €T and u”

6'=[010,03040506), € =[e1 &6 61656, u =[uuus (22.5)

the transformation and the differential matrices T and D (n is the surface normal
unit vector)

ni 00 (91 00
0n 0 00 0 n; = cos(m, ;)
{0 0ns 100 A 0
T= 0 nsm | D= 000 | aizg_)q (2.2.6)
n30n1 83081 i —1.2.3
ny nq 0 (92 (9] 0 ! ”
and the stiffness matrix C we get
D'oc+p=0 €V static equilibrium equations,
2
D'c+p=p 9%y dynamic equilibrium equations,
ot (2.2.7)
T =q € Aq surface equilibrium equations, -
£ =Du €V kinematic equations,
o =Ce constitutive equations

V is the volume and A4 the surface of the body with surface forces g.
Eliminating the stresses and the strains leads to the differential equations for the
displacements

Boundary-value problem - elastostatics
D'CDu = —p €V equilibrium for the volume element V,

u =u €A, prescribed displacements# on A,, (22.8)
T'CDu=q < Aq prescribed surface forces g on Ag

Initial boundary-value problem - elastodynamics

D"CDu—pii=—-pcV equilibrium equation, (2.2.9)

u=ucA, T'CDu=gqc Aq boundary conditions,
u(x,0) = u(x,0), #(x,0)=u(x,0) initial conditions
In the general case of material anisotropic behavior the three-dimensional equa-
tions are very complicated and analytical solutions are only possible for some spe-
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cial problems. This is independent of the approach to displacements or stresses.
Some elementary examples are formulated in Sect. 2.2.4. The equations for beams
and plates are simplified with additional kinematic and/or static hypotheses and the
equations are deduced separately in Chaps. 7 and 8. The simplified structural equa-
tions for circular cylindrical shells and thin-walled folded structures are given in
Chaps. 9 and 10.

Summarizing the fundamental equations of elasticity we have introduced stresses
and displacements as static and kinematic field variables. A field is said to be stati-
cally admissible if the stresses satisfy equilibrium equations (2.2.1) and are in equi-
librium with the surface traction g on the body surface Aq, where the traction are
given. A field is referred to as kinematically admissible if displacements and strains
are restricted by the strain-displacement equations (2.2.3) and the displacement sat-
isfies kinematic boundary conditions on the body surface A,, where the displace-
ments are prescribed. Admissible field variables are considered in principles of vir-
tual work and energy formulations, Sect. 2.2.2. The mutual correspondence between
static and kinematic field variables is established through the constitutive equations
(2.2.4).

2.2.2 Principle of Virtual Work and Energy Formulations

The analytical description of the model equations of anisotropic elasticity may re-
alized as above by a system of partial differential equations but also by integral
statements which are equivalent to the governing equations of Sect. 2.2.1 and based
on energy or variational formulations. The utility of variational formulations is in
general twofold. They yield convenient methods for the derivation of the governing
equations of problems in applied elasticity and provide the mathematical basis for
consistent approximate theories and solution procedures. There are three variational
principles which are used mostly in structural mechanics. There are the principles of
virtual work, the principle of complementary virtual work, Reissner’s® variational
theorem and the related energy principles.

Restricting ourselves to static problems, extremal principles formulated for the
total elastic potential energy of the problem or the complementary potential energy
are very useful in the theory of elasticity and in modelling and analysis of structural
elements. The fundamental equations and boundary conditions given beforehand
can be derived with the extremal principles and approximate solutions are obtained
by direct variational methods. Both extremal principles follow from the principle of
virtual work.

If an elastic body is in equilibrium, the virtual work 6W of all acting forces in
moving through a virtual displacement du is zero

SW = W, + W, =0 (2.2.10)

6 Eric (Max Erich) Reissner (* January 5% 1913 in Aachen; T November 1%, 1996 La Jolla, USA)
- engineer, contributions to the theory of beams, plates and shells
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OW is the total virtual work, W, the external virtual work of body or volume and
surface forces and 6W; the internal virtual work of internal stresses, for the forces
associated with the stress field of a body move the body points through virtual dis-
placements du corresponding to the virtual strain field S€.

A displacement is called virtual, if it is infinitesimal, and satisfies the geometric
constraints (compatibility with the displacement-strain equations and the boundary
conditions) and all forces are fixed at their values. These displacements are called
virtual because they are assumed to be infinitesimal while time is held constant. The
symbol § is called a variational operator and in the mathematical view a virtual dis-
placement is a variation of the displacement function. To use variational operations
in structural mechanics only the following operations of the §-operator are needed

d”f —d_n ny _ n—1 n—1 o

For a deformable body, the external and the internal work are given in Egs.
(2.2.11) and (2.2.12), respectively,

W, = / prSupdV + / qiSupdA, (2.2.11)
14 Aq
SW, = — / 6 8edV (2.2.12)
v

pi are the components of the actual body force vector p per unit volume and gy
the components of the actual surface force vector g (surface traction per unit area).
Aq denotes the portion of the boundary on which surface forces are specified. oy
and g, are the components of the stress and the strain vector. The negative sign in
(2.2.12) indicates that the inner forces oppose the inner virtual displacements, e.g.
if the virtual displacement u; = §€&;dx; is subjected an inner force (67dxpdx;) the
inner work is (—0dxydxs)d¢€dx;. The vectors p,q and u have three components
but the vectors 6 and € have six components. The double subscript k in p;duy and
qrOu; means the summarizing on 1 to 3 but in 6; 8¢, on 1 to 6.
The general formulation of the principle of virtual work for a deformable body

OWa+ oW, =6W =0

or
/ PeSudV + / GeSugdA — / 6. 86dV =0 (2.2.13)
14 Aq 14

is independent of the constitutive equations. For the three-dimensional boundary-

value problem of a deformable body the principle can be formulated as follow:

Theorem 2.1 (Principle of virtual work). The sum of virtual work done by the
internal and external forces in arbitrary virtual displacements satisfying the pre-
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scribed geometrical constraints and the strain-displacement relations is zero, i.e.
the arbitrary field variables duy are kinematically admissible.

An important case is restricted to linear elastic anisotropic bodies and is known as
the principle of minimum total potential energy. The external virtual work W, is
stored as virtual strain energy OWy = —8W;, i.e. there exists a strain energy density

function
f 2 k <k 2 kl€k€l

Assuming conservative elasto-static problems, the principle of virtual work takes
the form
OIl(u) = 0I1,(u) + O11;i(€) =0, e=¢u) (2.2.14)

with the total potential energy function IT(u) of the elastic body. IT, () and IT;(€)
are the potential functions of the external and the internal forces, respectively,

1
IT, = I (&) = ) /CklgkgldV7

v (2.2.15)
I, = Iy (u) = */Pkude*/Qkude
v Aq

The principle of minimum total potential energy may be stated for linear elastic
bodies with the constraints 6 = Ce(u) as follows:

Theorem 2.2 (Principle of minimum of the total potential energy). Of all the ad-
missible displacement functions satisfying strain-stress relations and the prescribed
boundary conditions, those that satisfy the equilibrium equations make the total po-
tential energy an absolute minimum.

The Euler’-Lagrange® equations of the variational problem yield the equilibrium
and mechanical boundary conditions of the problem. The minimum total potential
energy is widely used in solutions to problems of structural mechanics.

The principle of virtual work can be formulated in a complementary statement.
Then virtual forces are introduced and the displacements are fixed. In analogy to
(2.2.13) we have the principle of complementary virtual work as

SW + 8W = W* =0

with the complimentary external and internal virtual works

8Wa* :/ukéqdeﬁWi* = 7/8](66/((1‘/ (2.2.16)
Ay 1%

7 Leonhard Euler (*15 April 1707 Basel - 17%:/182%8: September 1783 St. Petersburg) - mathe-
matician, physicist, astronomer, logician and engineer, introducing beam theory elements and the
equations of motion

8 Joseph-Louis Lagrange, born Giuseppe Lodovico Lagrangia or Giuseppe Ludovico De la Grange
Tournier, also reported as Giuseppe Luigi Lagrange or Lagrangia (*25 January 1736 Turin - 110
April 1813 Paris) - mathematician and astronomer, variational calculations, general mechanics
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A, denotes the portion of the boundary surface on which displacements are speci-
fied.
With the complementary stress energy density function

* 1 *
We (0') = ZSk[GkG[, 5Wf (0') = Syo;00;, = gd0;

and assuming conservative elasto-static problems, the principle of complementary
work can be formulated as principle of minimum total complementary energy

SIT* = SII + 8IT;
or

5 /W*(Gk)dV—/uqudA =0 (2.2.17)
% Ay

The principle of minimum total complementary energy may be stated for linear
elastic bodies with constraints € = So as follows:

Theorem 2.3 (Principle of minimum total complementary energy). Of all admis-
sible stress states satisfying equilibrium equations and stress boundary conditions,
those which are kinematically admissible make the total complementary energy an
absolute minimum.

The Euler-Lagrange equations of the variational statement yield now the compati-
bility equations and the geometrical boundary conditions.

The both well-known principles of structure mechanics, the principle of vir-
tual displacements (displacement method) and the theorem of Castigliano (principle
of virtual forces, force method) correspond to the principle of minimum potential
energy and complementary energy. The principle of minimum potential energy is
much more used in solution procedures, because it is usually far easier to formulate
assumptions about functions to represent admissible displacements as to formulate
admissible stress functions that ensure stresses satisfying mechanical boundary con-
ditions and equilibrium equations. It should be kept in mind that from the two prin-
ciples considered above no approximate theory can be obtained in its entirety. One
must either satisfy the strain-displacement relations and the displacement bound-
ary conditions exactly and get approximate equilibrium conditions or vice versa.
Both principles yield the risk to formulate approximate theories or solution proce-
dures which may be mathematically inconsistent. Reissner’s variational statement
yields as Euler-Lagrange equations both, the equilibrium equations and the strain-
displacement relations, and has the advantage that its use would yield approximate
theories and solution procedures which satisfy both requirements to the same de-
gree and would be consistent. Reissner’s variational theorem (Reissner, 1950) can
be formulated as follows:

Theorem 2.4 (Reissner’s variational theorem, 1950). Of all sets of stress and
displacement functions of an elastic body € = C6 which satisfy the boundary
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conditions, those which also satisfy the equilibrium equations and the stress-
displacements relations correspond to a minimum of the functional ¥k defined as

Ui (u,0) = [lowec~Wi(a0laV — [ punaV — [ quuda (2.2.18)
4 4 Aq

We(0y) is the strain energy density function in terms of stresses only, ¥R is Reissner’s
functional.

It should be noted that all stress and strain components must be varied while py
and gy are prescribed functions and therefore fixed. The variation of the functional
YR (u,0) yields

Ok = / |:Gk68k+8k86k gzlf56k:| dV—/pk8ude
k
v v (2.2.19)
- /Qk&'idea
Aq

where g is determined by (2.2.3). 6 ¥k (u, 6) can be rearranged and we obtain finally

oW,
Y = V/ {{s— aof} S6"— Do +p] 5uT}dV—A/ géu'dA  (2.2.20)

q

Since 80 and du are arbitrary variations 8% = 0 is satisfied only if

x"' +pi=0 (2.2.21)

Summarizing we have considered two dual energy principles with u; or o as admis-
sible functions which have to be varied and one generalized variational principle,
where both, u; and oy, have to be varied. The considerations are limited to lin-
ear problems of elasto-statics, i.e. the generalized Hooke’s law describes the stress-
strain relations.

Expanding the considerations on dynamic problems without dissipative forces
following from external or inner damping effects the total virtual work has in the
sense of the d’Alambert principle an additional term which represents the inertial
forces

SW = — / PiixSurdV — / 0. 5dV + / prSudV + / gdudA  (2.2.22)
v \%

1% Aq

Equation (2.2.22) represents an extension of the principle of virtual work from stat-
ics to dynamics. p is the density of the elastic body.
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For conservative systems of elasto-dynamics, the Hamilton? principle replaces
the principle of the minimum of the total potential energy

15 15
5 / (T-M)dir =6 / Liw)di =0, T = ; / piigtiydV (2.2.23)
1 1] v

II(u) is the potential energy given beforehand and T (u) is the so-called kinetic
energy. L = T — IT is the Lagrangian function.

Theorem 2.5 (Hamilton’s principle for conservative systems). Of all possible
paths between two points at time interval t| and t, along which a dynamical sys-
tem may move, the actual path followed by the system is the one which minimizes
the integral of the Lagrangian function.

In the contracted vector-matrix notation we can summarize:
Conservative elasto-static problems

1
Ou) = 5 /()‘z-:TdV—/pquV—/qquA7
4 4 Aq

(2.2.24)

I = / osetdv — / poutdv — / qdu"dA =0

14 14 Aq
Conservative elasto-dynamic problems
1
L) =T(u)~ TTw), T(w) =, / piTidV,
v

(2.2.25)

5]
5 / Llw)dt =0
n

All variations are related to the displacement vector u. For the stress and the strain
vector we have to take into consideration that 6 = o' (€) = o/[€(u)] and for the time
integrations

Su(x,t;) = du(x,t) =0 (2.2.26)

For non-conservative systems of elastodynamics, the virtual work W includes an
approximate damping term

— /,uuT(SudV
4

with u as a damping parameter and Eq. (2.2.22) is substituted by

9 William Rowan Hamilton (*4 August 1805 Dublin - 12 September 1865 Dublin) - physicist,
astronomer, and mathematician, who made important contributions to classical mechanics, optics,
and algebra
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SW = — / (pit" + pi")Sudv — / 5(cTe)dv — / pdudV
\%4

v v (2.2.27)

— /qéudA

Aq

A generalized Hamilton’s principle in conjunction with the Reissner’s variational
statement can be presented as

61(u,0) =& [ 7(w) - yi(u,0))dr =0,

where T(u) is the kinetic energy as above, Wr(u,0) the Reissner’s functional
(2.2.18).

2.2.3 Variational Methods

The variational principles can be used to obtain, in a mathematical way, the govern-
ing differential equations and associated boundary conditions as the Euler-Lagrange
equations of the variational statement. Now we consider the use of the variational
principles in the solution of the model equations. We seek in the sense of the clas-
sical variational methods, approximate solutions by direct methods, i.e. the approx-
imate solution is obtained directly by applying the same variational statement that
are used to derive the fundamental equations.

2.2.3.1 Rayleigh-Ritz Method

Approximate methods are used when exact solutions to a problem cannot be derived.
Among the approximation methods, Ritz! method is a very convenient method
based on a variational approach. The variational methods of approximation de-
scribed in this textbook are limited to Rayleigh!!-Ritz method for elasto-statics and
elasto-dynamics problems of anisotropic elasticity theory and to some extent on
weighted-residual methods.

The Rayleigh-Ritz method is based on variational statements, e.g. the principle of
minimum total potential energy, which is equivalent to the fundamental differential
equations as well as to the so-called natural or static boundary conditions including

10 Walter Ritz (* February 2271878, Sion, Switzerland; t July 7t 1909, Gottingen) - theoretical
physicist, variational methods

T Tohn William Strutt, 3rd Baron Rayleigh (* November 12t 1842, Langford Grove, Maldon,
Essex, UK; { June 30t 1919, Terling Place, Witham, Essex, UK) - physicist, Nobel Prize in
Physics winner (1904), variational method
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force boundary conditions . This variational formulation is known as the weak form
of the model equations. The method was proposed as the direct method by Rayleigh
and a generalization was given by Ritz.

The starting point for elasto-static problems is the total elastic potential energy

functional i
n-, / TCedv — / pudv — / g udA
L v A4 (2.2.28)
=5 / (Du)"CDudv — / pludv — / q'udA
14 14 Aq

The variations are related to the displacements u and the strains € which have to be
substituted with help of the differential matrix D, (2.2.6), by the displacements. The
approximate solution is sought in the form of a finite linear combination. Looking
first at a scalar displacement approach, the approximation of the scalar displacement
function u(x1,xp,x,) is given by the Ritz approximation

N
(x1,x2,%3) = Zai(Pi(xl 1 X2,X3)
i=1

or
N

i(x1,22,x3) = Y aii(x1,x2,x3) + @0 (x1,%2,%3) (2.2.29)
i=1
The ¢; are known functions chosen a priori, named approximation functions or co-
ordinate functions. The a; denote undetermined constants named generalized coor-
dinates. The approximation #& has to make (2.2.28) extremal

(i) = I(a;), 8M(a;) =0 (2.2.30)

This approximation is characterized by a relative extremum. From (2.2.30) comes
IT in form of a function of the constants a; and 8IT(a;) = 0 yields N stationary
conditions .
Il (a;)
861,‘

I may be written as a quadratic form in g; and from Eqgs. (2.2.31) follows a system
of N linear equations allowing the N unknown constants a; to be determined. In
order to ensure a solution of the system of linear equations and a convergence of the
approximate solution to the true solution as the number N of the g; is increased, the
¢; values have to fulfill the following requirements:

=0, i=12,...,N (2.2.31)

e ( satisfies specified inhomogeneous geometric boundary conditions, the so-
called essential conditions of the variational statement and ¢;,i = 1,2,... N sat-
isfy the homogeneous form of the geometric boundary conditions.

e (p; are continuous as required in the variational formulation, e.g. they should have
a non-zero contribution to IT.

e (; are linearly independent and complete.
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The completeness property is essential for the convergence of the Ritz approxima-
tion. Polynomial and trigonometric functions are selected examples of complete
systems of functions.

Generalizing the considerations to three-dimensional problems and using vector-
matrix notation it follows

~ T T
i a9 @ 0 o a;
i(x;,00,03)= i | = |al@r| =] 0 @2 0 a (2.2.32)
17 T o o a
3 a; Q3 3 3
or
" _ AT
i(x1,x2,x3) =G'a (2.2.33)
with S
Q 0 o0 T @ 0 o a
G'=|ogo| =|0"glo"|, a=|a
o 0 @3 o' o ¢! as

G is the matrix of the approximation functions, @; and o are N-dimensional vectors
and a; are N-dimensional subvectors of the vector a of the unknown coordinates.
The application of the Ritz method using the minimum principle of elastic potential
energy I has the following steps:

1. Choose the approximation function it = G'a.
2. Substitute & into IT

(@) = 2/ i) 'CDiadV — /p adv — /q 1dA
Aq (2.2.34)

1
= 2aTKa—a f

with
K= / (DG)'C(DG)dV = / B'CBaV,

/ G pav + / G'qdA
Aq

3. Formulate the stationary conditions of IT(a)

ofl(a) _
da °
i.e. with 5 5
Tr, — T ey _
Ja (a'Ka) = 2Ka, 9 (@f)=a

follows
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Ka=f (2.2.35)

K is called the stiffness matrix, a the vector of unknowns and f the force vector.
These notations are used in a generalized sense.

4. Solve the system of linear equations Ka = f. The vector a of unknown coeffi-
cients is known.

5. Calculate the approximation solution it = a' ¢ and the & = Dii,& = CE, . ..

For an increasing number N, the previously computed coefficients of @ remain un-
changed provided the previously chosen coordinate functions are not changed. Since
the strains are calculated from approximate displacements, strains and stresses are
less accurate than displacements.

The Ritz approximation of elasto-dynamic problems is carried out in an analo-
gous manner and can be summarized as follows. For conservative problems we start
with the variational statement (2.2.23). The displacement vector u is now a function
of x and ¢ and the a-vector a function of 7. The stationary condition yields

aaa {;aT(t)Ka(f) —a'(t)f(t) +dT(t)Ma(t)} -0 (2.2.36)
Ma(1) +Ka(1) = £ (1), 2.2.37)
M= / pG'Gdv,

v
K- / (DG)'C(DG)dV,

\%4
f = / G pdv + / G'qdA
4 Aq

The matrix G depends on x, p and g on x and ¢. M is called the mass matrix.

An direct derivation of a damping matrix from the Ritz approximation analogous
to the K- and the M-matrix of (2.2.37) is not possible. In most engineering applica-
tions (2.2.37) has an additional damping term and the damping matrix is formulated
approximately as a linear combination of mass- and stiffness-matrix (modal damp-
ing)

Ma(t)+Cpa(r)+Ka(t) = f(t), Cp=~oM+BK (2.2.38)

In the case of the study of free vibrations, we write the time dependence of a(z) in
the form

a(t) =acos(wt + ) (2.2.39)

and from (2.2.38) with Cp =0, f(¢) =0 comes the matrix eigenvalue problem (App.
A3)
(K—w*M)a=o0, detK—o’M]=0 (2.2.40)

For N coordinate functions the algebraic equation (2.2.40) yields N eigenfrequen-
cies of the deformable body.
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The Rayleigh-Ritz method approximates the continuous deformable body by a
finite number of degree of freedoms, i.e. the approximated system is less flexible
than the actual body. Consequently for the approximated energy potential IT < IT.
The energy potential converges from below. The approximate displacements satisfy
the equilibrium equations only in the energy sense and not pointwise, unless the
solution converges to the exact solution. The Rayleigh-Ritz method can be applied
to all mechanical problems since a virtual statement exists, i.e. a weak form of the
model equations including the natural boundary conditions. If the displacements
are approximate, the approximate eigenfrequencies are higher than the exact, i.e.
D> .

2.2.3.2 Weighted Residual Methods

Finally some brief remarks on weighted residual methods are given. The fundamen-
tal equation in the displacement approach may be formulated in the form

Alw)=f (2.2.41)

A is a differential operator. We seek again an approximate solution (2.2.29), where
now the constants ¢; are determined by requiring the residual

N
Ry=A < ai i+ (p0> —f#0 (2.2.42)
i=1

1

be orthogonal to N linear independent weight function y;

/RNl//,-dx:O, i=1,2,....N (2.2.43)
v

o, ®; should be linear independent and complete and fulfill all boundary conditions.
Various known special methods follow from (2.2.43). They differ from each other
due to the choice of the weight functions y;:

e Galerkin’s method!2 Vi = @,
e Least-squares method y; = A(¢;),
e Collocation method y; = §(x —x;) (6(x —x;) = 1 if x = x; otherwise 0)

The Galerkin method is a generalization of the Ritz method, if it is not possible to
construct a weak form statement. Otherwise the Galerkin and the the Ritz method for
weak formulations of problems yield the same solution equations, if the coordinate
functions ¢; in both are the same.

12 Boris Grigorjewitsch Galerkin, surname more accurately romanized as Galyorkin (*4
March#¢:/20 Februaryl*!' 1871 Polozk - 12 July 1945 Leningrad) - mathematician and engineer,
contributions to the theory of approximate solutions of partial differential equations
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The classical variational methods of Ritz and Galerkin are widely used to solve
problems of applied elasticity or structural mechanics. When applying the Ritz or
Galerkin method to special problems involving, e.g. a two-dimensional functional
I[u(xy,x;)] or a two-dimensional differential equation A[u(x,x2)] = f(x1,x2), an
approximative solution is usually assumed in the form

N N M
i(xy,x) = Zai(p,-(xl,xg) or ii(xy,x2) Z Z aij@i(x1)@2j(x2), (2.2.44)

i=1 i=1j

where @;(x1,x2) or @i;(x1),¢2;(x2) are a priori chosen trial functions and the a; or
a;j are unknown constants. The approximate solution depends very strongly on the
assumed trial functions.

To overcome the shortcoming of these solution methods Vlasov!? and Kan-
torovich'# suggested an approximate solution in the form

a(xy,x) = ) ai(x))@i(x1,x2) (2.2.45)

™=

i=1

The ¢; are again a priori chosen trial functions but the a;(x; ) are unknown coefficient
functions of one of the independent variables. The condition 8IT[ii(x,x;)] = 0 or
with dA = dx;dx,

/RN(ﬁ)(pidA:(),i: 1,2,...,N

lead to a system of N ordinary differential equations for the unknown functions
a;i(x1). Generally it is advisable to choose if possible the trial functions ¢; as func-
tions of one independent variable, i.e. ¢; = @;(xy), since otherwise the system of
ordinary differential equations will have variable coefficients. The approximate so-
lution #(x1,x;) tends in regard of the arbitrariness of the assumed trial function
¢i(x) to a better solution in the x;-direction. The obtained approximative solution
can be further improved in the x;-direction in the following manner. In a first step
the assumed approximation

i(xy,x2) = ) ai(x))@i(x2) (2.2.46)

M=

yields the functions a;(x;) by solving the resulting set of ordinary differential
equations with constant coefficients. In the next step, with a;(x1) = a;;(x;) and

Pi(x2) = ap(xz), ie
N
il (x1,x2) = ¥ an(x2)an (x1),

i=1

13 Vasily Zakharovich Vlasov (*1187¢¢-/24/!- February 1906 Kareevo - +7 August 1958 Moscow)
- civil engineer

14 Leonid Vitaliyevich Kantorovich (*19 January 1912 St. Petersburg - 7 April 1986 Moscow) -
mathematician and economist, Nobel prize winner in economics in 1975
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the a;1(x;) are the given trial functions and the unknown functions a;(x,) can be
determined as before the a;; (x]) by solving a set of ordinary differential equations.
After completing the first cycle, which yields alll (x1,x2), the procedure can be con-
tinued iteratively. This iterative solution procedure is denoted in literature as vari-
ational iteration or extended Vlasov-Kantorowich method. The final form of the
generated solution is independent of the initial choice of the trial function ¢;(x,)
and the iterative procedure converges very rapidly. It can be demonstrated, that the
iterative generated solutions #i(x;,x;) agree very closely with the exact analytical
solutions u(x,x;) even with a single term approximation

iw(xy,x2) = ai(x1) @ (x2) (2.2.47)

In engineering applications, e.g. for rectangular plates, the single term approxima-
tions yield in general sufficient accuracy.

Summarizing it should be said that the most difficult problem in the application
of the classical variational methods or weighted residual methods is the selection of
coordinate functions, especially for structures with irregular domains. The limita-
tions of the classical variational methods can be overcome by numerical methods,
e.g. the finite element method which is discussed in more detail in Chap. 11.

2.2.4 Problems

Exercise 2.7. An anisotropic body is subjected to a hydrostatic pressure
0] =0, =03 =—p, 04 = 05 = 06 = 0.

1. Calculate the strain state €.
2. Calculate the stress state ¢ for a change of the coordinate system obtained by a
rotation T°.

Solution 2.7. The solution can be presented in two parts:
1. The generalized Hooke’s law yields (Eq. 2.1.20)
&= —(Su+Sn2+Si3)p, & = —(Sia+S2u+S34)p,

& =—(Si2+Sn+S3)p, & = —(Si5+ 525+ S35)p,
& = —(S13+53+833)p, & = —(S16+S26+S36)p

Note 2.3. A hydrostatic pressure in an anisotropic solid yields extensional and
shear strains.

2. From (2.1.39) follows
o] = —p(c*+s)=—p, 0,=0,

o) = —p(P+)=—p, ol =0,
oy = —p, o = —p(—cs+cs)=0
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Exercise 2.8. An anisotropic body has a pure shear stress state
01 =0,=03=05=05=0,04 =1t.

1. Calculate the strain state €.
2. Compare the strain state for the anisotropic case with the isotropic case.

Solution 2.8. The solution can be presented again in two parts:

1. Equations (2.1.20) yield

€ = Suut, & = Sut, & = Sat,
€ = Saut, & = Sust, € = Sael

The anisotropic body has extensional and shear strains in all coordinate planes.
2. In an isotropic body a pure shear stress state yields only shearing strains:
S14=84=5834=0

Exercise 2.9. Consider a prismatic homogeneous anisotropic bar which is fixed at
one end. The origin of the coordinates xj,x,,x3 is placed in the centroid of the
fixed section and the x3-axis is directed along the bar axis, / and A are the length
and the cross-section of the undeformed bar. Assume that the bar at the point
X1 = x2 = x3 = 0has no displacement and torsion:

wy=uy=u3=0,u13=up3=ur1—u;p=0

1. A force F acts on the bar on the cross-section x3 = [ and the stress state is de-
termined by 61 = 0, = 04 = 05 = 05 = 0, 03 = F//A. Determine the strains, the
displacements and the extension of the axis.

2. The fixed bar is deformed only under its own weight: p; = p» =0, p3 = gp.
Determine the strain state and the displacements and calculate the displacements
in the point (0,0,1).

Solution 2.9. Now one has

1. The generalized Hooke’s law (2.1.20) with
ol=0=04=05=06=0, o3=F/A=0#0,

gives

€ =8130, & =530, & =35330,

€4 =25340, & =8350, & =S5360
The displacements can be determined by the introduction of the following equa-
tions

S$130 = uy |, 8230 =uy 7, 8330 = u3 3,
8§340 =u3p+uz3, 8350 =u31+ui3, S360=uz+up

The equations
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up = o(S13x1 +0.5836x2),
uy = 0(0.5836x1 + S23x2),
u3 = 0(835x1 + S34x2 + S33%3)

satisfy the displacement differential equations and the boundary conditions
which are prescribed at the point x; = x; = x3 = 0.

Note 2.4. The stress-strain formulae show that an anisotropic tension bar does not
only lengthens in the force direction x3 and contracts in the transverse directions,
but also undergoes shears in all planes parallel to the coordinate planes. The
cross-sections of the bar remain plane. The stress states of an isotropic or an
anisotropic bar are identical, the anisotropy effects the strain state only.

2. The stress in a bar under its own weight is
0] =0y =04 =05 =06 = 0,03 = pg(l —x3)
The stress-strain displacement equations are

e =u; =S3pg(l—x3), € =uzp+ur3=_Supg(l—x3),
& =up=S53pg(l—x3), & =u3)+u3=_S35pg(l—x3),
& =u33=2533pg(l—x3), & =us1+u2=S36pg(l—x3)

The boundary conditions are identical to case a) and the following displacement
state which satisfies all displacement differential equations and the conditions at
the point x; = x, = x3 = 0 can be calculated by integration

up = pg[—0.5835x3 + S13x1 (1 — x3) +0.5536x> (I — x3)],
Uy = pg[70.5534.x% + 830 (I — x3) + 0.5836x1 (I — x3)],
Uz = pg[—O.SSlgx% + 0.5523)6%

+ 0.5836x1x2 + (S34x2 + S35x1 )] 4 0.5533x3 (2] — x3)]

Note 2.5. The cross-section does not remain plane, it is deformed to the shape
of a second-order surface and the bar axis becomes curved. The centroid of the
cross-section x3 = [ is displaced in all three directions

M1(0707l) = *O.SpgS35lz,
M2(0707l) = 70'5pgS34lza
u3(0,0,1) = 0.5pgSs3/>

Exercise 2.10. Show that for a composite beam subjected to a distributed continu-
ous load g(x) the differential equation and the boundary conditions can be derived
using the extremal principle of potential energy.

Solution 2.10. The beam is of the length /, width b and height A. g(x;) is the lateral
load per unit length. The average elasticity modulus of the beam is E;. With the
stress-strain-displacement relations from Bernoulli!> beam theory

15 Jakob I. Bernoulli (*27 December 16541"!:/6 January 16558"¢ Basel - +16 August 1705 Basel)
- mathematician, beam theory
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d%us
o1 =FEi1&, &=-x3——7%

the strain energy function Wt is seen to be

2
1 1 1 d?
Wr = 26181 = 2E1£12 = Elxg (£>

2 dx}
and
| b/2 h/2 P 1 2
Ei (d?u Eil [ (d*u
nef )5 (6] =5 [ (G)
0 —b/2—h/2 ! 0 !

with inertial moment I = bh? /12 for a rectangular cross-section.
In the absence of body forces, the potential function IT, of the external load ¢(x; )

is l
- [ atayusta)an
0

and the total elastic potential energy is

From the stationary condition 811 (u3) = 0 it follows that

Byl ! a2 I
u
- 2 / ( 3) d"xl 7/q<x1)6143(x1)dxl =0
0 0

There is no variation of E; 1 or g(x] ), because they are specified. From the last equa-
tion one gets

2
5H(M3):E]I M36<d us3

2 l
e (G ) dxi ~ [ gfoe)Bus(r)ax =0
0 0

The first term can be integrated by parts. The first integration can be performed with
the following substitution

d2us , d3us s d2us s duj
U=—, U =—, V= v= —
dx? dxd dx? )’ dx

and yields
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1 1
dzug duj ! d3143 dug
STT(us) = Ey 1 35S 5 dx 7/5 dx; =0
)=t {dx% (dxlﬂo / (dxl) LT e

The second integration can be performed with the following substitution

d3 d* d
uo Ly _du vf-s(ﬂy v = dus
Clxl d‘xl

and yields

l

l
d us du3 d3u3
5H( ) |:E1[ 6 (—>:| — |:E][—5u3:|
def ~\dwi /], dof 0

I 1
d*u
+ /Ell—fdxl 7/6]()6])6143(1)61 =0
0 dx 0
Finally we obtain

l l
- d us du3 d us
5H(u3) = |:E11 dx2 6 (dx] >:| |:E11 dx 5u3:|0

+/{E11 )} Suzdx; =0

Since the variations are arbitrary the equation is satisfied if
E]I(u:;)”” — q

and either
Eil(u3)" =0

or uf is specified and
Eil(u3)" =0

or u3 is specified at x; = 0 and x; = [.

The beam differential equation is the Euler-Lagrange equation of the variational
statement 61T = 0, u3, u}, represent essential boundary conditions, and EIu’y, E11u}’'
are natural boundary conditions of the problem. Note that the boundary COIldlthHS
include the classical conditions of simply supports, clamped and free edges.

Exercise 2.11. The beam of Exercise 2.10 may be moderately thick and the ef-
fects of transverse shear deformation €5 and transverse normal stress are taken into
account. Show that the differential equations and boundary condition can be de-
rived using the Reissner’s variational principle. The beam material behavior may be
isotropic.
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Solution 2.11. To apply Reissner’s variational statement one must assume admis-
sible functions for the displacements u(x),u3(x;) and for the stresses o (x1,x3),
03(x1,x3),05(x1,x3). For the beam with rectangular cross-section and lateral load-
ing g(x;) follow in the frame of beam theory

up =0, opob=04=0=0

As in the classical beam theory (Bernoulli theory) we assume that the beam cross-
sections undergo a translation and a rotation, the cross-sections are assumed to re-
main plane but not normal to the deformed middle surface (Timoshenko!® theory).
Therefore we can assume in the simplest case

ur =x3y(x1), uz=wx)
and the strain-displacement relations may be written

dus dus  Jduy
& = o1 X3y (x1), oxa 0,8 o1 + o " (x1) + w(x1)

For the stresses 01, 03 and 05 the following functions are assumed

oM I_b#
1—[.X3, _127

_3q | x3 2 1/ x3 2
"“ﬂh—/z%‘s(m”’
30 6\’ B
——l(Wﬁl,AM

2A
The assumed functions for 67 and o5 are identical to those of the Bernoulli beam
theory and 03 may be derived from the stress equation of equilibrium in the thick-
ness direction, Eq. (2.2.1), with

O5 =

G3(+h/2) = 4,01 (~h/2) = 0

The bending moment M and the shear force resultant Q will be defined in the usual
manner

+h/2 +h/2
M(x1) = /bGIde O(x)) = /bdsdx3
—h/2 —h/2

Now Reissner’s functional ¥k (4, 0), e.g. (2.2.18), takes with the assumption above
the form

16 Stepan Prokopovich Timoshenko (*22 December, 1878 Schpotiwka - 1 29 May, 1972
Wauppertal-Elberfeld) - engineer, founder of the modern applied mechanics
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[ +h/2

%(M,G)—//{lercsesé

0 —h/2

!
- /C]del
0

+h/2
:/l /h {61x3l//’(x1)+65 W (x1) + w(x)]

0 —h/2

[0 + 07 +2(1+Vv)o?] }bdx3dx1

1

1

Y [612-&-6324-2(1+V)652]}bdx1—/qwdx1
0

Substituting M and Q and neglecting the term 03 which only depends on g and not
on the basic unknown functions y,w respectively, M and Q, and yields no contribu-

tion to the variation 6% we obtain

M?>  6vgM  3Q?
q —i—qw}dxl

1
¥(w,v,M,Q) :/{MV/+Q(W/+W)_E+ SEA  5GA
0

1

SR :/[M6W+W’5M+Q(5w’+5w)+(w’+ V)80
0
M 6vg 60 B

Integration the terms M8y’ and Q8w by parts and rearranging the equation

l
8t — M3y -+ Q8wlh+ [ {10+ M5y - [0 - glow
0 60

M  6vg , _
+ [WI_EI+5EA} SM + [l/H—w —SGA} 5Q}dx1—0

The first term yields the natural boundary conditions of the variational statement:

1. Either M = 0 or ¥ must be prescribed at x; =0, 1.
2. Either Q = 0 or w must be prescribed at x; = 0,/.

The variations 6, 8w, M and 8Q are all arbitrary independent functions of x; and

therefore 8%k = 0 only if

——dlgf:l) +0(x1) =0, —d%ifl) +q(x1) =0,
dw(x;) 60(x1)

dya)  Mxi) | 6valy) _
dx; EI 5EA ’ dx;
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The both equations for the stress resultants are identical with the equations of the
classical Bernoulli’s theory. The term (w’ + ) in the fourth equation describes the
change in the angle between the beam cross-section and the middle surface during
the deformation. The term (w’ + ) is proportional to the average shear stress Q/A
and so a measure of shear deformation. With GA — oo the shear deformation tends
to zero and ¥ to —w' as assumed in the Bernoulli’s theory. The third term in the
third equation depends on the lateral load g and Poisson’s ratio v and tends to zero
for v — 0. This term described the effect of the transverse normal stress 3. which
will be vanish if v = 0 as in the classical beam theory.

Substituting the differential equations for y and w into the differential relations
for M and Q leads to

| +vg S - 0t =0, JGAw )+ )]+ glon) =0
or
EI [l//"(xl) - vg) ql(i)z)} — ZGA[I]/+W’] =0, ZGA[I]I’()C])+W"(X1)] +q(x1)=0

Derivation and rearrangement yield a differential equation of 3rd order for y(x;)

Ely" (x1) = —q(x1) +v§ q’é);])
With dM .
0(r0) = 2480 — g1 [y (a) v 21
and s EI
O(x) = 6a[llf(xl)+w(xl)]

follows an equation for w’(x;)

W) = —y(x) ’[w”<x1>+v6‘“}“‘)}

tsca 5 EA

Neglecting with v = 0 the effect of the transverse normal stress 63 we get the Tim-
oshenko’s beam equation

Ell[//”(xl) =—q(x1), M(x)= E[l[//(Xl)v Ox) = E[l[/U()C])

Ely" 5
W) = — )+ 2R

kKGA 6
One can note that as G — oo the shear deformation tends to vanish as assumed in
classical beam theory, i.e. w(x;) = —w/(x;) and the classical beam equations follow
to

EIW" (x1) = q(x1), M(x;)=—EIW'(x1), Q(x1)=—EIW" (x)
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The derivation of the Timoshenko’s beam equation for laminated beams one can
find in more detail in Sect. 7.3.

Exercise 2.12. Derive the free vibration equations for the moderately thick beam,
Exercise 2.11, using Hamilton’s principle in conjunction with the Reissner varia-
tional theorem.

Solution 2.12. In order to derive the free vibration equations we apply the gener-
alized Hamilton’s principle, i.e. the Hamilton’s principle in conjunction with the
Reissner variational statement

62(.0) = [[7(w) ~ (. 0)]dr =0

T (u) is the kinetic energy and ¥ (#,0) the Reissner functional of the moderately
thick beam. Y& (#,0) is known from Exercise 2.11 and the kinetic energy for the
beam may be written as

1 h/2 2 2
1 d 0
o= [ () (2
0 —h/2
! 2 2
(1 oy aw
0
with
h/2 h/2
= / bxidx;, A= / bdx;
—h/2 —h/2

and the mass density p of the beam material. The substitution of 7' [u] above and
¥(w,y,M,Q) of Exercise 2.11 in the functional y yields

Sx(u,0) = 620/1{;p [I(%_T)ZJFA(%;V)z]

M?>  6vgM  3Q?
[Ml//+Q( "+y)——+ vq iqw}}dtdxl

2EI  5EA 5GA

1

- [(prtoveazs)a

MY — M — O(SW +8y) — (W + y)80

b M sy SV 92

E1°" " SEA 5Ga%2- q5w} dedy
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Integration the terms MSy’ + Q6w by parts
! ;! ! ;!
/Mé\//’dxl =M5w‘0—/M’6q/dx1, /Q(Sw’dxl - Qéw‘o—/Q’éwdxl,
0 0 0 0
rearranging the equation 6 and setting 6y = 0 yield

](M8w+Q6w 0dt+//[(pl 2W+Q M)(S\,/

I3 0

[Q+ A(%Z)}& +<vﬂ£+6vq>w

SEA

60 B

and the equations for free vibrations follow with ¢ =0

oM o’y o, 20 ’w

- o TPl on PAE =0
dv_M_, dw 60 _
dx; EI dx; 5GA

The underlined terms represent the contribution of rotatory inertia and the effect of
transverse shear deformation.
The system of four equations can be reduced to a system of two equations for the
unknowns w and y. Substitution of
I’y %y bh?

in the second and fourth equation leads

Py p Py A d’w dw h[EJy pd2y]
G ox? G o2

o0 Eacaxn PEar " Vo 10

The equations for forced or free vibrations are given in Sect. 7.3 in a more general
form.
References
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Chapter 3
Effective Material Moduli for Composites

Composite materials have at least two different material components which are
bonded. The material response of a composite is determined by the material moduli
of all constituents, the volume or mass fractions of the single constituents in the
composite material, by the quality of their bonding, i.e. of the behavior of the in-
terfaces, and by the arrangement and distribution of the fibre reinforcement, i.e. the
fibre architecture.

The basic assumptions made in material science approach models of fibre rein-
forced composites are:

The bond between fibres and matrix is perfect.
The fibres are continuous and parallel aligned in each ply, they are packed regu-
larly, i.e. the space between fibres is uniform.

e Fibre and matrix materials are linear elastic, they follow approximately Hooke’s
law and each elastic modulus is constant.

e The composite is free of voids.

Composite materials are heterogeneous, but in simplifying the analysis of compos-
ite structural elements in engineering applications, the heterogeneity of the material
is neglected and approximately overlayed to a homogeneous material. The most
important composites in structural engineering applications are laminates and sand-
wiches. Each single layer of laminates or sandwich faces is in general a fibre rein-
forced lamina. For laminates we have therefore two different scales of modelling:

e The modelling of the mechanical behavior of a lamina, is called the micro-
mechanical or microscopic approach of a composite. The micro-mechanical
modelling leads to a correlation between constituent properties and average ef-
fective composite properties. Most simple mixture rules are used in engineering
applications. Whenever possible, the average properties of a lamina should be
verified experimentally by the tests described in Sect. 3.1 or Fig. 3.1.

e The modelling of the global behavior of a laminate constituted of several quasi-
homogeneous laminae is called the macroscopic approach of a composite.

Fibre reinforced material is in practice neither monolithic nor homogeneous, but it
is impossible to incorporate the real material structure into design and analysis of

© Springer Nature Singapore Pte Ltd. 2018 85
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0_3
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TGL TGT —_— T

test test l T test
€L, €T er Y
l oL l or T -~
oL, er or
EL=—, vir=— Er=— Grr =
EL €L er

Fig. 3.1 Experimental testing of the mechanical properties of an UD-layer: £y, = Ej, Er = E»,
Gur = Gio,Vir = Viz

composite or any other structural component. Therefore the concept of replacing the
heterogeneous material behavior with an effective material which is both homoge-
neous and monolithic, thus characterized by the generalized Hooke’s law, will be
used in engineering applications. We assume that the local variations in stress and
strain state are very small in comparison to macroscopical measurements of material
behavior.

In the following section some simple approaches to the lamina properties are
given with help of the mixture rules and simple semi-empirical consideration. The
more theoretical modelling in Sect. 3.2 has been developed to establish bounds on
effective properties. The modelling of the average mechanical characteristics of lam-
inates will be considered in Chap. 4.

3.1 Elementary Mixture Rules for Fibre-Reinforced Laminae

In Sect. 1.1 the formulas for volume fraction, mass fraction and density for fibre
reinforced composites are given by (1.1.1) - (1.1.5). The rule of mixtures and the
inverse rule of mixtures is based on the statement that the composite property is
the weighted mean of the properties or the inverse properties of each constituent
multiplied by its volume fraction. In the first case we have the upper-bound effective
property, in the second - the lower-bound. In composite mechanics these bounds are
related to W. Voigt and A. Reuss. In crystal plasticity the bounds were indroduced
by G. Taylor! and O. Sachs?. The notation used is as follows:

! Geoffrey Ingram Taylor (*7 March 1886 St. John’s Wood, England - 127 June 1975 Cambridge)
- physicist and mathematician, contributions to the theory of plasticity, fluid mechanics and wave
theory

2 Oscar Sachs (*5 April 1896 Moscow - 130 October 1960 Syracus, N.Y.) - metallurgist, contribu-
tions to the theory of plasticity
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E  Young’s modulus
v Poisson’s ratio

G Shear modulus

o Stress

€  Strain

V,M Volume, mass

v,m Volume fraction, mass fraction

A Cross-section area

p  Density

The subscripts f and m refer to fibre and matrix, the subscripts L = 1, T = 2 refer to
the principal direction (fibre direction) and transverse to the fibre direction.

3.1.1 Effective Density

The derivation of the effective density of fibre reinforced composites in terms of
volume fractions is given in Sect. 1.1

_ % :Mf+Mm _ prf+Pme

Vv Vv Vv (3.1.1)
= PtV + PmVm = Prve+ Pm(1 —vr)
In literature we also find v¢ = ¢ for the fibre volume fraction and we have
P = P9+ Ppm(l—9) (3.1.2)

In an actual lamina the fibres are randomly distributed over the lamina cross-section
and the lamina thickness is about 1 mm and much higher than the fibre diameter
(about 0,01 mm). Because the actual fibre cross-sections and the fibre packing gen-
erally are not known and can hardly be predicted exactly typical idealized regular
fibre arrangements are assumed for modelling and analysis, e.g. a layer-wise, square
or a hexagonal packing, and the fibre cross-sections are assumed to have circular
form. There exists ultimate fibre volume fractions VE which are less than 1 and
depend on the fibre arrangements:

e square or layer-wise fibre packing - Vo = 0.785,

e hexagonal fibre packing - Vo = 0.907

For real UD-laminae we have VE about 0.50 - 0.65. Keep in mind that a lower
fibre volume fraction results in lower laminae strength and stiffness under tension
in fibre-direction, but a very high fibre volume fraction close to the ultimate values
of vf may lead to a reduction of the lamina strength under compression in fibre
direction and under in-plane shear due to the poor bending of the fibres.
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3.1.2 Effective Longitudinal Modulus of Elasticity

When an unidirectional lamina is acted upon by either a tensile or compression load
parallel to the fibres, it can be assumed that the strains of the fibres, matrix and
composite in the loading direction are the same (Fig. 3.2)

Al
ELf=&m =& = T (3.1.3)

The mechanical model has a parallel arrangement of fibres and matrix (Voigt model,
Sect. 2.1.1) and the resultant axial force Fi, of the composite is shared by both fibre
and matrix so that

F=F¢+Fm or F.=0LA=01fAt+ OLmAm (3.14)
With Hooke’s law it follows that
oL =EreL, orf=ELfeLf, Orm = ELmEm

or
ELe A = Ere fAs+ En€LmAm (3.1.5)

Since the strains of all phases are assumed to be identical (iso-strain condition),

(3.1.5) reduces to
Ag A

EL:EfK+Em7m (3.1.6)
with Ar Al VW A Anl VW,
f f f m m m
_——=— = — = _——-_— = — = 3.1.7
A A vt AT Ty T 3.1.7)
and the effective modulus Ef, can be written as follows
Ep, = Evvi+ Eqvm = Epvi+ En(1 —vg) = Es@ + En (1 — @) (3.1.8)

Equation (3.1.8) is referred to the Voigt estimate or is more familiarly known as the
rule of mixture. The predicted values of E} are in good agreement with experimental
results. The stiffness in fibre direction is dominated by the fibre modulus. The ratio
of the load taken by the fibre to the load taken by the composite is a measure of the
load shared by the fibre

F FL
l [+ Al

[ >

Fig. 3.2 Mechanical model to calculate the effective Young’s modulus Ep
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Fr  Erf
— = — 3.19
R E vt ( )

Since the fibre stiffness is several times greater than the matrix stiffness, the second
term in (3.1.8) may be neglected

Ep ~ Epve (3.1.10)

3.1.3 Effective Transverse Modulus of Elasticity

The mechanical model in Fig. 3.3 has an arrangement in a series of fibre and matrix
(Reuss model, Sect. 2.1.1). The stress resultant Fr respectively the stress o is equal
for all phases (iso-stress condition)

Fr = Frt = Frm, O1 = O1f = OTm (3.1.11)
From Fig. 3.3 it follows that

Ab  Abs+Ab
Ab = Abg+ Aby, eszz% (3.1.12)

and with
b=vib+ (1 —vs)b=bs+bn (3.1.13)

and

Abf Vfb Abm (1*Vf)b
&r=— — = V€ 1—vp)e 3.1.14
TS D + v 5 veere+ (1 — ve)€rm ( )

with
Abg Aby,

Vf—b’ ETm = 7(1 YA

Using Hooke’s law for the fibre, the matrix and the composite

E

b b+Ab

{FT

Fig. 3.3 Mechanical model to calculate the effective transverse modulus Ep

erf =
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or = Eréer, Orf=Ere€r, Orm = ETmErm (3.1.15)

substituting Eqgs. (3.1.15) in (3.1.14) and considering (3.1.11) gives the formula of
Er
1 ve  1—vf _VF oV EfE,

= = — Oor ET =
ET Ef Em Ef Em (1 — Vf)Ef + VfEm

(3.1.16)

Equation (3.1.16) is referred to Reuss estimate or sometimes called the inverse rule
of mixtures. The predicted values of ET are seldom in good agreement with exper-
imental results. With E,, < Eg follows from (3.1.16) Et ~ Ep(1 —v¢) ™!, ie. E7 is
dominated by the matrix modulus Ej,.

3.1.4 Effective Poisson’s Ratio

Assume a composite is loaded in the on-axis direction (parallel to the fibres) as
shown in Fig. 3.4. The major Poison’s ratio is defined as the negative of the ratio of
the normal strain in the transverse direction to the normal strain in the longitudinal
direction e

vir = — L (3.1.17)
L

With

Ab  Abi+Aby

—E&r=VITéfL=—"7"= = _[Vngf‘F (1 - Vf)ETmL

b b
erf €Tm
f=——) Vm=———
ELf €Lm
it follows that
Er = —VLréL = —VvrVEELF — (1 — Vf)VmELm (3.1 .1 8)

The longitudinal strains in the composite, the fibres and the matrix are assumed to be
equal (Voigt model of parallel connection) and the equation for the major Poisson’s
ratio reduces to

L L

I+Al

Fig. 3.4 Mechanical model to calculate the major Poisson’s ration vyt
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vir = viVi+ (L —ve) Vin = viVi+ vV = O ve+ (1 — @) vy (3.1.19)

The major Poisson’s ratio vt obeys the rule of mixture. The minor Poisson’s ratio
V1L = —&L /et can be derived with the symmetry condition or reciprocal relationship

v _ Vit
Er E’
E¢E
(VfEm + VmEf) (VfEf + VmEm)
The values of Poisson’s ratios for fibres or matrix material rarely differ significantly,

so that neither matrix nor fibre characteristics dominate the major or the minor elas-
tic parameters vy and V.

E
VIL = ViT Ez = (VeVe+ Vi Vi) (3.1.20)

3.1.5 Effective In-Plane Shear Modulus

Apply a pure shear stress 7 to a lamina as shown in Fig. 3.5. Assuming that the shear
stresses on the fibre and the matrix are the same, but the shear strains are different

T T T

=—, =— = — 3.1.21
Ym G Y Gr Y Gir ( )
The model is a connection in series (Reuss model) and therefore
T=T=1Tn, A=Ar+An A=btany=Ybr+ Ymbm (3.1.22)
and with
b=bi+by = (Vf+vm)b:\/fb+(lf\)f)b (3.1.23)
it follows that
As = Ypveb,  Am = Ym(1—vg)b (3.1.24)
T
_—
A
matrix e
fibre | b / A,,%
. Y Ag
matrix N
Am/2

T

Fig. 3.5 Mechanical model to calculate the effective in-plane shear modulus Gt



92 3 Effective Material Moduli for Composites
Using Hooke’s law we have 7/Grr = (T/Gm)vm + (7/Gs)ve which yields

Gme Gme
Gt = = 3.1.25
M 0= v)Gr+vGm (1—9)Gi+ 9Gn ( )

or by analogy to (3.1.16)

1 ve 1—ve v¢ vy

Gir Gi Gm Gt Gn

which is again a Reuss estimate. Note that assuming isotropic fibres and matrix

material one gets
E E
! S - (3.1.26)

Gi=———, G
T2y T T 2(1 4 Vi)

3.1.6 Discussion on the Elementary Mixture Rules

Summarizing the rule of mixtures as a simple model to predict effective engineering
moduli it must be kept in mind that there is no interaction between fibres and matrix.
There are only two different types of material response: the Voigt or iso-strain model
in which applied strain is the same in both material phases (parallel response) and
the Reuss or iso-stress model in which the applied stress is the same in both material
phases (series response).

For an aligned fibre composite the effective material behavior may be assumed
as transversally isotropic and five independent effective engineering moduli have to
be estimated. With x, — x3 as the plane of isotropy (Table 2.5) we have

E\=E., Ey,=E3=Er, Ej=Gyx=Grr=Er/[2(1+vrr)),
Es=Gi3=E¢=G12=Grr, Vi2=Vi3=Vir, V23 =VIT,
virET = vrLEL

If we make choice of Ey, ET, Gy, GTT, VLT as the five independent moduli the rules
of mixture yield
Ey = viEs+ (1 - Vf)Em7

E¢E,
Er =——FF——,
viEm + (1 - Vf)Ef (3.1.27)
fUm o
Gir =

viGm + (l 7Vf)Gf7
vir = veve+ (1 —vg) v

The shear modulus Gt corresponds to an iso-shear strain model and is analogous
to the axial tensile modulus case

Grr = viGr + (1 — Vf)Gm (3.1.28)
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It may be noted that neither the iso-shear stress nor the iso-shear strain condition
for Grr and G estimation are close to the real situation of shearing loaded fibre
reinforced composites. Therefore the equations for Gyt and Gt cannot be expected
as very reliable.

If one considers the approximative predictions for the effective moduli Ey, and
Er as a function of the fibre volume fraction vy, i.e., El, = Ep (vf), Er = Et(vf),
and the ratio Ef/Ey, is fixed, it is clear that reinforcing a matrix by fibres mainly
influences the stiffness in fibre direction (Ey is a linear function of v¢) and rather
high fibre volume fractions are necessary to obtain a significant stiffness increase in
the transverse direction (Et is a non-linear function of v and rather constant in the
interval 0 < v¢ < 0,5).

Very often fibres material behavior is transversally isotropic but the matrix ma-
terial is isotropic. For such cases simple alternative relations for the effective engi-
neering moduli of the UD-lamina can be given

EL =  viEr+(1—vp)En,  vir = vevire+ (1 —vf) Vi,
Ep = EtiEn N VITfVin

ViEm + (IG— vi)Ert’ ViV + (1 = ve) Ve (3.1.29)
Gir = LT m Grr = veGr+ (l — Vf)Gm

viGm + (1 —vf)Grre’

In Eq. (3.1.29) Em, Vm,Gm = Em/2(1 4 Vi) are the isotropic matrix moduli and
Et, Ets, Grre, Ge = E1¢/2(1 + Vrre), VT, VTt are transversally isotropic fibre mod-
uli. Ey,, Vyn of the matrix material and E¢, Ets, Gy, Vire, Ve OF Grre Of the fibre
material can be chosen as the independent moduli.

3.2 Improved Formulas for Effective Moduli of Composites

Effective elastic moduli related to loading in the fibre direction, such as £y and vy,
are dominated by the fibres. All estimations in this case and experimental results are
very close to the rule of mixtures estimation. But the values obtained for transverse
Young’s modulus and in-plane shear modulus with the rule of mixtures which can
be reduced to the two model connections of Voigt and Reuss, do not agree well with
experimental results. This establishes a need for better modelling techniques based
on elasticity solutions and variational principle models and includes analytical and
numerical solution methods.

Unfortunately, the theoretical models are only available in the form of compli-
cated mathematical equations and the solution is very limited and needs huge effort.
Semi-empirical relationships have been developed to overcome the difficulties with
purely theoretical approaches.
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The most useful of those semi-empirical models are those of Halpin and Tsai’
which can be applied over a wide range of elastic properties and fibre volume frac-
tions. The Halpin-Tsai relationships have a consistent form for all properties. They
are developed as simple equations by curve fitting to results that are based on the
theory of elasticity.

Starting from results obtained in theoretical analysis, Halpin and Tsai proposed
equations that are general and simple in formulation. The moduli of a unidirectional
composite are given by the following equations

e Fy and vt by the law of mixtures Egs. (3.1.8), (3.1.19)
e For the other moduli by

M 1
- — M (3.2.1)
My 1 —nve
M is the modulus under consideration, e.g. Et, Gy, ..., 1 is a coefficient given
by
M;/My) —1
n= (My/Min) — 1 (3.2.2)
(Mf/Mm) + 5

£ is called the reinforcement factor and depends on

— the geometry of the fibres
— the packing arrangement of the fibres
— the loading conditions.

The main difficulty in using (3.2.1) is the determination of the factor & by comparing
the semi-empirical values with analytical solutions or with experimental results.

In addition to the rule of mixtures and the semi-empirical solution of Halpin and
Tsai there are some solutions available which are based on elasticity models, e.g. for
the model of a cylindrical elementary cell subjected to tension. The more compli-
cated formulas for Ey, and vyt as the formulas given above by the rule of mixtures
yields practically identical values to the simpler formulas and are not useful. But
the elasticity solution for the modulus Gyt yields much better results and should be
applied

Ge(14ve) + Gm(1 — vg) Gi(14+¢)+Gn(1—9)

O = O G (=) 4 Gl +v)  "Gi(1-0) 1 Gml1 79) 7

Summarizing the results of Sects. 3.1 and 3.2 the following recommendations
may be possible for an estimation of effective elastic moduli of unidirectional lami-
nae

e FEp and vrt should be estimated by the rule of mixtures

e vr follows from the reciprocal condition

e G should be estimated from (3.2.3) or the Halpin/Tsai formulas (3.2.1) and
(3.2.2)

3 Stephen Wei-Lun Tsai (“6 July 1929, Beijing) - US-American engineer, strength criteria for
composites, founder of the Journal of Composite Materials
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e FET may be estimated with help of the Halpin/Tsai formulas. But only when reli-
able experimental values of Et and Gy are available for a composite the &-factor
can be derived for this case and can be used to predict effective moduli for a range
of fibre volume ratios of the same composite. It is also possible to look for nu-
merical or analytical solutions for £ based on elasticity theory. In general, & may
vary from zero to infinity, and the Reuss and Voigt models are special cases, e.g.

1
Byp— oMV
1—nve

for & = 0 and & = oo, respectively. In the case of circular cross-sections of the
fibres £ =2 or & = 1 can be recommended for Halpin-Tsai equation for Et or
Gyrr. But it is dangerous to use uncritically these values for any given composite.

3.3 Problems

Exercise 3.1. Determine for a glass/epoxy lamina with a 70 % fibre volume fraction

1. the density and the mass fractions of the fibre and matrix,

2. the Young’s moduli Ef = Ey, and E} = Er and determine the ratio of a tensile
load in L-direction taken by the fibres to that of the composite,

3. the major and the minor Poisson’s ratio vir, V1L,

4. the in-plane shear modulus

The properties of glass and epoxy are taken approximately from Tables F.1 and
F2 as pgjass = Pr=2,5 gem™, vy = 0,7,V = 0,3, Pepoxy = Pm = 1,35 gem ™,
E; =70 GPa, E,, = 3,6 GPa.

Solution 3.1. Taking into account the material parameters and the volume fraction
of the fibres one obtains:

1. Using Eq. (1.1.3) the density of the composite is
P = Pvi+ PmVm = 2,5-0,7 gem > +1,35-0,3 gem > = 2,155 gecm 3
Using Eq. (1.1.4) the mass fractions are

Jofs 25 Pm 1,35
=P = =2 0,7=0,8121 —Pmy, =
e T s 0 T O Mm Y m = 5 5s

0,3=0,1879
Note that the sum of the mass fractions must be 1
mg+my =0,8121+0,1879=1
2. Using Egs. (3.1.8), (3.1.16) and (3.1.9) we have

E;, =70-0,7GPa+3,6-0,3 GPa= 50,08 GPa,
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0,7 n 0,3
Er 70GPa  3,6GPa
— == 0,7=0,9784
AR E. 50080 T
The ratio of the tensile load Fi, taken by the fibre is 0,9784.
3. Using Egs. (3.1.19) and (3.1.20) follows

=0,09333 GPa™ !, Er =10,71 GPa,

10.71
—02-07403-03=0.230 —0.230——— = 0,04
VLT + ) VTL 5008 ,049
4. Using (3.1.26) and (3.1.25)
70 GPa 3.6 GPa
Gi= — 2% _2917GP G = 22 133GP
T 21102 > ™= 21+0,3) b
1.38 GPa-29.17 GP
Guir a a —4.14GPa

T 29.17GPa-0.3+1,38GPa-0.7)
Using (3.2.3)

29.17 GPa- 1.7+ 1.38 GPa-0.3
— 1.38GP —6.22GP
Gur =138 GPa o Gpa 03 1 138GPa 1.7~ 02268

Conclusion 3.1. The difference between the both formulae for Gy is significant.
The improved formulae should be used.

Exercise 3.2. Two composites have the same matrix materials but different fibre
material. In the first case Ef/Ey = 60, in the second case Ef/En = 30. The fibre
volume fraction for both cases is v¢ = 0,6. Compare the stiffness values £, and Et
by EL/ET,EL/Em,ET/Em.

Solution 3.2. First case
Er = Epve+ En(1 —vy), o= 60, Ef =60En,

m

1— -1
Eij = 36Em +0,4Em = 36,4Em,  Erj = ( 'y vf) —2,439E,,

E E E En
Mo 4025, o364, =243
ETI Em Em

Second case

Erp = Epvi+En(1 —vy), Ep =30En,

1— -1
Eiy = 18Em+0,4Ey = 18,4En,  Er — [ - ) =2 3810E,,
EfZ Em
E E E
L2 7728, L2184, 22381
ET2 Em m

Conclusion 3.2. The different fibre material has a significant influence on the
Young’s moduli in the fibre direction. The transverse moduli are nearly the same.
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Exercise 3.3. For a composite material the properties of the constituents are £t = 90
GPa, vy =0,2,Gr = 35 GPa, Ey, = 3,5 GPa, vy, = 0,3, Gy, = 1,3 GPa. The volume
fraction v¢ = ¢ = 60%. Calculate Ey , ET,Grr, VLT, V7L With the help of the rule of
mixtures and also Gy with the improved formula.

Solution 3.3.
-1
%3 Vm
Ep = Epv+Em(1 —vf) =55,4GPa, Er=|—+-2) =8,27GPa,
Er ' En
VLT E
VIT = Vi 4 V(1 —vg) = 0,24, v = ——L =0,0358,
L
GGy
Grir = = 3,0785 GPa
H (1 —v¢)Gs+veGnm
The improved formula (3.2.3) yields
1 Gi+ (1 —vp)G
Gur = G UG0G40 G,

(1 —v)Gi+ (14 vf) G

Conclusion 3.3. The difference in the Gt values calculated using the rule of mix-
tures and the improved formula is again significant.

Exercise 3.4. A unidirectional glass/epoxy lamina is composed of 70% by volume
of glass fibres in the epoxy resin matrix. The material properties are Er = 85 GPa,
E., = 3,4 GPa.

1. Calculate Ey using the rule of mixtures.
2. What fraction of a constant tensile force Fy is taken by the fibres and by the
matrix?

Solution 3.4. Withe the assumed material parameters and fibre volume fraction one
obtains

1. Ep, = Efve+ Em(1 — v¢) = 60,52 GPa,
2. Fi, = oA = EL €A, F; = OtA = Et€A, Fiy = OnA = En€An
With F1, = F; + Fy, it follows that

Ep €A = EreAs+ EnéAnm = EL = 0,7E:+0,3E,
60,52 =0,7-85+3-3,4=59,5+1,02

and therefore F, = 60,52 N, Ff =59,5 N, F, = 1,02 N.

Conclusion 3.4. The fractions of a constant tensile load in the fibres and the ma-
trix are: Fibres: 98,31 %, Matrix: 1,69 %

Exercise 3.5. The fibre and the matrix characteristics of a lamina are Er = 220 GPa,
En = 3,3 GPa, Gf = 25 GPa, Gy, = 1,2 GPa, vy = 0,15, vy, = 0,37. The fibre is
transversally isootropic and transverse Young’s modulus is Et¢ = 22 GPa. The fibre
volume fraction is v = 0,56. The experimentally measured effective moduli are
Er =125 GPa, Er =9,1 GPa, Gy =5 GPa, vir =0,34.
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1. compare the experimental values with predicted values based on rule of mixtures.
2. Using the Halpin-Tsai approximate model for calculating E1 and Grr, what value
of £ must be used in order to obtain moduli that agree with experimental values?

Solution 3.5. The comparison can be be performed by results from the mixture rules
and improved equations.

1. The rule of mixtures (3.1.27) yields
E;. =0,56-220 GPa+ (1 —0,56)-3,3 GPa = 124,65 GPa,

B — 220 GPa-3,3 GPa o 36.GPa
0,56-3,3GPa+ (1—0,56)-220GPa ’

B 25GPa-1,2 GPa

~ 0,56-1,2GPa+ (1 —0,56)-25GPa

vir = 0,56-0,15+(1—0,56)-0,37=0,25

GLT = 2, 57 GPa7

It is seen that the fibre dominated modulus Ej, is well predicted by the rule of
mixtures, while E1, Gyt and vt are not exactly predicted.
2. The Halpin-Tsai approximation yields with Et¢ = 22 GPa, £ = 2 for Et

1 E —
Ep— +5anEm’ _ Tt/ Em — 1
ETf/Em +5

—0,6538, Er=9,02GPa
1— nve

With a value £ = 2.5 follows for Grr

_1+€11Vf _Gf/Gm—l

G , o n=—rm
Ty O™ T GGt &

=0,8339, Gir=4,88 GPa
The predicted value for Et is nearly accurate for & = 2 which is the recom-

mended value in literature but the recommended value of & = 1 for Gt would
underestimate the predicted value significantly

1 Gi/Gm—1
+anGm7 o f/ m

G — _ -
T oy Gi/Gm+1

=0,9084, Gir= 3,68 GPa

It can be seen that it is dangerous to accept these values uncritically without
experimental measurements.

Exercise 3.6. Let us assume the following material parameters for the shear mod-
ulus of the fibre and the matrix: Gy = 2,5 - 10* Nmm™2, Gy, = 1,2- 103> Nmm 2.
The experimental value of the effective shear modulus is G;y = 5-10> Nmm 2, the
Poisson’s ratios are vy = 0, 15, vy, = 0,37 and the fibre volume fraction is v = 0, 56.
For the improvement in the sense of Halpin-Tsai we assume & = 1...2 for a circular
cross-section of the fibres. Compute:

1. the effective shear modulus,
2. the improved effective shear modulus,
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3. the improved effective shear modulus in the sense of Halpin-Tsai

Solution 3.6. The three problems have the following solutions:
1. the effective shear modulus after Eq. (3.1.25)
1,2-10° Nmm~2-2,5-10* Nmm >

(1-0,56)-2,5-10* Nmm 2 +0,56-1,2-103 Nmm 2
=2,57-10> Nmm >

Gir =

2. the improved effective shear modulus after Eq. (3.2.3)

12-10° N 2,5-10* Nmm~2(1+40,56) +1,2- 10 Nmm~2(1 —0,56)
B mm? 2.5.10* Nmm~2(1 —0,56) 4+ 1,2- 103 Nmm~2(1 +0,56)
=3,68-103> Nmm >

Gir =

3. For the improved effective shear modulus in the sense of Halpin-Tsai at first
should be estimated 17 with Eq. (3.2.2)

~ (2,5-10*Nmm™2/1,2-10° Nmm %) — 1
© (2,5-10*Nmm~2/1,2-103 Nmm™2) + &

In the case of £ = 1 we get n = 0,9084, if & = 2 we get 1 = 0,8686. The shear
modulus itself follows from Eq. (3.2.1)

1+&n-0,15

1,2-10° Nmm™—2
10,15 fm

Gir=

Finally we get
Grr(E =1)=3,68-10° Nmm 2, Gip(€ =2)=4,61-10° Nmm >

The last result is the closest one to the experimental value. Let us compute the

deviation exp comp
Gir —Gip

5= -100%
Gir

The results are

5-10° Nmm~2 —2,57-10° Nmm™—2

O(case a) = — -100% = 46,6%
5-103 Nmm
5-10° Nmm~2 —2,66- 10° Nmm—2
S(case b) = o O 100% = 26,8%
5103 Nmm™
5-10° Nmm 2 — 3,68 - 10° Nmm 2
S(casec,E =1) = e e [100% = 26,3%
5-103 Nmm
5-10° Nmm~2 —4,61-10° Nmm—2
S(case ¢,E =2) = . T 100% =7,8%

5-103 Nmm™2
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Fig. 3.6 Fibre arrangements. @ Square array, b hexagonal array, ¢ layer-wise array

The result can be improved if the &-value will be increased.

Exercise 3.7. Calculate the ultimate fibre volume fractions v} for the following fibre
arrangements:

1. square array,
2. hexagonal array,
3. layer-wise array.

Assume circular fibre cross-sections.

Solution 3.7. For the three fibre arrangements one gets:

1. Square array (Fig. 3.6 a)

2
_ Ay 4A(rm)/4 _z 0785

A 4 4
2. Hexagonal array (Fig. 3.6 b) with a — 2r, h — /3r follow
Ac=hr, A;=6(1/3)nr*+ nr?

and ) )
Ar 6(1/3 4
woAr _SUARCA R4 T 9069
Ac 6v/3r2 2V/3

3. Layer-wise array (Fig. 3.6 ¢)




Part I1

Modelling of a Single Laminae, Laminates
and Sandwiches



The second part (Chaps. 4-6) can be related to the modelling from single lami-
nae to laminates including sandwiches, the improved theories and simplest failure
concepts.

The single layer (lamina) is modelled with the help of the following assumptions

e linear-elastic isotropic behaviour of the matrix and the fibre materials,
e the fibres are unidirectional oriented and uniformly distributed

These assumptions result in good stiffness approximations in the longitudinal and
transverse directions. The stiffness under shear is not well-approximated.

After the transfer from the local to the global coordinates the stiffness parame-
ters for the laminate can be estimated. For the classical cases the effective stiffness
parameters of the laminate is a simple sum up over the laminate thickness of the
weighted laminae reduced stiffness parameters transferred into the global coordi-
nate system. Some improved theories are briefly introduced.

The failure concepts are at the moment a research topic characterised by a large
amount of suggestions for new criteria. With respect to this only some classical
concepts are discussed here.
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Chapter 4

Elastic Behavior of Laminate and Sandwich
Composites

A lamina has been defined as a thin single layer of composite material. A lamina
or ply is a typical sheet of composite materials, which is generally of a thickness
of the order 1 mm. A laminate is constructed by stacking a number of laminae in
the direction of the lamina thickness. The layers are usually bonded together with
the same matrix material as in the single lamina. A laminate bonded of n (n > 2)
laminae of nearly the same thickness. A sandwich can be defined as a special case
of a laminate with n = 3. Generally, the sandwich is made of a material of low
density for the inner layer, the core or the supporting pith respectively, and of high
strength material for the outer layers, the cover or face sheets. The thickness of the
core is generally much greater than the thickness of the sheets and core and sheets
are bonded to each other at the surfaces.

The design and analysis of structures composed of composite materials demands
knowledge of the stresses and strains in laminates or sandwiches. However, the lam-
inate elements are single laminae and so understanding the mechanical behavior of
a lamina precedes that of a laminate. Section 4.1 introduces elastic behavior of lam-
inae. For in-plane and out-of-plane loading, the stress resultants are formulated and
basic formulae for stress analysis are derived. These considerations are expanded to
laminates and sandwiches in Sects. 4.2 and 4.3. The governing equations of the clas-
sical laminate theory, the shear deformation theory and of a layer-wise theory are
discussed in Chap. 5. A successful design of composite structures requires knowl-
edge of the strength and the reliability of composite materials. Strength failure the-
ories have to be developed in order to compare the actual stress states in a material
to a failure criteria. Chapter 6 gives an overview on fracture modes of laminae. For
laminates, the strength is related to the strength of each individual lamina. Various
failure theories are discussed for laminates or sandwiches based on the normal and
shear strengths of unidirectional laminae.
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4.1 Elastic Behavior of Laminae

The macro-mechanical modelling and analysis of a lamina is based on average ma-
terial properties and by considering the lamina to be homogeneous. The methods
to find these average properties based on the individual mechanical values of the
constituents are discussed in Sect. 3.1. Otherwise the mechanical characterization
of laminae can be determined experimentally but it demands special experimental
equipment and is costly and time-consuming. Generally the modelling goal is to
find the minimum of parameters required for the mechanical characterization of a
lamina.

For the considerations on the elastic behavior of laminae in the following Sects.
4.1.1 - 4.1.3 one has to keep in mind that two assumptions are most important to
model the mechanics of fibre reinforced laminae:

e The properties of the fibres and the matrix can be smeared into an equiva-
lent homogeneous material with orthotropic behavior. This assumption allows
to develop the stress-strain relations and to formulate the response of a fibre-
reinforced lamina sufficient simply to deal with the structural level response in a
tractable manner.

e Three of the six components of stress state are generally much smaller than the
other three, i.e. the plane stress assumption, which is based on the manner in
which fibre-reinforced materials are used in such structural elements as beams,
plates or shells, will be sufficient accurately. With the assumption that the (x; —
x»)-plane of the principal co-ordinate system is in-plane stress state, the in-plane
stress components O}, 02, Og are considered to be much larger in value than the
out-of-plane stress components 03, 04, 05 and the last ones are set approximately
to zero.

Using the plane stress assumption it has to be in mind that some serious inaccuracies
in the mechanical response of laminates can be occurred, Sect. 4.2.

Therefore, together with the plane stress assumption two major misconceptions
should be avoided:

e The stress components 03, 0y, 05 equated to zero have to be estimated to their
magnitude and effect. Fibre reinforced material is often very poor in resisting
stresses transversely to the plane (x; — x) and therefore out-of-plane stresses
may be small but large enough to cause failure of the composite material.

e With assuming o3 is zero does not follow that the associated strain &3 is also zero
and ignorable, for the stresses in the (x| — x;)-plane can cause a significant strain
response in the x3-direction.

4.1.1 On-Axis Stiffness and Compliances of UD-Laminae

A thin lamina is assumed to be in a plane stress state (Sect. 2.1.5). Three cases of
material behavior of laminae are of special interest for engineering applications:
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1. Short fibres or particle reinforced components with random orientation in the

matrix

The elastic behavior has no preferred direction and is macroscopically quasi-
homogenous and isotropic. The effective elastic moduli are £ and v and the
relations of the in-plane stress components with the in-plane strain components

are described (Tables 2.6 and 2.7) by

K] [Q11 Q12 0O &
o | = 1012011 0 |,
O 0 O &
Lol L Oec] L 4.1.1)
£ St S 0 o)
| =828 0 (7]
| €6 L 0 0 Sec | O6
with
o E g 1
11 — 17‘/27 11 — E7
Ev \%
le—l_—vz, Slz—*Ea
E 1 2(1+4v)
Qos 20+v) %G E

. Long fibres with one unidirectional fibre orientation, so-called unidirectional
laminae or UD-laminae, with loading along the material axis (on-axis case)
This type of material forms the basic configuration of fibre composites and is
the main topic of this textbook. The elastic behavior of UD-laminae depends on
the loading reference coordinate systems. In the on-axis case the reference axes
(1/,2) are identical to the material or principal axes of the lamina parallel and
transverse to the fibre direction (Fig. 4.1). The 1’-axis is also denoted as L-axis
and the 2'-axis as T-axis (on-axis case). The elastic behavior is macroscopically
quasi-homogeneous and orthotropic with four independent material moduli (Ta-
ble 2.6)

E|=E., E,=Er, E{=G), =G0,

V;z =V 4.1.2)

and the in-plane stress-strain relations are

Fig. 4.1 Unidirectional lam-

ina with principal material

axis L and T (on-axis)
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o 0,0, 0] [¢
0| =10120» O & |
o] Lo 0 o Ld s
K S}, 81, 0 [ o] -
| = |88, 0 o,
K 0 0 S K/
with
1= E/(1=vipvy), Sy = 1/E,
05 = E)/(1=vipvy), Sy, = 1/E3,
Q/66 = G/12 :Eév S/66 = I/G/u = I/E&
12 = E5vip/(1=vipvy),  Siy = —Vip/El = =V, /E)

3. UD-laminae with loading along arbitrary axis (x,x,) different from the material
axis (off-axis case). The elastic behavior is macroscopically quasi-homogeneous
and anisotropic. The in-plane stress-strain relations are formulated by fully pop-
ulated matrices with all Q;; and S;; different from zero but the number of inde-
pendent material parameters is still four as in case 2. The transformation rules

are given in detail in Sect. 4.1.2.

A UD-lamina has different stiffness in the direction of the material axes. With
E; > E,, the stiffness in the L-direction is fibre dominated and for the effective
moduli (Sect. 3.1) Ep, > Er. Figure 4.2 illustrates qualitatively the on-axis elastic
behavior of the UD-lamina. In thickness direction x3 = T’ orthogonal to the (L-T)-
plane a UD-lamina is macro-mechanically quasi-isotropic. The elastic behavior in
the thickness direction is determined by the matrix material and a three-dimensional
model of a single UD-layer yields a transversely-isotropic response with five inde-

pendent material engineering parameters:

! —
E|=E
/! — —

E),=FEr=E,=Ey,

Ei = GTT/ = Eé/[2(1 + Vé3)] = ET/[2(1 + VTT/)]

01,02, 06

Fig. 4.2 On-axis stress-strain
equations for UD-lamina
(qualitative)

Eg = Eé = G,
(4.1.4)
O] [e3]
- >
*Gz
01(81) E
v
62(82) - 0
=S
0O6(€6) 05 <+

€1,8,8&
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The material behavior in the 2’ = T and 3 = T’ directions is equivalent. Therefore,
the notation of the engineering parameters is given by E; = E; = E, E{ = E{ = G,
Vi, = Vi3 =vir, Ey = E} /[2(1 + V}3)] = Grr = Er/[2(1 + vrr)]. Summarizing, the
stress-strain relations for on-axis loading of UD-laminae in a contracted vector-
matrix notation leads the equations
!/ / o/ / /o / /

025N % ijmiae L)

g =80 org :S,-jGj7 Sl-j = Sﬁ
The values Q;; of the reduced stiffness matrix Q" and the S;; of the compliance ma-
trix §’ depend on the effective moduli of the UD-lamina. The term reduced stiffness
is used in relations given by Eqs. (2.1.76) and (4.1.3). These relations simplify the
problem from a three-dimensional to a two-dimensional or plane stress state. Also
the numerical values of the stiffness Q;; are actually less than the numerical values
of their respective counterparts C; j» see Eq. (2.1.79), of the three-dimensional prob-
lem and therefore the stiffness are reduced in that sense also. For on-axis loading
the elastic behavior is orthotropic and with @, = Q5c = 0 and S = S5, = 0, there
is as in isotropic materials no coupling of normal stresses and shear strains and also
shear stresses applied in the (L-T)-plane do not result in any normal strains in the
L and T direction. The UD-lamina is therefore also called a specially orthotropic
lamina.

Composite materials are generally processed at high temperature and then cooled
down to room temperature. For polymeric fibre reinforced composites the tempera-
ture difference is in the range of 200° — 300° C and due to the different thermal ex-
pansion of the fibres and the matrix, residual stresses result in a UD-lamina and ex-
pansion strains are induced. In addition, polymeric matrix composites can generally
absorb moisture and the moisture change leads to swelling strains and stresses sim-
ilar to these due to thermal expansion. Therefore we speak of hygrothermal stresses
and strains in a lamina. The hygrothermal strains in the longitudinal direction and
transverse the fibre direction of a lamina are not equal since the effective elastic
moduli £y, and Et and also the thermal and moisture expansion coefficients O&,ih, atrh
and o™, 07" respectively, are different.

The stress-strain relations of a UD-lamina, including temperature and moisture
differences are given by

g1 [Susp 0] (o] [ [em
gl=185,5%, 0 o) | + &M |+ [ g™ (4.1.6)
& 0 0 Sg| | o6 0 0
with . ) , .
8]th a]th 81mo a]mo
eéth = Oéth T, gémo = Oémo M* 4.1.7)
0 0 0 0

T is the temperature change and M* is weight of moisture absorption per unit weight
of the lamina. o4, 01" are also called longitudinal and transverse swelling coeffi-
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cients. Equation (4.1.6) can be inverted to give

/ / / / 'th 'mo
6} 1 9 0 el—e}h—e}
%21 = |%n 0% 9 g — e —gMme (4.1.8)
!
O¢ 0 0 O] &

Note that the temperature and moisture changes do not have any shear strain terms
since no shearing is induced in the material axes. One can see that the hygrothermal
behavior of an unidirectional lamina is characterized by two principal coefficients
of thermal expansion, a;‘h, (Xé‘h, and two of moisture expansion, oc;mo, ‘Mo These
coefficients are related to the material properties of fibres and matrix and of the fibre
volume fraction.

Approximate micro-mechanical modelling of the effective hygrothermal coef-
ficients were given by Schapery! and analogous to the micro-mechanical mod-
elling of elastic parameters, Chap. 3, for a fibre reinforced lamina and isotropic
constituents the effective thermal expansion coefficients are

o — (X}thEf+ Otrt,}]l(l — Vf)Em
L viEe+ (1 —vp)Em 4.1.9)
o = o (1 4+ v) + o (1 —ve) (14 Vi) — Ve + (1 = ve) Vin] 0"

If the fibres are not isotropic but have different material response in axial and trans-
verse directions, e.g. in the case of carbon or aramid fibres, the relations for O&,ih and
o have to be changed to

oBviELs+ o (1 — vp) E
viErg+ (1 —vf)Em

ol = (ot + v vp + (14 Vi) o (1 — vp)
— [vevre+ (1= ve) Vi O

th _
o =

)

(4.1.10)

In most cases the matrix material can be considered isotropic and therefore the ori-
entation designation L, T of the matrix material parameters can be dropped.

Discussion and conclusions concerning effective moduli presented in Chap. 3 are
valid for effective thermal expansion coefficients too. The simple micro-mechanical
approximations of effective moduli yield proper results for aih but fails to predict
Octrh with the required accuracy. For practical applications ocﬂ‘ and Octrh should be
normally determined by experimental methods.

Micro-mechanical relations for effective coefficients of moisture expansion can
be modelled analogously. However, some simplification can be taken into consider-
ation. Usually the fibres, e.g. glass, carbon, boron, etc., do not absorb moisture that
means ¢"° = 0. For isotropic constituents the formulae for o™ and o™ are

! Richard Allan Schapery (*3 March 1935 Duluth, Minnesota, United States) - engineering educa-
tor, contributions in the field of mechanics of composite materials
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o= EEa(1 ) _ PEn(1 )
Y veEe+ (1 v)Enm E 7
arrnno<l _ Vf)[(l + vm)Efo+ (1 — Vf)Em - vafEm] “4.1.11)
veEs+ (1 —vp)En
o (1 —vi)

= = {(1+ Vi) Epve + (1= ve) = VevilEm}
1

ope =

and for a composite with isotropic matrix but orthotropic fibres the effective moduli
are given by

aI]j‘O — amOM
m b
| 7§fL (4.1.12)
arrlpo = OtrInHOE—L{(l + Vm)ELfo—‘r [(1 — Vf) — VLTfoEm}

The formulae (4.1.9) - (4.1.12) completes the discussion about micro-mechanics
in Chap. 3. Note that for a great fibre volume fraction negative aﬁh values can be
predicted reflecting the dominance of negative values of fibre expansion a{, e.g. for
graphite-reinforced material.

Summarizing one has to keep in mind that with the plane stress assumption re-
ferred to the principal material axis L, T the mechanical shear strains and the total
shear strain are identical, i.e. egh = eémo =0, Egs. (4.1.6) - (4.1.8). Also the through-
the-thickness total strains 84, eg are zero and there are no mechanical, thermal or
moisture strains. The conclusion regarding the normal strains &; is not the same.
Using the condition 63 = 0 follows

! !
&3 = 51301 + 53305 + 05" T + 0™ M”

This equation is the basis for determining the out-of-plane or through-the-thickness
thermal and moisture effects of a laminate.

4.1.2 Off-Axis Stiffness and Compliances of UD-Laminae

A unidirectional lamina has very low stiffness and strength properties in the trans-
verse direction compared with these properties in longitudinal direction. Laminates
are constituted generally of different layers at different orientations. To study the
elastic behavior of laminates, it is necessary to take a global coordinate system for
the whole laminate and to refer the elastic behavior of each layer to this reference
system. This is necessary to develop the stress-strain relationship for an angle lam-
ina, i.e. an off-axis loaded UD-lamina.

The global and the local material reference systems are given in Fig. 4.3. We
consider the ply material axes to be rotated away from the global axes by an angle
0, positive in the counterclockwise direction. This means that the (x1,x;)-axes are
at an angle 0 clockwise from the material axes. Thus transformation relations are
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Fig. 4.3 UD-lamina with the y=x g
local material principal axis
(1,2) = (L, T) and the global

p—
1=x

reference system (xj,x7) 2= )52

/

X=X

>
1

needed for the stresses, the strains, the stress-strain equations, the stiffness and the

compliance matrices.

The transformation equations for a rotating the reference system (x},x5) or
(x1,x2) counterclockwise or clockwise by an angle 6 follow from Sect. 2.1.2 and
are given in Table 4.1. Note the relations for the transformation matrices derived in

Sect. 2.1.2

Table 4.1 Transformation rules of the coordinates, displacements, strains and stresses of a lamina

a) Rotation of the reference systems

MR EINENE I

b) Transformation of displacements

)= L[ L= ]

w =Ru, u=R"W

¢) Transformation of strains

/ T /
e’:Teez(T") g, e=T% =(T°)"¢

d) Transformation of stresses

/ T /
c’:T"a:(W) 6, 6=T°¢ =(T%)"¢

with s =sin6,c =cos 6

£ 2§ sc| e £ 2 —sc £
& | = 2 2 —scl|leal,|lal|l=| & sc|| &
A —2sc 2s¢ 2 —5* | L& & 2s¢ —2sc ¢ —s? | L&

o] 2 $? 2sc | [ o o] 2 2 —2sc o]
o) | = 2 “2sc|| o, |om| =] 2sc || o4
oy —sc sc 2—s*|Log 06 s¢c —sc t—s> | Lo
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/ -1 / T / -1 T
e = (1¢) = (1) .1 =(1%)"' = (1)
! -1 / T / -1 T
o= (19) = (1¢) ., 7 = (1°)" = (T?)
Table 4.2 summarizes the transformation rules for the stress-strain relations and for
the values of the stiffness and the compliance matrices. The transformation matrices

of Table 4.2 follow from Sect. 2.1.2. Using the relations (4.1.13) the transformation
rules can be formulated in matrix notation

(4.1.13)

Table 4.2 Transformation of the reduced stiffness matrix Q and compliance matrix S in the ref-

erence system (x’1 ,x’ ) to the reduced stiffness matrix Q;; and compliance matrix S;; in the (x1,x2)-
system

a) Constitutive equations in the (x;,x;)-reference system

o) 011 012 Qi | | & £ S11 812 S16 oy
O =[(01200n0x| |&|.|&| =352 82 S o
06 Q16 Q26 Ocs | | & & S16 S26 Se6 06

oc=0¢, €£=80,
o= (TS)T Q/Te, S = (T()')TS/T()"
Qij=0Qji, Q=0 Sij=Sj, S;=5;

b) Transformation of the reduced stiffnesses

On c 2czs2 st 4c%s?
On c2s? A5t 2 2 —4c2s% 1
Q6| | S3s —es(?—s%) —cs3 —2¢s(c? — %) o
On| = | & 222 A acs? | | @,
Q2 e es(P—52) =35 2es(c? — %) Ol
Oss 22 022 22 (2 —2)?

¢) Transformation of the compliances

Si ct 20257 st 2s?

S12 c2s? A5t 328 —2s? Slll
Sie | | 2c%s —2es(c? — %) —2¢83 —es(c?—s2) | | Sha
S| st 2¢2s? c* 2s? Sh,
S26 2¢s3 2es(?—s%) =235 es(P—sH) | | &
Se6 4c?s? —8c2s% 4crs? (2 —57)? o

with s =sin 8, ¢ = cos
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¢ = (1¢) or* =To0 (1",
(

/ o’ T o’ € e\T
s = (T ) ST =TeS(T*)", (4.1.14)
Q = (T9)'Q'T*,
S = (T°)'s'T°

Starting with the stiffness equation 6 = Q¢ and introducing ¢’ = Q'¢’ in the
T T
transformation 6 = T® ¢’ = (Tg/) o’ it follows that 0 = (Tg/) Q’¢’ and with

g = Tée this gives 6 = (T¢)"Q'T¢e. Comparison of equations ¢ = Q¢ and
o = (T¢)" Q'T¢¢ yields

011 Q12 Q16 . Q5 0
Q12 022 02 | = (T?) 1y Qb 0 | T (4.1.15)
O16 Q26 Qo6 0 0 Qe

In an analogous way
S11 812 Si6 . 1S, 0
S12 S0 S | = (T |s, 8, 0 |T° (4.1.16)
S16 S26 Se6 0 0 Oss

can be derived. Note that in (4.1.15) and (4.1.16) the matrices [Q;;] and [S;;] have
six different elements but the matrices [Q};] and [S;;] have only four independent
elements. The elements in Q;; or S;; are functions of the four independent material
characteristics Q;; or S;; and the angle 6. The experimental testing is therefore more
simple than for a real anisotropic material with 6 independent material values, if the
material axes of the lamina are known.

From the transformation c) in Table 4.2 follows the transformation of the engi-
neering parameters £y , Et,Grr, Vit of the UD-lamina in the on-axis-system to the
engineering parameters in the global system (x,x;). From equation a) in Table 4.2
for an angle lamina it can be seen that there is a coupling of all normal and shear
terms of stresses and strains. In Fig. 4.4 these coupling effects in an off-axes loaded
UD-lamina are described.

The coupling coefficients

) $21 € Si2
& S11 ’ & S
are the known Poisson’s ratios and the ratios
&  Se1 & Se2
Vie=— = — Vog = — = — (4.1.18)
e Su’ & S»

are so called shear coupling values. They are non-dimensional parameters like Pois-
son’s ratio and relate normal stresses to shear strains or shear stresses to normal
strains.
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02 T > O
O] O] l T
-« >
O l Op -«
£ 1 & 1 £ 1
B Y 2 5, = = 5 S = —
o} E, (73 E; o6 Es
& Vi2 (3| V21 €| Vo1
= =8 =— = =8Sp=- = =S5 =
o E, (07} E 06 Eq
& Vi & Vo & Vi
g = 6 5§y = 6 2 G = 2
O] E, O E, O¢ E6

Fig. 4.4 Off-axis loaded UD-lamina with one stress component in each case

Hence the strain-stress equation of an angle lamina can be written in terms of
engineering parameters of the off-axis case as

£ 1/Ey  —va21/E> V61 /Eg | | O
& | =|-vio/E\ 1/E; Vve/Es (o2} 4.1.19)
& Vie/E1  va6/E> 1/Es s

With the compliance engineering parameters

1 % v
S = 57 Sip = ;Ei;, S = ;E_1]27
S = 50 Sie = Ei; Se1 = E—‘lﬁ (4.1.20)
S26 = 2—6627 Se2 = 2—2267 S = ELZ
it follows from the symmetry considerations of the compliance matrix that
S =Siij=1206 ie. %22 - 2—"’1‘ %6 - 2—66‘ 2—226 - 2—662 “.1.21)
but the anisotropic coupling coefficients are
Vij # Vji,i,j =1,2,6 (4.1.22)

Equation (4.1.19) can be inverted to yield the stress-strain equations in terms of
engineering parameters but these relations would be more complex than (4.1.19).
Using the relationships between engineering parameters and compliances (4.1.20)
in the compliance transformation rule (Table 4.2) we obtain the following transfor-
mations for the engineering parameters of the angle lamina including shear coupling
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ratios Vig and Vag

1 1 1 2v, 1
_ _C4+(_&)S2C2+_S47

E  E G\, E E;

1 _ 1 4 1 ZV{2 5 9 I 4

&‘as+Qu B )T

1 2 2 4V, 1 ) NP R
- = —+ =+ ——= |85+ (" +5),
G (E; E, E| G, G}, ( ) (4.1.23)

Vio _ Vo [Vigga a4y (L1 TN a0

EIEZ[ (" +5Y) E{JrEé o, s,
2 v, 1\ 5 (2 2V, 1\ s

6‘4(?* o) \EtE )
1 1 12 2 1 12

2 2v! 1 2 2v! 1
Vo = E} = 2 - \3. [ <= 2 1 3
2 2Ka*a a,) T\ "E )"

Equation (4.1.23) can be also written in the following form

\%

E EL
1 = )
E E
At (—L — 2vLT> s2cr + L gt
Grr Et
T
E2 = )
E E
A+ (—T — 2vTL> s2c? + T
Grr G EL
LT
Gy = ;
G G
A st {2%(1 +2vir) +2E—LT - 1} $2c2
L T
E E
vir(c* +5%) — (l + EL - G—L) c2s?
Vi = - e (4.1.24)
C4 + (G—L — 2VLT> C252 + ELS4
LT T
E E
VTL(C4 + 54) —( 1+ T 6252
Voy = EL Gy
E E ’
At (—T — 2VTL> st + Tt
Grr EL

2 2VLT 1 3 2 2VLT 1 3
Vie = E _ - _
16 L|:<EL+ EL GLT>SC ET+ E Gir s’cl|,

2 2vir 1 3 2 PAYER 1 3
V- = E _— ~C — _— ~
2 T |:<EL + Ey, GLT) e Et + Ey  Grr %

The engineering parameters can change rapidly with angel 8. This can be inter-
preted as if the fibres are not oriented exactly as intended the values of engineering
parameters are very less or more than expected.
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A computational procedure for calculating the elastic parameters of a UD-lamina
in off-axis loading can be illustrated by the following steps:

1. Input the basic engineering parameters Ey , ET, Gy, Vi1 referred to the material
axes of the lamina and obtained by material tests or mathematical modelling.

2. Calculate the compliances S;; and the reduced stiffness Q.

3. Application of transformations to obtain the lamina stiffness Q;; and compliances
Sij-

4. Finally calculate the engineering parameters Ej,E>,Gi2, V12, Va1, Vig, Vo6 Te-
ferred to the (x1,xp)-system.

Otherwise the engineering parameters referred to the (x;,x,)-coordinate can be cal-
culated directly by Egs. (4.1.24).

Analogous to the on-axis loaded UD-lamina also the off-axis lamina is in thick-
ness direction x3 = T’ orthogonal to the (x1,x;)-plane macro-mechanically quasi-
isotropic and the three-dimensional material behavior is transversely-isotropic. The
mechanical properties transverse to the fibre direction are provided by weaker ma-
trix material and the effects of transverse shear deformation may be significant. For
such cases, the stress and the strain vector should include all six components

=

T
o 01 Oy O3 O4 O5 66], &€ = [81 & &3 &4 & 86]

For a rotation about the direction e3 (Fig. 2.6) the transformation matrices (2.1.39)
and (2.1.40) are valid and relations for stress and strain vectors in the on-axis and
the off-axis reference system are given by

3 3 3 3\T 3\ !
wtro etie () ()

3\ ! 3\ ! 3, 3\T 3\ !
o= (1°) oe=(re) ero=(rc) (r°)

When the stiffness matrix C’ corresponding to an orthotropic material behavior, see
Eq. (2.1.46), the transformed stiffness matrix C may be written in detail as for mon-
oclinic material behavior, see Eq. (2.1.42)

(4.1.25)

o) CiiCi2Ciz 0 0 Cig| | &
(7] CnCs3 0 0 Cp| |&
o3 Gz 0 0 Gg| | &

— 4.1.26
o4 Cys Cy45 0 & ( )
05 S Y M Css O &s
(o Cos | | &

The C;; are the transformed stiffness, i.e. in vector-matrix notation

o =C¢ 3/ 3 T 3 T 3
o —Ce c=T° c'=|T°| Ce'=T?) C'T*e=Ce
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we finally obtain
3 T 3
C= <T8> C'T¢, 4.1.27)

in which the C;;

Ci1 = C1c* +2C),¢%s% + Chys* +4Chc?s%,

Ciy = Cp 2 +Chy(c* + 5%) + Chpc®s? — 4CLec2s?,

Ci3 = Cl3¢* +Cj35°,C1a =0, Ci5 =0,

Cis = C} ¢35 — Clycs(c? — 5%) — Chyes® — 2Ckges(c® — s2),

Cy =C| ]s4 + 2C1262s2 + C’2264 + 4C66c2s2,

Coz = Cl3s” +Cp3c®,Coy =0, o5 =0,

Cas = Cycs” + Claes(c? — 5%) — Chycds +2Ckges(c? — s2),

Cs3 = C33,C34 = 0,C35 =0,

—_

Cs6 = Cjzcs — Chscs,

Cyy = Clyc? + Clss?,

Cy5 = —Cyycs +Chscs,  Ca =0,

Css = Clys® 4+ Cisc?,  Cs6 =0,

Cos = Cc%5% — 20152 5% + Chyc?s® + Chg (2 — 5°)? (4.1.28)

The 13 non-zero stiffness of C;; are not independent material values. They are func-
tions of 9 C{ j for a three-dimensional orthotropic material, i.e. of

/ / / / / / / /
11,C12,C13,C, o3, C33,Ch4, Cs5, Cos
and of 5 Cl{ j for a transverse-isotropic behavior, i.e. of
/ / / / /
C11,C12,C5, 3, Cs5
because

1
) (Chy — Ch3),Ce6 = Css

With € = §'6’,€ = So follow analogously the transformed compliances

/ / / / /
Ci3=C2,C33 =Cp,Cyy =

3NT 3
S = (TG> s’ T, (4.1.29)

in which the S;;
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S = S”C +28,¢ 52+S22s4+S’6L s

S12 = 8,25% + S, (c* +5 )+S’2L 52 —S66L 52

Si3 = S13C +S23S ,S14=0,815=

Si6 = 28),3s — 281 ,e5(c? — 52) — 2S’22cs3 — Sgees(c? —s?),
Sx = 8} s* +28),c2 s2+S22L4+S’6L s

Sp3 = 8357 + Sh3¢%, 824 = 0,855 =

She = ZS’Hcs3 — 2S’l2cs(c2 —52) — 25’22c3s — S’66cs(c2 — %), (4.1.30)
S33 = 843,834 = 0,835 =0,

S36 = 2855 — 28)cs,

Sas = Sy + Shss?,

Sys = *S:MCSJrSgsCS,S% = 07

Ss5 = /4S2 JrSgsCz Ss6 =

Se6 = 4S),c*s> — 48] 2L2s2+2S22c252 + S (5% — )2

There are again 13 non-zero compliances, but only 9 independent material values
for the orthotropic and 5 independent material values for the transversal-isotropic
case.

The stress-strain relationship for an angle lamina, i.e. an off-axis loaded UD-
lamina, including hygrothermal effects takes the following form

th
€ S11 812 816 | | 01 81h e
| =|S2SnSx| ||+ ||+ |, (4.1.31)
& S16 826 Se6 | | 6 e’ &
where . .
! ! mo mo
£ o £ o
e = |T, | e | =] |M (4.1.32)
th th mo mo
£ o £ o

with the thermal and moisture expansion coefficients oci‘h, o™i =1,2,6 and the
temperature change 7 or the weight of moisture absorption per unit weight M*,
respectively. It should be remembered that although the coefficients of both ther-
mal and moisture expansions are pure dilatational in the material coordinate system
(L,T), rotation into the global (x1,x;) system results in coefficients oc‘h, og"°. Fur-
thermore if there are no constraints placed on a UD-lamina, no mechanical strains
will be included in it and therefore no mechanical stresses are induced. But in lami-
nates, even if there are no constraints on the laminate, the difference in thermal and
moisture expansion coefficients of the various laminae of a laminate induces differ-
ent expansions in each layer and results in residual stresses. This will be explained
fully in Sects. 4.2.4 and 4.2.5. With

gt = a;‘hT,
ey = oM, (4.1.33)

gt =0,
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and ) .
gih — Slth62+8/t2 s27
/
eh = g 4’2, (4.1.34)
th _ 'th rth
&' =2(g" =€y )cs,
follow ) )
ol = gthe? + ofhs?,
/ /
ot = oMs? + o, 0c?, (4.1.35)

Oééh _ Z(a;th o a;th)cs

In an anisotropic layer, uniform heating induces not only normal strains, but also
shear thermal strains. For a transversal isotropic material behavior there is additional
el = a7, ol = aéth, ot = o' = 0. Because &3 = €} the strain €; can be obtained
directly from

& = ' T + o™ M* + S};0] + Sh;,09

However, the stresses 07, 0 can be written in terms Oy, 02, O referred to the off-
axis coordinate system to obtain an expression for € that represents the normal
strain in the x3-direction in terms of the global coordinate system

& = N+ el + (81362 + $235%) 01 + (S135% + S23¢%) 02

+ 2(S13 — S235%)sco (4.1.36)

4.1.3 Stress Resultants and Stress Analysis

Sections 4.1.1 and 4.1.2 describe the constitutive equations for UD-laminae in an
on-axis and an off-axis reference system as a relation between stresses and strains.
For each lamina, the stress components can be integrated across their thickness z and
yield stress resultants. Stress resultants can be in-plane forces, transverse forces and
resultant moments. The constitutive equations may then be formulated as relations
between mid-plane strain and in-plane forces, transverse shear strains and transverse
forces and mid-plane curvatures and resultant moments, respectively.
The in-plane stress resultant force vector, denoted by

N =[N; N> Ng|", (4.1.37)
is defined by
h/2
N = / odx; (4.1.38)
—h/2

The N; are forces per unit length, N1, N, are normal in-plane resultants and Ng is
a shear in-plane resultant, respectively. They are illustrated in Fig. 4.5 for constant
in-plane stresses 0y, 0, Og across the thickness. In this case we have
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X3

N
X1

Fig. 4.5 In-plane force resultants per unit length NT = [Ny N> Ng]

N =och (4.1.39)

The reduced stiffness matrix Q of the lamina has also constant components across
h. The strains of the midplane x3 = O of the lamina are given by

£()C] ) X2,X3 = 0) = £(X1 7x2)
and Eq. (4.1.39) yields
N=Qch=Ae, A=Qh, €' = [e1 & &] (4.1.40)

Q is the reduced stiffness matrix (Table 4.2 a) and A is the off-axis stretching or
extensional stiffness matrix of the lamina. From (4.1.40) it follows that

e=A"'N=aN, a=A"'=8n"! (4.1.41)

a is the off-axis in-plane compliance matrix. A and a are, like Q and S symmet-
ric matrices, which have in the general case only non-zero elements. In the special
cases of on-axis reference systems or isotropic stiffness and compliances, respec-
tively, the structure of the matrices is simplified. A is the extensional stiffness and a
the extensional compliance matrix expressing the relationship between the in-plane
stress resultant N and the mid-plane strain €:
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Off-axis extensional stiffness and compliance matrices

A1 Ap Agg aiy ap aie
A= |ApAnAx |, a= |apn axn ax (4.1.42)
A6 Azg Ags aie a6 des

On-axis extensional stiffness and compliance matrices

AitAp 0 ajp app 0
A= A]2 A22 0 , a=|dajpan 0 (4.1.43)
0 0 Ag 0 0 aes

If the stresses are not constant across /, resultant moments can be defined
h/2
M= / ox3dx; (4.1.44)
—h/2
The resultant moment vector is denoted by

M = [M; My Mg)" (4.1.45)

The M; are moments per unit length, M, M, are bending moments and Mg is a
torsional or twisting moment. Figure 4.6 illustrates these moments and a linear stress
distribution across /. The resultant moments yield flexural strains, e.g. bending and

X3

M,
X1 6

Fig. 4.6 Resultant moment vector MT = [M; M, M) and transverse shear resultants Q°T = [0 03]
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twisting strains, which are usually expressed by the relationship
T
£(x1,x2,x3) =x3K, K = [Kl K> K()] (4.1.46)

K is the vector of curvature, k7, k» correspond to the bending moments M|, M, and
Ke to the torsion moment Mg, respectively. The flexural strains are assumed linear
across h. With Q;; = const across 4, i, j = 1,2,6 follow

h/2
h3
M =0k /x%dx3 :Q;cE =Dk, k=D 'M=dM (4.1.47)
—h/2

D = Qh*/12 is the flexural stiffness matrix and d the flexural compliance matrix
expressing the relations between stress couples M and the curvatures. For off-axis
and on-axis reference systems the matrices are given by:

Off-axis flexural stiffness and compliance matrices

[ D11 Di> D | [dy1 di2 di6 |
D= |Diy Dy Dy |, d=|didn dy (4.1.48)
| D16 D26 Des | | di6 da6 des |

On-axis flexural stiffness and compliance matrices

(D11 Di» 0 ] [di1 d12 0
D=|D;Dy 0 |, d=|dpndn0 (4.1.49)
| 0 0 Dgs | 10 0 des |

The transverse shear resultants can be defined in the same way by

h/2
s sz {"ﬂdx 4.1.50

@ is (like the in-plane resultants) a load vector per unit length in the cross section
of the lamina x; = const or x; = const, respectively. The transverse shear resultant
vector QF is written with a superscript s to distinguish it from the reduced stiffness
matrix Q. When modelling a plane stress state, there are no constitutive equations
for 04,05 and the shearing stresses are calculated with the help of the equilibrium
equations, Eq. (2.2.1), or with help of equilibrium conditions of stress resultant,
e.g. Chap. 8. In three-dimensional modelling, including transverse shear strains,
however, constitutive equations for transverse shear resultant can be formulated.

For a lamina with resultant forces N and moments M the in-plane strain € and
the curvature term K have to be combined

£(x1,x2,x3) =£(x1,x2)—|—x3k‘(x1,x2) 4.1.51)
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For the stress vector is

O (x1,x2,%3) = Q[€(x1,x2) +x3K(x1,%2)]

= Q€(x1,x2) + Qx3K(x1,x2) @152
and by integration through the lamina thickness % follow
h/2 h/2
N = / odx; — Qeh+0K / xdy; — Ag +BK,
—h/2 —h/2
02 02 - (4.1.53)
M= / ox3dn; — Q€ / xsd; + QK = Be+ DK
—h/2 —h/2

The coupling stiffness matrix B is zero for a lamina, which is symmetric to the
midplane x3 = 0, i.e. there are no coupling effects between the N and x or M and
€, respectively. In Table 4.3 the constitutive equations of the lamina resultants are
summarized for a symmetric general angle lamina, for a UD-orthotropic lamina and
for an isotropic layer. In a contracted vector-matrix notation, we can formulate the
constitutive equation of a lamina by

m)=[on)[x] e

where the in-plane stiffness submatrix A = Qh and the plate stiffness submatrix
D = Qh?/12. 0 are zero submatrices. The inverted form of (4.1.54) is important for
stress analysis

€ aO||N a = A*l7 A = Oh,
|:K':| o |:0 d:| |:M:| Vo d = D—l7 D= Q(l’l3/12) (4.1.55)
Equation (4.1.52) yields the stress components 6;,i = 1,2,6

o1 = Q1i(&1 +x3K1) + Q12(&2 + x3%2) + Q16(€6 + X3%K5) = O1m + O1B,
02 = Qr1(&1 +x3K1) + 022(&2 +x3%2) + Q26(€6 + X3K6) = Oom + OB,
06 = Qi6(&1 +x3K1) + Q62(&2 +x3%2) + Q66 (€6 + X3K5) = O6m + OsB

o;m are the membrane or in-plane stresses coupled with N; and o; the curvature or
plate stresses coupled with M;. The membrane stresses are constant and the bending
stresses linear through the lamina thickness (Fig. 4.7).

The transverse shear stresses 04,05 for plane stress state condition are ob-
tained by integration of the equilibrium equations (2.2.1). If the volume forces
p1 = p2 = 0,Egs. (2.2.1) yield

A3 A3

B do;  dog _ dos  Jdoy
65()63) =— / ((9)6] + 8x2>dX3, 64()63) = — / ((9)6] + 8x2>dJC3 (4.1.56)
—h/2 —h/2
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Table 4.3 Stiffness matrices of laminae

Anisotropic single layer or UD-lamina, off-axis

Ny A1 ApAig 0 0 O &1
N> ApAnAyx 0 0 O & | Aij = Qih,
Ne | | A1e Az Ass 0O 0 O &
M| | 0 0 O Dy Dz Dis K|’ n
M2 0 0 0 D12 D22 D26 K2 Dij = Q’.jﬁ
Ms 0 0 O Dig Dy Des] LKs

Orthotropic single layer or UD-laminae, on-axis

E,
On = Vv’
N Ai1Ap 0 0 0 O £ E,
N> ApA» 0 0 O O & On = m7
Neg _ 0 0 Ag O 0 0 & VioEs
M] 0 0 0 D]] D]z 0 K1 7QIZ = ﬁ
M2 0 0 O D12 D22 0 K2 g 21
Mg 0 0 0 0 0 Degl Lkg S L
1—vipvy
Q66 = G
Isotropic single layer
Ny A]] A|2 0 0 0 0 &1 Qll — E ,
N, ApA;;p 0 0 0 O & 1—v?
Ng - 0 0 Ag O 0 0 &6 O = VE
M| 0 0 O D1 Dpp O K|’ 2= 1—v2’
Mz 0 0 0 D]z D]] 0 K> E
Mq 00 0 0 0 Dl lrg] 2= 357577
and with Eq. (4.1.52) follows
X3 a
o5(x3) = — / {x [O11(&1 +x3K1) + Q12(&2 +x3K2) + Q16(E6 + X3K6)]
1
—h/2

d
+ E [Q61 (€1 +x3K1) + Q62 (€2 +x3K2) + Qo6 (€6 + X3 K] } dxs,

(4.1.57)
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M
m:cflM 3—1x3:0'|13 O] = O1M + O1B
h h3/12
M
N _ OoMm 3—2)@ =028 0y = Oxm + O2B
h /12
Ne = OeM 376)63 = O6B O = OgM + O6B
h /12
0 0 0
A
h
\4
oM OB 0; = oM+ OB

Fig. 4.7 In-plane membrane stresses oy , bending stresses o;p and total stresses o; across /& (qual-
itative)

X3

d
o4(x3) = — / {a—xl[Qm(S]+X3K1)+Q62(82+X3K2)+Q66(86+X3K6)]
—h/2

0
+ E (021 (€1 +x3K1) + O2(€ +x3K2) + O26(E6 + x3K6)] } dx3

Substituting the midplane strain € and the curvature K by the resultants N and M
Egs. (4.1.57) takes the form

X3
r 0
o5(x3) = —/ {Qlla_xl[allNl“v‘alzNZ‘FaléNé +x3(di My + diaMs + di6Ms))
)

0

Jrlea—x1 [a21N1 + anNy + axeNe + x3(d21 My + dyaMo + drsMs)
0

+Q168_x1 [a61N1 + asaN2 + aseNe + x3(de1 M + deaMa + desMs)
0

+Q0e1 a_xz[al IN1 + aiNy + a16Ne +x3(d 1M + d1oMo + di6M)]

0
JrQsza—x2 [a21N1 + anNy + axeNe + x3(d21 My + dyaMo + drsMs)
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0
+Q668_x2 [a16N1 + axsN2 + aseNe + x3(d16M1 + dasM> + desMs) }dx3,
(4.1.58)

X3

0
o4(x3) = —/ {QGla_)cl[allN1+alzN2+aléN6 +x3(dviMy + di1oMy + d16M))
—h/2

JrQszaix1 [a21N1 + a2oN> + aeNs + x3(d21 M1 + dpaMs + dasMs)]
+Q6Gaixl [as1N1 + a2N2 + asNe 4 x3(de1 M1 + dexM> + desMs)]
+021 8ix2[al 1N1 +a1oNy + a16Ne +x3(d11My + d12Mp + d16M )]
+szaixz [a21N1 + a2oN> + aeNs + x3(d21 M1 + dpaMs + dasMs)
+Q268ix2 las1N1 + a2N2 + asNe 4 x3(de1 M1 + deaMa + desMs)] }dx3

The distribution of the transverse shear stresses through the thickness # is obtained
by integration from the bottom surface x3 = —h/2 of the lamina to x3

(4.1.59)
. 1/, K
[ @uan =B =0, (8- %)

—h/2
and we have
A(—h/2)=B(—h/2)=0, A(h/2)=A, B(h/2)=B

Finally, the transverse shear stress equations (4.1.57) take the form

- de - € ~ g

os5(x3) =— [Al](X3)a—)C]1+A12(X3)a—; +A]6(X3)a—xf
- oK1 =~ oK J K
+Bn(X3)a—x;+Blz(X3)a—):+Blﬁ(x3)a—xlﬁ

- e - & - g
+Asl()@)a—x;+A62(X3)a—);+1466(x3)a—)§

- K] = oK~ J K
+ 361(x3)a—x2] +362(x3)a—xzz +B66(x3)a—x§ ,
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~ e - e ~ €
o4(x3) =— [Aﬁl(XB)a_xi +A62(X3)a—x? +A66(x3)a_xf
- oK = oKy JKs
+ Bl (X3)a—xl +362(X3)a—xl +366(X3)8—x]
~ € - e ~ €
+Azl(x3)a—x;+A22(X3)8—);+A26(X3)8—xz
~ 81(1 ~ (91(‘2 ~ (91(‘6
+ le(X3)a—x2 +Bzz()€3)a—x2 +326(x3)a—xz

or an analogous equation to (4.1.59) by substituting the in-plane strains € and the
mid-plane curvatures by the stress resultants N and M.

The transverse shear stresses 04,05 are parabolic functions across the lamina
thickness. If there are no surface edge shear stresses, the conditions os(h/2) =
04(h/2) = 0 are controlling the performance of the equilibrium equations and the
accuracy of the stress analysis.

4.1.4 Problems

Exercise 4.1. For a single layer unidirectional composite, the on-axis elastic behav-
ior is given by Ep, = 140 GPa, Et = 9 GPa, vt = 0.3. Calculate the reduced stiffness
matrix Q' and the reduced compliance matrix §'.

Solution 4.1. £y, = E|,Er = E), vir = V},. Equation (4.1.3) yields

! / / ! ! ! ! !
B AR e T D I I R
Gg =101 % 9 3; ) 3; =152 5% 9 Gg )
(of 0 0 Okll5 & 0 0 Sg || 06

— /! / /
1= E1/(1=vipvyy), S\ =1/Ej,
— / / —
Q22 =Ey/(1—Viyv3), Sy =1/E),
/ / / ! / !
12 = Eyvip/(1=vipvay), 2= —Vi/Ej,

Q66 = G =E3/2(1+V},),  Sge=1/GYy,
Vo1 = VipE3 /E} = 0,0192, Gy = E{/2(1 + v{,) = 53,846 GPa,
|, = 140,811 GPa, 05, = 9,052 GPa,
1, =2,716 GPa, Ol = 53,846 GPa,
Sty =7,143102GPa™!, Sy, =111,11110"3GPa"!,
1, =—2,1431073 GPa™!, S¢c = 18,571 1073 GPa ™!,
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140,8112,716 0
Q=1 2,716 9,052 0 |GPa,
0 0 53,846

7,143 —2,143 0
§'=|-2,143 111,111 0 |10°3GPa~!
0 0 18,576

Exercise 4.2. A composite panel is designed as a single layer lamina with the fol-
lowing properties £, = 140 GPa, Et = 10 GPa, Gyt = 6,9 GPa, vt = 0,3 and
6 = 45°. Calculate the strains €, & and & when the panel is loaded by a shear stress
og=+7T = + 10 MPa.

Solution 4.2. From Fig. 4.4 follows
€ = 81606, & = £852606, € = £S6606

With EL=E|,Er= E27GLT = G', and vi1 = V|, and Eq. (4.1.17) is
1y =1/E}=17,143 10~ GPa—l,

Sh, = 1/E} = 100,000 10~ GPa™ !,

512 =—V|,/E] =—2,143 1073 GPa~!,
Ste=1/G), =144,928 103 GPa™!

The transformation rule, Table 4.2, yields

Sie =S =—0,4610"' GPa~!, S¢s = 1,11 10~! GPa™!

The strains are & = 70,46- 1073, &, = €1, g = +1,11-1073.

Conclusion 4.1. A positive shear load o5 = +7 shortens the composite panel in both

directions, a negative shear load 65 = —7 would enlarge the panel in both directions.
Exercise 4.3. In a unidirectional single layer is a strain state & = 1% = 1072,
€y = —0.5%=—0.510"2,7» = 2% = 2 10~2. In the principal directions, the

following engineering parameters of the composite material are E| = Ej, = 40 GPa,
E} = Er = 10 GPa, G1» = Grp = 5 GPa, vir = 0.3. Determine the plane stress state
for the axis (x1,x) and (x},x5) = (L,T) and 8 = 45°.

Solution 4 3. The stress states 6’ and ¢ are to calculate for a given strain state
g =1072 & = —0,5 1072, g = 2 1072 for a UD lamina with E| = 40 GPa,
E, =10 GPa, G,=5 GPa v]2 = 0,3 and a fibre angle 6 = 450 With Table
4.1 the strains for the off-axis system x;,x; are transferred to the strains for the on-
axis system x|, x5. Taking into account cos45% = sin45° = \/2/2 0,707107 we

obtain
/ B 2 2

€ ¢ s sc £
g | = s 2 —sc &
& | —2sc¢ 2sc A5 | &
70,505 0,57 [10 12,5
=10,50,5-0,5||-5|103=|-7,5|1073,
11 0 | |20 15
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g =12,51073¢,=-7,510,¢ = —151073

and .
v — Vi Ky

21 — E/

1

=0,075

The reduced stiffness Q! ; and the stresses o/ in the on-axis system follow from

4.1.3)

0}, = E[/(1—v{,V5,) = 40,9207 GPa, 05, = E; /(1 — v{,V},) = 10,2302 GPa,
1o =E5vi, /(1 —V{,v5,) =3,0691 GPa, O}, = G}, = 5,0 GPa,

o] 0L 0] (e 488,5
oy | =10,,0 0 | |&]|=1]-3836]|107°GPa
o, 0 0 Ol | & —75,0

The stresses o; in the off-axis system are calculated with the help of the transforma-
tion rules Table 4.1

o1 (2 s —2sc o]
o | = |s* & 2sc o)
Op | s¢ —sc t—s*| | o
(0,5 0,5 —17 [ 488,5 0,300
~ 10505 1 ||-3836|103GPa=|0,150| GPa
10,5-0,5 0 | | -75,0 0,263

Exercise 4.4. Sketch the variation curves Ej/ Eé and G/ Eé against the fibre ori-
entation 0 for a carbon-epoxy and glass-epoxy lamina using the following material
data:

carbon-epoxy E| = 140 GPa, E} = 10 GPa, G|, =7 GPa, v{, = 0,3

glass-epoxy E| = 43 GPa, E; =9 GPa, G|, = 4,5 GPa, v{, = 0,27

Discuss the curves.

Solution 4.4. From (4.1.23) follows

4 / 4
C 1 2v )
gyl =S (L VYoo S
(E1) E§+(G/12 Eg>”+

2 2 4v! 1 1
Gl =224 = 2 L Noo b a4
(Gi2) (E1+Eé+Ei a,) Tt

Now the functions f;(8) = E|(6)/E} and f>(0) = G12(0)/E} can be sketched. The
results are shown on Figs. 4.8 and 4.9. Discussion of the functions f;(0) and f>(0):

1. The anisotropic ratio E /E, is higher for carbon- than for glass-epoxy.

2. The longitudinal effective modulus E/ of the lamina drops sharply as the loading
direction deviates from the fibre direction, especially for-carbon-epoxy.

3. The effective shear modulus of the lamina attains a maximum value at 6 = 45°,
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Fig. 4.8 Variation of E(0) /Eé
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Exercise 4.5. For a UD-lamina with the elastic properties E{ = 180 GPa,
E}, = 10 GPa, G|, =7 GPa, v{, = 0,3 calculate

1. the on-axis compliances S/ ; and the on-axis strains, if the applied on-axis stresses
are 0] = 2 MPa, 65 = —3 MPa, 6, =4 MPa,

2. the off-axis compliances S;; and the off-axis and on-axis strains €,€’ if 6 = 450
(Fig. 4.3) and the applied off-axis stresses are
o1 =2 MPa, 0, = —3 MPa, 05 =4 MPa,

3. the coefficients of thermal expansion in the off-axis system if
ol = 91076 /9K, e =22 107¢/°K.

Solution 4.5. 1. Using (4.1.3) follows
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1= (E)"1=5,55610"12Pa" !,

Sty = —V|,/El = —1,667 10~ 1?Pa~!
12 12/ =1 ’ )
b = (E5)~' =100 10"12Pa~!,
t6 = (G),) ' =142,86 10~ "2Pa” !,

€| [ 5,556 —1,667 0 2
e|=|-1,667 100 0 10~'2pa~! | =3 | 10°Pa
& |0 0 142,86 4
[ 16,113
= | —303,334 | 10°°
571,440

2. With Table 4.2 the transformed compliances S;; can be calculated (note that ¢ =
cos45% =0.7071,s = sin45° = 0.7071)
S11=61,270 1072 Pa~!, §5, = 61,271 1012 Pa~ !,
Sin=—10,16010"12 Pa~!, Sgs = 108,89 10~ 12 Pa~!,
Si6 =S = —47,222 10712 pa~!
Equations (4.1.19) and (4.1.20) yield the strains &;

£ S11 812816 | | 01
| = |S12828%| |02
& | S16 S26 Se6 | | O6
[ 61,270 —10,160 —47,222 2
= | —10,160 61,271 —47,222 | 10~2Pa~! | =3 | 10°Pa
| —47,222 —47,222 108,89 4
[—35,868
= | —393,01| 107
| 482,782

Using Table 4.1 the strains € can be transformed to the strains &’

e (0505 05 ] [&
g =10505-05]||&
€l -1 1 0 | |&
[0.50.5 0.5 ] [—35,868
=10505-05| | —393,01|10°°
-1 1 0 || 482,782
26,95
= | —455,83|10°°
| —357,14

3. The transformed thermal expansion coefficients aith follow like the strains with
Table 4.1 to
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ol 0505 -0.5] [a" 15,5
o | =10505 05 | || =] 155[10%K
ofh 1 -1 0 o —13,0

Note that in the off-axis system o' 0.

Exercise 4.6. The micro-mechanical material parameters of a carbon-epoxy com-
posite are

Er =411 GPa, E1s = 6.6 GPa, v+ = 0.06, vy = 0.35,

o= —1.2107° 1/K, olft =27.3 1076 1/K,

Em =5.7GPa, vy, = 0.316, 04y = 45 1070 1/K, vy = 0.5

The experimental tested values of the lamina are

Ep =208.6 GPa, ET = 6.3 GPa, vir = 0.33,

ah =-0.5107°1/°C, ot =29.3 106 1/°C,

Predict the lamina values using the micro-mechanical modelling and compare the
calculated and the experimental measured values.

Solution 4.6. Using Eqs. (3.1.27) and (4.1.9)

EL = viELs+ (1 — vf)Em = 208.35 GPa,

vir = vevire + (1 —ve)vin = 0.33,

Er = ErtEm/[viEm + (1 — vi)Ers] = 6.12 GPa,

ot = [ofveELe+ ol (1 — v Em]/EL = —0.57 107¢ 1/K,

ol = (e + viea™ e+ (14 Vin) o (1 — ve) — viroth =4.43 107 1/K

It can be concluded that the simple rules of mixture providing proper results for lon-
gitudinal material characteristics Er,, vir and ocih. In this case also Ert is predicted
quite well but the formula for oy fails to predict the transverse thermal expansion
coefficient with required accuracy. For engineering applications the thermal expan-
sion coefficients should be normally determined by experimental methods.

4.2 Elastic Behavior of Laminates

In Sect. 4.1, stress-strain equations were developed for a single lamina. Mostly im-
portant in engineering applications are isotropic, quasi-isotropic (stochastic distri-
bution of short fibres or particles) and quasi-orthotropic (unidirectional fibre re-
inforced) laminae. Reduced stiffness Q;;, compliances S;;, membrane or in-plane
stiffness A;; and plate or out-of-plane stiffness D;; were defined. Assuming symme-
try about the midplane of a lamina in-plane and plate responses are uncoupled in the
form of a first order theory (linear force-displacement relations).

The mechanics of laminated composite materials is generally studied at two dis-
tinct levels, commonly called micromechanics and macromechanics. In Chap. 3 the
micromechanics was used to study the interaction between the fibres and matrix in a
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lamina such that the mechanical behavior of the lamina could be predicted from the
known behavior of the constituents. Micromechanics establishes the relationship be-
tween the properties of the constituents and those of the lamina. All micromechanics
approaches suffer from the problem of measuring the material properties of the con-
stituents and generally require correction factors to correlate with measured lamina
properties. For most engineering design applications an analysis that addressed to
the micro-mechanical level is unrealistic.

At the macro-mechanical level the properties of the individual layers of a lami-
nate are assumed to be known a priori. Macromechanics involves investigation of the
interaction of the individual layers of a laminate with one another and their effects
on the overall response quantities, e.g. elastic stiffness, influence of temperature and
moisture on the response of laminated composites, etc. Such global response quan-
tities can be predicted well on this level. Thus, the use of macromechanical formu-
lations in designing composite laminates for desired material characteristics is well
established. Macromechanics is based on continuum mechanics, which models each
lamina as homogeneous and orthotropic and ignoring the fibre/matrix interface.

The lamination theory is the mathematical modelling to predict the macro-
mechanical behavior of a laminate based on an arbitrary assembly of homoge-
neous orthotropic laminae. A two-dimensional modelling is most common, a three-
dimensional theory is very complex and should be limited to selected problems, e.g.
the analysis of laminates near free edges.

A real structure generally will not consist of a single lamina. A laminate consist-
ing of more than one lamina bonded together through their thickness, for a single
lamina is very thin and several laminae will be required to take realistic structural
loads. Furthermore the mechanical characteristics of a UD-lamina are very limited
in the transverse direction and by stacking a number of UD-laminae it may be an
optimal laminate for unidirectional loading only. One can overcome this restriction
by making laminates with layers stacked at different fibre angles corresponding to
complex loading and stiffness requirements. To minimize the increasing costs and
weights for such approach one have to optimize the laminae angles. It may be also
useful to stack layers of different composite materials.

4.2.1 General Laminates

In the following section the macro-mechanical modelling and analysis of laminates
will be considered. The behavior of a multidirectional laminate is a function of the
laminae properties, i.e. their elastic moduli, thickness, angle orientations, and the
stacking sequence of the individual layers. The macro-mechanical modelling may
be in the framework of the following assumptions:

e There is a monolithic bonding of all laminae i.e. there is no slip between laminae
at their interface and no special interface layers are arranged between the angle
plies.
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Each layer is quasi-homogeneous and orthotropic, but the angle orientations may
be different.

The strains and displacements are continuous throughout the laminate. The in-
plane displacements and strains vary linearly through the laminate thickness.

We will see that the stacking codes of laminates have a great influence on the global
mechanical laminate response (Sect. 4.2.3), but there are some rules to guarantee an
optimal global laminate behavior:

Symmetric laminate stacking yields an uncoupled modelling and analysis of in-
plane and bending/torsion stress-strain relations and avoids distorsions in the pro-
cessing.

Laminates should be made up of at least three UD-laminae with different fibre
angle orientation.

The differences of the mechanical properties and the fibre orientations between
two laminae following in the stacking sequence should not be so large that the
so-called interlaminar stresses are small.

Although it is possible to determine an optimum orientation sequence of lami-
nates for any given load condition, it is more practical from a fabrication stand-
point and from effective experimental lamina testing to limit the number of fibre
orientations to a few specific laminae types, e.g. fibre orientations of 00, +45°
and 909, etc.

Consider a laminate made of n plies shown in Fig. 4.10. Each lamina has a thickness
of M k=1,2,...,n, and we have

X3
n |———
(m _h
) _
h 1) 2
) 3
! Mid-plane x3 =0
X2
@
xi B
h X3 h
0
2 NC— :
2
1

Fig. 4.10 Laminate made of n single layers, coordinate locations
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3 —X3 ,k=1,2,...,n thickness of a lamina,
n

h = Z hk) thickness of the laminate,
k=1 “4.2.1)
W h N
Xy = — ) + Z Kt distance from the mid-plane,
i=1
Then
m_hq Lo _h
Xy = ) and x3” = ~5

are the coordinates of the top and the bottom surface of the laminate,

xgk) and x(3k_1), k=1,2,...,n

are the location coordinates of the top and the bottom surface of lamina k. Each
layer of a laminate can be identified by its location in the laminate, its material and
its fibre orientation. The layers of the laminate may be symmetric, antisymmetric
or asymmetric to the midplane x3 = 0. h®) and the reduced stiffness Q%) may be
different for each lamina, but Q(k) is constant for the kth lamina. The following
examples illustrate the laminate code. In Fig. 4.11 the laminate codes for an un-
symmetric laminate with four layers and a symmetric angle-ply laminate with eight
layers are illustrated. A slash sign separates each lamina. The codes in Fig. 4.11
imply that each lamina is made of the same material and is of the same thickness.
Regular symmetric are those laminates which have an odd number of UD-laminae
of equal thicknesses and alternating angle orientations (Fig. 4.12). Since the number
of laminae is odd and symmetry exists at the mid-surface, the 90° lamina is denoted
with a bar on the top. The subscript S outside the code brackets, e.g., in Fig. 4.11 b),
represents that the four plies are repeated in the reverse order.

b 6=0° 8

a 6=0° 4 6 = —45° 7
6 =900 6

5=0 6 =300 3 =0 6 — 450 5
06— 300 ) 6 =459 4

6 =900 3

6 =90° 1 6 = —45° 2

6 =00 1

[0/ —45/90/45/45/90/ — 45 /0]

[90/ —30/30/0] = [0/ —45/90/45]5

Fig. 4.11 Angle-ply laminates. @ unsymmetric 4-layer laminate, b symmetric 8-layer-laminate
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6 = —450 5
0 =450 4
3
x3=0 6 =90°
6 =45° 2
6 =—45° 1

[—45/45/90/45) — 45] = [—45/45/90]s

Fig. 4.12 Regular symmetric angle-ply laminate: orientation of the midplane 8 = 90°

A general laminate has layers of different orientations 8 with —90° < 6 < 90°.
An angle-ply laminate has ply orientations of 8 and —6 with 0° < 8 < 90° and at
least one lamina has an orientation other than 0° or 90°. Cross-ply laminates are
those which have only ply orientations of 0° and 90°.

A laminate is balanced when it consists of pairs of layers with identical thickness
and elastic properties but have +6 and —8 orientations of their principal material
axes with respect to the laminate reference axes. A balanced laminate can be sym-
metric, antisymmetric or asymmetric

[+6i1/—61/+ 6,/ —0:]s symmetric lay-up,
[6,/62) — 62/ — 6] antisymmetric lay-up, 4.2.2)
[61/6,/ — 61/ — 6] asymmetric lay-up

Antisymmetric laminates are a special case of balanced laminates, having the bal-
anced +0 and —0 pairs of layers symmetrically situated about the middle surface.
Generally each layer of a laminate can have different fibre angles, different thick-
nesses and different composite materials. The influence of the laminate codes, i.e
the properties and the stacking sequences, on the elastic behavior of laminates will
be considered in Sect. 4.2.3.

4.2.2 Stress-Strain Relations and Stress Resultants

The stiffness matrix of a single lamina referred to the reference system x;,i = 1,2,3,
has been formulated in Sect. 4.1.2, Eq. (4.1.26). Extending the assumption of a
plane stress state to laminates with in-plane and out-of-plane loading, the stress-
strain relation (4.1.26) can be rewritten by separating the transverse shear stresses
and strains. The stresses in the kth layer are expressed by means of the reduced
stiffness coefficients Q;;
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(o] ® 011012016 0 0 ® € ®

(o)) 021020 0 O )
(o = |06 962066 0 O & (4.2.3)
(o 0 0 O Q44 Qss &
Os 0 0 0 QOs40ss &

or in contracted notation

G'(k) = Q(k)ej(k)7 Lj= 172767

i ij
4.2.4)
Gi(k) = Ql(f)ej(k)7 l,] = 475
with (see also 2.1.78)
1
63<k) =0, £3<k) o (Ci3€1 + Co38 + C68) (4.2.5)

Q(k) i,j =1,2,6 are the reduced stiffness of the kth layer and functions of Q! i ®) and

i J ERS)
the fibre orientation angle, the Qf&) , Qf(;) = Qéﬁ) , Qé’? are identical to the material co-
efficients Cf‘? , Cf‘? = Cg? , Cg;), which are not reduced by the assumption of a plane

stress state. The discontinuity of Ql(-f) from layer to layer implies the discontinuity
of the stresses when passing from one lamina to another.
From the assumption of macro-mechanical modelling of laminates it follows that

€(x1,x2,x3) = &(x1,x2) +x3K(x1,X2) (4.2.6)

i.e the strains €,&;,€ vary linearly through the laminate thickness. €(x,x;) is
the vector of the in-plane or membrane strains and x3k(x,x2) the vector of flex-
ural strains (bending and twisting). K (x1,x;) is the vector of curvature subjected to
bending and twisting. We shall see later (Sect. 5.4) that there are different curvature
components in the classical and the shear deformation theory of laminates.

The in-plane stress resultant force vector N of a laminate follows by summarizing
the adequate vectors of all laminae

N® NT=[N N, N, NO" =[N N N0 4.2.7)

™=

N =

k=1

By analogy it follows that the resultant moment vector is

M=Y MY M =M M M), MY = MP MY @28
k=1

The positive directions are corresponding to Figs. 4.5 and 4.6 for a single layer. The
transverse shear resultants given in (4.1.50)
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Equations (4.2.4) and (4.2.6) yield

o-(k) — Q(k)g — Q(k) (8 —|—)C3K') (4.2.10)
and the resultants N and M for the laminate are (k = 1,2 )
Ik 0, K=,
“) @2.11)
N = Z o X pk)
k=1
and
M — / oM xydis = o(k); (x<3k>2 _ gk—wz) — k0
(1) (4.2.12)
M = Z o X p k) (k)
k=1
with

1 _
w_ LW k1
X 5 (x3 +x3 )

For each layer the membrane strains €1,&,&; , the curvatures ki, k», kg and the
reduced stiffness ngl), QY;), QY;) , Q(2k2) , Q(Zkﬁ) , Q(6k6) are constant through each thickness
k) and (4.2.11) and (4.2.12) reduces to:

(k> (k)

X3
n
N = ZQ / € + ZQ(k) / x3dxsz | K
D k=1 (-1
3 )
= A €+ B K,
® ® (4.2.13)
n X3 n X3
M = Z Q(k) / x3dx3 | € + Z Q(k) / X%d)@, K
= LD k=1 D
= B €+ D K

A,B.D are the extensional, coupling and bending stiffness matrices, respectively.
From (4.2.4) and (4.2.9), the relations for the transverse shear resultants are
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(k) (k)
n x3 n x3
o=y c® / oWd = | ¥ ¢ / d | ¥ =AY (4.2.14)
k=1 ) k=1 )
3 3

with
; Cys Cys . 04 ; & ; Ayy Ags
C5 = s o'S = s = R A5 =
[C54 Css Os r & Asq Ass
Equation (4.2.14)is a first approach and consists of taking the transverse shear strain
independent of the coordinate x3. A® is the transverse shear stiffness matrix. An
improvement is possible by replacing the transverse shear stiffness Aj; by (kA)lSj

kfj are so called shear correction factors (Sect. 5.4). The elements of the matrices
A,B,D A3 are

Aij = k:fo) (b7 o) = ;QJW ) ij=1,2,6,

by = 1 o (W7 ) < S gl .
Dy = ;kilQij/;) (xgk)B gk—1)3> _ Ii’lQJ) xgk)2+$k2)2> n (4.2.15)
Ay =y (b o) = Y R0, =45

»-
Il
-
~
Il
=

The constitutive equation for laminates including extensional, bending/torsion and
transverse shear strains is the superposition from the so-called classical equations
for N and M and the equation that involves the transverse shear resultant Q°. The
constitutive equation can be written in the following contracted hypermatrix form

N ABO ] [e
M|=|BDO | |k (4.2.16)
0 004 |y

The stiffness Qg-{) and Cl-(j]f) in (4.2.15) referred to the laminate’s global reference
coordinate system x;,i = 1,2,3, are given in Table 4.2 as functions of the O/ j<k) and

in (4.2.17) as functions of the C; j<k) referred to the material principal directions of
each lamina (k)
Caa = Cjyc? + Clss?,
Css = (Ci5 — Chy)sc, 4.2.17)
Css = Cjys° + Cisc?
Equation (4.2.16) illustrates the coupling between stretching and bending/twisting

of a laminate, i.e. in-plane strains result in in-plane resultants but also bending
and/or torsion moments and vice versa. Since there are no coupling effects with
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the transverse shear strains or shear resultants we consider the in-plane and flexural
simultaneous equations, (4.2.18), separately

N A:B|[e
] = ’
M . K
B:D
or i i
o A1 A2 Ase : Bii Bia Bie o
N1 . €l
Ap A Arg : Bi1p By B
Ny 12 A 26. 12 B2 By &
Ng A6 Az Ago - Bis Bae Bes &
= (4.2.18)
M, : Ki
M, B11 B12 Big : D11 D12 Dig K
| M | B2 By Bog : D12 Dyy Dog | | K6 |
| Bi6 B2 Bes : D16 Dag Des

The following steps are necessary for analyzing a laminated composite subjected to
forces and moments:

e Calculate the values of the reduced stiffness Q;; for each lamina  using the four
elastic moduli, Ey , E1, vir, Grr (4.1.2) and (4.1.3).

o Calculate the values of the transformed reduced stiffness Q;; for each lamina k
(Table 4.2).

e Knowing the thickness /%) of each lamina k calculate the coordinates xgk), xgkfl)
to the top and the bottom surface of each ply.

o Calculate all A;;,B;; and D;; from (4.2.15).

e Substitute the calculated stiffness and the applied resultant forces and moments
in (4.2.18) and calculate the midplane strains €& and curvatures k.

e Calculate the global strains £%) in each lamina using (4.2.6) and then the global
stresses 6K for each lamina k using (4.2.10).

e Calculate the local strains &%) and the local stresses 6°(¥) for each lamina k using
Table 4.1

The inverted relation (4.2.18) leads to the compliance hypermatrix for the in-plane
and flexural resultants

-1
£ ab||N ab AB
Wl ) [l -len] e
The compliance submatrices a,b,c,d follow from the stiffness submatrices A,B,D.
With
N =Ae + Bk (4.2.20)

it follows that
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£=A"'(N—Bx) 4.2.21)

and using (4.2.13)
M=BA 'N—- (BA"'B-D)x (4.2.22)

The first result is a mixed-type constitutive equation

€ A* B N
M cip | L¥ (4.2.23)
A*=A"" B"=-A"'B,
C*=BA~'=—BT D"=D—-BA'B
With
k=D"'M-D*"'C'N (4.2.24)
it follows that
e=(A"—B'D"'C*)N+B' D" 'M (4.2.25)

and the compliance relation has in contracted notation the form

£ a:b N
K c:d M
(4.2.26)
a=A*—BD*"'C* =A* + B°D*'B*",
b=B'D"',
c= _D*—IC* :D*—IB*T :bT7
d:D*—l

Equations (4.2.18) and (4.2.26) are inverse relations of the constitutive equation for
the resultants and the strains of a laminate. The elements of the submatrices A,B,D
and a, b, c,d are functions of the geometry, the material properties and the structure
of a laminate and therefore averaged effective elastic laminate moduli. The subma-
trices A,B,D,a,d are symmetric submatrices. That is not the case for the submatri-
ces b and ¢ but with ¢ = bT the compliance hypermatrix is symmetric. The coupling
of different deformation states is a very important quality of the constitutive equa-
tions of laminates. In the general case, considered in this section, all coupling effects
are present. Figure 4.13 illustrates for example the coupling states for the resultant
force N and the resultant moment M.

In the next Sect. 4.2.3 we shall see that the stacking sequence of a laminate in-
fluences the coupling behavior of loaded laminates. In engineering applications it is
desired to specify the stacking sequence such that a number of coefficients of the
stiffness matrix will be zero and undesirable couplings between stretching, bending
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N A1 A1z Aie Bii Bia Big £
N, Az Az - By By &
Ne | _ Age - - Bes &
M, Dy D12 Dy Ki
M, S Y M - Dy Dy K
M -+ Des Ko
‘ —_ ;
< } I = < > | |
[

N, 51 An N <1 An = ‘ Ae |
<1 | | = < > | |
< | | > <] > } |
<] | I > <] > | ‘

| | S |
strain € strain & shear &

M,

3 B B
curvature K curvature k» twisting K
Ny ‘
|
curvature K twisting Ke
I p—— 14
Nl T2 < 2
N gL <] 14 o

M o] Bu - O B A \
N I 1 N 2
O | I 12 < 2 z
N ' N 2
o |12 N D 2 N

. N 2
strain € strain & shear &

Fig. 4.13 Coupling of strain states: Influence of the stiffness A;;,Dy; and By ;(j = 1,2,6) on the
strains €; and the curvature x; of the middle surface of a general laminate loading with Ny or M;.
In each case 6 deformation states of Ny and M, have to be superposed.
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and/or twisting will be avoided. But it is rather difficult to specify an optimum stack-
ing sequence without detailed information about the performance requirements.

Engineering composite design has continued to evolve over many years. Most
early applications of composite materials were aimed particularly at weight reduc-
tion. Metals were replaced by composites with little or no emphasis placed on tailor-
ing the composite properties. Engineering design created quasi-isotropic laminates
that largely suppressed the directional material properties of unidirectional lami-
nae and made the laminate material response similar to that of isotropic materials,
e.g. of metals. We shall see in the following discussion that one of such quasi-
isotropic laminate is given if it has equal percentages of 0°,+45% —45° and 90°
layers placed symmetrically with respect to the laminate mid-plane. Quasi-isotropic
laminates have elastic properties that are independent of the direction in the plane
of the laminate, like traditional isotropic engineering materials. Therefore, quasi-
isotropic laminates were in the first applications of composites a convenient replace-
ment for steel or alloys in weight critical applications, e.g. in aerospace industries.
Weight saving could be achieved by simple replacing the isotropic metal with a
similar stiffness laminate that was lighter and probably stronger. If we compare a
graphite/epoxy laminate with an quasi-isotropic stacking sequence of laminae and
aluminium we find nearly the same elastic moduli, e.g. E ~ 70 GPa, but the density
values p and the specific stiffness E/p differ significantly. The specific stiffness
of graphite/epoxy laminate can be twice that of aluminium. Such applications of
quasi-isotropic laminates required a minimal amount of redesign effort and there-
fore minimal changes in structural configuration.

By the time the number of design engineers which are trained in composite ma-
terials increased and the tailoring of material properties gained more acceptance.
To maximize the utility of the non-isotropic nature of laminates, the influence of
the stacking sequence on the structural behavior must be investigated in detail and
optimized. Particularly the coupling effects of in-plane and out-of-plane responses
affect the effort of laminate structural analysis.

4.2.3 Laminates with Special Laminae Stacking Sequences

Now special cases of laminates which are important in the engineering design of
laminated structures will be introduced. Quite often the design of laminates is done
by using laminae that have the same constituents, the same thicknesses, etc. but
have different orientations of their fibre reinforcement direction with respect to the
global reference system of the laminate and a different stacking sequence of these
layers. In other cases layers with different materials or thicknesses are bonded to a
laminate. The stacking sequence of the layers may result in reducing the coupling
of normal and shear forces, of bending and twisting moments etc. It can simplify
the mechanical analysis but also gives desired mechanical performance. In the fol-
lowing, the mechanical behavior of special symmetric and unsymmetric laminates
are considered.
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4.2.3.1 Symmetric Laminates

A laminate is called symmetric if the material, angle and thickness of laminae are
the same above and below the midplane, i.e. two symmetric arranged layers to the
midplane have the same reduced stiffness matrix Q<k) = Q(",) and the same thickness
h®) = p®) for opposite coordinates ¥¥) and ) = —x®) (Fig. 4.14). It follows that
the coefficients B;; of the coupling submatrix B are zero and there are no coupling
relations of stretching and bending

1 n k1 2
Bij = ZQ,] ( _xg ) )

= Z ol ( DY) () ) 42.27)
ZZQU =0, ij=1206
With x(3k,) = fxgk) the sum above have two pairs of equal absolute values but oppo-

site signs. Thus the ABD-matrix of symmetric laminates is uncoupled, i.e. all terms
of the coupling submatrix [B;;] are zero, see following equation

X3

x3=0

1

Flg 4 14 Symmetric laminate with identical layers k and k’ opposite to the middle surface (h(*)

=0")
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Al AnA: 0 0 0
[N ] : [ ]
ApApAy: 0 0 O
N2 12 A22 A26 . &
Ng AlgAyx Ags: 0 0 O &
o= e .. (4.2.28)
M . K
M; 0O 0 0 : D11 D12 D16 K;
_M6_ 0O 0 O EDlZ D7y Dys | | K6 |
L 0 0 0 :Djs Dy Des

The extensional submatrix A and the bending submatrix D are in the case of sym-
metric angle ply laminates fully populated and we have in-plane normal and shear
strain and out-of-plane bending and torsion couplings. Since the coupling submatrix
B is zero the elastic behavior of symmetric laminates is simpler to analyze than that
of general laminates and symmetric laminates have no tendency to warp as a result
of thermal contractions induced during the composite processing. Some important
special cases of symmetric laminates are:

o Symmetric laminate with isotropic layers

k k K K
0l =03 =0l =0’ =
(k’) v(k)E(k)

(k) _ _
O, =01 = I — v’
k k K K
Q(m) = Qg6) = QSG) T]{)Qée) =0,
ol =)= _E__gw

86 2(1 4 vk ’

n
k
Aj=Y ij)h“‘)
=1
= A1 =Axn,A16 =Ay =0,

4.2.29)
U 2 p0? (
Dy =Y. 0f'h <X(3k) T

k=1

= D11 = D1,D16 = D2s = 0,
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AltAp 0 : 0 0 O
[Ny ] : & ]
ApA;p 0 0 0 O
N2 12 A11 . &
Ne 0 0 Aeg: 0O 0 O &6
o = .. (4.2.30)
M . K
M; 0O 0 O ZD11 D12 0 K‘;
| M | 0 0 0 :DypDy 0 | | K]
L0 0 0:0 0 Dl

This type of symmetric laminates has no stretching-shearing or bending-torsion
coupling.

o Symmetric cross-ply laminate
A laminate is called a cross-ply laminate or a laminate with specially orthotropic
layers if only 0° and 90° plies were used. The material principal axes and the
global reference axes are identical. If for example for the kth layer the fibre ori-
entation and the x;-direction of the global reference system coincide, we have

(k) (k)
oM = o) — £y oM = o¥) _ E;
== ) ) =22 = =22 k) (k)
V2 V2 V2 V2
(k) (k)
N vWE 0w (4.2.31)
Q(IZ) = ng) =—2 (k)l ®)’ Q(lﬁ) = Q(lﬁ) =0,
I=vi'vy
k 14 k k K
Q(66) = Qé6) = G(l2)7 Q(ze) = Q(ze) =0

and with (4.2.15) A1 = Ay = 0,D16 = Dy = 0. The stiffness matrix of the
constitutive equation has an adequate structure as for isotropic layers, but now
A1 # Ay and Dy # Dy, i.e. the laminate has an orthotropic structure

Aj1App O 0O 0 O
[N ] : [ & ]
AipA»n 0 : 0 0 O
N2 12 A22 . &
N6 0 0 A66 0 0 0 &6
vl = (4.2.32)
M . K
M; 0O 0 O Dy Dyp 0 K;
| M | 0 0 0 :DpDy 0 | | K]
L0 0 0:0 0 Dg

Figure 4.15 illustrates examples of symmetric cross-ply laminates. With
Ajg = Az = 0,D16 = Dys = 0 there is uncoupling between the normal and
shear in-plane forces and also between the bending and the twisting moments.
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b
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Fig. 4.15 Symmetric cross-ply laminate. @ 3-layer laminate with equal layer thickness, b 6-layer
laminate with equal layer thickness in pairs, € 4-layer laminate with equal layer thickness

o Symmetric balanced laminate

A laminate is balanced when it consists of pairs of layers of the same thick-
ness and material where the angles of plies are +60 and —60. An example is the
8 - layer-laminate [+6;/ £ 6,/],. The stiffness coefficients A;; and D;; will be
calculated from

IS w03 (k=13
Dij_SZQij) (xg) g )
k=1
Zn: Q(k) x(k)2+ h(k)z A0 (239
= 3
Pacinied 12
with ,
pk) — h<k/), %) g(k/)’ x(3k) — fxg’d
and the constitutive equation yields
A1Apn O 0O 0 O
FN T e ]
AppAx»n O 0O 0 O
Ny 12 A2 &
Nﬁ 0 0 A66 0 0 0 &
l= .. (4.2.34)
M . K
M; 0 O O :Dy DDy K;
_M6_ 0 0 0 D12 D22 D26 _K()_
L 0 0 0 :Dys D Des |

The fact that the in-plane shear coupling stiffness Aj¢ and Ay¢ are zero is a defin-
ing characteristic of a balanced laminate. In general the bending/twisting cou-
pling stiffness D¢ and Dy are not zero unless the laminate is antisymmetric.
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Summarizing the results on symmetric laminates above, it is most important that all
components of the B-matrix are identical to zero and the full (6 x 6) ABD - matrix
decouples into two (3 x 3) matrices, namely

N=Ag, M=Dxk (4.2.35)

Therefore also the inverse relations degenerates from (6 x 6) into two (3 x 3) rela-
tions
€=aN, x=dM (4.2.36)

In these matrix equations a is the inverse of A and d the inverse of D

AnAgs —Asg Dy Des — D5
an = ——5-, di = )
Det[A] Det[D]
ais — AzsA16 — A12466 _ Da6D16 —D12Dss
12 Detid] = " DetD] '
die — A1pA26 — A2A16 _ D12Da6 —DnDsg
16 Detld] ' ¢ DetD] ' @237
g — Ap1Ags — At b — Dy1Dg6 — D3¢ -
2 DetA] 2 DetD]
o — ApAre —AnAzs _ Di2Dig —D11D2s
26 Detd] =~ ° DetD]
dee — A]]AzzfA%z dec — D]lD227D12
66 Det/A] 06 Det|D]
with
Det[X] = X1 (X22X66 — X35) — X12(X12X66 — X26X16)
+ X16(X12X26 — X20X16): Xij = Aij, Djj
For the special symmetric stacking cases one can find
1. Isotropic layers
ar = an, aie =ax =0, Aj=An, Ale = A2 =0,
dy = dp, dig=dyx =0, Dij=Da, D1g = Dy =0,
Eh Eh
A= Ajp = VA Agg = ——————
11 17‘/7 12 11, 66 2<1+V)7
Dy = ER’ Dy, =vD Dgg = Eh’
with
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2. Cross-play layers

An - Do)
ai y U111 — 2
A11An A12 D]lD22*D12
= —Ap - —Dy2
1 y 412 — )
A1 — A7, DDy, — D3,
= 11 = 11
- b - b
A11Ap — A7, DlnDzz—D%z
ag6 = -, des = —
Ag Des

3. Balanced layers
The a;; are identical to cross-ply layers. The d;; are identical to the general sym-
metric case.

4.2.3.2 Antisymmetric Laminates
A laminate is called antisymmetric if the material and thickness of the laminae are

the same above and below the midplane but the angle orientations at the same dis-
tance above and below of the midplane are of opposite sign, i.e two symmetric ar-

ranged layers to the midplane with the coordinates %) and x®) = _x(®) having the
same thickness h*) = h¥) and antisymmetric orientations 0% and %) = — gk
(Fig. 4.14).

o Antisymmetric cross-ply laminate

Antisymmetric cross-ply laminates consist of 0° and 90° laminae arranged in
such a way that for all 0°-laminae (k) at a distance ¥} from the midplane there
are 90°-laminae (k') at a distance ) = —x® and vice versa. By definition
these laminates have an even number of plies. The reduced stiffness fulfills the
conditions (k) () k) (K) k) (K)

2 2 Sy 0 O 0

Qio = Q16 =26 =% =0,
which yield considering (4.2.15) and the 0° and 90° layers have the same thick-

ness
Al = A, Ag = A = 0,
Bi1 = —B»n, Bio = Big = Bays = Bgs = 0, (4.2.38)
Dy = Dxn,Dig=Dyx= 0

and the constitutive equation has the form
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Ajp Ap 0 B 0 0
[N ] : [ ]
Ap A 0: 0 -B 0
N2 12 11 . 11 &
Ng 0 0 Ag: O 0 0 &6
o= .. (4.2.39)
M . K
M; By O 0 :Dyy Dip O K‘;
_M6_ 0 731] 0 ED]Q D]] 0 _K6_
L0 0 0:0 0 Degl

The constitutive equation (4.2.39) shows that antisymmetric cross-ply laminates
only have a tension/bending coupling. It is important to note that the coupling
coefficient By approaches zero as the number of plies increases for a constant
laminate thickness since it is inversely proportional to the total number of layers.
e Antisymmetric balanced laminate

Antisymmetric balanced laminates consist of pairs of laminae (k) and (k') at a
distance ¥%) and ¥¥) = —x(X) with the same material and thickness but orien-
tations ) and 6*) = —9®). Examples of these laminates are [6;, / — 6],
[6,/6,/ — 6,/ — 6], etc. As for all balanced laminates A1c = Az = 0 and with

1 & 3 3
D=, kz ol <x<3") —xF ) (4.2.40)
=1

3 3 "3 / 3
(xgk) D ) _ (xgk) ) )7

k K k ¥
Q(lé) = _Q§6)7 Qg6) = _Q(ze)

and

it follows that
Dig =Dy =0

Note that xgk) = —xgk,)7h(k) — 1) and

k) _ AK) Ak _ AHK) k) _ ()
01 =011,9p =02 01, =01y
k) _ ) Hk) _ k) k) _ (K)
Qg6 = Qo6 Q16 = — Q16"+ = 0
Equation (4.2.15) yields B;; = By = By = Bgs = 0. Balanced antisymmetric
laminates have no in-plane shear coupling and also no bending/twisting cou-

pling but a coupling of stretching/twisting and bending/shearing. The constitutive
equation has the following structure
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Al1Ap 0 0 0 0 B
[Ny ] : [ & ]
AppA» 0 : 0 O B
N 12 A2 . 26 &
Ng 0 0 Ags:Big B O &6
el = 4.2.41)
M . K
M; 0 O Big:Dy1Dip O K;
| M | 0 0 By:DppDy 0 | | K|
[ BigBxs 0 : 0 0 Deg |

4.2.3.3 Stiffness Matrices for Symmetric and Unsymmetric Laminates in
Engineering Applications

Table 4.4 summarizes the stiffness matrices for symmetric and unsymmetric lam-
inates which are used in engineering applications. Symmetric laminates avoid the
stretching/bending coupling. But certain applications require the use of nonsym-
metric laminates. If possible symmetric balanced laminates should be used. The
bending and shearing couplings are eliminated and one can show that for symmet-
ric laminates with a constant total thickness / the values of the bending or flexural
stiffness D¢ and D¢ decrease with an increasing number of layers and approach
zero for k — oo. If the stiffness A;;,B;; and D;; are calculated, the compliances
ajj,bij,cij = bl-Tj,d,-j follow from (4.2.26) or for symmetric laminates from (4.2.37).
The experimental identification of the compliances is simpler than for the stiffness
parameters.

The coupling stiffness B;; and Aj¢,A26,D16 and D»g complicate the analysis of
laminates. To minimize coupling effects symmetric balanced laminates should be
created with a fine lamina distribution. Then all B;; and the A6,A»6 are identical
to zero and the Dyg,Dy6 couplings are relatively low because of the fine lamina
distribution. Whenever possible it is recommended to limit the number of fibre ori-
entations to a few specific one, that are 0°, 4-45°,90° to minimize the processing and
experimental testing effort and to select a symmetric and balanced lay-up with a fine
lamina interdispersion in order to eliminate in-plane and out-of-plane coupling and
the in-plane tension/shearing coupling and to minimize torsion coupling.

There is furthermore a special class of quasi-isotropic laminates. The layers of
the laminate can be arranged in such a way that the laminate will behave as an
isotropic layer under in-plane loading. Actually, such laminates are not isotropic,
because under transverse loading normal to the laminate plane and under interlami-
nar shear their behavior is different from real isotropic layer. That is why one use the
notation quasi-isotropic layer. Because all quasi-isotropic laminates are symmetric
and balanced the shear coupling coefficients A1g,A26 are zero. It can be checked in
general any laminate with a lay-up of
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Table 4.4 Stiffness matrices for symmetric and unsymmetric laminates

| Symmetric laminate |

Unsymmetric laminate

Isotropic layers

Balanced laminate

AnAn 0 0 0 O
AnAnL O 0 0 O
0 0Ag O O O
0 0 0 D; ;D O
0 0 0 DDy O

0 0 0 0 O D¢

A1 Az 0 By Bz Bis
A2 Ay 0 By By B

0 0 Ags Bis B2 Bes
B11 B2 Big D11 D12 Dis
B12 By By D12 Dy Dog
B16 B26 Bes D16 D26 Des

Eq. (4.2.30)

Cross-ply laminate

Antimetric balanced laminate

Aj1Ap 0 0 O
AppA» 0 0 O
0 0 Agg O O
0 0 O DDy
0 0 O DyyDy
0 0 0 0 O D¢

(=N el

()

A11Ap 0 0 0 By
AppAyp 0 0 0 By
0 0 Ags Big Bg O
0 O BigDi1 D O
0 O ByDipyDy 0
BigBxyx 0 0 0 Dgg

0 0 O D16 Dag Dgg

Eq. (4.2.32) Eq. (4.2.41)
Balanced laminate Cross-ply
Aj1tAp 0 0 0 O |A;y A O B;; O 0
ApA» 0 0 O O |Ap A;yr 0 O —By1 O
0 0 A O O O |0 0 Age O O O
0 O O DipyDyDy| O —Bj; 0 Dip Dy O
0 0 0 DigDyDgg| 0O 0 0 0 0 Degg
Eq. (4.2.34) Eq. (4.2.39)
Angle-ply laminate Cross-ply
(approximate solution k — o)
Aj1Ap Al 0 0 0 AitAp 0 0 0 O
ApApn Ay 0 0 O AppA»n 0 0 0 O
AgAxAge 0 0 O 0 0 A O O O
0O 0 O Dy Dia D]ﬁ 0 0 O Dy Di» 0
0 O O Djp Dy Dy 0 0 O DipDy;p O

0 0 0 0 O D¢

Eq. (4.2.28)

or

T 2n

E/n/"'/

|

(n—Nx

n

o

|

T 2n

iy /.../nL

n n
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is quasi-isotropic for any integer n greater than 2. The simplest types are laminates
with the following lay-up

[0/60/ — 60]g ,n = 3,120° = —60°

and

0/ +45/ —45/90]g ,n = 4,135° = —45°

Summarizing the mechanical performance of laminates with special laminae

stacking sequences which are used in laminate design, we have considered the fol-
lowing classification:

1.

General laminates
The stacking sequence, the thickness, the material and the fibre orientations of
all laminae is quite general. All extensional stiffness B;; are not zero.

. Symmetric laminates

For every layer to one side of the laminate reference surface there is a corre-
sponding layer to the other side of the reference surface at an equal distance and
with identical thickness, material and fibre orientation. All coupling stiffness B;;
are zero.

. Antisymmetric laminates

For every layer to one side of the laminate reference surface there is a corre-
sponding layer to the other side of the reference surface at an equal distance,
with identical thickness and material, but opposite fibre orientation. The stiffness
Ai6,A26,D16 and Dyg are zero.

. Balanced laminates

For every layer with a specified thickness, specific material properties and spe-
cific fibre orientation there is another layer with identical thickness and material
properties, but opposite fibre orientation anywhere in the laminate, i.e. the corre-
sponding layer with opposite fibre orientation does not have to be on the opposite
side of the reference surface, nor immediately adjacent to the other layer nor any-
where particular. A balanced laminate can be

e General or unsymmetric: Ajg = Az =0

e Symmetric Ajg = Az =0, B;; =0

e Antisymmetric A1 = Az = 0,D16 = D26 =0

An antisymmetric laminate is a special case of a balanced laminate, having its
balanced + pairs of layers symmetrically situated to the middle surface.

. Cross-ply laminates

Every layer of the laminate has its fibers oriented at either 0° or 90°. Cross-ply
laminates can be

e General or unsymmetric: Ajg = A =0, Big = Bag =0, D1g = D2 =0

e Symmetric Ajg = Az =0, Dig = D2 =0, B;j =0

e Antisymmetric Ajg = Ayg = 0,D16 = D6 =0, B1a = B1g = By = Bgg = 0,
A1 = A, B11 =B, D11 =Dy
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Symmetric cross-ply laminates are orthotropic with respect to both in-plane and
bending behavior and all coupling stiffness are zero.

6. Quasi-isotropic laminates
For every laminate with a symmetric lay-up of

T (n—Dm T 2%

0/2/ /=5 or [0/ 2/ )l
the in-plane stiffness are identical in all directions. Because all these quasi-
isotropic laminates are also balanced we have A;; = Ay, = const,A|, = const,
A=A =0,B;;=0,D;; #0

7. Laminates with isotropic layers
If isotropic layers of possible different materials properties and thicknesses are
arranged symmetrically to the middle surface the laminate is symmetric isotropic
and we have A1| = A2, D11 = Dy, A1g = Az = 0,D16 = D6 =0, B;; = 0, i.e.
the mechanical performance is isotropic.

For symmetric laminates the in-plane and flexural moduli can be defined with
help of effective engineering parameters. We start with (4.2.26). a,b,c = b",d are
the extensional compliance matrix, coupling compliance matrix and bending com-
pliance matrix, respectively. For a symmetric laminate B = 0 and it can be shown
thata =A~' andd = D!. The in-plane and the flexural compliance matrices a and
d are uncoupled but generally fully populated

e=aN, k=dM (4.2.42)

Equations (4.2.42) lead to effective engineering moduli for symmetric laminates.

1. Effective in-plane engineering moduli EY, EY G, v1:
Substitute N; # 0,N; = Ng = 01in € = aN as

=3 ajp aiz agg | | M
& | = | ap ax ax 0 (4.2.43)
& aie aze age | | 0
which gives
& =ai

and the effective longitudinal modulus E{V is

(0] Ni/h 1
EN="1 = M/ - (4.2.44)
€& anhNy  han

In an analogous manner with Ny = 0,N, #0,N¢ =0or Ny = N, = 0, Ng #0,
the effective transverse modulus Eév or the effective shear modulus GI]V2 are

N_Gz_Nz/h_ 1

E) (4.2.45)

= - - )
& aphN, hap
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_66 N6//’l _ 1

GV, -
&  aesNe hage

(4.2.46)
The effective in-plane Poisson’s ratio v{\; can be derived in the following way.
With N, 7£ O,Nz = Ng =0 (4.2.43) yields & =apNy, & =a; 1MV and vy is de-

fined as
N &  apN _ an

= 4.2.47)
£ a N ap

The Poisson’s ratio vé\'l can be derived directly by substituting N = Ny = 0,
N, #01in (4.2.42) and define v21 —81 /& or by using the reciprocal relationship
vib JEN = v JEY . In both cases V) is given as

P (4.2.48)
axn
The effective in-plane engineering moduli can be also formulated in terms of the
elements of the A-matrix
N_A11A22 A12 E A11A22*A12 G A66
- 2 = s
Apih h (4.2.49)

A 12
WY N

2. Effective flexural engineering moduli E{V’ , Eé” , G’lwz, v{"é, v% :
To define the effective flexural moduli we start with k¥ = dM. Apply M; # 0,
M, = 0,M¢ = 0 and substitute in the flexural compliance relation to give

M, o

Ki=duMy = —-, 1=+
EM] 12

and the effective flexural longitudinal modulus EV is

12M 12
M __ I _
Ef = ey 13 = 13dy, (4.2.50)

Similarly, one can show that the other flexural elastic moduli are given by

M 12 M d]2 M 12 M _ d]2

EM — v = V. 4.2.51
2 h3d22 ’ 12 = dll 12 h3d66 ) 21 — d2 ( )
Flexural Poisson’s ratios also have a reciprocal relationship
M M
Via _ Vai
12 _ 721 (4.2.52)
EYl  E)

In terms of the elements of the D matrix we find
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EM _ IZ(DHDZZ*D%z) EM _
1 D22h3 s 2
12Dss 3y D1y D12

— V= —= V) = —=
V12 Va1
3 Do) D,

12(Dy1Dy — D3,)
Dyh? ’ (4.2.53)

G =

Consider unsymmetric laminates, the laminate stiffness or compliance matrices
are not uncoupled and therefore it is not meaningful to use effective engineering
laminate moduli.

4.2.4 Stress Analysis

Laminate stresses may be subdivided into in-plane stresses, which are calculated
below with the classical assumption of linear strain functions of x3, and the through-
the-thickness stresses, which are calculated approximately by integration of the
equilibrium conditions. Taking into account the assumptions of macro-mechanical
modelling of laminates the strains €, &, & vary linearly across the thickness of the
laminate

n
€(x1,x2,x3) = €(x1,%2) +x3K(x1,x2), h= Z A0 (4.2.54)
k=1

These global strains can be transformed to the local strains in the principal material
directions of the kth layer through the transformation equations (Table 4.1)

g™ _ Tee®) xgk—l) <x3<x® (4.2.55)

If the strains are known at any point along the thickness of the laminate, the stress-
strain relation (Table 4.2) calculates the global stress in each lamina

o®) = @We® = W (g 4+ x3x), 1V <xy <k (4.2.56)

By applying the transformation equation for the stress vector (Table 4.1) the stresses
expressed in the principal material axes can be calculated

o't =1°6® (4.2.57)
Starting from the strains &’ (k), the stresses in the kth layer are expressed as follows
P, UCPYC) (4.2.58)

From (4.2.56), the stresses vary linearly through the thickness of each lamina and
may jump from lamina to lamina since the reduced stiffness matrix @¥) changes
from ply to ply since @¥) depends on the material and orientation of the lamina (k).

Figure 4.16 illustrates qualitatively the stress jumps of the membrane stresses 0'1(\51)
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o= oo oh-olom ool

ol - ofbe ohofion ool

= ol -dn o =alirol
o® A 0]
o e
oW 13

Fig. 4.16 Qualitatively variation of the in-plane membrane stresses o\, the bending stresses
o and the total stress o; through the thickness of the laminate. Assumptions 4D = A(3),

oM = 0¥ <0 i=1,2,6

which follow from the in-plane resultants N and are constant through each lamina

and the bending/torsion stresses O'g{ ) following from the moment resultants M and
vary linearly through each ply thickness. The transverse shear stresses 04, 05 follow
for a plane stress state assumptions that is in the framework of the classical laminate
theory, Sect. 5.1, not from a constitutive equation but as for the single layer, (4.1.56),
by integration of the equilibrium equations. For any lamina m of the laminate by
analogy to (4.1.57) can be established

(k)

i{ / |: aa (81 —|—)C3K1)—|—Q]2 aa (€2+X3K2)
k=1 N

k—1)
3

) 0
JFQ16 3 (€ +153»71'6)+Q61 o (&1 +x3K1)

d ) 0
Jng;)& (& +X3K2)+Q66 7% (& +x31<6)} d)@,}
X3 a a
- / |:QE] E (81+x3K1)+Q128 (82-‘1-)631(‘2)

(,,,,])
) 9 ) 0
+Q,6 F™ (sﬁ+x31<6)+Q6] E (&1 +x3K7)
8 ) 0
+Q62 E (82—|—X3K2)—|-Q66 E (86+x3K6) dxs, (4.2.59)

N

m—1 (9

k—1)
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8

a
+Q<z'§) . (&2+x312)dxs + 0} =— 5 (86+x31<6)dx3} (4.2.60)
x3

d
/|:Q618 (1'31“1‘)C3K1)“v‘Q62(9 (82-‘1-)631(2)

xgm 1)

) 0 ) 0
+Q66 3 (86+x3K6)+Q21 8 (&1 +x3%7)

m) 3 )y 0
+sz EPS (82+X3K2)+Q26 o5 —— (& +x3K6) | dxs,

G.(m)(x3 zxgm)) = 6-<m+])(x3 zxgm)),i=4,5;m =1,2,...,n,

1

A < gy < 5

With the relationships

(k 1)
(k)

1 2 2
/ 0Wxzdx; = @ )2 (xgk) _xgk ! ) :Q(k)h“)xgk) =W

NS
3

(k)

Xy’ is the distance of lamina k from the midplane. The shear stresses

(4.2.61)

o™ (x5 = xgm)), i =4,5, at the top surface of the mth lamina can be formulated by

(m) _ . (m) T )T
Os (X3 =X; ) m F F m
[G(m) (x _x(m))] Z: [ 0T ] [ ] (4.2.62)
4 \X3=X3 F F2 n2

6
with

wT _ (k) (k) (k) (k) (k) (k)
s [RO0() B0 K0 sW0 () M) sY Q).

(k)" _ (k) (k) (k) (k) (k) (k)
e o= (19001 B0y K00 51900 59002 s 004,

(k" _ (k) (k) (k) (k) (k) (k)
Fg' = [h(k)Q(m) h(k)Q(m) h(k)Q(66) S<k)Q(61) S<k)Q(62) s<k)Q(66)]

and
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1t _[de de& de dxy dKy 81(6} T [381 08 0¢& Jdk) dKy ke

- =« _- _ - _=_~ = s e — — =

8x2 8x2 8x2 8x2 8x2 8x2

The transverse shear stresses only satisfy the equilibrium conditions but violate the
other fundamental equations of anisotropic elasticity. They vary in a parabolic way
through the thicknesses h®) of the laminate layers and there is no stress jump if one
crosses the interface between two layers.

4.2.5 Thermal and Hygroscopic Effects

In Sect. 4.1.2 the hygrothermal strains were calculated for unidirectional and angle
ply laminae. As mentioned above, no residual mechanical stresses would develop
in the lamina at the macro-mechanical level, if the lamina is free to expand. Free
thermal strain, e.g., refers to the fact that fibres and matrix of an UD-lamina are
smeared into a single equivalent homogeneous material and that the smeared ele-
ments are free of any stresses if temperature is changed. When one considers an
unsmeared material and deals with the individual fibres and the surrounding matrix,
a temperature change can create significant stresses in the fibre and matrix. When
such selfbalanced stresses are smeared over a volume element, the net result is zero.
Howeyver, in a laminate with various laminae of different materials and orientations
each individual lamina is not free to deform. This results in residual stresses in the
laminate. As in Egs. (4.1.31) and (4.1.32) a™, a™® are the thermal and moisture
expansion coefficients, T is the temperature change and M* the weight of moisture
absorption per unit weight. In the following equations, 7' and M* are independent of
the x3-coordinate, i.e. they are constant not only through the thickness (¥ of a sin-
gle layer but through the thickness 4 of the laminate. Heat transfer in thin laminates,
e.g., is generally quite rapid and, hence, thermal gradients in x3-direction are seldom
taken into account and the temperature change T is then approximately independent
of x3. Analogous considerations are valid for changes in moisture.

For a single layer in off-axis coordinates, the hygrothermal strains and stresses
are given by

£=So+aT +a™M*, o =Q(—a"T —a™M") (4.2.63)
or substituting € = € + x3K
o =Q0(e +x3k — a™T — ™ M*) (4.2.64)

The definitions of the force and moment resultants N and M
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N = /cdx3 = /Q(s +x3K—a‘hT—am°M*)dx3,
") ") (4.2.65)
M= /O'x3dx3 = /Q(S +x3k — T — oM )x3dx;
(h) (h)
yield the equations

N = Ag +Bx — Nt _N™°,

M = Be + Dx — Mt —M™, (4.2.66)

h3
A=Qh B=0, D=0

B =0 follows from the symmetry of a single layer to its midplane. N, N™,
M™ M™ are fictitious hygrothermal resultants which are defined in (4.2.67). If T
and M* are independent of x3 one can introduce unit thermal and unit moisture
stress resultants ' /™ AmO A7m i e resultants per unit temperature or moisture
change

/ 0a"Tdx; = QoTh =T,
()
/ Qe Txsdy; = ;Qa‘hThz — M,
*) A (4.2.67)
/ Qo™ M*dx; = Qa™M*h = N"M*,
" 1
- / Q™ M xsdrs = L QE"M = MM,
()

N™ and N™° have the units of the force resultant, namely N/m, and M™ and M™
the units of the moment resultants, namely Nm/m. The integral form of the resultant
definitions makes these definitions quite general, i.e. if 7 or M* are known func-
tions of x3, the integration can be carried out. But for the temperature changes with
x3 and if the material properties change with temperature, the integration can be
complicated, but in general the simple 1ntegrated form, Eqgs. (4.2.67) can be used.
With the total force and moment resultants N, M, equal to the respective sums of
their mechanical and hygrothermal components

N=N+N"4+N™ M=M-+M+M™, (4.2.68)
the extended hygrothermal constitutive equation for a lamina can be written
N A0 | [e
=1 .... (4.2.69)

N . K
M 0:D
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This constitutive equation is identical to that derived for mechanical loading only,
(4.1.54), except for the fact that here the hygrothermal forces and moments are
added to the mechanically applied forces and moments. The inversion of (4.2.69)
yields the compliance relation

£ a:0| [N
=], a=A"", d=D"! (4.2.70)
K . M
0:d
The values of the stiffness A;;, D;; and compliances a;;,d;; are the same as for pure
mechanical loading (Table 4.3) and unit stress resultants N /™ Mo A7mo are

N = (0110 + Q108" + Q160 1,

N = Qo + 0ol + Qs

NI = (01601 + Q260" + Qg1 )h7

M = (0ol + 01208 + 01604") hz, (4.2.71)
l

MY = (01204 + 02008 + 02608 )2h’
1

M = (01604 + Q2608 + Q6 0t )2 ?

and analogous for unit moisture stress resultant with o™,i = 1,2,6. In the more
general case the integral definitions have to used.

When a laminate is subjected to mechanical and hygrothermal loading, a lamina k
within the laminate is under a state of stress 6*) and strain €¥). The hygrothermoe-
lastic superposition principle shows that the strains €) in the lamina k are equal
to the sum of the strains produced by the existing stresses and the free, i.e. unre-
strained, hygrothermal strains and the stresses 6(¥) follow by inversion

e® — sOGH 4 gty 4 gmolype
ok = W (E(k) _ o _ gmo® M) 4.2.72)
= QW (® 4 x;3x® — gh™ 7 — gmo® pr)

When in the lamina k all strains are restrained, then £X) = 0 and the hygrothermal
stresses are ® @
o — g® (,ath T — o™ M*) (4.2.73)

Integration of the stresses 6¢*) and the stresses 6*) multiplied by the x3-coordinate
across the thickness 2 and summation for all laminae gives the force and moment
resultants of the laminate



4.2 Elastic Behavior of Laminates 161

k=1
x(3k) x(3k)
= Z Q(k) / dx; | €+ Z Q(k) / x3dxs | K
k=1 (k-1) k=1 (k-1)
3 3
n @, 0
+y o o / ds |+ Y o o™ / dys | |
k=1 NE) k=1 NE)
» 3 3 (4.2.74)
M= Z oD pk) xgk)
k=1
x(3k) xgk)
= Z Q(k) x3dxs | €+ Z Q(k) X%d)@, K
k=1 k=1
x(3k—1) x3k—1)
n 0 n 0
+ Z Q(k)ath(k)T / x3dxs | + Z Q(")am"(k>M* /)C3d)C3
k=1 k=1
xgkfl) xgkfl)

With the stiffness matrices A,B and D, Eqs. (4.2.74), can be rewritten in a brief

matrix form
N =Ag+Bx —N" _N™,

M = Be +Dx — M™ — M™ (4:2.75)
The fictitious hygrothermal resultants are given by
n n
NP =Ty QW p®) =7y FEn,
k=1 k=1
n ® noo
N™ — pr* Z Q(k)amo h(k) - M* Z N(k)mo7
k=1 k=1
1 & 2 2
M" = 7Y oW (xg"> —a Y ) (4.2.76)
k=1
n n
=TY Q(k)ath(">x(3k)h(k) =7y G
k=1 k=1
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By analogy to the single layer one can introduce total force and moment resultants
N and M the stiffness and compliance equations expanded to the hygrothermal com-

ponents
N+N"4+N"™ =N, M+M"+M™ =M,

N A:B| [e € a 'b| [N

M B:p|L* K pria| M
a :A*fB*D*ilC*,A* :14—17
b=BD"!, B* = —A"'B, (4.2.77)
d=D""", D*=D-BA"'B

The coupling effects discussed in Sects. 4.2.2 and 4.2.3 stay unchanged and the
stiffness matrices in Table 4.4 can be transferred.

If we can classify a laminate as symmetric, balanced, cross-plied or some combi-
nations of these three laminate stacking types, some of the thermal or moisture force
or moment resultant coefficients may be zero. For temperature or moisture change
that depends on x3, no general statements can be given. However for changes in-
dependent of x3, the following simplifications for the unit stress resultants can be
considered, J = th,mo

Symmetric laminates
N{ # 0, M{ =0,

Ny #£0, M =0,
Nl #£0, M =0

Balanced laminates R
M#£0, W #0,

NJ#£0, M #0,

Nl =0, M/ #0
Symmetric balanced laminates

N #£0, M =0,

NJ#£0, M =0,

N =0, M/ =0
Cross-ply laminates

N #£0, M| #0,

N #0, M #0,

Nl=0, M/ =0
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Symmetric cross-ply laminates

N #0, M =0,
NJ # 0, M3 =0,
N=0, M/ =0

Summarizing the hygrothermal effects one can see that if both mechanical and
hygrothermal loads are applied the mechanical and fictitious hygrothermal loads can
be added to find ply by ply stresses and strains in the laminate, or the mechanical
and hygrothermal loads can be applied separately and then the resulting stresses and
strains of the two problems are added.

4.2.6 Problems

Exercise 4.7. A symmetric laminate under in-plane loading can be considered as
an equivalent homogeneous anisotropic plate in plane stress state by introducing
average stress 6 = N/h and N = Ag. Calculate the effective moduli for general
symmetric laminates and for symmetric cross-ply laminates.

Solution 4.7. Equations (4.2.37) yields € = aN,a = A~!. The components of the
inverse matrix a are

a1 = (AnAge — Adg) /A a2 = (A16A26 — A124s6) /A,

axn = (A11Aes — Atg) /A, a16 = (A12A2 — AnAie) /A,

ax = (A12A16 — A11426) /A, a6 = (A11A2 — A2,) /A,

A Agg
A Ags

Aqz Az

—Ap A Axp
Ale Acs

A =Det(A;j) = A1 ‘ 16 ‘A]G Ang

The comparison € = aN = hao with (4.1.19) leads to

Ey =1/hay,E, = 1/hay,Es = 1/hagg,

Vi2 = —ap/ai, Va1 = —an/an,vie = dais/ai,

Vo1 = a16/ae6, Vas = 26/ 022, Ver = 26/ ds

These are the effective moduli in the general case. For cross-ply laminates is
A1 = Az = 0 (Eqgs. 4.2.31). The effective moduli can be explicitly expressed in
terms of the in-plane stiffness A;;. With Det(A;;) = A1A2466 7A%2A66 follow the
effective moduli

E| = (A1Ay — A}) [hAy, via = A1z /An,

Ey = (A11An — AT))/hA1, Va1 = Arn/An,

G2 = Es = As6/h,Vie = Vo1 = V26 = Vs2 =0

Note that these simplified formulae are not only valid for symmetric cross-ply lam-
inates (0/90)s but also for laminates (+45);.
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Exercise 4.8. Show that a symmetric laminate [£45°/0°/90°)s with E| = 140 GPa,
E}, =10 GPa, E{ = 7 GPa, v{, = 0,3 has a quasi-isotropic material behavior. The
thicknesses of all plies are onstant A¥) = 0,1 mm.

Solution 4.8. The solution will obtained in four steps:

1. Calculation of the on-axis reduced stiffness Q] ;
With respect to (2.1.56) we obtain

Vio/Ey = V31 [Ey == V3, = (Vi2E3) [E; = 0,0214

and finally from Eqgs. (4.1.3) follow
0}, = E{(1 —Vv|,V},) = 140,905 GPa,
Q22 = E}(1—v{,v},) = 10,065 GPa,
12 = Eyvip/(1 = vipvy) = 3,019 GPa,
Q4 = E¢ =7GPa
2. Calculation of the reduced stiffness in the laminae (Table 4.2)

Qoo = Qi
Q]l 00] = Q/22 = 107065 GPa,
Qmoo] =0/, =3,019GPa,

900 = 0}, = 140,905 GPa,
Qeefoor) = Qg = 7 CPa,
Q16 900] = Q26[900] =0,

3. Calculation of the axial stiffness A;; (4.2.15)

8 4
Aij=Y. 0fn® =2y oPn®),
n=1 n=1

A1 =48,69510° Nm ! = Ay,A1, = 14,108 10° Nm~!,
Ags = 17,29310° Nm ' Ajg = Az =0
4. Calculation of the effective moduli (example 1)
E\ =E, = (A}, — A3,)/hAy = 446,1 GPa, E¢ = Ags/h = 172,9 GPa,
Vi2 = Va1 =A12/A» =0,29
Note that £ = 2(1 + v)G = 446, 1 GPa, i.e. the isotropy condition is satisfied.

Exercise 4.9. Calculate the laminar stresses ¢ and ¢’ in the laminate of previous
example loaded by uniaxial tension Nj.
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Solution 4.9. The following reduced stiffness matrices are calculated

[140,9 3,02 0 ]
Quy = |3.02 10,06 0 |10°Pa,
0 0 7,0]
(10,06 3,02 0 ]
Qo = | 3,02 140,9 0 | 10°Pa,
L0 0 7,0
[ 46,25 32,25 +£32,71
Qigso = | 32,25 46,25 £32,71 | 10°Pa
| +32,71 £32,71 36,23

The axial stiffness matrix A is also calculated

48,70 14,11 0
A= [14,1148,70 0 | 10°N/m
0 0 17,29

With
ail = An/(A3, —A%)) =0,02241 10~5m/N,
an = A /(A7 —A%,) = an,
ags = 1/Ags = 0,05784 10~ °m/N,
apn = —Ap/(A11Axn —A3) = —0,00645 10~5m/N

follows the inverse matrix a = A~!

22,41 —6,49 0
a=|-6,492241 0 |[10°m/N
0 0 57,84

The strains are with (4.2.42)

€] N 22,41
€=aN—=— |& | =al| 0 | =|-6,49| 10"°(m/N)N,
&6 0 0

N is given in N/m, i.e. & are dimensionless.
Now the laminar stresses are (Table 4.2)

o (3138

02 = Qe = | 2,4 | M[Nm?],
o1 [ 2(())5 8

(e3] ,

(o) = Qo€ = | —846,8 | Ny [N/m?],
_66_ [900] L 0

165
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o1 827,2
0 = Q50 = | 422,6 | Ni[N/m’]
O6 | Lras) +520,7

The stresses jump from lamina to lamina. Verify that the resultant force N, = 0.
The stress components in reference to the principal material axes follow with the
transformation rule (Table 4.1)

o| 2 s> 2sc o]
oy | = st 2 —2sc o |,
o, —cscesc2—s2 | | og

(o] ] 3138

o) = | 2,4 | Nj[N/m?],

[l L O]

o —846,8

o, = | 205,8 | N;[N/m?],
/

%o L O

ol 1146

o> = | 104,2 | N\[N/m?]

[ 06 | (a0 | F202,3 |

Note 4.1. These stresses are used in failure analysis of a laminate.

Exercise 4.10. A laminate with an unsymmetric layer stacking [—45°/30°/0°] has
three layers of equal thickness 2(") = 2(2) = 1(3) = 5 mm. The mechanical properties
of all UD-laminae are E| = 181 GPa, E} = 10,30 GPa, G|, = 7,17 GPa, v{, = 0,28
GPa. Determine the laminate stiffness A;;, B;;, D;;.

Solution 4.10. Using (4.1.3) the elements S/ ; of the compliance matrix S’ are

S, =1/E; =0,0055 GPa™!,
S, = —Vvi,/E| = —0,0015 GPa™ !,
S, =1/E}=0,0971 GPa™!,
Sty =1/G}, =0,1395GPa"!

The minor Poisson’s ratio follows with
vh = V,E5/E] =0,01593
Using (4.1.3) the elements Q)] ; of the reduced stiffness matrix Q' are

L =E]/(1—V|,v5,) =181,8 10°Pa,
0\, = Vi,EL /(1= Vv,V ) =2,897 10°Pa,
0y = E}/(1—V},V5,) = 10,35 10°Pa,
Qs =G}, =7,1710°Pa
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Verify that the reduced stiffness matrix could also be obtained by inverting the
compliance matrix, i.e. Q' = S$'~!. Now the transformed reduced stiffness ma-
trices Qjoo), @300, @[—450) have to be calculated with the help of Table 4.2 tak-
ing into account that ¢ = cos0° = 1,c0s30° = 0,8660,cos(—45°) = 0,7071 and
s = sin0% = 0,5in30° = 0, 5,sin(—45°) = —0,7071

(181,812,897 0
Quy = |2.89710,35 0 |10°Pa,
o o0 7,17

[109,4 32,46 54,19
Qu = | 32,46 23,65 20,05 | 10°Pa,
| 54,19 20,05 36,74

[ 56,66 42,32 —42,87
Q450 = | 42,32 56,66 —42,87 | 10°Pa
| —42,87 —42,87 46,59

The location of the lamina surfaces are x(30) =—7,5mm, xgl) =—2,5mm, xgz) =2,5

mm, x?) =7,5 mm. The total thickness of the laminate is 15 mm. From (4.2.15) the

extensional stiffness matrix A follows with

3
Z% 9=5Y 0fmm,

the coupling matrix B follows with
3 3
_ k) _(k
Z xg =5 Z Ql(-j)xg )mm
k=1 k=1

and the bending stiffness matrix D;; follows with

(k)2 3
_(k)y2 B 5 0 (25 (k2 3
ZQ,, < %) +—12>3Z,1Q,~j (12+(x3) mm

k
with :
_(k k k—1
= L,
i.e. )E(31) =5 mm, )E(32) =0 mm, )253) = —5 mm. Summarizing the formulas for A;;, B;;

and D;; we have the equations

Ay = 5104 + 0 + 0} Jmm
5[50} +007 — 500 mm?),
Di; = 5[(25+25/12)0}) + (25/12) V4 (25+25/12)0 Jmm?
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and the stiffness matrices follow to

(17,39 3,884 0,566
A= [3,884 4,533 —1,141 | 10%Pam,
0,566 —1,141 4,525

[—3,129 0,986 —1,072]
B =098 1,158 —1,072 | 10°Pam?,
| 1,072 —1,072 0,986 |

[ 33,43 6,461 —5,240]
D= 6,461 9,320 —5,596 | 10°Pa m?
| —5,240 —5,596 7,663 |

4.3 Elastic Behavior of Sandwiches

One special group of laminated composites used extensively in engineering appli-
cations is sandwich composites. Sandwich panels consist of thin facings, also called
skins or sheets, sandwiching a core. The facings are made of high strength material
while the core is made of thick and lightweight materials, Sect. 1.3. The motiva-
tion for sandwich structure elements is twofold. First for beam or plate bending
the maximum normal stresses occur at the top and the bottom surface. So it makes
sense using high-strength materials at the top and the bottom and using low and
lightweight strength materials in the middle. The strong and stiff facings also sup-
port axial forces. Second, the bending resistance for a rectangular cross-sectional
beam or plate is proportional to the cube of the thickness. Increasing the thickness
by adding a core in the middle increases the resistance. The maximum shear stress
is generally in the middle of the sandwich requiring a core to support shear. The
advantages in weight and bending stiffness make sandwich composites attractive in
many applications.

The most commonly used facing materials are aluminium alloys and fibre re-
inforced plastics. Aluminium has a high specific modulus, but it corrodes without
treatment and can be prone to denting. Therefore fibre reinforced laminates, such
as graphite/epoxy or glass/epoxy are becoming more popular as facing materials.
They have high specific modulus and strength and corrosion resistance. The fibre
reinforced facing can be unidirectional or woven laminae.

The most commonly used core materials are balsa wood, foam, resins with spe-
cial fillers and honeycombs (Fig. 1.3). These materials must have high compressive
and shear strength. Honeycombs can be made of plastics, paper, card-boards, etc.
The strength and stiffness of honeycomb sandwiches depend on the material and
the cell size and thickness. The following sections consider the modelling and anal-
ysis of sandwiches with thin and thick cover sheets.
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4.3.1 General Assumptions

A sandwich can be defined as a special laminate with three layers. The thin cover
sheets, i.e. the layers 1 and 3, are laminates of the thicknesses KD for the lower skin
and 1®) for the upper skin. The thickness of the core is 2(2) = h¢. In a general case
hM) does not have to be equal to A, but in the most important practical case of
symmetric sandwiches 1) = () = pf.

The assumptions for macro-mechanical modelling of sandwiches are:

1. The thickness of the core is much greater than that of the skins, K2 > h(l),h(3)
or h° > hf
2. The strains €1, &, & vary linearly through the core thickness A°

€ =€+ x3K

3. The sheets only transmit stresses 07, 02, 0 and the in-plane strains are uniform
through the thickness of the skins. The transverse shear stresses o4, 05 are ne-
glected within the skin.

4. The core only transmits transverse shear stresses o4 and O3, the stresses 07, 0,
and oy are neglected.

5. The strain &3 is neglected in the sheets and the core.

With these additional assumptions in the frame of linear anisotropic elasticity, the
stresses and strains can be formulated.
Strains in the lower and upper sheets:

1 1
eD=¢gF S, el =g F Sk 1=13, i=1,26 4.3.1)
The transverse shear strains &4, € are neglected.
Strains in the sandwich core:

C C

h
e? — g — g4k, —F<m<+z 4.3.2)

The transverse shear strains are, in a first approach, independent of the coordinate
x3 (4.2.14)
Yo=le &' (4.3.3)

We shall see in Chap. 5 that in the classical laminate theory and the laminate theory
including transverse shear deformations the strain vector € is written in an analogous
form, and only the expressions for the curvatures are modified.

Stresses in the lower and upper sheets:

In the sheets a plane stress state exists and with assumption 3. the transverse shear
stresses 04 and o5 are neglected. These assumptions imply that for laminated sheets
in all layers of the lower and the upper skins
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The other stresses are deduced from the constant strains
1 I I
81( ),eé),sé), =13

by the relationships

o =gl ij=1206 1=13 (4.3.4)

for the kth layer of the lower (I = 1) or the upper (I = 3) skin.
Stresses in the sandwich core:
From assumption 4. it follows

of = o = o =0
and the core transmits only the transverse shear stresses
o5 Css Cus | | &
= 4.3.5
[GX } [C45 Cias| | & ( )
or in matrix notation (Eq. 4.2.14)
o’ =C (4.3.6)

The coefficients Cj; of C* are expressed as functions of the coefficients CZ-C; referred
to the principal directions by the transformation equation (4.2.17). The coefficients
ij in the principal directions are themselves written as functions of the shear moduli
of the core (Sect. 2.1, Table 2.5), measured in principal directions as follows
/ /
Ciu=G3, C55=Gi3 (4.3.7)

For an isotropic core material a transformation is not required.

4.3.2 Stress Resultants and Stress Analysis

The in-plane resultants N for sandwiches are defined by

—ne yhe+n®
N = / odx; + / odxs, (4.3.8)
—(3ne+h) Lhe

the moment resultants by
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e Jhe+h)
M= / ox3dxs + / ox3dxs
—(3he+hM) The

and the transverse shear force by

1,¢
o h

Q= / o'dx;

_Ipe
o
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(4.3.9)

(4.3.10)

For the resultants N and M the integration is carried out over the sheets only and for
the transverse shear force over the core.

By substituting Eqs. (4.3.4) - (4.3.7) for the stresses into the preceding expres-
sions for the force and moment resultants, we obtain analogous to (4.2.16) the con-

stitutive equation

N
M

QS

with the stiffness coefficients

Aij:Al( )Jr

Cij:Ci( )+

and

th

- e

hc+/’l1

.y
o= [ ofman =
( hc+l’l1)

Ve +h3

/ Q,(f)x3dx3

¢
ol

1 _
with xgk) =, (xgk) +x(3k " and

ABO | [e
=|CDO K
004 |y
@ g 1 3) 40
AG By = e (45 =),
®) p.— e (¢®_ o
c), iy = (c,.j —c,.j)
ﬂ] /Q Q k)h(k)
ij ij ’
h(k k=1
nz
/%M3Z% ,
h(k
ny ny
/Qu x3dx; = Z Ql(;{)h(k) 0
=Ly =
S () G k) (k) =(K)
=) /Qij xades = ), 0 h s
k=1h(k> k=1

4.3.11)

(4.3.12)

(4.3.13)
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As . hCCs

i Li=45 (4.3.14)

ny and ny are the number of layers in the lower and the upper sheet respectively and
C5 are the transverse shear moduli of the core. The constitutive equations (4.3.11)
for a sandwich composite has a form similar to the constitutive equation for lami-
nates including transverse shear. It differs only by the terms C;; instead of B;; which
induce an unsymmetry in the stiffness matrix.

In the case of symmetric sandwiches with identical sheets h()) = h®) = pf,

Aﬁjl.) = A( j) Afj ijl) = —Cf;) = C,fj and from this it results that the stiffness

coefficients Eq. (4.3.12) are

Aij =24

f
ij Dij = h°C;

ijo Bij:07 Ct]:() (4.3.15)

As developed for laminates including shear deformations, the coefficients A?; can
be corrected by shear correction factors k;; and replaced by shear constants (k°A®);;
to improve the modelling.

In the case of symmetric sandwiches there is no coupling between stretching
and bending and the form of the constitutive equation is identical to the constitutive
equation for symmetric laminates including transverse shear.

4.3.3 Sandwich Materials with Thick Cover Sheets

In the case of thick cover sheets it is possible to carry out the modelling and analysis
with the help of the theory of laminates including transverse shear. Considering the
elastic behavior of sandwich composites we have:

o The stretching behavior is determined by the skins.
e The transverse shear is imposed by the core.

The modelling assumption 1. of Sect. 4.3.1 is not valid. Restricting the modelling
to the case of symmetric sandwich composites and to the case where the core’s
principal direction is in coincidence with the directions of the reference coordinate
system. The elastic behavior of the composite material is characterized by

o the reduced stiffness parameters Qf for the face sheets,
e the reduced stiffness parameters Q and the transverse shear moduli CC for the
core

Application of the sandwich theory, Sect. 4.3.2, leads to the following expressions
for the stiffness coefficients of the constitutive equation (upper index Sa), one lamina

At =2h'Ql; B} = 0,C5 = 0,D5* = ij(hf+hC)hth, i,j=12,6 (43.16)
The shear stiffness coefficients Ag are in the sandwich theory

AR =hCyj, i,j=4,5, Cas =G5, Cs5=G53,C45=0 (4.3.17)
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Application of the laminate theory including transverse shear, Sect. 4.2.2, (4.2.15)
leads (upper index La) to

fHf
AR =210} + 1605, B =0,

La_ Lot el of o2 Lo e (4.3.18)
Dt = ) Qih" | (R )2 4 L (W) | + 5 Q(h), i,j=1.2,6

The shear stiffness coefficients A§j are now

AT = 2h(CL G, 0, = 4,5,C5 = Gy, CLS =G5, Cle =0 (43.19)

For symmetric faces with n laminae Egs. (4.3.16) - (4.3.19) yield
s " oK) fk
Al.ja zzzQij S (k)
k=1
n
(k _(k
DZ_S?I — he Z Q{( )hf(k)x( )
A =2 Z ol W™ 1 gy,
La _ (k) k) (k) y2
Dt = 1;1 Qi <hf( (7)) + B
The comparison of the analysis based on the sandwich or the laminate theory yields

heQe,
La __ 4S 2
Aija 7A"]Aa <1 + thQf > )

(4.3.20)
W he +(4/3 A C. he)?
Dlea_Dlsj,a< Rl CTE) A & U G WM

TR 60l W (R A
ft
Aska _ gsSa 1+hc i i=4.5 4.3.21)
ij — Aij hCCC y L] =49, e

Generally the core of the sandwich is less stiff than the cover sheets
f
i< Qij

and the relations (4.3.20) can be simplified

ht he + (4/3)ht
AR ~ AP, DI~ DY (1 t o (4.3.22)
Equation (4.3.21) stays unchanged.

The bending stiffness D;; are modified with respect to the theory of sand-
wiches and can be evaluated by the influence of the sheet thickness. If for ex-
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ample 4° = 10 mm and the sheet thickness 4" = 1 mm/ 3 mm or 5 mm we find
D =1,103D5?/1,326D}% or 1,555D;?, a difference of more than 10%, 30% or
50 %.

4.4 Problems

Exercise 4.11. The reduced stiffness ij and Qlfj of a symmetric sandwich satisfies
the relation ij < Qlfj. Evaluate the influence of the sheet thickness on the bending
stiffness ratio Db’d / DI-SJ?‘ if the core thickness is constant (A° = 10 mm) and the sheet
thickness vary: A" = 0.5/1.0/3.0/5.0/8.0/10.0 mm.

Solution 4.11. Using the simplified formula (4.3.22) the ratio values are
1.051/1.103/1.323/1.555/1.918/2.167 i.e. the difference
pLa _ pSa
% 100%
Dy
of the stiffness values for Dba and Disj?1 are more than 5%/10%/32%/55%/91% or
116%.

Conclusion 4.2. The sandwich formulas of Sect. 4.3.2 should be used for thin cover
sheets only, i.e. W< he.

Exercise 4.12. A sandwich beam has faces of aluminium alloy and a core of
polyurethane foam. The geometry of the cross-section is given in Fig. 4.17. Cal-

l Wt X3

X2 X3

|
x e h - | "
}

- >

Fig. 4.17 Sandwich beam. @ Geometry of the cross-section of a sandwich beam, b Distribution
of the bending stress, if the local stiffness of the faces and the bending stiffness of the core are
dropped, ¢ Distribution of the shear stress, if only the core transmit shear stresses
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culate the bending stiffness D and the distributions of the bending and the shear
stress across the faces and the core, if the stress resultants M and Q are given.

Solution 4.12. The bending stiffness D of the sandwich beam is the sum of the
flexural rigidities of the faces and the core

bhf
D=2E""— 1 2E"pKf (

12 2 12

he +hf)2 e b
E' and E*€ are the effective Young’s moduli of the face and the core materials. The
first term presents the local bending stiffness of the faces about their own axes, the
third term represents the bending stiffness of the core. Both terms are generally very
small in comparison to the second term. Provided that

(K +nt)/nt > 5,77,  [(E'hY)/(E°KhO)][(h€ + hT) /h€]* > 100/6

ie.
E'bh" /6 1 Ebh/12 1
Ef[bhf(he +ht)2]/2 ~ 100  Ef[bhf(h¢ + hf)2]/2 ~ 100
the first and the third term are less than 1% of the second term and the bending
stiffness is approximately

D ~ E'bh' (h¢ + 1?2
The bending stress distributions through the faces and the core are

Ef Ef he +hf E€

of = M—x; ~ +M— ., 0°=M—x3~0
D D 2 D
The assumptions of the classical beam theory yield the shear stress equation for the
core 05ts) 0
X3 fof e
T= =—|E'S E"S
) = [T (1) 4+ 55 x)]
~ 2

~

D

hf<hc+hf) E€ hc2
| SN =02
E=—t5 {75

The maximum core shear stress will occur at x3 = 0. If

ETht (k¢ + hf)

> 100
Eche? /4

the ratio of the maximum core shear stress to the minimum core shear stress is < 1%
and the shear stress distribution across the core can be considered constant

. ETht(h¢ + hf)
D 2

and with
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D =~ E'bhf(h¢ +h)? /2

follow T =~ Q/b(h® + h') ~ Q/bh. In Fig. 4.17 the distributions of the bending
and shear stresses for sandwich beams with thin faces are illustrated. Note that for
thicker faces the approximate flexural bending rigidity is

D ~ E'bhf (¢ + 1)/ + Ebh'” /12
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Chapter 5
Classical and Improved Theories

In this chapter, the theoretical background for two commonly used structural the-
ories for the modelling and analysis of laminates and sandwiches is considered,
namely the classical laminate theory and the first-order shear deformation theory.
The classical laminate theory (CLT) and the first-order shear deformation theory
(FSDT) are the most commonly used theories for analyzing laminated or sand-
wiched beams, plates and shells in engineering applications. The CLT is an ex-
tension of Kirchhoff’s' classical plate theory for homogeneous isotropic plates to
laminated composite plates with a reasonable high width-to-thickness ratio. For ho-
mogeneous isotropic plates the Kirchhoff’s theory is limited to thin plates with ratios
of maximum plate deflection w to plate thickness 2 < 0.2 and plate thickness/ mini-
mum in-plane dimensions < 0.1. Unlike homogeneous isotropic structure elements,
laminated plates or sandwich structures have a higher ratio of in-plane Young’s mod-
uli to the interlaminar shear moduli, i.e. such composite structure elements have a
lower transverse shear stiffness and often have significant transverse shear deforma-
tions at lower thickness-to span ratios < 0.05. Otherwise the maximum deflections
can be considerable larger than predicted by CLT. Furthermore, the CLT cannot
yield adequate correct through-the-thickness stresses and failure estimations. As a
result of these considerations it is appropriate to develop higher-order laminated and
sandwich theories which can be applied to moderate thick structure elements, e.g.
the FSDT. CLT and FSDT are so-called equivalent single-layer theories (ESLT).
Moreover a short overview of so-called discrete-layer or layerwise theories is given,
which shall overcome the drawbacks of equivalent single layer theories.

! Gustav Robert Kirchhoff (*12 March 1824 Konigsberg - 117 October 1887 Berlin) - physi-
cist who contributed to the fundamental understanding of electrical circuits, spectroscopy, and the
emission of black-body radiation by heated objects, in addition, he formulated a plate theory which
was an extension of the Euler-Bernoulli beam theory
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5.1 General Remarks

A classification of the structural theories in composite mechanics illustrates that the
following approaches for the modelling and analysis of beams and plates composed
of composite materials can be used:

1. So called equivalent single-layer theories: These theories are derived from the
three-dimensional elasticity theory by making assumptions concerning the kine-
matics of deformation and/or the stress distribution through the thickness of a
laminate or a sandwich. With the help of these assumptions the modelling can be
reduced from a 3D-problem to a 2D-problem. In engineering applications equiv-
alent single-layer theories are mostly used in the form of the classical laminate
theory, for very thin laminates, and the first order shear deformation theory, for
thicker laminates and sandwiches.

An equivalent single layer model is developed by assuming continuous displace-
ment and strain functions through the thickness. The stresses jump from ply to
ply and therefore the governing equations are derived in terms of thickness aver-
aged resultants. Also second and higher order equivalent single layer theories by
using higher order polynomials in the expansion of the displacement components
through the thickness of the laminate are developed. Such higher order theories
introduce additional unknowns that are often difficult to interpret in mechanical
terms. The CLT requires C'-continuity of the transverse displacement, i.e. the
displacement and the derivatives must be continuous, unlike the FSDT requires
C-continuity only. Higher order theories generally require at least C'-continuity.

2. Three-dimensional elasticity theories such as the traditional 3D-formulations of
anisotropic elasticity or the so-called layerwise theories: In contrast to the equiv-
alent single-layer theories only the displacement components have to be contin-
uous through the thickness of a laminate or a sandwich but the derivatives of
the displacements with respect to the thickness coordinate x3 may be discon-
tinuous at the layer interfaces. We say that the displacement field exhibits only
CP-continuity through the thickness directions.

The basic assumption of modelling structural elements in the framework of the
anisotropic elasticity is an approximate expression of the displacement components
in the form of polynomials for the thickness coordinate x3. Usually the polynomials
are limited to degree three and can be written in the form

ow(xy,x2
u (x1,x2,x3) = u(x1,x2) + om% + Br3yi(x1,x2)

+ 1301 (x1,x2) 4 831 (x1,%2),

dw(xy,xz)

5.1.1
up(x1,x2,x3) = v(x1,x2) + OCX3T + Br3ynr(xi,x2) ( )

+ 130 (x1,x2) 4 8x3xa(x1,%2),

uz(x1,%2,%3) = w(xi,x2) + Brays(xi,x2) + yx2es(xi,x2)
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A displacement field in the form of (5.1.1) satisfies the compatibility conditions for
strains, Sect. 2.2.1, and allows possible cross-sectional warping, transverse shear
deformations and transverse normal deformations to be taken into account. The dis-
placement components of the middle surface are u(x,x2),v(x1,x2),w(x1,x2). In the
case of dynamic problems the time ¢ must be introduced in all displacement func-
tions.

The polynomial approach (5.1.1) of the real displacement field yields the follow-
ing equivalent single-layer theories

e (lassical laminate theories
a=-1p=y=56=F=7=0
e First-order shear deformation theory
@=0.f—1,y=5-B—y=0
e Second order laminate theory
a=0,B=1,y=1,=B=7y=0
e Third order laminate theory
a=0B=1y=1,=1,=7y=0

Theories higher than third order are not used because the accuracy gain is so little
that the effort required to solve the governing equations is not justified. A third order
theory based on the displacement field u;,u,,u3 has 11 unknown functions of the
in-plane coordinates x,x;. u,v,w denote displacements and Y, y, rotations of the
transverse normals referred to the plane x3 = 0. y3 has the meaning of extension of
a transverse normal and the remaining functions can be interpreted as warping func-
tions that specify the deformed shape of a straight line perpendicular to the reference
plane of the undeformed structure. In addition, any plate theory should fulfill some
consistency requirements which was first time discussed for the simplest case of a
homogeneous isotropic plate in Kienzler (2002) and later extended to other cases
by Schneider and Kienzler (2015); Schneider et al (2014). Also implementations of
higher order theories into finite element approximations cannot be recommended. If
a laminated plate is thick or the 3D stress field must be calculated in local regions,
a full 3D analysis should be carried out.

The most widely used approach reduces the polynomial function of degree three
to a linear or first order approximation, which includes the classical and the first-
order shear deformation theory

u (x1,x2,x3) = u(x1,x2) + x3y1(x1,x2),
ur(x1,x2,x3) = v(x1,X2) + x3y2(x1,x2), (5.1.2)
u3(x1,x2,x3) = w(xg,x)
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The classical approximation can be obtained if

ow ow
W‘<x1’x2):*a—m7 llfz(xhxz):*&.—xz

The number of unknown functions reduces to three, that are u,v,w. On the other
hand there are five independent unknown functions u, v, w, i, Y.

The strain-displacement equations (2.2.3) give for the first order displacement
approximation a first order strain field model with transverse shear

. du 81//1 _ dv 81//2 _
81—8—)C]+X38—xl, 82_8—x2+x38—x2’ &5 =0,
ow ow
&g=5—-+VY2, &=3—+VY, (5.1.3)
8x2 3)61
_ du dv 81//2 81//1
86_8_xz+8_m+x3(8—m B

For the in-plane strains one can write in contracted form
&i(x1,%2,%3) = &(x1,%2) +x3K;(x1,%2), i=1,2,6,

i.e. the in-plane strains €1, & and &g vary linearly through the thickness #.
The stress-strain relations in on-axis coordinates are

o! szje}, i,j=1,2,...,6
From the transformation rule (4.1.27) follow the stiffness coefficients in the off-

axis-coordinates
3¢T 3¢
cC=T CT

and with (4.1.26) the constitutive equation is

o) CiiCi2Ciz 0 0 Cig| | &
(7] CpCnC3 0 0 Cp| |&
o3| |Ci3CxCz 0 0 G| | &
Oy o 0 0 0 CyCy5 O &4 (5.1.4)
05 0 0 0 Cy45Cs5 O &s
lor CisCxsCs6 0 0 Ceo| [ &

Assuming 03 == 0, the stiffness matrix can be rewritten by separating the transverse
shear stresses and strains in analogy to (4.2.3) - (4.2.5)

o1 011012016 0 0 €
02 01200 0% 0 0 &
O | = | Q16 Q26 Qs 0 O & (5.1.5)
Oy 0 0 0 CyqCys &y
O5 0 0 0 Cy50Css &s
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and from
03 =C138 +C38 +C3383+ C3666 =0

it follows

1
&= —C—(C1381 +Ca3& +C3685)
33

The Q;; are the reduced stiffness in the off-axis reference system

Ci3Cj3

Qij=Cij—  4,j=1,2,6, Qij =Cij, i,j=4,5
Summarizing, one can say that the first order displacement approach (5.1.2) includes
the classical and the shear deformation theory for laminates and sandwiches. In both
cases the in-plane displacements and strains vary linearly through the thickness, but
the explicit expressions for the curvature vector k differ. The force and moment re-
sultants can be defined for both theories in the usual way, e.g. (4.2.13), (4.2.14), but
in the classical theory there are only constitutive equations for the in-plane force
and the moment resultants N, M. It can be proved that a CLT approach is sufficient
for very thin laminates and it has been used particularly to determine the global
response of thin composite structure elements, i.e. deflections, overall buckling, vi-
bration frequencies, etc. The FSDT approach is sufficient for determining in-plane
stresses even if the structure slenderness is not very high.

The CLT neglects all transverse shear and normal effects, i.e. structural deforma-
tion is due entirely to bending and in-plane stretching. The FSDT relaxes the kine-
matic restrictions of CLT by including a constant transverse shear strain. Both first
order theories yield a complete understanding of the through-the-thickness laminate
response. Transverse normal and shear stresses, however, play an important role in
the analysis of beams, plates and shells since they significantly affect characteris-
tic failure modes like, e.g., delamination. The influence of interlaminar transverse
stresses are therefore taken into account by several failure criteria. Simple but suf-
ficient accurate methods for determination of the complete state of stress in com-
posite structures are needed to overcome the limitations of the simple first order 2D
modelling in the frame of an extended 2D modelling. In Sects. 5.2 and 5.3 a short
description of CLT and FSDT is given including some remarks to calculate trans-
verse stress components. In Chap. 11 will be seen that both the CLT and the FSDT
yield finite elements with an economical number of degrees of freedom, both have
some drawbacks. CLT-models require C'-continuity which complicates the imple-
mentation in commonly used FEM programs. FSDT-models have the advantage of
requiring only C%-continuity but they can exhibit so-called locking effects if lami-
nates becomes thin. Further details are given in Chap. 11.
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5.2 Classical Laminate Theory

The classical laminate theory uses the first-order model equations (5.1.2) but makes
additional assumptions:

1. All layers are in a state of plane stress, i.e.
o3=04=05=0

2. Normal distances from the middle surface remain constant, i.e. the transverse
normal strain &3 is negligible compared with the in-plane strains &;,&.

3. The transverse shear strains €&, &s are negligible. This assumption implies that
straight lines normal to the middle surface remain straight and normal to that
surface after deformation (Bernoulli/Kirchhoff/Love? hypotheses in the theory
of beams, plates and shells).

Further we recall the general assumption of linear laminate theory that each layer
is quasi-homogeneous, the displacements are continuous through the total thickness
h, the displacements are small compared with the thickness % and the constitutive
equations are linear.

From assumptions 2. and 3. it follows from (5.1.3) that

d d
‘Ifl(xl,xz):*a—w7 lllz(x],)Q):fa—;;7 5.2.1)

X1
and the displacement approach (5.1.2) and the strain components (5.1.3) are written
by
ow(x,x2)
3)61 ’

ow(xy,x 5.2.2
up(x1,x2,x3) = v(x1,x2) — X3#7 (5:2.2)

u]<)C],)C2,X3) - M()C],)Cz) — X3

u3()C] ,XZ,XQ,) = W(X] ,X2)7

u ow? av aw?

fl=5——X3=—, 6=5——X3—
0x1 8x%’ dxo 8)%’

& =0,

(5.2.3)
_du v, oW
T Odxy  dx = 0x10x

The condensed form for the in-plane strains can be noted as

842(), 85207 &6

&(x1,x2,x3) = &(x1,x2) +x3%;, i = 1,2,6

with

2 Augustus Edward Hough Love (*17 April 1863, Weston-super-Mare — 15 June 1940, Oxford) -
mathematician, mathematical theory of elasticity
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VR Y VI 1
ox;’ oxy’ oxy  dx;’
8x% ’ Qx% ’ dx10x,
el = [g & &) is the vector of midplane strains (stretching and shearing) and
kT = [K1 Ky Kg] the vector of curvature (bending and twisting). For all k layers the

stresses are given in condensed form by

oV = 0Wei+ 230K, ij=1,2,6 (5.2.4)
and the stiffness equations for the stress resultants follow from (4.2.13) - (4.2.18).

The classical laminate theory is also called shear rigid theory, the material equa-
tions yield zero shear stresses 04, 05 for zero strains &4, €, in the case that the shear
stiffness has finite values. But the equilibrium conditions yield non-zero stresses
04, Os, if the stresses 07,0, and og are not all constant. This physical contradiction
will be accepted in the classical theory and the transverse shear stresses are approx-
imately calculated with the given stresses 07, 0,, 06 by the equilibrium equations
(4.1.56).

The approximate calculation of transverse shear stresses can be simplified if one
assumes the case of cylindrical bending, i.e. N = N, = Ng = 0, Mg =~ 0. The consti-
tutive equation (4.2.18) or the inverted Eq. (4.2.19) with N =0 gives

0 A:B|[e £ a:b|[0
=1, = (5.2.5)
M B:p| LXK K prig| LM
that is with Egs. (4.2.20) - (4.2.26)
€=-A"'Bx,M=(D-BA 'B)x =Dk
e=bM =B'D" 'M.x=dM =D"'M (5.2.6)

For symmetric laminates are B =0,B* =0,D* = D and Egs. (5.2.6) can be replaced
by
e=0xk=D"'M (5.2.7)

The partial extensional and coupling stiffness A(x3),B(x3), Fig. 5.1, become
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X3 xgmf 1) xgmfZ) xg())

(m—1)

Fig. 5.1 Derivation of partial stiffness A (x3) and B(x3) for the shaded part of the cross-section

X3
A() = [ Q(x3)dxs
0
. 1
— Y 0®n® 4 gm (x3,xgm 1))7
k=1
(5.2.8)
x3
Blx) = [ Qndyy
L0
3
m—1 2
=Y oW 4 g (xgxgm—n )
k=1
40—, 09 () ()

Outgoing from the equilibrium equations (2.2.1) the shear stress equations can be
written
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WL
Ol O6
O5(x3) =— + dx
(x3) /(ax1 axz) :

k k ) k k
:_/ {a_x] (Q(lj)ej+x3Q(lj)Kj)+a_xz (Qéj)£j+x3Qéj)Kj)}dx3,

0
X3 5 5 (5.2.9)
Op (03]
=— dx
(XS) /(8)61 + a)Cz) 3
0
3
X3 a
:_/ |:(9_xl (Qﬁj Ej ‘|‘x3Q6] Kj)“v‘(; (sz Ej ‘|‘x3Q2J K‘]):|d)C3
0
3
or 1n vector-matrix notation
(k) 7
13 Qlj (&) +X3K)x))
65()63) 100 k)
{64()63)} /[OO 1 Q%}g (& 23K, ) | s
0) €y +X3K;
& Q?,f (85 Tx3Kjn) ] (5.2.10)
3 Qlj (&0, +X3Kjx,)
100 (k)
“[loo1l |22 (Em+x3K)x) |dx
k)
ng) Qéj (ENCZ +x3 Kj,xz)_
with (...) y, =9.../0xq, a0 = 1,2, j=1,2,6. Using Egs. (5.2.6) - (5.2.8)
O'S()C3) = —BlF()C3)M,x] —BzF()@)M}xZ (5.2.11)
with ‘
o-s(-x:;) = [65 64]T) M,X[ = [Ml WXi Mz,x,- Mﬁ,x,-]Ta
Fii Fiz Fig
< _ = e 5.2.12
F(x;) = [A(x3)A 'B—B(x)ID"" = | By P Fig 6212
Fe1 Fex Foe
in the general case if non-symmetrical laminate and
F(x3) =B(x3)D! (5.2.13)

for symmetrical laminates,

100 001
31{001}7 BZ{OIO} (5.2.14)
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are so called Boolean® matrices. Equation (5.2.11) can also be written in component
notation.

Equations (5.2.11) and (5.2.16) constitute the straight forward equilibrium ap-
proach for transverse shear stresses which only neglects the influence of the in-plane
force derivatives N ;, but this is a very minor restriction, since, in most engineer-
ing applications, the dominating source for transverse shear stresses are transverse
force resultants. To express the bending moment derivatives by transverse shear
stress resultants it is necessary to assume special selected displacements modes.
If one selects the cylindrical bending around the x;- and the x,-axis one obtains
Mg =0,M, =0,M>,, =0

My (x1) = Q1(x1), Moy, (x2) = 05(x2) (5.2.15)

with the transverse forces

0i(x1) = /Gs(xs)dx3 = /Gs(k)(X3)dX37
h

k=1
*) ,® k (5.2.16)
Q3 (x2) = /04(x3)dx3 =Y [ ol (x3)dxs
() =1h)

Equation (5.2.11) becomes in matrix notation
0°(x3) = F(x3)Q0°,
6° = [05(x3) 0a(x3)]", Q% =[0}(x1) Q5(x)]",

_ | Fii(x3) Fea(x3)
F= [Fﬁl(xs) Fzz(Xa)}

(5.2.17)

Summarizing the derivations of transverse shear stresses we have considered two
cases

1. NEO,MZ [M] M2 MG]T,
2. N=0.M = [M;(x1) Mz (x2)]"

In case 1. follow Eqgs. (5.2.18) and in case 2. Egs. (5.2.19)

os5(x3) | _ [Fii(x3) Fia(xs) Fi(x3) | 9 My
[64()53)} N [F61(x3) Fea(x3) F66(x3)} dxq %2
- (5.2.18)
Fo1(x3) Fea(x3) Fes(x3)] 9 M,
+ [le(}63) F(x3) F26(x3)} oxy %z ’

3 George Boole (*2 November 1815 Lincoln - 18 December 1864 Ballintemp) - mathematician,
educator, philosopher and logician
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[65()@)} _ {Fu()@) F62(x3)} [Ql} ’ 01 = Qj(x1)

04 (x3) Fo1(x3) Foo(x3) | | Q2 05 =05(x2)’ 591
2.19
8M1(x1) _ 8M2(x2) _ ( )
a - Q17 a - Q2
X1 X2

Symmetric laminates are preferred in engineering applications. In this case
D* = D,B=0 and F(x3) = —B(x3)D~'. The calculation of the transverse shear
stresses is more simple. The approximate solution for transverse shear stresses in
the classical laminate theory satisfies the equilibrium condition. The shear stresses
are layerwise parabolic functions and there is no stress jump at the layer interfaces.

Also in the frame of the classical laminate theory an approximate constitutive
equation can be formulated

S ASaS o1 Ass Ags | | &
S =A%€* or M= 5.2.20
Q [QZ Ays Ags | | & ( )
Regarding the complementary transverse shear theory formulated in shear stresses
*S 1 sT —1 s
W = ) 6’ (C) 'o’dxs (5.2.21)
(h)
and in shear forces .
Wit =,07A)" o (5.2.22)

The stress vector 6° is a function of x3 only, and therefore the integration is carried

out over X3. I]l
< C55 C45
CS =
|:C45 C44:|

the Cj;,1, j = 4,5 are the elastic parameters of the Hooke’s law. In Eq. (5.2.21) the
stress can be replaced by the transverse force resultants, Eq. (5.2.19). The Q7 do not
depend on x3 and Eq. (5.2.21) yields

I
W= 0 / FT(x3)(C)'F(x3)dxs | @° (5.2.23)
(i

F(x3) is the reduced elasticity matrix Eq. (5.2.18) and Eq. (5.2.23) leads to

1 Fii Foy | " [Css Cas 17! [Fiy Fea o5
WS = 0% 03 / dx | (5204
! 2[Q1 2 o |:F61 Fy C45 Cys Fa P | (|03 ( )
h

With W/ = W follows the approximate shear stiffness
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-1

AS = /FT(CS)"Fdx3 (5.2.25)
(k)

The C;; are layerwise constant. The calculation of A® demands an integration over
layerwise defined polynomials of 4th order and can be just simple carried out by
programming. For unsymmetrical laminates F (x3) is defined by Eq. (5.2.12).

Hygrothermal effects have no influence on the transverse shear stresses. In the
classical laminate theory for mechanical and hygrothermal loading as demonstrated
in Sect. 4.2.5, the resultants N and M must be substituted by the effective resultants
N and M.

5.3 Shear Deformation Theory for Laminates and Sandwiches

The classical laminate theory allows us to calculate the stresses and strains with
high precision for very thin laminates except in a little extended region near the
free edges. The validity of the classical theory has been established by comparing
theoretical results with experimental tests and with more exact solutions based on
the general equations of the linear anisotropic elasticity theory.

If the width-to-thickness ratio is less about 20, the results derived from the clas-
sical theory show significant differences with the actual mechanical behavior and
the modelling must be improved.

A first improvement is to include approximately the effect of shear deformation
in the framework of a first-order displacement approach. A further improvement is
possible by introducing correction factors for the transverse shear moduli.

The model used now has the same general form, as (5.1.2), for the displacements,
but contrary to the classical theory, y| and y; are independent functions and a nor-
mal line to the middle surface of the composite remains straight under deformation,
however it is not normal to the deformed middle plane. In the shear deformation the-
ory the actual deformation state is approximated by 5 independent two-dimensional
functions u,v,w, W1, Y, in the classical theory by 3 functions u, v, w, respectively.
The strains are deduced from the displacements, (5.1.3). The components of the
strains

£(x1,x2,x3) = £(xl,XQ) —|—)C3K'(X1,)C2), i=1,2,6

again vary linearly through the thickness / and are given by

Ju v Jdu v

e
3)62’ 6 8x2+8x1’

& ==, &=
8x1’

(5.3.1)

v v,  dw n Iy

Ki=—=—, K ==
oxy’ oxy’ ox;  dxp
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The components of the vector €1 = [¢] &, &) are not changed, however the compo-
nents of the curvature vector kT = [k; k, kg] are now expressed by the derivatives
of the functions Y1, ¥,. The stresses in the kth layer can be expressed by

Ju L ,on

3)61 8x1
(o] ®) €1 () Q—F)C %
o) & (9)62 3 a)Q
os| =0W|e | =W ﬂ+ﬁ+x3 %+% (5.3.2)

dxy  Ox ox;  dxo
O4 & ow
Os &s 3_)62 +y
9w
L o i

The stresses 01,0, and Oy are superimposed on the extensional and the flexural
stresses and vary linearly through a layer thickness, the stresses oy, 05 are, in con-
tradiction to the equilibrium equations, constant through A%). The strains €;, &, &
vary linearly and the strains &, €& constant through the laminate thickness £, i.e. they
vary continuously through the total thickness. Unlike, the corresponding stresses
01,03, 06 and 04,05 vary linearly or remain constant, respectively, through each
layer thickness 2¥) only. Therefore is no stress continuity through the laminate
thickness but stress jumps from ply to ply at their interfaces depending on the re-
duced stiffness Q and Q°.

With the definition equations for the stress resultants N,M, Q% and the stiffness
coefficients A,-j,B,-j,Dij,Afj for laminates (4.2.13) - (4.2.15) or sandwich (4.3.8) -
(4.3.10), (4.3.12) - (4.3.14), respectively, the constitutive equation can be written in
the condensed hypermatrix form, Egs. (4.2.16)

N ABO ] e
M|=|BDo | |«x (5.3.3)
o 004 |y

The stretching, coupling and bending stiffness A;;, B;;, D;; stay unchanged in com-
parison to the classical laminate theory. The shear stiffness are approximately given
by

n
A=Y cOn®, i j=45 (53.4)
k=1
The Ci(j]f) are the constant shear moduli of the kth lamina. These approximated shear

stiffness overestimate the shear stiffness since they are based on the assumption of
constant transverse shear strains and also do not satisfy the transverse shear stresses
vanishing at the top and bottom boundary layers.

The stiffness values can be improved with help of shear correction factors (Vla-
choutsis, 1992; Altenbach, 2000; Gruttmann and Wagner, 2017). In this case the
part of the constitutive equation relating to the resultants N, M is not modified. The
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other part relating to transverse shear resultants Q® is modified by replacing the
stiffness Aj; by (kA)ffj. The constants k;; are the shear correction factors. A very
simple approach is to introduce a weighting function f(x3) for the distribution of
the transverse shear stresses through the thickness 4.

Assume a parabolic function f(x3)

flx3) = i [1 - (;—;2)2] (5.3.5)

and considering that for the kth layer
k k k k k k
o) = oWes+0Wes, ol =0l es+0Wes (5.3.6)

the transverse resultants are:

A0
=) / Gi )f(xz»)dxs
k=1x(3k7])
AP AP
5 k 3 X3
~ 4 ZQ&J&/P(%) dx”ZQE‘;gs/[l(h/z” i
=1 W =1 i
X3 X3
NG
n 3
0 =) / Gs(k)f(x3)dx3
=y
3
» : » :
S5y o®e [ () lde v 3 0%e [ 11— (22 | ax
4 ZQ45£4 “\n2 3+ZQ5535 “\n2 3
=1 W =1 i
3 3

The shear stiffness coefficients A‘?j of the constitutive equations
0r =Alu&1+AlsEs, Q) =Als€s+ASsEs (5.3.7

are calculated by

s _ v oK) (K (k-1) 4 (w3 k13
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This approach yields for the case of single layer with Q44 = Qss = G,045 =0 a
shear correction factor k* = 5/6 for the shear stiffness Gh

5 4h [ K? 5
S — _—— —_ =
A _4G[h 3 (12+0>} 6Gh (5.3.9)

The weighting function (5.3.5) resulting in a shear correction factor k* is consistent
with the Reissner theory of shear deformable single layer plates (Reissner, 1944)
and slightly differ from Mindlin’s value (Mindlin, 1951).

A second method to determine shear correction factors consists of considering
the strain energy per unit area of the composite. Some remarks on this method are
given in Chaps. 7 and 8. However shear correction factors depend on the special
loading and stacking conditions of a laminate and not the only factors is generally
applicable.

A particularly physical foundation to improve the shear stiffness values A® is the
equilibrium approach, Eq. (5.2.25). The sequence of calculation steps for determin-
ing improved transverse shear stresses in the frame of the FSDT are analogous to
the CLT and shall be shortly repeated

o firstly, calculate the improved shear stiffness

—1

A = / FIC ' Fdx (5.3.10)
)

e secondly, calculate the resultant transverse shear forces
Q° =A’¢* (5.3.11)

o thirdly, calculate the improved transverse shear stresses

o' =FQ°
A’ = [Aij]’ivj:5a4a CS:[Cij]7i;j:5,4
(5.3.12)
Fi1 Fs» s s 51T T . T
F= ) = , o=[osoy]l, e=Jee¢
{Fél Fzz} 0 =[0] 03] (05 04] (&5 ]

Relying on the results of calculation improved transverse shear stresses 6°, the
transverse normal stress can be evaluated. The following equations explain the prin-
cipal way. One starts with solving the equilibrium condition for o3, Eq. (2.2.1)

X3
dJdos do.
o3(x3) = — / (axf + ax2>dX3+po (5.3.13)
x3=0

po denotes the transverse load at the starting point of integration.
With
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_[FiFe] _[fT
Flx3) = {F& FZJ - [fﬂ (5.3.14)

we are able to replace the transverse shear stresses in Eq. (5.3.13) by Eq. (5.3.12)
/f du Q' + /fgdxaQ;z + po (5.3.15)

Only the components of f1 and f, depend on x3 and therefore the derivatives of Q°
remain unchanged by the integration process. Moreover, Eq. (5.2.12) demonstrates
that only the partial stiffness A (x3) and B(x3) depend on x3, but not the matrices A, B
and D*. Therefore the integration of F (x3) yields

X3 X3 X3
/F(x3)dx3: /A(x3)dx3A—lB— /B(x3)dx3 D' '=F(x3) (53.16)

X3 =0 X3=0 X3 =0

For symmetrical laminates is the coupling matrix B = 0 and F'(x3) can be simplified
to

X3 X3
/F(x3)dx3 = /B(x3)dx3D—1 =F(x3) (5.3.17)
X3=0 X3=0

Now, Eq. (5.3.15) can be transformed into

03(x3) = [ i +fzd’C}»Q,Q} + po; (5.3.18)
where o T
fi=1FuFal, f,=I[Fs ]
and

0>, = (A€) 5,

The boundary conditions of vanishing transverse shear stresses at both surfaces are
fulfilled automatically. The boundary conditions for the transverse normal stresses
must be regarded and are taken into account in the integration process.

Summarizing the considerations on single layers or smeared modelling of lam-
inated structures it can be seen that an increasing number of higher order theories
particularly for the analysis of laminated plates has been published. The vast ma-
jority falls into the class of plate theories known as displacement based ones. All
consideration in this textbook are restricted to such theories. The term higher order
theories” indicates that the displacement distribution over the thickness is repre-
sented by polynomials of higher than first order. In general, a higher approximation
will lead to better results but also requires more expensive computational effort and
the accuracy improvement is often so little that the effort required to solve the more
complicated equations is not justified. In addition, the mechanical interpretation of
the boundary conditions for higher order terms is very difficult. The most used ESLT
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in engineering applications of composite structure elements is the FSDT. The CLT
applications are limited to very thin laminates only, for in comparison to homoge-
neous isotropic plates, the values of the ratio thickness to minimum in-plane dimen-
sion to regard a plate as "thin” or as “moderate thick” must be considerably reduced.
Generally, fibre-reinforced material is more susceptible to transverse shear than its
homogeneous isotropic counterpart and reduces the range of applicability of CLT.
Increasing in-plane stiffness may alternatively be regarded as relevant reduction of
its transverse shear strength.

The FSDT yields mostly sufficient accurate results for the displacements and
for the in-plane stresses. However, it may be recalled, as an example, that transverse
shear and transverse normal stresses are main factors that cause delamination failure
of laminates and therefore an accurate determination of the transverse stresses is
needed.

In Sect. 5.3 it was demonstrated that one way to calculate the transverse stresses
is an equilibrium approach in the frame of an extended 2D-modelling. Another rel-
ative simple method is to expand the FSDT from five to six unknown functions or
degrees of freedom, respectively, by including an x3-dependent term into the poly-
nomial representation of the out-of-plane displacement u3(x;,x,,x3). Several other
possibilities can be found in the literature.

5.4 Layerwise Theories

Layerwise theories are developed for laminates or sandwiches with thick single lay-
ers. Layerwise displacement approximations provide a more kinematically correct
representation of the displacement functions through the thickness including cross-
sectional warping associated with the deformation of thick composite structures.
So-called partial layerwise theories are mostly used which assume layerwise expan-
sions for the in-plane displacement components only. Otherwise so-called full lay-
erwise theories use expansions for all three displacement components. Compared
with equivalent single layer models the partial layerwise model provides a more re-
alistic description of the kinematics of composite laminates and the discrete-layer
behavior of the in-plane components.
Assume a linear displacement approximation (5.1.2) for each layer

M(lk) (x1,%2,23) = ul® (x1,x2) +x3llf](k) (x1,x2),

ugk) (x1,%0,x3) = yk) (x1,%2) +x3 l//z(k) (x1,x2), (5.4.1)
Mgk) (x1,%2,x3) = w(x1,x2)

with xgkfl) <x3< xgk);k = 1,2,...n. A laminate with n layers is determined by

(4n+ 1) unknown functions u® (k) l//l(k), l//z(k),w;k =1,2,...,n. The continuity
conditions of the displacements at the layer interfaces yield 2(n — 1) equations and
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the equilibrium for the transverse shear stresses yield additional 2(n — 1) equations.
With these 2 -2(n — 1) equations the maximum number of the unknown functions
can be eliminated and we have independent of the number of layers in all cases
(4n+1) — (4n—4) = 5 unknown trial functions. An equivalent single layer model
in the first-order shear deformation theory and the partial layerwise model have
the same number of functional degrees of freedom, which are 5. The modelling
of laminates or sandwiches on the assumption of the partial layerwise theory is
often used in the finite element method. A comparison of equivalent single layer
and layerwise theories one can find in Reddy (1993).

Summarizing one can say for the class of partial or discrete layer-wise models
that all analytical or numerical equations are two-dimensional and in comparison to
a real three-dimensional modelling, their modelling and solution effort, respectively,
is less time and cost consuming. The transverse normal displacement does not have
a layerwise representation, but compared to the equivalent single layer modelling,
the partial layerwise modelling provides more realistic description of the kinematics
of composite laminates or sandwiches by introducing discrete layerwise transverse
shear effects into the assumed displacement field.

Discrete layerwise theories that neglect transverse normal strain are not capa-
ble of accurately determining interlaminar stresses and modelling localized effects
such as cutouts, free edges, delamination etc. Full or generalized layerwise theories
include in contrast to the partial layerwise transverse shear and transverse normal
stress effects.

Displacement based finite element models of partial and full layerwise theories
have been developed and can be found in the literature. In Chap. 11 the exemplary
consideration of finite beam and plate elements have been restricted to CLT and
FSDT.

5.5 Problems

Exercise 5.1. The displacement field of a third order laminate (5.1.1) may defined

by o= 7C07ﬁ = 1,'}/:0,5 = 7C17ﬁ = 7:0

1. Formulate the displacement equations and recover the displacement equations
for the classical and the shear deformation laminate theory.

2. Introduce new variables ¢; = W — codw/dx, ¢ = W — codw/dx, and express
the displacement field in terms of ¢; and ¢».

3. Substitute the displacements into the linear strain-displacement relations.

4. Formulate the equations for the transverse shear stresses 0y, 05. Find the equa-
tions for c; so that the transverse shear stresses vanish at the top and the bottom
of the laminate if ¢y = 1.

Solution 5.1. In the case of a third order displacement field one obtains the follow-
ing answers:

1. The starting point is the displacement field



5.5 Problems 195

ow(xy,x
uy (x1,x2,x3) = u(x1,x2) +x3 |:llfl (chz)co(afllz)} —3ery(xn,x),

ow(xy,xs)

U (x1,%2,x3) = v(x1,%2) +x3 [‘/fz(xhxz) - } —x3e122(x1,%2),

8x2
uz(x1,%2,x3) = w(xg,x2)

Classical laminate theory: c; =0,y =0,y =0,c9 =1
First shear deformation theory: co =c; =0
2. The starting point is now another displacement field

ur (x1,%2,%3) = u(x1,%2) +x301 (x1,%2) — €131 (x1,%2),
ur (x1,%2,%3) = v(x1,%2) +x3¢2 (x1,%2) — 13 202(x1,%2),
u3(x1,x2,%3) = w(xg,x)

3. Using the strain-displacement equation (2.2.3) and substitute equations b) we
find

du; _ du a0 5 Idxn

& = a—x] = 8_)51 x:;a—x] X3C1 ax]
= &) +x3¢l +3ell,

duy dv 8¢2 3 812

Ezza—xz:a_xz X38—)52_x3618—)52
= &) +x3el + 3ell

_ 8u2 8u1 _ v u 8(])2 8(1)1 3 8752 8)(1
%= 0 a—n—a—ﬂa—n*“( -

_ g0 1 3l
= & +x3& +x3&4

N 8u3 (9142 o ow

2
g ==—"4+=—"=—4¢ —3c1x
4 o I on (033 132
= &) +x3ell|
dus Jdu;  Ow 5
& = — 4+ — = — + ¢ — 315541
> 8x1 aX3 8x1 ¢ SX
= &l +x3ell
Note 81.0 =¢g.

4. The transverse shear stress in the kth layer of a laminate follow with (5.3.5) to
k k k k k
o)) = Olf)es+ Ol es = OLf) (e + Belf) + Q4 (e + 3el),
k k k k k
oft = 0les + 0les = (el + el + 0 (el + el

The transverse shear stresses shall vanish at the bottom and the top of the lami-
nate, i.e. Gik)(:th/Z) = Gs(k)(:th/Z) =0ifk=1orn.
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”) +ol¥ (£3+ h;%’) =0,
”) +oY (£3+ h;%’) =0,
’) +04Y (853 + h;zei’) =0,
’) +0lY (82+%28£l> =0

h? h?
:>e£+ZeiI:07 e§+18§’:0

In view of the fact that for ¢y = 1 follows

8_w = & =y, —x33c
9% 4 = Yo —X33C1 X2,

2

h h
84{1 =0=y = 1301762

If 3c; = 4/h?> = x> = . Analogously follow with 3c; = 4/h? that x; = 1, i.e

| |
& =y-y=0, &+ e =yi-yi =0

The condition 1/3c; = h*/4, i.e. ¢; = 4/3h? is sufficient to make the transverse
shear stresses 04 and 05 zero at the top and the bottom of the laminate.

Exercise 5.2. A symmetric cross-ply laminate [0°/90°)s has the properties /& = 1
mm, E{ =141 GPa, E, =9,4GPa, E, = G)3; =3,2GPa, E, = G|, = E{ =G|, = 4,3

GPa, v|, = 0,3.

1. Using the simplified equations (5.2.8) to calculate the shear stresses
05(x3),04(x3) and sketch their distribution across the laminate thickness 4 for
given transverse force resultants Q) = dM, /dx1,0r = dM,/dx, and Mg = 0.

2. Compare the average shear stiffness with the improved corrected stiffness values.

Solution 5.2. The solution can be obtained as follows.

1. The reduced stiffness matrix Q and the shear stiffness matrix C = G must be

calculated for the four layers
0°-layers, v, = vi2E} /E}:
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[ E VioE)
(1=vipvyy) (1=vipvy)
Q=0 = VioE3 E
(1=vivy) (1=vpvy)
L 0 0 E
[141,852,84 0
— | 2,84 9,46 0 |GPa,
0 0 43
(G5 0 4,3 0
— Y _ 13 _ 9
Co=G=| G’ZJ - [ 0 372}@a
90°-layers:
9,46 2,84 0
Qoo = | 2,84 141,85 0 | GPa,
0 0 43

3,2 0
G[goO] = |: 0 4’3:| GPa

The bending stiffness matrix follows with (4.2.15)

M-

Dy =Y 0 [(&)2 4+ (92 /12] n®),

k=1

9,654 0,207 0
D={0,2071,379 0 | GPamm’
0 0 0,314

The corrected flexural stiffness matrix D* (5.2.6) is identical D for symmetric
laminates, i.e. D* = D, and the F (x3)-matrix in (5.2.12) can be simplified

F()C3) = —B()@)Dil

The inversion of the matrix D yields with A = 22,572 the elements D1_11 of the
inverse matrix D!

Dy =Dy /A,Dy) = D11 /A, D) = D12/A, Dy = (Deg) ™

0,104 —0,016 0
D '=|-0,016 0,727 0 |[GPamm®]"!
0 0 3,185

Using (5.2.6) the shearing coupling stiffness B(x3) for the layers of the laminate
can be calculated
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70,93 1,42 0 ] (17,73 0,36 0 ]|
By (x3) =| 1,42 473 0 |GPax;—| 0,36 1,18 0 kN,
| 0 0 2,30 | 0 0 0,58
(4,73 1,42 0 ] (13,60 0,36 0 |
By (x3) ={ 1,4270,93 0 | GPaxj— | 0,36 5,32 0 |kN
| 0 0 2,30] | 0 0 0,57

and with F(X3) = —B()C3 )Dil

swl-[mall]

1679 0 ], [1,70 0 »
Fon { 0 2,17}“3*{ 0 0,54}mm ’
e __fo44 0 ], 130 0]
(90 = 0 32,80|™ 0 2,46

50 (¥3) = Fiyjo0(x3)Q1 = (=6,79x3 +1,70)Q1,
05900 (X3) = Fi1j900 (x3)Q1 = (—0,44x3 +1,30)Q,
Oy00(X3) = Fapp0)(x3)Q2 = (=2,17x3+0,54) 05,
41900 (X3) = Faojoo0) (x3) Q2 = (—32,80x3 +2,46) 0>

The distribution of the shear stresses through the laminate thickness # is sketched
in Fig. 5.2.

X3 X3

0.5 0.5
0.4

025 1.28 0.25

1.30 X1 2.46 X2

0 0

-0.25 128 025 |04
04(x3)/ Q2
o5(x3)/01
-0.5 -0.5

Fig. 5.2 Distribution of the shear stresses 05(x3)/Q1 and 04(x3)/Q2 across the laminate thickness
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2. A simplified calculation of the average shear stiffness A?j yields (4.2.15)

4
s _ (k) (k) a5 — 3,75 0
A3 ;Guh —A { 0 3,75 |CPamm

An improved shear stiffness matrix which include the transverse shear stress dis-
tribution follows with the help of the complementary strain energy W*

1 T =1 g
wr = 2/c)'STG’ '6%dxs
(n)

— ;QT /FTGlilex3 Q: ;’QTAS*]Q
(h)

With
7 2,000 0
T /—1 _ ) 5
/F[0°1G Flpopdxs = ({ 0 0,295}(3
0.25
_[re67 0 7,
0 0,246
0,625 0 .
+ [ 0 0092}‘3) GPa™,
P 0,012 0
T / ) 5
| Fan @ Fomazs = ( 0 46,69}63
0
0,119 0 ] ;
— X
0 11,68]"
0,529 0
[ 0 1314})‘3) GPa~!

follows by the sum up over the four layers the improved matrix A®

3.01 0
S __ )
A _{ 0 2754}01);1

The comparison of A® and A® can be carried out in the form
KA” =A°

which yields the shear correction vector

o [0.7718
~ 10,6513
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Chapter 6
Failure Mechanisms and Criteria

Failure of structural elements can be defined in a different manner. As in the case of
buckling, a structural element may be considered failure though the material is still
intact, but there are excessive deformations. In Chap. 6 failure will be considered to
be the loss of integrity of the composite material itself.

The failure analysis procedures for metallic structures were well established a
long time ago. In the case of monolithic materials stress concentrations, e.g. around
notches and holes, cause localized failures. For brittle materials local failures may
lead to fracture and therefore to a total loss of load-carrying capability. For ductile
materials local failure may be in the form of yielding and remains localized, i.e., it
is tolerated better than brittle failure. The fail-safe philosophy has been employed
in the design of metallic structures and is standard in engineering applications. Sim-
ilar procedures for composite materials are not well defined and are the object of
intensive scientific research up to now. Failure of fibre-reinforced materials is a very
complex topic. While it is important to understand the principal mechanisms of fail-
ure, for many applications it is impossible to detail each step of the failure process.
Main causes of failure are design errors, fabrication and processing errors or unex-
pected service conditions. Design errors can be made in both material and structure.
The stress level carried by each lamina in a laminate depends on the elastic mod-
uli. This may cause large stress gradients between laminae which are oriented at
considerably large angles to each other (e.g. 90° ). If the stress gradients are close
to a limit value, fracture may occur. Such high levels of internal stresses in adja-
cent laminae may develop a result of external applied loads but also by temperature
and moisture changes. Though manufacturing control and material inspection tests
are carried out, structural composites with abnormalities can be produced. The me-
chanical properties of composites may be significantly reduced by high temperature
variations, impact damage, etc. Service anomalies can include improper operation,
faulty maintenance, overloads or environmental incurred damage.

If structural loadings produce local discontinuities inside the material we speak
of a crack. Micro-cracking is considered as the nucleation of micro-cracks at the
microscopic level starting from defects and may cause the initiation of material
fracture. Macro-cracking is the propagation of a fracture by the creation of new
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fracture surfaces at the macroscopic level. For composite materials the fraction ini-
tiation is generally well developed before a change in the macroscopic behavior can
be observed.

If in a laminate macro-cracks occur, it may not be catastrophic, for it is possible
that some layers fail first and the composite continues to take more loads until all
laminae fail. Failed laminae may still contribute to the stiffness and strength of the
laminate. Laminate failure estimations are based on procedures for finding the suc-
cessive loads between the first and the last ply failure of the laminate. The failure of
a single layer plays a central function in failure analysis of laminates.

In this section the elastic behavior of laminae is primarily discussed from a
macroscopic point of view. But in the case of failure estimations and strength anal-
ysis of a lamina it is important to understand the underlying failure mechanisms
within the constituents of the composites and their effect to the ultimate macro-
scopic behavior. For this reason some considerations on micro-mechanic failure
mechanisms are made first and then failure criteria are discussed more in detail.

Summarizing one can say that the ability of failure prediction is a key aspect in
design of engineering structures. The first step is to consider what is meant by fail-
ure. Material failure of metallic structures is mostly related with material yielding
or rupture, but with composites it is more complex. Therefore research is ongoing in
developing failure mechanisms and failure criteria for unidirectional fibre laminae
and their laminates and in evaluating the accuracy of the failure criteria.

6.1 Fracture Modes of Laminae

Composite fracture mechanisms are rather complex because of their anisotropic na-
ture. The failure modes depend on the applied loads and on the distribution of rein-
forcements in the composites. In continuous fibre reinforced composites the types
of fracture may be classified by these basic forms:

e Intralaminar fracture,
e interlaminar fracture,
e translaminar fracture.

Intralaminar fracture is located inside a lamina, interlaminar fracture shows the fail-
ure developed between laminae and translaminar fracture is oriented transverse to
the laminate plane. Inter- and intralaminar fractures occur in a plane parallel to that
of the fibre reinforcement.

Composite failure is a gradual process. The degradation of a layer results in a
redistribution of stresses in the laminate. It is characterized by different local failure
modes

o The failure is dominated by fiber degradation, e.g. rupture, microbuckling, etc.

o The failure is dominated by matrix degradation, e.g. crazing.

o The failure is dominated by singularities at the fiber-matrix interface, e.g. crack
propagation, delamination, etc.
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Failure modes of sandwich material may be characterized by

Tensile failure of the sandwich faces

Wrinkling failure of the faces due to compressive stresses. Wrinkling is charac-
terized by the eigenmodes of buckling faces.

Shear failure of core or adhesive failure between core and face.

Crushing failure of the face and core at a support or tensile respectively shear
failure at fasteners.

The following considerations are restricted to the strength of an unidirectional layer
and to the development of reliable criteria for the predicting of the failure of lam-
inae and laminates. The failure criteria in engineering applications are mainly of a
phenomenological character, i.e. analytical approximations of experimental results,
e.g. by curve fitting.

The fracture of a UD-lamina is the result of the accumulation of various elemen-
tary fracture mechanisms:

e Fibre fracture,

e transverse matrix fracture,

e longitudinal matrix fracture

e fracture of the fibre-matrix interface.

Figure 6.1 illustrates various fracture modes of a single layer. In the fibre direc-
tion, as a tensile load is applied, Fig. 6.1a, failure is due to fibre tensile fracture.

oL

Fig. 6.1 Fracture modes of a single layer in the case of elementary load states. @ Fibre fracture by
pure tension op, > 0 or compression of, < 0 (micro-buckling), b Matrix fracture by pure tension
or > 0, pure shearing ort and pure compression or < 0



204 6 Failure Mechanisms and Criteria

One fibre breaks and the load is transferred through the matrix to the neighboring
fibres which are overloaded and fail too. The failure propagates rapidly with small
increasing load. Otherwise a tensile fracture perpendicular to the fibres, Fig. 6.1b,
due a combination of different micromechanical failure mechanisms: tensile failure
of matrix material, tensile failure of fibres across the diameters, failure of the inter-
face between fibre and matrix. The shear strength, Fig. 6.1b, is limited by the shear
strength of the matrix material, the shear strength between the fibre and the ma-
trix, etc. Figure 6.2 shows the basic strength parameters of a unidirectional lamina
referred to the principal material axes. For in-plane loading of a lamina 5 strength
parameters are necessary, but it is important to have in mind that for composite ma-
terials different strength parameters are measured for tensile and for compression
tests. If the shear stresses act parallel or transverse to the fibre orientation there is

oL >0 oL >0 oL <0 oL <0
a ~—] F—> b —> le—
material property: oOf ¢ material property: Of ¢
T or >0 l or<0
c d
1 or >0 T or<0
material property: oy material property: Or¢

—_— orT

] !

oLT -+

material property: Tg

Fig. 6.2 Basic strength parameters. @ Longitudinal tensile strength oy, b Longitudinal compres-
sive strength op, € Transverse tensile strength oy, d Transverse compressive strength o, € In-
plane (intralaminar) shear strength g
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no influence of the load direction (Fig. 6.3a). Otherwise the positive shear stress
06 > 0 causes tensile in L-direction and compression in T-direction and vice versa
for 0 < 0 and other strength parameters are standard. The required experimental
characterization is relatively simple for the parameters oy and o7, but more com-
plicated for the strength parameters o, Ot and Ts.

In the case of laminates, besides the basic failure mechanisms for a single
layer, such as fibre fracture, longitudinal and transverse matrix fraction, fibre-matrix
debonding, etc. described above, another new fracture mode occurs. This mode is
called delamination and consists of separation of layers from one another. Through-
the-thickness variation of stresses may be caused even if a laminate is loaded by
uniform in-plane loads. Generally, the matrix material that holds the laminae of a
laminate together has substantially smaller strength than the in-plane strength of the
layers. Stresses perpendicular to the interface between laminae may cause breaking
of the bond between the layers in mostly localized, small regions. However, even if

0y = OLT
2 =T

0| = —OLr

0 = —OLT =1L
1

a — o7 >0

-~
—_
Il

-~ GLT<0

e
e
M1l

b — 05>0

e
—_—
Il

~— 06<0

—_—
-~
Il

OT = Og

Fig. 6.3 In-plane shear. a Positive and negative shear stresses along the principal material axes,
b Positive and negative shear stresses at 45° with the principal material axis
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the size of such delaminations is small they may affect the integrity of a laminate
and can degrade their in-plane load-carrying capability. Therefore, in practical en-
gineering applications it is important to calculate the interlaminar normal and shear
stresses 03, 04 and o5 and to check interlaminar failure too.

The definition of failure may change from case to case and depends on the com-
posite material and the kind of loads. For composite material, such as UD-laminates,
the end of the elastic domain is associated with the development of micro-cracking.
But in the first stage, the initiated cracks do not propagate and their development
changes the stiffness of the material very gradually but the degradation is irre-
versible. In the following section failure criteria for laminae will be discussed first
to allow the designer to have an evaluation of the mechanical strength of laminae.
Secondly, concepts for laminate failure are considered.

6.2 Failure Criteria

Failure criteria for composites are many and varied. In their simplest form they are
similar, in principle, to those used for isotropic materials, e.g. maximum stress/strain
and distortional energy theories. The major difference between isotropic materials
and unidirectional fibrous composite materials is the directional dependence of the
strength on a macrosopic scale. It is important to realize that failure criteria are
purely empirical. Their purpose is to define a failure envelope by using a minimum
number of test data. Generally, these experimental data are obtained from relatively
simple uniaxial and pure shear tests. Combined stress tests are more difficult to per-
form and should be, if possible, not included in the determination failure envelopes.

We shall start by considering a single lamina before moving on to discuss failure
of laminates. Longitudinal tension or pressure, transverse tension or pressure and
shear are the five basic modes of failure of a lamina. Generally the strength in the
principal material axes are regarded as the fundamental parameters defining failure.
When the lamina is loaded at an angle to the fibres one has to determine the stresses
in the principal directions and compare them with the fundamental strength param-
eters. Failure criteria usually grouped in literature into three different classes: limit
criteria, interactive criteria and hybrid criteria which combine selected aspects of
limit and interactive methods. In the following we only discuss selected criteria of
the first two classes.

Failure criteria for homogeneous isotropic materials are well established. Macro-
mechanical failure theories for composite materials have been developed by extend-
ing and adapting isotropic failure theories to account for anisotropy in stiffness and
strength of the composite. All theories can be expressed as functions of the basic
strength parameters referred to the principal material axes (Fig. 6.2). Some criteria
do not account for interaction of stress components while others do. Some inter-
action criteria require additional strength parameters obtained by more expended
biaxial experimental tests.
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Laminate failure criteria are applied on a ply-by-ply basis and the load-carrying
capability of the entire composite is predicted by the laminate or sandwich theories
given in Chaps. 4 and 5. A laminate may be assumed to have failed when the strength
criterion of any one of its laminae is reached (first-ply failure). However, the failure
of a single layer not necessarily leads to a total fracture of the laminate structure.
Criteria of an on-axis lamina can be determined with relative easily. Off-axis criteria
can be obtained by coordinate transformations of stresses or strains. Based on the
ply-by-ply analysis first-ply failure and last-ply failure concepts can be developed.

Failure criteria have been established in the case of a layer. Of all failure criteria
available, the following four are considered representative and more widely used:

e Maximum stress theory

e Maximum strain theory

e Deviatoric or distorsion strain energy criteria of Tsai-Hill!
e Interactive tensor polynomial criterion of Tsai-Wu?

Maximum stress and maximum strain criteria assume no stress interaction while
the other both include full stress interaction. In the maximum stress theory, failure
occurs when at least one stress component along one of the principal material axes
exceeds the corresponding strength parameter in that direction

oL = Oy, oL >0,

or = Oy, or > 0,

OL, = O, o, < 0, (621)
or = Orc, or <0,

loLr| = Ts,

Note that failure can occur for more than one reason. A layer failure does not occur
if
—OLc < OL < OLy,
—O1¢ < Or < Ofy, (6.2.2)
—Ts < Oorr < Ts

For a two-dimensional state of normal stresses, i.e. oy, # 0, or # 0, opp = 0, the fail-
ure envelope, Fig. 6.4, takes the form of a rectangle. In the case of off-axis tension
or compression of a UD-lamina, Fig. 6.5, the transformed stresses are

0. = 07c0820 = o0)c? o = op/c?
or = oysin’0 = o1 = 0= or/s’ (6.2.3)
oiT = —0;sinBcosO = —oysc O] = —Or/sc

and the maximum stress criteria is expressed as follows

! Rodney Hill (*11 June 1921, Stourton, Leeds - 1 2 February 2011, Yorkshire) - applied mathe-
matician and a former Professor of Mechanics of Solids at Gonville and Caius College, Cambridge,
UK

2 Edward Ming-Chi Wu (*30 September 1938 - 13 June 2009) - US-American engineer
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Fig. 6.4 Failure envelope for UD-lamina under biaxial normal loading (max. stress criterion)

X
A
Xy = XT
/ X/l -
0
— -
O] 0 o1
Fig. 6.5 Off-axis unidirectional loading X1

—O01c < G]C2 < Oy,
—0Ot1c < 015 < Oty (6.2.4)
—Ts < 0O15¢ < Ts

The ultimate strength for o7 corresponds to the smallest of the following six values

2 2
Oi¢ = OL/c*, Oy = Or/s”, O =Ts/sc, 01 >0,

(6.2.5)
Olc = c7Lc/C27 Olc = c7"[‘c/527 Olc = TS/SCa o1 <0

The failure modes depend on the corresponding ultimate strength oy

o1y = O/ fibre failure,
Oy = o1t/ s% transverse normal stress failure,
o1y = Ts/sc in-plane shear failure

In the more general case of off-axis loading, the stress transformation rule, Table
4.1, is used
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ol =oL 2 s 2sc o)
oj=or | =| s & —2sc o) (6.2.6)
O¢ = Orr —sc sc 2 —s? O6

Because of the orthotropic symmetry, shear strength is independent of the sign of
orr (Fig. 6.3) and there are five independent failure modes in the maximum stress
criterion. There is no interaction among the modes although in reality the failure
processes are highly interacting. The maximum stress theory may be applicable
for brittle modes of failure of material, e.g. follow from transverse or longitudinal
tension (or, > 0, o1 > 0).

The maximum strain theory is quite similar to the maximum stress theory. Now
the strains are limited instead of the stresses. Failure of a lamina occurs when at
least one of the strain components along the principal material axes exceeds the
corresponding ultimate strain in that direction

&g =&y e >0,

&r = én er >0,

iS58 = &¢ e, < 0, (627)
&r = €rc er <0,

lect| = &s

The lamina failure does not occur if

—&Lc < & < &,
—E&re < &1 < &y, (6.2.8)
—& < &r < &

In the case of unidirectional off-axis tension or compression (Fig. 6.5), the stress
relations are given by (6.2.3). For the in-plane stress state strains in the principal
material axes are

&L S/l] S/12 0 OL,
er = 112 /22 0 oT (6.2.9)
ar 0 O S/66 oiT

By associating (6.2.3) and (6.2.6) and expressing the compliance parameters S; ;as
functions of the engineering moduli in the principal directions, Er, Et, Grr, VLT,
vrr, it follows that

1
L= (6‘2 — VLTsz)Gl,

Ey
1
er=_ (s —vpc?)oy, (6.2.10)
Er
& ! O]
LT=— 5 _SCO]
Grr

The maximum strain and the maximum stress criteria must lead to identical values
in the cases of longitudinal loading and & = 0° or transverse unidirectional loading
and 6 = 90°. The identity of the shear equations is given in both cases. This implies
that
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OL, OL, OoT OoT T
L= fLe= — o, BN = o, Bre = — O, €5 = —— (6.2.11)
EL EL Et Er Grr

and the maximum strain criterion may be rewritten as follows

—0Lc < 01(c? — virs?) < o,
—Or1c < O] (SzfvTLCZ) < Ory, (6.2.12)
—Ts < O1S8¢C < Ts

By comparing Eqgs. (6.2.4) and (6.2.12) we establish that the two criteria differ by
the introduction of the Poisson’s ratio vir in the strain criterion. In practice these
terms modify the numerical results slightly. In the special case of a two-dimensional
stress state oy, # 0, o1 # 0, opy = 0, compare Fig. 6.4, the failure envelope takes the
form of a parallelogram for the maximum strain criterion, Fig. 6.6.

One of the first interactive criteria applied to anisotropic materials was introduced
by Hill. For a two-dimensional state of stress referred to the principal stress direc-
tions, von Mises® developed a deviatoric or distortional energy criterion for isotropic
ductile metals (von Mises, 1913) which can be presented for the two-dimensional
stress state as

67 + 0} — 01011 = Oeq

or in a general reference system

07+ 07— 010, +30¢ = O
oy, Oy are principal stresses, Oeq the equivalent stress. This criterion was extended
in von Mises (1928) and modified for the case of orthotropic ductile materials by

Hill (1948)
Ac? +Bo; +Co10y + Do =1 (6.2.13)

OT — VTLOL = OTt

OL — VLTOT = OLt
OLc
OLt oL
OL — VL1OT = —OlL¢ o1 — ViLOL = —Or
- - = c

Fig. 6.6 Failure envelope for UD-lamina under biaxial normal loading (max. strain criterion)

3 Richard Edler von Mises (19 April 1883 Lemberg, Austria-Hungary (now Lviv, Ukraine) -
1 14 July 1953 Boston, Massachusetts) - mathematician who worked on solid mechanics, fluid
mechanics, aerodynamics, aeronautics, statistics and probability theory, one of founders of the
journal Zeitschrift fiir Angewandte Mathematik und Mechanik
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A,B,C,D are material parameters. Equation (6.2.13) cannot be defined as distorsion
energy, since in anisotropy distorsion and dilatation energies are not separated. The
criterion (6.2.13) was applied to UD-laminae by Tsai and Wu (1971)

Aof + Bo? 4+ Copor + Doty = 1 (6.2.14)

The material parameters A, B,C, D can be identified by tests with acting basic load-
ings

1
oL=oiy, or=0, our=0 =A= ,,
Ory
1
oo.=0, or=om,our=0 =B= , , (6.2.15)
Oty

(FLZO7 GTZO, GLTZTUéDZLZ
]
In dependence on the failure mode, the superscript U must be substituted by t,c or s
and denotes the ultimate value of stress at failure.

The remaining parameter C must be determined by a biaxial test. The C-term
yields the interaction between the normal stresses. Under equal biaxial normal load-
ing oy = or # 0,01 = 0 it can be assumed that the failure follows the maximum
stress criterion, i.e failure will occur when the transverse stress reaches the trans-
verse strength oty which is much lower than the longitudinal strength o y. Equa-
tion (6.2.14) yields

OL, 2 oT 2 1
( > +< ) +CG~12~:1, or=ory =0C=— N (6.2.16)
oLy oru Ory

The Tsai-Hill criterion in the case of plane stress state and on-axis loading may be

written ) ) )
O o oLO O
( L>+( T) L2T+<£> =1 (6.2.17)
OLU oTU Oiu Tu

In the case of tension or compression off the principal material directions, Fig. 6.5,
the Tsai-Hill criterion becomes

2\ 2 2\ 2 2 2
o o] o oysc
(—'C ) +< 12 ) ( 'Cs> +< ‘“) —1 (6.2.18)
OLU OoTU OoLU U
and the strength parameter o7y in x;-direction is
1\? 2 \? 2 \? 1 1 29
— | = + =z , Jcs
O1u OLu oTu 5  Ofu
2\’ 2 \° es\?
~ + +\ =
OLU oru TG

The approximated form presumes oLy >> Ty.

(6.2.19)
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The Tsai-Hill criterion is a single criterion instead of the three subcriteria re-
quired in maximum stress and strain theories. It allows considerable interaction
among the strain components and for ductile material the failure estimation agrees
well with experimental results.

Gol’denblat and Kopnov (1965) proposed a tensor polynomial criterion. Tsai and
Wu modified this criterion by assuming the existence of a failure surface in stress
space. They took into account only the first two terms of the polynomial criterion
and postulated that fracture of an anisotropic material occurs when the following
equation is satisfied

aijOij + Qjjk10ijOk = 1 (6.2.20)

or in a contracted notation
a;0; + a;j0;0; = 1 (6221)

We are interested in the case of an orthotropic composite material, i.e. a unidirec-
tional lamina, subjected to plane stress state, and the Tsai-Wu criterion may be ex-
pressed as

ay, 0L, +aror +as0s + (ILLGE + aTTG% +

6.2.22
ass 02 + 2a1101. 01 + 2a1 501,05 + 2atsOr0s = 1 ( )

Equation (6.2.22) is written in the on-axis system and Vit = as.

The linear terms take account the actual differences between composite material
behavior under tension and compression. The term ay T61 o7 represents independent
interaction among the stresses o, and ot and the remaining quadratic terms describe
an ellipsoid in stress space. Since the strength of a lamina loaded under pure shear
stress Tg in the on-axis system is independent of the sign of the shear stress, all linear
terms in 05 must vanish

as = daps = ars — 0 (6.2.23)

Then the Tsai-Wu criterion for a single layer in on-axis system has the form
aLoL + aror + ap L 6f + arroi + assos + 2airoL0or = 1 (6.2.24)

The four quadratic terms in (6.2.24) correspond to the four independent elastic char-
acteristics of orthotropic materials, the linear terms allow the distinction between
tensile and compressive strength. The coefficients of the quadratic Tsai-Wu crite-
rion are obtained by applying elementary basic loading conditions to the lamina

1 1
2 =— - —
= = = ar O +a O; :1 ar
OL = 0w,  OT = O _0 - CLPLTALL = OLt | OLe
0L = —OL¢, or =05 =0 —aL0Lc +aLL o, =1 alL =
OLtOLc
) 1 1
or=0r, oL=0s=0 aror+arrog, = 1 ar= Ot B OTc
= — = = 2 1
Or=-01,0L.=0s=0 = —grorctarrof, =1  gop=

OTtOTc
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1
O0s=1s,0,=01r=0 = assfsz =1 = ass = ? (6.2.25)
S

The remaining coefficient a .t must be obtained by biaxial testing

oL =0r=0y, Os=0=

6.2.26
(a+ar)oy + (aLL + arr + 2arr)og = 1 ( )

oy is the experimentally measured strength under equal biaxial tensile loading
O, = OT.

In many cases the interaction coefficient is not critical and is given approxi-
mately. A sufficient approximation is in this case

1
ar ~ — 2 \/aLLarr (6.2.27)

The Tsai-Wau criterion may also be formulated in strain space.

Summarizing the considerations on interactive failure criteria lead: The Tsai-Hill
and the Tsai-Wu failure criteria are quadratic interaction criteria which have the
general form

Fjoio;j+Fo;=1, i,j=L,T,S (6.2.28)

F;j and F; are strength parameters and o;, 0; the on axis stress components.

For plane stress state six strength parameters Fyy,Frr, Fss, Fir, FL, Fr are re-
quired for implementation of the failure criterion, F g = Frs = Fs = 0, see Eq.
(6.2.23). Five of these strength parameters are conventional tensile, compressive
or shear strength terms which can be measured in a conventional experimental test
programme. The strength parameter Fir is more difficult to obtain, since a biaxial
test is necessary and such test is not easy to perform. The two-dimensional repre-
sentation of the general quadratic criterion (6.2.28) in the stress space can be given
in the equation below

2 2 2
(o] o (o] 1 1 1 1
L 4 T +%+2FLTGLGT+(——)GL+(——)GT1
OLtOlc OT(OTc T Ot OLc o1t OTc
(6.2.29)

Equation (6.2.29) reduces, e.g., for

1
OLt = OLc, Or¢ = Orc, FLr =

262,
to the Tsai-Hill criterion, for
OLt # OLc, Ort # Ore, FiT = !
Lt Lc; OTt Te, LT = 261,00

to the Hoffman criterion, and for

1
2,/0101cO1(OTc

OL( # OLc, O1t # OTe, FLT = —
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to the Tsai-Wu criterion. Hoffman’s criterion is a simple generalization of the Hill
criterion that allows different tensile and compressive strength parameters (Hoff-
man, 1967).

If one defines dimensionless stresses as

of = vF.LoL,0f = VFrror, ofr = \/FssOir
and normalized strength coefficients as
F' = R/VFAL Ff = Fr/VFr, Ry = Fr/VRLUPT
Equation (6.2.29) can be rewritten as
072+ 02+ 0} 4+ 2507 02 + F of > + Fioi? = 1 (6.2.30)

Note that in the case of isotropic materials with 61 = 6. = oy = Ot follow
F* = Ff = 0. There the principal stress state will have of'; = opr = 0. Equation
(6.2.30) reduces with F7, = f% to the known von Mises criterion.

Using the above failure criteria the possibility of a lamina failing can be deter-
mined, for example. In the maximum stress criterion, the lamina failes if any of the
inequalities (6.2.4) are violated. However, the criterion does not give information
about how much the load can be increased by if the lamina is safe or how much it
can be decreased if the lamina has failed. To overcome this problem, strength ratios

are defined as ) ) )
R— maximum load which can be applied

load applied

6.2.31)

This definition is applicable to all failure criteria. If R > 1, then the lamina is safe
and the applied load can be increased by a factor of R. If R < 1 the lamina is unsafe
and the applied load needs to be reduced. A value of R = 1 implies the failure load.
The stress ratio factor assumes that the material is linear elastic, for each state of
stress there is a corresponding state of strain and all components of stress and strain
increase by the same proportion.

Summarizing the discussion above, the strength ratio for the four criteria can be
formulated:
Maximum stress criterion

Ri110 = o14/0L, oL, > 0 Strength factor fibre fracture,

R0 = ort/or, or > 0 Strength factor matrix fracture,

Ri.0 = o1./|oL], or < 0 Strength factor micro-buckling, (6.2.32)
R0 = or./|or|, or < 0 Strength factor matrix fracture,

Rso = 15/|0L1], Strength factor matrix fracture
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Maximum strain criterion

Rue = e /e, & >0,
Rri& = er/er, er >0,
Ry = 8Lc/|8L|7 e <0, (6.2.33)

Rrce = erc/ler|, er <O,
Rse = &s/|err|

Tsai-Hill-criterion
Only one strength ratio can be introduced

(RTHGL>2 . (RTH6T>2 - R™Mg RM gy . (RTHGLT
GEU U

2
) =1 (6234

OLU OTU

With the ultimate strength o1y, oty for tension and compression the strength ratio
R™ follows from

1 OL 2 oT 2 01,071 OoLT 2
TH)2 + 2 Tz
(R™) OLU OTU Oy U
Tsai-Wu-criterion
The Tsai-Hill and the Tsai-Wu criterion define only one strength ratio RTW

2
(a0 +aror)R™ + (aLLof +arrof +assog +2artoor)RTY . = 1

or in symbolic notation

A 1

with the solutions

1A [1A2 1 1
RW=— "4y 24 = (—Ai A2 43)
1/2 2B 482 BT 2B +

R™ must be positive

R™ =+\/A24+4B—A/2B (6.2.35)

The procedure for laminate failure estimation on the concept of first ply and last
ply failure is given as follows:

1. Use laminate analysis to find the midplane strains and curvatures depending on
the applied mechanical and hygrothermical loads.

2. Calculate the local stresses and strains in each lamina under the assumed load.

3. Use the ply-by-ply stresses and strains in lamina failure theory to find the strength
ratios. Multiplying the strength ratio to the applied load gives the load level of
the failure of the first lamina. This load may be called the first ply failure load.
Using the conservative first-ply-failure concept stop here, otherwise go to step 4.
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4. Degrade approximately fully the stiffness of damaged plies. Apply the actual
load level of previous failure.

5. Start again with step 3. to find the strength ratios in the undamaged laminae. If
R > 1 multiply the applied load by the strength ratio to find the load level of the
next ply failure. If R < 1, degrade the stiffness and strength characteristics of all
damaged lamina.

6. Repeat the steps above until all plies have failed. That is the last-ply-failure con-
cept.

The laminate failure analysis can be subdivided into the following four parts. The
first-ply-failure concept demands only one run through, the last-ply-failure requires
several iterations with degradation of lamina stiffness.

Failure analysis of laminates in stress space:

Step 1
Calculate the stiffnesses
® Qi“ :12 0 Ol Oir O
Q" =101,0»n 0 |=|0urOrr 0
0 0 0 0 0 Oss
of all k single layers in on-axis system with help of the layer moduli

EI(‘k) , Eék) , V-}Ii) , G,(Fkﬁ and the layer thicknesses Kk

Transformation of the reduced stiffnesses @'¥) of single layers in on-axis
system to the reduced stiffnesses @) of single layers in off-axis system
Q(k) _ (Te’)TQI(k)Te’

Calculate the laminate stiffnesses A,B and D

n 1 2 2 12
Ay=Y Ql(jf)h(k)7 By= y fo) (xgk) L ) S S CIONCY
k=1 k=1

ij
1

n
k=

I ok k)3 k—=1)3 Lk 02 1 5
33 Pt 12

x(Sk) = ; (xgk) +x(3k_1))

Inversion of the matrices A,B and D

Calculate the compliance matrices a,b,c and d of the laminate
a=A* 7B*D*71C*7 b :B*D*7]7 c—= 7D*71C*7 d :D*fl’
A*=A"'" B"=-A"'B,C*=BA~!, D=D—-BA'B

Step 2
Calculation of the laminate stress resultants N and M
by structural analysis of beam or plate structures
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Step 3.
Calculate the laminate strains € = € + x3K
£ a:b N
K . M
c:.d

and the strains for all laminae at lamina interfaces

ek =g, +xgk)x,k =0,1,2,....n

Calculate the stresses for all interface surfaces of single layers
o~ = g®ek-1) pottom surface of lamina k
oW+ =0g®ek  top surface of lamina k
Transformation of the interface stresses 0‘<")’,0‘(k)4r
to the on-axis system of layer kk=0,1,2,...,n

,k=0,1,2,...,n

Step 4
Failure analysis based on a selected failure criterion in stress space

Summarizing the strength ratios concept to the general quadratic interaction criteria
Eq. (6.2.28) we formulate with the maximum values of stresses

! / /
Ejdimaxcjmax _|_E61max — 1

"applied

Substituting Ro; for 6; maX yield the quadratic equation for the strength ratio R
(F;jo;0,)R* + (F;6)R—1=0
or
aR*+bR—1=0, a=F;j0;6},b=F;c; (6.2.36)

The strength ratio R is equal to the positive quadratic root

b b\* 1
k= 2a + (2(1) + a
As considered above this approach is easy to use because the resulting ratio provides
a linear scaling factor, i.e.
if R < 1 failure occurs,
if R> 1, e.g. R =2, the safety factor is 2 and the load can be doubled or the laminate
thickness reduced by 0.5 before failure occurs.
The same strength ratio can be determined from the equivalent quadratic criterion
in the strain space. With 6 = Q€ follows, e.g. with Eqs. (6.2.24) - (6.2.27) the Tsai-
Wau criterion in the strain space as

brLeL +brer+ bLLEI% + bTTE}]% + bSSESZ +2bireLer =1 (6.2.37)
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with

by =ar Q1L +arQrr,

br = arQrr+aL0rr,

biL = aiQf; +arrQir + 2arrQLLOrr, (6.2.38)
brr = arrQr + ar Q¥ + 2arrOrr0rr,

bur = aLLQuLOrr + arrQrrOrr + avr(Q + 0LLOrr)

In the more general form analogous to the strength ratio equation is

(GijEiEj)R2 + (GiSi)R —-1=0,
cR>4+dR—1=0,

d d 1
P (—)+
c 2c c

To determine R from this equivalent quadratic criterion the strain space may be
preferred, because laminae strains are either uniform or vary linearly across each
lamina thickness.

As considered above, the most widely used interlaminar failure criteria are the
maximum stress criterion, the maximum strain criterion and the quadratic failure
criteria as a generalization of the von Mises yield criterion, in particular the Tsai-
Hill and the Tsai-Wu criterion. The interlaminar failure modes can be fibre breaking,
fibre buckling, fibre pullout, fibre-matrix debonding or matrix cracking. The predic-
tion of the First-Ply Failure with one of the above mentioned criteria is included in
nearly all available analysis tools for layered fibre reinforced composites.

Interlaminar failure, i.e. failure of the interface between adjacent plies, is a de-
lamination mode. Delamination failure can have different causes. Weakly bonded
areas impact initial delamination in the inner region of a laminate, whereas delam-
ination along free edges is a result of high interlaminar stresses. Free edges delam-
ination is one of the most important failure modes in layered composite structures.
Along a free edge a tri-axial stress state is present and must be considered. Free
edge delamination is subject of actual intensive research.

The strength analysis of laminate presupposes experimental measured ultimate
stresses or strains for the laminae and realistic or approximate assumptions for stiff-
ness degradation of damaged layers. Strength under longitudinal tensile and com-
pression stresses is usually determined with unidirectional plane specimen, strength
under transverse tension and compression is measured with plane specimen or cir-
cumferentially reinforced tubes and shear strength is determined in torsion test of
such tubes. Note that compression testing is much more difficult than tension testing
since there is a tendency of premature failure due to crushing or buckling.

Summarizing the discussion above on failure analysis one can say that for deter-
mination of safety factors of fibre reinforced laminated structural elements there is
a strong need for fracture criteria and degradation models which are simple enough
for engineering applications but being also in sufficient agreement with the physical

(6.2.39)



6.3 Problems 219

reality. In spite of many efforts were made during recent years strength analysis of
laminates is still underdeveloped in comparison to the stress and strain analysis.

Essential for recent success in failure analysis was to distinguish between fibre
failure and inter-fibre failure by separate failure criteria introduced by Puck*. The
theory and application of Puck’s criterion are detailed described in special literature
(Knops, 2008) and are not considered here. In addition, Christensen® has presented
some arguments concerning the best choice of failure criteria - stress or strain based
(Christensen, 2013). On some actual problems and the state of the art is reported in
Talreja (2016).

6.3 Problems

Exercise 6.1.

A UD lamina is loaded by biaxial tension o = 1307, 017 = 0. The material is a
glass-fibre epoxy composite with £y, = 46 GPa, Et = 10 GPa, G .t = 4,6 GPa,
vir = 0,31. The basic strength parameters are o = 1400 MPa, o1, = 35 MPa,
75 = 70 MPa. Compare the maximum stress and the maximum strain criteria.

Solution 6.1. Maximum stress criterion (op, < Oy, O < OTy)

1301 = oL < oy or < 107,69 MPa
or = O1; < Oy or < 35 MPa

The ultimate stress is determined by the smallest of the two values, i.e. failure occurs
by transverse fracture. The stress state is then

or =35 MPa, op, = 13-35 =455 MPa < 1400 MPa

Maximum strain criterion (&, < €, &r < €ry)
To determine the ultimate strains we assume approximately a linear stress-strain
relation up to fracture. Then follows the ultimate strains

e =on/EL, € =or/Er

The strains caused by the biaxial tension state are

1 ViLT 1
& =SuLoL+Siror= , oL — —0or= _ (0L — Viror) < €14,
Er Er ) ELI
VTL
er =SuroL +Stror=———oL+ _ or= _ (or—VvrLoL) < €r
Et Er Et

The maximum strain criterion can be written

4 Alfred Puck (* 1927) - engineer and professor, development of a physical-based strength criterion
for UD reinforced laminates

5 Richard M. Christensen (*3 July 1932 Idaho Falls, Idaho) - specialist in mechanics of materials
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Et
OL — VLTOT < OL1; OT — VTLOL < OTt, VIL = E VLT
L

Since oy, = 1307 follows
or < or/(13—vir) = 110,32 MPa,

or < GTt/(l — 13VLTET/EL) = 282,72 MPa

The ultimate stress is given by the lowest of both values, i.e. failure occurs by
longitudinal fracture and the stress state is then

oL = 13-110,32 = 1434, 16 MPa, o = 110,32 MPa

The values of both criteria differ significantly and the fracture mode is reversed from
transverse to longitudinal fracture. Because linear elastic response is assumed to
fail, the criterion can predict strength also in terms of stresses. In reality the relation
between ultimate stress and strain is more complex.

Exercise 6.2. Consider an off-axis unidirectional tension of a glass fibre/polyster
resin laminate (Fig. 6.5), o1 = 3,5 MPa, 6 = 60°. Estimate the state of stress with
the help of the maximum stress, the maximum strain and the Tsai-Hill failure cri-
terion. The lamina properties are E{ = 30 GPa, Ej =4 GPa, G|, = 1,2 GPa,
vi, = 0,28,v}, = 0,037,01; = 1200 MPa, op, = 45 MPa, 75 = 35 MPa,
e = 0,033, ey =0,002,e5 = 0,0078.

Solution 6.2. The solution is split with respect to different criteria.

1. Maximum stress criterion
Using (6.2.6) the stresses in the principal material axes can be calculated

o] = o1cos? 0 = 0,875 MPa < Oy,
o5 = 01sin? @ = 2,625 MPa < Ory,
o¢ = 01sinfBcos® = —1,515 MPa < 15

The off-axis ultimate tensile strength o7y, is the smallest of the following stresses

01 = oL/ cos’ 6 = 4800 MPa,
o1 = ory/ sin? @ = 60 MPa,
01 = Ts/sinB cos 6 = 80,8 MPa

i.e. 01 = 60 MPa. All stresses Gi’ are allowable, the lamina does not fail.
2. Maximum strain criterion
From the Hooke’s law for orthotropic materials follows

!/ / / / / ! __ / / / / /
8} = Gl/lEl - Vzlldz/lEz = o01/E| - Vv|,0,/E],
8; = */"12?1 /E|+03/E5,

& = 0¢/Eg

The transformation for o yields
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1
& = [cos? 6 — V], sin® 8]c; = 0,0000047 < g,
1

/

1 E
g = Z [sin® 6 — V{ZE_? cos? 8]o; = 0,0006 < er,

& = ——sinfcosfo; =0,0013 < &5
Gin

All strains are allowed. The composite does not fail.
3. Tsai-Hill criterion
Using (6.2.18) the criterion can be written

cos?0\> [sin0 2 sinfcosO\? [sinBcosO\> 1
+ - + <
OLt OTt OLt Ts (oh
0,25\% [0,75\* [0,433\? [0,433\? 5
’ ’ —( = ’ MPa~ 43MPa >
[(1200) +< 45 ) (1200) +( 35 ) a * <0,00043MPa %,

1
, =0,0816MPa >
Oi

The left-hand side is smaller than the right-hand side, therefore the composite
does not fail.

Exercise 6.3. The plane stress state of a UD-lamina is defined by
01 =20,06p =—306,06=40,0>0
The material properties are

E| = 181GPa, E} = 10,3GPa, V|, = 0,28,G/, = 7,17GPa, v}, = 0,01593,
o1 = 1500MPa, 61 = 1500MPa, o1, = 40MPa, o1 = 246MPa, 75 = 68MPa

The fibre angle is 6 = 60°. Calculate the maximum value for ¢ by using the different
failure criteria.

Solution 6.3. The solution is given for the four cases separately.

1. Maximum stress criterion
Transformation of the stresses from the off-axis to on-axis reference system
yields (Table 4.1)

ol 0,250 0,750 0,866 26 1,714
o, | =1 0,750 0,250 -0,866| | 36| =|-2,714|0c
ol 0,433 0,433 —0,500 | | 4o —4,165

Using (6.2.2) we find the inequalities
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—~1500MPa < 1,7146 < 1500MPa,
—246MPa < —2,7146 < 40MPa,
—68MPa < —4,1656 < 68MPa,

—875,1MPa < o < 875,1 MPa,
= —14,73MPa < 0 < 90,64 MPa,
—16,33MPa < o < 16,33MPa

The three inequalities are satisfied if 0 < ¢ < 16.33 MPa. The maximum stress
state which can be applied before failure is

61 = 32,66 MPa, 0, = 48,99 MPa, 64 = 65,32 MPa

The mode of failure is shear.

2. Maximum strain criterion
Using the transformation rule (4.1.5) for strains g follows with S}, =
1/E| =0,5525 10" Pa~!, §), = 1/E}, = 9,709 10~ Pa~!, S, = 1/G), =
13,9510~ "' Pa~l, 81, = —v|,/E| = —0,1547 10! pa~!

| S, S, 07 ol 0,1367 MP
el =|s,5,0]||c|=]-2662|10" {—Mpﬂ
el 0 0 S| |of ~5,809 a

Assuming a linear relationship between the stresses and the strains until failure,
we can calculate the ultimate strains in a simple way

e = oL /E| = 8,287 1073, g = o1 /E] = 8,287 1073,
er. = or/E5 = 3,883 1073, er. = orc/E} = 23,88 1073,
& = 15/G), = 9,483 1073

and the inequalities (6.2.8) yield

—8,2871073 < 0,1367 107 < 8,287 1073,
—23,88 1073 < —2,662 10196 < 3,883 1073,
—9,483 1073 < —5,809 10~ % < 9,483 103

or
—606,2 10° < 6 < 606,2 10°,

—14,5810° < 6 < 89,71 10°,
—16,3310° < 6 < 16,33 10°

The inequalities are satisfied if 0 < o < 16,33 MPa, i.e. there is the same maxi-
mum value like using the maximum stress criterion, because the mode of failure
is shear. For other failure modes there can be significant differences, see Exercise
6.1.

3. Tsai-Hill criterion
Using (6.2.17) we have
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1,714\ > (=2,714\* [1,714) [ 2,714 —4,165\*| o? X
(1500) +( 40 > (1500)( 1500)+( 68 ) 1012<

ie. 0 < 10,94,
The Tsai-Hill criterion is an interactive criterion which cannot distinguish the
failure modes. In the form used above it also does not distinguish between com-
pression and tensile strength which can result in an underestimation of the allow-
able loading in compression with other failure criteria. Generally the transverse
tensile strength of a UD-lamina is much less than the transverse compressive
strength. Therefore the criteria can be modified. In dependence of the sign of

the o/ the corresponding tensile or compressive strength is substituted. For our
example follows

1,714 2+ —2,714\* (1,714 (-2,714 L (4165 2l o2 -
1500 246 1500 1500 68 1012
i.e. 0 < 16,06 MPa.

4. Tsai-Wu criterion
Now (6.2.24) must be applied. The coefficients can be calculated

1 1
ay, — (— — > :07
OLt OLc

1
arr = =1,016210"'9pa—2,
OT(OTc

1 1
ar = (— - —) =2,093107%Pa!,
o1y  OTe

1
ass = — =2,1626 107 '%Pa~2,
Ty

1
ayL = ( ) =4,44441 10 "Pa 2,
OLtOLc

1
at ~ —2,/—aLLaTT = —3,360 10~ '8pa—?

Substituting the values of the coefficients in the criterion it yields the following
equation

0-(1,714)0+2,093(1078)(—2,714)0 +4,4444(10719)(1,7140)?
+1,0162(10716)(—2,7140) +2,1626(10716)(—4,1650)?
+ 2(—3,360)(10718)(1,714)(-2,714)6> < 1

The solution of the quadratic equation for ¢ yields ¢ < 22,39 MPa.
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Summarizing the results of the four failure criteria we have
Max. stress criterion: 0 =16,336 (6 =Rs0)

Max. strain criterion: 0 =16,336 (6 =Rs¢€)

Tsai-Hill criterion: 0 =10,946 (6 =Rty)
Mod. Tsai-Hill criterion: ¢ = 16,066 (6 = Rtum)
Tsai-Wu criterion: 0 =22,396 (6 =Rtw)

The values 6 = o are identical with the strength ratios (6.2.32) - (6.2.35).

Remark 6.1. A summary of the examples demonstrates that different failure criteria
can lead to different results. Unfortunately, there is no one universal criterion which
works well for all situations of loading and all materials. For each special class of
problems a careful proof of test data and predicted failure limits must be conducted
before generalizations can be made. In general, it may be recommended that more
than one criterion is used and the results are compared.
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Part 111
Analysis of Structural Elements



The third part (Chaps. 7-9) is devoted to the analysis of structural elements (beams,
plates and shells) composed of laminates and sandwiches. The modelling of lam-
inated and sandwich plates and shells is limited to rectangular plates and circular
cylindrical shells. The individual fiber reinforced laminae of laminated structured
elements are considered to be homogeneous and orthotropic, but the laminate is
heterogeneous through the thickness and generally anisotropic. An equivalent sin-
gle layer theory using the classical lamination theory, and the first order shear defor-
mation theory are considered. Multilayered theories or laminate theories of higher
order are not discussed in detail.
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Chapter 7
Modelling and Analysis of Beams

In Chap. 1 the classification of composite materials, the significance, advantages
and limitations of composite materials and structures and the material characteris-
tics of the constituents of composite materials were considered. Chapter 2 gave a
short introduction to the governing equations of the linear theory of anisotropic ma-
terial behavior. Chapter 3 defined effective material moduli of composites including
elementary mixture rules and improved formulas. Chapter 4 developed in detail the
modelling of the mechanical behavior of laminates and sandwiches in the frame of
classical theories including thermal and hygroscopic effects. The constitutive equa-
tions, describing the relationships between stress resultants and in-plane strains and
mid-surface curvatures were developed for unidirectional laminae, laminates and
sandwiches with the assumptions of the classical laminate theory. Further the calcu-
lation of in-plane and through-the-thickness stresses was considered. Chapter 5 gave
an introduction to classical and refined laminate theories. In Chap. 6 selected failure
mechanisms and criteria were briefly discussed. These parts of the book give the
basic knowledge, how the design engineer can tailor composite materials to obtain
the desired properties by the appropriate choice of the fibre and matrix constituents,
a laminate or a sandwich material, the stacking sequence of layers, etc. This ba-
sic knowledge can be utilized to develop the modelling and analysis of structural
elements and structures composed of composite materials.

7.1 Introduction

The analysis of structural elements can be performed by analytical and semi-
analytical approaches or by numerical methods. The advantage of analytical so-
lutions is their generality allowing the designer to take into account various design
parameters. Analytical solutions may be either closed form solutions or infinite se-
ries and may be exact solutions of the governing equations or variational approaches.
However, analytical solutions are restricted to the analysis of simple structural el-
ements such as beams, plates and shells with simple geometry. Otherwise numer-
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ical methods have to be applied more general for structural analysis. Chapter 7 to
10 describe analytical solutions for one- and two-dimensional structural elements.
Chapter 11 gives an insight into numerical solutions based on the finite element
method.

In the following sections of Chap. 7 we consider rods, columns and beams. These
are one-dimensional structural elements with a thickness / and a width b which are
small relative to the element length /, i.e. h,b < [. When this element is loaded by
an axial force only one speaks of a rod if the loading is tensile, and of columns if
the load is compressive. One calls this element a beam when it is acted upon by
lateral loads. In general a combination of lateral and axial loadings is possible and
so we shall speak of beams under lateral and axial loadings. The other type of one-
dimensional structural elements, so called plate strips under cylindrical bending,
are discussed in Chap. 8. The modelling and analysis of generalized beams based a
thin-walled folded structure are considered in Chap. 10 (generalized Vlasov beam
theory).

The elementary or classical beam theory assumes that the transverse shear strains
are negligible and plane cross-sections before bending remain plane and normal to
the axis of the beam after bending (Bernoulli-Euler beam theory, Sect. 7.2). The
assumption of neglecting shear strains is valid if the thickness /4 is small relative to
the length / (2/1 < 1/20). In the Bernoulli-Euler beam theory the transverse deflec-
tion u3 is assumed to be independent of coordinates x;,x3 of the cross-section (Fig.
7.1),i.e. u3 =w=w(x1). In Sect. 7.2 the governing equations of the classical beam
theory for composite beams are considered. The differential equations and varia-
tional formulations will be developed in detail for bending only, the equations for
vibration and buckling are briefly summarized.

In the case of sandwich beams or moderately thick laminate beams, the results
derived from the Bernoulli-Euler theory can show significant differences with the
actual mechanical behavior, i.e. the deflection, stress distribution, etc. An improve-
ment is possible by introducing the effect of transverse shear deformation, i.e. we
apply Timoshenko beam theory (Sect. 7.3). The assumptions of the classical theory

x3
k)
b

x]

axis

Y

Fig. 7.1 Rod/column/beam
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have then to be relaxed in the following way: the transverse normals do not remain
perpendicular to the deformed axis of the beam after straining. Section 7.4 discuss
some special aspects of sandwich beams.

Laminate or sandwich beams with simple or double symmetric cross-sections are
most important in engineering applications. The derivations in Sects. 7.2 - 7.5 are
therefore limited to straight beams with simple or double symmetric constant cross-
sections which are predominantly rectangular. The bending moments act in a plane
of symmetry. Also cross-sections consisting of partition walls in and orthogonal to
the plane of bending, e.g. I- or box beams, are considered.

7.2 Classical Beam Theory

Frequently, as engineers try to optimize the use of materials, they design compos-
ite beams made from two or more materials. The design rationale is quite straight
forward. For bending loading, stiff, strong, heavy or expensive material must be far
away from the neutral axis at places where its effect will be greatest. The weaker,
lighter or less expensive material will be placed in the central part of the beam. At
one extreme is a steel-reinforced concrete beam, where weight is not a major con-
cern, but strength and cost are. At the other extreme is a sandwich beam used e.g. in
an aircraft with fibre-reinforced laminate cover sheets and a foam core. In that case,
stiffness and weight are essential but cost not.

First we consider elementary beam equations: The cross-section area A can have
various geometries but must be symmetric to the x3-axis. The fibre reinforcement
of the beam is parallel to the x;-axis and the volume fraction is a function of the
cross-sectional coordinates x;, x3, i.e. v¢ = v¢(x,x3). The symmetry condition yields
vi(x2,x3) = vi(—x2,x3) and E1(x2,x3) = E1(—x2,X3).

With the known equations for the strain € and the stress ] at x; = const

€(x3) =€ +x3ky, 01(x2,x3) = €E(x2,x3) +x3K1 E] (x2,%3) (7.2.1)
follow the stress resultants N(x;),M(x;) of a beam

N =g /El()Cz,)C3)dA—|-K1/)C3E1(XQ,X3)C1A,

@) ) (7.2.2)
& /X3E1 (XQ,X3)dA+K‘1 /X%El ()Cz,X3)dA

(A4) (A4)

M

The effective longitudinal modulus of elasticity is (3.1.8)
E| = Evi+ Emvm = Em + ¢ (x2,x3) (Ef — Em) (7.2.3)

and with Ef = const, Ey, = const, ¢ (x2,x3) = ¢(—xp,x3) it follows that
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N =ag + bk, a=E A—|— Ef— /(P )CQ,)C3
M = be; +dxy, b= (Es—E /(1) X2,%3)x3dA, (7.2.4)
(4)
I = /x%dA7 d=Enl+ (Ef—E /¢ x2,x3)x3dA
(4) (4)

The inverse of the stress resultants, (7.2.4), are

dN — bM aM — bN
= = 7.2.5
A= NT (7.2.5)
and the stress equation (7.2.1) has the form
dN — bM + (aM — bN)x
61()62,)63) = ( ) 3E1()C2,)C3) (7.2.6)

ad —b?

Taking into consideration the different moduli Ef and Ey,, the fibre and matrix

stresses are
dN — bM + (aM — bN )x3

Gf()C:;) == ad—b2 Efa
7.2.7
dN — bM + (aM — bN )x3 ( )
Om (¥3) = ad — b? Em

In the case of a double symmetric geometry and fibre volume fraction function ¢,
b = 0 and the equations can be simplified

(E']Z]V/d7 K']Z[W/d7 (7.2.8)
or(x3) = (N/a+x3M/d)Er, 0m(x3) = (N/a+x3M/d)En -
For a uniform fibre distribution, ¢ (x;,x3) = const, (7.2.3) — (7.2.4) give
a=E,A+ (Ef— Em)(])A =FEA,
b =0, (7.2.9)
d = Enl + (Ef— En) ¢l = E|I

and the stress relations for fibre and matrix, (7.2.8), are transformed to

N M\ /[ E N M\ [ Ey,
or(x3) = (X +x37)(E_f> , Om(x3) = (Z +x37>(E—]> (7.2.10)

If Ef = Ey and E| = E, (7.2.10) becomes the classical stress formula for isotropic
beam with axial and lateral loadings

N M
6()63): X+7X3 (7.2.11)
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Now we consider laminate beams loaded by axial and lateral loading. For simplicity,
thermal and hygrothermal effects are ignored. The derivation of the beam equations
presume the classical laminate theory (Sects. 4.1 and 4.2). There are two different
cases of simple laminated beams with rectangular cross-section:

1. The beam is loaded orthogonally to the plane of lamination.
2. The beam is loaded in the plane of lamination.

In the first case, we start from the constitutive equations (4.2.18).

The beam theory makes the assumption that in the case of bending and stretch-
ing in the (x; —x3)-plane of symmetry, i.e. no unsymmetrical or skew bending,
N>, = Ng =0, My = Mg =0 and that all Poisson’s effects are neglected.

With these assumptions (4.2.18) is reduced to
N Al By | | &
= 7.2.12
) =L o) 14 7212

Q1 :A5585 (7213)

and from (4.2.14)

If the beam has a midplane symmetry, there is no bending-stretching coupling, so
that B;; = 0 and (7.2.12) becomes

Ny =An&, My = DK (7.2.14)

Note that in the classical theory, the transverse shear strain will be ignored, i.e
& = 0, and there is no constitutive equation for resultant shear forces.

The starting point for derivation of structural equations for beams is the equilib-
rium equations for stress resultants N,M and Q at the undeformed beam element,
Fig. 7.2. The in-plane and transverse stress resultants Ny, Q; and the resultant mo-

x3
q(x1)
0 Q+do
Bt T e
n(xp) ‘
M dx, M +dM

Fig. 7.2 Stress resultants N,Q and M of the infinite beam element, g(x1),n(x;) are line forces,
m(x;) is a line moment
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Table 7.1 Differential relations for laminate beams based on the classical beam theory
(&1 = u'(x1), 5 = —w"(x1))

Relations between stress resultants and loading

N'(x1) = —n(x1), Q'(x1)=—qlx1),

M'(x1) = Q(x1) —m(x1), M"(x1) = —q(x1)—m'(x1)

Relations between stress resultants and strains

N = bAy i (x1) —bByyw” (x1) N(x;) bAy; bBi; ' (x1)
<> =

M = bByyu (x1) — bDyw" (x1) M(xy) bBy; bDq; —w' (x1)

Differential equations for the displacements

General case
Ay OBy =l
(bB11u'Y' — (bDyw")" = —q—ml =)= 4

Constant stiffness

bA] 1 bB] 1 Lt”/ o —n'

bByy bDyy | | —W" | T | —q—m'
Midplane symmetric laminates (B1; = 0)

(DALY = —n bA U = —n
(bD]]W”)” :q+ml bD]]W”" — q+ml

Special cases

" n(x1) m _ q(x1)

u” (x1) oA, " (x1) = D1,
m'(x1)=0:

N'(x1) = —n(x1),  Q'(x1)=—q(x1)

M'(x1) = O(x1) —m(x1)

/ _7L_ n W (x ZQ(XI)
m(x1) =0,n(x;)=0: “ )= DA —comst (k1) bDyy

ment M in (7.2.12)—(7.2.13) are loads per unit length and must be multiplied by the
beam width b, i.e. the beam resultants are N = bN;,Q = bQ1,M = bM.

The differential relations for laminate beams loaded orthogonally to the plane of
lamination are summarized in Table 7.1. Note that when N is a compressive load,
we have to consider additional stability conditions.

The stresses Gl(k) (x1,x3) in the kth layer are given by
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k k) (k k o | du(x d2w(x
cf)=Q(”>ef)=Q§1)(el+x3;q)=Q§l){ d(x])—x3 d;fZ )} (7.2.15)
1
or with
AnDy — B3, AnDyy — B3’
one get
1 /D N—-—B M AiyM — BN
Gl(k):Q(]kl) 1 112 LA 112 (7.2.16)
b\ A;1Dy — By, A Dy — By,

In the most usual case of midplane symmetric beams the stress equations (7.2.15),
(7.2.16) can be simplified to

k k) du(x;) 0 N(x1)
Gl(ll/;(x]) = Q(ll) dx1 Q(ll) bAll ’
(7.2.17)
2
Wy k[ dEwan) ] Jwy M(x)
O3 (x1) = o [ x37dx% =051 x3 bDy

(k)

0,,; are the layerwise constant stretching or membrane stresses produced by N (x)
and Gl(? the layerwise linear distributed flexural or bending stresses produced by
M(x1). The strain € = & + x3k) is continuous and linear through the total beam
thickness /. The stresses G](k) are continuous and linear through each single layer
and have stress jumps at the layer interfaces (Fig. 7.3) With the help of effective
moduli Eé\lff and Eé”ff for stretching and flexural loading we can compare the stress
equations of a laminate beam with the stress equation of a single layer beam.

With N £ 0,M = 0 Eq. (7.2.12) becomes

N A1l B | | &
=b 7.2.18
o' el on] %) 0219
and with B
0=0bB11& +bD 1K, K = 7i8] (7.2.19)
D1y
6
5
S 4 -
3 >
o2 IJ_\ ™
1

£ O1m X3K] O1B

Fig. 7.3 Qualitative distribution of the stresses and strains through the beam thickness & assuming
1 6 3 4 2 5
le) = le) > le) = le) > le) = le)
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follows the equations for N = bN; and g

AnD —B?
N =DbA11€ +bB11K1 = 81[)M,
Dy,
g = Du N= buh N _ N (7.2.20)
(AnDy—B3)b (AnDy —B3})bh  ENA

with )
AnDy—B

ENe="""—"1 " A=bh

The strain € on the beam axis of a single layer isotropic, homogeneous beam is
€ = N/EA. Replacing E by Ee’\;f gives the strain equation for the laminate beam.
(k)

The stresses o, in the k layers are then

B
Gl(k) = Q(lkl)(gl +x3K1) = ngl)e] (l )Q,J)

. Dy
EN(Y) Bii\ du
=0 (1 —an—”> o (7.2.21)
k k
S0 _ QN (1 X3ﬂ> BN (1 x3ﬁ)
b EN bh D)  EN bh D1
or for midplane symmetric beams with Bj; =0

(k) El(k)N El(k)N v An

o\F) — A — = 7.2.22
L EN b EN AT TN g ¢ )
In an analogous manner it follows from (7.2.12) with N = 0, M = 0 that
AyDy —B}
M = bBj 1€ +bD1 1K = Klb%
11
” An Iy Anh’ M M (7.2.23)
1 = = = —7
(A\Dyy —B2))b 12(AnDy — BY)) b ENI
12
with 5 ;
12(A11D11 _Bl]) bh
EM - 1 = — 7.2.24
eff A11h3 ) 12 ( )

For an isotropic homogeneous single layer beam of width b and thickness & one get
k1 =M/EI = 12M /bh®, I = bh? /12. Replacing now E by EM, the stress equations
are
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B
cr](k) = Q(]kl)(el +x3K1) = QEk])Kl (i +X3>

A
2
_ oW (B _ 4w
=0y (A“ X3> e (7.2.25)
k k
. Qﬂ(i) Ef>ﬂ(x3@>
Eegr 1 A Eer 1 A1y
or with By; = 0 for the symmetric case
(k)
o EX M 12Dy,
ot = E]M 3, EM — e (7.2.26)

eff

If both in-plane and lateral loads occur simultaneously, the stress in each lamina of
the beam is as for symmetric case

2
(®) _oW(du AW (N M 7.2.27
o, (x1,x3) = O} ( 1 X %) ] Eé\i,:fAJrngI& ) (7.2.27)

A=bh, I=br*/12, EN;=Ay/h, EM =12Dy /0

Conclusion 7.1. Summarizing the equations for symmetric laminated beams, one
can say that the equations for u(x;) and w(x) are identical in form to those of el-
ementary theory for homogeneous, isotropic beams. Hence all solutions available,
e.g. for deflections of isotropic beams under various boundary conditions, can be
used by replacing the modulus E with Ee’\;f or Eé‘;’f, respectively. The calculation of
the stresses illustrates that constant in-plane layer stresses produced by N are propor-
tional to the layer modulus E l(k) (7.2.22). N /AEé\;f is for a cross-section x; = const
a constant value. Analogous are the flexural layer stresses proportional to Efk)xg
(7.2.26). In general, the maximum stress does not occur at the top or the bottom of
a laminated beam, but the maximum stress location through the thickness depends
on the lamination scheme.

From the bending moment-curvature relation (N = 0)

M = bD k| (7.2.28)

” _ Max _ dz_W
Imax — bD]] - dx2 max7

and the maximum stress can be calculated for each lamina

2 (k)
(%) (k) &) (d*w E\"” Mmax

- = ~3 = 7.2.29
O max Ql] KimaxX3 Q] ! ( dx? )max . Eélt/”lf 1 3 ( )

it follows that

(k)

O max Must be compared with the allowable strength value.
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The calculation of the transverse shear stress Gs(k) (x1,x3) is analogous as in the
elementary beam theory. We restrict our calculation to midplane symmetric beams
and therefore all derivations can be given for the upper part of the beam element
(x3 > 0). The equilibrium equations in the x;-direction lead with

dcrl(j )

o) 1+ do) ~ 6l + o

dxy

(Fig. 7.4) and no edge shear stresses on the upper and lower faces

J)
N o3 A () A
oVdr — Y / Kof” + ddjl dx1> - c](”] dx;=0 (7.2.30)

or

Q(x1) ¢ () () § o 02 G-?
Os ()C],)Cg) EMJ Z /El x3dxs = EMJ Z [ X3 T
eff j:k+l(,71) eff”  j=k+1
X3
N
_ Q1) Y EDRULY)
M
Egl 5
(7.2.31)
x3
N 0" ] N — o +do(V
3 ] . —>
O'fj) J — Gl(j)—l—do](j)
(j)
x; ] - »
gj) Gl(k+1)__ k+1 | . (k+1)+dcl(k+l)
_ k
G-1] 0 ol
dx; X1

“)

— x5 )dx; with flexural normal stresses ¢, ’ and the interlaminar

Fig. 7.4 Beam element b(xg e

(k)
s

stress O.
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For a single layer homogeneous, isotropic beam (7.2.31) yields the known parabolic
shear stress distribution through i
(5-9)-3
X3

With an increasing number of equal thickness layers, the transverse shear stress
distribution (7.2.31) approaches the parabolic function of the single layer beam.
All stress equations presume that the Poisson’s effects can be completely ne-

glected, i.e. Q D;j =0,i# j,i,j =1,2,6. They are summarized for symmet-
ric laminated beams (N #0,M #0) in Table 7.2. For symmetric laminated beams
loaded orthogonally to the plane of lamination, the classical laminate theory yields
identical differential equations for u(x;) and w(x;) with to Bernoulli’s beam theory
of single layer homogeneous isotropic beams, if one substitutes bA;; by EA = Ebh
and bDy; by EI = Ebh?/12. An equal state is valid for beam vibration and beam
buckling.

The following equations are given without a special derivation (b,A,D|,p are
constant values):

1201

7/

— % [ ndx

Os(r1,x3) = 7 [ mduy= -3
X

)1 (7.2.32)

o Differential equation of flexure (N = 0)

d?w(x) _
d}

M(x1)
bDy;’

d4W<X] )
dey

bDll

q(x1) (7.2.33)

Table 7.2 Stress formulas for symmetric laminated beams, classical theory

oY (x1,33) = i}y (1) + ofp (1, 39)
k) du(xy) p d2w(xy)
=0 g, O g
NG | M(x)
~On DAY, O bDy; 3
_El(k)N()ﬂ) El(k)Mxl)x3
Eeff Al] Eéwff 1 ’
(k)
O (x17x3 E
A=bh, I=bh*/12,
1 -
Eé\éf—An/h, Eé‘,?f:12D11/h37 f(])zz(ng)+xgj l))
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e Forced or free vibrations

d4w(xl,l‘) +pAd2w(xl,f)

bD
H dxf dr?

1 N
=qen), p=, Y pWnl (7234
k=1

Rotational inertia terms are neglected. For free vibration with g = 0 the solution
is assumed periodic: w(x,7) = W(x;) exp(iot).
e Buckling equation
d’M(x) d?w(xp) d*w(xp) d?w(xy)
— 2 4+ Ni(x =0, bD —Ni(x =
0% 1(x1) o 1 axt 1(x1) i
(7.2.35)

or with N(x;) = —F

2M 2
d*M(x) —Fd w(xy) _0. Dy,

d*w(xy) Fdzw(xl)
dx} dx}

—0
d} dr}

All solutions of the elementary beam theory for single layer isotropic beams can
transferred to laminate beams. Note that laminate composites are stronger shear
deformable than metallic materials and the classical beam theory is only acceptable
when the ratio I/h > 20.

The equations for flexure, vibration and buckling can also be given in a vari-
ational formulation (Sect. 2.2.2). With the elastic potential for a flexural beam
(N=0,M #0)

l 2 1

1 Pw(x

H(w) = 2/bDn (#) dxl—/qul (7.2.36)
0 1 0

and the kinetic energy

[ 2
1 J?
(W)=, / p (_atw> dxy (7.2.37)
0

the Lagrange function is given by L(w) = T (w) — II(w) (Sect. 2.2.2).

The variational formulation for a symmetric laminated beam without bending-
stretching coupling subjected to a lateral load ¢ in x3-direction (N = 0,M # 0,
& =~ 0,v;; = 0) based on the theorem of minimum of total potential energy is
given in the form

Pwn)\ / N
a2 '*/‘1 b (7.2.38)
0

l
mivte)] = ) fo0n
0
0 w(x;)] =0

The variational formulation for the buckling of a symmetric laminate beam with
N(x;))=—Fis
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[

I 2 2
1 d2 1 d
Ow(x)] = 2/bDn( :}ff‘)) dXIQ/F(—v;z])> W (7239)
0 1

0
S w(x;)] =0

The variational formulation for free flexural beam vibration (additional to ap-
proaches noted above the rotatory inertia effects are neglected) can be given by
the Hamilton’s principle

Hlw(x),1)] = / LW (x1,0)]dr,  SH[w(x1,1)] =0 (7.2.40)

The variational formulations can be used for approximate analytical solution with
the Rayleigh-Ritz procedure or numerical solutions.

In the second case of laminate beams, the loading is in the plane of lamination.
We restrict our considerations to symmetric layered beams and neglect all Poisson’s
ratio effects. The beam is illustrated in Fig. 7.5. For a symmetric layer stacking there
is no bending-stretching coupling and we have the constitutive equations

b3
Ni =Ai€ My = —AK
1 11€1, 1= pank

or for the beam resultants N = hN;,M = hM,

g(x)| |
X1

X3

Fig. 7.5 Laminate beam
loaded in the plane of lamina- h
tion
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b3 N
N=hAne, M=Ank, A=Y oWn® (7.2.41)
k=1

The differential equations of flexure (N = 0) are

d2W<X]) N M(xl) b_3 12A1] d4W<X])

= = 7.2.42
0 An 120 B dd q(¥1) (7.2.42)
and the additional equation for the case N # 0 is
d
nay, 20 _ N(x) (7.2.43)
dxy

The calculation of stresses is analogous to case 1 of layered beams.

When beam profiles consist of partition-walls in the plane of loading and orthog-
onal to the plane of loading, e.g. I-profiles or box-beams, the bending differential
equations can be written in the form, given above. The bending stiffness is obtained
by combining the results of orthogonal to plane loading and in-plane loading.

As an example for a box-beam, we consider the beam as shown in Fig. 7.6, which
may be subjected to axial loads in x;-direction, a bending moment with respect to
the x,-axis and a twisting moment with respect to the x;-axis. For an isotropic beam
the stiffness needed are the extensional stiffness, EA, the flexural stiffness, £, and
the torsional stiffness, GI;.

The axial force resultant (per unit width) in x|-direction is N| = A€ and the
axial load carried by the whole section is then

N(x1) =2Nib+2N"Th = 2[(A11)1b + (A1) 1h] & (7.2.44)

The extensional stiffness for the box cross-section is given by

II

X1

X3

Fig. 7.6 Laminated box-beam
with identical top and bottom b
panels I and vertical walls II
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(EA)ett = 2(A11)1b+2(A11)1h (7.2.45)

The box beam is bent in the (x; — x3) plane, and the moment curvature relation is

M =
12

n\? w3
2(011)1b+2(1‘\11)1b<2> +2(An—=| x
(7.2.46)

K

R\ 1 3
~ | 2(A)b ) +6(A11)11h

Since the top and bottom panels are thin relative to the height of the box profile, i.e.
t < h, (D11); can be neglected and the bending stiffness of the box cross-section is

A
(El)efsz(A11)1b<2> +6(A]l)11h3 (7.2.47)

If the box-beam is acted by a torsional moment Mt this is equivalent to the moment
of the shear flows with respect to the x;-axis and we have

My =2Nlb(h/2) +2N"h(b/2), NE=ALel, NI =Alkell (7.2.48)

In the elementary theory of strength of materials the equation for the angle of twist
of a box-beam is given by

1 rq(s)
0=, f gt (7.2.49)

q(s) is the shear flow. In our case, Fig. 7.6, the displacements of the contours of the
walls of the box beam are denoted by 8 and &;; and the angle of twist becomes

& Si ) o Orr

0=——=—"— with —=¢! =g/l 7.2.50
Wy~ wpy M T T 7:230)
From (7.2.48) - (7.2.50) we have
bh .. )i

Mt = T[(Aéﬁ)h + (Agg )]0 (7.2.51)

and the torsional stiffness of the cross-section is

bh )i

(GL)ett = 7 [(Age) P + (Age)D] (7.2.52)

For the I-profile in Fig. 7.7 the calculation for bending is analogous. The bending
stiffness is

2
(ED)eft = Z(D”)b+2(A”)b<z> +(A11)g]

(7.2.53)
6h2b+h3

~ Al )
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Fig. 7.7 I-profile with uni- lt
form thickness ¢ ‘

if Dy = 0. Note that for a one-dimensional thin structural element which is sym-
metric with respect to all mid-planes and Poisson’s effect is neglected, we have the
simple relationships

M
(El)eff

Summarizing the classical beam equations it must be noted that the effect of Pois-
son’s ratio is negligible only if the length-to-with ratio I /b is large (I > b), otherwise
the structure behavior is more like a plate strip than a beam (Sect. 8.2). This is of
particular importance for angle-ply laminates, i.e. orthotropic axes of material sym-
metry in each ply are not parallel to the beam edges and anisotropic shear coupling
is displayed.

On=~k, An=Et x=

7.3 Shear Deformation Theory

The structural behavior of many usual beams may be satisfactorily approximated by
the classical Euler-Bernoulli theory. But short and moderately thick beams or lami-
nated composite beams which [/ ratios are not rather large cannot be well treated
in the frame of the classical theory. To overcome this shortcoming Timoshenko ex-
tended the classical theory by including the effect of transverse shear deformation.
However, since Timoshenko’s beam theory assumed constant shear strains through
the thickness / a shear correction factor is required to correct the shear strain energy.

In this section we study the influence of transverse shear deformation upon the
bending of laminated beams. The similarity of elastic behavior of laminate and sand-
wich beams with transverse shear effects included allows us generally to transpose
the results from laminate to sandwich beams. When applied to beams, the first order
shear deformation theory is known as Timoshenko’s beam theory. Figure 7.8 illus-
trates the cross-section kinematics for the Bernoulli’s and the Timoshenko’s bending
beam.
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A W(xt)
X3 Timoshenko kinematics
flexure curve
w(xy)
A
Bernoulli kinematics
Be
>
X2 o X1
up(xy)
u(xy)
dxy

Fig. 7.8 Kinematics of a bent Timoshenko- and Bernoulli-beam in the (x; —x3) plane

When all Poisson’s effects are neglected the constitutive equations are identical
with (7.2.12) - (7.2.13), but from Sect. 5.1 the strains of the Timoshenko’s beam are

d d d
&g = el =—M+x3ﬂ, £ =0,&=0,
8x1 dx1 dx1
(7.3.1)
e = 2L Yy =0, 5=0
5_8x3 ox; Vi axy’ 4 =0, & =
i.e. we only have one longitudinal and one shear strain
&1 (x1,x3) = & (x1) +x3k1(x1),  &(x1,x3) = w1 (x1) +w'(x1),
du dwi (x1) (7.3.2)

K']()C]): _

81()61) = dx1

dxy’
When the transverse shear strain are neglected it follows with & ~ 0 that the rela-
tionship is y; (x;) = —w/(x1) and that is the Bernoulli’s kinematics.
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In the general case of an unsymmetric laminated Timoshenko’s beam loaded
orthogonally to the laminated plane and N # 0,M # 0, the constitutive equations
(stress resultants - strain relations) are given by

N=Ay&+Biiki, M=B&+Dyki, Q=K Assy’ (7.3.3)

with Aj; = bA(1,B11 = bB11,D1; = bD11,7* = & and the stiffness equations are
from (4.2.15)and Q%) = V) = EW oW = ) — G¥

=) (1) = i
ki] kVTl
k k k—1
Ass =b Y ) () =afV) = b Y chon®,
k=1 k=1
1 & 2 12
Bll = b2 ZCSI;) (xgk) —xgk l) ) 5
k=1
_ 1 & 3 N3
Dy = b3 ZCﬁ) (xgk) — gk D )
k=1

kS is the shear correction factor (Sect. 5.3).
In the static case, the equilibrium equations for the undeformed beam element
(Fig. 7.2) yield again for lateral loading g # 0

——0=0, —=4¢=0 (7.3.4)
1

When considerations are limited to symmetric laminated beams the coupling stiff-
ness By is zero and from (7.3.3) it follows that

— dl[/l dw
M=D|— =KA — 7.3.5
Dlrnt o 55(‘/’1+dx]> ( )
Substituting the relations (7.3.5) into (7.3.4) leads to the differential equations of
flexure N
[D11yy (x1)) — & Ass[yi (x1) +w'(x1)] = 0,
k* Ass [wi(xr) +w'(x1)]" 4+ g(x1) =0

Derivation of the first equation of (7.3.6) and setting in the second equation yields a
differential equation of 3rd order for y; (x;)

(7.3.6)

Dy (x)]" = —q(x) (1.3.7)
and with M
0= o D11y (x1)) (7.3.8)
and

0 = k*Ass w1 (x1) +w'(x1)]
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follows an equation for w'(x;)

Dy (x1)]

7.3.9
Py (7.3.9)

w(x) = =y (xr) +
Summarizing the derivations above, the equations for a bent Timoshenko’s beam

are: -
[Diy;(x1)]" = —q(x1),

M(x,) =Dy (x1),
O(x1) = Duy;(n)ls . (7.3.10)
w'(x1) = *llfl(xl)JrM

ksASS

When the laminated beam problem allows to write the bending moment M and the

transverse force Q in terms of the known applied lateral loads ¢, like in statically

determined beam problems, (7.3.5) can be utilized to determine first y; (x1) and then

w(x;). Otherwise (7.3.6) or (7.3.10) are used to determine w(x) and v (x;).
Integrating the second Eq. (7.3.6) with respect to x;, we obtain

K*Ass[w' (x1) + w1 (x1)] /q x1)dx1 + ¢

Substituting the result into the first equation of (7.3.6) and integrating again with
respect to x| yields

Diyi(x) = / q(xp)dxidx; +cix; +c2,
(7.3.11)
Dyyi(xi) = ///61 x1)dxpdxydxy +C15 +cox1 +c3

Substituting v (x1) and yj(x;) in (7.3.9), considering (7.3.7) and integrating once
more with respect to x; we obtain

1 x? x%
w(x) = 5—” ////q(x])dx]dxldxldxl +c1€ +cz5 +c3x1 + ¢4

T Ass [/ q(xp)dxdxy + c1xy

= wP(x1) +wd(xy)

(7.3.12)

The transverse deflection consists of two parts. The bending part wB (x;) is the same
as derived in the classical theory. When the transverse stiffness goes to infinity, the
shear deflection wS (x1) goes to zero, i (x;) goes to —w/(x1) and the Timoshenko’s
beam theory reduces to the classical Bernoulli’s beam theory.

The relations for the stresses o are the same as in the classical theory. The trans-
verse shear stress can be computed via a constitutive equation in the Timoshenko
theory
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Q(x1)
ksASS

The variational formulation for a lateral loaded symmetric laminated beam is given
by

o) (x1,x3) = 0% (73.13)

I—[(W7 l//]) =1IL+1II, (7.3.14)

! 2 ’)
1 — dl//] dw
I, = D=2 SA v
i 20/[ 11(dx]>+k SS(WI+dx]>]dxl’
!

II, = —/Q(xl)del
0

with

(7.3.15)

In the more general case of unsymmetric laminated beams and axial and lateral
loadings we have IT(u,w, y; ). The IT; expression can be expanded to

L 2 2 2
I, = ;/ [A]l (:x_ul) JrZBHC(llx—ul(}Fllfll + D1y (%’?) +k*Ass (llf+ :x—vj) 1 dx;
’ (7.3.16)
and IT, has to include axial and lateral loads.

Since the transverse shear strains are represented as constant through the lam-
inate thickness, it follows that the transverse stresses will also be constant. In the
elementary beam theory of homogeneous beams, the transverse shear stress varies
parabolically through the beam thickness and in the classical laminate theory the
transverse shear stresses vary quadratically through layer thickness. This discrep-
ancy between the stress state compatible with the equilibrium equations and the
constant stress state of the first order shear deformation theory can be overcome
approximately by introducing a shear correction factor (Sect. 5.3).

The shear correction factor £* can be computed such that the strain energy W)
due to the classical transverse shear stress equals the strain energy W> due to the first
order shear deformation theory. Consider, for example, a homogeneous beam with
a rectangular cross-section A = bh. The classical shear stress distribution following
from the course of elementary strength of materials is given by

30 2x3 2 h h
- = 1— (= — <x3<+ 3.1
=1 th[ (h) ’ 2 =M= (7.3.17)

The transverse stress in the first order shear deformation theory is constant through
the thickness h 0

kG

Op3="n= 27 Y= (7.3.18)

bh
With W, = W, it follows that
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I 1 [ 1
2 EdA ) kSGdA’
(4) (4)
302 1 ©Q° 5
o _1 &= 73.1
SGbh _ k2Gbh X 6 (7.3.19)

The shear correction factor for a general laminate depends on lamina properties and
lamina stacking and is given here without a special derivation by

(
8 x3)
—kS_Asst /76(") dxs, (7.3.20)

® W2 1) e 7Y (0)
g (z) =dn {—Cy; E*Z [Cn —Cp } ;o G =0
j=1

dy; = 1/Dy; is the beam compliance, Cﬁ)
Summarizing the beam equations for the first order shear deformation theory
for symmetrically laminated cross-sections, including vibration and buckling, the

following relations are valid for constant values of h,b,A,D11,p:

e Flexure equations (N = 0,M # 0)

K Ass [wi(x1) +w(x1)] +q(x1) =0, (7.3.21)
[D11yy (x1)) — & Ass[yn (x1) +w'(x1)] =0 o
or Egs. (7.3.10).
e Forced or free vibrations equations
K Ass [y (x1,1) +w'(x1,0)] — pow(x1, 1) +q(x1,1) =0, (7.3.22)

D11y (x1,1)]" — & Ass[yi (x1,1) +w (x1,1)]— 2 (x1,2) = 0,

n _ n 1 3 13
po=bY.p" (=1, p=bY 3o (7 =)

The terms involving pg and p; are called translatory or rotatory inertia terms. For
free vibrations we assume that the transverse load g is zero and the motion is
periodic:

w(xi,t) =W(x)exp(ior), yi(xi,r) =¥ (x)exp(ior)
e Buckling equations

K Ass [y (x1) +w'(x1)]" = N(x)w” (x1) = 0,

D1y (x1)] — & Ass[yi (x1) +w/(x1)] =0 (7.3.23)
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or with N(x;) = —F

Dy |1— w"” (x))+Fw” (x) =0
{1 o [+ P

The variational formulation for the symmetric bending beam is given by Eq.
(7.3.15).

For vibrations the Lagrange function L(w, y1) = T (w, y) — II(w, ;) yields the
Hamilton’s principle

HlwCe1,0). v ()] = [ Lo, v (o),
5H[w(x1,t), l//l(xl,t)] :tl 0
with
[

et )91 0] = 5 [ Duryf? +RAss(vn +'
0

- / q(x1,t)wdxy, (7.3.24)

0
[

1 .
TlhwCen,0). v ()] = [ oo +paiflan
0

For buckling problems with N(x;) = —F it follows that

[
1 [ —
M0, 1 (,0)] = o [yt +Rss (v /Pl
0

I
1
- Z/Fw/zdxl
0

Equations (7.3.21) to (7.3.25) summarize the bending, buckling and vibration dif-
ferential and variational statements for laminated beams based on the shear defor-
mation theory.

(7.3.25)

7.4 Sandwich Beams

The similarity of the elastic behavior between symmetric laminates and symmetric
sandwich beams in the first order shear deformation theory (Sects. 4.3 and 5.3) al-
lows us to transpose the results derived above to the bending of sandwich beams.
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In addition to the differences between the expressions for the flexural and trans-
verse shear stiffness Dy; and Ass the essential difference is at the level of stress
distribution. The model assumptions for sandwich composites with thin and thick
cover sheets are considered in detail in Sects. 4.3.1 to 4.3.3. There one can find the
stiffness values A1, D;1,Ass. With these values, all differential and variational for-
mulation of the theory of laminated beams including transverse shear deformation
can be transposed.

In the case of a symmetric sandwich beam with thin cover sheets we have, for
example, the stiffness values

An =241 =2Y 0n®,

k=1
Dy = 2h°Cf = 1Y) Qﬁ’?h(“x(k), (7.4.1)
k=1

A§5 = h°GYs

n is the number of the face layers.

The coefficient AZg can be corrected by a shear correction factor &°. In addition
to the calculation of k°, derived for a laminated beam an approximate formula was
developed by Reuss, for sandwich beams with thin cover sheets. With the inverse
effective shear stiffness G];l, given by the Reuss model, and the effective shear
stiffness Gy, given by the Voigt model, we have

n o A noo1 pk) G
_ (k)" _A55 —1_y _- s _ IR 4.2
Gv=) G —=5 Gk ;;:1 TR K Gy (7.4.2)

The use of sandwich structures is growing very rapidly. Sandwich beams has a
high ratio of flexural stiffness to weight and in comparison to other beam struc-
tures they have lower lateral deformations, higher buckling resistance and higher
natural frequencies. As a result sandwich constructions quite often provide a lower
structural weight than other structural elements for a given set of mechanical and
environmental loads.

The elastic behavior of sandwich beams was modelled by the laminate the-
ory, Sect. 4.3, but it is appropriately to distinguish thin and thick sandwich faces.
The differential equations or variational statements describing the structural behav-
ior of sandwich beams generally based in the first order shear deformation theory
Sect. 5.3, and only if very flexible cores are used a higher order theory may be
needed.

Because of the continuing popularity of sandwich structures Sect. 7.4 intends to
recall and summarizes the results of Sects. 4.3 and 5.3 to cover some of the most
important aspects of sandwich beam applications.



250 7 Modelling and Analysis of Beams

7.4.1 Stresses and Strains for Symmetrical Cross-Sections

Figure 7.9 shows a sandwich beam with a symmetrical lay up, i.e. the faces have the
same thickness Af and are of the same material. As derived in Sect. 4.3 and 4.4 the
flexural rigidy is (D] = DI]‘f‘, O =E| =E)

Ef(hf)B thde EC(/’ZC)3
6 2 12

bDy =D =b =2D'+ D, + D° (74.3)

and both, 2D' and D¢ are less than 1% of D, if d / W > 5,77 and
(6ETh'd?)/E€(h¢)? > 100. Thus, for a sandwich with thin faces i < h¢ and a weak
core, E¢ < E, the flexural rigidity is approximately
ff 12
D =D, :bE l;d (7.4.4)

It can be noted that in most engineering applications using structural sandwich
beam elements, the dominating term in flexural rigidity is that of the faces bending
about the neutral axes of the beam, i.e. the dominating part D, of the total rigidity
D originating from a direct tension-compression of the cover sheets. But is there
no monolithic bonding between the faces and the core the flexural rigidity will be
nearly lost.

The following derivations assume in-plane-, bending- and shear stiffness for all
layers, i.e. for the faces and the core. Therefore we use the laminate theory including
transverse shear, Sects. 4.3.3 and 5.3. All calculations are first restricted to midplane
symmetric beams.

The bending strains vary linearly with x3 over the cross-section:

M
M
g =—x 7.4.5
=55 (7.4.5)
Unlike the bending strains, which vary linearly with x3 over the whole cross-section,
the bending stresses vary linearly within each material constituent, but there is a
jump in the stresses at the face/core interfaces:

. E;=E
3 0 3T vhf
****** A
X1 N E2:Ec
E—— — f h¢
) d=hHh g _p
P | y
1 ¢hf
b

Fig. 7.9 Symmetrical sandwich beam: N = bN;, Q = bQ;,M = bM, are the beam stress resultants
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Ef

f
=M—x
! E® ¢ D
d>:nfDx3 (k=1,2,3) = g (7.4.6)
o¢ = MEX:),
With Eq. (7.2.12) follows
M BooM M
M=bD K. Kk — = = 7.4.7
WM T Dy T 12Dy bi3j12 T EME (7:4.7)
with
pe_ 12, Iilm3
eff = 23011, 1= 75
and the stress equations can be written as
(k)
% EVYM
o, = —x3 (k=1,2,3) (7.4.8)
EM 1
The strains due to in-plane loading are:
N N N h N
e = = == (7.4.9)
3 3 bh Ay ELA
y oWpk) y EWpk) ff
k=1 k=1
with
N _ Al ¥ W0 _ 3 00
Eqr=== An ) 0 /h =Y EWRY,  A=bh
k=1 k=1
el is the strain of the neutral axis. The in-plane stresses follow to
EON EGN
) o= WA= a
EW N
o ="1" (k=123 = eff eff (7.4.10)
Eg A . EQ N
T EV A

eff

The strains and stresses due to in-plane loads and bending can be superimposed.

In the same manner as outlined above a general definition can be found for shear
strains and shear stresses. Consider the beam element b(xg3) —x3)dx;, Fig. 7.10. The
upper edge of the sandwich, i.e. x3 = (d +hf) /2, Fig. 7.9, is stress free and we have
t[(d+h') /2] =0.

Since we restrict on calculations to midplane symmetric beams all derivation can
be given for the upper part of the beam element (x3 > 0). The equilibrium equation in
the x-direction yield with 61do} ~ 6] + (d 0y /dx)dx; and no edge shear stresses
on the upper face
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X3

l (x5~ x3)
Gf O'f+d(7f 05 +dos
—_—
GC% %ﬁ 0° +do* X1 O] T 0'1+d0'1
) | *‘
05
dx;

Fig. 7.10 Sandwich beam element b(x<33) —x3)dx;: 6O (x3) = 6f(x3), 6@ (x3) = 6°(x3),

65(X3) = T()C3)

(d+ht)/2

0
’L'()Q,)bdxlf / |:<C71+ a:] dxl)cr]} bdxz =0
X3 !
(d+hf)/28
= (x3) = ajl‘ dry =0 (7.4.11)

Using the relations dM (x;)/dx; = Q(x;) and 6; = M(E(x3)/D)x3 we have

(d+ht)2)

E()C3))C3, ‘L'()C3) = % / E()C3))C3bd)C3 = %S()@) (7.4.12)

doy _ Q(x1)
dxy D

A3

S(x3) is the first moment of the area (ng) — x3)b. For a single layer homogeneous

and isotropic beam we have the well-known formula

2
S(x3) = 12) (%x%) ; h= (d+hf)

For sandwich beams we have a more generalized definition for the first moment of

area.
b thfd+EC he hC+
2 2 \2 B\ 28

f h¢
(d+i))2 | <
/ E()C3 ))C3bdX3 = 2

E" [ h¢ he
X3 b|:7 (?+hfx3> (?+l’lf+)€3>:|7

C C

I K.
— < < —+h
> _|x3|_2+

(7.4.13)
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The shear stresses for the core and the faces are

°(x3) = ¢ [thfd + £ ((hc)z —x%)} ;

bl 2 2 4 (7.4.14)
f(x3) = QE—f erhcthr(hf)zfx2 -
T2\ 4 3
The maximum shear stress appears at the neutral axes:
Q (E'Wd E°(h¢)?
=13 =0)== 7.4.15
Tmax = T ()C3 ) D ) 3 ( )

The shear stress in the core/face interface is

he 0 (Efntd
Trcnin = Trfnax =1 (?) = D ( > (7.4.16)

There is no jump in the shear stresses at the interfaces and the shear stresses are zero
at the outer fibres of the faces. If we have

AEhtd
Ec (hc)z

> 100 (7.4.17)

the shear stresses in the core are nearly constant. The difference between t5,,, and
Ty, 18 less than 1%. As it was outlined in Sect. 4.3, the stress equation in sandwich
beams very often can be simplified.

Summarizing the stress estimations due to bending and shear for symmetrical

sandwich beams we have the following equations:

1. The core is weak, E¢ < Ef, but the faces can be thick

Ef
of(x3) @ M———x3
Do +2Df
Gc<x3) ~ 0,
Ef he 2
'(x3) ~ Q — () +hht 4 (B =23 ),
Do, +2Dt 2 4 (714.18)
,.L.c(x ) N Qthfd A
) 2(Dy + 2D
2. The core is weak, E¢ < Ef, and the faces are thin, hf < h°
ol(x) ~ + M o%(x3) =0, T(x3)=0, T°M3)~=  (7.4.19)
bhtd’ ’ ’ bd

This approximation can be formulated as: The faces of the sandwich beam carry
bending moments as constant tensile and compressive stresses and the core car-
ries the transverse forces as constant shear stresses.
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7.4.2 Stresses and Strains for Non-Symmetrical Cross-Sections

In engineering applications also sandwich beams with dissimilar faces are used,
Fig. 7.11. The first moment of area is zero when integrated over the entire cross-
section and x3 is the coordinate from the neutral axes

/E(x3)x3bdx3 =0 (7.4.20)

The location of neutral axis is unknown. With the coordinate transformation
x; = x3— e from a known axis of the cross-section the equation above becomes

S(x3) /E x3)x3bdxz = /E X3+ e)bdx; = /de3 /Ex§M§
For the sandwich cross-section, Fig. 7.11, follows

e (Emhm L E@p2) +E<3>h<3>)

1 1 1
— gy (IR ©) @p@ (K2 L p3)
E‘Vh <2h +h +2h )+2E h (h +h )
and we get an equation for the unknown value e

EMWpRM (hm 424 4 h(s)) L E@p2) (h<z> + h<3))

e= 2 (EVRD + EOHC) + EO0) (7.421)

If the core is weak, E?) < (E() E®)) we have approximately

EOL EON3
= FOnm L goR® & 4T Eoa L EORG) (7.4.22)

where d = ;h“) +h?) ;h@).
The bending stiffness D = [ E(x3)x3bdx3 yields in the general case

3 x
h(i) £0) 3
he = p@ 3 E® €
d X2 N.A
‘L A0

Fig. 7.11 Definition of the
neutral axis (N.A.) of an ‘F
unsymmetrical sandwich:
x3=x3+e b
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1
12

+ EWp(d —e)? + EPRPe? 4 EDp? B

D [Em(h(l))s +EQ(r®)3 +E<3>(h<3>)3}
(7.4.23)

2
(' +rB)y - e}

and can be simplified for E(?) < (E(V), E)) but thick faces as

EVROY  EOGO)  EORDEG O
b=, "t 1 T RO EOR®

(7.4.24)

For thin faces the first two terms vanish

EMpMEG)H(3) 42
D~ Do = i T g on® (7.4.25)

Now the bending and shearing stresses can be calculated in the usual way

Ek) 0
oi1(k)(x3) =M D % T(k)(x3) = ES(M) (7.4.26)
For sandwich beams with weak core and thin but dissimilar faces the stress formulas
are approximately

6(3) =o'l & E—fle = M

= D ; bhfid’

W _ 6 E2 _ M 4.
Gl = 612 ~ 7QMF<d7 e) — 7bhf2d7 (7 4 27)
T(Z) =1° =~ ﬁ’ 7(3) = T(l) ~

7.4.3 Governing Sandwich Beam Equations

The following derivations assumed, as generally in Chap. 7, straight beams with at
least single symmetric constant cross-sections which are rectangular, i.e we consider
single core sandwich beams. The faces can be thin or thick and symmetrical or non-
symmetrical. The bending moments and axial forces act in the plane of symmetry
(x1 — x3). The influence of transverse shear deformation is included, because the
core of sandwich beams has a low transverse modulus of rigidity G13. The shear
correction factor &° is determined approximately for sandwich beams with thin cover
sheets with the Reuss formula (7.4.1), or more generally using equivalent shear
strain energy, i.e the potential energy of the applied load equals the strain energy
of the beam to account for the nonuniform shear distribution through the thickness.
The shear deformation theory (Sect. 7.3) is valid and we can adapt the equations of
this section to the special case of sandwich beams.
The strains & and & = Y are given, (7.3.2), as
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oA dy dw
= — 4+ x3— -
1 dxl 3dx13 Y dxl 4
With _
A=A, B =B, Dy =D, KAss=S (7.4.28)

the constitutive equations (7.2.12), (7.2.13) yield

N ABO u
M| =|BDO|| W (7.4.29)
0 00S| |w+wy

For static loading ¢(x1) # 0,n(x;) = 0 the equilibrium equations are as in the clas-
sical beam theory, Table 7.1,

N =0, Q+q=0, M-Q=0 (7.4.30)
If N = 0 the neutral axes position xgl'A' is constant along the length of the beam and
is given by
g (M) = + Ay =0, N=Ad +By' =0
/
B
A= (7.4.31)
vy A
Thus, if the stiffness A,B,D,S are constant, the substitution of Eq. (7.4.29) into
(7.4.30) yields the following two governing differential equations for sandwich
beams
Dry"(x1) = S[W'(x1) + w(x1)] = 0,
S (x1) +y'(x1)] = —q(x1)

with Dgr = D — (B?/A). Derivation of the first equation and setting in the second
equation yield

(7.4.32)

DRW’”(xl) = —q(xl) (7.4.33)

and with
M =Q=SW+vy), M=Bu+Dry, M =Bu'+Dry’

follow

1
S(Bu//+DRW//)

For symmetrical cross-sections is B = 0, Dr = D. In the general case, if all stiff-
ness are constant and unequal zero the substitution of (7.4.4) into (7.4.5) yields the
governing simultaneous differential equations for unsymmetrical sandwich beams

2
Dry" (x1) = SW(x1) + w(x))] =0, Dr=D-— (BX>
SW'(x1) +¥'(x1)) = —q(x1) (7.4.34)

w(x1) = —y(x)) +

>
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Derivation of the first equation and setting in the second equation yield one uncou-
pled equation for y(x;)

DRIIIJN<X]) = 7q<X]) (7435)

The constitutive equations (7.4.4) give the relations

M(x1) = Bu'(x1)+DVy' (x1), Q(x1) =S (x1)+ w(x)] (7.4.36)
and with
M (1) = Q1) = B () + DY/ (1), w(a) = — - ¥/ (x)

follow
1
w(x1) = —w(x)) + S[Bu"(xl)JrDR‘If"(xl)] =—y(x)+ %‘V"()ﬂ) (7.4.37)

Thus we have three uncoupled differential equations:

Dry" (x1) = —q(x1), 5
W (x1) = ;w(x1)+ ?Rv/’(n% (7.4.38)
u'(xy) = A\p’(x])

For symmetrically cross-sections is B = 0, Dr = D and the differential equations
reduce to

Dy"(x1) = —q(x1), b
w(x) = *W(XI)JFE‘I’"(M)%
- M) (7.4.39)
M(x;) = Dy'(x1) or y(x1)= EN
) €

Q(x1) = Dy"(x1) or M'(x1)=S(W(x1)+y(x))

The equations (7.4.39) correspond to the equations (7.3.10) of the laminated beam
and the analytical solutions (7.3.11), (7.3.12) can be transposed with Dy} = D,
k*Ass = S. In dependence of the calculation of the stiffness D and S the equation
are valid for sandwich beams with thin or thick faces.

The stresses o] and T can be calculated with the help of the stress formulas
derived in Sects. 7.4.1 and 7.4.2. For statically determinate structures, M(x;) and
Q(x1) can be calculated with the equilibrium equations and the last two equations
(7.4.39) can directly used for static calculations.

We consider as an example the cantilever beam, Fig. 7.12, then:
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Fig. 7.12 Symmetrical can- X3

tilever beam with thin faces W F

W ohf~d X1

O)Z = (=0,
F 1 F 1 F
W/(xl)——B(lxl—zx% —|—%——B (lx1 2x1> §7
F /1 1 Fx
W(xl)__B (21 % 6x?)—T1+C2,

D
FI? FI
v=-35"%

Assume thin faces and weak core, i.e

W< h, E‘<E'

we have i
E'h'd )
D=D,=b 5 S = kG bd

and the stresses are

Efd M F(l—x1) 0 F
f 1 c c f
o =dtM— =4=+ = TtT=—=——, o°'=7 =0

D2 bdht bdhf ’ bd bd’

Consider w(l) = wB(1) +w3(1) it can be seen that the shear deformation strongly
depends on / and S. It is important for short and shear weak beams and negligible
for slender shear stiff beams.

Summarizing the aspects of sandwich beams it could be demonstrated in the
static case that the shear deformation theory for laminated beams is valid for sand-
wich beams, if the stiffness Aj;,B1; and Dy of a laminated beam are replaced by
the stiffness A, B, D and S, Eq. (7.4.3), of the sandwich beam. The same conclusion
is valid not only for bending but also for buckling and vibration and for differential
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and variational formulations. In this way all formulas (7.3.19) to (7.3.23) can easy
transposed to symmetrically sandwich beams.

In the considerations above we have assumed that the effect of core transverse
deformability is negligible on the bending, vibration and the overall buckling of
sandwich beams. But in a special case of buckling, called face wrinkling the trans-
verse normal stiffness of the core has an important influence. Wrinkling is a form
of local instability of thin faces associated with short buckling waves. This phe-
nomenon was not discussed here.

7.5 Hygrothermo-Elastic Effects on Beams

In Sects. 7.2 and 7.4 the effect of mechanical loads acting upon fibre reinforced
beams with E(x;,x3) = E;(—x2,x3) and laminated or sandwich beams was consid-
ered. The considerations for laminated beams as derived are valid in the framework
of the classical laminate theory, Sect. 7.2, and of the first order shear deformation
theory, Sect. 7.3. Section 7.4 considered some special aspects of sandwich beams
with thin or thick cover sheets and different stiffness of the core.

In the present section the effects of hygrothermally induced strains, stresses and
displacements are examined. We assume a moderate hygrothermal loading such that
the mechanical properties remain unchanged for the temperature and moisture dif-
ferences considered.

With Egs. (4.2.63) to (4.2.68) the beam equations (7.2.1) have additional terms

01 (x2,X3)
E1(x2,x3) (7.5.1)
+ [ath<x27x3)T<x2ax3) + (Xm0<X2,X3)M*(X27X3)],

€1(x3) =& +x3K1 =

01(x2,x3) = E1(x2,x3)[€1 +X3K]

_ (xth(x27X3)T(x27x3) — o™ (xy,x3)M* (XQ,X3)] (7.5.2)

a™, o™ are the thermal and moisture expansion coefficients, 7' the temperature
change and M* the weight of moisture absorption per unit weight. Equations (7.2.4)
have now additional terms N, N™° Mt M™° the so-called fictitious hygrothermal
resultants, (4.2.67), and with

N=N+N"4N™ N =M+M"+M™ (7.5.3)
the extended hygrothermal constitutive equation for the composite beam are
~ —1 ~
N _|a b €l E | _|a b N
sl w) [e)=Fa) [s]  ose

The stress formula (7.2.6) yields with Eq. (7.2.5)
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(dN — bM) + (aM — bN)x3
Ei(x2,x
ad — b2 12, %3) (7.5.5)
— E1(x2,x3) [T + a™M*|

01(x2,x3) =

For double symmetric cross-sectional geometry the coupling coefficient is zero and
the stress equation can be simplified.

For uniform fibre distribution, i.e. ¢ = const, (7.2.9) follow for a,b,d and the
stress relations for fibres and matrices material are

oi(xs) = (N/A+xsM/I)(Eg/E) — Ex(a™T + am™b*),

On(x3) = (N/A+x3M/1)(Em/E1) — Em(aT + ™M) (7.5.6)

With E¢ = E, = E1 = E comes the stress equation for isotropic beams with mechan-
ical and hygrothermal loadings

N M
O(x) = x a3 — E(a™T + a™M*) (7.5.7)
For laminate or sandwich beams the developments are similar. All problems are
linear and the principle of superposition is valid and can be used to calculate the
hygrothermal effects. Consider for example a symmetric laminate beam in the frame
of the classical laminate theory and include hygrothermal loads, (7.2.27) yield

W N

(k) _ o (k) ¢ yth(k) (K k) g% (k
0 =B\ v — By (@ W) 4 gmell) pr(k)) (7.5.8)
eff’ eff
The differential equations for deflection and midplane displacement of a symmetric
laminated beam are

[BHW//(XI)]// — Q(xl) _Mth(xl)// _]Wmo(xl)//7

[Andx)] = —n(x;) +N"(x) — N (x;)’ (7.5.9)

In an analogous manner the differential equations including shear deformation can
be found. The differential equation for a symmetric Timoshenko’s beam with lateral
loading and hygrothermal effects follows with (7.3.10)

Dy (x1)]” = —q(x1) + M (x1)" +M™ (x;)" (7.5.10)

The relation for the layer stresses G](k) are identical to the classical theory. The trans-

verse shear stresses Gs(k) are not changed by hygrothermal effects.

7.6 Analytical Solutions

The differential equations for bending, vibration and buckling of symmetric lam-
inated beams loaded orthogonally to the plane of lamination are summarized by
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(7.2.33) to (7.2.35) for the classical Bernoulli’s beam theory and by (7.3.21) to
(7.3.23) for the Timoshenko’s beam theory including transverse shear deformation.
All stiffness and material parameters are constant values.

The simplest problem is the analysis of bending. The general solution of the
differential equation of 4th order (7.2.33) for any load ¢(x;) is given by

bD] 1W()C1) = bD]g])WB(xl)
2
X X (7.6.1)
= clgl +6251 +Csx; +Cy+ ////q(xl)dxldxldxldxl
The general solution of the Timoshenko’s beam is given by (7.3.12) in the form
w(x1) = wB(x1) +wS(x1). The correction term w> (x1 ) describes the influence of the
shear deformation and it decreases with increasing shear stiffness k°Ass.
The free vibration of Bernoulli’s beams is modelled by (7.2.34), rotatory inertia
terms are neglected. The partial differential equation

d*w(xi,t)  pA I*w(xy,1)

=0 7.6.2
5')6‘]1 bD, 01?2 ( )
can be separated with w(x;,t) = W (x1)7T () and yields
" pA T
W"x)T(t) = ———W(x1)T(¢) (7.6.3)
or A "
T(t A W
o __p (1) _ g2 (7.6.4)
T(t) bDq W(xl)
We get two differential equations
T(t) _ "n pA 2 _
+OT() =0, W)~ ==0"W(x)=0 (7.6.5)
11
with the solutions
T(r) = Acosot+Bsinot,
A A A A
W(x;) = Cjcos T + Gy sin T 4 C5cosh T + Cysinh T (7.6.6)

A\ _ PA
( I ) w0,
The vibration mode is periodic, and @ is called the natural circular frequency. The
mode shapes depend on the boundary conditions of the beam. Consider, for exam-
ple, a simply supported beam, we have W(0) = W”(0) = W (/) = W"(l) = 0 and
therefore C; = C3 = C4 = 0 and G, sin(A /1) = G sin A = 0, which implies that
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4 -4
_ 2 n " bDqy; . nwy 2 bD4
A =nm, wn = pA 1—4, w, = ( I ) p—A (767)

For each n there is a different natural frequency and a different mode shape. The
lowest natural frequency, corresponding to n = 1, is termed the fundamental fre-
quency. If the laminate beam is unsymmetric to the middle surface, i.e. By # 0,
then Dy in Eq. (7.6.7) can be approximately replaced by (A{1D; — B%] )/A11, the
so called reduced or apparent flexural stiffness.

Including shear deformation effects, i.e. using the Timoshenko vibration equa-
tion (7.3.22), involves considerable analytical complications. To prove whether
the transverse shear deformation can be important for the natural frequencies,
we compare the natural frequencies for a simply supported Bernoulli and Timo-
shenko beam. Using (7.3.22) the boundary conditions for the Timoshenko beam are
w(0,7) =w(l,t) = y1(0,¢) = yi(/,¢) = 0 and by introducing

. . NnmXxy . nmwx
w = Asin @t sin T t//lzBsma)tcosT,

in Egs. (7.3.22) we can calculate the natural frequencies

4. 4 2 2
5  H'TTbDyy nDin _
;= — /{1 + A= 7.6.8

n pA 4 / ( + lszA55 Y Po ( )

i.e.

o, — gBernoulli 1
" " 1+ (nzﬂlel)/(lzksA55)

Transverse shear deformation reduces the values of vibration frequencies. As in
the case of static bending the influence of shear on the values of vibration frequen-
cies depends on the ratio £} /G3 = E/Es and the ratio //h, i.e the span length
between the supports to the total thickness of the laminate. For more general bound-
ary conditions we can develop a mode shape function similar to (7.6.6).

In an analogous way, one can show that the buckling loads for a simply supported
Bernoulli and Timoshenko beam with a compression load F' follow from (7.2.35)
and (7.3.23) and are

2

n°bD
F = B 1 (Minimum Euler load, Bernoulli beam)

2

n°bD 1

Fo = P 1 D (Minimum buckling load, Timoshenko beam)
D
1+

(7.6.9)
The buckling loads for clamped beams or beams with more general boundary con-
ditions can be calculated analytically analogous to eigenfrequencies of vibration
problems.
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For non constant cross-section, stiffness or material parameters there are no exact
analytical solutions. Approximate analytical solutions can be found with the help of
the Rayleigh-Ritz procedure. In Sect. 7.7 exact and approximate analytical solution
procedures are illustrated for selected beam problems.

7.7 Problems

Exercise 7.1. A reinforced concrete beam is loaded by a bending moment M
(Fig. 7.13). It is assumed that the concrete has zero strength in tension so that the
entire tensile load associated with the bending moment is carried by the steel rein-
forcement. Calculate the stresses Om(x3) and o¢(x3) in the concrete part (A, En)
and the steel reinforcements (A, Ef).

Solution 7.1. The neutral axis x; of the beam is in an unknown distance ok from the
top, Ac = An is the effective area of the concrete above the x;-axis. The strains will
vary linearly from the x;-axis and the stresses will equal strain times the respective
moduli. The stress resultant N(x;) must be zero

1
OfAf — 2om(ah)bah =0, om(ah)=o0on™
With (7.2.1) follows
or=(h—ah)kiEs, om(0th) = ahxEnp

i.e.

1
(h—ah)EAr— (ath)*bEn =0,
EfAf bh Ey,
o= —1 1+2——
Enbh ( + + Ay Ef)
or
X3 o ;crmm""bah b
\
le
‘ A =Ap
h ah ‘ T
x‘ VAR
M
[ (h—ah) : % (h - O;h>

*77—» 000000
Ag
(otAr)

Fig. 7.13 Reinforced concrete beam loaded by pure bending
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1 Embh
o=—(—1+V1+2 =
(=14 VI+2m), m EAr

Now the bending moment is with

1
opAfzzzohbh2a2

Al:(qAQ(h—%?)

o
GiAsh (1 - 5)
(04
= K]EfAf(/’l — (X/’l) (h — g)
The maximal stress in the concrete is

Enah

h) = — K1 GhEm = M
Om(ah) = —Ki@hEn =M o = ah)3)

and the reinforcement stress is

M

— k1 (h— ah)Ey =
or=rilh=ahEi= o an3)

Exercise 7.2. A symmetric cross-ply laminate beam is shown in Fig. 7.14. The ma-
terial properties and the geometry are defined by

E| = 17,24 10*MPa, E}, = 0,6895 10*MPa,

|, = G}; = 0,3448 10°MPa, G); = 0,1379 10*MPa, v;, = 0,25,
L =240 mm,b = 10 mm,h() = 1@ = 1) = 8 mm, h = 24 mm,
qo = 0,6895 N/mm

b
A q(x1) :q()sini

< »

Fig. 7.14 Simply supported cross-ply laminated beam [0/90/0]
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Calculate a approximative solution using the Timoshenko beam model and two one-
term Ritz procedures.

Solution 7.2. Let us introduce the cross-section geometry

x[30] =—12 mm7x[31] =

2l

—4 mm,x3” =4 mm7x[33] =12 mm

The shear correction factor can be calculated with Eq. (7.3.20) to £* = 0,569. The
bending stiffness Dy and the shear stiffness k*As5 follow with Eq. (7.3.3)

_ b

Dy = 3[E1((*4)3*(*12)3)+Ez(43*(*4)3)+E1(123*43)]
= 1,92 10°Nmm?,

k*Ass = k%b[G128 + G238 + G128] = 3,76 10°N

The variational formulation for a lateral loaded symmetric laminate beam is given

with (7.3.15)
i dw\? 7r
X1
/ Dy (—> +k*Ass (llf+—> ]dxl /qosm T )wdxl
X1
0

The essential boundary conditions are

wx; =0)=0, wx; =L)=0, ¥'(x;=0)=0, y(x;=L) =

The approximate functions are

. (TTx . X
w(x1) = a; sin (T]), ¥(xy) = blcos( L])
and it follows
1 7 2
e — E 275)(71
H(W,l]/) = 2/|:D]1 (b]L) sin _L

- b3 T X1\ 2
+ k*Ass (bl cos% +alzcos %) } dx;

f/qosin(%) lsmﬂT)dxl II(ay,b)
0

With (2.2.41) must be dIT/da; = 0,dI1/db; = 0 which yields the two equations

D, =&
— b =0
(k5A55L+ ) 1+ ar )

T L
by + —a = 70
L kSAssT
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and the solution for the unknown constants ay, b

qoL* (1 Dy, 7172)

a= D1]7'L'4 kSA_55 L?
by — qoL?
1= _D 3
nw

The approximate solutions are now
L4 Dy m*\ . mx
40 (1 - —) sin =+ ,

L

) = 5 M kdgs 12
3
be) = — L TR
W<XI) N Dllﬂ,"” L
Note that _
N - L qoL* 1+ Dy, n?
Wmax =W | X1 = = = - =
max 1 2 D1]7T4 kSASS 12

The transverse deflection consists of two parts
X . .
! (bending deflections),

~B
= =— SIn ——
v (XI) D]17'C4 _ L
qol* Dy m* . 7x
N D]]TC4 kSASS 1?2 L

For k*Ass — oo follows w> — 0, i.e. wB(x;) is the solution of the Bernoulli beam

model and we found
WTimoshenko = K1WBernoulli
with _ 5
k=14 P E g5
ksAss L2

For the laminate beam with /L = 1/10 the Bernoulli model cannot be accepted, the
relative error for the maximum value of the deflection is 46,7 %. Equations (7.3.10)

g s L oL?
Mmax:M(x1:2> :q—

”2
Qmax = Q~<xl :0) =

The strains & follow from Egs. (7.3.1) or (7.3.2) and (7.3.10)
e1(x1) =x3¥'(x1) =x3k1 =x3M(x1)/D1;

lead
= 12,64 Nm,

L
9% _ 55 67N

€(x1) is linear distributed across /& and we calculate the following values for the

cross-section x; = L/2
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L L
g (x] — 2,)@) =2,511075, ¢ (xl = z,x[f}) =0,84107

The bending stresses o (x1,x3) in the 3 layers are for x; = L/2 and x3 = x(3k)

: =
e
N—

Il
_("91
~—~ o~

.y

S
=
5]

Il
—
o~
=
oo
S
“N

Exercise 7.3. Find the analytical solution for the natural vibrations of a simply sup-
ported symmetric laminate or sandwich beam. Test the influence of the transverse
shear deformation and the rotatory inertia upon the natural frequencies.

Solution 7.3. Starting point are the (7.3.22) with ¢(x1,¢) = 0 and the boundary con-
ditions
w(0,¢) =w(l,t) =0, ' (0,t)=vy'(l,t)=0

For a simply supported beam we can assume the periodic motion in the form
w(xl,t) :W(xl)sina)t, l//](xl,l‘) z'{’(xl)sina)t
These functions are substituted in (7.3.22)

ke Ass[W" (x1) + ¥ (x1)] + po@W (x1) =0,
D 'P”()C]) — kSA55 [W/(X] ) + W(Xl)] + p2(D2'P<X]) =0

Now we can substitute
kSA_55'P/()C1) = 7[)()0)2W(X1) — 1681455‘/‘///()61)7

ie. 5
_ pow
kSASS

into the derivative of the second equation and we find

'P/(Xl) = W(x])—W”(xl)

_ D
D]]W””(X])+ ﬂ+p2 (DZW”(X])
, kSAss
0= p2 2
— (1= w =0
( k5A55>Pow (x1)

or
aW" (x1) +bW" (x1) —cW(x1) =0

with the coefficients
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— Dy P2 2 ®’p, 2
=D b= - — (0] =(1- (0]
a= Dy, (kSA55+p0>pO y € ; Po

The linear differential equation of 4th order has constant coefficients and the general
solutions follow with the solutions A; of the bi-quadratic characteristic equation

al*—bA*—c=0

ie. (2aA? —b)? = b% +4ac

1
A]4:‘:\/%(b:t b2+4ac)

W (x1) = C; sinAjx; + Cycos Apx) + C3 sinh A3x; 4+ C4 cosh Adgx;

For a simply supported beam the boundary conditions are

W(0)=0, W(L)=0, ¥(0)=0, ¥(L)=0

W(0)=0, W(L)=0,W"0)=0, W'(L)=0

The boundary conditions lead to the result C; = C3 = C4 = 0 and CysinA;L =0
which implies

nw
Afln = L = A41
The bi-quadratic equation can be written alternatively in terms of ®

A0 —Bo*+C=0

P2 B:{H(D” +&>12}, c— Dty

with
k$Ass’ ksAss — po Po
i.e. the roots of the equation are

1
()12 = 54 (BE VB? —4AC)

It can be shown that B> —4AC > 0. Therefore the frequency given by —v/B2 — 4AC
is the smaller of the two roots.

When the rotatory inertia is neglected follows A = 0 and the frequency is given
by

with
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and for k*Ass — oo follow with B — 1 the natural frequency for the Bernoulli beam
model. Substitute A, = nz/L for the simply supported beam we obtain the results:
General case

kA D N2
2 55 11 p2
= 1 — e
@ 2p; { +</<SI‘\55—~_PO>(L)
D m2]* D T4
- \/[H—( . +&>(” )} —4 B2 S (M)
k’Ass  po/) \ L k*Ass po \ L

Rotatory inertia neglected (p, = 0)

nw\2 -

» _ (nm\* Dy (L)D“
o= () |-t
po kSAss + Dy ( L )

B (nﬂ)4 Dy 1
= - - T
L Po H_Dll(nfc) Ik
L
Classical beam theory (k’Ass — oo, p; = 0)

) (nn: ) 4Dy
" \L/ po

Conclusion 7.2. (wJimoshenkoy2 gBernoulliy2 5 o he shear deformation de-
creases the frequencies of natural vibration. In the case of classical beam theory with
rotatory inertia (k*Ass — 0, p, # 0) we have A =0,B = 1 +A2p, /po,C = A*D11/ po,

i.e.

o — (nn:)“@ 1
n — L pO 1+ (}’lﬂ:)Z&
L/ po

and we see that also the rotatory inertia decreases the eigenfrequencies. All formulas
can be used for computing natural frequencies for all symmetric laminate and sand-
wich beams. The values for L, pg,p2,k%,D11,Ass correspond to the special beam
model. Note that the classical laminate theory and the neglecting of rotatory inertia
lead to a overestimation of the natural frequencies.

Exercise 7.4. Calculate the buckling load of a simply supported and a clamped sym-
metric laminate or sandwich beam. Compare the results for the classical beam the-
ory and the beam theory including shear deformation.

Solution 7.4. Staring point are Eqgs. (7.3.23) with N(x;) = —F, i.e.

A F " 1" o
D]] <1kSA55>W (X1)+FW (X])—O
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or
F K*Dy;

) F%
(1. F 1 +k?Dyy [k*Ass
! ksAss

w""(xl)+kzw"(x1):07 k2:

The linear differential equation with constant coefficients has the characteristic
equation
A HIPA=0= A2(A2+K2) =0

with the four roots
l]/z =0, 7L3/4 = +ik

and the general solution is
w(x;) = Cysinkx] + Cp coskxy + Csx; +Cy

1. Simply supported beam
Boundary conditions are w(0) = w(L) = 0,w"(0) = w”’(L) = 0, which leads the
constants C; = C3 = C4 = 0 and for C; # 0 follows sinkL = 0 implies kL =
nm,k = nm /L. Substituting k into the equation for F we obtain

T\2 - kA
F= (nL) Dn nsysr 2
kSA55+(L) Dy

r _ nw\ 2 -
N2 _ D”(L) /K°Ass
1+D11(L) Jk*Ass

The critical buckling load F* is given for the minimum (n = 1)

mTN\2 1
F:(—) D
I 11

T\2 _ .
H(Z) D1 /K Ass

For the classical beam model is k*A55 — oo and we obtain
T\2 _
F= (—) D
I 11

2. At both ends fixed beam (clamped beam)
Now we have the boundary conditions

From (7.3.23) follows
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k_sﬁss[w”(xl) +y'(x1)] = Fw'(x1) =0,
Diy"(x1) —k*Ass[w' (x1) + y(x1)] = 0

The first equation yields

CAssy' (x1) = —(k*Ass — F)w" (x1),
kSAss l//(xl) = —(ksA55 — F)w’(xl) + K

The boundary conditions lead the equations

C,+C4=0, CysinkL+CycoskL+C3L+Cy =0,

F
(1= T Jkci—ci =0,
kSAss

F
— (1 — kSA55> (kCj coskL — kCysinkL) —C3 =0

Note that B
F Dy F _
—_— = = 17 - D]]7
k2 » Dni kSAss
14k -
ie.
(1= i) =
sAss) ., Diy
k*Ass 142 Pn
kSAss

expressing C4 and C3 in terms of C| and C, and setting the determinant of the re-
maining homogeneous algebraic equations zero we obtain the buckling equation

kK2Dy,

2(coskL—1) (1+ ) +kLsinkL =0

With k*Ass — oo follows the buckling equation for the classical beam
kLsinkL+2coskL—2=0

Conclusion 7.3. Transverse shear deformation has the effect of decreasing the
buckling loads, i.e. the classical laminate theory overestimates buckling loads.
The buckling equations can be applied to all symmetric laminate and sandwich
beams if the corresponded material and stiffness values are calculated and sub-
stituted.

Exercise 7.5. A sandwich beam is modelled by the laminated beam version and
the shear deformation theory. Consider the variational formulation for applied dis-
tributed transverse loading and calculate the Euler differential equation and the
boundary conditions.
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Solution 7.5. The elastic potential IT(u,w, y) for unsymmetrical laminated beams
is given by Eq. (7.3.16). Using the notations for the stiffness of sandwich beams,
Sect. 7.4, we have

! !
1
I (u,w,y) = : /[Az/2 +2Bu’l//—|—Dl//’2 +S(W 4 y)Hdx; — /qwdx1
0 0
Taking the variation 6 IT = 0 one can write the following equation
I
SIT = / (Ad'Si + B8 + ') + Dy 8/
0
I
+ S[W A+ W)SW - (W + y) Syl bdx — /qawcbq —0
0

Integrating by parts, i.e
I I
[rgac=1rgh— [ feax
0 0

yield

1
/ {(Ad" +By")Su+ [Bu" + Dy" — S(w' + )|y + S[(W" + ') + q]dw}dx,
0
—[(Au’ + By')Suly— [(Bu + Dy )yl — S[(w + y)dwly = 0

and the associated differential equations and boundary conditions are

Ad +By" =0,
Bu"+Dy" —S(w +y) =0,
SW'+y)+qg=0

Putting in u” = —(B/A)y” into the second equation yield
g 14 q y

B2
(0-2) st w10
and we obtain the differential equations (7.4.32)

DRl//// —S(W/+ l[/) =0,
SW'+vy) =—q

The boundary conditions for x; =0,/ are
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u=0 or Al +By =N=0
y=0 or Bu' +Dy' =M=0
w=0 or SW+y)=0=0

u, ¥, w represent the essential and N, M, Q the natural boundary conditions of the
problem. For symmetric sandwich beams the equations can be simplified: B =
0,Dr =D.

Exercise 7.6. A sandwich beam is modelled by the differential equations and
boundary conditions of Excercise 7.5. Calculate the exact solution for a simply sup-
ported beam with g(x;) = go,N(x;) = 0.

Solution 7.6. The boundary conditions are:
w(0)=w(l)=0, M(0)=M(1)=0

Using the equations (7.4.38)

7 _ 9
ll/ ()C])— DR7
" qoX1
=—-——4C
v (x1) DR +C,
v(x) = L 1+C1X1+C27
2D R
‘10x1 xl
= -2l o +C
v(x) 6DR+ 15 +Cox +C3,

v (0)=0=C, =0,

qol
"NHN=0=C| = —
W() 1 2DR7
/ / 110)61 qolx? q0 l
:7 —_— C _— J—
w(xn) ‘Ifj 4DR+ 3 S(Xl 5 )
w(x)) = zng( 1—2lxl)+C3x]f;]—g(x%flx]),
qol®
[)=0=C3=
W) =0=C =50
B B q0
u'(x1) = —A\l/’(xl) = A2Dg (x1 — Ixy),
B qo 3
u(xy) = AT2Dn (2x7 = 3Ix1) + Cy,

u(0)=0=0C4=0
Finally we get
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905 | qol X qol
6Dr | 2Dg 2 ' 24Dy’

yix) =

w(xy) = zng (x‘]‘ - le? + l3x1) + ;]_g‘ (lx] fx%) ,
B
u(a) = 151%,{(2)“?*3”“)

For symmetrical beams the solution simplified with B = 0,Dg = D to

14
w(xy) = gZ—D(x? —2x? +x1)+

w8 x1) +wS(x1),

qol?
25 (x1 —x7)

l3
yin) = T (146 —4x)

0, x1 =x/1

u(xy)
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Chapter 8
Modelling and Analysis of Plates

The modelling and analysis of plates constituted of laminate or sandwich material is
a problem of more complexity than that of beams, considered in Chap. 7. Generally,
plates are two-dimensional thin structure elements with a plane middle surface. The
thickness 4 is small relatively to the two other dimensions a, b (Fig. 8.1).

In Chap. 8 all derivatives are as a matter of priority restricted to rectangular plates
including the special case of a plate strip, i.e. a rectangular plate element which
is very long, for instance in the x,-direction and has finite dimension in the x;-
direction. When the transverse plate loading, the plate stiffness, and the boundary
conditions for the plate edges x; = const are independent of the coordinate x;, the
plate strip modelling can be reduced to a one-dimensional problem. The analysis is

Fig. 8.1 Rectangular plate. @ Geometry, b force resultants Ny, N, Ng, Q1, 0> and moment resul-
tants My, M, Meg. N, Ny, O, and M,,, M, are force and moment resultants for an oblique edge

© Springer Nature Singapore Pte Ltd. 2018 275
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nearly the same as in the beam theory. Chapter 8 gives a first introduction to the clas-
sical plate theory and the plate theory including transverse shear deformations. The
derivations of the principal equations for plates relies upon the basic considerations
of Chap. 5.

8.1 Introduction

In the theory of plate bending the most complex problem is the modelling and anal-
ysis of laminate plates with an arbitrary stacking of the layers. These plates present
couplings of stretching and bending, stretching and twisting and bending and twist-
ing and the design engineer has to look for simplifications.

The first and most important simplification is to design symmetric laminates
for which no coupling exists between in-plane forces and flexural moments. The
coupling terms B;; of the constitutive equations vanish. An additional simplifica-
tion occurs when no bending-twisting coupling exist, i.e the terms D and Dy are
zero. As we discussed in Sect. 4.2, in some cases of layer stacking these coupling
terms decrease with an increasing number of layers. Symmetric laminates for which
no bending-twisting coupling exists are referred to as specially orthotropic lami-
nates. These laminates are considered in detail in this chapter, because analytical
solutions exist for various loadings and boundary conditions. Specially orthotropic
plates are obtained for single layer plates with orthotropic material behavior or sym-
metric cross-ply laminates. Symmetric balanced laminates with a great number of
layers have approximately a specially orthotropic behavior. This class of laminates
is greatly simplified and will be used to gain a basic understanding of laminate plate
response. Like in Chap. 7 for beams, we consider the plates in the framework of the
classical and the first order shear deformation theory. For a better understanding the
assumptions of both plate theories given in Sects. 5.1 and 5.2 are reviewed.

The first order shear deformation theory accounted for a constant state of trans-
verse shear stresses, but the transverse normal stress is often neglected. In the frame-
work of this plate theory, the computation of interlaminar shear stresses through
constitutive equations is possible, which is simpler than deriving them through equi-
librium equations.

The most significant difference between the classical and first-order shear defor-
mation theory is the effect of including transverse shear deformation in the predic-
tion of deflections, frequencies or buckling loads. It can be noted that the classical
laminate theory underestimates deflections and overestimates frequencies as well as
buckling loads when the plate side-to-thickness ratio is of the order 20 or less. For
this reason it is necessary to include shear deformation for moderately thick plates.
In general, moderately thick plates must be computed by numerical methods, ap-
plication of analytical methods are much more restricted than in the classical plate
theory.



8.2 Classical Laminate Theory 277

8.2 Classical Laminate Theory

In the classical laminate theory one presumes that the Kirchhoff hypotheses of the
classical plate theory remains valid:

e Transverse normals before deformation remain straight after deformation and
rotate such that they remain normal to the middle surface.
e Transverse normals are inextensible, i.e. they have no elongation.

These assumptions imply that the transverse displacement w is independent of the
thickness coordinate x3, the strains €3, &4 and & are zero and the curvatures k; are
given by
Pw  *w ’w
oxr  Jx3 dx10x2

Figure 8.1 shows the plate geometry and the plate stress resultants. The equilibrium
equations will be formulated for a plate element dx;dx; (Fig. 8.2) and yield three
force and two moments equations

(K1 K2 Ke| = (8.2.1)

JdN;  dNg
— 2 =
v I an p1,
. dNs ON, _
8x1 8x2 P2,
901 IO
p 2,0 (8.2.2)
8x1 8x2
. oM, JM; —0
oxy oxy b
Mg oM,
22—
/ 8x1 8x2 Q2
x3
x
Nidx, Q1dx,
‘Mg dx
x / h Midz, / ¥h
l /JT,* ,,,,,, - 74/| Y Q2dx,
iy g / (M + bty dx /7
Nadx; s >4 dN, )dx; Mgdx, AN 2 2)ax
> p3dxidx; ™
////?:dnéz // Ne + dNg )dx, /& Madx, /(Ql +dQ1)dx (Ms +dMﬁ)d}‘
g 7 (Q2+d0y)dx;
72 __ 1z ¥
od (M; + M7 dx:
1 1 2
Avl +dNy)dx, (M<,+dMﬁ)<fxz
dx, dxy
a b

Fig. 8.2 Stress resultants applied to a plate element
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The transverse shear force resultants Q, Q> can be eliminated and the five equations
(8.2.2) reduce to three equations. The in-plane force resultants Ny, N, and Ng are
uncoupled with the moment resultants M, M, and Mg

8N1 8N6 8N6 3N2

S—t3_-=-P F_t3_-=-p,

ox;  odxy ox;  odxy (823)
82M1 32M6 82M2 _ -

8x% 0x10x3 Qx% b

The equations are independent of material laws and present the static equations for
the undeformed plate element. The further considerations neglect the in-plane plate
loads p; and p,, i.e. p; = p» =0, p3 # 0. In-plane reactions can be caused by
coupling effects of unsymmetric laminates or sandwich plates.

Putting the constitutive equations

N A'B| [e

el = .. (8.2.4)
M . K
B:D

into the equilibrium (8.2.3) and replacing using Eqgs. (5.2.3) the in-plane strains &;
and the curvatures k; by

el =legel = [ﬂ Ll (ﬂ+i>}
x|y 0xy oxy  dx1 /)|’
02w 2%w 2%w (8.2.5)
73—)6% B 8—x§ B 8x1 8x2}

kT = [k K K] = [

gives the differential equations for general laminated plates

2

%u 2u Zu %y 9%y
A“W +2A16—8x](9X2 +A66W +A16W +(An2 +A66)—axlax2
| 2 1
9%y 3w w w w
A2 B LY 3B T (B4 2Beg) o Byl W —0,
26 Qx% i Qx? 16 8x%8x2 (Br> 66) 3x18x% 26 8x§
%u 92u %u 9%y 9%y
Alg=— + (A Agg) =——=— + A== + Ago=—= + 2A26———
lﬁax%2+( 12+366)axlax2 +Ad 8)% + 668)6% + 3 %59 3
d°v a°w a°w a°w a°w
142 BT (B4 2Bgs)— e 3By— BT W ),
2 Qx% 16 8x? (B12 66) Bx%axz 26 x| 8x% 2 8x§
o 94 4 o
D118—T+4D]6% +2(D12+2D66)82—;}2+ 268—;}3
314 8)'2’] 2 83 1% 33 H1o% 33
w u u u u
+D —B 3B1g—on— — (Bip -+ 2Bgg) ——— — Bog—
2 x5 H Qx? 16 3x%8x2 (B1> 66) 3x15‘x% 26 8x§
Bis 2 Byt 2Bog) = — 3By g O
165~ Bt 2Bee) 5 ey 3By e T Brgg =

(8.2.6)
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Equations (8.2.6) are three coupled partial differential equations for the displace-
ments u(x1,x),v(x1,x2),w(x1,x2). Equation (8.2.6) can be formulated in matrix
form as

Ly Lip Liz | | u 0

Loy Ly Ly v| =10, Lj=Lj (8.2.7)

L3y Ly L3z | [ w p

The differential operators are given in App. C.

The differential operators Li;,Lj» and Ly, are of second order, Lj3 and L3 of
third order and L33 of fourth order. The homogeneous part of the coupled partial
differential equations (8.2.7) can be reduced to one partial equation of eight order

[(Li1Lay — LTy)Ls3 — (L11 L33 — 2L1sL13Lo3 + Liz Lo )w = 0 (8.2.8)

Consistent with the eight order set of differential equations four boundary conditions
must be prescribed for each edge of the plate. The classical boundary conditions are:
Either

N, or u, Ny or v, M, or a—w, V., =0,+ My or w (8.2.9)
on ot

must be specified. The subscripts n and ¢ in the boundary conditions above denote

the coordinates normal and tangential to the boundary. It is well known that in the

classical plate theory the boundary cannot responded separately to the shear force

resultant Q,, and the twisting moment M,, but only to the effective or Kirchhoff

shear force resultant
oM,y

ot

Equations (8.2.9) may be used to represent any form of simple edge conditions, e.g.
clamped, simply supported and free.

The boundary conditions (8.2.9) represent pairs of response variables. One com-
ponent of these pairs involve a force or a moment resultant, the other a displace-
ment or a rotation. Take into account that in addition to the edge conditions it can
be necessary to fulfil the point corner conditions, e.g. for a free corner. Sometimes
more general boundary conditions, which are applicable to edges having elastic con-
straints, are used, e.g. the transverse and/or rotatory plate conditions

P)
V, £ cow = 0; M,,icRa—::zo (8.2.11)

Vi=0n+ (8.2.10)

cr and cR denote the spring stiffness of the constraints.

In applying the boundary conditions (8.2.9) it is useful to have explicit expres-
sions for the stress resultants in a displacement formulation. According to Egs.
(8.2.5) and (8.2.4) the stress resultants can be written as

du dv du  dv
A”&' +A]2a +A16(82+a—xl>
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3 *w » 82w_2B *w
Nz 2 12 Py 16 320’
a2 a2 (2590
) 125y, TARg s FAN | Gt 51
O g Pw o I
12 ox? 2 0x3 20 9x19x2”

u v 0 0
Ns—Alsa +A26a +A66( - —v>

oxr  dxi
0%w 2w 0%w
— B —B —2Bgg—=——
1657 2 2% =5 o2 T an,
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Vs = 2B 82”+(B +2Bgg) A B R i
h = 16al 12 ) 3xom 2682 6682 %59
0%y 3w 3w 3w 3w
+ By =— —2D1s=— — (D12 +4Dss) 22

— ADr—— Dy
02 0x3 0x20x, 0 0xi0x 03
The coupled system of three partial differential equations (8.2.6) or (8.2.7), respec-
tively, can be simplified for special layer stacking, Sect. 4.2.3. The differential op-

erators L;; for some special cases are given in App. C.

1. Symmetric laminates
Because all coupling stiffness B;; are zero the in-plane and the out-of-plane dis-
placement response are uncoupled. With Lj3 = L3 =0,Ly3 = L3, =0 Eq. (8.2.7)
simplifies to

L11 L12 0 u 0
Lip Ly 0O vi=10 (8.2.13)
0 0 Ly | [w P3

The plate equation reduces to L33w = p3 and corresponds to the plate equation
of an anisotropic homogeneous plate.

2. Antisymmetric laminates
The in-plane and the transverse part of Eq. (8.2.7) are coupled, but with
Alg = Az =0,D16 = D¢ = 0 the differential operators Li1,Lyy,L33 and Lo
are reduced. It is no in-plane tension/shearing coupling and no bending/twisting
coupling.

3. Balanced laminates
For general balanced laminates with Ajg = Ay only the in-plane ten-
sion/shearing coupling is zero, for an antisymmetric balanced laminate we have
A1g = Ays = 0,D16 = D¢ = 0 and for symmetric balanced laminates follow
A = Az = 0, B;; = 0. The last case yields the equations

L11 L12 0 u 0
Lip Ly 0 v =10
0 0 Lsz| [w P3

with simplified differential operators L;; and Lj>. Only the in-plane equations
correspond to an orthotropic stiffness behavior.
4. Cross-ply laminates

The stacking can be unsymmetrical, i.e. Ajg = Ays = 0,D16 = Dg = 0,
Big = Bys = 0, antisymmetrical, i.e. Ajg = Ays = 0,D16 = Dy = 0,
By = Big = By =Bgs =0, Byp = —Bj| or symmetrical withAjg = Azg = 0,
D1¢ = Dys = 0,B;; = 0. Cross-ply laminates have an orthotropic response to
both in-plane and bending and no in-plane/bending coupling. The plate equation
Lisw = p3 corresponds to the equation of an homogeneous orthotropic plate.

Summarizing the mathematical structures of the differential equations in depen-
dence on the layer stacking the following conclusions can be drawn:
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e The mathematical structure of a general balanced laminate is not much simpler
as for a general unsymmetric, unbalanced laminate

e Compared to the general case the mathematical structure of the symmetric cross-
ply laminate is nearly trivial. A symmetric cross-ply is orthotropic with respect
to both in-plane and bending behavior, and both are uncoupled.

e The most simple mathematical structure yields the laminate with symmetrical
arranged isotropic layers. With A1; = A,A16 = Ay = 0,B;; = 0, D{1 = D»»,
D1 = Dy = 0, it corresponds to a single layer isotropic plate with in-plane and
transverse loading.

e For special layer stacking also the force and moment resultant Egs. (8.2.12) are
reduced to more simple equations.

The following developments are restricted to general symmetric plates and plates
with specially orthotropic behavior. The equations will be significant simplified, for
example in the general case all B;; = 0 and for specially orthotropic plates there are
additional D¢ = D¢ = 0. The in-plane and the flexural equations are uncoupled. Ta-
ble 8.1 summarizes the most important plate equations. In Table 8.1 standard bound-
ary conditions are also expressed. The necessary and sufficient number of boundary
conditions for plates considered here are two at each of the boundaries. The stan-
dard conditions for the free edge reduce the three static conditions M,, = 0, Q,, =0
and M,; = 0 to two conditions M, = 0,V,, = 0, where V,, = O, + M, /dt = Ois as
discussed above the Kirchhoff effective shear resultant. In order to avoid mistakes
in the application the equations of Table 8.1, a summary of plate stiffness is given.
Table 8.2 contains the plate stiffness for single layer plates. The plate stiffness for
symmetric laminates are given in Table 8.3. In all equations the hygrothermal effects
are neglected, but it is no problem to include thermal or moisture changes. In this
case (4.2.63), (4.2.64) must be used instead of (8.2.4) to put into the equilibrium
equations. This will be considered in Sect. 8.5.

The classical laminate theory can be used also for modelling and analysis of vi-
bration and buckling of laminated plates. We restrict the consideration to symmetric
plates. In the case of forced transversal vibration the momentum equilibrium equa-
tion (8.2.3) has an additional inertial term

(92Ml 82M6 (92M2 92w
o2 Toxidxy  0xl =—p3tphos (8.2.14)

My, M5, Mg,w and p3 are functions of x1,x; and the time #, & is the total thickness of
the plate and p the mass density

h=Y n®, p= Y p® (- xf7Y) = }11 Y plrk  (82.15)
= k=1

The rotatory inertia is neglected. The Egs. (8.2.14), (8.2.4) and (8.2.5) yield the plate
equations for force vibration. For the both layer stacking discussed above we obtain:
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Table 8.1 Plate equation, boundary conditions and stress resultants of symmetric laminates

1. General case: B;; =0,D;; #01i,j=1,2,6
4

I*w I*w I*w

D134+2 38232+D34:p3

o*w d*w o*w o*w o*w
D +4D +2(Dyy + 2D +4D +Dypy—5 =
) 15 5 0m (D12 és)ax%ax% % mand D2 5 p3
2. Specially orthotropic laminates: B;; = 0,D16 = D¢ =0
*w *w *w
D1 =+ +2(D124+2D¢g) === + Dopp—5 =
1 ot (D12 66) 92023 2 o p3
or with D1| = Dy,D2 = Dy,D13+2Dgs = D3
D o*w oD o*w +D o*w B
Voxt TR ozad T o T B
3. Laminates with iSOtl‘OpiC layers D1 = Dy, =Dy, (D|2 -+ 2D66) =Ds

2. Clamped edge: w =0,dw/dn =0
3. Free edge: M,, =0,V,, = 0, + OM,,; /dt =0

Typical boundary conditions: 1. Simply supported edge: w =0,M, =0

Stress resultants:
1. General case

(M| [Dn D2 Dig | [ —0%w/dx; 1 o= %
M2 = D12 Dzz Dzé 782"\//8)(% 5 81?/11
_M()_ _D]() D26 D@@_ _—282w/8x|8xz_ Qz = Wﬁ
2. Specially orthotropic 1

oM,

—Ml T —Dll D|2 0 ) _782w/8x% T QI = a_xl
Mz = D]z D22 0 782w/8x% 5

[Ms] [0 0 Deo| | -20°w/dxidna| o _ IMs

2 8x1

3. Isotropic layers (like 2. with Dy} = D7)

oM
0xy
oM
8x2

omg
0xy

oMy

8x2

1. General case of symmetric plates

d
(L33 + Ph5> w=p3

or explicitly
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Table 8.2 Plate stiffness for single layer

Anisotropic single layer

o h
Dij:Q,(j)ﬁ

Specially orthotropic single layer (on-axis)
3 3

h h h’
Dy = —, Dy = —, Dy = —, D¢ = —,
11 =011 12 P On 1 P2 On 12 Des Qs6 2

/ 1 / 2 / 12
1= , On = O = )
(1 —ViLV3 1=vi,vy, 1=vi,vy,

Qo6 = G12 = Eg

Isotropic single layer

ER VER
——————=D,Dp=vD= )
DRI_v2) o PRTVEE
v, _ ER

2 S 24(1+v)’

Dy =Dy =

Dgo =

Dy —84W + 4D16—84W +2(D12+ 2Dgs) —84W
8)c‘1t 8x? 0xy Qx% Qx%
4Dy *w +D2284W s 7ph82w
9x10x3 0x; ot?

with w = w(xy,x2,1), p = (x1,x2,1).
2. Specially orthotropic plates

o*w o*w o*w *w
—+2D3——= +Dr)—5 =p3— ph— 8.2.16
o T gaaa T T PG (8:2.16)

D,
The equation of symmetric laminate plates with isotropic layers follows from
(8.2.16) with D| = D,, the plate stiffness are taken from Table 8.2 (single layer
plates) or Table 8.3 (laminates). In the case of the computation of natural or eigen-
vibrations, the forcing function p3(x;,x7,7) is taken to be zero and the time depen-
dent motion is a harmonic oscillation. The differential equation is homogeneous,
leading an eigenvalue problem for the eigenvalues (natural frequencies) and the
eigenfunctions (mode shapes).
To predict the buckling for plates, in-plane force resultants must be included. For
a coupling of in-plane loads and lateral deflection, the equilibrium (8.2.2) will be
formulated for the deformed plate element with p; = p» = p3 = 0 and modified to
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Table 8.3 Plate stiffness for symmetric laminates

Symmetric angle ply laminate

now (00 a3 s w0, A
Dyj=Y Q0 (% —x = L0 |5 )
k=1 k=1

1 _
xgk) = 5 (xgk) +x§k 1)), the Qf-f) follow from Table 4.2.

Symmetric balanced laminates

(02
_ W, h
Dij= Z o\'n ( +0 )
The Q follow from Table 4.2.

Symmetric cross-ply laminate (specially orthotropic)

n (0?2
_ ® 0 [ o P
Dij—k;Qij n <x3 +12> .
Dig =Dy =0
o ®) o ( ®)
i 1—vpvy $En 1—vipvay '

(k)
k VoK k k
of = (225)" ol -

1—vpvy

Symmetric laminate with isotropic layers (x; -direction equal fibre direction)

n 0?2
Dij =Y. 0 (xé“ T )
k=1

D|6 = DZ() = O,DII - DZZ:

(k) (k)
k k E X VE
Q<11):Q£2):<1_v2> =Q(12):<1_v2> ’

*)
k) _ E
6~ (577)

M, *Mg  I*M, %w 2w %w
=N|—= +No,——= + 2N,
ox} + 0x10x) + 0x3 ! ox? 2 0x3 + ©9x;
ON IN, ON, IN.
1, N g 6, 9N _
dx 0xy dxi ox)

285

(8.2.17)

In the general case of a symmetric laminate, the plate equation can be expressed by

o*w *w *w
Dy = 44D === +2(D12+ 2De6) =~
a c?)c‘lt léax? x> (D12 66) 8x28x2
S AL 84W—N L i
2 %03 dx10x; 3 22 8x2 : 8x% 292 2 68x18x2

(8.2.18)
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and for specially orthotropic laminates

D2 4 op, T Oy O O a2 (82.19)
Poxd TR0 T o T o o2 T T oo,

The special case of symmetric laminates with isotropic layers follows from (8.2.19)
with D| = D,. The buckling load is like the natural vibration independent of the
lateral load and pj3 is taken to be zero. The classical bifurcation buckling requires to
satisfy the governing differential equations derived above and the boundary equa-
tions. Both sets of equations are again homogeneous and represent an eigenvalue
problem for the buckling modes (eigenvalues) and the mode shapes (eigenfunc-
tions).

To calculate the in-plane stress resultants Ny, N, Ng it is usually convenient to
represent they by the Airy stress function F(xy,x;)

d*F d*F Jd*F

Ni=—==, ==, Ne=—5—7—
ox3’ ox3’ dx10x;

(8.2.20)

If Egs. (8.2.19) are substituted into the first two equilibrium equations (8.2.3) it is
seen that these equations are identically satisfied. Using Eq. (4.2.22)

M=BA'N— (BA"'B—-D)x

and substitute N with help of the Airy‘s stress function and k by the derivatives of
w the third equilibrium equation (8.2.3) yields one coupled partial differential equa-
tion for F and w. The necessary second equation yields the in-plane compatibility
condition (Sect. 2.2)

d%e;  d%e,  J%&

8x% Qx%  9x10x>

together with Eq. (4.2.25) to substitute the strains by the stress resultants. Suppress-
ing the derivations and restricting to symmetric problems yield the following in-
plane equations which are summarized in Table 8.4. The stiffness A*,B*,C*,D* fol-
low with Eq. (4.2.23)asA* =A~!,B*=—-A"'B.C* =BA~!,D* = D — BA"'B.
One can see from Table 8.4 that in the general case the mathematical structure of
the partial differential equation corresponds to an anisotropic and in the special or-
thotropic case to an orthotropic in-plane behavior of a single layer homogeneous
anisotropic or orthotropic plate. A summary of the in-plane stiffness is given in Ta-

ble 8.5. The Qg{) for angle-ply laminates are calculated in Table 4.2.

Similar to the beam theory the plate equations for flexure, vibration and buckling
can be given in a variational formulation (Sect. 2.2). This formulation provides the
basis for the development of approximate solutions. We restrict the variational for-
mulation to symmetric laminated plates and to the classical energy principles. From
(2.2.24) it follows with &3 = & = & ~ 0 that the elastic potential IT is
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Table 8.4 In-plane equations, boundary conditions and stress resultants for symmetric laminates

1. Angle-ply laminates
B,’f» =0,Cf =0,i,j=1,2,6
d*F I'F 9*F 9*F d*F
A% —2A3 Ty +AZ —2A7 A= =0
2y 265 300 o +(241, + és)ax%ax% 1o +Aj o

2. Cross-ply laminates
Bj; =0,A7g =A% =0,

*F . .. 0'F , 0%F
Azza4+( 12+A66)W+A11W:0
0rw1thA11 =A}, A%, 7A2,(2A12 +A%) = A3,

J*F 9'F J*F
A2a4+ Azaza 2+Ala4 =0

3. Laminates with isotropic layers
A} =As=4A5=1,
J*F I*F  9*F

I ,, 97 9%
ax‘l‘ + axfax% + ax‘z‘

Typical boundary conditions

Edge x| = const

J%F 9°F
=5 =Ni(x; = t,x2), —=——=—
8x§ 1 (x1 = const,xp), Ix19ms
For an unloaded edge follow N; = 0,Ng =0

= Ne(x; = const,x,),

Stress resultants
d°F d°F d’F

M= Ny=20 Ne=——0
! 2 ax%’ 6 dx10x)

2
0x3

1
IT = 2/(6181 +6282+C7686)dv*/P.%(thz)w(xhxz)dA
%4 A

With

\ \,}A

€(x1,x2,x3) = €(x1,x2) +x3K(x1,x2)

(8.2.21)

e, +62( )824-66( Je6)dx3dA — /p3 (x1,%2)w(x1,%2)dA

(8.2.22)
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Table 8.5 In-plane stiffness for symmetric laminates

1. Angle-ply laminates
o0 () =D oy o) ;o

A=Y ot <x3 _ ): Y 09n®. i j=1,2,6
k=1 k=1

2. Cross-ply laminates

n
A=Y, 0,1, j=1,2,6,A15 = Az =0,
k=1

Q<k) :< E )(k) Q<k) :< E, )(k)
1 1=V it 1=V

)
w _ [ ViEi ®) _ )
QIZ - (1 — ViaVay ) 7Q66 - G12

3. Laminates with isotropic layers
n
A=Y 0000 i j=1,2,6,A16 = Az = 0,411 = Any
k=1

(k) (k)
k k E K VE
le):Q(zz):<17vz> ’Q<'2):<1—v2> )

o — E (k):Gm
66 2(1+v)

4. Single layer
For anisotropic and orthotropic single layers the A;; followed by 1. and 2.
For an isotropic single layer is

Eh VEh
A =Apn=A= App=VA= ,
11 (?2 : 1_‘;52}; n=yV L—y2
-V
Age = A= =G
66 2 2(1+v)

g |2 v (du ov
| dx; Onm dxy  dx1 )|’
%w %w 2w
T_|(_gew _ow_, oW
= [ 8x% 8x% 28x18x2}

and the constitutive equations for the strains and the stress resultants

N A0 | [e
6 =0 (g + x3x), = ... (8.2.23)
M o:p|L¥

one obtains the elastic potential for the general case of symmetric plates and for the
special cases of orthotropic or isotropic structure behavior.



8.2 Classical Laminate Theory 289

Bending of plates, classical laminate theory:
Angle-ply laminates

1 ?w\, I*w\, ’w d*w 1w\,
I(w) = 2A/ |:D11 (8—x%> +Dxn (Tx%) +2Dlz8—x%8—x% +4Dg6 <—8x18x2>
82w> *w

a6 s D) 22 ] g / dA
168x% 268x§ ox1x2 Ap3w

(8.2.24)
Cross-ply laminates
Di6 =D =0

Laminates with isotropic layers
Di6 =Dy =0,D11 =D
The principle of minimum of the total potential yields
O [w(xy,x)] =0

as the basis to derive the differential equation and boundary conditions or to apply
the direct variational methods of Ritz, Galerkin or Kantorovich for approximate
solutions.

Vibration of plates, classical laminate theory:
The kinetic energy of a plate is (rotatory energy is neglected)

1 ow\ 2 1 &
— aid — (k) (k)
T 2A/ph(at> a,  p=, Y p“n (8.2.25)

k=1

The Hamilton principle for vibrations yields

O0H (x1,x,t) =0
with
%) 5]
H= / (T — M)dr = / Ldi (8.2.26)
N n

Buckling of plates, classical laminate theory:

To calculate buckling loads, the in-plane stress resultants Ny, N,,Ng must be in-
cluded into the potential I1. These in-plane stress resultants are computed in a first
step or are known a priori. With the known N, N, Ng the potential IT can be formu-
lated for angle-ply laminates with bending in-plane forces
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P?w \° 2y *w\ *w
4Dgs | =——=— 4 Dig=5 +Drp—=—5 | =—— (8.2.27)
+ *66 (Bxlaxz> + ( 16 ox3 P2 8)%) dx1x3
ow '\’ ow\? dw dw

N[ =— Ny [ =— 2Ng | =—=— ) | =2 dA

1(8x1> + 2(8)62) * 6(8x1 8xz> p3w
The buckling formulation one get with p3 = 0. With Djg = Dy = 0 or
D1 = Dy = 0, D11 = Dy, follows the equations for cross-ply laminates plates
and for plates with isotropic layers. The plate stiffness can be taken from Tables 8.2
or 8.3.

The variational principle 6 IT = 0 applied to (8.2.24) and (8.2.27) yield solutions
for bending and bending with in-plane forces. Hamilton’s principle and p3 # 0 is
valid to calculate forced vibrations. With p3(xj,x2,¢) = 0 in vibration equations
or p3(x1,x2) = 0in (8.2.27), we have formulated eigenvalue problems to compute
natural frequencies or buckling loads.

Summarizing the derivations of governing plate equations in the frame of classi-
cal laminate theory there are varying degrees of complexity:

e An important simplification of the classical two-dimensional plate equations is
the behavior of cylindrical bending. In this case one considers a laminated plate
strip with a very high length-to-width ratio. The transverse load and all displace-
ments are functions of only x; and all derivatives with respect to x, are zero.
The laminated beams, Chap. 7, and the laminated strips under cylindrical bend-
ing are the two cases of laminated plates that can be treated as one-dimensional
problems. In Sect. 8.6 we discuss some applications of cylindrical bending

e In the case of two-dimensional plate equations the first degree of simplification
for plates is to be symmetric. Symmetric laminates can be broken into cross-
ply laminates (specially orthotropic plates) with uncoupling in-plane and bend-
ing response (B;; = 0) and vanishing bending-twisting terms (D¢ = Dy = 0)
and angle-ply laminates (only B;; = 0). The governing equations of symmetric
cross-ply laminates have the mathematical structure of homogeneous orthotropic
plates, symmetric angle-ply laminates of homogeneous anisotropic plates. For
special boundary conditions symmetric cross-ply laminated rectangular plates
can be solved analytically. The solutions were obtained in the same manner as
for homogeneous isotropic plates, Sect. 8.6.

e Laminates with all coupling effects are more complicated to analyze. Generally,
approximate analytical or numerical methods are used.
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8.3 Shear Deformation Theory

In Sect. 8.2 we have neglected the transverse shear deformations effects. The anal-
ysis and results of the classical laminate theory are sufficiently accurate for thin
plates, i.e. a/h,b/h > 20. Such plates are often used in civil engineering. For mod-
erately thick plates we have to take into account the shear deformation effects, at
least approximately. The theory of laminate or sandwich plates corresponds then
with the Reissner or Mindlin' plate theory. In the Reissner-Mindlin theory the as-
sumptions of the Kirchhoff’s plate theory are relaxed only in one point. The trans-
verse normals do not remain perpendicular to the middle surface after deformation,
i.e. a linear element extending through the thickness of the plate and perpendicular
to the mid-surface prior to loading, upon the load application undergoes at most a
translation and a rotation. Plate theories based upon this assumption are called first
order shear deformation theories and are most used in the analysis of moderate thick
laminated plates and of sandwich plates. Higher order theories which do not require
normals to remain straight are considerably more complicated.

Based upon that kinematical assumption of the first order shear deformation the-
ory the displacements of the plate have the form (5.1.2)

uy (x1,x2,%3) = u(x1,%2) +x391 (x1,x2),
up(x1,x2,x3) = v(x1,x2) +x392(x1,%2), (8.3.1)
uz(x1,x2,x3) = w(xg,x2)

and with (5.1.3) are the strains

€(x1,%2,x3) = &(x1,x2) + 03K (x1,x%2), i=1,2,6,

du dv du Jdv oy dy, dy, oW
T_|du dv du T_
&~ o0 om axﬁaxly K [_axl 90 on Tox | 832
(1) = Oy, es(anim) = ot
4(X1,X2) = 8xz Yo, 5(X1,X2) = 8x1 4]

One can see that a constant state of transverse shear stresses is accounted for. The
stresses for the kth layer are formulated in (5.3.2) to

6 =0WeW 6T =0 0,06 0405, €' =]es e eseses] (8.3.3)

o1, 0y, Og vary linearly and o4, 05 constant through the thickness £ of the plate. With
the stress resultants N,M,Q° and stiffness coefficients A;;, B;;, D; j?A?j for laminates
or sandwiches given in Egs. (4.2.13) - (4.2.15) or (4.3.8) - (4.3.22), respectively, the
constitutive equation can be formulated in a hypermatrix form, (4.2.16). The stiff-
ness coefficients A;;,B;j,D;; stay unchanged in comparison to the classical theory
and the Afj are defined in (5.3.4) and can be improved with the help of shear correc-

! Raymond David Mindlin (*17 September 1906 New York - 22 November 1987 Hanover, New
Hempshire) - mechanician, seminal contributions to many branches of applied mechanics, applied
physics, and engineering sciences
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tion factors kfj of plates similar to beams (7.3.19) — (7.3.20). The definition of the
positive rotations Y1, Y» is illustrated in Fig. 8.3. The equilibrium equations (8.2.2)
- (8.2.3) stay unchanged.

Substituting the kinematic relations (5.3.1) into the constitutive equations (5.3.3)
and then these equations into the five equilibrium equations (8.2.2) one obtains the
governing plate equations for the shear deformation theory in a matrix form as

1}11 §12 §13 1}14 0 u
Lyy Loy Ly3 Lys O v
L3y L3y Ly Ly Lys | | y1 | =
Lat Lap Laz Lag Lys %}
0 0 Ls3 Lsyq Lss w

(8.3.4)

T oo oo

The differential operators L;; are given in App. C.2 for unsymmetric angle-ply, sym-
metric angle-ply and symmetric cross-ply laminates. Symmetric laminates leading,
additional to (8.3.4), the uncoupled plate equations

L L Ls3 Lss Lss U] 0
L L u 0 200 0T
Gobel [ [0 |G| [w | =[o|  w3s)
Lsy Lsa Lss | [ w p
Equation (8.3.4) can also formulated in a compact matrix form
La=p

Lis a (5 x 5) matrix and @, p are (5 x 1) matrices.

The governing plate equations including transverse shear deformations are a set
of three coupled partial equations of second order, i.e. the problem is of sixth order
an for each edge of the plate three boundary conditions must be prescribed. The
most usual boundary conditions are:

e fixed boundary
w=0, v,=0, y;=0

e free boundary
Mn:O7 Mnl:O7 Ql’l:O

Fig. 8.3 Positive definition of
rotations y;
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o free edge

M,=0, y=0, w=0

e simply supported boundary

A w=0,M, =0,y =00rw=0, dy,/dn =0, y, =0 (hard hinged support)
b) w=0, M, =0, My =0

Case b) is more complicated for analytical or semianalytical solutions. Generally,
boundary conditions require prescribing for each edge one value of each of the
following five pairs: (u or N,), (v or Ny;), (W, or M), (W; or My;), (w or Q).

With y; = —dw/dx; and y, = —dw/dx; Eq. (8.3.5) can be reduced to the classical
plate equation.

In the following we restrict our development to plates that are midplane symmet-
ric (B;; = 0), and additional all coupling coefficients (...)1s,(...)2s, (...)4s are zero.
The constitutive equations are then simplified to

N1 = A€ +Ang, Ny =Apg +Ane, No = Agts,
M, = Dy1x1 +Di2kr, My = DiaK) +Dpky, Mg = DeeKe, (8.3.6)
01 = kisAssés, 0> = kj A48

or in a contracted notation

m - {3,‘;} m o =Ae,

NT =[Ny N, Ng|, M™ =M, M, M), QST:[QI 0],

el = [81 2 86]’ K" = [Kl K2 K6]7 £ST = [85 84]a (8.3.7)
Aj1Ap O Dy D1 0 o .
A= A]2 A22 0 s D= D12 D22 0 , AS = |: 550 55 A :|
0 0 Aes 0 0 Des 1A

Substituting the constitutive equations for My, M, Mg, Q1, Q> into the three equilib-
rium equations (8.2.2) of the moments and transverse force resultants results in the
following set of governing differential equations for a laminated composite plate
subjected to a lateral load p3(x,x;) and including transverse shear deformation

I’y 9’y Iy ow
D Py +(D12+ Deo) Txio D60 52 —kssAss (Vﬁ + 8_x]> =0,
92 92 92 ow
Des av; +(D12+ Des) e :;/;2 +D2 o ‘ZZ —kisA4s (sz + a—@) =0, (8.3.9)

d 92 5' %w
k3sAss ( Ld + 3 V:) +ky4As4 ( aWZ 02 ) +p3(x1,x2) =0

Analogous to the classical plate equations the shear deformation theory can be used
for modelling and analysis of forced vibrations and buckling of laminate plates. In
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the general case of forced vibrations the displacements u, v, w, the rotations W, Y
and the transverse load p in Eq. (8.3.4) are functions of x|,x, and . In-plane loading
is not considered but in-plane displacements, rotary and coupling inertia terms have
to take into account. Therefore, generalized mass densities must be defined

po = kz p® (xg/o fx<3k—1>) - kz p®)p®)
=1 =1
n 2 2
pr=yp% (X(sk) —ayY ) (8.3.9)
k=1
_y (k)( ®3_ <k1)3>
p2= P X X

Coupling inertia terms p; are only contained in unsymmetric plate problems.

If one wishes to determine the natural frequencies of the rectangular plate con-
sidered above, then in (8.3.8) p3(x1,x;) must be set zero but a term —podw/dt>
must be added on the right hand side. In addition, because y; and y, are both in-
dependent variables which are independent of the transverse displacement w, there
will be an oscillatory motion of a line element through the plate thickness which re-
sults in rotary inertia terms p,d%y /dt> and p2d?y, /dt?, respectively, on the right
hand side of the first two equations of (8.3.8).

The governing equations for the calculation of natural frequencies of specially
orthotropic plates with A4s = 0 are

2’y 2%y 2’
D D D D
=7 o + (D12 + 66)8x18x2+ 66 o
s aw I’y
—kss5Ass (Wl +8_x1> :Pzﬁ,
9%y 2’y 9’y
Deg——= + (D D, D 8.3.10
L + (D12 + 66)8xlax2+ 2753 ( )

s ow 0?
—K4Aus <w2+ a_> =p2 a;’f,

s dyi  I*w oy, *w %w
55455 (8 + 3 2>+k44A44(8 + 8x2> :P()ﬁ,

k=1 k=1
1 ¢ K3 (k-1)

=, Y W0 -
k=1

w, Y1 and Y, are functions of x1,x; and 7.

In a similar way the governing equations for buckling problems can be derived.
In the matrix equations (8.3.4) and (8.3.5) only the differential operator Lss is sub-
stituted by
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82

For a cross-ply symmetrically laminated plate is with B;; = 0,D16 = 0, D2s = 0,
Ays =0

- 02 92 02
L55—(Nla 2—|—2]\76(9 O +N—5 ) (8.3.11)

2 2 2
G\ Iy Py w\
11 8x2 + (D12 + Dss) %192 8x§ kssAss (l//l + _8x1> =0,

821// 9’y Py ow
Des——5- 2 +(DIZ+D66)8x18x2 + D 2 — kasAas (ll/2+a—xz> =0,

d d 1w
k5sAss ( Wl W) + kisAds ( ¥ + —>

8x2
%w —|—2N %w N 2%w
8x% 68x18x2

+ Dege

:N ]
155 28x§

(8.3.12)

The variational formulation of laminated plates including shear deformation may
be based for example upon the principle of minimum potential energy for static
problems and the Hamilton’s principle for dynamic problems. Formulating the elas-
tic potential IT we have to consider that in the general case of unsymmetric laminate
plates, including shear deformation, IT = IT(u,v,w, W1, ) is a potential function of
five independent variables and that the strain energy I'l; has a membrane, a bending
and a transverse shearing term, i.e.

1
IT, = 5 /(61 €| + 02€ + Op€s + Os5€5 + 04€4) AV

J (8.3.13)
_ ITim—FITib“rHis
with
" = ;/(Nl €1+ N2& + Negg)dA,
14
Hib = ;/(M1K1+M2K2+M6K6)dA7 (8.3.14)
v

. 1
m ) [(@es+ Qe
14

The stress resultants, stiffness and constitutive equations are formulated in Sect. 4.2,
e.g. (4.2.10) - (4.2.17). The elastic potential IT is then given by

I (u,v,w, 1,9 = 2/ (e"Ae + x"Be + "Bk + k' Dx

(8.3.15)
+£STAS )dX]d)Qf/pg,W dx;dxy



296 8 Modelling and Analysis of Plates

In (8.3.15) the in-plane loads pi,p; are not included and must be added in gen-
eral loading cases. Shear correction coefficients can be developed for plates quite
similar to beams. Approximately one considers a laminate strip of the width ”1”
orthogonal to the x;-direction and independently another laminate strip orthogonal
to the x;-direction and calculates the correction factors k35 and k3, like in Chap. 7
for beams. Sometimes the shear correction factors were used approximately equal
to homogeneous plates, i.e, kj, = kjs = kis = k* = 5/6.

Mostly we have symmetric laminates and the variational formulation for bending
Mindlin’s plates can be simplified

1 T as s
O(w,yi,y) = 5 /(KTDK+£5TA5£5)dx1dxz — /p3wdx]dxz (8.3.16)
A A
If we restricted the Hamilton’s principle to vibration of symmetric plates, the varia-

tional formulation yields

L(W7 W17w2) = T(W7 w17w2) _H(W7 W17 W2)7

1 ow\? ov\ 2 ow\ 2 (8.3.17)
T 0w vi,vn) = / [p0<3—vf) +P2(%> +pz<%> ]dxldxz
A

I1 is given by (8.3.16) and py, p» by Eqgs. (8.3.10), T is the kinetic energy.
For a symmetric and specially orthotropic Mindlin’s plate assuming A45 = 0 it
follows from (8.3.16) for bending problems that

v\’ dyi Iy, v\’
D”(a)q) Jr2D]2(5‘)€1 8x2 +D22 8x2
dyr  dw\? | ow \ 2
+ Des (a—xg + E +kssAss | Y1+ o

dxydxy — /p3wdx1dx2,
A

1
H<W7W13W2): 2/
A

s aw\?
+ k‘44A44 (l[/z + (9_)62>
(8.3.18)
5H(W7 Vi, WZ) =0

For natural vibration the variational formulation for that plate is

5]
L(w, v, WZ) =T(w,y1, WZ) — I (w,yn, W2)7 6/L(W7 L4¥ l//z)dl‘ =0 (83.19)

I

To calculate buckling loads the in-plane stress resultants must be, like in the Kirch-
hoff’s plate theory, included into the part Il of II1. Consider a plate with a constant
in-plane force N it follows
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1 ow\?
II(w,y1,y2) = IL(w, y1,ys) — ) /Nl (T;j) dxydxy (8.3.20)

The case of a more general in-plane loading can be transposed from (8.2.27). The
term IT; stay unchanged.

8.4 Sandwich Plates

To formulate the governing differential equations or tht variational statement for
sandwich plates we draw the conclusion from the similarity of the elastic behavior
between laminates and sandwiches in the first order shear deformation theory that
all results derived above for laminates can be applied to sandwich plates. We restrict
our considerations to symmetric sandwich plates with thin or thick cover sheets.
Like in the beam theory, there are differences in the expressions for the flexural
stiffness Dy1,D12,D2,,Dge and the transverse shear stiffness Ass,A44 of laminates
and sandwiches (Sects. 4.3.2 and 4.3.3). Furthermore there are essential differences
in the stress distributions. The elastic behavior of sandwiches and the general model
assumptions are considered in detail in Sect. 4.3. The stiffness relations for sand-
wiches with thin and thick skins are also given there:

o Symmetric sandwiches with thin cover sheets (4.3.12) - (4.3.14)
n
f k) (k
Ay=24L=2Y oWn®),
k=1
n
f 0,k k) 1« k-1
Dij:hccij:hC];Ql(j)h( )xg)7 xg):2( g)erg ))

(ij) = (11),(12),(22),(66)

A5 =hC}, (i) = (44),(55), Ciy = G5;,C55 =G,

(8.4.1)

h¢ is the thickness of the core, n is the number of faces layers and G 3, G»3 are the
core shear stiffness moduli. Shear correction factors can be calculated similarly
to the beams approximately with the help of (7.4.2).
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o Symmetric sandwiches with thick cover sheets (4.3.16) - (4.3.17) of one lamina
Ajj = AP = 21thlfj or Ay =AR=210L +h°Q5;, i,j=12,6

S £ [, f f

Dij:DijazzQij (/’l —|—hc)hhc or

1 2 1 0] 1
D,-,—D,-L,a—2th§,[(hf+h°) +3hf}+§hc3 b =126 (842)
(ij)=(1;),(12),(22),(66) .

Aij :A‘?{; =G, A :ffx; a :fzhfc,fj +hCS, (if) = (44),(55)

Ciy = Go3, =03, G5=0G3, C55=0Gf;

With these stiffness values for the two types of sandwich plates the differential equa-
tions (8.3.8), (8.3.10) or the variational formulations (8.3.18) - (8.3.20) of the theory
of laminate plates including transverse shear deformation can be transposed to sand-
wich plates.

Equation (4.3.22) demonstrated that for sandwich plates with thick faces the stiff-
ness Ap®, DI, (i) = (11),(22),(66) and A2, (i) = (44),(55) should be used. Be-
cause generally ij < Qlfj usually the simplified stiffness

W' he + (4/3)h"
AR~ AP =241, DI* ~ D (1 + E%)
yield satisfying results in engineering applications. Thus is valid for isotropic-facing
sandwich plates and for sandwich plates having orthotropic composite material fac-
ings (cross-ply laminates).

In Sect. 4.3 generally and in Sect. 7.4 for beams the continuing popularity of
sandwich structures was underlined. Sect. 7.4 also recalled and summarized the
main aspects of modelling and analysis of sandwich structures. Engineering ap-
plications to sandwich beams were discussed in detail. Keeping this in mind, the
derivations to sandwich plates can be restricted here to few conclusions:

e Most sandwich structures can be modelled and analyzed using the shear defor-
mation theory for laminated plates.

e Generally, the stiffness matrices A, B and D of laminated plates are employed.

e Consider the lower face as lamina 1, the core as lamina 2 and the upper face
as lamina 3 one can include or ignore the effect of the core on the response to
bending and in-plane loads and the effect of transverse shear deformation on the
response of the facings.

o The shear deformation theory of laminated plates can be not only transposed to
sandwich plates for bending, vibration and buckling induced by mechanical loads
but include also other loading, e.g. hydrothermal effects.

With the special sandwich stiffness including or ignore in-plane, bending and trans-
verse shear deformation response all differential equations and variational formula-
tions of Sect. 8.3 stay valid. Some examples for sandwich plates are considered in
Sect. 8.7.



8.5 Hygrothermo-Elastic Effects on Plates 299

8.5 Hygrothermo-Elastic Effects on Plates

Elevated temperature and absorbed moisture can alter significantly the structural
response of fibre-reinforced laminated composites. In Sects. 8.2 to 8.4 the structural
response of laminated plates as result of mechanical loading was considered and
thermal or hygrosgopic loadings were neglected.

This section focuses on hygrothermally induced strains, stresses and displace-
ments of thin or moderate thick laminated plates. We assume as in Sect. 7.5 mod-
erate hygrothermal loadings such that the mechanical properties remain approx-
imately unchanged for the temperature and moisture differences considered. Be-
cause the mathematical formulations governing thermal and hygroscopic loadings
are analogous, a unified derivation is straightforward and will be considered in the
frame of the classical laminate theory and the shear deformation theory.

The following derivations use the basic equations, Sect. 4.2.5, on thermal and
hygroscopic effects in individual laminae and in general laminates. The matrix for-
mulations for force and moment resultants, Eq. (4.2.75), can be written explicitly
as

N A11 A1z A1 Bi1 B12 Bis € NP N

Ny A2 Aze B2 B2y By & NY Ny

Ne | _ Ags Bio Bag Beo | | & | | N& | | NI 8.5.1)
M] B S D11 D12 D16 K1 M}h M{no h
M, Y D>y Dyg K> Méh Méno

Mg M Dgs | | K6 Mh Mg*©

with the known matrix elements, Eq. (4.2.15),

Aij = Y. 0} (xgk) —xgkfl))v

k=1
1 & 2 12
B 0 (&) =717), (85.2)
2k:l
1 & 3 3
Dy = Yo (x4
k=1

The thermal and moisture stress resultants N'", N™° M™h M™° are resultants per unit
temperature or moisture change, Eqs. (4.2.67).

Substituting the hygrothermal constitutive equation (8.5.1) into the equilibrium
equations (8.2.3) and replacing the in-plane strains & and the curvatures k; by the
displacements u,v,w, Eq. (8.2.5), yield the following matrix differential equation
for the classical laminate theory

Lu=p—9d L‘A” (8.5.3)
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Lu = p is identically to Eq. (8.2.7) with L;; given in App. C. N* = Nt 4 N™,
M* = M™+ M™ are the hygrothermal stress results and @ is a special (3 x 6)
differential matrix

7i 7i 0 0 0 0
3)61 852 8
0d= 0 “om on O2 O2 0 i 8.54)
0 0 0 d 2] 20

73_)6% 78_)6% 78X18)Q

For selected layer stacking Eq. (8.5.3) can be simplified. The matrix L and the dif-
ferential operators L;; are summarized for the most important special laminates in
App. C.

Hygrothermal induced buckling can be modelled as

a N* 82 (92 82
Lu+ { } (N18 2+21\/6a ¥ 2+N28—x%>u (8.5.5)

with u*T = [0 0 w]. Prebuckling displacements and stress resultants are determined
by solving Eq. (8.5.5) with N = 0. For the corresponding buckling problem, Ny, N,
and Ng are taken to be the stress resultant functions corresponding to the prebuckling
state. The buckling loads are found by solving the eigenvalue problem associated
with (8.5.5),1i.e. with N* =0 and M* = 0.

Because energy methods are useful to obtain approximate analytical solutions
for hygrothermal problems the total potential energy IT is formulated. Restricting
to symmetrical problems with Ajg = Az¢ = 0 and D¢ = Dy = 0, i.e to cross-ply
laminates, we have

du ou\ [ dv v \?
M (u,v,w) = 2/{1‘\11((9 )—&-21412((9 )(8x >+ 22(8x2>
66 dxy dxi H 8x% 12 8x% Qx%

2

2w 2 %w
1Dy (2 1apgs (22
2 (axg ) 06 (8x18x2> (8.5.6)

6
2w\’ adw adw 2w\’
- |N | == 2WNg | =— | | =— |+ M2 | = dA
(5 e (50) ()2 (52)
The classical laminate theory which neglect transverse shear deformations can lead
to significant errors for moderately thick plates and hygrothermal loadings. Us-
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ing the shear deformation theory, Sect. 8.3, we can formulate corresponding to Eq.
(8.3.4).

Lu=p—0 D” (8.5.7)

The matrix 9 is identically to Eq. (8.5.4). For hygrothermal induced buckling we
have analogous to Eq. (8.5.5)

X 2 2 2
Li+9 {N } (Nl 9 +2Nog=——=— 9 +Nza—>u* (8.5.8)
Bxl 0x10x2 Qx%
For prebuckling analysis the terms involving Ny, N, and Ng are ignored. Then buck-
ling loads are calculated by substituting the values Ni,N,,Ng determined for the
prebuckling state into Eq. (8.5.8) dropping now the hygrothermal stress resultants
N* and M*. For special laminate stacking the differential operators are summarized
in App. C.
The elastic potential IT is now a function of five independent functions
u, v, w, Y1, ¥,. Restricting again to cross-ply laminates the elastic total potential IT
can be formulated as

du du dv v \? du v \?
2/{A11(81> +2A12(8 P )+A22(8_x2> + 66(8 +8x1>

d v, 9 ow, \ 2 d d
+D1]<£> +2D]2< Vi Wz)JrDzz <£> +D66(ﬂ+ﬂ)

8x1 8x1 8x2 8x2 8x2 3)61
+ kA d_w+ 2—H’csA d_w+ ’ (8.5.9)
44444 a5 153 55455 ax Vi 9.
. ou L OV L ou v
2N1 a—l 2N2 8_2 2N6 (8)(2 ax1 >
LoV A dyi | dy
— 2M{—— T —2M; T3 —2M; <8x2 + o1

*w adw adw 2w\’

N (8x%) +2Ne (8)61) (ax2>+N2 ( 8)%) ]}dA

Equations (8.5.6) and (8.5.9) are the starting point for solving hygrothermal induced
buckling problems e.g. with the Ritz- or Galerkin approximation or the finite ele-
ment method. Analytical solutions are in general not possible. As considered above,
the force resultants Ny, N, and Ng have to be calculated in the prebuckling state,
i.e. for N =0 and the calculation force resultants are substituted into Egs. (8.5.6) or
(8.5.9), respectively, with N* = 0,M* = 0 to calculate the buckling loads. If there are

transverse loads p, Egs. (8.5.3) or (8.5.7) the bending problem follows from (8.5.6)
or (8.5.7) by setting N = 0 and substitute an additional term
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/ pwdA
A

8.6 Analytical Solutions

The analysis of rectangular plates with selected layer stacking and boundary condi-
tions can be carried out analytically in a similar manner to homogeneous isotropic
and orthotropic plates. The analytical methods of homogeneous isotropic plates, e.g.
the double series solutions of Navier? or the single series solutions of Nadai>-Lévy*
can be applied to laminated plates with special layer stacking and analogous bound-
ary conditions. In Sect. 8.6 possibilities of analytical solutions in the frame of clas-
sical laminate theory and shear deformation theory are demonstrated for bending,
buckling and vibration problems.

8.6.1 Classical Laminate Theory

There are varying degrees of complexity in laminated plate analysis. The least com-
plicated problems are one-dimensional formulations of cylindrical plate bending.
For cylindrical bending both, symmetric and unsymmetric laminates, are handled in
a unique manner assuming all deformations are one-dimensional.

In the case of two-dimensional plate equations the most important degree of sim-
plification is for plates being midplane symmetric because of their uncoupling in-
plane and out-of-plane response. The mathematical structure of symmetric angle-ply
plate equations corresponds to homogeneous anisotropic plate equations and that of
symmetric cross-ply plate equations to homogeneous orthotropic plate equations.
To illustrate analytical solutions for rectangular plates in the framework of the clas-
sical laminate theory we restrict our developments to specially orthotropic, i.e. to
symmetric cross-ply plates. For this type of laminated plates the Navier solution
method can be applied to rectangular plates with all four edges simply supported.
The Nadai-Lévy solution (Nddai, 1925) method can be applied to rectangular plates
with two opposite edges have any possible kind of boundary conditions. For more
general boundary conditions of special orthotropic plates or other symmetric or un-
symmetric rectangular plates approximate analytical solutions are possible, e.g. us-
ing the Ritz-, the Galerkin- or the Kantorovich methods, Sect. 2.2.3, or numerical
methods are applied, Chap. 11.

2 Claude Louis Marie Henri Navier (*10 February 1785 Dijon - 121 August 1836 Paris) - engineer
and physicist

3 Arpad Nadai (*3 April 1883 Budapest - 118 July 1963 Pittsburgh) - professor of mechanics,
contributions to the plate theory and theory of plasticity

4 Maurice Lévy (*28 February 1838 Ribeauvillé - 130 September 1910 Paris) - engineer, total
strain theory
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As considered above the simplest problem of plate bending is the so-called cylin-
drical bending for a plate strip i.e. a very long plate in one direction with such a lat-
eral load and edge support in this direction that the plate problem may be reduced to
a one-dimensional problem and a quasi-beam solution can be used. In the following
we demonstrate analytical solutions for various selected examples.

8.6.1.1 Plate Strip

The model “plate strip” (Fig. 8.4) describes approximately the behavior of a rect-
angular plate with a/b < 1. The plate dimension a in x;-direction is considered
finite, the other dimension b in xp-direction approximately infinite. The boundary
conditions for the edges x; = 0,x; = a may be quite general, but independent of x;
and the lateral load is p3 = p3(x;). All derivatives with respect to x; are zero and
the plate equation reduces to a one-dimensional equation. For symmetric laminated
strips Egs. (8.2.6) and (8.2.9) reduce to

Dyw" (x1) = p3(x1),

M, (xl) = —D11w”(x1),

Mz(xl) = —Dlgw”(xl),

Me(x1) = —Digw”(x1) (general case), 8.6.1)
Mg (x1) =0 (specially orthotropic case,Djs = 0), o
Q1 (x1) = Mj(x1) = —Dpw" (x1),

02(x1) = M{(x1) = —Disw"'(x1) (general case),

0> (x1) = 0 (specially orthotropic case)

When one compares the differential equation of the strip with the differential equa-
tion bD11w""(x1) = q(x1) of a beam it can be stated that all solutions of the beam
equation can be used for the strip.

For the normal stresses in the layer k the equations are

Fig. 8.4 Plate strip
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k k d2W
G]( )(X1,X3) = —Q(l ])x3 P
k k d2W
62( )(X17X3) - 7Q(12)x3 dx% ’
Gék)(xl,)@) =0
or Q(k)
o, ) (x1,23) = —D—]ll]Ml(x1)X3,
() (8.6.2)
of (r1.53) = ~ P2 by 1)

k
66< )(xl,x3) =0
and the transverse shear stresses follow from (5.2.19) to
04(x1,x3) = F10Q1(x1), 05(x1,x3) = F1101(x1)

and 5
F(x3) = B(x3)D™"

os| _ | FuFe2| | O1
[04} a [Fm Fzz} {o } (8.6.3)

Considering the solutions of the symmetrical laminated plate strip, we have follow-
ing conclusions:

i.e

e The solutions for laminate beams and plate strips are very similar, but the calcu-
lation of the strip bending stiffness D;; has to include Poisson’s effects.
e Because of including of Poisson’s effect we have the relation

W(X] )strip < W()C] )beam

and Mz(xl) 75 0.
e M (x;) and Q;(x;) of the strip and the beam are identical. If Mg(x;) = O then
Vi1 = 01, i.e there is no special effective Kirchhoff transverse force.

The solutions for plate strips with cylindrical bending can be transposed to
lateral loads p3(xi,x2) = xap(x1). From w(xj,x2) = xpw(x;) it follows that
xow"(x1) = xap(x1)/D11. The displacement w(x;) and the stress resultants
M (x1),01(x) of the plate strip with the lateral load p(x;) have to be multiplied
by the coordinate x, to get the solution for the lateral load x,p(x;). Note that in
contrast to the case above, here Mg = —2Dgew’ (x1) — D16w” (x1) in the general case
and Mg = —2Dgew’ (x1) for specially orthotropic strips.

For unsymmetric laminated plate strips the system of three one-dimensional dif-
ferential equations for the displacements u(x;),v(x;) and w(x;) follow with (8.2.6)
as
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A d2u+A d%v B d3w 0

115> 1655 —Dl1——= =

gfﬁ g)zf? (filﬁ
u v w

A16—2 +A66_2_Bl6—3 =0 (8.6.4)
dxy dxj dx;

D d*w B d*u B d3v

11—~ —bi17—=5 —Dbl653 = P3
dx} dxj dxj

These equations can be uncoupled and analytically solved. The first and the second
equation yield
du Bdw & Cd
gu_2sow Gy _tow (8.6.5)
A Ady’ dxd  Adx
with A = A1 Age 7A%6,B = AgsB11 —A16B16,C = A11B16 — A6B)1. Differentiating
both equations and substituting the results in the third equation of (8.6.4) we obtain
one differential equation of fourth order in w(x)

dw A
Ta = pP» D=DnA-BuB-BiC (8.6.6)
1

Equation (8.6.6) can be integrated to obtain w(x;) and than follow with (8.6.5)

&u B dv C

——_Z — == 8.6.7

dx? Dp37 dx? DP3 ( )
For a transverse load p3 = p3(x1) we obtain the analytical solutions for the displace-
ments u(x;),v(x;) and w(x;) as

3

A X x%
w(xi) = 5////P3dx1dxldx1dx1+C1€+C2? + Csx1 4 Cy,
2

B X

u(xy) = 5// padxidxidx; + B1 =L + Boxy + B, (8.6.8)
C X

v(x)) = 5// p3dxydxydx; +A151+A2x1 + B3

With Eqgs. (8.6.5) follows A = B; = C; and we have eight boundary conditions to
calculate 8 unknown constants, e.g. for clamped supports

u(0) = u(a) =v(0) = v(a) = w(b) = w(a) = 0,w(0) =w'(a) =0,

Eqgs. (8.2.12) yield the one-dimensional equations for the forces and moments resul-
tants

du dv d*w
Ny =Ajj— +Ajg— — By —
1 ”dx1+ 16dx1 ”dx%’
du dv dw

Ny =Ajp—+Ax— —Bn

dx| dx; a2’
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dv d>w
Ng = Ajg— +Ags— — Bis—
6 16 l+ 66dx] 16dx%7
My =B Y p dw
1 = l]dx1 l6dx1 ”dx%’
o,y A d*w
2= 12dxl 26dx] 12dx%7
du dv d>w
Mg = Big— + Bgg~— — D1g—-, 8.6.9
6 16 4r; + 66 7, 16 o ( )
01— B d2u+B dZv b d*w
1 = lldx% 16dx% lldx:lg7
0,— B d2u+B d?y b d3w
2 16dx% 66dx% 16 dleg7
Vi B d2u+B dZv b d*w 0
1= lldx% 16dx% de? 15
d*u d?v d3w
Vo = 2B16—5 +2Bes—5 — 2D16—5 = 20>
dxt dxf dxy

The general symmetric case follows with B;; = 0 and for a symmetric cross-ply strip
are B,‘j =0 andA16 = 0,D16 =0.

Analytical solutions can also be formulated for vibration and buckling of strips
with one-dimensional deformations. The eigen-vibrations of unsymmetrical plate
strips taking account of u(xy,¢) = u(x1)e’® v(xy,t) = v(x1)e'® , w(xy,t) = w(x; e
are mathematically modelled as

d2M d2 d3W
A1 — +A16— — Bi1—— — pho*w =0,
u v w )
Aot 4 Ags oy — Bie S — pho®y =0, (8.6.10)
w u w
D B Blé@*l)hwzwzo

N7 —bi——=-—
def T dx i
u,v and w are now functions of x| and 7.

If the in-plane inertia effects are neglected the Eqs. (8.6.5) are valid. Differenti-
ating these equations and substituting the result in the third Eq. (8.6.10) lead to the
vibration equation

d'w A
— — —phw*w=0 8.6.11
& pPho™w ( )

For a symmetrically laminated cross-ply strip we obtain with A/D = 1/Dy;
d*w  phw? N

w=0, ph= () %) 8.6.12
& ~ Dp P k;p (8.6.12)
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The analytical solutions correspond to the beam solutions in Sect. 7.6

A A A A
w(x;) = Cjcos ;x] + C, sin gx] + Czcosh ;x] + Cysinh ;x] ,

AN\ ph
(—) = g_wz (symmetric cross-ply strip), (8.6.13)
a 11

A\ A
(—) = phB ®°  (general unsymmetric strip)
a
For a simply supported strip we have w(0) = w(a) = w"”(0) = w”(a) = 0 and there-
fore C; = C3 = C4 = 0 and C; sin (ﬁ) a=0,i.e. with A = nx follow

4_4
, n'm'D nn\%2 | D
1T E e= — 8.6.14
O = dona @ ( a ) \/ pra (8.6.14)

Analytical solutions can be calculated for all boundary conditions of the strip.

In analogous manner analytical solutions follow for the buckling behavior of
strips which are subjected to an initial compressive load N; = —Np. The third equa-
tion of (8.6.4) is formulated with p3 =0 as

d*w d3u d3v d2w

Di1—r —Bi1—5 — Big— — Nj —
]ldx? ”dx? lﬁdx:l; ldx%

=0 (8.6.15)

and with Eq. (8.6.5) follows

d'w A d?
w2 1 & 0, (general case)
& D ad
g ! Lo (8.6.16)
E‘f — D_11 1 Ef =0, (symmetrical cross-ply case)
with Ny (x;) = —Ny. The buckling equations correspond again to the beam equation
(7.2.35) and can be solved for all boundary conditions of the strip
A A A A
w(xl) = Cjcos —x| + Gy sin —xj + C3 cosh —x; + C4 sinh —x,
N2 A a a a (8.6.17)
2 -4
a D

For a simply supported strip we have with w(0) = w(a) =w"(0) =w"(a) =0
CysinA =0, A =nmw

A nonzero solution is obtained if

D
< (8.6.18)
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Thus the critical buckling load follows with to

NOcr =

2
- (8.6.19)
a

=0

Summarizing the developments of analytical solutions for unsymmetrical laminated
plate strips we have the following conclusions:

e The system of three coupled differential equations for the displacements
u(x1),v(x1) and w(x) can be uncoupled and reduced to one differential equa-
tion of fourth order for w(x;) and two differential equations of third order for
u(x;) and v(x; ), respectively.

e Analytical solutions for bending of unsymmetrical laminated plate strips can be
simple derived for all possible boundary conditions. In the general case all stress
resultants (8.6.4) are not equal to zero. The general symmetric case and symmet-
rical cross-ply strips are included as special solutions.

e The derivations of bending equations can be expanded to buckling and vibration

problems.

e The derivation of analytical solutions for unsymmetrical laminated strips can,
like for the symmetrical case, expanded to lateral loads p3(x1,x2) = xap(x1).

8.6.1.2 Navier Solution

Figure 8.5 shows a specially orthotropic rectangular plate simply supported at all
edges with arbitrary lateral load p3(x;,x2). In the Navier solution one expands the
deflection w(x|,x,) and the applied lateral load p(x;,x;), respectively, into double
infinite Fourier sine series because that series satisfies all boundary conditions

X2

p3(x1,x2)

a

Y

X1

Boundary conditions:
w(0,22) = w(a,x2) = w(x1,0) = w(x,b) =0

M (0,x2) = My (a,x2) = Ma(x1,0) = Ma(x1,b) =0

Fig. 8.5 Rectangular plate, all edges are simply supported, specially orthotropic
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b
4
Prs = —//m(xl,xz)Sin oyx sin Byxpdxdi;, (8.6.20)
00

w(xy,x) = Z Z Wrs SIn QX1 sin Bexp

r=1s=1

with o = rm/a, Bs = sm/b. The coefficients wy, are to be determined such that the
plate equation (Table 8.1) is satisfied.
Substituting Eqgs. (8.6.20) into the plate equation yields

o oo o oo

Z Z wys (D105} +2D3 o?B2 + D, B ) sin ot.x; sin Box; = Z Z Prs Sin 04X sin Byxa

r=1s=1 r=1s=1
(8.6.21)
and we obtain the coefficients w,
Drs prs
Wy, 8.6.22
s~ D, 064 +2D3 Olzﬁs + DZBS drs ¢ )
The solution becomes
w(xi,x) Z Z Z— sin ax sin Byx2 (8.6.23)

The load coefficients p,; one obtains by integrating (8.6.20) for the given lateral
loading p3(x;,x;). For a uniform distributed load p3(x1,x,) = p = const we obtain,
for instance,

16p
P rs=1,3,5... (8.6.24)

From Table 8.1, the equations for the moment resultants are:

Prs =

Pu
ox3 12 0x3
(D a,z +D12[332)w,s sin a,-x1 sin Bxz,
9w 9w
Yoe P2

(Dlz()t,2 + Dzzﬁsz)wrs sin a,-x1 sin Bxz,

M (x1,x2) = =D

Il
 ngk
 ngk

\
I
©
I

(8.6.25)
Mz(X] ,xz) =-D

Il
 ngk
[V]z

\
I
©
I
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22w s
M :—2D —:_2D rPsWrs T SN2y
6(x1,X2) 66 T 66;;(1 Bswrs cos 0 x1 cos Bexs
. 8M1 3M6 aMG
01(x1,%2) = 8—x1+8—x2’ Vi(x,x) =01+ —=— I
oMs OM, 8M6
=0, 772y - 776
02 (x1,x2) o + Fr 1(x1,x%2) = 02+ F
and with the stress relation for the k layers
k k
ol oY 0 d*w/ox3
k k
6® (x1,x0,33) = QW x3k = —x3 0% 0¥ o gzw/axg (8.6.26)
®) | | 20°w/dx19x;
0 0 Qg

one obtains the solutions for the in-plane stresses G](k), Gz(k), Gé(k)

c;l(k) (Q(1 a? + le B2) sin oy.x; sin Byxy

Prs ( )
Z ZD106;‘+2D306,21332+D2ﬁ34 (015 OC +Q22[33)Sln05,x1 sin fBsxo

(k) r=1s=
(ops —2Q66 o35 cos oy-x1 cos Boxo

(8.6.27)

With the simplified formula (5.2.19) follows the transverse shear stresses Gik) , Gs(k)

oM (x1,x3) Feix3 Faox3

l6§k)(xl’x3)] _ |:F1]X3 F62X3}

(8.6.28)
Z Z [ Do + Do ? Ot,)w,scos 04-x1 sin Bsxp

fo (D120 Bs + D22 B3 ) wys sin 0x1 cos Byxa

The Navier solution method can be applied to all simply supported specially or-
thotropic laminated rectangular plates in the same way. For a given lateral load
p3(x1,x2) one can obtain the load coefficients p,; by integrating (8.6.20), and by
substituting p,, in (8.6.3) follows the w,,. Some conclusions can be drawn from the
application of the Navier solution:

e The solution convergence is rapid for the lateral deflection w(x;,x;) and uniform
loaded plates. The convergence decreases for the stress resultants and the stresses
and in general with the concentration of lateral loads in partial regions.

(k)

e The solution convergence is more rapid for the stresses o,

but is not as rapid in calculating 62<k).

in the fibre direction

The Navier solutions can be also developed for antisymmetric cross-ply laminate
and for symmetric and antisymmetric angle-ply laminates. For these laminates the
plate equations (8.2.6) are not uncoupled and we have to prescribe in-plane and
out-of-plane boundary conditions. It is easy to review that the Naviers double series
solutions Type 1 and Type 2, i.e.
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Type 1:
u(xy,x) = Z Z Uys COS QX1 Sin Boxo,
r°=°1 S°=°1
v(xg,x) = Z Z Vs SIN Q1 COS Boxa,
r°=°1 S°=°1
w(xp,x) = Z Z Wi SIN 04-X1 8in Bsx7,
r=1s=1
Type 2:
u(xy,x) = Z Z Uyg Sin Qx1 cOS Boxo,
r°=°1 S°=°1
v(xg,x) = Z Z Vrs COS 04X Sin Boxa,
r=1s=1
w(xp,x) = Z Z Wiy SIN 04-X1 8in Bsx7,

\
I
I

S
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o = r/a, Bs = ms/a satisfy the following alternative boundary conditions for se-

lected laminated plates:

e Simply supported boundary conditions, Type 1
x1=0andx; =a

WZO7 ]\41207 VZO7 N1=0

x»=0andx, =b

w=0, M,=0, u=0,

The Naviers double series Type 1 for u,v and w can be used only for laminates,
whose stiffness A1¢,A26,B16,B26,D16,D26 are zero, i.e for symmetric or anti-

symmetric cross-ply laminates
e Simple supported boundary conditions, Type 2
x1=0andx; =a

w=0, M;=0, u=0,

x2=Oandx2=b

WZO7 ]\42207 VZO7 N6=0

The Navier double series solution Type 2 for u, v, w can be used only for laminate
stacking sequences with Ag,A2,B11,B12,B22,B66,D16, D26 equal zero, i.e for

symmetric or antisymmetric angle ply laminates.

The Navier solutions can be used for calculating bending, buckling and vibration.
For buckling the edge shear force Ng and, respectively, for vibration the in-plane

inertia terms must be necessarily zero.
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8.6.1.3 Nadai-Lévy Solution

For computing the bending of specially orthotropic rectangular plates with two op-
posite edges simply supported, a single infinite series method can be used. The two
other opposite edges may have arbitrary boundary conditions (Fig. 8.6). Nddai in-
troduced for isotropic plates the solution of the plate equation in the form

w(xi,x2) = wp(x1) +wi(x1,x2), p3 = p3(x1), (8.6.29)

where w, () represents the deflection of a plate strip and wy,(x1,x7) is the solution
of the homogeneous plate equation (p3 = 0). w;, must be chosen such that w(x,x;)
in (8.6.29) satisfy all boundary conditions of the plate. With the solutions for wy,
suggested by Lévy, and w),, suggested by Nadai,

Slna
Wi (x1,%2) Z f,(x2) sin oy, Z p e a;xl (8.6.30)
1

with o, = rmt/a and
> . 2 .
p3(x1) =Y prsinoyx;, pr= 4 /p3(X1)Sln oyx1dx
r=1
0

the boundary conditions for x; = 0 and x| = a are satisfied.
Substituting (8.6.30) into the plate equation for specially orthotropic plates, Table
8.1, it follow for each term f;(x;) a differential equation of 4th order with constant

coefficients
dfr(xZ) zd fr( 2)

—2Ds + D) fr(x 8.6.31
ol a2 L (x2) = p ( )
or
b Boundary conditions:
vt w(0,x2) =w(a,x2) =0
—>
X1

M;(0,x2) = M (a,x2) =0

For the edges x, = +b/2 may be
arbitrary b.c.

a

Fig. 8.6 Rectangular specially orthotropic rectangular plate with two opposite edges simply sup-
ported
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d4fr(x2) 2D3062 dzfr<x2) Dy 4 Pr
— A — fr = — 8.6.32
The homogeneous differential equation, i.e. p, = 0, can be solved with
Srn(x2) = Crexp(A, otx2) (8.6.33)
and yields the characteristic equation for the four roots
2D D D Di\> D
M- o= 2= (2] -2 (8.6.34)
D> D, D, Ds Dy

In the case of isotropic plates it follows with D = D, = D3 = D there are repeated
roots +1.

For specially orthotropic laminated plates the form of f,;(x;) depends on the
character of the roots of the algebraic equation of 4th order. There are three different
sets of roots:

1. (D3/D3)? > (D1 /D,): In this case (8.6.34) leads to four real and different roots
Mp==£61,434=+6,61,6, >0,

frn (XZ) = A, cosh ; ox, + B, sinh 01 0t-x7

+ C,cosh 8 0,x) + D, sinh 8 0,x» (8.6.35)

2. (D3/D;)? = (D1 /D5): In this case (8.6.34) leads to four real and equal roots
AI/Z = +87)L3/4 = 76,8 > 07

fri (XZ) = (Ar + B,JCQ) coshda,x; + (Cr + D,JCQ) sinh 8 o x> (8.6.36)
3. (D3/Dy)? < (D1/Dy): In this case the roots are complex

)‘1/2 = 61 i1'5271’3/4 = _51 ii52751752 > 07

frn(x2) = (Arcos &, ax; + B, sinh 8, 04:x ) cosh 8; 04-x2

+ (Crcos 8 04:xp + D, sin 8y a,x; ) sinh 8; 04-x (8.6.37)

For a given plate for which materials and fibre orientations have been specified only,
one of the three cases exists. However in the design problem, trying to find the best
variant, more than one case may be involved with the consequence of determin-
ing not just four constants A, B,,C,,D,, but eight or all twelve to calculate which
construction is optimal for the design.

Concerning the particular solution, it is noted that the lateral load may be at most
linear in x; too, i.e p3(x1,x2) = p3(x1)g(x2) with ¢ at most linear in x,. The solution
w, in (8.6.29) is then replaced by

oo

in ¢,
wp(x1,x2) = q(x2) Z % sin 04X (8.6.38)
T

r=1
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With the solution w(xi,x2) = wy(x1,x2) + wp(x1,x2) the stress resultants and
stresses can be calculated in the usual way.

The Navier and Nadai-Lévy solution method can be also applied to eigenvalue
problems. We assume, for instance, that the vibration mode shapes of a laminated
plate with specially orthotropic behavior, which is simply supported at all four
edges, is identical to an isotropic plate. We choose

w(xy,xp,t) = Z Z Wrs SIN 04X SIN O Xo Sin o (8.6.39)

r=1s=1

to represent the expected harmonic oscillation and to satisfy all boundary conditions.
Substituting the expression (8.6.39) into (8.2.16) with p3 = 0 yields

[D1at +2D302 02 + D20t — p@?lwys =0 (8.6.40)

A non-zero value of wy, i.e. a non-trivial solution, is obtained only if the expression
in the brackets is zero, hence we can find the equation for the natural frequencies

wfszg:l [Dl (;)4+2D3(;)2(2)2+Dz(2)4} (8.6.41)
The fundamental frequency corresponds to r = s = 1 and is given by
o = A {D1+2D3 (")2+02 (“)4} (8.6.42)
pha* b b

Note that the maximum amplitude w,, cannot be determined, only the vibration
mode shapes are given by (8.6.39). In the case of an isotropic plate the natural
frequencies are with Dy =Dy = D3 =D

2
2, T D |2, 2(a 2
O =k e Kre = {r +5( b) } (8.6.43)

If we consider a buckling problem, e.g. a specially orthotropic laminated plate sim-
ply supported at all edges with a biaxial compression N; and N,, it follows from
(8.2.19) that

*w *w *w %w %w
Di—+2D3———+Dr,—=N,— +No,— 8.6.44
! ox} 3 Bx%(?x% 2 0x5 ! ox? 2 Qx% ( )
The Navier solution method yields with (8.6.39)
Wy [D; 4+ 2D3r25272 + D2s4y4] = —wps[N] P +N2s272]a2 (8.6.45)

with ¥ = a/b. A non-zero solution of the buckling problem (ws # 0) leads to
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2
T
N1+ Nos>y* = — =5 D17 +2D3r° s + Das™ '] (8.6.46)
a
We consider the example of uniform compression Ny = —N and N, = — kN, where

the boundary force N is positive. Equation (8.6.46) yields

72 (D17* 4 2D3r2 5%y + Dys*yY)
N =
a*(r? + ks?y?)

The critical buckling load N, corresponds to the lowest value of N. If x = 0 we
have the case of uniaxial compression and the buckling equation simplifies to

2
T
N = ——(D1r* +2D3%5*y* + Das*y')
ar

For a given r, the smallest value of N is obtained for s = 1, because s appears only
in the numerator. To determine which r provides the smallest value N,, is not simple
and depends on the stiffness Dy, D;, D3, the length-to-width ratio Y = a/b and r.
However, for a given plate it can be easily determined numerically. Summarizing
the discussion of the classical laminate theory applied to laminate plates we can
formulate the following conclusions:

e Specially orthotropic laminate plates can be analyzed with the help of the Navier
solution or the Nadai-Lévy solution of the theory of isotropic Kirchhoff’s plates,
if all or two opposite plate edges are simply supported. These solution methods
can be applied to plate bending, buckling and vibration.

e For more general boundary conditions specially orthotropic plates may be solved
analytically with the help of the variational approximate solutions method of
Rayleigh-Ritz or in a more generalized way based on a variational method of
Kantorovich.

e Plates with extensional-bending couplings should be solved numerically, e.g.
with the help of the finite element method, Chap. 11. Note that in special cases
antisymmetric cross-ply respectively symmetric and antisymmetric angle-ply
laminates can be analyzed analytically with Navier‘s solution method.

In this section we illustrated detailed analytical solutions for specially orthotropic
laminates which can predict “exact” values of deflections, natural frequencies of vi-
bration and critical buckling loads. But even the “exact” solutions become approxi-
mate because of the truncation of the infinite series solutions or round-off errors in
the solution of nonlinear algebraic equations, etc. However these solutions help one
to understand, at least qualitatively, the mechanical behavior of laminates. Many
laminates with certain fibre orientations have decreasing values of the coefficients
D1, Do¢ for bending-torsion coupling and they can be analyzed with the help of the
solution methods for specially orthotropic plates.
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8.6.2 Shear Deformation Laminate Theory

The analysis of laminated rectangular plates including transverse shear deforma-
tions is much more complicated than in the frame of classical laminate theory. Also
for plate analysis including shear deformations the at least complicated problem is
cylindrical bending, i.e one-dimensional formulations for plate strips.

Unlike to classical plate strips equations only symmetric and unsymmetric cross-
ply laminates can be handled in a unique manner. In the case of two-dimensional
plate equations we restrict the developments of analytical solutions for bending,
buckling and vibrations analogous to Eqs. (8.3.6) - (8.3.8) to midplane symmetric
cross-ply plates with all B;; = 0 and additional A1 = Azs = D16 = Dy = 0,A45 = 0.

8.6.2.1 Plate Strip

Consider first the cylindrical bending for the plate strip with an infinite length in
the x,-direction and uniformly supported edges x; = 0,x; = a, subjected to a load
p3 = p(x1). If we restrict the considerations to cross-ply laminated strips the gov-
erning strip equations follow with A1g = Az = 0,B16 = B2 =0, D1g = Dy =0,
Aygs = 0 and result in a cylindrical deflected middle surface with v = 0,y = 0,
u = u(x),y1 = yi(x1),w =w(x;) from (8.3.4) as

d’u d?y
Aj1— +Bi1—5 =0,
d? d?y o ddx%
u 1 w
Bii— +Dj1—=— —ki:A — =0 8.6.47
lldx% + Dy a2 35455 (W1+dxl> , ( )
! dy d’w
k3sAss (E + E% +p3(x1) =0

The stress resultants N;(x)1,M;(x1),i = 1,2,6 and Q;, j = 1,2 are with (8.3.2) and
(8.3.6)

du dl[/]
N; = A — +Bj1—
1(x1) 11(56l + 11C(11x] )
u Y1
N =Ap— +Bpp—
2 (x1) 12dxl +B12 o
N6()C]) =0, d d
u Y1
Mi(x1) = Bjj— + Dy ——
1) llcgcl + ll(cibcl ’ (8.6.48)
u Y1
M =Bp—+Djp——
2(x1) 12dxl +Di2 o
Mg(x1) =0,
)
)
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The three coupled differential equations for u,w and y; can be reduced to one un-
coupled differential equation for y;. The first equation yields
d>u By dy  dFu B Py
2 A d? T d An dy

(8.6.49)

Differentiating the second equation and substituting the equation above result in

Bt Ay Py dy,
_on W p ST gsa +S%) =0
Al dx? & dx? 3 Ss(dx dxz)

B2
orwith(D” —1> D
Ay

, dy; | d’w r v

k3sAss ( + —) =D||—= (8.6.50)
de;  da? dx}

Substituting Eq. (8.6.50) in the third equation (8.6.47) yield an uncoupled equation

for v (x1)

Py
DY, =-p3 (8.6.51)
dx}

The uncoupled equations for u(x;) and w(x; ) follow then as

du  Andiyr dw DR dy
du ATt | Bl < (8.6.52)
a2 By ad dn ' KAs de

The three uncoupled equations can be simple integrated

2

DRy (x1) = // p3(x1) dX1dX1dxl+C1 +CzX1+C37
(1) /// ()dxdxdxdx+Cx?+Cx%
w(X] = R pP3(X] 14X dx1dxg 1 25
DX, 6 2
. (8.6.53)
+ C3x1 +Cy T EAw {//m(xl)dxldxl JFCIXI}
554155
= WB(X1)+W (x1),
A
u(x) = _B_::D_ {// p3(xp)dxidxydxy + Crx +C5}

Thus the general analytical solutions for unsymmetric cross-ply laminated strips
are calculated. For symmetrical cross-ply laminated strips the equations yield
D’fl = Dy and Ajju”(x;) = 0. Restricting to symmetrical cross-ply laminated
strips analytical solutions for buckling or vibrations can be developed analogous to
Timoshenko’s beams or to the classical strip problems.

For a buckling load N (x;) = —Nj follow with p3 =0
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2

d . dw
D11—II/2l — kssAss (‘/fl + —) =0,
dx; dx
dy,  dPw P (8.6.54)
kisA L = ) 4Ng— =0
55 55(dx +dx%>+ del
The equations can be uncoupled. With
dy;  d’w Dy &Py Py d*w d*w
—+— | = — $Ass——— = —kiAss— — No——
( de;  dxf kisAss dd T » dx} 55053 dxf 0,
one obtains analogous to Eq. (7.3.23)
No d*w dw
Dy|\l———— )55 +N—=0 8.6.55
1 ( k§5A55) o 0T, ( )
The general solution for the eigenvalue problem (8.6.55) follows with
w(x)) = Ce*n (8.6.56)
and the characteristic equation
N
Dy (1- = )A*+NoA2=0 or DjA*+K2A*=0 (8.6.57)
k3sAss
with the solutions
),1/2 = ilk7 },3/4 =0
as
w(x) = Cysinkx] + Cp coskxy + Csx; +Cy (8.6.58)

If we assume, e.g. simply supported edges x;(0) = 0,x(a), follow with
w(0) = w(a) = w’(0) = w’(a) = 0 the free coefficients C; = C3 = C4 =0
and Cjsinka = 0. If C; # 0 follow with sinka = 0 the solution k = mn/a = 04,
(m = 1,2,...) and k> = a2 and thus

No —062 No — D]1k§5A55(X,%l
No mr 0 Dy 0+ kisAss
Dy | 1— 5
k55A55

The critical buckling load corresponds to the smallest value of Ny which is obtained
form=1

D1k Assm? 72D 1
e 5 (8.6.59)
Dyw +k55A55a a 1 D
+ a’ki A
554155

It can be seen that analogous to the Timoshenko’s beam, Sect. 7.3, the including of
shear deformations decreases the buckling loads.
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The free vibrations equations of the Timoshenko’s beams were also considered
in Sect. 7.3. For symmetric cross-ply laminated plate strips we obtain comparable
equations

d?y dw I’y

D — — KA —— ) =p,=~
11 2 55455 ‘If1+dx] P25
dyy;  d®w ) ~d%w

kssAss (dx + @ = P07

(8.6.60)

po and p, were defined as

n l n 3 - 3
po=Y p®n. p ZP ( i 1))
k=1

and the terms involving py and p, are the translatory and the rotatory inertia terms.
v and w are functions of x; and ¢ and thus we have partial derivatives. If we assume
again both strip edges simply supported the analytical solution follow with

W<X] ,t) = C] SlIl mix , W(Ovt) = W(a7t) — 07
a
; dy (0 0 (8.6.61)
Vi (x1,1) = Cope™ """ cos mﬂx17 vi(0,1) _ dvi(a,1) —0
a

8x1 B 8x1

Substituting these solution functions into the vibration equations (8.6.60) follow

D OC,%, + k§5A55 — pzw,%, k§5A55 Oy Com _ 0
k§5A55O€m kgs./45505,121 — p()(x),%1 Cim 0

The nontrivial solution of the homogeneous algebraic equation yields the eigenfre-
quencies my,

‘ Diog +k3sAss — P2y KisAssom | _ (8.6.62)

S s 2 2
k§5A5506m k§5A5506m — Po®y,

or

PoP2@y, — (D100 + k35As5P0 + K35A55P200)> 05, + D11k35A550,, = 0

1
Awy —BwA+C=0, o= o4 By 5y VB2 —4AC
The general solution for the vibration equations can be formulated for arbitrary
boundary conditions. For harmonic oscillations we write
W()C]J) :W(X])Ciwt, L] (xht) =Y ()C])Ciwt (8663)
Substituting w(xj,7) and yi(x;,7) in the coupled partial differential equations
(8.6.60) yield
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d>y (x . dw(x
DllM — kssAss (‘/fl + ﬁ) +p20”y(x1) =0,
doxg dx
dyi(x)  dwix) (8.6.64)
k$sA 2 =0
55455 ( T a0 ) + po@~w(x1)
These both equations can be uncoupled. With
dy (x d*w(x
55Ass ll;lx( ) = fpowzw(xl)—kgsAﬁ (1)
1
and
Py () d*w(x)) dy (x1) 2dyi (x1)
D“T‘i’ —k§5A55 dx% —k;SA dx P20 dx =0
follow

d4W<X]) D, 1P0 0.)2
D —(1-£2= =0
11 ‘1‘ + k§5A55 +p02 | @ % k§5A55 Po@® w(xl)

or
d*w(x;)  d®w(x)
a axd 0 —cw(x) =0 (8.6.65)
The general solution can be derived as
w(x;) = CysinAx; + Cp cos Ayxg + Cssinh Azx| + Cyqcosh Aqx; (8.6.66)

The A; are the roots of the characteristic algebraic equation of (8.6.65). The deriva-
tions above demonstrated that for any boundary conditions an analytical solution
is possible. Unlike to the classical theory we restricted the considerations in the
frame of the shear deformation theory to cross-ply laminated strips. Summarizing
the derivations we can draw the following conclusions:

e Cylindrical bending yields simple analytical solutions for unsymmetrical and
symmetrical cross-ply laminated plate strips.

e Restricting to symmetrical laminated cross-ply plate strips we can obtain ana-
lytical solutions for buckling and vibrations problems, but for general boundary
conditions the analytical solution can be with difficulty.

8.6.2.2 Navier Solution

Navier’s double series solution can be used also in the frame of the shear deforma-
tions plate theory. Analogous to Sect. 8.6.1 double series solutions can be obtain for
symmetric and antisymmetric cross-ply and angle-ply laminates with special types
of simply supported boundary conditions. In the interest of brevity the discussion
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is limited here to symmetrical laminated cross-ply plates, i.e. specially orthotropic
plates. The in-plane and out-of-plane displacements are then uncoupled.

Rectangular specially orthotropic plates may be simply supported (hard hinged
support) on all four edges.

d
x1=0, xy=a:w=0, M;=0 respectively a_‘lfl =0, y=0,
X1
_ b — _ ~ oV _ _
=0, xx=b:w=0, M;=0 respectively Er =0, y;=0
X2
(8.6.67)
The boundary conditions can be satisfied by the following expressions:
w(xy,x) = Z Z Wi SIN 04-X1 8in Bsxy,
r=1s=1
o . T ST
vilw) = Y Y yincosapnsinfon, o=, Bi=".  (8.6.68)
r=1s=1
Yo (x1,x2) = Z Z Yo, 8N 04X COS Byxn

\
I
<«
I

The mechanical loading p3(x;,x;) can be also expanded in double Fourier sine se-
ries o
pa(x1,x2) = Y Y presinax sin Boxs,

r=1s=1

(8.6.69)

a b
4 . .
Drs o //p3 (x1,x2) sin @,x sin Bexpdxydxgy
00
Now the Navier solution method can be extended to Mindlin’s plates with all edges
simply supported, but the solution is more complex than for Kirchhoff’s plates. Sub-

stituting the expression (8.6.68) and (8.6.69) into the plate differential equations
(8.3.8) gives

Ly L1z Ly3 Virs 0
L Ly Ly Yo | = |0 (8.6.70)
L3 L3 L3z Wrs Prs

with

Liy = D110 +DeeP2 +kisAss, Lio= (Di2+Des)0Bs, L1z = kisAss0t,
Ly = Do + D2 + kiyAas,  Laz = kisAssa? + k5, AuB2, Lz = kyAafs

(8.6.71)
Solving the Egs. (8.6.65), one obtains
o et Loy Lobis—Luly o Luln — L
1rs DCt(L,'j) Prsy Yars DCt(L,'j) Prsy Wrs Det(Ll-j) Prs
(8.6.72)

Det(L; j) is the determinant of the matrix in (8.6.65).
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If the three kinematic values w(xy,x), Wi (x1,x2), W2 (x1,x2) are calculated the
curvatures ki, K, and kg may be obtained and the stresses in each lamina follow
from (8.3.3) to

- k X

o] © 011 Q1 0 ® K
(7] =x3|0120» 0 K,
lor 0 0 Qe Ko

() i [y + 22

Gs} _ [Css 0 } it on
0

| 04 Cuy v + 3W

X

(8.6.73)

In a analogous manner natural vibrations and buckling loads can be calculated for
rectangular plates with all edges hard hinged supported.

8.6.2.3 Nadai-Lévy Solution

The Nadai-Lévy solution method can also be used to develop analytical solutions for
rectangular plates with special layer stacking and boundary conditions, respectively,
but the solution procedure is more complicated than in the frame of classical plate
theory. We do without detailed considerations and recommend approximate analyt-
ical solutions or numerical methods to analyze the behavior of general laminated
rectangular plates including shear deformations and supported by any combination
of clamped, hinged or free edges.

Summarizing the discussion of analytical solutions for plates including trans-
verse shear deformations one can formulate following conclusion

e Analytical solutions for symmetrical and unsymmetrical laminated plates can be
derived for cylindrical bending, buckling and vibration.

e Navier’s double series solutions can be simple derived for specially orthotropic
plates. Navier’s solution method can be also applied to symmetric or antisym-
metric cross-ply and angle-ply laminates, but the solution time needed is rather
high.

e Ritz’s, Galerkin’s or Kantorovich’s methods are suited to analyze general lami-
nated rectangular plates with general boundary conditions.

e Plates with general geometry or with cut outs etc. should be analyzed by numer-
ical methods

8.7 Problems

Exercise 8.1. A plate strip has the width a in x;-direction and is infinitely long in
the x,-direction. The strip is loaded transversely by a uniformly distributed load
po and simply supported at x; = 0,x; = a. Calculate the deflection w, the resultant
moments M|, M,, Mg and the stresses G, 07, Og
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1. for a symmetrical four layer plate [0/90/90/0],
2. for a unsymmetrical four layer plate [0/0/90/90]
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Solution 8.1. The solutions are presented for both stacking sequences separately.

1. The plate strip is a symmetric cross-ply laminate, i.e. B;; = 0, Dig = Dys = 0.

The governing differential equations are

d*m, dm,
dxz = —Po, E:Qh
D v e D -y Me—0
11—2:* 1, 12—2:* 2, 6 — Y,
(CiliC] d'xl
w
Dii— =po
Clxl

The vertical deflection w = w(x;) is

4 x3 2

w(x)—L il I I SRR G e
I—D” P024 16 22 341 4

Satisfying the boundary conditions

W(O) = 07 W<a) = 0) M, (0) = 0) M, (a) =0

yield the unknown constants C; - Cy4

3
qod qoa
= =0 = =0
Cl ) ) C2 7C3 2 5 C4

and as result the complete solution for the deflection w(x;)

4 4 3
=5 | () 2+ (%)
W<XI) 24D11 |: a a + a
The moment resultants follow as

=22 (2]

D> Dy, poa® (Xl )2 Xq
Mo(x1) = —2M)(x) = —2 1y
2(x1) Di, 1(x1) Dy 2 p ik
M6(x1) =0

The strains and stresses at any point can be determined as follow

d*w a? [x X
P {_1(_1

a72 a a

2 a a

2 2
a X1 X1
S]ZX3K1:X3PO [—(—) :|7 & =0, & =0

2
):|7 K, =0, Ks =0,
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The stresses in each layer are

2r -
011 poa” | x1 X1\ 2
00 —layers: o] =0 =x3— __(_)
Y ! D]] 8 _a a ] ’
2r 27
/ 012 poa” | x1 X
O)=0,=Xx3———F |[——|— ,
Dy 8 |a a’ |
06 =0,
2r 27
11 a” | xi X1
90° — layers : 62:6{:x3Q—p0— _7(_) 7
Dy 8 |a a’ |
2r p=
/ Q12 poa” [x1  (x1)\2
Gl :GZ :_XS— - _ ,
Dy 8 |a a’ |
o6 =0

2. The plate strip is an unsymmetric cross-ply laminate, i.e. Ajg = Az = 0,B16 =
Bys = 0,D16 = Dyg = 0. The governing equations follow from Eqs. (8.2.6) and
(8.2.12)

d%u dBw d?v d*w du
All— —B11—=5 =0, A¢s—= =0, Di1—F —Bi1—= = p3,
dxt dx} dx dx} dxj
du d*w du dw
Ni=A|1— —Bi1—, M =Ap— —B;p—=, Ng=0
1 del 11 dx%’ 2 12dx1 12 dx%’ 6 )
du 2w du dw
M =Byy,— —Dij1—, Mr>=Bj,— —Djp—~, Mg=0
1 del 11 dx%’ 2 lzdxl 12 dx%’ 6

The equilibrium equations for the stress resultants are

v _ &M,
dxl — Y dx% =—p3

The displacement u(x; ) and w(x ) are coupled. Substitute

du d*w

At —p, &Y
lldx:]; lldlet

into the second differential equation yield

(D B%l) d*w
n—> | 3 =2P3
A1) dxg

B? d*w  po
Dn(l— 1 )ZDR, P3=py = —r =
AnDy, ! dd D

or with

For the displacement u(x) follows
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d3u_B”d4W
dx?_Andx?
or with
A11<1 it >_R M—W:& = ﬂ Bu o
A1Dy axt DR d? Dy AR,

These differential equations can be simple integrated

1 2
(X]) {qoxl C] +C2—+C3x1 +C4}

DR | 24 6
By {qwﬁ
ulx)) = —% +C] +C5X1+C6
(x1) DpAR | 6
Note that with
d u Bll d3
&} An da

in both equations there are equal constants C;. The boundary conditions for w
and M are identically to case 1.

The in-plane boundary conditions are formulated for a fixed-free support, i.e.
u(0) = 0,N; (a) = 0. The boundary conditions lead to the six unknown constants
C1 - Cg and the solution functions are

o - 2 (2 (2
D”All 12 a a

1 poa* [/xi\* x1\3  x

() ()

wx) DR 24 {( a ) a) " a}

The stress and moment resultants follow as

Nl(xl)zNﬁ(xl)z(), 5
ApBi1 B2\ poa (X1)2 Xq
N = —— —) —=1,
2<XI) (D]]Al]el DI]?] > 2 a a

g il

a a

B%l D12A11 poa® (ﬁ)z_ﬁ
2DR [\ a al’

=0

It is interesting to compare the results of case 1. and case 2. The forms of w(x|)
are for the two cases identical except for the magnitude. With
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1 1

1
N >_
DR B? D
11 Dy (1 11 ) 11
A11Dyy

the deflection of the unsymmetric laminate strip will be greater than the deflec-
tion of the symmetric laminate. Note that there is no force resultant N (x1) in the
unsymmetric case but it is very interesting that there is a force resultant N, as a
function of x;, but N»(0) = N2(a) = 0. With

du By pod® (xl )2 X
& = — = — -, E = & = O7
! dJC] D] lAlfl 2 a a 2 6
d? poa2 X1\2 X
Kl =———>=— — -, K = = O
! dx? 2DR, ( a ) a 2 =K

follow the strains €;,& and the stresses 0,0, for the 0° and 900-1ayers in a
similar manner like case 1. With By; = By = 0 case 2. yields the symmetrical
case 1.

Exercise 8.2. A plate strip of the width a with a symmetrical cross-ply stacking is
subjected a downward line load ¢y at x; = a/2. Both edges of the strip are fixed.
Calculate the maximum deflection wpax using the shear deformation theory.

Solution 8.2. With (8.6.51) and (8.6.52) follow

d? 1 dw Dy, d?
DY, =Dy, Dy dxl’;' = qod <X1—2a>, + L S
1

- — 1 .
d)C] k§5A55 dx%

with

0
6(x1;a)—{(1) iiizg7 /5<x1;a)dx]—<x1;a>

< x| — e > is Foppel’s’ bracket symbol:

0 x1<e

(xi—e)"x; >e’

<X1€>n_{
-1

— <x1—e>"=n<x;—e>"

dx; ’

/<x1—e>”dx1= <xj—e>"tl4C

14+n

With (8.6.53) the analytical solutions for y; and w are given

> August Otto Foppl (*25 January 1854 GroB-Umstadt — +12 August 1924 Ammerlan) - professor
of engineering mechanics and graphical statics
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1 1,

2
X
Duyi(x1) = 2510<x1— a> +C151+C2X1+C37

2
(x1) = L : >3+Cx?+cx%+c +C
wixX1 - Dl] 6‘]0 X1 Za 16 22 3X1 4
1 1
— 0 <x1— .a>+Cixy
kgsAss[q 2 )
W](O)ZO C3—O,
w(0)=0: C;=0,
2 2
@=0:tq0( a) +c (L) +ca=0
yila 2(]0 2(1 1 ) 204 =V,
1 1\ a a? 11 a
w(a) =0 0( a) e (—)+C2—— (0 +C1a):O,
()q 67 an 6 2 IgAss \102
C]:_07 C2 7La
2 8
2 2
_ o4 (ﬂ) _M
vi(x1) SD“{ P a}’
w(xy) =— do 3()2)274(&)3 T
: 48Dy, a a 2k3sAss a ’
f]oa3 qoa
Wmax

T 192D, | 4kS.Ass

The classical plate theory yields with k55Ass — oo the known value

W _ 6]0613
192Dy,

Exercise 8.3 (Bending of a quadratic sandwich plate). A quadratic sandwich
plate has a symmetric cross-section. The plate properties are a = b = 1 m,
W = 0,2875 1073 m, A = 24,71 1073 m, Ef = 1,42 10° MPa, vf = 0,3,
G' = Ef/2(1+ V%), G° =22 MPa. The cover sheet and the core material are
isotropic, h < h¢. The transverse uniform distributed load is p = 0,05 MPa. The
boundary conditions are hard hinged support for all boundaries. Calculate the max-
imum flexural displacement wp,,x With the help of a one-term Ritz approximation.

Solution 8.3. The elastic potential IT(w,y;,y,) of a symmetric and special or-
thotropic Mindlin’s plate is given by (8.3.18). For stiff thin cover sheets and a core
which transmits only transverse shear stresses the bending and shear stiffness for
isotropic face and core materials are (8.4.1)

I
Dij =] = ne | QG| = wen' ) (ne ") 0,
((ij) = (11),(22),(66), (12)) with

Ef VIE! .
= = =— =G
Ou — (v 0», 0On — (v Qs
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and
Al =Gy = h°G, (ij) = (44),(55)

o 1 cyfrpc f % : %%
H(W7W17V/2) _A/{zhh(h +h> Qll(a)ﬂ) +2Q12 Bx] ax2
w2 dvi v\
+ 02 (%) + Qs6 (WW;JFWV?) ]

ow\? w2
vi+5—) tlwvt+o— dx;dxy
8x1 8x2
- /Pdeldxz

The one-term approximations

. X1 . TX)
w(x1,x) =apsin(— )sin(—),

+ K’h¢G°

a a
TX . TX)
v (x1.2) = azcos (220 ) sin (22
a a
. X TX)
Yo (x1,x2) = assin ( — | cos [ —
a a

satisfy the boundary conditions. Substituting these approximative functions into IT
follow II = Il (ay,ay,a3) and the conditions for a minimum of I1, i.e. dI1/da; = 0,
i =1,2,3 yield the equations for the undetermined coefficients a;

Ka=q
with
a'=[aymas), q"=[16p/x*00]
and
2hGEM? heGEA heGEA
K= | I°GA hhE(011+0e6)A>+hGS  hh'Z(Q12 + Qe6)A?
heGEA ReRE (Q12+ Q66)A2  hCh'E (Q2n + Qe6) A2 + hGE

with A = m/a. The solution of the system of three linear equations leads to
a; = 0,0222,a; = a3 = —0,046 and the maximum displacement follows to
Wmax = w(x; =a/2,x=a/2)=a; =2,22 cm.

Exercise 8.4. A simply supported laminate plate [0°/90°/0°] has the following ma-
terial properties: E,, = 3.4 GPa, Ef = 110 GPa, vy, = 0.35,vf = 0.22, vy, = 0.4,
Ve =0 = 0.6, G = Em/2(1 + V) = 1.2593 GPa, G = E¢/2(1 + v¢) = 45.0820
GPa, i) = h?) = h®) = Smm,a=b =1 m.



8.7 Problems 329

1. Formulate the equation for the bending surface for a lateral unit load F = 1 N
at x; = &1,x; = & using the classical laminate theory.

2. Formulate the equation for the natural frequencies of the laminate plate using the
classical plate theory and neglecting the rotatory inertia.

Solution 8.4. The solutions for both cases can be presented as follows.

1. The stacking sequence of the layers yields a symmetric cross-ply plate which is
specially orthotropic (Table 8.1) B;j = 0,D16 = Dy =0

D 84W+2(D +2Dgs) AL (x1,%2)
— — —— = p3(x1,x
1 8x‘]‘ 12 66 Qx%é'x% 22 8x§ SN

The boundary conditions are (Fig. 8.5)
w(0,x2) = w(a,x2) =w(x1,0) =w(x,b) =0,
M, (OaXZ) =M, (aaXZ) = M2(xl 70) = MZ(X] ab) =0

The Navier’s double infinite series solution (8.6.21) - (8.6.23) leads to

w(xy,x2) Z Z Z— sin o,-x sin Bsxp
with
rT ST
dys = [D1104 +2(D1a+2Des) 05 B + DB, o = b=
4F
Prs = sin 0,-&; sin B, &,
With (section 2.2.1)
EfE,
E| =E E, =67,36 GP E,=——" =812GP
1 tVf + EmVm , a, 2 Ecvm + Emvr , a,
GiG
,=——"1 3 0217GPa
Gvm + Gmvr

Vi = Vivg+ Vv = 0,272, V5, = v, E5/E] = 0,0328

and (4.1.3)
Q) = E} /(1 —V|,V5,) = 67,97 GPa,

0h, = E}/(1—V},vh;) = 8,194 GPa,
Iy = Qb = V},Q, = 2,229 GPa,
Qs = G}, = 3,02 GPa
follow (4.2.15) the stiffness
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13 _
3 Z Ql(;‘) ((xgk))3 _ (xgk l))3) ,
k_

0] [90]

1 3 2 2 1
o)) =0 =d =0y 0P =0, o) =0},
2 1 (2) (1)
ng) = Q(] 1)7 Q66 = Q66 )
(0) (1)

X;) =-=7,5mm, x;’ =-—2,5mm,
xgz) =2,5mm, xg3) =7,5 mm,

D11 = 18492 Nm, Dy = 2927 Nm,
D1y = D1 = 627 Nm, Dgg = 849 Nm

The equation for the bending surface is

P & sin o, sin B&s
w(x1,%2) ey ; ; 184921 + 46507252 +2927s*

sin a,-x1 sin Bsxp

If F =1 N then w(x;,x;) represents the influence surface, i.e. the deflection at
(x1,x2) due to a unit load at (£, &,). This influence function w(xy,x;;&;,&) is
sometimes called Green’s function of the plate with all boundaries simply sup-
ported. In the more general case of a rectangular plate a # b the Green’s function
is

Z Z sin o€ sinB&y .

sin a,-x1 sin Bexo
dys

w(x,x2;61,8) = 7r4ab

r=1s=

The Green’s function can be used to calculate the bending surfaces of sim-
ply supported rectangular plates with any transverse loading. With the solution
w(x1,x2) we can calculate the stress resultants My, M, , Mg, Q1, Q> and the stresses
o1, 02, 0g, Os and o4 using (8.6.27) and (8.6.28).

. Using (8.6.41) the equation for the natural frequencies of a simply supported

rectangular plate is

4

T
a)rzs = ph [D]]OC:}+2<D12+2D66)a3ﬁ32+D22ﬁs4]

with
B 5o Lp )
k

The fundamental frequency corresponds to » = s = 1 and is given by
) 4
(O]

—— | D11 +2(D12+ 2De¢s) (Z)2+Dzz (2)4}
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For a = b = 1 m and the given material properties we find the fundamental natural

frequency
1593,5

w1 = \/ph

Exercise 8.5. Consider a cylindrically orthotropic circular plate with a midplane
symmetric layer stacking under the conditions of axisymmetric loading and dis-
placements.

1. Develop the differential equations for in-plane loading. Calculate the stress re-
sultants for a solid disk (R, h,E,,Eg, V,¢) loaded &) with a radial boundary force
N,(R) = —N,, and B) with a body force hp, = hp®’r caused by spinning the
disk about the axis with an angular velocity @.

2. Develop the differential equations for transverse loading under the condition of
the first order shear deformation theory. Calculate the stress resultants for a solid
plate (R,h,E;,Eg,V,g) loaded by a uniform constant pressure p3(r) = —po and
o) clamped, respectively, B) simply supported at the boundary r = R.

Solution 8.5. With Sect. 2.1.6 we obtain x; = x,,x, = 0,x3 = z, 6] = 0,02 = Og,
O¢ = Oy, €] = &, & = €y, & = &-9. For axisymmetric deformations of circular disks
and plates all stresses, strains and displacements are independent of 0, i.e. they are
functions of r alone and g = 0,& = 0.

1. For an in-plane loaded cylindrical orthotropic circular disk under the condition
of axisymmetric deformations the equilibrium, constitutive and geometric
equations are:

e Equilibrium Equations (Fig. 8.7)
With cos(n/2 —d6/2) =sin(d6/2) ~ d6 /2 follow

Fig. 8.7 Disc element
(rdrd®)h
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d(rN,
(V r) *Neerri’:O
dr

e Constitutive Equations
Ny =A116 +A12€8g, Ng =Ap& +An€, No=0

e Geometric Equations

du u
& = —, €= , Yo = 0
dr r
These equations forming the following system of three ordinary differential equa-
tions

d(rN,
% 7N9 = —poh,
du u du u
Ny =Ai1—+A12 , No=Ap—+An
dr r dr r

involving three unknown quantities N,, Ng and u. Substituting the stress resul-
tants in the equilibrium equations yield one uncoupled differential equation for

u(r)
du du 1 S — _rpr

T e An
with 82 = Ay /Aq or

du 1du 8  p,

a2 rdr 27 Ap

o) Radial boundary force

—fr =0, N:(R)=-Nyo, Ri=0, Ry=R
1

The general solution of the differential equations follow with
u(r)=Cr*, A=48
as
u(r) =C re 4 Cor?
With R; = 0,R, = R we obtain C, = 0,C; = —N,o/[(A116 +A12)R%~'] and such

Ny(r) = —Npo (;)57] . No(r) = —Ny8 (;)571

Conclusion 8.1. For 6 = 1 we have an isotropic disk with the well-known solu-
tion N, = Ng = —N,¢. For 8 > 0, i.e. the circumferential stiffness exceeds the
radial stiffness, at » = 0 we have N, = Ny = 0, otherwise for § < 0, i.e. the ra-
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dial stiffness exceeds the circumferential, at » = 0 we have infinitely high stress
resultants or stresses, respectively.

B) Body force caused by rotation With p, = p@*r we obtain the solution of the
inhomogeneous differential equations as

1 pw? 1 pw?
A L 3o 3
ulr) =Gt = g = O 5o
For 6 = 1 follow the well-known solution
1-v2po? ,
= C — _—
u(r) 5 3
2. With Fig. 8.8 we obtain:
e Equilibrium Equations
d(rM, d
M) My —ro, =0, 4O 4 rpi—o
dr dr

e Constitutive Equations
M, = Dy1&+ DiaKg, Mg = D12Kr+ DKy,
dw
Qr = k§5A55 (Wr+ E

e Geometric Equations

d dw
o=V k=Y = (vt
dr r dr

Integrating the second equilibrium equation

X3

Mo 0, +do,

‘ M, +dM,

Fig. 8.8 Plate element Me
(rdrd@)h
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Or(r) = l (Cl /P3(")"d”>

and substituting M,, Mg and Q, in the first equilibrium equation yield

Py, dy, 1, 1 , Dy
Sy = c—/ ar), 82=22
" dr? + dr r pw Dy ! p3rer P Dy

The general solution has again the form

Wi(r) = Cor® + Cor™% 4y (1)

v, (r) is the particular solution of the inhomogeneous differential equation de-
pending on the form of the loading functions p3(r). The differential equation for
the plate deflection w(r) follows with

d
KAss— = 0, — K'Assy,
r
dw 1 1 1 S -5
— = — dr | — P — p
dr kSAss (Cl r r/p3(r)r r> Cor™ = Gr = + Y,

w(r) = ksiss (Cl lnr—/ i/m(r)rdrdr)

7Opt1 F—0p+1

—G——C Ci— [y

25p—|—1 31_5p+4 Ypdr

For a constant pressure p3(r) = —po we obtain

1 por’ & SRR S O N I

— C 1 e Gt 0 p
w(r) kSAss( vty 1+o, -3,

PR L por”

YT 2D (82 1) 8Dy(82-9)’

ar — pr’
D]]((Sg*l) 2Dl](6§*9)

v, (r) = Cor® 4+ Cyr % —

This general solution is not valid for 8, = 1 and §, = 3 because the particular
solutions v, for theses ,-values include terms coinciding with the fundamental
solutions r and r°. Therefore, the particular solutions must be determined in an-
other form. For 5,, =1, i.e. for the isotropic case, one can use Y, = Arlnr+ Br3
and for 6, =3 v, = Ar+ Br? and one obtains the general solutions

8 =1

w(r) = kal\ss (cl Inr+ pOT’Z> - ;C2r27C3lnr
+ G % (lnr— ;) n 6’;‘;?1,

v (r) = Cor+G; ; +Ci ;;r] fgg”
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8 =3

w(r) = ksiss (Cl Inr+ p(jTrz> ; iC2r4+C32—12
+G -G 16’;11 +4Z(g‘1‘1 (lnr_ i) 7

¥ (r) = Cor’ +C3ri3 —a ;11;11: " 121211 i

The constants C;,C>,C3 and Cy are determined from the boundary conditions at
the inner and outer plate edge. For solid plates with R; = 0, R, = R the constants
C; and C3 must be zero, otherwise y, and w tend to infinity at the plate center.
For 6 # 3 the general solution for solid plates is

2 2
por 1 r G iy,
= - C
w(r) 4 k§5A55+2Dll(53—9) 11, T
3
por
(r) = Coyrd — — 0
i (r) o 2011 (62—9)

o) Clamped solid circular plate (8, # 3)
The boundary conditions are y;(R) = 0,w(R) = 0 yield the constants C, and C4
and the solution as

R3O pltd, 4 R4(6p73)

_ Po 2 2 Po _
(r) = ( 1706, 4 41+95)

T 4kAss r)+ 2D, (82-9)

B) Simply supported solid circular plate (8, # 3)
We take now the boundary conditions w(R) = 0 and M,(R) = 0 and have the
solution

Po
w(r) = _4ksA55 (R2 _ }’2)2
Po 3Dy +D12)R*%

1
148, _ pl+6) R4
2D]1(5I%79) ((SPD11+D12)(1+6P)(r )+4( r )]

Note that if the transverse shear deformations are neglected we must put
kZsAss — oo, In the particular case k3;Ass — oo and 6, = 1 follow the well-known
solutions for the classical theory of isotropic plates, i.e.

@ v =g = n - ()]
B) W)= @) (TR )

- - - (]
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Exercise 8.6. A rectangular uniformly loaded symmetric cross-ply plate, Fig. 8.9, is
clamped at the edges x, = +b and can be arbitrary supported at the edges x; = *a.
The deflection w(x;,x;) may be represented in separated-variables form w(xy,x;) =

wij(x1,x2) = fi(x1)g;(x2).

1. Formulate one-term approximate solutions using the Vlasov-Kantorovich
method, (2.2.45) - (2.2.47), based on the variation of the potential energy IT(w).

2. Demonstrate for the special case of a plate clamped at all edges the extended
Kantorovich method using the Galerkin’s equations.

Solution 8.6. The differential equation and the elastic potential energy can be for-
mulated, Table 8.1 and Eq. (8.2.24),

*w *w *w

DiZE 42D 4D, T =
: 5')6‘]1 38x%8x§ 2 8x§ po:

with Dy = D11,D, = D23,D3 = D12 + 2D, p; = po
a b 2 2
1 %w %w
6= [ [ (Z2) (2
(w) 2 [ ”(8x%) 22(8)6%)
—a—p
0%w 92w 2w \*
2Dy — —= +4D — ] =2 dx;dx
T Pn ox? 9x3 * 66(8x18x2> Po| Grica

The one-term approximate solution Ww(xy,x2) = w;j(x1,%2) = fi(x1)g;(x2) has an
unknown function f;(x;) and a priori chosen trial function g;(x), which satisfy at
least the geometric boundary conditions at x, = =£b.

1. The variation 6IT of the elastic potential energy IT(w) yields
a b
1 *w *w %w
S (w) = / / TS, Paia) Iy (e
(w) 2 {( llax% i 8x§> (8x%)
—a—p

(o0 P (P
‘za)ﬁ 228)@ 8x%

X2

Fig. 8.9 Rectangular uni- x|
formly loaded plate, cross-ply
symmetrically laminated,
clamped at the longitudinal
edges xo = £b and arbitrary
boundary conditions at the
edges x| = +a a a




8.7 Problems 337

%’w %w
* 4Dss (8x18x2> 0 (8x18x2> —p05w} dr1dxz

Substituting w(x1,x2) = fi(x1)g(x2) one obtains

a

STT(w) = / [DOAFISF! +DiB(f!'Sf+ fif) + DnCL:Sf;

+ 4D66Dfl~/6fi/ — ﬁ()5fl] dx;

where
A= /g?dbe /gjgjdx27c / !)2dxy, D = /g] 2dx27pof/170gjdx2

Integrating B by parts yield

b
B=gg| - [(¢)du=-D
=gj8i|_,~ | (8) A=

—b

because g;(+b) = 0 for plates with clamped or simply supported edges x, = +b.
Now we integrated by parts the term

[ #rosan
of 811

/ 5! dvy = / Y dx = f155

/ £(8 ) dx

— i/lé‘fil f”é‘fl +/f;////6ﬁdx1

and the condition 6IT = 0 yields the ordinary differential equations and the nat-
ural boundary conditions for f;j(x;)

D]Afl-m/(xl) — 2D3Dfi”(x1) —|—D2Cfi(x1) = Po,
at x)==+a: [D]lAfi//(xl) —D12Df,-(x1)]6fi’(x1) = 07
[D11AS" (x1) — D1aDf] (x1) +4DesDf} (x1))8 fi(x1) = 0

If a plate edge is clamped, we have f = 0, f/ = 0, if it is simply supported, we
have f =0, f” = 0 and if it is free, we have
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(DuAf' +DBfi) =0, (DuAf]"+DiBf —4DesBf}) =0
The differential equation for f(x;) can be written in the form
7)) = 26 () + Ko f (1) =k

with _
DD3 4 _ CD2 _ Po
AD," "? 7 AD," "7 AD,
The solutions of the differential equation are given in App. E in dependence on
k2 < k2, k2 k2 or k2 > k2 in the form

2
k1:

4
)=Y CGPi(x1)+fp
=1

with f, = po/D»C. The solutions can be simplified if the problem is symmetric or
antisymmetric. The constants C; can be calculated with the boundary conditions
at x| = =*a.
2. In the special case of all plate edges are clamped the corresponding boundary

conditions are

dw ow

=ta:w=0,—=0, xp=4b:w=0,—=0

0x1 x>
The one-term deflection approximation is assumed again in the form w(x;,x;) =
wij(x1,%2) = fi(x1)g;(x2). The Galerkin’s procedure yields

a b

*w;; 04w;; 04w;;
Di—— +2D3—L +D, ’—po>g-dx2:0
{_/b ( ox} 0x29x3 x4 !

and we obtain

’ d*f; bdz d%f;
D1 [ g REZE / dngjdxz ot

b4

d*g
Dy ad g,dxz fi= / Pogjdxa
—b —b

Two of the integral coefficients must be integrated by parts
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b
F d%; dg; b dg;
dx, = 22 ‘ f/ =L ) dxs,
dng’ a0l J (dxz 2

b
d4gj an, ~ L8 "’ d’g; dgf"’ n / d’g; 2dx
J ad ST g3 8T Al dn |- g )

The results can be simplified because for the clamped edges follow

dg;

(4b) =0, ‘ -
gj( ) Ay |4b

and we obtain the same differential equation as in 1.

b dg; 2 dzf'
sz =4 ) dx '
/g /(dx2> 2lae F
b
d2
D, dfzjdm fi= / pogjdxz

—b

To improve the one-term approximative plate solution we present in a second
step now f;(x1) a priori and obtain in a similar manner a differential equation for
an unknown function g;(x2)

y d4gA y df; 2 ng.
2 J i j
2dx, | =82 _2p / S | =8
/f, 1 ™ 3 (l 1) 2 2
—a —a

a d2f 2 a
Dy /( ;) an | g = [ pofidi
JoNdn

In this way we have two ordinary differential equations of the iterative solution
procedure which can be written

d*f; d*f; _
D1Ag dx4 —2D3Dy, dxl JFDZCgfz Pog
DoA i _op oyt LETR

f dx2 3 dx2 1Ctgj = Pof

Both equations can be rearranged in the standard form, App. E

dfi o &fi g d'e ) &g
4t~ 2Kig o FRagfi=kpg, dx4 2k dx2 F kg = Koy
1 1

with
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5 _DgD3 T CeD; - Pog o  DiD3 4 _CfDZ o

k = = = = = =
187 ADy 8 T AD T AT T AD Y T AT A,

The solutions of both equations are summarized in App. E and depend on the
relation between k%g and k%g or k% ¢ and k% > Tespectively.
The iterations start by choosing the first approximation as

o =Ji(x1)g1(x2), W[zzl] = fo(x1)g1(x2), W[232] = f2(x1)g2(x2),...

In the special case under consideration the first approximation is

wio(x1,x2) = fi(x1)(x3 — b?)?

and satisfy the boundary conditions w = 0,9dw/dx; = 0,x, = £b. For a number
of widely used composite material we have k% > k%. Because the problem is
symmetric we have then the simplified solution

k
Sf1(x1) = Cj coshax; cosbx; + C; sinhax; sinbx; + k%g
28

The constants C;,C, can be calculated with

dfi
—+ = —_ =
fi(£a) =0, T, i 0

(0]

and wl% (x1,x2) is determined. Now one can start the next step

1

W[n](xl,xz) = fi(x1)g1(x2)

with the function fj (x;) as the a priori trial function. The iteration steps can be
repeated until the convergence is satisfying. In the most engineering applications

W[]Ol] (x1,x2) = fi(x1)g1(x2)

can be used as satisfying closed analytical solution, i.e. w[lll] (x1,x) is suitable for
engineering analysis of deflection and stresses in a clamped rectangular special
orthotropic plate with uniform lateral load and different aspect ratios.
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Chapter 9

Modelling and Analysis of Circular Cylindrical
Shells

In the previous Chaps. 7 and 8 we have considered beams and plates, i.e. one- and
two-dimensional structural elements with straight axes and plane reference surfaces.
Thin-walled laminated or sandwich shells can be also modelled as two-dimensional
structural elements but with single or double curved reference surfaces. To cover
shells of general shape a special book is necessary, because a general treatment
of shells of any geometry demands a detailed application of differential geometry
relations.

To give a brief insight into the modelling of shells only the simplest shell ge-
ometry will be selected and the following considerations are restricted to circular
cylindrical shells. The modelling and analysis of circular cylindrical shells fabri-
cated from fibre composite material, i.e. its structural theory, depends on the ra-
dius/thickness ratio R/h. For thin-walled shells, i.e. for R/h > 1 (R/h > 10), either
the classical or the first order shear deformation shell theory is capable of accu-
rately predicting the shell behavior. For thick-walled shells, say R/h < 10, a three-
dimensional modelling must be used.

Each single lamina of a filamentary composite material behaves again macro-
scopically as if it were a homogeneous orthotropic material. If the material axes of
all laminae are lined up with the shell-surface principal coordinates, i.e., the axial
and circumferential directions, the shell is said to be special orthotropic or circum-
ferential cross-ply circular cylindrical shell. Since the often used cylindrical shells
with closely spaced ring and/or stringer stiffeners also can be approximated by con-
sidering them to be specially orthotropic, a greater number of analysis have been
carried out for such shell type. If the material-symmetry axes are not lined up with
the shell principal axes, the shell is said to be anisotropic, but since there is no struc-
tural advantage for shells constructed in this way it has been not often subjected to
analysis.

In Chap. 9 there are only a short summarizing section on sandwich shells and
no special section considering hygrothermo-elastic effects. Both problems can be
simple retransmitted from the corresponding sections in Chaps. 7 and 8. Also a spe-
cial discussion of analytical solution methods will be neglected, because no general
shell problems are considered.

© Springer Nature Singapore Pte Ltd. 2018 341
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0_9
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9.1 Introduction

Chapter 9 gives a short introduction to the theory of circular cylindrical shells in the
frame of the classical shell theory and the shell theory including transverse shear
deformations. Figure 9.1 shows a laminated circular cylindrical shell with general
layer stacking, the global coordinates x; = x,x, = s = R@,x3 = z, and the principal
material coordinates 1 = x|,2 = x}. In the theory of circular cylindrical shells the
most complex problem is the modelling and analysis of laminated shells with an
arbitrary stacking of the layers and arbitrary loading. The at least complex problem
is a mid-plane symmetric cross-ply laminated shell with axially symmetric loads
using the classical shell theory. The mathematically modelling leads in this case to

Fig. 9.1 Circular cylindrical shell. @ Geometry, global coordinates x; = x,x, = s = R, b shell
middle surface, principal material coordinates x’l = 1,x’2 =2, fibre angle 6, ¢ laminate structure, n

layers, layer coordinates z(¥), layer thickness h(%) = z(&) — z(k=1)
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an ordinary differential equation. This type of stacking and loading will be primary
considered in Chap. 9, because analytical solutions can be derived. Generally as-
sumed is that each layer having a constant angle of wrap, constant volume ratio of
fibre to resin, and the fibre and resin are both isotropic and homogeneous within
themselves. The ply material axes, Fig. 9.1 b, will be rotated away from the global
axes by an angle 0, positive in the counterclockwise direction.

9.2 Classical Shell Theory

The following hypotheses are the basis to derivative the equations of the classical
shell theory:

e Displacements are small compared to the shell thickness, all strain-displacement
relations may be assumed to be linear.

e The Kirchhoff hypothesis is applicable, i.e. line elements normal to the middle
surface before deformation remain straight, normal to the deformed middle sur-
face, and unchanged in length after deformation.

e All components of translational inertia are included in modelling vibration prob-
lems, but all components of rotatory inertia are neglected.

e The ratio of the shell thickness h to the radius R of the middle surface is small as
compared with unity and Love’s first-approximation shell theory is used which
define a thin or classical shell theory: #/R < 1 and all terms 1+ (z/R) =~ 1. It can
be shown that this relationship is consistent with the neglect of transverse shear
deformation and transverse normal stress.

In addition we assume that each individual layer is considered to behave macro-
scopically as a homogeneous, anisotropic, linear-elastic material, that all layers are
assumed to be bonded together with a perfect bond and that each layer may be of
arbitrary thickness and may be arranged either symmetrically or unsymmetrically
with respect to the middle surface.

9.2.1 General Case

The governing differential equations are formulated in terms of the three middle-
surface displacement components (14| = uy, up = Uy, U3 = uy)

ui(x1,x2,0) = u(x,s), wua(x1,%2,0) =v(x,s), wuz(x;,x2,0) =w(x,s) (9.2.1)

The strain displacement relations for a circular, cylindrical shell of any material,
neglecting the effects of transverse shear deformation and using Love’s first approx-
imation are given by
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8_814 8_8\/ w 8_8u+8v
T ox’ T 9s R’ T 9s 0 ox’ 922)
. *w . 82w+18v . 282w+18v o
Too9x27 7 9s2 T Ras’ Y Toxds  Rx
The total strains at a arbitrary distance z of the middle surface are
E =&+ KZ, & =&TKZ, &= &t Kl
or
g=¢+xKz, j=(1,2,6) = (x,s,xs) (9.2.3)

Each individual layer is assumed to be in a state of generalized plane stress, the
Hooke’s law yields

o =0We;, ij=1(1,2,6) (9.2.4)

and in the general anisotropic case the Q;; matrix is full populated (Table 4.2).

Using again the Love’s first approximation 1+ (z/R) & 1), i.e. neglecting the
difference in the areas above and below the middle surface z = 0, the force and
moment resultants, Fig. 9.2, are defined analogous to plates

12 h)2
Ny = / Gidz, M= / Gizdz, i=(1,2,6) = (x,s5,x5) 9.2.5)
“h)2 “h)2

Putting Eq. (9.2.4) into (9.2.5) yields the constitutive equations in the known form

)= 55 [4 029

with

oM,

axdx

Fig. 9.2 Positive directions for stress resultants
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h)2
2
(Aij,Bij, Dij) = /(17171 )Qijdz
—h/2

i.e. for n laminate layers

k=1
By — 1 iQij (Z(1<)27Z(1<—1)2)7
2 kil
Djj; = : ZQij (Z(k)3 Z<k7])3)
3&a
NT = [NstNxs]; MT = [Mstst]v 9.2.7)
£T = [gxgs 8)6&]7 KT = [Kx Ks sz] o
The equilibrium equations follow with Fig. 9.2 as
ON,  INy OM, = My
ox + os + P ’ ox os O ’
aNxs aNs Os aMxr aMs
=5 =0 : —0.=0 9.2.8
ox + os + R tps ’ ox os O ’ ( )
20, dQ; N;
ox + ds _§+pz =0

The moment equations (9.2.8) can be used to eliminate the transverse shear resul-
tants and one obtains

INy  ONys

ax "oy T =0,
ON. N, 1 (oM, OM,

x5 s s X o 92.9
ox  Jds JrR( Js | ox > ps =0, ©29)
9’M, N *Mys | O*M; N N 0
ox? oxds a2 R PP T

Substituting Egs. (9.2.6) into (9.2.9) yields a set of three coupled partial differential
equations for the three displacements u, v, w, which can be written in matrix form

Ly Lz Ly u Dx
Ly Loy Loz | [ v | =— | Ps (9.2.10)
L3y L3y L3z | [ w Dz

The linear differential operators L;; are defined in App. D. For symmetrically ar-
ranged layers the differential operators can be simplified, but the matrix (9.2.10)
stay full populated (App. D).

If we consider natural vibrations of laminated circular cylindrical shells in
Egs. (9.2.9) and (9.2.10) the distributed loads py,ps,p, are taken zero, i.e.
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px = ps = p, = 0, but all components of translatory inertia must be included.
Without detailed derivation on obtains

ONy  ONy __d%u
ox o5 =Poga
2
ONes | Ny | 1 (OM oMy _ ) 0% 9.2.11)
ox ds R\ 9ds ox 01?2
M, _9*M,, 9*M,; N; *w
) T2t 40 — % =Pz
ox oxds ds R ot
and Eq. (9.2.10) changes to
Ly Lz L3 u 92w
Ly Ly Lys | |v | = Pos T (9.2.12)
L3y L3y L3z | | w
with
0

n

=Y [ o= 3ot
=1t k=1

The stress resultants and the displacement are now functions of x, s and 7. p(()k) is the
mass density of the kth layer, py the mass inertia with respect to the middle surface.

9.2.2 Specially Orthotropic Circular Cylindrical Shells Subjected
by Axial Symmetric Loads

Now we consider cross-ply laminated circular cylindrical shells. The laminate stack-
ing may be not middle-surface symmetric, but the fiber angles are 8 = 0° or § = 90°
and the principal material axes 1’ — 2’ — 3 coincide with the structural axes x, s,z, i.€.
the stiffness Ajg = Az = 0,D16 = D2 = 0. In the case of axial symmetry loading
and deformations there are both, all derivations d/ds and v, Nys, Mys zero. For the
loads per unit of the surface area are the following conditions valid

Px:O7 pS:O7 pZ:pZ(x)

The equilibrium equations (9.2.8) reduce to

dN, dQ, N dM,
dx " dx R tp=0, dx O
or eliminating Q,
dn, d’M, N,
=0, 2= p, (9.2.13)
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347
The strain-displacement relations follow from (9.2.2)
du w d*w
gx:av ES:E7 KX:_W7 st:O7Ks:sz:O 9.2.14)
and the stresses from (9.2.4) and (9.2.14) with Q16 = Q26 = Qg6 = 0
k k k o (du  dPw oW
ol = 0l (e, + 1) + 0We, = o (a ‘ZW> +0l) =
k k k o (du  d*w oW
o) = Q(z)(8x+ZKX) + ng)es = Q(IZ) (a e )T Q(zz)E,
Q(k) _ E)Ek) Q(k) _ Es(k) Q(k) _ Vs(f)E;Ek) (9.2.15)
B Ry S T U1V R IV
yo o H
X8 _ SX
Y EY

The constitutive equations (9.2.6) can be written as follow

Ny=A11& + A28 + By Ky,
Ny=A128, + A& + Bioky,

9.2.16
M,=B11& + B12& + D11 Ky, ( )
M=B2&; + B2 & + D12 Ky,

with &, & and K, from Eq. (9.2.14).

Putting (9.2.12) and (9.2.14) in the equilibrium equations (9.2.13) one obtains
after a rearrangement

d’u +A12 dw d3w _0
11dx2 R dx lldx3 — Y,
AnDy —BY ] d'w 2 [ApBy, B d*w
A d* R Ay 2] a2
1 [Aj1Apn — A2, A Ny
2| T | W=EP:— 5
R? A A R
and with ) 2
A Dy —B I ApApn—A
DR="—""" "1 4)%= 1 9.2.17
Aqq ’ DRR? Al ( )

can finally be written

d*w 2 |ApBy 2w 4 1 Ajp Ny
WJFW{ ALl — B> @+4)L w=-—=|p — (9.2.18)

AL R

This is a ordinary differential equation of fourth order with constant coefficients and
can be solved by standard methods .
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For the most important case of a symmetrical layer stacking Eq. (9.2.18) can be
reduced with Bj; = B1, = 0,D% = Dy as

1 A 1 AjjAy, —A?
( 12N">, 424 72 771 (9.2.19)

dxt "o\ AR T DR A

The inhomogeneous linear differential equation of fourth order has constant coeffi-
cient and can be analytically solved (App. E)

w(x) = wi(x) + wy (x)
The homogeneous solution wy, (x) = Ce™ yields the characteristic equation
at+414 =0
with the conjugate complex roots
a4 =+A(1£1), i=+v—1 (9.2.20)

and with e = cosh A x =+ sinh Ax, eT4* = cos Ax %1 sin A x one obtains the solution
of the homogeneous differential equation as

wp(x) = Cj coshAxcosAx+ Cycosh Axsin Ax

+ C3sinhAxcos Ax+ Cysinh Axsin Ax 022D

or
wp(x) = e*“(Cl cosAx+ CysinAx) + C}LX(C3 cos Ax + CysinAx) (9.2.22)

The particular solution w,(x) of the inhomogeneous equation depends on the load-
ing term.

In solving (9.2.19), another solution form may be utilized, the so-called bending-
layer solution. Note the Egs. (9.2.16) for the symmetrical case, i.e.

d>w _dM, diw
Me=—Duga Q=g = Puga

the solution can be written as:

_ MO —},x . _ _ QO —},X
w(x) = 2lzD“e (sin Ax — cosAx) 2130116 cosAx
Mi 209 (gin (L —x) — _
+ ZAzDue (sinA(L—x) —cosA(L—x)) (9.2.23)
Or

e A cos A (L —x) + wp(x)

2},3D11

Instead of the general constants C;,i = 1,2, 3,4 the resultant stress moments M, M},
and resultant stress forces Qg, Oy, at x = 0 respectively x = L are used as integration
constants. To determine the w),(x) solution one have to consider N, in Eq. (9.2.19)
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as a constant value following by boundary condition and p(x) have to be restricted
to cases where d*p(x)/dx* = 0, what is almost true from view point of practical
applications. It can be easy seen that

(9.2.24)

wplo) = g [P0~ 52

“mpy P T AR

is a solution of the inhomogeneous differential equation (9.2.19).

The advantage of the solution from (9.2.23) is easily seen. The trigonomet-
ric terms oscillate between 1 and are multiplied by exponential terms with a
negative exponent which yields to an exponential decay. If we set Ax = 1.57
or A(L—x) = 1.57 then is e 7 & 0.009, i.e. the influence of the boundary
values My, Qo or My, Qy, is strong damped to < 1%. With 0 < x < 1.57/A or
0 <L—x<1.57/A bending boundary layers are defined which depend on the shell
stiffness.

The important point is that at each end of the shell a characteristic length Lp
can be calculated and the Mj- and Qp-terms approach zero at the distance x > Lp
from x = 0 while the M- and Q;-terms approach zero at the same distance Lp
from x = L. In the boundary layer region bending stresses induced from My, Qg a
My, Qy are superimposed to membrane stresses induced from p,. Looking at a long
shell, Fig. 9.3, with L > Lp in the region A-B only My, Qp and w), are non-zero,
in the region C-D only My,Q; and w, and in the region B-C only the particular
solution w,, is nonzero, i.e. in this region only a membrane solution exists. With the
calculated w(x) the first differential equation (9.2.17) with Bj; = 0 can be solved
and yields the displacement function u(x). It should be noted that only some terms
of u(x) decay away from the boundary edges.

In the case of axially symmetric loading and deformation the bending stresses in
each lamina are given by
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Fig. 9.3 Long circular cylindrical shell: Bending boundary regions (A-B) and (C-D), membrane
region (B-C)
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The transverse shear stress o, follows analogous to the classical beam equations
with (7.2.31).

Summarizing the results of the classical shell equations one can draw the follow-
ing conclusions:

e The most general case of laminated circular cylindrical shells is that of arbitrarily
laminated anisotropic layers, i.e. angle-ply layers arbitrarily arranged. The anal-
ysis of these shells is based on approximately analytical methods using Ritz-,
Galerkin- or Kantorovich method and numerical methods , e.g. FEM.

e Cross-ply laminated shells, i.e shells with orthotropic layers aligned either ax-
ially or circumferentially and arranged symmetrically with respect to the shell
middle surface have governing shell equations which are the same as those for
a single-layer specially orthotropic shell. For axis symmetrical loading the shell
equations reduce in the static case to ordinary differential equations of the x-
coordinate and can be solved analytically. If the orthotropic layers are arranged
to an unsymmetric laminated cross-ply shell then bending-stretching, coupling is
induced and the governing equations are more complex.

e When circular cylindrical shells are laminated of more than one isotropic layer
with each layer having different elastic properties and thickness and the lay-
ers are arranged symmetrically with respect to the middle surface, the govern-
ing equations are identical to those of single layer isotropic shells. However, if
the isotropic layers are arranged unsymmetrically to the middle surface, there is
a coupling between in-surface, i.e stretching and shear, and out-of-surface, i.e
bending and twisting, effects.

e Additional to the Kirchhoff’s hypotheses all equations of the classical shell the-
ory assumed Love’s first approximation, i.e. the ratio /R is so small compared
to 1 that the difference in the areas of shell wall element above and below the
middle surface can be neglected.

9.2.3 Membrane and Semi-Membrane Theories

Thin-walled singe layer shells of revolution can be analyzed in the frame of the so-
called membrane theory. One neglects all moments and transverse stress resultants,
all stresses are considered approximatively constant through the shell thickness i.e.
there are no bending stresses and the coupling and bending stiffness are taken to be
zero in the constitutive equations. In some cases it is possible to use the membrane
theory for structural analysis of laminated shells. The efficient structural behavior of
shells based on the shell curvature that yields in wide regions of shells of revolution
approximately a membrane response upon loading as the basic state of stresses and
strains. The membrane theory is not capable to predict sufficient accurate results in
regions with concentrated loads, boundary constraints or curvature changes, i.e. in
regions located adjacent to each structural, material or load discontinuity. Restrict-
ing the consideration again to circular cylindrical shells with unsymmetric cross-ply
stacking we arrive the following equations
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The membrane theory yield three equilibrium conditions to calculate three unknown
stress resultants, i.e the membrane theory is statically determined. The membrane
theory is the simplest approach in shell analysis and admit an approximative an-
alytical solution that is very convenient for a first analysis and design of circular
cylindrical shells.

But the problems which can be solved by the membrane theory are unfortunately
limited. To avoid generally to use the more complex bending theory we can con-
sider a so-called semi-membrane theory of circular cylindrical shells. The semi-
membrane theory is slightly more complicated than the membrane theory but more
simpler than the bending theory. The semi-membrane theory was first developed by
Vlasov on the basis of statically and kinematically hypotheses.

If one intends to construct a semi-membrane theory of composite circular cylin-
drical shells bearing in mind the hypotheses underlying the classical single layer
shell theory and the characteristics of the composite structure. The semi-membrane
theory for composite circular cylindrical shells introduces the following assump-
tions:

e The shell wall has no stiffness when bended but in axial direction and when
twisted, i.e. D11 = Dgg = 0,B11 = Bgg = 0.

e The Poisson’s effect is neglected, i.e. Ajp = 0,B12 = 0,D1, = 0.

e With the assumptions above follow M, = M,; = 0,0, =0.

e The cross-section contour is inextensible, i.e.

o dv LA
‘" ds R
The shear stiffness of composite shells can be small. Therefore, the assumption
of the classical single layer semi-membrane theory that the shear stiffness is in-
finitely large, is not used.

Taking into account the assumptions above, one obtains the following set of eleven
equations for eleven unknown functions.
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The system (9.2.27) can be reduced. For the circular cylindrical shell the unknown
functions and loads can be represented with trigonometric series and after some
manipulations we obtained one uncoupled ordinary differential equation of fourth
order for wy(x),n = 0,1,2,.... The detailed derivation of the governing solutions
shall not be considered.

9.3 Shear Deformation Theory

Analogous to plates, considered in Chap. 8, the classical shell theory is only suffi-
ciently accurate for thin shells. For moderately thick shells we have to take, at least
approximately, the transverse shear deformation effects into account. The Kirch-
hoff’s hypotheses are again relaxed in one point: the transverse normals do not
remain perpendicular to the middle-surface after deformation, but a line element
through the shell thickness perpendicular to the middle-surface prior loading, un-
dergoes at most a translation and rotation upon the load applications, no stretching
or curvature.

The following considerations are restricted to axial symmetrical problems of
symmetrical laminated cross-ply circular cylindrical shells including transverse
shear deformation. We start with a variational formulation including the trapeze
effect, i.e. Love’s first approximation is not valid. For axial symmetrical problems
we have the following simplifications of the shell equations:

All derivatives d/ds(...) are zero and for the strains, stress resultants and loads we
assume
&5 =0, K,=0, Kys=0,
Nys =0, Mys =0, (9.3.1)
ps=0, px=0, p.=p:(x)

The kinematical assumptions yield with (5.1.2) the shell displacements

uy(x,z) = u(x) + 2y (x),

us(x,z7) =0, (9.3.2)
uz (x,2) = w(x)
The strain-displacement relations are
du  dyy
& = —
* = 4 +z P
g = — 9.3.3)
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and the stresses in the kth layer of the shell are
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The stress resultant forces and couples are defined as

N, = Z /o§"> (14 )dz N = Z /Gs(k)da

Mx—Z/Gx 1+ dz, Z/Gs 2dz,
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and one obtains with (9.3.4) and (9.3.6)
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The stiffness coefficients are
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(9.3.4)

(9.3.5)

(9.3.6)

(9.3.7)
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and k3 is the shear correction factor.

The variational formulation for the axial symmetrically circular cylindrical shell
with symmetrically laminated 6 = 0° and 6 = 90° laminae and coincided principal
material and structural axes is given as
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9.3.9)

Using Eq. (9.3.3) one obtains

2
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Equation (9.3.10) can be used for solving shell problems by the variational meth-
ods of Ritz, Galerkin or Kantorovich. It can be also used to derive the differential
equations and boundary conditions but this will be done later on the direct way.

Hamilton’s principle is formulated to solve vibration problems. The potential
energy function II is given with (9.3.10) but all displacements are now functions of
x and the time ¢. If we analyze natural vibrations the transverse load p, is taken zero.
The kinetic energy follows as
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In Eq. (9.3.11) p®¥) is the mass density of the kth layer, py and p, are the mass
and the moment of inertia with respect to the middle surface per unit area and p;
represents the coupling between extensional and rotational motions. p; does not
appear in equations for homogeneous shells.

Now with the Lagrange function L(u,w, ) = T (u,w, W) — IT(u,w, W) the
Hamilton’s principle is obtained as

15}
6/L(u7w, v, )dr =0 (9.3.12)

3

The direct derivation of the differential equations for symmetrical cross-ply circular
cylindrical shells follow using the constitutive, kinematics and equilibrium equa-
tions. The stiffness matrix is defined as

N [A0] [e s as.s
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For symmetric cross-ply shells all B;; are zero and also the A;;,D;; with
(ij) = (16),(26) and (45). Such we have

A]1A12 0 Dy Dy 0 kS A 0
A= |A1nA» 0 |, D= DDy 0 |, AS_{ﬁOSSksA }
0 0 Ag 0 0 Ags 447744
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The static equilibrium equations are identical with (9.2.8). For vibration analysis
inertia terms have to be added and one can formulate
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Po, P1, P2 are like in (9.3.11) generalized mass density and are defined in (8.3.9).
Putting the constitutive equations (9.3.12) in the equilibrium equations (9.3.14) the
equations can be manipulated in similar manner to those of the classical theory and
one obtains the simultaneous system of differential equations
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(9.3.15)

The linear differential operators are defined in App. D.2.

For free vibrations the loads py, ps, p; are zero and the shell will perform sim-
ple harmonic oscillations with the circular frequency @. Corresponding to simple
supported conditions on both ends of the cylinder, i.e

Nx:O7V:O7W:O7MX:O7VIS:O7

the spatial dependence can be written as products of two trigonometric functions
and the complete form of vibrations can be taken as

u(x, @,t) = i i Uys€' 2! cOS Opxcosne,
r=1s=1
v(x,,t) = i i V€' sin aguxsinng,
r=1s=1
w(x,@,1) = i ineiwmt sin oy xcosng, (9.3.16)
r=1s=1
Ve(x, @,1) = i i W,e' @ cos ot xcosng,
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where Uy, Vys, Wy, P, .. denote amplitudes, oy, = mn /I, m,n are the longitudinal
and the circumferential wave numbers. Substituting Eqgs. (9.3.16) into (9.3.15) re-
sults in a homogeneous algebraic system and its solutions for a particular pair (m,n)
gives the frequency and amplitude ratio corresponding to these wave numbers. For
arbitrary boundary conditions the Ritz’ or Galerkin’s method can be recommended
to obtain the characteristic equations for solving the eigenvalue problem. Then the
natural frequencies and the mode shapes can be calculated. The solution process is
manageable, but involved.

If one restricts the problem to statics and to axially symmetrical loading
p: = pz(x) the Egs. (9.3.13) - (9.3.15) can be simplified:

e Equilibrium equations

dNy dM, dox N
= —_ = _— == . .1
=0 — ot p=0 9.3.17)

e Strain-displacement equations

dy, dw
Ex’ &c = Vit 3o (9.3.18)
e Constitutive equations
Ny = A& +AnRs,
Ny = A&+ Anég;, ©3.19)
d 3.
M, = Dy %,
Ox = k§5A55£xz

All derivatives d/ds(...) and v, &y, Ky, &, Nxs, Mys, Qg are zero. The stress resultant-
displacement relations follow as

du w
Ny =An—+An,

dx R

du w
Ny = AlZa +A22E7

dy, (9.3.20)
M, = 01157

dw
O = k§5A55 (‘/’x—F a)
With dN,/dx = 0 we have N, = const = Ny and one obtains

du 1 w
A (Ny-a —) 9.3.21
& ApL ( 0—Any ( )

The equilibrium equation (9.3.17) for Q, yields



358 9 Modelling and Analysis of Circular Cylindrical Shells

Ay N _ L (N
aw \V" T ax ) T kA \R P

T | . du A w (9.3.22)
= —k§5 Ass | R 1245 2y Pz
and the equilibrium equation dM, /dx— Q, =0
d?y, dw
Dy _dxzx — kssAss (fo + a) =0 9.3.23)

After some manipulations follow with (9.3.22), (9.3.23) two differential equations
for y, and w as

dl//x_idz_er 1 [1(@%@3)4
— - |
dx A2 ' kSAss R \Aqp An R (9.3.24)
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Differentiating the second equation (9.3.24) and eliminating y, the first equation
leads to one uncoupled differential equation of fourth order for w(x)

d*w 1 1 ApAn —AL w1 Ajdy —Al,
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With k25As5 — o Egs. (9.3.25) simplify to the corresponding equations of the clas-
sical shell theory (9.2.19).

The governing equation of the axisymmetric problem for or circular cylindrical
shell in the frame of the shear deformation theory can be written as

d*w d*w
7 kiga KBw =k, (9.3.26)
with ) )
o 1 1AnAn—-Ap 4 1 1 Andn—Ajp
! k§5A55 R Al] ’ 2 k§5A55 R? D, lA]l
L 1 ( Alp NOJr ) 1 d’p.
= -— _—— p —
PV D\ At R %) DiikisAss dx?

The differential equation can be analytical solved

w(x) = w(x) +wp(x)
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The particular solution w,,(x) has e.g. with d>p,/dx* = 0, the form

ky  R’p,—RA12Ny

wy(x) = -2 = (9.3.27)
r) K AnAn—A}
The homogeneous solution wy,(x) = Ce™ yield the characteristic equation
at =230’ + k5 =0 (9.3.28)

with the roots
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which can be conjugate complex, real or two double roots depending on the relations
of the constants k and k5.
The general solution can be written as (App. E)

M-

w(x) =) GPi(x)+wp(x)

i=1

The functions @;(x) are given in different forms depending on the roots of the char-
acteristic equation (9.3.28). The roots and the functions @;(x) are summarized in
App. E. The most often used solution form in engineering application is given for
k3 > k3.

For short shells with edges affecting one another, the @;(x) involving the hy-
perbolic functions are convenient. If there are symmetry conditions to the middle
cross-section x = L/2 the solution can be simplified, for we have &3 = &, = 0.
For long shells with ends not affecting one another applying the ®;(x) that involve
exponential functions.

Analogous to the classical shell solution for long shells a bending-layer solution
can be applied. Only inside the bending-layer region with the characteristic length
Lp the homogeneous part wy, and the particular part w), of the general solution w have
to superimposed. Outside the bending-layer region, i.e for x > Lg or (L —x) > Lg
only w), characterizes the shell behavior.

Summarizing the results of the shear deformation shell theory one can say

e If one restricts the consideration to symmetrical cross-ply circular cylindrical
shells subjected to axially symmetric loadings the modelling and analysis is most
simplified and correspond to the classical shell theory.

e In more general cases including static loading and vibration and not neglecting
the trapeze effect the variational formulation is recommended and approximative
analytical or numerical solutions should be applied.

e Circular cylindrical shells are one of the most used thin-walled structures of con-
ventional or composite material. Such shells are used as reservoirs, pressure ves-
sels, chemical containers, pipes, aircraft and ship elements. This is the reason for
a long and intensive study to model and analyze circular cylindrical shells and as
result efficient theories and solutions methods are given in literature.



360 9 Modelling and Analysis of Circular Cylindrical Shells

9.4 Sandwich Shells

Sandwich shells are widely used in many industrial branches because sandwich con-
structions often results in designs with lower structural weight then constructions
with other materials. But there is not only weight saving interesting, but in several
engineering applications the core material of a sandwich construction can be also
used as thermal insulator or sound absorber. Therefore one can find numerous lit-
erature on modelling and analysis for sandwich shells subjected static, dynamic or
environmental loads .

But as written in Sects. 7.4 and 8.4 sandwich constructions are, simply consid-
ered, laminated constructions involving three laminae: the lower face, the core, and
the upper face. And by doing so, one can employ all methods of modelling and
analysis of laminated structural elements.

It was discussed in detail in Sect. 8.4 that, considering sandwich structural ele-
ments, we have to keep in mind the assumptions on the elastic behavior of sand-
wiches. Such there are differences in the expressions for the flexural bending and
transverse shear stiffness in comparison with laminated circular cylindrical shells
and essential differences in the stress distribution over the thickness of the shell
wall. The stiffness parameter for sandwich shells depend on the modelling of sand-
wiches having thin or thicker faces, in the same manner as for plates, Egs. (8.4.1)
and (8.4.2).

For sandwich constructions generally the ratio of the in-plane moduli of elasticity
to the transverse shear moduli is high and transverse shear deformations are mostly
included in its structural modelling. For this reason, the first order shear deformation
theory of laminated shells is used in priority for sandwich shells. But for thin-walled
sandwich shells with a higher shear stiffness approximately the classical sandwich
theory can be used.

The correspondence between laminated and sandwich shells is for vibration or
buckling problems limited and only using for overall buckling and vibration. There
are some special local problems like face wrinkling and core shear instability in
buckling or the face must be additional considered as a shell of elastic foundation
on the core and also shear mode vibration can occur where each face is vibrating
out of phase with the other face. These problems are detailed discussed in a number
of special papers and can not considered in this book.

9.5 Problems

Exercise 9.1. A circular cylindrical sandwich shell has two unequal faces with the
reduced stiffness Qtill,Q%l and the thicknesses A1, 3. The shell has an orthotropic
material behavior and the material principal axes shall coincide with the structural
axes x,s. The core with the thickness 4° does not contribute significantly to the
extensional and the flexural shell stiffness. The lateral distributed load is p, = p,(x).
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Formulate the differential equation using a perturbation constant to characterize the
asymmetry of the sandwich and find the perturbation solution way.

Solution 9.1. The shell problem is axially symmetric. In the frame of the classical
shell theory one can use the differential equation (9.2.18)

d4W 2 A12311 d2 4 1 A12 N
— — B | — +42%w
dx4+RDR{ An el T E R\ A R

The stiffness parameter are calculated for sandwiches with thin faces, Sect. 4.3.2,
h =~ h¢

f3 hf3
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Bj; and Dy can be calculated analogous. A asymmetry constant can be defined as

Qf3 JAE
= B _ Q?l hf
VDndn N 0% s
Ol
For a symmetric sandwich wall is Bj; = 0 and so 11 = 0. For an infinite stiffness of

face 1 follows 1 — —1 and of face 3 n — +1, i.e. the constant 1] is for any sandwich

construction given as
—1<n<+1

The differential equation (9.2.18) can be written with the constant 1 as

C14_W+ 2 [ApyvDi VALBRYDi W 4ate — 1 A Ny
dx*  RDR| /A B dx2 “DR\" AR

Since || < 1 one can find w(x) in the form of a perturbation solution

0= Y waln”
n=0

For n = 0 follow

d4W0 1 A12N
W0 gptwy = ——
a MO TR (pz An R

and forn > 1
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2 JApyDu  vAnBiyDi ndzwn—l
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+ 40w, =

The left hand side corresponds to the middle-surface symmetric shell with axially
symmetric loading. The right hand side corresponds to the second derivation of the
previously obtained w-solution.

Conclusion 9.1. The perturbation solution yield the solution of the differential equa-
tion as a successive set of solutions of axially symmetric problems of which many
solutions are available. The perturbation solution converges to the exact solution. In
many engineering applications w(x) = w,(w) + 1wy (x) will be sufficient accurate.

Exercise 9.2. A symmetrical cross-ply circular cylindrical shell is loaded at the
boundary x = 0 by an axially symmetric line pressure Qg and line moment M.
Calculate the ratio My / Qg that the boundary shell radius does not change if the shell
is very long.

Solution 9.2. We use the solution (9.2.23) with w), = 0 and neglect for the long shell
the influence of My and QO

My

w(x) = D, e M (sinAx — cos Ax) — %OD” cosAx
The condition of no radius changing yields
My Qo My 1
=0)=0=— — 0= — = ——
w(x ) 2A2D(;  2A3Dy; Qo A

Exercise 9.3. For a long fluid container, Fig. 9.4 determinate the displacement w(x)
and the stress resultants Ns(x) and My (x). The container has a symmetrical cross-ply
layer stacking and can be analyzed in the frame of the classical laminate theory.

Solution 9.3. For a long circular cylindrical shell the solution for wy(x), Eq.
(9.2.22), can be reduced to the first term with the negative exponent

Fig. 9.4 Long fluid container,
L>Lg / s
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wi(x) = e *(Cy sin Ax + Cy cos Ax)

The particular solution w),(x) follow with

) =po(1-7)

and Eq. (9.2.24) as

The boundary constraints are

Po dw(0) Po x
0)=0=0C =— . Y 0= = — (1_ )
w(0) 2T, VY, L
and we obtain the solutions
w(x) = ﬁOD” {1 - z - {cosl)ﬂ— (1 - z) sinlx} e*}”x}
In addition,
du w
Ny =Aj1& +Ang :Al]a +A22E
i.e. with g, =0
_Ax d?w dM, d*w
Ny = TW(X% M, =D 1k, = *Dllwv O = ey :*Dn@
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Exercise 9.4. Consider a cantilever circular cylindrical shell, Fig. 9.5. The normal
and shear forces N, and N,y as are distributed along the contour of the cross-section
x = L that they can reduced to the axial force Fy, the transverse force Fy, the bending

moment Mg and the torsion moment My. Calculate the resultant membrane
forces with the membrane theory.

Solution 9.4. With (9.2.26) we have the following equations

stress

FV MB

] J B\ M <"’R

Fig. 9.5 Tension, bending and torsion of a cantilever circular cylindrical shell
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INy 3 ON, o ONys
ox P 9y T TP g

Ny = Rpm
and p, = py = py = O yield
Ny =0, N, =const, N, =const

The distributions of Fy, Fyv, Mg and My over the cross-section contour x = L can be

represented as
1

Fy+ M
2R \\HT TR 089 )

1 M .
Ny(x=L) = IR (% +2Fvsm(p>

and yield the reduced forces Fy, Fyy and moments Mg, Mt

£
=

[

A
[

T
2 / Nix=L)Rdp = Fy,
0

T T
1
2 / Nes(x=L)sin pRdg = — / 2Fy sin> oRdQ = Fy,
0 0

/2 /2
4/NX()C:L)RCOS(pd(P = %MB /0052 odp = Mp,
0 0
/2 n/2
2 / RNy(x=L)Rdp = Rl—” / M7rRdg = My
0 0

The equilibrium equations yield

Fy cos @
= My R(L—
Nx(x) 7R [ B+ V( x)] 7R )
Ns(x) =0,
My Fy .
Ny = -V
s = orri2 TR



Part IV

Modelling and Analysis of Thin-Walled
Folded Plate Structures



The fourth part (Chap. 10) includes the modelling and analysis of thin-walled folded
plate structures or generalized beams. This topic is not normally considered in stan-
dard textbooks on structural analysis of laminates and sandwiches, but it is included
here because it demonstrates the possible application of Vlasov’s theory of thin-
walled beams and semi-membrane shells on laminated structural elements.
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Chapter 10
Modelling and Analysis of Thin-walled Folded
Structures

The analysis of real structures always is based on a structural and mathematical
modelling. It is indispensable for obtaining realistic results that the structural model
represents sufficiently accurate the characteristic structure behavior.

Generally the structural modelling can be divided into three structure levels

e Three-dimensional modelling. It means structural elements, their dimensions in
all three directions are of the same order, we have no preferable direction.

o Two-dimensional modelling. One dimension of a structural element is significant
smaller in comparison with the other both, so that we can regard it as a quasi
two-dimensional element. We have to distinguish plane and curved elements e.g.
discs, plates and shells.

e One-dimensional modelling. Here we have two dimensions (the cross-section)
in the same order and the third one (the length) is significant larger in com-
parison with them, so that we can regard such a structural element as quasi one-
dimensional. We call it rod, column,bar, beam or arch and can distinguish straight
and curved forms also.

The attachment of structural elements to one of these classes is not well defined
rather it must be seen in correlation with the given problem.

Many practical problems, e.g., in mechanical or civil engineering lead to the
modelling and analysis of complex structures containing so-called thin-walled ele-
ments. As a result of the consideration of such structures a fourth modelling class
was developed, the modelling class of thin-walled beams and so-called beam shaped
shells including also folded plate structures. In this fourth modelling class it is typ-
ical that we have structures with a significant larger dimension in one direction
(the length) in comparison with the dimensions in transverse directions (the cross-
section) and moreover a significant smaller thickness of the walls in comparison
with the transverse dimensions.

In Chap. 7 the modelling of laminate beams is given in the frame of the
Bernoulli’s and Timoshenko’s beam theory which cannot applied generally to thin-
walled beams. The modelling of two-dimensional laminate structures as plates and
shells was the subject of the Chaps. 8 and 9. In the present Chap. 10 the investi-
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gation of beams with thin-walled cross-sections and beam shaped shells especially
folded structures is carried out. Chapter 10 starting in Sect. 10.1 from a short recall
of the classical beam models. In Sect. 10.2 a generalized beam model for prismatic
thin-walled folded plate structures is introduced, including all known beam models.
Section 10.3 discusses some solution procedures and in Sect. 10.4 selected problems
are demonstrated.

10.1 Introduction

Analyzing thin-walled structures it can be useful to distinguish their global and local
structural behavior. Global bending, vibration or buckling is the response of the
whole structure to external loading and is formulated in a global coordinate system.
A typical example for global structure behavior is the deflection of a ship hull on
the waves. But the deflections and stresses in a special domain of the ship e.g. in the
region of structure loading or deck openings or the vibrations or buckling of single
deck plates represent typical local effects.

A necessary condition for a global analysis is that the geometry of the structure
allows its description in a global co-ordinate system, i.e. the thin-walled structure is
sufficient long how it is given in case of a quasi one-dimensional structure.

Of course there are interactions between global and local effects, and in the most
cases these interactions are nonlinear. Usually the global analysis is taken as the
basic analysis and its results are the boundary conditions for local considerations
by using special local co-ordinate systems. The reactions of local to global effects
whereas are neglected.

From this point of view the global analysis of thin-walled beams and beam
shaped shells can be done approximately by describing them as one-dimensional
structures with one-dimensional model equations. For such problems the classical
beam model of J. Bernoulli was used. This model is based on three fundamental
hypotheses:

o There are no deformations of the cross-sectional contour.
e The cross-section is plane also in case of deformed structures.
e The cross-section remain orthogonally to the deformed system axis.

As a result of bending without torsion we have normal stresses ¢ and strains € only
in longitudinal direction. Shear deformations are neglected. The shear stresses T
caused by the transverse stress resultants are calculated with the help of the equilib-
rium equations, but they are kinematically incompatible.

The Bernoulli’s beam model can be used for beams with compact and sufficient
stiff thin-walled cross-sections. In case of thin-walled cross-section it is supposed
that the bending stresses oy, and the shear stresses 7 are distributed constantly over
the thickness ¢. If we have closed thin-walled cross-sections a statically indetermi-
nate shear flow must be considered.
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A very important supplement to Bernoulli’s beam model was given by Saint-
Venant' for considering the torsional stress. Under torsional stresses the cross-
sections have out-of-plane warping, but assuming that these are the same in all cross-
sections and they are not constrained we have no resulting longitudinal strains and
normal stresses. In this way we have also no additional shear stresses. The distribu-
tion of the so-called Saint-Venant torsional shear stresses is based on a closed shear
flow in the cross-section. For closed thin-walled cross-sections the well-known ele-
mentary formulae of Bredt® can be used.

The Timoshenko’s beam model is an extension of the Bernoulli’s beam model.
It enables to consider the shear deformations approximately. The first two basic hy-
potheses of the Bernoulli’s model are remained. The plane cross-section stays plane
in this case but is not orthogonally to the system axes in the deformed structure. For
the torsional stress also the relationships of Saint-Venant are used.

Rather soon the disadvantages of this both classical beam models were evident
for modelling and analysis of general thin-walled beam shaped structures. Espe-
cially structures with open cross-section have the endeavor for warping, and be-
cause the warping generally is not the same in all cross-sections, there are additional
normal stresses, so-called warping normal stresses and they lead to warping shear
stresses too. Therefore the torsional moment must be divided into two parts, the
Saint-Venant part and the second part caused by the warping shear stresses.

Very fundamental and general works on this problem were done by Vlasov. Be-
cause his publications are given in Russian language they stayed unknown in west-
ern countries for a long time. In 1958 a translation of Vlasov’s book ”General Shell
Theory and its Application in Technical Sciences” into German language was pub-
lished (Wlassow, 1958) and some years later his book on thin-walled elastic beams
was published in English (Vlasov, 1961). By Vlasov a general and systematic ter-
minology was founded, which is used now in the most present papers.

The Vlasov’s beam model for thin-walled beams with open cross-sections is
based on the assumption of a rigid cross-section contour too, but the warping ef-
fects are considered. Neglecting the shear strains of the mid-planes of the walls the
warping of the beam cross-section are given by the so-called law of sectorial areas.
The application of this Vlasov beam model to thin-walled beams with closed cross-
sections leads to nonsatisfying results, because the influences of the cross-sectional
contour deformations and of the mid-plane shear strains in the walls are significant
in such cases.

Therefore a further special structural model was developed by Vlasov in form
of the so-called semi-moment shell theory, in which the longitudinal bending mo-
ments and the torsional moments in the plates of folded structures with closed cross-
sections are neglected. By this way we have in longitudinal direction only membrane
stresses and in transversal direction a mixture of membrane and bending stresses.

This two-dimensional structural model can be reduced to a one-dimensional one
by taking into account the Kantorovich relationships in form of products of two

! Adhémar Jean Claude Barré de Saint-Venant (*23 August 1797 Villiers-en-Biére — 6 January
1886 Saint-Ouen) - mechanician and mathematician

2 Rudolf Bredt (*17 April 1842 Barmen - $18 May 1900 Wetter) - mechanical engineer
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functions. One of them describes a given deformation state of the cross-section,
considered as a plane frame structure and the other is an unknown function of the
longitudinal co-ordinate.

In 1994 the authors of this textbook published a monograph on thin-walled folded
plate structures in German (Altenbach et al, 1994). Starting from a general struc-
tural model for isotropic structures also a short outlook to anisotropic structures was
given. The general model equations including the semi-moment shell model and all
classical and generalized linear beam models could be derived by neglecting special
terms in the elastic energy potential function or by assuming special conditions for
the contour deformation states. In Sect. 10.2 the derivation of generalized folded
structural model is given for anisotropic plates, e.g. off-axis loaded laminates. The
derivations are restricted to prismatic systems with straight system axes only.

Summarizing one can conclude from the above discussion there are several rea-
sons why for thin-walled structures must be given special consideration in design
and analysis. In thin-walled beams the shear stresses and strains are relatively much
larger than those in beams with solid, e.g. rectangular, cross-sections. The assump-
tions of Bernoulli’s or Timoshenko’s beam theory can be violated e.g. by so-called
shear lag effects, which result in a non-constant distribution of normal bending
stresses which are different from that predicted by the Bernoulli hypotheses for
beams carrying only bending loads. When twisting also occurs warping effects, e.g.
warping normal and shear stresses, have to add to those arising from bending loads.
The warping of the cross-section is defined as its out-of-plane distorsion in the direc-
tion of the beam axis and violated the Bernoulli’s hypotheses and the Timoshenko’s
hypotheses too.

Because of their obvious advantages fibre reinforced laminated composite beam
structures are likely to play an increasing role in design of the present and, espe-
cially, of future constructions in the aeronautical and aerospace, naval or automotive
industry. In addition to the known advantages of high strength or high stiffness to
weight ratio, the various elastic and structural couplings, which are the result of the
directional nature of composite materials and of laminae-stacking sequence, can be
successfully exploited to enhance the response characteristics of aerospace or naval
vehicles.

In order to be able to determine the behavior of these composite beam structures,
consistent mechanical theories and analytical tools are required. So a Vlasov type
theory for fiber-reinforced beams with thin-walled open cross-sections made from
mid-plane symmetric fiber reinforced laminates was developed but in the last 30
years many improved or simplified theories were published.

Because primary or secondary structural configurations such as aircraft wings,
helicopter rotor blades, robot arms, bridges and other structural elements in civil en-
gineering can be idealized as thin- or thick-walled beams, especially as box beams,
beam models appropriate for both thin- and thick-walled geometries which include
the coupled stiffness effects of general angle-ply laminates, transverse shear defor-
mation of the cross-section and the beam walls, primary and secondary warping,
etc. were developed. But nearly all governing equations of thin- and thick-walled
composite beams adopt the basic Vlasov assumption:
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Fig. 10.1 Thin-walled prismatic folded plate structures with open or closed cross-sections

The contours of the original beam cross-section do not deform in their own
planes.

This assumption implies that the normal strain & in the contour direction is small
compared to the normal strain &, parallel to the beam axis. This is particular valid
for thin-walled open cross-sections, for thin-walled closed cross-section with stiff-
eners (transverse sheets) and as the wall thickness of closed cross-sections increase.
Chapter 10 focuses the considerations to a more general model of composite thin-
walled beams which may be include the classical Vlasov assumptions or may be
relax these assumptions, e.g. by including the possibility of a deformation of the
cross-section in its own plane, etc.

In the following a special generalized class of thin-walled structures is consid-
ered, so-called folded plate structures. A folded plate structure shall be defined as
a prismatic thin-walled structure which can be formed by folding a flat rectangu-
lar plate or joining thin plate strips along lines parallel to their length. Figure 10.1
demonstrates thin-walled structures of the type defined above. The plate strips can
be laminates.

10.2 Generalized Beam Models

Section 10.2 defines the outline of modelling beam shaped, thin-walled prismatic
folded plate structures with open, one or multi-cell closed or mixed open-closed
cross-sections. The considerations are limited to global structural response. Assum-
ing the classical laminate theory for all laminated plate strips of the beam shaped
structure the elastic energy potential function is formulated. The energy potential
is a two-dimensional functional of the coordinate x of the structure axis and the
cross-section contour coordinate s.

Following the way of Vlasov-Kantorovich the two-dimensional functional is re-
duced to an approximate one-dimensional one. A priori fixed generalized coordi-
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nate functions describing the cross-section kinematics are introduced. Generalized
displacement functions which depend on the system coordinate x only are the inde-
pendent functions of the reduced variational statement which leads to a system of
matrix differential equations, the Euler equations of the variational statement, and
to the possible boundary equations.

The general structural model can be simplified by neglecting selected terms in the
energy formulation or by restricting the number of the generalized coordinate func-
tions, i.e. the cross-section kinematics. All results are discussed under the viewpoint
of a sufficient general structural model for engineering applications. A general struc-
tural model is recommended which includes all above noted forms of cross-sections
and enables to formulate efficient numerical solution procedures.

10.2.1 Basic Assumptions

A prismatic system is considered, its dimensions are significant larger in one di-
rection (the length) in comparison with these in transverse directions. The system
consists of n plane thin-walled strip elements; it means their thickness is significant
smaller than the strip width, i.e. ; < d;. Rigid connections of the plate strips along
their length lines are supposed. Closed cross-sections as well as open cross-sections
and combined forms are possible. In Fig. 10.2 a general thin-walled folded structure
is shown. There is a global co-ordinate system x, y, z with any position. In each strip
we have a local co-ordinate system x,s;,n;, the displacements are u;,v;,w;. We re-
strict our considerations to prismatic structures only and neglect the transverse shear
strains in the strips normal to their mid-planes, it means the validity of the Kirchhoff
hypotheses is supposed or we use the classical laminate theory only. All constants
of each strip are constant in x-direction. For the displacements we can write

- *****)f ****** —+-——— =
o NN\ [ ey
np,wp W2 N0 i z i
N\ ! X, Uj !
Ny ]

ni,Wi §  SiVi Tll !

Fig. 10.2 Thin-walled folded structure geometry and co-ordinate systems
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up = ui(x,8:), vi=vi(x,s:), wi=wi(x,s;) (10.2.1)

u; and v; are the displacements in the mid-plane and w; is the deflection normal to
the mid-plane of the ith strip. As loads are considered:

e surface forces, distributed on the unit of the mid-plane
px; = px;(X:8i),  Ps; = ps;(x,51),  pn; = pni(x,si) (10.2.2)
e line forces, distributed on the length unit of the boundaries of the structure

xijx=0 = qx;(0,5i), Dsi]x =0 =45;(0,5i), Inilx =0 =qn;(0,si)

(10.2.3)
Dylx=1 = qx;(1,5i), Agx =1 =qs;(L,si), Inglx =1 =qn;(1,si)

If a linear anisotropic material behavior is supposed, for each strip we can use the
constitutive relationship given as

N AB] [¢
MR 02
or ~ _
Ny, A11; A12; A6, B11; B1; Bie | ey,
Ns; A1, A2, Az, B12; B2, Bas, | | &5
Nxs; | _ | A1e; A26; A66; B16; B2e; Bos; | | €xsi
Mx; B11; B12; Bie,; P11; P12, P16, | | i
Ms; By, Byo, Bye, D12, D22, Dog, | | Ksi
Mxsi || Bis, Bag; Bes; P16, Pas; Des; | LSi

The following steps are necessary for calculating the elements of the matrices
A, B, D for the ith strip:

e Calculate the reduced stiffness matrix Q' for each lamina (k) of the strip (i) by
using the four elastic moduli Ey, ET, vi1,Grr, Egs. (4.1.2) and (4.1.3).

e Calculate the values of the transformed reduced stiffness matrix Q for each lam-
ina (k) of the strip (i) (Table 4.2).

e Considering the stacking structure, it means, considering the positions of all lam-
inae in the ith strip calculate the matrix elements A kl,"Bkl,- , Dkli’ (4.2.15).

It must be noted that the co-ordinates x;,x;,x3 used in Sect. 4.1.3 are corresponding
to the coordinates x, s;,n; in the present chapter and the stresses o7, 02, Gg here are
OXx;, Os;, Oxs; - For the force and moment resultants also the corresponding notations
Ny;,Ns;,Nxs;,Mx;,Mg;, Mxs; are used and we have to take here:

12 1i/2 ti/2
Nx; = / ox;dn;, Ng; = / os;dn;, Nxs; = / Oxs;dn;,
—ti/2 —t;/2 —ti/2

(10.2.5)
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I,‘/Z I,‘/2 tl'/2
My; = / ox;nidn;, Ms; = / os;nidn;, Mys; = / Oxs;nidn;
—ti/2 —t;/2 —ti/2

In Fig. 10.3 the orientations of the loads, see Eqgs. (10.2.2) and (10.2.3), and the
resultant forces and moments in the ith wall are shown. In the frame of the classical
laminate theory the transverse force resultants Nsp; and Nyp; follow with the help
of the equilibrium conditions for a strip element.

In the same way here we have the following definitions for the elements of the
deformation vector [€] & & ki Kz K¢|T = [€x; €s; Exs; Kx; Ks; Kxs;|T with

al/{i / aVi .
A =gy
l
du; Jv; . 92w;
Exs; = g oo =ui Y kg=——o=-wl,  (1026)
N,

/ ’
K = S pi —_—
qs;|x=0
i 9x;|x=0
Nin, M;
M, [ / lpn,-
B

forces and moments in the ith

Fig. 10.3 Loads and resultant l
. qn;\sz
strip

n;
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82w,- oo 82w,-
Ks. = ——— =

—W: sz‘ — _2—
! ds? b ! 0x0s;

= —2Wi

10.2.2 Potential Energy of the Folded Structure

The potential energy of the whole folded structure can be obtained by summarizing
the energy of all the n strips

d;

l

1 €

- 2%//[NTMT]I. {K} dsydx— W, (10.2.7)
)0 0 !

With equation (10.2.4) the vectors of the resultant forces and moments can be ex-
pressed and we obtain

[ di g
1 P AB €
H:ZZ//[K} [BDL[KLds,-dx—Wa (10.2.8)
00

i
The external work of the loads is also the sum of all the n strips

| d;
1
Wa = 2{2//Z(Px,vui+Ps[Vi+pn,wi) ds,-dx
i 0 (10.2.9)

+ (qycl-ui + QS,-Vi + ‘]n,-Wi)
x=0

:|dsi
x=l

After some steps considering the Eqgs. (10.2.4) and (10.2.6) Eq. (10.2.9) leads to

d;
+ / [(qx,-ui + qs;Vi + qnwi)
0

| d;
l (] L]
II = %{2 // [Al]iu§2+2A12iM;Vi +2A16iug(ui +v§)
! 00

+ Ao 4 24068 (uf 1) + Acs, (uf +v])°

— 2B, ]iuﬁwﬁl - ZBlzl.uﬁwi“ - 2B12ivi'w§/

— 4Bléiu§w§° — 2B, (uf + viw! — 2By viwi® — 4Bgéivi’w§°

— 2Bog, (uf + Vi)wt® — 4Bgg, (uf + vi)wl®

+ Dy W 2D 1w we® 4Dy Wl Wl (10.2.10)
+ Dzziwi"z + 4D26,,wi"w§. + 4D66[W§.2

- 2(pxiui +ps,-Vi “Fpn,-Wi)} dsl‘ dx
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d
- /[(%c,-ui + g5, Vi + qnwi) | v+ (@xtti + gs;vi + gnwi) | —;] dsi }
0

10.2.3 Reduction of the Two-dimensional Problem

Equation (10.2.10) represents the complete folded structure model, because it con-
tains all the energy terms of the membrane stress state and of the bending/torsional
stress state under the validity of the Kirchhoff hypotheses. An analytical solution of
this model equations is really impossible with the exception of some very simple
cases. Therefore here we will take another way. As the main object of this section
we will find approximate solutions by reducing the two-dimensional problem to an
one-dimensional one taking into account the so-called Kantorovich separation rela-
tionships (Sect. 2.2).

For the displacements u;,v;, w; in the ith strip we write the approximative series

solutions
i(x,s7) ZU] x) @ij(si) UT(P = q)TU?
(x,51) ka ) i(si) = Vg = yTv, (10.2.11)

x sz ZVk gzk S, = VT& &TV

Here the @;;(s;), Wi (si), Eix (si) are a priori given trial functions of the co-ordinates
s; and Uj(x), Vi (x) unknown coefficient functions of the longitudinal co-ordinate x.
Vlasov defined the @;;(s;), Wi (si),Eix(si) as the generalized co-ordinate functions
and the Uj(x), Vi (x) as the generalized displacement functions. Of course it is very
important for the quality of the approximate solution, what kind and which number
of generalized co-ordinates @;;(s;), Wi (si), S (si) are used.

Now we consider a closed thin-walled cross-section, e.g. the cross-section of a
box-girder, and follow the Vlasov’s hypotheses:

e The out-of-plane displacements ;(s;) are approximately linear functions of s;. In
this case there are n* linear independent trial functions ¢;;. n* is the number of
parallel strip edge lines of cross-section.

e The strains &;(s;) can be neglected, i.e. &, ~ 0. The trial functions y;(s;) are
then constant functions in all strips and we have n** linear independent i (s;)
and &y (s;) with n** = 2n* —m*. m* is the number of strips of the thin-walled
structure and n* is defined above.

The generalized co-ordinate functions can be obtained as unit displacement states
in longitudinal direction (¢) and in transversal directions (y, ). Usually however
generalized co-ordinate functions are used, which allow mechanical interpretations.
In Fig. 10.4, e.g., the generalized co-ordinate functions for a one-cellular rectangu-
lar cross-section are shown. ¢ characterizes the longitudinal displacement of the
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Fig. 10.4 Generalized coordinate functions of an one-cellular rectangular cross-section
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whole cross-section, ¢, and ¢j its rotations about the global y- and z-axes. ¢y, ¢,
(3 represent the plane cross-section displacements, while ¢4 shows its warping.
Vv, and Y3 characterize the plan cross-section displacements in z- and y-direction
and yq the rotation of the rigid cross-section about the system axis x. Yy defines a
cross-sectional contour deformation, e.g. a distorsion. The generalized co-ordinate
functions &, &, &, &4 represent displacements of the strips corresponding to v,
V>, W3, Yy. For the example of a box-girder cross-section there is n* =4, m* =4
andn™* =8—-4=4.

In the following more general derivations the strains &; will be included, we will
take into account more complicated forms of warping functions and therefore there
are no restrictions for the number of generalized co-ordinate functions. After the
input of Eq. (10.2.11) into (10.2.10) and with the definition of the 28 matrices

d; d;
A = Z/An[‘Pq’TdSi, A, = Z/AIG,(P.‘PTdSh
@ ;

d; :
As = Z/A66i‘P.‘P.TdSi7 Ay= Z‘,/Asﬁ,-llllllesi7
(Ol i
d; d;
As = Z/A%z‘l’.‘l’TdSu Ag= Z/Azz,v‘I"‘I"TdSi,
i)y @

d;

/ L EETds;, Asz/Dlsé Eds;

(=}

4
/D66§ &*ds;, AIO—Z/D 2,6  dsi,
Od

Ay /DZG gEldsi Ay = Z/D &g ds;,
0

A @y dsi, A=Y /Alzw ds,  (10.2.12)
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~

d;
A= Z/ 12,@E" T ds;, Ay = /316(P &'ds;,
(1) 0
d;
Ay = Z/ 66,0°E" " ds;, Azz—Z/Bz & ds;,
(i) 0
d,
Ay = Z/Blﬁ wE'ldsi, Ay :Z/Bﬁs,-lllé'TdSi,
0 (O
Boo WE**"ds;, Ay = /312 v ETds;,

Bo, W*E* " ds;, Ao —Z/Bzzll/ g*"ds;

and the load vectors

d; di
fx= Z/px,'q’dsiv ry = Z/CIX[(PdSia
i (O
d

d;
fs = Z/ ydsi, rs = Z/‘k[‘l’dsi, (10.2.13)
(@) @)y

Q“<3

d;
In= Z/ ,'édsia r, = Z/Qniédsi
(i) Ul

0

the potential energy in matrix form is obtained as follows

=, / [U’ AU +VTAV +UTAU +2UTA 5V’

+ V’ AV +V"TAV" +VTA LV + 4V TGV
+2U"TA LV +2UTAU + 20 A sV — 20" AV
— 20" A 1oV —4U'TA sV + 20" A6V + 2VTASV'
— VT TAyV" —2VTA%V —4VTA» V' — 22U Ay V"
— WAV —2UTA»V — 2V AV — aUTA V
— AV AV +2VTA V" + 4V AV + 4aVTA LV

(10.2.14)

- 2(Ufo +VTfs +VTfn)
— U+ VT +VTr) l,_o— U Tre+Virg+vTir,) |

x=I[
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The variation of the potential energy function (10.2.14) and using

om _d (om\ _ g ol _d (om\ & (omy
oU dx\oU') 7 oV dx\ oV’ a2 \ov") 7

oIl oIT d /oIl
T _ T == —
sU [9U’Lo,lo’ 5V [av’ dx(av”ﬂxzw 0, (10.2.15)
i [ OIT
6VT{ } =0
avﬂ x=0,/

leads to a system of matrix differential equations and matrix boundary conditions of
the complete thin-walled folded plate structure

—A]U” + (Az —AZ)U/ +A3U
+A17V" — (A3 —2A15+Ax)V"

(A +Ars+Arg— 240 V' + (Ajg —An)V =f
*A1T7U - (AlT3 - 2A1T8 J“'igo)U "
AT 2T AT AT AT AT
F(A1y—Ajs —Ag+24,)U' + (Ajg—Ap)U (10.2.16)

AV 4 (2Ag — 2Ag +Ars — ALV

—(Ay+4Ag—Arg— ALy — 4Ass +Arg+Ax V"

+(As—A5 + 2411 — 24, +Ass —Ays — 2An7 + 245V
+(Ag+A1 — 2Ax)V =fitfn

SUT AU +AyU —AV" + (A3 — A1)V
+(A1s—A)V £r 0, =0
sv? [A]T7U” + (A1T3 - ZATS +A§0)U’ + (AlTs - ZA; u
“AV" 4 (2Ag — 24y — Ay +As V"
+(Ag+4Ag _ATO —4Ay, +A§6)V’
—&-(Az + 21@?1 —Aps— QA;)V tryEr)—os =0

(10.2.17)

5VlT [*AF]I‘7U/ *AEOU
R T AT AT
+A7 V" + (243 —Ap)V' +(Ajg—Axy)V]—o; =0

In Eqgs. (10.2.17) the upper sign (+) is valid for the boundary x = O of the structure
and the lower one (—) for the boundary x = /. This convention is also valid for all
following simplified models.
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10.2.4 Simplified Structural Models

Starting from the complete folded structure model two ways of derivation simplified
models are usual:

e Neglecting of special terms in the potential energy function of the complete
folded plate structure.

e Restrictions of the cross-section kinematics by selection of special generalized
co-ordinate functions.

For the first way we will consider the energy terms caused by

the longitudinal curvatures Ky;,

the transversal strains &g;,

the shear deformations of the mid-planes &ys; and
the torsional curvatures Kys;

in the strips. But not all possibilities for simplified models shall be taken into ac-
count. We will be restricted the considerations to:

A astructure model with neglected longitudinal curvatures Ky; only,

B a structure model with neglected longitudinal curvatures Ky; and neglected tor-
sional curvatures Kyg;,

C a structure model with neglected longitudinal curvatures Ky; and neglected
transversal strains &g;,

D a structure model with neglected longitudinal curvatures Kx;, neglected transver-
sal strains €g; and torsional curvatures Kys;, and

E astructure model with neglected longitudinal curvatures Ky;, neglected transver-
sal strains &g; and neglected shear strain gxg,; of the mid-planes of the strips.

In Fig. 10.5 is given an overview on the development of structural simplified models.

10.2.4.1 Structural Model A

The starting point is the potential energy equation (10.2.10), in which all terms
containing w/ have to vanish. Together with (10.2.11) and (10.2.12) we find that in
this case

A7=0,A3=0,A10=0,A1; =0,A5 =0,A2; =0,A2 =0

The matrix differential equations (10.2.16) and the boundary conditions (10.2.17)
change then into
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Ks; 7 0,85; 7 0,&xs; # 0, Kxs; #0

Kx; =0

SS,'7£0 Esi:()

‘Exs,-:()‘ ‘Exsi7’éo‘

Exs’- =0

‘Kx.s,-#()‘ ‘sz,-ZO‘ ‘Kx.s,-#()‘ ‘sz,-=0‘ sz,-7£0

A B C D E

Fig. 10.5 Overview to the derivation of usual simplified models for thin-walled folded plate struc-
tures

7A]UN+ (Az 7A;‘)U/+A3U7 (AB 72&13)‘/”
(A1 +Ars+Arg— 240V + (Ajg —An)V =fo

AT AT AT AT AT AT
(A13 2A1)U" + (A1, —Ays — Ao + 245U’
+(A16 71&22) (A4 + 4A9 - 4A24)V//

AT N AT

+(As As +24, *2A11+A25 —Ays —2Ay7+ 24V’
‘|’( 6 A12_2A28)V :fx+fn7

(10.2.18)

sUT {A]U’ +AZU+ (A3 — 2455V
+(A _A19)Virx} =0,

x=0,/
VT [(Ay3—2415)U" + (Ays — 245 )U (102.19)
+(Ay+4Ag — 4Ar V'
(A3 +24,, —Aos — 240,V L1, irn} =0
X
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10.2.4.2 Structural Model B

Here the longitudinal curvatures ky; and the torsional curvatures Kys; are neglected
and therefore in the potential energy additionally to w ~ 0 in model A all terms
containing w/* have to vanish. Additionally to the case of model A now also the ma-
trices AI;,A]],A]S,AZI ,A24,;127 are null-matrices. This leads to the following matrix
differential equations and the corresponding boundary conditions:

7A1U// + (Az 71&1)[]/ +A3U 7A13V”

+(—Ay+As+AR)V + (Ag —An)V =fe
o1 r o (10.2.20)
—ARU"+ A1y —A;s =AU + (A1g —Ap)U — AV

N AT ~T N N N
+(As —As +As —Aps)V' + (As + A1 —Ax)V =fitfn

sUT [A [ U +AU +A sV +(A]47A]9)Vﬁ:rx} —0,

R K K . =01 (10.2.21)

svT [A13U’+A15U+A4V’+(A5 —A25)V:i:rsﬂ:rn} =0

10.2.4.3 Structural Model C

In this structure model the longitudinal curvatures Ky; and the strains g; are ne-
glected. Therefore in this case in the potential energy function (10.2.10) all terms
containing w/ and v} have to vanish. Considering the equations (10.2.11) and
(10.2.12) we ﬁnd that addltlonally to the case of the structure model A here the
matrices A5,A6,A14,A16,A27,A28 are null-matrices and in this way we obtain the
following matrix differential equations and the corresponding boundary conditions:

AU+ (Ar—ANU' +A3U — (A3 — 2A15)V"
+(A1s+A19— 245V —ApV =fu
AT AT 1 (AT AT+ 2AT AT (10.2.22)
—(A3—2A15)U" + (—A;5 — A9+ 24, )U" — AU e
(A4 + 4A9 — 4A24)V”
AT o
+(24 —QAH +Ass — Ay )V +AV =fi+fu

Ut [AlU/-‘rAgU—F(Am—2A18)V/—A19Virx}x =0,
svT [(AL — AU + (A5 — 245U (10.2.23)
+(Ag+4Ag— 4Ary V' + (24}, —Ans)V £ 1, £ r,,} —0
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10.2.4.4 Structural Model D

This structure model neglects the longitudinal curvatures Ky;, the strains &s; and
the torsional curvatures Kys;. In the potential energy function all terms containing
w!,v?,.w!® have to vanish and we find together with (10.2.11) and (10.2.12) that
additionally to the structure model C the matrices A97A117A187A217A24 are null-
matrices. We obtain the matrix differential equations and the boundary conditions

in the following form:

—A]U” + (Az —AZ)U/ +A3U
7A13V”+ (AIS +Al9)V/*A22V =

X9

T JE- T (10.2.24)
—ARU" + (A5 —Ap)U' —AnU
N N ~T n
—AV" +(Ays —Ay )V +ARY  =f+f,,
Ut [AlU’+A§U+A13V/*A19ViTx} =0,
x=0,/ (10.2.25)

6VT |:A’1T3U/ +A’1T5U +A4V/ *AZSV Tri+ rn} =0
x

10.2.4.5 Structural Model E

Now the longitudinal curvatures Ky;, the transversal strains &s; and the shear strains
&ys; of the mid-planes shall be neglected. Therefore in the potential energy function
all the terms containing w; and v{ vanish again. The neglecting of the shear strains
of the mid-planes leads with Eq. (10.2.6) to

du; dv;
Exs; = 8_s:+8_xl =ul +v;=0
and we can see that the generalized displacement functions U (x) and V (x) and also
the generalized co-ordinate functions @(s;) and W(s;) are no more independent from
each other

W= —,UTe =V y, @' =y U=V U=-V"U"=-V" (102.26)

Therefore the potential energy function must be reformulated before the variation
of U and V. Considering the vanishing terms w,v? and (10.2.26) we obtain the
potential energy function in the following form:
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1
1 . . . .
m= / [V”TA]V” 1 VTA LV +2V"TA oV + 4V TA gV
0

) ) (10.2.27)
+ 4V AV + 4VTA V' —2UTf, + VTS, +VTfn)} dx

— (U 4V + V) [ _o— UTr+VTr +VTr,) |

x=l

The variation of the potential energy, see also (10.2.15), leads to the matrix differ-
ential equations and the boundary conditions for the structural model E

A]V”” + 2(11]8 *ATS)VW + (74119 +1A119 +AT9)VH

e 8 (10.2.28)
+2(A1 —A)V +ARV =fetfotfu
N N AT N N
svT [—Alv”’+2(—A18 LAV + (4Ag— A1)V
AT
T2V fatretr) g, =0, (10.2.29)
sv'T [;MV"+QA18V/+A19V3FrxL_OI =0

10.2.4.6 Further Special Models by Restrictions of the Cross-Section
Kinematics

All the five given simplified structure models include the neglecting of the longitu-
dinal curvatures ky; in the strips. Because in the case of a beam shaped thin-walled
structure the influence Ky; on the deformation state and the stresses of the whole
structure can be seen as very small, its neglecting is vindicated here. The main ad-
vantage of the given five simplified structure models however is that by neglecting
the longitudinal curvatures in the strips we have a decreasing of the order of deriva-
tions of the generalized displacement functions U and V in the potential energy.
This is an important effect for practical solution strategies of the model equations.
The structure models A and C can be used for the analysis of thin-walled beam
shaped structures with open or closed cross-sections. The difference exists only in
the including or neglecting of the strains &s; in the strips. Usually they can be ne-
glected, if we have not temperature loading or concentrated transversal stiffeners in
the analyzed structure. The structure models B and D are valid only for structures
with closed cross-sections, because there the torsional curvatures and the torsional
moments Myg; are very small. The use of the structure model E is vindicated only
for beam shaped structures with open cross-sections. There the shear strains of the
mid-planes of the plate strips have only small influence on the displacements and
the stress state of the structure how in opposite to the case of a closed cross-section.
Further for each of the five considered models we can develop model variants
restricting the cross-section kinematics by selection of special sets of generalized
co-ordinate functions @, W, &. For example, in the structure model B the number of
generalized co-ordinate functions is unlimited. In model D in contrast the number
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of ¥, €-co-ordinates is limited to n**, see Sect. 10.2.3. Restricting in this model ad-
ditionally the ¢@-co-ordinates to n*, the semi-moment shell theory for an anisotropic
behavior of the strips is obtained. The Egs. (10.2.24) and (10.2.25) stay unchanged.

A symmetric stacking sequence in all the strips leads for this model to a further
simplification, because then we have no coupling between stretching and bending
in the strlps all the elements of the coupling matrix B vanish and therefore all the
matrices A17 —Apg are null-matrices. In this special case the following matrix dif-
ferential equations and boundary conditions are valid

—A]U”—‘r (Az —AE)U/+A3U—A13V”+A15V/ =fs

AT (A2 =40 - (10.2.30)
—A]3U” —Alsul _A4VH+A12V :fs+fn7
SUT |A { ]U/+A2U+A13V irx} —0, =0,
N (10.2.31)
SVT AU’ +A sU +AsV irsirn} oy =0
xX=U,

If we have symmetric cross-ply laminates in all the plate strips and one of the main
axes of them is identical with the global x-axis, there is no stretching/shearing or
bending/twisting coupling and therefore additionally to the B-matrix the elements
A = Are = 0,D16 = Dy = 0. With these the matrices fiz,/in, are null-matrices,
Eq. (10.2.12). In this case the Egs. (10.2.30) and (10.2.31) lead to

*A]U” +A3U +A15V’ = fx’

! S T (10.2.32)
—AisU —AV' +ARV :fs +fn7
Ut |A { ]U/irx} =0,
) x=0,1 (10.2.33)
svT |A [ ]5U+A4V irsirn} 0l =0
x=0,

and we find that we have equations of the same type how in case of the classical
semi-moment shell theory of Vlasov. Here however the matrices A consider the
anisotropic behavior of the strips.

Otherwise if starting from the structure model E then the generalized co-ordinate
functions y,& are restricted to three co-ordinates, representing the rigid cross-
section, i.e. (Y1, &), the rotation of the cross-section about the x-axis, (Y2, &) and
(w3, &3) the displacements in the global y- and z-direction. If we additionally assume
only four ¢-functions, then the first three representing the plane cross-section, i.e.
¢ the displacement in x-direction, ¢, @3 the rotations about the y- and z-axes and
¢4 is a linear warping function, the so-called unit warping function according to
the sectorial areas law. Therefore we have a structural model similar the classical
Vlasov beam model. The difference is only that in the classical Vlasov beam model
isotropic material behavior is assumed and here the anisotropic behavior of the plate
strips is considered. Note that for comparison of these both models usually the fol-
lowing correlations should be taken into account:
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(x) =u(x displacements of the plane cross-section in x-direction,
U, (x) = ¢, = w'(x) rotation of the plane cross-section about the y-axis,
( @, =V (x) rotation of the plane cross-section about the z-axis,

Us(x) = 00'(x)  the warping with @ as the unit warping function,
Vi(x) = 6(x) rotation of the rigid cross-section about the x-axis,
Va(x) = v(x) displacement of the rigid cross-section in y-direction,
Vi(x) = w(x) displacement of the rigid cross-section in z-direction

More details about the equations shall not be given here.

If we in this anisotropic Vlasov beam model suppress the warping of the
cross-section and use only the functions @, ¢, ¢3 representing the plane cross-
section kinematics and do not take into account the torsion, we obtain a special-
ized Bernoulli beam model for laminated beams with thin-walled cross-sections
and anisotropic material behavior. In a similar way a specialized Timoshenko beam
model can be obtained, if we restrict the generalized co-ordinate functions ¢; to the
three functions for the plane cross-section kinematics and take into account only
the two y-co-ordinates for the displacements in y- and z-direction, here however
starting from the structural model D.

The both above discussed quasi beam models are specialized for structures with
cross-sections consisting of single thin plate strips without any rule of their arrange-
ment in the cross-section. The curvatures ky; are generally neglected. The special-
ized beam equations described above cannot be compared directly with the beam
equations in Chap. 7 because the derivation there is not restricted to thin-walled
folded plate cross-sections.

10.2.5 An Efficient Structure Model for the Analysis of General
Prismatic Beam Shaped Thin-walled Plate Structures

Because in the following only beam shaped thin-walled structures are analyzed the
neglecting of the influence of the longitudinal curvatures ky; in the single plate
strips is vindicated. How it was mentioned above, we have in this case a decreasing
of the order of derivations of the generalized displacement functions in the potential
energy, and this is very important for the solution procedures.

The selected structure model shall enable the analysis of thin-walled structures
with open, closed and mixed open/closed cross-sections. Because the influence of
Kxs; is small only for closed cross-sections but the influence of &ys; can be neglected
for open cross-sections only, the selected structure model for general cross-sections
have to include the torsional curvatures and the shear strains of the mid-planes.

The strains &; have in the most cases only a small influence and could be ne-
glected generally. But we shall see in Chap. 11 that including &s; in the model equa-
tions leads an effective way to define the shape functions for special finite elements
and therefore also the &; are included in the selected structure model.
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Summarizing the above discussion the structure model A is selected as an uni-
versal model for the modelling and analysis of beam shaped thin-walled plate struc-
tures. An extension of the equations to eigen-vibration problems is given in Sect.
10.2.6.

10.2.6 Free Eigen-Vibration Analysis, Structural Model A

Analogous to the static analysis, the eigen-vibration analysis also shall be restricted
to global vibration response. Local vibrations, e.g. vibration of single plates, are
excluded. A structure model neglecting the longitudinal curvatures cannot describe
local plate strip vibrations. Further only free undamped vibrations are considered.

The starting point is the potential energy function, Eq. (10.2.10), but all terms
including Ky, are neglected. With the potential energy IT (u;,v;, w;)

()
+ Agg 2+ 2406,V (uf +v]) + Ags, (uf + V)
— 2B, uiw?® — 4B uiw," — 2By viwe® — 4By viw!® (10.2.34)

1711 [N A4

— 2B, (u? +Vi)w® — 4Beg, (uf + vi)wi*

| d;
1 (] L ]
II = Z 5 // |:A11’,u;2+2A12’,u§Vi +2A16,u§(ui —|—V§)
00

i

+ Dzziwinz + 4D26iW"W§. + 4D66iwg.2:| ds; dx

and the kinetic energy T (u;,vi,w;)

| d;
1 ’ 8u,- 2 8v,- 2 8w,- 2
T(u) = 2%0/0/% [(W) + (§> +( az) 1 ds;dv,  (10.2.35)

where p; is the average density of the ith plate strip

1 n
pi= Y p M (10.2.36)
Lk=1

Because we have thin plate strips only, rotational terms of the kinetic energy can be
neglected.

The reduction of the two-dimensional problem is carried out again with the gen-
eralized co-ordinate functions @(s;), W(s;),& (s;), but we must remark that the gener-
alized displacement functions U,V are time-dependent and therefore they are writ-
ten in the following with a tilde. The reduction relationships are
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ui(x,si,t) =Y Uj(x,0)@;5(si) = U'e
()

vi(x,si,t) ka X, ) Wi (si) = I[I

V'

(k)
wi(x,si,1) ka x,0)Ex(si) =

o0
vV, (10.2.37)
g

Additionally to the A matrices equation (10.2.12) the following matrices are defined:

dl' di di
B, = Z/Piti‘P‘PTdSi,l§2 = Z/PitiV’V’TdShBS = Z/pitiégTdSi (10.2.38)
(O (O (O
and we obtain the so-called Lagrange function L =T — I1

l
L=, [ 080980 VB0
®
_ (O7AL0 207 A L + 20 A0 207 A 5
L VAV 420 AV + 2V AV + 0" AT
120 AV VAW 20" AoV — 40 AV
— 2V AV — 4V AV — 20 Ay — 2V AysV
— AU AV — 4V AV

(10.2.39)

+ VALY +4V ALV + 4V AV | dx

The time derivations of the generalized displacement functions are written with the
point symbol

. QU 1
U=— V= 10.2.40
ot’ En ( )
The Hamilton principle yields the variational statement
%) %)
6/Ldt:/8Ldt=0, L=L(x0,0,V,0.V.0,V) (10.2.41)

and we obtain two differential equations

9_L_£(9L)_£(9_L)—o
oU dx\oUu’') dr\pp (10.2.42)

AR A
oV dx\ov') dt\py/)
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If further harmonic relationships for the generalized displacement functions are as-
sumed
U(x,t) =U(x)sinapt, V(x,1) =V (x)sin oyt (10.2.43)

and we obtain after some steps the following matrix differential equations:

—AWU" + (Ay—Ay)U' + (A3 — 02B))U — (Ar3 — 2A15)V"
+(—Ag+A1s+A19— 245V + (Ajg— AV =0,
(AE - ZATS)U” + (AL *ATS *AT9 + QA;)U/

+(Ayg Azz) — (Ag+ 449 — dArg V"

+(As *As +24) - QAlTl +A4ss *Ags — 24y + ZA;)V,

+(Ag +A12 — 2Ar — 03B, — B3V =0,

(10.2.44)

AT ~ ~ ~ o
UT AU + AU + A3 — 24V + Ay —Ao)lV]ioy =0
5VT [(A13 2A1)U" + (A5 — 25, )U + (Aq + 4hg — 4h V' (10.2.45)
U AT
Jr(As +2A) —Ays —24,7)V].—o, =0

With these equations given above the global free vibration analysis of prismatic
beam shaped thin-walled plate structures can be done sufficient exactly.

10.3 Solution Procedures

Two general kinds of solution procedures may be taken into account

e analytic solutions and
e numerical solutions

The consideration below distinguish exact and approximate analytical solution pro-
cedures. In the first case an exact solution of the differential equations is carried
out. In the other case, the variational statement of the problem is, e.g., solved by
the Ritz or Galerkin method, and in general, the procedures yield in an approximate
analytical series solution.

Numerical solution procedures essentially consist of methods outgoing from the
differential equation or from the corresponding variational problem. The numeri-
cal solutions of differential equations may include such methods as finite difference
methods, Runge3-Kutta* methods and transfer matrix methods. The main represen-
tative for the second way is the finite element method (FEM). After a few remarks

3 Carl David Tolmé Runge (*30 August 1856 Bremen — 13 January 1927 Géttingen) - mathemati-
cian and physicist

4 Martin Wilhelm Kutta (*3 November 1867 Pitschen — 125 December 1944 Fiirstenfeldbruck) -
mathematician
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in Sect. 10.3.1 about analytic solution possibilities for the here considered prob-
lems, the numerical solution procedure using the transfer matrix method is consid-
ered in detail in Sect. 10.3.2. The application of the FEM and the development of
special one-dimensional finite elements for beam shaped thin-walled structures are
discussed in Chap. 11.

10.3.1 Analytical Solutions

For the generalized beam models given in Sect. 10.2 only for simplified special
cases analytical solutions are possible. If we use, for example, the structure model
D in connection with a symmetric cross-ply stacking in all plates, what means
that the differential equations are from the same type as in case of the isotropic
semi-moment shell theory of Vlasov, analytical solutions can be developed for spe-
cial cross-sections geometry. It is very useful to choose orthogonal generalized co-
ordinate functions @, W, €, because it yields the possibility of decomposition of the
system of differential equations into some uncoupled partial systems. For example,
the generalized co-ordinate functions @ in Fig. 10.4 are completely orthogonal and
in this way the matrix A; is a diagonal matrix. Therefore some couplings between
the single differential equations vanish.

A suitable method for construction an exact solution is the Krylow® method or
the so-called method of initial parameters. The first step for the application of this
method is to convert the system of differential equations into an equivalent differen-
tial equation of n-th order.

n
Liyx)] = Y avy™ (x) = r(x) (10.3.1)
v=0
Its homogeneous solution shall be written as
i(x) = y(0)K1 (x) + ¥ (0)Ka (x) + ... + 3"V (0)Ky (x) (10.3.2)
The free constants of the solution are expressed by the initial constants, i.e. the

function y(x) and its derivatives till the (n — 1)th order at x = 0. A particular solution
can be obtained with

1) = [ Kalx—1)r(0) de (1033)
0

or in case that ro(x) is not defined for x > 0 but for x > x

3 Aleksei Nikolajewitsch Krylow (*3 August 1863"/15 August 186382 Wisjaga - 126 October
1945 Leningrad) - naval engineer, applied mathematician
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/K x—)ro(r) di (10.3.4)

x>x0

Equation (10.3.4) is a quasi closed analytical solution for the differential equation
of the structure model D and different functions r;(x) for respectively x > x;,i =
0,1,...,n

Y(x) = ¥(0)K (x) +3 (0)Ka (x) + ... + 3" (0)K, ()

/K x—1)ro(t) dr + /K x—t)ri(t)dr  (10.3.5)

X>xp - xX>xq ¢

/K x—1)ra(t) di + ..

x>x2

Complete closed analytical solutions for isotropic double symmetric thin-walled
box-girders and general loads one can find in (Altenbach et al, 1994). Also analytical
solution for a two-cellular box-girder including shear lag effects is given there. But
in the majority of engineering applications refer to general laminated thin-walled
structures, an analytical solution has to be ruled out.

10.3.2 Transfer Matrix Method

The differential equations and their boundary conditions are the starting point of a
numerical solution by transfer matrix method. At first the system of higher order dif-
ferential equations has to transfer into a system of differential equations of first order
using the natural boundary conditions as definitions of generalized cross-sectional
forces.

For sake of simplicity this solution method shall be demonstrated for the structure
model D and for a symmetric cross-ply stacking in all plates of the structure. Then
the following system of differential equations and boundary conditions are valid,
see also Sect. 10.2.4.6 and Eqgs. (10.2.32) and (10.2.33)

AU"—A3U —A\sV' + =0,
7 N N T (10.3.6)
AU +AV' —ApV+f+f, =0,
sUT [th’irx} —0,

T (10.3.7)
% [A15U+A4V ﬁ:rsj:rn} =0

Equations (10.3.7) leads to the definitions of the generalized cross-sectional forces,
i.e. generalized longitudinal forces and transverse forces.
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P=AU' (10.3.8)

Q=AU+AV' (10.3.9)

It can be shown that we have with Eqgs. (10.3.8), (10.3.9) really the definitions of
generalized forces

4 4
P = /(pcx,t,ds, = Z/q)leds,,
(O (Ol
P 4

In the here considered structure model we have only membrane stresses oy, and T,
because the longitudinal curvatures and longitudinal bending moments are neglected
in all plates. Additional with cross-ply stacking are A = Apg = 0. Therefore and
with Eqgs. (10.2.4), (10.2.6), (10.2.11) we can write

NX,‘ :All,'gx,' :All[l’é :All,"pTU/7
Nxs,- = A66,'8xs,- = A66;(ui. + V:) = A66’,((p.TU + WTV/)

Considering (10.2.12) we obtain again the definitions of the generalized forces given
in (10.3.8) and (10.3.9)

d;

P = Z/A”i(p(pTds,-U’ =AU,

(O
d;

Q=Y [ Acx,(wo U +yy"V')ds; = AU +AV'
(@)
The inversion of the Egs. (10.3.8) and (10.3.9) leads to

U =A;'p, (10.3.10)

V' =-4,'AlUu+A,'Q (103.11)

With the first derivatives of Egs. (10.3.8) and (10.3.9) and after the input of (10.3.10)
and (10.3.11) into (10.3.6) we obtain the following system of differential equations
of first order ]

U=A P,

Vi =-4,'A;U+A,'Q,

A A A1AT Aol
P' = (A3 —AisA, Aj5)U+AsA; Q— fr,
Q =ApV—fi—fu

respectively written in matrix notation

(10.3.12)
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U 0A 0 0 U
14 “AJ'Al, 0 0 A o 14
S O Y| PO
Pl = (A3 —A;5A, Ajs) AO 0 AisAy —fx P
Q 0 A 0 0 —f—fu.||@
1 o7 ol o7 of 0 1
y =By (10.3.13)

B is the system matrix and y the so-called state vector containing all the generalized
displacement functions U and V and all the generalized forces P and Q. 0 and o in
the B-matrix are null matrices and vectors.

The next step is a discretization of the one-dimensional problem, see Fig. 10.6.

Between the state vectors at the point j+ 1 and the point j we have generally the
relationship

Yj+1 :ijj (10.3.14)

where W is the transfer matrix for the structure section j — (j+1).
A first order differential equation

¥ (x) = b y(x), b = const
has the solution
y(x) = Ce™
and with
y(xo) = Cet 5 = y(xo)e_b"o7
we obtain
¥(x) = y(xg)e"* )

In the same way the solution of the matrix differential equations is

X =Xo }_i.{ X=XN

o] iz L] L]

Fig. 10.6 Discretization of the one-dimensional structure
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and we find that eB*~%0) can be defined as the transfer matrix from the point xg to x.
Therefore the transfer matrix between two points x; and x; generally is obtained

as
W= eBrjr1=x)) (10.3.15)

The numerical calculation of transfer matrices can be carried out by series develop-
ment of the exponential function

N2 N3
Wj:1+AJ-B+2—"B2+3—(B3+... (10.3.16)
and also by using a Runge-Kutta method
ay
Wj=I+?(M1j+2M2j+2M3j+M4j), (10.3.17)

Mlj = B()Cj),
1 1
M2 =B(xj+ , 0;) I+, LM ),

1 1
M3 =B(xj+ , 0;) I+ , O M2j),
Myj = B(xj+ L)) I+ A M3))

In both equations I are unit matrices of the same rank as the system matrix. The
boundary conditions of the problem can be expressed by a matrix equation

yo =Ax* (10.3.18)

Here A is the so-called start matrix containing the boundary conditions at x = xg
and x* is the vector of the unknown boundary values there. In the last column of the
start matrix the known boundary values are included. For the unknown boundary
values the last column elements are zero, and by a unit in the corresponding row
the unknown value is associated with an element of the unknown vector x*. For
example, in Eq. (10.3.19) a start matrix is shown in case of a free structure end, it
means all the displacements are unknown and all forces are given.
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U, 1 0

0

Uy 1 0

V] 1 0 I XT i
0 ..

Va 1 0

P | = Py )
(10.3.19)
B Bno Xontn
01 Ow| [ 1 ]
Qn QnO

L1l L 1

Yo = Ay x*

Now the multiplications with the transfer matrices can be carried out over all sec-
tions (x;,x;41) until x = xy. With the equation

Syy =0 (10.3.20)

the boundary conditions are formulated at x = xy. S is the so-called end matrix con-
taining in its last column the negative values of the given displacements or forces. A
unit in an other column of each row yields the association to an element of the state
vector yy. Equation (10.3.21) shows the end matrix for a clamped end, where all
displacements are given. This matrix equation leads to a system of linear equations
for the unknowns in the vector x*

Ui
Un
Vi
1 - Vi

e TUmN A g = (10.3.21)

o

L 4N

The real parts of the eigenvalues of the system matrix B lead to numerical instable
solutions especially for long beam structures. From the mechanical point of view it
means that the influence of the boundary conditions of both structure ends to each
other are very low and with this we have a nearly singular system of linear equa-
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tions. For the consolidation of this problem intermediate changes of the unknowns
are carried out, by formulation of a new start matrix A at such an intermediate point.
Usually the generalized displacements are chosen as the new unknowns. The fol-
lowing equations show the general procedure schedule

Yo = Aoxj
yi = Woyy= W()A()xf;

yi = Wi Wi .. WoAoxg = Fix;

first change of unknowns

Vigr = Wiy, =WAx]

X
y; = Fix_,

y; =Ax| [th change of unknowns

Yir1 = WA

*
Yk = Fkxnfl

*

Y =Anx, nth change of unknowns
Yir1 = Widnx,
(10.3.22)

yv = Fnx,

system of linear equations for the solution of the unknowns x};

The multiplications of the state vector yo with transfer matrices are carried out until
the first intermediate change of unknowns. The product of the transfer matrices and
the start matrix makes the matrix F;. A new unknown vector xj is defined by the new
start matrix A; and this procedure is repeated at the following intermediate points.
General for the /-th intermediate change of unknowns the Eq. (10.3.23) is current

Fxi | =Ax (10.3.23)

With a segmentation of the state vector y; into the sub-vectors y, for the displace-
ments and y;, for the forces
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U
v Yy

yi=|P| =|w| . (10.3.24)
o] 11l

J
we obtain a separated form of Eq. (10.3.23)
Fijfijl g Ay ai | e
Fyj f; { 11'} = |Ay ay { 11} (10.3.25)
o' 1 o 1

With the assumption that the displacements are the new unknowns we find that the
sub-matrix Ay; is a unit matrix and the sub-vector ay; is a null vector

Ay=Ila;=o0 (10.3.26)
This leads to
Fx_+f1;=x%, (10.3.27)
5 1y . F7l @ —f,.
X =Fy )& —f1), x,_lz[ 11(11 f'J)} (10.3.28)

and than the second equation of (10.3.25) yields the structure of the new start matrix

szFl_jl(f7 —f1)) +foj =AuX] tay,

7 - (10.3.29)
Ay =szF1jl, a :ij_szFlj]flj’
1 o
A = szFl_jl f2j_F2jF1_j1flj (10.3.30)
oT 1

At such an intermediate change point it is also possible to consider the introduction
of concentrated generalized forces or the disposition of supports with given general-
ized displacements. Than the new start matrix must be modified additionally, in the
first case by a modification of the sub-vector a,; and in the second case by consid-
eration of the jump behavior of the forces at this point. But more details about this
shall not be given here.

With the end matrix S and the end state vector yy the relationship Syy yields
a system of linear equations for the last unknown vector x;, and after this all the
unknown vectors can be calculated by repeatedly using Eq. (10.3.28).

The transfer matrix method with intermediate changes of the unknown state vec-
tors yields in contrast to the classical transfer method a numerical stable procedure
also for long beam structures. From the mechanical point of view correspond each
intermediate change x = x; a substitution of the structure section 0 < x < xj by
generalized elastic springs.



10.4 Problems 399

The transfer matrix procedure is also applicable to the analysis of eigen-
vibrations. There we have a modified system matrix B containing frequency de-
pendent terms

y =B(ay)y (10.3.31)

Therefore, the transfer matrices can be calculated only with assumed values for the
frequencies. The end matrix leads to a homogenous system of linear equations. Its
coefficient determinant must be zero. The assumed frequencies are to vary until this
condition is fulfilled sufficiently.

The transfer matrix method with numerical stabilization was applied successfully
to several isotropic thin-walled box-beam structures. The structure model D con-
sidered above has for a symmetrical cross-ply stacking of all plates an analogous
mathematical model structure as isotropic semi-moment shell structures. Therefore,
the procedure can be simply transferred to such laminated thin-walled beam struc-
tures. An application to other structure models, Sect. 10.2, is in principle possible
but rather expansive and not efficient.

The development and application of special finite elements and their implemen-
tation in a FEM-program system is more generally and more efficiently. FEM will
be discussed in detail in Chap. 11.

10.4 Problems

Exercise 10.1. Establish the system of differential equations for the box-girder with
arectangular cross-section, which is shown in Fig. 10.4. It shall be supposed that its
dimensions are symmetric to both axes and therefore we have here

=18 =Its,
h =14 = Ig,
dy = d3 = ds,
dy = dy = dg,

Further we have a cross-ply stacking in all the plate strips. The stiffness of both
horizontally arranged strips (index G) are the same, but they are different from the
stiffness of the vertically arranged strips (index S), what means that

A1 =Ans = Ans,
A2 = Anns =Anc,
Ags 1 = Ae63 = Ace s
Age2 = Aes 4 = Ags G
Dy 1 = D23 =Dy,
Dy 2 =Dx4=Dng

For the calculation of this box girder the simplified structure model D shall be used
and because we have cross-ply stacking, the Egs. (10.2.32) are valid
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A]U”*A‘?,U 7A]5V/+fx =0,
Al +AV" — AV 4+ fo 0 =0

Solution 10.1. At first we have to calculate the matrices 31,33,,@4,;112 and A;s,
their definitions are given in Eq. (10.2.12)

d;
= Z/An P ds;,

A = /A66 z‘P.‘P.TdSu

>

IS

Il
iag!

_})
1
™
o\&o\ﬁo\&

A66 yylds;,

—
=

D2y &% "Tdsi,

—

i)

Z
g

A66 @y ds;,

The co-ordinate functions @, y, & are also shown in Fig. 10.4. For solving the inte-
grals to obtain the A-matrices, the functions @, ¥, € must be written as functions of
the co-ordinates s; of each strip. In accordance with Fig. 10.4 we find

o1(si) =+1,i=1,2,3,4; @7 (s;) =0,i=1,2,3,4;

d
%wﬁ=—§{hﬂ(§ﬂ;%@o=wwszz&4
S

d
P2(s2) = 5
_ 9|,

%(S3)_+2 [1 2<ds>}’

d

%(54)—*75;

dg
(P3(Sl):2§(P():l[/3(S,)l—1234

o dg | 52 |

oo =+ [1-2( 2]

d,

<P3(S3)=—2G;

o dG S4 |

(p3(S4)—72 12<dc,) ;
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oo =+ 550 [1-2 (30) | g3 = s = 1234
04(s2) = —d%# [1 -2 (Z) ;
Pa(s3) +% [12 <5—3) ;
S/ ]
04(s4) = —% [1 -2 (;Z) ;
vi(s)) = de; yo(s1) = +1;
Vi(s2) = —%2 Va(s2) = 0;
Wl(s3):—d2G§ Yo (s3) = —1;
yiss) = 2 Yalsa) =0
W) =0 ) ==
=1 vl =+
Vs =0 yalss) =
W3 (sq) = +1; W4(S4)=+d75;

(i) =0,i=1,2,3,4;
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-5 ()]

Ea(s1)=0; &3°(si) =0,i=1,2,3,4;

&o(so) =+1;
&a(s3) =0;

Sa(sa) =—1;

&(s1) =41 &3°(si)=0,i=1,2,3,4;
&3(s2) = 0;

&(s3)=—1
&3(s4) =0;

Some additional considerations are necessary to determine the functions &4(s;). The
generalized co-ordinate function &, is corresponding to Wy and represents therefore
a double antisymmetric deflection state of the cross-section. The cross-section is
double symmetric in its geometry and in the elastic behavior. Therefore we must
have an antisymmetric function &4(s;) in each strip. It means that the following
conditions are valid

Ca(si=0) =&, Ca(si=di) = —&p,

1(5i=0) =, E(si=di) = o,
10 (s =0) = Ky0, E5°(si = di) = — K50

Supposing a polynomial function of the third order, we can write

1°(si) = K50 (1 —2Z—ii> ;
&3 (si) = Kyod; l(;-i) — (%)2] —+ 0,

s =423 (2) 2 (3)

The condition &4(s; = d;) = —&o leads to

K,.0d?
d; = — (% + 2&0)
and than we obtain

s =202 s () 2 (5) i e 2(3)]

With the antisymmetric properties mentioned above we find

s;
+ aodij +Sio
i
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K510 = Ks30 = KS0,
K50 = Ks,0 = KGo

The continuity of the rotation angles at the corners and the equilibrium equation

lead to the unknown curvatures

Kso = —

and we obtain

Ea(s1)
+

Ea(s2)

Ea(s3)

+

Ea(s4)

20 (s1) =
1 (s2) =
10 (s3) =

2t (s4) =

1 (s1=ds) = &3 (52=0),
i(s2=dc) = &7 (s3=0),
J(s3=ds) = &7 (s4=0),
§3(sa=dg) = &3 (s1=0),
Daskso = —DxncKeo
12D33g Koo = + 12D5ss
—— Kgo =t
dgDaos +dsDag dGDaas +dsDag
___ 2Dnedy |, (ﬂ)zz(s_l>3s_l
dgDass 4 dsDaog ds ds ds
ds S1
sl T Yol 8
2 { ds} ’
2Dysdl 3<82)22(52>352
dgDas +dsDyg dg dg dg
dG 52
1-2
2 { dG} ’
2 2 3
___ 2Dmeds 4 (2) ) (s_3> _5
dgDass + dsDaog ds ds ds
ds 53
D123
2 { ds} ’
2 2 3
2Dpsdg 3<S4) 2(S4> 54
dGDaas +dsDaag dg da da
dG S4
1-2
2 { dG} ’
__ 12D»c 1— ZS_]_
dgDys +dsDng | ds|’
12D [ T
n 228 [_o% 7
dgDass +dsDng | dg
B 12Dy _1 )5 1
dcDas +dsDyg | ds|’
12D [ T
PR B Y
dgDass +dsDxng | dg
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Now all elements of the matrices can be calculated. Here only the calculation of the
element Ay,, of the matrix A; shall be derived in a detailed manner

e
I
™-

A1, 01 (si) @1 (si)ds; = 2(A114ds +Av1,dG),

ES
|
-

A1, 01(si) @a(si)ds; = 0,

A1, 01(si)@3(si)ds; = 0,

Il
—

ES
Il
-

Il
—

]li(pl (Si)(P4<Si)dSi = 0’

A11,92(s:) @2 (s:)ds;

d,
2 7 4G
s d
= Ay~ 1 /( —1> dS1+A11GZS/dS2
0
dg
d 53\’ d2
JrA]]SIS/(lZd—Z) dS3+A]1GZS/dS4
0 0

d d3 d3 d?
:Ansl—; +AIIGZSdG+Al]S£ JFAl](;ISdG

ES
|
M»
°\s~°\s~°\s°\s~°\s~

ES
Il
1=

dg
= F<A]lsds +3A]1Gd(j,)7

Ay = X [An,0:005()ds =0,
i:lo

g i
Ay, = Z/An,(Pz(Si)(m(Si)dSi =0,
i=1)

d.
4 °F 2
~ d
Al = Z/Allf%(si)%(si)dsi = 66(314115615 +A11,dc),
=1y

A134 = Z;/An,(PB(Si)%(Si)dsi =0,
=0

A 2
Ay, = Z/ 11,04(5:) @4 (s;)ds; = 4 (Ar1,ds +A11,dG)
=10
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With all elements Alij we obtain the matrix;il to

A, 0 0 0
0 A, 0 0
0 0 Ay 0
0 0 0 A,

2
I

with
Ay, = 2(2A11Sd5 —|—A110d(*,),

d
A122 = FS(A”SdS +3A]1Gd(})7
2

d,
Ay, = 6(}(3A11Sds —|—3A110d(‘,),

2 72

d2d
Ay, = %(A”Sds+3A”GdG)

One can see that the generalized co-ordinate functions ¢; are orthogonal to each
other and therefore the matrix A; is a diagonal matrix
In the same way the other A; matrices are obtained

0 0 0 0
) 024¢6,ds O 0
As= 10 0 24e.dc 0 ’
dsd
0 0 0 % (AﬁéSdG + 3A66(;dS)
o 0 0 0
Ao | 0 2Aseds 0 0
0 0 2A¢,dc O
2 0 0 o
0 00 0
) 0 00 0
Ap = 0 00 0 ’
dsdg 96Dy;,.Dy>
56 (Ago.dG — Agods) 00 ———22C—225
) ( 6654G 666 S) dGD225 +dsD22@
0 0 0 0
Ao_ | 024ds 0 0
5= 19 0  2Ag¢6.dsc O
2 0 0 o
with ded dsd
o = —52 S (Asssdc +Acepds), B = %(A“sd(} —Aesgds)

Now the system of differential equations can be developed with the help of Eq.
(10.2.32).
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2(Ands +An,dc)UY = —fx»

2
S (Ay14ds +3A11,d6)U3 — 2Ae6ds (U +V3) = —fr,

2A66st<U2+V2”) *<f52 Jrfnz)v

d2
6(}(3A115ds +A11,dG) U3 —2A66,dc(Us +V3) = — fis,

2A66GdG(U§+V3”) *<f53 Jrfns)v

d3dg,
24
dsd,

- %( 665dG + Aso,ds) (Us + V)
dsd,

_%(A%sdG Agsds) V] = —frys

dsdg
2

dsd,
“F%(A%SdG + Ago,ds) V' =—(fs, +fu,),
dsdg
2

dsd,
+ 5 (Ags,dG — Assgds VY

B 96D226D22S
dgDyg +dsDas,,

S (Ay15ds +A11,dc)Us

—— (As65dG — Assyds) (Uy + Vi)

—— (As65dG +Aseds) (Uy + Vi)

= _(fS4 +fn4)

We can see, that the system of differential equations is divided into four decou-
pled partial systems. The first equation describes the longitudinal displacement, the
second and the third partial systems represent the bending about the global y- and
z-axes and the fourth - the torsion, the warping and the contour deformation of the
cross-section. An analytic solution of the fourth partial system is more difficult like
the solutions of the first three partial systems but it is possible too. The analytical
solution of an analogous system for an isotropic box girder is given in detail by
Vlasov and by the authors of this book, see also the remarks in 10.3.1.
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Part V

Finite Classical and Generalized Beam
Elements, Finite Plate Elements



The fifth part (Chap. 11) presents a short introduction into the finite element proce-
dures and developed finite classical and generalized beam elements and finite plate
elements in the frame of classical and first order shear deformation theory. Selected
examples demonstrate the possibilities of finite element analysis.
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Chapter 11
Finite Element Analysis

The Finite Element Method (FEM) is one of the most effective methods for the nu-
merical solution of field problems formulated in partial differential equations. The
basic idea of the FEM is a discretization of the continuous structure into substruc-
tures. This is equivalent to replacing a domain having an infinite number of degrees
of freedom by a system having a finite number of degrees of freedom. The actual
continuum or structure is represented as an assembly of subdivisions called finite
elements. These elements are considered to be interconnected at specified joints
which are called nodes. The discretization is defined by the so-called finite element
mesh made up of elements and nodes.

We assume one-dimensional elements, when one dimension is very large in com-
parison with the others, e.g. truss or beam elements, two-dimensional elements,
when one dimension is very small in comparison with the others, e.g. plate or shell
elements, and volume elements. From the mechanical point of view the nodes are
coupling points of the elements, where the displacements of the coupled elements
are compatible. On the other hand from the mathematical point of view the nodes are
the basic points for the approximate functions of the displacements inside a finite el-
ement and so at these nodes the displacements are compatible. It must be noted here
that all considerations are restricted to the displacement method. The force method
or hybrid methods are not considered in this book.

An important characteristic of the discretization of a structure is the number of
degrees of freedom. To every node, a number of degrees of freedom will be assigned.
These are nodal constants which usually (but not necessarily) have a mechanical or
more general physical meaning. The number of degrees of freedom per element is
defined by the product of the number of nodes per element and degrees of freedom
per node. The number of degrees of freedom in the structure is the product of the
number of nodes and the number of degrees of freedom per node.

Chapter 11 contains an introduction to the general procedure of finite element
analysis in a condensed form (Sect. 11.1). For more detailed information see the
vast amount of literature. In Sects. 11.2 and 11.3 the development of finite beam
elements and finite plate elements for the analysis of laminate structures is given.
Section 11.4 contains the development of generalized finite beam elements based on

© Springer Nature Singapore Pte Ltd. 2018 409
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Elements, https://doi.org/10.1007/978-981-10-8935-0_11
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a generalized structure model for beam shaped thin-walled folded structures given
in Sect. 10.2. In Sect. 11.5 the results of some numerical applications show the
influences of chosen parameters on the behavior of laminate structures.

11.1 Introduction

The principle of the total minimum potential energy and the Hamilton‘s principle
are given in Sect. 2.2.2 in connection with analytical variational approaches, they are
also the theoretical basis of the FEM solutions of elastostatic and of dynamic prob-
lems. In this way we have variational problems. For such problems the Ritz method
may be used as a so-called direct solution method (see Sect. 2.2.3). In the classical
Ritz method the approximation functions are defined for the whole structure, and
so for complex geometries it is difficult to realize the requirements of satisfying
the boundary conditions and of the linear independence and completeness of these
functions.

One way to overcome these difficulties is by the discretization of the structure
into a number of substructures, if possible of the same kind (finite elements). Then
the approximation functions can be defined for the elements only and they must sat-
isfy the conditions of geometrical compatibility at the element boundaries. Because
it is usual to define different types of finite elements, we have special types of ap-
proximation functions for each element type. Here the approximation functions are
denoted N, the so-called shape functions. They are arranged in a matrix N, the ma-
trix of the shape functions of the particular element type. The following introduction
to the FEM procedure is given in a general but condensed form and illustrates that
the step-by-step finite element procedure can be stated as follows:

Discretization of the structure,

Selection of a suitable element displacement model,

Derivation of element stiffness matrices and load vectors,

Assembly of element equations to obtain the system equations,
Calculation of the system equations for the unknown nodal displacements,
Computation of element strains and stresses

11.1.1 FEM Procedure

The starting point for elastostatic problems is the total potential energy given in Eq.
(2.2.28). In accordance with the Ritz method the approximation

i(x) =N(x)v (11.1.1)

is used for the displacement field vector u. Here N is the matrix of the shape func-
tions, they are functions of the position vector x, and v is the element displacement
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vector. The matrix N has the same number of rows as the displacement vector u
has components and the same number of columns as the element displacement vec-
tor v has components. If the element has ngr nodes and the degree of freedom
for each node is np, the element displacement vector v contains ngg subvectors
v;,i = 1,...,ngg with np components in each, and so v has nxgnr components. The
number of components of the displacement field vector u is n,. Then the structure
of the matrix N is generally

NKENF
ny

N =[N, Nol,, ...Nal,,)], 7i= (11.1.2)

with I,,, as unit matrices of the size (ny,n,). Therefore the size of N is generally
(ny,nxenr). In dependence on the kind of continuity at the element boundaries, the
so-called C(9)- or C(l)—continuity, see below, two cases can be distinguished. In the
case of C (O)-continuity nr equals n, and therefore 7i is equal ng,, we have only ngg
shape functions N;, whereas we can have up to nggnrp shape functions in the case of
C-continuity.

For the stresses and the strains we obtain from (11.1.1)

o(x) = Ce(x) =CDN (x)v,

€(x) = Du(x) = DN(x)v = B(x)v (11.1.3)

With the approximation (11.1.1) the total potential energy is a function of all the
nodal displacement components arranged in the element displacement vector v, e.g.
IT = II(v). The variation of the total potential energy

SIT=6v" / BTCBvdv — / NTpdv — / NTgdA (11.1.4)
|4

4 Ag

leads with 6IT =0 to
VI Kv—f,—f,) =0 (11.1.5)

K is the symmetric stiffness matrix with the size (nxgnr,nggnr)

K:/BTCBdV (11.1.6)
\%

and f, and f, are the vectors of the volume forces and the surface forces

f,,:/NTpdw fq:/NquA (11.1.7)
14 Ay

If the components of v are independent of each other, we obtain from (11.1.5) a
system of linear equations

Kv=f, f=fp+fq (11.1.8)
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For elastodynamic problems, we have to consider that forces and displacements are
also dependent on time and the Hamilton‘s principle is the starting point for the
FEM procedure. Assuming again the independence of the components of dv the
matrix equation is

Mi(t)+Kv(t) = f(t) (11.1.9)

for elastic systems without damping effects. M is symmetric mass matrix

M:/pNTNdV (11.1.10)
\%4

and f () the vector of the time dependent nodal forces. Assuming the damping pro-
portional to the relative velocities, an additional term Cpv(¢) can be supplemented
formally in Eq. (11.1.9)

Mii(t) +Cpv(t) + Kv(t) = f(1), (11.1.11)

where Cp is the damping matrix. Cp has the same size as the matrices K and M
and usually it is formulated approximately as a linear combination of K and M. The
factors & and 8 can be chosen to give the correct damping at two frequencies

Cp ~ oM + BK (11.1.12)

In selecting the shape functions N;(x) it must be remembered that these functions
must be continuous up to the (n — 1)th derivative, if we have derivatives of the nth
order in the variational problem, i.e. in the total potential energy or in the Hamil-
ton’s function. In this case only the results of FEM approximations converge to the
real solutions by increasing the number of elements. For more-dimensional finite
elements in this way it is to realize that the displacements are compatible up to the
(n — 1)th derivative at the boundaries of adjacent elements, if they are compatible at
the nodes.

In plane stress or plane strain problems and in general three-dimensional prob-
lems the vector u contains displacements only (no rotations) and the differential
operator D is of the 1st order. In this way we must only satisfy the displacements
compatibility at the element boundaries that means the so-called C(?)-continuity.

By using beam or plate models especially of the classical Bernoulli beam model
or the classical Kirchhoff plate model, the rotation angles are expressed by deriva-
tives of the displacements of the midline or the midplane and the differential op-
erator D is of the second order. Then we have to satisfy the compatibility of dis-
placements and rotations at the element boundaries. In such cases we speak about a
C-continuity and finding the shape functions N; is more difficult.

Because we have no differential operator in connection with the mass matrix M,
it would be possible to use other, more simple functions N/ for it. In such a case
the mass matrix would have another population, e.g. a diagonal matrix structure is
possible. Then we speak about a so-called condensed mass matrix, otherwise we
have a consistent mass matrix. By using the condensed mass matrix we have less
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computational expense than by using the consistent mass matrix, but a decreasing
convergence to the real results is possible.

All equations considered above are only valid for a single element and strictly
they should have an additional index E. For example, we have the inner element
energy
Ur = ;v} B'CBdVv = ;v}KEvE (11.1.13)

Vg

with the element stiffness matrix

Kg :/BTCBdV (11.1.14)
Ve

Since the energy is a scalar quantity, the potential energy of the whole structure can
be obtained by summing up the energies of the single elements. Previously a system
displacement vector containing the displacements of all nodes of the whole system
must be defined. By a so-called coincidence matrix Lg the correct position of each
single element is determined. Lg is a Boolean matrix of the size (nxgnr,ngnr) with
nk as the number of nodes of the whole structure.
The element displacement vector vg is positioned into the system displacement
vector v by the equation
vg =Lgv (11.1.15)

and we obtain the system equation by summing up over all elements

(ZLI-TEKiELiE> V= [ZLiE (fiep+ fieq)

Kv=f

(11.1.16)

The system stiffness matrix is also symmetric, but it is a singular matrix, if the
system is not fixed kinematically, i.e., we have no boundary conditions constraining
the rigid body motion. After consideration of the boundary conditions of the whole
system, K becomes a positive definite matrix and the system equation can be solved.
Then with the known displacements v the stresses and deformations are calculated
using the element equations (11.1.1) and (11.1.3).

For elastodynamic problems, the system stiffness matrix and the system mass
matrix are obtained in the same manner and we have the system equation

Mi(t) +Cpv(t) + Kv(t) = f (1) (11.1.17)

For investigation of the eigen-frequencies of a system without damping harmonic
vibrations are assumed and with

v(t) = vcos(wr + @) (11.1.18)

and Cp =0, f () = o the matrix eigen-value problem follows
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(K—o’M)v =0 (11.1.19)

and the eigen-frequencies and the eigen-vectors characterizing the mode shapes can
be calculated.

11.1.2 Problems

Exercise 11.1. A plane beam problem is given. The beam is divided into three plane
two-node beam elements. The number of nodal degrees of freedom is three (i, w, ¢):

1. What size are the element stiffness matrix and the system stiffness matrix before
the consideration of the boundary conditions?

2. Show the coincidence matrix L, of the second element lying between the nodes
2 and 3!

3. Show the population of the system stiffness matrix and the boundary conditions,
if the beam is fixed at node 1 (cantilever beam)! Do the same as in the previous
case but consider that the beam is simply supported (node 1 is constrained for the
deflections u and w and node 4 only for the deflection w)!

Solution 11.1. For the plane beam problem one gets

1. With ngg = 2 and np = 3 the element stiffness matrix has the size (6,6). Be-
cause we have 4 nodes (ng = 4) the size of the system stiffness matrix before the
consideration of the boundary conditions is (12,12).

2. The coincidence matrices in this case have the size (6,12). Because it must be

V) = sz

we obtain the coincidence matrix for the element Nr. 2

000100000000
000010000000
000001000000
000000100000
000000010000
000000001000

L, =

3. The system stiffness matrix without consideration of the boundary conditions is
defined by

K=

4
L'K,L;

i=1

In this case we obtain the following population of the matrix K
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$

4
(W] [] [)] (W] ()] ()] [(0)] [(0)] [(0)] [(0)] [(O)] [(O)] | w1
(W] [] [M] (W] (W] ()] [(0)] [(0)] [(0)] [(0)] [(O)] [(O)] | wi
(W] ) (v) () () (0) (0) (0) (0) (0) (0) | ¢
(V)] [(v)] (v) v+xv+xv+x x  x  x 0 [(0)] O U
(V)] [(v)] (v) v+xv+xv+x x  x  x 0 [(0)] O )
(V)] [(v)] (v) v+xv+xv+x x  x  x 0 [(0)] O (033
(O] (@] (0) x x x x+zxt+zx+z z [ z | us
()] [(@] (0) x x x xt+zxt+zx+z z [ z | ws
(O] [(0)] (0) x x x x+zxt+zx+z z [ z | ¢
(][] © 0 0 0 =z =z =z 2z [d z | w
[(0)] (O] [(0)] [(O] [(0)] [(0)] [z] [z [ [ [a [z | wa
O[O @] 06 0 0 =z =z =z =z [ z | ¢

v - components of the stiffness matrix of element No. 1, x - components of the
stiffness matrix of element No. 2, z - components of the stiffness matrix of ele-
ment No. 3.

Considering the boundary conditions for a cantilever beam clamped at node 1
(u; =0,w; =0, ¢; = 0) we have to cancel the first three rows and the first three
columns in the obtained matrix - characterized by brackets (...). If we have a
simply supported beam with u; = 0,w; =0 and w4 = 0, the first two rows and
columns and the row and the column No. 11 must be deleted - characterized by
square brackets [...].

11.2 Finite Beam Elements

A beam is a quasi one-dimensional structure, the dimensions of the cross-section
of it are very small in comparison to its length. The connection of the centers of
the cross-sectional areas is called the midline of the beam. We distinguish between
straight beams and beams with an in-plane or spatial curved midline, respectively.
Here we consider beams with a straight midline only.

Generally such a beam can be loaded by tension/compression, one- or two-axial
bending and torsion. Especially with respect to the use of laminate beams the fol-
lowing investigations are restricted to tension/compression and one-axial bending.
For two-axial bending and torsion, laminate beams are not so predestined.

Laminate beams consist of UD-laminae mostly have a rectangular cross-section
of the dimension b (width) and & (hight) and very often the laminae are arranged
symmetrically to the midline. We will assume this special case for the following
development of finite laminate beam elements. In this way we have no coupling of
tension and bending and we can divide our considerations into the development of
laminate elements for tension/compression, so-called laminate truss elements, and
laminate beam elements for bending only.
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11.2.1 Laminate Truss Elements

The laminate truss element is a very simple element. It is assumed to be a straight
structure of the length / with a constant cross-sectional area A. The nodal degree of
freedom is one - the displacement u in axial direction (Fig. 11.1). In the potential
energy we have only the first derivative and so we can use a two-node truss element
with linear shape functions N;(x;) and N;(x; ), which satisfies CO)_continuity

u(xl) ZNVE, VE = [Lt,' uj], N= [Ni(xl) Nj(xl)] (11.2.1)

The two shape functions (see also Fig. 11.2) are

X X
Ni(xl)zl—Tl, Nj(x1)=71 (11.2.2)
With the stress resultant
du (k)
N(x1)=/6dA=An€1(x1)=A11E, A =bY CVh (11.2.3)

“® k=1

and the longitudinal load per length n(x;) the total potential energy can be written
as

1 1
1
(u) = 2/A111/2dX1 f/n(xl)udxl (11.2.4)
0 0

and for the element stiffness matrix we obtain

1.0

n(xi)
L= = = = = ()X
Fig. 11.1 Laminate truss i
element
N; N;
| | | | 1.0 | | T
05 - 05 -
N S S S -
| | | | X1 ‘ | | | x|
O I I I I l 0 I I I I l
0 1.0 0 1.0

Fig. 11.2 Shape functions of the two-node truss element
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l
A _
Kr :A”/N’TN’dx] - % [_} H (11.2.5)
0

The element force vector is defined as
l
an = /NTI’Z()C])dX]
0

If we assume that n(x;) is a linear function with n; and n; as the intensities at the
nodes
n;
n(x)) =N { }

nj

then l
_ T n; _l 21 n;
an—/N Ndx; {nJ =6 [1 2} [n]} (11.2.6)
0

In case of nodal forces fpr = [F; F, j]T, the vector fpr must be added to the vector

an
fe=fue+frE (11.2.7)

The system equation can be obtained in dependence on the structure of the whole
system, defined by a coincidence matrix together with the transformation of all el-
ement equations into a global coordinate system. Considering the boundary con-
ditions, the system equation can be solved and with the known displacements the
stresses can be calculated for each element.

For vibration analysis, the element mass matrix (11.1.10) has to be used

1
Mg = / pNTNAV = / pN™Ndx;, p= }ll Y p®n®
% 0 k=1

All parts of the cross-section have the same translation u and the corresponding
acceleration i multiplied by the distributed mass produces a distributed axial inertia
force. Instead of handling the distributed mass directly, we generate fictitious nodal
masses contained in the consistent mass matrix

st

Me="=11, (11.2.8)

6

With the system equation, obtained in the same manner as for elastostatic problems,
the eigen-frequencies and mode shapes can be calculated.
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11.2.2 Laminate Beam Elements

For the analysis of laminate beams in this book two theories are considered, the
classical laminate theory and the shear deformation theory. The classical laminate
theory is based on the Bernoulli beam model and the shear deformation theory on
the Timoshenko beam model. The Bernoulli beam model neglects the shear strains
in the bending plane and so it seems to be less realistic for the calculation of laminate
beams. Therefore it is better to use the Timoshenko beam model, which includes the
shear strains in a simple form (Chap. 7).

In the following discussion, only the shear deformation theory is used and we
assume a simple rectangular cross-section with a symmetric arrangement of the UD-
laminae. This means that we have no coupling of tension and bending. The main
advantage of the shear deformation theory in comparison with the Bernoulli theory
is that the cross-sectional rotation angle y is independent of the displacement w and
therefore the differential operator D in the strain energy is of the 1st order. In this
way we can use elements with C(?)-continuity, and a two-node element with linear
shape functions is possible. The nodal degrees of freedom are 2 (w, ¥). In Fig. 11.3
such a two-node beam element is shown. The element displacement vector is

vy = [wi Wi wj ] (11.2.9)

For the displacement vector u the approximation (11.2.11) is used

_(wan) | _
u(x) = {w(n)} — Nvg, (11.2.10)

where the matrix of the shape functions is

N= {Ni(xl){(l) ﬂ Nj(xl)[(l)(l)” (11.2.11)

with the shape functions (11.2.2), see also Fig. 11.2.
A better element accuracy can be expected, if we consider a three-node element,
as shown in Fig. 11.4. Then the element displacement vector is

Vi = [wi Wi wj Wi wi Wi (11.2.12)

and for the matrix N we obtain

X3
Wi wj

,,,,,,,,,,,,,,,,,,,,,,, A X1
Fig. 11.3 Two-node beam <?/}‘V: I ( 3 v

element
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Fig. 11.4 Three-node beam X3
element W wj Wi
O @y )
<Y WA Vi
1/2 1/2
10 10 10
N = |:NZ<X])|:01:| Nj(xl)|:01:| Nk(xl) |:01:|:| (11213)

with the shape functions

2 2
Niw) =132 4250 Nixy) =4l 420

M o8 o4
I 127 j I lzaNk<xl)*7_+ 77 ( =L )

[ 2’

which are shown in Fig. 11.5. A further increase in the element accuracy can be
achieved with a four-node element, see Fig. 11.6. Here the element displacement
vector and the matrix of the shape functions are

T
Vg = [Wi Wi wj W) Wi Wi wy Y] (11.2.15)
N; N;j
1.0 ; ; ; ; 1.0 ;
05 [~ "N~ 05 [~/ SRR
0 | ‘ | | X | X1
————— 0 !
-0.125 l o o !
0 1.0 :
Ne
1.0 : : : :
05 [ it
e Rt e Rt e B ¢
-0.125 ;
0 1.0

Fig. 11.5 Shape functions of the three-node element



420 11 Finite Element Analysis

Fig. 11.6 Four-node beam X3, w

element . w; Wi Wy

S

Y ) C
/ N/ ] \J \_J ﬁ
j 1

N= [Ni(xl){(l) ﬂ Ni(x1) [(1) ﬂ Ne(x1) B ﬂ Nyx) [(1) ‘1)” (112.16)

with the shape functions

R SR IR R B ORI O

21 I 2\7 2\ 2\
9X1 X1 2 27 X1 3 X1 9 X1 2 9 X1 3
k 27 T I 2 \7 P 2\7) T g

(11.2.17)
which are shown in Fig. 11.7. The three types of beam elements given above show
the possibility of using elements of different accuracy. Of course, using the element
with higher number of nodes means that less elements and a more coarse mesh
can be used, but the calculations of the element stiffness matrices will be more
computationally expensive.

The further relationships are developed formally independent of the chosen num-
ber of element nodes. The element stiffness matrix is obtained with (11.1.6)

[ 1
Ky — / BTCBdx; — / NTDTCDNdx, (11.2.18)
0 0
Here
0 L _
_ dx; IR TR
D= a . C= { 0 ksASJ (11.2.19)
dx;
with the stiffness
_ b 3 13 !
Du=, Y cff (7 =), Ass=p Y cln® (11.2.20)
k=1 k=1

and the shear correction factor £* given in (7.3.20).

For calculation of the element force vector, we assume that the element is loaded
by a distributed transverse load per length ¢(x;) and we can write the external work
as

l
We = [ qln)wiv)dn =vEfe
0
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and with
w(xi) = [w y] M =u'R=viN'R (11.2.21)

the element force vector fr is obtained

1
fe= / NTRg(x1)dx; (11.2.22)
0

If single nodal forces or moments are acting, they must be added.

The system equation can be obtained in dependence on the structure of the whole
system defined by a coincidence matrix together with the transformation of all el-
ement equations into a global coordinate system. After considering the boundary
conditions, the system equation can be solved. After this the stress resultants are
obtained for all elements

04t L)

02f 1S

0.0 ¢ T Ll e

Fio T ko !
o ox—o2b ]
1.0 1 00 02 04 06 08 101

Fig. 11.7 Shape functions of the four-node element
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o= {M} = CDNv;; (11.2.23)
QJlr

For elastodynamic problems the mass matrix must be calculated. The Timoshenko
beam model includes in the general case axial, transversal and rotational inertia
forces and moments. So it must be noted that the laminae of the beam have different
velocities in x; -direction

1 b2 A

I
Ty = 2/ / /p(u2+w2)dx1dx2dx3, = tig+ X3 ¥ (112.24)
0 b2,

After integration with respect to dx, and dx3 follow

l
1
Te = [ [poli3 + )+ 2puiioy-+ p2?] dy (11.2.25)
0

with the so-called generalized densities

=
I
S
01="
b/\
R

(11.2.26)

»-
Il
-

)
[\]
Il
S
W o—= N
0=
i)
=
/; N
e
e
\
S
=
|
o
~_

»-
Il
-

p<k) is the density of the kth lamina.
Because we assumed a symmetric arrangement of the laminae in the cross-
section it follows that

p1 = 0, =0
and therefore 1 ,
1 1
T =, / (PoW? +p2y?)dn = / " Roid; (11.2.27)
0 0
with the matrix R
Ry= | P00 (11.2.28)
0 p2

Using (11.1.1)
I
1
Te =, / VvENTRoNVEdx,
0

the element mass matrix Mg is obtained
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[
Mg = / NTR(Ndx; (11.2.29)
0

The system equation is established in the same manner as for elastostatic problems,
and with the assumption of harmonic vibrations, the eigen-frequencies and the mode
shapes can be calculated.

11.2.3 Problems

Exercise 11.2. Let us assume a two-node beam element.

1.

2.

3.

Calculate the element stiffness matrix for a two-node beam element by analytical
integration!

Calculate the element force vector for a two-node beam element, loaded by a
linear distributed transverse load per length g(x;). The intensities at the nodes
are g; and g/

Calculate the element mass matrix for a two-node beam element!

Solution 11.2. The three solutions are;

1.

In the case of a two-node beam element the matrix of the shape functions is

N= |:Ni(x1) [(l)ﬂ Nj(x) [(1)(1)”

with Nj(x1) = 1 — (x1/1),N;j(x1) = x1 /I. The element stiffness matrix is defined
by (11.2.18)

1
K= / N'D'CDNdx,,
0

where in (11.2.19) are given

O - —
_ dx; _|Dn O
b=14a : C{o kSAsJ
dxy

with Dy and k*Ass in according to (11.2.20). After execution the matrix opera-
tions we obtain for the stiffness matrix
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[ /dN:\? _dN; dN; 1
KAss (E) 0 kY
_ /dN;\? _ dN;dN
l 0 Dy ha) 0 D”—l—J
KE:/ dx; dx; dx dx
o | godss SN 4N 0 s (N ’ 0
del i 55 dx :
_dN; dN; _ [ dN;
0 bkl 0 Dy [ =2
I lldxl an 11 (dxl

and finally
1 0 Dn 0 —Di

0 —-Diy 0 Dy

2. The element force vector to calculate with respect to (11.2.22)

I
fE = /NTRq(xl)dxl with R= |:(1):|
0
For the loading function g(x;) we can write

o) = o) M) | &

qj

and then we find

; Ni(x1)? Ni(x1)Nj(x1) 2gi+q,
f */ 0 0 [%} 1 0
£ Ni(x1)Nj(x1) Nj(xl)z qj =6 qi+2q;
0 0 0 0

3. The element mass matrix for such a two-node beam element we find in according
to (11.2.29)
!
Mg — /NTRONdxl, Ry = [po 0 }
0 p2
0
with the generalized densities py and p; (11.2.26).

Inserting the matrix of the shape functions given above and executing the matrix
operations we obtain

; Ni(x1)*po 0 N;(x1)N;(x1)po 0
/ 0 Ni(x1)*p2 0 Ni(x)Nj(x)p2 | o
Ni(x1)N;(x1)po 0 N;(x1)*po 0 !
0 0 N,-(x])Nj(xl)pz 0 Nj()C])zpz
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and after integration the element mass matrix is in this case

200 0 po O
_ 11020 0 p
6P 0 200 0
0 p2 0 2p

Mg

11.3 Finite Plate Elements

Plates are two-dimensional structures that means that one dimension, the thickness,
is very small in comparison to the others and in the unloaded state they are plane.
Usually, the midplane between the top and the bottom plate surfaces is defined as
the reference plane and is taken as the plane of x — y. The z-direction corresponds
to the thickness direction. To avoid double indexes in the following relationships in
this section we will use the coordinates x,y,z instead of x1,x;,x3. Laminate plates
consist of a number of bonded single layers. We assume that the single layer as
quasi-homogeneous and orthotropic. In each layer we can have different materials,
different thicknesses and especially different angle orientations of the fibres. The
whole plate is assumed to be a continuous structure. The stacking sequence of the
single layers has a great influence on the deformation behavior of the plate. Plates
can be loaded by distributed and concentrated loads in all directions, so called in-
plane and out of plane loading. In a special case of laminate plates, if we have an
arrangement of the single layers symmetric to the midplane, the in-plane and out of
plane states are decoupled.

In Chap. 8 the modelling of laminate plates is given and it distinguishes between
the classical laminate theory and the shear deformation theory like the modelling
of beams. The plate model based on the classical laminate theory usually is called
Kirchhoff plate with its main assumption that points lying on a line orthogonal to
the midplane before deformation are lying on such a normal line after deformation.
This assumption is an extended Bernoulli hypothesis of the beam model to two-
dimensional structures.

The application of the classical laminate theory should be restricted to the anal-
ysis of very thin plates only. For moderate thick plates it is better to use the shear
deformation theory. The plate model based on this theory is called the Mindlin plate
model. The following development of finite laminate plate elements will be carried
out for both models. Here we will be restricted to symmetric laminate plates in both
cases, it means that we have no coupling of membrane and bending/twisting states
and we will consider bending only.

In both cases we consider a triangular finite plate element. The approximation
of complicated geometric forms, especially of curved boundaries, can be done
easily with triangular elements. Usually special coordinates are used for triangu-
lar elements. The triangle is defined by the coordinates of the three corner points
Pi(xi,yi),i = 1,2,3. A point P(x,y) within the triangle is also defined by the natural
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triangle coordinates Ly, Ly, L3, P(L;,Ly,Ls), see Fig. 11.8. There

Aj

A A
=1 A2 4
Ap

L = =
1 AA’ 3 AA

L (11.3.1)

with the triangle area A o and the partial areas Aj,A,,A3,An = A1+ Az +As. There-
fore
Li+L,+15=1 (11.3.2)

The areas A|,A;,A3,A can be expressed by determinants

1 x1y1 lxy
Ap=|lxay|, Air=|1x2y],
1 x3 y3 1x3y3
(11.3.3)
Lxi n Lx1 yi
Ay =|1x y |, A3=|1lxa¥»m
1x3y3 1x y
and for the coordinates L;, Ly, L3 of the point P(x,y)
1
Ly = 57— [(r2ys —x3y2) + (y2 = y3)x + (x3 — x2)y],
2A A
1
L = m[(x.’)}’l —x1y3) + (3 — y)x+ (x1 —x3)y], (11.3.4)
1
Ly = ——[(x1y2 —x2y1) + (y1 —y2)x + (x2 —x1)y]
2An
and the coordinates x,y can be expressed by
x=x1L1 +x3Lp+x3L3, y=y1Li+y2Lp+y3L3 (11.3.5)
Considering Eq. (11.3.2) we obtain for cartesian coordinates
3(k)
y
1(7)
Fi . 2(Jj)
ig. 11.8 Natural triangle X
coordinates
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x=Li(x1 —x3) +Lo(x2 —x3) +x3, y=Li(y1 —y3)+L2(y2—y3) +y3 (11.3.6)

In Fig. 11.9 the natural triangle coordinates L1, L, , L are illustrated for some special
points: the corner points and the points in the middle of the sides.

Because the shape functions N; used for the approximation of the deformation
field in a triangular plate element are usually written as functions of the natural
element coordinates, it is necessary to find relationships for the derivatives of the
shape functions with respect to the global cartesian coordinates. At first the deriva-
tives of the shape functions N; are given by the natural triangle coordinates L; and
L,. L3 depends from L; and L,, see (11.3.2). So we consider only two independent
coordinates. Here we have

IN; 9x dy ] [N ON;
JL; oL, dL; ox ox
— —J (11.3.7)
IN; Ox dy | | 9N IN;
oLy L, dL, dy dy

J is the Jacobi matrix of the coordinate transformation

ox
JL; JL; .
J= [ € bf} (11.3.8)
dx dy —¢i b
alL, L,
and the expressions b;,bj,c;,c; are
bi=y»—y3, bj=y3—y1, ci=x3—Xx3, C¢j=Xx]1—X3 (11.3.9)
With
DCUZCjbi—bjCi =A (11.3.10)

y

5(m)
(0;0.5;0.5)

Fig. 11.9 Natural triangle
coordinates of special points
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it follows that

1 b
J! =5 Bf ?} (11.3.11)
i Cj

and then we obtain for the derivatives of the shape functions N; with respect to the
cartesian coordinates x and y

N, an,
ox 8L1
=J! (11.3.12)
IN; ON;
dy oL,

In case of the classical laminate theory, the second partial derivatives

9°N;  9°N;  I*N,
L2’ OJLLy" 9L

are also required. For this we must put the result for dN;/dL; instead of N; into the
first row of Eq. (11.3.7), and we obtain

207, 2 92N N; 2 92N,
aN,_<ax>8N, ,.0x dy O°N, (3Y>9N' (11.3.13)

QL% “\oL, ) 92 0L, L dxdy dL, ) 0y?
In the same manner we can do so with dN;/dL, and the second row of Eq. (11.3.7)

and for the mixed second partially derivative with dN;/dL, and the first row or vice
versa. The three relationships obtained can be written in matrix form

To2N; ] [ 9Ny ]
0x2 oL?
92N; 92N;

J* L= 11.3.14
Ixdy 9L,9L, ( )
%N %N

L dy? | oL3

where J* is a modified or extended Jacobi matrix

[/ ox\* 28x dy dy \*T
(8—L1> dLy L (8—L1>
dx dx Jdx dy dx dy dy dy
0L Ly dL, Ly 0Ly dL, L, I,

),y (o)
L\ dL, dL, dL, dL, J

J*

(11.3.15)
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Now the second partial derivatives of the shape functions by the cartesian coordi-
nates can be calculated

[ 92N; T [ 92N; 7
o0x? 8L%
92N; | 92N
=J* 11.3.16
0xdy dLdL, ( )
92N; 92N;
L 9y? | L oL} |

Of course, by consequently using the natural triangle coordinates it follows that the
integrands in the energy terms are functions of these coordinates. Therefore we have
to consider for the variables of integration the relationship

dA = dxdy = DetJdL|dL, = AdLdL, (11.3.17)
In Sects. 11.3.1 and 11.3.2 the development of triangular finite plate elements will

be shown in a condensed way for the classical laminate theory and for the shear
deformation theory, respectively.

11.3.1 Classical Laminate Theory

The starting point is the total potential energy of an symmetric laminate plate, see

also (8.2.24)
1 2w\ > 2w\ 2
I(w) = 2A/ D1y (W) +Doy (8—y2>
92w 9? 2w\’
I ZDIZ(Q—V;B—;; 14 66(—8X(;Vy> (11.3.18)
%w *w\ 9%*w
—|— 4<D16W +D268—y2> m]dA-/pszA
A

with the stiffness D;j,i,j = 1,2,6, see Table 8.3. The strain energy simplifies the
couplings, if we assume special orthotropic laminates (e.g. cross-ply-laminates).
We have no bending-twisting coupling, i.e. D1 = D¢ = 0. Supposing in other cases
these coupling terms as very small, especially if we have a great number of very thin
layers, we use the following simplified strain energy approximately
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1 2w\’ 2w\’
II = D - D R
" 2A/ ”<8x2> i 22(9y2>

’w 9%w 2w \*
+ 2D12W8—yz +4D66 (m) 2pZW‘| dA

(11.3.19)

The total potential energy of the classical plate model contains second derivatives
and so we have to realize C(!)-continuity at the element boundaries. This means,
continuity of the deflections and the derivatives in normal direction to the bound-
aries. It must be noted that we do not have C(l)-continuity, if the first derivatives
at the corner points of adjacent elements are equal because we have to guarantee
the continuity of the derivatives in the normal direction at all boundary points of
adjacent elements.

It can be shown that we have to use a polynomial with minimum of 18 coeffi-
cients, and because we want to have a complete polynomial, we choose a polynomial
of fifth order with 21 coefficients. Therefore we define a triangular finite plate ele-
ment with 6 nodes as shown in Fig. 11.10. At the corner nodes 1,2,3 (i, j, k) we have
6 degrees of freedom, the deflection, the first derivatives in both directions and the
three curvatures, but at the mid-side nodes the first derivatives in normal direction
only.

It is a disadvantage when using this element in a general program system that we
have a different number of degrees of freedom at the nodes. Therefore an elimina-
tion, a so-called static condensation of the nodal constants of the mid-side nodes,
can be done and then we have only 18 degrees of freedom for the element. The el-
ement is converted into a three-node element, the nodes 4,5,6 (I,m,n) vanish. The
polynomial approximation of the displacement field in the finite element is given by
a special 5th order polynomial, it contains however a complete polynomial of 4th
order. In this way we obtain 18 shape functions N;(L;,Ly,L3),i = 1,2,...,18 which
are not illustrated here. Because the coordinates L1,L;, L3 are not independent, see
(11.3.2), L3 usually is eliminated by

Ly=1-L—L, (11.3.20)

Fig. 11.10 Six-node plate
element
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According to (11.1.1) we have the approximation
w(x,y) =N(Li,Lp)v (11.3.21)

with N as the matrix of the 18 shape functions (here it has only one row) and the el-
ement displacement vector v including 18 components. For the differential operator
D must be written

2 9 _ 7"
D = | 22— 11.3.22
[8x2 0y? 8x8y} ( )
and after this, see also Eq. (11.1.3), the matrix B leads to
B=DY'N (11.3.23)

Since the shape functions are functions of the natural triangle coordinates L; and L,
for the derivatives by the cartesian coordinates we have to take into consideration
(11.3.16). The element stiffness matrix follows according to (11.1.6)
Kp= / B'DBdA
Ag

and with the substitution of the integration variable Eq. (11.3.17)

1

1 1-L
Kp= / / B'DBAAL,dL, (11.3.24)
0 0

Here D is the matrix of the plate stiffness, the coupling of bending and twisting is
neglected (D16 = D6 = 0)

Dy; D120
D= D3 D0
0 0 Degg

According to (11.1.7) we obtain the element force vector

1 1=,

fE:/NTpdA:/ / NTpAdL,dL, (11.3.25)
Ag 0 0

where p(x,y) = p(Ly,L,) is the element surface load.
For the flexural vibration analysis of plates the element mass matrix must be
calculated. According to (11.1.10), the element mass matrix reduces to

1 1-L,
Mg = / pNTNdV = / / pNTNhAdL,dL, (11.3.26)
Ve 0o 0
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with p as an average density

_! Zp (11.3.27)

Note that the classical laminate theory does not consider the rotary kinetic energy.

The integrations in the (11.3.24) for the element stiffness matrix Kg, (11.3.25)
for the element force vector fr and (11.3.26) for the element mass matrix must
be carried out numerically. Only the force vector fg can be calculated analytically,
if we have a constant surface loading p(x,y) = const. For the numerical solutions
it is recommended that integration formulae of the same order are used like the
polynomials for the shape functions, in this case of the fifth order.

11.3.2 Shear Deformation Theory

The Mindlin plate model, which is based on the first order shear deformation theory,
considers the shear deformation in a simplified form. In the Mindlin plate model
the Kirchhoff’s hypotheses are relaxed. Transverse normals to the midplane do not
remain perpendicular to the middle surface after deformation. In Sect. 8.3 the basic
equations are given for this plate model.

Here the starting point is the total potential energy, and if we restrict ourselves to
symmetric and special orthotropic laminates, we have

i 9v1 9y v\’
Dy, ( 8x> +2D12< 9x dy + Dy 2

H<W7W17W2 2/
dyi  Jdy,

ow\?
+ Des (a—+a—> +k§5A55 (Wl"‘g)
. ow\?
+ ks (va+ 57 ) | dsdy [ pawaxay
A

5H(W7 Vi, WZ) =0

(11.3.28)
or written in matrix form
1 T e«
O(w,yi,yn) = 2/(KTDK+£5TA5£5)dxdy—/p3wdxdy (11.3.29)
A A

The matrices of the plate stiffness for this case (D¢ = D¢ = 0) and the shear stiff-
ness with A45 = 0 are, see also (8.3.7),
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Dy1 D 0 s
D=|DuDn 0 |, A= ["556‘55 ks(ix } (11.3.30)
0 0 Degg 447744

The stiffness are given in detail in (4.2.15) and for the shear correction factor see
Sect. 8.3. Note that we have, in the elastic potential three independent deformation
components (the deflection w and the rotations y; and y»), so the displacement field
vector u has three components (n,, = 3), see also (11.1.2).

For the curvatures and the shear strains we have

k=D, & =D'u (11.3.31)

"o 2
b (9 S ax
D°=|00 > | D = 5 (11.3.32)
J 201
02 2 9y
dy dx

The most important property of the elastic potential however is that it contains first
derivatives only. Therefore, we have to guarantee only C(?)-continuity at the element
boundaries and it will be possible to take a three-node finite element with linear
shape functions, but it shall be not done here.

Due to the better approximation properties we will choose a six-node element
with polynomials of the second order as shape functions. The six-node element with
its nodal degrees of freedom is shown in Fig. 11.11. Then we have the nodal and the
element displacement vectors

v =[wi v Wi, v T vJT- vi vl vl vl (11.3.33)
and according to (11.1.2) with n, = nr,7i = ng, the matrix of the shape functions is
given by

N = [Nil3 NiI3 NilI3 N3 Nil3 N,I3), (11.3.34)

Fig. 11.11 Six-node finite
plate element with nodal
degrees of freedom
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where I3 are unit matrices of the size (3,3). The shape functions are

N; = (2L —1)L;, N; = (2L, —1)Ly, N = (2L3—1)Ls,

Ny =4L,1,, Ny, = 41,13, N, = 4L, L4 (11.3.35)

They are functions of the natural triangle co-ordinates Li,L;,L3, see (11.3.1) -
(11.3.4).
The curvatures and the shear strains in (11.3.29) can be expressed by

kK = D% =D°Nv; =B, B’=D'N

€% = D’u = D’Nv = BSvg, BS = DN (11.3.36)

and consideration of (11.3.12) leads to the element stiffness matrix, see also (11.1.6)
consisting of two parts

Kr =K% 4K}, Kb= / B*' DB dxdy, K = / BTAB dxdy  (11.3.37)
Ag AE

Because the shape functions in N are functions of the natural triangle co-ordinates,
the integration variables must be substituted by (11.3.17), and then we find

1 1-L, 1 1-L
Ky = / / B"'DB® AdL,dL,, K} = / / B'AB® AdL,dL,  (11.3.38)
0 0 0 0

To obtain the element force vector fg a load vector g must be defined with the same
number of components as the displacement field vector u. Because only surface
loading p(x,y) is considered here, it leads to

g =[p00]
and then the element force vector is

1 1=,

fi= / NTqdxdy, fr— / / N"qAdL,dL, (11.3.39)
Ag 0 0

with the substitution of integration variables.

The integrations in (11.3.39) can be done analytically only in the case of constant
surface loading p = const. In the other cases it must be calculated numerically. For
the numerical integration it is recommended to apply integration formulae of the
same order as used for shape polynomials, here of the second order. It must be done
in this manner for the first part K% of the stiffness matrix, for the second part of K,
a lower order can be used. Such a different kind of integration for the two parts of
the stiffness matrix is called selective integration.

For dynamic analysis the element mass matrix Mg must also be calculated. For
the shear deformation theory the rotatory kinetic energy is usually taken into con-
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sideration. The kinetic energy of an element is then

h

2
1 1
T = 5 /puTudV =, //p(w2+ Wi+ y3)dzdA (11.3.40)
Vg

Ap _h
E—3

If the so called generalized densities are used

7

N

po =Y pW® — 0] = Y pWp0),
k=1 k=1
1 & 2 2
pr= Y pW®7 =T, (11.3.41)
k=1
1 & 3 3
pr=, Zpr)[Z(k) D7)
k=1

and it is noted here that p; = 0, because we have assumed symmetric laminates only,
then for the kinetic energy we obtain

1
T = 5 / vIRywdA (11.3.42)
Ag

R is a matrix of the generalized densities

po 0 0
Ro=|0ps 0 (11.3.43)
00p

Using the approximation for the displacement field vector according to Eq. (11.1.1)
we obtain
T = ;vg / NTR\NdAvg (11.3.44)
Ag
and the element mass matrix is

1 1-L;
ME:/NTRONdA7 ME:/ / NTRoNAdL,dL, (11.3.45)
Ag 0 0

with substitution of the integration variables.

The finite laminate plate element developed above is called PL18, where the
number 18 gives the degrees of freedom of all element nodes. This element can be
used only for laminate plates with laminae arranged symmetrically to the midplane,
where we have no coupling of membrane and bending/twisting states and we have
no in-plane loading.
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In many cases we have nonsymmetric laminates and we have a coupling of mem-
brane and bending/twisting states or there are in-plane and out-of-plane loadings.
Then an element is necessary where the nodal degrees of freedom also include the
deflections in x- and y-direction u, v. For such an element, assuming six nodes again,
the nodal and the element displacement vectors are

v,-T = [ui vi Wi Wi Wil VE = [ViT VJT' Vz VIT VL VI] (11.3.46)

The structure of the matrix of the shape functions N is in this more general case
N = [NiI5 N;Is NiIs NiIs NyIs5 N,Is] (11.3.47)

with Is as unit matrices of the size (5,5), the shape functions remain unchanged.
The total potential energy for this case is, see also (8.3.15),

1
I (u, v, w, 1,40 = 2/(6TA6+KTB£+£TBK+ x'Dx
A

(11.3.48)
+ eTA%S )y ds — / pow dxdy
A

and we have to take into consideration the membrane stiffness matrix A and the
coupling matrix B additionally, the element stiffness matrix consists of four parts

K =KT+K™ 1+ K% +K;, (11.3.49)

representing the membrane state (K, the coupling of membrane and bending states
(Kg‘b), the bending state (K%) and the transverse shear state (K3).

The general form for the element force vector (11.3.39) is unchanged, it must be
noted that the loading vector g here has another structure containing loads in three
directions

q" = [pxpy .00 (11.3.50)

the general form for the element mass matrix is the same as in (11.3.45), but here
the matrix of the generalized densities Ry is

po 0 0 p; O
0 pp 0 0 pg
Ro=|00py 0 0 (11.3.51)
p1 0 0 p 0O
0pr 00p

The remarks about the realization of the integrations remains unchanged here. Of
course they are all more complicated for this element. Such an extended element
would be called PL30, because the degree of freedom of all nodal displacements is
30. Further details about this extended element are not given here.
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11.4 Generalized Finite Beam Elements

In civil engineering and also in mechanical engineering a special kind of struc-
tures are used very often structures consisting of thin-walled elements with sig-
nificant larger dimensions in one direction (length) in comparison with the dimen-
sions in the transverse direction. They are called beam shaped shell structures. Beam
shaped shell structures include folded plate structures as the most important class
of such structures. In Chap. 10 the modelling of folded plate structures was con-
sidered and there a generalized beam model was developed by the reduction of the
two-dimensional problem to an one-dimensional one following the way of Vlasov-
Kantorovich. This folded structure model contains all the energy terms of the mem-
brane stress state and of the bending/twisting stress state under the validity of the
Kirchhoff hypotheses. Outgoing from this complete folded structure model some
simplified structure models were developed (see Sect. 10.2.4) by neglecting of se-
lected energy terms in the potential function e.g. the terms caused by the longitudinal
curvatures Ky,, the shear strains &, the torsional curvatures K, or the transversal
strains &, of the strips. Because the influence of the longitudinal curvatures k; of
the single strips to the deformation state and the stress state of the whole structure
is very small for beam shaped structures, they are neglected generally. The shear
strains &; of the strips can be neglected for structures with open cross-sections,
but not in the case of closed cross-sections. In opposite to this the torsional curva-
tures Kys; can be neglected for closed cross-sections, but not for open cross-sections.
Therefore, because we had in mind to find a generalized beam model as well the
shear strains as the torsional curvatures are considered. Although the influence of
the transversal strains in most cases is very small, they are considered too, because
with this we have a possibility to define the generalized co-ordinate functions for a
general cross-section systematically. Therefore as a generalized structure model for
beam shaped thin-walled folded plate structures the structure model A (see Sects.
10.2.4 and 10.2.5) is chosen, in which only the longitudinal curvatures k, of the
strips are neglected.

11.4.1 Foundations

The starting point for the development of generalized finite beam elements is the
potential energy, see equation (10.2.10). Because in all strips the longitudinal curva-
tures Ky, are neglected all terms containing w} have to vanish. It leads together with
equations (10.2.11), (10.2.12) and with A7 =0, Ag =0,A;0 =0,A;7 =0, A, =0,
Ay =0A,=0t0a simplification of the potential energy equation (10.2.10)
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1
1 . . . .
n=, / [U’TA]U’ +VTAgV +UTAU +2U"AysV'
0

+ VALY +VTA LY +avT AV

+2U"TA 4V +2UTAU +2U"TA 3V

— 20" AV —aU"A gV +2U"A 1V (11.4.1)
+ 2VTAsV' —2VTARV —4VTA V!

— 2 ARV —2V'TAysV — 4UTA V!

’1" A A
— 4V AV +AVIA WV 20T F +VTIF 4VTIF )| dx
— U AV 4+ V) |~ Ur 4V +VTr,) |

x=l

We can see that the one-dimensional energy function contains only derivatives of
the first order.

11.4.2 Element Definitions

Outgoing from Eq. (11.4.1) a one-dimensional finite element can be defined. Be-
cause we have no higher derivatives than of the first order in the potential energy
only a C(%) continuity is to satisfy at the element boundaries and therefore it would
be possible to use a two-node element with linear shape functions. To have a better
accuracy here we will take a three-node element using second order polynomials as
shape functions, Fig. 11.12. The shape functions are again like (11.2.15)

2 2 2
Nx) =1 73); +2)lc—27 Na(x) = 4); 74)16_2’ Ns(x) = —); +2)lc—2 (11.4.2)
They are shown in Fig. 11.5.

Because a generalized finite beam element with a general cross-section shall be
developed at first we must find a rule to define the cross-section topology. We will
use for it the profile node concept. For this we will see the midlines of all strips as the
cross-sections profile line. The start- and the endpoints of each strip on this profile
line are defined as the so-called main profile nodes. In the middle of each strip there

1 2 3
O O
Oo— X
Fig. 11.12 Three-node gener- ‘ l ‘

alized beam element \ \
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are additional profile nodes, they are called secondary profile nodes. Figure 11.13
shows an example for it. The topology of the thin-walled cross-section is described
sufficiently by the co-ordinates of the main profile nodes. Additionally the stiffness
parameters of each strip must be given. The connections of the strips in the main
profile nodes are supposed as rigid.

For the generation of the generalized deflection co-ordinate functions ¢, y, & is
assumed that a main profile node has four degrees of freedom, the displacements
in the directions of the global co-ordinate axes x,y,z and the rotation about the
global x axis, see Fig. 11.14. The displacements of the main profile nodes lead linear
generalized co-ordinate functions @,  and cubic functions & between the adjacent
nodes. For an increasing the accuracy the activation of the secondary profile node
degrees of freedom is optional, they are shown in Fig. 11.15. In this case ¢ and y are
quadratic and & polynomials of 4th and 5th order between the adjacent main nodes.
Therefore a more complex deformation kinematics of the cross-section is consid-
erable. The generalized co-ordinate functions for any thin-walled cross-section are
here defined as follows:

1. Main node displacements or rotations result in non-zero co-ordinate functions
only in the adjacent intervals of the profile line

1 1 2 4 3 6 4
Q——%—-— ——%———T————k———
Y1 52 ; S4 S5 1156 S8 T
\>< 51X l 2 Y8 Ix
2 \\ 53 ! 57 !
O—X—O0——-—-%-——-—0
5 36 7 7
Fig. 11.13 Description of a O - main profile nodes (MPN)
general cross-section X - secondary profile nodes SPN)
Bt M .
deflection in x-direction deflection in y-direction

AN

deflection in z-direction rotation about x-axis

Fig. 11.14 Main profile node degrees of freedom
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\'

second order v-deflection second order u-deflection

a

fourth order w-deflection fifth order w-deflection

Fig. 11.15 Secondary profile node degrees of freedom

2. Secondary node displacements or rotations result in non-zero co-ordinate func-
tions only in the interval between the adjacent main nodes.

In Fig. 11.16 the generalized coordinate functions for axial parallel arranged strips
are shown. Figure 11.17 gives the supplements for slanting arranged strips.

11.4.3 Element Equations

In the case of non-activated degrees of freedom of the secondary profile nodes we
have a degree of freedom of an element node of four times the number of main
profile nodes (4 nypy) and the element displacement vector consists of 12 nypy
components

Vi=pivavs), v= {ﬂ (11.4.3)
J

iej,v; contain the values of the generalized displacement functions at the node j.

The displacement vector u(x) contains here the generalized displacement functions
U(x) and V (x) and in accordance with Eq. (11.1.1) we obtain for the interpolation

u(x) = [U@‘)} =Nv (11.4.4)
The matrix of the shape functions for the chosen three-node element is

N = [Ny ()T Ny (x)I N3(x)], (11.4.5)

where I are the unit matrices of the size 4 nypy and with this the matrix N has
the format (4 nypn, 12 nypy). Following the equation (11.4.4) for the generalized
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1 3 2
X, u
== — O
s,V
n,w
| ‘ |
main profile node functions secondary profile node functions

u-deflections

v-deflections
O C\/O
= C\T |
0.25

s s s s\ 2
vi=1-, v = llfafd*<d)
& =0 & = 0

w-deflections

) S A U
¥ =0 ¥ =0 "o

Fig. 11.16 Generalized co-ordinate functions for axial parallel arranged strips
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displacement functions we have to write
T T T T
U(x) =Ljpu(x) =LjyNv, V(x)=Lyu(x)=LyNv (11.4.6)

with the matrices
Ll,=[10], L}, =01 (11.4.7)

In the first case (Lg) I is a unit matrix of the size nynp and the null matrix has the
format (nypn, 3 nypn), in the second case (Lgp) I is a unit matrix of the size 3 nypy
and the null matrix has the format (3 nypy, nypn).

Of course in the case of activated degrees of freedom of the secondary pro-
file nodes all the dimensions given above are increased correspondingly. Inserting
the generalized displacement functions (11.4.6) into the potential energy equation
(11.4.1) we obtain

1
= 2vTKv—fTv (11.4.8)
The condition o
— =0 (11.4.9)
dv
leads to the element equation
Kv=f (11.4.10)

with the symmetric element stiffness matrix

K1 K K3
K= |K, K»nKn (11.4.11)
K1T3 K% K33

For the sub-matrices K,,, we find the general equation

[ ":‘lhlmnl A 130 — QAISh) Luni ]
+A2hl’”"2 +( 15h — 2AZ]h]ng
+l‘ighlmn.% +( —A19h) mn3

5 +A3plnns +(A16n — Az s
Kinn = Z AT AT
h=11 (A3, 2A18h) mnl (A +Agy, — 2404, — 244 Lo
+( AlTs h)lmnz +(As, + 24y, —Agsh - M27h)lmn2
+(A AT an— A19h)1mn3 +(A§h +2A11, —Ags) — QA27h)Imn3
L+ T A22h) ot +(Aen +A1on —Asg), — A28h) mna |

(11.4.12)
with
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) [
Lt = / NaNON X, Ty = / NuNuN.dx,
0 0

1 I
Ly = /Nth/n]Vndxv Lyns = /NthNndX
0 0

To include approximately slight non-prismatic structures the matrices of the stiff-
ness parameters A;, see Eq. (10.2.12), are interpolated in the element in the same
manner as the displacements

3
A=Y AyN, (11.4.13)

A~

Aj;, are the matrices at the nodes h = 1,2, 3.
The element force vector is obtained as

fi
f=1r5n (11.4.14)
f3
with the sub-vectors
!
3 th/Nthdx
fn=1Y o (11.4.15)
h=1
(fsh +fnh)/Nthdx
0

Here f, fsh, fnn are the generalized load vectors, see Eq. (10.2.13), at the nodes
h=1,2,3.

11.4.4 System Equations and Solution

The system equations can be obtained by using the Egs. (11.1.15) and (11.1.16) with
the coincidence matrices, determining the position of each element in the whole
structure. In the so founded system stiffness matrix the boundary conditions of the
whole structure are to consider, otherwise this matrix is singular, if the structure
is not fixed kinematically. The solution of the system equations lead to the nodal
displacements and with them the strains and curvatures in the single strips of each
element can be calculated, see Eqgs. (10.2.6) and (10.2.11),
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3 3
Ex(x7si) = Z N}{lﬂz¢7 ES(X,S,') = Z th;‘l’.7
h;l h=1
Es(x,51) = Y (Nulty @° + Ny ¥), (11.4.16)
h=1
3 3
Kxs) = = Y, Nivp&*. s (x,50) = =2} N §°
h=1 h=1

Now we can obtain the stress resultants in the kth lamina, which has the distance ny,
from the mid plane of the strip

Ny Aqir Aok Atek &
Ny | = | Arox Aok Aoek & + MK (11.4.17)
Nysk Aok Azek Aok | | Exs + MiKis

These stress resultants are related on the strip co-ordinate axes x and s;. Therefore, it
is necessary to transform them into the material co-ordinate system of the kth lamina
(for the transformation relationship see Table 4.1)

Nrk cos? oy sin” oy 2 sin o coS O Nk
Nt | = sin oy cos? oy —2sin 0y cos 0 N (11.4.18)
Nrrk — sin 0y cos 0 sin O cos O cos> O — sin” o | | Nask

Than the stresses of the kth lamina are obtained

Nik Nry Nurk
Olk=——), Ork=—") TUmk=—"— (11.4.19)
Tk Tk Tk
In some cases the strains in the kth lamina related to the material co-ordinate system
are important for the failure assessment of the lamina. Then they can be calculated
with help of the following matrix equation

€Lk » Npi
ek | = Q;( Nt (11.4.20)
€LTk Nrrx

There Q' is the reduced stiffness matrix of the kth lamina.

11.4.5 Equations for the Free Vibration Analysis

The variation statement given by the Hamilton’s principle, see Eq. (10.2.41) leads
with the Lagrange function (10.2.39) and the assumption of harmonic vibrations for
the considered generalized beam element to the element equation

(K—o’M)v=0 (11.4.21)
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K is the element stiffness matrix, see Eqs. (11.4.11) and (11.4.12), and M is the ele-
ment mass matrix. The element mass matrix is obtained with the matrices B| 7BQ7B3,
see Eqgs. (10.2.38)

M M M;
M= | M}, My M>; (11.4.22)

M1T3 Mgz» M33

with
3

Blhlmn4 0

_ L (11.4.23)
h; 0 (Boy+B3p)luma

There the B matrices are also interpolated in the element by using the shape func-
tions. In this way slight non-prismatic structures are considerable too. The system
equations can be developed in a similar way as it was done for a static analysis. Here
we have to find a system stiffness matrix and a system mass matrix. After consider-
ation the boundary conditions the eigen-value problem can be solved and the mode
shapes can be estimated.

11.5 Numerical Results

Additional to a great number of special FEM programs general purpose FEM pro-
gram systems are available. The significance of universal FEM program packages
is increasing. In universal FEM program systems we have generally the possibility
to consider anisotropic material properties, e.g. in the program system COSMOS/M
we can use volume elements with general anisotropic material behavior and plane
stress elements can have orthotropic properties.

Laminate shell elements are available e.g. in the universal FEM program systems
ANSYS, NASTRAN or COSMOS/M. In many program systems we have no spe-
cial laminate plate elements, the laminate shell elements are used also for the anal-
ysis of laminate and sandwich plates. Perhaps, because of the higher significance
of two-dimensional laminate structures in comparison with beam shaped structures
laminate beam elements are missing in nearly all universal FEM program systems.
The generalized beam elements, Sect. 11.4, are e.g. implemented only in the FEM
program system COSAR.

For the following numerical examples the program system COSMOS/M is used.

In COSMOS/M a three node and a four node thin laminate shell element are
available (SHELL3L; SHELLA4L). Each node has 6 degrees of freedom. The element
can consist of up to 50 layers. Each layer can have different material parameters,
different thicknesses and especially different angles of fibre directions. We have no
restrictions in the stacking structure, symmetric, antisymmetric and nonsymmetric
structures are possible. The four nodes of the SHELLAL element must not arranged
in-plane. By the program in such case a separation is done into two or four triangular
partial elements. Further there is a SHELLIL element available. It has additional
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nodes at the middles of the four boundaries and in the middle of the element. For
the following examples only the element SHELLAL is used.

11.5.1 Examples for the Use of Laminated Shell Elements

By the following four examples the application of the laminate shell element
SHELLAL shall be demonstrated. At first a thin-walled beam shaped laminate struc-
ture with L-cross-section under a concentrated force loading is considered, and the
second example is a thin-walled laminate pipe under torsional loading. In both cases
the influence of the fibre angles in the layers is tested. The use of the laminate shell
element for the static and dynamic analysis of a sandwich plate is shown in the
third example. A buckling analysis of a laminate plate is demonstrated by the fourth
example. In all 4 cases a selection of results is given.

11.5.1.1 Cantilever Beam

A cantilever beam with L-cross-section consists of 3 layers with the given material
parameters Ey, Ey, Vyy, Vyx, Gyy. Itis loaded by a concentrated force F, see Fig. 11.18.
The material parameters are

y F
L
10 400 +a | 3
—f<— _a ~ o 4
+o 3
300

Fig. 11.18 Cantilever beam: cross-section and stacking structure (F = 4.5 kN, L =4 m, all other
geometrical values in mm)
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E, = 1.53-10%N/cm?, Ey = 1.09 - 10°’kN/cm?, G, = 560kN/cm?,
Vi = 0.30, v, = 0.021
The fibre angle ¢ shall be varied: o = 0°,10°,20°,30°,40°.

The FEM model after the input of all properties into COSMOS/M is illustrated
in Fig. 11.19. The computing yields a lot of results. In Fig. 11.20, e.g., is shown
the deformed shape for a fibre angle of o = 30°. Here should be selected only
the displacements of the corner node at the free edge (node No. 306 in our FE
model) in y- and z-direction and the maximal stresses in fibre direction (o,) and
perpendicular to it (o) for the left side of the vertical part of the cross-section (layer
No. 1, bottom):

V306,y = -2,204 cm, v306 ; = -1,805 cm,

Olay1 max x = 7,487 KN/cm?, Olay1 max,y = 0,824 kN/cm?

Similar the displacements and stresses for the fibre angles o = 0°,10°,20°,40° are
calculated, and the results are shown in Figs. 11.21 and 11.22. The results show
that for such a beam shaped structure the main stresses are lying in the longitudinal
direction and therefore the fibre angle 0° leads to the most effective solution.

11.5.1.2 Laminate Pipe

A laminate pipe consisting of 2 layers with the given material parameters E,, Ey,
Viy, Vyx, Gy 18 fixed at left end and loaded by a torsional moment, see Fig. 11.23.
The material parameters are the same as in the previous example:

E;, = 1,53 10%N/cm?, E;, = 1,09 10°kN/cm?, Gy, = 560 kN/cm?,

Viy = 0,30, vy, = 0,021

The fibre angle o shall be varied: oc = 0°,15°,30°,45°. After the input of all parame-

Fig. 11.19 FE-model of can-
tilever beam in COSMOS/M
(650 elements, 714 nodes)

Fig. 11.20 Cantilever beam
deformed shape
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Fig. 11.22 Maximal stresses at the bottom of layer No. 1
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M,

. i ;
-
D , 3

Fig. 11.23 Laminate pipe: geometry, cross-section and stacking sequence (M; = 1200 kNcm,
L = 2m,D = 200 mm)

ters and properties into COSMOS/M the FEM model can be illustrated (Fig. 11.24).

From the results of the analysis only the twisting angle of the free edge shall
be considered here. For this we have to list the results for the displacements in y-
direction of two nodes at the free edge, lying in opposite to each other, e.g. the nodes
255 and 663 in our FE model. The twisting angle is calculated by

¢ = (vy255 — Vy663) /D

Carrying out the analysis for all fibre angles we obtain the results, given in Fig.
11.25. The diagram demonstrates the well known fact that in case of pure shear
loading the main normal stresses are lying in a direction with an angle of 45° to the
shear stresses. Therefore here the fibre angels of +45°/ —45° to the longitudinal
axis are the most effective arrangements, because these fibre angels yield the greatest
shear rigidity.

Fig. 11.24 FE-model of Lam-
inate Pipe in COSMOS/M
(800 elements, 816 nodes)
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Fig. 11.25 Twisting angle of the free edge

11.5.1.3 Sandwich Plate

The sandwich plate (Fig. 11.26) is clamped at both short boundaries and simply
supported at one of the long boundaries. The cover sheets consist of an aluminium
alloy and the core of foam of polyurethan. The material parameters are:
AlZnMgCu0.5F450:

p=27-103kg/m? E=7.0-10""N/m?, v=0.34

polyurethan foam:

p =150 kg/m?, E =4.2-10" N/m?, v = 0.30

Additional to a stress analysis of the plate under constant pressure loading p,
a vibration analysis will be performed is asked. We have to calculate the 4 lowest
eigenfrequencies and the mode shapes, respectively. Note that we use in this exam-
ple only the basic units of the SI-system, so we avoid the calculation of correction
factors for the obtained eigenfrequencies.

The FE-model is given in Fig. 11.27. The static analysis leads the displacements
and stresses. We consider only the stresses of the bottom of the lower cover sheet
(layer 3, top). The Figs. 11.28 and 11.29 show the plots of stress distributions for the
flexural stresses o, and o, Fig. 11.30 the distribution of the von Mises equivalent
stress. The lowest 4 eigenfrequencies and their 4 mode shapes are shown in the
following Fig. 11.31. The static and frequency computations confirm the successful
application of the SHELL4L element for a sandwich plate.
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40m
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p=

6.0 m
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aluminium aIIO)/

polyurethan foam

Fig. 11.26 Sandwich plate

Fig. 11.27 FE-model of Sandwich Plate in COSMOS/M (600 elements, 651 nodes)

11.5.1.4 Buckling Analysis of a Laminate Plate

For a rectangular laminate plate consisting of 4 layers with the given material pa-

rameters a buckling analysis shall be carried out. The plate is simply supported at
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Fig. 11.29 Stresses in z-direction for the bottom of the lower cover sheet
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all boundaries and loaded by a uniaxial uniform load, see Fig. 11.32. Material pa-
rameters are again the same as in the previous examples

E,=1.5310* kN/ecm?, Ey = 1.09 10° kN/cm?, G,y = 560 kN/cm?,

Vyy = 0.30, vy, = 0.021

For the stacking structure two cases shall be considered, a symmetric (case I) and
a antisymmetric (case II) laminate structure (Fig. 11.32). The fibre angle is to vary:
a =0°,15°30°,45°,60°,75°,90°. For the buckling analysis in COSMOS/M a unit
pressure loading must be created, and the program calculates a buckling factor vg
to multiply the unit loading for obtaining the buckling load.

The FE-model created in COSMOS/M by the input of all properties and param-
eters is shown in Fig. 11.33. The calculation for a = 30° leads to a buckling factor
vp = 1,647 and to the buckling mode shown in Fig. 11.34. In the same manner the
calculations for the other fibre angels and for the antisymmetric laminate were per-
formed. The results for the buckling factors are shown in a diagram in Fig. 11.35.
The buckling modes are symmetric to the symmetric axis in loading direction. For
the symmetric laminates the buckling modes for o« = 0°,15°,30° are nearly the
same, see Fig. 11.34. For fibre angles 45°,60°,75°,90° the buckling modes have
different shapes, they are shown in the following figures. The buckling modes for
the antisymmetric laminate are very similar but not identical to the buckling modes

| e —p——
| |
| |
> I <
| |
| |
> | 1.0 m
| |
| |
> |«
| |
| I
e L 7777777777777777777777 7\ Pa— e —
1.5m
case [ case II
+o +a
—a —o
a 4x25 ta
+o —o

Fig. 11.32 Rectangular laminate plate

Fig. 11.33 FE-model of the
laminate plate in COSMOS/M
(600 elements, 651 nodes)
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Fig. 11.34 Buckling modes for symmetric laminates o = 30° (top-left), oc = 45° (top-right), ot =
60° (middle-left), oc = 75° (middle-right), a = 90° (bottom)

of the symmetric laminates. They are not given here. A fibre angle near 45° leads to
the highest buckling load for a quadratic plate. It shall be noted that the antimetric
stacking sequence of the laminate improved the buckling stability.

11.5.2 Examples of the Use of Generalized Beam Elements

Generalized finite elements for the analysis of thin-walled beam shaped plate struc-
tures, Sect. 11.4, were implemented and tested in the frame of the general purpose
FEM-program system COSAR. The real handling of the FEM-procedures are not
given here, but two simple examples shall demonstrate the possibilities of these el-
ements for global static or dynamic structure analysis.

Figure 11.36 shows thin-walled cantilever beams with open or closed cross-
sections and different loadings. All these beam structure models have equal length,
hight and width and also the total thicknesses of all laminate strips are equal, inde-
pendent of the number of the layers.
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Fig. 11.35 Results of the Buckling Analysis

The stacking structure may be symmetric or antisymmetric. Figure 11.37 shows
the two considered variants: case A with three laminae and symmetric stacking and
case B with two laminae and antisymmetric stacking. The fibre reinforced material
is characterized again by the following effective moduli

Er. = 153000 N/mm?, vir = 0.30,
Er = 10900 N/mm?, vrL = 0.021,
Gir = 5600 N/mm?, p 2 g/em’

The fibre angles shall be varied.

Figure 11.38 shows the profile nodes. There are four main profile nodes for both
cross-sections but three secondary profile nodes for the open and four for the closed
cross-section. The numerical analysis shall demonstrate the influence of the stacking
structure. Figure 11.39 illustrates the relative changes of the cantilever beam in the
loaded point, if the symmetric stacking structure (w4 ) is change to the antisymmetric
one (wp). The antisymmetric layer stacking leads to higher values of the vertical
deflections wp in comparison to the w4 values in the case of symmetric stacking.
Generally, only two degrees of freedom of secondary profile nodes were activated.

In a separate analysis the influence of a higher degrees of freedom in the sec-
ondary profile nodes was considered. As a result it can be recommended that for
antisymmetric layer structures and for open profiles more than two degrees of free-
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Fig. 11.36 Cantilever beams, geometry and loading
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Fig. 11.38 Cross-sections with main profile nodes (e) and secondary profile nodes (x)

dom should be activated. Ignoring the activation of secondary profile node degrees
of freedom leads to nonrealistic structure stiffness. The structure model is to stiff
and therefore the deflections are to small.

The second example concerned the eigen-vibration analysis. For the closed cross-
section with symmetric layer stacking the influences of the degree of freedom of
secondary profile nodes and of the variation of the fibre angles were considered. As
a result it can be stated that the influence of higher degrees of freedom of the sec-
ondary profile nodes is negligible but the influence of the fibre angles is significant.
Figure 11.40 illustrates the influence of the fibre angle variations on the eigenfre-
quencies of the beam, which can be used for structure optimization.

Summarizing Sect. 11.5 one have to say that only a small selection of one- and
two-dimensional finite elements was considered. Many finite plate and shell ele-
ments were developed using equivalent single layer theories for laminated struc-
tures but also multi-layered theories are used. Recent review articles give a detailed
overview on the development, implementation and testing of different finite lami-
nate and sandwich elements.
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Part VI
Appendices



This part is focussed on some basics of mathematics and mechanics like matrix
operations (App. A), stress and strain transformations (App. B), differential opera-
tors for rectangular plates (App. C) and differential operators for circular cylindrical
shells (App. D). In addition, the Krylow functions as solution forms of a special
fourth order ordinary differential equation are discussed (App. E) and some mate-
rial’s properties are given in App. F. In the last one section like always in this book
material or constitutive parameters are used as usual. Note that any material param-
eter is a parameter since there are dependencies on temperature, time, etc. Last but
not least there are given some references for further reading (App. G).



Appendix A
Matrix Operations

The following short review of the basic matrix definitions and operations will pro-
vide a quick reference and ensure that the particular use of vector-matrix notations
in this textbook is correct understood.

A.1 Definitions

1. Rectangular matrix

all a12 ...... aln
azl azz ...... azn
A= . . .. . = [dij]
aml Amp =+ - Amn
Rectangular matrix with i = 1,2,...,m rows and j = 1,2,...,n columns, is a

rectangular-ordered array of quantities with m rows and n columns. m X n or
often (m,n) is the order of the matrix, a;; is called the (i, j)-element of A. There
are two important special cases

am

is a m x 1 matrix or column vector, while

aT = I:al “e an] = [al]T
is a 1 X n matrix or row vector.
With a respectively a” a matrix A can be written
© Springer Nature Singapore Pte Ltd. 2018 463
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ayj
A:[alman}, a; = , Jj=1,....n
Amj
or
aj
A= ||, ajT:[aj]...ajnL j=1,....m
a,

If n = m the matrix is square of the order n X n. For a square matrix the elements
a;j with i = j define the principal matrix diagonal and are located on it.
2. Determinant of a square matrix A

app a0 Aln
a) dzp - v 2n

Al = = |aij| = detA
dp] Ap2 * - """ Ann

The determinant of a matrix A with elements a;; is given by
1
A| = anMy —apMp +apMi — ... (1) ay,My,

where the minor M;; is the determinant of the matrix |A| with missing row i and
column j. Note the following properties of determinants:

Interchanging two rows or two columns changing the sign of |A|.
If all elements in a row or a column of A are zero then |A| = 0.
Multiplication by a constant factor ¢ of all elements in a row or column of A
multiplies |A| by c.

e Adding a constant multiple of row or column k to row or column / does not
change the determinant.

e If one row £ is a linear combination of the rows / and m then the determinant
must be zero.

3. Regular matrix
A square matrix A is regular if |A| # 0.
4. Singular matrix
A square matrix A is singular if |A| = 0.
5. Trace of a matrix
The trace of a square matrix A is the sum of all elements of the principal diagonal,
ie. "
trA = Z Ak
k=1
6. Rank of a matrix
The rank rk(A) of a m x n matrix A is the largest value of r for which there exist a
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r X r submatrix of A that is non-singular. Submatrices are smaller arrays of k x k
elements a;; of the matrix A, i.e. k <mifm <nork <nif n <m.

A.2 Special Matrices

In the following the 6;; denotes the Kronecker symbol

_JOi#]
5”_{1 i=j

1. Null matrix 0
All elements a;; of a m X n matrix are identically equal zero

aijEO,i:1,...,m,j:1,...,n

2. Diagonal matrix D = diag|a;;] = diag[a;; ;]
A diagonal matrix is a square matrix in which all elements are zero except those
on the principal diagonal

aij:()ai?/:ja aij#ovi:j

3. Unit matrix I = [8;]
A unit or identity matrix is a special case of the diagonal matrix for which a;; = 1
when i = jand a;; = 0 when i # j.

4. Transpose AT of a matrix A
The transpose of a matrix A is found by interchanging rows and columns. If
A = [a;j] follow AT = [a}}] with a}} = aj;. A transposed matrix is denoted by a
superscript T. Note (AT)T =A

5. Symmetric matrix AS
A square matrix A is said to be symmetric if for all i # j a;; = aj;, i.e. A =AT A
symmetric matrix is denoted by a superscript S.

6. Skew-symmetric matrix A®
A square matrix A is said to be skew-symmetric if all principal diagonal elements
are equal zero and for all i # j a;; = —aj;, ie. A = —AT. A skew-symmetric
matrix is denoted by a superscript A.

7. Any matrix can be decomposed in a symmetric and a skew-symmetric part in a
unique manner

A=A%+A*

Proof. Since
1
AS = 5 (A+AT)

and .
AN = ,A —-A")
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the sum AS +A” is equal to A.

A.3 Matrix Algebra and Analysis

1. Addition and subtraction
A m x n matrix A can be added or subtracted to a m x n matrix B to formam X n
matrix C

A:EB:C, a,-j:i:b,-jzcij7 i:17...7m7 j:17...,l’l

NotteA+B=B+A,A—-B=—-(B—A)=-B+A,(A+B)T =AT+B".
2. Multiplication

e Multiplication the matrix A by a scalar & involves the multiplication of all
elements of the matrix by the scalar

QA =Aa = [aa,-j]7
(a+B)A=o0A=+pA,
0(A+B)=0A+ 0B

e The product of a (1 x 1) matrix (row vectora’) and a (n x 1) matrix (column
vector b) forms a (1 x 1) matrix, i.e. a scalar o

n
aTb:bTa: o, o= Zakbk
k=1

e The product of a (m x n) matrix A and a (n x 1) column vector b forms a
(m x 1) column vector ¢

Ab:C7 Ci = a,-jbj:a,-lbl+ai2b2+...+ainbn, i=1,2,....m

n
j=1

The forgoing product is only possible if the number of columns of A is equal
the number of rows of b.

Note A.1. bTAT = ¢T

e IfAisa (mxn) matrix and B a (p x ¢) matrix the product AB = C exists if
n = p, in which case C is a (m X g) matrix. For n = p the matrix A and B are
said to be conformable for multiplication. The elements of the matrix C are

n=p
cj= Y auby, i=12...m j=12...4
k=1

Note A.2. AB+#BA, A(B+C)=AB-+AC, (AB)T =BTAT
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3. Inversion and division
AI=IA=A, A"'A=AA"'=I (A7) '=a

The matrix inversion is based on the existence of a n X n unit matrix I and a square
n x n matrix A. A~! is the inverse of A with respect to the matrix multiplication
AA"' =A"1A =1 If A~! exist, the matrix A is invertible or regular, otherwise
non-invertible or singular. Matrix division is not defined.

Note A.3. (AB)"' =B~ 'A~' (ABC)"' =C'B'A"",...

o Cofactor matrix
With the minors M;; introduced above to define the determinant |A | of a matrix
A aso-called cofactor matrix A° = [A;;] can be defined, where

Ajj = (1) M;;

The cofactor matrix is denoted by the superscript c.
e Adjoint or adjugate matrix
The adjoint matrix of the square matrix A is the transpose of the cofactor
matrix
adjA = (A9)"

Note A.4. Because symmetric matrices possess symmetric cofactor matrices
the adjoint of a symmetric matrix is the cofactor matrix itself

adjAS = (AS)°
It can be shown that
A(adjA) = |A|L

i.e.
A(adjA)

Al

Inverse matrices have some important properties

jA
:I:AAil :Ail :&
Al

(an =@’

and if A = AT .
Al=(A")

i.e. the inverse matrix of a symmetric matrix A is also symmetric.

Note A.5. Symmetric matrices posses symmetric transposes, symmetric cofac-

tors, symmetric adjoints and symmetric inverses.
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4. Powers and roots of square matrices
If n X n matrix A is conformable with itself for multiplication, one may define its
powers
A"=AA.. A

and for symmetric positive semidefinite matrices
1 n _ _
A”:\/A, A n:(A ])n

and if A is regular
( m)n :Amn’ AmAn :Am+n7

5. Matrix eigenvalue problems
The standard eigenvalue problem of a quadratic n x n matrix A is of the form:
find (A,x) with # 0 such that

Ax=Ax or (A—Al)x=0

K = |A — AI] is called the characteristic matrix of A, detK = 0 is called the char-
acteristic determinant or equation of A. The characteristic determinant produces
a characteristic polynomial with powers of A up to A" and therefore when it set
equal zero having n roots which are called the eigenvalues. If the characteristic
equation has n distinct roots, the polynomial can be factorized in the form

A=A4)A—-2A)...(A—=24,) =0
If we put A = 0 in the characteristic equation we get
detA =14 .. . A,
Inserting any root 4; into the standard eigenvalue equation leads to
A—Adlx;=0, i=12,...,n

x; are the eigendirections (eigenvectors) which can be computed from the last
equation considering the orthogonality condition. A nontrivial solution exists if
and only if

detA—A11=0

Note A.6. If we have the 3x3 symmetric matrix the eigendirection x; can be com-
puted for each A; from the polynomial of third order. Three different solutions
are possible:

e all solutions A; are distinct - three orthogonal eigendirections can be computed
(but their magnitudes are arbitrary),

e one double solution and one distinct solutions - only one eigendirection can
be computed (its magnitudes is arbitrary), and

e all solutions are identically - no eigendirections can be computed.
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T

Anyway, the orthogonality condition x* -x = 1 should be taken into account.

The general eigenvalue problem is given in the form
Ax = ABx
which can be premultiplied by B~! to produce the standard form
B 'Ax=B 'ABx= (B 'A)x = MIx = Ax

resulting in
(B'"A-2A)x=0

Note A.7. In the case of non-symmetric matrix A the eigenvalue can be complex.
6. Differentiating and integrating

e To differentiate a matrix one differentiates each matrix element g;; in the con-
ventual manner.

o To integrate a matrix one integrates each matrix element a;; in the conventual
manner. For definite integrals, each term is evaluated for the limits of integra-
tion.

7. Partitioning of matrices
A useful operation with matrices is partitioning into submatrices. These subma-
trices may be treated as elements of the parent matrix and manipulated by the
standard matrix rules reviewed above. The partitioning is usually indicated by
dashed partitioning lines entirely through the matrix

For a m X n matrix M we may have submatrices A(i x j), B(i x p), C(k X j),
D(kx p)withi+k=m,j+p=n,ie.

Aij ¢ Bixue)
M., = 7
Cin-iyxj © Dmiyx(n—j)
A B E F A+E B+F
......... N T



470 A Matrix Operations

A ' B E ' F AE +BG ' AF +BH

C ' D G ' H CE+DG : CF+DH

The multiplications are only defined if the correspondent matrices are con-
formable for multiplication

4T
A . B AT . CT
C : D| BT : DT
If the matrix ~
A B
M= - ... ...
| C : D

is symmetric (M = M"), it follows A =AT,D =D B=C",C =B"



Appendix B
Stress and Strain Transformations

Stress and strain transformations under general orthogonal coordinate transforma-
tion e’ = Re or ¢, = R;je;:

1. 0, =Ty, 0, The matrix [T, ] is defined by

q

[ R, R, R4 2R15R13 2R|1R13 2R 1R1>
Ry, Ry, R 2Ry R 2R1R»3 2R>1R»
R, R, R3; 2R3 R33 2R31R33 2R31R3,

R21R31 RaaR32 RazR33 RooR33+Ro3R3 RoiR33+R23R31 RoiR3+R2R3

R11R31 Ri2R32 Ri3R33 RioR33+R13R3 R11R33+R13R31 Ri1R32+R12R3;

LR11R21 Ri2R22 Ri3R23 R12R23+R13R2 Ri1R23+R13R21 Ri1Rn+R12Ry |

2. &, =Ty, €, The matrix [T,,] is defined by

q
- B2 2 2 B
Ry, Ry, Ri3 RipR13 RiRi3 RiiR2
R3, R%, Ry Ry Ry Ry1R»3 Ry1Ry
R3, R}, R%, R3R33 R31R33 R31R3,

2R>1R31 2R»R3p 2R23R33 RpoR33+R3R3; Ro1R33+Ra3R31 Ro1R3p+RxR3)

2R11R31 2R12R3; 2R13R33 R1pR33+R13R3; R11R33+R13R31 R11R3+R 2R3

L2R11R21 2R 2R 2R13R03 R1pRy3+R13R2 R11R:3+R13R21 Ri1R02+R12R01 |

3. Rotation about the e|-direction, Fig. B.1:

100 .
Rij]=10cs|, €=Re
O0sc
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X3
k4
x,\\ 2 S
3 - 2
AN es P
\\ /
& N | e P o
e o =
e, e
xlv“«]
Fig. B.1 Rotation about the e;-direction
1 0 0 0O 00
0c2 s 25 00
1 2 2 1
0 s ¢ —2cs 00
o1 __ !/ __ O
() 0—cses2—s200 |0 © ~T"o
00 0 0 c¢-s
00 0 0 sc
1 0 O 0 00
0 ¢ s e 00
1 2 2 1
0 s ¢ —cs 00
€71 __ ! __ €
(7] 0-2cs2es>—s200 | € —T ¢
0O 0 O 0 c¢—s
0O 0 O 0 sc¢



Appendix C

Differential Operators for Rectangular Plates

Below two cases will be discussed

o the classical plate theory and
o the shear deformation theory.

C.1 Classical Plate Theory

1. General unsymmetric laminates

Ly Liz Ly3 u

Ly Ly v

sym L33 w

2 2 92
L =A 2A A
11 1182+ 16 3 0 + 668%a
2 2 92
Lpn=A +24 + Ags—s,
2 235 7 w655 o 66 Py
4 4 4
L33 = Di1=— +4D1g=—5=— +2(Di16+2D¢g) —=—=
33 1 o] 16 PEEm (D16 66) PR
0* 0*
+ 4D - +D
6592 P 228§
2 2 92
Ly,=A + (A A Arg—=
12 ]68% + A+ 66)8x18x2+ 268)%7
3 3 33 33
L3 = — |Bj|—= +3Big=—>— + (B2 + 2B +B
13 53 2o (B12 66)8 o3 tBega )

© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0
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3 3 23 3
+3B265——=— + (B12+2Bgs)

Lys = — | By — 4+ B~
23 2 8x§ dx10x5 8x% x> 16 Qx?

2. General symmetric laminates

L] 1 L12 0 u 0
L22 0 v =10
sym L3z | | w p

Bij=0,i.e.Lj3=1L31 =0,Lp3 = L3, = 0. L11,L2,L33,L1> as above in 1.
3. Balanced symmetric laminates

L] 1 L12 0 u 0
Ly, O v]| =10
sym L33 w p

In addition to 2. both A and Ay¢ are zero, i.e. Lj3 = L3; =0, Lr3 = L3, =0 and
L11,Ly; and L33 simplify with Ajg = Apg = 0.
4. Cross-ply symmetric laminates

L] 1 L] 2 0 u 0
Ly, O v]| =10
sym L33 P

In addition to 3. both D14 and Dy¢ are zero, i.e. L33 simplifies.
5. Balanced unsymmetric laminates

Ly Lz L3 u 0
Ly Ly v|i=10
sym Lz | [w p

With Ajg = Ayg = 0 only the operators L1, Ly and L, of 1. can be simplified.
6. Cross-ply unsymmetric laminates

Ly LipLiz | | u 0
Lplaj|vi=10
sym Lz | |w P

In addition to 5., D¢, D26, B16 and Byg are zero, i.e. all operators of 1. can be
simplified.
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C.2 Shear Deformation Theory

1. General unsymmetrical laminates

Ly §]2 §13 1:414 0
Ly Loz Lys O
L33 Lag Las | | y1 | =

Lag Las | | v2

S Y M L55 w

= <
T oo oo

with Ly = Li1,L00 = Ly, L1» = Ly» (the L;; can be taken from Appendix C.1)
and

2 92 2
I33 = Di— +2D1g—— + Deg— — k3A
33 11 8x% + 168)615.)62 + Deg 8)% 55455,
92 92 2
Lyg = D= +2D2g=—=— + Dy —5 — kA
44 66 8x% + 2D 9x19x0 + Doy 8x§ 44444,

5 ) 32 . 2 . 32
Lss = — ( KisAss = + kjsAys =——=— + kiuAaa— |,
55 (55 55 ax% 454345 3x13x2 44 448)6%)

- - 2 02 02
Liz = [31 =Bj1=—= +2Bs=——— + Bgg—=

13 31 11 8x% + 2B 9x100 + Beg 8x§’

- - - - 02 02 02
Lia = Lyy =1r3 =Lz =Big—= B Beg) =——— + Brg—
4=Ly=Ln=L3p max% + (B2 + 66)axlax2 + B 32
B B 92 2 92
L4 = Ly» = Bgg— +2Brg=———— + Bry—

24 42 66 8x% + 2B 9x1070 + By 8x§’

B B 32 2 32
L34 = Ly3 = Dig=— + (D12 + Dgg) =——=— + Do~

34 = L3 168)‘% + (D12 + Des) p + 268)%7

- - 0 0

L3s = Ls3 = — (késAssa—xl + k35445 8_x2> )
- - i 0 i 0
Lys = Lsy = — (kZSA458_)c1 +kZ4A44—)

8x2
with ks = \/K5,kSs.
2. General symmetric laminates
B,‘j = 0, ie. L13 = L31, L14 = L41, L23 = L32 and L24 = L42 are Zero

§11 §12 u_o
Lip Ly | |v
Ls3 Ly Lss Vi

0
§34 §44 1:445 yi| =10
Ls3 Lsy Lss w p
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3. Cross-ply symmetric laminates
In addition to 2. both D¢, D2g and A ¢, Apg, A4s are zero.



Appendix D

Differential Operators for Circular Cylindrical
Shells

Below two cases will be considered

o the classical case and
o the first order shear deformation theory.

D.1 Classical Shell Theory

1. General unsymmetrical laminates

Ly Lz L3 u Dx
Ly Ly v|=—1ps
SYM L33 w Dz
32 2 32
Lii =A== +24A16=——— +Ass=—=
11 1lax2+ ]68x8s+ 653"
1 9° 1 1 9°
Lyr,=(A R 'Big)— + (A R B A R B
12 = (A6 + 16)ax%+( 12+ 12+ A6+ 66)axas
1 9°
+ (A +R™ Bzo)w7
0 0 93 23
Lz =R 'Ajg=— +R 'Ayg— — Bij1=—= — 3Big=———
b 1655 F 695 Mox 10 9x20s
33 (93
— (B12+ Beg)=——— — Bag—
(Bi2+ 66)axas2 2653
32
Ly = (Ags+ 2R 'Bgs + R 2Dys) Ees
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82
2(Asg + 2R 'Bog + 2R *Dyg) ———
+ 2(Ax + 26+ 26)8x8s
82
+ (A2 +2R"'By +R_2D22)ﬁ7
Lo = R (A JrR_les)i +R Y (An +R‘1B22)i
ox ds
I 9’ I }
— (B R 'Dig)=—= — |B 2B R (D 2D _—
(Bis+ 16)8x3 [Bi2+2Bgs+R™ (D12 + 66)]ax28s
1 2’ 1 2’
— 3(B R "'Dyg)———= — (B R "Dy)—
(Bas + 2)5 55~ (Bt 2)53
2 1 1, 07 1 9 1p 07
L33 =R “(A R 'B 2R 'Bi=—= +4R 'By¢—— +2R 'By»y—
33 (An+ »)+ 235+ 265 5. T 233
a4 a4 a4
— Di1=— —4D1g=——=— —2(D 2Dgg) =——=—=
o4 169x30s (D12+2Des) 0x29s?
24 0*

4Dy L D
26 9x0s3 2954

2. General symmetrical laminates
All B;; = 0, but the matrix [L;;] is full populated, i.e. all [Z;;] are nonequal zero.
Note that for general symmetrically laminated circular cylindrical shells there is
a coupling of the in-plane and out-of-plane displacements and stress resultants.
3. Cross-ply symmetrical laminates

Bij=0, Aig=A2%=0, Dig=Dyx=0
4. Cross-ply antisymmetrical laminates
By = —Bji, allother B;j=0, Ajg=A5%=0, Dig=Dy=0

5. Axisymmetric deformations of symmetrical cross-ply laminates
Additional to 3. all derivative d/ds and the displacement v are taken zero and
yield
Liy=Liz=L3=0
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D.2 Shear Deformation Theory

1. General unsymmetrical laminates

Z]l Z412 Z]3 Z]4 Z415 u

L1 L2 Li3 Li4 L Px
Ly Lyy Loz Loy Los v Ds
Ly L3y L33 Lyg Las | | w1 | =—| 0 |,
Lyy Lap Ly3 Lag Las | | v2 0
Lsy Lsy Ls3 Lsy Lss w J 2

3 2 2 92

Ly =Ay o2 +2A16m JrAﬁéﬁ,

B 2 2 32

5 2 92 92
Lz = 311(9 2+2Bl6a ER + Beso

- 9? J?
L1y = Big=— + (B Bes) == +Brw=—
14 = Bio5 5 +(Bia+ 66)8x8s+ 2657
- 1 a 1 0
L A A

15 = 5 + 2635

2 2 32

In=A 2A A

22 6682+ 26aa+22

0 0
Lip = Amﬁ + (A +A66)m +A26W7

95>

s’

82

%2 kj4Au4a,

. 2 92 21

L3 = Bie=— + (B Bes) =—= + B kisA
23 = Bio 55 + (Bio+Beo) 5= + Bag 55 + phisAas,
, 2 9? 1

Lrs = Bee=—= +2Br¢=— +Bon=> ky4A

24 6652 + 269x3s+ 233 +R 44444,
Ls=(A +ksA)la+(A +kSA)18

25 = 12 554155 R ox 26 45145 R 3s’

- 2 32 2

L33 = D11=— +2D16=—= + D¢ = — kiA

33 133 +2Di6 8x8s+ 6653 — Ks54s5

N 92 9? 2

L34 = D165 + (D2 +Des) 55 + D6 55 — kisAas,

L

)

— (B! —as i+ Boo |
5 — ]2R 55 8x 26R

Las = Des 2 + 2D26m + Do

- k35A45) 35
2 22 2?

w - kZ4A44,

d

- 1 d 1 d
Lys = (B —kisAys | =— B —kjAu ) =—
45 ( 26 p ~ Kas 45) 8x+< 22 5~ Kaa 44) 95

Z,55

= Ass—— +2kjAys——— —A
5533 +2kisA4s 3 22)

2 2 1

R?
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and
Lsy =—Li5, Lspy=—Lps, Ls3=—Lss, Lss=—Lys,

s __ S S
kys = \/ 14kss

2. Cross-ply symmetrical laminates
Bjj=0, i,j=1,2,6,
Alg=A2=A45=0, Dig=Dy=0

3. Cross-ply antisymmetrical laminates
By = —Bj;, allother B;;=0, i,j=1,2,6,
Ajg=A26=A45=0, Dig=Dy=0



Appendix E

Krylow-Functions as Solution Forms of a Fourth
Order Ordinary Differential Equation

The solutions of the following fourth order ordinary differential equation
W//// o k%w" + kgw -0

can be presented in the form of so-called Krylow functions (Filonenko-Boroditsch,
1952):

1. &>k
a=—0 =a+ib, o3 =—0y =a—1ib,

1 1
a=\[,B+R), b=/, (B-K)

and the solutions are

@ = coshaxcosbx,
@3 = coshaxsinbx,

or
P =e “cosbx,
P3 = e“sinbx,
2 _ 12
ks < kg
o) = —0 =a,

a=/R— Kbk,

and the solutions are

@, = sinhaxsinbx,
@, = sinhaxcos bx

D, = e “sinbx,
&y = e cosbx

o3 = —0y =b,

b=k + /Kl -3

@ = coshax, @, = coshbx,
@3 = sinhax, @, = sinhbx
or
P =™, b, = efbx,
D; = eax’ Dy = ebx
© Springer Nature Singapore Pte Ltd. 2018 481
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2 _ 12
3. R =K
a]:azza’

and the solutions are

@, = coshax,
&3 = sinhax,

or

References

o3 =04 = —a

@, = xsinhax,
&, = xcoshax

Dy = xe
@4 = xe™

Filonenko-Boroditsch MM (1952) Festigkeitslehre, vol II. Verlag Technik, Berlin



Appendix F
Material’s Properties

Below material properties for classical materials, for the constituents of various
composites and for unidirectional layers are presented. The information about the
properties were taken from different sources (see the Handbooks, Textbooks and
Monographs at the end of this appendix).

Note that the presentation of material data in a unique way is not so easy due to
the incompleteness of material data in the original sources. This means that there are
some empty places in the above following tables. The authors of this textbook were
unable to fill out these places. Another problem is connected with the different unit
systems in the original sources. For recalculation approximate relations are used
(e.g. 1 kgf =~ 10 N).

With respect to the quick changes in application composite materials all material
data are only examples showing the main tendencies. Every year new materials are
developed and for the material data one have to contact directly the companies.

References

Czichos H, Hennecke M (eds) (2012) Hiitte - das Ingenieurwissen, 34th edn.
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24th edn. Springer Vieweg, Berlin, Heidelberg

Hyer M (1998) Stress Analysis of Fiber-Reinforced Composite Materials. McGraw-
Hill, Boston et al.

Vasiliev V, Morozov E (2001) Mechanics and Analysis of Composite Materials.
Elsevier, Amsterdam
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F Material’s Properties

Table F.1 Material properties of conventional materials at room temperature (bulk form), after
Grote and Feldhusen (2014)] and Czichos and Hennecke (2012)

Density | Young’s [Maximum| Ultimate |[Maximum| Coefficient
modulus| specific | strength | specific | of thermal
modulus strength | expansion
p E E/p Ou ou/p a
(g/em®)| (GPa) [(MNm/kg)| (MPa) |(kNm/kg)[(107¢/° K)
Steel 7.8-7.85(180-210 27 340-2100 270 13
Gray cast iron| 7.1-7.4 | 64-181 25 140-490 69 9-12
Aluminium  [2.7-2.85[ 69-72 27 140-620 230 23
Titanium 44-451 110 25 1000-1200{ 273 11
Magnesium 1.8 40 22 260 144 26
Beryllium 1.8-1.85|300-320 173 620-700 389
Nickel 8.9 200 22 400-500 56 13
Zirconium 6.5 100 15 390 60 59
Tantalum 16.6 180 11 275 17 6.5
Tungsten 19.3 350 18 1100-4100{ 212 6.5
Glass 2.5 70 28 700-2100 840 3.5-5.5
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Table F.2 Material properties of fibre materials, after Hyer (1998)
Density | Young’s |Maximum | Ultimate |Maximum|Coefficient|Diameter
modulus| specific | strength | specific |of thermal
modulus strength | expansion
- fibre
direction
p E E/p Cu Cu/p a d
(g/em®) | (GPa) |(MNm/kg)| (MPa) |(kNm/kg)|(1076/° K| (um)
E-Glass 2.54 72.4 29 3450 1358 5 8-14
C-Glass 2.49 68.9 28 3160 1269 7.2
S-Glass 2.49 85.5 34 4600 1847 5.6 10
Carbon
Intermediate 1.78-1.82(228-276 155  |2410-2930( 1646 | -0.1--0.5 8-9
modulus
High modulus 1.67-1.9 |331-400 240  |2070-2900| 1736 -1- -4 5-7
High strength 1.85 240 130 3500 1892 -1--4 5-7
Polymeric fibres
Kevlar-29 1.44 62 43 2760 1917 -2 12
Aramid (Kevlar-49)| 1.48 131 89 2800-3792| 2562 -2 12
Spectra 900 0.97 117 121 2580 2660 38
Boron 2.63 385 146 2800 1065 4 100-140
Boron Carbide 2.5 480 192 |2100-2500 1000 50
Boron Nitride 1.9 90 47 1400 737 7
Titanium Carbide 4.9 450 92 1500 306 280
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Table F.3 Material properties of matrix and core materials, after Hyer (1998)

Density | Young’s | Shear Young’s | Ultimate [ Coefficient
modulus | modulus [ modulus strength | of thermal
(tension) (compression) expansion
P E' G E° Oy o
(g/em®) | (GPa) (GPa) (GPa) (MPa) |(107%/° K)
Thermosetting polymers
Polyester 1.2-1.3 | 342 0.7-2 90-250 40-90 80-150
Vinyl ester 1.15 3-4 127 65-90 80-150
Bismaleimide 1.32 3.6 1.8 200 48-78 49
Polyimide 1.43-1.89| 3.1-4.9 70-120 90
Epoxy 1.1-1.6 3-6 1.1-1.2 100-200 30-100 45-80
Thermoplastic polymers
PEEK 1.32 3.6 1.38 140 92-100 47
PPS 1.34 2.5 70-75 54-100
Polysulfone 1.24 2.5 70-75 56-100
Polypropylene 0.9 1-1.4 |0.38-0.54 25-38 110
Nylon 1.14 1.4-2.8 [0.54-1.08 34 60-75 90
Polcarbonate 1.06-1.2 | 2.2-2.4 86 45-70 70
Ceramics
Borosilicate glass 2.3 64 26.4 100 3
Balsa wood 0.1-0.19 2-6 8-18
Polystyrene 0.03-0.07{0.02-0.03 0.25-1.25
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Table F.4 Material properties of selected unidirectional composites

E-Glass/ S-Glass/ Kevlar/ Boron/ Carbon
epOXy epoXy epoxy epoxy epoxy

Fibre volume fraction v¢

Density (g/cm?)

Longitudinal modulus Ej, (GPa)
Transverse modulus Et (GPa)

In-plane shear modulus Grr (GPa)
Major Poisson’s ratio vyt

Minor Poisson’s ratio vy,
Longitudinal ultimate stress o1, (MPa)
Transverse ultimate stress o, (MPa)
In-plane ultimate shear stress opr, (MPa)
Longitudinal thermal

expansion coefficients o, (10*6 /° K)
Transverse thermal

expansion coefficient o (10’6/O K)

0.55 0.50 0.6 05 0.63
2.1 2.0 1.38  2.03 1.58
39 43 87 201 142
8.6 8.9 55 217 103
3.8 45 22 5.4 7.2
0.28 027 034 017 027
0.06 006  0.02 002 0.02
1080 1280 1280 1380 2280
39 49 30 56 57

89 69 49 62 71
7 5 -2 6.1 -0.9
21 26 60 30 27
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Table F.5 Typical properties of unidirectional composites as functions of the fibre volume fraction,
after Vasiliev and Morozov (2001)

Glass/ Carbon/ Carbon/ Aramid/ Boron/ Boron/ Carbon/ Al,O3/
epoxy epoxy PEEK epoxy epoxy aluminium carbon aluminium

Fibre volume
fraction v¢ 0.65 0.62 0.61 0.6 0.5 0.5 0.6 0.6
Density p (g/cm?®) 2.1 1.55 1.6 1.32 2.1 2.65 1.75 3.45
Longitudinal

modulus E, (GPa) 60 140 140 95 210 260 170 260
Transverse

modulus Et (GPa) 13 11 10 5.1 19 140 19 150
In-plane shear

modulus Grr (GPa) | 3.4 5.5 5.1 1.8 4.8 60 9 60

Major Poisson’s

ratio Vi 03 027 0.3 034 021 0.3 0.3 0.24

Longitudinal ultimate
tensile stress

o, (GPa) 1.8 2 2.1 2.5 1.3 1.3 0.34 0.7
Longitudinal ultimate
compressive stress
or, (GPa) 0.65 1.2 1.2 0.3 2 2 0.18 34
Transverse ultimate
tensile stress

oy, (GPa) 0.04 0.05 0.075 0.03 0.07 0.14 0.007 0.19
Transverse ultimate
compressive stress
o1, (GPa) 0.09 0.17 0.25 0.13 0.3 0.3 0.05 0.4
In-plane ultimate
shear stress

ormy (GPa) 0.05 0.07 0.16 0.03  0.08 0.09 0.03 0.12




Appendix G
References

G.1 Comprehensive Composite Materiala

1. Editors-in-chief Kelly, A. and Zweben, C.: Comprehensive Composite Materials.
Pergamon, Oxford, 2000.

Vol. 1: Fiber Reinforcements and General Theory of Composites (ed. by T.-W.
Chou)

e Vol. 2: Polymer Matrix Composites (ed. by R. Talreja & J.-A. E. Manson)
e Vol. 3: Metal Matrix Composites (ed. by T. W. Clyne)
e Vol. 4: Carbon/Carbon, Cement, and Ceramic Matrix Composites (ed. R. War-

ren)

Vol. 5: Test Methods, Nondestructive Evaluation, and Smart Materials (ed. by
L. Carlsson, R.L. Crane & K. Uchino)

Vol. 6: Design and Applications (ed. by M.G. Bader, K.T. Kedward & Y.
Sawada)

2. Editors-in-chief Zweben, C. and Beaumont, P.: Comprehensive Composite Ma-
terials I1. Elsevier, 2017.

Vol. 1: Reinforcements and General Theories of Composites (ed. by E.E. Gd-
outos)

e Vol. 2: Polymer Matrix Composites: Fundamentals (ed. by R. Talreja)
e Vol. 3: Polymer Matrix Composites: Manufacture and Applications (ed. by A.

Poursartip)

e Vol. 4: Metal Matrix Composites (ed. by T.W. Clyne)
e Vol. 5: Ceramic and Carbon Matrix Composites (ed. by M.B. Ruggles-Wrenn)
e Vol. 6: Nanocomposites and Multifunctional Materials (ed. by T. Peijs and

E.T. Thostenson)

Vol. 7: Testing, Nondestructive Evaluation and Structural Health Monitoring
(ed by R. Crane)

Vol. 8: Design and Analysis of Composite Structures (ed. by A. Johnson and
C. Soutis)

© Springer Nature Singapore Pte Ltd. 2018 489
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0



490 G References

G.2 Selected Textbooks and Monographs on Composite

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Mechanics

. Agarwal, B.D., L.J. Broutman, K. Chandrashekhara: Analysis and Performance

of Fiber Composites. John Wiley & Sons, Hoboken (NIJ), 3. ed., 2006.
Altenbach, H., J. Altenbach, R. Rikards: Einfiihrung in die Mechanik der
Laminat- und Sandwichtragwerke - Modellierung und Berechnung von Balken
und Platten aus Verbundwerkstoffen. Dt. Verl. fiir Grundstoffindustrie, Stuttgart,
1996.

. Altenbach, H., J. Altenbach, W. Kissing: Structural Analysis of Laminate and

Sandwich Beams and Plates. Lubelskie Towarzystwo Naukove, Lublin, 2001.
Altenbach, H., W. Becker (Eds): Modern Trends in Composite Laminates Me-
chanics. CISM Courses and Lectures. Springer, Wien, New York, 2003.
Ashbee K.H.G.: Fundamental Principles of Reinforced Composites. Technomic,
Lancaster et al., 2. ed., 1993.

Becker, W.: Beitrige zur analytischen Behandlung ebener Laminate. Habil.-
Schrift, TH Darmstadt 1993.

Bergmann, H.W.: Konstruktionsgrundlagen fiir Faserverbundbauteile. Springer,
Berlin u.a., 1992.

. Berthelot, J.-M.: Composite Materials. Mechanical Behaviour and Structure

Analysis. Springer, New York et al., 1999.

Bogdanovich, A.E., C.M. Pastore: Mechanics of Textile and Laminated Compos-
ite. With Applications to Structural Analysis. Chapman & Hall, London, 1996.
Buhl, H. (Ed.): Advanced Aerospace Materials. Materials Research and Engi-
neering. Springer, Berlin, Heidelberg, 1992.

Carlsson, L.A., D.F. Adams, D.F,, R.B. Pipes: Experimental Characterization of
Advanced Composite Materials. CRC Press, Boca Raton, 4rd edition, 2014.
Chawla, K.K.: Composite Materials. Science and Engineering. Springer, New
York, 2012.

Chung, D.D.L.: Composite Materials: Functional Materials for Modern Tech-
nologies. Springer, London, 2003.

Chung, D.D.L.: Composite Materials: Science and Applications. Springer, Lon-
don, 2010.

Daniel, .M., O. Ishai: Engineering Mechanics of Composite Materials. Oxford
University Press, New York, Oxford, 2nd ed., 2006.

Davies, J.M. (Ed.): Lightweight Sandwich Construction. Blackwell Science,
Oxford et al., 2001.

Decolon, C.: Analysis of Composite Structures. HPS, London, 2002.

Delhaes, P. (Ed.): Fibres and Composites. Taylor & Francis, London, 2003.
Dimitrienko, Yu.l.: Thermomechanics of Composites under High Temperature.
Springer Netherlands, Dordrecht, 2016.

Ehrenstein, G.W.: Faserverbund-Kunststoffe. Hanser, Miinchen, Wien, 2nd ed.,
2006.



G.2 Selected Textbooks and Monographs on Composite Mechanics 491

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Friedrich, K. (Ed.): Application of Fracture Mechanics to Composite Materials.
Bd. 6 Composite Material Series Elsevier, Amsterdam, 1989.

Gay, D.: Composite Materials: Design and Applications. CRC Press, Boca
Raton, 3rd. ed., 2014.

Geier, M.H.: Quality Handbook for Composite Materials. Chapman & Hall,
London et al., 1994.

Gibson, R.E.: Principles of Composite Material Mechanics. CRC Press, Boca
Raton, 4th ed., 2016.

Gibson, R.F.: Dynamic Mechanical Behavior of Composite Materials and Struc-
tures. CRC Press, Boca Raton, 2002.

Giirtal, Z., Haftka, R.T., Hajela, P.: Design and Optimization of Laminated Com-
posite Materials. John Willy & Sons Inc. New-York, 1999.

Harper, C.A. (Ed.): Handbook of Plastics, Elastomers, and Composites.
McGraw-Hill, New York et al., 4th edition, 2002.

Harris, B.: Engineering Composite Materials. IOM Communications Ltd., Lon-
don, 2nd edition, 1999.

Hoa, S.V.: Analysis for Design of Fiber Reinforced Plastic Vessels and Pipes.
Technomic, Lancaster, Basel, 1991.

Hoa, S.V., Wei Fang: Hybrid Finite Element Method for Stress Analysis of Lam-
inated Composites. Kluwer Academic Publishers. Dordrecht, 1998.

Hollaway, L.: Polymer Composites for Civil and Structural Engineering. Blackie
Academic & Professional, London et al., 1993.

Hult, J., F.G. Rammersdorfer (Eds): Engineering Mechanics of Fibre Rein-
forced Polymers and Composite Structures. CISM Courses and Lectures No.
348. Springer, Wien, New York, 1994.

Hyer, M.W.: Stress Analysis of Fibre-Reinforced Composite Materials. DEStech
Publ., Lancaster (PA), Uptadet ed., 2009.

Hull, D., T.W. Clyne: An Introduction to Composite Materials. Cambridge Uni-
versity Press. 2nd ed., 2003.

Jones, RM.: Mechanics of Composite Materials. Taylor & Francis, London,
1999.

Kachanov, L.M.: Delamination Buckling of Composite Materials. Mechanics of
Elastic Stability, Vol. 14. Kluwer, Dordrecht, Boston, London, 1988.
Kalamkarov, A.L.: Composite and Reinforced Elements of Construction. Wiley
& Sons, Chichester et al., 1992.

Kalamkarov, A.L., A.G. Kolpakov: Analysis, Design and Optimization of Com-
posite Structures. Wiley & Sons, Chichester et al., 1997.

Kaw, A.K.: Mechanics of Composite Materials. CRC Press, Boca Rotan, New
York, 2nd ed., 2006.

Kim, D.-H.: Composite Structures for Civil and Architectural Engineering.
E&FN SPON, London et al., 1995.

Kollar, L.P., G.S. Springer: Mechanics of Composite Structures. Cambridge
University Press, Cambridge, 2003.

Matthews, FL., R.D. Rawlings: Composite Materials: Engineering and Science.
Woodhead Publishing, Cambridge, 1999.



492 G References

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Matthews, FL., Davies, G.A.O., Hitching, D., Soutis, C.: Finite Element Mod-
elling of Composite Materials and Structures. CRC Press. Woodhead Publishing
Limited, Cambridge, 2000.

McCullough, R.L.: Micromechanical Materials Modelling. Delaware Compos-
ites Design Encyclopedia, Vol. 2. Technomic, Lancaster, Basel, 1991.

Michaeli, W., D. Huybrechts, M. Wegener: Dimensionieren mit Faserverbund-
kunststoffen: Einfiirung und praktische Hilfen. Hanser, Miinchen, Wien, 1995.
Milton, G. W.: The Theory of Composites. Cambridge University Press, Cam-
bridge, 2002.

Mittelstedt, C., W. Becker: Strukturmechanik ebener Laminate. TU Darmstadt,
Darmstadt, 2016.

Moser, K.: Faser-Kunststoff-Verbund: Entwurfs- und Berechnungsgrundlagen.
VDI-Verlag, Diisseldorf, 1992.

Newaz, G.M. (Ed.): Delamination in Advanced Composites. Technomic, Lan-
caster, 1991.

Nethercot, D.A.: Composite Construction. Spon Press, New York, 2003.
Ochoa, 0.0., J.N. Reddy: Finite Element Analysis of Composite Laminates.
Solid Mechanics and its Applications, Vol. 7. Kluwer, Dordrecht, Boston, Lon-
don, 1992.

Plantema, F.J.: Sandwich Constructions. John Wiley & Sons, New York, 1966.
Powell, P.C.: Engineering with Fibre-polymer Laminates. Chapman & Hall,
London et al., 1994.

Puck, A.: Festigkeitsanalyse an Faser-Matrix-Laminaten: Realistische Bruchkri-
terien und Degradationsmodelle. Hanser, M unchen, 1996.

Reddy, J.N.: Mechanics of Laminated Composite Plates - Theory and Analysis.
CRC Press, Boca Rotan et al., 1997.

Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and
Analysis. CRC Press, Boca Rotan et al., 2004.

Reddy, J.N., A. Miravete: Practical Analysis of Composite Laminates. CRC
Press, Boca Rotan et al., 1995.

Rohwer, K.: Modelle und Methoden zur Berechnung von Laminaten aus uni-
direktionalen Faserverbunden. Fortschritt-Berichte VDI: Reihe 1 Konstruktion-
stechnik, Maschinenelemente Nr. 264. VDI-Verlag, Diisseldorf, 1996.

Schulte, K., B. Fiedler:: Structure and Properties of Composite Materials.
TUHH-Technologie GmbH, Hamburg, 2. Aufl., 2005.

Sih, G.C., A. Carpinteri, G. Surace (Eds): Advanced Technology for Design
and Fabrication of Composite Materials and Structures. Engng. Appl. of Fract.
Mech., Vol.14. Kluwer Academic Publ., Dordrecht, Boston, London, 1995.

Sih, G.C., A.M. Skudra (Eds): Failure Mechanics of Composites. Handbook of
Composites, Bd. 3. North-Holland, Amsterdam, New York, Oxford, 1985.
Talreja, R. (Ed.): Damage Mechanics of Composite Materials. Composite Ma-
terials Series, Vol. 9. Elsevier, Amsterdam et al., 1994.

Tarnopol’ski, J.M., T. Kincis: Test Methods for Composites. Van Nostrand Rein-
hold, New York, 1985.

Tsai, S.W.: Composites Design. Think Composites, Dayton, Paris, Tokyo, 1988.



G.3 Supplementary Literature for Further Reading 493

65.

66.

67.

68.

69.

70.

71.

72.

73.

Turvey, G.J., I.LH. Marshall (Eds.): Buckling and Postbuckling of Composite
Plates. Chapman & Hall, London, 1995.

Vasiliev, V.V,, Jones, RM. (Engl. Ed. Editor): Mechanics of Composite Struc-
tures. Taylor & Francis, Washington, 1993.

Vasiliev, V.V., Morozov, E.V.: Mechanics and Analysis of Composite Materials.
Elsevier, London, 2001.

Vasiliev, V.V., Morozov, E.V.: Advanced Mechanics of Composite Materials and
Structural Elements. Elsevier, London, 3rd ed., 2013.

Vinson, J.R.: The Behavior of Shells Composed of Isotropic and Composite
Materials. Solid Mechanics and its Applications, Vol. 18. Kluwer, Dordrecht,
Boston, London, 1993.

Vinson, J.R., R.L. Sierakowski: The Behavior of Structures Composed of Com-
posite Materials. Springer, Dordrecht et al., 3rd ed., 2008.

Whitney, J.M.: Structural Analysis of Laminated Anisotropic Plates. Technomic
Publishing Co. Inc., Lancaster, 1987.

Ye, J.: Laminated Composite Plates and Shells: 3D Modelling. Springer, London
et al., 2003.

Zweben, C., H.T. Hahn, T.-W. Chou: Mechanical Behavior and Properties of
Composite Materials. Delaware Composites Design Encyclopedia, Bd. 1. Tech-
nomic, Lancaster, Basel, 1989.

G.3 Supplementary Literature for Further Reading

. Altenbach, H., J. Altenbach, K. Naumenko: Ebene Fldchentragwerke - Grund-

lagen der Modellierung und Berechnung von Scheiben und Platten. Springer
Vieweg, Berlin, Heidelberg, New York, 2. Aufl., 2016.

Altenbach, H.: Kontinuumsmechanik - Einfiihrung in die materialunabhdngigen
und materialabhdngigen Gleichungen. Springer Vieweg, Berlin, Heidelberg, 3.
Aufl., 2015.

. Altenbach, J., W. Kissing, H. Altenbach: Diinnwandige Stab- und Stabschalen-

tragwerke. Vieweg-Verlag, Braunschweig/Wiesbaden, 1994.

Altenbach, H., J. Altenbach, A. Zolochevsky: Erweiterte Deformationsmodelle
und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag fiir Grund-
stoffindustrie, Stuttgart, 1995.

. Ambarcumyan, S.A.: Theory of Anisotropic Plates: Strength, Stability, and Vi-

brations. Hemisphere Publishing, Washington, 1991.

Betten, J.: Kontinuumsmechanik. Springer-Verlag. Berlin, Heidelberg, New York,
2nd edition, 2001.

Betten, J. Finite Elemente fiir Ingenieure - Grundlagen, Matrixmethoden, Kon-
tinuum. Springer-Verlag, Berlin, Heidelberg, New York, 2nd edition, 2003.
Haupt, P.: Continuum Mechanics and Theory of Materials. Springer-Verlag.
Berlin, Heidelberg, New York, 2nd edition, 2002



494 G References

9.

10.

11.

12.

13.

Lekhnitskii, S.G.: Anisotropic Plates. Gordon and Breach Science Publishers,
London, 3rd print, 1987.

Lekhnitskij, S.G.: Theory of Elasticity of an Anisotropic Body. Mir Publishers,
Moscow, 1981.

Lewinski, T., J.J. Telega: Plates, Laminates and Shells Asymptotic Analysis and
Homogenization. World Scientific, Singapore, 2000.

Wlassow, V.S.: Allgemeine Schalentheorie und ihre Anwendung in der Technik.
Akademie-Verlag, Berlin, 1958.

Zienkiewicz, O.C., R.L. Taylor: The Finite Element Method, Vol. 2: Solid Me-
chanics. McGraw Hill, Oxford, 5th ed., 2000.

G.4 Selected Review Articles

10.

11.

12.

. Altenbach, H.: Modellierung des Deformationsverhaltens mehrschichtiger Fli-

chentragwerke - ein Uberblick zu Forschungsrichtungen und -tendenzen. Wiss.
Ztschr. TH Magdeburg 32(4): 86 — 94, 1988.

. Bert, CW.A. A critical evaluation of new plate theories applied to laminated

composites. Comp. Struc. 2, 329 — 347, 1984.

. Carrera, E., L. Demasi, M. Manganello: Assessment of plate elements on bendi-

Jjng and vibration of composite structures. Mech. of Adv. Mat. and Struct. 9, 333
—357, 2002.

. Christenson, R.M.: A survey of and evaluation methodology for Fiber Composite

Material Failure Theories. In "Mechanics for a New Millennium”, Eds H. Aref
and J.W. Philips, 25 — 40, 1998.

. Ha, K.H.: Finite element analysis of sandwich construction: a critical review.

Sandwich Construction 1, 69 — 85, 1989.

. Failure criteria in fibre-reinforced polymer composites. Special Issue of Com-

posites Science and Technology 58, 1998.

. Hashin, Z.: Analysis of composite materials - A Survey. Trans. ASME. J. Appl.

Mech. 50: 481 — 505, 1983.

. Hohe, J., W. Becker: Effective stress-strain relations for two-dimensional cel-

lular sandwich cores: Homogenization, material models, and properties. Appl.
Mech. Rev. 54: 61 — 87, 2001.

. Irschik, H.: On vibration of layered beams and plates. ZAMM 73 (4-5), T34 —

T45, 1993.

Leissa, W.W.: A review of laminated composite plate buckling. Appl. Mech. Rev.
40 (5), 575 -590, 1987.

Lui, M., P. Habip: A survey of modern developments in the analysis of sandwich
structures. Appl. Mech. Rev. 18(2), 93 — 98, 1965.

Mallikarguwa, T. Kant: A critical review and some results of recently developed
refined theories of fiber-reinforced laminated composites and sandwiches. Comp.
Structures 23, 293 — 312, 1993.



G.4 Selected Review Articles 495

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Nahas, M.N.:  Survey of failure and post-failure theories of laminated fibre-
reinforced composites. J. Composites Technology & Research 8: 138 — 153,
1986.

Naumenko, K., J. Altenbach, H. Altenbach, V.K. Naumenko: Closed and ap-
proximate analytical solutions for rectangular Mindlin plates. Acta Mechanica
147: 153 - 172, 2001.

Noor, A.K., W.S. Burton: Assessment of shear deformation theories for multilay-
ered composite plates. Appl. Mech. Rev. 41(1): 1 - 13, 1989.

Noor, A.K., W.S. Burton, C.W. Bert: Computational models for sandwich panels
and shells. Appl. Mech. Rev. 49(3), 155 — 199, 1996.

Noor, A.K., W.S. Burton, J.U. Peters: Assessment of computational models for
multilayered composite cylinders. Int. J. Solids Structures, 27 (10), 1269 — 1286,
1991.

Vinson, J.R.: Sandwich structures. Appl. Mech. Rev. 54(3), 201 — 214, 2001.
Reddy, J.N.: A review of refined theories of laminated composite plates. Shock
Vibr. Dig. 22: 3 - 17, 1990.

Reddy, J.N.: An evaluation of equivalent-single-layer and layer theories of com-
posite laminates. Composite Structures 25, 21 — 35, 1993.

Reddy, J.N., Robbins Jr., D.H. Theories and computational models for composite
laminates. Appl. Mech. Rev. 47 (6) 147 — 169, 1994.

Rohwer, K. Computational models for laminated composites. Z. Flugwiss. Wel-
traumforsch. 17, 323 — 330, 1993.



Index

Airy stress function, 290
analytical solution, 306
anisotropy

curvilinear, 51

cylindrical, 51

rectilinear, 51
approximation function, 414
auxetic material, 22

basic modes of failure of a lamina, 210
beam, 419
beam element, 413
laminate, 450
beam equations, 251
elementary, 233
beam resultants, 236
beam shaped shell, 371
beam shaped thin-walled folded structure, 414
beam theory
Bernoulli-Euler, 232
classical, 232
elementary, 232
generalized
Vlasov , 232
Timoshenko, 232, 246
bending
cylindrical, 294
bending stress, 126
bending-layer solution, 352
Bernoulli
Jakob 1., 77
Bernoulli beam, 416
Bernoulli beam model, 422
Saint-Venant supplement, 373
specialized, 391
Boole
George, 190

© Springer Nature Singapore Pte Ltd. 2018

boundary condition, 296
boundary conditions, 283
Bredt
Rudolf, 373
buckling, 286, 288, 297, 304, 305, 310, 318,
321
buckling equation, 242, 251
bulk modulus, 43

Christensen
Richard M., 223
classical beam model, 372
classical laminate theory, 181, 281, 286, 293,
303, 306, 376, 422, 432
closed thin-walled cross-section, 380
CLT, 181
coincidence matrix, 417
collocation method, 73
column, 232
compatibility conditions, 60
compliance hypermatrix, 143
compliance matrix, 27, 30, 32, 36
bending, 157
coupling, 157
extensional, 157
flexural, 125
monoclinic material, 33
off-axis extensional, 124
off-axis flexural, 125
off-axis in-plane, 123
on-axis extensional, 124
on-axis flexural, 125
orthotropic material, 34
transversely isotropic material, 35
compliance modulus, 22
compliance submatrix, 143
concentrated transversal stiffener, 389

497

H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0



498

constitutive equations, 62
constitutive equations of the lamina resultants,
126
continuity
element boundaries, 415
contraction, 22
coordinate functions, 70
coupling inertia term, 298
curvature, 281, 282
curvatures
longitudinal, 385
torsional, 385
cylindrical bending, 306, 320

d’Alambert principle, 67
damping matrix, 416
delamination, 209
density, 392
differential equation of flexure, 241
differential matrix, 62
discretization of the structure, 414
displacement

virtual, 64
displacement method, 66, 413
distorsion strain energy criteria of Tsai-Hill,

211

distortional energy criterion, 214

effective compliance, 24
effective hygrothermal coefficients, 112
effective moduli, 21
effective stiffness, 24
effective thermal expansion coefficients, 112
eigen-vibration, 403
eigenvalue problem, 318, 322
elastic parameters, 43
elasticity modulus, 22
elasticity tensor, 26
end matrix, 400
energy principles, 63
engineering parameters, 36
equilibrium equations
dynamic, 59, 62
plate, 281
static, 59, 62
surface, 62
equivalent single layer theory
higher order, 182
equivalent single-layer theory, 181, 183
ESLT, 181
Euler
Leonhard, 65
extended Vlasov-Kantorowich method, 75
extensional strains, 21, 24

Index

external virtual work, 64
extremal principles, 63

Foppl
August Otto, 330
face wrinkling, 263
finite element, 413
beam, 413
generalized, 413
one-dimensional, 442
plate, 413
laminate, 439
triangular, 429, 434
finite element procedure, 414
first order shear deformation theory, 246, 251,
280, 295, 301, 436
first-order shear deformation theory, 181, 183
first-ply failure, 211
fixed boundary, 296
flexibility matrix, 27
flexibility modulus, 22
flexure equations, 251
folded plate structure, 371, 375
force method, 66, 413
force resultant, 348, 377
forced vibration, 242, 251
forces
in-plane, 122
transverse, 122
four-node element, 423
fracture
interlaminar, 206
intralaminar, 206
translaminar, 206
fracture modes, 207
free boundary, 296
free edge, 297
free vibration, 242, 251
FSDT, 181

Galerkin
Boris Grigorjewitsch, 73
Galerkin’s method, 73
general three-dimensional problem, 416
generalized beam, 441
generalized co-ordinate function, 380, 392
generalized coordinates, 70
generalized densities
matrix, 439, 440
generalized density, 426
generalized displacement function, 392
generalized mass density, 298

Hamilton



Index

William Rowan, 68
Hamilton principle, 68, 299, 393
Hamilton’s principle, 449
Hamilton‘s principle, 414, 416
harmonic oscillation, 318
higher order theory, 295
Hill

Rodney, 211
Hoffman criterion, 217
Hooke

Robert, 20
Hooke’s law, 21

generalized, 26

inverse form, 22
hybrid criteria, 210
hybrid method, 413
hygrothermal loading, 263
hypotheses

Bernoulli, 186

Kirchhoff, 186

Love, 186

in-plane strain, 282

in-plane stress resultant force vector, 122

inner energy

element, 417

interactive criteria, 210, 214

interactive tensor polynomial criterion of
Tsai-Wu, 211

internal virtual work, 64

iso-strain condition, 90

iso-stress condition, 91

Jacobi matrix, 431

Kantorovich

Leonid Vitaliyevich, 74
Kantorovich separation relationships, 380
kinematic equations, 60, 62
kinetic energy, 392

rotatory, 438
Kirchhoff

Gustav Robert, 181
Kirchhoff hypotheses, 281, 376
Kirchhoff plate, 416, 429
Kirchhoff shear force resultant, 283
Krylov method, 395
Krylow

Aleksei Nikolajewitsch, 395
Krylow functions, 485
Kutta

Martin Wilhelm, 394

Lévy

Maurice, 306
Lagrange
Joseph-Louis, 65
Lagrange function, 393
Lagrangian function, 68
Lamé
Gabriel Léon Jean Baptiste, 43
Lamé coefficients, 43
lamina, 11
laminae
UD-laminae, 109
unidirectional, 109
laminate, 11
angle-ply, 139, 293, 294
antisymmetric, 138, 156, 285
balanced, 153
cross-ply, 152
asymmetric, 138
balanced, 139, 156, 285
beam element, 419
cross-ply, 139, 156, 285, 293, 294
general, 139, 156
isotropic layers, 293
nonsymmetric, 440
quasi-isotropic, 157
special orthotropic, 436
specially orthotropic, 280
symmetric, 138, 156, 285, 436
angle-ply, 138
balanced, 150
cross-ply, 149
general case, 289
regular, 138
special case with isotropic layers, 290
with isotropic layers, 148
truss element, 419
unsymmetric, 138
with isotropic layers, 157
laminate beam
symmetric, 252
laminate code, 138
laminate plate
arbitrary stacking, 280
symmetric, 288
laminate theory
classical, 183
second order, 183
third order, 183
laminates
specially orthotropic, 290
last-ply failure, 211
layer, 11
Layerwise theory, 197
layerwise theory, 182

499



500

least-squares method, 73
limit criteria, 210
Love
Augustus Edward Hough, 186

Love’s first-approximation shell theory, 347

macro-mechanical level, 11
macro-mechanical modelling, 108
macroscopic approach, 87
macroscopic level, 13
mass matrix
condensed, 416
consistent, 416
element, 439, 450
symmetric, 416
material
anisotropic, 4
arranged in parallel, 23
arranged in series, 23
ceramics, 4
composite
advantages, 15
classification, 5
examples, 5
limitations, 16
matrix, 7
reinforcement, 5
heterogeneous, 4
homogeneous, 4
inhomogeneous, 4
isotropic, 4, 36, 42
metals, 4
monoclinic, 32, 43
monolithic, 5
orthotropic, 34
polymers, 4
transversely isotropic, 35, 40
triclinic, 32
maximum strain theory, 213
maximum stress theory, 211
membrane stress, 126
membrane theory, 354
mesh, 413
method of initial parameters, 395
micro-mechanical level, 11
microscopic approach, 87
microscopic level, 13
mid-plane strain, 123
Mindlin
Raymond David, 295
Mindlin plate, 300, 325, 429, 436
Mindlin plate theory, 295
Mises
Richard Edler von, 214

modelling
one-dimensional, 371
three-dimensional, 371
two-dimensional, 371
moment
resultant, 122, 124
moment resultant, 348, 377
multidirectional laminate, 136

Nadai

Arpad, 306
Nadai-Lévy solution, 306, 316, 326
nanoscale level, 13
Navier

Claude Louis Marie Henri, 306
Navier solution, 306, 312, 324
nodal force

vector

time dependent, 416

node, 413
normal stress, 21
normal stresses, 24
number of degrees of freedom, 413

off-axis case, 110

off-axis loaded UD-lamina, 113
off-axis stretching, 123

on-axis case, 109

one-dimensional element, 413
one-dimensional structure, 419
optimal global laminate behavior, 137

plane beam problem, 418
plane strain problem, 416
plane strain state, 48
plane stress problem, 416
plane stress state, 45
plate, 279, 429
bending, 293
buckling, 293
moderately thick, 295
specially orthotropic, 288, 298
symmetric
general case, 287
vibration, 293
plate element, 413
laminate, 450
plate strip, 232, 307, 320
symmetrical laminated, 308
unsymmetric laminated, 308
plate theory
classical
Kirchhoff, 181

ply, 11

Index



Index

Poisson
Siméon Denis, 15
Poisson effect, 308
Poisson’s ratio, 22, 43
major, 92
minor, 93
potential energy, 383, 392, 420, 436, 440
folded structure, 379
single element, 417
whole structure, 417
prebuckling, 304
principle of complementary virtual work, 63,
65
principle of minimum potential energy, 299
principle of minimum total complementary
energy, 66
principle of minimum total potential energy, 65
principle of the total minimum potential
energy, 414
principle of virtual displacements, 66
principle of virtual forces, 66
principle of virtual work, 63, 64
prismatic structure, 376
profile node
main, 442
profile node concept, 442
profile nodes
secondary, 443
Puck
Alfred, 223

Rayleigh, 69
Rayleigh-Ritz method, 69
reduced compliances, 48
reduced stiffness, 47
Reissner

Eric (Max Erich), 63
Reissner plate theory, 295
Reissner theory, 195
Reissner’s functional, 67
Reissner’s variational theorem, 63, 66
resultant

in-plane force, 282, 288

moment, 282

transverse shear force, 282
resultant moment vector, 124
Reuss

Andrés (Endre), 24, 88
Reuss estimate, 92
Reuss model, 24, 91, 93, 94
Ritz

Walter, 69
Ritz approximation, 70, 72
Ritz method, 69, 414

501

rod, 232

rotation matrix, 28

rotational term, 392

rotatory inertia, 251, 286, 323

rule of mixture, 90

rule of mixtures, 88, 94, 96
inverse, 88, 92

Runge
Carl David Tolmé, 394

Sachs
Oscar, 88
Saint-Venant
Adhémar Jean Claude Barré de, 373
sandwich, 11
symmetric
thick cover sheets, 302
thin cover sheets, 301
sandwich beam
dissimilar faces, 258
symmetric, 252
sandwich composites, 172
sandwich plate, 301
Schapery
Richard Allan, 112
selective integration, 438
semi-empirical solution of Halpin and Tsai, 96
semi-membrane theory, 355
shape function, 414, 415, 423, 424, 431, 434,
442
linear, 420
shear correction coefficient, 300
shear correction factor, 142, 195, 246, 251
shear deformation theory, 306
shear deformations of the mid-planes, 385
shear lag effect, 374, 396
shear modulus, 22, 43
shear rigid theory, 187
shear strains, 21
engineering, 25
tensorial, 25
shear stress, 21
shell, 345
circular cylindrical, 345
circumferential cross-ply, 345
special orthotropic, 345
classical theory, 345, 346
hypotheses, 347
first order shear deformation theory, 345
moderately thick, 356
thin-walled, 345
transverse shear deformations, 346
shell element, 413
laminate, 450



502

simply supported boundary, 297
six-node element, 437
stacking
symmetric, 390
stacking codes of laminates, 137
stiffness
plate, 288
reduced, 111
shear, 194
stiffness matrix, 27, 30, 32, 36
bending, 141
coupling, 141
element, 417, 450
extensional, 123, 141
flexural, 125
isotropic material, 36
monoclinic material, 33
off-axis extensional, 124
off-axis flexural, 125
on-axis extensional, 124
on-axis flexural, 125
orthotropic material, 34
reduced, 377
symmetric, 415
transverse shear, 142
transversely isotropic material, 35
stiffness submatrix, 143
strain tensor, 24, 25
strain vector, 25
strain-displacement relations, 60
stress resultant, 283, 299, 449
plate, 281
stress resultants, 233
stress tensor, 24, 25
stress vector, 25
structural behavior
global, 372
local, 372
structural level, 13
Strutt
John William, 69
submatrix
bending, 148
coupling, 147
extensional, 148
surface force
vector, 415

Taylor

Geoffrey Ingram, 88
tensile compliance, 22
tensile flexibility, 22
tensile stiffness, 22
theorem of Castigliano, 66

thin-walled beam, 371
three-node element, 422, 437, 442
Timoshenko
Stepan Prokopovich, 80
Timoshenko beam model, 373, 422
specialized, 391
total virtual work, 64
transfer matrix, 398
transfer matrix method, 396
transformation matrix, 28, 29, 62
translatory inertia, 251, 323
transversal strains, 385
transverse force resultant, 378
transverse shear, 376
transverse shear deformation, 246
transverse shear resultant, 125
transverse shear stress, 295
trial function, 380
triangle co-ordinates
natural, 438
triangle coordinates
natural, 430
truss element, 413
Tsai
Stephen Wei-Lun, 96, 211
Tsai-Hill criterion, 215
Tsai-Wau criterion, 216
two-dimensional element, 413

two-dimensional structural element, 345

two-dimensional structure, 429
two-node element, 442

beam, 422

truss, 420

unknown coefficient function, 380

variational formulation

axial symmetrically circular cylindrical

shell, 358

variational iteration method, 75
variational operations, 64
vector of curvature, 125
vibration, 286, 310, 318, 421

forced, 297

forced transversal, 286

free, 323, 392
Vlasov

Vasily Zakharovich, 74
Vlasov beam model, 373, 391
Vlasov hypotheses, 380
Voigt

‘Woldemar, 23, 88
Voigt estimate, 90
Voigt model, 23, 90, 92, 94



Index

volume element, 413
volume force
vector, 415

warping, 373
weak form of the model equations, 70
weighted residual methods, 73

weighted-residual methods, 69
Wu
Edward Ming-Chi, 211

Young
Thomas, 14
Young’s modulus, 22, 43

503



	Preface to the 2nd Edition
	Preface to the 1st Edition
	Contents
	Part I Introduction, Anisotropic Elasticity, Micromechanics
	1 Classification of Composite Materials
	1.1 Definition and Characteristics
	1.2 Significance and Objectives
	1.3 Modelling
	1.4 Material Characteristics of the Constituents
	1.5 Advantages and Limitations
	1.6 Problems
	References

	2 Linear Anisotropic Materials
	2.1 Generalized Hooke’s Law
	2.1.1 Stresses, Strains, Stiffness, and Compliances
	2.1.2 Transformation Rules
	2.1.3 Symmetry Relations of Stiffness and Compliance Matrices
	2.1.3.1 Monoclinic or MonotropicMaterial Behavior
	2.1.3.2 OrthotropicMaterial Behavior
	2.1.3.3 Transversely IsotropicMaterial Behavior
	2.1.3.4 IsotropicMaterial Behavior

	2.1.4 Engineering Parameters
	2.1.4.1 OrthotropicMaterial Behavior
	2.1.4.2 Transversally-IsotropicMaterial Behavior
	2.1.4.3 IsotropicMaterial Behavior
	2.1.4.4 Monoclinic Material Behavior

	2.1.5 Two-Dimensional Material Equations
	2.1.6 Curvilinear Anisotropy
	2.1.7 Problems

	2.2 Fundamental Equations and Variational Solution Procedures
	2.2.1 Boundary and Initial-Boundary Value Equations
	2.2.2 Principle of Virtual Work and Energy Formulations
	2.2.3 Variational Methods
	2.2.3.1 Rayleigh-RitzMethod
	2.2.3.2 Weighted Residual Methods

	2.2.4 Problems

	References

	3 Effective Material Moduli for Composites
	3.1 Elementary Mixture Rules for Fibre-Reinforced Laminae
	3.1.1 Effective Density
	3.1.2 Effective Longitudinal Modulus of Elasticity
	3.1.3 Effective Transverse Modulus of Elasticity
	3.1.4 Effective Poisson’s Ratio
	3.1.5 Effective In-Plane Shear Modulus
	3.1.6 Discussion on the Elementary Mixture Rules

	3.2 Improved Formulas for Effective Moduli of Composites
	3.3 Problems


	Part II Modelling of a Single Laminae, Laminates and Sandwiches
	4 Elastic Behavior of Laminate and Sandwich Composites
	4.1 Elastic Behavior of Laminae
	4.1.1 On-Axis Stiffness and Compliances of UD-Laminae
	4.1.2 Off-Axis Stiffness and Compliances of UD-Laminae
	4.1.3 Stress Resultants and Stress Analysis
	4.1.4 Problems

	4.2 Elastic Behavior of Laminates
	4.2.1 General Laminates
	4.2.2 Stress-Strain Relations and Stress Resultants
	4.2.3 Laminates with Special Laminae Stacking Sequences
	4.2.3.1 Symmetric Laminates
	4.2.3.2 Antisymmetric Laminates
	4.2.3.3 Stiffness Matrices for Symmetric and Unsymmetric Laminates in Engineering Applications

	4.2.4 Stress Analysis
	4.2.5 Thermal and Hygroscopic Effects
	4.2.6 Problems

	4.3 Elastic Behavior of Sandwiches
	4.3.1 General Assumptions
	4.3.2 Stress Resultants and Stress Analysis
	4.3.3 Sandwich Materials with Thick Cover Sheets

	4.4 Problems

	5 Classical and Improved Theories
	5.1 General Remarks
	5.2 Classical Laminate Theory
	5.3 Shear Deformation Theory for Laminates and Sandwiches
	5.4 Layerwise Theories
	5.5 Problems
	References

	6 Failure Mechanisms and Criteria
	6.1 Fracture Modes of Laminae
	6.2 Failure Criteria
	6.3 Problems
	References


	Part III Analysis of Structural Elements
	7 Modelling and Analysis of Beams
	7.1 Introduction
	7.2 Classical Beam Theory
	7.3 Shear Deformation Theory
	7.4 Sandwich Beams
	7.4.1 Stresses and Strains for Symmetrical Cross-Sections
	7.4.2 Stresses and Strains for Non-Symmetrical Cross-Sections
	7.4.3 Governing Sandwich Beam Equations

	7.5 Hygrothermo-Elastic Effects on Beams
	7.6 Analytical Solutions
	7.7 Problems

	8 Modelling and Analysis of Plates
	8.1 Introduction
	8.2 Classical Laminate Theory
	8.3 Shear Deformation Theory
	8.4 Sandwich Plates
	8.5 Hygrothermo-Elastic Effects on Plates
	8.6 Analytical Solutions
	8.6.1 Classical Laminate Theory
	8.6.1.1 Plate Strip
	8.6.1.2 Navier Solution
	8.6.1.3 Nádai-Lévy Solution

	8.6.2 Shear Deformation Laminate Theory
	8.6.2.1 Plate Strip
	8.6.2.2 Navier Solution
	8.6.2.3 Nádai-Lévy Solution


	8.7 Problems
	References

	9 Modelling and Analysis of Circular Cylindrical Shells
	9.1 Introduction
	9.2 Classical Shell Theory
	9.2.1 General Case
	9.2.2 Specially Orthotropic Circular Cylindrical Shells Subjected by Axial Symmetric Loads
	9.2.3 Membrane and Semi-Membrane Theories

	9.3 Shear Deformation Theory
	9.4 Sandwich Shells
	9.5 Problems


	Part IV Modelling and Analysis of Thin-Walled Folded Plate Structures
	10 Modelling and Analysis of Thin-walled Folded Structures
	10.1 Introduction
	10.2 Generalized Beam Models
	10.2.1 Basic Assumptions
	10.2.2 Potential Energy of the Folded Structure
	10.2.3 Reduction of the Two-dimensional Problem
	10.2.4 Simplified Structural Models
	10.2.4.1 Structural Model A
	10.2.4.2 Structural Model B
	10.2.4.3 Structural Model C
	10.2.4.4 Structural Model D
	10.2.4.5 Structural Model E
	10.2.4.6 Further Special Models by Restrictions of the Cross-Section Kinematics

	10.2.5 An Efficient Structure Model for the Analysis of General Prismatic Beam Shaped Thin-walled Plate Structures
	10.2.6 Free Eigen-Vibration Analysis, Structural Model A

	10.3 Solution Procedures
	10.3.1 Analytical Solutions
	10.3.2 Transfer Matrix Method

	10.4 Problems
	References


	Part V Finite Classical and Generalized Beam Elements, Finite Plate Elements
	11 Finite Element Analysis
	11.1 Introduction
	11.1.1 FEM Procedure
	11.1.2 Problems

	11.2 Finite Beam Elements
	11.2.1 Laminate Truss Elements
	11.2.2 Laminate Beam Elements
	11.2.3 Problems

	11.3 Finite Plate Elements
	11.3.1 Classical Laminate Theory
	11.3.2 Shear Deformation Theory

	11.4 Generalized Finite Beam Elements
	11.4.1 Foundations
	11.4.2 Element Definitions
	11.4.3 Element Equations
	11.4.4 System Equations and Solution
	11.4.5 Equations for the Free Vibration Analysis

	11.5 Numerical Results
	11.5.1 Examples for the Use of Laminated Shell Elements
	11.5.1.1 Cantilever Beam
	11.5.1.2 Laminate Pipe
	11.5.1.3 Sandwich Plate
	11.5.1.4 Buckling Analysis of a Laminate Plate

	11.5.2 Examples of the Use of Generalized Beam Elements



	Part VI Appendices
	Appendix A Matrix Operations
	A.1 Definitions
	A.2 Special Matrices
	A.3 Matrix Algebra and Analysis

	Appendix B Stress and Strain Transformations
	Appendix C Differential Operators for Rectangular Plates
	C.1 Classical Plate Theory
	C.2 Shear Deformation Theory

	Appendix D Differential Operators for Circular Cylindrical Shells
	D.1 Classical Shell Theory
	D.2 Shear Deformation Theory

	Appendix E Krylow-Functions as Solution Forms of a Fourth Order Ordinary Differential Equation
	References

	Appendix F Material’s Properties
	References

	Appendix G References
	G.1 Comprehensive Composite Materiala
	G.2 Selected Textbooks and Monographs on Composite Mechanics
	G.3 Supplementary Literature for Further Reading
	G.4 Selected Review Articles

	Index



