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This is the second edition of the textbook Mechanics of Composite Structural El-

ements published first in 2004. Since that time the course has been delivered at

several universities in Germany and abroad. Throughout the past years the authors

received a lot of suggestions for improvements from students and colleagues alike.

In addition, the textbook is recommended as the basic reading material in a relevant

course at the Otto-von-Guericke-Universität Magdeburg.

In 2016 the first author was invited by Prof. Andreas Öchsner to present a course

with the same title at the Griffith University (Gold Coast campus) for third and

fourth year students of the bachelor program in the departments of Mechanical Engi-

neering and Civil Engineering. The two weeks’ course included 60 hours of lectures

and tutorials. Finally, the course was concluded with a written exam and a project.

Our special thanks are due to Dr. Christoph Baumann and Springer who provided

personal copies of the first edition of the book for the attendants of the course. As

the result of the discussions with the students the idea was born to prepare a second

edition.

By and large the preliminaries of the first edition remain unchanged: the presen-

tation of the mechanics of composite materials is based on the knowledge of the

first and second year of the bachelor program in Engineering Mechanics (or in other

countries the courses of General Mechanics and Strength of Materials). The focus of

the students will be directed to the elementary theory as the starting point of further

advanced courses.

There are some changes in the second edition in comparison with the first one:

• some problems are added or clarified (and we hope now better understandable),

• Chapter 11 is slightly shortened (some details are no more important),

• some details were adopted considering the developments of Springer’s templates.

Some references for further reading, but also some original sources are added and

the tables with material data are improved. Of course, we hope you will now find

fewer misprints and typos.

We have to acknowledge Dr.-Ing. Heinz Köppe (Otto-von-Guericke-Universität

Magdeburg) and Dipl.-Ing. Christoph Kammer (formaly at Otto-von-Guericke-
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Universität Magdeburg) for finding a lot of typos. In addition, we have to thank

Dr. Christoph Baumann (Executive Editor Engineering, Springer Nature Singapore)

for the permanent support of the project. We appreciate for any comment and sug-

gestion for improvements which should be sent to holm.altenbach@ovgu.de.

Magdeburg and Bad Kleinen, Holm Altenbach

March 2018 Johannes Altenbach

Wolfgang Kissing



Preface to the 1st Edition

Laminate and sandwich structures are typical lightweight elements with rapidly ex-

panding application in various industrial fields. In the past, these structures were

used primarily in aircraft and aerospace industries. Now, they have also found ap-

plication in civil and mechanical engineering, in the automotive industry, in ship-

building, the sport goods industries, etc. The advantages that these materials have

over traditional materials like metals and their alloys are the relatively high specific

strength properties (the ratio strength to density, etc). In addition, the laminate and

sandwich structures provide good vibration and noise protection, thermal insulation,

etc. There are also disadvantages - for example, composite laminates are brittle, and

the joining of such elements is not as easy as with classical materials. The recycling

of these materials is also problematic, and a viable solution is yet to be developed.

Since the application of laminates and sandwiches has been used mostly in new

technologies, governmental and independent research organizations, as well as big

companies, have spent a lot of money for research. This includes the development

of new materials by material scientists, new design concepts by mechanical and

civil engineers as well as new testing procedures and standards. The growing de-

mands of the industry for specially educated research and practicing engineers and

material scientists have resulted in changes in curricula of the diploma and master

courses. More and more universities have included special courses on laminates and

sandwiches, and training programs have been arranged for postgraduate studies.

The concept of this textbook was born 10 years ago. At that time, the first edition

of ”Einführung in die Mechanik der Laminat- und Sandwichtragwerke”, prepared

by H. Altenbach, J. Altenbach and R. Rikards, was written for German students

only. The purpose of that book consisted the following objectives:

• to provide a basic understanding of composite materials like laminates and sand-

wiches,

• to perform and engineering analysis of structural elements like beams and plates

made from laminates and sandwiches,

• to introduce the finite element method for the numerical treatment of composite

structures and

vii
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• to discuss the limitations of analysis and modelling concepts.

These four items are also included in this textbook. It must be noted that between

1997 and 2000, there was a common education project sponsored by the European

Community (coordinator T. Sadowski) with the participation of colleagues from

U.K., Belgium, Poland and Germany. One of the main results was a new created

course on laminates and sandwiches, and finally an English textbook ”Structural

Analysis of Laminate and Sandwich Beams and Plates” written by H. Altenbach, J.

Altenbach and W. Kissing.

The present textbook follows the main ideas of its previous versions, but has been

significantly expanded. It can be characterized by the following items:

• The textbook is written in the style of classical courses of strength of materials (or

mechanics of materials) and theory of beams, plates and shells. In this sense the

course (textbook) can be recommended for master students with bachelor degree

and diploma students which have finished the second year in the university. In

addition, postgraduates of various levels can find a simple introduction to the

analysis and modelling of laminate and sandwich structures.

• In contrast to the traditional courses referred to above, two extensions have been

included. Firstly, consideration is given to the linear elastic material behavior of

both isotropic and anisotropic structural elements. Secondly, the case of inhomo-

geneous material properties in the thickness direction was also included.

• Composite structures are mostly thin, in which case a dimension reduction of the

governing equations is allowed in many applications. Due to this fact, the one-

dimensional equations for beams and the two-dimensional equations for plates

and shells are introduced. The presented analytical solutions can be related to the

in-plane, out-of-plane and coupled behavior.

• Sandwiches are introduced as a special case of general laminates. This results in

significant simplifications because sandwiches with thin or thicker faces can be

modelled and analyzed in the frame of laminate theories of different order and

so a special sandwich theory is not necessary.

• All analysis concepts are introduced for the global structural behavior. Local

effects and their analysis must be based on three-dimensional field equations

which can usually be solved with the help of numerical methods. It must be

noted that the thermomechanical properties of composites on polymer matrix at

high temperatures can be essentially different from those at normal temperatures.

In engineering applications generally three levels of temperature are considered

– normal or room temperature (10◦–30◦ C)

– elevated temperatures (30◦–200◦ C)

– high temperatures (> 200◦ C)

High temperatures yield an irreversible variation of the mechanical properties,

and thus are not included in modelling and analysis. All thermal and moisture ef-

fects are considered in such a way that the mechanical properties can be assumed

unchanged.
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• Finite element analysis is only briefly presented. A basic course in finite elements

is necessary for the understanding of this part of the book. It should be noted

that the finite element method is general accepted for the numerical analysis of

laminate and sandwich structures. This was the reason to include this item in the

contents of this book.

The textbook is divided into 11 chapters and several appendices summarizing the

material properties (for matrix and fiber constituents, etc) and some mathematical

formulas:

• In the first part (Chaps. 1–3) an introduction into laminates and sandwiches as

structural materials, the anisotropic elasticity, variational methods and the basic

micromechanical models are presented.

• The second part (Chaps. 4–6) can be related to the modelling from single laminae

to laminates including sandwiches, the improved theories and simplest failure

concepts.

• The third part (Chaps. 7–9) discusses structural elements (beams, plates and

shells) and their analysis if they are made from laminates and sandwiches. The

modelling of laminated and sandwich plates and shells is restricted to rectan-

gular plates and circular cylindrical shells. The individual fiber reinforced lam-

inae of laminated structured elements are considered to be homogeneous and

orthotropic, but the laminate is heterogeneous through the thickness and gener-

ally anisotropic. An equivalent single layer theory using the classical lamination

theory, and the first order shear deformation theory are considered. Multilayered

theories or laminate theories of higher order are not discussed in detail.

• The fourth part (Chap. 10) includes the modelling and analysis of thin-walled

folded plate structures or generalized beams. This topic is not normally consid-

ered in standard textbooks on structural analysis of laminates and sandwiches, but

it was included here because it demonstrates the possible application of Vlasov’s

theory of thin-walled beams and semi-membrane shells on laminated structural

elements.

• Finally, the fifth part (Chap. 11) presents a short introduction into the finite el-

ement procedures and developed finite classical and generalized beam elements

and finite plate elements in the frame of classical and first order shear defor-

mation theory. Selected examples demonstrate the possibilities of finite element

analysis.

This textbook is written for use not only in engineering curricula of aerospace, civil

and mechanical engineering, but also in material science and applied mechanics. In

addition, the book may be useful for practicing engineers, lectors and researchers in

the mechanics of structures composed of composite materials.

The strongest feature of the book is its use as a textbook. No prior knowledge of

composite materials and structures is required for the understanding of its content.

It intends to give an in-depth view of the problems considered and therefore the

number of topics considered is limited. A large number of solved problems are

included to assess the knowledge of the presented topics. The list of references at

the end of the book focuses on three groups of suggested reading:
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• Firstly, a selection of textbooks and monographs of composite materials and

structures are listed, which constitute the necessary items for further reading.

They are selected to reinforce the presented topics and to provide information

on topics not discussed. We hope that our colleagues agree that the number of

recommended books for a textbook must be limited and we have given priority

to newer books available in university libraries.

• Some books on elasticity, continuum mechanics, plates and shells and FEM are

recommended for further reading, and a deeper understanding of the mathemati-

cal, mechanical and numerical topics.

• A list of review articles shall enable the reader to become informed about the

numerous books and proceedings in composite mechanics.

The technical realization of this textbook was possible only with the support of

various friends and colleagues. Firstly, we would like to express our special thanks

to K. Naumenko and O. Dyogtev for drawing most of the figures. Secondly, Mrs. B.

Renner and T. Kumar performed many corrections of the English text. At the same

time Mrs. Renner checked the problems and solutions. We received access to the

necessary literature by Mrs. N. Altenbach. Finally, the processing of the text was

done by Mrs. S. Runkel. We would also like to thank Springer Publishing for their

service.

Any comments or remarks are welcome and we kindly ask them to be sent to

holm.altenbach@iw.uni-halle.de.

June 2003

Halle Holm Altenbach

Magdeburg Johannes Altenbach

Wismar Wolfgang Kissing
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Part I

Introduction, Anisotropic Elasticity,
Micromechanics



In the first part (Chaps. 1–3) an introduction into laminates and sandwiches as

structural materials, the anisotropic elasticity, variational methods and the basic mi-

cromechanical models are presented.

The laminates are introduced as layered structures each of the layers is a fibre-

reinforced material composed of high-modulus, high-strength fibers in a polymeric,

metallic, or ceramic matrix material. Examples of fibers used include graphite, glass,

boron, and silicon carbide, matrix materials are epoxies, polyamide, aluminium, ti-

tanium, and aluminium. A sandwich is a special class of composite materials consist

of two thin but stiff skins and a lightweight but thick core.

The anisotropic elasticity is an extension of the isotropic elasticity. The geomet-

rical relations are assumed to be linear. The constitutive equations contain more

than two material parameters. In addition, the transition from the general three-

dimensional equations to the special two-dimensional equations results in more

complicated constrains. At the same time the introduction of reduced stiffness and

compliance parameters result in a powerful tool for the analysis of laminates.

The variational methods are the base of many numerical solution techniques (for

example, the finite element method). Here only the classical principles and methods

are briefly discussed.

There are many, partly sophisticated micromechanical approaches. They are the

base of a better understanding of the local behavior. In the focus of this textbook is

the global structural analysis. Thats way the micromechanical models are presented

only in the elementary form.



Chapter 1

Classification of Composite Materials

Fibre reinforced polymer composite systems have become increasingly important in

a variety of engineering fields. Naturally, the rapid growth in the use of composite

materials for structural elements has motivated the extension of existing theories in

structural mechanics, therein. The main topics of this textbook are

• a short introduction into the linear mechanics of deformable solids with an-

isotropic material behavior,

• the mechanical behavior of composite materials as unidirectional reinforced sin-

gle layers or laminated composite materials, the analysis of effective moduli,

some basic mechanisms and criteria of failure,

• the modelling of the mechanical behavior of laminates and sandwiches, gen-

eral assumptions of various theories, classical laminate theory (CLT), effect of

stacking of the layers of laminates and the coupling of stretching, bending and

twisting, first order shear deformation theory (FOSDT), an overview on refined

equivalent single layer plate theories and on multilayered plate modelling,

• modelling and analysis of laminate and sandwich beams, plates and shells, prob-

lems of bending, vibration and buckling and

• modelling and analysis of fibre reinforced long thin-walled folded-plate struc-

tural elements.

The textbook concentrates on a simple unified approach to the basic behavior of

composite materials and the structural analysis of beams, plates and circular cylin-

drical shells made of composite material being a laminate or a sandwich. The in-

troduction into the modelling and analysis of thin-walled folded structural elements

is limited to laminated elements and the CLT. The problems of manufacturing and

recycling of composites will be not discussed, but to use all benefits of the new

young material composite, an engineer has to be more than a material user as for

classical materials as steel or alloys. Structural engineering qualification must in-

clude knowledge of material design, manufacturing methods, quality control and

recycling.

In Chap. 1 some basic questions are discussed, e.g. what are composites and how

they can be classified, what are the main characteristics and significance, micro-

3© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0_1
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4 1 Classification of Composite Materials

and macro-modelling, why composites are used, what are the advantages and the

limitations. The App. F contains some values of the material characteristics of the

constituents of composites.

1.1 Definition and Characteristics

Material science classifies structural materials into three categories

• metals,

• ceramics and

• polymers.

It is difficult to give an exact assessment of the advantages and disadvantages of

these three basic material classes, because each category covers whole groups of

materials within which the range of properties is often as broad as the differences

between the three material classes. But at the simplistic level some obvious charac-

teristic properties can be identified:

• Mostly metals are of medium to high density. They have good thermal stability

and can be made corrosion-resistant by alloying. Metals have useful mechanical

characteristics and it is moderately easy to shape and join. For this reason metals

became the preferred structural engineering material, they posed less problems

to the designer than either ceramic or polymer materials.

• Ceramic materials have great thermal stability and are resistant to corrosion,

abrasion and other forms of attack. They are very rigid but mostly brittle and

can only be shaped with difficulty.

• Polymer materials (plastics) are of low density, have good chemical resistance

but lack thermal stability. They have poor mechanical properties, but are eas-

ily fabricated and joined. Their resistance to environmental degradation, e.g. the

photomechanical effects of sunlight, is moderate.

A material is called homogeneous if its properties are the same at every point and

therefore independent of the location. Homogeneity is associated with the scale of

modelling or the so-called characteristic volume and the definition describes the

average material behavior on a macroscopic level. On a microscopic level all ma-

terials are more or less homogeneous but depending on the scale, materials can be

described as homogeneous, quasi-homogeneous or inhomogeneous. A material is

inhomogeneous or heterogeneous if its properties depend on location. But in the av-

erage sense of these definitions a material can be regarded as homogeneous, quasi-

homogeneous or heterogeneous if the scale decreases.

A material is isotropic if its properties are independent of the orientation, they do

not vary with direction. Otherwise the material is anisotropic. A general anisotropic

material has no planes or axes of material symmetry, but in Sect. 2.1.3 some special

kinds of material symmetries like orthotropy, transverse isotropy, etc., are discussed

in detail.
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Furthermore, a material can depend on several constituents or phases, single

phase materials are called monolithic. The above three mentioned classes of conven-

tional materials are on the macroscopic level more or less monolithic, homogeneous

and isotropic.

The group of materials which can be defined as composite materials is extremely

large. Its boundaries depend on definition. In the most general definition we can

consider a composite as any material that is a combination of two or more materi-

als, commonly referred to as constituents, and have material properties derived from

the individual constituents. These properties may have the combined characteristics

of the constituents or they are substantially different. Sometimes the material prop-

erties of a composite material may exceed those of the constituents. This general

definition of composites includes natural materials like wood, traditional structural

materials like concrete, as well as modern synthetic composites such as fibre or par-

ticle reinforced plastics which are now an important group of engineering materials

where low weight in combination with high strength and stiffness are required in

structural design.

In the more restrictive sense of this textbook a structural composite consists of

an assembly of two materials of different nature. In general, one material is dis-

continuous and is called the reinforcement, the other material is mostly less stiff

and weaker. It is continuous and is called the matrix. The properties of a composite

material depends on

• The properties of the constituents,

• The geometry of the reinforcements, their distribution, orientation and concen-

tration usually measured by the volume fraction or fiber volume ratio,

• The nature and quality of the matrix-reinforcement interface.

In a less restricted sense, a structural composite can consist of two or more phases

on the macroscopic level. The mechanical performance and properties of compos-

ite materials are superior to those of their components or constituent materials taken

separately. The concentration of the reinforcement phase is a determining parameter

of the properties of the new material, their distribution determines the homogeneity

or the heterogeneity on the macroscopic scale. The most important aspect of com-

posite materials in which the reinforcement are fibers is the anisotropy caused by the

fiber orientation. It is necessary to give special attention to this fundamental charac-

teristic of fibre reinforced composites and the possibility to influence the anisotropy

by material design for a desired quality.

Summarizing the aspects defining a composite as a mixture of two or more dis-

tinct constituents or phases it must be considered that all constituents have to be

present in reasonable proportions that the constituent phases have quite different

properties from the properties of the composite material and that man-made com-

posites are produced by combining the constituents by various means. Figure 1.1

demonstrates typical examples of composite materials. Composites can be classi-

fied by their form and the distribution of their constituents (Fig. 1.2). The reinforce-

ment constituent can be described as fibrous or particulate. The fibres are continuous

(long fibres) or discontinuous (short fibres). Long fibres are arranged usually in uni-
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Fig. 1.1 Examples of composite materials with different forms of constituents and distributions

of the reinforcements. a Laminate with uni- or bidirectional layers, b irregular reinforcement with

long fibres, c reinforcement with particles, d reinforcement with plate strapped particles, e random

arrangement of continuous fibres, f irregular reinforcement with short fibres, g spatial reinforce-

ment, h reinforcement with surface tissues as mats, woven fabrics, etc.

or bidirectional, but also irregular reinforcements by long fibres are possible. The

arrangement and the orientation of long or short fibres determines the mechani-

cal properties of composites and the behavior ranges between a general anisotropy

to a quasi-isotropy. Particulate reinforcements have different shapes. They may be

spherical, platelet or of any regular or irregular geometry. Their arrangement may be

random or regular with preferred orientations. In the majority of practical applica-

tions particulate reinforced composites are considered to be randomly oriented and

unidirectional

reinforced

bidirectional

reinforced

spatial

reinforced

random

orientation
preferred orientation

continous fibre reinforced

(long fibres)

discontinous fibre reinforced

(short fibres)

random

orientation

preferred

orientation

fibre reinforced particle reinforced

Composite

Fig. 1.2 Classification of composites
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the mechanical properties are homogeneous and isotropic (for mor details Chris-

tensen, 2005; Torquato, 2002). The preferred orientation in the case of continuous

fibre composites is unidirectional for each layer or lamina. Fibre reinforced compos-

ites are very important and in consequence this textbook will essentially deal with

modelling and analysis of structural elements composed of this type of composite

material. However, the level of modelling and analysis used in this textbook does not

really differentiate between unidirectional continuous fibres, oriented short-fibres or

woven fibre composite layers, as long as material characteristics that define the layer

response are used. Composite materials can also be classified by the nature of their

constituents. According to the nature of the matrix material we classify organic,

mineral or metallic matrix composites.

• Organic matrix composites are polymer resins with fillers. The fibres can be min-

eral (glass, etc.), organic (Kevlar, etc.) or metallic (aluminium, etc.).

• Mineral matrix composites are ceramics with metallic fibres or with metallic or

mineral particles.

• Metallic matrix composites are metals with mineral or metallic fibres.

Structural composite elements such as fibre reinforced polymer resins are of par-

ticular interest in this textbook. They can be used only in a low temperature range

up to 200◦ to 300◦ C. The two basic classes of resins are thermosets and thermo-

plastics. Thermosetting resins are the most common type of matrix system for com-

posite materials. Typical thermoset matrices include Epoxy, Polyester, Polyamide

(Thermoplastics) and Vinyl Ester, among popular thermoplastics are Polyethylene,

Polystyrene and Polyether-ether-ketone (PEEK) materials. Ceramic based compos-

ites can also be used in a high temperature range up to 1000◦ C and metallic matrix

composites in a medium temperature range.

In the following a composite material is constituted by a matrix and a fibre re-

inforcement. The matrix is a polyester or epoxy resin with fillers. By the addition

of fillers, the characteristics of resins will be improved and the production costs

reduced. But from the mechanical modelling, a resin-filler system stays as a ho-

mogeneous material and a composite material is a two phase system made up of a

matrix and a reinforcement.

The most advanced composites are polymer matrix composites. They are charac-

terized by relatively low costs, simple manufacturing and high strength. Their main

drawbacks are the low working temperature, high coefficients of thermal and mois-

ture expansion and, in certain directions, low elastic properties. Most widely used

manufacturing composites are thermosetting resins as unsaturated polyester resins

or epoxy resins. The polyester resins are used as they have low production cost.

The second place in composite production is held by epoxy resins. Although epoxy

is costlier than polyester, approximately five time higher in price, it is very popu-

lar in various application fields. More than two thirds of polymer matrices used in

aerospace industries are epoxy based. Polymer matrix composites are usually rein-

forced by fibres to improve such mechanical characteristics as stiffness, strength,

etc. Fibres can be made of different materials (glass, carbon, aramid, etc.). Glass fi-

bres are widely used because their advantages include high strength, low costs, high
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chemical resistance, etc., but their elastic modulus is very low and also their fatigue

strength. Graphite or carbon fibres have a high modulus and a high strength and

are very common in aircraft components. Aramid fibres are usually known by the

name of Kevlar, which is a trade name. Summarizing some functional requirements

of fibres and matrices in a fibre reinforced polymer matrix composite

• fibres should have a high modulus of elasticity and a high ultimate strength,

• fibres should be stable and retain their strength during handling and fabrication,

• the variation of the mechanical characteristics of the individual fibres should be

low, their diameters uniform and their arrangement in the matrix regular,

• matrices have to bind together the fibres and protect their surfaces from damage,

• matrices have to transfer stress to the fibres by adhesion and/or friction and

• matrices have to be chemically compatible with fibres over the whole working

period.

The fibre length, their orientation, their shape and their material properties are main

factors which contribute to the mechanical performance of a composite. Their vol-

ume fraction usually lies between 0.3 and 0.7. Although matrices by themselves

generally have poorer mechanical properties than compared to fibres, they influence

many characteristics of the composite such as the transverse modulus and strength,

shear modulus and strength, thermal resistance and expansion, etc.

An overview of the material characteristics is given in Sect. 1.4. One of the most

important factors which determines the mechanical behavior of a composite material

is the proportion of the matrix and the fibres expressed by their volume or their

weight fraction. These fractions can be established for a two phase composite in the

following way. The volume V of the composite is made from a matrix volume Vm

and a fibre volume Vf (V =Vf +Vm). Then

vf =
Vf

V
, vm =

Vm

V
(1.1.1)

with

vf + vm = 1, vm = 1− vf

are the fibre and the matrix volume fractions. In a similar way the weight or mass

fractions of fibres and matrices can be defined. The mass M of the composite is

made from Mf and Mm (M = Mf +Mm) and

mf =
Mf

M
, mm =

Mm

M
(1.1.2)

with

mf +mm = 1, mm = 1−mf

are the mass fractions of fibres and matrices. With the relation between volume,

mass and density ρ = M/V , we can link the mass and the volume fractions
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ρ =
M

V
=

Mf +Mm

V
=

ρfVf +ρmVm

V
= ρfvf +ρmvm = ρfvf +ρm(1− vf)

(1.1.3)

Starting from the total volume of the composite V =Vf +Vm we obtain

M

ρ
=

Mf

ρf
+

Mm

ρm

and

ρ =
1

mf

ρf
+

mm

ρm

(1.1.4)

with

mf =
ρf

ρ
vf, mm =

ρm

ρ
vm

The inverse relation determines

vf =
ρ

ρf
mf, vm =

ρ

ρm
mm (1.1.5)

The density ρ is determined by Eqs. (1.1.3) or (1.1.4). The equations can be easily

extended to multi-phase composites.

Mass fractions are easier to measure in material manufacturing, but volume frac-

tions appear in the theoretical equations for effective moduli (Sect. 3.1). Therefore,

it is helpful to have simple expressions for shifting from one fraction to the other.

The quality of a composite material decreases with an increase in porosity. The

volume of porosity should be less than 5 % for a medium quality and less than 1 %

for a high quality composite. If the density ρexp is measured experimentally and

ρtheor is calculated with (1.1.4), the volume fraction of porosity is given by

vpor =
ρtheor −ρexp

ρtheor
(1.1.6)

1.2 Significance and Objectives

Development and applications of composite materials and structural elements com-

posed of composite materials have been very rapid in the last decades. The mo-

tivations for this development are the significant progress in material science and

technology of the composite constituents, the requirements for high performance

materials is not only in aircraft and aerospace structures, but also in the develop-

ment of very powerful experimental equipments and numerical methods and the

availability of efficient computers. With the development of composite materials

a new material design is possible that allows an optimal material composition in

connection with the structural design. A useful and correct application of compos-

ite materials requires a close interaction of different engineering disciplines such
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as structural design and analysis, material science, mechanics of materials, process

engineering, etc. Summarizing the main topics of composite material research and

technology are

• investigation of all characteristics of the constituent and the composite materials,

• material design and optimization for the given working conditions,

• development of analytical modelling and solution methods for determining ma-

terial and structural behavior,

• development of experimental methods for material characteristics, stress and de-

formation states, failure,

• modelling and analysis of creep, damage and life prediction,

• development of new and efficient fabrication and recycling procedures among

others.

Within the scope of this book are the first three items.

The most significant driving force in the composite research and application was

weight saving in comparison to structures of conventional materials such as steel,

alloys, etc. However, to have only material density, stiffness and strength in mind

when thinking of composites is a very narrow view of the possibilities of such ma-

terials as fibre-reinforced plastics because they often may score over conventional

materials as metals not only owing to their mechanical properties. Fibre reinforced

plastics are extremely corrosion-resistant and have interesting electromagnetic prop-

erties. In consequence they are used for chemical plants and for structures which

require non-magnetic materials. Further carbon fibre reinforced epoxy is used in

medical applications because it is transparent to X-rays.

With applications out of aerospace or aircraft, cost competitiveness with con-

ventional materials became important. More recently requirements such as quality

assurance, reproducibility, predictability of the structure behavior over its life time,

recycling, etc. became significant.

Applications of polymer matrix composites range from the aerospace industry to

the industry of sports goods. The military aircraft industry has mainly led the field

in the use of polymer composites when compared to commercial airlines which

has used composites, because of safety concerns more restrictively and frequently

limited to secondary structural elements. Automotive applications, sporting goods,

medical devices and many other commercial applications are examples for the appli-

cation of polymer matrix composites. Also applications in civil engineering are now

on the way but it will take some time to achieve wide application of composites in

civil engineering as there are a lot of prescribed conditions to guarantee the reliabil-

ity of structures. But it is clear that over the last decades considerable advances have

been made in the use of composite materials in construction and building industries

and this trend will continue.



1.3 Modelling 11

1.3 Modelling

Composite materials consist of two or more constituents and the modelling, analy-

sis and design of structures composed of composites are different from conventional

materials such as steel. There are three levels of modelling. At the micro-mechanical

level the average properties of a single reinforced layer (a lamina or a ply) have to

be determined from the individual properties of the constituents, the fibres and ma-

trix. The average characteristics include the elastic moduli, the thermal and mois-

ture expansion coefficients, etc. The micro-mechanics of a lamina does not consider

the internal structure of the constituent elements, but recognizes the heterogene-

ity of the ply. The micro-mechanics is based on some simplifying approximations.

These concern the fibre geometry and packing arrangement, so that the constituent

characteristics together with the volume fractions of the constituents yield the av-

erage characteristics of the lamina. Note that the average properties are derived by

considering the lamina to be homogeneous. In the frame of this textbook only the

micro-mechanics of unidirectional reinforced laminates are considered (Sect. 3).

The calculated values of the average properties of a lamina provide the basis

to predict the macrostructural properties. At the macro-mechanical level, only the

averaged properties of a lamina are considered and the microstructure of the lamina

is ignored. The properties along and perpendicular to the fibre direction, these are

the principal directions of a lamina, are recognized and the so-called on-axis stress-

strain relations for a unidirectional lamina can be developed. Loads may be applied

not only on-axis but also off-axis and the relationships for stiffness and flexibility,

for thermal and moisture expansion coefficients and the strength of an angle ply can

be determined. Failure theories of a lamina are based on strength properties. This

topic is called the macro-mechanics of a single layer or a lamina (Sect. 4.1).

A laminate is a stack of laminae. Each layer of fibre reinforcement can have

various orientation and in principle each layer can be made of different materi-

als. Knowing the macro-mechanics of a lamina, one develops the macro-mechanics

of the laminate. Average stiffness, flexibility, strength, etc. can be determined for

the whole laminate (Sect. 4.2). The structure and orientation of the laminae in pre-

scribed sequences to a laminate lead to significant advantages of composite materi-

als when compared to a conventional monolithic material. In general, the mechan-

ical response of laminates is anisotropic. One very important group of laminated

composites are sandwich composites. They consist of two thin faces (the skins or

sheets) sandwiching a core (Fig. 1.3). The faces are made of high strength materials

having good properties under tension such as metals or fibre reinforced laminates

while the core is made of lightweight materials such as foam, resins with special

fillers, called syntactic foam, having good properties under compression. Sandwich

composites combine lightness and flexural stiffness. The macro-mechanics of sand-

wich composites is considered in Sect. 4.3.

When the micro- and macro-mechanical analysis for laminae and laminates are

carried out, the global behavior of laminated composite materials is known. The last

step is the modelling on the structure level and to analyze the global behavior of a

structure made of composite material. By adapting the classical tools of structural
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foam core balsa wood core

foam core with fillers balsa wood core with holes

folded plates core honeycomb core

Fig. 1.3 Sandwich materials with solid and hollow cores

analysis on anisotropic elastic structure elements the analysis of simple structures

as beams or plates may be achieved by analytical methods, but for more general

boundary conditions and/or loading and for complex structures, numerical methods

are used.

The composite structural elements in the restricted view of this textbook are lam-

inated or sandwich composites. The motivation for sandwich composites are two-

fold:

• If a beam is bent, the maximum stresses occur at the top and the bottom surface.

So it makes sense using high strength materials only for the sheets and using low

and lightweight materials in the middle.
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• The resistance to bending of a rectangular cross-sectional beam is proportional

to the cube of the thickness. Increasing the thickness by adding a core in the

middle increases the resistance. The shear stresses have a maximum in the mid-

dle of a sandwich beam requiring the core to support the shear. This advantage

of weight and bending stiffness makes sandwich composites more attractive for

some applications than other composite or conventional materials.

The most commonly used face materials are aluminium alloys or fibre reinforced

laminates and most commonly used core materials are balsa wood, foam and hon-

eycombs (Fig. 1.3). In order to guarantee the advantages of sandwich composites, it

is necessary to ensure that there is perfect bonding between the core and the sheets.

For laminated composites, assumptions are necessary to enable the mathematical

modelling. These are an elastic behavior of fibres and matrices, a perfect bonding

between fibres and matrices, a regular fibre arrangement in regular or repeating ar-

rays, etc.

Summarizing the different length scales of mechanical modelling structure ele-

ments composed of fibre reinforced composites it must be noted that, independent

of the different possibilities to formulate beam, plate or shell theories (Chaps. 7–9),

three modelling levels must be considered:

• The microscopic level, where the average mechanical characteristics of a lamina

have to be estimated from the known characteristics of the fibres and the ma-

trix material taking into account the fibre volume fracture and the fibre packing

arrangement. The micro-mechanical modelling leads to a correlation between

constituent properties and average composite properties. In general, simple mix-

ture rules are used in engineering applications (Chap. 3). If possible, the aver-

age material characteristics of a lamina should be verified experimentally. On

the micro-mechanical level a lamina is considered as a quasi-homogeneous or-

thotropic material.

• The macroscopic level, where the effective (average) material characteristics of a

laminate have to be estimated from the average characteristics of a set of laminae

taking into account their stacking sequence. The macro-mechanical modelling

leads to a correlation between the known average laminae properties and effec-

tive laminate properties. On the macro-mechanical level a laminate is consid-

ered generally as an equivalent single layer element with a quasi-homogeneous,

anisotropic material behavior (Chap. 4).

• The structural level, where the mechanical response of structural members like

beams, plates, shells etc. have to be analyzed taking into account possibilities to

formulate structural theories of different order (Chap. 5).

In the recent years in the focus of the researchers is an additional level - the

nanoscale level. There are two reasons for this new direction:

• composites reinforced by nanoparticles and

• nanosize structures.

Both directions are beyond this elementary textbook. Partly new concepts should

be introduced since bulk effects are no more so important and the influence of sur-



14 1 Classification of Composite Materials

face effects is increasing. In this case the classical continuum mechanics approaches

should be extended. More details are presented in Altenbach and Eremeyev (2015);

Cleland (2003).

1.4 Material Characteristics of the Constituents

The optimal design and the analysis of structural elements requires a detailed knowl-

edge of the material properties. They depend on the nature of the constituent mate-

rials but also on manufacturing.

For conventional structure materials such as metals or concrete, is available much

research and construction experience over many decades, the codes for structures

composed of conventional materials have been revised continuously and so design

engineers pay less attention to material problems because there is complete docu-

mentation of the material characteristics.

It is quite an another situation for structures made of composites. The list of

composite materials is numerous but available standards and specifications are very

rare. The properties of each material used for both reinforcements and matrices of

composites are very much diversified. The experiences of nearly all design engineers

in civil or mechanical engineering with composite materials, are insufficient. So it

should be borne in mind that structural design based on composite materials requires

detailed knowledge about the material properties of the singular constituents of the

composite for optimization of the material in the frame of structural applications

and also detailed codes for modelling and analysis are necessary.

The following statements are concentrated on fibre reinforced composites with

polymer resins. Material tests of the constituents of composites are in many cases a

complicated task and so the material data in the literature are limited. In engineering

applications the average data for a lamina are often tested to avoid this problem and

in order to use correct material characteristics in structural analysis. But in the area

of material design and selection, it is also important to know the properties of all

constituents.

The main properties for the estimation of the material behavior are

• density ρ ,

• Young’s modulus1 E ,

• ultimate strength σu and

• thermal expansion coefficient α .

The material can be made in bulk form or in the form of fibres. To estimate proper-

ties of a material in the form of fibres, the fibre diameter d can be important.

Table F.1 gives the specific performances of selected material made in bulk form.

Traditional materials, such as steel, aluminium alloys, or glass have comparable

1 Thomas Young (∗13 June 1773 Milverton, Somersetshire - †10 May 1829 London) - polymath

and physician, notable scientific contributions to the fields of light, mechanics (elastic material

parameter, surface tension), energy among others
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specific moduli E/ρ but in contrast the specific ultimate stress σu/ρ of glass is

significantly higher than that of steel and of aluminium alloys. Table F.2 presents the

mechanical characteristics of selected materials made in the form of fibres. It should

be borne in mind that the ultimate strength measured for materials made in bulk form

is remarkably smaller than the theoretical strengths. This is attributed to defects or

micro-cracks in the material. Making materials in the form of fibres with a very

small diameter of several microns decreases the number of defects and the values

of ultimate strength increases. Table F.3 gives material properties for some selected

matrix materials and core materials of sandwich composites. Tables F.4 and F.5

demonstrate some properties of unidirectional fibre reinforced composite materials:

EL is the longitudinal modulus in fibre direction, ET the transverse modulus, GLT the

in-plane shear modulus, νLT and νTL are the major and the minor Poisson’s ratio2,

σLu, σTu, σLTu the ultimate stresses or strengths, αL and αT the longitudinal and the

transverse thermal expansion coefficients.

Summarizing the reported mechanical properties, which are only a small selec-

tion, a large variety of fibres and matrices are available to design a composite ma-

terial with high modulus and low density or other desired qualities. The impact of

the costs of the composite material can be low for applications in the aerospace

industry or high for applications such as in automotive industry. The intended per-

formance of a composite material and the cost factors play an important role and

structural design with composite materials has to be compared with the possibilities

of conventional materials.

1.5 Advantages and Limitations

The main advantage of polymer matrix composites in comparison with conventional

materials, such as metals, is their low density. Therefore two parameters are com-

monly used to demonstrate the mechanical advantages of composites:

1. The specific modulus E/ρ is the Young’s modulus per unit mass or the ratio

between Young’s modulus and density.

2. The specific strength σu/ρ is the tensile strength per unit mass or the ratio be-

tween strength and density

The benefit of the low density becomes apparent when the specific modulus and the

specific strength are considered. The two ratios are high and the higher the specific

parameters the more weight reduction of structural elements is possible in relation

to special loading conditions. Therefore, even if the stiffness and/or the strength

performance of a composite material is comparable to that of a conventional alloy,

the advantages of high specific stiffness and/or specific strength make composites

2 Siméon Denis Poisson (∗21 June 1781 Pithiviers - †25 April 1840 Paris) - mathematician, ge-

ometer, and physicist, with contributions to mechanics, after Poisson an elastic material parameter

is named
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more attractive. Composite materials are also known to perform better under cyclic

loads than metallic materials because of their fatigue resistance.

The reduction of mass yields reduced space requirements and lower material and

energy costs. The mass reduction is especially important in moving structures. Be-

ware that in some textbooks the specific values are defined as E/ρg and σu/ρg,

where g is the acceleration due to the gravity. Furthermore it should be noted that

a single performance indicator is insufficient for the material estimation and that

comparison of the specific modulus and the specific strength of unidirectional com-

posites to metals gives a false impression. Though the use of fibres leads to large

gains in the properties in fibre direction, the properties in the two perpendicular di-

rections are greatly reduced. Additionally, the strength and stiffness properties of

fibre-reinforced materials are poor in another important aspect. Their strength de-

pends critically upon the strength of the fibre, matrix interface and the strength of the

matrix material, if shear stresses are being applied. This leads to poor shear proper-

ties and this lack of good shear properties is as serious as the lack of good transverse

properties. For complex structure loadings, unidirectional composite structural ele-

ments are not acceptable and so-called angle-ply composite elements are necessary,

i.e. the structural components made of fibre-reinforced composites are usually lam-

inated by using a number of layers. This number of fibre-reinforced layers can vary

from just a few to several hundred. While generally the majority of the layers in the

laminate have their fibres in direction of the main loadings, the other layers have

their fibres oriented specifically to counter the poor transverse and shear properties.

Additional advantages in the material performances of composites are low ther-

mal expansion, high material damping, generally high corrosion resistance and elec-

trical insulation. Composite materials can be reinforced in any direction and the

structural elements can be optimized by material design or material tailoring.

There are also limitations and drawbacks in the use of composite materials:

1. The mechanical characterization of composite materials is much more complex

than that of monolithic conventional material such as metal. Usually composite

material response is anisotropic. Therefore, the material testing is more compli-

cated, cost and time consuming. The evaluation and testing of some composite

material properties, such as compression or shearing strengths, are still in discus-

sion.

2. The complexity of material and structural response makes structural modelling

and analysis experimentally and computationally more expensive and compli-

cated in comparison to metals or other conventional structural materials. There

is also limited experience in the design, calculating and joining composite struc-

tural elements.

Additional disadvantages are the high cost of fabrication, but improvements in pro-

duction technology will lower the cost more and more, further the complicated re-

pair technology of composite structures, a lot of recycling problems, etc.

Summarizing, it can be said that the application of composite materials in struc-

ture design beyond the military and commercial aircraft and aerospace industry and

some special fields of automotive, sporting goods and medical devices is still in the
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early stages. But the advancing of technology and experience yields an increasing

use of composite structure elements in civil and mechanical engineering and pro-

vides the stimulus to include composite processing, modelling, design and analysis

in engineering education.

1.6 Problems

1. What is a composite and how are composites classified?

2. What are the constituents of composites?

3. What are the fibre and the matrix factors which contribute to the mechanical

performance of composites?

4. What are polymer matrix, metal matrix and ceramic matrix composites, what are

their main applications?

5. Define isotropic, anisotropic, homogeneous, nonhomogeneous.

6. Define lamina, laminate, sandwich. What is micro-mechanical and macro-

mechanical modelling and analysis?

7. Compare the specific modulus, specific strength and coefficient of thermal ex-

pansion of glas fibre, epoxy resin and steel.

Exercise 1.1. A typical CFK plate (uni-directional reinforced laminae composed of

carbon fibres and epoxy matrix) has the size 300 mm × 200 mm × 0.5 mm (length

l × bright b × thickness d). Please show that the fibre volume fraction and the fibre

mass fraction are not the same. The estimate should be based on the following data:

• density of the carbon fibres ρf = 1,8 g/cm3,

• diameter of the fibres is df = 6µm

• fibre volume fraction vf = 0.8 and

• density of the epoxy ρm = 1,1 g/cm3.

Solution 1.1. Let us assume that the fibres are parallel to the longer plate side. In

this case the volume of one fibre V1 f is

V1 f = π
d2

f

4
l = π

(6 µm)2

4
·300 mm = 8,48 ·10−3mm3

The volume of the plate is

Vplate = 300 ·200 ·0,5 mm3 = 3 ·104mm3

With the fibre volume fraction vf = 0.8 we can calculate the matrix volume fraction

vm

vm = 1− vf = 1− 0.8= 0.2

The volume of all fibres is

Vf = vfVplate = 0,8 ·3 ·104mm3 = 2,4 ·104mm3
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which is equivalent to the following number of fibres nf

nf =
Vf

V1f
=

2,4 ·104mm3

8,48 ·10−3mm3
= 0,28 ·107

The fibre mass fraction can be computed as it follows

mf =
Mf

M
=

Mf

Mf +Mm
=

ρfVf

ρfVf +ρmVm

With

Vm =Vplate −Vf = 3 ·104mm3 − 2,4 ·104mm3 = 0,6 ·104mm3

fibre mass fraction is

mf =
1,8g/cm3 ·2,4 ·104mm3

1,8g/cm3 ·2,4 ·104mm3 + 1,1g/cm3 ·0,6 ·104mm3
= 0,867

This value is slightly grater than the assumed fibre volume fraction.
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Chapter 2

Linear Anisotropic Materials

The classical theory of linear elastic deformable solids is based on the following

restrictions to simplify the modelling and analysis:

• The body is an ideal linear elastic body.

• All strains are small.

• The material of the constituent phases is homogeneous and isotropic.

These assumptions of classical theory of elasticity guarantee a satisfying quality

of modelling and analysis of structure elements made of conventional monolithic

materials. Structural analysis of elements composed of composite materials is based

on the theory of anisotropic elasticity, the elastic properties of composites depend

usually on the direction and the deformable solid is anisotropic. In addition, now the

composite material is not homogeneous at all. It must be assumed that the material

is piecewise homogeneous or quasi-homogeneous.

The governing equations of elastic bodies are nearly the same for isotropic and

anisotropic material response. There are equilibrium equations, which describe the

static or dynamic equilibrium of forces acting on an elastic body. The kinematic

equations describe the strain-displacement relations and the compatibility equations

guarantee a unique solution to the equations relating strains and displacements. All

these equations are independent of the elastic properties of the material. Only the

material relations (so-called constitutive equations), which describe the relations

between stresses and strains are very different for an isotropic and an anisotropic

body. This difference in formulating constitutive equations has a great influence

on the model equations in the frame of the isotropic and the anisotropic theory of

elasticity. Note that in many cases the material behavior of the constituents can

assumed to be homogeneous and isotropic.

The governing equations, as defined above, including so-called initial-boundary

conditions for forces/stresses and/or displacements, yield the basic model equations

for linear elastic solids such as differential equations or variational and energy for-

mulations, respectively. All equations for structural elements which are given in this

textbook, are founded on these general equations for the theory of elasticity of linear

elastic anisotropic solids.

19© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8935-0_2&domain=pdf
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The objective of this chapter is to review the generalized Hooke’s law1, the con-

stitutive equations for anisotropic elastic bodies, and to introduce general relations

for stiffness and strains including transformation rules and symmetry relations. The

constitution of a unidirectional composite material and simplified approaches for

so-called effective moduli result in an engineering formulation of constitutive equa-

tions for fibre reinforced composites and will be considered in Chap. 3.

The theory of anisotropic elasticity presented in Sect. 2.1 begins with the most

general form of the linear constitutive equations, and passes from all specific cases

of elastic symmetries to the classical Hooke’s law for an isotropic body. The only

assumptions are

• all elastic properties are the same in tension and compression,

• the stress tensor is symmetric,

• an elastic potential exists and is an invariant with respect to linear orthogonal

coordinate transformation.

In addition to the general three-dimensional stress-strain relationships, the plane

stress and plane strain cases are derived and considered for an anisotropic body and

for all the derived specific cases of elastic symmetries. The type of anisotropy con-

sidered in Sects. 2.1.1–2.1.5 can be called as rectilinear anisotropy, i.e. the homo-

geneous anisotropic body is characterized by the equivalence of parallel directions

passing through different points of the body. Another kind of anisotropy, which can

be interesting to some applications, e.g. to modelling circular plates or cylindrical

tubes, is considered in a comprehensive formulation in Sect. 2.1.6. If one chooses

a system of curvilinear coordinates in such a manner that the coordinate directions

coincide with equivalent directions of the elastic properties at different points of the

body, the elastic behavior is called curvilinear.

The chapter ends with the derivation of the fundamental equations of anisotropic

elasticity and the formulation of variational solution methods. In Sect. 2.2 the dif-

ferential equations for boundary and initial boundary problems are considered. The

classical and generalized variational principles are formulated and approximate an-

alytical solution methods based on variational principles are discussed.

2.1 Generalized Hooke’s Law

The phenomenological modelling neglects the real on the microscopic scale discon-

tinuous structure of the material. On the macroscopic or phenomenological scale the

material models are assumed to be continuous and in general homogeneous. In the

case of fibre reinforced composites, the heterogeneity of the bulk material is a con-

sequence of the two constituents, the fibres and the matrix, but generally there exists

a representative volume element of the material on a characteristic scale at which the

1 Robert Hooke (∗28greg./18jul. July 1635 Freshwater, Isle of Wight - †3 March 1703 London) -

natural philosopher, architect and polymath, first constitutive law for elasticity published as an

anagram ceiiinosssttuu which is in Latain ut tensio sic vis and means as the extension, so the force
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properties of the material can be averaged to a good approximation. The composite

material can be considered as macroscopically homogeneous and the problem of

designing structural elements made from of composite materials can be solved in an

analogous manner as for conventional materials with the help of the average mate-

rial properties or the so-called effective moduli. Chapter 3 explains the calculation

of effective moduli in detail.

Unlike metals or polymeric materials without reinforcements or reinforced by

stochastically distributed and orientated particles or short fibres, the material behav-

ior of an off-axis forced unidirectional lamina is anisotropic. In comparison to con-

ventional isotropic materials, the experimental identification of the material param-

eters is much more complicated in the case of anisotropic materials. But anisotropic

material behavior also has the advantage of material tailoring to suit the main load-

ing cases.

2.1.1 Stresses, Strains, Stiffness, and Compliances

In preparation for the formulation of the generalized Hooke’s law, a one-dimen-

sional problem will be considered. The deformations of an elastic body can be char-

acterized by displacements or by strains:

• Dilatational or extensional strains ε: The body changes only its volume but not

its shape.

• Shear strains γ: The body changes only its shape but not its volume.

Figure 2.1 demonstrates extensional and shear strains for a simple prismatic body

loaded by forces F and T , normal and tangential to the cross-section, respectively.

Assuming a uniform distribution of the forces F and T on the cross-section, the

elementary one-dimensional definitions for stresses and strains are given by (2.1.1)

σ =
F

A0
normal stress σ ,

ε =
l − l0

l0
=

△l

l0
extensional strain ε,

τ =
T

A0
shear stress τ,

γ ≈ tanγ =
△u

l0
shear strain γ

(2.1.1)

The last one definition is restricted by small strain assumption. This assumption

can be accepted for many composite material applications and will be used for both

types of strains.

The material or constitutive equations couple stresses and strains. In linear elas-

ticity the one-to-one transformation of stresses and strains yield Hooke’s law (2.1.2)
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F
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l0 l = l0 +△l

△l
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l0

△u
T

A0
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γ

Fig. 2.1 Extensional strain ε and shear strain γ of a body with the length l0 and the cross-section

area A0

σ = Eε, E =
σ

ε
, E is the elasticity or Young’s modulus ,

τ = Gγ, G =
τ

γ
, G is the shear modulus

(2.1.2)

For a homogeneous material E and G are parameters with respect to the coordinates.

For the extensionally strained prismatic body (Fig. 2.1) the phenomenon of con-

traction in a direction normal to the direction of the tensile loading has to be con-

sidered. The ratio of the contraction, expressed by the transverse strain εt, to the

elongation in the loaded direction, expressed by ε , is called Poisson’s ratio ν

εt =−νε, ν =−εt

ε
(2.1.3)

For an isotropic bar with an extensional strain ε > 0 it follows that εt < 02.

Hooke’s law can be written in the inverse form

ε = E−1σ = Sσ (2.1.4)

S = E−1 is the inverse modulus of elasticity or the flexibility/compliance modulus.

For homogeneous material, S is an elastic parameter.

Consider a tensile loaded prismatic bar composed of different materials

(Fig. 2.2). Since σ = F/A and σ = Eε then σA = F = EAε and ε = (EA)−1F .

EA is the tensile stiffness and (EA)−1 the tensile flexibility or compliance. The dif-

2 The class of auxetic materials that have a negative Poisson’s ratio that means when stretched,

they become thicker perpendicular to the applied force, is not in the focus of the present book.
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ll

FF

C1

C1

Cn

Cn

Ai

li

Fig. 2.2 Tensile bar with stiffness Ci = EiAi arranged in parallel and in series

ferent materials of the prismatic bar in Fig. 2.2 can be arranged in parallel or in

series. In the first case we have

F =
n

∑
i=1

Fi, A =
n

∑
i=1

Ai, ε = εi (2.1.5)

Fi are the loading forces on Ai and the strains εi are equal for the total cross-section.

With

F = EAε, Fi = EiAiε,
n

∑
i=1

Fi = F =
n

∑
i=1

EiAiε (2.1.6)

follow the coupling equations for the stiffness EiAi for a parallel arrangement

EA =
n

∑
i=1

EiAi, (EA)−1 =
1

n

∑
i=1

EiAi

(2.1.7)

This equal strain treatment is often described as a Voigt3 model which is the upper-

bound stiffness.

In the other case, we have

△l =
n

∑
i=1

△li

and F = Fi, the elongation △l of the bar is obtained by addition of the △li of the

different parts of the bar with the lengths li and the tensile force is equal for all

cross-sectional areas. With

△l = lε = l(EA)−1F, △li = liεi = li(EiAi)
−1F

and
n

∑
i=1

△li =

[

n

∑
i=1

li(EiAi)
−1

]

F (2.1.8)

3 Woldemar Voigt (∗2 September 1850 Leipzig - †13 December 1919 Göttingen) - physicist,

worked on crystal physics, thermodynamics and electro-optics, the word tensor in its current mean-

ing was introduced by him in 1898, Voigt notation
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follow the coupling equations for the stiffness EiAi arranged in series

EA =
l

n

∑
i=1

li(EiAi)
−1

, (EA)−1 =

n

∑
i=1

li(EiAi)
−1

l
(2.1.9)

This equal stress treatment is described generally as a Reuss4 model which is the

lower bound stiffness. The coupling equations illustrate a first clear insight into a

simple calculation of effective stiffness and compliance parameters for two com-

posite structures.

The three-dimensional state of stress or strain in a continuous solid is completely

determined by knowing the stress or strain tensor. It is common practice to repre-

sent the tensor components acting on the faces of an infinitesimal cube with sides

parallel to the reference axes (Fig. 2.3). The sign convention is defined in Fig. 2.3.

Positive stresses or strains act on the faces of the cube with an outward vector in

the positive direction of the axis of the reference system and vice versa. Using the

tensorial notation for the stress tensor σi j and the strain tensor εi j for the stresses

and the strains we have normal stresses or extensional strains respectively for i = j

and shear stresses or shear strains for i 6= j. εi j with i 6= j are the tensor shear coor-

dinates and 2εi j = γi j, i 6= j the engineering shear strains. The first subscript of σi j

and εi j indicates the plane xi = const on which the load is acting and the second

subscript denotes the direction of the loading. Care must be taken in distinguish-

ing in literature the strain tensor εi j from the tensor ei j which is the tensor of the

relative displacements, ei j = ∂ui/∂x j. An application of shear stresses σi j and σ ji

produces in the i j-plane of the infinitesimal cube (Fig. 2.3) angular rotations of the

i- and j-directions by ei j and e ji. These relative displacements represent a combina-

tion of strain (distorsion) and rigid body rotation with the limiting cases ei j = e ji,

eee1

eee2

eee3

σ11

σ12

σ13

σ22

σ21

σ23

σ33

σ32
σ31

ε11
ε13

ε12

ε22

ε21

ε23

ε33

ε32
ε31

Fig. 2.3 Stress and strain components on the positive faces of an infinitesimal cube in a set of axis

eee1,eee2,eee3

4 András (Endre) Reuss (∗1 July 1900 Budapest - †10 May 1968 Budapest) - mechanical engineer,

contributions to the theory of plasticity
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jjj

iii

ei jei j

e ji

e ji

γi j

γi j

ei j = e ji = εi j =
1

2
γi j

ωi j = 0

ei j =−e ji

εi j = γi j = 0

ei j = 2ε ji = γi j

e ji = 0

a b c

Fig. 2.4 Examples of distorsions and rigid body rotation. a Pure shear, b pure rotation, c simple

shear

.

i.e. no rotation, and ei j =−e ji, i.e. no distorsion (Fig. 2.4). From the figure follows

that simple shear is the sum of pure shear and rigid rotation. ei j is positive when

it involves rotating the positive j-direction towards the positive i-direction and vice

versa. Writing the tensor ei j as the sum of symmetric and antisymmetric tensors

ei j =
1

2
(ei j + e ji)+

1

2
(ei j − e ji) = εi j +ωi j (2.1.10)

where εi j is the symmetric strain tensor and ωi j is the antisymmetric rotation ten-

sor. For normal strains, i.e. i = j, there is ei j = εi j, however for i 6= j we have

γi j = 2εi j = ei j + e ji with the engineering shear strains γi j and the tensorial shear

strains εi j. Careful note should be taken of the factor of two related engineering and

tensorial shear strains, γi j is often more convenient for practical use but tensor oper-

ations such as rotations of the axis, Sect. 2.1.2, must be carried out using the tensor

notation εi j.

The stress and the strain tensors are symmetric tensors of rank two. They can be

represented by the matrices

σσσ =





σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33



 , εεε =





ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33



 (2.1.11)

The symmetry of the tensors (2.1.11) reduces the number of unknown components

for defining these tensors to six components. For this reason, an engineering matrix

notation can be used by replacing the matrix table with nine values by a column

matrix or a vector with six components. The column matrices (stress and strain

vector) are written in Eqs. (2.1.12) in a transposed form
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[σ11 σ22 σ33 σ23 ≡ τ23 σ13 ≡ τ13 σ12 ≡ τ12]
T,

[ε11 ε22 ε33 2ε23 ≡ γ23 2ε13 ≡ γ13 2ε12 ≡ γ12]
T

(2.1.12)

The stress and strain states are related by a material law which is deduced from

experimental observations. For a linear elastic anisotropic material, the generalized

Hooke’s law relates the stress and the strain tensor

σi j =Ci jklεkl (2.1.13)

Ci jkl are the material coefficients and define the fourth rank elasticity tensor which

in general case contains 81 coordinates. Due to the assumed symmetry of σi j = σ ji

and εi j = ε ji the symmetry relations follow for the material tensor

Ci jkl =C jikl , Ci jkl =Ci jlk (2.1.14)

and reduce the number of coordinates to 36. Introducing a contracted single-

subscript notation for the stress and strain components and a double-subscript nota-

tion for the elastic parameters, the generalized relation for stresses and strains can

be written in vector-matrix form

[σi] = [Ci j][ε j]; i, j = 1,2, . . . ,6; Ci j 6=C ji; i 6= j (2.1.15)

At this stage we have 36 independent material coefficients, but a further reduction

of the number of independent values is possible because we have assumed the exis-

tence of an elastic potential function.

The elastic strain energy is defined as the energy expended by the action of exter-

nal forces in deforming an elastic body: essentially all the work done during elastic

deformations is stored as elastic energy. The strain energy per unit volume, i.e. the

strain energy density function, is defined as follows

W =
1

2
σi jεi j (2.1.16)

or in a contracted notation

W (εi) =
1

2
σiεi =

1

2
Ci jε jεi (2.1.17)

With
∂W

∂εi

= σi,
∂ 2W

∂εi∂ε j

=Ci j ,
∂ 2W

∂ε j∂εi

=C ji

and
∂ 2W

∂εi∂ε j

=
∂ 2W

∂ε j∂εi

follow the symmetry relations

Ci j =C ji; i, j = 1,2, . . . ,6 (2.1.18)
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and the number of the independent material coefficients is reduced to 21. The gen-

eralized relations for stresses and strains of an anisotropic elastic body written again

in a contracted vector-matrix form have a symmetric matrix for Ci j

















σ1

σ2

σ3

σ4

σ5

σ6

















=

















C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

S Y M C55 C56

C66

































ε1

ε2

ε3

ε4

ε5

ε6

















(2.1.19)

The transformation rules for the contraction of the subscripts of σi j,εi j and Ci jkl of

(2.1.13) are given in Tables 2.1 and 2.2.

The elasticity equation (2.1.19) can be written in the inverse form as follows

















ε1

ε2

ε3

ε4

ε5

ε6

















=

















S11 S12 S13 S14 S15 S16

S22 S23 S24 S25 S26

S33 S34 S35 S36

S44 S45 S46

S Y M S55 S56

S66

































σ1

σ2

σ3

σ4

σ5

σ6

















(2.1.20)

with

[Ci j ][S jk] = [δik] =

{

1 i = k,
0 i 6= k,

i, j,k = 1, . . . ,6

In a condensed symbolic or subscript form, Eqs. (2.1.19) and (2.1.20) are (summa-

tion on double subscripts)

σi =Ci jε j, εi = Si jσ j; i, j = 1, . . . ,6
σσσ =CCCεεε, εεε = SSSσσσ

(2.1.21)

CCC ≡ [Ci j ] is the stiffness matrix and SSS ≡ [Si j] the compliance or flexibility matrix. Ci j

and Si j are only for homogeneous anisotropic materials constant material parameters

Table 2.1 Transformation of

the tensor coordinates σi j and

εi j to the vector coordinates

σp and εp

σi j σp εi j εp

σ11 σ1 ε11 ε1

σ22 σ2 ε22 ε2

σ33 σ3 ε33 ε3

σ23 = τ23 σ4 2ε23 = γ23 ε4

σ31 = τ31 σ5 2ε31 = γ31 ε5

σ12 = τ12 σ6 2ε12 = γ12 ε6

Table 2.2 Transformation

of the tensor coordinates

Ci jkl to the matrix coordi-

nates Cpq

Ci jkl Cpq

i j : 11, 22, 33 p : 1, 2, 3

23, 31, 12 4, 5, 6

kl : 11, 22, 33 q : 1, 2, 3

23, 31, 12 4, 5, 6
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with respect to the coordinates. Their values depend on the reference coordinate

system. A change of the reference system yields a change of the constant values.

Summarizing the stiffness and the compliance relations, it can be seen that for

a linear elastic anisotropic material 21 material parameters have to be measured

experimentally in the general case. But in nearly all engineering applications there

are material symmetries and the number of material parameters can be reduced.

Section 2.1.2 describes some transformation rules for CCC and SSS following from the

change of reference system and the symmetric properties of anisotropic materials

discussed in Sect. 2.1.3. Furthermore the way that the material parametersCi j and Si j

are related to the known engineering elastic parameters Ei,Gi j and νi j is considered.

2.1.2 Transformation Rules

If we have a reference system which is characterized by the orthonormal basic unit

vectors eee1,eee2,eee3 and another reference system with the vector basis eee′1,eee
′
2,eee

′
3. Both

systems are related by a rotation of the coordinate axis (Fig. 2.5), the transformation

rules are
eee′i = Ri jeee j, eeei = R jieee

′
j,

Ri j ≡ cos(eee′i,eee j), R ji ≡ cos(eeei,eee
′
j),

i, j = 1,2,3 (2.1.22)

These relationships describe a general linear orthogonal coordinate transformation

and can be expressed in vector-matrix notation

eee′ =RRReee, eee =RRR−1eee′ = RRRTeee′ (2.1.23)

RRR is the transformation or rotation matrix. In the case of an orthogonal set of axes

such as given in Fig. 2.5 the matrix RRR is symmetric and unitary. This means the

determinant of this matrix is unity (Det RRR = |Ri j| = 1 and the inverse matrix RRR−1

is identical to the transposed matrix (RRR−1 = RRRT). In the special case of a rotation φ

Fig. 2.5 Rotation of a refer-

ence system with the basic

vectors eeei into a system with

the basic vectors eee′i

x1

x2

x3

x1
′

x2
′

x3
′

eee1 eee′1

eee2

eee′2eee3

eee′3
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about the direction eee3, the rotation matrix RRR and the inverse matrix RRR−1 are

[

3
Ri j

]

=





c s 0

−s c 0

0 0 1



 ,

[

3
Ri j

]−1

=

[

3
Ri j

]T

=





c −s 0

s c 0

0 0 1



 , (2.1.24)

and the transformation rules are




eee′1
eee′2
eee′3



=





c s 0

−s c 0

0 0 1









eee1

eee2

eee3



 ,





eee1

eee2

eee3



=





c −s 0

s c 0

0 0 1









eee′1
eee′2
eee′3





with c = cosφ ,s = sinφ . For rotations ψ or θ about the directions eee2 or eee1 the

rotations matrices [
2

Ri j] and [
1

Ri j] are

[

2
Ri j

]

=





c 0 −s

0 1 0

s 0 c



 ,

[

2
Ri j

]−1

=

[

2
Ri j

]T

=





c 0 s

0 1 0

−s 0 c



 ,

[

1
Ri j

]

=





1 0 0

0 c s

0 −s c



 ,

[

1
Ri j

]−1

=

[

1
Ri j

]T

=





1 0 0

0 c −s

0 s c





with c = cosψ or cosθ and s = sinψ or sinθ for rotations about eee2 or eee1, respec-

tively.

The transformation rule (2.1.22) can be interpreted as a rule for vectors or first-

rank tensors. The generalization to second-rank tensors yields e.g. for the stress

tensor

σ ′
i j = RikR jlσkl , σi j = RkiRl jσ

′
kl (2.1.25)

For the following reflections the transformation rules for the contracted notation are

necessary. The nine tensor coordinates σi j are shifted to six vector coordinates σp.

The transformations

σ ′
p = T σ

pqσq, σp =
(

T σ
pq

)−1
σ ′

q, p,q = 1, . . . ,6 (2.1.26)

are not tensor transformation rules. The transformation matrices T σ
pq and (T σ

pq)
−1

follow by comparison of Eqs. (2.1.25) and (2.1.26). In the same manner we can find

the transformation rules for the strains

ε ′p = T ε
pqεq, εp =

(

T ε
pq

)−1
ε ′q, p,q = 1, . . . ,6 (2.1.27)

The elements of the transformation matrices [T σ
pq] and [T ε

pq] are defined in App. B.

Summarizing, the transformation rules for stresses and strains in a condensed

vector-matrix notation as follows

σσσ ′ = TTT σσσσ , εεε ′ = TTT εεεε , σσσ = (TTT σ )−1 σσσ ′, εεε = (TTT ε)
−1

εεε ′ (2.1.28)
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The comparison of

σi j = RkiRl jσ
′
kl with σp = (T σ

pq)
−1σ ′

q

and

εi j = RkiRl jε
′
kl with εp = (T ε

pq)
−1ε ′q

yields an important result on the linkage of inverse and transposed stress and strain

transformation matrices

(TTT σ )−1 = (TTT ε)T, (TTT ε )−1 = (TTT σ )T (2.1.29)

The transformation relations for the stiffness and the compliance matrices CCC and

SSS can be obtained from the known rules for stresses and strains. With σσσ =CCCεεε and

σσσ ′ =CCC′εεε ′, it follows that

(TTT σ )−1σσσ ′ = σσσ =CCCεεε =CCC(TTT ε)−1εεε ′,
σσσ ′ = TTT σCCC(TTT ε)−1εεε ′ =CCC′εεε ′,

TTT σσσσ = σσσ ′ =CCC′εεε ′ =CCC′TTT εεεε,
σσσ = (TTT σ )−1CCC′TTT εεεε =CCCεεε,

(2.1.30)

respectively.

Considering (2.1.29) the transformation relations for the stiffness matrix are

CCC′ = TTT σCCC(TTT σ )T, CCC = (TTT ε)TCCC′TTT ε (2.1.31)

or in index notation

C′
i j = T σ

ik T σ
jl Ckl , Ci j = T ε

ikT ε
jlC

′
kl (2.1.32)

The same procedure yields the relations for the compliance matrix. With

εεε = SSSσσσ , εεε ′ = SSS′σσσ ′ (2.1.33)

it follows
(TTT ε )−1εεε ′ = εεε = SSSσσσ = SSS(TTT σ )−1σσσ ′,

εεε ′ = TTT εSSS(TTT σ )−1σσσ ′ = SSS′σσσ ′,
TTT εεεε = εεε ′ = SSS′σσσ ′ = SSS′TTT σσσσ ,

εεε = (TTT ε)−1SSS′TTT σσσσ = SSSσσσ ,

(2.1.34)

i.e.

εεε ′ = TTT εSSS(TTT σ )−1σσσ ′, εεε = (TTT ε)−1SSS′TTT σσσσ (2.1.35)

The comparison leads to the transformation equations for SSS and SSS′

SSS′ = TTT εSSS(TTT σ )−1, SSS = (TTT ε)−1SSS′TTT σ (2.1.36)

or taking into account (2.1.29)

SSS′ = TTT εSSS(TTT ε)T, SSS = (TTT σ )TSSS′TTT σ , (2.1.37)
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respectively, in subscript notation

S′i j = T ε
ikT ε

jlSkl , Si j = T σ
ik T σ

jl S′kl (2.1.38)

In the special case of a rotation φ about the eee3-direction (Fig. 2.6) the coordinates

of the transformation matrices TTT σ and TTT ε are given by the (2.1.39) and (2.1.40)

[

3

T σ
pq

]

=

















c2 s2 0 0 0 2cs

s2 c2 0 0 0 −2cs

0 0 1 0 0 0

0 0 0 c −s 0

0 0 0 s c 0

−cs cs 0 0 0 c2 − s2

















,

[

3

T σ
pq

]−1

=

[

3

T ε
pq

]T

(2.1.39)

[

3

T ε
pq

]

=

















c2 s2 0 0 0 cs

s2 c2 0 0 0 −cs

0 0 1 0 0 0

0 0 0 c −s 0

0 0 0 s c 0

−2cs 2cs 0 0 0 c2 − s2

















,

[

3

T ε
pq

]−1

=

[

3

T σ
pq

]T

(2.1.40)

By all rules following from a rotation of the reference system the stresses, strains,

stiffness and compliance parameters in the rotated system are known. They are sum-

marized in symbolic notation (2.1.41)

σσσ ′ = TTT σσσσ , εεε ′ = TTT εεεε,

σσσ = (TTT ε)Tσσσ ′, εεε = (TTT σ )Tεεε ′,

CCC′ = TTT σCCC(TTT σ )T, SSS′ = TTT εSSS(TTT ε)T,

CCC = (TTT ε)TCCC′TTT ε , SSS = (TTT σ )TSSS′TTT σ

(2.1.41)

Fig. 2.6 Rotation about the

eee3-direction
x1

x2

x3,x
′
3

x′1

x′2

eee3,eee
′
3

eee′1
eee2

eee′2

eee1

φ

φ
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For special cases of a rotation about a direction eeei the general transformation ma-

trices TTT σ and TTT ε are substituted by
i

TTT σ or
i

TTT ε . The case of a rotation about the

eee1-direction yields the coordinates of the transformation matrices TTT σ and TTT ε which

are given in App. B.

2.1.3 Symmetry Relations of Stiffness and Compliance Matrices

In the most general case of the three-dimensional generalized Hooke’s law the stiff-

ness and the compliance matrices have 36 non-zero material parameters Ci j or Si j

but they are each determined by 21 independent parameters. Such an anisotropic

material is called a triclinic material, it has no geometric symmetry properties. The

experimental tests to determine 21 independent material parameters would be diffi-

cult to realize in engineering applications. So it is very important that the majority

of anisotropic materials has a structure that exhibits one or more geometric sym-

metries and the number of independent material parameters needed to describe the

material behavior can be reduced.

In the general case of 21 independent parameters, there is a coupling of each

loading component with all strain states and the model equations for structure el-

ements would be very complicated. The reduction of the number of independent

material parameters results therefore in a simplifying of the modelling and analysis

of structure elements composed of composite materials and impact the engineering

applications. The most important material symmetries are:

2.1.3.1 Monoclinic or Monotropic Material Behavior

A monoclinic material has one symmetry plane (Fig. 2.7). It is assumed that the

Fig. 2.7 Symmetry plane

(x1 − x2) of a monoclinic

material. All points of a

body which are symmetric

to this plane have identical

values of Ci j and Si j . Mirror

transformation (x1 = x′1,

x2 = x′2,x3 = − x′3)
x1

x2

x3

eee3

eee1
eee2

x′3
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symmetry plane is the (x1 − x2) plane. The structure of the stiffness or compliance

matrix must be in that way that a change of a reference system carried out by a sym-

metry about this plane does not modify the matrices, i.e. that the material properties

are identical along any two rays symmetric with respect to the (x1 − x2) plane. The

exploitation of the transformation rules leads to a stiffness matrix with the following

structure in the case of monoclinic material behavior

[Ci j]
MC =

















C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

















(2.1.42)

The compliance matrix has the same structure

[Si j]
MC =

















S11 S12 S13 0 0 S16

S12 S22 S23 0 0 S26

S13 S23 S33 0 0 S36

0 0 0 S44 S45 0

0 0 0 S45 S55 0

S16 S26 S36 0 0 S66

















(2.1.43)

The number of non-zero elements Ci j or Si j reduces to twenty, the number of in-

dependent elements to thirteen. The loading-deformation couplings are reduced.

Consider for example the stress component σ6 ≡ τ12. There is a coupling with the

extensional strains ε1,ε2,ε3 and the shear strain ε6 ≡ γ12 but the shear stress σ4 or

σ5 produces only shear strains.

If an anisotropic material has the plane of elastic symmetry x1 −x3 then it can be

shown that

[Ci j]
MC =

















C11 C12 C13 0 C15 0

C12 C22 C23 0 C25 0

C13 C23 C33 0 C35 0

0 0 0 C44 0 C46

C15 C25 C35 0 C55 0

0 0 0 C46 0 C66

















(2.1.44)

and for the plane of elastic symmetry x2 − x3

[Ci j]
MC =

















C11 C12 C13 C14 0 0

C12 C22 C23 C24 0 0

C13 C23 C33 C34 0 0

C14 C24 C34 C44 0 0

0 0 0 0 C55 C56

0 0 0 0 C56 C66

















(2.1.45)
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x1x1

x2x2

x3x3

a b

Fig. 2.8 Orthotropic material behavior. a Symmetry planes (x1 − x2) and (x2 − x3), b additional

symmetry plane (x1 − x3)

The monoclinic compliance matrices [Si j]
MC have for both cases the same structure

again as the stiffness matrices [Ci j]
MC.

2.1.3.2 Orthotropic Material Behavior

An orthotropic material behavior is characterized by three symmetry planes that are

mutually orthogonal (Fig. 2.8). It should be noted that the existence of two orthog-

onal symmetry planes results in the existence of a third. The stiffness matrix of an

orthotropic material has the following structure

[Ci j]
O =

















C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

















(2.1.46)

The compliance matrix has the same structure. An orthotropic material has 12 non-

zero and 9 independent material parameters. The stress-strain coupling is the same

as for isotropic material behavior. Normal stresses give rise to only extensional

strains and shear stresses only shear strains. Orthotropic material behavior is typ-

ical for unidirectional laminae with on-axis loading.
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2.1.3.3 Transversely Isotropic Material Behavior

A material behavior is said to be transversely isotropic if it is invariant with respect

to an arbitrary rotation about a given axis. This material behavior is of special im-

portance in the modelling of fibre-reinforced composite materials with coordinate

axis in the fibre direction and an assumed isotropic behavior in cross-sections or-

thogonal to the fibre direction. This type of material behavior lies between isotropic

and orthotropic.

If x1 is the fibre direction, x2 and x3 are both rectangular to the fibre direction

and assuming identical material properties in these directions is understandable.

The structure of the stiffness matrix of a transversely isotropic material is given

in (2.1.47)

[Ci j]
TI =

















C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 1
2
(C22 −C23) 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55

















(2.1.47)

If x2 is the fibre direction, x1 and x3 are both rectangular to the fibre direction and

assuming identical material properties in these directions then

[Ci j]
TI =

















C11 C12 C13 0 0 0

C12 C22 C12 0 0 0

C13 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 1
2
(C11 −C13) 0

0 0 0 0 0 C44

















(2.1.48)

If x3 is the fibre direction, x1 and x2 are both rectangular to the fibre direction and

assuming identical material properties in these directions then

[Ci j]
TI =

















C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1
2
(C11 −C12)

















(2.1.49)

The compliance matrix has the same structure. For example for the case (2.1.47)

[Si j]
TI =

















S11 S12 S12 0 0 0

S12 S22 S23 0 0 0

S12 S23 S22 0 0 0

0 0 0 2(S22 − S23) 0 0

0 0 0 0 S55 0

0 0 0 0 0 S55

















(2.1.50)
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The number of non-zero elements reduces again to twelve but the independent pa-

rameters are only five.

2.1.3.4 Isotropic Material Behavior

A material behavior is said to be isotropic if its properties are independent of the

choice of the reference system. There exist no preferred directions, i.e. the material

has an infinite number of planes and axes of material symmetry. Most conventional

materials satisfy this behavior approximately on a macroscopic scale.

The number of independent elasticity parameters is reduced to two and this leads

to the following stiffness matrix in the case of isotropic material behavior

[Ci j]
I =

















C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C∗ 0 0

0 0 0 0 C∗ 0

0 0 0 0 0 C∗

















(2.1.51)

with C∗ = 1
2
(C11 −C12). The compliance matrix has the same structure but with

diagonal terms 2(S11 − S12) instead of 1
2
(C11 −C12). Tables 2.3 and 2.4 summarize

the stiffness and compliance matrices for all material models described above.

2.1.4 Engineering Parameters

2.1.4.1 Orthotropic Material Behavior

The coordinates Ci j and Si j of the stiffness and compliance matrix are mathematical

symbols relating stresses and strains. For practising engineers, a clear understand-

ing of each material parameter is necessary and requires a more mechanical meaning

by expressing the mathematical symbols in terms of engineering parameters such as

moduli Ei,Gi j and Poisson’s ratios νi j. The relationships between mathematical and

engineering parameters are obtained by basic mechanical tests and imaginary math-

ematical experiments. The basic mechanical tests are the tension, compression and

torsion test to measure the elongation, the contraction and the torsion of a specimen.

In general, these tests are carried out by imposing a known stress and measuring the

strains or vice versa.

It follows that the compliance parameters are directly related to the engineering

parameters, simpler than those of the stiffness parameters. In the case of orthotropic

materials the 12 engineering parameters are Young’s moduli E1,E2,E3, the shear

moduli G23,G13,G12 and Poisson’s ratios νi j, i, j = 1,2,3 (i 6= j). For orthotropic

materials one can introduce the contracted engineering notation
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Table 2.3 Three-dimensional stiffness matrices for different material symmetries

Material model Elasticity matrix [Ci j]

Anisotropy:

21 independent

material parameters















C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

S Y M C55 C56

C66















Monoclinic:

13 independent

material parameters

Symmetry planex3 = 0

C14 =C15 =C24 =C25 =C34 =C35 =C46 =C56 = 0

Symmetry planex2 = 0

C14 =C16 =C24 =C26 =C34 =C36 =C45 =C56 = 0

Symmetry planex1 = 0

C15 =C16 =C25 =C26 =C35 =C36 =C45 =C56 = 0

Orthotropic:

9 independent

material parameters

3 planes of symmetryx1 = 0,x2 = 0,x3 = 0

C14 =C15 =C16 =C24 =C25 =C26 =C34

=C35 =C36 =C45 =C46 =C56 = 0

Transversely isotropic:

5 independent

material parameters

Plane of isotropyx3 = 0

C11 =C22,C23 =C13,C44 =C55,C66 =
1

2
(C11 −C12)

Plane of isotropyx2 = 0

C11 =C33,C12 =C23,C44 =C66,C55 =
1

2
(C33 −C13)

Plane of isotropyx1 = 0

C22 =C33,C12 =C13,C55 =C66,C44 =
1

2
(C22 −C23)

all otherCi j like orthotropic

Isotropy:

2 independent

material parameters

C11 =C22 =C33,C12 =C13 =C23,

C44 =C55 =C66 =
1

2
(C11 −C12)

all otherCi j = 0

σ1 = E1ε1, σ2 = E2ε2, σ3 = E3ε3,
σ4 = E4ε4, σ5 = E5ε5, σ6 = E6ε6

(2.1.52)

with G23 ≡ E4,G13 ≡ E5,G12 ≡ E6.

The generalized Hooke’s law in the form (2.1.19) and (2.1.20) leads, for example,

to the relations
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Table 2.4 Three-dimensional compliance matrices for different material symmetries

Material model Compliance matrix [Si j]

Anisotropy:

21 independent

material parameters















S11 S12 S13 S14 S15 S16

S22 S23 S24 S25 S26

S33 S34 S35 S36

S44 S45 S46

S Y M S55 S56

S66















Monoclinic:

13 independent

material parameters

Symmetry plane x3 = 0

S14 = S15 = S24 = S25 = S34 = S35 = S46 = S56 = 0

Symmetry plane x2 = 0

S14 = S16 = S24 = S26 = S34 = S36 = S45 = S56 = 0

Symmetry plane x1 = 0

S15 = S16 = S25 = S26 = S35 = S36 = S46 = S45 = 0

Orthotropic:

9 independent

material parameters

3 planes of symmetry x1 = 0,x2 = 0,x3 = 0

S14 = S15 = S16 = S24 = S25 = S26 = S34

= S35 = S36 = S45 = S46 = S56 = 0

Transversely isotropic:

5 independent

material parameters

Plane of isotropyx3 = 0

S11 = S22,S23 = S13,S44 = S55,S66 = 2(S11 −S12)
Plane of isotropyx2 = 0

S11 = S33,S12 = S23,S44 = S66,S55 = 2(S33 −S13)
Plane of isotropyx1 = 0

S22 = S33,S13 = S12,S55 = S66,S44 = 2(S22 −S23)
all otherSi j like orthotropic

Isotropy:

2 independent

material parameters

S11 = S22 = S33,S12 = S13 = S23,
S44 = S55 = S66 = 2(S11 −S12)
all otherSi j = 0

ε1 = S11σ1 + S12σ2 + S13σ3, ε4 = S44σ4,
ε2 = S12σ1 + S22σ2 + S23σ3, ε5 = S55σ5,
ε3 = S13σ1 + S23σ2 + S33σ3, ε6 = S66σ6

(2.1.53)

For uniaxial tension in xi-direction, σ1 6= 0,σi = 0, i= 2, . . . ,6. This reduces (2.1.53)

to

ε1 = S11σ1, ε2 = S12σ1, ε3 = S13σ1, ε4 = ε5 = ε6 = 0, (2.1.54)

and the physical tensile tests provides the elastic parameters E1,ν12,ν13
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E1 =
σ1

ε1
=

1

S11
, ν12 =−ε2

ε1
=−S12E1, ν13 =−ε3

ε1
=−S13E1 (2.1.55)

Analogous relations resulting from uniaxial tension in x2- and x3-directions and all

Si j are related to the nine measured engineering parameters (3 Young’s moduli and

6 Poisson’s ratios) by uniaxial tension tests in three directions x1,x2 and x3.

From the symmetry of the compliance matrix one can conclude

ν12

E1
=

ν21

E2
,

ν23

E2
=

ν32

E3
,

ν31

E3
=

ν13

E1

or
νi j

Ei

=
ν ji

E j

,
νi j

ν ji

=
Ei

E j

, i, j = 1,2,3 (i 6= j) (2.1.56)

Remember that the first and the second subscript in Poisson’s ratios denote stress

and strain directions, respectively. Equations (2.1.56) demonstrate that the nine en-

gineering parameters are not independent parameters and that in addition to the three

tension tests, three independent shear tests are necessary to find the equations

ε4 = S44σ4, ε5 = S55σ5, ε6 = S66σ6,

which yield the relations

S44 =
1

G23
=

1

E4
, S55 =

1

G13
=

1

E5
, S66 =

1

G12
=

1

E6
(2.1.57)

Now all Si j in (2.1.20) can be substituted by the engineering parameters

















ε1

ε2

ε3

ε4

ε5

ε6

















=





































1

E1
−ν12

E1
−ν13

E1
0 0 0

1

E2
−ν23

E2
0 0 0

1

E3
0 0 0

1

E4
0 0

S Y M
1

E5
0

1

E6





















































σ1

σ2

σ3

σ4

σ5

σ6

















(2.1.58)

As seen above, the relations between compliances Si j and engineering parameters

are very simple. This, however, is not the case for the relations between the stiffness

and engineering parameters. First we need to invert the compliance matrix SSS and

to express the stiffness Ci j as a function of the compliances as follows. The shear

relations are uncoupled, and we obtain

C44 =
1

S44
= G23, C55 =

1

S55
= G13, C66 =

1

S66
= G12 (2.1.59)
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So only a symmetric [3x3]-matrix must be inverted. The general formula is

Ci j = S−1
i j =

(−1)i+ jUi j

Det[Si j]
, Det[Si j] =

∣

∣

∣

∣

∣

∣

S11 S12 S13

S12 S22 S23

S13 S23 S33

∣

∣

∣

∣

∣

∣

, (2.1.60)

where Ui j are the submatrices of SSS to the element Si j, and yielding the relations

C11 =
S22S33 − S2

23

Det[Si j]
, C12 =

S13S23 − S12S33

Det[Si j]
,

C22 =
S33S11 − S2

13

Det[Si j]
, C23 =

S12S13 − S23S11

Det[Si j]
,

C33 =
S11S22 − S2

12

Det[Si j]
, C13 =

S12S23 − S13S22

Det[Si j]

(2.1.61)

Substituting the relations between Si j and engineering parameters given above in

(2.1.58), we obtain

C11 =
(1−ν23ν32)E1

∆
, C12 =

(ν12 +ν13ν32)E2

∆
,

C22 =
(1−ν31ν13)E2

∆
, C23 =

(ν23 +ν21ν13)E3

∆
,

C33 =
(1−ν21ν12)E3

∆
, C13 =

(ν13 +ν12ν23)E3

∆

(2.1.62)

with ∆ = 1 − ν21ν12 − ν32ν23 − ν13ν31 − 2ν21ν13ν32. Considering Ei/∆ ≡ E i,

1/Si ≡ Ei we finally get two subsystems





σ1

σ2

σ3



=





(1−ν23ν32)E1 (ν12 +ν13ν32)E2 (ν13 +ν12ν23)E3

(1−ν31ν13)E2 (ν23 +ν21ν13)E3

SYM (1−ν21ν12)E3









ε1

ε2

ε3



 ,





σ4

σ5

σ6



=





E4 0 0

E5 0

SYM E6









ε4

ε5

ε6



 (2.1.63)

2.1.4.2 Transversally-Isotropic Material Behavior

It should be noted that in the case of transversely isotropic material with the

(x2 − x3)-plane of isotropy

E2 = E3, ν12 = ν13, G12 = G13, G23 =
E2

2(1+ν23)
, (2.1.64)

and we get
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S11 =
1

E1
, S12 = S13 =−ν12

E1
, S44 =

1

G23
=

2(1+ν23)

E2
,

S22 = S33 =
1

E2
, S23 =−ν23

E2
, S55 = S66 =

1

G12
,

C11 =
(1−ν2

23)E1

∆∗ , C12 =C13 =
ν21(1+ν23)E1

∆∗ ,

C22 =C33 =
(1−ν12ν21)E2

∆∗ , C23 =
(ν23 +ν21ν12)E2

∆∗ ,

C44 = G23 =
E2

2(1+ν23)
, C55 =C66 = G12

with ∆∗ = (1+ν23)(1−ν23 − 2ν21ν12).
Similar expressions one gets with the (x1−x2)-plane of isotropy and considering

E1 = E2, ν13 = ν23, G13 = G23, G12 =
E1

2(1+ν12)
(2.1.65)

or with the (x1 − x3)-plane of isotropy and

E1 = E3, ν12 = ν23, G12 = G23, G13 =
E1

2(1+ν13)
(2.1.66)

The Young’s modulus and the Poisson’s ratio in the plane of isotropy often will be

designated as ET and νTT. ET characterizes elongations or contractions of a trans-

versely isotropic body in the direction of the applied load in any direction of the

plane of isotropy and νTT characterizes contractions or elongations of the body in

the direction perpendicular to the applied load, but parallel to the plane of isotropy.

The shear modulus GTT characterizes the material response under shear loading in

the plane of isotropy and takes the form

GTT =
ET

2(1+νTT)
,

i.e. any two of the engineering parameters ET, νTT and GTT can be used to fully

describe the elastic properties in the plane of isotropy. A third independent primary

parameter should be EL. This Young’s modulus characterizes the tension respec-

tively compression response for the direction perpendicular to the plane of isotropy.

The fourth primary parameter should be the shear modulus GLT in the planes per-

pendicular to the plane of isotropy. As a fifth primary parameter can be chosen νLT

or νTL, which characterize the response in the plane of isotropy under a load in L-

direction or the response in the L-direction under a load in the plane of isotropy. The

stress-strain relations for an transversely isotropic body, if (x2 − x3) is the plane of

isotropy and with the reciprocity relations

νLT

EL
=

νTL

ET
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can be used in the following matrix form

















ε1

ε2

ε3

ε4

ε5

ε6

















=





































1

EL
−νTL

ET
−νTL

ET
0 0 0

1

ET
−νTT

ET
0 0 0

1

ET
0 0 0

1

GTT
0 0

S Y M
1

GLT
0

1

GLT





















































σ1

σ2

σ3

σ4

σ5

σ6

















(2.1.67)

with the engineering parameters

E1 = EL,E2 = E3 = ET,E4 = G23 = GTT =
ET

2(1+νTT)
,

E5 = G13 = E6 = G12 = GLT,ν12 = ν13 = νLT,ν23 = νTT,
νLT

EL
=

νTL

ET

With the (x1 − x2)-plane of isotropy the engineering parameters are

E1 = E2 = ET,E3 = EL,E4 = G23 = E5 = G13 = GTL,

E6 = G12 = GTT =
ET

2(1+νTT)
,ν13 = ν23 = νTL,ν12 = νTT

Notice that in literature the notations of Poisson’s ratios νLT and νTL can be corre-

spond to the opposite meaning.

2.1.4.3 Isotropic Material Behavior

For an isotropic material behavior in all directions, the number of independent en-

gineering parameters reduces to two

E1 = E2 = E3 = E, ν12 = ν23 = ν13 = ν,

G12 = G13 = G23 = G =
E

2(1+ν)

(2.1.68)

S11 = S22 = S33 =
1

E
, S12 = S13 = S23 =− ν

E
,

S44 = S55 = S66 =
1

G
=

2(1+ν)

E
, C11 =C22 =C33 =

(1−ν)E

∆∗∗ ,

C12 =C13 =C23 =
νE

∆∗∗ , C44 =C55 =C66 = G =
E

2(1+ν)
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assuming ∆∗∗ = (1+ν)(1− 2ν).
With this, all three-dimensional material laws for various material symmetries

interesting in engineering applications of composites are known. The relations be-

tween Si j, Ci j and engineering parameters are summarized in Table 2.5.

Consider that the elastic properties of an isotropic material are determined by two

independent parameters. The elastic parameters Young’s modulus E and Poisson’s

ratio ν are generally used because they are determined easily in physical tests. But

also the so-called Lamé coefficients5 λ and µ , the shear modulus G or the bulk

modulus K can be used if it is suitable. There are simple relations between the

parameters, e.g. as a function of E,ν

λ =
Eν

(1+ν)(1− 2ν)
, µ =

E

2(1+ν)
= G, K =

E

3(1− 2ν)
,

ν =
λ

2(λ + µ)
, E =

µ(3λ + 2µ)

λ + µ
, K = λ +

2

3
µ

(2.1.69)

Summarizing the constitutive equations for isotropic, transversely isotropic and

orthotropic materials, which are most important in the engineering applications of

composite structural mechanics one can find that the common features of the re-

lationships between stresses and strains for these material symmetries are that the

normal stresses are not couplet with shear strains and shear stresses are not coupled

with the normal strains. Each shear stress is only related to the corresponding shear

strain. These features are not retained in the more general case of an monoclinic or

a general anisotropic material.

2.1.4.4 Monoclinic Material Behavior

In the case of monoclinic materials we have 13 mutually independent stiffness or

compliances. Therefore we have in comparison with orthotropic materials to intro-

duce four additional engineering parameters and keeping in mind, that the mono-

clinic case must comprise the orthotropic case, we should not change the engineer-

ing parameters of orthotropic material behavior. Assuming that (x1−x2) is the plane

of elastic symmetry, the additional parameters are related to the compliance matrix

components S16,S26,S36 and S46.

The first three pair normal strains ε1,ε2,ε3 to the shear stress σ6 and vice versa

the shear strain ε6 to the normal stresses σ1,σ2,σ3. The fourth one couple the shear

strain ε4 to the shear stress σ5 and vice versa the shear strain ε5 to the shear stress σ4.

In a compact notation the strain-stress relations for an anisotropic material having

one plane of elastic symmetry (x1 − x2) are

5 Gabriel Léon Jean Baptiste Lamé (∗22 July 1795 Tours - †1 May 1870 Paris) - mathematician,

who contributed to the mathematical theory of elasticity (Lamé’s parameters in elasticity and fluid

mechanics)
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Table 2.5 Relationships between Si j, Ci j and the engineering parameters for orthotropic, trans-

versely-isotropic and isotropic material

Orthotropic material

S11 = E−1
1 , S12 = S21 =−ν12E−1

1 , S44 = G−1
23 = E−1

4

S22 = E−1
2 , S13 = S31 =−ν13E−1

1 , S55 = G−1
13 = E−1

5

S33 = E−1
3 , S23 = S32 =−ν23E−1

2 , S66 = G−1
12 = E−1

6

νi j = ν ji(Ei/E j), Ei = (νi j/ν ji)E j i, j = 1,2,3

C11 =
S22S33 −S2

23

det[Si j]
=

(1−ν23ν32)E1

∆
, C44 =

1

S44
= G23 = E4

C22 =
S33S11 −S2

13

det[Si j]
=

(1−ν31ν13)E2

∆
, C55 =

1

S55
= G31 = E5

C33 =
S11S22 −S2

12

det[Si j]
=

(1−ν21ν12)E3

∆
, C66 =

1

S66
= G12 = E6

C12 =
S13S23 −S12S33

det[Si j]
=

(ν12 +ν32ν13)E2

∆
=

(ν21 +ν31ν23)E1

∆
=C21

C13 =
S12S23 −S13S22

det[Si j]
=

(ν13 +ν12ν23)E3

∆
=

(ν31 +ν21ν32)E1

∆
=C31

C23 =
S12S13 −S23S11

det[Si j]
=

(ν23 +ν21ν13)E3

∆
=

(ν32 +ν12ν31)E2

∆
=C32

∆ = 1−ν12ν21 −ν23ν32 −ν31ν13 −2ν21ν13ν32

Transversely-isotropic material

(x2 − x3)-plane of isotropy

E1, E2 = E3, E5 = E6, ν12 = ν13, E4 =
E2

2(1+ν23)
(x1 − x2)-plane of isotropy

E1 = E2, E3, E4 = E5, ν13 = ν23, E6 =
E1

2(1+ν12)
(x1 − x3)-plane of isotropy

E1 = E3, E2, E4 = E6, ν12 = ν23, E5 =
E3

2(1+ν13)

Isotropic material

E1 = E2 = E3 = E, ν12 = ν21 = ν13 = ν31 = ν23 = ν32 = ν ,

E4 = E5 = E6 = G =
E

2(1+ν)
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(2.1.70)

with the following reciprocal relations

η61

E6
=

η16

E1
,

η62

E6
=

η26

E2
,

η63

E6
=

η36

E3
,

µ54

E5
=

µ45

E4
(2.1.71)

and the compliance components

S16 =
η61

E6
, S26 =

η62

E6
, S36 =

η63

E6
, S45 =

µ54

E5
(2.1.72)

η61,η62 and η63 are extension-shear coupling coefficients indicating normal strains

induced by shear stress σ6 and η16,η26 and η36 the shear-extension coupling co-

efficients characterizing shear strain ε6 caused by normal stresses. µ45 and µ54 are

shear-shear coupling coefficients.

The stiffness matrix for the monoclinic material can be found as the inverse of

the compliance matrix, but the expressions are unreasonable to present in an explicit

form. However, the inverse of a matrix can be easily calculated using standard nu-

merical procedures. Also for a generally anisotropic material the compliance can be

formulated with help of eight additional coupling parameters but the stiffness matrix

should be calculated numerically.

2.1.5 Two-Dimensional Material Equations

In most structural applications the structural elements are simplified models by

reducing the three-dimensional state of stress and strain approximately to a two-

dimensional plane stress or plane strain state. A thin lamina for instance can be

considered to be under a condition of plane stress with all stress components in

the out-of-plane direction being approximately zero. The different conditions for a

plane stress state in the planes (x1 − x2),(x2 − x3) and (x1 − x3) are demonstrated in

Fig. 2.9.

In the following, the plane stress state with respect to the (x1 − x2) plane (Fig.

2.9a) is considered. In addition, since in the case of unidirectional long-fibre rein-

forced laminae the most general type of symmetry of the material properties is the
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x1x1x1

x2x2x2

x3x3x3

σ2

σ1

σ6

σ3

σ2
σ4

σ1

σ3

σ5

a b
c

Fig. 2.9 Plane stress state. a (x1 − x2)-plane, σ3 = σ4 = σ5 = 0, b (x2 − x3)-plane, σ1 = σ5 =
σ6 = 0, c (x1 − x3)-plane, σ2 = σ4 = σ6 = 0

monoclinic one the generalized Hooke’s law (2.1.20) is reduced taking into account

(2.1.43) to
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That means σ3 = σ4 = σ5 = 0, and we have three in-plane constitutive equations

ε1 = S11σ1 + S12σ2 + S16σ6

ε2 = S12σ1 + S22σ2 + S26σ6, Si j = S ji

ε6 = S16σ1 + S26σ2 + S66σ6

(2.1.74)

and an additional equation for strain ε3 in x3-direction

ε3 = S13σ1 + S23σ2 + S36σ6 (2.1.75)

The other strains ε4,ε5 are equal to 0 considering the monoclinic material behavior.

If the plane stress assumptions are used to simplify the generalized stiffness equa-

tions (2.1.19) taking into account (2.1.42), the result is
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(2.1.76)

or again three in-plane equations
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σ1 =C11ε1 +C12ε2 +C13ε3 +C16ε6,
σ2 =C12ε1 +C22ε2 +C23ε3 +C26ε6, Ci j =C ji

σ6 =C16ε1 +C26ε2 +C36ε3 +C66ε6

(2.1.77)

There are another three equations. At first we obtain

σ4 = S44ε4 + S45ε5 = 0, σ5 = S45ε4 + S55ε5 = 0

Since S44,S45,S55 are arbitrary but the stiffness matrix should be positive definite it

is obvious that

S44S55 − S2
45 > 0

and from the σ4 = σ5 = 0 condition it follows that ε4,ε5 must be equal to 0. Taking

into account the last condition

σ3 =C13ε1 +C23ε2 +C33ε3 +C36ε6 = 0

the strain ε3 can be obtained

ε3 =− 1

C33
(C13ε1 +C23ε2 +C36ε6) (2.1.78)

and eliminated and substituted in Eqs. (2.1.77). After substituting ε3 using Eq.

(2.1.78) Eqs. (2.1.77) leads to

σi =

(

Ci j −
Ci3C j3

C33

)

ε j , i, j = 1,2,6, (2.1.79)

respectively

σi = Qi jε j , i, j = 1,2,6 (2.1.80)

The Qi j are the reduced stiffness. For the three cases in Fig. 2.9 we obtain

σi = Qi jε j, Qi j =Ci j −
Ci3C j3

C33
, i, j = 1,2,6, (x1 − x2)− plane of symmetry,

σi = Qi jε j, Qi j =Ci j −
Ci1C j1

C11
, i, j = 2,3,4, (x2 − x3)− plane of symmetry,

σi = Qi jε j, Qi j =Ci j −
Ci2C j2

C22
, i, j = 1,3,5, (x1 − x3)− plane of symmetry

The number of unknown independent parameters of each of the matrices Si j, Ci j or

Qi j is six. It is very important to note that the elements in the plane stress compliance

matrix are simply a subset of the elements from the three-dimensional compliance

matrix and their numerical values are identical. On the other hand, the elements

of the reduced stiffness matrix involve a combination of elements from the three-

dimensional stiffness matrix and the numerical values of the Qi j differ from their

counterparts Ci j, i.e. they are actually less than the numerical values for Ci j. In

order to keep consistency with the generalized Hooke’s law, Eq. (2.1.78) should be
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used when calculating the transverse normal strain ε3 and the general case leads to

consistent relations for the transverse shear strains ε4 and ε5.

For an orthotropic material behavior under plane stress and on-axis orientation of

the reference system there are four independent parameters and for isotropic behav-

ior there are only two. The mathematical notations Si j, Ci j or Qi j can be shifted to

the engineering notation. Tables 2.6 and 2.7 summarize the compliance and stiffness

matrices for the plane stress state.

Considering a plane strain state in the (x1 −x2) plane we have the three non-zero

strains ε1,ε2 and ε6 but the four nonzero stress components σ1,σ2,σ3,σ6. Analo-

gous to the plane stress state, here the stress σ3 normal to the (x1 − x2) plane is not

an independent value and can be eliminated

ε3 = S13σ1 + S23σ2 + S33σ3 + S36σ6 = 0,

σ3 =− 1

S33
(S13σ1 + S23σ2 + S36σ6)

Therefore in the case of plane strain, the Ci j , i, j = 1,2,6 can be taken directly from

the three-dimensional elasticity law and instead of Si j reduced compliances Vi j have

to be used

Table 2.6 Compliance matrices for various material models, plane stress state

Material model ε = Sσε = Sσε = Sσ

Anisotropy: Compliances Si j

6 independentmaterial parameters





ε1

ε2

ε6



=





S11 S12 S16

S22 S26

S66









σ1

σ2

σ6





Orthotropy: S16 = S26 = 0

4 independent material parameters S11 =
1

E1
, S22 =

1

E2

S12 =
−ν12

E1
=

−ν21

E2

Reference system: on-axis S66 =
1

G12

Isotropy: S16 = S26 = 0

2 independent material parameters S11 = S22 =
1

E
, S12 =− ν

E
,

Reference system: as you like S66 = 2(S11 −S12) =
2(1+ν)

E
=

1

G
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Table 2.7 Stiffness matrices for various material models, plane stress state

Material model σ = Qεσ = Qεσ = Qε

Anisotropy: Reduced stiffness Qi j

6 independent material parameters





σ1

σ2

σ6



=





Q11 Q12 Q16

Q22 Q26

Q66









ε1

ε2

ε3





Orthotropy: Q16 = Q26 = 0, Q66 =
1

S66
= G12

4 independent material parameters Q11 =
S22

∆
=

E1

1−ν12ν21

Q22 =
S11

∆
=

E2

1−ν12ν21

Reference system: on-axis Q12 =−S12

∆
=

ν12E2

1−ν12ν21
∆ = S11S22 −S2

12

Isotropy: Q16 = Q26 = 0

2 independent material parameters Q11 = Q22 =
E

1−ν2

Reference system: as you like Q12 =
νE

1−ν2
, Q66 =

E

2(1+ν)
= G

σi =Ci jε j , i, j = 1,2,6,

εi =Vi jσ j, Vi j = Si j −
Si3S j3

S33
, i, j = 1,2,6

Table 2.8 summarizes for the three-dimensional states and the plane stress and strain

states the number of non-zero and of independent material parameters.

In the two-dimensional equations of anisotropic elasticity, either reduced stiff-

ness or reduced compliances are introduced into the material laws. These equations

are most important in the theory of composite single or multilayered elements, e.g.

of laminae or laminates. The additional transformations rules which are necessary

in laminae and laminate theories are discussed in more detail in Chap. 3. Tables 2.6

and 2.7 above shows the relationship between stress and strain through the compli-

ance [Si j] or the reduced stiffness [Qi j] matrix for the plane stress state and how the

Si j and Qi j are related to the engineering parameters. For a unidirectional lamina the

engineering parameters are:
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Table 2.8 Stiffness and compliance parameters for stress and strain equations σσσ = CCCεεε ,

εεε = SSSσσσ , CCC = SSS−1, plane stress state σσσ = QQQεεε, εεε = SSSσσσ ,QQQ = SSS−1, plane strain state - σσσ =CCCεεε ,

εεε = VVVσσσ , CCC =VVV−1, Qi j and Vi j are the reduced stiffness and compliances

Material model Number of non-zero Number of independent

parameters parameters

Three-dimensional Ci j ;Si j Ci j;Si j

stress- or i, j = 1, . . . ,6 i, j = 1, . . . ,6
strain state

Anisotropic 36 21

Monotropic 20 13

Orthotropic 12 9

Transversely isotropic 12 5

Isotropic 12 2

Plane stress state Qi j;Si j Qi j;Si j

(x1 − x2)-plane i, j = 1,2,6 i, j = 1,2,6
Anisotropic 9 6

Orthotropic 5 4

Isotropic 5 2

Plane strain state Ci j;Vi j Ci j;Vi j

(x1 − x2)-plane i, j = 1,2,6 i, j = 1,2,6
Anisotropic 9 6

Orthotropic 5 4

Isotropic 5 2

E1 longitudinal Young’s modulus in the principal direction 1 (fibre direction)

E2 transverse Young’s modulus in direction 2 (orthogonal to the fibre direction)

ν12 major Poisson’s ratio as the ratio of the negative normal strain in direction 2

to the normal strain in direction 1 only if normal load is applied in direction 1

G12 in-plane shear modulus for (x1 − x2) plane
The four independent engineering elastic parameters are experimentally measured

as follows:

• Pure tensile load in direction 1: σ1 6= 0,σ2 = 0,σ6 = 0

With ε1 = S11σ1,ε2 = S12σ1,ε6 = 0 are

E1 =
σ1

ε1
=

1

S11
, ν12 =−ε2

ε1
=−S12

S11

• Pure tensile load in direction 2: σ1 = 0,σ2 6= 0,σ6 = 0

With ε1 = S12σ2,ε2 = S22σ2,ε6 = 0 are

E2 =
σ2

ε2
=

1

S22
, ν21 =−ε1

ε2
=−S12

S22

ν21 is usually called the minor Poisson’s ratio and we have the reciprocal rela-

tionship ν12/E1 = ν21/E2.

• Pure shear stress in the (x1 − x2) plane: σ1 = σ2 = 0,σ6 6= 0

With ε1 = ε2 = 0,ε6 = S66σ6 is
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G12 =
σ6

ε6
=

1

S66

With the help of Tables 2.6 and 2.7, the relating equations of stresses and strains

are given through any of the following combinations of four parameters: (Q11,Q12,
Q22,Q66),(S11,S12,S22,S66),(E1,E2,ν12,G12).

In Chap. 3 the evaluation of the four engineering elastic parameters is given ap-

proximately by averaging the fibre-matrix material behavior. There are different ap-

proaches for determining effective elastic moduli, e.g. in a simple way with ele-

mentary mixture rules, with semi-empirical models or an approach based on the

elementary theory.

2.1.6 Curvilinear Anisotropy

The type of anisotropy considered above was characterized by the equivalence of

parallel directions passing through different points of the homogeneous anisotropic

body and we can speak of a rectilinear anisotropy. Another kind of anisotropy is the

case, if one chooses a system of curvilinear coordinates in such a manner that the

coordinate directions coincide with equivalent directions of elastic properties at dif-

ferent points of an anisotropic body. The elements of the body, which are generated

by three pairs of coordinate surfaces possess identical elastic properties and we can

speak of a curvilinear anisotropy.

In the frame of this textbook we limit the considerations to cylindrical anisotropy,

which is also the most common case of this type of anisotropy. The generalized

Hooke’s law equations (2.1.21) are now considered in cylindrical coordinates x1 = r,

x2 = θ ,x3 = z and we have the stress and strain vectors in the contracted single

subscript notation

[

σ1 σ2 σ3 σ4 σ5 σ6

]T
=
[

σr σθ σz σθz σrz σrθ

]T
,

[

ε1 ε2 ε3 ε4 ε5 ε6

]T
=
[

εr εθ εz εθz εrz εrθ

]T
(2.1.81)

In the specific cases of material symmetries the general constitutive equation

in cylindrical coordinates can be simplified analogous to the case of rectilinear

anisotropy.

In the specific case of an orthotropic cylindrical response there are three orthog-

onal planes of elastic symmetries. One plane is perpendicular to the axis z, another

one is tangential to the surface (θ − z) and the third one is a radial plane (Fig. 2.10).

Another case of material symmetry in possible practical situation is a transversely

isotropic cylinder or cylindrical tube with the plane of isotropy (r−θ ). In this case

we obtain, as analog to (2.1.67)
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Fig. 2.10 Cylindrical orthotropic material symmetry
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, (2.1.82)

where the index T is associated with the coordinate directions r and θ and the index

L with the coordinate direction z and the reciprocal relations are

νLT

EL
=

νTL

ET

The stress-strain equations for the orthotropic case of cylindrical anisotropy are ob-

tained using engineering parameters
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

































1

Er

−νθr

Eθ
−νzr

Er

0 0 0

1

Eθ
−νzθ

Er

0 0 0

1

Er

0 0 0

1

Gθz

0 0

S Y M
1

Grz
0

1

Grθ





















































σ1

σ2

σ3

σ4

σ5

σ6

















(2.1.83)

The indices r,θ and z of the engineering parameters are associated with the indices

1, 2 and 3 and the strain-stress equations may also be written in a different way by

using the numerical subscripts. Further notice the reciprocal relations

Eiν ji = E jνi j, i, j = r,θ ,z

and the Gθz,Grz and Grθ may be written in the more general form E4,E5,E6.

There are two practical situations for a monoclinic material behavior. The first

case can be one plane of elastic symmetry (r−θ ) which is rectilinear to the z-axis.

The case is interesting when considering composite discs or circular plates. The

stress-strain equations follow from (2.1.70) after substituting the subscripts 1,2 and

3 by the engineering parameters to r,θ and z and the shear moduli E4,E5 and E6

by Gθz,Grz and Grθ . The second case can be one plane of elastic symmetry (θ − z)

as a cylindrical surface with the axis r perpendicular to this surface. This situation

is of practical interest when considering e.g. filament wound cylindrical shells and

we get the strain-stress relations which couple all three normal strains to the shear

strain ε4 and both shear strains ε5,ε6 to both shear stresses σ5,σ6

















ε1

ε2

ε3

ε4

ε5

ε6

















=





































1

E1
−ν21

E2
−ν31

E3

η41

E4
0 0

1

E2
−ν32

E3

η42

E4
0 0

1

E3

η43

E4
0 0

1

E4
0 0

S Y M
1

E5

µ65

E6
1

E6





















































σ1

σ2

σ3

σ4

σ5

σ6

















(2.1.84)

The subscripts 1, 2, 3 of the Young’s moduli and the Poisson’s ratios will be shifted

to r,θ ,z and the moduli E4,E5,E6 to Gθz,Grz,Grθ . There are as above reciprocal

relations for νi j ,ηi j and µi j
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η41

E4
=

η14

E1
,

η42

E4
=

η24

E2
,

η43

E4
=

η34

E3
,

µ65

E6
=

µ56

E5
,

νi j

Ei

=
ν ji

E j

, i, j = 1,2,3
(2.1.85)

2.1.7 Problems

Exercise 2.1. Calculate for the tensile bar consisting of three parts (Fig. 2.2) the

elongation △l, the strain ε and the stress σ as functions of A, l and F :

1. The stiffness are arranged in parallel:

E1 = E3 = 70 GPa, E2 = 3 GPa, A1 = A3 = 0,1A, A2 = 0,8A.

2. The stiffness are arranged in series:

E1 = E3 = 70 GPa, E2 = 3 GPa, l1 = l3 = 0,1l, l2 = 0,8l.

Solution 2.1. The solution can be obtained considering the basic assumptions of the

iso-strain and the iso-stress models.

1. Assumptions

εi = ε, △li =△l, i = 1,2,3, A =
3

∑
i=1

Ai, F =
3

∑
i=1

Fi

From σ = Eε follows

σ1 = E1ε = 70GPa ε,σ2 = E2ε = 3GPa ε,σ3 = E3ε = 70GPa ε

With F = σA = EAε and Fi = EiAiε follows

F =
3

∑
i=1

(EiAi)ε = 16,4 GPa εA, E = 16,4 GPa,

ε =
F

EA
=

△l

l

yields

△l =
Fl

EA
=

1

16,4

Fl

A
(GPa)−1

and the solutions are

△l =
1

16,4

Fl

A
(GPa)−1 =△l(F, l,A),

ε =
△l

l
=

1

16,4

F

A
(GPa)−1 = ε(F,A),

σi = Eiε =
1

16,4

EiF

A
(GPa)−1 = σi(F,A), i = 1,2,3
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2. Assumptions

△l =
3

∑
i=1

△li, Fi = F, εi =
△li

li
, i = 1,2,3

From △l =
3

∑
i=1

△li =
3

∑
i=1

liεi and F = EAε follows

△l =
3

∑
i=1

(

li

Ei

)

F

A
=

(

0,1

70
+

0,8

3
+

0,1

70

)

Fl

A
(GPa)−1,

△l = εl =
1

E

Fl

A
= 0,2695

Fl

A
(GPa)−1, E = 3,71 GPa

The functions △l,ε and σ are

△l = 0,2695
Fl

A
(GPa)−1 =△l(F, l,A),

ε = 0,2695
F

A
(GPa)−1 = ε(F,A),

σ = Eε =
F

A
= σ(F,A)

Exercise 2.2. The relationship between the load F and the elongation△l of a tensile

bar (Fig. 2.1) is

F =
EA0

l0
△ l = K △ l

E is the Young’s modulus of the material, A0 the cross-sectional area of the bar and

l0 is the length. The factor K = EA0/l0 is the stiffness per length and characterizes

the mechanical performance of the tensile bar. In the case of two different bars

with Young’s moduli E1,E2, densities ρ1,ρ2, the cross-sectional areas A1,A2 and

the lengths l1, l2 the ratios of the stiffness K1 and K2 per length and the mass of the

bars are
K1

K2
=

E1A1

E2A2

l2

l1
,

m1

m2
=

l1A1ρ1

l2A2ρ2

Verify that for l1 = l2 and m1 = m2 the ratio K1/K2 only depends on the ratio of the

specific Young’s moduli E1/ρ1 and E2/ρ2.

Solution 2.2. Introducing the densities ρ1/ρ2 into the stiffness ratio K1/K2 yields

K1

K2
=

E1/ρ1

E2/ρ2

m1

m2

(

l2

l1

)2

and with m1 = m2, l2 = l1
K1

K2
=

E1/ρ1

E2/ρ2
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Note 2.1. A material with the highest value of E/ρ has the highest tension stiffness.

Exercise 2.3. For a simply supported beam with a single transverse load in the mid-

dle of the beam we have the following equation

F = 48
EI

l3
f = K f

F is the load and f is the deflection in the middle of the beam, l is the length of

the beam between the supports and I the moment of inertia of the cross-section.

The coefficient K = 48EI/l3 characterizes the stiffness of the beam. Calculate K for

beams with a circle or a square cross-sectional area (radius r or square length a) and

two different materials E1,ρ1 and E2,ρ2 but of equal length l, moments of inertia

and masses. Verify that for m1 =m2 the ratio of the stiffness coefficients K1/K2 only

depends on the ratios E1/ρ2
1 and E2/ρ2

2 .

Solution 2.3. Moments of inertia and masses of the two beams are

1. circle cross-sectional: I = πr4/4,m = r2π lρ ,

2. square cross-sectional: I = a4/12,m = a2lρ

In case 1. we have

K =
48EI

l3
=

48E

l3

πr4

4
=

48E/ρ2

4l3

m2

π l2
,

K1

K2
=

E1/ρ2
1

E2/ρ2
2

(

m1

m2

)2 (
l2

l1

)5

With l1 = l2,m1 = m2 we obtain

K1

K2
=

E1/ρ2
1

E2/ρ2
2

In case 2. we have

K =
48EI

l3
=

48E

l3

a4

12
=

4E

l3

m2

ρ2l2
,

K1

K2
=

E1/ρ2
1

E2/ρ2
2

(

m1

m2

)2 (
l2

l1

)5

With l1 = l2,m1 = m2 we obtain

K1

K2
=

E1/ρ2
1

E2/ρ2
2

Note 2.2. The best material for an optimal bending stiffness of the beam is that with

the highest value of E/ρ2.

Exercise 2.4. Formulate explicitly the transformation matrices (
3

TTTσσσ )−1 and (
3

TTTεεε)−1

for a rotation about the eee3-direction (Fig. 2.6).
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Solution 2.4. With Eqs. (2.1.29), (2.1.39) and (2.1.40) follows (
3

TTTσσσ )−1 = (
3

TTTεεε )T and

(
3

TTTεεε )−1 = (
3

TTTσσσ )T

(
3

TTTσσσ )−1 =

















c2 s2 0 0 0 −2cs

s2 c2 0 0 0 2sc

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 −s c 0

cs −cs 0 0 0 c2 − s2

















,

(
3

TTTεεε)−1 =

















c2 s2 0 0 0 −cs

s2 c2 0 0 0 sc

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 −s c 0

2cs −2cs 0 0 0 c2 − s2

















Exercise 2.5. Consider the coordinate transformation that corresponds with reflec-

tion in the plane x1 − x2: x′1 = x1, x′2 = x2, x′3 =−x3. Define for this case

1. the coordinate transformation matrix [Ri j] and

2. the stress and strain transformation matrices [
σ

Tpq] and [
ε

Tpq].

Solution 2.5. The solution contains two parts: the coordinate transformation and the

stress/strain transformation.

1. With Ri j = cos(e′i,e j) (2.1.22) follows

R11 = 1,R12 = 0,R13 = 0,R21 = 0,R22 = 1,R23 = 0,

R31 = 0,R32 = 0,R33 =−1

and the transformation matrix takes the form

[Ri j] =





1 0 0

0 1 0

0 0 −1





2. With the help of the transformation matrix App. B we can see that both matrices

are diagonal with the following nonzero elements for
σ

Tpq

R2
11 = 1,R2

22 = 1,R2
33 = 1,

R22R33 +R23R32 =−1,R11R33 +R13R31 =−1,R11R22 +R12R21 = 1

and for
ε

Tpq

R2
11 = 1,R2

22 = 1,R2
33 = 1,

R22R33 +R23R22 =−1,R11R33 +R13R31 =−1,R11R22 +R12R21 = 1

The transformation matrices take the form
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[
σ

Tpq] =

















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1

















= [
ε

Tpq]

Exercise 2.6. The engineering material parameters for an orthotropic material are

given by
E1 = 173GPa, E2 = 33,1GPa, E3 = 5,17GPa,
E4 = 3,24GPa, E5 = 8,27GPa, E6 = 9,38GPa,
ν12 = 0,036, ν13 = 0,25, ν23 = 0,171

Calculate the stiffness matrix CCC and the compliance matrix SSS.

Solution 2.6. With Table 2.5 we find the Si j and the Ci j

S11 = E−1
1 = 5,780 10−3GPa−1,

S12 = S21 =−ν12E−1
1 =−0,208 10−3GPa−1,

S22 = E−1
2 = 30,211 10−3GPa−1,

S13 = S31 =−ν13E−1
1 =−1,445 10−3GPa−1,

S33 = E−1
3 = 193,424 10−3GPa−1,

S23 = S32 =−ν23E−1
2 =−5,166 10−3GPa−1,

S44 = E−1
4 = 308,642 10−3GPa−1,

S55 = E−1
5 = 120,919 10−3GPa−1,

S66 = E−1
6 = 106,610 10−3GPa−1,

△= 1−ν12ν21 −ν23ν32 −ν31ν13 − 2ν21ν13ν32,

ν21 = ν12(E2/E1) = 0,0069, ν31 = ν13(E3/E1) = 0,0075,
ν32 = ν23(E3/E2) = 0,027, △ = 0,993, Ēi = Ei/△, i = 1,2,3

C11 = (1−ν23ν32)Ē1 = 173,415GPa,

C22 = (1−ν31ν13)Ē2 = 33,271GPa,

C33 = (1−ν12ν21)Ē3 = 5,205GPa,

C12 = (ν12 +ν13ν32)Ē2 = 1,425GPa,

C13 = (ν13 +ν12ν23)Ē3 = 1,334GPa,

C23 = (ν23 +ν21ν13)Ē3 = 0,899GPa,

C44 = E4, C55 = E5, C66 = E6

With the values for Ci j and Si j the stiffness matrix CCC and the compliance matrix SSS

can be written
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CCC =

















173,415 1,425 1,334 0 0 0

1,425 33,271 0,899 0 0 0

1,334 0,899 5,205 0 0 0

0 0 0 3,24 0 0

0 0 0 0 8,27 0

0 0 0 0 0 9,38

















GPa,

SSS =

















5,780 −0,208 −1,445 0 0 0

−0,208 30,211 −5,166 0 0 0

−1,445 −5,166 193,424 0 0 0

0 0 0 308,642 0 0

0 0 0 0 120,919 0

0 0 0 0 0 106,610

















10−3GPa−1

2.2 Fundamental Equations and Variational Solution Procedures

Below we discuss at first the fundamental equations of the anisotropic elasticity for

rectilinear coordinates. The system of equations can be divided into two subsys-

tems: the first one is material independent that means we have the same equations

as in the isotropic case. To this subsystem belong the equilibrium equations (static

or dynamic) and the kinematic equations (the strain-displacement equations and the

compatibility conditions). To this subsystem one has to add the constitutive equa-

tions. In addition, we must introduce the boundary and, may be, the initial conditions

to close the initial-boundary problem. At second, considering that closed solutions

are impossible in most of the practical cases approximative solution techniques are

briefly discussed. The main attention will be focussed on variational formulations.

2.2.1 Boundary and Initial-Boundary Value Equations

The fundamental equations of anisotropic elasticity can be formulated and solved

by a displacement, a stress or a mixedapproach. In all cases the starting point are the

following equations:

• The static or dynamic equilibrium equations formulated for an infinitesimal cube

of the anisotropic solid which is subjected to body forces and surface forces char-

acterized by force density per unit surface. In Fig. 2.11 the stress and the volume

force components are shown in the x1-direction. Assuming the symmetry of the

stress tensor, three static equations link six unknown stress components. In the

case of dynamic problems the inertia forces are expressed through displacements,

therefore the equations of motion contain both, six unknown stress and three un-

known displacement components
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Fig. 2.11 Infinitesimal cube

with lengths dx1,dx2,dx3:

stress and volume force com-

ponents in x1-direction

x1

x2

x3

dx1

dx2

dx3

σ1 +dσ1

p1

σ6 +dσ6

σ1

σ5 +dσ5

σ6

σ5

∂σ1

∂x1
+

∂σ6

∂x2
+

∂σ5

∂x3
+ p1 = 0,

∂σ6

∂x1
+

∂σ2

∂x2
+

∂σ4

∂x3
+ p2 = 0,

∂σ5

∂x1
+

∂σ4

∂x2
+

∂σ3

∂x3
+ p3 = 0,

static equations (2.2.1)

∂σ1

∂x1
+

∂σ6

∂x2
+

∂σ5

∂x3
+ p1 = ρ

∂ 2u1

∂ t2
,

∂σ6

∂x1
+

∂σ2

∂x2
+

∂σ4

∂x3
+ p2 = ρ

∂ 2u2

∂ t2
,

∂σ5

∂x1
+

∂σ4

∂x2
+

∂σ3

∂x3
+ p3 = ρ

∂ 2u3

∂ t2

dynamic equations (2.2.2)

The inertial terms in (2.2.2) are dynamic body forces per unit volume. The den-

sity ρ for unidirectional laminae can be calculated e.g. using the rule of mixtures

(Sect. 3.1.1).

• The kinematic equations that are six strain-displacement relations and six com-

patibility conditions for strains. For linear small deformation theory, the six

stress-displacement equations couple six unknown strains and three unknown

displacements. Figure 2.12 shows the strains of an infinitesimal cube in the

(x1 − x2)-plane and we find the relations

ε1 ≡
∂u1

∂x1
, ε2 ≡

∂u2

∂x2
, α =

∂u2

∂x1
, β =

∂u1

∂x2
⇒ 2ε12 ≡ γ12 ≡

∂u1

∂x2
+

∂u2

∂x1
≡ ε6

and analogous relations for the (x2 − x3)- and (x1 − x3)-planes yield
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x1x1

x2x2

u1 u1 +
∂ u1

∂ x1
dx1

u2

u2 +
∂ u2

∂ x2
dx2

dx1

dx2

AA

A′
A′

C
C

C′

C′

BB

B′

B′

∂ u1

∂ x2
dx2

∂ u2

∂ x1
dx1

a b

α

β

γ

Fig. 2.12 Strains of the infinitesimal cube shown for the (x1 − x2)-plane. a extensional strains,

b shear strains

ε1 =
∂u1

∂x1
, ε2 =

∂u2

∂x2
, ε3 =

∂u3

∂x3
,

ε4 =
∂u3

∂x2
+

∂u2

∂x3
, ε5 =

∂u3

∂x1
+

∂u1

∂x3
, ε6 =

∂u2

∂x1
+

∂u1

∂x2

(2.2.3)

The displacement field of the body corresponding to a given deformation state is

unique, the components of the strain tensor must satisfy the following six com-

patibility conditions

∂ 2ε1

∂x2
2

+
∂ 2ε2

∂x2
1

=
∂ 2ε6

∂x1∂x2
,

∂

∂x3

(

∂ε4

∂x1
+

∂ε5

∂x2
− ∂ε6

∂x3

)

= 2
∂ 2ε3

∂x1∂x2
,

∂ 2ε2

∂x2
3

+
∂ 2ε3

∂x2
2

=
∂ 2ε4

∂x2∂x3
,

∂

∂x1

(

∂ε5

∂x2
+

∂ε6

∂x3
− ∂ε4

∂x1

)

= 2
∂ 2ε1

∂x2∂x3
,

∂ 2ε3

∂x2
1

+
∂ 2ε1

∂x2
3

=
∂ 2ε5

∂x1∂x3
,

∂

∂x2

(

∂ε6

∂x3
+

∂ε4

∂x1
− ∂ε5

∂x2

)

= 2
∂ 2ε2

∂x3∂x1

In the two-dimensional case the compatibility conditions reduce to a single equa-

tion
∂ 2ε1

∂x2
2

+
∂ 2ε2

∂x2
1

− 2
∂ 2ε6

∂x1∂x2
= 0

• The material or constitutive equations which are described in Sect. 2.1 are

εi = Si jσ j, σi =Ci jε j (2.2.4)

The generalized Hooke’s law yields six equations relating in each case six un-

known stress and strain components. The elements of the stiffness matrix CCC and

the compliance matrix SSS are substituted with respect to the symmetry conditions

of the material.
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Summarizing all equations, we have 15 independent equations for 15 unknown com-

ponents of stresses, strains and displacements. In the displacement approach, the

stresses and strains are eliminated and a system of three coupled partial differential

equations for the displacement components are left.

In the static case we have a boundary-value problem, and we have to include

boundary conditions. In the dynamic case the system of partial differential equations

defines an initial-boundary-value problem and we have additional initial conditions.

A clear symbolic formulation of the fundamental equations in displacements is

given in vector-matrix notation. With the transposed vectors σσσ T,εεεT and uuuT

σσσT = [σ1 σ2 σ3 σ4 σ5 σ6], εεεT = [ε1 ε2 ε3 ε4 ε5 ε6], uuuT = [u1 u2 u3] (2.2.5)

the transformation and the differential matrices TTT and DDD (nnn is the surface normal

unit vector)

TTT =

















n1 0 0

0 n2 0

0 0 n3

0 n3 n2

n3 0 n1

n2 n1 0

















, DDD =

















∂1 0 0

0 ∂2 0

0 0 ∂3

0 ∂3 ∂2

∂3 0 ∂1

∂2 ∂1 0

















,

ni = cos(nnn,xi)

∂i =
∂

∂xi

i = 1,2,3

(2.2.6)

and the stiffness matrix CCC we get

DDDTσσσ + ppp = 000 ∈V static equilibrium equations,

DDDTσσσ + ppp = ρ
∂ 2uuu

∂ t2
∈V dynamic equilibrium equations,

TTT Tσσσ = qqq ∈ Aq surface equilibrium equations,

εεε =DDDuuu ∈V kinematic equations,

σσσ =CCCεεε constitutive equations

(2.2.7)

V is the volume and Aq the surface of the body with surface forces qqq.

Eliminating the stresses and the strains leads to the differential equations for the

displacements

Boundary-value problem - elastostatics

DDDTCCCDDDuuu =−ppp ∈V equilibrium for the volume element V ,

uuu = uuu ∈ Au prescribed displacements uuu on Au,

TTT TCCCDDDuuu = qqq ∈ Aq prescribed surface forces qqq on Aq

(2.2.8)

Initial boundary-value problem - elastodynamics

DDDTCCCDDDuuu−ρüuu =−ppp ∈V equilibrium equation,

uuu = uuu ∈ Au, TTT TCCCDDDuuu = qqq ∈ Aq boundary conditions,

uuu(xxx,0) = uuu(xxx,0), u̇uu(xxx,0) = u̇uu(xxx,0) initial conditions

(2.2.9)

In the general case of material anisotropic behavior the three-dimensional equa-

tions are very complicated and analytical solutions are only possible for some spe-
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cial problems. This is independent of the approach to displacements or stresses.

Some elementary examples are formulated in Sect. 2.2.4. The equations for beams

and plates are simplified with additional kinematic and/or static hypotheses and the

equations are deduced separately in Chaps. 7 and 8. The simplified structural equa-

tions for circular cylindrical shells and thin-walled folded structures are given in

Chaps. 9 and 10.

Summarizing the fundamental equations of elasticity we have introduced stresses

and displacements as static and kinematic field variables. A field is said to be stati-

cally admissible if the stresses satisfy equilibrium equations (2.2.1) and are in equi-

librium with the surface traction q̄qq on the body surface Aq, where the traction are

given. A field is referred to as kinematically admissible if displacements and strains

are restricted by the strain-displacement equations (2.2.3) and the displacement sat-

isfies kinematic boundary conditions on the body surface Au, where the displace-

ments are prescribed. Admissible field variables are considered in principles of vir-

tual work and energy formulations, Sect. 2.2.2. The mutual correspondence between

static and kinematic field variables is established through the constitutive equations

(2.2.4).

2.2.2 Principle of Virtual Work and Energy Formulations

The analytical description of the model equations of anisotropic elasticity may re-

alized as above by a system of partial differential equations but also by integral

statements which are equivalent to the governing equations of Sect. 2.2.1 and based

on energy or variational formulations. The utility of variational formulations is in

general twofold. They yield convenient methods for the derivation of the governing

equations of problems in applied elasticity and provide the mathematical basis for

consistent approximate theories and solution procedures. There are three variational

principles which are used mostly in structural mechanics. There are the principles of

virtual work, the principle of complementary virtual work, Reissner’s6 variational

theorem and the related energy principles.

Restricting ourselves to static problems, extremal principles formulated for the

total elastic potential energy of the problem or the complementary potential energy

are very useful in the theory of elasticity and in modelling and analysis of structural

elements. The fundamental equations and boundary conditions given beforehand

can be derived with the extremal principles and approximate solutions are obtained

by direct variational methods. Both extremal principles follow from the principle of

virtual work.

If an elastic body is in equilibrium, the virtual work δW of all acting forces in

moving through a virtual displacement δuuu is zero

δW ≡ δWa + δWi = 0 (2.2.10)

6 Eric (Max Erich) Reissner (∗ January 5th, 1913 in Aachen; † November 1st, 1996 La Jolla, USA)

- engineer, contributions to the theory of beams, plates and shells
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δW is the total virtual work, δWa the external virtual work of body or volume and

surface forces and δWi the internal virtual work of internal stresses, for the forces

associated with the stress field of a body move the body points through virtual dis-

placements δuuu corresponding to the virtual strain field δεεε .

A displacement is called virtual, if it is infinitesimal, and satisfies the geometric

constraints (compatibility with the displacement-strain equations and the boundary

conditions) and all forces are fixed at their values. These displacements are called

virtual because they are assumed to be infinitesimal while time is held constant. The

symbol δ is called a variational operator and in the mathematical view a virtual dis-

placement is a variation of the displacement function. To use variational operations

in structural mechanics only the following operations of the δ -operator are needed

δ

(

dn f

dxn

)

=
dn

dxn
(δ f ), δ ( f n) = n f n−1δ f n−1, δ

∫

f dx =

∫

δ f dx

For a deformable body, the external and the internal work are given in Eqs.

(2.2.11) and (2.2.12), respectively,

δWa =

∫

V

pkδukdV +

∫

Aq

qkδukdA, (2.2.11)

δWi =−
∫

V

σkδεkdV (2.2.12)

pk are the components of the actual body force vector ppp per unit volume and qk

the components of the actual surface force vector qqq (surface traction per unit area).

Aq denotes the portion of the boundary on which surface forces are specified. σk

and εk are the components of the stress and the strain vector. The negative sign in

(2.2.12) indicates that the inner forces oppose the inner virtual displacements, e.g.

if the virtual displacement δu1 = δε1dx1 is subjected an inner force (σ1dx2dx3) the

inner work is (−σ1dx2dx3)δε1dx1. The vectors ppp,qqq and uuu have three components

but the vectors σσσ and εεε have six components. The double subscript k in pkδuk and

qkδuk means the summarizing on 1 to 3 but in σkδεk on 1 to 6.

The general formulation of the principle of virtual work for a deformable body

δWa + δWi ≡ δW = 0

or
∫

V

pkδukdV +
∫

Aq

qkδukdA−
∫

V

σkδεkdV = 0 (2.2.13)

is independent of the constitutive equations. For the three-dimensional boundary-

value problem of a deformable body the principle can be formulated as follow:

Theorem 2.1 (Principle of virtual work). The sum of virtual work done by the

internal and external forces in arbitrary virtual displacements satisfying the pre-
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scribed geometrical constraints and the strain-displacement relations is zero, i.e.

the arbitrary field variables δuk are kinematically admissible.

An important case is restricted to linear elastic anisotropic bodies and is known as

the principle of minimum total potential energy. The external virtual work δWa is

stored as virtual strain energy δWf = −δWi, i.e. there exists a strain energy density

function

Wf(εεε) =
1

2
σkεk =

1

2
Cklεkεl

Assuming conservative elasto-static problems, the principle of virtual work takes

the form

δΠ(uuu)≡ δΠa(uuu)+ δΠ i(εεε)≡ 0, εεε = εεε(uuu) (2.2.14)

with the total potential energy function Π(uuu) of the elastic body. Πa(uuu) and Πi(εεε)
are the potential functions of the external and the internal forces, respectively,

Πi = Π(εk) =
1

2

∫

V

CklεkεldV,

Πa = Πa(uk) =−
∫

V

pkukdV −
∫

Aq

qkukdA
(2.2.15)

The principle of minimum total potential energy may be stated for linear elastic

bodies with the constraints σσσ =CCCεεε(uuu) as follows:

Theorem 2.2 (Principle of minimum of the total potential energy). Of all the ad-

missible displacement functions satisfying strain-stress relations and the prescribed

boundary conditions, those that satisfy the equilibrium equations make the total po-

tential energy an absolute minimum.

The Euler7-Lagrange8 equations of the variational problem yield the equilibrium

and mechanical boundary conditions of the problem. The minimum total potential

energy is widely used in solutions to problems of structural mechanics.

The principle of virtual work can be formulated in a complementary statement.

Then virtual forces are introduced and the displacements are fixed. In analogy to

(2.2.13) we have the principle of complementary virtual work as

δW ∗
a + δW∗

i ≡ δW ∗ = 0

with the complimentary external and internal virtual works

δW ∗
a =

∫

Au

ukδqkdA,δW ∗
i =−

∫

V

εkδσkdV (2.2.16)

7 Leonhard Euler (∗15 April 1707 Basel - †7jul./18greg. September 1783 St. Petersburg) - mathe-

matician, physicist, astronomer, logician and engineer, introducing beam theory elements and the

equations of motion
8 Joseph-Louis Lagrange, born Giuseppe Lodovico Lagrangia or Giuseppe Ludovico De la Grange

Tournier, also reported as Giuseppe Luigi Lagrange or Lagrangia (∗25 January 1736 Turin - †10

April 1813 Paris) - mathematician and astronomer, variational calculations, general mechanics
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Au denotes the portion of the boundary surface on which displacements are speci-

fied.

With the complementary stress energy density function

W ∗
f (σσσ ) =

1

2
Sklσkσl , δW ∗

f (σσσ ) = Sklσlδσk = εkδσk

and assuming conservative elasto-static problems, the principle of complementary

work can be formulated as principle of minimum total complementary energy

δΠ ∗ = δΠ ∗
i + δΠ ∗

a

or

δ





∫

V

W ∗(σk)dV −
∫

Au

ukqkdA



= 0 (2.2.17)

The principle of minimum total complementary energy may be stated for linear

elastic bodies with constraints εεε = SSSσσσ as follows:

Theorem 2.3 (Principle of minimum total complementary energy). Of all admis-

sible stress states satisfying equilibrium equations and stress boundary conditions,

those which are kinematically admissible make the total complementary energy an

absolute minimum.

The Euler-Lagrange equations of the variational statement yield now the compati-

bility equations and the geometrical boundary conditions.

The both well-known principles of structure mechanics, the principle of vir-

tual displacements (displacement method) and the theorem of Castigliano (principle

of virtual forces, force method) correspond to the principle of minimum potential

energy and complementary energy. The principle of minimum potential energy is

much more used in solution procedures, because it is usually far easier to formulate

assumptions about functions to represent admissible displacements as to formulate

admissible stress functions that ensure stresses satisfying mechanical boundary con-

ditions and equilibrium equations. It should be kept in mind that from the two prin-

ciples considered above no approximate theory can be obtained in its entirety. One

must either satisfy the strain-displacement relations and the displacement bound-

ary conditions exactly and get approximate equilibrium conditions or vice versa.

Both principles yield the risk to formulate approximate theories or solution proce-

dures which may be mathematically inconsistent. Reissner’s variational statement

yields as Euler-Lagrange equations both, the equilibrium equations and the strain-

displacement relations, and has the advantage that its use would yield approximate

theories and solution procedures which satisfy both requirements to the same de-

gree and would be consistent. Reissner’s variational theorem (Reissner, 1950) can

be formulated as follows:

Theorem 2.4 (Reissner’s variational theorem, 1950). Of all sets of stress and

displacement functions of an elastic body εεε = CCCσσσ which satisfy the boundary
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conditions, those which also satisfy the equilibrium equations and the stress-

displacements relations correspond to a minimum of the functional ΨR defined as

ΨR(uuu,σσσ) =

∫

V

[σkεk −Wf(σk)]dV −
∫

V

pkukdV −
∫

Aq

qkukdA (2.2.18)

Wf(σk) is the strain energy density function in terms of stresses only,ΨR is Reissner’s

functional.

It should be noted that all stress and strain components must be varied while pk

and qk are prescribed functions and therefore fixed. The variation of the functional

ΨR(uuu,σσσ ) yields

δΨR =
∫

V

[

σkδεk + εkδσk −
∂Wf

∂σk

δσk

]

dV −
∫

V

pkδukdV

−
∫

Aq

qkδukdA,
(2.2.19)

where εk is determined by (2.2.3). δΨR(uuu,σσσ ) can be rearranged and we obtain finally

δΨR =

∫

V

{[

εεε − ∂Wf

∂σσσ

]

δσσσ T −
[

DDDTσσσ + ppp
]

δuuuT

}

dV −
∫

Aq

qqqδuuuTdA (2.2.20)

Since δσσσ and δuuu are arbitrary variations δΨR = 0 is satisfied only if

εi j =
∂Wf(σi j)

∂σi j

,
∂σi j

∂x j

+ pi = 0 (2.2.21)

Summarizing we have considered two dual energy principles with uk or σk as admis-

sible functions which have to be varied and one generalized variational principle,

where both, uk and σk, have to be varied. The considerations are limited to lin-

ear problems of elasto-statics, i.e. the generalized Hooke’s law describes the stress-

strain relations.

Expanding the considerations on dynamic problems without dissipative forces

following from external or inner damping effects the total virtual work has in the

sense of the d’Alambert principle an additional term which represents the inertial

forces

δW =−
∫

V

ρ ükδukdV −
∫

V

σkδεkdV +
∫

V

pkδukdV +
∫

Aq

qkδukdA (2.2.22)

Equation (2.2.22) represents an extension of the principle of virtual work from stat-

ics to dynamics. ρ is the density of the elastic body.
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For conservative systems of elasto-dynamics, the Hamilton9 principle replaces

the principle of the minimum of the total potential energy

δ

t2
∫

t1

(T −Π)dt ≡ δ

t2
∫

t1

L(uk)dt = 0, T =
1

2

∫

V

ρ u̇ku̇kdV (2.2.23)

Π(uuu) is the potential energy given beforehand and T (uuu) is the so-called kinetic

energy. L = T −Π is the Lagrangian function.

Theorem 2.5 (Hamilton’s principle for conservative systems). Of all possible

paths between two points at time interval t1 and t2 along which a dynamical sys-

tem may move, the actual path followed by the system is the one which minimizes

the integral of the Lagrangian function.

In the contracted vector-matrix notation we can summarize:

Conservative elasto-static problems

Π(uuu) =
1

2

∫

V

σσσεεεTdV −
∫

V

pppuuuTdV −
∫

Aq

qqquuuTdA,

δΠ =

∫

V

σσσδεεεTdV −
∫

V

pppδuuuTdV −
∫

Aq

qqqδuTdA = 0
(2.2.24)

Conservative elasto-dynamic problems

L(uuu) = T (uuu)−Π(uuu), T (uuu) =
1

2

∫

V

ρu̇uuTu̇uudV,

δ

t2
∫

t1

L(uuu)dt = 0

(2.2.25)

All variations are related to the displacement vector uuu. For the stress and the strain

vector we have to take into consideration that σσσ = σσσ(εεε) =σσσ [εεε(uuu)] and for the time

integrations

δuuu(xxx, t1) = δuuu(xxx, t2) = 0 (2.2.26)

For non-conservative systems of elastodynamics, the virtual work δW includes an

approximate damping term

−
∫

V

µu̇uuTδuuudV

with µ as a damping parameter and Eq. (2.2.22) is substituted by

9 William Rowan Hamilton (∗4 August 1805 Dublin - †2 September 1865 Dublin) - physicist,

astronomer, and mathematician, who made important contributions to classical mechanics, optics,

and algebra
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δW = −
∫

V

(ρüuuT + µu̇uuT)δuuudV −
∫

V

δ (σσσTεεε)dV −
∫

V

pppδuuudV

−
∫

Aq

qqqδuuudA
(2.2.27)

A generalized Hamilton’s principle in conjunction with the Reissner’s variational

statement can be presented as

δ χ(uuu,σσσ) = δ

t2
∫

t1

[T (uuu)−ψR(uuu,σσσ)]dt = 0,

where T (uuu) is the kinetic energy as above, ψR(uuu,σσσ) the Reissner’s functional

(2.2.18).

2.2.3 Variational Methods

The variational principles can be used to obtain, in a mathematical way, the govern-

ing differential equations and associated boundary conditions as the Euler-Lagrange

equations of the variational statement. Now we consider the use of the variational

principles in the solution of the model equations. We seek in the sense of the clas-

sical variational methods, approximate solutions by direct methods, i.e. the approx-

imate solution is obtained directly by applying the same variational statement that

are used to derive the fundamental equations.

2.2.3.1 Rayleigh-Ritz Method

Approximate methods are used when exact solutions to a problem cannot be derived.

Among the approximation methods, Ritz10 method is a very convenient method

based on a variational approach. The variational methods of approximation de-

scribed in this textbook are limited to Rayleigh11-Ritz method for elasto-statics and

elasto-dynamics problems of anisotropic elasticity theory and to some extent on

weighted-residual methods.

The Rayleigh-Ritz method is based on variational statements, e.g. the principle of

minimum total potential energy, which is equivalent to the fundamental differential

equations as well as to the so-called natural or static boundary conditions including

10 Walter Ritz (∗ February 22nd, 1878, Sion, Switzerland; † July 7th, 1909, Göttingen) - theoretical

physicist, variational methods
11 John William Strutt, 3rd Baron Rayleigh (∗ November 12th, 1842, Langford Grove, Maldon,

Essex, UK; † June 30th, 1919, Terling Place, Witham, Essex, UK) - physicist, Nobel Prize in

Physics winner (1904), variational method
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force boundary conditions . This variational formulation is known as the weak form

of the model equations. The method was proposed as the direct method by Rayleigh

and a generalization was given by Ritz.

The starting point for elasto-static problems is the total elastic potential energy

functional

Π =
1

2

∫

V

εεεTCCCεεεdV −
∫

V

pppTuuudV −
∫

Aq

qqqTuuudA

=
1

2

∫

V

(DDDuuu)TCCCDDDuuudV −
∫

V

pppTuuudV −
∫

Aq

qqqTuuudA
(2.2.28)

The variations are related to the displacements uuu and the strains εεε which have to be

substituted with help of the differential matrix DDD, (2.2.6), by the displacements. The

approximate solution is sought in the form of a finite linear combination. Looking

first at a scalar displacement approach, the approximation of the scalar displacement

function u(x1,x2,x2) is given by the Ritz approximation

ũ(x1,x2,x3) =
N

∑
i=1

aiϕi(x1,x2,x3)

or

ũ(x1,x2,x3) =
N

∑
i=1

aiϕi(x1,x2,x3)+ϕ0(x1,x2,x3) (2.2.29)

The ϕi are known functions chosen a priori, named approximation functions or co-

ordinate functions. The ai denote undetermined constants named generalized coor-

dinates. The approximation ũ has to make (2.2.28) extremal

Π̃(ũ) = Π̃(ai), δΠ̃(ai) = 0 (2.2.30)

This approximation is characterized by a relative extremum. From (2.2.30) comes

Π̃ in form of a function of the constants ai and δΠ̃(ai) = 0 yields N stationary

conditions
∂Π̃ (ai)

∂ai

= 0, i = 1,2, . . . ,N (2.2.31)

Π̃ may be written as a quadratic form in ai and from Eqs. (2.2.31) follows a system

of N linear equations allowing the N unknown constants ai to be determined. In

order to ensure a solution of the system of linear equations and a convergence of the

approximate solution to the true solution as the number N of the ai is increased, the

ϕi values have to fulfill the following requirements:

• ϕ0 satisfies specified inhomogeneous geometric boundary conditions, the so-

called essential conditions of the variational statement and ϕi, i = 1,2, . . . ,N sat-

isfy the homogeneous form of the geometric boundary conditions.

• ϕi are continuous as required in the variational formulation, e.g. they should have

a non-zero contribution to Π̃ .

• ϕi are linearly independent and complete.
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The completeness property is essential for the convergence of the Ritz approxima-

tion. Polynomial and trigonometric functions are selected examples of complete

systems of functions.

Generalizing the considerations to three-dimensional problems and using vector-

matrix notation it follows

ũuu(x1,x2,x3)≡





ũ1

ũ2

ũ3



=







aaaT
1ϕϕϕ1

aaaT
2ϕϕϕ2

aaaT
3ϕϕϕ3






≡





ϕϕϕ1 ooo ooo

ooo ϕϕϕ2 ooo

ooo ooo ϕϕϕ3





T



aaa1

aaa2

aaa3



 (2.2.32)

or

ũuu(x1,x2,x3) =GGGTaaa (2.2.33)

with

GGGT =





ϕϕϕ1 ooo ooo

ooo ϕϕϕ2 ooo

ooo ooo ϕϕϕ3





T

=







ϕϕϕT
1 oooT oooT

oooT ϕϕϕT
2 oooT

oooT oooT ϕϕϕT
3






, aaa =





aaa1

aaa2

aaa3





GGG is the matrix of the approximation functions, ϕϕϕ i and ooo are N-dimensional vectors

and aaai are N-dimensional subvectors of the vector aaa of the unknown coordinates.

The application of the Ritz method using the minimum principle of elastic potential

energy Π has the following steps:

1. Choose the approximation function ũuu =GGGTaaa.

2. Substitute ũuu into Π

Π̃(ũuu) =
1

2

∫

V

(DDDũuu)TCCCDDDũuudV −
∫

V

pppTũuudV −
∫

Aq

qqqTũuudA

=
1

2
aaaTKKKaaa−aaaT fff

(2.2.34)

with

KKK =

∫

V

(DDDGGG)TCCC(DDDGGG)dV =

∫

V

BBBTCCCBBBdV,

fff =

∫

V

GGGTpppdV +

∫

Aq

GGGTqqqdA

3. Formulate the stationary conditions of Π̃ (aaa)

∂Π̃(aaa)

∂aaa
= ooo

i.e. with
∂

∂aaa
(aaaTKKKaaa) = 2KKKaaa,

∂

∂aaa
(aaaT fff ) = aaa

follows
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KKKaaa = fff (2.2.35)

KKK is called the stiffness matrix, aaa the vector of unknowns and fff the force vector.

These notations are used in a generalized sense.

4. Solve the system of linear equations KKKaaa = fff . The vector aaa of unknown coeffi-

cients is known.

5. Calculate the approximation solution ũuu = aaaTϕϕϕ and the ε̃εε =DDDũuu,σ̃σσ =CCCε̃εε, . . .

For an increasing number N, the previously computed coefficients of aaa remain un-

changed provided the previously chosen coordinate functions are not changed. Since

the strains are calculated from approximate displacements, strains and stresses are

less accurate than displacements.

The Ritz approximation of elasto-dynamic problems is carried out in an analo-

gous manner and can be summarized as follows. For conservative problems we start

with the variational statement (2.2.23). The displacement vector uuu is now a function

of xxx and t and the aaa-vector a function of t. The stationary condition yields

∂

∂aaa

{

1

2
aaaT(t)KKKaaa(t)−aaaT(t) fff (t)+ äaaT(t)MMMaaa(t)

}

= 000 (2.2.36)

MMMäaa(t)+KKKaaa(t) = fff (t), (2.2.37)

MMM =

∫

V

ρGGGTGGGdV,

KKK =

∫

V

(DDDGGG)TCCC(DDDGGG)dV,

fff =

∫

V

GGGTpppdV +

∫

Aq

GGGTqqqdA

The matrix GGG depends on xxx,ppp and qqq on xxx and t. MMM is called the mass matrix.

An direct derivation of a damping matrix from the Ritz approximation analogous

to the KKK- and the MMM-matrix of (2.2.37) is not possible. In most engineering applica-

tions (2.2.37) has an additional damping term and the damping matrix is formulated

approximately as a linear combination of mass- and stiffness-matrix (modal damp-

ing)

MMMäaa(t)+CCCDȧaa(t)+KKKaaa(t) = fff (t), CCCD ≈ αMMM+βKKK (2.2.38)

In the case of the study of free vibrations, we write the time dependence of aaa(t) in

the form

aaa(t) = âaacos(ωt +ϕ) (2.2.39)

and from (2.2.38) with CCCD = 000, fff (t) = 000 comes the matrix eigenvalue problem (App.

A.3)

(KKK −ω2MMM)âaa = ooo, det[KKK −ω2MMM] = 0 (2.2.40)

For N coordinate functions the algebraic equation (2.2.40) yields N eigenfrequen-

cies of the deformable body.
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The Rayleigh-Ritz method approximates the continuous deformable body by a

finite number of degree of freedoms, i.e. the approximated system is less flexible

than the actual body. Consequently for the approximated energy potential Π̃ ≤ Π .

The energy potential converges from below. The approximate displacements satisfy

the equilibrium equations only in the energy sense and not pointwise, unless the

solution converges to the exact solution. The Rayleigh-Ritz method can be applied

to all mechanical problems since a virtual statement exists, i.e. a weak form of the

model equations including the natural boundary conditions. If the displacements

are approximate, the approximate eigenfrequencies are higher than the exact, i.e.

ω̃ ≥ ω .

2.2.3.2 Weighted Residual Methods

Finally some brief remarks on weighted residual methods are given. The fundamen-

tal equation in the displacement approach may be formulated in the form

A(u) = f (2.2.41)

A is a differential operator. We seek again an approximate solution (2.2.29), where

now the constants ai are determined by requiring the residual

RN = A

(

N

∑
i=1

aiϕi +ϕ0

)

− f 6= 0 (2.2.42)

be orthogonal to N linear independent weight function ψi

∫

V

RNψidxxx = 0, i = 1,2, . . . ,N (2.2.43)

ϕ0,ϕi should be linear independent and complete and fulfill all boundary conditions.

Various known special methods follow from (2.2.43). They differ from each other

due to the choice of the weight functions ψi:

• Galerkin’s method12 ψi ≡ ϕi,

• Least-squares method ψi ≡ A(ϕi),
• Collocation method ψi ≡ δ (xxx−xxxi) (δ (xxx−xxxi) = 1 if xxx = xxxi otherwise 0)

The Galerkin method is a generalization of the Ritz method, if it is not possible to

construct a weak form statement. Otherwise the Galerkin and the the Ritz method for

weak formulations of problems yield the same solution equations, if the coordinate

functions ϕi in both are the same.

12 Boris Grigorjewitsch Galerkin, surname more accurately romanized as Galyorkin (∗4

Marchgreg. /20 Februaryjul. 1871 Polozk - 12 July 1945 Leningrad) - mathematician and engineer,

contributions to the theory of approximate solutions of partial differential equations
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The classical variational methods of Ritz and Galerkin are widely used to solve

problems of applied elasticity or structural mechanics. When applying the Ritz or

Galerkin method to special problems involving, e.g. a two-dimensional functional

Π [u(x1,x2)] or a two-dimensional differential equation A[u(x1,x2)] = f (x1,x2), an

approximative solution is usually assumed in the form

ũ(x1,x2) =
N

∑
i=1

aiϕi(x1,x2) or ũ(x1,x2) =
N

∑
i=1

M

∑
j=1

ai jϕ1i(x1)ϕ2 j(x2), (2.2.44)

where ϕi(x1,x2) or ϕ1i(x1),ϕ2 j(x2) are a priori chosen trial functions and the ai or

ai j are unknown constants. The approximate solution depends very strongly on the

assumed trial functions.

To overcome the shortcoming of these solution methods Vlasov13 and Kan-

torovich14 suggested an approximate solution in the form

ũ(x1,x2) =
N

∑
i=1

ai(x1)ϕi(x1,x2) (2.2.45)

The ϕi are again a priori chosen trial functions but the ai(x1) are unknown coefficient

functions of one of the independent variables. The condition δΠ [ũ(x1,x2)] = 0 or

with dA = dx1dx2
∫

A

RN(ũ)ϕidA = 0, i = 1,2, . . . ,N

lead to a system of N ordinary differential equations for the unknown functions

ai(x1). Generally it is advisable to choose if possible the trial functions ϕi as func-

tions of one independent variable, i.e. ϕi = ϕi(x2), since otherwise the system of

ordinary differential equations will have variable coefficients. The approximate so-

lution ũ(x1,x2) tends in regard of the arbitrariness of the assumed trial function

ϕi(x2) to a better solution in the x1-direction. The obtained approximative solution

can be further improved in the x2-direction in the following manner. In a first step

the assumed approximation

ũ(x1,x2) =
N

∑
i=1

ai(x1)ϕi(x2) (2.2.46)

yields the functions ai(x1) by solving the resulting set of ordinary differential

equations with constant coefficients. In the next step, with ai(x1) ≡ ai1(x1) and

ϕi(x2)≡ ai2(x2), i.e.

ũ[I](x1,x2) =
N

∑
i=1

ai2(x2)ai1(x1),

13 Vasily Zakharovich Vlasov (∗11greg./24 jul. February 1906 Kareevo - †7 August 1958 Moscow)

- civil engineer
14 Leonid Vitaliyevich Kantorovich (∗19 January 1912 St. Petersburg - †7 April 1986 Moscow) -

mathematician and economist, Nobel prize winner in economics in 1975
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the ai1(x1) are the given trial functions and the unknown functions ai2(x2) can be

determined as before the ai1(x1) by solving a set of ordinary differential equations.

After completing the first cycle, which yields ũ[I](x1,x2), the procedure can be con-

tinued iteratively. This iterative solution procedure is denoted in literature as vari-

ational iteration or extended Vlasov-Kantorowich method. The final form of the

generated solution is independent of the initial choice of the trial function ϕi(x2)
and the iterative procedure converges very rapidly. It can be demonstrated, that the

iterative generated solutions ũ(x1,x2) agree very closely with the exact analytical

solutions u(x1,x2) even with a single term approximation

ũ(x1,x2) = a1(x1)ϕ1(x2) (2.2.47)

In engineering applications, e.g. for rectangular plates, the single term approxima-

tions yield in general sufficient accuracy.

Summarizing it should be said that the most difficult problem in the application

of the classical variational methods or weighted residual methods is the selection of

coordinate functions, especially for structures with irregular domains. The limita-

tions of the classical variational methods can be overcome by numerical methods,

e.g. the finite element method which is discussed in more detail in Chap. 11.

2.2.4 Problems

Exercise 2.7. An anisotropic body is subjected to a hydrostatic pressure

σ1 = σ2 = σ3 =−p, σ4 = σ5 = σ6 = 0.

1. Calculate the strain state εεε .

2. Calculate the stress state σσσ for a change of the coordinate system obtained by a

rotation TTT σ .

Solution 2.7. The solution can be presented in two parts:

1. The generalized Hooke’s law yields (Eq. 2.1.20)

ε1 = −(S11 + S12 + S13)p, ε4 = −(S14 + S24+ S34)p,
ε2 = −(S12 + S22 + S23)p, ε5 = −(S15 + S25+ S35)p,
ε3 = −(S13 + S23 + S33)p, ε6 = −(S16 + S26+ S36)p

Note 2.3. A hydrostatic pressure in an anisotropic solid yields extensional and

shear strains.

2. From (2.1.39) follows

σ ′
1 = −p(c2 + s2) =−p, σ ′

4 = 0,
σ ′

2 = −p(s2 + c2) =−p, σ ′
5 = 0,

σ ′
3 = −p, σ ′

6 = −p(−cs+ cs) = 0
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Exercise 2.8. An anisotropic body has a pure shear stress state

σ1 = σ2 = σ3 = σ5 = σ6 = 0, σ4 = t.

1. Calculate the strain state εεε .

2. Compare the strain state for the anisotropic case with the isotropic case.

Solution 2.8. The solution can be presented again in two parts:

1. Equations (2.1.20) yield

ε1 = S14t, ε2 = S24t, ε3 = S34t,
ε4 = S44t, ε5 = S45t, ε6 = S46t

The anisotropic body has extensional and shear strains in all coordinate planes.

2. In an isotropic body a pure shear stress state yields only shearing strains:

S14 = S24 = S34 = 0

Exercise 2.9. Consider a prismatic homogeneous anisotropic bar which is fixed at

one end. The origin of the coordinates x1,x2,x3 is placed in the centroid of the

fixed section and the x3-axis is directed along the bar axis, l and A are the length

and the cross-section of the undeformed bar. Assume that the bar at the point

x1 = x2 = x3 = 0 has no displacement and torsion:

u1 = u2 = u3 = 0,u1,3 = u2,3 = u2,1 − u1,2 = 0

1. A force F acts on the bar on the cross-section x3 = l and the stress state is de-

termined by σ1 = σ2 = σ4 = σ5 = σ6 = 0, σ3 = F/A. Determine the strains, the

displacements and the extension of the axis.

2. The fixed bar is deformed only under its own weight: p1 = p2 = 0, p3 = gρ .

Determine the strain state and the displacements and calculate the displacements

in the point (0,0, l).

Solution 2.9. Now one has

1. The generalized Hooke’s law (2.1.20) with

σ1 = σ2 = σ4 = σ5 = σ6 = 0, σ3 = F/A = σ 6= 0,

gives
ε1 = S13σ , ε2 = S23σ , ε3 = S33σ ,
ε4 = S34σ , ε5 = S35σ , ε6 = S36σ

The displacements can be determined by the introduction of the following equa-

tions

S13σ = u1,1, S23σ = u2,2, S33σ = u3,3,
S34σ = u3,2 + u2,3, S35σ = u3,1 + u1,3, S36σ = u2,1 + u1,2

The equations
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u1 = σ(S13x1 + 0.5S36x2),
u2 = σ(0.5S36x1 + S23x2),
u3 = σ(S35x1 + S34x2 + S33x3)

satisfy the displacement differential equations and the boundary conditions

which are prescribed at the point x1 = x2 = x3 = 0.

Note 2.4. The stress-strain formulae show that an anisotropic tension bar does not

only lengthens in the force direction x3 and contracts in the transverse directions,

but also undergoes shears in all planes parallel to the coordinate planes. The

cross-sections of the bar remain plane. The stress states of an isotropic or an

anisotropic bar are identical, the anisotropy effects the strain state only.

2. The stress in a bar under its own weight is

σ1 = σ2 = σ4 = σ5 = σ6 = 0,σ3 = ρg(l− x3)

The stress-strain displacement equations are

ε1 = u1,1 = S13ρg(l− x3), ε4 = u3,2 + u2,3 = S34ρg(l− x3),
ε2 = u2,2 = S23ρg(l− x3), ε5 = u3,1 + u1,3 = S35ρg(l− x3),
ε3 = u3,3 = S33ρg(l− x3), ε6 = u2,1 + u1,2 = S36ρg(l− x3)

The boundary conditions are identical to case a) and the following displacement

state which satisfies all displacement differential equations and the conditions at

the point x1 = x2 = x3 = 0 can be calculated by integration

u1 = ρg[−0.5S35x2
3 + S13x1(l − x3)+ 0.5S36x2(l − x3)],

u2 = ρg[−0.5S34x2
3 + S23x2(l − x3)+ 0.5S36x1(l − x3)],

u3 = ρg[−0.5S13x2
1 + 0.5S23x2

2

+ 0.5S36x1x2 +(S34x2 + S35x1)l + 0.5S33x3(2l − x3)]

Note 2.5. The cross-section does not remain plane, it is deformed to the shape

of a second-order surface and the bar axis becomes curved. The centroid of the

cross-section x3 = l is displaced in all three directions

u1(0,0, l) = −0.5ρgS35l2,
u2(0,0, l) = −0.5ρgS34l2,
u3(0,0, l) = 0.5ρgS33l2

Exercise 2.10. Show that for a composite beam subjected to a distributed continu-

ous load q(x1) the differential equation and the boundary conditions can be derived

using the extremal principle of potential energy.

Solution 2.10. The beam is of the length l, width b and height h. q(x1) is the lateral

load per unit length. The average elasticity modulus of the beam is E1. With the

stress-strain-displacement relations from Bernoulli15 beam theory

15 Jakob I. Bernoulli (∗27 December 1654jul./6 January 1655greg. Basel - †16 August 1705 Basel)

- mathematician, beam theory
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σ1 = E1ε1, ε1 =−x3
d2u3

dx2
1

the strain energy function Wf is seen to be

Wf =
1

2
σ1ε1 =

1

2
E1ε2

1 =
1

2
E1x2

3

(

d2u3

dx2
1

)2

and

Πi =

l
∫

0

b/2
∫

−b/2

h/2
∫

−h/2

E1

2

(

d2u3

dx2
1

)2

x2
3dx3dx2dx1 =

E1I

2

l
∫

0

(

d2u3

dx2
1

)2

dx1

with inertial moment I = bh3/12 for a rectangular cross-section.

In the absence of body forces, the potential function Πa of the external load q(x1)
is

Πa =−
l

∫

0

q(x1)u3(x1)dx1

and the total elastic potential energy is

Π(u3) =
E1I

2

l
∫

0

(

d2u3

dx2
1

)2

dx1 −
l

∫

0

q(x1)u3(x1)dx1

From the stationary condition δΠ(u3) = 0 it follows that

δΠ(u3) =
E1I

2

l
∫

0

δ

(

d2u3

dx2
1

)2

dx1 −
l

∫

0

q(x1)δu3(x1)dx1 = 0

There is no variation of E1I or q(x1), because they are specified. From the last equa-

tion one gets

δΠ(u3) =
E1I

2

l
∫

0

2
d2u3

dx2
1

δ

(

d2u3

dx2
1

)2

dx1 −
l

∫

0

q(x1)δu3(x1)dx1 = 0

The first term can be integrated by parts. The first integration can be performed with

the following substitution

u =
d2u3

dx2
1

, u′ =
d3u3

dx3
1

, v′ = δ

(

d2u3

dx2
1

)

, v = δ

(

du3

dx1

)

and yields
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δΠ(u3) = E1I







[

d2u3

dx2
1

δ

(

du3

dx1

)]l

0

−
l

∫

0

d3u3

dx3
1

δ

(

du3

dx1

)

dx1







−
l

∫

0

qδu3dx1 = 0

The second integration can be performed with the following substitution

u =
d3u3

dx3
1

, u′ =
d4u3

dx4
1

, v′ = δ

(

du3

dx1

)

, v = δu3

and yields

δΠ(u3) =

[

E1I
d2u3

dx2
1

δ

(

du3

dx1

)]l

0

−
[

E1I
d3u3

dx3
1

δu3

]l

0

+

l
∫

0

E1I
d4u3

dx4
1

dx1 −
l

∫

0

q(x1)δu3dx1 = 0

Finally we obtain

δΠ(u3) =

[

E1I
d2u3

dx2
1

δ

(

du3

dx1

)]l

0

−
[

E1I
d3u3

dx3
1

δu3

]l

0

+

l
∫

0

[

E1I
d4u3

dx4
1

− q(x1)

]

δu3dx1 = 0

Since the variations are arbitrary the equation is satisfied if

E1I(u3)
′′′′ = q

and either

E1I(u3)
′′ = 0

or u′3 is specified and

E1I(u3)
′′′ = 0

or u3 is specified at x1 = 0 and x1 = l.

The beam differential equation is the Euler-Lagrange equation of the variational

statement δΠ = 0, u3,u
′
3 represent essential boundary conditions, and E1Iu′′3 ,E1Iu′′′3

are natural boundary conditions of the problem. Note that the boundary conditions

include the classical conditions of simply supports, clamped and free edges.

Exercise 2.11. The beam of Exercise 2.10 may be moderately thick and the ef-

fects of transverse shear deformation ε5 and transverse normal stress are taken into

account. Show that the differential equations and boundary condition can be de-

rived using the Reissner’s variational principle. The beam material behavior may be

isotropic.
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Solution 2.11. To apply Reissner’s variational statement one must assume admis-

sible functions for the displacements u1(x1),u3(x1) and for the stresses σ1(x1,x3),
σ3(x1,x3),σ5(x1,x3). For the beam with rectangular cross-section and lateral load-

ing q(x1) follow in the frame of beam theory

u2 = 0, σ2 = σ4 = σ6 = 0

As in the classical beam theory (Bernoulli theory) we assume that the beam cross-

sections undergo a translation and a rotation, the cross-sections are assumed to re-

main plane but not normal to the deformed middle surface (Timoshenko16 theory).

Therefore we can assume in the simplest case

u1 = x3ψ(x1), u3 = w(x1)

and the strain-displacement relations may be written

ε1 =
∂u1

∂x1
= x3ψ ′(x1),ε3 =

∂u3

∂x3
= 0,ε5 =

∂u3

∂x1
+

∂u1

∂x3
= w′(x1)+ψ(x1)

For the stresses σ1,σ3 and σ5 the following functions are assumed

σ1 =
M

I
x3, I =

bh3

12
,

σ3 =
3q

4b

[

x3

h/2
+

2

3
− 1

3

(

x3

h/2

)2
]

,

σ5 =
3Q

2A

[

1−
(

x3

h/2

)2
]

, A = bh

The assumed functions for σ1 and σ5 are identical to those of the Bernoulli beam

theory and σ3 may be derived from the stress equation of equilibrium in the thick-

ness direction, Eq. (2.2.1), with

σ3(+h/2) = q,σ1(−h/2) = 0

The bending moment M and the shear force resultant Q will be defined in the usual

manner

M(x1) =

+h/2
∫

−h/2

bσ1dx3, Q(x1) =

+h/2
∫

−h/2

bσ5dx3

Now Reissner’s functional ΨR(uuu,σσσ ), e.g. (2.2.18), takes with the assumption above

the form

16 Stepan Prokopovich Timoshenko (∗22 December, 1878 Schpotiwka - † 29 May, 1972

Wuppertal-Elberfeld) - engineer, founder of the modern applied mechanics



2.2 Fundamental Equations and Variational Solution Procedures 81

ΨR(uuu,σσσ) =

l
∫

0

+h/2
∫

−h/2

{

σ1ε1 +σ5ε5 −
1

2E

[

σ2
1 +σ2

3 + 2(1+ν)σ2
5

]

}

bdx3dx1

−
l

∫

0

qwdx1

=

l
∫

0

+h/2
∫

−h/2

{

σ1x3ψ ′(x1)+σ5

[

w′(x1)+ψ(x1)
]

− 1

2E

[

σ2
1 +σ2

3 + 2(1+ν)σ2
5

]

}

bdx1 −
l

∫

0

qwdx1

Substituting M and Q and neglecting the term σ3 which only depends on q and not

on the basic unknown functions ψ ,w respectively, M and Q, and yields no contribu-

tion to the variation δΨ we obtain

Ψ(w,ψ ,M,Q) =

l
∫

0

[

Mψ ′+Q(w′+ψ)− M2

2EI
+

6νqM

5EA
− 3Q2

5GA
− qw

]

dx1

δΨR =

l
∫

0

[

Mδψ ′+ψ ′δM+Q(δw′+ δψ)+ (w′+ψ)δQ

− M

EI
δM +

6νq

5EA
δM− 6Q

5GA
δQ− qδw

]

dx1 = 0

Integration the terms Mδψ ′ and Qδw′ by parts and rearranging the equation

δΨR = [Mδψ +Qδw]l0 +

l
∫

0

{

[Q+M′]δψ − [Q′− q]δw

+

[

ψ ′− M

EI
+

6νq

5EA

]

δM+

[

ψ +w′− 6Q

5GA

]

δQ

}

dx1 = 0

The first term yields the natural boundary conditions of the variational statement:

1. Either M = 0 or ψ must be prescribed at x1 = 0, l.
2. Either Q = 0 or w must be prescribed at x1 = 0, l.

The variations δψ ,δw,δM and δQ are all arbitrary independent functions of x1 and

therefore δΨR = 0 only if

−dM(x1)

dx1
+Q(x1) = 0,

dQ(x1)

dx1
+ q(x1) = 0,

dψ(x1)

dx1
− M(x1)

EI
+

6νq(x1)

5EA
= 0,

dw(x1)

dx1
+ψ(x1)−

6Q(x1)

5GA
= 0
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The both equations for the stress resultants are identical with the equations of the

classical Bernoulli’s theory. The term (w′+ψ) in the fourth equation describes the

change in the angle between the beam cross-section and the middle surface during

the deformation. The term (w′+ψ) is proportional to the average shear stress Q/A

and so a measure of shear deformation. With GA → ∞ the shear deformation tends

to zero and ψ to −w′ as assumed in the Bernoulli’s theory. The third term in the

third equation depends on the lateral load q and Poisson’s ratio ν and tends to zero

for ν → 0. This term described the effect of the transverse normal stress σ3. which

will be vanish if ν = 0 as in the classical beam theory.

Substituting the differential equations for ψ and w into the differential relations

for M and Q leads to

EI

[

ψ ′′(x1)+ν
6

5

Q′(x1)

EA

]

−Q(x1) = 0,
5

6
GA[ψ ′(x1)+w′′(x1)]+ q(x1) = 0

or

EI

[

ψ ′′(x1)−ν
6

5

q(x1)

EA

]

− 5

6
GA[ψ +w′] = 0,

5

6
GA[ψ ′(x1)+w′′(x1)]+q(x1) = 0

Derivation and rearrangement yield a differential equation of 3rd order for ψ(x1)

EIψ ′′′(x1) =−q(x1)+ν
6

5

q′(x1)

EA

With

Q(x1) =
dM(x1)

dx1
= EI

[

ψ ′′(x1)+ν
6

5

Q′(x1)

EA

]

and

Q(x1) =
5

6

EI

GA
[ψ(x1)+w′(x1)]

follows an equation for w′(x1)

w′(x1) =−ψ(x1)+
6

5

EI

GA

[

ψ ′′(x1)+ν
6

5

q(x1)

EA

]

Neglecting with ν = 0 the effect of the transverse normal stress σ3 we get the Tim-

oshenko’s beam equation

EIψ ′′′(x1) =−q(x1), M(x1) = EIψ ′(x1), Q(x1) = EIψ ′′(x1)

w′(x1) =−ψ(x1)+
EIψ ′′(x1)

ksGA
, ks =

5

6

One can note that as G → ∞ the shear deformation tends to vanish as assumed in

classical beam theory, i.e. ψ(x1) =−w′(x1) and the classical beam equations follow

to

EIw′′′′(x1) = q(x1), M(x1) =−EIw′′(x1), Q(x1) =−EIw′′′(x1)
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The derivation of the Timoshenko’s beam equation for laminated beams one can

find in more detail in Sect. 7.3.

Exercise 2.12. Derive the free vibration equations for the moderately thick beam,

Exercise 2.11, using Hamilton’s principle in conjunction with the Reissner varia-

tional theorem.

Solution 2.12. In order to derive the free vibration equations we apply the gener-

alized Hamilton’s principle, i.e. the Hamilton’s principle in conjunction with the

Reissner variational statement

δ χ(uuu,σσσ) = δ

t2
∫

t1

[T (uuu)−ΨR(uuu,σσσ)]dt = 0

T (uuu) is the kinetic energy and ΨR(uuu,σσσ) the Reissner functional of the moderately

thick beam. ΨR(uuu,σσσ) is known from Exercise 2.11 and the kinetic energy for the

beam may be written as

T (uuu) =

l
∫

0

h/2
∫

−h/2

1

2
ρ

[

(

∂u

∂ t

)2

+

(

∂w

∂ t

)2
]

bdx3dx1

=

l
∫

0

1

2
ρ

[

I

(

∂ψ

∂ t

)2

+A

(

∂w

∂ t

)2
]

dx1

with

I =

h/2
∫

−h/2

bx2
3dx3, A =

h/2
∫

−h/2

bdx3

and the mass density ρ of the beam material. The substitution of T [uuu] above and

Ψ(w,ψ ,M,Q) of Exercise 2.11 in the functional χ yields

δ χ(uuu,σσσ) = δ

t2
∫

t1

l
∫

0

{

1

2
ρ

[

I

(

∂ψ

∂ t

)2

+A

(

∂w

∂ t

)2
]

−
[

Mψ ′+Q(w′+ψ)− M2

2EI
+

6νqM

5EA
− 3Q2

5GA
− qw

]

}

dtdx1

=

t2
∫

t1

l
∫

0

[(

ρI
∂ 2ψ

∂ t2
δψ +A

∂ 2w

∂ t2

)

δw

− Mδψ ′−ψ ′δM−Q(δw′+ δψ)− (w′+ψ)δQ

+
M

EI
δM− 6νq

5EA
δM− 6Q

5GA
δQ− qδw

]

dtdx1
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Integration the terms Mδψ ′+Qδw′ by parts

l
∫

0

Mδψ ′dx1 = Mδψ
∣

∣

∣

l

0
−

l
∫

0

M′δψdx1,

l
∫

0

Qδw′dx1 = Qδw

∣

∣

∣

l

0
−

l
∫

0

Q′δwdx1,

rearranging the equation δ χ and setting δ χ = 0 yield

t2
∫

t1

(Mδψ +Qδw)l
0dt +

t2
∫

t1

l
∫

0

[(

ρI
∂ 2ψ

∂ t2
+Q−M′

)

δψ

−
[

Q′+ qA

(

∂ 2w

∂ t2

)]

δw+

(

ψ ′− M

EI
+

6νq

5EA

)

δM

+

(

ψ +w′− 6Q

5GA

)

δA

]

dtdx1 = 0

and the equations for free vibrations follow with q ≡ 0

Q− ∂M

∂x1
+ρI

∂ 2ψ

∂ t2
= 0,

∂Q

∂x1
−ρA

∂ 2w

∂ t2
= 0,

∂ψ

∂x1
− M

EI
= 0, ψ +

∂w

∂x1
− 6Q

5GA
= 0

The underlined terms represent the contribution of rotatory inertia and the effect of

transverse shear deformation.

The system of four equations can be reduced to a system of two equations for the

unknowns w and ψ . Substitution of

Q = EI
∂ 2ψ

∂x2
1

−ρI
∂ 2ψ

∂ t2
, I =

bh3

12
, A = bh

in the second and fourth equation leads

∂ 3ψ

∂x3
1

− ρ

E

∂ 3ψ

∂ t2∂x1
−ρ

A

E

∂ 2w

∂ t2
= 0, ψ +

∂w

∂x1
− h2

10

[

E

G

∂ 2ψ

∂x2
1

− ρ

G

∂ 2ψ

∂ t2

]

= 0

The equations for forced or free vibrations are given in Sect. 7.3 in a more general

form.
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Chapter 3

Effective Material Moduli for Composites

Composite materials have at least two different material components which are

bonded. The material response of a composite is determined by the material moduli

of all constituents, the volume or mass fractions of the single constituents in the

composite material, by the quality of their bonding, i.e. of the behavior of the in-

terfaces, and by the arrangement and distribution of the fibre reinforcement, i.e. the

fibre architecture.

The basic assumptions made in material science approach models of fibre rein-

forced composites are:

• The bond between fibres and matrix is perfect.

• The fibres are continuous and parallel aligned in each ply, they are packed regu-

larly, i.e. the space between fibres is uniform.

• Fibre and matrix materials are linear elastic, they follow approximately Hooke’s

law and each elastic modulus is constant.

• The composite is free of voids.

Composite materials are heterogeneous, but in simplifying the analysis of compos-

ite structural elements in engineering applications, the heterogeneity of the material

is neglected and approximately overlayed to a homogeneous material. The most

important composites in structural engineering applications are laminates and sand-

wiches. Each single layer of laminates or sandwich faces is in general a fibre rein-

forced lamina. For laminates we have therefore two different scales of modelling:

• The modelling of the mechanical behavior of a lamina, is called the micro-

mechanical or microscopic approach of a composite. The micro-mechanical

modelling leads to a correlation between constituent properties and average ef-

fective composite properties. Most simple mixture rules are used in engineering

applications. Whenever possible, the average properties of a lamina should be

verified experimentally by the tests described in Sect. 3.1 or Fig. 3.1.

• The modelling of the global behavior of a laminate constituted of several quasi-

homogeneous laminae is called the macroscopic approach of a composite.

Fibre reinforced material is in practice neither monolithic nor homogeneous, but it

is impossible to incorporate the real material structure into design and analysis of

85© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0_3
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✻
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✻
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γ

Fig. 3.1 Experimental testing of the mechanical properties of an UD-layer: EL = E1, ET = E2,

GLT = G12,νLT = ν12

composite or any other structural component. Therefore the concept of replacing the

heterogeneous material behavior with an effective material which is both homoge-

neous and monolithic, thus characterized by the generalized Hooke’s law, will be

used in engineering applications. We assume that the local variations in stress and

strain state are very small in comparison to macroscopical measurements of material

behavior.

In the following section some simple approaches to the lamina properties are

given with help of the mixture rules and simple semi-empirical consideration. The

more theoretical modelling in Sect. 3.2 has been developed to establish bounds on

effective properties. The modelling of the average mechanical characteristics of lam-

inates will be considered in Chap. 4.

3.1 Elementary Mixture Rules for Fibre-Reinforced Laminae

In Sect. 1.1 the formulas for volume fraction, mass fraction and density for fibre

reinforced composites are given by (1.1.1) - (1.1.5). The rule of mixtures and the

inverse rule of mixtures is based on the statement that the composite property is

the weighted mean of the properties or the inverse properties of each constituent

multiplied by its volume fraction. In the first case we have the upper-bound effective

property, in the second - the lower-bound. In composite mechanics these bounds are

related to W. Voigt and A. Reuss. In crystal plasticity the bounds were indroduced

by G. Taylor1 and O. Sachs2. The notation used is as follows:

1 Geoffrey Ingram Taylor (∗7 March 1886 St. John’s Wood, England - †27 June 1975 Cambridge)

- physicist and mathematician, contributions to the theory of plasticity, fluid mechanics and wave

theory
2 Oscar Sachs (∗5 April 1896 Moscow - †30 October 1960 Syracus, N.Y.) - metallurgist, contribu-

tions to the theory of plasticity
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E Young’s modulus

ν Poisson’s ratio

G Shear modulus

σ Stress

ε Strain

V,M Volume, mass

v,m Volume fraction, mass fraction

A Cross-section area

ρ Density
The subscripts f and m refer to fibre and matrix, the subscripts L ≡ 1,T ≡ 2 refer to

the principal direction (fibre direction) and transverse to the fibre direction.

3.1.1 Effective Density

The derivation of the effective density of fibre reinforced composites in terms of

volume fractions is given in Sect. 1.1

ρ =
M

V
=

Mf +Mm

V
=

ρfVf +ρmVm

V
= ρfvf +ρmvm = ρfvf +ρm(1− vf)

(3.1.1)

In literature we also find vf ≡ φ for the fibre volume fraction and we have

ρ = ρfφ +ρm(1−φ) (3.1.2)

In an actual lamina the fibres are randomly distributed over the lamina cross-section

and the lamina thickness is about 1 mm and much higher than the fibre diameter

(about 0,01 mm). Because the actual fibre cross-sections and the fibre packing gen-

erally are not known and can hardly be predicted exactly typical idealized regular

fibre arrangements are assumed for modelling and analysis, e.g. a layer-wise, square

or a hexagonal packing, and the fibre cross-sections are assumed to have circular

form. There exists ultimate fibre volume fractions vfmax
, which are less than 1 and

depend on the fibre arrangements:

• square or layer-wise fibre packing - vfmax
= 0.785,

• hexagonal fibre packing - vfmax
= 0.907

For real UD-laminae we have vfmax
about 0.50 - 0.65. Keep in mind that a lower

fibre volume fraction results in lower laminae strength and stiffness under tension

in fibre-direction, but a very high fibre volume fraction close to the ultimate values

of vf may lead to a reduction of the lamina strength under compression in fibre

direction and under in-plane shear due to the poor bending of the fibres.
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3.1.2 Effective Longitudinal Modulus of Elasticity

When an unidirectional lamina is acted upon by either a tensile or compression load

parallel to the fibres, it can be assumed that the strains of the fibres, matrix and

composite in the loading direction are the same (Fig. 3.2)

εLf = εLm = εL =
∆ l

l
(3.1.3)

The mechanical model has a parallel arrangement of fibres and matrix (Voigt model,

Sect. 2.1.1) and the resultant axial force FL of the composite is shared by both fibre

and matrix so that

FL = FLf +FLm or FL = σLA = σLfAf +σLmAm (3.1.4)

With Hooke’s law it follows that

σL = ELεL, σLf = ELfεLf, σLm = ELmεLm

or

ELεLA = EfεLfAf +EmεLmAm (3.1.5)

Since the strains of all phases are assumed to be identical (iso-strain condition),

(3.1.5) reduces to

EL = Ef
Af

A
+Em

Am

A
(3.1.6)

with
Af

A
=

Afl

Al
=

Vf

V
= vf,

Am

A
=

Aml

Al
=

Vm

V
= vm (3.1.7)

and the effective modulus EL can be written as follows

EL = Efvf +Emvm = Efvf +Em(1− vf) = Efφ +Em(1−φ) (3.1.8)

Equation (3.1.8) is referred to the Voigt estimate or is more familiarly known as the

rule of mixture. The predicted values of EL are in good agreement with experimental

results. The stiffness in fibre direction is dominated by the fibre modulus. The ratio

of the load taken by the fibre to the load taken by the composite is a measure of the

load shared by the fibre

✛ ✲
FLFL

✲✛ l l +∆ l ✲✛

Fig. 3.2 Mechanical model to calculate the effective Young’s modulus EL
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FLf

FL
=

ELf

EL
vf (3.1.9)

Since the fibre stiffness is several times greater than the matrix stiffness, the second

term in (3.1.8) may be neglected

EL ≈ Efvf (3.1.10)

3.1.3 Effective Transverse Modulus of Elasticity

The mechanical model in Fig. 3.3 has an arrangement in a series of fibre and matrix

(Reuss model, Sect. 2.1.1). The stress resultant FT respectively the stress σT is equal

for all phases (iso-stress condition)

FT = FTf = FTm,σT = σTf = σTm (3.1.11)

From Fig. 3.3 it follows that

∆b = ∆bf +∆bm, εT =
∆b

b
=

∆bf +∆bm

b
(3.1.12)

and with

b = vfb+(1− vf)b = bf + bm (3.1.13)

and

εT =
∆bf

vfb

vfb

b
+

∆bm

(1− vf)b

(1− vf)b

b
= vfεTf +(1− vf)εTm (3.1.14)

with

εTf =
∆bf

vfb
, εTm =

∆bm

(1− vf)b

Using Hooke’s law for the fibre, the matrix and the composite

✻

❄
b

❄

✻

b+∆b

✻
FT

❄
FT

Fig. 3.3 Mechanical model to calculate the effective transverse modulus ET
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σT = ETεT, σTf = ETfεTf, σTm = ETmεTm (3.1.15)

substituting Eqs. (3.1.15) in (3.1.14) and considering (3.1.11) gives the formula of

ET

1

ET
=

vf

Ef
+

1− vf

Em
=

vf

Ef
+

vm

Em
or ET =

EfEm

(1− vf)Ef + vfEm
(3.1.16)

Equation (3.1.16) is referred to Reuss estimate or sometimes called the inverse rule

of mixtures. The predicted values of ET are seldom in good agreement with exper-

imental results. With Em ≪ Ef follows from (3.1.16) ET ≈ Em(1− vf)
−1, i.e. ET is

dominated by the matrix modulus Em.

3.1.4 Effective Poisson’s Ratio

Assume a composite is loaded in the on-axis direction (parallel to the fibres) as

shown in Fig. 3.4. The major Poison’s ratio is defined as the negative of the ratio of

the normal strain in the transverse direction to the normal strain in the longitudinal

direction

νLT =−εT

εL
(3.1.17)

With

−εT = νLTεL =−∆b

b
=−∆bf +∆bm

b
=−[vfεTf +(1− vf)εT m],

νf =−εTf

εLf
, νm =−εTm

εLm

it follows that

εT =−νLTεL =−vfνfεLf − (1− vf)νmεLm (3.1.18)

The longitudinal strains in the composite, the fibres and the matrix are assumed to be

equal (Voigt model of parallel connection) and the equation for the major Poisson’s

ratio reduces to

✛ ✲
✻

❄

✲✛

b

l
✲✛ l +∆ l

❄

✻

b−∆b

FL FL

Fig. 3.4 Mechanical model to calculate the major Poisson’s ration νLT
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νLT = vfνf +(1− vf)νm = vfνf + vmνm = φνf +(1−φ)νm (3.1.19)

The major Poisson’s ratio νLT obeys the rule of mixture. The minor Poisson’s ratio

νTL =−εL/εT can be derived with the symmetry condition or reciprocal relationship

νTL

ET
=

νLT

EL
,

νTL = νLT
ET

EL
= (vfνf + vmνm)

EfEm

(vfEm + vmEf)(vfEf + vmEm)
(3.1.20)

The values of Poisson’s ratios for fibres or matrix material rarely differ significantly,

so that neither matrix nor fibre characteristics dominate the major or the minor elas-

tic parameters νLT and νTL.

3.1.5 Effective In-Plane Shear Modulus

Apply a pure shear stress τ to a lamina as shown in Fig. 3.5. Assuming that the shear

stresses on the fibre and the matrix are the same, but the shear strains are different

γm =
τ

Gm
, γf =

τ

Gf
, γ =

τ

GLT
(3.1.21)

The model is a connection in series (Reuss model) and therefore

τ = τf = τm, ∆ = ∆f +∆m, ∆ = b̂ tanγ = γfb̂f + γmb̂m (3.1.22)

and with

b̂ = b̂f + b̂m = (vf + vm)b̂ = vfb̂+(1− vf)b̂ (3.1.23)

it follows that

∆f = γfvfb̂, ∆m = γm(1− vf)b̂ (3.1.24)

�
�� �

��

�
���

��

✲✛ ∆

✲✛∆f

✲✛∆m/2

✻

❄

b̂fibre

matrix

matrix

✲ ✛

γ

∆m/2
�

�
�✠

✛

τ

τ

�
�
�✒

✲

τ

τ

Fig. 3.5 Mechanical model to calculate the effective in-plane shear modulus GLT
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Using Hooke’s law we have τ/GLT = (τ/Gm)vm +(τ/Gf)vf which yields

GLT =
GmGf

(1− vf)Gf + vfGm
=

GmGf

(1−φ)Gf +φGm
(3.1.25)

or by analogy to (3.1.16)

1

GLT
=

vf

Gf
+

1− vf

Gm
=

vf

Gf
+

vm

Gm

which is again a Reuss estimate. Note that assuming isotropic fibres and matrix

material one gets

Gf =
Ef

2(1+νf)
, Gm =

Em

2(1+νm)
(3.1.26)

3.1.6 Discussion on the Elementary Mixture Rules

Summarizing the rule of mixtures as a simple model to predict effective engineering

moduli it must be kept in mind that there is no interaction between fibres and matrix.

There are only two different types of material response: the Voigt or iso-strain model

in which applied strain is the same in both material phases (parallel response) and

the Reuss or iso-stress model in which the applied stress is the same in both material

phases (series response).

For an aligned fibre composite the effective material behavior may be assumed

as transversally isotropic and five independent effective engineering moduli have to

be estimated. With x2 − x3 as the plane of isotropy (Table 2.5) we have

E1 = EL, E2 = E3 = ET, E4 = G23 = GTT = ET/[2(1+νTT)],
E5 = G13 = E6 = G12 = GLT, ν12 = ν13 = νLT, ν23 = νTT,
νLTET = νTLEL

If we make choice of EL,ET,GLT,GTT,νLT as the five independent moduli the rules

of mixture yield
EL = vfEf +(1− vf)Em,

ET =
EfEm

vfEm +(1− vf)Ef
,

GLT =
GfGm

vfGm +(1− vf)Gf
,

νLT = vfνf +(1− vf)νm

(3.1.27)

The shear modulus GTT corresponds to an iso-shear strain model and is analogous

to the axial tensile modulus case

GTT = vfGf +(1− vf)Gm (3.1.28)
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It may be noted that neither the iso-shear stress nor the iso-shear strain condition

for GLT and GTT estimation are close to the real situation of shearing loaded fibre

reinforced composites. Therefore the equations for GLT and GTT cannot be expected

as very reliable.

If one considers the approximative predictions for the effective moduli EL and

ET as a function of the fibre volume fraction vf, i.e., EL = EL(vf), ET = ET(vf),
and the ratio Ef/Em is fixed, it is clear that reinforcing a matrix by fibres mainly

influences the stiffness in fibre direction (EL is a linear function of vf) and rather

high fibre volume fractions are necessary to obtain a significant stiffness increase in

the transverse direction (ET is a non-linear function of vf and rather constant in the

interval 0 < vf < 0,5).

Very often fibres material behavior is transversally isotropic but the matrix ma-

terial is isotropic. For such cases simple alternative relations for the effective engi-

neering moduli of the UD-lamina can be given

EL = vfEf +(1− vf)Em, νLT = vfνLTf +(1− vf)νm,

ET =
ETfEm

vfEm +(1− vf)ETf
, νT T =

νTTfνm

vfνm +(1− vf)νTTf
,

GLT =
GLTfGm

vfGm +(1− vf)GLTf
, GT T = vfGf +(1− vf)Gm

(3.1.29)

In Eq. (3.1.29) Em,νm,Gm = Em/2(1+ νm) are the isotropic matrix moduli and

Ef,ETf,GLTf,Gf = ETf/2(1+νTTf),νTTf,νLTf are transversally isotropic fibre mod-

uli. Em,νm of the matrix material and Ef,ETf,GLTf,νLTf,νTTf or GTTf of the fibre

material can be chosen as the independent moduli.

3.2 Improved Formulas for Effective Moduli of Composites

Effective elastic moduli related to loading in the fibre direction, such as EL and νLT,

are dominated by the fibres. All estimations in this case and experimental results are

very close to the rule of mixtures estimation. But the values obtained for transverse

Young’s modulus and in-plane shear modulus with the rule of mixtures which can

be reduced to the two model connections of Voigt and Reuss, do not agree well with

experimental results. This establishes a need for better modelling techniques based

on elasticity solutions and variational principle models and includes analytical and

numerical solution methods.

Unfortunately, the theoretical models are only available in the form of compli-

cated mathematical equations and the solution is very limited and needs huge effort.

Semi-empirical relationships have been developed to overcome the difficulties with

purely theoretical approaches.
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The most useful of those semi-empirical models are those of Halpin and Tsai3

which can be applied over a wide range of elastic properties and fibre volume frac-

tions. The Halpin-Tsai relationships have a consistent form for all properties. They

are developed as simple equations by curve fitting to results that are based on the

theory of elasticity.

Starting from results obtained in theoretical analysis, Halpin and Tsai proposed

equations that are general and simple in formulation. The moduli of a unidirectional

composite are given by the following equations

• EL and νLT by the law of mixtures Eqs. (3.1.8), (3.1.19)

• For the other moduli by
M

Mm
=

1+ ξ ηvf

1−ηvf
(3.2.1)

M is the modulus under consideration, e.g. ET, GLT, . . . , η is a coefficient given

by

η =
(Mf/Mm)− 1

(Mf/Mm)+ ξ
(3.2.2)

ξ is called the reinforcement factor and depends on

– the geometry of the fibres

– the packing arrangement of the fibres

– the loading conditions.

The main difficulty in using (3.2.1) is the determination of the factor ξ by comparing

the semi-empirical values with analytical solutions or with experimental results.

In addition to the rule of mixtures and the semi-empirical solution of Halpin and

Tsai there are some solutions available which are based on elasticity models, e.g. for

the model of a cylindrical elementary cell subjected to tension. The more compli-

cated formulas for EL and νLT as the formulas given above by the rule of mixtures

yields practically identical values to the simpler formulas and are not useful. But

the elasticity solution for the modulus GLT yields much better results and should be

applied

GLT = Gm
Gf(1+ vf)+Gm(1− vf)

Gf(1− vf)+Gm(1+ vf)
= Gm

Gf(1+φ)+Gm(1−φ)

Gf(1−φ)+Gm(1+φ)
(3.2.3)

Summarizing the results of Sects. 3.1 and 3.2 the following recommendations

may be possible for an estimation of effective elastic moduli of unidirectional lami-

nae

• EL and νLT should be estimated by the rule of mixtures

• νT L follows from the reciprocal condition

• GLT should be estimated from (3.2.3) or the Halpin/Tsai formulas (3.2.1) and

(3.2.2)

3 Stephen Wei-Lun Tsai (∗6 July 1929, Beijing) - US-American engineer, strength criteria for

composites, founder of the Journal of Composite Materials
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• ET may be estimated with help of the Halpin/Tsai formulas. But only when reli-

able experimental values of ET and GLT are available for a composite the ξ -factor

can be derived for this case and can be used to predict effective moduli for a range

of fibre volume ratios of the same composite. It is also possible to look for nu-

merical or analytical solutions for ξ based on elasticity theory. In general, ξ may

vary from zero to infinity, and the Reuss and Voigt models are special cases, e.g.

ET =
1+ ξ ηvf

1−ηvf
Em

for ξ = 0 and ξ = ∞, respectively. In the case of circular cross-sections of the

fibres ξ = 2 or ξ = 1 can be recommended for Halpin-Tsai equation for ET or

GLT. But it is dangerous to use uncritically these values for any given composite.

3.3 Problems

Exercise 3.1. Determine for a glass/epoxy lamina with a 70 % fibre volume fraction

1. the density and the mass fractions of the fibre and matrix,

2. the Young’s moduli E ′
1 ≡ EL and E ′

2 ≡ ET and determine the ratio of a tensile

load in L-direction taken by the fibres to that of the composite,

3. the major and the minor Poisson’s ratio νLT,νTL,

4. the in-plane shear modulus

The properties of glass and epoxy are taken approximately from Tables F.1 and

F.2 as ρglass ≡ ρf = 2,5 gcm−3, νf = 0,7,νm = 0,3, ρepoxy ≡ ρm = 1,35 gcm−3,

Ef = 70 GPa, Em = 3,6 GPa.

Solution 3.1. Taking into account the material parameters and the volume fraction

of the fibres one obtains:

1. Using Eq. (1.1.3) the density of the composite is

ρ = ρfvf +ρmvm = 2,5 ·0,7 gcm−3 + 1,35 ·0,3 gcm−3 = 2,155 gcm−3

Using Eq. (1.1.4) the mass fractions are

mf =
ρf

ρ
vf =

25

2,155
0,7 = 0,8121, mm =

ρm

ρ
vm =

1,35

2,155
0,3 = 0,1879

Note that the sum of the mass fractions must be 1

mf +mm = 0,8121+ 0,1879= 1

2. Using Eqs. (3.1.8), (3.1.16) and (3.1.9) we have

EL = 70 ·0,7 GPa+ 3,6 ·0,3 GPa = 50,08 GPa,
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1

ET
=

0,7

70GPa
+

0,3

3,6GPa
= 0,09333 GPa−1, ET = 10,71 GPa,

FLf

FL
=

ELf

EL
vf =

70

50,08
0,7 = 0,9784

The ratio of the tensile load FL taken by the fibre is 0,9784.

3. Using Eqs. (3.1.19) and (3.1.20) follows

νLT = 0.2 ·0.7+ 0.3 ·0.3= 0.230, νTL = 0.230
10.71

50.08
= 0,049

4. Using (3.1.26) and (3.1.25)

Gf =
70 GPa

2(1+ 0.2)
= 29.17 GPa, Gm =

3.6 GPa

2(1+ 0,3)
= 1.38 GPa,

GLT =
1.38 GPa ·29.17 GPa

29.17 GPa ·0.3+ 1,38 GPa ·0.7) = 4.14 GPa

Using (3.2.3)

GLT = 1.38 GPa
29.17 GPa ·1.7+ 1.38 GPa ·0.3
29.17 GPa ·0.3+ 1.38 GPa ·1.7 = 6.22 GPa

Conclusion 3.1. The difference between the both formulae for GLT is significant.

The improved formulae should be used.

Exercise 3.2. Two composites have the same matrix materials but different fibre

material. In the first case Ef/Em = 60, in the second case Ef/Em = 30. The fibre

volume fraction for both cases is vf = 0,6. Compare the stiffness values EL and ET

by EL/ET,EL/Em,ET/Em.

Solution 3.2. First case

EL1 = Ef1vf +Em(1− vf),
Ef1

Em
= 60, Ef1 = 60Em,

EL1 = 36Em+ 0,4Em = 36,4Em, ET1 =

(

vf

Ef1
+

1− vf

Em

)−1

= 2,439Em,

EL1

ET1
= 14,925,

EL1

Em
= 36,4,

ET1

Em
= 2,439

Second case

EL2 = Ef2vf +Em(1− vf), Ef2 = 30Em,

EL2 = 18Em+ 0,4Em = 18,4Em, ET2 =

(

vf

Ef2
+

1− vf

Em

)−1

= 2,3810Em,

EL2

ET2
= 7,728,

EL2

Em
= 18,4,

ET2

Em
= 2,381

Conclusion 3.2. The different fibre material has a significant influence on the

Young’s moduli in the fibre direction. The transverse moduli are nearly the same.



3.3 Problems 97

Exercise 3.3. For a composite material the properties of the constituents are Ef = 90

GPa, νf = 0,2,Gf = 35 GPa, Em = 3,5 GPa, νm = 0,3, Gm = 1,3 GPa. The volume

fraction vf = φ = 60%. Calculate EL,ET,GLT,νLT,νT L with the help of the rule of

mixtures and also GLT with the improved formula.

Solution 3.3.

EL = Efvf +Em(1− vf) = 55,4 GPa, ET =

(

vf

Ef
+

vm

Em

)−1

= 8,27 GPa,

νLT = νfvf +νm(1− vf) = 0,24, νTL =
νLTET

EL
= 0,0358,

GLT =
GmGf

(1− vf)Gf + vfGm
= 3,0785 GPa

The improved formula (3.2.3) yields

GLT = Gm
(1+ vf)Gf +(1− vf)Gm

(1− vf)Gf +(1+ vf)Gm
= 4,569 GPa

Conclusion 3.3. The difference in the GLT values calculated using the rule of mix-

tures and the improved formula is again significant.

Exercise 3.4. A unidirectional glass/epoxy lamina is composed of 70% by volume

of glass fibres in the epoxy resin matrix. The material properties are Ef = 85 GPa,

Em = 3,4 GPa.

1. Calculate EL using the rule of mixtures.

2. What fraction of a constant tensile force FL is taken by the fibres and by the

matrix?

Solution 3.4. Withe the assumed material parameters and fibre volume fraction one

obtains

1. EL = Efvf +Em(1− vf) = 60,52 GPa,

2. FL = σLA = ELεA,Ff = σfA = EfεAf,Fm = σmA = EmεAm

With FL = Ff +Fm it follows that

ELεA = EfεAf +EmεAm ⇒ EL = 0,7Ef + 0,3Em,
60,52 = 0,7 ·85+ 3 ·3,4= 59,5+ 1,02

and therefore FL = 60,52 N, Ff = 59,5 N, Fm = 1,02 N.

Conclusion 3.4. The fractions of a constant tensile load in the fibres and the ma-

trix are: Fibres: 98,31 %, Matrix: 1,69 %

Exercise 3.5. The fibre and the matrix characteristics of a lamina are Ef = 220 GPa,

Em = 3,3 GPa, Gf = 25 GPa, Gm = 1,2 GPa, νf = 0,15, νm = 0,37. The fibre is

transversally isootropic and transverse Young’s modulus is ETf = 22 GPa. The fibre

volume fraction is vf = 0,56. The experimentally measured effective moduli are

EL = 125 GPa, ET = 9,1 GPa, GLT = 5 GPa, νLT = 0,34.
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1. compare the experimental values with predicted values based on rule of mixtures.

2. Using the Halpin-Tsai approximate model for calculating ET and GLT, what value

of ξ must be used in order to obtain moduli that agree with experimental values?

Solution 3.5. The comparison can be be performed by results from the mixture rules

and improved equations.

1. The rule of mixtures (3.1.27) yields

EL = 0,56 ·220 GPa+(1− 0,56) ·3,3 GPa = 124,65 GPa,

ET =
220 GPa ·3,3 GPa

0,56 ·3,3 GPa+(1− 0,56) ·220 GPa
= 7,36 GPa,

GLT =
25 GPa ·1,2 GPa

0,56 ·1,2 GPa+(1− 0,56) ·25 GPa
= 2,57 GPa,

νLT = 0,56 ·0,15+(1−0,56) ·0,37= 0,25

It is seen that the fibre dominated modulus EL is well predicted by the rule of

mixtures, while ET,GLT and νLT are not exactly predicted.

2. The Halpin-Tsai approximation yields with ETf = 22 GPa, ξ = 2 for ET

ET =
1+ ξ ηvf

1−ηvf
Em, η =

ETf/Em − 1

ETf/Em + ξ
= 0,6538, ET = 9,02 GPa

With a value ξ = 2.5 follows for GLT

GLT =
1+ ξ ηvf

1−ηvf
Gm, η =

Gf/Gm − 1

Gf/Gm + ξ
= 0,8339, GLT = 4,88 GPa

The predicted value for ET is nearly accurate for ξ = 2 which is the recom-

mended value in literature but the recommended value of ξ = 1 for GLT would

underestimate the predicted value significantly

GLT =
1+ηvf

1−ηvf
Gm, η =

Gf/Gm − 1

Gf/Gm + 1
= 0,9084, GLT = 3,68 GPa

It can be seen that it is dangerous to accept these values uncritically without

experimental measurements.

Exercise 3.6. Let us assume the following material parameters for the shear mod-

ulus of the fibre and the matrix: Gf = 2,5 · 104 Nmm−2, Gm = 1,2 · 103 Nmm−2.

The experimental value of the effective shear modulus is G
exp
LT = 5 ·103 Nmm−2, the

Poisson’s ratios are νf = 0,15,νm = 0,37 and the fibre volume fraction is vf = 0,56.

For the improvement in the sense of Halpin-Tsai we assume ξ = 1 . . .2 for a circular

cross-section of the fibres. Compute:

1. the effective shear modulus,

2. the improved effective shear modulus,



3.3 Problems 99

3. the improved effective shear modulus in the sense of Halpin-Tsai

Solution 3.6. The three problems have the following solutions:

1. the effective shear modulus after Eq. (3.1.25)

GLT =
1,2 ·103 Nmm−2 ·2,5 ·104 Nmm−2

(1− 0,56) ·2,5 ·104 Nmm−2 + 0,56 ·1,2 ·103 Nmm−2

= 2,57 ·103 Nmm−2

2. the improved effective shear modulus after Eq. (3.2.3)

GLT = 1,2 ·103 N

mm2

2,5 ·104 Nmm−2(1+ 0,56)+ 1,2 ·103 Nmm−2(1− 0,56)

2,5 ·104 Nmm−2(1− 0,56)+ 1,2 ·103 Nmm−2(1+ 0,56)

= 3,68 ·103 Nmm−2

3. For the improved effective shear modulus in the sense of Halpin-Tsai at first

should be estimated η with Eq. (3.2.2)

η =
(2,5 ·104 Nmm−2/1,2 ·103 Nmm−2)− 1

(2,5 ·104 Nmm−2/1,2 ·103 Nmm−2)+ ξ

In the case of ξ = 1 we get η = 0,9084, if ξ = 2 we get η = 0,8686. The shear

modulus itself follows from Eq. (3.2.1)

GLT =
1+ ξ η ·0,15

1−η ·0,15
1,2 ·103 Nmm−2

Finally we get

GLT(ξ = 1) = 3,68 ·103 Nmm−2, GLT(ξ = 2) = 4,61 ·103 Nmm−2

The last result is the closest one to the experimental value. Let us compute the

deviation

δ =
G

exp
LT −G

comp
LT

G
exp
LT

·100%

The results are

δ (case a) =
5 ·103 Nmm−2 − 2,57 ·103 Nmm−2

5 ·103 Nmm−2
·100% = 46,6%

δ (case b) =
5 ·103 Nmm−2 − 2,66 ·103 Nmm−2

5 ·103 Nmm−2
·100% = 26,8%

δ (case c,ξ = 1) =
5 ·103 Nmm−2 − 3,68 ·103 Nmm−2

5 ·103 Nmm−2
·100% = 26,3%

δ (case c,ξ = 2) =
5 ·103 Nmm−2 − 4,61 ·103 Nmm−2

5 ·103 Nmm−2
·100% = 7,8%
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a b c
r a

r

h

r

Fig. 3.6 Fibre arrangements. a Square array, b hexagonal array, c layer-wise array

The result can be improved if the ξ -value will be increased.

Exercise 3.7. Calculate the ultimate fibre volume fractions vu
f for the following fibre

arrangements:

1. square array,

2. hexagonal array,

3. layer-wise array.

Assume circular fibre cross-sections.

Solution 3.7. For the three fibre arrangements one gets:

1. Square array (Fig. 3.6 a)

vu
f =

Af

Ac
=

4(r2π)/4

4r2
=

π

4
= 0.785

2. Hexagonal array (Fig. 3.6 b) with a → 2r, h →
√

3r follow

Ac = hr, Af = 6(1/3)πr2 +πr2

and

vu
f =

Af

Ac
=

6(1/3)πr2 +πr2)/4

6
√

3r2
=

π

2
√

3
= 0.9069

3. Layer-wise array (Fig. 3.6 c)

vu
f =

Af

Ac
=

r2π

(2r)2
=

π

4
= 0.785



Part II

Modelling of a Single Laminae, Laminates
and Sandwiches



The second part (Chaps. 4–6) can be related to the modelling from single lami-

nae to laminates including sandwiches, the improved theories and simplest failure

concepts.

The single layer (lamina) is modelled with the help of the following assumptions

• linear-elastic isotropic behaviour of the matrix and the fibre materials,

• the fibres are unidirectional oriented and uniformly distributed

These assumptions result in good stiffness approximations in the longitudinal and

transverse directions. The stiffness under shear is not well-approximated.

After the transfer from the local to the global coordinates the stiffness parame-

ters for the laminate can be estimated. For the classical cases the effective stiffness

parameters of the laminate is a simple sum up over the laminate thickness of the

weighted laminae reduced stiffness parameters transferred into the global coordi-

nate system. Some improved theories are briefly introduced.

The failure concepts are at the moment a research topic characterised by a large

amount of suggestions for new criteria. With respect to this only some classical

concepts are discussed here.



Chapter 4

Elastic Behavior of Laminate and Sandwich
Composites

A lamina has been defined as a thin single layer of composite material. A lamina

or ply is a typical sheet of composite materials, which is generally of a thickness

of the order 1 mm. A laminate is constructed by stacking a number of laminae in

the direction of the lamina thickness. The layers are usually bonded together with

the same matrix material as in the single lamina. A laminate bonded of n (n ≥ 2)

laminae of nearly the same thickness. A sandwich can be defined as a special case

of a laminate with n = 3. Generally, the sandwich is made of a material of low

density for the inner layer, the core or the supporting pith respectively, and of high

strength material for the outer layers, the cover or face sheets. The thickness of the

core is generally much greater than the thickness of the sheets and core and sheets

are bonded to each other at the surfaces.

The design and analysis of structures composed of composite materials demands

knowledge of the stresses and strains in laminates or sandwiches. However, the lam-

inate elements are single laminae and so understanding the mechanical behavior of

a lamina precedes that of a laminate. Section 4.1 introduces elastic behavior of lam-

inae. For in-plane and out-of-plane loading, the stress resultants are formulated and

basic formulae for stress analysis are derived. These considerations are expanded to

laminates and sandwiches in Sects. 4.2 and 4.3. The governing equations of the clas-

sical laminate theory, the shear deformation theory and of a layer-wise theory are

discussed in Chap. 5. A successful design of composite structures requires knowl-

edge of the strength and the reliability of composite materials. Strength failure the-

ories have to be developed in order to compare the actual stress states in a material

to a failure criteria. Chapter 6 gives an overview on fracture modes of laminae. For

laminates, the strength is related to the strength of each individual lamina. Various

failure theories are discussed for laminates or sandwiches based on the normal and

shear strengths of unidirectional laminae.

103© Springer Nature Singapore Pte Ltd. 2018
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4.1 Elastic Behavior of Laminae

The macro-mechanical modelling and analysis of a lamina is based on average ma-

terial properties and by considering the lamina to be homogeneous. The methods

to find these average properties based on the individual mechanical values of the

constituents are discussed in Sect. 3.1. Otherwise the mechanical characterization

of laminae can be determined experimentally but it demands special experimental

equipment and is costly and time-consuming. Generally the modelling goal is to

find the minimum of parameters required for the mechanical characterization of a

lamina.

For the considerations on the elastic behavior of laminae in the following Sects.

4.1.1 - 4.1.3 one has to keep in mind that two assumptions are most important to

model the mechanics of fibre reinforced laminae:

• The properties of the fibres and the matrix can be smeared into an equiva-

lent homogeneous material with orthotropic behavior. This assumption allows

to develop the stress-strain relations and to formulate the response of a fibre-

reinforced lamina sufficient simply to deal with the structural level response in a

tractable manner.

• Three of the six components of stress state are generally much smaller than the

other three, i.e. the plane stress assumption, which is based on the manner in

which fibre-reinforced materials are used in such structural elements as beams,

plates or shells, will be sufficient accurately. With the assumption that the (x1 −
x2)-plane of the principal co-ordinate system is in-plane stress state, the in-plane

stress components σ1,σ2,σ6 are considered to be much larger in value than the

out-of-plane stress components σ3,σ4,σ5 and the last ones are set approximately

to zero.

Using the plane stress assumption it has to be in mind that some serious inaccuracies

in the mechanical response of laminates can be occurred, Sect. 4.2.

Therefore, together with the plane stress assumption two major misconceptions

should be avoided:

• The stress components σ3,σ4,σ5 equated to zero have to be estimated to their

magnitude and effect. Fibre reinforced material is often very poor in resisting

stresses transversely to the plane (x1 − x2) and therefore out-of-plane stresses

may be small but large enough to cause failure of the composite material.

• With assuming σ3 is zero does not follow that the associated strain ε3 is also zero

and ignorable, for the stresses in the (x1 −x2)-plane can cause a significant strain

response in the x3-direction.

4.1.1 On-Axis Stiffness and Compliances of UD-Laminae

A thin lamina is assumed to be in a plane stress state (Sect. 2.1.5). Three cases of

material behavior of laminae are of special interest for engineering applications:



4.1 Elastic Behavior of Laminae 105

1. Short fibres or particle reinforced components with random orientation in the

matrix

The elastic behavior has no preferred direction and is macroscopically quasi-

homogenous and isotropic. The effective elastic moduli are E and ν and the

relations of the in-plane stress components with the in-plane strain components

are described (Tables 2.6 and 2.7) by





σ1

σ2

σ6



 =





Q11 Q12 0

Q12 Q11 0

0 0 Q66









ε1

ε2

ε6



 ,





ε1

ε2

ε6



 =





S11 S12 0

S12 S11 0

0 0 S66









σ1

σ2

σ6





(4.1.1)

with

Q11 =
E

1−ν2
, S11 =

1

E
,

Q12 =
Eν

1−ν2
, S12 = − ν

E
,

Q66 = G =
E

2(1+ν)
, S66 =

1

G
=

2(1+ν)

E

2. Long fibres with one unidirectional fibre orientation, so-called unidirectional

laminae or UD-laminae, with loading along the material axis (on-axis case)

This type of material forms the basic configuration of fibre composites and is

the main topic of this textbook. The elastic behavior of UD-laminae depends on

the loading reference coordinate systems. In the on-axis case the reference axes

(1′,2′) are identical to the material or principal axes of the lamina parallel and

transverse to the fibre direction (Fig. 4.1). The 1′-axis is also denoted as L-axis

and the 2′-axis as T-axis (on-axis case). The elastic behavior is macroscopically

quasi-homogeneous and orthotropic with four independent material moduli (Ta-

ble 2.6)

E ′
1 ≡ EL, E ′

2 ≡ ET, E ′
6 ≡ G′

12 ≡ GLT, ν ′
12 ≡ νLT (4.1.2)

and the in-plane stress-strain relations are

Fig. 4.1 Unidirectional lam-

ina with principal material

axis L and T (on-axis)

✻

✲
1′ ≡ L

2′ ≡ T

r
r
r
r
r
r
r
r
r
r
r
r
r
r

h✲ ✛
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



σ ′
1

σ ′
2

σ ′
6



 =





Q′
11 Q′

12 0

Q′
12 Q′

22 0

0 0 Q′
66









ε ′1
ε ′2
ε ′6



 ,





ε ′1
ε ′2
ε ′6



 =





S′11 S′12 0

S′12 S′22 0

0 0 S′66









σ ′
1

σ ′
2

σ ′
6





(4.1.3)

with
Q′

11 = E ′
1/(1−ν ′

12ν ′
21), S′11 = 1/E ′

1,
Q′

22 = E ′
2/(1−ν ′

12ν ′
21), S′22 = 1/E ′

2,
Q′

66 = G′
12 = E ′

6, S′66 = 1/G′
12 = 1/E ′

6,
Q′

12 = E ′
2ν ′

12/(1−ν ′
12ν ′

21), S′12 = −ν ′
12/E ′

1 =−ν ′
21/E ′

2

3. UD-laminae with loading along arbitrary axis (x1,x2) different from the material

axis (off-axis case). The elastic behavior is macroscopically quasi-homogeneous

and anisotropic. The in-plane stress-strain relations are formulated by fully pop-

ulated matrices with all Qi j and Si j different from zero but the number of inde-

pendent material parameters is still four as in case 2. The transformation rules

are given in detail in Sect. 4.1.2.

A UD-lamina has different stiffness in the direction of the material axes. With

Ef ≫ Em the stiffness in the L-direction is fibre dominated and for the effective

moduli (Sect. 3.1) EL ≫ ET. Figure 4.2 illustrates qualitatively the on-axis elastic

behavior of the UD-lamina. In thickness direction x3 ≡ T′ orthogonal to the (L-T)-

plane a UD-lamina is macro-mechanically quasi-isotropic. The elastic behavior in

the thickness direction is determined by the matrix material and a three-dimensional

model of a single UD-layer yields a transversely-isotropic response with five inde-

pendent material engineering parameters:

E ′
1 ≡ EL, E ′

2 ≡ ET = E ′
3 ≡ ET′ , E ′

5 = E ′
6 ≡ GLT,

ν ′
12 ≡ νLT = ν ′

13 ≡ νLT′ ,
E ′

4 ≡ GTT′ = E ′
2/[2(1+ν ′

23)]≡ ET/[2(1+νTT′)]
(4.1.4)

Fig. 4.2 On-axis stress-strain

equations for UD-lamina

(qualitative)

✻

✲

σ1,σ2,σ6

ε1,ε2,ε6

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄✄

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦
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σ2(ε2)

σ6(ε6)

✛ ✲σ1σ1

✻

❄

σ2

σ2

✲

✻
✛

❄

σ6
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The material behavior in the 2′ ≡ T and 3 = T′ directions is equivalent. Therefore,

the notation of the engineering parameters is given by E ′
2 =E ′

3 ≡ET, E ′
5 =E ′

6 ≡GLT,

ν ′
12 = ν ′

13 ≡ νLT, E ′
4 = E ′

2/[2(1+ν ′
23)]≡ GTT = ET/[2(1+νTT)]. Summarizing, the

stress-strain relations for on-axis loading of UD-laminae in a contracted vector-

matrix notation leads the equations

σσσ ′ =QQQ′εεε ′ or σ ′
i = Q′

i jε
′
j, Q′

i j = Q′
ji

εεε ′ = SSS′σσσ ′ or ε ′i = S′i jσ
′
j, S′i j = S′ji

i, j = 1,2,6 (4.1.5)

The values Q′
i j of the reduced stiffness matrix QQQ′ and the S′i j of the compliance ma-

trix SSS′ depend on the effective moduli of the UD-lamina. The term reduced stiffness

is used in relations given by Eqs. (2.1.76) and (4.1.3). These relations simplify the

problem from a three-dimensional to a two-dimensional or plane stress state. Also

the numerical values of the stiffness Q′
i j are actually less than the numerical values

of their respective counterparts C′
i j, see Eq. (2.1.79), of the three-dimensional prob-

lem and therefore the stiffness are reduced in that sense also. For on-axis loading

the elastic behavior is orthotropic and with Q′
16 = Q′

26 = 0 and S′16 = S′26 = 0, there

is as in isotropic materials no coupling of normal stresses and shear strains and also

shear stresses applied in the (L-T)-plane do not result in any normal strains in the

L and T direction. The UD-lamina is therefore also called a specially orthotropic

lamina.

Composite materials are generally processed at high temperature and then cooled

down to room temperature. For polymeric fibre reinforced composites the tempera-

ture difference is in the range of 2000 − 3000 C and due to the different thermal ex-

pansion of the fibres and the matrix, residual stresses result in a UD-lamina and ex-

pansion strains are induced. In addition, polymeric matrix composites can generally

absorb moisture and the moisture change leads to swelling strains and stresses sim-

ilar to these due to thermal expansion. Therefore we speak of hygrothermal stresses

and strains in a lamina. The hygrothermal strains in the longitudinal direction and

transverse the fibre direction of a lamina are not equal since the effective elastic

moduli EL and ET and also the thermal and moisture expansion coefficients α th
L ,α th

T

and αmo
L ,αmo

T respectively, are different.

The stress-strain relations of a UD-lamina, including temperature and moisture

differences are given by





ε ′1
ε ′2
ε ′6



=





S′11 S′12 0

S′12 S′22 0

0 0 S′66









σ ′
1

σ ′
2

σ ′
6



+





ε
′th
1

ε
′th
2

0



+





ε
′mo
1

ε
′mo
2

0



 (4.1.6)

with




ε
′th
1

ε
′th
2

0



=





α
′th
1

α
′th
2

0



T,





ε
′mo
1

ε
′mo
2

0



=





α
′mo
1

α
′mo
2

0



M∗ (4.1.7)

T is the temperature change and M∗ is weight of moisture absorption per unit weight

of the lamina. αmo
L ,αmo

T are also called longitudinal and transverse swelling coeffi-
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cients. Equation (4.1.6) can be inverted to give





σ ′
1

σ ′
2

σ ′
6



=





Q′
11 Q′

12 0

Q′
12 Q′

22 0

0 0 Q′
66









ε ′1 − ε
′th
1 − ε

′mo
1

ε ′2 − ε
′th
2 − ε

′mo
2

ε ′6



 (4.1.8)

Note that the temperature and moisture changes do not have any shear strain terms

since no shearing is induced in the material axes. One can see that the hygrothermal

behavior of an unidirectional lamina is characterized by two principal coefficients

of thermal expansion, α
′th
1 ,α

′th
2 , and two of moisture expansion, α

′mo
1 ,α

′mo
2 . These

coefficients are related to the material properties of fibres and matrix and of the fibre

volume fraction.

Approximate micro-mechanical modelling of the effective hygrothermal coef-

ficients were given by Schapery1 and analogous to the micro-mechanical mod-

elling of elastic parameters, Chap. 3, for a fibre reinforced lamina and isotropic

constituents the effective thermal expansion coefficients are

α th
L =

α th
f vfEf +α th

m (1− vf)Em

vfEf +(1− vf)Em
,

α th
T = α th

f vf(1+νf)+α th
m (1− vf)(1+νm)− [vfνf +(1− vf)νm]α

th
L

(4.1.9)

If the fibres are not isotropic but have different material response in axial and trans-

verse directions, e.g. in the case of carbon or aramid fibres, the relations for α th
L and

α th
T have to be changed to

α th
L =

α th
LfvfELf +α th

m (1− vf)Em

vfELf +(1− vf)Em
,

α th
T = (α th

Tf +νTfα
th
Lf)vf +(1+νm)α

th
m (1− vf)

− [vfνTf +(1− vf)νm]α
th
L

(4.1.10)

In most cases the matrix material can be considered isotropic and therefore the ori-

entation designation L,T of the matrix material parameters can be dropped.

Discussion and conclusions concerning effective moduli presented in Chap. 3 are

valid for effective thermal expansion coefficients too. The simple micro-mechanical

approximations of effective moduli yield proper results for α th
L but fails to predict

α th
T with the required accuracy. For practical applications α th

L and α th
T should be

normally determined by experimental methods.

Micro-mechanical relations for effective coefficients of moisture expansion can

be modelled analogously. However, some simplification can be taken into consider-

ation. Usually the fibres, e.g. glass, carbon, boron, etc., do not absorb moisture that

means αmo
f = 0. For isotropic constituents the formulae for αmo

L and αmo
T are

1 Richard Allan Schapery (∗3 March 1935 Duluth, Minnesota, United States) - engineering educa-

tor, contributions in the field of mechanics of composite materials
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αmo
L =

αmo
m Em(1− vf)

vfEf +(1− vf)Em
=

αmo
m Em(1− vf)

E1
,

αmo
T =

αmo
m (1− vf)[(1+νm)Efvf +(1− vf)Em −νfvfEm]

vfEf +(1− vf)Em

=
αmo

m (1− vf)

E1
{(1+νm)Efvf +[(1− vf)−νfvf]Em}

(4.1.11)

and for a composite with isotropic matrix but orthotropic fibres the effective moduli

are given by

αmo
L = αmo

m

Em(1− vf)

EL
,

αmo
T = αmo

m

1− vf

EL
{(1+νm)ELfvf +[(1− vf)−νLTfvfEm}

(4.1.12)

The formulae (4.1.9) - (4.1.12) completes the discussion about micro-mechanics

in Chap. 3. Note that for a great fibre volume fraction negative α th
L values can be

predicted reflecting the dominance of negative values of fibre expansion α f
L, e.g. for

graphite-reinforced material.

Summarizing one has to keep in mind that with the plane stress assumption re-

ferred to the principal material axis L,T the mechanical shear strains and the total

shear strain are identical, i.e. ε
′th
6 = ε

′mo
6 ≡ 0, Eqs. (4.1.6) - (4.1.8). Also the through-

the-thickness total strains ε ′4, ε ′5 are zero and there are no mechanical, thermal or

moisture strains. The conclusion regarding the normal strains ε3 is not the same.

Using the condition σ3 = 0 follows

ε3 = S′13σ ′
1 + S′23σ ′

2 +α
′th
3 T +α

′mo
3 M∗

This equation is the basis for determining the out-of-plane or through-the-thickness

thermal and moisture effects of a laminate.

4.1.2 Off-Axis Stiffness and Compliances of UD-Laminae

A unidirectional lamina has very low stiffness and strength properties in the trans-

verse direction compared with these properties in longitudinal direction. Laminates

are constituted generally of different layers at different orientations. To study the

elastic behavior of laminates, it is necessary to take a global coordinate system for

the whole laminate and to refer the elastic behavior of each layer to this reference

system. This is necessary to develop the stress-strain relationship for an angle lam-

ina, i.e. an off-axis loaded UD-lamina.

The global and the local material reference systems are given in Fig. 4.3. We

consider the ply material axes to be rotated away from the global axes by an angle

θ , positive in the counterclockwise direction. This means that the (x1,x2)-axes are

at an angle θ clockwise from the material axes. Thus transformation relations are
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Fig. 4.3 UD-lamina with the

local material principal axis

(1,2) ≡ (L,T) and the global

reference system (x1,x2)

✻

✲✟✟✟✟✟✟✟✟✟✟✟✟✯

❆
❆
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1 ≡ x′1

x ≡ x1

2 ≡ x′2
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✟✟✟✟✟✟✟✟

✟✟✟✟✟✟

✟✟✟✟✟✟✟
✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟
✟✟✟✟ ✟✟

θ
✢

needed for the stresses, the strains, the stress-strain equations, the stiffness and the

compliance matrices.

The transformation equations for a rotating the reference system (x′1,x
′
2) or

(x1,x2) counterclockwise or clockwise by an angle θ follow from Sect. 2.1.2 and

are given in Table 4.1. Note the relations for the transformation matrices derived in

Sect. 2.1.2

Table 4.1 Transformation rules of the coordinates, displacements, strains and stresses of a lamina

a) Rotation of the reference systems

[

x′1
x′2

]

=

[

c s

−s c

][

x1

x2

]

,

[

x1

x2

]

=

[

c −s

s c

][

x′1
x′2

]

xxx′ = RRRxxx, xxx =RRRTxxx′

b) Transformation of displacements

[

u′1
u′2

]

=

[

c s

−s c

][

u1

u2

]

,

[

u1

u2

]

=

[

c −s

s c

][

u′1
u′2

]

uuu′ =RRRuuu, uuu =RRRTuuu′

c) Transformation of strains





ε ′1
ε ′2
ε ′6



=







c2 s2 sc

s2 c2 −sc

−2sc 2sc c2 − s2











ε1

ε2

ε6



,





ε1

ε2

ε6



=







c2 s2 −sc

s2 c2 sc

2sc −2sc c2 − s2











ε ′1
ε ′2
ε ′6





εεε ′ = TTT εεεε =
(

TTT σ ′
)T

εεε , εεε = TTT ε ′εεε ′ = (TTT σ )T εεε ′

d) Transformation of stresses





σ ′
1

σ ′
2

σ ′
6



=







c2 s2 2sc

s2 c2 −2sc

−sc sc c2 − s2











σ1

σ2

σ6



 ,





σ1

σ2

σ6



=







c2 s2 −2sc

s2 c2 2sc

sc −sc c2 − s2











σ ′
1

σ ′
2

σ ′
6





σσσ ′ = TTT σσσσ =
(

TTT ε ′
)T

σσσ , σσσ = TTT σ ′
σσσ ′ = (TTT ε)T σσσ ′

with s ≡ sinθ ,c ≡ cosθ
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TTT ε =
(

TTT ε ′
)−1

=
(

TTT σ ′
)T

, TTT ε ′ = (TTT ε)−1 = (TTT σ )T ,

TTT σ =
(

TTT σ ′
)−1

=
(

TTT ε ′
)T

, TTT σ ′
= (TTT σ )−1 = (TTT ε)T

(4.1.13)

Table 4.2 summarizes the transformation rules for the stress-strain relations and for

the values of the stiffness and the compliance matrices. The transformation matrices

of Table 4.2 follow from Sect. 2.1.2. Using the relations (4.1.13) the transformation

rules can be formulated in matrix notation

Table 4.2 Transformation of the reduced stiffness matrix Q′
i j and compliance matrix S′i j in the ref-

erence system (x′1,x
′
2) to the reduced stiffness matrix Qi j and compliance matrix Si j in the (x1,x2)-

system

a) Constitutive equations in the (x1 ,x2)-reference system





σ1

σ2

σ6



=





Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66









ε1

ε2

ε6



 ,





ε1

ε2

ε6



=





S11 S12 S16

S12 S22 S26

S16 S26 S66









σ1

σ2

σ6





σσσ =QQQεεε , εεε = SSSσσσ ,

QQQ = (TTT ε )T
QQQ′TTT ε , SSS = (TTT σ )T

SSS′TTT σ ,

Qi j = Q ji, Q′
i j = Q′

ji, Si j = S ji, S′i j = S′ji

b) Transformation of the reduced stiffnesses















Q11

Q12

Q16

Q22

Q26

Q66















=

















c4 2c2s2 s4 4c2s2

c2s2 c4 + s4 c2s2 −4c2s2

c3s −cs(c2 − s2) −cs3 −2cs(c2 − s2)
s4 2c2s2 c4 4c2s2

cs3 cs(c2 − s2) −c3s 2cs(c2 − s2)
c2s2 −2c2s2 c2s2 (c2 − s2)2



























Q′
11

Q′
12

Q′
22

Q′
66











c) Transformation of the compliances















S11

S12

S16

S22

S26

S66















=

















c4 2c2s2 s4 c2s2

c2s2 c4 + s4 c2s2 −c2s2

2c3s −2cs(c2 − s2) −2cs3 −cs(c2 − s2)
s4 2c2s2 c4 c2s2

2cs3 2cs(c2 − s2) −2c3s cs(c2 − s2)
4c2s2 −8c2s2 4c2s2 (c2 − s2)2



























S′11

S′12

S′22

S′66











with s ≡ sinθ ,c ≡ cosθ
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QQQ′ =
(

TTT ε ′
)T

QQQTTT ε ′ = TTT σQQQ (TTT σ )T ,

SSS′ =
(

TTT σ ′
)T

SSSTTT σ ′
= TTT εSSS(TTT ε)T ,

QQQ = (TTT ε)T
QQQ′TTT ε ,

SSS = (TTT σ )T
SSS′TTT σ

(4.1.14)

Starting with the stiffness equation σσσ = QQQεεε and introducing σσσ ′ = QQQ′εεε ′ in the

transformation σσσ = TTT σ ′
σσσ ′ =

(

TTT ε ′
)T

σσσ ′ it follows that σσσ =
(

TTT ε ′
)T

QQQ′εεε ′ and with

εεε ′ = TTT εεεε this gives σσσ = (TTT ε)T
QQQ′TTT εεεε . Comparison of equations σσσ = QQQεεε and

σσσ = (TTT ε )T
QQQ′TTT εεεε yields





Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66



= (TTT ε )
T





Q′
11 Q′

12 0

Q′
12 Q′

22 0

0 0 Q66



TTT ε (4.1.15)

In an analogous way





S11 S12 S16

S12 S22 S26

S16 S26 S66



= (TTT σ )T





S′11 S′12 0

S′12 S′22 0

0 0 Q66



TTT σ (4.1.16)

can be derived. Note that in (4.1.15) and (4.1.16) the matrices [Qi j] and [Si j] have

six different elements but the matrices [Q′
i j] and [S′i j] have only four independent

elements. The elements in Qi j or Si j are functions of the four independent material

characteristics Q′
i j or S′i j and the angle θ . The experimental testing is therefore more

simple than for a real anisotropic material with 6 independent material values, if the

material axes of the lamina are known.

From the transformation c) in Table 4.2 follows the transformation of the engi-

neering parameters EL,ET,GLT,νLT of the UD-lamina in the on-axis-system to the

engineering parameters in the global system (x1,x2). From equation a) in Table 4.2

for an angle lamina it can be seen that there is a coupling of all normal and shear

terms of stresses and strains. In Fig. 4.4 these coupling effects in an off-axes loaded

UD-lamina are described.

The coupling coefficients

ν12 =−ε2

ε1
=−S21

S11
, ν21 =−ε1

ε2
=−S12

S22
(4.1.17)

are the known Poisson’s ratios and the ratios

ν16 =
ε6

ε1
=

S61

S11
, ν26 =

ε6

ε2
=

S62

S22
(4.1.18)

are so called shear coupling values. They are non-dimensional parameters like Pois-

son’s ratio and relate normal stresses to shear strains or shear stresses to normal

strains.
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Fig. 4.4 Off-axis loaded UD-lamina with one stress component in each case

Hence the strain-stress equation of an angle lamina can be written in terms of

engineering parameters of the off-axis case as





ε1

ε2

ε6



=





1/E1 −ν21/E2 ν61/E6

−ν12/E1 1/E2 ν62/E6

ν16/E1 ν26/E2 1/E6









σ1

σ2

σ6



 (4.1.19)

With the compliance engineering parameters

S11 =
1

E1
, S12 = −ν21

E2
, S21 = −ν12

E1
,

S66 =
1

E6
, S16 =

ν61

E6
, S61 =

ν16

E1
,

S26 =
ν62

E6
, S62 =

ν26

E2
, S22 =

1

E2

(4.1.20)

it follows from the symmetry considerations of the compliance matrix that

Si j = S ji, i, j = 1,2,6; i.e.
ν12

E2
=

ν21

E1
,

ν16

E1
=

ν61

E6
,

ν26

E2
=

ν62

E6
(4.1.21)

but the anisotropic coupling coefficients are

νi j 6= ν ji, i, j = 1,2,6 (4.1.22)

Equation (4.1.19) can be inverted to yield the stress-strain equations in terms of

engineering parameters but these relations would be more complex than (4.1.19).

Using the relationships between engineering parameters and compliances (4.1.20)

in the compliance transformation rule (Table 4.2) we obtain the following transfor-

mations for the engineering parameters of the angle lamina including shear coupling
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ratios ν16 and ν26

1

E1
=

1

E ′
1

c4 +

(

1

G′
12

− 2ν ′
12

E ′
1

)

s2c2 +
1

E ′
2

s4,

1

E2
=

1

E ′
1

s4 +

(

1

G′
12

− 2ν ′
12

E ′
1

)

s2c2 +
1

E ′
2

c4,

1

G12
= 2

(

2

E ′
1

+
2

E ′
2

+
4ν ′

12

E ′
1

− 1

G′
12

)

s2c2 +
1

G′
12

(c4 + s4),
(4.1.23)

ν12

E1
=

ν21

E2
=

[

ν ′
12

E ′
1

(c4 + s4)−
(

1

E ′
1

+
1

E ′
2

− 1

G′
12

)

c2s2

]

,

ν16 = E ′
1

[(

2

E ′
1

+
2ν ′

12

E ′
1

− 1

G′
12

)

sc3 −
(

2

E ′
2

+
2ν ′

12

E ′
1

− 1

G′
12

)

s3c

]

,

ν26 = E ′
2

[(

2

E ′
1

+
2ν ′

12

E ′
1

− 1

G′
12

)

s3c−
(

2

E ′
2

+
2ν ′

12

E ′
1

− 1

G′
12

)

sc3

]

Equation (4.1.23) can be also written in the following form

E1 =
EL

c4 +

(

EL

GLT
− 2νLT

)

s2c2 +
EL

ET
s4

,

E2 =
ET

c4 +

(

ET

GLT
− 2νTL

)

s2c2 +
ET

EL
s4

,

G12 =
GLT

c4 + s4 + 2

[

2
GLT

EL
(1+ 2νLT)+ 2

GLT

ET
− 1

]

s2c2

,

ν12 =

νLT(c
4 + s4)−

(

1+
EL

ET
− EL

GLT

)

c2s2

c4 +

(

EL

GLT
− 2νLT

)

c2s2 +
EL

ET
s4

,

ν21 =

νTL(c
4 + s4)−

(

1+
ET

EL
− ET

GLT

)

c2s2

c4 +

(

ET

GLT
− 2νTL

)

c2s2 +
ET

EL
s4

,

ν16 = EL

[(

2

EL
+

2νLT

EL
− 1

GLT

)

sc3 −
(

2

ET
+

2νLT

EL
− 1

GLT

)

s3c

]

,

ν26 = ET

[(

2

EL
+

2νLT

EL
− 1

GLT

)

s3c−
(

2

ET
+

2νLT

EL
− 1

GLT

)

sc3

]

(4.1.24)

The engineering parameters can change rapidly with angel θ . This can be inter-

preted as if the fibres are not oriented exactly as intended the values of engineering

parameters are very less or more than expected.
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A computational procedure for calculating the elastic parameters of a UD-lamina

in off-axis loading can be illustrated by the following steps:

1. Input the basic engineering parameters EL,ET,GLT,νLT referred to the material

axes of the lamina and obtained by material tests or mathematical modelling.

2. Calculate the compliances S′i j and the reduced stiffness Q′
i j.

3. Application of transformations to obtain the lamina stiffness Qi j and compliances

Si j.

4. Finally calculate the engineering parameters E1,E2,G12,ν12,ν21,ν16,ν26 re-

ferred to the (x1,x2)-system.

Otherwise the engineering parameters referred to the (x1,x2)-coordinate can be cal-

culated directly by Eqs. (4.1.24).

Analogous to the on-axis loaded UD-lamina also the off-axis lamina is in thick-

ness direction x3 ≡ T ′ orthogonal to the (x1,x2)-plane macro-mechanically quasi-

isotropic and the three-dimensional material behavior is transversely-isotropic. The

mechanical properties transverse to the fibre direction are provided by weaker ma-

trix material and the effects of transverse shear deformation may be significant. For

such cases, the stress and the strain vector should include all six components

σσσT = [σ1 σ2 σ3 σ4 σ5 σ6], εεεT = [ε1 ε2 ε3 ε4 ε5 ε6]

For a rotation about the direction eee3 (Fig. 2.6) the transformation matrices (2.1.39)

and (2.1.40) are valid and relations for stress and strain vectors in the on-axis and

the off-axis reference system are given by

σσσ ′ =
3

TTT σ σσσ , εεε ′ =
3

TTT ε εεε ,
3

TTT ε ′=

(

3

TTT σ

)T

=

(

3

TTT ε

)−1

,

σσσ =

(

3

TTT σ

)−1

σσσ ′, εεε =

(

3

TTT ε

)−1

εεε ,
3

TTT σ ′
=

(

3

TTT ε

)T

=

(

3

TTT σ

)−1 (4.1.25)

When the stiffness matrix CCC′ corresponding to an orthotropic material behavior, see

Eq. (2.1.46), the transformed stiffness matrix CCC may be written in detail as for mon-

oclinic material behavior, see Eq. (2.1.42)

















σ1

σ2

σ3

σ4

σ5

σ6

















=

















C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0

S Y M C55 0

C66

































ε1

ε2

ε3

ε4

ε5

ε6

















(4.1.26)

The Ci j are the transformed stiffness, i.e. in vector-matrix notation

σσσ ′ = CCC′εεε ′

σσσ = CCCεεε
, σσσ =

3

TTT σ ′
σσσ ′ =

(

3

TTT ε

)T

CCC′εεε ′ =

(

3

TTT ε

)T

CCC′
3

TTT ε εεε =CCCεεε
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we finally obtain

CCC =

(

3

TTT ε

)T

CCC′
3

TTT ε , (4.1.27)

in which the Ci j

C11 = C′
11c4 + 2C′

12c2s2 +C′
22s4 + 4C′

66c2s2,

C12 = C′
11c2s2 +C′

12(c
4 + s4)+C′

22c2s2 − 4C′
66c2s2,

C13 = C′
13c2 +C′

23s2,C14 = 0, C15 = 0,

C16 = C′
11c3s−C′

12cs(c2 − s2)−C′
22cs3 − 2C′

66cs(c2 − s2),

C22 = C′
11s4 + 2C′

12c2s2 +C′
22c4 + 4C′

66c2s2,

C23 = C′
13s2 +C′

23c2,C24 = 0, C25 = 0,

C26 = C′
11cs3 +C′

12cs(c2 − s2)−C′
22c3s+ 2C′

66cs(c2 − s2),

C33 = C′
33,C34 = 0,C35 = 0,

C36 = C′
13cs−C′

23cs,

C44 = C′
44c2 +C′

55s2,

C45 = −C′
44cs+C′

55cs, C46 = 0,

C55 = C′
44s2 +C′

55c2, C56 = 0,

C66 = C′
11c2s2 − 2C′

12c2s2 +C′
22c2s2 +C′

66(c
2 − s2)2 (4.1.28)

The 13 non-zero stiffness of Ci j are not independent material values. They are func-

tions of 9 C′
i j for a three-dimensional orthotropic material, i.e. of

C′
11,C

′
12,C

′
13,C

′
22,C

′
23,C

′
33,C

′
44,C

′
55,C66

and of 5 C′
i j for a transverse-isotropic behavior, i.e. of

C′
11,C

′
12,C

′
22,C

′
23,C

′
55

because

C′
13 =C′

12,C
′
33 =C′

22,C
′
44 =

1

2
(C′

22 −C′
23),C

′
66 =C′

55

With εεε ′ = SSS′σσσ ′,εεε = SSSσσσ follow analogously the transformed compliances

SSS =

(

3

TTT σ

)T

SSS′
3

TTT σ , (4.1.29)

in which the Si j
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S11 = S′11c4 + 2S′12c2s2 + S′22s4 + S′66c2s2,

S12 = S′11c2s2 + S′12(c
4 + s4)+ S′22c2s2 − S′66c2s2,

S13 = S′13c2 + S′23s2,S14 = 0,S15 = 0,

S16 = 2S′11c3s− 2S′12cs(c2 − s2)− 2S′22cs3 − S′66cs(c2 − s2),

S22 = S′11s4 + 2S′12c2s2 + S′22c4 + S′66c2s2,

S23 = S′13s2 + S′23c2,S24 = 0,S25 = 0,

S26 = 2S′11cs3 − 2S′12cs(c2 − s2)− 2S′22c3s− S′66cs(c2 − s2),

S33 = S′33,S34 = 0,S35 = 0,

S36 = 2S′13cs− 2S′23cs,

S44 = S′44c2 + S′55s2,

S45 = −S′44cs+ S′55cs,S46 = 0,

S55 = S′44s2 + S′55c2,S56 = 0,

S66 = 4S′11c2s2 − 4S′12c2s2 + 2S′22c2s2 + S′66(s
2 − c2)2

(4.1.30)

There are again 13 non-zero compliances, but only 9 independent material values

for the orthotropic and 5 independent material values for the transversal-isotropic

case.

The stress-strain relationship for an angle lamina, i.e. an off-axis loaded UD-

lamina, including hygrothermal effects takes the following form





ε1

ε2

ε6



=





S11 S12 S16

S12 S22 S26

S16 S26 S66









σ1

σ2

σ6



+





ε th
1

ε th
2

ε th
6



+





εmo
1

εmo
2

εmo
6



 , (4.1.31)

where




ε th
1

ε th
2

ε th
6



=





α th
1

α th
2

α th
6



T,





εmo
1

εmo
2

εmo
6



=





αmo
1

αmo
2

αmo
6



M∗ (4.1.32)

with the thermal and moisture expansion coefficients α th
i ,αmo

i , i = 1,2,6 and the

temperature change T or the weight of moisture absorption per unit weight M∗,

respectively. It should be remembered that although the coefficients of both ther-

mal and moisture expansions are pure dilatational in the material coordinate system

(L,T), rotation into the global (x1,x2) system results in coefficients α th
6 ,αmo

6 . Fur-

thermore if there are no constraints placed on a UD-lamina, no mechanical strains

will be included in it and therefore no mechanical stresses are induced. But in lami-

nates, even if there are no constraints on the laminate, the difference in thermal and

moisture expansion coefficients of the various laminae of a laminate induces differ-

ent expansions in each layer and results in residual stresses. This will be explained

fully in Sects. 4.2.4 and 4.2.5. With

ε ′th1 = α
′th
1 T,

ε ′th2 = α
′th
2 T,

ε ′th6 = 0,

(4.1.33)
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and
ε th

1 = ε
′th
1 c2 + ε ′th2 s2,

ε th
2 = ε

′th
1 s2 + ε ′th2 c2,

ε th
6 = 2(ε

′th
1 − ε ′th2 )cs,

(4.1.34)

follow
α th

1 = α
′th
1 c2 +α

′th
2 s2,

α th
2 = α

′th
1 s2 +α

′th
2 c2,

α th
6 = 2(α

′th
1 −α

′th
2 )cs

(4.1.35)

In an anisotropic layer, uniform heating induces not only normal strains, but also

shear thermal strains. For a transversal isotropic material behavior there is additional

ε th
3 = α th

3 T , α th
3 = α

′th
3 , α th

4 = α th
5 = 0. Because ε3 = ε ′3 the strain ε3 can be obtained

directly from

ε3 = α th
3 T +αmo

3 M∗+ S′13σ ′
1 + S′23σ ′

2

However, the stresses σ ′
1,σ

′
2 can be written in terms σ1,σ2,σ6 referred to the off-

axis coordinate system to obtain an expression for ε3 that represents the normal

strain in the x3-direction in terms of the global coordinate system

ε3 = ε th
3 + εmo

3 +(S13c2 + S23s2)σ1 +(S13s2 + S23c2)σ2

+ 2(S13 − S23s2)scσ1
(4.1.36)

4.1.3 Stress Resultants and Stress Analysis

Sections 4.1.1 and 4.1.2 describe the constitutive equations for UD-laminae in an

on-axis and an off-axis reference system as a relation between stresses and strains.

For each lamina, the stress components can be integrated across their thickness h and

yield stress resultants. Stress resultants can be in-plane forces, transverse forces and

resultant moments. The constitutive equations may then be formulated as relations

between mid-plane strain and in-plane forces, transverse shear strains and transverse

forces and mid-plane curvatures and resultant moments, respectively.

The in-plane stress resultant force vector, denoted by

NNN = [N1 N2 N6]
T, (4.1.37)

is defined by

NNN =

h/2
∫

−h/2

σσσdx3 (4.1.38)

The Ni are forces per unit length, N1,N2 are normal in-plane resultants and N6 is

a shear in-plane resultant, respectively. They are illustrated in Fig. 4.5 for constant

in-plane stresses σ1,σ2,σ6 across the thickness. In this case we have



4.1 Elastic Behavior of Laminae 119

x1

x2

x3

N1

N6

N6

N2

h

Fig. 4.5 In-plane force resultants per unit length NNNT = [N1 N2 N6]

NNN =σσσh (4.1.39)

The reduced stiffness matrix QQQ of the lamina has also constant components across

h. The strains of the midplane x3 = 0 of the lamina are given by

εεε(x1,x2,x3 = 0) = εεε(x1,x2)

and Eq. (4.1.39) yields

NNN =QQQεεεh =AAAεεε, AAA =QQQh, εεεT = [ε1 ε2 ε6] (4.1.40)

QQQ is the reduced stiffness matrix (Table 4.2 a) and AAA is the off-axis stretching or

extensional stiffness matrix of the lamina. From (4.1.40) it follows that

εεε = AAA−1NNN = aaaNNN, aaa = AAA−1 = SSSh−1 (4.1.41)

aaa is the off-axis in-plane compliance matrix. AAA and aaa are, like QQQ and SSS symmet-

ric matrices, which have in the general case only non-zero elements. In the special

cases of on-axis reference systems or isotropic stiffness and compliances, respec-

tively, the structure of the matrices is simplified. AAA is the extensional stiffness and aaa

the extensional compliance matrix expressing the relationship between the in-plane

stress resultant NNN and the mid-plane strain εεε:
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Off-axis extensional stiffness and compliance matrices

AAA =





A11 A12 A16

A12 A22 A26

A16 A26 A66



 , aaa =





a11 a12 a16

a12 a22 a26

a16 a26 a66



 (4.1.42)

On-axis extensional stiffness and compliance matrices

AAA =





A11 A12 0

A12 A22 0

0 0 A66



 , aaa =





a11 a12 0

a12 a22 0

0 0 a66



 (4.1.43)

If the stresses are not constant across h, resultant moments can be defined

MMM =

h/2
∫

−h/2

σσσx3dx3 (4.1.44)

The resultant moment vector is denoted by

MMM = [M1 M2 M6]
T (4.1.45)

The Mi are moments per unit length, M1,M2 are bending moments and M6 is a

torsional or twisting moment. Figure 4.6 illustrates these moments and a linear stress

distribution across h. The resultant moments yield flexural strains, e.g. bending and

x1

x2

x3

M6

M1

M2

M6

h

Qs
1

Qs
2

Fig. 4.6 Resultant moment vector MMMT = [M1 M2 M6] and transverse shear resultants QQQsT = [Qs
1 Qs

2]
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twisting strains, which are usually expressed by the relationship

εεε(x1,x2,x3) = x3κκκ , κκκT = [κ1 κ2 κ6] (4.1.46)

κκκ is the vector of curvature, κ1,κ2 correspond to the bending moments M1,M2 and

κ6 to the torsion moment M6, respectively. The flexural strains are assumed linear

across h. With Qi j = const across h, i, j = 1,2,6 follow

MMM =QQQκκκ

h/2
∫

−h/2

x2
3dx3 =QQQκκκ

h3

12
=DDDκκκ, κκκ =DDD−1MMM = dddMMM (4.1.47)

DDD = QQQh3/12 is the flexural stiffness matrix and ddd the flexural compliance matrix

expressing the relations between stress couples MMM and the curvatures. For off-axis

and on-axis reference systems the matrices are given by:

Off-axis flexural stiffness and compliance matrices

DDD =





D11 D12 D16

D12 D22 D26

D16 D26 D66



 , ddd =





d11 d12 d16

d12 d22 d26

d16 d26 d66



 (4.1.48)

On-axis flexural stiffness and compliance matrices

DDD =





D11 D12 0

D12 D22 0

0 0 D66



 , ddd =





d11 d12 0

d12 d22 0

0 0 d66



 (4.1.49)

The transverse shear resultants can be defined in the same way by

QQQs =

[

Qs
1

Qs
2

]

=

h/2
∫

−h/2

[

σ s
5

σ s
4

]

dx3 (4.1.50)

QQQs is (like the in-plane resultants) a load vector per unit length in the cross section

of the lamina x1 = const or x2 = const, respectively. The transverse shear resultant

vector QQQs is written with a superscript s to distinguish it from the reduced stiffness

matrix QQQ. When modelling a plane stress state, there are no constitutive equations

for σ4,σ5 and the shearing stresses are calculated with the help of the equilibrium

equations, Eq. (2.2.1), or with help of equilibrium conditions of stress resultant,

e.g. Chap. 8. In three-dimensional modelling, including transverse shear strains,

however, constitutive equations for transverse shear resultant can be formulated.

For a lamina with resultant forces NNN and moments MMM the in-plane strain εεε and

the curvature term κκκ have to be combined

εεε(x1,x2,x3) = εεε(x1,x2)+ x3κκκ(x1,x2) (4.1.51)
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For the stress vector is

σσσ(x1,x2,x3) = QQQ[εεε(x1,x2)+ x3κκκ(x1,x2)]
= QQQεεε(x1,x2)+QQQx3κκκ(x1,x2)

(4.1.52)

and by integration through the lamina thickness h follow

NNN =

h/2
∫

−h/2

σσσdx3 = QQQεεεh+QQQκκκ

h/2
∫

−h/2

x3dx3 = AAAεεε +BBBκκκ,

MMM =

h/2
∫

−h/2

σσσx3dx3 = QQQεεε

h/2
∫

−h/2

x3dx3 +QQQκκκ
h3

12
= BBBεεε +DDDκκκ

(4.1.53)

The coupling stiffness matrix BBB is zero for a lamina, which is symmetric to the

midplane x3 = 0, i.e. there are no coupling effects between the NNN and κκκ or MMM and

εεε , respectively. In Table 4.3 the constitutive equations of the lamina resultants are

summarized for a symmetric general angle lamina, for a UD-orthotropic lamina and

for an isotropic layer. In a contracted vector-matrix notation, we can formulate the

constitutive equation of a lamina by

[

NNN

MMM

]

=

[

AAA 000

000 DDD

][

εεε
κκκ

]

, (4.1.54)

where the in-plane stiffness submatrix AAA = QQQh and the plate stiffness submatrix

DDD =QQQh3/12. 000 are zero submatrices. The inverted form of (4.1.54) is important for

stress analysis

[

εεε
κκκ

]

=

[

aaa 000

000 ddd

][

NNN

MMM

]

,
aaa = AAA−1,
ddd = DDD−1,

AAA = QQQh,
DDD = QQQ(h3/12)

(4.1.55)

Equation (4.1.52) yields the stress components σi, i = 1,2,6

σ1 = Q11(ε1 + x3κ1)+Q12(ε2 + x3κ2)+Q16(ε6 + x3κ6) = σ1M +σ1B,
σ2 = Q21(ε1 + x3κ1)+Q22(ε2 + x3κ2)+Q26(ε6 + x3κ6) = σ2M +σ2B,
σ6 = Q16(ε1 + x3κ1)+Q62(ε2 + x3κ2)+Q66(ε6 + x3κ6) = σ6M +σ6B

σiM are the membrane or in-plane stresses coupled with Ni and σiB the curvature or

plate stresses coupled with Mi. The membrane stresses are constant and the bending

stresses linear through the lamina thickness (Fig. 4.7).

The transverse shear stresses σ4,σ5 for plane stress state condition are ob-

tained by integration of the equilibrium equations (2.2.1). If the volume forces

p1 = p2 = 0, Eqs. (2.2.1) yield

σ5(x3) =−
x3
∫

−h/2

(

∂σ1

∂x1
+

∂σ6

∂x2

)

dx3, σ4(x3) =−
x3
∫

−h/2

(

∂σ6

∂x1
+

∂σ2

∂x2

)

dx3 (4.1.56)
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Table 4.3 Stiffness matrices of laminae

Anisotropic single layer or UD-lamina, off-axis















N1

N2

N6

M1

M2

M6















=















A11 A12 A16 0 0 0

A12 A22 A26 0 0 0

A16 A26 A66 0 0 0

0 0 0 D11 D12 D16

0 0 0 D12 D22 D26

0 0 0 D16 D26 D66





























ε1

ε2

ε6

κ1

κ2

κ6















,

Ai j = Qi jh,

Di j = Qi j

h3

12

Orthotropic single layer or UD-laminae, on-axis















N1

N2

N6

M1

M2

M6















=















A11 A12 0 0 0 0

A12 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 0

0 0 0 D12 D22 0

0 0 0 0 0 D66





























ε1

ε2

ε6

κ1

κ2

κ6















,

Q11 =
E1

1−ν12ν21
,

Q22 =
E2

1−ν12ν21
,

Q12 =
ν12E2

1−ν12ν21

=
ν21E1

1−ν12ν21
,

Q66 = G12

Isotropic single layer















N1

N2

N6

M1

M2

M6















=















A11 A12 0 0 0 0

A12 A11 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 0

0 0 0 D12 D11 0

0 0 0 0 0 D66





























ε1

ε2

ε6

κ1

κ2

κ6















,

Q11 =
E

1−ν2
,

Q12 =
νE

1−ν2
,

Q66 =
E

2(1+ν)

and with Eq. (4.1.52) follows

σ5(x3) = −
x3
∫

−h/2

{

∂

∂x1
[Q11(ε1 + x3κ1)+Q12(ε2 + x3κ2)+Q16(ε6 + x3κ6)]

+
∂

∂x2
[Q61(ε1 + x3κ1)+Q62(ε2 + x3κ2)+Q66(ε6 + x3κ6)]

}

dx3,

(4.1.57)
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✂
✂
✂
✂
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✂
✂

✂
✂
✂
✂
✂
✂
✂

❄

✻

h

0 0 0

σiM σiB σi = σiM +σiB

N6

h
= σ6M

N2

h
= σ2M

N1

h
= σ1M

M6

h3/12
x3 = σ6B

M2

h3/12
x3 = σ2B

M1

h3/12
x3 = σ1B

σ6 = σ6M +σ6B

σ2 = σ2M +σ2B

σ1 = σ1M +σ1B

Fig. 4.7 In-plane membrane stresses σiM , bending stresses σiB and total stresses σi across h (qual-

itative)

σ4(x3) = −
x3
∫

−h/2

{

∂

∂x1
[Q61(ε1 + x3κ1)+Q62(ε2 + x3κ2)+Q66(ε6 + x3κ6)]

+
∂

∂x2
[Q21(ε1 + x3κ1)+Q22(ε2 + x3κ2)+Q26(ε6 + x3κ6)]

}

dx3

Substituting the midplane strain εεε and the curvature κκκ by the resultants NNN and MMM

Eqs. (4.1.57) takes the form

σ5(x3) =−
x3
∫

−h/2

{

Q11
∂

∂x1
[a11N1 + a12N2 + a16N6 + x3(d11M1 + d12M2 + d16M6)]

+Q12
∂

∂x1
[a21N1 + a22N2 + a26N6 + x3(d21M1 + d22M2 + d26M6)]

+Q16
∂

∂x1
[a61N1 + a62N2 + a66N6 + x3(d61M1 + d62M2 + d66M6)]

+Q61
∂

∂x2
[a11N1 + a12N2 + a16N6 + x3(d11M1 + d12M2 + d16M6)]

+Q62
∂

∂x2
[a21N1 + a22N2 + a26N6 + x3(d21M1 + d22M2 + d26M6)]
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+Q66
∂

∂x2
[a16N1 + a26N2 + a66N6 + x3(d16M1 + d26M2 + d66M6)]

}

dx3,

(4.1.58)

σ4(x3) =−
x3
∫

−h/2

{

Q61
∂

∂x1
[a11N1 + a12N2 + a16N6 + x3(d11M1 + d12M2 + d16M6)]

+Q62
∂

∂x1
[a21N1 + a22N2 + a26N6 + x3(d21M1 + d22M2 + d26M6)]

+Q66
∂

∂x1
[a61N1 + a62N2 + a66N6 + x3(d61M1 + d62M2 + d66M6)]

+Q21
∂

∂x2
[a11N1 + a12N2 + a16N6 + x3(d11M1 + d12M2 + d16M6)]

+Q22
∂

∂x2
[a21N1 + a22N2 + a26N6 + x3(d21M1 + d22M2 + d26M6)]

+Q26
∂

∂x2
[a61N1 + a62N2 + a66N6 + x3(d61M1 + d62M2 + d66M6)]

}

dx3

The distribution of the transverse shear stresses through the thickness h is obtained

by integration from the bottom surface x3 =−h/2 of the lamina to x3

x3
∫

−h/2

QQQdx3 = ÃAA(x3) = QQQ(x3 + h/2),

x3
∫

−h/2

QQQx3dx3 = B̃BB(x3) = QQQ
1

2

(

x2
3 −

h2

4

)

(4.1.59)

and we have

ÃAA(−h/2) = B̃BB(−h/2) = 000, ÃAA(h/2)≡AAA, B̃BB(h/2)≡BBB

Finally, the transverse shear stress equations (4.1.57) take the form

σ5(x3) =−
[

Ã11(x3)
∂ε1

∂x1
+ Ã12(x3)

∂ε2

∂x1
+ Ã16(x3)

∂ε6

∂x1

+ B̃11(x3)
∂κ1

∂x1
+ B̃12(x3)

∂κ2

∂x1
+ B̃16(x3)

∂κ6

∂x1

+ Ã61(x3)
∂ε1

∂x2
+ Ã62(x3)

∂ε2

∂x2
+ Ã66(x3)

∂ε6

∂x2

+ B̃61(x3)
∂κ1

∂x2
+ B̃62(x3)

∂κ2

∂x2
+ B̃66(x3)

∂κ6

∂x2

]

,
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σ4(x3) =−
[

Ã61(x3)
∂ε1

∂x1
+ Ã62(x3)

∂ε2

∂x1
+ Ã66(x3)

∂ε6

∂x1

+ B̃61(x3)
∂κ1

∂x1
+ B̃62(x3)

∂κ2

∂x1
+ B̃66(x3)

∂κ6

∂x1

+ Ã21(x3)
∂ε1

∂x2
+ Ã22(x3)

∂ε2

∂x2
+ Ã26(x3)

∂ε6

∂x2

+ B̃21(x3)
∂κ1

∂x2
+ B̃22(x3)

∂κ2

∂x2
+ B̃26(x3)

∂κ6

∂x2

]

or an analogous equation to (4.1.59) by substituting the in-plane strains εεε and the

mid-plane curvatures by the stress resultants NNN and MMM.

The transverse shear stresses σ4,σ5 are parabolic functions across the lamina

thickness. If there are no surface edge shear stresses, the conditions σ5(h/2) =
σ4(h/2) = 0 are controlling the performance of the equilibrium equations and the

accuracy of the stress analysis.

4.1.4 Problems

Exercise 4.1. For a single layer unidirectional composite, the on-axis elastic behav-

ior is given by EL = 140 GPa, ET = 9 GPa, νLT = 0.3. Calculate the reduced stiffness

matrix QQQ′ and the reduced compliance matrix SSS′.

Solution 4.1. EL ≡ E ′
1,ET ≡ E ′

2,νLT = ν ′
12. Equation (4.1.3) yields





σ ′
1

σ ′
2

σ ′
6



=





Q′
11 Q′

12 0

Q′
12 Q′

22 0

0 0 Q′
66









ε ′1
ε ′2
ε ′6



 ,





ε ′1
ε ′2
ε ′6



=





S′11 S′12 0

S′12 S′22 0

0 0 S′66









σ ′
1

σ ′
2

σ ′
6



 ,

Q′
11 = E ′

1/(1−ν ′
12ν ′

21), S′11 = 1/E ′
1,

Q′
22 = E ′

2/(1−ν ′
12ν ′

21), S′22 = 1/E ′
2,

Q′
12 = E ′

2ν ′
12/(1−ν ′

12ν ′
21), S′12 =−ν ′

12/E ′
2,

Q′
66 = G′

12 = E ′
2/2(1+ν ′

12), S′66 = 1/G′
12,

ν ′
21 = ν ′

12E ′
2/E ′

1 = 0,0192, G′
12 = E ′

1/2(1+ν ′
12) = 53,846 GPa,

Q′
11 = 140,811 GPa, Q′

22 = 9,052 GPa,

Q′
12 = 2,716 GPa, Q′

66 = 53,846 GPa,

S′11 = 7,143 10−3 GPa−1, S′22 = 111,111 10−3 GPa−1,

S′12 =−2,143 10−3 GPa−1, S′66 = 18,571 10−3 GPa−1,
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QQQ′ =





140,811 2,716 0

2,716 9,052 0

0 0 53,846



GPa,

SSS′ =





7,143 −2,143 0

−2,143 111,111 0

0 0 18,576



10−3GPa−1

Exercise 4.2. A composite panel is designed as a single layer lamina with the fol-

lowing properties EL = 140 GPa, ET = 10 GPa, GLT = 6,9 GPa, νLT = 0,3 and

θ = 450. Calculate the strains ε1,ε2 and ε6 when the panel is loaded by a shear stress

σ6 =±τ = ± 10 MPa.

Solution 4.2. From Fig. 4.4 follows

ε1 =±S16σ6, ε2 =±S26σ6, ε6 =±S66σ6

With EL ≡ E ′
1,ET ≡ E ′

2,GLT ≡ G′
12 and νLT ≡ ν ′

12 and Eq. (4.1.17) is

S′11 = 1/E ′
1 = 7,143 10−3 GPa−1,

S′22 = 1/E ′
2 = 100,000 10−3 GPa−1,

S′12 =−ν ′
12/E ′

1 =−2,143 10−3 GPa−1,

S′66 = 1/G′
12 = 144,928 10−3 GPa−1

The transformation rule, Table 4.2, yields

S16 = S26 =−0,46 10−1 GPa−1, S66 = 1,11 10−1 GPa−1

The strains are ε1 =∓0,46 ·10−3, ε2 = ε1, ε6 =±1,11 ·10−3.

Conclusion 4.1. A positive shear load σ6 =+τ shortens the composite panel in both

directions, a negative shear load σ6 =−τ would enlarge the panel in both directions.

Exercise 4.3. In a unidirectional single layer is a strain state ε11 = 1% = 10−2,

ε22 = − 0.5% = −0.5 10−2,γ12 = 2% = 2 10−2. In the principal directions, the

following engineering parameters of the composite material are E ′
1 = EL = 40 GPa,

E ′
2 = ET = 10 GPa, G12 = GLT = 5 GPa, νLT = 0.3. Determine the plane stress state

for the axis (x1,x2) and (x′1,x
′
2)≡ (L,T) and θ = 450.

Solution 4.3. The stress states σσσ ′ and σσσ are to calculate for a given strain state

ε1 = 10−2, ε2 = −0,5 10−2, ε6 = 2 10−2 for a UD lamina with E ′
1 = 40 GPa,

E ′
2 = 10 GPa, G′

12 = 5 GPa, ν ′
12 = 0,3 and a fibre angle θ = 450. With Table

4.1 the strains for the off-axis system x1,x2 are transferred to the strains for the on-

axis system x′1,x
′
2. Taking into account cos450 = sin 450 =

√
2/2 = 0,707107 we

obtain




ε ′1
ε ′2
ε ′6



 =





c2 s2 sc

s2 c2 −sc

−2sc 2sc c2 − s2









ε1

ε2

ε6





=





0,5 0,5 0,5
0,5 0,5 −0,5
−1 1 0









10

−5

20



10−3 =





12,5
−7,5
−15



10−3,
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ε ′1 = 12,5 10−3,ε ′2 =−7,5 10−3,ε ′6 =−15 10−3

and

ν ′
21 =

ν ′
12E ′

2

E ′
1

= 0,075

The reduced stiffness Q′
i j and the stresses σ ′

i in the on-axis system follow from

(4.1.3)

Q′
11 = E ′

1/(1−ν ′
12ν ′

21) = 40,9207 GPa, Q′
22 = E ′

2/(1−ν ′
12ν ′

21) = 10,2302 GPa,

Q′
12 = E ′

2ν ′
12/(1−ν ′

12ν ′
21) = 3,0691 GPa, Q′

66 = G′
12 = 5,0 GPa,





σ ′
1

σ ′
2

σ ′
6



=





Q′
11 Q′

12 0

Q′
12 Q′

22 0

0 0 Q′
66









ε ′1
ε ′2
ε ′6



=





488,5
−38,36

−75,0



10−3 GPa

The stresses σi in the off-axis system are calculated with the help of the transforma-

tion rules Table 4.1





σ1

σ2

σ6



 =





c2 s2 −2sc

s2 c2 2sc

sc −sc c2 − s2









σ ′
1

σ ′
2

σ ′
6





=





0,5 0,5 −1

0,5 0,5 1

0,5 −0,5 0









488,5
−38,36

−75,0



10−3GPa =





0,300

0,150

0,263



GPa

Exercise 4.4. Sketch the variation curves E1/E ′
2 and G12/E ′

2 against the fibre ori-

entation θ for a carbon-epoxy and glass-epoxy lamina using the following material

data:

carbon-epoxy E ′
1 = 140 GPa, E ′

2 = 10 GPa, G′
12 = 7 GPa, ν ′

12 = 0,3
glass-epoxy E ′

1 = 43 GPa, E ′
2 = 9 GPa, G′

12 = 4,5 GPa, ν ′
12 = 0,27

Discuss the curves.

Solution 4.4. From (4.1.23) follows

(E1)
−1 =

c4

E ′
1

+

(

1

G′
12

− 2ν ′
12

E ′
2

)

s2c2 +
s4

E ′
2

,

(G12)
−1 = 2

(

2

E ′
1

+
2

E ′
2

+
4ν ′

12

E ′
1

− 1

G′
12

)

s2c2 +
1

G′
12

(c4 + s4)

Now the functions f1(θ ) = E1(θ )/E ′
2 and f2(θ ) = G12(θ )/E ′

2 can be sketched. The

results are shown on Figs. 4.8 and 4.9. Discussion of the functions f1(θ ) and f2(θ ):

1. The anisotropic ratio E1/E ′
2 is higher for carbon- than for glass-epoxy.

2. The longitudinal effective modulus E1 of the lamina drops sharply as the loading

direction deviates from the fibre direction, especially for-carbon-epoxy.

3. The effective shear modulus of the lamina attains a maximum value at θ = 450.
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Fig. 4.8 Variation of

E1(θ )/E ′
2 against the fibre

orientation for two compos-

ites

carbon-epoxy glass-epoxy
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Fig. 4.9 Variation of

G12(θ )/E ′
2 against the fibre

orientation for two compos-

ites

carbon-epoxy glass-epoxy
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Exercise 4.5. For a UD-lamina with the elastic properties E ′
1 = 180 GPa,

E ′
2 = 10 GPa, G′

12 = 7 GPa, ν ′
12 = 0,3 calculate

1. the on-axis compliances S′i j and the on-axis strains, if the applied on-axis stresses

are σ ′
1 = 2 MPa, σ ′

2 =−3 MPa, σ ′
6 = 4 MPa,

2. the off-axis compliances Si j and the off-axis and on-axis strains εεε ,εεε ′ if θ = 450

(Fig. 4.3) and the applied off-axis stresses are

σ1 = 2 MPa, σ2 =−3 MPa, σ6 = 4 MPa,

3. the coefficients of thermal expansion in the off-axis system if

α th′
1 = 9 10−6/0K, α th′

2 = 22 10−6/0K.

Solution 4.5. 1. Using (4.1.3) follows
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S′11 = (E ′
1)

−1 = 5,556 10−12 Pa−1,
S′12 = −ν ′

12/E ′
1 =−1,667 10−12 Pa−1,

S′22 = (E ′
2)

−1 = 100 10−12 Pa−1,
S′66 = (G′

12)
−1 = 142,86 10−12 Pa−1,





ε ′1
ε ′2
ε ′6



=





5,556 −1,667 0

−1,667 100 0

0 0 142,86



10−12Pa−1





2

−3

4



106Pa

=





16,113

−303,334

571,440



10−6

2. With Table 4.2 the transformed compliances Si j can be calculated (note that c =
cos450 = 0.7071,s = sin450 = 0.7071)

S11 = 61,270 10−12 Pa−1, S22 = 61,271 10−12 Pa−1,

S12 =−10,160 10−12 Pa−1, S66 = 108,89 10−12 Pa−1,

S16 = S26 =−47,222 10−12 Pa−1

Equations (4.1.19) and (4.1.20) yield the strains εi





ε1

ε2

ε6



 =





S11 S12 S16

S12 S22 S26

S16 S26 S66









σ1

σ2

σ6





=





61,270 −10,160 −47,222

−10,160 61,271 −47,222

−47,222 −47,222 108,89



10−12Pa−1





2

−3

4



106Pa

=





−35,868

−393,01

482,782



10−6

Using Table 4.1 the strains εεε can be transformed to the strains εεε ′





ε ′1
ε ′2
ε ′6



 =





0.5 0.5 0.5
0.5 0.5 −0.5
−1 1 0









ε1

ε2

ε6





=





0.5 0.5 0.5
0.5 0.5 −0.5
−1 1 0









−35,868

−393,01

482,782



10−6

=





26,95

−455,83

−357,14



10−6

3. The transformed thermal expansion coefficients α th
i follow like the strains with

Table 4.1 to
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



α th
1

α th
2

α th
6



=





0.5 0.5 −0.5
0.5 0.5 0.5
1 −1 0









α
′th
1

α
′th
2

α
′th
6



=





15,5
15,5

−13,0



10−6/K

Note that in the off-axis system α th
6 6= 0.

Exercise 4.6. The micro-mechanical material parameters of a carbon-epoxy com-

posite are

ELf = 411 GPa, ETf = 6.6 GPa, νTLf = 0.06, νLTf = 0.35,

α th
Lf =−1.2 10−6 1/K, α th

Tf = 27.3 10−6 1/K,

Em = 5.7 GPa, νm = 0.316, αm = 45 10−6 1/K, vf = 0.5
The experimental tested values of the lamina are

EL = 208.6 GPa, ET = 6.3 GPa, νLT = 0.33,

α th
L =−0.5 10−6 1/0C, α th

T = 29.3 10−6 1/0C,

Predict the lamina values using the micro-mechanical modelling and compare the

calculated and the experimental measured values.

Solution 4.6. Using Eqs. (3.1.27) and (4.1.9)

EL = vfELf +(1− vf)Em = 208.35 GPa,

νLT = vfνLTf +(1− vf)νm = 0.33,

ET = ETfEm/[vfEm +(1− vf)ETf] = 6.12 GPa,

α th
L = [α th

LfvfELf +α th
m (1− vf)Em]/EL =−0.57 10−6 1/K,

α th
T = (α th

Tf +νTfα
th
Lf)vf +(1+νm)α

th
m (1− vf)−νLTα th

L = 4.43 10−6 1/K

It can be concluded that the simple rules of mixture providing proper results for lon-

gitudinal material characteristics EL, νLT and α th
L . In this case also ET is predicted

quite well but the formula for αT fails to predict the transverse thermal expansion

coefficient with required accuracy. For engineering applications the thermal expan-

sion coefficients should be normally determined by experimental methods.

4.2 Elastic Behavior of Laminates

In Sect. 4.1, stress-strain equations were developed for a single lamina. Mostly im-

portant in engineering applications are isotropic, quasi-isotropic (stochastic distri-

bution of short fibres or particles) and quasi-orthotropic (unidirectional fibre re-

inforced) laminae. Reduced stiffness Qi j, compliances Si j, membrane or in-plane

stiffness Ai j and plate or out-of-plane stiffness Di j were defined. Assuming symme-

try about the midplane of a lamina in-plane and plate responses are uncoupled in the

form of a first order theory (linear force-displacement relations).

The mechanics of laminated composite materials is generally studied at two dis-

tinct levels, commonly called micromechanics and macromechanics. In Chap. 3 the

micromechanics was used to study the interaction between the fibres and matrix in a
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lamina such that the mechanical behavior of the lamina could be predicted from the

known behavior of the constituents. Micromechanics establishes the relationship be-

tween the properties of the constituents and those of the lamina. All micromechanics

approaches suffer from the problem of measuring the material properties of the con-

stituents and generally require correction factors to correlate with measured lamina

properties. For most engineering design applications an analysis that addressed to

the micro-mechanical level is unrealistic.

At the macro-mechanical level the properties of the individual layers of a lami-

nate are assumed to be known a priori. Macromechanics involves investigation of the

interaction of the individual layers of a laminate with one another and their effects

on the overall response quantities, e.g. elastic stiffness, influence of temperature and

moisture on the response of laminated composites, etc. Such global response quan-

tities can be predicted well on this level. Thus, the use of macromechanical formu-

lations in designing composite laminates for desired material characteristics is well

established. Macromechanics is based on continuum mechanics, which models each

lamina as homogeneous and orthotropic and ignoring the fibre/matrix interface.

The lamination theory is the mathematical modelling to predict the macro-

mechanical behavior of a laminate based on an arbitrary assembly of homoge-

neous orthotropic laminae. A two-dimensional modelling is most common, a three-

dimensional theory is very complex and should be limited to selected problems, e.g.

the analysis of laminates near free edges.

A real structure generally will not consist of a single lamina. A laminate consist-

ing of more than one lamina bonded together through their thickness, for a single

lamina is very thin and several laminae will be required to take realistic structural

loads. Furthermore the mechanical characteristics of a UD-lamina are very limited

in the transverse direction and by stacking a number of UD-laminae it may be an

optimal laminate for unidirectional loading only. One can overcome this restriction

by making laminates with layers stacked at different fibre angles corresponding to

complex loading and stiffness requirements. To minimize the increasing costs and

weights for such approach one have to optimize the laminae angles. It may be also

useful to stack layers of different composite materials.

4.2.1 General Laminates

In the following section the macro-mechanical modelling and analysis of laminates

will be considered. The behavior of a multidirectional laminate is a function of the

laminae properties, i.e. their elastic moduli, thickness, angle orientations, and the

stacking sequence of the individual layers. The macro-mechanical modelling may

be in the framework of the following assumptions:

• There is a monolithic bonding of all laminae i.e. there is no slip between laminae

at their interface and no special interface layers are arranged between the angle

plies.
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• Each layer is quasi-homogeneous and orthotropic, but the angle orientations may

be different.

• The strains and displacements are continuous throughout the laminate. The in-

plane displacements and strains vary linearly through the laminate thickness.

We will see that the stacking codes of laminates have a great influence on the global

mechanical laminate response (Sect. 4.2.3), but there are some rules to guarantee an

optimal global laminate behavior:

• Symmetric laminate stacking yields an uncoupled modelling and analysis of in-

plane and bending/torsion stress-strain relations and avoids distorsions in the pro-

cessing.

• Laminates should be made up of at least three UD-laminae with different fibre

angle orientation.

• The differences of the mechanical properties and the fibre orientations between

two laminae following in the stacking sequence should not be so large that the

so-called interlaminar stresses are small.

• Although it is possible to determine an optimum orientation sequence of lami-

nates for any given load condition, it is more practical from a fabrication stand-

point and from effective experimental lamina testing to limit the number of fibre

orientations to a few specific laminae types, e.g. fibre orientations of 00, ±450

and 900, etc.

Consider a laminate made of n plies shown in Fig. 4.10. Each lamina has a thickness

of h(k),k = 1,2, . . . ,n, and we have

✲

✻

�
�

�
��✠

x3

x1

x2

Mid-plane x3 = 0

1

2

n

❄

✻
❄

✻

h

2

h

2

x
(2)
3

x
(1)
3

❄

❄
❄

x
(0)
3 =−h

2

✻
✻

x
(n−1)
3

x
(n)
3 =

h

2
.
.
.

.

.

.

Fig. 4.10 Laminate made of n single layers, coordinate locations
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h(k) = x
(k)
3 − x

(k−1)
3 ,k = 1,2, . . . ,n thickness of a lamina,

h =
n

∑
k=1

h(k) thickness of the laminate,

x
(k)
3 = −h

2
+

k

∑
i=1

h(i) distance from the mid-plane,

(4.2.1)

Then

x
(n)
3 =

h

2
and x

(0)
3 =−h

2

are the coordinates of the top and the bottom surface of the laminate,

x
(k)
3 and x

(k−1)
3 , k = 1,2, . . . ,n

are the location coordinates of the top and the bottom surface of lamina k. Each

layer of a laminate can be identified by its location in the laminate, its material and

its fibre orientation. The layers of the laminate may be symmetric, antisymmetric

or asymmetric to the midplane x3 = 0. h(k) and the reduced stiffness QQQ(k) may be

different for each lamina, but QQQ(k) is constant for the kth lamina. The following

examples illustrate the laminate code. In Fig. 4.11 the laminate codes for an un-

symmetric laminate with four layers and a symmetric angle-ply laminate with eight

layers are illustrated. A slash sign separates each lamina. The codes in Fig. 4.11

imply that each lamina is made of the same material and is of the same thickness.

Regular symmetric are those laminates which have an odd number of UD-laminae

of equal thicknesses and alternating angle orientations (Fig. 4.12). Since the number

of laminae is odd and symmetry exists at the mid-surface, the 900 lamina is denoted

with a bar on the top. The subscript S outside the code brackets, e.g., in Fig. 4.11 b),

represents that the four plies are repeated in the reverse order.

x3 = 0x3 = 0

1

2

3

4a θ = 00

θ = 300

θ =−300

θ = 900

b θ = 00

θ =−450

θ = 900

θ = 450

θ = 450

θ = 900

θ =−450

θ = 00

8

7

6

5

4

3

2

1

[90/−30/30/0]
[0/−45/90/45/45/90/−45/0]

≡ [0/−45/90/45]S

Fig. 4.11 Angle-ply laminates. a unsymmetric 4-layer laminate, b symmetric 8-layer-laminate
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x3 = 0

5

4

3

2

1θ =−450

θ = 450

θ = 900

θ = 450

θ =−450

[−45/45/90/45/−45] ≡ [−45/45/9̄0]S

Fig. 4.12 Regular symmetric angle-ply laminate: orientation of the midplane θ = 900

A general laminate has layers of different orientations θ with −900 ≤ θ ≤ 900.

An angle-ply laminate has ply orientations of θ and −θ with 00 ≤ θ ≤ 900 and at

least one lamina has an orientation other than 00 or 900. Cross-ply laminates are

those which have only ply orientations of 00 and 900.

A laminate is balanced when it consists of pairs of layers with identical thickness

and elastic properties but have +θ and −θ orientations of their principal material

axes with respect to the laminate reference axes. A balanced laminate can be sym-

metric, antisymmetric or asymmetric

[+θ1/−θ1/+θ2/−θ2]S symmetric lay-up,

[θ1/θ2/−θ2/−θ1] antisymmetric lay-up,

[θ1/θ2/−θ1/−θ2] asymmetric lay-up

(4.2.2)

Antisymmetric laminates are a special case of balanced laminates, having the bal-

anced +θ and −θ pairs of layers symmetrically situated about the middle surface.

Generally each layer of a laminate can have different fibre angles, different thick-

nesses and different composite materials. The influence of the laminate codes, i.e

the properties and the stacking sequences, on the elastic behavior of laminates will

be considered in Sect. 4.2.3.

4.2.2 Stress-Strain Relations and Stress Resultants

The stiffness matrix of a single lamina referred to the reference system xi, i = 1,2,3,

has been formulated in Sect. 4.1.2, Eq. (4.1.26). Extending the assumption of a

plane stress state to laminates with in-plane and out-of-plane loading, the stress-

strain relation (4.1.26) can be rewritten by separating the transverse shear stresses

and strains. The stresses in the kth layer are expressed by means of the reduced

stiffness coefficients Qi j
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











σ1

σ2

σ6

σ4

σ5













(k)

=













Q11 Q12 Q16 0 0

Q21 Q22 Q26 0 0

Q61 Q62 Q66 0 0

0 0 0 Q44 Q45

0 0 0 Q54 Q55













(k)











ε1

ε2

ε6

ε4

ε5













(k)

(4.2.3)

or in contracted notation

σ
(k)
i = Q

(k)
i j ε

(k)
j , i, j = 1,2,6,

σ
(k)
i = Q

(k)
i j ε

(k)
j , i, j = 4,5

(4.2.4)

with (see also 2.1.78)

σ
(k)
3 = 0, ε

(k)
3 =− 1

C33
(C13ε1 +C23ε2 +C36ε6) (4.2.5)

Q
(k)
i j , i, j = 1,2,6 are the reduced stiffness of the kth layer and functions of Q′

i j
(k)

and

the fibre orientation angle, the Q
(k)
44 ,Q

(k)
45 =Q

(k)
54 ,Q

(k)
55 are identical to the material co-

efficients C
(k)
44 ,C

(k)
45 =C

(k)
54 ,C

(k)
55 , which are not reduced by the assumption of a plane

stress state. The discontinuity of Q
(k)
i j from layer to layer implies the discontinuity

of the stresses when passing from one lamina to another.

From the assumption of macro-mechanical modelling of laminates it follows that

εεε(x1,x2,x3) = εεε(x1,x2)+ x3κκκ(x1,x2) (4.2.6)

i.e the strains ε1,ε2,ε6 vary linearly through the laminate thickness. εεε(x1,x2) is

the vector of the in-plane or membrane strains and x3κκκ(x1,x2) the vector of flex-

ural strains (bending and twisting). κκκ(x1,x2) is the vector of curvature subjected to

bending and twisting. We shall see later (Sect. 5.4) that there are different curvature

components in the classical and the shear deformation theory of laminates.

The in-plane stress resultant force vector NNN of a laminate follows by summarizing

the adequate vectors of all laminae

NNN =
n

∑
k=1

NNN(k), NNNT = [N1 N2 N6], NNN(k)T

= [N
(k)
1 N

(k)
2 N

(k)
6 ] (4.2.7)

By analogy it follows that the resultant moment vector is

MMM =
n

∑
k=1

MMM(k), MMMT = [M1 M2 M6], MMM(k)T

= [M
(k)
1 M

(k)
2 M

(k)
6 ] (4.2.8)

The positive directions are corresponding to Figs. 4.5 and 4.6 for a single layer. The

transverse shear resultants given in (4.1.50)
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QQQs(x1,x2) =
n

∑
k=1

QQQs(k), QQQsT = [Qs
1 Qs

2], QQQs(k)T
= [Q

s(k)
1 Q

s(k)
2 ] (4.2.9)

Equations (4.2.4) and (4.2.6) yield

σσσ (k) =QQQ(k)εεε =QQQ(k)(εεε + x3κκκ) (4.2.10)

and the resultants NNN and MMM for the laminate are (k = 1,2, . . . ,n)

NNN(k) =

∫

(h(k))

σσσ (k)dx3 =σσσ (k)h(k), h(k) = x
(k)
3 − x

(k−1)
3 ,

NNN =
n

∑
k=1

σσσ (k)h(k)

(4.2.11)

and

MMM(k) =

∫

(h(k))

σσσ (k)x3dx3 = σσσ (k) 1

2

(

x
(k)2

3 − x
(k−1)2

3

)

= σσσ (k)h(k)x(k),

MMM =
n

∑
k=1

σσσ (k)h(k)x(k)

(4.2.12)

with

x(k) =
1

2

(

x
(k)
3 + x

(k−1)
3

)

For each layer the membrane strains ε1,ε2,ε6 , the curvatures κ1,κ2,κ6 and the

reduced stiffness Q
(k)
11 ,Q

(k)
12 ,Q

(k)
16 ,Q

(k)
22 ,Q

(k)
26 ,Q

(k)
66 are constant through each thickness

h(k) and (4.2.11) and (4.2.12) reduces to:

NNN =









n

∑
k=1

QQQ(k)

x
(k)
3
∫

x
(k−1)
3

dx3









εεε +









n

∑
k=1

QQQ(k)

x
(k)
3
∫

x
(k−1
3 )

x3dx3









κκκ

= AAA εεε + BBB κκκ,

MMM =









n

∑
k=1

QQQ(k)

x
(k)
3
∫

x
(k−1)
3

x3dx3









εεε +









n

∑
k=1

QQQ(k)

x
(k)
3
∫

x
(k−1)
3

x2
3dx3









κκκ

= BBB εεε + DDD κκκ

(4.2.13)

AAA,BBB,DDD are the extensional, coupling and bending stiffness matrices, respectively.

From (4.2.4) and (4.2.9), the relations for the transverse shear resultants are
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QQQs =
n

∑
k=1

CCCs(k)

x
(k)
3
∫

x
(k−1)
3

σσσ s(k)dx3 =









n

∑
k=1

CCCs(k)

x
(k)
3
∫

x
(k−1)
3

dx3









γγγs =AAAsγγγs (4.2.14)

with

CCCs =

[

C44 C45

C54 C55

]

, σσσ s =

[

σ4

σ5

]

, γγγs =

[

ε4

ε5

]

, AAAs =

[

A44 A45

A54 A55

]

Equation (4.2.14) is a first approach and consists of taking the transverse shear strain

independent of the coordinate x3. AAAs is the transverse shear stiffness matrix. An

improvement is possible by replacing the transverse shear stiffness As
i j by (kA)s

i j.

ks
i j are so called shear correction factors (Sect. 5.4). The elements of the matrices

AAA,BBB,DDD,AAAs are

Ai j =
n

∑
k=1

Q
(k)
i j

(

x
(k)
3 − x

(k−1)
3

)

=
n

∑
k=1

Q
(k)
i j h(k), i, j = 1,2,6,

Bi j =
1

2

n

∑
k=1

Q
(k)
i j

(

x
(k)
3

2
− x

(k−1)
3

2
)

=
n

∑
k=1

Q
(k)
i j x

(k)
3 h(k),

Di j =
1

3

n

∑
k=1

Q
(k)
i j

(

x
(k)
3

3
− x

(k−1)
3

3
)

=
n

∑
k=1

Q
(k)
i j

(

x
(k)
3

2
+

h(k)
2

12

)

h(k),

As
i j =

n

∑
k=1

C
(k)
i j

(

x
(k)
3 − x

(k−1)
3

)

=
n

∑
k=1

C
(k)
i j h(k), i, j = 4,5

(4.2.15)

The constitutive equation for laminates including extensional, bending/torsion and

transverse shear strains is the superposition from the so-called classical equations

for NNN and MMM and the equation that involves the transverse shear resultant QQQs. The

constitutive equation can be written in the following contracted hypermatrix form





NNN

MMM

QQQs



=





AAA BBB 000

BBB DDD 000

000 000 AAAs









εεε
κκκ
γγγs



 (4.2.16)

The stiffness Q
(k)
i j and C

(k)
i j in (4.2.15) referred to the laminate’s global reference

coordinate system xi, i = 1,2,3, are given in Table 4.2 as functions of the Q′
i j
(k)

and

in (4.2.17) as functions of the C′
i j
(k)

referred to the material principal directions of

each lamina (k)
C44 = C′

44c2 +C′
55s2,

C45 = (C′
55 −C′

44)sc,
C55 = C′

44s2 +C′
55c2

(4.2.17)

Equation (4.2.16) illustrates the coupling between stretching and bending/twisting

of a laminate, i.e. in-plane strains result in in-plane resultants but also bending

and/or torsion moments and vice versa. Since there are no coupling effects with
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the transverse shear strains or shear resultants we consider the in-plane and flexural

simultaneous equations, (4.2.18), separately





NNN

· · ·
MMM



=









AAA
... BBB

. . . .
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











εεε
· · ·
κκκ



 ,
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



















N1

N2

N6

· · ·
M1

M2

M6




















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








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
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


























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ε1
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ε6

· · ·
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



















(4.2.18)

The following steps are necessary for analyzing a laminated composite subjected to

forces and moments:

• Calculate the values of the reduced stiffness Q′
i j for each lamina k using the four

elastic moduli, EL,ET,νLT,GLT (4.1.2) and (4.1.3).

• Calculate the values of the transformed reduced stiffness Qi j for each lamina k

(Table 4.2).

• Knowing the thickness h(k) of each lamina k calculate the coordinates x
(k)
3 , x

(k−1)
3

to the top and the bottom surface of each ply.

• Calculate all Ai j,Bi j and Di j from (4.2.15).

• Substitute the calculated stiffness and the applied resultant forces and moments

in (4.2.18) and calculate the midplane strains εi and curvatures κi.

• Calculate the global strains εεε(k) in each lamina using (4.2.6) and then the global

stresses σσσ (k) for each lamina k using (4.2.10).

• Calculate the local strains εεε ,(k) and the local stresses σσσ ,(k) for each lamina k using

Table 4.1

The inverted relation (4.2.18) leads to the compliance hypermatrix for the in-plane

and flexural resultants

[

εεε
κκκ

]

=

[

aaa bbb

ccc ddd

][

NNN

MMM

]

,

[

aaa bbb

ccc ddd

]

=

[

AAA BBB

CCC DDD

]−1

(4.2.19)

The compliance submatrices aaa,bbb,ccc,ddd follow from the stiffness submatrices AAA,BBB,DDD.

With

NNN = AAAεεε +BBBκκκ (4.2.20)

it follows that
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εεε =AAA−1(NNN −BBBκκκ) (4.2.21)

and using (4.2.13)

MMM = BBBAAA−1NNN − (BBBAAA−1BBB−DDD)κκκ (4.2.22)

The first result is a mixed-type constitutive equation





εεε
· · ·
MMM



 =









AAA∗ ... BBB∗

. . . . . .

CCC∗ ... DDD∗













NNN

· · ·
κκκ



 ,

AAA∗ =AAA−1, BBB∗ =−AAA−1BBB,

CCC∗ = BBBAAA−1 =−BBB∗T, DDD∗ =DDD−BBBAAA−1BBB

(4.2.23)

With

κκκ =DDD∗−1
MMM−DDD∗−1

CCC∗NNN (4.2.24)

it follows that

εεε = (AAA∗−BBB∗DDD∗−1
CCC∗)NNN +BBB∗DDD∗−1

MMM (4.2.25)

and the compliance relation has in contracted notation the form





εεε
· · ·
κκκ



 =









aaa
... bbb

. . . .

ccc
... ddd













NNN

· · ·
MMM



 ,

aaa = AAA∗−BBB∗DDD∗−1CCC∗ =AAA∗+BBB∗DDD∗−1BBB∗T,

bbb = BBB∗DDD∗−1,

ccc =−DDD∗−1CCC∗ =DDD∗−1BBB∗T = bbbT,

ddd =DDD∗−1

(4.2.26)

Equations (4.2.18) and (4.2.26) are inverse relations of the constitutive equation for

the resultants and the strains of a laminate. The elements of the submatrices AAA,BBB,DDD
and aaa,bbb,ccc,ddd are functions of the geometry, the material properties and the structure

of a laminate and therefore averaged effective elastic laminate moduli. The subma-

trices AAA,BBB,DDD,aaa,ddd are symmetric submatrices. That is not the case for the submatri-

ces bbb and ccc but with ccc = bbbT the compliance hypermatrix is symmetric. The coupling

of different deformation states is a very important quality of the constitutive equa-

tions of laminates. In the general case, considered in this section, all coupling effects

are present. Figure 4.13 illustrates for example the coupling states for the resultant

force N1 and the resultant moment M1.

In the next Sect. 4.2.3 we shall see that the stacking sequence of a laminate in-

fluences the coupling behavior of loaded laminates. In engineering applications it is

desired to specify the stacking sequence such that a number of coefficients of the

stiffness matrix will be zero and undesirable couplings between stretching, bending
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


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
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N1

M1

N1

M1

A11 A12 A16

D11 D12 D16

B11 B12 B16

B11 B12 B16

strain ε1 strain ε2 shear ε6

curvature κ1 curvature κ2 twisting κ6

curvature κ1 curvature κ2
twisting κ6

strain ε1 strain ε2
shear ε6

Fig. 4.13 Coupling of strain states: Influence of the stiffness A1 j,D1 j and B1 j( j = 1,2,6) on the

strains ε j and the curvature κ j of the middle surface of a general laminate loading with N1 or M1.

In each case 6 deformation states of N1 and M1 have to be superposed.
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and/or twisting will be avoided. But it is rather difficult to specify an optimum stack-

ing sequence without detailed information about the performance requirements.

Engineering composite design has continued to evolve over many years. Most

early applications of composite materials were aimed particularly at weight reduc-

tion. Metals were replaced by composites with little or no emphasis placed on tailor-

ing the composite properties. Engineering design created quasi-isotropic laminates

that largely suppressed the directional material properties of unidirectional lami-

nae and made the laminate material response similar to that of isotropic materials,

e.g. of metals. We shall see in the following discussion that one of such quasi-

isotropic laminate is given if it has equal percentages of 00,+450,−450 and 900

layers placed symmetrically with respect to the laminate mid-plane. Quasi-isotropic

laminates have elastic properties that are independent of the direction in the plane

of the laminate, like traditional isotropic engineering materials. Therefore, quasi-

isotropic laminates were in the first applications of composites a convenient replace-

ment for steel or alloys in weight critical applications, e.g. in aerospace industries.

Weight saving could be achieved by simple replacing the isotropic metal with a

similar stiffness laminate that was lighter and probably stronger. If we compare a

graphite/epoxy laminate with an quasi-isotropic stacking sequence of laminae and

aluminium we find nearly the same elastic moduli, e.g. E ≈ 70 GPa, but the density

values ρ and the specific stiffness E/ρ differ significantly. The specific stiffness

of graphite/epoxy laminate can be twice that of aluminium. Such applications of

quasi-isotropic laminates required a minimal amount of redesign effort and there-

fore minimal changes in structural configuration.

By the time the number of design engineers which are trained in composite ma-

terials increased and the tailoring of material properties gained more acceptance.

To maximize the utility of the non-isotropic nature of laminates, the influence of

the stacking sequence on the structural behavior must be investigated in detail and

optimized. Particularly the coupling effects of in-plane and out-of-plane responses

affect the effort of laminate structural analysis.

4.2.3 Laminates with Special Laminae Stacking Sequences

Now special cases of laminates which are important in the engineering design of

laminated structures will be introduced. Quite often the design of laminates is done

by using laminae that have the same constituents, the same thicknesses, etc. but

have different orientations of their fibre reinforcement direction with respect to the

global reference system of the laminate and a different stacking sequence of these

layers. In other cases layers with different materials or thicknesses are bonded to a

laminate. The stacking sequence of the layers may result in reducing the coupling

of normal and shear forces, of bending and twisting moments etc. It can simplify

the mechanical analysis but also gives desired mechanical performance. In the fol-

lowing, the mechanical behavior of special symmetric and unsymmetric laminates

are considered.
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4.2.3.1 Symmetric Laminates

A laminate is called symmetric if the material, angle and thickness of laminae are

the same above and below the midplane, i.e. two symmetric arranged layers to the

midplane have the same reduced stiffness matrix QQQ(k) ≡QQQ(k′) and the same thickness

h(k) ≡ h(k
′) for opposite coordinates x̄(k) and x̄(k

′) =−x̄(k) (Fig. 4.14). It follows that

the coefficients Bi j of the coupling submatrix BBB are zero and there are no coupling

relations of stretching and bending

Bi j =
1

2

n

∑
k=1

Q
(k)
i j

(

x
(k)
3

2
− x

(k−1)
3

2
)

=
1

2

n

∑
k=1

Q
(k)
i j

(

x
(k)
3 + x

(k−1)
3

)(

x
(k)
3 − x

(k−1)
3

)

=
n

∑
k=1

Q
(k)
i j x

(k)
3 h(k) = 0, i, j = 1,2,6

(4.2.27)

With x
(k′)
3 =−x

(k)
3 the sum above have two pairs of equal absolute values but oppo-

site signs. Thus the ABDABDABD-matrix of symmetric laminates is uncoupled, i.e. all terms

of the coupling submatrix [Bi j] are zero, see following equation

x3 = 0

n ≡ 1′

1

��������������������������

���������������������� ����

k′

k
❄

✻
x
(k′)
3

x
(k)
3

✻x3

Fig. 4.14 Symmetric laminate with identical layers k and k′ opposite to the middle surface (h(k) =
h(k

′),QQQ(k) =QQQ(k′))
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(4.2.28)

The extensional submatrix AAA and the bending submatrix DDD are in the case of sym-

metric angle ply laminates fully populated and we have in-plane normal and shear

strain and out-of-plane bending and torsion couplings. Since the coupling submatrix

BBB is zero the elastic behavior of symmetric laminates is simpler to analyze than that

of general laminates and symmetric laminates have no tendency to warp as a result

of thermal contractions induced during the composite processing. Some important

special cases of symmetric laminates are:

• Symmetric laminate with isotropic layers

Q
(k)
11 = Q

(k)
22 = Q

(k′)
11 = Q

(k′)
22 =

E(k)

1−ν(k)
,

Q
(k)
12 = Q

(k′)
12 =

ν(k)E(k)

1−ν(k)
,

Q
(k)
16 = Q

(k)
26 = Q

(k′)
16 = Q

(k′)
26 = 0,

Q
(k)
66 = Q

(k′)
66 =

E(k)

2(1+ν(k))
= G(k),

Ai j =
n

∑
k=1

Q
(k)
i j h(k)

=⇒ A11 = A22,A16 = A26 = 0,

Di j =
n

∑
k=1

Q
(k)
i j h(k)

(

x
(k)
3

2
+

h(k)
2

12

)

=⇒ D11 = D22,D16 = D26 = 0,

(4.2.29)
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(4.2.30)

This type of symmetric laminates has no stretching-shearing or bending-torsion

coupling.

• Symmetric cross-ply laminate

A laminate is called a cross-ply laminate or a laminate with specially orthotropic

layers if only 00 and 900 plies were used. The material principal axes and the

global reference axes are identical. If for example for the kth layer the fibre ori-

entation and the x1-direction of the global reference system coincide, we have

Q
(k)
11 ≡ Q

(k′)
11 =

E
(k)
1

1−ν
(k)
12 ν

(k)
21

, Q
(k)
22 ≡ Q

(k′)
22 =

E
(k)
2

1−ν
(k)
12 ν

(k)
21

,

Q
(k)
12 ≡ Q

(k′)
12 =

ν
(k)
21 E

(k)
1

1−ν
(k)
12 ν

(k)
21

, Q
(k)
16 ≡ Q

(k′)
16 = 0,

Q
(k)
66 ≡ Q

(k′)
66 = G

(k)
12 , Q

(k)
26 ≡ Q

(k′)
26 = 0

(4.2.31)

and with (4.2.15) A16 = A26 = 0,D16 = D26 = 0. The stiffness matrix of the

constitutive equation has an adequate structure as for isotropic layers, but now

A11 6= A22 and D11 6= D22, i.e. the laminate has an orthotropic structure
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(4.2.32)

Figure 4.15 illustrates examples of symmetric cross-ply laminates. With

A16 = A26 = 0,D16 = D26 = 0 there is uncoupling between the normal and

shear in-plane forces and also between the bending and the twisting moments.
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Fig. 4.15 Symmetric cross-ply laminate. a 3-layer laminate with equal layer thickness, b 6-layer

laminate with equal layer thickness in pairs, c 4-layer laminate with equal layer thickness

• Symmetric balanced laminate

A laminate is balanced when it consists of pairs of layers of the same thick-

ness and material where the angles of plies are +θ and −θ . An example is the

8 - layer-laminate [±θ1/± θ2/]s. The stiffness coefficients Ai j and Di j will be

calculated from

Ai j =
n

∑
k=1

Q
(k)
i j h(k), h(k) = h(k

′), θ (k) =−θ (k′)

=⇒ A16 = A26 = 0,

Di j =
1

3

n

∑
k=1

Q
(k)
i j

(

x
(k)
3

3
− x

(k−1)
3

3
)

=
n

∑
k=1

Q
(k)
i j

(

x
(k)
3

2
+

h(k)
2

12

)

h(k)
(4.2.33)

with

h(k) = h(k
′), θ (k) = θ (k′), x

(k′)
3 =−x

(k)
3

and the constitutive equation yields





















N1

N2

N6

. .

M1

M2

M6





















=

































A11 A12 0
... 0 0 0

A12 A22 0
... 0 0 0

0 0 A66

... 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0
... D11 D12 D16

0 0 0
... D12 D22 D26

0 0 0
... D16 D26 D66





















































ε1

ε2

ε6

. .

κ1

κ2

κ6





















(4.2.34)

The fact that the in-plane shear coupling stiffness A16 and A26 are zero is a defin-

ing characteristic of a balanced laminate. In general the bending/twisting cou-

pling stiffness D16 and D26 are not zero unless the laminate is antisymmetric.
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Summarizing the results on symmetric laminates above, it is most important that all

components of the BBB-matrix are identical to zero and the full (6× 6) ABDABDABD - matrix

decouples into two (3× 3) matrices, namely

NNN =AAAεεε, MMM =DDDκκκ (4.2.35)

Therefore also the inverse relations degenerates from (6× 6) into two (3× 3) rela-

tions

εεε = aaaNNN, κκκ = dddMMM (4.2.36)

In these matrix equations aaa is the inverse of AAA and ddd the inverse of DDD

a11 =
A22A66 −A2

26

Det[AAA]
, d11 =

D22D66 −D2
26

Det[DDD]
,

a12 =
A26A16 −A12A66

Det[AAA]
, d12 =

D26D16 −D12D66

Det[DDD]
,

a16 =
A12A26 −A22A16

Det[AAA]
, d16 =

D12D26 −D22D26

Det[DDD]
,

a22 =
A11A66 −A2

16

Det[AAA]
, d22 =

D11D66 −D2
16

Det[DDD]
,

a26 =
A12A16 −A11A26

Det[AAA]
, d26 =

D12D16 −D11D26

Det[DDD]
,

a66 =
A11A22 −A2

12

Det[AAA]
, d66 =

D11D22 −D2
12

Det[DDD]

(4.2.37)

with
Det[XXX ] = X11(X22X66 −X2

26)−X12(X12X66 −X26X16)
+ X16(X12X26 −X22X16);Xi j = Ai j,Di j

For the special symmetric stacking cases one can find

1. Isotropic layers

a11 = a22, a16 = a26 = 0, A11 = A22, A16 = A26 = 0,
d11 = d22, d16 = d26 = 0, D11 = D22, D16 = D26 = 0,

A11 =
Eh

1−ν
, A12 = νA11, A66 =

Eh

2(1+ν)
,

D11 =
Eh3

12(1−ν2)
, D12 = νD11, D66 =

Eh3

24(1+ν)

with

h =
n

∑
k=1

h(k)
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2. Cross-play layers

a11 =
A22

A11A22 −A2
12

, d11 =
D22

D11D22 −D2
12

,

a12 =
−A12

A11A22 −A2
12

, d12 =
−D12

D11D22 −D2
12

,

a22 =
A11

A11A22 −A2
12

, d22 =
D11

D11D22 −D2
12

,

a66 =
1

A66
, d66 =

1

D66

3. Balanced layers

The ai j are identical to cross-ply layers. The di j are identical to the general sym-

metric case.

4.2.3.2 Antisymmetric Laminates

A laminate is called antisymmetric if the material and thickness of the laminae are

the same above and below the midplane but the angle orientations at the same dis-

tance above and below of the midplane are of opposite sign, i.e two symmetric ar-

ranged layers to the midplane with the coordinates x̄(k) and x(k
′) =−x(k) having the

same thickness h(k) = h(k
′) and antisymmetric orientations θ (k) and θ (k′) = −θ (k)

(Fig. 4.14).

• Antisymmetric cross-ply laminate

Antisymmetric cross-ply laminates consist of 00 and 900 laminae arranged in

such a way that for all 00-laminae (k) at a distance x̄(k) from the midplane there

are 900-laminae (k′) at a distance x̄(k
′) = −x̄(k) and vice versa. By definition

these laminates have an even number of plies. The reduced stiffness fulfills the

conditions

Q
(k)
11 = Q

(k′)
22 ,Q

(k)
22 = Q

(k′)
11 ,Q

(k)
12 = Q

(k′)
12 ,

Q
(k)
16 = Q

(k′)
16 = Q

(k)
26 = Q

(k′)
26 = 0,

which yield considering (4.2.15) and the 00 and 900 layers have the same thick-

ness
A11 = A22, A16 = A26 = 0,
B11 = −B22, B12 = B16 = B26 = B66 = 0,
D11 = D22, D16 = D26 = 0

(4.2.38)

and the constitutive equation has the form
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(4.2.39)

The constitutive equation (4.2.39) shows that antisymmetric cross-ply laminates

only have a tension/bending coupling. It is important to note that the coupling

coefficient B11 approaches zero as the number of plies increases for a constant

laminate thickness since it is inversely proportional to the total number of layers.

• Antisymmetric balanced laminate

Antisymmetric balanced laminates consist of pairs of laminae (k) and (k′) at a

distance x̄(k) and x̄(k
′) = −x̄(k) with the same material and thickness but orien-

tations θ (k) and θ (k′) = −θ (k). Examples of these laminates are [θ1 / − θ1],
[θ1/θ2/−θ2/−θ1], etc. As for all balanced laminates A16 = A26 = 0 and with

Di j =
1

3

n

∑
k=1

Q
(k)
i j

(

x
(k)
3

3
− x

(k−1)
3

3
)

(4.2.40)

and
(

x
(k)
3

3
− x

(k−1)
3

3
)

=

(

x
(k′)
3

3
− x

(k′−1)
3

3
)

,

Q
(k)
16 =−Q

(k′)
16 , Q

(k)
26 =−Q

(k′)
26

it follows that

D16 = D26 = 0

Note that x
(k)
3 =−x

(k′)
3 ,h(k) = h(k

′) and

Q
(k)
11 = Q

(k′)
11 ,Q

(k)
22 = Q

(k′)
22 ,Q

(k)
12 = Q

(k′)
12 ,

Q
(k)
66 = Q

(k′)
66 ,Q

(k)
16 =−Q

(k′)
16 ,Q

(k)
26 =−Q

(k′)
26

Equation (4.2.15) yields B11 = B22 = B12 = B66 = 0. Balanced antisymmetric

laminates have no in-plane shear coupling and also no bending/twisting cou-

pling but a coupling of stretching/twisting and bending/shearing. The constitutive

equation has the following structure
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(4.2.41)

4.2.3.3 Stiffness Matrices for Symmetric and Unsymmetric Laminates in

Engineering Applications

Table 4.4 summarizes the stiffness matrices for symmetric and unsymmetric lam-

inates which are used in engineering applications. Symmetric laminates avoid the

stretching/bending coupling. But certain applications require the use of nonsym-

metric laminates. If possible symmetric balanced laminates should be used. The

bending and shearing couplings are eliminated and one can show that for symmet-

ric laminates with a constant total thickness h the values of the bending or flexural

stiffness D16 and D26 decrease with an increasing number of layers and approach

zero for k −→ ∞. If the stiffness Ai j,Bi j and Di j are calculated, the compliances

ai j,bi j,ci j = bT
i j,di j follow from (4.2.26) or for symmetric laminates from (4.2.37).

The experimental identification of the compliances is simpler than for the stiffness

parameters.

The coupling stiffness Bi j and A16,A26,D16 and D26 complicate the analysis of

laminates. To minimize coupling effects symmetric balanced laminates should be

created with a fine lamina distribution. Then all Bi j and the A16,A26 are identical

to zero and the D16,D26 couplings are relatively low because of the fine lamina

distribution. Whenever possible it is recommended to limit the number of fibre ori-

entations to a few specific one, that are 00,±450,900 to minimize the processing and

experimental testing effort and to select a symmetric and balanced lay-up with a fine

lamina interdispersion in order to eliminate in-plane and out-of-plane coupling and

the in-plane tension/shearing coupling and to minimize torsion coupling.

There is furthermore a special class of quasi-isotropic laminates. The layers of

the laminate can be arranged in such a way that the laminate will behave as an

isotropic layer under in-plane loading. Actually, such laminates are not isotropic,

because under transverse loading normal to the laminate plane and under interlami-

nar shear their behavior is different from real isotropic layer. That is why one use the

notation quasi-isotropic layer. Because all quasi-isotropic laminates are symmetric

and balanced the shear coupling coefficients A16,A26 are zero. It can be checked in

general any laminate with a lay-up of
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Table 4.4 Stiffness matrices for symmetric and unsymmetric laminates

Symmetric laminate Unsymmetric laminate

Isotropic layers Balanced laminate

A11 A12 0 0 0 0

A12 A11 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 0

0 0 0 D12 D11 0

0 0 0 0 0 D66

A11 A12 0 B11 B12 B16

A12 A22 0 B12 B22 B26

0 0 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

Eq. (4.2.30)

Cross-ply laminate Antimetric balanced laminate

A11 A12 0 0 0 0

A12 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 0

0 0 0 D12 D22 0

0 0 0 0 0 D66

A11 A12 0 0 0 B16

A12 A22 0 0 0 B26

0 0 A66 B16 B26 0

0 0 B16 D11 D12 0

0 0 B26 D12 D22 0

B16 B26 0 0 0 D66

Eq. (4.2.32) Eq. (4.2.41)

Balanced laminate Cross-ply

A11 A12 0 0 0 0

A12 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 D16

0 0 0 D12 D22 D26

0 0 0 D16 D26 D66

A11 A12 0 B11 0 0

A12 A11 0 0 −B11 0

0 0 A66 0 0 0

B11 0 0 D11 D12 0

0 −B11 0 D12 D11 0

0 0 0 0 0 D66

Eq. (4.2.34) Eq. (4.2.39)

Angle-ply laminate Cross-ply

(approximate solution k → ∞)

A11 A12 A16 0 0 0

A12 A22 A26 0 0 0

A16 A26 A66 0 0 0

0 0 0 D11 D12 D16

0 0 0 D12 D22 D26

0 0 0 D16 D26 D66

A11 A12 0 0 0 0

A12 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 0

0 0 0 D12 D11 0

0 0 0 0 0 D66

Eq. (4.2.28)

[

0/
π

n
/

2π

n
/. . ./

(n− 1)π

n

]

S

or
[

π

n
/

2π

n
/. . ./π

]

S



152 4 Elastic Behavior of Laminate and Sandwich Composites

is quasi-isotropic for any integer n greater than 2. The simplest types are laminates

with the following lay-up

[0/60/− 60]S ,n = 3,1200 ≡−600

and

[0/+ 45/− 45/90]S ,n = 4,1350 ≡−450

Summarizing the mechanical performance of laminates with special laminae

stacking sequences which are used in laminate design, we have considered the fol-

lowing classification:

1. General laminates

The stacking sequence, the thickness, the material and the fibre orientations of

all laminae is quite general. All extensional stiffness Bi j are not zero.

2. Symmetric laminates

For every layer to one side of the laminate reference surface there is a corre-

sponding layer to the other side of the reference surface at an equal distance and

with identical thickness, material and fibre orientation. All coupling stiffness Bi j

are zero.

3. Antisymmetric laminates

For every layer to one side of the laminate reference surface there is a corre-

sponding layer to the other side of the reference surface at an equal distance,

with identical thickness and material, but opposite fibre orientation. The stiffness

A16,A26,D16 and D26 are zero.

4. Balanced laminates

For every layer with a specified thickness, specific material properties and spe-

cific fibre orientation there is another layer with identical thickness and material

properties, but opposite fibre orientation anywhere in the laminate, i.e. the corre-

sponding layer with opposite fibre orientation does not have to be on the opposite

side of the reference surface, nor immediately adjacent to the other layer nor any-

where particular. A balanced laminate can be

• General or unsymmetric: A16 = A26 = 0

• Symmetric A16 = A26 = 0, Bi j = 0

• Antisymmetric A16 = A26 = 0,D16 = D26 = 0

An antisymmetric laminate is a special case of a balanced laminate, having its

balanced ± pairs of layers symmetrically situated to the middle surface.

5. Cross-ply laminates

Every layer of the laminate has its fibers oriented at either 00 or 900. Cross-ply

laminates can be

• General or unsymmetric: A16 = A26 = 0, B16 = B26 = 0, D16 = D26 = 0

• Symmetric A16 = A26 = 0, D16 = D26 = 0, Bi j = 0

• Antisymmetric A16 = A26 = 0,D16 = D26 = 0, B12 = B16 = B26 = B66 = 0,

A11 = A22, B11 = B22, D11 = D22
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Symmetric cross-ply laminates are orthotropic with respect to both in-plane and

bending behavior and all coupling stiffness are zero.

6. Quasi-isotropic laminates

For every laminate with a symmetric lay-up of

[0/
π

n
/. . ./

(n− 1)π

n
]S or [0/

π

n
/

2π

n
/. . ./π ]S

the in-plane stiffness are identical in all directions. Because all these quasi-

isotropic laminates are also balanced we have A11 = A22 = const,A12 = const,

A16 = A26 = 0, Bi j ≡ 0,Di j 6= 0

7. Laminates with isotropic layers

If isotropic layers of possible different materials properties and thicknesses are

arranged symmetrically to the middle surface the laminate is symmetric isotropic

and we have A11 = A22,D11 = D22, A16 = A26 = 0,D16 = D26 = 0, Bi j = 0, i.e.

the mechanical performance is isotropic.

For symmetric laminates the in-plane and flexural moduli can be defined with

help of effective engineering parameters. We start with (4.2.26). aaa,bbb,ccc = bbbT,ddd are

the extensional compliance matrix, coupling compliance matrix and bending com-

pliance matrix, respectively. For a symmetric laminate BBB = 000 and it can be shown

that aaa =AAA−1 and ddd =DDD−1. The in-plane and the flexural compliance matrices aaa and

ddd are uncoupled but generally fully populated

εεε = aaaNNN, κκκ = dddMMM (4.2.42)

Equations (4.2.42) lead to effective engineering moduli for symmetric laminates.

1. Effective in-plane engineering moduli EN
1 ,E

N
2 ,G

N
12,ν

N
12:

Substitute N1 6= 0,N2 = N6 = 0 in εεε = aaaNNN as





ε1

ε2

ε6



=





a11 a12 a16

a12 a22 a26

a16 a26 a66









N1

0

0



 (4.2.43)

which gives

ε1 = a11N1

and the effective longitudinal modulus EN
1 is

EN
1 ≡ σ1

ε1
=

N1/h

a11N1
=

1

ha11
(4.2.44)

In an analogous manner with N1 = 0,N2 6= 0,N6 = 0 or N1 = N2 = 0, N6 6= 0,

the effective transverse modulus EN
2 or the effective shear modulus GN

12 are

EN
2 ≡ σ2

ε2
=

N2/h

a22N2
=

1

ha22
, (4.2.45)
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GN
12 ≡

σ6

ε6
=

N6/h

a66N6
=

1

ha66
(4.2.46)

The effective in-plane Poisson’s ratio νN
12 can be derived in the following way.

With N1 6= 0,N2 = N6 = 0 (4.2.43) yields ε2 = a12N1,ε1 = a11N1 and ν12 is de-

fined as

νN
12 =−ε2

ε1
=−a12N1

a11N1
=−a12

a11
(4.2.47)

The Poisson’s ratio νN
21 can be derived directly by substituting N1 = N6 = 0,

N2 6= 0 in (4.2.42) and define νN
21 =−ε1/ε2 or by using the reciprocal relationship

νN
12/EN

1 = νN
21/EN

2 . In both cases νN
21 is given as

νN
21 =−a12

a22
(4.2.48)

The effective in-plane engineering moduli can be also formulated in terms of the

elements of the AAA-matrix

EN
1 =

A11A22 −A2
12

A22h
,EN

2 =
A11A22 −A2

12

A11h
,GN

12 =
A66

h
,

νN
12 =

A12

A22
,νN

21 =
A12

A11

(4.2.49)

2. Effective flexural engineering moduli EM
1 ,EM

2 ,GM
12,ν

M
12,ν

M
21:

To define the effective flexural moduli we start with κκκ = dddMMM. Apply M1 6= 0,
M2 = 0,M6 = 0 and substitute in the flexural compliance relation to give

κ1 = d11M1 =
M1

EM
1 I

, I =
h3

12

and the effective flexural longitudinal modulus EM
1 is

EM
1 =

12M1

κ1h3
=

12

h3d11
(4.2.50)

Similarly, one can show that the other flexural elastic moduli are given by

EM
2 =

12

h3d22
, νM

12 =−d12

d11
, GM

12 =
12

h3d66
, νM

21 =−d12

d22
(4.2.51)

Flexural Poisson’s ratios also have a reciprocal relationship

νM
12

EM
1

=
νM

21

EM
2

(4.2.52)

In terms of the elements of the DDD matrix we find
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EM
1 =

12(D11D22 −D2
12)

D22h3
,EM

2 =
12(D11D22 −D2

12)

D11h3
,

GM
12 =

12D66

h3
,νM

12 =
D12

D22
,νM

21 =
D12

D11

(4.2.53)

Consider unsymmetric laminates, the laminate stiffness or compliance matrices

are not uncoupled and therefore it is not meaningful to use effective engineering

laminate moduli.

4.2.4 Stress Analysis

Laminate stresses may be subdivided into in-plane stresses, which are calculated

below with the classical assumption of linear strain functions of x3, and the through-

the-thickness stresses, which are calculated approximately by integration of the

equilibrium conditions. Taking into account the assumptions of macro-mechanical

modelling of laminates the strains ε1,ε2,ε6 vary linearly across the thickness of the

laminate

εεε(x1,x2,x3) = εεε(x1,x2)+ x3κκκ(x1,x2), h =
n

∑
k=1

h(k) (4.2.54)

These global strains can be transformed to the local strains in the principal material

directions of the kth layer through the transformation equations (Table 4.1)

εεε ′(k) = TTT εεεε (k), x
(k−1)
3 ≤ x3 ≤ x(k) (4.2.55)

If the strains are known at any point along the thickness of the laminate, the stress-

strain relation (Table 4.2) calculates the global stress in each lamina

σσσ (k) =QQQ(k)εεε (k) =QQQ(k)(εεε + x3κκκ), x
(k−1)
3 ≤ x3 ≤ x(k) (4.2.56)

By applying the transformation equation for the stress vector (Table 4.1) the stresses

expressed in the principal material axes can be calculated

σσσ ′(k) = TTT σσσσ (k) (4.2.57)

Starting from the strains εεε ′(k), the stresses in the kth layer are expressed as follows

σσσ ′(k) =QQQ′(k)εεε ′(k) (4.2.58)

From (4.2.56), the stresses vary linearly through the thickness of each lamina and

may jump from lamina to lamina since the reduced stiffness matrix QQQ(k) changes

from ply to ply since QQQ(k) depends on the material and orientation of the lamina (k).

Figure 4.16 illustrates qualitatively the stress jumps of the membrane stresses σσσ
(k)
M
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✻
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Fig. 4.16 Qualitatively variation of the in-plane membrane stresses σiM, the bending stresses

σiB and the total stress σi through the thickness of the laminate. Assumptions h(1) = h(3),

Q(1) = Q(3) < Q(2), i = 1,2,6

which follow from the in-plane resultants NNN and are constant through each lamina

and the bending/torsion stresses σσσ
(k)
B following from the moment resultants MMM and

vary linearly through each ply thickness. The transverse shear stresses σ4,σ5 follow

for a plane stress state assumptions that is in the framework of the classical laminate

theory, Sect. 5.1, not from a constitutive equation but as for the single layer, (4.1.56),

by integration of the equilibrium equations. For any lamina m of the laminate by

analogy to (4.1.57) can be established

σ
(m)
5 (x3) = −

m−1

∑
k=1

{ x
(k)
3
∫

x
(k−1)
3

[

Q
(k)
11

∂

∂x1
(ε1 + x3κ1)+Q

(k)
12

∂

∂x1
(ε2 + x3κ2)

+Q
(k)
16

∂

∂x1
(ε6 + x3κ6)+Q

(k)
61

∂

∂x2
(ε1 + x3κ1)

+ Q
(k)
62

∂

∂x2
(ε2 + x3κ2)+Q

(k)
66

∂

∂x2
(ε6 + x3κ6)

]

dx3

}

−
x3
∫

x
(m−1)
3

[

Q
(m)
11

∂

∂x1
(ε1 + x3κ1)+Q

(m)
12

∂

∂x1
(ε2 + x3κ2)

+Q
(m)
16

∂

∂x1
(ε6 + x3κ6)+Q

(m)
61

∂

∂x2
(ε1 + x3κ1)

+ Q
(m)
62

∂

∂x2
(ε2 + x3κ2)+Q

(m)
66

∂

∂x2
(ε6 + x3κ6)

]

dx3, (4.2.59)

σ
(m)
4 (x3) = −

m−1

∑
k=1

{ x
(k)
3
∫

x
(k−1)
3

[

Q
(k)
61

∂

∂x1
(ε1 + x3κ1)+Q

(k)
62

∂

∂x1
(ε2 + x3κ2)
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+Q
(k)
66

∂

∂x1
(ε6 + x3κ6)+Q

(k)
21

∂

∂x2
(ε1 + x3κ1)

+Q
(k)
22

∂

∂x2
(ε2 + x3κ2)dx3 +Q

(k)
26

∂

∂x2
(ε6 + x3κ6)dx3

}

(4.2.60)

−
x3
∫

x
(m−1)
3

[

Q
(m
61

∂

∂x1
(ε1 + x3κ1)+Q

(m)
62

∂

∂x1
(ε2 + x3κ2)

+Q
(m)
66

∂

∂x1
(ε6 + x3κ6)+Q

(m)
21

∂

∂x2
(ε1 + x3κ1)

+ Q
(m)
22

∂

∂x2
(ε2 + x3κ2)+Q

(m)
26

∂

∂x2
(ε6 + x3κ6)

]

dx3,

σ
(m)
i (x3 = x

(m)
3 ) = σ

(m+1)
i (x3 = x

(m)
3 ), i = 4,5;m = 1,2, . . . ,n,

x
(m+1)
3 ≤ x3 ≤ x

(m)
3

With the relationships

x
(k)
3
∫

x
(k−1)
3

QQQ(k)dx3 = QQQ(k)
(

x
(k)
3 − x

(k−1)
3

)

=QQQ(k)h(k),

x
(k)
3
∫

x
(k−1)
3

QQQ(k)x3dx3 = QQQ(k) 1

2

(

x
(k)
3

2
− x

(k−1)
3

2
)

=QQQ(k)h(k)x
(k)
3 =QQQ(k)s(k)

(4.2.61)

x̄
(k)
3 is the distance of lamina k from the midplane. The shear stresses

σ
(m)
i (x3 = x

(m)
3 ), i = 4,5, at the top surface of the mth lamina can be formulated by





σ
(m)
5

(

x3 = x
(m)
3

)

σ
(m)
4

(

x3 = x
(m)
3

)



=−
m

∑
k=1





FFF
(k)
1

T
FFF
(k)
6

T

FFF
(k)
6

T
FFF
(k)
2

T





[

ηηη1

ηηη2

]

(4.2.62)

with

FFF
(k)
1

T
= [h(k)Q

(k)
(11)

h(k)Q
(k)
(12)

h(k)Q
(k)
(16)

s(k)Q
(k)
(11)

s(k)Q
(k)
(12)

s(k)Q
(k)
(16)

],

FFF
(k)
2

T
= [h(k)Q

(k)
(21)

h(k)Q
(k)
(22)

h(k)Q
(k)
(26)

s(k)Q
(k)
(21)

s(k)Q
(k)
(22)

s(k)Q
(k)
(26)

],

FFF
(k)
6

T
= [h(k)Q

(k)
(61)

h(k)Q
(k)
(62)

h(k)Q
(k)
(66)

s(k)Q
(k)
(61)

s(k)Q
(k)
(62)

s(k)Q
(k)
(66)

]

and
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ηηηT
1 =

[

∂ε1

∂x1

∂ε2

∂x1

∂ε6

∂x1

∂κ1

∂x1

∂κ2

∂x1

∂κ6

∂x1

]

, ηηηT
2 =

[

∂ε1

∂x2

∂ε2

∂x2

∂ε6

∂x2

∂κ1

∂x2

∂κ2

∂x2

∂κ6

∂x2

]

The transverse shear stresses only satisfy the equilibrium conditions but violate the

other fundamental equations of anisotropic elasticity. They vary in a parabolic way

through the thicknesses h(k) of the laminate layers and there is no stress jump if one

crosses the interface between two layers.

4.2.5 Thermal and Hygroscopic Effects

In Sect. 4.1.2 the hygrothermal strains were calculated for unidirectional and angle

ply laminae. As mentioned above, no residual mechanical stresses would develop

in the lamina at the macro-mechanical level, if the lamina is free to expand. Free

thermal strain, e.g., refers to the fact that fibres and matrix of an UD-lamina are

smeared into a single equivalent homogeneous material and that the smeared ele-

ments are free of any stresses if temperature is changed. When one considers an

unsmeared material and deals with the individual fibres and the surrounding matrix,

a temperature change can create significant stresses in the fibre and matrix. When

such selfbalanced stresses are smeared over a volume element, the net result is zero.

However, in a laminate with various laminae of different materials and orientations

each individual lamina is not free to deform. This results in residual stresses in the

laminate. As in Eqs. (4.1.31) and (4.1.32) α th,αmo are the thermal and moisture

expansion coefficients, T is the temperature change and M∗ the weight of moisture

absorption per unit weight. In the following equations, T and M∗ are independent of

the x3-coordinate, i.e. they are constant not only through the thickness h(k) of a sin-

gle layer but through the thickness h of the laminate. Heat transfer in thin laminates,

e.g., is generally quite rapid and, hence, thermal gradients in x3-direction are seldom

taken into account and the temperature change T is then approximately independent

of x3. Analogous considerations are valid for changes in moisture.

For a single layer in off-axis coordinates, the hygrothermal strains and stresses

are given by

εεε = SSSσσσ +ααα thT +αααmoM∗, σσσ =QQQ(εεε −ααα thT −αααmoM∗) (4.2.63)

or substituting εεε = εεε + x3κκκ

σσσ =QQQ(εεε + x3κκκ −ααα thT −αααmoM∗) (4.2.64)

The definitions of the force and moment resultants NNN and MMM
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NNN =

∫

(h)

σσσdx3 =

∫

(h)

QQQ(εεε + x3κκκ −ααα thT −αααmoM∗)dx3,

MMM =

∫

(h)

σσσx3dx3 =

∫

(h)

QQQ(εεε + x3κκκ −ααα thT −αααmoM∗)x3dx3

(4.2.65)

yield the equations

NNN = AAAεεε +BBBκκκ −NNNth −NNNmo,
MMM = BBBεεε +DDDκκκ −MMMth −MMMmo,

(4.2.66)

AAA =QQQh, BBB = 000, DDD =QQQ
h3

12

BBB = 000 follows from the symmetry of a single layer to its midplane. NNNth, NNNmo,
MMMth,MMMmo are fictitious hygrothermal resultants which are defined in (4.2.67). If T

and M∗ are independent of x3 one can introduce unit thermal and unit moisture

stress resultants N̂th,M̂th, N̂mo,M̂mo, i.e. resultants per unit temperature or moisture

change

NNNth =

∫

(h)

QQQααα thT dx3 = QQQααα thTh = N̂thT,

MMMth =
∫

(h)

QQQααα thT x3dx3 =
1

2
QQQααα thT h2 = M̂thT,

NNNmo =

∫

(h)

QQQαααmoM∗dx3 = QQQαααmoM∗h = N̂moM∗,

MMMmo =

∫

(h)

QQQαααmoM∗x3dx3 =
1

2
QQQαααmoM∗h2 = M̂moM∗.

(4.2.67)

Nth and Nmo have the units of the force resultant, namely N/m, and Mth and Mmo

the units of the moment resultants, namely Nm/m. The integral form of the resultant

definitions makes these definitions quite general, i.e. if T or M∗ are known func-

tions of x3, the integration can be carried out. But for the temperature changes with

x3 and if the material properties change with temperature, the integration can be

complicated, but in general the simple integrated form, Eqs. (4.2.67) can be used.

With the total force and moment resultants ÑNN,M̃MM, equal to the respective sums of

their mechanical and hygrothermal components

ÑNN =NNN +NNNth +NNNmo, M̃MM =MMM+MMMth +MMMmo, (4.2.68)

the extended hygrothermal constitutive equation for a lamina can be written





ÑNN

· · ·
M̃MM



=









AAA
... 000

. . . .

000
... DDD













εεε
· · ·
κκκ



 (4.2.69)
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This constitutive equation is identical to that derived for mechanical loading only,

(4.1.54), except for the fact that here the hygrothermal forces and moments are

added to the mechanically applied forces and moments. The inversion of (4.2.69)

yields the compliance relation





εεε
· · ·
κκκ



=









aaa
... 000

. . . .

000
... ddd













ÑNN

· · ·
M̃MM



 , aaa = AAA−1, ddd =DDD−1 (4.2.70)

The values of the stiffness Ai j,Di j and compliances ai j,di j are the same as for pure

mechanical loading (Table 4.3) and unit stress resultants N̂th,M̂th, N̂mo,M̂mo are

N̂th
1 = (Q11α th

1 +Q12α th
2 +Q16α th

6 )h,

N̂th
2 = (Q12α th

1 +Q22α th
2 +Q26α th

6 )h,

N̂th
6 = (Q16α th

1 +Q26α th
2 +Q66α th

6 )h,

M̂th
1 = (Q11α th

1 +Q12α th
2 +Q16α th

6 )
1

2
h2,

M̂th
2 = (Q12α th

1 +Q22α th
2 +Q26α th

6 )
1

2
h2,

M̂th
6 = (Q16α th

1 +Q26α th
2 +Q66α th

6 )
1

2
h2

(4.2.71)

and analogous for unit moisture stress resultant with αmo
i , i = 1,2,6. In the more

general case the integral definitions have to used.

When a laminate is subjected to mechanical and hygrothermal loading, a lamina k

within the laminate is under a state of stress σσσ (k) and strain εεε (k). The hygrothermoe-

lastic superposition principle shows that the strains εεε (k) in the lamina k are equal

to the sum of the strains produced by the existing stresses and the free, i.e. unre-

strained, hygrothermal strains and the stresses σσσ (k) follow by inversion

εεε (k) = SSS(k)σσσ (k)+ααα th(k)T +αααmo(k)M∗,

σσσ (k) = QQQ(k)(εεε(k)−ααα th(k)T −αααmo(k)M∗)

= QQQ(k)(εεε(k)+ x3κκκ(k)−ααα th(k)T −αααmo(k)M∗)

(4.2.72)

When in the lamina k all strains are restrained, then εεε(k) = 000 and the hygrothermal

stresses are

σσσ (k) =QQQ(k)
(

−ααα th(k)T −αααmo(k)M∗
)

(4.2.73)

Integration of the stresses σσσ (k) and the stresses σσσ (k) multiplied by the x3-coordinate

across the thickness h(k) and summation for all laminae gives the force and moment

resultants of the laminate
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NNN =
n

∑
k=1

σσσ (k)h(k)

=











n

∑
k=1

QQQ(k)

x
(k)
3
∫

x
(k−1)
3

dx3











εεε +











n

∑
k=1

QQQ(k)

x
(k)
3
∫

x
(k−1)
3

x3dx3











κκκ

+











n

∑
k=1

QQQ(k)ααα th(k)T

x
(k)
3
∫

x
(k−1)
3

dx3











+











n

∑
k=1

QQQ(k)αααmo(k)M∗
x
(k)
3
∫

x
(k−1)
3

dx3











,

MMM =
n

∑
k=1

σσσ (k)h(k)x
(k)
3

=











n

∑
k=1

QQQ(k)

x
(k)
3
∫

x
(k−1)
3

x3dx3











εεε +











n

∑
k=1

QQQ(k)

x
(k)
3
∫

x
(k−1)
3

x2
3dx3











κκκ

+











n

∑
k=1

QQQ(k)ααα th(k)T

x
(k)
3
∫

x
(k−1)
3

x3dx3











+











n

∑
k=1

QQQ(k)αααmo(k)M∗
x
(k)
3
∫

x
(k−1)
3

x3dx3











(4.2.74)

With the stiffness matrices AAA,BBB and DDD, Eqs. (4.2.74), can be rewritten in a brief

matrix form
NNN = AAAεεε +BBBκκκ −NNNth −NNNmo,
MMM = BBBεεε +DDDκκκ −MMMth −MMMmo (4.2.75)

The fictitious hygrothermal resultants are given by

NNNth = T
n

∑
k=1

QQQ(k)ααα th(k)h(k) = T
n

∑
k=1

N̂(k)th,

NNNmo = M∗
n

∑
k=1

QQQ(k)αααmo(k)h(k) = M∗
n

∑
k=1

N̂(k)mo,

MMMth =
1

2
T

n

∑
k=1

QQQ(k)ααα th(k)
(

x
(k)
3

2
− x

(k−1)
3

2
)

(4.2.76)

= T
n

∑
k=1

QQQ(k)ααα th(k)x
(k)
3 h(k) = T

n

∑
k=1

M̂(k)th,

MMMmo =
1

2
M∗

n

∑
k=1

QQQ(k)αααmo(k)
(

x
(k)
3

2
− x

(k−1)
3

2
)

= M∗
n

∑
k=1

QQQ(k)αααmo(k)x
(k)
3 h(k) = M∗

n

∑
k=1

M̂(k)mo
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By analogy to the single layer one can introduce total force and moment resultants

ÑNN and M̃MM the stiffness and compliance equations expanded to the hygrothermal com-

ponents

NNN +NNNth +NNNmo = ÑNN, MMM+MMMth +MMMmo = M̃MM,





ÑNN

· · ·
M̃MM



=









AAA
... BBB

. . . .

BBB
... DDD













εεε
· · ·
κκκ



 ,





εεε
· · ·
κκκ



=









aaa
... bbb

. . . . .

bbbT
... ddd













ÑNN

· · ·
M̃MM



 ,

aaa = AAA∗−BBB∗DDD∗−1CCC∗, AAA∗ = AAA−1,

bbb = BBB∗DDD∗−1, BBB∗ = −AAA−1BBB,

ddd = DDD∗−1, DDD∗ = DDD−BBBAAA−1BBB

(4.2.77)

The coupling effects discussed in Sects. 4.2.2 and 4.2.3 stay unchanged and the

stiffness matrices in Table 4.4 can be transferred.

If we can classify a laminate as symmetric, balanced, cross-plied or some combi-

nations of these three laminate stacking types, some of the thermal or moisture force

or moment resultant coefficients may be zero. For temperature or moisture change

that depends on x3, no general statements can be given. However for changes in-

dependent of x3, the following simplifications for the unit stress resultants can be

considered, J = th,mo

Symmetric laminates

N̂J
1 6= 0, M̂J

1 = 0,

N̂J
2 6= 0, M̂J

2 = 0,

N̂J
6 6= 0, M̂J

6 = 0

Balanced laminates
N̂J

1 6= 0, M̂J
1 6= 0,

N̂J
2 6= 0, M̂J

2 6= 0,

N̂J
6 = 0, M̂J

6 6= 0

Symmetric balanced laminates

N̂J
1 6= 0, M̂J

1 = 0,

N̂J
2 6= 0, M̂J

2 = 0,

N̂J
6 = 0, M̂J

6 = 0

Cross-ply laminates

N̂J
1 6= 0, M̂J

1 6= 0,

N̂J
2 6= 0, M̂J

2 6= 0,

N̂J
6 = 0, M̂J

6 = 0
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Symmetric cross-ply laminates

N̂J
1 6= 0, M̂J

1 = 0,

N̂J
2 6= 0, M̂J

2 = 0,

N̂J
6 = 0, M̂J

6 = 0

Summarizing the hygrothermal effects one can see that if both mechanical and

hygrothermal loads are applied the mechanical and fictitious hygrothermal loads can

be added to find ply by ply stresses and strains in the laminate, or the mechanical

and hygrothermal loads can be applied separately and then the resulting stresses and

strains of the two problems are added.

4.2.6 Problems

Exercise 4.7. A symmetric laminate under in-plane loading can be considered as

an equivalent homogeneous anisotropic plate in plane stress state by introducing

average stress σσσ = NNN/h and NNN = AAAεεε . Calculate the effective moduli for general

symmetric laminates and for symmetric cross-ply laminates.

Solution 4.7. Equations (4.2.37) yields εεε = aaaNNN,aaa = AAA−1. The components of the

inverse matrix aaa are

a11 = (A22A66 −A2
26)/∆ ,a12 = (A16A26 −A12A66)/∆ ,

a22 = (A11A66 −A2
16)/∆ ,a16 = (A12A26 −A22A16)/∆ ,

a26 = (A12A16 −A11A26)/∆ ,a66 = (A11A22 −A2
12)/∆ ,

∆ = Det(Ai j) = A11

∣

∣

∣

∣

A22 A26

A26 A66

∣

∣

∣

∣

−A12

∣

∣

∣

∣

A12 A26

A16 A66

∣

∣

∣

∣

+A16

∣

∣

∣

∣

A12 A22

A16 A26

∣

∣

∣

∣

The comparison εεε = aaaNNN = haaaσσσ with (4.1.19) leads to

E1 = 1/ha11,E2 = 1/ha22,E6 = 1/ha66,
ν12 =−a12/a11,ν21 =−a12/a22,ν16 = a16/a11,
ν61 = a16/a66,ν26 = a26/a22,ν62 = a26/a6

These are the effective moduli in the general case. For cross-ply laminates is

A16 = A26 = 0 (Eqs. 4.2.31). The effective moduli can be explicitly expressed in

terms of the in-plane stiffness Ai j. With Det(Ai j) = A11A22A66 −A2
12A66 follow the

effective moduli

E1 = (A11A22 −A2
12)/hA22,ν12 = A12/A22,

E2 = (A11A22 −A2
12)/hA11,ν21 = A12/A11,

G12 ≡ E6 = A66/h,ν16 = ν61 = ν26 = ν62 = 0

Note that these simplified formulae are not only valid for symmetric cross-ply lam-

inates (0/90)S but also for laminates (±45)S.
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Exercise 4.8. Show that a symmetric laminate [±450/00/900]S with E ′
1 = 140 GPa,

E ′
2 = 10 GPa, E ′

6 = 7 GPa, ν ′
12 = 0,3 has a quasi-isotropic material behavior. The

thicknesses of all plies are onstant h(k) = 0,1 mm.

Solution 4.8. The solution will obtained in four steps:

1. Calculation of the on-axis reduced stiffness Q′
i j

With respect to (2.1.56) we obtain

ν ′
12/E ′

1 = ν ′
21/E ′

2 =⇒ ν ′
21 = (ν ′

12E ′
2)/E ′

1 = 0,0214

and finally from Eqs. (4.1.3) follow

Q′
11 = E ′

1(1−ν ′
12ν ′

21) = 140,905 GPa,

Q′
22 = E ′

2(1−ν ′
12ν ′

21) = 10,065 GPa,

Q′
12 = E ′

2ν ′
12/(1−ν ′

12ν ′
21) = 3,019 GPa,

Q′
66 = E ′

6 = 7 GPa

2. Calculation of the reduced stiffness in the laminae (Table 4.2)

Qi j[00] ≡ Q′
i j,

Q11[900] = Q′
22 = 10,065 GPa,

Q12[900] = Q′
12 = 3,019 GPa,

Q22[900] = Q′
11 = 140,905 GPa,

Q66[900] = Q′
66 = 7 GPa,

Q16[900] = Q26[900] = 0,

Q11[±450] = 46,252 GPa,

Q12[±450] = 32,252 GPa,

Q22[±450] = 46,252 GPa,

Q66[±450] = 36,233 GPa,

Q16[±450] = ±32,71 GPa,

Q26[±450] = ±32,71 GPa

3. Calculation of the axial stiffness Ai j (4.2.15)

Ai j =
8

∑
n=1

Q
(k)
i j h(k) = 2

4

∑
n=1

Q
(k)
i j h(k),

A11 = 48,695 106 Nm−1 = A22,A12 = 14,108 106 Nm−1,
A66 = 17,293106 Nm−1,A16 = A26 = 0

4. Calculation of the effective moduli (example 1)

E1 = E2 = (A2
11 −A2

12)/hA22 = 446,1 GPa, E6 = A66/h = 172,9 GPa,

ν12 = ν21 = A12/A22 = 0,29

Note that E = 2(1+ν)G = 446,1 GPa, i.e. the isotropy condition is satisfied.

Exercise 4.9. Calculate the laminar stresses σ and σ ′ in the laminate of previous

example loaded by uniaxial tension N1.



4.2 Elastic Behavior of Laminates 165

Solution 4.9. The following reduced stiffness matrices are calculated

QQQ[00] =





140,9 3,02 0

3,02 10,06 0

0 0 7,0



109Pa,

QQQ[900] =





10,06 3,02 0

3,02 140,9 0

0 0 7,0



109Pa,

QQQ[±450] =





46,25 32,25 ±32,71

32,25 46,25 ±32,71

±32,71 ±32,71 36,23



109Pa

The axial stiffness matrix AAA is also calculated

AAA =





48,70 14,11 0

14,11 48,70 0

0 0 17,29



106N/m

With
a11 = A22/(A

2
11 −A2

12) = 0,02241 10−6m/N,
a22 = A11/(A

2
11 −A2

12) = a11,
a66 = 1/A66 = 0,05784 10−6m/N,
a12 = −A12/(A11A22 −A2

12) =−0,00645 10−6m/N

follows the inverse matrix aaa = AAA−1

aaa =





22,41 −6,49 0

−6,49 22,41 0

0 0 57,84



10−9m/N

The strains are with (4.2.42)

εεε = aaaNNN =⇒





ε1

ε2

ε6



= aaa





N1

0

0



=





22,41

−6,49

0



10−9(m/N)N1

N1 is given in N/m, i.e. εi are dimensionless.

Now the laminar stresses are (Table 4.2)





σ1

σ2

σ6





[00]

= QQQ[00]εεε =





3138

2,4
0



N1[N/m2],





σ1

σ2

σ6





[900]

= QQQ[900]εεε =





205,8
−846,8

0



N1[N/m2],
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



σ1

σ2

σ6





[±450]

= QQQ[±450]εεε =





827,2
422,6
±520,7



N1[N/m2]

The stresses jump from lamina to lamina. Verify that the resultant force N2 = 0.

The stress components in reference to the principal material axes follow with the

transformation rule (Table 4.1)





σ ′
1

σ ′
2

σ ′
6



=





c2 s2 2sc

s2 c2 −2sc

−cs cs c2 − s2









σ1

σ2

σ6



 ,





σ ′
1

σ ′
2

σ ′
6





[00]

=





3138

2,4
0



N1[N/m2],





σ ′
1

σ ′
2

σ ′
6





[900]

=





−846,8
205,8

0



N1[N/m2],





σ1

σ2

σ6





[±450]

=





1146

104,2
∓202,3



N1[N/m2]

Note 4.1. These stresses are used in failure analysis of a laminate.

Exercise 4.10. A laminate with an unsymmetric layer stacking [−450/300/00] has

three layers of equal thickness h(1) = h(2) = h(3) = 5 mm. The mechanical properties

of all UD-laminae are E ′
1 = 181 GPa, E ′

2 = 10,30 GPa, G′
12 = 7,17 GPa, ν ′

12 = 0,28

GPa. Determine the laminate stiffness Ai j,Bi j,Di j.

Solution 4.10. Using (4.1.3) the elements S′i j of the compliance matrix SSS′ are

S′11 = 1/E ′
1 = 0,0055 GPa−1,

S′12 =−ν ′
12/E ′

1 =−0,0015 GPa−1,

S′22 = 1/E ′
2 = 0,0971 GPa−1,

S′66 = 1/G′
12 = 0,1395 GPa−1

The minor Poisson’s ratio follows with

ν ′
21 = ν ′

12E ′
2/E ′

1 = 0,01593

Using (4.1.3) the elements Q′
i j of the reduced stiffness matrix QQQ′ are

Q′
11 = E ′

1/(1−ν ′
12ν ′

21) = 181,8 109Pa,
Q′

12 = ν ′
12E ′

2/(1−ν ′
12ν ′

21) = 2,897 109Pa,
Q′

22 = E ′
2/(1−ν ′

12ν ′
21) = 10,35 109Pa,

Q′
66 = G′

12 = 7,17 109Pa
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Verify that the reduced stiffness matrix could also be obtained by inverting the

compliance matrix, i.e. QQQ′ = S′S′S′−1. Now the transformed reduced stiffness ma-

trices QQQ[00],QQQ[300],QQQ[−450] have to be calculated with the help of Table 4.2 tak-

ing into account that c = cos00 = 1,cos300 = 0,8660,cos(−450) = 0,7071 and

s = sin00 = 0,sin300 = 0,5,sin(−450) =−0,7071

QQQ[00] =





181,8 2,897 0

2,897 10,35 0

0 0 7,17



109Pa,

QQQ[300] =





109,4 32,46 54,19

32,46 23,65 20,05

54,19 20,05 36,74



109Pa,

QQQ[−450] =





56,66 42,32 −42,87

42,32 56,66 −42,87

−42,87 −42,87 46,59



109Pa

The location of the lamina surfaces are x
(0)
3 =−7,5 mm, x

(1)
3 =−2,5 mm, x

(2)
3 = 2,5

mm, x
(3)
3 = 7,5 mm. The total thickness of the laminate is 15 mm. From (4.2.15) the

extensional stiffness matrix AAA follows with

Ai j =
3

∑
k=1

Q
(k)
i j h(k) = 5

3

∑
k=1

Q
(k)
i j mm,

the coupling matrix BBB follows with

Bi j =
3

∑
k=1

Q
(k)
i j h(k)x̄

(k)
3 = 5

3

∑
k=1

Q
(k)
i j x̄

(k)
3 mm

and the bending stiffness matrix Di j follows with

Di j =
1

3

3

∑
k=1

Q
(k)
i j h(k)

(

(x̄
(k)
3 )2 +

h(k)
2

12

)

=
5

3

3

∑
k=1

Q
(k)
i j

(

25

12
+(x̄

(k)
3 )2

)

mm3

with

x̄
(k)
3 =

1

2
(x

(k)
3 + x

(k−1)
3 ),

i.e. x̄
(1)
3 = 5 mm, x̄

(2)
3 = 0 mm, x̄

(3)
3 =−5 mm. Summarizing the formulas for Ai j,Bi j

and Di j we have the equations

Ai j = 5[Q
(1)
i j +Q

(2)
i j +Q

(3)
i j ]mm,

Bi j = 5[5Q
(1)
i j + 0Q

(2)
i j − 5Q

(3)
i j mm2],

Di j = 5[(25+ 25/12)Q
(1)
i j +(25/12)Q

(2)
i j +(25+ 25/12)Q

(3)
i j ]mm3
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and the stiffness matrices follow to

AAA =





17,39 3,884 0,566

3,884 4,533 −1,141

0,566 −1,141 4,525



108Pa m,

BBB =





−3,129 0,986 −1,072

0,986 1,158 −1,072

−1,072 −1,072 0,986



106Pa m2,

DDD =





33,43 6,461 −5,240

6,461 9,320 −5,596

−5,240 −5,596 7,663



103Pa m3

4.3 Elastic Behavior of Sandwiches

One special group of laminated composites used extensively in engineering appli-

cations is sandwich composites. Sandwich panels consist of thin facings, also called

skins or sheets, sandwiching a core. The facings are made of high strength material

while the core is made of thick and lightweight materials, Sect. 1.3. The motiva-

tion for sandwich structure elements is twofold. First for beam or plate bending

the maximum normal stresses occur at the top and the bottom surface. So it makes

sense using high-strength materials at the top and the bottom and using low and

lightweight strength materials in the middle. The strong and stiff facings also sup-

port axial forces. Second, the bending resistance for a rectangular cross-sectional

beam or plate is proportional to the cube of the thickness. Increasing the thickness

by adding a core in the middle increases the resistance. The maximum shear stress

is generally in the middle of the sandwich requiring a core to support shear. The

advantages in weight and bending stiffness make sandwich composites attractive in

many applications.

The most commonly used facing materials are aluminium alloys and fibre re-

inforced plastics. Aluminium has a high specific modulus, but it corrodes without

treatment and can be prone to denting. Therefore fibre reinforced laminates, such

as graphite/epoxy or glass/epoxy are becoming more popular as facing materials.

They have high specific modulus and strength and corrosion resistance. The fibre

reinforced facing can be unidirectional or woven laminae.

The most commonly used core materials are balsa wood, foam, resins with spe-

cial fillers and honeycombs (Fig. 1.3). These materials must have high compressive

and shear strength. Honeycombs can be made of plastics, paper, card-boards, etc.

The strength and stiffness of honeycomb sandwiches depend on the material and

the cell size and thickness. The following sections consider the modelling and anal-

ysis of sandwiches with thin and thick cover sheets.
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4.3.1 General Assumptions

A sandwich can be defined as a special laminate with three layers. The thin cover

sheets, i.e. the layers 1 and 3, are laminates of the thicknesses h(1) for the lower skin

and h(3) for the upper skin. The thickness of the core is h(2) ≡ hc. In a general case

h(1) does not have to be equal to h(3), but in the most important practical case of

symmetric sandwiches h(1) = h(3) ≡ hf.

The assumptions for macro-mechanical modelling of sandwiches are:

1. The thickness of the core is much greater than that of the skins, h(2) ≫ h(1),h(3)

or hc ≫ hf

2. The strains ε1,ε2,ε6 vary linearly through the core thickness hc

εεε = εεε + x3κκκ

3. The sheets only transmit stresses σ1,σ2,σ6 and the in-plane strains are uniform

through the thickness of the skins. The transverse shear stresses σ4,σ5 are ne-

glected within the skin.

4. The core only transmits transverse shear stresses σ4 and σ5, the stresses σ1,σ2

and σ6 are neglected.

5. The strain ε3 is neglected in the sheets and the core.

With these additional assumptions in the frame of linear anisotropic elasticity, the

stresses and strains can be formulated.

Strains in the lower and upper sheets:

εεε(l) = εεε ∓ 1

2
hcκκκ, ε

(l)
i = εi ∓

1

2
hcκi, l = 1,3, i = 1,2,6 (4.3.1)

The transverse shear strains ε4,ε5 are neglected.

Strains in the sandwich core:

εεε (2) = εεεc = εεε + x3κκκ , −hc

2
≤ x3 ≤+

hc

2
(4.3.2)

The transverse shear strains are, in a first approach, independent of the coordinate

x3 (4.2.14)

γγγsc = [εc
5 εc

4 ]
T (4.3.3)

We shall see in Chap. 5 that in the classical laminate theory and the laminate theory

including transverse shear deformations the strain vector εεε is written in an analogous

form, and only the expressions for the curvatures are modified.

Stresses in the lower and upper sheets:

In the sheets a plane stress state exists and with assumption 3. the transverse shear

stresses σ4 and σ5 are neglected. These assumptions imply that for laminated sheets

in all layers of the lower and the upper skins

σ
(k)
4 = σ

(k)
5 = 0
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The other stresses are deduced from the constant strains

ε
(l)
1 ,ε

(l)
2 ,ε

(l)
6 , l = 1,3

by the relationships

σ
(k)
i = Q

(k)
i j ε

(l)
j , i, j = 1,2,6, l = 1,3 (4.3.4)

for the kth layer of the lower (l = 1) or the upper (l = 3) skin.

Stresses in the sandwich core:

From assumption 4. it follows

σ c
1 = σ c

2 = σ c
6 = 0

and the core transmits only the transverse shear stresses

[

σ c
5

σ c
4

]

=

[

C55 C45

C45 C44

][

ε5

ε4

]

(4.3.5)

or in matrix notation (Eq. 4.2.14)

σσσ s =CCCsγγγs (4.3.6)

The coefficients Cc
i j of CCCs are expressed as functions of the coefficients Cc′

i j referred

to the principal directions by the transformation equation (4.2.17). The coefficients

Cc′
i j in the principal directions are themselves written as functions of the shear moduli

of the core (Sect. 2.1, Table 2.5), measured in principal directions as follows

Cc′
44 = Gc

23, Cc
55 = Gc′

13 (4.3.7)

For an isotropic core material a transformation is not required.

4.3.2 Stress Resultants and Stress Analysis

The in-plane resultants NNN for sandwiches are defined by

NNN =

− 1
2 hc
∫

−( 1
2 hc+h(1))

σσσdx3 +

1
2 hc+h(3)
∫

1
2 hc

σσσdx3, (4.3.8)

the moment resultants by
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MMM =

− 1
2 hc
∫

−( 1
2 hc+h(1))

σσσx3dx3 +

1
2 hc+h(3)
∫

1
2 hc

σσσx3dx3 (4.3.9)

and the transverse shear force by

QQQs =

1
2 hc
∫

− 1
2 hc

σσσ sdx3 (4.3.10)

For the resultants NNN and MMM the integration is carried out over the sheets only and for

the transverse shear force over the core.

By substituting Eqs. (4.3.4) - (4.3.7) for the stresses into the preceding expres-

sions for the force and moment resultants, we obtain analogous to (4.2.16) the con-

stitutive equation




NNN

MMM

QQQs



=





AAA BBB 000

CCC DDD 000

000 000 AAAs









εεε
κκκ
γγγs



 (4.3.11)

with the stiffness coefficients

Ai j = A
(1)
i j +A

(3)
i j , Bi j =

1

2
hc
(

A
(3)
i j −A

(1)
i j

)

,

Ci j =C
(1)
i j +C

(3)
i j , Di j =

1

2
hc
(

C
(3)
i j −C

(1)
i j

)

(4.3.12)

and

A
(1)
i j =

− 1
2 hc
∫

−( 1
2 hc+h1)

Q
(k)
i j dx3 =

n1

∑
k=1

∫

h(k)

Q
(k)
i j dx3 =

n1

∑
k=1

Q
(k)
i j h(k),

A
(3)
i j =

1
2 hc+h3
∫

1
2 hc

Q
(k)
i j dx3 =

n2

∑
k=1

∫

h(k)

Q
(k)
i j dx3 =

n2

∑
k=1

Q
(k)
i j h(k),

C
(1)
i j =

− 1
2 hc
∫

−( 1
2 hc+h1)

Q
(k)
i j x3dx3 =

n1

∑
k=1

∫

h(k)

Q
(k)
i j x3dx3 =

n1

∑
k=1

Q
(k)
i j h(k)x̄

(k)
3 ,

C
(3)
i j =

1
2 hc+h3
∫

1
2 hc

Q
(k)
i j x3dx3 =

n2

∑
k=1

∫

h(k)

Q
(k)
i j x3dx3 =

n2

∑
k=1

Q
(k)
i j h(k)x̄

(k)
3

(4.3.13)

with x
(k)
3 =

1

2
(x

(k)
3 + x

(k−1)
3 and
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As
i j = hcCs

i j , i, j = 4,5 (4.3.14)

n1 and n2 are the number of layers in the lower and the upper sheet respectively and

Cs
i j are the transverse shear moduli of the core. The constitutive equations (4.3.11)

for a sandwich composite has a form similar to the constitutive equation for lami-

nates including transverse shear. It differs only by the terms Ci j instead of Bi j which

induce an unsymmetry in the stiffness matrix.

In the case of symmetric sandwiches with identical sheets h(1) = h(3) = hf,

A
(1)
i j = A

(3)
i j = Af

i j,C
(1)
i j = −C

(3)
i j = Cf

i j and from this it results that the stiffness

coefficients Eq. (4.3.12) are

Ai j = 2Af
i j, Di j = hcCf

i j, Bi j = 0, Ci j = 0 (4.3.15)

As developed for laminates including shear deformations, the coefficients As
i j can

be corrected by shear correction factors ks
i j and replaced by shear constants (ksAs)i j

to improve the modelling.

In the case of symmetric sandwiches there is no coupling between stretching

and bending and the form of the constitutive equation is identical to the constitutive

equation for symmetric laminates including transverse shear.

4.3.3 Sandwich Materials with Thick Cover Sheets

In the case of thick cover sheets it is possible to carry out the modelling and analysis

with the help of the theory of laminates including transverse shear. Considering the

elastic behavior of sandwich composites we have:

• The stretching behavior is determined by the skins.

• The transverse shear is imposed by the core.

The modelling assumption 1. of Sect. 4.3.1 is not valid. Restricting the modelling

to the case of symmetric sandwich composites and to the case where the core’s

principal direction is in coincidence with the directions of the reference coordinate

system. The elastic behavior of the composite material is characterized by

• the reduced stiffness parameters Qf
i j for the face sheets,

• the reduced stiffness parameters Qc
i j and the transverse shear moduli Cc

i j for the

core

Application of the sandwich theory, Sect. 4.3.2, leads to the following expressions

for the stiffness coefficients of the constitutive equation (upper index Sa), one lamina

ASa
i j = 2hfQf

i j,B
Sa
i j = 0,CSa

i j = 0,DSa
i j =

1

2
Qf

i j(h
f + hc)hfhc, i, j = 1,2,6 (4.3.16)

The shear stiffness coefficients As
i j are in the sandwich theory

AsSa
i j = hcCi j, i, j = 4,5, C44 = Gc

23, C55 = Gc
13,C45 = 0 (4.3.17)



4.3 Elastic Behavior of Sandwiches 173

Application of the laminate theory including transverse shear, Sect. 4.2.2, (4.2.15)

leads (upper index La) to

ALa
i j = 2hfQf

i j + hcQc
i j, BLa

i j = 0,

DLa
i j =

1

2
Qf

i jh
f

[

(hf + hc)2 +
1

3
(hf)2

]

+
1

12
Qc

i j(h
c)3, i, j = 1,2,6

(4.3.18)

The shear stiffness coefficients As
i j are now

AsLa
i j = 2hfCf

i j + hcCc
i j, i, j = 4,5,C

f/c
44 = G

f/c
23 , C

f/c
55 = G

f/c
13 ,C

f/c
45 = 0 (4.3.19)

For symmetric faces with n laminae Eqs. (4.3.16) - (4.3.19) yield

ASa
i j = 2

n

∑
k=1

Q
f (k)
i j h f (k),

DSa
i j = hc

n

∑
k=1

Q
f (k)
i j h f (k)x̄

(k)
3 ,

ALa
i j = 2

n

∑
k=1

Q
f (k)
i j h f (k)+ hcQc

i j,

DLa
i j =

n

∑
k=1

Q
f (k)
i j

(

h f (k)(x̄
(k)
3 )2 +

h f (k)3

12

)

+Qc
i j

hc3

12

The comparison of the analysis based on the sandwich or the laminate theory yields

ALa
i j = ASa

i j

(

1+
hcQc

i j

2hfQf
i j

)

,

DLa
i j = DSa

i j

(

1+
hf

hc

hc +(4/3)hf

hc + hf
+

Qc
i j

6Qf
i j

(hc)2

hf(hc + hf)

)

, i, j = 1,2,6

(4.3.20)

AsLa
i j = AsSa

i j

(

1+
hfCf

i j

2hcCc
i j

)

, i, j = 4,5 (4.3.21)

Generally the core of the sandwich is less stiff than the cover sheets

Qc
i j ≪ Qf

i j

and the relations (4.3.20) can be simplified

ALa
i j ≈ ASa

i j , DLa
i j ≈ DSa

i j

(

1+
hf

hc

hc +(4/3)hf

hc + hf

)

(4.3.22)

Equation (4.3.21) stays unchanged.

The bending stiffness Di j are modified with respect to the theory of sand-

wiches and can be evaluated by the influence of the sheet thickness. If for ex-
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ample hc = 10 mm and the sheet thickness hf = 1 mm/ 3 mm or 5 mm we find

DLa
i j = 1,103DSa

i j /1,326DSa
i j or 1,555DSa

i j , a difference of more than 10%, 30% or

50 %.

4.4 Problems

Exercise 4.11. The reduced stiffness Qc
i j and Qf

i j of a symmetric sandwich satisfies

the relation Qc
i j ≪ Qf

i j. Evaluate the influence of the sheet thickness on the bending

stiffness ratio DLa
i j /DSa

i j if the core thickness is constant (hc = 10 mm) and the sheet

thickness vary: hf = 0.5/1.0/3.0/5.0/8.0/10.0 mm.

Solution 4.11. Using the simplified formula (4.3.22) the ratio values are

1.051/1.103/1.323/1.555/1.918/2.167 i.e. the difference

DLa
i j −DSa

i j

DSa
i j

100%

of the stiffness values for DLa
i j and DSa

i j are more than 5%/10%/32%/55%/91% or

116%.

Conclusion 4.2. The sandwich formulas of Sect. 4.3.2 should be used for thin cover

sheets only, i.e. hf ≪ hc.

Exercise 4.12. A sandwich beam has faces of aluminium alloy and a core of

polyurethane foam. The geometry of the cross-section is given in Fig. 4.17. Cal-

PPPPPPP

✏✏✏✏✏✏✏

✲
✲
✲

✛
✛
✛

❄

❄

❄

❄

✻
✲✲

✻

❄

❄

✻

✲✛

❄

✻

❄

✻

✛

✻
hf

hf

x3

x2

hc h

b

a b c

x3 x3

Fig. 4.17 Sandwich beam. a Geometry of the cross-section of a sandwich beam, b Distribution

of the bending stress, if the local stiffness of the faces and the bending stiffness of the core are

dropped, c Distribution of the shear stress, if only the core transmit shear stresses
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culate the bending stiffness D and the distributions of the bending and the shear

stress across the faces and the core, if the stress resultants M and Q are given.

Solution 4.12. The bending stiffness D of the sandwich beam is the sum of the

flexural rigidities of the faces and the core

D = 2E f bhf3

12
+ 2E fbhf

(

hc + hf

2

)2

+Ec bhc3

12

E f and Ec are the effective Young’s moduli of the face and the core materials. The

first term presents the local bending stiffness of the faces about their own axes, the

third term represents the bending stiffness of the core. Both terms are generally very

small in comparison to the second term. Provided that

(hc + hf)/hf > 5,77, [(E fhf)/(Echc)][(hc + hf)/hc]2 > 100/6

i.e.

E fbhf3/6

E f[bhf(hc + hf)2]/2
<

1

100

Ecbhc3/12

E f[bhf(hc + hf)2]/2
<

1

100

the first and the third term are less than 1% of the second term and the bending

stiffness is approximately

D ≈ E fbhf(hc + hf)2/2

The bending stress distributions through the faces and the core are

σ f = M
E f

D
x3 ≈±M

E f

D

hc + hf

2
, σ c = M

Ec

D
x3 ≈ 0

The assumptions of the classical beam theory yield the shear stress equation for the

core

τ =
QS(x3)

bI
=

Q

bD
[E fSf(x3)+EcSc(x3)]

≈ Q

D

[

E f hf(hc + hf)

2
+

Ec

2

(

hc2

4
− x2

3

)]

The maximum core shear stress will occur at x3 = 0. If

E fhf(hc + hf)

Echc2/4
> 100

the ratio of the maximum core shear stress to the minimum core shear stress is < 1%

and the shear stress distribution across the core can be considered constant

τ ≈ Q

D

E fhf(hc + hf)

2

and with
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D ≈ E fbhf(hc + hf)2/2

follow τ ≈ Q/b(hc + hf) ≈ Q/bh. In Fig. 4.17 the distributions of the bending

and shear stresses for sandwich beams with thin faces are illustrated. Note that for

thicker faces the approximate flexural bending rigidity is

D ≈ E fbhf(hc + hf)/+E fbhf3
/12



Chapter 5

Classical and Improved Theories

In this chapter, the theoretical background for two commonly used structural the-

ories for the modelling and analysis of laminates and sandwiches is considered,

namely the classical laminate theory and the first-order shear deformation theory.

The classical laminate theory (CLT) and the first-order shear deformation theory

(FSDT) are the most commonly used theories for analyzing laminated or sand-

wiched beams, plates and shells in engineering applications. The CLT is an ex-

tension of Kirchhoff’s1 classical plate theory for homogeneous isotropic plates to

laminated composite plates with a reasonable high width-to-thickness ratio. For ho-

mogeneous isotropic plates the Kirchhoff’s theory is limited to thin plates with ratios

of maximum plate deflection w to plate thickness h < 0.2 and plate thickness/ mini-

mum in-plane dimensions < 0.1. Unlike homogeneous isotropic structure elements,

laminated plates or sandwich structures have a higher ratio of in-plane Young’s mod-

uli to the interlaminar shear moduli, i.e. such composite structure elements have a

lower transverse shear stiffness and often have significant transverse shear deforma-

tions at lower thickness-to span ratios < 0.05. Otherwise the maximum deflections

can be considerable larger than predicted by CLT. Furthermore, the CLT cannot

yield adequate correct through-the-thickness stresses and failure estimations. As a

result of these considerations it is appropriate to develop higher-order laminated and

sandwich theories which can be applied to moderate thick structure elements, e.g.

the FSDT. CLT and FSDT are so-called equivalent single-layer theories (ESLT).

Moreover a short overview of so-called discrete-layer or layerwise theories is given,

which shall overcome the drawbacks of equivalent single layer theories.

1 Gustav Robert Kirchhoff (∗12 March 1824 Königsberg - †17 October 1887 Berlin) - physi-

cist who contributed to the fundamental understanding of electrical circuits, spectroscopy, and the

emission of black-body radiation by heated objects, in addition, he formulated a plate theory which

was an extension of the Euler-Bernoulli beam theory

177© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8935-0_5&domain=pdf
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5.1 General Remarks

A classification of the structural theories in composite mechanics illustrates that the

following approaches for the modelling and analysis of beams and plates composed

of composite materials can be used:

1. So called equivalent single-layer theories: These theories are derived from the

three-dimensional elasticity theory by making assumptions concerning the kine-

matics of deformation and/or the stress distribution through the thickness of a

laminate or a sandwich. With the help of these assumptions the modelling can be

reduced from a 3D-problem to a 2D-problem. In engineering applications equiv-

alent single-layer theories are mostly used in the form of the classical laminate

theory, for very thin laminates, and the first order shear deformation theory, for

thicker laminates and sandwiches.

An equivalent single layer model is developed by assuming continuous displace-

ment and strain functions through the thickness. The stresses jump from ply to

ply and therefore the governing equations are derived in terms of thickness aver-

aged resultants. Also second and higher order equivalent single layer theories by

using higher order polynomials in the expansion of the displacement components

through the thickness of the laminate are developed. Such higher order theories

introduce additional unknowns that are often difficult to interpret in mechanical

terms. The CLT requires C1-continuity of the transverse displacement, i.e. the

displacement and the derivatives must be continuous, unlike the FSDT requires

C0-continuity only. Higher order theories generally require at least C1-continuity.

2. Three-dimensional elasticity theories such as the traditional 3D-formulations of

anisotropic elasticity or the so-called layerwise theories: In contrast to the equiv-

alent single-layer theories only the displacement components have to be contin-

uous through the thickness of a laminate or a sandwich but the derivatives of

the displacements with respect to the thickness coordinate x3 may be discon-

tinuous at the layer interfaces. We say that the displacement field exhibits only

C0-continuity through the thickness directions.

The basic assumption of modelling structural elements in the framework of the

anisotropic elasticity is an approximate expression of the displacement components

in the form of polynomials for the thickness coordinate x3. Usually the polynomials

are limited to degree three and can be written in the form

u1(x1,x2,x3) = u(x1,x2) + αx3
∂w(x1,x2)

∂x1
+ β x3ψ1(x1,x2)

+ γx2
3φ1(x1,x2) + δx3

3χ1(x1,x2),

u2(x1,x2,x3) = v(x1,x2) + αx3
∂w(x1,x2)

∂x2
+ β x3ψ2(x1,x2)

+ γx2
3φ2(x1,x2) + δx3

3χ2(x1,x2),

u3(x1,x2,x3) = w(x1,x2) + β x3ψ3(x1,x2) + γx2
3φ3(x1,x2)

(5.1.1)
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A displacement field in the form of (5.1.1) satisfies the compatibility conditions for

strains, Sect. 2.2.1, and allows possible cross-sectional warping, transverse shear

deformations and transverse normal deformations to be taken into account. The dis-

placement components of the middle surface are u(x1,x2),v(x1,x2),w(x1,x2). In the

case of dynamic problems the time t must be introduced in all displacement func-

tions.

The polynomial approach (5.1.1) of the real displacement field yields the follow-

ing equivalent single-layer theories

• Classical laminate theories

α =−1,β = γ = δ = β = γ = 0

• First-order shear deformation theory

α = 0,β = 1,γ = δ = β = γ = 0

• Second order laminate theory

α = 0,β = 1,γ = 1,δ = β = γ = 0

• Third order laminate theory

α = 0,β = 1,γ = 1,δ = 1,β = γ = 0

Theories higher than third order are not used because the accuracy gain is so little

that the effort required to solve the governing equations is not justified. A third order

theory based on the displacement field u1,u2,u3 has 11 unknown functions of the

in-plane coordinates x1,x2. u,v,w denote displacements and ψ1,ψ2 rotations of the

transverse normals referred to the plane x3 = 0. ψ3 has the meaning of extension of

a transverse normal and the remaining functions can be interpreted as warping func-

tions that specify the deformed shape of a straight line perpendicular to the reference

plane of the undeformed structure. In addition, any plate theory should fulfill some

consistency requirements which was first time discussed for the simplest case of a

homogeneous isotropic plate in Kienzler (2002) and later extended to other cases

by Schneider and Kienzler (2015); Schneider et al (2014). Also implementations of

higher order theories into finite element approximations cannot be recommended. If

a laminated plate is thick or the 3D stress field must be calculated in local regions,

a full 3D analysis should be carried out.

The most widely used approach reduces the polynomial function of degree three

to a linear or first order approximation, which includes the classical and the first-

order shear deformation theory

u1(x1,x2,x3) = u(x1,x2) + x3ψ1(x1,x2),
u2(x1,x2,x3) = v(x1,x2) + x3ψ2(x1,x2),
u3(x1,x2,x3) = w(x1,x2)

(5.1.2)
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The classical approximation can be obtained if

ψ1(x1,x2) =− ∂w

∂x1
, ψ2(x1,x2) =− ∂w

∂x2

The number of unknown functions reduces to three, that are u,v,w. On the other

hand there are five independent unknown functions u,v,w,ψ1,ψ2.

The strain-displacement equations (2.2.3) give for the first order displacement

approximation a first order strain field model with transverse shear

ε1 =
∂u

∂x1
+ x3

∂ψ1

∂x1
, ε2 =

∂v

∂x2
+ x3

∂ψ2

∂x2
, ε3 = 0,

ε4 =
∂w

∂x2
+ψ2, ε5 =

∂w

∂x1
+ψ1,

ε6 =
∂u

∂x2
+

∂v

∂x1
+ x3

(

∂ψ2

∂x1
+

∂ψ1

∂x2

)

(5.1.3)

For the in-plane strains one can write in contracted form

εi(x1,x2,x3) = εi(x1,x2)+ x3κi(x1,x2), i = 1,2,6,

i.e. the in-plane strains ε1,ε2 and ε6 vary linearly through the thickness h.

The stress-strain relations in on-axis coordinates are

σ ′
i =C′

i jε
′
j, i, j = 1,2, . . . ,6

From the transformation rule (4.1.27) follow the stiffness coefficients in the off-

axis-coordinates

CCC =
3

TTT

ε T

CCC′ 3

TTT

ε

and with (4.1.26) the constitutive equation is

















σ1

σ2

σ3

σ4

σ5

σ6

















=

















C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

































ε1

ε2

ε3

ε4

ε5

ε6

















(5.1.4)

Assuming σ3 ≈ 0, the stiffness matrix can be rewritten by separating the transverse

shear stresses and strains in analogy to (4.2.3) - (4.2.5)













σ1

σ2

σ6

σ4

σ5













=













Q11 Q12 Q16 0 0

Q12 Q22 Q26 0 0

Q16 Q26 Q66 0 0

0 0 0 C44 C45

0 0 0 C45 C55

























ε1

ε2

ε6

ε4

ε5













(5.1.5)
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and from

σ3 =C13ε1 +C23ε2 +C33ε3 +C36ε6 = 0

it follows

ε3 =− 1

C33
(C13ε1 +C23ε2 +C36ε6)

The Qi j are the reduced stiffness in the off-axis reference system

Qi j =Ci j −
Ci3C j3

C33
, i, j = 1,2,6, Qi j =Ci j, i, j = 4,5

Summarizing, one can say that the first order displacement approach (5.1.2) includes

the classical and the shear deformation theory for laminates and sandwiches. In both

cases the in-plane displacements and strains vary linearly through the thickness, but

the explicit expressions for the curvature vector κκκ differ. The force and moment re-

sultants can be defined for both theories in the usual way, e.g. (4.2.13), (4.2.14), but

in the classical theory there are only constitutive equations for the in-plane force

and the moment resultants NNN,MMM. It can be proved that a CLT approach is sufficient

for very thin laminates and it has been used particularly to determine the global

response of thin composite structure elements, i.e. deflections, overall buckling, vi-

bration frequencies, etc. The FSDT approach is sufficient for determining in-plane

stresses even if the structure slenderness is not very high.

The CLT neglects all transverse shear and normal effects, i.e. structural deforma-

tion is due entirely to bending and in-plane stretching. The FSDT relaxes the kine-

matic restrictions of CLT by including a constant transverse shear strain. Both first

order theories yield a complete understanding of the through-the-thickness laminate

response. Transverse normal and shear stresses, however, play an important role in

the analysis of beams, plates and shells since they significantly affect characteris-

tic failure modes like, e.g., delamination. The influence of interlaminar transverse

stresses are therefore taken into account by several failure criteria. Simple but suf-

ficient accurate methods for determination of the complete state of stress in com-

posite structures are needed to overcome the limitations of the simple first order 2D

modelling in the frame of an extended 2D modelling. In Sects. 5.2 and 5.3 a short

description of CLT and FSDT is given including some remarks to calculate trans-

verse stress components. In Chap. 11 will be seen that both the CLT and the FSDT

yield finite elements with an economical number of degrees of freedom, both have

some drawbacks. CLT-models require C1-continuity which complicates the imple-

mentation in commonly used FEM programs. FSDT-models have the advantage of

requiring only C0-continuity but they can exhibit so-called locking effects if lami-

nates becomes thin. Further details are given in Chap. 11.
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5.2 Classical Laminate Theory

The classical laminate theory uses the first-order model equations (5.1.2) but makes

additional assumptions:

1. All layers are in a state of plane stress, i.e.

σ3 = σ4 = σ5 = 0

2. Normal distances from the middle surface remain constant, i.e. the transverse

normal strain ε3 is negligible compared with the in-plane strains ε1,ε2.

3. The transverse shear strains ε4,ε5 are negligible. This assumption implies that

straight lines normal to the middle surface remain straight and normal to that

surface after deformation (Bernoulli/Kirchhoff/Love2 hypotheses in the theory

of beams, plates and shells).

Further we recall the general assumption of linear laminate theory that each layer

is quasi-homogeneous, the displacements are continuous through the total thickness

h, the displacements are small compared with the thickness h and the constitutive

equations are linear.

From assumptions 2. and 3. it follows from (5.1.3) that

ψ1(x1,x2) =− ∂w

∂x1
, ψ2(x1,x2) =− ∂w

∂x2
, (5.2.1)

and the displacement approach (5.1.2) and the strain components (5.1.3) are written

by

u1(x1,x2,x3) = u(x1,x2) − x3
∂w(x1,x2)

∂x1
,

u2(x1,x2,x3) = v(x1,x2) − x3
∂w(x1,x2)

∂x2
,

u3(x1,x2,x3) = w(x1,x2),

(5.2.2)

ε1 =
∂u

∂x1
− x3

∂w2

∂x2
1

, ε2 =
∂v

∂x2
− x3

∂w2

∂x2
2

, ε3 = 0,

ε4 = 0, ε5 = 0, ε6 =
∂u

∂x2
+

∂v

∂x1
− 2x3

∂w2

∂x1∂x2

(5.2.3)

The condensed form for the in-plane strains can be noted as

εi(x1,x2,x3) = εi(x1,x2)+ x3κi, i = 1,2,6

with

2 Augustus Edward Hough Love (∗17 April 1863, Weston-super-Mare – †5 June 1940, Oxford) -

mathematician, mathematical theory of elasticity
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ε1 =
∂u

∂x1
, ε2 =

∂v

∂x2
, ε6 =

∂u

∂x2
+

∂v

∂x1
,

κ1 =−∂w2

∂x2
1

, κ2 =−∂w2

∂x2
2

, κ6 =−2
∂w2

∂x1∂x2

εεεT = [ε1 ε2 ε6] is the vector of midplane strains (stretching and shearing) and

κκκT = [κ1 κ2 κ6] the vector of curvature (bending and twisting). For all k layers the

stresses are given in condensed form by

σ
(k)
i = Q

(k)
i j εi + x3Q

(k)
i j κi, i, j = 1,2,6 (5.2.4)

and the stiffness equations for the stress resultants follow from (4.2.13) - (4.2.18).

The classical laminate theory is also called shear rigid theory, the material equa-

tions yield zero shear stresses σ4,σ5 for zero strains ε4,ε5, in the case that the shear

stiffness has finite values. But the equilibrium conditions yield non-zero stresses

σ4,σ5, if the stresses σ1,σ2 and σ6 are not all constant. This physical contradiction

will be accepted in the classical theory and the transverse shear stresses are approx-

imately calculated with the given stresses σ1,σ2,σ6 by the equilibrium equations

(4.1.56).

The approximate calculation of transverse shear stresses can be simplified if one

assumes the case of cylindrical bending, i.e. N1 = N2 = N6 ≈ 0,M6 ≈ 0. The consti-

tutive equation (4.2.18) or the inverted Eq. (4.2.19) with NNN ≡ 000 gives





000

· · ·
MMM



=









AAA
... BBB

. . . .

BBB
... DDD













εεε
· · ·
κκκ



 ,





εεε
· · ·
κκκ



=









aaa
... bbb

. . . . .

bbbT
... ddd













000

· · ·
MMM



 (5.2.5)

that is with Eqs. (4.2.20) - (4.2.26)

εεε =−AAA−1BBBκκκ ,MMM = (DDD−BBBAAA−1BBB)κκκ =DDD∗κκκ

εεε = bbbMMM =BBB∗DDD∗−1MMM,κκκ = dddMMM =DDD∗−1MMM (5.2.6)

For symmetric laminates are BBB = 000,BBB∗ = 000,DDD∗ =DDD and Eqs. (5.2.6) can be replaced

by

εεε = 000,κκκ =DDD−1MMM (5.2.7)

The partial extensional and coupling stiffness ÃAA(x3),B̃BB(x3), Fig. 5.1, become
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Fig. 5.1 Derivation of partial stiffness ÃAA(x3) and B̃BB(x3) for the shaded part of the cross-section

ÃAA(x3) =

x3
∫

x
(0)
3

QQQ(x3)dx3

=
m−1

∑
k=1

QQQ(k)h(k)+QQQ(m)
(

x3 − x
(m−1)
3

)

,

B̃BB(x3) =

x3
∫

x
(0)
3

QQQ(x3)x3dx3

=
m−1

∑
k=1

QQQ(k)s(k)+
1

2
QQQ(m)

(

x2
3 − x

(m−1)
3

2
)

,

(5.2.8)

h(k) = x
(k)
3 − x

(k−1)
3 , s(k) = h(k)x

(k)
3 =

1

2

(

x
(k)
3 + x

(k−1)
3

)(

x
(k)
3 − x

(k−1)
3

)

Outgoing from the equilibrium equations (2.2.1) the shear stress equations can be

written
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σ5(x3) =−
x3
∫

x
(0)
3

(

∂σ1

∂x1
+

∂σ6

∂x2

)

dx3

=−
x3
∫

x
(0)
3

[

∂

∂x1

(

Q
(k)
1 j ε j + x3Q

(k)
1 j κ j

)

+
∂

∂x2

(

Q
(k)
6 j ε j + x3Q

(k)
6 j κ j

)

]

dx3,

σ4(x3) =−
x3
∫

x
(0)
3

(

∂σ6

∂x1
+

∂σ2

∂x2

)

dx3

=−
x3
∫

x
(0)
3

[

∂

∂x1

(

Q
(k)
6 j ε j + x3Q

(k)
6 j κ j

)

+
∂

∂x2

(

Q
(k)
2 j ε j + x3Q

(k)
2 j κ j

)

]

dx3

(5.2.9)

or in vector-matrix notation

[

σ5(x3)
σ4(x3)

]

=−
x3
∫

x
(0)
3

[

1 0 0

0 0 1

]







Q
(k)
1 j (ε j,x1

+ x3κ j,x1
)

Q
(k)
2 j (ε j,x1

+ x3κ j,x1
)

Q
(k)
6 j (ε j,x1

+ x3κ j,x1
)






dx3

−
x3
∫

x
(0)
3

[

1 0 0

0 0 1

]







Q
(k)
1 j (ε j,x2

+ x3κ j,x2
)

Q
(k)
2 j (ε j,x2

+ x3κ j,x2
)

Q
(k)
6 j (ε j,x2

+ x3κ j,x2
)






dx3

(5.2.10)

with (. . .),xα = ∂ . . ./∂xα ,α = 1,2, j = 1,2,6. Using Eqs. (5.2.6) - (5.2.8)

σσσ s(x3) =−BBB1FFF(x3)MMM,x1
−BBB2FFF(x3)MMM,x2

(5.2.11)

with
σσσ s(x3) = [σ5 σ4]

T, MMM,xi
= [M1,xi

M2,xi
M6,xi

]T,

FFF(x3) = [ÃAA(x3)AAA
−1BBB− B̃BB(x3)]DDD

∗−1 =





F11 F12 F16

F21 F22 F26

F61 F62 F66





(5.2.12)

in the general case if non-symmetrical laminate and

FFF(x3) = B̃BB(x3)DDD
−1 (5.2.13)

for symmetrical laminates,

BBB1 =

[

1 0 0

0 0 1

]

, BBB2 =

[

0 0 1

0 1 0

]

(5.2.14)
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are so called Boolean3 matrices. Equation (5.2.11) can also be written in component

notation.

Equations (5.2.11) and (5.2.16) constitute the straight forward equilibrium ap-

proach for transverse shear stresses which only neglects the influence of the in-plane

force derivatives NNN,xi
, but this is a very minor restriction, since, in most engineer-

ing applications, the dominating source for transverse shear stresses are transverse

force resultants. To express the bending moment derivatives by transverse shear

stress resultants it is necessary to assume special selected displacements modes.

If one selects the cylindrical bending around the x1- and the x2-axis one obtains

M6 = 0,M1,x2
= 0,M2,x1

= 0

M1,x1
(x1) = Qs

1(x1), M2,x2
(x2) = Qs

2(x2) (5.2.15)

with the transverse forces

Qs
1(x1) =

∫

(h)

σ5(x3)dx3 =
n

∑
k=1

∫

(h)

σ
(k)
5 (x3)dx3,

Qs
2(x2) =

∫

(h)

σ4(x3)dx3 =
n

∑
k=1

∫

(h)

σ
(k)
4 (x3)dx3

(5.2.16)

Equation (5.2.11) becomes in matrix notation

σσσ s(x3) =FFF(x3)QQQ
s,

σσσ s = [σ5(x3) σ4(x3)]
T, QQQs = [Qs

1(x1) Qs
2(x2)]

T,

FFF =

[

F11(x3) F62(x3)
F61(x3) F22(x3)

] (5.2.17)

Summarizing the derivations of transverse shear stresses we have considered two

cases

1. NNN ≡ 000,MMM = [M1 M2 M6]
T,

2. NNN ≡ 000,MMM = [M1(x1) M2(x2)]
T

In case 1. follow Eqs. (5.2.18) and in case 2. Eqs. (5.2.19)

[

σ5(x3)
σ4(x3)

]

=

[

F11(x3) F12(x3) F16(x3)
F61(x3) F62(x3) F66(x3)

]

∂

∂x1





M1

M2

M6





+

[

F61(x3) F62(x3) F66(x3)
F21(x3) F22(x3) F26(x3)

]

∂

∂x2





M1

M2

M6



 ,

(5.2.18)

3 George Boole (∗2 November 1815 Lincoln - †8 December 1864 Ballintemp) - mathematician,

educator, philosopher and logician
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[

σ5(x3)
σ4(x3)

]

=

[

F11(x3) F62(x3)
F61(x3) F22(x3)

][

Q1

Q2

]

,
Qs

1 = Qs
1(x1)

Qs
2 = Qs

2(x2)
,

∂M1(x1)

∂x1
= Q1,

∂M2(x2)

∂x2
= Q2

(5.2.19)

Symmetric laminates are preferred in engineering applications. In this case

DDD∗ = DDD,BBB ≡ 000 and FFF(x3) = −B̃BB(x3)DDD
−1. The calculation of the transverse shear

stresses is more simple. The approximate solution for transverse shear stresses in

the classical laminate theory satisfies the equilibrium condition. The shear stresses

are layerwise parabolic functions and there is no stress jump at the layer interfaces.

Also in the frame of the classical laminate theory an approximate constitutive

equation can be formulated

QQQs =AAAsεεε s or

[

Qs
1

Qs
2

]

=

[

A55 A45

A45 A44

][

ε5

ε4

]

(5.2.20)

Regarding the complementary transverse shear theory formulated in shear stresses

W ∗s
1 =

1

2

∫

(h)

σσσ sT(CCC)−1σσσ sdx3 (5.2.21)

and in shear forces

W ∗s
2 =

1

2
QQQsT(AAAs)−1QQQs (5.2.22)

The stress vector σσσ s is a function of x3 only, and therefore the integration is carried

out over x3. In

CCCs =

[

C55 C45

C45 C44

]

the Ci j, i, j = 4,5 are the elastic parameters of the Hooke’s law. In Eq. (5.2.21) the

stress can be replaced by the transverse force resultants, Eq. (5.2.19). The Qs
i do not

depend on x3 and Eq. (5.2.21) yields

W ∗s
1 =

1

2
QQQsT







∫

(h)

FFFT(x3)(CCC
s)−1FFF(x3)dx3






QQQs (5.2.23)

FFF(x3) is the reduced elasticity matrix Eq. (5.2.18) and Eq. (5.2.23) leads to

W ∗s
1 =

1

2
[Qs

1 Qs
2]











∫

(h)

[

F11 F62

F61 F22

]T [
C55 C45

C45 C44

]−1 [
F11 F62

F61 F22

]

dx3











[

Qs
1

Qs
2

]

(5.2.24)

With W ∗s
1 =W ∗s

2 follows the approximate shear stiffness
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AAAs =







∫

(h)

FFFT(CCCs)−1FFFdx3







−1

(5.2.25)

The Ci j are layerwise constant. The calculation of AAAs demands an integration over

layerwise defined polynomials of 4th order and can be just simple carried out by

programming. For unsymmetrical laminates FFF(x3) is defined by Eq. (5.2.12).

Hygrothermal effects have no influence on the transverse shear stresses. In the

classical laminate theory for mechanical and hygrothermal loading as demonstrated

in Sect. 4.2.5, the resultants NNN and MMM must be substituted by the effective resultants

ÑNN and M̃MM.

5.3 Shear Deformation Theory for Laminates and Sandwiches

The classical laminate theory allows us to calculate the stresses and strains with

high precision for very thin laminates except in a little extended region near the

free edges. The validity of the classical theory has been established by comparing

theoretical results with experimental tests and with more exact solutions based on

the general equations of the linear anisotropic elasticity theory.

If the width-to-thickness ratio is less about 20, the results derived from the clas-

sical theory show significant differences with the actual mechanical behavior and

the modelling must be improved.

A first improvement is to include approximately the effect of shear deformation

in the framework of a first-order displacement approach. A further improvement is

possible by introducing correction factors for the transverse shear moduli.

The model used now has the same general form, as (5.1.2), for the displacements,

but contrary to the classical theory, ψ1 and ψ2 are independent functions and a nor-

mal line to the middle surface of the composite remains straight under deformation,

however it is not normal to the deformed middle plane. In the shear deformation the-

ory the actual deformation state is approximated by 5 independent two-dimensional

functions u,v,w,ψ1,ψ2, in the classical theory by 3 functions u,v,w, respectively.

The strains are deduced from the displacements, (5.1.3). The components of the

strains

εεε(x1,x2,x3) = εεε(x1,x2)+ x3κκκ(x1,x2), i = 1,2,6

again vary linearly through the thickness h and are given by

ε1 =
∂u

∂x1
, ε2 =

∂v

∂x2
, ε6 =

∂u

∂x2
+

∂v

∂x1
,

κ1 =
∂ψ1

∂x1
, κ2 =

∂ψ2

∂x2
, κ6 =

∂ψ2

∂x1
+

∂ψ1

∂x2

(5.3.1)
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The components of the vector εεεT = [ε1 ε2 ε6] are not changed, however the compo-

nents of the curvature vector κκκT = [κ1 κ2 κ6] are now expressed by the derivatives

of the functions ψ1,ψ2. The stresses in the kth layer can be expressed by













σ1

σ2

σ6

σ4

σ5













(k)

=QQQ(k)













ε1

ε2

ε6

ε4

ε5













(k)

=QQQ(k)































∂u

∂x1
+ x3

∂ψ1

∂x1
∂v

∂x2
+ x3

∂ψ2

∂x2
∂u

∂x2
+

∂v

∂x1
+ x3

(

∂ψ2

∂x1
+

∂ψ1

∂x2

)

∂w

∂x2
+ψ2

∂w

∂x1
+ψ1































(5.3.2)

The stresses σ1,σ2 and σ6 are superimposed on the extensional and the flexural

stresses and vary linearly through a layer thickness, the stresses σ4,σ5 are, in con-

tradiction to the equilibrium equations, constant through h(k). The strains ε1,ε2,ε6

vary linearly and the strains ε4,ε5 constant through the laminate thickness h, i.e. they

vary continuously through the total thickness. Unlike, the corresponding stresses

σ1,σ2,σ6 and σ4,σ5 vary linearly or remain constant, respectively, through each

layer thickness h(k) only. Therefore is no stress continuity through the laminate

thickness but stress jumps from ply to ply at their interfaces depending on the re-

duced stiffness QQQ and QQQs.

With the definition equations for the stress resultants NNN,MMM,QQQs and the stiffness

coefficients Ai j,Bi j,Di j ,A
s
i j for laminates (4.2.13) - (4.2.15) or sandwich (4.3.8) -

(4.3.10), (4.3.12) - (4.3.14), respectively, the constitutive equation can be written in

the condensed hypermatrix form, Eqs. (4.2.16)





NNN

MMM

QQQs



=





AAA BBB 000

BBB DDD 000

000 000 AAAs









εεε
κκκ
γγγs



 (5.3.3)

The stretching, coupling and bending stiffness Ai j,Bi j,Di j stay unchanged in com-

parison to the classical laminate theory. The shear stiffness are approximately given

by

As
i j =

n

∑
k=1

C
(k)
i j h(k), i, j = 4,5 (5.3.4)

The C
(k)
i j are the constant shear moduli of the kth lamina. These approximated shear

stiffness overestimate the shear stiffness since they are based on the assumption of

constant transverse shear strains and also do not satisfy the transverse shear stresses

vanishing at the top and bottom boundary layers.

The stiffness values can be improved with help of shear correction factors (Vla-

choutsis, 1992; Altenbach, 2000; Gruttmann and Wagner, 2017). In this case the

part of the constitutive equation relating to the resultants NNN,MMM is not modified. The
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other part relating to transverse shear resultants QQQs is modified by replacing the

stiffness As
i j by (kA)s

i j . The constants ks
i j are the shear correction factors. A very

simple approach is to introduce a weighting function f (x3) for the distribution of

the transverse shear stresses through the thickness h.

Assume a parabolic function f (x3)

f (x3) =
5

4

[

1−
(

x3

h/2

)2
]

(5.3.5)

and considering that for the kth layer

σ
(k)
4 = Q

(k)
44 ε4 +Q

(k)
45 ε5, σ

(k)
5 = Q

(k)
45 ε4 +Q

(k)
55 ε5 (5.3.6)

the transverse resultants are:

Q2 =
n

∑
k=1

x
(k)
3
∫

x
(k−1)
3

σ
(k)
4 f (x3)dx3

=
5

4















n

∑
k=1

Q
(k)
44 ε4

x
(k)
3
∫

x
(k−1)
3

[

1−
(

x3

h/2

)2
]

dx3 +
n

∑
k=1

Q
(k)
45 ε5

x
(k)
3
∫

x
(k−1)
3

[

1−
(

x3

h/2

)2
]

dx3















,

Q1 =
n

∑
k=1

x
(k)
3
∫

x
(k−1)
3

σ
(k)
5 f (x3)dx3

=
5

4















n

∑
k=1

Q
(k)
45 ε4

x
(k)
3
∫

x
(k−1)
3

[

1−
(

x3

h/2

)2
]

dx3 +
n

∑
k=1

Q
(k)
55 ε5

x
(k)
3
∫

x
(k−1)
3

[

1−
(

x3

h/2

)2
]

dx3















The shear stiffness coefficients As
i j of the constitutive equations

Q2 = As
44ε4 +As

45ε5, Q1 = As
45ε4 +As

55ε5 (5.3.7)

are calculated by

As
i j =

5

4

n

∑
k=1

Q
(k)
i j

[

(

x
(k)
3 − x

(k−1)
3

)

− 4

3h2

(

x
(k)
3

3
− x

(k−1)
3

3
)]

=
5

4

n

∑
k=1

Q
(k)
i j

[

h(k)− 4

h2
h(k)

(

h(k)
2

12
+ x

(k)
3

2

)]

, i, j = 4,5

(5.3.8)
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This approach yields for the case of single layer with Q44 = Q55 = G,Q45 = 0 a

shear correction factor ks = 5/6 for the shear stiffness Gh

As =
5

4
G

[

h− 4h

h2

(

h2

12
+ 0

)]

=
5

6
Gh (5.3.9)

The weighting function (5.3.5) resulting in a shear correction factor ks is consistent

with the Reissner theory of shear deformable single layer plates (Reissner, 1944)

and slightly differ from Mindlin’s value (Mindlin, 1951).

A second method to determine shear correction factors consists of considering

the strain energy per unit area of the composite. Some remarks on this method are

given in Chaps. 7 and 8. However shear correction factors depend on the special

loading and stacking conditions of a laminate and not the only factors is generally

applicable.

A particularly physical foundation to improve the shear stiffness values AAAs is the

equilibrium approach, Eq. (5.2.25). The sequence of calculation steps for determin-

ing improved transverse shear stresses in the frame of the FSDT are analogous to

the CLT and shall be shortly repeated

• firstly, calculate the improved shear stiffness

AAAs =







∫

(h)

FFFTCCCs−1FFFdx3







−1

(5.3.10)

• secondly, calculate the resultant transverse shear forces

QQQs = AAAsεεεs (5.3.11)

• thirdly, calculate the improved transverse shear stresses

σσσ s =FFFQQQs

AAAs = [Ai j], i, j = 5,4, CCCs = [Ci j], i, j = 5,4

FFF =

[

F11 F62

F61 F22

]

, QQQs = [Qs
1 Qs

2]
T, σσσ = [σ5 σ4]

T, εεε s = [ε5 ε4]
T

(5.3.12)

Relying on the results of calculation improved transverse shear stresses σσσ s, the

transverse normal stress can be evaluated. The following equations explain the prin-

cipal way. One starts with solving the equilibrium condition for σ3, Eq. (2.2.1)

σ3(x3) =−
x3
∫

x3=0

(

∂σ5

∂x1
+

∂σ4

∂x2

)

dx3 + p0 (5.3.13)

p0 denotes the transverse load at the starting point of integration.

With
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FFF(x3) =

[

F11 F62

F61 F22

]

=

[

fff T
1

fff T
2

]

(5.3.14)

we are able to replace the transverse shear stresses in Eq. (5.3.13) by Eq. (5.3.12)

σ3(x3) =−





x3
∫

x3=0

fff T
1 dx3QQQs

,x1
+

x3
∫

x3=0

fff T
2 dx3QQQs

,x2



+ p0 (5.3.15)

Only the components of fff 1 and fff 2 depend on x3 and therefore the derivatives of QQQs

remain unchanged by the integration process. Moreover, Eq. (5.2.12) demonstrates

that only the partial stiffness ÃAA(x3) and B̃BB(x3) depend on x3, but not the matrices AAA,BBB
and DDD∗. Therefore the integration of FFF(x3) yields

x3
∫

x3=0

FFF(x3)dx3 =





x3
∫

x3=0

ÃAA(x3)dx3AAA−1BBB−
x3
∫

x3=0

B̃BB(x3)dx3



DDD∗−1 = F̂FF(x3) (5.3.16)

For symmetrical laminates is the coupling matrix BBB ≡ 000 and F̂FF(x3) can be simplified

to
x3
∫

x3=0

FFF(x3)dx3 =−
x3
∫

x3=0

B̃BB(x3)dx3DDD−1 = F̂FF(x3) (5.3.17)

Now, Eq. (5.3.15) can be transformed into

σ3(x3) =−
[

f̂ff
T

1QQQs
,x1

+ f̂ff
T

2 dx3QQQs
,x2

]

+ p0, (5.3.18)

where

f̂ff
T

1 = [F̂11 F̂62], f̂ff
T

2 = [F̂61 F̂22]

and

Qs
2,x2

= (AAAsεεεs),x2

The boundary conditions of vanishing transverse shear stresses at both surfaces are

fulfilled automatically. The boundary conditions for the transverse normal stresses

must be regarded and are taken into account in the integration process.

Summarizing the considerations on single layers or smeared modelling of lam-

inated structures it can be seen that an increasing number of higher order theories

particularly for the analysis of laminated plates has been published. The vast ma-

jority falls into the class of plate theories known as displacement based ones. All

consideration in this textbook are restricted to such theories. The term ”higher order

theories” indicates that the displacement distribution over the thickness is repre-

sented by polynomials of higher than first order. In general, a higher approximation

will lead to better results but also requires more expensive computational effort and

the accuracy improvement is often so little that the effort required to solve the more

complicated equations is not justified. In addition, the mechanical interpretation of

the boundary conditions for higher order terms is very difficult. The most used ESLT
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in engineering applications of composite structure elements is the FSDT. The CLT

applications are limited to very thin laminates only, for in comparison to homoge-

neous isotropic plates, the values of the ratio thickness to minimum in-plane dimen-

sion to regard a plate as ”thin” or as ”moderate thick” must be considerably reduced.

Generally, fibre-reinforced material is more susceptible to transverse shear than its

homogeneous isotropic counterpart and reduces the range of applicability of CLT.

Increasing in-plane stiffness may alternatively be regarded as relevant reduction of

its transverse shear strength.

The FSDT yields mostly sufficient accurate results for the displacements and

for the in-plane stresses. However, it may be recalled, as an example, that transverse

shear and transverse normal stresses are main factors that cause delamination failure

of laminates and therefore an accurate determination of the transverse stresses is

needed.

In Sect. 5.3 it was demonstrated that one way to calculate the transverse stresses

is an equilibrium approach in the frame of an extended 2D-modelling. Another rel-

ative simple method is to expand the FSDT from five to six unknown functions or

degrees of freedom, respectively, by including an x3-dependent term into the poly-

nomial representation of the out-of-plane displacement u3(x1,x2,x3). Several other

possibilities can be found in the literature.

5.4 Layerwise Theories

Layerwise theories are developed for laminates or sandwiches with thick single lay-

ers. Layerwise displacement approximations provide a more kinematically correct

representation of the displacement functions through the thickness including cross-

sectional warping associated with the deformation of thick composite structures.

So-called partial layerwise theories are mostly used which assume layerwise expan-

sions for the in-plane displacement components only. Otherwise so-called full lay-

erwise theories use expansions for all three displacement components. Compared

with equivalent single layer models the partial layerwise model provides a more re-

alistic description of the kinematics of composite laminates and the discrete-layer

behavior of the in-plane components.

Assume a linear displacement approximation (5.1.2) for each layer

u
(k)
1 (x1,x2,x3) = u(k)(x1,x2)+ x3ψ

(k)
1 (x1,x2),

u
(k)
2 (x1,x2,x3) = v(k)(x1,x2)+ x3ψ

(k)
2 (x1,x2),

u
(k)
3 (x1,x2,x3) = w(x1,x2)

(5.4.1)

with x
(k−1)
3 ≤ x3 ≤ x

(k)
3 ;k = 1,2, . . .n. A laminate with n layers is determined by

(4n+ 1) unknown functions u(k),v(k),ψ
(k)
1 ,ψ

(k)
2 ,w;k = 1,2, . . . ,n. The continuity

conditions of the displacements at the layer interfaces yield 2(n− 1) equations and
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the equilibrium for the transverse shear stresses yield additional 2(n−1) equations.

With these 2 · 2(n− 1) equations the maximum number of the unknown functions

can be eliminated and we have independent of the number of layers in all cases

(4n+ 1)− (4n− 4) = 5 unknown trial functions. An equivalent single layer model

in the first-order shear deformation theory and the partial layerwise model have

the same number of functional degrees of freedom, which are 5. The modelling

of laminates or sandwiches on the assumption of the partial layerwise theory is

often used in the finite element method. A comparison of equivalent single layer

and layerwise theories one can find in Reddy (1993).

Summarizing one can say for the class of partial or discrete layer-wise models

that all analytical or numerical equations are two-dimensional and in comparison to

a real three-dimensional modelling, their modelling and solution effort, respectively,

is less time and cost consuming. The transverse normal displacement does not have

a layerwise representation, but compared to the equivalent single layer modelling,

the partial layerwise modelling provides more realistic description of the kinematics

of composite laminates or sandwiches by introducing discrete layerwise transverse

shear effects into the assumed displacement field.

Discrete layerwise theories that neglect transverse normal strain are not capa-

ble of accurately determining interlaminar stresses and modelling localized effects

such as cutouts, free edges, delamination etc. Full or generalized layerwise theories

include in contrast to the partial layerwise transverse shear and transverse normal

stress effects.

Displacement based finite element models of partial and full layerwise theories

have been developed and can be found in the literature. In Chap. 11 the exemplary

consideration of finite beam and plate elements have been restricted to CLT and

FSDT.

5.5 Problems

Exercise 5.1. The displacement field of a third order laminate (5.1.1) may defined

by α =−c0,β = 1,γ = 0,δ =−c1, β̄ = γ̄ = 0.

1. Formulate the displacement equations and recover the displacement equations

for the classical and the shear deformation laminate theory.

2. Introduce new variables φ1 = ψ1 − c0∂w/∂x1,φ2 = ψ2 − c0∂w/∂x2 and express

the displacement field in terms of φ1 and φ2.

3. Substitute the displacements into the linear strain-displacement relations.

4. Formulate the equations for the transverse shear stresses σ4,σ5. Find the equa-

tions for c1 so that the transverse shear stresses vanish at the top and the bottom

of the laminate if c0 = 1.

Solution 5.1. In the case of a third order displacement field one obtains the follow-

ing answers:

1. The starting point is the displacement field
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u1(x1,x2,x3) = u(x1,x2)+ x3

[

ψ1(x1,x2)− c0
∂w(x1,x2)

∂x1

]

− x3
3c1χ1(x1,x2),

u2(x1,x2,x3) = v(x1,x2)+ x3

[

ψ2(x1,x2)− c0
∂w(x1,x2)

∂x2

]

− x3
3c1χ2(x1,x2),

u3(x1,x2,x3) = w(x1,x2)

Classical laminate theory: c1 = 0,ψ1 = 0,ψ2 = 0,c0 = 1

First shear deformation theory: c0 = c1 = 0

2. The starting point is now another displacement field

u1(x1,x2,x3) = u(x1,x2)+ x3φ1(x1,x2)− c1x3
3χ1(x1,x2),

u2(x1,x2,x3) = v(x1,x2)+ x3φ2(x1,x2)− c1x3
3χ2(x1,x2),

u3(x1,x2,x3) = w(x1,x2)

3. Using the strain-displacement equation (2.2.3) and substitute equations b) we

find

ε1 =
∂u1

∂x1
=

∂u

∂x1
+ x3

∂φ1

∂x1
− x3

3c1
∂ χ1

∂x1

= ε0
1 + x3ε I

1 + x3
3ε II

1 ,

ε2 =
∂u2

∂x2
=

∂v

∂x2
+ x3

∂φ2

∂x2
− x3

3c1
∂ χ2

∂x2

= ε0
2 + x3ε I

2 + x3
3ε II

2 ,

ε6 =
∂u2

∂x1
+

∂u1

∂x2
=

∂v

∂x1
+

∂u

∂x2
+ x3

(

∂φ2

∂x1
+

∂φ1

∂x2

)

− x3
3c1

(

∂ χ2

∂x1
+

∂ χ1

∂x2

)

= ε0
6 + x3ε I

6 + x3
3ε II

6 ,

ε4 =
∂u3

∂x2
+

∂u2

∂x3
=

∂w

∂x2
+φ2 − 3c1x2

3χ2

= ε0
4 + x2

3ε II
4 ,

ε5 =
∂u3

∂x1
+

∂u1

∂x3
=

∂w

∂x1
+φ2 − 3c1x2

3χ1

= ε0
5 + x2

3ε II
5

Note ε0
i ≡ εi.

4. The transverse shear stress in the kth layer of a laminate follow with (5.3.5) to

σ
(k)
4 = Q

(k)
44 ε4 +Q

(k)
45 ε5 = Q

(k)
44 (ε

0
4 + x2

3ε II
4 )+Q

(k)
45 (ε

0
5 + x2

3ε II
5 ),

σ
(k)
5 = Q

(k)
45 ε4 +Q

(k)
55 ε5 = Q

(k)
55 (ε

0
5 + x2

3ε II
5 )+Q

(k)
45 (ε

0
4 + x2

3ε II
4 )

The transverse shear stresses shall vanish at the bottom and the top of the lami-

nate, i.e. σ
(k)
4 (±h/2) = σ

(k)
5 (±h/2) = 0 if k = 1 or n.
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Q
(1)
44

(

ε0
4 +

h2

4
ε II

4

)

+Q
(1)
45

(

ε0
5 +

h2

4
ε II

5

)

= 0,

Q
(n)
44

(

ε0
4 +

h2

4
ε II

4

)

+Q
(n)
45

(

ε0
5 +

h2

4
ε II

5

)

= 0,

Q
(1)
55

(

ε0
5 +

h2

4
ε II

5

)

+Q
(1)
45

(

ε0
4 +

h2

4
ε II

4

)

= 0,

Q
(1)
55

(

ε0
5 +

h2

4
ε II

5

)

+Q
(1)
45

(

ε0
4 +

h2

4
ε II

4

)

= 0

=⇒ ε0
4 +

h2

4
ε II

4 = 0, ε0
5 +

h2

4
ε II

5 = 0

In view of the fact that for c0 = 1 follows

φ2 = ψ2 −
∂w

∂x2
⇒ ε4 = ψ2 − x2

33c1χ2,

ε0
4 +

h2

4
ε II

4 = 0 ⇒ ψ2 =
h2

4
3c1χ2

If 3c1 = 4/h2 ⇒ χ2 = ψ2. Analogously follow with 3c1 = 4/h2 that χ1 = ψ1, i.e

ε0
4 +

1

3c1
ε II

4 = ψ2 −ψ2 = 0, ε0
5 +

1

3c1
ε II

5 = ψ1 −ψ1 = 0

The condition 1/3c1 = h2/4, i.e. c1 = 4/3h2 is sufficient to make the transverse

shear stresses σ4 and σ5 zero at the top and the bottom of the laminate.

Exercise 5.2. A symmetric cross-ply laminate [00/900]S has the properties h = 1

mm, E ′
1 = 141 GPa, E ′

2 = 9,4 GPa, E ′
4 ≡G′

23 = 3,2 GPa, E ′
5 ≡G′

13 =E ′
6 ≡G′

12 = 4,3
GPa, ν ′

12 = 0,3.

1. Using the simplified equations (5.2.8) to calculate the shear stresses

σ5(x3),σ4(x3) and sketch their distribution across the laminate thickness h for

given transverse force resultants Q1 = ∂M1/∂x1,Q2 = ∂M2/∂x2 and M6 ≡ 0.

2. Compare the average shear stiffness with the improved corrected stiffness values.

Solution 5.2. The solution can be obtained as follows.

1. The reduced stiffness matrix QQQ and the shear stiffness matrix CCC ≡ GGG must be

calculated for the four layers

00-layers, ν ′
21 = ν12E ′

2/E ′
1:
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QQQ[00] ≡QQQ′ =















E ′
1

(1−ν ′
12ν ′

21)

ν ′
12E ′

2

(1−ν ′
12ν ′

21)
0

ν ′
12E ′

2

(1−ν ′
12ν ′

21)

E ′
2

(1−ν ′
12ν ′

21)
0

0 0 E ′
6















=





141,85 2,84 0

2,84 9,46 0

0 0 4,3



GPa,

GGG[00] ≡GGG′ =

[

G′
13 0

0 G′
23

]

=

[

4,3 0

0 3,2

]

GPa

900-layers:

QQQ[900] =





9,46 2,84 0

2,84 141,85 0

0 0 4,3



GPa,

GGG[900] =

[

3,2 0

0 4,3

]

GPa

The bending stiffness matrix follows with (4.2.15)

Di j =
4

∑
k=1

Q
(k)
i j

[

(x̄
(k)
3 )2 +(h(k))2/12

]

h(k),

DDD =





9,654 0,207 0

0,207 1,379 0

0 0 0,314



GPamm3

The corrected flexural stiffness matrix DDD∗ (5.2.6) is identical DDD for symmetric

laminates, i.e. D∗ = D, and the FFF(x3)-matrix in (5.2.12) can be simplified

FFF(x3) =−B̃BB(x3)DDD
−1

The inversion of the matrix DDD yields with ∆ = 22,572 the elements D−1
11 of the

inverse matrix DDD−1

D−1
11 = D22/∆ ,D−1

22 = D11/∆ ,D−1
12 = D12/∆ ,D−1

66 = (D66)
−1

DDD−1 =





0,104 −0,016 0

−0,016 0,727 0

0 0 3,185



 [GPamm3]−1

Using (5.2.6) the shearing coupling stiffness B̃BB(x3) for the layers of the laminate

can be calculated
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B̃BB[00](x3) =





70,93 1,42 0

1,42 4,73 0

0 0 2,30



GPax2
3 −





17,73 0,36 0

0,36 1,18 0

0 0 0,58



kN,

B̃BB[900](x3) =





4,73 1,42 0

1,42 70,93 0

0 0 2,30



GPax2
3 −





13,60 0,36 0

0,36 5,32 0

0 0 0,57



kN

and with FFF(x3) =−B̃BB(x3)DDD
−1

[

σ5(x3)
σ4(x3)

]

=

[

F11 F62

F61 F22

][

Q1

Q2

]

,

F[00] = −
[

6,79 0

0 2,17

]

x2
3 +

[

1,70 0

0 0,54

]

mm−1,

F[900] = −
[

0,44 0

0 32,80

]

x2
3 +

[

1,30 0

0 2,46

]

mm−1

σ5[00](x3) = F11[00](x3)Q1 = (−6,79x2
3 + 1,70)Q1,

σ5[900](x3) = F11[900](x3)Q1 = (−0,44x2
3 + 1,30)Q1,

σ4[00](x3) = F22[00](x3)Q2 = (−2,17x2
3 + 0,54)Q2,

σ4[900](x3) = F22[900](x3)Q2 = (−32,80x2
3 + 2,46)Q2

The distribution of the shear stresses through the laminate thickness h is sketched

in Fig. 5.2.

x3x3

x1
x2

00

0.250.25

0.50.5

-0.25-0.25

-0.5-0.5

1.30

1.28

1.28

2.46

0.4

0.4

σ5(x3)/Q1

σ4(x3)/Q2

Fig. 5.2 Distribution of the shear stresses σ5(x3)/Q1 and σ4(x3)/Q2 across the laminate thickness
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2. A simplified calculation of the average shear stiffness Ās
i j yields (4.2.15)

Ās
i j =

4

∑
k=1

G
(k)
i j h(k) =⇒ ĀAA

s
=

[

3,75 0

0 3,75

]

GPamm

An improved shear stiffness matrix which include the transverse shear stress dis-

tribution follows with the help of the complementary strain energy W ∗

W ∗ =
1

2

∫

(h)

σσσ sT
GGG′−1

σσσ sdx3

=
1

2
QQQT







∫

(h)

FFFTGGG′−1
FFFdx3






QQQ =

1

2
QQQTAAAs−1

QQQ

With
0,5
∫

0,25

FFFT
[00]GGG

′−1
FFF [00]dx3 =

([

2,000 0

0 0,295

]

x5
3

−
[

1,667 0

0 0,246

]

x3
3

+

[

0,625 0

0 0,092

]

x3

)

GPa−1,

0,25
∫

0

FFFT
[900]GGG

′−1
FFF [900]dx3 =

([

0,012 0

0 46,69

]

x5
3

−
[

0,119 0

0 11,68

]

x3
3

+

[

0,529 0

0 1,314

]

x3

)

GPa−1

follows by the sum up over the four layers the improved matrix AAAs

AAAs =

[

3,01 0

0 2,54

]

GPa

The comparison of ĀAA
s

and AAAs can be carried out in the form

kkksĀAA
s
=AAAs

which yields the shear correction vector

kkks =

[

0,7718

0,6513

]
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Chapter 6

Failure Mechanisms and Criteria

Failure of structural elements can be defined in a different manner. As in the case of

buckling, a structural element may be considered failure though the material is still

intact, but there are excessive deformations. In Chap. 6 failure will be considered to

be the loss of integrity of the composite material itself.

The failure analysis procedures for metallic structures were well established a

long time ago. In the case of monolithic materials stress concentrations, e.g. around

notches and holes, cause localized failures. For brittle materials local failures may

lead to fracture and therefore to a total loss of load-carrying capability. For ductile

materials local failure may be in the form of yielding and remains localized, i.e., it

is tolerated better than brittle failure. The fail-safe philosophy has been employed

in the design of metallic structures and is standard in engineering applications. Sim-

ilar procedures for composite materials are not well defined and are the object of

intensive scientific research up to now. Failure of fibre-reinforced materials is a very

complex topic. While it is important to understand the principal mechanisms of fail-

ure, for many applications it is impossible to detail each step of the failure process.

Main causes of failure are design errors, fabrication and processing errors or unex-

pected service conditions. Design errors can be made in both material and structure.

The stress level carried by each lamina in a laminate depends on the elastic mod-

uli. This may cause large stress gradients between laminae which are oriented at

considerably large angles to each other (e.g. 900 ). If the stress gradients are close

to a limit value, fracture may occur. Such high levels of internal stresses in adja-

cent laminae may develop a result of external applied loads but also by temperature

and moisture changes. Though manufacturing control and material inspection tests

are carried out, structural composites with abnormalities can be produced. The me-

chanical properties of composites may be significantly reduced by high temperature

variations, impact damage, etc. Service anomalies can include improper operation,

faulty maintenance, overloads or environmental incurred damage.

If structural loadings produce local discontinuities inside the material we speak

of a crack. Micro-cracking is considered as the nucleation of micro-cracks at the

microscopic level starting from defects and may cause the initiation of material

fracture. Macro-cracking is the propagation of a fracture by the creation of new

201© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0_6
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fracture surfaces at the macroscopic level. For composite materials the fraction ini-

tiation is generally well developed before a change in the macroscopic behavior can

be observed.

If in a laminate macro-cracks occur, it may not be catastrophic, for it is possible

that some layers fail first and the composite continues to take more loads until all

laminae fail. Failed laminae may still contribute to the stiffness and strength of the

laminate. Laminate failure estimations are based on procedures for finding the suc-

cessive loads between the first and the last ply failure of the laminate. The failure of

a single layer plays a central function in failure analysis of laminates.

In this section the elastic behavior of laminae is primarily discussed from a

macroscopic point of view. But in the case of failure estimations and strength anal-

ysis of a lamina it is important to understand the underlying failure mechanisms

within the constituents of the composites and their effect to the ultimate macro-

scopic behavior. For this reason some considerations on micro-mechanic failure

mechanisms are made first and then failure criteria are discussed more in detail.

Summarizing one can say that the ability of failure prediction is a key aspect in

design of engineering structures. The first step is to consider what is meant by fail-

ure. Material failure of metallic structures is mostly related with material yielding

or rupture, but with composites it is more complex. Therefore research is ongoing in

developing failure mechanisms and failure criteria for unidirectional fibre laminae

and their laminates and in evaluating the accuracy of the failure criteria.

6.1 Fracture Modes of Laminae

Composite fracture mechanisms are rather complex because of their anisotropic na-

ture. The failure modes depend on the applied loads and on the distribution of rein-

forcements in the composites. In continuous fibre reinforced composites the types

of fracture may be classified by these basic forms:

• Intralaminar fracture,

• interlaminar fracture,

• translaminar fracture.

Intralaminar fracture is located inside a lamina, interlaminar fracture shows the fail-

ure developed between laminae and translaminar fracture is oriented transverse to

the laminate plane. Inter- and intralaminar fractures occur in a plane parallel to that

of the fibre reinforcement.

Composite failure is a gradual process. The degradation of a layer results in a

redistribution of stresses in the laminate. It is characterized by different local failure

modes

• The failure is dominated by fiber degradation, e.g. rupture, microbuckling, etc.

• The failure is dominated by matrix degradation, e.g. crazing.

• The failure is dominated by singularities at the fiber-matrix interface, e.g. crack

propagation, delamination, etc.
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Failure modes of sandwich material may be characterized by

• Tensile failure of the sandwich faces

• Wrinkling failure of the faces due to compressive stresses. Wrinkling is charac-

terized by the eigenmodes of buckling faces.

• Shear failure of core or adhesive failure between core and face.

• Crushing failure of the face and core at a support or tensile respectively shear

failure at fasteners.

The following considerations are restricted to the strength of an unidirectional layer

and to the development of reliable criteria for the predicting of the failure of lam-

inae and laminates. The failure criteria in engineering applications are mainly of a

phenomenological character, i.e. analytical approximations of experimental results,

e.g. by curve fitting.

The fracture of a UD-lamina is the result of the accumulation of various elemen-

tary fracture mechanisms:

• Fibre fracture,

• transverse matrix fracture,

• longitudinal matrix fracture

• fracture of the fibre-matrix interface.

Figure 6.1 illustrates various fracture modes of a single layer. In the fibre direc-

tion, as a tensile load is applied, Fig. 6.1a, failure is due to fibre tensile fracture.

2′ = T

1′ = L

3

σLσL

σL > 0 σL < 0

σT

σT > 0
σLT

σLT

σT

σT < 0

a

b

Fig. 6.1 Fracture modes of a single layer in the case of elementary load states. a Fibre fracture by

pure tension σL > 0 or compression σL < 0 (micro-buckling), b Matrix fracture by pure tension

σT > 0, pure shearing σLT and pure compression σT < 0
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One fibre breaks and the load is transferred through the matrix to the neighboring

fibres which are overloaded and fail too. The failure propagates rapidly with small

increasing load. Otherwise a tensile fracture perpendicular to the fibres, Fig. 6.1b,

due a combination of different micromechanical failure mechanisms: tensile failure

of matrix material, tensile failure of fibres across the diameters, failure of the inter-

face between fibre and matrix. The shear strength, Fig. 6.1b, is limited by the shear

strength of the matrix material, the shear strength between the fibre and the ma-

trix, etc. Figure 6.2 shows the basic strength parameters of a unidirectional lamina

referred to the principal material axes. For in-plane loading of a lamina 5 strength

parameters are necessary, but it is important to have in mind that for composite ma-

terials different strength parameters are measured for tensile and for compression

tests. If the shear stresses act parallel or transverse to the fibre orientation there is

✻

❄
✻

❄

✛ ✲ ✲ ✛

✲

✻
❄

✛

σL > 0 σL > 0 σL < 0 σL < 0

σT > 0

σT > 0 σT < 0

σT < 0

σLT

σLT

material property: σLt material property: σLc

material property: σTcmaterial property: σTt

material property: τS

a b

dc

e

Fig. 6.2 Basic strength parameters. a Longitudinal tensile strength σLt, b Longitudinal compres-

sive strength σLc, c Transverse tensile strength σTt, d Transverse compressive strength σTc, e In-

plane (intralaminar) shear strength τS
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no influence of the load direction (Fig. 6.3a). Otherwise the positive shear stress

σ6 > 0 causes tensile in L-direction and compression in T-direction and vice versa

for σ6 < 0 and other strength parameters are standard. The required experimental

characterization is relatively simple for the parameters σLt and σTt, but more com-

plicated for the strength parameters σLc, σTc and τS.

In the case of laminates, besides the basic failure mechanisms for a single

layer, such as fibre fracture, longitudinal and transverse matrix fraction, fibre-matrix

debonding, etc. described above, another new fracture mode occurs. This mode is

called delamination and consists of separation of layers from one another. Through-

the-thickness variation of stresses may be caused even if a laminate is loaded by

uniform in-plane loads. Generally, the matrix material that holds the laminae of a

laminate together has substantially smaller strength than the in-plane strength of the

layers. Stresses perpendicular to the interface between laminae may cause breaking

of the bond between the layers in mostly localized, small regions. However, even if
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Fig. 6.3 In-plane shear. a Positive and negative shear stresses along the principal material axes,

b Positive and negative shear stresses at 450 with the principal material axis
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the size of such delaminations is small they may affect the integrity of a laminate

and can degrade their in-plane load-carrying capability. Therefore, in practical en-

gineering applications it is important to calculate the interlaminar normal and shear

stresses σ3, σ4 and σ5 and to check interlaminar failure too.

The definition of failure may change from case to case and depends on the com-

posite material and the kind of loads. For composite material, such as UD-laminates,

the end of the elastic domain is associated with the development of micro-cracking.

But in the first stage, the initiated cracks do not propagate and their development

changes the stiffness of the material very gradually but the degradation is irre-

versible. In the following section failure criteria for laminae will be discussed first

to allow the designer to have an evaluation of the mechanical strength of laminae.

Secondly, concepts for laminate failure are considered.

6.2 Failure Criteria

Failure criteria for composites are many and varied. In their simplest form they are

similar, in principle, to those used for isotropic materials, e.g. maximum stress/strain

and distortional energy theories. The major difference between isotropic materials

and unidirectional fibrous composite materials is the directional dependence of the

strength on a macrosopic scale. It is important to realize that failure criteria are

purely empirical. Their purpose is to define a failure envelope by using a minimum

number of test data. Generally, these experimental data are obtained from relatively

simple uniaxial and pure shear tests. Combined stress tests are more difficult to per-

form and should be, if possible, not included in the determination failure envelopes.

We shall start by considering a single lamina before moving on to discuss failure

of laminates. Longitudinal tension or pressure, transverse tension or pressure and

shear are the five basic modes of failure of a lamina. Generally the strength in the

principal material axes are regarded as the fundamental parameters defining failure.

When the lamina is loaded at an angle to the fibres one has to determine the stresses

in the principal directions and compare them with the fundamental strength param-

eters. Failure criteria usually grouped in literature into three different classes: limit

criteria, interactive criteria and hybrid criteria which combine selected aspects of

limit and interactive methods. In the following we only discuss selected criteria of

the first two classes.

Failure criteria for homogeneous isotropic materials are well established. Macro-

mechanical failure theories for composite materials have been developed by extend-

ing and adapting isotropic failure theories to account for anisotropy in stiffness and

strength of the composite. All theories can be expressed as functions of the basic

strength parameters referred to the principal material axes (Fig. 6.2). Some criteria

do not account for interaction of stress components while others do. Some inter-

action criteria require additional strength parameters obtained by more expended

biaxial experimental tests.
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Laminate failure criteria are applied on a ply-by-ply basis and the load-carrying

capability of the entire composite is predicted by the laminate or sandwich theories

given in Chaps. 4 and 5. A laminate may be assumed to have failed when the strength

criterion of any one of its laminae is reached (first-ply failure). However, the failure

of a single layer not necessarily leads to a total fracture of the laminate structure.

Criteria of an on-axis lamina can be determined with relative easily. Off-axis criteria

can be obtained by coordinate transformations of stresses or strains. Based on the

ply-by-ply analysis first-ply failure and last-ply failure concepts can be developed.

Failure criteria have been established in the case of a layer. Of all failure criteria

available, the following four are considered representative and more widely used:

• Maximum stress theory

• Maximum strain theory

• Deviatoric or distorsion strain energy criteria of Tsai-Hill1

• Interactive tensor polynomial criterion of Tsai-Wu2

Maximum stress and maximum strain criteria assume no stress interaction while

the other both include full stress interaction. In the maximum stress theory, failure

occurs when at least one stress component along one of the principal material axes

exceeds the corresponding strength parameter in that direction

σL = σLt, σL > 0,
σT = σTt, σT > 0,
σL = σLc, σL < 0,
σT = σTc, σT < 0,
|σLT| = τS,

(6.2.1)

Note that failure can occur for more than one reason. A layer failure does not occur

if
−σLc < σL < σLt,
−σTc < σT < σTt,
−τS < σLT < τS

(6.2.2)

For a two-dimensional state of normal stresses, i.e. σL 6= 0,σT 6= 0,σLT = 0, the fail-

ure envelope, Fig. 6.4, takes the form of a rectangle. In the case of off-axis tension

or compression of a UD-lamina, Fig. 6.5, the transformed stresses are

σL = σ1 cos2 θ = σ1c2

σT = σ1 sin2 θ = σ1s2

σLT = −σ1 sinθ cosθ = −σ1sc

⇒
σ1 = σL/c2

σ1 = σT/s2

σ1 = −σLT/sc

(6.2.3)

and the maximum stress criteria is expressed as follows

1 Rodney Hill (∗11 June 1921, Stourton, Leeds - † 2 February 2011, Yorkshire) - applied mathe-

matician and a former Professor of Mechanics of Solids at Gonville and Caius College, Cambridge,

UK
2 Edward Ming-Chi Wu (∗30 September 1938 - †3 June 2009) - US-American engineer
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Fig. 6.4 Failure envelope for UD-lamina under biaxial normal loading (max. stress criterion)
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Fig. 6.5 Off-axis unidirectional loading

−σLc < σ1c2 < σLt,
−σTc < σ1s2 < σTt,
−τS < σ1sc < τS

(6.2.4)

The ultimate strength for σ1 corresponds to the smallest of the following six values

σ1t = σLt/c2, σ1t = σTt/s2, σ1t = τS/sc, σ1 > 0,
σ1c = σLc/c2, σ1c = σTc/s2, σ1c = τS/sc, σ1 < 0

(6.2.5)

The failure modes depend on the corresponding ultimate strength σ1u

σ1u = σLt/c2 fibre failure,

σ1u = σTt/s2 transverse normal stress failure,

σ1u = τS/sc in-plane shear failure

In the more general case of off-axis loading, the stress transformation rule, Table

4.1, is used
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



σ ′
1 ≡ σL

σ ′
2 ≡ σT

σ ′
6 ≡ σLT



=





c2 s2 2sc

s2 c2 −2sc

−sc sc c2 − s2









σ1

σ2

σ6



 (6.2.6)

Because of the orthotropic symmetry, shear strength is independent of the sign of

σLT (Fig. 6.3) and there are five independent failure modes in the maximum stress

criterion. There is no interaction among the modes although in reality the failure

processes are highly interacting. The maximum stress theory may be applicable

for brittle modes of failure of material, e.g. follow from transverse or longitudinal

tension (σL > 0,σT > 0).
The maximum strain theory is quite similar to the maximum stress theory. Now

the strains are limited instead of the stresses. Failure of a lamina occurs when at

least one of the strain components along the principal material axes exceeds the

corresponding ultimate strain in that direction

εL = εLt εL > 0,
εT = εTt εT > 0,
εL = εLc εL < 0,
εT = εTc εT < 0,
|εLT| = εS

(6.2.7)

The lamina failure does not occur if

−εLc < εL < εLt,
−εTc < εT < εTt,
−εS < εLT < εS

(6.2.8)

In the case of unidirectional off-axis tension or compression (Fig. 6.5), the stress

relations are given by (6.2.3). For the in-plane stress state strains in the principal

material axes are




εL

εT

εLT



=





S′11 S′12 0

S′12 S′22 0

0 0 S′66









σL

σT

σLT



 (6.2.9)

By associating (6.2.3) and (6.2.6) and expressing the compliance parameters S′i j as

functions of the engineering moduli in the principal directions, EL, ET, GLT, νLT,
νT L, it follows that

εL=
1

EL
(c2 −νLTs2)σ1,

εT=
1

ET
(s2 −νTLc2)σ1,

εLT=− 1

GLT
scσ1

(6.2.10)

The maximum strain and the maximum stress criteria must lead to identical values

in the cases of longitudinal loading and θ = 00 or transverse unidirectional loading

and θ = 900. The identity of the shear equations is given in both cases. This implies

that
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εLt =
σLt

EL
, εLc =−σLc

EL
, εTt =

σTt

ET
, εTc =−σTc

ET
, εS =

τS

GLT
(6.2.11)

and the maximum strain criterion may be rewritten as follows

−σLc < σ1(c
2 −νLTs2) < σLt,

−σTc < σ1(s
2 −νTLc2) < σTt,

−τS < σ1sc < τS

(6.2.12)

By comparing Eqs. (6.2.4) and (6.2.12) we establish that the two criteria differ by

the introduction of the Poisson’s ratio νLT in the strain criterion. In practice these

terms modify the numerical results slightly. In the special case of a two-dimensional

stress state σL 6= 0,σT 6= 0,σLT = 0, compare Fig. 6.4, the failure envelope takes the

form of a parallelogram for the maximum strain criterion, Fig. 6.6.

One of the first interactive criteria applied to anisotropic materials was introduced

by Hill. For a two-dimensional state of stress referred to the principal stress direc-

tions, von Mises3 developed a deviatoric or distortional energy criterion for isotropic

ductile metals (von Mises, 1913) which can be presented for the two-dimensional

stress state as

σ2
I +σ2

II −σIσII = σeq

or in a general reference system

σ2
1 +σ2

2 −σ1σ2 + 3σ2
6 = σeq

σI ,σII are principal stresses, σeq the equivalent stress. This criterion was extended

in von Mises (1928) and modified for the case of orthotropic ductile materials by

Hill (1948)

Aσ2
1 +Bσ2

2 +Cσ1σ2 +Dσ2
6 = 1 (6.2.13)

✻

✲
σL

σT

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭
✁

✁
✁

✁
✁✁

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭
✁
✁

✁
✁

✁✁

σTt

σTc

σLt

σLc

σT −νTLσL = σTt

σL −νLTσT = σLt

σT −νTLσL =−σTc
σL −νLTσT =−σLc

Fig. 6.6 Failure envelope for UD-lamina under biaxial normal loading (max. strain criterion)

3 Richard Edler von Mises (∗19 April 1883 Lemberg, Austria-Hungary (now Lviv, Ukraine) -

† 14 July 1953 Boston, Massachusetts) - mathematician who worked on solid mechanics, fluid

mechanics, aerodynamics, aeronautics, statistics and probability theory, one of founders of the

journal Zeitschrift für Angewandte Mathematik und Mechanik
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A,B,C,D are material parameters. Equation (6.2.13) cannot be defined as distorsion

energy, since in anisotropy distorsion and dilatation energies are not separated. The

criterion (6.2.13) was applied to UD-laminae by Tsai and Wu (1971)

Aσ2
L +Bσ2

T +CσLσT +Dσ2
LT = 1 (6.2.14)

The material parameters A,B,C,D can be identified by tests with acting basic load-

ings

σL = σLU, σT = 0, σLT = 0 ⇒ A =
1

σ2
LU

,

σL = 0, σT = σTU, σLT = 0 ⇒ B =
1

σ2
TU

,

σL = 0, σT = 0, σLT = τU ⇒ D =
1

τ2
U

(6.2.15)

In dependence on the failure mode, the superscript U must be substituted by t,c or s

and denotes the ultimate value of stress at failure.

The remaining parameter C must be determined by a biaxial test. The C-term

yields the interaction between the normal stresses. Under equal biaxial normal load-

ing σL = σT 6= 0,σLT = 0 it can be assumed that the failure follows the maximum

stress criterion, i.e failure will occur when the transverse stress reaches the trans-

verse strength σTU which is much lower than the longitudinal strength σLU. Equa-

tion (6.2.14) yields

(

σL

σLU

)2

+

(

σT

σTU

)2

+Cσ2
T = 1, σT = σTU =⇒C =− 1

σ2
LU

(6.2.16)

The Tsai-Hill criterion in the case of plane stress state and on-axis loading may be

written
(

σL

σLU

)2

+

(

σT

σTU

)2

− σLσT

σ2
LU

+

(

σLT

τU

)2

= 1 (6.2.17)

In the case of tension or compression off the principal material directions, Fig. 6.5,

the Tsai-Hill criterion becomes

(

σ1c2

σLU

)2

+

(

σ1s2

σTU

)2

−
(

σ1cs

σLU

)2

+

(

σ1sc

τU

)2

= 1 (6.2.18)

and the strength parameter σ1U in x1-direction is

(

1

σ1U

)2

=

(

c2

σLU

)2

+

(

s2

σTU

)2

+

(

1

τ2
U

− 1

σ2
LU

)

c2s2

≈
(

c2

σLU

)2

+

(

s2

σTU

)2

+

(

cs

τ2
U

)2
(6.2.19)

The approximated form presumes σLU ≫ τU.
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The Tsai-Hill criterion is a single criterion instead of the three subcriteria re-

quired in maximum stress and strain theories. It allows considerable interaction

among the strain components and for ductile material the failure estimation agrees

well with experimental results.

Gol’denblat and Kopnov (1965) proposed a tensor polynomial criterion. Tsai and

Wu modified this criterion by assuming the existence of a failure surface in stress

space. They took into account only the first two terms of the polynomial criterion

and postulated that fracture of an anisotropic material occurs when the following

equation is satisfied

ai jσi j + ai jklσi jσkl = 1 (6.2.20)

or in a contracted notation

aiσi + ai jσiσ j = 1 (6.2.21)

We are interested in the case of an orthotropic composite material, i.e. a unidirec-

tional lamina, subjected to plane stress state, and the Tsai-Wu criterion may be ex-

pressed as

aLσL + aTσT + aSσS + aLLσ2
L + aTTσ2

T +
aSSσ2

S + 2aLTσLσT + 2aLSσLσS + 2aTSσTσS = 1
(6.2.22)

Equation (6.2.22) is written in the on-axis system and νLT ≡ aS.

The linear terms take account the actual differences between composite material

behavior under tension and compression. The term aLTσLσT represents independent

interaction among the stresses σL and σT and the remaining quadratic terms describe

an ellipsoid in stress space. Since the strength of a lamina loaded under pure shear

stress τS in the on-axis system is independent of the sign of the shear stress, all linear

terms in σS must vanish

aS = aLS = aTS = 0 (6.2.23)

Then the Tsai-Wu criterion for a single layer in on-axis system has the form

aLσL + aTσT + aLLσ2
L + aTTσ2

T + aSSσ2
S + 2aLTσLσT = 1 (6.2.24)

The four quadratic terms in (6.2.24) correspond to the four independent elastic char-

acteristics of orthotropic materials, the linear terms allow the distinction between

tensile and compressive strength. The coefficients of the quadratic Tsai-Wu crite-

rion are obtained by applying elementary basic loading conditions to the lamina

σL = σLt, σT = σS = 0

σL =−σLc, σT = σS = 0
⇒

aLσLt + aLLσ2
Lt = 1

−aLσLc + aLLσ2
Lc = 1

⇒
aL =

1

σLt
− 1

σLc

aLL =
1

σLtσLc

σT = σTt, σL = σS = 0

σT =−σTc, σL = σS = 0
⇒

aTσTt + aTTσ2
Tt = 1

−aTσTc + aTTσ2
Tc = 1

⇒
aT =

1

σTt
− 1

σTc

aTT =
1

σTtσTc
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σS = τS, σL = σT = 0 ⇒ aSSτ2
S = 1 ⇒ aSS =

1

τ2
S

(6.2.25)

The remaining coefficient aLT must be obtained by biaxial testing

σL = σT = σU, σS = 0 ⇒
(aL + aT)σU +(aLL+ aTT+ 2aLT)σ

2
U = 1

(6.2.26)

σU is the experimentally measured strength under equal biaxial tensile loading

σL = σT.

In many cases the interaction coefficient is not critical and is given approxi-

mately. A sufficient approximation is in this case

aLT ≈−1

2

√
aLLaTT (6.2.27)

The Tsai-Wu criterion may also be formulated in strain space.

Summarizing the considerations on interactive failure criteria lead: The Tsai-Hill

and the Tsai-Wu failure criteria are quadratic interaction criteria which have the

general form

Fi jσiσ j +Fiσi = 1, i, j = L,T,S (6.2.28)

Fi j and Fi are strength parameters and σi,σ j the on axis stress components.

For plane stress state six strength parameters FLL,FTT,FSS,FLT,FL,FT are re-

quired for implementation of the failure criterion, FLS = FTS = FS = 0, see Eq.

(6.2.23). Five of these strength parameters are conventional tensile, compressive

or shear strength terms which can be measured in a conventional experimental test

programme. The strength parameter FLT is more difficult to obtain, since a biaxial

test is necessary and such test is not easy to perform. The two-dimensional repre-

sentation of the general quadratic criterion (6.2.28) in the stress space can be given

in the equation below

σ2
L

σLtσLc
+

σ2
T

σTtσTc
+

σ2
LT

τ2
S

+ 2FLTσLσT +

(

1

σLt
− 1

σLc

)

σL +

(

1

σTt
− 1

σTc

)

σT = 1

(6.2.29)

Equation (6.2.29) reduces, e.g., for

σLt = σLc,σTt = σTc,FLT =− 1

2σ2
Lt

to the Tsai-Hill criterion, for

σLt 6= σLc,σTt 6= σTc,FLT =− 1

2σLtσLc

to the Hoffman criterion, and for

σLt 6= σLc,σTt 6= σTc,FLT =− 1

2
√

σLtσLcσTtσTc
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to the Tsai-Wu criterion. Hoffman’s criterion is a simple generalization of the Hill

criterion that allows different tensile and compressive strength parameters (Hoff-

man, 1967).

If one defines dimensionless stresses as

σ∗
L =

√
FLLσL,σ

∗
T =

√
FTTσT,σ

∗
LT =

√

FSSσLT

and normalized strength coefficients as

F∗
L = FL/

√
FLL,F

∗
T = FT/

√
FT,F

∗
LT = FLT/

√
FLLFTT

Equation (6.2.29) can be rewritten as

σ∗2
L +σ∗2

T +σ∗2
LT + 2F∗

LTσ∗
Lσ∗2

T +F∗
L σ∗2

L +F∗
T σ∗2

T = 1 (6.2.30)

Note that in the case of isotropic materials with σLt = σLc = σTt = σTc follow

F∗
L = F∗

T = 0. There the principal stress state will have σ∗
LT = σLT = 0. Equation

(6.2.30) reduces with F∗
LT =− 1

2
to the known von Mises criterion.

Using the above failure criteria the possibility of a lamina failing can be deter-

mined, for example. In the maximum stress criterion, the lamina failes if any of the

inequalities (6.2.4) are violated. However, the criterion does not give information

about how much the load can be increased by if the lamina is safe or how much it

can be decreased if the lamina has failed. To overcome this problem, strength ratios

are defined as

R =
maximum load which can be applied

load applied
(6.2.31)

This definition is applicable to all failure criteria. If R > 1, then the lamina is safe

and the applied load can be increased by a factor of R. If R < 1 the lamina is unsafe

and the applied load needs to be reduced. A value of R = 1 implies the failure load.

The stress ratio factor assumes that the material is linear elastic, for each state of

stress there is a corresponding state of strain and all components of stress and strain

increase by the same proportion.

Summarizing the discussion above, the strength ratio for the four criteria can be

formulated:

Maximum stress criterion

RLtσ = σLt/σL, σL > 0 Strength factor fibre fracture,

RTtσ = σTt/σT, σT > 0 Strength factor matrix fracture,

RLcσ = σLc/|σL|, σL < 0 Strength factor micro-buckling,

RTcσ = σTc/|σT|, σT < 0 Strength factor matrix fracture,

RSσ = τS/|σLT|, Strength factor matrix fracture

(6.2.32)
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Maximum strain criterion

RLtε = εLt/εL, εL > 0,
RTtε = εTt/εT, εT > 0,
RLcε = εLc/|εL|, εL < 0,
RTcε = εTc/|εT|, εT < 0,
RSε = εS/|εLT|

(6.2.33)

Tsai-Hill-criterion

Only one strength ratio can be introduced

(

RTHσL

σLU

)2

+

(

RTHσT

σTU

)2

− RTHσLRTHσT

σ2
LU

+

(

RTHσLT

τU

)2

= 1 (6.2.34)

With the ultimate strength σLU,σTU for tension and compression the strength ratio

RTH follows from

1

(RTH)2
=

(

σL

σLU

)2

+

(

σT

σTU

)2

− σLσT

σ2
LU

+

(

σLT

τU

)2

Tsai-Wu-criterion

The Tsai-Hill and the Tsai-Wu criterion define only one strength ratio RTW

(aLσL + aTσT)R
TW +(aLLσ2

L + aTTσ2
T + aSSσ2

S + 2aLTσLσT)R
TW2

= 1

or in symbolic notation

ARTW+B(RTW)2 = 1 ⇒ (RTW)2 +
A

B
RTW =

1

B

with the solutions

RTW
1/2 =−1

2

A

B
±
√

1

4

A2

B2
+

1

B
=

1

2B

(

−A±
√

A2 + 4B
)

RTW must be positive

RTW =
√

A2 + 4B−A/2B (6.2.35)

The procedure for laminate failure estimation on the concept of first ply and last

ply failure is given as follows:

1. Use laminate analysis to find the midplane strains and curvatures depending on

the applied mechanical and hygrothermical loads.

2. Calculate the local stresses and strains in each lamina under the assumed load.

3. Use the ply-by-ply stresses and strains in lamina failure theory to find the strength

ratios. Multiplying the strength ratio to the applied load gives the load level of

the failure of the first lamina. This load may be called the first ply failure load.

Using the conservative first-ply-failure concept stop here, otherwise go to step 4.
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4. Degrade approximately fully the stiffness of damaged plies. Apply the actual

load level of previous failure.

5. Start again with step 3. to find the strength ratios in the undamaged laminae. If

R > 1 multiply the applied load by the strength ratio to find the load level of the

next ply failure. If R < 1, degrade the stiffness and strength characteristics of all

damaged lamina.

6. Repeat the steps above until all plies have failed. That is the last-ply-failure con-

cept.

The laminate failure analysis can be subdivided into the following four parts. The

first-ply-failure concept demands only one run through, the last-ply-failure requires

several iterations with degradation of lamina stiffness.

Failure analysis of laminates in stress space:

Step 1

Calculate the stiffnesses

QQQ′(k) =





Q′
11 Q′

12 0

Q′
12 Q′

22 0

0 0 Q′
66



≡





QLL QLT 0

QLT QTT 0

0 0 QSS





of all k single layers in on-axis system with help of the layer moduli

E
(k)
L ,E

(k)
T ,ν

(k)
TL ,G

(k)
TL and the layer thicknesses h(k)

Transformation of the reduced stiffnesses QQQ′(k) of single layers in on-axis

system to the reduced stiffnesses QQQ(k) of single layers in off-axis system

QQQ(k) = (TTT ε ′)TQ′Q′Q′(k)TTT ε ′

Calculate the laminate stiffnesses AAA,BBB and DDD

Ai j =
n

∑
k=1

Q
(k)
i j h(k), Bi j =

1

2

n

∑
k=1

Q
(k)
i j

(

x
(k)
3

2
− x

(k−1)
3

2
)

=
n

∑
k=1

Q
(k)
i j h(k)x

(k)
3 ,

Di j =
1

3

n

∑
k=1

Q
(k)
i j

(

x
(k)
3

3
− x

(k−1)
3

3
)

=
n

∑
k=1

Q
(k)
i j h(k)

(

x
(k)
3

2
+

1

12
h(k)

2
)

,

x
(k)
3 =

1

2

(

x
(k)
3 + x

(k−1)
3

)

Inversion of the matrices AAA,BBB and DDD

Calculate the compliance matrices aaa,bbb,ccc and ddd of the laminate

aaa = AAA∗−BBB∗DDD∗−1CCC∗, bbb = BBB∗DDD∗−1, ccc =−DDD∗−1CCC∗, ddd =DDD∗−1,
AAA∗ =AAA−1, BBB∗ =−AAA−1BBB, CCC∗ =BBBAAA−1, DDD∗ =DDD−BBBAAA−1BBB

Step 2
Calculation of the laminate stress resultants NNN and MMM

by structural analysis of beam or plate structures
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Step 3.

Calculate the laminate strains εεε = εεε + x3κκκ




εεε
· · ·
κκκ



=









aaa
... bbb

. . . .

ccc
... ddd













NNN

· · ·
MMM





and the strains for all laminae at lamina interfaces

εεε(k) = εεε0 + x
(k)
3 κκκ,k = 0,1,2, . . . ,n

Calculate the stresses for all interface surfaces of single layers

σσσ (k)− =QQQ(k)εεε(k−1), bottom surface of lamina k

σσσ (k)+ =QQQ(k)εεεk, top surface of lamina k
, k = 0,1,2, . . . ,n

Transformation of the interface stresses σσσ (k)−,σσσ (k)+

to the on-axis system of layer k k = 0, 1, 2, . . . , n

Step 4

Failure analysis based on a selected failure criterion in stress space

Summarizing the strength ratios concept to the general quadratic interaction criteria

Eq. (6.2.28) we formulate with the maximum values of stresses

Fi jσ
′max
i σ

′max
j +Fiσ

′max
i = 1

Substituting Rσ
′applied
i for σ

′max
i yield the quadratic equation for the strength ratio R

(Fi jσiσ j)R
2 +(Fiσi)R− 1 = 0

or

aR2 + bR− 1= 0, a = Fi jσiσ j,b = Fiσi (6.2.36)

The strength ratio R is equal to the positive quadratic root

R =− b

2a
+

√

(

b

2a

)2

+
1

a

As considered above this approach is easy to use because the resulting ratio provides

a linear scaling factor, i.e.

if R ≤ 1 failure occurs,

if R> 1, e.g. R = 2, the safety factor is 2 and the load can be doubled or the laminate

thickness reduced by 0.5 before failure occurs.

The same strength ratio can be determined from the equivalent quadratic criterion

in the strain space. With σσσ =QQQεεε follows, e.g. with Eqs. (6.2.24) - (6.2.27) the Tsai-

Wu criterion in the strain space as

bLεL + bTεT + bLLε2
L + bTTε2

T + bSSε2
S + 2bLTεLεT = 1 (6.2.37)
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with

bL = aLQLL + aTQLT,
bT = aTQTT + aLQLT,
bLL = aLLQ2

LL + aTTQ2
LT + 2aLTQLLQLT,

bTT = aTTQ2
TT + aLLQ2

LT + 2aLTQTTQLT,
bLT = aLLQLLQLT + aTTQTTQLT + aLT(Q

2
LT +QLLQTT)

(6.2.38)

In the more general form analogous to the strength ratio equation is

(Gi jεiε j)R
2 +(Giεi)R− 1 = 0,

cR2 + dR− 1 = 0,

R =−d

c
+

√

(

d

2c

)

+
1

c

(6.2.39)

To determine R from this equivalent quadratic criterion the strain space may be

preferred, because laminae strains are either uniform or vary linearly across each

lamina thickness.

As considered above, the most widely used interlaminar failure criteria are the

maximum stress criterion, the maximum strain criterion and the quadratic failure

criteria as a generalization of the von Mises yield criterion, in particular the Tsai-

Hill and the Tsai-Wu criterion. The interlaminar failure modes can be fibre breaking,

fibre buckling, fibre pullout, fibre-matrix debonding or matrix cracking. The predic-

tion of the First-Ply Failure with one of the above mentioned criteria is included in

nearly all available analysis tools for layered fibre reinforced composites.

Interlaminar failure, i.e. failure of the interface between adjacent plies, is a de-

lamination mode. Delamination failure can have different causes. Weakly bonded

areas impact initial delamination in the inner region of a laminate, whereas delam-

ination along free edges is a result of high interlaminar stresses. Free edges delam-

ination is one of the most important failure modes in layered composite structures.

Along a free edge a tri-axial stress state is present and must be considered. Free

edge delamination is subject of actual intensive research.

The strength analysis of laminate presupposes experimental measured ultimate

stresses or strains for the laminae and realistic or approximate assumptions for stiff-

ness degradation of damaged layers. Strength under longitudinal tensile and com-

pression stresses is usually determined with unidirectional plane specimen, strength

under transverse tension and compression is measured with plane specimen or cir-

cumferentially reinforced tubes and shear strength is determined in torsion test of

such tubes. Note that compression testing is much more difficult than tension testing

since there is a tendency of premature failure due to crushing or buckling.

Summarizing the discussion above on failure analysis one can say that for deter-

mination of safety factors of fibre reinforced laminated structural elements there is

a strong need for fracture criteria and degradation models which are simple enough

for engineering applications but being also in sufficient agreement with the physical
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reality. In spite of many efforts were made during recent years strength analysis of

laminates is still underdeveloped in comparison to the stress and strain analysis.

Essential for recent success in failure analysis was to distinguish between fibre

failure and inter-fibre failure by separate failure criteria introduced by Puck4. The

theory and application of Puck’s criterion are detailed described in special literature

(Knops, 2008) and are not considered here. In addition, Christensen5 has presented

some arguments concerning the best choice of failure criteria - stress or strain based

(Christensen, 2013). On some actual problems and the state of the art is reported in

Talreja (2016).

6.3 Problems

Exercise 6.1.

A UD lamina is loaded by biaxial tension σL = 13σT,σLT = 0. The material is a

glass-fibre epoxy composite with EL = 46 GPa, ET = 10 GPa, GLT = 4,6 GPa,

νLT = 0,31. The basic strength parameters are σLt = 1400 MPa, σTt = 35 MPa,

τS = 70 MPa. Compare the maximum stress and the maximum strain criteria.

Solution 6.1. Maximum stress criterion (σL < σLt,σT < σTt)

13σT = σL < σLt

σT = σTt < σLt
=⇒ σT < 107,69 MPa

σT < 35 MPa

The ultimate stress is determined by the smallest of the two values, i.e. failure occurs

by transverse fracture. The stress state is then

σT = 35 MPa,σL = 13 ·35= 455 MPa < 1400 MPa

Maximum strain criterion (εL < εLt,εT < εTt)

To determine the ultimate strains we assume approximately a linear stress-strain

relation up to fracture. Then follows the ultimate strains

εLt = σLt/EL, εTt = σTt/ET

The strains caused by the biaxial tension state are

εL = SLLσL + SLTσT =
1

EL
σL −

νLT

EL
σT =

1

EL
(σL −νLTσT)< εLt,

εT = SLTσL + STTσT =−νTL

ET
σL +

1

ET
σT =

1

ET
(σT −νTLσL)< εTt

The maximum strain criterion can be written

4 Alfred Puck (∗ 1927) - engineer and professor, development of a physical-based strength criterion

for UD reinforced laminates
5 Richard M. Christensen (∗3 July 1932 Idaho Falls, Idaho) - specialist in mechanics of materials
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σL −νLTσT < σLt,σT −νTLσL < σTt,νTL =
ET

EL
νLT

Since σL = 13σT follows

σT < σLt/(13−νLT) = 110,32 MPa,

σT < σTt/(1− 13νLTET/EL) = 282,72 MPa

The ultimate stress is given by the lowest of both values, i.e. failure occurs by

longitudinal fracture and the stress state is then

σL = 13 ·110,32= 1434,16 MPa,σT = 110,32 MPa

The values of both criteria differ significantly and the fracture mode is reversed from

transverse to longitudinal fracture. Because linear elastic response is assumed to

fail, the criterion can predict strength also in terms of stresses. In reality the relation

between ultimate stress and strain is more complex.

Exercise 6.2. Consider an off-axis unidirectional tension of a glass fibre/polyster

resin laminate (Fig. 6.5), σ1 = 3,5 MPa, θ = 600. Estimate the state of stress with

the help of the maximum stress, the maximum strain and the Tsai-Hill failure cri-

terion. The lamina properties are E ′
1 = 30 GPa, E ′

2 = 4 GPa, G′
12 = 1,2 GPa,

ν ′
12 = 0,28,ν ′

21 = 0,037,σLt = 1200 MPa, σTt = 45 MPa, τS = 35 MPa,

εLt = 0,033,εTt = 0,002,εS = 0,0078.

Solution 6.2. The solution is split with respect to different criteria.

1. Maximum stress criterion

Using (6.2.6) the stresses in the principal material axes can be calculated

σ ′
1 = σ1 cos2 θ = 0,875 MPa < σLt,

σ ′
2 = σ1 sin2 θ = 2,625 MPa < σTt,

σ ′
6 = σ1 sinθ cosθ =−1,515 MPa < τS

The off-axis ultimate tensile strength σ1t is the smallest of the following stresses

σ1 = σLt/cos2 θ = 4800 MPa,

σ1 = σTt/sin2 θ = 60 MPa,
σ1 = τS/sinθ cosθ = 80,8 MPa

i.e. σ1t = 60 MPa. All stresses σ ′
i are allowable, the lamina does not fail.

2. Maximum strain criterion

From the Hooke’s law for orthotropic materials follows

ε ′1 = σ ′
1/E ′

1 −ν ′
21σ ′

2/E ′
2 = σ ′

1/E ′
1 −ν ′

12σ ′
2/E ′

1,
ε ′2 = −ν ′

12σ ′
1/E ′

1 +σ ′
2/E ′

2,
ε ′6 = σ ′

6/E ′
6

The transformation for σ ′
i yields
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ε ′1 =
1

E ′
1

[cos2 θ −ν ′
12 sin2 θ ]σ1 = 0,0000047< εLt,

ε ′2 =
1

E ′
2

[sin2 θ −ν ′
12

E ′
2

E ′
1

cos2 θ ]σ1 = 0,0006 < εTt,

ε ′6 =
1

G′
12

sinθ cosθσ1 = 0,0013 < εS

All strains are allowed. The composite does not fail.

3. Tsai-Hill criterion

Using (6.2.18) the criterion can be written

(

cos2 θ

σLt

)2

+

(

sin2 θ

σTt

)2

−
(

sinθ cosθ

σLt

)2

+

(

sinθ cosθ

τS

)2

<
1

σ2
1

,

[

(

0,25

1200

)2

+

(

0,75

45

)2

−
(

0,433

1200

)2

+

(

0,433

35

)2
]

MPa−2 < 0,00043MPa−2,

1

σ2
1

= 0,0816MPa−2

The left-hand side is smaller than the right-hand side, therefore the composite

does not fail.

Exercise 6.3. The plane stress state of a UD-lamina is defined by

σ1 = 2σ ,σ2 =−3σ ,σ6 = 4σ ,σ > 0

The material properties are

E ′
1 = 181GPa,E ′

2 = 10,3GPa,ν ′
12 = 0,28,G′

12 = 7,17GPa,ν ′
21 = 0,01593,

σLt = 1500MPa,σLc = 1500MPa,σTt = 40MPa,σTc = 246MPa,τS = 68MPa

The fibre angle is θ = 600. Calculate the maximum value for σ by using the different

failure criteria.

Solution 6.3. The solution is given for the four cases separately.

1. Maximum stress criterion

Transformation of the stresses from the off-axis to on-axis reference system

yields (Table 4.1)





σ ′
1

σ ′
2

σ ′
6



=





0,250 0,750 0,866

0,750 0,250 −0,866

−0,433 0,433 −0,500









2σ
−3σ
4σ



=





1,714

−2,714

−4,165



σ

Using (6.2.2) we find the inequalities
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−1500MPa < 1,714σ < 1500MPa,
−246MPa < −2,714σ < 40MPa,
−68MPa < −4,165σ < 68MPa,

=⇒
−875,1MPa < σ < 875,1MPa,
−14,73MPa < σ < 90,64MPa,
−16,33MPa < σ < 16,33MPa

The three inequalities are satisfied if 0 < σ < 16.33 MPa. The maximum stress

state which can be applied before failure is

σ1 = 32,66 MPa,σ2 = 48,99 MPa,σ6 = 65,32 MPa

The mode of failure is shear.

2. Maximum strain criterion

Using the transformation rule (4.1.5) for strains ε ′i follows with S′11 =
1/E ′

1 = 0,5525 10−11 Pa−1, S′22 = 1/E ′
2 = 9,709 10−11 Pa−1, S′66 = 1/G′

12 =
13,95 10−11 Pa−1, S′12 =−ν ′

12/E ′
1 =−0,1547 10−11 Pa−1





ε ′1
ε ′2
ε ′6



=





S′11 S′12 0

S′12 S′22 0

0 0 S′66









σ ′
1

σ ′
2

σ ′
6



=





0,1367

−2,662

−5,809



10−10σ

[

MPa

MPa

]

Assuming a linear relationship between the stresses and the strains until failure,

we can calculate the ultimate strains in a simple way

εLt = σLt/E ′
1 = 8,287 10−3, εLc = σLc/E ′

1 = 8,287 10−3,
εTt = σTt/E ′

2 = 3,883 10−3, εTc = σTc/E ′
2 = 23,88 10−3,

εS = τS/G′
12 = 9,483 10−3

and the inequalities (6.2.8) yield

−8,287 10−3 < 0,1367 10−10σ < 8,287 10−3,
−23,88 10−3 < −2,662 10−10σ < 3,883 10−3,
−9,483 10−3 < −5,809 10−10σ < 9,483 10−3

or
−606,2 106 < σ < 606,2 106,
−14,58 106 < σ < 89,71 106,
−16,33 106 < σ < 16,33 106

The inequalities are satisfied if 0 < σ < 16,33 MPa, i.e. there is the same maxi-

mum value like using the maximum stress criterion, because the mode of failure

is shear. For other failure modes there can be significant differences, see Exercise

6.1.

3. Tsai-Hill criterion

Using (6.2.17) we have
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[

(

1,714

1500

)2

+

(−2,714

40

)2

−
(

1,714

1500

)(−2,714

1500

)

+

(−4,165

68

)2
]

σ2

1012
< 1

i.e. σ < 10,94.

The Tsai-Hill criterion is an interactive criterion which cannot distinguish the

failure modes. In the form used above it also does not distinguish between com-

pression and tensile strength which can result in an underestimation of the allow-

able loading in compression with other failure criteria. Generally the transverse

tensile strength of a UD-lamina is much less than the transverse compressive

strength. Therefore the criteria can be modified. In dependence of the sign of

the σ ′
i the corresponding tensile or compressive strength is substituted. For our

example follows

[

(

1,714

1500

)2

+

(−2,714

246

)2

−
(

1,714

1500

)(−2,714

1500

)

+

(−4,165

68

)2
]

σ2

1012
< 1

i.e. σ < 16,06 MPa.

4. Tsai-Wu criterion

Now (6.2.24) must be applied. The coefficients can be calculated

aL =

(

1

σLt
− 1

σLc

)

= 0,

aTT =
1

σTtσTc
= 1,0162 10−16Pa−2,

aT =

(

1

σTt
− 1

σTc

)

= 2,093 10−8Pa−1,

aSS =
1

τ2
Tt

= 2,1626 10−16Pa−2,

aLL =

(

1

σLtσLc

)

= 4,44441 10−19Pa−2,

aLT ≈ −1

2

√
aLLaTT =−3,360 10−18Pa−2

Substituting the values of the coefficients in the criterion it yields the following

equation

0 · (1,714)σ + 2,093(10−8)(−2,714)σ + 4,4444(10−19)(1,714σ)2

+ 1,0162(10−16)(−2,714σ)2 + 2,1626(10−16)(−4,165σ)2

+ 2(−3,360)(10−18)(1,714)(−2,714)σ2 < 1

The solution of the quadratic equation for σ yields σ < 22,39 MPa.
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Summarizing the results of the four failure criteria we have
Max. stress criterion: σ = 16,33σ̄ (σ̄ ≡ RSσ )

Max. strain criterion: σ = 16,33σ̄ (σ̄ ≡ RSε)

Tsai-Hill criterion: σ = 10,94σ̄ (σ̄ ≡ RTH)

Mod. Tsai-Hill criterion: σ = 16,06σ̄ (σ̄ ≡ RTHm)

Tsai-Wu criterion: σ = 22,39σ̄ (σ̄ ≡ RTW)

The values σ̄ ≡ σ are identical with the strength ratios (6.2.32) - (6.2.35).

Remark 6.1. A summary of the examples demonstrates that different failure criteria

can lead to different results. Unfortunately, there is no one universal criterion which

works well for all situations of loading and all materials. For each special class of

problems a careful proof of test data and predicted failure limits must be conducted

before generalizations can be made. In general, it may be recommended that more

than one criterion is used and the results are compared.
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Part III

Analysis of Structural Elements



The third part (Chaps. 7–9) is devoted to the analysis of structural elements (beams,

plates and shells) composed of laminates and sandwiches. The modelling of lam-

inated and sandwich plates and shells is limited to rectangular plates and circular

cylindrical shells. The individual fiber reinforced laminae of laminated structured

elements are considered to be homogeneous and orthotropic, but the laminate is

heterogeneous through the thickness and generally anisotropic. An equivalent sin-

gle layer theory using the classical lamination theory, and the first order shear defor-

mation theory are considered. Multilayered theories or laminate theories of higher

order are not discussed in detail.



Chapter 7

Modelling and Analysis of Beams

In Chap. 1 the classification of composite materials, the significance, advantages

and limitations of composite materials and structures and the material characteris-

tics of the constituents of composite materials were considered. Chapter 2 gave a

short introduction to the governing equations of the linear theory of anisotropic ma-

terial behavior. Chapter 3 defined effective material moduli of composites including

elementary mixture rules and improved formulas. Chapter 4 developed in detail the

modelling of the mechanical behavior of laminates and sandwiches in the frame of

classical theories including thermal and hygroscopic effects. The constitutive equa-

tions, describing the relationships between stress resultants and in-plane strains and

mid-surface curvatures were developed for unidirectional laminae, laminates and

sandwiches with the assumptions of the classical laminate theory. Further the calcu-

lation of in-plane and through-the-thickness stresses was considered. Chapter 5 gave

an introduction to classical and refined laminate theories. In Chap. 6 selected failure

mechanisms and criteria were briefly discussed. These parts of the book give the

basic knowledge, how the design engineer can tailor composite materials to obtain

the desired properties by the appropriate choice of the fibre and matrix constituents,

a laminate or a sandwich material, the stacking sequence of layers, etc. This ba-

sic knowledge can be utilized to develop the modelling and analysis of structural

elements and structures composed of composite materials.

7.1 Introduction

The analysis of structural elements can be performed by analytical and semi-

analytical approaches or by numerical methods. The advantage of analytical so-

lutions is their generality allowing the designer to take into account various design

parameters. Analytical solutions may be either closed form solutions or infinite se-

ries and may be exact solutions of the governing equations or variational approaches.

However, analytical solutions are restricted to the analysis of simple structural el-

ements such as beams, plates and shells with simple geometry. Otherwise numer-

227© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8935-0_7&domain=pdf
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ical methods have to be applied more general for structural analysis. Chapter 7 to

10 describe analytical solutions for one- and two-dimensional structural elements.

Chapter 11 gives an insight into numerical solutions based on the finite element

method.

In the following sections of Chap. 7 we consider rods, columns and beams. These

are one-dimensional structural elements with a thickness h and a width b which are

small relative to the element length l, i.e. h,b ≪ l. When this element is loaded by

an axial force only one speaks of a rod if the loading is tensile, and of columns if

the load is compressive. One calls this element a beam when it is acted upon by

lateral loads. In general a combination of lateral and axial loadings is possible and

so we shall speak of beams under lateral and axial loadings. The other type of one-

dimensional structural elements, so called plate strips under cylindrical bending,

are discussed in Chap. 8. The modelling and analysis of generalized beams based a

thin-walled folded structure are considered in Chap. 10 (generalized Vlasov beam

theory).

The elementary or classical beam theory assumes that the transverse shear strains

are negligible and plane cross-sections before bending remain plane and normal to

the axis of the beam after bending (Bernoulli-Euler beam theory, Sect. 7.2). The

assumption of neglecting shear strains is valid if the thickness h is small relative to

the length l (h/l < 1/20). In the Bernoulli-Euler beam theory the transverse deflec-

tion u3 is assumed to be independent of coordinates x2,x3 of the cross-section (Fig.

7.1), i.e. u3 ≡ w = w(x1). In Sect. 7.2 the governing equations of the classical beam

theory for composite beams are considered. The differential equations and varia-

tional formulations will be developed in detail for bending only, the equations for

vibration and buckling are briefly summarized.

In the case of sandwich beams or moderately thick laminate beams, the results

derived from the Bernoulli-Euler theory can show significant differences with the

actual mechanical behavior, i.e. the deflection, stress distribution, etc. An improve-

ment is possible by introducing the effect of transverse shear deformation, i.e. we

apply Timoshenko beam theory (Sect. 7.3). The assumptions of the classical theory

❅
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Fig. 7.1 Rod/column/beam
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have then to be relaxed in the following way: the transverse normals do not remain

perpendicular to the deformed axis of the beam after straining. Section 7.4 discuss

some special aspects of sandwich beams.

Laminate or sandwich beams with simple or double symmetric cross-sections are

most important in engineering applications. The derivations in Sects. 7.2 - 7.5 are

therefore limited to straight beams with simple or double symmetric constant cross-

sections which are predominantly rectangular. The bending moments act in a plane

of symmetry. Also cross-sections consisting of partition walls in and orthogonal to

the plane of bending, e.g. I- or box beams, are considered.

7.2 Classical Beam Theory

Frequently, as engineers try to optimize the use of materials, they design compos-

ite beams made from two or more materials. The design rationale is quite straight

forward. For bending loading, stiff, strong, heavy or expensive material must be far

away from the neutral axis at places where its effect will be greatest. The weaker,

lighter or less expensive material will be placed in the central part of the beam. At

one extreme is a steel-reinforced concrete beam, where weight is not a major con-

cern, but strength and cost are. At the other extreme is a sandwich beam used e.g. in

an aircraft with fibre-reinforced laminate cover sheets and a foam core. In that case,

stiffness and weight are essential but cost not.

First we consider elementary beam equations: The cross-section area A can have

various geometries but must be symmetric to the x3-axis. The fibre reinforcement

of the beam is parallel to the x1-axis and the volume fraction is a function of the

cross-sectional coordinates x2,x3, i.e. vf = vf(x2,x3). The symmetry condition yields

vf(x2,x3) = vf(−x2,x3) and E1(x2,x3) = E1(−x2,x3).
With the known equations for the strain ε1 and the stress σ1 at x1 = const

ε1(x3) = ε1 + x3κ1, σ1(x2,x3) = ε1E1(x2,x3)+ x3κ1E1(x2,x3) (7.2.1)

follow the stress resultants N(x1),M(x1) of a beam

N = ε1

∫

(A)

E1(x2,x3)dA+κ1

∫

(A)

x3E1(x2,x3)dA,

M = ε1

∫

(A)

x3E1(x2,x3)dA+κ1

∫

(A)

x2
3E1(x2,x3)dA

(7.2.2)

The effective longitudinal modulus of elasticity is (3.1.8)

E1 = Efvf +Emvm = Em +φ(x2,x3)(Ef −Em) (7.2.3)

and with Ef = const, Em = const, φ(x2,x3) = φ(−x2,x3) it follows that
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N = aε1 + bκ1, a = EmA+(Ef−Em)

∫

(A)

φ(x2,x3)dA,

M = bε1 + dκ1, b = (Ef −Em)

∫

(A)

φ(x2,x3)x3dA,

I =

∫

(A)

x2
3dA, d = EmI+(Ef −Em)

∫

(A)

φ(x2,x3)x
2
3dA

(7.2.4)

The inverse of the stress resultants, (7.2.4), are

ε1 =
dN − bM

ad− b2
, κ1 =

aM− bN

ad− b2
(7.2.5)

and the stress equation (7.2.1) has the form

σ1(x2,x3) =
dN − bM+(aM− bN)x3

ad− b2
E1(x2,x3) (7.2.6)

Taking into consideration the different moduli Ef and Em, the fibre and matrix

stresses are

σf(x3) =
dN − bM+(aM− bN)x3

ad− b2
Ef,

σm(x3) =
dN − bM+(aM− bN)x3

ad− b2
Em

(7.2.7)

In the case of a double symmetric geometry and fibre volume fraction function φ ,

b = 0 and the equations can be simplified

ε1 = N/a, κ1 = M/d,
σf(x3) = (N/a+ x3M/d)Ef, σm(x3) = (N/a+ x3M/d)Em

(7.2.8)

For a uniform fibre distribution, φ(x2,x3) = const, (7.2.3) – (7.2.4) give

a = EmA+(Ef −Em)φA = E1A,
b = 0,
d = EmI +(Ef −Em)φ I = E1I

(7.2.9)

and the stress relations for fibre and matrix, (7.2.8), are transformed to

σf(x3) =

(

N

A
+ x3

M

I

)(

Ef

E1

)

, σm(x3) =

(

N

A
+ x3

M

I

)(

Em

E1

)

(7.2.10)

If Ef = Em and E1 = E , (7.2.10) becomes the classical stress formula for isotropic

beam with axial and lateral loadings

σ(x3) =
N

A
+

M

I
x3 (7.2.11)
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Now we consider laminate beams loaded by axial and lateral loading. For simplicity,

thermal and hygrothermal effects are ignored. The derivation of the beam equations

presume the classical laminate theory (Sects. 4.1 and 4.2). There are two different

cases of simple laminated beams with rectangular cross-section:

1. The beam is loaded orthogonally to the plane of lamination.

2. The beam is loaded in the plane of lamination.

In the first case, we start from the constitutive equations (4.2.18).

The beam theory makes the assumption that in the case of bending and stretch-

ing in the (x1−x3)-plane of symmetry, i.e. no unsymmetrical or skew bending,

N2 = N6 = 0, M2 = M6 = 0 and that all Poisson’s effects are neglected.

With these assumptions (4.2.18) is reduced to

[

N1

M1

]

=

[

A11 B11

B11 D11

][

ε1

κ1

]

(7.2.12)

and from (4.2.14)

Q1 = A55ε5 (7.2.13)

If the beam has a midplane symmetry, there is no bending-stretching coupling, so

that B11 = 0 and (7.2.12) becomes

N1 = A11ε1, M1 = D11κ1 (7.2.14)

Note that in the classical theory, the transverse shear strain will be ignored, i.e

ε5 = 0, and there is no constitutive equation for resultant shear forces.

The starting point for derivation of structural equations for beams is the equilib-

rium equations for stress resultants N,M and Q at the undeformed beam element,

Fig. 7.2. The in-plane and transverse stress resultants N1,Q1 and the resultant mo-

x3

x1

M M+dM

Q Q+dQ

N N +dN

q(x1)

n(x1)

m(x1)

dx1

Fig. 7.2 Stress resultants N,Q and M of the infinite beam element, q(x1),n(x1) are line forces,

m(x1) is a line moment
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Table 7.1 Differential relations for laminate beams based on the classical beam theory

(ε1 = u′(x1),κ1 =−w′′(x1))

Relations between stress resultants and loading

N′(x1) =−n(x1), Q′(x1) =−q(x1),

M′(x1) = Q(x1)−m(x1), M′′(x1) =−q(x1)−m′(x1)

Relations between stress resultants and strains

N = bA11u′(x1)−bB11w′′(x1)

M = bB11u′(x1)−bD11w′′(x1)
⇐⇒





N(x1)

M(x1)



=





bA11 bB11

bB11 bD11









u′(x1)

−w′′(x1)





Differential equations for the displacements

General case

(bA11u′)′′− (bB11w′′)′′ =−n′

(bB11u′)′′− (bD11w′′)′′ =−q−m′ (. . .)′ =
d

dx1

Constant stiffness
[

bA11 bB11

bB11 bD11

][

u′′′

−w′′′′

]

=

[

−n′

−q−m′

]

Midplane symmetric laminates (B11 = 0)

(bA11u′)′ =−n

(bD11w′′)′′ = q+m′
bA11u′′ =−n

bD11w′′′′ = q+m′

Special cases

m′(x1) = 0 :

u′′(x1) =−n(x1)

bA11
, w′′′′(x1) =

q(x1)

bD11

N′(x1) =−n(x1), Q′(x1)=−q(x1),
M′(x1) = Q(x1)−m(x1)

m(x1) = 0,n(x1) = 0 :
u′(x1) =− N

bA11
= const, w′′′′(x1) =

q(x1)

bD11

Q′(x1) =−q(x1), M′(x1) = Q(x1)

ment M1 in (7.2.12)–(7.2.13) are loads per unit length and must be multiplied by the

beam width b, i.e. the beam resultants are N = bN1,Q = bQ1,M = bM1.

The differential relations for laminate beams loaded orthogonally to the plane of

lamination are summarized in Table 7.1. Note that when N is a compressive load,

we have to consider additional stability conditions.

The stresses σ
(k)
1 (x1,x3) in the kth layer are given by
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σ
(k)
1 = Q

(k)
11ε

(k)
1 = Q

(k)
11(ε1 + x3κ1) = Q

(k)
11

[

du(x1)

dx1
− x3

d2w(x1)

dx2
1

]

(7.2.15)

or with

ε1 =
D11N −B11M

A11D11 −B2
11

, κ1 =
A11M−B11N

A11D11 −B2
11

,

one get

σ
(k)
1 = Q

(k)
11

1

b

(

D11N −B11M

A11D11 −B2
11

+ x3
A11M−B11N

A11D11 −B2
11

)

(7.2.16)

In the most usual case of midplane symmetric beams the stress equations (7.2.15),

(7.2.16) can be simplified to

σ
(k)
1M(x1) = Q

(k)
11

du(x1)

dx1
= Q

(k)
11

N(x1)

bA11
,

σ
(k)
1B (x1) = Q

(k)
11

[

−x3
d2w(x1)

dx2
1

]

= Q
(k)
11 x3

M(x1)

bD11

(7.2.17)

σ
(k)
1M are the layerwise constant stretching or membrane stresses produced by N(x1)

and σ
(k)
1B the layerwise linear distributed flexural or bending stresses produced by

M(x1). The strain ε1 = ε1 + x3κ1 is continuous and linear through the total beam

thickness h. The stresses σ
(k)
1 are continuous and linear through each single layer

and have stress jumps at the layer interfaces (Fig. 7.3) With the help of effective

moduli EN
eff and EM

eff for stretching and flexural loading we can compare the stress

equations of a laminate beam with the stress equation of a single layer beam.

With N 6= 0,M = 0 Eq. (7.2.12) becomes

[

N1

0

]

= b

[

A11 B11

B11 D11

][

ε1

κ1

]

(7.2.18)

and with

0 = bB11ε1 + bD11κ1, κ1 =−B11

D11
ε1 (7.2.19)
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Fig. 7.3 Qualitative distribution of the stresses and strains through the beam thickness h assuming

Q
(1)
11 = Q

(6)
11 > Q

(3)
11 = Q

(4)
11 > Q

(2)
11 = Q

(5)
11
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follows the equations for N = bN1 and ε1

N = bA11ε1 + bB11κ1 = ε1b
A11D11 −B2

11

D11
,

ε1 =
D11

(A11D11 −B2
11)b

N =
D11h

(A11D11 −B2
11)

N

bh
=

N

EN
effA

(7.2.20)

with

EN
eff =

A11D11 −B2
11

D11h
, A = bh

The strain ε1 on the beam axis of a single layer isotropic, homogeneous beam is

ε1 = N/EA. Replacing E by EN
eff gives the strain equation for the laminate beam.

The stresses σ
(k)
1 in the k layers are then

σ
(k)
1 = Q

(k)
11 (ε1 + x3κ1) = Q

(k)
11 ε1

(

1− x3
B11

D11

)

= Q
(k)
11

(

1− x3
B11

D11

)

du

dx1
,

σ
(k)
1 =

Q
(k)
11

EN
eff

N

bh

(

1− x3
B11

D11

)

=
E
(k)
1

EN
eff

N

bh

(

1− x3
B11

D11

)

(7.2.21)

or for midplane symmetric beams with B11 = 0

σ
(k)
1 =

E
(k)
1

EN
eff

N

bh
=

E
(k)
1

EN
eff

N

A
, EN

eff =
A11

h
(7.2.22)

In an analogous manner it follows from (7.2.12) with N = 0,M 6= 0 that

M = bB11ε1 + bD11κ1 = κ1b
A11D11 −B2

11

A11
,

κ1 =
A11

(A11D11 −B2
11)b

M =
A11h3

12(A11D11 −B2
11)

M

bh3

12

=
M

EM
effI

,
(7.2.23)

with

EM
eff =

12(A11D11 −B2
11)

A11h3
, I =

bh3

12
(7.2.24)

For an isotropic homogeneous single layer beam of width b and thickness h one get

κ1 = M/EI = 12M/bh3, I = bh3/12. Replacing now E by EM
eff, the stress equations

are
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σ
(k)
1 = Q

(k)
11 (ε1 + x3κ1) = Q

(k)
11 κ1

(

−B11

A11
+ x3

)

= Q
(k)
11

(

B11

A11
− x3

)

d2w

dx2
1

,

=
Q
(k)
11

Eeff

M

I

(

x3 −
B11

A11

)

=
E
(k)
1

Eeff

M

I

(

x3 −
B11

A11

)

(7.2.25)

or with B11 = 0 for the symmetric case

σ
(k)
1 =

E
(k)
1

EM
eff

M

I
x3, EM

eff =
12D11

h3
(7.2.26)

If both in-plane and lateral loads occur simultaneously, the stress in each lamina of

the beam is as for symmetric case

σ
(k)
1 (x1,x3) = Q

(k)
11

(

du

dx1
− x3

d2w

dx2
1

)

= E
(k)
1

(

N

EN
effA

+
M

EM
effI

x3

)

, (7.2.27)

A = bh, I = bh3/12, EN
eff = A11/h, EM

eff = 12D11/h3

Conclusion 7.1. Summarizing the equations for symmetric laminated beams, one

can say that the equations for u(x1) and w(x1) are identical in form to those of el-

ementary theory for homogeneous, isotropic beams. Hence all solutions available,

e.g. for deflections of isotropic beams under various boundary conditions, can be

used by replacing the modulus E with EN
eff or EM

eff, respectively. The calculation of

the stresses illustrates that constant in-plane layer stresses produced by N are propor-

tional to the layer modulus E
(k)
1 (7.2.22). N/AEN

eff is for a cross-section x1 = const

a constant value. Analogous are the flexural layer stresses proportional to E
(k)
1 x3

(7.2.26). In general, the maximum stress does not occur at the top or the bottom of

a laminated beam, but the maximum stress location through the thickness depends

on the lamination scheme.

From the bending moment-curvature relation (N = 0)

M = bD11κ1 (7.2.28)

it follows that

κ1max =
Mmax

bD11
=−

(

d2w

dx2

)

max

,

and the maximum stress can be calculated for each lamina

σ
(k)
1max = Q

(k)
11 κ1maxx3 =−Q

(k)
11

(

d2w

dx2

)

max

x3 =
E
(k)
1

EM
eff

Mmax

I
x3 (7.2.29)

σ
(k)
1max must be compared with the allowable strength value.
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The calculation of the transverse shear stress σ
(k)
5 (x1,x3) is analogous as in the

elementary beam theory. We restrict our calculation to midplane symmetric beams

and therefore all derivations can be given for the upper part of the beam element

(x3 ≥ 0). The equilibrium equations in the x1-direction lead with

σ
( j)
1 + dσ

( j)
1 ≈ σ

( j)
1 +

dσ
( j)
1

dx1
dx1

(Fig. 7.4) and no edge shear stresses on the upper and lower faces

σ
(k)
5 dx1 −

N

∑
j=k+1

x
( j)
3
∫

x
( j−1)
3

[(

σ
( j)
1 +

dσ
( j)
1

dx1
dx1

)

−σ
( j)
1

]

dx3 = 0 (7.2.30)

or

σ
(k)
5 =

N

∑
j=k+1

x
( j)
3
∫

x
( j−1)
3

dσ
( j)
1

dx1
dx3 =

N

∑
j=k+1

x
( j)
3
∫

x
( j−1)
3

E
( j)
1

EM
effI

dM

dx1
x3dx3

With Q = dM/dx1 it follows that

σ
(k)
5 (x1,x3) =

Q(x1)

EM
effI

N

∑
j=k+1

x
( j)
3
∫

x
( j−1)
3

E
( j)
1 x3dx3 =

Q(x1)

EM
effI

N

∑
j=k+1

E
( j)
1

1

2

(

x
( j)
3

2
− x

( j−1)
3

2
)

=
Q(x1)

EM
effI

N

∑
j=k+1

E
( j)
1 h( j)x

( j)
3

(7.2.31)
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3 )dx1 with flexural normal stresses σ
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stress σ
(k)
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For a single layer homogeneous, isotropic beam (7.2.31) yields the known parabolic

shear stress distribution through h

σ5(x1,x3) =
Q

I

h/2
∫

x3

x3dx3 =
12Q

bh3

1

2

(

h2

4
− x2

3

)

=
3Q

2bh

[

1− 4
(x3

h

)2
]

(7.2.32)

With an increasing number of equal thickness layers, the transverse shear stress

distribution (7.2.31) approaches the parabolic function of the single layer beam.

All stress equations presume that the Poisson’s effects can be completely ne-

glected, i.e. Q
(k)
i j = Di j = 0, i 6= j, i, j = 1,2,6. They are summarized for symmet-

ric laminated beams (N 6= 0,M 6= 0) in Table 7.2. For symmetric laminated beams

loaded orthogonally to the plane of lamination, the classical laminate theory yields

identical differential equations for u(x1) and w(x1) with to Bernoulli’s beam theory

of single layer homogeneous isotropic beams, if one substitutes bA11 by EA = Ebh

and bD11 by EI = Ebh3/12. An equal state is valid for beam vibration and beam

buckling.

The following equations are given without a special derivation (b,A,D11,ρ are

constant values):

• Differential equation of flexure (N = 0)

d2w(x1)

dx2
1

=−M(x1)

bD11
, bD11

d4w(x1)

dx4
1

= q(x1) (7.2.33)

Table 7.2 Stress formulas for symmetric laminated beams, classical theory

σ
(k)
1 (x1,x3) = σ

(k)
1M(x1)+σ

(k)
1B (x1,x3)

= Q
(k)
11

du(x1)

dx1
−Q

(k)
11

d2w(x1)

dx2
1

x3

= Q
(k)
11

N(x1)

bA11
+Q

(k)
11

M(x1)

bD11
x3

=
E
(k)
1

EN
eff

N(x1)

A11
+

E
(k)
1

EM
eff

Mx1)

I
x3,

σ
(k)
5 (x1,x3) =

Q(x1)

EM
effI

N

∑
j=k+1

E
( j)
1 h( j)x̄

( j)
3 ,

A = bh, I = bh3/12,

EN
eff = A11/h, EM

eff = 12D11/h3, x̄( j) =
1

2
(x

( j)
3 + x

( j−1)
3 )



238 7 Modelling and Analysis of Beams

• Forced or free vibrations

bD11
d4w(x1, t)

dx4
1

+ρA
d2w(x1, t)

dt2
= q(x1, t), ρ =

1

h

N

∑
k=1

ρ (k)h(k) (7.2.34)

Rotational inertia terms are neglected. For free vibration with q = 0 the solution

is assumed periodic: w(x1, t) =W (x1)exp(iωt).
• Buckling equation

d2M(x1)

dx2
1

+N1(x1)
d2w(x1)

dx2
1

= 0, bD11
d4w(x1)

dx4
1

−N1(x1)
d2w(x1)

dx2
1

= 0

(7.2.35)

or with N(x1) =−F

d2M(x1)

dx2
1

−F
d2w(x1)

dx2
1

= 0, bD11
d4w(x1)

dx4
1

+F
d2w(x1)

dx2
1

= 0

All solutions of the elementary beam theory for single layer isotropic beams can

transferred to laminate beams. Note that laminate composites are stronger shear

deformable than metallic materials and the classical beam theory is only acceptable

when the ratio l/h > 20.

The equations for flexure, vibration and buckling can also be given in a vari-

ational formulation (Sect. 2.2.2). With the elastic potential for a flexural beam

(N = 0,M 6= 0)

Π(w) =
1

2

l
∫

0

bD11

(

d2w(x1)

dx2
1

)2

dx1 −
l

∫

0

qdx1 (7.2.36)

and the kinetic energy

T (w) =
1

2

l
∫

0

ρ

(

∂ 2w

∂ t

)2

dx1 (7.2.37)

the Lagrange function is given by L(w) = T (w)−Π(w) (Sect. 2.2.2).

The variational formulation for a symmetric laminated beam without bending-

stretching coupling subjected to a lateral load q in x3-direction (N = 0,M 6= 0,

ε5 ≈ 0,νi j ≈ 0) based on the theorem of minimum of total potential energy is

given in the form

Π [w(x1)] =
1

2

l
∫

0

bD11

(

d2w(x1)

dx2
1

)2

dx1 −
l

∫

0

qdx1,

δΠ [w(x1)] = 0

(7.2.38)

The variational formulation for the buckling of a symmetric laminate beam with

N(x1) =−F is



7.2 Classical Beam Theory 239

Π [w(x1)] =
1

2

l
∫

0

bD11

(

d2w(x1)

dx2
1

)2

dx1 −
1

2

l
∫

0

F

(

dw(x1)

dx1

)2

dx1,

δΠ [w(x1)] = 0

(7.2.39)

The variational formulation for free flexural beam vibration (additional to ap-

proaches noted above the rotatory inertia effects are neglected) can be given by

the Hamilton’s principle

H[w(x1, t)] =

t2
∫

t1

L[W (x1, t)]dt, δH[w(x1, t)] = 0 (7.2.40)

The variational formulations can be used for approximate analytical solution with

the Rayleigh-Ritz procedure or numerical solutions.

In the second case of laminate beams, the loading is in the plane of lamination.

We restrict our considerations to symmetric layered beams and neglect all Poisson’s

ratio effects. The beam is illustrated in Fig. 7.5. For a symmetric layer stacking there

is no bending-stretching coupling and we have the constitutive equations

N1 = A11ε1, M1 =
b3

12h
A11κ1

or for the beam resultants N = hN1,M = hM1

Fig. 7.5 Laminate beam

loaded in the plane of lamina-

tion

q(x1)

x2

x3

x1

b

h
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N = hA11ε1, M =
b3

12
A11κ1, A11 =

N

∑
k=1

Q
(k)
11 h(k) (7.2.41)

The differential equations of flexure (N = 0) are

d2w(x1)

dx2
1

=−M(x1)

A11

b3

12
,

12A11

b3

d4w(x1)

dx4
1

= q(x1) (7.2.42)

and the additional equation for the case N 6= 0 is

hA11
du(x1)

dx1
= N(x1) (7.2.43)

The calculation of stresses is analogous to case 1 of layered beams.

When beam profiles consist of partition-walls in the plane of loading and orthog-

onal to the plane of loading, e.g. I-profiles or box-beams, the bending differential

equations can be written in the form, given above. The bending stiffness is obtained

by combining the results of orthogonal to plane loading and in-plane loading.

As an example for a box-beam, we consider the beam as shown in Fig. 7.6, which

may be subjected to axial loads in x1-direction, a bending moment with respect to

the x2-axis and a twisting moment with respect to the x1-axis. For an isotropic beam

the stiffness needed are the extensional stiffness, EA, the flexural stiffness, EI, and

the torsional stiffness, GIt.

The axial force resultant (per unit width) in x1-direction is N1 = A11ε1 and the

axial load carried by the whole section is then

N(x1) = 2NI
1b+ 2NII

1 h = 2[(A11)Ib+(A11)IIh]ε1 (7.2.44)

The extensional stiffness for the box cross-section is given by

Fig. 7.6 Laminated box-beam

with identical top and bottom

panels I and vertical walls II

x2

x3

x1

b

l

t

I

II

h
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(EA)eff = 2(A11)Ib+ 2(A11)IIh (7.2.45)

The box beam is bent in the (x1 − x3) plane, and the moment curvature relation is

M =

[

2(D11)Ib+ 2(A11)Ib

(

h

2

)2

+ 2(A11)II
h3

12

]

κ1

≈
[

2(A11)Ib

(

h

2

)2

+
1

6
(A11)IIh

3

]

κ1

(7.2.46)

Since the top and bottom panels are thin relative to the height of the box profile, i.e.

t ≪ h, (D11)I can be neglected and the bending stiffness of the box cross-section is

(EI)eff ≈ 2(A11)Ib

(

h

2

)2

+
1

6
(A11)IIh

3 (7.2.47)

If the box-beam is acted by a torsional moment MT this is equivalent to the moment

of the shear flows with respect to the x1-axis and we have

MT = 2NI
6b(h/2)+ 2NII

6 h(b/2), NI
6 = AI

66ε I
6, NII

6 = AII
66ε II

6 (7.2.48)

In the elementary theory of strength of materials the equation for the angle of twist

of a box-beam is given by

θ =
1

2A

∮

q(s)

Gt
ds (7.2.49)

q(s) is the shear flow. In our case, Fig. 7.6, the displacements of the contours of the

walls of the box beam are denoted by δI and δII and the angle of twist becomes

θ =
δI

(h/2)
=

δII

(b/2)
with

δI

l
= ε I

6,
δII

l
= ε II

6 (7.2.50)

From (7.2.48) - (7.2.50) we have

MT =
bh

l
[(AI

66)h+(AII
66)b]θ (7.2.51)

and the torsional stiffness of the cross-section is

(GIt)eff =
bh

l
[(AI

66)h+(AII
66)b] (7.2.52)

For the I-profile in Fig. 7.7 the calculation for bending is analogous. The bending

stiffness is

(EI)eff =

[

2(D11)b+ 2(A11)b

(

h

2

)2

+(A11)
h3

12

]

≈ A11
6h2b+ h3

12

(7.2.53)
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Fig. 7.7 I-profile with uni-

form thickness t

b

t

h

if D11 ≈ 0. Note that for a one-dimensional thin structural element which is sym-

metric with respect to all mid-planes and Poisson’s effect is neglected, we have the

simple relationships

Q11 = E1, A11 = E1t, κ1 =
M

(EI)eff

Summarizing the classical beam equations it must be noted that the effect of Pois-

son’s ratio is negligible only if the length-to-with ratio l/b is large (l ≫ b), otherwise

the structure behavior is more like a plate strip than a beam (Sect. 8.2). This is of

particular importance for angle-ply laminates, i.e. orthotropic axes of material sym-

metry in each ply are not parallel to the beam edges and anisotropic shear coupling

is displayed.

7.3 Shear Deformation Theory

The structural behavior of many usual beams may be satisfactorily approximated by

the classical Euler-Bernoulli theory. But short and moderately thick beams or lami-

nated composite beams which l/h ratios are not rather large cannot be well treated

in the frame of the classical theory. To overcome this shortcoming Timoshenko ex-

tended the classical theory by including the effect of transverse shear deformation.

However, since Timoshenko’s beam theory assumed constant shear strains through

the thickness h a shear correction factor is required to correct the shear strain energy.

In this section we study the influence of transverse shear deformation upon the

bending of laminated beams. The similarity of elastic behavior of laminate and sand-

wich beams with transverse shear effects included allows us generally to transpose

the results from laminate to sandwich beams. When applied to beams, the first order

shear deformation theory is known as Timoshenko’s beam theory. Figure 7.8 illus-

trates the cross-section kinematics for the Bernoulli’s and the Timoshenko’s bending

beam.
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x1

x3

O

B

A

dx1

u(x1)

u1(x1)

O′
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A′
B′′
A′′

w′(x1)

ψ(x1)

w′(x1)

Bernoulli kinematics

flexure curve

Timoshenko kinematics

w(x1)

x2

Fig. 7.8 Kinematics of a bent Timoshenko- and Bernoulli-beam in the (x1 − x3) plane

When all Poisson’s effects are neglected the constitutive equations are identical

with (7.2.12) - (7.2.13), but from Sect. 5.1 the strains of the Timoshenko’s beam are

ε1 =
∂u1

∂x1
=

du

dx1
+ x3

dψ1

dx1
, ε2 ≡ 0, ε3 ≡ 0,

ε5 =
∂u1

∂x3
+

∂w

∂x1
= ψ1 +

dw

dx1
, ε4 ≡ 0, ε6 ≡ 0

(7.3.1)

i.e. we only have one longitudinal and one shear strain

ε1(x1,x3) = ε1(x1)+ x3κ1(x1), ε5(x1,x3) = ψ1(x1)+w′(x1),

ε1(x1) =
du

dx1
, κ1(x1) =

dψ1(x1)

dx1

(7.3.2)

When the transverse shear strain are neglected it follows with ε5 ≈ 0 that the rela-

tionship is ψ1(x1) =−w′(x1) and that is the Bernoulli’s kinematics.
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In the general case of an unsymmetric laminated Timoshenko’s beam loaded

orthogonally to the laminated plane and N 6= 0,M 6= 0, the constitutive equations

(stress resultants - strain relations) are given by

N = A11ε1 +B11κ1, M = B11ε1 +D11κ1, Q = ks A55γs (7.3.3)

with A11 = bA11,B11 = bB11,D11 = bD11,γ
s = ε5 and the stiffness equations are

from (4.2.15) and Q
(k)
11 ≡C

(k)
11 = E

(k)
1 ,Q

(k)
55 ≡C

(k)
55 = G

(k)
13

A11 = b
n

∑
k=1

C
(k)
11

(

x
(k)
3 − x

(k−1
3 )

)

= b
n

∑
k=1

C
(k)
11 h(k),

A55 = b
n

∑
k=1

C
(k)
55

(

x
(k)
3 − x

(k−1)
3

)

= b
n

∑
k=1

Ck
55h(k),

B11 = b
1

2

n

∑
k=1

C
(k)
11

(

x
(k)
3

2
− x

(k−1)
3

2
)

,

D11 = b
1

3

n

∑
k=1

C
(k)
11

(

x
(k)
3

3
− x

(k−1)
3

3
)

ks is the shear correction factor (Sect. 5.3).

In the static case, the equilibrium equations for the undeformed beam element

(Fig. 7.2) yield again for lateral loading q 6= 0

dM

dx1
−Q = 0,

dQ

dx1
+ q = 0 (7.3.4)

When considerations are limited to symmetric laminated beams the coupling stiff-

ness B11 is zero and from (7.3.3) it follows that

M = D11
dψ1

dx1
, Q = ks A55

(

ψ1 +
dw

dx1

)

(7.3.5)

Substituting the relations (7.3.5) into (7.3.4) leads to the differential equations of

flexure
[D11ψ ′

1(x1)]
′− ks A55[ψ1(x1)+w′(x1)] = 0,

ks A55 [ψ1(x1)+w′(x1)]
′+ q(x1) = 0

(7.3.6)

Derivation of the first equation of (7.3.6) and setting in the second equation yields a

differential equation of 3rd order for ψ1(x1)

[D11ψ ′(x)]′′ =−q(x) (7.3.7)

and with

Q =
dM

dx1
= [D11ψ ′

1(x1)]
′ (7.3.8)

and

Q = ksA55[ψ1(x1)+w′(x1)]
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follows an equation for w′(x1)

w′(x1) =−ψ1(x1)+
[D11ψ ′

1(x1)]
′

ksA55

(7.3.9)

Summarizing the derivations above, the equations for a bent Timoshenko’s beam

are:
[D11ψ ′

1(x1)]
′′ = −q(x1),

M(x1) = D11ψ ′
1(x1),

Q(x1) = [D11ψ ′
1(x1)]

′,

w′(x1) = −ψ1(x1)+
[D11ψ ′

1(x1)]
′

ksA55

(7.3.10)

When the laminated beam problem allows to write the bending moment M and the

transverse force Q in terms of the known applied lateral loads q, like in statically

determined beam problems, (7.3.5) can be utilized to determine first ψ1(x1) and then

w(x1). Otherwise (7.3.6) or (7.3.10) are used to determine w(x1) and ψ1(x1).
Integrating the second Eq. (7.3.6) with respect to x1, we obtain

ksA55[w
′(x1)+ψ1(x1)] =−

∫

q(x1)dx1 + c1

Substituting the result into the first equation of (7.3.6) and integrating again with

respect to x1 yields

D11ψ ′
1(x1) = −

∫∫

q(x1)dx1dx1 + c1x1 + c2,

D11ψ1(x1) = −
∫∫∫

q(x1)dx1dx1dx1 + c1
x2

1

2
+ c2x1 + c3

(7.3.11)

Substituting ψ1(x1) and ψ ′
1(x1) in (7.3.9), considering (7.3.7) and integrating once

more with respect to x1 we obtain

w(x1) =
1

D11

[

∫∫∫∫

q(x1)dx1dx1dx1dx1 + c1
x3

1

6
+ c2

x2
1

2
+ c3x1 + c4

]

− 1

ksA55

[

∫∫

q(x1)dx1dx1 + c1x1

]

= wB(x1)+wS(x1)

(7.3.12)

The transverse deflection consists of two parts. The bending part wB(x1) is the same

as derived in the classical theory. When the transverse stiffness goes to infinity, the

shear deflection wS(x1) goes to zero, ψ1(x1) goes to −w′(x1) and the Timoshenko’s

beam theory reduces to the classical Bernoulli’s beam theory.

The relations for the stresses σ1 are the same as in the classical theory. The trans-

verse shear stress can be computed via a constitutive equation in the Timoshenko

theory
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σ
(k)
5 (x1,x3) = Q

(k)
55

Q(x1)

ksA55

(7.3.13)

The variational formulation for a lateral loaded symmetric laminated beam is given

by

Π(w,ψ1) = Πi +Πa (7.3.14)

with

Πi =
1

2

l
∫

0

[

D11

(

dψ1

dx1

)2

+ ksA55

(

ψ1 +
dw

dx1

)2
]

dx1,

Πa = −
l

∫

0

q(x1)wdx1

(7.3.15)

In the more general case of unsymmetric laminated beams and axial and lateral

loadings we have Π(u,w,ψ1). The Πi expression can be expanded to

Πi =
1

2

L
∫

0

[

A11

(

du

dx1

)2

+ 2B11
du

dx1

dψ1

dx1
+D11

(

dψ1

dx1

)2

+ ksA55

(

ψ +
dw

dx1

)2
]

dx1

(7.3.16)

and Πa has to include axial and lateral loads.

Since the transverse shear strains are represented as constant through the lam-

inate thickness, it follows that the transverse stresses will also be constant. In the

elementary beam theory of homogeneous beams, the transverse shear stress varies

parabolically through the beam thickness and in the classical laminate theory the

transverse shear stresses vary quadratically through layer thickness. This discrep-

ancy between the stress state compatible with the equilibrium equations and the

constant stress state of the first order shear deformation theory can be overcome

approximately by introducing a shear correction factor (Sect. 5.3).

The shear correction factor ks can be computed such that the strain energy W1

due to the classical transverse shear stress equals the strain energy W2 due to the first

order shear deformation theory. Consider, for example, a homogeneous beam with

a rectangular cross-section A = bh. The classical shear stress distribution following

from the course of elementary strength of materials is given by

σ13 = τ1 =
3

2

Q

bh

[

1−
(

2x3

h

)2
]

, −h

2
≤ x3 ≤+

h

2
(7.3.17)

The transverse stress in the first order shear deformation theory is constant through

the thickness h

σ13 = τ2 =
Q

bh
, γ2 =

Q

ksG
(7.3.18)

With W1 =W2 it follows that
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1

2

∫

(A)

τ2
1

G
dA =

1

2

∫

(A)

τ2
2

ksG
dA,

3

5

Q2

Gbh
=

1

ks

Q2

2Gbh
=⇒ ks =

5

6
(7.3.19)

The shear correction factor for a general laminate depends on lamina properties and

lamina stacking and is given here without a special derivation by

1

ks
= A55b

N

∑
k=1

x
(k)
3
∫

x
(k−1)
3

g(k)
2
(x3)

G(k)
dx3, (7.3.20)

g(k)(z) = d11

{

−C
(k)
11

z2

2
+

k

∑
j=1

[

C
( j)
11 −C

( j−1)
11

] z( j−1)2

2

}

, C
(0)
11 ≡ 0

d11 = 1/D11 is the beam compliance, C
(k)
11 = E

(k)
1 .

Summarizing the beam equations for the first order shear deformation theory

for symmetrically laminated cross-sections, including vibration and buckling, the

following relations are valid for constant values of h,b,A,D11,ρ :

• Flexure equations (N = 0,M 6= 0)

ks A55 [ψ1(x1)+w′(x1)]
′+ q(x1) = 0,

[D11ψ ′
1(x1)]

′− ks A55[ψ1(x1)+w′(x1)] = 0
(7.3.21)

or Eqs. (7.3.10).

• Forced or free vibrations equations

ks A55 [ψ1(x1, t)+w′(x1, t)]
′−ρ0ẅ(x1, t)+ q(x1, t) = 0,

[D11ψ ′
1(x1, t)]

′− ks A55[ψ1(x1, t)+w′(x1, t)]−ρ2ψ̈1(x1, t) = 0,
(7.3.22)

ρ0 = b
n

∑
k=1

ρ (k)
(

x
(k)
3 − x

(k−1)
3

)

, ρ2 = b
n

∑
k=1

1

3
ρ (k)

(

x
(k)3

3 − x
(k−1)3

3

)

The terms involving ρ0 and ρ2 are called translatory or rotatory inertia terms. For

free vibrations we assume that the transverse load q is zero and the motion is

periodic:

w(x1, t) =W (x1)exp(iωt), ψ1(x1, t) =Ψ1(x1)exp(iωt)

• Buckling equations

ks A55 [ψ1(x1)+w′(x1)]
′−N(x1)w

′′(x1) = 0,
[D11ψ ′

1(x1)]
′− ks A55[ψ1(x1)+w′(x1)] = 0

(7.3.23)
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or with N(x1) =−F

D11

[

1− F

ksA55

]

w′′′′(x1)+Fw′′(x1) = 0

The variational formulation for the symmetric bending beam is given by Eq.

(7.3.15).

For vibrations the Lagrange function L(w,ψ1) = T (w,ψ1)−Π(w,ψ1) yields the

Hamilton’s principle

H[w(x1, t),ψ1(x1, t)] =

t2
∫

t1

L[w(x1, t),ψ1(x1, t)]dt,

δH[w(x1, t),ψ1(x1, t)] = 0

with

Π [w(x1, t),ψ1(x1, t)] =
1

2

l
∫

0

[D11ψ ′
1

2
+ ksA55(ψ1 +w′)2]dx1

−
l

∫

0

q(x1, t)wdx1,

T [w(x1, t),ψ1(x1, t)] =
1

2

l
∫

0

[ρ0ẇ2 +ρ2ψ̇2
1 ]dx1

(7.3.24)

For buckling problems with N(x1) =−F it follows that

Π [w(x1, t),ψ1(x1, t)] =
1

2

l
∫

0

[D11ψ ′
1

2
+ ksA55(ψ1 +w′)2]dx1

− 1

2

l
∫

0

Fw′2dx1

(7.3.25)

Equations (7.3.21) to (7.3.25) summarize the bending, buckling and vibration dif-

ferential and variational statements for laminated beams based on the shear defor-

mation theory.

7.4 Sandwich Beams

The similarity of the elastic behavior between symmetric laminates and symmetric

sandwich beams in the first order shear deformation theory (Sects. 4.3 and 5.3) al-

lows us to transpose the results derived above to the bending of sandwich beams.
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In addition to the differences between the expressions for the flexural and trans-

verse shear stiffness D11 and A55 the essential difference is at the level of stress

distribution. The model assumptions for sandwich composites with thin and thick

cover sheets are considered in detail in Sects. 4.3.1 to 4.3.3. There one can find the

stiffness values A11,D11,A55. With these values, all differential and variational for-

mulation of the theory of laminated beams including transverse shear deformation

can be transposed.

In the case of a symmetric sandwich beam with thin cover sheets we have, for

example, the stiffness values

A11 = 2Af
11 = 2

n

∑
k=1

Q
(k)
11 h(k),

D11 = 2hcCf
11 = hc

n

∑
k=1

Q
(k)
11 h(k)x(k),

As
55 = hcGc

13

(7.4.1)

n is the number of the face layers.

The coefficient As
55 can be corrected by a shear correction factor ks. In addition

to the calculation of ks, derived for a laminated beam an approximate formula was

developed by Reuss, for sandwich beams with thin cover sheets. With the inverse

effective shear stiffness G−1
R , given by the Reuss model, and the effective shear

stiffness GV, given by the Voigt model, we have

GV =
n

∑
k=1

G(k) h(k)

h
=

A55

bh
, G−1

R =
n

∑
k=1

1

G(k)

h(k)

h
, ks =

GR

GV
(7.4.2)

The use of sandwich structures is growing very rapidly. Sandwich beams has a

high ratio of flexural stiffness to weight and in comparison to other beam struc-

tures they have lower lateral deformations, higher buckling resistance and higher

natural frequencies. As a result sandwich constructions quite often provide a lower

structural weight than other structural elements for a given set of mechanical and

environmental loads.

The elastic behavior of sandwich beams was modelled by the laminate the-

ory, Sect. 4.3, but it is appropriately to distinguish thin and thick sandwich faces.

The differential equations or variational statements describing the structural behav-

ior of sandwich beams generally based in the first order shear deformation theory

Sect. 5.3, and only if very flexible cores are used a higher order theory may be

needed.

Because of the continuing popularity of sandwich structures Sect. 7.4 intends to

recall and summarizes the results of Sects. 4.3 and 5.3 to cover some of the most

important aspects of sandwich beam applications.



250 7 Modelling and Analysis of Beams

7.4.1 Stresses and Strains for Symmetrical Cross-Sections

Figure 7.9 shows a sandwich beam with a symmetrical lay up, i.e. the faces have the

same thickness hf and are of the same material. As derived in Sect. 4.3 and 4.4 the

flexural rigidy is (D11 ≡ DLa
11 ,Q11 ≡ E1 = E)

bD11 = D = b

[

E f(hf)3

6
+

E fhfd2

2
+

Ec(hc)3

12

]

= 2Df +Do +Dc (7.4.3)

and both, 2Df and Dc are less than 1% of Do if d/hf > 5,77 and

(6E fhfd2)/Ec(hc)3 > 100. Thus, for a sandwich with thin faces hf ≪ hc and a weak

core, Ec ≪ E f, the flexural rigidity is approximately

D ≈ Do = b
E fhfd2

2
(7.4.4)

It can be noted that in most engineering applications using structural sandwich

beam elements, the dominating term in flexural rigidity is that of the faces bending

about the neutral axes of the beam, i.e. the dominating part Do of the total rigidity

D originating from a direct tension-compression of the cover sheets. But is there

no monolithic bonding between the faces and the core the flexural rigidity will be

nearly lost.

The following derivations assume in-plane-, bending- and shear stiffness for all

layers, i.e. for the faces and the core. Therefore we use the laminate theory including

transverse shear, Sects. 4.3.3 and 5.3. All calculations are first restricted to midplane

symmetric beams.

The bending strains vary linearly with x3 over the cross-section:

εM
1 =

M

D
x3 (7.4.5)

Unlike the bending strains, which vary linearly with x3 over the whole cross-section,

the bending stresses vary linearly within each material constituent, but there is a

jump in the stresses at the face/core interfaces:

x3

x1

3

2

1

Q

N

M

E3 = Ef

E2 = Ec

E3 = Ef
d = hc +hf

b

hf

hc

hf

Fig. 7.9 Symmetrical sandwich beam: N = bN1,Q = bQ1,M = bM1 are the beam stress resultants
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σ
(k)
1 = M

E(k)

D
x3 (k = 1,2,3) ⇒

σ f = M
E f

D
x3

σ c = M
Ec

D
x3

(7.4.6)

With Eq. (7.2.12) follows

M = bD11κ1, κ1 =
M

bD11
=

h3

12D11

M

bh3/12
=

M

EM
effI

, (7.4.7)

with

Eeff =
12

h3
D11, I =

bh3

12

and the stress equations can be written as

σ
(k)
1 =

E(k)

EM
eff

M

I
x3 (k = 1,2,3) (7.4.8)

The strains due to in-plane loading are:

εN
1 =

N

3

∑
k=1

Q(k)h(k)
=

N

3

∑
k=1

E(k)h(k)
=

N

bh

h

A11
=

N

EN
effA

(7.4.9)

with

EN
eff =

A11

h
, A11

3

∑
k=1

Q
(k)
11 h(k) =

3

∑
k=1

E(k)h(k), A = bh

εN
1 is the strain of the neutral axis. The in-plane stresses follow to

σ
(k)
1 =

E(k)

EN
eff

N

A
(k = 1,2,3) ⇒

σ f =
E(1)

EN
eff

N

A
=

E(3)

EN
eff

N

A

σ c =
E(2)

EN
eff

N

A

(7.4.10)

The strains and stresses due to in-plane loads and bending can be superimposed.

In the same manner as outlined above a general definition can be found for shear

strains and shear stresses. Consider the beam element b(x
(3)
3 −x3)dx1, Fig. 7.10. The

upper edge of the sandwich, i.e. x3 = (d+hf)/2, Fig. 7.9, is stress free and we have

τ[(d + hf)/2] = 0.

Since we restrict on calculations to midplane symmetric beams all derivation can

be given for the upper part of the beam element (x3 ≥ 0). The equilibrium equation in

the x1-direction yield with σ1dσ1 ≈ σ1 +(∂σ1/∂x1)dx1 and no edge shear stresses

on the upper face
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x3

x1

dx1

τ(x3)

(x
(3)
3 − x3)

σ f

σ c

σ f +dσ f

σ c +dσ c

σ5 +dσ5

σ5

σ1 σ1 +dσ1

Fig. 7.10 Sandwich beam element b(x
(3)
3 − x3)dx1 : σ (3)(x3) ≡ σ f(x3), σ (2)(x3) ≡ σ c(x3),

σ5(x3) ≡ τ(x3)

τ(x3)bdx1 −
(d+hf)/2
∫

x3

[(

σ1 +
∂σ1

∂x1
dx1

)

−σ1

]

bdx3 = 0

⇒ τ(x3) =

(d+hf)/2
∫

x3

∂σ1

∂x1
dx3 = 0 (7.4.11)

Using the relations dM(x1)/dx1 = Q(x1) and σ1 = M(E(x3)/D)x3 we have

dσ1

dx1
=

Q(x1)

D
E(x3)x3, τ(x3) =

Q

bD

(d+hf/2)
∫

x3

E(x3)x3bdx3 =
Q

bD
S(x3) (7.4.12)

S(x3) is the first moment of the area (x
(3)
3 − x3)b. For a single layer homogeneous

and isotropic beam we have the well-known formula

S(x3) =
b

2

(

h2

4
− x2

3

)

; h = (d+ hf)

For sandwich beams we have a more generalized definition for the first moment of

area:

(d+hf)/2
∫

x3

E(x3)x3bdx3 =



















































b

[

E fhfd

2
+

Ec

2

(

hc

2
− x3

)(

hc

2
+ x3

)]

,

|x3| ≤
hc

2

b

[

E f

2

(

hc

2
+ hf− x3

)(

hc

2
+ hf + x3

)]

,

hc

2
≤ |x3| ≤

hc

2
+ hf

(7.4.13)
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The shear stresses for the core and the faces are

τc(x3) =
Q

D

[

E fhfd

2
+

Ec

2

(

(hc)2

4
− x2

3

)]

,

τ f(x3) =
Q

D

E f

2

(

(hc)2

4
+ hchf +(hf)2 − x2

3

)

(7.4.14)

The maximum shear stress appears at the neutral axes:

τmax = τc(x3 = 0) =
Q

D

(

E fhfd

2
+

Ec(hc)2

8

)

(7.4.15)

The shear stress in the core/face interface is

τc
min ≡ τ f

max = τ

(

hc

2

)

=
Q

D

(

E fhfd

2

)

(7.4.16)

There is no jump in the shear stresses at the interfaces and the shear stresses are zero

at the outer fibres of the faces. If we have

4E fhfd

Ec(hc)2
> 100 (7.4.17)

the shear stresses in the core are nearly constant. The difference between τc
max and

τc
min is less than 1%. As it was outlined in Sect. 4.3, the stress equation in sandwich

beams very often can be simplified.

Summarizing the stress estimations due to bending and shear for symmetrical

sandwich beams we have the following equations:

1. The core is weak, Ec ≪ E f, but the faces can be thick

σ f(x3) ≈ M
E f

Do + 2Df
x3,

σ c(x3) ≈ 0,

τ f(x3) ≈ Q

Do + 2Df

E f

2

(

(hc)2

4
+ hchf +(hf)2 − x2

3

)

,

τc(x3) ≈
QE fhfd

2(Do + 2Df)

(7.4.18)

2. The core is weak, Ec ≪ E f, and the faces are thin, hf ≪ hc

σ f(x3)≈± M

bhfd
, σ c(x3)≈ 0, τ f(x3)≈ 0, τc(x3)≈

Q

bd
(7.4.19)

This approximation can be formulated as: The faces of the sandwich beam carry

bending moments as constant tensile and compressive stresses and the core car-

ries the transverse forces as constant shear stresses.
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7.4.2 Stresses and Strains for Non-Symmetrical Cross-Sections

In engineering applications also sandwich beams with dissimilar faces are used,

Fig. 7.11. The first moment of area is zero when integrated over the entire cross-

section and x3 is the coordinate from the neutral axes

∫

E(x3)x3bdx3 = 0 (7.4.20)

The location of neutral axis is unknown. With the coordinate transformation

x∗3 = x3 − e from a known axis of the cross-section the equation above becomes

S(x3) =

∫

E(x3)x3bdx3 =

∫

E(x∗3 + e)bdx∗3 = 0, e

∫

Edx∗3 =−
∫

Ex∗3dx∗3

For the sandwich cross-section, Fig. 7.11, follows

e
(

E(1)h(1)+E(2)h(2)+E(3)h(3)
)

= E(1)h(1)
(

1

2
h(1)+ h(2)+

1

2
h(3)

)

+
1

2
E(2)h(2)

(

h(2)+ h(3)
)

and we get an equation for the unknown value e

e =
E(1)h(1)

(

h(1)+ 2h(2)+ h(3)
)

+E(2)h(2)
(

h(2)+ h(3)
)

2
(

E(1)h(1)+E(2)h(2)+E(3)h(3)
) (7.4.21)

If the core is weak, E(2) ≪ (E(1),E(3)) we have approximately

e =
E(1)h(1)d

E(1)h(1)+E(3)h(3)
or d− e =

E(3)h(3)d

E(1)h(1)+E(3)h(3)
, (7.4.22)

where d = 1
2 h(1)+ h(2)+ 1

2 h(3).

The bending stiffness D =
∫

E(x3)x
2
3bdx3 yields in the general case

Fig. 7.11 Definition of the

neutral axis (N.A.) of an

unsymmetrical sandwich:

x3 = x∗3 + e

x2

x3

E(3)

E(2)

E(1)

d

h(3)

b

hc = h(2)

h(1)

e

x∗3

N.A.
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D =
1

12

[

E(1)(h(1))3 +E(2)(h(2))3 +E(3)(h(3))3
]

+ E(1)h(1)(d − e)2 +E(3)h(3)e2 +E(2)h(2)
[

1

2
(h(2)+ h(3))− e

]2 (7.4.23)

and can be simplified for E(2) ≪ (E(1),E(3)) but thick faces as

D ≈ E(1)(h(1))3

12
+

E(3)(h(3))3

12
+

E(1)h(1)E(3)h(3)d2

E(1)h(1)+E(3)h(3)
(7.4.24)

For thin faces the first two terms vanish

D ≈ Do =
E(1)h(1)E(3)h(3)d2

E(1)h(1)+E(3)h(3)
(7.4.25)

Now the bending and shearing stresses can be calculated in the usual way

σ1(k)(x3) = M
E(k)

D
x3, τ(k)(x3) =

Q

bD
S(x3) (7.4.26)

For sandwich beams with weak core and thin but dissimilar faces the stress formulas

are approximately

σ
(3)
1 ≡ σ f1

1 ≈ M
E f1

D
e =

M

bhf1d
,

σ
(1)
1 ≡ σ f2

1 ≈ −M
E f2

D
(d − e) =− M

bhf2d
,

τ(2) ≡ τc ≈ Q

bd
, τ(3) = τ(1) ≈ 0

(7.4.27)

7.4.3 Governing Sandwich Beam Equations

The following derivations assumed, as generally in Chap. 7, straight beams with at

least single symmetric constant cross-sections which are rectangular, i.e we consider

single core sandwich beams. The faces can be thin or thick and symmetrical or non-

symmetrical. The bending moments and axial forces act in the plane of symmetry

(x1 − x3). The influence of transverse shear deformation is included, because the

core of sandwich beams has a low transverse modulus of rigidity G13. The shear

correction factor ks is determined approximately for sandwich beams with thin cover

sheets with the Reuss formula (7.4.1), or more generally using equivalent shear

strain energy, i.e the potential energy of the applied load equals the strain energy

of the beam to account for the nonuniform shear distribution through the thickness.

The shear deformation theory (Sect. 7.3) is valid and we can adapt the equations of

this section to the special case of sandwich beams.

The strains ε1 and ε5 ≡ γ are given, (7.3.2), as
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ε1 =
du

dx1
+ x3

dψ

dx1
, γ =

dw

dx1
+ψ

With

A11 = A, B11 = B, D11 = D, ksA55 = S (7.4.28)

the constitutive equations (7.2.12), (7.2.13) yield





N

M

Q



=





A B 0

B D 0

0 0 S









u′

ψ ′

w′+ψ



 (7.4.29)

For static loading q(x1) 6= 0,n(x1) ≡ 0 the equilibrium equations are as in the clas-

sical beam theory, Table 7.1,

N′ = 0, Q′+ q = 0, M′−Q = 0 (7.4.30)

If N ≡ 0 the neutral axes position xN.A.
3 is constant along the length of the beam and

is given by

ε1(x
N.A.
3 ) = u′+ xN.A.

3 ψ ′ = 0, N = Au′+Bψ ′ = 0

xN.A.
3 =− u′

ψ ′ =
B

A
(7.4.31)

Thus, if the stiffness A,B,D,S are constant, the substitution of Eq. (7.4.29) into

(7.4.30) yields the following two governing differential equations for sandwich

beams
DRψ ′′(x1)− S[w′(x1)+ψ(x1)] = 0,

S[w′′(x1)+ψ ′(x1)] = −q(x1)
(7.4.32)

with DR = D− (B2/A). Derivation of the first equation and setting in the second

equation yield

DRψ ′′′(x1) =−q(x1) (7.4.33)

and with

M′ = Q = S(w′+ψ), M = Bu′+DRψ ′, M′ = Bu′′+DRψ ′′

follow

w′(x1) =−ψ(x1)+
1

S
(Bu′′+DRψ ′′)

For symmetrical cross-sections is B = 0,DR = D. In the general case, if all stiff-

ness are constant and unequal zero the substitution of (7.4.4) into (7.4.5) yields the

governing simultaneous differential equations for unsymmetrical sandwich beams

DRψ ′′(x1)− S[w′(x1)+ψ(x1)] = 0, DR = D−
(

B2

A

)

S(w′′(x1)+ψ ′(x1)) = −q(x1)

u′(x1) = −B

A
ψ ′(x1)

(7.4.34)
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Derivation of the first equation and setting in the second equation yield one uncou-

pled equation for ψ(x1)
DRψ ′′′(x1) =−q(x1) (7.4.35)

The constitutive equations (7.4.4) give the relations

M(x1) = Bu′(x1)+Dψ ′(x1), Q(x1) = S[w′(x1)+ψ(x1)] (7.4.36)

and with

M′(x1) = Q(x1) = Bu′′(x1)+Dψ ′′(x1), u′(x1) =−B

A
ψ ′(x1)

follow

w′(x1) =−ψ(x1)+
1

S
[Bu′′(x1)+DRψ ′′(x1)] =−ψ(x1)+

DR

S
ψ ′′(x1) (7.4.37)

Thus we have three uncoupled differential equations:

DRψ ′′′(x1) = −q(x1),

w′(x1) = −ψ(x1)+
DR

S
ψ ′′(x1),

u′(x1) =
B

A
ψ ′(x1)

(7.4.38)

For symmetrically cross-sections is B ≡ 0, DR ≡ D and the differential equations

reduce to

Dψ ′′′(x1) = −q(x1),

w′(x1) = −ψ(x1)+
D

S
ψ ′′(x1)),

M(x1) = Dψ ′(x1) or ψ ′(x1) =
M(x1)

EM
effI

Q(x1) = Dψ ′′(x1) or M′(x1) = S(w′(x1)+ψ(x1))

(7.4.39)

The equations (7.4.39) correspond to the equations (7.3.10) of the laminated beam

and the analytical solutions (7.3.11), (7.3.12) can be transposed with D11 = D,

ksA55 = S. In dependence of the calculation of the stiffness D and S the equation

are valid for sandwich beams with thin or thick faces.

The stresses σ1 and τ can be calculated with the help of the stress formulas

derived in Sects. 7.4.1 and 7.4.2. For statically determinate structures, M(x1) and

Q(x1) can be calculated with the equilibrium equations and the last two equations

(7.4.39) can directly used for static calculations.

We consider as an example the cantilever beam, Fig. 7.12, then:



258 7 Modelling and Analysis of Beams

Fig. 7.12 Symmetrical can-

tilever beam with thin faces
x3

x1hf

hf

hc ≈ d

l

F

M(x1) = F(l − x1), Q(x1) =−F,

ψ ′(x1) =
M(x1)

D
=

1

D
F(l − x1),

ψ(x1) =
F

D

(

lx1 −
1

2
x2

1

)

+C1,

ψ(0) = 0 ⇒ C1 = 0,

w′(x1) =−F

D

(

lx1 −
1

2
x2

1

)

+
Q

S
=−F

D

(

lx1 −
1

2
x2

1

)

− F

S
,

w(x1) =−F

D

(

1

2
lx2

1 −
1

6
x3

1

)

− Fx1

S
+C2,

w(0) = 0 ⇒ C2 = 0,

w(x1) =−F

D

(

1

2
lx2

1 −
1

6
x3

1

)

− Fx1

S
= wB(x1)+wS(x1),

w(l) =−Fl3

3D
− Fl

S

Assume thin faces and weak core, i.e

hf ≪ hc, Ec ≪ E f

we have

D = Do = b
E fhfd2

2
, S = ksGcbd

and the stresses are

σ f =±M
E f

D

d

2
=± M

bdhf
=±F(l − x1)

bdhf
, τc =

Q

bd
=− F

bd
, σ c = τ f = 0

Consider w(l) = wB(l) +wS(l) it can be seen that the shear deformation strongly

depends on l and S. It is important for short and shear weak beams and negligible

for slender shear stiff beams.

Summarizing the aspects of sandwich beams it could be demonstrated in the

static case that the shear deformation theory for laminated beams is valid for sand-

wich beams, if the stiffness A11,B11 and D11 of a laminated beam are replaced by

the stiffness A,B,D and S, Eq. (7.4.3), of the sandwich beam. The same conclusion

is valid not only for bending but also for buckling and vibration and for differential
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and variational formulations. In this way all formulas (7.3.19) to (7.3.23) can easy

transposed to symmetrically sandwich beams.

In the considerations above we have assumed that the effect of core transverse

deformability is negligible on the bending, vibration and the overall buckling of

sandwich beams. But in a special case of buckling, called face wrinkling the trans-

verse normal stiffness of the core has an important influence. Wrinkling is a form

of local instability of thin faces associated with short buckling waves. This phe-

nomenon was not discussed here.

7.5 Hygrothermo-Elastic Effects on Beams

In Sects. 7.2 and 7.4 the effect of mechanical loads acting upon fibre reinforced

beams with E1(x2,x3) = E1(−x2,x3) and laminated or sandwich beams was consid-

ered. The considerations for laminated beams as derived are valid in the framework

of the classical laminate theory, Sect. 7.2, and of the first order shear deformation

theory, Sect. 7.3. Section 7.4 considered some special aspects of sandwich beams

with thin or thick cover sheets and different stiffness of the core.

In the present section the effects of hygrothermally induced strains, stresses and

displacements are examined. We assume a moderate hygrothermal loading such that

the mechanical properties remain unchanged for the temperature and moisture dif-

ferences considered.

With Eqs. (4.2.63) to (4.2.68) the beam equations (7.2.1) have additional terms

ε1(x3) = ε1 + x3κ1 =
σ1(x2,x3)

E1(x2,x3)

+ [α th(x2,x3)T (x2,x3)+αmo(x2,x3)M
∗(x2,x3)],

(7.5.1)

σ1(x2,x3) = E1(x2,x3)[ε1 + x3κ1

− α th(x2,x3)T (x2,x3)−αmo(x2,x3)M
∗(x2,x3)]

(7.5.2)

α th,αmo are the thermal and moisture expansion coefficients, T the temperature

change and M∗ the weight of moisture absorption per unit weight. Equations (7.2.4)

have now additional terms Nth,Nmo,Mth,Mmo, the so-called fictitious hygrothermal

resultants, (4.2.67), and with

Ñ = N +Nth +Nmo, M̃ = M+Mth +Mmo (7.5.3)

the extended hygrothermal constitutive equation for the composite beam are

[

Ñ

M̃

]

=

[

a b

b d

][

ε1

κ1

]

,

[

ε1

κ1

]

=

[

a b

b d

]−1 [
Ñ

M̃

]

(7.5.4)

The stress formula (7.2.6) yields with Eq. (7.2.5)
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σ1(x2,x3) =
(dN − bM)+ (aM− bN)x3

ad− b2
E1(x2,x3)

− E1(x2,x3)[α
thT +αmoM∗]

(7.5.5)

For double symmetric cross-sectional geometry the coupling coefficient is zero and

the stress equation can be simplified.

For uniform fibre distribution, i.e. φ = const, (7.2.9) follow for a,b,d and the

stress relations for fibres and matrices material are

σf(x3) = (Ñ/A+ x3M̃/I)(Ef/E1)−Ef(α
thT +αmoM∗),

σm(x3) = (Ñ/A+ x3M̃/I)(Em/E1)−Em(α
thT +αmoM∗)

(7.5.6)

With Ef = Em = E1 = E comes the stress equation for isotropic beams with mechan-

ical and hygrothermal loadings

σ(x3) =
Ñ

A
+ x3

M̃

I
−E(α thT +αmoM∗) (7.5.7)

For laminate or sandwich beams the developments are similar. All problems are

linear and the principle of superposition is valid and can be used to calculate the

hygrothermal effects. Consider for example a symmetric laminate beam in the frame

of the classical laminate theory and include hygrothermal loads, (7.2.27) yield

σ
(k)
1 = E

(k)
1

Ñ

EN
effA

+ x3
M̃

EM
effI

−E
(k)
1 (αth(k)T (k)+αmo(k)M∗(k)) (7.5.8)

The differential equations for deflection and midplane displacement of a symmetric

laminated beam are

[D11w′′(x1)]
′′ = q(x1)−Mth(x1)

′′−Mmo(x1)
′′,

[A11u′x1)]
′ = −n(x1)+Nth(x1)

′−Nmo(x1)
′ (7.5.9)

In an analogous manner the differential equations including shear deformation can

be found. The differential equation for a symmetric Timoshenko’s beam with lateral

loading and hygrothermal effects follows with (7.3.10)

[D11ψ ′
1(x1)]

′′ =−q(x1)+Mth(x1)
′′+Mmo(x1)

′′ (7.5.10)

The relation for the layer stresses σ
(k)
1 are identical to the classical theory. The trans-

verse shear stresses σ
(k)
5 are not changed by hygrothermal effects.

7.6 Analytical Solutions

The differential equations for bending, vibration and buckling of symmetric lam-

inated beams loaded orthogonally to the plane of lamination are summarized by
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(7.2.33) to (7.2.35) for the classical Bernoulli’s beam theory and by (7.3.21) to

(7.3.23) for the Timoshenko’s beam theory including transverse shear deformation.

All stiffness and material parameters are constant values.

The simplest problem is the analysis of bending. The general solution of the

differential equation of 4th order (7.2.33) for any load q(x1) is given by

bD11w(x1) ≡ bD11wB(x1)

= C1
x3

1

6
+C2

x2
1

2
+C3x1 +C4 +

∫ ∫ ∫ ∫

q(x1)dx1dx1dx1dx1

(7.6.1)

The general solution of the Timoshenko’s beam is given by (7.3.12) in the form

w(x1) = wB(x1)+wS(x1). The correction term wS(x1) describes the influence of the

shear deformation and it decreases with increasing shear stiffness ksA55.

The free vibration of Bernoulli’s beams is modelled by (7.2.34), rotatory inertia

terms are neglected. The partial differential equation

∂ 4w(x1, t)

∂x4
1

+
ρA

bD11

∂ 2w(x1, t)

∂ t2
= 0 (7.6.2)

can be separated with w(x1, t) =W (x1)T (t) and yields

W ′′′′(x1)T (t) =− ρA

bD11
W (x1)T̈ (t) (7.6.3)

or
T̈ (t)

T (t)
=− ρA

bD11

W ′′′′(x1)

W (x1)
=−ω2 (7.6.4)

We get two differential equations

T̈ (t)+ωT(t) = 0, W ′′′′(x1)−
ρA

bD11
ω2W (x1) = 0 (7.6.5)

with the solutions

T (t) = Acosωt +Bsinωt,

W (x1) = C1 cos
λ

l
x1 +C2 sin

λ

l
x1 +C3 cosh

λ

l
x1 +C4 sinh

λ

l
x1,

(

λ

l

)4

=
ρA

bD11
ω2

(7.6.6)

The vibration mode is periodic, and ω is called the natural circular frequency. The

mode shapes depend on the boundary conditions of the beam. Consider, for exam-

ple, a simply supported beam, we have W (0) = W ′′(0) = W (l) = W ′′(l) = 0 and

therefore C1 =C3 =C4 = 0 and C2 sin(λ/l)l =C2 sinλ = 0, which implies that
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λ = nπ , ω2
n =

n4π4

ρA

bD11

l4
, ωn =

(nπ

l

)2

√

bD11

ρA
(7.6.7)

For each n there is a different natural frequency and a different mode shape. The

lowest natural frequency, corresponding to n = 1, is termed the fundamental fre-

quency. If the laminate beam is unsymmetric to the middle surface, i.e. B11 6= 0,

then D11 in Eq. (7.6.7) can be approximately replaced by (A11D11 −B2
11)/A11, the

so called reduced or apparent flexural stiffness.

Including shear deformation effects, i.e. using the Timoshenko vibration equa-

tion (7.3.22), involves considerable analytical complications. To prove whether

the transverse shear deformation can be important for the natural frequencies,

we compare the natural frequencies for a simply supported Bernoulli and Timo-

shenko beam. Using (7.3.22) the boundary conditions for the Timoshenko beam are

w(0, t) = w(l, t) = ψ1(0, t) = ψ1(l, t) = 0 and by introducing

w = Asinωt sin
nπx1

l
, ψ1 = Bsinωt cos

nπx1

l
,

in Eqs. (7.3.22) we can calculate the natural frequencies

ω2
n =

n4π4

ρA

bD11

l4
/

(

1+
π2D11n2

l2ksA55

)

, ρA ≡ ρ0 (7.6.8)

i.e.

ωn = ωBernoulli
n

√

1

1+(n2π2D11)/(l2ksA55)

Transverse shear deformation reduces the values of vibration frequencies. As in

the case of static bending the influence of shear on the values of vibration frequen-

cies depends on the ratio E1/G13 ≡ E1/E5 and the ratio l/h, i.e the span length

between the supports to the total thickness of the laminate. For more general bound-

ary conditions we can develop a mode shape function similar to (7.6.6).

In an analogous way, one can show that the buckling loads for a simply supported

Bernoulli and Timoshenko beam with a compression load F follow from (7.2.35)

and (7.3.23) and are

Fcr =
π2bD11

l2
(Minimum Euler load, Bernoulli beam)

Fcr =
π2bD11

l2

1

1+
π2D11

l2ksA55

(Minimum buckling load, Timoshenko beam)

(7.6.9)

The buckling loads for clamped beams or beams with more general boundary con-

ditions can be calculated analytically analogous to eigenfrequencies of vibration

problems.
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For non constant cross-section, stiffness or material parameters there are no exact

analytical solutions. Approximate analytical solutions can be found with the help of

the Rayleigh-Ritz procedure. In Sect. 7.7 exact and approximate analytical solution

procedures are illustrated for selected beam problems.

7.7 Problems

Exercise 7.1. A reinforced concrete beam is loaded by a bending moment M

(Fig. 7.13). It is assumed that the concrete has zero strength in tension so that the

entire tensile load associated with the bending moment is carried by the steel rein-

forcement. Calculate the stresses σm(x3) and σf(x3) in the concrete part (Am,Em)

and the steel reinforcements (Af,Ef).

Solution 7.1. The neutral axis x1 of the beam is in an unknown distance αh from the

top, Ac ≡ Am is the effective area of the concrete above the x1-axis. The strains will

vary linearly from the x1-axis and the stresses will equal strain times the respective

moduli. The stress resultant N(x1) must be zero

σfAf −
1

2
σm(αh)bαh = 0, σm(αh) = σmax

m

With (7.2.1) follows

σf = (h−αh)κ1Ef, σm(αh) = αhκ1Em

i.e.

(h−αh)EfAf −
1

2
(αh)2bEm = 0,

α =
EfAf

Embh

(

−1+

√

1+ 2
bh

Af

Em

Ef

)

or

x3

x1
αh

b

(h−αh)

h

(

h− αh

3

)

Af

σ max
m

1

2
σ max

m bαh

(σfAf)

M

Ac ≡ Am

Fig. 7.13 Reinforced concrete beam loaded by pure bending
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α =
1

m
(−1+

√
1+ 2m), m =

Embh

EfAf

Now the bending moment is with

σfAf =
1

2
σmbh2α2

M = (σfAf)

(

h− αh

3

)

= σfAfh
(

1− α

3

)

= κ1EfAf(h−αh)
(

h− α

3

)

The maximal stress in the concrete is

σm(αh) =−κ1αhEm = M
Emαh

EfAf(h−αh)(h−αh/3)

and the reinforcement stress is

σf = κ1(h−αh)Ef =
M

Af(h−αh/3)

Exercise 7.2. A symmetric cross-ply laminate beam is shown in Fig. 7.14. The ma-

terial properties and the geometry are defined by

E ′
1 = 17,24 104MPa,E ′

2 = 0,6895 104MPa,
G′

12 = G′
13 = 0,3448 104MPa,G′

23 = 0,1379 104MPa,ν ′
12 = 0,25,

L = 240 mm,b = 10 mm,h(1) = h(2) = h(3) = 8 mm,h = 24 mm,
q0 = 0,6895 N/mm

x1

x3

L

h 3

h 3

h 3

h

q(x1) = q0 sin
πx1

L

Fig. 7.14 Simply supported cross-ply laminated beam [0/90/0]
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Calculate a approximative solution using the Timoshenko beam model and two one-

term Ritz procedures.

Solution 7.2. Let us introduce the cross-section geometry

x
[0]
3 =−12 mm,x

[1]
3 =−4 mm,x

[2]
3 = 4 mm,x

[3]
3 = 12 mm

The shear correction factor can be calculated with Eq. (7.3.20) to ks = 0,569. The

bending stiffness D̄11 and the shear stiffness ksĀ55 follow with Eq. (7.3.3)

D̄11 =
b

3
[E1((−4)3 − (−12)3)+E2(4

3 − (−4)3)+E1(123 − 43)]

= 1,92 109Nmm2,
ksĀ55 = ksb[G128+G238+G128] = 3,76 105N

The variational formulation for a lateral loaded symmetric laminate beam is given

with (7.3.15)

Π(w,ψ) =
1

2

L
∫

0

[

D̄11

(

dψ

dx1

)2

+ ksĀ55

(

ψ +
dw

dx1

)2
]

dx1 −
L
∫

0

q0 sin
(πx1

L

)

w dx1

The essential boundary conditions are

w(x1 = 0) = 0, w(x1 = L) = 0, ψ ′(x1 = 0) = 0, ψ ′(x1 = L) = 0

The approximate functions are

w̃(x1) = a1 sin
(πx1

L

)

, ψ̃(x1) = b1 cos
(πx1

L

)

and it follows

Π̃(w̃, ψ̃) =
1

2

L
∫

0

[

D̄11

(

b1
π

L

)2

sin2 πx1

L

+ ksĀ55

(

b1 cos
πx1

L
+ a1

π

L
cos

πx1

L

)2
]

dx1

−
L
∫

0

q0 sin
(πx1

L

)(

a1 sin
πx1

L

)

dx1 = Π̃(a1,b1)

With (2.2.41) must be ∂Π̃/∂a1 = 0,∂Π̃/∂b1 = 0 which yields the two equations

(

D̄11

ksĀ55

π

L
+

L

π

)

b1 + a1 = 0,

b1 +
π

L
a1 =

q0L

ksĀ55π
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and the solution for the unknown constants a1,b1

a1 =
q0L4

D̄11π4

(

1+
D̄11

ksĀ55

π2

L2

)

,

b1 = − q0L3

D̄11π3

The approximate solutions are now

w̃(x1) =
q0L4

D̄11π4

(

1+
D̄11

ksĀ55

π2

L2

)

sin
πx1

L
,

ψ̃(x1) = − q0L3

D̄11π3
cos

πx1

L

Note that

w̃max = w̃

(

x1 =
L

2

)

=
q0L4

D̄11π4

(

1+
D̄11

ksĀ55

π2

L2

)

The transverse deflection consists of two parts

w̃B(x1) =
q0L4

D̄11π4
sin

πx1

L
(bending deflections),

w̃S(x1) =
q0L4

D̄11π4

D̄11

ksĀ55

π2

L2
sin

πx1

L

For ksĀ55 → ∞ follows w̃S → 0, i.e. w̃B(x1) is the solution of the Bernoulli beam

model and we found

wTimoshenko = k1wBernoulli

with

k1 = 1+
D̄11

ksĀ55

π2

L2
= 1,875

For the laminate beam with h/L= 1/10 the Bernoulli model cannot be accepted, the

relative error for the maximum value of the deflection is 46,7 %. Equations (7.3.10)

lead

M̃max = M̃

(

x1 =
L

2

)

=
q0L2

π2
= 12,64 Nm,

Q̃max = Q̃ (x1 = 0) =
q0L

π
= 52,67 N

The strains ε1 follow from Eqs. (7.3.1) or (7.3.2) and (7.3.10)

ε1(x1) = x3ψ ′(x1) = x3κ1 = x3M(x1)/D̄11

ε1(x1) is linear distributed across h and we calculate the following values for the

cross-section x1 = L/2
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ε̃
(3)
1

(

x1 =
L

2
,x

[3]
3

)

= 2,51 10−5, ε
(3)
1

(

x1 =
L

2
,x

[2]
3

)

= 0,84 10−5

The bending stresses σ1(x1,x3) in the 3 layers are for x1 = L/2 and x3 = x
(k)
3

σ̃
(3)
1 (x

(3)
3 ) = ε̃1(x

(3)
3 )E ′

1 = 4,327 MPa,

σ̃
(3)
1 (x

(2)
3 ) = ε̃1(x

(2)
3 )E ′

1 = 1,448 MPa,

σ̃
(2)
1 (x

(2)
3 ) = ε̃1(x

(2)
3 )E ′

2 = 0,579 MPa,

σ̃
(2)
1 (0) = ε̃1(0)E

′
2 = 0 MPa

Exercise 7.3. Find the analytical solution for the natural vibrations of a simply sup-

ported symmetric laminate or sandwich beam. Test the influence of the transverse

shear deformation and the rotatory inertia upon the natural frequencies.

Solution 7.3. Starting point are the (7.3.22) with q(x1, t)≡ 0 and the boundary con-

ditions

w(0, t) = w(l, t) = 0, ψ ′(0, t) = ψ ′(l, t) = 0

For a simply supported beam we can assume the periodic motion in the form

w(x1, t) =W (x1)sin ωt, ψ1(x1, t) =Ψ(x1)sinωt

These functions are substituted in (7.3.22)

ksĀ55[W
′′(x1)+Ψ ′(x1)]+ρ0ω2W (x1) = 0,

D̄11Ψ
′′(x1)− ksĀ55[W

′(x1)+Ψ(x1)]+ρ2ω2Ψ (x1) = 0

Now we can substitute

ksĀ55Ψ
′(x1) =−ρ0ω2W (x1)− ksĀ55W ′′(x1),

i.e.

Ψ ′(x1) =−ρ0ω2

ksĀ55

W (x1)−W ′′(x1)

into the derivative of the second equation and we find

D̄11W ′′′′(x1)+

(

D̄11ρ0

ksĀ55

+ρ2

)

ω2W ′′(x1)

−
(

1− ω2ρ2

ksĀ55

)

ρ0ω2W (x1) = 0

or

aW ′′′′(x1)+ bW ′′(x1)− cW(x1) = 0

with the coefficients
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a = D̄11, b =

(

D̄11

ksĀ55

+
ρ2

ρ0

)

ρ0ω2, c =

(

1− ω2ρ2

ksĀ55

)

ρ0ω2

The linear differential equation of 4th order has constant coefficients and the general

solutions follow with the solutions λi of the bi-quadratic characteristic equation

aλ 4 − bλ 2 − c = 0

i.e. (2aλ 2 − b)2 = b2 + 4ac

λ1−4 =±
√

1

2a
(b±

√

b2 + 4ac)

W (x1) =C1 sinλ1x1 +C2 cosλ2x1 +C3 sinhλ3x1 +C4 coshλ4x1

For a simply supported beam the boundary conditions are

W (0) = 0, W (L) = 0, Ψ ′(0) = 0, Ψ ′(L) = 0

or the equivalent equations

W (0) = 0, W (L) = 0,W ′′(0) = 0, W ′′(L) = 0

The boundary conditions lead to the result C2 = C3 = C4 = 0 and C1 sinλ1L = 0

which implies

λ1n =
nπ

L
= λn

The bi-quadratic equation can be written alternatively in terms of ω

Aω4 −Bω2 +C = 0

with

A =
ρ2

ksĀ55

, B =

[

1+

(

D̄11

ksĀ55

+
ρ2

ρ0

)

λ 2

]

, C =
D̄11

ρ0
λ 4

i.e. the roots of the equation are

(ω2)1/2 =
1

2A
(B±

√

B2 − 4AC)

It can be shown that B2 −4AC > 0. Therefore the frequency given by −
√

B2 − 4AC

is the smaller of the two roots.

When the rotatory inertia is neglected follows A ≡ 0 and the frequency is given

by

ω2 =
C

B

with

B = 1+
D̄11

ksĀ55

λ 2, C =
D̄11

ρ0
λ 4
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and for ksĀ55 → ∞ follow with B̃ → 1 the natural frequency for the Bernoulli beam

model. Substitute λn = nπ/L for the simply supported beam we obtain the results:

General case

ω2
n =

ksĀ55

2ρ2

[

1+

(

D̄11

ksĀ55

+
ρ2

ρ0

)

(nπ

L

)2

−

√

[

1+

(

D̄11

ksĀ55

+
ρ2

ρ0

)

(nπ

L

)2
]2

− 4
ρ2

ksĀ55

D̄11

ρ0

(nπ

L

)4





Rotatory inertia neglected (ρ2 ≡ 0)

ω2
n =

(nπ

L

)4 D̄11

ρ0






1−

(nπ

L

)2

D̄11

ksĀ55 + D̄11

(nπ

L

)2







=
(nπ

L

)4 D̄11

ρ0







1

1+ D̄11

(nπ

L

)2

/ksĀ55







Classical beam theory (ksĀ55 → ∞,ρ2 = 0)

ω2
n =

(nπ

L

)4 D̄11

ρ0

Conclusion 7.2. (ωTimoshenko
n )2 < (ωBernoulli

n )2, i.e. the shear deformation de-

creases the frequencies of natural vibration. In the case of classical beam theory with

rotatory inertia (ksĀ55 → 0,ρ2 6= 0) we have A= 0,B= 1+λ 2ρ2/ρ0,C = λ 4D̄11/ρ0,

i.e.

ω2
n =

(nπ

L

)4 D̄11

ρ0









1

1+
(nπ

L

)2 ρ2

ρ0









and we see that also the rotatory inertia decreases the eigenfrequencies. All formulas

can be used for computing natural frequencies for all symmetric laminate and sand-

wich beams. The values for L,ρ0,ρ2,k
s, D̄11, Ā55 correspond to the special beam

model. Note that the classical laminate theory and the neglecting of rotatory inertia

lead to a overestimation of the natural frequencies.

Exercise 7.4. Calculate the buckling load of a simply supported and a clamped sym-

metric laminate or sandwich beam. Compare the results for the classical beam the-

ory and the beam theory including shear deformation.

Solution 7.4. Staring point are Eqs. (7.3.23) with N(x1) =−F , i.e.

D̄11

(

1− F

ksĀ55

)

w′′′′(x1)+Fw′′(x1) = 0
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or

w′′′′(x1)+ k2w′′(x1) = 0, k2 =
F

D̄11

(

1− F

ksĀ55

) , F
k2D̄11

1+ k2D̄11/ksĀ55

The linear differential equation with constant coefficients has the characteristic

equation

λ 4 + k2λ 2 = 0 ⇒ λ 2(λ 2 + k2) = 0

with the four roots

λ1/2 = 0, λ3/4 =±ik

and the general solution is

w(x1) =C1 sinkx1 +C2 coskx1 +C3x1 +C4

1. Simply supported beam

Boundary conditions are w(0) = w(L) = 0,w′′(0) = w′′(L) = 0, which leads the

constants C2 = C3 = C4 = 0 and for C1 6= 0 follows sinkL = 0 implies kL =
nπ ,k = nπ/L. Substituting k into the equation for F we obtain

F =
(nπ

L

)2

D̄11







ksĀ55

ksĀ55 +
(nπ

L

)2

D̄11







=
(nπ

L

)2

D̄11






1−

D̄11

(nπ

L

)2

/ksĀ55

1+ D̄11

(nπ

L

)2

/ksĀ55







The critical buckling load Fcr is given for the minimum (n = 1)

F =
(π

L

)2

D̄11







1

1+
(π

L

)2

D̄11/ksĀ55







For the classical beam model is ksĀ55 → ∞ and we obtain

F =
(π

L

)2

D̄11

2. At both ends fixed beam (clamped beam)

Now we have the boundary conditions

w(0) = w(L) = 0, ψ(0) = ψ(L) = 0

From (7.3.23) follows
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ksĀ55[w
′′(x1)+ψ ′(x1)]−Fw′′(x1) = 0,

D̄11ψ ′′(x1)− ksĀ55[w
′(x1)+ψ(x1)] = 0

The first equation yields

ksĀ55ψ ′(x1) = −(ksĀ55 −F)w′′(x1),
ksĀ55ψ(x1) = −(ksĀ55 −F)w′(x1)+K1

The boundary conditions lead the equations

C2 +C4 = 0, C1 sin kL+C2 coskL+C3L+C4 = 0,

−
(

1− F

ksĀ55

)

kC1 −C3 = 0,

−
(

1− F

ksĀ55

)

(kC1 coskL− kC2 sinkL)−C3 = 0

Note that
F

k2
=

D̄11

1+ k2 D̄11

ksĀ55

=

(

1− F

ksĀ55

)

D̄11,

i.e.
(

1− F

ksĀ55

)

=
1

1+ k2 D̄11

ksĀ55

,

expressing C4 and C3 in terms of C1 and C2 and setting the determinant of the re-

maining homogeneous algebraic equations zero we obtain the buckling equation

2(coskL− 1)

(

1+
k2D̄11

ksĀ55

)

+ kLsinkL = 0

With ksĀ55 → ∞ follows the buckling equation for the classical beam

kLsin kL+ 2coskL− 2 = 0

Conclusion 7.3. Transverse shear deformation has the effect of decreasing the

buckling loads, i.e. the classical laminate theory overestimates buckling loads.

The buckling equations can be applied to all symmetric laminate and sandwich

beams if the corresponded material and stiffness values are calculated and sub-

stituted.

Exercise 7.5. A sandwich beam is modelled by the laminated beam version and

the shear deformation theory. Consider the variational formulation for applied dis-

tributed transverse loading and calculate the Euler differential equation and the

boundary conditions.
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Solution 7.5. The elastic potential Π(u,w,ψ) for unsymmetrical laminated beams

is given by Eq. (7.3.16). Using the notations for the stiffness of sandwich beams,

Sect. 7.4, we have

Π(u,w,ψ) =
1

2

l
∫

0

[Au′2 + 2Bu′ψ ′+Dψ ′2 + S(w′+ψ)2]dx1 −
l

∫

0

qwdx1

Taking the variation δΠ = 0 one can write the following equation

δΠ =

l
∫

0

{Au′δu′+B(u′δψ ′+ψ ′δu′)+Dψ ′δψ ′

+ S[(w′+ψ)δw′+(w′+ψ)δψ ]}dx1 −
l

∫

0

qδwdx1 = 0

Integrating by parts, i.e

l
∫

0

f ′g′dx = [ f ′g]l0 −
l

∫

0

f ′′gdx

yield

l
∫

0

{(Au′′+Bψ ′′)δu+[Bu′′+Dψ ′′− S(w′+ψ)]δψ + S[(w′′+ψ ′)+ q]δw}dx1

−[(Au′+Bψ ′)δu]l0 − [(Bu′+Dψ ′)δψ ]l0 − S[(w′+ψ)δw]l0 = 0

and the associated differential equations and boundary conditions are

Au′′+Bψ ′′ = 0,
Bu′′+Dψ ′′− S(w′+ψ) = 0,

S(w′′+ψ ′)+ q = 0

Putting in u′′ =−(B/A)ψ ′′ into the second equation yield

(

D− B2

A

)

ψ ′′− S(w′+ψ) = 0

and we obtain the differential equations (7.4.32)

DRψ ′′− S(w′+ψ) = 0,
S(w′′+ψ) = −q

The boundary conditions for x1 = 0, l are
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u = 0 or Au′+Bψ ′ = N = 0

ψ = 0 or Bu′+Dψ ′ = M = 0

w = 0 or S(w′+ψ) = Q = 0

u,ψ ,w represent the essential and N,M,Q the natural boundary conditions of the

problem. For symmetric sandwich beams the equations can be simplified: B =
0,DR = D.

Exercise 7.6. A sandwich beam is modelled by the differential equations and

boundary conditions of Excercise 7.5. Calculate the exact solution for a simply sup-

ported beam with q(x1) = q0,N(x1) = 0.

Solution 7.6. The boundary conditions are:

w(0) = w(l) = 0, M(0) = M(l) = 0

Using the equations (7.4.38)

ψ ′′′(x1) = − q0

DR
,

ψ ′′(x1) = −q0x1

DR
+C1,

ψ ′(x1) = −q0x2
1

2DR
+C1x1 +C2,

ψ(x1) = −q0x3
1

6DR
+C1

x2
1

2
+C2x1 +C3,

ψ ′(0) = 0 ⇒C2 = 0,

ψ ′(l) = 0 ⇒C1 =
q0l

2DR
,

w′(x1) = −ψ(x1)+
DR

S
ψ ′′ =

q0x3
1

6DR
− q0lx2

1

4DR
+C3 −

q0

S

(

x1 −
l

2

)

,

w(x1) =
q0

24DR
(x4

1 − 2lx3
1)+C3x1 −

q0

2S

(

x2
1 − lx1

)

,

w(l) = 0 ⇒C3 =
q0l3

24DR
,

u′(x1) = −B

A
ψ ′(x1) =

B

A

q0

2DR
(x2

1 − lx1),

u(x1) =
B

A

q0

12DR
(2x3

1 − 3lx1)+C4,

u(0) = 0 ⇒C4 = 0

Finally we get
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ψ(x1) = −q0x3
1

6DR
+

q0l

2DR

x2
1

2
+

q0l3

24DR
,

w(x1) =
q0

24DR
(x4

1 − 2lx3
1 + l3x1)+

q0

2S

(

lx1 − x2
1

)

,

u(x1) =
B

A

q0

12DR
(2x3

1 − 3lx1)

For symmetrical beams the solution simplified with B = 0,DR = D to

w(x1) =
q0l4

24D
(x4

1 − 2x3
1 + x1)+

q0l2

2S
(x1 − x2

1)

= wB(x1)+wS(x1),

ψ(x1) =
q0l3

24D
(−1+ 6x2

1 − 4x3
1)

u(x1) ≡ 0, x1 = x/l



Chapter 8

Modelling and Analysis of Plates

The modelling and analysis of plates constituted of laminate or sandwich material is

a problem of more complexity than that of beams, considered in Chap. 7. Generally,

plates are two-dimensional thin structure elements with a plane middle surface. The

thickness h is small relatively to the two other dimensions a,b (Fig. 8.1).

In Chap. 8 all derivatives are as a matter of priority restricted to rectangular plates

including the special case of a plate strip, i.e. a rectangular plate element which

is very long, for instance in the x2-direction and has finite dimension in the x1-

direction. When the transverse plate loading, the plate stiffness, and the boundary

conditions for the plate edges x1 = const are independent of the coordinate x2, the

plate strip modelling can be reduced to a one-dimensional problem. The analysis is

x1,u1

x2,u2

x3,u3

a

b

h

x1

x1

x2

x2

x3

x3

N1

N2

Nn

Q1

Q2

Qn

N6

N6

Nnt

M1

M2

M6

M6

Mn

Mnt

a b

Fig. 8.1 Rectangular plate. a Geometry, b force resultants N1,N2,N6,Q1,Q2 and moment resul-

tants M1,M2,M6. Nn,Nnt ,Qn and Mn,Mnt are force and moment resultants for an oblique edge

275© Springer Nature Singapore Pte Ltd. 2018
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Elements, https://doi.org/10.1007/978-981-10-8935-0_8
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nearly the same as in the beam theory. Chapter 8 gives a first introduction to the clas-

sical plate theory and the plate theory including transverse shear deformations. The

derivations of the principal equations for plates relies upon the basic considerations

of Chap. 5.

8.1 Introduction

In the theory of plate bending the most complex problem is the modelling and anal-

ysis of laminate plates with an arbitrary stacking of the layers. These plates present

couplings of stretching and bending, stretching and twisting and bending and twist-

ing and the design engineer has to look for simplifications.

The first and most important simplification is to design symmetric laminates

for which no coupling exists between in-plane forces and flexural moments. The

coupling terms Bi j of the constitutive equations vanish. An additional simplifica-

tion occurs when no bending-twisting coupling exist, i.e the terms D16 and D26 are

zero. As we discussed in Sect. 4.2, in some cases of layer stacking these coupling

terms decrease with an increasing number of layers. Symmetric laminates for which

no bending-twisting coupling exists are referred to as specially orthotropic lami-

nates. These laminates are considered in detail in this chapter, because analytical

solutions exist for various loadings and boundary conditions. Specially orthotropic

plates are obtained for single layer plates with orthotropic material behavior or sym-

metric cross-ply laminates. Symmetric balanced laminates with a great number of

layers have approximately a specially orthotropic behavior. This class of laminates

is greatly simplified and will be used to gain a basic understanding of laminate plate

response. Like in Chap. 7 for beams, we consider the plates in the framework of the

classical and the first order shear deformation theory. For a better understanding the

assumptions of both plate theories given in Sects. 5.1 and 5.2 are reviewed.

The first order shear deformation theory accounted for a constant state of trans-

verse shear stresses, but the transverse normal stress is often neglected. In the frame-

work of this plate theory, the computation of interlaminar shear stresses through

constitutive equations is possible, which is simpler than deriving them through equi-

librium equations.

The most significant difference between the classical and first-order shear defor-

mation theory is the effect of including transverse shear deformation in the predic-

tion of deflections, frequencies or buckling loads. It can be noted that the classical

laminate theory underestimates deflections and overestimates frequencies as well as

buckling loads when the plate side-to-thickness ratio is of the order 20 or less. For

this reason it is necessary to include shear deformation for moderately thick plates.

In general, moderately thick plates must be computed by numerical methods, ap-

plication of analytical methods are much more restricted than in the classical plate

theory.
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8.2 Classical Laminate Theory

In the classical laminate theory one presumes that the Kirchhoff hypotheses of the

classical plate theory remains valid:

• Transverse normals before deformation remain straight after deformation and

rotate such that they remain normal to the middle surface.

• Transverse normals are inextensible, i.e. they have no elongation.

These assumptions imply that the transverse displacement w is independent of the

thickness coordinate x3, the strains ε3,ε4 and ε5 are zero and the curvatures κi are

given by

[κ1 κ2 κ6] =

[

−∂ 2w

∂x2
1

− ∂ 2w

∂x2
2

− 2
∂ 2w

∂x1∂x2

]

(8.2.1)

Figure 8.1 shows the plate geometry and the plate stress resultants. The equilibrium

equations will be formulated for a plate element dx1dx2 (Fig. 8.2) and yield three

force and two moments equations

ւ ∂N1

∂x1
+

∂N6

∂x2
= −p1,

→ ∂N6

∂x1
+

∂N2

∂x2
= −p2,

↑ ∂Q1

∂x1
+

∂Q2

∂x2
= −p3,

→ ∂M1

∂x1
+

∂M6

∂x2
= Q1,

ւ ∂M6

∂x1
+

∂M2

∂x2
= Q2

(8.2.2)

x1

x2

x3

N1dx2

(N1 +dN1)dx2

N2dx1 (N2 +dN2)dx1

N6dx1

(N6 +dN6)dx1

dx2dx2

dx
1

dx
1

hh

M6dx1

(M6 +dM6)dx1

M6dx2

(M6 +dM6)dx2

M1dx2

(M1 +dM1)dx2

M2dx1

(M2 +dM2)dx1

Q1dx2

(Q1 +dQ1)dx2

Q2dx1

(Q2 +dQ2)dx1

p1dx1dx2
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Fig. 8.2 Stress resultants applied to a plate element
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The transverse shear force resultants Q1,Q2 can be eliminated and the five equations

(8.2.2) reduce to three equations. The in-plane force resultants N1,N2 and N6 are

uncoupled with the moment resultants M1,M2 and M6

∂N1

∂x1
+

∂N6

∂x2
=−p1,

∂N6

∂x1
+

∂N2

∂x2
=−p2,

∂ 2M1

∂x2
1

+ 2
∂ 2M6

∂x1∂x2
+

∂ 2M2

∂x2
2

=−p3

(8.2.3)

The equations are independent of material laws and present the static equations for

the undeformed plate element. The further considerations neglect the in-plane plate

loads p1 and p2, i.e. p1 = p2 = 0, p3 6= 0. In-plane reactions can be caused by

coupling effects of unsymmetric laminates or sandwich plates.

Putting the constitutive equations





NNN

· · ·
MMM



=









AAA
... BBB

. . . .

BBB
... DDD













εεε
· · ·
κκκ



 (8.2.4)

into the equilibrium (8.2.3) and replacing using Eqs. (5.2.3) the in-plane strains εi

and the curvatures κi by

εεεT = [ε1 ε2 ε6] =

[

∂u

∂x1

∂v

∂x2

(

∂u

∂x2
+

∂v

∂x1

)]

,

κκκT = [κ1 κ2 κ6] =

[

−∂ 2w

∂x2
1

− ∂ 2w

∂x2
2

− 2
∂ 2w

∂x1∂x2

] (8.2.5)

gives the differential equations for general laminated plates

A11
∂ 2u

∂x2
1

+ 2A16
∂ 2u

∂x1∂x2
+A66

∂ 2u

∂x2
2

+A16
∂ 2v

∂x2
1

+(A12 +A66)
∂ 2v

∂x1∂x2

+A26
∂ 2v

∂x2
2

−B11
∂ 3w

∂x3
1

− 3B16
∂ 3w

∂x2
1∂x2

− (B12 + 2B66)
∂ 3w

∂x1∂x2
2

−B26
∂ 3w

∂x3
2

= 0,

A16
∂ 2u

∂x2
1

+(A12 +A66)
∂ 2u

∂x1∂x2
+A26

∂ 2u

∂x2
2

+A66
∂ 2v

∂x2
1

+ 2A26
∂ 2v

∂x1∂x2

+A22
∂ 2v

∂x2
2

−B16
∂ 3w

∂x3
1

− (B12 + 2B66)
∂ 3w

∂x2
1∂x2

− 3B26
∂ 3w

∂x1∂x2
2

−B22
∂ 3w

∂x3
2

= 0,

D11
∂ 4w

∂x4
1

+ 4D16
∂ 4w

∂x3
1∂x2

+ 2(D12 + 2D66)
∂ 4w

∂x2
1∂x2

2

+ 4D26
∂ 4w

∂x1∂x3
2

+D22
∂ 4w

∂x4
2

−B11
∂ 3u

∂x3
1

− 3B16
∂ 3u

∂x2
1∂x2

− (B12 + 2B66)
∂ 3u

∂x1∂x2
2

−B26
∂ 3u

∂x3
2

−B16
∂ 3v

∂x3
1

− (B12 + 2B66)
∂ 3v

∂x2
1∂x2

− 3B26
∂ 3v

∂x1∂x2
2

−B22
∂ 3v

∂x3
2

= p3

(8.2.6)
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Equations (8.2.6) are three coupled partial differential equations for the displace-

ments u(x1,x2),v(x1,x2),w(x1,x2). Equation (8.2.6) can be formulated in matrix

form as




L11 L12 L13

L21 L22 L31

L31 L32 L33









u

v

w



=





0

0

p



 , Li j = L ji (8.2.7)

The differential operators are given in App. C.

The differential operators L11,L12 and L22 are of second order, L13 and L23 of

third order and L33 of fourth order. The homogeneous part of the coupled partial

differential equations (8.2.7) can be reduced to one partial equation of eight order

[(L11L22 −L2
12)L33 − (L11L2

23 − 2L12L13L23 +L2
13L22)]w = 0 (8.2.8)

Consistent with the eight order set of differential equations four boundary conditions

must be prescribed for each edge of the plate. The classical boundary conditions are:

Either

Nn or u, Nnt or v, Mn or
∂w

∂n
, Vn ≡ Qn +

∂Mnt

∂ t
or w (8.2.9)

must be specified. The subscripts n and t in the boundary conditions above denote

the coordinates normal and tangential to the boundary. It is well known that in the

classical plate theory the boundary cannot responded separately to the shear force

resultant Qn and the twisting moment Mnt but only to the effective or Kirchhoff

shear force resultant

Vn ≡ Qn +
∂Mnt

∂ t
(8.2.10)

Equations (8.2.9) may be used to represent any form of simple edge conditions, e.g.

clamped, simply supported and free.

The boundary conditions (8.2.9) represent pairs of response variables. One com-

ponent of these pairs involve a force or a moment resultant, the other a displace-

ment or a rotation. Take into account that in addition to the edge conditions it can

be necessary to fulfil the point corner conditions, e.g. for a free corner. Sometimes

more general boundary conditions, which are applicable to edges having elastic con-

straints, are used, e.g. the transverse and/or rotatory plate conditions

Vn ± cTw = 0; Mn ± cR
∂w

∂n
= 0 (8.2.11)

cT and cR denote the spring stiffness of the constraints.

In applying the boundary conditions (8.2.9) it is useful to have explicit expres-

sions for the stress resultants in a displacement formulation. According to Eqs.

(8.2.5) and (8.2.4) the stress resultants can be written as

N1 = A11
∂u

∂x1
+A12

∂v

∂x2
+A16

(

∂u

∂x2
+

∂v

∂x1

)
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− B11
∂ 2w

∂x2
1

−B12
∂ 2w

∂x2
2

− 2B16
∂ 2w

∂x1∂x2
,

N2 = A12
∂u

∂x1
+A22

∂v

∂x2
+A26

(

∂u

∂x2
+

∂v

∂x1

)

− B12
∂ 2w

∂x2
1

−B22
∂ 2w

∂x2
2

− 2B26
∂ 2w

∂x1∂x2
,

N6 = A16
∂u

∂x1
+A26

∂v

∂x2
+A66

(

∂u

∂x2
+

∂v

∂x1

)

− B16
∂ 2w

∂x2
1

−B26
∂ 2w

∂x2
2

− 2B66
∂ 2w

∂x1∂x2
,

M1 = B11
∂u

∂x1
+B12

∂v

∂x2
+B16

(

∂u

∂x2
+

∂v

∂x1

)

− D11
∂ 2w

∂x2
1

−D12
∂ 2w

∂x2
2

− 2D16
∂ 2w

∂x1∂x2
,

M2 = B12
∂u

∂x1
+B22

∂v

∂x2
+B26

(

∂u

∂x2
+

∂v

∂x1

)

(8.2.12)

− D12
∂ 2w

∂x2
1

−D22
∂ 2w

∂x2
2

− 2D26
∂ 2w

∂x1∂x2
,

M6 = B16
∂u

∂x1
+B26

∂v

∂x2
+B66

(

∂u

∂x2
+

∂v

∂x1

)

− D16
∂ 2w

∂x2
1

−D26
∂ 2w

∂x2
2

− 2D66
∂ 2w

∂x1∂x2
,

Q1 = B11
∂ 2u

∂x2
1

+ 2B16
∂ 2u

∂x1∂x2
+B66

∂ 2u

∂x2
2

+B16
∂ 2v

∂x2
1

+(B12 +B66)
∂ 2v

∂x1∂x2

+ B26
∂ 2v

∂ 2x2
−D11

∂ 3w

∂x3
1

− 3D16
∂ 3w

∂x2
1∂x2

− (D12 + 2D66)
∂ 3w

∂x1∂x2
2

−D26
∂ 3w

∂x3
2

,

Q2 = B16
∂ 2u

∂x2
1

+(B12 +B66)
∂ 2u

∂x1∂x2
+B26

∂ 2u

∂x2
2

+B66
∂ 2v

∂x2
1

+ 2B26
∂ 2v

∂x1∂x2

+ B22
∂ 2v

∂ 2x2
−D16

∂ 3w

∂x3
1

− (D12 + 2D66)
∂ 3w

∂x2
1∂x2

− 3D26
∂ 3w

∂x1∂x2
2

−D22
∂ 3w

∂x3
2

,

V1 = B11
∂ 2u

∂x2
1

+ 3B16
∂ 2u

∂x1∂x2
+ 2B66

∂ 2u

∂x2
2

+B16
∂ 2v

∂x2
1

+(B12 + 2B66)
∂ 2v

∂x1∂x2

+ 2B26
∂ 2v

∂ 2x2
−D11

∂ 3w

∂x3
1

−4D16
∂ 3w

∂x2
1∂x2

−(D12 +D66)
∂ 3w

∂x1∂x2
2

−2D26
∂ 3w

∂x3
2

,
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V2 = 2B16
∂ 2u

∂x2
1

+(B12 + 2B66)
∂ 2u

∂x1∂x2
+B26

∂ 2u

∂x2
2

+ 2B66
∂ 2v

∂x2
1

+ 3B26
∂ 2v

∂x1∂x2

+ B22
∂ 2v

∂x2
2

−2D16
∂ 3w

∂x3
1

−(D12 + 4D66)
∂ 3w

∂x2
1∂x2

−4D26
∂ 3w

∂x1∂x2
2

−D22
∂ 3w

∂x3
2

The coupled system of three partial differential equations (8.2.6) or (8.2.7), respec-

tively, can be simplified for special layer stacking, Sect. 4.2.3. The differential op-

erators Li j for some special cases are given in App. C.

1. Symmetric laminates

Because all coupling stiffness Bi j are zero the in-plane and the out-of-plane dis-

placement response are uncoupled. With L13 = L31 = 0,L23 = L32 = 0 Eq. (8.2.7)

simplifies to




L11 L12 0

L12 L22 0

0 0 L33









u

v

w



=





0

0

p3



 (8.2.13)

The plate equation reduces to L33w = p3 and corresponds to the plate equation

of an anisotropic homogeneous plate.

2. Antisymmetric laminates

The in-plane and the transverse part of Eq. (8.2.7) are coupled, but with

A16 = A26 = 0,D16 = D26 = 0 the differential operators L11,L22,L33 and L12

are reduced. It is no in-plane tension/shearing coupling and no bending/twisting

coupling.

3. Balanced laminates

For general balanced laminates with A16 = A26 only the in-plane ten-

sion/shearing coupling is zero, for an antisymmetric balanced laminate we have

A16 = A26 = 0,D16 = D26 = 0 and for symmetric balanced laminates follow

A16 = A26 = 0, Bi j = 0. The last case yields the equations





L11 L12 0

L12 L22 0

0 0 L33









u

v

w



=





0

0

p3





with simplified differential operators L11 and L22. Only the in-plane equations

correspond to an orthotropic stiffness behavior.

4. Cross-ply laminates

The stacking can be unsymmetrical, i.e. A16 = A26 = 0,D16 = D26 = 0,

B16 = B26 = 0, antisymmetrical, i.e. A16 = A26 = 0,D16 = D26 = 0,

B12 = B16 = B26 = B66 = 0, B22 =−B11 or symmetrical with A16 = A26 = 0,

D16 = D26 = 0,Bi j = 0. Cross-ply laminates have an orthotropic response to

both in-plane and bending and no in-plane/bending coupling. The plate equation

L33w = p3 corresponds to the equation of an homogeneous orthotropic plate.

Summarizing the mathematical structures of the differential equations in depen-

dence on the layer stacking the following conclusions can be drawn:
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• The mathematical structure of a general balanced laminate is not much simpler

as for a general unsymmetric, unbalanced laminate

• Compared to the general case the mathematical structure of the symmetric cross-

ply laminate is nearly trivial. A symmetric cross-ply is orthotropic with respect

to both in-plane and bending behavior, and both are uncoupled.

• The most simple mathematical structure yields the laminate with symmetrical

arranged isotropic layers. With A11 = A22,A16 = A26 = 0,Bi j = 0, D11 = D22,
D16 = D26 = 0, it corresponds to a single layer isotropic plate with in-plane and

transverse loading.

• For special layer stacking also the force and moment resultant Eqs. (8.2.12) are

reduced to more simple equations.

The following developments are restricted to general symmetric plates and plates

with specially orthotropic behavior. The equations will be significant simplified, for

example in the general case all Bi j = 0 and for specially orthotropic plates there are

additional D16 =D26 = 0. The in-plane and the flexural equations are uncoupled. Ta-

ble 8.1 summarizes the most important plate equations. In Table 8.1 standard bound-

ary conditions are also expressed. The necessary and sufficient number of boundary

conditions for plates considered here are two at each of the boundaries. The stan-

dard conditions for the free edge reduce the three static conditions Mn = 0, Qn = 0

and Mnt = 0 to two conditions Mn = 0,Vn = 0, where Vn = Qn +∂Mnt/∂ t = 0 is as

discussed above the Kirchhoff effective shear resultant. In order to avoid mistakes

in the application the equations of Table 8.1, a summary of plate stiffness is given.

Table 8.2 contains the plate stiffness for single layer plates. The plate stiffness for

symmetric laminates are given in Table 8.3. In all equations the hygrothermal effects

are neglected, but it is no problem to include thermal or moisture changes. In this

case (4.2.63), (4.2.64) must be used instead of (8.2.4) to put into the equilibrium

equations. This will be considered in Sect. 8.5.

The classical laminate theory can be used also for modelling and analysis of vi-

bration and buckling of laminated plates. We restrict the consideration to symmetric

plates. In the case of forced transversal vibration the momentum equilibrium equa-

tion (8.2.3) has an additional inertial term

∂ 2M1

∂x2
1

+ 2
∂ 2M6

∂x1∂x2
+

∂ 2M2

∂x2
2

=−p3 +ρh
∂ 2w

∂ t2
(8.2.14)

M1,M2,M6,w and p3 are functions of x1,x2 and the time t, h is the total thickness of

the plate and ρ the mass density

h =
n

∑
k=1

h(k), ρ =
1

h

n

∑
k=1

ρ (k)
(

x
(k)
3 − x

(k−1)
3

)

=
1

h

n

∑
k=1

ρ (k)h(k) (8.2.15)

The rotatory inertia is neglected. The Eqs. (8.2.14), (8.2.4) and (8.2.5) yield the plate

equations for force vibration. For the both layer stacking discussed above we obtain:
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Table 8.1 Plate equation, boundary conditions and stress resultants of symmetric laminates

1. General case: Bi j = 0,Di j 6= 0 i, j = 1,2,6

D11
∂ 4w

∂ x4
1

+4D16
∂ 4w

∂ x3
1∂ x2

+2(D12 +2D66)
∂ 4w

∂ x2
1∂ x2

2

+4D26
∂ 4w

∂ x1∂ x3
2

+D22
∂ 4w

∂ x4
2

= p3

2. Specially orthotropic laminates: Bi j = 0,D16 = D26 = 0

D11
∂ 4w

∂ x4
1

+2(D12 +2D66)
∂ 4w

∂ x2
1∂ x2

2

+D22
∂ 4w

∂ x4
2

= p3

or with D11 = D1,D22 = D2,D12 +2D66 = D3

D1
∂ 4w

∂ x4
1

+2D3
∂ 4w

∂ x2
1∂ x2

2

+D2
∂ 4w

∂ x4
2

= p3

3. Laminates with isotropic layers: D11 = D22 = D1, (D12 +2D66) = D3

D1
∂ 4w

∂ x4
1

+2D3
∂ 4w

∂ x2
1∂ x2

2

+D1
∂ 4w

∂ x4
2

= p3

Typical boundary conditions: 1. Simply supported edge: w = 0,Mn = 0

2. Clamped edge: w = 0,∂ w/∂ n = 0

3. Free edge: Mn = 0,Vn = Qn +∂ Mnt/∂ t = 0

Stress resultants:

1. General case




M1

M2

M6



=





D11 D12 D16

D12 D22 D26

D16 D26 D66









−∂ 2w/∂ x2
1

−∂ 2w/∂ x2
2

−2∂ 2w/∂ x1∂ x2



 ,
Q1 =

∂ M1

∂ x1
+

∂ M6

∂ x2

Q2 =
∂ M6

∂ x1
+

∂ M2

∂ x2
2. Specially orthotropic





M1

M2

M6



=





D11 D12 0

D12 D22 0

0 0 D66









−∂ 2w/∂ x2
1

−∂ 2w/∂ x2
2

−2∂ 2w/∂ x1∂ x2



 ,

Q1 =
∂ M1

∂ x1
+

∂ M6

∂ x2

Q2 =
∂ M6

∂ x1
+

∂ M2

∂ x2
3. Isotropic layers (like 2. with D11 = D22)

1. General case of symmetric plates

(

L33 +ρh
∂

∂ t

)

w = p3

or explicitly
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Table 8.2 Plate stiffness for single layer

Anisotropic single layer

Di j = Q
(k)
i j

h3

12

Specially orthotropic single layer (on-axis)

D11 = Q11
h3

12
, D12 = Q12

h3

12
, D22 = Q22

h3

12
, D66 = Q66

h3

12
,

Q′
11 =

(

E ′
1

1−ν ′
12ν ′

21

)

, Q′
22 =

(

E ′
2

1−ν ′
12ν ′

21

)

, Q′
12 =

(

ν ′
12E1

1−ν ′
12ν ′

21

)

,

Q′
66 = G′

12 = E ′
6

Isotropic single layer

D11 = D22 =
Eh3

12(1−ν2)
= D, D12 = νD =

νEh3

1−ν2
,

D66 =
1−ν

2
D =

Eh3

24(1+ν)
,

D11
∂ 4w

∂x4
1

+ 4D16
∂ 4w

∂x3
1∂x2

+ 2(D12 + 2D66)
∂ 4w

∂x2
1∂x2

2

+4D26
∂ 4w

∂x1∂x3
2

+D22
∂ 4w

∂x4
2

= p3 −ρh
∂ 2w

∂ t2

with w = w(x1,x2, t), p = (x1,x2, t).
2. Specially orthotropic plates

D1
∂ 4w

∂x4
1

+ 2D3
∂ 4w

∂x2
1∂x2

2

+D2
∂ 4w

∂x4
2

= p3 −ρh
∂ 2w

∂ t2
(8.2.16)

The equation of symmetric laminate plates with isotropic layers follows from

(8.2.16) with D1 = D2, the plate stiffness are taken from Table 8.2 (single layer

plates) or Table 8.3 (laminates). In the case of the computation of natural or eigen-

vibrations, the forcing function p3(x1,x2, t) is taken to be zero and the time depen-

dent motion is a harmonic oscillation. The differential equation is homogeneous,

leading an eigenvalue problem for the eigenvalues (natural frequencies) and the

eigenfunctions (mode shapes).

To predict the buckling for plates, in-plane force resultants must be included. For

a coupling of in-plane loads and lateral deflection, the equilibrium (8.2.2) will be

formulated for the deformed plate element with p1 = p2 = p3 = 0 and modified to
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Table 8.3 Plate stiffness for symmetric laminates

Symmetric angle ply laminate

Di j =
n

∑
k=1

Q
(k)
i j

(

x
(k)
3

3
− x

(k−1)
3

3
)

=
n

∑
k=1

Q
(k)
i j h(k)

(

x
(k)
3 +

h(k)
2

12

)

,

x
(k)
3 =

1

2

(

x
(k)
3 + x

(k−1)
3

)

, the Q
(k)
i j follow from Table 4.2.

Symmetric balanced laminates

Di j =
n

∑
k=1

Q
(k)
i j h(k)

(

x
(k)
3 +

h(k)
2

12

)

The Q
(k)
i j follow from Table 4.2.

Symmetric cross-ply laminate (specially orthotropic)

Di j =
n

∑
k=1

Q
(k)
i j h(k)

(

x
(k)
3 +

h(k)
2

12

)

,

D16 = D26 = 0

Q
(k)
11 =

(

E1

1−ν12ν21

)(k)

, Q
(k)
22 =

(

E2

1−ν12ν21

)(k)

,

Q
(k)
12 =

(

ν12E1

1−ν12ν21

)(k)

, Q
(k)
66 = G

(k)
12

Symmetric laminate with isotropic layers (x1-direction equal fibre direction)

Di j =
n

∑
k=1

Q
(k)
i j h(k)

(

x
(k)
3 +

h(k)
2

12

)

,

D16 = D26 = 0,D11 = D22,

Q
(k)
11 = Q

(k)
22 =

(

E

1−ν2

)(k)

, Q
(k)
12 =

(

νE

1−ν2

)(k)

,

Q
(k)
66 =

(

E

2(1+ν)

)(k)

∂ 2M1

∂x2
1

+ 2
∂ 2M6

∂x1∂x2
+

∂ 2M2

∂x2
2

= N1
∂ 2w

∂x2
1

+N2
∂ 2w

∂x2
2

+ 2N6
∂ 2w

∂x1∂x2
,

∂N1

∂x1
+

∂N6

∂x2
= 0,

∂N6

∂x1
+

∂N2

∂x2
= 0

(8.2.17)

In the general case of a symmetric laminate, the plate equation can be expressed by

D11
∂ 4w

∂x4
1

+ 4D16
∂ 4w

∂x3
1∂x2

+ 2(D12 + 2D66)
∂ 4w

∂x2
1∂x2

2

+ 4D26
∂ 4w

∂x1∂x3
2

+D22
∂ 4w

∂x4
2

= N1
∂ 2w

∂x2
1

+N2
∂ 2w

∂x2
2

+ 2N6
∂ 2w

∂x1∂x2

(8.2.18)
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and for specially orthotropic laminates

D1
∂ 4w

∂x4
1

+ 2D3
∂ 4w

∂x2
1∂x2

2

+D2
∂ 4w

∂x4
2

= N1
∂ 2w

∂x2
1

+N2
∂ 2w

∂x2
2

+ 2N6
∂ 2w

∂x1∂x2
(8.2.19)

The special case of symmetric laminates with isotropic layers follows from (8.2.19)

with D1 = D2. The buckling load is like the natural vibration independent of the

lateral load and p3 is taken to be zero. The classical bifurcation buckling requires to

satisfy the governing differential equations derived above and the boundary equa-

tions. Both sets of equations are again homogeneous and represent an eigenvalue

problem for the buckling modes (eigenvalues) and the mode shapes (eigenfunc-

tions).

To calculate the in-plane stress resultants N1,N2,N6 it is usually convenient to

represent they by the Airy stress function F(x1,x2)

N1 =
∂ 2F

∂x2
2

, N2 =
∂ 2F

∂x2
1

, N6 =− ∂ 2F

∂x1∂x2
(8.2.20)

If Eqs. (8.2.19) are substituted into the first two equilibrium equations (8.2.3) it is

seen that these equations are identically satisfied. Using Eq. (4.2.22)

MMM = BBBAAA−1NNN − (BBBAAA−1BBB−DDD)κκκ

and substitute NNN with help of the Airy‘s stress function and κκκ by the derivatives of

w the third equilibrium equation (8.2.3) yields one coupled partial differential equa-

tion for F and w. The necessary second equation yields the in-plane compatibility

condition (Sect. 2.2)
∂ 2ε1

∂x2
2

+
∂ 2ε2

∂x2
1

=
∂ 2ε6

∂x1∂x2

together with Eq. (4.2.25) to substitute the strains by the stress resultants. Suppress-

ing the derivations and restricting to symmetric problems yield the following in-

plane equations which are summarized in Table 8.4. The stiffness AAA∗,BBB∗,CCC∗,DDD∗ fol-

low with Eq. (4.2.23) as AAA∗ =AAA−1, BBB∗ =−AAA−1BBB, CCC∗ = BBBAAA−1, DDD∗ = DDD − BBBAAA−1BBB.

One can see from Table 8.4 that in the general case the mathematical structure of

the partial differential equation corresponds to an anisotropic and in the special or-

thotropic case to an orthotropic in-plane behavior of a single layer homogeneous

anisotropic or orthotropic plate. A summary of the in-plane stiffness is given in Ta-

ble 8.5. The Q
(k)
i j for angle-ply laminates are calculated in Table 4.2.

Similar to the beam theory the plate equations for flexure, vibration and buckling

can be given in a variational formulation (Sect. 2.2). This formulation provides the

basis for the development of approximate solutions. We restrict the variational for-

mulation to symmetric laminated plates and to the classical energy principles. From

(2.2.24) it follows with ε3 = ε4 = ε5 ≈ 0 that the elastic potential Π is
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Table 8.4 In-plane equations, boundary conditions and stress resultants for symmetric laminates

1. Angle-ply laminates

B∗
i j = 0,C∗

i j = 0, i, j = 1,2,6

A∗
22

∂ 4F

∂ x4
1

−2A∗
26

∂ 4F

∂ x3
1∂ x2

+(2A∗
12 +A∗

66)
∂ 4F

∂ x2
1∂ x2

2

−2A∗
16

∂ 4F

∂ x1∂ x3
2

+A∗
11

∂ 4F

∂ x4
2

= 0

2. Cross-ply laminates

B∗
i j = 0,A∗

16 = A∗
26 = 0,

A∗
22

∂ 4F

∂ x4
1

+(2A∗
12 +A∗

66)
∂ 4F

∂ x2
1∂ x2

2

+A∗
11

∂ 4F

∂ x4
2

= 0

or with A∗
11 = A∗

1,A
∗
22 = A∗

2, (2A∗
12 +A∗

66) = A∗
3,

A∗
2

∂ 4F

∂ x4
1

+2A∗
3

∂ 4F

∂ x2
1∂ x2

2

+A∗
1

∂ 4F

∂ x4
2

= 0

3. Laminates with isotropic layers

A∗
1 = A∗

2 = A∗
3 = 1,

∂ 4F

∂ x4
1

+2
∂ 4F

∂ x2
1∂ x2

2

+
∂ 4F

∂ x4
2

= 0

Typical boundary conditions

Edge x1 = const

∂ 2F

∂ x2
2

= N1(x1 = const,x2),−
∂ 2F

∂ x1∂ x2
= N6(x1 = const,x2),

For an unloaded edge follow N1 = 0,N6 = 0

Stress resultants

N1 =
∂ 2F

∂ x2
2

,N2 =
∂ 2F

∂ x2
1

,N6 =− ∂ 2F

∂ x1∂ x2

Π =
1

2

∫

V

(σ1ε1 +σ2ε2 +σ6ε6)dV −
∫

A

p3(x1,x2)w(x1,x2)dA (8.2.21)

=
1

2

n

∑
k=1

∫

A

x
(k)
3
∫

x
(k−1)
3

(σ
(k)
1 ε1 +σ

(k)
2 ε2 +σ

(k)
6 ε6)dx3dA−

∫

A

p3(x1,x2)w(x1,x2)dA

With

εεε(x1,x2,x3) = εεε(x1,x2)+ x3κκκ(x1,x2) (8.2.22)
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Table 8.5 In-plane stiffness for symmetric laminates

1. Angle-ply laminates

Ai j =
n

∑
k=1

Q
(k)
i j

(

x
(k)
3 − x

(k−1)
3

)

=
n

∑
k=1

Q
(k)
i j h(k), i, j = 1,2,6

2. Cross-ply laminates

Ai j =
n

∑
k=1

Q
(k)
i j h(k), i, j = 1,2,6,A16 = A26 = 0,

Q
(k)
11 =

(

E1

1−ν12ν21

)(k)

,Q
(k)
22 =

(

E2

1−ν12ν21

)(k)

Q
(k)
12 =

(

ν12E1

1−ν12ν21

)(k)

,Q
(k)
66 = G

(k)
12

3. Laminates with isotropic layers

Ai j =
n

∑
k=1

Q
(k)
i j h(k), i, j = 1,2,6,A16 = A26 = 0,A11 = A22

Q
(k)
11 = Q

(k)
22 =

(

E

1−ν2

)(k)

,Q
(k)
12 =

(

νE

1−ν2

)(k)

,

Q
(k)
66 =

(

E

2(1+ν)

)(k)

= G(k)

4. Single layer

For anisotropic and orthotropic single layers the Ai j followed by 1. and 2.

For an isotropic single layer is

A11 = A22 = A =
Eh

1−ν2
,A12 = νA =

νEh

1−ν2
,

A66 =
(1−ν)

2
A =

Eh

2(1+ν)
= G

εεεT =

[

∂u

∂x1

∂v

∂x2

(

∂u

∂x2
+

∂v

∂x1

)]

,

κκκT =

[

−∂ 2w

∂x2
1

− ∂ 2w

∂x2
2

− 2
∂ 2w

∂x1∂x2

]

and the constitutive equations for the strains and the stress resultants

σσσ (k) =QQQ(k)(εεε + x3κκκ),





NNN

MMM



=









AAA
... 000

. . . .

000
... DDD













εεε

κκκ



 (8.2.23)

one obtains the elastic potential for the general case of symmetric plates and for the

special cases of orthotropic or isotropic structure behavior.
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Bending of plates, classical laminate theory:

Angle-ply laminates

Π(w) =
1

2

∫

A

[

D11

(

∂ 2w

∂x2
1

)

2 +D22

(

∂ 2w

∂x2
2

)

2 +2D12
∂ 2w

∂x2
1

∂ 2w

∂x2
2

+ 4D66

(

∂ 2w

∂x1∂x2

)

2

+ 4

(

D16
∂ 2w

∂x2
1

+D26
∂ 2w

∂x2
2

)

∂ 2w

∂x1x2

]

dA−
∫

A

p3wdA

(8.2.24)

Cross-ply laminates

D16 = D26 = 0

Laminates with isotropic layers

D16 = D26 = 0,D11 = D22

The principle of minimum of the total potential yields

δΠ [w(x1,x2)] = 0

as the basis to derive the differential equation and boundary conditions or to apply

the direct variational methods of Ritz, Galerkin or Kantorovich for approximate

solutions.

Vibration of plates, classical laminate theory:

The kinetic energy of a plate is (rotatory energy is neglected)

T =
1

2

∫

A

ρh

(

∂w

∂ t

)2

dA, ρ =
1

h

n

∑
k=1

ρ (k)h(k) (8.2.25)

The Hamilton principle for vibrations yields

δH(x1,x2, t) = 0

with

H =

t2
∫

t1

(T −Π)dt =

t2
∫

t1

Ldt (8.2.26)

Buckling of plates, classical laminate theory:

To calculate buckling loads, the in-plane stress resultants N1,N2,N6 must be in-

cluded into the potential Π . These in-plane stress resultants are computed in a first

step or are known a priori. With the known N1,N2,N6 the potential Π can be formu-

lated for angle-ply laminates with bending in-plane forces
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Π(w) =
1

2

∫

A

{[

D11

(

∂ 2w

∂x2
1

)2

+D22

(

∂ 2w

∂x2
2

)2

+ 2D12
∂ 2w

∂x2
1

∂ 2w

∂x2
2

+ 4D66

(

∂ 2w

∂x1∂x2

)2

+ 4

(

D16
∂ 2w

∂x2
1

+D26
∂ 2w

∂x2
2

)

∂ 2w

∂x1x2

]

−
[

N1

(

∂w

∂x1

)2

+N2

(

∂w

∂x2

)2

+ 2N6

(

∂w

∂x1

∂w

∂x2

)

]

− 2p3w

}

dA

(8.2.27)

The buckling formulation one get with p3 ≡ 0. With D16 = D26 = 0 or

D16 = D26 = 0, D11 = D22 follows the equations for cross-ply laminates plates

and for plates with isotropic layers. The plate stiffness can be taken from Tables 8.2

or 8.3.

The variational principle δΠ = 0 applied to (8.2.24) and (8.2.27) yield solutions

for bending and bending with in-plane forces. Hamilton’s principle and p3 6= 0 is

valid to calculate forced vibrations. With p3(x1,x2, t) = 0 in vibration equations

or p3(x1,x2) = 0 in (8.2.27), we have formulated eigenvalue problems to compute

natural frequencies or buckling loads.

Summarizing the derivations of governing plate equations in the frame of classi-

cal laminate theory there are varying degrees of complexity:

• An important simplification of the classical two-dimensional plate equations is

the behavior of cylindrical bending. In this case one considers a laminated plate

strip with a very high length-to-width ratio. The transverse load and all displace-

ments are functions of only x1 and all derivatives with respect to x2 are zero.

The laminated beams, Chap. 7, and the laminated strips under cylindrical bend-

ing are the two cases of laminated plates that can be treated as one-dimensional

problems. In Sect. 8.6 we discuss some applications of cylindrical bending

• In the case of two-dimensional plate equations the first degree of simplification

for plates is to be symmetric. Symmetric laminates can be broken into cross-

ply laminates (specially orthotropic plates) with uncoupling in-plane and bend-

ing response (Bi j = 0) and vanishing bending-twisting terms (D16 = D26 = 0)

and angle-ply laminates (only Bi j = 0). The governing equations of symmetric

cross-ply laminates have the mathematical structure of homogeneous orthotropic

plates, symmetric angle-ply laminates of homogeneous anisotropic plates. For

special boundary conditions symmetric cross-ply laminated rectangular plates

can be solved analytically. The solutions were obtained in the same manner as

for homogeneous isotropic plates, Sect. 8.6.

• Laminates with all coupling effects are more complicated to analyze. Generally,

approximate analytical or numerical methods are used.
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8.3 Shear Deformation Theory

In Sect. 8.2 we have neglected the transverse shear deformations effects. The anal-

ysis and results of the classical laminate theory are sufficiently accurate for thin

plates, i.e. a/h,b/h > 20. Such plates are often used in civil engineering. For mod-

erately thick plates we have to take into account the shear deformation effects, at

least approximately. The theory of laminate or sandwich plates corresponds then

with the Reissner or Mindlin1 plate theory. In the Reissner-Mindlin theory the as-

sumptions of the Kirchhoff’s plate theory are relaxed only in one point. The trans-

verse normals do not remain perpendicular to the middle surface after deformation,

i.e. a linear element extending through the thickness of the plate and perpendicular

to the mid-surface prior to loading, upon the load application undergoes at most a

translation and a rotation. Plate theories based upon this assumption are called first

order shear deformation theories and are most used in the analysis of moderate thick

laminated plates and of sandwich plates. Higher order theories which do not require

normals to remain straight are considerably more complicated.

Based upon that kinematical assumption of the first order shear deformation the-

ory the displacements of the plate have the form (5.1.2)

u1(x1,x2,x3) = u(x1,x2)+ x3ψ1(x1,x2),
u2(x1,x2,x3) = v(x1,x2)+ x3ψ2(x1,x2),
u3(x1,x2,x3) = w(x1,x2)

(8.3.1)

and with (5.1.3) are the strains

εi(x1,x2,x3) = εi(x1,x2)+ x3κi(x1,x2), i = 1,2,6,

εεεT =

[

∂u

∂x1

∂v

∂x2

∂u

∂x2
+

∂v

∂x1

]

, κκκT =

[

∂ψ1

∂x1

∂ψ2

∂x2

∂ψ1

∂x2
+

∂ψ2

∂x1

]

,

ε4(x1,x2) =
∂w

∂x2
+ψ2, ε5(x1,x2) =

∂w

∂x1
+ψ1

(8.3.2)

One can see that a constant state of transverse shear stresses is accounted for. The

stresses for the kth layer are formulated in (5.3.2) to

σσσ (k) =QQQ(k)εεε(k), σT = [σ1 σ2 σ6 σ4 σ5], εεεT = [ε1 ε2 ε6 ε4 ε5] (8.3.3)

σ1,σ2,σ6 vary linearly and σ4,σ5 constant through the thickness h of the plate. With

the stress resultants NNN,MMM,QQQs and stiffness coefficients Ai j,Bi j,Di j,A
s
i j for laminates

or sandwiches given in Eqs. (4.2.13) - (4.2.15) or (4.3.8) - (4.3.22), respectively, the

constitutive equation can be formulated in a hypermatrix form, (4.2.16). The stiff-

ness coefficients Ai j,Bi j,Di j stay unchanged in comparison to the classical theory

and the As
i j are defined in (5.3.4) and can be improved with the help of shear correc-

1 Raymond David Mindlin (∗17 September 1906 New York - †22 November 1987 Hanover, New

Hempshire) - mechanician, seminal contributions to many branches of applied mechanics, applied

physics, and engineering sciences
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tion factors ks
i j of plates similar to beams (7.3.19) – (7.3.20). The definition of the

positive rotations ψ1,ψ2 is illustrated in Fig. 8.3. The equilibrium equations (8.2.2)

- (8.2.3) stay unchanged.

Substituting the kinematic relations (5.3.1) into the constitutive equations (5.3.3)

and then these equations into the five equilibrium equations (8.2.2) one obtains the

governing plate equations for the shear deformation theory in a matrix form as













L̃11 L̃12 L̃13 L̃14 0

L̃21 L̃22 L̃23 L̃24 0

L̃31 L̃32 L̃33 L̃34 L̃35

L̃41 L̃42 L̃43 L̃44 L̃45

0 0 L̃53 L̃54 L̃55

























u

v

ψ1

ψ2

w













=













0

0

0

0

p













(8.3.4)

The differential operators L̃i j are given in App. C.2 for unsymmetric angle-ply, sym-

metric angle-ply and symmetric cross-ply laminates. Symmetric laminates leading,

additional to (8.3.4), the uncoupled plate equations

[

L̃11 L̃12

L̃21 L̃22

][

u

v

]

=

[

0

0

]

,





L̃33 L̃34 L̃35

L̃43 L̃44 L̃45

L̃53 L̃54 L̃55









ψ1

ψ2

w



=





0

0

p



 (8.3.5)

Equation (8.3.4) can also formulated in a compact matrix form

L̃LLũuu = p̃pp

L̃LL is a (5× 5) matrix and ũuu, p̃pp are (5× 1) matrices.

The governing plate equations including transverse shear deformations are a set

of three coupled partial equations of second order, i.e. the problem is of sixth order

an for each edge of the plate three boundary conditions must be prescribed. The

most usual boundary conditions are:

• fixed boundary

w = 0, ψn = 0, ψt = 0

• free boundary

Mn = 0, Mnt = 0, Qn = 0

Fig. 8.3 Positive definition of

rotations ψi

x2, v

x3, w

x1, u

ψ2

ψ1
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• free edge

Mn = 0, ψt = 0, w = 0

• simply supported boundary

a) w = 0, Mn = 0, ψt = 0 or w = 0, ∂ψn/∂n = 0, ψt = 0 (hard hinged support)

b) w = 0, Mn = 0, Mnt = 0

Case b) is more complicated for analytical or semianalytical solutions. Generally,

boundary conditions require prescribing for each edge one value of each of the

following five pairs: (u or Nn), (v or Nnt ), (ψn or Mn), (ψt or Mnt ), (w or Qn).

With ψ1 =−∂w/∂x1 and ψ2 =−∂w/∂x2 Eq. (8.3.5) can be reduced to the classical

plate equation.

In the following we restrict our development to plates that are midplane symmet-

ric (Bi j = 0), and additional all coupling coefficients (. . .)16,(. . .)26,(. . .)45 are zero.

The constitutive equations are then simplified to

N1 = A11ε1 +A12ε2, N2 = A12ε1 +A22ε1, N6 = A66ε6,
M1 = D11κ1 +D12κ2, M2 = D12κ1 +D22κ2, M6 = D66κ6,
Q1 = ks

55A55ε5, Q2 = ks
44A44ε4

(8.3.6)

or in a contracted notation
[

NNN

MMM

]

=

[

AAA 000

000 DDD

][

εεε
κκκ

]

, QQQs =AAAsεεεs,

NNNT = [N1 N2 N6], MMMT = [M1 M2 M6], QQQsT
= [Q1 Q2],

εεεT = [ε1 ε2 ε6], κT = [κ1 κ2 κ6], εεεsT = [ε5 ε4],

AAA =





A11 A12 0

A12 A22 0

0 0 A66



 , DDD =





D11 D12 0

D12 D22 0

0 0 D66



 , AAAs =

[

ks
55A55 0

0 ks
44A44

]

(8.3.7)

Substituting the constitutive equations for M1,M2,M6,Q1,Q2 into the three equilib-

rium equations (8.2.2) of the moments and transverse force resultants results in the

following set of governing differential equations for a laminated composite plate

subjected to a lateral load p3(x1,x2) and including transverse shear deformation

D11
∂ 2ψ1

∂x2
1

+(D12 +D66)
∂ 2ψ2

∂x1∂x2
+D66

∂ 2ψ1

∂x2
2

−ks
55A55

(

ψ1 +
∂w

∂x1

)

= 0,

D66
∂ 2ψ2

∂x2
1

+(D12 +D66)
∂ 2ψ1

∂x1∂x2
+D22

∂ 2ψ2

∂x2
2

−ks
44A44

(

ψ2 +
∂w

∂x2

)

= 0,

ks
55A55

(

∂ψ1

∂x1
+

∂ 2w

∂x2
1

)

+ ks
44A44

(

∂ψ2

∂x2
+

∂ 2w

∂x2
2

)

+ p3(x1,x2) = 0

(8.3.8)

Analogous to the classical plate equations the shear deformation theory can be used

for modelling and analysis of forced vibrations and buckling of laminate plates. In
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the general case of forced vibrations the displacements u,v,w, the rotations ψ1,ψ2

and the transverse load p in Eq. (8.3.4) are functions of x1,x2 and t. In-plane loading

is not considered but in-plane displacements, rotary and coupling inertia terms have

to take into account. Therefore, generalized mass densities must be defined

ρ0 =
n

∑
k=1

ρ (k)
(

x
(k)
3 − x

(k−1)
3

)

=
n

∑
k=1

ρ (k)h(k),

ρ1 =
n

∑
k=1

ρ (k)

(

x
(k)
3

2
− x

(k−1)
3

2
)

,

ρ2 =
n

∑
k=1

ρ (k)

(

x
(k)
3

3
− x

(k−1)
3

3
)

(8.3.9)

Coupling inertia terms ρ1 are only contained in unsymmetric plate problems.

If one wishes to determine the natural frequencies of the rectangular plate con-

sidered above, then in (8.3.8) p3(x1,x2) must be set zero but a term −ρ0∂ 2w/∂ t2

must be added on the right hand side. In addition, because ψ1 and ψ2 are both in-

dependent variables which are independent of the transverse displacement w, there

will be an oscillatory motion of a line element through the plate thickness which re-

sults in rotary inertia terms ρ2∂ 2ψ1/∂ t2 and ρ2∂ 2ψ2/∂ t2, respectively, on the right

hand side of the first two equations of (8.3.8).

The governing equations for the calculation of natural frequencies of specially

orthotropic plates with A45 = 0 are

D11
∂ 2ψ1

∂x2
1

+(D12 +D66)
∂ 2ψ2

∂x1∂x2
+D66

∂ 2ψ1

∂x2
2

−ks
55A55

(

ψ1 +
∂w

∂x1

)

= ρ2
∂ 2ψ1

∂ t2
,

D66
∂ 2ψ2

∂x2
1

+(D12 +D66)
∂ 2ψ1

∂x1∂x2
+D22

∂ 2ψ2

∂x2
2

−ks
44A44

(

ψ2 +
∂w

∂x2

)

= ρ2
∂ 2ψ2

∂ t2
,

ks
55A55

(

∂ψ1

∂x2
+

∂ 2w

∂x2
1

)

+ ks
44A44

(

∂ψ2

∂x2
+

∂ 2w

∂x2
2

)

= ρ0
∂ 2w

∂ t2
,

(8.3.10)

ρ0 =
n

∑
k=1

ρ (k)(x
(k)
3 − x

(k−1)
3 ) =

n

∑
k=1

ρ (k)h(k),

ρ2 =
1

3

n

∑
k=1

ρ (k)(x
(k)3

3 − x
(k−1)3

3 )

w,ψ1 and ψ2 are functions of x1,x2 and t.

In a similar way the governing equations for buckling problems can be derived.

In the matrix equations (8.3.4) and (8.3.5) only the differential operator L̃55 is sub-

stituted by
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L̃55 −
(

N1
∂ 2

∂x2
1

+ 2N6
∂ 2

∂x1∂x2
+N2

∂ 2

∂x2
2

)

(8.3.11)

For a cross-ply symmetrically laminated plate is with Bi j = 0,D16 = 0, D26 = 0,

A45 = 0

D11
∂ 2ψ1

∂x2
1

+(D12 +D66)
∂ 2ψ2

∂x1∂x2
+D66

∂ 2ψ1

∂x2
2

− ks
55A55

(

ψ1 +
∂w

∂x1

)

= 0,

D66
∂ 2ψ2

∂x2
1

+(D12 +D66)
∂ 2ψ1

∂x1∂x2
+D22

∂ 2ψ2

∂x2
2

− ks
44A44

(

ψ2 +
∂w

∂x2

)

= 0,

ks
55A55

(

∂ψ1

∂x2
+

∂ 2w

∂x2
1

)

+ ks
44A44

(

∂ψ2

∂x2
+

∂ 2w

∂x2
2

)

= N1
∂ 2w

∂x2
1

+ 2N6
∂ 2w

∂x1∂x2
+N2

∂ 2w

∂x2
2

(8.3.12)

The variational formulation of laminated plates including shear deformation may

be based for example upon the principle of minimum potential energy for static

problems and the Hamilton’s principle for dynamic problems. Formulating the elas-

tic potential Π we have to consider that in the general case of unsymmetric laminate

plates, including shear deformation, Π = Π(u,v,w,ψ1,ψ2) is a potential function of

five independent variables and that the strain energy Πi has a membrane, a bending

and a transverse shearing term, i.e.

Πi =
1

2

∫

V

(σ1ε1 +σ2ε2 +σ6ε6 +σ5ε5 +σ4ε4) dV

= Π m
i +Π b

i +Π s
i

(8.3.13)

with

Π m
i =

1

2

∫

V

(N1ε1 +N2ε2 +N6ε6)dA,

Π b
i =

1

2

∫

V

(M1κ1 +M2κ2 +M6κ6)dA,

Π s
i =

1

2

∫

V

(Qs
1ε5 +Qs

2ε4)dA

(8.3.14)

The stress resultants, stiffness and constitutive equations are formulated in Sect. 4.2,

e.g. (4.2.10) - (4.2.17). The elastic potential Π is then given by

Π(u,v,w,ψ1,ψ2) =
1

2

∫

A

(εεεTAAAεεε +κκκTBBBεεε +εεεTBBBκκκ +κκκTDDDκκκ

+ εεε sTAAAsεεεs)dx1dx2 −
∫

A

p3w dx1dx2

(8.3.15)
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In (8.3.15) the in-plane loads p1, p2 are not included and must be added in gen-

eral loading cases. Shear correction coefficients can be developed for plates quite

similar to beams. Approximately one considers a laminate strip of the width ”1”

orthogonal to the x1-direction and independently another laminate strip orthogonal

to the x2-direction and calculates the correction factors ks
55 and ks

44 like in Chap. 7

for beams. Sometimes the shear correction factors were used approximately equal

to homogeneous plates, i.e, ks
44 = ks

45 = ks
55 = ks = 5/6.

Mostly we have symmetric laminates and the variational formulation for bending

Mindlin’s plates can be simplified

Π(w,ψ1,ψ2) =
1

2

∫

A

(κTDDDκκκ +εεεsT
AAAsε s)dx1dx2 −

∫

A

p3wdx1dx2 (8.3.16)

If we restricted the Hamilton’s principle to vibration of symmetric plates, the varia-

tional formulation yields

L(w,ψ1,ψ2) = T (w,ψ1,ψ2)−Π(w,ψ1,ψ2),

T (w,ψ1,ψ2) =
1

2

∫

A

[

ρ0

(

∂w

∂ t

)2

+ρ2

(

∂ψ1

∂ t

)2

+ρ2

(

∂ψ2

∂ t

)2
]

dx1dx2

(8.3.17)

Π is given by (8.3.16) and ρ0,ρ2 by Eqs. (8.3.10), T is the kinetic energy.

For a symmetric and specially orthotropic Mindlin’s plate assuming A45 = 0 it

follows from (8.3.16) for bending problems that

Π(w,ψ1,ψ2) =
1

2

∫

A

[

D11

(

∂ψ1

∂x1

)2

+ 2D12

(

∂ψ1

∂x1

∂ψ2

∂x2

)

+D22

(

∂ψ2

∂x2

)2

+ D66

(

∂ψ1

∂x2
+

∂ψ2

∂x1

)2

+ ks
55A55

(

ψ1 +
∂w

∂x1

)2

+ ks
44A44

(

ψ2 +
∂w

∂x2

)2
]

dx1dx2 −
∫

A

p3wdx1dx2,

(8.3.18)

δΠ(w,ψ1,ψ2) = 0

For natural vibration the variational formulation for that plate is

L(w,ψ1,ψ2) = T (w,ψ1,ψ2)−Π(w,ψ1,ψ2), δ

t2
∫

t1

L(w,ψ1,ψ2)dt = 0 (8.3.19)

To calculate buckling loads the in-plane stress resultants must be, like in the Kirch-

hoff’s plate theory, included into the part Πa of Π . Consider a plate with a constant

in-plane force N1 it follows
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Π(w,ψ1,ψ2) = Πi(w,ψ1,ψ2)−
1

2

∫

N1

(

∂w

∂x1

)2

dx1dx2 (8.3.20)

The case of a more general in-plane loading can be transposed from (8.2.27). The

term Πi stay unchanged.

8.4 Sandwich Plates

To formulate the governing differential equations or tht variational statement for

sandwich plates we draw the conclusion from the similarity of the elastic behavior

between laminates and sandwiches in the first order shear deformation theory that

all results derived above for laminates can be applied to sandwich plates. We restrict

our considerations to symmetric sandwich plates with thin or thick cover sheets.

Like in the beam theory, there are differences in the expressions for the flexural

stiffness D11,D12,D22,D66 and the transverse shear stiffness A55,A44 of laminates

and sandwiches (Sects. 4.3.2 and 4.3.3). Furthermore there are essential differences

in the stress distributions. The elastic behavior of sandwiches and the general model

assumptions are considered in detail in Sect. 4.3. The stiffness relations for sand-

wiches with thin and thick skins are also given there:

• Symmetric sandwiches with thin cover sheets (4.3.12) - (4.3.14)

Ai j = 2Af
i j = 2

n

∑
k=1

Q
(k)
i j h(k),

Di j = hcCf
i j = hc

n

∑
k=1

Q
(k)
i j h(k)x̄

(k)
3 , x̄

(k)
3 =

1

2

(

x
(k)
3 + x

(k−1)
3

)

(i j) = (11),(12),(22),(66)

As
i j = hcCs

i j,(i j) = (44),(55), Cs
44 = Gs

23,C
s
55 = Gs

13

(8.4.1)

hc is the thickness of the core, n is the number of faces layers and G13,G23 are the

core shear stiffness moduli. Shear correction factors can be calculated similarly

to the beams approximately with the help of (7.4.2).
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• Symmetric sandwiches with thick cover sheets (4.3.16) - (4.3.17) of one lamina

Ai j = ASa
i j = 2hfQf

i j or Ai j = ALa
i j = 2hfQf

i j + hcQc
i j, i, j = 1,2,6

Di j = DSa
i j =

1

2
Qf

i j

(

hf + hc
)

hfhc or

Di j = DLa
i j =

1

2
hfQf

i j

[

(

hf + hc
)2

+
1

3
hf2

]

+
1

12
hc3

Qc
i j, i, j = 1,2,6

(i j) = (11),(12),(22),(66)

As
i j = As

i j
Sa = hcCc

i j, As
i j = As

i j
La = 2hfCf

i j + hcCc
i j,(i j) = (44),(55)

Cf
44 = Gf

23, Cc
44 = Gc

23, Cf
55 = Gf

13, Cc
55 = Gc

13

(8.4.2)

With these stiffness values for the two types of sandwich plates the differential equa-

tions (8.3.8), (8.3.10) or the variational formulations (8.3.18) - (8.3.20) of the theory

of laminate plates including transverse shear deformation can be transposed to sand-

wich plates.

Equation (4.3.22) demonstrated that for sandwich plates with thick faces the stiff-

ness ALa
i j ,D

La
i j ,(i j) = (11),(22),(66) and ALa

i j ,(i j) = (44),(55) should be used. Be-

cause generally Qc
i j ≪ Qf

i j usually the simplified stiffness

ALa
i j ≈ ASa

i j = 2Af
i j, DLa

i j ≈ DSa
i j

(

1+
hf

hc

hc +(4/3)hf

hc + hf

)

yield satisfying results in engineering applications. Thus is valid for isotropic-facing

sandwich plates and for sandwich plates having orthotropic composite material fac-

ings (cross-ply laminates).

In Sect. 4.3 generally and in Sect. 7.4 for beams the continuing popularity of

sandwich structures was underlined. Sect. 7.4 also recalled and summarized the

main aspects of modelling and analysis of sandwich structures. Engineering ap-

plications to sandwich beams were discussed in detail. Keeping this in mind, the

derivations to sandwich plates can be restricted here to few conclusions:

• Most sandwich structures can be modelled and analyzed using the shear defor-

mation theory for laminated plates.

• Generally, the stiffness matrices AAA, BBB and DDD of laminated plates are employed.

• Consider the lower face as lamina 1, the core as lamina 2 and the upper face

as lamina 3 one can include or ignore the effect of the core on the response to

bending and in-plane loads and the effect of transverse shear deformation on the

response of the facings.

• The shear deformation theory of laminated plates can be not only transposed to

sandwich plates for bending, vibration and buckling induced by mechanical loads

but include also other loading, e.g. hydrothermal effects.

With the special sandwich stiffness including or ignore in-plane, bending and trans-

verse shear deformation response all differential equations and variational formula-

tions of Sect. 8.3 stay valid. Some examples for sandwich plates are considered in

Sect. 8.7.
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8.5 Hygrothermo-Elastic Effects on Plates

Elevated temperature and absorbed moisture can alter significantly the structural

response of fibre-reinforced laminated composites. In Sects. 8.2 to 8.4 the structural

response of laminated plates as result of mechanical loading was considered and

thermal or hygrosgopic loadings were neglected.

This section focuses on hygrothermally induced strains, stresses and displace-

ments of thin or moderate thick laminated plates. We assume as in Sect. 7.5 mod-

erate hygrothermal loadings such that the mechanical properties remain approx-

imately unchanged for the temperature and moisture differences considered. Be-

cause the mathematical formulations governing thermal and hygroscopic loadings

are analogous, a unified derivation is straightforward and will be considered in the

frame of the classical laminate theory and the shear deformation theory.

The following derivations use the basic equations, Sect. 4.2.5, on thermal and

hygroscopic effects in individual laminae and in general laminates. The matrix for-

mulations for force and moment resultants, Eq. (4.2.75), can be written explicitly

as

















N1

N2

N6

M1

M2

M6

















=
















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






















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
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1

Nth
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Nth
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1
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2
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6

















−




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1
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(8.5.1)

with the known matrix elements, Eq. (4.2.15),

Ai j =
n

∑
k=1

Q
(k)
i j

(

x
(k)
3 − x

(k−1)
3

)

,

Bi j =
1

2

n

∑
k=1

Q
(k)
i j

(

x
(k)
3

2
− x

(k−1)
3

2
)

,

Di j =
1

3

n

∑
k=1

Q
(k)
i j

(

x
(k)
3

3
− x

(k−1)
3

3
)

(8.5.2)

The thermal and moisture stress resultants NNNth,NNNmo,MMMth,MMMmo are resultants per unit

temperature or moisture change, Eqs. (4.2.67).

Substituting the hygrothermal constitutive equation (8.5.1) into the equilibrium

equations (8.2.3) and replacing the in-plane strains εi and the curvatures κi by the

displacements u,v,w, Eq. (8.2.5), yield the following matrix differential equation

for the classical laminate theory

LLLuuu = ppp−∂∂∂

[

NNN∗

MMM∗

]

(8.5.3)
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LLLuuu = ppp is identically to Eq. (8.2.7) with Li j given in App. C. NNN∗ = NNNth +NNNmo,

MMM∗ = MMMth +MMMmo are the hygrothermal stress results and ∂∂∂ is a special (3× 6)

differential matrix

∂∂∂ =















− ∂

∂x1
− ∂

∂x2
0 0 0 0

0 − ∂

∂x2
− ∂

∂x1
0 0 0

0 0 0 − ∂ 2

∂x2
1

− ∂ 2

∂x2
2

− 2∂ 2

∂x1∂x2















(8.5.4)

For selected layer stacking Eq. (8.5.3) can be simplified. The matrix LLL and the dif-

ferential operators Li j are summarized for the most important special laminates in

App. C.

Hygrothermal induced buckling can be modelled as

LuLuLu+∂∂∂

[

NNN∗

MMM∗

]

=

(

N1
∂ 2

∂x2
1

+ 2N6
∂ 2

∂x1∂x2
+N2

∂ 2

∂x2
2

)

uuu∗ (8.5.5)

with uuu∗T = [0 0 w]. Prebuckling displacements and stress resultants are determined

by solving Eq. (8.5.5) with NNN ≡ 000. For the corresponding buckling problem, N1,N2

and N6 are taken to be the stress resultant functions corresponding to the prebuckling

state. The buckling loads are found by solving the eigenvalue problem associated

with (8.5.5), i.e. with NNN∗ = 000 and MMM∗ = 000.

Because energy methods are useful to obtain approximate analytical solutions

for hygrothermal problems the total potential energy Π is formulated. Restricting

to symmetrical problems with A16 = A26 = 0 and D16 = D26 = 0, i.e to cross-ply

laminates, we have

Π(u,v,w) =
1

2

∫

A

{

A11

(

∂u

∂x1

)2

+ 2A12

(

∂u

∂x1

)(

∂v

∂x2

)

+A22

(

∂v

∂x2

)2

+ A66

(

∂u

∂x2
+

∂v

∂x1

)2

+D11

(

∂ 2w

∂x2
1

)2

+ 2D12

(

∂ 2w

∂x2
1

)(

∂ 2w

∂x2
2

)

+ D22

(

∂ 2w

∂x2
2

)2

+ 4D66

(

∂ 2w

∂x1∂x2

)2

− 2N∗
1

∂u

∂x1
− 2N∗

2

∂v

∂x2
− 2N∗

6

(

∂u

∂x2
+

∂v

∂x1

)

+ 2M∗
1

∂ 2w

∂x2
1

+ 2M∗
2

∂ 2w

∂x2
2

− 4M∗
6

(

∂ 2w

∂x1∂x2

)

−
[

N1

(

∂ 2w

∂x2
1

)2

+ 2N6

(

∂w

∂x1

)(

∂w

∂x2

)

+N2

(

∂ 2w

∂x2
2

)2
]}

dA

(8.5.6)

The classical laminate theory which neglect transverse shear deformations can lead

to significant errors for moderately thick plates and hygrothermal loadings. Us-
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ing the shear deformation theory, Sect. 8.3, we can formulate corresponding to Eq.

(8.3.4).

L̃LLũuu = p̃pp− ∂̃∂∂

[

NNN∗

MMM∗

]

(8.5.7)

The matrix ∂̃∂∂ is identically to Eq. (8.5.4). For hygrothermal induced buckling we

have analogous to Eq. (8.5.5)

L̃LLũuu+ ∂̃∂∂

[

NNN∗

MMM∗

]

=

(

N1
∂ 2

∂x2
1

+ 2N6
∂ 2

∂x1∂x2
+N2

∂ 2

∂x2
2

)

uuu∗ (8.5.8)

For prebuckling analysis the terms involving N1,N2 and N6 are ignored. Then buck-

ling loads are calculated by substituting the values N1,N2,N6 determined for the

prebuckling state into Eq. (8.5.8) dropping now the hygrothermal stress resultants

NNN∗ and MMM∗. For special laminate stacking the differential operators are summarized

in App. C.

The elastic potential Π is now a function of five independent functions

u,v,w,ψ1,ψ2. Restricting again to cross-ply laminates the elastic total potential Π
can be formulated as

Π =
1

2

∫

A

{

A11

(

∂u

∂x1

)2

+ 2A12

(
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+A66

(

∂u

∂x2
+

∂v

∂x1

)2

+ D11
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)

+D22

(
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)2

+D66

(

∂ψ1

∂x2
+

∂ψ2

∂x1

)

+ ks
44A44

(

dw

dx2
+ψ2

)2

+ ks
55A55

(

dw

dx1
+ψ1

)2

(8.5.9)
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∂ψ1
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]}

dA

Equations (8.5.6) and (8.5.9) are the starting point for solving hygrothermal induced

buckling problems e.g. with the Ritz- or Galerkin approximation or the finite ele-

ment method. Analytical solutions are in general not possible. As considered above,

the force resultants N1,N2 and N6 have to be calculated in the prebuckling state,

i.e. for NNN ≡ 000 and the calculation force resultants are substituted into Eqs. (8.5.6) or

(8.5.9), respectively, with NNN∗ =000,MMM∗ =000 to calculate the buckling loads. If there are

transverse loads p, Eqs. (8.5.3) or (8.5.7) the bending problem follows from (8.5.6)

or (8.5.7) by setting NNN = 000 and substitute an additional term
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∫

A

pwdA

8.6 Analytical Solutions

The analysis of rectangular plates with selected layer stacking and boundary condi-

tions can be carried out analytically in a similar manner to homogeneous isotropic

and orthotropic plates. The analytical methods of homogeneous isotropic plates, e.g.

the double series solutions of Navier2 or the single series solutions of Nádai3-Lévy4

can be applied to laminated plates with special layer stacking and analogous bound-

ary conditions. In Sect. 8.6 possibilities of analytical solutions in the frame of clas-

sical laminate theory and shear deformation theory are demonstrated for bending,

buckling and vibration problems.

8.6.1 Classical Laminate Theory

There are varying degrees of complexity in laminated plate analysis. The least com-

plicated problems are one-dimensional formulations of cylindrical plate bending.

For cylindrical bending both, symmetric and unsymmetric laminates, are handled in

a unique manner assuming all deformations are one-dimensional.

In the case of two-dimensional plate equations the most important degree of sim-

plification is for plates being midplane symmetric because of their uncoupling in-

plane and out-of-plane response. The mathematical structure of symmetric angle-ply

plate equations corresponds to homogeneous anisotropic plate equations and that of

symmetric cross-ply plate equations to homogeneous orthotropic plate equations.

To illustrate analytical solutions for rectangular plates in the framework of the clas-

sical laminate theory we restrict our developments to specially orthotropic, i.e. to

symmetric cross-ply plates. For this type of laminated plates the Navier solution

method can be applied to rectangular plates with all four edges simply supported.

The Nádai-Lévy solution (Nádai, 1925) method can be applied to rectangular plates

with two opposite edges have any possible kind of boundary conditions. For more

general boundary conditions of special orthotropic plates or other symmetric or un-

symmetric rectangular plates approximate analytical solutions are possible, e.g. us-

ing the Ritz-, the Galerkin- or the Kantorovich methods, Sect. 2.2.3, or numerical

methods are applied, Chap. 11.

2 Claude Louis Marie Henri Navier (∗10 February 1785 Dijon - †21 August 1836 Paris) - engineer

and physicist
3 Árpád Nádai (∗3 April 1883 Budapest - †18 July 1963 Pittsburgh) - professor of mechanics,

contributions to the plate theory and theory of plasticity
4 Maurice Lévy (∗28 February 1838 Ribeauvillé - †30 September 1910 Paris) - engineer, total

strain theory
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As considered above the simplest problem of plate bending is the so-called cylin-

drical bending for a plate strip i.e. a very long plate in one direction with such a lat-

eral load and edge support in this direction that the plate problem may be reduced to

a one-dimensional problem and a quasi-beam solution can be used. In the following

we demonstrate analytical solutions for various selected examples.

8.6.1.1 Plate Strip

The model ”plate strip” (Fig. 8.4) describes approximately the behavior of a rect-

angular plate with a/b ≪ 1. The plate dimension a in x1-direction is considered

finite, the other dimension b in x2-direction approximately infinite. The boundary

conditions for the edges x1 = 0,x1 = a may be quite general, but independent of x2

and the lateral load is p3 = p3(x1). All derivatives with respect to x2 are zero and

the plate equation reduces to a one-dimensional equation. For symmetric laminated

strips Eqs. (8.2.6) and (8.2.9) reduce to

D11w′′′′(x1) = p3(x1),
M1(x1) = −D11w′′(x1),
M2(x1) = −D12w′′(x1),
M6(x1) = −D16w′′(x1) (general case),
M6(x1) = 0 (specially orthotropic case,D16 = 0),
Q1(x1) = M′

1(x1) =−D11w′′′(x1),
Q2(x1) = M′

6(x1) =−D16w′′′(x1) (general case),
Q2(x1) = 0 (specially orthotropic case)

(8.6.1)

When one compares the differential equation of the strip with the differential equa-

tion bD11w′′′′(x1) = q(x1) of a beam it can be stated that all solutions of the beam

equation can be used for the strip.

For the normal stresses in the layer k the equations are

Fig. 8.4 Plate strip

✲

✻x2

x1

✻ ✻
a

❄❄ ❄❄❄
p3 F

M
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σ
(k)
1 (x1,x3) = −Q

(k)
11 x3

d2w

dx2
1

,

σ
(k)
2 (x1,x3) = −Q

(k)
12 x3

d2w

dx2
1

,

σ
(k)
6 (x1,x3) = 0

or

σ
(k)
1 (x1,x3) = −Q

(k)
11

D11
M1(x1)x3,

σ
(k)
2 (x1,x3) = −Q

(k)
12

D12
M2(x1)x3,

σ
(k)
6 (x1,x3) = 0

(8.6.2)

and the transverse shear stresses follow from (5.2.19) to

σ4(x1,x3) = F61Q1(x1), σ5(x1,x3) = F11Q1(x1)

and

FFF(x3) = B̃BB(x3)DDD
−1

i.e
[

σ5

σ4

]

=

[

F11 F62

F61 F22

][

Q1

0

]

, (8.6.3)

Considering the solutions of the symmetrical laminated plate strip, we have follow-

ing conclusions:

• The solutions for laminate beams and plate strips are very similar, but the calcu-

lation of the strip bending stiffness Di j has to include Poisson’s effects.

• Because of including of Poisson’s effect we have the relation

w(x1)strip < w(x1)beam

and M2(x1) 6= 0.

• M1(x1) and Q1(x1) of the strip and the beam are identical. If M6(x1) = 0 then

V1 ≡ Q1, i.e there is no special effective Kirchhoff transverse force.

The solutions for plate strips with cylindrical bending can be transposed to

lateral loads p3(x1,x2) = x2 p(x1). From w(x1,x2) = x2w(x1) it follows that

x2w′′′′(x1) = x2 p(x1)/D11. The displacement w(x1) and the stress resultants

M1(x1),Q1(x) of the plate strip with the lateral load p(x1) have to be multiplied

by the coordinate x2 to get the solution for the lateral load x2 p(x1). Note that in

contrast to the case above, here M6 =−2D66w′(x1)−D16w′′(x1) in the general case

and M6 =−2D66w′(x1) for specially orthotropic strips.

For unsymmetric laminated plate strips the system of three one-dimensional dif-

ferential equations for the displacements u(x1),v(x1) and w(x1) follow with (8.2.6)

as
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A11
d2u

dx2
1

+A16
d2v

dx2
1

−B11
d3w

dx3
1

= 0

A16
d2u

dx2
1

+A66
d2v

dx2
1

−B16
d3w

dx3
1

= 0

D11
d4w

dx4
1

−B11
d3u

dx3
1

−B16
d3v

dx3
1

= p3

(8.6.4)

These equations can be uncoupled and analytically solved. The first and the second

equation yield

d2u

dx2
1

=
B

A

d3w

dx3
1

,
d2v

dx2
1

=
C

A

d3w

dx3
1

(8.6.5)

with A = A11A66 −A2
16,B = A66B11 −A16B16,C = A11B16 −A16B11. Differentiating

both equations and substituting the results in the third equation of (8.6.4) we obtain

one differential equation of fourth order in w(x1)

d4w

dx4
1

=
A

D
p3, D = D11A−B11B−B16C (8.6.6)

Equation (8.6.6) can be integrated to obtain w(x1) and than follow with (8.6.5)

d3u

dx3
1

=
B

D
p3,

d3v

dx3
1

=
C

D
p3 (8.6.7)

For a transverse load p3 = p3(x1) we obtain the analytical solutions for the displace-

ments u(x1),v(x1) and w(x1) as

w(x1) =
A

D

∫ ∫ ∫ ∫

p3dx1dx1dx1dx1 +C1
x3

1

6
+C2

x2
1

2
+C3x1 +C4,

u(x1) =
B

D

∫ ∫ ∫

p3dx1dx1dx1 +B1
x2

1

2
+B2x1 +B3,

v(x1) =
C

D

∫ ∫ ∫

p3dx1dx1dx1 +A1
x2

1

2
+A2x1 +B3

(8.6.8)

With Eqs. (8.6.5) follows A1 = B1 =C1 and we have eight boundary conditions to

calculate 8 unknown constants, e.g. for clamped supports

u(0) = u(a) = v(0) = v(a) = w(b) = w(a) = 0,w′(0) = w′(a) = 0,

Eqs. (8.2.12) yield the one-dimensional equations for the forces and moments resul-

tants

N1 = A11
du

dx1
+A16

dv

dx1
−B11

d2w

dx2
1

,

N2 = A12
du

dx1
+A26

dv

dx1
−B12

d2w

dx2
1

,
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N6 = A16
du

dx1
+A66

dv

dx1
−B16

d2w

dx2
1

,

M1 = B11
du

dx1
+B16

dv

dx1
−D11

d2w

dx2
1

,

M2 = B12
du

dx1
+B26

dv

dx1
−D12

d2w

dx2
1

,

M6 = B16
du

dx1
+B66

dv

dx1
−D16

d2w

dx2
1

, (8.6.9)

Q1 = B11
d2u

dx2
1

+B16
d2v

dx2
1

−D11
d3w

dx3
1

,

Q2 = B16
d2u

dx2
1

+B66
d2v

dx2
1

−D16
d3w

dx3
1

,

V1 = B11
d2u

dx2
1

+B16
d2v

dx2
1

−D11
d3w

dx3
1

= Q1,

V2 = 2B16
d2u

dx2
1

+ 2B66
d2v

dx2
1

− 2D16
d3w

dx3
1

= 2Q2

The general symmetric case follows with Bi j = 0 and for a symmetric cross-ply strip

are Bi j = 0 and A16 = 0,D16 = 0.

Analytical solutions can also be formulated for vibration and buckling of strips

with one-dimensional deformations. The eigen-vibrations of unsymmetrical plate

strips taking account of u(x1, t) = u(x1)e
iωt ,v(x1, t)= v(x1)e

iωt ,w(x1, t) =w(x1)e
iωt

are mathematically modelled as

A11
d2u

dx2
1

+A16
d2v

dx2
1

−B11
d3w

dx3
1

−ρhω2w = 0,

A16
d2u

dx2
1

+A66
d2v

dx2
1

−B16
d3w

dx3
1

−ρhω2v = 0,

D11
d4w

dx4
1

−B11
d3u

dx3
1

−B16
d3w

dx3
1

−ρhω2w = 0

(8.6.10)

u,v and w are now functions of x1 and t.

If the in-plane inertia effects are neglected the Eqs. (8.6.5) are valid. Differenti-

ating these equations and substituting the result in the third Eq. (8.6.10) lead to the

vibration equation

d4w

dx1
− A

D
ρhω2w = 0 (8.6.11)

For a symmetrically laminated cross-ply strip we obtain with A/D = 1/D11

d4w

dx1
− ρhω2

D11
w = 0, ρh =

N

∑
k=1

ρ (k)h(k) (8.6.12)
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The analytical solutions correspond to the beam solutions in Sect. 7.6

w(x1) =C1 cos
λ

a
x1 +C2 sin

λ

a
x1 +C3 cosh

λ

a
x1 +C4 sinh

λ

a
x1,

(

λ

a

)4

=
ρh

D11
ω2 (symmetric cross-ply strip),

(

λ

a

)4

= ρh
A

D
ω2 (general unsymmetric strip)

(8.6.13)

For a simply supported strip we have w(0) = w(a) = w′′(0) = w′′(a) = 0 and there-

fore C1 =C3 =C4 = 0 and C2 sin
(

λ
a

)

a = 0, i.e. with λ = nπ follow

ω2 =
n4π4

a4ρh

D

A
, ω =

(nπ

a

)2

√

D

ρhA
(8.6.14)

Analytical solutions can be calculated for all boundary conditions of the strip.

In analogous manner analytical solutions follow for the buckling behavior of

strips which are subjected to an initial compressive load N1 =−N0. The third equa-

tion of (8.6.4) is formulated with p3 = 0 as

D11
d4w

dx4
1

−B11
d3u

dx3
1

−B16
d3v

dx3
1

−N1
d2w

dx2
1

= 0 (8.6.15)

and with Eq. (8.6.5) follows

d4w

dx4
1

− A

D
N1

d2w

dx2
1

= 0, (general case)

d4w

dx4
1

− 1

D11
N1

d2w

dx2
1

= 0, (symmetrical cross-ply case)

(8.6.16)

with N1(x1) =−N0. The buckling equations correspond again to the beam equation

(7.2.35) and can be solved for all boundary conditions of the strip

w(x1) =C1 cos
λ

a
x1 +C2 sin

λ

a
x1 +C3 cosh

λ

a
x1 +C4 sinh

λ

a
x1,

(

λ

a

)2

=
A

D
N0

(8.6.17)

For a simply supported strip we have with w(0) = w(a) = w′′(0) = w′′(a) = 0

C2 sinλ = 0, λ = nπ

A nonzero solution is obtained if

N0 =
n2π2

a2

D

A
(8.6.18)
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Thus the critical buckling load follows with to

N0cr =
π2

a2

D

A
(8.6.19)

Summarizing the developments of analytical solutions for unsymmetrical laminated

plate strips we have the following conclusions:

• The system of three coupled differential equations for the displacements

u(x1),v(x1) and w(x1) can be uncoupled and reduced to one differential equa-

tion of fourth order for w(x1) and two differential equations of third order for

u(x1) and v(x1), respectively.

• Analytical solutions for bending of unsymmetrical laminated plate strips can be

simple derived for all possible boundary conditions. In the general case all stress

resultants (8.6.4) are not equal to zero. The general symmetric case and symmet-

rical cross-ply strips are included as special solutions.

• The derivations of bending equations can be expanded to buckling and vibration

problems.

• The derivation of analytical solutions for unsymmetrical laminated strips can,

like for the symmetrical case, expanded to lateral loads p3(x1,x2) = x2 p(x1).

8.6.1.2 Navier Solution

Figure 8.5 shows a specially orthotropic rectangular plate simply supported at all

edges with arbitrary lateral load p3(x1,x2). In the Navier solution one expands the

deflection w(x1,x2) and the applied lateral load p(x1,x2), respectively, into double

infinite Fourier sine series because that series satisfies all boundary conditions

p3(x1,x2)

✻

✲

x2

x1

❄

✻

✛ ✲a

b Boundary conditions:

w(0,x2) = w(a,x2) = w(x1,0) = w(x1,b) = 0

M1(0,x2) = M1(a,x2) = M2(x1,0) = M2(x1,b) = 0

Fig. 8.5 Rectangular plate, all edges are simply supported, specially orthotropic
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p3(x1,x2) =
∞

∑
r=1

∞

∑
s=1

prs sinαrx1 sinβsx2,

prs =
4

ab

a
∫

0

b
∫

0

p3(x1,x2)sin αrx1 sinβsx2dx1dx2,

w(x1,x2) =
∞

∑
r=1

∞

∑
s=1

wrs sinαrx1 sinβsx2

(8.6.20)

with αr = rπ/a,βs = sπ/b. The coefficients wrs are to be determined such that the

plate equation (Table 8.1) is satisfied.

Substituting Eqs. (8.6.20) into the plate equation yields

∞

∑
r=1

∞

∑
s=1

wrs

(

D1α4
r + 2D3α2

r β 2
s +D2β 4

s

)

sinαrx1 sinβsx2 =
∞

∑
r=1

∞

∑
s=1

prs sinαrx1 sinβsx2

(8.6.21)

and we obtain the coefficients wrs

wrs =
prs

D1α4
r + 2D3α2

r β 2
s +D2β 4

s

=
prs

drs

(8.6.22)

The solution becomes

w(x1,x2) =
∞

∑
r=1

∞

∑
s=1

prs

drs

sinαrx1 sinβsx2 (8.6.23)

The load coefficients prs one obtains by integrating (8.6.20) for the given lateral

loading p3(x1,x2). For a uniform distributed load p3(x1,x2) = p = const we obtain,

for instance,

prs =
16p

π2rs
, r,s = 1,3,5, . . . (8.6.24)

From Table 8.1, the equations for the moment resultants are:

M1(x1,x2) = −D11
∂ 2w

∂x2
1

−D12
∂ 2w

∂x2
2

=
∞

∑
r=1

∞

∑
s=1

(D11α2
r +D12β 2

s )wrs sinαrx1 sinβsx2,

M2(x1,x2) = −D12
∂ 2w

∂x2
1

−D22
∂ 2w

∂x2
2

=
∞

∑
r=1

∞

∑
s=1

(D12α2
r +D22β 2

s )wrs sinαrx1 sinβsx2,

(8.6.25)
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M6(x1,x2) = −2D66
∂ 2w

∂x1∂x2
=−2D66

∞

∑
r=1

∞

∑
s=1

αrβswrs cosαrx1 cosβsx2,

Q1(x1,x2) =
∂M1

∂x1
+

∂M6

∂x2
, V1(x1,x2) = Q1 +

∂M6

∂x2
,

Q2(x1,x2) =
∂M6

∂x1
+

∂M2

∂x2
, V1(x1,x2) = Q2 +

∂M6

∂x2
,

and with the stress relation for the k layers

σσσ (k)(x1,x2,x3) =QQQ(k)x3κκκ =−x3









Q
(k)
11 Q

(k)
12 0

Q
(k)
12 Q

(k)
22 0

0 0 Q
(k)
66













∂ 2w/∂x2
1

∂ 2w/∂x2
2

2∂ 2w/∂x1∂x2



 (8.6.26)

one obtains the solutions for the in-plane stresses σ
(k)
1 ,σ

(k)
2 ,σ

(k)
6









σ
(k)
1

σ
(k)
2

σ
(k)
6









=
∞

∑
r=1

∞

∑
s=1

prs

D1α4
r + 2D3α2

r β 2
s +D2β 4

s









(Q
(k)
11 α2

r +Q
(k)
12 β 2

s )sinαrx1 sinβsx2

(Q
(k)
12 α2

r +Q
(k)
22 β 2

s )sinαrx1 sinβsx2

−2Q
(k)
66 αrβs cosαrx1 cosβsx2









(8.6.27)

With the simplified formula (5.2.19) follows the transverse shear stresses σ
(k)
4 ,σ

(k)
5

[

σ
(k)
5 (x1,x3)

σ
(k)
4 (x1,x3)

]

=

[

F11x3 F62x3

F61x3 F22x3

]

∞

∑
r=1

∞

∑
s=1

[

(D11α3
r +D12β 2

s αr)wrs cosαrx1 sinβsx2

(D12α2
r βs +D22β 3

s )wrs sinαrx1 cosβsx2

] (8.6.28)

The Navier solution method can be applied to all simply supported specially or-

thotropic laminated rectangular plates in the same way. For a given lateral load

p3(x1,x2) one can obtain the load coefficients prs by integrating (8.6.20), and by

substituting prs in (8.6.3) follows the wrs. Some conclusions can be drawn from the

application of the Navier solution:

• The solution convergence is rapid for the lateral deflection w(x1,x2) and uniform

loaded plates. The convergence decreases for the stress resultants and the stresses

and in general with the concentration of lateral loads in partial regions.

• The solution convergence is more rapid for the stresses σ
(k)
1 in the fibre direction

but is not as rapid in calculating σ
(k)
2 .

The Navier solutions can be also developed for antisymmetric cross-ply laminate

and for symmetric and antisymmetric angle-ply laminates. For these laminates the

plate equations (8.2.6) are not uncoupled and we have to prescribe in-plane and

out-of-plane boundary conditions. It is easy to review that the Naviers double series

solutions Type 1 and Type 2, i.e.
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Type 1:

u(x1,x2) =
∞

∑
r=1

∞

∑
s=1

urs cosαrx1 sinβsx2,

v(x1,x2) =
∞

∑
r=1

∞

∑
s=1

vrs sinαrx1 cosβsx2,

w(x1,x2) =
∞

∑
r=1

∞

∑
s=1

wrs sinαrx1 sinβsx2,

Type 2:

u(x1,x2) =
∞

∑
r=1

∞

∑
s=1

urs sinαrx1 cosβsx2,

v(x1,x2) =
∞

∑
r=1

∞

∑
s=1

vrs cosαrx1 sinβsx2,

w(x1,x2) =
∞

∑
r=1

∞

∑
s=1

wrs sinαrx1 sinβsx2,

αr = πr/a,βs = πs/a satisfy the following alternative boundary conditions for se-

lected laminated plates:

• Simply supported boundary conditions, Type 1

x1 = 0 and x1 = a

w = 0, M1 = 0, v = 0, N1 = 0

x2 = 0 and x2 = b

w = 0, M2 = 0, u = 0, N2 = 0

The Naviers double series Type 1 for u,v and w can be used only for laminates,

whose stiffness A16,A26,B16,B26,D16,D26 are zero, i.e for symmetric or anti-

symmetric cross-ply laminates

• Simple supported boundary conditions, Type 2

x1 = 0 and x1 = a

w = 0, M1 = 0, u = 0, N6 = 0

x2 = 0 and x2 = b

w = 0, M2 = 0, v = 0, N6 = 0

The Navier double series solution Type 2 for u,v,w can be used only for laminate

stacking sequences with A16,A26,B11,B12,B22,B66,D16,D26 equal zero, i.e for

symmetric or antisymmetric angle ply laminates.

The Navier solutions can be used for calculating bending, buckling and vibration.

For buckling the edge shear force N6 and, respectively, for vibration the in-plane

inertia terms must be necessarily zero.
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8.6.1.3 Nádai-Lévy Solution

For computing the bending of specially orthotropic rectangular plates with two op-

posite edges simply supported, a single infinite series method can be used. The two

other opposite edges may have arbitrary boundary conditions (Fig. 8.6). Nádai in-

troduced for isotropic plates the solution of the plate equation in the form

w(x1,x2) = wp(x1)+wh(x1,x2), p3 = p3(x1), (8.6.29)

where wp(x1) represents the deflection of a plate strip and wh(x1,x2) is the solution

of the homogeneous plate equation (p3 = 0). wh must be chosen such that w(x1,x2)
in (8.6.29) satisfy all boundary conditions of the plate. With the solutions for wh,

suggested by Lévy, and wp, suggested by Nádai,

wh(x1,x2) =
∞

∑
r=1

fr(x2)sin αrx1, wp(x1) =
∞

∑
r=1

pr sinαrx1

D1α4
r

(8.6.30)

with αr = rπ/a and

p3(x1) =
∞

∑
r=1

pr sinαrx1, pr =
2

a

a
∫

0

p3(x1)sinαrx1dx1

the boundary conditions for x1 = 0 and x1 = a are satisfied.

Substituting (8.6.30) into the plate equation for specially orthotropic plates, Table

8.1, it follow for each term fr(x2) a differential equation of 4th order with constant

coefficients

D2
d4 fr(x2)

dx4
2

− 2D3α2
r

d2 fr(x2)

dx2
2

+D1α4
r fr(x2) = pr (8.6.31)

or

✻✲x2

x1

❄

✻

✛ ✲a

b Boundary conditions:

w(0,x2) = w(a,x2) = 0

M1(0,x2) = M1(a,x2) = 0

For the edges x2 =±b/2 may be

arbitrary b.c.

Fig. 8.6 Rectangular specially orthotropic rectangular plate with two opposite edges simply sup-

ported
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d4 fr(x2)

dx4
2

− 2D3α2
r

D2

d2 fr(x2)

dx2
2

+
D1

D2
α4

r fr(x2) =
pr

D2
(8.6.32)

The homogeneous differential equation, i.e. pr = 0, can be solved with

frh(x2) =Cr exp(λrαrx2) (8.6.33)

and yields the characteristic equation for the four roots

λ 4
r − 2D3

D2
λ 2

r +
D1

D2
= 0 =⇒ λ 2

r =
D3

D2
±

√

(

D3

D2

)2

− D1

D2
(8.6.34)

In the case of isotropic plates it follows with D1 = D2 = D3 = D there are repeated

roots ±1.

For specially orthotropic laminated plates the form of frh(x2) depends on the

character of the roots of the algebraic equation of 4th order. There are three different

sets of roots:

1. (D3/D2)
2 > (D1/D2): In this case (8.6.34) leads to four real and different roots

λ1/2 =±δ1,λ3/4 =±δ2,δ1,δ2 > 0,

frh(x2) = Ar coshδ1αrx2 +Br sinhδ1αrx2

+ Cr coshδ2αrx2 +Dr sinhδ2αrx2
(8.6.35)

2. (D3/D2)
2 = (D1/D2): In this case (8.6.34) leads to four real and equal roots

λ1/2 =+δ ,λ3/4 =−δ ,δ > 0,

frh(x2) = (Ar +Brx2)coshδαrx2 +(Cr +Drx2)sinhδαrx2 (8.6.36)

3. (D3/D2)
2 < (D1/D2): In this case the roots are complex

λ1/2 = δ1 ± iδ2,λ3/4 =−δ1 ± iδ2,δ1,δ2 > 0,

frh(x2) = (Ar cosδ2αrx2 +Br sinhδ2αrx2)coshδ1αrx2

+ (Cr cosδ1αrx2 +Dr sinδ1αrx2)sinhδ1αrx2
(8.6.37)

For a given plate for which materials and fibre orientations have been specified only,

one of the three cases exists. However in the design problem, trying to find the best

variant, more than one case may be involved with the consequence of determin-

ing not just four constants Ar,Br,Cr,Dr, but eight or all twelve to calculate which

construction is optimal for the design.

Concerning the particular solution, it is noted that the lateral load may be at most

linear in x2 too, i.e p3(x1,x2) = p3(x1)q(x2) with q at most linear in x2. The solution

wp in (8.6.29) is then replaced by

wp(x1,x2) = q(x2)
∞

∑
r=1

pr sinαrx1

D1α4
r

sinαrx1 (8.6.38)
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With the solution w(x1,x2) = wh(x1,x2) + wp(x1,x2) the stress resultants and

stresses can be calculated in the usual way.

The Navier and Nádai-Lévy solution method can be also applied to eigenvalue

problems. We assume, for instance, that the vibration mode shapes of a laminated

plate with specially orthotropic behavior, which is simply supported at all four

edges, is identical to an isotropic plate. We choose

w(x1,x2, t) =
∞

∑
r=1

∞

∑
s=1

wrs sinαrx1 sinαsx2 sinωt (8.6.39)

to represent the expected harmonic oscillation and to satisfy all boundary conditions.

Substituting the expression (8.6.39) into (8.2.16) with p3 ≡ 0 yields

[D1α4
r + 2D3α2

r α2
s +D2α4

s −ρω2]wrs = 0 (8.6.40)

A non-zero value of wrs, i.e. a non-trivial solution, is obtained only if the expression

in the brackets is zero, hence we can find the equation for the natural frequencies

ω2
rs =

π4

ρh

[

D1

( r

a

)4
+ 2D3

( r

a

)2( s

a

)2
+D2

( s

a

)4
]

(8.6.41)

The fundamental frequency corresponds to r = s = 1 and is given by

ω2
11 =

π4

ρha4

[

D1 + 2D3

(a

b

)2

+D2

(a

b

)4
]

(8.6.42)

Note that the maximum amplitude wrs cannot be determined, only the vibration

mode shapes are given by (8.6.39). In the case of an isotropic plate the natural

frequencies are with D1 = D2 = D3 = D

ω2
rs = krs

π2

a2

√

D

ρh
, krs =

[

r2 + s2
(a

b

)2
]

(8.6.43)

If we consider a buckling problem, e.g. a specially orthotropic laminated plate sim-

ply supported at all edges with a biaxial compression N1 and N2, it follows from

(8.2.19) that

D1
∂ 4w

∂x4
1

+ 2D3
∂ 4w

∂x2
1∂x2

2

+D2
∂ 4w

∂x4
2

= N1
∂ 2w

∂x2
1

+N2
∂ 2w

∂x2
2

(8.6.44)

The Navier solution method yields with (8.6.39)

π2wrs[D1r4 + 2D3r2s2γ2 +D2s4γ4] =−wrs[N1r2 +N2s2γ2]a2 (8.6.45)

with γ = a/b. A non-zero solution of the buckling problem (wrs 6= 0) leads to
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N1r2 +N2s2γ2 =−π2

a2
[D1r4 + 2D3r2s2γ2 +D2s4γ4] (8.6.46)

We consider the example of uniform compression N1 =−N and N2 =−κN, where

the boundary force N is positive. Equation (8.6.46) yields

N =
π2(D1r4 + 2D3r2s2γ2 +D2s4γ4)

a2(r2 +κs2γ2)

The critical buckling load Ncr corresponds to the lowest value of N. If κ = 0 we

have the case of uniaxial compression and the buckling equation simplifies to

N =
π2

a2r2
(D1r4 + 2D3r2s2γ2 +D2s4γ4)

For a given r, the smallest value of N is obtained for s = 1, because s appears only

in the numerator. To determine which r provides the smallest value Ncr is not simple

and depends on the stiffness D1,D2,D3, the length-to-width ratio γ = a/b and r.

However, for a given plate it can be easily determined numerically. Summarizing

the discussion of the classical laminate theory applied to laminate plates we can

formulate the following conclusions:

• Specially orthotropic laminate plates can be analyzed with the help of the Navier

solution or the Nádai-Lévy solution of the theory of isotropic Kirchhoff’s plates,

if all or two opposite plate edges are simply supported. These solution methods

can be applied to plate bending, buckling and vibration.

• For more general boundary conditions specially orthotropic plates may be solved

analytically with the help of the variational approximate solutions method of

Rayleigh-Ritz or in a more generalized way based on a variational method of

Kantorovich.

• Plates with extensional-bending couplings should be solved numerically, e.g.

with the help of the finite element method, Chap. 11. Note that in special cases

antisymmetric cross-ply respectively symmetric and antisymmetric angle-ply

laminates can be analyzed analytically with Navier‘s solution method.

In this section we illustrated detailed analytical solutions for specially orthotropic

laminates which can predict ”exact” values of deflections, natural frequencies of vi-

bration and critical buckling loads. But even the ”exact” solutions become approxi-

mate because of the truncation of the infinite series solutions or round-off errors in

the solution of nonlinear algebraic equations, etc. However these solutions help one

to understand, at least qualitatively, the mechanical behavior of laminates. Many

laminates with certain fibre orientations have decreasing values of the coefficients

D16,D26 for bending-torsion coupling and they can be analyzed with the help of the

solution methods for specially orthotropic plates.
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8.6.2 Shear Deformation Laminate Theory

The analysis of laminated rectangular plates including transverse shear deforma-

tions is much more complicated than in the frame of classical laminate theory. Also

for plate analysis including shear deformations the at least complicated problem is

cylindrical bending, i.e one-dimensional formulations for plate strips.

Unlike to classical plate strips equations only symmetric and unsymmetric cross-

ply laminates can be handled in a unique manner. In the case of two-dimensional

plate equations we restrict the developments of analytical solutions for bending,

buckling and vibrations analogous to Eqs. (8.3.6) - (8.3.8) to midplane symmetric

cross-ply plates with all Bi j = 0 and additional A16 = A26 = D16 = D26 = 0,A45 = 0.

8.6.2.1 Plate Strip

Consider first the cylindrical bending for the plate strip with an infinite length in

the x2-direction and uniformly supported edges x1 = 0,x1 = a, subjected to a load

p3 = p(x1). If we restrict the considerations to cross-ply laminated strips the gov-

erning strip equations follow with A16 = A26 = 0,B16 = B26 = 0, D16 = D26 = 0,

A45 = 0 and result in a cylindrical deflected middle surface with v = 0,ψ2 = 0,

u = u(x1),ψ1 = ψ1(x1),w = w(x1) from (8.3.4) as

A11
d2u

dx2
1

+B11
d2ψ1

dx2
1

= 0,

B11
d2u

dx2
1

+D11
d2ψ1

dx2
1

− ks
55A55

(

ψ1 +
dw

dx1

)

= 0,

ks
55A55

(

dψ1

dx1
+

d2w

dx2
1

)

+ p3(x1) = 0

(8.6.47)

The stress resultants Ni(x)1,Mi(x1), i = 1,2,6 and Q j, j = 1,2 are with (8.3.2) and

(8.3.6)

N1(x1) = A11
du

dx1
+B11

dψ1

dx1
,

N2(x1) = A12
du

dx1
+B12

dψ1

dx1
,

N6(x1) = 0,

M1(x1) = B11
du

dx1
+D11

dψ1

dx1
,

M2(x1) = B12
du

dx1
+D12

dψ1

dx1
,

M6(x1) = 0,

Q1(x1) = ks
55A55

(

ψ1 +
dw

dx1

)

,

Q2(x1) = 0

(8.6.48)
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The three coupled differential equations for u,w and ψ1 can be reduced to one un-

coupled differential equation for ψ1. The first equation yields

d2u

dx2
1

=−B11

A11

d2ψ1

dx2
1

,
d3u

dx3
1

=−B11

A11

d3ψ1

dx3
1

(8.6.49)

Differentiating the second equation and substituting the equation above result in

−B2
11

A11

d3ψ1

dx3
1

+D11
d3ψ1

dx3
1

− ks
55A55

(

dψ1

dx1
+

d2w

dx2
1

)

= 0

or with

(

D11 −
B2

11

A11

)

= DR
11

ks
55A55

(

dψ1

dx1
+

d2w

dx2
1

)

= DR
11

d3ψ1

dx3
1

(8.6.50)

Substituting Eq. (8.6.50) in the third equation (8.6.47) yield an uncoupled equation

for ψ1(x1)

DR
11

d3ψ1

dx3
1

=−p3 (8.6.51)

The uncoupled equations for u(x1) and w(x1) follow then as

d2u

dx2
1

=−A11

B11

d2ψ1

dx2
1

,
dw

dx1
=−ψ1 +

DR
11

ks
55A55

d2ψ1

dx2
1

(8.6.52)

The three uncoupled equations can be simple integrated

DR
11ψ1(x1) = −

∫ ∫ ∫

p3(x1)dx1dx1dx1 +C1
x2

1

2
+C2x1 +C3,

w(x1) =
1

DR
11

[

∫ ∫ ∫ ∫

p3(x1)dx1dx1dx1dx1 +C1
x3

1

6
+C2

x2
1

2

+ C3x1 +C4

]

− 1

ks
55A55

[

∫ ∫

p3(x1)dx1dx1 +C1x1

]

= wB(x1)+wS(x1),

u(x1) = −A11

B11

1

DR
11

[

∫ ∫ ∫

p3(x1)dx1dx1dx1 +C1x1 +C5

]

(8.6.53)

Thus the general analytical solutions for unsymmetric cross-ply laminated strips

are calculated. For symmetrical cross-ply laminated strips the equations yield

DR
11 = D11 and A11u′′(x1) = 0. Restricting to symmetrical cross-ply laminated

strips analytical solutions for buckling or vibrations can be developed analogous to

Timoshenko’s beams or to the classical strip problems.

For a buckling load N1(x1) =−N0 follow with p3 = 0
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D11
d2ψ1

dx2
1

− ks
55A55

(

ψ1 +
dw

dx1

)

= 0,

ks
55A55

(

dψ1

dx1
+

d2w

dx2
1

)

+N0
d2w

dx1
= 0

(8.6.54)

The equations can be uncoupled. With

(

dψ1

dx1
+

d2w

dx2
1

)

=
D11

ks
55A55

d3ψ1

dx3
1

, ks
55A55

d3ψ1

dx3
1

=−ks
55A55

d4w

dx4
1

−N0
d2w

dx1

one obtains analogous to Eq. (7.3.23)

D11

(

1− N0

ks
55A55

)

d4w

dx4
1

+N0
d2w

dx1
= 0 (8.6.55)

The general solution for the eigenvalue problem (8.6.55) follows with

w(x1) =Ceλ x1 (8.6.56)

and the characteristic equation

D11

(

1− N0

ks
55A55

)

λ 4 +N0λ 2 = 0 or D11λ 4 + k2λ 2 = 0 (8.6.57)

with the solutions

λ1/2 =±ik, λ3/4 = 0

as

w(x1) =C1 sinkx1 +C2 coskx1 +C3x1 +C4 (8.6.58)

If we assume, e.g. simply supported edges x1(0) = 0,x1(a), follow with

w(0) = w(a) = w′′(0) = w′′(a) = 0 the free coefficients C2 = C3 = C4 = 0

and C1 sinka = 0. If C1 6= 0 follow with sinka = 0 the solution k = mπ/a = αm

(m = 1,2, . . .) and k2 = α2
m and thus

N0

D11

(

1− N0

ks
55A55

) = α2
m, N0 =

D11ks
55A55α2

m

D11α2
m + ks

55A55

The critical buckling load corresponds to the smallest value of N0 which is obtained

for m = 1

Ncr =
D11ks

55A55π2

D11π2 + ks
55A55a2

=
π2D11

a2

1

1+
π2D11

a2ks
55A55

(8.6.59)

It can be seen that analogous to the Timoshenko’s beam, Sect. 7.3, the including of

shear deformations decreases the buckling loads.
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The free vibrations equations of the Timoshenko’s beams were also considered

in Sect. 7.3. For symmetric cross-ply laminated plate strips we obtain comparable

equations

D11
d2ψ1

dx2
1

− ks
55A55

(

ψ1 +
dw

dx1

)

= ρ2
∂ 2ψ

∂ t2
,

ks
55A55

(

dψ1

dx1
+

d2w

dx2
1

)

= ρ0
∂ 2w

∂ t2

(8.6.60)

ρ0 and ρ2 were defined as

ρ0 =
n

∑
k=1

ρ (k)h(k), ρ2 =
1

3

n

∑
k=1

ρ (k)

(

x
(k)
3

3
− x

(k−1)
3

3
)

and the terms involving ρ0 and ρ2 are the translatory and the rotatory inertia terms.

ψ1 and w are functions of x1 and t and thus we have partial derivatives. If we assume

again both strip edges simply supported the analytical solution follow with

w(x1, t) = C1me−iωmt sin
mπx1

a
, w(0, t) = w(a, t) = 0,

ψ1(x1, t) = C2me−iωmt cos
mπx1

a
,

∂ψ1(0, t)

∂x1
=

∂ψ1(a, t)

∂x1
= 0

(8.6.61)

Substituting these solution functions into the vibration equations (8.6.60) follow

[

D11α2
m + ks

55A55 −ρ2ω2
m ks

55A55αm

ks
55A55αm ks

55A55α2
m −ρ0ω2

m

][

C2m

C1m

]

=

[

0

0

]

The nontrivial solution of the homogeneous algebraic equation yields the eigenfre-

quencies ωm

∣

∣

∣

∣

D11α2
m + ks

55A55 −ρ2ω2
m ks

55A55αm

ks
55A55αm ks

55A55α2
m −ρ0ω2

m

∣

∣

∣

∣

= 0 (8.6.62)

or

ρ0ρ2ω4
m − (D11ρ0αm + ks

55A55ρ0 + ks
55A55ρ2α2

m)
2ω2

m +D11ks
55A55α4

m = 0

Aω4
m −Bω2

m+C = 0, ω2
m =

B

2A
± 1

2A

√

B2 − 4A2C

The general solution for the vibration equations can be formulated for arbitrary

boundary conditions. For harmonic oscillations we write

w(x1, t) = w(x1)e
iωt , ψ1(x1, t) = ψ1(x1)e

iωt (8.6.63)

Substituting w(x1, t) and ψ1(x1, t) in the coupled partial differential equations

(8.6.60) yield
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D11
d2ψ1(x1)

dx2
1

− ks
55A55

(

ψ1 +
dw(x1)

dx1

)

+ρ2ω2ψ(x1) = 0,

ks
55A55

(

dψ1(x1)

dx1
+

d2w(x1)

dx2
1

)

+ρ0ω2w(x1) = 0

(8.6.64)

These both equations can be uncoupled. With

ks
55A55

dψ1(x1)

dx1
=−ρ0ω2w(x1)− ks

55A55
d2w(x1)

dx1

and

D11
d3ψ1(x1)

dx3
1

− ks
55A55

d2w(x1)

dx2
1

− ks
55A55

dψ1(x1)

dx1
−ρ2ω2 dψ1(x1)

dx1
= 0

follow

D11
d4w(x1)

dx4
1

+

(

D11ρ0

ks
55A55

+ρ2

)

ω2 d2w(x1)

dx2
1

−
(

1− ρ2ω2

ks
55A55

)

ρ0ω2w(x1) = 0

or

a
d4w(x1)

dx4
1

+ b
d2w(x1)

dx2
1

− cw(x1) = 0 (8.6.65)

The general solution can be derived as

w(x1) =C1 sinλ1x1 +C2 cosλ2x1 +C3 sinhλ3x1 +C4 coshλ4x1 (8.6.66)

The λi are the roots of the characteristic algebraic equation of (8.6.65). The deriva-

tions above demonstrated that for any boundary conditions an analytical solution

is possible. Unlike to the classical theory we restricted the considerations in the

frame of the shear deformation theory to cross-ply laminated strips. Summarizing

the derivations we can draw the following conclusions:

• Cylindrical bending yields simple analytical solutions for unsymmetrical and

symmetrical cross-ply laminated plate strips.

• Restricting to symmetrical laminated cross-ply plate strips we can obtain ana-

lytical solutions for buckling and vibrations problems, but for general boundary

conditions the analytical solution can be with difficulty.

8.6.2.2 Navier Solution

Navier’s double series solution can be used also in the frame of the shear deforma-

tions plate theory. Analogous to Sect. 8.6.1 double series solutions can be obtain for

symmetric and antisymmetric cross-ply and angle-ply laminates with special types

of simply supported boundary conditions. In the interest of brevity the discussion
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is limited here to symmetrical laminated cross-ply plates, i.e. specially orthotropic

plates. The in-plane and out-of-plane displacements are then uncoupled.

Rectangular specially orthotropic plates may be simply supported (hard hinged

support) on all four edges.

x1 = 0, x1 = a : w = 0, M1 = 0 respectively
∂ψ1

∂x1
= 0, ψ2 = 0,

x2 = 0, x2 = b : w = 0, M2 = 0 respectively
∂ψ2

∂x2
= 0, ψ1 = 0

(8.6.67)

The boundary conditions can be satisfied by the following expressions:

w(x1,x2) =
∞

∑
r=1

∞

∑
s=1

wrs sinαrx1 sinβsx2,

ψ1(x1,x2) =
∞

∑
r=1

∞

∑
s=1

ψ1rs cosαrx1 sinβsx2, αr =
rπ

a
, βs =

sπ

b
,

ψ2(x1,x2) =
∞

∑
r=1

∞

∑
s=1

ψ2rs sinαrx1 cosβsx2

(8.6.68)

The mechanical loading p3(x1,x2) can be also expanded in double Fourier sine se-

ries

p3(x1,x2) =
∞

∑
r=1

∞

∑
s=1

prs sinαrx1 sinβsx2,

prs =
4

ab

a
∫

0

b
∫

0

p3(x1,x2)sin αrx1 sinβsx2dx1dx2

(8.6.69)

Now the Navier solution method can be extended to Mindlin’s plates with all edges

simply supported, but the solution is more complex than for Kirchhoff’s plates. Sub-

stituting the expression (8.6.68) and (8.6.69) into the plate differential equations

(8.3.8) gives




L11 L12 L13

L12 L22 L23

L13 L23 L33









ψ1rs

ψ2rs

wrs



=





0

0

prs



 (8.6.70)

with

L11 = D11α2
r +D66β 2

s + ks
55A55, L12 = (D12 +D66)αrβs, L13 = ks

55A55αr,
L22 = D66α2

r +D22β 2
s + ks

44A44, L33 = ks
55A55α2

r + ks
44A44β 2

s , L33 = ks
44A44βs

(8.6.71)

Solving the Eqs. (8.6.65), one obtains

ψ1rs =
L12L23 −L22L13

Det(Li j)
prs, ψ2rs =

L12L13 −L11L23

Det(Li j)
prs, wrs =

L11L22 −L2
12

Det(Li j)
prs

(8.6.72)

Det(Li j) is the determinant of the matrix in (8.6.65).
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If the three kinematic values w(x1,x2),ψ1(x1,x2),ψ2(x1,x2) are calculated the

curvatures κ1,κ2 and κ6 may be obtained and the stresses in each lamina follow

from (8.3.3) to




σ1

σ2

σ6





(k)

= x3





Q11 Q12 0

Q12 Q22 0

0 0 Q66





(k)



κ1

κ2

κ6



 ,

[

σ5

σ4

](k)

=

[

C55 0

0 C44

](k)







ψ1 +
∂w

∂x1

ψ2 +
∂w

∂x2







(8.6.73)

In a analogous manner natural vibrations and buckling loads can be calculated for

rectangular plates with all edges hard hinged supported.

8.6.2.3 Nádai-Lévy Solution

The Nádai-Lévy solution method can also be used to develop analytical solutions for

rectangular plates with special layer stacking and boundary conditions, respectively,

but the solution procedure is more complicated than in the frame of classical plate

theory. We do without detailed considerations and recommend approximate analyt-

ical solutions or numerical methods to analyze the behavior of general laminated

rectangular plates including shear deformations and supported by any combination

of clamped, hinged or free edges.

Summarizing the discussion of analytical solutions for plates including trans-

verse shear deformations one can formulate following conclusion

• Analytical solutions for symmetrical and unsymmetrical laminated plates can be

derived for cylindrical bending, buckling and vibration.

• Navier’s double series solutions can be simple derived for specially orthotropic

plates. Navier’s solution method can be also applied to symmetric or antisym-

metric cross-ply and angle-ply laminates, but the solution time needed is rather

high.

• Ritz’s, Galerkin’s or Kantorovich’s methods are suited to analyze general lami-

nated rectangular plates with general boundary conditions.

• Plates with general geometry or with cut outs etc. should be analyzed by numer-

ical methods

8.7 Problems

Exercise 8.1. A plate strip has the width a in x1-direction and is infinitely long in

the x2-direction. The strip is loaded transversely by a uniformly distributed load

p0 and simply supported at x1 = 0,x1 = a. Calculate the deflection w, the resultant

moments M1,M2,M6 and the stresses σ1,σ2,σ6
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1. for a symmetrical four layer plate [0/90/90/0],
2. for a unsymmetrical four layer plate [0/0/90/90]

Solution 8.1. The solutions are presented for both stacking sequences separately.

1. The plate strip is a symmetric cross-ply laminate, i.e. Bi j = 0, D16 = D26 = 0.

The governing differential equations are

d2M1

dx2
1

=−p0,
dM1

dx1
= Q1,

D11
d2w

dx2
1

=−M1, D12
d2w

dx2
1

=−M2, M6 = 0,

D11
d4w

dx4
1

= p0

The vertical deflection w = w(x1) is

w(x1) =
1

D11

[

p0
x4

1

24
+C1

x3
1

6
+C2

x2
1

2
+C3x1 +C4

]

Satisfying the boundary conditions

w(0) = 0, w(a) = 0, M1(0) = 0, M1(a) = 0

yield the unknown constants C1 - C4

C1 =−q0a

2
, C2 = 0,C3 =

q0a3

24
, C4 = 0

and as result the complete solution for the deflection w(x1)

w(x1) =
p0a4

24D11

[

(x1

a

)4

− 2
(x1

a

)3

+
(x1

a

)

]

The moment resultants follow as

M1(x1) = − p0a2

2

[

(x1

a

)2

− x1

a

]

,

M2(x1) =
D12

D11
M1(x1) =

D12

D11

p0a2

2

[

(x1

a

)2

− x1

a

]

,

M6(x1) = 0

The strains and stresses at any point can be determined as follow

κ1 =−d2w

dx1
=

p0a2

2

[

x1

a
−
(x1

a

)2
]

, κ2 = 0, κ6 = 0,

ε1 = x3κ1 = x3
p0a2

2

[

x1

a
−
(x1

a

)2
]

, ε2 = 0, ε6 = 0
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The stresses in each layer are

00 − layers : σ1 = σ ′
1 = x3

Q11

D11

p0a2

8

[

x1

a
−
(x1

a

)2
]

,

σ2 = σ ′
2 = x3

Q12

D11

p0a2

8

[

x1

a
−
(x1

a

)2
]

,

σ6 = 0,

900 − layers : σ2 = σ ′
1 = x3

Q11

D11

p0a2

8

[

x1

a
−
(x1

a

)2
]

,

σ1 = σ ′
2 = x3

Q12

D11

p0a2

8

[

x1

a
−
(x1

a

)2
]

,

σ6 = 0

2. The plate strip is an unsymmetric cross-ply laminate, i.e. A16 = A26 = 0,B16 =
B26 = 0,D16 = D26 = 0. The governing equations follow from Eqs. (8.2.6) and

(8.2.12)

A11
d2u

dx2
1

−B11
d3w

dx3
1

= 0, A66
d2v

dx2
1

= 0, D11
d4w

dx4
1

−B11
d3u

dx3
1

= p3,

N1 = A11
du

dx1
−B11

d2w

dx2
1

, N2 = A12
du

dx1
−B12

d2w

dx2
1

, N6 = 0,

M1 = B11
du

dx1
−D11

d2w

dx2
1

, M2 = B12
du

dx1
−D12

d2w

dx2
1

, M6 = 0

The equilibrium equations for the stress resultants are

dN1

dx1
= 0,

d2M1

dx2
1

=−p3

The displacement u(x1) and w(x1) are coupled. Substitute

A11
d3u

dx3
1

= B11
d4w

dx4
1

into the second differential equation yield

(

D11 −
B2

11

A11

)

d4w

dx4
= p3

or with

D11

(

1− B2
11

A11D11

)

= DR
11, p3 = p0 ⇒ d4w

dx4
1

=
p0

DR
11

For the displacement u(x1) follows
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d3u

dx3
1

=
B11

A11

d4w

dx4
1

or with

A11

(

1− B2
11

A11D11

)

= AR
11,

d4w

dx4
1

=
p0

DR
11

⇒ d3u

dx3
1

=
B11

D11

p0

AR
11

These differential equations can be simple integrated

w(x1) =
1

DR
11

[

q0x4
1

24
+C1

x3
1

6
+C2

x2
1

2
+C3x1 +C4

]

u(x1) =
B11

D11AR
11

[

q0x3
1

6
+C1

x2
1

2
+C5x1 +C6

]

Note that with
d2u

dx2
1

=
B11

A11

d3w

dx3
1

in both equations there are equal constants C1. The boundary conditions for w

and M1 are identically to case 1.

The in-plane boundary conditions are formulated for a fixed-free support, i.e.

u(0) = 0,N1(a) = 0. The boundary conditions lead to the six unknown constants

C1 - C6 and the solution functions are

u(x1) =
B11

D11AR
11

p0a3

12

[

2
(x1

a

)3

−
(x1

a

)2
]

w(x1) =
1

DR
11

p0a4

24

[

(x1

a

)4

− 2
(x1

a

)3

+
x1

a

]

The stress and moment resultants follow as

N1(x1) = N6(x1) = 0,

N2(x1) =

(

A12B11

D11AR
11

− B12

DR
11

)

p0a2

2

[

(x1

a

)2
− x1

a

]

,

M1(x1) =− p0a2

2

[

(x1

a

)2
− x1

a

]

,

M2(x1) =

(

B2
11 −D12A11

A11

)

p0a2

2DR
11

[

(x1

a

)2

− x1

a

]

,

M6(x1) = 0

It is interesting to compare the results of case 1. and case 2. The forms of w(x1)
are for the two cases identical except for the magnitude. With
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1

DR
11

=
1

D11

(

1− B2
11

A11D11

) >
1

D11

the deflection of the unsymmetric laminate strip will be greater than the deflec-

tion of the symmetric laminate. Note that there is no force resultant N1(x1) in the

unsymmetric case but it is very interesting that there is a force resultant N2 as a

function of x1, but N2(0) = N2(a) = 0. With

ε1 =
du

dx1
=

B11

D11AR
11

p0a2

2

[

(x1

a

)2

− x1

a

]

, ε2 = ε6 = 0,

κ1 = − d2

dx2
1

= − p0a2

2DR
11

[

(x1

a

)2

− x1

a

]

, κ2 = κ6 = 0

follow the strains ε1,ε2 and the stresses σ1,σ2 for the 00 and 900-layers in a

similar manner like case 1. With B11 = B12 = 0 case 2. yields the symmetrical

case 1.

Exercise 8.2. A plate strip of the width a with a symmetrical cross-ply stacking is

subjected a downward line load q0 at x1 = a/2. Both edges of the strip are fixed.

Calculate the maximum deflection wmax using the shear deformation theory.

Solution 8.2. With (8.6.51) and (8.6.52) follow

DR
11 ≡ D11, D11

d3ψ1

dx3
1

= q0δ

(

x1 −
1

2
a

)

,
dw

dx1
=−ψ1 +

D11

ks
55A55

d2ψ1

dx2
1

with

δ

(

x1 −
1

2
a

)

=

{

0 x1 6= a/2

1 x1 = a/2
,

∫

δ

(

x1 −
1

2
a

)

dx1 =

〈

x1 −
1

2
a

〉0

< x1 − e > is Föppel’s5 bracket symbol:

< x1 − e >n=

{

0 x1 < e

(x1 − e)n x1 > e
,

d

dx1
< x1 − e >n= n < x1 − e >n−1,

∫

< x1 − e >n dx1 =
1

1+ n
< x1 − e >n+1 +C

With (8.6.53) the analytical solutions for ψ1 and w are given

5 August Otto Föppl (∗25 January 1854 Groß-Umstadt – †12 August 1924 Ammerlan) - professor

of engineering mechanics and graphical statics
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D11ψ1(x1) =
1

2
q0 < x1 −

1

2
a >2 +C1

x2
1

2
+C2x1 +C3,

w(x1) =
1

D11

[

1

6
q0 < x1 −

1

2
a >3 +C1

x3
1

6
+C2

x2
1

2
+C3x1 +C4

]

− 1

ks
55A55

[q0 < x1 −
1

2
a >+C1x1]

ψ1(0) = 0 : C3 = 0,
w(0) = 0 : C4 = 0,

ψ1(a) = 0 :
1

2
q0

(

1

2
a

)2

+C1

(

a2

2

)

+C2a = 0,

w(a) = 0 :
1

6
q0

(

1

2
a

)3

+C1

(

a3

6

)

+C2
a2

2
− D11

ks
55A55

(

q0
a

2
+C1a

)

= 0,

C1 =
q0

2
, C2 =−q0a

8
,

ψ1(x1) =
q0a2

8D11

[

(x1

a

)2

− x1

a

]

,

w(x1) = − q0a3

48D11

[

3
(x1

a

)2

− 4
(x1

a

)3
]

− q0a

2ks
55A55

x1

a
= wB +wS,

wmax =
q0a3

192D11
+

q0a

4ks
55A55

The classical plate theory yields with ks
55A55 → ∞ the known value

wmax =
q0a3

192D11

Exercise 8.3 (Bending of a quadratic sandwich plate). A quadratic sandwich

plate has a symmetric cross-section. The plate properties are a = b = 1 m,

hf = 0,2875 10−3 m, hc = 24,71 10−3 m, E f = 1,42 105 MPa, ν f = 0,3,

Gf = E f/2(1 + ν f), Gc = 22 MPa. The cover sheet and the core material are

isotropic, hf ≪ hc. The transverse uniform distributed load is p = 0,05 MPa. The

boundary conditions are hard hinged support for all boundaries. Calculate the max-

imum flexural displacement wmax with the help of a one-term Ritz approximation.

Solution 8.3. The elastic potential Π(w,ψ1,ψ2) of a symmetric and special or-

thotropic Mindlin’s plate is given by (8.3.18). For stiff thin cover sheets and a core

which transmits only transverse shear stresses the bending and shear stiffness for

isotropic face and core materials are (8.4.1)

Di j = hcC
( f )
i j = hc

[

Qf
i jh

( f )x̄
( f )
3

]

= hchf 1

2

(

hc + hf
)

Q
( f )
i j ,

((i j) = (11),(22),(66),(12)) with

Q11 =
E f

1− (ν f)2
= Q22, Q12 =

ν fE f

1− (ν f)2
, Q66 = Gf
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and

AS
i j = hcCc

i j = hcGc,(i j) = (44),(55)

Π(w,ψ1,ψ2) =

∫

A

{

1

2
hchf(hc + hf)

[

Q11

(

∂ψ1

∂x1

)2

+ 2Q12

(

∂ψ1

∂x1

∂ψ2

∂x2

)

+ Q22

(

∂ψ2

∂x2

)2

+Q66

(

∂ψ1

∂x2
+

∂ψ2

∂x1

)2
]

+ kshcGc

[

(

ψ1 +
∂w

∂x1

)2

+

(

ψ2 +
∂w

∂x2

)2
]}

dx1dx2

−
∫

pwdx1dx2

The one-term approximations

w(x1,x2) = a1 sin
(πx1

a

)

sin
(πx2

a

)

,

ψ1(x1,x2) = a2 cos
(πx1

a

)

sin
(πx2

a

)

,

ψ2(x1,x2) = a3 sin
(πx1

a

)

cos
(πx2

a

)

satisfy the boundary conditions. Substituting these approximative functions into Π
follow Π̃ = Π̃(a1,a2,a3) and the conditions for a minimum of Π , i.e. ∂Π̃/∂a1 = 0,

i = 1,2,3 yield the equations for the undetermined coefficients ai

KKKaaa = qqq

with

aaaT = [a1 a2 a3], qqqT = [16p/π2 0 0]

and

KKK =













2hcGcλ 2 hcGcλ hcGcλ

hcGcλ hchfx̄f
3(Q11 +Q66)λ

2 + hcGc hchfx̄f
3(Q12 +Q66)λ

2

hcGcλ hchfx̄f
3(Q12 +Q66)λ

2 hchfx̄f
3(Q22 +Q66)λ

2 + hcGc













with λ = π/a. The solution of the system of three linear equations leads to

a1 = 0,0222,a2 = a3 = −0,046 and the maximum displacement follows to

wmax = w(x1 = a/2,x2 = a/2) = a1 = 2,22 cm.

Exercise 8.4. A simply supported laminate plate [00/900/00] has the following ma-

terial properties: Em = 3.4 GPa, Ef = 110 GPa, νm = 0.35,νf = 0.22, vm = 0.4,

vf ≡ φ = 0.6, Gm = Em/2(1+ νm) = 1.2593 GPa, Gf = Ef/2(1+ νf) = 45.0820

GPa, h(1) = h(2) = h(3) = 5 mm, a = b = 1 m.
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1. Formulate the equation for the bending surface for a lateral unit load F = 1 N

at x1 = ξ1,x2 = ξ2 using the classical laminate theory.

2. Formulate the equation for the natural frequencies of the laminate plate using the

classical plate theory and neglecting the rotatory inertia.

Solution 8.4. The solutions for both cases can be presented as follows.

1. The stacking sequence of the layers yields a symmetric cross-ply plate which is

specially orthotropic (Table 8.1) Bi j = 0,D16 = D26 = 0

D11
∂ 4w

∂x4
1

+ 2(D12 + 2D66)
∂ 4w

∂x2
1∂x2

2

+D22
∂ 4w

∂x2
2

= p3(x1,x2)

The boundary conditions are (Fig. 8.5)

w(0,x2) = w(a,x2) = w(x1,0) = w(x1,b) = 0,

M1(0,x2) = M1(a,x2) = M2(x1,0) = M2(x1,b) = 0

The Navier’s double infinite series solution (8.6.21) - (8.6.23) leads to

w(x1,x2) =
∞

∑
r=1

∞

∑
s=1

prs

drs

sinαrx1 sinβsx2

with

drs = [D11α4
r + 2(D12 + 2D66)α

2
r β 2

s +D22β 4
s ], αr =

rπ

a
, βs =

sπ

b
,

prs =
4F

ab
sinαrξ1 sinβsξ2

With (section 2.2.1)

E ′
1 = Efvf +Emvm = 67,36 GPa, E ′

2 =
EfEm

Efvm +Emvf
= 8,12 GPa,

G′
12 =

GfGf

Gfvm +Gmvf
= 3,0217 GPa

ν ′
12 = νfvf +νmvm = 0,272, ν ′

21 = ν ′
12E ′

2/E ′
1 = 0,0328

and (4.1.3)
Q′

11 = E ′
1/(1−ν ′

12ν ′
21) = 67,97 GPa,

Q′
22 = E ′

2/(1−ν ′
12ν ′

21) = 8,194 GPa,

Q′
12 = Q′

21 = ν ′
12Q′

22 = 2,229 GPa,

Q′
66 = G′

12 = 3,02 GPa

follow (4.2.15) the stiffness
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Di j =
1

3

3

∑
k=1

Q
(k)
i j

(

(x
(k)
3 )3 − (x

(k−1)
3 )3

)

,

Q
(1)
i j = Q

(3)
i j = Q

[00]
i j = Q′

i j, Q
(2)
i j = Q

[900]
i j , Q

(2)
11 = Q

(1)
22 ,

Q
(2)
22 = Q

(1)
11 , Q

(2)
66 = Q

(1)
66 ,

x
(0)
3 =−7,5 mm, x

(1)
3 =−2,5 mm,

x
(2)
3 = 2,5 mm, x

(3)
3 = 7,5 mm,

D11 = 18492 Nm,D22 = 2927 Nm,

D12 = D21 = 627 Nm,D66 = 849 Nm

The equation for the bending surface is

w(x1,x2) =
Fa2

π4

∞

∑
r=1

∞

∑
s=1

sinαrξ1 sinβsξ2

18492r4+ 4650r2s2 + 2927s4
sinαrx1 sinβsx2

If F = 1 N then w(x1,x2) represents the influence surface, i.e. the deflection at

(x1,x2) due to a unit load at (ξ1,ξ2). This influence function w(x1,x2;ξ1,ξ2) is

sometimes called Green’s function of the plate with all boundaries simply sup-

ported. In the more general case of a rectangular plate a 6= b the Green’s function

is

w(x1,x2;ξ1,ξ2) =
F

π4ab

∞

∑
r=1

∞

∑
s=1

sinαrξ1 sinβsξ2

drs

sinαrx1 sinβsx2

The Green’s function can be used to calculate the bending surfaces of sim-

ply supported rectangular plates with any transverse loading. With the solution

w(x1,x2) we can calculate the stress resultants M1,M2,M6,Q1,Q2 and the stresses

σ1,σ2,σ6,σ5 and σ4 using (8.6.27) and (8.6.28).

2. Using (8.6.41) the equation for the natural frequencies of a simply supported

rectangular plate is

ω2
rs =

π4

ρh

[

D11α4
r + 2(D12 + 2D66)α

2
r β 2

s +D22β 4
s

]

with

h = ∑
(k)

h(k), ρ =
1

h
∑
(k)

ρ (k)
(

x
(k)
3 − x

(k−1)
3

)

The fundamental frequency corresponds to r = s = 1 and is given by

ω2
11 =

π4

ρha4

[

D11 + 2(D12 + 2D66)
(a

b

)2

+D22

(a

b

)4
]
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For a= b= 1 m and the given material properties we find the fundamental natural

frequency

ω11 =
1593,5
√

ρh

Exercise 8.5. Consider a cylindrically orthotropic circular plate with a midplane

symmetric layer stacking under the conditions of axisymmetric loading and dis-

placements.

1. Develop the differential equations for in-plane loading. Calculate the stress re-

sultants for a solid disk (R,h,Er,Eθ ,νrθ ) loaded α) with a radial boundary force

Nr(R) = −Nro and β ) with a body force hpr = hρω2r caused by spinning the

disk about the axis with an angular velocity ω .

2. Develop the differential equations for transverse loading under the condition of

the first order shear deformation theory. Calculate the stress resultants for a solid

plate (R,h,Er,Eθ ,νrθ ) loaded by a uniform constant pressure p3(r) ≡ −p0 and

α) clamped, respectively, β ) simply supported at the boundary r = R.

Solution 8.5. With Sect. 2.1.6 we obtain x1 = xr,x2 = θ ,x3 = z, σ1 = σr,σ2 = σθ ,
σ6 =σrθ , ε1 = εr,ε2 = εθ ,ε6 = εrθ . For axisymmetric deformations of circular disks

and plates all stresses, strains and displacements are independent of θ , i.e. they are

functions of r alone and σ6 = 0,ε6 = 0.

1. For an in-plane loaded cylindrical orthotropic circular disk under the condition

of axisymmetric deformations the equilibrium, constitutive and geometric

equations are:

• Equilibrium Equations (Fig. 8.7)

With cos(π/2− dθ/2)= sin(dθ/2)≈ dθ/2 follow

Fig. 8.7 Disc element

(rdrdθ )h

x3

0

dθ
Nr

pr

Nr +dNr

Nθ
dθ

2

Nθ
dθ

2

r+dr

h

dr
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d(rNr)

dr
−Nθ + prr = 0

• Constitutive Equations

Nr = A11εr +A12εθ , Nθ = A12εr +A22εθ , Nrθ = 0

• Geometric Equations

εr =
du

dr
, εθ =

u

r
, γrθ = 0

These equations forming the following system of three ordinary differential equa-

tions
d(rNr)

dr
−Nθ =−p0r,

Nr = A11
du

dr
+A12

u

r
, Nθ = A12

du

dr
+A22

u

r

involving three unknown quantities Nr,Nθ and u. Substituting the stress resul-

tants in the equilibrium equations yield one uncoupled differential equation for

u(r)

r
d2u

dr2
+

du

dr
− 1

r
δ 2u =− rpr

A11

with δ 2 = A22/A11 or

d2u

dr2
+

1

r

du

dr
− δ 2

r2
u =− pr

A11

α) Radial boundary force

− pr

A11
= 0, Nr(R) =−Nr0, R1 = 0, R2 = R

The general solution of the differential equations follow with

u(r) =Crλ , λ =±δ

as

u(r) =C1r+δ +C2r−δ

With R1 = 0,R2 = R we obtain C2 = 0,C1 =−Nr0/[(A11δ +A12)R
δ−1] and such

Nr(r) =−Nr0

( r

R

)δ−1

, Nθ (r) =−Nr0δ
( r

R

)δ−1

Conclusion 8.1. For δ = 1 we have an isotropic disk with the well-known solu-

tion Nr = Nθ = −Nr0. For δ > 0, i.e. the circumferential stiffness exceeds the

radial stiffness, at r = 0 we have Nr = Nθ = 0, otherwise for δ < 0, i.e. the ra-
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dial stiffness exceeds the circumferential, at r = 0 we have infinitely high stress

resultants or stresses, respectively.

β ) Body force caused by rotation With pr = ρω2r we obtain the solution of the

inhomogeneous differential equations as

u(r) =C1rδ − 1

A11

ρω2

9− δ 2
r3 =C1rδ +

1

A11

ρω2

δ 2 − 9
r3

For δ = 1 follow the well-known solution

u(r) =Cr− 1−ν2

E

ρω2

8
r3

2. With Fig. 8.8 we obtain:

• Equilibrium Equations

d(rMr)

dr
−Mθ − rQr = 0,

d(rQr)

dr
+ rp3 = 0

• Constitutive Equations

Mr = D11κr +D12κθ , Mθ = D12κr +D22κθ ,

Qr = ks
55A55

(

ψr +
dw

dr

)

• Geometric Equations

κr =
dψr

dr
, κθ =

ψr

r
, γrz =

(

ψr +
dw

dr

)

Integrating the second equilibrium equation

Fig. 8.8 Plate element

(rdrdθ )h

x3

Qr

Qr +dQr

Mr

Mθ

pz

Mr +dMr

Mθ
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Qr(r) =
1

r

(

C1 −
∫

p3(r)rdr

)

and substituting Mr, Mθ and Qr in the first equilibrium equation yield

r
d2ψr

dr2
+

dψr

dr
− 1

r
δ 2

p ψr =
1

D11

(

C1 −
∫

p3rdr

)

, δ 2
p =

D22

D11

The general solution has again the form

ψr(r) =C2rδp +C3r−δp +ψp(r)

ψp(r) is the particular solution of the inhomogeneous differential equation de-

pending on the form of the loading functions p3(r). The differential equation for

the plate deflection w(r) follows with

ksA55
dw

dr
= Qr − ksA55ψr,

dw

dr
=

1

ksA55

(

C1
1

r
− 1

r

∫

p3(r)rdr

)

−C2rδp −C3r−δp +ψ0,

w(r) =
1

ksA55

(

C1 lnr−
∫

1

r

∫

p3(r)rdrdr

)

− C2
rδp+1

δp + 1
−C3

r−δp+1

1− δp

+C4 −
∫

ψpdr

For a constant pressure p3(r) =−p0 we obtain

w(r) =
1

ksA55

(

C1 lnr+
p0r2

4

)

− C2

1+ δp
r1+δp − C3

1− δp
r1−δp

+ C4 +
C1r2

2D11(δ 2
p − 1)

+
p0r4

8D11(δ 2
p − 9)

,

ψr(r) = C2rδp +C3r−δp − C1r

D11(δ 2
p − 1)

− p0r3

2D11(δ 2
p − 9)

This general solution is not valid for δp = 1 and δp = 3 because the particular

solutions ψp for theses δp-values include terms coinciding with the fundamental

solutions r and r3. Therefore, the particular solutions must be determined in an-

other form. For δp = 1, i.e. for the isotropic case, one can use ψp = Ar lnr+Br3

and for δp = 3 ψp = Ar+Br3 and one obtains the general solutions

δp = 1

w(r) =
1

ksA55

(

C1 lnr+
p0r2

4

)

− 1

2
C2r2 −C3 lnr

+ C4 −
C1r4

4D11

(

lnr− 1

2

)

+
p0r4

64D11
,

ψr(r) = C2r+C3
1

r
+C1

r ln r

2D11
+

p0r3

16D11
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δp = 3

w(r) =
1

ksA55

(

C1 lnr+
p0r2

4

)

− 1

4
C2r4 +C3

1

2r2

+ C4 −C1
r2

16D11
+

p0r4

48D11

(

lnr− 1

4

)

,

ψr(r) = C2r3 +C3
1

r3
−C1

r lnr

8D11
+

p0

12D11
r3 lnr

The constants C1,C2,C3 and C4 are determined from the boundary conditions at

the inner and outer plate edge. For solid plates with R1 = 0,R2 = R the constants

C1 and C3 must be zero, otherwise ψr and w tend to infinity at the plate center.

For δ 6= 3 the general solution for solid plates is

w(r) =
p0r2

4

[

1

ks
55A55

+
r2

2D11(δ 2
p − 9)

]

− C2

1+ δp

r1+δp +C4,

ψr(r) = C2rδp − p0r3

2D11(δ 2
p − 9)

α) Clamped solid circular plate (δp 6= 3)

The boundary conditions are ψ1(R) = 0,w(R) = 0 yield the constants C2 and C4

and the solution as

w(r) =− p0

4ksA55
(R2 − r2)+

p0

2D11(δ 2
p − 9)

[

R3−δpr1+δp

1+ δp
− r4

4
+

R4(δp − 3)

4(1+ δp)

]

β ) Simply supported solid circular plate (δp 6= 3)

We take now the boundary conditions w(R) = 0 and Mr(R) = 0 and have the

solution

w(r) = − p0

4ksA55
(R2 − r2)2

+
p0

2D11(δ 2
p − 9)

[

(3D11 +D12)R
3−δp

(δpD11 +D12)(1+ δp)
(r1+δp −R1+δp)+

1

4
(R4 − r4)

]

Note that if the transverse shear deformations are neglected we must put

ks
55A55 → ∞. In the particular case ks

55A55 → ∞ and δp = 1 follow the well-known

solutions for the classical theory of isotropic plates, i.e.

α) w(r) = − p0

64D
(R2 − r2)2 =− p0R4

64D

[

1−
( r

R

)]2

,

β ) w(r) = − p0

64D
(R2 − r2)

(

5+ν

1+ν
R2 − r2

)

= − p0R4

64D

[

1−
( r

R

)]2
[

5+ν

1+ν
−
( r

R

)2
]
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Exercise 8.6. A rectangular uniformly loaded symmetric cross-ply plate, Fig. 8.9, is

clamped at the edges x2 =±b and can be arbitrary supported at the edges x1 =±a.

The deflection w(x1,x2) may be represented in separated-variables form w(x1,x2) =
wi j(x1,x2) = fi(x1)g j(x2).

1. Formulate one-term approximate solutions using the Vlasov-Kantorovich

method, (2.2.45) - (2.2.47), based on the variation of the potential energy Π(w).
2. Demonstrate for the special case of a plate clamped at all edges the extended

Kantorovich method using the Galerkin’s equations.

Solution 8.6. The differential equation and the elastic potential energy can be for-

mulated, Table 8.1 and Eq. (8.2.24),

D1
∂ 4w

∂x4
1

+ 2D3
∂ 4w

∂x2
1∂x2

2

+D2
∂ 4w

∂x4
2

= p0,

with D1 = D11,D2 = D22,D3 = D12 + 2D66, pz = p0

Π(w) =
1

2

a
∫

−a

b
∫

−b

[

D11

(

∂ 2w

∂x2
1

)2

+D22

(

∂ 2w

∂x2
2

)2

+ 2D12
∂ 2w

∂x2
1

∂ 2w

∂x2
2

+ 4D66

(

∂ 2w

∂x1∂x2

)2

− 2p0

]

dx1dx2

The one-term approximate solution w̃(x1,x2) = wi j(x1,x2) = fi(x1)g j(x2) has an

unknown function fi(x1) and a priori chosen trial function g j(x2), which satisfy at

least the geometric boundary conditions at x2 =±b.

1. The variation δΠ of the elastic potential energy Π(w) yields

δΠ(w) =
1

2

a
∫

−a

b
∫

−b

[(

D11
∂ 2w

∂x2
1

+D12
∂ 2w

∂x2
2

)

δ

(

∂ 2w

∂x2
1

)

+

(

D12
∂ 2w

∂x2
1

+D22
∂ 2w

∂x2
2

)

δ

(

∂ 2w

∂x2
2

)

Fig. 8.9 Rectangular uni-

formly loaded plate, cross-ply

symmetrically laminated,

clamped at the longitudinal

edges x2 = ±b and arbitrary

boundary conditions at the

edges x1 =±a

✻

✲
x1

x2

✻
❄

✻

❄

b

b

✛ ✲✛ ✲
aa
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+ 4D66

(

∂ 2w

∂x1∂x2

)

δ

(

∂ 2w

∂x1∂x2

)

− p0δw

]

dx1dx2

Substituting w̃(x1,x2) = fi(x1)g j(x2) one obtains

δΠ(w) =

a
∫

−a

[

D11A f ′′i δ f ′′i +D12B( f ′′i δ fi + fiδ f ′′i )+D22C fiδ fi

+ 4D66D f ′i δ f ′i − p̄0δ fi

]

dx1

where

A =

b
∫

−b

g2
jdx2,B =

b
∫

−b

g′′j g jdx2,C =

b
∫

−b

(g′′j )
2dx2,D =

b
∫

−b

(g′j)
2dx2, p̄0 =

b
∫

−b

p0g jdx2

Integrating B by parts yield

B = g′jg j

∣

∣

∣

b

−b
−

b
∫

−b

(g′j)
2dx2 =−D

because g j(±b) = 0 for plates with clamped or simply supported edges x2 =±b.

Now we integrated by parts the term

a
∫

−a

f ′′i δ f ′′i dx1

of δΠ

a
∫

−a

f ′′i δ f ′′i dx1 =

a
∫

−a

f ′′i (δ fi)
′′dx1 = f ′′i δ f ′i

∣

∣

∣

a

−a
−

a
∫

−a

f ′′′i (δ fi)
′dx1

= f ′′i δ f ′i

∣

∣

∣

a

−a
− f ′′′i δ fi

∣

∣

∣

a

−a
+

a
∫

−a

f ′′′′i δ fidx1

and the condition δΠ = 0 yields the ordinary differential equations and the nat-

ural boundary conditions for fi(x1)

D1A f ′′′′i (x1)− 2D3D f ′′i (x1)+D2C fi(x1) = p̄0,

at x1 =±a : [D11A f ′′i (x1)−D12D fi(x1)]δ f ′i (x1) = 0,

[D11A f ′′′i (x1)−D12D f ′i (x1)+ 4D66D f ′i (x1)]δ fi(x1) = 0

If a plate edge is clamped, we have f = 0, f ′ = 0, if it is simply supported, we

have f = 0, f ′′ = 0 and if it is free, we have
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(D11A f ′′i +D12B fi) = 0, (D11A f ′′′i +D12B f ′i − 4D66B f ′i ) = 0

The differential equation for f (x1) can be written in the form

f ′′′′(x1)− 2k2
1 f ′′(x1)+ k4

2 f (x1) = kp

with

k2
1 =

DD3

AD1
, k4

2 =
CD2

AD1
, kp =

p̄0

AD1

The solutions of the differential equation are given in App. E in dependence on

k2
2 < k2

1, k2
2 = k2

1 or k2
2 > k2

1 in the form

f (x1) =
4

∑
l=1

ClΦl(x1)+ fp

with fp = p̄0/D2C. The solutions can be simplified if the problem is symmetric or

antisymmetric. The constants Cl can be calculated with the boundary conditions

at x1 =±a.

2. In the special case of all plate edges are clamped the corresponding boundary

conditions are

x1 =±a : w = 0,
∂w

∂x1
= 0, x2 =±b : w = 0,

∂w

∂x2
= 0

The one-term deflection approximation is assumed again in the form w̃(x1,x2) =
wi j(x1,x2) = fi(x1)g j(x2). The Galerkin’s procedure yields

a
∫

−a

b
∫

−b

(

D1
∂ 4wi j

∂x4
1

+ 2D3
∂4wi j

∂x2
1∂x2

2

+D2
∂4wi j

∂x4
2

− p0

)

g jdx2 = 0

and we obtain

D1





b
∫

−b

g2
jdx2





d4 fi

dx4
1

+ 2D3





b
∫

−b

d2g j

dx2
2

g jdx2





d2 fi

dx2
1

+

D2





b
∫

−b

d4g j

dx4
2

g jdx2



 fi =

b
∫

−b

p0g jdx2

Two of the integral coefficients must be integrated by parts
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b
∫

−b

d2g j

dx2
2

g jdx2 =
dg j

dx2
g j

∣

∣

∣

b

−b
−

b
∫

−b

(

dg j

dx2

)

dx2,

b
∫

−b

d4g j

dx4
2

g jdx2 =
d3g j

dx3
2

g j

∣

∣

∣

b

−b
− d2g j

dx2
2

dg j

dx2

∣

∣

∣

b

−b
+

b
∫

−b

(

d2g j

dx2
2

)2

dx2

The results can be simplified because for the clamped edges follow

g j(±b) = 0,
dg j

dx2

∣

∣

∣

±b
= 0

and we obtain the same differential equation as in 1.

D1





b
∫

−b

g2
jdx2





d4 fi

dx4
1

− 2D3





b
∫

−b

(

dg j

dx2

)2

dx2





d2 fi

dx2
1

+

D2





b
∫

−b

d2g j

dx2
2

dx2



 fi =

b
∫

−b

p0g jdx2

To improve the one-term approximative plate solution we present in a second

step now fi(x1) a priori and obtain in a similar manner a differential equation for

an unknown function g j(x2)

D2





a
∫

−a

f 2
i dx1





d4g j

dx4
2

− 2D3





a
∫

−a

(

d fi

dx1

)2

dx2





d2g j

dx2
2

+

D1





a
∫

−a

(

d2 fi

dx2
2

)2

dx1



g j =

a
∫

−a

p0 fidx1

In this way we have two ordinary differential equations of the iterative solution

procedure which can be written

D1Ag
d4 fi

dx4
1

− 2D3Dg
d2 fi

dx2
1

+D2Cg fi = p̄0g,

D2Af
d4g j

dx4
2

− 2D3Df
d2g j

dx2
2

+D1Cfg j = p̄0 f

Both equations can be rearranged in the standard form, App. E

d4 fi

dx4
1

− 2k2
1g

d2 fi

dx2
1

+ k4
2g fi = kpg,

d4g j

dx4
2

− 2k2
1 f

d2g j

dx2
2

+ k4
2 f g j = kp f

with
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k2
1g =

DgD3

AgD1
,k4

2g =
CgD2

AgD1
,kpg =

p̄0g

AgD1
,k2

1 f =
DfD3

AfD1
,k4

2 f =
CfD2

AfD1
,kp f =

p̄0 f

AfD1

The solutions of both equations are summarized in App. E and depend on the

relation between k2
2g and k2

1g or k2
2 f and k2

1 f , respectively.

The iterations start by choosing the first approximation as

w
[1]
10 = f1(x1)g1(x2), w

[2]
21 = f2(x1)g1(x2), w

[3]
22 = f2(x1)g2(x2), . . .

In the special case under consideration the first approximation is

w10(x1,x2) = f1(x1)(x
2
2 − b2)2

and satisfy the boundary conditions w = 0,∂w/∂x2 = 0,x2 = ±b. For a number

of widely used composite material we have k2
2 > k2

1. Because the problem is

symmetric we have then the simplified solution

f1(x1) =C1 coshax1 cosbx1 +C2 sinhax1 sinbx1 +
kpg

k4
2g

The constants C1,C2 can be calculated with

f1(±a) = 0,
d f1

dx1

∣

∣

∣

±a
= 0

and w
[0]
10(x1,x2) is determined. Now one can start the next step

w
[1]
11(x1,x2) = f1(x1)g1(x2)

with the function f1(x1) as the a priori trial function. The iteration steps can be

repeated until the convergence is satisfying. In the most engineering applications

w
[0]
11(x1,x2) = f1(x1)g1(x2)

can be used as satisfying closed analytical solution, i.e. w
[1]
11(x1,x2) is suitable for

engineering analysis of deflection and stresses in a clamped rectangular special

orthotropic plate with uniform lateral load and different aspect ratios.
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Chapter 9

Modelling and Analysis of Circular Cylindrical
Shells

In the previous Chaps. 7 and 8 we have considered beams and plates, i.e. one- and

two-dimensional structural elements with straight axes and plane reference surfaces.

Thin-walled laminated or sandwich shells can be also modelled as two-dimensional

structural elements but with single or double curved reference surfaces. To cover

shells of general shape a special book is necessary, because a general treatment

of shells of any geometry demands a detailed application of differential geometry

relations.

To give a brief insight into the modelling of shells only the simplest shell ge-

ometry will be selected and the following considerations are restricted to circular

cylindrical shells. The modelling and analysis of circular cylindrical shells fabri-

cated from fibre composite material, i.e. its structural theory, depends on the ra-

dius/thickness ratio R/h. For thin-walled shells, i.e. for R/h ≫ 1 (R/h > 10), either

the classical or the first order shear deformation shell theory is capable of accu-

rately predicting the shell behavior. For thick-walled shells, say R/h < 10, a three-

dimensional modelling must be used.

Each single lamina of a filamentary composite material behaves again macro-

scopically as if it were a homogeneous orthotropic material. If the material axes of

all laminae are lined up with the shell-surface principal coordinates, i.e., the axial

and circumferential directions, the shell is said to be special orthotropic or circum-

ferential cross-ply circular cylindrical shell. Since the often used cylindrical shells

with closely spaced ring and/or stringer stiffeners also can be approximated by con-

sidering them to be specially orthotropic, a greater number of analysis have been

carried out for such shell type. If the material-symmetry axes are not lined up with

the shell principal axes, the shell is said to be anisotropic, but since there is no struc-

tural advantage for shells constructed in this way it has been not often subjected to

analysis.

In Chap. 9 there are only a short summarizing section on sandwich shells and

no special section considering hygrothermo-elastic effects. Both problems can be

simple retransmitted from the corresponding sections in Chaps. 7 and 8. Also a spe-

cial discussion of analytical solution methods will be neglected, because no general

shell problems are considered.
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9.1 Introduction

Chapter 9 gives a short introduction to the theory of circular cylindrical shells in the

frame of the classical shell theory and the shell theory including transverse shear

deformations. Figure 9.1 shows a laminated circular cylindrical shell with general

layer stacking, the global coordinates x1 = x,x2 = s = Rϕ ,x3 = z, and the principal

material coordinates 1 = x′1,2 = x′2. In the theory of circular cylindrical shells the

most complex problem is the modelling and analysis of laminated shells with an

arbitrary stacking of the layers and arbitrary loading. The at least complex problem

is a mid-plane symmetric cross-ply laminated shell with axially symmetric loads

using the classical shell theory. The mathematically modelling leads in this case to

a

b c

x3 = z

x2 = Rϕ

x1 = x

u2

u3

u1

h

R

2 = x′2

1 = x′1

x1

x2

θ

z

h

2

h

2
z(2)

z(n−1)

z(1)

z(0) =−h

2

z(n) =
h

2

Fig. 9.1 Circular cylindrical shell. a Geometry, global coordinates x1 = x,x2 = s = Rϕ , b shell

middle surface, principal material coordinates x′1 = 1,x′2 = 2, fibre angle θ , c laminate structure, n

layers, layer coordinates z(k), layer thickness h(k) = z(k)− z(k−1)
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an ordinary differential equation. This type of stacking and loading will be primary

considered in Chap. 9, because analytical solutions can be derived. Generally as-

sumed is that each layer having a constant angle of wrap, constant volume ratio of

fibre to resin, and the fibre and resin are both isotropic and homogeneous within

themselves. The ply material axes, Fig. 9.1 b, will be rotated away from the global

axes by an angle θ , positive in the counterclockwise direction.

9.2 Classical Shell Theory

The following hypotheses are the basis to derivative the equations of the classical

shell theory:

• Displacements are small compared to the shell thickness, all strain-displacement

relations may be assumed to be linear.

• The Kirchhoff hypothesis is applicable, i.e. line elements normal to the middle

surface before deformation remain straight, normal to the deformed middle sur-

face, and unchanged in length after deformation.

• All components of translational inertia are included in modelling vibration prob-

lems, but all components of rotatory inertia are neglected.

• The ratio of the shell thickness h to the radius R of the middle surface is small as

compared with unity and Love’s first-approximation shell theory is used which

define a thin or classical shell theory: h/R≪ 1 and all terms 1+(z/R)≈ 1. It can

be shown that this relationship is consistent with the neglect of transverse shear

deformation and transverse normal stress.

In addition we assume that each individual layer is considered to behave macro-

scopically as a homogeneous, anisotropic, linear-elastic material, that all layers are

assumed to be bonded together with a perfect bond and that each layer may be of

arbitrary thickness and may be arranged either symmetrically or unsymmetrically

with respect to the middle surface.

9.2.1 General Case

The governing differential equations are formulated in terms of the three middle-

surface displacement components (u1 ≡ ux,u2 ≡ us,u3 ≡ uz)

u1(x1,x2,0) = u(x,s), u2(x1,x2,0) = v(x,s), u3(x1,x2,0) = w(x,s) (9.2.1)

The strain displacement relations for a circular, cylindrical shell of any material,

neglecting the effects of transverse shear deformation and using Love’s first approx-

imation are given by



344 9 Modelling and Analysis of Circular Cylindrical Shells

εx =
∂u

∂x
, εs =

∂v

∂ s
+

w

R
, εxs =

∂u

∂ s
+

∂v

∂x
,

κx =−∂ 2w

∂x2
, κs =−∂ 2w

∂ s2
+

1

R

∂v

∂ s
, κxs =−2

∂ 2w

∂x∂ s
+

1

R

∂v

∂x

(9.2.2)

The total strains at a arbitrary distance z of the middle surface are

εx = εx +κxz, εs = εs +κsz, εxs = εxs +κxsz

or

ε j = ε j +κ jz, j = (1,2,6)≡ (x,s,xs) (9.2.3)

Each individual layer is assumed to be in a state of generalized plane stress, the

Hooke’s law yields

σ
(k)
i = Q

(k)
i j ε j, i, j = (1,2,6) (9.2.4)

and in the general anisotropic case the Qi j matrix is full populated (Table 4.2).

Using again the Love’s first approximation 1+(z/R) ≈ 1), i.e. neglecting the

difference in the areas above and below the middle surface z = 0, the force and

moment resultants, Fig. 9.2, are defined analogous to plates

Ni =

h/2
∫

−h/2

σidz, Mi =

h/2
∫

−h/2

σizdz, i = (1,2,6)≡ (x,s,xs) (9.2.5)

Putting Eq. (9.2.4) into (9.2.5) yields the constitutive equations in the known form

[

NNN

MMM

]

=

[

AAA BBB

BBB DDD

][

εεε
κκκ

]

(9.2.6)

with

Ns +
∂ Ns

∂ s
ds

Qs +
∂ Qs

∂ s
ds

Nsx +
∂ Nsx

∂ x
dx

Nsx +
∂ Nsx

∂ x
dx

Qx +
∂ Qx

∂ x
dx

Nx +
∂ Nx

∂ x
dx

ps

pz

px

Nx

Qx

Nxs

Qs Ns

Nsx

ds = Rdϕ

dx

Msx +
∂ Msx

∂ s
ds

Ms +
∂ Ms

∂ x
dx

Mx +
∂ Mx

∂ x
dx

Mxs +
∂ Mxs

∂ s
ds

Mxs

Mx

Ms

Msx

dxds = Rdϕ

Fig. 9.2 Positive directions for stress resultants
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(Ai j,Bi j,Di j) =

h/2
∫

−h/2

(1,z,z2)Qi jdz

i.e. for n laminate layers

Ai j =
n

∑
k=1

Qi j

(

z(k)− z(k−1)
)

,

Bi j =
1

2

n

∑
k=1

Qi j

(

z(k)
2 − z(k−1)2

)

,

Di j =
1

3

n

∑
k=1

Qi j

(

z(k)
3 − z(k−1)3

)

NNNT = [Nx Ns Nxs], MMMT = [Mx Ms Mxs],
εεεT = [εx εs εxs], κκκT = [κx κs κxs]

(9.2.7)

The equilibrium equations follow with Fig. 9.2 as

∂Nx

∂x
+

∂Nxs

∂ s
+ px = 0,

∂Mx

∂x
+

∂Mxs

∂ s
−Qx = 0,

∂Nxs

∂x
+

∂Ns

∂ s
+

Qs

R
+ ps = 0,

∂Mxs

∂x
+

∂Ms

∂ s
−Qs = 0,

∂Qx

∂x
+

∂Qs

∂ s
− Ns

R
+ pz = 0

(9.2.8)

The moment equations (9.2.8) can be used to eliminate the transverse shear resul-

tants and one obtains

∂Nx

∂x
+

∂Nxs

∂ s
+ px = 0,

∂Nxs

∂x
+

∂Ns

∂ s
+

1

R

(

∂Ms

∂ s
+

∂Mxs

∂x

)

+ ps = 0,

∂ 2Mx

∂x2
+ 2

∂ 2Mxs

∂x∂ s
+

∂ 2Ms

∂ s2
− Ns

R
+ pz = 0

(9.2.9)

Substituting Eqs. (9.2.6) into (9.2.9) yields a set of three coupled partial differential

equations for the three displacements u,v,w, which can be written in matrix form





L11 L12 L13

L21 L22 L23

L31 L32 L33









u

v

w



=−





px

ps

pz



 (9.2.10)

The linear differential operators Li j are defined in App. D. For symmetrically ar-

ranged layers the differential operators can be simplified, but the matrix (9.2.10)

stay full populated (App. D).

If we consider natural vibrations of laminated circular cylindrical shells in

Eqs. (9.2.9) and (9.2.10) the distributed loads px, ps, pz are taken zero, i.e.
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px = ps = pz = 0, but all components of translatory inertia must be included.

Without detailed derivation on obtains

∂Nx

∂x
+

∂Nxs

∂ s
= ρ0

∂ 2u

∂ t2
,

∂Nxs

∂x
+

∂Ns

∂ s
+

1

R

(

∂Ms

∂ s
+

∂Mxs

∂x

)

= ρ0
∂ 2v

∂ t2
,

∂ 2Mx

∂x2
+ 2

∂ 2Mxs

∂x∂ s
+

∂ 2Ms

∂ s2
− Ns

R
= ρ0

∂ 2w

∂ t2

(9.2.11)

and Eq. (9.2.10) changes to





L11 L12 L13

L21 L22 L23

L31 L32 L33









u

v

w



= ρ0
∂ 2w

∂ t2





u

v

w



 (9.2.12)

with

ρ0 =
n

∑
k=1

z(k)
∫

z(k−1)

ρ
(k)
0 dz =

n

∑
k=1

ρ
(k)
0 h(k)

The stress resultants and the displacement are now functions of x,s and t. ρ
(k)
0 is the

mass density of the kth layer, ρ0 the mass inertia with respect to the middle surface.

9.2.2 Specially Orthotropic Circular Cylindrical Shells Subjected

by Axial Symmetric Loads

Now we consider cross-ply laminated circular cylindrical shells. The laminate stack-

ing may be not middle-surface symmetric, but the fiber angles are θ = 00 or θ = 900

and the principal material axes 1′−2′−3 coincide with the structural axes x,s,z, i.e.

the stiffness A16 = A26 = 0,D16 = D26 = 0. In the case of axial symmetry loading

and deformations there are both, all derivations ∂/∂ s and v,Nxs,Mxs zero. For the

loads per unit of the surface area are the following conditions valid

px = 0, ps = 0, pz = pz(x)

The equilibrium equations (9.2.8) reduce to

dNx

dx
= 0,

dQx

dx
− Ns

R
+ pz = 0,

dMx

dx
−Qx = 0

or eliminating Qx

dNx

dx
= 0,

d2Mx

dx2
− Ns

R
=−pz (9.2.13)
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The strain-displacement relations follow from (9.2.2)

εx =
du

dx
, εs =

w

R
, κx =−d2w

dx2
, εxs = 0,κs = κxs = 0 (9.2.14)

and the stresses from (9.2.4) and (9.2.14) with Q16 = Q26 = Q66 = 0

σ
(k)
x = Q

(k)
11 (εx + zκx)+Q

(k)
12 εs = Q

(k)
11

(

du

dx
− z

d2w

dx2

)

+Q
(k)
12

w

R
,

σ
(k)
s = Q

(k)
12 (εx + zκx)+Q

(k)
22 εs = Q

(k)
12

(

du

dx
− z

d2w

dx2

)

+Q
(k)
22

w

R
,

Q
(k)
11 =

E
(k)
x

1−ν
(k)
xs ν

(k)
sx

, Q
(k)
22 =

E
(k)
s

1−ν
(k)
xs ν

(k)
sx

, Q
(k)
12 =

ν
(k)
sx E

(k)
x

1−ν
(k)
xs ν

(k)
sx

,

ν
(k)
xs

E
(k)
x

=
ν
(k)
sx

E
(k)
s

(9.2.15)

The constitutive equations (9.2.6) can be written as follow

Nx=A11εx +A12εs +B11κx,
Ns=A12εx +A22εs +B12κx,
Mx=B11εx +B12εs +D11κx,
Ms=B12εx +B22εs +D12κx,

(9.2.16)

with εx,εs and κx from Eq. (9.2.14).

Putting (9.2.12) and (9.2.14) in the equilibrium equations (9.2.13) one obtains

after a rearrangement

A11
d2u

dx2
+

A12

R

dw

dx
−B11

d3w

dx3
= 0,

[

A11D11 −B2
11

A11

]

d4w

dx4
+

2

R

[

A12B11

A11
−B12

]

d2w

dx2

+
1

R2

[

A11A22 −A2
11

A11

]

w = pz −
A12

A11

Nx

R
,

and with

DR =
A11D11 −B2

11

A11
, 4λ 4 =

1

DRR2

A11A22 −A2
11

A11
(9.2.17)

can finally be written

d4w

dx4
+

2

RDR

[

A12B11

A11
−B12

]

d2w

dx2
+ 4λ 4w =

1

DR

(

pz −
A12

A11

Nx

R

)

(9.2.18)

This is a ordinary differential equation of fourth order with constant coefficients and

can be solved by standard methods .
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For the most important case of a symmetrical layer stacking Eq. (9.2.18) can be

reduced with B11 = B12 = 0,DR = D11 as

d4w

dx4
+ 4λ 4w =

1

D11

(

pz −
A12

A11

Nx

R

)

, 4λ 4 =
1

D11R2

A11A22 −A2
11

A11
(9.2.19)

The inhomogeneous linear differential equation of fourth order has constant coeffi-

cient and can be analytically solved (App. E)

w(x) = wh(x)+wp(x)

The homogeneous solution wh(x) =Ceαx yields the characteristic equation

α4 + 4λ 4 = 0

with the conjugate complex roots

α1−4 =±λ (1± i), i =
√
−1 (9.2.20)

and with e±λ x = coshλ x±sinhλ x, e±iλ x = cosλ x± i sinλ x one obtains the solution

of the homogeneous differential equation as

wh(x) = C1 coshλ xcosλ x+C2 coshλ xsin λ x

+ C3 sinhλ xcosλ x+C4 sinhλ xsinλ x
(9.2.21)

or

wh(x) = e−λ x(C1 cosλ x+C2 sinλ x)+ eλ x(C3 cosλ x+C4 sinλ x) (9.2.22)

The particular solution wp(x) of the inhomogeneous equation depends on the load-

ing term.

In solving (9.2.19), another solution form may be utilized, the so-called bending-

layer solution. Note the Eqs. (9.2.16) for the symmetrical case, i.e.

Mx =−D11
d2w

dx2
, Qx =

dMx

dx
=−D11

d3w

dx3

the solution can be written as:

w(x) =
M0

2λ 2D11
e−λ x(sin λ x− cosλ x)− Q0

2λ 3D11
e−λ x cosλ x

+
ML

2λ 2D11
e−λ (L−x)(sin λ (L− x)− cosλ (L− x))

+
QL

2λ 3D11
e−λ (L−x) cosλ (L− x)+wp(x)

(9.2.23)

Instead of the general constants Ci, i = 1,2,3,4 the resultant stress moments M0,ML

and resultant stress forces Q0,QL at x = 0 respectively x = L are used as integration

constants. To determine the wp(x) solution one have to consider Nx in Eq. (9.2.19)
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as a constant value following by boundary condition and p(x) have to be restricted

to cases where d4 p(x)/dx4 = 0, what is almost true from view point of practical

applications. It can be easy seen that

wp(x) =
1

4λ 2D11

[

p(x)− A12

A11

Nx

R

]

(9.2.24)

is a solution of the inhomogeneous differential equation (9.2.19).

The advantage of the solution from (9.2.23) is easily seen. The trigonomet-

ric terms oscillate between ±1 and are multiplied by exponential terms with a

negative exponent which yields to an exponential decay. If we set λ x = 1.5π
or λ (L − x) = 1.5π then is e−1.5π ≈ 0.009, i.e. the influence of the boundary

values M0,Q0 or ML,QL is strong damped to < 1%. With 0 ≤ x ≤ 1.5π/λ or

0 ≤ L−x ≤ 1.5π/λ bending boundary layers are defined which depend on the shell

stiffness.

The important point is that at each end of the shell a characteristic length LB

can be calculated and the M0- and Q0-terms approach zero at the distance x > LB

from x = 0 while the ML- and QL-terms approach zero at the same distance LB

from x = L. In the boundary layer region bending stresses induced from M0,Q0 a

ML,QL are superimposed to membrane stresses induced from pz. Looking at a long

shell, Fig. 9.3, with L > LB in the region A-B only M0,Q0 and wp are non-zero,

in the region C-D only ML,QL and wp and in the region B-C only the particular

solution wp is nonzero, i.e. in this region only a membrane solution exists. With the

calculated w(x) the first differential equation (9.2.17) with B11 = 0 can be solved

and yields the displacement function u(x). It should be noted that only some terms

of u(x) decay away from the boundary edges.

In the case of axially symmetric loading and deformation the bending stresses in

each lamina are given by

[

σx

σs

](k)

=

[

Q11 Q12

Q12 Q22

](k) [
εx

εs

]

+ z

[

Q11 Q12

Q12 Q22

](k) [
κx

0

]

(9.2.25)

A B C D
LB LB

L

Fig. 9.3 Long circular cylindrical shell: Bending boundary regions (A-B) and (C-D), membrane

region (B-C)
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The transverse shear stress σxz follows analogous to the classical beam equations

with (7.2.31).

Summarizing the results of the classical shell equations one can draw the follow-

ing conclusions:

• The most general case of laminated circular cylindrical shells is that of arbitrarily

laminated anisotropic layers, i.e. angle-ply layers arbitrarily arranged. The anal-

ysis of these shells is based on approximately analytical methods using Ritz-,

Galerkin- or Kantorovich method and numerical methods , e.g. FEM.

• Cross-ply laminated shells, i.e shells with orthotropic layers aligned either ax-

ially or circumferentially and arranged symmetrically with respect to the shell

middle surface have governing shell equations which are the same as those for

a single-layer specially orthotropic shell. For axis symmetrical loading the shell

equations reduce in the static case to ordinary differential equations of the x-

coordinate and can be solved analytically. If the orthotropic layers are arranged

to an unsymmetric laminated cross-ply shell then bending-stretching, coupling is

induced and the governing equations are more complex.

• When circular cylindrical shells are laminated of more than one isotropic layer

with each layer having different elastic properties and thickness and the lay-

ers are arranged symmetrically with respect to the middle surface, the govern-

ing equations are identical to those of single layer isotropic shells. However, if

the isotropic layers are arranged unsymmetrically to the middle surface, there is

a coupling between in-surface, i.e stretching and shear, and out-of-surface, i.e

bending and twisting, effects.

• Additional to the Kirchhoff’s hypotheses all equations of the classical shell the-

ory assumed Love’s first approximation, i.e. the ratio h/R is so small compared

to 1 that the difference in the areas of shell wall element above and below the

middle surface can be neglected.

9.2.3 Membrane and Semi-Membrane Theories

Thin-walled singe layer shells of revolution can be analyzed in the frame of the so-

called membrane theory. One neglects all moments and transverse stress resultants,

all stresses are considered approximatively constant through the shell thickness i.e.

there are no bending stresses and the coupling and bending stiffness are taken to be

zero in the constitutive equations. In some cases it is possible to use the membrane

theory for structural analysis of laminated shells. The efficient structural behavior of

shells based on the shell curvature that yields in wide regions of shells of revolution

approximately a membrane response upon loading as the basic state of stresses and

strains. The membrane theory is not capable to predict sufficient accurate results in

regions with concentrated loads, boundary constraints or curvature changes, i.e. in

regions located adjacent to each structural, material or load discontinuity. Restrict-

ing the consideration again to circular cylindrical shells with unsymmetric cross-ply

stacking we arrive the following equations
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Mx = Ms = Mxs = 0, Qx = Qs = 0,

∂Nx

∂ s
+

∂Nxs

∂ s
=−px,

∂Nxs

∂ s
+

∂Ns

∂ s
=−ps, Ns = Rpz,

εx =
∂u

∂x
, εs =

∂v

∂ s
+

w

R
, εxs =

∂u

∂ s
+

∂v

∂x
= γxs,

Nx = A11εx +A12εs, Ns = A12εx +A22εs, Nxs = A66εxs

(9.2.26)

The membrane theory yield three equilibrium conditions to calculate three unknown

stress resultants, i.e the membrane theory is statically determined. The membrane

theory is the simplest approach in shell analysis and admit an approximative an-

alytical solution that is very convenient for a first analysis and design of circular

cylindrical shells.

But the problems which can be solved by the membrane theory are unfortunately

limited. To avoid generally to use the more complex bending theory we can con-

sider a so-called semi-membrane theory of circular cylindrical shells. The semi-

membrane theory is slightly more complicated than the membrane theory but more

simpler than the bending theory. The semi-membrane theory was first developed by

Vlasov on the basis of statically and kinematically hypotheses.

If one intends to construct a semi-membrane theory of composite circular cylin-

drical shells bearing in mind the hypotheses underlying the classical single layer

shell theory and the characteristics of the composite structure. The semi-membrane

theory for composite circular cylindrical shells introduces the following assump-

tions:

• The shell wall has no stiffness when bended but in axial direction and when

twisted, i.e. D11 = D66 = 0,B11 = B66 = 0.

• The Poisson’s effect is neglected, i.e. A12 = 0,B12 = 0,D12 = 0.

• With the assumptions above follow Mx = Mxs = 0,Qx = 0.

• The cross-section contour is inextensible, i.e.

εs =
∂v

∂ s
+

w

R
= 0

The shear stiffness of composite shells can be small. Therefore, the assumption

of the classical single layer semi-membrane theory that the shear stiffness is in-

finitely large, is not used.

Taking into account the assumptions above, one obtains the following set of eleven

equations for eleven unknown functions.

∂Nx

∂x
+

∂Nxs

∂ s
= 0,

∂Nxs

∂x
+

∂Ns

∂ s
+

Qs

R
+ ps = 0,

∂Ms

∂ s
−Qs = 0,

∂Qs

∂ s
− Ns

R
− pz = 0,

εx =
∂u

∂x
, εxs =

∂v

∂x
+

∂u

∂ s
, εs =

∂v

∂ s
+

w

R
,(9.2.27)
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Nx = A11εx, Nxs = A66εxs, Ms = D22κs, Qs = ks
44A44

(

ψs +
∂w

∂ s

)

The system (9.2.27) can be reduced. For the circular cylindrical shell the unknown

functions and loads can be represented with trigonometric series and after some

manipulations we obtained one uncoupled ordinary differential equation of fourth

order for wn(x),n = 0,1,2, . . .. The detailed derivation of the governing solutions

shall not be considered.

9.3 Shear Deformation Theory

Analogous to plates, considered in Chap. 8, the classical shell theory is only suffi-

ciently accurate for thin shells. For moderately thick shells we have to take, at least

approximately, the transverse shear deformation effects into account. The Kirch-

hoff’s hypotheses are again relaxed in one point: the transverse normals do not

remain perpendicular to the middle-surface after deformation, but a line element

through the shell thickness perpendicular to the middle-surface prior loading, un-

dergoes at most a translation and rotation upon the load applications, no stretching

or curvature.

The following considerations are restricted to axial symmetrical problems of

symmetrical laminated cross-ply circular cylindrical shells including transverse

shear deformation. We start with a variational formulation including the trapeze

effect, i.e. Love’s first approximation is not valid. For axial symmetrical problems

we have the following simplifications of the shell equations:

All derivatives ∂/∂ s(. . .) are zero and for the strains, stress resultants and loads we

assume
εxs = 0, κs = 0, κxs = 0,
Nxs = 0, Mxs = 0,
ps = 0, px = 0, pz = pz(x)

(9.3.1)

The kinematical assumptions yield with (5.1.2) the shell displacements

ux(x,z) = u(x)+ zψx(x),
us(x,z) = 0,
uz(x,z) = w(x)

(9.3.2)

The strain-displacement relations are

εx =
du

dx
+ z

dψx

dx
,

εs =
w

R+ z
,

εxz = ψx +
dw

dx

(9.3.3)
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and the stresses in the kth layer of the shell are





σx

σs

σxz





(k)

=





Q11 Q12 0

Q12 Q22 0

0 0 Q55





(k)















du

dx
+ z

dψx

dx
w

r+ z

ψx +
dw

dx















(9.3.4)

For a special orthotropic shell the Qi j are

Q11 =
Ex

1−νxsνsx
, Q22 =

Es

1−νxsνsx
,

Q12 =
νxsEx

1−νxsνsx

, Q55 = Gxz

(9.3.5)

The stress resultant forces and couples are defined as

Nx =
n

∑
k=1

∫

h(k)

σ
(k)
x

(

1+
z

R

)

dz, Ns =
n

∑
k=1

∫

h(k)

σ
(k)
s dz,

Mx =
n

∑
k=1

∫

h(k)

σ
(k)
x z

(

1+
z

R

)

dz, Ms =
n

∑
k=1

∫

h(k)

σ
(k)
s zdz,

Qx =
n

∑
k=1

∫

h(k)

σ
(k)
xz

(

1+
z

R

)

dz,

(9.3.6)

and one obtains with (9.3.4) and (9.3.6)

Nx = A11
du

dx
+A12

w

R
+

1

R
D11

dψx

dx
,

Ns = A12
du

dx
+T22w,

Mx = D11

(

1

R

du

dx
+

dψx

dx

)

,

Ms = D12
dψx

dx
+ T̃22w,

Qx = A55

(

ψx +
dw

dx

)

or Qx = ks
55A55

(

ψx +
dw

dx

)

(9.3.7)

The stiffness coefficients are
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(Ai j,Di j) =
n

∑
k=1

∫

h(k)

Q
(k)
i j (1,z

2)dz, (i j) = (11),(12),

T22 =
n

∑
k=1

∫

h(k)

Q
(k)
22

dz

R+ z
=

n

∑
k=1

Q
(k)
22

[

ln
(

1+
z

R

)]h/2

−h/2

≈ 1

R
A22 +

1

R3
D22,

T̃22 =
n

∑
k=1

∫

h(k)

Q
(k)
22

zdz

R+ z
=

n

∑
k=1

Q
(k)
22 R

[ z

R
− ln

(

1+
z

R

)]h/2

−h/2

≈ 1

R2
D22

(9.3.8)

and ks
55 is the shear correction factor.

The variational formulation for the axial symmetrically circular cylindrical shell

with symmetrically laminated θ = 00 and θ = 900 laminae and coincided principal

material and structural axes is given as

Π(u,w,ψx) = Πi −Πa,

Πi(u,w,ψx) =
1

2

h/2
∫

−h/2

π
∫

0

L
∫

0

(σxεx +σsεs +σxzεxz)dx(R+ z)dϕdz

=
1

2

n

∑
k=1

∫

h(k)

π
∫

0

L
∫

0

(

Q
(k)
11 ε2

x

+ 2Q
(k)
12 εxεs +Q

(k)
22 ε2

s +Q
(k)
55 ε2

xz

)

(R+ z)dxdϕdz

(9.3.9)

Using Eq. (9.3.3) one obtains

Πi =
1

2

2π
∫

0

L
∫

0

{

R

[

A11

(

du

dx

)2

+D11

(

dψx

dx

)2

+ 2D11
du

dx

dψx

dx

+ 2A12w
du

dx
+T22w2 +Rks

55A55

[

ψ2
x + 2ψx

dw

dx
+

(

dw

dx

)2
]}

dxdϕ ,

Πa =

2π
∫

0

L
∫

0

pz(x)wRdxdϕ

(9.3.10)

Equation (9.3.10) can be used for solving shell problems by the variational meth-

ods of Ritz, Galerkin or Kantorovich. It can be also used to derive the differential

equations and boundary conditions but this will be done later on the direct way.

Hamilton’s principle is formulated to solve vibration problems. The potential

energy function Π is given with (9.3.10) but all displacements are now functions of

x and the time t. If we analyze natural vibrations the transverse load pz is taken zero.

The kinetic energy follows as
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T =
n

∑
k=1

T (k) =
1

2

n

∑
k=1

∫

h(k)

2π
∫

0

L
∫

0

ρ (k)

[

(

∂u

∂ t

)2

+ 2z
∂u

∂ t

∂ψx

∂ t

+ z2

(

∂ψx

∂ t

)2

+

(

∂w

∂ t

)2
]

Rdϕdxdz

=
1

2

2π
∫

0

L
∫

0

{

Rρ0

[

(

∂u

∂ t

)2

+

(

∂w

∂ t

)2
]

+ 2Rρ1
∂u

∂ t

∂ψx

∂ t
+Rρ2

(

∂ψx

∂ t

)2
}

dϕdx

(9.3.11)

In Eq. (9.3.11) ρ (k) is the mass density of the kth layer, ρ0 and ρ2 are the mass

and the moment of inertia with respect to the middle surface per unit area and ρ1

represents the coupling between extensional and rotational motions. ρ1 does not

appear in equations for homogeneous shells.

Now with the Lagrange function L(u,w,ψx) = T (u,w,ψx)− Π(u,w,ψx) the

Hamilton’s principle is obtained as

δ

t2
∫

t1

L(u,w,ψx)dt = 0 (9.3.12)

The direct derivation of the differential equations for symmetrical cross-ply circular

cylindrical shells follow using the constitutive, kinematics and equilibrium equa-

tions. The stiffness matrix is defined as
[

NNN

MMM

]

=

[

AAA 000

000 DDD

][

εεε
κκκ

]

, QQQs =AAAsεεε s,

NNNT = [Nx Ns Nxs], MMMT = [Mx Ms Mxs], QQQsT = [Qx Qs],

εεεT =

[

∂u

∂x

(

∂v

∂ s
+

w

R

) (

∂u

∂ s
+

∂v

∂x

)]

,

κκκT =

[

∂ψx

∂x

∂ψs

∂ s

(

∂ψx

∂ s
+

∂ψs

∂x

)]

,

εεε sT =

[(

ψx +
∂w

∂x

) (

ψs +
∂w

∂ s
− v

R

)]

(9.3.13)

For symmetric cross-ply shells all Bi j are zero and also the Ai j,Di j with

(i j) = (16),(26) and (45). Such we have

AAA =





A11 A12 0

A12 A22 0

0 0 A66



 , DDD =





D11 D12 0

D12 D22 0

0 0 A66



 , AAAs =

[

ks
55A55 0

0 ks
44A44

]
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The static equilibrium equations are identical with (9.2.8). For vibration analysis

inertia terms have to be added and one can formulate

∂Nx

∂x
+

∂Nxs

∂ s
= −px +ρ0

∂ 2u

∂ t2
+ρ1

∂ 2ψx

∂ t2
,

∂Nxs

∂x
+

∂Ns

∂ s
+

Qs

R
= −ps +ρ0

∂ 2v

∂ t2
+ρ1

∂ 2ψs

∂ t2
,

∂Qx

∂x
+

∂Qs

∂ s
− Ns

R
= −pz +ρ0

∂ 2w

∂ t2
,

∂Mx

∂x
+

∂Mxs

∂ s
−Qx = ρ2

∂ 2ψx

∂ t2
+ρ1

∂ 2u

∂ t2
,

∂Mxs

∂x
+

∂Ms

∂ s
−Qs = ρ2

∂ 2ψs

∂ t2
+ρ1

∂ 2v

∂ t2

(9.3.14)

ρ0,ρ1,ρ2 are like in (9.3.11) generalized mass density and are defined in (8.3.9).

Putting the constitutive equations (9.3.12) in the equilibrium equations (9.3.14) the

equations can be manipulated in similar manner to those of the classical theory and

one obtains the simultaneous system of differential equations













L̃11 L̃12 L̃13 L̃14 L̃15

L̃21 L̃22 L̃23 L̃24 L̃25

L̃31 L̃32 L̃33 L̃34 L̃35

L̃41 L̃42 L̃43 L̃44 L̃45

L̃51 L̃52 L̃53 L̃54 L̃55

























u

v

ψx

ψs

w













=−













px

ps

0

0

pz













+













ρ0 0 ρ1 0 0

0 ρ0 0 ρ1 0

ρ1 0 ρ2 0 0

0 ρ1 0 ρ2 0

0 0 0 0 ρ0













∂ 2

∂ t2













u

v

ψx

ψs

w













(9.3.15)

The linear differential operators are defined in App. D.2.

For free vibrations the loads px, ps, pz are zero and the shell will perform sim-

ple harmonic oscillations with the circular frequency ω . Corresponding to simple

supported conditions on both ends of the cylinder, i.e

Nx = 0,v = 0,w = 0,Mx = 0,ψs = 0,

the spatial dependence can be written as products of two trigonometric functions

and the complete form of vibrations can be taken as

u(x,ϕ , t) =
∞

∑
r=1

∞

∑
s=1

Urse
iωrst cosαmxcosnϕ ,

v(x,ϕ , t) =
∞

∑
r=1

∞

∑
s=1

Vrse
iωrst sinαmxsinnϕ ,

w(x,ϕ , t) =
∞

∑
r=1

∞

∑
s=1

Wrse
iωrst sinαmxcosnϕ , (9.3.16)

ψx(x,ϕ , t) =
∞

∑
r=1

∞

∑
s=1

Ψrse
iωrst cosαmxcosnϕ ,
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ψs(x,ϕ , t) =
∞

∑
r=1

∞

∑
s=1

Ψ̃rse
iωrst sinαmxsinnϕ ,

where Urs,Vrs,Wrs,Ψrs,Ψ̃rs denote amplitudes, αm = mπ/l, m,n are the longitudinal

and the circumferential wave numbers. Substituting Eqs. (9.3.16) into (9.3.15) re-

sults in a homogeneous algebraic system and its solutions for a particular pair (m,n)

gives the frequency and amplitude ratio corresponding to these wave numbers. For

arbitrary boundary conditions the Ritz’ or Galerkin’s method can be recommended

to obtain the characteristic equations for solving the eigenvalue problem. Then the

natural frequencies and the mode shapes can be calculated. The solution process is

manageable, but involved.

If one restricts the problem to statics and to axially symmetrical loading

pz = pz(x) the Eqs. (9.3.13) - (9.3.15) can be simplified:

• Equilibrium equations

dNx

dx
= 0,

dMx

dx
−Qx = 0,

dQx

dx
− Ns

R
+ pz = 0 (9.3.17)

• Strain-displacement equations

εx =
du

dx
, εs =

w

R
, κx =

dψx

dx
, εxz = ψx +

dw

dx
(9.3.18)

• Constitutive equations
Nx = A11εx +A12εs,
Ns = A12εx +A22εs,

Mx = D11
dψx

dx
,

Qx = ks
55A55εxz

(9.3.19)

All derivatives ∂/∂ s(. . .) and v,εxs,κs,εsz,Nxs,Mxs,Qs are zero. The stress resultant-

displacement relations follow as

Nx = A11
du

dx
+A12

w

R
,

Ns = A12
du

dx
+A22

w

R
,

Mx = D11
dψx

dx
,

Qx = ks
55A55

(

ψx +
dw

dx

)

(9.3.20)

With dNx/dx = 0 we have Nx = const = N0 and one obtains

du

dx
=

1

A11

(

N0 −A12
w

R

)

(9.3.21)

The equilibrium equation (9.3.17) for Qx yields
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d

dx

(

ψx +
dw

dx

)

=
1

ks
55A55

(

Ns

R
− pz

)

=
1

ks
55A55

[

1

R

(

A12
du

dx
+A22

w

R

)

− pz

] (9.3.22)

and the equilibrium equation dMx/dx−Qx = 0

D11
d2ψx

dx2
− ks

55A55

(

ψx +
dw

dx

)

= 0 (9.3.23)

After some manipulations follow with (9.3.22), (9.3.23) two differential equations

for ψx and w as

dψx

dx
= −d2w

dx2
+

1

ks
55A55

[

1

R

(

A12

A11
N0 −

A2
12 −A11A22

A11

w

R

)

− pz

]

,

dw

dx
=

D11

ks
55A55

d2ψx

dx2
−ψx

(9.3.24)

Differentiating the second equation (9.3.24) and eliminating ψx the first equation

leads to one uncoupled differential equation of fourth order for w(x)

d4w

dx4
− 1

ks
55A55

1

R2

A11A22 −A2
12

A11

d2w

dx2
+

1

R2

A11A22 −A2
12

D11A11
w

=
1

D11

(

−A12

A11

N0

R
+ pz

)

− 1

ks
55A55

d2 pz

dx2
,

dψx

dx
= −d2w

dx2
+

1

ks
55A55

A11A22 −A2
12

R2A11
w+

1

ks
55A55

(

A12

A11

N0

R
− pz

)

(9.3.25)

With ks
55A55 → ∞ Eqs. (9.3.25) simplify to the corresponding equations of the clas-

sical shell theory (9.2.19).

The governing equation of the axisymmetric problem for or circular cylindrical

shell in the frame of the shear deformation theory can be written as

d4w

dx4
− 2k1

d2w

dx2
+ k4

2w = kp (9.3.26)

with

k2
1 =

1

ks
55A55

1

R

A11A22 −A2
12

A11
, k4

2 =
1

ks
55A55

1

R2

A11A22 −A2
12

D11A11
,

kp =
1

D11

(

−A12

A11

N0

R
+ pz

)

− 1

D11ks
55A55

d2 pz

dx2

The differential equation can be analytical solved

w(x) = wh(x)+wp(x)
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The particular solution wp(x) has e.g. with d2 pz/dx2 = 0, the form

wp(x) =
kp

k4
2

=
R2 pz −RA12N0

A11A22 −A2
12

(9.3.27)

The homogeneous solution wh(x) =Ceαx yield the characteristic equation

α4 − 2k2
1α2 + k4

2 = 0 (9.3.28)

with the roots

α1−4 =±
√

k2
1 ±

√

k4
1 − k4

1

which can be conjugate complex, real or two double roots depending on the relations

of the constants k1 and k2.

The general solution can be written as (App. E)

w(x) =
4

∑
i=1

CiΦi(x)+wp(x)

The functions Φi(x) are given in different forms depending on the roots of the char-

acteristic equation (9.3.28). The roots and the functions Φi(x) are summarized in

App. E. The most often used solution form in engineering application is given for

k2
2 > k2

1.

For short shells with edges affecting one another, the Φi(x) involving the hy-

perbolic functions are convenient. If there are symmetry conditions to the middle

cross-section x = L/2 the solution can be simplified, for we have Φ3 = Φ4 = 0.

For long shells with ends not affecting one another applying the Φi(x) that involve

exponential functions.

Analogous to the classical shell solution for long shells a bending-layer solution

can be applied. Only inside the bending-layer region with the characteristic length

LB the homogeneous part wh and the particular part wp of the general solution w have

to superimposed. Outside the bending-layer region, i.e for x > LB or (L− x) > LB

only wp characterizes the shell behavior.

Summarizing the results of the shear deformation shell theory one can say

• If one restricts the consideration to symmetrical cross-ply circular cylindrical

shells subjected to axially symmetric loadings the modelling and analysis is most

simplified and correspond to the classical shell theory.

• In more general cases including static loading and vibration and not neglecting

the trapeze effect the variational formulation is recommended and approximative

analytical or numerical solutions should be applied.

• Circular cylindrical shells are one of the most used thin-walled structures of con-

ventional or composite material. Such shells are used as reservoirs, pressure ves-

sels, chemical containers, pipes, aircraft and ship elements. This is the reason for

a long and intensive study to model and analyze circular cylindrical shells and as

result efficient theories and solutions methods are given in literature.
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9.4 Sandwich Shells

Sandwich shells are widely used in many industrial branches because sandwich con-

structions often results in designs with lower structural weight then constructions

with other materials. But there is not only weight saving interesting, but in several

engineering applications the core material of a sandwich construction can be also

used as thermal insulator or sound absorber. Therefore one can find numerous lit-

erature on modelling and analysis for sandwich shells subjected static, dynamic or

environmental loads .

But as written in Sects. 7.4 and 8.4 sandwich constructions are, simply consid-

ered, laminated constructions involving three laminae: the lower face, the core, and

the upper face. And by doing so, one can employ all methods of modelling and

analysis of laminated structural elements.

It was discussed in detail in Sect. 8.4 that, considering sandwich structural ele-

ments, we have to keep in mind the assumptions on the elastic behavior of sand-

wiches. Such there are differences in the expressions for the flexural bending and

transverse shear stiffness in comparison with laminated circular cylindrical shells

and essential differences in the stress distribution over the thickness of the shell

wall. The stiffness parameter for sandwich shells depend on the modelling of sand-

wiches having thin or thicker faces, in the same manner as for plates, Eqs. (8.4.1)

and (8.4.2).

For sandwich constructions generally the ratio of the in-plane moduli of elasticity

to the transverse shear moduli is high and transverse shear deformations are mostly

included in its structural modelling. For this reason, the first order shear deformation

theory of laminated shells is used in priority for sandwich shells. But for thin-walled

sandwich shells with a higher shear stiffness approximately the classical sandwich

theory can be used.

The correspondence between laminated and sandwich shells is for vibration or

buckling problems limited and only using for overall buckling and vibration. There

are some special local problems like face wrinkling and core shear instability in

buckling or the face must be additional considered as a shell of elastic foundation

on the core and also shear mode vibration can occur where each face is vibrating

out of phase with the other face. These problems are detailed discussed in a number

of special papers and can not considered in this book.

9.5 Problems

Exercise 9.1. A circular cylindrical sandwich shell has two unequal faces with the

reduced stiffness Q
f1
11,Q

f3
11 and the thicknesses hf1 ,hf3 . The shell has an orthotropic

material behavior and the material principal axes shall coincide with the structural

axes x,s. The core with the thickness hc does not contribute significantly to the

extensional and the flexural shell stiffness. The lateral distributed load is pz = pz(x).
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Formulate the differential equation using a perturbation constant to characterize the

asymmetry of the sandwich and find the perturbation solution way.

Solution 9.1. The shell problem is axially symmetric. In the frame of the classical

shell theory one can use the differential equation (9.2.18)

d4w

dx4
+

2

RDR

[

A12B11

A11
−B12

]

d2w

dx2
+ 4λ 4w =

1

DR

(

pz −
A12

A11

Nx

R

)

The stiffness parameter are calculated for sandwiches with thin faces, Sect. 4.3.2,

h ≈ hc

A11 = Q
f1
11hf1 +Q

f3
11hf3 = Q

f1
11hf1

(

1+
Q

f3
11hf3

Q
f1
11hf1

)

,

D11 =

(

h

2

)2

Q
f1
11hf1 +

(

h

2

)2

Q
f3
11hf3 =

(

h

2

)2

Q
f1
11hf1

(

1+
Q

f3
11hf3

Q
f1
11hf1

)

,

B11 = −h

2
Q

f1
11hf1 +

h

2
Q

f3
11hf3 =

h

2
Q

f1
11hf1

(

−1+
Q

f3
11hf3

Q
f1
11hf1

)

B12 and D12 can be calculated analogous. A asymmetry constant can be defined as

η =
B11√

D11A11

=

−1+
Q

f3
11hf3

Q
f1
11hf1

1+
Q

f3
11hf3

Q
f1
11hf1

For a symmetric sandwich wall is B11 = 0 and so η = 0. For an infinite stiffness of

face 1 follows η →−1 and of face 3 η →+1, i.e. the constant η is for any sandwich

construction given as

−1 < η <+1

The differential equation (9.2.18) can be written with the constant η as

d4w

dx4
+

2

RDR

[

A12

√
D11√

A11

−
√

A11B12

√
D11

B11

]

η
d2w

dx2
+ 4λ 4w =

1

DR

(

pz −
A12

A11

Nx

R

)

Since |η |< 1 one can find w(x) in the form of a perturbation solution

w(x) =
∞

∑
n=0

wn(x)η
n

For n = 0 follow
d4w0

dx4
− 4λ 4w0 =− 1

DR

(

pz −
A12

A11

Nx

R

)

and for n ≥ 1
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d4wn

dx4
+ 4λ 4wn =− 2

RDR

[

A12

√
D11√

A11

−
√

A11B12

√
D11

B11

]

η
d2wn−1

dx2

The left hand side corresponds to the middle-surface symmetric shell with axially

symmetric loading. The right hand side corresponds to the second derivation of the

previously obtained w-solution.

Conclusion 9.1. The perturbation solution yield the solution of the differential equa-

tion as a successive set of solutions of axially symmetric problems of which many

solutions are available. The perturbation solution converges to the exact solution. In

many engineering applications w(x) = wo(w)+ηw1(x) will be sufficient accurate.

Exercise 9.2. A symmetrical cross-ply circular cylindrical shell is loaded at the

boundary x = 0 by an axially symmetric line pressure Q0 and line moment M0.

Calculate the ratio M0/Q0 that the boundary shell radius does not change if the shell

is very long.

Solution 9.2. We use the solution (9.2.23) with wp = 0 and neglect for the long shell

the influence of ML and QL

w(x) =
M0

2λ 2D11
e−λ x(sinλ x− cosλ x)− Q0

2λ 3D11
cosλ x

The condition of no radius changing yields

w(x = 0) = 0 ⇒− M0

2λ 2D11
− Q0

2λ 3D11
= 0 ⇒ M0

Q0
=− 1

λ

Exercise 9.3. For a long fluid container, Fig. 9.4 determinate the displacement w(x)
and the stress resultants Ns(x) and Mx(x). The container has a symmetrical cross-ply

layer stacking and can be analyzed in the frame of the classical laminate theory.

Solution 9.3. For a long circular cylindrical shell the solution for wh(x), Eq.

(9.2.22), can be reduced to the first term with the negative exponent

Fig. 9.4 Long fluid container,

L > LB

L

p(x)

R R

x
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wh(x) = e−λ x(C1 sinλ x+C2 cosλ x)

The particular solution wp(x) follow with

p(x) = p0

(

1− x

L

)

and Eq. (9.2.24) as

wp(x) =
p0

4λ 4D11

(

1− x

L

)

The boundary constraints are

w(0) = 0 ⇒C2 =− p0

4λ 4D11
,

dw(0)

dx
= 0 ⇒C1 =− p0

4λ 4D11

(

1− x

L

)

and we obtain the solutions

w(x) =
p0

4λ 4D11

{

1− x

L
−
[

cosλ x+
(

1− x

L

)

sinλ x
]

e−λ x
}

In addition,

Ns = A11εx +A22εs = A11
du

dx
+A22

w

R

i.e. with εx = 0

Ns =
A22

R
w(x), Mx = D11κx =−D11

d2w

dx2
, Qx =

dMx

dx
=−D11

d3w

dx3

Exercise 9.4. Consider a cantilever circular cylindrical shell, Fig. 9.5. The normal

and shear forces Nx and Nxs as are distributed along the contour of the cross-section

x=L that they can reduced to the axial force FH, the transverse force FV, the bending

moment MB and the torsion moment MT. Calculate the resultant membrane stress

forces with the membrane theory.

Solution 9.4. With (9.2.26) we have the following equations

x

L

FV

FH

MB

MT

ϕ

s = Rϕ

R Nxs

Fig. 9.5 Tension, bending and torsion of a cantilever circular cylindrical shell
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Ns = Rpz,
∂Nxs

∂x
=−ps,

∂Nx

∂x
=−px −

∂Nxs

∂ s

and pz = ps = px = 0 yield

Ns = 0, Nxs = const, Nx = const

The distributions of FH,FV,MB and MT over the cross-section contour x = L can be

represented as

Nx(x = L) =
1

2πR

(

FH +
2MB

R
cosϕ

)

,

Nrs(x = L) =
1

2πR

(

MT

R
+ 2FV sinϕ

)

and yield the reduced forces FV,FM and moments MB,MT

2

π
∫

0

Nx(x = L)Rdϕ = FH ,

2

π
∫

0

Nxs(x = L)sin ϕRdϕ =
1

πR

π
∫

0

2FV sin2 ϕRdϕ = FV ,

4

π/2
∫

0

Nx(x = L)Rcosϕdϕ =
4

π
MB

π/2
∫

0

cos2 ϕdϕ = MB,

2

π/2
∫

0

RNxs(x = L)Rdϕ =
1

Rπ

π/2
∫

0

MT Rdϕ = MT

The equilibrium equations yield

Nx(x) =
FH

2πR
− [MB +FV(L− x)]

cosϕ

πR
,

Ns(x) = 0,

Nsx =
MT

2πR12
+

FV

πR
sinϕ



Part IV

Modelling and Analysis of Thin-Walled
Folded Plate Structures



The fourth part (Chap. 10) includes the modelling and analysis of thin-walled folded

plate structures or generalized beams. This topic is not normally considered in stan-

dard textbooks on structural analysis of laminates and sandwiches, but it is included

here because it demonstrates the possible application of Vlasov’s theory of thin-

walled beams and semi-membrane shells on laminated structural elements.



Chapter 10

Modelling and Analysis of Thin-walled Folded
Structures

The analysis of real structures always is based on a structural and mathematical

modelling. It is indispensable for obtaining realistic results that the structural model

represents sufficiently accurate the characteristic structure behavior.

Generally the structural modelling can be divided into three structure levels

• Three-dimensional modelling. It means structural elements, their dimensions in

all three directions are of the same order, we have no preferable direction.

• Two-dimensional modelling. One dimension of a structural element is significant

smaller in comparison with the other both, so that we can regard it as a quasi

two-dimensional element. We have to distinguish plane and curved elements e.g.

discs, plates and shells.

• One-dimensional modelling. Here we have two dimensions (the cross-section)

in the same order and the third one (the length) is significant larger in com-

parison with them, so that we can regard such a structural element as quasi one-

dimensional. We call it rod, column,bar, beam or arch and can distinguish straight

and curved forms also.

The attachment of structural elements to one of these classes is not well defined

rather it must be seen in correlation with the given problem.

Many practical problems, e.g., in mechanical or civil engineering lead to the

modelling and analysis of complex structures containing so-called thin-walled ele-

ments. As a result of the consideration of such structures a fourth modelling class

was developed, the modelling class of thin-walled beams and so-called beam shaped

shells including also folded plate structures. In this fourth modelling class it is typ-

ical that we have structures with a significant larger dimension in one direction

(the length) in comparison with the dimensions in transverse directions (the cross-

section) and moreover a significant smaller thickness of the walls in comparison

with the transverse dimensions.

In Chap. 7 the modelling of laminate beams is given in the frame of the

Bernoulli’s and Timoshenko’s beam theory which cannot applied generally to thin-

walled beams. The modelling of two-dimensional laminate structures as plates and

shells was the subject of the Chaps. 8 and 9. In the present Chap. 10 the investi-

367© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8935-0_10&domain=pdf
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gation of beams with thin-walled cross-sections and beam shaped shells especially

folded structures is carried out. Chapter 10 starting in Sect. 10.1 from a short recall

of the classical beam models. In Sect. 10.2 a generalized beam model for prismatic

thin-walled folded plate structures is introduced, including all known beam models.

Section 10.3 discusses some solution procedures and in Sect. 10.4 selected problems

are demonstrated.

10.1 Introduction

Analyzing thin-walled structures it can be useful to distinguish their global and local

structural behavior. Global bending, vibration or buckling is the response of the

whole structure to external loading and is formulated in a global coordinate system.

A typical example for global structure behavior is the deflection of a ship hull on

the waves. But the deflections and stresses in a special domain of the ship e.g. in the

region of structure loading or deck openings or the vibrations or buckling of single

deck plates represent typical local effects.

A necessary condition for a global analysis is that the geometry of the structure

allows its description in a global co-ordinate system, i.e. the thin-walled structure is

sufficient long how it is given in case of a quasi one-dimensional structure.

Of course there are interactions between global and local effects, and in the most

cases these interactions are nonlinear. Usually the global analysis is taken as the

basic analysis and its results are the boundary conditions for local considerations

by using special local co-ordinate systems. The reactions of local to global effects

whereas are neglected.

From this point of view the global analysis of thin-walled beams and beam

shaped shells can be done approximately by describing them as one-dimensional

structures with one-dimensional model equations. For such problems the classical

beam model of J. Bernoulli was used. This model is based on three fundamental

hypotheses:

• There are no deformations of the cross-sectional contour.

• The cross-section is plane also in case of deformed structures.

• The cross-section remain orthogonally to the deformed system axis.

As a result of bending without torsion we have normal stresses σ and strains ε only

in longitudinal direction. Shear deformations are neglected. The shear stresses τ
caused by the transverse stress resultants are calculated with the help of the equilib-

rium equations, but they are kinematically incompatible.

The Bernoulli’s beam model can be used for beams with compact and sufficient

stiff thin-walled cross-sections. In case of thin-walled cross-section it is supposed

that the bending stresses σb and the shear stresses τq are distributed constantly over

the thickness t. If we have closed thin-walled cross-sections a statically indetermi-

nate shear flow must be considered.
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A very important supplement to Bernoulli’s beam model was given by Saint-

Venant1 for considering the torsional stress. Under torsional stresses the cross-

sections have out-of-plane warping, but assuming that these are the same in all cross-

sections and they are not constrained we have no resulting longitudinal strains and

normal stresses. In this way we have also no additional shear stresses. The distribu-

tion of the so-called Saint-Venant torsional shear stresses is based on a closed shear

flow in the cross-section. For closed thin-walled cross-sections the well-known ele-

mentary formulae of Bredt2 can be used.

The Timoshenko’s beam model is an extension of the Bernoulli’s beam model.

It enables to consider the shear deformations approximately. The first two basic hy-

potheses of the Bernoulli’s model are remained. The plane cross-section stays plane

in this case but is not orthogonally to the system axes in the deformed structure. For

the torsional stress also the relationships of Saint-Venant are used.

Rather soon the disadvantages of this both classical beam models were evident

for modelling and analysis of general thin-walled beam shaped structures. Espe-

cially structures with open cross-section have the endeavor for warping, and be-

cause the warping generally is not the same in all cross-sections, there are additional

normal stresses, so-called warping normal stresses and they lead to warping shear

stresses too. Therefore the torsional moment must be divided into two parts, the

Saint-Venant part and the second part caused by the warping shear stresses.

Very fundamental and general works on this problem were done by Vlasov. Be-

cause his publications are given in Russian language they stayed unknown in west-

ern countries for a long time. In 1958 a translation of Vlasov’s book ”General Shell

Theory and its Application in Technical Sciences” into German language was pub-

lished (Wlassow, 1958) and some years later his book on thin-walled elastic beams

was published in English (Vlasov, 1961). By Vlasov a general and systematic ter-

minology was founded, which is used now in the most present papers.

The Vlasov’s beam model for thin-walled beams with open cross-sections is

based on the assumption of a rigid cross-section contour too, but the warping ef-

fects are considered. Neglecting the shear strains of the mid-planes of the walls the

warping of the beam cross-section are given by the so-called law of sectorial areas.

The application of this Vlasov beam model to thin-walled beams with closed cross-

sections leads to nonsatisfying results, because the influences of the cross-sectional

contour deformations and of the mid-plane shear strains in the walls are significant

in such cases.

Therefore a further special structural model was developed by Vlasov in form

of the so-called semi-moment shell theory, in which the longitudinal bending mo-

ments and the torsional moments in the plates of folded structures with closed cross-

sections are neglected. By this way we have in longitudinal direction only membrane

stresses and in transversal direction a mixture of membrane and bending stresses.

This two-dimensional structural model can be reduced to a one-dimensional one

by taking into account the Kantorovich relationships in form of products of two

1 Adhémar Jean Claude Barré de Saint-Venant (∗23 August 1797 Villiers-en-Bière – †6 January

1886 Saint-Ouen) - mechanician and mathematician
2 Rudolf Bredt (∗17 April 1842 Barmen - †18 May 1900 Wetter) - mechanical engineer
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functions. One of them describes a given deformation state of the cross-section,

considered as a plane frame structure and the other is an unknown function of the

longitudinal co-ordinate.

In 1994 the authors of this textbook published a monograph on thin-walled folded

plate structures in German (Altenbach et al, 1994). Starting from a general struc-

tural model for isotropic structures also a short outlook to anisotropic structures was

given. The general model equations including the semi-moment shell model and all

classical and generalized linear beam models could be derived by neglecting special

terms in the elastic energy potential function or by assuming special conditions for

the contour deformation states. In Sect. 10.2 the derivation of generalized folded

structural model is given for anisotropic plates, e.g. off-axis loaded laminates. The

derivations are restricted to prismatic systems with straight system axes only.

Summarizing one can conclude from the above discussion there are several rea-

sons why for thin-walled structures must be given special consideration in design

and analysis. In thin-walled beams the shear stresses and strains are relatively much

larger than those in beams with solid, e.g. rectangular, cross-sections. The assump-

tions of Bernoulli’s or Timoshenko’s beam theory can be violated e.g. by so-called

shear lag effects, which result in a non-constant distribution of normal bending

stresses which are different from that predicted by the Bernoulli hypotheses for

beams carrying only bending loads. When twisting also occurs warping effects, e.g.

warping normal and shear stresses, have to add to those arising from bending loads.

The warping of the cross-section is defined as its out-of-plane distorsion in the direc-

tion of the beam axis and violated the Bernoulli’s hypotheses and the Timoshenko’s

hypotheses too.

Because of their obvious advantages fibre reinforced laminated composite beam

structures are likely to play an increasing role in design of the present and, espe-

cially, of future constructions in the aeronautical and aerospace, naval or automotive

industry. In addition to the known advantages of high strength or high stiffness to

weight ratio, the various elastic and structural couplings, which are the result of the

directional nature of composite materials and of laminae-stacking sequence, can be

successfully exploited to enhance the response characteristics of aerospace or naval

vehicles.

In order to be able to determine the behavior of these composite beam structures,

consistent mechanical theories and analytical tools are required. So a Vlasov type

theory for fiber-reinforced beams with thin-walled open cross-sections made from

mid-plane symmetric fiber reinforced laminates was developed but in the last 30

years many improved or simplified theories were published.

Because primary or secondary structural configurations such as aircraft wings,

helicopter rotor blades, robot arms, bridges and other structural elements in civil en-

gineering can be idealized as thin- or thick-walled beams, especially as box beams,

beam models appropriate for both thin- and thick-walled geometries which include

the coupled stiffness effects of general angle-ply laminates, transverse shear defor-

mation of the cross-section and the beam walls, primary and secondary warping,

etc. were developed. But nearly all governing equations of thin- and thick-walled

composite beams adopt the basic Vlasov assumption:
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Fig. 10.1 Thin-walled prismatic folded plate structures with open or closed cross-sections

The contours of the original beam cross-section do not deform in their own

planes.

This assumption implies that the normal strain εs in the contour direction is small

compared to the normal strain εz parallel to the beam axis. This is particular valid

for thin-walled open cross-sections, for thin-walled closed cross-section with stiff-

eners (transverse sheets) and as the wall thickness of closed cross-sections increase.

Chapter 10 focuses the considerations to a more general model of composite thin-

walled beams which may be include the classical Vlasov assumptions or may be

relax these assumptions, e.g. by including the possibility of a deformation of the

cross-section in its own plane, etc.

In the following a special generalized class of thin-walled structures is consid-

ered, so-called folded plate structures. A folded plate structure shall be defined as

a prismatic thin-walled structure which can be formed by folding a flat rectangu-

lar plate or joining thin plate strips along lines parallel to their length. Figure 10.1

demonstrates thin-walled structures of the type defined above. The plate strips can

be laminates.

10.2 Generalized Beam Models

Section 10.2 defines the outline of modelling beam shaped, thin-walled prismatic

folded plate structures with open, one or multi-cell closed or mixed open-closed

cross-sections. The considerations are limited to global structural response. Assum-

ing the classical laminate theory for all laminated plate strips of the beam shaped

structure the elastic energy potential function is formulated. The energy potential

is a two-dimensional functional of the coordinate x of the structure axis and the

cross-section contour coordinate s.

Following the way of Vlasov-Kantorovich the two-dimensional functional is re-

duced to an approximate one-dimensional one. A priori fixed generalized coordi-
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nate functions describing the cross-section kinematics are introduced. Generalized

displacement functions which depend on the system coordinate x only are the inde-

pendent functions of the reduced variational statement which leads to a system of

matrix differential equations, the Euler equations of the variational statement, and

to the possible boundary equations.

The general structural model can be simplified by neglecting selected terms in the

energy formulation or by restricting the number of the generalized coordinate func-

tions, i.e. the cross-section kinematics. All results are discussed under the viewpoint

of a sufficient general structural model for engineering applications. A general struc-

tural model is recommended which includes all above noted forms of cross-sections

and enables to formulate efficient numerical solution procedures.

10.2.1 Basic Assumptions

A prismatic system is considered, its dimensions are significant larger in one di-

rection (the length) in comparison with these in transverse directions. The system

consists of n plane thin-walled strip elements; it means their thickness is significant

smaller than the strip width, i.e. ti ≪ di. Rigid connections of the plate strips along

their length lines are supposed. Closed cross-sections as well as open cross-sections

and combined forms are possible. In Fig. 10.2 a general thin-walled folded structure

is shown. There is a global co-ordinate system x,y,z with any position. In each strip

we have a local co-ordinate system x,si,ni, the displacements are ui,vi,wi. We re-

strict our considerations to prismatic structures only and neglect the transverse shear

strains in the strips normal to their mid-planes, it means the validity of the Kirchhoff

hypotheses is supposed or we use the classical laminate theory only. All constants

of each strip are constant in x-direction. For the displacements we can write

n1,w1

s1,v1

x,u1

n2,w2

s2,v2

x,u2

ni,wi si,vi

x,ui

x

y
z

ti

di

l

Fig. 10.2 Thin-walled folded structure geometry and co-ordinate systems
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ui = ui(x,si), vi = vi(x,si), wi = wi(x,si) (10.2.1)

ui and vi are the displacements in the mid-plane and wi is the deflection normal to

the mid-plane of the ith strip. As loads are considered:

• surface forces, distributed on the unit of the mid-plane

pxi = pxi(x,si), psi = psi(x,si), pni = pni(x,si) (10.2.2)

• line forces, distributed on the length unit of the boundaries of the structure

qxi|x = 0 = qxi(0,si), qsi|x = 0 = qsi(0,si), qni|x = 0 = qni(0,si)

qxi|x = l = qxi(l,si), qsi|x = l = qsi(l,si), qni|x = l = qni(l,si)
(10.2.3)

If a linear anisotropic material behavior is supposed, for each strip we can use the

constitutive relationship given as

[

NNN

MMM

]

i

=

[

AAA BBB

BBB DDD

]

i

[

εεε
κκκ

]

i

(10.2.4)
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The following steps are necessary for calculating the elements of the matrices

AAA,BBB,DDD for the ith strip:

• Calculate the reduced stiffness matrix QQQ′ for each lamina (k) of the strip (i) by

using the four elastic moduli EL,ET,νLT,GLT, Eqs. (4.1.2) and (4.1.3).

• Calculate the values of the transformed reduced stiffness matrix QQQ for each lam-

ina (k) of the strip (i) (Table 4.2).

• Considering the stacking structure, it means, considering the positions of all lam-

inae in the ith strip calculate the matrix elements Akli
,Bkli

,Dkli
, (4.2.15).

It must be noted that the co-ordinates x1,x2,x3 used in Sect. 4.1.3 are corresponding

to the coordinates x,si,ni in the present chapter and the stresses σ1,σ2,σ6 here are

σxi ,σsi ,σxsi . For the force and moment resultants also the corresponding notations

Nxi ,Nsi ,Nxsi ,Mxi ,Msi ,Mxsi are used and we have to take here:

Nxi =

ti/2
∫

−ti/2

σxidni, Nsi =

ti/2
∫

−ti/2

σsidni, Nxsi =

ti/2
∫

−ti/2

σxsidni,

(10.2.5)
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Mxi =

ti/2
∫

−ti/2

σxinidni, Msi =

ti/2
∫

−ti/2

σsinidni, Mxsi =

ti/2
∫

−ti/2

σxsinidni

In Fig. 10.3 the orientations of the loads, see Eqs. (10.2.2) and (10.2.3), and the

resultant forces and moments in the ith wall are shown. In the frame of the classical

laminate theory the transverse force resultants Nsni and Nxni follow with the help

of the equilibrium conditions for a strip element.

In the same way here we have the following definitions for the elements of the

deformation vector [ε1 ε2 ε6 κ1 κ2 κ6]
T ≡ [εxi εsi εxsi κxi κsi κxsi ]

T with

εxi =
∂ui

∂x
= u′i, εsi =

∂vi

∂ si

= v•i ,

εxsi =
∂ui

∂ si

+
∂vi

∂x
= u•i + v′i, κxi =−∂ 2wi

∂x2
=−w′′

i , (10.2.6)

Fig. 10.3 Loads and resultant

forces and moments in the ith

strip

ni

x

si

Nsi

Nxsi

Nxi

Nxsi

Nsi

Nxsi

pxi

psi

qsi |x=0

qxi |x=0

x

si

ni

Mxsi

Nsni
Msi

Nxni

Mxsi

Mxi

Msi

Mxsi

Nsni

qni |x=0

pni



10.2 Generalized Beam Models 375

κsi =−∂ 2wi

∂ s2
i

=−w••
i , κxsi =−2

∂ 2wi

∂x∂ si

=−2w′
i
•

10.2.2 Potential Energy of the Folded Structure

The potential energy of the whole folded structure can be obtained by summarizing

the energy of all the n strips

Π =
1

2
∑
(i)

l
∫

0

di
∫

0

[

NNNT MMMT
]

i

[

εεε
κκκ

]

i

dsidx−Wa (10.2.7)

With equation (10.2.4) the vectors of the resultant forces and moments can be ex-

pressed and we obtain

Π =
1

2
∑
(i)

l
∫

0

di
∫

0

[

εεε
κκκ

]T

i

[

AAA BBB

BBB DDD

]

i

[

εεε
κκκ

]

i

dsidx−Wa (10.2.8)

The external work of the loads is also the sum of all the n strips

Wa = ∑
i

{

1

2

l
∫

0

di
∫

0

2(pxi
ui + psi

vi + pni
wi) dsi dx

+

di
∫

0
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(qxi
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vi + qni
wi)
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∣

∣
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x=0

+ (qxi
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vi + qni
wi)

∣

∣

∣

∣

x=l

]

dsi

}

(10.2.9)

After some steps considering the Eqs. (10.2.4) and (10.2.6) Eq. (10.2.9) leads to

Π = ∑
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(10.2.10)

+ D22i
w••

i
2 + 4D26i

w••
i w′

i
•
+ 4D66i

w′
i
•2

− 2(pxi
ui + psi

vi + pni
wi)

]

dsi dx
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−
di
∫

0

[(qxi
ui + qsi

vi + qni
wi)|x=0+(qxi

ui + qsi
vi + qni

wi)|x=l ]dsi

}

10.2.3 Reduction of the Two-dimensional Problem

Equation (10.2.10) represents the complete folded structure model, because it con-

tains all the energy terms of the membrane stress state and of the bending/torsional

stress state under the validity of the Kirchhoff hypotheses. An analytical solution of

this model equations is really impossible with the exception of some very simple

cases. Therefore here we will take another way. As the main object of this section

we will find approximate solutions by reducing the two-dimensional problem to an

one-dimensional one taking into account the so-called Kantorovich separation rela-

tionships (Sect. 2.2).

For the displacements ui,vi,wi in the ith strip we write the approximative series

solutions
ui(x,si) = ∑

( j)

U j(x)ϕi j(si) = UUUTϕϕϕ = ϕϕϕTUUU ,

vi(x,si) = ∑
(k)

Vk(x)ψik(si) = VVV Tψψψ = ψψψTVVV ,

wi(x,si) = ∑
(k)

Vk(x)ξik(si) = VVV Tξξξ = ξξξ TVVV

(10.2.11)

Here the ϕi j(si),ψik(si),ξik(si) are a priori given trial functions of the co-ordinates

si and U j(x),Vk(x) unknown coefficient functions of the longitudinal co-ordinate x.

Vlasov defined the ϕi j(si),ψik(si),ξik(si) as the generalized co-ordinate functions

and the U j(x),Vk(x) as the generalized displacement functions. Of course it is very

important for the quality of the approximate solution, what kind and which number

of generalized co-ordinates ϕi j(si),ψik(si),ξik(si) are used.

Now we consider a closed thin-walled cross-section, e.g. the cross-section of a

box-girder, and follow the Vlasov’s hypotheses:

• The out-of-plane displacements ui(si) are approximately linear functions of si. In

this case there are n∗ linear independent trial functions ϕi j. n∗ is the number of

parallel strip edge lines of cross-section.

• The strains εsi
(si) can be neglected, i.e. εsi

≈ 0. The trial functions ψik(si) are

then constant functions in all strips and we have n∗∗ linear independent ψik(si)
and ξik(si) with n∗∗ = 2n∗ −m∗. m∗ is the number of strips of the thin-walled

structure and n∗ is defined above.

The generalized co-ordinate functions can be obtained as unit displacement states

in longitudinal direction (ϕ) and in transversal directions (ψ ,ξ ). Usually however

generalized co-ordinate functions are used, which allow mechanical interpretations.

In Fig. 10.4, e.g., the generalized co-ordinate functions for a one-cellular rectangu-

lar cross-section are shown. ϕ1 characterizes the longitudinal displacement of the
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whole cross-section, ϕ2 and ϕ3 its rotations about the global y- and z-axes. ϕ1, ϕ2,

ϕ3 represent the plane cross-section displacements, while ϕ4 shows its warping.

ψ2 and ψ3 characterize the plan cross-section displacements in z- and y-direction

and ψ1 the rotation of the rigid cross-section about the system axis x. ψ4 defines a

cross-sectional contour deformation, e.g. a distorsion. The generalized co-ordinate

functions ξ1, ξ2, ξ3, ξ4 represent displacements of the strips corresponding to ψ1,

ψ2, ψ3, ψ4. For the example of a box-girder cross-section there is n∗ = 4, m∗ = 4

and n∗∗ = 8− 4 = 4.

In the following more general derivations the strains εsi
will be included, we will

take into account more complicated forms of warping functions and therefore there

are no restrictions for the number of generalized co-ordinate functions. After the

input of Eq. (10.2.11) into (10.2.10) and with the definition of the 28 matrices

ÂAA1 = ∑
(i)

di
∫

0

A11i
ϕϕϕϕϕϕTdsi, ÂAA2 = ∑

(i)

di
∫

0

A16i
ϕϕϕ•ϕϕϕTdsi,

ÂAA3 = ∑
(i)

di
∫

0

A66i
ϕϕϕ•ϕϕϕ•Tdsi, ÂAA4 = ∑

(i)

di
∫

0

A66i
ψψψψψψTdsi,

ÂAA5 = ∑
(i)

di
∫

0

A26i
ψψψ•ψψψTdsi, ÂAA6 = ∑

(i)

di
∫

0

A22i
ψψψ•ψψψ•Tdsi,

ÂAA7 = ∑
(i)

di
∫

0

D11i
ξξξξξξ Tdsi, ÂAA8 = ∑

(i)

di
∫

0

D16i
ξξξ •ξξξ Tdsi,

ÂAA9 = ∑
(i)

di
∫

0

D66i
ξξξ •ξξξ •T

dsi, ÂAA10 = ∑
(i)

di
∫

0

D12i
ξξξ ••ξξξ Tdsi,

ÂAA11 = ∑
(i)

di
∫

0

D26i
ξξξ ••ξξξ •T

dsi, ÂAA12 = ∑
(i)

di
∫

0

D22i
ξξξ ••ξξξ ••T

dsi,

ÂAA13 = ∑
(i)

di
∫

0

A16i
ϕϕϕψψψTdsi, ÂAA14 = ∑

(i)

di
∫

0

A12i
ϕϕϕψψψ•Tdsi, (10.2.12)

ÂAA15 = ∑
(i)

di
∫

0

A66i
ϕϕϕ•ψψψTdsi ÂAA16 = ∑

(i)

di
∫

0

A26i
ϕϕϕ•ψψψ•Tdsi,

ÂAA17 = ∑
(i)

di
∫

0

B11i
ϕϕϕξξξ Tdsi, ÂAA18 = ∑

(i)

di
∫

0

B16i
ϕϕϕξξξ •T

dsi,
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ÂAA19 = ∑
(i)

di
∫

0

B12i
ϕϕϕξξξ ••T

dsi, ÂAA20 = ∑
(i)

di
∫

0

B16i
ϕϕϕ•ξξξ Tdsi,

ÂAA21 = ∑
(i)

di
∫

0

B66i
ϕϕϕ•ξξξ •T

dsi, ÂAA22 = ∑
(i)

di
∫

0

B26i
ϕϕϕ•ξξξ ••T

dsi,

ÂAA23 = ∑
(i)

di
∫

0

B16i
ψψψξξξ Tdsi, ÂAA24 = ∑

(i)

di
∫

0

B66i
ψψψξξξ •T

dsi,

ÂAA25 = ∑
(i)

di
∫

0

B26i
ψψψξξξ ••T

dsi, ÂAA26 = ∑
(i)

di
∫

0

B12i
ψψψ•ξξξ Tdsi,

ÂAA27 = ∑
(i)

di
∫

0

B26i
ψψψ•ξξξ •T

dsi, ÂAA28 = ∑
(i)

di
∫

0

B22i
ψψψ•ξξξ ••T

dsi

and the load vectors

fff x = ∑
(i)

di
∫

0

pxi
ϕϕϕdsi, rrrx = ∑

(i)

di
∫

0

qxi
ϕϕϕdsi,

fff s = ∑
(i)

di
∫

0

psi
ψψψdsi, rrrs = ∑

(i)

di
∫

0

qsi
ψψψdsi,

fff n = ∑
(i)

di
∫

0

pni
ξξξ dsi, rrrn = ∑

(i)

di
∫

0

qni
ξξξ dsi

(10.2.13)

the potential energy in matrix form is obtained as follows

Π =
1

2

l
∫

0

[

UUU ′TÂAA1UUU
′+VVV TÂAA6VVV +UUUTÂAA3UUU + 2UUUTÂAA15VVV

′

+ VVV ′TÂAA4VVV
′+VVV ′′TÂAA7VVV

′′+VVV TÂAA12VVV + 4VVV ′TÂAA9VVV
′

+ 2UUU ′TÂAA14VVV + 2UUUTÂAA2UUU
′+ 2UUU ′TÂAA13VVV

′− 2UUU ′TÂAA17VVV
′′

− 2UUU ′TÂAA19VVV − 4UUU ′TÂAA18VVV
′+ 2UUU ′TÂAA16VVV + 2VVV TÂAA5VVV

′

− 2VVV TÂAA26VVV
′′− 2VVV TÂAA28VVV − 4VVVTÂAA27VVV

′− 2UUUTÂAA20VVV
′′

− 2VVV ′TÂAA23VVV
′′− 2UUUTÂAA22VVV − 2VVV ′TÂAA25VVV − 4UUUTÂAA21VVV

′

− 4VVV ′TÂAA24VVV
′+ 2VVVTÂAA10VVV

′′+ 4VVV ′TÂAA8VVV
′′+ 4VVV TÂAA11VVV

′

− 2(UUUT fff x +VVV T fff s +VVV T fff n)

]

dx

− (UUUTrrrx +VVV Trrrs +VVV Trrrn) |x=0 − (UUUTrrrx +VVV Trrrs +VVV Trrrn) |x=l

(10.2.14)
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The variation of the potential energy function (10.2.14) and using

∂Π

∂UUU
− d

dx

(

∂Π

∂UUU ′

)

= 000,
∂Π

∂VVV
− d

dx

(

∂Π

∂VVV ′

)

+
d2

dx2

(

∂Π

∂VVV ′′

)

= 000,

δUUUT

[

∂Π

∂UUU ′

]

x=0,l

= 0, δVVV T

[

∂Π

∂VVV ′ −
d

dx

(

∂Π

∂VVV ′′

)]

x=0,l

= 0,

δVVV
′T
[

∂Π

∂VVV ′′

]

x=0,l

= 0

(10.2.15)

leads to a system of matrix differential equations and matrix boundary conditions of

the complete thin-walled folded plate structure

−ÂAA1UUU
′′+(ÂAA2 − ÂAA

T

2 )UUU
′+ ÂAA3UUU

+ÂAA17VVV
′′′− (ÂAA13 − 2ÂAA18 + ÂAA20)VVV

′′

+(−ÂAA14 + ÂAA15 + ÂAA19 − 2ÂAA21)VVV
′+(ÂAA16 − ÂAA22)VVV = fff x

−ÂAA
T

17UUU
′′′− (ÂAA

T

13 − 2ÂAA
T

18 + ÂAA
T

20)UUU
′′

+(ÂAA
T

14 − ÂAA
T

15 − ÂAA
T

19 + 2ÂAA
T

21)UUU
′+(ÂAA

T

16 − ÂAA
T

22)UUU

+ÂAA7VVV
′′′′+(2ÂAA

T

8 − 2ÂAA8 + ÂAA23 −AAAT
23)VVV

′′′

−(ÂAA4 + 4ÂAA9 − ÂAA10 − ÂAA
T

10 − 4ÂAA24 + ÂAA26 + ÂAA
T

26)VVV
′′

+(ÂAA5 − ÂAA
T

5 + 2ÂAA11 − 2ÂAA
T

11 + ÂAA25 − ÂAA
T

25 − 2ÂAA27 + 2ÂAA
T

27)VVV
′

+(ÂAA6 + ÂAA12 − 2ÂAA28)VVV = fff s + fff n

(10.2.16)

δUUUT [ÂAA1UUU
′+ ÂAA

T

2UUU − ÂAA17VVV
′′+(ÂAA13 − 2ÂAA18)VVV

′

+(ÂAA14 − ÂAA19)VVV ±rrrx]x=0,l = 0

δVVV T [ÂAA
T

17UUU
′′+(ÂAA

T

13 − 2ÂAA
T

18 + ÂAA
T

20)UUU
′+(ÂAA

T

15 − 2ÂAA
T

21)UUU

−ÂAA7VVV
′′′+(2ÂAA8 − 2ÂAA

T

8 − ÂAA23 + ÂAA
T

23)VVV
′′

+(ÂAA4 + 4ÂAA9 − ÂAA
T

10 − 4ÂAA24 + ÂAA
T

26)VVV
′

+(ÂAA
T

5 + 2ÂAA
T

11 − ÂAA25 − 2ÂAA
T

27)VVV ±rrrs ±rrrn]x=0,l = 0

δVVV
′T [−ÂAA

T

17UUU
′− ÂAA

T

20UUU

+ÂAA7VVV
′′+(2ÂAA

T

8 − ÂAA
T

23)VVV
′+(ÂAA

T

10 − ÂAA
T

26)VVV ]x=0,l = 0

(10.2.17)

In Eqs. (10.2.17) the upper sign (+) is valid for the boundary x = 0 of the structure

and the lower one (−) for the boundary x = l. This convention is also valid for all

following simplified models.
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10.2.4 Simplified Structural Models

Starting from the complete folded structure model two ways of derivation simplified

models are usual:

• Neglecting of special terms in the potential energy function of the complete

folded plate structure.

• Restrictions of the cross-section kinematics by selection of special generalized

co-ordinate functions.

For the first way we will consider the energy terms caused by

• the longitudinal curvatures κxi ,

• the transversal strains εsi ,

• the shear deformations of the mid-planes εxsi and

• the torsional curvatures κxsi

in the strips. But not all possibilities for simplified models shall be taken into ac-

count. We will be restricted the considerations to:

A a structure model with neglected longitudinal curvatures κxi only,

B a structure model with neglected longitudinal curvatures κxi and neglected tor-

sional curvatures κxsi ,

C a structure model with neglected longitudinal curvatures κxi and neglected

transversal strains εsi ,

D a structure model with neglected longitudinal curvatures κxi , neglected transver-

sal strains εsi and torsional curvatures κxsi , and

E a structure model with neglected longitudinal curvatures κxi , neglected transver-

sal strains εsi and neglected shear strain εxsi of the mid-planes of the strips.

In Fig. 10.5 is given an overview on the development of structural simplified models.

10.2.4.1 Structural Model A

The starting point is the potential energy equation (10.2.10), in which all terms

containing w′′
i have to vanish. Together with (10.2.11) and (10.2.12) we find that in

this case

ÂAA7 = 000,ÂAA8 = 000,ÂAA10 = 000,ÂAA17 = 000,ÂAA20 = 000,ÂAA23 = 000,ÂAA26 = 000

The matrix differential equations (10.2.16) and the boundary conditions (10.2.17)

change then into
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κsi 6= 0,εsi 6= 0,εxsi 6= 0,κxsi 6= 0

κxi = 0

εsi 6= 0 εsi = 0

εxsi 6= 0 εxsi = 0 εxsi 6= 0 εxsi = 0

κxsi 6= 0 κxsi = 0 κxsi 6= 0 κxsi = 0 κxsi 6= 0

A B C D E

Fig. 10.5 Overview to the derivation of usual simplified models for thin-walled folded plate struc-

tures

−ÂAA1UUU
′′+(ÂAA2 − ÂAA

T

2 )UUU
′+ ÂAA3UUU − (ÂAA13 − 2ÂAA18)VVV

′′

+(−ÂAA14 + ÂAA15 + ÂAA19 − 2ÂAA21)VVV
′+(ÂAA16 − ÂAA22)VVV = fff x,

−(ÂAA
T

13 − 2ÂAA
T

18)UUU
′′+(ÂAA

T

14 − ÂAA
T

15 − ÂAA
T

19 + 2ÂAA
T

21)UUU
′

+(ÂAA
T

16 − ÂAA
T

22)UUU − (ÂAA4 + 4ÂAA9 − 4ÂAA24)VVV
′′

+(ÂAA5 − ÂAA
T

5 + 2ÂAA11 − 2ÂAA
T

11 + ÂAA25 − ÂAA
T

25 − 2ÂAA27 + 2ÂAA
T

27)VVV
′

+(ÂAA6 + ÂAA12 − 2ÂAA28)VVV = fff s + fff n,

(10.2.18)

δUUUT
[

ÂAA1UUU
′+ ÂAA

T

2UUU +(ÂAA13 − 2ÂAA18)VVV
′

+(ÂAA14 − ÂAA19)VVV ±rrrx

]

x=0,l
= 0,

δVVV T
[

(ÂAA
T

13 − 2ÂAA
T

18)UUU
′+(ÂAA

T

15 − 2ÂAA
T

21)UUU

+(ÂAA4 + 4ÂAA9 − 4ÂAA24)VVV
′

+(ÂAA
T

5 + 2ÂAA
T

11 − ÂAA25 − 2ÂAA
T

27)VVV ±rrrs ±rrrn

]

x=0,l
= 0

(10.2.19)
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10.2.4.2 Structural Model B

Here the longitudinal curvatures κxi and the torsional curvatures κxsi are neglected

and therefore in the potential energy additionally to w′′
i ≈ 0 in model A all terms

containing w′
i
•

have to vanish. Additionally to the case of model A now also the ma-

trices ÂAA9,ÂAA11,ÂAA18,ÂAA21,ÂAA24,ÂAA27 are null-matrices. This leads to the following matrix

differential equations and the corresponding boundary conditions:

−ÂAA1UUU
′′+(ÂAA2 − ÂAA

T

2 )UUU
′+ ÂAA3UUU − ÂAA13VVV

′′

+(−ÂAA14 + ÂAA15 + ÂAA19)VVV
′+(ÂAA16 − ÂAA22)VVV = fff x,

−ÂAA
T

13UUU
′′+(ÂAA

T

14 − ÂAA
T

15 − ÂAA
T

19)UUU
′+(ÂAA

T

16 − ÂAA
T

22)UUU − ÂAA4VVV
′′

+(ÂAA5 − ÂAA
T

5 + ÂAA25 − ÂAA
T

25)VVV
′+(ÂAA6 + ÂAA12 − ÂAA28)VVV = fff s+ fff n,

(10.2.20)

δUUUT
[

ÂAA1UUU
′+ ÂAA

T

2UUU + ÂAA13VVV
′+(ÂAA14 − ÂAA19)VVV ±rrrx

]

x=0,l
= 0,

δVVV T
[

ÂAA
T

13UUU
′+ ÂAA

T

15UUU + ÂAA4VVV
′+(ÂAA

T

5 − ÂAA25)VVV ±rrrs ±rrrn

]

x=0,l
= 0

(10.2.21)

10.2.4.3 Structural Model C

In this structure model the longitudinal curvatures κxi and the strains εsi are ne-

glected. Therefore in this case in the potential energy function (10.2.10) all terms

containing w′′
i and v•i have to vanish. Considering the equations (10.2.11) and

(10.2.12) we find, that additionally to the case of the structure model A here the

matrices ÂAA5,ÂAA6,ÂAA14,ÂAA16,ÂAA27,ÂAA28 are null-matrices and in this way we obtain the

following matrix differential equations and the corresponding boundary conditions:

−ÂAA1UUU
′′+(ÂAA2 − ÂAA

T

2 )UUU
′+ ÂAA3UUU − (ÂAA13 − 2ÂAA18)VVV

′′

+(ÂAA15 + ÂAA19 − 2ÂAA21)VVV
′− ÂAA22VVV = fff x,

−(ÂAA
T

13 − 2ÂAA
T

18)UUU
′′+(−ÂAA

T

15 − ÂAA
T

19 + 2ÂAA
T

21)UUU
′− ÂAA

T

22UUU

−(ÂAA4 + 4ÂAA9 − 4ÂAA24)VVV
′′

+(2ÂAA11 − 2ÂAA
T

11 + ÂAA25 − ÂAA
T

25)VVV
′+ ÂAA12VVV = fff s + fff n,

(10.2.22)

δUUUT
[

ÂAA1UUU
′+ ÂAA

T

2UUU +(ÂAA13 − 2ÂAA18)VVV
′− ÂAA19VVV ±rrrx

]

x=0,l
= 0,

δVVV T
[

(ÂAA
T

13 − 2ÂAA
T

18)UUU
′+(ÂAA

T

15 − 2ÂAA
T

21)UUU

+(ÂAA4 + 4ÂAA9 − 4ÂAA24)VVV
′+(2ÂAA

T

11 − ÂAA25)VVV ±rrrs ±rrrn

]

x=0,l
= 0

(10.2.23)
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10.2.4.4 Structural Model D

This structure model neglects the longitudinal curvatures κxi , the strains εsi and

the torsional curvatures κxsi . In the potential energy function all terms containing

w′′
i ,v

•
i ,w

′
i
•

have to vanish and we find together with (10.2.11) and (10.2.12) that

additionally to the structure model C the matrices ÂAA9,ÂAA11,ÂAA18,ÂAA21,ÂAA24 are null-

matrices. We obtain the matrix differential equations and the boundary conditions

in the following form:

−ÂAA1UUU
′′+(ÂAA2 − ÂAA

T

2 )UUU
′+ ÂAA3UUU

−ÂAA13VVV
′′+(ÂAA15 + ÂAA19)VVV

′− ÂAA22VVV = fff x,

−ÂAA
T

13UUU
′′+(−ÂAA

T

15 − ÂAA
T

19)UUU
′− ÂAA

T

22UUU

−ÂAA4VVV
′′+(ÂAA25 − ÂAA

T

25)VVV
′+ ÂAA12VVV = fff s + fff n,

(10.2.24)

δUUUT
[

ÂAA1UUU
′+ ÂAA

T

2UUU + ÂAA13VVV
′− ÂAA19VVV ±rrrx

]

x=0,l
= 0,

δVVV T
[

ÂAA
T

13UUU
′+ ÂAA

T

15UUU + ÂAA4VVV
′− ÂAA25VVV ±rrrs ±rrrn

]

x=0,l
= 0

(10.2.25)

10.2.4.5 Structural Model E

Now the longitudinal curvatures κxi , the transversal strains εsi and the shear strains

εxsi of the mid-planes shall be neglected. Therefore in the potential energy function

all the terms containing w′′
i and v•i vanish again. The neglecting of the shear strains

of the mid-planes leads with Eq. (10.2.6) to

εxsi =
∂ui

∂ si
+

∂vi

∂x
= u•i + v′i = 0

and we can see that the generalized displacement functions UUU(x) and VVV (x) and also

the generalized co-ordinate functions ϕϕϕ(si) and ψψψ(si) are no more independent from

each other

u•i =−v′i,UUU
Tϕϕϕ•=−VVV ′Tψψψ,ϕϕϕ•=ψψψ,UUU =−VVV ′,UUU ′=−VVV ′′,UUU ′′=−VVV ′′′ (10.2.26)

Therefore the potential energy function must be reformulated before the variation

of UUU and VVV . Considering the vanishing terms w′′
i ,v

•
i and (10.2.26) we obtain the

potential energy function in the following form:
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Π =
1

2

l
∫

0

[

VVV ′′TÂAA1VVV
′′+VVV TÂAA12VVV + 2VVV ′′TÂAA19VVV + 4VVV ′′TÂAA18VVV

′

+ 4VVV ′TÂAA9VVV
′+ 4VVVTÂAA11VVV

′− 2(UUUT fff x +VVV T fff s +VVV T fff n)

]

dx

− (UUUTrrrx +VVV Trrrs +VVV Trrrn) |x=0 − (UUUTrrrx +VVV Trrrs +VVV Trrrn) |x=l

(10.2.27)

The variation of the potential energy, see also (10.2.15), leads to the matrix differ-

ential equations and the boundary conditions for the structural model E

ÂAA1VVV
′′′′+ 2(ÂAA18 − ÂAA

T

18)VVV
′′′+(−4ÂAA9 + ÂAA19 + ÂAA

T

19)VVV
′′

+2(ÂAA11 − ÂAA
T

11)VVV
′+ ÂAA12VVV = fff ′x + fff s + fff n,

(10.2.28)

δVVV T
[

− ÂAA1VVV
′′′+ 2(−ÂAA18 + ÂAA

T

18)VVV
′′+(4ÂAA9 − ÂAA19)VVV

′

+2ÂAA
T

11VVV + fff x ±rrrx ±rrrn

]

x=0,l
= 0,

δVVV ′T
[

ÂAA1VVV
′′+ 2ÂAA18VVV

′+ ÂAA19VVV ∓rrrx

]

x=0,l
= 0

(10.2.29)

10.2.4.6 Further Special Models by Restrictions of the Cross-Section

Kinematics

All the five given simplified structure models include the neglecting of the longitu-

dinal curvatures κxi in the strips. Because in the case of a beam shaped thin-walled

structure the influence κxi on the deformation state and the stresses of the whole

structure can be seen as very small, its neglecting is vindicated here. The main ad-

vantage of the given five simplified structure models however is that by neglecting

the longitudinal curvatures in the strips we have a decreasing of the order of deriva-

tions of the generalized displacement functions UUU and VVV in the potential energy.

This is an important effect for practical solution strategies of the model equations.

The structure models A and C can be used for the analysis of thin-walled beam

shaped structures with open or closed cross-sections. The difference exists only in

the including or neglecting of the strains εsi in the strips. Usually they can be ne-

glected, if we have not temperature loading or concentrated transversal stiffeners in

the analyzed structure. The structure models B and D are valid only for structures

with closed cross-sections, because there the torsional curvatures and the torsional

moments Mxsi are very small. The use of the structure model E is vindicated only

for beam shaped structures with open cross-sections. There the shear strains of the

mid-planes of the plate strips have only small influence on the displacements and

the stress state of the structure how in opposite to the case of a closed cross-section.

Further for each of the five considered models we can develop model variants

restricting the cross-section kinematics by selection of special sets of generalized

co-ordinate functions ϕϕϕ ,ψψψ ,ξξξ . For example, in the structure model B the number of

generalized co-ordinate functions is unlimited. In model D in contrast the number
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of ψψψ,ξξξ -co-ordinates is limited to n∗∗, see Sect. 10.2.3. Restricting in this model ad-

ditionally the ϕϕϕ-co-ordinates to n∗, the semi-moment shell theory for an anisotropic

behavior of the strips is obtained. The Eqs. (10.2.24) and (10.2.25) stay unchanged.

A symmetric stacking sequence in all the strips leads for this model to a further

simplification, because then we have no coupling between stretching and bending

in the strips, all the elements of the coupling matrix BBB vanish and therefore all the

matrices ÂAA17 − ÂAA28 are null-matrices. In this special case the following matrix dif-

ferential equations and boundary conditions are valid

−ÂAA1UUU
′′+(ÂAA2 − ÂAA

T

2 )UUU
′+ ÂAA3UUU − ÂAA13VVV

′′+ ÂAA15VVV
′ = fff x,

−ÂAA
T

13UUU
′′− ÂAA

T

15UUU
′− ÂAA4VVV

′′+ ÂAA12VVV = fff s + fff n,
(10.2.30)

δUUUT
[

ÂAA1UUU
′+ ÂAA

T

2UUU + ÂAA13VVV
′±rrrx

]

x=0,l
= 0,

δVVV T
[

ÂAA
T

13UUU
′+ ÂAA

T

15UUU + ÂAA4VVV
′±rrrs ±rrrn

]

x=0,l
= 0

(10.2.31)

If we have symmetric cross-ply laminates in all the plate strips and one of the main

axes of them is identical with the global x-axis, there is no stretching/shearing or

bending/twisting coupling and therefore additionally to the BBB-matrix the elements

A16 = A26 = 0,D16 = D26 = 0. With these the matrices ÂAA2,ÂAA13, are null-matrices,

Eq. (10.2.12). In this case the Eqs. (10.2.30) and (10.2.31) lead to

−ÂAA1UUU
′′+ ÂAA3UUU + ÂAA15VVV

′ = fff x,

−ÂAA15UUU
′− ÂAA4VVV

′′+ ÂAA12VVV = fff s + fff n,
(10.2.32)

δUUUT
[

ÂAA1UUU
′±rrrx

]

x=0,l
= 0,

δVVV T
[

ÂAA
T

15UUU + ÂAA4VVV
′±rrrs ±rrrn

]

x=0,l
= 0

(10.2.33)

and we find that we have equations of the same type how in case of the classical

semi-moment shell theory of Vlasov. Here however the matrices ÂAA consider the

anisotropic behavior of the strips.

Otherwise if starting from the structure model E then the generalized co-ordinate

functions ψψψ ,ξξξ are restricted to three co-ordinates, representing the rigid cross-

section, i.e. (ψ1,ξ1), the rotation of the cross-section about the x-axis, (ψ2,ξ2) and

(ψ3,ξ3) the displacements in the global y- and z-direction. If we additionally assume

only four ϕ-functions, then the first three representing the plane cross-section, i.e.

ϕ1 the displacement in x-direction, ϕ2, ϕ3 the rotations about the y- and z-axes and

ϕ4 is a linear warping function, the so-called unit warping function according to

the sectorial areas law. Therefore we have a structural model similar the classical

Vlasov beam model. The difference is only that in the classical Vlasov beam model

isotropic material behavior is assumed and here the anisotropic behavior of the plate

strips is considered. Note that for comparison of these both models usually the fol-

lowing correlations should be taken into account:
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U1(x) = u(x) displacements of the plane cross-section in x-direction,

U2(x) = ϕy = w′(x) rotation of the plane cross-section about the y-axis,

U3(x) = ϕz = v′(x) rotation of the plane cross-section about the z-axis,

U4(x) = ωθ ′(x) the warping with ω as the unit warping function,

V1(x) = θ (x) rotation of the rigid cross-section about the x-axis,

V2(x) = v(x) displacement of the rigid cross-section in y-direction,

V3(x) = w(x) displacement of the rigid cross-section in z-direction

More details about the equations shall not be given here.

If we in this anisotropic Vlasov beam model suppress the warping of the

cross-section and use only the functions ϕ1,ϕ2,ϕ3 representing the plane cross-

section kinematics and do not take into account the torsion, we obtain a special-

ized Bernoulli beam model for laminated beams with thin-walled cross-sections

and anisotropic material behavior. In a similar way a specialized Timoshenko beam

model can be obtained, if we restrict the generalized co-ordinate functions ϕi to the

three functions for the plane cross-section kinematics and take into account only

the two ψ-co-ordinates for the displacements in y- and z-direction, here however

starting from the structural model D.

The both above discussed quasi beam models are specialized for structures with

cross-sections consisting of single thin plate strips without any rule of their arrange-

ment in the cross-section. The curvatures κxi are generally neglected. The special-

ized beam equations described above cannot be compared directly with the beam

equations in Chap. 7 because the derivation there is not restricted to thin-walled

folded plate cross-sections.

10.2.5 An Efficient Structure Model for the Analysis of General

Prismatic Beam Shaped Thin-walled Plate Structures

Because in the following only beam shaped thin-walled structures are analyzed the

neglecting of the influence of the longitudinal curvatures κxi in the single plate

strips is vindicated. How it was mentioned above, we have in this case a decreasing

of the order of derivations of the generalized displacement functions in the potential

energy, and this is very important for the solution procedures.

The selected structure model shall enable the analysis of thin-walled structures

with open, closed and mixed open/closed cross-sections. Because the influence of

κxsi is small only for closed cross-sections but the influence of εxsi can be neglected

for open cross-sections only, the selected structure model for general cross-sections

have to include the torsional curvatures and the shear strains of the mid-planes.

The strains εsi have in the most cases only a small influence and could be ne-

glected generally. But we shall see in Chap. 11 that including εsi in the model equa-

tions leads an effective way to define the shape functions for special finite elements

and therefore also the εsi are included in the selected structure model.
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Summarizing the above discussion the structure model A is selected as an uni-

versal model for the modelling and analysis of beam shaped thin-walled plate struc-

tures. An extension of the equations to eigen-vibration problems is given in Sect.

10.2.6.

10.2.6 Free Eigen-Vibration Analysis, Structural Model A

Analogous to the static analysis, the eigen-vibration analysis also shall be restricted

to global vibration response. Local vibrations, e.g. vibration of single plates, are

excluded. A structure model neglecting the longitudinal curvatures cannot describe

local plate strip vibrations. Further only free undamped vibrations are considered.

The starting point is the potential energy function, Eq. (10.2.10), but all terms

including κxi are neglected. With the potential energy Π(ui,vi,wi)

Π = ∑
(i)

1

2

l
∫

0

di
∫

0

[

A11i
u′2i + 2A12i

u′iv
•
i + 2A16i

u′i(u
•
i + v′i)

+ A22i
v•i

2 + 2A26i
v•i (u

•
i + v′i)+A66i

(u•i + v′i)
2

− 2B12i
u′iw

••
i − 4B16i

u′iw
′
i
•− 2B22i

v•i w••
i − 4B26i

v•i w′
i
•

− 2B26i
(u•i + v′i)w

••
i − 4B66i

(u•i + v′i)w
′
i
•

+ D22i
w••

i
2 + 4D26i

w••
i w′

i
•+ 4D66i

w′
i
•2

]

dsi dx

(10.2.34)

and the kinetic energy T (ui,vi,wi)

T (uuu) =
1

2
∑
(i)

l
∫

0

di
∫

0

ρiti

[

(

∂ui

∂ t

)2

+

(

∂vi

∂ t

)2

+

(

∂wi

∂ t

)2
]

dsi dx, (10.2.35)

where ρi is the average density of the ith plate strip

ρi =
1

ti

n

∑
k=1

ρ
(k)
i t

(k)
i (10.2.36)

Because we have thin plate strips only, rotational terms of the kinetic energy can be

neglected.

The reduction of the two-dimensional problem is carried out again with the gen-

eralized co-ordinate functions ϕϕϕ(si),ψψψ(si),ξξξ (si), but we must remark that the gener-

alized displacement functions UUU ,VVV are time-dependent and therefore they are writ-

ten in the following with a tilde. The reduction relationships are
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ui(x,si, t) = ∑
( j)

Ũ j(x, t)ϕi j(si) = ŨUU
T
ϕϕϕ = ϕϕϕTŨUU ,

vi(x,si, t) = ∑
(k)

Ṽk(x, t)ψik(si) = ṼVV
T
ψψψ = ψψψTṼVV ,

wi(x,si, t) = ∑
(k)

Ṽk(x, t)ξik(si) = ṼVV
T
ξξξ = ξξξ TṼVV

(10.2.37)

Additionally to the ÂAA matrices equation (10.2.12) the following matrices are defined:

B̂BB1 = ∑
(i)

di
∫

0

ρitiϕϕϕϕϕϕTdsi, B̂BB2 = ∑
(i)

di
∫

0

ρitiψψψψψψTdsi, B̂BB3 = ∑
(i)

di
∫

0

ρitiξξξξξξ Tdsi (10.2.38)

and we obtain the so-called Lagrange function L = T −Π

L = ∑
(i)

1

2

l
∫

0

[

˙̃UUU
T
B̂BB1

˙̃UUU + ˙̃VVV
T
B̂BB2

˙̃VVV + ˙̃VVV
T
B̂BB3

˙̃VVV

− (ŨUU ′TÂAA1ŨUU
′
+ 2ŨUU ′TÂAA14ṼVV + 2ŨUU

T
ÂAA2ŨUU

′
+ 2ŨUU ′TÂAA13ṼVV

′

+ ṼVV
T
ÂAA6ṼVV + 2ŨUU

T
ÂAA16ṼVV + 2ṼVV

T
ÂAA5ṼVV

′
+ŨUU

T
ÂAA3ŨUU

+ 2ŨUU
T
ÂAA15ṼVV

′
+ṼVV ′TÂAA4ṼVV

′− 2ŨUU ′TÂAA19ṼVV − 4ŨUU ′TÂAA18ṼVV
′

− 2ṼVV
T
ÂAA28ṼVV − 4ṼVV

T
ÂAA27ṼVV

′− 2ŨUU
T
ÂAA22ṼVV − 2ṼVV ′TÂAA25ṼVV

− 4ŨUU
T
ÂAA21ṼVV

′− 4ṼVV ′TÂAA24ṼVV
′

+ ṼVV
T
ÂAA12ṼVV + 4ṼVV

T
ÂAA11ṼVV

′
+ 4ṼVV ′TÂAA9ṼVV

′
)

]

dx

(10.2.39)

The time derivations of the generalized displacement functions are written with the

point symbol

˙̃UUU =
∂ŨUU

∂ t
, ˙̃VVV =

∂ṼVV

∂ t
(10.2.40)

The Hamilton principle yields the variational statement

δ

t2
∫

t1

Ldt =

t2
∫

t1

δLdt = 0, L = L(x, t,ŨUU ,ṼVV ,ŨUU ′,ṼVV ′, ˙̃UUU , ˙̃VVV ) (10.2.41)

and we obtain two differential equations

∂L

∂ŨUU
− d

dx

(

∂L

∂ŨUU ′

)

− d

dt

(

∂L

∂ ˙̃UUU

)

= 000,

∂L

∂ṼVV
− d

dx

(

∂L

∂ṼVV ′

)

− d

dt

(

∂L

∂ ˙̃VVV

)

= 000

(10.2.42)
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If further harmonic relationships for the generalized displacement functions are as-

sumed

ŨUU(x, t) =UUU(x)sin ω0t, ṼVV (x, t) =VVV (x)sin ω0t (10.2.43)

and we obtain after some steps the following matrix differential equations:

−ÂAA1UUU
′′+(ÂAA2 − ÂAA

T

2 )UUU
′+(ÂAA3 −ω2

0B̂BB1)UUU − (ÂAA13 − 2ÂAA18)VVV
′′

+(−ÂAA14 + ÂAA15 + ÂAA19 − 2ÂAA21)VVV
′+(ÂAA16 − ÂAA22)VVV = 000,

−(ÂAA
T

13 − 2ÂAA
T

18)UUU
′′+(ÂAA

T

14 − ÂAA
T

15 − ÂAA
T

19 + 2ÂAA
T

21)UUU
′

+(ÂAA
T

16 − ÂAA
T

22)UUU − (ÂAA4 + 4ÂAA9 − 4ÂAA24)VVV
′′

+(ÂAA5 − ÂAA
T

5 + 2ÂAA11 − 2ÂAA
T

11 + ÂAA25 − ÂAA
T

25 − 2ÂAA27 + 2ÂAA
T

27)VVV
′

+(ÂAA6 + ÂAA12 − 2ÂAA28 −ω2
0B̂BB2 −ω2

0B̂BB3)VVV = 000,

(10.2.44)

δUUUT [ÂAA1UUU
′+ ÂAA

T

2UUU +(ÂAA13 − 2ÂAA18)VVV
′+(ÂAA14 − ÂAA19)VVV ]x=0,l = 0

δVVV T [(ÂAA
T

13 − 2ÂAA
T

18)UUU
′+(ÂAA

T

15 − 2ÂAA
T

21)UUU +(ÂAA4 + 4ÂAA9 − 4ÂAA24)VVV
′

+(ÂAA
T

5 + 2ÂAA
T

11 − ÂAA25 − 2ÂAA
T

27)VVV ]x=0,l = 0

(10.2.45)

With these equations given above the global free vibration analysis of prismatic

beam shaped thin-walled plate structures can be done sufficient exactly.

10.3 Solution Procedures

Two general kinds of solution procedures may be taken into account

• analytic solutions and

• numerical solutions

The consideration below distinguish exact and approximate analytical solution pro-

cedures. In the first case an exact solution of the differential equations is carried

out. In the other case, the variational statement of the problem is, e.g., solved by

the Ritz or Galerkin method, and in general, the procedures yield in an approximate

analytical series solution.

Numerical solution procedures essentially consist of methods outgoing from the

differential equation or from the corresponding variational problem. The numeri-

cal solutions of differential equations may include such methods as finite difference

methods, Runge3-Kutta4 methods and transfer matrix methods. The main represen-

tative for the second way is the finite element method (FEM). After a few remarks

3 Carl David Tolmé Runge (∗30 August 1856 Bremen – †3 January 1927 Göttingen) - mathemati-

cian and physicist
4 Martin Wilhelm Kutta (∗3 November 1867 Pitschen – †25 December 1944 Fürstenfeldbruck) -

mathematician
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in Sect. 10.3.1 about analytic solution possibilities for the here considered prob-

lems, the numerical solution procedure using the transfer matrix method is consid-

ered in detail in Sect. 10.3.2. The application of the FEM and the development of

special one-dimensional finite elements for beam shaped thin-walled structures are

discussed in Chap. 11.

10.3.1 Analytical Solutions

For the generalized beam models given in Sect. 10.2 only for simplified special

cases analytical solutions are possible. If we use, for example, the structure model

D in connection with a symmetric cross-ply stacking in all plates, what means

that the differential equations are from the same type as in case of the isotropic

semi-moment shell theory of Vlasov, analytical solutions can be developed for spe-

cial cross-sections geometry. It is very useful to choose orthogonal generalized co-

ordinate functions ϕϕϕ ,ψψψ ,ξξξ , because it yields the possibility of decomposition of the

system of differential equations into some uncoupled partial systems. For example,

the generalized co-ordinate functions ϕϕϕ in Fig. 10.4 are completely orthogonal and

in this way the matrix ÂAA1 is a diagonal matrix. Therefore some couplings between

the single differential equations vanish.

A suitable method for construction an exact solution is the Krylow5 method or

the so-called method of initial parameters. The first step for the application of this

method is to convert the system of differential equations into an equivalent differen-

tial equation of n-th order.

L[y(x)] =
n

∑
ν=0

aνy(ν)(x) = r(x) (10.3.1)

Its homogeneous solution shall be written as

yh(x) = y(0)K1(x)+ y′(0)K2(x)+ . . .+ y(n−1)(0)Kn(x) (10.3.2)

The free constants of the solution are expressed by the initial constants, i.e. the

function y(x) and its derivatives till the (n−1)th order at x = 0. A particular solution

can be obtained with

yp(x) =

x
∫

0

Kn(x− t)r(t) dt (10.3.3)

or in case that r0(x) is not defined for x ≥ 0 but for x ≥ x0

5 Aleksei Nikolajewitsch Krylow (∗3 August 1863jul./15 August 1863greg. Wisjaga - †26 October

1945 Leningrad) - naval engineer, applied mathematician
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yp(x) =

∥

∥

∥

∥

x>x0

x
∫

x0

Kn(x− t)r0(t) dt (10.3.4)

Equation (10.3.4) is a quasi closed analytical solution for the differential equation

of the structure model D and different functions ri(x) for respectively x > xi, i =
0,1, . . . ,n

y(x) = y(0)K1(x)+ y′(0)K2(x)+ . . .+ y(n−1)(0)Kn(x)

+

∥

∥

∥

∥

x>x0

x
∫

x0

Kn(x− t)r0(t) dt +

∥

∥

∥

∥

x>x1

x
∫

x1

Kn(x− t)r1(t) dt (10.3.5)

+

∥

∥

∥

∥

x>x2

x
∫

x2

Kn(x− t)r2(t) dt + . . .

Complete closed analytical solutions for isotropic double symmetric thin-walled

box-girders and general loads one can find in (Altenbach et al, 1994). Also analytical

solution for a two-cellular box-girder including shear lag effects is given there. But

in the majority of engineering applications refer to general laminated thin-walled

structures, an analytical solution has to be ruled out.

10.3.2 Transfer Matrix Method

The differential equations and their boundary conditions are the starting point of a

numerical solution by transfer matrix method. At first the system of higher order dif-

ferential equations has to transfer into a system of differential equations of first order

using the natural boundary conditions as definitions of generalized cross-sectional

forces.

For sake of simplicity this solution method shall be demonstrated for the structure

model D and for a symmetric cross-ply stacking in all plates of the structure. Then

the following system of differential equations and boundary conditions are valid,

see also Sect. 10.2.4.6 and Eqs. (10.2.32) and (10.2.33)

ÂAA1UUU
′′− ÂAA3UUU − ÂAA15VVV

′+ fff x = 000,

ÂAA
T

15UUU
′+ ÂAA4VVV

′′− ÂAA12VVV + fff s + fff n = 000,
(10.3.6)

δUUUT
[

ÂAA1UUU
′±rrrx

]

x=0,l
= 0,

δVVV T
[

ÂAA
T

15UUU + ÂAA4VVV
′±rrrs ±rrrn

]

x=0,l
= 0

(10.3.7)

Equations (10.3.7) leads to the definitions of the generalized cross-sectional forces,

i.e. generalized longitudinal forces and transverse forces.



10.3 Solution Procedures 393

PPP = ÂAA1UUU
′, (10.3.8)

QQQ = ÂAA
T

15UUU + ÂAA4VVV
′, (10.3.9)

It can be shown that we have with Eqs. (10.3.8), (10.3.9) really the definitions of

generalized forces

PPP = ∑
(i)

di
∫

0

ϕϕϕσxi
tidsi = ∑

(i)

di
∫

0

ϕϕϕNxi
dsi,

QQQ = ∑
(i)

di
∫

0

ψψψτxsi
tidsi = ∑

(i)

di
∫

0

ψψψNxsi
dsi

In the here considered structure model we have only membrane stresses σxi
and τxsi

because the longitudinal curvatures and longitudinal bending moments are neglected

in all plates. Additional with cross-ply stacking are A16 = A26 = 0. Therefore and

with Eqs. (10.2.4), (10.2.6), (10.2.11) we can write

Nxi
= A11i

εxi
= A11i

u′i = A11i
ϕϕϕTUUU ′,

Nxsi
= A66i

εxsi
= A66i

(u•i + v′i) = A66i
(ϕϕϕ•TUUU +ψψψTVVV ′)

Considering (10.2.12) we obtain again the definitions of the generalized forces given

in (10.3.8) and (10.3.9)

PPP = ∑
(i)

di
∫

0

A11i
ϕϕϕϕϕϕTdsiUUU

′ = ÂAA1UUU
′,

QQQ = ∑
(i)

di
∫

0

A66i
(ψψψϕϕϕ•TUUU +ψψψψψψTVVV ′)dsi = ÂAA

T

15UUU + ÂAA4VVV
′

The inversion of the Eqs. (10.3.8) and (10.3.9) leads to

UUU ′ = ÂAA
−1

1 PPP, (10.3.10)

VVV ′ =−ÂAA
−1

4 ÂAA
T

15UUU + ÂAA
−1

4 QQQ (10.3.11)

With the first derivatives of Eqs. (10.3.8) and (10.3.9) and after the input of (10.3.10)

and (10.3.11) into (10.3.6) we obtain the following system of differential equations

of first order

UUU ′ = ÂAA
−1

1 PPP,

VVV ′ = −ÂAA
−1

4 ÂAA
T

15UUU + ÂAA
−1

4 QQQ,

PPP′ = (ÂAA3 − ÂAA15ÂAA
−1

4 ÂAA
T

15)UUU + ÂAA15ÂAA
−1

4 QQQ− fff x,

QQQ′ = ÂAA12VVV − fff s − fff n

(10.3.12)

respectively written in matrix notation
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
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−ÂAA
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4 ÂAA
T

15 000 000 ÂAA
−1
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4 ÂAA
T
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
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1













yyy′ =BBByyy (10.3.13)

BBB is the system matrix and yyy the so-called state vector containing all the generalized

displacement functions UUU and VVV and all the generalized forces PPP and QQQ. 000 and ooo in

the BBB-matrix are null matrices and vectors.

The next step is a discretization of the one-dimensional problem, see Fig. 10.6.

Between the state vectors at the point j + 1 and the point j we have generally the

relationship

yyy j+1 =WWW jyyy j (10.3.14)

where WWW j is the transfer matrix for the structure section j− ( j+ 1).
A first order differential equation

y′(x) = b y(x), b = const

has the solution

y(x) =Cebx

and with

y(x0) =Cebx0 →C = y(x0)e
−bx0 ,

we obtain

y(x) = y(x0)e
b(x−x0)

In the same way the solution of the matrix differential equations is

yyy′(x) = BBByyy(x),

yyy(x) = yyy(x0)e
B(x−x0)

∆ j✲✛x = x0 x = xN

0 Nj−1 j j+1

Fig. 10.6 Discretization of the one-dimensional structure
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and we find that eBBB(x−x0) can be defined as the transfer matrix from the point x0 to x.

Therefore the transfer matrix between two points x j and x j+1 generally is obtained

as

WWW j = eBBB(x j+1−x j) (10.3.15)

The numerical calculation of transfer matrices can be carried out by series develop-

ment of the exponential function

WWW j = III +△ jBBB+
△2

j

2!
BBB2 +

△3
j

3!
BBB3 + . . . (10.3.16)

and also by using a Runge-Kutta method

WWW j = III+
△ j

6
(MMM1 j + 2MMM2 j + 2MMM3 j +MMM4 j), (10.3.17)

MMM1 j = BBB(x j),

MMM2 j = BBB(x j +
1

2
△ j)(III +

1

2
△ jMMM1 j),

MMM3 j = BBB(x j +
1

2
△ j)(III +

1

2
△ jMMM2 j),

MMM4 j = BBB(x j +△ j)(III+△ jMMM3 j)

In both equations III are unit matrices of the same rank as the system matrix. The

boundary conditions of the problem can be expressed by a matrix equation

yyy0 =AAAxxx∗ (10.3.18)

Here AAA is the so-called start matrix containing the boundary conditions at x = x0

and xxx∗ is the vector of the unknown boundary values there. In the last column of the

start matrix the known boundary values are included. For the unknown boundary

values the last column elements are zero, and by a unit in the corresponding row

the unknown value is associated with an element of the unknown vector xxx∗. For

example, in Eq. (10.3.19) a start matrix is shown in case of a free structure end, it

means all the displacements are unknown and all forces are given.
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,

yyy0 = AAA0 xxx∗

(10.3.19)

Now the multiplications with the transfer matrices can be carried out over all sec-

tions (x j,x j+1) until x = xN . With the equation

SSSyyyN = 000 (10.3.20)

the boundary conditions are formulated at x = xN . SSS is the so-called end matrix con-

taining in its last column the negative values of the given displacements or forces. A

unit in an other column of each row yields the association to an element of the state

vector yyyN . Equation (10.3.21) shows the end matrix for a clamped end, where all

displacements are given. This matrix equation leads to a system of linear equations

for the unknowns in the vector xxx∗
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
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(10.3.21)

The real parts of the eigenvalues of the system matrix BBB lead to numerical instable

solutions especially for long beam structures. From the mechanical point of view it

means that the influence of the boundary conditions of both structure ends to each

other are very low and with this we have a nearly singular system of linear equa-
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tions. For the consolidation of this problem intermediate changes of the unknowns

are carried out, by formulation of a new start matrix AAA at such an intermediate point.

Usually the generalized displacements are chosen as the new unknowns. The fol-

lowing equations show the general procedure schedule

yyy0 = AAA0xxx∗0
yyy1 = WWW 0yyy0 =WWW 0AAA0xxx∗0

. . .

yyyi = WWW i−1WWW i−2 . . .WWW 0AAA0xxx∗0 = FFF ixxx
∗
0

yyyi = AAA1xxx∗1 first change of unknowns

yyyi+1 = WWW iyyyi =WWW iAAA1xxx∗1
. . .

yyy j = FFF jxxx
∗
l−1

yyy j =AAAlxxx
∗
l lth change of unknowns

yyy j+1 = WWW jAAAlxxx
∗
l

. . .

yyyk = FFFkxxx
∗
n−1

yyyk =AAAnxxx∗n nth change of unknowns

yyyk+1 = WWW kAAAnxxx∗n
. . . (10.3.22)

yyyN = FFFNxxx∗n

SSSyyyN = 000 system of linear equations for the solution of the unknowns x∗n

The multiplications of the state vector yyy0 with transfer matrices are carried out until

the first intermediate change of unknowns. The product of the transfer matrices and

the start matrix makes the matrix FFF i. A new unknown vector xxx∗1 is defined by the new

start matrix AAA1 and this procedure is repeated at the following intermediate points.

General for the l-th intermediate change of unknowns the Eq. (10.3.23) is current

FFF jxxx
∗
l−1 =AAAlxxx

∗
l (10.3.23)

With a segmentation of the state vector yyy j into the sub-vectors yyyv for the displace-

ments and yyyk for the forces
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yyy j =













UUU

VVV

PPP

QQQ

1













j

=





yyyv

yyyk

1





j

, (10.3.24)

we obtain a separated form of Eq. (10.3.23)





FFF1 j fff 1 j

FFF2 j fff 2 j

oooT 1





[

x̃xx∗l−1

1

]

=





AAA1l aaa1l

AAA2l aaa2l

oooT 1





[

x̃xx∗l
1

]

(10.3.25)

With the assumption that the displacements are the new unknowns we find that the

sub-matrix AAA1l is a unit matrix and the sub-vector aaa1l is a null vector

AAA1l = III,aaa1l = ooo (10.3.26)

This leads to

FFF1 jx̃xx
∗
l−1 + fff 1 j = x̃xx∗l , (10.3.27)

x̃xx∗l−1 = FFF−1
1 j (x̃xx

∗
l − fff 1 j), xxx∗l−1 =

[

FFF−1
1 j (x̃xx

∗
l − fff 1 j)

1

]

(10.3.28)

and than the second equation of (10.3.25) yields the structure of the new start matrix

FFF2 jFFF
−1
1 j (x̃xx

∗
l − fff 1 j)+ fff 2 j =AAA2lx̃xx

∗
l +aaa2l ,

AAA2l =FFF2 jFFF
−1
1 j , aaa2l = fff 2 j −FFF2 jFFF

−1
1 j fff 1 j,

(10.3.29)

AAAl =





III ooo

FFF2 jFFF
−1
1 j fff 2 j −FFF2 jFFF

−1
1 j fff 1 j

oooT 1



 (10.3.30)

At such an intermediate change point it is also possible to consider the introduction

of concentrated generalized forces or the disposition of supports with given general-

ized displacements. Than the new start matrix must be modified additionally, in the

first case by a modification of the sub-vector aaa2l and in the second case by consid-

eration of the jump behavior of the forces at this point. But more details about this

shall not be given here.

With the end matrix SSS and the end state vector yyyN the relationship SSSyyyN yields

a system of linear equations for the last unknown vector xxx∗n and after this all the

unknown vectors can be calculated by repeatedly using Eq. (10.3.28).

The transfer matrix method with intermediate changes of the unknown state vec-

tors yields in contrast to the classical transfer method a numerical stable procedure

also for long beam structures. From the mechanical point of view correspond each

intermediate change x = x∗l a substitution of the structure section 0 ≤ x ≤ x∗l by

generalized elastic springs.
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The transfer matrix procedure is also applicable to the analysis of eigen-

vibrations. There we have a modified system matrix BBB containing frequency de-

pendent terms

yyy′ =BBB(ω0)yyy (10.3.31)

Therefore, the transfer matrices can be calculated only with assumed values for the

frequencies. The end matrix leads to a homogenous system of linear equations. Its

coefficient determinant must be zero. The assumed frequencies are to vary until this

condition is fulfilled sufficiently.

The transfer matrix method with numerical stabilization was applied successfully

to several isotropic thin-walled box-beam structures. The structure model D con-

sidered above has for a symmetrical cross-ply stacking of all plates an analogous

mathematical model structure as isotropic semi-moment shell structures. Therefore,

the procedure can be simply transferred to such laminated thin-walled beam struc-

tures. An application to other structure models, Sect. 10.2, is in principle possible

but rather expansive and not efficient.

The development and application of special finite elements and their implemen-

tation in a FEM-program system is more generally and more efficiently. FEM will

be discussed in detail in Chap. 11.

10.4 Problems

Exercise 10.1. Establish the system of differential equations for the box-girder with

a rectangular cross-section, which is shown in Fig. 10.4. It shall be supposed that its

dimensions are symmetric to both axes and therefore we have here

t1 = t3 = tS,
t2 = t4 = tG,
d1 = d3 = dS,
d2 = d4 = dG,

Further we have a cross-ply stacking in all the plate strips. The stiffness of both

horizontally arranged strips (index G) are the same, but they are different from the

stiffness of the vertically arranged strips (index S), what means that

A11 1 = A11 3 = A11 S,
A11 2 = A11 4 = A11 G,
A66 1 = A66 3 = A66 S,
A66 2 = A66 4 = A66 G,
D22 1 = D22 3 = D22 S,
D22 2 = D22 4 = D22 G

For the calculation of this box girder the simplified structure model D shall be used

and because we have cross-ply stacking, the Eqs. (10.2.32) are valid
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ÂAA1UUU
′′− ÂAA3UUU − ÂAA15VVV

′+ fff x = 000,

ÂAA
T

15UUU
′+ ÂAA4VVV

′′− ÂAA12VVV + fff s + fff n = 000

Solution 10.1. At first we have to calculate the matrices ÂAA1,ÂAA3,ÂAA4,ÂAA12 and ÂAA15,

their definitions are given in Eq. (10.2.12)

ÂAA1 = ∑
(i)

di
∫

0

A11 iϕϕϕϕϕϕTdsi,

ÂAA3 = ∑
(i)

di
∫

0

A66 iϕϕϕ
•ϕϕϕ•Tdsi,

ÂAA4 = ∑
(i)

di
∫

0

A66 iψψψψψψTdsi,

ÂAA12 = ∑
(i)

di
∫

0

D22 iξξξ
••

ξξξ ••T
dsi,

ÂAA15 = ∑
(i)

di
∫

0

A66 iϕϕϕ
•ψψψTdsi,

The co-ordinate functions ϕϕϕ ,ψψψ ,ξξξ are also shown in Fig. 10.4. For solving the inte-

grals to obtain the ÂAA-matrices, the functions ϕϕϕ ,ψψψ ,ξξξ must be written as functions of

the co-ordinates si of each strip. In accordance with Fig. 10.4 we find

ϕ1(si) = +1, i = 1,2,3,4; ϕ•
1 (si) = 0, i = 1,2,3,4;

ϕ2(s1) =−dS

2

[

1− 2

(

s1

dS

)]

; ϕ•
2 (si) = ψ2(si), i = 1,2,3,4;

ϕ2(s2) =
dS

2
;

ϕ2(s3) = +
dS

2

[

1− 2

(

s3

dS

)]

;

ϕ2(s4) =−dS

2
;

ϕ3(s1) =
dG

2
; ϕ•

3 (si) = ψ3(si), i = 1,2,3,4;

ϕ3(s2) = +
dG

2

[

1− 2

(

s2

dG

)]

;

ϕ3(s3) =−dG

2
;

ϕ3(s4) =−dG

2

[

1− 2

(

s4

dG

)]

;
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ϕ4(s1) = +
dSdG

4

[

1− 2

(

s1

dS

)]

; ϕ•
4 (si) = ψ4(si), i = 1,2,3,4;

ϕ4(s2) =−dSdG

4

[

1− 2

(

s2

dG

)]

;

ϕ4(s3) = +
dSdG

4

[

1− 2

(

s3

dS

)]

;

ϕ4(s4) =−dSdG

4

[

1− 2

(

s4

dG

)]

;

ψ1(s1) =−dG

2
; ψ2(s1) = +1;

ψ1(s2) =−dS

2
; ψ2(s2) = 0;

ψ1(s3) =−dG

2
; ψ2(s3) =−1;

ψ1(s4) =−dS

2
; ψ2(s4) = 0;

ψ3(s1) = 0; ψ4(s1) =−dG

2
;

ψ3(s2) =−1; ψ4(s2) = +
dS

2
;

ψ3(s3) = 0; ψ4(s3) =−dG

2
;

ψ3(s4) = +1; ψ4(s4) = +
dS

2
;

ξ1(s1) =−dS

2

[

1− 2

(

s1

dS

)]

; ξ ••
1 (si) = 0, i = 1,2,3,4;

ξ1(s2) =−dG

2

[

1− 2

(

s2

dG

)]

;

ξ1(s3) =−dS

2

[

1− 2

(

s3

dS

)]

;



402 10 Modelling and Analysis of Thin-walled Folded Structures

ξ1(s4) =−dG

2

[

1− 2

(

s4

dG

)]

;

ξ2(s1) = 0; ξ ••
2 (si) = 0, i = 1,2,3,4;

ξ2(s2) = +1;

ξ2(s3) = 0;

ξ2(s4) =−1;

ξ3(s1) = +1; ξ ••
3 (si) = 0, i = 1,2,3,4;

ξ3(s2) = 0;

ξ3(s3) =−1;

ξ3(s4) = 0;

Some additional considerations are necessary to determine the functions ξ4(si). The

generalized co-ordinate function ξ4 is corresponding to ψ4 and represents therefore

a double antisymmetric deflection state of the cross-section. The cross-section is

double symmetric in its geometry and in the elastic behavior. Therefore we must

have an antisymmetric function ξ4(si) in each strip. It means that the following

conditions are valid

ξ4(si = 0) = ξi0, ξ4(si = di) = −ξi0,
ξ •

4 (si = 0) = α0, ξ •
4 (si = di) = α0,

ξ ••
4 (si = 0) = κsi0, ξ ••

4 (si = di) = −κsi0

Supposing a polynomial function of the third order, we can write

ξ ••
4 (si) = κsi0

(

1− 2
si

di

)

,

ξ •
4 (si) = κsi0di

[

(

si

di

)

−
(

si

di

)2
]

+α0,

ξ4(si) =
κsi0d2

i

6

[

3

(

si

di

)2

− 2

(

si

di

)3
]

+α0di
si

di

+ ξi0

The condition ξ4(si = di) =−ξi0 leads to

α0di =−
(

κsi0d2
i

6
+ 2ξi0

)

and than we obtain

ξ4(si) =
κsi0d2

i

6

[

3

(

si

di

)2

− 2

(

si

di

)3

− si

di

]

+ ξi0

[

1− 2

(

si

di

)]

With the antisymmetric properties mentioned above we find
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κs10 = κs30 = κS0,
κs20 = κs40 = κG0

The continuity of the rotation angles at the corners and the equilibrium equation

ξ •
4 (s1 = dS) = ξ •

4 (s2 = 0),
ξ •

4 (s2 = dG) = ξ •
4 (s3 = 0),

ξ •
4 (s3 = dS) = ξ •

4 (s4 = 0),
ξ •

4 (s4 = dG) = ξ •
4 (s1 = 0),

D22SκS0 = −D22GκG0

lead to the unknown curvatures

κS0 =− 12D22G

dGD22S + dSD22G
, κG0 =+

12D22S

dGD22S + dSD22G

and we obtain

ξ4(s1) = − 2D22Gd2
S

dGD22S + dSD22G

[

3

(

s1

dS

)2

− 2

(

s1

dS

)3

− s1

dS

]

+
dS

2

[

1− 2
s1

dS

]

,

ξ4(s2) =
2D22Sd2

G

dGD22S + dSD22G

[

3

(

s2

dG

)2

− 2

(

s2

dG

)3

− s2

dG

]

− dG

2

[

1− 2
s2

dG

]

,

ξ4(s3) = − 2D22Gd2
S

dGD22S + dSD22G

[

3

(

s3

dS

)2

− 2

(

s3

dS

)3

− s3

dS

]

+
dS

2

[

1− 2
s3

dS

]

,

ξ4(s4) =
2D22Sd2

G

dGD22S + dSD22G

[

3

(

s4

dG

)2

− 2

(

s4

dG

)3

− s4

dG

]

− dG

2

[

1− 2
s4

dG

]

,

ξ ••
4 (s1) = − 12D22G

dGD22S + dSD22G

[

1− 2
s1

dS

]

,

ξ ••
4 (s2) = +

12D22S

dGD22S + dSD22G

[

1− 2
s2

dG

]

,

ξ ••
4 (s3) = − 12D22G

dGD22S + dSD22G

[

1− 2
s3

dS

]

,

ξ ••
4 (s4) = +

12D22S

dGD22S + dSD22G

[

1− 2
s4

dG

]
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Now all elements of the matrices can be calculated. Here only the calculation of the

element Â122
of the matrix ÂAA1 shall be derived in a detailed manner

Â111
=

4

∑
i=1

di
∫

0

A11i
ϕ1(si)ϕ1(si)dsi = 2(A11S

dS +A11G
dG),

Â112
=

4

∑
i=1

di
∫

0

A11i
ϕ1(si)ϕ2(si)dsi = 0,

Â113
=

4

∑
i=1

di
∫

0

A11i
ϕ1(si)ϕ3(si)dsi = 0,

Â114
=

4

∑
i=1

di
∫

0

A11i
ϕ1(si)ϕ4(si)dsi = 0,

Â122
=

4

∑
i=1

di
∫

0

A11i
ϕ2(si)ϕ2(si)dsi

= A11S

d2
S

4

dS
∫

0

(

1− 2
s1

dS

)2

ds1 +A11G

d2
S

4

dG
∫

0

ds2

+ A11S

d2
S

4

dS
∫

0

(

1− 2
s3

dS

)2

ds3 +A11G

d2
S

4

dG
∫

0

ds4

= A11S

d3
S

12
+A11G

d2
S

4
dG +A11S

d3
S

12
+A11G

d2
S

4
dG

=
d2

S

6
(A11S

dS + 3A11G
dG),

Â123
=

4

∑
i=1

di
∫

0

A11i
ϕ2(si)ϕ3(si)dsi = 0,

Â124
=

4

∑
i=1

di
∫

0

A11i
ϕ2(si)ϕ4(si)dsi = 0,

Â133
=

4

∑
i=1

di
∫

0

A11i
ϕ3(si)ϕ3(si)dsi =

d2
G

6
(3A11S

dS +A11G
dG),

Â134
=

4

∑
i=1

di
∫

0

A11i
ϕ3(si)ϕ4(si)dsi = 0,

Â144
=

4

∑
i=1

di
∫

0

A11i
ϕ4(si)ϕ4(si)dsi =

d2
Sd2

G

24
(A11S

dS +A11G
dG)
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With all elements Â1i j
we obtain the matrix ÂAA1 to

ÂAA1 =









A111
0 0 0

0 A122
0 0

0 0 A133
0

0 0 0 A144









with
A111

= 2(A11S
dS +A11G

dG),

A122
=

d2
S

6
(A11S

dS + 3A11G
dG),

A133
=

d2
G

6
(3A11S

dS + 3A11G
dG),

A144
=

d2
Sd2

G

24
(A11S

dS + 3A11G
dG)

One can see that the generalized co-ordinate functions ϕi are orthogonal to each

other and therefore the matrix ÂAA1 is a diagonal matrix

In the same way the other ÂAAi matrices are obtained

ÂAA3 =











0 0 0 0

0 2A66S
dS 0 0

0 0 2A66G
dG 0

0 0 0
dSdG

2
(A66S

dG + 3A66G
dS)











,

ÂAA4 =









A 0 0 0

0 2A66S
dS 0 0

0 0 2A66G
dG 0

B 0 0 A









,

ÂAA12 =













0 0 0 0

0 0 0 0

0 0 0 0
dSdG

2
(A66S

dG −A66G
dS) 0 0

96D22G
D22S

dGD22S
+ dSD22G













,

ÂAA15 =









0 0 0 0

0 2A66S
dS 0 0

0 0 2A66G
dG 0

B 0 0 A









with

A =
dSdG

2
(A66S

dG +A66G
dS), B =

dSdG

2
(A66S

dG −A66G
dS)

Now the system of differential equations can be developed with the help of Eq.

(10.2.32).
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2(A11S
dS +A11G

dG)U
′′
1 = − fx1

,

d2
S

6
(A11S

dS + 3A11G
dG)U

′′
2 − 2A66S

dS(U2 +V ′
2) = − fx2

,

2A66S
dS(U

′
2 +V ′′

2 ) = −( fs2
+ fn2

),

d2
G

6
(3A11S

dS +A11G
dG)U

′′
3 − 2A66G

dG(U3 +V ′
3) = − fx3

,

2A66G
dG(U

′
3 +V ′′

3 ) = −( fs3
+ fn3

),

d2
Sd2

G

24
(A11S

dS +A11G
dG)U

′′
4

−dSdG

2
(A66S

dG +A66G
dS)(U4 +V ′

4)

−dSdG

2
(A66S

dG −A66G
dS)V

′
1 = − fx4

,

dSdG

2
(A66S

dG −A66G
dS)(U

′
4 +V ′′

4 )

+
dSdG

2
(A66S

dG +A66G
dS)V

′′
1 = −( fs1

+ fn1
),

dSdG

2
(A66S

dG +A66G
dS)(U

′
4 +V ′′

4 )

+
dSdG

2
(A66S

dG −A66G
dS)V

′′
1

− 96D22G
D22S

dGD22S
+ dSD22G

V4 = −( fs4
+ fn4

)

We can see, that the system of differential equations is divided into four decou-

pled partial systems. The first equation describes the longitudinal displacement, the

second and the third partial systems represent the bending about the global y- and

z-axes and the fourth - the torsion, the warping and the contour deformation of the

cross-section. An analytic solution of the fourth partial system is more difficult like

the solutions of the first three partial systems but it is possible too. The analytical

solution of an analogous system for an isotropic box girder is given in detail by

Vlasov and by the authors of this book, see also the remarks in 10.3.1.
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Part V

Finite Classical and Generalized Beam
Elements, Finite Plate Elements



The fifth part (Chap. 11) presents a short introduction into the finite element proce-

dures and developed finite classical and generalized beam elements and finite plate

elements in the frame of classical and first order shear deformation theory. Selected

examples demonstrate the possibilities of finite element analysis.



Chapter 11

Finite Element Analysis

The Finite Element Method (FEM) is one of the most effective methods for the nu-

merical solution of field problems formulated in partial differential equations. The

basic idea of the FEM is a discretization of the continuous structure into substruc-

tures. This is equivalent to replacing a domain having an infinite number of degrees

of freedom by a system having a finite number of degrees of freedom. The actual

continuum or structure is represented as an assembly of subdivisions called finite

elements. These elements are considered to be interconnected at specified joints

which are called nodes. The discretization is defined by the so-called finite element

mesh made up of elements and nodes.

We assume one-dimensional elements, when one dimension is very large in com-

parison with the others, e.g. truss or beam elements, two-dimensional elements,

when one dimension is very small in comparison with the others, e.g. plate or shell

elements, and volume elements. From the mechanical point of view the nodes are

coupling points of the elements, where the displacements of the coupled elements

are compatible. On the other hand from the mathematical point of view the nodes are

the basic points for the approximate functions of the displacements inside a finite el-

ement and so at these nodes the displacements are compatible. It must be noted here

that all considerations are restricted to the displacement method. The force method

or hybrid methods are not considered in this book.

An important characteristic of the discretization of a structure is the number of

degrees of freedom. To every node, a number of degrees of freedom will be assigned.

These are nodal constants which usually (but not necessarily) have a mechanical or

more general physical meaning. The number of degrees of freedom per element is

defined by the product of the number of nodes per element and degrees of freedom

per node. The number of degrees of freedom in the structure is the product of the

number of nodes and the number of degrees of freedom per node.

Chapter 11 contains an introduction to the general procedure of finite element

analysis in a condensed form (Sect. 11.1). For more detailed information see the

vast amount of literature. In Sects. 11.2 and 11.3 the development of finite beam

elements and finite plate elements for the analysis of laminate structures is given.

Section 11.4 contains the development of generalized finite beam elements based on

409© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al., Mechanics of Composite Structural
Elements, https://doi.org/10.1007/978-981-10-8935-0_11
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a generalized structure model for beam shaped thin-walled folded structures given

in Sect. 10.2. In Sect. 11.5 the results of some numerical applications show the

influences of chosen parameters on the behavior of laminate structures.

11.1 Introduction

The principle of the total minimum potential energy and the Hamilton‘s principle

are given in Sect. 2.2.2 in connection with analytical variational approaches, they are

also the theoretical basis of the FEM solutions of elastostatic and of dynamic prob-

lems. In this way we have variational problems. For such problems the Ritz method

may be used as a so-called direct solution method (see Sect. 2.2.3). In the classical

Ritz method the approximation functions are defined for the whole structure, and

so for complex geometries it is difficult to realize the requirements of satisfying

the boundary conditions and of the linear independence and completeness of these

functions.

One way to overcome these difficulties is by the discretization of the structure

into a number of substructures, if possible of the same kind (finite elements). Then

the approximation functions can be defined for the elements only and they must sat-

isfy the conditions of geometrical compatibility at the element boundaries. Because

it is usual to define different types of finite elements, we have special types of ap-

proximation functions for each element type. Here the approximation functions are

denoted Ni, the so-called shape functions. They are arranged in a matrix NNN, the ma-

trix of the shape functions of the particular element type. The following introduction

to the FEM procedure is given in a general but condensed form and illustrates that

the step-by-step finite element procedure can be stated as follows:

• Discretization of the structure,

• Selection of a suitable element displacement model,

• Derivation of element stiffness matrices and load vectors,

• Assembly of element equations to obtain the system equations,

• Calculation of the system equations for the unknown nodal displacements,

• Computation of element strains and stresses

11.1.1 FEM Procedure

The starting point for elastostatic problems is the total potential energy given in Eq.

(2.2.28). In accordance with the Ritz method the approximation

ũuu(xxx) =NNN(xxx)vvv (11.1.1)

is used for the displacement field vector uuu. Here NNN is the matrix of the shape func-

tions, they are functions of the position vector xxx, and vvv is the element displacement
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vector. The matrix NNN has the same number of rows as the displacement vector uuu

has components and the same number of columns as the element displacement vec-

tor vvv has components. If the element has nKE nodes and the degree of freedom

for each node is nF , the element displacement vector vvv contains nKE subvectors

vvvi, i = 1, . . . ,nKE with nF components in each, and so vvv has nKEnF components. The

number of components of the displacement field vector uuu is nu. Then the structure

of the matrix NNN is generally

NNN = [N1IIInu N2IIInu . . .NñIIInu ], ñ =
nKEnF

nu

(11.1.2)

with IIInu as unit matrices of the size (nu,nu). Therefore the size of NNN is generally

(nu,nKEnF ). In dependence on the kind of continuity at the element boundaries, the

so-called C(0)- or C(1)-continuity, see below, two cases can be distinguished. In the

case of C(0)-continuity nF equals nu and therefore ñ is equal nKE
, we have only nKE

shape functions Ni, whereas we can have up to nKEnF shape functions in the case of

C(1)-continuity.

For the stresses and the strains we obtain from (11.1.1)

σσσ(xxx) = CCCεεε(xxx) =CCCDDDNNN(xxx)vvv,
εεε(xxx) = DDDuuu(xxx) =DDDNNN(xxx)vvv =BBB(xxx)vvv

(11.1.3)

With the approximation (11.1.1) the total potential energy is a function of all the

nodal displacement components arranged in the element displacement vector vvv, e.g.

Π = Π(vvv). The variation of the total potential energy

δΠ = δvvvT







∫

V

BBBTCCCBBBvvvdV −
∫

V

NNNTpppdV −
∫

Aq

NNNTqqqdA






(11.1.4)

leads with δΠ = 0 to

δvvvT(KKKvvv− fff p − fff q) = 0 (11.1.5)

KKK is the symmetric stiffness matrix with the size (nKEnF ,nKEnF )

KKK =
∫

V

BBBTCCCBBBdV (11.1.6)

and fff p and fff q are the vectors of the volume forces and the surface forces

fff p =
∫

V

NNNTpppdV, fff q =
∫

Aq

NNNTqqqdA (11.1.7)

If the components of δvvv are independent of each other, we obtain from (11.1.5) a

system of linear equations

KKKvvv = fff , fff = fff p + fff q (11.1.8)
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For elastodynamic problems, we have to consider that forces and displacements are

also dependent on time and the Hamilton‘s principle is the starting point for the

FEM procedure. Assuming again the independence of the components of δvvv the

matrix equation is

MMMv̈vv(t)+KKKvvv(t) = fff (t) (11.1.9)

for elastic systems without damping effects. MMM is symmetric mass matrix

MMM =
∫

V

ρNNNTNNNdV (11.1.10)

and fff (t) the vector of the time dependent nodal forces. Assuming the damping pro-

portional to the relative velocities, an additional term CCCDv̇vv(t) can be supplemented

formally in Eq. (11.1.9)

MMMv̈vv(t)+CCCDv̇vv(t)+KKKvvv(t) = fff (t), (11.1.11)

where CCCD is the damping matrix. CCCD has the same size as the matrices KKK and MMM

and usually it is formulated approximately as a linear combination of KKK and MMM. The

factors α and β can be chosen to give the correct damping at two frequencies

CCCD ≈ αMMM+βKKK (11.1.12)

In selecting the shape functions NNNi(xxx) it must be remembered that these functions

must be continuous up to the (n− 1)th derivative, if we have derivatives of the nth

order in the variational problem, i.e. in the total potential energy or in the Hamil-

ton’s function. In this case only the results of FEM approximations converge to the

real solutions by increasing the number of elements. For more-dimensional finite

elements in this way it is to realize that the displacements are compatible up to the

(n−1)th derivative at the boundaries of adjacent elements, if they are compatible at

the nodes.

In plane stress or plane strain problems and in general three-dimensional prob-

lems the vector uuu contains displacements only (no rotations) and the differential

operator DDD is of the 1st order. In this way we must only satisfy the displacements

compatibility at the element boundaries that means the so-called C(0)-continuity.

By using beam or plate models especially of the classical Bernoulli beam model

or the classical Kirchhoff plate model, the rotation angles are expressed by deriva-

tives of the displacements of the midline or the midplane and the differential op-

erator DDD is of the second order. Then we have to satisfy the compatibility of dis-

placements and rotations at the element boundaries. In such cases we speak about a

C(1)-continuity and finding the shape functions Ni is more difficult.

Because we have no differential operator in connection with the mass matrix MMM,

it would be possible to use other, more simple functions N∗
i for it. In such a case

the mass matrix would have another population, e.g. a diagonal matrix structure is

possible. Then we speak about a so-called condensed mass matrix, otherwise we

have a consistent mass matrix. By using the condensed mass matrix we have less
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computational expense than by using the consistent mass matrix, but a decreasing

convergence to the real results is possible.

All equations considered above are only valid for a single element and strictly

they should have an additional index E . For example, we have the inner element

energy

UE =
1

2
vvvT

E

∫

VE

BBBTCCCBBBdVvvvE =
1

2
vvvT

EKKKEvvvE (11.1.13)

with the element stiffness matrix

KKKE =

∫

VE

BBBTCCCBBBdV (11.1.14)

Since the energy is a scalar quantity, the potential energy of the whole structure can

be obtained by summing up the energies of the single elements. Previously a system

displacement vector containing the displacements of all nodes of the whole system

must be defined. By a so-called coincidence matrix LLLE the correct position of each

single element is determined. LLLE is a Boolean matrix of the size (nKEnF ,nKnF ) with

nK as the number of nodes of the whole structure.

The element displacement vector vvvE is positioned into the system displacement

vector vvv by the equation

vvvE = LLLEvvv (11.1.15)

and we obtain the system equation by summing up over all elements

(

∑
i

LLLT
iEKKKiELLLiE

)

vvv =

[

∑
i

LLLiE( fff iE p + fff iEq)

]

KKKvvv = fff

(11.1.16)

The system stiffness matrix is also symmetric, but it is a singular matrix, if the

system is not fixed kinematically, i.e., we have no boundary conditions constraining

the rigid body motion. After consideration of the boundary conditions of the whole

system, KKK becomes a positive definite matrix and the system equation can be solved.

Then with the known displacements vvv the stresses and deformations are calculated

using the element equations (11.1.1) and (11.1.3).

For elastodynamic problems, the system stiffness matrix and the system mass

matrix are obtained in the same manner and we have the system equation

MMMv̈vv(t)+CCCDv̇vv(t)+KKKvvv(t) = fff (t) (11.1.17)

For investigation of the eigen-frequencies of a system without damping harmonic

vibrations are assumed and with

vvv(t) = v̂vvcos(ωt +ϕ) (11.1.18)

and CCCD = 000, fff (t) = ooo the matrix eigen-value problem follows



414 11 Finite Element Analysis

(KKK −ω2MMM)vvv = ooo (11.1.19)

and the eigen-frequencies and the eigen-vectors characterizing the mode shapes can

be calculated.

11.1.2 Problems

Exercise 11.1. A plane beam problem is given. The beam is divided into three plane

two-node beam elements. The number of nodal degrees of freedom is three (u,w,ϕ):

1. What size are the element stiffness matrix and the system stiffness matrix before

the consideration of the boundary conditions?

2. Show the coincidence matrix LLL2 of the second element lying between the nodes

2 and 3!

3. Show the population of the system stiffness matrix and the boundary conditions,

if the beam is fixed at node 1 (cantilever beam)! Do the same as in the previous

case but consider that the beam is simply supported (node 1 is constrained for the

deflections u and w and node 4 only for the deflection w)!

Solution 11.1. For the plane beam problem one gets

1. With nKE = 2 and nF = 3 the element stiffness matrix has the size (6,6). Be-

cause we have 4 nodes (nK = 4) the size of the system stiffness matrix before the

consideration of the boundary conditions is (12,12).
2. The coincidence matrices in this case have the size (6,12). Because it must be

vvv2 = LLL2vvv

we obtain the coincidence matrix for the element Nr. 2

LLL2 =

















0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

















3. The system stiffness matrix without consideration of the boundary conditions is

defined by

KKK =
4

∑
i=1

LLLT
i KKKiLLLi

In this case we obtain the following population of the matrix KKK
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u1 w1 ϕ1 u2 w2 ϕ2 u3 w3 ϕ3 u4 w4 ϕ4








































[(v)] [(v)] [(v)] [(v)] [(v)] [(v)] [(0)] [(0)] [(0)] [(0)] [(0)] [(0)]
[(v)] [(v)] [(v)] [(v)] [(v)] [(v)] [(0)] [(0)] [(0)] [(0)] [(0)] [(0)]
[(v)] [(v)] (v) (v) (v) (v) (0) (0) (0) (0) (0) (0)
[(v)] [(v)] (v) v+ x v+ x v+ x x x x 0 [(0)] 0

[(v)] [(v)] (v) v+ x v+ x v+ x x x x 0 [(0)] 0

[(v)] [(v)] (v) v+ x v+ x v+ x x x x 0 [(0)] 0

[(0)] [(0)] (0) x x x x+ z x+ z x+ z z [z] z

[(0)] [(0)] (0) x x x x+ z x+ z x+ z z [z] z

[(0)] [(0)] (0) x x x x+ z x+ z x+ z z [z] z

[(0)] [(0)] (0) 0 0 0 z z z z [z] z

[(0)] [(0)] [(0)] [(0)] [(0)] [(0)] [z] [z] [z] [z] [z] [z]
[(0)] [(0)] [(0)] 0 0 0 z z z z [z] z









































u1

w1

ϕ1

u2

w2

ϕ2

u3

w3

ϕ3

u4

w4

ϕ4

v - components of the stiffness matrix of element No. 1, x - components of the

stiffness matrix of element No. 2, z - components of the stiffness matrix of ele-

ment No. 3.

Considering the boundary conditions for a cantilever beam clamped at node 1

(u1 = 0,w1 = 0,ϕ1 = 0) we have to cancel the first three rows and the first three

columns in the obtained matrix - characterized by brackets (. . .). If we have a

simply supported beam with u1 = 0,w1 = 0 and w4 = 0, the first two rows and

columns and the row and the column No. 11 must be deleted - characterized by

square brackets [. . .].

11.2 Finite Beam Elements

A beam is a quasi one-dimensional structure, the dimensions of the cross-section

of it are very small in comparison to its length. The connection of the centers of

the cross-sectional areas is called the midline of the beam. We distinguish between

straight beams and beams with an in-plane or spatial curved midline, respectively.

Here we consider beams with a straight midline only.

Generally such a beam can be loaded by tension/compression, one- or two-axial

bending and torsion. Especially with respect to the use of laminate beams the fol-

lowing investigations are restricted to tension/compression and one-axial bending.

For two-axial bending and torsion, laminate beams are not so predestined.

Laminate beams consist of UD-laminae mostly have a rectangular cross-section

of the dimension b (width) and h (hight) and very often the laminae are arranged

symmetrically to the midline. We will assume this special case for the following

development of finite laminate beam elements. In this way we have no coupling of

tension and bending and we can divide our considerations into the development of

laminate elements for tension/compression, so-called laminate truss elements, and

laminate beam elements for bending only.
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11.2.1 Laminate Truss Elements

The laminate truss element is a very simple element. It is assumed to be a straight

structure of the length l with a constant cross-sectional area A. The nodal degree of

freedom is one - the displacement u in axial direction (Fig. 11.1). In the potential

energy we have only the first derivative and so we can use a two-node truss element

with linear shape functions Ni(x1) and N j(x1), which satisfies C(0)-continuity

u(x1) =NNNvvvE , vvvT
E = [ui u j], NNN = [Ni(x1) N j(x1)] (11.2.1)

The two shape functions (see also Fig. 11.2) are

Ni(x1) = 1− x1

l
, N j(x1) =

x1

l
(11.2.2)

With the stress resultant

N(x1) =
∫

A

σdA = A11ε1(x1) = A11
du

dx1
, A11 = b

n

∑
k=1

C
(k)
11 hk (11.2.3)

and the longitudinal load per length n(x1) the total potential energy can be written

as

Π(u) =
1

2

l
∫

0

A11u′2dx1 −
l

∫

0

n(x1)udx1 (11.2.4)

and for the element stiffness matrix we obtain

Fig. 11.1 Laminate truss

element
l

x1

n(x1)
ui u j

x1

l

x1

l

0

0

0

0

1.0

1.0

1.0

1.0

0.50.5

Ni
N j

Fig. 11.2 Shape functions of the two-node truss element
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KKKE = A11

l
∫

0

NNN ′TNNN ′dx1 =
A11

l

[

1 −1

−1 1

]

(11.2.5)

The element force vector is defined as

fff nE =

l
∫

0

NNNTn(x1)dx1

If we assume that n(x1) is a linear function with ni and n j as the intensities at the

nodes

n(x1) =NNN

[

ni

n j

]

then

fff nE =

l
∫

0

NNNTNNNdx1

[

ni

n j

]

=
l

6

[

2 1

1 2

][

ni

n j

]

(11.2.6)

In case of nodal forces fff PE = [Fi Fj]
T, the vector fff PE must be added to the vector

fff nE

fff E = fff nE + fff PE (11.2.7)

The system equation can be obtained in dependence on the structure of the whole

system, defined by a coincidence matrix together with the transformation of all el-

ement equations into a global coordinate system. Considering the boundary con-

ditions, the system equation can be solved and with the known displacements the

stresses can be calculated for each element.

For vibration analysis, the element mass matrix (11.1.10) has to be used

MMME =

∫

V

ρNNNTNNNdV =

l
∫

0

ρNNNTNNNdx1, ρ =
1

h

n

∑
k=1

ρ (k)h(k)

All parts of the cross-section have the same translation u and the corresponding

acceleration ü multiplied by the distributed mass produces a distributed axial inertia

force. Instead of handling the distributed mass directly, we generate fictitious nodal

masses contained in the consistent mass matrix

MMME =
ρAl

6

[

2 1

1 2

]

(11.2.8)

With the system equation, obtained in the same manner as for elastostatic problems,

the eigen-frequencies and mode shapes can be calculated.



418 11 Finite Element Analysis

11.2.2 Laminate Beam Elements

For the analysis of laminate beams in this book two theories are considered, the

classical laminate theory and the shear deformation theory. The classical laminate

theory is based on the Bernoulli beam model and the shear deformation theory on

the Timoshenko beam model. The Bernoulli beam model neglects the shear strains

in the bending plane and so it seems to be less realistic for the calculation of laminate

beams. Therefore it is better to use the Timoshenko beam model, which includes the

shear strains in a simple form (Chap. 7).

In the following discussion, only the shear deformation theory is used and we

assume a simple rectangular cross-section with a symmetric arrangement of the UD-

laminae. This means that we have no coupling of tension and bending. The main

advantage of the shear deformation theory in comparison with the Bernoulli theory

is that the cross-sectional rotation angle ψ is independent of the displacement w and

therefore the differential operator DDD in the strain energy is of the 1st order. In this

way we can use elements with C(0)-continuity, and a two-node element with linear

shape functions is possible. The nodal degrees of freedom are 2 (w,ψ). In Fig. 11.3

such a two-node beam element is shown. The element displacement vector is

vvvT
E = [wi ψi w j ψ j] (11.2.9)

For the displacement vector uuu the approximation (11.2.11) is used

uuu(x1) =

[

w(x1)
ψ(x1)

]

=NNNvvvE , (11.2.10)

where the matrix of the shape functions is

NNN =

[

Ni(x1)

[

1 0

0 1

]

N j(x1)

[

1 0

0 1

]]

(11.2.11)

with the shape functions (11.2.2), see also Fig. 11.2.

A better element accuracy can be expected, if we consider a three-node element,

as shown in Fig. 11.4. Then the element displacement vector is

vvvT
E = [wi ψi w j ψ j wk ψk] (11.2.12)

and for the matrix NNN we obtain

Fig. 11.3 Two-node beam

element
l

x1

x3

wi w j

ψi ψ j
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Fig. 11.4 Three-node beam

element

l/2l/2

x1

x3

wi
w j wk

ψkψi ψ j

NNN =

[

Ni(x1)

[

1 0

0 1

]

N j(x1)

[

1 0

0 1

]

Nk(x1)

[

1 0

0 1

]]

(11.2.13)

with the shape functions

Ni(x1) = 1− 3
x1

l
+ 2

x2
1

l2
,N j(x1) = 4

x1

l
− 4

x2
1

l2
,Nk(x1) =−x1

l
+ 2

x2
1

l2
, (11.2.14)

which are shown in Fig. 11.5. A further increase in the element accuracy can be

achieved with a four-node element, see Fig. 11.6. Here the element displacement

vector and the matrix of the shape functions are

vvvT
E = [wi ψi w j ψ j wk ψk wl ψl ] (11.2.15)

x1

l

x1

l

x1

l

0

0

0

0

0

0

1.0

1.0

1.0

1.0

1.0

1.0

0.5

0.50.5

-0.125

-0.125

Ni

Nk

N j

Fig. 11.5 Shape functions of the three-node element
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Fig. 11.6 Four-node beam

element

x1

x3, w

l

wi w j wk wl

l/3 l/3 l/3

ψi ψ j ψk ψl

NNN=

[

Ni(x1)

[

1 0

0 1

]

N j(x1)

[

1 0

0 1

]

Nk(x1)

[

1 0

0 1

]

Nl(x1)

[

1 0

0 1

]]

(11.2.16)

with the shape functions

Ni = 1− 11

2

x1

l
+ 9

(x1

l

)2

− 9

2

(x1

l

)3

, N j = 9
x1

l
− 45

2

(x1

l

)2

+
27

2

(x1

l

)3

,

Nk = −9

2

x1

l
+ 18

(x1

l

)2

− 27

2

(x1

l

)3

, Nl =
x1

l
− 9

2

(x1

l

)2

+
9

2

(x1

l

)3

(11.2.17)

which are shown in Fig. 11.7. The three types of beam elements given above show

the possibility of using elements of different accuracy. Of course, using the element

with higher number of nodes means that less elements and a more coarse mesh

can be used, but the calculations of the element stiffness matrices will be more

computationally expensive.

The further relationships are developed formally independent of the chosen num-

ber of element nodes. The element stiffness matrix is obtained with (11.1.6)

KKKE =

l
∫

0

BBBTCCCBBBdx1 =

l
∫

0

NNNTDDDTCCCDDDNNNdx1 (11.2.18)

Here

DDD =







0
d

dx1
d

dx1
0






, CCC =

[

D11 0

0 ksA55

]

(11.2.19)

with the stiffness

D11 =
b

3

n

∑
k=1

C
(k)
11

(

x
(k)3

3 − x
(k−1)3

3

)

, A55 = b
n

∑
k=1

C
(k)
55 h(k) (11.2.20)

and the shear correction factor ks given in (7.3.20).

For calculation of the element force vector, we assume that the element is loaded

by a distributed transverse load per length q(x1) and we can write the external work

as

WE =

l
∫

0

q(x1)w(x1)dx1 = vvvT
E fff E



11.2 Finite Beam Elements 421

and with

w(x1) = [w ψ ]

[

1

0

]

= uuuTRRR = vvvT
ENNNTRRR (11.2.21)

the element force vector fff E is obtained

fff E =

l
∫

0

NNNTRRRq(x1)dx1 (11.2.22)

If single nodal forces or moments are acting, they must be added.

The system equation can be obtained in dependence on the structure of the whole

system defined by a coincidence matrix together with the transformation of all el-

ement equations into a global coordinate system. After considering the boundary

conditions, the system equation can be solved. After this the stress resultants are

obtained for all elements
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Fig. 11.7 Shape functions of the four-node element
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σσσE =

[

M

Q

]

E

=CCCDDDNNNvvvE (11.2.23)

For elastodynamic problems the mass matrix must be calculated. The Timoshenko

beam model includes in the general case axial, transversal and rotational inertia

forces and moments. So it must be noted that the laminae of the beam have different

velocities in x1-direction

TE =
1

2

l
∫

0

b/2
∫

−b/2

x
(n)
3
∫

x
(0)
3

ρ(u̇2 + ẇ2)dx1dx2dx3, u̇ = u̇0 + x3ψ̇ (11.2.24)

After integration with respect to dx2 and dx3 follow

TE =
1

2

l
∫

0

[

ρ0(u̇
2
0 + ẇ2)+ 2ρ1u̇0ψ̇ +ρ2ψ̇2

]

dx1 (11.2.25)

with the so-called generalized densities

ρ0 = b
n

∑
k=1

ρ (k)
(

x
(k)
3 − x

(k−1)
3

)

,

ρ1 = b
1

2

n

∑
k=1

ρ (k)

(

x
(k)
3

2
− x

(k−1)
3

2
)

,

ρ2 = b
1

3

n

∑
k=1

ρ (k)

(

x
(k)
3

3
− x

(k−1)
3

3
)

(11.2.26)

ρ (k) is the density of the kth lamina.

Because we assumed a symmetric arrangement of the laminae in the cross-

section it follows that

ρ1 = 0, u̇0 = 0

and therefore

TE =
1

2

l
∫

0

(ρ0ẇ2 +ρ2ψ̇2)dx1 =
1

2

l
∫

0

u̇uuTRRR0u̇uudx1 (11.2.27)

with the matrix RRR0

RRR0 =

[

ρ0 0

0 ρ2

]

(11.2.28)

Using (11.1.1)

TE =
1

2

l
∫

0

v̇vvT
ENNNTRRR0NNNv̇vvEdx1

the element mass matrix MMME is obtained
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MMME =

l
∫

0

NNNTRRR0NNNdx1 (11.2.29)

The system equation is established in the same manner as for elastostatic problems,

and with the assumption of harmonic vibrations, the eigen-frequencies and the mode

shapes can be calculated.

11.2.3 Problems

Exercise 11.2. Let us assume a two-node beam element.

1. Calculate the element stiffness matrix for a two-node beam element by analytical

integration!

2. Calculate the element force vector for a two-node beam element, loaded by a

linear distributed transverse load per length q(x1). The intensities at the nodes

are qi and q j!

3. Calculate the element mass matrix for a two-node beam element!

Solution 11.2. The three solutions are;

1. In the case of a two-node beam element the matrix of the shape functions is

NNN =

[

Ni(x1)

[

1 0

0 1

]

N j(x1)

[

1 0

0 1

]]

with Ni(x1) = 1− (x1/l),N j(x1) = x1/l. The element stiffness matrix is defined

by (11.2.18)

KKK =

l
∫

0

NNNTDDDTCDNCDNCDNdx1,

where in (11.2.19) are given

DDD =







0
d

dx1
d

dx1
0






, CCC =

[

D̄11 0

0 ksĀ55

]

with D̄11 and ksĀ55 in according to (11.2.20). After execution the matrix opera-

tions we obtain for the stiffness matrix
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KKKE =

l
∫

0



























ksĀ55

(

dNi

dx1

)2

0 ksĀ55
dNi

dx1

dN j

dx1
0

0 D̄11

(

dNi

dx1

)2

0 D̄11
dNi

dx1

dN j

dx1

ksĀ55
dNi

dx1

dN j

dx1
0 ksĀ55

(

dN j

dx1

)2

0

0 D̄11
dNi

dx1

dN j

dx1
0 D̄11

(

dN j

dx1

)2



























dx1

and finally

KKKE =
1

l









ksĀ55 0 −ksĀ55 0

0 D̄11 0 −D̄11

−ksĀ55 0 ksĀ55 0

0 −D̄11 0 D̄11









2. The element force vector to calculate with respect to (11.2.22)

fff E =

l
∫

0

NNNTRRRq(x1)dx1 with RRR =

[

1

0

]

For the loading function q(x1) we can write

q(x1) = [Ni(x1) N j(x1)]

[

qi

q j

]

and then we find

fff E =

l
∫

0









Ni(x1)
2 Ni(x1)N j(x1)

0 0

Ni(x1)N j(x1) N j(x1)
2

0 0









[

qi

q j

]

dx1 =
l

6









2qi + q j

0

qi + 2q j

0









3. The element mass matrix for such a two-node beam element we find in according

to (11.2.29)

MMME =

l
∫

0

NNNTRRR0NNNdx1, RRR0 =

[

ρ0 0

0 ρ2

]

with the generalized densities ρ0 and ρ2 (11.2.26).

Inserting the matrix of the shape functions given above and executing the matrix

operations we obtain

l
∫

0









Ni(x1)
2ρ0 0 Ni(x1)N j(x1)ρ0 0

0 Ni(x1)
2ρ2 0 Ni(x1)N j(x1)ρ2

Ni(x1)N j(x1)ρ0 0 N j(x1)
2ρ0 0

0 Ni(x1)N j(x1)ρ2 0 N j(x1)
2ρ2









dx1
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and after integration the element mass matrix is in this case

MMME =
l

6









2ρ0 0 ρ0 0

0 2ρ2 0 ρ2

ρ0 0 2ρ0 0

0 ρ2 0 2ρ2









11.3 Finite Plate Elements

Plates are two-dimensional structures that means that one dimension, the thickness,

is very small in comparison to the others and in the unloaded state they are plane.

Usually, the midplane between the top and the bottom plate surfaces is defined as

the reference plane and is taken as the plane of x− y. The z-direction corresponds

to the thickness direction. To avoid double indexes in the following relationships in

this section we will use the coordinates x,y,z instead of x1,x2,x3. Laminate plates

consist of a number of bonded single layers. We assume that the single layer as

quasi-homogeneous and orthotropic. In each layer we can have different materials,

different thicknesses and especially different angle orientations of the fibres. The

whole plate is assumed to be a continuous structure. The stacking sequence of the

single layers has a great influence on the deformation behavior of the plate. Plates

can be loaded by distributed and concentrated loads in all directions, so called in-

plane and out of plane loading. In a special case of laminate plates, if we have an

arrangement of the single layers symmetric to the midplane, the in-plane and out of

plane states are decoupled.

In Chap. 8 the modelling of laminate plates is given and it distinguishes between

the classical laminate theory and the shear deformation theory like the modelling

of beams. The plate model based on the classical laminate theory usually is called

Kirchhoff plate with its main assumption that points lying on a line orthogonal to

the midplane before deformation are lying on such a normal line after deformation.

This assumption is an extended Bernoulli hypothesis of the beam model to two-

dimensional structures.

The application of the classical laminate theory should be restricted to the anal-

ysis of very thin plates only. For moderate thick plates it is better to use the shear

deformation theory. The plate model based on this theory is called the Mindlin plate

model. The following development of finite laminate plate elements will be carried

out for both models. Here we will be restricted to symmetric laminate plates in both

cases, it means that we have no coupling of membrane and bending/twisting states

and we will consider bending only.

In both cases we consider a triangular finite plate element. The approximation

of complicated geometric forms, especially of curved boundaries, can be done

easily with triangular elements. Usually special coordinates are used for triangu-

lar elements. The triangle is defined by the coordinates of the three corner points

Pi(xi,yi), i = 1,2,3. A point P(x,y) within the triangle is also defined by the natural



426 11 Finite Element Analysis

triangle coordinates L1,L2,L3,P(L1,L2,L3), see Fig. 11.8. There

L1 =
A1

A△
, L2 =

A2

A△
, L3 =

A3

A△
(11.3.1)

with the triangle area A△ and the partial areas A1,A2,A3,A△ = A1+A2+A3. There-

fore

L1 +L2 +L3 = 1 (11.3.2)

The areas A1,A2,A3,A△ can be expressed by determinants

A△ =

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

∣

, A1 =

∣

∣

∣

∣

∣

∣

1 x y

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

∣

,

A2 =

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x y

1 x3 y3

∣

∣

∣

∣

∣

∣

, A3 =

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x y

∣

∣

∣

∣

∣

∣

(11.3.3)

and for the coordinates L1,L2,L3 of the point P(x,y)

L1 =
1

2A△
[(x2y3 − x3y2)+ (y2 − y3)x+(x3 − x2)y],

L2 =
1

2A△
[(x3y1 − x1y3)+ (y3 − y1)x+(x1 − x3)y],

L3 =
1

2A△
[(x1y2 − x2y1)+ (y1 − y2)x+(x2 − x1)y]

(11.3.4)

and the coordinates x,y can be expressed by

x = x1L1 + x2L2 + x3L3, y = y1L1 + y2L2 + y3L3 (11.3.5)

Considering Eq. (11.3.2) we obtain for cartesian coordinates

Fig. 11.8 Natural triangle

coordinates
x

y

A1A2

A31(i)

2( j)

3(k)

P
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x = L1(x1 − x3)+L2(x2 − x3)+ x3, y = L1(y1 − y3)+L2(y2 − y3)+ y3 (11.3.6)

In Fig. 11.9 the natural triangle coordinates L1,L2,L3 are illustrated for some special

points: the corner points and the points in the middle of the sides.

Because the shape functions Ni used for the approximation of the deformation

field in a triangular plate element are usually written as functions of the natural

element coordinates, it is necessary to find relationships for the derivatives of the

shape functions with respect to the global cartesian coordinates. At first the deriva-

tives of the shape functions Ni are given by the natural triangle coordinates L1 and

L2. L3 depends from L1 and L2, see (11.3.2). So we consider only two independent

coordinates. Here we have











∂Ni

∂L1

∂Ni

∂L2











=











∂x

∂L1

∂y

∂L1

∂x

∂L2

∂y

∂L2





















∂Ni

∂x

∂Ni

∂y











= JJJ











∂Ni

∂x

∂Ni

∂y











(11.3.7)

JJJ is the Jacobi matrix of the coordinate transformation

JJJ =











∂x

∂L1

∂y

∂L1

∂x

∂L2

∂y

∂L2











=

[

c j −b j

−ci bi

]

(11.3.8)

and the expressions bi,b j,ci,c j are

bi = y2 − y3, b j = y3 − y1, ci = x3 − x2, c j = x1 − x3 (11.3.9)

With

DetJJJ = c jbi − b jci = ∆ (11.3.10)

Fig. 11.9 Natural triangle
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it follows that

JJJ−1 =
1

∆

[

bi b j

ci c j

]

(11.3.11)

and then we obtain for the derivatives of the shape functions Ni with respect to the

cartesian coordinates x and y











∂Ni

∂x

∂Ni

∂y











= JJJ−1











∂Ni

∂L1

∂Ni

∂L2











(11.3.12)

In case of the classical laminate theory, the second partial derivatives

∂ 2Ni

∂L2
1

,
∂ 2Ni

∂L1L2
,

∂ 2Ni

∂L2
2

are also required. For this we must put the result for ∂Ni/∂L1 instead of Ni into the

first row of Eq. (11.3.7), and we obtain

∂ 2Ni

∂L2
1

=

(

∂x

∂L1

)2 ∂ 2Ni

∂x2
+ 2

∂x

∂L1

∂y

∂L1

∂ 2Ni

∂x∂y
+

(

∂y

∂L1

)2 ∂ 2Ni

∂y2
(11.3.13)

In the same manner we can do so with ∂Ni/∂L2 and the second row of Eq. (11.3.7)

and for the mixed second partially derivative with ∂Ni/∂L2 and the first row or vice

versa. The three relationships obtained can be written in matrix form

JJJ∗



















∂ 2Ni

∂x2

∂ 2Ni

∂x∂y

∂ 2Ni

∂y2



















=



















∂ 2Ni

∂L2
1

∂ 2Ni

∂L1∂L2

∂ 2Ni

∂L2
2



















(11.3.14)

where JJJ∗ is a modified or extended Jacobi matrix

JJJ∗ =



















(

∂x

∂L1

)2

2
∂x

∂L1

∂y

∂L1

(

∂y

∂L1

)2

∂x

∂L1

∂x

∂L2

∂x

∂L2

∂y

∂L1
+

∂x

∂L1

∂y

∂L2

∂y

∂L1

∂y

∂L2
(

∂x

∂L2

)2

2
∂x

∂L2

∂y

∂L2

(

∂y

∂L2

)2



















(11.3.15)
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Now the second partial derivatives of the shape functions by the cartesian coordi-

nates can be calculated



















∂ 2Ni

∂x2

∂ 2Ni

∂x∂y

∂ 2Ni

∂y2



















= JJJ∗−1



















∂ 2Ni

∂L2
1

∂ 2Ni

∂L1∂L2

∂ 2Ni

∂L2
2



















(11.3.16)

Of course, by consequently using the natural triangle coordinates it follows that the

integrands in the energy terms are functions of these coordinates. Therefore we have

to consider for the variables of integration the relationship

dA = dxdy = DetJJJdL1dL2 = ∆dL1dL2 (11.3.17)

In Sects. 11.3.1 and 11.3.2 the development of triangular finite plate elements will

be shown in a condensed way for the classical laminate theory and for the shear

deformation theory, respectively.

11.3.1 Classical Laminate Theory

The starting point is the total potential energy of an symmetric laminate plate, see

also (8.2.24)

Π(w) =
1

2

∫

A

[

D11

(

∂ 2w

∂x2

)2

+D22

(

∂ 2w

∂y2

)2

+ 2D12
∂ 2w

∂x2

∂ 2w

∂y2
+ 4D66

(

∂ 2w

∂x∂y

)2

+ 4

(

D16
∂ 2w

∂x2
+D26

∂ 2w

∂y2

)

∂ 2w

∂x∂y

]

dA−
∫

A

pzwdA

(11.3.18)

with the stiffness Di j, i, j = 1,2,6, see Table 8.3. The strain energy simplifies the

couplings, if we assume special orthotropic laminates (e.g. cross-ply-laminates).

We have no bending-twisting coupling, i.e. D16 =D26 = 0. Supposing in other cases

these coupling terms as very small, especially if we have a great number of very thin

layers, we use the following simplified strain energy approximately
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Π(w) =
1

2

∫

A

[

D11

(

∂ 2w

∂x2

)2

+D22

(

∂ 2w

∂y2

)2

+ 2D12
∂ 2w

∂x2

∂ 2w

∂y2
+ 4D66

(

∂ 2w

∂x∂y

)2

− 2pzw

]

dA

(11.3.19)

The total potential energy of the classical plate model contains second derivatives

and so we have to realize C(1)-continuity at the element boundaries. This means,

continuity of the deflections and the derivatives in normal direction to the bound-

aries. It must be noted that we do not have C(1)-continuity, if the first derivatives

at the corner points of adjacent elements are equal because we have to guarantee

the continuity of the derivatives in the normal direction at all boundary points of

adjacent elements.

It can be shown that we have to use a polynomial with minimum of 18 coeffi-

cients, and because we want to have a complete polynomial, we choose a polynomial

of fifth order with 21 coefficients. Therefore we define a triangular finite plate ele-

ment with 6 nodes as shown in Fig. 11.10. At the corner nodes 1,2,3 (i, j,k) we have

6 degrees of freedom, the deflection, the first derivatives in both directions and the

three curvatures, but at the mid-side nodes the first derivatives in normal direction

only.

It is a disadvantage when using this element in a general program system that we

have a different number of degrees of freedom at the nodes. Therefore an elimina-

tion, a so-called static condensation of the nodal constants of the mid-side nodes,

can be done and then we have only 18 degrees of freedom for the element. The el-

ement is converted into a three-node element, the nodes 4,5,6 (l,m,n) vanish. The

polynomial approximation of the displacement field in the finite element is given by

a special 5th order polynomial, it contains however a complete polynomial of 4th

order. In this way we obtain 18 shape functions Ni(L1,L2,L3), i = 1,2, . . . ,18 which

are not illustrated here. Because the coordinates L1,L2,L3 are not independent, see

(11.3.2), L3 usually is eliminated by

L3 = 1−L1−L2 (11.3.20)

Fig. 11.10 Six-node plate

element
x

y

1(i)

2( j)

3(k)

6(n) 5(m)

4(l)
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According to (11.1.1) we have the approximation

w(x,y) =NNN(L1,L2)vvv (11.3.21)

with NNN as the matrix of the 18 shape functions (here it has only one row) and the el-

ement displacement vector vvv including 18 components. For the differential operator

DDDOP must be written

DDDOP =

[

∂ 2

∂x2

∂ 2

∂y2
2

∂ 2

∂x∂y

]T

(11.3.22)

and after this, see also Eq. (11.1.3), the matrix BBB leads to

BBB =DDDOPNNN (11.3.23)

Since the shape functions are functions of the natural triangle coordinates L1 and L2,

for the derivatives by the cartesian coordinates we have to take into consideration

(11.3.16). The element stiffness matrix follows according to (11.1.6)

KKKE =
∫

AE

BBBTDBDBDBdA

and with the substitution of the integration variable Eq. (11.3.17)

KKKE =

1
∫

0

1−L1
∫

0

BBBTDBDBDB△dL2dL1 (11.3.24)

Here DDD is the matrix of the plate stiffness, the coupling of bending and twisting is

neglected (D16 = D26 = 0)

DDD =





D11 D12 0

D12 D22 0

0 0 D66





According to (11.1.7) we obtain the element force vector

fff E =

∫

AE

NNNT pdA =

1
∫

0

1−L1
∫

0

NNNT p△dL2dL1 (11.3.25)

where p(x,y) = p(L1,L2) is the element surface load.

For the flexural vibration analysis of plates the element mass matrix must be

calculated. According to (11.1.10), the element mass matrix reduces to

MMME =
∫

VE

ρNNNTNNNdV =

1
∫

0

1−L1
∫

0

ρNNNTNNNh△dL2dL1 (11.3.26)



432 11 Finite Element Analysis

with ρ as an average density

ρ =
1

h

n

∑
k=1

ρ (k)h(k) (11.3.27)

Note that the classical laminate theory does not consider the rotary kinetic energy.

The integrations in the (11.3.24) for the element stiffness matrix KKKE , (11.3.25)

for the element force vector fff E and (11.3.26) for the element mass matrix must

be carried out numerically. Only the force vector fff E can be calculated analytically,

if we have a constant surface loading p(x,y) = const. For the numerical solutions

it is recommended that integration formulae of the same order are used like the

polynomials for the shape functions, in this case of the fifth order.

11.3.2 Shear Deformation Theory

The Mindlin plate model, which is based on the first order shear deformation theory,

considers the shear deformation in a simplified form. In the Mindlin plate model

the Kirchhoff’s hypotheses are relaxed. Transverse normals to the midplane do not

remain perpendicular to the middle surface after deformation. In Sect. 8.3 the basic

equations are given for this plate model.

Here the starting point is the total potential energy, and if we restrict ourselves to

symmetric and special orthotropic laminates, we have

Π(w,ψ1,ψ2) =
1

2

∫

A

[

D11

(

∂ψ1

∂x

)2

+ 2D12

(

∂ψ1

∂x

∂ψ2

∂y

)

+D22

(

∂ψ2

∂y

)2

+ D66

(

∂ψ1

∂y
+

∂ψ2

∂x

)2

+ ks
55A55

(

ψ1 +
∂w

∂x

)2

+ ks
44A44

(

ψ2 +
∂w

∂y

)2
]

dxdy−
∫

A

pzwdxdy

δΠ(w,ψ1,ψ2) = 0

(11.3.28)

or written in matrix form

Π(w,ψ1,ψ2) =
1

2

∫

A

(κκκTDDDκκκ +εεεsT
AAAsεεεs)dxdy−

∫

A

p3wdxdy (11.3.29)

The matrices of the plate stiffness for this case (D16 = D26 = 0) and the shear stiff-

ness with A45 = 0 are, see also (8.3.7),
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DDD =





D11 D12 0

D12 D22 0

0 0 D66



 , AAAs =

[

ks
55A55 0

0 ks
44A44

]

(11.3.30)

The stiffness are given in detail in (4.2.15) and for the shear correction factor see

Sect. 8.3. Note that we have, in the elastic potential three independent deformation

components (the deflection w and the rotations ψ1 and ψ2), so the displacement field

vector uuu has three components (nu = 3), see also (11.1.2).

For the curvatures and the shear strains we have

κκκ =DDDbuuu, εεεs =DDDsuuu (11.3.31)

where DDDb and DDDs are the matrices of the differential operators

DDDb =

















0
∂

∂x
0

0 0
∂

∂y

0
∂

∂y

∂

∂x

















, DDDs =









∂

∂x
1 0

∂

∂y
0 1









(11.3.32)

The most important property of the elastic potential however is that it contains first

derivatives only. Therefore, we have to guarantee only C(0)-continuity at the element

boundaries and it will be possible to take a three-node finite element with linear

shape functions, but it shall be not done here.

Due to the better approximation properties we will choose a six-node element

with polynomials of the second order as shape functions. The six-node element with

its nodal degrees of freedom is shown in Fig. 11.11. Then we have the nodal and the

element displacement vectors

vvvT
i = [wi ψxi ψyi], vvvT

E = [vvvT
i vvvT

j vvvT
k vvvT

l vvvT
m vvvT

n ] (11.3.33)

and according to (11.1.2) with nu = nF , ñ = nKE
the matrix of the shape functions is

given by

NNN = [NiIII3 N jIII3 NkIII3 NlIII3 NmIII3 NnIII3], (11.3.34)

Fig. 11.11 Six-node finite

plate element with nodal

degrees of freedom
x

yz

ψ1i

ψ2 i

wi

i l j

m

k

n
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where III3 are unit matrices of the size (3,3). The shape functions are

Ni = (2L1 − 1)L1, N j = (2L2 − 1)L2, Nk = (2L3 − 1)L3,
Nl = 4L1L2, Nm = 4L2L3, Nn = 4L1L3

(11.3.35)

They are functions of the natural triangle co-ordinates L1,L2,L3, see (11.3.1) -

(11.3.4).

The curvatures and the shear strains in (11.3.29) can be expressed by

κκκ = DDDbuuu =DDDbNNNvvvE =BBBbvvvE , BBBb = DDDbNNN

εεεs = DDDsuuu =DDDsNNNvvvE =BBBsvvvE , BBBs = DDDsNNN
(11.3.36)

and consideration of (11.3.12) leads to the element stiffness matrix, see also (11.1.6)

consisting of two parts

KKKE =KKKb
E +KKKs

E , KKKb
E =

∫

AE

BBBbT
DDDBBBbdxdy, KKKs

E =

∫

AE

BBBsT
AAAsBBBsdxdy (11.3.37)

Because the shape functions in NNN are functions of the natural triangle co-ordinates,

the integration variables must be substituted by (11.3.17), and then we find

KKKb
E =

1
∫

0

1−L1
∫

0

BBBbT
DDDBBBb ∆dL2dL1, KKKs

E =

1
∫

0

1−L1
∫

0

BBBsT
AAAsBBBs ∆dL2dL1 (11.3.38)

To obtain the element force vector fff E a load vector qqq must be defined with the same

number of components as the displacement field vector uuu. Because only surface

loading p(x,y) is considered here, it leads to

qqqT = [p 0 0]

and then the element force vector is

fff E =
∫

AE

NNNTqqqdxdy, fff E =

1
∫

0

1−L1
∫

0

NNNTqqq∆dL2dL1 (11.3.39)

with the substitution of integration variables.

The integrations in (11.3.39) can be done analytically only in the case of constant

surface loading p = const. In the other cases it must be calculated numerically. For

the numerical integration it is recommended to apply integration formulae of the

same order as used for shape polynomials, here of the second order. It must be done

in this manner for the first part KKKb
E of the stiffness matrix, for the second part of KKKs

E

a lower order can be used. Such a different kind of integration for the two parts of

the stiffness matrix is called selective integration.

For dynamic analysis the element mass matrix MMME must also be calculated. For

the shear deformation theory the rotatory kinetic energy is usually taken into con-
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sideration. The kinetic energy of an element is then

TE =
1

2

∫

VE

ρu̇uuTu̇uudV =
1

2

∫

AE

h
2

∫

− h
2

ρ(ẇ2 + ψ̇2
1 + ψ̇2

2 )dzdA (11.3.40)

If the so called generalized densities are used

ρ0 =
n

∑
k=1

ρ (k)[z(k)− z(k−1)] =
n

∑
k=1

ρ (k)h(k),

ρ1 =
1

2

n

∑
k=1

ρ (k)[z(k)
2 − z(k−1)2

],

ρ2 =
1

3

n

∑
k=1

ρ (k)[z(k)
3 − z(k−1)3

]

(11.3.41)

and it is noted here that ρ1 = 0, because we have assumed symmetric laminates only,

then for the kinetic energy we obtain

TE =
1

2

∫

AE

v̇vvTRRR0v̇vvdA (11.3.42)

RRR0 is a matrix of the generalized densities

RRR0 =





ρ0 0 0

0 ρ2 0

0 0 ρ2



 (11.3.43)

Using the approximation for the displacement field vector according to Eq. (11.1.1)

we obtain

TE =
1

2
vvvT

E

∫

AE

NNNTRRR0NNNdAvvvE (11.3.44)

and the element mass matrix is

MMME =

∫

AE

NNNTRRR0NNNdA, MMME =

1
∫

0

1−L1
∫

0

NNNTRRR0NNN∆dL1dL2 (11.3.45)

with substitution of the integration variables.

The finite laminate plate element developed above is called PL18, where the

number 18 gives the degrees of freedom of all element nodes. This element can be

used only for laminate plates with laminae arranged symmetrically to the midplane,

where we have no coupling of membrane and bending/twisting states and we have

no in-plane loading.
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In many cases we have nonsymmetric laminates and we have a coupling of mem-

brane and bending/twisting states or there are in-plane and out-of-plane loadings.

Then an element is necessary where the nodal degrees of freedom also include the

deflections in x- and y-direction u,v. For such an element, assuming six nodes again,

the nodal and the element displacement vectors are

vvvT
i = [ui vi wi ψxi ψyi], vvvT

E = [vvvT
i vvvT

j vvvT
k vvvT

l vvvT
m vvvT

n ] (11.3.46)

The structure of the matrix of the shape functions NNN is in this more general case

NNN = [NiIII5 N jIII5 NkIII5 NlIII5 NmIII5 NnIII5] (11.3.47)

with III5 as unit matrices of the size (5,5), the shape functions remain unchanged.

The total potential energy for this case is, see also (8.3.15),

Π(u,v,w,ψ1,ψ2) =
1

2

∫

A

(εεεTAAAεεε +κκκTBBBεεε +εεεTBBBκκκ +κκκTDDDκκκ

+ εεεsTAAAsεεε s)dx1dx2 −
∫

A

pzw dxdy
(11.3.48)

and we have to take into consideration the membrane stiffness matrix AAA and the

coupling matrix BBB additionally, the element stiffness matrix consists of four parts

KKKE =KKKm
E +KKKmb

E +KKKb
E +KKKs

E (11.3.49)

representing the membrane state (KKKm
E ), the coupling of membrane and bending states

(Kmb
E ), the bending state (KKKb

E ) and the transverse shear state (KKKs
E ).

The general form for the element force vector (11.3.39) is unchanged, it must be

noted that the loading vector qqq here has another structure containing loads in three

directions

qqqT = [px py pz 0 0] (11.3.50)

the general form for the element mass matrix is the same as in (11.3.45), but here

the matrix of the generalized densities RRR0 is

RRR0 =













ρ0 0 0 ρ1 0

0 ρ0 0 0 ρ1

0 0 ρ0 0 0

ρ1 0 0 ρ2 0

0 ρ1 0 0 ρ2













(11.3.51)

The remarks about the realization of the integrations remains unchanged here. Of

course they are all more complicated for this element. Such an extended element

would be called PL30, because the degree of freedom of all nodal displacements is

30. Further details about this extended element are not given here.
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11.4 Generalized Finite Beam Elements

In civil engineering and also in mechanical engineering a special kind of struc-

tures are used very often structures consisting of thin-walled elements with sig-

nificant larger dimensions in one direction (length) in comparison with the dimen-

sions in the transverse direction. They are called beam shaped shell structures. Beam

shaped shell structures include folded plate structures as the most important class

of such structures. In Chap. 10 the modelling of folded plate structures was con-

sidered and there a generalized beam model was developed by the reduction of the

two-dimensional problem to an one-dimensional one following the way of Vlasov-

Kantorovich. This folded structure model contains all the energy terms of the mem-

brane stress state and of the bending/twisting stress state under the validity of the

Kirchhoff hypotheses. Outgoing from this complete folded structure model some

simplified structure models were developed (see Sect. 10.2.4) by neglecting of se-

lected energy terms in the potential function e.g. the terms caused by the longitudinal

curvatures κxi
, the shear strains εxsi

, the torsional curvatures κxsi
or the transversal

strains εsi
of the strips. Because the influence of the longitudinal curvatures κxi

of

the single strips to the deformation state and the stress state of the whole structure

is very small for beam shaped structures, they are neglected generally. The shear

strains εxsi
of the strips can be neglected for structures with open cross-sections,

but not in the case of closed cross-sections. In opposite to this the torsional curva-

tures κxsi
can be neglected for closed cross-sections, but not for open cross-sections.

Therefore, because we had in mind to find a generalized beam model as well the

shear strains as the torsional curvatures are considered. Although the influence of

the transversal strains in most cases is very small, they are considered too, because

with this we have a possibility to define the generalized co-ordinate functions for a

general cross-section systematically. Therefore as a generalized structure model for

beam shaped thin-walled folded plate structures the structure model A (see Sects.

10.2.4 and 10.2.5) is chosen, in which only the longitudinal curvatures κxi
of the

strips are neglected.

11.4.1 Foundations

The starting point for the development of generalized finite beam elements is the

potential energy, see equation (10.2.10). Because in all strips the longitudinal curva-

tures κxi
are neglected all terms containing w′′

i have to vanish. It leads together with

equations (10.2.11), (10.2.12) and with ÂAA7 = 000, ÂAA8 = 000, ÂAA10 = 000, ÂAA17 = 000, ÂAA20 = 000,

ÂAA23 = 000, ÂAA26 = 000 to a simplification of the potential energy equation (10.2.10)
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Π =
1

2

l
∫

0

[

UUU ′TÂAA1UUU
′+VVV TÂAA6VVV +UUUTÂAA3UUU + 2UUUTÂAA25VVV

′

+ VVV ′TÂAA4VVV
′+VVV TÂAA12VVV + 4VVV ′TÂAA9VVV

′

+ 2UUU ′TÂAA14VVV + 2UUUTÂAA2UUU
′+ 2UUU ′TÂAA13VVV

′

− 2UUU ′TÂAA19VVV − 4UUU ′TÂAA18VVV
′+ 2UUU ′TÂAA16VVV

+ 2VVV TÂAA5VVV
′− 2VVVTÂAA28VVV − 4VVVTÂAA27VVV

′

− 2UUUTÂAA22VVV − 2VVV ′TÂAA25VVV − 4UUUTÂAA21VVV
′

− 4VVV ′TÂAA24VVV
′+ 4VVV TÂAA11VVV

′− 2(UUUT fff x +VVV T fff s +VVV T fff n)

]

dx

− (UUUTrrrx +VVV Trrrs +VVV Trrrn) |x=0 − (UUUTrrrx +VVV Trrrs +VVV Trrrn) |x=l

(11.4.1)

We can see that the one-dimensional energy function contains only derivatives of

the first order.

11.4.2 Element Definitions

Outgoing from Eq. (11.4.1) a one-dimensional finite element can be defined. Be-

cause we have no higher derivatives than of the first order in the potential energy

only a C(0) continuity is to satisfy at the element boundaries and therefore it would

be possible to use a two-node element with linear shape functions. To have a better

accuracy here we will take a three-node element using second order polynomials as

shape functions, Fig. 11.12. The shape functions are again like (11.2.15)

N1(x) = 1− 3
x

l
+ 2

x2

l2
, N2(x) = 4

x

l
− 4

x2

l2
, N3(x) =−x

l
+ 2

x2

l2
(11.4.2)

They are shown in Fig. 11.5.

Because a generalized finite beam element with a general cross-section shall be

developed at first we must find a rule to define the cross-section topology. We will

use for it the profile node concept. For this we will see the midlines of all strips as the

cross-sections profile line. The start- and the endpoints of each strip on this profile

line are defined as the so-called main profile nodes. In the middle of each strip there

Fig. 11.12 Three-node gener-

alized beam element

1 2 3

x

l
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are additional profile nodes, they are called secondary profile nodes. Figure 11.13

shows an example for it. The topology of the thin-walled cross-section is described

sufficiently by the co-ordinates of the main profile nodes. Additionally the stiffness

parameters of each strip must be given. The connections of the strips in the main

profile nodes are supposed as rigid.

For the generation of the generalized deflection co-ordinate functions ϕ ,ψ ,ξ is

assumed that a main profile node has four degrees of freedom, the displacements

in the directions of the global co-ordinate axes x,y,z and the rotation about the

global x axis, see Fig. 11.14. The displacements of the main profile nodes lead linear

generalized co-ordinate functions ϕ ,ψ and cubic functions ξ between the adjacent

nodes. For an increasing the accuracy the activation of the secondary profile node

degrees of freedom is optional, they are shown in Fig. 11.15. In this case ϕ and ψ are

quadratic and ξ polynomials of 4th and 5th order between the adjacent main nodes.

Therefore a more complex deformation kinematics of the cross-section is consid-

erable. The generalized co-ordinate functions for any thin-walled cross-section are

here defined as follows:

1. Main node displacements or rotations result in non-zero co-ordinate functions

only in the adjacent intervals of the profile line

Fig. 11.13 Description of a

general cross-section
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2
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3 44
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y

y1 s2 s4 s5 s6

s3 s7

s8

- main profile nodes (MPN)
- secondary profile nodes SPN)

deflection in x-direction deflection in y-direction

deflection in z-direction rotation about x-axis

Fig. 11.14 Main profile node degrees of freedom



440 11 Finite Element Analysis

second order v-deflection second order u-deflection

fourth order w-deflection fifth order w-deflection

Fig. 11.15 Secondary profile node degrees of freedom

2. Secondary node displacements or rotations result in non-zero co-ordinate func-

tions only in the interval between the adjacent main nodes.

In Fig. 11.16 the generalized coordinate functions for axial parallel arranged strips

are shown. Figure 11.17 gives the supplements for slanting arranged strips.

11.4.3 Element Equations

In the case of non-activated degrees of freedom of the secondary profile nodes we

have a degree of freedom of an element node of four times the number of main

profile nodes (4 nMPN) and the element displacement vector consists of 12 nMPN

components

vvvT = [vvv1 vvv2 vvv3], vvv j =

[

ūuu j

v̄vv j

]

(11.4.3)

ūuu j, v̄vv j contain the values of the generalized displacement functions at the node j.

The displacement vector uuu(x) contains here the generalized displacement functions

UUU(x) and VVV (x) and in accordance with Eq. (11.1.1) we obtain for the interpolation

uuu(x) =

[

UUU(x)
VVV (x)

]

=NvNvNv (11.4.4)

The matrix of the shape functions for the chosen three-node element is

NNN = [N1(x)III N2(x)III N3(x)III], (11.4.5)

where III are the unit matrices of the size 4 nMPN and with this the matrix NNN has

the format (4 nMPN , 12 nMPN). Following the equation (11.4.4) for the generalized
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Fig. 11.16 Generalized co-ordinate functions for axial parallel arranged strips
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displacement functions we have to write

UUU(x) = LLLT
10uuu(x) = LLLT

10NvNvNv, VVV (x) = LLLT
01uuu(x) = LLLT

01NvNvNv (11.4.6)

with the matrices

LLLT
10 = [III 000], LLLT

01 = [000 III] (11.4.7)

In the first case (LLL10) III is a unit matrix of the size nMNP and the null matrix has the

format (nMPN , 3 nMPN), in the second case (LLL01) III is a unit matrix of the size 3 nMPN

and the null matrix has the format (3 nMPN ,nMPN).

Of course in the case of activated degrees of freedom of the secondary pro-

file nodes all the dimensions given above are increased correspondingly. Inserting

the generalized displacement functions (11.4.6) into the potential energy equation

(11.4.1) we obtain

Π =
1

2
vvvTKvKvKv− fff Tvvv (11.4.8)

The condition
∂Π

∂vvv
= 000 (11.4.9)

leads to the element equation

KvKvKv = fff (11.4.10)

with the symmetric element stiffness matrix

KKK =







KKK11 KKK12 KKK13

KKKT
12 KKK22 KKK23

KKKT
13 KKKT

23 KKK33






(11.4.11)

For the sub-matrices Kmn we find the general equation

Kmn =
3

∑
h=1

































ÂAA1hImn1

+ÂAA2hImn2

+ÂAA
T

2hImn3

+ÂAA3hImn4

(ÂAA13h − 2ÂAA18h)Imn1

+(ÂAA15h − 2ÂAA21hImn2

+(ÂAA14h − ÂAA19h)Imn3

+(ÂAA16h − ÂAA22h)Imn4

(ÂAA
T

13h − 2ÂAA
T

18h)Imn1

+(ÂAA
T

15h − 2ÂAA
T

21h)Imn2

+(ÂAA
T

14h − ÂAA
T

19h)Imn3

+(ÂAA
T

16h − ÂAA
T

22h)Imn4

(ÂAA4h + ÂAA9h − 2ÂAA24h − 2ÂAA
T

24h)Imn1

+(ÂAA5h + 2ÂAA11h − ÂAA
T

25h − 2ÂAA27h)Imn2

+(ÂAA
T

5h + 2ÂAA11h − ÂAA25h − 2ÂAA
T

27h)Imn3

+(ÂAA6h + ÂAA12h − ÂAA28h − ÂAA
T

28h)Imn4

































(11.4.12)

with
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Imn1 =

l
∫

0

NhN′
mN′

ndx, Imn2 =

l
∫

0

NhNmN′
ndx,

Imn3 =

l
∫

0

NhN′
mNndx, Imn4 =

l
∫

0

NhNmNndx

To include approximately slight non-prismatic structures the matrices of the stiff-

ness parameters ÂAAi, see Eq. (10.2.12), are interpolated in the element in the same

manner as the displacements

ÂAAi =
3

∑
h=1

ÂAAihNh (11.4.13)

ÂAAih are the matrices at the nodes h = 1,2,3.

The element force vector is obtained as

fff =





fff 1

fff 2

fff 3



 (11.4.14)

with the sub-vectors

fff m =
3

∑
h=1

















fff xh

l
∫

0

NhNmdx

((( fsh + fnh)

l
∫

0

NhNmdx

















(11.4.15)

Here fff xh, fff sh, fff nh are the generalized load vectors, see Eq. (10.2.13), at the nodes

h = 1,2,3.

11.4.4 System Equations and Solution

The system equations can be obtained by using the Eqs. (11.1.15) and (11.1.16) with

the coincidence matrices, determining the position of each element in the whole

structure. In the so founded system stiffness matrix the boundary conditions of the

whole structure are to consider, otherwise this matrix is singular, if the structure

is not fixed kinematically. The solution of the system equations lead to the nodal

displacements and with them the strains and curvatures in the single strips of each

element can be calculated, see Eqs. (10.2.6) and (10.2.11),
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εx(x,si) =
3

∑
h=1

N′
hūuuT

hϕϕϕ , εs(x,si) =
3

∑
h=1

Nhv̄vvT
hψψψ•,

εxs(x,si) =
3

∑
h=1

(NhūuuT
hϕϕϕ•+N′

hvvvT
hψψψ),

κs(x,si) = −
3

∑
h=1

Nhv̄vvT
hξξξ ••, κxs(x,si) = −2

3

∑
h=1

N′
hv̄vvT

hξξξ •

(11.4.16)

Now we can obtain the stress resultants in the kth lamina, which has the distance nk

from the mid plane of the strip





Nxk

Nsk

Nxsk



=





A11k A12k A16k

A12k A22k A26k

A16k A26k A66k









εx

εs + nkκs

εxs + nkκxs



 (11.4.17)

These stress resultants are related on the strip co-ordinate axes x and si. Therefore, it

is necessary to transform them into the material co-ordinate system of the kth lamina

(for the transformation relationship see Table 4.1)





NLk

NTk

NLTk



=





cos2 αk sin2 αk 2sinαk cosαk

sin2 αk cos2 αk −2sinαk cosαk

−sinαk cosαk sin αk cosαk cos2 αk − sin2 αk









Nxk

Nsk

Nxsk



 (11.4.18)

Than the stresses of the kth lamina are obtained

σLk =
NLk

tk
, σTk =

NTk

tk
, τLTk =

NLTk

tk
(11.4.19)

In some cases the strains in the kth lamina related to the material co-ordinate system

are important for the failure assessment of the lamina. Then they can be calculated

with help of the following matrix equation





εLk

εTk

εLTk



=QQQ′
k
−1





NLk

NTk

NLTk



 (11.4.20)

There QQQ′ is the reduced stiffness matrix of the kth lamina.

11.4.5 Equations for the Free Vibration Analysis

The variation statement given by the Hamilton’s principle, see Eq. (10.2.41) leads

with the Lagrange function (10.2.39) and the assumption of harmonic vibrations for

the considered generalized beam element to the element equation

(KKK −ω2MMM)vvv = 000 (11.4.21)
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KKK is the element stiffness matrix, see Eqs. (11.4.11) and (11.4.12), and MMM is the ele-

ment mass matrix. The element mass matrix is obtained with the matrices B̂BB1,B̂BB2,B̂BB3,

see Eqs. (10.2.38)

MMM =







MMM11 MMM12 MMM13

MMMT
12 MMM22 MMM23

MMMT
13 MMMT

23 MMM33






(11.4.22)

with

MMMmn =
3

∑
h=1

[

B̂BB1hImn4 000

000 (B̂BB2h + B̂BB3h)Imn4

]

(11.4.23)

There the B̂BB matrices are also interpolated in the element by using the shape func-

tions. In this way slight non-prismatic structures are considerable too. The system

equations can be developed in a similar way as it was done for a static analysis. Here

we have to find a system stiffness matrix and a system mass matrix. After consider-

ation the boundary conditions the eigen-value problem can be solved and the mode

shapes can be estimated.

11.5 Numerical Results

Additional to a great number of special FEM programs general purpose FEM pro-

gram systems are available. The significance of universal FEM program packages

is increasing. In universal FEM program systems we have generally the possibility

to consider anisotropic material properties, e.g. in the program system COSMOS/M

we can use volume elements with general anisotropic material behavior and plane

stress elements can have orthotropic properties.

Laminate shell elements are available e.g. in the universal FEM program systems

ANSYS, NASTRAN or COSMOS/M. In many program systems we have no spe-

cial laminate plate elements, the laminate shell elements are used also for the anal-

ysis of laminate and sandwich plates. Perhaps, because of the higher significance

of two-dimensional laminate structures in comparison with beam shaped structures

laminate beam elements are missing in nearly all universal FEM program systems.

The generalized beam elements, Sect. 11.4, are e.g. implemented only in the FEM

program system COSAR.

For the following numerical examples the program system COSMOS/M is used.

In COSMOS/M a three node and a four node thin laminate shell element are

available (SHELL3L; SHELL4L). Each node has 6 degrees of freedom. The element

can consist of up to 50 layers. Each layer can have different material parameters,

different thicknesses and especially different angles of fibre directions. We have no

restrictions in the stacking structure, symmetric, antisymmetric and nonsymmetric

structures are possible. The four nodes of the SHELL4L element must not arranged

in-plane. By the program in such case a separation is done into two or four triangular

partial elements. Further there is a SHELL9L element available. It has additional



11.5 Numerical Results 447

nodes at the middles of the four boundaries and in the middle of the element. For

the following examples only the element SHELL4L is used.

11.5.1 Examples for the Use of Laminated Shell Elements

By the following four examples the application of the laminate shell element

SHELL4L shall be demonstrated. At first a thin-walled beam shaped laminate struc-

ture with L-cross-section under a concentrated force loading is considered, and the

second example is a thin-walled laminate pipe under torsional loading. In both cases

the influence of the fibre angles in the layers is tested. The use of the laminate shell

element for the static and dynamic analysis of a sandwich plate is shown in the

third example. A buckling analysis of a laminate plate is demonstrated by the fourth

example. In all 4 cases a selection of results is given.

11.5.1.1 Cantilever Beam

A cantilever beam with L-cross-section consists of 3 layers with the given material

parameters Ex,Ey,νxy,νyx,Gxy. It is loaded by a concentrated force F , see Fig. 11.18.

The material parameters are

L

F

+α

+α

−α

3

3

4

300

40010

Fig. 11.18 Cantilever beam: cross-section and stacking structure (F = 4.5 kN, L = 4 m, all other

geometrical values in mm)
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Ex = 1.53 ·104kN/cm2, Ey = 1.09 ·103kN/cm2, Gxy = 560kN/cm2,

νxy = 0.30,νyx = 0.021

The fibre angle α shall be varied: α = 0◦,10◦,20◦,30◦,40◦.

The FEM model after the input of all properties into COSMOS/M is illustrated

in Fig. 11.19. The computing yields a lot of results. In Fig. 11.20, e.g., is shown

the deformed shape for a fibre angle of α = 30◦. Here should be selected only

the displacements of the corner node at the free edge (node No. 306 in our FE

model) in y- and z-direction and the maximal stresses in fibre direction (σx) and

perpendicular to it (σy) for the left side of the vertical part of the cross-section (layer

No. 1, bottom):

v306,y = -2,204 cm, v306,z = -1,805 cm,

σlay1,max,x = 7,487 kN/cm2, σlay1,max,y = 0,824 kN/cm2

Similar the displacements and stresses for the fibre angles α = 0◦,10◦,20◦,40◦ are

calculated, and the results are shown in Figs. 11.21 and 11.22. The results show

that for such a beam shaped structure the main stresses are lying in the longitudinal

direction and therefore the fibre angle 0◦ leads to the most effective solution.

11.5.1.2 Laminate Pipe

A laminate pipe consisting of 2 layers with the given material parameters Ex,Ey,
νxy,νyx,Gxy is fixed at left end and loaded by a torsional moment, see Fig. 11.23.

The material parameters are the same as in the previous example:

Ex = 1,53 104kN/cm2, Ey = 1,09 103kN/cm2, Gxy = 560 kN/cm2,
νxy = 0,30, νyx = 0,021

The fibre angle α shall be varied: α = 0◦,15◦,30◦,45◦. After the input of all parame-

Fig. 11.19 FE-model of can-

tilever beam in COSMOS/M

(650 elements, 714 nodes)

x

y

z

Fig. 11.20 Cantilever beam

deformed shape

x

y

z



11.5 Numerical Results 449

vy vz

Fibre Angle

D
is

p
la

ce
m

en
ts

/c
m

0◦ 10◦ 20◦ 30◦ 40◦
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 11.21 Displacements of the corner point at the free edge
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Fig. 11.22 Maximal stresses at the bottom of layer No. 1
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L

Mt

+α

−α 3

3

D

6

Fig. 11.23 Laminate pipe: geometry, cross-section and stacking sequence (Mt = 1200 kNcm,

L = 2 m, D = 200 mm)

ters and properties into COSMOS/M the FEM model can be illustrated (Fig. 11.24).

From the results of the analysis only the twisting angle of the free edge shall

be considered here. For this we have to list the results for the displacements in y-

direction of two nodes at the free edge, lying in opposite to each other, e.g. the nodes

255 and 663 in our FE model. The twisting angle is calculated by

ϕ = (vy,255 − vy,663)/D

Carrying out the analysis for all fibre angles we obtain the results, given in Fig.

11.25. The diagram demonstrates the well known fact that in case of pure shear

loading the main normal stresses are lying in a direction with an angle of 45◦ to the

shear stresses. Therefore here the fibre angels of +45◦/− 45◦ to the longitudinal

axis are the most effective arrangements, because these fibre angels yield the greatest

shear rigidity.

Fig. 11.24 FE-model of Lam-

inate Pipe in COSMOS/M

(800 elements, 816 nodes)

x

y

z
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Fig. 11.25 Twisting angle of the free edge

11.5.1.3 Sandwich Plate

The sandwich plate (Fig. 11.26) is clamped at both short boundaries and simply

supported at one of the long boundaries. The cover sheets consist of an aluminium

alloy and the core of foam of polyurethan. The material parameters are:
AlZnMgCu0.5F450:

ρ = 2.7 ·103 kg/m3, E = 7.0 ·1010 N/m2, ν = 0.34

polyurethan foam:

ρ = 150 kg/m3, E = 4.2 ·107 N/m2, ν = 0.30
Additional to a stress analysis of the plate under constant pressure loading p,

a vibration analysis will be performed is asked. We have to calculate the 4 lowest

eigenfrequencies and the mode shapes, respectively. Note that we use in this exam-

ple only the basic units of the SI-system, so we avoid the calculation of correction

factors for the obtained eigenfrequencies.

The FE-model is given in Fig. 11.27. The static analysis leads the displacements

and stresses. We consider only the stresses of the bottom of the lower cover sheet

(layer 3, top). The Figs. 11.28 and 11.29 show the plots of stress distributions for the

flexural stresses σx and σz, Fig. 11.30 the distribution of the von Mises equivalent

stress. The lowest 4 eigenfrequencies and their 4 mode shapes are shown in the

following Fig. 11.31. The static and frequency computations confirm the successful

application of the SHELL4L element for a sandwich plate.
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6.0 m

4.0 mp = 1200 N/m2

aluminium alloy

polyurethan foam

24 30 mm

Fig. 11.26 Sandwich plate

Fig. 11.27 FE-model of Sandwich Plate in COSMOS/M (600 elements, 651 nodes)

11.5.1.4 Buckling Analysis of a Laminate Plate

For a rectangular laminate plate consisting of 4 layers with the given material pa-

rameters a buckling analysis shall be carried out. The plate is simply supported at
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σx

Fig. 11.28 Stresses in x-direction for the bottom of the lower cover sheet
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Fig. 11.29 Stresses in z-direction for the bottom of the lower cover sheet
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Fig. 11.30 Von Mises stress for the bottom of the lower cover sheet

Fig. 11.31 Mode shapes for the lowest four eigenfrequencies: f1 = 5,926 Hz (top-left),

f2 = 12,438 Hz (top-right), f3 = 13,561 Hz (bottom-left), f4 = 19,397 Hz (bottom-right)
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all boundaries and loaded by a uniaxial uniform load, see Fig. 11.32. Material pa-

rameters are again the same as in the previous examples

Ex = 1.53 104 kN/cm2, Ey = 1.09 103 kN/cm2, Gxy = 560 kN/cm2,

νxy = 0.30,νyx = 0.021

For the stacking structure two cases shall be considered, a symmetric (case I) and

a antisymmetric (case II) laminate structure (Fig. 11.32). The fibre angle is to vary:

α = 0◦,15◦,30◦,45◦,60◦,75◦,90◦. For the buckling analysis in COSMOS/M a unit

pressure loading must be created, and the program calculates a buckling factor νB

to multiply the unit loading for obtaining the buckling load.

The FE-model created in COSMOS/M by the input of all properties and param-

eters is shown in Fig. 11.33. The calculation for α = 30◦ leads to a buckling factor

νB = 1,647 and to the buckling mode shown in Fig. 11.34. In the same manner the

calculations for the other fibre angels and for the antisymmetric laminate were per-

formed. The results for the buckling factors are shown in a diagram in Fig. 11.35.

The buckling modes are symmetric to the symmetric axis in loading direction. For

the symmetric laminates the buckling modes for α = 0◦,15◦,30◦ are nearly the

same, see Fig. 11.34. For fibre angles 45◦,60◦,75◦,90◦ the buckling modes have

different shapes, they are shown in the following figures. The buckling modes for

the antisymmetric laminate are very similar but not identical to the buckling modes

1.5 m

1.0 m

+α

+α

+α

+α

−α

−α
−α
−α

4×25

case I case II

Fig. 11.32 Rectangular laminate plate

Fig. 11.33 FE-model of the

laminate plate in COSMOS/M

(600 elements, 651 nodes)
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Fig. 11.34 Buckling modes for symmetric laminates α = 30◦ (top-left), α = 45◦ (top-right), α =
60◦ (middle-left), α = 75◦ (middle-right), α = 90◦ (bottom)

of the symmetric laminates. They are not given here. A fibre angle near 45◦ leads to

the highest buckling load for a quadratic plate. It shall be noted that the antimetric

stacking sequence of the laminate improved the buckling stability.

11.5.2 Examples of the Use of Generalized Beam Elements

Generalized finite elements for the analysis of thin-walled beam shaped plate struc-

tures, Sect. 11.4, were implemented and tested in the frame of the general purpose

FEM-program system COSAR. The real handling of the FEM-procedures are not

given here, but two simple examples shall demonstrate the possibilities of these el-

ements for global static or dynamic structure analysis.

Figure 11.36 shows thin-walled cantilever beams with open or closed cross-

sections and different loadings. All these beam structure models have equal length,

hight and width and also the total thicknesses of all laminate strips are equal, inde-

pendent of the number of the layers.
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Fig. 11.35 Results of the Buckling Analysis

The stacking structure may be symmetric or antisymmetric. Figure 11.37 shows

the two considered variants: case A with three laminae and symmetric stacking and

case B with two laminae and antisymmetric stacking. The fibre reinforced material

is characterized again by the following effective moduli

EL = 153000 N/mm2, νLT = 0.30,

ET = 10900 N/mm2, νTL = 0.021,

GLT = 5600 N/mm2, ρ = 2 g/cm3

The fibre angles shall be varied.

Figure 11.38 shows the profile nodes. There are four main profile nodes for both

cross-sections but three secondary profile nodes for the open and four for the closed

cross-section. The numerical analysis shall demonstrate the influence of the stacking

structure. Figure 11.39 illustrates the relative changes of the cantilever beam in the

loaded point, if the symmetric stacking structure (wA) is change to the antisymmetric

one (wB). The antisymmetric layer stacking leads to higher values of the vertical

deflections wB in comparison to the wA values in the case of symmetric stacking.

Generally, only two degrees of freedom of secondary profile nodes were activated.

In a separate analysis the influence of a higher degrees of freedom in the sec-

ondary profile nodes was considered. As a result it can be recommended that for

antisymmetric layer structures and for open profiles more than two degrees of free-
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Fig. 11.36 Cantilever beams, geometry and loading
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Fig. 11.38 Cross-sections with main profile nodes (•) and secondary profile nodes (×)

dom should be activated. Ignoring the activation of secondary profile node degrees

of freedom leads to nonrealistic structure stiffness. The structure model is to stiff

and therefore the deflections are to small.

The second example concerned the eigen-vibration analysis. For the closed cross-

section with symmetric layer stacking the influences of the degree of freedom of

secondary profile nodes and of the variation of the fibre angles were considered. As

a result it can be stated that the influence of higher degrees of freedom of the sec-

ondary profile nodes is negligible but the influence of the fibre angles is significant.

Figure 11.40 illustrates the influence of the fibre angle variations on the eigenfre-

quencies of the beam, which can be used for structure optimization.

Summarizing Sect. 11.5 one have to say that only a small selection of one- and

two-dimensional finite elements was considered. Many finite plate and shell ele-

ments were developed using equivalent single layer theories for laminated struc-

tures but also multi-layered theories are used. Recent review articles give a detailed

overview on the development, implementation and testing of different finite lami-

nate and sandwich elements.
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Appendices



This part is focussed on some basics of mathematics and mechanics like matrix

operations (App. A), stress and strain transformations (App. B), differential opera-

tors for rectangular plates (App. C) and differential operators for circular cylindrical

shells (App. D). In addition, the Krylow functions as solution forms of a special

fourth order ordinary differential equation are discussed (App. E) and some mate-

rial’s properties are given in App. F. In the last one section like always in this book

material or constitutive parameters are used as usual. Note that any material param-

eter is a parameter since there are dependencies on temperature, time, etc. Last but

not least there are given some references for further reading (App. G).



Appendix A

Matrix Operations

The following short review of the basic matrix definitions and operations will pro-

vide a quick reference and ensure that the particular use of vector-matrix notations

in this textbook is correct understood.

A.1 Definitions

1. Rectangular matrix

AAA =











a11 a12 · · · · · · a1n

a21 a22 · · · · · · a2n

...
...

...
...

...

am1 am2 · · · · · · amn











= [ai j]

Rectangular matrix with i = 1,2, . . . ,m rows and j = 1,2, . . . ,n columns, is a

rectangular-ordered array of quantities with m rows and n columns. m × n or

often (m,n) is the order of the matrix, ai j is called the (i, j)-element of AAA. There

are two important special cases

aaa =







a1

...

am






= [ai]

is a m× 1 matrix or column vector, while

aaaT =
[

a1 · · · an

]

= [ai]
T

is a 1× n matrix or row vector.

With aaa respectively aaaT a matrix AAA can be written
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AAA =
[

aaa1 · · · aaan

]

, aaa j =







a1 j

...

am j






, j = 1, . . . ,n

or

AAA =





aaaT
1

· · ·
aaaT

m



 , aaaT
j =

[

a j1 · · · a jn

]

, j = 1, . . . ,m

If n = m the matrix is square of the order n×n. For a square matrix the elements

ai j with i = j define the principal matrix diagonal and are located on it.

2. Determinant of a square matrix AAA

|AAA|=

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · · · · a1n

a21 a22 · · · · · · a2n

...
...

...
...

...

an1 an2 · · · · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |ai j|= detAAA

The determinant of a matrix AAA with elements ai j is given by

|AAA|= a11M11 − a12M12 + a13M13 − . . .(−1)1+na1nM1n,

where the minor Mi j is the determinant of the matrix |AAA| with missing row i and

column j. Note the following properties of determinants:

• Interchanging two rows or two columns changing the sign of |AAA|.
• If all elements in a row or a column of AAA are zero then |AAA|= 0.

• Multiplication by a constant factor c of all elements in a row or column of AAA

multiplies |AAA| by c.

• Adding a constant multiple of row or column k to row or column l does not

change the determinant.

• If one row k is a linear combination of the rows l and m then the determinant

must be zero.

3. Regular matrix

A square matrix AAA is regular if |AAA| 6= 0.

4. Singular matrix

A square matrix AAA is singular if |AAA|= 0.

5. Trace of a matrix

The trace of a square matrix AAA is the sum of all elements of the principal diagonal,

i.e.

trAAA =
m

∑
k=1

akk

6. Rank of a matrix

The rank rk(AAA) of a m×n matrix AAA is the largest value of r for which there exist a
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r× r submatrix of AAA that is non-singular. Submatrices are smaller arrays of k× k

elements ai j of the matrix AAA, i.e. k ≤ m if m ≤ n or k ≤ n if n ≤ m.

A.2 Special Matrices

In the following the δi j denotes the Kronecker symbol

δi j =

{

0 i 6= j

1 i = j

1. Null matrix 000

All elements ai j of a m× n matrix are identically equal zero

ai j ≡ 0, i = 1, . . . ,m, j = 1, . . . ,n

2. Diagonal matrix DDD = diag[aii] = diag[ai jδi j]
A diagonal matrix is a square matrix in which all elements are zero except those

on the principal diagonal

ai j = 0, i 6= j, ai j 6= 0, i = j

3. Unit matrix III = [δi j]
A unit or identity matrix is a special case of the diagonal matrix for which ai j = 1

when i = j and ai j = 0 when i 6= j.

4. Transpose AAAT of a matrix AAA

The transpose of a matrix AAA is found by interchanging rows and columns. If

AAA = [ai j] follow AAAT = [aT
i j] with aT

i j = a ji. A transposed matrix is denoted by a

superscript T. Note (AAAT)T =AAA

5. Symmetric matrix AAAS

A square matrix AAA is said to be symmetric if for all i 6= j ai j = a ji, i.e. AAA =AAAT. A

symmetric matrix is denoted by a superscript S.

6. Skew-symmetric matrix AAAA

A square matrix AAA is said to be skew-symmetric if all principal diagonal elements

are equal zero and for all i 6= j ai j = −a ji, i.e. AAA = −AAAT. A skew-symmetric

matrix is denoted by a superscript A.

7. Any matrix can be decomposed in a symmetric and a skew-symmetric part in a

unique manner

AAA =AAAS +AAAA

Proof. Since

AAAS =
1

2
(AAA+AAAT)

and

AAAA =
1

2
(AAA−AAAT)
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the sum AAAS +AAAA is equal to AAA.

A.3 Matrix Algebra and Analysis

1. Addition and subtraction

A m×n matrix AAA can be added or subtracted to a m×n matrix BBB to form a m×n

matrix CCC

AAA±BBB =CCC, ai j ± bi j = ci j, i = 1, . . . ,m, j = 1, . . . ,n

Note AAA+BBB = BBB+AAA,AAA−BBB =−(BBB−AAA) =−BBB+AAA,(AAA±BBB)T =AAAT ±BBBT.

2. Multiplication

• Multiplication the matrix AAA by a scalar α involves the multiplication of all

elements of the matrix by the scalar

αAAA =AAAα = [αai j],
(α ±β )AAA = αAAA±βAAA,
α(AAA±BBB) = αAAA±αBBB

• The product of a (1×n) matrix (row vector aaaT) and a (n×1) matrix (column

vector bbb) forms a (1× 1) matrix, i.e. a scalar α

aaaTbbb = bbbTaaa = α, α =
n

∑
k=1

akbk

• The product of a (m× n) matrix AAA and a (n× 1) column vector bbb forms a

(m× 1) column vector ccc

AbAbAb = ccc, ci =
n

∑
j=1

ai jb j = ai1b1 + ai2b2 + . . .+ ainbn, i = 1,2, . . . ,m

The forgoing product is only possible if the number of columns of AAA is equal

the number of rows of bbb.

Note A.1. bbbTAAAT = cccT

• If AAA is a (m× n) matrix and BBB a (p× q) matrix the product ABABAB =CCC exists if

n = p, in which case CCC is a (m× q) matrix. For n = p the matrix AAA and BBB are

said to be conformable for multiplication. The elements of the matrix CCC are

ci j =
n=p

∑
k=1

aikbk j, i = 1,2, . . . ,m, j = 1,2, . . . ,q

Note A.2. ABABAB 6= BABABA, AAA(BBB±CCC) =ABABAB±ACACAC, (ABABAB)T = BBBTAAAT
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(l×m)

AAA
(m×n)

BBB
(n×p)

CCC =
(l×p)

DDD

3. Inversion and division

AIAIAI = IAIAIA =AAA, AAA−1AAA =AAAAAA−1 = III,
(

AAA−1
)−1

=AAA

The matrix inversion is based on the existence of a n×n unit matrix III and a square

n× n matrix AAA. AAA−1 is the inverse of AAA with respect to the matrix multiplication

AAAAAA−1 = AAA−1AAA = III. If AAA−1 exist, the matrix AAA is invertible or regular, otherwise

non-invertible or singular. Matrix division is not defined.

Note A.3. (ABABAB)−1 =BBB−1AAA−1,(ABCABCABC)−1 =CCC−1BBB−1AAA−1, . . .

• Cofactor matrix

With the minors Mi j introduced above to define the determinant |AAA| of a matrix

AAA a so-called cofactor matrix AAAc = [Ai j] can be defined, where

Ai j = (−1)i+ jMi j

The cofactor matrix is denoted by the superscript c.

• Adjoint or adjugate matrix

The adjoint matrix of the square matrix AAA is the transpose of the cofactor

matrix

adjAAA = (AAAc)T

Note A.4. Because symmetric matrices possess symmetric cofactor matrices

the adjoint of a symmetric matrix is the cofactor matrix itself

adjAAAS =
(

AAAS
)c

It can be shown that

AAA(adjAAA) = |AAA|III
i.e.

AAA(adjAAA)

|AAA| = III =AAAAAA−1 ⇒AAA−1 =
adjAAA

|AAA|
Inverse matrices have some important properties

(

AAAT
)−1

=
(

AAA−1
)T

and if AAA =AAAT

AAA−1 =
(

AAA−1
)T

i.e. the inverse matrix of a symmetric matrix AAA is also symmetric.

Note A.5. Symmetric matrices posses symmetric transposes, symmetric cofac-

tors, symmetric adjoints and symmetric inverses.
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4. Powers and roots of square matrices

If n×n matrix AAA is conformable with itself for multiplication, one may define its

powers

AAAn =AAAAAA . . .AAA,

and for symmetric positive semidefinite matrices

AAA
1
n =

n
√

AAA, AAA−n =
(

AAA−1
)n

and if AAA is regular

(AAAm)n =AAAmn, AAAmAAAn =AAAm+n,

5. Matrix eigenvalue problems

The standard eigenvalue problem of a quadratic n× n matrix AAA is of the form:

find (λ ,xxx) with 6=6=6= 000 such that

AAAxxx = λxxx or (AAA−λIII)xxx = 000

KKK = [AAA−λIII] is called the characteristic matrix of AAA, detKKK = 0 is called the char-

acteristic determinant or equation of AAA. The characteristic determinant produces

a characteristic polynomial with powers of λ up to λ n and therefore when it set

equal zero having n roots which are called the eigenvalues. If the characteristic

equation has n distinct roots, the polynomial can be factorized in the form

(λ −λ1)(λ −λ2) . . . (λ −λn) = 0

If we put λ = 0 in the characteristic equation we get

detAAA = λ1λ2 . . .λn

Inserting any root λi into the standard eigenvalue equation leads to

[AAA−λiIII]xxxi = 000, i = 1,2, . . . ,n

xxxi are the eigendirections (eigenvectors) which can be computed from the last

equation considering the orthogonality condition. A nontrivial solution exists if

and only if

det[AAA−λiIII] = 0

Note A.6. If we have the 3x3 symmetric matrix the eigendirection xxxi can be com-

puted for each λi from the polynomial of third order. Three different solutions

are possible:

• all solutions λi are distinct - three orthogonal eigendirections can be computed

(but their magnitudes are arbitrary),

• one double solution and one distinct solutions - only one eigendirection can

be computed (its magnitudes is arbitrary), and

• all solutions are identically - no eigendirections can be computed.
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Anyway, the orthogonality condition xxxT ·xxx = 1 should be taken into account.

The general eigenvalue problem is given in the form

AAAxxx = λBBBxxx

which can be premultiplied by BBB−1 to produce the standard form

BBB−1AAAxxx =BBB−1λBBBxxx = (BBB−1AAA)xxx = λIIIxxx = λxxx

resulting in

(BBB−1AAA−λIII)xxx = 000

Note A.7. In the case of non-symmetric matrix AAA the eigenvalue can be complex.

6. Differentiating and integrating

• To differentiate a matrix one differentiates each matrix element ai j in the con-

ventual manner.

• To integrate a matrix one integrates each matrix element ai j in the conventual

manner. For definite integrals, each term is evaluated for the limits of integra-

tion.

7. Partitioning of matrices

A useful operation with matrices is partitioning into submatrices. These subma-

trices may be treated as elements of the parent matrix and manipulated by the

standard matrix rules reviewed above. The partitioning is usually indicated by

dashed partitioning lines entirely through the matrix

MMM = [mi j] =









AAA
... BBB

· · · · · · · · ·
CCC

... DDD









For a m× n matrix MMM we may have submatrices AAA(i× j), BBB(i× p), CCC(k × j),
DDD(k× p) with i+ k = m, j+ p = n, i.e.

MMMm×n =









AAAi× j

... BBBi×(n− j)

· · · · · · · · ·
CCC(m−i)× j

... DDD(m−i)×(n− j)









,









AAA
... BBB

· · · · · · · · ·
CCC

... DDD









±









EEE
... FFF

· · · · · · · · ·
GGG

... HHH









=









AAA±EEE
... BBB±FFF

· · · · · · · · ·
CCC±GGG

... DDD±HHH









,
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







AAA
... BBB

· · · · · · · · ·
CCC

... DDD

















EEE
... FFF

· · · · · · · · ·
GGG

... HHH









=









AEAEAE +BGBGBG
... AFAFAF +BHBHBH

· · · · · · · · ·
CECECE +DGDGDG

... CFCFCF +DHDHDH









The multiplications are only defined if the correspondent matrices are con-

formable for multiplication









AAA
... BBB

· · · · · · · · ·
CCC

... DDD









T

=









AAAT
... CCCT

· · · · · · · · ·
BBBT

... DDDT









If the matrix

MMM =









AAA
... BBB

· · · · · · · · ·
CCC

... DDD









is symmetric (MMM =MMMT), it follows AAA =AAAT,DDD =DDDT,BBB =CCCT,CCC =BBBT
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Stress and Strain Transformations

Stress and strain transformations under general orthogonal coordinate transforma-

tion eee′ = RRReee or e′i = Ri je j:

1. σ ′
p = T σ

pqσq. The matrix [T σ
pq] is defined by



































R2
11 R2

12 R2
13 2R12R13 2R11R13 2R11R12

R2
21 R2

22 R2
23 2R22R23 2R21R23 2R21R22

R2
31 R2

32 R2
33 2R32R33 2R31R33 2R31R32

R21R31 R22R32 R23R33 R22R33+R23R32 R21R33+R23R31 R21R32+R22R31

R11R31 R12R32 R13R33 R12R33+R13R32 R11R33+R13R31 R11R32+R12R31

R11R21 R12R22 R13R23 R12R23+R13R22 R11R23+R13R21 R11R22+R12R21



































2. ε ′p = T ε
pqεq. The matrix [T ε

pq] is defined by



































R2
11 R2

12 R2
13 R12R13 R11R13 R11R12

R2
21 R2

22 R2
23 R22R23 R21R23 R21R22

R2
31 R2

32 R2
33 R32R33 R31R33 R31R32

2R21R31 2R22R32 2R23R33 R22R33+R23R32 R21R33+R23R31 R21R32+R22R31

2R11R31 2R12R32 2R13R33 R12R33+R13R32 R11R33+R13R31 R11R32+R12R31

2R11R21 2R12R22 2R13R23 R12R23+R13R22 R11R23+R13R21 R11R22+R12R21



































3. Rotation about the eee1-direction, Fig. B.1:

[Ri j] =





1 0 0

0 c s

0 s c



 , eee′ =
1

RRR eee
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x1,x
′
1

x2

x3

x′2x′3

eee1,eee
′
1

eee2

eee3

eee′2eee′3

Φ

Φ

Fig. B.1 Rotation about the eee1-direction

[
1

T σ
pq] =

















1 0 0 0 0 0

0 c2 s2 2cs 0 0

0 s2 c2 −2cs 0 0

0 −cs cs c2 − s2 0 0

0 0 0 0 c −s

0 0 0 0 s c

















, σσσ ′ =
1

TTT σ σσσ

[
1

T ε
pq] =

















1 0 0 0 0 0

0 c2 s2 cs 0 0

0 s2 c2 −cs 0 0

0 −2cs 2cs c2 − s2 0 0

0 0 0 0 c −s

0 0 0 0 s c

















, εεε ′ =
1

TTT ε εεε
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Differential Operators for Rectangular Plates

Below two cases will be discussed

• the classical plate theory and

• the shear deformation theory.

C.1 Classical Plate Theory

1. General unsymmetric laminates





L11 L12 L13

L22 L23

sym L33









u

v

w



=





0

0

p



 ,

L11 = A11
∂ 2

∂x2
1

+ 2A16
∂ 2

∂x1∂x2
+A66

∂ 2

∂x2
2

,

L22 = A22
∂ 2

∂x2
2

+ 2A26
∂ 2

∂x1∂x2
+A66

∂ 2

∂x2
1

,

L33 = D11
∂ 4

∂x4
1

+ 4D16
∂ 4

∂x3
1∂x2

+ 2(D16 + 2D66)
∂ 4

∂x2
1∂x2

2

+ 4D26
∂ 4

∂x1∂x3
2

+D22
∂ 4

∂x4
2

,

L12 = A16
∂ 2

∂x2
1

+(A12 +A66)
∂ 2

∂x1∂x2
+A26

∂ 2

∂x2
2

,

L13 = −
[

B11
∂ 3

∂x3
1

+ 3B16
∂ 3

∂x2
1∂x2

+(B12 + 2B66)
∂ 3

∂x1∂x2
2

+B26
∂ 3

∂x3
2

]

,
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L23 = −
[

B22
∂ 3

∂x3
2

+ 3B26
∂ 3

∂x1∂x2
2

+(B12 + 2B66)
∂ 3

∂x2
1∂x2

+B16
∂ 3

∂x3
1

]

2. General symmetric laminates





L11 L12 0

L22 0

sym L33









u

v

w



=





0

0

p





Bi j = 0, i.e. L13 = L31 = 0,L23 = L32 = 0. L11,L22,L33,L12 as above in 1.

3. Balanced symmetric laminates





L11 L12 0

L22 0

sym L33









u

v

w



=





0

0

p





In addition to 2. both A16 and A26 are zero, i.e. L13 = L31 = 0, L23 = L32 = 0 and

L11,L22 and L33 simplify with A16 = A26 = 0.

4. Cross-ply symmetric laminates





L11 L12 0

L22 0

sym L33









u

v

w



=





0

0

p





In addition to 3. both D16 and D26 are zero, i.e. L33 simplifies.

5. Balanced unsymmetric laminates





L11 L12 L13

L22 L23

sym L33









u

v

w



=





0

0

p





With A16 = A26 = 0 only the operators L11,L22 and L12 of 1. can be simplified.

6. Cross-ply unsymmetric laminates





L11 L12 L13

L22 L23

sym L33









u

v

w



=





0

0

p





In addition to 5., D16,D26,B16 and B26 are zero, i.e. all operators of 1. can be

simplified.
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C.2 Shear Deformation Theory

1. General unsymmetrical laminates













L̃11 L̃12 L̃13 L̃14 0

L̃22 L̃23 L̃24 0

L̃33 L̃34 L̃35

L̃44 L̃45

S Y M L̃55

























u

v

ψ1

ψ2

w













=













0

0

0

0

p













with L̃11 = L11, L̃22 = L22, L̃12 = L12 (the Li j can be taken from Appendix C.1)

and

L̃33 = D11
∂ 2

∂x2
1

+ 2D16
∂ 2

∂x1∂x2
+D66

∂ 2

∂x2
2

− ks
55A55,

L̃44 = D66
∂ 2

∂x2
1

+ 2D26
∂ 2

∂x1∂x2
+D22

∂ 2

∂x2
2

− ks
44A44,

L̃55 = −
(

ks
55A55

∂ 2

∂x2
1

+ ks
45A45

∂ 2

∂x1∂x2
+ ks

44A44
∂ 2

∂x2
2

)

,

L̃13 = L̃31 = B11
∂ 2

∂x2
1

+ 2B26
∂ 2

∂x1∂x2
+B66

∂ 2

∂x2
2

,

L̃14 = L̃41 = L̃23 = L̃32 = B16
∂ 2

∂x2
1

+(B12 +B66)
∂ 2

∂x1∂x2
+B26

∂ 2

∂x2
2

,

L̃24 = L̃42 = B66
∂ 2

∂x2
1

+ 2B26
∂ 2

∂x1∂x2
+B22

∂ 2

∂x2
2

,

L̃34 = L̃43 = D16
∂ 2

∂x2
1

+(D12 +D66)
∂ 2

∂x1∂x2
+D26

∂ 2

∂x2
2

,

L̃35 = L̃53 =−
(

ks
55A55

∂

∂x1
+ ks

45A45
∂

∂x2

)

,

L̃45 = L̃54 =−
(

ks
45A45

∂

∂x1
+ ks

44A44
∂

∂x2

)

with ks
45 =

√

ks
44ks

55.

2. General symmetric laminates

Bi j = 0, i.e. L̃13 = L̃31, L̃14 = L̃41, L̃23 = L̃32 and L̃24 = L̃42 are zero

[

L̃11 L̃12

L̃12 L̃22

][

u

v

]

= 0





L̃33 L̃34 L̃35

L̃34 L̃44 L̃45

L̃53 L̃54 L̃55









ψ1

ψ1

w



=





0

0

p




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3. Cross-ply symmetric laminates

In addition to 2. both D16, D26 and A16, A26, A45 are zero.



Appendix D

Differential Operators for Circular Cylindrical
Shells

Below two cases will be considered

• the classical case and

• the first order shear deformation theory.

D.1 Classical Shell Theory

1. General unsymmetrical laminates





L11 L12 L13

L22 L23

SYM L33









u

v

w



=−





px

ps

pz





L11 = A11
∂ 2

∂x2
+ 2A16

∂ 2

∂x∂ s
+A66

∂ 2

∂ s2
,

L12 = (A16 +R−1B16)
∂ 2

∂x2
1

+(A12 +R−1B12 +A66 +R−1B66)
∂ 2

∂x∂ s

+ (A26 +R−1B26)
∂ 2

∂ s2
,

L13 = R−1A16
∂

∂x
+R−1A26

∂

∂ s
−B11

∂ 3

∂x3
− 3B16

∂ 3

∂x2∂ s

− (B12 +B66)
∂ 3

∂x∂ s2
−B26

∂ 3

∂ s3
,

L22 = (A66 + 2R−1B66 +R−2D66)
∂ 2

∂x2

477© Springer Nature Singapore Pte Ltd. 2018
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+ 2(A26 + 2R−1B26 + 2R−2D26)
∂ 2

∂x∂ s

+ (A22 + 2R−1B22 +R−2D22)
∂ 2

∂ s2
,

L23 = R−1(A26 +R−1B26)
∂

∂x
+R−1(A22 +R−1B22)

∂

∂ s

− (B16 +R−1D16)
∂ 3

∂x3
− [B12 + 2B66+R−1(D12 + 2D66)]

∂ 3

∂x2∂ s

− 3(B26 +R−1D26)
∂ 3

∂x∂ s2
− (B22 +R−1D22)

∂ 3

∂ s3
,

L33 = R−2(A22 +R−1B22)+ 2R−1B12
∂ 2

∂x2
+ 4R−1B26

∂ 2

∂x∂ s
+ 2R−1B22

∂ 2

∂ s2

− D11
∂ 4

∂x4
− 4D16

∂ 4

∂x3∂ s
− 2(D12 + 2D66)

∂ 4

∂x2∂ s2

− 4D26
∂ 4

∂x∂ s3
−D22

∂ 4

∂ s4

2. General symmetrical laminates

All Bi j = 0, but the matrix [Li j] is full populated, i.e. all [Li j] are nonequal zero.

Note that for general symmetrically laminated circular cylindrical shells there is

a coupling of the in-plane and out-of-plane displacements and stress resultants.

3. Cross-ply symmetrical laminates

Bi j = 0, A16 = A26 = 0, D16 = D26 = 0

4. Cross-ply antisymmetrical laminates

B22 =−B11, all other Bi j = 0, A16 = A26 = 0, D16 = D26 = 0

5. Axisymmetric deformations of symmetrical cross-ply laminates

Additional to 3. all derivative ∂/∂ s and the displacement v are taken zero and

yield

L12 = L13 = L23 ≡ 0
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D.2 Shear Deformation Theory

1. General unsymmetrical laminates













L̃11 L̃12 L̃13 L̃14 L̃15

L̃21 L̃22 L̃23 L̃24 L̃25

L̃31 L̃32 L̃33 L̃34 L̃35

L̃41 L̃42 L̃43 L̃44 L̃45

L̃51 L̃52 L̃53 L̃54 L̃55

























u

v

ψ1

ψ2

w













=−













px

ps

0

0

pz













,

L̃11 = A11
∂ 2

∂x2
+ 2A16

∂ 2

∂x∂ s
+A66

∂ 2

∂ s2
,

L̃12 = A16
∂ 2

∂x2
+(A12 +A66)

∂ 2

∂x∂ s
+A26

∂ 2

∂ s2
,

L̃13 = B11
∂ 2

∂x2
+ 2B16

∂ 2

∂x∂ s
+B66

∂ 2

∂ s2
,

L̃14 = B16
∂ 2

∂x2
+(B12 +B66)

∂ 2

∂x∂ s
+B26

∂ 2

∂ s2
,

L̃15 =
1

R
A12

∂

∂x
+

1

R
A26

∂

∂ s
,

L̃22 = A66
∂ 2

∂x2
+ 2A26

∂ 2

∂x∂ s
+A22

∂ 2

∂ s2
− 1

R2
ks

44A44,

L̃23 = B16
∂ 2

∂x2
+(B16 +B66)

∂ 2

∂x∂ s
+B26

∂ 2

∂ s2
+

1

R
ks

45A45,

L̃24 = B66
∂ 2

∂x2
+ 2B26

∂ 2

∂x∂ s
+B22

∂ 2

∂ s2
+

1

R
ks

44A44,

L̃25 = (A12 + ks
55A55)

1

R

∂

∂x
+(A26 + ks

45A45)
1

R

∂

∂ s
,

L̃33 = D11
∂ 2

∂x2
+ 2D16

∂ 2

∂x∂ s
+D66

∂ 2

∂ s2
− ks

55A55

L̃34 = D16
∂ 2

∂x2
+(D12 +D66)

∂ 2

∂x∂ s
+D26

∂ 2

∂ s2
− ks

45A45,

L̃35 =

(

B12
1

R
−As

55

)

∂

∂x
+

(

B26
1

R
− ks

45A45

)

∂

∂ s
,

L̃44 = D66
∂ 2

∂x2
+ 2D26

∂ 2

∂x∂ s
+D22

∂ 2

∂ s2
− ks

44A44,

L̃45 =

(

B26
1

R
− ks

45A45

)

∂

∂x
+

(

B22
1

R
− ks

44A44

)

∂

∂ s
,

L̃55 = A55
∂ 2

∂x2
+ 2ks

45A45
∂ 2

∂x∂ s
−A22)

1

R2
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and

L̃51 =−L̃15, L̃52 =−L̃25, L̃53 =−L̃35, L̃54 =−L̃45,

ks
45 =

√

ks
44ks

55

2. Cross-ply symmetrical laminates

Bi j = 0, i, j = 1,2,6,
A16 = A26 = A45 = 0, D16 = D26 = 0

3. Cross-ply antisymmetrical laminates

B22 =−B11, all other Bi j = 0, i, j = 1,2,6,
A16 = A26 = A45 = 0, D16 = D26 = 0



Appendix E

Krylow-Functions as Solution Forms of a Fourth
Order Ordinary Differential Equation

The solutions of the following fourth order ordinary differential equation

w′′′′− k2
1w′′+ k4

2w = 0

can be presented in the form of so-called Krylow functions (Filonenko-Boroditsch,

1952):

1. k2
2 > k2

1

α1 =−α2 = a+ ib, α3 =−α4 = a− ib,

a =

√

1

2
(k2

2 + k2
1), b =

√

1

2
(k2

2 − k2
1)

and the solutions are

Φ1 = coshaxcosbx, Φ2 = sinhaxsinbx,
Φ3 = coshaxsinbx, Φ4 = sinhaxcosbx

or
Φ1 = e−ax cosbx, Φ2 = e−ax sinbx,
Φ3 = eax sinbx, Φ4 = eax cosbx

2. k2
2 < k2

1

α1 =−α2 = a, α3 =−α4 = b,

a =

√

k2
1 −

√

k4
1 − k4

2, b =

√

k2
1 +

√

k4
1 − k4

2

and the solutions are

Φ1 = coshax, Φ2 = coshbx,
Φ3 = sinhax, Φ4 = sinhbx

or
Φ1 = e−ax, Φ2 = e−bx,
Φ3 = eax, Φ4 = ebx

481© Springer Nature Singapore Pte Ltd. 2018
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3. k2
2 = k2

1

α1 = α2 = a, α3 = α4 =−a

and the solutions are

Φ1 = coshax, Φ2 = xsinhax,
Φ3 = sinhax, Φ4 = xcoshax

or
Φ1 = e−ax, Φ2 = xe−ax,
Φ3 = eax, Φ4 = xeax
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Appendix F

Material’s Properties

Below material properties for classical materials, for the constituents of various

composites and for unidirectional layers are presented. The information about the

properties were taken from different sources (see the Handbooks, Textbooks and

Monographs at the end of this appendix).

Note that the presentation of material data in a unique way is not so easy due to

the incompleteness of material data in the original sources. This means that there are

some empty places in the above following tables. The authors of this textbook were

unable to fill out these places. Another problem is connected with the different unit

systems in the original sources. For recalculation approximate relations are used

(e.g. 1 kgf ≈ 10 N).

With respect to the quick changes in application composite materials all material

data are only examples showing the main tendencies. Every year new materials are

developed and for the material data one have to contact directly the companies.
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Czichos H, Hennecke M (eds) (2012) Hütte - das Ingenieurwissen, 34th edn.
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Grote KH, Feldhusen J (eds) (2014) Dubbel - Taschenbuch für den Maschinenbau,

24th edn. Springer Vieweg, Berlin, Heidelberg

Hyer M (1998) Stress Analysis of Fiber-Reinforced Composite Materials. McGraw-

Hill, Boston et al.

Vasiliev V, Morozov E (2001) Mechanics and Analysis of Composite Materials.

Elsevier, Amsterdam
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Table F.1 Material properties of conventional materials at room temperature (bulk form), after

Grote and Feldhusen (2014)] and Czichos and Hennecke (2012)

Density Young’s Maximum Ultimate Maximum Coefficient

modulus specific strength specific of thermal

modulus strength expansion

ρ E E/ρ σu σu/ρ α
(g/cm3) (GPa) (MNm/kg) (MPa) (kNm/kg) (10−6/ ◦ K)

Steel 7.8-7.85 180-210 27 340-2100 270 13

Gray cast iron 7.1-7.4 64-181 25 140-490 69 9-12

Aluminium 2.7-2.85 69-72 27 140-620 230 23

Titanium 4.4-4.5 110 25 1000-1200 273 11

Magnesium 1.8 40 22 260 144 26

Beryllium 1.8-1.85 300-320 173 620-700 389

Nickel 8.9 200 22 400-500 56 13

Zirconium 6.5 100 15 390 60 5.9

Tantalum 16.6 180 11 275 17 6.5

Tungsten 19.3 350 18 1100-4100 212 6.5

Glass 2.5 70 28 700-2100 840 3.5-5.5
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Table F.2 Material properties of fibre materials, after Hyer (1998)

Density Young’s Maximum Ultimate Maximum Coefficient Diameter

modulus specific strength specific of thermal

modulus strength expansion

- fibre

direction

ρ E E/ρ σu σu/ρ α d

(g/cm3) (GPa) (MNm/kg) (MPa) (kNm/kg) (10−6/ ◦ K (µm)

E-Glass 2.54 72.4 29 3450 1358 5 8-14

C-Glass 2.49 68.9 28 3160 1269 7.2

S-Glass 2.49 85.5 34 4600 1847 5.6 10

Carbon

Intermediate 1.78-1.82 228-276 155 2410-2930 1646 -0.1- -0.5 8-9

modulus

High modulus 1.67-1.9 331-400 240 2070-2900 1736 -1- -4 5-7

High strength 1.85 240 130 3500 1892 -1- -4 5-7

Polymeric fibres

Kevlar-29 1.44 62 43 2760 1917 -2 12

Aramid (Kevlar-49) 1.48 131 89 2800-3792 2562 -2 12

Spectra 900 0.97 117 121 2580 2660 38

Boron 2.63 385 146 2800 1065 4 100-140

Boron Carbide 2.5 480 192 2100-2500 1000 50

Boron Nitride 1.9 90 47 1400 737 7

Titanium Carbide 4.9 450 92 1500 306 280
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Table F.3 Material properties of matrix and core materials, after Hyer (1998)

Density Young’s Shear Young’s Ultimate Coefficient

modulus modulus modulus strength of thermal

(tension) (compression) expansion

ρ E t G Ec σu α
(g/cm3) (GPa) (GPa) (GPa) (MPa) (10−6/ ◦ K)

Thermosetting polymers

Polyester 1.2-1.3 3-4.2 0.7-2 90-250 40-90 80-150

Vinyl ester 1.15 3-4 127 65-90 80-150

Bismaleimide 1.32 3.6 1.8 200 48-78 49

Polyimide 1.43-1.89 3.1-4.9 70-120 90

Epoxy 1.1-1.6 3-6 1.1-1.2 100-200 30-100 45-80

Thermoplastic polymers

PEEK 1.32 3.6 1.38 140 92-100 47

PPS 1.34 2.5 70-75 54-100

Polysulfone 1.24 2.5 70-75 56-100

Polypropylene 0.9 1-1.4 0.38-0.54 25-38 110

Nylon 1.14 1.4-2.8 0.54-1.08 34 60-75 90

Polcarbonate 1.06-1.2 2.2-2.4 86 45-70 70

Ceramics

Borosilicate glass 2.3 64 26.4 100 3

Balsa wood 0.1-0.19 2-6 8-18

Polystyrene 0.03-0.07 0.02-0.03 0.25-1.25
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Table F.4 Material properties of selected unidirectional composites

E-Glass/ S-Glass/ Kevlar/ Boron/ Carbon

epoxy epoxy epoxy epoxy epoxy

Fibre volume fraction vf 0.55 0.50 0.6 0.5 0.63

Density (g/cm3) 2.1 2.0 1.38 2.03 1.58

Longitudinal modulus EL (GPa) 39 43 87 201 142

Transverse modulus ET (GPa) 8.6 8.9 5.5 21.7 10.3

In-plane shear modulus GLT (GPa) 3.8 4.5 2.2 5.4 7.2

Major Poisson’s ratio νLT 0.28 0.27 0.34 0.17 0.27

Minor Poisson’s ratio νTL 0.06 0.06 0.02 0.02 0.02

Longitudinal ultimate stress σLu (MPa) 1080 1280 1280 1380 2280

Transverse ultimate stress σTu (MPa) 39 49 30 56 57

In-plane ultimate shear stress σLTu (MPa) 89 69 49 62 71

Longitudinal thermal

expansion coefficients αL (10−6/◦ K) 7 5 -2 6.1 -0.9

Transverse thermal

expansion coefficient αT (10−6/◦ K) 21 26 60 30 27
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Table F.5 Typical properties of unidirectional composites as functions of the fibre volume fraction,

after Vasiliev and Morozov (2001)

Glass/ Carbon/ Carbon/ Aramid/ Boron/ Boron/ Carbon/ Al2O3/

epoxy epoxy PEEK epoxy epoxy aluminium carbon aluminium

Fibre volume

fraction vf 0.65 0.62 0.61 0.6 0.5 0.5 0.6 0.6

Density ρ (g/cm3) 2.1 1.55 1.6 1.32 2.1 2.65 1.75 3.45

Longitudinal

modulus EL (GPa) 60 140 140 95 210 260 170 260

Transverse

modulus ET (GPa) 13 11 10 5.1 19 140 19 150

In-plane shear

modulus GLT (GPa) 3.4 5.5 5.1 1.8 4.8 60 9 60

Major Poisson’s

ratio νLT 0.3 0.27 0.3 0.34 0.21 0.3 0.3 0.24

Longitudinal ultimate

tensile stress

σ t
Lu (GPa) 1.8 2 2.1 2.5 1.3 1.3 0.34 0.7

Longitudinal ultimate

compressive stress

σ c
Lu (GPa) 0.65 1.2 1.2 0.3 2 2 0.18 3.4

Transverse ultimate

tensile stress

σ t
Tu (GPa) 0.04 0.05 0.075 0.03 0.07 0.14 0.007 0.19

Transverse ultimate

compressive stress

σ c
Tu (GPa) 0.09 0.17 0.25 0.13 0.3 0.3 0.05 0.4

In-plane ultimate

shear stress

σLTu (GPa) 0.05 0.07 0.16 0.03 0.08 0.09 0.03 0.12
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Nádai
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plate theory

classical

Kirchhoff, 181

ply, 11
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Poisson

Siméon Denis, 15

Poisson effect, 308

Poisson’s ratio, 22, 43

major, 92

minor, 93

potential energy, 383, 392, 420, 436, 440

folded structure, 379

single element, 417

whole structure, 417

prebuckling, 304

principle of complementary virtual work, 63,

65

principle of minimum potential energy, 299

principle of minimum total complementary

energy, 66

principle of minimum total potential energy, 65

principle of the total minimum potential

energy, 414

principle of virtual displacements, 66

principle of virtual forces, 66

principle of virtual work, 63, 64

prismatic structure, 376

profile node

main, 442

profile node concept, 442

profile nodes

secondary, 443

Puck

Alfred, 223

Rayleigh, 69

Rayleigh-Ritz method, 69

reduced compliances, 48

reduced stiffness, 47

Reissner

Eric (Max Erich), 63

Reissner plate theory, 295

Reissner theory, 195

Reissner’s functional, 67

Reissner’s variational theorem, 63, 66

resultant

in-plane force, 282, 288

moment, 282

transverse shear force, 282

resultant moment vector, 124

Reuss

András (Endre), 24, 88

Reuss estimate, 92

Reuss model, 24, 91, 93, 94

Ritz

Walter, 69

Ritz approximation, 70, 72

Ritz method, 69, 414

rod, 232

rotation matrix, 28

rotational term, 392

rotatory inertia, 251, 286, 323

rule of mixture, 90

rule of mixtures, 88, 94, 96

inverse, 88, 92

Runge

Carl David Tolmé, 394

Sachs

Oscar, 88

Saint-Venant

Adhémar Jean Claude Barré de, 373

sandwich, 11

symmetric

thick cover sheets, 302

thin cover sheets, 301

sandwich beam

dissimilar faces, 258

symmetric, 252

sandwich composites, 172

sandwich plate, 301

Schapery

Richard Allan, 112

selective integration, 438

semi-empirical solution of Halpin and Tsai, 96

semi-membrane theory, 355

shape function, 414, 415, 423, 424, 431, 434,

442

linear, 420

shear correction coefficient, 300

shear correction factor, 142, 195, 246, 251

shear deformation theory, 306

shear deformations of the mid-planes, 385

shear lag effect, 374, 396

shear modulus, 22, 43

shear rigid theory, 187

shear strains, 21

engineering, 25

tensorial, 25

shear stress, 21

shell, 345

circular cylindrical, 345

circumferential cross-ply, 345

special orthotropic, 345

classical theory, 345, 346

hypotheses, 347

first order shear deformation theory, 345

moderately thick, 356

thin-walled, 345

transverse shear deformations, 346

shell element, 413

laminate, 450
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simply supported boundary, 297

six-node element, 437

stacking

symmetric, 390

stacking codes of laminates, 137

stiffness

plate, 288

reduced, 111

shear, 194

stiffness matrix, 27, 30, 32, 36

bending, 141

coupling, 141

element, 417, 450

extensional, 123, 141

flexural, 125

isotropic material, 36

monoclinic material, 33

off-axis extensional, 124

off-axis flexural, 125

on-axis extensional, 124

on-axis flexural, 125

orthotropic material, 34

reduced, 377

symmetric, 415

transverse shear, 142

transversely isotropic material, 35

stiffness submatrix, 143

strain tensor, 24, 25

strain vector, 25

strain-displacement relations, 60

stress resultant, 283, 299, 449

plate, 281

stress resultants, 233

stress tensor, 24, 25

stress vector, 25

structural behavior

global, 372

local, 372

structural level, 13

Strutt

John William, 69

submatrix

bending, 148

coupling, 147

extensional, 148

surface force

vector, 415

Taylor

Geoffrey Ingram, 88

tensile compliance, 22

tensile flexibility, 22

tensile stiffness, 22

theorem of Castigliano, 66

thin-walled beam, 371

three-node element, 422, 437, 442

Timoshenko

Stepan Prokopovich, 80

Timoshenko beam model, 373, 422

specialized, 391

total virtual work, 64

transfer matrix, 398

transfer matrix method, 396

transformation matrix, 28, 29, 62

translatory inertia, 251, 323

transversal strains, 385

transverse force resultant, 378

transverse shear, 376

transverse shear deformation, 246

transverse shear resultant, 125

transverse shear stress, 295

trial function, 380

triangle co-ordinates

natural, 438

triangle coordinates

natural, 430

truss element, 413

Tsai

Stephen Wei-Lun, 96, 211

Tsai-Hill criterion, 215

Tsai-Wu criterion, 216

two-dimensional element, 413

two-dimensional structural element, 345

two-dimensional structure, 429

two-node element, 442

beam, 422

truss, 420

unknown coefficient function, 380

variational formulation

axial symmetrically circular cylindrical

shell, 358

variational iteration method, 75

variational operations, 64

vector of curvature, 125

vibration, 286, 310, 318, 421

forced, 297

forced transversal, 286

free, 323, 392

Vlasov

Vasily Zakharovich, 74

Vlasov beam model, 373, 391

Vlasov hypotheses, 380

Voigt

Woldemar, 23, 88

Voigt estimate, 90

Voigt model, 23, 90, 92, 94



Index 503

volume element, 413

volume force

vector, 415

warping, 373

weak form of the model equations, 70

weighted residual methods, 73

weighted-residual methods, 69

Wu

Edward Ming-Chi, 211

Young

Thomas, 14

Young’s modulus, 22, 43
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