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Preface

In many areas in engineering, economics and science new developments
are only possible by the application of modern optimization methods.
The optimization problems arising nowadays in applications are mostly
multiobjective, i. e. many competing objectives are aspired all at once.
These optimization problems with a vector-valued objective function
have in opposition to scalar-valued problems generally not only one
minimal solution but the solution set is very large. Thus the develop-
ment of efficient numerical methods for special classes of multiobjec-
tive optimization problems is, due to the complexity of the solution
set, of special interest. This relevance is pointed out in many recent
publications in application areas such as medicine ([63, 118, 100, 143]),
engineering ([112, 126, 133, 211, 224], references in [81]), environmental
decision making ([137, 227]) or economics ([57, 65, 217, 234]).

Considering multiobjective optimization problems demands first the
definition of minimality for such problems. A first minimality notion
traces back to Edgeworth [59], 1881, and Pareto [180], 1896, using the
natural ordering in the image space. A first mathematical consideration
of this topic was done by Kuhn and Tucker [144] in 1951. Since that time
multiobjective optimization became an active research field. Several
books and survey papers have been published giving introductions to
this topic, for instance [28, 60, 66, 76, 112, 124, 165, 188, 189, 190, 215].
In the last decades the main focus was on the development of interactive
methods for determining one single solution in an iterative process.
Thereby numerical calculations alternate with subjective decisions of
the decision maker (d. m.) till a satisfying solution is found. For a survey
of interactive methods see [28, 124, 165].
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Based on an extreme increase in computer performances it is now
possible to determine the entire efficient set. Having an approxima-
tion of the whole solution set available the decision maker gets a use-
ful insight in the problem structure and important information are
delivered like trade-off information. Thereby trade-off is the informa-
tion how the improvement of one objective function leads to a de-
terioration of the other objectives. The importance of approximating
the complete efficient set is thus also emphasized in many applica-
tions. Especially in engineering it is interesting to know all design al-
ternatives ([119]). Hence nowadays there is an increasing interest in
methods for approximating the whole solution set as also the high
number of papers related to this topic demonstrates, see for instance
[10, 40, 82, 81, 84, 83, 106, 139, 164, 182, 196, 197].

For the determination of approximations of the efficient set sev-
eral approaches have been developed, as for example evolutionary al-
gorithms (for surveys see [31, 41, 112, 228, 246]) or stochastic meth-
ods ([194]). A large class of methods is based on scalarizations. This
means the replacement of the multiobjective optimization problem by
a suitable scalar optimization problem involving possibly some parame-
ters or additional constraints. Examples for such scalarizations are the
weighted sum ([245]) or the ε-constraint problem ([98, 159]). In this
book we concentrate on the scalarization approach and we set espe-
cially value on the scalar problem according to Pascoletti and Serafini
([181]). However, many other existing auxiliary problems, which will
also be presented, can be related to that method.

As generally not the entire efficient set can be computed an approx-
imation is instead generated by solving the scalar problems for various
parameters. The information delivered to the decision maker by such
an approximation depends mainly on the quality of the approxima-
tion. Too many points are related to a high computational effort. Too
few points means that some parts of the efficient set are neglected.
Hence it is important to take quality criteria as discussed for instance
in [32, 43, 101, 141, 191] into account. An approximation with a high
quality is given if it is stinted but also representative, i. e. if the ap-
proximation points are spread evenly over the efficient set with almost
equal distances.

We develop in this book methods for generating such approxima-
tions for nonlinear differentiable problems. For these methods the sen-
sitivity of the scalar problems on their parameters are examined. These
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sensitivity results are used for developing an adaptive parameter con-
trol. Then, without any interaction from the decision maker, the choice
of the parameters is in such a way controlled during the procedure,
that the generated approximation points have almost equal distances.

Thereby we consider very general multiobjective problems and al-
low arbitrary partial orderings induced by a closed pointed convex cone
in the image space (like in [81, 96, 106, 181, 230]) using the notion of
K-minimality as given in [14, 102, 122, 124, 190, 243]. The partial or-
dering of the Edgeworth-Pareto-minimality concept represented by the
natural ordering cone, the positive orthant, is included as a special case.
More general orderings rise the applicability of our methods as the de-
cision makers get more freedom in the formulation of the optimization
problems. Preference structures can be incorporated, which cannot be
expressed explicitly by an objective function (see Example 1.5 and [230,
Example 4.1]). In decision theory in economics it is a well-known tool
to use arbitrary partial orderings for modeling the relative importance
of several criteria for a d. m. as well for handling groups of decision
makers ([235]).

For example in [116, 117] convex polyhedral cones are used for mod-
eling the preferences of a d. m. based on trade-off information facil-
itating multi-criteria decision making. In portfolio optimization ([5])
polyhedral cones in R

m generated by more than m vectors, as well
as non-finitely generated cones as the ice-cream cone, are considered.
Besides, orderings, other than the natural ordering, are important in
[85] where a scalar bilevel optimization problem is reformulated as a
multiobjective problem. There a non-convex cone which is the union of
two convex cones is used. Helbig constructs in [106] cone-variations as
a tool for finding EP-minimal points, see also [134, 237]. In addition to
that Wu considers in [238] convex cones for a solution concept in fuzzy
multiobjective optimization. Hence, multiobjective optimization prob-
lems w. r. t. arbitrary partial orderings are essential in decision making
and are further an important tool in other areas. Therefore we develop
our results w. r. t. general partial orderings.

This book consists of three parts. In the first part theoretical ba-
sics of multiobjective optimization are introduced as for instance min-
imality notions and properties of ordering cones especially of polyhe-
dral cones. Scalarizations are discussed with a special focus on the
Pascoletti-Serafini scalarization. Further, sensitivity results for these
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parameter depended scalar problems are developed like the first order
derivative information of the local minimal value function.

The second part is devoted to numerical methods and their ap-
plication. Quality criteria for approximations of the efficient set are
introduced and the main topic of this book, the adaptive parameter
control using the sensitivity results developed before, is constructed.
We differentiate thereby between the treatment of biobjective opti-
mization problems and general multiobjective optimization problems.
The gained algorithms are applied to various test problems and to an
actual application in intensity modulated radiotherapy.

The book concludes in the third part with the examination of mul-
tiobjective bilevel problems and a solution method for those kinds of
problems, which is also applied to a test problem and to an application
in medical engineering.

I am very grateful to Prof. Dr. Johannes Jahn for his support as
well as to Prof. Dr. Joydeep Dutta, Prof. Dr. Jörg Fliege and PD Dr.
Karl-Heinz Küfer for valuable discussions. Moreover, I am indebted
to Dipl.-Math. Annette Merkel, Dr. Michael Monz, Dipl.-Technomath.
Joachim Prohaska and Elizabeth Rogers.

Erlangen, January 2008 Gabriele Eichfelder
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1

Theoretical Basics of Multiobjective
Optimization

Multiobjective optimization is an indispensable tool for decision makers
if the benefit of a decision does not depend on one objective only,
which then can be mapped by one scalar-valued function, but if several
competing objectives are aspired all at once. In this chapter we discuss
basic concepts of vector optimization such as minimality notions based
on partial orderings introduced by convex cones.

1.1 Basic Concepts

Our aim is a minimization of a vector-valued objective function f : R
n →

R
m (n,m ∈ N) subject to constraints. We consider optimization prob-

lems defined by

(MOP)
min f(x)

subject to the constraints
g(x) ∈ C,

h(x) = 0q,

x ∈ S

with given continuous functions f : R
n → R

m, g : R
n → R

p, and
h : R

n → R
q (p, q ∈ N). We set f(x) = (f1(x), . . . , fm(x)) with

fi : R
m → R, i = 1, . . . , m. Let S ⊂ R

n be a closed convex set and
C ⊂ R

p be a closed convex cone. A set C ⊂ R
p is a convex cone if

λ(x + y) ∈ C for all λ ≥ 0, x, y ∈ C. For m = 1 the problem (MOP)
reduces to a standard optimization problem in nonlinear optimization
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with a scalar-valued objective function. However in multiobjective op-
timization we are interested in several competing objective functions
and thus we assume m ≥ 2. The set

Ω := {x ∈ S | g(x) ∈ C, h(x) = 0q}
is called the constraint set of the problem (MOP ). We assume Ω �= ∅
and define

f(Ω) := {f(x) ∈ R
m | x ∈ Ω}.

We will discuss only minimization problems. However each maximiza-
tion problem can be transformed to a minimization problem very easily
by considering the negative objective function values.

We are looking for the minimal values of the function f over the
set Ω. In general there is not one solution satisfying all objectives best
at the same time. We assume that the decision maker (d. m.) specifies
which alternative x he prefers to another point x′ by declaring if he
prefers f(x) to f(x′) or not. With these statements a binary relation
is defined in the image space R

m (and in the parameter space R
n re-

spectively), also called preference order (see [190, 230, 232]). Different
types of preference orders are possible but in practical applications a
very common concept are partial orderings ([150]). We recall the def-
inition of a binary relation and of partial orderings in the Definition
1.1.

Another approach for specifying preferences of the d. m. are the so-
called domination structures by Yu ([243], also discussed for instance
in [152, 244]) where the preference order is represented by a set-valued
map. There, for all y ∈ R

m, the set

D(y) := {d ∈ R
m | y � y + d} ∪ {0m}

is defined (see also [190, p.28]) where y � y′ means that the d. m. prefers
y more than y′. A deviation of d ∈ D(y) from y is hence less preferred
than the original y. The most important and interesting special case
of a domination structure is when D(·) is a constant set-valued map,
especially if D(y) equals a pointed convex cone for all y ∈ R

m, i. e.
D(·) = K. A cone K is called pointed if K∩ (−K) = {0m}. The special
case of a polyhedral domination cone is considered in [177, 220]. For
the definition of a polyhedral cone see Sect. 1.2. A variable preference
model is for instance discussed in [71].

The concept of a constant set-valued map defining a domination
structure has a direct connection to partial orderings. We recall the
definition of partial orderings:
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Definition 1.1. (a)A nonempty subset R ⊂ R
m ×R

m is called binary
relation R on R

m. We write xRy for (x, y) ∈ R.
(b)A binary relation ≤ on R

m is called partial ordering on R
m if for

arbitrary w, x, y, z ∈ R
m:

(i) x ≤ x (reflexivity),
(ii) x ≤ y, y ≤ z ⇒ x ≤ z (transitivity),
(iii) x ≤ y, w ≤ z ⇒ x + w ≤ y + z (compatibility with the

addition),
(iv) x ≤ y, α ∈ R+ ⇒ αx ≤ αy (compatibility with the scalar

multiplication).
(c)A partial ordering ≤ on R

m is called antisymmetric if for arbitrary
x, y ∈ R

m

x ≤ y, y ≤ x ⇒ x = y.

A linear space R
m equipped with a partial ordering is called a par-

tially ordered linear space. An example for a partial ordering on R
m is

the natural (or componentwise) ordering ≤m defined by

≤m:= {(x, y) ∈ R
m × R

m | xi ≤ yi for all i = 1, . . . , m}.
Partial orderings can be characterized by convex cones. Any partial

ordering ≤ in R
m defines a convex cone by

K := {x ∈ R
m | 0m ≤ x}

and any convex cone, then also called ordering cone, defines a partial
ordering on R

m by

≤K := {(x, y) ∈ R
m × R

m | y − x ∈ K}.
For example the ordering cone representing the natural ordering in R

m

is the positive orthant R
m
+ . A partial ordering ≤K is antisymmetric if

and only if K is pointed. Thus, preference orders which are partial or-
derings correspond to domination structures with a constant set-valued
map being equal to a convex cone.

With the help of orderings introduced by ordering cones K in R
m

we can define minimal elements of sets in R
m ([22, 102, 108, 122, 124]).

Definition 1.2. Let T be a nonempty subset of the linear space R
m

partially ordered by the convex cone K. A point ȳ ∈ T is a K-minimal
point of the set T if

(ȳ − K) ∩ T ⊂ ȳ + K. (1.1)
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If the cone K is pointed then (1.1) is equivalent to

(ȳ − K) ∩ T = {ȳ}.
If for y, ỹ ∈ T we have y − ỹ ∈ K \ {0m}, then we say ỹ dominates y
(Fig. 1.1).

Fig. 1.1. K-minimal point ȳ. A point y dominated by the point ỹ.

Using this concept we can define minimality for the multiobjective
optimization problem (MOP).

Definition 1.3. A point x̄ ∈ Ω is a minimal solution (or non-
dominated or efficient or K-minimal) of the multiobjective optimiza-
tion problem (MOP ) w. r. t. the ordering cone K if f(x̄) is a K-minimal
point of the set f(Ω). The set of all minimal solutions w. r. t. the cone
K is denoted as M(f(Ω), K). The image set of the set of minimal
solutions

E(f(Ω), K) := {f(x) | x ∈ M(f(Ω), K)}
is called efficient set. A point ȳ ∈ E(f(Ω), K) is called K-minimal,
non-dominated, or efficient w. r. t. the cone K.

In Fig. 1.2 the example of a biobjective (bicriteria) optimization
problem, i. e. m = 2, is given. The set Ω and f(Ω) as well as the
pointed ordering cone is shown. The efficient set is drawn as thick line.

If there is a point f(x) ∈ f(Ω) with f(x) − f(x̄) ∈ K \ {0m} then
we say that f(x) is dominated by f(x̄) and x is dominated by x̄ respec-
tively.

For K = R
m
+ the K-minimal points are also called Edgeworth-

Pareto-minimal (EP-minimal) points according to Edgeworth, 1881



1.1 Basic Concepts 7

Fig. 1.2. K-minimality and efficient set for a biobjective optimization
problem.

([59]), and Pareto, 1896 ([180]). For K = R
m− we also speak of EP-

maximal points.
In a partially ordered linear space there can exist points which are

not comparable as e. g. the points (1, 2) and (2, 1) in R
2 w. r. t. the

natural ordering. That is the reason why in general (non-discrete) mul-
tiobjective optimization problems have an infinite number of solutions.
The concern of this book is to determine the complete efficient set to
make it available to the d. m.. Because an explicit calculation of all solu-
tions is generally not possible we try to give a pointwise approximation
of the efficient set with a high approximation quality.

In the case of a total ordering and if the multiobjective optimization
problem is solvable there is only one minimal solution in the image
space. An ordering is called total if for all x, y ∈ R

m either x ≤ y or
y ≤ x is true. If the ordering is characterized by a convex cone K ⊂ R

m

then it is total if and only if K ∪ (−K) = R
m ([85, Theorem 2.1(4)]).

For example the lexicographical ordering defined by the cone

K := {y ∈ R
m | ∃k∈{1, . . . , m} with yi = 0 for i < k and yk > 0}∪{0m}

(see Fig. 1.3) is total. With respect to this ordering all points in R
m

can be compared to each other and can be ordered. However a pointed
convex cone cannot be closed and satisfy the total ordering property
K ∪ (−K) = R

m at the same time, see [85, p.4]. For example the
ordering cone of the lexicographical ordering is not closed.

In this book we consider arbitrary closed pointed convex cones and
thus the induced orderings ≤K are always not total but only partial.
A special case of partial orderings is the natural ordering ≤m, but we
will not restrict ourselves to this special ordering and the related no-
tion of EP-minimality. The EP-minimality notion is appropriate if the
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Fig. 1.3. Ordering cone of the lexicographical ordering for m = 2.

mathematical multiobjective optimization problem (MOP) adequately
describes the real decision problem (w. r. t. the natural ordering). How-
ever there can exist preferences of the d. m. which cannot be mapped
with the help of objective functions and constraints only, as it is demon-
strated with the following example (see [230, Ex. 4.1]).

Example 1.4. We consider the multiobjective optimization problem

min

(
f1(x)
f2(x)

)
=

(
x1

x2

)

subject to the constraint
x ∈ Ω ⊂ R

2

with the constraint set Ω as given in Fig. 1.4.

Fig. 1.4. Constraint set of Example 1.4.

We assume that the preferences of the d. m. are in such a way that
there exists a third not explicitly known objective function f3(x) =
x2 − x1. Then a point y1 = f(x1) is preferred to a point y2 = f(x2) by
the d. m. if
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⎜⎝

f1(x1)
f2(x1)
f3(x1)

⎞
⎟⎠ ≤3

⎛
⎜⎝

f1(x2)
f2(x2)
f3(x2)

⎞
⎟⎠

⇔

⎛
⎜⎝

y1
1

y1
2

y1
2 − y1

1

⎞
⎟⎠ ≤3

⎛
⎜⎝

y2
1

y2
2

y2
2 − y2

1

⎞
⎟⎠

is satisfied. The ordering cone is thus defined by

K := {y ∈ R
2 | y1 ≥ 0, y2 ≥ 0, y2 − y1 ≥ 0} = {y ∈ R

2 | y2 ≥ y1 ≥ 0}
(Fig. 1.5). We have E(f(Ω), K) = AB∪BD compared to E(f(Ω), R2

+) =
AB (with AB and BD the line segment connecting the points A and
B and B and D respectively).

Fig. 1.5. Ordering cone of Example 1.4.

Many application problems demand the use of arbitrary closed
pointed convex cones. For example in portfolio optimization in stock
markets the domination orderings can be given by pointed convex poly-
hedral cones in R

m which are generated by more than m vectors ([4,
p.692]). In Ex. 4.2 in [4] even a non-polyhedral cone, the so-called ice
cream cone K = {x ∈ R

3 | x1 ≥
√

x2
2 + x2

3} is mentioned for a domi-
nation structure (see also Example 1.22). In [116, 117, 185] the impor-
tance of polyhedral cones for modeling preferences of decision makers
is discussed. Polyhedral cones are also used in [58]. We will present
polyhedral and finitely generated cones including the definitions and a
discussion in the following section.

Moreover, if the multiobjective optimization problem is only a tool
for solving superordinate problems, ordering cones other than the nat-
ural ordering cone are of interest. In [85] a multiobjective optimization
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problem is constructed for solving scalar bilevel optimization problems.
There, a non-convex cone is defined which can be expressed in a weak-
ened form as the union of two convex cones, none of them equal to the
positive orthant. Besides in part three of this book where the proposed
methods are applied to solve multiobjective bilevel problems, an order-
ing different from the natural ordering appears, too. In [106, 134, 219]
multiobjective optimization problems w. r. t. partial orderings defined
by pointed convex cones are discussed for determining EP-minimal
points of a multiobjective optimization problem. Because of all these
considerations and examples we do not restrict ourselves to the natural
ordering, like it is also done in [81, 96, 106, 136, 181, 230], and others.

A weaker minimality notion than K-minimality being of interest
especially in theoretical considerations is the following:

Definition 1.5. Let K be a pointed ordering cone with int(K) �= ∅. A
point x̄ ∈ Ω is a weakly minimal solution of (MOP) w. r. t. K if

(ȳ − int(K)) ∩ f(Ω) = ∅.

The set of all weakly minimal solutions w. r. t. the cone K is denoted
as Mw(f(Ω), K). The image set of the set of weakly minimal points

Ew(f(Ω), K) := {f(x) | x ∈ Mw(f(Ω), K)}

is called the set of weakly efficient points w. r. t. the cone K.

We also speak of weakly EP-minimal points for K = R
m
+ .

The weakly K-minimal points are the minimal points w. r. t. the
cone int(K) ∪ {0m}. Therefore, considering the following lemma, we
have in the case that int(K) is nonempty that

M(f(Ω), K) ⊂ Mw(f(Ω), K)

and
E(f(Ω), K) ⊂ Ew(f(Ω), K).

Lemma 1.6. ([190, Prop. 3.1.1]) Let K1 and K2 be nonempty convex
cones with K1 ⊂ K2. Then we have for the set of minimal solutions

M(f(Ω), K2) ⊂ M(f(Ω), K1).

A similar result can be stated for the set of weakly minimal points.
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Lemma 1.7. Let K1 and K2 be pointed ordering cones with nonempty
interior and with K1 ⊂ K2. Then we have for the set of weakly minimal
solutions

Mw(f(Ω), K2) ⊂ Mw(f(Ω), K1).

Proof. As K1 ⊂ K2 it follows int(K1) ⊂ int(K2) and therefore

Mw(f(Ω), K2) = M(f(Ω), int(K2) ∪ {0m})
⊂ M(f(Ω), int(K1) ∪ {0m})
= Mw(f(Ω), K1).

�

We now give a short excursus how the definition of weakly minimal
points can be extended for the case of an empty interior of the ordering
cone K. We give the definition for a general linear space X but for
simplicity the reader can replace X by R

m. First we introduce the
algebraic interior of a nonempty set K ⊂ X, also called core of K
([124, p.6]),

cor(K) := {x̄ ∈ K | for every x ∈ X there exists a λ̄ > 0
with x̄ + λx for all λ ∈ [0, λ̄]}.

If the set K is a convex cone with cor(K) �= ∅, then cor(K) ∪ {0X}
is a convex cone, too. For K a convex cone in a topological space (as
X = R

m) and int(K) �= ∅ it is int(K) = cor(K).
We are interested in the relative algebraic interior also called intrin-

sic core. Let L(K) denote the smallest subspace of X containing the set
K ⊂ X and let K be a convex cone. Then the intrinsic core is defined
as ([181, p.501], [2, p.517])

icr(K) := {x̄ ∈ K | for every x ∈ L(K) there exists a λ̄ > 0
with x̄ + λx for all λ ∈ [0, λ̄]}.

If K is a convex cone with icr(K) �= ∅, then icr(K) ∪ {0X} is a convex
cone, too. Of course it is cor(K) ⊂ icr(K) ⊂ K. If K ⊂ R

m is a convex
cone with icr(K) �= ∅ it is according to Lemma 1.6 of course

M(f(Ω), K) ⊂ M(f(Ω), icr(K) ∪ {0m}). (1.2)

If further int(K) �= ∅, then due to int(K) ⊂ icr(K) we conclude
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M(f(Ω), icr(K) ∪ {0m}) ⊂ M(f(Ω), int(K) ∪ {0m}) = Mw(f(Ω), K).
(1.3)

Weak minimality can be defined w. r. t. the algebraic interior or w. r. t.
the relative algebraic interior, too, see e. g. [120], [124, p.109] or [181].
This is especially interesting if the ordering cone has an empty (topo-
logical) interior.

Example 1.8. We consider the ordering cone

K = {y ∈ R
3 | y1 ≥ 0, y2 ≥ 0, y3 = 0} ⊂ R

3.

It is K = R
2
+ × {0}. Then int(K) = ∅ and we cannot define weak

minimality. However it is icr(K) = {y ∈ R
3 | y1 > 0, y2 > 0, y3 = 0}

and we can define a modified weak minimality, i. e. minimality w. r. t.
icr(K) ∪ {03}.

This concept based on the intrinsic core is used in the paper of Pas-
coletti and Serafini ([181]) on which we base our scalarization approach
in the following section. Besides we need this modified definition of weak
minimality in the last part of this book where we discuss multiobjective
bilevel optimization problems. There, an ordering cone appears with an
empty interior.

Various other and stronger minimality notions are defined in the
literature (see for instance [124] and the references therein) as e. g.
proper minimality (different definitions can be found in [12, 21, 90,
107, 144, 121], and others). We mention here only the definition of
proper minimality according to Geoffrion ([90, 190]) for the ordering
cone K = R

m
+ .

Definition 1.9. Let K = R
m
+ . A point x̄ is a properly efficient solution

of the multiobjective optimization problem (MOP ) if it is EP-minimal
and if there is some real M > 0 such that for each i ∈ {1, . . . , m}
and each x ∈ Ω satisfying fi(x) < fi(x̄), there exists at least one
j ∈ {1, . . . , m} such that fj(x̄) < fj(x) and

fi(x̄) − fi(x)
fj(x) − fj(x̄)

≤ M.

The relation between properly efficient solutions and stable solutions
of scalarizations w. r. t. perturbations of the constraint set is considered
in [169].

Next we present some useful calculation rules (see [190, pp.34f]).
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Lemma 1.10. Let a nonempty ordering cone K, a scalar α > 0, and
the sets f(Ω), f̃(Ω̃) ⊂ R

m, be given. Then it is:

a) E(αf(Ω), K) = α E(f(Ω), K),
b) E(f(Ω) + f̃(Ω̃), K) ⊂ E(f(Ω), K) + E(f̃(Ω̃), K),
c) E(f(Ω), K) ⊃ E(f(Ω) + K, K).
d) If additionally the cone K is pointed then

E(f(Ω), K) = E(f(Ω) + K, K).

The following rule will be of interest in part three of this book
dealing with bilevel optimization.

Lemma 1.11. For two sets A0, A1 ⊂ R
n, and a vector-valued function

f : R
n → R

m, consider the sets

A := A0 ∪ A1 and
Ã := M(f(A0), Rm

+ ) ∪ A1.

Let f(A0) be compact. Then it is M(f(A), Rm
+ ) = M(f(Ã), Rm

+ ).

Proof. First we show M(f(A), Rm
+ ) ⊂ M(f(Ã), Rm

+ ). For that
we assume x̄ ∈ M(f(A), Rm

+ ). Then there exists no point x′ ∈ A with

f(x′) ≤ f(x̄) and f(x′) �= f(x̄). (1.4)

We have x̄ ∈ A = A0∪A1. If x̄ ∈ A0 then there is no point x′ ∈ A0 ⊂ A
with (1.4) and hence x̄ ∈ M(f(A0), Rm

+ ) ⊂ Ã. For x̄ ∈ A1 we have
x̄ ∈ Ã, too. Because of Ã ⊂ A there also exists no x′ ∈ Ã with (1.4)
and hence x̄ ∈ M(f(Ã), Rm

+ ).
It remains to show M(f(Ã), Rm

+ ) ⊂ M(f(A), Rm
+ ). For that we

assume x̄ ∈ M(f(Ã),Rm
+ ), i. e. there is no x′ ∈ Ã with (1.4). We

have x̄ ∈ M(f(A0), Rm
+ ) ∪ A1. For x̄ ∈ M(f(A0), Rm

+ ) there exists
no x′ ∈ A0 with (1.4), too. Because of A = Ã ∪ A0 we conclude
x̄ ∈ M(f(A), Rm

+ ). And for x̄ ∈ A1 we assume x̄ �∈ M(f(A), Rm
+ ).

Then there is a x′ ∈ A \ Ã = A0 \M(f(A0), Rm
+ ) with (1.4). As the set

f(A0) is compact it holds according to [190, Theorem 3.2.10] f(A0) ⊂
E(f(A0), Rm

+ ) + R
m
+ . Because of x′ ∈ A0 and x′ �∈ M(f(A0), Rm

+ )
there exists a x0 ∈ M(f(A0), Rm

+ ) with f(x0) ≤ f(x′) resulting in
f(x0) ≤ f(x̄) and f(x0) �= f(x̄). Due to x0 ∈ Ã this is a contradiction
to x̄ ∈ M(f(Ã), Rm

+ ). Hence x̄ ∈ M(f(A), Rm
+ ). �
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The following theorem (see [94, Theorem 2.9]) shows that it is suf-
ficient to consider only the boundary ∂f(Ω) of the set f(Ω) for deter-
mining all efficient points:

Theorem 1.12. Let K be a nonempty ordering cone with K �= {0m}.
Then

E(f(Ω), K) ⊂ ∂f(Ω).

This is true for the weakly efficient points, too.

Theorem 1.13. Let K be a pointed ordering cone with int(K) �= ∅.
Then

Ew(f(Ω), K) ⊂ ∂f(Ω).

Proof. For an ȳ ∈ Ew(f(Ω), K) we assume ȳ ∈ f(Ω) \ ∂f(Ω) =
int(f(Ω)). Then there exists a δ > 0 and an open ball B = {y ∈ R

m |
‖y‖ < δ} with ȳ+B ⊂ f(Ω). Let k ∈ int(K). Then there is a λ < 0 with
λk ∈ B and it is ȳ+λk ∈ f(Ω). Because K is a cone it is λk ∈ −int(K)
and hence we have

ȳ + λk ∈ f(Ω) ∩ (ȳ − int(K))

in contradiction to ȳ weakly K-minimal. �

As it is known from scalar optimization there is also the notion of
local minimality.

Definition 1.14. Let K be a closed pointed ordering cone with
int(K) �= ∅.

A point x̄ ∈ Ω is a local minimal solution of the multiobjective
optimization problem (MOP ) w. r. t. the ordering cone K if there is a
neighborhood U of x̄ such that there is no y ∈ f(Ω ∩U) \ {f(x̄)} with
f(x̄) ∈ y + K.

A point x̄ ∈ Ω is a locally weakly minimal solution of the multi-
objective optimization problem (MOP ) w. r. t. the ordering cone K if
there is a neighborhood U of x̄ such that there is no y ∈ f(Ω∩U) with
f(x̄) ∈ y + int(K).

In applications and in numerical procedures the notion of ε-EP-
minimality (see for instance [125, 154, 212]) is useful:

Definition 1.15. Let ε ∈ R
m with εi > 0, i = 1, . . . , m, be given. A

point x̄ ∈ Ω is an ε-EP-minimal solution of the multiobjective opti-
mization problem (MOP ) if there is no x ∈ Ω with
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fi(x) + εi ≤ fi(x̄) for all i ∈ {1, . . . , m}

and
fj(x) + εj < fj(x̄) for at least one j ∈ {1, . . . , m}.

In Fig. 1.6 the image set of the ε-EP-minimal solutions of a biob-
jective optimization problem is shown (compare [125]).

-EP-minimal

Fig. 1.6. ε-EP-minimality for a biobjective optimization problem.

For ε-minimal solutions w. r. t. arbitrary ordering cones K see for
instance [73].

1.2 Polyhedral Ordering Cones

Special cones are the so-called polyhedral cones. Their properties can
be used for simplifying the solving of a multiobjective optimization
problem.

Definition 1.16. ([190, Def. 2.1.7, 2.1.8])

a) A set K ⊂ R
m is a convex polyhedral cone if K can be represented

by
K = {x ∈ R

m | (ki)�x ≥ 0, i = 1, . . . , s}
with s ∈ N and vectors k

i ∈ R
m, i = 1, . . . , s.

b) A set K ⊂ R
m is a finitely generated convex cone if there are vectors

a1, a2, . . . , as, s ∈ N, in R
m such that K can be described by

K = {x ∈ R
m | x =

s∑
i=1

αia
i, αi ≥ 0, i = 1, . . . , s}.
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Lemma 1.17. ([190, Prop. 2.1.12], [219, Lemma 2.1, 2.2]) A convex
cone K is polyhedral if and only if it is finitely generated.

If the cone K can be represented by

K = {x ∈ R
m | (ki)�x ≥ 0, i = 1, . . . , s}

(s ∈ N), then we say that the cone K is generated or induced by the
matrix

K :=

⎛
⎜⎜⎝

(k1)�
...

(ks)�

⎞
⎟⎟⎠

and we have K = {x ∈ R
m | Kx ≥s 0s}.

If the cone K is generated by the matrix K and if kernel(K) = {0m},
then K is pointed and the related partial ordering is antisymmetric. For
example the pointed cone defining the natural ordering is polyhedral
and is induced by the m-dimensional identity-matrix Em.

The task of finding K-minimal points of a multiobjective optimiza-
tion problem w. r. t. a pointed polyhedral ordering cone generated by
the matrix K ∈ R

s×m, can be reduced to the determination of EP-
minimal points of the multiobjective optimization problem

minKf(x)
subject to the constraint

x ∈ Ω

with s objective functions (k1)�f(x), (k2)�f(x), . . . , (ks)�f(x), see [190,
Lemma 2.3.4]:

Lemma 1.18. We consider the multiobjective optimization problem
(MOP) with a polyhedral ordering cone K represented by

K = {x ∈ R
m | Kx ≥s 0s}

with K ∈ R
s×m and kernel (K) = {0m}. Then

E(f(Ω), K) = {y ∈ f(Ω) | Ky ∈ E(Kf(Ω), Rs
+)}

and
M(f(Ω), K) = M(Kf(Ω), Rs

+)

with Kf(Ω) := {Ky ∈ R
s | y ∈ f(Ω)}.
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Hence, if the ordering cone is polyhedral and induced by a s × m-
matrix, we can reduce the problem of finding K-minimal points of a
multiobjective optimization problem with m objective functions to the
problem of finding EP-minimal points of a multiobjective optimization
problem with s criteria. However if s > m the new problem is getting
more complex.

Example 1.19. We consider the determination of K-minimal points
of the optimization problem

min
x∈Ω

⎛
⎜⎝

f1(x)
f2(x)
f3(x)

⎞
⎟⎠ (1.5)

with the ordering cone

K = {y ∈ R
3 |

⎛
⎜⎜⎜⎜⎝

1 0 1
−1 0 1

0 −1 1
0 1 1

⎞
⎟⎟⎟⎟⎠ y ≥4 04}.

It is K = {y ∈ R
3 | −y3 ≤ y1 ≤ y3, −y3 ≤ y2 ≤ y3, y3 ≥ 0} a pyramid

with apex in the origin.
According to Lemma 1.18 a point x̄ ∈ Ω is a K-minimal solution of

(1.5) if and only if x̄ is EP-minimal for

min
x∈Ω

⎛
⎜⎜⎜⎜⎝

f1(x) + f3(x)
−f1(x) + f3(x)
−f2(x) + f3(x)
f2(x) + f3(x)

⎞
⎟⎟⎟⎟⎠ .

We will discuss this special property of multiobjective optimization
problems with finitely generated ordering cones again in Chap. 3 in the
context of the sensitivity studies and in Chap. 5. In the bicriteria case
(m = 2) every ordering cone is finitely generated.

Lemma 1.20. Let K ⊂ R
2 be a closed pointed ordering cone with

K �= {02}. Then K is polyhedral and there is either a k ∈ R
2 \ {02}

with
K = {λk | λ ≥ 0}
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or there are l1, l2 ∈ R
2 \ {02}, l1, l2 linearly independent, and l̃1, l̃2 ∈

R
2 \ {02}, l̃1, l̃2 linearly independent, with

K = {y ∈ R
2 | l1�y ≥ 0, l2�y ≥ 0}

= {y ∈ R
2 | y = λ1 l̃1 + λ2 l̃2, λ1, λ2 ≥ 0}.

Proof. We give a constructive proof with which we can deter-
mine k and l1, l2 and l̃1, l̃2 respectively by solving simple optimization
problems. We start by solving

minϕ

subject to the constraints(
cos ϕ

sinϕ

)
∈ K,

ϕ ∈ [0, 2 π]

(1.6)

with minimal solution ϕ1. Next, assuming ϕ1 �= 0, we solve

max ϕ

subject to the constraints(
cos ϕ

sinϕ

)
∈ K,

ϕ ∈ [0, 2 π]

(1.7)

with maximal solution ϕ2. Because the cone K is closed and non-trivial
there always exists a solution of (1.6) and (1.7) and as the cone K is
also pointed we have ϕ2 ∈ [ϕ1, ϕ1 + π[.
For ϕ1 = ϕ2 this results in K = {λ k | k =

(
cos ϕ1, sinϕ1

)�
, λ ≥ 0}.

For ϕ1 �= ϕ2 we get due to the convexity of K

K = {y ∈ R
2 | y = λ (cos ϕ, sinϕ)�, λ ≥ 0, ϕ ∈ [ϕ1, ϕ2]}

= {y ∈ R
2 | y = λ1(cos ϕ1, sinϕ1)� + λ2(cos ϕ2, sinϕ2)�, λ1, λ2≥0}.

In the same manner we can handle the case ϕ1 = 0 by solving the
problems (1.6) and (1.7) w. r. t. ϕ ∈ [π, 3 π] instead of ϕ ∈ [0, 2 π].

We have

l̃1 :=
(
cos ϕ1, sinϕ1

)� and l̃2 :=
(
cos ϕ2, sinϕ2

)�
,
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with l̃1, l̃2 linearly independent because of the pointedness of K. With
appropriate orthogonal vectors l1, l2 to l̃1, l̃2 we obtain

K = {y ∈ R
2 | l1�y ≥ 0, l2�y ≥ 0}.

�

For instance the cone R
2
+ is finitely generated by l1 = (1, 0)� and

l2 = (0, 1)�. In general the statement of the theorem is not true in
R

m, m ≥ 3. This is shown by the following two examples, the ordering
cone of the Löwner partial ordering and the so-called ice cream cone.
These cones also demonstrate, that there are important cones which
are non-polyhedral.

Example 1.21. The Löwner partial ordering ([155]) in the space Sn of
symmetric n× n-matrices is defined by the convex cone Sn

+ of positive
semidefinite n × n-matrices

Sn
+ := {A ∈ Sn | x�Ax ≥ 0 for all x ∈ R

n}.
With the help of a vector-valued map the space Sn can be mapped in
the space R

n(n+1)/2 (see e. g. in [218, Def. 2.3] the map named svec(·)).
For the case n = 2 this map is the following:

A =

(
x y

y z

)
∈ S2 �→ a =

⎛
⎜⎝

x

y

z

⎞
⎟⎠ ∈ R

3.

Based on this map the Löwner ordering cone can be described in the
space R

3 by the cone

K = {(x, y, z) ∈ R
3 | x + z ≥ 0, xz ≥ y2}

= {(x, y, z) ∈ R
3 | x ≥ 0, z ≥ 0, xz ≥ y2}.

Thus A ∈ S2
+ if and only if a ∈ K. The closed pointed convex cone K

(Fig. 1.7) is not finitely generated and hence not polyhedral.

Example 1.22. In [4, Ex. 4.2] (with reference to [5]) a problem in
portfolio optimization is discussed, for which the domination structure
in the three dimensional portfolio space is defined by the so-called ice
cream cone

K := {(x, y, z) ∈ R
3 | x ≥

√
y2 + z2},

also called second-order cone. This is again a closed pointed convex
cone which is not finitely generated and thus non-polyhedral.
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Fig. 1.7. Löwner ordering cone of S2 mapped to R
3.

For general non-polyhedral cones we cannot give an equation like
the one in Lemma 1.18 as it is shown in [72, Theorem 2].



2

Scalarization Approaches

For determining solutions of the multiobjective optimization problem
(MOP)

(MOP) min f(x)
subject to the constraints

g(x) ∈ C,

h(x) = 0q,

x ∈ S

with the constraint set Ω = {x ∈ S | g(x) ∈ C, h(x) = 0q} a wide-
spread approach is the transformation of this problem to a scalar-valued
parameter dependent optimization problem. This is done for instance
in the weighted sum method ([245]). There the scalar problems

min
x∈Ω

m∑
i=1

wifi(x)

with weights w ∈ K∗ \ {0m} and K∗ the dual cone to the cone K,
i. e. K∗ = {y∗ ∈ R

m | (y∗)�y ≥ 0 for all y ∈ K}, are solved. Another
scalarization especially for calculating EP-minimal points is based on
the minimization of only one of the m objectives while all the other ob-
jectives are transformed into constraints by introducing upper bounds.
This scalarization is called ε-constraint method ([98, 159]) and is given
by

min fk(x)
subject to the constraints

fi(x) ≤ εi, i ∈ {1, . . . , m} \ {k},
x ∈ Ω.

(2.1)
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Here the parameters are the upper bounds εi, i ∈ {1, . . . , m} \ {k} for
a k ∈ {1, . . . , m}. Surveys about different scalarization approaches can
be found in [60, 112, 124, 138, 165, 189]. Other solution approaches use
e. g. stochastic methods as it is done by Schäffler, Schultz and Weinzierl
([194]) or evolutionary algorithms (surveys for these types of methods
can be found in [112, p.19] and in [41, 42, 31, 228, 246]). In this book
only procedures based on a scalarization of the multiobjective opti-
mization problem are considered.

By solving the scalar problems for a variety of parameters for in-
stance for different weights, several solutions of the multiobjective opti-
mization problem are generated. In the last decades the main focus was
on finding one minimal solution e. g. by interactive methods ([166, 165])
whereas objective numerical calculations alternate with subjective de-
cisions done by the decision maker. Based on much better computer
performances it is now possible to represent the whole efficient set.
Having the whole solution set available the decision maker gets a useful
insight in the problem structure. For engineering tasks, it is especially
interesting to have all design alternatives available ([119]). The aim is
to generate an approximation of the whole efficient set as it is the aim
for instance in [40, 47, 48, 81, 106, 110, 111, 164, 196] and many more.

The information provided by this approximation depends mainly
on the quality of the approximation. Many approximation points cause
a high numerical effort, however approximations with only few points
neglect large areas of the efficient set. Thus, the aim of this book is to
generate an approximation with a high quality.

A wide variety of scalarizations exist based on which one can deter-
mine single approximation points. However not all methods are appro-
priate for non-convexity or arbitrary partial orderings. For instance the
weighted sum method has the disadvantage that it is in general only
possible for convex problems to determine all efficient points by an ap-
propriate parameter choice (see [39, 138]). The ε-constraint method as
given in (2.1) is only suited for the calculation of EP-minimal points.
Yet problems arising in applications are often non-convex. Further it
is also of interest to consider more general partial orderings than the
natural ordering. Thus we concentrate on a scalarization by Pascoletti
and Serafini, 1984 ([181]) which we present and discuss in the following
sections. An advantage of this scalarization is that many other scalar-
ization approaches as the mentioned weighted sum method or the ε-
constraint method are included in this more general formulation. The



2.1 Pascoletti-Serafini Scalarization 23

relationship to other scalarization problems are examined in the last
section of this chapter.

2.1 Pascoletti-Serafini Scalarization

Pascoletti and Serafini propose the following scalar optimization prob-
lem with parameters a ∈ R

m and r ∈ R
m for determining minimal

solutions of (MOP) w. r. t. the cone K:

(SP(a,r))
min t

subject to the constraints
a + t r − f(x) ∈ K,

g(x) ∈ C,

h(x) = 0q,

t ∈ R, x ∈ S.

This problem has the parameter dependent constraint set

Σ(a, r) := {(t, x) ∈ R
n+1 | a + t r − f(x) ∈ K, x ∈ Ω}.

We assume that the cone K is a nonempty closed pointed convex cone.
The formulation of this scalar optimization problem corresponds to the
definition of K-minimality. A point x̄ ∈ Ω with ȳ = f(x̄) is K-minimal
if

(ȳ − K) ∩ f(Ω) = {ȳ},
(see Fig. 2.1 for m = 2 and K = R

2
+). If we rewrite the problem

(SP(a, r)) as follows

min t

subject to the constraints
f(x) ∈ a + tr − K,

x ∈ Ω,

t ∈ R,

we see that for solving this problem the ordering cone −K is moved
in direction −r on the line a + t r starting in the point a till the set
(a + t r − K) ∩ f(Ω) is reduced to the empty set. The smallest value t̄
for which (a + t̄ r − K) ∩ f(Ω) �= ∅ is the minimal value of (SP(a, r))
(see Fig. 2.2 with m = 2 and K = R

2
+).
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Fig. 2.1. K-minimality.

Fig. 2.2. Moving the ordering cone in the Pascoletti-Serafini problem.

The scalar problem (SP(a, r)) features all important properties a
scalarization approach for determining minimal solutions of (MOP)
should have. If (t̄, x̄) is a minimal solution of (SP(a, r)) then the
point x̄ is an at least weakly K-minimal solution of the multiobjec-
tive optimization problem (MOP) and by a variation of the parameters
(a, r) ∈ R

m × R
m all K-minimal points of (MOP) can be found as so-

lutions of (SP(a, r)). We will discuss these important properties among
others in the following section.

Problem (SP(a, r)) is also discussed by Helbig in [104]. He interprets
the point a as a reference point and the parameter r as a direction. For
r ∈ int(Rm

+ ) this corresponds to the interpretation of r as a weighting
of the objective functions with the weights wi := 1

ri
, i = 1, . . . , m
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(compare with the weighted Chebyshev norm). Then for a minimal
solution x̄ of the scalar problem the point f(x̄) = ȳ is the (weakly)
K-minimal point (see Theorem 2.1,c)) which is closest to the reference
point. The Pascoletti-Serafini problem is also related to a scalarization
introduced by Gerstewitz in [91] as well as to the problem discussed
in [92, 237] by Tammer, Weidner and Winkler. Further, in [74] Engau
and Wiecek examine the Pascoletti-Serafini scalarization concerning ε-
efficiency.

Pascoletti and Serafini allow for the parameter r only r ∈ L(K)
with L(K) the smallest linear subspace in R

m including K. Sterna-
Karwat discusses in [213] and [214] also this problem. Helbig ([104, 106])
assumes r ∈ rint(K), i. e. he assumes r to be an element of the relative
interior of the closed pointed convex cone K.

In [106] Helbig varies not only the parameters a and r, but he also
varies the cone K. For s ∈ K∗ he defines parameter dependent cones
K(s) with K ⊂ K(s). For these cones he solves the scalar problems
(SP(a, r)). The solutions are then weakly K(s)-minimal, yet w. r. t. the
cone K they are even minimal. However in this book we concentrate
on a variation of the parameters a and r. We will see that by an ap-
propriate controlling of the parameters high-quality approximations in
the sense of nearly equidistant approximations of the efficient set can
be generated.

2.2 Properties of the Pascoletti-Serafini Scalarization

We examine the Pascoletti-Serafini problem in this section more de-
tailed and we start with the main properties of this scalarization (see
also [181]). We assume again that K is a nonempty closed pointed
ordering cone in R

m.

Theorem 2.1. We consider the scalar optimization problem (SP(a, r))
to the multiobjective optimization problem (MOP). Let int(K) �= ∅.
a) Let x̄ be a weakly K-minimal solution of the multiobjective optimiza-

tion problem (MOP), then (0, x̄) is a minimal solution of (SP(a, r))
for the parameter a := f(x̄) and for arbitrary r ∈ int (K).

b) Let x̄ be a K-minimal solution of the multiobjective optimization
problem (MOP), then (0, x̄) is a minimal solution of (SP(a, r)) for
the parameter a := f(x̄) and for arbitrary r ∈ K \ {0m}.
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c) Let (t̄, x̄) be a minimal solution of the scalar problem (SP(a, r)), then
x̄ is a weakly K-minimal solution of the multiobjective optimization
problem (MOP) and a + t̄ r − f(x̄) ∈ ∂K with ∂K the boundary of
the cone K.

d) Let x̄ be a locally weakly K-minimal solution of the multiobjective
optimization problem (MOP), then (0, x̄) is a local minimal solution
of (SP(a, r)) for the parameter a := f(x̄) and for arbitrary r ∈
int (K).

e) Let x̄ be a locally K-minimal solution of the multiobjective op-
timization problem (MOP), then (0, x̄) is a local minimal solu-
tion of (SP(a, r)) for the parameter a := f(x̄) and for arbitrary
r ∈ K \ {0m}.

f) Let (t̄, x̄) be a local minimal solution of (SP(a, r)), then x̄ is a lo-
cally weakly K-minimal solution of the multiobjective optimization
problem (MOP) and a + t̄ r − f(x̄) ∈ ∂K.

Proof. a) Set a = f(x̄) and choose r ∈ int (K) arbitrarily. Then
the point (0, x̄) is feasible for (SP(a, r)). It is also minimal, because
otherwise there exists a feasible point (t′, x′) with t′ < 0 and a k′ ∈ K
with

a + t′ r − f(x′) = k′.

Hence we have f(x̄) = f(x′)+k′−t′ r. It is k′−t′ r ∈ int (K) and thus it
follows f(x̄) ∈ f(x′)+ int (K) in contradiction to x̄ weakly K-minimal.

b) Set a = f(x̄) and choose r ∈ K \ {0m} arbitrarily. Then the point
(0, x̄) is feasible for (SP(a, r)). It is also a minimal solution because
otherwise there exists a scalar t′ < 0 and a point x′ ∈ Ω, with (t′, x′)
feasible for (SP(a, r)), and a k′ ∈ K with a + t′ r − f(x′) = k′. This
leads to

f(x̄) = f(x′) + k′ − t′ r ∈ f(x′) + K.

Because of the K-minimality of x̄ we conclude f(x̄) = f(x′) and thus
k′ = t′ r. Due to the pointedness of the ordering cone K, k′ ∈ K and
t′ r ∈ −K it follows t′ r = k′ = 0m in contradiction to t′ < 0 and
r �= 0m.

c) Assume x̄ is not weakly K-minimal. Then there is a point x′ ∈ Ω and
a k′ ∈ int (K) with f(x̄) = f(x′)+k′. As (t̄, x̄) is a minimal solution and
hence feasible for (SP(a, r)) there is a k̄ ∈ K with a + t̄ r − f(x̄) = k̄.
Because of k̄ + k′ ∈ int (K) there is a ε > 0 with k̄ + k′ − ε r ∈ int (K).
Then we conclude from a + t̄ r − f(x′) = k̄ + k′
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a + (t̄ − ε) r − f(x′) ∈ int (K).

Then the point (t̄ − ε, x′) is feasible for (SP(a, r)), too, with t̄ − ε < t̄
in contradiction to (t̄, x̄) minimal. Using the same arguments we can
show k̄ ∈ ∂K.

d) We assume (0, x̄) is not a local minimal solution of (SP(a, r)). Then
in any neighborhood U = Ut×Ux ⊂ R

n+1 of (0, x̄) there exists a feasible
point (t′, x′) with t′ < 0 and a k′ ∈ K with a + t′ r − f(x′) = k′. With
a = f(x̄) we get

f(x̄) = f(x′) + k′ − t′ r.

Since k′ − t′ r ∈ int(K) we have f(x̄) ∈ f(x′) + int(K) and because
the neighborhood Ux is arbitrarily chosen x̄ cannot be locally weakly
K-minimal.

e) With the same arguments as in the preceding proof we conclude
again that if there exists a feasible point (t′, x′) with t′ < 0 and x′ in a
neighborhood of x̄ this leads to f(x̄) = f(x′)+k′−t′ r with r ∈ K\{0m}.
Hence we have f(x̄) ∈ f(x′) + K \ {0m} in contradiction to x̄ locally
K-minimal.

f) Let U = Ut × Ux ⊂ R
n+1 be a neighborhood such that (t̄, x̄) is a

local minimal solution of (SP(a, r)). Then there exists a k̄ ∈ K with

a + t̄ r − f(x̄) = k̄. (2.2)

We assume x̄ is not a locally weakly K-minimal point of the multiobjec-
tive optimization problem (MOP). Then there exists no neighborhood
Ūx of x̄ such that

f(Ω ∩ Ūx) ∩ (f(x̄) − int(K)) = ∅.
Hence for Ux there exists a point x′ ∈ Ω∩Ux with f(x′) ∈ f(x̄)−int(K)
and thus there is a k′ ∈ int(K) with f(x′) = f(x̄) − k′. Together with
(2.2) we get

f(x′) = a + t̄ r − k̄ − k′.

Because of k̄ + k′ ∈ int(K) there exists a ε > 0 with t̄ − ε ∈ Ut and
k̄ + k′ − ε r ∈ int(K). We conclude

f(x′) = a + (t̄ − ε) r − (k̄ + k′ − ε r)

and thus (t̄ − ε, x′) ∈ U is feasible for (SP(a, r)) with t̄ − ε < t̄ in
contradiction to (t̄, x̄) a local minimal solution. �
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Remark 2.2. Note, that for the statement of Theorem 2.1,b) we need
the pointedness of the ordering cone K. This is for instance not the
case for the statement c).

Note also that it is not a consequence of Theorem 2.1,c) that we get
always a weakly K-minimal point x̄ by solving (SP(a, r)) for arbitrary
parameters. It is possible that the problem (SP(a, r)) has no minimal
solution at all as in the example shown in Fig. 2.3 for the case m = 2
and K = R

2
+. There the minimal value of (SP(a, r)) is not bounded

from below.

Fig. 2.3. For K = R
2
+ there exists no minimal solution of problem

(SP(a, r)).

For int(K) = ∅ we cannot apply the preceding theorem. However we
can still consider the case of finding minimal points w. r. t. the relative
algebraic interior (or intrinsic core, see also p.11) icr(K). For a closed
convex cone K ⊂ R

m it is icr(K) �= ∅ (compare [181, p.503]).

Theorem 2.3. We consider the scalar optimization problem (SP(a, r))
to the multiobjective optimization problem (MOP) with a ∈ R

m,
r ∈ L(K). Let (t̄, x̄) be a minimal solution, then x̄ is minimal w. r. t.
icr(K) ∪ {0m}.

For the proof of this theorem we refer to [181]. If for a choice of pa-
rameters a ∈ R

m and r ∈ int(K) the optimization problem (SP(a, r))
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has no minimal solution, we can conclude under some additional as-
sumptions that the related multiobjective optimization problem has
no K-minimal solution at all. This is stated in the following theorem
proven by Helbig in [104, Theorem 2.2].

Theorem 2.4. Let K ⊂ R
m be a closed pointed convex cone with

int(K) �= ∅ and let the set f(Ω) + K be closed and convex. Assume
E(f(Ω), K) �= ∅. Then

{(a, r) ∈ R
m × int(K) | Σ(a, r) �= ∅} = R

m × int(K),

i. e. for any choice of parameters (a, r) ∈ R
m × int(K) the scalar opti-

mization problem (SP(a, r)) has feasible points.
Besides for all parameters (a, r) ∈ R

m × int(K) there exists a min-
imal solution of (SP(a, r)).

As a direct consequence it follows:

Corollary 2.5. Let K ⊂ R
m be a closed pointed convex cone with

int(K) �= ∅ and let the set f(Ω) + K be closed and convex. If there is
a parameter (a, r) ∈ R

m × int(K) such that (SP(a, r)) has no minimal
solution then E(f(Ω), K) = ∅.

Hence, if we solve the scalar problem (SP(a, r)) related to the mul-
tiobjective optimization problem (MOP) fulfilling the assumptions of
Corollary 2.5 for an arbitrary choice of parameters (a, r) ∈ R

m×int(K),
then we either get a weakly K-minimal solution or we get the infor-
mation that there are no efficient points of the problem (MOP). This
property is not satisfied by all scalarization problems as e. g. not by the
ε-constraint method as we will see later in Sect. 2.5.1.

For the special case of the natural ordering we have also the following
similar theorem by Bernau ([15, Lemma 1.3]) not assuming the set
f(Ω) + K to be closed and convex.

Theorem 2.6. Let Mw(f(Ω), Rm
+ ) �= ∅. Then the objective function of

the optimization problem (SP(a, r)) is bounded from below for arbitrary
parameters a ∈ R

m and r ∈ int(Rm
+ ).

Proof. Let x̄ ∈ Mw(f(Ω), Rm
+ ). We set

t̄ := min
1≤i≤m

fi(x̄) − ai

ri
. (2.3)

Then t̄ ≤ 1
ri

(fi(x̄) − ai) for i = 1, . . . , m. Next we assume there is a
feasible point (t, x) of (SP(a, r)) with t < t̄. Then x ∈ Ω and together
with ri > 0, i = 1, . . . , m, and (2.3) it follows
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fi(x) ≤ ai + t ri < ai + t̄ ri ≤ fi(x̄) for i = 1, . . . , m,

in contradiction to x̄ weakly EP-minimal. Hence t̄ is a lower bound for
the objective function of the problem (SP(a, r)). �

We conclude:

Corollary 2.7. If the objective value of the optimization problem
(SP(a, r)) for a ∈ R

m, r ∈ int(Rm
+ ) is not bounded from below then

M(f(Ω), Rm
+ ) = ∅, i. e. there exists no EP-minimal point of the related

multiobjective optimization problem.

An important property of the discussed scalarization approach is
the possibility to generate all (weakly) K-minimal points of the mul-
tiobjective optimization problem (compare Theorem 2.1,a)). If (t̄, x̄) is
a minimal solution of the scalar problem by Pascoletti-Serafini with
x̄ being weakly K-minimal but not K-minimal we have the following
property for the points dominating the point f(x̄) ([181, Theorem 3.3]).

Theorem 2.8. If the point (t̄, x̄) is a minimal solution of (SP(a, r))
with k̄ := a + t̄ r − f(x̄) and if there is a point y = f(x) ∈ f(Ω)
dominating the point f(x̄) w. r. t. the cone K, then the point (t̄, x) is also
a minimal solution of (SP(a, r)) and there exists a k ∈ ∂K, k �= 0m,
with a + t̄ r − f(x) = k̄ + k.

From that we can immediately conclude:

Corollary 2.9. If the point (t̄, x̄) is an image-unique minimal solution
of the scalar problem (SP(a, r)) w. r. t. f , i. e. there is no other minimal
solution (t, x) with f(x) = f(x̄), then x̄ is a K-minimal solution of the
multiobjective optimization problem (MOP).

Pascoletti and Serafini ([181, Theorem 3.7]) derive a criterion for
checking whether a point is K-minimal or not.

Corollary 2.10. A point x̄ is a K-minimal solution of the multiobjec-
tive optimization problem (MOP) if

i) there is some t̄ ∈ R so that (t̄, x̄) is a minimal solution of (SP(a, r))
for some parameters a ∈ R and r ∈ int (K) and

ii) for k := a + t̄ r − f(x̄) it is

((a + t̄ r) − ∂K) ∩ (f(x̄) − ∂K) ∩ f(Ω) = {f(x̄)}.
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Hence if (t̄, x̄) is a minimal solution of (SP(a, r)) with r ∈ int (K),
then x̄ is a weakly K-minimal solution and for checking if x̄ is also K-
minimal it is sufficient to test the points ((a + t̄ r) − ∂K)∩(f(x̄)−∂K)
of the set f(Ω).

2.3 Parameter Set Restriction for the Pascoletti-Serafini
Scalarization

Our general aim is an approximation of the whole efficient set of the
multiobjective optimization problem (MOP) by solving the problem
(SP(a, r)) for several parameters. In Theorem 2.1,b) we have seen that
we can find all K-minimal points for a constant parameter r ∈ K\{0m}
by varying the parameter a ∈ R

m only. In this section we show that we
do not have to consider all parameters a ∈ R

m. We can restrict the set
from which we have to choose the parameter a such that we can still
find all K-minimal points of the multiobjective optimization problem.
We start by showing that it is sufficient to vary the parameter a on a
hyperplane H = {y ∈ R

m | b�y = β} with b ∈ R
m \ {0m}, β ∈ R.

Theorem 2.11. Let x̄ be K-minimal for (MOP) and define a hyper-
plane

H = {y ∈ R
m | b�y = β}

with b ∈ R
m \ {0m} and β ∈ R. Let r ∈ K with b�r �= 0 be arbitrarily

given. Then there is a parameter a ∈ H and some t̄ ∈ R so that (t̄, x̄)
is a minimal solution of (SP(a, r)). This holds for instance for

t̄ =
b�f(x̄) − β

b�r

and
a = f(x̄) − t̄ r.

Proof. For

t̄ =
b�f(x̄) − β

b�r
and a = f(x̄) − t̄ r

we have a ∈ H and the point (t̄, x̄) is feasible for (SP(a, r)). We assume
that (t̄, x̄) is not a minimal solution of (SP(a, r)). Then there is a t′ ∈ R,
t′ < t̄, and points x′ ∈ Ω and k′ ∈ K with

a + t′ r − f(x′) = k′.
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With the definition of a it follows

f(x̄) − t̄ r + t′ r − f(x′) = k′.

Hence
f(x̄) = f(x′) + k′ + (t̄ − t′)︸ ︷︷ ︸

>0

r︸︷︷︸
∈K

and because of the convexity of the cone K

f(x̄) ∈ f(x′) + K. (2.4)

As the cone K is pointed and because r �= 0m it is

k′ + (t̄ − t′)︸ ︷︷ ︸
>0

r �= 0m

and thus f(x̄) �= f(x′). With (2.4) we conclude f(x̄) ∈ f(x′)+K \{0m}
for x′ ∈ Ω in contradiction to x̄ K-minimal. �

In the following we give a stricter restriction of the set from which
we have to choose the parameter a such that we are still able to find all
K-minimal points. We first consider the bicriteria case before we come
to the more general case of an arbitrary multiobjective optimization
problem.

2.3.1 Bicriteria Case

In this section we only consider biobjective problems, i. e. let m = 2
except when otherwise stated. In the preceding theorem we have seen
that it is sufficient to choose the parameter r ∈ K \ {0m} constant and
to vary the parameter a only in a hyperplane

H = {y ∈ R
2 | b1y1 + b2y2 = β}

(here a line) with b = (b1, b2) ∈ R
2, b�r �= 0 and β ∈ R. For example

we can choose b = r and β = 0, then b�r = r�r = r2
1 + r2

2 �= 0 for
r �= 02.

In the bicriteria case we have the property that any closed pointed
ordering cone in R

2 is polyhedral (see Lemma 1.20). By using this
property we can show that it is sufficient to consider only a subset Ha

of the hyperplane H. In the following we assume r ∈ K \ {02}.
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We first consider the case that the ordering cone K has a nonempty
interior and is thus given by

K =
{

y ∈ R
2
∣∣∣ l1�y ≥ 0, l2�y ≥ 0

}
(2.5)

with l1, l2 ∈ R
2 \ {02}, l1, l2 linearly independent. Then the interior

of the cone is int(K) = {y ∈ R
2 | l1�y > 0, l2�y > 0}. Assuming

the set f(Ω) to be compact there exists a minimal solution x̄1 of the
scalar-valued problem

min
x∈Ω

l1�f(x) (2.6)

and a minimal solution x̄2 of the scalar-valued problem

min
x∈Ω

l2�f(x). (2.7)

These minimal solutions are also weakly K-minimal solutions of the
multiobjective optimization problem (MOP) with the vector-valued ob-
jective function f : R

n → R
2 as it is shown in the following lemma. This

result can be generalized to the case with more than two objectives,
too, for a finitely generated ordering cone K ⊂ R

m. Besides, as the
minimal solutions of (2.6) and (2.7) are weakly K-minimal, there are
also parameters a and r such that these points are minimal solutions
of the scalar problem (SP(a, r)).

Lemma 2.12. We consider the multiobjective optimization problem
(MOP) for m ∈ N, m ≥ 2. Let K ⊂ R

m be a finitely generated cone
with nonempty interior given by

K = {y ∈ R
m | li�y ≥ 0, i = 1, . . . , s}

(s ∈ N). Let x̄j be a minimal solution of

min
x∈Ω

lj�f(x) (2.8)

for a j ∈ {1, . . . , s}. Then x̄j is weakly K-minimal.

If we consider now the scalarization problem (SP(a, r)) with param-
eters r ∈ K, with lj�r > 0 (e. g. satisfied for r ∈ int(K)), and a := āj

given by

āj := f(x̄j) − t̄j r with t̄j :=
b�f(x̄j) − β

b�r

for b ∈ R
m, b�r �= 0, β ∈ R, then (t̄j , x̄j) is a minimal solution of

(SP(āj , r)).
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Proof. We first show x̄j ∈ Mw(f(Ω), K). For that we assume
that the point x̄j is not weakly K-minimal. Then there is a point x ∈ Ω
with

f(x̄j) ∈ f(x) + int(K).

Then it follows lj�(f(x̄j)− f(x)) > 0 and hence lj�f(x̄j) > lj�f(x) in
contradiction to x̄j a minimal solution of (2.8).

Next we show that (t̄j , x̄j) is a minimal solution of (SP(āj , r)). Be-
cause of

āj + t̄j r − f(x̄j) = 0m

the point (t̄j , x̄j) is a feasible point. We now assume that this point is
not a minimal solution. Then there exists a feasible point (t′, x′) with
t′ < t̄j . Because of the feasibility of (t′, x′) for (SP(āj , r)) it holds

āj + t′ r − f(x′) ∈ K.

Together with the definition of āj we conclude

f(x̄j) − t̄j r + t′ r − f(x′) ∈ K.

Then
lj�

(
f(x̄j) + (t′ − t̄j) r − f(x′)

) ≥ 0

and thus
lj�f(x̄j) ≥ lj�f(x′) + (t̄j − t′)︸ ︷︷ ︸

>0

lj�r︸︷︷︸
>0

> lj�f(x′)

in contradiction to x̄j a minimal solution of (2.8). �

The second result of this lemma is no longer true for arbitrary r ∈
∂K = K \ int(K) with lj�r = 0 as it is demonstrated in the following
example.

Example 2.13. We consider the bicriteria optimization problem

min

(
x1

x2

)

subject to the constraints
1 ≤ x1 ≤ 3,

1 ≤ x2 ≤ 3,

x ∈ R
2
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w. r. t. the ordering cone K = R
2
+ = {y ∈ R

2 | (1, 0) y ≥ 0, (0, 1) y ≥ 0}.
Then for l1 = (1, 0)� the point x̄1 = (1, 2) is a minimal solution of

(2.8) for j = 1 and also a weakly EP-minimal solution of the bicriteria
problem. For the hyperplane (here a line) H := {y ∈ R

2 | (0, 1) y = 0},
i. e. b = (0, 1)�, β = 0, and the parameter r := (0, 1)� we get according
to Lemma 2.12 t̄ = 2 and ā1 = (1, 0)�. However the point (t̄1, x̄1) =
(2, 1, 2) is not a minimal solution of (SP(ā1, r)). The point (1, 1, 1) is
the unique minimal solution of (SP(ā1, r)). For r = (0, 1)� there is no
parameter a ∈ H at all such that there exists a t with (t, x̄1) a minimal
solution of (SP(a, r)).

Remark 2.14. If we extend the assumptions in Lemma 2.12 by the
assumption that the minimal solution of (2.8) is unique then we can
drop the condition lj�r > 0 and the result is also valid for r with
lj�r ≥ 0 what is already fulfilled for r ∈ K.

We now concentrate again on the bicriteria case for which we get
further results.

Lemma 2.15. We consider the multiobjective optimization problem
(MOP) for m = 2 with the ordering cone K ⊂ R

2 given by

K = {y ∈ R
2 | li�y ≥ 0, i = 1, 2}.

Let x̄1 be a minimal solution of (2.6) and let x̄2 be a minimal solution
of (2.7). Then for all x ∈ M(f(Ω), K) it is

l1�f(x̄1) ≤ l1�f(x) ≤ l1�f(x̄2)

and
l2�f(x̄2) ≤ l2�f(x) ≤ l2�f(x̄1).

Proof. As x̄1 and x̄2 are minimal solutions of (2.6) and (2.7) we
have of course for all x ∈ M(f(Ω), K) ⊂ Ω

l1�f(x) ≥ l1�f(x̄1) and l2�f(x) ≥ l2�f(x̄2).

Let us now suppose that there is a point x ∈ M(f(Ω), K) with
l2�f(x) > l2�f(x̄1), i. e. with l2�(f(x) − f(x̄1)) > 0. Together with
l1�(f(x)− f(x̄1)) ≥ 0 we get f(x)− f(x̄1) ∈ K \ {02} in contradiction
to x K-minimal. Thus we have shown that l2�f(x) ≤ l2�f(x̄1) has to
be true. The same for l1�f(x) ≤ l1�f(x̄2). �

We conclude:
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Lemma 2.16. Let the assumptions of Lemma 2.15 hold. If the efficient
set E(f(Ω), K) consists of more than one point, what is generally the
case, then

l1�f(x̄1) < l1�f(x̄2)

and
l2�f(x̄2) < l2�f(x̄1).

Proof. As x̄1 is a minimal solution of (2.6) we already have
l1�f(x̄1) ≤ l1�f(x̄2). We assume now l1�f(x̄1) = l1�f(x̄2). Apply-
ing Lemma 2.15 we get l1�f(x) = l1�f(x̄2) for all x ∈ M(f(Ω), K)
and thus l1�(f(x) − f(x̄2)) = 0. Further, according to Lemma 2.15
it is l2�f(x) ≥ l2�f(x̄2) and hence l2�(f(x) − f(x̄2)) ≥ 0 for all
x ∈ M(f(Ω), K).

Summarizing this results in f(x)−f(x̄2) ∈ K. As x is K-minimal we
conclude f(x) = f(x̄2) for all x ∈ M(f(Ω), K) and thus E(f(Ω), K) =
{f(x̄2)}.

Analogously l2�f(x̄1) = l2�f(x̄2) implies E(f(Ω), K) = {f(x̄1)}.
�

We project the points f(x̄1) and f(x̄2) in direction r onto the line
H (compare Fig. 2.4 for l1 = (1, 0) and l2 = (0, 1), i. e. K = R

2
+). The

projection points ā1 ∈ H = {y ∈ R
2 | b�y = β} and ā2 ∈ H are given

by

āi := f(x̄i) − t̄i r with t̄i :=
b�f(x̄i) − β

b�r
, i = 1, 2. (2.9)

Fig. 2.4. Projection of the points f(x̄1) and f(x̄2) in direction r onto
H.
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We show that it is sufficient to consider parameters a ∈ Ha with the
set Ha given by

Ha = {y ∈ H | y = λā1 + (1 − λ)ā2, λ ∈ [0, 1]}, (2.10)

i. e. it is sufficient to consider parameters on the line H between the
points ā1 and ā2.

Theorem 2.17. We consider the multiobjective optimization problem
(MOP) with m = 2 and K as in (2.5). Further let ā1 and ā2 be given
as in (2.9) with x̄1 and x̄2 minimal solutions of (2.6) and (2.7) respec-
tively. Then we have for the set Ha as defined in (2.10) Ha ⊂ H and for
any K-minimal solution x̄ of (MOP) there exists a parameter a ∈ Ha

and some t̄ ∈ R so that (t̄, x̄) is a minimal solution of (SP(a, r)).

Proof. Because of ā1, ā2 ∈ H it is Ha ⊂ H. According to Theo-
rem 2.11 we already have that for any x̄ ∈ M(f(Ω), K) there exists a
parameter a ∈ H and a t̄ ∈ R given by

t̄ =
b�f(x̄) − β

b�r
and a = f(x̄) − t̄ r

so that (t̄, x̄) is a minimal solution of (SP(a, r)). Hence it is sufficient
to show that the parameter a lies on the line segment between the
points ā1 and ā2, i. e. that a = λā1 + (1 − λ)ā2 for a λ ∈ [0, 1]. Using
the definitions of a, ā1 and ā2 the equation a = λā1 + (1 − λ)ā2 is
equivalent to

f(x̄) − t̄ r = λ (f(x̄1) − t̄1 r) + (1 − λ) (f(x̄2) − t̄2 r). (2.11)

If the efficient set of the multiobjective optimization problem consists
of one point only and thus of f(x̄1) or f(x̄2) only, then (2.11) is satisfied
for λ = 1 or λ = 0 respectively. Otherwise we have according to the
Lemma 2.16

l1�f(x̄1) < l1�f(x̄2) (2.12)

and
l2�f(x̄2) < l2�f(x̄1). (2.13)

We reformulate the equation (2.11) as

f(x̄) = λ f(x̄1) + (1 − λ) f(x̄2) + (t̄ − λ t̄1 − (1 − λ) t̄2) r. (2.14)

Then we can do a case differentiation for
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t̄ − λ t̄1 − (1 − λ) t̄2 =
1

b�r
(b�(f(x̄) − λ f(x̄1) − (1 − λ) f(x̄2)) ≥ 0

and t̄ − λ t̄1 − (1 − λ) t̄2 < 0 respectively.
For the case t̄−λ t̄1−(1−λ) t̄2 ≥ 0 we start by assuming that (2.14)

is only satisfied for λ < 0. By applying the linear map l1 to (2.14) we
get because of r ∈ K and together with (2.12)

l1�f(x̄) = λ l1�f(x̄1) + (1 − λ) l1�f(x̄2) + (t̄ − λ t̄1 − (1 − λ) t̄2)︸ ︷︷ ︸
≥0

l1�r︸︷︷︸
≥0

≥ λ︸︷︷︸
<0

l1�f(x̄1)︸ ︷︷ ︸
<l1�f(x̄2)

+(1 − λ)l1�f(x̄2)

> λ l1�f(x̄2) + (1 − λ) l1�f(x̄2)
= l1�f(x̄2)

in contradiction to Lemma 2.15.
Now we suppose (2.14) is only satisfied for λ > 1. By applying the

linear map l2 to (2.14) and together with (2.13) we conclude

l2�f(x̄) ≥ λ l2�f(x̄1) + (1 − λ)︸ ︷︷ ︸
<0

l2�f(x̄2)︸ ︷︷ ︸
<l2�f(x̄1)

> l2�f(x̄1)

in contradiction to Lemma 2.15. Thus we have shown that for the case
t̄ − λ t̄1 − (1 − λ) t̄2 ≥ 0 it is λ ∈ [0, 1].

For the case t̄− λ t̄1 − (1− λ) t̄2 < 0 one can show analogously that
λ ∈ [0, 1]. �

Remark 2.18. An even more strict restriction of the parameter set Ha

is possible by minimizing in (2.6) and (2.7) over the set M(f(Ω), K)
instead of over Ω. Then we still have that for any x̄ ∈ M(f(Ω), K)
there exists a parameter a ∈ Ha and some scalar t̄ ∈ R so that (t̄, x̄) is
a minimal solution of (SP(a, r)). However the set M(f(Ω), K) is gen-
erally not known and thus we cannot optimize over the set of minimal
solutions of the multiobjective optimization problem.

Next we come to the case that the ordering cone K has an empty
interior, i. e. is given by K = {λk | λ ≥ 0} for a k ∈ R

2 \{02}. Then the
scalar optimization problem (SP(a, r)) with r ∈ K \ {02}, i. e. r = λr k
for a λr > 0, can be formulated as
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min t

subject to the constraints
a + (t λr − λ) k = f(x),
t ∈ R, x ∈ Ω, λ ≥ 0

(2.15)

by introducing an additional variable λ ∈ R. If a point (t̄, x̄, λ̄) is a
minimal solution of (2.15) we always have λ̄ = 0: suppose (t̄, x̄, λ̄) is
a minimal solution of (2.15) with λ̄ > 0. Then the point (t̄ − λ̄

λr , x̄, 0)
is also feasible for (2.15) with t̄ − λ̄

λr < t̄ in contradiction to (t̄, x̄, λ̄) a
minimal solution. Thus we can consider the problem

min t

subject to the constraints
a + t r = f(x),
t ∈ R, x ∈ Ω,

(2.16)

instead of (2.15).
To determine the set Ha as a subset of the set H it is sufficient to

project the set f(Ω) in direction r onto the hyperplane H (see Fig.
2.5). If we have l ∈ R

2 \ {02} with l�r = 0 then we can determine the
set Ha as described in Theorem 2.17 by solving the problems (2.6) and
(2.7) with l1 := l and l2 := −l.

Fig. 2.5. Projection of the set f(Ω) in direction r on the hyperplane
H.
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2.3.2 General Case

Compared to the case with only two objective functions it is more
difficult to restrict the parameter set in the case of three and more
criteria. For example not any closed pointed convex cone in R

m, m ≥ 3,
is polyhedral unlike it is in the case for m = 2 (Lemma 1.20). The cone
of Example 1.21 which represents the Löwner partial ordering is non-
polyhedral and thus not finitely generated. However even for polyhedral
cones the results from Sect. 2.3.1 cannot be generalized to R

3. A finitely
generated cone K ⊂ R

3 given by

K = {y ∈ R
3 | li�y ≥ 0, i = 1, . . . , s}

with li ∈ R
3 \ {03}, i = 1, . . . , s, s ∈ N, does not need to be generated

by s = m = 3 vectors li only. Instead it is possible that s > m, as it is
shown in Example 1.19.

Even if the ordering cone K is finitely generated by three vectors,
i. e. s = 3 as it is the case for the ordering cone K = R

3
+ inducing

the natural ordering, we cannot generalize the results gained in the
preceding section for determining the set Ha. This is illustrated with
the following example.

Example 2.19. We consider the objective function f : R
3 → R

3 with
f(x) := x for all x ∈ R

3 and the constraint set Ω ⊂ R
3 defined by

Ω := {x = (x1, x2, x3) ∈ R
3 | x2

1 + x2
2 + x2

3 ≤ 1}

which equals the unit ball in R
3. We assume that the ordering is induced

by the cone K := R
3
+ which is finitely generated by

l1 := (1, 0, 0)�, l2 := (0, 1, 0)�, and l3 := (0, 0, 1)�.

Thus K = {y ∈ R
3 | li�y ≥ 0, i = 1, 2, 3}. The tricriteria optimization

problem
min
x∈Ω

f(x)

has the solution set

M(f(Ω), R3
+) = {x ∈ R

3 | x2
1 + x2

2 + x2
3 = 1, xi ≤ 0, i = 1, 2, 3}.

By solving the three scalar optimization problems

min
x∈Ω

li�f(x)
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(i = 1, 2, 3) corresponding to the problems (2.6) and (2.7) we get the
three minimal solutions

x̄1 = (−1, 0, 0)�, x̄2 = (0,−1, 0)�, and x̄3 = (0, 0,−1)�.

Further define a hyperplane by

H := {y ∈ R
3 | (−1,−1,−1) · y = 1}

with b = (−1,−1,−1)�, β = 1. Then it is f(x̄i) = x̄i ∈ H for i = 1, 2, 3.
For r := (1, 1, 1)� the points āi ∈ H, i = 1, 2, 3, gained analogously

to the points in (2.9), are

ā1 = (−1, 0, 0)�, ā2 = (0,−1, 0)�, and ā3 = (0, 0,−1)�.

By defining the set Ha as the set of all convex combinations of the
points āi, i = 1, 2, 3, as it is done in the bicriteria case, we get

Ha :=

{
y ∈ R

3
∣∣∣ y =

3∑
i=1

λiā
i, λi ≥ 0, i = 1, 2, 3,

3∑
i=1

λi = 1

}
.

Then it is no longer true that to any K-minimal point x̄ of the mul-
tiobjective optimization problem there is a parameter ā ∈ Ha and a
t̄ ∈ R so that (t̄, x̄) is a minimal solution of (SP(ā, r)). For example
the point x̄ = (−1/

√
2,−1/

√
2, 0)� is EP-minimal but there is no pa-

rameter ā ∈ Ha such that we get the point x̄ by solving (SP(ā, r)). For
ā = −1/(3

√
2) · (1+

√
2, 1+

√
2,
√

2−2)� and t̄ = (1−√
2)/3 the point

(t̄, x̄) is a minimal solution of (SP(ā, r)), but it is ā �∈ Ha.

Das and Dennis are confronted with the same problem during
their examinations of the normal boundary intersection method in [40,
pp.635f].

Due to these difficulties we determine a weaker restriction of the set
H for the parameter a by projecting the image set f(Ω) in direction r
onto the set H. Thus we determine the set

H̃ := {y ∈ H | y + t r = f(x), t ∈ R, x ∈ Ω} ⊂ H (2.17)

(see Fig. 2.6 for m = 3).
We would again (see Remark 2.18) get a better result in the sense of

a stronger restriction of the set H by projecting the efficient points of
the set f(Ω), i. e. the set E(f(Ω), K), only onto the hyperplane H, i. e.
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Fig. 2.6. Determination of the sets H̃ and H0.

by determining {y ∈ H | y+t r = f(x), t ∈ R, x ∈ M(f(Ω), K)} ⊂ H.
However the set of K-minimal points is generally not known. It is the
aim of our method to approximate this set.

The set H̃ ⊂ H has in general an irregular boundary and is therefore
not suitable for a systematic procedure. Hence we embed the set H̃ in
a (m− 1)-dimensional cuboid H0 ⊂ R

m which is chosen as minimal as
possible. For calculating the set H0 we first determine m − 1 vectors
v1, . . . , vm−1, which span the hyperplane H with H̃ ⊂ H and which are
orthogonal and normalized by one, i. e.

vi�vj =

{
0, for i �= j, i, j ∈ {1, . . . , m − 1},
1, for i = j, i, j ∈ {1, . . . , m − 1}. (2.18)

These vectors form an orthonormal basis of the smallest subspace of
R

m containing H. We have the condition vi ∈ H, i = 1, . . . , m− 1, i. e.

b�vi = β, i = 1, . . . , m − 1. (2.19)

For example for m = 3 we can choose v1 and v2 dependent on b =
(b1, b2, b3)� as follows

ṽ1 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( b1
b3

,− b3
b2

− b21
b2b3

, 1)� if b2 �= 0, b3 �= 0,

(b3, 0,−b1)� if b2 = 0, b3 �= 0,

(0, 0,−b1)� if b1 �= 0, b3 = 0,

(1, 0, 0)� if b1 = 0, b3 = 0,

and v1 :=
ṽ1

‖ṽ1‖2

as well as
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ṽ2 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b3, 0,−b1)� if b2 �= 0, b3 �= 0,

(0, 1, 0)� if b2 = 0, b3 �= 0,

(− b2
b1

, 1, 0)� if b1 �= 0, b3 = 0,

(0, 0, 1)� if b1 = 0, b3 = 0,

and hence v2 :=
ṽ2

‖ṽ2‖2
.

This leads to the representation

H = {y ∈ R
m | y =

m−1∑
i=1

siv
i, s ∈ R

m−1}. (2.20)

of the hyperplane H. Then, for the set H̃ as in (2.17), we can determine
the searched cuboid by solving the following 2(m − 1) scalar-valued
optimization problems

min sj

subject to the constraints
m−1∑
i=1

siv
i + t r = f(x),

t ∈ R,

x ∈ Ω,

s ∈ R
m−1

(2.21)

for j ∈ {1, . . . , m − 1} with minimal solution (tmin,j , xmin,j , smin,j) and
minimal value smin,j

j and

min−sj

subject to the constraints
m−1∑
i=1

siv
i + t r = f(x),

t ∈ R,

x ∈ Ω,

s ∈ R
m−1

(2.22)

for j ∈ {1, . . . , m− 1} with minimal solution (tmax,j , xmax,j , smax,j) and
minimal value −smax,j

j . We get

H0 :=

{
y ∈ R

m
∣∣∣ y =

m−1∑
i=1

siv
i, si ∈ [smin,i

i , smax,i
i ], i = 1, . . . , m − 1

}
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with H̃ ⊂ H0. This is a suitable restriction of the parameter set H as
the following lemma shows.

Lemma 2.20. Let x̄ be a K-minimal solution of the multiobjective
optimization problem (MOP). Let r ∈ K \ {0m}. Then there is a pa-
rameter ā ∈ H0 and some t̄ ∈ R so that (t̄, x̄) is a minimal solution of
(SP(ā, r)).

Proof. According to Theorem 2.11 the point (t̄, x̄) with

t̄ :=
b�f(x̄) − β

b�r

is a minimal solution of (SP(ā, r)) for ā := f(x̄) − t̄ r ∈ H. Because of
H0 ⊂ H it suffices to show ā ∈ H0. As ā ∈ H there is according to the
representation in (2.20) a point s̄ ∈ R

m−1 with

ā =
m−1∑
i=1

s̄iv
i.

Because of ā + t̄ r = f(x̄) the point (t̄, x̄, s̄) is feasible for the opti-
mization problems (2.21) and (2.22). Thus it is smin,i

i ≤ s̄i ≤ smax,i
i for

i = 1, . . . , m − 1 and it follows ā ∈ H0. �

Hence we can also restrict the parameter set for the case of more
than two objectives and arbitrary ordering cones K.

2.4 Modified Pascoletti-Serafini Scalarization

For theoretical reasons we are also interested in the following modifica-
tion of the Pascoletti-Serafini problem named (SP(a, r)) which is given
by

min t

subject to the constraints
a + t r − f(x) = 0m,

t ∈ R, x ∈ Ω.

(2.23)

Here the inequality constraint a + t r − f(x) ∈ K is replaced by an
equality constraint. For the connection between the problem (SP(a, r))
and the problem (SP(a, r)) the following theorem is important.
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Theorem 2.21. Let a hyperplane H = {y ∈ R
m | b�y = β} with

b ∈ R
m \ {0m} and β ∈ R be given. Let (t̄, x̄) be a minimal solution of

the scalar optimization problem (SP(a, r)) for the parameters a ∈ R
m

and r ∈ R
m with b�r �= 0. Hence there is a k̄ ∈ K with

a + t̄ r − f(x̄) = k̄.

Then there is a parameter a′ ∈ H and some t′ ∈ R so that (t′, x̄) is a
minimal solution of (SP(a′, r)) with

a′ + t′ r − f(x̄) = 0m.

Proof. We set

t′ :=
b�f(x̄) − β

b�r

and
a′ := a + (t̄ − t′) r − k̄ = f(x̄) − t′ r.

Then a′ ∈ H and a′ + t′ r − f(x̄) = 0m. The point (t′, x̄) is feasible for
(SP(a′, r)) and it is also a minimal solution, because otherwise there
exists a feasible point (t̂, x̂) of (SP(a′, r)) with t̂ < t′, x̂ ∈ Ω, and some
k̂ ∈ K with

a′ + t̂ r − f(x̂) = k̂.

Together with the definition of a′ we conclude

a + (t̄ − t′ + t̂) r − f(x̂) = k̂ + k̄ ∈ K.

Hence (t̄ − t′ + t̂, x̂) is feasible for (SP(a, r)) with t̄ − t′ + t̂ < t̄ in
contradiction to the minimality of (t̄, x̄) for (SP(a, r)). �

Remark 2.22. Thus for a minimal solution (t̄, x̄) of the scalar opti-
mization problem (SP(a, r)) with

a + t̄ r − f(x̄) = k̄, k̄ �= 0m,

there is a parameter a′ ∈ H and some t′ ∈ R so that (t′, x̄) is a minimal
solution of (SP(a′, r)) with

a′ + t′ r − f(x̄) = 0m

(see Fig. 2.7) and hence (t′, x̄) is also a minimal solution of (SP(a′, r)).
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Fig. 2.7. Visualization of the Remark 2.22.

For the scalarization (SP(a, r)) the property c) of Theorem 2.1 is no
longer valid, which means that minimal solutions of (SP(a, r)) are not
necessarily weakly K-minimal points of the multiobjective optimization
problem (MOP). However due to Theorem 2.21 we can still find all K-
minimal points only by varying the parameter a on a hyperplane:

Theorem 2.23. Let a hyperplane H = {y ∈ R
m | b�y = β} with

b ∈ R
m, β ∈ R be given an let x̄ ∈ M(f(Ω), K) and r ∈ K \ {0m}

with b�r �= 0. Then there is a parameter a ∈ H and some t̄ ∈ R so that
(t̄, x̄) is a minimal solution of (SP(a, r)).

Proof. According to Theorem 2.1,b) there is a parameter a′ and
some t′ ∈ R so that (t′, x̄) is a minimal solution of (SP(a′, r)). According
to Theorem 2.21 there is then a point a ∈ H and some t̄ ∈ R so that
(t̄, x̄) is a minimal solution of (SP(a, r)). �

Analogously to the Pascoletti-Serafini method we can do a param-
eter set restriction for the modified Pascoletti-Serafini problem, too.
We demonstrate this for the bicriteria case and we show, that it is
again sufficient to consider parameters a from a line segment of the
hyperplane H to be able to detect all K-minimal points of the original
problem.

Lemma 2.24. Let m = 2 and let the ordering cone K be given as in
(2.5). Let ā1 and ā2 and the set Ha be given as in Theorem 2.17.

Then for any K-minimal solution x̄ of the multiobjective optimiza-
tion problem (MOP) there exists a parameter a ∈ Ha and some t̄ ∈ R

so that (t̄, x̄) is a minimal solution of (SP(a, r)).
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Proof. According to Theorem 2.17 there exists a parameter a ∈
Ha and some t̄ ∈ R so that (t̄, x̄) is a minimal solution of (SP(a, r)).
As shown in the proof of Theorem 2.17 we can choose a and t̄ so that
a + t̄ r = f(x̄) and hence, (t̄, x̄) is a minimal solution of (SP(a, r)), too.
�

For the sensitivity studies in the following chapter the Lagrange
function and the Lagrange multipliers will be of interest. For that we
first recapitulate these notions and then we formulate an extension of
Theorem 2.21 taking the Lagrange multipliers into account. We start
with a general scalar-valued optimization problem

minF (x)
subject to the constraints

G(x) ∈ C,

H(x) = 0q,

x ∈ S

with a closed convex cone C ⊂ R
p, an open subset Ŝ ⊂ R

n, a closed
convex set S ⊂ Ŝ and continuously differentiable functions F : Ŝ → R,
G : Ŝ → R

p, and H : Ŝ → R
q (n, p, q ∈ N0). Then the related Lagrange

function is given by L : R
n ×C∗×R

q → R (with C∗ = {y ∈ R
p | y�x ≥

0 for all x ∈ C} the dual cone to C),

L(x, μ, ξ) := F (x) − μ�G(x) − ξ�H(x).

If the point x is feasible and if there exists (μ, ξ) ∈ C∗ × R
q with

∇xL(x, μ, ξ)�(s − x) ≥ 0 ∀s ∈ S

and
μ�G(x) = 0,

then μ and ξ are called Lagrange multipliers to the point x.
We need the following assumptions:

Assumption 2.25. Let K be a closed pointed convex cone in R
m

and C a closed convex cone in R
p. Let Ŝ be a nonempty open subset

of R
n and assume S ⊂ Ŝ to be closed and convex. Let the functions

f : Ŝ → R
m, g : Ŝ → R

p, and h : Ŝ → R
q be continuously differentiable

on Ŝ.
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We now formulate an extended version of Theorem 2.21:

Lemma 2.26. We consider the scalar optimization problem (SP(a, r))
under the Assumption 2.25. Let (t̄, x̄) be a minimal solution and assume
there exist Lagrange multipliers (μ, ν, ξ) ∈ K∗ × C∗ × R

q to the point
(t̄, x̄). According to Theorem 2.21 there exists a parameter a′ ∈ H and
some t′ ∈ R so that (t′, x̄) is a minimal solution of (SP(a′, r)) and
a′ + t′ r = f(x̄).

Then (μ, ν, ξ) are Lagrange multipliers to the point (t′, x̄) for the
problem (SP(a′, r)), too.

Proof. The Lagrange function L to the scalar optimization
problem (SP(a, r)) related to the multiobjective optimization problem
(MOP) is given by

L(t, x, μ, ν, ξ, a, r) = t − μ�(a + t r − f(x)) − ν�g(x) − ξ�h(x).

If (μ, ν, ξ) are Lagrange multipliers to the point (t̄, x̄) then it follows

∇(t,x)L(t̄, x̄, μ, ν, ξ, a, r)�
(

t − t̄

x − x̄

)
=[(

1
0

)
−

m∑
i=1

μi

(
ri

−∇xfi(x̄)

)
−

p∑
j=1

νj

(
0

∇xgj(x̄)

)

−
q∑

k=1

ξk

(
0

∇xhk(x̄)

)]�(
t − t̄

x − x̄

)
≥ 0 ∀t ∈ R, x ∈ S.

Hence 1−μ�r = 0 and
(
μ�∇xf(x̄) − ν�∇xg(x̄) − ξ�∇xh(x̄)

)
(x−x̄) ≥

0 for all x ∈ S. Further we have μ�(a+ t̄ r−f(x̄)) = 0 and ν�g(x̄) = 0.
For the minimal solution (t′, x̄) of the problem (SP(a′, r)) it is

a′ + t′ r − f(x̄) = 0m,

and thus μ�(a′ + t′ r − f(x̄)) = 0. Because of

∇(t,x)L(t′, x̄, μ, ν, ξ, a′, r) = ∇(t,x)L(t̄, x̄, μ, ν, ξ, a, r)

we also have

∇(t,x)L(t′, x̄, μ, ν, ξ, a′, r)�
(

t − t′

x − x̄

)
≥ 0 ∀t ∈ R, x ∈ S.

Thus (μ, ν, ξ) are also Lagrange multipliers to the point (t′, x̄) for the
problem (SP(a′, r)). �

In the chapter about sensitivity considerations the Lagrange multi-
pliers play an important role.
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2.5 Relations Between Scalarizations

We have seen in the preceding sections that the Pascoletti-Serafini prob-
lem features many interesting and important properties. It is a very
general formulation allowing two parameters to vary arbitrarily. Due to
this, many other well-known and wide spread scalarization approaches
can be seen as a special case and can be subsumed under this general
problem. The connections will be studied in this section. The relations
are important for applying the results about an adaptive parameter
control gained in the following chapters for the general scalarization to
the special problems, too.

2.5.1 ε-Constraint Problem

We start with a common method called ε-constraint method ([54, 98,
60, 159, 165]). It is a very wide spread method especially in engineer-
ing design for finding EP-minimal points, because the method is very
intuitive and the parameters are easy to interpret as upper bounds. In
[147, 148, 186] this method is used for solving multiobjective optimiza-
tion problems via evolutionary algorithms.

For an arbitrary k ∈ {1, . . . , m} and parameters εi ∈ R, i ∈
{1, . . . , m} \ {k}, the scalarized problem called (Pk(ε)) reads as follows
(compare (2.1)):

min fk(x)
subject to the constraints

fi(x) ≤ εi, i ∈ {1, . . . , m} \ {k},
x ∈ Ω.

(2.24)

It is easy to see that this is just a special case of the Pascoletti-Serafini
scalarization for the ordering cone K = R

m
+ . We even get a connection

w. r. t. the Lagrange multipliers:

Theorem 2.27. Let Assumption 2.25 hold and let K = R
m
+ , C = R

p
+,

and Ŝ = S = R
n. A point x̄ is a minimal solution of (Pk(ε)) with

Lagrange multipliers μ̄i ∈ R+ for i ∈ {1, . . . , m} \ {k}, ν̄ ∈ R
p
+, and

ξ̄ ∈ R
q, if and only if (fk(x̄), x̄) is a minimal solution of (SP(a, r)) with

Lagrange multipliers (μ̄, ν̄, ξ̄) with μ̄k = 1, and

ai = εi, ∀i ∈ {1, . . . , m} \ {k}, ak = 0 and r = ek (2.25)

with ek the kth unit vector in R
m.
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Proof. By introducing the additional variable t ∈ R the scalar
optimization problem (Pk(ε)) can be formulated as

min t

subject to the constraints
εi − fi(x) ≥ 0, i ∈ {1, . . . , m} \ {k},
t − fk(x) ≥ 0,

gj(x) ≥ 0, j = 1, . . . , p,

hl(x) = 0, l = 1, . . . , q,

t ∈ R, x ∈ R
n.

(2.26)

If x̄ is a minimal solution of (Pk(ε)) then (t̄, x̄) := (fk(x̄), x̄) is a minimal
solution of the problem (2.26). However problem (2.26) is equivalent to
the Pascoletti-Serafini problem (SP(a, r)) with a and r as in (2.25).

Because μ̄i, i ∈ {1, . . . , m} \ {k}, ν̄j , j = 1, . . . , p, ξ̄l, l = 1, . . . , q,
are Lagrange multipliers to x̄ for (Pk(ε)), we have

μ̄i(εi − fi(x̄)) = 0 for all i ∈ {1, . . . , m} \ {k},
ν̄j(gj(x̄)) = 0 for all j ∈ {1, . . . , p},

and

∇fk(x̄) +
m∑

i=1
i�=k

μ̄i∇fi(x̄) −
p∑

j=1

ν̄j∇gj(x̄) −
q∑

l=1

ξ̄l∇hl(x̄) = 0n. (2.27)

The derivative of the Lagrange function L(t, x, μ, ν, ξ, a, r) to (SP(a, r))
with a and r as in (2.25) in the point (fk(x̄), x̄) reads as follows:

∇(t,x)L(fk(x̄), x̄, μ, ν, ξ, a, r) =

(
1
0

)
− μk

(
1

−∇fk(x̄)

)

−
m∑

i=1
i�=k

μi

(
0

−∇fi(x̄)

)
−

p∑
j=1

νj

(
0

∇gj(x̄)

)
−

q∑
l=1

ξl

(
0

∇hl(x̄)

)
.

By choosing μ̄k = 1 and applying (2.27) we get

∇(t,x)L(fk(x̄), x̄, μ̄, ν̄, ξ̄, a, r) = 0n+1,

and hence (μ̄, ν̄, ξ̄) are Lagrange multipliers to the point (fk(x̄), x̄) for
the problem (SP(a, r)), too. The proof of the converse direction can be
done analogously. �
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Fig. 2.8. Connection between the ε-constraint and the Pascoletti-
Serafini method.

The statement of Theorem 2.27 is visualized in Fig. 2.8 on a bi-
criteria optimization problem with k = 2 in the ε-constraint method.

For the choice of the parameters as in (2.25) it follows that the
constraint ak + t rk − fk(x) ≥ 0 is always active in (fk(x̄), x̄), i. e. it is
ak + t rk − fk(x) = 0. The ε-constraint method is a restriction of the
Pascoletti-Serafini problem with the parameter a chosen only from the
hyperplane H = {y ∈ R

m | yk = 0} and the parameter r = ek constant.
From Theorem 2.27 together with Theorem 2.11 we conclude:

Corollary 2.28. If x̄ ∈ M(f(Ω), Rm
+ ), then x̄ is a minimal solution

of (Pk(ε)) for εi = fi(x̄), i ∈ {1, . . . , m} \ {k}.
In contrast to the Pascoletti-Serafini method in general not any

weakly EP-minimal solution can be found by solving (Pk(ε)) because
we choose r ∈ ∂K = ∂R

m
+ for the ε-constraint method. However weakly

EP-minimal points which are not also EP-minimal are not of practical
interest. As a consequence of Theorem 2.1,c) we have:

Corollary 2.29. If x̄ is a minimal solution of (Pk(ε)), then x̄ ∈
Mw(f(Ω), Rm

+ ).

A direct proof of this result can be found for instance in [62, Prop.
4.3] or in [165, Theorem 3.2.1].

The ε-constraint method has a big drawback against the more gen-
eral Pascoletti-Serafini problem. According to Corollary 2.5, if we have
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E(f(Ω), Rm
+ ) �= ∅ and f(Ω)+K is closed and convex, then for any choice

of the parameters (a, r) ∈ R
m × int(K) there exists a minimal solution

of the problem (SP(a, r)). This is no longer true for the ε-constraint
method as the following example demonstrates.

Example 2.30. Let f : R
2 → R

2 with f(x) := x for all x ∈ R
2 be

given. We consider the bicriteria optimization problem

min f(x) = x

subject to the constraints
‖x‖2 ≤ 1,

x ∈ R
2

w. r. t. the natural ordering K = R
m
+ . The set f(Ω) + K is convex and

the efficient set is

E(f(Ω), R2
+) = {x = (x1, x2)� ∈ R

2 | ‖x‖2 = 1, x1 ≤ 0, x2 ≤ 0} �= ∅.

The ε-constraint scalarization for k = 2 is given by

min f2(x)
subject to the constraints

f1(x) ≤ ε1,

‖x‖2 ≤ 1,

x ∈ R
2,

but for ε1 < −1 there exists no feasible point and thus no minimal
solution.

Hence it can happen that the ε-constraint problem is solved for a
large number of parameters without getting any solution, and with that
weakly EP-minimal points, or at least the information M(f(Ω), Rm

+ ) =
∅. This is due to the fact that this is a special case of the Pascoletti-
Serafini problem with r ∈ ∂K = ∂R

m
+ .

We can apply the results of Theorem 2.17 for a restriction of the
parameter set for the ε-constraint problem, too. For m = 2 and e. g.
k = 2 we have according to Theorem 2.27

r =

(
0
1

)
and a ∈ H =

{
y ∈ R

2 | y2 = 0
}

=

{(
ε

0

) ∣∣∣ ε ∈ R

}
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(i. e. b = (0, 1)�, β = 0). The ordering cone K = R
2
+ is finitely gen-

erated by l1 = (1, 0)� and l2 = (0, 1)� and hence (2.6) and (2.7) are
equal to

min
x∈Ω

f1(x) and min
x∈Ω

f2(x).

For x̄1 and x̄2 respectively minimal solutions of these problems we get

Ha := {y ∈ H | y = λā1 + (1 − λ)ā2, λ ∈ [0, 1]}

with

āi := f(x̄i) − b�f(x̄i) − β

b�r
r =

(
f1(x̄i)

0

)
, i = 1, 2,

and hence

Ha = {y = (ε, 0)� | ε = λ f1(x̄1) + (1 − λ) f1(x̄2), λ ∈ [0, 1]}
= {y = (ε, 0)� | f1(x̄1) ≤ ε ≤ f1(x̄2)}.

We conclude:

Corollary 2.31. Let x̄ be an EP-minimal solution of the multiobjective
optimization problem (MOP) with m = 2. Let x̄1 be a minimal solution
of minx∈Ω f1(x) and x̄2 a minimal solution of minx∈Ω f2(x). Then there
is a parameter ε ∈ {y ∈ R | f1(x̄1) ≤ y ≤ f1(x̄2)} with x̄ a minimal
solution of (P2(ε)). The same result holds for (P1(ε)).

2.5.2 Normal Boundary Intersection Problem

We start with a short recapitulation of this method introduced by Das
and Dennis in [38, 40]. For determining EP-minimal points the scalar
optimization problems

max s

subject to the constraints
Φβ + s n̄ = f(x) − f∗,

s ∈ R, x ∈ Ω,

(2.28)

named (NBI(β)) for parameters β ∈ R
m
+ ,

∑m
i=1 βi = 1, are solved.

Here f∗ denotes the so-called ideal point defined by f∗
i := fi(xi) :=

minx∈Ω fi(x), i = 1, . . . , m. The matrix Φ ∈ R
m×m consists of the

columns f(xi) − f∗ (i = 1, . . . , m) and the set
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f∗ + {Φβ | β ∈ R
m
+ ,

m∑
i=1

βi = 1} (2.29)

is then the set of all convex combinations of the extremal points
f(xi), i = 1, . . . , m, the so-called CHIM (convex hull of individual min-
ima). The vector n̄ is defined as normal unit vector to the hyperplane
extending the CHIM directing to the negative orthant.

The idea of this method is that by solving the problem (NBI(β)) for
an equidistant choice of parameters β an equidistant approximation
of the efficient set is generated. However already for the case m ≥
3 generally not all EP-minimal points can be found as a solution of
(NBI(β)) (see [40, Fig. 3]) and what is more, the maximal solutions of
(NBI(β)) are not necessarily weakly EP-minimal ([231, Ex. 7.9.1]).

There is a direct connection between the normal boundary in-
tersection (NBI) method and the modified version (SP(a, r)) of the
Pascoletti-Serafini problem.

Lemma 2.32. A point (s̄, x̄) is a maximal solution of (NBI(β)) with
β ∈ R

m,
∑m

i=1 βi = 1, if and only if (−s̄, x̄) is a minimal solution of
(SP(a, r)) with a = f∗ + Φβ and r = −n̄.

Proof. By setting a = f∗ + Φβ, t = −s and r = −n̄ we see
immediately that solving problem (NBI(β)) is equivalent to solve

−min t

subject to the constraints
a + t r − f(x) = 0m,

t ∈ R, x ∈ Ω,

being again equivalent to solve (SP(a, r)). �

Hence, the NBI method is a restriction of the modified Pascoletti-
Serafini method as the parameter a is chosen only from the CHIM and
the parameter r = −n̄ is chosen constant. In the bicriteria case (m = 2)
the CHIM consists of the points:

f∗ + Φ β =

(
f1(x1)
f2(x2)

)
+

(
0 f1(x2) − f1(x1)

f2(x1) − f2(x2) 0

)(
β1

1 − β1

)

= β1

(
f1(x1)
f2(x1)

)
+ (1 − β1)

(
f1(x2)
f2(x2)

)
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for β = (β1, 1 − β1)� ∈ R
2
+. Then the hyperplane H including the

CHIM is
H :=

{
f∗ + Φ β | β ∈ R

2, β1 + β2 = 1
}

=
{
β f(x1) + (1 − β) f(x2) | β ∈ R

}
.

The set Ha according to Lemma 2.24 is then

Ha =
{
β f(x1) + (1 − β) f(x2) | β ∈ [0, 1]

}
which equals (only here in the bicriteria case) the set CHIM proposed
by Das and Dennis.

In the case of more then three objective functions it is no longer
sufficient to consider convex combinations of the extremal points as we
have already seen in Example 2.19. That is the reason why in general
not all EP-minimal points can be found with the NBI method (as pro-
posed by Das and Dennis) for the case m ≥ 3. However by allowing
the parameter β to vary arbitrarily, and with that the parameter a to
vary arbitrarily on the hyperplane including the CHIM, all EP-minimal
points of (MOP) can be found by solving (SP(a, r)) and (NBI(β)) re-
spectively (see Theorem 2.23).

For a discussion of the NBI method see also [140, 209]. In [208]
a modification of the NBI method is proposed. There, the equality
constraint in (NBI(β)) is replaced by the inequality

Φβ + s n̄ ≥m f(x) − f∗.

This modified problem guarantees thus weakly efficient points. It is
then a special case of the Pascoletti-Serafini scalarization (SP(a, r))
with the parameters as in Lemma 2.32. In [208] also the connection
between that modified problem and the weighted sum as well as the
ε-constraint problem are discussed.

2.5.3 Modified Polak Problem

The modified Polak method ([112, 128, 182] and an application in [127])
has a similar connection to the Pascoletti-Serafini problem as the nor-
mal boundary intersection method has. We restrict the presentation of
the modified Polak method here to the bicriteria case. Then, for differ-
ent values of the parameter y1 ∈ R, the scalar optimization problems
called (MP(y1))
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min f2(x)
subject to the constraints

f1(x) = y1,

x ∈ Ω

(2.30)

are solved. Here the objectives are transformed to equality constraints,
like in the normal boundary intersection problem, and not to inequality
constraints, like in the general Pascoletti-Serafini method. Besides the
constraint f1(x) = y1 shows a similarity to the ε-constraint method
with the constraint f1(x) ≤ ε1.

Lemma 2.33. Let m = 2. A point x̄ is a minimal solution of (MP(y1))
if and only if (f2(x̄), x̄) is a minimal solution of (SP(a, r)) with a =
(y1, 0) and r = (0, 1).

Proof. With the parameters a and r as defined in the theorem
problem (SP(a, r)) reads as follows:

min t

subject to the constraints
y1 − f1(x) = 0,

t − f2(x) = 0,

t ∈ R, x ∈ Ω,

and it can immediately be seen that solving this problem is equivalent
to solve problem (MP(y1)). �

Of course a generalization to the case m ≥ 3 can be done as well.
The modified Polak method is, like the NBI method, a restriction

of the modified Pascoletti-Serafini method. However because the pa-
rameter a = (y1, 0) is allowed to vary arbitrarily in the hyperplane
H = {y ∈ R

2 | y2 = 0} in contrast to the NBI method all EP-minimal
points can be found. We can apply Lemma 2.24 and get again a result
on the restriction of the parameter set:

Lemma 2.34. Let m = 2, K = R
2
+ and let f1(x̄1) := minx∈Ω f1(x)

and f2(x̄2) := minx∈Ω f2(x) be given. Then, for any EP-minimal solu-
tion x̄ of the multiobjective optimization problem (MOP) there exists
a parameter y1 with f1(x̄1) ≤ y1 ≤ f1(x̄2) such that x̄ is a minimal
solution of (MP(y1)).
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Proof. We determine the set Ha according to Lemma 2.24. It is
H = {y ∈ R

2 | (0, 1)y = 0} and r = (0, 1)�. Then it follows

ā1 =

(
f1(x̄1)

0

)
and ā2 =

(
f1(x̄2)

0

)

and thus Ha = {y = (y1, 0) ∈ R
2 | f1(x̄1) ≤ y1 ≤ f2(x̄2)}. As a

consequence of Lemma 2.24 there exists some t̄ ∈ R and a parameter
a = (y1, 0) ∈ Ha with (t̄, x̄) a minimal solution of (SP(a, r)). Here, t̄
is according to the proof of Theorem 2.17 given as t̄ = f2(x̄). Thus
(f2(x̄), x̄) is a minimal solution of (SP(a, r)) and with Lemma 2.33 we
conclude that x̄ is a minimal solution of (MP(y1)) with f1(x̄1) ≤ y1 ≤
f1(x̄2). �

This result is also used in the algorithm for the modified Polak
method presented in [124, p.314].

2.5.4 Weighted Chebyshev Norm Problem

In this scalarization method ([56, 151, 158, 216], [112, p.13]) for de-
termining EP-minimal points we have weights wi > 0, i = 1, . . . , m,
and a reference point ([25, 167, 236]) a ∈ R

m with ai < minx∈Ω fi(x),
i = 1, . . . , m, (assuming solutions exist), i. e. f(Ω) ⊂ a+int(Rm

+ ), as pa-
rameters. For scalarizing the multiobjective optimization problem the
weighted Chebyshev norm of the function f(·) − a is minimized:

min
x∈Ω

max
i∈{1,...,m}

wi(fi(x) − ai). (2.31)

This problem has the following connection to the Pascoletti-Serafini
problem:

Theorem 2.35. A point (t̄, x̄) ∈ R × Ω is a minimal solution of
(SP(a, r)) with K= R

m
+ and with parameters a ∈ R

m, ai<minx∈Ω fi(x),
i = 1, . . . , m, and r ∈ int(Rm

+ ) if and only if x̄ is a solution of (2.31)
with reference point a and weights wi = 1

ri
> 0, i = 1, . . . , m.

Proof. If we set ri = 1
wi

> 0 and K = R
m
+ problem (SP(a, r))

reads as follows:

min t

subject to the constraints
ai + t 1

wi
− fi(x) ≥ 0, i = 1, . . . , m,

t ∈ R, x ∈ Ω.
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This is because of wi > 0, i = 1, . . . , m, equivalent to

min t

subject to the constraints
wi(fi(x) − ai) ≤ t, i = 1, . . . , m,

t ∈ R, x ∈ Ω,

but this is according to [124, p.305], or [151, p.14] just a reformulation
of (2.31) with an additional variable introduced. �

Thus a variation of the weights in the norm corresponds to a vari-
ation of the direction r, and a variation of the reference point is like
a variation of the parameter a in the Pascoletti-Serafini method. Sim-
ilar in the goal attainment method by Gembicki and Haimes, [89], for
determining EP-minimal points for the case m = 2 the parameter a
is interpreted as a goal and the parameter r with ri > 0, i = 1, 2, as
weights of the deviation of the objective function to the goal. For gener-
ating various efficient points the parameter r ∈ int(Rm

+ ) with r1+r2 = 1
is varied.

As a consequence of Theorem 2.1 any solution of (2.31) is at least
weakly EP-minimal. Besides, any weakly EP-minimal point can be
found as a solution of (2.31). In [231, Example 7.7.1] it is shown, that
f(Ω) ⊂ a + R

m
+ is necessary for the last statement.

For a = 0m problem (2.31) reduces to the weighted minimax method
as discussed in [149].

2.5.5 Problem According to Gourion and Luc

This problem is lately developed by Gourion and Luc, [95], for find-
ing EP-maximal points of a multiobjective optimization problem with
f(Ω) ⊂ R

m
+ . This corresponds to the multiobjective optimization prob-

lem (MOP) w. r. t. the ordering cone K = R
m− . The parameter depen-

dent scalar optimization problems according to Gourion and Luc read
as follows

max s

subject to the constraints
f(x) ≥ s α,

s ∈ R, x ∈ Ω

(2.32)

introducing the new variable s ∈ R and with the parameter α ∈ R
m
+ .

We will see that the scalarization of Gourion and Luc can be seen as
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a special case of the Pascoletti-Serafini method with a variation of the
parameter r = −α only and with the constant parameter a = 0m.

Theorem 2.36. A point (s̄, x̄) is a maximal solution of (2.32) with
parameter α ∈ R

m
+ if and only if (−s̄, x̄) is a minimal solution of

(SP(a, r)) with a = 0m, r = −α ∈ R
m− and K = R

m− .

Proof. By defining r = −α ∈ R
m− and t = −s problem (2.32) can

be written as
max (−t)

subject to the constraints
f(x) ≥ (−r) · (−t),

t ∈ R, x ∈ Ω

being equivalent to

− min t

subject to the constraints
t r − f(x) ∈ K,

t ∈ R, x ∈ Ω

with K = R
m− , i. e. to the Pascoletti-Serafini scalarization (SP(a, r))

with a = 0m and K = R
m− . �

From this theorem together with Theorem 2.1,c) it follows that if
(s̄, x̄) is a maximal solution of (2.32) then x̄ is weakly R

m− -minimal, i. e.
x̄ is weakly EP-maximal for the related multiobjective optimization
problem.

For the choice of the parameter α = −r Gourion and Luc present
a procedure and give a convergence proof for this method. Further for
special sets f(Ω) they show that the minimal value function (in the
notion of the Pascoletti-Serafini problem)

r �→ min{t | t r − f(x) ∈ K, t ∈ R, x ∈ Ω}

is continuous on the set {r ∈ R
m
+ |

m∑
i=1

ri = 1} ([95, Lemma 3.1]).

2.5.6 Generalized Weighted Sum Problem

Before we come to the usual weighted sum method we consider a more
general formulation having not only a weighted sum as objective func-
tion but also similar constraints as the already discussed ε-constraint
method (compare [231, p.136]):
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min
m∑

i=1
wifi(x) = w�f(x)

subject to the constraints
fi(x) ≤ εi for all i ∈ P,

x ∈ Ω

(2.33)

with P � {1, . . . , m}, εi ∈ R for all i ∈ P , and weights w ∈ R
m,∑

i�∈P wi > 0. We start with the connection to the Pascoletti-Serafini
problem and from that we conclude some properties of the problem
(2.33).

Theorem 2.37. A point x̄ is a minimal solution of (2.33) for the
parameters w ∈ R

m,
∑

i�∈P wi > 0, εi ∈ R, i ∈ P , if and only if there
is some t̄ so that (t̄, x̄) is a minimal solution of (SP(a, r)) with ai = εi

for i ∈ P , ai arbitrary for i ∈ {1, . . . , m} \ P , ri = 0 for i ∈ P , ri = 1
for i ∈ {1, . . . , m} \ P and cone Kw := {y ∈ R

m | yi ≥ 0, for all
i ∈ P, w�y ≥ 0}, i. e. of

min t

subject to the constraints
a + t r − f(x) ∈ Kw,

t ∈ R, x ∈ Ω.

(2.34)

Proof. The optimization problem (2.34) is equivalent to

min t

subject to the constraints
w� (a + t r − f(x)) ≥ 0,

ai + t ri − fi(x) ≥ 0 for all i ∈ P,

t ∈ R, x ∈ Ω.

(2.35)

As ai = εi and ri = 0 for i ∈ P and because of w�r =
∑

i�∈P wi > 0, a
point (t̄, x̄) is a minimal solution of (2.35) if and only if x̄ is a minimal
solution of

min w�f(x)−w�a
w�r

subject to the constraints
fi(x) ≤ εi for all i ∈ P,

x ∈ Ω.

(2.36)
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Because we can ignore the constant term −w�a
w�r

in the objective function
of (2.36) and because of w�r > 0 a point x̄ is a minimal solution of
(2.36) if and only if it is a minimal solution of (2.33). �

The set Kw is a closed convex cone and for |P | = m − 1 the cone
Kw is even pointed ([231, Lemma 7.11.1]).

Corollary 2.38. Let x̄ be a minimal solution of (2.33) and let K ⊂
{y ∈ R

m | yi ≥ 0 for all i ∈ P}, w ∈ K∗ \ {0m} and
∑

i�∈P wi > 0,
then x̄ ∈ Mw(f(Ω), K).

Proof. Applying Theorem 2.37 and Theorem 2.1,c) it follows
that x̄ ∈ Mw(f(Ω), Kw) with Kw = {y ∈ R

m | yi ≥ 0 for all i ∈
P, w�y ≥ 0}. As for all y ∈ K we have w�y ≥ 0 it follows K ⊂ Kw

and hence, with Lemma 1.7, Mw(f(Ω), Kw) ⊂ Mw(f(Ω), K). �

Thus, e. g. for K = R
m
+ , w ∈ R

m
+ and wi > 0 for all i �∈ P , all minimal

solutions of (2.33) are at least weakly EP-minimal. For wi > 0, i =
1, . . . , m, they are even EP-minimal (see [231, Theorem 7.11.1c)]).

Of course we can find all EP-minimal points x̄ ∈ M(f(Ω), Rm
+ ) by

solving (2.33) if we set P = {1, . . . , m − 1}, wi = 0 for i ∈ P , and
wm = 1. Then Kw = R

m
+ and (2.33) equals the ε-constraint problem

(Pm(ε)). By choosing εi = fi(x̄) for all i ∈ P , it is known that x̄ is a
minimal solution of the ε-constraint problem and hence of the problem
(2.33) (see Corollary 2.31).

The case P = {1, . . . , m} is introduced and discussed in Charnes
and Cooper ([29]) and later in Wendell and Lee ([233]). See also [97].
Weidner has shown ([231, p.130]) that there is no equivalent formula-
tion between (2.33) with P = {1, . . . , m} and (SP(a, r)).

2.5.7 Weighted Sum Problem

Now we come to the usual weighted sum method ([245], see also [55, 86])

minw�f(x)
subject to the constraint

x ∈ Ω

(2.37)

for weights w ∈ K∗ \ {0m} which is just a special case of (2.33) for
P = ∅. Because it is such an important problem formulation we adapt
Theorem 2.37 for this special case (see also Fig. 2.9):
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Theorem 2.39. A point x̄ is a minimal solution of (2.37) for the
parameter w ∈ K∗ \ {0m} if and only if there is some t̄ so that (t̄, x̄) is
a minimal solution of (SP(a, r)) with a ∈ R

m arbitrarily chosen, cone
Kw := {y ∈ R

m | w�y ≥ 0} and r ∈ int(Kw).

Proof. Problem (SP(a, r)) with cone Kw reads as follows:

min t

subject to the constraints
w�(a + t r − f(x)) ≥ 0,

t ∈ R, x ∈ Ω.

(2.38)

Because of r ∈ int(Kw) we have w�r > 0 and hence (2.38) is equivalent
to

min w�f(x)−w�a
w�r

subject to the constraint
x ∈ Ω.

With the same arguments as used in the proof to Theorem 2.37 this is
equivalent to (2.37). �

Fig. 2.9. Connection between the weighted sum and the Pascoletti-
Serafini problem.
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Hence a variation of the weights w ∈ K∗ \ {0m} corresponds to a
variation of the ordering cone Kw. So we get a new interpretation for the
weighted sum method. The cone Kw is a closed convex polyhedral cone,
but Kw is not pointed. That is the reason why the results from Theorem
2.1,b) cannot be applied to the weighted sum method and why it is
in general (in the non-convex case) not possible to find all K-minimal
points of (MOP) by solving the weighted sum method with appropriate
weights. However it is known that in the case of a convex set f(Ω) all
K-minimal points of the multiobjective optimization problem (MOP)
can be found ([124, pp.299f]). In [239] the stability of the solutions of
the weighted sum problem is studied.

We can conclude from Theorem 2.1,c) the following well known re-
sult:

Corollary 2.40. Let x̄ be a minimal solution of (2.37) with parameter
w ∈ K∗ \ {0m}, then x̄ is weakly K-minimal for (MOP).

Proof. According to Theorem 2.39 there is some t̄ so that (t̄, x̄) is
a minimal solution of (SP(a, r)) with cone Kw and hence x̄ is according
to Theorem 2.1,c) and Remark 2.2 a weakly Kw-minimal point. Because
w ∈ K∗ \ {0m} we have w�y ≥ 0 for all y ∈ K and hence K ⊂ Kw.
Thus, according to Lemma 1.7, Mw(f(Ω), Kw) ⊂ Mw(f(Ω), K) and
hence x̄ is a weakly K-minimal point, too. �

The weighted sum method has the same drawback against the
Pascoletti-Serafini method as the ε-constraint method has, as shown
in Example 2.30: not for any choice of the parameters w ∈ K∗ \ {0m}
there exists a minimal solution, even not for the case M(f(Ω), K) �= ∅.
In [24, Ex. 7.3] Brosowski gives a simple example where the weighted
sum problem delivers only for one choice of weights a minimal solu-
tion and where it is not solvable for all other weights despite the set
f(Ω) + K is closed and convex in contrast to Corollary 2.5:

Example 2.41. We consider the bicriteria optimization problem

min f(x) = x

subject to the constraints
x1 + x2 ≥ 1,

x ∈ R
2

w. r. t. the natural ordering. The set of K-minimal points is given by
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{x = (x1, x2)� ∈ R
2 | x1 + x2 = 1}.

Here the weighted sum problem has a minimal solution only for the
weights w1 = w2 = 0.5. For all other parameters there are feasible
points but the scalar problem is not solvable.

We further want to mention the weighted p-power method ([149])
where the scalarization is given by

min
x∈Ω

m∑
i=1

wif
p
i (x) (2.39)

for p ≥ 1, w ∈ R
m
+ \ {0m} (or w ∈ K∗ \ {0m}). For p = 1 (2.39) is equal

to the weighted sum method. For arbitrary p the problem (2.39) can be
seen as an application of the weighted sum method to the multiobjective
optimization problem

min
x∈Ω

⎛
⎜⎜⎝

fp
1 (x)
...

fp
m(x)

⎞
⎟⎟⎠ .

Another generalization of the weighted sum method is discussed in
[231, pp.111f]. There k (k ∈ N, k ≤ m) linearly independent weights
w1, . . . , wk ∈ R

m
+ are allowed representing for instance the preferences

of k decision makers. Besides a reference point v ∈ R
k is given. Then

the problem
min
x∈Ω

max
i∈{1,...,k}

(wi)�f(x) − vi (2.40)

is solved. The connection to the parameters of the Pascoletti-Serafini
problem is given by the equations

(wi)�a = vi, i = 1, . . . , k,

(wi)�r = 1, i = 1. . . . , k,

and K := {y ∈ R
m | (wi)�y ≥ 0, i = 1, . . . , k}. The set K is a closed

convex cone and K is pointed if and only if k = m. A minimal solution
of (2.40) is not only weakly K-minimal but because of R

m
+ ⊂ K also

weakly EP-minimal ([231, Theorem 7.2.1a)]). For k = 1 and v = 0
(2.40) is equivalent to (2.37). In the following section we will discuss a
special case of the problem (2.40) for k = m.
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2.5.8 Problem According to Kaliszewski

In [134] Kaliszewski discusses the following problem called (P∞):

min
x∈Ω

max
i∈{1,...,m}

λi

⎛
⎝(fi(x) − y∗i ) + ρ

m∑
j=1

(fj(x) − y∗j )

⎞
⎠ (2.41)

for a closed set f(Ω) ⊂ y∗ + int(Rm
+ ), y∗ ∈ R

m, and ρ > 0, λi > 0, i =
1, . . . , m, for determining properly efficient solutions ([134, Theorem
4.2]). The connection to the Pascoletti-Serafini problem is given by the
following theorem (compare [231, pp.118f]):

Theorem 2.42. A point x̄ is a minimal solution of (P∞) for f(Ω) ⊂
y∗ + int(Rm

+ ), y∗ ∈ R
m, ρ > 0, and λi > 0, i = 1, . . . , m, if and only if

the point (t̄, x̄) with

t̄ = max
i∈{1,...,m}

λi

⎛
⎝(fi(x̄) − y∗i ) + ρ

m∑
j=1

(fj(x̄) − y∗j )

⎞
⎠ (2.42)

is a minimal solution of (SP(a, r)) with a = y∗, r ∈ R
m with

ri + ρ
m∑

j=1

rj =
1
λi

, for all i = 1, . . . , m, (2.43)

and K = {y ∈ R
m | yi + ρ

∑m
i=1 yj ≥ 0, i = 1, . . . , m}.

Proof. For the parameter a and the cone K as in the theorem
the problem (SP(a, r)) reads as follows

min t

subject to the constraints

y∗i + t ri − fi(x) + ρ
∑m

j=1(y
∗
j + t rj − fj(x)) ≥ 0, i = 1, . . . , m,

t ∈ R, x ∈ Ω,

which is because of ri + ρ
∑m

j=1 rj = 1
λi

> 0 equivalent to

min t

subject to the constraints

t ≥ fi(x)−y∗
i +ρ

∑m
j=1(fj(x)−y∗

j )

ri+ρ
∑m

j=1 rj
, i = 1, . . . , m,

t ∈ R, x ∈ Ω.
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Using (2.43) a point (t̄, x̄) is a minimal solution of this problem if and
only if x̄ is a solution of (2.41) with t̄ as in (2.42). �

The set K is a closed pointed convex cone and we have r ∈ K. For
m = 2 the cone K is given by the set

K =

{
y ∈ R

2

∣∣∣∣∣
(

1 + ρ ρ

ρ 1 + ρ

)
y ≥ 02

}
.

Hence the parameter ρ controls the cone K. A variation of the parame-
ters λ and ρ lead to a variation of the parameter r while the parameter
a is chosen constant as y∗. Because of R

m
+ ⊂ K and r ∈ K for λi > 0,

i = 1 . . . , m, we have Ew(f(Ω), K) ⊂ Ew(f(Ω), Rm
+ ) and thus a minimal

solution of (P∞) is an at least weakly EP-minimal point of (MOP) as
a result of Lemma 1.7.

2.5.9 Further Scalarizations

We have shown that many scalarization problems can be seen as a
special case of the Pascoletti-Serafini method and hence that the re-
sults for the general problem can be applied to these special cases, too.
The enumeration of special cases is not complete. For example in [231]
a problem called hyperbola efficiency going back to [75] is discussed.
However for a connection to the Pascoletti-Serafini problem K has to
be defined as a convex set which is not a cone. Also a generalization of
the weighted Chebyshev norm problem is mentioned there which can
be connected to the Pascoletti-Serafini problem then using a closed
pointed convex cone K.

There are many other scalarization approaches, too, which cannot be
subsumed under the Pascoletti-Serafini method like the hybrid method
([62, p.101]), the elastic constraint method ([62, p.102]), or Benson’s
method ([11]). Literature with surveys about different scalarization ap-
proaches is listed in the introduction of this chapter.
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Sensitivity Results for the Scalarizations

In this chapter we study the connection between the choice of the pa-
rameters a and r and the minimal solutions (t(a, r), x(a, r)) of the scalar
optimization problem (SP(a, r)). Thereby we are especially interested
in the generated weakly efficient points f(x(a, r)) of the multiobjective
optimization problem (MOP). We still use the Assumption 2.25 and
we recall the problem (SP(a, r)):

(SP(a,r)) min
t,x

f̃(t, x, a, r) := t

subject to the constraints
g̃1(t, x, a, r) := a + t r − f(x) ∈ K,

g̃2(t, x, a, r) := g(x) ∈ C,

h̃(t, x, a, r) := h(x) = 0q,

t ∈ R, x ∈ S.

For our considerations we define a minimal value function τ : R
m ×

R
m → R = R ∪ {−∞, +∞} to the parameter dependent scalar-valued

optimization problem (SP(a, r)) by

τ(a, r) := inf{t ∈ R | (t, x) ∈ Σ(a, r)}.
Here, Σ(a, r) denotes the constraint set of the problem (SP(a, r)) de-
pendent on a and r:

Σ(a, r) := {(t, x) ∈ R × S | a + t r − f(x) ∈ K, g(x) ∈ C, h(x) = 0q}
= {(t, x) ∈ R

n+1 | a + t r − f(x) ∈ K, x ∈ Ω}.
We start our study with a reference problem (SP(a0, r0)) and we restrict
ourselves to local investigations. Let (t0, x0) be a minimal solution of



68 3 Sensitivity Results for the Scalarizations

the reference problem. Then we are interested in the question how small
changes of the parameters a and r influence the minimal value t(a, r)
and the minimal solutions (t(a, r), x(a, r)), and thus f(x(a, r)), locally
in a neighborhood of (t0, x0). For that we consider for a δ > 0 the local
minimal value function τ δ : R

m × R
m → R defined by

τ δ(a, r) := inf{t ∈ R | (t, x) ∈ Σ(a, r) ∩ Bδ(t0, x0)}

with Bδ(t0, x0) the closed ball with radius δ around the point x0. We
will see that under certain assumptions this function is differentiable
and its derivative can be expressed with the help of the derivative of
the Lagrange function to the problem (SP(a, r)) w. r. t. the parameters.
Based on this we approximate the local minimal value function. As
a result we can locally predict the position of the points f(x(a, r))
depending on a change of the parameters a and r. Some examinations
of the continuity and differentiability of the minimal value function of
this scalarization approach can also be found in [213].

By knowing the connection between the parameters (a, r) and the
weakly efficient points f(x(a, r)) we can approximate the efficient set
in a neighborhood of f(x0). With that information we can determine
further approximation points of the efficient set which have a controlled
distance from the point f(x0).

3.1 Sensitivity Results in Partially Ordered Spaces

We first discuss the general case that the partial orderings appearing in
the problem (SP(a, r)) are induced by arbitrary closed pointed convex
cones K and C. As the special case of the natural ordering, i. e. K = R

m
+

and C = R
p
+, is very interesting and allows some stronger results, we

discuss this case in the following section in detail.
The differentiability of the local minimal value function of scalar-

valued parametric optimization problems over normed linear spaces
under certain assumptions was shown by Alt in [6]. We first present this
general result by Alt before we apply it to our special problem. We need
the notion of Fréchet-differentiability which we recall for convenience.

Definition 3.1. Let (X, ‖·‖X), (Y, ‖·‖Y ) be normed linear spaces and
let Ŝ be an open nonempty subset of X. Let the map F : Ŝ → Y be
given and x̄ ∈ Ŝ. If there is a continuous linear map Fx(x̄) : X → Y
with the property
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lim
‖h‖X→0

‖F (x̄ + h) − F (x̄) − Fx(x̄)(h)‖Y

‖h‖X
= 0,

then Fx(x̄) is called Fréchet-derivative of F in x̄ and F is called Fréchet-
differentiable in x̄.

If F : R
n → R is a real-valued differentiable function then the

Fréchet-derivative of F in a point x̄ ∈ R
n equals the gradient of F

in x̄. Hence it is
Fx(x̄)(h) = ∇F (x̄)�h

for h ∈ R
n.

The notions of the Lagrange function and the Lagrange multipliers
(compare p.47) can be generalized to arbitrary normed linear spaces
using the Fréchet-derivative (see e. g. [123, p.119]). Alt ([6, Theorem
5.3, 6.1]) shows that – under certain assumptions – the derivative of
the local minimal value function of a parameter dependent optimiza-
tion problem equals the derivative of the Lagrange function w. r. t. the
parameters:

Theorem 3.2. Let X, Y, Z be Banach spaces, W a normed linear
space, Ŝ a nonempty subset of X, S ⊂ Ŝ a closed convex set and C ⊂ Y
a closed convex cone. Further let the maps F : Ŝ×W → R, G : Ŝ×W →
Y , and H : Ŝ × W → Z be given.

For w ∈ W we consider the parameter dependent optimization prob-
lem

(P(w)) minF (x, w)
subject to the constraints

G(x, w) ∈ C,

H(x, w) = 0Z ,

x ∈ S.

The constraint set depending on the parameter w ∈ W is then given by

Σ(w) := {x ∈ S | G(x, w) ∈ C, H(x, w) = 0Z}.

Let (P(w0)) be the so-called reference problem and let the point x0 be
a local minimal solution of (P(w0)). Assume the following:

a) The set N1(x0) ⊂ Ŝ is a neighborhood of x0 and N1(w0) ⊂ W of w0,
such that the maps F (·, w), G(·, w), and H(·, w) are twice Fréchet-
differentiable on N1(x0) for all w ∈ N1(w0).
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b) The maps G, H, Fx, Gx, Hx, Fxx, Gxx, and Hxx are continuous
on N1(x0) × N1(w0).

c) There is a neighborhood N2(x0) ⊂ N1(x0) of x0 and a neighborhood
N2(w0) ⊂ N1(w0) of w0, such that Fx, G, Gx, H, and Hx sat-
isfy the following Lipschitz condition for all x ∈ N2(x0) and for all
w1, w2 ∈ N2(w0) with constants c′F , cG, c′G, cH , and c′H :

‖Fx(x, w1) − Fx(x, w2)‖ ≤ c′F ‖w1 − w2‖,
‖G(x, w1) − G(x, w2)‖ ≤ cG‖w1 − w2‖,
‖Gx(x, w1) − Gx(x, w2)‖ ≤ c′G‖w1 − w2‖,
‖H(x, w1) − H(x, w2)‖ ≤ cH‖w1 − w2‖,
‖Hx(x, w1) − Hx(x, w2)‖ ≤ c′H‖w1 − w2‖.

d) The maps F, G, and H are continuously Fréchet-differentiable on
N2(x0) × N2(w0).

e) The point x0 is regular for the set Σ(w0), i. e.

0Y ×Z ∈ int

{(
G(x0, w0)

0Z

)
+

(
Gx(x0, w0)(x − x0)
Hx(x0, w0)(x − x0)

)
−
(

c

0Z

) ∣∣∣∣
x ∈ S, c ∈ C

}
.

f) The following strict second order sufficient condition is satisfied:
there are Lagrange multipliers (μ0, ξ0) ∈ C∗ × Z∗ and a constant
α > 0, such that for the second Fréchet-derivative of the Lagrange
function L(x, μ, ξ, w) in (x0, μ0, ξ0, w0) it is

Lxx(x0, μ0, ξ0, w0)(x, x) ≥ α‖x‖2

for all x ∈ X with Hx(x0, w0)(x) = 0Z .
g) For P := X∗ ×Y ×Z let BP denote the closed unit ball in P . Then

there exists a ζ > 0 such that for p1, p2 ∈ ζBP arbitrarily chosen
with pi = (x∗i, ui, vi), i = 1, 2, it holds:
If x1 and x2 respectively are solutions of the quadratic optimization
problem (QP )pi for i = 1, 2 given by

(QP )pi min J(x, pi)
subject to the constraints

G(x0, w0) + Gx(x0, w0)(x − x0) − ui ∈ C,

Hx(x0, w0)(x − x0) − vi = 0Z ,

x ∈ S
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with

J(x, pi) :=
1
2
Lxx(x0, μ0, ξ0, w0)(x − x0, x − x0)

+Fx(x0, w0)(x − x0) − x∗i(x − x0),

then the Lagrange multipliers (μi, ξi) to the point xi, i = 1, 2, are
unique and there is a constant cM with

‖(μ1, ξ1) − (μ2, ξ2)‖ ≤ cM

(‖x1 − x2‖ + ‖p1 − p2‖) .

Then there exists a constant δ > 0 and a neighborhood N(w0) ⊂ W
of w0, such that the local minimal value function τ δ : W → R,

τ δ(w) := inf{F (x, w) ∈ R | x ∈ Σ(w) ∩ Bδ(x0)},

is Fréchet-differentiable on N(w0) with Fréchet-derivative

τ δ
w(w) = Lw(x(w), μ(w), ξ(w), w).

Here x(w) denotes the local unique minimal solution of (P(w)) and
(μ(w), ξ(w)) are the unique Lagrange multipliers to the point x(w).

Besides the map φ : N(w0) → Bδ(x0) × Bδ(μ0, ξ0) with

φ(w) := (x(w), μ(w), ξ(w))

is Lipschitz continuous on N(w0).

The proof in [6] uses an implicit function theorem by Robinson
([187]). The preceding theorem delivers the connection between the
parameters and the minimal value and the minimal solutions of a pa-
rameter dependent optimization problem.

We will not apply Theorem 3.2 directly to the problem (SP(a, r))
but to the modified problem (SP(a, r)). As the following example shows
a direct examination of the problem (SP(a, r)) has a disadvantage: we
cannot conclude from the dependence of the minimal value t(a, r) on a
and r how a change of the parameters influences the generated weakly
efficient points f(x(a, r)).

Example 3.3. We consider the bicriteria optimization problem
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min

(
x1

x2

)

subject to the constraints
1 ≤ x1 ≤ 3,

1 ≤ x2 ≤ 3,

x ∈ R
2

with K = R
2
+, see Fig. 3.1.

The correspondent scalarization (SP(a, r)) is given by

min t

subject to the constraints
a + t r − f(x) ≥2 02,

x ∈ Ω, t ∈ R.

Let the problem (SP(a0, r0)) with

a0 =

(
2

5/2

)
, r0 =

(
1/2
1/4

)

denote the reference problem. The point (t0, x0) with t0 = −2, x0 =
(1, 3

2) is a minimal solution of the reference problem. We set the param-
eter r0 constant and vary the parameter a0 by moving it in direction

Fig. 3.1. Visualization of Example 3.3.
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(1, 0), i. e. we consider the problem (SP(aε, r0)) with aε := a0+ε·(1, 0)�.
For 0 ≤ ε ≤ 2 we get as minimal value t(ε) = −2 − 2ε dependent on
the choice of ε. As for 0 < ε ≤ 1 the point (t(ε), x0) is still a min-
imal solution of (SP(aε, r0)) we get the same weakly efficient point
f(x(ε)) = f(x0) of the multiobjective optimization problem. Here, we
cannot deduce a change of the points f(x(ε)) from a change of the
minimal value t(ε) (caused by a variation of the parameter a).

For ε = 1 the inequality constraint aε + t r0−f(x) ≥2 02 is active in
the point (t(ε), x0), i. e. a1 + t(1) r0 = f(x0). Then, a change in ε with
ε > 1 results in a new weakly EP-minimal point x(ε) �= x0.

We cannot apply Theorem 3.2 directly to the problem (SP(a, r)) for
a technical reason, too, as explained on p.74.

We have seen that for our considerations the sensitivity results
about the minimal value are only useful applied to a reference problem
(SP(a0, r0)) with the constraint a0 + t r0 − f(x) ∈ K being active in
(t0, x0), i. e. a0+t0 r0−f(x0) = 0m. This is no difficulty because accord-
ing to Theorem 2.21 for any minimal solution (t0, x0) of (SP(a0, r0))
there exists a parameter a′ and some t′ ∈ R so that (t′, x0) is a minimal
solution of (SP(a′, r0)) with a′+t′ r0−f(x0) = 0m. Thus, for being able
to deduce changes of the point f(x(a, r)) from changes in the minimal
value t(a, r) depending on the parameters, we consider the modified
problem (SP (a, r)) instead of (SP(a, r)). We recall (SP(a, r)):

min t

subject to the constraints
(SP (a,r)) a + t r − f(x) = 0m,

g(x) ∈ C,

h(x) = 0q,

t ∈ R, x ∈ S.

Let

Σ(a, r) := {(t, x) ∈ R × S | a + t r − f(x) = 0m, g(x) ∈ C, h(x) = 0q}
= {(t, x) ∈ R

n+1 | a + t r − f(x) = 0m, x ∈ Ω}

denote the constraint set. This modified problem has no longer the
property, that for any minimal solution (t̄, x̄) the point f(x̄) is an at
least weakly efficient point of the multiobjective optimization problem
(MOP) as already discussed in Sect. 2.4.
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Pascoletti and Serafini ([181]) have discussed the sensitivity of the
problem (SP(a, r)), too. They have restricted themselves to the special
case of a polyhedral cone K, C = R

p
+ and to S = R

n. The advantage
of polyhedral cones – as already discussed in Sect. 1.2 – is, that they
can be expressed by

K = {x ∈ R
m | x = K y for some y ∈ R

s
+}

with a matrix K ∈ R
m×s. By introducing an additional variable y ∈ R

s,
the constraint a + t r − f(x) ∈ K in (SP(a, r)) can be replaced by

a + t r − f(x) − K y = 0m,

y ≥s 0s.
(3.1)

The resulting optimization problem has equality and inequality con-
straints w. r. t. the natural ordering only. Then, the constraints which
are active or inactive in the reference problem can be examined sep-
arately. In the case of non-degeneracy it can be shown under some
additional assumptions that the index set of the active inequality con-
straints is non-varying for small parameter changes. These active con-
straints can thus be handled as equality constraints. By applying the
implicit function theorem further results follow. Using this approach
Pascoletti and Serafini show that the minimal solution x(a, r) is a func-
tion of the parameters a and r which is locally differentiable ([181, The-
orem 4.1]). The differentiability and the derivative of the local minimal
value function are not considered. We discuss this special case of a
polyhedral cone again at the end of this section.

We examine again the problem (SP(a, r)) with a general closed con-
vex cone K. The Hessian of the Lagrange function is given by

∇2
(t,x)L(t, x, μ, ν, ξ, a, r) =

(
0 0
0 W (x, μ, ν, ξ)

)

with

W (x, μ, ν, ξ) =
m∑

i=1

μi∇2
xfi(x) −

p∑
j=1

νj∇2
xgj(x) −

q∑
k=1

ξk∇2
xhk(x).

(The Lagrange function to the problem (SP(a, r)) has been introduced
on p.48.) For all points (t̄, x̄) = (t̄, 0n) with t̄ �= 0 it is
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∇(t,x)h̃(t, x, a, r)

(
t̄

0n

)
= (0n,∇xh(x))

(
t̄

0n

)
= 0q

and

(t̄, 0�n )∇2
(t,x)L(t, x, μ, ν, ξ, a, r)

(
t̄

0n

)
= 0.

However we have

α

∥∥∥∥∥
(

t̄

0n

)∥∥∥∥∥
2

= α |t̄|2 > 0

for α > 0 contradicting the assumption f) of Theorem 3.2.
Therefore we cannot apply Theorem 3.2 to the problem (SP(a, r))

and we turn our attention to the modified problem (SP(a, r)). This has
further the advantage of delivering a connection between the minimal
value t(a, r) and the points f(x(a, r)). We start by discussing whether
Theorem 3.2 is applicable to the modified problem. We need the fol-
lowing assumption:

Assumption 3.4. Let the Assumption 2.25 hold. Further let the func-
tions f , g, and h be twice continuously differentiable on Ŝ.

Remark 3.5. A consequence of Assumption 3.4 is that the functions
f̃ , g̃1, g̃2, and h̃ of the optimization problem (SP(a, r)) are twice con-
tinuously differentiable on R × Ŝ × R

m × R
m.

Lemma 3.6. Let Assumption 3.4 hold. Let (t0, x0) be a local minimal
solution of (SP(a0, r0)) with Lagrange multipliers (μ0, ν0, ξ0) ∈ R

m ×
C∗×R

q. Assume there exists a constant α̃ > 0 such that for the matrix

W (x0, μ0, ν0, ξ0) = μ0�∇2
xf(x0) − ν0�∇2

xg(x0) − ξ0�∇2
xh(x0)

we have
x�W (x0, μ0, ν0, ξ0)x ≥ α̃ ‖x‖2 (3.2)

for all x ∈ {x ∈ R
n | ∇xh(x0)x = 0q, ∇xf(x0)x = r0 t for a t ∈ R}.

Then there is a constant α > 0 such that for the Lagrange function
L to (SP(a, r)) we have

(t, x�)∇2
(t,x)L(t0, x0, μ0, ν0, ξ0, a0, r0)

(
t

x

)
≥ α

∥∥∥∥∥
(

t

x

)∥∥∥∥∥
2

(3.3)

for all (t, x) ∈ {(t, x) ∈ R×R
n | ∇xh(x0)x = 0q, ∇xf(x0)x = r0 t}, i. e.

assumption f) of Theorem 3.2 is satisfied for the problem (SP(a0, r0)).
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Proof. Because (t0, x0) is a local minimal solution of (SP(a0, r0))
with Lagrange multipliers (μ0, ν0, ξ0) we have for the associated La-
grange function

∇(t,x)L(t0, x0, μ0, ν0, ξ0, a0, r0)�
(

t − t0

x − x0

)
≥ 0 for all t ∈ R, x ∈ S.

(3.4)
With

∂L(t0, x0, μ0, ν0, ξ0, a0, r0)
∂t

= 1 − μ0�r0

and because (3.4) has to be fulfilled for all t ∈ R we have

μ0�r0 = 1 (3.5)

and so μ0 �= 0m, r0 �= 0m. Because in R
n and R

m respectively all norms
are equivalent, for all (t, x) ∈ R × R

n there exist positive constants
M l, Mu ∈ R+ and M̃ l, M̃u ∈ R+ respectively with

M l‖x‖2 ≤ ‖x‖ ≤ Mu‖x‖2

and

M̃ l

∥∥∥∥∥
(

t

x

)∥∥∥∥∥
2

≤
∥∥∥∥∥
(

t

x

)∥∥∥∥∥ ≤ M̃u

∥∥∥∥∥
(

t

x

)∥∥∥∥∥
2

.

(For instance for the Euclidean norm ‖ · ‖ = ‖ · ‖2 this is true for
M l = Mu = 1 and M̃ l = M̃u = 1 respectively.) For all (t, x) ∈ R × R

n

with ∇fx(x0)x = r0 t we have together with (3.5) the equation

μ0�∇xf(x0)x = t

and then we get the upper bound

|t|2 = |μ0�∇xf(x0)x|2 ≤ ‖μ0‖2
2 ‖∇xf(x0)‖2

2 ‖x‖2
2.

If we set now

α :=
α̃ (M l)2

(M̃u)2
(
1 + ‖μ0‖2

2 ‖∇xf(x0)‖2
2

) > 0

we conclude from (3.2) for all (t, x) ∈ {(t, x) ∈ R × R
n | ∇xh(x0)x =

0q, ∇xf(x0)x = r0 t}
x�W (x0, μ0, ν0, ξ0)x ≥ α̃ ‖x‖2
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≥ ã (M l)2‖x‖2
2

= α (M̃u)2
(
1 + ‖μ0‖2

2 ‖∇xf(x0)‖2
2

) ‖x‖2
2

≥ α (M̃u)2 (‖x‖2
2 + |t|2)

= α (M̃u)2
∥∥∥∥∥
(

t

x

)∥∥∥∥∥
2

2

≥ α

∥∥∥∥∥
(

t

x

)∥∥∥∥∥
2

.

With

∇2
(t,x)L(t0, x0, μ0, ν0, ξ0, a0, r0) =

(
0 0
0 W (x0, μ0, ν0, ξ0)

)

the assertion is proven. �

The condition (3.3) for all (t, x) in which the derivatives of the equal-
ity constraints are equal to zero is called strict second order sufficient
condition. If this condition is fulfilled for a regular point (see assump-
tion e) of Theorem 3.2) then this is sufficient for strict local minimality
of the considered point ([162, Theorem 5.2]).

We can now apply Theorem 3.2 to the problem (SP(a, r)).

Theorem 3.7. Let Assumption 3.4 and the assumptions of Lemma
3.6 hold. We consider the parameter dependent optimization problem
(SP(a, r)) with the constraint set Σ(a, r) starting with a reference prob-
lem (SP(a0, r0)) with a local minimal solution (t0, x0) and with La-
grange multipliers (μ0, ν0, ξ0) ∈ R

m × C∗ × R
q.

i) Suppose the point (t0, x0) is regular for the set Σ(a0, r0), i. e.
0m+p+q ∈

int

⎧⎪⎨
⎪⎩
⎛
⎜⎝

0m

g(x0)
0q

⎞
⎟⎠ +

⎛
⎜⎝

r0 (t − t0) − ∇xf(x0)(x − x0)
∇xg(x0)(x − x0)
∇xh(x0)(x − x0)

⎞
⎟⎠−

⎛
⎜⎝

0m

c

0q

⎞
⎟⎠

∣∣∣∣∣∣∣
c ∈ C, x ∈ S, t ∈ R} .

ii) Assume there exists a ζ > 0 such that for arbitrary points p1, p2 ∈
ζB̃ (with B̃ the closed unit ball in R

1+n+m+p+q) with pi = (t∗i, x∗i, ui,
vi, wi), i = 1, 2, it holds: if (t1, x1) and (t2, x2) respectively are so-
lutions of the quadratic optimization problem determined by
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min J(t, x, pi)
subject to the constraints

r0 (t − t0) −∇xf(x0)(x − x0) − ui = 0m,

g(x0) + ∇xg(x0)(x − x0) − vi ∈ C,

∇xh(x0)(x − x0) − wi = 0q,

t ∈ R, x ∈ S,

(i = 1, 2) with

J(t, x, pi) :=
1
2
(x−x0)� W (x−x0)+(t−t0)−t∗i (t−t0)−(x∗i)�(x−x0),

and

W := W (x0, μ0, ν0, ξ0) = μ0�∇2
xf(x0)−ν0�∇2

xg(x0)− ξ0�∇2
xh(x0),

then the Lagrange multipliers (μi, νi, ξi) to the solutions (ti, xi), i =
1, 2, are unique and

‖(μ1, ν1, ξ1) − (μ2, ν2, ξ2)‖ ≤ cM

(‖(t1, x1) − (t2, x2)‖ + ‖p1 − p2‖)
with some constant cM .

Then there exists a δ > 0 and a neighborhood N(a0, r0) of (a0, r0)
such that the local minimal value function

τ δ(a, r) := inf{t ∈ R | (t, x) ∈ Σ(a, r) ∩ Bδ(t0, x0)}

is differentiable on N(a0, r0) with the derivative

∇(a,r)τ
δ(a, r) = ∇(a,r)L(t̄(a, r), x̄(a, r), μ(a, r), ν(a, r), ξ(a, r), a, r).

Here (t̄(a, r), x̄(a, r))denotes the strict local minimal solution of (SP(a,r))
for (a, r) ∈ N(a0, r0) with the unique Lagrange multipliers (μ(a, r),
ν(a, r), ξ(a, r)). In addition to that the mapping

φ : N(a0, r0) → Bδ(t0, x0) × Bδ(μ0, ν0, ξ0)

defined by

φ(a, r) := (t̄(a, r), x̄(a, r), μ(a, r), ν(a, r), ξ(a, r))

is Lipschitz continuous.
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Proof. We show that all assumptions of Theorem 3.2 are sat-
isfied. According to Remark 3.5 the Assumption 3.4 implies that the
assumptions a), b) and d) of Theorem 3.2 are fulfilled. According to
Assumption 3.4 the functions ∇(t,x)f̃ , g̃1, ∇(t,x)g̃

1, g̃2, ∇(t,x)g̃
2, h̃, and

∇(t,x)h̃ are partially differentiable w. r. t. (a, r) and hence a local Lip-
schitz condition w. r. t (a, r) is satisfied in a neighborhood of (a0, r0).
Thus condition c) is fulfilled. The condition i) and ii) are the corre-
spondent conditions to e) and g) respectively. By applying Lemma 3.6
we immediately conclude that assumption f) of Theorem 3.2 is satisfied
and therefore all assumptions of Theorem 3.2 are met. �

Remark 3.8. The condition ii) of the preceding theorem and the con-
dition g) of Theorem 3.2 respectively are always satisfied, if we have
only equality constraints ([6, Theorem 7.1]), or, in the case of the nat-
ural ordering C = R

n
+, if the gradients of the active constraints are

linearly independent ([78, Theorem 2.1], [131, Theorem 2], [187, Theo-
rem 4.1]).

Lemma 3.9. Let the assumptions of Theorem 3.7 be fulfilled with S =
R

n. Then there is a δ > 0 and a neighborhood N(a0, r0) of (a0, r0)
such that the derivative of the local minimal value function w. r. t. the
parameter a is given by

∇aτ
δ(a, r) = −μ(a, r) −∇aν(a, r)�g(x̄(a, r))

and w. r. t. the parameter r by

∇rτ
δ(a, r) = −t̄(a, r)μ(a, r) −∇rν(a, r)�g(x̄(a, r))

for all (a, r) ∈ N(a0, r0). Here (t̄(a, r), x̄(a, r)) denotes the strict local
minimal solution of (SP(a, r)) for (a, r) ∈ N(a0, r0) with the unique
Lagrange multipliers (μ(a, r),ν(a, r),ξ(a, r)).

Proof. According to Theorem 3.7 there is a neighborhood N(a0, r0)
of (a0, r0) such that for all (a, r) ∈ N(a0, r0) there is a strict lo-
cal minimal solution (t̄(a, r), x̄(a, r)) with unique Lagrange multipliers
(μ(a, r), ν(a, r), ξ(a, r)). For the derivative of the Lagrange function we
have because of S = R

n

∇(t,x)L(t̄(a, r), x̄(a, r), μ(a, r), ν(a, r), ξ(a, r), a, r) = 0n+1.

Then it follows
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0m = ∇a

(
t̄(a, r)
x̄(a, r)

)�
∇(t,x)L(t̄(a, r), x̄(a, r), μ(a, r), ν(a, r), ξ(a, r), a, r)

= ∇at̄(a, r) −
m∑

i=1

μi(a, r)
(
∇at̄(a, r) ri −∇ax̄(a, r)�∇xfi(x̄(a, r))

)

−
p∑

j=1

νj(a, r)∇ax̄(a, r)�∇xgj(x̄(a, r))

−
q∑

k=1

ξk(a, r)∇ax̄(a, r)�∇xhk(x̄(a, r)). (3.6)

In the same way we get

0m = ∇r

(
t̄(a, r)
x̄(a, r)

)�
∇(t,x)L(t̄(a, r), x̄(a, r), μ(a, r), ν(a, r), ξ(a, r), a, r)

= ∇r t̄(a, r) −
m∑

i=1

μi(a, r)
(
∇r t̄(a, r)ri −∇rx̄(a, r)�∇xfi(x̄(a, r))

)

−
p∑

j=1

νj(a, r)∇rx̄(a, r)�∇xgj(x̄(a, r))

−
q∑

k=1

ξk(a, r)∇rx̄(a, r)�∇xhk(x̄(a, r)).

According to Theorem 3.7 there exists a δ > 0 such that the derivative
of the local minimal value function is given by

∇(a,r)τ
δ(a, r) = ∇(a,r)L(t̄(a, r), x̄(a, r), μ(a, r), ν(a, r), ξ(a, r), a, r).

Together with derivation rules and (3.6) we conclude

∇aτ
δ(a, r) = ∇at̄(a, r) −

m∑
i=1

μi(a, r)
(
ei + ∇at̄(a, r)ri

− ∇ax̄(a, r)�∇xfi(x̄(a, r))
)

−
m∑

i=1

∇aμi(a, r) (ai + t̄(a, r) ri − fi(x̄(a, r)))︸ ︷︷ ︸
=0
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−
p∑

j=1

νj(a, r)∇ax̄(a, r)�∇xgj(x̄(a, r)) −
p∑

j=1

∇aνj(a, r)gj(x̄(a, r))

−
q∑

k=1

ξk(a, r)∇ax̄(a, r)�∇xhk(x̄(a, r)) −
q∑

k=1

∇aξk(a, r)hk(x̄(a, r))︸ ︷︷ ︸
=0

= −μ(a, r) −∇aν(a, r)�g(x̄(a, r)).

By using

∇r(ai + t̄(a, r)ri − fi(x̄(a, r))) = t̄(a, r)ei + ∇r t̄(a, r)ri−
∇rx̄(a, r)�∇xfi(x̄(a, r))

we get just as well

∇rτ
δ(a, r) = −t̄(a, r)μ(a, r) −∇rν(a, r)�g(x̄(a, r)).

�

In the case of C = R
p
+ the inequality g(x) ∈ C equals the inequal-

ities gj(x) ≥ 0, j = 1, . . . , p, and then we can differ between active
constraints gj(x0) = 0 and inactive constraints gj(x0) > 0 in the point
(t0, x0). Because of the continuity of gj and x̄(a, r), inactive constraints
remain inactive in a neighborhood N(a0, r0) of (a0, r0) ([79, Theorem
3.2.2 and Proof of Theorem 3.4.1]). Hence, for the associated Lagrange
multipliers we have νj(a, r) = 0 for all (a, r) ∈ N(a0, r0) and thus
∇(a,r)νj(a0, r0) = 02m. As a consequence we have for C = R

p
+

∇(a,r)ν(a0, r0)�g(x̄(a0, r0)) =
p∑

j=1

∇(a,r)νj(a0, r0)gj(x̄(a0, r0)) = 02m

and it follows:

Corollary 3.10. Under the assumptions of Lemma 3.9 and with C =
R

p
+ it is

∇(a,r)τ
δ(a0, r0) = −

(
μ0

t0 μ0

)
.

So the derivative of the local minimal value function (and with that
of the function t(·, ·)) w. r. t. the parameter a in the point (a0, r0) is
just the negative of the Lagrange multiplier μ0. We get this Lagrange
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multiplier to the constraint a0+t r0−f(x) ∈ K without additional effort
by solving the scalar-valued problem (SP(a0, r0)). Thus, if we solve the
optimization problem (SP(a0, r0)) with minimal solution (t0, x0) and
Lagrange multiplier (μ0, ν0, ξ0) (assuming the constraint a0 + t r0 −
f(x) ∈ K is active, i. e. a0 + t0 r0 − f(x0) = 0m), we get the following
local first-order Taylor-approximation for the minimal value t(a, r)

t(a, r) ≈ t0 − μ0�(a − a0) − t0 μ0�(r − r0).

For that we assume that all necessary assumptions are satisfied and we
suppose that the local minimal value function is several times differ-
entiable. Examinations under which conditions this is assured can be
found in [7, 18], [19, Theorem 4.102, 4.139 and 4.142], [202, 203, 204]
and especially for the non-degenerated case and the natural ordering
also in [79, Theorem 3.4.1].

We are primarily interested in the points f(x̄(a, r)) of the set f(Ω),
which are approximation points of the efficient set. The dependence of
f(x̄(a, r)) on a (and r) delivers important trade-off information for the
decision maker, i. e. information how the improvement of one objec-
tive function causes the deterioration of another competing objective
function. The notion of trade-off is discussed in more detail in [135].

Corollary 3.11. Let the assumptions of Theorem 3.7 hold. Then, in
a neighborhood of (a0, r0),

∇afi(x̄(a, r)) = ei + ∇aτ
δ(a, r) ri

and
∇rfi(x̄(a, r)) = t̄(a, r) ei + ∇rτ

δ(a, r) ri

for i = 1, . . . , m. If additionally the assumptions of Corollary 3.10 are
satisfied, then

∇af(x̄(a0, r0)) = Em−r0 (μ0)�and ∇rf(x̄(a0, r0)) = t0 Em−t0 r0 (μ0)�.

Here ei denotes the ith unit vector in R
m and Em the (m, m)-unit-

matrix in R
m×m.

We now discuss the already on p. 74 and in Lemma 1.18 mentioned
special case of orderings, which are defined by polyhedral cones. In that
case, i. e. for

K = {x ∈ R
m | Kx ≥u 0u}

and
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C = {x ∈ R
p | Cx ≥v 0v}

with K ∈ R
u×m and C ∈ R

v×p, u, v ∈ N, the multiobjective optimiza-
tion problem (MOP) can be reformulated as follows:

minKf(x)
subject to the constraints

Cg(x) ∈ R
v
+,

h(x) = 0q,

x ∈ S.

Now we look for the minimal points w. r. t. the natural ordering in R
u.

The correspondent scalarization is then

min t

subject to the constraints

ai + t ri − k
i
f(x) ≥ 0, i = 1, . . . , u,

cjg(x) ≥ 0, j = 1, . . . , v,

h(x) = 0q,

t ∈ R, x ∈ S

with k
i and cj the row vectors of the matrix K and C respectively. Us-

ing this reformulation we have reduced the problem to the case of the
natural ordering and the sensitivity considerations can be subsumed
under the examinations of the following section. Another possible re-
formulation using the introduction of new variables is demonstrated in
(3.1).

3.2 Sensitivity Results in Naturally Ordered Spaces

In the following we discuss the special case that the image space of
the multiobjective optimization problem is ordered w. r. t. the natural
ordering, i. e. we try to find (weakly) EP-minimal points. Thus the
ordering cone K equals the positive orthant R

m
+ . Additionally let C =

R
p
+ and S = R

n. We summarize this:

Assumption 3.12. Let K = R
m
+ and C = R

p
+. Further assume S =

Ŝ = R
n and let f : R

n → R
m, g : R

n → R
p, and h : R

n → R
q be given

functions.
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Under these assumptions we can write the multiobjective optimiza-
tion problem as follows:

min f(x)
subject to the constraints

(MOP) gj(x) ≥ 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . , q,

x ∈ R
n.

is then

min t

subject to the constraints
(SP(a, r)) ai + t ri − fi(x) ≥ 0, i = 1, . . . , m,

gj(x) ≥ 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . , q,

t ∈ R, x ∈ R
n

with parameters a ∈ R
m and r ∈ R

m. Then the condition g) of Theorem
3.2 is already satisfied if the gradients of the active constraints are
linearly independent ([6, p.22]).

0 0 0 0

with Lagrange multipliers (μ0, ν0, ξ0). We introduce index sets for the
active non-degenerated, active degenerated and inactive constraints.
Thus we define the following disjoint sets to the index sets I :=
{1, . . . , m} and J := {1, . . . , p}:

I+ := {i ∈ I | a0
i + t0 r0

i − fi(x0) = 0, μ0
i > 0},

I0 := {i ∈ I | a0
i + t0 r0

i − fi(x0) = 0, μ0
i = 0},

I− := {i ∈ I | a0
i + t0 r0

i − fi(x0) > 0, μ0
i = 0}

(3.7)

and
J+ := {j ∈ J | gj(x) = 0, ν0

j > 0},
J0 := {j ∈ J | gj(x) = 0, ν0

j = 0},
J− := {j ∈ J | gj(x) > 0, ν0

j = 0}.
(3.8)

We have I = I+∪I0∪I− and J = J+∪J0∪J−. The active constraints
in the point (t0, x0) are hence

The correspondent parameter dependent scalarization problem (SP(a, r))

Let (t ,x ) be a minimal solution of the reference problem (SP(a ,r ))
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a0
i + t0 r0

i − fi(x0) ≥ 0 for i ∈ I+ ∪ I0,

gj(x) ≥ 0 for j ∈ J+ ∪ J0 and
hk(x) = 0 for k ∈ {1, . . . , q}.

The active constraints with Lagrange multipliers equal to zero are called
degenerated. Here these are the inequality constraints with the in-
dices i ∈ I0 and j ∈ J0. As under the assumptions of Theorem 3.13
active non-degenerated constraints remain active under small parame-
ter changes, we can treat these inequality constraints as equality con-
straints. Further inactive constraints stay inactive and can therefore be
ignored. Because of that it is possible and sufficient in the special case
of the natural ordering to consider the scalarization (SP(a, r)) directly
instead of the modification (SP (a, r)) (see also [6, pp.21f]):

Theorem 3.13. Let the Assumption 3.12 hold. We consider the scalar-
valued optimization problem (SP(a, r)) starting from the reference prob-
lem (SP(a0, r0)). Let (t0, x0) be a local minimal solution of (SP(a0, r0))
with Lagrange multipliers (μ0, ν0, ξ0). Let there exist a γ > 0, such that
the functions f , g, and h are twice continuously differentiable on an
open neighborhood of Bγ(x0). Let the index sets I+, I0, I−, and J+,
J0, J− be defined as in (3.7) and (3.8).

Assume the following:

a) The gradients w. r. t. (t, x) in the point (t0, x0) of the (in the point
(t0, x0)) active constraints of the problem (SP(a0, r0)), i. e. the vec-
tors(

r0
i

−∇xfi(x0)

)
, i ∈ I+ ∪ I0,

(
0

∇xgj(x0)

)
, j ∈ J+ ∪ J0,(

0
∇xhk(x0)

)
, k = 1, . . . , q,

are linearly independent.
b) There is a constant α > 0, such that for the Hessian of the Lagrange

function L in the point (t0, x0) it holds

(t, x�)∇2
(t,x)L(t0, x0, μ0, ν0, ξ0, a0, r0)

(
t

x

)
≥ α

∥∥∥∥∥
(

t

x

)∥∥∥∥∥
2

for all
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(t, x) ∈ {
(t, x) ∈ R

n+1 | r0
i t = ∇xfi(x0)�x, ∀ i ∈ I+,

∇xgj(x0)�x = 0 ∀ j ∈ J+,

∇xhk(x0)�x = 0 ∀ k = 1, . . . , q
}

.

Then the point (t0, x0) is a local unique minimal solution of the refer-
ence problem (SP(a0, r0)) with unique Lagrange multipliers (μ0, ν0, ξ0)
and there exists a δ > 0 and a neighborhood N(a0, r0) of (a0, r0), such
that the local minimal value function τ δ : R

m × R
m → R with

τ δ(a, r) := inf{t ∈ R | (t, x) ∈ Σ(a, r) ∩ Bδ(t0, x0)}
is differentiable on N(a0, r0) with derivative

∇(a,r)τ
δ(a, r) = ∇(a,r)L(t(a, r), x(a, r), μ(a, r), ν(a, r), ξ(a, r), a, r).

Here (t(a, r), x(a, r)) denotes the local unique minimal solution of
the optimization problem (SP(a, r)) with unique Lagrange multipliers
(ν(a, r),μ(a, r), ξ(a, r)). Further the function φ : N(a0, r0)→Bδ(t0, x0)×
Bδ(μ0, ν0, ξ0) with

φ(a, r) := (t(a, r), x(a, r), μ(a, r), ν(a, r), ξ(a, r))

is Lipschitz continuous on N(a0, r0).

The result of Theorem 3.13 can also be found in Jittorntrum [131,
Theorem 2]. In [78, Theorem 2.1] (see also the remark in [131, pp.128f])
Fiacco shows the differentiability of the minimal value function, too,
but he assumes additionally non-degeneracy of the inequality con-
straints, i. e. I0 = ∅ and J0 = ∅. As already mentioned, in the case

straints remain unchanged under the assumptions of Theorem 3.13 (see
also [79, Theorem 3.2.2c)]). Then we can examine problem (SP(a, r))
directly without switching to the modified problem: If we have for a
minimal solution (t0, x0) of the reference problem (SP(a0, r0))

a0
i + t0 r0

i − fi(x0) = 0 for i ∈ I+,

with (a, r) from a neighborhood of (a0, r0):

ai + t(a, r) ri − fi(x(a, r)) = 0 for i ∈ I+.

then this holds also for the minimal solutions (t(a, r),x(a, r)) of (SP(a, r))

of non-degeneracy the index sets of the active and the inactive con-
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Therefore we can directly conclude from the local dependence of t(a, r)
on the parameters to the dependence of the points f(x(a, r)) on the
parameters.

In the same way as in Corollary 3.10 we get the derivative of the
local minimal value function in the point (a0, r0) with the help of the
Lagrange multiplier μ0 to the constraint a0 + t r0 − f(x) ≥ 0m:

Lemma 3.14. Let the assumptions of Theorem 3.13 hold. Then the
derivative of the local minimal value function in the point (a0, r0) is
given by

∇(a,r)τ
δ(a0, r0) =

(
−μ0

−t0 μ0

)
.

Proof. Following the proof of Lemma 3.9 we get

∇(a,r)τ
δ(a, r) = −

(
μ(a, r)

t(a, r)μ(a, r)

)

−
m∑

i=1

∇(a,r)μi(a, r)(ai + t(a, r) ri − fi(x(a, r)))

−
p∑

j=1

∇(a,r)νj(a, r)gj(x(a, r))

−
q∑

k=1

∇(a,r)ξk(a, r)hk(x(a, r))︸ ︷︷ ︸
=0

.

With that we obtain in the point (a0, r0)

∇(a,r)τ
δ(a0, r0) = −

(
μ0

t0 μ0

)

− ∑
i∈I+∪I0

∇(a,r)μi(a0, r0) (a0
i + t0 r0

i − fi(x0))︸ ︷︷ ︸
=0

− ∑
i∈I−

∇(a,r)μi(a0, r0)(a0
i + t0 r0

i − fi(x0))

− ∑
j∈J+∪J0

∇(a,r)νj(a0, r0) gj(x0)︸ ︷︷ ︸
=0

− ∑
j∈J−

∇(a,r)νj(a0, r0)gj(x0)

using t(a0, r0) = t0, x(a0, r0) = x0, and
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(μ(a0, r0), ν(a0, r0), ξ(a0, r0)) = (μ0, ν0, ξ0).

For i ∈ I− it is a0
i + t0 r0

i − fi(x0) > 0 according to the definition
of I−. As the functions ai + t(a, r) ri − fi(x(a, r)) are continuous in a
and r there is a neighborhood N(a0, r0) of (a0, r0) such that for all
(a, r) ∈ N(a0, r0) it holds

ai + t(a, r) ri − fi(x(a, r)) > 0 for i ∈ I−.

Then we conclude μi(a, r) = 0 for all (a, r) ∈ N(a0, r0) and hence
∇(a,r)μi(a0, r0) = 02m for i ∈ I−. In the same way we can show
∇(a,r)νj(a0, r0) = 02m for j ∈ J− and we get

∇(a,r)τ
δ(a0, r0) =

(
−μ0

−t0 μ0

)
.

�

For achieving better results in the approximation of the local be-
havior of the local minimal value function and with that of the values
t(a, r), information about higher order derivatives is useful. Having the
second order derivative, i. e. the Hessian, we can give a second order
approximation.

Theorem 3.15. Let the assumptions of Theorem 3.13 hold. Addition-
ally assume non-degeneracy of the inequality constraints, i. e. I0 = ∅
and J0 = ∅. The Hessian of the local minimal value function in the
point (a0, r0) w. r. t. the parameter a is

∇2
aτ

δ(a0, r0) = −∇aμ(a0, r0)

and w. r. t. the parameter r

∇2
rτ

δ(a0, r0) = t0μ0(μ0)� − t0∇rμ(a0, r0).

Proof. According to Theorem 3.13 there is an open neighborhood
N(a0, r0) of (a0, r0), such that for (a, r) ∈ N(a0, r0)

∇(a,r)τ
δ(a, r) = ∇(a,r)L(t(a, r), x(a, r), μ(a, r), ν(a, r), ξ(a, r), a, r).

Using the same arguments as in the proof of Lemma 3.9 we conclude

∇aτ
δ(a, r) = −μ(a, r) −

m∑
i=1

∇aμi(a, r)(ai + t(a, r) ri − fi(x(a, r)))
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−
p∑

j=1

∇aνj(a, r)gj(x(a, r)). (3.9)

Besides, following again the steps of the proof of Lemma 3.9, we get
for (a, r) ∈ N(a0, r0) and i ∈ I−

∇aμi(a, r) = 0m (3.10)

and for j ∈ J−

∇aνj(a, r) = 0m. (3.11)

For i ∈ I+ it is μi(a0, r0) > 0. As the function μ(·, ·) is continu-
ous according to Theorem 3.13 there is a neighborhood Nμ(a0, r0) ⊂
N(a0, r0) of (a0, r0), such that for (a, r) ∈ Nμ(a0, r0) it holds

μi(a, r) > 0

for i ∈ I+ and thus

ai + t(a, r) ri − fi(x(a, r)) = 0 (3.12)

for all (a, r) ∈ Nμ(a0, r0), i ∈ I+. Analogously there exists a neighbor-
hood Nν(a0, r0) ⊂ N(a0, r0) of (a0, r0) with Nν(a0, r0) ⊂ Nμ(a0, r0)
and with

gj(x(a, r)) = 0 (3.13)

for all (a, r) ∈ Nν(a0, r0), j ∈ J+. As we consider the non-degenerated
case, i. e. I+ ∪ I− = {1, . . . , m} and J+ ∪ J− = {1, . . . , p}, we conclude
from (3.9) using (3.10)-(3.13)

∇aτ
δ(a, r) = −μ(a, r).

In the case of non-degeneracy the function μ(·, ·) is not only continu-
ous but even continuously differentiable under the assumptions of the
theorem (compare [79, Theorem 3.2.2.b)]), and we conclude

∇2
aτ

δ(a0, r0) = −∇aμ(a0, r0).

In the same way we can show

∇rτ
δ(a, r) = −t(a, r)μ(a, r).

Then we get for the Hessian of the local minimal value function with
respect to r
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∇2
rτ

δ(a0, r0) = −t(a0, r0)∇rμ(a0, r0) − μ(a0, r0) (∇rt(a0, r0))�

= −t0 ∇rμ(a0, r0) − μ0 (∇rτ
δ(a0, r0))�

= −t0 ∇rμ(a0, r0) − μ0 (−t(a0, r0)μ(a0, r0))�

= −t0 ∇rμ(a0, r0) + t0 μ0(μ0)�.

�

This result w. r. t. the parameter a, i. e. for the case that only the
right hand side of the constraint fi(x) − t ri ≤ ai, i = 1, . . . , m, is
varied, can be found in [79, Corollary 3.4.4], too.

In Theorem 3.13 we also have the result that the function

φ : N(a0, r0) → Bδ(t0, x0) × Bδ(μ0, ν0, ξ0)

with
φ(a, r) = (t(a, r), x(a, r), μ(a, r), ν(a, r), ξ(a, r))

is Lipschitz continuous on N(a0, r0). Thereby (t(a, r), x(a, r)) denotes
the local unique minimal solution of the optimization problem (SP(a, r))
with (a, r) from a neighborhood of (a0, r0) and (μ(a, r), ν(a, r), ξ(a, r))
are the correspondent unique Lagrange multipliers. We are interested
in stronger results for getting an at least first-order local approximation
of the function φ. These results will be needed for solving multiobjec-
tive bilevel optimization problems in the third part of this book. In the
non-degenerated case we can apply a result by Fiacco ([79, Cor. 3.2.4])
to our scalarization approach:

Theorem 3.16. Let the assumptions of Theorem 3.13 hold. Addition-
ally assume non-degeneracy, i. e. I0 = ∅ and J0 = ∅. We consider the
function φ : N(a0, r0) → Bδ(t0, x0) × Bδ(μ0, ν0, ξ0) with

φ(a, r) = (t(a, r), x(a, r), μ(a, r), ν(a, r), ξ(a, r)).

Then we get the following first-order approximation for (a, r) in a
neighborhood of (a0, r0):

φ(a, r) = φ(a0, r0) + M−1N

(
a − a0

r − ro

)
+ o

(∥∥∥∥∥
(

a − a0

r − r0

)∥∥∥∥∥
)

with the matrix M := [M1 |M2] ∈ R
(1+n+m+p+q)×(1+n+m+p+q) defined

by
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M1 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0�n −r1 . . . −rm

0n ∇2
xL(φ(a0, r0), a0, r0) ∇xf1(x0) . . . ∇xfm(x0)

μ0
1r1 −μ0

1∇xf1(x0)� k0
1 0 . . . 0 0

...
...

...
. . .

...
μ0

mrm −μ0
m∇xfm(x0)� 0 0 . . . 0 k0

m

0 ν0
1∇xg1(x0)� 0 . . . 0

...
...

...
. . .

...
0 ν0

p∇xgp(x0)� 0 . . . 0

0 ξ0
1∇xh1(x0)� 0 . . . 0

...
...

...
. . .

...
0 ξ0

p∇xhq(x0)� 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

M2 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0 . . . 0
−∇xg1(x0) . . . −∇xgp(x0) −∇xh1(x0) . . . ∇xhq(x0)

0m . . . 0m 0m . . . 0m

g1(x0) 0 . . . 0 0 0 . . . 0
...

. . .
...

...
. . .

...
0 0 . . . 0 gp(x0) 0 . . . 0

0q . . . 0q 0q . . . 0q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with k0 := a0 + t0 r0−f(x0) ∈ R
m and N ∈ R

(1+n+m+p+q)×(2m) defined
by

N :=

[
02m×(n+1),−μ0

1

(
e1

t0 e1

)
, . . . ,−μ0

m

(
em

t0 em

)
,02m×(p+q)

]�
.

Here, 02m×(n+1) and 02m×(p+q) denotes the matrix in R
2m×(n+1) and

R
2m×(p+q), respectively, which has only the zero as entries, and ei, i =

1, . . . , m, denotes the ith unit vector in R
m.

Based on this sensitivity information we can not only approximate
the position of the point f(x(a, r)) (for (a, r) in a neighborhood of
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(a0, r0)), but of the point x(a, r) itself. We can use this for instance for
calculating an advantageous starting point for a numerical method for
solving the problem (SP(a, r)). The application of this approximation
is discussed in Chap. 4 about the adaptive parameter control. There,
an example is also studied on p. 112. A further application of this
sensitivity theorem is considered in Chap. 7.

In Theorem 3.16 we have assumed non-degeneracy because other-
wise the matrix M would not be invertible. However, we can still give
a sensitivity result in the degenerate case. For that we assume that we
restrict ourselves to a variation of the parameters (a, r) in one direction
v ∈ R

2m only, i. e. we consider parameters (a, r) with(
a

r

)
=

(
a0

r0

)
+ s v with v =

(
va

vr

)
∈ R

2m

and s ∈ R, s ≥ 0, va, vr ∈ R
m, only. Then, a directional derivative

of the function φ in direction v is sufficient. We get the directional
derivative also in the degenerate case by applying a sensitivity result
by Jittorntrum ([131, Theorem 3 and 4]). For that we consider the
scalar optimization problem (SP(s))

min t

subject to the constraints
(a0 + s · va) + t (r0 + s · vr) − f(x) ≥m 0m,

g(x) ≥p 0p

x ∈ R
n

problem without equality constraints and for v ∈ R
2m constant. Let

(t(s), x(s)) denote a minimal solution of (SP(s)) with Lagrange multi-

ν(a, r)) for (a, r) = (a0 + s · va, r0 + s · vr).

Theorem 3.17. Let the assumptions of Theorem 3.13 hold. Further
consider the problem (SP(a, r)) without equality constraints. Let (t0, x0)
be a minimal solution of (SP(a0, r0)) with Lagrange multipliers (μ0, ν0).
We consider a variation of the parameters (a, r) restrained by(

a

r

)
=

(
a0

r0

)
+ s · v

pliers (μ(s),ν(s)). Then it is (t(s),x(s),μ(s),ν(s))=(t(a, r),x(a, r),μ(a, r),

depending on the parameter s ∈ R, s ≥ 0 only. We formulate this
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with v = (va, vr) ∈ R
2m for s ≥ 0.

Then there exists a unique solution (t̄, x̄, μ̄, ν̄) of the system of equal-
ities and inequalities stated in (3.14) and in (3.15) and it is

lim
h→0+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t(h)−t(0)
h

x(h)−x(0)
h

μ(h)−μ(0)
h

ν(h)−ν(0)
h

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t̄

x̄

μ̄

ν̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with (t(s), x(s), μ(s), ν(s)) the minimal solution and the correspondent
Lagrange multipliers of the problem (SP(a, r)) with (a, r) = (a0, r0) +
s · v, s ≥ 0.

The system of equalities and inequalities is given by

−
m∑

i=1
μ̄i r

0
i = μ0�vr,

m∑
i=1

μ0
i∇2

xfi(x0)x̄ −
p∑

j=1
ν0

j∇2
xgj(x0)x̄

+
m∑

i=1
μ̄i∇xfi(x0) −

p∑
j=1

ν̄j∇xgj(x0) = 0n,

r0
i t̄ −∇xfi(x0)�x̄ = −va

i − t0 vr
i , ∀i ∈ I+,

r0
i t̄ −∇xfi(x0)�x̄ ≥ −va

i − t0 vr
i , ∀i ∈ I0,

μ̄i ≥ 0, ∀i ∈ I0,

μ̄i

(
r0
i t̄ −∇xfi(x0)�x̄ + va

i + t0 vr
i

)
= 0, ∀i ∈ I0,

μ̄i = 0, ∀i ∈ I−,

(3.14)

∇xgj(x0)�x̄ = 0, ∀j ∈ J+,

∇xgj(x0)�x̄ ≥ 0, ∀j ∈ J0,

ν̄j ≥ 0, ∀j ∈ J0,

ν̄j

(∇xgj(x0)�x̄
)

= 0, ∀j ∈ J0,

ν̄j = 0, ∀j ∈ J−.

(3.15)

We have formulated this theorem for the case without equality con-
straints, but as the degenerated case is included equality constraints
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can be handled as well. We continue the examination of sensitivity re-
sults for scalarizations to naturally ordered multiobjective optimization
problems in the following section.

3.3 Sensitivity Results for the ε-Constraint Problem

In Sect. 2.5 we have already discussed, that many scalarization ap-
proaches like the ε-constraint problem can be seen as a special case
of the Pascoletti-Serafini scalarization. Thus, we can apply the results
of the preceding sections to these scalarizations, too. We demonstrate
this on the ε-constraint problem for the case that the ordering induced
by K equals the natural ordering. Then we gain results on the con-
nection between the minimal value of the ε-constraint problem (Pk(ε))
and the parameters εi, i ∈ {1, . . . , m} \ {k}. For convenience we recall
the ε-constraint scalarization (Pk(ε))

min fk(x)
subject to the constraints

fi(x) ≤ εi, i ∈ {1, . . . , m} \ {k},
gj(x) ≥ 0, j = 1, . . . , p,

hl(x) = 0, l = 1, . . . , q,

x ∈ R
n.

(3.16)

We assume in this section S = R
n. We apply Theorem 3.13 and Lemma

3.14:

Theorem 3.18. Let the Assumption 3.12 hold. Let x0 be a local mini-
mal solution of the reference problem (Pk(ε0)) with Lagrange multipliers
μ0

i ∈ R+ for i ∈ {1, . . . , m}\{k}, ν0 ∈ R
p
+, and ξ0 ∈ R

q. Let there exist
a γ > 0 so that the functions f , g, and h are twice continuously dif-
ferentiable on an open neighborhood of the closed ball Bγ(x0). Let the
index sets I+∪I0∪I− = {1, . . . , m}\{k} and J+∪J0∪J− = {1, . . . , p}
be defined by

I+ := {i ∈ {1, . . . , m} \ {k} | fi(x0) = ε0
i , μ0

i > 0},
I0 := {i ∈ {1, . . . , m} \ {k} | fi(x0) = ε0

i , μ0
i = 0},

I− := {i ∈ {1, . . . , m} \ {k} | fi(x0) < ε0
i , μ0

i = 0}
(3.17)

and (3.8).
Further assume the following:
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a) The gradients of the (in the point x0) active constraints, i. e. the
vectors ∇xfi(x0) for i ∈ I+ ∪ I0, ∇xgj(x0) for j ∈ J+ ∪ J0, and
∇xhl(x0) for l ∈ {1, . . . , q} are linearly independent.

b) There exists a constant α > 0 such that

x�∇2
xL̂(x0, μ0, ν0, ξ0, ε0)x ≥ α‖x‖2

for all

x ∈ {x ∈ R
n | ∇xfi(x0)x = 0, ∀ i ∈ I+, ∇xgj(x0)x = 0, ∀ j ∈ J+,

∇xhl(x0)x = 0, ∀ l = 1, . . . , q
}

=: W. (3.18)

with ∇2
xL̂ the Hessian of the Lagrange function in the point x0 of

the problem (Pk(ε0)).

Then x0 is a local unique minimal solution of (Pk(ε0)) with unique
Lagrange multipliers and there is a δ > 0 and a neighborhood N(ε0) of
ε0 so that the local minimal value function τ̂ δ : R

m−1 → R,

τ̂ δ(ε) := inf{fk(x) | fi(x) ≤ εi, i ∈ {1, . . . , m} \ {k},
gj(x) ≥ 0, j = 1, . . . , p,

hl(x) = 0, l = 1, . . . , q, x ∈ Bδ(x0)}
is differentiable on N(ε0) and

∂τ̂ δ(ε0)
∂εi

= −μ0
i .

Proof. According to Lemma 2.27 parameters (a0, r0) exist so
that the problem (Pk(ε0)) is equivalent to problem (SP(a0, r0)). We
show that the assumptions of Theorem 3.13 are satisfied for the problem
(SP(a0, r0)). It remains to show that assumption b) of Theorem 3.13 is
implicated by assumption b) of this theorem. Let L denote the Lagrange
function of the problem (SP(a0, r0)) with a0, r0 defined by ε0 as in
(2.25). It is

∇2
(t,x)L(fk(x0), x0, μ0, ν0, ξ0, a0, r0) =

(
0 0
0 W

)

with W := ∇2
xL(fk(x0), x0, μ0, ν0, ξ0, a0, r0) and so it is sufficient to

show that there exists a β > 0 with
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x� W x ≥ β

∥∥∥∥∥
(

t

x

)∥∥∥∥∥
2

for all

(t, x) ∈ {(t, x) ∈ R × R
n | x ∈ W,∇xfk(x0)�x = t}.

For the definition of W see (3.18). Using ∇xfk(x0)�x = t it is sufficient
to show

x� W x ≥ β

∥∥∥∥∥
(
∇xfk(x0)x

x

)∥∥∥∥∥
2

for all x ∈ W. Since in R
n and R

n+1 respectively all norms are equiv-
alent there exist positive constants M l, Mu ∈ R and M̃ l, M̃u ∈ R

with
M l‖x‖2 ≤ ‖x‖ ≤ Mu‖x‖2

and

M̃ l

∥∥∥∥∥
(
∇xfk(x0)�x

x

)∥∥∥∥∥
2

≤
∥∥∥∥∥
(
∇xfk(x0)�x

x

)∥∥∥∥∥ ≤ M̃u

∥∥∥∥∥
(
∇xfk(x0)�x

x

)∥∥∥∥∥
2

.

We set

β :=
α (M l)2

(M̃u)2
(‖∇xfk(x0)‖2

2 + 1
) > 0.

It is W = ∇2
xL̂(x0, μ0, ν0, ξ0, ε0) and thus we can conclude from as-

sumption b) of this theorem

x� W x ≥ α‖x‖2

≥ α (M l)2 ‖x‖2
2

= β (M̃u)2
(‖∇xfk(x0)‖2

2 + 1
) ‖x‖2

2

≥ β (M̃u)2
(
|∇xfk(x0)�x|2 + ‖x‖2

2

)

= β (M̃u)2
∥∥∥∥∥
(
∇xfk(x0)�x

x

)∥∥∥∥∥
2

2

≥ β

∥∥∥∥∥
(
∇xfk(x0)�x

x

)∥∥∥∥∥
2

for all x ∈ W. Then the assumptions of Theorem 3.13 are satisfied.
With the help of Lemma 3.14 we can calculate the partial derivatives
of τ̂ δ w. r. t. εi. �
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We get this specialized result by directly applying a sensitivity the-
orem by Luenberger ([157, p.236]), too. Polak uses in [182] also this
sensitivity theorem by Luenberger and applies it to the ε-constraint
problem (Pk(ε)) with k = m. He uses the derivative of the local minimal
value function given by the Lagrange multipliers for an approximation
of this function based on a cubic Hermite interpolation. He estimates
the interpolation error and tries to limit this error by an appropriate
parameter choice. Polak calls the local minimal value function a sensi-
tivity function.

Chankong and Haimes use this sensitivity result ([28, p.58]) for an
interpretation of the Lagrange multipliers as trade-off information be-
tween the competing objective functions ([28, p.160 and Sect. 7.4.1]).
They also consider the linear case ([28, Theorem 4.31]) and finally de-
velop an interactive method, the so-called surrogate worth trade-off
method ([28, Chap. 8], [99]). This method is based on the ε-constraint
method with an equidistant parameter choice and an interrogation of
the decision maker regarding the function values together with the
trade-off information.

In the dissertation of Heseler, [109], also scalarization approaches to
multiobjective optimization problems are considered as parameter de-
pendent scalar problems. Then warm-start strategies for interior-point
methods are applied. There stability considerations ([109, Theorem
2.2.2]) play an important role, too. Finally bicriteria convex quadratic
optimization problems are solved by using the weighted sum method.

The sensitivity result of Theorem 3.18 can be used for approx-
imating the position of the weakly efficient points in dependence
on the parameter ε. Let x0 be a minimal solution of the problem
(Pk(ε0)) with Lagrange multipliers μ0

i to the constraints fi(x) ≤ ε0
i

for i = {1, . . . , m} \ {k}. Then we get for the points fk(x(ε)) with x(ε)
the minimal solution of (Pk(ε)) for ε in a neighborhood of ε0:

fk(x(ε)) ≈ fk(x0) −
m∑

i=1
i�=k

μ0
i (εi − ε0

i ).

For the (in the point x0) active constraints we have

fi(x(ε)) = εi

because active constraints remain active.
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The assumptions of Theorem 3.18 are not too restrictive. In many
applications it turns out that the efficient set is smooth, see for in-
stance [16, 67]. The efficient set corresponds directly to the solutions
and minimal values of the ε-constraint scalarization for varying param-
eters. Thus differentiability of the minimal-value function w. r. t. the
parameters can be presumed in many cases.

The sensitivity results of this chapter can be used to control the
choice of the parameters a and ε, respectively, adaptively as described
in the following chapter.



4

Adaptive Parameter Control

In this chapter we use the preceding results for developing an algo-
rithm for adaptively controlling the choice of the parameters in several
scalarization approaches. The aim is an approximation of the efficient
set of the multiobjective optimization problem with a high quality. The
quality can be measured with different criteria, which we discuss first.
This leads us to the aim of equidistant approximation points.

For reaching this aim we mainly use the scalarization approach of
Pascoletti and Serafini. This scalarization is parameter dependent and
we develop a procedure how these parameters can be chosen adaptively
such that the distances between the found approximation points of the
efficient set are controlled. For this adaptive parameter choice we apply
the sensitivity results of Chap. 3. Because many other scalarizations
can be considered as a special case of the Pascoletti-Serafini problem,
as we have seen in Sect. 2.5, we can apply our results for the adaptive
parameter control to other scalarizations as the ε-constraint or the
normal boundary intersection problem, too.

4.1 Quality Criteria for Approximations

The importance of a representative approximation of the whole efficient
set is often pointed out, see for instance [10, 13, 39, 77, 81, 82, 201]. In
many works which present a numerical method for solving multiobjec-
tive optimization problems it is the aim to generate nearly equidistant
approximations (for instance in [40, 44, 138, 163, 164]) to obtain a rep-
resentative but concise approximation and thus a high quality of the
approximation. For being able to measure such a quality we discuss
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several quality criteria in the following. First, we define what we mean
by an approximation (compare [101, p.5]).

Definition 4.1. A finite set A ⊂ f(Ω) is called an approximation of
the efficient set E(f(Ω), K) of the multiobjective optimization problem
(MOP), if for all approximation points y1, y2 ∈ A, y1 �= y2 it holds

y1 �∈ y2 + K and y2 �∈ y1 + K, (4.1)

i. e. all points in A are non-dominated to each other w. r. t. the ordering
cone K.

Following this definition we call a finite set A an approximation of
the weakly efficient set Ew(f(Ω), K) of the multiobjective optimization
problem (MOP) if A is an approximation of E(f(Ω), int(K) ∪ {0m}).
Then the points in A are non-dominated to each other w. r. t. the inte-
rior of the cone K.

Here, we generally consider approximations of the efficient set, i. e.
of the image of the set of K-minimal points, but the definition as well
as the following quality criteria can be transferred to approximations
of the set of K-minimal points, too. We concentrate our considerations
to the efficient set as a decision maker, who is asked to select his or her
subjectively preferred solution, usually makes his decision based on a
comparison of the function values in the image and not in the preimage
set.

Besides, the dimension n of the preimage space is generally distinctly
higher than the dimension m of the image space. For example in Chap.
6 we discuss an application problem in medical engineering with m = 2
but n = 400. An approximation of the K-minimal solutions in R

n

is then not visualizable and besides not interpretable by the decision
maker.

A third reason is, that often two K-minimal solutions x, y ∈ Ω
have the same objective value f(x) = f(y). Then, w. r. t. the objective
functions, these two points are no longer distinguishable, but the set
which has to be approximated (in the preimage space) is enlarged. A
discussion of these reasons is also done by Benson and Sayin in [10].
However there also exist problems which demand an approximation
of the K-minimal points and not of the efficient set with a controlled
quality. In Chap. 7 we study multiobjective bilevel optimization prob-
lems where this occurs. Nevertheless, generally we concentrate on the
efficient set. We generate approximations of the weakly efficient set and
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choose from that set due to E(f(Ω), K) ⊂ Ew(f(Ω), K) an approxima-
tion of E(f(Ω), K). Here, we also call the set

{x ∈ Ω | f(x) ∈ A}
an approximation if A is an approximation.

According to the definition, approximations do not need to consist
of efficient points of f(Ω). Non-efficient approximation points are often
generated by methods based on evolutionary algorithms as presented in
[31, 87, 228, 246], and others. Then the distance between the approx-
imation points and the efficient set is proposed as a quality criteria,
compare [32, 93, 141],[228, p.6-15] and [246, p.46].

In the literature related to numerical methods based on evolution-
ary algorithms for solving multiobjective optimization problems various
other criteria for measuring and comparing the approximation qualities
are given, for instance in [43, 93, 141, 228, 246]. However, due to the
fact that in numerical methods based on scalarization approaches the
approximation points are determined by solving these scalar problems,
the points are generally at least weakly K-minimal (ignoring small
inaccuracies caused by the used numerical solvers). For the Pascoletti-
Serafini problem this is the case according to Theorem 2.1,c). Then we
have A ⊂ Ew(f(Ω), K) and thus measuring the distance of A to the
efficient set is not an interesting criteria. Note, that the points which
are generated by the Pascoletti-Serafini scalarization satisfy directly
the property (4.1) w. r. t. int(K) ∪ {0m}.

We restrain ourselves on criteria which are meaningful in our case
and present three quality criteria defined by Sayin in [191] called cov-
erage error, uniformity and cardinality. The coverage error is used for
measuring whether the approximation is representative.

Definition 4.2. Let ε > 0. An approximation A of the efficient set
E(f(Ω), K) is called dε-representation of E(f(Ω), K), if for all y ∈
E(f(Ω), K) there exists a point ȳ ∈ A with ‖y − ȳ‖ ≤ ε. The smallest
ε for which A is a dε-representation of E(f(Ω), K) is called coverage
error of A.

The coverage error can be calculated by

ε = max
y∈E(f(Ω),K)

min
ȳ∈A

‖y − ȳ‖. (4.2)

Here the knowledge of the efficient set E(f(Ω), K) is needed. If this is
the case then (4.2) is, for a set A = {y1, . . . , yN}, equivalent to
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ε = max δ

subject to the constraints
δ ≤ ‖y − yi‖, i = 1, . . . , N,

y ∈ E(f(Ω), K),
δ ∈ R.

(4.3)

Generally the efficient set is not known but then it is important still
to be able to calculate or at least to approximate the coverage error.
For doing this we assume that we have already assured by the applied
method that the whole efficient set is covered by the approximation
and that no larger parts are neglected. Then the criteria of a small
coverage error corresponds to the target, that the distance between
nearby approximation points is as small as possible.

We have to take into account that the efficient set is not necessarily
connected and that gaps can exist as it is the case in Example 4.4.
Conditions under which the efficient set is connected are given in [105,
113, 156, 172]. Thereby a set A is connected (in the topological sense)
if no open sets O1, O2 exist such that A ⊂ O1 ∪ O2, A ∩ O1 �= ∅,
A ∩ O2 �= ∅, and A ∩ O1 ∩ O2 = ∅ ([60, p.69], [190, p.66]). A large
distance between consecutive approximation points in non-connected
parts of the efficient set can thus not be avoided if this is due to the
size of the gap. This should not affect the coverage error. This fact is
also mentioned by Collette in [32, p.780].

If the efficient set is connected we can calculate an approximation
of the coverage error, called modified coverage error, without knowing
the efficient set explicitly by

ε̄ :=
1
2

max
j∈{1,...,N}

max
y∈N (yj)

‖yj − y‖. (4.4)

Here, {y1, . . . , yN} denotes the approximation A and N (yj) denotes
the subset of points of A which are in a neighborhood of the point yj .
In the following we define which points are included in the set N (yj).
We always assume N > 1.

For the case m = 2 we can (without loss of generality) order the
approximation points by

y1
1 ≤ y2

1 ≤ . . . ≤ yN
1 .

Then let N (yj) := {yj−1, yj+1} for j ∈ {2, . . . , N − 1}, and N (y1) :=
{y2} and N (yN ) := {yN−1}, respectively. For m ≥ 3 we choose the
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2(m− 1) approximation points with the smallest distance to the point
yj as neighbors for the set N (yj). If the efficient set is not connected
this has to be taken into account for the determination of the sets N (·).

The smaller the coverage error the better any point of the efficient
set is represented by the approximation. The importance of a coverage
of the efficient set without gaps is often emphasized in applications.
For instance in [143, p.231] the definition of a �-cover as a set of points
such that any point of this set is within the distance of � to at least
one other point of the set is given (compare also [83, p. 23]).

A further criteria for a high approximation quality is the uniformity
of the distribution of the approximation points. If the points are too
dense these additional points deliver no new information but demand a
high computational effort. In the sense of uniformity an ideal approxi-
mation is thus an equidistant approximation. The aim of equidistancy
is also proposed in [109, p.59]. As a definition for the uniformity level
δ the following is given:

Definition 4.3. Let A be a dε-representation of E(f(Ω), K) with cov-
erage error ε. Then A is a δ-uniform dε-representation if

min
x,y∈A
x �=y

‖x − y‖ ≥ δ.

The largest δ for which A is a δ-uniform dε-representation is called
uniformity level of the approximation A.

The uniformity level δ can easily be calculated by

δ = min
x,y∈A
x �=y

‖x − y‖.

A high value for δ corresponds to a high uniformity.
The third criteria, the cardinality of the approximation, is measured

by the number of different points in A. Thus the maximal cardinality
is N . The aim is to give a representative approximation with as few
points as possible. The following example clarifies the three discussed
quality criteria ([188, p.67]).

Example 4.4. We consider the approximation of the efficient set of
the bicriteria optimization problem with K = R

2
+ shown in Fig. 4.1

consisting of the three points y1, y2, y3. Thus the cardinality is 3. We
use the Euclidean norm. The uniformity level δ is the smallest distance
between two approximation points and is thus
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Fig. 4.1. Approximation of Example 4.4.

δ = ‖y1 − y2‖2.

The coverage error is the distance between the worst represented effi-
cient point and the closest approximation point and thus

ε = ‖y3 − ȳ‖2.

Obviously the quality criteria are conflicting and the aim of a high
quality of an approximation is thus by itself a multiobjective optimiza-
tion problem. For instance a small coverage error corresponds to a high
cardinality. As a consequence not all approximations can be compared
and ordered as the following example demonstrates.

Example 4.5. We consider the approximations

A1 = {y2, y4, y6, y8} and
A2 = {y3, y7}.

of the efficient set of the bicriteria optimization problem with K = R
2
+

shown in Fig. 4.2. We assume that it holds for a β > 0

‖yi+1 − yi‖2 =
β

2
for i = 1, . . . , 8.

Then ε1 = β
2 is the modified coverage error of A1 and ε2 = β is the

modified coverage error of A2. The uniformity level of the approxima-
tion A1 is given by δ1 = β and of A2 by δ2 = 2β.

Both approximations are optimal w. r. t. the third criteria, the car-
dinality, i. e. there is no other approximation with coverage error ε1 and
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Fig. 4.2. Approximations of Example 4.5.

uniformity level δ1 and ε2 and δ2, respectively, with a smaller number
of points. Here no decision which approximation has a higher quality
can be made.

Thus, a decision maker cannot just ask for the general best approxi-
mation but he can only ask for instance for a best approximation w. r. t.
the coverage error for a given cardinality. We therefore concentrate on
the aim of an equidistant approximation with the possibility that the
decision maker chooses the distance α > 0 between the points. That
is, neighbored points should have a distance of α to each other. Thus
the modified coverage error (4.4) is aimed to be as small as possible,
but a value of α/2 is sufficient. At the same time the uniformity level
should have a value of α to avoid a too high density of the points and
to reach the aim of a distance of α between the approximation points.
The cardinality is then implicitly defined by the distance α.

In the following sections in this chapter we propose a method for
reaching the aim of equidistant approximation points by an adaptive
parameter choice in the used scalarization approaches. We use the sensi-
tivity results of Chap. 3 for developing that adaptive parameter control.
We start with the scalarization by Pascoletti and Serafini and in the
consecutive sections we apply the gained results to further scalarization
problems. First we discuss the bicriteria case.

4.2 Adaptive Parameter Control in the Bicriteria Case

In this section we consider the bicriteria case only, i. e. we consider mul-
tiobjective optimization problems (MOP) with two objective functions
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(m = 2):

min

(
f1(x)
f2(x)

)

subject to the constraint
x ∈ Ω.

The aim is an approximation of the efficient set of this problem for
which we solve the already discussed scalar problems (SP(a, r))

min t

subject to the constraints
a + t r − f(x) ∈ K,

t ∈ R, x ∈ Ω.

By a variation of the parameter a several approximation points can be
found. As we do not want arbitrarily distributed approximation points
we develop a procedure for controlling the choice of the parameter a.
This procedure is an adaptive method based on the gained sensitivity
information and the only interaction by the d. m. needed is the pre-
defining of the desired distance α.

In the following we assume the parameter r to be chosen constant
with r ∈ K \ {02}. We choose the parameter a from the hyperplane

H = {y ∈ R
2 | b�y = β} = {y ∈ R

2 | b1y1 + b2y2 = β},

which is a line here, with b ∈ R
2, β ∈ {0, 1}, and b�r �= 0, as discussed

in Sect. 2.3.1. According to Theorem 2.17 it is sufficient to consider
only parameters a ∈ H with a ∈ Ha ⊂ H for

Ha = {y ∈ R
2 | y = λ ā1 + (1 − λ) ā2, λ ∈ [0, 1]}.

Without loss of generality we can assume ā1
1 < ā2

1. We now want to
determine parameters a0, a1, a2, . . . adaptively (starting with a0 = ā1)
such that the related approximation points f(xi), i = 0, 1, 2, . . ., gained
by solving (SP(ai, r)) for i = 0, 1, 2, . . ., have the equal distance α > 0.
We assume further a0

1 ≤ a1
1 ≤ a2

1 ≤ . . .. For reaching this aim we use the
sensitivity results for the problems (SP(a, r)) and (SP(a, r)) of Chap.
3. For that we need the following assumptions:

Assumption 4.6. Let the Assumption 3.4 hold. Moreover, to any
parameters a and r for which we consider the optimization problem
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(SP(a, r)) and (SP(a, r)) respectively let there exist a minimal solution
(t̄, x̄) with Lagrange multipliers (μ̄, ν̄, ξ̄) ∈ R

m × C∗ × R
q and let the

assumptions of Theorem 3.7 be satisfied in (t̄, x̄). Further let S = R
n.

We assume we have already solved the problem (SP(a0, r)) for a
parameter a0 ∈ Ha with a minimal solution (t0, x0) and Lagrange mul-
tipliers (μ0, ν0, ξ0). In the following paragraphs we examine how the
next parameter a1 should be chosen.

First we consider the case that the constraint a0 + t r− f(x) ∈ K is
active in the point (t0, x0), i. e.

a0 + t0 r − f(x0) = 02. (4.5)

Later we will see that the case a0 + t0 r − f(x0) �= 02 can easily be
transferred to this case. Due to (4.5) the point (t0, x0) is also a minimal
solution of the modified problem (SP(a0, r))

min t

subject to the constraints
a0 + t r − f(x) = 02

t ∈ R, x ∈ Ω

with Lagrange multipliers (μ0, ν0, ξ0) according to Lemma 2.26.
We assume, as a consequence of Theorem 3.7, that the derivative

∇aτ
δ(a0, r) of the local minimal value function in the point (a0, r) is

known. We use this derivative information for a local approximation of
the local minimal value function to the optimization problem (SP(a, r)).
We presume that we can do such a first order Taylor approximation
and then we get by using τ δ(a0, r) = t̄(a0, r) = t0 (with (t̄(a, r), x̄(a, r))
the local minimal solution of (SP(a, r)))

t̄(a, r) ≈ t0 + ∇aτ
δ(a0, r)�(a − a0). (4.6)

As we consider the scalar problem (SP(a, r)) we have the equation

f(x̄(a, r)) = a + t̄(a, r) r

and we obtain together with f(x0) = a0 + t0 r

f(x̄(a, r)) ≈ a0 + (a − a0) +
(
t0 + ∇aτ

δ(a0, r)�(a − a0)
)

r

= f(x0) + (a − a0) +
(∇aτ

δ(a0, r)�(a − a0)
)

r.
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We use the point (t̄(a, r), x̄(a, r)) as an approximation of the minimal
solution (t(a, r), x(a, r)) of (SP(a, r)) (we have at least t(a, r) ≤ t̄(a, r)
and (t̄(a, r), x̄(a, r)) is feasible for (SP(a, r))). Then we obtain the fol-
lowing approximation for the weakly K-efficient points of the multiob-
jective optimization problem dependent on the parameter a (for a in a
neighborhood of a0):

f(x(a, r)) ≈ f(x0) + (a − a0) +
(
∇aτ

δ(a0, r)�(a − a0)
)

r. (4.7)

The aim is to determine the next parameter a1 so that for the given
distance α > 0 we obtain

‖f(x(a0, r)) − f(x(a1, r))‖ = α (4.8)

with f(x(a0, r)) = f(x0). That is, the new approximation point shall
have a distance of α to the former.

Further let a1 ∈ H. For that we choose a direction v ∈ R
2 \ {02}

with a0 + s v ∈ H for s ∈ R, i. e. let b�v = 0. Besides, as we also have
presumed a0

1 ≤ a1
1, we demand s ≥ 0 and v1 ≥ 0. This is satisfied for

instance for v := ā2 − ā1. We now search for a scalar s1 ∈ R such that
a1 := a0 + s1 v satisfies (4.8). As a1 − a0 = s1 v we get, based on the
approximation (4.7),

α =
∥∥f(x(a0, r)) − f(x(a1, r))

∥∥
≈ ∥∥f(x0) − (

f(x0) + s1 v + s1
(∇aτ

δ(a0, r)�v
)

r
)∥∥

= |s1| ∥∥v +
(∇aτ

δ(a0, r)�v
)

r
∥∥ .

Thus, for satisfying (4.8), we choose

s1 :=
α

‖v +
(∇aτ δ(a0, r)�v

)
r‖ > 0. (4.9)

We define a1 := a0 + s1 v. Solving (SP(a1, r)) results in a weakly K-
minimal point x1. Dependent on the quality of the approximation in
(4.7) we have

‖f(x0) − f(x1)‖ ≈ α.

For the calculation of s1 the derivative ∇aτ
δ(a0, r) has to be known.

In the case of the ordering cone C = R
p
+ we have according to Corollary

3.10
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∇aτ
δ(a0, r) = −μ0.

For an arbitrary cone C the expression

∇aτ
δ(a0, r) = −μ0 −∇aν(a0, r)�g(x0)

cannot be simplified generally. Then, the derivative of the function
ν(·, ·) in the point (a0, r) w. r. t. the parameter a can be approximated
numerically for instance by numerical differentiation.

The approximation of the local minimal value function may be im-
proved by using higher order derivatives. For example for K = R

2
+,

C = R
p
+ and in the case of non-degeneracy of the constraints the sec-

ond order derivative is given by

∇2
aτ

δ(a0, r) = −∇aμ(a0, r)

according to Theorem 3.15. Here, the derivative of μ(·, ·) in the point
(a0, r) w. r. t. a can again be approximated by numerical differentiation.
We obtain

t̄(a, r) ≈ t0 + ∇aτ
δ(a0, r)�(a − a0) +

1
2
(a − a0)�∇2

aτ
δ(a0, r)(a − a0)

and thus for a1 = a0 + s1 v

α =
∥∥f(x(a0, r)) − f(x(a1, r))

∥∥
≈ ∥∥f(x0) − (

f(x0) + s1 v + s1
(∇aτ

δ(a0, r)�v
)

r

+1
2(s1)2

(
v�∇2

aτ
δ(a0, r)v

)
r
)∥∥

=
∥∥s1 v + s1

(∇aτ
δ(a0, r)�v

)
r + 1

2(s1)2
(
v�∇2

aτ
δ(a0, r)v

)
r
∥∥ .

For the solution of the equation∥∥∥∥s1 v + s1 ∇aτ
δ(a0, r)�v r +

1
2
(s1)2(v�∇2

aτ
δ(a0, r)v) r

∥∥∥∥ = α (4.10)

w. r. t. s1 in general numerical methods as the Newton’s method have
to be applied. A start point for such a numerical method can be gained
by using (4.9). Solving (4.10) is for the Euclidean norm equivalent to
find the roots w. r. t. s of the following polynomial:

κ4 (s)4 + κ3 (s)3 + κ2 (s)2 + κ0
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with

κ4 = 1
4 · (v�∇2

aτ
δ(a0, r)v

)2 · ‖r‖2
2,

κ3 =
(
v�r + ∇aτ

δ(a0, r)�v‖r‖2
2

) · (v�∇2
aτ

δ(a0, r)v
)
,

κ2 = ‖v + ∇aτ
δ(a0, r)�v r‖2

2,

κ0 = −α2.

In that case, i. e. K = R
2
+, C = R

p
+ and non-degeneracy, we also

know (see p. 86) that active constraints remain active. Therefore, if a0+
t0 r−f(x0) = 02, it also holds a+t r−f(x) = 02 for a in a neighborhood
of a0 and (t, x) the local minimal solution to the parameter (a, r). Then
it is also (t(a, r), x(a, r)) = (t̄(a, r), x̄(a, r)) for a in a neighborhood of
a0.

In addition to approximating the minimal value f(x(a1, r)) for de-
termining the new parameter a1 we can also approximate the minimal
solution (t(a1, r), x(a1, r)) (for the case of the natural ordering, i. e. for
K = R

m
+ , C = R

m
+ ). This approximated point can be used as a starting

point for a numerical method for solving the problem (SP(a1, r)). More-
over such an approximation of the minimal solution is important for
the treatment of multiobjective bilevel optimization problems which is
discussed in Chap. 7. There, this is used for determining an equidistant
approximation of the set of K-minimal points in the parameter space.
In the non-degenerated case such an approximation can be got with the
help of Theorem 3.16 and in the degenerated case based on Theorem
3.17. We demonstrate this on a simple example by Hazen ([103, p.186]).

Example 4.7. We consider the unconstrained bicriteria optimization
problem

min

⎛
⎜⎝

x2
1
2 + x2

2 − 10x1 − 100

x2
1 + x2

2
2 − 10x2 − 100

⎞
⎟⎠

subject to the constraint

x ∈ R
2

(compare also Test Problem 1 on p.141). For determining efficient
points we use the scalar optimization problem (SP(a, r)) with
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a ∈ H := {y = (y1, y2) ∈ R
2 | y2 = 0}

and with constant r = r0 = (0, 1)�. The parameter a0 := (−133.5, 0)�

results in the minimal solution (t0, x0
1, x

0
2) = (−93, 5, 2) with Lagrange

multiplier (μ0
1, μ

0
2) = (2, 1). It is easy to verify that the assumptions of

Theorem 3.13 are satisfied. The derivative of the local minimal value
function is thus given by

∇aτ
δ(a0, r0) =

(
−2
−1

)
.

If we set now a1 := a0 + s1v with s1 as in (4.9) for v = (1, 0)� and
α = 20 we obtain s1 = 4

√
5 and a1 = (−133.5+4

√
5, 0)�. For obtaining

this result the point f(x(a1, r0)) is approximated by

f(x(a1, r0)) ≈ f(x0) + s1v + s1
(
∇aτ

δ(a0, r0)�v
)

r0

=

(
−133.5
−93

)
+ 4

√
5

(
1
0

)
+ 4

√
5

⎛
⎝
(
−2
−1

)�(
1
0

)⎞
⎠
(

0
1

)

=

(
−124.5557 . . .

−110.8885 . . .

)
(4.11)

(compare (4.7)).
Using Theorem 3.16 the minimal solution (t(a1, r0), x(a1, r0)) and

the Lagrange multipliers (μ1(a1, r0), μ2(a1, r0)) can also be approxi-
mated. It is

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1
0 4 0 −5 10
0 0 5 4 −8
0 10 −8 0 0
1 −10 8 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and N =

⎛
⎜⎜⎜⎜⎝

0 0 0 −2 0
0 0 0 0 −1
0 0 0 186 0
0 0 0 0 93

⎞
⎟⎟⎟⎟⎠

�

and we obtain the approximation⎛
⎜⎜⎜⎜⎜⎜⎝

t(a1, r0)
x1(a1, r0)
x2(a1, r0)
μ1(a1, r0)
μ2(a1, r0)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−93
5
2
2
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ M−1N

⎛
⎜⎜⎜⎜⎝

4
√

5
0
0
0

⎞
⎟⎟⎟⎟⎠ + o

⎛
⎜⎜⎜⎜⎝

∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎝

4
√

5
0
0
0

⎞
⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥

⎞
⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎝

−110.8885 . . .

3.8168 . . .

2.7571 . . .

1.0535 . . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ o

⎛
⎜⎜⎜⎜⎝

∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎝

4
√

5
0
0
0

⎞
⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥

⎞
⎟⎟⎟⎟⎠ .

With the help of Theorem 3.17 instead of Theorem 3.16 we first have
to solve the following system of equations:⎛

⎜⎝
0 0 0
0 4 0
0 0 5

⎞
⎟⎠
(

t̄

x̄

)
− μ̄1

⎛
⎜⎝

0
5
−4

⎞
⎟⎠− μ̄2

⎛
⎜⎝

1
−10
8

⎞
⎟⎠ =

⎛
⎜⎝

0
0
0

⎞
⎟⎠ ,

⎛
⎜⎝

0
5
−4

⎞
⎟⎠

�(
t̄

x̄

)
= −1,

⎛
⎜⎝

1
−10
8

⎞
⎟⎠

�(
t̄

x̄

)
= 0.

The rounded solution is (t̄, x̄, μ̄) = (−2,−0.1323, 0.0847,−0.1058, 0)
and thus we obtain with a1 = a0 + s v, s = 4

√
5 :

⎛
⎜⎝

t(a1, r0)
x(a1, r0)
μ(a1, r0)

⎞
⎟⎠ ≈

⎛
⎜⎝

t0

x0

μ0

⎞
⎟⎠ + s ·

⎛
⎜⎝

t̄

x̄

μ̄

⎞
⎟⎠ · v =

⎛
⎜⎜⎜⎜⎜⎜⎝

−110.8885 . . .

3.8166 . . .

2.7575 . . .

1.0536 . . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For a comparison the minimal solution of the problem (SP(a1, r0)) for
a1 = (−133.5 + 4

√
5, 0)� calculated by applying a SQP algorithm (as

implemented in Matlab) is⎛
⎜⎝

t1

x1
1

x1
2

⎞
⎟⎠ =

⎛
⎜⎝

−107.5620 . . .

3.9994 . . .

2.7277 . . .

⎞
⎟⎠

with Lagrange multiplier (μ1
1, μ

1
2) = (1.3330 . . . , 1) and
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Fig. 4.3. Bicriteria example with a0 + t0 r − f(x0) �= 02 for K = R
2
+.

f(x1) =

(
−124.5557 . . .

−107.5620 . . .

)
.

The actual distance between the points f(x0) and f(x1) is thus

‖f(x1) − f(x0)‖2 = 17.0895 . . . .

A better result would be achieved by using a Taylor approximation of
second or higher order in (4.11) and also by reducing the distance α.

So far we have only discussed the case that the inequality constraint
a0 + t r − f(x) ∈ K of (SP(a0, r)) is active in the point (t0, x0) , i. e.
a0 + t0 r−f(x0) = 02. Now we turn our attention to the case that there
is a k0 ∈ K \ {02} with

a0 + t0 r − f(x0) = k0

as illustrated in Fig. 4.3. Then, according to Theorem 2.21, there is a
t̃0 ∈ R and a parameter ã0 ∈ H so that

ã0 + t̃0 r − f(x0) = 02,

i. e. the constraint ã0 + t r − f(x) ∈ K of the problem (SP(ã0, r)) is
active in the point (t̃0, x0). According to Lemma 2.26 the Lagrange
multipliers, which are important for determining the derivative of the
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local minimal value function in the point (ã0, r), stay unchanged: if
(μ0, ν0, ξ0) are Lagrange multipliers to the minimal solution (t0, x0)
for (SP(a0, r)), then (μ0, ν0, ξ0) are also Lagrange multipliers to the
minimal solution (t̃0, x0) for (SP(ã0, r)).

Then we can continue the determination of the next parameter a1

starting from the point ã0 and not from the point a0, now with the
discussed constraint being active. The points t̃0 and ã0 with ã0 ∈ H
can be calculated by

t̃0 :=
b�f(x0) − β

b�r
and ã0 := f(x0) − t̃0 r, (4.12)

see the proof of Theorem 2.21.
The following theorem shows that the line segment with endpoints

a0 and ã0 on the hyperplane H can be neglected, and thus that all
parameters a with a = a0 + μ (ã0 − a0) ∈ H for μ ∈]0, 1[ can be
ignored, without loosing the possibility that all K-minimal points of the
multiobjective optimization problem (MOP) can be found by solving
(SP(a, r)) for appropriate parameters a ∈ H. This fact is even true for
the case of more than two objective functions, i. e. for m ≥ 3. We use
for this result that according to Theorem 2.17 for any K-minimal point
x̄ ∈ M(f(Ω), K) there exists a parameter ā ∈ Ha and some t̄ ∈ R so
that (t̄, x̄) is a minimal solution of (SP(ā, r)) with ā + t̄ r − f(x̄) = 0m.
The points t̄ and ā are given by

t̄ =
b�f(x̄) − β

b�r
and ā = f(x̄) − t̄ r. (4.13)

Theorem 4.8. Let (t0, x0) be a minimal solution of (SP(a0, r)) for a
parameter a0 ∈ H = {y ∈ R

m | b�y = β} with

a0 + t0 r − f(x0) = k0 (4.14)

and k0 ∈ K \ {0m}. Then there exists no K-minimal point x̄ ∈
M(f(Ω), K) with

ā = a0 + μ (ã0 − a0) for some μ ∈]0, 1[ (4.15)

and ā as in (4.13) and ã0 as in (4.12).

Proof. We proof this by contradiction and assume that there
exists a K-minimal point x̄ with (4.15). We set
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t′ := t̄ − (1 − μ) (t0 − t̃0)

and do a case differentiation.
With (4.12) and (4.14) we have

ã0 − a0 = f(x0) − t̃0 r − (k0 − t0 r + f(x0))
= (t0 − t̃0) r − k0. (4.16)

Case t′ ≥ t̃0. With (4.13), (4.14), (4.15), (4.16) and the definition
of t′ we conclude for an arbitrary μ ∈]0, 1[

f(x̄) − f(x0) = ā + t̄ r − (a0 + t0 r − k0)
= a0 + μ (ã0 − a0) + t̄ r − (a0 + t0 r − k0)
= μ((t0 − t̃0) r − k0) + (t̄ − t0) r + k0

= μ((t0 − t̃0) r − k0) + (t′ + (1 − μ)(t0 − t̃0) − t0) r + k0

= (1 − μ)︸ ︷︷ ︸
>0

k0︸︷︷︸
�=0m

+ (t′ − t̃0)︸ ︷︷ ︸
≥0

r ∈ K \ {0m}

in contradiction to the K-minimality of x̄.
Case t′ < t̃0. We first show that the point (t0− t̃0 + t′, x̄) is feasible

for the problem (SP(a0, r)). Using the definition of t′ together with
(4.13), (4.15) and (4.16) we obtain for μ ∈]0, 1[

a0 + (t0 − t̃0 + t′) r − f(x̄) = a0 +
(
t0 − t̃0 + t̄ − (1 − μ) (t0 − t̃0)

)
r

−(ā + t̄ r)
= (a0 − ā) + μ (t0 − t̃0) r

= −μ (ã0 − a0) + μ (t0 − t̃0) r

= −μ ((t0 − t̃0) r − k0) + μ (t0 − t̃0) r

= μ k0 ∈ K.

Due to t′ < t̃0 it is t0 − t̃0 + t′ = t0 + (t′ − t̃0) < t0 and thus this is a
contradiction to (t0, x0) a minimal solution of (SP(a0, r)). �

As preconcerted we determine the parameters a in increasing order
w. r. t. the first coordinate, i. e. a0

1 ≤ a1
1 ≤ a2

1 ≤ . . .. Thus we are
interested in the question whether it is ã0

1 > a0
1 or ã0

1 ≤ a0
1. For the

following examinations we restrict ourselves to the special case of the
natural ordering K = R

2
+ in the image space. We generally assume

that a hyperplane H = {y ∈ R
2 | b�y = β} is given and the parameter

r ∈ R
2
+ with b�r �= 0 is assumed to be constant.
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Lemma 4.9. Let K = R
2
+. Let (t0, x0) be a minimal solution of

(SP(a0, r)) for a parameter a0 ∈ H = {y ∈ R
2 | b�y = β} with

a0 + t0 r − f(x0) = k0 ∈ R
2
+ \ {02}. (4.17)

Then for ã0 as in (4.12) it is ã0
1 > a0

1 if and only if

(k0
1 = 0, k0

2 > 0 and r1b2
b�r

> 0) or

(k0
1 > 0, k0

2 = 0 and r2b2
b�r

< 0).

Proof. According to Theorem 2.1,c) it is k0 ∈ ∂R
2
+. We have

with (4.12) and (4.17)

ã0
1 > a0

1

⇔ f1(x0) − t̃0 r1 > k0
1 − t0 r1 + f1(x0)

⇔ (t0 − t̃0) r1 > k0
1

⇔ (b�(f(x0)+k0)−β)−(b�f(x0)−β)
b�r

r1 > k0
1

⇔ b�k0

b�r
r1 > k0

1

⇔ r1b2
b�r

k0
2 >

(
1 − r1b1

b�r

)
k0

1.

This inequality is for k0 ∈ ∂R
2
+ satisfied if and only if

k0
1 = 0, k0

2 > 0 and r1b2
b�r

> 0 or

k0
1 > 0, k0

2 = 0 and 1 − r1b1
b�r

= r2b2
b�r

< 0.

�

This result is illustrated by the following example.

Example 4.10. We consider the bicriteria optimization problem

min f(x) = x

subject to the constraint
(x1 − 4)2 + (x2 − 1)2 ≤ 1,

x ∈ R
2

w. r. t. the natural ordering. The efficient set is given by
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E(f(Ω), R2
+) = {y ∈ R

2 | (y1 − 4)2 + (y2 − 1)2 = 1, y1 ≤ 4, y2 ≤ 1}.
Let the hyperplane H be defined by H := {y ∈ R

2 | (1, 1)y = 0}, i. e.
b = (1, 1)�, β = 0, and let r := (1, 1)�. For a0 := (0, 0) the mini-
mal solution of the Pascoletti-Serafini scalarization to the considered
bicriteria optimization problem is (t0, x0) = (3, 3, 1)�, with

k0 := a0 + t0 r − f(x0) = (0, 2)�.

We calculate ã0 by

ã0 := f(x0) − t̃0 r = (1,−1)� with t̃0 :=
1

b�r
(b�f(x0) − β) = 2

(see Fig. 4.4). It is ã0
1 = 1 > a0

1 = 0 and k0
1 = 0, k0

2 > 0, r2b2
b�r

= 1
2 > 0,

confirming the result of Lemma 4.9.

Fig. 4.4. Illustration of Example 4.10.

Summarizing this we proceed in the case that k0 = a0 + t0 r −
f(x0) �= 02 for (t0, x0) a minimal solution of (SP(a0, r)) as follows: first
we determine the new parameter ã0 by

ã0 := f(x0) − t̃0 r with t̃0 :=
b�f(x0) − β

b�r
.

According to Theorem 4.8 the parameters a ∈ {a0 + μ · (ã0 − a0) | μ ∈
]0, 1[} can be neglected.
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Fig. 4.5. Bicriteria example with a0 + t0 r − f(x0) �= 02 for K = R
2
+

and ã0
1 < a0

1.

A criteria for ã0
1 > a0

1 is given in Lemma 4.9. If this is the case
we continue the parameter determination with the parameter ã0. As
already mentioned (Lemma 2.26) the point (t̃0, x0) is a minimal solution
of (SP(ã0, r)) with ã0 + t̃0 r − f(x0) = 02 and the Lagrange multipliers
are known.

For the case ã0
1 ≤ a0

1 as illustrated in Fig. 4.5 it is not useful to
continue with the parameter ã0 instead of a0 as we are looking for
parameters with increasing first coordinate. In that case we still use the
parameter a0 for determining a1. We can no longer assume f(x(a, r)) =
a + t(a, r) r as we have f(x0) = a0 + t0 r − k0 with k0 �= 02. However
we can assume that the constraint a + t r − f(x) ∈ K remains inactive
and thus in view of a0 + t0 r = f(x0) + k0 we assume

a + t(a, r) r = f(x0) + k0 + s k0.

Then, for
s =

α

‖k0‖ ,

we have a distance of α > 0 between the points a+t(a, r) r and a0+t0 r,
see Fig. 4.6. Thus we set for the new parameter

a1 := f(x0) + (1 + s) k0 − t r

with s = α/‖k0‖ and for some t ∈ R. As we still demand a ∈ H we
choose

t :=
b�

(
f(x0) + (1 + s) k0

)− β

b�r
. (4.18)
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Fig. 4.6. Choosing the new parameter if a0 + t0 r − f(x0) �= 02 and
ã0

1 < a0
1.

Using the definition of ã0 (see (4.12)) this results in

a1 = f(x0) + (1 + s) k0 − b�
(
f(x0) + (1 + s) k0

)− β

b�r
r

= ã0 + (1 + s)
(

k0 − b�k0

b�r
r

)
.

According to

b�a1 = b�ã0︸︷︷︸
=β

+(1 + s)
(

b�k0 − b�k0

b�r
b�r

)
︸ ︷︷ ︸

=0

= β,

the parameter a1 is an element of the hyperplane H. Further we prede-
fined that the parameters a are increasing w. r. t. their first coordinate.
This is the case as shown in the following lemma:

Lemma 4.11. Let K = R
2
+. Let (t0, x0) be a minimal solution of

(SP(a0, r)) for a parameter a0 ∈ H = {y ∈ R
2 | b�y = β} with

a0 + t0 r − f(x0) = k0 ∈ R
2
+ \ {02}. (4.19)

Then for ã0 as in (4.12) let ã0
1 ≤ a0

1 and we set

a := ã0 + (1 + s)
(

k0 − b�k0

b�r
r

)
(4.20)

for some s > 0. Then a1 ≥ a0
1.
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Proof. Using the definition of ã0 we have

a = ã0 + (1 + s)
(

k0 − b�k0

b�r
r

)
= f(x0) + (1 + s) k0 − t r (4.21)

with t as in (4.18). If we notice that

t0 =
b�(f(x0) + k0) − β

b�r

we get

t − t0 =
1

b�r

(
b�f(x0) + (1 + s)b�k0 − β − b�f(x0) − b�k0 + β

)
=

s

b�r
b�k0. (4.22)

Using (4.21), (4.19) and (4.22) the inequality a1 ≥ a0
1 is equivalent to

f1(x0) + (1 + s)k0
1 − t r1 ≥ f1(x0) + k0

1 − t0 r1

⇔ sk0
1 − (t − t0)r1 ≥ 0

⇔ s

(
k0

1 −
b�k0

b�r
r1

)
≥ 0. (4.23)

According to the assumptions of this lemma it is k0 �= 02 and with
Theorem 2.1,c) we conclude k0 ∈ ∂R

2
+ \ {02}. Thus we have k0

1 >
0, k0

2 = 0 or k0
1 = 0, k0

2 > 0.
Case k0

1 > 0, k0
2 = 0. Then the inequality (4.23) is equivalent to

s

(
k0

1 −
b1k

0
1

b�r
r1

)
= sk0

1︸︷︷︸
>0

(
1 − b1r1

b�r

)
≥ 0.

We have ã0
1 ≤ a0

1 and thus with Lemma 4.9 we conclude

r2b2

b�r
= 1 − b1r1

b�r
≥ 0.

Hence the inequality (4.23) is satisfied, i. e. a1 ≥ a0
1.

Case k0
1 = 0, k0

2 > 0. Again applying Lemma 4.9 we obtain

r1b2

b�r
≤ 0
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and thus (4.23) is equivalent to

−s
b2k

0
2

b�r
r1 ≥ 0

⇔ −sk0
2︸ ︷︷ ︸

<0

b2r1

b�r︸︷︷︸
≤0

≥ 0

and is satisfied. This completes the proof. �

So, in the case a0 + t0 r − f(x0) = k0 �= 02 with ã0
1 ≤ a0

1 we choose
the next parameter a1 by

a1 := ã0 +
(

1 +
α

‖k0‖
)(

k0 − b�k0

b�r
r

)

and according to Lemma 4.11 it is a1
1 ≥ a0

1.

4.2.1 Algorithm for the Pascoletti-Serafini Scalarization

We now summarize the discussed results and formulate an algorithm
for solving bicriteria optimization problems w. r. t. the natural ordering
based on the Pascoletti-Serafini scalarization. For that let the Assump-
tion 3.12 as well as the Assumption 4.6 for m = 2 be satisfied. In detail
we assume the following:

Assumption 4.12. Let m = 2, K = R
2
+, C = R

p
+ and Ŝ = S = R

n.
Let the functions f : R

n → R
2, g : R

n → R
p, and h : R

n → R
q be

twice continuously differentiable on R
n. Further, to any parameters a

and r for which we consider the optimization problem (SP(a, r)) (and
(SP(a, r)) respectively) let there exist a minimal solution (t̄, x̄) with
Lagrange multipliers (μ̄, ν̄, ξ̄) ∈ R

m
+ ×R

p
+ ×R

q and let the assumptions
of Theorem 3.13 (and Theorem 3.7 respectively) be satisfied in (t̄, x̄).

Thus we consider only multiobjective optimization problems which
can be formulated as

min f(x) =

(
f1(x)
f2(x)

)

subject to the constraints
gj(x) ≥ 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . , q,

x ∈ R
n
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with the image space R
2 partially ordered by the natural ordering. The

constraint set is

Ω = {x ∈ R
n | gj(x) ≥ 0, j = 1, . . . , p, hk(x) = 0, k = 1, . . . , q}.

We choose the parameter r ∈ K = R
2
+ constant in the Pascoletti-

Serafini scalarization and determine an approximation of the efficient
set by varying the parameter a. Without loss of generality we assume
r1 > 0. According to Theorem 3.13 and Lemma 3.14 we get for the
local minimal value function in any point (a0, r) ∈ R

2 × R
2

∇aτ
δ(a0, r) = −μ0

with μ0 ∈ R
2
+ the Lagrange multiplier to the constraint a0+t r−f(x) ≥2

02.
Using this information we formulate the following algorithm.

Algorithm 1 (Adaptive Pascoletti-Serafini method for bicriteria prob-
lems).
Input: Choose r ∈ R

2
+, with r1 > 0, and predefine the de-

sired distance α ∈ R, α > 0, between the approximation
points. Choose a hyperplane

H = {y ∈ R
2 | b�y = β}

by setting b ∈ R
2 with b�r �= 0 and β ∈ {0, 1}. Deliver

M1 ∈ R with

M1 > f2(x) − f1(x)
r2

r1
for all x ∈ Ω.

Step 1: Solve (SP(ã1, r)) for ã1 = (0, M1)� with minimal so-
lution (t̃1, x1) and Lagrange multiplier μ1 ∈ R

2
+ to the

constraint ã1 + t r − f(x) ≥2 02. Calculate

t1 :=
b�f(x1) − β

b�r
and a1 := f(x1) − t1 r.

Set k1 := 02, l := 1.
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Step 2: Solve minx∈Ω f2(x) with minimal solution xE and calcu-
late

tE :=
b�f(xE) − β

b�r
and aE := f(xE) − tE r.

Set v := aE − a1.

Step 3: Determine al+1 by:
• If kl = 02 set

al+1 := al +
α

‖v + ((−μl)�v) r‖ · v. (4.24)

• Elseif (kl
1 = 0, kl

2 > 0 and r1b2

b�r
> 0) or

(kl
1 > 0, kl

2 = 0 and b2r2
b�r

< 0) calculate

t̃l :=
b�f(xl) − β

b�r
and ãl := f(xl) − t̃l r

and set

al+1 := ãl +
α

‖v + ((−μl)�v) r‖ · v.

• Elseif (kl
1 = 0, kl

2 > 0 and r1b2

b�r
≤ 0) or

(kl
1 > 0, kl

2 = 0 and b2r2
b�r

≥ 0) set

al+1 := ãl +
(

1 +
α

‖kl‖
) (

kl − b�kl

b�r
r

)
.

Step 4: Set l:=l+1.
If al = a1 + λ · v for a λ ∈ [0, 1], solve (SP(al, r)) with
minimal solution (tl, xl) and Lagrange multiplier μl to
the constraint al + t r − f(x) ≥2 02, set kl := al + tl r −
f(xl) and go to Step 3.
Else stop.

Output: The set A := {x1, · · · , xl−1, xE} is an approximation of
the set Mw(f(Ω), K).
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In the Input it is asked for a value M1 ∈ R with M1 > f2(x) −
f1(x) r2

r1
. Such a point exists if there exist minimal solutions of the

problems maxx∈Ω f2(x) and minx∈Ω f1(x). Then we can choose

M1 > max
x∈Ω

f2(x) − min
x∈Ω

f1(x)
r2

r1
.

The optimization problem (SP(ã1, r)) in Step 1 is

min t

subject to the constraints
t r1 − f1(x) ≥ 0,

M1 + t r2 − f2(x) ≥ 0,

t ∈ R, x ∈ Ω.

(4.25)

Thus, for any feasible point (t, x) it holds t ≥ f1(x)
r1

and then the second
inequality

M1 + t r2 − f2(x) >

(
f2(x) − f1(x)

r2

r1

)
+

f1(x)
r1

r2 − f2(x) = 0

is always satisfied. So, we can replace problem (4.25) by

min f1(x)
r1

subject to the constraint
x ∈ Ω

being equivalent to minx∈Ω f1(x). We have minx∈Ω f1(x) = f1(x1) and
(t1, x1) is a minimal solution of (SP(a1, r)) with Lagrange multiplier
μ1 to the constraint a1 + t r − f(x) ≥2 02. In Step 1 and Step 2 we
determine the subset Ha of the hyperplane and we define a direction v
with a1 + s v ∈ H for all s ∈ R. Note that generally it is ã1 �∈ H.

In Step 3 the adaptive parameter control which leads to an approxi-
mation A of the set of weakly EP-minimal points is done. We do a case
differentiation if the constraint al + t r − f(x) ≥2 02 is active or not,
i. e. if

kl = al + tl r − f(xl) �= 02

or not, and in the case kl �= 02 if it is also ãl
1 < al

1 or not (see Lemma
4.9).
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For solving the scalar optimization problems in the Steps 1, 2 and 4
a numerical method has to be used as for instance the SQP (sequential
quadratic programming) method (see among others in [80, 183, 199]).
However using just a local solver can lead to only local minimal solu-
tions of the scalar problems and thus to only locally weakly EP-minimal
points. Besides it can happen that parts of the efficient set are neglected
as it is demonstrated in test problem 4 in Chap. 5. In that case a global
solution method has to be applied. For a survey on global optimiza-
tion methods see [17, 115, 225]. Examples for a global solution method
are the method by Schäffler ([192, 193]) based on stochastic differen-
tial equations or the method called Direct by Jones, Perttunen and
Stuckman ([132]).

As a starting point for the numerical method for solving the problem
(SP(al, r)) in Step 4 the point (tl−1, xl−1) can be used. For improving
this starting point an approximation of the point (tl, xl) according to
Theorem 3.16 and Theorem 3.17 respectively can be done. The con-
dition al = a1 + λ v for a λ ∈ [0, 1] in Step 4 corresponds due to
v = aE − a1 to the condition that al is an element of the set Ha, i. e.
of the line segment with endpoints a1 and aE .

As a result of Algorithm 1 we get an approximation of the set
of weakly EP-minimal points. If we choose from the set A the non-
dominated points we get an approximation of the set of EP-minimal
points. However note that this approximation need not to consist of EP-
minimal points only and that it can include just weakly EP-minimal
points, too.

The approximation quality can be improved by using second order
information. If the constraints are non-degenerated in addition to the
other assumptions we have

∇2
aτ

δ(a0, r) = −∇aμ(a0, r)

according to Theorem 3.15. Here, ∇2
aτ

δ(a0, r) can be approximated by
numerical differentiation. For example for b1, b2 �= 0 we set

∇2
aτ

δ(al, r) ≈

⎛
⎜⎝

μl
1−μl−1

1

al
1−al−1

1

μl
1−μl−1

1

al
2−al−1

2

μl
2−μl−1

2

al
1−al−1

1

μl
2−μl−1

2

al
2−al−1

2

⎞
⎟⎠ =: Hτ .

Then, a solution s > 0 of the equation

‖s v − s(μl)�v r +
1
2
s2 (v� Hτ v) r‖2 = α2
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has to be found (using numerical methods as e. g. the Newton’s method).
Finally, we choose for the new parameter

al+1 := al + s · v.

4.2.2 Algorithm for the ε-Constraint Scalarization

According to Sect. 2.5.1 the ε-constraint scalarization is a special case
of the Pascoletti-Serafini scalarization. Thus we can apply the results
for the adaptive parameter control gained for the general method also
for controlling the parameter ε. Here, we consider again the bicriteria
case only. For three or more objective functions see Sect. 4.3.

We arbitrarily choose k = 2 and consider the problem (P2(ε))

min f2(x)
subject to the constraints

f1(x) ≤ ε,

x ∈ Ω.

In comparison to the Pascoletti-Serafini problem it is H = {y ∈ R
2 |

y2 = 0}, i. e. b = (0, 1)�, β = 0, and r = (0, 1)� predefined. We choose
v := (1, 0)�. Let the Assumption 4.12 hold. For any parameter a0 =
(ε0, 0)� the inequality constraint a0

2 + t r2 − f2(x) ≥ 0 is active. Thus,
for any minimal solution (t0, x0) of the related problem (SP(a0, r)) we
have

k0 = a0 + t0 r − f(x0)

=

(
ε0

0

)
+ t0

(
0
1

)
−
(

f1(x0)
f2(x0)

)

=

(
ε0 − f1(x0)

0

)

≥ 02

and hence k0 �= 02 if and only if k0
2 = 0 and k0

1 > 0. Determining ã0 as
in Lemma 4.9 (see also (4.12)) results in

ã0 =

(
ε̃0

0

)
=

(
f1(x0)
f2(x0)

)
− f2(x0) ·

(
0
1

)
=

(
f1(x0)

0

)
.
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As a consequence (also as a result of Lemma 4.9) it is never ã0
1 =

f1(x0) > a0
1 = ε0. Further note, that in the case of ε0 − f1(x0) = k0

1 >
0 the correspondent Lagrange multiplier μ0

1 is equal to zero. In the
following we determine the parameters in decreasing order w. r. t. the
first coordinate a1 = ε in contrast to the previous procedure.

For k0 �= 02 we choose (compare (4.24) in Step 3 of Alg. 1)

a1 =

(
ε1

0

)
= a0 − α

‖v + ((−μ0)�v)r‖v

=

(
ε0

0

)
− α√

1 + (μ0
1)2

(
1
0

)
,

i. e.
ε1 = ε0 − α√

1 + (μ̂0)2

with μ̂0 := μ0
1 ∈ R

+ the Lagrange multiplier to the constraint f1(x) −
ε0 ≤ 0. Because ε0 = f1(x0) we can also write

ε1 = f1(x0) − α√
1 + (μ̂0)2

. (4.26)

For k0 �= 02, i. e. for ε0 − f1(x0) > 0 and thus μ̂0 = 0 we continue
with the parameter ε̃0 = f1(x0) and we choose

ε1 = f1(x0) − α.

Note, that due to μ̂0 = 0 this case is included in the equation (4.26).
This results in the following algorithm:
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Algorithm 2 (Adaptive ε-constraint method for bicriteria problems).

Input: Choose a desired distance α > 0 between the approxi-
mation points. Choose M > f1(x) for all x ∈ Ω.

Step 1: Solve problem (P2(ε)) with parameter ε := M with min-
imal solution x1 and Lagrange multiplier μ1 to the con-
straint f1(x) − ε1 ≤ 0. Set ε1 := f1(x1) and l := 1.

Step 2: Solve min
x∈Ω

f1(x) with minimal solution xE .

Step 3: Set
εl+1 := f1(xl) − α√

1 + (μl)2
.

Step 4: Set l := l + 1.
If εl ≥ f1(xE) solve problem (P2(εl)) with minimal so-
lution xl and Lagrange multiplier μl to the constraint
f1(x) − εl ≤ 0 and go to Step 3. Otherwise stop.

Output: The set A := {x1, . . . , xl−1, xE} is an approximation of
the set of weakly EP-minimal points.

An algorithm specialized to the problem (P1(ε)) can be found in
[69], but note, that the problems (P1(ε)) and (P2(ε)) are equal just by
renaming the functions f1 and f2.

We can use again second order sensitivity information. Assuming all
necessary assumptions are satisfied we set in Step 3

H :=
μl − μl−1

εl − εl−1

and calculate a solution s̄ < 0 of the equation

s4(
1
4
H2) − s3(Hμl) + s2(1 + (μl)2) − α2 = 0

e. g. with Newton’s method with a starting value of s = − α√
1+(μl)2

and

set
εl+1 := εl + s̄

(compare [67]).

4.2.3 Algorithm for the Normal Boundary Intersection
Scalarization

Next we specialize the general algorithm Alg. 1 to the normal boundary
intersection method by Das and Dennis ([38, 40]) which we already
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discussed in Sect. 2.5.2. We recall the problem (NBI(β)):

max s

subject to the constraints
Φβ + s n̄ = f(x) − f∗,

s ∈ R, x ∈ Ω.

In Sect. 2.5.2, Lemma 2.32, we have already seen how the parame-
ter β of this method corresponds to the parameter a of the modified
Pascoletti-Serafini scalarization (SP(a, r)):

a = f∗ + Φ β.

According to Sect. 2.5.2 all parameters a = f∗ + Φ β are elements of a
hyperplane H with

H = {β f(x1) + (1 − β) f(x2) | β ∈ R}
and the set Ha is

Ha = {β f(x1) + (1 − β) f(x2) | β ∈ [0, 1]}.
As direction v (compare Step 2 of Alg. 1) we choose again v := aE −a1.
Here, as we have aE = f∗ + Φ βE , a1 = f∗ + Φ β1 and β1 = (1, 0)�,
βE = (0, 1)� we conclude

v = Φ (βE − β1) = Φ

(
−1
1

)
.

Further, we set r = −n̄ with n̄ the normal unit vector to the hyperplane
H which directs to the negative orthant. Using al = f∗ + Φ βl for
arbitrary l ∈ N we set correspondent to (4.24)

f∗ + Φ βl+1 := f∗ + Φ βl +
α

‖v + ((μl)�v)n̄‖Φ

(
−1
1

)

resulting in

βl+1 := βl +
α

‖v + ((μl)�v)n̄‖

(
−1
1

)
.

Based on that we get the following algorithm for controlling the pa-
rameter β = (β1, 1 − β1) ∈ R

2 based on a first order approximation of
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the minimal value function. Let the Assumption 4.12 hold. We assume
the matrix Φ, the point f∗, the direction v, and the normal unit vector
n̄ to be given.

Note, that the normal boundary intersection method corresponds
to the modified Pascoletti-Serafini problem with the constraint

a + t r − f(x) = 02.

Thus we always have k = a + t r − f(x) = 02. Moreover, the approx-
imation points gained with this algorithm are not necessarily weakly
EP-minimal points. In Chap. 5 this algorithm is applied to a convex
test problem where all obtained approximation points are EP-minimal.

Algorithm 3 (Adaptive NBI method).
Input: Choose the desired distance α ∈ R, α > 0, between the

approximation points.

Step 1: Set β1 := (1, 0)� and solve (NBI(β)) with solution
(s̄1, x̄1) = (0, x1) and Lagrange multiplier μ1 to the con-
straint f∗ + Φ β1 + s n̄ − f(x) = 02. Set l := 1.

Step 2: Set βE := (0, 1)� and v := Φ

(
−1
1

)
.

Step 3: Set

βl+1 := βl +
α

‖v + ((μl)�v)n̄‖ ·
(
−1
1

)

and l := l + 1.

Step 4: If βl
1 ≥ 0 solve (NBI(β)) with solution (sl, xl) and La-

grange multiplier μl to the constraint f∗ + Φ βl + s n̄ −
f(x) = 02 and go to Step 3. Else stop.

Step 5: Determine the set Ã := {x1, . . . , xl−1, xE} and the set
A := M(Ã, R2

+) of non-dominated points of Ã.
Output: The set A is an approximation of the set M(f(Ω), R2

+).

Note that the points of the set Ã are not necessarily weakly EP-
minimal.

4.2.4 Algorithm for the Modified Polak Scalarization

The modified Polak method is very similar to the ε-constraint method
and so is the algorithm. The scalar optimization problem (MP (y1)) is
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min f2(x)
subject to the constraints

f1(x) = y1,

x ∈ Ω.

This problem can again be considered as a special case of the modified
Pascoletti-Serafini scalarization (SP(a, r)). Here it is (compare Lemma
2.33) H = {y ∈ R

2 | y2 = 0}, i. e. b = (0, 1)�, β = 0, and r = (0, 1)�.
The algorithm for this special case reads as follows, again assuming the
Assumption 4.12 to be satisfied.

Algorithm 4 (Adaptive modified Polak method).
Input: Choose the desired distance α ∈ R, α > 0, between the

approximation points.

Step 1: Determine the numbers y1
1 := f1(x1) := minx∈Ω f1(x)

and yE
1 := f1(xE) with f2(xE) := minx∈Ω f2(x).

Step 2: Solve (MP (y1
1)) with minimal solution x1 and Lagrange

multiplier μ1 ∈ R to the constraint y1
1 − f1(x) = 0. Set

l := 1.

Step 3: Set
yl+1
1 := yl

1 +
α√

1 + (μl)2

and l := l + 1.

Step 4: If yl
1 ≤ yE

1 solve (MP (yl
1)) with minimal solution xl and

Lagrange multiplier μl to the constraint yl
1 − f1(x) = 0

and go to Step 3. Else stop.

Step 5: Determine the set Ã := {x1, . . . , xl−1, xE} and the set
A := M(Ã, R2

+) of non-dominated points of Ã.
Output: The set A is an approximation of the set M(f(Ω), R2

+).

An algorithm for the modified Polak method without an adaptive
parameter control can be found in [124, Alg. 12.1]. Note, that the
approximation points gained with this algorithm are not necessarily
weakly EP-minimal. In Step 2 problem (MP (y1

1)) can lead to numeri-
cal difficulties because it can happen that the constraint set is reduced
to one point only. For avoiding this y1

1 can be replaced by y1
1 +Δε with

a small value Δε > 0.
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4.3 Adaptive Parameter Control in the Multicriteria
Case

In this section we discuss how to proceed if the multiobjective opti-
mization problem (MOP) has three or more objective functions. We
first recall the reasons why the results for the bicriteria case cannot
just be generalized. Then we adapt our method by determining the
approximation of the efficient set in two steps. In the first step we cal-
culate a simple coarse approximation of the efficient set without using
special results on an adaptive parameter control. This set is a base
for detecting the interesting parts of the efficient set. For example the
parts where the efficient set shows a particular behavior or the parts,
where the most preferred solutions (by the d. m.) of all efficient points
are supposed. In these special parts the approximation of the efficient
set is now refined in the second step. This refinement is done by using
sensitivity information for controlling the quality of the refinement.

As mentioned the parameter control for multiobjective optimization
problems for three or more objective functions is, compared to the
parameter control in the bicriteria case, a much more difficult task
as different problems occur (compare [139]). First, in contrast to the
bicriteria case with a two-dimensional image space (see Lemma 1.20),
not any closed pointed convex cone in R

m (m ≥ 3) is polyhedral. For
example the Löwner partial ordering cone in R

3 given in Example 1.21
is not polyhedral.

We have also problems in higher dimensions in the case that the
ordering cone is polyhedral as we have already discussed in Sect. 2.3.2.
There we have also already determined a set H0 so that it is sufficient to
consider parameters a ∈ H0, compare Lemma 2.20. In contrast to the
bicriteria case, where it is sufficient to consider a line segment Ha for
the parameter a, the set H0 is generally no longer (a part of) a line. So,
it is an additional task to order the parameters a on this hyperplane.
The order is important because we want to use sensitivity information,
i. e. information about the local behavior of the local minimal value
function, for determining nearby parameters a. For doing this we need
the information which of the already found approximation points lie
in the neighborhood of the next point, which we plan to determine.
Getting this information can be time-consuming especially in higher
dimensions.

For avoiding these problems we start with a coarse equidistant dis-
cretization of the set H0 which delivers the first parameters a. This
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discretization of the (m − 1)-dimensional cuboid H0 is done with a
fineness defined by the d. m.. The hyperplane including the set H0 is
spanned by the vectors vi, i = 1, . . . , m − 1, see Sect. 2.3.2. The d. m.
can for instance set the number N i ∈ N of discretization points in each
direction vi, i = 1, . . . , m−1. Then we get the following set of

∏m−1
i=1 N i

equidistant discretization points:

DH0
:=

{
y ∈ H0

∣∣∣∣ y =
m−1∑
i=1

siv
i, si ∈ {smin,i

i +
Li

2
+ l · Li |

l = 0, . . . , N i − 1}, i = 1, . . . , m − 1
}

with

Li :=
smax,i
i − smin,i

i

N i
.

For each of these discretization points d ∈ DH0
the scalar optimiza-

tion problem (SP(d, r))

min t

subject to the constraints
d + t r − f(x) ∈ K,

t ∈ R, x ∈ Ω

has to be solved. Let (td, xd) denote a minimal solution of this problem
(if a solution exists). Then, the set

DH0,f :=
{
f(xd)

∣∣ ∃ td ∈ R and a d ∈ DH0
with (td, xd) a minimal

solution of (SP(d, r))
}

determines a first approximation of the efficient set. Note, that gen-
erally the cardinality of the set DH0

is higher then the cardinality of
DH0,f , as different parameters d can result in the same approximation
point f(xd).

The set DH0,f is a coarse approximation of the efficient set based on
which the d. m. can decide in which areas he or she is especially inter-
ested. The smaller the numbers N i, i = 1, . . . , m−1, are, the less points
have to be interpreted but the more is the efficient set misrepresented.

As the following procedure is based on the fact that the d. m. chooses
some interesting parts by selecting several points, it has an interactive
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component. In the next step the approximation is refined around the
chosen points. For the refinement it is the aim to determine equidistant
refinement points in the image space. For this aim sensitivity informa-
tion is used (like in the bicriteria case). We describe the procedure for
an arbitrary chosen point

ȳ := yd := f(xd) ∈ DH0,f .

Thus (td, xd) is a minimal solution of (SP(d,r)) for a parameter d ∈
DH0

. We determine the parameter ā by

ā := f(xd) − t̄ r with t̄ :=
b�f(xd) − β

b�r
.

Thus, the inequality constraint ā + t r − f(x) ∈ K is active in the
point (t̄, xd). As we have already solved the problem (SP(d,r)) we have
thereby gained information about the local behavior of the local mini-
mal value function.

In the following we presume that the assumptions of Lemma 3.14 are
satisfied, i. e. (among others) we presume S = R

n, K = R
m
+ , C = R

p
+.

Then we have ∇aτ
δ(ā, r) = −μ̄ with (μ̄, ν̄, ξ̄) the Lagrange multipliers

to the point (t̄, xd) for the problem (SP(ā, r)). Note that these are equal
to the Lagrange multipliers to the point (td, xd) for the optimization
problem (SP(d, r)), compare Lemma 2.26. We get the approximation

t(a, r) ≈ t̄ − μ̄�(a − ā) (4.27)

for the minimal value t(a, r) of the optimization problem (SP(a, r)) for
a in a neighborhood of ā (compare (4.6)).

If the d. m. is interested in a distance of α > 0 between the ap-
proximation points of the refinement around the point yd, a new ap-
proximation point with distance α can be determined in each direction
vi, i = 1, . . . , m− 1. For instance if a new approximation point should
be found in direction vk (k ∈ {1, . . . , m − 1}), i. e. ak = ā + s · vk, we
get with (4.27) and f(x̄) = ā + t̄ r

f(x(ak)) = ak + t(ak, r) r

≈ ā + s vk + t̄ r − μ̄�(ak − ā) r

= f(xd) + s
(
vk − (μ̄�vk)r

)
= ȳ + s

(
vk − (μ̄�vk)r

)
.

Thus, the aim ‖f(x(ak)) − ȳ‖ = α is approximately satisfied for
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|s| =
α

‖vk − (μ̄�vk)r‖ .

We set sk := |s| and get the two new parameters

ak,1 = ā + skvk and ak,2 = ā − skvk.

These steps can be repeated for all k ∈ {1, . . . , m−1}. Then, for all pa-
rameters ak,i, k = 1, . . . , m− 1, i = 1, 2, the scalar-valued optimization
problem (SP(ak,i, r)) has to be solved. Let (tk,i, xk,i) denote a minimal
solution, then for the point f(xk,i) it is ‖f(xk,i) − ȳ‖ ≈ α, with the
accuracy dependent on the accuracy of the used sensitivity results.

The described procedure can be modified as follows: the d. m. de-
termines one direction v ∈ H in which additional information about
the efficient set is desired. The additional parameters a can be calcu-
lated analogously. Besides, the determination of further approximation
points with distances 2α, 3α, 4α,. . . is possible.

By solving the scalar optimization problems (SP(ak,i, r)) we get
again sensitivity information for the local minimal value function
around the point ak,i. Thus, the points f(xk,i), k = 1, . . . , m − 1, i =
1, 2, can be added to the set DH0,f and the whole procedure (i. e. choice
of the d. m., determination of refinement points) can be repeated arbi-
trarily.

We summarize the described steps in an algorithm. We assume K =
R

3
+, C = R

p
+, Ŝ = S = R

n, and further let Assumption 4.12 hold,
here for m = 3. We give the algorithm for simplicity for tricriteria
optimization problems (i. e. m = 3):

min

⎛
⎜⎝

f1(x)
f2(x)
f3(x)

⎞
⎟⎠

subject to the constraints
g(x) ≤ 0p,

h(x) = 0q,

x ∈ R
n.

Further, we use a special case of the Pascoletti-Serafini scalarization.
We assume b = (0, 0, 1)�, β = 0, H = {y ∈ R

3 | y3 = 0}, and r =
(0, 0, 1)�. Thus, the problem (SP(a, r)) is for a = (ε1, ε2, 0) equivalent
to the ε-constraint problem (P3(ε))



138 4 Adaptive Parameter Control

min f3(x)
subject to the constraints

ε1 − f1(x) ≥ 0,

ε2 − f2(x) ≥ 0,

x ∈ Ω

for ε = (ε1, ε2) ∈ R
2 (compare Theorem 2.27).

Algorithm 5 (Adaptive ε-constraint method for tricriteria problems).

Input: Choose the desired number N1 of discretization points
for the range of the function f1 (i. e. in direction v1 :=
(1, 0, 0)�) and N2 for the range of the function f2 (i. e.
in direction v2 := (0, 1, 0)�).

Step 1: Solve the optimization problems minx∈Ω fi(x) with min-
imal solution xmin,i and minimal value fi(xmin,i) =: εmin

i

for i = 1, 2 as well as maxx∈Ω fi(x) with maximal so-
lution xmax,i and maximal value fi(xmax,i) =: εmax

i for
i = 1, 2.

Step 2: Set

Li :=
εmax
i − εmin

i

Ni
for i = 1, 2

and solve the problem (P3(ε)) for all parameters ε ∈ E
with

E :=
{

ε = (ε1, ε2) ∈ R
2
∣∣∣ εi = εmin

i + Li
2 + li · Li

for li = 0, . . . , Ni − 1, i = 1, 2
}

.

Determine the set

AE :=
{

(ε, x̄, μ̄)
∣∣∣ x̄ is a minimal solution of (P3(ε)) with

parameter ε and Lagrange-multiplier μ̄

to the constraints fi(x) ≤ εi, i = 1, 2

for ε ∈ E
}

.
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Step 3: Determine the set

DH0,f :=
{

f(x)
∣∣∣ ∃ε ∈ R

2, μ ∈ R
2
+ with (ε, x, μ) ∈ AE

}
.

Input: Choose y ∈ DH0,f with y = f(xε) and (ε, xε, με) ∈ AE .
If y is a sufficient good solution, then stop.
Else, if additional points in the neighborhood of y are
desired, give a distance α ∈ R, α > 0, in the image space
and the number of desired new points n̄ = (2k + 1)2 − 1
(for a k ∈ N) and go to Step 4.

Step 4: Set

εi,j := ε + i · α√
1 + (με

1)2

(
1
0

)
+ j · α√

1 + (με
2)2

(
0
1

)

for all

(i, j) ∈
{

(i, j) ∈ Z
2
∣∣∣ i, j ∈ {−k, . . . , k}, (i, j) �= (0, 0)

}
and solve problem (P3(εi,j)).

If there exists a solution xi,j with Lagrange multiplier
μi,j , then set AE := AE ∪ {(εi,j , xi,j , μi,j)}.
Go to Step 3.

Output: The set DH0,f is an approximation of the set of weakly
efficient points Ew(f(Ω), R3

+).

By the coarse approximation done in Step 3 it is assured that no
parts of the efficient set are neglected and that the d. m. gets a survey
about the characteristics of the efficient set. In the following the method
is partly interactive as the d. m. chooses interesting areas as well as the
fineness of the refinement. Of course, more than one point y ∈ DH0,f

can be chosen in the second input step for an improvement of the
approximation of the efficient set. In Step 4 we use first order sensitivity
information for the parameter determination but approximations of
higher-order can also be applied.
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Numerical Results

For testing the numerical methods developed in Chap. 4 on their effi-
ciency, in this chapter several test problems with various difficulties are
solved. Test problems are important to get to know the properties of the
discussed procedures. Large collections of test problems mainly devel-
oped for testing evolutionary algorithms are given in [41, 45, 46, 228].
Some of the problems of these collections test difficulties especially
designed for evolutionary algorithms, which are not a task using the
scalarization approaches of this book. For instance, arbitrarily gener-
ated points of the constraint set are mapped by the objective functions
mainly in areas far away from the efficient set and only few of them
have images near the efficient set.

Other test problems have a non-convex image set or gaps in the ef-
ficient set, i. e. non-connected efficient sets. We examine such problems
among others in this chapter. In the remaining chapters of this book,
we discuss the application of the methods of Chap. 4 on a concrete ap-
plication problem in medical engineering as well as on a multiobjective
bilevel optimization problem.

5.1 Bicriteria Test Problems

First we examine multiobjective optimization problems with two ob-
jective functions and we apply the methods of Sect. 4.2.

5.1.1 Test Problem 1: ε-Constraint Scalarization

We start with a simple problem by Hazen ([103, p.186]) which we have
already considered in Example 4.7. The bicriteria optimization problem
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w. r. t. the natural ordering is

min
x∈R2

(
x2
1
2 + x2

2 − 10x1 − 100

x2
1 + x2

2
2 − 10x2 − 100

)
.

It is an unconstraint problem with a convex image set. In the biobjec-
tive case it is guaranteed that the Pareto set is the graph of a convex
function, if the objective functions and the constraint set are convex
([210, Theorem 12]).

We solve this bicriteria optimization problem using the ε-constraint
scalarization (P2(ε)). In the Steps 1 and 2 of the Algorithm 2 as pre-
sented in Sect. 4.2.2 the minimal solutions x1 and xE are determined.
We get that only parameters ε with

ε ∈ [f1(xE), f1(x1)] = [−150, 0]

have to be considered.
If we approximate the efficient set of this multiobjective optimiza-

tion problem with the help of the scalarization (P2(ε)) without an adap-
tive parameter control just by choosing equidistant parameters ε in the
interval [−150, 0], we get the approximation of the efficient set shown
in Fig. 5.1. The parameters ε are also plotted in the figure as points
(ε, 10) ∈ R

2 marked with crosses. Here, a distance of 8 has been chosen
between the parameters ε.

This approximation is much improved using Alg. 2 of Sect. 4.2.2
with the adaptive parameter control. Here, we predefine the distance
α = 12 (between the approximation points in the image space). We
get again 20 approximation points but now evenly spread, as it can
be seen in Fig. 5.2. This approximation can be improved using second
order sensitivity information as described in Sect. 4.2.2. This results in
the 21 approximation points drawn in Fig. 5.3.

For a comparison the quality criteria as discussed in Sect. 4.1 are
evaluated for the three approximations. For the number N of approxi-
mation points, the rounded values of the uniformity level δ and of the
approximated coverage error ε̄ see Table 5.1. As we predefine α = 12
the aim is ε̄ = 6 and δ = 12.

Note, that we have δ = 11.1532 and δ = 10.5405 for the cases two
and three because at the end of the applied algorithms the point f(xE)
is added to the approximation point set. However thereby no distance
control takes place. Excluding this point results in the uniformity δ =
12.0012 for the Case 2 and δ = 12.011 for the Case 3.
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Fig. 5.1. Test problem 1: Approximation with equidistant parameters.
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Fig. 5.2. Test problem 1: Approximation with the adaptive parameter
control using first order sensitivity information according to Alg. 2.
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Fig. 5.3. Test problem 1: Approximation with the adaptive parameter
control using second order sensitivity information.

Table 5.1. Quality criteria for the approximations of test problem 1.

Case 1: Case 2: Case 3:

equal first order adaptive second order adaptive aim

parameter choice parameter choice parameter choice

N 20 20 21

ε̄ 31.5184 9.1963 8.0536 6

δ 8.003 11.1532 10.5405 12

5.1.2 Test Problem 2: Comparison with the Weighted Sum
Method

Here, we compare the procedures of Chap. 4 with the wide-spread
weighted sum scalarization. For a bicriteria optimization problem the
weighted sum scalarization (see Sect. 2.5.7) is given by

min
x∈Ω

w1f1(x) + w2f2(x)

with weights w1, w2 ∈ [0, 1], w1 + w2 = 1. By varying the parameters
w1 and w2 and solving the weighted sum problem repeatedly approxi-
mations of the efficient set can be generated.
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Fig. 5.4. Test problem 2: Approximation based on the weighted sum
method.

For a comparison with the adaptive methods of this book we con-
sider the following bicriteria optimization problem with a convex image
set

min

( √
1 + x2

1

x2
1 − 4x1 + x2 + 5

)

subject to the constraints
x2

1 − 4x1 + x2 + 5 ≤ 3.5,

x1 ≥ 0, x2 ≥ 0,

x ∈ R
2

w. r. t. the natural ordering. For determining an approximation of the
efficient set with 15 points we choose the 15 equidistant weights(

w1

w2

)
∈
{(

0
1

)
,

(
0.07
0.93

)
, . . . ,

(
0.98
0.02

)}
.

This results in the non-uniform approximation shown in Fig. 5.4. Here,
we have a visible low uniformity level and a high coverage error and
thus not a high approximation quality.



146 5 Numerical Results

We compare this approximation with an approximation generated
with Alg. 1. We arbitrarily choose the hyperplane H = {y ∈ R

2 |
(1, 1)y = 2.5} and the direction r = (1, 0)� ∈ R

2
+. Further, we set α =

0.2. Applying Alg. 1 results in the approximation with 15 points shown
in Fig. 5.5. There, also the hyperplane H and the chosen parameters a
(as crosses) are plotted.

Choosing r = (0.1, 1)�, b = r, β = 1, and still α = 0.2 we get the
approximation shown in Fig. 5.6,a) with 17 approximation points. This
shows that the generated approximation is of course slightly influenced
by the choice of the hyperplane H and the parameter r.

For completeness we apply also some of the algorithms for spe-
cial cases of the (modified) Pascoletti-Serafini scalarization presented
in Sect. 4.2. Starting with Alg. 2 for the ε-constraint scalarization
results just in the special chosen parameters b = (1, 0)�, β = 0,
and r = (1, 0)�. We get the approximation shown in Fig. 5.6,b).
Here, the parameters ε are drawn as points (0, ε) on the hyperplane
H = {y ∈ R

2 | y1 = 0}.
Applying Alg. 3 for the normal boundary intersection scalarization

results in the approximation plotted in Fig. 5.7,a). There, the hyper-
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H

Fig. 5.5. Test problem 2: Approximation based on the adaptive
Pascoletti-Serafini method.
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(a) with Alg. 1 and r = (0.1, 1)�, b = r,
β = 1.
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scalarization.

Fig. 5.6. Test problem 2: Approximation of the efficient set
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(a) with Alg. 3 based on the normal
boundary intersection scalarization.
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(b) with Alg. 4 based on the modified
Polak scalarization

Fig. 5.7. Test problem 2: Approximation of the efficient set

plane H is just the line connecting the two endpoints of the efficient
curve. The parameter r is chosen as −n̄, with n̄ the normal unit vector
of the hyperplane directing to the negative orthant.

Alg. 4 based on the modified Polak method corresponds to the hy-
perplane H with b = (0, 1)�, β = 0, and r = (0, 1)�. The generated
approximation is given in Fig. 5.7,b).

5.1.3 Test Problem 3: Non-Convex Image Set

This test problem demonstrates the applicability of the numerical
method summarized in Alg. 1 to non-convex problems. We consider

(b) with Alg. 2 based on the ε-constraint
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the bicriteria optimization problem

min

⎛
⎜⎜⎝

1 − exp(−
n∑

i=1
(xi − 1√

n
)2)

1 − exp(−
n∑

i=1
(xi + 1√

n
)2)

⎞
⎟⎟⎠

subject to the constraints
xi ∈ [−4, 4], i = 1, . . . , n,

by van Veldhuizen ([228, p.545], also in [46, p.4]) with a non-convex
image set. Let K = R

2
+. Many scalarization problems have difficulties

with non-convexity. For example using the weighted sum scalarization
it is not possible to find all efficient points. Even by varying the weights
arbitrarily only two efficient points can be found. These are the points
(0, 0.9817) and (0.9817, 0).

Here, the dimension n ∈ N is a parameter which can be chosen
arbitrarily. An interesting property of this test problem is the arbitrary
scalability w. r. t. the parameter space dimension n ∈ N while the set
of EP-minimal points is known explicitly. It is

M(f(Ω), R2
+) = {x ∈ R

n | x1 ∈ [− 1√
n

,
1√
n

], xi = x1, i = 2, . . . , n}.

The efficient set is independently on the parameter n given by

E(f(Ω), R2
+) =

{(
1 − exp(−4(t − 1)2)

1 − exp(−4t2)

)∣∣∣∣∣ t ∈ [0, 1]

}
.

Thus it is possible to determine the coverage error ε according to Sayin
(see (4.2)), and not only an approximation of it, for any approximation
A of the efficient set E(f(Ω), R2

+). It is

ε = max
y∈E(f(Ω),K)

min
ȳ∈A

‖y − ȳ‖2.

Hence, for an approximation A = {f(xi) | i = 1, . . . , N}, we have to
solve (compare (4.3))

max δ

subject to the constraints

δ ≤
∥∥∥∥∥
(

1 − exp(−4(t − 1)2)
1 − exp(−4t2)

)
− f(xi)

∥∥∥∥∥
2

, i = 1, . . . , N,

t ∈ [0, 1],
δ ∈ R.
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Fig. 5.8. Test problem 3: Non-convex bicriteria optimization problem.

We have determined an approximation of the efficient set of this test
problem for n = 40 using Alg. 1 with r = (1, 1)�, b = (1, 0)�, β = 1.2,
and for various distances α. For α = 0.15 the generated approximation
together with the hyperplane and the chosen parameters is shown in
Fig. 5.8. Here, we have the coverage error ε = 0.0790, 15 approximation
points (i. e. N = 15) and the uniformity level δ = 0.1058. Ignoring the
approximation point f(xE) which is added in the final step of Alg.
1 (and which is determined without parameter control) we get the
corrected value δc = 0.1147 for the uniformity level.

These quality criteria for the approximations gained with Alg. 1 for
several distances of α are given in Table 5.2. There, also the values ε/α
are given. Here, the aim is a value of ε/α = 0.5. Further the corrected
values for the uniformity level δc are tabulated, too.

5.1.4 Test Problem 4: Non-Connected Efficient Set

In test problem 3 the image set f(Ω) is non-convex but at least the
efficient set is connected, i. e. there are no gaps. For the definition of a
connected set (in the topological sense) see p. 104 (or [60, p.69], [190,
p.66]).
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Table 5.2. Quality criteria for the approximations of test problem 3
for different values of α.

α = 0.05 α = 0.1 α = 0.15 α = 0.2 α = 0.25 α = 0.3 α = 0.4

ε 0.0264 0.0530 0.0790 0.1046 0.1311 0.1546 0.2038

δ 0.0333 0.0420 0.1058 0.0645 0.1928 0.2314 0.3075

δc 0.0367 0.0755 0.1147 0.1538 0.1928 0.2314 0.3075

N 30 16 11 9 7 6 5
ε
α

0.5273 0.5296 0.5264 0.5228 0.5245 0.5154 0.5094

Here, in this test problem by Tanaka ([221]) the image set f(Ω) is
not only non-convex but the efficient set is also non-connected. The
bicriteria problem w. r. t. the natural ordering is given by

min

(
x1

x2

)

subject to the constraints

x2
1 + x2

2 − 1 − 0.1 cos
(
16 arctan(x1

x2
)
)
≥ 0,

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5,

x1, x2 ∈ [0, π],
x ∈ R

2,

i. e. it is f(Ω) = Ω.
The EP-minimal points lie on the boundary of the set given by the

first constraint. As this inequality constraint includes periodic func-
tions (and because the second constraint has also to be satisfied), not
all points of the boundary of this set are non-dominated. Thus the ef-
ficient set is non-connected. We use Alg. 1 with an arbitrarily chosen
hyperplane given by b = (1, 1)� and β = 0.5, the direction r = (1, 2)�,
and we predefine the distance α = 0.08.

Using only a local numerical solver for the scalar optimization prob-
lems appearing in Alg. 1 leads to difficulties, as the scalar problems
(SP(a, r)) have several local minimal solutions besides the searched
global minimal solution. With a numerical solver which is only able to
detect local minimal solutions, it can happen that one generates only
approximations like the one shown in Fig. 5.9. In Fig. 5.9 the bound-
ary of the image set f(Ω) is drawn as well as the found efficient points
(dots) and the chosen parameters on the hyperplane (crosses).



5.1 Bicriteria Test Problems 151

0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f1

f2
f(Ω)

Fig. 5.9. Test problem 4: Non-connected efficient set approximated
using a local scalar solution method.

Here, we have used the SQP-method (sequential quadratic program-
ming method) as implemented in Matlab. As starting point for this
method we used the minimal solution found for the previous parameter.
The low approximation quality is not caused by the used adaptive
parameter control but by the difficulty of finding global and not only
local minimal solutions of a scalar optimization problem. We started
with the parameter a1 = (−0.1517, 0.6517), but for the parameters
a4 = (−0.0095, 0.5095) to a20 = (0.8438,−0.3438) we got stuck in the
EP-minimal point x4 = (0.1996, 0.9290).

Using a global solution method for the scalar optimization prob-
lems we get the approximation shown in Fig. 5.10. We see that the
proposed adaptive parameter control can also handle non-connected
efficient sets, but of course an appropriate global solution method for
the scalar problems has to be applied. The need of global solvers for
non-convex problems is a well-known fact for scalarization approaches.

Evaluating the quality criteria as discussed in Sect. 4.1 is easy for
the cardinality and the uniformity level. For the approximation shown
in Fig. 5.10 with 21 parameters we have 17 different non-dominated
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Fig. 5.10. Test problem 4: Non-connected efficient set approximated
using global optimization for the scalar problems.

approximation points, i. e. N = 17, and

δ = min
x,y∈A
x �=y

‖x − y‖2 = ‖f(x2) − f(x1)‖2 = 0.0360.

For calculating the coverage error we have to take the non-connected-
ness of the efficient set into account. We approximate the coverage
error by (4.4). Thus the set of neighbors have to be determined for
each approximation point and for that we have to know where the
gaps in the efficient set are. Here, the approximation points f(xi) for
i = 1, 4, 8, 16, 18, 21 have each one neighbor only. With the distances
between the approximation points given in Table 5.3 this leads to

ε̄ =
1
2

max
j∈{1,...,21}

max
y∈N (f(xj))

‖f(xj) − y‖ =
1
2
· 0.1133 = 0.0567

(here the aim is α/2 = 0.04) with N (f(xj)) the set of neighbor points to
the approximation point f(xj). The large distance between the points
f(x7) and f(x8) and between the points f(x17) and f(x18) respectively
is due to the gaps in the efficient set.
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Table 5.3. Distances between consecutive approximation points to test
problem 4.

j 1 2 3 4 5

‖f(xj) − f(xj+1)‖2 0.0360 0.0817 0.0762 0 0

j 6 7 8 9 10

‖f(xj) − f(xj+1)‖2 0 0.2928 0.0714 0.0792 0.0793

j 11 12 13 14 15

‖f(xj) − f(xj+1)‖2 0.0758 0.1133 0.0730 0.0585 0.0789

j 16 17 18 19 20

‖f(xj) − f(xj+1)‖2 0 0.2770 0.0502 0.0752 0.0695

5.1.5 Test Problem 5: Various Ordering Cones

For the examination of the effect of different partial orderings in the
image space we consider the simple bicriteria optimization problem

min

(
x1

x2

)

subject to the constraints
(x1 − 5)2 + 4(x2 − 3)2 ≤ 16,

x ∈ R
2

(5.1)

w. r. t. various ordering cones. We calculate the set of K0-minimal
points for K0 := R

2
+, i. e. the set of EP-minimal points, as well as

the set of Kmax-minimal points with Kmax := −R
2
+, which is equiva-

lent to determining the set of EP-maximal points. Further, we use the
partial orderings given by the convex cones

K1 := {y ∈ R
2 | (2,−1)y ≥ 0, (−1, 2)y ≥ 0} and

K2 := {y ∈ R
2 | (0, 1)y ≥ 0, (1, 1)y ≥ 0}

(see Fig. 5.11). These cones are defined by the matrices

K
1 =

(
2 −1
−1 2

)
and K

2 =

(
0 1
1 1

)

(compare p.15). The cone K0 is generated by the unit matrix and Kmax

by the negative of the unit matrix.
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Fig. 5.11. Test problem 5: Ordering cones K1 and K2.

We have several possibilities to solve the bicriteria optimization
problem w. r. t. these cones, as they are polyhedral cones. The scalariza-
tion (SP(a, r)) according to Pascoletti and Serafini for K ∈ {K0, Kmax,
K1, K2} is

min t

subject to the constraints
a + t r − f(x) ∈ K,

t ∈ R, x ∈ Ω

with Ω := {x ∈ R
2 | (x1 − 5)2 + 4(x2 − 3)2 ≤ 16}, being equivalent to

min t

subject to the constraints
K(a + t r − f(x)) ≥2 02,

t ∈ R, x ∈ Ω

(5.2)

for K the matrix which generates the cone K.
Another possibility for solving (5.1), if K is pointed, is the following

reformulation (for the matrix K which corresponds to the cone K)

min Kf(x)
subject to the constraint

x ∈ Ω

with respect to the natural ordering (compare Lemma 1.18). The re-
lated scalarization according to Pascoletti and Serafini is then

min t

subject to the constraints
a + t r − K f(x) ≥2 02,

t ∈ R, x ∈ Ω.
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However note, that using this reformulation we can use the described
parameter control only for controlling the distances between the points
Kf(xi) and not between the points f(xi). Thus for achieving the pre-
defined distance between the points f(xi) further calculations involving
the inverse of the matrix K are necessary.

Therefore we use the scalarization as given in (5.2). Here, we ar-
bitrarily choose the hyperplane H = {y ∈ R

2 | (1, 1)y = 0} and
r = (1, 1)� ∈ K for K ∈ {K0, K1, K2} and r = (−1,−1)� ∈ K
for K = Kmax. Further we predefine α = 0.4. The generated approxi-
mations for the several ordering cones are given in the Figures 5.12 and
5.13. As stated in Lemma 1.6 the larger the ordering cone the smaller
is the efficient set. With this test problem it is shown that the proposed
Alg. 1 also works for ordering cones which are not just representing the
natural ordering.
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(b) w. r. t. Kmax = −R
2
+.

Fig. 5.12. Test problem 5: Approximation of the efficient set

5.2 Tricriteria Test Problems

This section is devoted to test problems with three objective func-
tions. Here, we also discuss such difficulties as non-convexity or non-
connectedness. We always apply Algorithm 5 to these test problems.

5.2.1 Test Problem 6: Convex Image Set

We start with a tricriteria optimization problem by Kim and de Weck
([139, p.8])
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(b) w. r. t. K2.

Fig. 5.13. Test problem 5: Approximation of the efficient set

min

⎛
⎜⎝

−x1

−x2

−x3

⎞
⎟⎠

subject to the constraints
x4

1 + 2x3
2 + 5x2

3 ≤ 1,

xi ≥ 0, i = 1, 2, 3,

w. r. t. the natural ordering. As the image set of this problem is convex
the well-known weighted sum method is also able to find all efficient
points. Thus, for the purpose of comparison we start with this wide
spread method and so we have to solve

min −(w1x1 + w2x2 + w3x3)
subject to the constraint

x ∈ Ω

with Ω := {x ∈ R
3
+ | x4

1 +2x3
2 +5x2

3 ≤ 1} for weights wi ≥ 0, i = 1, 2, 3,∑3
i=1 wi = 1. Here, we choose the weights wi as in [139] by

w1 := α1α2,

w2 := (1 − α1)α2,

w3 := 1 − α2

for α1, α2 ∈ {0, 1
5 , 2

5 , . . . , 1}. This results in the approximation shown
in Fig. 5.14. For achieving a better representation we have drawn the
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Fig. 5.14. Test problem 6: Approximation using the weighted sum
scalarization.

negative of the objective function values. Besides we have connected
the approximation points by lines. Due to the varying curvature of
the efficient set some parts are well represented while other parts are
neglected.

We compare this approximation with an approximation gained with
Alg. 5. According to the algorithm we first have to solve the scalar
problems

min
x∈Ω

fi(x) and max
x∈Ω

fi(x) for i = 1, 2,

resulting in the parameters εmin = (−1,−0.7937) and εmax = (0, 0).
We choose N1 = N2 = 5. Then it is L1 = 0.2000 and L2 = 0.1587. For
the parameters ε = (ε1, ε2) with

ε1 = −1 +
(

1
2

+ l1

)
· 0.2000 for l1 = 0, . . . , 4,

ε2 = −0.7937 +
(

1
2

+ l2

)
· 0.1587 for l2 = 0, . . . , 4,

the ε-constraint problems (P3(ε)) have to be solved:
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Fig. 5.15. Test problem 6: Approximation of the efficient set

min −x3

subject to the constraints
−x1 ≤ ε1,

−x2 ≤ ε2,

x ∈ Ω.

The set of the images of the minimal solutions of the problems (P3(ε))
for the several parameters ε under the function f , i. e. the set DH0,f ,
is shown in Fig. 5.15,a).

The approximation of Fig. 5.15,a) has a high coverage error, but it
allows the d. m. to get a survey over the efficient set for selecting areas
and approximation points respectively which are of interest. Based on
this selection the approximation is now refined using the adaptive pa-
rameter control of Alg. 5 (Step 4). In this example we choose k = 2,
α = 0.06 and arbitrarily two approximation points and we get the
refined approximation shown in Fig. 5.15,b).

5.2.2 Test Problem 7: Non-Convex Image Set

The following test problem (similar to an example in [138]) has a non-
convex image set. We consider the tricriteria optimization problem
w. r. t. the natural ordering:
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min

⎛
⎜⎝

−x1

−x2

−x2
3

⎞
⎟⎠

subject to the constraints
− cos(x1) − exp(−x2) + x3 ≤ 0,

0 ≤ x1 ≤ π,

x2 ≥ 0,

x3 ≥ 1.2 .

As this problem is non-convex the weighted sum scalarization is not an
adequate method. Despite this, generating an approximation with that
method – using the same procedure as described in Sect. 5.2.1 (test
problem 6), now with parameters α1, α2 ∈ {0, 1

9 , 2
9 , . . . , 1} – results in

the approximation shown in Fig. 5.16,a).
Here, we have again connected the approximation points by lines

and we have drawn the negative of the objective function values. This
approximation can even not be used for getting a coarse survey about
the efficient set of the tricriteria optimization problem.

Using Alg. 5 leads first (Steps 1-3) to the approximation shown in
Fig. 5.16,b). For applying the second part of the algorithm we choose
k = 2 and α = 0.06. Further, we assume that the d. m. realizes after
evaluating the approximation of Fig. 5.16,b) that he is only interested
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(b) with equidistant parameter choice
using the ε-constraint scalarization.

Fig. 5.16. Test problem 7: Approximation of the efficient set
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in the area of the efficient set for which it holds f1(x) ≤ −0.4 as well
as −0.6 ≤ f2(x) ≤ −0.4. According to Step 4 of Alg. 5 a refinement is
done around the approximation points lying already in this area. The
result is given in Fig. 5.17.

The correspondent parameters ε = (ε1, ε2) ∈ R
2 for which we have

solved the problem (P3(ε)) in the course of Alg. 5 are drawn in Fig.
5.18. There, the parameters ε for which there exists no minimal solu-
tion of the problem (P3(ε)) are marked with the smallest dots. With
bigger dots the parameters are drawn which belong to the first coarse
approximation. Finally, in gray, the refinement parameters are given.
Here, one can see that the distances between the refinement parame-
ters vary. This depends on the sensitivity information gained by solving
the problem (P3(ε)) to the parameter ε around which the refinement
is done. The steeper the efficient set is in this area the smaller are the
distances between the parameters.
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Fig. 5.17. Test problem 7: Refined approximation in special chosen
areas.
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Fig. 5.18. Test problem 7: Parameter set.

5.2.3 Test Problem 8: Comet Problem

This problem taken from [46, p.9] carries its name due to the shape of
the image set which looks like a comet with a small broad and a larger
narrow part:

min

⎛
⎜⎝

(1 + x3)(x3
1x

2
2 − 10x1 − 4x2)

(1 + x3)(x3
1x

2
2 − 10x1 + 4x2)

3(1 + x3)x2
1

⎞
⎟⎠

subject to the constraints
1 ≤ x1 ≤ 3.5,

−2 ≤ x2 ≤ 2,

0 ≤ x3 ≤ 1

w. r. t. the ordering cone K = R
3
+. Here, the set of EP-minimal points

is explicitly known and given by

M(f(Ω), R3
+) = {x ∈ R

3 | 1 ≤ x1 ≤ 3.5, −2 ≤ x3
1x2 ≤ 2, x3 = 0}.

The image set of this problem is shown in Fig. 5.19. For this rep-
resentation we have discretized the whole feasible set with an equal
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distance of 0.1 and then we have mapped these points with the objec-
tive functions. The non-dominated points are drawn in gray. Note, that
we plot again the negative objective function values.

Applying Alg. 5 covers up a weakness of this algorithm. In the first
part (Steps 1-3) of the algorithm we solve for equidistantly chosen pa-
rameters ε ∈ R

2 the ε-constraint problem (P3(ε)). Here, we have to
solve many of these problems for getting just very few approximation
points of the efficient set. For example choosing N1 = N2 = 12 in Alg.
5, i. e. discretizing with 144 equidistant parameters, leads to only 7 ap-
proximation points in Step 3, shown in Fig. 5.20,a) (connected with
lines).

Then we apply Step 4 of Alg. 5 with k = 3 and α = 4. The addi-
tional approximation points gained by this refinement are added in Fig.
5.20,b). Thus, after this refinement step we have improved the quality
of the approximation clearly observable.
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Fig. 5.19. Test problem 8: Image set and efficient set (in gray).
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Fig. 5.20. Test problem 8: Approximation of the efficient set

Without an adaptive parameter control but with a usual procedure,
the approximation is generally improved just by increasing the fineness
of the equidistantly chosen parameters. Then, especially in this exam-
ple, an above average number of additional scalar problems have to
be solved for finding only comparatively few additional approximation
points.

5.2.4 Test Problem 9: Non-Connected Efficient Set

The following test problem called DTLZ7 in [46] has not only a non-
convex image set but even a non-connected efficient set:

min

⎛
⎜⎜⎜⎝

x1

x2

(1 + g(x))(3 −
2∑

i=1

(
xi

1+g(x)(1 + sin(3πxi))
)
⎞
⎟⎟⎟⎠

subject to the constraints
xi ∈ [0, 1], i = 1, . . . , 22,

with

g(x) := 1 +
9
20

22∑
i=3

xi

and K = R
3
+.

Here, the efficient set is separated in four non-connected parts. The
set of EP-minimal points is a subset of the set
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{x ∈ R
22 | xi = 0, i = 3, . . . , 22},

and thus the efficient set is a subset of the set

B :=

{
y ∈ R

3

∣∣∣∣∣y1, y2 ∈ [0, 1], y3 = 2 ·
(

3 −
2∑

i=1

(yi

2
(1 + sin(3πyi))

))}
,

which is plotted in Fig. 5.21.
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Fig. 5.21. Test problem 9: Set B.

We apply Alg. 5 with the following values: N1 = N2 = 10, k = 2,
α = 0.15 and for Step 4 we refine only around those approximation
points y of the efficient set with y ∈ [0, 0.3] × [0, 0.3]. The result is
shown in Fig. 5.22. The four separated parts of the efficient set can
easily be detected. In one of these parts the refinement with almost
equidistant points in the image space is done.
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Fig. 5.22. Test problem 9: Approximation of the efficient set.



6

Application to Intensity Modulated
Radiotherapy

As we have already pointed out in the introduction to this book, many
problems arising in applications are from its structure multiobjective.
Nevertheless these problems are often treated as a single objective op-
timization problem in practice. This was for instance done in intensity
modulated radiotherapy (IMRT). Here, an optimal treatment plan for
the irradiation of a cancer tumor has to be found for a patient. The
aim is to destroy or at least reduce the tumor while protecting the
surrounding healthy tissue from unnecessary damage. For a detailed
problem description we refer to [3, 36, 63, 143, 146, 170, 223].

Regarding the natural structure this problem is multiobjective, i. e.
there are two or more competing objectives which have to be minimized
at the same time. On the one hand there exists the target that the
tumor has to be irradiated sufficiently high such that it is destroyed.
On the other hand the surrounding organs and tissue, which is also
affected by this treatment, should be spared. Thereby the physician
has to weight the risk of the unavoidable damage of the surrounding
to the tumor against each other. He can decide on the reduction of the
irradiation dose delivered to one organ by allowing a higher dose level
in another organ.

Earlier this problem was solved using a weighted sum approach,
i. e. the several objectives are multiplied with weights and summarized
for getting a single scalar-valued objective. Thereby it is difficult to
choose the weights as they have no medical meaning ([114]). Hence
the preferred treatment plan can only be found by the physician by a
time-consuming trial-and-error-process ([143, p.224],[175]). Therefore,
Hamacher and Küfer ([100, 143]) solved the IMRT problem using mul-
tiobjective methods. The average number of objectives which have to
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be considered in these problem formulations vary between 4 and 15.
The number of objectives reflects the number of healthy organs – the
so-called organs at risk – surrounding the tumor.

Examinations of these problems show that the number of objectives
can often be reduced ([142]). This is due to the fact that a treatment
plan which leads to a high dose in one organ also leads to a higher
dose level in some neighbored organs at risk. Also the sparing of this
dominating organ always leads to a sparing of these neighbored organs.
Thus only very few organs seem to dominate in their behavior and are
truly competing while the others follow in their reaction these dominat-
ing organs with a less high impact. Therefore it suffices to consider the
dominating organs. This reduces the number of objectives significantly.
For instance in the case of the treatment planning for a prostate cancer
only two objectives have to be considered.

With respect to this reduced number of competing objectives the
aim is to determine a representative approximation of the efficient set.
Especially in IMRT the importance of high quality approximations with
almost equidistant points is pointed out ([143, p.229]). We apply the
algorithms presented in Chap. 4 for reaching this aim. Based on the
approximation the physician can choose the preferred irradiation plan.
Having the whole solution set available he can not only compare the
objective function values of the several solutions, but he can base his
decision also on trade-off [173, 174] information. This is the information
how a slight improvement of the dose delivered to one organ leads to
the rise of the irradiation damage caused in another organ.

6.1 Problem Formulation Using a Bicriteria Approach

We demonstrate the structure of the problems arising in IMRT plan-
ning on the special case of a prostate cancer based on the model and
data developed and calculated by Küfer et al. ([142]). Here, the tumor
is irradiated by five equidistant beams which are a collection of 400 sep-
arately controllable beamlets (or pencil beams). We assume that the
irradiation geometry is fixed and we concentrate on an optimization of
the irradiation intensity. The problem of finding an optimal irradiation
geometry is considered for instance in [61, 64, 200] and the references
therein.

The relevant part of the patients body is mapped by a computer
tomography (CT), see the Figures 6.1 and 6.2. According to the thick-
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Fig. 6.1. Coronal CT-cut ([130]).

ness of the slices of the CT-cuts the body is dissected in cubes, the
so-called voxels vj , j = 1, . . . , 435 501.

The large number of voxels (435 501) can be reduced by a clustering
method ([143, 198]) to 11 877 clusters by collecting those voxels which
have the same irradiation stress w. r. t. one irradiation unit. These clus-
ters are denoted as c1, . . . , c11877. Each of these clusters is allocated to
one of the considered volume structures V0, . . . , V6 by a physician. In
our example these are the tumor (volumes V0, V1), the rectum (V2),
the left (V3) and the right (V4) hip-bone, the remaining surrounding
tissue (V5) and the bladder (V6), see Fig. 6.3.

Examinations ([142]) have shown that the bladder (V6) and the
rectum (V2) are the dominating opponents in their reaction, whereas
the other critical organs follow these dominating organs in their stress
caused by different irradiation plans. The sparing of the bladder leads
to a high dose in the rectum and vice versa.
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Fig. 6.2. Axial CT-cut ([130]).

Fig. 6.3. Schematic axial body cut.

The emission of the beamlets Bi (i ∈ {1, . . . , 400}) to the clusters cj

(j ∈ {1, . . . , 11 877}) at one radiation unit is described by the matrix
P = (Pji)j=1,...,11 877,i=1,...,400 ([100, p.149], [223, Chap. 3]). Let x ∈ R

400

denote the intensity profile of the beamlets. Then Pjx with Pj the jth
row of the matrix P describes the irradiation dose in the cluster cj

caused by the beamlets Bi, i = 1, . . . , 400, for the treatment plan x.
For evaluating and comparing the irradiation stress in the organs

we use the concept of the equivalent uniform dose (EUD), see [23]. This
uniform dose is defined as that dose level for each organ, which delivered
evenly to the entire organ has the same biological effect as the actual
irregular irradiation caused by the irradiation intensity x and expressed
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by Px has. That value can be calculated based on Nimierko’s EUD
([176], see also [37]) using p-norms (here with respect to the clustered
voxels) by

Ek(x) :=

⎛
⎝ 1

N(Vk)

∑
{j|cj∈Vk}

N(cj) · (Pjx)pk

⎞
⎠

1
pk

,

for k = 2, . . . , 6. The deviation of the irregular dose in an organ to the
desired limit Uk, which should not be exceeded, is then measured by
the convex function

EUDk(x) :=
1
Uk

Ek(x) − 1,

for k = 2, . . . , 6. Here pk ∈ [1,∞[ is an organ dependent constant
which reflects the physiology of the organ ([223, p.33]). High values
are applied for serial organs as the spinal cord. This corresponds to
the determination of the maximal dose in a cluster. Small values close
to one for pk are related to parallel structured organs like the liver or
the lungs, which corresponds to a mean value. N(Vk) is the number
of voxels in organ Vk and N(cj) is the number of voxels in cluster cj ,
thus it is

∑
{j|cj∈Vk} N(cj) = N(Vk). The value Uk as well as pk are

statistical evaluated and can, in our example, be taken from Table 6.1.

Table 6.1. Critical values for the organs at risk.

number of organ (k) pk Uk Qk N(Vk)

rectum 2 3.0 30 36 6 459

left hip-bone 3 2.0 35 42 3 749

right hip-bone 4 2.0 35 42 4 177

remaining tissue 5 1.1 25 35 400 291

bladder 6 3.0 35 42 4 901

A feasible treatment plan has now to fulfill several criteria. First, a
dangerous overdosing of the critical tissue should be avoided and thus,
the maximal value of Qk must not be exceeded for all organs at risk
Vk, k = 2, . . . , 6, i. e.

Ek(x) = Uk(EUDk(x) + 1) ≤ Qk, k = 2, . . . , 6.

These inequalities can be restated as
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{j|cj∈Vk}

N(cj)(Pjx)pk ≤ Qpk
k · N(Vk), k = 2, . . . , 6.

It is also important that the dose in the tumor tissue remains below
a maximal value to avoid injuries in the patients body and to achieve
homogeneity of the irradiation. Besides, to have the desired effect of
destroying the tumor cells a certain curative dose has to be reached
in each cluster. Here, we differentiate between the so-called target-
tissue V0 and the boost-tissue V1, which is tumor tissue that has to
be irradiated especially high. These conditions result in the following
constraints for every cluster of the target- and the boost-volume:

l0(1 − ε0) ≤ Pjx ≤ l0(1 + δ0), ∀j with cj ∈ V0

and l1(1 − ε1) ≤ Pjx ≤ l1(1 + δ1), ∀j with cj ∈ V1,
(6.1)

where l0, l1, ε0, ε1, δ0 and δ1 are constants given by the physician and
tabulated in Table 6.2. Volume V0 consists of 8 593 clusters while V1

has 302 clusters. Including nonnegativity constraints for the beamlet
intensity this results in the constraint set

Ω = {x ∈ R
400
+ | Uk(EUDk(x) + 1) ≤ Qk, k = 2, . . . , 6,

l0(1 − ε0) ≤ Pjx ≤ l0(1 + δ0), ∀j with cj ∈ V0,

l1(1 − ε1) ≤ Pjx ≤ l1(1 + δ1), ∀j with cj ∈ V1}
with 17 795 constraints.

Table 6.2. Critical values for the tumor tissues.
number of organ (k) lk δk εk

target-tissue 0 67 0.11 0.11

boost-tissue 1 72 0.07 0.07

The aims are a minimization of the dose stress in the rectum (V2)
and in the bladder (V6), as these two healthy organs always have the
highest irradiation stress compared to the other organs at risk and a
stress reduction for the rectum deteriorates the level for the bladder
and vice versa. This leads to the bi-objective optimization problem

min

(
f1(x)
f2(x)

)
=

(
EUD6(x)
EUD2(x)

)

subject to the constraint
x ∈ Ω
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with the image space ordered by K = R
2
+.

We apply Alg. 1 with r = (1, 1)�, α = 0.04,

H := {y ∈ R
2 | y1 = 0} = {y ∈ R

2 | (1, 0)y = 0},

i. e. b = (1, 0)�, β = 0, and we choose M1 = 100 000 with M1 >
f2(x)− f1(x) for all x ∈ Ω. Then we get, as a result of the Steps 1 and
2, the points

f(x̄1) ≈
(

0.0159
0.2000

)

with f1(x̄1) = min
x∈Ω̄

f1(x) and

f(x̄E) ≈
(

0.2000
−0.0197

)

with f2(x̄E) = min
x∈Ω̄

f2(x). Thus only parameters a ∈ Ha with

Ha = {y ∈ R
2 | y1 = 0, y2 = λ · 0.1841+ (1−λ) · (−0.2197), λ ∈ [0, 1]}

have to be considered. With the algorithm the approximation given in
Fig. 6.4 with 10 approximation points (connected with lines) is gener-
ated.

These points as well as the distances δi := ‖f(xi+1) − f(xi)‖2 be-
tween consecutive approximation points are listed in Table 6.3. There,
also the EUD-values of the other organs are given.

Finally we can also compare the minimal and maximal equivalent
uniform dose value Ek in the organs Vk, k = 2, . . . , 6, over all approxi-
mation points with the recommended limits, see Table 6.4.

Instead of using the Pascoletti-Serafini scalarization with the de-
scribed parameters we can also use the ε-constraint method and Alg.
2. This is of course just a special case of Alg. 1 for special chosen
parameters. We solve the scalar optimization problems

min EUD6(x)
subject to the constraints

EUD2(x) ≤ ε,

x ∈ Ω
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Fig. 6.4. Efficient set and approximation points of the bicriteria op-
timization problem determined with the adaptive Pascoletti-Serafini
method.

Table 6.3. Approximation points of Fig. 6.4 and distances δi between
them for α = 0.04.

approximation point i = 1 i = 2 i = 3 i = 4 i = 5

EUD2(x̄
i) 0.2000 0.1625 0.1197 0.0819 0.0515

EUD6(x̄
i) 0.0159 0.0184 0.0187 0.0278 0.0374

δi - 0.0375 0.0429 0.0389 0.0319

EUD3(x̄
i) 0.1999 0.1998 0.2000 0.2000 0.2000

EUD4(x̄
i) 0.1984 0.1998 0.2000 0.1999 0.2000

EUD5(x̄
i) -0.4250 -0.4292 -0.4334 -0.4342 -0.4314

approximation point i = 6 i = 7 i = 8 i = 9 i = 10

EUD2(x̄
i) 0.0228 0.0012 -0.0126 -0.0197 -0.0197

EUD6(x̄
i) 0.0615 0.0964 0.1376 0.1796 0.2000

δi 0.0375 0.0411 0.0434 0.0426 0.0204

EUD3(x̄
i) 0.2000 0.1998 0.1963 0.1776 0.1790

EUD4(x̄
i) 0.2000 0.1429 0.1125 0.1063 0.1143

EUD5(x̄
i) -0.4293 -0.4176 -0.4156 -0.4122 -0.4128
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Table 6.4. Extremal values for Ek and recommended limits for the
ten approximation points of the approximation of Fig. 6.4.

k mini∈{1,...,10} Ek(x̄i) maxi∈{1,...,10} Ek(x̄i) Uk Qk

2 29.41 36.00 30 36

3 41.22 42.00 35 42

4 38.72 42.00 35 42

5 14.15 14.69 25 35

6 35.55 42.00 35 42

for parameters ε ∈ R. We first solve the problems minx∈Ω fi(x), i = 1, 2
and we get, according to Corollary 2.31, that it is sufficient to consider
parameters ε ∈ R with ε ∈ [−0.0197, 0.2000].

We apply the proposed algorithm with a first-order approximation
and a desired distance between the approximation points of α = 0.04.
This results in the parameters

ε ∈ {0.2000, 0.1600, 0.1203, 0.0805, 0.0421, 0.0069,−0.0183,−0.0197}

and the approximation shown in Fig. 6.5. The values of the approx-
imation points and the distances δi between consecutive points are
tabulated in Table 6.5.

Table 6.5. Values of the approximation points and distances for the
approximation of Fig. 6.5.

app.point i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

EUD2(x
i) 0.2000 0.1600 0.1203 0.0805 0.0421 0.0069 -0.0183 -0.0197

EUD6(x
i) 0.0159 0.0164 0.0186 0.0283 0.0425 0.0782 0.1356 0.2000

δi 0.0400 0.0398 0.0410 0.0410 0.0501 0.0627 0.0644 -

Based on one of these approximations the physician can choose a
treatment plan by weighting the damage to the bladder and the rectum
against each other. Besides he can choose an interesting solution and
refine around it by using the strategy as given in Step 4 of Alg. 5.
Further he can choose a point y determined by interpolation between
consecutive approximation points and solve problem (SP(a, r)) to the
correspondent parameter, see [223], to get a new approximation point.
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Fig. 6.5. Approximation of the efficient set determined with the adap-
tive ε-constraint method.

6.2 Problem Formulation Using a Tricriteria Approach

As it turned out that the treatment success depends also on the irradia-
tion homogeneity ([100, p.150]) this aim should be added to the former
two objective functions. Thereby the homogeneity of the irradiation is
measured by

HOM(x) :=

√√√√
∑

{j|cj∈V0}
N(cj) (Pjx − l0)2 +

∑
{j|cj∈V1}

N(cj) (Pjx − l1)2

N(V0) + N(V1)

with N(V0) = 13 238 and N(V1) = 2 686. This results in the multiob-
jective optimization problem

min

⎛
⎜⎝

f1(x)
f2(x)
f3(x)

⎞
⎟⎠ =

⎛
⎜⎝

EUD6(x)
EUD2(x)
HOM(x)

⎞
⎟⎠

subject to the constraint
x ∈ Ω

with three competing objectives and the ordering cone K = R
3
+.
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We solve this problem using Alg. 5. The auxiliary problem is

min HOM(x)
subject to the constraints

EUD6(x) ≤ ε1,

EUD2(x) ≤ ε2,

x ∈ Ω.

We choose N1 = N2 = 3. In Step 1 we get εmin
1 = 0.0158, εmax

1 =
0.2000, εmin

2 = −0.0141, and εmax
2 = 0.2000. This results in

L1 = 0.2000−0.0158
3 = 0.0614 and

L2 = 0.2000−(−0.0141)
3 = 0.0714.

and thus in the parameter set

E :=
{
ε ∈ R

2
∣∣ ε1 = 0.0158 + (k1 + 1

2)L1, k1 ∈ {0, 1, 2},
ε2 = −0.0141 + (k2 + 1

2)L2, k2 ∈ {0, 1, 2}}
= {ε ∈ R

2
∣∣ ε1 ∈ {0.0465, 0.1079, 0.1693},
ε2 ∈ {0.0216, 0.0929, 0.1643}}.

For solving the related scalar optimization problems we use the SQP
procedure implemented in Matlab with 600 iterations and a restart
after 150 iteration steps. We do not get a solution for the parameter
ε = (0.0465, 0.0216).

We assume a physician chooses certain points and we do a refine-
ment around these points with k = 1, i. e. n̄ = 8, and α = 0.07. This
results in the refined approximation shown in Fig. 6.6. The determined
parameters (ε1, ε2) =: (a1, a2) according to the Steps 2 and 4 are shown
in Fig. 6.7. The resulting approximation points are given in Table 6.6.

Due to the high dimension together with the large number of con-
straints, solving the scalar optimization problems is difficult. Stopping
after 600 iterations leads to slightly infeasible solutions. For instance,
for a feasible solution x the constraint EUD3(x) ≤ 0.2000 should be
satisfied. However EUD3(x1) = 0.2053. Further the constraints

Uk(EUDk(x) + 1) ≤ Qk, k ∈ {2, 3, 4, 5, 6}

are satisfied if



178 6 Application to IMRT

0 0.05 0.1 0.15 0.2

00.050.10.150.2
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

EUD
6

EUD
2

H

Fig. 6.6. Refined approximation of the IMRT problem. Here H(·) :=
HOM(·).
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Fig. 6.7. IMRT problem: parameter set of the tricriteria problem for-
mulation.

EUDk(x) ≤ 0.2 for k ∈ {2, 3, 4, 6}

and
EUD5(x) ≤ 0.4.

If these inequalities are fulfilled for a treatment plan, then the irra-
diation dose in the correspondent organs remains below the maximal
value Qk. If EUDk(x) < 0, then the irradiation of the organ Vk is
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Table 6.6. Values of the approximation points for the tricriteria prob-
lem formulation.

App.funkt i = 1 i = 2 i = 3 i = 4

EUD2(x
i) 0.0465 0.0465 0.1079 0.1079

EUD6(x
i) 0.0929 0.1643 0.0216 0.0929

HOM(xi) 2.6981 2.2294 2.8866 2.1878

EUD3(x
i) 0.2053 0.2040 0.2048 0.2008

EUD4(x
i) 0.2320 0.2035 < 0 0.2007

EUD5(x
i) < 0 < 0 < 0 < 0

App.punkt i = 5 i = 6 i = 7 i = 8

EUD2(x
i) 0.1079 0.1693 0.1693 0.1693

EUD6(x
i) 0.1643 0.0216 0.0929 0.1643

HOM(xi) 1.8446 2.5875 1.9813 1.6685

EUD3(x
i) 0.2005 0.2047 < 0 0.2006

EUD4(x
i) 0.2006 < 0 < 0 0.2004

EUD5(x
i) < 0 < 0 < 0 < 0

less then the lower limit Uk, see Table 6.6. The other constraints are
Pj(x) ∈ [59.63, 74.37] for j with cj ∈ V0 as well as Pjx ∈ [66.96, 77.04]
for j with cj ∈ V1. These constraints are also not always satisfied as

mini∈{1,...,8} min{j|cj∈V0} Pjx
i = 59.57,

maxi∈{1,...,8} max{j|cj∈V0} Pjx
i = 74.43,

mini∈{1,...,8} min{j|cj∈V1} Pjx
i = 66.91,

maxi∈{1,...,8} max{j|cj∈V1} Pjx
i = 77.10.

This infeasibility can be avoided by using other numerical solvers or by
a larger number of iterations.

For an evaluation of the quality of the local approximation refine-
ment we choose for instance the approximation point (0.0465,0.1643,
0.2294) of the efficient set and calculate the distances between that
point and the surrounding refinement points. We get the following 12
distances:

0.0697, 0.0801, 0.0795, 0.0814,

0.0880, 0.0679, 0.0736, 0.0624,

0.0663, 0.0687, 0.0640, 0.0712

with a rounded average value of 0.0727. Recall that we have chosen
α = 0.07 for the refinement.
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Application to Multiobjective Bilevel
Optimization

Based on the results in the previous chapters it is also possible to de-
velop a solution method for nonlinear multiobjective bilevel optimiza-
tion problems. Bilevel optimization, more generally multilevel optimiza-
tion, is an active research area in mathematical programming, see the
monographs by Dempe [49] and Bard [9] as well as [33, 34, 50] and the
bibliography reviews by Calamai and Vicente ([229]) and Dempe ([51]).
The applications of bilevel optimization are numerous, for instance in
economic development policy, agriculture economics, road network de-
sign, oil industry regulation, international water systems and flood con-
trol, energy policy, traffic assignment and many more, compare [226]
and see also [33, 168].

Many papers have been published in the last two decades about
bilevel optimization, but there are only very few of them dealing with
multiobjective bilevel problems. Procedures for solving linear multiob-
jective bilevel problems are presented for instance in [178]. Even less
papers are about nonlinear multiobjective bilevel problems: Shi and
Xia ([206, 207]) present an interactive method, Osman and Abo-Sinna
et al. ([1, 179]) propose the usage of fuzzy set theory for convex prob-
lems, and Teng et al. ([222]) give an approach for a convex multiperson
multiobjective bilevel problem. The first papers presenting a solution
method for non-convex nonlinear multiobjective bilevel optimization
problems, which computes approximations of the whole solution set,
are [68], and then [129, 195] by Jahn and Schaller.

Bonnel and Morgan examine in [20] a bilevel optimization problem
with a vector-valued objective function on the lower level and a scalar-
valued objective function on the upper level. They call this problem a
semivectorial bilevel optimization problem. In [153] Liou et al. study
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also such problems and denote them mathematical programs with vec-
tor optimization constraints.

Despite multiobjective bilevel optimization has not yet received a
broad attention in the literature, these problems are very interesting in
the view of applications, see for instance [241]. For getting an idea of
this we give an illustrative example. Let us consider a city bus trans-
portation system financed by the public authorities. They have as tar-
gets the reduction of the money losses in this non-profitable business as
well as the reduction of the number of cars on the streets. The public
authorities can decide about the bus ticket price, but this influences the
customers in their usage of the buses. The public has maybe several
competing objectives, too, as to minimize their transportation time
and costs. Hence the usage of the public transportation system can
be modeled on the lower level with the bus ticket price as parameter.
The solution of the lower level influences then the objective values of
the public authorities on the upper level. Such a problem can thus be
mapped by multiobjective bilevel optimization.

Multiobjective bilevel optimization problems are also closely related
to equilibrium problems and the definition of non-dominated equilib-
rium solutions, see for instance [8, 30, 35, 171, 177, 205, 240].

7.1 Basic Concepts of Bilevel Optimization

In bilevel optimization, also called two-level optimization, problems are
considered where the constraint set of the so-called upper level prob-
lem is given by the solution set of a so-called lower level (parametric)
optimization problem. The variables of the upper level, the upper level
variables y ∈ R

n2 (n2 ∈ N), are the parameters of the lower level prob-
lem, and again the solutions x ∈ R

n1 (n1 ∈ N) of the optimization
problem on the lower level influence the upper level objective function
value. The leader on the higher level controls thus a first set of decision
variables, for instance prices or resource allocation, while the follower
on the lower level controls a second set of decision variables, for instance
production volumes or technology alternatives (compare [226]).

For a constant y let the point x = x(y) be a minimal solution of the
optimization problem

x(y) ∈ Ψ(y) := argminx{f(x, y) | (x, y) ∈ G} ⊂ R
n1

parameterized by y with a continuously differentiable function f : R
n1×

R
n2 → R

m1 , m1 ∈ N, and G ⊂ R
n1 × R

n2 . This optimization problem,
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dependent on y, is called lower level problem:

min
x

f(x, y)

subject to the constraint
x ∈ G(y) := {x ∈ R

n1 | (x, y) ∈ G},
(7.1)

The superordinate optimization problem of the upper level is then given
by

“ min
y

”F (x(y), y)

subject to the constraints
x(y) ∈ Ψ(y),

y ∈ G̃

(7.2)

with a continuously differentiable function F : R
n1 ×R

n2 → R
m2 , m2 ∈

N, and a compact set G̃ ⊂ R
n2 . Here the constraint y ∈ G̃ is uncoupled

from the lower level variable as it is assumed e. g. in [9, p.303], [49,
pp.123f.], [51, 52, 85].

A more general formulation of the bilevel problem is reached by
allowing the constraint y ∈ G̃ to depend on the lower level variable
x (compare [9, 49, 50, 88, 145, 229]), i. e. to allow (x, y) ∈ G̃ with
G̃ ⊂ R

n1 × R
n2 instead of y ∈ G̃ with G̃ ⊂ R

n2 . We discuss this more
general formulation in Sect. 7.6. However, for instance in [26, 153] no
constraints on the upper level are considered at all. Notice, that in the
first publication which used the term bilevel optimization ([27]) the
problems did not involve joint upper level constraints (see also [34]).

We speak of a multiobjective bilevel optimization problem if m1 ≥ 2
or m2 ≥ 2 and in this book we even assume m1, m2 ≥ 2.

If the minimal solution of the lower level problem (7.1) is not unique,
the objective function F (x(·), ·) is not well-defined for y ∈ R

n2 . Because
of that it is written “ min ” in (7.2). This difficulty is in some papers
avoided by just assuming that the solution of the lower level problem is
unique. However in the case of a multiobjective optimization problem
(m1 ≥ 2) on the lower level this cannot be done any more. In this
case of non-uniqueness a common procedure is the so-called optimistic
approach ([49], [50, p.5], [52, p.506], [178, p.166]). Then it is assumed
that the d. m. of the lower level chooses the minimal solution (for a
fixed value of y) which is best for the upper level, thus it is solved

min
x

{F (x, y) | x ∈ Ψ(y)} =: ϕ0(y).
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In the case of a vector-valued objective function F the function ϕ is
generally a set-valued map. In the case of a scalar-valued map F (m2 =
1) the bilevel problem using the optimistic approach is then written as

min
y

ϕ0(y)

subject to the constraint
y ∈ G̃.

This scalar optimization problem is – w. r. t. the global minimal solu-
tions – equivalent to

min
x,y

F (x, y)

subject to the constraints
x ∈ Ψ(y), y ∈ G̃.

Note that this equivalence is in general only true for global and not for
local minimal solutions, see [52, p.507],[53, p.585]. Using the same idea
of an optimistic approach for a multiobjective optimization problem we
consider in the following the problem

min
x,y

F (x, y)

subject to the constraints
x ∈ Ψ(y), y ∈ G̃.

For the multiobjective optimization problems on the different levels we
assume that the partial ordering on the upper level is given by the
closed pointed convex cone K2 ⊂ R

m2 and on the lower level by the
closed pointed convex cone K1 ⊂ R

m1 . Further we assume that for any
y ∈ G̃ of the upper level there exists a minimal solution of the lower
level problem.

7.2 Induced Set Approximation

Using the optimistic approach we hence consider the multiobjective
bilevel optimization problem

min
x,y

F (x, y)

subject to the constraints
x ∈ My(f(G), K1),

y ∈ G̃

(7.3)
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with My(f(G), K1) := M(f(G(y), y), K1) the set of K1-minimal
points of the multiobjective optimization problem (7.1) parameterized
by y. The constraint set Ω of the upper level problem, also called in-
duced set, is then given by

Ω := {(x, y) ∈ R
n1 × R

n2 | x ∈ My(f(G), K1), y ∈ G̃}.
We show that the induced set Ω is equivalent to the set of K̂-minimal
points of the multiobjective optimization problem

min
x,y

f̂(x, y) :=

(
f(x, y)

y

)

subject to the constraints
(x, y) ∈ G,

y ∈ G̃

(7.4)

with K̂ := K1 × {0n2} ⊂ R
m1 × R

n2 .

Theorem 7.1. Let M̂ be the set of K̂-minimal points of the multiob-
jective optimization problem (7.4) with K̂ = K1×{0n2}. Then Ω = M̂.

Proof. We have the equivalences

(x̄, ȳ) ∈ Ω ⇔ x̄ ∈ Mȳ(f(G), K1) ∧ ȳ ∈ G̃

⇔ ( � ∃ x ∈ G(ȳ) with f(x̄, ȳ) ∈ f(x, ȳ) + K1 \ {0m1}
)

∧ ȳ ∈ G̃ ∧ x̄ ∈ G(ȳ)
⇔ (� ∃ (x, y) ∈ G with f(x̄, ȳ) ∈ f(x, y) + K1 \ {0m1}

∧ y = ȳ) ∧ ȳ ∈ G̃ ∧ (x̄, ȳ) ∈ G

⇔ ( � ∃ (x, y) ∈ G with(
f(x̄, ȳ)

ȳ

)
∈
(

f(x, y)
y

)
+ (K1 × {0n2}) \ {0m1+n2}

)

∧ ȳ ∈ G̃ ∧ (x̄, ȳ) ∈ G

⇔
(
� ∃(x, y) ∈ G with f̂(x̄, ȳ) ∈ f̂(x, y) + K̂ \ {0m1+n2}

)
∧ ȳ ∈ G̃ ∧ (x̄, ȳ) ∈ G

⇔ (x̄, ȳ) ∈ M̂.

�

Hence, if we are able to determine the solution set of the multiob-
jective optimization problem (7.4) we have already the constraint set
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of the upper level problem, which we can solve then. The upper level
problem is then reduced to minx,y{F (x, y) | (x, y) ∈ M̂}.

We cannot determine the whole solution set of the problem (7.4),
but we can calculate an approximation of this set. Based on sensitiv-
ity information, we can refine this approximation dependent on the
behavior of the upper level function.

For determining single solution points of the problem (7.4) we use
the scalarization according to Pascoletti and Serafini and we get the
scalar optimization problem (SP(â, r̂))

min
t,x,y

t

subject to the constraints
â + t r̂ − f̂(x, y) ∈ K̂,

(x, y) ∈ G,

y ∈ G̃,

t ∈ R

(7.5)

with â ∈ R
m1+n2 , r̂ ∈ K̂ = K1 × {0n2}. In the following we assume,

for getting an easier notation, em1 ∈ K1 with em1 the m1th unit vector
in R

m1 . This is for instance satisfied for K1 = R
m1
+ , i. e. for the natu-

ral ordering. Then it is sufficient (see Theorem 2.11) to consider only
parameters

â :=

(
a

ã

)
∈ Ĥ = {x ∈ R

m1+n2 | xm1 = 0}, r̂ =

(
r

0n2

)
with r = em1

(7.6)
with a ∈ R

m1 and ã ∈ R
n2 . In the next theorem we show that with

these parameters a point (t̄, x̄, ȳ) is a minimal solution of (SP(â, r̂)), if
(t̄, x̄) is a minimal solution of the problem (SP(a, r, ã)) defined by

min
t,x

t

subject to the constraints
a + t r − f(x, ã) ∈ K1,

(x, ã) ∈ G,

t ∈ R

(7.7)

with a ∈ H := {x ∈ R
m1 | xm1 = 0}, ã ∈ G̃, and r = em1 . Problem

(SP(â, r̂)) has, for parameters as in (7.6), no minimal solution for ã �∈
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G̃. Thus it is only interesting to consider the problem (SP(â, r̂)) for
â = (a, ã) with ã ∈ G̃ and then we can ignore the constraint y ∈ G̃.

Theorem 7.2. We consider the optimization problems (SP(â, r̂)) and
(SP(a, r, ã)) with

G = {(x, y) ∈ R
n1+n2 | g(x, y) ∈ C}

with a continuously differentiable function g : R
n1+n2 → R

p, p ∈ N,
and a convex cone C ⊂ R

p. Let the point (t̄, x̄) be a minimal solution of
(SP(a, r, ã)) with a ∈ H, r = em1 , and ã ∈ G̃ with Lagrange multipliers
μ ∈ (K1)∗ (with (K1)∗ the dual cone to K1) to the constraint a + t r −
f(x, ã) ∈ K1 and ν ∈ C∗ to the constraint g(x, y) ∈ C.

Then (t̄, x̄, ã) is a minimal solution of (SP(â, r̂)) with â and r̂ as in
(7.6) and Lagrange multipliers (μ, μ̃) ∈ K̂∗ = (K1)∗ × R

n2 with

μ̃ := −
m1∑
i=1

μi∇yfi(x̄, ã) +
p∑

j=1

νj∇ygj(x̄, ã) (7.8)

to the constraint â + t r̂ − f̂(x, y) ∈ K̂ and Lagrange multiplier ν ∈ C∗

to the constraint g(x, y) ∈ C.

Proof. Let (t̄, x̄) be a minimal solution of (SP(a, r, ã)). Then we
have for the related Lagrange function

L(t̄, x̄, μ, ν) := t̄ − μ� (a + t̄ r − f(x̄, ã)) − ν�g(x̄, ã)

that

∇(t,x)L(t̄, x̄, μ, ν) =

(
1

0n1

)
+

m1−1∑
i=1

μi

(
0

∇xfi(x̄, ã)

)

+μm1

(
−1

∇xfm1(x̄, ã)

)
−

p∑
j=1

νj

(
0

∇xgj(x̄, ã)

)

= 0n1+1.

(7.9)
We consider now the constraint â + t r̂ − f̂(x, y) ∈ K̂ of the problem
(SP(â, r̂)) with K̂ = K1 × {0n2}. This constraint is equivalent to the
constraints

a + t r − f(x, y) ∈ K1

and
ã − y ∈ {0n2}.
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Hence it follows ã = y and we conclude for ã ∈ G̃ immediately, that
(t̄, x̄, ȳ) with ȳ = ã is a minimal solution of (SP(â, r̂)). The Lagrange
function L̂ to problem (SP(â, r̂)) is defined by (with ν̂ ∈ K̂∗, μ̂ ∈ C∗)

L̂(t̄, x̄, ȳ, μ̂, ν̂) := t̄ − μ̂� (â + t̄ r̂ − f̂(x̄, ȳ)) − ν̂�g(x̄, ȳ)

and thus together with ȳ = ã and f̂m1+i(x, y) = yi, i = 1, . . . , n2, we
get

∇(t,x,y)L̂(t̄, x̄, ȳ, μ̂, ν̂) =

⎛
⎜⎝

1
0n1

0n2

⎞
⎟⎠ +

m1−1∑
i=1

μ̂i

⎛
⎜⎝

0
∇xfi(x̄, ã)
∇yfi(x̄, ã)

⎞
⎟⎠

+μ̂m1

⎛
⎜⎝

−1
∇xfm1(x̄, ã)
∇yfm1(x̄, ã)

⎞
⎟⎠+

n2∑
i=1

μ̂m1+i

⎛
⎜⎝

0
0n1

ei

⎞
⎟⎠

−
p∑

j=1
ν̂j

⎛
⎜⎝

0
∇xgj(x̄, ã)
∇ygj(x̄, ã)

⎞
⎟⎠ .

Here ei denotes the ith unit vector in R
n2 . With (7.9) we get for μ̂ :=

(μ, μ̃) and ν̂ := ν

∇(t,x)L̂(t̄, x̄, ȳ, (μ, μ̃), ν) = 0n1+1

and by setting μ̃ as in (7.8) we conclude

∇yL̂(t̄, x̄, (μ, μ̃), ν)=
m1∑
i=1

μi∇yfi(x̄, ã)+
n2∑
i=1

μ̃i ei−
p∑

j=1

νj∇ygj(x̄, ã)= 0n2 .

Further, as μ and ν are Lagrange multipliers to the problem (SP(a, r, ã)),
it follows

μ�(a + t̄ r − f(x̄, ã)) = 0 and ν�g(x̄, ã) = 0.

For the problem (SP(â, r̂)) it is for μ̂ = (μ, μ̃) because of ã = y

μ̂�(â + t̄ r̂ − f̂(x̄, ȳ)) = μ�(a + t̄ r − f(x̄, y)) + μ̃�(ã − y) = 0

and thus μ̂ = (μ, μ̃) and ν are Lagrange multipliers to the point (t̄, x̄)
for the problem (SP(â, r̂)), too. �
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Of course equality constraints for the set G can be included also.
Searching for solutions of the problem (SP(â, r̂)) with â = (a, ã) ∈ Ĥ
and r̂ = (r, 0n2) can thus be replaced by solving (SP(a, r, y)) for a ∈ H
and y = ã ∈ G̃.

Problem (SP(a, r, y)) is just the Pascoletti-Serafini scalarization ap-
plied to problem (7.1) for y = ã. The connection described in the pre-
vious theorem will be important for the application of the sensitivity
results.

For determining an approximation of the solution set of (7.4) we
proceed as follows: We solve the problem (SP(â, r̂)) for a choice of
parameters â, r̂ as in (7.6) with ã ∈ G̃. However instead of solving
the problem (SP(â, r̂)) directly we switch to the problem (SP(a, r, ã))
with parameters a ∈ H, r = em1 , and ã ∈ G̃. The aim is to cover the
whole solution set of the problem (7.4). For achieving this we discretize
the set G̃ with equal distances, e. g. for G̃ = [c, d] ⊂ R by y1 := c ≤
y2 := y1 + β ≤ y3 := y1 + 2β ≤ . . . ≤ yny

:= y1 + (ny − 1)β ≤ d
(β ∈ R+, ny ∈ N) and solve for any ã = yk of this discretization the
problem (SP(a, r, ã)) for a variation of the remaining parameters a and
r. This is equivalent to determine the solution set of the lower level
problem (7.1) for the parameter y = yk. As already mentioned we can
only determine an approximation of this solution set. The aim is an
approximation with a high quality, i. e. with equidistant points in the
parameter space (and not in the image space).

For the remaining parameters a and r we have seen in Theorem 2.11
that it is sufficient to choose the parameter r constant and to choose
the parameter a from a hyperplane. Instead of choosing the parameter
a for instance equidistantly from the hyperplane we get better results
using sensitivity information for an adaptive controlled choice. For the
case K1 = R

m1
+ and G = {(x, y) ∈ R

n1+n2 | gj(x, y) ≥ 0, j = 1, . . . , p}
(i. e. C = R

p
+) we get such sensitivity results by applying Theorem 3.16

in the non-degenerated case and Theorem 3.17 in the degenerated case.
For our numerical method we assume that all necessary assumptions

for the sensitivity results are at least locally satisfied. Let y = yk be
constant. As we used to do it in Chap. 4 we determine an approximation
by choosing several parameters a ∈ H, e. g. with a0

1 ≤ a0
1 ≤ a2

1 ≤
. . ., and by solving the problem (SP(a, r, yk)) for these parameters.
Our aim is to have for the minimal solutions (ti, xi) of the problems
(SP(ai, r, yk)) for i = 1, 2, . . ., for a given distance α > 0:

‖xi+1 − xi‖ ≈ α. (7.10)



192 7 Application to Multiobjective Bilevel Optimization

We restrict ourselves in the following to the bicriteria case on the
lower level, i. e. m1 = 2, and further K = R

2
+. Then, applying the

results of Theorem 3.16 (assuming non-degeneracy, otherwise Theorem
3.17), we get for

a :=

(
a0

1

0

)
+ λ ·

(
1
0

)
∈ H

(λ > 0) and the constant parameter r = r0

φ(a, r) ≈ φ(a0, r) + M−1N

(
a − a0

02

)

and thus ⎛
⎜⎜⎜⎜⎝

t(a, r)
x(a, r)
μ(a, r)
ν(a, r)

⎞
⎟⎟⎟⎟⎠ ≈

⎛
⎜⎜⎜⎜⎝

t0

x0

μ0

ν0

⎞
⎟⎟⎟⎟⎠ + λ M−1N

⎛
⎜⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎟⎠

for (t0, x0) a minimal solution of the reference problem (SP(a0, r, yk))
with Lagrange multipliers μ0, ν0. For ṽ = (1, 0, 0, 0)� let (M−1Nṽ)

∣∣
x

denote the vector consisting of the second to the (n1 + 1)th entry of
the vector M−1N · ṽ (correspondent to the entries related to x). Then
we get

‖x − x0‖ = ‖x(a, r) − x(a0, r)‖
= ‖x(a0 + λ (1, 0)�, r) − x(a0, r)‖
≈ ‖x0 + λ(M−1Nṽ)

∣∣
x
− x0‖

= |λ| ∥∥(M−1Nṽ)
∣∣
x

∥∥ .

.

Thus we have (7.10) e. g. for i = 0 approximately fulfilled for a1 :=
a0 + λ̄ · (1, 0)� with

λ̄ :=
α∥∥(M−1Nṽ)

∣∣
x

∥∥ . (7.11)

Having determined the parameter a1 we can solve the problem
(SP(a1, r, yk)) and repeat this procedure for calculating a2 and so on
till an approximation of the solution set is generated by this adaptive
parameter control. Notice that the aim are equidistant points in the
parameter space and not in the image space.

This procedure has to be done for all discretization points yk of G̃
and then, for (t̄, x̄) a minimal solution of (SP(a, r, ã)) with ã = yk,
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the point (x̄, yk) is an approximation point of the set M̂ and hence of
the induced set Ω. Let A0,k denote the set of points (x̄, yk) gained by
solving the problem (SP(a, r, ã)) for ã = yk and for several parameters
a. The set

A0 :=
ny⋃

k=1

A0,k

is the searched approximation of the induced set Ω.
Note that by using the scalarizations (SP(â, r̂)) and (SP(a, r, ã))

respectively we do not always get K̂- and K1-minimal solutions re-
spectively of the related multiobjective optimization problem. We have
only that any minimal solution of (SP(a, r, ã)) is weakly K1-minimal.
As for (SP(â, r̂)) we have int(K̂) = int(K1 × {0n2}) = ∅, we cannot
apply the notion of weak minimality here. Instead, for r̂ ∈ L(K̂), a
minimal solution of (SP(â, r̂)) is an at least minimal point w. r. t. the
intrinsic core icr(K̂)∪{0m1+n2} = (icr(K1)∪{0n2})×{0n2} (see p.11).
Of course the set of K̂-minimal points is included in the set of minimal
points w. r. t. icr(K̂) ∪ {0m1+n2}.

7.3 Induced Set Refinement

Now we can evaluate the points approximating the induced set Ω with
the upper level objective function F . Hence, for all points (x, y) ∈ A0 we
calculate the points F (x, y). Just for better visualization possibilities
we assume in the following m2 = 2 and K2 = R

2
+, too. We are only

interested in the non-dominated points of the set {F (x, y) | (x, y) ∈
A0}, i. e. in the points (x̄, ȳ) ∈ A0, so that there exists no point (x′, y′) ∈
A0 with F (x′, y′) �= F (x̄, ȳ) and with

Fi(x′, y′) ≤ Fi(x̄, ȳ), i = 1, 2.

We denote the set of non-dominated points as M(F (A0), R2
+).

For a not too strict selection of points it can be a better concept to
select only the ε-EP-minimal points of the set A0, because the ε-efficient
points are also close to the efficient set, in which we are interested,
and hence deliver useful information, too (compare Definition 1.15 and
[125, p.3]). The determination of all non-dominated points can be very
expensive, if the set A0 consists of many points. Then so-called Pareto
filters ([160, p.1193], [161, p.730]) deliver implementable algorithms.
The costs can be reduced by using the method of Graef and Younes, see
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[112, p.14], [124, p.337], [242], or, extended with a backward iteration,
the Jahn-Graef-Younes method, described in [125, pp.4f]. With the set
M(F (A0), R2

+) we have a first approximation of the solution set of the
multiobjective bilevel problem.

For improving this approximation of the solution set we refine the
discretization of the constraint set in a neighborhood of the already
found solutions. We can do this for all points of the set M(F (A0), R2

+),
or, if the d. m. of the upper level problem is interested in some special
chosen efficient points, only in their neighborhood. A third possibility
is to consider only those points for which the approximation of the
efficient set of the upper level problem is not accurate enough, i. e. only
those points where the distance to the next neighbor point, mapped
with the function F , is not small enough.

For obtaining a refinement around the special chosen points we
use again sensitivity information for determining the parameter a
of the lower level scalarization in such a way that the refinement
points have nearly a predefined equal distance. For any point (x, y) ∈
M(F (A0), R2

+) there is some t ∈ R so that the point (t, x) is a minimal
solution of (SP(a, r, ã)) for ã = y. It is now important that according to
Theorem 7.2 the point (t, x, y) is then a minimal solution of (SP(â, r̂)),
too, and the Lagrange multipliers are also known, if the Lagrange mul-
tipliers of the problem (SP(a, r, ã)) are given. Problem (SP(â, r̂)) is
the scalarization of the problem (7.4). Hence we are interested in the
dependence of the minimal solutions of the problem (SP(â, r̂)) on the
parameter â. Thereby we include the variable y in our sensitivity and
thus in our distance considerations.

For instance for K1 = R
2
+, n2 = 1 (i. e. y ∈ R), r̂ = (0, 1, 0)� ∈

K1 × {0} and â = (a1, a2, a3)� we can rewrite the problem (SP(â, r̂))
with the following equality and inequality constraints:

min
t,x,y

t

subject to the constraints
a1 −f1(x, y) ≥ 0,

a2 +t − f2(x, y) ≥ 0,

a3 −y = 0,

(x, y) ∈ G,

y ∈ G̃ = [c, d],
t ∈ R.

(7.12)
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Let G := {(x, y) ∈ R
n1+1 | gj(x, y) ≥ 0, j = 1, . . . , p}. For simplicity

we discuss in the following only this special case. Applying Corollary
3.2.1 from [79] we get, similar to Theorem 3.16, the following sensitivity
results for the minimal solutions of the problem (7.12).

Theorem 7.3. We consider the problem (7.12) with twice continu-
ously differentiable functions f1, f2, gj , j = 1, . . . , p. Let (t0, x0, y0) be
a local minimal solution of the reference problem (7.12) w. r. t. the
parameter â0 = (a0

1, a
0
2, a

0
3)

� with Lagrange multipliers μ0
1, μ

0
2 ∈ R+,

μ0
3 ∈ R, ν0 ∈ R

p
+. Assume that the constraints are non-degenerated and

that the gradients w. r. t. (t, x, y) of the active constraints are linearly
independent. Assume there is a scalar α > 0 so that for the Hessian of
the Lagrange function L in the point (t0, x0, y0) it holds

(t, x�, y)∇2
(t,x,y)L(t0, x0, y0, μ0, ν0)

⎛
⎜⎝

t

x

y

⎞
⎟⎠ ≥ α

∥∥∥∥∥∥∥
⎛
⎜⎝

t

x

y

⎞
⎟⎠
∥∥∥∥∥∥∥

2

for all

(t, x, y) ∈ {(t, x, y) ∈ R
n1+2 | r̂it = ∇xfi(x0, y0)�x if μ0

i > 0 for i∈{1, 2},
∇xgj(x0, y0)�x = 0 if ν0

j > 0 for j ∈ {1, . . . , p}, y = 0}.
Then (t0, x0, y0) is a local unique minimal solution of (7.12) for the

parameter â0 and there is a δ > 0 so that the function φ : N(â0) →
Bδ(t0, x0, y0) × Bδ(μ0, ν0) (for N(â0) a neighborhood of â0),

φ(â) := (t(â), x(â), y(â), μ(â), ν(â)),

has the following first order approximation

φ(â) = φ(â0) + M̂−1N̂
(
â − â0

)
+ o

(‖â − â0‖)
in the point (t0, x0, y0) with M̂ :=⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇2
(t,x,y)L

0
∇(x,y)f1

−1
∇(x,y)f2

0
e(n1+1)

0
−∇(x,y)g1

. . .
0

−∇(x,y)gp

μ0
1(0,−∇(x,y)f1) k1 0 0 0 . . . 0

μ0
2(1,−∇(x,y)f2) 0 k2 0 0 . . . 0

μ0
3(0,−e�(n1+1)) 0 0 0 0 . . . 0

ν0
1(0,∇(x,y)g1) 0 0 0 g1 . . . 0

...
...

...
...

...
. . .

...
ν0

p(0,∇(x,y)gp) 0 0 0 0 . . . gp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with k1 := â1−f1(x0, y0), k2 := â2+t0−f2(x0, y0), gi := gi(x0, y0), i =
1, . . . , p, and

N̂ :=

⎡
⎢⎣03×(n1+2),−μ0

1

⎛
⎜⎝

1
0
0

⎞
⎟⎠ ,−μ0

2

⎛
⎜⎝

0
1
0

⎞
⎟⎠ ,−μ0

3

⎛
⎜⎝

0
0
1

⎞
⎟⎠ ,03×p

⎤
⎥⎦
�

.

For the degenerate case we get a correspondent result by adapting
Theorem 3.17.

Let us assume that we want to refine in the neighborhood of the
point (x0, y0) ∈ M(F (A0), R2

+). Then, because of (x0, y0) ∈ A0, there
is some t0 ∈ R and a parameter â0 = (a0

1, a
0
2, a

0
3)

� ∈ Ĥ ⊂ R
3 so that

(t0, x0, y0) is a minimal solution of (7.12). Assume μ̂0 = (μ0
1, μ

0
2, μ

0
3) ∈

R
3, ν0 ∈ R

p are the related Lagrange multipliers using the results of
Theorem 7.2. We want to find now new parameters â ∈ Ĥ, for instance
by

â := â0+s1 ·v1+s2 ·v2, s1, s2 ∈ R, v1 := (1, 0, 0)�, v2 := (0, 0, 1)�,

so that we have for a predefined distance γ > 0 (γ < α)∥∥(x(â0 + sivi), y(â0 + sivi)) − (x0, y0)
∥∥ = γ, i = 1, 2,

with (t(â), x(â), y(â)) minimal solution of problem (7.12) with param-
eter â. With the matrices M̂, N̂ as in Theorem 7.3 we conclude that
this aim is approximately fulfilled for

|si| :=
γ

‖
(
M̂−1N̂ · vi

) ∣∣∣
(x,y)

‖
, i = 1, 2,

with (M̂−1N̂ · vi)
∣∣∣
(x,y)

the vector consisting of the second to the (n1 +

2)th entry of the vector M̂−1N̂ · vi. For a predefined desired number
nD ∈ N of new discretization points we set

â := â0 + l1 · s1v1 + l2 · s2v2, for l1, l2 ∈ {−nD, . . . , nD} ⊂ Z,

(l1, l2) �= (0, 0).
(7.13)

Solving (7.12) for these new parameters â we get minimal solutions
(t, x, y) and with that new points of the induced set. We set
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A1
(x0,y0) := {(x, y) ∈ R

n1+1 | ∃t ∈ R with (t, x, y) a minimal solution of

(7.12) for a parameter â as in (7.13)}.

By doing this for all points (x, y) ∈ M(F (A0), R2
+) we get the following

new approximation of the induced set Ω

A1 := A0 ∪
⋃

(x,y)∈M(F (A0),R2
+)

A1
(x,y). (7.14)

We map these points again under the upper level function F and select
only the non-dominated (or ε-EP-minimal) points M(F (A1), R2

+). Here
we can use Lemma 1.11 and consider only the set

Ã1 := M(F (A0), R2
+) ∪

⋃
(x,y)∈M(F (A0),R2

+)

A1
(x,y)

because we have

M(F (A1), R2
+) = M(F (Ã1), R2

+). (7.15)

The set M(F (A1), R2
+) is now an improved approximation of the so-

lution set of the multiobjective bilevel optimization problem, but this
set can be refined further by repeating the described steps arbitrarily
often.

7.4 Algorithm

We summarize the described steps for the approximation and refine-
ment of the induced set in the following algorithm. The result of this
algorithm is an approximation of the solution set of the multiobjective
bilevel optimization problem. Because the upper level objective func-
tion is vector-valued, too, we get not only one solution but an approx-
imation of the whole efficient set. We assume K1 = K2 = R

2
+, m1 =

m2 = 2, C = R
p
+, n2 = 1, G = {(x, y) ∈ R

n1+1 | gj(x, y) ≥ 0, j =
1, . . . , p}, G̃ = [c, d] ⊂ R for c, d ∈ R and we choose r = (0, 1)� con-
stant.
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Algorithm 6 (Multiobjective Bilevel Algorithm).

Step 1: Choose β > 0 or ny ∈ N and discretize the interval
G̃ = [c, d] by

y1 := c, y2 := y1+β, y3 := y1+2β, . . . , yny
:= y1+(ny−1)β

with ny ≤ d, ny ∈ N.

Step 2: For all y = yk, k = 1, . . . , ny, determine an approxi-
mation A0,k of problem (7.1) with the help of problem
(SP(a, r, ã)) for ã = yk. For that give a distance α > 0,
set k = 1 and continue with the following steps:

Step 2a: Solve f1(x̄1) := minx{f1(x) | (x, yk) ∈ G} and
f2(x̄2) := min{f2(x) | (x, yk) ∈ G} and deter-
mine a1 := (f1(x̄1), 0) and aE := (f1(x̄2), 0). Set
A0,k := {(x̄1, yk)}, a2 := (f1(x̄1) + δ, 0)� for a small
δ > 0 and l := 2.

Step 2b: If al
1 ≤ aE

1 solve problem (SP(al, r, ã)) for ã = yk

with minimal solution xl and Lagrange multipliers
(μl, νl) and set A0,k := A0,k ∪ {(xl, yk)}. Calculate
the matrices M, N according to Theorem 3.16, de-
termine λ̄ according to (7.11) with ṽ := (1, 0, 0, 0)�,
set al+1 := al + λ̄ · (1, 0)�, l := l + 1 and repeat Step
2b.
Else set k := k + 1. If k ≤ ny go to Step 2a, else go
to Step 3.

Step 3: Set A0 :=
⋃ny

k=1 A0,k and determine M(F (A0), R2
+) with

the help of a Pareto filter or the Jahn-Graef-Younes
method. Set i := 0 and choose γ0 > 0.

Step 4: For any point (x, y) ∈ M(F (Ai), R2
+) determine a re-

finement of the induced set around this point by solving
the scalarization (7.12) and by choosing the parameters
â ∈ R

3 as in (7.13). Determine Ai+1 by (7.14).
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Step 5: Calculate M(F (Ai+1), R2
+) by using (7.15) and a Pareto

filter or the Jahn-Graef-Younes method. If this approx-
imation of the solution set of the multiobjective bilevel
problem is sufficient, then stop.
Else set i := i + 1, choose γi > 0 and go to Step 4.

With the approximations A0,k determined in the Steps 2a and 2b an
approximation of the solution set of the tricriteria optimization problem
(7.4) and hence of the induced set Ω is calculated. In Step 2a it is
necessary to choose a2 as described to avoid numerical difficulties. The
set M(F (Ai), R2

+) is the searched approximation of the solution set of
the multiobjective bilevel optimization problem.

For Algorithm 6 we have assumed n2 = 1, i. e. the compact set
G̃ = [c, d] is an interval. If it is n2 ≥ 2 an (equidistant) discretization of
the compact set G̃ has to be found. This can be done e. g. by finding a
cuboid I := [c1, d1]× . . .× [cn2 , dn2 ] ⊂ R

n2 with G̃ ⊂ I and discretizing
this cuboid with points

{y ∈ R
n2 | yi = ci + ni βi for a ni ∈ N ∪ {0}, yi ≤ di, i = 1, . . . , n2}

for distances βi > 0 (i = 1, . . . , n2) and then selecting only the dis-
cretization points being an element of G̃.

7.5 Numerical Results

In this section we apply the proposed algorithm to a nonlinear academic
test problem for illustrating the single steps of Algorithm 6. Further
we discuss a nonlinear problem which arose in a technical application
in medical engineering.

7.5.1 Test Problem

We consider the following multiobjective bilevel problem with n1 =
2, n2 = 1, m1 = m2 = 2 and K1 = K2 = R

2
+.
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min
y

(
F1(x, y)
F2(x, y)

)
:=

(
x1 + x2

2 + y + sin2(x1 + y)
cos(x2) · (0.1 + y) · (exp(− x1

0.1 + x2
))

)

subject to the constraints

x ∈ argminx

{(
f1(x, y)
f2(x, y)

) ∣∣∣∣∣ (x, y) ∈ G

}
,

y ∈ [0, 10]

with f1, f2 : R
3 → R,

f1(x, y) := (x1 − 2)2 + (x2 − 1)2
4 + x2y + (5 − y)2

16 + sin
(

x2
10

)
,

f2(x, y) := x2
1 + (x2 − 6)4 − 2x1y − (5 − y)2

80

and

G :=
{
(x1, x2, y) ∈ R

3
∣∣ x2

1 − x2 ≤ 0, 5x2
1 + x2 ≤ 10,

x2 − (5 − y/6) ≤ 0, x1 ≥ 0
}
.

We have chosen n1 = 2, i. e. x ∈ R
2, for being able to plot the approxi-

mation of the induced set Ω ⊂ R
3. We use the optimistic approach and

hence solve

min
x,y

(
F1(x, y)
F2(x, y)

)

subject to the constraints
(x, y) ∈ Ω.

The induced set Ω ⊂ R
3 is according to Theorem 7.1 equal to the

solution set of the tricriteria optimization problem

min
x,y

⎛
⎜⎝

f1(x, y)
f2(x, y)

y

⎞
⎟⎠

subject to the constraints
(x, y) ∈ G,

y ∈ [0, 10]

w. r. t. the ordering cone K̂ = R
2
+ × {0}.
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Fig. 7.1. Approximation (a) of the solution set and (b) of the efficient
set of the problem (7.1) for y = 1.8 for the test problem.

We apply Algorithm 6 with β = 0.6 for discretizing the interval
[0, 10] in Step 1. For example for y = 1.8 and the distance α = 0.6
the Steps 2a and 2b lead to the approximation of the minimal solu-
tion set of the problem (7.1) shown in Fig. 7.1,a) and with that to an
approximation of the efficient set of the problem (7.1) shown in Fig.
7.1,b). Repeating the Steps 2a and 2b for all discretization points y of
the interval [0, 10] we get the set A0 shown in Fig. 7.2,a) which is an
approximation of the K̂-minimal set of the problem (7.4) and hence of
the induced set. In Fig. 7.2,b) the result of Step 3, the set F (A0), is
drawn. Here the image points under F of the set M(F (A0), R2

+) are
marked with circles and are connected with lines.

We now start the refinement and continue the algorithm by choosing
γ0 = 0.3 and nD = 2. The set A1, the refinement of the set A0 according
to Step 4, is given in Fig. 7.3,a), whereby the points A1\A0 are drawn in
black and the points A0 in gray. The set F (A1) and the non-dominated
points of this set can be seen in Fig. 7.3,b), compare Step 5 of the
algorithm. Repeating this with γ1 = 0.21 and γ2 = 0.12 and doing
the refinement in Step 4 only for those points of the set M(F (Ai), R2

+)
which have no neighbors in the set F (M(F (Ai), R2

+)) with a distance
less than 0.3, we get the results presented in Figures 7.4,a), b) and
7.5,a), b).

Then the algorithm is stopped as only small improvements of the
approximation of the efficient set of the multiobjective bilevel optimiza-
tion problem were gained by the last iteration and as the distances
between the points were accepted as sufficiently small.
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Fig. 7.2. (a) Approximation A0 of induced set Ω and (b) the image
F (A0).
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Fig. 7.3. (a) Refinement A1 of the induced set Ω and (b) the image
set F (A1).

7.5.2 Application Problem

The following multiobjective bilevel optimization problem arose dur-
ing the examination of a recent problem in medical engineering ([184,
pp.62f]) dealing with the configuration of coils. In its original version
this problem is a usual scalar-valued standard optimization problem
which had to be reformulated as a bilevel optimization problem due to
the need of real-time solutions and because of its structure:

min
y

‖x(y)‖2
2

subject to the constraints
x(y) ∈ argminx{‖x‖2

2 | A(y) · V x = b(y), x ∈ R
14},

y ∈ [0, π].

(7.16)

The vector b(y) ∈ R
6 is given by
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Fig. 7.4. (a) The set A2 and (b) the image set F (A2).
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Fig. 7.5. (a) The set A3 and (b) the image set F (A3).

b(y) := (mx(y), my(y), mz(y), mF )�

with mF ∈ R
3 arbitrarily and mx, my, mz : R → R defined by⎛

⎜⎝
mx(y)
my(y)
mz(y)

⎞
⎟⎠ := m0(τ1 cos y + τ2 sin y)

for a scalar m0 ∈ R, τ1, τ2 ∈ R
3 with

τ�
1 mF = 0, τ�

2 mF = 0, ‖τ1‖2 = ‖τ2‖2 = 1.

In the following we choose

mF :=

⎛
⎜⎝

1
0
0

⎞
⎟⎠ , τ1 :=

⎛
⎜⎝

0
1
0

⎞
⎟⎠ , τ2 :=

⎛
⎜⎝

0
0
1

⎞
⎟⎠ , m0 := 1
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and hence we get

b(y) = (0, cos y, sin y, 1, 0, 0)�.

The matrix A(y) ∈ R
6×8 is given by

A(y) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 mx(y) my(y) mz(y) 0 0
0 0 0 0 mx(y) 0 mz(y) my(y)
0 0 0 −mz(y) 0 mx(y) my(y) −mz(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 cos y sin y 0 0
0 0 0 0 0 0 sin y cos y

0 0 0 − sin y 0 0 cos y − sin y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix V ∈ R
8×14 is a non-sparse matrix with rank(V ) = 8 which

depends on the considered medical system. For the calculation a ran-
domly chosen matrix is taken here. The matrix V is (after rounding)
equal to
⎛
⎜⎜⎜⎜⎝

0.9501 0.8214 0.9355 0.1389 0.4451 0.8381 0.3046 0.3784 0.8180 0.8385 0.7948 0.8757 0.2844 0.4329

0.2311 0.4447 0.9169 0.2028 0.9318 0.0196 0.1897 0.8600 0.6602 0.5681 0.9568 0.7373 0.4692 0.2259

0.6068 0.6154 0.4103 0.1987 0.4660 0.6813 0.1934 0.8537 0.3420 0.3704 0.5226 0.1365 0.0648 0.5798

0.4860 0.7919 0.8936 0.6038 0.4186 0.3795 0.6822 0.5936 0.2897 0.7027 0.8801 0.0118 0.9883 0.7604

0.8913 0.9218 0.0579 0.2722 0.8462 0.8318 0.3028 0.4966 0.3412 0.5466 0.1730 0.8939 0.5828 0.5298

0.7621 0.7382 0.3529 0.1988 0.5252 0.5028 0.5417 0.8998 0.5341 0.4449 0.9797 0.1991 0.4235 0.6405

0.4565 0.1763 0.8132 0.0153 0.2026 0.7095 0.1509 0.8216 0.7271 0.6946 0.2714 0.2987 0.5155 0.2091

0.0185 0.4057 0.0099 0.7468 0.6721 0.4289 0.6979 0.6449 0.3093 0.6213 0.2523 0.6614 0.3340 0.3798

⎞
⎟⎟⎟⎟⎠.

In the medical-engineering system further objectives are of interest,
which had not yet been examined numerically. For example it is im-
portant that the result x(y) for a new system adjustment, expressed by
a changed matrix V , does not differ too much from the prior minimal
solution xold ∈ R

14. Thus, as additional objective function of the upper
level, we are interested in the objective function

‖x(y) − xold‖2
2 → min!
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We set

xold := (0.1247, 0.1335,−0.0762,−0.1690, 0.2118,−0.0534,−0.1473,

0.3170,−0.0185,−0.1800, 0.1700,−0.0718, 0.0058, 0.0985)�.

Besides, the constraint A(y) · V x = b(y) is only a soft constraint and a
not too strict fulfilling of this constraint in favor of a smaller objective
function value on the lower level is acceptable. Because of that we
extend the lower level optimization problem by the objective function

‖A(y) · V x − b(y)‖2
2 → min!

The violation of this former constraint is bounded by the constraint
‖A(y) · V x − b(y)‖2

2 ≤ Δmax. We choose Δmax := 0.3. We get the
following multiobjective bilevel optimization problem:

min
y

(
F1(x, y)
F2(x, y)

)
=

(
‖x(y)‖2

2

‖x(y) − xold‖2
2

)

subject to the constraints

x = x(y) ∈ argminx

{(
f1(x, y)
f2(x, y)

)
=

(
‖A(y) · V x − b(y)‖2

2

‖x‖2
2

)∣∣∣∣
‖A(y) · V x − b(y)‖2

2 ≤ Δmax, x ∈ R
14

}
,

y ∈ [0, π].
(7.17)

For solving this problem we use the optimistic approach. The con-
straint set of the upper level problem is equal to the set of minimal
solutions of the following tricriteria optimization problem

min
x,y

⎛
⎜⎝

‖A(y) · V x − b(y)‖2
2

‖x‖2
2

y

⎞
⎟⎠

subject to the constraints

‖A(y) · V x − b(y)‖2
2 ≤ Δmax,

x ∈ R
14,

y ∈ [0, π]

(7.18)
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w. r. t. the ordering cone R
2
+ × {0}. For solving this problem we start

according to Step 1 in the Algorithm 6 with a discretization of the
interval [0, π] by choosing β = π/8:

0.0001, 0.0001 +
π

8
, 0.0001 + 2 · π

8
, 0.0001 + 3 · π

8
, . . . , π.

We do not start with y1 = 0 for numerical reasons.
For yk ∈ {0.0001, 0.0001+ π

8 , 0.0001+2· π8 , . . . , π} we then determine
an approximation of the set of EP-minimal points of the bicriteria
optimization problem

min
x

(
‖A(yk) · V x − b(yk)‖2

2

‖x‖2
2

)

subject to the constraints

‖A(yk) · V x − b(yk)‖2
2 ≤ Δmax,

x ∈ R
14.

with a = (a1, 0)� and r = (0, 1)�. Hence we solve

min
t,x

t

subject to the constraints
a1 − ‖A(yk) · V x − b(yk)‖2

2 ≥ 0,

t − ‖x‖2
2 ≥ 0,

‖A(y) · V x − b(y)‖2
2 ≤ Δmax,

x ∈ R
14.

(7.19)

For a1 < 0 the constraint set of the problem (7.19) is empty. Due to
the constraint ‖A(y) · V x − b(y)‖2

2 ≤ Δmax solving the problem (7.19)
for a1 > Δmax is equal to solve it for a1 = Δmax. Hence it is sufficient
to consider the following problem for parameters a ∈ H = {y ∈ R

2 |
y2 = 0} with a1 ∈ [0, Δmax]:

min
x

‖x‖2
2

subject to the constraints
‖A(yk) · V x − b(yk)‖2

2 ≤ a1,

x ∈ R
14.

(7.20)

For solving this problem we use the scalarization according to (SP(a, r, ã))
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Fig. 7.6. Approximation of the efficient set of the tricriteria optimiza-
tion problem (7.18).

We vary the parameter a1 so that the approximation points have
nearly a distance of α = 0.2 (Step 2). Summarizing the result for all
discretization points y ∈ [0, π] delivers a first approximation A0 of the
induced set Ω. This set is, as a subset of R

15, no longer visualizable.
However, as the induced set is at the same time the solution set of
the tricriteria optimization problem (7.18) we present in Fig. 7.6,a)
the image of the approximation under the objective functions of the
tricriteria problem. In the magnification Fig. 7.6,b) the most interesting
part is shown.

According to Step 3 we map the approximation A0 of the induced set
with the vector-valued objective function F of the upper level problem
and get the set F (A0) plotted in Fig. 7.7,a). The nondominated points
are marked with circles and connected with lines. In Fig. 7.7,b) the
interesting part is scaled up. Pursuant Step 4 of the algorithm we refine
the induced set in a neighborhood of the three nondominated points
with the results given in the Figures 7.8,a), b) and 7.9,a), b). We have
chosen γ0 = α/7 = 1/35 and nD = 3.

A second refinement with distance γ1 = 1/50 results in the points
in the Figures 7.10 and 7.11. We conclude with a third refinement step
with γ2 = 1/70. The final results are shown in the Figures 7.12 and
7.13.

We examine the non-dominated points M(F (A2), R2
+) ⊂ R

15 af-
ter the third refinement. This set is an approximation of the solu-
tion set of the multiobjective bilevel problem. We observe, that for
all (x, y) ∈ M(F (A2), R2

+) we have y ∈ [0.6838, 0.7958] ⊂ [0, π] as well
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Fig. 7.7. Image F (A0) of the approximation A0 of the induced set.
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Fig. 7.8. Efficient set of the tricriteria optimization problem (7.18)
after the first refinement.
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Fig. 7.9. Image F (A1) of the refined approximation A1 of the induced
set.
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Fig. 7.10. Efficient set of the tricriteria optimization problem (7.18)
after the second refinement.
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Fig. 7.11. Image F (A2) of the twice refined approximation A2 of the
induced set.

as x1, x2, x5, x8, x11, x13, x14 > 0 and x3, x4, x6, x7, x9, x10, x12 < 0.
The values of the points (x, y) ∈ M(F (A2), R2

+) under the functions
F1, F2 and f1, f2, respectively, range between the following intervals:

F1(x, y) = ‖x‖2
2 ∈ [0.3452, 0.3512],

F2(x, y) = ‖x − xalt‖2
2 ∈ [0.0048, 0.0105],

f1(x, y) = ‖x‖2
2 ∈ [0.3452, 0.3512],

f2(x, y) = ‖A(y) · V x − b(y)‖2
2 = 0.2897.

Hence the values of f2(x, y) are constant for all (x, y) ∈ M(F (A2), R2
+)

and thus only those points of the discretized constraint set are non-
dominated which are generated by solving the problem (7.20) for
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Fig. 7.12. Efficient set of the tricriteria optimization problem (7.18)
after the third refinement.
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Fig. 7.13. Image F (A0) of the three times refined approximation A0

of the induced set.

the parameter a1 = 0.2897. The d. m. of the upper level, the so-
called leader, can now choose his favorable solution from the set
M(F (A2), R2

+).

7.6 Multiobjective Bilevel Optimization Problems with
Coupled Upper Level Constraints

In this section we consider instead of problem (7.3) the more general
formulation



7.6 Coupled Upper Level Constraints 211

min
x,y

F (x, y)

subject to the constraints
x ∈ My(f(G), K1),

(x, y) ∈ G̃

(7.21)

with the constraint set G̃ ⊂ R
n1 × R

n2 . This results in a coupling of
the upper level variable y and the lower level variable x. Then

Ω′ := {(x, y) ∈ R
n1 × R

n2 | x ∈ My(f(G), K1), (x, y) ∈ G̃}

denotes the induced set of the problem (7.21).
First notice that the constraint (x, y) ∈ G̃ from the upper level can-

not just be moved to the lower level as the following example demon-
strates.

Example 7.4. We consider the bilevel optimization problem

min
x,y

y + 1
2x

subject to the constraints
x ∈ argminx{x ∈ R | x ∈ [0, 2], x ≥ y},

x ≥ 2 − y,

y ∈ [0, 2].

The lower level minimal solution dependent on y ∈ [0, 2] is thus x(y) =
y and hence only the points (x(y), y) = (y, y) for y ∈ [1, 2] are feasible
for the upper level. This leads to the optimal value 3/2 of the upper
level function and the minimal solution (x, y) = (1, 1).

Moving the constraint x ≥ 2 − y instead to the lower level, i. e.
considering the problem

min
x

{x | x ∈ [0, 2], x ≥ y, x ≥ 2 − y}

on the lower level leads to the lower level minimal solutions

x(y) =

{
2 − y, for y ∈ [0, 1],
y, for y ∈ ]1, 2].

Then the upper level optimal value is 1 with minimal solution (x, y) =
(2, 0).
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This has of course also a practical interpretation. The same con-
straint on the lower level restricting the constraint set on the lower
level has a different meaning as on the upper level. There, the feasibil-
ity is restricted after the determination of the minimal solution of the
lower level and is thus an implicit constraint. For more details see [49,
pp.25f].

We first try to generalize the results of Sect. 7.2 and thus we consider
the multiobjective optimization problem

min
x,y

f̂(x, y) :=

(
f(x, y)

y

)

subject to the constraints
(x, y) ∈ G, (x, y) ∈ G̃

(7.22)

w. r. t. the ordering cone K̂ := K1×{0n2} ⊂ R
m1×R

n2 . Let Ĝ := G∩G̃
denote the constraint set of the problem (7.22). Then the K̂-minimal
solution set of (7.22) is denoted as

M̂′ := M(f̂(Ĝ), K̂).

This set M̂′ has a close connection to the induced set Ω′ as the
following theorem shows. However we get no equivalence result like in
the uncoupled case.

Theorem 7.5. Let M̂′ be the set of K̂-minimal points of the mul-
tiobjective optimization problem (7.22) with K̂ = K1 × {0n2}. Then
Ω′ ⊂ M̂′.

Proof. We have the equivalences

(x̄, ȳ) ∈ Ω′ ⇔ x̄ ∈ G(ȳ) ∧ (x̄, ȳ) ∈ G̃ ∧
(� ∃x ∈ G(ȳ) with f(x̄, ȳ) ∈ f(x, ȳ) + K1 \ {0m1})

⇒ x̄ ∈ G(ȳ) ∧ (x̄, ȳ) ∈ G̃ ∧
(� ∃x ∈ G(ȳ) with (x, ȳ) ∈ G̃ and
f(x̄, ȳ) ∈ f(x, ȳ) + K1 \ {0m1})

⇔ (x̄, ȳ) ∈ G ∧ (x̄, ȳ) ∈ G̃ ∧
(� ∃(x, y) ∈ G ∩ G̃ with y = ȳ and
f(x̄, ȳ) ∈ f(x, y) + K1 \ {0m1})

⇔ (x̄, ȳ) ∈ Ĝ ∧
(� ∃(x, y) ∈ Ĝ with f̂(x̄, ȳ) ∈ f̂(x, y) + K̂ \ {0m1+n2})

⇔ (x̄, ȳ) ∈ M̂′. �
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In contradiction to Sect. 7.2 we do not have M̂′ ⊂ Ω′ generally
because it can happen for a point (x̄, ȳ) ∈ M̂′ that there is no x with
(x, ȳ) ∈ Ĝ and with

f(x̄, ȳ) ∈ f(x, ȳ) + K1 \ {0m1}, (7.23)

but there exists a point x with (x, ȳ) ∈ G, (x, ȳ) �∈ G̃ and (7.23). This
is demonstrated in the following example.

Example 7.6. We consider the biobjective bilevel optimization prob-
lem

min
y

F (x, y) =

(
x1 − y

x2

)

subject to the constraints

x = x(y) ∈ argminx

{
f(x, y) =

(
x1

x2

)∣∣∣∣ (x, y) ∈ G

}
,

(x, y) ∈ G̃

with n1 = 2, n2 = 1, K1 = K2 = R
2
+, m1 = m2 = 2,

G := {(x, y) ∈ R
3 | ‖x‖2

2 ≤ y2}
and

G̃ := {(x, y) ∈ R
3 | 0 ≤ y ≤ 1, x1 + x2 ≥ −1}.

Then

My(f(G), K1) = {x = (x1, x2) ∈ R
2 | ‖x‖2

2 = y2, x1 ≤ 0, x2 ≤ 0}
and thus

Ω′ = {(x, y) ∈ R
3 |‖x‖2

2 = y2, x1 ≤ 0, x2 ≤ 0, 0 ≤ y ≤ 1, x1+x2≥−1}.
Let M̂′ be the set of (R2

+ × {0})-minimal points of the tricriteria opti-
mization problem

min
x,y

⎛
⎜⎝

x1

x2

y

⎞
⎟⎠

subject to the constraints

(x, y) ∈ G ∩ G̃ = {(x, y) ∈ R
3 | 0 ≤ y ≤ 1, x1 + x2 ≥ −1, ‖x‖2

2 ≤ y2}



214 7 Application to Multiobjective Bilevel Optimization

according to problem (7.22). Then for (x̄, ȳ) = (−1
2 ,−1

2 , 1)� we have
(x̄, ȳ) ∈ M̂′ because (x̄, ȳ) ∈ G∩ G̃ and there is no (x, y) ∈ G∩ G̃ with

f̂(x̄, ȳ) ∈ f̂(x, y) + K̂ \ {03}

⇔

⎛
⎜⎝

x̄1

x̄2

ȳ

⎞
⎟⎠ ∈

⎛
⎜⎝

x1

x2

y

⎞
⎟⎠ + (R2

+ × {0}) \ {03}

⇔
(

x̄1

x̄2

)
∈
(

x1

x2

)
+ R

2
+ \ {02} ∧ y = ȳ.

The set {x ∈ R
2 | (x, y) ∈ G∩G̃, y = 1} is drawn in Fig. 7.14. However

(x̄, ȳ) �∈ Ω′ because ‖x̄‖2
2 = 1

2 �= ȳ2.

Fig. 7.14. The set {x ∈ R
2 | (x, y) ∈ G ∩ G̃, y = 1} of Example 7.6.

In this example, as the induced set can be determined explicitly,
the minimal solution set can be calculated by solving the biobjective
optimization problem minx,y{F (x, y) | (x, y) ∈ Ω′}. We get as solution
set of the multiobjective bilevel optimization problem:

Smin =
{

(x1, x2, y)
∣∣∣∣ x1 = −1 − x2, x2 = −1

2 ± 1
4

√
8y2 − 4,

y ∈
[√

2
2 , 1

]}
.

The image
{
F (x1, x2, y) | (x1, x2, y) ∈ Smin

}
of this set is
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(z1, z2) ∈ R

2

∣∣∣∣ z1 = −1 − z2 − y, z2 = −1
2 ± 1

4

√
8y2 − 4,

y ∈
[√

2
2 , 1

]}
.

These sets are plotted in Fig. 7.15.
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Fig. 7.15. Solution set Smin of the biobjective bilevel optimization
problem of Example 7.6 and the image F (Smin).

Problem (7.22) has the same structure if we formulate it to the
bilevel optimization problem

min
x,y

F (x, y)

subject to the constraints
x ∈ My(f(G ∩ G̃), K1).

(7.24)

As here no upper level constraint exists we have according to Theorem
7.1 that the K̂-minimal solution set M̂′ of (7.22) equals the induced
set Ω′ of (7.24). Hence, under the conditions of Theorem 7.5 we can of
course not gain equality in general as otherwise this would imply that
the induced sets of (7.21) and (7.24) are equal. This would mean that
it makes no difference on which level the constraint (x, y) ∈ G̃ is given
in contradiction to the Example 7.4.

Theorem 7.5 does not produce an equivalent formulation for the in-
duced set Ω′. This can be reached by considering the following modified
multiobjective optimization problem instead of problem (7.22):
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min
x,y

f̂(x, y) =

(
f(x, y)

y

)

subject to the constraints
(x, y) ∈ G,

y ∈ G̃y

(7.25)

w. r. t. the ordering cone K̂. Here let the compact set G̃y ⊂ R
n2 be an

arbitrary compact set so that

{y ∈ R
n2 | ∃x ∈ R

n1 such that (x, y) ∈ G̃} ⊂ G̃y (7.26)

or even G̃y = R
n2 .

Let

Ĝ0 := {(x, y) ∈ R
n1 × R

n2 | (x, y) ∈ G, y ∈ G̃y} ⊃ Ĝ

denote the constraint set of (7.25) and let

M̂0 := M(f̂(Ĝ0), K̂)

be the K̂-minimal solution set of (7.25). Then we have

M̂0 ∩ G̃ = Ω′,

as the following theorem shows:

Theorem 7.7. Let M̂0 be the set of K̂-minimal points of the multiob-
jective optimization problem (7.25) with K̂ = K1 ×{0n2} and let Ω′ be
the induced set of the multiobjective bilevel optimization problem (7.21)
with the upper level constraint (x, y) ∈ G̃. Then Ω′ = M̂0 ∩ G̃.

Proof. We have the equivalences

(x̄, ȳ) ∈ Ω′ ⇔ (x̄, ȳ) ∈ G̃ ∧ (x̄, ȳ) ∈ G ∧ (� ∃(x, ȳ) ∈ G with
f(x̄, ȳ) ∈ f(x, ȳ) + K1 \ {0m1})

⇔ (x̄, ȳ) ∈ G̃ ∧ (x̄, ȳ) ∈ G ∧ ȳ ∈ G̃y ∧ (� ∃(x, y) ∈ G with
y = ȳ, ȳ ∈ G̃y, and f(x̄, ȳ) ∈ f(x, y) + K1 \ {0m1})

⇔ (x̄, ȳ) ∈ G̃ ∧ (x̄, ȳ) ∈ Ĝ0 ∧ (� ∃(x, y) ∈ Ĝ0,

with f̂(x̄, ȳ) ∈ f̂(x, y) + K̂ \ {0m1+n2})
⇔ (x̄, ȳ) ∈ G̃ ∩ M̂0. �
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Notice that we get the result of Theorem 7.7 also if we discard the
constraint y ∈ G̃y in (7.25). However then the solution set of (7.25)
may contain points (x̄, ȳ) with ȳ �∈ G̃y. These points are not of interest
as ȳ �∈ G̃y implies (x̄, ȳ) �∈ G̃ and hence these points are not an element
of M̂0 ∩ G̃. Thus, considering (7.25) without the constraint y ∈ G̃y

makes the set M̂0 unnecessary large.
Based on these concepts also a numerical method for solving multi-

objective bilevel optimization problems with coupled upper level con-
straints can be developed similarly to Sect. 7.4. For more details see
[70].
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[77] J. Fernández and B. Tóth. Obtaining an outer approximation
of the efficient set of nonlinear biobjective problems. J. Global
Optim., 38(2):315–331, 2007.

[78] A. V. Fiacco. Sensitivity analysis for nonlinear programming
using penalty methods. Math. Program., 10:287–311, 1976.

[79] A. V. Fiacco. Introduction to Sensitivity and Stability Analysis in
Nonlinear Programming, volume 165 of Mathematics in Science
and Engineering. Academic Press, London, 1983.

[80] R. Fletcher. Practical methods of optimization, 2nd ed. Wiley,
1987.

[81] J. Fliege. Gap-free computation of pareto-points by quadratic
scalarizations. Math. Methods Oper. Res., 59(1):69–89, 2004.

[82] J. Fliege. An efficient interior-point method for convex multicri-
teria optimization problems. Math. Oper. Res., 31(4):825–845,
2006.



226 References

[83] J. Fliege, C. Heermann, and B. Weyers. A new adaptive al-
gorithm for convex quadratic multicriteria optimization. In
J. Branke, K. Deb, K. Miettinen, and R. E. Steuer, editors, Prac-
tical Approaches to Multi-Objective Optimization, number 04461
in Dagstuhl Seminar Proceedings. Schloss Dagstuhl, Germany,
2005.

[84] J. Fliege and A. Heseler. Constructing approximations to the effi-
cient set of convex quadratic multiobjective problems. Ergebnis-
berichte Angewandte Mathematik 211, Angewandte Mathematik,
Univ. Dortmund, Germany, 2002.

[85] J. Fliege and L. N. Vicente. Multicriteria approach to bilevel op-
timization. J. Optimization Theory Appl., 131(2):209–225, 2006.

[86] J. Focke. Vektormaximumproblem und parametrische Opti-
mierung. Math. Operationsforsch. Stat., 4:365–369, 1973.

[87] C. M. Fonseca and P. J. Fleming. An overview of evolutionary
algorithms in multiobjective optimization. Evolutionary Compu-
tation, 3(1):1–16, 1995.

[88] J. Fortuny-Amat and B. McCarl. A representation and economic
interpretation of a two-level programming problem. J. Oper. Res.
Soc., 32:783–792, 1981.

[89] F. W. Gembicki and Y. Y. Haimes. Approach to performance
and sensitivity multiobjective optimization: The goal attainment
method. IEEE Trans. Automatic Control, 6:769–771, 1975.

[90] A. M. Geoffrion. Proper efficiency and the theory of vector max-
imization. J. Math. Anal. Appl., 22:618–630, 1968.

[91] C. Gerstewitz. Nichtkonvexe Dualität in der Vektoroptimierung.
Wissensch. Zeitschr. TH Leuna-Merseburg, 25(3):357–364, 1983.

[92] C. Gerth and P. Weidner. Nonconvex separation theorems and
some applications in vector optimization. J. Optimization Theory
Appl., 67(2):297–320, 1990.

[93] C. Gil, A. Márquez, R. Baños, M. G. Montoya, and J. Gómez.
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adaptive ε-constraint method,
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adaptive modified Polak method,
133, 147

adaptive NBI method, 132, 146
adaptive Pascoletti-Serafini

method, 124
algebraic interior, 11

relative, 11, 28
antisymmetric, 5

beamlet, 168
Benson’s method, 66
bilevel optimization, 183

multiobjective, 183
semivectorial, 183

binary relation, 5
boundary, 14, 26

cardinality, 105
CHIM, 54
cluster, 169
cone, 3

convex, 3
dual, 21, 189
finitely generated, 9, 15
ice cream, 9, 19
ordering, 5

pointed, 4
polyhedral, 9, 15, 154

connected set, 104, 149
convex hull of individual minima

(CHIM), 54
core, 11

intrinsic, 11, 28, 193
coverage error, 103

modified, 104

decision maker (d. m.), 4, 134,
185

degenerated, 85
derivative

directional, 92
Fréchet-, 69

dominate, 6
domination structure, 4

efficient point, 6
properly, 12, 65
weakly, 10

efficient set, 6
weakly, 10

elastic constraint method, 66
ε-constraint problem, 21, 49, 94,

128, 141, 175
equilibrium problem, 184
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equivalent uniform dose (EUD),
170

evolutionary algorithms, 22, 103
extremal point, 54

follower, 184

goal, 58
goal attainment method, 58
Gourion-Luc problem, 58
Graef-Younes method, 193

homogeneity, 176
hybrid method, 66
hyperbola efficiency problem, 66

ideal point, 53
IMRT, 167
induced set, 187
intensity modulated radiotherapy

(IMRT), 167
interactive methods, 22, 97, 183

Jahn-Graef-Younes method, 194

Kaliszewski problem, 65

Lagrange function, 47
Lagrange multiplier, 47
leader, 184
lower level problem, 184
lower level variable, 185

mathematical program with vec-
tor optimization constraints,
184

minimal point, 6
Edgeworth-Pareto-, 6
EP-, 6
ε-EP-, 14, 193
K-, 6
local, 14

locally weakly, 14
proper, 12
weakly, 10
weakly EP-, 10

minimal value function, 67
local, 68

modified Polak method, 55

Newton’s method, 111, 128, 130
non-dominated, 6
normal boundary intersection

(NBI) method, 41, 53, 130

objective function, 3
optimistic approach, 185
optimization problem

bicriteria, 6, 17, 168
biobjective, 6
tricriteria, 40, 155, 176, 199

ordering
componentwise, 5
Löwner partial, 19, 40, 134
lexicographical, 7
natural, 5
partial, 4, 22, 40, 68, 153, 186
total, 7

ordering cone, 5
Löwner, 19

parameter set, 31
Pareto filter, 193
partially ordered linear space, 5
Pascoletti-Serafini problem, 23

algorithm for, 124
modified, 44

preference order, 4

reference point, 24, 57, 64
reference problem, 67
relative interior, 25
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scalarization, 21
sensitivity function, 97
sequential quadratic program-

ming (SQP) method, 114,
127, 151, 177

surrogate worth trade-off method,
97

trade-off, 82, 97, 168
two-level optimization, 184

uniformity level, 105
upper bounds, 21, 49
upper level problem, 184

upper level variable, 184

vector-valued, 3
voxel, 169

weighted Chebyshev norm, 25,
57, 66

weighted minimax method, 58
weighted p-power method, 64
weighted sum, 59
weighted sum method, 21, 61,

144, 148, 156, 167
generalized, 59

weights, 22, 24, 57, 144
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