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To Martha, Sofia, and my father

Give a man a fish and you feed him for a day. Teach him how to fish
and you feed him for a lifetime.
Lao Tse

He who is continually thinking things easy is sure to find them difficult.
Lao Tse

La educacion es un seguro para la vida y un pasaporte para la
eternidad.

(Education is an insurance for life and a passport for eternity.)

Aparisi y Guijarro



Preface

What are function fields, and what are they useful for? Let us consider a compact
Riemann surface, that is, a surface in which every point has a neighborhood that is
isomorphic to an open set in the complex field C. Now assume the surface under
consideration to be the Riemann sphere S2: then the meromorphic functions defined
in §2, by which we mean functions from S to C U {00} whose only singularities are
poles, are precisely the rational functions %, where f(z) and g(z) are polynomials
with coefficients in C. These functions form a field C(z) called the field of rational
functions in one variable over C. In general, if R is a compact Riemann surface, let
us consider the meromorphic functions defined on R. The set of such functions forms
a field, which is called the field of meromorphic functions of R; it turns out that this
field is a finite extension of C(z), or, in other words, a field of algebraic functions of
one variable over C.

Now, two Riemann surfaces are isomorphic as Riemann surfaces if and only if their
respective fields of meromorphic functions are C-isomorphic fields. This tells us that
such Riemann surfaces are completely characterized by their fields of meromorphic
functions.

In algebraic geometry, let us consider an arbitrary field &, and let C be a nonsingu-
lar projective curve defined on k. It turns out that the set of regular functions over C
is a finite extension of the field k(x) of rational functions over k. This field of regular
functions on C is a field of algebraic functions of one variable over k.

The correspondence between curves and function fields is as follows. Assume & to
be algebraically closed. If C is a nonsingular projective curve, consider the field k(C)
consisting of all regular functions in C. Conversely, for a given function field K/k
(see Chapter 1), there exists a nonsingular projective curve C (which is unique up to
isomorphism), such that k(C) is k-isomorphic to K. On the other hand, the places (see
Chapter 2) are in one-to-one correspondence with the points of C: to each point P of
C we associate the maximal ideal m p of the valuation ring 9 p.

There exists a third area of study in which function fields show up. This is number
theory. Here a field of functions of one variable will play a role similar to that of a
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finite extension of the field QQ of rational numbers. This is the point of view that we
will be adopting in the course of this book.

The reader who is familiar with elementary number theory may consider that the
field k(x) of rational functions over k is the analogue of the rational field Q, the poly-
nomial ring k[x] is the analogue of the ring of rational integers Z, and finally that a
field of functions of one variable is the analogue of a finite extension of Q. It turns out
that the analogy is much stronger when the field  is finite.

The mentioned analogy works in both directions. Oftentimes a problem that gets
posed in number fields or, in other words, in finite extensions of Q, admits an analo-
gous problem in function fields, and the other way around. For example, if we consider
the classical Riemann zeta function ¢ (s), it is still unknown whether Riemann’s con-
jecture on nontrivial zeros of £(s) holds (although a proof of its validity has been
announced, this has not been confirmed yet). The analogue of this problem in function
fields was solved by Weil in the middle of the last century (Chapter 7).

In a similar way, the classical theorem of Kronecker—Weber on abelian extensions
of @ has its analogue in function fields. The Kronecker—Weber theorem establishes
that any abelian extension of Q is contained in a cyclotomic extension. In other words,
the maximal abelian extension of Q is the union of all its cyclotomic extensions. The
analogue to this result is the theory of Carlitz—Hayes, which establishes, first of all,
the analogues in function fields of the usual cyclotomic fields. The mere fact of adding
roots of unity, as in the classical case, does not get us very far, since it would provide
us only with what we shall call extensions of constants, which is far away from giving
us all abelian extensions of a rational function field £(7), where & is a finite field.
The theory of Carlitz—Hayes (Chapter 12) provides us with the authentic analogue of
cyclotomic fields, which leads us to the equivalent to the Kronecker—Weber theorem in
function fields. This same theory may be generalized by considering not only k(7") but
also finite extensions. The study of this generalization gives as a result the so-called
Drinfeld modules, or elliptic modules, as Drinfeld called them. A brief introduction to
Drinfeld modules will be presented in Chapter 13.

In the other direction we have Iwasawa’s theory in number fields. The origins of
this theory are similar (in number fields) to considering a curve over a finite field and
extending the field of constants & to its algebraic closure; in order to do this one must
adjoin all roots of unity. In the number field case, adjoining all roots of unity gives a
field too big, and for this reason one must consider only roots of unity whose order is
a power of a given prime number. In this way, Iwasawa obtained the Z,-cyclotomic
extensions of number fields, where Z,, is the ring of p-adic integers.

In the study of function fields, one may put the emphasis on the algebraic—
arithmetic aspects or on the geometric—analytic ones. As Claude Chevalley rightly
points out in his book [22], it is absolutely necessary to study both aspects of the the-
ory, since each one has its own strengths in a natural way. However, even though both
viewpoints may be treated in a textbook, one of them must be selected as the main
focus of the book, since keeping both at the same time would be like superposing
two photographs of the same object taken from different angles; the result would be a
blurred and dull image of the object.
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Our point of view in all the book will be the algebraic—arithmetic approach, and
our principal interest will be the study of function fields as part of the algebraic theory
of numbers. This by no means should be interpreted in the sense that we consider
unimportant the analytic and the geometric approaches.

As we mentioned before, when the base field & of a function field is a finite field,
the analogy between these fields and number fields is much closer. In this situation it
is possible to define zeta functions, L-series, class numbers, etc. However, it must me
stressed that there are fundamental differences between these two families of fields:
the number fields have archimedean absolute values and the function fields do not
(see Chapter 2); the ring of rational integers Z and the rational field Q are essentially
unique, as opposed to polynomial rings k[x] and rational function fields k(x), which
are respectively isomorphic to many rings and fields. Consequently, the situation of Z
being contained in Q admits not only one analogue in function fields, but an infinity
of them. Therefore, it is very important to keep in mind both aspects: the similarities
between both families of fields as well as their fundamental differences.

This book may be used for a first-year graduate course on number theory. We
tried to make it self-contained whenever possible, the only prerequisites being the
following: a basic course in field theory; a first course in complex analysis; some
basic knowledge of commutative algebra, say at the level of the Atiyah—-Macdonald
book [4]; and the mathematical maturity required to learn new concepts and relate
them to known ones.

The first four chapters can be used for an introductory undergraduate course for
mathematics majors, and Chapters 5, 6, 7, and 9 for a second course, avoiding the
most technical parts, for instance the proofs of the Riemann hypothesis, Cebotarev’s
density theorem, the computation of the different, and Tate’s genus formula.

The introductory chapter was written mainly to motivate the study of transcen-
dental extensions, absolute values of Q, and compact Riemann surfaces. However, in
order to avoid making it long and tedious, we will establish the results needed for each
topic at the moment they are required. The reason for this selection is as follows. A
function field K over k is really just a finitely generated transcendental extension of
k, with transcendence degree one. On the other hand, the study of such fields leads us
to the study of their absolute values, whose analogues are, up to a certain point, the
absolute values in Q. Finally, compact Riemann surfaces constitute a splendid geo-
metric representation of function fields. In the case of Riemann surfaces we shall not
provide proofs of the presented results, since our interest is only that the reader know
the fundamental results on compact Riemann surfaces, and use them as a motivation
to study more general situations.

Chapter 2 is the introduction to our main objective. There, we define general con-
cepts that will be necessary in the course of this volume, such as fields of constants,
valuations, places, valuation rings, absolute values, etc. Once these concepts are mas-
tered, we shall study the completions of a field with respect to an absolute value. The
usefulness of the study of completions with respect to a metric is well known in the
area of analysis. In our case, we shall use these completions as a basic tool for the
study of the arithmetic properties of places in field extensions (Chapter 5). For this
chapter it is convenient, but not necessary, that the reader be familiar with the com-
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pletion of a metric space or at least with the standard completion of Q with respect to
the usual absolute value obtaining the field of real numbers R. We finish the chapter
with Artin’s approximation theorem, which can be considered as the generalization
of the Chinese remainder theorem and which establishes the following: Given a finite
number of absolute values and an equal number of elements of the field, we can find
an element of the field that approximates the given elements in each absolute value
as much as we want. Theorem 2.5.20 is the characterization of the completion of a
function field.

Chapter 3 is dedicated to the famous Riemann—Roch theorem (Theorem 3.5.4 and
corollaries) which is, without any doubt, the most important result of our book. The
Riemann—Roch Theorem states the equality between dimensions of vector spaces, de-
gree of a field extension and a very important field invariant: the genus. In order to es-
tablish the Riemann-Roch Theorem one requires various preliminary concepts, which
will be defined in this chapter and will play a central role in the rest of the book: divi-
sors, adeles or repartitions, Weil differentials, class groups, etc. The whole theory of
function fields depends heavily on the Riemann—Roch theorem.

An important part of the work of any mathematician at any level is to develop
and know examples concerning the topic on which he or she is working. Chapter 4
is dedicated to giving examples of the results found in Chapter 2 and 3. In the first
two sections we present examples and characterize the function fields of genus 0 and
1 respectively, and in the last section we calculate the genus of a quadratic extension
of a rational function field. Even though the genus can be found much more easily
using the Riemann—Hurwitz genus formula (Theorem 9.4.2), the methods we use in
this chapter are valuable by themselves.

Chapter 5 deals with Galois theory of function fields. After Chapter 3, this chapter
can be considered as the second in importance. It is dedicated to the arithmetic of
function fields (decomposition of places in the extensions, ramification, inertia, etc.).
Here we study the relationship between the decomposition of places in an extension of
function fields and the decomposition in the corresponding completions. Section 5.6
contains many technical details necessary to understand the notion of a different in an
extension and the different in an extension of Dedekind domains, which is the way we
study the arithmetic of number fields (Theorem 5.7.12). The last section of the chapter
concerns the study of the different by means of the local differents (Theorem 5.7.21).
The proof can be omitted without any loss of continuity. We end this chapter with an
introduction to ramification groups.

Chapter 6 deals with congruence function fields, that is, function fields whose
constant field is finite. As we said previously, the analogy between this kind of function
fields and number fields is much closer. In this chapter we study zeta functions and L-
series, as well as their functional equations.

Chapter 7 is dedicated to the Riemann hypothesis in function fields (Theorem
7.2.9). The proof that we present here is essentially due to Bombieri [7]. The reader
can omit the details of the proof without any loss of continuity. As an application of
the Riemann hypothesis we present an estimation on the number of prime divisors in
a congruence function field, as well as the determination of the fields of class num-
ber 1.
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Chapter 8 studies constant extensions in general, a particular case of which was
seen in Chapter 6, namely the case that the constant field is finite. We have preferred to
present first this special case for the readers that are interested in the most usual cases,
that is, when the constant field is a perfect field, in order to avoid all the technical
details of the general case. In this chapter we study the concepts of separability and of
a separably generated field extension. We also study the genus change in this kind of
extension and will see that the genus of the field decreases.

Chapter 9 concerns the Riemann—Hurwitz genus formula for geometric and sepa-
rable extensions, which is probably the best technique for calculating the genus of an
arbitrary function field. For inseparable extensions, Tate [152] used a substitute for the
ordinary trace and found a genus formula for this type of extension. That substitute
is the one used in the Riemann—Hurwitz formula. In Section 9.5, we present Tate’s
results. In the last section of the chapter, we revisit function fields of genus 0 and
1 and present the automorphism group of elliptic function fields. We conclude with
hyperelliptic function fields, which will be used in Chapter 10 for cryptosystems.

In Chapter 10 we apply the theory of function fields, especially Chapter 6 and 7, to
cryptography. We begin with a brief general introduction to cryptography: symmetric
and asymmetric systems, public-key cryptosystems, the discrete logarithm problem,
etc. Once these concepts are introduced we apply the theory of elliptic and hyperellip-
tic function fields to cryptosystems. In this way, we shall see that some groups that are
determined by elliptic function fields, as well as some Jacobians, may be used both for
public-key cryptosystems and for digital signatures and authentication.

Chapter 11 is a brief introduction to class field theory. We study Cebotarev’s den-
sity theorem and briefly introduce profinite groups. Finally we present, without proofs,
basic results of global as well as local class field theory. These results will be used in
Chapter 12 to prove Hayes’s theorem, which is analogous to the Kronecker—Weber
theorem on the maximal abelian extension of a congruent function field, that is, a
function field whose constant field is finite.

Chapter 12 is dedicated to the theory of cyclotomic function fields due to L. Carlitz
and D. Hayes [15, 61]. We shall see that these fields are the analogue of the usual
cyclotomic fields.

In Chapter 13 we give a brief introduction to Drinfeld, or elliptic, modules. The
original objective of Drinfeld’s module theory was to generalize the analogue of the
Kronecker—Weber theorem to a function field over a general finite field, as well as
complex multiplication and elliptic curves. We begin by presenting the Carlitz module,
which is studied in Chapter 12 and is the simplest Drinfeld module. Using the analytic
theory of exponential functions and lattices, we shall see that Drinfeld modules are
ubiquitous. On the other hand, these modules provide us with an explicit class theory
for general function fields over a finite field. We end the chapter with the application
of Drinfeld modules to cryptography.

The last chapter is a study of the automorphism group of a function field. First
we give a notion of differentiation due to H. Hasse and F. Schmidt [58] and then we
use it to study the Wronskian determinant and Weierstrass points in characteristic p.
We will see that the behavior in characteristic p is different from that in characteristic
0. We will use Weierstrass points to prove the classical result about the finiteness of
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the automorphism group of a function field K /k of genus larger than 1, where k is an
algebraically closed field.

The appendix, which deals with group cohomology, is independent from the rest of
the book. The reason why we decided to include it is that anyone interested in a further
study of the arithmetic properties of function and local fields needs as a fundamental
tool the cohomology of groups, particularly Theorem A.3.6.

Sometimes the way we present the topics is not the shortest possible, but since
our main purpose was to write a textbook for graduate students, we chose to present
particular cases first and later on give the general result. For instance, in Chapter 4 we
state a formula for the genus of a quadratic extension of a rational function field and in
Chapter 9 we present the Riemann—Hurwitz genus formula that generalizes what was
done in Chapter 4. The same happens with the study of constant extensions.

It is important to specify that many of our results are a lot more general than what
is presented here. For example, in Chapter 5 we study Galois theory of function fields,
but most results hold for field extensions in general. Our motivation for emphasizing
the particular case of function fields is to stress the beauty of this theory, independently
of the fact that some of its particularities are really not particular but apply to the
general case.

In order to limit the size of the book, we had to leave aside various topics such as
the inverse Galois problem, topics in class field theory, the algebraic study of Riemann
surfaces, holomorphic differentials, the Hasse—Witt theory, Jacobians, Z,-extensions,
the Deuring—gafarevié formula, etc.

The taste of this book is classical. We tried to preserve most of the original presen-
tations. Our exposition owes a great deal to Deuring’s monograph [28] and Chevalley’s
book [22].

There are many people to thank, but I will mention just a few of them. First of
all, I am grateful to Professor Manohar Madan for teaching me this beautiful theory.
I would like to thank Professors Martha Rzedowski Calderén and Fernando Barrera
Mora for the time they spent doing a very careful reading of previous versions of this
work, giving invaluable suggestions and correcting many errors. I also want to thank
Ms. Anabel Lagos Cordoba and Ms. Norma Acosta Rocha for typing part of this book.
I gratefully acknowledge Professor Simone Hazan for correcting the English version.
I also thank Ms. Ann Kostant, executive editor of Birkhduser Boston, and Mr. Craig
Kavanaugh, assistant editor, for their support and interest in publishing this book. Fi-
nally, many thanks to the Department of Automatic Control of CINVESTAV del Insti-
tuto Politécnico Nacional, for providing the necessary facilities for the making of this
book. Part of the material was written during my sabbatical leave in the Mathematics
Department of the Universidad Auténoma Metropolitana Iztapalapa. Part of this work
was supported by CONACYyT, project 36552-E.

Meéxico City,
November 2005 Gabriel D. Villa Salvador
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1

Algebraic and Numerical Antecedents

In this introductory chapter we present three topics. The first one is the basic theory
of transcendental fields, which is needed due to the fact that any function field is a
finitely generated transcendental extension of a given field.

The second section is on distinct absolute values in the field of rational numbers
Q. In the development of number theory, it happens in a similar way as with contin-
uous functions, that the “local” study of a field provides information on its “global”
properties, and vice versa. The local structure of function fields and of number fields
is closely related to that of the absolute values defined in them. We shall explore the
existing parallelisms and differences between absolute values in @ and in rational
function fields respectively.

The third topic of the chapter is Riemann surfaces, which serve as an infinite source
of inspiration for a similar study, namely when the base field is completely arbitrary
instead of being the complex field C. Several concepts of a totally analytic nature such
as those of differentials, distances, and meromorphic functions may be studied from an
algebraic viewpoint and are consequently likely to be translated into arbitrary fields,
including fields of positive characteristic.

We will not present here all prerequisites that will be needed in the rest of the book.
Instead, these will be presented only at the moment they are necessary.

1.1 Algebraic and Transcendental Extensions

Definition 1.1.1. Let L/K be any field extension. A subset S of L is called alge-
braically dependent (a. d.) over K if there exist a natural number n, a nonzero poly-
nomial f (x1,x2,...,x,) € K [x1,x2, ..., x,] and n distinct elements s1, 52, ... , S,
of § such that f (s, s2,...,s,) = 0. If S is not algebraically dependent over K, it is
called algebraically independent (a. i.) over K.

Example 1.1.2. Let K[X, Y] be a polynomial ring of two variables over an arbitrary
field K and let f(X,Y) = X2 — Y — 1. Consider the field L := K/(f(X,Y)).
Then S := {x}, where x := X mod f(X,Y) is algebraically independent over K
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and T := {x, y}, where y := mod f(X, Y) is algebraically dependent over K since
flx,y)=0.

It is easy to see that if S = {sy, s2, ... , s,} is an algebraically independent set over
K, then K (s1, 2, ... ,S,) is isomorphic to the field K (x1, x2, ..., x,) of rational
functions with n variables.

The algebraically independent sets can be ordered by inclusion, and applying
Zorn’s lemma, we can prove easily prove the existence of maximal algebraically inde-
pendent sets.

Definition 1.1.3. Let L /K be a field extension. A transcendental basis of L over K
is a maximal subset of L algebraically independent over K.

If S is a transcendental basis, it follows from the definition that L/K is algebraic
if and only if § is the empty set.

Example 1.1.4. In Example 1.1.2 we have that {x} and {y} are transcendental basis of
L over K.

Proposition 1.1.5. Let L /K be a field extension, S an algebraically independent set
over K, and x € L\ K(S). Then S U {x} is algebraically independent over K if and
only if x is transcendental over K (S).

Proof. Assume that S U {x} is algebraically independent over K but x is not transcen-
dental over K (S). Then there exists a nonzero relation

Fa (st ss) X" 4 fat Gty ooy s) X"
+ A6t s)x+ folst, ..., sn) =0
with f; (s1,82,...,8,) € K [s1, 52, ..., s,]. But this contradicts the fact that S U {x}
is algebraically independent
The proof of the converse is similar. m|

Corollary 1.1.6. Let L/K be a field extension and S C L be an algebraically inde-
pendent set. Then S is a transcendental basis over K if and only if L/K(S) is an
algebraic extension. O

Corollary 1.1.7. If L/ K (S) is an algebraic extension, then S contains a transcenden-
tal basis. O

Theorem 1.1.8. Any two transcendental bases have the same cardinality.

Proof. Let S be a transcendental basis. First we assume that § is finite, say S =
{s1,52,...,s,} with |S| = n. If T is any algebraically independent set, we will show
that |T'| < n. Let {x1,x2,...,x,} € T be any finite subset of 7 and assume that
m > n. By hypothesis, there exists a nonzero polynomial g; with n 4 1 variables such
that
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g1 (x1,81,82,...,8,) =0.

Since {x;} and {s1, s2, ..., s,} are algebraically independent, it follows that x; and
some s; (say s1) appear in g1, so that sy is algebraic over K (x1, 52, ..., Su).

Repeating this process r times, r < m, and permuting the indices s», . .. , s, if nec-
essary, by induction on r we obtain that the field L is algebraic over K (x1, x2, ... , Xr,
Sr+1, - -+ »Sp). Therefore, there exists a nonzero polynomial g, with n + 1 variables
such that

& (Xrg1, X1y oo s Xy Spglyen ,82) =0

and such that x, 1 appears in g>. Since the x; are algebraically independent, some s ;
withr 41 < j < n also appears in g>. By permuting the indices if necessary, we may
assume that s, is the one that appears in g3, that is, 5,4 is algebraic over

K(xl,... s Xpy Xpls Spag2s - - - ,sn),

so that L is algebraic over K (x1, ..., X, Xy41, 8,42, ... , sp). Since the process can
be repeated, it follows that we can replace the s’s by x’s and hence L is algebraic over
K (x1,...,xp). This proves that m = n.

In short, if a given transcendental basis is finite, any other basis is also finite and
has the same cardinality.

Now we assume that a transcendental basis S is infinite. The previous argument
shows that any other basis is infinite. Let 7 be any other transcendental basis. For
s € §, there exists a finite set Ty C T such that s is algebraic over K (7). Since L is
algebraic over K (S) and S is algebraic over K (U ses TS), it follows that L is algebraic
over K (Uses Ts). Finally, since | J,cg 7y € T, we have | ;g Ts = T, where Ty is a
finite set.

Therefore |T| < Y ;cg|Ts] < Ro|S| = [S|. By symmetry we conclude that
IT|=|S]. m|

Definition 1.1.9. A field extension L/K is called purely transcendental if L = K (S),
where S is a transcendental basis of L over K. In this case, K (S) is called a field of
rational functions in | S| variables over K.

Definition 1.1.10. Let L /K be a field extension. The cardinality of any transcendental
basis of L over K is called the transcendental degree of L over K and is denoted by
trL/K.

Example 1.1.11. In Examples 1.1.2 and 1.1.4 we have that the transcendental degree
of L/K is 1 since K (x)/K is purely transcendental and L/K (x) is algebraic (y? =
x—1).

Proposition 1.1.12. I[f K € L € M is a tower of fields, then tt M/K = tr M/L +
trL/K. O

1.2 Absolute Values over Q

Definition 1.2.1. Let & be any field. An absolute value over k is a function ¢ : k —>
R, ¢(a) = |a|, satisfying:
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(i) |a| = Oforalla € k, and |a| = 0 if and only if a = 0,
(ii) |ab| = |a||b| for all @ and b € k,
(iii) |a + b| < |a| + |b| foralla and b € k.

Note that if | | is an absolute value then |1| = 1 and | — x| = |x| forall x € K
(Exercise 1.4.10).

The usual absolute value in Q is the most immediate example of the previous
definition. Also, for any field k, the trivial absolute value is defined by |a| = 1 for
a#0and |0 =0.

Example 1.2.2. Let p € Z be a prime number. For each nonzero x € Q, we write
x = p"% with p f ab and n € Z. Let |x|, = p~" and |0| = 0. We leave to the reader
to verify that this defines an absolute value over Q. It is called the p-adic absolute
value, and it satisfies

lx + ylp < max {|x],, [y],}

for all x, y € Q. An absolute value with this last property is called nonarchimedean.
We note that lim, o [p"], = 0.

Definition 1.2.3. An absolute value | | : kK —> R, is called nonarchimedean if |a +
b| < max {|al|, |b|} for all a, b € k. Otherwise, | | is called archimedean.

Definition 1.2.4. Two nontrivial absolute values | |; and | |, over a field k are called
equivalent if |a|; < 1 implies |a], < 1 foralla € k.

The relation given in Definition 1.2.4 is obviously reflexive and transitive. We also
have the following result:

Proposition 1.2.5. For any two nontrivial equivalent absolute values | || and | |2, we
have |alo < 1 whenever |a|1 < 1, that is, the relation is symmetric. Therefore the
relation defined above is an equivalence relation.

Proof. Let |alp < 1.If |a|; > 1, we have |a’1}] = |a|f] < 1. Therefore |a’1|2 =
|a|2_1 < 1, which is impossible. Hence |a|; < 1.If |a|; = 1, let b € k be such that
0 < |bl; < 1. Such a b exists since | || is nontrivial. Now |[ba™"|, = [b|1]al;" =

|b]1 < 1. Thus |ba‘”|2 = |b|2|a|2_” < 1. Therefore |b|é/n < |al, which implies that

1= lim [p])" <laly < 1,
n— o0
a contradiction that proves |a|; < 1. O

Remark 1.2.6. If | |1 and | |, are two absolute values and |a|; < 1 implies |a]» < 1,
then if | |; is nontrivial, | |, is nontrivial. Indeed, if b € k is such that 0 < |b]; < 1,
then we have 0 < |b| < 1.

From this point on all absolute values under consideration will be nontrivial.
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Theorem 1.2.7. Let | |1 and | |2 be two equivalent absolute values. Then there exists a
positive real number c such that |a|| = |al5 for all a € k.

Proof. Let0 < |b]; < 1,s0that0 < |b], < 1. Put

In bl
C = .
In [bl2

We have |b|; = |b|5 with ¢ > 0 and ¢ € R. Now leta € k,a # 0 and let |a|; = |b]}
for some r € R. Let ooy, B € Z, B, > 0, be such that

(o47] . Uy
— <r and Ilim — =r.
1 n—00 ﬁn

Then, since |b|; < 1, we have

laly = |bl; < b2,

that is,

|a,5nb_an | < 1’
so that |aﬂ"b_o‘" ) < 1, which implies that

jala < [bl3""P".

Therefore we have |al, < |b[5.

Now taking ‘;—" > r, it can be shown in a similar fashion that |a|; > |bl;. Therefore
laly = |bl} = |bI5" = lal3. O

Corollary 1.2.8. If | || and | | are two equivalent absolute values in a field k, they
define the same topology in k. O

Proposition 1.2.9. Let k be a field, and M the subring of k generated by 1, that is,
M = {n x1|ne€Z}. Let | | be an absolute value in k. Then | | is nonarchimedean if
and only if | | is bounded in M.

Proof. If | | is nonarchimedean, we have forn € Z,n > 0,
[nx 1 =14+ --+1] <max{|1],...,[1]} =1 =1,
and forn € Z,n < 0,
Inx1l=|—-nx1]<[I]|=1,

so | | is bounded in M.
Now assume that | | is bounded in M, say |m x 1| < sforallm € Z.Ifa,b € k
and n € N, we have
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i (’Z)aibn—i

i=0

la +b|" = lal” |b"~

=)

n
<sy_lal'IbI"™" < s(n+ Dlal”,
i=0

where it is assumed that |a| = max{|a|, |b|}.
Hence

la+b| <sY"In+1 |a| — |a| = max{lal, |b|},
n—oo

and | | is nonarchimedean. O

Corollary 1.2.10. Every absolute value in a field of positive characteristic is nonar-
chimedean. ]

We finish this section characterizing the absolute values over the field of rational
numbers.

Theorem 1.2.11 (Ostrowski). Let ¢ be an absolute value in Q. Then ¢ is trivial or
it is equivalent to the usual absolute value or it is equivalent to some p-adic absolute
value.

Proof. Let ¢ be a nontrivial absolute value. Let us assume that there exists n € N,
n > 1, such that ¢(n) < 1. For m € N, we write

m=ay+an+---+an
with0 <a; <n —1,a, # 0. Now
p@)=¢(d+---+D) <)+ +o)=a <n,

SO

r

o) =Y ¢ (@n') =Y e@)em’ <n ) 1=n(+r.
i i=0 i=0

1=l

Since m > n”, we have

p—

nm Inm
r<-— and ¢(m)< 1+1— n.

Inn nn

Applying the above to m*®, s € N, we have

s s In m* . Inm
@(m) —<p(m)< 1+ n=|1+s—]n,
Inn Inn
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which implies

1/s
p(m) < <l —i—shl—m) n's — 1.
Inn §—>00
We have shown that ¢(m) < 1, so ¢ is bounded in Z and ¢ is nonarchimedean.

LetA = {m € Z | ¢p(m) < 1}. It can be verified that 2 is an ideal. Now if ab € 2,
then ¢(ab) = ¢(a)pb) < 1,50 ¢(a) < 1 or ¢(b) < 1. Therefore 2 is a prime
ideal. Let 2l = (p), where p is prime and ¢(p) < 1. Let ¢ € R, ¢ > 0 be such that
o(p) =p <. Ifm ¢ A, we have p { m and ¢(m) = 1. Therefore, for

x €Q suchthat x = p"

S Q

with p 1 ab, we have

_ n@_ n __ _—cn __ c
o(x) = ¢(p) 0 =o(p)" =p " =|xl},

s0 ¢ is equivalent to | | .
Now we assume that ¢(n) > 1 forn e N,n > 1. Letm,n € Z, m,n > 1, and put

m' =ap+an+---+an", where 0<ag; <n-—1, a, #0.

Inm!
Inn

We have r < . Now we have

o (m')=pm)' <Y e@)em) <) npn) =nl+ren)
i=0 i=0

t
<n <1 + Inm )(p(n)(lnm’)/(lnn).
Inn
Therefore,

1/t
o(m) < n'/! (1 i ,T””) @ (n) (/D) /(inm))
nn

1/t

n

— nl/t <1 + tl m) gD(n)(lnm)/(lnn) (p(n)(lnm)/(lnn)'
nn t—00

That is, (m) < @(n) ™™/ or equivalently,
By symmetry we obtain ¢(m)!/M™ = ¢(n)!/" Let ¢ € R, ¢ > 0, be such that

w(m)]/(lnm) = ¢“ forall m € Z such thatm > 1.

We have p(m) = e¢"" = " — 1€ = |m| forallm > 1, m € Z.
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Form =1, () =1=1°
Form =0, @(0) =0 =|0|°.
Form <0,m € Z, om) = o(—m) = | — m|° = |m|°.

Finally, let x € Q such that x = 7. We have

pla) lal*
p(x) = = —— = x|
) bl
Therefore ¢(x) = |x|° for all x € Q. This shows that ¢ is equivalent to | |, the usual
absolute value of Q. O

1.3 Riemann Surfaces

First we recall the definition of a Riemann surface.

Definition 1.3.1. Let R be a connected Hausdorff topological space. Then R is called
a Riemann surface if there exists a collection {U;, ®;};¢;, such that:

(1) {Ui};es is an open cover of R and ®; : U; —> C is a homeomorphism over an
open set of the complex plane C for eachi € [.

(ii) For every pair (i, j) such that U; NU; # @, (IJjCDl._l is a conformal transformation
of ®; (U NU;) onto ®; (U; N U;).
In other words, a Riemann surface is a manifold that is obtained by gluing in a

biholomorphic way neighborhoods that are homeomorphic to open sets of C.

UiNU;

®;(U;NU;j)

®;(U;NUj)
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Definition 1.3.2. An algebraic function w(z) of a complex variable z is a function
satisfying a functional equation of the type

ap(Dw" + a1 Qw" + -+ a,(2) =0,
where ag(z) # 0 and g;(z) € C[z] for0 <i < n.

Definition 1.3.3. A Riemann surface R of an algebraic function w(z) is a connected
complex manifold (that is, “locally” the same as C) where w(z) can be defined as an
analytic function (w: R — C U {oo}) and w(z) is single-valued. (If A C B are two
Riemann surfaces of w(z), A is open and closed in B, so A = B.)

If R and R’ are two such connected complex manifolds, then R and R’ are confor-
mally equivalent. That is, R is essentially unique, and therefore we will say that R is
the Riemann surface of w(z).

In order to clarify the previous definition, we consider the “function” defined by
w(z) = /7 (that is, w(z)?> — z = 0). When we begin to evaluate w(1) we have two
possible choices, w(l) = 1 or w(1) = —1. Say that we choose w(1) = 1. If we take
the analytic continuation of w(z) around the curve of equation p(¢) = et0<t<2m,
we obtain, when we come back to the point z = 1, the value w(l) = —1 (and vice
versa). If we go around for a second time with the analytic continuation, we obtain
w(l) = 1. This procedure tells us that in order to obtain a solution to this prob-

lem, the point 1 is to be “divided” into

N =00 N =00 two points, or, more precisely, all real
values between 0 and oo included are
to be divided into two parts. In other
words, when we consider the Riemann
S—0 S—=0 surface S2, we must remove the posi-
tive real curve starting at 0 and ending
at co. When we separate this cut, the
set obtained may be assumed to be the
same as a half Riemann sphere with
the ray of positive real numbers as the
border and such that it appears twice.
When we continue w(z) through the
curve o(t) = ¢!’ and we come back
to the point 1, we take the point 1 in

12

~
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the second hemisphere instead of the first one. If we identify the respective borders
we will obtain again the Riemann sphere, but with the previous process, w(z) will be
single-valued.

This is fundamentally the Riemann approach to make single-valued functions from
multivalued ones.

We point out that this problem is defined not only for algebraic functions but also
for many other multivalued functions, for instance the logarithmic function. Although
in this case the problem can be solved in a similar fashion, the Riemann surface ob-
tained will be different from the Riemann surfaces obtained from algebraic functions,
which are compact.

Now we state some basic results of the theory of Riemann surfaces that will be
generalized later to other situations. For the moment, they will serve us as a motivation
and a basis of our general theory of algebraic functions.

Theorem 1.3.4. The Riemann surface of an algebraic function is a compact Riemann
surface (according to Definition 1.3.1).

Proof. [72, Theorem 4.2, p. 156], [34, Corollary, p. 248]. |

The converse also holds.

Theorem 1.3.5. [f a Riemann surface is compact, then it is conformally equivalent to
a Riemann surface of an algebraic function.

Proof. [72, Theorem 4.3, p. 161], [34, Corollary IV.11.8, p. 249]. a

Theorem 1.3.6. Every compact Riemann surface R is homeomorphic to a Riemann
surface with g handles, where g is a nonnegative integer called the genus of R. There-
fore two Riemann surfaces are topologically equivalent if and only if they have the
same genus.

Proof. [72, Theorems 4.8 and 4.9, p. 172], [164, Teorema 5.92, p. 261]. m]

Theorem 1.3.7. Every compact Riemann surface R of genus g is conformally equiva-
lent to a cover of (g + 1) sheets of the Riemann sphere. O

The previous results characterize all compact Riemann surfaces: on the one hand,
the compact Riemann surfaces are exactly the Riemann surfaces of algebraic func-
tions; on the other hand, they are topologically equivalent to a bidimensional sphere
with g handles and conformally equivalent to a cover of a Riemann sphere.

We observe that the genus g characterizes the compact Riemann surfaces topolog-
ically but not analytically. For instance, there are infinitely many Riemann surfaces of
genus 1 that are conformally inequivalent pairwise. This topic will be studied later and
in a much more general setting.

Let P € Rand P € U where U is an open set of R. Let ¢ : U — ¢ (U) =
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he Vv c V < Cbe a homeomorphism given in Definition 1.3.1.
Foragiven f : U —> C,leth = f o ¢~'. We say that

1 f f is holomorphic (meromorphic) in U if £ is holomorphic

¢ U (meromorphic) in V. The same definitions are given for a

global function f : R — C.

Theorem 1.3.8. Let R be a Riemann surface and let X(R) = {f : R - C | f
is meromorphic}. Then X (R) is a finitely generated field over C with transcendence
degree 1; that is, X(R) = C(x, y) where x and y are two indeterminates over C
satisfying a nonzero relation F(x,y) = 0, for F a polynomial in two variables.

Proof. [72, Theorem 3.4, p. 95 and Theorem 4.3, p. 161], [34, Corollary, p. 250]. O

Finally we have the following theorem.

Theorem 1.3.9. Let Ry, Ry be two compact Riemann surfaces. Then Ry and Ry are
conformally equivalent (that is, isomorphic as Riemann surfaces) if and only if X (R1)
and X (Ry) are C-isomorphic as fields (that is, there exists a field isomorphism ¢ :
X (R)) — X (Ry) such that ¢(a) = « for all a € C).

Proof. [72, Theorems 4.5 and 4.6, p. 164]. O

Thus, we see that the study of compact Riemann surfaces can be done by means
of their fields of meromorphic functions. This allows us to view algebraic function
fields as Riemann surfaces over an arbitrary field (in place of C). Of course we do not
have all the analytic machinery available as in the field of complex numbers, but we
can algebrize the properties of the Riemann surfaces and in this way find results of the
same kind over an arbitrary field of constants.

By this method we will obtain the Riemann—Roch theorem, the Riemann—-Hurwitz
genus formula, the concept of a holomorphic differential or abelian differential of
the first type, differentials, etc. On the other hand, when k is an arbitrary field, in
particular not necessarily algebraically closed or of characteristic 0, kK may have proper
algebraic extensions or inseparable extensions. This necessarily implies that the theory
will differ substantially from the analytical case.

1.4 Exercises

Exercise 1.4.1. Verify that the function | |, defined in Example 1.2.2 is an absolute
value.

Exercise 1.4.2. Prove that the p-adic absolute value | |, is nonarchimedean.
Exercise 1.4.3. Prove Proposition 1.1.12.
Exercise 1.4.4. What is the topology on QQ given by the trivial absolute value?

Exercise 1.4.5. Prove that if p and ¢ are two different rational prime numbers, then
the p-adic and the g-adic topologies in Q are different.
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Exercise 1.4.6. Find tr C/Q, tr R/Q, and tr C/R.

Exercise 1.4.7. Show that AutC := {f: C — C | f is a field automorphism} is an
infinite set.

Exercise 1.4.8. Prove thatif S = {s1, ..., s,} is an algebraically independent set over
a field K, then K(s1,...,s,) is isomorphic to the field K (x1, ..., x,) of rational
functions in n variables.

Exercise 1.4.9. Prove that an extension L/K is algebraic if and only if any transcen-
dental basis of L/K is the empty set.

Exercise 1.4.10. If | | is an absolute value on a field K, prove that |[1| = 1 and | — x| =
|x| forall x € K.



2

Algebraic Function Fields of One Variable

This chapter will serve as an introduction to our theory of function fields. Using as a
source of inspiration compact Riemann surfaces, and especially their fields of mero-
morphic functions, we first generalize the concept of a function field. In this way we
will obtain the general definition of a function field, and establish its most immediate
properties.

Our second goal in this chapter will be to study absolute values in function fields,
following the philosophy according to which the local study of an object provides in-
formation on its global properties, and vice versa. We will use the fact that the concept
of an absolute value is equivalent to other concepts of a more algebraic nature: val-
uation rings, valuations, places, etc. This equivalence will be studied in Section 2.2,
together with its basic properties. The places (Definition 2.2.10) correspond to points
on a projective, nonsingular algebraic curve (at least over an algebraically closed field).

Next, we shall recall the definition of the completion of a field with respect to an
absolute value, which is a particular case of a metric space. Such completions con-
stitute the mentioned local study of function fields, which will be used for the global
study of these fields.

In Section 2.4 we characterize all valuations of a field of rational functions that are
trivial on the field of constants. Together with Chevalley’s lemma, which states that
places extend to overfields, this characterization will allow us to study valuations over
an arbitrary function field.

In the last section we will present Artin’s approximation theorem, which states the
following: Given a finite number of distinct absolute values and the same number of
arbitrary elements of a function field, we can find an element of the field that approxi-
mates the given elements as much as we want, each one in the corresponding absolute
value.

We conclude the chapter with a characterization of the completion of a function
field with respect to a given place. As we shall see, such completions are simply Lau-
rent series, which makes their study easier than that of number fields; indeed, although
the latter admit series representations, the series involved are not Laurent series, due
to the difference in characteristics.
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2.1 The Field of Constants

Definition 2.1.1. Let &k be an arbitrary field. A field of algebraic functions K over k is
a finitely generated field extension of £ with transcendence degree r > 1. K is called
a field of algebraic functions of r variables.

Example 2.1.2. Let k be any field and let K = k[X, Y]/(f(x, y)), where k[X, Y] is
the polynomial ring of two variables, & is any field, and f(X,Y) = X3 —Y?+1. Then
if x ;== Xmod (f(X,Y))and y := Y mod (f(X,Y)), we have K = k(x,y) with
x3 = y? — 1. Therefore K = k(x, y) is a field of algebraic functions of one variable.

From this point on we will study only the case r = 1, that is, K will be a field
of functions of one variable. We will call such a field a function field and it will be
denoted by K/ k.

We observe thatif x € K is transcendental over k, then K /k(x) is a finite extension
(since it is algebraic and finitely generated).

Now, if z is any other element of K that is transcendental over &, then since K /k
has transcendence degree 1, {x, z} cannot be algebraically independent. Therefore
there exists a nonzero polynomial p (71, T») € k[T1, T2] such that p(x, z) = 0. Since
x and z are transcendental over k, x and z must appear in the expression of p(x, 7).
Therefore, it follows immediately that x is algebraic over k(z) (and z is algebraic over
k(x)). Thus

[K 2 k(@)] = [K :k(x, ][k(x, 2) 1 k()] = [K : k(x)][k(x, 2) : k(2)] < o0,

as we mentioned before. This shows that any two elements x, z of K that are tran-
scendental over k satisfy similar conditions, that is, K /k(x) and K/k(z) are finite.
However, in general [K : k(z)] and [K : k(x)] are distinct. This is one of the principal
differences with number fields, since a number field E has as base subfield its prime
field, namely Q, and [E : Q] is well and uniquely defined. In the case of algebraic
functions K, we take as base field k(x) with x € K transcendental over k, but k(x) is
not uniquely determined. On the other hand, if x, z € K are transcendental over k, we
have k(x) = k(z).

As a simple example of the previous remarks, we consider K = Q(x, z), where
x, z are variables over Q that satisfy x> 4+ z* = 1. We have [K : Q(x)] = 4, [K :

Q)1=2[K:Q (xz)] = 8, etc.

Definition 2.1.3. Let K/ k be a function field. The algebraic closure of k in K, that is,
the field k' = {@ € K | « is algebraic over k}, is called the field of constants of K .

Example 2.1.4. Let K = R(x, y) with x, y two variables over R satisfying
X0+ 2)c3y2 + y4 =—1.

Since x3 + y? =i = /—1, it follows that the field of constants of K is C.



2.1 The Field of Constants 15

Example 2.1.5. If k = R, K = k(x, y) with x> = —y>—1,theni ¢ K since otherwise
x = iy/y*+1 € K and /y2+1 € K and it would follow that K = k(x,y) =

k(i/y? + 1, y). However, it is easy to see that i = p(i/y? + 1, y) has no solution
for any p(X, Y) € R[X, Y]. Therefore in this case the field of constants is k = R.

Note that k C k" and since K /&’ cannot be algebraic, we have
l<trK/kK <tuwrK/k=1.

Thus K /k’ is also a function field, now over k', with the additional property that every
element x € K \ k’ is transcendental.

Proposition 2.1.6. If x € K \ k', we have [k' : k] = [K'(x) : k(x)]. More generally, if
x is a transcendental element over k and k', then [k : k] = [k’ (x) : k(x)].

Proof. Let [k’ : k] = n with n finite or infinite. We will see later that n must be finite.
Let {o;};¢; be a basis of the vector space kK’ over k, |I| = n. Let /' —— k'(x)
p(x) € K'(x), say p(x) = $&3, with a(x), b(x) € K'[x]. We write
a(x) =Y " aix', witha; € k'.
We have k———k(x)

ri
a; = E ajjj, ajj € k, 0<i<m.
Jj=1

Lett = max{r; |1 =0,... ,m}and a;; = O forr; < j < t. We may write a; =
t
Zj:l ajjo;. Thus
m ) m t ) t m ) t
a) =) aix' =3 (D ajey |x' =D oY ajx' | =) pitaj.
i=0 i=0 \j=1 j=1 i=0 j=1

with pj(x) = Y a;jx’ € k[x].

Therefore a(x) is algebraic over k(x).

If we apply the above argument to b(x) € k’[x], we obtain as a particular case that
there exists a relation

Ztg(x)b(x)z =0 with ¢#(x)€k[x], t(x)#0, and ¢ (x)#O.
£=0

In particular,

b(x) {Zt@(x)b(x)@—l} {—to(x)_l} _1,
=1

that is,

r

e ffd(x)b -1
(x) ;W) (x)
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Hence, p(x) = a(x)b(x)"! = Yi_o ci(x)a; for ¢ (x) € k(x). Therefore {o;};e;
generates k’'(x) over k(x).

Assume that there exists a relation ) ;_,¢i(x)e; = 0, with ¢;(x) € k(x)
and such that some g;(x) is nonzero. Clearing denominators, we may assume that
gi(x) € k[x]. Now, in case x | ¢;(x) for all i, we take ¢;(x) = xq;(x) and we ob-
tain x ) ;_o g/ (x)a; = 0, so that ) 7_ g/(x)e;; = 0. Therefore, we may assume that
x { gj(x) for some j, or equivalently, ¢;(0) # 0. Now, Y i_, ¢i(x); = 0 implies
Y i_049i(0)a; =0, but then ¢;(0) € k and ¢;(0) # 0 imply that {e;};¢; is not linearly
independent over k.

Hence, {o;};¢; is also a basis of k' (x)/k(x) and therefore [k'(x) : k(x)] = [k : k].

O

Coming back to the function field K /&, we have
[K k(@) =[K : KK ) k(x)] = [K : K'(x0)][k : k] < oo,

son = [k’ : k] is finite in Proposition 2.1.6.

From now on, unless otherwise stated, we will always assume that X’ = k, that is,
when mentioning a function field K / k, we will be assuming that the field of constants
of K is k or, equivalently, that £ is algebraically closed in K.

2.2 Valuations, Places, and Valuation Rings

Definition 2.2.1. An ordered group G is an abelian group (G, +) with a relation <
satisfying, for o, 8, y € G:

(i) @ < Bor B < aora = B (trichotomy),
(i) f ¢ < B and B < y then @ < y (transitivity),
(iii) If o < B then o + y < B + y (preservation of the group operation).

As usual, o < B will denote ¢ < S or @ = .

For an ordered group G, we define Gy = {a € G | « < 0}, where 0 denotes the
identity of G. Then we have the disjoint union G = Go U {0} U {—Gy}. Furthermore,
forall ¢, B € G we have o < B if and only if « — 8 € Go.

Conversely, if (G, +) is an abelian group with identity O such that there exists
a semigroup H C G satisfying that G = H U {0} U {—H} is a disjoint union, we
can define fora, B € G, < f <= o — B € H. Itis easy to see that < satisfies
the conditions of Definition 2.2.1 and G is an ordered group whose set of “negative
elements” is H.

We observe that if G is a nontrivial finite group, then G cannot be ordered since if
o € Gand @ # 0, say o > 0, then for any n € N,

ne=o+---+a>0+---+0=0,

that is, na # 0. In particular, if G is an ordered group then every nonzero element of
G is of infinite order, that is, G is torsion free.

The most obvious examples of ordered groups are Z, @, and R with the sum and
the usual order.



2.2 Valuations, Places, and Valuation Rings 17

Definition 2.2.2. Let K be an arbitrary field. A valuation v over K is a surjective
function v : K* — G, where G is an ordered group called the value group or
valuation group, satisfying

(i) For a, b € K*, v(ab) = v(a) + v(b), that is, v is a group epimorphism,
(ii) For a, b € K* such that a + b # 0, v(a + b) > min{v(a), v(b)}.

We define v(0) = oo, where oo is a symbol such that co ¢ G,a < oo for all
aeGandoot+oo=a+o0=00+a=occforalla € G.

The purpose of including the symbol oo is simply to be able to define v(0) in such
a way that conditions (i) and (ii) of the definition are also satisfied.

As an example of valuation we have K = Q,G = Z, and v = v, the p-adic
valuation, for p € Z a rational prime. That is, for x € Q* we write

X = p"%, neZ, ptab and v,(x)=n.
We leave it to the reader to verify that this is in fact a valuation. Also, observe the
similarity of v, with the p-adic absolute value (Example 1.2.2).
A fancier example, which is a simple generalization of the previous one, is the
following. Consider a number field K, that is, [K : Q] < oo, and let ¥k be the
integral closure of Z in K, that is,

Pk ={a € K | Irr (o, x, K) € Z[x]},

where Irr (o, x, K) denotes the irreducible polynomial of & in Q[x].

Let P be a nonzero prime ideal of k. It is known that 9 is a Dedekind domain
(see Definition 5.7.1), so that if x € K*, the principal fractional ideal (x) can be
written as 73”% with n € Z, where 2, B are ideals of ' that are relatively prime
to P. Then we define vp(x) = n. As in the case of Q, vp is a valuation that is an
extension of the p-adic valuation v, of Q, where (p) =P NZ.

In general we have the following result:

Proposition 2.2.3. Let K be any field and let v be a valuation over K. Then

) v(1) =0,
(i) v (a_l) = —v(a) foralla # 0,
>iii) v(a) = v(—a),
(iv) if v(a) # v(b), then v(a + b) = min{v(a), v(b)},
Vv (Zl’-’zl a,~) > mini<i<p {v (a;)} and equality holds if v (a;) # v (aj) for all
L ]
(vi) ifZ?:l a; =0,n > 2, then there exist i # j such that v (a;) = v (aj).
Proof.

(i) We have v(1) = v(1 x 1) = v(1) 4+ v(1), so, by the cancellation law property
of abelian groups, it follows that v(1) = 0.

(ii) We have 0 = v(1) = v(aa™") = v(a) + v (a!). Therefore v (a~') =
—v(a).
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(iii) We have
v(l) =0=v((=D(=1D) =v(=1) +v(=1),

that is, 2v(—1) = 0. Since the unique torsion element of an ordered abelian
group is 0, we have v(—1) = 0. Therefore we obtain that

v(—a) =v((—Da) =v(—1) +v(a) =0+ v(a) = v(a).

(iv) We have v(a + b) > min{v(a), v(b)}. Now if v(a) # v(b), say v(a) > v(b),
then

v(b) =v(b+a—a)>min{v(a + b), v(—a)}
= min{v(a + b), v(a)} > v(b).

Then from v(b) = min{v(a + b), v(a)} and v(b) < v(a) we conclude that
v(a + b) = v(b) = min{v(a), v(b)}.

(v) The case n = 2 is given in (iv). For n > 2, by induction on n we obtain

n n—1
v (Z“f) =v (Zai +an> > lr<nin {v(a)},
i=1 i=1 =i=n

and if v (a;) # v (a;) forall i # j, then

n—1
v (Za) = min (v (@)} # van).

i=1

Therefore

(89)-r ()

= min {]<I_n<in] {v(a},v (an)} = min {v(a)}.

(vi) Forn > 2,if > a; =0, then v (3}, a;) = v(0) = o0.
If minj <;<, {v (@;)} = oo, then v (a;) = 0o, thatis, a; = 0 for all i.
If minj<;<, {v(a;)} < oo, then v (Z?:l ai) # minj<;<, {v (a;)}. Hence,
from (v), we have v (a¢;) = v (a j) for two different indices i # j.

O
Now we consider an arbitrary field K and a valuation of K with values in an

ordered group G. Let 9, = {x € K | v(x) > 0}. Then, since

v(x) =v(=x), vxy) =vXx)+v(y),
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and since G is an ordered group, it follows that ©#, is a ring. Furthermore, for x € K,
then if x ¢ ¥, we have v(x) < 0. Thus v (x_l) = —v(x) > 0, thatis, x| € 9.

Hence, given x € K, we have x € ¥, or x~! € 9,. Furthermore, for x € K, if x € ¥,

then x = A—l’ € vy, and if x ¢ ¥, then x~! e ¥, and therefore x = xlj € quot y,

where quot @, denotes the field of quotients of ¢#,, which proves that K = quot ¢,,.
Now, x € ¥, is a unit if and only if x~! € ¥,, that is, v(x) > O and v (x~1) =
—v(x) > 0. Therefore

vy ={x € K |v(x)=0}.

Let P, = {x € K | v(x) > 0} consist of the nonunits of ©,. We will see that in fact
P, is an ideal. If x € P, and y € ¥, we have

v(xy) = v(x) +v(y) > v(x) > 0,
s0 xy € Py. On the other hand, if x, y € P,, then
v(x + y) > min{v(x), v(y)} > 0.

Therefore #, is a local ring with maximal ideal P,. Finally, v: (K*,-) — (G, +) is
a group epimorphism with ker v = ¢}. Thus

(G, +H) = (K¥/9y,-).
The above discussion can be summed up as follows.

Proposition 2.2.4. If K is a field and v a valuation over K, then ¥, = {x € K |
v(x) > 0} is a subring of K such that for all x € K, x € ®, or x~' € 0. In
particular, ¥ is a local ring with maximal ideal

Po={xeK|vix)>0=0,\9), 9 ={xekK|vx) =0}.

Furthermore, we have quot ¥, = K and the value group of v is isomorphic to K* /9.
O

Definition 2.2.5. Every integral domain A that is not a field and such that each x €
quot A satisfies x € A or x~! € A is called a valuation ring.

Proposition 2.2.6. If A is a valuation ring and K = quot A, then K*/ A* is an ordered
group and the natural projection is a valuation with valuation ring A and value group
K*/A*.

Proof. We know that K*/A* is an abelian group. If x, y € K*, define

xmod A* < ymod A* if yx 'eA
(x mod A* < y mod A* < yx~! € A\ A%).
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Observe that if x mod A* = x; mod A* and y mod A* = y; mod A*, then x =
axi,y = by with a,b € A*. Therefore yx~' = by (ax;)~' = ba~'yix;'. Thus
yxle A= yix, ! € A, which proves that the order relation does not depend on
the representatives.

Given three elements o, 8,y € K*/A*, we take x,y,z € K* such that o =
x mod A*, 8 = ymod A*,y = zmod A*. Since A is a valuation ring, we have
xy e Aor ()cy_l)f1 =yx ! e A sothata < B or B < a. Therefore, the relation
is trichotomic.

Nowifa <Bandf < y,thenyx™' € A,zy"' € Aand yx'zy ! = zx7 ! € A,
which shows thato < y. If ¢« < B and 8 < vy, itis easy to see that o < y.

Finally, if « < g, then yx_1 € Aso yzz_lx_1 = yz(zx)_1 € A, thatis, ay <
By.

Therefore K*/A* is an ordered group; now consider the natural projection

1

v: K* — K*/A*.
We have
v(xy) = xy mod A* = (x mod A*) (y mod A*)

forany x,y € K*.If x +y # O then v(x + y) = (x + y) mod A*. Let us assume that
x mod A* < y mod A*, that is, yx~! € A. We have

(x+ y))f1 =1+ y)f1 €A,
that is,
v(x +y) = (x + y) mod A* > x mod A* = min {x mod A*, y mod A*} .

This proves that v is a valuation.
Finally, the valuation ring of v is given by

ﬁv:{xeK*|u(x)zi}u{0}={xeK*|x1*1=xeA}u{0}=A. O

Propositions 2.2.4 and 2.2.6 show that the concepts of valuation rings and valua-
tions are essentially the same.

Definition 2.2.7. Let v; : K* — (G, +) and vy : K* —> (G5, +) be two valua-
tions of a field K. We say that v and v, are equivalent if vi(a) > 0 <= v2(ax) > 0
forall @ € K*.

Observe that if « € K*, then vi(@) < 0 < vi(2¢7!) > 0 &= v («7) >
0 <= () < 0 and by complementation, we obtain vi(e) = 0 <= v2(x) = 0.
Therefore we have shown that if vy and v, are equivalent, then ©,, = ,; in particular,
the value groups are isomorphic since both are isomorphic to K* /% .

Now let v; and vy be two equivalent valuations with value groups G| and G;
respectively. For @ € G, leta € K* be such that v|(a) = « and define
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o :Gy —> G, suchthat o(a) = vy(a).

Clearly, o is defined by means of the formula o v; = v,. The first fact we have to verify
is that o is well defined, i.e., if v{(a) = v1(b), then v2(a) = v2(b). Leta,b € G. We
have

vi(@) = vy (b) = vy (ab_1> = vi(@) —vi(b) =0
— v (abfl) — v3(a) — va(b) = 0 = va(a) = va(b).
Now, if vi (@) = @ and v} (b) = B, then vi (ab) = v(a) + vi(b) = a + B, 0
o (a+ B) =wvab) = vr(a) +v2(b) =0 (@) + 0 (B),

and hence o is a group homomorphism. Now given y € Ga, letva(a) = y. If vi(a) =
o, we have o («) = y. Therefore o is an epimorphism. Also, if o («) = o (8), then
va(a) = va(b) with a, b satisfying vy (a) = «, v1(b) = B. Now

v2(@) = va(b) = v (ab™") =0 = vy (ab™') =0
= a=vi(a) =v1(b) =B,

that is, o is injective. We have shown that o is a group isomorphism.

Finally, if « < B with &, B8 € Gy, thatis, B — & > 0, we have v; (ab™') > 0,
where vy(a) = «, v1(b) = B. Then vy (ab’l) > 0, s0 0 (@) < o (B), which means
that o is order-preserving.

Conversely, let vy, v2 be two valuations over a field K with value groups G1, G»
respectively such that there exists an order-preserving isomorphism ¢ : G; — G
such that pv; = vy. If vi(a) > 0 we have (¢v1) (@) = v2(a) > 0, which tells us that
vy and vy are equivalent.

We collect all the above discussion in the following proposition:

Proposition 2.2.8. Two valuations vy, vy over a field K with value groups G, G,
respectively are equivalent if and only if there exists an order-preserving group iso-
morphism ¢ : G1 —> G2 such that v = v;. a

On the other hand, if #,, = ¥,, then P, = P,, is the unique maximal ideal of
thy, = th,. We have vy (@) > 0 &= a € ¥y, \ Py, = thy, \ Py, &= 12 (o) > 0. We
have proved the following result:

Proposition 2.2.9. Two valuations over a field are equivalent if and only if they have
the same valuation ring. O

Next, we will define the concept of a place.

Let E be an arbitrary field, and let oo be a symbol such that oo ¢ E. We define
the set E1 = E U {oo} and partially extend the field operations to E in the following
way:
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x+oo=00+x =00 forall x € E,

x-00o=o00-x forall x e E*,
and
00 - 00 = 00.
Note that oo + 00, 0 - 00, and oo - 0 are not defined.

Definition 2.2.10. A place on a field K is a function ¢ : K —> E U {00} (E a field)
satisfying:

De@+b)=¢(@ +¢@®)forala,beK,;

(ii) ¢ (ab) = ¢ (a) ¢ (b) foralla, b € K;

(iii) There exists an element a € K such that ¢ (a) = oo;

(iv) There exists an element b € K such that ¢ (b) # oo and ¢ (b) # 0.

Conditions (iii) and (iv) are given in order to keep ¢ from being trivial.
Observe that ¢(0) = 0 and ¢(1) = 1 (Exercise 2.6.3). Given a place ¢ we define

9o ={ac K |g(@) #oo} =9 (E).
Proposition 2.2.11. 9, is an integral subdomain of K, %, # K, and ¢, # 0.

Proof. If a, b € ¥, we have p(a + b) = ¢(a) + ¢(b) € E, thatis,a +b € 9, If
a € Yy, then p(a) # oo and since

0=¢(0) =¢la—a) =ep) +¢(—a), wehave ¢(—a)= —¢p(a)cE.

It follows that —a € .

Now for a, b € ¢, we have p(ab) = ¢(a)p(b) € E. Therefore ¥, is an integral
domain.

Since there exist a, b € K such that ¢(a) = o0, ¥, # K, ¢(b) # 0, and ¢(b) #

00, we have ¢(b) € E and b # 0, so ¥, # 0. |
Observe that ¢ : @#, — [E is a homomorphism such that ker¢p =
{a €dy | p(@) =0} =P, = ¢7'(0). Then ¥,,/P, = ¢ (V) € E, and kerp = P,

is a prime ideal of .
Ifb € K\ ¥y, p(b) = 0o and

1 1
1=<ﬂ(1)=<p<b3) =¢(b)<p<5>,

we have ¢ (%) # 0o since cooco = 00. Thus ¢ (%) e E.Ifg (%) # 0, then 1 =
0oQ (%) = o0, which is absurd. Hence ¢ (}—J) = 0 and in particular % € 1. This

proves that for any x € K we have x € ¥y 0 x~! € ¥y, i.e., ¥, is a valuation ring.
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The maximal ideal P of ¥, is the nonunit set of ¥, thatis,x € Pifx =0orx #0
and x~! ¢ vy Therefore ¢ (x_l) = oo or x = (. The relations

l=¢p)=9¢ (xx_1> =pX)p <x_l) and ¢ (x_l) =00

imply ¢(x) =0, i.e., x € ker ¢, and conversely, so P = P,,.

We saw above how to obtain a valuation ring from a place. Conversely, consider
a valuation ring ¢, P its maximal ideal and K = quot?. Let E be the field ¢#/P and
E1 = EU{oco}. Letp : K —> Ej be given by

p(x) =

xmod P ifxed
ifx ¢ 0.

We leave it as an exercise to verify that ¢ is a place. We have by definition
vy ={aec K|gp(a)#oo} =1

Therefore we have shown that the concepts of place and valuation ring are the same.

Definition 2.2.12. Two places ¢; : K — E; U {oo} and K

@2 : K —> E> U {oo} are called equivalent if there exists a o o
field isomorphism A : T —> T3, where T1 = ¢ (19(/)1) and .
T = ¢ (¥, ), such that g, = A (with the convention that T, f\T2
A(00) = 00).

If @1 and ¢, are equivalent, then
9oy = 07 (ED) = o7 (T = 03 ' 0. (T1) = 97 (T2) = ;' (E2) = 0.

Conversely, if ¥, = 1,, we have Py, = Py, and it follows that Ty = ¥, /Py, =
U4y /Py, = T
In short, we have the following:

Proposition 2.2.13. Two places @1 and ¢, over a field K are equivalent if and only if
Vg = Vg, o

Let K be a field and let v be a valuation over K. If the value group G of v is
contained in (R, +), then the valuation defines a function | | : K —> R given by
x|y = e7V®) where v(0) = 0o, and e~ = 0 by definition.

Proposition 2.2.14. The function |x|, defined by the valuation v over K is a nonar-
chimedean absolute value that is nontrivial over K.

Proof. For all x, y € K we have:

(i) x|y =e V™ >0and |x|, = e '™ =0 < v(x) = 00 < x = 0.
(i) |xyl, = e V) — (v =) — p—V(X) V() — TN
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(iii) |x 4+ yly = e @Y. Now, v(x 4+ y) > min{v(x), v(y)}, so that
—v(x +y) = —minfv(x), v(y)} = max{—v(x), —v(y)}.
Since the exponential function is increasing, we have
X 4 y]y = e V@Y < gmax(—u(),—v())

= max {e_”(x), e_“(y)} =max {|x|y, [¥|v}-

Finally, from the fact that v is nontrivial, it follows that | |, is nontrivial. O

The converse of Proposition 2.2.14 also holds. The proof is straightforward.

Proposition 2.2.15. Let | | : K —> R be a nonarchimedean absolute value over K.
Then the function v| | defined by v| | = — In |x|, where by definition —In |0] = 400, is
a valuation with value group contained in (R, +). O

Proposition 2.2.16. Let | |1 and | |2 be two absolute values over a field K and let
v1, V2 be the valuations associated with | |1 and | | respectively. Then | |1 and | |» are
equivalent if and only if v1 and vy are equivalent.

Proof. We have v; = —In|x|;, |x|; = e %™, i = 1,2. Assume that | |1 and | |» are
equivalent valuations, that is, |x|; < 1 <= |x|2» < 1. Then

V(X)) >0 |x|1=e¢ "W <1 e x| =e W < 1 &< v(x) > 0.

So v; and v, are equivalent.
The converse is analogous. O

The above discussion proves that the concepts of nonarchimedean absolute value,
valuation with value group contained in R, valuation ring, and place are essentially
the same concept and they correspond to their respective equivalence classes. This
correspondence can be summarized as follows:

Absolute value Valuation with value
nonarchimedean group contained in R
x| -+ v(x)=—Inlx|
eV - v(x)
Valuation Valuation ring
v(x) >0 ={xeK|vx) >0}

v K* —s K*/9*
v(x) = x mod ¥*

-— s
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Valuation ring Place

xmod P ifxed
ifx ¢o

¥ with maximal ideal P px) =

U ={x € K| o) # oo} @

In the number field case, there exist archimedean absolute values. In our case,
the function field case, all absolute values are nonarchimedean, and in fact, they are
discrete, that is, the value group is isomorphic to the ring Z of rational integers. So
even though this section is of a general nature, the reader may consider only, if he or
she wishes to, discrete valuations.

Proposition 2.2.17. Let vy, vo be two valuations over a field K with value group con-
tained in R. Then v and vy are equivalent if and only if there exists @ € R, > 0,
such that vi = avs.

Proof. If |x|; = e"™ are the associated absolute values, then vy ~ vy <= | || ~
| [ <= there exists ¢ > O such that | [; = [ [5,v1 = —In| |} = —In| |5 =
c(—1In||2) = cvs. O

Definition 2.2.18. Let K be a field. A prime divisor, or simply a prime, of K is an
equivalence class of the set of nontrivial absolute values of K. If the absolute values
in the class are archimedean, the prime is called infinite; it is called finite otherwise.

Hence, in the nonarchimedean case, a prime divisor can be considered a place or
the maximal ideal of the valuation ring associated with the absolute value. When we
study function fields, the prime divisors will be identified with the maximal ideal of
the valuation ring.

Note 2.2.19. Given a nonarchimedean absolute value | | over a field K, the ring
{x € K | |x| < 1} is a valuation ring whose maximal ideal is {x € K | |x| < 1}. This
is an immediate consequence of the fact that v(x) = — In|x| defines a valuation with
valuation ring

hy={xeK|vx)>0}={xe K|—In|x| >0}
={x€K|ln|x|§O}:{xeK||x|§eO=1}
and maximal ideal of
Po={xeK|vix)>0}={xe K ||x| <l1}.

In Exercise 2.6.14, the reader is asked to give an independent proof of these facts
using only the properties of a nonarchimedean absolute value and not the valuation v.

We will end this section with the study of discrete valuation rings. Let K be a
field and v : K* — Z a valuation with valuation ring ¢ and maximal ideal P. Let
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m € P be such that v(w) = 1 (;r is called a prime element or uniformizing element
of the valuation). Then given x € K* such that v(x) = n, we have v (n_’lx) =0,
that is, 7 ~"x € ¥*, so that x can be written x = an” witha € 9* and n € Z.
This representation is unique since if x = br™ with b € 9* and m € Z, we have
v(x) = v (br™) = m = n. Thus a = b. In particular, if x € P then x = ax” with
n > 1,and a € 9* so P = (). Therefore P is principal.

Let 2 be any ideal of ¥ such that 2 # 0 and 2 € P. Let n = min{v(x) | x € ™A}
Then n > 1. Then there exists x € 2 such that v(x) = n, thatis, x = an” € A
with a € ¥*. This implies that 7" € A and (x") € 2. If y is an arbitrary nonzero
element of 2, we have v(y) > n. Then y = bn™ withm > n and b € ¥*. Hence
y = (bx™ ") x", bx™ " € 9. Therefore y € (7"), that is, A = (x") = P". Hence,
every nonzero ideal of ¢ is a power of P. We have the following theorem:

Theorem 2.2.20. [fv is a discrete valuation over a field K , the valuation ring ¥ (which
is called a discrete valuation ring) satisfies that its maximal ideal P is principal and
is generated by any prime element. Every nonzero ideal of ¥ is a power of P and the
groups K* and 9* x 7. are isomorphic.

Proof. The first part of the statement was proved in the above discussion. To prove
the last part, let x € K*. We can write x = ax” in a unique way, and therefore the
function ¢ : K* — 9* x Z, defined by ¢(x) = (a, n), is the isomorphism needed. O

2.3 Absolute Values and Completions

In this section, we will use the notation | | for the usual absolute value in the field of
real numbers R. Let K be a field with absolute value || ||.

Definition 2.3.1. Let K be any field. A sequence {a,},c, € K is called Cauchy
if lim, m—soollan —aml|l = 0. We say that a, converges to an element a if
lim,— o |la, — al| = 0, or in other words, if @, converges to a with respect to the
topology given by the absolute value.

Definition 2.3.2. A field K is called complete if every Cauchy sequence in K con-
verges to some element of K.

Example 2.3.3. Let Q with | |, the p-adic absolute value, that is, |x|, = e VW),
vp(x) = n, where x = p”%, p1ab.
We consider the sequence a, = 14 p+p*+-- -+p”2. Ifn < m wehavea,,—a, =

p(n+1)2 4ot me and |ay — an|, = e~(+D? 5 0. That is, a, is a Cauchy
n—00

sequence in (Q, | p); however, it can be proved that {an};';o does not converge in
Q (see Exercise 2.6.2), and so QQ is not complete with respect to the absolute value
| |p. It is well known that Q is not complete with respect to the archimedean absolute
value either, and since there are no other absolute values in Q, it follows that Q is not
complete with respect to any absolute value.
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The completion of Q with respect to its usual absolute value is done using the
same procedure as with a metric space. The completion obtained is the set R of real
numbers.

We say that two Cauchy sequences {b,} >, and {a,},- | are equivalent, and we
write {a,} ~ {b,}, if lim,— o0 ||la, — by|| = 0. It is easy to see that this defines an
equivalence relation. Let K be the collection of all these equivalence classes and let
[{an}] € K. We define ||[{a,}]]| = lim,— oo ||an||. The latter is well defined since
{llax!1} < R. Now if {a;l} defines the same element in K, we will have

lanlt = e[| = llaw | sothat  tim_agli = tim_[Jap].

Thus, || || is well defined in K.

Leta, B,y € K where a = [{a,}], B = [{bu}], ¥ = [{ca}]. We define « + B =
[{an + b,}] and aB = [{a,b,}]. We leave it as an exercise to verify that {a,, + b,} and
{a,b,} are Cauchy sequences and that the definitions of « + 8 and o8 do not depend
on the representatives.

With this structure, K is a commutative ring with unit, 0 and 1 being the represen-
tatives of the constant sequences 0 and 1 respectively.

If o # 0, {a,} is not equivalent to the constant sequence 0. So

lim [la, — Ol = lim_|[la,[| # 0.
n—o0o n—>-00

That is, there exists ng such that for n > ng, a, # 0. Therefore {an_ 1 }zozno is defined

and it is a Cauchy sequence. Now, since a,a,; U'=1forn > no,

ot =[fa), ]

is defined and «o~! = 1. Thus K is a field.
Now the function ¢ : K —> K, defined by ¢(a) = a, where a is a representative
of the sequence {a,} and a,, = a for all n, is a field monomorphism. We note that

lle(@]l = lim |la,|| = lim |[la|| = [la|l.
n—oo n—oo

Therefore the function || || in K is an extension of the absolute value defined in K. It
is easy to see that || || defined in K is an absolute value.

Now, || || is a nonarchimedean absolute value in K if and only if || || is a nonar-
chimedean absolute value in K. We will see that K is dense in K . Given the monomor-
phism ¢, we can assume without loss of generality that K is contained in K. Let
aeckK, e>0,and

B(a,e)={BeK||p—all <e}.

We will see that B (o, ) N K # @. There exists ng such that forn > no, ||a, — ay, | ] <
¢. We take the constant sequence @, = {an,} € K. Then @y, € B (o, £) N K. This
proves that K is dense in K.
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Finally, let us see that K is complete, that is, every Cauchy sequence in K con-
verges in K. Let o, = [{am,n}zozl] with {ozm}"":1 a Cauchy sequence in K. Since K

is dense in K, for each m € N there exists a constant sequence (i.e., an element of K)
Xm = Hx(m)}oo ] € K, suchthat |[|x,; —a.ll < l
m = n s m m
n=1 m

for all m € N. We will see that {x,,}°°_, is a Cauchy sequence.
We have

xm — xull < xm — o] + llatm — anll + llo — xpll.

Now, since {a,,},_; is a Cauchy sequence, given & > 0 there exists N such that if
n,m>N,

e e
< < —, and ||a — o] < =.

3’ 3
Therefore ||x,, — x,|| < & forn, m > N.Hence {x,,};°_, is Cauchy sequence.
Let x(m) x e K for all n. We have
<

forn,m > N, whence {x(’")} me1 S K isaCauchy sequence and it defines an element

@ e Koo =[x
We have

1
m

S| =

’

W] ™

(m) (n)
tm xtn

— onn) N0

[ = ol = Jim |
t—00

m=1"

low = a1l = lla = wall + llxa =l < -+ tim_ [|x® — ]
Since {x® }r | is a Cauchy sequence glven ¢ > 0 there exists N € N such that for
n,p>N, Hx(") —x("’)H < % and . a < 5. Thus, for n > N we have ||a, — ]| < &.
Therefore {a,}7°, converges to « € K, so K is complete.

Let Y be any other complete metric space such that there exists a metric space
isometry A : K —> Y (thatis, A is a distance-preserving map) and such that A (K) is
dense in Y. We will see that there exists a bijective isometry ¥ : ¥ —> K. Consider
the diagram. If y € Y, where y = lim,_, o0 A (y,) and y, € % e
K, then {¢ (y,)} is a Cauchy sequence in K and we can define
z = limp—o0 ¢ (yn). Let ¥ (y) = z. It can be verified that
¥ (y) does not depend on the sequence { yn} o and that ¥ is
an isometry. Since the process can be inverted, we obtain a
function ¢ : K —> Y, with ¢y = Idy and y¢ = Idz. It is easy to see that ¢ and
are inverse isometries. We sum up the previous development in the following theorem:

K

Theorem 2.3.4. Let K be any field and let | | be an absolute value in K. There exists
a unique field K (up to isometry) such that (i) K < K and (ii) there is a unique way
of extending | | to K such that (K | |) is a complete field and K is dense in K . O
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Definition 2.3.5. The field obtained in Theorem 2.3.4 is called the completion of K
with respect to | |.

Example 2.3.6. Given Q with the usual absolute value, the completion of Q is the field
of real numbers R.

Example 2.3.7. Given Q with the p-adic absolute value, the completion is denoted by
Qp and it can be represented as

o
Q,,:{Zanp"|meZ,ane{0,1,...,p—1} .

n=m

Q) is called the field of p-adic numbers. For instance, —1 is represented as follows:

p—1 o) e
—l=T— ==Y p"=) (D"
-P n=0 n=0

In fact,

m m
Su=d (p-Dp' =Y (" = py=pt -1 01 = -1,
n=0 n=0

m—00

The closure of Z in Q, is called the ring of p-adic integers and denoted by Z,.
We can represent it as

o0
Zp=1Y anp" lan€{0.1,....p—1}¢.
n=0

Notation 2.3.8. Given a field K with a nonarchimedean absolute value | |, let v| | be
the valuation associated to | |. Then the completion of K with respect to | | will be
denoted by Kp, where P is the maximal ideal of the valuation ring associated to the
valuation.

Definition 2.3.9. Let | | be a nonarchimedean absolute value over a field K, % =
{xeK||x|] <1},andlet P = {x € K | |x] < 1} be the maximal ideal of ¢}. The
field ©/P is called the residue field of K with respect to P.

Assume that ¢ is a discrete valuation ring. Let Kp be the completion of K with
respect to | |. For x € Kp, we can write x as the limit of a sequence {x,}°°, C K.
We have |x| = lim,— « |X»|, SO the absolute value is nonarchimedean in K. On the
other hand, the valuation v can be extended to Kp by setting

v(x) = nll)r{.lo v(xy,).

Indeed, we have
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x| = 7™ = lim |x,| = lim e "@) = limi—oovlin)
n—oo n—o0

In particular v (K;g) =7 = v (K*) since {v (x,)};2, is constant starting from some
index ny.
Hence ¢ = {x € Kp | |x| < 1} is a discrete valuation ring and

P={xeKp|l|x| <1}

is its maximal ideal. It follows form the definitions that & and P are the closures of
¥ and P in Kp respectively. Furthermore, if P = () = ¢ then v(xr) = 1. Thus 7
also generates P in 9, thatis, P = 9.

Proposition 2.3.10. For any n € N, we have v /P" = 5 / P,

Proof. Let ¢ : & — &/P" be the natural homomorphism, that is, ¢ (x) = x mod P
First we will see that ¢ is an epimorphism. If x € ¥, there exists {x,}>~_; € ¥ such
that x = lim,_, o X;,. In particular, there exists N € N such that form > N,

x—x, €P'={yekplvy)zn)={yekp|lyl<e™}.

Then x mod P" = x,, mod P" = © (Xn).
Finally,

kenp:{xeﬁ|xe75"}={xez9|u(x)zn}=7>",
from which we obtain the result. |

Corollary 2.3.11. The residue fields of K and Kp are isomorphic.

Proof. This is just the case n = 1 of Proposition 2.3.10. O

Notation 2.3.12. When we consider a convergent sequence s, = » ;_, a;, the limit

is written as the series Y o, @i = lim,_ o0 Sy.

Proposition 2.3.13. Each element « # 0 in Kp has a unique series representation of
the form
0 .
a=n" Zsirr’,
i=0

withv(a) =m € Z,s; € S C 9, so # 0, S any set of representatives of 0 /P = 19/75
and0 € S.

Proof. First we note that for any m € Z and {sn};’f’:0 cs,am Z?io s;7' is an element
of Kp. This follows from the fact that the sequence a, = 7 Y 7, sim! is Cauchy
and that K-p is complete.

Now let us see that the representation is unique. If



2.3 Absolute Values and Completions 31
o . o .
a=na" Zs,-n’ =M Zs;n’, with s #0 and s)#0,
i =0 i =0

then v (@) = m = my. Hence, > 20 sim’ = > 7% sim!, that is,
SO+ SITH - =85y +sT A
Therefore

(so—s0) +sim+--=sim+--.

The right side has valuation greater than or equal to 1, so so — s, = 0. By induction
on i it is easy to conclude that s; = s/ for all 7.

Finally, let us see that every element of K- admits this kind of representation. Let
o € Kp with # 0 and v () = m. Then v (7 ") = 0, that is, &« = 7" with
ap € B*. We have

aozsomodﬁ, so €S, and s9#O.

Since ag — 50 € P it follows that v (o — s9) > 1. Therefore ag = sg + way, ] € D
Repeating the process we obtain, for each n,
ag =580+ 51T+ F 57" +an+1n”+l, with s; € S and o4 € 9.

The sequence r, = Y I s; 7" satisfies ag—r, = oz_n+17r"“, thatis, v (g — 1) >
n + 1. Thus r,, converges to o and o« = 7™ Z?io simh. |

In the particular case of the p-adic valuation v in QQ, we have
a
9 ={reQlvp) =0} = {21 ptb) =20,

which is the localization of Z at (p). The maximal ideal is (p)Z(,) and the residue
field is

Zp)[(P)Lpy = L[/ (P)L = Fp,

the finite field of p elements.

A set of representatives is {0, 1, ..., p — 1} = S. Therefore,
o0
Q, = {mes,,p" |meZ,s, € S}.
n=0
Furthermore,
% = closure of Zp) inQ, = {x € Q, | v(x) > 0}

o
{anp" | s, € S} =Zp,
n=0
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the ring of p-adic integers.

An interesting observation is that there is no analogue to the uniqueness in the
archimedean case. For instance in R,

o0 B n_ _ B
0.0999---=n§9x(10 1) _0.1_1x<10 1).

Theorem 2.3.14 (Hensel’s lemma). Let K be a complete field with respect to a nonar-
chimedean absolute value. Let K be the residue field, ¥ the valuation ring, which we
assume to be a discrete valuation ring, and let P be the maximal ideal, i.e., K=y /P.
We assume that f(x) € ¥[x] is a monic polynomial. Let f(x) = f(x) mod P € K[x]
and suppose that f(x) = h(x)g(x) with h(x), g(x) € K[x] and h(x), g(x) relatively
prime. Then there exist H(x), G(x) € K|[x] such that

f@)=HXG®), Hx)=hkx), Gx) =_gk),
and
deg H(x) = degh(x), degG(x)=degg(x).
Proof. Since f(x) is a monic polynomial, it follows that deg f(x) = deg Ff(x) = n.
Now let i(x), g(x) be of degrees r and n — r respectively. Let Hi(x), G1(x) € ¥[x]
be such that
Hi(x) =h(x), Gi(x)=gk), deg H) = degh, degG| =degg.
Then
fx) = Gi(x)Hi(x) € Plx].
Assume that for £ > 1 we have constructed G (x), Hi(x) € ¥[x] such that

F(x) — Gr(x)Hi(x) € P¥[x], deg Gi(x) < degg(x), deg Hy(x) < degh(x),
Gr(x) = g(x), and Hi(x) = h(x).

Now define
Gip1(x) = G (x) + 7¥m(x) and  Hip1(x) = Hi(x) + n¥n(x),

with m(x), n(x) to be determined and 7 a prime element for P. We have

F) = Gpp1 (¥) Hey1 (%)
= f(x) — Gr(x) Hi(x) — 7 (m(x) Hy(x) + n(x)Gr(x)) — 7 m(x)n(x).

Now P = (7), P¥ = (%), and f(x) — Gx(x) Hi(x) € P*[x]. Therefore
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JF(x) — Gr(x)H (x)
mk <

ulx) = 9x]

and
Fx) = Gyt () Hiy1 (x) € P[] =
75 (u(x) — m(x) He(x) — n(x)G(x)) — 7 m(x)n(x) € P[],
Since 2k > k + 1 we need to find m(x), n(x) € ¥[x] such that
u(x) —m(x)Hi(x) — n(x)Gr(x) € Plx].

Given that Hy(x) = h(x) and G (x) = g(x) are relatively prime, we choose m(x)
and n(x) such that

i(x) = i) Hi(x) + () G (x).

Furthermore m(x) and n(x) can be chosen such that

degm(x) <n—r and degn(x) <r.
Then

deg Gry1(x) <degGr(x) <n—r and degHi+1(x) <degHi(x)<r,
and therefore
V(Gry1 — Gr) =k and v (Hig1 — Hy) > k.

It follows that

{Ge@)IRZ, and  {Hi(0)}Z, S Px]

are Cauchy. Since K is complete, these sequences converge to polynomials G(x),
H (x). Further, since

Gr(x) =g(x) and Hi(x) = h(x),
we have

G(x) = g(x), H(x) = h(x),
degG(x) <degg(x) =n-—r, deg H(x) < degh(x) =r.

Finally, since
f(x) = Gr(x)Hi(x) € P¥[x],
we have
Jim (f () = Ge(x) Hi(x)) =0,

that is, f(x) = H(x)G(x) with all the required properties. O
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Example 2.3.15. As an application of Hensel’s lemma we will prove that the p-adic
field Q,, p > 2, contains the (p — 1)th roots of unity. We consider the monic polyno-
mial

fx)=x""" —1eZy[x] CQ,lx].

The residue field of Q, is F, (% = Z,, P = pZ,). Hence, f(x) = xP~1—1 € Fp[x].
We know that in IF,[x] we have

Pl = 1_[ (x —a),

"
aer

andifo, B € IF‘;*7 with @ # B, then x —« and x — f are relatively prime. Therefore, by
Hensel’s lemma, f(x) splits into linear factors of Q,[x], that is, the (p — 1)th roots of
unity belong to Q.

Proposition 2.3.13 tells us that every complete field under a nonarchimedean val-
uation can be represented as a “Laurent series” with “indeterminate” a prime element
and coefficients in a set of representatives of the residue field. Here we note that the
algebraic structure of the field does not always correspond to the structure of the field
of Laurent series in an indeterminate with coefficients in a field. More precisely, let &
be an arbitrary field and let ¢ be a transcendental element over k. We define the ring of
formal series as

k[[t]] = {Zaiti | a; € k]
i=0

with the usual operations, that is,

00 ) 00 ) 00 )

Ylaitt Y bitt =Y (@i +bi)t';

i=0 i=0 i=0
00 s ) 00 i )
Zait'Zbit' ZZ( akbik> .
i=0 i=0 i=0 \k=0

It is easy to see that k[[#]] is an integral domain with field of quotients equal to

k(1) = {Zaiti |meZ,a € k} = U tl”k[[t]].

i=m n=1

The latter field is called the field of Laurent series.

In k((t)) we define the natural valuation v: k((¢)) — 7Z as follows. If f(z) €
k((1)), f(t) # 0, we write f(t) = t"g(t) withn € Z, g(t) € k[[t]] and g(0) # O.
Then v(f(¢)) := n. The valuation ring of v is ¥, = k[[¢]], the maximal ideal is (¢),
the residue field is k = k[[#]]/(¢), and the absolute value is given by || f(¢)|| = e ".

Coming back to the case of a complete field, let us consider Q,, as an example.
Each element Q, is represented as Y ;o,, @ p' or Y oo, a;w', where 7 is a prime
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element and a; € {0,1,..., p — 1}. However, Q, is not isomorphic to IF,((r)).
Indeed, on the one hand, Q € Q) implies that Q,, is of characteristic O and on the
other hand, since F,, € F,((7)), F,((7r)) is of characteristic p > 0. Later on we will
prove that in a function field, the completions are in fact fields of Laurent series.

Now a natural question is what happens with complete fields with respect to an
archimedean valuation. The answer is very simple: the only complete archimedean
fields are R and C. We finish this section with a proof of this fact.

Proposition 2.3.16. Let F be a field containing C. Suppose that F is complete under
an archimedean absolute value | || defined such that |«| = || for a € C, where | |
is the usual absolute value of C. Then for x € F,o(x) = (A€ C|x—Al =0} is
nonempty. Therefore F = C.

Proof. We can consider F' as a vector space over C. Furthermore, F' is a normed space
(with norm its absolute value), so that in particular, F is a Banach space. Let x € F
and A9 ¢ o(x), so that (x — )»01)’1 # 0. From the Hahn—Banach theorem [130,
Theorem 5.16], we know that there exists a bounded linear functional

®: F— C suchthat @ [(x —Aol)_l] # 0.
Let
f:C\o(x) = C bedefinedby f (1) =® ((x — ,\1)—1) .
Then f (Ao) # 0, and f is a differentiable function since

FW—fuw (=D - (x—pu)')
A—u - A—Lu
_ @ (2 — =) _ @ (=)

A—u A—u

_ 1 2
_q)((x—k~1)(x—u1)> o cb(“ A1 )

Therefore, if o (x) = @, then f is an entire function. Now we have

M) =D [x (x — kl)’l] —d [(f _ 1)_1} L B(—D),

A A—00
that is, limy 00 f (1) = limy_, 00 £EL = 0, which tells us that f is bounded at the
infinite point, and by Liouville’s theorem [130, Theorem 10.23], f is constant and
equal to 0. Therefore f (1g) = 0, which contradicts our choice.

For x € F, there exists A € C such that x — A1 = 0, thatis, x = Al = A € C.
Therefore, F C C. ad




36 2 Algebraic Function Fields of One Variable

Theorem 2.3.17. Let F be any field and assume that F is complete under an archime-
dean absolute value. Then F = R or F = C.

Proof. Since F has an archimedean absolute value, F is of characteristic 0. There-
fore Q@ € F. When we restrict the absolute value of F to @, we obtain the unique
archimedean absolute value of (Q, which is the usual one. Since F is complete, F
contains the completion of Q with respect to this absolute value, that is, R C F.
Now if i = /=1 we have R(i) = C € F(i), so [F(i) : F] is equal to 1 or 2. If
F (i) = F, then using Proposition 2.3.16 we set F = F(i) = C.If F(i) # F,
then F (i) = {a + bi | a, b € F}. The absolute value of F can be extended to F (i) by

putting
lla + bil| = /|al> + |b|2,

and it is easy to see that F'(i) is complete. Then from Proposition 2.3.16, we conclude
that F (i) = C and since R C F, it follows that F = R. O

Remark 2.3.18. Proposition 2.3.16 is essentially the Gelfand—Mazur theorem [130,
Theorem 18.7], and Theorem 2.3.17 is called the theorem of Ostrowski. For the proof
of Proposition 2.3.16 we have used the theorem of Hahn—Banach, which is a standard
result in the theory of functional analysis that can be found in any book in that area,
for instance [130, Theorem 5.16]. The other ingredient, Liouville’s theorem, should
be well known from any basic course in complex analysis [130, Theorem 10.23].

Corollary 2.3.19. The only archimedean fields are the subfields of C with the usual
absolute value. m|

2.4 Valuations in Rational Function Fields

The purpose of this section is to find the analogue of Theorem 1.2.11, that is, to char-
acterize all valuations in k(x), for k an arbitrary field, such that the valuation is trivial
on k.
First we study all valuations defined in a similar way as the p-adic valuations in
Q. Let f(x) € k[x] be an irreducible monic polynomial. For «(x) € k(x), we write
h(x) su(x)

Ol(x)=@=f(x)m

with u(x) and v(x) € k[x] relatively prime to f(x),and s € Z. Let
vf i k(x)* — Z bedefinedby vy (x(x)) =s.
Then v is a valuation. We have

2, =9, = 12 k| = 1{ = Kklx]
v =Up = %6 @) | (b)), f(x)) = = KLXI(f)>
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and

a(x)

Py, =Pr= {m € k(x) | f)la(x), (b(x), f(x)) = 1},

where k[x](r) denotes the localization of k[x] at § = { f@)" };O:O. Now, ¥ # k(x)
since + ¢ s If f # g with f, g € k[x] monic and irreducible polynomials, we have
vr(f) =1> 0and vg(f) = 0. Therefore vy and v, are inequivalent. Furthermore, if
o € k* then vy (o) = 0, that is, v is trivial over k.

The residue field is

vy /Py =klxlpn/(Hklx]p = k[x1/(f)

and k[x]/(f) is a finite extension of £ of degree equal to the degree of f.

Now, if y = % we have k(y) = k(x). Each monic polynomial that is irreducible in
k[y] has an associated valuation; in particular, for y € k[y] we have a valuation that
we denote by vy = vo. Now we study vee. Let ar(x) € k(x)*. Then a(x) = Zg; and
we have

I
_ <§> oy k() —(deg a—degb) 41(Y)
a(x) = = —4ab =y —
b(%) y~ebbi(y) b1(y)

with a1 (y), b1 (y) relatively prime to y. Therefore

Voo (@(x)) = vy (y‘<"°g“‘deg”>“‘—(y)) = —(dega — degh) = —dega(x),
b1(y)

where we define deg % =dega(x) — degb(x).

Now if f(x) € k[x] is a monic and irreducible polynomial, we have v/(f) = 1
and v (f) = —deg f < 0. Therefore vy and v are inequivalent.

Finally, we have

Do = Voo = klyl(y) = {% | deg f —degg 50},

ono =P = {@ | deg f —degg <0},

g(x)
and the residue field is
Yoo/ Poo = k¥ /yklyl) = kIy1/(y) = k.
The result we are looking for is given in the following theorem:

Theorem 2.4.1. The set of valuations v over k(x) such that v(a) = 0 for a € k* is
exactly
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{v | f(x) € k[x] is a monic and irreducible polynomial} U {vso}.

Furthermore, all of them are pairwise inequivalent and the residue field is a finite
extension of k. In case the valuation is vy, the degree of the residue field is equal
to the degree of the polynomail f and in case the valuation is v, the degree of the
residue fiels is equal to one. Finally, all these valuations are discrete.

Proof. It remains only to verify that given any nontrivial valuation v : k(x)* — G
such that G is an ordered group and v(a) = O for all @ € k*, then v is equivalent to
Voo OF to some v s, where f(x) € k[x] is monic and irreducible.

Let ¢ be the valuation ring of v and let P be its maximal ideal. Now, if x € ¥,
then k[x] C ¢. Let o = P N k[x]. We have g is a prime ideal of k[x], k N p = {0},
and 1 ¢ p. It follows that o = (f), where f is a monic and irreducible polynomial or
f=0.

If f = 0, then v (k[x]*) = {0}, so v (k(x)*) = 0. But then we have k(x) = ¥,
which contradicts the hypothesis that v is nontrivial. Therefore g = (f) with f # 0.
Let g, € k[x] with f t hand h ¢ g, that is, & is a unit in . We have v (%) >0,
which implies ¢y C 9.

Now assume that u(x) € k(x) \ ?¢. Then u = % with (g, h) = 1 and f | h.
Ifu € v, since g € ﬁ;i C 9, it follows that A~ = g_lu € ¥. However, we have
h € P C ¥, and this implies that /4 is a nonunit, which is absurd. Hence u ¢ ¥ and we
have ¢ C ¥y, s0 ¢ = ¥y. Therefore v and v f are equivalent.

Ifx ¢ 9,theny = % = x~1 € . From the above discussion, we conclude that

PNk[y] = (£(y)), where £(y) is a monic and irreducible polynomial. Now x = y_l ¢
¥, which is equivalent to saying that y is not a unit. Thus y € P Nk[y] = (£(y)) and
£(y) | y, which proves that £(y) = y. Therefore ¥ = ¥ and v is equivalent a voo. O

Note 2.4.2. From this point on, a valuation in a function field K with K /k(x) finite
will mean a nontrivial valuation v such that v(a) = 0 for all a € k*.

Now we will study the case of a function field K with field of constants k. If
x € K\ k, K/k(x) is a finite extension. If v is a valuation in K, v|(y) is a valuation in
k(x). Therefore we need to study extensions of valuations, or equivalently, extensions
of places.

Let K C L be a field extension and let o : K —> E U {oo} be a place over K.
We want to show that there exists a place over L, ¢r : L —> E| U {00}, such that
E C Ej and ¢1 |k = ¢k . For this purpose, we will prove the following result:

Theorem 2.4.3 (Chevalley’s lemma). Let K be a field, ¥ a subring of K, and let
¢ : 0 —> F be a ring homomorphism, where F is an algebraically closed field. Let
x € K*. Then ¢ can be extended to at least one of the rings ¥ [x] and ¥ [%]

Proof. We may assume that ¢ # 0, since otherwise the result is trivial. Let P = ker ¢.
Then P is a prime ideal of 9. Let 9p = {$ | a,b € 9,b ¢ P} D ©. The map ¢ can
be extended to ¢ : ¥p —> F by putting
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5(5)=22

We have ¢ (9p) = quote (0) = E. Set ¢(a) = a. Let T, T be two indeterminates
over ¥p and E respectively. Then ¢ can be extended in a unique way to ¢ : ¥p[T] —>
E [T] such that

n n
@ (ZaiTi) => aT'.
i=0 i=0
Define

A= {p(T) € ¥p[T]| p(x) =0} and A=¢ Q).

Then 2 is an ideal of 9p[T] and 2l is an ideal of E [T]

If 2 = (0), we define @ : Pp[x] — F by ® (x) = o € F for some arbitrary «.
Then

[ (Xn:aixi) = Zn:éiai.
i=0 i=0

If Y7 gaix =0,then Y'_ga;T' € 2, so that

n n n
Z&ifi=¢(ZGiTi) eA=(0) and Y o' =0.
i=0 i=0

i=0
Thus @ is the required extension. B B
IfA #0and A # E [T], we have 2 = (f (T)), where f is a nonconstant
polynomial over E. Let « be a root of £ (7T) in F. Such a root exists since F is

algebraically closed. Let ¢(x) = «. Then ¢ can be extended in a unique way to a
homomorphism of ¥p[x] since the image ¢ of any polynomial that vanishes at x is of

the form g (T) f (T) and therefore vanishes at T = «.

Finally, if A = E [T]. then ¢ cannot be extended to ¥p[x]. Indeed, for P (T) €
E[T]\ {0}, let P(T) € A be such that ¢(P(T)) = P(T); if ¢ could be extended to
¢: Oplx] — F, then we would have

0=¢(0) =@(P(x)) =P (@X),
which is impossible since ¢(x) would be a root of any polynomial.

Now we assume that ¢ cannot be extended to Jp [}1_(] either. Let

B = {p(T) e vp[T] | p<1) =0} with B =& (B).

X

Then we must have B = E [T ]. Thus there exist (T, g(T) € 9p[T] with
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f(TM)=a,T"+---+aT+ay and g(T)=bu,T" +---+bT + by

such that 3(f) = 1 = ¢(g) and f(x) = g (%) =0
We choose n, m to be minimal with this property. Without lost of generality, we
may assume m < n. Therefore

4_10:[)0:1 and C_ZIZI;/ZO for lv.]>0
Let go(T) = boT™ + - - - + byy—1 T + by, Using the division algorithm, we obtain
by f(T) = go(T)Q(T) + R(T)

with Q(T), R(T) € vp[T], and deg R < m = deg go(T).
Now

' ( 1 " 1 " m 1
go(x) = x bo+~-~+bm1<_) +b’“<_> - g<_)=0
X X X

and so

by f(x) =0 = go(x)Q(x) + R(x) =0+ R(x) = R(x),

that is, R(x) = 0.
On the other hand, we have

Therefore Q (T) = 0, R(T) = 1, which contradicts the minimality of n = deg f,

since R(T) satisfies

R(T)=1, R(x)=0, and degR <m <n.

Hence ¢ can be extended to ¥p [%] O

As a consequence of Chevalley’s lemma, we will obtain the existence of extensions
of places:

Theorem 2.4.4. Let K be a field, and let 9 € K be a subring. Let ¢ : 9 —> F be a
ring homomorphism, where F is an algebraically closed field. Then ¢ can be extended
to a monomorphism of K to F or to a place of K to F U {oc0}.

Proof. We may assume that ¢ # 0. Let
X ={ (@u, 9a) | ¥ € 9o C K, O subring of K,

@Yo : V¢ —> F ahomomorphism such that ¢4 |y = (p}.

We define an order in X by (pq, Vy) < (cpﬁ, ﬁﬁ) if and only if ¥, C g and
¢/3|19a = Pa-
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We have (¢, 9) € X, s0 X # . Now if {(¢y, Oa)}qe; S X is a chain, let ¥; =
Uae[ Yy and ¢; : ;] —> F be defined by ¢; (x) = ¢4 (x) for all x € ¥,. Then
(@1, ¥7) is an upper bound of the chain.

By Zorn’s lemma, X has a maximal element (dJ, 13"). First we will see that ¢’
is a valuation ring or ¥’ = K. If not, there exists x € K such that x ¢ ¥’ and
x~! ¢ v'. By Chevalley’s lemma, ® can be extended to a homomorphism of ©'[x]

or a homomorphism of ¥’ [}C] = [x_l] in F, but in any case this contradicts the
maximality of (&, 9).

Now if ' = K, ® is a monomorphism. If ¢’ # K, then for x € ¥’ with x ¢ (19’)*,
we must have ®(x) = 0, since otherwise the formula @ (x_l) = & (x)~! would
define an extension of ® to ¥’ [%] a contradiction to the maximality of (<1>, i )

Hence, we have ®(x) = 0 forx € 9\ (15" )* the latter being the maximal ideal P

of . Finally, ® can be extended to a place of K by defining ®(y) = cofory € K\
O

Corollary 2.4.5. If K C L is a field extension and ¢ : K — E U {00} is a place of
L, then ¢ can be extended to a place of L.

Proof. Let F be an algebraic closure of E and consider the ring
By ={x € K | g(x) # 00}

It follows from the remark after Proposition 2.2.11 that 9, is a valuation ring. Since
Uy, is a subring of L, by Theorem 2.4.4, ¢ can be extended either to a monomorphism
of L or to a place of L. However, since there exists x € K such that ¢ (x) = oo, the
extension is necessarily a place of L. O

Corollary 2.4.6. If v is a valuation in a field K and L is an extension of K, then v can
be extended to a valuation of L.

Proof. The statement follows from the correspondence between valuations and places
and from Corollary 2.4.5. O

Corollary 2.4.7. If K/k is a function field and x € K is a transcendental element
over k, then there exists at least a valuation v over K such that v(x) > 0.

Proof. In k(x) we have v, (x) = 1 > 0. If v is any extension of v, in K, then v(x) > 0.
O

Now we will show that every valuation in a function field is discrete, which will
allow us to assume that the value group of the valuation is Z. We will need two lemmas.

Lemma 2.4.8. Let W be an ordered group that contains Z and such that [W : Z] < oo.
Then W = Z.
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Proof. Since W /Z is finite, there exists n € N such that 0 # nW C Z. Therefore
nW = Z and since W is torsion free, we have nW = W. a

Lemma 2.4.9. Let L/K be a finite field extension with [L : K] = n. Let v be a
valuation over L with value group V. If W = v(K*) C V,then [V : W] =m < n.

Proof. See Exercise 2.6.5. O

As an immediate consequence we obtain the following theorem:
Theorem 2.4.10. Every valuation on a function field K / k is discrete.

Proof. If v is a valuation over K, let x € K be transcendental over K. It follows from
Theorem 2.4.1 that v]g(y) is discrete. The fact that v is discrete is a consequence of
Lemmas 2.4.8 and 2.4.9. m|

Next we will define the degree of a place in a function field. Let K /k be a function
field, where k is the exact field of constants. If ¢ is a place over K, let ¢ and P be the
valuation ring and the maximal ideal associated to ¢ respectively, that is,

¢ : K — k(P) U {oo},

where k (P) = ¢ () = ¢/P (recall that ¥ = {x e K |pk) # oo} P = {x € K |
9(x) =0}, k €9, andk NP = (0)).

Notation 2.4.11. If v is a valuation in K, P the associated ideal, and ¥p the valuation
ring, we will write k (P) = vp /P for the residue field associated to P.

Resuming the above development, we have k C 9, kNP = (0),s0¢ : k — k (P)
is a monomorphism. Therefore k (P) is an extension of k. The importance of this
extension is that it is finite.

Theorem 2.4.12. Let K / k be a function field and let P be a maximal ideal associated
to a place of K. Then fp = dg (P) = [k (P) : k] < oo.

Proof. Let ¢ be the place associated to P, i.e.,
¢ : K — k(P)U{oo}, with ¢ (P)=0.

For x € P \ {0}, we have ¢(x) = 0. Since k € ¢ where ¥ is the associated valuation
ring, ¢l : k —> k (P) is a field monomorphism. Therefore ¢(x) = 0 implies that
x = 0 or x is transcendental. Since we chose x # 0, x is necessarily transcendental.
We have [K : k(x)] = n < oo. It will be shown that in fact [k (P) : k] < n.

Let a1, a2, ... ,a,41 € k(P) be all distinct (if this is not possible, that is, if
|k (P)| < n, the result is immediate). Let a; € ¥ be such that ¢ (a¢;) = «;. Since
[K : k(x)] = n, there exist polynomials { f; (x)}?;rll C k[x] such that

n+1

> aifix)=0 2.1)
i=1
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with some f;(x) = by,x™ + -+ + b1x + by, bp # 0. Let f;(x) = ¢; + xg;(x) with
¢; € k, and, of course, ¢c; = by # 0. Then from (2.1), we obtain the relation

n+1 n+1

Y oaici =—x ) aigi(x). 22)
i=1 i=1

Applying ¢ to each side of (2.2) we obtain

n+1 n+1

D ciai =—¢(x) Y aigi(p (x) =0

i=1 i=1
with some ¢; # 0, which implies that the set {ozi}:'ill is linearly dependent over k.
Hence [k (P) : k] < n. O

Definition 2.4.13. The number fp = dx (P) = [k (P) : k] is called the degree of the
place P or the inertia degree of P.

Example 2.4.14. If K = k(x) and P corresponds to the valuation given by the monic
polynomial f(x) € k[x], then k(P) = k[x]/(f(x)). Hence [k(P) : k] = deg f. Also,
if P corresponds to the valuation given by 1/x, we have [k(P) : k] = 1.

Corollary 2.4.15. For any place P, fp satisfies 1 < fp < n, wheren = [K : k(x)],
x is any element such that vp(x) # 0, and vp is the associated valuation.

Proof. If ¢ is the place associated to vp, vp(x) # O is equivalent to ¢(x) = 0 or
¢(x) = co. The case ¢(x) = oo can be reduced to ¢ (x ') = 0,k(x) =k (x7!). O

Corollary 2.4.16. If the field of constants of k is algebraically closed, then fp = 1
for every place P.

Proof. Since k is algebraically closed and & (P) is a finite extension of k, in particular
algebraic, then k (P) = k. Therefore fp = [k (P) : k] = 1. O

2.5 Artin’s Approximation Theorem

The theorem that we will prove in this section, as indicated by the title, is due to
Emil Artin. This result essentially establishes that given a finite number of pairwise
inequivalent absolute values over a field K, and given the same number of elements of
K, we can approximate simultaneously all those elements by a single element of K,
each approximation being given in the respective absolute value. Here the phrase “a
finite number of absolute values” is necessary in the sense that there does not exist an
approximation theorem for an infinite number of absolute values. The approximation
theorem can be considered as a generalization of the Chinese remainder theorem.
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For instance, given &1 = 1072, & = 1073, | . |1, | - |» the 5-adic and the 17-adic
absolute values respectively, there exists x € Z such that |[x —2|; < e and |[x — 7|2 <
&7. We use the Chinese remainder theorem to find x satisfying x = 2 mod 5" and
x = 7 mod 17" for some n to be given later. Thus we may write x = 2 4 5"¢ and
x =7+ 17"s, so

x =251 = 5"t < 5" =57" and |x =T} =[17"sa < 17" = 177"

Therefore if we choose n > 25logs 10 and n > 30log; 10, x satisfies |x — 2|; < &
and [x — 7]y < &.

Recall that two nontrivial absolute values | |1, | |2 over a field K are called equiva-
lentif |x|; < 1 <= |x|2 < 1, or, which is the same, if they define the same topology
on K.

Proposition 2.5.1. Let K be an arbitrary field, and let | |, ... ,| |, be n nontrivial
pairwise inequivalent absolute values over K. Then there exists an element a of K
such that la|y > land |alp <1,...,|al, < 1.

Proof. We will proceed by induction on n. If n = 2, then there exist elements b, c € K*
such that

[bly > 1, [bl2<1 and |[c[2>1, |[c|) =1
Leta = IE’.We have

161 ]2
lali = —=1bl1 >1 and |alp=—=<1bl2 <1.
el lcl2

Therefore a is the element we are looking for.
Let’s assume that the result holds for » — 1 > 1. For n, we begin by choosing
b € K such that

b1 >1 and |blp <1,...,|blp—1 <1,
and ¢ € K such that
lcl1 > 1, Jcl, < 1.
Now if |b|, < 1, then for m € N, a = b™ ¢ satisfies

laly = |bIT'|cl > 1,
lali = |b[}"|c]li —— 0, 2<i<n-—1,
m—0o0
laln = 1bly' el < 1.
Hence, taking m to be large enough, a = b c satisfies |a|; > 1 and |a|; < 1,i =

2,..., 1.
Now assume that |b|,, > 1. Then
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b 1 [ ln 1 _1
L4om L] moos 041
since
" i b | i .
- —> 0 and —>0, i=2,...,n—1.
b m—00 14+b" m—oo
Thus
b"c
—_— leln < 15
1+pm p M—>00
b"c
—_— 0, i=2,...,n—1;
L+b™|; m—ooo
b"c
— |c|1 > 1.
14+ pm | m—o00

Therefore a = %, for a large enough natural number m, is the required element. O

Proposition 2.5.2. Let | |1, ... , | |, be nontrivial pairwise inequivalent absolute val-
ues over a field K. Given ¢ > 0, ¢ € R, there exists x € K such that |1 — x| < € and
|x|i <efori=2,...,n.

Proof. Let a € K be such that

laly > 1, and |a|; <1, i=2,...,n.

Let

o 1 for | |1,

X = ] ——>

Tam om0 o for |, 2<i<n.
For m large enough, x satisfies the conditions of the proposition. O
Theorem 2.5.3 (Approximation Theorem). Let | |1, ... , | |, be nontrivial pairwise
inequivalent absolute values over a field K . Givene > 0,¢ € R,and ay, as, ... ,a, €

K, there exists y € K such that |y — a;|; < e for1 <i <n.

Proof. Let M = max {|a;|; | 1 <i,j <n}.If M = 0, the result is immediate. Let
M # 0. It follows from Proposition 2.5.2 that there exist by, by, ... , b, such that

& . & . .
|1_bi|i<W for i=1,...,n and |bj|l.<m for 1<i#j<n.
Lety =aiby +---+a,b,. Thenwe havefor 1 <i <n,y—aq; :Z';:lajbj+

J#
a; (b;j — 1), so that
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n n
y—ail; =Y Jajbs|, + laili b = 1; < MY |bj], + M |bi —1]; <

j=1 j=1
J#i J#i
M( 1 e ny: & n—1 + 1
< n—1)—— — = —)le=e.
Mn Mn n n
Hence y satisfies the conditions of the theorem. m]

The next results are applications of some versions of the approximation theorem.
In particular, Example 2.5.7 will be very useful.

Corollary 2.5.4. Let | |1, ... , | | be pairwise nontrivial inequivalent absolute values
over a field K. Denote by K; the topological space whose underlying set is K and the
topology is generated by | |;. Let K1 X --- x K, be given with the product topology

K— K| x---xK

and let " be the diagonal map. Then K is dense in K1 x - - - x K.
X (x,...,x)

O

Corollary 2.5.5. Let vy, . .. , v, be n nontrivial pairwise inequivalent absolute values
over a field K whose value groups are contained in R. Then given ay,ay, ... ,a, € K
and M € R, there exists x € K such thatv; (x —a;) > M fori =1,... ,n.

Proof. Let |x|; = ¢ %™ Then | |1,...,| |, are nontrivial pairwise inequivalent ab-
solute values satisfying v; (x) = — In |x|;. The required solution is

vi(x —a); =—Inlx —ai; = M < |x —a]; <e ™. |
Corollary 2.5.6. Let vy, ... , v, be nontrivial inequivalent pairwise absolute values
over a field K with respective value groups G, ... , G, satisfying G; C R. Then
given g1 € Gy,...,8, € Gy and ay, ... ,a, € K, there exists z € K such that
vi(z—a)=gifori=1,...,n.

Proof. Let x be such that v; (x — ;) > g; fori =1, ..., n. Such x exists by Corollary
2.5.5.Letc; € K be such that v; (¢;) = g; andlet y € K be such thatv; (y —¢;) > gi.
Then

vi()=vi (y—ci+c¢)=min{v; y —¢;),vi(c)} =g, i=1,...,n

Letz =x + y. Then

vi(z—a))=v; (y+x—a)=min{v; (y),v; x —a;))} =gi,i=1,...,n. O
Example 2.5.7. Let K be a number field or a function field. Let Py, ... , P, be n dis-
tinct places of K. Letay, az, ... ,a, € K be arbitrary elements and letmy, mo, ... , my

be arbitrary natural numbers. Then the system of congruences x = a; mod PZ.m " has
a solution in K. The notation x = a mod P* means that x — a € P°, where P is
the ideal of the valuation. The existence of the solution follows from the fact that

x —a € P" <> v; (x —a;) > m;, which in turn follows from Corollary 2.5.6.
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Remark 2.5.8. Corollaries 2.5.5 and 2.5.6 can be proved assuming only that the value
groups are archimedean. The proof is similar to that of Theorem 2.5.3. We say that
an ordered group G is archimedean if for any a, b € G such that a > 0, there exists
n € N such that na > b.

In Proposition 2.3.13 we proved that given a field K with discrete valuation v and
prime ideal p, if Ky is the completion of K with respect to v and 7 is a prime element,
then every element x of K, can be written in a unique way as

n
Zain’, meZ, ai€s,
i=m

where S is a set of representatives of the residue field and 0 € S.

In the case of a number field, the residue field is of characteristic p > 0 and
the completion is of characteristic 0, so that K, cannot be isomorphic to the field of
Laurent series &k (p) ((7)) since these two fields are of different characteristic.

In the case of a function field K/k, the residue field & (p) is a finite extension of
the field of constants k. Therefore & (p) , k, K, and K, all have the same characteristic.
We will prove that in this case, K and & (p) ((x)) are isomorphic, where & (p) ((x)) is
the field of Laurent series in the indeterminate x.

Definition 2.5.9. Let K/k be a function field, p be a place of K, and Ky the com-
pletion of K with respect to p. Let ¥ and # be the rings of integers of K and K
respectively. Let k(p) 1= k = V/p = 5 /p be the residue field. Afield § # that can
be mapped isomorphically onto k is called a coefficient field in ¥

Proposition 2.5.10. If S is a coefficient field, then Ky is isomorphic to S((x)) alge-
braically and topologically. Here the topology of M((x)) is the one corresponding to

the valuation
o0
v( Z anx”) =m,
n=m

where ay, # 0.

Proof. If ¢: S — k is the isomorphism defined by ¢(s) = s mod p, it follows from
Proposition 2.3.13 that the map

P S((x)) — Ky
Z apx" — Z p(ap)m"

is an algebraic and topological isomorphism since ¥ (x) = 7. O

The next result proves that 5 always contains a coefficient field. The hard case is
that in which £ is not perfect.
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Definition 2.5.11. Let k be of characteristic p > 0. A set § = {6;}ie; C k is called a
p-basis of k if
F=k'(S) and [KP16),.... 60,0 : K] = p"
for any distinct elements 61, ... ,6, € S.
It is easy to see that the empty set is a p-basis if and only if k is perfect.
Proposition 2.5.12. Let k be an imperfect field. Then there exist p-bases for k.

Proof. Let A = {S C k | forany distinct 0y, ... ,60, € S, [kP[01,...,0,] : kP] =
p" } Then ¢ € A and A # (. We define a partial order in .4 as follows:

S1<8 << 5 CS5.

Clearly every chain {S,} _, has an upper bound S := (,¢; So € A, so by Zorn’s
lemma, A contains a maximal element S. We have k = IEP[S], since otherwise we

may _choose ack \ IEI’[S], a1_1d if 61, ... ,0,, are n distinct elements of S, we have
a &kPlO,...,0,]and a? € kP, so that
[kP[61, ..., 0n,al : k7]
= [kP161, ..., 0p al 1 kP[O1, ..., 01][KP101, ..., 6a] : k7] = pp" = p"T.

Thus SU {a} € Aand S G S U {a}. The result follows. |

Definition 2.5.13. Assume that chark = p > 0.Leta € k. Anelementa € 9 is called
a multiplicative representative or Teichmiiller representative of a if ® = « mod p = a

and o € (o Kgm.
Proposition 2.5.14. Let o, B € & and vpla — B) = m withm € N. Then vp(otpn -
,BPn) >n+m.

Proof. We have o — 8 € p™. If 7 is a prime element for p, let @ = B + 7§ with
6 € ¥. Then

4 .
o’ =) (’?)/31’1 (x"8)! + . 2.3)
—\J
Jj=1
We have p mod p = p = 0in k. Thus vp(p) > 1.For 1 < j < p — 1, p divides (IJ”.);
hence vp((§)> > 1 and

vp(<’?)ﬁpf(n’"a)j) > 14+0+mj=m+1
y

forj=1,...,p—1.For j = p, we have
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() rmar) =m e

Thus by (2.3) we have vp(a” — f7) > m + 1. The result follows by induction. O

Proposition 2.5.15. An element a € k has a multiplicative representative if and only if
ae o kP" . In this case the multiplicative representative is unique. Furthermore,
ifa and B are the multiplicative representatives of a and b respectively, then of is the
multiplicative representative of ab.

Proof. Firstleta € (-, kP" . Since k is of characteristic p, for each m there exists a

unique a,, € k such that a,ﬁ = a. Choose B, € 9 such that Bm = a;,. We have
'Bm—i-l - am+l =dam = ﬂm

Hence, vy, (,3:;+1 — Bm) = 1. From Proposition 2.5.14 we obtain

n+1

v(ﬂm+1 ,3,,,)2n+1 forall n>1.

In particular, the sequence { ,BZP +n} is Cauchy.
Let o; = limy,— o '31+n e 9. Then
P Y P
a; = hm :31+n nlingoﬁn =ap € K,
fori > 0. Since ag = ,B,fn = q for all n, we have @g = a9 = a, that is, g is a

multiplicative representative of a.

Conversely, if @ € k has a multiplicative representative o, then o € M=o K g " so
thata = @ € (20 k”"

To show the uniqueness, let o and 8 be two multlphcatlve representatlves ofa € k.

Then, writing o = oc,l:,m and g = ,an with oy, B € 3, we getal, = ,B,’,’, It follows

that o, = ,Bm since chark = p- Hence vp(a, — Bin) > 1. By Proposition 2.5.14 we
have

vple — B) = vp(oth — B ) = m+1

for all m. Thus o = B.

Finally, if « and g are the multiplicative representatives of a and b respectively,
then af = @B = ab and aff € ﬂmzo K,fm. Therefore, af is the multiplicative
representative of ab. o

Corollary 2.5.16. Let R be the set of multiplicative representatives of kind. If k is
a perfect field, then every element of k has its multiplicative representative in R. The

mapr: k — R, a — «, induces an isomorphism k* =R \ {0}.
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Proof. Since k is perfect, we have k?" = k for all m > 0. O

Definition 2.5.17. The correspondence 7 : k — R defined in Corollary 2.5.16 is called
the Teichmiiller map.

If k is finite then 2R \ {0} is a cyclic group of order ‘H -1

Corollary 2.5.18. If « and f are the multiplicative representatives of a and b € k
respectively, then o + B is the multiplicative representative of a + b.

Proof. Leta = ot,[,’,m and g = /3,,1)1m with m > 0. Then

m

at+B=al +BE = (am+Bn)" .

Henceoz—i—ﬁeﬂmzol(,fm ando + B =a + b. O.

Proposition 2.5.19. Let © = {6;}._, be a p-basis of k. For eachi € I, let a; € D be
such that a; = 0;. Then there exists an extension L of Ky, where L is a complete field,
such that

00
L=
m=0

Here L is the residue Jield of L and for each i € I, «; is the multiplicative repre-
sentative of 0; in L, and kP™" is the field of the roots of the polynomials T?" — y,
y €k.

Proof. Foreachm € N, let Ly, = Lyy—1 ({im},,) where foralli € I of, = aim—1.
Ly = Ky and o0 = «;. If L is the completion of L* = U,p>0 Lm, then L satisfies
the conditions of the proposition. Since «; € [, LP", it follows that ; is the
multiplicative representative of 6;. O

Now we are ready to prove our main result.

Theorem 2.5.20. Let K / k be a function field, p a place of K, Ky the completion of K
with respect to p, and 7 a prime element of p. Then Ky is isomorphic to k (p) (7)),
where k (p) is the residue field of p. More precisely, O contains a coefficient field S. If
k(p)/k is separable we may choose k C S, and S is unique satisfying this property. If
k(p)/ k is not separable, then S is not necessarily unique.

Proof.

I.-Separable Case: We have k (p) = v/p = f}/ﬁ. Let k (p) / k be separable. We
write k (p) = k (o), with a € k (p). Let f(x) be the irreducible polynomial of « over
k. Since « is separable, we have

J@x) =& —-a)glx) with g(x)ek(p)[x], and g(a)#0.
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Therefore, x — o and g(x) are relatively prime. Now consider f(x) as a polynomial
with coefficients in 9. If we apply Hensel’s lemma to f, we can see that f admits
a factor of degree one, ax + b € &[x], and such that the residue is @ = 1 mod p,
—b = o mod p.

Letoa; = —g € ¥ be such that a; mod p = . Now, ] is algebraic over k since
f(a1) = 0. Let n = deg f. The elements 1, e, ... ,a” ! are linearly independent
over k, so that k (1) is a set of representatives of k (p) and k (1) is a field with
k C Ky, a1 € Kp,and sok (1) € .

In order to prove the uniqueness of the field & («1), consider a subfield E C 5
such that E is a set of representatives of k (p). Leta, € E be such that ap mod p = «.
We have k (p) = k [«], so that E = k [az] = k (a2). Now f (p) mod p = f (@) =0,
and hence f (a2) = 0. Recall that

f@x) =(ax +Db)g(x), [f(a2) = (a2 +b)g(x2),

but

g (ap) mod p = g (o) # 0.

Thus ac + b = 0, thatis, 0 = —2 = oy and E = k (o).

Now if 7 is a prime element, then S = k («1) is the set of representatives of
k(p). We have § € Ky and m € Kp. Any element Z}(:O:m apt" of S((m)) is the
limit of the Cauchy sequence {Z:':m a;m’ };.,o:m C Ky and therefore converges in K.
Conversely, every element of Ky can be represented as a series. By all the above, the
theorem follows.

I1.-Inseparable Case: In this case, we have chark = p > 0. By Proposition
2.5.10, it suffices to show that there exists a coefficient field in &. Let L be as in
Proposition 2.5.19. We have L? = L, so L is a perfect field and by the first case there
is a unique coefficient field N of L in 9. Let S be the subfield of N corresponding to
k=k(p).Ify € S, then 7 € k?"[©] for some m, where © = {6;},_, is a p basis of
k. With the notation of Proposition 2.5.19 there exists an element

—m

Bm € é[{ai,m}iel] such that S, = 77
It follows that

Bm = Vpim mod pr,

where py is the maximal ideal of the valuation ring 97 . From Proposition 2.5.14 we
obtain that B, = y mod p’'™'. Since

B e 07" [eu)i,] €9,

it follows that
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. . pm A
y = lim B, €79.
m—0oQ0
Therefore S € & and S is a coefficient field of & in . o

Remark 2.5.21. When k(p)/k is inseparable, there exist infinitely many coefficient
fields. This follows from the proof of Theorem 2.5.20. That is, if we apply the given
construction to another set of elements alf € ¥ with o = &l{ (see Proposition 2.5.19),
then we obtain a coefficient field S’ containing . Since pN S = pN S = (0), we
have S # §'.

Remark 2.5.22. When k (p) / k is not separable, then it is not always possible to choose
the coefficient field S so thatk C S.

Example 2.5.23. Let k be a nonperfect field of characteristic p, that is, k? # k. Let
a € k\ kP and

K =k(x), f(x) =xP —a € k[x].

Then f is irreducible and defines a place p with vy (x” —a) = 1. We have k (p) =
k(b) with b? = a. Let us see that a is not a p-power in Kp. We have that x” —aisa
prime element for p (see after Definition 2.3.9). Assume that there exists y € K such
that y? = a. Then

-0 =y —xP=a—-x =—-f),
whence

1 =vp(f(x) = vp ((y —x)P) = pop(y — x),

which is impossible. Hence, if § is any field contained in P that is a system of repre-
sentatives, then a ¢ S. Indeed, if a € S = k (p), then there exists by € § € K} such
that b’ = a. Therefore k Z S.

2.6 Exercises

Exercise 2.6.1. Let K = k(x) and y = 1/x. Let g(y) € k[y] be a monic irreducible
polynomial in y and v, be the valuation associated to g(y). Which valuation in the set
{vf, voo | f(x) € k[x] irreducible} does v, correspond to?

Exercise 2.6.2. Let x = Z;’;m app" € Qp, wherea, € {0,1,2,..., p — 1}. Prove
that x € Q if and only if there exists ng € Z, ngp > m, and k € N such that a,1; = a,
for all n > ny, that, is x is periodic after a certain index.

Exercise 2.6.3. Let ¢ be a place of K. Show that ¢(0) = 0 and ¢(1) = 1.
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Exercise 2.6.4. Let p € Z be a prime number. Let v,: Q — Z be the p-adic valua-
tion, that is, if x = p*3 € Q*,a,b € Z, pfa, p{ b, thenv,(x) = a.

Let v be any valuation of Q. We have v(n) > v(1) > 0 for all n € N. Prove that
there exists p € N minimum such that v(p) > 0.

Show that p is a prime number and that v is equivalent to v ,.

Exercise 2.6.5. Let L/FE be a field extension and w: L — G U {oo} be a valuation
such that w(L*) = G.Let H = w(E*) < G.

Show that if x1, ..., x, € L are such that w(xy), ..., w(x;,) are distinct classes
of G modulo H, then x1, x2, ... , x, are linearly independent over E. In particular,
|[G:HI<|[L:E].

Exercise 2.6.6. Let K/k be a function field. Show that all valuations of K that are
trivial on k* are discrete.

Exercise 2.6.7. Let f(x) € k[x] be a monic and irreducible polynomial. Let v be
the valuation associated with the valuation ring ©  and maximal ideal g . Prove that

Oyl = klx1/(f(x)).

Exercise 2.6.8. Let &k be an arbitrary field and K = k(x) be the rational function field.
Let y = L% ¢ k(x) with (f(x), g(x)) = 1 and y & k.

(x)

Prove that [k(x) : k(y)] = max{deg f(x), deg g(x)}.
Let ¢: K — K be such that

¢ € Auyy K =
{¢: K — K | ¢ is automorphism of K and ¢(a) =« ¥V a € k}.

Prove that ¢ (x) = ?fis witha, b, c,d € k, and ad — bc # 0.

Exercise 2.6.9. Let k be any field, K = k(x) be a rational function field over &, and
7 = % with a, b, ¢, d € k and ad — bc # 0. Let f(z) € k[z] be a monic and
irreducible polynomial. Then there exists a unique place p of K such that vy (f(2)) =

1. Describe p in terms of x.

Exercise 2.6.10. Find |Aut; k(x)| when k = I, is the finite field containing ¢ ele-
ments.

Exercise 2.6.11. Let K be a number field, that is, [K : Q] < oo. Let g1, ... , g5 be
different places of K (in this case we may consider place =ideal of ¥g), my, ... ,mg €
N,and ay, ..., as; € K arbitrary. Show that there exists x € K such that x = @; mod
©;", 1 <i <s,where ;" denotes the m;th power of the prime ideal ;.

Exercise 2.6.12. Let E C F be two arbitrary fields. Let x be any element in some field
containing F such that x is transcendental over F. Prove that [F : E] = [F(x) : E(x)]
(finite or infinite).
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Exercise 2.6.13. Let ¢ be a valuation ring, P its maximal ideal, let K = quot ¢ and
E =9/P.Let E; = E U {oo} and consider ¢: K — E; given by

xmod P ifx e,

i) = ifx ¢ 0.

Prove that ¢ is a place and ¥, = ¥.

Exercise 2.6.14. Given a nonarchimedean absolute value | | over a field K, prove using
only the properties of a nonarchimedean absolute value that {x € K | |x|] < l}isa
valuation ring with maximal ideal {x € K | |x| < 1}.

Exercise 2.6.15. Prove Corollaries 2.5.5 and 2.5.6 assuming only that the values are
archimedean instead of being contained in R.

Exercise 2.6.16. Let ¢ be a discrete valuation ring and let K = quot®. Prove that if
% C R ; K for aring R, then ¥ = R.
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The Riemann—Roch Theorem

The Riemann—Roch theorem relates various numbers and invariants of a function field,
by means of an equality that plays a central role in our whole theory: It allows us to
obtain elements that satisfy given properties, to construct automorphisms or homo-
morphisms with given characteristics, etc. On the other hand, this equality introduces
an arithmetic invariant that is intrinsic to any function field, namely its genus.

We begin by defining divisors, which codify a finite number of places and provide
us with relevant information on elements of the field that satisfy given conditions. We
study basic properties of divisors as well as some vector spaces associated to them.
Thanks to these vector spaces, which are subsets of the function field, we are able to
introduce in a natural way the genus of the field and obtain Riemann’s theorem.

Riemann’s theorem is just an inequality that relates the dimension of the vector
space associated to a divisor, the degree of the divisor, and the genus of the field. The
missing quantity that would allow us to have equality corresponds to the Riemann—
Roch theorem, and in order to find out what the inequality is, we will need the concept
of a differential.

We will motivate the definition of a differential by means of the line complex
integral. Using the residue theorem, we shall make these analytic concepts algebraic,
obtaining in this way the general definition of a Weil differential and the missing term
in Riemann’s theorem.

From this point on, by K/k we will mean a function field with field of con-
stants k.

3.1 Divisors

Notation 3.1.1. For a function field K, let Pg (or simply [P when there is no confusion
possible), be the set of all places of K, that is,

Px ={P | Pisaplace of K}.
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Definition 3.1.2. Given a function field K, the free abelian group generated by all the
elements of P is called the divisor group of K and will be denoted by D . The places
are also called prime divisors. The divisor group will be written multiplicatively.

Hence, an arbitrary divisor 2 can be written uniquely as HPEIPK PvP(W) | where
vp () € Z and vp (A) = 0 for almost all P (almost all means all but a finite number).
The unit divisor, that is, the divisor HPeP « PO is denoted by 1. The divisor N is the
only one satisfying vp (1) = 0 for every place P.

Definition 3.1.3. A divisor 2 is called integral if vp () > O for every place P. We
say that a divisor 2l divides another divisor ®B if there exists an integral divisor € such
that 8 = €. This is equivalent to saying that vp (8) > vp () for all P. When 2
divides B we will write 2 | 2B.

Definition 3.1.4. We say that two divisors 2, B are relatively prime or coprime if
vp () # 0 = vp (B) =0, that is, A and B have no common prime divisors.

Note that all the above are just generalizations of definitions and notation that are
used in the usual arithmetic.

Recall that given a place P, fp = [k (P) : k] denotes the degree of P (Definition
2.4.13), where k (P) is the residue field. We extend this definition to any divisor.

Definition 3.1.5. Let 2 be a divisor. We define the degree of 2, which will be denoted
by dx (1), or d (20) in case there is no possible confusion, by

dg ) = Z fpup (A), where A= l_[ prr ()
PEP[( PGPK

Definition 3.1.6. Let S be a set of prime divisors of K and let 2 be a divisor. We define
FRAS) ={xe K |vpkx)=vp @) forall P € S}.

Note that x € " (U]S) if and only if |x|p = e "P® < ¢ P for all P in S,
that is, I ((]S) measures how many elements in K have their absolute values | |p less
than or equal to the values e ~"?® for every prime divisor P in S.

For instance, if K = k(x), % = 7713 Py 2777_ 4, where P; corresponds to the polyno-
mial x —i and § = {Py, P>}, then T'(U|S) = {(x — D*"(x —2)"h(x) | n > 3, m >
=2, h(x) € k(x), vp, (h(x)) = vp,(h(x)) = O}.

Proposition 3.1.7. I" (A|S) is a vector space over the field k of constants of K .

Proof. Exercise 3.6.3. O
The proof of the next proposition is left to the reader.

Proposition 3.1.8.

@) IfA | B, then T (°B|S) € T (A]S).
(ii) If S € Sy then I (A|S1) € ' (A|S).



3.1 Divisors 57

(i) If ¢ = AB~! = [Ipep, prr(©) satisfies vp (€) = 0 for all P € S, then
' AS) =T (B|S). O

From Proposition 3.1.8, we obtain that given S and 2, we can define 2y =
[Ipes PV (%) (that is, 0o has support in S and its components are equal to those
of A). Then I (Ap|S) = T (AIS).

The next theorem, which is very important, allows us to measure the relative di-
mension of the vector spaces I' (]|S).

Theorem 3.1.9. Let S be finite and A|*B. Then

@S -1
d(Bo) —d =d (B2 " ).
M sy =4 (B0 —d @) = d (Bo2;")
Proof. By Proposition 3.1.8 (iii) we may assume ‘B = By and 2 = 2p. Since 2|’B,
we have B = APy --- P, with P; € S (not necessarily distinct). We have I" (2(|S) 2
CQAPLS) DT QAP P2S) D --- 2T APy ---Py|S) =T (B]S). Therefore

reus) . ' &LS) . I (AP]S)

my imy ———— +dimpy ————
T (B|S) T (AP;[S) T (AP, P,S) )

. DEPL--Pu1lS) '
-+ 4+ dimyg
T (B]S)
If we prove dimy rr((cflfg) = d (P) for P € S, then by (3.1) it will follow that
ras B 5

e = gasy =4 PO+ (Po) _d(m )

Hence it suffices to consider the case B = AP, P € §, which means we must
prove the equality
. IS
dimy ———— =d (P) = =[k(P):k]l=f
“TAPIS) P)y=fp=I1k(P):kl=f
First, from the approximation theorem (Corollary 2.5.6) there exists u € K such
that vg (1) = vg () for all S € S. In particular, u € T (A|S).
If x1,x2,...,xf,x741 are any f + 1 elements in I' (A|S), then

vp (xiu™") = vp () = vp (@) = vp () = vp () 2 0.

Thus, fori = 1,..., f + 1, xiu~! € vp, where vp is the valuation ring of P.

Since k (P) = 9p/P is of degree f over k, there exist aj, az, ... ,ar,ary1 € Kk,

not all zero, such that Zl 1 a,x, ulep. Equivalently, Z,f +11 a;x; € Pu. Therefore

Z 1 a,x, € I' (AP|S). This shows that

TSy
dimi = omprs) =
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Conversely, let y1, y2, ..., ys € Up be such that their classes y; mod P = y; €
k (P) are linearly independent over k. Again by the approximation theorem (Corollary
2.5.5), there exist y; € K such that

vp (¥ —y) >0 and vg(y)) >0 whenever G €S and & #P.

Then y; = y; mod P, and y/ = y; € k(P). Now if u is as before, we will have
ve (uy!) = ve () + vs () = ve () + 0 = ve (1) = vg () for all & € S such
that S # P.

On the other hand,

vp (uy;) = vp () + vp (¥]) = vp (W) +0 = vp (A)

since y; = y/ € k(P) and y; # 0. Hence y/,y; € 9p \ P, that is, vp (y]) =
vp (i) =0.

Therefore, {uy! }lf: |
independent modulo " (AP|S). Let Zif:] a;uy; € I' (AP|S) with a; € k. Then for all
G € S we have

f f S
Vs (Zaiuy{> =ve) +vs (Zaiyf) =vg @) +ve (ZCH)’E)

i=1 i=1 i=1

> vg (AP) = vs () +vs (P).

C I' (A]S). Now we will see that these elements are linearly

Thus

f
Vs (Za,-y{) >vg (P) forall & €S.
i=1

In particular, taking & = P, we obtain

f
vp (Zaiyi/) >vp (P) =1,

i=1
that is, Y/, a;y/ € P, whence Y/ ;5 = 0 € k (P). Since {)71.’}{:1 is linearly
independent over k, it follows that a; = 0,7 = 1, ..., f. Therefore

I &[$S)

"y < ’

Definition 3.1.10. Let 2 be any divisor of K. We denote by L (2() or L (2() the k-
vector spaces I' (2 | Pg). That is,

L) ={xeK|vpx)=>vpR)forall P € Px}.

For instance, if K = k(x), % = P? Py 27){ 4, where P; corresponds to the polyno-
mial x — i, we have
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L) ={x—1D3x =220 =7 "*h(x) | h(x) € k[x], deg h(x) < 3}.

Note that L(2() measures how many elements of K have all their absolute values
less than or equal to the values e P for every prime divisor P of the field.

We have that L (1) is a k-vector space and if 2 | B, then L () D L (*B). These
vector spaces play a central roll in the Riemann—Roch theorem.

Theorem 3.1.11. For any divisor A, we have £ () := dimg L () < oo. If A | ‘B,
then

LR +d®) <e(B)+d(B).

Proof. Let S be the set of prime divisors P such that vp () # 0 or vp (®8) # 0. Then
S is finite.
We have

L@)NT (B|S) =L (B). (3.2)

On the other hand, L () + " (B|S) < I (]S), so applying the isomorphism
theorems we obtain that there exists a monomorphism % — %,
that dimy % < dimy ﬁ((g"?) —d (B) —d @) < oo (see Exercise 3.6.24).

Let ‘B be an integral divisor with B # 91, where 1 is the unit divisor. For x €
L (®B)\ {0}, we have x ¢ k. Indeed, since ‘B is an integral divisor that is different from
I, there exists a prime divisor P such that vp (x) > vp (B) > 0, that is, vp(x) > 0,
and therefore x is transcendental. Furthermore, vg (x) > vg (B) > 0 for all &. This
is impossible since the valuation ve, in k(x) is such that veo(x) = —1 < 0. If we
extend v to K, then if v is such an extension we have v(x) < 0.

Hence, L (®8) = {0} for an integral divisor B # 9. Given 2 arbitrary, we will

prove that there exists an integral divisor B # 91 such that 2 | B. Let

which shows

B=6 [| PP wih 6ePx suchthat ve () =0.
PGPK
vp (A)#£0

Then there exists an integral divisor B such that vg (58) =1 > 0, B # I, and
c=BA =6 l_[ 7)|v7>(9l)|—v7:(m)+1

PEPK
vp (A)#£0

is an integral divisor. Therefore, 2 | B and we have

L&) L& . LA

——=——=L % d ¢®)=d <d(B)—d& .

L(B) 0] () an @) My gy = (B) —d @) < o0

This shows that £ (1) < oo for any divisor 2. The second part follows immediately
since £ () — £ (B) = dimy % <d(B)—d@). o

In the process of proving the above theorem, we have obtained the following corol-
lary:
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Corollary 3.1.12. If B is an integral divisor and 6 # N, then L (B) = 0. O

For the next proposition, and only for it, we consider the possibility that the field
k" of constants of a function field over k properly contains k. In any case, we have
[k : k] < oo (Proposition 2.1.6).

Proposition 3.1.13. Let K be a function field over k. Let k' be the field of constants of
K. Then if W is the principal divisor of K, we have L () = k'.

Proof. If x is transcendental over k, the valuation vy, in k'(x) satisfies voo(x) = —1.
When we extend v to a valuation v in K, we obtain v(x) < 0. On the other hand, we
have

LOY) ={z€ K |vp(z) = vp ) =0 forall P}.

Therefore L (M) C k'.
Now if « € k' and o # O, then « is algebraic over k. Hence there exist
ap, ... ,a,—1 € k such that

n—1
a"+ay,_ 10" '+t aja+ap=0, thatis, o' =— Zaiai #0.
i=0
Assume that vp (o) # 0 for some prime divisor P. Then for a; # 0,

vp (@i ) = vp (@) +ivp (@) = ivp (@) # jop (@) for i # .

That is,

n—1
vp (— Zaia') = min {ivp (@) # nvp @
i=0 !

which is absurd.
Hence, we have obtained that vp (@) = O for all @ € k' such that @ # 0, so
k' € L (), proving the equality. i

Corollary 3.1.14. If o € k' is nonzero, then vp (a) = 0 for any prime divisor P. O

Coming back to our usual notation, namely when k denotes the exact field of con-
stants of K, we have the following corollary:

Corollary 3.1.15. L (M) = k and dim L (N) = 1. O
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3.2 Principal Divisors and Class Groups

The first part of this section will be dedicated to proving two important results, which
are:

(i) If x € K is nonzero there exist only a finite number of places P such that
vp(x) # 0.
As a consequence of (i), for any x € K* we can define the divisor of x by (x)x =
[lpep, PP @) This will allow us to prove:

(ii) d ((x)g) =0 forall x € K*.

In other words, (x) g codifies all the absolute values or valuations of x in a single
divisor, which will be of degree 0.

Theorem 3.2.1. If x € K¥*, there exists only a finite number of places P such that
vp(x) # 0.

Proof. If x € k*, then vp(x) = 0 for all P and there is nothing to prove. Now assume
that x € K \ k, that is, x is transcendental. Let [K : k(x)] = N < oco.Let Py, ..., P,
be n distinct places such that vp,(x) > O fori = 1,...,n. We will see thatn < N.

Let B =[]/, P'P ™). Clearly B is an integral divisor. Let S = {Py, ... , P,}. From
Theorem 3.1.9 we obtain

(M)
I (BIS)

=d(B)-dM)=d(B) =Y fpvp () (33)
i=0

imk

Let y1, ¥2,..., YN, YN+1, be N + 1 distinct elements of I" (91|.5). That is,
vp(yj) >vp(M) =0, with PeS and j=1,2,..., N+ 1.

Since [K : k(x)] = N, there exist polynomials f; € k[x] of which at least one has a

7:11 fi(x)y;j = 0. We write fj(x) =aj +xg;(x)

e N+l N+1 _ s
with aj € k. Then } ;7\ a;y; = —x ) ;7| gj(x)y;, where some a; is nonzero.

nonzero constant term such that )

Since vp, (x) > 0, we have vp, (gj (x)) > 0. Therefore

N+1 N+1
vp, (Z ajyj) = vp, (x) + vp, (Z gj(x)yj>

j=1 j=1
>vp(x)=vp, (B), i=1,...,n,

that is, Zjvjll ajyj € I' (°B|S). Hence

© (Os)
T BIS)

=Y fpup(x) < N.
i=1

In particular, n < N.
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We have proved that there are at most N distinct places P such that vp(x) > 0.
1

Taking y = |, we show the existence of at most N different places & such that
vg(¥) = —va(x) > 0, 0or vg(x) < 0. Therefore there are at most 2N different places
P such that vp(x) # 0. O

Definition 3.2.2. Given x € K*, we define the principal divisor of x in K as (x)g =
[Ipep " PP ) _If there is no possible confusion, we will write (x) instead of (x)g.

Definition 3.2.3. Given x € K*, we define the divisor of zeros of x by

3, = H PP ()

PG]PK
vp (x)>0

and the pole divisor of x by

n= ] P .

PEP[(
vp (x)<0

We observe that both 3, and 91, are integral divisors and that

0k =30 = ;_

Proposition 3.2.4. The set of all principal divisors {(x)x | x € K*} is a subgroup
Of D[(.
Proof. From the properties of valuations it follows that (xy)x = (x)x(y)x and that

(g = @)k o

Definition 3.2.5. The subgroup of principal divisors is denoted by Pk and it is called
the principal divisor subgroup of K. The quotient Cx = Dk / Pk is called the com-
plete group of divisor classes of K or class group of K.

Remark 3.2.6. Theorem 3.2.1 proves that for x € K \ k, we have d (3,) < N and
d (M) < N, where [K : k(x)] = N. The next theorem proves that equality holds.

Theorem 3.2.7. For x € K\ k,d (3,) =d (My) = N = [K : k(x)].

Proof. Let y € K be an integral element over k[x]. Then y satisfies an equation of the
form

Y4 fue1 )Y+ A)Y + fox) =0 (3.4)

with f;(x) € k[x].
If Pt N, (that is, P is not a pole of x), then vp(x) > 0 and
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m—1

vp (y") = mup(y) = vp (— > ﬁ(x)y’>
i=0

> min_{vp (i) +ivp ()

> min {ivp (y)} =tvp(y), te€{0,1,...,m—1}.
0<i<m-—1

It follows that (m — f)vp(y) > 0 with m — ¢ > 0, so that vp(y) > 0. Therefore
PNy,

Now let y be an arbitrary element of K*. Since y is algebraic over k(x), it satisfies
an equation of the form

&Y + g1y T+ + g1y + go(x) =0 (3.5)

with g;(x) € k[x] and g,(x) # 0. Multiplying the equation (3.5) by g, @)L we
obtain

(&)Y +gr1(x) (g @)y 4+
+ g0 (1) 72g1(x) (8- (1)y) + & (x) " go(x) =0,

that is, z = g, (x)y is an integral element over k[x].

Let [K : k(x)] = N and let y1, y2, ..., yn be a basis of K /k(x). From the above
remarks, we may assume that yq, y, ..., yy are integral elements over k[x]. For any
r > 0, the set

{ ; i=0,...,r
x ]
Vi j=1,...N

is linearly independent over k. Now, from the previous observations we obtain that if
P ‘)ij then P | My, say N, = P2 and ‘)?yj = P98, where 2 and B are integral
divisors that are relatively prime to P and a, b > 0.

Leta; > g, with «; an integer. Then

o m;‘/' 3yj fPotju—bSyj )
)=y T T

with «aja—b >0,

SO vp (mj‘ff (y ])> > 0. This shows that there exists a natural number s such that
pIe (yj) is integral for all j.

Also, we have that 9™ (x*) (y;) are integral fori =0, ... ,rand j=1,... ,N.
In particular, x'y; € L (M%) fori = 0,...,r and j = 1,..., N and these
(r + 1)N elements are linearly independent over k. Since 91" ~%|N,, by Theorem
3.1.11 we have

) +d (M) M) +d (M)

On the other hand, since x is transcendental, then 1, is different from 91 and 91, is an
integral divisor, so by Corollary 3.1.12, £ (91,) = 0.
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‘We obtain

(r+ DN <€) <€) +d Oy —d (M)

X

=04+dM)+T+)dy) = +s+ 1Dd () forall r >0.

Thus we have d (M) > I;]J(:S‘:Lll) ——> N, and d 91,) > N. Since we obtained
r—00

d (M) < N in the proof of Theorem 3.2.1, we have the equality d (M) = N.
Finally, we have 3, = 9 /x. Since k(x) =k ()lc) we apply the above argument to

% with [K tk (%)] = N. Hence, we obtain
d(3x) =d (M) =N. O
Remark 3.2.8. Observe that for x € K*, (x)x = 9tif and only if x € k*.
Corollary 3.2.9. For x € K*,d ((x)g) = 0.
Proof. If x € k* then (x) gk = N withd (x)gk) =d (N) =0.Ifx € K \ k, then
[K:k(x)]=N and d((x)xk)=dBx)—d®l)=N—-N=0. ]

Definition 3.2.10. We say that an element x of K* is divisible by a divisor 2, and we
write A | x, if A | (X)g. If x,y € K*, we write x = y mod 2 whenever x = y or
Al x —y.

Note 3.2.11. With the previous notation we have L () = {x € K | 2 | x}. Also note
that for x € K*, x € L(2) if and only if (x) ¢ = 21€ for an integral divisor €.

Now letd : Dx — Z be the degree function. By definition d is a group homo-
morphism and the image of d is a nonzero subgroup of Z, that is, d (Dg) = mZ with
m € N. Therefore d (Dg) and Z are isomorphic as groups. Let

kerd = Dxo=1{d € Dx | d () =0}
be the subgroup of divisors of degree 0. We have

Px € Dko and Dgk/Dko= Dg/kerd =d (Dg) =Z.

We have the exact sequence

1—>DK,0—>DKi>mZ—>0.

It follows that Dg = Dg o @ Z (Exercise 3.6.2).

On the other hand, consider the function i : K* — Pk defined by i (x) = (x)g.
Clearly, i is a group epimorphism and keri = k* (Exercise 3.6.2). Therefore we obtain
the exact sequence
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l—k*— K*— Py —> 1 and Pg = K*/k*.

Since Px € Dg o, d induces an epimorphism d: Cx = Dkx/Px —> mZ, and
kerd = Cgo = {A mod Py | d () =0} = Dko/Px.

That is, the degree function can be defined in a class C € Cg as d(C) = d (%)
where 2 € C. This definition does not depend on the representative 2 since if 2 and
B determine the same class C of Cg, then there exists x € K* such that

A=Bx)x and d@)=dB)+d (k) =d(B)+0=d(B).

Definition 3.2.12. The degree of a class C € Ck is defined by d (C) = d (), where
2l is any divisor belonging to C.

Definition 3.2.13. The group Ck o is called the group of classes of divisors of de-
gree 0.

‘We observe that since
d
1—>CK’0—>CK—>mZ—>0

is exact it follows that Cx = Ck o @ Z (see Exercise 3.6.2). In particular Ck is never
a finite group.

Definition 3.2.14. If Ck  is finite, the number 2g = !C K,O‘ is called the class number
of the field K .

We collect the above discussion into the following theorem:

Theorem 3.2.15. Let K/k be a function field. The degree function d : Dg — 7
defines an exact sequence

1—>DK,0—>DKi>mZ—>O,

where m € N, mZ = Z, Dg = Dk o @ Z, Dk o = kerd is the subgroup consisting
of all divisors of degree 0 of K, and Px < Dy o. This sequence induces the exact
sequence

1—>CK,0—>CKi>mZ—>O,
which implies
Cxk ECko®Z.
Finally, we have the exact sequence
| — k* —> K* -5 P —> 1,
where i(x) = (x)k, and as a consequence the sequence
| — k* —> K* -5 Dp =5 Cx —> 1

is exact, where w is the natural projection. O
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For further reference, we list all the exact sequences obtained:

1

—d
1 — Dgo — Dk 257 —0, D = Dk o ®Z, 3.6)
La
1—>CK’()—>CKm—>Z—>O, CKQCK,OGBZ, (37)
| — k" — K* 5 Pg —> 1, (3.8)
| — k* — K* -5 Dg 55 Cx —> 1, (3.9)
1—>PK—>DK—>CK—>1. (310)

Example 3.2.16. Let K = k(x) be arational function field. Let 2 be a divisor of degree
0, that is, A € Dg o. We write 2 = [];_, P, where each P; (1 <i < r)is a prime
divisor of K. We have d () = > i_, a;d (P;) = 0.

Now choose P, to be P, i.e., the place corresponding to the valuation vy,. Each
Pi (1 <i <r —1)is associated to some irreducible polynomial f;(x) of k[x]. We
have d (Pso) = 1.

Therefore o, = — lr.;(; a; deg f;. Now, for any valuation v # vy, v, We have
v(fi) =0,vp (fi)) = 1,and v (f;) = — deg f;. Hence the divisor of f; is (fi)x =
7%, where P; is the divisor corresponding to v . and P, = Py is the prime divisor

corresponding to vs,. Therefore

r—1 o

r—1 v r—1 o Pi
(H Ji(x) ’)K = E(ﬁ(x))K = EW =

o0

_ (l_ll P,-“f) P g =,

i=1 i=1

that is, 2 is principal since 2 = («(x)) g, where a(x) = ]_[lr;ll fi)% € k(x)*. We
observe that if r = 0,then A =9 = (1), 1 € k*.

This shows that Dg o = Pg. Thus Dk o/Px = Cko ={l}and hg = 1.

In short, we have proved that any rational function field has class number 1.

Finally, since d (Ps) = 1, the degree function d is surjective: d (Dg) = Z and
Cx = 7.

Note 3.2.17. If d (Dg) = mZ with m € N, we have
m = min{n € N | there exists a divisor 2 such that d () = n}.

When K = k(x) we have m = 1. If k is algebraically closed every prime divisor is of
degree 1 so that m = 1. This is not true in general. Later on we will see an example
where m = 2 (Proposition 4.1.9). An important result is that when & is a finite field,
m = 1. This will be proved in Chapter 6 (Theorem 6.3.8).

We end this section with a generalization of Corollary 3.1.12.
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Proposition 3.2.18. If B is a divisor such that d ((8) > 0 or d ((8) = 0 and B
is not principal, then L (B) = {0}. In particular, if B is integral and B # N then
L (B) = {0}. If B = (x) is principal, we have L (B) = {ax | « € k} and £(*B) = 1.

Proof. 1f d B) > 0 and x € L (*B) \ {0}, then (x)g = BE, where ¢ is an integral
divisor. Thus 0 = d ((x)g) = d (B) + d (€) > d (*B) > 0, which is absurd. Hence,
we have L (°%8) = {0}.

Now if d (28) = 0 and B is not principal, assume that there exists x € L (98) \ {0}.
Then (x)x = B¢ for some integral divisor €. Therefore 0 = d ((x)g) = d (B) +
d (€) = d (¢), that is, € is integral and of degree 0, so € = )t and B = (x)g, which
contradicts the hypothesis.

In particular, if ®B is an integral divisor, we have B # O with d (B) > 0 and
L (°B) = {0}.

Finally, if 8 = (x) is principal, thenif y € L ((x)g)\{0}, we have (y)x = (x)k.
Hence y = ax for some « € k* and L ((x)g) = {ox | @ € k}. O

3.3 Repartitions or Adeles

We start this section by proving Riemann’s theorem, which constitutes half of the
Riemann—Roch theorem, the most important result of this book. For this purpose we
need the following proposition:

Proposition 3.3.1. Let x € K be a transcendental element. Then there exists an inte-
ger a € 7 depending only on x such that £ (‘ﬁ;’”) +d (‘ﬂ;’") >aforallm e Z.

Proof. In the proof of Theorem 3.2.7 we obtained that there exists s € N such that for
all r > 0 we have

E(‘ﬂ;s_r) >Nr+1)=dMN)@F+1), and N =dMy) =[K :kx)].
Form =r +5 > s we have

O™ +d (M) = (r + Dd (M) —md Ny) = (r + 1 —m)d (Ny)
=(=s+1Dd(N,) =a,

where we define a to be (—s + 1)d (M,).
Now, for m < s, we have 21 | 91", so from Theorem 3.1.11 we obtain

CNT™) +d (M) = (M) +d (M) = a O
Theorem 3.3.2 (Riemann). Let x be a transcendental element and let
1—g=supfa| (M) +d(N;") =aforallm e Z},
that is, 1 — g is the greatest lower bound of the set
{e") +d (M) ImeZ} CZ.
Then for any divisor % € Dg we have £ () +d () > 1 — g.
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Proof. If 2, B are integral divisors and &€ = % = AB !, then B~!|¢ and by Theorem
3.1.11, we have

(@) +d(@) >t (%*‘) +d(<3*‘).

This shows that the theorem holds in general if it holds for divisors of the type
B! where 9B is an integral divisor. Now let z € K*, and let 2l € Dg be arbitrary.
Let

¢ : L&) — K bedefinedby ¢(y) =zy.

Since z # 0, ¢ is k-linear and injective. Its image is contained in L ((z)2). On the
other hand, consider the function

Vv :L((2)A) — K definedby v(y)=z'y.

Clearly v is injective and its image is contained in L (). Therefore L ((z)2) = im ¢
and

L((x)2)=LE&Y (3.11)
as k-vector spaces. In particular,
(@) =L (3.12)

forall z € K* and 2 € Dg. On the other hand, we have d ((z)21) = d ((z)) +d () =
d (%), that is,

LAY +d @) =L((22) +d (D). (3.13)
Let B be an arbitrary integral divisor and m > 0. By Theorem 3.1.11, we have
C(O"B) +d (NT"B) =L (N") +d (MN") = 1—g.
Now since x is transcendental, then d (91,) > 0, so

C(M"B) > —d(M"B)+1—g=md(Ny) —d(B)+1—g —— o0.
m— 00

Pick an m large enough so that £ (‘ﬁ;m%) > 0. In particular there exists y €
L (‘ﬁ;’”%), so we obtain the following implications

NPV | (y) = (MNTB ! is integral = N, | (y)B !
— ¢ (%*‘) +d (%*‘) —¢ ((y)%*l) +d ((y)%*‘)
(M) +d (") = 1-g,

which is what we wanted to prove. O
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Corollary 3.3.3. The number 1 — g is the greatest lower bound of the set
{€@)+d @) | Ae Dk}
and also the greatest lower bound of the set
{e(M") +d (M;™) | m e Z})
for any z € K \ k. In particular, 1 — g is independent of z. O

Definition 3.3.4. The number g = g is called the genus of the field K.

Example 3.3.5. Let K = k(x). Then it will be proved that £(p_!) = 7 + 1 (Proposition
4.1.3), where po is the pole divisor of x. Therefore

Lp) +dp) =t1+1—1=1.
It follows that gi(x) = 0.

Example 3.3.6. Let K = k(x, y) where y2 = f(x) € k[x] is a polynomial of even
degree m, f(x) is square-free and chark # 2. We will see (Corollary 4.3.6) that
L) =2t +2— % and N;') = —td(My) = 2¢. Thus

E(‘ﬁ;’)—i—d(‘ﬂ;f) =242 — % N, PR, Y %
Therefore gx = 5 — 1.

Proposition 3.3.7. We have g > 0.
Proof. The statement follows from £ () +d (M) =1+0>1—g. |

Definition 3.3.8. Let 2 € Dg. The nonnegative integer
5 @) =e(m—1) +d(21_1) tg—1 =e(m—1) —d@) +g—1

is called the specialty degree of .
If § ) = 0, A is called nonspecial.
If 6 ) > 0, Ais called special.

Remark 3.3.9. From the proof of Riemann’s theorem, we have obtained that for all
x € K*and for all A € Dg,£((x) Q) = £, thatis,if C € Cx and /A € C,
€ (A~") does not depend on 2 but only on C. In other words, if 2, B € C, we have

=B, =37 (x71), and e(2)=e(B7(x71)) = (B7).

Definition 3.3.10. Let C € Cg. We define the dimension N(C) of the class C
by N(C) = ¢ (Ql_l) for an arbitrary 2 € C. Equivalently, N(C) = ¢ () for any
Al ecC.



70 3 The Riemann—-Roch Theorem

For each place P of K, let ép € Kp, where Kp is the completion of K
with respect to P. The approximation theorem establishes that given a finite set
P1,Pa, ..., Py, of distinct places of K, there exists x € K such that vp, (x — &73[) >
Oforalli =1,...,n.Infact, the approximation theorem shows this for £&p, € K, but
if &p, € Kp,, we choose 57’71, € K such that vp, (épi — 57/’1) > m for m sufficiently
large.

A natural question is whether the approximation theorem is also true for an infinite
number of places, even with a weaker condition: given &p € Kp for each place P of
K, does there exist x € K such that vp (x — &p) > 0 for all P?

A necessary condition for the answer to the above question to be positive is that
vp (ép) > 0 for almost all P, since if P is such that vp (ép) < 0, the condition
vp (x — &p) > 0 implies

vp (x) = vp (x —ép +&p) = min{vp (x — &p) , vp (§p)} = vp (Ep) <O,

and this is possible only for a finite number of places P.
The above condition motivates the following definition.

Definition 3.3.11. A repartition or adele is a function ¢ : Py —> UPeIP’K Kp such
that ¢ (P) € Kp for all P and vp (¢ (P)) > 0 for almost all P.

Equivalently, a repartition § is a sequence § = {{p}pep, € HPEPK Kp such
that &p € ¥p for almost all P, where ¥p denotes the valuation ring of Kp. For a
repartition 6, 6p denotes its component at P.

The space of all repartitions of K will be denoted by Xx = Ak, or A = X in case
that the underlying field is clearly K.

We leave the proof of the next proposition to the reader.

Proposition 3.3.12. The set Xk is a k-algebra, that is, Xk is a k-vector space and
it is also a ring with its operations defined componentwise. In other words, for a €

k.£.0 € X we define (a&)p = akp: (€ + 0)p = &p + Op; (05)p = EpOp. 0

The function K i> X, defined by ¢ (x) = &, where (§x)p = x forall P, is a
monomorphism. Thus, under this injection we will assume that K € X by identifying
each x € K with the constant repartition equal to x for every component.

Proposition 3.3.13. For a place P, the valuation vp can be extended to X by defining
vp (&) = vp (&p) for all £ € X. This extension satisfies the same properties as the
original valuation on K, that is:

) vp (6 +60) = minf{vp (§), vp (0)} forall§,60 € X,
(i) vp (§0) = vp (§) + vp (0) forall§,0 € X,
>iii) vp (&x) = vp(x) forallx € K.

Proof. The result follows immediately from the definition. O
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Definition 3.3.14. Let % € Dk and & € Xg. We say that U divides & or that & is
divisible by 2 and we write & | £ if vp (§) > vp () for all P € Pg. We say that
two repartitions &, 6 are congruent modulo 2, and we write £ = 0 mod 2, if £ — 0 is
divisible by L.

Notation 3.3.15. Let 2 € Dg. We denote by
X ={ecx|A|§={cX|vp¢)zvp @) forall P € Pg}

the set of repartitions that are divisible by 2. Clearly X () is a k-vector space. We
will also write A g () = Xg ().

The set X(2) is similar to L(2) with repartitions instead of elements. Since we
may consider that the set of repartitions contains K* this allows us a greater degree of
flexibility in the study of valuations.

The question previous to Definition 3.3.11 can be reformulated and generalized in
the following way: given & € X, does there exist x € K such that x = & mod 2(? This
will be true if and only if 2 | £, — &, which is equivalent to vp (x — &p) > vp () for
all P € Pk. The original question corresponds to the case 2 = 1.

Theorem 3.3.16. Let 2, B € Dg be such that A | B. Let S = {P € Px | vp () #
0 or vp (B) # 0}. Then S is finite and

F@s) o X

= 3.14
I C¢B|S) XxX(B) ( )

as k-vector spaces. In particular,
dimy :;((i)) =d(B)—d @) < oco. (3.15)

Proof. For x € T (]S), we define the repartition u, by

x ifPeS

WP =10 itpes.

Observe that vp (ix) = vp ((Ux)p) = vp(x) = vp (A) for all P € Pk, that is,
Uy € X (). Define ¢ : ' (”A|S) — X (A) by ¢(x) = p,. It is easy to verify that ¢
is k-linear

For x € I (U|S) we have

e(x) =uy € X(B) < vpx) > vp (B) forall P € § <= x € T (*B|S),

r(25) x(2)

which means that the function ¢ TBS)  X(B)

induced by ¢ is a k-
monomorphism.

We will see that ¢ is also surjective. Let £ € X (). By the approximation theorem,
there exists x € K such that
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vp(x —&) > vp (B) forall P € S.
Since & € X (), we have u,, € X (). Indeed, if P ¢ S, then
vp (px) = vp(0) = oo,
and if P € S, then

vp (1y) = vp (x) = vp (x —&p +&p) = minfvp (x —&p), vp (§p)}
> min {vp (B) , vp )} =vp (A).

Furthermore,

vp (Uy — &) = vp (B) forall P € Pk,

so uy = & mod X (®B). Thus, for P € S, we have vp (x) > vp (). Therefore x €
I' (/A]S) and we have

P(x) =px +X(B) =6+ X(B),

that is, ¢ is surjective and we have proved the first part of the theorem. The second
part is an immediate consequence of Theorem 3.1.9. O

3.4 Differentials

Our main goal in this section is to define the concept of differential in a general func-
tion field. The original concept of differential is, naturally, analytic. Our first objective
is, starting from its analytic nature, to extract an algebraic representation of a differen-
tial in the complex plane in order to be able to give a general definition. It would have
been possible to give the definition directly without any previous motivation, but the
reason why we call this object a differential would be obscure as well as its similarity
with the differentials that everyone knows. The differentials defined here are the Weil
differentials. In Chapter 9 we will study the Hasse differentials, and in Chapter 14 we
will study successive differentials, namely the Hasse—Schmidt differentials.

First, let K = C(x) be the rational function field over the field of complex num-
bers. Let # € K. The object u dx can be viewed as a “linear integral element” in
the following way: if y is any path in C not containing any pole of u, then the linear
integral fy u dx is well defined. For a € C, let P, be the zero divisor of x — a, that is,

x—a)g = 77;:0 , and write
vp, (u) =: order of u dx in P,.

In the Riemann sphere, fora =00 € Coo = § 2 we have
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and
) u

udx =— [ uy “dy =— [ —dy.
% Y y Y

Since C(x) = C(y) and 9, = 3, it is reasonable to define the order of u dx in Peo

to be vp_ (1) — 2.
In short, we define the
ifa € C,

vp, (1)
if a = oo.

order of u dx ina € S* as
vp,, () —2

If a € C and y is a simple positively oriented closed path such that a is in the
interior of y and y does not contain any other pole of « in its interior, we have

1

— ‘(]{ u dx = Residue of # in (x = a) = Resu := Residue of u dx in P,,.

2wi J, x=a

For a = oo, we choose y to be a simple positively oriented closed path containing
every pole of u in the interior of y in the finite plane C. In other words, co is not
contained in the interior of the path when this path is considered in C. We have

1
Resu = ——— @ u dx := Residue of u dx in Py.
x=00 2zi J,

Hence, by definition we have
Resu dx =Resu, a € Cq.
X=a

a

Now, if aj, ap, ... ,a;, € C are all the poles of u in C and I' is a simple posi-
tively oriented closed path containing ay, az, , aj, in its interior, then by the residue

theorem, we have
1 h
— udx:E Res u = — Res u,
2ri J, — x=ai X=00

1=

that is,
> acC,, Resp, udx = 0.

If P is any place of K and « is an element of the completion of Kp of K with
respect to P, then we can define Resp o dx in an analogous way to the case o € K.
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To that end, first we write P = P, with a € C. By means of a change of variable

X —Xx—aorx — )lc, we may assume that P is the divisor of zeros Py of x. Then

a € C((x)) (Theorem 2.5.20). If @ = ZZO:m a,x", then

o0
adx = Zanx" dx and Rgsoc dx =a_;.

n=m

By this observation we may take £ € Xg = X, and u dx is as before and K =
C(x). Then if P is any place, we define

Pl (&) = residue in P of &épu dx.

We note that since vp (§p) > 0 and vp (1) > 0 for almost all P, then o? (&) =0 for
all but a finite number of places P. Then the function

w:X— C givenby w (€)= Z o’ (&)
PG]PK

is well defined and clearly C-linear. Our objective now is to study ker w.
Ift € K, then & € X satisfies

wE) =Y o (Ep)= Y ()= ) Restudx=0,
PePg PePg aeCqy

that is, K C ker w.

IfA = ]_[pepk por(d) js any divisor, we say that u dx = 0 mod 2 if the order
of u dx in P is greater than or equal to vp (2() for all P € Pg.

Let 2 be a divisor such that u dx = 0 mod 2. Set

x(m—l)z{gexm—l |g}={gex|550modm—1}
={eX|vp)=—vpR),PelPk}.

If& € X (A7"), then vp (§) = —vp () for all P € Px. Therefore

vp (Ep) +up () if P # Poo
order épudx =
vp Ep) +vp (u) —2if P = P

>—vpR)+vpR) =0,

N

so w” (§) = 0 for all P € Pk. In particular, we have o (§) = 0, that is, X (2~!)
ker w.

Therefore @ vanishes on K + X (2[_1), where 2( is any divisor such that u dx
0 mod .

All the previous discussion motivates the general definition of differential in an
arbitrary function field.

From this point on, K /k will denote an arbitrary function field.
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Definition 3.4.1. Let K /& be an arbitrary function field. A differential (Weil differen-
tial) in K is a k-linear function w : Xx — k such that there exists a divisor % € Dg
with the property that kerw 2 K + X (Ql_l). In this case we say that 2 divides v and
we write 2 | w.

Definition 3.4.2. A differential w in a function field K is said to be of the first kind or
a holomorphic differential if N | w, that is, if K + X (M) C ker w.

Proposition 3.4.3. If 2 and *B are divisors such that B | 2, then if A | w, we have
B | w.

Proof. Since B | A, we have A~'|B~!. Therefore ,’{(‘B_l) C .’{(2{‘1) and
X(%_l)—l—Kg%(%l_l)—l—l(gkerw,so%lw. O

Theorem 3.4.4. If A and *B are divisors in a function field K / k such that 2 | *B, then
we have the following exact sequence of k-vector spaces:
L () XD X))+ K

0 —> — — — 0. (3.16)
L (B) X (B) X(B)+K

In particular,
. X+ K _
Furthermore,

. X _ -1 B

for any divisor *B.

Proof. The natural injection i : X () — X () 4+ K, composed with the natural

projectionw : X () + K — ;((g)):f(’ gives an epimorphism
) XA+ K
= X)) — .
fEmen X w1k

Clearly X (°B) C ker f, so f induces an epimorphism

= X X+ K
: — .
xX(B) X(B)+K

To finish we use two equalities (see Exercise 3.6.10):

D XRNEXE) +K)=LE)+X(B),
2) LEHNX(EB) =L (B).
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Applying (1) and (2) we have

kerf_%@l)ﬂ(%(%)+l()_L(Q()+}C(SB): L&) L
B X (B) O X®B)  L@NX®B) LD

This proves (3.16).
Then we have

X+K X LA

dimg 2 TR _ gy, 28 k)
My +r - xm T m

From Theorem 3.3.16, we obtain that dimg % =d (2B) — d (). Therefore,
. X+ K
dimp ————=d@B)—dR)— L) — (B
lmkx(%)JrK (*B) &) — ) —€(B))

=) +d(B) - (LER)+d®)).

In order to prove the last equality, consider € to be any divisor such that £ (&) +
d(®) = 1 — gk, where gg is the genus of K. For each P € Pg, let up =
min {vp (B), vp (€)} and let A; = HPe]P’K PP . Then Ay | B and 2A; | €. From
Theorems 3.1.11 and 3.3.2 we obtain

Il—g=<t@)+d@) <L) +d(© =1—g,
thatis, £ (A1) +d (1) = 1 — g. Therefore

X XA LK
B +K - FEX®B LK
=UB)+d®B)-1-g=L(B)+d(B)—-1+¢g

=5(37").

For the other equality, consider 71, ... , T, to be m elements of X that are linearly
independent over the k-module X (%8) + K. Set

dimy = (B)+d(B)) — (L) +d )

wp = lI<rl;i<nm {vp (i), vp (B)}.

Let 2, = HPeIP’K PYP. Then Ay | 1; forall 1 <i < m,thatis, r; € X (2,). Thus

m < dimy X @)+ K
X(B)+ K

§£(%)+d(%)—(1—g)=8(%_1).

=({(B)+d(B)) — (@) +d @) =

Therefore dimy W =34 (%_1). |
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Proposition 3.4.5. Let 2 be a divisor in K. We define
D () = {w | w is a differential such that 2 | w}.

Then D (20) is isomorphic to the dual of the k-vector space In particular,

kS
X(AD+K"

dimy D () = dimy =3(m)=z(m—1)+d(m—l)—1+g.

_*
XA +K

Proof. Recall that given a vector space V over k, the dual V* of V is the vector space
of all linear functionals from V to k. Furthermore, if dim; V < oo we have dim; V =

dimg V*. Here, taking V = W, we have

V*:{f:m—)ku‘isk—linear}.
Now,
D () = {w | w is a differential such that 2 | w}
={a):%—>k|kerw2%(m*])+l{].
Therefore w € D () induces in a unique way

X

J):W—w, BeV a)(smod(ae(m—l)ﬂ()):w(s).

Conversely, given f € V* let w = f o, where 7 is the natural projection of X

. x .
in v Tx @K The functions

pay v, v by

defined by ¢ (w) = @ and i (f) = f o 7 respectively, are clearly k-linear, and we
have

@oy) (=W (N=¢(fom)=(fom)=f;

Yod)(w) =y (0) =worm =w.
In other words, ¢ and ¥ are inverse isomorphisms, which proves the proposition. O
Corollary 3.4.6. We have dimy D () = g, where g is the genus of K. That is, the
dimension of the vector space of holomorphic differentials is g.

Proof. By Proposition 3.4.5, we have

. . X
dlmk D (‘ﬁ) = dlmk m =34 (‘ﬁ)

=L +dM) —14+g=140—1+g=g. O
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Proposition 3.4.7. Let w|, wy be two differentials, and A1 | wi, Ao | wy, Ay,
Ay € Dg. Then if U is the greatest common divisor of A and Uy, that is, A =
HPEIF’K PP up = min {vp (Ay), vp (™A2)}, we have A | w, where w = w1 + w3.

Proof. Exercise 3.6.11. O
Proposition 3.4.8. The set Difg of all differentials over K is a K-vector space with

the operations (Xw) (§) = w (X&), X € K, w € Difg, & € X. Furthermore, if A | w,
and X # 0, then (X)g A | Xo.

Proof. First let us see that Xw is k-linear. If £, 0 € X and «, § € k, we have

(Xw) (@& + p0) = (X (2§ + pb)) = w (a X + X0)
= aw (X§) + fo (X0) = a (Xw) (6) +  (Xw) (0) .

Now, if A |wand & € X ((X)}1 Ql_1>, we have

vp ©) = vp (X0 A7) = —vp (X) = vp ),

so vp (XE) = vp(X) + vp(§) > —vp (), ie., X € X (A!). Therefore
(Xw) (§) = w (X&) = 0. This proves that Xw is a differential and that (X)x A | Xw.
The equalities
XY)w =X Yw),
X+YVVo=Xw+Yo,
X(w+0)=Xo+ X,
for X, Y € K, and w, @ € Difg are immediate and show that Difx is a K-vector

space. ]

The next result proves that the differentials are of dimension 1 over K. In particu-
lar, it says that the differentials u dx that we considered at the beginning of this section
are all such differentials existing in C(x).

Theorem 3.4.9. Let wy € Difx with wg # 0. Then every differential @ can be ex-
pressed in a unique way as w = Xwq for some X € K. In particular, dimg Difx = 1.

Proof. If w = 0, it suffices to take X = 0. Let w # 0. Let Bg | wo, B | w. Let A be an
integral divisor different from ). We consider

¢: L <Ql_l%51> — D (Q[_l) , definedby ¢ (X)= Xwyo,
and

v L (m—l%—l) — D (91—1), defined by ¥ (X) = Xo.
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Then ¢ and v are k-monomorphisms (see Exercise 3.6.12).
By Theorem 3.3.2, we have

(¢ (m—l%gl) +e (m—l%—l)) +(d (m—lfBgl) +d (m—l%—l))
>(1—g) +(1—g) =2—2g.
Therefore ¢ (218" ) + ¢ (A~1B) = 24 @) +d (Bo) +d (B) +2 - 2¢.
We have

dimkD(er) =5(2r‘) — WA M) +g—1=d@A)+g— 1.

Thus, if we choose d (1) such that
2d (A) +d (Bo)+d (B)+2—-2g >d @A) +g— 1,
or equivalently,
d @) > —d (Bo) — d (B) +3g — 3,

we will have dimy im ¢ + dimg imy > dimg D (2[’1), which implies that im¢ N
imy # {0}. Therefore there exist A, B € K* such that Awy = Bw. Equivalently,
w= %wo. The uniqueness follows from the fact that Difx is a K-vector space. a

The next step is to assign to each differential w # 0 a unique divisor.

Proposition 3.4.10. Assume that v € Difx and A, B € Dg are such that A | w and
B | w, and that & is the least common multiple of A and B, that is, € = HPEJP’K PUP,
where up = max {vp (), vp (B)}. Then € | w.

Proof. Let £ € X (€71), that is, vp (§) > —vp (€) = —max {vp (A), vp (B)}. We
define &', §” € X with the property

£p =&p and &p =0 for P such that vp (A) > vp (B);
&5 =0 and &5 = &p for P such that vp (A) < vp (B).

Then & = & + &”. We also observe that if vp () > vp (B), then vp (€) =
vp (), so

vp (§') = vp (§p) = vp (Ep) = —vp (O) = —vp ().
On the other hand, if vp (A) < vp (B), then
vp (&) =vp (B) and vp (§') =vp (0) =00 > —vp (A),
that is, ™" | £’. Similarly, we obtain B! | £”. Thus
w@ =0 +&)=0E)+w(E")=04+0=0,
which shows that X (¢!) + K C kerw. Therefore, € | w. O
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Theorem 3.4.11. For each differential w # 0, there exists a unique divisor, which will
denoted by (w)g, such that A | v <= A | (w)g. The divisor (w)g is the divisor
associated to the differential .

Proof. First let us see that the degrees of all possible divisors 2f such that 2 | w have
an upper bound.

Let 2 | w. Consider ¢ : L (Ql_l) —> D (N), defined by ¢ (X) = Xw. Then ¢ is
well defined since 2 | w and A~ | (X) g imply N | X .

Furthermore, ¢ is a k-monomorphism, so ¢ (Ql_l) < dimg D (1) = g. On the
other hand,

e +a (@) z1-g
s0
d(a ) =—d@z1-g—¢(A)z1-g-—g=1-2
Thus, we have

d@) <2g— 1.

We define (w)g to be a divisor of maximum degree such that (w)g | . We will
see that (w) g is unique.

If 2, B are two divisors of maximum degree such that 2 | @ and B | w, then if €
is the least common multiple of 2 and ‘B, then € | w and d (€) < d (). Now, since
A | €and B | &€, we have d (€) > d (). Hence, d (€) = d (), which implies that
¢ = A = B. Therefore (w) g is unique.

Let 2 | w. Let B be the least common multiple of 2 and (@) . Then B | w and
d (°B) > d ((w)g), which implies that d (¥8) = d ((w)g). Therefore B = (w)g and
A | (w)g. Conversely, if A | () g, then @ vanishes on

x ((w)g‘) +KDX (21—1) K,
that is A | w. |

Corollary 3.4.12. If X € K* and w € Difg with w # 0 then (Xw)g = (X)g (0)k.

Proof. If A | w, by Proposition 3.4.8 we obtain (X)g 2 | Xw. Therefore (X)g A |
(Xw) g and since (w)g | w, we have (X) g (0)g | (Xo)k.

Conversely, o = X “IXw = X! (Xw), so that from the above argument we
obtain (X_I)K Xw)g = (X)I}1 (Xw)g | (w)g, which is equivalent to (Xw)g |
(X)k (w) k. It follows that (Xw)g = (X) g (w)k- O

An important consequence of Corollary 3.4.12 is that the set consisting of the
divisors of the nonzero differentials form exactly a class in Cx. More precisely, let
w € Difg with w # 0. Let (w)g € C and C € Cx = Dg/Pxg. If o' is another
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nonzero differential, then o’ = Xw, X € K*. Therefore (a)’ ) x = Xk (@, that
is, (') and (o) differ just by a principal divisor, and (')
A e Cand A € Dk, then 2, (w)g € C, so

x € C. Conversely, if

QlE(a))K mod PK, thatis, QlZ(X)K ((,())KI(X(,())K
for some X € K*. Therefore 2 is the divisor of the nonzero differential Xw. We have
C ={(w)g | w € Difg, w # 0}.

Definition 3.4.13. The class C consisting of all divisors of the nonzero differentials of
a function field is called the canonical class and is denoted by W = Wk.

3.5 The Riemann—-Roch Theorem and Its Applications

In Sections 3.3 and 3.4 of this chapter, we have developed the concepts of repartitions
or adeles and that of differentials. On the other hand, Riemann’s theorem (Theorem
3.3.2) essentially establishes that for each divisor 2 € D we have the formula

5(21—1) — @) +d @)+ gk —1,

where gk is the genus of the field.
Furthermore, Proposition 3.4.5 establishes that

-1 . -1 . X

S(Ql ) —dlmkD<QL ) = dimy X LK
that is, 8 (Ql") is the dimension of the k-vector space of all differentials vanishing on
X () + K, or equivalently all differentials such that A~ | w.

What remains to do in order to obtain the Riemann—Roch theorem is to interpret
1) (Ql_l) as the dimension of a certain space L (*8), and on the other hand, to determine
the dimension of a class C € Ck by means of the divisors 2 € C. We proceed to do
this immediately.

Definition 3.5.1. Let C € Ck be an arbitrary class and let 2 be any divisor in C. If
Ay, ..., 2, € C, we have % = (x;)g for each x; € K*. We say that the divisors
Ay, ..., A, are linearly independent if x1, . .. , x, are linearly independent over &.

An apparent problem with this definition is that it seems to depend on the divisor
2A. The next result proves that this in not the case.

Proposition 3.5.2. Definition 3.5.1 does not depend on 2l or on the elements x;, 1 <
i <n.
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Proof. Let A and xq, x3, ..., X, be as in the definition. We need to prove that if

(xpHg = (xl/) - then {xi, e x,’,} is also linearly independent over k. To this end

we observe that if u, v € K* are such that (u) g = (v)g, then (u‘lv)K = M, so that
v = aqu,a € k*. Therefore x| = a;x;, withey; € k*,i =1,...,n. Thus {x], ..., x]}
are linearly independent over k.

Finally, if B € C is arbitrary and LU (yi)g fori = 1,...,n, we must prove
that {y{, y2, ..., y»} is a linearly independent set over k.

Observe that 2, B € C, and hence % = (z)x with z € K*. Therefore (y;)x =
% = %% = (x))g @ = (xiz)g. Thatis, y; = o;zx; with a; € k*,z € K*,
i = 1,...,n. From this, it follows immediately that {y;, y2, ..., y,} is a linearly
independent set over k. O

In Definition 3.3.10 we defined the dimension of a class C € Cg as N(C) =
£ (Ql_l), for an arbitrary 2{ € C. The following proposition relates the dimension to
the maximum size of a subset of C consisting of linearly independent integral divisors.

Proposition 3.5.3. Let C € Cg be any class. Then N(C) is equal to the maximum
number of linearly independent integral divisors belonging to C. In particular, this
number is finite.

Proof. Let n be the maximum size of a linearly independent subset of C consisting of
integral divisors and let 2, ... , 2, be such a subset. Let 2 € C. Put % = (x;)g for
i=1,...,n. Thenxy, xa, ..., x, are linearly independent over k. Therefore we have

(g =A% = x; € L (2{*1) . so n<4 (m*l) = N(O).

On the other hand, if yi,y2. ..., yn(c) is a basis of L (A7), then (y)g =
A~1¢;, where the €;’s are integral divisors and ¢; € C,1 < i < N(C), with
{»1.y2. ..., yn()} linearly independent. Thus N(C) < n, proving the result. O

We are ready to state and prove the Riemann—Roch theorem.

Theorem 3.5.4 (Riemann—Roch). Let K / k be a function field and C € Ck any class.
Let W be the canonical class and g the genus of K. Then

N(C)=d(C)—g+1+N (Wc—l) .
Equivalently, if A is any divisor and w is any nonzero differential, we have
e =d@n -g+1+e(@5').
In other words,
5(A) = ¢ (m—l) +d (m—l) fe—1=¢ ((w)g‘ 91) - N (Wc—l)

forallA € C.
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Proof. Let C be an arbitrary class and let 2l € C. We have
N(C)zz(m*‘) =d@A) —g+14+5@A) =d(C)—g+1+5).

Furthermore, § () = dimg D (), where D (%) = {w € Difg | A | w}. By Theo-
rem 3.4.11, we have

D (/) = {w € Difg \{0} | 2 | (w)g} U {0}
- {a) € Difx \{0} | 2~ (w)g is integral divisor] U {0}.

Therefore
8 (/) = max {n | w1, w2, ... ,w, € Difg \{0} linearly independent over
k such that ()X A7, ..., (w)X A" are integral divisors }
=N (we™) = ¢ (@5 %),
which proves the theorem. O

Corollary 3.5.5. Let W be the canonical class. Then N(W) = g andd(W) = 2g — 2.
In particular, the dimension of the holomorphic differentials is g (see Corollary 3.4.6).

Proof. Clearly, ¢ (Ql_l) =d®)—g+1+¢ ((a))E1 Ql). Therefore, taking 2 = N,
we have

z(m)z1=d(m)—g+1+e((w);1)=0—g+1+£((w);1).

Thus N(W) = ¢ ((a));]) = 1+4g—1 = g (this has already been obtained in Corollary
3.4.6).

Now if 2 = (w)}l,we have
N(W):g:d(W)—g+l+N(WW_1)=d(W)—g+1+N(P1<).
On the other hand,
N (Pg) =L =1,
SO
dW)=g+g—1—1=2g—2. O

Corollary 3.5.6. If U is a divisor such that d () > 2g —2 ord () = 2g — 2 and
A ¢ W, then £ (Ql_l) =d ) — g + 1. In particular, £ (Ql_l) >g—1.
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Proof. 1t d () > 2g — 2 we have d ((a))g1 Ql) S (28-2)—(Q2g—-2) =0, 50
¢ ((w);‘ 91) — 0 (Proposition 3.2.18),

Ifd () =2¢g—2and A ¢ W, then (a)),_(1 2l is a nonprincipal divisor of degree 0.
Hence, from Proposition 3.2.18 we obtain £ ((cu)%1 Ql) =0.

In any case, we obtain £ (‘21_1) =d@)—g+1+¢ ((a));1 2() =d@)—g+1
and,inparticular,ﬂ(%l_l) =d®@)—g+1>2g—-2—-g+1=g—1. O
Corollary 3.5.7. If W € Ck and g € 7Z are such that N(C) = d(C) — g + 1+

N (W/C’l)for all classes C, then W = W and g’ = g. In other words, W and g are
uniquely determined by the Riemann—Roch theorem.

Proof. Taking C = W', we have
NW)=dW)—g +1+N (W/ (W/)_‘)
=dW) —¢g +1+N (Pg)
=dW)—g +1+1
=d(W)—g +2.
If C = Pk, then
N(Pg) =1 =d(PK)—g/+1+N(W’P,;1) —0—g +1+NW),
whence
NW)=1+4+g —-1=g and dW)=NW)+g —2=2¢ —2.

If C is now any class such that d(C) > 2¢’ — 2, then N (W/C~!) = 0 by Propo-
sition 3.2.18. Therefore N(C) = d(C) — g’ + 1.

Hence, applying Corollary 3.5.6 and the above, we obtain that for any class C such
thatd(C) > max {2g — 2,2¢’ — 2}, we have N(C) =d(C)—g'+1=d(C) —g+1,
which implies that g = g’.

In particular, N(W') = ¢/ = g, d(W') = 2g' —2 = 2g — 2, whence, W' W~ is
of degree zero and

g=NW)=dW)—g+1+N (W/W_1>
=2g—2—g+1+N(W’W—1),
which implies that N (W'W~!) = g —2¢g +2+ g — 1 = 1. It follows that W' W~! =

Pk, since Pk is the only class of degree 0 and positive dimension. Therefore,
W =w. O

The following corollary states that there always exist elements with a unique given
pole (or zero).
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Corollary 3.5.8. Let P be a prime divisor and letn > 2g — 1 (n > 0if g = 0). Then
there exists an element x in K such that N, = P", that is, there exists an integral
divisor B such that ‘B is relatively prime to P and (x)x = %

Proof. Exercise 3.6.13. O

Definition 3.5.9. We say that a divisor 2 divides a class C, and we write 2 | C, if 2
divides ‘B for every integral divisor ®B of C.

For the next result we use the notation C 2l to denote the class C C’, where 2 € C’.
Theorem 3.5.10. Let C € Cg and A € D, with 2 an integral divisor. Then

NC)SNECAHNC)+d®).
Furthermore,
NCO)=N{CA <= A|CAand N (CA) =N(C)+d®) < A | wcl

Proof. Let B € C so N(C) = ¢ (B7!). Let x € L (B~!). Then (x)x has the form
%, where € is an integral divisor. Since 2 is an integral divisor we have (x)x = %
Hence x € L (%_1%_1), so L (%_1) Cc L (‘3_12[_1) and N(C) = ¢ (%_1) <
(371U = N (Ccw).

Now, if N(C) = N (C), then L (B~") = L (B~'A7") forall B € C. Let
T € C%, where T is an integral divisor and T = B2, B € C. In this case, N(C) =
N(C2) > 0. Therefore there exists an integral divisor B9 € C. Thus T and B¢ €
C 2. Then ‘BLOSZL = (x) is a principal divisor and x € L (%51%_1> =1L (%0_1).
Therefore, (x)x = % = % and ‘B is an integral divisor. We have T = B2, which
means that A | 7.

Conversely, if 2 | CAletx € L (%—lm—l) with 8 € C. Then (x)g = %—Qm
where € is an integral divisor. Since %_%l is principal, we have € € C 2 and % | CZ.

Hence (x)x = % = %, thatis, x € L (B~"). Therefore

L(sa)cr(s ) cr(sla),
which implies that N (C2A) = N(C).

For the remaining part of the proof we apply the Riemann—Roch theorem, and we
obtain

N@CA)=d(CA) —g+1+N (wc—lm—l)

—dC)+d M) —g+1+N (WC_li)l_l) .

Using the first part, we obtain
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N(wetat) = v (wetaa) = v (we ),
and by applying again the Riemann—Roch theorem, we get
N@CA) =d(C)+d @) —g+1+N (Wc—lm—l)
<dC)+d @A) —g+1 +N(Wc—1) = NC)+d ).
Finally, again by the first part we have
N(CA) =d(C)+d @) <> N (WC’IQF]) =N (WC’I)
A welau=we O

Corollary 3.5.11. For any class C, we have N(C) < max {0, 1 + d(C)}.

Proof. If N(C) = 0, there is nothing to prove. If N(C) > 0, there exists an integral
divisor 2 € C such that

N(C)=N(PkA) <N Px)+d Q) =1+d @) =1+d(C). O

The next result will make clearer the reason why we use the term special for a
divisor A € Dg.

Proposition 3.5.12. Let 2 € Dg.

(i) 2 is nonspecial if and only ifZK(Ql’l) =dgR)+1—gg.
(i) If dx (A) > 2gx — 2, then U is nonspecial.
(iii) The property of a divisor A being special or nonspecial depends only on the class
A € C € Ck of A in the divisor class group.
(iv) If A € W, then 2 is special.
(V) If A satisfies Lk (Ql’l) > 0and dg () < gk, then U is special.
(vi) If U is nonspecial and 2 | B, then ‘B is nonspecial.

Proof.

(i) This follows from Definition 3.3.8.
(ii) This follows from Corollary 3.5.6 and (i).
(iii) This follows from Remark 3.3.9.
(iv) This 2 € Wk, then 8 () = Lk (@) ') = k(@' (@k) = Lk (M) =1 #
0.
(v) Wehave I < £x(A71) = dg () +1—gx +38x (A). Thus, §x (A) > gk —dg (A) >
0, and 2 is special.
(vi) IfA | B, then B! | A~!, and by Theorem 3.1.11 we have

5(B) =tk (B +dx(B7") +gx — 1
< k(A +de (A1) + gk — 1 = 8.
Thus 0 < 6(*B) < 6(A) = 0. It follows that §(®B) = 0 and *B is nonspecial. |
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Lemma 3.5.13. Let K/ k be any function field of genus g > 0. Let T be any set con-
sisting of prime divisors of K of degree 1. If |T| > g, then given any integral divi-
sor U such that £x (Ql_l) = 1and dx () < g — 1, there exists p € T such that
EK(Ql_lp_l) =1.

Proof. Letpy, ... ,p, € T be any set of g distinct elements of 7" such that dg (p;) = 1
fori =1,...,g. Assume thatforalli =1,...,g,

ex (A p ) > 1L
There exist elements x; € Lg (A~'p; ')\ Lg (A~") fori =1, ..., g. We have
vp; (xi) = —vp, (A) — 1 and  wp,(x;) = —vp;(A) for i # .

It follows from Proposition 2.2.3 (v) that {1, x1, ... , x¢} is a linearly independent set
over k. Let € be any divisor such that

2[pl"'pg|¢

with dg (€) = 2g — 1. Such € clearly exists since we have dg (lel ) =dg () +
g <2g —1.Then

1,xq,... , Xg € LK(Q:_I).
Thus, £ (@‘1) > 1 + g. On the other hand, from Corollary 3.5.6 we obtain that
k(@) =dg (@ —g+1=g¢g.

This contradiction proves the lemma. O

Proposition 3.5.14. With the conditions of Lemma 3.5.13, there exists a nonspecial
integral divisor A with degg A = g and if p is a prime divisor such that p | 2, then
peT.

Proof. Letpy, ... , pg be any set of g distinct prime divisors in 7. Using Lemma 3.5.13
we can find divisors

Piy | Ppiybiy |- 1 Piypiy - iy, =1 2L,

with 1 <i; < g forall j, such that

KK(pl_]l ...p_l) =1

ij
for j =1,...,g. In particular, EK(QI_I) = 1. We have

dg@) +1-g=g+1—g=1=g(A").

From Proposition 3.5.12 (i) we conclude that 2l is nonspecial. |
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Definition 3.5.15. Let K /k be an arbitrary function field of genus g > 0. A set of g
different prime divisors py, ... , pg of degree 1 is called a nonspecial system if

Cx (- pe) ") =1,
or equivalently if §x (p1 - - - pg) = 0.

Proposition 3.5.16. Let k be an algebraically closed field. Let K [ k be a function field
of genus g > 0. Then there exists a nonspecial system p1, ... , pg in K. Furthermore,
p1 may be chosen arbitrarily and s, ... , p, may be chosen arbitrarily with finitely
many exceptions.

Proof. Let p; € Pk be arbitrary. Then, since g > 0, K is not a rational function field
and LK(pl_l) = k. Thus, £k (pl_l) = 1. It follows that

Skp) =Lx(py") +dx(py ) +g—1=g—1.

From the proof of Lemma 3.5.13, we see that there are at most g — 1 prime divisors
p such that p # p; and

Cr(py'p™") £ 1.

For any p> not in this set and such that p, # p; we have

Cr(py'py ") =1 and Sx(p1p2) = g — 2.

The result follows immediately by induction. O

Remark 3.5.17. Proposition 3.5.16 provides an explanation of the terminology of a
nonspecial divisor. That is, 2l = p;---pg is nonspecial for all but finitely many

pl9'-- ’pg-

Corollary 3.5.18. If k is not an algebraically closed field, and K / k is a function field
of genus g > 0, then there exists a finite constant extension k' such that we can find a
nonspecial system in K' = Kk'.

Proof. Let k be a separable closure of k. Then in K = Kk there exist nonspecial
systems. Let py, ..., p, be one of them. Then py, ..., p, are of degree 1 in some
finite constant extension of K. O

3.6 Exercises

Exercise 3.6.1. Let K be a function field over k. Let &’ be the exact field of constants,
k' 2 k. Show that if @ € (k')* then vy, () = O for all places . Conclude that
kK = {x € K | vp(x) = 0 for every place 50} U {0}.
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Exercise 3.6.2. Let K be a function field with constant field k. Let Dg be the divisor
group of K, Pk the principal divisor group, and Cx = Dg/Pg (analogously, let
Dk 0, Pk 0, Ck o be the respective groups of degree 0). Show that:

(i) Dk = Dg.o ® Z.
(i) Cx = Ck,0 ® Z.
(i) Px = K*/k*.

Exercise 3.6.3. Let K be a function field, 2 a divisor, and § € Pg the set of prime
divisors of K. Prove that I"(2]S) is a vector space over the field of constants k.

Exercise 3.6.4. Consider K = k(x) in the context of the previous exercise. Under
what conditions does it hold that dimg " ((|S) < oo?

Exercise 3.6.5. Let K = k(x) and let e be the place corresponding to the irreducible
polynomial p(x) € k[x]. Prove that f,, = deg p(x).

Exercise 3.6.6. Under what conditions does it hold that dim; A () < co, where
AR =X®) ={§ € Xx | A | &}?

Exercise 3.6.7. Give an example of a function field K and a repartition £ € Xk such
that there does not exist x € K with v, (x — &) > 0V p € Pg. (It is not necessary to
give explicitly the example, just to show that such an example in fact exists. You may
assume that there exist function fields with genus g > 0.)

Exercise 3.6.8. If B | 2, show that A(B~ ) + K C A1) + K.

Exercise 3.6.9. Let K = k(x). Describe the divisors of the form (x —a) g, witha € k.
More generally, describe (o) x with & € K*.

Exercise 3.6.10. Let 2L, B be divisors such that 2 | 23. Prove that
EEB+KNXRA) =XCB)+LEA) and L&) NXEB) = L(B).

Exercise 3.6.11. If 2, 98 are divisors and w, § are two differentials such that 2 | w and
B | §, prove that € | ©, where Q2 = @ + § and € = (2, B) is the greatest common
divisor of 2 and B.

Exercise 3.6.12. Let 2 be an integral divisor, @ # 0 a nonzero differential, and let
B be a divisor such that B | w. Let ¢: LA™'B~) — D) be defined by
o(x) = xw.

Prove that in fact x € LA™'B™!) = ¢kx) € D®™') and that ¢ is a k-
monomorphism.

Exercise 3.6.13. Let o be a prime divisor and let n > max{2g — 1, 0}. Prove that there

exists x € K with a unique pole g of order n, that is, 0, = p".
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Exercise 3.6.14. Let K/ k be a function field.

(i) Prove that if 2l is not principal and d(2l) = 0, then £(A~!) = 0.
(i) IfA ¢ W, d(A) =2g — 2, show that £(A~") =g — 1.

Exercise 3.6.15. Let & be a finite field such that k = IF,,. Let C be a class and let N (C)
GV O

be its dimension. Prove that the number of integral divisors in C is 7=

Exercise 3.6.16. For a function field K / k we could have defined a repartition in K as
a function

¢p: Py - K

such that vp(¢(p)) > O for almost all p. Prove that all the results of this chapter hold
with this definition of repartition.

Exercise 3.6.17. Let K/ k be a function field of genus g > 0. Let p be any place of K.
Prove that there exists a holomorphic differential w in K such that vy(w) = 0, that is,
p is not a zero of w.

Exercise 3.6.18. Let K / k be a function field. Let 2 be an integral divisor. If E(Ql") =
d®) 4+ 1 with (%) > 0, prove that K is of genus 0.

Exercise 3.6.19. Let K/k be a function field of genus gx > 1 and let W be its canon-
ical class. If A € W1, prove that if 2 | B with 2 # 9B, then £(2) # £(B), that is,
L(B) < £(A).

Exercise 3.6.20. With the notation of Exercise 3.6.19, let p be a prime divisor of de-
gree 1. Prove that £(2) = K(le_l).

Exercise 3.6.21. With the notation of Exercise 3.6.20, show that if degp > 1 then
Q) # e(Ap~h).

Exercise 3.6.22. Let K/k be any function field. Let 2 be any divisor such that
L K(Q[_l) # {0}. Prove that there exists an integral divisor B in the divisor class
of 2.

Exercise 3.6.23. If W' is any class in the function field K/k such that dg (W') =
2gx —2and EK(WEI) = gk, prove that W' = W is the canonical class of K.

Exercise 3.6.24. Let a | b and let S = {p € Pk | vp(a) # 0 or vp(b) 5 0}. Show that

there exists a natural monomorphism Lo #, Eggl‘g

L(b)
di (b) —dg (a).

; . In particular, £x (a) — £k (b) <

Exercise 3.6.25. Prove Proposition 3.3.12.
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Exercise 3.6.26. Let k be a finite field such that |k| = g and let K/k be a function
field.

(i) Prove that the number of integral divisors of degree m € N is finite.
(ii) If m > gk, prove that each class of degree m contains an integral divisor. There-
fore the set C,, consisting of the classes of degree m is finite.
(iii) If 91 is a divisor of degree m > gk, then

¢: Cgo— Cyp, defined by o) =AM,
is a bijection. Therefore

’Ck,()| = |Cp| < o0.
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Examples

In this chapter we present examples that illustrate how one can apply our results of
Chapters 2 and 3. We shall first recall a few facts about rational function fields and
characterize fields of genus 0.

Our second goal is to examine function fields of genus 1, among which are found
elliptic function fields that correspond to the most important and widely investigated
elliptic curves of algebraic geometry.

Finally, we present quadratic extensions of £(x) in characteristic different from 2,
and we compute the genus of such extensions. Among these fields are found hyper-
elliptic function fields, which, up to an abuse of the formal definition, contain elliptic
function fields. We shall study those fields in detail in Section 9.6.4.

The reader will encounter hyperelliptic and elliptic function fields in Chapter 10
again, where they will be used in their applications to cryptography.

It should be mentioned that the computation of the genus could be done in a faster
and more efficient way using the Riemann—-Hurwitz genus formula, which will be
studied in Chapter 9. However, the methods presented in this chapter, aside from their
mathematical beauty, allow us to investigate the fields involved in detail and to get
acquainted in a deeper way with their structure.

4.1 Fields of Rational Functions and Function Fields of Genus O

First we consider the field K = k(x) of rational functions where k is an arbitrary field
and x a transcendental element over k. We recall some results about k(x) that we have
already obtained.

In Section 2.4 we characterized the set of all valuations on K, namely

{vf | f(x) € k[x] is monic and irreducible} U {veo}

(Theorem 2.4.1).
Example 3.2.16 shows that every divisor of degree O is principal; in particular,
Ck.0 = 1 and the class number Ak is equal to 1.
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Proposition 4.1.1. Let K be a purely transcendental extension over a field F. Then F
is algebraically closed in K . In particular, the field of constants of a rational function

field k(x) is k.

Proof. Let {xi};c; be a transcendence base of K over F, that is, K = F ({x;};).
Let « € K be algebraic over F. We must prove that « € F. Since € K, a is a
polynomial in a finite number of variables, that is, there exists a finite subset J of 1
such thato € F ({x,- }ie J). This shows that we may assume, without loss of generality,
that [ is finite, or, which is the same, that K = F (x1, x2, ... , X»).

We will prove the result by induction on n. For n = 0, K is equal to F' and there
is nothing to prove. If n = 1, thena € F(x). If « € F(x) \ F, we have

o= ro) e € Flxl,
g(x)

and f, g relatively prime. Then x satisfies the equation
WT) = f(T) —ag(T) € F () [T].
Therefore
[F(x): F (@)] <degh(T) = max {deg f, deg g} < oo,

so [F () : F] = oo. Thus « is transcendental over F.
We assume that the result holds for n — 1 with n > 2. In order to prove it for n, let

a € F (x1,...,x,) be algebraic over F'. In particular, « is an algebraic element over
F (x1,...,x,—1) and it follows from the case n = 1 that @ € F (x1,...,x,—1). By
the induction hypothesis, we conclude that @ € F. O

Corollary 4.1.2. Let o € k(x) \ k be of the form a = L&3 where f(x), g(x) € klx]

(x)’

are relatively prime. Then [k(x) : k ()] = max {deg f, deg g} (see Exercise 2.6.8).

Proof. Since o € k(x) \ k, « is transcendental. The divisor of « is

Af __(deg g—deg f
(a)K — m_f éoegg eg/)’
8

where

Ay =P, ... Py, f&x)=pi(x)*...p )",

pi(x) are distinct irreducible polynomials, and similarly for 2. Now, since k (@) =
k (é), we may assume deg g > deg f. By applying Theorem 3.2.7 to k(x)/k (),

we obtain

[k(x):k(@)]=d Ny) =d (ng) =deg g = max {deg f, deg g}. |
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Proposition 4.1.3. The genus of k(x), gi(x), is zero.

Proof. If f(x) € k(x) is a rational function, we write f(x) = p1(x)*' ... ps(x)%,
where p1(x), ..., ps(x) are distinct irreducible polynomials in k[x] and ; € Z. Then

F@Oew = (]‘[ P;‘;;‘) e
i=1

Let ¢ > 0 be arbitrary. Then

L(PY) = {f(x) € k() | (f (k) =

A
—, 2lis an integral divisor} ,
P
and this is the set of polynomials of degree at most 7.
Therefore € (Py!) =1 + 1.

Let g be the genus of k(x) and let r > 2g — 2 be such that d (Péo) =td (Px) =
t > 2g — 2. By Corollary 3.5.6, we have

t+1=t(P))=d(PL)—g+1=t—g+1,
whence, g = 0. O
Now, if W is the canonical class, we have
dW)=2¢g-2=0-2=-2.

On the other hand, since Cx o = 1, for each n € Z there exists a unique class C,, of
degree n, which implies that

W =C_y =P 2P

Since P32 belongs to C_y, there exists a differential w such that (w) k) = Po_o2 and

every differential is of the form f(x) w, with f(x) € k(x). We will now describe this
differential w.
Let £ € X be given by

1
tp,=—, and &p =0 forall P # Pw.
X

From Theorem 3.3.16, we obtain

X (Pso)
X (P%)

Since Voo (€) = voo (6p,) = 1, we have £ € X (Pso) \ X (P2) and furthermore,
£ e (X(Pxo)+ K)\ (.’{ (Pgo) + K) On the other hand, we have

dimy

=d(PL)-d(Px)=2-1=1.

X
-1 _ gi _—— — 1 = — 1 =
8<Poo>—dlmkx(7>oo)+K d(Poo) +£(Poc) +8—1=1+0+0-1=0.
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Therefore, X = X (Px) + K and L (Px) = {0}. From Theorem 3.4.4, we get
X(Px) . X(Pu) +K X

X(PL)  x(PL)+k X(PL)+K’

the latter being of dimension 1. Therefore every repartition 6 can be written as
0 —at+&, with & e 36(7930) +K.
Let
®:X >k besuchthat (0) =P, thatis, X (P&O) +K Ckero.
Then

w(0) =aw )+ o) =aw ).
We define w (§) = —1. This is approximately something like the following:

0,a# oo,

Resw:{
—1,a=o00.

a

Then (w)g(x) = 770_02 and w is uniquely determined by the conditions
» (x (pgo) + K) —0 and (&) =—1.
Indeed, if @’ is any other differential with the same conditions, then for any repartition
0 —at+&, with & e%(?ﬁo) +K and ack,

we have

(0—0) O =a(wE) -0 )+ (0E) - D))
=a(—-1—-(-1)+0-0) =0.

Thus w = o'.

Definition 4.1.4. The differential w of k(x), defined by
o(x(PL)+K) =0, 0®=-1,
where

1
&p,=— and &p =0 forall P # P,
x

will be denoted by w = dx.
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Every differential is of the form f(x) dx, with f(x) € k(x). We have

1
Py
Proposition 4.1.3 shows that a rational function field k(x) is of genus zero. A
natural question is the following: Is every function field K /k of genus zero a rational
function field? The answer is, as we will see immediately, no. It is necessary to have
an extra condition, namely that there exist a prime divisor of degree one. This situation
holds if & is algebraically closed or if k is finite but may not hold in other cases (in the
case that £ is finite it will be necessary to use the Riemann hypothesis, Chapter 7).
Independently from the above discussion, what we have in any case the following
result:

Proposition 4.1.5. If K / k is any field of functions such that gx = 0, then Cg o = {1}
and consequently, hg = 1.

@dX)gx) =

Proof. Let C be a class of degree 0. We wish to prove that C = Pk. Since d(C) =
0 > —2 =2gg — 2, it follows by Corollary 3.5.6 that

N({C)=d(C)—gg+1=0-0+1=1,

whence, there exists an integral divisor 2 in C with degree 0. The only integral divisor
of degree 0 is I, so N € C. Therefore C = Pg. |

Proposition 4.1.6. If K /k is a field of functions of genus 0, then K contains integral
divisors of degree 2, and in particular it contains prime divisors of degree 1 or 2.
Moreover, there exists x € K \ k such that [K : k(x)] < 2.

Proof. Let W be the canonical class of K, d(W) = 2gx — 2 = —2. We have
d(W™') =2 > —2 =2gg — 2. By Corollary 3.5.6,

N(W—l)zd(w—l)—gK+1=2—0+1=3,

that is, there exist at least three integral divisors in W1, and all of them are of degree
2. Since every divisor is a product of prime divisors, it follows that there exist prime
divisors of degree 1 or 2. Indeed, if 2 is an integral of degree 2, then

A=P, PPy or P
for some prime divisors P, Py, P;.
Since N (W‘l) = 3, there exist two integral divisors 2, 2> of degree 2 with
Ay #£ ™Ap. Since Ay, ™Ay € w-L % = (x)g is principal and x ¢ k. By eliminating
all common prime factors in 2(; and 2(, we obtain (x)g = % where B and 2B are

relatively prime integral divisors of degree 1 or 2 and ‘B 7&2%2. By Theorem 3.2.7
we have [K 1 k(x)]=d Ny) =d (By) < 2. O

We observe that if K = k(x), then K contains prime divisors of degree 1, for
instance Pqo; furthermore, for each a € k with (x —a)g = 77;—:0, ‘P, is of degree 1 and
in fact {P,, Peo | a € k} is the set of all prime divisors of degree 1.
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Theorem 4.1.7. Let K/ k be a function field. If K = k(x) then gx = 0. Conversely,
if gk = 0, then K is a rational function field or a quadratic extension of k(x). Fur-
thermore, K contains prime divisors of degree 1 or 2. Finally, K = k(x) if and only if
there exists at least one prime divisor of degree 1.

Proof. It remains to prove that if gg = 0 and K contains a prime divisor of degree 1,
then K is a rational function field.

Let P be a place of degree 1. We have d (P) = 1 > —2 = 2gg — 2. By Corollary
3.5.6,

z(P*l):d(P)—gK+1=1—o+1=2.

Therefore, there exist elements x;, x5 in L (73_1) that are linearly independent over &,
which implies % € K \ k. On the other hand, we have

(xDg = % and (x2)g = %,

where 2, B are integral divisors and d () = d (®B) = 1. Hence, if x = %, then

g = % and x ¢ k. Thus, by Theorem 3.2.7, [K : k(x)] =d D) =d (B) =1,
so K = k(x). |

Corollary 4.1.8. If K/ k is a function field of genus 0 and k is algebraically closed,
then K = k(x) is a rational function field.

Proof. If P is a place of K, then k (/P) is an algebraic extension of k. Therefore k (P) =
k and fp = [k (P) : k] = 1, that is, every place is of degree 1. O

We finish this section with an example of a field of genus O that is not a rational
function field.

Let R be the field of real numbers and let K = R (x, y), where x, y are transcen-
dental elements over R satisfying the equation

24y 4+1=0.

Let Ko = R(x). Then since y?> = —x2 — 1, we have y ¢ Ko, so [K : Ko] = 2.

The field of constants of K is a finite extension of R. Therefore it is R or C. Let us
see that it is in fact R. For the sake of contradiction, let us assume that C is the field of
constants of K, thatis,i = ~/—1 € K. Since i ¢ Ko, it follows that [K( (i) : Ko] = 2.
Therefore Ko (i) = K. On the other hand, Ko(i) = R(x)(i) = C(x) implies y € C(x).
However, since y2 = —x2 — 1, we have y = =+i~/x2 + 1, which is not a rational
function of x. Therefore the field of constants of K is R.

Now we will see that K is not a rational function field. If this were the case, we
would have K = R(z) with z € K \ R. Now, by the remark we made before Theorem
4.1.7, there would exist infinitely many places of degree 1. To prove that this is not the
case, we will show that there can only be finitely many degree-1 places.
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Let P be a place of K such that vp(x) > 0. Observe that all but finitely many
places satisfy this condition, that is, there are only finitely many places & such that
va(x) < 0 (Theorem 3.2.1). Let

¢: K — (9p/P)U{cc}

be the corresponding place (see Section 2.2, particularly 2.2.10-2.2.13). We have
[9p/P :R] < oo (Theorem 2.4.12). Hence ¥p /P is isomorphic to R or C, so P
is of degree 1 (in the case ¥p/P = R) or 2 (in the case vp /P = C).

We will prove that ¥p /P = C. The condition vp(x) > 0 is equivalent to ¢ (x) #
oo (see Definition 2.2.10). If ¢(x) € C \ R there is nothing to prove. If p(x) € R, the
equation x>+y2+1 = 0 implies ¢ (x)2+¢(y)>+1 = 0,so that p(y)? = —p(x)*—1 €
R. Since the latter is negative, we have ¢(y) = +i/¢(x)2 4+ 1 € C\ R. In any case,
we get (K) ¢ R U {oo}. Therefore vp/P = C and d (P) = 2.

By the above, K contains at most finitely many places of degree 1, which implies
that K is not a rational function field over R.

We will prove that in fact K has no degree-1 places. The case that remains to
analyze is vp(x) < 0. If this is the case, let x’ = )1_( and y' = )XC and observe that
(x’)2 + (y')2 + 1 = 0. If ¢ is the corresponding place, then ¢ (x) = oo, which implies
0] (x/) = 0 # oo. Hence, as before, we obtain ¥p /P = C and d (P) = 2. This shows
that every place in K is of degree 2.

Finally, we will prove that the genus of K is 0. In R(x) we write (X)) = 77;—000

andin K, (x)g = % We observe that since [K : R(x)] = d (Bg) = d (Beo) = 2
and every prime divisor of K is of degree 2, both 9B and B, are prime divisors. Now,
if v is the valuation corresponding to B, which is the extension of P, to K, we
have vy (x) = —1. Thus

Voo (—x2 _ 1) = min {voo <x2) , voo(—l)} — min {2ve () , veo (—1)}
= min{—2, 0} = —2.

In particular, we have

2 Voo (V) = Voo (yz) = Voo (—x2 — 1) = -2,

which implies that v (y) = —1.
Form > 1, we have

L(9™) 2 {a() + yb(x) | a(x), b(x) € Rx], vy, (@(x) + yb(x)) = —m} .

We have
’ (a(x)) = o) ifa(x) =0
Beo ~ | —degax) ifa(x) 0.
If dega(x) # degb(x) + 1, then since voo(y) = —1, we have v (a(x)) #

Voo (¥D(x)), in which case
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Voo (@(x) + yb(x)) = min {veo(a(x), Voo (yb(x))} = min{—dega, —1 — deg b},
and
a(x)+yb(x) e L (‘Tt;m) ifand only if dega <m,deghb <m — 1.
If dega(x) = degb(x) + 1, we write
a(x) =rx"+a(x) and b(x)=sx""'+bi(x),
withdegaj(x) <n —1,degbi(x) <n —2,and rs # 0. Therefore
a(x) + yb(x) = x""'(rx + sy) + a1 (x) + yb1 (x).
Now we have

Voo (@1(x) + yb1(x)) > min {veo (a1(x)) , Voo (yb1(x))}
= min {—degaj(x), —1 — deg b1 (x)}
>min{l —n,—1+2—n}=1—n.

Since K = Ko(y) = Ko(rx + sy), we have
[Ko(rx +sy): Kol=2=d (mrx+sy) >
and for every place B # B, vy (rx + sy) > 0. It follows that (rx + sy)g = %—Qio,

that is, v (rx + sy) = —1.
Since vso (x"_l) =1 — n, we have

Voo (x”_l(rx—f—sy)) =l-n—-1l=-n<1-n.
Using Proposition 2.2.3 (iv), we conclude that
Voo (a(x) + yb(x)) = —n.
Therefore, the following also holds in this case:

a(x) +yb(x) € L (MN;™) ifandonly if —n =—dega = —degh—1> —m,

x
or equivalently,
dega(x) <m and degh(x) <m — 1.
In short,

L (M) 2{ax) + yb(x) | a(x), b(x) € R[x],

X

dega(x) < m,degb(x) <m —1}.
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It follows that

(M) =dimg L (M) = (m+ 1) +m =2m + 1.

X

On the other hand, we have
d (M) =md (Ny) = md (Boo) = m(2) = 2m.
By the Riemann—Roch Theorem (Corollary 3.5.6), when m is large enough, we have
2m4+1<e(M")=d(NY) —gx +1=2m+1— gg.

Therefore gxg < 0. Hence gx = 0.
We sum up the previous discussion into the following proposition:

Proposition 4.1.9. Let K = R(x, y), where x and y are transcendental elements over
R satisfying x> + y*> + 1 = 0. Then the field of constants of K is R, and K has genus
0 and is not a rational function field. Finally, every place of K is of degree 2. O

Remark 4.1.10. Proposition 4.1.9 provides an example in which the degree function
d : Dx —> Z is not surjective, since every prime divisor is of degree 2. It follows
thatd (Dg) = 27 # Z.

4.2 Elliptic Function Fields and Function Fields of Genus 1

In the previous section we studied function fields of genus 0 and we saw that they are
“almost” fields of rational functions. Now we will study the function fields of genus 1
that “almost” are fields of elliptic functions.

Definition 4.2.1. Let K/k be a function field of genus gx = 1. Then K is called an
elliptic function field if K contains a prime divisor of degree 1.

Example 4.2.2. Let K = R(x, y) where x, y are transcendental elements over R sat-
isfying the equation

x2+y4—|—1=0.

Then K is of genus 1 (see Section 4.3, in particular Corollary 4.3.9) but every prime
divisor of K is of degree 2. The proof is exactly the same as in Proposition 4.1.9.

In this section we characterize the elliptic function fields of characteristic different
from 2. The case char k = 2 will be studied in Section 9.6.2.

Let P be a prime divisor of degree 1 in the elliptic function field K /k with g =
gk = L. If W denotes the canonical class of K, we have d(W) =2¢g—-2=2-2=0,
and on the other hand, N(W) = g = 1. Thus W is a class of degree 0 and positive
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dimension, which implies, by Proposition 3.2.18, that W = P = Pg. Therefore the
canonical class and the principal class are the same.
Now we have d (P) =1 > 0 = 2g — 2, so by Corollary 3.5.6,

(P =d(P")—g+1=nd(P)—1+4+1=n, for n>1.

In particular we have £ (73_1) =1land? (7;—2) = 2. Let {1, x} be a basis of L (77_2).
Then (x)x P? is an integral divisor, that is, 91, | 2. On the other hand, since K #
k(x), we have [K : k(x)] = d (9,) < 2, which implies that

N, =P> and [K : k(x)]=2=dON,).

We have L (P~2) € L (P~3) and £ (P~%) = 3, so there exists y € K such that
y¢L (P_2) and {1, x, y} is a basis of L (73_3). Since y ¢ L (P_2) it follows that
Ny, = P3. Now the denominators of the divisors of 1, x, ¥, x2, Xy, x3, and y2 are,
respectively,

n, P2, P, P P>, PO, and PO

Since the first six elements listed have distinct denominators, they are linearly inde-
pendent over k and all of them belong to L (P~°), which is of dimension ¢ (P~°) = 6.
Thus, they form a basis and there exist y, §, «; € k,i =0, 1, 2, 3, such that the relation

y2+yxy+5y = a3x’ 4+ aox? 4+ a1x + 4.1)

holds. We will see that y ¢ k(x). Let us assume that y = % € k(x) with f(x), h(x)
relatively prime.
We have from (4.1)

Fr4yxfh+5fh
h2

= a3x3 + a2x2 + o1x + op.

Then 4 | £, which implies that # = 1. That is, we have
f2+yxf—|-8f =a3x3+a2x2+a1x+ao. 4.2)
From (4.2) it follows that f is a polynomial of degree at most 1. Now we have
y=rf@. M=P. 3=vp@y) =vp(f() =vplax +b) =vp(x) = -2,
which is absurd. Hence, we have y ¢ k(x). Therefore
[k(x,y) tk(x)] =2 =[K : k(x)],

which implies that K = k(x, y).
Let char K # 2. We have
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Y Hyay+8y =y 4y (rx +9)

x+8)? x+8\?
=y2+y(yx~|—8)+<yT) —<VT>

- (7)) - (75

Therefore, if 7 = y + (VX'HS), then

2
K =k(x,z) with z2= f(x) and deg f(x) <3.

If f(x) has degree 1, then z = /aox + @3 and K = k ({/aox + @3) is a rational
function field, and hence of genus 0. If deg f(x) = 2, then K is of genus O (see
Corollary 4.3.10 below). Thus deg f(x) = 3 and o3 # 0. By multiplying (4.1) by a%
and making a change of variables y; = a3y, x| = a3x, we may assume that oz = 1.
On the other hand, f(x) has no repeated irreducible factors since if 2= fx) =
h(x)%g(x) with deg h(x) = deg g(x) = 1, then

2
Z% = <%> =gx)

and

K:k(x,21)=k<x,\/m>=k<\/m>.

Therefore K is a rational function field and thus is of genus 0.
In short, we have the following result:

Proposition 4.2.3. Let K /k be an elliptic function field. Then K = k(x, y), where x
and y are transcendental over k and satisfy a relation g(y) = f(x) for some monic
separable polynomials f(x) € k[x] and g(y) € k[y] of respective degrees 3 and 2.
Furthermore, if char K # 2, then f(x) and g(y) can be chosen such that f(x) is
square-free and g(y) = y>. O

The converse also holds when char K £ 2.

Theorem 4.2.4. Let K /k be a function field such that char K £ 2. Then K /k is an
elliptic function field if and only if K = k(x, y) where x and y are transcendental
elements over k, y* = f(x) and f(x) is a square free polynomial of degree 3.

Proof.
(=) This is just Proposition 4.2.3.
(<) By Corollary 4.3.11 below, K is of genus 1. Now it suffices to see that K
contains a place of degree 1.

Since y2 = f(x) with f(x) of degree 3, P | M, implies p3 | N s(x). Therefore
Nsy = N, and 9N, | N3 On the other hand,
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[K k()] =[k(x,y):k(x)]=2 and [K :k(y)]=I[k(x,y):k(y)]=3.
Thus, we obtain

d (mﬁ) =3d (M) =3[K : k(x)] = 6 = 2[K : k(y)] = 2d (N,) =d (mi) .
Hence M2 = 91}, Since d (N,) = 2, we have

Ny =P, M=PoP; or N, =P;

with P; prime divisors,d (P1) =2andd (P;) =1,i =2,3,4.

Now 912 is P} or P3P3 or P, but ‘ﬁf = 2 implies that the exponents of N3
must be divisible by 2, whence it follows that M, = P2, d (P) = 1 and N, = P>. In
particular, K contains a prime divisor of degree 1. O

Now assume that chark # 2, 3. By (4.1) and the case chark # 2, we have K =
k(x,y) with

y2 =x>+ a2x2 + o3x + 4. 4.3)
Letx” :=x — %. Then
2+ oox? +o3x +ou = (x’ — %)3 +a2<x/ — a?2)2 —i—ag(x’ — %) + ay
=)} +ax' +b.
Thus
2y)? = 4(x") + dax’ + 4b.
In short, when char k& # 2, 3, there exist x, y € K such that
y2 =4x> —gox — g3, with g, g3 €k. (4.4)

Definition 4.2.5. The equation (4.4) is called the Weierstrass form.

Finally, we consider a function field K /k of any characteristic and gx = 1. If K
contains a divisor of degree 1, then there exists an integral divisor of degree 1 (Exercise
3.6.22). Thus there exists a prime divisor of degree 1 and K /k is an elliptic function
field.

We sum up the above discussion into the following theorem.

Theorem 4.2.6. Let K/ k be a function field of genus 1. Then K / k is an elliptic func-
tion field if and only if there exists a divisor of degree 1.
Ifchark # 2, K/ k is an elliptic function field if and only if K = k(x, y) with

¥ = fx), (4.5)

where f(x) is a monic separable polynomial of degree 3.
Furthermore, if chark # 2, 3, then K = k(x, y) with

y2 =4x3 — gxx —g3 and g, g3 €k. (4.6)



4.3 Quadratic Extensions of k(x) and Computation of the Genus 105
4.3 Quadratic Extensions of k(x) and Computation of the Genus

In Sections 4.1 and 4.2, the study of the fields of genus O and 1 led us to encounter
several function fields K such that [K : k(x)] = 2. When gx > 2 these fields are a
special type of hyperelliptic function field, which will be examined in Section 9.6.4.
In this section we fill in the gaps remaining from Section 4.2, namely the computation
of the genus (Example 4.2.2 and Theorem 4.2.4). We could have proceeded differ-
ently and started with this section and then applied directly the results obtained here.
However, we consider that the way we chose provides the reader with a motivation
consisting in seeing the examples first and calculating the genus in quadratic exten-
sions of k(x). It is also important to clarify that later on, when we develop ramification
theory and the Riemann—Hurwitz genus formula, we will have at our disposal a much
more general method for calculating the genus of a function field.

In this section we consider a function field K /k such that there exists x € K with
[K : k(x)] =2 and char K # 2.

Lemma 4.3.1. We have K = k(x, y), where y> = f(x) and f(x) € k[x] is square-
free.

Proof.Let y € K \ k(x). Then
k(x) Sk(x,y) €K and [k(x,y) :k(x)]=2=[K :k(x)],

which implies that K = k(x, y). Now, since y is of degree 2 over k(x), the irreducible
polynomial of y is of the form y> + ay 4+ b = 0 with a, b € k(x). Since char K # 2,
by completing squares we obtain

2 2 2 2
5 a a ( a> a
—:——b, - =__b
yotay+ = or \yt3 4
Now let z = y+%, K = k()c,z),andz2 = ¢ with ¢ € k(x). We can write ¢ = —gg;

for some relatively prime elements % (x), g(x) of k[x]. Then

(8(0)2)* = h(x)gx).
Put u = g(x)z and 7(x) = h(x)g(x). We then have K = k(x, u) and u® = t(x).

Finally, we can write 7 (x) = r(x)2 f(x) with f(x) square-free. Then if v = ré‘—x), then
K = k(x,v) and v* = f(x), where f(x) is square-free. |
From this point on, K will denote a field of the form
k(x,y), where y>= f(x)
for some square-free polynomial f(x) of degree m. Since [K : k(x)] = 2 and

char K # 2, K/k(x) is a Galois extension. Let Gal(K /k(x)) = {1, o} with

K =k(x,y), y*=f(x) and o(y)=—)y.

Let P be an arbitrary place with valuation ring ¥ and associated valuation vp. We
define vpo by vpo (2) :=vp (07'(2)) = vp (0 (2)).



106 4 Examples

Lemma 4.3.2. vpo is a valuation with maximal ideal P° = {o (a) | « € P} and val-

uation ring 9°.

Proof. 1t is straghtforward. O
Now, o can be extended to Dk in a natural way; that is, if

A =

r r
Pl e Dg wedefine A7 :=[](P7)" e D.

i=1 i=1

For z € K, we have
vpo (0(2) = vp (07 (@(2) = vp ().

Therefore we obtain the following lemma:

Lemma 4.3.3. If z € K*, then (2)% = (7).

Proof. If (2)g = %‘ then vpo (0(2)) = vp(2), thatis, 37 = 35(;) and N7 = Ny ().
Therefore )
3? _ 30(z) _

=== =@k = (), O

D% = oo
K7me ™ Ny

Proposition 4.3.4. Let t € N and let M, be the pole divisor of x. If z € L (N;'),
theno (z) € L (‘ﬁ;’). In particular, if z = a(x) + yb(x) with a(x), b(x) € k(x) and
z€eL (‘J’I;’), then o (z) = a(x) — yb(x) € L (‘ﬁ;t).

Proof. Let z € L (‘ﬁ;’) be nonzero. Then (z)x = %, for some integral divisor 2.
Therefore 2(° is an integral divisor and

@)% = (0(2) el l hl
4 = (O ===,
SRR T oy T, T
which implies o (z) € L (‘ﬁ;’ ) |

Proposition 4.3.5. For t € N we have
L (‘ﬁ;’) = {a(x) + yb(x) | a(x), b(x) € k[x],dega <t and degh <t — %} .
Proof. Let z € L (MN;") be of the form
z=a(x)+ yb(x) with a(x), b(x) € k(x).
We have

0(z) =alx) —yb(x)eL (m;t) ’



4.3 Quadratic Extensions of k(x) and Computation of the Genus 107
and hence
z4+0(@)=2ax) el (‘ﬁ;t) .
Therefore a(x) € L (‘ﬁ;’ ) since char K # 2. Now, if

s(x)
a(x) = ——, where s(x), r(x) € k[x]

r(x)

are relatively prime and r (x) is a nonconstant polynomial, there exists an irreducible
polynomial g(x) in k[x] such that g(x) | r (x), that is,

vg(a(x)) <0 in k(x) and vy # Veo.

Now if v is an extension of vg to K, we have v(a(x)) < 0, where v # v/, and v,
is any extension of v to K. However, since a(x) € L (9;"), r > 1 implies that
v(a(x)) > 0. This contradiction proves that a(x) € k[x].

Now we write

a(x) =apx" +---+aix +ap, with a, #0.

If P | 9, then

i (0.¢] lfa, = O,
vp (a,-x ) =1 ]
ivp(x) ifa; #0.

Therefore since vp(x) < 0 we get
vp(a(x)) =min{ivp(x) |0 <i <n,a; #0} =nvp(x).

In particular, we have M) = 2. Since a(x) € L (M), it follows that n < 7. In
short, a(x) is a polynomial of degree at most 7.
On the other hand, y> = f(x) implies

22° = (a(x) + yb(x))(a(x) — yb(x)) = a(x)* — y*b(x)*
—a()? = f)bx)*eL (fﬁ;Zf) .

Indeed, from

2 A° AA°
Ok =g verst ()= g S0 () = gor

It follows from the previous discussion that a(x)? — f(x)b(x)* is a polynomial of
degree at most 2¢, which implies that f(x)b(x)? is a polynomial of degree at most 2.
Since f is square-free, it follows that b(x) must be a polynomial and since deg f = m,
we have degb < 2’%’" =r—Z

5 -
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Conversely, let a(x) € k[x] be of degree at most ¢ and let b(x) € k[x] be of degree
at most t—3 L, Observe that for any valuation v such that v(x) > 0, we have v(y) > 0

since y2 = f(x) and v(f(x)) > 0. Then

2 2
O = (%) = POk = 7 = g

so (Vg = ‘ﬂ”’ —.in for some integral divisor 2.

Let z = a(x) + yb(x). Then z% = a(x) — yb(x) and z € L (") for some n.
Now, if P | 91, we have

vp (z+27) = vp (2a(x)) = vp(a(x)) = dega(x)vp(x)
> tvp(x) = vp (xl) ,
and
vp (z—27) = vp Qyb(x)) = vp(y) + vp(b(x))
- %v’p (x) + deg b(x)vp(x) = (% + deg b(x)) vp(x)
> tvp(x) = vp(x').
Therefore z 4 z° and z — z° belong to L (‘ﬁ ) which implies that
2:=(z+2°)+(z—2%) e L (M),

whence z € L (9;7). O

Corollary 4.3.6. We have
0 if t <0,
e = r+1 if0<t< [ ]
2t +2— [’”;1] if ¢ > [—1]

Proof. If t < 0, then M " is an integral divisor, so L (M;’) = {0} and £ (N;") = 0.
Letr > 0. We have

L) = [a(x) +yb(x) | dega < 1,degh <1 — %]

If

then
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m
t—— <0, so bx)=0.
2
Therefore
L (M) ={a(x)|dega <t} and €(M')=1+1.
Finally, if ¢ > [’"—] > %, we have

m] t—% if m is even,
Tlr—1-2 = — 2 ifmis odd

Therefore,

t+1+t—%+1 ifmiseven
t+ 141 =" 4 1ifmisodd
2t +2 -7 ifmiseven m+ 1
{2t+2—’”T+1ifmisodd A+2- '

Z(‘ﬁ;’)=t+1+[l—%]+l:{

Corollary 4.3.7. We have

B _[m+1 1= %—1ifmiseven,
§TET T T2 ifmis odd.

Proof. We have [K : k(x)] = 2 =dMy).Ifr > g,thent € N and d(‘ﬁi) =
td (My) = 2t > 2g — 2. By Corollary 3.5.6, £ (N;") = d (N,) — g + 1. Therefore
for + > max {0, g, [mT“] }, we have

E(m;’)=2t+2—[mT+li|=a’(‘ﬁ;)—g+1=2t—g+1.

Henceg:2t+1—(2t—|—2)—|—[’”—;1]:[’”T“]_L O

Now all cases pending from Section 4.2 are an immediate consequence of Corol-
lary 4.3.7.

Corollary 4.3.8 (see Proposition 4.1.9). If K = R(x, y) with x> + y> + 1 = 0, then
gk =0.

Proof. Since y? = — (x? + 1), we have m = 2 and g = [’"TH] -1 = [%] -1 =

1-1=0. O

Corollary 4.3.9 (see Example 4.2.2). If K = R(x, y) with x> + y* + 1 = 0, then
g=1



110 4 Examples

Proof. We have x? = — (y* + 1), s0 K = k(y)(x) withm = 4. Then g = [%] —
_ | 4+1 _ |3 _ _

r=[#]-1=[3]-1=2-1=1 o
Corollary 4.3.10. If K = R(x, y) where y*> = f(x) and f is square-free and of
degree 2, then g = 0.

Proof.Putm=2andg=[2J2r—1]—l:1—1:0. O
Corollary 4.3.11 (see Theorem 4.2.4). If K = R(x, y) is such that y> = f(x), with
f(x) square-free and deg f(x) = 3, then g = 1.

Proof.g=[H]-1=2-1=1 o

Remark 4.3.12. In Proposition 4.1.9, we obtained that if
K=R(x,y) and x*+y*+1=0,
then K is not a rational function field. Now, if
K =C(x,y) with x*4+y*4+1=0, and g=0,

then since C is algebraically closed, K surely is a rational function field. It is natural
to ask what the difference is between this and the real case. To answer this question,
observe that

2_ _(,2 _ N X —1I
Vo= x“+1)=—-(x+iD)x—i)=—(x+1i) -
X +1
Then
()
=i(x+1i ,
Y x+i
SO
K =C(x,y) =C(x, 2),
where
x—i b X—i
= ;. or 77 = )
x+1 x+1
whence x = —izzﬂ, that is, x € C(z). Thus K = C(z). The previous argument

would not have been possible with R in place of C.
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4.4 Exercises

Exercise 4.4.1. Let K /k be a function field of genus O that is not a rational function
field. Prove that there exists a constant extension k’/k of degree 2 such that Kk’ is a
rational function field.

Exercise 4.4.2. Let K = R(x, y) with x* + y? + 1 = 0. Prove that every place of K
is of degree 2.

Exercise 4.4.3. Let K/k be a function field. Let

0 := min{n € N | there exists p € Pg, dx (p) = n},
and
d := min{n € N | there exists A € Dk, dg () = n}.

Prove that d divides ¢ and if g = 1, thend = o.

Exercise 4.4.4. Let K = R(x, y) with x” 4+y?+1 = 0. Characterize the set of positive
integers n € N such that every place of K is of degree 2.

Exercise 4.4.5. Let chark = 2 and consider K = k(x, y) given by x> + y? 41 = 0.
Show that gx = 0 and conclude that Corollary 4.3.7 does not hold for character-
istic 2.

Exercise 4.4.6. Let chark = 2 and let f(x) € k[x] be a separable polynomial of
degree 3. Let K = k(x, y) be given by y> — y = f(x). Show that K contains a prime
divisor of degree 1 and gx < 1.

Exercise 4.4.7. With the conditions of Exercise 4.4.6, if f(x) is separable of degree
4, what can we say about g ?
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Extensions and Galois Theory

This chapter is about the Galois theory of function fields. Many of the results presented
here are of a general nature, but our interest and emphasis will be focused on function
fields.

Most of our main results are based on the situation in which the constant field & is
perfect. When the field of constants is not perfect, strange things may happen, and we
shall mention a few of them in Chapter 9.

In Section 5.4 we study the completions of a field extension; as we shall see, the
knowledge of extensions of such completions, or in other words the local case, is
useful for the study of the global case.

Section 5.5 is dedicated to entire bases, which will be indispensable when we study
Tate’s genus formula for inseparable extensions in Chapter 9.

We shall consider ramification in cyclic extensions, both Kummer extensions and
Artin—Schreier extensions. Moreover, we shall obtain Kummer’s theorem on the de-
composition type of a prime in an extension.

We end the chapter with ramification groups, which are useful for the study of
extensions with wild ramification.

After Chapter 3, which treats the Riemann—Roch theorem, this chapter may be
considered as the second in importance of our book, due to the fact that it contains
basic concepts and results of the theory such as ramification, decomposition of places,
norm, and different.

5.1 Extensions of Function Fields
Definition 5.1.1. Let K /k and L /¢ be two function fields. We say that L is an exten-
sionof Kif K C Land¢NK =k.

Proposition 5.1.2. Let L /¢ be an extension of K / k, and let x € K be transcendental
over k. Then x is transcendental over £.

Proof. We have x € K\ k,sox ¢ KN{¢ =k. Thus x & ¢, thatis, x € L\ £. Therefore
x is transcendental over £. O.
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Definition 5.1.3. Let L be an extension of K. A place P of L is called variable or
trivial over K if vp(x) = 0 for all x € K*. This is equivalent to saying that K C ¥p.

If P is nontrivial over K, then vp|, defines a nontrivial valuation in K. In other
words, there exists a prime divisor g of K such that vp|, = vy, (here the symbol = is
used to mean that the two valuations are equivalent).

Definition 5.1.4. When P is nontrivial over K, and hence vp|, = v,, we say that P
is over g or that P is above g or that P divides g, and this is denoted by P | g or
Plk = g-.

Consider an extension L of K, P a nontrivial place of L over K and P|x = .
Since the valuations are discrete and normalized, it follows that vp : L* — Z and
vp : K* — Z are surjective. On the other hand, vp|, is not surjective in general, so
vp (K*) = eZ for some e > 1. Thus we have vp(x) = evy, (x) forallx € K.

Definition 5.1.5. The number e obtained above is called the ramification index of P
over g and it is denoted by e = e (P|p) = ek (Plg).

Example 5.1.6. Let K = k(x, y) be defined by y> = x. Let o be the zero divisor of
y. Then v, (x) = v, ( y2) = 2. Therefore if pg is the zero divisor of x, Bolrx) = Po
and e(Popo) = 2.

Proposition 5.1.7. If L /¢ is any extension of K | k, and P is a place of L over a place
© of K, then k () = ¥, /g can be embedded in a natural way in £ (P) = 9p/P.

Proof. Since P|g = g, we have p N K = ¥, and P N K = p. Hence the natural
map from ¢, /g to ¥p /P is a monomorphism of fields. O

Proposition 5.1.8. Let L/t be an extension of K /k. The following conditions are
equivalent:

(1) [£: k] < o0.
2)[L: K] < oo.
(3) If P is any place of L over a place g of K, then [Z P) 1 k (p)] < 00.
Proof. By Theorem 2.4.12 we have [k () : k] < oo and [£ (P) : €] < co. From
[£(P):kl=[L(P):k(@)][k(p): k] =[€P):L][€: k],

it follows that

[€(P):k(p)] <00 < [£:k] < o0,

which proves the equivalence of (1) and (3).
Now let x € K \ k. Then x € L \ £. By definition we have [K : k(x)] < oo and
[L:£4(x)] < o0, so
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[L:k(x)]=[L:K][K :k(x)]=[L:2x)][£(x):kx)].
Therefore,

[L:K]<oo < [£(x):k(x)] < co.

By Proposition 2.1.6, we have [£(x) : k(x)] = [£ : k], which implies that (1) and (2)
are equivalent. O

Similarly, we obtain the following proposition:

Proposition 5.1.9. Let L/ be an extension of K/k. The following conditions are
equivalent:

(1) £ is algebraic over k,

(2) L is algebraic over K,

(3) If P is a prime divisor of L over the prime divisor & of K, then £ (P) is algebraic
over k ().

Proof. Exercise 5.10.8. O

Definition 5.1.10. Let L /K be an extension of function fields, and let P be a place of
L over a place p of K. We define the relative degree of P over p by di/x (Plp) =
[6 P):k (g))] (which can be finite or infinite).

Proposition 5.1.11. Ifd; (P) = [£(P) : €] and dg (9) = [k (9) : k], then
dp (P)[€: k]l =dr/k (Plp)dk (9).

Proof. The result follows from the following diagram, which allows us to calculate
[£ (P) : k] in two different ways.

dr/x (Plp)
k() ————£(P) o
dk (9) dr(P)

[e:k]
V4

Proposition 5.1.12. If L/¢ is an algebraic extension of K /k, then no place of L is
variable over K .

Proof. Assume that there exists a valuation v of L that is trivial over K. For each
« € L, consider

1

J&x)=x"+a,_1x" +---+ap € K[x],

where f(x) is the irreducible polynomial of . Then

1

a"+a,_ 1" +---+a=0 with €K, i=0,...,n, and ag #0O.
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We have
0=v(ay) =v (—a (ot”_l +ap_1a" +a1>>
=v(x)+v (ot"_1 +ap_1a" -+ a1) .

Therefore, if we choose @ € L such that v (o) > 0, we obtain

v (a”_l +ap 1" 2+ a1> > min{(n — Dv(a),...,0} =0.
Thus
0=v@+v(e " a0+t ar) Z 0@ >0,
which is impossible. O

Theorem 5.1.13. Let L /¢ be an algebraic extension of K / k. Given a place g of K,
the number of places of L over g is finite and nonzero.

Proof. Let g = g be the genus of K and let C € Cg be the class of the divisor p$+1.
Then

d(€) = dx (95*1) = (¢ + D (9) = g +1,
SO

N(C)zd(C)—g+1=2.

Hence there exist another integral divisor & € C and x € K \ k such that %H =
(x)k. Then x is transcendental over k, vp(x) > 0, and v,/(x) > 0 if and only if
@’ = g. It follows from the definition of extension of function fields that x ¢ £. Now
the divisor of x in L is

PPy
x)p=———, with A>1 and g; > 0.
(M), ’
We will see that Py, ..., P) are precisely the places of L over . If P is any
place of L over g, we have vp(x) = e (P|p) v,(x) > 0. Therefore P | (3x), =
77;11 ... P thatis, P € {Py, ..., Py} and conversely. |

The most important arithmetical result in algebraic extensions of function fields is
the following formula:

Theorem 5.1.14. Let L /¢ be an extension of K / k (finite or infinite). Let g be a place
of K and let Py, ..., Py be the places of L over g. Then

h
[L:K]= ZdL/K (Pilp) eL/x (Pilgp) .

i=1
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Proof. If h = oo, the result follows immediately. Assume that # is finite. By Proposi-
tion 5.1.8, we have

[L:K]=00 <= dr/xk (Pilp) =00 for i=1,...,h.

Therefore the formula holds trivially in this case.

Now suppose that [L : K] < oo, and let x € K \ k be such that (x)g = (ki for
pp S
some integral divisor & # @811, Let

h
A=) dik (Pilp)er/k (Pil) .
i=1
We have
a (x) vp, (x)
(X)L _ (3x)L — le "'Phh — ,P;)Pl i e 'Phph
(mx)L (mx)L (mx)L

It follows by Theorem 3.2.7 that
h
[L: )] =di ((3r)r) = Y vp,(0)dr (P)
i=1

h
= Z vp(X)erL/k (Pilp) dr (Pi)
i=1

J h
_ vp)dk (p) > diik (Pil@)er/k (Pilp)  (Proposition 5.1.11)
i=1

[€: k]
Vg (x) :
_ dk (» )A _dk (Bx)k) _ K k(x)]A (Theorem 3.2.7).
[€: k] [€: k] [€: k]

On the other hand, we have

[L:0()] = [L: K][.Kik(X)] _ K :_k(x)][L LK.
[£(x) : k(x)] [€: k]

Hence we obtain A = [L : K]. O

Corollary 5.1.15. With the above notation, we have
h <[L:Kl, dpk Pilp)<[L:K] and er/x (Pilp) <I[L:K]

fori=1,... h. O
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Proposition 5.1.16. Consider any tower of function fields of the form K/k € L/l C
M /m. For any prime divisor B3 of M that is nontrivial over K, let P = P |1 and
© =P lgk="P |k. Then

em/k (Blp) = emyr (BIP) er/x (Ple)
and

dux Ble) =duyr (BIP)drx (Ple) .
Proof. If x € K*, we have vp(x) = ep/x (Blg) vp(x), and on the other hand,
vp(x) = em/L (PBIP) vp(x) = emyr (BIP) eLjkx (Plg) vp(x).

Picking x € K* such that v, (x) # 0, we obtain the first equality.
Furthermore, we have

dyyx (Ble) = [m (P) 1k (9)] = [m (P) : £ (P)][£(P) : k (9)]
=dp;L (BIP)drLx (Ple) . |

5.2 Galois Extensions of Function Fields

We first recall some general results of field theory. Let L/K be an algebraic extension
of fields and let Ly = {x € L | x is separable over K}; L is called the separable
closure of K in L, L /Ly is purely inseparable, and L;/K is separable. Furthermore,

[L:K];=[Ls:K] separability degree of L/K,
[L:K]; =[L: L] inseparability degree of L/ K,
and
[L:K]=[L:K][L:K];.
Now let

L; = {x € L | x is purely inseparable over K} .

Then L; is a subfield of L and clearly L; /K is purely inseparable. However, if L/K
is not normal, then L /L; is not necessarily separable.

Example 5.2.1. If X, T are two variables over k = [F;, consider the fields K =
k (T, X4+ TX%+ 1) and L = k (T, X). We leave it to the reader to verify the fol-
lowing assertions: Ly = k (T, X?), and L; = K (see Exercise 5.10.3).

Hence, in this case we have LyL; = Ly # L. In fact, in general we have Ly L; = L
if and only if L/L; is separable.

Definition 5.2.2. Let K C L be an arbitrary field extension. We define the group of
K -automorphisms of L by

Aut(L/K) = Autg (L) :={o : L — L | o is an automorphism, o |x = Idg}.
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If L/K is any Galois extension, we have Gal(L/K) = Aut(L/K). If H is any
group of automorphisms of a field L, the fixed field of L under H is

={aeL|o(a) =aforalloc € H}.
If Gal(L/K) is finite, by Artin’s theorem, L/L" is a Galois extension such that
Gal (L/L") = H.
Now if L/K is any finite normal extension and G = Aut(L/K), then L/LC is a
Galois extension that is separable, and LY /K is purely inseparable. In this case, we

have L; = L% and L;Ly = L°Ly, = L (compare with Example 5.2.1).
Hence, in the normal case we obtain

[L:LG]z[L:K]S and [LG:K]z[L:K],-.

Definition 5.2.3. Assume that L /¢ is a finite extension of K /k, where L/¢ and K /k
are function fields. If P is a place of L and g = P|k, we define

drk (Plp); = [L(P) s k(9)];
and

drjk (Plp)s = [£(P) 1k ()], -

A prime divisor P is called separable if dp;x (Plg); = 1, inseparable if
dr/k (Plg); > 1, and purely inseparable if dp ;g (Plgp) = dr/x (Plg);.

Definition 5.2.4. Let L /¢ and M/m be two extensions of K /k andleto : L — M
be a field isomorphism such that o (¢) = m and o|x = Idg. Then for a place P
of L we define the place o (P) of M by means of the valuation v,p, defined by
Vep(X) = vp (a‘lx) forall x € M.

Proposition 5.2.5. If we interpret P as the maximal ideal of the valuation ring ¥p
corresponding to vp, then o (P) is simply the image of P under o, that is, o (P) =
{o () | ¢ € P}.

Proof. This is clear. O

Proposition 5.2.6. The map that associates o (P) to each place ‘P is a permutation of

the prime divisors of L and M. Furthermore, we have £ (P) = m (c'P) and 9p %
Vop. Finally, if P is over the place ©, then o (P) is over g and the isomorphism

G : £ (P) —> m (o'P) is such that & |i(py= ldi(p). In particular, we have
dr/k (Plp) =dmk (0Plp) and ep/kx (Ple) =emx (0Plp).

Proof. All assertions follow immediately from the definitions. O
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Theorem 5.2.7. Let L /¢ be a normal finite extension of K /k. Let P be a place of
L over the place g of K. Let P’ be any other place of L over g. Then there exists
o € G = Aut(L/K) such that o P = P’. In other words, G acts transitively on the
places of L that divide a given place of K .

Proof. Exercise 5.10.9. O

Definition 5.2.8. Let L /¢ be a finite normal extension of K /k. If P is a place of L
over g of K, we define the decomposition group of P by

D (Plp) = Dr/k (Plp) ={o € Aut(L/K) | o (P) = P}.
By Theorem 5.2.7, G = Aut(L/K) acts transitively on

A ={P | Pisa prime of L such that P|x = p}.

Thus

_ 6l
D (Plp)l’

Proposition 5.2.9. Let L /¢ be a finite normal extension of K / k. Let 0 € Aut(L/K).
Then D (6 P|lp) = oD (Plp)o~!.

|A]

which is the number of prime divisors of L over .

Proof. We have

6 € D (0Plp) &= 0P = 0P (a_190> (P)="P
& 000 € D(Plp) <=0 coD (Plp)o". ]

Theorem 5.2.10. Let L /€ be a finite normal extension of K/ k. Let P be a place of L
over the place g of K. Then € (P) is a normal extension of k (). Furthermore, there
exists a natural epimorphism from D (Plg) to Aut (€ (P) [k ()).

Proof. LetP = Py, ..., Py be all prime divisors of L over p. Lety € £ (P) = 9p /P,
with y € 9p. Let y' € L be such that vp, (y — »") > 0 and vp,(y") > O for all
Jj = 2,...,h. By the approximation theorem (Corollary 2.5.6), such y’ exists. Then
y —y' € P. In particular, we have y' € y. Hence, replacing y by y’, we may assume
that vp, (y) = 0 and vp,(y) > Ofor j =2,..., h.

Let G = Aut(L/K). We have

ro =TT a—on)™" e optr < ki
oeG

For o ¢ D (P|p), we have 6P % P, so vp (0y) = vy—1p(y) > 0. Therefore, if
we set

f(x)=f(x)mod p, then o ¢ D (Plp) implies oy =0.



5.2 Galois Extensions of Function Fields 121

Thus, we have

[L:K],' —_—
@) = { [ « —U_y)} X%, with s € NU {0}, and F(x) € k () [x].
oceD(P|p)

This implies that 7(x) has all its roots in £ (P), and since ¥ a root of f(x), it follows
that £ (P) is a normal extension over k ().

If o € D(Plg), we have o (P) = P and o (Jp) = vp, so 0 is an automor-
phism of £ (P) = ¥p/P. Since o|x = Id, we have that o) = Idg(p). Thus
o € Aut(£ (P) /k (9))-

It is clear that the function

D (Plp) = Aut (£ (P) /k (9)) = H

is a group homomorphism. Notice that £ (P) is a Galois extension over k; = £ (P)H )
k(). Let £ (P) = k1 (y) withy € £ (P) and y € ¥p. Clearly, every element of H is
uniquely determined by its action on y. The conjugate elements of y are of the form
o (y) for some o € D (P|g) (this follows from the above arguments). That is, every
0 € His of the form 8 = 6,0 € D (P|g). Therefore ¢ is an epimorphism. |

Definition 5.2.11. The kernel of the natural epimorphism
D (Plp) — Aut (£(P) /k (9))
is called the inertia group of P over g, and it is denoted by

I (Plp) = Ir/k (Plp) .

We will assume that L/K is a (finite) normal extension for Corollary 5.2.12 up to
Corollary 5.2.19.
We have

I (Plp)={o € D(Plp) |6 =1dyp)}
={o0 € D(P|gp) | ox = x mod P forall x € ¥p}
={o € Aut(L/K) | ox = x mod P for all x € Jp}.

Corollary 5.2.12. Aut (£ (P) / k (9)) is isomorphic to D (Plgp)/I (P|g). O

Corollary 5.2.13. If h is the number of places in L over the place g of K, we have
|[Aut(L/K)| = h|D (Plg)l.

Proof. If G = Aut(L/K), we have Aut(L/K) = Gal (L/LG). Therefore

(o161 = - k. = ¢ _
G1=[L: L] = (LK) = p s D Pl = hID Pl O
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Corollary 5.2.14. [D (P|p) : I (Plg)] = dr/k (Plg);.
Proof. We have
[D (Plp) : I (Plp)] = |Aut (£ (P) /k ()| = [€(P) : k (p)], = dr/x (Plg). O

Proposition 5.2.15. With the same conditions as in Theorem 5.2.10, we have I (cP|gp) =
ol (Plp)o'.

Proof. We have
I (0P|p) =ker (D (0P|p) — Aut(¢ (0P) /k (9)))
=ker (oD (Plp)o™" — Aut(€ @P) /k ()
=0 (ker (D (Plp) —> Aut(£(P) /k () o' =ol (Plp)o~". O
Proposition 5.2.16. Foralli =1, ... , h, we have
d=dp/x (Plp) =dr/kx (Pilp) and e=er/x (Plp) =er/x (Pilp).
Proof. Let P; = o (P). Then
L(P) = L(0 (P) = Vo(p)/0P =& (9p/P) = 0p/P =L (P).
Hence
drjk (Pilp) = [€(P) s k()] = [€(P) 1k (9)] = dr/k (Plp).
If x € K* satisfies vy, (x) # 0, we have
vp, (x) = er/x (Pilp) vp(x)
and
vp, (¥) = vop(x) = vp (071%) = vp(x) = €Lk (Plp) v (x).
Therefore ek (Pilp) = ek (Plp). O
Corollary 5.2.17. We have

[L:K]=edh, where e=ep/k (Plp) and d=dr/x (Plp).

Proof. This is an immediate consequence of Theorem 5.1.14 and Proposition 5.2.16.
|

Corollary 5.2.18. With the notation of the previous corollary, we have

ed =[L: K] |D(Plp)l.
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Proof. We have

P CRE.S S RS eIy (Corollary 5.2.13)
e n T AWK (Ple) orollary 5.2.

[L: _
m|D(P|@)| [L: K] |D (Plp)l. o

Whenever there is no confusion possible, we will denote ey ;x (P|p) by e,
dr/k (Ple) by d,dr/k (Plg); by d;, etc.

Corollary 5.2.19. |1| =
Proof.

|D| ed ed; .
[ = = = (Corollaries 5.2.14 and 5.2.18). O
[D:I1 [L:K]ds [L:K];

Proposition 5.2.20. [f L/K is a separable algebraic extension, then €/k is also a
separable extension.

Proof. If £/k is infinite and not separable, there exists an element « of £ that is not
separable over k. Thus k(w«)/k is inseparable and [k(«) : k] < oco. Hence we may
assume that £/ k is finite.

Next, we may assume that £/k is normal since if l / k is the normal closure, then
K{ C L, where L is the Galois closure of L /K. In the case that 1 / k is not separable,
we have /; # k. Therefore there exists x € ¢; \ k such that x?" € k and p = chark.
We have x € L \ K and x?" € K, which is impossible since L/K is separable.

Hence we may assume that £/k is normal. If £/k is not separable, there exists
o € E\ksuchthatap[ € k forsomet > 1. Wehave « € L and since K N ¢ = k,
a ¢ K. This together with a” € K contradicts the separability of L/K. O

Theorem 5.2.21. If L /K is an algebraic separable extension and the field £ of con-
stants of L is a perfect field, then for every place P of L and o = Plg, £ (P) /k (9)
is a separable extension.

Proof. Since L/K is a separable extension, it follows that E = K/ is a separable
extension of K. Now £ C E C L, so the field of constants of E is £. Let B = P|g.
Thenk (p) € € (*B) C £ (P). Since £ is a perfect field and £ (*B) is a finite extension of
£ (Theorem 2.4.12), £ (*B) is a perfect field too. Therefore € (P) /£ (*B) is a separable
extension, and we may assume that L = K¥¢.

Let us assume that P is an inseparable place. Thus £ (P) /k () is not separable.
Lety € L besuchthaty € £ (P) is an inseparable element over k (¢). Since y € K¢ is
a finite linear combination of elements of K and ¢, wehavey € L1 = K («1, ..., ap),
where «; € £ and L;/K is a finite extension. Taking every conjugate of each of the «;,
we may assume that L1 /K is a normal extension. That is, it is a finite Galois extension.
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Since y is inseparable in £ (P) /k (g¢), if P; is a place of L over g, then y €
£1 (P1) is inseparable over k (), where £ is the field of constants of L. We have
(Corollary 5.2.19)

[ (Pilo)| = e,k (Pil@)dr,/k (Pile); = dr,/kx (Pilg); > 1.

Thus there exists 0 € I = I (P1|g), with o # Id. Since L/K is normal, it follows
that £1/k is normal (see Exercise 5.10.20).

Now we have L1 = K (a1, ... ,a,), witha; € £ € ¥p, and
oc(@)=a;modP; for i=1,...,n.
Equivalently,
vp, (@i — o (a;)) >0 for i=1,...,n

Since all o; and o («;) are constants, it follows that vp, (a; — o (@;)) > 0 implies
o; = o (e;). Therefore o = Id. O

Remark 5.2.22. If £ is not a perfect field in Theorem 5.2.21, then there may exist in-
separable places (see Exercise 5.10.18 and Theorem 5.2.33).

Corollary 5.2.23. Let L/K be a finite separable normal extension, i.e., a Galois ex-
tension. Assume that the field £ of constants of L is a perfect field. If P is a place of L,
putp = Plk, e = er/kx (Plp) andd = dp x (Plg); let h be the number of places of
Lover o, 1 =11k (Plp), and D = Dy k (P|g). Then

[L:K]=edh, |D|l=ed, |I|=e, and [D:I]=d.

Proof. By Proposition 5.2.20 and Theorem 5.2.21, all inseparability degrees are equal
to 1. The result follows using Corollaries 5.2.14, 5.2.17, 5.2.18, and 5.2.19. a

For the purely inseparable case we have the following theorem:

Theorem 5.2.24. Let L /¢ be a finite purely inseparable field extension of K [ k. Then
for each place © of K, there exists a unique place P of L such that P|lx = g. Fur-
thermore, if p = chark, then ey jx (Plg) = p' for some t > 0. Finally, £ (P) /k ()
is purely inseparable.

Proof. Let y € L. There exists n € N such that yg = y?”" € K.Let P be any place of
L over g, so that

P"op() = vp (3") = vp (30) = ek (Pl9) v (o)

Therefore, if P; and P, are two places of L over g, and if we choose y such that
vp, (y) # 0, then vp, (y) # 0, v, (yo) # 0, and



5.2 Galois Extensions of Function Fields 125

er/k (Plp) vp (o)
P '

vp, (V) = vp, () =

Thus vp, = vp,, which means that P; = P;.

Now if y € L is such that vp(y) = 1, then p" = er,kx (Plp) vy (yo). Hence
e =-er/k (Plg) | p", which implies that e = p’ for some 7 > 0.

Finally, if « € £(P), let y € ¥p be such y mod P = «. Then yl’t € K, so
ol ek (). Thus £ (P) / k (g) is purely inseparable. |

Example 5.2.25. Let k be an algebraically closed field of characteristic p > 0 and let
x be a transcendental element over k. Set

y=xP, K =k(xp) =k(y), and L =k(x).
Let g be a place of K. If g is the infinite place, then
P
£0 P Po
Mk =" and (g = ("), =@} = 0.
2 7). P&

Thus g is ramified.
If o is not the infinite place, there exists a € k such that

&
y—a)=—.
§00

We have

(y—a) = (xp - (al/p)p)L = ((x —al/p)>i = g—:.

Therefore g is ramified. Hence every place of K is ramified in L/K.

We will see that the phenomenon of the previous example can occur only in insep-
arable extensions.
In fact, we have the following corollary:

Corollary 5.2.26. Let L/ be a purely inseparable finite extension of K /k. If k is a
perfect field, then every place & of K is fully ramified in L.

Proof. Let P be any place of L that divides g. We have
[L: K]=he(Plp)f(Plp).

Now since £(P)/k is separable and £(P)/k(g) is purely inseparable, it follows that
L(P) = k(p) and

h=1 and [f(Plp)=I[LP): kip)]=1.
Thus e(P|p) = [L : K]. O
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Definition 5.2.27. In any extension L/¢ of K /k, a place P of L is called ramified if
e=c¢er/k (Plp) > 1, where p = P|g. Also, we say that o is ramifiedin L/ K.

When L/K is an infinite extension, by ¢ > 1 we will mean that ¢ > 1 in some
finite subextension.

Proposition 5.2.28. Let K C L C E be a tower of function fields with [E : K] < o0,
and let B be a place of E. Let P := P|1 and e = Plg. Then P is ramified in E /K
if and only if P is ramified in E /L or g is ramified in L/K .

Proof. The statement follows from Proposition 5.1.16. O
Definition 5.2.29. Let L /¢ be an extension of K /k. We say that L/K is a constant

extension if L = K¢, and that L /K is a geometric extension if £ = k.

Remark 5.2.30. Given a function field K / k and an extension £ of k such that {NK = k,
the field of constants of L = K¢ may contain £ properly.

Example 5.2.31. Let ko be a field of characteristic p > 0, and u, v be two elements
that are algebraically independent over ko. Let k = ko(u, v) and x be a variable over
k. Let

K =k(x,y) besuchthat y? =ux? +v.

Let &’ be the field of constants of K. Then [K : k(x)]is equal to 1 or p. We will see
that k' = k. If k' #£ k, then [k’ : k] = [K/(x) : k(x)] | [K : k(x)], thatis, [k’ : k] = p
and K = k’(x). Therefore y = u'/Px + v'/? € k'(x), so u!/?, v'/P € k' and

p=Ik:kl> [k(ul/p, vl/”) L k|
7, 017) ) [ ) ] = =

which is absurd. Whence, we have k' = k.
Let £ = k (v'/7) and L = K {y. Then

_ /P

v

NK=k and /7 =2""" cKkey=L.
X

Therefore the field £ of constants of L contains £y properly since
) k(ul/”, vl/p) 2 £o.
In Chapter 8 we will study the general constant extension L = K ¢.

Theorem 5.2.32. Let L /€ be an algebraic separable extension of K /k and assume
that L = KX{. That is, L is an extension of constants of K. Then no place of L is
ramified or inseparable over K .
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Proof. For the sake of contradiction, let P be a ramified or inseparable place of L
and let p := P|g. If P is ramified, choose y € L such that vp(y) = 1. Since

y is of the form % with @;, B; € £ and x;,z; € K, y must lie in a finite
j=1Pj%j

extension K (yi, ..., ) of K with y; € £. By adding the conjugates of the elements

yi, 1 <i <r,we may assume that L; = K(y1, ..., ) is a finite normal separable

extension of K. Let B := P|.,. Since y € Lj, we have v(y) = vp(y), so PP is
unramified and it follows that 3 is ramified over K. If P is inseparable, pick y € £(P)
inseparable over k(). Since y € £1(P), we have Irr(y, T, £(P)) = Irr(y, T, £1CB)),
so y is inseparable over k(g).

Thus we may assume that L = K¢ is a finite Galois extension over K. Therefore
1] = [1(Plp)| = ek (Plp)dr/x (Plp)i > 1.

Let 0 € I with o # Id. Since o(y;) = y;, mod P forall 1 < i < r, we have
vp(oy; — ;) > 0. Finally, y; € £, so we obtain that cy; = o; forall 1 <i <.
Hence o = Id. O.

Theorem 5.2.33. Let L /€ be an algebraic separable extension of K / k. Then there are
at most finitely many prime divisors of L that are ramified or inseparable.

Proof. First assume that L/K 1is a finite Galois extension. We have L = K(z) =
K (%) for some z € L. Let P be a place of L. Then z or % belongs to the valuation
ring of P. Therefore

‘P ramified or inseparable
— I =1 (Plp)| =er/k (Plp)dr/x (Plp); > 1
< thereexists o € [,0 # Id <—

1 1 1
<= vp (0(2) —z) > 0 when z € ¥p or vp (———) > 0 when — € ¥p.
o) z z

Now since |Gal(L/K)| < oo, there are only finitely many places satisfying

vp(0(z) —z) > 0 orvp (% — %) > 0, namely, only the divisors appearing in

the support of (6(z) — z), or in the support of (% — %)L, where o € G, 0 # Id.

When L/K is a finite separable extension, we take the Galois closure L. Since the
theorem holds for L/K , it also holds for L/K .

Now let L/K be an arbitrary algebraic separable extension. Let x € K \ k. Then
x ¢ £,s0 L/€(x) is a finite extension. Since K£ O f(x), it follows that L/KZ is a
finite extension. Therefore the theorem holds for L/K¢. Finally, by Theorem 5.2.32
there are no places in K¢/K that are ramified or inseparable, so the theorem holds
for L/K. O

Definition 5.2.34. A field k is called separably closed if any algebraic extension &’/ k
is purely inseparable. Any separably closed field is infinite.
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Corollary 5.2.35. Ifk is a separably closed field and K | k is separably generated, that
is, there exists x € K \ k such that K [/ k(x) is separable, then K contains infinitely
many divisors of degree 1 and there exist nonspecial systems in K .

Proof. Let x € K \ k be such that K/k(x) is a finite separable extension. Since £ is
separably closed, k is infinite. Thus k(x) contains infinitely many prime divisors of
degree 1 (forany a € k, (x — a)rx) = 77;—0"0, where P, is a prime divisor of degree 1).
By Theorem 5.2.33 there exist finitely many inseparable prime divisors in K over k(x).
If g is a separable prime divisor of K, then k(g)/k is separable and thus k(p) = k.
Therefore if g is above a prime divisor of degree 1 in k(x), g is of degree 1.

Finally, the existence of nonspecial systems in K follows immediately from the
proof of Lemma 3.5.13 (see also Proposition 3.5.16). |

5.3 Divisors in an Extension
Given a finite extension L /¢ of K /k we want to define a group monomorphism
¢ : Dx — Dy suchthat ¢ (Px) C Pr,

thatis, ¢ (X)g) = (x) L.
If (0 =17, 9", we have

i=10%

m  hi hi
T eijvp; (X) o vp; (%)
@e=[TIT7/" =T1117;" -
i=1 j=1 i=1 j=1
where ¢;; = er/k (Pij|5oi) and fori = 1,...,m, the P;;’s (1 < j < h;) are all the

places of L over g;. This justifies the following definition:

Definition 5.3.1. Let ¢ : Dg — Dj be defined on the set of generators of D by
o) = th:l Pf’, where ¢; = ez (Pi|g),  is a place of K, and Py, ... , P, are
all the places of L that are above g. Then ¢ extends in a natural way to Dg.

(A . Vs (2
More precisely, if A = [/, pi”@l( ), then ¢ (A) = [, I—[i;l:] Pie/ﬂp,( ) _

hi vp, ()
[T IG5 Py 7
The function ¢ is called the conorm of K to L, and it is denoted by cong 1.
From the definition we have the following result:

Proposition 5.3.2. The map cong . is a monomorphism from Dk to Dy such that
cong,r (Px) € Pr and such that if x € K*, then cong,r ((x)x) = (x)L. Finally,
cong,r induces a group homomorphismcong . : Cx —> CL. m]

We will see later that in fact, cong (DK,()) C Dy .



5.3 Divisors in an Extension 129

Remark 5.3.3. Observe that Cong . is not necessarily injective (see Exercise 5.10.21).
Also, since cong/ is injective, we will assume that Dg C Dy.

Theorem 5.3.4. Let L/K be an arbitrary extension of function fields. There exists
Ar/k € Qsuch that Lk > 0, A /g depends only on L and K, and for all A € Dk,

dg ()

dp (A) = i

In particular, dp () = 0 ifand only ifdg () = 0. Therefore cong /1 induces a group
homomorphism

cong,r : Cxo — Cr0.

Finally, if[L : K] < 00, then Ay /g = ‘[%fg]'

Proof. Since dy, and di are group homomorphisms, it suffices to prove our assertions
for a place g of K.

First, assume that [L : K] < oo and let pp = Pfl --~PZ". Since cong/r, (9)
=P} - P;" withe; = e /k (Pi|p), we have

h
dp (p) =Y _ eidy (Pi)

i=

—_

h
= ZeidL/K (Pilg) % (Proposition 5.1.11)
i=1 :
_dk () Ak (®)
= TA ;e,dL/K (Pilp) = TR [L: K] (Theorem 5.1.14).
0:k]

Therefore Ap/x = [lL—K]
Now let L/K be an arbitrary extension. To finish the proof of the theorem, it
suffices to show that for any prime divisors 2, 8 € Dk (of degree different from 0),

dy () dp (B)

= > 0.
dg )  dg (°B)

dg (A
Indeed, A1,k can then be defined as dK ( Q[) for any prime divisor 2.
L

Assume that there are two places 2, B of K such that

dr (%) - dr (°B) dr () - dg ()
dg )  dg (B)’ dr (B) dg (B)’

Let ;- € Q be such that

that is,

dc@) n dg @)

< < .
dp(B) m dg (B)

(5.1)
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Then from (5.1) we obtain, for # € N large enough,
dg (Ql””%_”’) =t (mdg (A) — ndg (°B)) > 2gx — 1
and
dp (A"'B™") =t (md (A) — ndy, (B)) < 0.
By the Riemann—Roch theorem (Corollary 3.5.6) there exists x € K such that

x € Lg (91_’”’%”’). We have (x)g = €A™B" where € is an integral divisor.
Therefore

dp (x)p) =dL (&) —t (mdp (A) — ndL (B)) >0

for ¢ large enough. This contradicts Corollary 3.2.9 and proves the theorem. m|

Let L/¢ be a finite extension of K /k and let L; be the normal closure of L/K.
Let £ be the algebraic closure of £ in L1, so ¢ is the field of constants of L. Put

G = Aut(L{/K)and H = Aut(L1/L) € G. Consider the set G/H of left cosets of
HinG.

Definition 5.3.5. We define the norm of y € L over K as

Npk(y) = { l_[ U)’}[L:K]i = {H Uy}[L:K]i,

oeG/H oeT
where T = {0 : L —> L{ monomorphism with o |x = Id}.

We have |T| = [L : K], = E2K — 1G]

[L:K];
Clearly, {]_[UeT ay} IS L?, and this implies []_[GeT Uy} € K. Therefore

Npk(y) € K.

Definition 5.3.6. We define the norm of Dy, in D to be the function Ny /x : D —
[L:K];

D defined by Npjx ) = {[Trecimo®} -

In the above definition, what is meant by o2l is {ca | a € %} € L. We will see
that in fact, Ny /x () € Dk, or, more precisely, Ny x () = cong,r, (*B) for some
B e Dg.

Theorem 5.3.7. The norm N defined above is multiplicative and satisfies:

(1) ForallA € Dy, Nk () € Dk ; more precisely, there exists B € Dy such that
Np/k Q) = cong,r, (°B).

(2) If P is a prime divisor of L over the prime divisor © of K, we have N jx (P) =
pd, where d = di/x (P|g).

() Forally € L, Npjx (0)1) = (NLjk () -

4) IfA € D, then N g () = ALK o, more precisely,

Nr/k (COH[(/L (Q()) = LK
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(5) If M 2 L 2 K is a tower of fields, we have Npjxk = Npjk o Ny/L.

Proof. 1t is clear that N is multiplicative.

(2) Let L1 be the normal closure of L/K,G = Aut(L;/K), H = Aut(L1/L) C
G, and let & be a prime divisor of L1 over P. Let Zg = D,/ (Glp) € G
and Z;, = Dp,/L (6]P) € H. Since L1/L is a normal extension, it follows
by Theorem 5.2.7 or Proposition 5.2.16 that

Py, =conyr, Py ={ [] 06| ebr, e=er@P).
5’EH/ZL

Then

1—[ 06)6|ZL|[L1K],' }

GeH/Z;

Nyg@)'#l=T] o
6eG/H

[
ST ef T1 oo™

e[L:K]; e[L:K];
- T o|(IT o)™ ™) = (T [T o)
0eG/H oeH 0eG/HOEH
e[L:K]; e[L:K];
=([Ts8)" " =( 1 w&)=!)
seG 5eG/Zg
B S|P L[)L:KJ,-\ZK\
_ [< 86) Ly/k( )} -
5eG/Zxg
. _ LK1 Zk]
withr = er/k (Plp)*
We have

[L: K |Zg| _ [L1: K] [Dryk (Slp)]
er/x (Plg) [L1:L); erLk (Slp)

er,/L (G|P) =

(Proposition 5.1.16)
[Li: K1 |Dr,jk (Slp)| er /1 (BIP)

e,k (Glp) [Li:L];
dr,/x (Glp)
=————"1D S|P Corollary 5.2.18
dr,)L (SP) |Dp, /L (S|P ( y )
=dixk (Ple)lZLl (Proposition 5.1.16).

Therefore, if d = dp/x (P|p) we have obtained Ny x (P)tl = pdlZtl,
which implies that Ny ¢ (P) = p.

(1) This is an immediate consequence of (2).
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(4) Since o () = A for all ¢ € G, it follows that Ny sk (2)
- (n6eG/H om)[L:K]i = ULKLILKL) = lL:K],
(3) We have
[L:K]; [L:K];
Nk =( T en) =[] @on)
5€G/H 5eG/H
[L:K];
= () = (Nrjk () -
(T o)), = o,

(5) It suffices to prove the statement for a prime divisor 3 of M. The result
follows immediately from (2) and from Proposition 5.1.16. O

Corollary 5.3.8. For 2 € Dy, we have dg (Np/x2) = [£ : k]dp ().

Proof. Since the degree and the norm maps are multiplicative, it suffices to prove the
statement for a prime divisor 2. In this case A = P is a prime divisor of L, p = P,
and we have

di (N1jxP) = di (9xP19) (Proposition 5.1.11)
=drk (Plp)dk () =[€: kldL (P). O
Corollary 5.3.9. The norm map Ny /k induces in a natural way maps

Npjk : CL — Cg and Np/k : CrLo — Ckpo.
Furthermore, we have

Npjk ocong;r(C) =C", where n=[L:K], and C € Ck.

Proof. By Theorem 5.3.7, we have N,k (Pr) € Pg.Hence Ny k induces in a natural
way the homomorphism Ny ¢ : Cp = D1 /P;, —> Dk /Pg = Ck, and by Corollary
5.3.8 we obtain Ny /x (Dr0) € Dk o.

Finally, Ni/x ocong,; (C) = C" follows by Theorem 5.3.7 (4). O

5.4 Completions and Galois Theory

Consider a finite extension L /K of function fields. For a place g of K, let Py, ..., Py
be all the places of L over g. We will denote by K, the completion of K with respect
to the valuation vy, and by Lp,, 1 < i < h, the completion of L with respect to the
valuation vp,.

For 1 < i < h,let L; be the topological field with underlying set L and the
topology given by vp,, 1 < i < h. Observe that in spite of having the same underlying
set, for i # j the identity map is not a homeomorphism from L; to L; since vp,
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and vp; are inequivalent valuations (L; and L ; might be, in some cases, topologically
isomorphic, under an isomorphism different from the identity). On the other hand, K
is considered with the topology given by v,,. Thus K C L; in both the algebraic and
the topological sense.

Since Lp, is the completion of L; and K C L;, it follows immediately that K, C
Lp,. The inclusion K, € Lp, means that when we obtain L; by means of Cauchy

sequences, we obtain a natural injection L; — Lp, defined by A (&) = [{era}22, ],
where o, = o for all n. Thus A (K) is a subfield of Lp, and the closure A (K) in
Lp, is a complete field containing A (K). Clearly the latter is a minimal complete field
containing A (K). Therefore A (K) is the completion of A (K) = K, and A (K) = K,
(algebraically and topologically). This is the meaning of the inclusion K, C Lp,.

As we remarked above, the L),’s are not necessarily topologically isomorphic.

Furthermore, in some cases, they are not even algebraically isomorphic, and what is

more they may satisfy [Lp'. : Kp] #* I:Lp/. : Kp] for some pair of indices i # j. The
reason that this phenomenon can happen is that in fact, we may have more than one
minimal extension containing both L and K,. Of course this would not occur if Ky,
and L were both contained in a larger field, in which case Lp, would be the subfield
generated by K, and L.

In order to clarify why the fields Lp, can be quite different, we present briefly the
theory of composition of fields.

Definition 5.4.1. Let K be an arbitrary field and let E/K and L/K be two extensions
of K. By a composition of the fields E and L we mean a triple (M, ¢, o), where M is
a field containing K,and ¢ : E — M and 0 : L — M are field monomorphisms
such that o|x = ¢|x = Idx and M is generated by ¢ (E) and o (L).

Remark 5.4.2. When E and L are contained in a field 2, unless otherwise stated, we
will understand the composite EL C 2 as the minimum subfield of 2 containing E
and L.

Definition 5.4.3. Two compositions (M, ¢, o), (M’, ¢, 0’) of E/K and L/K are
called equivalent if there exists an isomorphism A : M —> M’ such that

rop=¢ and roo =o'

MM MM

The above relation defines an equivalence relation. The problem now consists in
determining all its equivalence classes. Even though Definitions 5.4.1 and 5.4.3 apply
to the general case, for our purposes we will study only the case of a finite extension.

Consider L/K suchthat[L : K] =n < oo and let E/K be an arbitrary extension.
Let (M, ¢, o) be a composition of E and L. Put E' = ¢(E), L’ = o(L), and let

E/L/ = {Zle eifi | e € E’,Z,- S L’,r S N}
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Clearly E'L’ is a subalgebra of M/K. Since E'L’ € M, and M is a field, E'L’
is an integral domain. On the other hand, if {«, ... , a,} is a basis of L/K, the set
{o (a1),...,0 (o)} generates E'L’/E’. Since E’ is a field, it follows that E'L’ is a
field. Therefore E'L’ = M. Now, let

0:EQx L — M bedefinedby 0(e®g¥l) =¢(e)o ).

Clearly 6 is a K-epimorphism and M is isomorphic to (E @k L)/kerf. Since M is a
field, 9 = ker6 is a maximal ideal. Furthermore, K is isomorphic to K ®g K and
Ok = Idg, so M N K = (0). Observe that the homomorphisms

E-S E®kL, i(e)=e®x 1,
L EerL, j)=1®x¢,

are injective since # oi and 6 o j are injective homomorphisms and (6 o0 i) (E) = ¢(E),
@ o j)(L)=o0(L).Hence MNE = MNL = (0). Furthermore, since 9T is a maximal
ideal, 21 has no units. This implies the following theorem:

Theorem 5.4.4. Let K be an arbitrary field and let E/K, L/K be two extensions of
K. Then the equivalence classes of compositions of E with L over K are in a bijective
correspondence with the maximal ideals of the K -algebra E @k L. In particular, the
composition of fields always exists.

Proof. We already have seen that to each composition corresponds a maximal ideal.
Conversely, let 9T be a maximal ideal of £ ® ¢ L and let M be the field (E @k L)/9N.
Define

E -5 (E®kx L)/Mbyi(e) = (e @k 1) + M
and
L -1 (E®x Ly/Mby j(€) = (1 @k £) + M.

Since 91 is a maximal ideal, it does not contain units, so i and j are injective, that is, i
and j are monomorphisms and clearly M is generated by i (E) and j(L). Furthermore,
ilk = jlk = Idg. Therefore (M, i, j) is a composition of E and L.

Now let (M, ¢, o) and (M’, ¢, o’) be two compositions with

M= (EQygL)/M and M = (E®yg L)/M.
If M and M’ are equivalent, then there exists an isomorphism
A:M— M suchthat Aop=¢ and Aoo =o'

Let Y i_, e ®k ¢; € M. We have the implications
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-
D)oty =0 in M
i=1
r r
= 1 (Zw (e)o (&)) =" ) (@) (o) (8)
i=l i=l1
r
=) ¢ o' (=0 in M
i=1

-
:Zei Rk i e M.

i=1

Hence 9t C 997’ Since both ideals are maximal, it follows that 99t = 997,
Conversely, let 00T = M. Then if  and 6’ are the isomorphisms from (E Qg L)/
to M and M’ respectively,

(E Qg L)/Dﬁ —> (E ®k L)/im’

! b

M —_— M’
0'6-1

then A = 0’61 is the isomorphism from M to M’ and

p=00i ¢ =00i=6000"1000i=rogp,
oc=00j o' =00j=60060"'00oj=2ro00,

which gives equivalent extensions. O
The next result states that the number of maximal ideals in £ Qg L is finite.

Theorem 5.4.5. Let T be a field, and A an algebra over T such that A has finite
dimension and an identity element. Then A contains a finite number of maximal ideals.

Proof. Let dimr A = n < oo and My, ... , I, be distinct maximal ideals of A. Let
N = (i, Y. By the Chinese remainder’s theorem, we have

,
A= a/m.
i=1
Observe that A/t and A/90; are T algebras. Furthermore,
r
n=dimr A > dimy A/ =) dimy A/M; > r.

i=1

Thus r < n. |
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Corollary 5.4.6. If K is any field, and E/K and L/K are extensions of K such that
[L : K] = n < oo, then the number of composition classes of E and L over K is
finite. In fact, the number of such composition classes is less than or equal to n.

Proof. 1t is clear that if {«q, ... ,®,} is abasisof L/K, then 1 ®x «1,...,1 Qg oy
generate E ®k L over E. Thatis, dimg (E ®k L) < dimg L = n. The result follows
by Theorem 5.4.5. O

We consider the case that L = K (0) is a finite simple extension of K. Then
L = K|[x]/(f(x)), where f(x) =TIrr (0, x, K). Let

fx) = p1(x) - p(x) € E[x]
be the composition of f(x) as a product of irreducible factors in E[x]. We have

E®k L= (EQk (K[x]/(f(x)))) = (E @k K[xD/(f(x))

= Ex1/(f(0) = P (Elx)/ (pi(0)9)) -

i=1

The compositions of E with L over K are given by E[x]/(p;(x)), since the maxi-
mal ideals of E[x]/(f(x)) are precisely (p; (x))/(f(x)),1 <i <r.
We have the equalities

dimp (E @ L) = deg f(x) = ) eideg pi(x) = [L: K].
i=1

Let 6; be aroot of p;(x) fori = 1,...,r. When L/K is a separable extension, we
have ¢; = 1, and

E®kx L =D (E)/(pi(x)) = EPE ©6)
i=1 i=1

is the direct sum of all the compositions of E with L over K.
Now we return to our main concern.

Theorem 5.4.7. Let K be a complete field with respect to a valuation v and let L /K
be a finite extension of fields. Then there exists a unique extension w of v to L. Fur-
thermore, L is complete.

Proof. The existence of w follows from Corollary 2.4.6. Let | | and | |1 be the corre-
sponding absolute values. Let« € L* and 8 = «" /N (), where n = [L : K] and N
denotes the norm of L in K. Then N (B) = x&z’;g = ng;z =1

We claim that if y € L is such that |y|; < 1, then |N (y)|x < 1. Indeed, let

lylr < 1and set

y' =xVw + - 4+ xVaw,,
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where {wy, ..., w,}is abasis of L/K. Since |y|; < 1, it follows that

—— 0, sothat xl.(’)—>0 for 1 <i<n.

—>0o0 —>0o0

t

(1) (0
N

Now N (y’)) = (N (y))" is a homogeneous polynomial in x ., Xn , SO

N (y’) ——> 0, whichimplies that |N (y)|g < 1.
11— 00

Similarly, |y|;, > 1 implies [N (y)|g > 1.
This shows that |]|; = 1 whenever N (8) = 1. Hence,

el . "
1=l = ——F= = lalL = VIN @I = VIN @)g-
IN ()],
We have proved that the extension of the absolute value is unique. O

We now consider function fields L /¢ and K /k such that [L : K] = n. We wish to
show that if g is a place of K and Py, ... , Py are all the places of L over g, then the
result obtained from the discussion after Corollary 5.4.6 holds in the case that L/K is
not simple.

Theorem 5.4.8. Lete; = ep/x (P; | ) and fi =dp x (Pi | ). Then
[Lp, : Kp| =eifi.

Proof. Let mg be a prime element of K and let 7; be a prime element of L. Then
vy (mg) = e = ¢;. By Theorem 2.5.20 and Proposition 2.3.10, we have k' = k (p) =
Vp/p = dp/H and £ = £(P;) = vp, /P = 1973[/73,'. Thus K, = S ((wg)) and
Lp, =T ((rr1)), where S and T are fields such that S = k" and T = ¢'.

Since vy, (7) =s <efors =1,...,e— 1, wehave [K, (1) : K| > e. Now
assume f = f; = [¢': k']. Since Lp, = K, (1) T, it follows that [ Lp, : K| > ef.

On the other hand, L is dense in Lp, and Lp, is a complete field that is a finite
extension of K. It follows that Lp, must be the composition of the fields L and K,
over K. By the proof of Theorem 5.4.5 (and also by Corollary 5.4.6 and Theorem
5.1.14), we have

h h
[L:K]=n>dimg, (L®k Ky) > > dimg, Lp, > Y eifi =n.
i=1 i=1

Therefore these inequalities must be in fact equalities. In particular, [Lpl. 'K p] =
e; f, . O

Corollary 5.4.9. With the notation above, we have (L @ Ky) = @f’zl Lp,.
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Proof. For each 1 < i < h, there exists a maximal ideal 21; such that Lp, is isomor-
phic to (L ® Ky,)/M;. Therefore, if N = ﬂf;l Mm;,

h h
(L ok Kp)/MN=EP (Lo Kp)/M =P Lp,.
i=1

i=1

On the other hand, since dimkp (L Rk K@) =n= Zf’zl [Lpi : K@], it follows
that 9t = (0). O

As a consequence of the fields Lp, being exactly the distinct compositions of L
with K, over K, we have the following:

Theorem 5.4.10. Let L /£ be a finite extension of K / k. Let & be a place of K and let
P1, ..., Py betheplaces of L over p. If L/ K is separable, then Lp, /K, is separable
Joralli =1,... h. If L/K is normal, then Lp, /K, is normal fori = 1,..., h.
Finally, if L/ K is Galois then Lp, /K, is Galois and Gal (L'pi/Kbo) = Dr/k (Pilp).

Proof. If L/ K is separable (normal) ((Galois)), then Lp, = K, L is separable (normal)
((Galois)) over K.
If L/K is Galois, then clearly Dy/x (Pilp) S Gal (Lpl. /Kp). By Corollary
5.2.18 and Theorem 5.4.8, we have
|Drjk (Pilg)| = i fi = [Lp; : Kp] = |Gal (L, /Kp)].

It follows that Dy (Plg) = Gal (Lp,/Ky). O

5.5 Integral Bases

We will use the results of this section in the study of the Tate genus formula for insep-
arable extensions in Chapter 9.
Let K/ k be any function field.

Proposition 5.5.1. Let x € K\k and let R be the ring of elements of K that do not have
any pole outside the set of zeros of x. Then there exists a finite subset {w1, ... , Wy}
of R that contains a basis of K over k(x) and such that every element of R is a linear
combination of w1, . . . , wy with coefficients in k[x~ 1], that is, R = Z;"zl kx o

Proof. By definition we have
o0
R={yeK|vg(y)=0V¥qePx.qf3:)=JLcG.
s=0

Setn = [K : k(x)] = d(3y). Let {uy, ..., u,} be any basis of K/k(x). Then for
any 1 <i < n, there exists a relation
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n—1
wf =Y cyul, with ¢jek(x), i=1,....n j=0,....n-1
Jj=0
Define Cij = % with aij, b; € k[xil]. Let w; := b;ju;. Then

n—1 . n—1 1

n__gn,.n _ P I T

w; =bju; = Zbi Ciju; = Zaubz’ ;
— —

with a;;b) /7" € k[x 1],

Therefore w; is integral over k[x~1] C k(x) (see the proof of Theorem 3.2.7) and
since w; = bju;, b; € k[x~11, and {uy, ..., u,} is a basis of K /k(x), it follows that
{wi, ..., w,}is abasis of K over k(x).

Let By, ... , Py be the prime divisors dividing 3. Let 7 € Z be such that r > 0
and

vqgj(a),')z—r forall 1<j<h and 1<i<n.

Choose an integer M such that M > r and consider x ‘w; for 0 < ¢t < M —r and
1 <i <n.Then

v, xwp) = —tvg; (x) + vy, (w;) > —tug; (x)—r
> —tuy, (x) — rog; (x) > —Mvs;g_/, (x).

Thus

x Tw; € LK(B;M) =:Lpy.

1<i<n
0<t<M-r"

Let L), be the k-vector space generated by {x" a)i} As in the proof of

Theorem 3.2.7, we have dimy £, = (M —r 4 1)n and
k3™ <tk (30) +d(By) —d3M) = (M + Dd(3x) = (M + Dn.
Therefore
dimy Ly — dimg L}y, <rn
for all M € Z. Put

a = max{dimy Ly — dimy £),}.
MeZ

Let z1,...,2p € R be such that their residue classes modulo Z?:l k[xVw; are
linearly independent over k. Let M > 0 be such that z1,...,z; € Ly Then any
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nontrivial k-linear combination of {z1, ..., z,} does not belong to L, since L), C
S, k[x ™. 1t follows that b < a.
Thus, there exist elements wy, 41, . . . , W, (Withm—n < a) such that every element

of R belongs to

n m
Zk[x_l]a)i + Z kw;.
i=1

j=n+1
This proves the proposition. O

Now we consider a finite extension L /¢ of K /k. Let p be a prime divisor of K and
let {{B1, ..., P} be the places of L above p. Let {y1, ..., y,} be a basis of L over K.

Proposition 5.5.2. Let R be the ring of elements of L which do not have any pole
outside {P1, - - - ,Bn}. There exists a nonzero element u of K depending only on p
and on the basis {y1, ... , yn} such that if

n
y:iny,- with x; € K, 1<i<n, and y€R,
i=1

then

o
uxi € | JLg@™) =T foralli=1,... n.
s=0

Proof. Let x € K \ k be such that p is the only zero of x (Corollary 3.5.8). Let
{©1,..., 0N} C K besuchthat R = "N | ¢[x ;.

Since [L : K] < oo, it follows that [£(x) : k(x)] = [£ : k] < oo. Let {vy, ..., vy}
be a basis of £ over k. Then every element of £[x~1] can be written as a linear combi-

nation of vy, . .. , v, with coefficients in k[x~1]. Thus
m
R=Y"3 kix vjm. (5.2)
j=1i=1
Let
n
vjw; = Zaﬁ,yt with aj; € K forall j,i,¢, (5.3)
=1
and let qp, ..., q, be the places of K such that the poles of {aj;;} are contained in

{q1,...,9r}. Put

M, = rjnlutl vg, (@jit)

and
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-
dk (p* M, .
k(P ‘E[l q, ") H—OO> o0
By the Riemann—-Roch theorem, there exists # € K \ k such that u €
LTz av ™) fors > 0.
We have vg, (uaji;) = vg,(u) + vq,(aji1) > —M, + vg,(a;ji;) > 0, so the pole
divisor of uajj; is p*® for some so > 0 and ua i, € I'.
Now, k[x’l] CTI,soify = Zle X:yr € R, then by (5.2) and (5.3) we have
=Y SN zijaji; with z;j € k[x~']1 € T and ua;, € T. Hence ux, € T. O

Similarly we will prove the following result:

Proposition 5.5.3. Let p and {y1, ..., yn} be as in Proposition 5.5.2. There exists a
nonzero element v of K, depending only on p and on the basis {y, ... , yn}, such that
ify =Y 1" xiyiwithx; € K, 1 <i <n, and y satisfies

h
yev:=[)0p ={eL vy & =01<j<h]
j=1

then vx; € ¥y foralll <i <n.

Proof. Let p’ be a place of K such that p’  p. Put IV := (J52) Lx ((p))*) and

R = Uf’/zl Unzo LL((B))™"), where B}, ... %), are the places of L above p'.

Let {¥81, ..., B,} be the set of poles B; of y such that ‘B; lies above some place
of K distinct from p’. Let q; :=DBjlk, 1 < j <r.Foreach j, we take m; > 0 such
that if § € K, then vq;(§) = m; = v%j(éy) > 0. For any M > 0,

p
n—M mj
Eelg ((n) 1‘[1 qj’) (5.4)
j=

implies £y € R'.

Choose M to be large enough such that if Ay, = (pH)M H;=1 q?m", then
dg (Am) = 2gkx — 2+ dk (p).

By Corollary 3.5.6,

CxAy) =dx Am) —gx +1 and  Lx(pAy) = Lx (Ay)) — di (p).

Let& € Lg () \ Lx(p2A,;) and notice that £y € R’ by (5.4). On the other hand,
since y € ¥, y is integral with respect to By, ... ,B;,s0q; #pforalll < j <r.
Since & ¢ LK(le;,I] ), we have vp(§) = 0 and hence & is a unit of .

Let u’ be the element of Proposition 5.5.2 corresponding to p’ and the basis
{y1,..., yn}. Since y = Z?:l x;y; € 9 with x; € K, it follows that

n
§y= Z(éxi)yi €®, and u'éx; el’.
i1
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In particular, u’£x; € ¥p. Since & is a unit of ¥y, it follows that v = u’ satisfies the
conditions of Proposition 5.5.3. O

Remark 5.5.4. If we fix the basis {yi, ..., y,} and the place p’ of Proposition 5.5.3,
then the element v found in Proposition 5.5.3 works for every place p # p’. There are
only finitely many places p that fail to satisfy all the following conditions:

(Hp#p.
(2) vs(y;) >0foralll <i <n,B € Pp and B | p.
(3) vp(v) =0.
Definition 5.5.5. With the same notation, we call {yy, ... , y,} an integral basis at p if

@) yi € Neg)p s = V-
) Ify = Y7 xiyi € 9 withx; € K, 1 <i < n,thenx; € 9 for all
1<i<n.

From Remark 5.5.4 we obtain the following:

Theorem 5.5.6. Any field basis of L with respect to K is an integral basis at almost

all places of K . O
Now we consider a finite extension L/f of K /k and a field basis {y1, ..., y,} of
L over K. Let p be a place of K such that {yj, ..., y,} is an integral basis at p. Let
B | p and consider the valuation ring g at ‘B.
We have {y1, ..., y,} C s and

Y= ﬂﬁ%zﬁpyl+...+ﬁpyn_
Blp

Let ﬁ% be the completion of ¥s. If z € 19%, by the approximation theorem (Corol-
lary 2.5.5) there exist y,, € L with m € N such that

va(z —ym) >m forall meN
and

vy () >0  forall B’ #£9B  suchthat B|p.

Therefore lim,,— 00 Yy = z In 5% and y,, € v. We have
n
Ym = inmyi withall  x;p, € Pp.
i=1

It is easy to see that {xi, };ozl is a Cauchy sequence in ¥ (see Theorem 5.4.7), so

o0 A . ~
{xim},_, converges. Let £; := limy, o0 Xim € Up. We have
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n
z= Z)el'y,‘ € Vpy1 + -+ Vpyn.

i=1
Furthermore, from Corollary 5.4.9 we obtain that

By 00, 0 = )
Blp

and {y1, ..., yn} is basis of @%lp 1953 over 5p.
We have proved the following theorem:

Theorem 5.5.7. Let L/{ be any finite extension of the function field K /k and let
{y1,..., Y} be any field basis of L over K. Then for almost all places p of K,
Y1, ..., Yn generate the completion Vsg of ¥ over ¥y, where B | p. |

We state two corollaries of Theorem 5.5.7 that we will use in Chapter 9.

Corollary 5.5.8. Let L /¢ be any finite extension of K / k and let {y1, ... , y,} be any
field basis of L/ K. Then

X=Xk +-+Xkyn,

where X and X are the rings of repartitions of L and K respectively. Here Xg may
be considered as a subset of X, indeed, we can define ¢: Xx — X by p(&) = A
Jorall§ € Xk, where hsg = & for any B | p.

Proof. Clearly, Xgy; + -+ + Xk y, isasubset of X. Let & € X, let p be a place of
K, and let By, ..., B; be places of L above p. Since

0 n
PLoe=LexKy= (D Ky)®k Kp.
Blp i=l1

we have (Ag)gpp = 9((Z?=1x,-y,-) ® Z']'lej) with x; € K, z; € Kp. Thus
reVy +---+ Vy,, where
V=[] k.

pePx

We need to prove that the “coefficients” of y; belong to Xk, that is, that the com-
ponents are integers for almost all p € Pg.
For almost all 8, we have

Ag € Des, thatis, vg(ig) > 0.
If Aos = >, X;i i, then by Theorem 5.5.7 we have x; € f}p for almost all p. Hence
Xp=Xgy1 4+ Xk O

The next corollary will be used when we consider the genus change in purely
inseparable extensions.



144 5 Extensions and Galois Theory

Corollary 5.5.9. Let L/ be a purely inseparable extension of K / k of degree p- Let
L = K(a), where a? = a € K. Then, for almost all p € Pk, 19% = @p;()] 19,,051,

where B is the only place of L above K .

Proof. The statement follows from the facts that there is only one place above p (Theo-
rem 5.2.24), that ¥+3 is a free ©p-module of rank p (see, for example, Theorem 2.5.20),
and from Theorem 5.5.7. O

Remark 5.5.10. Corollary 5.5.9 states that for almost all p, if

P
y = inoe’ € vy
i=0

then x; eﬁ‘p,forallOSif p— 1.

Now that we have studied the structure of the extensions Lp, /Ky, it is neces-
sary to mention the role played by the places. When we start with a place g of K,
g can be seen as the maximal ideal of the corresponding valuation ring ¢, and sim-
ilarly for P;. The place & of K, is the same ideal g but considered in the valuation
ring D that is the completion of ¥ with respect to the topology given by the valua-
tion. More precisely, = 5{)5‘ where ¢ is the completion of g. Furthermore, since
0 /§ = ¥ /g (Proposition 2.3.10), we can consider that ¢ and & are one and the same
place. Since L, has only a unique extension of £ (Theorem 5.4.7), namely P;, the ad-
vantage of working with Lp, /K, is that there is only one place “above” and only one
place “below,” which does not hold in L/K, where there are infinitely many places.

Furthermore, by the above argument, we have eLp. /Ky (75, |5f3> = er/k (Pilp) and

drp, /K, (75i|6/3) =dr/k (Pilg).
Finally, we prove the following results on bases:

Proposition 5.5.11. Let oy, ... , oy be elements of Op, such that {&j }le is a basis
of £ (P;) [k (9), and let 7; be a prime element of L with respect to vp,. Then the
elements {a]n }jzo e lform a basis of Lp, /K.

Proof. This follows from the facts that Lp, = € (P;) Ky, (;), Ky = k() (7)),
where 7 is a prime element of K, and [Lp, : Ky, | = ef. O

Proposition 5.5.12. Let k be an algebraically closed field of characteristic zero. Let
L and K be function fields over k with K C L and such that L /K is of finite degree.
Assume that e is the ramification index of a place '} of L over p. Then if Tl is a prime
element of Lss, there exists a prime element 7w of Ky such that

o = TI1°.
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Proof. Let Iy be any prime element of Lg for 3. For any prime element 7 of Ky, we
have

() = evp(m) =e.
Thus, 7 has an expansion in Lqz = k((T1)) defined as follows:
m= a1 + a7 + -, 4 €k, a0 #0.
Let
M =bT0 +bT124---, b €k, by #0,
be another prime element. Then
M¢ = oI + oIt - eI

where ¢, is a polynomial of degree n + e — 1 in by, ... , b,. Furthermore,

Cp = Z b,‘|~-~b,‘e.

@i150ensie),ij>1
i1+ig+-+io=n+e—1

We have ¢, = p™ (by, ..., by_1)+eb$ by, where p™ (b, ..., by_1) is a poly-
nomial in by, ... , b,_| with rational integer coefficients. Thus there exist b; # 0 and
by, ..., by, ... € ksatistying ¢, = a, for all n > 1. It follows that I1° = x. m]

Definition 5.5.13. Let E/F be an extension of fields and let « € E. The function
T, : E — E, defined by T, (z) = @z, is an F-linear transformation. The charac-
teristic polynomial of Ty, namely fy(x) = det (xI — Ty), is called the characteristic
polynomial of «.

Let A be the matrix associated to T, with respect to a basis of E/F.
Proposition 5.5.14. We have

Nesr (@) = normof = det A = det T, = (—1)" £,(0) = (=1)"bo,

Trg/F (@) = trace of o = trace of A = trace of Ty = —b,_1,
where fy(x) = x" + b,_1x" "' 4+ .- + bix + bo. O
Let L /£ be a finite extension of K /k, g a place of K, and Py, ... , Pj the places
of L above p.

Theorem 5.5.15. Let o € L. If fo(x) is the characteristic polynomial of « over K and
051) is the characteristic polynomial of o € Lp, over K,, then fy(x) = ]_[5’21 ofl)(x).
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Proof. The K-linear transformation 7, : L —> L, corresponds to the Kj,-linear
transformation

T, ®1:L®k Ky — L®k K.
Furthermore, we have L @k K, = @51: 1 Lp,. Thus
(Te ® 1) (x1,...,x) = (ax1,...,0ax,) Withx; € Lp,.

By Proposition 5.5.11, we can choose a basis of Lp,/K,, whose members belong to
L, and the result follows. O

Now we state several corollaries.
Corollary 5.5.16. Let ¢ = e /g (Pile) and f = dp/x (Pilg). Let y € Lp, be

nonzero. Then vy, (NLP,'/KF y) = fup,(y).

Proof. Let m = vp,(y). Then y = own", where m; is a prime element for vp, and
w is a unit. The norm of w is a unit, so NLPi/pr = Ny = (Nw) (Nm;)™. Now,

Nm; = a)lnief for a unity w;, and nf = wymk for a unit @ in Lp, where ng is a
prime element for vy,. Therefore Ny = w37 Ijém where w3 is a unit. Thus we obtain
that v (Ny) = fm = fup,(y). O

Corollary 5.5.17. Fori = 1, ... , h, define
Np, = NLP,-/Kp’ Trp, = TrLP,-/KKa’ and N =Np/x, Tr=Tr k.
Then for o« € L we have
h h
Tra = ZTrpl. a and No = ania.

i=1 i=1

Proof. The statement follows from Theorem 5.5.15 and Proposition 5.5.14. O

Corollary 5.5.18. Let « € L. Then vy, (Np/xar) = Z?:l fivp, (@), where f; =
drx (Pilg).
Proof. By Corollaries 5.5.16 and 5.5.17, we have

h h h
Vg (NL/Ka) =g (1_[ N’p[.()t) = va (Npia) = Zfi”ﬂ- ().
i=1 i=1

i=1

O
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5.6 Different and Discriminant

Let L/K be a finite separable extension of function fields, P a place of L, and
© = Plk. Denote by e and f the ramification index and relative degree of P over
g respectively. By Theorem 5.4.10, Lp is separable over K, and [Lp : Kbo] = ef.
Let 77 and g be prime elements of vp and vy, respectively, with vp (7x) = e > 1.

Now consider the Galois closure L of L /K, and assume that G is a place in L over
P. Let £ be the field of constants of L. We have the following diagram:

G} Z(G) L Lgs
P L(P) L Lp
2 k(p) K Ky

Let D = D (S|p) = Gal (ZG/K@), Dy = D(&|P) = Gal (Zg/Lp), [ =
1 (Glp),and I} = I (G|P).

The set of classes Aut (Z (©) /k (p))/Aut (f (6) /¢ (73)) is in bijective corres-
pondence with Aut (¢ (P) /k (¢)). Furthermore,

Aut (Z (&) /k (50)) =~ Dp/I
and
Aut (Z(G) /e (P)) ~ DI, = D\ /(DyN 1) = Dy1/1.

Therefore the elements of Aut (¢ (P) /k (g¢)) are in correspondence with the cosets
of

(D/D)/(DyI/I) ~ D/D1l.

For z € 1, we denote by Z its equivalence class modulo the ideal. That is, z is in
the residue field. We have

(TrLP/Kp(z))=< > ﬁ): Yo 5 > oz
oeD1/D

oeD/D; 0eD/Dy1
= |D11/D1| (Treepy/k(p) (2)) -

Now, |D11/Dy| = 1/(I N Dy)| = |1/I| = {1 = e (P|p) = e. It follows that

(Trep /&, (@) = e (Trep)/ap) @) - (5.5)

We write Tr = Trrp/k,-
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Theorem 5.6.1. There exists m > 0 such that if x € Lp satisfies vp(x) > —m, then
v (Trx) > 0. Also, there exists xo with vp(x9) < —m and vy, (Trxg) < 0.

Proof. If vp(x) > 0, then x € ¥p. Therefore Trx € ¥, and vy, (Trx) > 0 (see
Corollary 5.7.6). On the other hand, let y € ¥p be such that Try # 0. This element
exists since Lp /K, is separable. If x € K is such that vy, (x) < —v, (Try), we have

Vp(Trxy) =vo(x Try) = vp(x) +vp(Try) < 0.
Let
A={neZ|vp(x)>=n= vy (Trx) > 0}.

Notice that 0 € A, N C A, but there exists n € Z such thatn < O and n ¢ A (for
example, pick n = ng = vp(xy) above). Furthermore, if no ¢ A, wehaveny —1¢ A
since vp(x) > ng = vp(x) > ng — 1.

Letr =infA. Wehavet € Zandr <0.Letm = —t. Thenm > 0 andifx € Lp
is such that

vp(x) >—m=t€ A then v,(Trx)>0.
On the other hand, since t — 1 ¢ A there exists x € Lp with
vp(x) >t—1=-m—1 and vu(Trx) <O0.

Ifvp(x) > ¢t — 1, then vp(x) > t = —m, which contradicts the fact that € A. Thus,
vppx)=t—1l=-m—1< —m. |

Definition 5.6.2. The maximum nonnegative integer satisfying Theorem 5.6.1 is de-
noted by m(P) and called the differential exponent of P with respect to K .

The importance of this exponent is that it shows up only in the presence of ram-
ification or inseparable residue field extensions. This is stated more precisely in the
following theorem:

Theorem 5.6.3. We have m (P) > e — 1. Furthermore, m (P) > e — 1 if and only if
at least one of the following two conditions holds:

(1) p = chark divides e.
(2) £ (P) / k () is inseparable.

Proof. If y € Lp satisfies vp(y) > —(e — 1), then since vp (mx) = e, we have
vp (mgy) > 1. Therefore gy € P.

It follows that Tr(rgy) = eTr(mxy) = 0 and Tr(mgy) € g. Hence
vp (Tr(wky)) = vp (wx Try) = 1+ v, (Try) > 1. That is, Try > 0. We have
obtained that m (P) > e — 1.

Now if £ (P) /k () is not separable, let y be such that vp(y) > —e. We have
gy € Up. Since Tryp) k(o) =0, we have Trrgy = 0. Thus
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vp (Trmgy) =14 v, (Try) > 1 or, equivalently, v, (Try) > 0.

Hence m (P) > e.

If p | e, again if vp(y) > —e then mxy € Up and Tr (nxy) = e Tr (Txy) = 0.
Therefore v, (Try) > 0 and m (P) > e.

Conversely, assume that £ (P) / k () is a separable extension and that p { e. Since
L (P) /k (p) is separable, there exists y € ¥p such that Tryp)/x(p) (V) # 0.

We have

Try = e Tropy ki () # 0 = vy (Try) =0 and vy (Tr (n,;ly)) = 1.

On the other hand,

vp (n;1y> =—e¢ and v (Tr (nlgly)) =—1 <0 impliesthat m (P) <e.
Since e — 1 < m (P) < e, it follows thatm (P) = e — 1. 0

Now, since we are considering the case in which L/K is separable, we have the
following corollary:

Corollary 5.6.4. We have m (P) = 0 for all but a finite number of places P.

Proof. If P is a separable nonramified place, then m (P) = ey /x (Plpp)—1=1—-1=
0. By Theorem 5.2.33, the number of places P that are ramified or inseparable is finite.
O

Definition 5.6.5. The divisor D1k = [[pep, P" ") is called the different of the
extension.

A similar definition can be made using completions exclusively.

Definition 5.6.6. For the completions Lp /K, we define the local different as Dp =
PP where (P) is the maximum integer such that v, (Tr y) > 0 whenever y € Lp
satisfies vp(y) > —a (P).

It is easy to see that « (P) is the same integer m (P) defined before. Therefore we
have the following result:

Proposition 5.6.7. Identifying the place P of L with its completion P in Lp, we have
Dk = HPEIP’L Op. Furthermore, the equality ®p = (1) holds except when P is
either ramified or inseparable. O

Definition 5.6.8. We define the discriminant 0,k of the extension L/K as
Nr/k®1/k = 0r/k . The discriminant d; /g is a divisor of K.

Proposition 5.6.9. A place o divides 01,k if and only if © is ramified or g is insep-
arable, that is, if there exists a place P in L such that P|x = g and P is ramified or
L (P) /k (p) is inseparable.

Proof. The statement follows immediately from Definition 5.6.8. O
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5.7 Dedekind Domains

Now we study the differents and discriminants in Dedekind domains in order to relate
them later on to our definition. By an integral domain, we understand a commutative
ring with unity and without nonzero zero divisors.

Definition 5.7.1. Let A be an integral domain that is not a field and let K be the field
of quotients of A. We call A a Dedekind domain if it satisfies:

(i) Every nonzero prime ideal P is maximal.
(i1) A is Noetherian.
(iii) A is integrally closed. That is, if x € K satisfies a relation x” 4+ a,_1x" ' +-- - +
a1x +ap =0 witha; € A, thenx € A.

Example 5.7.2. If k is a field, then the ring k[x] of polynomials in one variable is
a Dedekind domain. If K is any finite number field and dg is its ring of inte-
gers, then ¥k is a Dedekind domain. Indeed, we have [K : Q] < oo and ¥x =
{dx € K| Irr (o, x, Q) € Z[x]}.

Definition 5.7.3. Let A be a Dedekind domain and let K be the quotient field corre-
sponding to A. An A-module M C K is called a fractional ideal if M # 0 and M is
finitely generated. Equivalently, there exists @ € A such thata # 0 and aM C A. A
fractional ideal is called invertible if there exists another fractional ideal M’ such that
MM = A.

Theorem 5.7.4. [f A is a Dedekind domain, every nonzero ideal 2 of A can be written
in a unique way as a product of prime ideals.

Proof. Let P be a nonzero prime ideal. Let
P li={xeK|xPCA)}.

Then P! is an A-module. If @ € P is nonzero we have aP~1 C PP~1 C A, so P!
is a fractional ideal. Since PP~! € A, PP~! = 2 is an ideal of A. Clearly we have
A C P! and hence PP~! D PA = P. Now P is a maximal ideal, so we must have
PP =Por PP = A

First we will see that A ; P~!. For this purpose we will prove that every nonzero
ideal I of A contains a product of prime ideals P - -- P, suchthatP; 2 1,1 <i <r.
For the sake of contradiction, assume that there exists some ideal I not satisfying the
above property. Since A is Noetherian, we can choose I’ to be maximal among those
ideals not satisfying the property. Clearly I’ is not a prime ideal. Therefore there exist
a,be A\ I'suchthatab € I'’'Put2A = I' + (a) and B = I’ + (b). We have

I’;Q{, I'GCB and ABC I

Since I’ is maximal, it follows that both 2[ and B contain a product of prime ideals,
which in turn contain 2( and B. Therefore they contain I’. This contradicts our choice
of I
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Now we will show that A € P~!. Let ¢ € P be such that ¢ # 0 and (c) # P.
Notice that if (¢) = P, then (c ) ; (c) since c is not a unit. The ideal generated by ¢
contains a product of r prime ideals Py, ... , P, such that P; 2 (c). Choose r to be
the least integer satisfying the above property. Then

PP S () G P.

Since P is a prime ideal, P must contain some P;, say P; (otherwise if P; P for all
1<i<r,letaqseP\P,a=ay---ar €P1---Pr,a ¢ P).

Since P; € P and P; is maximal, we have P = P;. Observe that r > 1 since
otherwise r = 1 and P D (¢) 2 P, which would imply that (c) = P. Since r is
minimum, we have (c) 2 P»...P,. Leta € P>...P, be such that a ¢ (c). Then

S ¢ Aand
a 1 1 1
(—) P C (—) P(a) C (—) PPy P = <—) (c) € A.
c c c c

Therefore ¢ € P\ A

Therefore, A ; P~L. Now, if PP~! = P, then PP~2 = PP~ = P. It follows
that in general, PP~" = P foralln > 1. Hence, if a € P and b € P~! are such
that a £ 0 and b ¢ A, we have ab” € P foralln > 0. Put J = (ab" | n > 0)
and J, = (a,ab,ab?, ... ab"). We have I € P and J,; € Jyu41 for all m. Since
A is Noetherian, there exists n such that J, = J,_;. In other words, there exist
€0, ... »Cn1 € A suchthat ab” = Y7~ ! ¢c;abi. Equivalently, " = Y7~ ¢;b' with
all ¢; € A, which implies that b € A, a contradiction. Therefore PPl = A.

Now we will see that every nonzero ideal 2 of A can be written in a unique way
as a product of prime ideals. First we will show the existence.

If A = A, then A = PO, where P is a prime ideal. Assume that 2l # A and
let Pi---P € Awith P D ,i =1,...,r, and assume that r is the minimum
integer satisfying this condition. We will demonstrate the existence by induction on r.
If r = 1, then P; 2 A D P; and therefore P; = 2. Now suppose » > 1. Let P be
maximal such that Py - -- P, € A C P, so that P contains some P;, say P;. Thus

Pr=P and PP---P. CACP.

Multiplying by P~!, we have P, - - - P, € P! C A. Therefore P~'A =&, - -- &;
is a product of prime ideals, and % = P&, ... S;.
Now we will see the uniqueness. Assume

A=P, .- P, =P, P

Ifr =1lors =1,sayr = 1, we have > = P; = 73{ -+ Pl Therefore there exists
some index i such that P/ € P; = P, say P; € P, which implies P| = P. Therefore,
2 =P = PPj---P,. Multiplying by P!, we obtain A = P --- P}, s0s — 1 = 0.
Indeed, otherwise P - - - P; would be a proper ideal. Now assume that r > 1 and
s > 1. Wehave P; 2 Py --- P, = P} --- P, and, as before, P| = P;. Multiplying by
Py ! we obtain



152 5 Extensions and Galois Theory
Py Pr=Pj - Pi.

By the induction hypothesis we have r = s and P/ = P;, fori =2,... ,r =s. O

Now consider M to be an arbitrary fractional ideal. Let a € A be such thata # 0
and aM = A C A. By Theorem 5.7.4, aM = Py ---P,. Setting (a) = &;...5;,
we obtain for M an expression M = Py --- Pr61_1 “ee GS_I. In other words, every
fractional ideal M is expressed as a product 77;)” .- P77 of prime ideals, where each
P; is a prime ideal of A and «; € Z.

Now we assume that there exist two different expressions:
o] Qr /ﬂ 1 ! r
PP =P ...prﬂ )
Writing positive and negative powers separately, we have

M=AB8""=e¢D ! where A B, ¢, D are ideals of A.

Therefore A® = BC. By the uniqueness of the ideals of A and since neither 2 and
B nor ¢ and ® have any common factors, it follows that 2l = ¢ and B = ©. The
uniqueness is proved, and we have the following theorem:

Theorem 5.7.5. Every fractional ideal of A can be written in a unique way as a prod-
uct of prime ideals of A with powers in Z. O

Corollary 5.7.6. The set of fractional ideals of A form a free abelian group whose
generators are the nonzero prime ideals of A. O

Theorem 5.7.7. Let A be a Dedekind domain and let K be the field of quotients of A.
Let L/K be a finite extension with [L : K] = n. Put

B={aelL|Ilrr(a,x,K) e Alx]}.
Then B is a Dedekind domain called the integral closure of A in L.

Proof. We present the proof when L/K is separable. The proof of the general case can
be found in [78, Chapter I, Theorem 6.1]. Let Tr : L — K be the trace map. Since
L/K is a separable extension, it follows that Tr is surjective. If x € B, the conjugate
elements of x have the same irreducible polynomials as x. Therefore Trx € A. Let

{e1,...,en} be a basis of L/K with ¢; € B (it is easy to see that if « € L, there
exists a € A such that a # 0 and ax € B). Let C be the A-free module generated
by {ei,..., ey}, thatis, C = @}_, Ae;. For any A-submodule M C L, let M* =

{x e L |Tr(xy) € Aforall y € M}.

We have C € B C B* C C*. Since C* is the A-free module generated by the
dual basis of {ey, ... , e,} with respect to the nondegenerate bilinear form Tr(xy), it
follows that C* is Noetherian. Therefore B is finitely generated as an A-module. In
particular, B is Noetherian.

Now, if o € L satisfies
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" +by_joa" '+ 4 bja+by=0 witheach b; € B,
then the A-module A [«] is finitely generated since B is. Set
Ala]l = (X1, X2, ..., Xm) .

Then ax; = Z7=1 ajjxj for 1 <i < m. Therefore

m . . .
lifi =
Sjija —a;;)x; =0, where §;;= e )
Z( v l/) J i {0 if i 7& j.
Jj=1
In terms of matrices we have
a—ap —app -+ —dip X 0
—aml —am2 - O — um Xn 0

If M = [8j0 —aij],_; i, let N be the adjoint matrix of M. Then NM =
(det M)I, and (det M)x; = Ofor 1 <i < m.Butl € A C Ala] implies that
(det M)1 = det M = 0. On the other hand,

detM=a" +cp_1a" '+ +cra+co=0

with ¢; € A, so o € B. Therefore B is integrally closed.

Finally, let P be a nonzero prime ideal of B. Assume for the sake of contradiction
that P is not maximal, and let © be a maximal ideal such that P g (S ; B. Now
P N A is a nonzero prime ideal of A, and so is & N A. Since A is a Dedekind domain
and PN A is a prime ideal of A wehave PN A =GNA.Letx € G\P.Thenx € B
and x satisfies a relation

X"+ ap x" '+ dax+ay=0, with ;€A and ag#0.
We have ap € AN G = AN P, which means that
ap = —x (x”fl +ap 1 X" 4+ apx +a1) eP.
Since x ¢ P, we have
M g x4t apx +a) € P.
Therefore a; € G N A =P N A, which implies

n—3

x(x”_2+a,,_1x +--~+a3x+a2) eP,

and so on. It follows that ag, ... , a,_; € P. Thus, we obtain that x + a,,_; € P, and
consequently x € P, which is absurd. This proves that P is in fact maximal, and B is
a Dedekind domain. |
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5.7.1 Different and Discriminant in Dedekind Domains

The module B* defined in the proof of Theorem 5.7.7 is a finitely generated A-module.
Since B C B* C L, the B-module B* is finitely generated, and hence B* is a frac-
tional ideal. The inverse of this module is the different. More precisely:

Definition 5.7.8. Let A be a Dedekind domain and put K = quot A. Let L/K be a
separable finite extension and B the integral closure of A in L. Define

QE}A :={x e L|Tr(xy) € Aforall y € B}.

It is easy to see that @E} 4 is a fractional B-module whose inverse D g/ 4 is an ideal of
B, called the different of B over A.
The norm Nk D g/ 4 is an ideal of A called the discriminant of B over A.

We will now study the case of function fields in order to relate the two definitions
of different.

Let K /k be a function field and let x € K \ k. Then K /k(x) is a finite extension.

Clearly, k[x] is a Dedekind domain. Note that there exists a one-to-one correspon-
dence between the prime ideals of k[x] (considered as a ring) and the places of k(x)
distinct from the infinite place g0, that is, from the place given by (X)) = 5’%'
More precisely, if g is a place of k(x) and p # oo, the ring D, is the localization of
k[x] at a prime ideal (f(x)) of k[x] (see Section 2.4) and the prime ideal p = (f(x))
corresponds to the ideal p¥,. Let Py, ... , P, be the places of K over po.

Theorem 5.7.9. The integral closure of k[x] in K is (| 9p, where P runs through all
the places of K distinct from P, ..., P.

Proof. Let ¥ be the integral closure of k[x] in K. If o € ¥, we have
" 4 a1 ()" -+ pr@e 4 po(x) =0 with  p;(x) € K[x].

It follows that if P ¢ {Pi,...,P,}, then vp (pi(x)) > O for each i. There-
fore vp () > 0 and ¢ € U¥p whenever P is distinct from all the P;’s. Thus

v < Npgp,... Py UP-

Conversely, leta € (Vpgp, . p,) P and

yees

FT) =T (o, T, k(x)) =T" +ap_1T" '+ +aiT +ay with a; €k(x).

Let K be the normal closure of K /k(x) and let aD =q, @, ..., a™ be the distinct
conjugates of . Then each g; is a symmetric function of aD, @ @ and for
any irreducible polynomial f(x) € k[x], vs (a;(x)) > 0. Indeed, all extensions P that
are not extensions of g satisfy vp(a;) > 0. This proves that a; (x) € k[x]. Therefore
« is integral over k[x]. |

Theorem 5.7.10. Let K/ k be any function field and let Py, ... ,P,, r > 1, be any
finite set of distinct prime divisors. Then there exists an element x of K whose poles
are precisely Py, ... , Py, ie, vp,(x) < 0for 1 <i < r and vp(x) = 0 for all
P¢{Pr,..., P}
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Proof. By the Riemann—Roch theorem, there exist x; € K \ k and n; > 0 such that
Ny, = 771-”’ (Corollary 3.5.8). Clearly, x = x1 + - - - + x; is the element satisfying the
required property. O

Corollary 5.7.11. Let Py, ... ,P-, r > 1, be any set of places of K. If ¥ =
ﬂP%{Pl,m P, Up, there exists x € K \ k such that ¥ is the integral closure of k[x] in
K. In particular, ¥ is a Dedekind domain.

Proof. Let x be given by the previous theorem. Then g, = Pf' --- P/, and hence
Pi, ..., P, are precisely the prime divisors of K above the infinite prime g, of k(x).
O

It follows from the above that given a finite collection of prime divisors Py, ... , P;
of K, A= ﬂp¢ (Py.... .,y Up is a Dedekind domain whose prime ideals are in bijec-
tive correspondence with the prime divisors of K distinct from Py, ... , P,; indeed, if
‘P is a prime ideal of A, then Ap is a valuation ring of K. Therefore Ap = ¥p: for
some P’ and PAp = P’¢¥p and conversely. In view of this correspondence we may
assume that the prime ideals of A are the places of K distinct from Py, ... , Pr.

In what follows, the set of prime divisors T = {y, ... , ¢} of K will be fixed.

Let L/K be a finite separable extension of K and T* = ({P | P isaplace
of L,P | giforsomel <i <r}. Putdg = ﬂMT Uy, and let 9, be the integral clo-
sure of ¥k in L. It is easy to see that ¥ = ﬂpﬂ* vp (Exercise 5.10.25). Let ®p /g
be the different as defined in Definition 5.6.5 and let D' /K be the different according
to Definition 5.7.8, with D, = Dy, jo.

Theorem 5.7.12. D, /x = @’L/K]_[peT* P*P for some ap > 0.

Proof. First note that if S is a multiplicative set of a Dedekind domain, then § “lAisa
Dedekind domain (Exercise 5.10.24).

By Exercise 5.10.26, if A is a Dedekind domain and K = quot A, L/K is a finite
separable extension, and B is the integral closure of A in L, then S™! B is the integral
closure of S™1 A in L. We have S_lDB/A = ’95713/57114 since if x € @E}A,

Tr(xB) C A —s Tr (S—le) — s !'TrxB) C S~'A

and conversely.

Applying the above argument to an arbitrary prime g of A, we consider § = A\ p
and we set S_IQ/L/K = S_1©19L/,9K = @(ﬁL)p/(ﬁK)b,_).

Now since A is a Dedekind domain, Ay, is a discrete valuation ring. In fact, if
7w e p\ P> wehave (1) = 1A = A with (A, ) = (1), so that (A \ p) N A # @.
Therefore AA, = Ay. Consequently m A, = pALAA, = pA. This shows that
the maximal ideal g A, is principal. Next, if B A, is any nontrivial ideal of A, then
BA = "€ with (¢, p) =(1),n >0, s0

BA, = 9" ApCA, = p" Ay = (") Ap.
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Hence A, is a valuation ring. Furthermore, A, = . If P is any prime ideal of
B over g, we have Bp = ¥p, from which we obtain that the completions of é'p
and Jp are the same, whence we have vp (@L/K) =vp (Dp) = vp (937:/1450 by
definition.

We will demonstrate the following: If A, is a discrete valuation ring and P is
an ideal above the maximal ideal o of A, let Agp and é'p be the corresponding
completions. Then D /4, f?p = DéP/Ap'
To prove the latter statement, it suffices to show that vp (Dp,/a,) = vp (’D Bp/d, )
Let Tr be the trace of L to K, and let Trp be the trace of Lp to K,. By Corollary

5.5.17 we have Tr = Z?:o Trp,, where Py, ... , Py are all the primes of B dividing
©. We write P = Pj. Let x € Lp and assume that Trp (xép) - AKJ, that is,

x € @gl A It follows from the approximation theorem (Theorem 2.5.3) that there
Pl

exists & € L such that
|§ —x|p <e and [§lp, <, 2<i<h, forsomesmallenoughe.

For y € By, there exists ¢’ small enough such that |Tr7>l. (éy)|p <& for2 <i <h,
and Trp (§y) € A (because the local trace is a continuous function). Therefore £ €

-1 . ] -1 .
) By/Ay? and we obtain ® By/Ay D Qép/Ap’ where the bar denotes closure in Lp.

Conversely, let x € @E;/AP and y € ép. Write Dpp/a, = Pil] ...th for
n; > 0. Then x € @Eé/% if and only if vp, (x) > —n; for 1 <i < h.

Let & € L be such that vp, (§ — x) = m1 > vp,(x) and vp, (§ —x) = m; > 0.
Notice that in particular, & € ’DE; Ay

Now let n € By, be such that 5 is very close to y with respect to P; and very
close to 0 with respect to P;, ..., Pj. Since & € CDE;/A@ and n € By, we have
Tr(§n) € Ap. On the other hand, for 1 < i < r, Trp, (§n) € Ap, since Trp, is
continuous and £ and 5 are very close to 0. Hence |Tr7>l. &n) |p <lfor2<i<r.

Since Tr (£7) = Trp, (€7) + Y, Trp, (€7) € Ay, we have Trp, (£7) € Ag. On

the other hand, [§n — xy|p, < ¢ implies Trp, (xy) € Agg and x € CD;I JA Thus we
Pl Ap

—1 A —1
have’DBp/Apo cD,
Therefore, D,/ Ap is dense in © Bp/Ay from which we obtain the result.
Finally, we have

vp Dk ) = vp (D) = vp @i,a,) = vp (D 40) = vP (Prsi)

which is what we wanted to prove. O

Remark 5.7.13. Theorem 5.7.12 can be used to obtain the different of L/K by means
of the differents of certain Dedekind domains. For instance, if we take A} =) Vo,

PFEPI
Ay = ﬂmém ¥, then
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Dk =Dy /a, l_[ PP, Dk =DBy/a, l_[ PP,
Plpr Plp2

so D /k is the least common multiple of D g, /4, and D,/ 4,.
By proving Theorem 5.7.12 we have also obtained the following:

Proposition 5.7.14. Assume that A is a discrete valuation ring with maximal ideal .
Let K := quot A, L/K be a finite separable extension, B the integral closure of A in
L, and *B is any ideal of B above y. Denote by A and B the completions of A and B
at p and B respectively. Then @B/Af? = Z)é//i' O.

Theorem 5.7.15. Let K € L C M be a tower of finite separable extensions of function
fields. Then

DMk =Dmyrconp Dk |

Proof. Since the number of ramified or inseparable places is finite (Theorem 5.2.33),
we may take A = N ¥, where o runs through any set containing all inseparable
and ramified prime divisors. Then by Theorem 5.7.12, it suffices to demonstrate that
Dc/a = Dcypcong/c Dpya, where B is the integral closure of A in L and C is the
integral closure of A in M.

Assume that R is any Dedekind domain, FF = quot R, E/F is a finite separable
extension, and S is the integral closure of R in E. For a fractional ideal B of S, we
have

Tr®B C o= A TrB C R = Tr (A7'B) C R = A'B D3y
= B CADg /.

Now, coming back to our case, we have
€ CDg)p <= Tryr (€) € B & D), Try (€) € D)

= TI'L/K (:Dl_i/lA TrM/L (@)) C A.

Notice that @E} 4+ € L and that D} } 4 can be considered as a fractional ideal of C.
Thus

TryyL (COHB/C @E}AC) = /DE}A TrpyL (),
or equivalently,
TI’M/L (@E}AQ) = @E}A TI'M/L (©).

Hence
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Trp/x (DE}A Try,L (@)) C A Trrx TryyL (COHB/C @E}A(’:)
= Try/k (COHB/C @E}A¢> C A < cong/c @E}AQ: - DE/IA
= cong/c @B/AQE}A.

Therefore, CDE}B = cong/c CDB/ACDE}A' "

Corollary 5.7.16. With the hypothesis of Theorem 5.7.15, we have

om/K ZGZ/KNL/K (aM/L), n=|[M:L]. O

5.7.2 Discrete Valuation Rings and Computation of the Different

Throughout this subsection we will assume that the residue field extensions are sepa-
rable.

Theorem 5.7.17. Let A be a Dedekind domain and K = quot A. Let L = K («) be a
finite separable field extension of degree n and let B be the integral closure of A in L.
If B= Ala], then Dp/a = (f’ (Ot)), where f(x) =Irr (a, x, K).

Proof. Considering B as an A-module, we have the basis {1, o,... ,a ! } On the

other hand, 7 = @E} 4 1s the fractional ideal {x € L | Tr (xB) € A}.

Since L/K is separable, the trace is surjective. It follows that ¢ (x, y) = Tr(xy)
is a nondegenerate bilinear form. Now assume that {«y, ... , ®,} is any basis of the
A-module B and {8y, ..., B,} is the dual basis. We have

Lif i = j,
Tr (frorj) = bij = {Oifi;éj. :

and hence {f1,...,B8,) CT.
Conversely, if x € T, leta; = Tr (xoj) € Aand y = x — Zl’-l:l a;Bi. Then
n
Tr(yaj) =Tr(xaj) — Zai Tr(,B,-otj) =aj—a;=0, j=1,...,n,
i=1
which implies that y = 0. Therefore
x=aif1+---+afn, so T=ZABD---D AB,.

Put

X
gx) = )% =b0—|—b1x+...+bn7]xn—l.

We will see that
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b: n—1
{ /’ } is the dual basis of {1,05,...,05”_1}.
f (o) i=0

Let o = a1, ..., a, be the n distinct roots of f(x) = [[/_, (x —;). For0 < r <
n — 1, consider the polynomial

S Sy
h = Z;(x—ai)f/(ai)'

i f&x)
Since G—a))

= f (aj),wehave
X =Otj

h(ej)=af=)" @ AL <( /)

i#j al)f/(al x_aj)

i
x=aqj f/(“j) .

The degree of h(x) is at most n — 1; on the other hand, 4 (x) has n roots, so
h(x) = 0. It follows that forr =0,1,... ,n— 1,

Z f)al
(x — ) f/ (i)

Now

ro__ ro__ - & = f(x—w
Tral =na’ =) Tr ((x—a,>f’(a,) "Tr<(x—ot>f’(0l>):>

i=1

r— & = 1 r n—1
= (L rw) T (e (oo o)

C(i
_Z;Tr<f,( ) )x :>Tr(—f’(05)bj> = §;j.

. ny ; bo by
Therefore the dual basis of {1, «,...,a"} is {f,(a), @ T (a)}
seethat Af[a] =B =A [bo, ,b,,_l]. Indeed,

We will

Fo0 = =) (bo+brx -+ byorx™)
n—1 ) n—1 ) n—1 )
= Zbile — Zabix’ =b,_1x" + Z (bi_1 — ab;) x' — aby.
i=0 i=0 i=1

Hence, if f(x) =ap+a1x +---+ ay_1x" "1+ x" with q; € A, we have

by_1=1 and bj_j—abj=a; for 1<i<n-—1, and —aby=ag.
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In particular, A[a] =B = A [bo, e, bnfl].
Therefore, we have

Albo,....ba1] B
= A
Otk = EB [f’(a)} T —F@- @)

SO@B/Az(f/(O()). |

Unfortunately, the case B = A [«] is very rare, one instance of this case being our
former case when we completed at each prime (Corollary 5.7.20 below). This is the
reason why the way to calculate the different is reduced to the complete case.

We begin with the following theorem:

Theorem 5.7.18. Assume that A is a discrete valuation ring with maximal ideal g and
that B has only one prime ideal P over . Further, assume that B/P is a separable
extension of A/g. Then B = Al«] for some a € B.

Proof. Let B € B be such that (A/gp) [B] = B/P, where B = g mod P. Let f(x) €
A[x] be a monic polynomial such that f(x) mod g = Irr (,3_ X, A/p). Letw € P\P2.
Then vp () = 1 and we have

VA

f(X)=f(ﬁ)+f/(/3)(x—ﬁ)+~~+m(x—ﬁ)”fl+(x—/3)"~

Therefore f (8 + ) = (f (B) + ' (B) w) mod 72

Since B/P is separable over A/g we have f’ (8) # 0 mod 7.

On the other hand, f (B) = 0 implies vp (f (B)) > 1. If vp (f (B)) = 1, then
f (B) is a prime element of B. Assume vp (f (8)) > 1. Since

fB+m)— f(B) =nf (B) mod n?,

we have

vp (f(B+m)— f(B) =vp(m)+vp (f (B) =

sovp (f (B+m)) =1
In any case, the ring A[B] or A [B + 7] contains a prime element of P. Leto = 8
or B+ be such that A [«] contains a prime element 7" of P. Then A [a, n/] = Al«].
Furthermore, p B = P¢ withe > 1. Let C = A [«]. We will see that C + pB = B.
Since o generates the residue field, we have B € C 4+ PB. Now for all » > 0,
P /P ! is isomorphic to B/P under the isomorphism

B — fPr/fpr+17

XY with 7' e P\ P2

In other words, {ai(n’)j};i% ., generates B/P°B = B/pB over A/p. There-
foreif x € B, wehave x =}, ; dije’ (")) mod p B for some d;; € A, which proves

that C + B = B.
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Now B/C = (C + pB)/C implies o (B/C) = (C+uB)/C = B/C, so if
M = B/C then pM = M. Let {x1,x2, ..., x,} be a set of generators of M over A.
We have
X1 = puxy + - + pPaXn

with Dij € §.
Xpn = PniX1 + -+ + PunXn
In terms of matrices, this translates to

lifi = j,

[8i; — pij]l-’j [xili<i<n =[0], with §;; = {0 ifi £ .

Multiplying by the adjoint matrix of
[81-] — pii]ij = N, weobtainthat (detN)x; =0 forall i,

that is, (det N)M = 0. Now, detN = 1 4+ x for some x € gp,sodetN € A\ .
Therefore det N is a unit, and this implies that M = 0. We obtain B =C = A[«]. O

Remark 5.7.19. The last part of the proof of Theorem 5.7.18 is known as Nakayama’s
lemma. More precisely, Nakayama’s lemma establishes that if A is a ring, a is an ideal
contained in every maximal ideal of A and M is a finitely generated A-module such
that aM = M, then M = 0.

We apply Theorem 5.7.18 to the complete fields case, in which the rings 5\50 are
discrete valuation rings and there exists a unique prime ideal over g.

Corollary 5.7.20. Let L/K be a separable extension of function fields such that the
field of constants € of L is a perfect field. Let 3 € Pr and p := B|k . Then ¥ = vpla]
Jor some a € V.

Proof. ¥z and ¥y are discrete valuation rings, and 93/ = £(P) is a separable
extension of ¢y /p = k(p) (Theorem 5.2.21). O

Theorem 5.7.21. Let A be a Dedekind domain, K = quot A, let L/K be a finite
separable extension, and let B be the integral closure of A in L. Then Dpa is the
greatest common divisor of the set

{f@|aeB L=K(), f(x) =Ir(ax, K)}
=(f"(@ |ae€B L=K (), f(x)=Ir(ax, K)).

Proof. Leta € B, so A[a] € B. By Theorem 5.7.17 we have

Dpja={reL|Tr(xB)C A} C{xeL|Tr(xAla]) C A} = (f @)

Therefore (' () € Dpya, or, equivalently, Dp/4 | (f (@)).



162 5 Extensions and Galois Theory
To prove the converse, notice that since Dp/4 = [[p cp, Dp, the equality
Dp/a=(f'(@|aeB L=K (@), f(x)=Ir(xx, K))

holds if for each P of B, we can find « € B such that vp (@B/A) =vp (f’ (oc)) (note
that we always have vp (Dp/4) < vp (' (@))).

Letgpop = Pla = PNA Let T = {a:L—)IEplalK:IdK}, where IEK,
denotes an algebraic closure of K. Clearly, o (L) K, is a complete field that contains
K. Thus o (L) K, = Lo, for some i, where pB = P} - ~77§g. Hence, o (L) K, is
one of the completions of K.

We define an equivalence relation in T by: 0 ~ 7 if 0 (L) K, = 1 (L) Ky, or
equivalently there exists a K,-automorphism A such that A|g,, = Idg, and Ao'|; =
7|r. Observe that if [o'] denotes the equivalence class of Lp,, the distinct classes of ~
are the K,-monomorphisms of Lp, in K - Thus there are [Lpl. : K KJ] elements in this
class. On the other hand we have |T'| = [L : K], which coincides with our formula
[L:K]1=Y% [Lp : Kyl

Let o7 € T be in the class determined by Lp and P = P;. Let

wel, L=K@, f@=Irex,K=][]x-oa),

oeT

fl@=]]@-0a. and o (f @)= ][] @ra—0cw)=f (o10).
oeT oeT
o #ld o#0]

By Theorem 5.7.18, there exists 8 € Bp such that Bp = Ay, [B]. Since A and B
are Dedekind domains, their localizations are discrete valuation rings (see the proof
of Theorem 5.7.12). Observe that if 8’ € Bp, is such that |8 — g| < & for & small

enough, then Ay, [B'] = Bp. Indeed, put Bp = @) ApB' and let IT € P \ P2,
@ Bp = P¢, choose ¢ < riz|l'l|e. Let |,6 — ,3’| < &. We have that x € Bp satisfies
x]p <1,s0

r—1 r—1
Y aip =) ai(B)
i=0 i=0 P

r—1
< Z lailp |B — ,3/|7> (
i=1

gi-! +ﬁi—2ﬂ/+_._+(ﬂ/)i—1‘7})
<err =er? < M,

so Ap [,3’] + o Bp = Bp = Ay [B]. By the same argument as that given in the proof
of Theorem 5.7.18 (Nakayama’s lemma), we obtain A, [,8/] = Ay [B] = Bp.

For 1 € T, we denote by Lp, the completion given by A (L) K, © K o

Now, if {1} varies in a finite set of K,-automorphisms of K, then the elements
Ap have residue classes conjugated over Ay, /g since A|g,, = Id. Therefore, if these
classes are zero, then [AB|p, < 1, and hence [A8 — 1|p, = 1. If these classes are
nonzero, then [AB|p, = [AB8 —0|p, = 1.
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In any case, |Af — a|7;A = Il foraequaltoOor 1. Let oq,...,0, € T be rep-
resentatives of the distinct classes corresponding to completions Lp,, ..., Lp,. By
Artin’s approximation (Theorem 2.5.3), there exists « € L such that |oja — B|p and
for2 <i <g,|oja — a|pl. are very small. We may assume that @ € B (see Exercise
5.10.27).

If L # K (&), we write ] = a+7'y, where L = K (y), y is an integral element,
and vy, (;r) = 1. Then « is integral. We will see that for ¢ large enough, L = K (a1).
Let E = K («y) € L. If for each completion the equality L = Epr holds, then

[E:K]=) [Ep:Kp]=) [Lp:Ky]=IL:K],
Ple P'le
so E = L. Therefore, it suffices to see that Lp = Epr.

Assume that K is a complete field and L = K (y) = K (¢] —«) = K (a1, o).
Let ¢ be such that

t
lay —a| = || y] < |oa —«f

for any isomorphism o of K («) satisfying o # Id. Whenever t is a K (a)-
monomorphism of K (¢, ) into an algebraic closure over K («¢1), we have T (o] — o) =
a1 — ta. Recall that the unique extension of the absolute value of a complete field is
given by €| = INE|'/" (Theorem 5.4.7). Since t (o] — @) and &] — & have the same
norm over K (o), we have

oy —ta| =) —a| < jJoax —a| for o #Id.
Thus

T —a| =|ta—o] +o; —a| <max{|ta —aq|, | —af}

<|le—oca| for o #Id.

Therefore T = Id, and in particular, K (o1, o) = K (o1).

Returning to our case, we may assume that L = K () by setting o1 = o + 7'y
Again, we denote a1 by «.

It follows from that fact that |ojoe — B|p, is small that Bp = Ay, [o1c] (see the
proof above). Now ®p = P’ for some s > 0. Since this different is given by

(¢' @) = (]] @ —ow),

o~0]

0F#0]
wehaves =), vp (010 — o) = vp (Dp/a).

o#0]
Finally, it remains to prove that

vp 1_[ (o1 —oa) | = Z vp (o1 —oa) =0,

070 ooy
oeT oeT
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or equivalently, that
o —oalp =1 whenever o # o1.
Suppose that
o #* oy, where o =2A0; forsome 2<i<g,

and

|OO{—OO(|'U—|O a—)\.aia|’1)— A. o1 —o;
21

= ‘)Flaloz —a+a—ojx
a1

since |a — o;« |px_] was chosen to be small enough. We have

ol —oalp = ‘A_lala—a = ‘k‘lala—k_lﬂ+)»_lﬁ—a
Py 21
Also, A loja —)L_I,B‘P = loja = Blp is small enough, so we obtain
-
oy —oalp = |A‘1ﬁ — a|73 = 1, which proves the theorem. |
-

For an application of Theorem 5.7.21 see Examples 5.8.8 and 5.8.9 below.

Remark 5.7.22. The argument used to prove K (o, a1) = K («1) is known as Krasner’s
lemma:

Theorem 5.7.23 (Krasner’s Lemma). Let K be a field that is complete under a val-
uation. Let o, B belong to an algebraic closure of K and assume that « is separable
over K (B). If for any monomorphism o # Id of K () into an algebraic closure of K
over K we have

1B —a| <l|oa—oal,
then K (x) € K(B).

Proof. Exercise 5.10.28. O

5.8 Ramification in Artin—Schreier and Kummer Extensions

We begin this section with a theorem due to Kummer that establishes the decomposi-
tion of a prime ideal in Dedekind domains. First, we present a particular case that is
much easier to prove, and next we give the general function field case.
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Theorem 5.8.1 (Kummer’s Theorem). Let A be a Dedekind domain, K = quot A,
and let L/ K be a finite separable extension of K. Let B be the integral closure of A in
L. Assume that B = A [«] for some o. Put f(x) = Irr (a0, x, K) and let g be a nonzero
prime ideal of A. Let f be the reduction modulo g, i.e., f(x) € A/p[x]. Let f(x) =
DP1(x)¢" -+ pg(x) be the decomposition as a product of irreducible polynomials in
A/plx]. Then

pB = PO .. P
where

Pi=pB+pi(e)B for 1<ic<g,
with p;(x) a monic polynomial in Alx] whose reduction modulo g is p;(x).

Proof. Let p be any irreducible factor of f, @ a root of p, and & the prime ideal of B
that is the kernel of the natural epimorphism

B=Ala]l — Ala], A= A/p.

Then B + p (@) B € &. Conversely, if g («) € G with g(x) € A[x], we have
g (@) = 0, which implies that g = ph with & € A[x]. Hence g — ph € p[x] and
g (@) € B + p (v) B, from which we obtain B + p (o) B = G.

Since [B/G : A/go] = [A [a] : A] = deg p;, the inertia degree of G is precisely
the degree of p;, whence for each i suchthat 1 <i < g,

Pi =B+ pi(a)B

is a prime ideal that lies above g. Furthermore, if i # j then P; # P;, since otherwise
pi (@) = pj(a)a+tb,fort € panda, b € B. Therefore p; (x) —ap;(x) = 0, which
is impossible since p;(x) and p;(x) are distinct irreducible polynomials of A/p[x].

Let 6; = B + p; (@)% B.Itis clear that &; = 73;" for some ¢;. Now, we have

8
[[& SoB+pi@° - pg (@)% BCpB.
i=1

Therefore Py, ... , Py are all the ideals over . Furthermore, for1 <i < g, 0 C G;,
o)

e

8 8 , /
pBC (6 =[]6i =P P CpB.
i=1 i=1

It follows that pB = 7;161 . -P;g . Moreover,

731@1...73;8 g@l...ggzpfl...pgg,
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which implies that e; > ¢; for 1 <i < g.
Finally, we have the analogue of Theorem 5.1.14, namely

g 8 8
[L:K]=) ejdegPi =7 eldegpi <) eidegpi =deg /(x) =[L: K],
i=1 i=1 i=1

and hence ¢; = ¢} for 1 <i < g. O

Theorem 5.8.2 (Kummer’s Theorem). Let K/k be a function field and let p be
a place of K. Assume that L = K(a), where a is integral over ¥y. Let p(T) =
Irr(ee, T, K) € Dp[T] be the minimal polynomial of o over K, and let

,
P(T) = p(T) mod p = [ [ 5 (T)"
i=1

be the decomposition of p(T) in k(p)[T]. Let p;(T) € 0y[T] be such that deg p;(T)
= deg ji(T) and p;(T) mod p = j;(T) for 1 <i <r.

Then there exist r different places 3; of L above p such that p;(a) € P; and
dr/k (Bilp) = deg pi (T).

Assume furthermore that a; = 1 for 1 <i <ror{l,a,... ,a"‘l} is an integral
basis for p, where n = [L : K. Then By, ... ,*B, are all the places of L above p,

r w - kMIT]
— i , l? . i = - 9
cong/r p E ¥ »/¥ (pi(T))

and hence dp g (Bilp) = deg p;(T).

Proof. Let k(p); := ’(‘;PQ[TT)} for 1 <i <r.Then [k(p); : k(p)] = deg p; (T). Consider
the natural ring epimorphism

2 0p[T] — Dpla] and 72 Op[T] — k(P)i,
defined by

n(f(T)) = f() and 7 (f(T)) = f(T) mod p;(T).

Then kerw = (p(T)) and 7; (p(T)) = 0. Therefore kerr C kerm; for1 <i <r,and
7; induces a ring epimorphism

0i : Pplar] — k(p);
such that g; o m = m;, i.e.,
0i(h(e)) = h(T) mod p;(T).

Notice that pty[a] C kerg; and p; (o) ¥p[ar] C ker g;. It follows that
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pOpla] + pi(a)dpla] C kerg;.
Conversely, let 2(«) = Z;f;(l) bjaj € ker g;, with 2(T') € ¥p[T]. We have
h(T) = pi(TZ(T)  with  g(T) € %IT].
Thus
h(T) = pi(T)g(T) € pdp[T] and h(@) = pi(@)g(@) € pplal.
Therefore h(a) € pttpla] + p;(a)Ppla], and we have
kero; = pdpla] + pi()Fplal. (5.6)

By Theorem 2.4.4 there exists a place J3; of L extending g; (note that ker o; # 0).
Therefore ¥y[a] C P, s0 P; | p and p; () € °P;. Furthermore,

k(p) C k(p)i = Fplal/kero; S Vo, /PBi.
Thus

di/x (Bilp) = [O,/Bi = Op/p] = [K(B) : k()] = [k(); : k(p)] = deg pi (T).

For i # j, pi(T) and p;(T) are distinct irreducible polynomials in (9p/p)[T]
= k(p)[T']. Hence there exist A(T), B(T) € k(p)[T] such that

1= A(T)pi(T) + B(T)p;(T).
It follows that A()p; () + B(a)pj(e) — 1 € poyle]. Thus 1 € kero; + kero; and

Bi # B since ker o; € P; and ker o; € B ;. This proves the first part of the theorem.
Now assume that ¢; = 1 forall 1 <i <r. We have

-
p(T) =[] pi(D).
i=1
From Theorem 5.1.14, we obtain

[L:K]=degp(T) = degpi(T) <y dr/k(Pilp)
i=1 i=1

<Y dik(PBilpersk (Bilp) < [L : K].
i=1

It follows that ey x (B;|p) = 1, dr/k (Bilp) = deg p;(T), and Py, ... , P, are all the
prime divisors in L dividing p.

Now assume that {1, «, ... ,oe”’]} is an integral basis for p. If ¥ is the integral
closure of ¥y in L, then ¢ = dp[a].
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Let 3 be any place of L above p. We have

0=p)= Hpi(a)a" mod p,
i=1

so p(a) € *B. Therefore p;(«) € P for some i such that 1 <i < r. We have
kero; € PN dpla]. 5.7
It follows from the maximality of the ideal ker g; that
kerg; = P N dpla] = P N Fyplal. (5.8)

Since {1, a, ... ,a”_l} is an integral basis for p, we have Jpla] = m‘ﬁlp V. By
Artin’s approximation theorem (Corollary 2.5.6), there exists y € L such that vp(y) >
0 and vgs(y) = O for all B # P such that B | p. It follows that y € m%lp s and
y € B. Using (5.8) we obtain that y € B; and v, (y) > 0. Hence f = P; for some
i, thatis, Py, ..., P, are all the prime divisors above p.

Next we will prove that dy /g (B;|p) = deg p;(T'). Again, using Artin’s approxi-
mation theorem we obtain 8; € L such that vy, (8;) = 1 and v, (Bi) =0for j #i
and 1 <i <r.Letm be a prime element of p, that is, vy(;r) = 1. Then by (5.6) and
(5.8),

Bi € pla] NP = pi(a)Vpla] + popla] = pi(a)dpla] + wdp[al.

We write 8; = p;(a)s; (o) + 7t; () with s; (), ; (o) € Pp[a]. Then
[[8 =s@]]ri@ +nt@)
i=1 i=1

for some s(a), t(cr) € Pyla].
Since p(a) = ]_[;:1 pi(x)% mod w¥p[a] and p(a) = 0, we have

Hﬂ;” =nu(e) with u(a) € dplal.
i=1

In particular, a; = vsp/,(]_[lr-zl ,3;1") > v, (1) = e(%F,1p).
Now, by (5.8) we have

k(p)i = Oplal/kero; = Opla]/(Pi N Ppla]).

Let ¢: dpla] — O, /PB; be defined by ¢ (h(a)) = h() mod ;. Clearly, ¢ is a ring
homomorphism and kerp = ‘B; N Fyla] = kerg;. If y € v, by Artin’s approxi-
mation theorem there exists z € L such that vy, (y —z) > 0 and v, (z) = 0 for all
j=1,...,rsuchthat j #i. Thus z € (\;_; ¥q, = dpla] and y = z mod P;, so
¢(z) = y mod J3;. Hence ¢ is an epimorphism and
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k(p)i = Vplal/kero; = pla]/(Bi N Fpla]) = dpla]/ kerp = v, /PBi.

It follows that

dryx (Bilp) = [, /Bi : k()] = [k(p)i : k(p)] = deg pi(T).

Using Theorem 5.1.14, we obtain that

[L:K]= ZeL/K(‘BiIP)dL/K(‘BiIP)
i=1

<> ardeg pi(T) = deg p(T) = [L : K.

r
i=1

In particular, we get a; = ez /x (B; | p) and cong /. p = [[i_; ‘Bf‘ O

Now we recall the basic facts about Kummer and Artin—Schreier extensions. Let
K / k be any function field.

Theorem 5.8.3. Let L/K be a cyclic extension of degree n. Let G = Gal(L/K) =
(o). Consider « € L. Then

(1) Trp/x o = 0 if and only if there exists B € L such that o = 8 — 0.
(ii) N ko = 1 if and only if there exists B € L such thata = B/op.

Proof.
(i) (&)Ifa=p—o0p,then

Trpjka =Trpx B—Trpx(0B) =Trpx B—Tryx B =0.

(=) Since L/K is a separable extension, there exists y € L such that
Troky = a # 0, witha € K. Then Try/x(a™'y) = a ' Trpky = 1.
Assume that Trz g « = 0. We have 0% = — Z';;} ola.

Let 8 = Z?;oz (Z;:O Uja>oiy. Then 8 — o8 = a.
(i1) This is just Hilbert’s Theorem 90 (Theorem A.2.16), for a cyclic group G. O

Theorem 5.8.4 (Artin—Schreier Extensions). Lef chark = p > 0. Then L/K is a
cyclic extension of degree p if and only if there exists 7 € L such that L = K (z) with
Irr(z, T,K) =TP — T —a € K[T].

Proof. (=) Let G = Gal(L/K) = (o), with o(0) = p. Then Tr ;¢ 1 = pl = 0.
By Theorem 5.8.3,_ there exists z € L suchthat 0z —z = 1 or 0z = z + 1. Hence
o'z =z+41iand o'z = zif and only if p | i. Therefore

p—1
Irr(z, T, K) = [ [(T = z +1))
i=0
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is of degree p.
Notice that

o —2)=() —oz=C+ D =+ 1) =2z -z
Hence
?#—z=a€eK and 7z’  —z—a=0.

It follows that Irr(z, T, K) = T? — T —a(and TP — T —a = ]_[f:ol(T —(z+10)),
a=zP —2).
(&)fL=K(z)and Irr(z, T,K) =T? — T —a, thenforany i € Z,

i?=imodp and (z+i) —(+i)=z"+i’P—z—i=7z'—z=a.

Therefore z,z + 1,...,z + (p — 1) are the roots of Irr(z, T, K). In particular, z
and z + 1 are conjugates over K and L = K (z) is a Galois extension over K. Let
G = Gal(L/K). There exists 0 € G such that 6z = z + 1. Then ¢’z = z + i and
o(o) = p. Thus G = (o) is a cyclic extension of degree p. O

Theorem 5.8.5 (Kummer Extensions). Let chark = p > 0 and let n € N be such
that p t n (n can be chosen arbitrarily in the case p = 0). Suppose that k contains
a primitive root of unity ¢,. Then L/ K is a cyclic extension of degree n if and only if
there exists 7z € L such that L = K (z) and

Irr(z, T,K) =T" —a € K[T].

Proof. (=) Let G = Gal(L/K) = (o) and o(0) = n. We have Ny x¢, = ¢! = 1.
Thus, by Theorem 5.8.3 there exists z € L such that 0z = ¢,z. Since 0’z = ¢/ z and
olz = zif and only if n | i, it follows that z, ¢,z, ..., {,{’_11 are distinct conjugates
of z. Thus

n—1
Ir(z, T, K) = [ [(T = ¢iz).
i =0

On the other hand, o(z") = (0z)" = ({,z)" = 7". Hence 7! = a € K and
2,802, ..., ,’l“_lz are the roots of 7" — a € K[T]. Therefore

Irr(z, T, K)=T"—a and 7"=acK.

(«<)Fora # 0, T" —a is a separable polynomial with distinct roots z, £,z, ... , ¢}~ .

where z is any element of the algebraic closure K of K such that z* = a. Therefore
L = K(z) is a normal and separable extension of K, and L /K is a Galois extension.
Now, since T" — a is assumed to be irreducible, z and ¢,z are conjugates over K.
Thus, there exists 0 € G = Gal(L/K) such that o0z = ¢,z. It follows that o(o) =
n=o0(G) =[L: K]and L/K is acyclic extension of degree n. O

Next, we turn our attention to the case that two cyclic extensions L/K and Lo/ K
of the type considered in Theorems 5.8.4 and 5.8.5 are the same.
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Proposition 5.8.6. Let chark = p > O and let L; = K(z;)/K, i = 1,2, be two
cyclic extensions of degree p given by zlp —zi =a; € K,i =1,2. The following are
equivalent:

(i) Ly = L».

(i)z1=jzp+bforl < j<p—1landb e K.
(iii) a; = jao+ bP —b)for1 < j<p—1landb e K.

Proof. If z; = jzo + b, then zp = j'z; — j’b with jj/ = 1 mod p. Thus L; = L.
Conversely, if Ly = L, then if G = Gal(L1/K) = Gal(L,/K) = (o), we may
choose o such that 0z; = z1 + 1. Now, since oz is a conjugate of zo over K, we have
oczp =72+ j withl < j <p—1.Letl < j < p—1besuchthat j;/ =1 mod p.
Then

o(jz2) = jozo = jao+ jj = jza + L.

Therefore o (z1 — jz2) = z1 — jzo. It follows that z; — jzp = b € K.
Next, if z1 = jzo + b, then

—zi=a1=(n+b? - (jza+b) = j@) —z2)+ B —b)
= jay + (b” —b).

Conversely, if a; = jar + (b? — b) we have zf —z21 = (z2+ b)Y — (jzo + b),
i.e.,

(z1 = (jz2 +b)P — (@1 — (jz2 + b)) = 0.

It follows that @ = z; — jzp — b isaroot of w” —w = 0. Thus w € IF),. a

Proposition 5.8.7. Let chark = p > 0 and let K contain a primitive nth root ¢, of 1
with (n, p) = 1. Let L; = K(z;) (i = 1, 2) be two cyclic extensions of K of degree n,
given by 7' = a;. The following are equivalent:

() Ly = L.

(i) z1 = zécforall 1 <j<n-—1suchthat (j,n)=1andc € K.
>iii) a; = aéc”foralll <j<n-—1suchthat (j,n)=1landc € K.

Proof. The equivalence of (ii) and (iii) is clear.
Assume L = L,. If G = Gal(L1/K) = Gal(L,/K) = (o), choose o such that
0z1 = &,21- Now, 027 is a conjugate of z, over K, so

oz2=§njz2 with 1< <n-—1.

Letd = (j/,n). Then o™z, = g“nj/"/dzg = 75, and hence 6”/? = Id. Since 0(c0') = n,
we have d = (j’, n) = 1. Choose j such that jj' = 1 mod n. Thus 0(z3) = ¢’ 23 =

J
{nz;, and
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o(z1z,)) =z12,’, so z1z,’ =ceKk.

Conversely, if z; = zéc € Ly, (j,n) = l,and ¢ € K, then L1 C L, and if
jj’=1mod n,

J4 14

el = zaaled, so za= zjay ¢/ e Ly.

. o
o =off e =
Therefore L1 = L». m]

In order to study ramification in Artin—Schreier and Kummer extensions we pro-
vide the following two examples due to Hasse [52]. These two examples are for the
case of rational function fields. The general case will be given later on.

Example 5.8.8. Let K = k(x) be a rational function field where k is a perfect field of
characteristic p > 0. Let L = K (y) be a cyclic extension of degree p. Then, since
L/K is an Artin—Schreier extension, y satisfies an equation of the form

yP —y =r(x), wherer(x) € k(x) and r (x) ¢ {g(x)p —g(x) | glx) € k(x)}.

It is easy to see that & (T) = Irr (y, T, k(x)) = T? — T — r(x). The roots of the
latter polynomial are all y + i such thati € IF,. Observe that L = K (z), where

P —z=hx) €k(x) & z=jy+m(x), with m(x) € k(x) and j € T},

Note that by substituting y by jy 4+ m(x), with m(x) € k(x) and j € IF’;,, the resulting
expression for r (x) becomes jr(x) + m(x)? — m(x).
We will see that we can substitute y in such a way that r (x) takes the form

¢
r)x = ———
KJ @v

where € is integral divisor relatively prime to g;, A; > 0, and A; % 0 mod p for
i=1,...,s
First, write

g(x) - ,
r(x) = >—=, where f(x)=||pi(x)“,
I [1n
(f(x),g(x)) = 1,and py(x), ..., pp(x) are distinct irreducible polynomials. Using
partial fractions we obtain that the expression for r (x) is
n o—1 l)
’ (x)
s(x) +
f 121: ,Z i (x)@i—k

with

degtk)(x)<degp,(x) for k=0,1, o — 1.
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Let v, be the valuation over k(x) corresponding to p; (x). We have
Vo (r(x)) = —a; and vp(r(x)) >0 forany @ #@1,..., 0 Poo-

Then vy, (y” — y) > 0, and since vy, (y” — y) > min { pvy (), vp ()}, it follows that
vp(y) = 0. Thus y is integral with respect to A, or in other words, y € ¥p for a
place P above g.

Now,

p—1 p—1
aM=[]T-y-i) and o) =) [[T-y-),
i=0

i=0 j#i

SO
p—1 p—1
d=[[o-y-i=]]p.
j=1 j=1

and (o/ ( y)) ;. is the unit divisor M. Therefore g is unramified (Theorem 5.6.3).
It follows that the only ramified places can be g1, ... , $n, £co-
Returning to our decomposition, if p divides «;, we write o; = A; p. Then

15 (x)
pi(x)hp

Since [k[x]/(pi(x)) : k] < oo and k is a perfect field, M = k[x]/(p;(x)) is perfect,
that is, M? = M. Thus there exists m(x) € k[x] such that

r(x) = +t(x) with v (11 (x)) > —A;p.

m(x)? = 1 (x) mod p;(x).

Letn(x) = —p:';;’;ii Ifu =y +n(x), then L = K(u) = K(y), and we have

u? —u=y? —y+nx)? —nkx) =rx) +nx)? —nx)

1) m(x)P m(x)

 p@h e piCMP " piR h(x).
Finally,
. t(i)(x) —m(x)? )
U@i (h(x)) > min :Upi (W) 5 vKJi (tl(x)) N UKJ,' <%)} ,

1D (x) = m(x)?
T pione
Vg (11(x)) > —A;p;

Ve ( m(x))f) >0—Xx > —A;p.
pi(x)%

)zl—hp>—hm
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Therefore (7 (x))kx) = %, where 8 < A; p and 2l is relatively prime to Ay,
8
Observe that for j # i, we have

(@)

fy () .

m(x)” _
o <Pi (x)*”’) =0

m(x) .
') (Pi(x))”i> =0

Vg, (11(x)) = vy, (r(x)) = —aj <O.

Thus Vo, (h(x)) = Vo, (Hx)) = Vo, (r(x)) = —a;. This means that in the previous
argument, the values vy, do not change for j # i. We also have v, (2(x)) > 0 for
P F P ns Poo-

Continuing with this process, we eventually transform our expression L = K ()
into

¢ '
of —w=0ax) ek(x) and (X)) = ﬁ@éo
T o
where € is an integral divisor that is relatively prime to g1, . .. , £m, §oo, and A; > 0,

()"lvp)z l,i = 1,... , M.
Now working with e, if s > O ors < 0 and (p,s) = 1, g is also of the

required form. Finally, assume s < O and p | s, say s = —pt, with ¢ > 0. Let
S1(x)
alx) = 0’ 5 = Voo (@(x)) = —dega(x) = —deg fi(x) +deggi(x) <O0.

Then deg g1 (x) < deg f1(x), and by the division algorithm,
fHi(x) =g1(x)q1(x) +r1(x) with ri(x) =0 or degri(x) <deggi(x),
SO

Silx) r1(x)
am Ot

a(x) =

We have vy (;‘l((fc;) > 0. Therefore

Voo (@(x)) = s = —pt = —degq(x).

We can write g1 (x) as the sum of ax?’ with terms of lower degree. Since ¢ (x) €
k[x] and k is a perfect field, there exists b € k such that b? = a. Let w1 = w — bx".
Then
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r1(x)

—— with deggqx(x) < pt —1< —s.
g1(x)

ol —w = qx) +

It is easy to see that any place g satisfies the following: if v, (x(x)) > O then

Ve (qz(x) T %) > 0, and if vy, ((x)) < 0, then vy, (qz(x) i ;1&3?)) = v, (@(x)).

By iterating this process we obtain an equation of the type

¢
Y —y=a(x), where (@(x)x=——
6/‘)1 c Om
¢ is an integral divisor relatively prime to 1, ..., $om, A; > 0, and (A;, p) = 1,
i =1,...,m. We have already noted that if  # g1, ... , o, then g is unramified.
Now we will see that 1, ... , g, are exactly the ramified prime divisors. If P is

a place over some g;, then
e=e(Plp;) and vp (a(x)) = ev, (a(x)) = —el;.

On the other hand,

vp (@) =vp (y' —y) <0, so vp(y) <O.

Therefore vp (y? —y) = pvp (y). Thus p divides e); and since (p,A;) = 1, p
divides e. Consequently e > p. But since [L : K] = p > e, we must have e = p, and
furthermore, each g1, ... , g, is ramified. Let p; (x) € k[x] (or p; (x) = }C in the case
Pi = Poo), With vy, (pi(x)) = 1. Let o; = P/ in Dy. Set P = P;.

We have vp, (y) = —A;. We wish to compute Dp, the different at P.

Let 7 be a prime element for P, that is, vp(;r) = 1. Then 1975 = ¥, [r] (because
i is ramified) and we have @75 = P withs = vp (g’(n)) and g(T) =Irr (, T, K)
(Theorem 5.7.17).

Now, since (A;, p) = 1, there exist u, v such that —uX; + vp = 1. We have

vp (¥ pi(¥)") = uvp () + vop (pi(x)) = —uk; +vp = 1.

Therefore we may pick # = y“p;(x)”. The conjugates of 7 are the elements
; -1 .
v+ N" pi(0)?, so that g(T) = [172, (T — (y + /)" pi (x)*) and

p—1 p—1
g = [T(0+i" =) pi)” =TT ("™ +5;0)) P,
j=1 j=1
where s (y) = Z;g (7)ytj*~*, and
W\ ¢.u—t) _ .
vp <<£>y J ) =Lvp (y) > (u — Dup (¥).

It follows that
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= 1 Y pi )\ P!
vp (&'(m) = vp (H (jur pi(x)“)) = vp ((T) )

Jj=1
=(=@—=Dri+vwp)(p—-D=0+1D(p-1D.

Therefore Dp = PPi+Dr=D,
In short, assume L = K (y), where

¢
yW—y=ax) and (@(X)ky) = T
K')] REEY oM
¢ an integral divisor relatively prime to g1, ..., #,,A; > 0,and (A, p) = 1,1 <i <
n. Then g1, ... , g, are the ramified primes in L/K and if p; = Pl.p in Dy, we have

n n
Ai+1D(p—1 ri+D(p—1
DLk = | |77,-( @D and 0L/k = NL/k®pL/k = | |50,( =D,
i=1 i=1

Example 5.8.9. Let K = k(x) and L = K(y), where L/K is a cyclic extension of
degree n, p  n, and p = chark (or chark = 0). Assume that k£ contains the nth roots
of unity. Then, since L/K is a Kummer extension, we may assume y" = f(x) with
f(x) € k[x] and f(x) nondivisible nth-powers.

Let
60)‘1 e 6@)"
(fODk@) = l—tr where ¢t =deg f(x) and 0 <A; <n.
oo
As in Example 5.8.8, 1, ... , ¢, are the ramified prime divisors, and possibly g0

too. For g0, lett = ng +r, 1 <r < n. Substituting y by z = # we obtain

n oo fx)

o= x(g+hn = yng+n

and

Voo ( f(X) ) = Voo (f(x)) — Voo (x(q+l)n> =—l+gqnt+n=n-—r

xhgq+n

with0 <n —r < n — 1. As before, poo is ramified <= n —r A0 < n #r <
n{t=deg f(x).
Let g; be one of the ramified prime divisors. Since (p, n) = 1, p does not divide

. . e
the ramification index e of ;. We have in D : p; = (771(1) . ~77g.)> . Let P be any
prime above g;. We have vp (¥") = nvp(y) = Xje. Therefore vp(y) = )‘r’l—e Let
d; = (A, n). We have diivp(y) = i}—:fe, and since (z’lil 2—5) =1,
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)\‘.
e and =
d;

vp ().

i

Now if z = y"/% then z% = y" and d; | ;. Hence

d;
(W) =% = h(x) eklx] and vy, (h(x)) = 0.

Therefore g; is unramified from K to K (z). Since [L : K(2)] = dl we have e < di
which shows that ¢ = dii and vp(y) = 2—5

Since p 1 e, it follows by Theorem 5.6.3 that Dp = P¢~! = PW/d)=1 1f o, =

. A\ n/di
(7’{1) e Pg(i,)) , we have dl,» figi = n, where each f; is the relative degree of P =
P;i) over ;. Finally, note that if g is ramified, then n { 7 = deg f(x) and the
ramification index is

n n n

- (n—r,n) - (r, n) - (t, n)

€00

Therefore the discriminant at g; is given by

di—1) figi di—1)d; di(ei—1
Dy = pi(n/ Vigi _ pi(n/ i _ o (ei=1)

In the general case, it is not always possible to write all prime divisors at a time
under the form prescribed in Examples 5.8.8 and 5.8.9. However, the following result
shows that we can do so for any fixed prime divisor in the case of a perfect field of
constants.

Theorem 5.8.10. Let k be a perfect field of characteristic p > 0. Let p be a fixed place
in K. If L/K is a cyclic extension of degree p, then L = K (y) with y? — y = a and

vp(@a) >0 or wvp(a) =i <0, and (A,p) =1

Proof. Let L = K(z) with z? — z = B. If vy(B) > 0, we set a = B and we are done.
Assume that vy(B) = u < 0.If (i, p) = 0 there is nothing to prove. Otherwise, let
uw = —pk, A > 0. By Theorem 2.5.20, we have

B— b_pn  b_pit1
T ogpA =1

b_
e R S (5.9)

where b; € k(p), b_p). # 0, and 7 is a prime element for p.

Since k(p) is a perfect field, we may choose ¢ € k(p) such that c” = b_ ;. Let
C € ¥y be such that C mod p = ¢ € k(p) = y/p. Sety 1=z — Cn™, L =K(y),
and

y—y=z'—CPn P —z4Cn " =B—-CPn P +Cn "

Since vp(C) = 0, it follows by (5.9) that
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vp(@) > —pr+1 with a=B—CPx P 4+ Crn*.

If vp(a) > 0 or vp(a) < 0 and (vp(a), p) = 1 we are done. Otherwise, we repeat
the process. We obtain the result in a finite number of steps. O

Theorem 5.8.11. In the situation of Theorem 5.8.10, if vy(a) > O, then p is unramified
(in this case the hypothesis that k is a perfect field is not necessary), and if vp(a) < 0
and (vp(a), p) = 1 then p is ramified and the local different is given by

,D‘«B — ;B(M-l)(p—l)’
where p =B and A = —vp(a).

Proof. Let f(T) =T? — T —a = Irr(y, T, K). First, assume that vp(a) > 0. Since
y? —y = a,if P is any place in L above p, we have vp(y) > 0. Thus y is integral
with respect to B. Now f'(y) = —1, and by Theorem 5.7.21 it follows that 3 is
unramified. Note that for this case we do not need the hypothesis that & is a perfect
field.

Next, assume that vp(a) = —A < 0 and (A, p) = 1. Let *B be a prime divisor in L
dividing p. Then vqg(yp —y) = vgp(a) < 0. Therefore vp(y) < 0 and

vp(y? —y) = puvp(y) = vp(a) = e(Blp)vp(a) = —re, where e =e(P | p).

The conditions that (p, A) =1, p | e, e = p, and p is ramified in L /K imply p = B?.
We also have v (y) = —A.

Let u, v € Z be such that —Au + pv = 1. Then if 7 is a prime element for p, we
have

vp () = uvgp(y) + v () = —hu+ pv = 1.

Therefore IT = y“z? is a prime element for ‘3. By Proposition 5.5.11, ﬂgig = vylr],
where 19,13 and 93 denote the completions of ¥g3 and ¥y respectively. By Theorem
5.7.17, we have v,ﬁ(qu) = vp(Dr k) = vp(g'(IT)), with g(T) = Irr(I1, T, K). The
set of conjugates of IT is

lo/T=@+ )z, j=0,1,...,p—1}={Mo, y,... , 1}
Thus
p—1 p—1
g =[] -m) and g =) [T -1
i=0 Jj=0i#j

We have
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p—1
g =[Jo"r" — v +i)n")
i=1

p—1 u
_ —v(p—1) u _ U\ ¢.u—2e
= w22 ()

£=0

p—1
= (=P 7D T iy ™" + s ()
i=1

with s; (y) = ;;g(@yﬁu—ﬁihuswpaxy»:>lqﬁuow—l)=(u-n(—xy
Therefore

p—1
vp(g' (M) = vp(p — D+ Y (= 1)(=H)
i=1
=vpp—-D—Ap—Dw—-1)
=(@—-—Dwp—Au+i)=(p—-DHA+A). |

We obtain analogous results for Kummer extensions.

Theorem 5.8.12. Let k be any field of characteristic p > 0. Let L/K be a cyclic
extension of degree n with (n, p) = 1. Assume that k contains a primitive nth root of
unity . Let p be a fixed place of K. Then L = K(y) with y" = a and 0 < vp(a) <
n — 1; p is unramified in L /K if and only if vp(a) = 0.

If vp(a) = m > 0 and B is a prime divisor of L above p, we have

-1

n
e(Blp) = W and vp(Dp) =

Proof. Let L = K (z) with 2" = b, vp(b) =tn+r and0 <r <n — 1. If 7 is a prime

(n, m)

n
element for p, then (#) = % and vy (%) = r. The rest of the proof is the same
as in Example 5.8.9. O

Definition 5.8.13. We say that the equation given in Theorem 5.8.11 or Theorem
5.8.12 is in normal form or standard form at the prime p.

Remark 5.8.14. The hypothesis that k is perfect is not necessary in Theorem 5.8.12.
However, if k is not a perfect field, in general we cannot write an equation like the one
in Theorem 5.8.11 in a normal form for a given prime divisor. For instance, assume
that & is not a perfect field and leta € k \ k?. If K = k(x) and L = K (y) with

yP—y=ax? (5.10)

then (5.10) cannot be modified in order to have the infinite prime of K written in
normal form (see Exercise 5.10.18, Exercise 5.10.29, Example 14.3.12, and Exercise
14.5.16).



180 5 Extensions and Galois Theory

5.9 Ramification Groups

Theorem 5.6.3 shows a clear difference between ramification types, depending on the
divisibility of the ramification index by the characteristic p. A more detailed study of
this difference originates in the definition of the ramification groups, which we will
study now.

Consider any Galois extension L/K of function fields with Galois group G =
Gal(L/K). If P is a prime divisor of L and g = P|g, then the decomposition group
satisfies Dz /x (Plp) = D = Gal (Lp/K,,) (Theorem 5.4.10). We will assume that
the residue field extension £(P)/k(g) is separable. To study the ramification, it suf-
fices to consider the ramification in Lp/K,,. Therefore we will assume that L/K
is a Galois extension of complete fields. We also assume that the residue field ex-
tension is separable. Within this situation, K is complete with respect to the valua-
tion vy,, the valuation ring is ¥, and the valuation has a unique extension vp to L.
We have 9p = o, [B] for some B (Theorem 5.7.18). If f(x) = Irr (B, x, K), then
Dp = (f'(B)) (Theorem 5.7.17) and the discriminant satisfies dp, = (Nz;x ' (B)).

Proposition 5.9.1. Let 81 = B, B2, ... , Bn be the conjugates of B. Then

n

Nk (f/(B) = (=" D2 T (8 - 8;)° =[] (6 — B))-

i<j i#]j

Proof. We leave the proof to the reader (Exercise 5.10.31). O

Definition 5.9.2. Let ¢ = e /k (P|g) and let K be the residue field Vp/p. Let p =
char K. If p | e, g is called wildly ramified, and if p t e, o is called tamely ramified.

We write Ay = ¥p and Ag = . Letx € Ay be such that A; = Ag[x], and
let m € A be such that vp(r) = 1. Let G = Gal(L/K) (which corresponds to the
decomposition group before taking completions).

Proposition 5.9.3. Let 0 € G, and i € 7 be such that i > —1. The following three
conditions are equivalent:

(a) o acts trivially on Ay JP';
(b) vp (0(a) —a) =i+ 1 foralla € Ar;
© vp (0(x) —x) =i +1.

Proof. We leave the proof to the reader (Exercise 5.10.32). |
Theorem 5.9.4. For eachi > —1 put G; = {0 € G | vp (6 (x) —x) > i+ 1}. Then

Gi D Gijy1, each G; is a normal subgroup of G, G_1 = G, and Gy is the inertia
group. Furthermore, for i large enough, G; = 1d.
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Proof. Since P° = P, we have
vp (0(x) —x) = Vo1 (x — U_l(x)) = vp (a_l(x) — x) ,

so o € G; implies ol eq;.
Ifo,6 € G;, we have

vp (00(x) —x) =vp ((00) (x) —0o(x) +0(x) —x)
> min {vp ((06) (x) — o (X)), vp (0 (x) — x)}

— min {vpfl () —x), vp (0(x) — x)} >4 1.

Therefore, G; is a subgroup of G.
Now let 0 € G; and ¢ € G. We have

vp ((67106) () = %) = vps (06) (¥) = ¢2) =vp (03 =), ¥ = ().
Since

AL = ¢ (AL) = ¢ (Ak[x]) = A [p(0)] = Ag[x'],

it follows, by Proposition 5.9.3, that vp (o (x’) —x’) > i + 1. Thus G; is a normal
subgroup of G.
Clearly, G; 2 Gj4. Furthermore,

Go=f{oeGlvp(ox—x)>1}={ceG|loy=ymodPVyeAL},

which is the definition of the inertia group.
Finally, for o # Id, there exists x such that ox # x, so vp (6x — x) = iy F# 0.
Letr = max {i, | 0 # Id}. Then

0eG << vplox—x)>2r+1>i, < o =1d.

Thus G, = Id. m]

Definition 5.9.5. For i > —1, the group G; is called the ith ramification group of G
or ith ramification group of L/K .

Definition 5.9.6. We define the functionig : G — ZU{oo} by i (0) = vp (ox — Xx).
As a consequence of what we have already proved, we obtain the following result:
Proposition 5.9.7.

(1) ig (0) = oo ifand only if o = 1d,
2)ig (o) =i+ 1ifandonlyifo € Gi,



182 5 Extensions and Galois Theory
3)ig (gog_l) =ig (o) forallo, g € G. ]

Proposition 5.9.8. 3°, ;qic (o) = 2272, (IG:| = ).

Proof.Letr; = |Gi|—1.1f o € Gi_1\Gj,thenvp (o6x —x) =i,50iG (Gi—1 \ G;) =
i and |G,'71 \Gi| =ri—1 —F;.

Therefore
o0 o0
Yicl)y=). Y. icl)=) iti1—r).
o#ld i=0 0eG;_1\G; i=0
Let ¢ be such that G; = Id. Then ;1 = 0 and
%0 1+1 1+1 1+1
Zi (ric1—ri) = Zi (ri-1—ri) = Zi”i—l - Zi”i
i=0 i=0 i=0 i=0
1 t+1 13
=D G+ D= iri=2) ri =+ Dre
i=0 i=0 i=0
t o0 o0
=Y ri=y ri=y (Gl-1. O
i=0 i=0 i=0

Theorem 5.9.9. We have Dp = P*, where s = Zaﬂd ig (o)=Y 2y (Gi| — ).
Proof. Let

AL =Aklx], [L:Kl=ef=n, and f(T)=Trr(x,T.K)= [[ (T —ox).

oeG

Then

=3 [T -0x) and fx)=]] x=-ox.

oeG O#o o#Id

By Theorem 5.7.17, we have

s=vp(f@) =) vplox—0=) icl@)=) (Gl-1. O
o#ld o#ld i =0

Corollary 5.9.10. g is wildly ramified if and only if G| # {1d}.

Proof. We have |G| = e (Corollary 5.2.23) and |Go| — 1 = e — 1. By Theorem 5.6.3,
s >e—1<4<= p|e <+ p is wildly ramified.
On the other hand, s > ¢ — 1 if and only if |G{| — 1 > 0. |
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Corollary 5.9.11. If char K = 0, then G, = {Id}. O

Example 5.9.12. Let K = k(x, y) be the function field defined by
vyl —y=x" where g=p", p=chark,m>1 and m|q+1.

Set g + 1 = mn. Then we will prove that gx =
First we consider a root o of 79 — T' — x™. Then for any u € F,u =T,

(m—1)(g—-1)
5 .

a+w =@+ =a+pl —a—-—p=a!+p—-—a—-—pu=a? —a=x"

Therefore {y + | u € Fy} is the set of roots of 79 — T — x™.
In particular, K /k(x) is a Galois extension. Let ®B be a prime divisor in K dividing
the infinite prime g, of k(x). We have

va(y? — y) = mug(x) = me(Blpoo)vp,, (x) = —me(Blpo) < 0.

Therefore vz (y) < 0, since otherwise we would have vg(y? — y) > 0. Thus

v (¥ — y) = minfvs (y7), v (M)} = qu(y).

It follows that g (y) = —me(B|poco). Since (g, m) = 1, g divides e(B|poo).
Therefore g is fully ramified, e(B|p) = ¢, and [K : k(x)] = g. We also have

v (y) = —m.
For any u € IFy, let o, € Gal (K /k(x)) be defined by

ou(y) =y + .

Then 6: (IFq, +) — Gal (K /k(x)) is a group isomorphism.
Now, for any prime divisor 3 distinct from 9B, we have vgp(y) > 0 since
vp(x™) > 0. Thus y € dq3. We have

) =T"—T—x"=[](T—y-w.

uely

Henceo(T) = 3 [] (T—y—p),500'(y) = [1,0—y—1) = (=14~ ]z, 1.
BeF, u#p
Therefore (o' (y))k is the unit divisor . It follows by Theorem 5.7.21 that B is un-
ramified in K /k(x). Hence D g /() = B° for some s. Next we determine the ramifi-
cation groups G; for ‘B.
Since vy (y) = —m and vg(x) = —q, we have vs(y™"x) = nm — g = 1. Thus
y~"x is a prime element for B. Now, G_; = Gg = G and for u € F*,

o (") =y "x=0Q+w "x—y"x
. (y” — +M)”) T
v+ w)y" (y2 + uy)"
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Thus

v (0, (y"x) — y"x) = (n — Doy (y) + v (x) — 2nvsz(y)
=n+lm—-qg=q+1+m—-—g=m+1.

It follows by Theorem 5.9.4 that o, € G,, and 0, ¢ G,+1. Therefore

G:G_IZG():"':va Gm+1:{1}

Using Theorem 5.9.9 we obtain that
o m
s=Y (Gil-1D=) (g—D=0m+1)g—D.
i=0 i=0

Applying the Riemann—Hurwitz genus formula we get

1 (m—Dg—-1D
gk =1+40 -1+ 0m+Dig—1="""0"2
Definition 5.9.13. Let U, = U be the set of units of Ar, ie., U

{y € AL |vp(y) =0).Fori > 1,let U =1 + P
Proposition 5.9.14.

U u? = LP)*.
@) Fori > 1,0 jui™h = piypitt = ¢(p).

Proof.

(1) Let g : U£0) —> £(P)* = (AL/P)* be the natural map. Clearly, ¢ is surjec-
tive and we have

(2) Leti > landletg : P — 1+ P = U be defined by ¢(y) = 1 + y. Then
@ is a bijective function that is not a homomorphism. The function

- i @) 41
¢:P — U /U,

is surjective. We will see that ¢ is a homomorphism.
We have ¢(y +z) = 1 + (y + z) mod U£I+1). On the other hand,

GNP = (14 y)(1 +2) mod U
=1+ (y+2z)+ yz mod Ué””,
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Since y, z € P!, we have yz € P¥ € P*! Thus 1 + yz = 1 mod USH),
from which we obtain

GNP =14 +2)mod U =Gy +2).

This proves that ¢ is an epimorphism. ' o
Furthermore, it is clear that ker¢p = P/*!. Therefore (P’ /Pt +) ~

(v 0.
Finally, the Az /P-modules Pi/Pi*! and A /P are isomorphic and hence

they are isomorphic as L-vector spaces. It follows that P! /P*! has dimen-
sion 1. Indeed

Ay L opiypitt

x> iy + Pt

is an epimorphism and ker ¢y = P. O

Proposition 5.9.15. o € G, ifand only if o () /m € U},

Proof. By substituting G by G and K by K ©0 if necessary, we may assume that L /K
is totally ramified. In this case Ax[7w] = A (Proposition 5.5.11).
By Proposition 5.9.3, it follows that

o(m) .
oeGi@vp(a(n)—n)=1+vp(7_l>Zl+1

<:>U73<$—1)2i

@ﬂ=1+t, tePi@wel+Pi=Uf). O
T T

Theorem 5.9.16. The function that to each o € G; assigns % induces, by taking

quotients, a monomorphism of G; /Gy into a subgroup of U I(f) /U IE’H). Furthermore,
this monomorphism is independent of the prime element w chosen.

Proof. If 7’ is any other prime element, then 7’ = 7u with u € Uy,. Therefore % =

@@ If o € G; we have o (1) = u mod P*!. Thus

o(@) o(m)

o w) _ 7T a0,
T

_ (i+1)
=1lmod U; ",

T[/

Hence the function 6 : G; — Uéi)/UgH), defined by 0 (o) = %”) mod USH),
does not depend on the prime element.
If o, ¢ € G; we have

(@) () _ (0¢) (W) ¢ _ o(m) ¢() 0 (v)

T o T T T v
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with v = @ Since ¢ () = 7 mod Pitl it follows that v € Up, "—v“ = 1 mod

U SH). Therefore 0 is a homomorphism, and clearly

ot _

ker6 = {O’
T

1 mod Uf“)} =Giy1. o

Corollary 5.9.17. Go/G is a cyclic group whose order is relatively prime to the char-
acteristic of L(P).

Proof. We have Go/G1 C Uéo)/UI(‘l) = £(P)*. Thus Go/G is a finite subgroup of
the group of units of L*. Therefore it is a cyclic group whose order is relatively prime
to the characteristic of £(P). O

Corollary 5.9.18. If © is tamely ramified, then G is a cyclic group.

Proof. In this case G is trivial. O

Corollary 5.9.19. If the characteristic of £(P) is p > 0, then the quotients G; /G4
(i > 1) are elementary abelian p-groups, i.e., G;/Giy1 = (Z] pZ)* for some a. Also,
G is a p-group.

Proof.Fori > 1,U ii) /U £i+1) is isomorphic to £(P). Therefore it is an abelian group
such that p (US)/UEHI)) = 0. It follows that G;/G;+1 is an elementary abelian

p-group.
Since |G| = ]‘[;’il |Gi/Git1], each G; /G4 is of order p’i for some r; > 0.
Furthermore, for i large enough we have |G;/G;+1| = 1. Hence G is a p-group. O

Corollary 5.9.20. G is a solvable group.

Proof. This follows from the facts that Go/G is a cyclic group, in particular solvable,
and that G is a p-group. O

5.10 Exercises

Exercise 5.10.1. Let K /k be a function field and let x, y € K \ k be such that [K :
k(x)] and [K : k(y)] are relatively prime. Prove that K = k(x, y).

Exercise 5.10.2. Give an explicit example of an extension of function fields L/K and
a valuation v on L such that v|g : K* — Z is not surjective.

Exercise 5.10.3. Let X, T be two variables over the field of two elements k = . Let
K =k(T,X*+TX*+1)and L = k(T, X). Prove that L, = k (T, X?), and that
L; = K. In particular, we have L; L; # L.
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Exercise 5.10.4. Let L/K be a finite extension of fields. Prove that L = L L; if and
only if L/L; is a separable extension.

Exercise 5.10.5. With the notation of Exercise 5.10.4, prove that if L/K is a normal
extension, then L = L L;.

Exercise 5.10.6. Prove or give a counterexample: Let L /£ be an arbitrary extension of
K / k. Then no place of L is variable over K. (See Proposition 5.1.12).

Exercise 5.10.7. Give an example of a function field extension L/K, and places 3 of
L and p of K, such that:

(i) ek (Blp) > 1.
(ii) dp/x (Blp) > 1.

Exercise 5.10.8. Let L /¢ be an extension of K /k. Show that the following conditions
are equivalent:

(i) £ is an algebraic extension of k.
(ii) L is an algebraic extension of K .
(>iii) If P is a prime divisor of L above the place p of K, then £(*}3) is an algebraic
extension of k(p).

Exercise 5.10.9. Let L/E be a finite normal field extension and let G := Aut(L/E).

Let v be a valuation of E. If w is an extension of v to L and o € G, we define
(cw)(x) = w(o~'x) for x € L. Equivalently, (cw)(cy) = w(y).

Assume that there exist two extensions w and w’ of v such that cw # w’ for all
oceg.

Then by the approximation theorem there exists x € L such that w'(x) > 0,
(e~ 'w)(x) =0,and o ~'w'(x) > O forall o € G.

Consider y = N /gx.

Prove that the above implies v(y) > 0 and v(y) = 0.

This contradiction shows that given two arbitrary extensions w, w’ of v, there
exists 0 € G such that cw = w’. That is, G acts transitively over the extensions w
of v.

Exercise 5.10.10. Let k£ be an algebraically closed field and let K/k be a function
field. Let L/K be a finite Galois extension, p be a prime divisor of K, and 3 a prime
divisor of L such that 3 | p. We have B|x = p. Prove that D(B|p) = I (Bp).

Exercise 5.10.11. With the hypotheses of Exercise 5.10.10, assume that k is a finite

field. Prove that % is a cyclic group.

Exercise 5.10.12. Let L/K be a finite Galois extension of function fields and let
F/K be an arbitrary extension such that L N F = K. Let E = LF. The function
¢: Gal(E/F) — Gal(L/K) defined by ¢(0) = 0|, is an isomorphism.

Let 3 be a prime divisor of F' and £ be a prime divisor of E over ‘B. Putp = P|x
and let g = Q.. Prove that:
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O DRQIP)L € D | p);
(i) I(Q Pl € 1o | p);

Deduce that if 3 is ramified in £/F and the field of constants £ of L is perfect,
then p is ramified in L/K.

Note that if £ is not perfect, then p may be unramified. In this case p is inseparable.
See Exercise 5.10.18.

Exercise 5.10.13. Let L/K be a finite separable extension and let L be the Galois
closure of L /K. We have

L=]]L. H={o:L—> K |o|x =1d},
oeH

where K denotes the algebraic closure of K. Assume that the field of constants k of
K is a perfect field.

Let p be a prime divisor of K such that p is nonramified in L. Prove that p is
nonramified in L/K.

Hint: Let I1(B|p) be the inertia group of P | p in L/K. Let F = L!FIP) be the
fixed field. Prove that L° C F forallo € H.

Exercise 5.10.14. Let k be an algebraically closed field and K = k(x). Let p1, p2, p3
be three distinct prime divisors of K and let ¢ € Autg k(x) be such that p;’ = p; for
i=1,2,3.

Prove that o = Idg.

Is the same result true in the case that k is not algebraically closed?

Exercise 5.10.15. Let & be a finite field and let K be a function field over k. Suppose L
and E are two distinct Galois extensions of K of degree p, where p is a prime number,
suchthat LN E = K.

Let Bk be a prime divisor of K. Let 3, and ‘B be places of L and E respectively
such that Px = ‘BIL’, Px = lg in L/K and E/K respectively. In other words, we
are assuming that Px is ramified in L/K as well asin E/K.

Set F = LE and let BF be a place of F such that Pr | Pg. If p is different from
the characteristic of k, the inertia group I (B r|Pk) is a cyclic group.

Using this fact, prove that there exists a unique field M satisfying K & M & F
(that is, [M : K] = p) such that Bk is not ramified in M/K.

Exercise 5.10.16. Prove that £ = k(u'/?, v!/P) in Example 5.2.31.

Exercise 5.10.17. Let K € M C L be any tower of function fields. Prove that A /x =
Ar/mAmyk (see Theorem 5.3.4).

Exercise 5.10.18. Let L = k(x, y) be given by y” —y = ax?, where k is an imperfect
field of characteristic p and a € k \ kP. Then L/k(x) is a separable extension and the
field of constants of L is k. Show that if po, is the infinite prime in £(x) and q is a
place in L above poo, then q | poo is purely inseparable. In particular, Theorem 5.2.21
is no longer true if & is not a perfect field.
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Exercise 5.10.19. Let & be any field of characteristic p and let K/ k be a function field
over k. If L/K is a cyclic extension of degree p such that L = K (y) with y? —y =«
and vy(a) > O for a place p of K, prove that p is unramified.

Exercise 5.10.20. Prove that if L/K is a normal extension of function fields then £/ k
is a normal extension, where ¢ and k are the fields of constants of L and K respectively.

Exercise 5.10.21. Give an example in which con: Cx — Cr andcon: Co ¢ — Co.L
are not injective (see Exercise 8.7.20).

Exercise 5.10.22. Let L /¢ be a finite extension of K /k. Is it true that [£ : k] < [L :
K1?

Exercise 5.10.23. Let A be a Dedekind domain with only a finite number of prime
ideals. Prove that A is a principal ideal domain.

Exercise 5.10.24. Let A be a Dedekind domain and let S be a multiplicative subset of
A. Prove that S~' A is a Dedekind domain.

Exercise 5.10.25. Let K be a function field and let T = {py,...,p}, 7 > 1, be
a finite set of prime divisors of K. Let L/K be a finite separable extension and let
T* = {P | Pisaplace of L, P | p; forsome 1 < i < r}. Let Vg := [y ¥p and
v = ﬂgpeT* V. Prove that 9k is the integral closure of ¥ in L.

Exercise 5.10.26. If A is a Dedekind domain, K := quot A, L/K is a finite separable
extension, and B is the integral closure of A in L, prove that S™' B is the integral
closure of S™1 A in L, where S C K is a multiplicative subset of K.

Exercise 5.10.27. Prove the claim that we may assume that the element « found in the
proof of Theorem 5.7.21 belongs to B.

Exercise 5.10.28. Prove Theorem 5.7.23.

Exercise 5.10.29. Let L/K be the extension given in Exercise 5.10.18, and suppose
a € k\ k?. Prove that L/K is an unramified extension, i.e., every place of k(x) is
unramified in L.

Exercise 5.10.30. Let L/K be a cyclic extension of function fields of degree p”,
where p is a prime number and n > 1. Assume that the field of constants of K is
perfect. Let p be a prime divisor of K. Let Ko = K € K1 £ --- € K, = L be such
that [K; : Ko] = p'.

Assume that p is unramified in K;/Ko but ramified in K;11/Ko. Prove that any
prime divisor 3 of K; that lies above p is fully ramified in L/K;. Deduce that
e(Blp) = e(BIP) = p"~!, where B is a prime divisor in L above p. In other words,
if a prime divisor in this kind of extension starts ramifying at some point, it keeps
ramifying all the way.

Exercise 5.10.31. Prove Proposition 5.9.1.
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Exercise 5.10.32. Prove Proposition 5.9.3.

Exercise 5.10.33. Give an example of a constant function field extension such that
there exist ramified prime divisors and unramified prime divisors. That is, if the field
of constants is not perfect, then Corollary 5.2.26 and Theorem 5.2.32 are no longer
true.

Exercise 5.10.34. Let A be a Dedekind domain, and let a, b be nonzero integral ideals
such that a C b. Show that there exists d € A \ {0} such that (a, (d)) = a+ (d) = b.

Exercise 5.10.35. Let A be a Dedekind domain and a, b, ¢ nonzero integral ideals such
that a C b. Show that the A-modules % and g are isomorphic.

Exercise 5.10.36. Let A be a Dedekind domain, and a, b nonzero integral ideals of A.
Prove that there exists an integral ideal ¢ such that ac is principal and b 4+ ¢ = (b, ¢) =
(1) = A.
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6.3 Zeta Functins and L-Series

Definitin 6.3.1. For a prime divisor g of K, the cardinality of k (¢) is called the
norm of g and it will be denoted by N (g€).

Observe that if f,, = [k (p) : k] = dk (p) and |k| = g, then N (p) = |k (p)| =
dk (9)
q .

Definition 6.3.1 can be extended to arbitrary integral divisors

2[ — &)UKJ (Ql)

PE K
as follows:

N @) = N (p)» (D = gk @ (%) — qu dk (9)vp (A) _ gk (Y.

PE K € K
Clearly we have N (A8) = N () N (B) for A, B € Dg.
Definitin 6.3.2. We define the zeta function of K as
1 .
k=) N®)) Yo g
2 integral (v (2D) 2 integral

Thevem 6.3.3. The series g (s) converges absolutely and uniformly in compact sub-
sets of {s € C| Res > 1}.

Proof. Lett = 2‘2;2. We have

1 1 > —nos
{k (s) = Z WZ Z WZZAan ¢

2 integral 2 integral q n=0
t [e%e]
=2 Aend "+ ) Agna "
n=0 n=t+1
By Theorem 6.2.6,
00 h 00 |
—nops __ ng—g+1 _ —ngps
> = 3 (are )
n=t+1 n=t+1
Now
00
Z ‘(qngngrl _ 1>q7ngs — Z <qngfg+1 _ 1)q7ng es
n=t+1 n=t+1
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from which the result follows. m|

We make the substitution u = ¢~ %, B, = Ap,. Then Zg(u) = ¢x (s) =

Yoo Batt".
The canonical class W is of degree 2g — 2; there are (h — 1) classes C of degree
2g — 2 that are different from the class W, and we have

NW)=g, and N@C)=Q2g—-2)—g+1l=g—-1
for C # W, and d(C) = 2g — 2 (Corollaries 3.5.5 and 3.5.6).

8—1 g-1_1 on—g+l_q 2g-2
Therefore Ayg—p = qu]—l—(h—l)q(F1 and Ag, = h (qT) forn > gT'
Prpsitin 6.34.  Lett = 252 Then
Bj—(q°+1)Bj—1 +q°Bj_, =0for j >1+2
and
Btz — (CIQ + 1) Bit1+q°B, = g%t
Proof. For j > t + 2, we have
jo>(@+20=1t0+20=2¢g—-2+20>12g,
(j—1Do>@t+No=to+o=28g—-2+0>2g—1,
(jJ—2)o>to=2g—2.
It follows that B; — (¢¢ + 1) Bj_1 +¢q%B;_» =0.
On the other hand, B; 12 — (q% + 1) B;11 + q°B; = q°+8~ 1, ]
Now we consider
(I —u) (1 —q%) Zg ()
- (1 —(14+¢°)u+ q9u2> Zx ()
o o o0
= Z B,u" — Z (1 + qg) Bt + Z:qQBnu"Jr2
n=0 n=0 n=0
o
=D (Bi—(14+¢°) Bu1 +4q°By2) u” (with B_j = B_, = 0)
n=0
t+2 .. .
(Proposition 6.3.4, with
- 0 (Bn - (1 +qQ) Bu-1 +qQB”_2) u" Ao=By=1)
n=
1+2
=14+ B1—(¢°+1))u+Y (Bu—(1+¢° Bu1+¢°Bua)u".
n=2

Thus the element (1 — u) (1 — g%u) Zx (u) = Pk (u) of Z[u] is a polynomial.
Let Pg (1) = ap+aju+au®+---+a;ou'+?, ap = 1,a; = By — (¢° + 1), and
a;42 = q2t0~1 (Proposition 6.3.4).
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Thevem 6.3.5. The function Zk (u) is a rational function and satisfies

Py (1)

2K = T (1 = gy

where Pk (u) € Z[u] is a polynomial of degree t + 2 = 2‘%2 + 2.
Furthermore, Px (1) = h% =lim, (1 —u) (1 — q%u) Zk (u).

Proof. Setting B_1 = B_» = 0, we have

+2
Px(1) = (By— (14+4°) Bu—1 +¢°Bu2)
n=0
t+2
= Z (Bn —By1—q°By1 + qQBn—Z)
n=0
= Biy2 — B-1 —q° (Bi+1 — B-2)
= Arg+20 — 9% Asoto
= Agg2120 — q%A2g—2+¢

2g—2420—g+1 __ 1 2¢—24+0—g+1 __ 1

— _QOq
q—1 q—1
= L(ngQ—l _1_qg+29—1+q9>
qg—1
¢—1
A
qg—1

Collary 6.3.6. Zg (u) has a simple pole for u = 1.

In order to prove the equality o = 1, we need another expression for {x (s).
Theoem 6.3.7 (Prduct Fomula).
¢k (s) = (1-=N@™)"" with Res> 1.
PE K

Proof. Let p be a prime divisor, and d (¢) = n. Then
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— 1 —ns 1
a&’J:(l_N(p)_s) 1_1: 1—gns —1= 1zq—ns :qns_l'
We have |g™ — 1| > |¢"™| — 1 = ¢"* — 1, with @ = Res > 1. Therefore |ap} <
W+1 =< q% for n sufficiently large.
Now,

qn—g+1 -1

I{pld(sﬂ)=n}|§An=h<
qg—1

), with n > 2g —2.
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Therefore we have

h | = 2 h & 2
Y laol < g Y i Y <o

n>0 q- 1 n=0 qn(a ) q- 1 n=0 qu

and hence ., (1-N (5/,))_3')7l is absolutely convergent. Rearranging the terms
of the product, we obtain
_\—1 1
(1-N@™) " = (—_)
PE K PE K =N
o
— -5
= (X ) = XN (e
pe kg np=0
where the sum is taken over all powers of the divisors g1, ... , ¢, and o; > 0 for
i=1,...,r.Therefore
_—1 .
(I-N@) = > N(-pf)”
PE K 1, r€ K
;>0
) D o
= =(rg (5).
(N (20))*

e Dk integral

Let |k| = ¢q, ¢ = IFq r,and let L = K/ be the extension of constants. We wish
to compare ¢y, (s) with ¢k (s) when f = o. For a place g of K, o divides dk (),
and if Py, ..., P, are the prime divisors of L over g, by Theorem 6.2.1 we have
r = (dg (), 0) = 0, whence there always exist o factors in L over any given prime
divisor of K. Furthermore, we have

dg ()  dk (5’9).

d (Py) = -
L P = e ). 0 0

On the other hand, N (P;) = (¢2)% P = gedx@/e = ¢k (®) = N ().

Therefore
1 \! 1 \!
pe L N(P) pp\ NP

1 —@ 0
= 1 —_ — = .
. (- %er) ) =uo

PE

PE K

1
(1 - s
oc x N ()
Thus ¢z (s) = ¢k (s5)%. On the one hand, by Corollary 6.3.6, both ¢z, (s) and ¢k (s)
have a pole of order 1 at s = 0 (or at u = 1 with the change of variables u = ¢ ~¢%).
On the other hand, ¢k (s)? has a pole of order p at s = 0. It follows that o = 1.
We have obtained the following theorem:
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Thevem 6.3.8 (F.K. Schmidt). Ler K/k be any congruence function field and set
o =min{n € N | there exists 2 € Dg,d () = n}.

Then o = 1. m|

Collary 6.3.9. Zg(u) = %, where u = q—°, Px(u) € Z[u] is of degree

2g, Px () = 14+ (A1 — (g + 1)) u+---+q8u®8, and Px (1) = h is the class number
of K.

Proof. In Proposition 6.3.4 we wrote t = %, sothat B, = Apy = Ap, t =28 — 2,

o__ . . . . .
qqfll = 1, etc. Substituting these expressions in Theorem 6.3.5 we obtain the result. O

Collary 6.3.10. If K is a congruence function field of genus 0, then Zg(u) =
1

T—u)(I—qu)"
Now we will study the L-series of a congruence function field.

Definitin 6.3.11. A character x of finite order of the group of classes Cg is a homo-
morphism x : Cx —> C* defined so that there exists n € N satisfying x” = 1. In
other words, x (Cx) C {£ € C | £" = 1 for some n € N}.

A character x can be extended to the group of divisors y : Dx — C*, by setting
x () = x (A Pg), where Py is the principal class. Note that | x ()| = 1.

Definitin 6.3.12. Given a character yx of finite order over Dy, we define the L-series
associated to y by

1
L(s,x,K)= Z X&) ——=—, where s€C and Res > 1.

2 integral (v @) ’

Theoem 6.3.13. The series ) o integral X &0 W converges absolutely and uni-
formly in compact subsets of {s € C | Res > 1}.

Proof. This follows from Theorem 6.3.3 and from the fact that |y ()| = 1 for all
A e Dg. O

We have the following product formula, which is an immediate consequence of
Theorem 6.3.7:

-1
Theoem 6.3.14. L (s, x. K) = . , (1 - %) for all s such that Res > 1.
O
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6.4 Functinal Equatins

In this section, we consider the case g = gx = 0, which implies that

1

Zg(u) = A= wd —qn or (k(s)= - (1—q)
We have
~ 1
gk () = (1-97%) (@ -9 - g (q* — g (g = 1)
=q" 1 =q¢ 'tk (1—s).

(I—¢% (1—¢)

Therefore, g ¢k (s) = ¢* " '¢x (1 —s) and g = 0.
For g > 0, consider u = ¢—* and Zg (u) = ¢k (s). Then

Pk (1)
Zgw) = —177——,
(I —uw)(1 —qu)

Px(w) =ap+aju—+--- +a2gu25, apo=1, and ay = ¢q°.
Theoem 6.4.1. For 0 <i < 2g, we have azg_; = aiqg_i.
Proof. For i = 0, we have ayg = azy—0 = ¢ = apg®°. In general, q; = A; —
(g+1DA;_1 +qA;_2, where A; is the number of integral divisors of degree i (see the

N(C)_

argument preceding Theorem 6.3.5). We obtain A; = )Y cecy %

d(C)=i
By the Riemann—Roch theorem, we have

N(C):d(C)—g—i—l—i—N(WC’l)=i—g+l+N<WC’1>.

Now, d (WC_I) = 2g—2—i,and when C runs through all classes of degree i, WC ~!
runs trough all classes of degree 2g — 2 —i.
Since there are & classes of each degree, where £ is the class number of K, we

have
(g—DA; = Z gV o _ Z 1= Z VO _ .

d(C)=i d(C)=i d(C)=i
Hence,

(G —1DA; +h= Z gV o — Z qi—g+1+N(WC’1)
d(C)=i d(C)=i

. 1 —1 . 1
=4 g+ Z qN(WC ) — q' g+ Z qN(C)
d(C)=i d(C)=2g—2—i

=q' ¢! ((g — DAzg—2—i +h).
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Therefore
(@ — Az o i = w—qu% o
@ = DAxg-1-i = (¢ = DAzg-2-i-n = (q_lq)i# —h,
(@ = DAz~ = (g~ DAsg2--» = (q_qli)—# —h.
It follows that az,—; = qg—iai' .

Collary 6.4.2. We have

1 1
P <_> =q u ¥ Px(u) and u'"8Zx ) = (qu)*~' Zg ( ) '
qu qu

Proof. Notice that

1 1 1\ 1 & .
P (—) =a0+a (—) +ota (—) =——-) ai(lqu)™*"
qu qu *\qu (qu)*s ,; ’
=q fu8 Zagqg”u%*’ =g fu28 Zazg—iuzg*’
i=0 i=0
=g fu"28 Pg (u).
Also,
1
( 1 ) Px (g) g fuTEPrw)
Zx|— ) = = qu
qu (1_L) (1_i> (qu— D —1)
qu qu
_ g2t PRW g pa-0 7, 0. a
(I =u)(1 —qu)

Corollary 6.4.2 is the functional equation of the zeta function in terms of the vari-
able u = ¢g~*. Since ¢x (s) = Zg (q_s ), we obtain, in terms of the variable s, the
following result:

Thevem 6.4.3 (Functinal Equatin fo the Zeta Functin). We have
¢ Vg (5) =q1™€ Vg (1—5) forall secC.

In particular, Lk (s) is a meromorphic function in the whole complex plane C with
simple poles in

2kmi
= a +

1
slq " =ue 1,— keZ,a=0,1
q Ing
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Proof. Setting u = g —*, we obtain

1
qm”kK@w=M*zmm=wwﬁ*zKC—>
qu

= ¢z, (qs—1> = qU=9G D (1 ).

In the expression Zg (u) = #ﬁtl—)w’ the denominator is equal to zero for u = 1

and u = 1. On the other hand, Pg(1) = h # 0 (Corollary 6.3.9) and Pk (%) -

g 8Pk (1) = q%h # 0 (Corollary 6.4.2). Therefore u = 1 and u = g~ are the only
poles of Zk (1) and they are simple.
In terms of the variable s we have the following equivalences:

, 2 i
u:q*szl@qé=eS‘“4=1@slnqzznji,jeZcm:l—J, jez,
ng
2 ji
u:q—s:q—l@qs=q¢>qs—1=1©s=l+lni],jeZ. |

Coming back to the series L, let x be a character of finite order.
Prpsitin 6.4.4.  If x (Ck,0) = 1, then

2mwia
L(s,x,K)y=¢x|s— ,
Ing

2ria

where x (Co) = e and Cy is a class of degree 1. Equivalently,

L, x,K)=Zx (ezf”'“u) .

Proof. Ck is isomorphic to Cx o @ (Co) under the following identification: if C is an
arbitrary class of degree n, C = CC;"C. Then

X (C) =X (CCO_”) X (C(r)') =x (CO)" — eZﬂian‘
We have
At = X @
L(s, x,K)= Z X Z Z Z
2l integral (N (0 C'eCko ™UeC'Cy = NV R0)°
2 integral

O .
— Z Z ZeZHwtanns
C'eCro  AeC'Cl n=0
2 integral

0 2ria
S R M Wi
C'eCkpo  AeC'Cy n=0
2 integral

= 2 W@W”ﬂﬁzgc_hm>

2 integral Ing
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Also, ¢k (S _ 2{;1{;) = Zk (qfquHia/lnq) =7k (ezn{o‘u), 0

Collary 6.4.5. If x (C K’o) = 1, then the series L satisfies the functional equation
g VL (s, 0. K) = x W) gV VL1 -5, 7. K),

where W is the canonical class and yx is the conjugate of x, i.e., x () := x () =
x@h.
2wia

Proof. Using the functional equation of Corollary 6.4.2 and setting ' = ¢ u, we
obtain

I
¢" VLG, x. K) = q* D2k () = "D (qu))* W) Zk (_’>
qu

— gD =582 (eznia)zg_z Zx (ie—zma)
qu

_ —2mia
_ 096D (e2nia)23 2 Zx (3 > _
qu

Since d(W) = 2g — 2, x (W) = (%)™ ‘and % (Cp) = =27 it follows
that

2ria
¢ EVL G oK) =g (W) Zk (¢ )

2mic
=gy (W) 2k (1 —s+ )
Ing

_ < ( 27tioz>> < 2711’05)
LA-s,xK)=¢k|1l—s5s—|— =¢k(l—s+ .
Ing Ing

Therefore

and

g*¢ VL (s, 3, K) =g Uy WL =5, 1. K). 0

The functional equation given by Corollary 6.4.5 is satisfied for any character of
finite order. However, we need to provide a different proof from the one given in the
case x (CK,()) =1.

Let x be such that x (CK,O) # 1. Then Cgo # 1 and g > O (Proposition 4.1.5).
Let C;) be a class of degree 0 such that x (C}) # 1. We have

x(Co) Y. xCo= Y x(CoCo)= Y. x(Co),

C()ECK,O C()ECKY() COECK,O

that is,
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(x(co)=1) Y x(Co =o.

CoeCk o

Since x (C}) # 1, it follows that Y CocCyo X (Co) = 0.
Let C; be a class of degree 1. We have

@—=DLGx, K)=(@q—1) > x@

2l integral

N(C)
Z (q— 1){ X <C>q‘“C”}

d(C)=0

_ Z Z (CoCM) g (QN(Coc;) _ 1)

n=0 CpeCk o

= > x @Y x @y (¢ 1) g
n=0

CoeCk 0

1
(N @))*

2g-2

= > %@ Y x @ (¢NOED —1) g
n=0

CoeCk o

+ Y x @ Y x @ (¢ E 1) g

CoeCk 0 n=2g—1
The second sum is equal to O since ZCO eCro X (Co) = 0. Therefore

2g—2

(@—DLG.x. K)= Y x(Co) Y x(Cp)' g"Dgs

CoeCk 0 n=0
2g—2

— > x(Co) Y x(Cg.

CoeCk .0 n=0

Again using the fact that Zcoec,( o X (Co) = 0, we obtain

2g-2
(@—DL(s x.K)= > x(Co) Y x(Cp)'qN g™
C()ECK,() n=0

Writing u = ¢, we have (¢ — 1)L (s, x, K) = thzfc_)io x (C) gN(©)yd©)
which is a polynomial in u of degree at most 2g — 2.
The coefficient of u?¢~2 is

a= Y  x(©q¢"O= > x(WCog" V.
d(C)=2g-2 CoeCk 0
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From the Riemann—Roch theorem we obtain
N (WCo) =d (WCo) —g +1+N (c(;‘) ,
N (co—l) —0 if Cy# Pk, and N (Pg)=l.
Thus
NWCy) =2g—2—g+1=g—1ifCy# Pg and N(W) = g,
and

a= Y x(W)x(Co)g* ' +x(W)q
CoeCk o
Co#Pxk

=X W) 3 K€ +x W) (af —a* )
C()ECK‘O

= (4*7") (¢ = Dx (W) #0.

Therefore (g — 1)L (s, x, K) is a polynomial of degree 2g — 2 and its coefficient
of highest degree is (¢ — 1)x (W) g8~1.
Applying again the Riemann—Roch theorem we obtain

282
(@—DLG, x, K)= Y x(C)g"Ou©
d(C)=0
2g—2
_ Z X (C)qd(C)fg+1+N(WC_')ua’(C)
d(C)=0
2g—2
:qg—lu2g—2x (W) Z X(CW—I)q—2g+2+d(C)+N(WC_')ud(C)—2g+2
d(C)=0
2g—2
:qg—lng—ZX (W) Z X(C_1W)qd(W’lC)+N(WC’1)ud(W’1C)
d(C)=0
2g-2 /1 \dweTh
=q¢ 2 (W) Y x (WCT)gNe >(—>
d(C)=0) qu
262 1 \4©
=g (W) Y x(C)gN @ (—)
d(C)=0 qu

=g W P W) (g — DL (1 —s, %, K)
=q% g7 BE Vg -y W)LA —s, %, K).

Therefore L (s, x, K) = ¢®~DU=29 % (W) L (1 — s, %, K), or in other words,
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¢ VL (s, x. K) =g Dy W)L 5. 7. K) .
In short, we have the following theorem:

Thepem 6.4.6 (Functinal Equatin fo L-Series ). Let K / k be a congruence func-
tion field with |k| = q, let W be the canonical class, and let x be a character of finite
order. Then

gL, x, K)=x W)g"™E VL1 —5,1,K). O

We end this chapter with a result that relates L series to the zeta function of an
extension of constants.
Let K /k be a congruence function field with k = F,, £ = F;r, and L = K{. Let

X be the character of K that satisfies x; (C) = e@ in every class of degree 1. Then
X (CK’()) = 1for j =1,...,r,and we have the following result:

Theoem 6.4.7.

~

¢ (s) = L(s, X./,K).
j=1

Proof. First, notice that if a, b € N,

n=1
Now
1 ! P\ !
Pe L ) pe kPl
Ly ke N\
= (1_q ("L/K(PK")'”) (Theorem 6.2.1).
p< kPlp

There are (r, dx (g)) factors of the form P | . Therefore

g —(r,dg (9))
¢ (s) = {1 — (N (9)) ("vdK(!iJ))} K®

€ K

r 1 2min -1
_ (1 Yot W’)) (a=rb=dg ()

pe gn=l

r 2win
k|5 —
| ring

n=

.
= L xn, K) (Proposition 6.4.4). O

n=1
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6.5 Exercises

Exercise 6.5.1. Let k be a finite field with |k| = g. Let K be an elliptic function field
over k with class number /4. Find ¢k (s) explicitly.

Exercise 6.5.2. Let k be a finite field with [k| = ¢, and K = k(x, y) with y"* = x,
m € N. Find ¢ (s) explicitly.

Exercise 6.5.3. Let K /IF; be a hyperelliptic function field of genus 2. Find ¢k (s) ex-
plicitly (see Exercise 10.9.4).
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The Riemann Hypothesis

In Chapter 6 we defined the zeta function of a congruence function field. This def-
inition arises from the natural extension of the usual Riemann zeta function ¢(s) =
s % It is known that {(s) has a meromorphic extension to the complex plane,
with a unique pole at s = 1. This pole is simple with residue 1. Furthermore, ¢(s)
has zeros at s = —2n (n € N) and these are called the trivial zeros of ¢(s). On the
other hand, ¢ (s) has no zeros different from the trivial ones in C \ {s | 0 < Res < 1}.
Finally, the Riemann hypothesis states that the zeros of ¢ (s) other than the trivial ones
lie on the line of equation Re s = %

The latter is still an open problem. However, for function fields the answer is
known and is positive. This was proved by André Weil in 1940-1941 [158, 159] and
the main goal of this chapter is to give a proof of the Riemann hypothesis as well as
some applications.

In particular, when considering extensions of constants whose degree is a power
of a prime number, we find that the analogue of Iwasawa’s invariant p for number
fields is O in our case. We end the chapter with the presentation of the analogue of the

Brauer—Siegel theorem on number fields.

7.1 The Number of Prime Divisors of Degree 1

Let k = F, be a finite field and k, = F,r the extension of degree r > 1 of k. One
of our goals is to estimate the number of prime divisors of degree n in K /k. For this
purpose we will frequently use the Mobius function p and the Newton identities. We
now state the definitions and then will prove their main properties.

Definition 7.1.1. An arithmetic function in Q is any function f : N — Q. The
Moébius function is the function u : N —> @ defined as follows. If » € N and
[T;_, p{" is its decomposition into prime divisors, then

1 ifn=1,
pn)={ (D ifay=---=a =1,
0 in any other case.
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Lemma 7.1.2. We have

lifn=1,
Z'U“(d) =e(n) = {Oifn > 1.
d|n
Proof. We leave the proof to the reader (Exercise 7.7.1). |

Theorem 7.1.3 (Inversion Formula of Mobius). If f, g are two arithmetic functions
such that

gn) =Y f(d)

d|n
foralln € N, then
n n
fn) = Dpl=)= — ) n(d).
" de:g “(d) dXV;g(d)M

Proof. For any two arithmetic functions / and k we define the product & * k by
n n
Bk =Y h(Z) k@ =Y h@k (%)
(h % k) (n) ; ) k@ ; @k (7

This product is called the convolution product. The set of arithmetic functions together
with * is a commutative ring with unit element &, where

lifn=1,
8<n):{0ifn>l.

Furthermore, if we denote by 1 the function with constant value 1, then by Lemma
712, ux1=¢.Thus p =171
Now, we have g(n) = Y, f(d), thatis, g = fx1. Therefore f = gx1~" = gxpu,

and hence f(n) = Zd‘n gdyu (%) ]
Now let k be any field, K = k (X1, X2, ..., X,) the field of rational functions in
n variables, and let f(T) = [[/_, (T — X;) € K[T]. Then
FT) =T —aT" '+ 0T 2=+ (=) 0, T 4 + (=)o,
where oy is the s-symmetric elementary function in X1, X», ..., X,, i.e.,
oy =1,

n

o] = in,
i=1

o0 = ZXin,

i<j

o5 = Z Xiy - Xigs

i <--<lig

on=X1-Xp.
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Letoy = X' +---+ X/,m > 1 and go = n.
Theorem 7.1.4 (Newton identities). We have
om — Om—101 + -+ (=D""o10m_1 + (=1)"oum =0forl <m <n—1,
and
Om — Om—101+ -+ (=D"0p_mo, =0 for m > n.

Proof. Consider the series 7!~ f/(T) in the field of Laurent series K ((T')) (K any
field of characteristic 0). We have

T (1) = Tl‘”f(T)% = Tl_"(i<—1)i“iT'1_i)(i T - %)
i=0 i=1 !

- T(Xn:(—l)ioiT_i>< "y
i=0 i=1 m=
(X 0ar)( 3 ot ™) (.1)
i=0

xpr=nt)
1
0

m=0
o0 m
=y ( (—1)Sasgm_s)T*m,
m=0 s=0

where 0; =0 for j > n.
On the other hand,

n—1
Tl—nf/(T) —7l-n (Z(n _ m)(_l)mngn—m—l)

m=0
n—1
=Y (n—=m)(=1)"0, T (7.2)
m=0
Equating coefficients in (7.1) and (7.2) we obtain the Newton identities. |

Proposition 7.1.5. Let 1 (d) be the number of monic irreducible polynomials of degree
d inFy[T]. Then  (n) = % Zdln m (%) q“.

Proof. Exercise 7.7.2. O

If K is a function field with field of constants k£, K, will denote the extension of
constants Kk, = K, ; the field of constants of K, is k, (Theorem 6.1.2). Let Zg (1) =
Lk (s) be the zeta function of K, where u = ¢~*, and let Z, (v) = (g, (s) be the zeta
function of K, where v = (¢") ™ = ¢~ = u”". Then Z, (v) = Z, (u").

Theorem 6.4.7 demonstrates that £k, (s) = [1}—; L (s, xj. K), where x; is the

character satisfying x;(C) = Erj in every class of degree 1, and & = e for j=
1,...,r.
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By Proposition 6.4.4, L (s, Xjs K) ={k (s — fjlrnlé)
We have

2mij 2w
Sk \s— =Zg\q "q™ |-
ring
2mij

2mij .
. 2mij 1 1) .
Since g7nd = 4" = ¢rlng "9 = g/ it follows that

2mij

Z (W) =20 =tk (&)= [L(s.x;. K) =[] 2« (51'”).
Jj=1 j=1

Thus Theorem 6.4.7 yields the following:

Theorem 7.1.6. If K, is the extension of constants of degree r of the field K, we have

Zk, (u") =]_[r/.:1 Zk (Er]u), where u = q—* and &, =2, O
If Ko = T, (x), we have Zg, (u) = Zo (u) = m by Corollary 6.3.10 and
Zg () = ot = Zo (u) Py (), Py (u) = 254
Now Px (u) = izio a;u' with Ag_i = aiqg_i for0 < i < 2g (Theorem 6.4.1).

We have a9 = 1, ayg = ¢4, and a; = Ay — (g + 1), where A; is the number of
integral divisors of degree 1 and is equal to the number of places of degree 1 (Corollary
6.3.9). We have deg (Pg (1)) = 2g and if wl_l, e, a)2_1 are the roots of Pk (u), then

8
Pg () =178, (1 — wu).

Proposition 7.1.7. We have q8 = ]_[?il wiand N — (g +1) = — Z,'Zi1 w;i, where N

is the number of prime divisors of degree 1. Furthermore, Pk (wl*l) = 0 if and only
if Px (%) —o.
Proof. From Pk (u) = izio aiu’ = ]_[l.zi1 (1 — wju), it follows that
2g 2g 28
ag=q¢*=[[-o)=[]eii ai=N-@+D)=-) o.
i=1 i=1 i=1

On the other hand, the functional equation of Pg (u) (Corollary 6.4.2) estab-
lishes that Pk (qLu) = q_gu_ngK (u). Therefore Pk (a)l_l> = 0 if and only if

PK (ﬁ) = PK (%) =0. O

We have
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Therefore we may rearrange the inverses of the roots of Pk (1) to obtain the sequence

a)l,a)/l,...,a)f,a)/f,\/_,...,f,—f,...,—ﬁ
with
f<g w#w, ad ww =q, i=1,...,/F

Let ¢ be the number of times that ,/q appears and let s be the number of times
that —./q appears. Thus 2f + ¢ + s = 2g. Since g% = ]—L.zi1 w;, we have g8 =
g’ q'/*(—1)*q*/%. 1t follows that s is even and so is . In particular, we may take
f =g thatis, o, 0, ..., 0g, w,, wjw, =qforalll <i<g.

Thus we obtain Pk (1) = [[5_; (1 — wju) (1 — w}u).

Theorem 7.1.8. The following conditions are equivalent:

. . . . . 1
(i) The zeros of the zeta function { (s) lie on the line of equation Re s = 3,

(ii) The zeros of the function Zk (u) lie on the circle of equation |u| = ¢~/2,
(iii) If w1, ... , wog are the inverses of the roots of Pk (u), then |w;| = \/q for
i=1,...,2g.

Proof.

(i) <= (ii): This equivalence follows from the facts that u = g, |u| = q‘Res,

and Zg (u) = ¢k (s). Therefore Zg (u) = Zg (¢7*) = Lk (5).

(ii) <= (iii): This follows from Zg (1) = % Px(1) = hxg # 0, and

Px (é) = g 8Pk (1) # 0. Therefore the roots of Zg (u) are the roots of Pk (u),

which are the a)i_l’s. Hence (ii) is equivalent to wl_l‘ = |a),-|_1 = q_l/z, that is,

lwil = {/q. O
Our goal is to prove the following analogue of the classical Riemann hypothesis:
Riemann hypothesis: The conditions in Theorem 7.1.8 hold for any congruence

function field.
The proof will be done in several steps.

Proposition 7.1.9. Let N be the number of prime divisors of degree 1 in K. If the
Riemann hypothesis holds, then [N — (g + 1)| < 2g./q.

Proof. We have

2¢g 2¢g
N—(@+D)==Y o, so IN-(@+DI <) lol=2gq. O
i=1

i=1

Proposition 7.1.10. The Riemann hypothesis holds for the field K if and only if it
holds for the field K, .
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Proof. By Theorem 7.1.6, we have (with the natural notation)

r r Zk (&u r .
Pg, (Mr) = ;:; El:l’; = /1:[1 ZI: <(€rju)) = 11:[1 Py (5/14)

r 2g 2g
:HH( —a)lsr ) H(l—a){ur).
j=li= i=1
Hence, Pk, (u") = ]_[l L (1 = fu"). Therefore f, ... , o} . are the inverses of
the zeros of Pk, , whence |w;| = /g if and only if |0} | = /g7, ¢" = |Fyr
is the field of constants of K. O

Let N, be the number of prime divisors of degree 1 in K.

Proposition 7.1.11. If there exists ¢ > 0 such that |N, — (q" + 1)| < cq"/?* for all r,
then the Riemann hypothesis holds for K .

Proof. Applying the operator D = —u% In to both sides of the equality Pk (1) =
Hfil (1 — w;u), we obtain

d 28 28 g
D (Px () = —u— In (1‘[ a- a),u)) =—u (Z - In(1— a),-u))

i=1 i=1

2 2 2
=) T = pu = ; .
ol = n=1 \i=1

We have — lei | @! = Ny — (q" + 1). Our hypothesis implies that

2g

n
Z“’i

i=1

< an/Z‘

INa = (¢" +1)| =

Therefore, if R is the radius of convergence of the series, we have

—1/n
—1/n
R = lim sup ( ) > lim sup (an/z) =q7 12
n—0o0

n— 00
1

\/_q.
On the other hand, D (Pg (1)) = lei 1 @i ”_u implies that the only singularities

1—w;

2g

n
2o

i=1

and hence R >

areu:a)i_l,lfiSZg,sothat

R = min ‘w{l‘ >q Y2 Thus |wi| <q for 1<i<2g.
1<i<2g

Finally, by Proposition 7.1.7, g8 = leil lwi| < ]_[izil q = g8, which implies
that |w;| = \/g,1 <i < 2g. |
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7.2 Proof of the Riemann hypothesis

The purpose of this section is to prove that the conditions of Theorem 7.1.8 hold for
any congruence function field K. Let k = [F;, be the field of constants of K.

We first note that in order to prove the Riemann hypothesis, by Proposition 7.1.10
we may assume, extending the field of constants if necessary, that:

(i) ¢ = a® is a square,

(i) ¢ > (g + 1)*, where g is the genus of K,
(iii) K contains a prime divisor of degree 1.

Indeed, K, = K 2 has as field of constants F > and q? is a square. Since g% > 1,
there exists n such that g?* = (q")2 > (g 4+ 1*, so that Ko, = qunK has as field of
constants F 2., the genus of K>, is equal to g (Theorem 6.1.3), and g”" > (g + D%
Finally, if g is a prime divisor of degree m in K, then if P is above g in Ky, =
I 2nn K , we have, by Theorem 6.2.1,d;, (P) = o = 1. Then Koy, satisfies
(i), (ii), and (iii).

By the above, we may assume that K satisfies (i), (ii), and (iii). Let N be the
number of prime divisors of degree 1 in K. If 0 € Aut (K / ]Fq), then for each place p,
7 is a place of K and the respective valuations satisfy vgo (x) = vy, (07 'x).

m —
(m,2nm) —

Let F, be an algebraic closure of k := F,, and let K be an algebraic closure of K.
Consider the Frobenius automorphism

0: K — K, definedby o(x)=x%, o e Aut(K/k).

Let p be a prime divisor of K. For any o € Aut(K/k), consider the corresponding
prime divisor . Explicitly, if ¢y, is the place associated to g€, then g0 is the place
0@, given by

vpr (@) = 09p(@) = gp(0 ).
Define g7 as the prime divisor given by the Frobenius automorphism, that is,

ppi (@) = 0pp(a) = (P[p(Q_la) = @p(al/q) = (Pga(a)l/q-

Notice that p? is not the gth power of g. Now the respective valuation rings of g
and g7 are given by

Vo ={a € K | gp(a) # 0o} and Dpe = {a € K | ppa(x) = <p6,,,(x)l/q #* 00}.

Thus ¢, = ¥pq. Therefore ¢, and ¢q are equivalent (Proposition 2.2.13). We
will use the notation g = 9 to mean that ¢, = @q instead of the usual meaning.

Proposition 7.2.1. We have g = p? if and only if dx () = 1.
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Proof. Clearly, dg (9) = [9p/g : k]. Consider ¢, K — (9/) U {00} and
Ypi: K — (ﬁpq / gﬂ) U {oo}. The following equivalences hold:

000 (¥) = 0o (M4 = gy (y) forall y € K
= 9o(y) =pp(y) forally e K <= ¢,(a) = 00 or ¢,(y) € Fy
= Vy/p =Vpi/p? =F; < dg(p) =dx(p?) =1. ]

Proposition 7.2.1 is one of the main results we will be using in the proof of the
Riemann hypothesis. Actually, the Ny = N prime divisors of degree 1 in K/k are
precisely those such that g = 9. The Riemann hypothesis is equivalent to |N — (g +
| < 2g./q (Propositions 7.1.9, 7.1.10, and 7.1.11). Therefore it suffices to show that
for r large enough and for K, := KF,r, if N, denotes the number of places ‘B such
that P4 = 9B, then N, satisfies [N, — (¢" + 1)| < 2gq"/>.

The proof of the Riemann hypothesis presented here is essentially due to Bombieri
[7] (see also [38, 148]). The idea is to construct a function # on K such that every prime
divisor of degree 1 but one is a zero of u, and on the other hand, the degree of u is not
very large.

We have ¢ = a®. Setm =a—1,n = a+2g, and r = m + an. Then the inequality

N-(@+1 <Qg+DJ/q
becomes

N-1<q+Q)Vq+Vi=a’+Q2ga+a
=ala+2g)+a=an+m+1=r+1

Thus N — 1 <r.
Let G be a divisor of degree 1 in K /k. We have

L(@‘l) §L<6—2) C...cL(G™)C---
Furthermore, since " | G~"~1  then by Theorem 3.1.11,
(e +d(6™) s (67 D) 4 (e D).
Therefore
0<e(&")—¢ (6*”*”) <d(&") +d (6*”“) —n—n—1)=1.
Let t € N and let /; be the set of numbers i (1 < i < f) such that £ (&) —

L (G_(i_l)) = 1.Foreachi € I;,letu; € L (G_i) \ L (6‘“‘”). The pole divisor of
u; is ‘J‘(u,. = Gi.

Proposition 7.2.2. The system {u; | i € I} is a k-base of L (7).
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Proof. If Zie], aiju; = 0 with @¢; € k and a; # 0 for some i, then vg (aju;) = —i, so
the valuations of the nonzero terms in the sum are all distinct. Therefore a@; = O for all
i € I, and the system {u; | i € I;} is linearly independent.

On the other hand,
B Lo L(&7) ) 0ifi ¢l
N _ . L 1
¢ = ;dlmk CEED ;5’ with - 8; = { Lifi eI,

so ¢ (G_’) = |I;| = {u; | i € I;}|. Therefore {u; | i € I} is a basis of L (6_’). O

As a particular case of Proposition 7.2.2, wetake t = m = a—1 = ,/q — 1, where
a is a power of the characteristic and n = a + 2g. The set

L&) = [ Iy eL (™) <K
is a k-vector space of the same dimension as that of L (6_”).
The space M = {Zielm uiy! | yi € L (67")} is a k-vector space generated by
U= iu,-u‘jl. |iely, je In}. Note that since a = ,/q is a power of the characteristic,
K¢ is a field.

Proposition 7.2.3. The set U is linearly independent over k.

Proof. Since u‘]’ € K% and k € K¢, it suffices to prove that {u; | i € I} is linearly
independent over K“.

Let ) o, uiyi = 0 with some y; # 0. This implies that two elements have the
same valuation (Proposition 2.2.3 (vi)). Thus there exist y; # 0, y; # 0, withi # j

and vg (uiyf) =g (ujy;l> Hence,
—i +avg (i) = —j +avg (yj) or i = jmoda.

Since i, j € I, for 1 <i, j <m =a — 1 < a, the latter congruence is impossible. O

As a consequence of Proposition 7.2.3 we obtain dimy M = |U| = |I,]||1,| =
£ (6 _’”) 12 (G_"). By the Riemann—Roch theorem we have the inequality

dimy M =£(6™") e (&™) =(m—g+Dn—g+1)
=@-gat+g+th=a+a-gg+=q+Jq-3@g+1.
Now consider the k-vector space
M = Z ulyi | yielL (G_n) .
iely,

Fori € I,, we have uly; € L(&™"&™").
Again, from the Riemann—Roch theorem and the equality
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dg (6“"&") —ma+n=a’—a+a+2g=q+2g>2g—2,
we obtain
dimy M' <€ (&6 ") =(q+28)—g+1=qg+g+1.
Now, because of our choice of ¢ > (g + 1)4, we have
Vi—gg+D>@g+D —glg+ ) =g+1

Thus
dimy M > g+ /g —gg+1)>q+g+1>dim M.

Let

0: M — M’ bedefinedby 6 <Z uiyl-“> = Z ul yi.
iel, iel,
Since k9 = k, 0 is k-linear. Moreover, dimy M > dim; M’ implies that ker@ % {0}.
Hence, there exist y; € L (67") (i € I,,), suchthat }_;; u{y; =0 and notall y; are
zero. Thus

u=> uy! € L(&77)\{0} and u €kerf.
iel,
If o is any place of K/ k distinct from &, then ¢, (y;) # 0o and ¢, (u;) # oo for all
i €ly.
Furthermore, if g satisfies p = 9, then for all « € K, we have ¢, (a) =
Ppa(@) = @)/ or pp@) = @(@)?, so py(e) € F,. This implies that for
a=./q=7p" ¢p@)* = @g,(a). From Zie[,,, uly; = 0 we obtain

0o (1) =Y ¢p ) 9p (N = D @p )" 9 (i) =0.

iely iely

Thus g belongs to the support of the divisor of zeros of u, 3,. Therefore

[lpzes ® =11 pxe ® ‘ 3u,and
p=p1 degg p=1

dK( l—[ 6O) ZN_ISdK(3u)=dK(mu) <dg (Gr) =r.
p#S
pgzpq

This is what we wanted to prove.

Theorem 7.2.4. We have N — (¢ + 1) < (2g + 1),/q. O
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To finish the proof of the Riemann hypothesis we must now find a lower bound
for N — (¢ + 1). The upper bound we have obtained is not good enough to obtain the
Riemann hypothesis. For example, if K is of genus one and w; and w, are the inverses

of the roots of Pk (u), then w1 = g and wy = 1 satisfy N = g + 1 — Z,’zil w; =
g+1—qg—1=0,w0 =q,but |w;| # ,/q.

In order to obtain a lower bound, we consider an automorphis~m 0 € Aut(K/k)
and an algebraic closure k of k. Let K = Kk. We extend 6 to 6 € Aut(K/k) by
defining 6 (a) = af for every o € k. Let g be any prime divisor of K /k of degree
d and K4 = KF a. Then by Theorem 6.2.1,  decomposes into d prime divisors
P, ..., Pg of degree one in Ky. Let fop, Ppis Ppts PFis Popts wiBf-; be the places
associated to g, 9, 509, L, :.], and ‘]3? (1 <i < d) respectively.

We have g0 (x) = ¢(0~"x) and @gq (x) = @y (x'/1) = @, (x)'/4. For x € K we
have

and

Papt (1) = g, (1) = 9 (1)1,
Fora € Fa,

Vi (@) = o, (0~ @) = o, (@) = gy ().
Therefore 9 = e if and only if ‘33? = ‘33195 foralll <i <d.

We define N := Zpezpq dk (). By the above, N is the number of prime

divisors 3 of Kk /k for which 3¢ = 934 Furthermore, Theorem 7.2.4 can be extended
to N (see Exercise 7.7.3).

Proposition 7.2.5. Let K be a function field over k. Let L be a geometric Galois ex-
tension of K with Galois group G. If0 € Aut(L/k) is such that 6(K) = K, then

NO®&)=[L: K17 Y N ).
geG

Proof. Let P be a prime divisor of L/k and let o = P|g. The places of L over g? are
the places (7;9)8’ for g € G, and the one over 9 is P?. Thus

p? = p9 < there exists g € G such that (739)8 = (Peg) = P9, (7.3)

Now assume that P, Py, P, are prime divisors in L over a prime divisor g of K.
Since G acts transitively in {P € Py | P | p}, then if ¢p, and ¢p, denote the places
corresponding to Py, P> respectively, we have
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{o € Gloop, =0p,}| =loc € G| o,p =pp}l.
The following equivalences hold:

6o = ¢p <= 9op() = ¢p (07'x) =gp(x) forall xedp

1 1

<o x—xekergpp=P <o~

o el (Plp) & o €Ik (Plp). (7.4)

x=xmodP forall xedp

Therefore, {0 €G|losp = (p7>2}| =er/k (Plp). Letl = I )k (Pglpe).

We have
DNWOW =Y Y dPy= Y > D d(P)
geG geG Plg=Pq oeG/l gel Pog—=Pq

Y. ek (PPl’)dr (P) (by (7.2))
5eG/I Pbo =Pyq

3 S ek (Plg)duyk (Ple) dk ()

p?=p? Plp
(Proposition 5.1.11 and (7.3))
=[L:K] Y dk(p) (Theorem 5.1.14)
o’ =1
=[L: KIN?K). O

Let & € Aut(K/k) be an automorphism of finite order and let £ = K © be the
fixed field. Then K/E is a cyclic extension with Galois group (6).

Proposition 7.2.6. There exists an element x € E \ k such that E / k(x) is separable.

Proof. Since there exists a divisor of degree 1 (Theorem 6.3.8), there exists a prime
divisor g of E of degree ¢ with (¢, p) = 1 and p = chark. Let m € N be such that
m > 2g — 1 and (m, p) = 1. Then by the Riemann—Roch theorem (Corollary 3.5.8),
there exists an element x in E such that 9T, = P™. Therefore [E : k(x)] = mt and
(mt, p) = 1 with p = char E, which implies that E/k(x) is separable. O

E——K Let x € E \ k enjoy the property of Proposition 7.2.6.
Let K be the palois closurq of K/ k(x) and k be the field of
constants of K. Then both K and K k admit k as field of con-

k(x) stants. Also, 0 is extendable to an element of Aut (12 / lz(x)).

k(x) k(x) k(x)
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Extending constants of K if necessary, we may assume that if || = §, then § = a2

is a square, § > (gp + 1)4,(2 > (gxi + 1)4 = (gx + D*, and K has a prime divisor
of degree 1.
Whence, we may assume that K / k satisfies the following conditions:

(1) K/k contains an element x € K \ k such that K /k(x) is separable, and the
Galois closure K of K /k(x) has as field of constants &,

Q) k| =q =a*isasquareand g > (g + 1)*, ¢ = gp>

3) K / k contains a prime divisor of degree 1.

Proposition 7.2.7. Let m = [K : K], n = [K : k(x)], and 6 € Aut(K/k). Then
NO —(g+1) > -2 (28 +1) /7.

Proof. Let H = Gal (K/K) and G = Gal (Ié/k(x)). We have 0 € G and m = |H|,
n = |G|. By Proposition 7.2.5,

NO(K) = %};N(Qh) (K) and g + 1= N(k(x)) = % 2(:; N® (K) .
€ ge

K H

K

k(x)
It follows by Theorem 7.2.4 and Exercise 7.7.3 that

g;,\,@ (1() — /;{N(Qh) <K> + Y N® (1()

g€G\OH

<) NOP (K) + ) (@+D+(28+1)q)

heH geG\OH

=S N (R)+ i —m) (g +1+(28+1) Va)-

heH

Since deG N(g)(l?) =nNY (k(x)) = n(g + 1) (Proposition 7.2.5), we have

SN (R) zng+1) = —m) (g +1+ (28 +1) Va)

heH
=m(g+1)—(n—-m)(28+1)./q.
Finally, by Proposition 7.2.5, we have ZheH N©n (1%) = mN(Q)(K), SO

(n—m)
m

NOE)>(@+1) - 22+ 1) vq. O
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Corollary 7.2.8. Let K/k be a congruence function field and consider an element
0 € Aut(K/k) of finite order. Then there exists a finite extension k' of k with ¢’
elements and a constant ¢ > 0 such that for all r > 1 the extension k. of degree r of
k' satisfies |N(9) (Kr/) — ((q/)r + l)| < c(q")/? where K| = Kk..

Proof. Let k’ be the extension of k satisfying Proposition 7.2.7 and Theorem 7.2.4. The
numbers n, m, g given in Proposition 7.2.7 are the same for extensions of constants
(Theorem 6.1.3). Therefore, for all ¥ > 1, we have |k.| = (¢’)" and

(n—m)

— (28 +1) (@) =N (K]) = (@) +1) = 28 +1) (@)

With ¢ = max [(”;1—’”) (28+1),28+ l] we obtain the result. o
Finally we have the following theorem:

Theorem 7.2.9 (Riemann hypothesis). Let K/k be a congruence function field,
where |k| = q. Then:

. . . . 1
(i) The zeros of the zeta function {k (s) belong to the line of equation Res = 5.

(i) The zeros of the function Zk (u) belong to the circle of equation |u| = ¢~'/2.

(iii) If w1, ... , wag are the inverses of the roots of Pk (u), then |w;| = ./q, for i =
1,...,2g.

(iv) If N1 denotes the number of prime divisors of degree 1 in K, then |[N1 — (¢ + 1)| <

28./4q.

Proof. The statements follow from Theorem 7.1.8, Propositions 7.1.9, 7.1.10, 7.1.11,
and Corollary 7.2.8. O

7.3 Consequences of the Riemann Hypothesis

An immediate consequence of the Riemann hypothesis is the following:

Theorem 7.3.1. Let K/ k be a congruence function field of genus 0. Then K is a field
of rational functions.

Proof. If N is the number of prime divisors of degree 1 in K, then by applying Propo-
sition 7.1.9 we get [N — (¢ + 1)| < 2g.,/g = 0. Thus N = g + 1, so K contains prime
divisors of degree 1. The result follows by Theorem 4.1.7. O

Our goal is to estimate the number of prime divisors of degree n in K/ k.
Theorem 7.3.2. If K = F,(x) is a rational function field over ¥, and if n; is the

number of prime divisors of degree i in K, thenny = g+ 1 andn; = ll Zdli " (6’—1) q¢
fori > 1.
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Proof. The prime divisors different from g, are in bijective correspondence with the
monic irreducible polynomials (Theorem 2.4.1). Since g is of degree 1, the result
follows by Proposition 7.1.5. O

We will generalize the preceding method in order to estimate the number of prime
divisors of degree m in any function field K over k = .

Let K/ k be a function field and let x € K \ k be such that [K : k(x)] < oco. Let
o (s) be the zeta function of k(x) and let ¢ (s) be the zeta function of K. Denote by
N,, the number of prime divisors of degree m in K. We have, by Theorem 6.3.7,

-1 00 —Np,
{(s) = 1_[ (1 — (N;))S> = l_[ <1 _ ) whenever Res > 1.

ms
PePy m=1 q

Then

é"(s) B L o) 1 ' B 0 a
ok [(n¢(s)] = [Z —Ny, <ln (1 — qms))} =—Ing (Z qm) ,

m=1 t=1

where ¢; = Zm mN,, and where m runs though the natural numbers such that there
exists r € Nwithrm =¢. Thatis,c; = ), |, mNy,.
Therefore we have

i((ss)) =_1an<ZmN’”>% whenever Res > 1.

In particular, for K = k(x) we have

28 = —Ingq Zl <Zm”m) % whenever Res > 1.

t= mt 4q

m|t

On the other hand, &y(s) = Wl(l—qﬂ')’ SO

Zo(s) / g+ 1
) — (N ng (; - )

qn

In particular, equating coefficients we obtain )
is equivalent to that of Theorem 7.3.2.

e Mm = g +1, and this formula

Notation 7.3.3. For two real functions f(x), g(x) with g(x) > 0, we write f = O(g)
if there exists a constant ¢ > 0 such that | f(x)| < c|g(x)| for x large enough.

Theorem 7.3.4.

m

’ o) m/2
i“((ss)) = —lnq; (ZmNm> %, Res > 1 and n,, = % + 0 (q_) .

h m
mit 4q
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Proof. The first part was already proved in the course of the previous argument. Since
1 ; (m q" 1 i (m
w=—>an(Z) =L+ =3 gu(Z),
m i moom i
i#m

it follows that

m/2 m/2 2 m/2 1
q q
R 3 b o B o eI
i<% i<% m r=0 q m l_l/q
O
On the one hand, we have

G lnqz ZmN i

;(s> e ) g
and on the other hand

2g
Z(s) wj
=Pk =[](1-=)

So(s) i1 q
where w1, ... , w, are the inverses of the roots of Pk (1), u = ¢~°, where |w;| = \/q
from the Riemann hypothesis.

Now
’ 2 _
<ln C(S)> _ ¢'(s) _ 5(s) _ P (s) _ Zglnq wiq™s
Zo(s) ¢(s)  os)  Px(s) = l-wgq™
28 oo 0
— n
DI ) D WO ) ot
i=1 n=1 n=1
2g

where s, = 2 o

We also have

HORRO N iy
(o) Qe Z<Zm(N ”””)q

mlt

Therefore we obtain Zm|t m (Ny, — npy) = —
From the Mobius inversion formula, we obtain

t(Ny—np) = — Zu( )sm,

mt

and hence
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1 t
Ny =n; — — E — s
t L 12 <m) m

. 2
with s, = Y% of".

Since |w;| = ¢'/?, we deduce
t t 2g t qt/2 -1
1INy —n| = Z $m| < Z Z|U)i|m = Zzgqm/z = qul/zm-
m=1 m=1 i=lI m=1

Therefore, N; =n; + O (q;l) .

In short we have the following theorem:
Theorem 7.3.5. Let K/ k be a congruence function field with k = Fy. If ny, and Ny,
denote the prime divisors of degree m in k(x) and K respectively, then

1
nm=—zu<§>qdform>1andn1=q+1,
ma

m m/2
nm:q_w(q_).
m m

Furthermore,

Y d(Ng—ng) = —sn

d|m
and

m
m (Npy — np) = _;M <E) Sd,
|m

where sg = Zl.zil wf and v is the Mobius function. o

We end this section by relating the number of integral divisors to the number of
prime divisors and comparing the number of prime divisors in extensions of constants.

Proposition 7.3.6. Let K / k be a congruence function field with k = ¥4 and for each
n € N, let K;, be the extension of constants of K of degree n. That is, K,, = KFgn.

Let N be the number of prime divisors of degree j in K and let N 1(") be the number
of divisors of degree 1 in K,,. Then

1 n
(n) _ § : _ § : (d)
Nl = = de and Nn = ; = “u (3) Nl .
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Proof. By Theorem 6.2.1, if d divides n and g is a prime divisor of degree d in K,
then o decomposes into (d, n) = d prime divisors of degree G d = 1 in K,,. There-
fore for each prime divisor of degree d in K we obtain d prime d1V1sors of degree 1.
Conversely, if P is a prime divisor of degree 1 in K, and ¢ = P|k, then by Proposi-
tion 5.1.11 we have 1 - n = dg () d,/k (Plgp). Thus dg (p) divides n and N =

>_djn dNa. By the Mdbius inversion formula we obtain nN, = Y, i (5) Nl(d). i

Now as in Chapter 6 we denote by A, the number of integral divisors of degree n.
n—g+1

Recall that A,, = Zd(c) —n % and A, = h (q q_f]) forn > 2gx — 2, where
h is the class number of K.

Theorem 7.3.7. We have

Ap = > H(lirZ’ 1),

ki+2ky+---+nk,=ni=1

ki>=0

where the sum runs through all partitions of n, i.e., the n-arrays (k1, ... , k,) with
ki >0and Y !_,iki = n.

Proof. We provide two proofs, the first one analytic and the second of combinatorial
nature. First recall that f(x) = = = Zn —ox" for x| < 1. Therefore by taking the
derivative of both sides p — 1 times we obtain

o
T )p Z <n+p )x” for |x| < 1.
—x

n=0

Now, the zeta function is Zg (1) = Z;ﬁo Apu" foru = q~5.

Thus
() =1(-%)
o T (=) =1 (1)
: PePy (NP) n=1 q"
00 1 Ny 00 kn-l-N .
Zg(l—un> Zg(kzzo< N, —1 )uk>

t=0 \ k1+2ky+--+thki=t i=1

k>0
Since (k" ]J(,IN_’ f]) = (ki +11;_/ i 71) the equality follows by equating coefficients.
Now we give the combinatorial proof. Let g (k1, ... , k,;) be the number of distinct

products of k| prime divisors of degree 1, k> prime divisors of degree 2, ... , k, prime
divisors of degree n.

We have g (ki, ..., k,) = [, fi (ki), where f; (k;) is the number of products
of k; prime divisors of degree i.
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In general, if Py, ..., Py, are all prime divisors of degree i, a product of k; of
them has the general form P! PX,N" with a; + --- + an, = k;. These products
correspond bijectively to the ch01ces of N; — 1 elements from a set of k; + N; — 1,
namely the elements a1 + 1, a1 +a2+2,... ,a1+---+an, + (N; — 1), as indicated
in the following diagram:

’Pl...’Pl L ’Pz...’Pz L L PN,‘"'PN['
<~ 0 <~ 0 0 <~
ay aj+1 ap ay+ay+2 a|+---+aN’._]+(Nl'—l) an.

Therefore f; (k;) = (k e - )
It follows that

A= Y gl ko= Y J]A®

k14+2ky+...4+nky=n k1+2ky+...+nk,=n i=1

I i Caa! :

k1+2k2+.i.+nkn=n i=l1

7.4 Function Fields with Small Class Number

We saw in Chapter 6 that if Pg (u) is the numerator of the zeta function of a congruence
function field, then Pg (1) = ag +aju + - - - +a2gu2g, u=gq ° axyg ;i =aq%", and
ap =1, apy = g¥. Furthermore, a; = A; — (g + 1)A;i_1 +qA;>.

On the other hand, PK(u) ]_[l.zf] (1 — wiu), |w;j| = g'/* for1 <i <2g.

-1 —i 2
Finally, h = Pg (1) = Zl 20 = Z}gzo a; (1 +¢8 ’) +a, = ]_[l.il (1 — wy).

Proposition 7.4.1. Let g = gk be the genus of a function field K over k = [F4, and let
hg = h be the class number. Let

S@ 8.1 =@~ D% +1-28* V2] —rg— 1) (¢* - 1).

Then if S(q, g, v) > 0, we have h > r.

Proof. Let K»g_1 be the constant extension of degree 2g — 1 of K. By the Riemann
hypothesis applied to K2, with field of constants 2,1 (K2,—1 is also of genus g),
if N1 is the number of prime divisors of degree 1 in K, 1, then

‘N{ - (q2g—1 + 1)( <2gq® V2 5o N| =g 141 —2gq% V2,

Now if d divides 2g — 1, a prime divisor of degree d in K splits into (d,2g—1) =d
prime divisors of degree @fﬁ = 1 in K7g_1 (Theorem 6.2.1). On the other hand,
if a prime divisor of degree 1 in K, restricts to a prime divisor of degree d, then by
Proposition 5.1.11, d divides 2g — 1.
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Also, at most 2g — 1 places of degree 1 in Kp, 1 can restrict to the same place
in K. If Py, ..., P, are prime divisors of degree 1 that restrict to the same prime
in K with s < 2g — 1, then p?8~1/4k®) ig an integral divisor of degree 2g — 1 in
K. Hence, with at most 2g — 1 divisors of degree one in K»,_1, we obtain an integral
divisor of degree 2¢ — 1 in K. Since there are Ny places of degree 1 in K21, there
exist at least

N| - g* 1 41 —2gq%s /2

2¢ —1 7~ 2g — 1
integral divisors of degree 2g — 1 in K.
We have . et/
s 1 g=1 4 | —20gQ8—
Angot = B4 4 + g9 _
q—1 2¢g — 1
Therefore . Ge—1))2
N —1
- (4 84 Ja-b _ .
(2 =D(g* -1
If S(g, g, r) > 0, then R > r, which implies that 4 > r. m]

As an exercise of basic calculus, it can be verified that S(g, g, 1) is increasing as a
function of g forg =4,g >2orq=3,g>30rq =2,g > 5.
On the other hand,

S4,2,1) =3(50 —32) =54 > 0,

$3.3,1) =2 (179 - 543) > 0,

$@.5,1) =2(117 - 80v2) > 0.
Hence, we obtain the following result:

Theorem 7.4.2. We have hg > 1 whenever ¢ = 4and g > 2,q =3 and g > 3, or
q=2and g > 5. a

On the other hand, we have the following:
Theorem 7.4.3. [f g > 1, then hx > 1 whenever q > 5.

Proof. Let Pk (u) = ]_[lzi | (1 — w;u) be the numerator of the zeta function of K. Then
by the Riemann hypothesis we have

2g 2g
[Ja=wn|=]]1 -l
i=1 i=1

28

Zlzjg[(lw”_l):l_[(ﬁ_l):(«/ﬁ—l)z};Z(\/6_1)22<f_1)2>1.

i=1

28
h=pPk() =[]0 ~w)=
i=l

Thus i > 1. a
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Thus we see that the number of possibilities for a field K to have class number 1
is very limited. If g = O then 2 = 1, butif g > 1, 4 = 1 can hold only in the cases
q=4,¢g=1;9=3,g=1,2,9g=2,g=1,2,3,4

We can study the function S(q, g, ) for several values of r and give criteria in
order to have i > r. Here we present only the results for 2 < r < 10 enumerating the
possibilities for g and ¢g. This procedure by no means implies that given (g, g, r) such
that S(g, g,r) < 0, there necessarily exists a field of genus g with field of constants
I, and class number 2 =r.

Theorem 7.4.4. Let K be a congruence function field with field of constants k = Iy,
genus g > 1, and class number h satisfying 2 < h < 10. Then we necessarily have
@OIf h=2 then ¢g=2,3,4 and
if g=4, then g=1,
if g=3, then ge{l,2},
if g=2, then g<5.
(i)If h=3, then g<7 and g <6.
(i) If h=4, then ¢g<8 and g <6.
Gv)If h=5, then ¢<9 and g<7.
VIf h=6, then g<11 and g<T7.
(vip)If h=7, then ¢ <13 and g<T7.
(vi)If h=8, then g <13 and g <8&.
(vii) If =9, then ¢ <16 and g <8&.
x)If h=10, then g <17 and g <8. O

Remark 7.4.5. Theorem 7.4.4 can be improved by fixing first 4, then g, and finally the
possible g. For instance, if 4 = 10, and g = 6, then ¢q is 2 necessarily, whereas the
theorem states only that g < 17.

Now we state the result that describes all possible fields K with class number 1 (of
genus at least 1). The proof is based on a detailed analysis of the function Pg (u).

Theorem 7.4.6 (Leitzel, Madan, Queen [94, 95]). There exist, up to isomorphism,
exactly 7 congruence function fields K /Fy with class number 1 and genus g # 0. If
K =T,(X,Y) is such a field, then the 7 fields are given as follows:
g=2g=1,Y4Y=X+X+1
()g=2g¢=2Y24Y=X"+X>+1,
Gi)g=2¢=2Y24+Y=(X*+ X2+ 1) (X3+X+1),
(iV)g=2g=3 Y+ XV +(X>+X)V*+ (X +1)Y
+(X*+X+1)=0,
Mg=2¢g=3Y"+(X3+X+ )Y+ (X*+X+1)=0,
(vi)g=3,g=1,Y>=X>+2X+2,
(i) g=4,g=1,Y>+Y =X 4o, acFys\{0,1}. ]

Now we detail one of the techniques used to prove this kind of result.
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Let 1 = h = Px(1) = Y% a = Y5, (@ +1)ai + ag. Let S, =
2g
Qi1 @]

!, where Pk (u) = ]_[l.zi1 (1 — w;u). Then by Theorem 7.3.5, we have —S§,,
Zd\n d (Ng — ng).

Now,

2g

U8 Py (u) = 1_[ (ufl — a)i) =aou B +aqu B 4.+ azg,
i=1

that is, wi, ... , wa, are the roots of u"28 P (u) = P (v), with v = u~!. Thus

2g
Pr(v) = by +biv+ -+ bygv® = H(v — w;)
i=1

with by = azg; = qg_iai and byg = ap = 1.
We have

brg—i = ai = (=1)*o; = (= 1)y,

where o; is the ith elementary symmetric function in {wl, ey a)2g}, so that by New-
ton’s identities (Theorem 7.1.4)

Sm + Sm—1a1 + - -+ S1am—1 + ma,, =0 for 0<m <2g—1.

Hence

Sit+a1 =0, a =-S5,

57— 8
S+ S1a1 +2a, =0, ax = T
§3 — 3518, + 253
a = — ,
6
S} — 6575, + 88152 + 355 — 684
a4 = , etc.
24
On the other hand, since
q+1, d=1,
ng =
i nan(§)e’ =1
and S, = — ) din d (Ng — ng), we obtain, after making all necessary substitutions,

ap =Ny —(g+1),
2ay = N? — 2q + 1)N; 42N> + 2,
6az = N3 —3gN?2 + (3 — )Ny — 6(q + 1)N2 + 6N N3 4 6N3,
24a; = (49 — 2)N1 — N + (2 — 4q)N; + (12 +24¢)N,
+12N3 + N} — (12 + 24q)N N, + 12N{ N,
—24(q + 1)N3 + 24N N3 + 24N,,.
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For g > 1, we have N; < 1. Indeed, if there exist two prime divisors of degree
1, say P1, P2, then since h = 1, % = (x) is a principal divisor. Thus [K : k(x)] =
deg My) = deg(P2) = 1 (Theorem 3.2.7), so g = 0, which is absurd. Therefore
N <1.

Now if ¢ = 3, g = 2, we obtain

Pr() =h=(q*+1) a0+ + Dar +az

—6+ Ni + N{ 42N,
> .

=10+4a; +ax =

It follows that 4 = 1 if and only if le + N1+ 2Ny = 8.

On the other hand, by the Riemann hypothesis, the inverses of the roots of Pk (u)
are \/geilgl, ﬁeil@z, SO

Px(u) = <1 — x/geielu> (1 — 3710 u) (1 — «/geiezu) <1 — ﬁe—i62u>
= (1 — 2x/§00501u + 3u2> (1 — 2x/§cosezu + 3u2> .
Comparing coefficients we obtain

4-N)V3

cosf) 4+ cosbp = ;

and

N? —7N; +2N, — 6

cosBicosth = 7

Since le + N1 + 2N, = 8, we get cos 0] cos 6, = _7N‘+284_N'_6 = 1_142N1.

Let f(x) = (x —cosf)) (x —costh) = x2 + (N1_64)“/§x + 1_142N1. Then cos 6;
and cos 6, are roots of f(x). Notice that

(12+1—8J§)+N1 (2f—4)

0<({—=cost)(l —cosbr) = f(l) = 7

<0,

which is absurd. Therefore, if ¢ = 3 and g = 2, then we must have & > 1.

7.5 The Class Numbers of Congruence Function Fields

Let K /IF,; be a congruence function field. Its zeta function is given by

Py (u)

2R = T —qu

where
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8
Pk (u) = Zaﬂ/tl, Ag—i = aiq®7t for 0<i<2g,

and g = g is the genus of K (Theorem 6.4.1). Then Pk (1) = hg is the class number
of K (Corollary 6.3.9).

Let K,, := KF  be the constant extension of degree £, where ¢ is a rational
prime (g = p*,£ = p or £ # p). Then

Zk, (u l_[ Zg Qn
where ¢ is any £"th primitive root of 1 in C* (Theorem 7.1.6).
We have
28
Py (u) = 1_[ (1 — oci_lu),
i=1
where a1, ... , apg are the roots of Pk (u). Thus

2g

P, (") = T (1= ).

i=1

Therefore, if A, is the class number of K,,, we have

he  Pr,(D)TTS (1—or)

h‘%m‘n%awﬂ
_ [T, IT5-: (1 — Loy e
Hizil (1 —a; ) i=1 /:1

Theorem 7.5.1. With the above notation, let £°" be the exact power of £ dividing hy,.
Then

ep=An—+vy
Sor n sufficiently large, with0 < A <2g andy € Z.
Proof. We have
-1 2g ] —
hn J
o= TTT10 ¢ 1—[ (¢).
j=1i=1 j=1
Now, Pk (T) € Z[T], so Px(T) has the form Px(T) =14+ a T + --- + q2T?8. Let
Rk(T)=Px(T+ 1) =1+a(T+1)+---+q5T +1)*
=bo+b1T + -+ by T,
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We have
Pr(ch) = Ri (¢l — 1) =bo+ b1 (¢ — 1)+ +bag (¢} — ). (1.5

Note that Rg (—1) = Pg(0) = ap = 1. Therefore there exists 0 < A < 2g such that
£ 1 by.. Choose A to be minimal with this property.
In the cyclotomic number field Q(g)/Q, ¢ is fully ramified and (£) = (1 —

Qn)d’(ln) = (1 - Q{z)d)(en) for all (j,n) = 1 and ¢ is the Euler ¢-function ([156,
Proposition 2.1, p. 9]). Let £ = (1 — ¢ ) be the prime ideal of Q(Ze) above ¢, i.e.,
ve(1 = ¢e) = 1. Clearly, if j = €" ji, m < n, (ji, £) = 1, then

m

l—gh=1=¢) = (1—¢o)" u

with u a unit in Q(¢g). Hence v,g(l — Q’;l) = 0™ = ve(j). Therefore, in (7.5) we
obtain
ve(bi (¢ —1)") = ve®n) + ive(gh — 1) = v (") + ive()).
Let ¢ be a primitive £"th root of unity. Then, for0 <i <X — 1,
ve(bi(c = 1)) = ¢ +i > L =ve(bu(¢ — D*)

for n such that ¢ (£") > A —i.
For A <i <2g,

ve(bi(¢ — D) =i > A =vg(ba(¢ — D).

Therefore, for a primitive £"*th root ¢ of 1 with ¢ (£") > A,

ve(Px(¢)) =ve(Rr (¢ — 1) = A. (7.6)
Let ng € N be such that ¢ (£"°) > A. Forn — 1 > A we have
he by 1 TS P(h)

= = I : []Pc@.
e C = N § i 2 (A Nt

where the latter product runs through all the primitive £” th roots of unity. Using (7.6)
and the fact that there are ¢ (£") primitive roots of unity, we obtain

1
ve(hn) = ve(hn—1) + ve([ | P (©)) = ve(hn1) + ¢(zn>“~°~(n P (0))
¢ ¢
= velhn-1) + S @R = velhu) + 2.
Therefore
ve(hn) = Mn = 1) + ve(hng) = An + (e (hny) = nok) = An +y. o

Remark 7.5.2. Theorem 7.5.1 states that the Iwasawa u invariant for congruence func-
tion fields is O (see [156, Chapter 7]).
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7.6 The Analogue of the Brauer-Siegel Theorem

The Brauer-Siegel theorem is a theorem in number fields, that is, finite extensions
of Q. For a number field F, let d be its discriminant, R its regulator, and 4 its class
number.

In(hR) _
In/d] —

Theorem 7.6.1 (Brauer-Siegel). We have lim g

The goal of this section is to present an analogue of the theorem of Brauer and
Siegel. Let K /k be a congruence function field with k = F,. All extensions of K
considered in this section have & as their exact field of constants.

If n,, and N,, denote the number of divisors of degree m in the rational function
field k(x) and in K respectively, then (Theorem 7.3.5)

[m/2] [m/2]
q" my 4 d q -1
== S (B)et| < 3o a e
m am 4 d=1 q-1
d<m
<2 (q[m/z] — l) < qu/z,
1 m 1 (& &E
|Nm_nm|:n_1 ;ﬂ(g)sd Sn_1 Z . w;
|m d=1|i=l
<2_gm d/2_2_g1/2qm/2——1<4 m/2
< g% = —2q P < 4gq™”.
m — m q'’c—1
qg+l_1

, and we have

Now, the number of integral divisors of degree 2g is Ay = h 7=

g o 4 g g — ¢ g
Nog > nag —4gq® > 57 —29% —4gq® = 5 — (4g +2)q5.

Thus
qg+l_l q2g
h—— = Ay, > N 1 _ @« Nab.
g—1 2¢ = 2g>2g (4g +2)q
Therefore
G-1 [(q%
h>——"— | ——4g+2)q%].
@ -1 | 2 (4g +2)q

Theorem 7.6.2. If k is fixed, then lim inf,_, oo % >1

Proof. We have h > g8~ %, where C is a constant and g is large enough. Therefore

glng = g glng glng’

Inh 1 InC In2g
Inh>(g—1)Ing +InC —In2g, >1 -
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and the right-hand side goes to 1 when g goes to co, which implies the result. O

In order to obtain an analogue to the Brauer—Siegel theorem, we must prove that
lim sup 400 ;I]lnhq .5. 1. This remains an open problerp. We will prove that the result
holds with a restriction, namely that for K, there exist x € K \ k and m such that

[K : k(x)] < m with % — 0.

Theorem 7.6.3. We have lim%_)o = 1, where g is the genus of K, h is the class

glnq
number of K, and m is the minimum integer such that there exists x € K \ k with

[K :k(x)] = m.

Proof. For an integral divisor 2, it follows from the Riemann—Roch theorem that

(A7) = d @) — g+ 1,50 that A, > X " il _1 . Therefore if ¢k (s) is the zeta
function for s € R such that s > 1, then

n7g+l 1

o o o
k=Y Ag = A =Y e f
n=0 n=g n=g

g-1 4q"

h o0 qn—g+1_1 1 h iqn+l_1 1
1

= ﬁn—g g—1 q(nfg)s = C]F ] q— q"s = ﬁé‘o (s),
= n=
where o (s) is the zeta function of £ (x).
Hence ¢k (s) > q%{o (s)fors e R, s > 1.
-1
1
On the other hand, ¢k (s) = [[pcp, (1 - W)
Let P be a divisor of K of relative degree ¢ and g = P|i(x). Then
deg(p)t=d(P), NP =q'P =g'e®
and
L L, L, 1y
TNy T gdPis T glegpis = U gde)s )
Therefore if Py, ... , P, are the prime divisors of K over g ink(x),r <m =[K :

k(x)], and each relative degree is t;, then

r 1 r 1 ti 1 m
1-— 1-— 1-— .
1]( N(P,-f)zﬂ( N<p>S> 2( N(p>S>

Thus

1\ 1\ "
ww=11 (“N(P)s) = 11 (1_NW) — e

PG[PK

It follows that
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h h
2o ()" > ¢k (5) > —2o(s), thatis, ¢ ()" !> —.
q8s q8*
Taking logarithms, we obtain
(m—1)Ing (s) >Inh —gslng.

Therefore

Inh (m — 1) In¢go (s)
~ glng glng ’

Lete > Obefixedand lets = 1 4 ¢. If ? — 0, then taking g large enough, we

have 1 + ¢ > ghl’nhq — g, 80 lim Supz_, o ;?nhq <1
The result follows by the above and Theorem 7.6.2. O

An interesting problem that remains open is to determine whether a complete ana-

logue of the Brauer—Siegel theorem holds, that is, limg_, o gh]’ nhq = 1 without any

restriction. To finish this chapter we present some approximations to this result.
Theorem 7.6.4. We have (/g — 1) <h < (/g +1)**

Proof. We have h = Px (1) = |Px ()| = ]_[l.zi1 |1 — w;|, where |w;| = ,/q. Therefore
V94— 1= |1 —w;| <./q+ 1, from which the result follows. |

Corollary 7.6.5. We have

2In(yg—1) _ Inh _2In(J/g+1)

Ing ~glng — Ing

ng+11

Now forn > 2g —2,then A, = h ( ) by Theorem 6.2.6.

On the other hand, A, = }_ , [T/ ( kii "), where p(n) is the set of partitions
of n (Theorem 7.3.7).
Taking n = 2g — 1, we obtain the equality

(55)- 2, 00

pRg—1) i=1

2g—1 (ki+N;—
Let M = maxpoe—1) [[2] (k’+,]:’ 1).
Then M < h (‘f ‘1) <|pQg — | M.
1/2
Furthermore, it is well known that |p(2g — 1)| < eT V28~ where T = & (%) .

Therefore M < h (‘{;%f) < eTvV28=1 1 whence
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8§ _1)— — —
In M - Inh +ln(q 1) — In(g 1)<T«/2g l+lnM

glng ~ glng g Ing - glng glng’
Now,
In(g8 — 1) —1In(g — 1) . T 2g—1
m =1 and lm ——— =0,
g—00 g ]nq g~ g lnq
from which we obtain that
Inh
lim exists if and only if  lim exists.
g—>o0 glng g—oo glng

Furthermore,

. Inh .
lim = lim sup
g~ glng g—oo glng

237

Therefore, proving the analogue of the Brauer—Siegel theorem is equivalent to proving

that lim sup,_, 2y = 2.

7.7 Exercises

Exercise 7.7.1. Prove Lemma 7.1.2.
Exercise 7.7.2. Prove Proposition 7.1.5

Exercise 7.7.3. Prove Theorem 7.2.4 for any 60 € Aut(K/k), i.e.,

N® —(g+1) < Qg+ 1Jg.
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Constant and Separable Extensions

We have seen (Remark 5.2.30 and Example 5.2.31) that the field of constants of a
constant extension K £ can contain £ properly . On the other hand, if ¢ is a finite field,
the constant field of K¢ is £ (Theorem 6.1.2).

Our goal in this chapter is to give a full account on the constant extension K£. Our
main reference is Deuring’s monograph [28].

In particular, we shall study the change of genus in extensions of constants; as we
shall see, in this case the genus does not increase (Theorem 8.5.3), in contrast to the
geometric separable case, in which the genus does not decrease.

At the end of the chapter we present a few results on inseparable extensions.

8.1 Linearly Disjoint Extensions

Definition 8.1.1. Let F' and M be two extensions of a field E that are

contained in an algebraic closed field 2. Then F is said to be linearly F —— FM
disjoint from M over E if every finite set of elements of F that is
linearly independent over E is also linearly independent over M.

We can see right away that the relation defined above is symmetric.E M

Proposition 8.1.2. Let F be linearly disjoint from M over E. Then M is linearly dis-
Jjoint from F over E.

Proof. Letay, ... , a, be elements of M that are linearly independent over E. Assume
that there exists a nontrivial linear combination

a1 + -+ aua, =0 (8.1)
where the elements ay, ... , a; of F are not all zero.
Suppose that the elements ay, ... , a; (s > 1) are linearly independent over E and

ds+1, - - - » Ay are linear combinations
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N
aiZZ,B,'jaj, Bijek, i=s+1,...,m.
J=1
Then (8.1) can be written as

N m N
> a+ Yy ( ,s,jaj)a,» =0. (8.2)
(=1 j=1

i=s+1

The coefficient of ap(1 < £ <'s) in (8.2) is (¢ + Y_j 1 Bicci).

Therefore
N m
Z(az + Z ,Bieai)a@ =0.
=1 i=s+1
Since {o1, ... , an} is linearly independent over E, it follows that
m
ar+ Y Buai #0 for 1<€<s. (8.3)
i=s+1
But (8.3) contradicts the linear independence of {ay, ... , a5} over E. O

Example 8.1.3. We have that Q(+/2) and Q(+/3) are linearly disjoint over Q.
Example 8.1.4. The fields Q(&3 v?2) and Q(~/2) are not linearly disjoint over Q.

Our next result shows that the relation of being linearly disjoint is transitive. More
precisely:

Proposition 8.1.5. Ler E
intermediate field, i.e., E
and only if

F and E C M be two field extensions and let N be an

C
C N € M. Then F and M are linearly disjoint over E if

(i) F and N are linearly disjoint over E and
(i) FN and M are linearly disjoint over N.

Proof. Assume that F' and M are linearly disjoint over E. FN FM
If A C F is any finite set that is linearly independent over
E, then it is linearly independent over M. In particular,
A is linearly independent over N. Therefore F and N are
linearly disjoint over E.

Now let A = {1, ... , @y} € M be linearly independent over N. Let 81, ..., B, €
F N be such that

E N M

Xn: Bia = 0. (8.4)
i=1
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Each B; is a quotient of elements of the form ) jajbj witha; € Fandbj € N.
Clearing denominators we may assume that 8; = Z;"’:l a;jjb;j, witha;; € F and b;; €

. . . . 1<j<m; .
N. Furthermore, since we are dealing with a finite number of elements {; j}lzf ;:1 !

N, we may choose a finite set {d], ... ,d,} € N that is linearly independent over E
and such that ; = Z?:l cijdjforalll <i <n,c;; €F.
Therefore (8.4) becomes

m

n
ZZC,‘jdjOli =0.

j=1i=1

Since {d jai}:ii.i’;n C M is linearly independent over E and M and F are linearly
disjoint over E, it follows that ¢;; = Oforall 1 <i <n,1 < j < m. Therefore 8; =0
forl <i <n.

Hence M and F'N are linearly disjoint over N.

Conversely, assume that N and F are linearly disjoint over E, and M and F'N are
linearly disjoint over N.

Let {c;}ics and {8} jcs be bases of N over E and of M over N respectively. Then
{@iBj}i, jyerxs is a basis of M/E.

Let {61 }kex be a basis of F' over E. Suppose that we have a relation

) (Z akij5k) (aiﬂj> =0, (8.5)

iel,jeJ “keK

where only finitely many ay;;’s in E may be nonzero.
Then

Z(Z aki,(skai>ﬂj =0. (8.6)

jeJ MkeK
iel

Since {B;} jes is a basis of M over N, M and F'N are linearly disjoint over N, and
D iclkek ijokei € FN, it follows that ) ;g akijoke; = 0 forall j.

Thus ) ;; (ZkeK akij6k>(x,~ = 0forall j € J. Since {«;};cs is a basis of N over

E,and N and F are linearly disjoint over E, it follows that ) ", axijéx = 0 for all
ielandj e J.

Finally, since {8 }rck is a basis of F over E, we have a;; ; = O foralli € I,
j€J,and k € K. Hence M and F are linearly disjoint over E. O

For the basic properties we use for tensor products we refer to [89], [69], and [4].

Proposition 8.1.6. Let F/E and M/E be two field extensions and Q2 be an alge-
braically closed field such that F, M C Q. Let F @ M denote the tensor product
of F and M over E. The natural map ¢ : F @ g M — F M satisfiesimgp = F[M] =
{ Yl aifilneN o €F, Bie M}. Then F and M are linearly disjoint over E if
and only if ¢ is a monomorphism.
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Proof. Let {B;}ic; be a basis of M over E. Every element of F ® g M can be written
as ) c7 @ ®f Bi with o; = 0 for almost all i. Since tensor product commutes with
direct sum and A ® g R = A for any R-module A and R a commutative ring, we have
that if {8;}ics is a basis of M over E, then {1 Qf B;}ics is a basis of F @ g M over F
(with the extension of scalars: AM(a ®g b) = Aa Qg b, . € F). From this we obtain
that ), ; o; ® B = 0 if and only if o;; = O for all i.

Since g D ;o 0 ® ,3,-) = Y ;e @i i, the result follows. m]

We now introduce the concept of a free or algebraically disjoint set.

Definition 8.1.7. Let F and M be two extensions of a field E. We say that F is free
or algebraically disjoint from M over E if every finite subset of F that is algebraically
independent over E remains algebraically independent over M.

Like linear disjointness, freeness is defined in an asymmetric way. However, as we
did for linear disjointness, we shall prove that the relation is in fact symmetric.

Proposition 8.1.8. If F is free from M over E, then M is free from F over E.

Proof. Let y1, ..., y, be elements of M that are algebraically independent over E.
If y1,...,y, are dependent over F, then they are so in a subfield K of F that is
finitely generated over E. Let tr K/E = r. Since F is free from M over E, then

(K1, oo s ) /EQYL, oo ) =T
F
K

E——EQ, ... .y)—M

—2 K31, Yn)

r

We have, on the one hand,

tr(K(yl,... ,yn)/E>

=tf(K(yls s Y/ EGn, - ,yn)> +tr <E(y1,... ,yn)/E> =r+n;
on the other hand,
tr(K(yl, ... ,yn)/E) = tr(K(yl, ,yn)/K) +tr(K/E) <n—+r.

This contradiction shows that M is free from F over E. O

The next proposition proves that linear disjointness implies algebraic disjointness.
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Proposition 8.1.9. If F and M are linearly disjoint over E, then they are algebraically
disjoint over E.

Proof. Let y1, ..., y, be elements of F that are algebraically independent over E. If
Y1, ..., ¥p are algebraically dependent over M, then there exists a relation of the type

POL ) =0=" > @y iy ey ai i, €M,

(i1, sin)El
where p(T1, ..., T,) € M[T1, ..., T,]is a nonzero polynomial.
Therefore { yil ceey }a,....iner 18 linearly dependent over M. On the other hand,
since {yi1 .. yﬁ,”}(,-]’__. .inel 1s linearly independent over E this contradicts the linear
disjointness of F and M over E. O

An important result that we will need later, when we study the general constant
extensions of function fields, is the following:

Proposition 8.1.10. Let F be a field extension of E and let A be a set of elements that
are algebraically independent over F. Then E(A) is linearly disjoint from F over E.

Proof. Let fi,..., f, € E(A) be linearly independent over E. F—— F(A)
Then there exists a finite set {yy, ..., y,} € A such that f; = Z—;,

with a;, b; € E[y1,...,yn)- Letb =[[i_; bi. fa1, ... ,ar € F
are such that 3 °i_; o; f; = O then } i i (bfi) = Y[ igi = g E(A)
0 with g; = bf; € E[y1,...,ynl, and {g1, ..., g} is linearly

independent over E.

Now if some «; is nonzero there is a nontrivial algebraic relation of {yy, ..., y,}
over F. This is impossible since {yi, ..., y,} is algebraically independent over F.
Therefore {fi, ..., f} is linearly independent over F, and F and E(A) are linearly
disjoint over E. O

An observation we shall be using frequently is the following:

Remark 8.1.11. When we need to test whether two fields are either linearly or alge-
braically disjoint, it suffices to assume that these fields are finitely generated over the
base field since in either case the definitions involve only a finite number of elements
at a time.

Corollary 8.1.12. Let F be any purely transcendental extension of E, and let M be
any extension of E. If F is algebraically disjoint from M over E, then F is linearly
disjoint from M over E.

F=EW)
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Proof. Let F = E(A), where A is a transcendence base. Then A is algebraically
independent over M. The result follows immediately by Proposition 8.1.10. O

Corollary 8.1.13. If F is an algebraic extension of E, and M is a purely transcenden-
tal extension of E, then F and M are linearly disjoint over E.

Proof. Exercise 8.7.7. O

8.2 Separable and Separably Generated Extensions

Definition 8.2.1. A field extension F/E is called separably generated if there ex-
ists a transcendence basis {«;}ic; of F over E such that F/E({a}ics) is algebraic
and separable. Such a basis {«;};c; is called a separating transcendence basis for F
over E.

Definition 8.2.2. A field extension F/E is called separable if for any subfield E <
M C F with M/E finitely generated, M/ E is separably generated.

Proposition 8.2.3. If E is a field of characteristic 0, any field extension F/E is both
separable and separably generated.

Proof: Let F/E be any field and let 2 = {«;};cs be any transcendence basis of F/E.
Then F/E(A) is algebraic and therefore separable. Thus F'/E is separably generated.
Also, if E € M C F is any intermediate field with M/FE finitely generated, then as
before, M/ E is separably generated. Hence F/E is separable. O

Remark 8.2.4. We will prove in Theorem 8.2.8 that a separably generated extension is
separable. The converse is not true in general (Example 8.2.10). The general definition
of separability is compatible with the definition for algebraic extensions. Since every
field extension of characteristic O is separable and separably generated, in the rest of
this section we shall consider fields of characteristic p > 0.

Let E be a field of characteristic p > 0 and let F/E be an extension. Let F be an
algebraic closure of F,n € N, and

EV?" :=|a e F|a" € E}. (8.7)

Then EV/P" is afieldand E € EV/P" € E C F. Set

[e.e]

EVPT = JEY". (8.8)

Then E'/P” is also a field.
For algebraic extensions, we have the following proposition:
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Proposition 8.2.5. Let F/E be an algebraic extension of fields of characteristic
p > 0. Then F/E is separable if and only if F and E'/P are linearly disjoint.

Proof.
(=) Let M = FPE C F. Since F/E is separable, F/M is separable too. If ¢ € F,
then o” € F? C FPE. Therefore F/E FP? is purely inseparable, and F = EF?.

Now let a1, ... ,a, € F be elements that are linearly independent over E. Let
K = E(ai,...,a,). Wehaven <m = [K : E] < oo. We complete {ay, ... ,a,}to
abasis {ay, ... ,an, ant1, ... ,an} of K/E.

Clearly, K = E(ay, ... ,an) = y -, Ea; = B, Ea;.

Since K /E is separable, we have K = EK? = E(af, ... ,ah) = Y 1", Ea!.

It follows from [K : E] = m that {a], ... , aj,} is a basis of K/E. In particular,
{af ,...,al} is linearly independent over E.

Let by, ... ,b, € EY/P be such that }_I_, b;a; = 0. Hence Y I, b’a’ = 0 with
b € E.Wehave b’ =0 (1 <i <n),sob; =0 (1 <i < n). It follows that F and
E/P are linearly disjoint over E.
(<) Let F and EV/? be linearly disjoint over E. Let ¢ € F and h(x) = Irr(a, x, E)
with deg h(x) = n. We will show that & (x) is separable. It suffices to see that h(x) &
E[xP].

Theelements 1, «, ..., a" ! are linearly independent over E. Therefore 1, «t, . .. ,
o™~ ! are linearly independent over E'/?. This is equivalent to saying that 1, ”, a*?,

., a"~DP are linearly independent over E. If h(x) = g(xP), then Irr(a?, x, E) |

g(x) and [E(a?) : E] < degg = deﬁh. This contradicts the independence of

{1,a?,... ,a(”_l)p}. O

n

Now we are ready to prove the following result:

Theorem 8.2.6 (MacLane). Let F/E be a field extension of characteristic p > 0.
Then the following conditions are equivalent:

(1) F/E is separable.
(2) F and EY'?" are linearly disjoint over E for some n € N.
(3) F and EV/?” are linearly disjoint over E.

Proof.
()=(3): By Remark 8.1.11 we may assume that F/E is finitely generated. Let
{v1,..., ym} be a transcendence base of F over E such that F/E(y1, ..., Ym) 1S

algebraically separable.

E()/l, 7)’m)

E—— EUp~™

Clearly the set {y|, ... , Y} is algebraically independent over E!/ P, By Propo-
sition 8.1.10, E(y1, ..., ym) and EYP™ are linearly disjoint over E. The composite
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field EVPYE(y1, ..., ym) = EVP7(y1,...,yu) = K is purely inseparable over
E(yla L 7)’m)-
We have the following diagram: F
separable
purely
E(yl7""ym) . e
inseparable
LetL =E(y1,...,ym). lfa € F,then « is algebraically separable over L. Hence

K («)/K is separable. Let h(x) = Irr(, x, K) € K'[x], where K'/L is a finite purely
inseparable extension with K’ C K.

F
purely
L) ——— K'(«

(@) inseparable (@)
separable separable
purely

K/
inseparable

It is easy to see that [K/(oz) : L]s =[L@):L] = [K/(a) : K’]. It follows that

F and K = EV/P” (y1, ..., ym) are linearly disjoint over L = E(y1, ..., ym). The
result follows from Proposition 8.1.5.

FK

F
L——K=LEYP
E

o0

EVP™

(3) = (2) This implication follows from the fact that E'/?" ¢ E1/P%
(2) = (1) By Remark 8.1.11, we may assume that F' is finitely generated over E.

Let F = E(y1,...,ym) and let r be the transcendence degree of F over E. If
r = m, the result follows. Otherwise, let {y1, ..., y,} be a transcendence base. Then
Yr41 1s algebraic over E(yq, ... , Yr)-

Let p(T1, ..., T, T,4+1) € E[Th, ..., T, T,4+1] be a polynomial of minimum de-
gree such that p(y1, ..., yr, ¥r4+1) = 0.

Clearly, p(T1, ... , Ty, T, 41) is irreducible. We shall prove thatnot all 7;, 1 <i <

r+1, appear to the pth power throughout. Indeed, assume for the sake of contradiction
that

p(T, ..., Try1) = Za(il,.i.,i,H)S(il,“.,i,+1)(T17 s Tr)?, (8.9



8.2 Separable and Separably Generated Extensions 247

where the S, .. ;. ,)’s are monomials and ag,.... ;.. ) € E.

Taking the pth roots in (8.9), we see that the S, .. i, (V1,..., yr+1) are lin-
early dependent over E'/P_ Since p(Ty, ..., Ty, Ty41) is of minimum degree possi-
ble, it follows that {S¢,.....;,,)(V1, ..., Yr+1)} is linearly independent over E. This
contradicts the linear disjointness of EY/P and Eyi, ..., Ym).

Say that T does not appear as a pth root throughout but appears in p(7T1, ... , Tr+1).
Since p(Th, ..., Tr41) is irreducible in E[T7, ..., T,4+1] it follows that the equation
p(Ty, ..., T-41) = 0is separable for y; over E(y2, ..., ¥+1). Hence y is separable
and algebraic over E(y2, ..., yr+1) and over E(y2, ... , Ym)-

If {y2, ..., ym} is atranscendence base, the proof follows immediately. Otherwise,
proceeding as before we can show that one y;, say y,, is separable and algebraic over
E(y3, ..., yn). Therefore F is separable over E(y3, ..., Ym).

It is easy to see that we can go on with this process until we find a transcendence
base. This proves that (2) = (1). O

Remark 8.2.7. The proof of (2) = (1) in Theorem 8.2.6 shows that a separating tran-
scendence base for E(yy, ..., y) over E can be selected from a given set of genera-

tors {y1, ..., Ym}-
Theorem 8.2.8. Let F/E be an extension of fields of characteristic p.

(1) If F/E is separably generated, then F /E is separable.
(2) If F/ E is separable and finitely generated, then F | E is separably generated.

Proof.

(1) Let A be a transcendence base of F/E such that F/E(A) is an algebraic
separable extension.
It is clear that A is algebraically independent over E'/?. Hence, by Proposi-
tion 8.1.10, E'/? and E(A) are linearly disjoint.

E'P EVP(A)

E E(A) F

Now, F/E(A) is algebraic and separable and E'/?(A)/E(A) is algebraic and
purely inseparable. It follows that F and E'/7(A) are linearly disjoint over
E(A) (see the proof of (1) = (3) in Theorem 8.2.6). Thus, by Proposition
8.1.5, EV/? and F are linearly disjoint over E. Using MacLane’s criterion
(Theorem 8.2.6) we obtain that F/E is separable.

(2) Let F/E be afinitely generated separable extension, say F = E(y1, ... , Ym)-
By Remark 8.2.7 we may choose a subset of the set {y;, ..., y,} thatis a
separating transcendence base for F' over E. In particular, F/E is separably
generated. O
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Remark 8.2.9. The hypothesis that F/E is a finitely generated extension cannot be
dropped. Indeed, there exists an extension F/E that is separable but not separably
generated.

Example 8.2.10. Let E be a perfect field of characteristic p > 0. Then E'/? = E.
In particular, E'/7 and F are linearly disjoint over E and F/E is separable for any
extension F.

Let x be a transcendental element over E. Let F = E ({xl/ " }oo ) Then F/E

m=0

is separable and tr F/E = 1 (actually (xl/l’m)p = x € E(x); thus F/E(x) is alge-
braic). Let {y} be any transcendence base of F'/E. There exist n € N and a rational
function

f(Ty, ..., T)) e E(Ty,...,Ty)

such that y = f(x,x"?, ..., x/P"™"). Then E(y) # F since x'/?" ¢ E(y) and
F/E(y) is purely inseparable. Therefore F/E(y) is not separable and F/E is not
separably generated.

Corollary 8.2.11. If E is a perfect field, any extension F of E is separable over E.

Proof. Exercise 8.7.8. O

As a consequence of MacLane’s criterion we obtain the following corollaries.

Corollary 8.2.12. If F is separable over E and E € M C F, then M in separable
over E.

Proof. Exercise 8.7.9. o

Corollary 8.2.13. If M/E and F /M are separable field extensions, then F/E is sep-
arable.

Proof. Exercise 8.7.10. O

Proposition 8.2.14. Let F be a separable extension of E and assume that F is al-
gebraically disjoint from L over E with E C L. Then FL is a separable extension
of L.
Proof. The elements of F L are of the form M F——FL
2j=icjd,

with a;, ¢c; € F and b;,d; € L. In particular, any
finitely generated subfield of F L is contained in a
composite ML, where M is a subfield of F that is
finitely generated over E. If for any such M we
can prove that ML is a separable extension of L, the separability of F'L over L will
follow by Corollary 8.2.12 and Theorem 8.2.8 (2).

Therefore we may assume that F is finitely generated over E. Let {y1, ..., yn}
be a transcendence base of F over E. Since F and L are algebraically disjoint over
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E, it follows that {y, ..., y»} is a transcendence base of FL over L. Every ele-
ment of F is separable and algebraic over E(y1, ... , Ym), SO it is also separable over
L(y1,...,Ym)- Thus FL is separably generated over L. The result follows by Theo-
rem 8.2.8. O

Corollary 8.2.15. Let F and L be two separable extensions of E. If F and L are
algebraically disjoint over E, then F L is separable over E.

Proof. Exercise 8.7.11. O

Proposition 8.2.16. If F' and L are two extensions that are linearly disjoint over E,
then F is separable over E if and only if F L is separable over L.

Proof.

(=) Proposition 8.2.14 and Proposition 8.1.9.

(<) If F is not separable over E, then by MacLane’s criterion, F is not linearly dis-
joint from E!/? over E. Hence F is not linearly disjoint from L E!/? over E (Propo-
sition 8.1.5).

F F——FL

E El/P LEYP E L

LEVP Li/p
Using MacLane’s criterion we obtain that F L is not linearly disjoint from LE!/?

over L. Therefore FL and L'/? are not linearly disjoint over L. By Theorem 8.2.6,

F L is not separable over L. O

We are now ready to characterize separably algebraic finitely generated extensions.

Proposition 8.2.17. Let F be a finitely generated extension of E. If F'" E = F for
some m € N, then F is separably algebraic over E and FP"E = F for all n € N.
Conversely, if F is separably algebraic over E, then F*" E = F for allm € N.

Proof. If F P" E = F for some m, then F is an algebraic extension of E (see Exercise
8.7.16). Now F = F"™E C FPE C F. Therefore F = F?E. Furthermore, for all
n>1,FP"E = (FPY'"'E = (FPE)YY"'E = FP""'E. Thus FP"E = F for all
neN.

Let T be the separable closure of E in F. Then F is a purely inseparable extension
of T'. Since F is algebraic and finitely generated over E, F is a finite extension of E. In
particular, there exists n € N such that F p" C T.Itfollowsthat F = F P"E CTCF.

Conversely, let F be a separably algebraic extension of E. We have E C FPE C
F and F is a purely inseparable extension of F”E. Hence F = FPE. As before, it
follows that F = FP" E for all m € N. O
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8.3 Regular Extensions

We now study the class of extensions that we will be dealing with when we consider
extensions of function fields.

Proposition 8.3.1. Ler k be algebraically closed in an extension K. Let x be an ele-
ment of the algebraic closure k of k. Then k(x) and K are linearly disjoint over k and
[k(x) : k] =[K(x) : K].

k(x) K (x) Proof. Let p(T) = Trr(x, T, k) € k[T]. If g(T) € K[T]is a
nonconstant factor of p(T'), then the coefficients of ¢g(7T') are al-
gebraic over k. Since k is algebraically closed in K, we have

X K q(T) € k[T]. Hence p(T) is irreducible in K[T]. It follows that
over & [k(x) : k] = [K(x) : K] and that k(x) and K are linearly disjoirg

Theorem 8.3.2. Let K / k be a field extension, and let k be an algebraic closure of k.
Then the following conditions are equivalent:

(1) k is algebraically closed in K and K is separable over k.
(2) K and k are linearly disjoint over k.

Proof.
(1) = (2) By Remark 8.1.11 we may assume that K is finitely generated over k, and
it suffices to show that K and L are linearly disjoint over k, where L is any finite
algebraic extension of k. In this situation, if L is separable over k, then L is of the
form L = k(a), with o algebraic over k. The result follows by Proposition 8.3.1.

In general, if Ly is the maximum separable extension of k in L, then Ly and K

K—KL; are linearly disjoint over k. By Proposition 8.1.5, it suf-
fices to show that L and K L; are linearly disjoint over L.
Let {y1, ..., ym} be a separating transcendence base for K
k L, 1 over k. Then K is separably algebraic over k(y1, ..., Ym).
K————————KL;
k()’h ey )’m) - Ls(yls R} yWZ)

k Ly L
Since k(y1,...,¥Ym) and Ly are linearly disjoint over k (Proposition 8.1.10),
{y1,...,ym} is also a separating transcendence basis of KL over Ly, and KL
is separably algebraic over Lg(yy, ..., ym). Thus KL is separable over L. Since

L /Ly is a purely inseparable extension, it follows that K L, and L are linearly disjoint
over L.
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(2) = (1) We have k!/? C k, so k!/? and K are linearly disjoint over k. By Theorem
8.2.6, K /k is separable. If @ € k N K, then since K and k(c) are linearly disjoint, it
follows that [k(c) : k] = [K(«) : K] = 1. Hence @ € k and £ is algebraically closed
in K.

O

Definition 8.3.3. An extension K of k is called regular if k is algebraically closed in
K and K /k is separable, or equivalently, if K is linearly disjoint from k over k.

Remark 8.3.4. In the case of function fields K/k, we are assuming that k is alge-
braically closed in K. Therefore K /k is regular iff there exists x € K such that
K /k(x) is a finite separable extension.

Proposition 8.3.5. Let K be a regular extension of k. If k € K’ C K, then K' is a
regular extension of k.

Proof. Since K’ C K, K’ is linearly disjoint from k over k. O
Proposition 8.3.6. Regularity is transitive, that is, if K is a regular extension of k and
L is a regular extension of K, then L is a regular extension of k.

Proof. k is algebraically closed in K and K is algebraically closed in L. Therefore k is
algebraically closed in L. The fact that L is separable over k follows from Corollary
8.2.13. o

Proposition 8.3.7. If k is algebraically closed, then every extension of k is regular.

Proof. We have k = k. If K is any extension of k, then K is linearly disjoint from
k = k over k. The fact that K is separable over k follows from Corollary 8.2.11 since
k is a perfect field. O

The converse of Proposition 8.1.9 holds for regular extensions:

Theorem 8.3.8. Let F and L be two extensions of a field E such that F and L are con-
tained in some field Q2. If F is a regular extension of E, and F and L are algebraically
independent over E, then F and L are linearly disjoint over E.

Proof. By Remark 8.1.11 we may assume that F is finitely generated over E. Let

{ar, ..., an) be elements of F that are linearly independent over E. If {ay, ... , o}
are not linearly independent over L, let By, ... , B, € L be such that
,316(1 +"'+,3mam =0 (8.10)

and at least one of the §;’s is nonzero.

Removing the elements that are equal to 0, we may assume that 8; % O for all
1<i<m.

Let o: L — E U {oo} be a place of L such that ¢|g = Idg. Let {y, ..., yn}
be a transcendence base of F over E. Then {y1, ..., y,} is algebraically independent
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over L. We can extend ¢ to a place §: LF — F U {oo} such that §|g(y,... .y, =
Idgy,,.. .y Set ¥ = @|F. If & € F*, then & is algebraic over E(yq, ... , ym) = M.
Hence there exists a relation

Eta g™+ tatE+a =0

with ag, a1, ... ,a;—1 € M, and ap # 0.
Since ap # 0 it follows that ¢(¢) # 0. Similarly, ¢ (%) £ 0.Now 1 = w(l) =

W (S%) = V(E)w (%), so p(&§) # oo. Hence W is a field homomorphism and
o(F)=VY(F)ZF.
By Exercise 8.7.12, there exists an index jp (say jo = m) such thatw(ﬁi /,Bm) #* 00

for all i.
Dividing (8.10) by B,,, we obtain

5_;“1+§_;a2+...+am=o 8.11)

and hence

m
'3.
> so(—’ ¢(ai) =0,
i=1 ﬂ m

where w(%) € E. Consequently {p(ay), ..., ¢(oy)} are linearly dependent over
E. Since ¢ is an _isomorphisrn of F onto ¢(F), it follows that {«1, ... , &} is linearly
dependent over E. This contradicts the regularity of F'. Therefore F and L are linearly
disjoint over E. 0

Theorem 8.3.9. Let K be a regular extension of k such that K and L are algebraically
disjoint over k. Then K L is a regular extension of L.

Proof. Let y1, ..., yn be elements of K that are algebraically independent over k.
Then {y1, ..., yn} is algebraically independent over L.

Therefore m = tr L(y1, ... , ym)/L =tr L(y1, ... , ym)/L + tr L/L (Proposition
1.1.12). Since tr L/L = 0, it follows that {yy, ..., y,,} is algebraically independent
over L. In particular, K is algebraically disjoint from L over k.

By Theorem 8.3.8, K is linearly disjoint from L over k. Using Proposition 8.1.5
we deduce that K L is linearly disjoint from L over L. Hence K L is regular over L. O

Corollary 8.3.10. Let K and L be regular extensions of k. If K and L are alge-
braically independent over k, then K L is a regular extension of k.

Proof. Exercise 8.7.13. O
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8.4 Constant Extensions

Let K /k be an algebraic function field. Given any extension £’ of k we wish to obtain
the constant extension K¢’. In order to be able to construct K¢, we need two condi-
tions, first that K and ¢’ be contained in a larger field (see Section 5.4), and second
that K N ¢’ = k (see Definition 5.1.1). Given K and £, both conditions are not always
satisfied. However, we can construct a function field L over a constant field £ such that
£ contains a subfield that is k-isomorphic to £’

Proposition 8.4.1. If a field k is algebraically closed in K and {X;}ica is an
algebraically independent set over K, then k({X;}icA) is algebraically closed in
K({Xi}ica).

Proof. Let o € K({X;};c) be algebraic over k({X;};c4). There exists a relation
o + fred T 4t flat fo=0 (8.12)

Wlth va v fr—l € k({XI}IE.A)
Since only finitely many X;’s appear in (8.12), we may assume that A is a finite

set,say A = {X1,..., X,}.
We will prove the result by induction on 7.
Assume that n = 1 and X| = x. Let @ € K(x) be anonzero K —— K(x)
algebraic element over k(x). We may write o = Ai,%, where
h(x), g(x) € K[x], (h(x), g(x)) = 1, A is a nonzero element of
K, and h(x), g(x) are monic. k k(x)
There exist fy, ..., fr—1, fr € k[x] such that (fp, ..., f) =1 and
fr@)a” + -+ filx)a + folx)a = 0. (8.13)
Clearing denominators in (8.13) we obtain
F@A ) + fro)A ™ h) g () + - E14)

+ i) AR () + fox)g (x) =0.

Let a be a root of A(x) € K[x]. By means of the substitution x = a in (8.14) we
obtain

fo(a)g" (a) = 0.

Then g(a) # 0, since & and g are relatively prime. It follows that fo(a) = 0.

Thus every root of & is algebraic over k. Because A (x) is monic, the coefficients
of h are algebraic over k. Since k is algebraically closed, it follows that 4(x) € k[x].
Similarly, g(x) € k[x].

Now let a be aroot of h(x) — g(x). The equality 0 = h(a) — g(a) and the fact that
h and g are relatively prime imply i(a) = g(a) # 0.

Substituting x by a in (8.14) we obtain
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f@h@ A"+ -+ fil@h(@)g " a)A+ fo(a)g (@) = 0.

Now, fr,..., fi1, fo are relatively prime, so there exists i such that fj(a) # 0. It
follows that A is algebraic over k. Since k is algebraically closed in K, we have A € k.

Therefore a = A% € k(x) and k(x) is algebraically closed in K (x).

Now assume that the result holds forn — 1. Forn, leta € K(X1, ..., X,—1, X»).
Let £E = k(Xy,...,Xp—1)and F = K(Xq, ..., X,—1). By the induction hypothesis
E is algebraically closed in F. Since X,, is transcendent over F, it follows from the
case n = 1 that E(X,,) is algebraically closed in F(X,). Thusif « € K(X1, ..., X»)
is algebraic over k(X1, ..., X,,),thena € E(X,) = k(X1, ..., Xn). |

Theorem 8.4.2. Let K / k be an algebraic function field and let k' be any extension of
k. Then there exists a function field L /¢ that is an extension of K / k such that:

(1) There exist a subfield £’ such that k € ¢’ C £ and a k-isomorphism . : £/ — k'.
Q) L=K¢.

Moreover, if M/m is another extension such that there exist a subfield m’ of m
and a k-isomorphism p : m' — k' satisfying (1) and (2), then there exists a K-
isomorphism ¢ : M — L such that |,y =X opu:m' — €.

Finally, £ is a purely inseparable finite extension of £'.

Proof. First we construct a composite field L = K¢'. Let {y, }4e4 be a transcendence
base of k" over k.

Let {Xy}oca be an algebraically independent set over K. Then the cardinality of
{Xq}aena is the same as the cardinality of the transcendence degree of k" over k. Let
2 be an algebraic closure of K ({Xy}aen)-

There exists a k-isomorphism X; from k ({yy}ouea) t0 k ({Xu}aea) such that

K 2 Q Ak = Idg and A(yy) = X4. Since k' is algebraic
over k({yq}aea), A1 can be extended to an iso-
T T morphism of k" onto a subfield A,(k") =: £ of

k({yalaea) T) k({Xalaed) )

Then €2 contains both K and ¢/ = k’. Therefore we may take the composite field
K¢ in Q (see Remark 5.4.2).
Let T € K \ k be transcendental over k. If T is Q
not transcendental over ¢/, there exists a finite sub-
set {X1, ..., X;u} of the transcendence base {Xy}yeca
such that T is algebraic over k(Xl, ..., Xn). There- K K0 =L
fore there is a relation Y :_, /;T' = O where f; €
k[X1, ..., X;n] and at least one of the f;’s is a non-
constant polynomial. This implies that {X1, ..., X,,} k
is not algebraically independent over K. Hence T is
transcendental over £'. In particular, we have £’ N K = k.
Nowlet L = K¢'. Then ¢’ D kand [L : ¢/(T)] < [K : k(T)] < .

e/
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K K¢ =L
k(T) ¢(T)
k——

Therefore L /¢’ is a function field. Let £ be the field of constants of L. The field L/¢
satisfies conditions (1) and (2) of the theorem and [£ : ¢'] = [&(T) : £/ (T)] < [L :
2(T)] < oo.

Next, consider another extension M/m of K /k satisfying (1) and (2). We need to
find an isomorphism ¢ : M — L such that o|x = Idg and o,y = A~ o := 6,
where : m’ — k' is the k-isomorphism of m’ C m onto k.

D1 aibi
n

Now each element of M = Km' can be written in the form —
Jj=1%7%1

witha;, cj €
K and b;, d; € m’. Therefore o must satisfy
Q( iy aibi ) _ i aif®)
Y cjd; i)

Let o : M — L be given by (8.15). To prove that ¢ is well defined, we have to verify
that if

(8.15)

n n
0="> ab;, then 0= a0(b).
i=l1 i=1

We need to prove that g is an isomorphism and also that if the denominator } ", c;d;

is nonzero in (8.15) then o (Z']z: 1 cjd.,') is nonzero. Thus we have to show that

m

m
Y cfd)=0  implies Y c;d;=0.
j=I j=1

It will suffice to establish that for o; € k, B; € m/,
n n
> @i =0 ifandonlyif » a;0(8)=0. (8.16)
i=1 i=1

Since the expressions in (8.16) involve a finite number of elements, we may as-
sume that ¢’ is finitely generated over k.

Assume ¢’ is a purely transcendental field extension of k, say £’ = k(y1, ..., yu).
Thus m’ = k(z1, ... ,z,) withz; = 071(y;). If X € K is transcendental over k, then
X is transcendental over ¢. Hence

trK(y1, ...,y / k=0 KO, ...,y)/k(y1,...,y0) +trk(y, ..., y)/k
=l4+n=uK/k+trK(y,...,y)/K=14+t(KQ1,...,y)/K).
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Therefore tr K (y1, ..., yn)/K = n. It follows that yq, ..., y, are algebraically in-
dependent over K, and so are z7i,...,z,. Thus M = Km' = K(z1,...,2n),
L =K{ =K(O1,...,yns) and hence the map ¢ : M — L, such that o(z;) = y; for
1 <i < n, is the required isomorphism.

Further, in this case, L = K¢ = K(yi,..., y,) satisfies that the field ¢’ =
k(y1, ..., yn) is algebraically closed in L (Proposition 8.4.1) so that the field of con-
stants of L is £ = ¢'.

Also, to prove the pure inseparability of £/¢ and m/m’, it suffices to assume that
¢'/k and m'/k are finitely generated. Therefore, to prove the general case we may
assume that ¢'/k and m’/k are finitely generated.

K —— K{"=K@Ui1,...,ym) —— K’ =1L
k —— =k, ,ym) —— v
Suppose ¢’ is finitely generated and let {y1, ... , y,} be a transcendence base of ¢’
over k. Consider £” = k(y1, ..., y,). Then £ /£” is a finite extension and similarly

for M/m’.
Let o be the isomorphism
o: Km" — K’
zit—>y (1 <i<n).
In order to find an isomorphism ¢;: M — L such that o1|g,,» = o will follow

from the fact that M/Km' is a finite extension. Thus we may assume that ¢'/k is a
finite extension.

K —— Km"=K(zi,...,2m) —— Km'=M
k —— m'=k(z1,...,2n) ——> m’
Let £ = k(aq, ... ,a,), where «; algebraic over k for 1 < i < n. Assume that

the result holds for n — 1 and let £; = k(«y,...,a,-1). We have L1 = K¢ =
K(otp, ..., an—1). Let Bi =0 Ya;)) 1 <i <n—1),m =k(Bi,...,PBu1), and
My =Km; =K(B1,...,Bu-1).Setm’ = m(B,) and let £, and m, be the algebraic
closures of ¢1 and m in L and M respectively.

K—L; K—M,
2 mz
k A k ——mq
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By the induction hypothesis, there exists an isomorphism o1 : M; — Lj such

that g1],, = 0 : m —> ¢y and o1lxk = Idg. Also, £2/€1 and my/m are purely
inseparable.

Leta, =aand B = 0~ 1(a). Then L = L (@) and M = Mi(B).

It suffices to extend o; to an isomorphism o : M — L such that o(8) = o and
that the constant field £ of L is purely inseparable over £, (and hence over £').

In other words, g1 can be extended to g if

o1Irr(B, X, My)) =Irr(e, X, L1).

Let p(X) = Irr(B, X, M1) € M [X]. Since B in algebraic over k, the coefficients
of p(X) are algebraic over k. Hence p(X) € my[X]. Now, since my/m is purely
inseparable, it follows that Irr(8, X, m1) = Irr(B, X, Ml)f’[ for some # > 0 (where p
is the characteristic).

Since 6 is an isomorphism of m’ = m(B) onto £’ = £{(«) with 8(8) = «,
we obtain that 0(Irr(8, X, M)?") = o1(Irr(B, X, M1))? = Trr(e, X, €1). Since
o1(m1) = £1, we have p1(my) = €. Hence o (Itr(B8, X, M1)) = Irr(e, X, L1) be-
cause o1 (Irr(B, X, My)) is the only irreducible factor of o1 (Irr(8, X, Ml))l’r over £;.

This shows that o can be extended to an isomorphism with the required properties.

It remains to prove that the field of constants £ of L is purely inseparable over £'.
Now since ¢; is purely inseparable over ¢1, £2() is purely inseparable over £1(a) =
¢'. Hence it suffices to prove that £ is purely inseparable over €5 ().

K——L; L=K/{
£
by — L ()
k £ () =4

Since 5 is algebraically closed in L1, we have Irr(, X, L1) = Irr(a, X, £3), so
[Li(er) : L1] = [€2() : £2]. (8.17)
If x e L is transcendental over £/, we have
[€2(a, x) : £2(x)] = [€2(e) = £2] (8.18)

(Proposition 2.1.6).
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Now

[Li(e) : L2(x)] = [Li(a) : L1][Ly : €2(x)] = [L1(@) : £a(a, X)][€2(et, x) : £2(x)].

(8.19)
From (8.17), (8.18) and (8.19) we obtain
(L1 6(x)] = [Li(a): fz(a,X)][fz(ot,X) 1l (x)]
[Li(@): Li] (8.20)
_ L@ e D@ el '
[€2(e) : La] R

Let § be a constant of L («), thatis, § € £. There exists r € N such that 87" is separably

. . t ryo. . .
algebraic over £; (). Being 67 separable over €3 (), £2(ct, 87 ) is a simple extension
£>(y) of £>. We have, by (8.20),

[Li(@) : (@, 8", x)] = [Li(y) : L2(y, )] = [L1 : £2(x)]. (8.21)
Using (8.21) with L («) and € («), we obtain
[L1@) : €a(er, 87, )] = [L1(@) : La(et, X)].

Hence €5 (e, 87, x) = €»(at, x) and 87" € £5(ax, X).

Since 87" is algebraic over £,(«) and ¢ (o) is algebraically closed in £2 (¢, x), it
follows that 87" € £>(a) and § is purely inseparable over £> ().

This completes the proof of the theorem. O

Remark 8.4.3. Example 5.2.31 shows that the field of constants of K ¢’ can contain £’
properly.

Our next result characterizes when the field of constants K¢’ is £’.

Theorem 8.4.4. Let L = K{' be a constant field extension of K such that the field of
constants £ contains {'. Then the following conditions are equivalent:

(i) K and € are linearly disjoint over k.
(ii) For every finitely generated field £y over k such that £y C €', the constant field of
Lo := K{g is {p.

If these conditions are fulfilled, then for any extension £y over k such that £y C £’
(not necessarily finitely generated), the constant field of Ly := K{y is £y. In particular,
the field of constants of L = K{' is €.

Proof.

(i) = (ii) Let k € £y S £'. Let £; be the field of constants of Lo = L£o, and we
have £y C 66 C ¢£. It follows from (i) and Proposition 8.1.5 that 66 and K are linearly
disjoint.
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K KE(/) =Ly
k(x) Lo (x) £o(x)
k Lo £

Let x € K \ k. By Proposition 8.1.5, k(x) and £; are linearly disjoint over k, and K
and £yk(x) = £,(x) are linearly disjoint over k(x).
Since £o(x) C £(x) and Lo = K£o(x) = K£;(x), we have

[Lo : £5(x)] < [Lo : €o(x)] < [K : k(x)]. (8.22)
On the other hand, since K and % (x) are linearly disjoint over k(x), we obtain
[Lo: £5(x)] = [K : k(x)]. (8.23)

From (8.22) and (8.23), it follows that £o(x) = £((x).

Since x is a transcendental element over £;, using Proposition 2.1.6 we deduce
Lo = £.
(i1) = (i) To prove that K and ¢ are linearly disjoint over %, it is enough to prove that
any finitely generated subfield of £ over k is linearly disjoint from K over k (Remark
8.1.11).

Let £o be a finitely generated subfield of £. We have {9 C L = K{¢ =
U% finitely generated over k K €0 Therefore €9 € K¢, for some finitely generated ex-

kcepce

tension £, of k contained in £. Since the field of constants of K¢ is £, we have
oSy .

Therefore it is enough to prove that any finitely generated subfield £y of ¢’ over k
is linearly disjoint from K over k.

Let 69 = k(ay,...,qy) with k;, = k(ay,...,a;) and K; = Kk; fori =
I,...,m.

Ko=K K K> K; K,, = K¢

By Proposition 8.1.5, it suffices to show that k; and K;_ are linearly disjoint over
ki_yforl <i <m.

By hypothesis the field of constants of each K; is k;, so that k; is algebraically
closed in K; for 0 < i < m. Since k; = k;_1(«;), by Proposition 8.3.1 k; and K;_
are linearly disjoint over k;_1. This proves (i).
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Notice that the proof of (i) = (ii) actually shows a stronger statement, namely
that if K and ¢ are linearly disjoint, then the field of constants of K £y is £y for any
k C £y C ¢'. This finishes the proof of the theorem. O

Remark 8.4.5. The conclusion of Theorem 8.4.4 would not hold under the mere hy-
pothesis that K and ¢’ are linearly disjoint over .

Example 8.4.6. Let ko, £o, u, v, k, and K be as in Example 5.2.31. Since k is alge-
braically closed in K and £y = k(v'/?) with v!/? algebraic over k, it follows by
Proposition 8.3.1 that K and ¢ are linearly disjoint over k. However, the field of con-
stants of K is £ = k(u!/?, v/P) 2 bo.

Corollary 8.4.7. If either K or ' is separable over k, then the field of constant of
L=K{list=1¢.

Proof. By Theorem 8.4.4, we may assume that ¢’ is finitely generated over k. If ¢’
is purely transcendental, the field of constants of K¢’ is £ = £ (Proposition 8.4.1).
Therefore we may assume that ¢’/ k is a finite extension.

If ¢/ k is separable, then £’ = k(«), where « algebraic and separable over k. Since
Irr(e, T, K) divides Irr(e, T, k), it follows that L = K(«) is a separable extension
of K.

K—— L Now if B € £, we have Irr(8, T, K) € k[T]. Hence B is
separable and £/¢’ is separable. Since by Theorem 8.4.2 £/¢' is
a purely inseparable extension, it follows that ¢ = ¢'. Next, as-

k(x) ¢(x) sSume that K / k is separable. Let x € K \ k be such that K /k(x)
is a finite separable extension. Then L is a finite separable exten-

sion of £/(x), and hence £(x) /¢ (x) is a finite separable extension.

A v Therefore ¢/¢’ is separable (Proposition 5.2.20). Again we obtain

L=1. O

Corollary 8.4.8. If either K or ¢’ is separably generated over k, then the field of con-
stants of KU is £ = (.

Proof. Since a separably generated extension is separable (Theorem 8.2.8), the result
follows by Corollary 8.4.7. |

Remark 8.4.9. If k is a perfect field (for example k algebraically closed, of characteris-
tic 0, finite), then any function field K / k is separable (Corollary 8.2.11). Thus for any
extension £ of k, the field of constants of the constant extension L = K/ is £. Hence,
Theorem 6.1.2 is a particular case of Corollary 8.4.7

Now we study the constant A7,k introduced in Theorem 5.3.4, that is, if L/K is
any function field extension, there exists Ay /x € Q™ such that dg () = Ap, /kdp(20)
for any divisor 2{ € Dg.
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Theorem 8.4.10. Let L = K{' be a constant field extension. If the characteristic of k
is 0, then Ak = 1, and if chark = p > 0, then Ap;x = p' for some t € N U {0}.
Furthermore, if £ is the field of constants of L, Ay jx = 1 if and only if K and £ are
linearly disjoint over k.

Proof. Let x € K \ k and 2 = 3,. By Theorem 3.2.7 we have
dg(RQ) =[K : k(x)] and dp () =[L:£L(x)]. (8.24)

Hence Apjxk =1 = dx(A) =dL () < [K :k(x)] =[L : £(x)].

Now [K : k(x)] = [L : £(x)] if and only if K and £(x) are linearly disjoint over
k(x). Since the field of constants of £(x) = k(x)£ is £, it follows that k(x) and ¢ are
linearly disjoint over k (see the proof of Theorem 8.4.4). Therefore Ay ;¢ = 1 if and
only if K and ¢ are linearly disjoint over k.

K L
k(x) £(x)
k—4

If char k = 0, then K /k is separable, and by Corollary 8.4.7, K and £ are linearly
disjointand A g = 1. Letchark = p > 0 and let K be the separable closure of k(x)
in K. Set Lo = Kot'. Since Ko/ k is separable, it follows that Ky and ¢’ are linearly
disjoint over k. Thus [Kq : k(x)] = [Lo : €' (x)].

K L=K{
Ko Lo
k(x) £ (x)
k v

Also, K /Ky is a purely inseparable extension, say of degree p* with s > 0. Hence
L /Ly is a purely inseparable extension, say of degree p* with so < s. We have
[K k()] [K k@))€ ()]
AL/K = . = y
[L:€(x)] [L:¢(x)]
_ [K: Kol[Ko : k(x)]
[L: LollLo : €'(x)]

[€:0]=p' % ¢1.
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Since £/¢’ is a finite purely inseparable extension, then Ay, /K = p' for some ¢ > 0.
O

Assume that k is a finite field, K /k a function field, and L = K¢ a constant ex-
tension. If %P3 is a place of L and p its restriction to K, then the residue fields satisfy
k()¢ = £(P) (Theorem 6.1.4). We study this property for arbitrary constant exten-
sions.

Theorem 8.4.11. Let K /k be a function field and let L = K{ be an extension of
constants. Let 3 be a prime divisor of L lying over the prime divisor p of K. If £ is a
separably generated extension of k, then the residue fields satisfy

LCP) = k(p)L.

Proof. By Proposition 8.2.16 and Corollary 8.4.7, L is a separably generated extension
of K. First we assume that £ is purely transcendental over k. Since k(p) is an algebraic
extension of &, then k(p) and ¢ are linearly disjoint over k (Corollary 8.1.13). For any

y € O, puty = y mod P € £(P) = g/ P.
Lety € 93 C L, y # 0. Then y can be written in the form

n
Z a;b;
y = ’m:l— for some a,-,a;- e K and b,-,b;- e, (8.25)
/BN,
2 ajb]
j=l1

where {b;}?_, and {b/j }71:1 are chosen to be linearly independent over k.
Let a, B € K be such that

vp(a) = — 1r<nii£1n vp(a;) and vp(B) = — 1£nji£m vp(a}). (8.26)

We have vp(aa;) = vp(a) + vp(a;) > vp(a) + minj <<, vp(a;) =0, so aa; € Vyp.

Similarly, vy (,Ba;.) > 0 for 1 < j < m. Also, there exist indices i, jo such that
1 <ip <nand1 < jo < m, vp(aa;)) = 0, and vp(,Ba;.O) = 0. Thus aa;, # 0 and
,Ba}o # 0 in k(p).

It follows that 37| aa;b; € 9y and } 7, pa’;b’; € Ig.

We also have > !  aaibi = > i (xaj)b; # 0 and 27:1 ,Ba;-b/j =
Z']’-’:l (,Ba;.)b; # 0 since {b;}!_, and {b;};f'zl are linearly independent over k,

,Ba}o # 0, and £ and k(p) are linearly disjoint. In particular,

n m
v (Z ota,-ﬂ,-) =0 and vy <Z ﬂa}b;) =0.
i=1 =1

Now
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o n m )
ng(g)’) = vfp(a) + vgp(Z aib,-> — U“B(Z IBajb/j)
i=1 =
= vp@) + ”‘B(Z ai’)i) = vp(@) + min {U‘I?(ai) + vsn(bi)}
i=1 <i<n

= vp(a) + lrgiign{vm(ai) + 0} =0.

Hence %y € Yy,

and Y7, (aa;)b; # 0, Z’}’Zl (,Ba;-)b; # 0. Therefore % £ 0in k(p)L.

Since y € ¥, we have g €vpandy = (g) (%) € k(p)e.

This shows that £(3) € k(p)¢ < £(P) or £(B) = k(p) when £ is a purely
transcendental extension of k.

Now assume that € is separably algebraic over k. Any element o € £(*3) = P/B
is the image @ = y of an element y € K¢/, where ¢ a finite extension of k. Therefore,
if we prove the theorem for finite separable extensions, it will follow that « € k(p)¢’ C
k(p)£ and thus £() € k(p)¢, so the theorem will be established for any algebraic
separable extension of k.

Suppose that ¢ is a finite separable extension of k. Then £ is a simple extension of
k : £ = k() satisfying [£ : k] = n. Let P = ‘B .. Bj be all prime divisors of L lying
over p. Let L’ be the Galois closure of L/K and let B be a prime divisor of L’ lying
over B. For any o € Gal(L'/K), we have 08|, = B for some ;.

Pick y € £(13). By the approximation theorem (Theorem 2.5.3) there exists an
element £ € L such that

vp( —y) >0 and vqg_/.(é)zO for 2<j<h.

In particular, E = y. By Theorems 5.3.4, 8.4.4, and 8.4.10 and Corollary 8.4.8, we
have & € L = K¢ = Kk(a) = K () and Az x = % =1
Thus

[K(e): K]I=I[L:K]=1[£:k]=[k(x): k]
It follows that & can be written uniquely in the form

1

E=ay+aja+--+a,_1&" with a,€K,i=0,...,n—1. (8.27)

Taking a conjugate for £ in (8.27), we have
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D =ay+ a0+ +a,_1 @) for 1<i<n. (8.28)
Since « is separable of degree n over K, the Vandermonde determinant

1M ... (@Dt

det| @ : = 1_[ (a(i) - a(j))

La® ... @yt | i
is nonzero, so (8.28) has a unique solution (ag, ... ,a,—1) in K", where for t =
0,...,n—1,
La® . gD L gyt
La® ... g0 . (gmyn—1
a = 5 @) :Z—’ with d € £\ {0}.

a ... (Myr=1 . (Hyn—1
la (a'') (a'')

La® ... @my=1 ... gy
Now
vs(ED) = v,-13(6) = ey (07" BIP vy, (§) = 0, (8.29)

where o € Gal(L'/L) is such that o0& = £ and P; = o 1B,
From (8.29) we obtain that

v(a) >0, vp(a) >0, and wvp(a) > 0.
Thus a; € ¥y and

Y=E=ag+aia+--+a_1a""" € k(p)L.

It follows that £(%3) = k(p)£ when £ is separably algebraic over k.
The general case follows immediately since £/ k is separably generated. O

In the process of proving Theorem 8.4.11, we have obtained the following:

Proposition 8.4.12. Let K/ k be a function field and € a purely transcendental exten-
sion of k. Let L = K{, B3 a prime divisor of L, and p = B|k. Let {by,... ,b,} C ¢
be a system that is linearly independent over k. Then for ai, ... ,a, € K, we have

1<i<n

vm(Zaibi> = min vp(a). (8.30)
i=I
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Proof.Letay, ... ,a, € K witha; # 0 for some index i and set@ = — minj<; <, Vp(a;).
Then as in the proof of Theorem 8.4.11, we have vy (aa;) > 0 and there exists an index
ig such that 1 < ip < n and vp(aa;,) = 0 and @a;, # 0 in k(p).

It follows that Y /_, aa;ib; = Y i_, (aa;)b;, and hence v (Y1, wa;b;) > 0.
Now ¢ and k(p) are linearly disjoint over k, {b1, ... , b,} C £ is linearly independent
over k, and hence {by, ..., b,} is linearly independent over k(p) and aa;, # 0, so
S, (aa;)b; # 0. Therefore

v () + vep (Z aibi> = Um(Z aa,-bi) =0= 1r<nl_i£n vp(aa;)
i=1 i=1 - =
= vp(a) + ]min v (a;)- O
<i<n

We also have the following result:

Proposition 8.4.13. With the hypotheses of Proposition 8.4.12, for each prime divisor
p there exists a unique prime divisor i3 in L lying over p.

Proof. Since £(°B) /¢ and k(p)/k are finite extensions, it follows that £(]3) is a purely
transcendental extension of k(p) and any transcendence k(p) k(p)e = £(P)
base of ¢ over k is also a transcendence base of £(]3)

over k(p). Also, £ and k(p) are linearly disjoint and the
structure of £(J3) is uniquely determined; namely, for
any transcendence basis {«;};c; of ¢ over k and basis

(B Yy of k(p) over k, we have £(F) = k ((ei}ien) (18517 ).

Given any two prime divisors B3, 3’ of L lying over p and using the notation of the
proof of Theorem 8.4.11, we have Y = (g) (%) forany ¥ € v, where @, 8 € K,
b ¢ Up = K Ny = K N Pqy, and the definition of Y depends only on K, p, and ¢

o

and not on P and P’. It follows that Pz = gy and hence P = P’ i

k—«¢

8.5 Genus Change in Constant Extensions

The genus of a geometric extension L/K has been studied in previous chapters, for
example in Section 4.3. In Chapter 9 we will examine the general case of the genus of
a separable extension L of K (Theorem 9.4.2).

In this section we consider the case of a constant extension L = K¢’ of K, where
£ D ¢’ is the field of constants of L.

Proposition 8.5.1. If A jx = 1, that is, K and £ are linearly disjoint over k, then
gL < gk. For any divisor q € Dk, any basis of Lk (q) is a subset of a basis of L (q).
In particular, £k (q) < £1(q).
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Proof. We have Lx(q) € Lp(q). If @1,...,0, € Lk(q) are linearly independent
(over k), then «q, ... , «, are linearly independent over ¢ since K and ¢ are linearly
disjoint. Hence £x (q) < £1(q).

Now choose q € Dk such that dx(q) > 2gx — 2 and dr.(q) > 2gr — 2. By
Corollary 3.5.6 we have

k@ =di(q) — gk +1

and
@ H=di@—gL+1 (8.31)

Since Ap/xk = 1, it follows that dg (q) = dr(q). Also, ZK(q’l) < EL(q’l). From
(8.31) we obtain

—gK+1§—gL+1. O

Theorem 8.5.2. If ¢’ is separably generated over k, then g; = gk and any basis of
Lk (q) is also a basis of L1(q) for any q € Dk . Hence €k (q) = £1(q).

Proof. Suppose the result has been proved for £’ = k(y) with y transcendental and for
U/ = k(a), where « is a separable algebraic element. For ¢’ separably generated over
k,let z € L1 (q). Then z belongs to a field Lo = K £g, where £ is a finitely separably
generated extension of k, so z € Lj,(q). By induction on the transcendence degree
of ¢op over k, and using the finite separable case, we obtain L;,(q) = Lg(q){o. It
follows that L7 (q) = Lk (q)¢ and £ (q) = £k (q). The proof of the equality gx = g1
proceeds along the same lines as that of Proposition 8.5.1.

Therefore we assume first that £ = k(y) with y transcendental over k. Let & €
L1 (q). Then & can be written uniquely as

_ SO Yieay
s Xobjyl
with f(y), g(y) € klyl, (f,g) = 1,and by, = 1.

Let 3 be a prime divisor of L lying over an arbitrary prime divisor of K. Using
Proposition 8.4.12 we obtain

£

(8.32)

vsp(g(y)) — vm(z b.,'yj> = min {Um(bj)} = 055_1’1;”1'111{0, Uip(b/)} <0.

=0 0<j<m
(8.33)

Statement (8.33) implies that vgp(S(g(y))) = 0 for any place of L that is not variable
over K ; thus the only possible prime divisors that occur in the zero divisor of g(y) are
those that are variable over K.

Now & € L1 (q), so

3o Mo

&g =
N rondeond
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is an integral divisor in L. Since (3(g<y)), ‘ﬁ(g(y))) = 1, any prime divisor dividing
3(g(y)) must divide 3(#(yy). Moreover, f and g are relatively prime, so

afy)+B(0egky) =1 (8.34)

for some a(y), B(y) € k[y].
If 9 is any prime divisor of L that is variable over K, then if a(y) = Y j_ ce ¢,
then vy (cg) = 0 for ¢y # 0 and vy (y) = 0. Therefore

vo(a(y)) = min valeeyh) = Orgggs<uQ(cz) + ng(y)) =0. (8.35)
Similarly,
v (B(y)) = 0. (8.36)

From (8.34), (8.35), and (8.36) we obtain

0 = va(1) > minfvg (@) + va(f (), va(BO)) + valg()}
> min{va(f (), va(g()}.

It follows that 3 f(yy and B(g(y)) cannot have a common prime divisor. Thus

3(g(y) =MNand g(y) = 1.
Using (8.32) and Proposition 8.4.12 we obtain that for any prime divisor p of K,

vp(§) = vp(f(y) = Ofgiiln{vp(ai)} > vp(q). (8.37)

Thus a; € Lk (q). It follows that Ly (g) is the vector space generated over £ = ¢’ by
L1 (q) or, equivalently, Lx (q)¢ = L (q).

Since K and ¢ are linearly disjoint, we get £x (q) = €1 (q). This proves the theorem
in the case £’ = k(y), where y is a transcendental element over k.

Now we consider the case £’ = k() where « is a finite separable element over k.
Let& € L1 (q). Then & can be written uniquely in the form

E=cot+cia+ - +cp_10" ' where ¢; €K (i=0,....,n—1) (8.38)

and n = degIrr(o, x, k) = deg Irr(a, x, K).
Let L be the Galois closure of L/K. By changing each side in (8.38) into its
conjugate, we obtain

D =co+cia +- -+ (@) for 1<i<n. (8.39)
Since « is a separable element, we have

1a® ..o (@Dyn-1
A=det|: : =[]@? —a") 50,
1a® ... (a(n))n—l i>j



268 8 Constant and Separable Extensions

where A € £.
Therefore there exists a unique solution to the system of linear equations (8.39),
namely

La® oo (@)=t gM Myl o (g (Dyn=1

La® . @yl g0 (Y L (yi-]

ay = A
b
ZZt for 0<t<n-—1. (8.40)

Each b; is a linear combination of E(i) with coefficients in £’ = £. Since q € Dk and
& € L, (q), it follows that gD = go ¢ Ly, (q°) =Lp,(q) forsomeo : L — Ly
whose restriction to K is the identity. Thus a; € Ly, (q) N K and a; € Lg(q).
Therefore L;(q) = Lg(q)f and the equality £7,(q) = €x(q) follows from the
linear disjointness of K and £ over k. O

In Proposition 8.5.1 we obtained g; < gx when Ay ,x = 1. This inequality is true
for any constant extension. Actually, the following general result holds:

Theorem 8.5.3. For any constant field extension of function fields L of K, we have
AL/K8L < &K-
In particular, g1 < gk.

Proof. Let L = K{' and let A be a transcendence base of £'/k. Set £y = k(A)
and Lo = K{y. By Corollary 8.4.8 and Theorem 8.4.10, we have proved A,/ x =
1. Hence gr, < gk (Proposition 8.5.1). Since Ap/xk = ApjroALy k. if We prove
AL/Lo8L = &L, it will follow that

AL/KEL = MAL/Lo&L = 8Ly = MLo/K &Ly = &K -

Therefore we may assume that £'/k is an algebraic exten- g Kt =L
sion. First consider the case that £’ is a finite extension of k.
Then [L : K] = m < n = [¢ : k]. We can take a subset
{ar, ..., 0} of abasis {a1, ... , a,} of £/ over k that is a basis X ¢

of L over K. Let X/, be the vector subspace over k of the repar-
titions of K such that if £ € X’K and p € Pk, then £(p) € K C K. Similarly, define
X over £.

Letg: []/L, X% — X be defined by

(p(§19"' ’Em)ZQ

where for any place 3 of L,
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m
O(P) =) &P € L C Ly
i=1

and PB|x = p is the prime divisor in K.
Then 6 belongs to X because &;(p) € ¥y for almost all p € Pg. Furthermore,
since {1, ... , oy} is a basis of L/K it follows that ¢ is a k-monomorphism.

Let %2 =g (]_[:"_ 1 .’{’K> C X/ . Then f{g is a vector subspace of X/, (over k).

If Xq,...,Xm € K and the &§x; = (X;)pep, are the principal repartitions, then
9(&x,. ... . &x, ) =& whenever y = > o; X; € L.

It follows that L C %g. Let q be any divisor of K. Then if X/, (q) := X.(q) N X/,
we have

X) +X)(a) S X (8.41)

Letf € X} and p € Pg. Let Py, ... , Py be the prime divisors of L lying over p. By
the approximation theorem (Theorem 2.5.3), there exists y, € L such that

v, (yp - 9(%)) > v, (q) for 1<i<h (8.42)
Let § € X/, be defined by

yp if P | pandvgp(q) #0,
S(P) = {yp P |pand vg (O(P)) < 0 for some P’ | p, (8.43)
0  otherwise.

Let P € P and p = Pk If vp(q) # 0 or vy (¥ (P')) < 0 for some P’ dividing p,
then 6(B) = yp, so

(0 — 8 (P) = vp(O(P) — yp) = vip(a).
Now if vp(q) = 0 and vy (A (P)) > 0 for every B’ | p, then

vp((0 — &) (P)) = vp@(P)) = 0 = vgp(@).

It follows that 6 — § € X, (q).
For any p € Pk, let yp € L be defined as in (8.42).
Let yp = > /L o Xip, Xip € K and 8] € X be given by

Xip ifvp(q) # 0 or v(q) < O for some ‘P | p,
0 otherwise.

8/ (p) =

Then (8], ..., 8,)(P) = X7, a;8/(p) = 8(P). Thus § € X, and 0 = (9—5)+8 €
X, (q) + %2. It follows that
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X S X) + X ().
Using (8.41) and (8.44) we obtain
L= X7 + X ().

By Exercise 3.6.16 and Corollary 3.4.6 we have

x/
dimy & =gk
XM+ K
and
L
dimg ——=—— =g;.
Moy +k St
Using (8.46) we obtain
m x/ m_ x/
mgg = dlmk l—[</—K) = 'mk ) 1_[1/_1 K .
i\ XD+ K [TZ X O + K)

Applying the k-monomorphism 6, we get

0
L

mgg = dimy ———,
XNon+L

where X9 (q) := ¢ ([T"_, X (@)) € X, forany q € Dg.
On the other hand, by (8.45),

/ /
L

k= dimy
X, +L X 00+ L
X 4+x,M+L x0
= dimy 0 p .
X, +L X n@,O)+1L)

ngr = ndimy

= dimk

Now X9 () + L € XY n (X} (M) + L), so
xp
X N@, o) +1L)
x9 Xn@,On+L
dimk O—L _ dlmk L 0( L( ) + )
Xy +L Xon+L

XNn@, O +1L)

Xoy+L

ngp = dimyg

=mgg — dimg

Therefore

(8.44)

(8.45)

(8.46)

(8.47)
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ngr < mgg. (8.48)
By Theorem 5.3.4, we obtain
AL (8.49)
LE=IL Kl " m :

Therefore it follows from (8.48) and (8.49) that
n
AL/KEL = —8L =< K-
m

Next, consider £’ to be an arbitrary algebraic extension of k. Let x € K \ k and set
r:=dgMy) =[K : k(x)] and s:=dp (M) =[L: L(x)].

Any basis {«1,..., -} of K over k(x) spans L over £(x). Thus we obtain r — s
relations

r
Zaici./:() (j:1,2,...,r—s),
i=1

with coefficients ¢;; € £(x) and such that the » — s vectors (cyj, ... , ¢,;) are linearly
independent over £(x).

Notice that ¢;; € £(x), so the coefficients of ¢;; belong to a finitely generated
(and thus finite) extension £, of k, with £, C £. Clearly, Lo = L, is spanned by
{a1, ..., ) over £y(x) and c;; € £((x). Therefore if £g is the field of constants of
Lo, we obtain

dry(My) = [Lo : Lo(x)] < [Lo : £(x)] < s = dL(My).

It follows that

diy ) _

]SAL/LOZW_
X

and hence Ay, = 1. Using the case of a finite extension and Proposition 8.5.1, we
deduce that

ML/K8L = MLo/KML/Lo8L = ALo/K8Ly = 8K - =
Corollary 8.5.4. With the hypotheses of Theorem 8.5.3, if A\p jx > 2, then

AL/K8L < K-

Proof: Suppose A1,k g1 = gk - Let w be a nonzero differential of K.
We have
dg((w))  2gx —2
AL/K Ak

dp((w)) =

Thus Ap/k | 2gx —2. Now Ar kgL = gk implies that A /g divides g and therefore
Ar/k divides 2. O
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Remark 8.5.5. If Ak = 2, it is possible to have

AL/k8L =28L = gk

Example 8.5.6. Let k be a field of characteristic 2 and let «, o; be elements of k
12 172

satisfying [k(o)’ ", a)’") : k] = 4 (see Example 5.2.31). Let x be a transcendental
element over k and let y be such that
y? = a0+ arx’. (8.50)
By Example 5.2.31 (with p = 2), if K = k(x, y), then
[K:k(x)]=2=dMx) (8.51)

and the field of constants of K is k.
If /B is any place of K such that vez(y) < 0, we have

2v(y) = vp(y?) = vp(ao + a1x?)
= min{vsp(ao), vp(a) + 2vq3(x)} = 2vg(x).

Similarly, if vp(x) < O then vg(x) = wvgp(y). It follows that N, = N,. Thus

1, x, xz, XNy, vx, .., yx”_1 € L(M") and these elements are linearly inde-

pendent. In particular,
L") = 2n + 1. (8.52)

Using the Riemann—Roch theorem (Corollary 3.5.6), (8.51), and (8.52), we obtain
for n large enough

21 <L) =dW) —gk +1=2n—gg + 1.

Hence gx = 0.
Now set ¢/ = k(aé/z). We have [56(041]/2) : Eé] = 2. Put L = KZ/. Since
ik 8L < gk =0, it follows that g; = 0.

By Exercise 5.10.17, the constant field of L is £ = k(aé/z,ai/z) and L =
0, y) = kleg? ) (x, ).
Now y2 = ap + a1x2, so y = oc(l)/z + a;/zx € k(oc(l)/z, a}/z)(x). Consequently
L = k(ay/*, @,"*)(x) = €(x) and dp. (M) = 1. Therefore
CdgMy) 2
FET g T

An interesting remark is that this example covers the general case:

Proposition 8.5.7. Let L = K{' be a constant extension such that g; = gg and
Ak > 1.Then g = gg =0, Ak =2, K = k(x,y) with y2 =« +ﬁx2, o, B ek
such that [k(a'/?, BY/2) 1 k]l = 4, and [¢' (@2, B1/?) - 0] < 4.
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Proof. If g1 # 0, then g, < Ar/xkgL < gk = gr- Therefore gx = g1 = 0. By
Corollary 8.5.4, we obtain Ay /g = 2.
Let W be the canonical class of K. By Corollaries 3.5.5 and 3.5.6, we have

dgW™H=2 and Ng(W™hH=3.

Let q be a integral divisor in W' with dx(q) = 2 and £x(q~!) = 3. Let {1, x, y}
be a basis of Lx(q~!). Now x € kand x € Lg(q~"), so q~! divides (x), M, divides
q and dy (q) = 2. It follows that dx (I1y) is 1 or 2. If dg (M) = 1, then K = k(x)

(Theorem 3.2.7). Thus L = K¢’ = ¢/(x) and dy, (M) = 1. This is impossible because

dg (Ny)
ALK = dlz(‘ﬁ) > 1.

Therefore we have dg (M) = 2,91 = q, and
[K:k(x)] =dg D) = 2. (8.53)

Now consider y. If y € k(x), we have y = ﬂx) with f(x), g(x) € k[x] and (f, g)
1. It follows that

3 deg g—d
Mk = (f)‘ﬁ egg— egf

3
Since y € LK(q’l) = LK(‘JI’]) (M &Ny is an integral divisor and (y)x =
mg, where B is an integral divisor. Therefore 3 = 91, g(x) is constant, and
deg fx)=1.

This is a contradiction to the fact that 1, x, and y are linearly independent over k.
Therefore y & k(x) and by (8.53) it follows that K = k(x, y).

Now since Ay /x # 1, using Theorem 8.4.10 and Corollary 8.4.7 we deduce that y
is purely inseparable over k(x). Thus

2 _ h(x)
T mx)

with A (x), m(x) € k[x], and (h(x), m(x)) = 1. Therefore

3(11) mdegm deg h

0k =0k = 3

Since (y) g, is integral and (y)2 = ‘JIZ , it follows that 3(,,) = 91, m(x) is constant,

and deg 1(x) = 2 and 3(;) = B2. Thus
hix) =a+ ﬂx2 = yz.

Now [k(a'/2, B1/2) : k] divides 4, so [k(a'/?, B1/?) : k] is 1, 2, or 4. Assume
[k(otl/2, /31/2) : k] # 4. Then 1, ol/? ﬂ1/2 cannot be linearly independent over k
and there exist a, b, ¢ € k, not all zero, such that

aa'’? +b,31/2 =c.
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Saya # 0. Then «'/? = C_};ﬂ Since y = a!/? + g1/2x € K, it follows that

¢ 12(b 1/2 iy i2_¢ bop
y=—-—-—-8 -+x), B =,— €Kk, and o/"=--—--p7“€Kk.
a a o+x a a

Thus «!/2, ,31/2 € k and y € k(x), which is absurd, whence [k(al/z, ,31/2) 1 k] =4.
Let £ be the field of constants of L = K{'. Since Az ;x = 2, it follows that
dp(My) =1land L = £(x) = £'(x, y). Hence /%, 1/? € ¢.

K L(x)=1L
:
k(x) 2 (x)

k VA

Therefore

W', Y2 0 <:01=[x): )] =[L: @] <[K: k(x)]=2. O
Corollary 8.5.8. If g1 = gk > 0, then Ay )k = 1.

Proof: We have 0 # g1 < Ap/kg1L < gk = &L- O
We establish the following generalization of Theorem 8.5.2.
Theorem 8.5.9. Let L = K{ be a constant extension of K. Then L1 (q) = Lk (q)¢ for

any q € Dk ifand only if g1 = gg and A g = 1.
If these conditions hold, we have in particular Lg (q) = £1(q).

Proof:
(=) We have £7(q) = £x(q) for all ¢ € Dg. Let ¢ € Dk be such that —dg (q) >
2¢x —2and —dr(q) > 2g; — 2.

By the Riemann—Roch theorem (Corollary 3.5.6) we have

lg(q) +dk(q9) =1—gk and Lp(@) +dr(@)=1—ggL.
Thus

= dk (9) _ 1 —gx —Lk(q)
dr(q) I—gr—£L(@) dx@——o0

Therefore Ap/xk =1, dx(q) = dr(q) forany q € Dk and g7 = gk .
(<) We have €Lk (q) € L (q). Since Az x = 1, it follows by Theorem 8.4.10 that £
and K are linearly disjoint over k. Thus
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Cx(q) = dimg £Lg (q) < dimg L (q) = £2(q). (8.54)

Let q € Dk be such that —dg (q) = —dp(q) > 2gx — 2.
Using Corollary 3.5.6 we obtain

Lg(q) +dxk(@) =1—gx and £p(q) +dr(q)=1—g..

Since gx = g1 and dk (q) = d(q), it follows that

Lr(q) =L£(q), €Lg(q) =Lr(q).

Therefore the result holds for any divisor q € Dk satisfying —dg (q) > 2gx — 2 or
dig(q) <2 —2gk.

Let g € Dk be an arbitrary divisor and let pq, p2 be two prime divisors of K
such that vy, (q) = vp,(q) = 0. Let n,m € N be large enough so that if B = p;"q,
£ = p;mq, then dg (B) < 2—2gk and dg (£) < 2—2g . The least common multiple
of B and £ is q and therefore

LgB)NLg(L) =Lg(q) and Lp(B)NLL(EL)=Lr(q).

Let{oy, ..., «r} beabasis of Lk (q). We complete this basis to a basis {81, ... , Bs,
o1, ... ,0-}of Lx(®B) and to a basis {y1, ..., ¥, o1, ... ,a-} of Lg(£).
Now we will prove that {1, ..., o, B1,..., Bs, Y1, ..., ¥¢} 1s linearly indepen-

dent over k. Assume
r s t
Za,-ai + ijﬂj + Zcuyu =0, with a;,b;,c, €k.
i=1 j=I u=1

Notice that Y7_ aja; + -1 b;B; € Lx(B) and =Y _ cuyu € Li(L), s0
Z;zl cuYu € Lk(2B) N Lg(£) = Lk (q). Therefore ¢c; = --- = ¢; = 0. Similarly,
by =---=by =0.Itfollows thata; = --- =a, = 0.

Since £ and K are linearly disjoint over k, the set

{a17-~"arsﬂls~-~7/331)/17-'"7/[}

is linearly independent over £.
Letye Lp(q) =Lr(B)NL(L). Since y € L (2B), we have

y:

r S
aie; + Y _bjBj. with a;.bj e L. (8.55)
i=1 j=1

Moreover, y € L (£) implies that

'
aja; +Zc,,yu withall a}, ¢, in £. (8.56)

i=1 u=1

y:

r
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It follows from relations (8.55) and (8.56) and the linear independence of the set
{ag, ..., 0, B1,..., Bss V1, ..., ¥} that

ai=a; (1<i<r), and bj=¢, =0 (1<j<s, 1<u<n).

Therefore y € £Lk(q) and L (q) = £Lg(q). By the linear disjointness of £ and K
over k, we obtain £x (q) = £1.(q). |

A very important corollary is the following:

Corollary 8.5.10. If gx = g1 and A x = 1, the natural homomorphism ¢ of the
class group Ck of K into the class group Cy, of L is a monomorphism. We also have
p(Wg) = Wr.

Proof. Let q € ker ¢, that is, q € Dk and q is principal when considered in L. Then
dr(q) =0and £ (q) = 1. Using Theorem 8.5.9, we obtain dg (q) = 0 and £x (q) = 1.
Therefore q € Pk and g is an injective homomorphism.

Now dp, (W) = dg (Wg) = 2gx —2 = 2¢1 —2and (, (W) = gk (Wg') =
gk = gr. Therefore o(Wg) = Wy (Exercise 3.6.23). |

8.6 Inseparable Function Fields

In this section we recall some of the properties of inseparable function field extensions.
In Theorem 5.2.24 we proved that if L/ is a finite purely inseparable extension of
K / k, then for each place p of K there exists a unique place 3 of L such that PN K =
p. Furthermore, if  is a perfect field every place of K is fully ramified in L (Corollary
5.2.26).

Now let K /k be a function field of characteristic p > 0.

Proposition 8.6.1 (Stichtenoth). The following conditions are equivalent.

(i) K/k is inseparable.
(i) [K : KPk] > p2.
(iii) For any place B of K, k(*B)/ k is inseparable.

Proof:
(i) = (ii): Let L/k be a subfield of K /k such that [K : L] = p and K /L is insepara-
ble. Then for any « € K, a” belongs to L. Therefore K7k C L.

Let x € K \ k. Then K/k(xP) is not a separable extension. Thus there exists an
extension k(x”) € L C K such that K /L is of degree p and purely inseparable. We
have KPk C L and

[K:KPk]>[K:L]=p.

If [K : KPk] = p,lety € K \ KPk. Then K /k(y) is inseparable since K /k is not
separably generated. There exists L1 such thatk(y) € L1,[K : L;] = p,and K/L is
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a purely inseparable extension. Since K7k C Ly, It follows that K”k = L. Therefore
y € KPk. This contradiction shows that [K : KPk] > p.

(i) = (iii) Let B3 be a place of K /k and set p = P N KPk. Since K/K Pk is purely
inseparable, it follows by Theorem 5.2.24 that ‘B is the only place above p. Let e =
e(Blp) and f = f(P|p). Let z € K be a prime element of P. Then z7 € KPk and
p = vp(z?) = evp(z?). Therefore e < p. Since ef = [K : KPk] > p?, it follows
that f > p and k(*B)/k(p) is inseparable. Thus k(13)/ k is inseparable.

(iii) = (i): Assume that (iii) holds and suppose for the sake of contradiction that K / k
is separable. There exists x € K such that K /k(x) is separable. By Theorem 5.2.33
it follows that all but finitely many places of k(x) are separable. Thus K /k is insep-
arable. O

Corollary 8.6.2. K /k is separable if and only if [K : KPk] = p. O

Corollary 8.6.3. If K / k is separable then every element x of K \ K?k is a separating
element and every subfield L/ k of K / k is separable.

Proof: Assume that there exists x € K \ K”k, such that K /k(x) is not separable. Then
k(x) € KPk.If L/k is a subfield of K/k, then by Corollary 8.2.12, L/k is separable.
|

Theorem 8.6.4. Let K/ k be an inseparable extension. Then [K : KPk] = p® where s
is the minimum number of generators of K / k.

Proof: Let [K : KPk] = p® and let {x1,...,x;} be a set of generators of K/k,
that is, K = k(x1,...,x,). Then KPk = k(x{,... ,x/). Thus [K : KPk] < p'
and it follows that s < r. Since K/K?k is of degree p°, there exist y,...,¥ys €
K \ K?k such that KPk(y;,...,ys) = K. Now s > 2, s0 y, belongs to K \ k and
[K : k(y2)] < oo, which implies that K/k(y>, ..., ys) is a finite extension. Let L =
k(y1, y2, ..., ys).If K/L is not separable, there exists N suchthat L C N € K,K/N
is inseparable, and [K : N] = p. Thus K’k € N and y;,...,ys € N,soN = K.
This contradiction shows that K /L is a separable extension. Let T = k(y2, ..., ¥s).
Then T(y;) = L and K/L is separable. Let T, be the separable closure of T in K
and let z € Ty € K be such that Ty = T(z). Notice that T;(y;) 2 L, and hence
K /T;(y1) is separable. Therefore K = Ts(y;) = T(z,y1) and z € K is separable
over T.Letz; = z,...,zy be all the roots of Irr(z, x, T) = f(x), where z1, ..., zZn
are all distinct and deg Irr(z, x, T) = m. Let y; = y(l), e, yfn) be all the roots of
Irr(y1,x,T) = g(x). Foralli =2,...,nand j = 2,...,m, choose @« € T such

@ .
that o« # ylzj—i Set w = y; + az. Then w # yf’) +oazjforalli =2,...,n,
j=2,...,m Leth(x) = g(w — ax) € T(w)[x]. We have h(z) = g(w — az) =

f(y1) = 0. Since the roots of g(x) are y, yiz), ey yi”) (not necessarily distinct), we

have /(z;) = g(w — az;) # 0 because w — oz # y{i) for j >2,i > 2.
Now /A(x) and f(x) have a common factor Irr(z, x, T (w)) in T (w)[x], which is
linear since z is the only common root of 4(x) and f(x). Thus x — z € T (w)[x] and
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z € T(w). We also have y; = w —az € T (w). Therefore K = T(y1,z) € T(w) C K,
and K = T(w) = k(w, y2, ..., ys). In particular, K can be generated by s elements
over k. O

Forn € N, set K, = K?"k. Then K, j = K! k. In particular, K11 = Khk.
Therefore [Ky @ Km+1] = p and [K @ Kpq1] = [K @ Knl[Km @ Kmy1] = plK
K, 1. We obtain

1<p UK Kil<plK:K)<..<p™K:Kpl<....
Note that p~"[K : K,] € N.
Proposition 8.6.5. There exists n € N such that K,,/ k is separable and for all m > n,
p"K : Kl = p7"IK : Kyl

Proof: Let M C K be a maximal subfield of K such that M/k is separable. For
example, we may choose M to be the separable closure of k(x) in K, where x € K \ k.
Then K /M is purely inseparable. Since K /M is finitely generated, it follows that
KP" C M for some n € N and K, = K"k € M.In particular, K,/ k is a separable
extension. Now M/ K, is a separable extension for all m > n and K,/ K, is separable.

By Corollary 8.6.2 we have [K,1i : Knyiv1] = [Knti 0 K, k] = pforalli > 1.
Thus

m—n—1

[Kn : K] = 1_[ [K”'H : K”‘H'H] =p""
i=0

It follows that
p"IK : Kpl=p " [K : Knl[Kyn : Kn]
=p "IK:K,p""=p"[K : K,]. O
Proposition 8.6.5 gives an important invariant for any function field.

Definition 8.6.6. Let K /k be any function field of characteristic p > O and letn € N
be such that K, = K?"k/k is separable. We define the invariant

png =p "[K:Kyl.

Remark 8.6.7. g is a power of p and provides a measure of the inseparability of
K/k. We have ug = 1 if and only if K/k is separable. If s is the minimum number
of generators of K /k, then

uk > p 'K :Kil=p 'p*=ph.
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Theorem 8.6.8. Let B be a place of K / k. Then g divides dg (B).

Proof: Let n € N be such that uxy = p™"[K:K,],p = L N K,, e = e(Plp),
f = f(B|p) and let 7 be a prime element for . Since 7?" € K,,, we have

P =vp(r?") = evp (P,

so e < p". Now, K /K, is purely inseparable, so it follows by Theorem 5.2.24 that
P is the only place in K dividing p and ef = [K : K,]. Hence f = e V[K: K, >
p~"IK : K,] = pug. Since f is a power of p, we have ug | f. Finally, since f
divides dg () it follows that u g divides dg (). O

Corollary 8.6.9. The genus of K / k satisfies

gx =1mod ug if p#2,

1
gKEImod E/,LK if p=2

Proof. nk divides dx ((w)g) = 2gx — 2, where w is a nonzero differential of K, and
hence 2gx =2 mod ug.

Since p g is a power of p with p # 2, it follows that 2 is invertible mod p and the
statement holds. |

Theorem 8.6.10. Let K / k be any function field. There exists a finite purely insepara-
ble extension £/ k such that £ is the field of constants of L = K{ and L/{ is separable.

Proof. If K / k is separable there is nothing to prove. Let p > 0 be the characteristic of

n

K andlet K = k(x1, ..., xs).Letn € Nbesuchthat K, = K”'k = k(xf’n, oxP
is separable over k. Since [K,, : Kn+1] = [Kn : K,{)k] = p,thereexists 1| < i <

1

s such that x{’ ' ¢ Klk and thus xip "isa separating element of K, /k (Corollary

8.6.3). We may assume i = s. Therefore, K, /k(x! n) is a separable extension. For
i=1,...,s—1,let f,-(xipn,xspn) = 0 be a separable equation ofxl.pn over k(xspn).
Let ¢ be the field obtained by adjoining the p" roots of the coefficients of each f; to k.
Then £/ k is a finite purely inseparable extension.

Considering the equations in ¢, we have f;(x/ " xP") = gi(xi, x5)?" = 0 where
gi(xi, xg) = 0 1is a separable equation of x; over £(x,). Let L = K£ = £(x1, ..., Xg).
Then L/£(xy) is a separable extension. Therefore L /¢ is separable. Let £; be the field
of constants of L. Then £/¢ is a purely inseparable extension (Theorem 8.4.2), and
hence £ (x5)/€(xs) is purely inseparable. On the other hand, €;(x;) is a subset of L
and L/€(x;) is separable. It follows that £1 = ¢. O

Theorem 8.6.11. Ler K / k be a function field and let L = K{ be a constant extension
of K / k such that the field of constants of L is £ and L /£ is separable. Then there exists
a field m satisfying k € m C £ and
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(i) m is the field of constants of M = Km.
(i) M/m is separable.
(iii) If m' is another field such that k € m' C £ and satisfying (i) and (ii), thenm C m’'.

Proof. 1t suffices to prove that if m| and m are two fields such that k € m; C ¢ for
i = 1, 2 and satisfying (i) and (ii), then m3 = m| N my also satisfies (i) and (ii).

Set M; = Km; fori = 1,2,3. Let m’ be the field of constants of M5. Then
m’ C M; fori =1, 2. Therefore m’ C m; fori = 1,2, and m’ = ms.

Now L?¢ = (K{£)P¢ = KP¢ = (KPk)L. Since K /K "k is a geometric extension,
LP{¢/KPk is a constant extension, and [K : K”k] > p > 1, it follows that K cannot
be contained in K”¢.Letx € K \ L?¢. Thenx € M; \ Ml.pmi fori = 1, 2. Therefore
M; /m;(x) is a separable extension for i = 1, 2 (Corollary 8.6.3). We will prove that
M3 /m3(x) is also separable.

Let y € M3 and consider F (Y) = Z?:o fix)Yy I ¢ m(x)[Y] to be the irreducible
polynomial for y over mj(x).

Since the field of constants of L = K¢ = M{ is ¢, it follows by Theorem 8.4.4
that M| and ¢ are linearly disjoint over m. Hence M) and £(x) are linearly disjoint
over m1(x) (Proposition 8.1.5).

Since {1, y,..., ym_l} is linearly independent over m(x) where m = degy F,
it follows that {1, y,... ,ym_l} is linearly independent over £(x) and F is irre-
ducible over £(x). Then same thing happens for the irreducible polynomial G(Y) =
Yo &i (x)Y* for y over my(x). Thus we obtain that n = m and g;(x) = fi(x) €
my1(x) Nma(x) = m3(x).

Therefore y is separable over m3(x), and the result follows. O

Corollary 8.6.12. Given any function field K / k, there exists a minimal extension £/ k
such that if L = KU, the field of constants of L is £ and L/{ is separable. This
extension £/ k is a finite purely inseparable extension.

Proof. Exercise 8.7.17. m|

Now we study the relationship between g (Definition 8.6.6) and the invariant

Arsk defined in Chapter 5 (Theorem 5.3.4). If L = K{, with £ as in Corollary 8.6.12,

[e:k]
ILK]"

Theorem 8.6.13. Let L be a finite constant extension of K/ k and let £ be the field of
constants of L. Assume that L/ is separable. Then

then by Theorem 5.3.4 we have A /x =

WK = AL/K-

Proof. Proposition 8.6.5 provides a positive integer n such that K, = K?'k/k is
separable. Consider the following diagram. Since L = K¢, we have g

' 1 L
LP' ¢ = KP ¢ = K,L. Since K, /k is separable, it follows that
K, and ¢ are linearly disjoint over k (Corollary 8.4.7 and Theorem
8.4.4). Hence Ak, ¢/k, = 1 by Theorem 8.4.10. We have [£ : k] = K K. 0
n n

[K,¢ : K,], and hence
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P'uklL: K1=[K : Kyl[L: K]=[L: Kp] = [L : Kpll[Knl : Ky]
=[L:LP"e)[C: k] = p"[€: k]

Therefore pg =%:AL/K. |
Corollary 8.6.14. If L /¢ is any constant extension of K / k such that L /£ is separable,
then ug = Ap/k.

Proof. There exists a finite purely inseparable extension £’ of k such that ¢/ C ¢,
L' = K{' admits £’ as field of constants, and L’/¢’ is separable (Corollary 8.6.12).
Hence ux = Ap/jk. Since A = 1 (Theorem 8.4.4, Corollary 8.4.7, and Theorem
8.4.10) and Ak = A 1Ak , the result follows. O

Corollary 8.6.15. If L /¢ is a finite constant extension of K | k, we have

MK = LLAL/K-

Proof. Using Theorem 8.6.10 we obtain a finite constant extension L’/¢’ of L/¢ such
that L'/¢’ is separable. By Theorem 8.6.13 and Corollary 8.6.14, we have

_s _[E’:k]_[ﬁ’:@] [Z:k]_}L N s a
KK = L/K_[L/:K]_[L/:L][L:K]_ LJLALJK = WLALJK-

Corollary 8.6.16. If L /¢ is any constant extension of K / k we have g = pphip k.

Proof. Exercise 8.7.18. O

8.7 Exercises

Exercise 8.7.1. Give an example of a function field K with constant field k such that
K / k is not separably generated or show that any function field K is separably gener-
ated over its constant field .

Exercise 8.7.2. Let K/k be a separably generated function field and K, = kK?".
Prove that K /K, is a purely inseparable extension of degree p”.

If Kk € F and K/F is a purely inseparable extension of degree p”, prove that
F =K,.

Exercise 8.7.3. Let K /k be a separably generated function field. If k € F € K and
K/ F is not a separable extension, prove that F € K k.

Exercise 8.7.4. Let F/E and M/E be two field extensions with [F : E] < oco. Prove
that F and M are linearly disjoint if and only if [FM : M] = [F : E].
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Exercise 8.7.5. Give an example of two fields F and M that are not linearly disjoint
over Q such that F N M = Q.

Exercise 8.7.6. Assume [F : Q] = n and [E : Q] = m. Prove that F and E are
linearly disjoint over Q if and only if [EF : Q] = nm.

Exercise 8.7.7. Prove Corollary 8.1.13.
Exercise 8.7.8. Prove Corollary 8.2.11.
Exercise 8.7.9. Prove Corollary 8.2.12.
Exercise 8.7.10. Prove Corollary 8.2.13.
Exercise 8.7.11. Prove Corollary 8.2.15.

Exercise 8.7.12. Let ¢: K — E U {oo} be a place on K. Given a finite number of
nonzero elements oy, ... ,a, € K, we define o; < «; if a,-aj_l € vy = {§ €
K | ¢(&) # oo}, where ¥y is the valuation ring corresponding to ¢. Prove that < is
transitive. Conclude that there exists an index jy such that Ol,‘Ot;Ol € vV, forall i.

Exercise 8.7.13. Prove Corollary 8.3.10.

Exercise 8.7.14. Let E, K, L be subfields of Q with E C K, E C L,and [K : E] =
n < 0o. Show that the composite K L is a finite extension of L and [KL : L] < n.
Furthermore, prove that [K L : L] = n iff K and L are linearly disjoint over E.

Exercise 8.7.15. Let ;g be given as in Definition 8.6.6. Prove that ux = 1 if and
only if K /k is separable.

Exercise 8.7.16. Prove that if L/E is a finitely generated extension of fields of char-
acteristic p and FP" E = E, then F/E is an algebraic extension.

Exercise 8.7.17. Prove Corollary 8.6.12.
Exercise 8.7.18. Prove Corollary 8.6.16.

Exercise 8.7.19. Let k be a perfect field of characteristic p. Let K /k be a separably
generated function field with x € K \ k. Prove that if x is not a separating element,
then x!/7 € K.

Exercise 8.7.20. Let L/K be a constant extension, L = K £’ with k the constant field
of K. Suppose that £’/ k is separably generated. Then

congyr - CK’() — CL’() and congyr - C[( — CL

are injective (see Exercise 5.10.21).
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The Riemann—-Hurwitz Formula

Given a function field K / k, the divisor of any nonzero differential w has degree 2gx —
2 (Corollary 3.5.5). Consider an extension L /£ of K /k; if we could find a differential
Q of L coming from w, then we would be able to compare the degrees of 2 and w,
thus obtaining a relation between the respective genera of L and K. In the separable
geometric case, we can obtain such a relation between w and €2 by means of the cotrace
of w, and in this way we get the Riemann—Hurwitz formula.

In the inseparable case, the cotrace does not exist, due to the fact that the trace is
trivial. J. Tate [152] discovered a function that is similar to the trace and can substitute
it; this led him to prove his genus formula. The two mentioned formulas constitute the
body of this chapter.

In the course of this discussion we shall present the Hasse differentials, whose
advantage consists in being more natural than the Weil differentials. However, their
disadvantage is to be definable only in the case that the field of constants is perfect. In
fact, it will be shown that when the constant field is perfect, the Weil and the Hasse
differentials are one and the same.

Finally, once the genus formulas have been established, we revisit and characterize
fields of genus 0 and 1, now without restriction on their characteristic. On the other
hand, we study in detail hyperelliptic function fields, which will be applied in Chapter
10 to cryptography, and in Chapter 14 to Weierstrass points, both in characteristic 0
and in positive characteristic.

9.1 The Differential dx in k>ax<

In Section 4.1, we defined the differential dx in k(x) as the differential that vanishes
at X (pgo) + K and such thas if £ is the repartition satisfying &, = }C and &, =0
for every place p # poo, then dx (§) = —1 and (dx)i) = p% Here k denotes an

arbitrary field.

Throughout this chapter K /k will denote a function field, where k is an arbitrary
field of constants.

Let £ be a repartition and w a differential.
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Definition 9.1.1. For any place 8 of K, we define the Pth component of w as
0P @) = o (éj ‘13>, where €% denotes the repartition whose Pth component is the

same as that of & (namely &x3), and every other component of £% is zero.
Symbolically we will write ¥ (&) = 0)(5‘13)- Clearly, »? is k-linear.

Proposition 9.1.2. Let w be any differential and let & € Xx = X. Then o* (€) is zero
for all but a finite number of places B and  (§) = Y qpep, ¥ (&).

Proof. Let (w)g = A = H‘ﬁEP P PP All but a finite number of places 9 satisfy
the following conditions: & () = 0 and vy (§) > 0. Let &y, ... , &, be the places
that do not satisfy at least one of these two conditions.

If %P3 is a place that does not belong to {61, NG }, then & Pisa repartition that

is a multiple of A", and & F satisfies ve (s ‘B) > v (2") for every place &. Indeed,

v (%) = oo for & and vy (£%) = vy () 2 0 = —o () = vp (A7),
Therefore w (S qg) =¥ (&) =0.
Let &; be the repartition such that (§;)g, = ég; and (§;)g = 0 for & # &;. Thus

g = £Si Nowset& =& +---+&. Then & — &' is a multiple of A~!, which implies
10) (E — E’) = 0. It follows that

S S
wE=0@E)=) 0E) =) % E =Y oFEF. o
i=1 i=1 PelPx
Remark 9.1.3. In general, P is not necessarily a differential.

Example 9.1.4. Let K = k(x), = dx, and let & be the repartition given by &y = %
for all B € Pg. Then

WP (&) = w(EPx) = w(%) — 140,

In other words, wPx , does not vanish on K.

Theorem 9.1.5. Let K /k be a function field and w a nonzero differential of K. Let
(kg = H‘BGPK PP, Then B is the largest integer m such that wP(a) = 0 for
every a € K (Kgq) satisfying vip(o) > —m. That is, By satisfies oP(a) = 0 for
all a € K (Ksp) such that vp(x) > —Bp, and there exists a € K (Ksy) such that
vp(er) = =P — 1 and w¥ (a) # 0.

Equivalently, we have

By = sup(m € Z | a € K(Kp), vp(@) > —m = 0¥ (@) = 0}.
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Proof. Leta € K (Ksp) be such that vp(e) > —Bsp. Let o be the repartition satisfy-
ing (am)qg = «a, and (am) = 0 for all q # 3. We have
q

o® € Xk ((w)}l) )

SO w‘p(a) =w (oeq3> =0.
On the other hand, let £ € X (fp—l (w),;l) be such that w (£) # 0. If q % B, we
have vq (£q) > —Bq, and hence

0¥ (§) =0 (&) =0.

By Proposition 9.1.2 we have 0 # w(§) = Y cp, @9(€) = 0P (), s0 wP(E) £ 0
and vy (ggp) > —Byp—1 |

Corollary 9.1.6. If » # 0, then w® # 0 for all B € Pk. O

In order to describe completely dx in k(x) we must determine all pth components
(dx)P. Since k(x) is dense in k(x)p, it suffices to determine (dx)P(u), with u € k(x).
Indeed, if u" € k(x)p, let u € k(x) be such that vy(u’ — u) > —m, where m is the
exponent of p in (dx)k(y). Then o (1’ — u) = 0 and 0P (u') = P (u).

Let p # poo. Let f(x) € k[x] be a monic irreducible polynomial such that

(fFONk) = ;f‘e% For u € k(x), if vp(u) > 0 and &, denotes the repartition de-

fined by (§,), = u, and (§,)y = 0 for p # p,then§, € X (ngZ) since p # P and
(dx)P(u) = dx (&,) = 0.

Now let u(x) = %, where r > 1, a(x), b(x) € k[x] are relatively prime and
each of them is relatively prime to f(x). Since b(x) and f(x)" are relatively prime,
there exist a(x), B(x) € k[x] such that

a(x) =a(x) f(x)" + Bx)b(x).
Thus

_a@f@)" + Wb _al)  BX)
J )" b(x) b(x) = fx)

u(x)
We may write
Bx) = go(x) + g1 () f(X) 4+ + g 1(x) f () T +1(0) f &),
with g; (x) € k[x] and deg g; (x) < deg f(x). Therefore

_ 8o(x) g o gr-1x)
M=V E ey e T T
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where v(x) € k(x), the denominator of v(x) is not divisible by f(x), and deg g; (x) <
deg f(x)forO0 <i <r —1.

Since (dx)kx) = po_oz, it follows that p does not divide (dx)i(x). Therefore
(dx)P (v(x)) = 0 (Theorem 9.1.5). Now if & is any place different from p and peo,

then ve (g—i (1) f (1)) = 0,50 (dx)® (g1 (x) f () 7) = 0.
Since the differentials vanish at the constant repartitions, we obtain

0= (@) (8- f0 ) = Y @0 (8- f0) ™)
SelPg

= @) (g f0 ™) + @0P (8@ @ 7).

50 (dx)P (gr—i(¥) f(X)™") = —(dx)P> (g —i (x) f(x)7").
Using the fact that deg g —; (x) < d = deg f(x), we deduce thatif i > 1, then

deg (81 () f(0) ™) <d —id.
Therefore vy, (g,_[(x)f(x)_i) > (i — 1)d > d > 1. It follows that

@0 (g1 (0 f(0) ) =0

fori =2,...,r (Theorem 9.1.5).
Let gr_1(x) =ag+aix + - +ag_1x¢~'. Then

gr—1(x) _ Gd—1 _ doX +dagx? — (ad_lxd +-+ boad_l)

F) x Jfx)x ’

where f(x) = x? 4+ -+ bix + by.
Hence deg (gr—1(x) f(x)™' —ag—1x~') < —2,and

(dx)p& (grl(x) _ ad_l) -0
fx) x )

Thus (dx)P> (g]:(—gf;‘)) = (dx)P> (“=1) = —ay_y and (dx)P(u) = ag_1.

We have proved the following result:

Theorem 9.1.7. Let f(x) € k[x] be a monic irreducible polynomial of degree d,
3(fe)) = b, and let u € k(x) be represented by

8o(x) g1(x) gr—1(x)
= + + +i
ne) = v feyr - feyrt fx)
where go(x), ..., gr—1(x) € k[x] are polynomials of degree at mostd — 1 and v(x) €

k(x) has a denominator that is not divisible by f(x). Then (dx)? (u) is the coefficient
of x4 Vin g._1(x). O
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The simplest case isd = 1, i.e., f(x) = x — a with a € k. In this case, the p-adic
completion is

o0
k(¥)p =k((x —a) =1 aix—a) |a; ek.meLy.
i=m
Thus, the completion is the Laurent series in x — a (Theorem 2.5.20). Then Theorem
9.1.7 can be stated as follows:

Theorem 9.1.8. Let a € k and p, = 3(x—q) in k(x). Sety = > 22, ci(x — a) with
¢i € k, and assume that y belongs to the p,-adic completion of k(x). Then

(dx)P (y) = c_y. 0

Next we find another expression for (dx)P(u). Let f(x) be a monic irreducible
polynomial that is not necessarily of degree 1, and p = 3(y(x)). We will assume that
the residue field & (p) is separable over k. Letr € X = X () be a repartition such that
vp(r) > —1, and let & be the residue class of x in k (p). Then & is a root of f(x). We
have

k(p) = Vp/p = klxly/fklx]y = k[x]/(f(x)) =k (&).

Since f(x) is separable, it follows that f'(£) # 0. Now vp(r) > —1 implies
vp (rpf(x)) > 0. Let ¢ be the residue class of rp f(x) in k (p) = k (§). We write

g(x)
rp =
)
with v € k(x)p, vp (v) > 0, and g(x) € k[x] has degree less than d = deg f(x). Then

rpf(x) = g(x) + vf(x), and therefore { = g (§). On the other hand, by Theorem
9.1.7, (dx)P(r) is the coefficient of x?~ ! in g(x).

v

Proposition 9.1.9. Let £ = k (§), where & is an algebraic separable element over
k. Let f(x) be the minimal polynomial of & of degree d. Then Try/y = 0 for

=1.

sl
VG)
&-d—l
ViG]
Proof. (See Theorem 5.7.17). Let & = &1, ... , &; be the d roots of f(x) in an algebraic

closure of k. Let g;(x) = #)})’(S) forl <i <d.
Each g; (x) is a polynomial of degree d — 1 and we have

gi(&)=1 and g (§)=0 for i+# .

0<i<d-—1,and Try/

Let

d .
hj(x) =) &/gi(x) for 0<j<d-—1.
i=1
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Clearly, & j(x) is a polynomial of degree at most d — 1 and we have £ (§;) = éij for
1 <i < d. Therefore h(x) = x/. Indeed both polynomials take the same value at d
distinct points, and both have degree less than or equal to d — 1.

Then for x = 0, we have

d
; IO
hj(O) =) &g ) =) & —"—
! ; Z (—&) [ (&)

gf 1 j—1

£
—f(0) T -
f()zf’(f;‘, FOTrerk s

Since
1if j =0,
hﬂm—{0ﬁ1§j§d—L
we obtain
g1 —1if j =0,
f(O)Tre/kf/(g) 0ifl<j<d-1.
Let
d
foO) =xt+ax®" . taiix +ag=xT+ Zatxd_l-

=1

We have

d
fO =aq and 0=f@& =64 at"™" s &= Zas" g

t=1
Therefore

Ed—l d Ed_t_l -1
- = T _— _— =
IAG) ;“‘ e T (f(0)>

Finally, we obtain

Tre/p

g 0if0<i<d—1,
f/(g) lifi=d—1.

As an immediate consequence we have the following result:
Theorem 9.1.10. Let r € X be such that vp(r) = —1, B =37 and f(x) € k[x]is

a monic irreducible polynomial. Let k (3) / k be separable and & be the class of x in
k (B). Then if ¢ is the class rsg f (x) in k (B), we have

Trojn ———

¢
@x)¥@r) = Tri(spy/k 7@
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Proof. It ry = 4% v with vfp(v) > O and deg g(x) < d— 1, then (dx)¥(r) = aq_1,

which is the coefficient of x¢ in g(x).
Since ¢ = g(&), we have f’(é) = f@) soif g(x) =ap+a1x +---+ ag_1x4-1,

we have by Proposition 9.1.9,

Tri () = Tri () iz af’ Zaz Te(R)/k o = dd—1-
/(&) 1 &) = f’ é)
Therefore (d)¥(r) = ag—1 = Try()x e -

To conclude our analysis of dx, we state the following result.

Proposition 9.1.11. Let u € k(x) be represented by u = p(x) + a_1x~' + v, with
p(x) € k[x], v € k(x)p,,, and vy (v) > 2. Then (dx)Pe(u) = —a_;.

Proof. For i > 0, we have (dx)P> (x') = — > ptpes (dx)P (x') = 0 (Theorem 9.1.7).
Clearly, (dx)P> (x_l) = —1 (Definition 4.1.4), and since (dx)ix) = pgo2 we con-
clude immediately that (dx)P> (v) = 0. Therefore

dx)P*u)=0—a_1 +0=—a_;. O

9.2 Trace and Cotrace of Differentials

In this section, L /¢ denotes a finite extension of K/ k.

Definition 9.2.1. Let £ € Xk be a repartition. The cotrace of &, which we will denote
by cotrg,r &, is the repartition { € X defined as follows: if 8 is a place of L,
Blk = p, and &y is the pth component of & with &, € K, € L, then i := &p.

To see that ¢ is in fact a repartition, just notice that there exist only finitely many
places such that vy (ép) < 0, and above each one of these, there exist finitely many
places in L.

The following proposition follows immediately from the definition.

Proposition 9.2.2. If &, is the principal repartition associated to x € K, i.e., (§x)y =
x for every place p of K, then cotrx . & = (. Furthermore, if A, \' € k and &,
£ € Xk, we have cotrg /L, (ME + )»/S/) = Acotrg, & + A cotrg /1. &', that is, cotrg /1,
is k-linear. O

Definition 9.2.3. We define the frace of a repartition ¢ € X as Try g { = &, where
£p = Z?:l TrL‘n,-/Kv ;> and Py, .. ., Py, are the places of L over p.

Itis easy to see that Try /x ¢ € Xk. It follows from Corollary 5.5.17 thatif y € L,
then Trp gk y = Z?:l TquBi /K, Y- Thus we obtain the following proposition:



290 9 The Riemann—Hurwitz Formula
Proposition 9.2.4. If {, is the principal repartition of X associated to y, then
TrL/K ;y = ";:TIL/K y

is the principal repartition of X g associated to Try /g y € K. Furthermore, if A, . € k
and ¢, ' € X, we have

Trrx (M +28") =ATrp k& + X Trp g ¢ O
Theorem 9.2.5. Let§ € Xk andz € L. Then Trp /g (zcotrg /1 §) = (Tr/k 2)§.

Proof. Let p be a place of K and let By, ... , P be the places of L over p. We have

h
A = (Trz/k (zcotrg/ §)) (p) = ZTFL%/K;, (zcotrg/r §) (Bi) .
i=1

Since (cotrK/L E) (Bi) = &y € Kp, it follows by Corollary 5.5.17 that

h
A= (Z Trry, /K, (Z)> & = ((Tre/x 2) &) () - O

i=1

Definition 9.2.6. Let 2 be a differential of L and £ € Xg. The function w defined by

w (&) = Q (cotrg /L §)
is called the trace of 2 and it is denoted by @ = Try /x Q.
Theorem 9.2.7. w = Try/k 2 is a differential of K.

Proof. By Proposition 9.2.2, w is k-linear. Now if £, € Xk, we have cotrg,; &, =
{x € X, from which we obtain that w (§y) = Try/x € ({x) = 0. Thus K C kerw.

If @ = 0, it follows at once that @ = 0. If Q # 0, let (). = [Tz, PP be
its divisor. Let p be a place of K and let By, ... , P, be the places of L above p with
respective ramification indices ¢; (1 < i < h). Let a’ (p) be the greatest integer such
that e;a’ (p) < a (B;) for 1 < i < h. Then a’ (p) = O for all but a finite number of
places.

Let = HPE]PK p“/(p) be a divisor of K. Let £ € Xk be such that & = 0 mod A~!.
Thus, & € Xk (Ql_l) and vp (§) = —vp (A) = —a’ (p) for every place p of K. If P is
a place of L above p, we have

v ((cotr /2 €) (B)) = v (§p) = eL/x (Blp) vp (5p) = —ea’ (p) = —a (P),

where e = ep/kx (Blp). Therefore we have cotrg, & € X.(()™ " and
Q (cotrg/r &) = 0, which implies w (§) = 0. Thus X (%~!) C ker w, which proves
that w is a differential of K. O
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Proposition 9.2.8. If Q, Q' are two differentials of L and x an element of K, then
TI‘L/K(Q + Q/) = TI‘L/K(Q) + TI‘L/K(Q/) and TI‘L/K()CQ) =X TI‘L/K(Q).

Proof. The first formula is obvious. For the second one, consider a repartition § € Xg.
We have

(TIL/K()CQ)) &) = TI'L/K (xQ (COtI'K/L E)) = TI‘L/K (Q (cotrK/L x%‘))
= (TI'L/K Q) (X%')ZX(TI‘L/K Q)E. O

According to the Proposition 9.2.8, an operation of trace of differentials corre-
sponds to the cotrace operation on repartitions. Conversely, we wish to associate an
operation of cotrace on differentials corresponding to the operation of trace on repar-
titions. However, at this point a difficulty arises with respect to linearity, for we have
only k-linearity. This forces us to consider only geometric extensions, i.e., the case
£ = k. The general case can be solved using Theorem 9.5.17.

Thus, we consider a finite geometric extension L/K of function fields.

Definition 9.2.9. Let w be a differential in K. For ¢ € X; we define

Q) =w(Try/k ).
We say that Q2 is the cotrace of @ and we denote it by 2 = cotrg /1 w.
Theorem 9.2.10. In the geometric case £ = k, the cotrace 2 is a differential of L.

Proof. By Proposition 9.2.4, Q2 is k-linear. On the other hand, if ¢, is the principal
repartition in L corresponding to y, it follows by Proposition 9.2.4 that Try /g {y =
&1y, Ky is the principal repartition in K associated to Trz /x y, so £ ({y) =0.

Now, if L/K is inseparable, we have Trp;x = 0. Thus = 0 and € is a dif-
ferential. Assume that L/K is a separable extension. Let v # 0 and let (w)g =
[Tpep, p“® be its divisor.

For each divisor P of L, let p = Pk, e (P) = e,k (Plp) be the ramification
index of 3 over p, and let m () be the exponent of 3 in the different Dy k.

Letu € Lo and let 91 be the repartition that takes the value u at 9§38, and 0 at every
other place. Then Trz /¢ 90 is the repartition that takes the value 0 at any place other
than p. At p we have

h
(Tr/x M), = ZTrL‘B,-/Kp Map; = Trrp/x, U,
i=1
SO
QF ) = Q) = o (Tryx M) = P (Trpgk, u).

Let 7 € K be such that vy () = 1. If vp(u) > —e (P) a (p) — m (P), then
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v (n““”u) =vgp (n“(p)) + v (u) = e (P)a (p) + vpu) > —m (P).
Thus, by Theorem 5.6.1 and Definition 5.6.2, we have
Vp (Ter/Kp n“(p)u) = vp (na(p) Trrg/k, u) > 0.
Therefore vy, (Ter/Kp u) > —vp (n“(p)) = —a (p). Hence,
Q% (u) = P (Trp gk, u) = 0.
On the other hand, there exists an element z € ng such that

vp() = —m (P) — 1 with vy (Trpgyk, 2) <O.

Since vq(rz) > —m (P), we have vy (7 Trry/K, z) > 0. It follows that
Up (Ter/Kp z) = —1. Now, a (p) is the exponent of the divisor of w, so by Theo-
rem 9.1.5 there exists an element y € K such that

vp(N=—a®P —1 and o (y)#0.

Then
v (2 (Trigic, 2) 1) = v () + v ) = v (Treg i, 2)
=e(P)(—a@)—D-—mEP)—1-e(P)(=1)
=—e(P)ap) —m(P) - 1.
Furthermore,

Q¥ (yz (Ter/Kp Z)_l) = o (TIL‘B/KP (yz (TrLsp/Kp Z)_l>> =P (y) #0.

Thus € is a k-linear function from X; to k vanishing in L as well as in
XL (@Z}K (cong (a))K)_1>. Therefore 2 is a differential of L when £ = k. O

9.3 Hasse Differentials and Residues

In Section 3.4 we gave the definition of differential based on the “usual” differentials
in the complex plane. The differentials defined in Section 3.4 are due to A. Weil. Hel-
mut Hasse ([53, 54]) established a theory of differentials for function fields whose
field of constants is a perfect field, which constitutes a natural extension of the clas-
sical notion. We will see that this new concept of differentials (which we will call
H-differentials) is essentially the same as that of the Weil differentials. Actually, the
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differentials presented in Section 3.4 for the sake of motivation are the Hasse differ-
entials.

Let K/k be a function field, where k is a perfect field. Let 3 be a place of K
and let K¢ be the completion of K at ‘B. Let 7 be a prime element of 3. Then by
Proposition 2.3.13 and Theorem 2.5.20 an arbitrary element & € K can be uniquely
expanded as

o= Z siw',  where s; € k(P) € K.
i=vgp (@)
Definition 9.3.1. The derlvatlve , or differentiation with respect to r, is defined by

o0

da . il
—_— = E LS;w .
dm . '

i=vep ()

Proposition 9.3.2. The derivative 4 7= Kqg — K is continuous and satisfies

(1) %(aa + b,B) = adﬂ + b forall a,bek(P) and «,B € K.
) ddn @B) =all 4 pdo for all a,bek(P) and o, B € Kyp.
3) L (a") = na" 142 “forall n € Z.

Proof: Exercise 9.7.1. O

Now let 7r; be another prime element for 3. Since 4 —- and —— are continuous, the
derivative of a convergent power series can be carried out term by term.
Leta € K, o = e ”1’ s/ € k(). Then

i U(B(Ol) i

da - /_i—1

L ST

drm i=vop (@)
On the other hand,
da o~ d ., o~ ,d > i—1dm _ da dm
g = 2 gplm= X sigrG= B, sim Gn =

i=vp(a) i=vp(a) i=vgp (@)

Proposition 9.3.3. The differentiation with respect to prime elements 1, 7| of 8 sat-
isfies

da . da dm

_— = 9.1
dn dm dn ©-D

O

Let Ay = {(a,b) | a, b € Kg).
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Definition 9.3.4. Put (o, B) ~y (o', p’) if for a prime element 7 of 3 on Kg the
equality

d dp’
a—ﬁ = o/i 9.2)
dr dm
holds. Clearly, ~ g is an equivalence relation on Agg.
Proposition 9.3.5. The class does not depend on the prime element.
Proof. If (a, B) ~pg (&', B’) with respect to the prime element 7, then
g _ ,dp
o— =o' —.
dm dm
g _ dB dn _ sdf dn _ sdf
It follows thatad—nl = %ﬁ _a/ﬁd_;] = /d_ﬂ]'
Thus the equivalence classes do not depend on the prime element. O

Definition 9.3.6. The classes in Agy/ ~p are called the local Hasse differentials
of K. The class of («, B) is denoted by o d and we will use the notation ~ instead
of ~H.

If (a, B) ~ (’, B'), then for any y € Kiz we have (ya, ) ~ (ya', p). It follows
that we can define the product y« dg as the class of (y«, B), i.e.,

yodp = (ya)dp. (9.3)
In particular, @ dp is the product of @ and df = 1dp.

Proposition 9.3.7. For any two prime elements w and w1 for 53 we have

dp dp
Um (O[E) = ng <ad—m> .

Proof. Since m and 7 are prime elements we have, vy (%) =0, and

dg dB dm dg n dm dg g
v — ) =v — | =v —_— |l — ) =v — .
F\%ax ) =P \Yan, dn F\ % ) T an P\,
Definition 9.3.8. We define the order of o df at 3 by
ap
dp) = — ],
vp(a dp) v (adn>

where 7 is any prime element for ‘3.
If v (a%) =m > 0, is called a zero of order m of adf. If m < 0, P is
called a pole of order —m.
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The following result establishes that the “residue” of a differential does not depend
on the prime element considered.

Theorem 9.3.9. Let v and 7ty be prime elements in K for B. Let a, B € Ksy and
aazgsinl, ad—m:Z:sirr{.

Thens_ =s' .

Proof. Let

n1:Zal~ni, where a; #0 and q; €k(P), i=1,2,...,00.

=3 (iaﬂﬂ) ( 3 jaj”jl> : (9.4)
/ J

For i = —1 we obtain

00 . -1 00 .
s’ (Zagﬂ) (Z jajnj_1>
j=1 j=1
00 -1 00 )
o) oo Sortaae) (S
=1 j=1

/

= slaf]n_l (1 —aflauln —1—) (a1 +2am +---)

s 0
= —_l + ngﬂe.
T =

To prove the theorem it suffices to show that for i # —1, the expansion of

(Z ajnf> (Z jajnf—l) (9.5)
j=1 j=1

does not contain the term 7 1.
i+1

First we consider the case chark = 0. Let ;" = Y 72, gemt. Then for any
i # —1, we have
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= ;dm 1 dnit!
(gaﬂj> (ZWTJ >= s e PN

l=i+1
(9.6)

The coefficient of 7! in (9.6) is 080 =

Now consider the case Chark = p > 0. Let {y,}72 | be an algebraically indepen-
dent set that replaces the above set of coefficients {a,},> . Let M = Q ({y,,}ff:]).
Then (9.5) takes the form

ngnz = (Zyjrrf) (Z jyjn-j_1> , with w,eM and i# —1.
¢ j=1 j=1
9.7)

By the characteristic 0 case, the coefficient w_; of 7! in (9.7) is 0.

Notice that wy is a rational function on a finite subset of {y,};> , whose denom-
inator is at most a power of y; and whose numerator is a polynomial with coeffi-
cients in Z. When we ta take the numerator modulo p, we obtain a rational function
w; € IFI,,({yn}Oo 1) = M. Thus, by viewing (9.7) as a power series in 7 with coeffi-
cients in M, we obtain

> wprt = (i y,-n-/) (i jyjnf—l) mod p. (9.8)
[ j=1

=

We have a; # 0. Let & = wy(ay, az, ...) € k(). From (9.8) we obtain

Y &t = (iajnf) (i ja.,nj”) :
I i=1 i=1

Since w_; =0, it follows that w_; =0 and é_; = 0. |

Definition 9.3.10. Let o dB be a local Hasse differential, 7 a prime element, and

oo
adf = Zs,-ni € K.

i=m
Then the residue of o dg is defined by

ngsadﬁ = Trepy/k S—1 € k.

Theorem 9.3.9 proves that the residue is independent from the prime element.
Recall that we are considering a perfect field &, so Trysp)/x # 0.

To define the global Hasse differential, we consider an arbitrary function field
K /k, where k is a perfect field. Set A = K x K. For (a,8) € A, P € Pk, and
a, B € K, let (o dB)s be the local Hasse differential at 3. We define
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(@, B) ~u (a7, B)

if (wdB)p = (o dﬁ/)qg for all ¢ € Pg.
It is easy to see that ~p defines an equivalence relation in A.

Definition 9.3.11. The equivalence class corresponding to (o, B) € A is called a
Hasse differential or H-differential, and the class of («, 8) is denoted by « df.

Since k is a perfect field, it follows by Corollary 8.2.11 that K/ k is separable. The
separating elements of K are characterized by the following theorem.

Theorem 9.3.12. An element x of K is a separating element if and only if dx # 0.
Furthermore, when x is a separating element we have (dx)g3 # 0 for all*B € Pg.

Proof. If K is of characteristic 0, every x in K \ k is a separating element. Since if for
some prime divisor ‘3 and some prime element 7 at 3, j—; = 0 implies x € k, the
result follows.

Consider £ to be of characteristic p > 0. Let 3 € Px and let 7 be a prime element
atB. Let x € K. If x is not a separating element, then y = x!/? € K (Exercise 8.7.19).
Hence

dx dy? 14y
dr _dr 7V an T
Since (9.9) holds for any 3 € Pk it follows that dx = 0.

Conversely, let x € K be a separating element. Let K = k(x, y) with f(x,y) =0,
where f(T1,T;) € k[T1, T»] is an irreducible polynomial. Using the chain rule, we
obtain

0. 9.9)

dx v _g 9.10
fx(x»y)g+fy(xa)’)g— , (9.10)

where f, and f, denote the usual partial derivatives.
Since f(T1, T>) is irreducible and y is separable over k(x) it follows that

Sy(x,y) #0. 9.11)
Suppose that % = 0. From (9.10) and (9.11) we obtain

d
20

dm

Letx =) ; simiand y = > !, with s;, t; € k(). Since j—; =0= % it follows
that s; = #; = 0 fori # 0 mod p. Therefore x = 3" ;s,;m? and y = 3 ; 1,7/,
that is, x and y are power series in w”. Since K = k(x, y), every element of K is
a power series of 7”. We may assume without loss of generality that # € K. This
contradiction proves that 5—7’; # 0, 1i.e., (dx)gp # 0. Furthermore, this holds for any
B e Pk. O

Now we prove the analogue of Theorem 3.4.9 for H-differentials.
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Theorem 9.3.13. Let B € K be such that dB # 0. Then any H-differential in K can
be written uniquely as o df for some o € K.

Proof. Let x € K be arbitrary. To prove the theorem it suffices to prove that there
exists a unique o € K such that dx = a dp.

It is clear that K /k(B) is a finite separable extension. Thus there exists an irre-
ducible polynomial g such that

g(x,B) =0.

Let ‘3 be an arbitrary place and let = be a prime element at 3. Using the chain
rule, we obtain

dx ap
gx (x, /3)% + gp(x, ,B)E =0.

Now p is a separating element, x is separable over k(8), and g is irreducible, so
we have 92 =4 0 and g, (x, B) # 0.

Leta = —ngﬁ; € K. Then

dx  dp
—_— = —

dm dm

for any ‘B. It follows that dx = « df.
The uniqueness is a consequence of the fact that the H-differentials form a K-
vector space. o

Theorem 9.3.14 (Residue Theorem). Let adB be any H-differential. Then
Resq adf = 0 for almost all places *B. Furthermore,

Z Res(adB) = 0. 9.12)
PelPg

Proof. For I3 such that vyp(e) > 0 and vs(B) > 0, we have

dp %) . ) ' %) .
ad— = Zain’ Zjbjn/_l = Zcin’,
T i=0 =1 i=0

so Resp(adB) = 0.

Since vz (o) > 0 and vp(B8) > 0 hold for almost all 3, we obtain the first part of
the theorem.

For any perfect field k, if x is a separating element of K and L/K is a finite
separable extension, then if p is a place of K we have

Rg,s(Ter/Kp (n)dx) = R{gs(y dx), (9.13)

where B3 is place of L dividing p. It follows that
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Res(Try/k (v)dx) = > Res(y dx). (9.14)
Tp ¥
In particular,
R’J%S(Trk/k(x)(y)dx) = Z RgS(y dx), (9.15)
plpo

where po = pNk(x). For a proof of (9.13), (9.14), and (9.15) see Exercises 9.7.18 and
9.7.19 as well as the above proof of the case in which & is algebraically closed.

By the above argument we may assume that & is algebraically closed.

Ifdg =0, (9.12) follows. Now assume that dB # 0, i.e., 8 is a separating element
of K.

For K = k(B) we leave the verification of (9.12) to the reader (Exercise 9.7.20).

For the case K # k(pB), it suffices to show that if I3 is an arbitrary place on k(8)
and g1, ... , gy are the places on K above 3, we have

h
Z%}qs(a dpg) = ngs(TrK/k(lg)(a)dﬁ). (9.16)
i=1 "

Indeed, from (9.16) and the case K = k() we obtain

D Res@dp) =} Res(Trkicp @)df) =0.

KJEP[( ‘ﬁe]P’k(ﬂ)

Since B is a separating element of K, let y be such that

K =k(B,y) and f(B,y)=0, ©.17)
where y is separable over k(f).
Set F(T) := f(B.T) = ilﬁll pi(T) ink(B)p[T].
By Corollary 5.4.9,

h
K ®p k(B = D Kor-

i=1

Indeed, we have

K ®kp) k(B)p = k(BIT1/(F(T)) kp) k(B)p

h h
= k(B)pI T/ (F(T)) = [ [kB)p/(pi(T) = P K-

i=1 i=1

By Corollary 5.5.17, we have

h
Trk k) Yy = O Trk,, /k(Brg ¥

i=1
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and
h
R§S(TYK/k(ﬁ) ydp) = Z Rq%s((Teri/k(,B)gp y)dp).
i=1

Thus, to prove (9.16), it suffices to show that

Res(y df) = Res (CTrk,, k15 )4B)

In other words, we need to prove that if L/k(8)ss is a finite extension and g is the
extension of °P3 to L, then for any o € L,

Res(a df) = Rgs((TrL Jk (B dB). (9.18)

Let 7 be a prime element for . Then if Tr = Trz/k(g),;, We have

T

Tr(a)dp = Tr(oz)%dn =Tr (y ;Z'B ) dm

because % € k(B)sp. Thus it suffices to prove

Res(adm) = Res((Tra)dn). 9.19)
® B

We know that Tr is a linear and continuous map. Furthermore, any « has a unique
expansion

o
o = Zml with s; € k,
i=m

where 7 is any prime element of g. Thus it suffices to prove that

Res(t"dm) = R{gs(Tr(t")drr) for neZ. (9.20)
®

Since k is algebraically closed, it follows that [ L : k(8)q] = e is the ramification
index of ‘B. If k£ is of characteristic 0, we use Proposition 5.5.12. That is, we may
assume that ¢ = 7.

Using Newton’s identities (Theorem 7.1.4) it is easy to see that

0 forefn,

enr™ for n = me. ©.21)

Tr(t") = {

It follows that

0 for n #£ —e,

Rq%s(Tr(t Ydm) = {e for n = —e.
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Now, since t”dd—’t’ = t"(et®!) = er"te~ ! we have

0 for n # —e,

n —
R;):s(t dm) = {e for n = —e.

Note that this proves (9.20) in the case t¢ = . But for ¢ = m, (9.20) implies (9.19).
Therefore, we obtain (9.20) for arbitrary prime elements 7 and 7.

Thus (9.20) holds when & has characteristic O.

Now we consider k to be algebraically closed of characteristic p > 0. We have

[L:k(B)p] =eand L = k(B)qp(1). Let

t@

—=ap+ait+-- +de—1t"" with @ €k(B)g and ag #0.
T

We have v, (ait’) = evip(a;) + i # evp(aj) + j whenever 0 < i, j <e—1,i # |,
a; ;ﬁ 0, a; 75 0.
It follows that 0 = vy, (%) = Ming<j<e—1 {evgp(aj) + j}. Thus vg(a;) > 0 and

v (ap) = 0. Since agr is a prime element for P in (k(B))sy, we rewrite apm as 7
again. We have k(B)qz = k((7)). Hence

1 =m(+ A+ 4 Ag ()17,

where

e8]

Aj(m) = Zaijﬂj, ajj €k,

Jj=0

and A; () € k((;r)) is considered as a power series.
Let M = Q(z;;) for1 <i <e—1and j € N, where {z;;} is a set of variables
corresponding to a;;. Let ‘M be an algebraic closure of M and

A () = ZZiijj e M((m))
j=0
corresponding to A; (7). Set L = M((7))(r), where
t*=n(1+ AT(o)t + -+ AF_ (o). (9.22)

Let g be the zero divisor of 7 (considered as a variable).

Since M((r)) is a complete field, there exists a unique prime divisor Py above gp
(Theorem 5.4.7).

By (9.22) we have

v, (1) = evg, (1) = vep, (1) + 0 = e(Polgo) vep, (7).

It follows that e(Bolgpo) = e, [L : M(())] = e, and the equation (9.22) is irre-
ducible in z.
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Since the characteristic of M is zero, we have by (9.20),

Res(t"dm) = Res(Tr(t")dm). (9.23)
PBo 0

Now we obtain from (9.22) that
=1 — (ATt 4+ AR (). (9.24)

If we substitute the expression of 7 again in the right-hand side of (9.24), we
conclude that the terms containing 7 contain 2. Repeating this process and using
lim,,— 0o 7™ = 0, we obtain

Bet® with BeeM and B, =1. (9.25)

M

~
Il

e

We already knew the existence of an expression such as (9.25), but with this
method of computation we obtain the additional information that the S, are all poly-
nomials in z;; with coefficients in Z. Thus

tnd_ﬂ — izﬂet6—1+n
e —

is also a polynomial in z;; with coefficients in Z.
On the other hand, by (9.24) we have

e—1

1 t
= —A*() — AS()t — - — A ()T —
Let

Te(t") = ) Cam(@i))m™,  with  cum(zij) € M.
m

Then each ¢y, belongs to Z[z;;]. In particular,
I})GS(Tlf(tn)d?T) = ¢n,—1(z2ij) € Zlzij].
20

It follows that (9.23) is a polynomial identity. Let ¢;; = cpm mod p € Fplz;;]
and substitute z;; by a;;. Then the equation (9.23) holds mod p, which implies that
(9.18) holds for the extension L/k(B)p. This completes the proof. O

With Theorem 9.3.14 at hand, we can now see that Weil differentials and Hasse
differentials are the same when the ground field k is perfect.

Theorem 9.3.15. Let K / k be an algebraic function field where k is a perfect field. Let
a dB be an arbitrary H-differential in K. Define



9.3 Hasse Differentials and Residues 303
w: Xg =k
by
w(E) = Y Res(Epadp). (9.26)
PePx ¥

Then w is a differential in K. Furthermore, the correspondence ydx < w is a
K -module isomorphism.

Proof. We denote by Dify and Dify the Hasse and the Weil differentials respectively.
Let ¢: Dify +— Dify be the function given in (9.26), that is,

p(adB)(E) = Y Res(Epadp).
‘PePk ¥

For any £ € Xk there are only finitely many elements 8 of Px such that
vp(§p) < 0. It follows that Resy (§par dB) is equal to zero except for finitely many
P € Pk. Thus the sum in (9.26) is well defined.

Now we will see that w is a differential. Since Resgs and Try )/« are linear, it
follows that w is k-linear. Let 2 = H‘B ‘13“@3), where

vp(adB) ifvp(edB) <0,
0 otherwise.

a(P) =

If € € X is such that 2~ ! divides & and vp(&p) = —vgp(2L), then
vp(Epa df) = vp(Ep) + vp(@dp) = —vp@) + vp(adp) = 0

for all f € Pk. Thus Resp(§padB) = O for all P € Pk. If x € K, by the
residue theorem (Theorem 9.3.14) we have w(x) = ZSBG]P’K Resp(xadB) = 0.

Hence X(2A~") + K C kerw and w is a differential.
Next, ifa df = 0,then w = 0. If e dB # 0, let P € Pk be such that (« dB)y # 0.
Leta € Ky be such that

R{gs(aa dB) #0 and Trgep)/k R{gs(aoz dp) # 0.

Such an a exists since k(]3)/ k is separable.
Let £ € Xk be defined by

gq_{aif q="%.

| 0 otherwise.

Then w(§) = Resyp(aa dB) # 0, so ¢ is one-to-one.
Finally, if ¢(«1 dB) = w1, ¢(wp dB) = wy and x € K, then

ol df +azdf) = wy + ws
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and

¢(zay dp) = zw. 9.27)
Thus ¢ is a one-to-one K -linear homomorphism and since both Dify and Dify are
one-dimensional K-modules, it follows that ¢ is a K-isomorphism. O

Corollary 9.3.16. With the hypotheses of Theorem 9.3.15, we have
wh(E) = Res(épa dp). o

Finally, we have the following theorem:
Theorem 9.3.17. Let o dff be a nonzero H-differential in K and let w be the corre-
sponding W-differential given in Theorem 9.3.15. Then the divisor of w is given by
vp((w)k) = vy (e dp).
Proof. Let 2 be a divisor such that vz(a df) > vp(R) for all P € Pk. Let § €
X(@~"). Then
vp(Ep) = —vp(R) > —vgp(a dp).

Hence vp(§pa dB) > 0 and Resgp(§pa dB) = 0. It follows that w(§) = 0 and 2
divides w.

Now let B be a divisor such that for a 3 € Pg, vy(B) > vp(ax dp). Leta € Ky
be such that Resys(aa dB) # 0. Such an a exists since (o dB)yp # 0 and k(B)/k is
separable. Furthermore, we may choose a such that vg(aadB) = vg(a)+vp(a df) =
—1. Thus

vp(a) = —1 —vp(adB) > —1 — vp('B).
Hence vg(a) > —vgp(B). Let§ € Xk be given by
£ = {g if q="%,
otherwise.
Then w(§) = Resspaa dB # 0, and the result follows. |

Let w be any (Weil) differential over an algebraic function field K /k, where k is a
perfect field. Let oo dB be the corresponding Hasse differential. Then

ngS(a dp) = w(é),

where

_Joif g#P,
S9= 1 1if 2=

Therefore Resys (e dB) = wP ().

We have not defined H-differentials in the case of an imperfect field, but we may
define the residue of a differential. We use the idea of the H-differentials. First we
recall a basic result from basic algebra.
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Proposition 9.3.18. Let E be any field and let V be a finite-dimensional E-vector
space. Let V* = Homy(V, E). Then V* and V are isomorphic as E-vector spaces.
Furthermore, if ¢ : V x V. — E is a nondegenerate bilinear form (that is, for any
nonzero v € V, there exists w € V such that ¢ (v, w) # 0), then for any T € V* there
exists a unique v € V such that T (w) = ¢ (v, w) forallw € V.

Proof: Let {e1,...,e,} be a basis of V over E. Let v € V be written as v =
Z?zl xiei, x; € E.

Define f; : V. — E by fi(v) = x;. Then f; € V* {fi,..., fa} is a basis of
V* and dimg V* = dimg V. Next, let ¢ : V x V — FE be a nondegenerate bilinear
form. Let 7; € V* be defined by T;(w) := ¢(ej, w). Then {Ty, ..., T,} is linearly
independent over k and since dimg V* = n, given T € V*, there existay, ... ,a, € E
such that

T = iaiTi.
i=1
Thus
Tw)=Y aTiw) =Y adle,w)=¢p()_aei, w).
i=1 i=1 i=1

It follows that T(w) = ¢ (v, w) forall w € V with v = Y7, gje;. Clearly v is
unique. O

Now let K/ k be an arbitrary function field. Let w be any (Weil) differential. Then
if P € Pk, the local component w® of w is a function

wm:qu—>k.

Since k is not necessarily perfect, we consider the separable closure k£ (*[3); of k in
the residue field k().
Then the function

@ k(P)s X k(P)s — k

defined by ¢(a, b) = Try(gp),/«(ad) is a nondegenerate bilinear pairing. It follows by
Proposition 9.3.18 that for the k-linear map

wm|k(‘l3)x Ck(B)s — k
there exists a unique o € k(3); such that

WP, = 0(~.0).
Thus

wP (@) = Trgep), k(@) forall o € k(P)s.
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Definition 9.3.19. Let K / k be an arbitrary function field. Let w be a (Weil) differential
on K. For ‘P € Pk, we define the residue of w at B as the element Try (), k0 € k

satisfying wm(oz) = Tryp), k(o) for all o € k(P);. We use the notation

Trk(‘:ﬁ)s/k 0= ng:s w.

We have

wP(1) = Res w. (9.28)
P

Proposition 9.3.20. Ler w be a differential in a function field K / k. If 3 € Pk is not
a pole of w, then
Resw = 0.
RY

In particular, Resqg w # 0 for only finitely many B € Pg.

Proof: If 3 is not a pole of w, i.e., vm((w)l() > 0, then wm(a) =0 forany o € Ky
such that vz(a) > 0 (Theorem 9.1.5). In particular, wm(a) = 0 for all @ € k(P);.
The result follows. ad

Definition 9.3.21. A differential w is said to be of the second kind if ReSgp w = 0 for
all B € Pg.

It is easy to see that if w is of the first kind (that is, holomorphic), then w is of the
second kind.

Theorem 9.3.22 (Residue Theorem). For any differential w of a function field K / k,
we have

> Resw =0. (9.29)
PePy ks
Proof: By (9.28), we have
0=w() = Z wP(1) = Z Res w. O
PePx PePx F

Let K /k be any function field, and let 2 be any divisor. If Dg () = {w | A | w},

then
Xk *
DrH =l —m—F-—) ,
K <%K(m1>+1<)

where * denotes the dual k-vector space (Proposition 3.4.5).
This isomorphism can be obtained from the k-bilinear pairing

@: Difg xXg — k
pw, &) = w(é). (9.30)
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Thus (9.30) can be written as
wE =Y wPE =) ResEpw)
TPk T ¥

(Corollary 9.3.16).
We have obtained the following result:

Proposition 9.3.23. For any function field K/ k, x(gﬁfﬁ and Dk () are dual k-

vector spaces obtained from the bilinear pairing defined by

¢: Difg xXg — k

pw, &) = Y Res(Epw). (9.31)
PelPg ¥

9.4 The Genus Formula

We begin this section by observing that in the last part of the proof of Theorem 9.2.10
we have shown more than is stated. Indeed, assume that L/K is a finite separable
geometric extension. If 2l denotes the divisor cong,; (w)g, where w is a nonzero
differential of K and € = cotrg ;. w, then Q% vanishes at every u € L with

vp(u) = —e (P)a (p) —m (P)

and there exists an element u € Ly such that

op) = —e(Prap) —m @) —1 and Pw) #0.

As an immediate consequence of what was proved in Theorems 9.2.10 and 9.1.5,
we have the following theorem:

Theorem 9.4.1. Let L /K be a finite separable geometric extension of function fields,
w a nonzero differential of K, and Q = cotrg;p w. Then Q@ # 0 and () =
Dk congp (@)g.

Proof. According to what was seen in Theorem 9.2.10, the exponent of ‘3 appearing
in () is

e(Pap) +m(P),

where p = P|g, m (P) is the exponent of P in Dk, a (p) is the exponent of p in
(w) g, and e (P) is the ramification index of 3 over K. On the other hand, e (3) a (p)+
m () is the exponent of P appearing in the divisor Dk cong L (). This proves
the result. O

As a corollary we obtain the Riemann—Hurwitz genus formula:
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Theorem 9.4.2 (Riemann—-Hurwitz Genus Formula). Let L /K be a finite geometric
separable extension of function fields and g1, gk the genera of L and K respectively.
Ifdy (@ L/ K) denotes the degree of the different of the extension, we have

1
gL=1+[L:K](8K_])+§dL(©L/K)~

Proof. By Corollary 3.5.5 the degree of the divisor of any nonzero differential in a field
E is 2gg — 2. On the other hand, by Theorem 5.3.4 we have d, (conK/L (w)K) =|[L:
K1dk ((w)k). Finally, using Theorem 9.4.1 we get

281 —2=dr (1) =dr (Dr/k cong /L (w)k)
=d; (Dr/k) + dr (cong /L (w)g)
=d; (k) + L : Kldg (k)
=dy (k) +I[L: K1 Qgkx —2).

from which the result follows. O

Now we consider L/K to be an arbitrary finite separable extension of function
fields. Let £ and & be the fields of constants of L and K respectively. Then by Propo-
sition 5.2.20 and Corollary 8.4.7, £ is the field of constants of K¢ and

[KL:K]=1[L: k] (9.32)

Now, by Proposition 5.2.32, K¢/K is unramified and every place is separable.
Hence Dk ¢/ x = N (Proposition 5.6.7). Using Theorem 5.7.15 we get

Dk =Dr/ke (9.33)
and by Theorem 8.5.2 we have
8Kt = 8K- (9.34)

Since L/K{ is a geometric extension we obtain from Theorem 9.4.2, (9.32),
(9.33), and (9.34) that

1
gL =1+I[L:KLl(gke— 1)+ EdL(@L/Kz)

=1+ LK) gx—D+ ldL(@L/K)
[K¢: K] 2

=1+ —[L K] (gg — D+ ldL(DL/K).
[ k] 2

Thus we have proved the following generalization of the Riemann—-Hurwitz genus
formula.
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Corollary 9.4.3 (Riemann—-Hurwitz Genus Formula). Let L /K be a finite separa-
ble extension of function fields. If £ and k denote the fields of constants of L and K
respectively, then

L:K]
[€: k]

gr=1+ [ (gx — D+ %dL(@L/K)~ O
Example 9.4.4. Here we will apply the genus formula to obtain gg, where K =
k(x,y), y2 = f(x), f(x) € k[x] is square-free, and char K # 2 (that is, what we have
already done in Section 4.3). Let f(x) = pi1(x)...pr(x),m =deg f = Y ;_, deg p;.
Set 31);()6) = p;. By Example 5.8.9, the ramified prime divisors are p; ..., p, and
possibly peo. Moreover, poo is ramified if and only if m is odd.

Since char K # 2, it follows that D g /xx) = P1 - - - Pr PS5, With

__J0if mis even,
“ ] 1ifmisodd

(Theorem 5.6.3). Therefore d (D k) = m+¢&.Now gk(x) = 0, so using the Riemann—
Hurwitz formula we obtain

1 m+e—2
gK=1+2(0—1)+§(m+8)=T
T -1 if m is even,
mrl 1 =221 if mis odd,

which coincides with Corollary 4.3.7.
Example 9.4.5. Let y" = f(x) € k[x], where k is a perfect field and
flx) = pl(x))‘] ---pr(x))", with O <X; <n for 1<ic<r,

and pi(x), ..., pr(x) are distinct irreducible polynomials.
Let K = k(x, y), and assume that the nth roots of 1 are contained in k, and that
char K t n or char K = 0. Set (p; CNkxy = P and m; = deg p;(x). Let

i
deg p;
Poo

N\ /d;
cong(xy/kx (Pi) = (‘1351) e m;gﬂ)

with d; = (A;, n). For convenience we will assume that p, is not ramified, that is, n
divides deg f(x) (Example 5.8.9).

Finally, let f; be the relative degree of ‘B?j ) over pi, so that f;m; is equal to the
degree of ‘ng ),

Then

r

)\ (n/di)—1
1 i
QK/k(x) = 1_[ ((Bl( ). fpl(g ))

i=1
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and

d @k iwm) =y (di - 1) e dx (B) =Y (di - 1) g fimi
i=1 N i=1

-
n
= —gifimi— ) gifimi.
—~ d; .
i=1 i=1
We have dﬂigifimi = [K : k(x)lm; = nm;, so
r r r
d (QK/k(x)) =n Zmi - Zdimi = ndegf(x) — Zdimi'
i=1 i=1 i=1

Therefore

1 r
gk =1+n0—1)+ (ndegf(x) - ;dimi>

i=1

- % (ndegf(x) +2—2n— Z(k[,n)degpi(x)> .

Example 9.4.6. Let K = k(x, y), where

W —y = Jx)
PrLOOM -+ pr ()

fx), pi(x) € k[x], p1(x), ..., pr(x) are distinct irreducible polynomials, %; > 0,
p 1A, chark = p, and k is a perfect field. For convenience we will assume that p is
not ramified. By Example 5.8.8, if

p

(Pi Ny = and  congyx (pi) =B; .

l
deg pi
plez 7
then D /5y = [Trey BH TP 1t follows that

d(Dk/kw) = Y i+ 1) (p— Ddk (Bi)
i=1

i + 1D (p — Dégxy (0i)

r
i=1

=> i+ (p—Dm,

i=1

where m; = deg p;(x). Therefore
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1
gk = 1+[K k()] (g — 1) + 3 (d (Dk/kw))

1 r
=1+p0=D+5 ) Git+D(p—Dm

i=1

1 r
=§(p—l){;(ki+l)mi—2}.

9.5 Genus Change in Inseparable Extensions

We have studied the genus change in constant extensions and in finite separable ex-
tensions. In the latter case, the trace was used to find differentials in a subfield. Since
we were considering separable extensions, the trace was nontrivial. When we consider
inseparable extensions, the trace is the trivial map and we cannot use the trace map
any longer to find nontrivial differentials.

In this section we present a substitute for the trace map due to John Tate [152].

Let E be a field of characteristic p > 0 and let F' be an inseparable extension of £
of degree p. Let o be any generator of F over E, thatis, F = E(x). Let§ € F. Then
& can be expressed uniquely in terms of « as

E=ay+aja+---+a,_ 10!, with a € E. (9.35)
Definition 9.5.1. We define the nontrivial £E-map

Sy : F — E by putting
Se(§) =ap—1 forall & eF. (9.36)

Proposition 9.5.2. We have
p—1 o
£ = Z Sa(Sap_l_‘/)(x‘/.
i=0

Proof: Let X? — b = Irr(a, X, E). Then
gaP™ ' =apa? " 4ot dajb - apobaP T L

It follows that Sy (Ea?~177) = aj, and the result follows by (9.35) |

Since the map S, depends on the generator «, the question that arises is how S,
changes when « is replaced by another generator g. First we note that S, is E-linear.
Let¢ : F x F — E be given by

P(x,y) = Su(xy).

Then ¢ is E-bilinear and if S, (z) # 0, then for any x # 0, ¢ (x, x " 'z) = S (z) # 0.
Thus ¢ is a nondegenerate bilinear form on F. In particular, for any E-linear map
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S : F — E, there exists an element y in F uniquely determined by S and such that
S(&) = Sy (Ey) for all £ € F (Proposition 9.3.18).
In particular, there exists a unique y € F such that
Sp(&) = Sa(§y) (9.37)
forall ¢ € F.

Definition 9.5.3. Let R be a commutative ring. A derivation D of R is a mapping
D : R — R such that

D(x+y)=Dx+ Dy and D(xy)=xDy+yDx
forall x, y € R.

Example 9.5.4. Let R = k[x], where k is a field. Then for f(x) = Z?:o a;x', the
mapping D defined by Df (x) = f/(x) = >_I'_, ia;x'~! is a derivation.

Example 9.5.5. Let R = k[x1,...,x,], where k is a field. Then the usual partial
derivative % is a derivation of k[xy, ... , x,].

Given any derivation D of R, x € R, and n € N, we have D(x") = nx"~!Dx.
In our case, F is an inseparable extension of E of degree p. Let
D : E[x] — E|[x]
f@) = f(x).
We have ((x? — b) f(x)) = (x? = b) f(x) + (x? = b) f'(x) = (x? — b) f'(x). Thus
D maps the principal ideal x” — b into itself. Since F' is inseparable over E, it follows
that F is isomorphic to E[x]/((x? — b)) for some b € E. Let « be the root of x” — b
and set F = E(«). Then the kernel of the epimorphism
¢: E[x] > E(@d) = F
f&x) = f(a)

is the ideal (x? — b).
It is easy to see that D induces a well-defined derivation in F,

Elx] —2— E[x]

o) It

E(ad) —— E(x)
which will be denoted by D,. Notice that D, is given by the formula D, (f(«)) =

S (@).
IféE=ag+aja+--- +ap_1a”_1, then

Dy(¢) =a1 +2aa+---+ (p — l)ap_locp_z.

It follows that Dy (§) = O ifand only if a1 = a, = --- = ap_1 = 0 if and only if
& =ag € E. Also, D is E-linear.
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Proposition 9.5.6. We have
Sa(De(§)) =0
forall& € F.
Proof: Leté =ap + a1t + - - - + ap_lap_l. Then
Su(Da(§)) = Sy(ar +2aza + -+ + (p = Dap_1a”7%) =0

by (9.36). O

Proposition 9.5.7. The map S, satisfies Sy(EP™'DyE) = (Do&)P for all & € F.

Equivalently,
Do ) (Daé' )”
Sa =
( 3 §

Proof: For any & € F, £P belongs to E, so if £ # 0 we have

forall € € F\ {0}.

and (Dy&)?P = (D gé )p &P. The stated equivalence follows.

Let R ={§ € F | S4(P7'Doé) = (Du)P}. Let T : F \ {0} — E be defined by

T =S, (DE‘S) - (%"é)p. We have

Dy D, P
s =5 (250 ) - (M)
. <sDasl +51Das) ) (sDasl +aDas>P
“ P £E)
Daél Daé Dot'g] Dotg P
= Sy — =T T .
<sl+s>(sl+s) @+ TE

Thus T is a group homomorphism of F \ {0} into E. The kernel of T is R \ {0}, so
R\ {0} is a multiplicative subgroup of F \ {0}.

Now if £ € R we have Dy(§ + 1) = Dg& and (¢ + NP~ — P~ HDue =
Zf:oz a;E' D& for some a; € E.
i+1

Also, £ Dy = Dy (f’

m) Hence, using Proposition 9.5.6 we obtain

p—1 i+1
p—1 _ gp-1 _ . § _
Se(((E+1) EP Y DyE) = ;a,sa (Da (l. — 1)) =0.
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In particular, since £ € R we have
Sa(E + DP7IDu (€ + 1)) = Su((€ + DP7'Dy8)
= Sq(EP7' Do) = (Do)? = (Do (& + 1)7.

It follows that £ + 1 € R. Finally, if £ € R and 7 is a nonzero element of R, we
have £ + 7 = n(n~'€ + 1) € R. Thus R\{0} is a multiplicative group and R is closed
under addition. Hence E € R and o € R, so R is a subfield of F containing E and .
Therefore E(x) S R € F = E(a). O

Now we can find the relationship between two generators « and S.
Theorem 9.5.8. [f « and B are two generators of F over E, then
Sg¢) = Su(E(DeB)'™P) forall £ e F. (9.38)

Proof: Since both sides of (9.38) are E-linear, it suffices to prove (9.38) for & = ﬂi
O=<i<p-1D.
Multiplying both sides by (D, 8)? € E, the equality becomes

(DaB)PSp(B') = Su(B'Def) (0<i<p—1). (9.39)
Fori < p — 1, we have ,BiDO,,B = D, (%), so by Proposition 9.5.6 and (9.35),

both sides of (9.39) are equal to zero.
Fori = p — 1, we have (Daﬂ)”S,g(,Bp_l) = (DyB)?. Therefore by (9.35) and
Proposition 9.5.7 we have

Se(BP7 Do) = (DuB)P.

Thus (9.38) holds also fori = p — 1. |

Now we establish some basic facts about an inseparable extension L /K of function
fields of degree p".

Proposition 9.5.9. Let K be a function field, L a purely inseparable extension of K,
and B a place of L lying over the place g of K. Then the local degree satisfies

[Ly: Kpl=I[L: K]

Proof: By Theorem 5.2.24, ‘B is the only place above . On the other hand, using
Theorem 5.1.14, the proof of Corollary 5.4.6, and Theorem 5.4.10 we obtain

[L:K]=dimg L = Z[ng :Kpl=[Ly: Kpl. O
Pl

Corollary 9.5.10. Any repartition & € X1, of L can be written uniquely in the form
E=&+ &+ +§pn_lap”,1’

where &y, ... ,Epn_1 € X are repartitions of K, L = K(«), and [L : K] = p".
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Proof: The statement follows immediately from Corollary 5.5.8, Proposition 9.5.9,
and the fact that {1, «, . . . , (xpn_l} is a basis of L over K. a

Proposition 9.5.11. If L is a purely inseparable extension of K of degree p, then for
any place B of L lying over the place © of K, there exists B € Vs such that

vy = dplBl]. (9.40)
Thus 93 has a power basis over U,.

Proof: We have [Leys : Kp] = p. If Lgs is unramified over K, let B € ¥ be such that
B generates £(P) over k() (ie., B € U\ (Dp + P)). Since

P ZLP)[r]] and Dy = k(p)[[7]],

where € ¥, satisfies vip() = v, () = 1 (Theorem 2.5.20), it follows that Pz =
Sp1B].

If Ly is ramified over K, and 7, is a prime element for 93, then n{ =ng € Ky
is a prime element for p. We have £(P) = k(p) = m, U is isomorphic to m[[]],
and 9, to m[[7k]]. It follows that Uy = dplmLl. O

The values viz(DyB) are fundamental for the genus formula we will establish
below.

Proposition 9.5.12. Let L be a purely inseparable extension of K of degree p, and
L = K(a). Let g be the place of K that lies below the place i3 of L. Set

ro =r = max{v,(a — xP)},
xeKyp
where o = a € K. Then

. _ | rdegg e if plr,
p'vp(Dpa)deg, P = { (r —degg pif ptr,

where B € Vs satisfies dp = Vp[Bl and p" = [€ : k].

Proof: Since Ly = K (a) = K@(al/p) and [Lgz : Kp] = p, it follows that a is not
a pth power in K,. Therefore @ — x# # 0 for all x € K, and r is finite.

Letb € Ko be such thatr = v (a — bP).

If p divides r, putr = sp. Let 7 be a prime element in K, such that v, () = 1
and set T = (¢ — b)n ™ € Lyg. Then 17 = (a” — bP)n P = (a — bP)7~°P satisfies
vp(t?) =r — sp = 0. Therefore 7 is a unit in Y.

If the residue class of 7 were a pth power of a residue class in K,, there would
exist ¢ € K, such that

c? = (a — bP)7™°P mod p.
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Then if x = b + 7°¢, x would satisfy
vp(a — xP) = vpla —bP —'PcP) = v (' ((a — b ) ™F — cP))
=sp+vp((a—b")yn™P —cP)=sp+1=r+1.
This contradicts the maximality of r. It follows that
[k(©)(@) : k()] = p and £(P) = k(p)(T).

In this case Proposition 9.5.11 yields ¥y = P[] with B = 7.
We have Dgar = (Do B)~' = m* (see Exercise 9.7.7). Thus vp(Dga) = s and by
Theorem 5.3.4,

n deg[( &
AL/K

vp(Dga) p" deg; P = sp" deg; P = sp

d d
= "—[zg.Kké]o [L:K]= sp”—egli pp

= psdegg o =rdegg p.

Now assume that p does not divide r. Let u, v € Z be such thatru — pv = 1. Let
7 be a prime element in K, and T = (@ —b)*7w ™" € L. Then 17 = (a — bP) "7 ™"
satisfies

Vp(tP)=ru—vp=1.

It follows that 7 is a prime element in Lsgs and by Proposition 9.5.11, #q3 = 0 (8]
with 8 = 7, and L/ K, is a ramified extension.
We have

DoB = Dot =u(e —b)" 77V =u(@ —b)'7 V(@ —b)" ' =u(@—b)"'1.

Hence Dgo = Dra = (Dyt)"! = u (@ — b)r~! and since (u, p) = 1, it follows
that

vp(Dpa) = vp((a — bP)/PrHy =r — 1.

We have p = PBP. Moreover, deg; o = pdeg; ‘B = d;i’/(lf) = pdegg g because
?»L/K=%=% (n =0).
Thus vp(Dpa) p" deg; B = (r — 1) degg . O

The map S, given in Definition 9.5.1 can be extended to a K-linear map of X
into X as follows.

Definition 9.5.13. Let K be a function field, L a purely inseparable extension of K of
degree p, and « a generator of L over K. For £ € X, £ can be written as

E=(+Ea+-+Eaft with &, ... & € Xk. (9.41)
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We define the K-linear map
Sa . %L —> %K

by
So (S) = Ep—l .
Proposition 9.5.14. Let S, be the K-linear map that we have just defined. Given a

divisor 24 € D there exists 4 € Dy such that A | Sy(§) = &, whenever U di-
vides &.

Proof: Let 2 € Dk be an arbitrary divisor. For any place I3 of L lying over the place
g of K, let Bz € P be such that by = P [By] (Proposition 9.5.11).
Let 7, be a prime element for p. Set U = ]_[m PR, where

cqp = e(Blp)vp @) + vp(Dpg)? . (9.42)

According to Corollary 5.5.9 we may choose Bz = « for almost all f € Dy. In
particular, vm((Dﬁma)P’l) = 0 for almost all 3. Thus il is a divisor in L. Further,
the Pth component in (9.41) is

Ep=&p+Epa+-+E, 1 pal ! € Ly, withé; g€ Kpfor0<i<p—1.
If 4 divides &, then vp(§3) > vep(Uh) = c. Therefore

vpEp(Dpye) 7" ™) > ey + vp((Dpye) ™) — e(Flp)vy () > 0.

It follows that ém(Dﬂma)l’pn;p(m) € Y. By Proposition 9.5.2 we have

= (@) p—1—i i
= SpyEpDppe)' Pmy " BET D By
i=0

Ep(Dpp)' Py,
Now, {1, Bp, ..., ,353_1} is an integral basis of ¥y over ¥, so

R N
Sﬂfn(g‘ﬁ(Dﬁm“)l p”@%( )'3‘[;3 e Dp.

In particular, fori = p — 1 we have

_ —v, (A
Spy (Ep(Dpy) Py ") € 0. (9.43)
We obtain from Theorem 9.5.8 that
—vg, (A _ —v, (A
Salepy ") = Sp (Ep(Dpye) P, "), (9.44)

Using (9.43) and (9.44), it follows that

vp (Su ™)) = v (1" S (E)) = — 0 (A) + v (Su (Ep)) > 0,

Therefore 2 divides Sq (§)- |
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Definition 9.5.15. Let w be a nontrivial differential of K. We define
Q: XL —>k by Q©E)=w(Sy()).

Assume that y € L and &, is the principal repartition (i.e., (§y)qz = y for P € P ).
Then if

y :ao—l—..._i_ap_lap*]

and &, 1,4, , is the principal repartition of K (i.e., (§)-1.4,_,)

Q&) = w(Sa(§y) = wEp-1.4,,) =0.
By Proposition 9.5.14, there exists a divisor Y in L such that if L[ divides & then
(w) divides Sy (£); so if U divides & we have

Q&) = w(Su(é)) =0.

o = ap—1), we have

In particular we have the following proposition:

Proposition 9.5.16. [f ¢ =k, i.e., L is a geometric extension, then the map Q2 given in
Definition 9.5.15 is a nontrivial differential in L. O

We are interested in the genus change from K to L. We might proceed as at the end
of Section 9.4, namely assuming first that L/K is a geometric extension and finding a
formula relating g; to gx. Then we would apply the constant field extension and use
the results of Chapter 8.

Instead of this approach we prove in general that the map €2 given in Definition
9.5.15 can be replaced by a true differential of L. For this purpose we prove the fol-
lowing theorem:

Theorem 9.5.17. Let k be any field and let £ be a finite extension of k. Let T : £ — k
be a nontrivial k-linear map of £ into k. Then if V is any vector space over £ and 2 is
any k-linear map of V into k, there exists a uniquely determined {-map A from V into
£ such that

Q=TA, 1ie, Q&) =TAE))
forall¢ € V.

Proof:

A\/

14

If such a map A actually exists, it must satisfy

T(aA§)) = T(A(ad)) = Q2(ab)
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foralla € £. If we fix & € V, let ¢ : £ — k be defined by ¢ (o) = Q(a&). Then ¢
is a linear map from ¢ into k.
Since T is nontrivial, there exists a unique element o in £ such that

pe(a) = T(aag) forall a el
(apply Proposition 9.3.18 to the nondegenerate form
¢:€x{f—k suchthat ¢(a,b) = T(ab)).
Let A : V — £ be defined by A(§) = a. Then

T(AE) =T(ag) = (1) = Q1 x &) =Q(§)
and T (@A (§)) = Q(aé).
Givena € ¢,a,b € ¢,and &, & € V, we have
T(aA(a§ + b&1)) = Q(a(aé + b&1)) = Q(aa) + Q2(abk))
=T(xaA(§)) + T(abA(&1)) = T(a(aA(E) +DbAD))).

Therefore a (A (aé + b&1) —aA(E) —bA(E)) ekerT forall o € £.
Since T is nontrivial, there exists w € £ such that T(w) # 0. Given any nonzero
vedl leta =wv~! el besuchthat T(av) = T (w) # 0. We have

A(aé +b&) =aAN(E)+bAE) forall a,bel and &,&,€ V. |

Returning to our case, let T : £ — k be an arbitrary but fixed nontrivial map from
£ into k (where ¢ and k are the constant fields of L and K respectively).
Given a nontrivial differential w of K, let 2 be given as in Definition 9.5.15, that
is, Q&) = w(Sy(§)) forall £ € Xy.
Consider the £-linear map A : X; — £ defined in Theorem 9.5.17 and satisfying
T(A(§)) = (&) = w(S«(8)). (9.45)
Corollary 9.5.18. The map A satisfying (9.45) is a nontrivial differential of L. O

Recall that A depends on the choice of «. In order to compute the divisor of A, we
define

Do = [ [B7*. (9.46)
b

where yp3 = vgp((Dﬁma)l_p), Uy = VplBypl, and p = Pk .

Theorem 9.5.19. Let L /K be a purely inseparable extension of degree p of function
fields with L = K («). If w is a nontrivial differential of K and A is given as in (9.45),
then the divisors of A and w are related by the formula

(A)L = (cong /L (W)k)Dq,
where D, is defined as in (9.46).
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Proof: Let 4l = cong /1 (w)k Dy = H‘B PP, where
cqp = e(PlP)vp (W)k) + vp((Dpge)' 7).
Let& € X and
E=b+hlat- 5l with &, ... 81 € Xk

Each component & € Loy (P € P ) satisfies

fp=bop+éipet o +Eppa’T €Ly, with g ... &1y € K.

If 4~! divides £, then for any a € ¢, 4~! divides a& and by Proposition 9.5.14
(see (9.42)), (w)}1 divides S, (a&). It follows that

T(aA(§)) = Q2(ad) = w(Sa(as)) =0
for all a € £. Therefore A(§) = 0, and 4 divides (A) . We have
vp((A)L) = csp. (9.47)

Now let %y = P [Bp] and By € V.

Let &p € L © Ly be such that vp(§p) = —vgp((Dpgya)'=7) — 1.

Then vm(ém(Dlg%a)“l’) = —1 and by Proposition 9.5.2 and Theorem 9.5.8, we
have

p—1 .
Ep(Dppo)' 7 = Z Spy ("E‘B(Dﬁm“)l_pﬁ%_l_l)ﬂ‘lﬁ

i=0
= —1—i\ pi

= SuCEpBly B ¢ Op.
i=0

Therefore there exists i such thatO0 <i < p — 1 and

SalEpBly ) & V.

Also, there exists y € K such that v, (y) = —v,((w)g) — 1 and w¥(y) # 0. The
definition of A establishes that in local components

T(AF(€) = w?(Se(§)) forall & e Ly
Let z = (Sa(Eppfy )" € By be such that vy, (2) > 1. Then

TP (agpBly ™) = wP (S (vzgpBl )
= w” (yzSaEpBly ) = wP(yzz) = wf(y) #0.
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Thus Aq3(yz§‘q3ﬂ§3_l_i) # 0 and

vp(ziphly ) = e(Blp) W) +vp(@) +vpEmpy )
= e(Plp)(—vpo(w)k) — 1) + e(Plp)vp (2) + U‘B(gmﬂfﬁ_l_i)
> —e(Plp)vp (w)k) — e(Plp) + e(Plp) — vp((Dpge)' 7)) — 1
= —e(PBlp)vp (w)k) — vp(Dpgye)' 7)) — 1.

It follows that
vp((A)L) < csp. (9.48)
We deduce the result from (9.47) and (9.48) . a

Corollary 9.5.20 (Tate Genus Formula). The genera of L and K are related by the
formula

20 —2=p""Qgk =D+ (1 —p) Y vp(Dpya)deg; P,
BePL

where for each B € P, we have p = Plg, O = VplByl, and [ : k] = p" for
some n > 0.

Proof: By Corollary 3.5.5 we have d; ((A)r) = 2g1 — 2 and dx ((w)g) = 2gx — 2.
On the other hand, using Theorem 5.3.4 we obtain

dx (k) _[L: K]
AL/K [€: k]

The results follows immediately by (9.46) and Theorem 9.5.19. O

dg (w)g) = p' ™" (2gx —2).

dp (cong/(w)g) =

Corollary 9.5.21. Let K be a function field of characteristic p > 2. Let L be a purely
inseparable finite extension of K. Then g; — gk is divisible by ”T_l

Proof: Since the extension is obtained from a finite number of successive extensions
of degree p, it suffices to consider the case [L : K] = p. Multiplying the formula of
Corollary 9.5.20 by p™ and using the fact that p” = 1 mod (p — 1), we obtain

2¢gr —2=2gx —2mod (p — 1).

The result follows. O

Example 9.5.22. Let k be a field of characteristic p > 0 such that p # 2. Let K =
k(x, y) be the hyperelliptic function field generated by

y2=xP —a, with a¢kP.
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By Corollary 4.3.7 we have

|l 1= prl_ | = p=1
8K=172 -2 -T2
Let L = K(x) with @ = al/?. Then L = k(x, y)(@'/?) = k@'/P)(x,y) =
k(al’P)(z), where 7 = (x_a)yw
Then g, =0and g, — gx = —pT_l.
Remark 9.5.23. Example 9.5.22 shows again that even though K, is isomorphic to
k’((7)), k is not contained in &k’ (see Example 2.5.23).

Proposition 9.5.24. Let K be a function field of characteristic p > 0 such that gx <
pT_l. Then for any constant extension L = K{', we have g; = gg.

Proof: If A is a transcendence basis of ¢’ over k and if L} = Kk(A), we have g1, =
gk (Theorem 8.5.2).

Therefore we may assume that ¢’/ k is algebraic. If £} is the separable closure of k
in ¢/, then if L, = K¢, we have g1, = gk (Theorem 8.5.2).

Thus we may assume that £'/k is purely inseparable. We have g; < Ar/xgk. If
gL < gk, the change of genus can be obtained in a finite extension £’/ k (see the proof
of Theorem 8.5.3).

Hence, we may assume that £'/k is a finite purely inseparable extension.

By Corollary 9.5.21,

p—1
T|8K_8L and ggx — gL >0.

It follows that 0 < gx — g1 < gk < pT_l. Therefore gx = gr. O

Definition 9.5.25. A function field K is called conservative if any constant extension
L = K/ satisfies g1 = gk.

Example 9.5.26. K is conservative in the following two cases:

(i) char K = 0 (Theorem 8.5.2)
(i) gk < 5+ and char K = p (Proposition 9.5.24).

For constant extensions we have the following result:
Theorem 9.5.27. Let L be a finite purely inseparable constant extension of K / k. Then
28k —2 =ik 2gL —2) + ux(p — DA,

where A is a nonnegative integer and |k is the invariant given in Definition 8.6.6. If
ALk > 1, we have A > 0.
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Proof: We proceed by induction on [L : K]. If L = K, there is nothing to prove.
Assume [L : K] > p (where p is the characteristic). Since L/K is purely inseparable,
there exists L’ such that K € L’ € L and [L : L'] = p. By the induction hypothesis
we have

28k — 2=k g —2) +pk(p— DA (9-49)

Applying Tate’s genus formula (Corollary 9.5.20) to the purely inseparable exten-
sion L/L’', we get

2¢1 —2=p'"" Qg =2+ (1 —p) Y vp(Dpye) deg, P,

PeP,
where p" = [Z : K’]. Therefore plf." = an = % = AZ/IL/.
Letayg = vsp(Dﬂma). We obtain
21 —2=hrQgL -2+ A (p—1) Y apdeg, P (9.50)
PeP,

Notice that asz belongs to Z and asg = 0 for almost all . Since L/L’ is a constant
extension, it follows that agp > 0 (Proposition 9.5.12).

By Theorem 8.6.8, 1 divides deg; 93, and by Corollary 8.6.15, uprr 1 = pp.
Using (9.50) we obtain

281 —2=hpr(28L —2) +up(p — HA” 9.51)
with A” € Z and A” > 0.
It follows from (9.49) and (9.51) that
28k —2 =ik (28 —2) + px(p — DA’
=Arykror 8L —2) + Ak (p — DA + pg(p — DA
=AM/ (28 —2) + ug(p — DA,
where A = A" 4+ A” > 0 (here we have used the facts that A7 )x = Ar//xAr/r and
AL KL = LK)
Finally, assume Ap/x > 1. Then if A;//x > 1 it follows by the induction hypoth-
esisthat A" > 0and A > A’ > 0.

If Ak =1,then Ay pr > 1land A/ gr < g1’ (Theorem 8.5.3). We have
2¢1 —2>2hp gL — 20 = Ay (2gL — 2).
Using (9.51), we conclude that A” > 0and A > A” > 0. O

Theorem 9.5.28. Let K / k be an inseparable function field and L /£ the minimum con-
stant extension of K / k such that L /¢ is separable. Then

1
gkzux(gL—1+§(p—1)A>+1

with A € N.
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Proof: By Theorem 8.6.13 we have ux = A /k. The result is a consequence of The-
orem 9.5.27 since wg = Ak > 1 (see Remark 8.6.7). m]

Corollary 9.5.29. If K / k is any inseparable function field we have

—D(p-2
Kz(p )2(17 ).

Proof: Since pg is a power of p and ug > 1, we have ug > p.
Therefore

1 1
gk Z pO—1+5(p-DxD+1=5p(p-1+d=p)

_(p—1
)

(p—2). o

Remark 9.5.30. There exist examples where the equality gg = %( p—1)(p—2) holds.

Example 9.5.31. Let K = k(x, y) be the function field given in Example 5.2.31. Recall
that &k = ko(u, v), where kg is a field of characteristic p, [k(ul/”, vl/Py . k] = p2, and
yP = ux? + v. By Corollary 9.5.29 we have

—D(p—-2
gKE(p )2(19 )

since K/k is not separable. Indeed, the field of constants of L = Kk(u'/?) is
k@!'/P v1/Py £ ku!/P). Let M, be the pole divisor of x in K. For ¢ large enough, we
have

L) =tdegg(My) —gx +1=pt — gk + 1

(because [K : k(x)] = p = dg(INy)). We have N, = Ny = A and Ny = At
Therefore xiyj e LA™ fori >0,0<j<p—1,andi+ j <t,and these elements
are k-linearly independent (since j < p — 1). Lett > p — 1. Then

HG)1i200<j<p—Li+j<1)|
p—1
=) G—j+D=pr—
j=0

J

pip—1) )4
PPy p=pi—Lp—3).
s tr=r 2(1) )
Thus pr — gk +1 =LA > pt — 5(p = 3).
Therefore gx <1+ 5(p —3) = w, and it follows that

_(p—=D(p-2)
=0
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9.6 Examples

9.6.1 Function Fields of Genus O

Let K /k be a function field of genus O that is not rational, and let 2 be any divisor.
We will prove that dg (2{) is even. First suppose that dx (2() = 1. Then

dg ) =1>2gx —2=-2.
Using Corollary 3.5.6 we obtain that
k@AY =dg) —gx +1=2.

According to Exercise 3.6.22, there exists an integral divisor °3 of degree 1. Thus
P must be a prime divisor. By Theorem 4.1.7, it follows that K is a rational function
field. This contradiction shows that dx () must be different from 1.

Now assume that there exists a divisor 2 of odd degree, say dg () = 2n + 1 with
n € N. By Proposition 4.1.6 there exists a prime divisor 3 of degree 2. Thus A3 ~"
has degree 1.

In particular, it follows that dg (Dg) = 2Z.

Proposition 9.6.1. A function field K / k of genus 0 is a rational function field if and
only if K contains a divisor of degree 1. O

Letx € K \ k be such that [K : k(x)] = 2. Then
Pi

Wk = —
Y
where 1, P are prime divisors of degree 2.

Since dg (B) = 2 > 2gx —2 = —2, it follows by Corollary 3.5.6 that £x (P~') =
dg(P) — gx +1 =3.Let {1, x, y} be abasis of Lx(B~1).If y = f(x) € k[x], we
have (y)kx = % = (f ()i, with Py 7# Py, s0 [K : k(f(x))] = 2.

Consequently we have k(f(x)) = k(x), where f(x) € k[x] has degree 1.
This contradicts the independence of {1, x, y}. Thus K = k(x,y). We also have
Cx(P2) = 5. Since {1, x,y,x2,y2,xy} € Lg(P2) it follows that there is an
equation

ax* + by2 +cxy+dx+ey+ f=0 (9.52)

witha, b, c,d, e, f € k not all zero.

If a = 0, (9.52) reduces to by> + (cy + d)x + ey + f =0.

We have cy + d # 0 since otherwise by> + ey + f = 0. Hence ¢y 4+ d # 0.

It follows that x € k(y). In particular, K = k(x, y) = k(y) and K is rational. This
proves that a # 0. Similarly, we obtain b # 0. Therefore F(X,Y) = aX 24 pyY? 4+
cXY +dX + eY + f is an irreducible polynomial in k[ X, Y.

We may assume b = 1. In this case, (9.52) can be written as
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y2 + (cx +e)y + (ax> +dx + f) = 0. (9.53)
If char k£ # 2, then (9.53) can be reduced to
¥ =h),

where h(x) € k[x] and h(x) has degree 1 or 2. The degree 1 case is not possible
because otherwise K would be a rational function field.

Furthermore, 4 (x) must be irreducible, since otherwise, if 1(x) = (Ax + a)(x +
B),a, B €k, thenif e # 0 or B # 0, we have

= (25) - (55
x+pr \x+8) \x+B )’

Letz = % Then y = +(x + B)z € k(x, z) and

x—a_'BZ2
C2-A

€ k(2).

Ifo = p =0, then y? = Ax? and y = VAx € k(VA)(x). Thus VA= e K
and K is rational. Therefore f(x) is irreducible.

Let us now consider the case chark = 2. If cx + ¢ = 0, the extension K /k(x) is
inseparable of degree 2. Assume that K /k(y) is also an inseparable extension, that is,

x*=g(y) € k(y).

As before, g(y) € k[y] is a polynomial of degree 2. Thus
g =ay?+By+y, with apyck

We have x4 = a2y4 + ’32y2 + y2 = az(axz + bx + C)2 + ﬂZ(aXZ +bx +c¢) + )/2 =
a?a’x* + (2% + Bra)x? + BPbx + (@2c? + B+ y?).
It follows that
2 =1, a’b®+p2a=0, Bh=0, and o2c®+pic+y?=0.
Thus b =0,8=0,0a=1,and y = ac = <

a°

The latter imply that x> = % y:+ c,or
y2 = ax? +c.

Note that a'/? and ¢!'/? € k cannot occur since in this case y = a'/?x + ¢!/? and
K = k(x) = k(y).

Now in the case that K /k(y) is separable we may assume, by exchanging the roles
of and x and y, that K /k(x) is separable and cx + e # 0 in (9.53).

Let z = —2—. Then K = k(x, z) and

cx+e’
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2
2 ax“+dx + f
T —7=———— =h(x). 9.54
e (x) 9.54)
Note that a)_c2 +dx + f and cx + e are relatively prime, since otherwise 72 — z =
AxtB and z € k, or x € k(z) and K = k(2).
If ¢ # 0, setting x| = ﬁ, (9.54) reduces to

22—z =hi(x),

where A1 (x1) is a polynomial of degree 2.
Therefore, when K / k(x) is separable, x and y can be chosen such that

Y2 —y=f(x) €klx] with degf(x)=2.
We have proved the following theorem:

Proposition 9.6.2. Let K / k be a function field of genus 0 that is not a rational function
field. Then there exist x,y € K such that K = k(x,y),[K : k(x)] =2 = [K : k(y)],
and x, y satisfy

ax* + y2 +cxy+dx+ey+ f=0 forsome a#0, (9.55)
where F(X,Y) = aX*+Y*+cXY +dX + eY + f is an irreducible polynomial in
k[X, Y]

Furthermore:

(a) If chark #£ 2, then (9.55) can be reduced to

y2 = f(x) € k[x], where degf(x)=2 and f(x)isirreducible.
(9.56)

(b) If chark = 2 and either K /k(x) or K/k(y) is separable, (9.55) can be
reduced to

2 —y = f(x) €klx], with deg f(x)=2. 9.57)
(¢) Ifchark = 2 and both K / k(x) and K / k(y) are purely inseparable, then
y2 = ax® 4 ¢ € k[x] (9.58)

witha'’? ¢ k or ¢V/* ¢ k. o

To see which conditions (9.55), (9.56), (9.57), and (9.58) must satisfy in order for
K to be or not be a rational function field, first consider the case K = k(x, y) with
x, y satisfying (9.55).

If this equation is of the first degree (a = b = ¢ = 0), then K is rational. If the
equation is reducible, then again K is rational. If there is an algebraic element « in k \ k
such that («, x) is a solution of (9.55), then k(x) € k’(x) € K and [k/(x) : k(x)] =
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[k':k] =2 =[K : k(x)]. Thus K = k'(x) is a rational function field. Therefore we
may assume that K is not rational. We will show that K has genus 0. As before, we
have a # 0 and we may assume b = 1.

Let o be the pole divisor of x in k(x). If B is a prime divisor in K satisfying
PBoolk(x) = oo, then dx (Poo) = 2 since K is not rational. Thus dx (PJ) = —2s for
all s e N.

Let A = {a(x) + yb(x) | a(x), b(x) € k[x],dega(x) < s,degh(x) <s — 1}.

Then A & Lk (P5S) by Proposition 4.3.5 (see Exercise 9.7.9). Thus g (P7) >
2s+1.Lets € Nbesuchthat2s > 2gg —2. We have £x (P5) = dx (PL)—gx+1 =
2s +1 — gg > 2s + 1. It follows that gx = 0.

Now we consider (9.56) (chark # 2). In this case, K/k(x) is a separable exten-
sion. If K is not rational, then f(x) is not a square and for any place

¢ 1 K — k(P) U {oo},

we have k(3) # k. This means that the prime divisor 3 is of degree larger than 1.
Assume that B is such that ¢ (x) # oo. This is equivalent to v (x) > 0,i.e., P # Poo,
which implies ¢(x) ¢ k or p(y) ¢ k. If (y) € k then ¢(x) ¢ k, and

o(1)? = flpX)).

It follows that f(x) — a? is irreducible for any « € k.

Conversely, if f(x) — a® € k[x] is irreducible for all « € k, then for any place ¢
of K such that ¢(x) # oo, we have k(3) # k.

Now if chark = 2 and K = k(x, y) is given by (9.57), then k(]3) # k if and only
if f(x)— (e? — @) € k[x] is irreducible for all & € k.

Next, assume chark = 2 and let K = k(x, y) be as in (9.58).

If k(a'/?) = k(c'/?) = K/, then y € K'(x) and KK = K'(x,y) = k'(x), with
[k (x) : k(x)] = [k’ : k] = 2. Hence K = k’(x) and K is rational. Therefore if X is
not rational, we have [k(a'/2, ¢1/2) : k] = 4.

Conversely, if [k(a'/?,¢'/?) : k] = 4 we will prove that K is not rational. Set
k' = k(a'/?). Then Kk’ = k(a'/?, ¢'/?)(y) and

4 =[k@? V) k] = [k@?, ) (x) : k(x)] = [KK : k(x)]
= [KK : K ONK (x) : k(x)] = 2[Kk : K (x)].

Thus [Kk’ : k’(x)] =2.
Ifp: K — k() U{oo} is any place of K the restriction of ¢ to k is the identity
(see the discussion in Section 2.2). Thus

e =apx)* +c or @) =apx)+ 2

It follows that ¢ (x) ¢ k or ¢(y) ¢ k, and hence there is no place of degree 1 in K.
We have proved the following theorem:

Theorem 9.6.3. Let K /k be a function field. Then K is of genus 0 iff K = k(x,y)
with
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ax2+by2+cxy+dx+ey+f =0. (9.59)
Furthermore, (9.59) can be reduced to:

(a) y?> = f(x) ifchark # 2, where f(x) € k[x] is a polynomial of degree 2.

In this case K is a rational function field if and only if there exists o € k such that
f(x) — a? € k[x] is reducible.

(b) y* —y = f(x), where f(x) has degree 2 if chark = 2, and K / k(x) is separable.
In this case, K is a rational function field if and only if there exists « € k such
that f(x) — (e — @) € k[x] is reducible.

(c) y* = ax? + ¢ for some a # 0 ifchark = 2, and K / k(x) and K / k(y) are purely

inseparable.
In this case, we have that K is a rational function field if and only if
[k(al/z,cl/z) :k] < 4. O

We end the discussion with a result on the different D g /¢ (x).
Theorem 9.6.4. Let K / k be a function field of genus 0.

(a) Assume that K = k(x, y), chark # 2, y?> = f(x), f(x) = p1(x)¢' --- p.(x)

withr = lorr = 2, ¢ = 1, and er:lei degpi = 2. If (i) =
r
i p;odegpi, then Dk ki) = [ PiPs, where the P;’s are the prime divisors
i=1

in K lying above g;, B is a prime divisor above o, and € is 0 or 1.

(b) Assume that y* —y = f(x) € k(x), deg f = 2, Dg k) = P, and § is 0, 1,
or 2, where B is the prime divisor in K above the pole divisor of x in k(x), and
dg (Poo) is 1 or 2.

Proof: (a) This is just Example 5.8.9.

(b) Since & is not a perfect field we cannot apply directly Example 5.8.8. Clearly
K /k(x) is a separable extension. If K /k(x) is a constant extension, then K = k’(x),
[k" : k] = 2, k'/k is a separable extension and for any place 3 we have k'() =
k'k(g) (Theorem 8.4.11). Thus there are no inseparable or ramified places (Theorem
5.2.32), and Dk /xx) = M. If K/k(x) is a geometric extension, then since K /k(x) is
separable, we may apply the genus formula and we obtain

1 1
0=gk =14 (gr) — DIK : k(x)] + Edk(Qk/k(m) = EdK(gK/k(x)) -1

It follows that dg (D g /k(x)) = 2. On the other hand, by Example 5.8.8 the only
ramified prime of k(x) in K can be the pole divisor g of x in k(x). Therefore g
ramifies or is inert in K and we have

‘430o={0§o

with § = 1 if and only if g is inseparable or § = 2, if and only if o is ramified. It
follows that D g /x(x) = P, With sdg (Poo) = 2. O

Note that P |900 may be inseparable (see Exercise 5.10.18).
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9.6.2 Function Fields of Genus 1

Let K/k be a field of genus 1. Let W denote the canonical class of K. Then
dx (Wg) =2gx — 2 =0, and we have

N(Wg) =dx(Wg) —gx + L+ N(Wg'Wg) =0—1+1+1=1.

It follows that Wx = Pk is the principal class.
For a function field of genus 0, there exist divisors of degree 2. This is not the case
for function fields of genus 1.

Proposition 9.6.5. Let n € N. Then there exists a function field K /k with gg = 1
such that dg (Dg) = nZ.

Proof: Corollary to Theorem 7 of [91], [133, Theorem 2]. O

In Section 4.2 we studied elliptic function fields K /k such that char k # 2. In this
section we will consider the case chark = 2.
By (4.1) we have K = k(x, y) with

y2 + yxy + 48y = ot3x3 + a2x2 + a1x + ap. (9.60)

As in Section 4.2, we also have 9, = 3 and Ny, = 93, where P denotes a prime
divisor of degree 1. Thus [K : k(y)] = 3. It follows that o3 # 0 (since otherwise x
satisfies an equation of degree 2 over k(y) and then [K : k(y)] = [k(x,y) : k()] <
2). Multiplying by a% and putting y; = @3y, x] = @3Xx, we may assume o3 = 1.
Hence K = k(x, y) with

V2 4 (yx 4+ 8)y = x> + aox? + a1x + ap. 9.61)

First we handle the case yx + 6 = 0 in (9.61). In this case K/k(x) is a purely
inseparable extension of degree 2. By means of the substitution x; = x + a2, (9.60)
reduces to

y2 =x>+ax+ b, with a,bek. (9.62)

Consider any function field K = k(x, y) satisfying (9.62). Let

(k) = 0 \here Vo, (X) = —1.
§o0

Let B be any prime divisor in K that lies above poo. Since vp(x) < 0, we have

Uqg(x3 +ax +b) = min{vm(x3), vp(ax), vp(b)} = vs‘p(x3)
3vgp(x) = 3e(PlPoo) Ve, (¥) = —3e(Plpoo)-

Thus

vp(r?) = 2ugp(y) = —3e(Blpoo)-
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Therefore 3 divides vy(y) and 3 divides Ny.
Since 3 > [K : k(y)] = dx (M) = 3, it follows that

Ny =P and e(Plpo) =2.

In particular, dx (3) = 1 and £ is the field of constants of K.

Letn besuchthatn > 2gx —2.For2 <m < n,we writem = 3t+r,r € {0, 1, 2}.
If r = 0, consider the element y'. If » = 1,thenm =3t +1 =3¢t —-1)+4>2
and hence ¢t > 1. In this case we can work with y’ ~1x2 1fr = 2, consider the element
y'x. In any case, for any 2 < m < n, there exist i and j such that0 < i,0 < j, and
vp(y'x/) = —(3i + 2j) = —m. It follows that £x (B~") > n. Therefore

n<LxgP ") =dg(P ") —gx+1=n—-gg+1.
Thus gx < 1.

Proposition 9.6.6. Assume that K = k(x, y) has characteristic 2 and is given by
(9.62). Then K contains a prime divisor of degree 1 and gx < 1. O

In order to study the situation in which gx¢ = 0 and gx = 1, consider the equation
y? =x34ax +b,and let kK’ = k(/a, v/b). In K’ = Kk, we have

y2 = x> +atx + b =x(x* +a?) + b3,

where a% =a, b% =b,and ay, b € k'.
It follows that
Gl
X = .
X +a

Therefore, if 7 = /x = %, the field K’ = k/(z) is a rational function field. Assume
that 3’ is a prime divisor of K’ above ‘B; then vqy (z) = —1. In Kk’ we have N, =
(P)? and N, = (P')°.

It is easy to see that gg = 0 if and only if £x (B~!) = 2 (and gx = 1 if and only
if e (P~ = 1).

Now, in K’, we have

V=xXtax+b=2+al? +b =@ +aiz+ b)),
that is,
y=2+aiz+bi. (9.63)

Assume that gg = 0. Since K contains a prime divisor of degree 1, it follows that
K is a rational function field. In this case we have £ (B~!) = 2, or equivalently, there
exists w € K \ k such that 91, = ‘B.

Since {1, z} is a basis of Lx/((P)") and w € Lx(P~1) € Lg/((P)~1), there
exist a, B € k’ such that



332 9 The Riemann—Hurwitz Formula
w=a+pzeKk. (9.64)

Also, {1, w, w2, w3} is a basis of LK(‘B_3). Therefore there exist A, B, C, D in k
such that

y = A+ Bw+ Cw? + Dw?. (9.65)
Taking squares in (9.65) and substituting w by its value given by (9.64), we obtain
x> +ax +b=y> = A2+ B2(* + B%x) + C*(a* + B*x?) + D* (o + B%x)°
= A%+ B%a® + B*B%x 4 C%a* + C?p** 4 D%
+ D*a*B%x + D*a?B*x? + D?5x3
— (A2 + B2? + C2a* + D*a®) + (B2B% + D*a*B)x
4 (C2B* + D222 + D253,
It follows that
A% + B*a? + C%a* + D?*a® = b,
B2A% + D*a*B% = a,
C26* + D*a?B* =0,
D?B% =1.
Therefore B3 = 1/D € k. In particular, k(8)/k is separable. Since k’/k is purely
inseparable, it follows that 8 € k.
We also have C% + D?a? = 0, and hence o = % e k.

Thus gxg = 0 implies z € K and by (9.63), we have a;, b1 € k. The converse is
clear. We have proved the following proposition:

Proposition 9.6.7. If K = k(x, y) is given by (9.62), then gx = 0 (and K is a rational
function field) if and only if \/a, /b € k. In this case, we have K = k(/X). O

As an application of Tate’s genus formula (Corollary 9.5.20) we present another
proof that if K /k is a function field such that K = k(x, y) and

y2=x3+ax+b=f(x)

with k(/a, v/b) # k, then gg = 1.

We have already proved that if i3 divides g Where (X)xx) = 5%’ then poo = P2,
dg () = 1, and £ is the field of constants of K.

We now compute the numbers r(, given in Proposition 9.5.12. Let B be a prime
divisor in K, o = Blrx), and o # poo. Let h(x) € k[x] be a prime element for .
Then A (x) satisfies

(h(x))k(x) = %gh'
o
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Notice that since v, (f(x)) is nonnegative, r, is nonnegative too. We wish to show
that r, = 0 or r, = 1. Assume for the time being that r,, > 2. Let & € k(x)(, be such
that

vp(f(x) =€) =rp.
Since k(x) is dense in k(x),,, there exists 7(x) € k(x) such that
Vp(E —t(x)) > rp.

We have v, (§2 — #(x)?) = 2vg,(§ — t(x)) > 2r,. Thus

vp(f () = 1(0)%) = vp (f (1) = §%) = rp.
Let t(x) = s(—x) where p(x),q(x) € k[x] and (p(x),q(x)) = 1. Since

(x)”

vp(t(x)) > 0, it follows that (h(x),g(x)) = 1. Let c(x),d(x) € k[x] be such that
h"(x)c(x) + g(x)d(x) = p(x) for a given n € N. Then
p(x) J p(x) —d(x)q(x)  h"(x)c(x)
B2 —a) = = :
q(x) q(x) q(x)
Thus vy (t(x) — d(x)) = n and c(x) € k[x]. If we take n > ry, it follows that
v (f(x) — c(x)z) =1y, and we may assume that 7 (x) € k[x].
Since r, > 2, we have

t(x) —dx) =

F0) = 1(0)? = h(x)?s(x) (9.66)
with s(x) € k[x]. Taking the usual derivative in (9.66), it follows that
x2ta=f'(x)=hx)>'(x).

Hence s'(x) € k[x],degs’(x) = 0 and h(x) = x + +/a. Thus /a € k and s(x) =
2(x%) 4+ x + B with £(0) = 0.
Substituting in (9.66) we obtain

B tax+b=f(x)=*+a)lED) +x+ p) +1(x)>.
Therefore
b=x2x?) + Bx? + al(x®) +ap +1(x)°. (9.67)

Let£(x) =dpyx™ +---+dix,t(x) = cpx" +---+ c1x + co.
It follows from (9.67) that n = m + 1 and

dm + Cr2n+1 =0

di +adip1 + ¢l =0
; . (9.68)
di+ady+c3 =0
B+ ad; +c]2 =0
a,B—i—c% =b
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From (9.68) we deduce that b belongs to k2, which is a contradiction. Thus for all
§ F $o00, We have r, = 0 or r, = 1. Since £ is the field of constants of K, it follows
by Proposition 9.5.12 that

Ve (Do) deg B = 0.
Now assume g = poo. Then
oo = Vpoo (f (X)) = —3.
For any & € k(x)g,.,
vp (f(x) — &%) = min{vy, (f(x)), 2vp (£)} = min{—3, 20,(£)} < —3.

Hence r,,, = —3 and since 2 = p { —3, we have v, (Do) degg P = —4.
Therefore

if Blrx) = 9 # Poo>

D degg B =
v (Dry o) degy —3—-1=—-4 ifB="=5.

Using Tate’s genus formula, we obtain

2gk —2=2""Qgkx) — 2+ (1=2) Y ves(Dryya) degg B
B
=2(-2) — (—4) =0.

It follows that gxg = 1, which was to be shown.
Now we consider the case yx + § # 01in (9.61).
Let y; = —2—. Then K = k(y1, x) and

yx+6"°
2 2
2 _ 2 _ Y y _y +(yx+9d)y
yl _)’1—)’1+)’— 2 - 2
(yx +96) yx+46 (yx +96)
_x3+a2x2+a1x + oo
(yx + 8)2

Clearly, K /k(y) is a separable extension of degree 2. We distinguish two subcases. If
y = 0, then denoting y; by y, we have

y2 —y = f(x) € klx], (9.69)

where f(x) is a polynomial of degree 3.
Ify #20,letx; =x +8/y. Then

x3 +a2x2 +a1x +op = x? +£2x12 +e1x1 + €0

and
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2 X1 & €1 €0
Y -y==+=+—+—=. (9.70)
202 T 2 22
Note that if gx = 1, &g = &1 = 0 does not hold. Indeed, if this were the case, x|
would belong to k(y) and K would be a rational function field.

Assuming that gq is a square in k (which happens when % is a perfect field), then
if By € k is such that B3 = e, let

n=y+_——.
VX1

We have

2
By Bo _x1 & €3

T a2 2

yaZ o ym v2 o v

Vi—yi=yi+tyn=y"—y+

Let xp = % + % Then

yi—yi=x2+ for some « € k*. 9.71)

axy +

If & is not a square in k, the substitution x, = % + % reduces (9.70) to

axy + f

8x§+8

-y =x+ for some 8 # 0. 9.72)

If (axy + B, 8x§ + &) # 1, (9.72) reduces to (9.71). We now assume that (wx; +
B, ng + &) = 1, with § # 0. Then (9.72) can be written as

ax+b
yz—y=x+—x2+c,, (9.73)
where (x2 + ¢/, a’x + b') = 1. Then

ax+b A A
Y+ =_—— o 2
X2+ Jrx)  BPook oo

according to whether /c ¢ k and dix) () = 2 or J/¢ € k and di(x)(9) = 1 respec-
tively. Even though £ is not a perfect field we can use Example 5.8.8 to see that g is
ramified in K. Furthermore, dx (F3) = 1, B divides g, and £ is the field of constants
of K. If \/c ¢ k, then by Example 5.8.8 we have

T2PBT | Dk k)

where dg (131) > 2. In this case gx = 2. Thus /c € k.
We are now ready to prove the following theorem:
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Theorem 9.6.8. Suppose that k has characteristic 2. Then an elliptic function field
K /k is given by K = k(x, y), where:

(1) If K/ k(x) is purely inseparable, then
y2 =x +tax+b

with k(/a, \/b) # k.

(2) If K/ k(x) is separable, then K is given by one of the following equations:
(@) y> — y = f(x) € k[x], where deg f(x) = 3 and f(x) is irreducible.
() y> —y =x+ﬁ,witha € k*.
) y?—y=x+ &ﬁ;’;, where (ax + B,x +¢&) = 1.
When k is a perfect field, K / k is given by either (a) or (b).

Conversely, any of the above equations defines an elliptic function field.

Proof: We have already proved (1) (Proposition 9.6.7). On the other hand, any elliptic
function field K such that K /k(x) is separable is given by (a), (b), or (¢).
Now if K /k is defined by (a) or (b), let (x)x(x) = %. Then either

A
(O = — for some integral divisor
278

or

(a58) = s
X+ = ,
ax +b )i 1P

where ‘B is an integral divisor and g; is a prime divisor of degree 1.
It follows by Example 5.8.8 that

Dk k) = P+ or DK /k(x) = ‘»13%‘432,

where P, P are prime divisors in K that lie above g and g respectively. In partic-
ular, g is ramified, k is the field of constants of K, and dx (J3) = 1. Using the genus
formula we obtain in both cases that

1 1
g8k =1+ 8k = DIK - k()] + 2dk Dk ko) =1 -2+ 5@) = 1.

Finally, consider (c). We have

ax + B A
X + —2 = —27
x+¢) k(x) §008%

where 2l is an integral divisor relatively prime to g0 5.
It follows by Example 5.8.8 that o is ramified. Moreover, if ‘B divides oo, then
dg (P) = 1 and k is the field of constants of K. Also, 9, = B> and Ny, = PB3. Let
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n > 2gx — 2. For any m satisfying 2 < m < n, there exists an element yx/ such that
Nyixi = P, Hence

n<LlxgP ") =dg(P")—gx +1l=n+1-gk.

Thus gg < 1. Let k' = k(y/B). Then, as before, K’ = Kk’ can be given by

where a € k' \ {0}

2
—y=x+ )
4 Y ax +b

and gg- = 1. Since K’ is a constant extension of K, by Theorem 8.5.3 we have

l=gg =gk =1

Thus gx = 1 and K is an elliptic function field (and as a corollary we obtain that
D /kw) = P2P). O

9.6.3 The Automorphism Group of an Elliptic Function Field

Now we study the automorphism group of an elliptic function field.

Let K/k be an arbitrary elliptic function field, Cg the divisor class group of K,
and Ck o its subgroup of divisor classes of degree 0 (see Section 3.2).

Set Mx = {'B € Pk | dx (B) = 1}. Let Py € Mg be fixed and K = k(x, y) with
N, = B3, Ny = PJ. Let

¢: Mg — Cko

be defined by

_| B
p(P) = [%} . (9.74)

Proposition 9.6.9. The function ¢ given in (9.74) is bijective.

Proof: Let B be a divisor of degree 0. Then dx (BPg) = 1 > 0 = 2gg — 2. By
Corollary 3.5.6 we have

Cx(BPy ) = de (BPo) —gx +1=1.

Ifa € LK(%_I‘B(;I ), « is nonzero and satisfies (@) = g'(%—o, where 3 is an integral

divisor of degree 1. Thus 3 is a prime divisor and B = <%) = (D).

Now if ¢(P) = ¢(B1), then % and % define the same class. Therefore

-1
% (%) = % which is principal. Let (x)g = % If P # Py, we have

[K : k(x)] = dx (3x) = dx (B) = 1, which contradicts the fact that K is of genus 1.
It follows that 3 = 1, and ¢ is bijective. O
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Remark 9.6.10. The bijection ¢ provides M with an additive group structure whose
operation @ is defined by

TP =g @B =o' ([%D .
0

In the other words, PP = Py, where <m§]) = (%) We have POP = P and

0

B &Py = ‘P> if and only if ‘E ‘4%10 is principal. With this structure, Mg is isomorphic
to Ck 0.

Now consider
Auty(K) ={o : K — K | o is an automorphism of K and o | = Idy}.

Proposition 9.6.11. Let K /k be any function field and let 0,0 € Auty(K) be such
that 9° = £ for all p € Px. Then o = 6.

Proof: Put ¢ = o6~ It follows from the choice of o, 6 that p¢ = g for all p € Pk.
Let z € K be such that (z)x = " - - ;" . Then

@)k = @% = @)D (@) =" o = (k-
Thus there exists C, € k such that

¥ =C,z.
If z; and z are linearly independent over &, we have

(21 +22) = Coyn (@i +22) =2V + 25 = Cyz1 + Cy20.

Therefore C;, 4., = C;; = Cq,. Since C; = 1, it follows that C, = 1 forall z € K
and ¢ = Idg. Hence 0 = 6. O

Now we return to the case of an elliptic function field K/ k. Let 3 and B3| be two
prime divisors of degree 1, not necessarily distinct. We choose B = 3 as in Remark
9.6.10. We have £x (BB1)™") =dx (BPP1) —gx +1=2.

Let z € K \ k be such that z € Lxg((PP1)~!). Then (2)x = % for some
integral divisor 2 such that 2 # PP;. We have [K : k(z)] =2 =dN,).

Next, assume that K /k(z) is a separable extension.

Let Gal(K/k(z)) = {1,0}, where 0 # 1Id and 6(z) = z. Notice that o fixes
A(PP1)~! (such an automorphism is called a reflection automorphism of 3 and B
in K). If B £ P4, then P and P are the prime divisors above the pole divisor g of
z in k(z), and thus 0P = By, 0P = P (because Gal(K/k(z)) = {1, 0}).

Let q be a divisor of degree 1 in K. Then

(#) () -5
)\B) T Pp
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and the latter is a divisor of degree O in k(z), and hence a principal divisor. This means
that

909" =P =Py or ¢ =P7 Oq.

In particular, taking 31 = P, we get q° = Oq.
Let us denote

oPP, (9.75)
by o for 3 and B;. Then
°F® =P 0q, andso q’*F = Oq.
Set

T = Typp, = 0P, O TP, P, - (9.76)

For any prime divisor q of degree 1, the divisor q"?;m %} = (g) is principal. Thus

q* @ q°% % = q* © q = Py, and we have
PP =q0 P 9.77)

Because of (9.77) T o, is called the translation automorphism from 3 to ;.
Assume that 7/ = 7 g3, is another translation automorphism. Then if ¢ @ P, =
q1 = q°, it follows that q; is a prime divisor of degree 1 and

Q0 =1 ®Po.
Thus

=@ =q = ®Pra=q®P1 ®Pa.

Therefore T 3, © T, ¢, has the same effect as T3 g3, g3, on prime divisors of degree
one.

Proposition 9.6.12. With the above notation we have

TP O TP.P = TP.ProPe-

Proof: Let G = Aut;(K) and G = Aut;(f), where k is an algebraic closure of k and
K = Kk is the constant field extension.
The natural map from G to G is a monomorphism of groups. (If ¢ € G, the
n

extension of o to K is defined as follows: if @ = > oix; with o € kand x; € K,
i=1

n
then o (@) = Y a;o(x;). See the proof of Corollary 14.3.9.)
i=1
All the prime divisors of K are of degree 1 since & is algebraically closed, and
P, © TR, and Ty g, e, have the same effect on all prime divisors of K. The
statement follows by Proposition 9.6.11. O
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Theorem 9.6.13. Let
G = {mp.yp, | B1 € Pk of degree 1}

be the set of all translation automorphisms. Then G is a group that is isomorphic to
Mg and to Ck .

Proof: Let¢ : G — Mk be given by ¢(ty q3,) = P (respectively,let¢ : G — Ck o

be given by ¢(tp 33,) = [%]) Then (T, © Tp.p,) = TP, Bap,) = F1 &
P = o(tp p)e(tpp,)-

Hence ¢ is a group homomorphism. Clearly ¢ is bijective. O

Theorem 9.6.14. Let = Auty(K) and set G = {t 3, | dx (PB1) = 1, P € Pk}
Then G is a normal subgroup of ® that satisfies |6/ G| < oo.

Proof: Leto € & and T = tp gy, € G. Let q be a prime divisor of degree 1. Set
¢ = oto~!. Using (9.77) we see that 7 = q @ B is equivalent to

233‘;3 = (z)x being principal or q° = (Z_I)K% = (zq)fili'
It follows that
(3)=(3) = ()" =()" ()
e B L Pty (Po)*

_ < 97 P ‘J3(Z2)K>J_1 _ <£>"_1 g
Pk PP B )
_ (g) 3\
¥ Z(lrl K

Thus % is principal, and q¥ = q @ P¢.

Therefore ¢ = T3 e = o T 1, o~ ! and G is a normal subgroup of &. Further-

-1
more, we have P7 = P & P and g;?l is principal, and so is (:ﬁ;ﬁ)g =

o1
%. It follows that
PP =P
or
B =7 op .

Now let o € & and set 3| = *B°. Then
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TP =Po P =Py =

Therefore tpq,07" = U’lrmmw fixes P. Thus if we show that Statg ()
{9 e® | Pl =P } is finite, it will follow that

1

16/G| < [State (P)| < oo.

We have £x (B™") = dg (B") — gx + 1 =n foreveryn > 1.
Let {1, x} be a basis of Lx(P2) and {1, x, y} a basis of Lg(P>) (with 0N,
32, Ny = P3). Let o € Statg (). We have

Lx(P2)° =Lg(P2) and Lg(P>)° = Lx(P).
It follows that

ox=ax+b forsome a#0, and oy=c—+dx+ey forsome e F#O0.
(9.78)

If char k # 2, 3, then by (4.6) we have K = k(x, y) with
Y =4’ - gox — g, (9.79)
Substituting (9.78) in (9.79) we obtain
(c +dx +y)* = 4(ax +b)° — ga(ax +b) — g3.
Hence
A +d*x?+ e2y2 + 2cdx 4 2cey + 2dexy
= 4a’x> + 12a%bx? + 12ab’x + 4b> — grax — gob — g3.

It follows that

2d 2¢ d*>  12a°b  4d®
— =0, — =0, and —=——, — =4. (9.80)
e e e? e? e?
Therefore d = ¢ = 0, b = 0 and €2 = a°.
2
Ifx= 2 we have a = 2—2 =2 s0e=ak =A%
Therefore
ox =A*x and oy = A3y. (9.81)

If we substitute (9.81) in (9.79) we obtain
k6y2 = 43553 — g2)»2x — g3.

Hence
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y2=4x3—&x—&

)L4 )x6 :4X3_g2)€—g3.

If g» and g3 are nonzero we have M =20 = l,s022 =1,ie, A= £1.If g =0,
then clearly A° = 1. If g3 = 0, then A* = 1. Therefore Stabg () is isomorphic to
C», Cy, or Cg. In any case, it is finite.

If char k = 3, by (4.3) we have

y2 =x>+ a2x2 + a3x + aq4. (9.82)
Substituting (9.78) in (9.82), we obtain
(¢ +dx +ey)? = (ax + b)> + az(ax + b)* + az(ax + b) + ay,

SO

A +d*x?+ e2y2 + 2cdx 4 2cey + 2dexy

=33+ b+ a2a2x2 + 20pabx + a2b2 + azax + azb + a4.

Hence

Thusc =d =0,e =A%, a =A%, and A € k*.
It follows that ox = A%x + b and oy = A3y. We have

2092 = 20x3 + b3 + aon*x? + 2000%bx + aab® + a3A’x + azb + oy
= 23 + a2 x? + xQear?b + a3A?) + (B> + a2b?® + a3b + ay).

Therefore

B+ anb? +ash+aa(l—26) =0, 2 gy and 20T _ 0
e A4
Ifay #0then A = 1 and A% = 1, 50 > + b + a3b = 0.

Hence A can take at most two values (£1) and b can take at most three values; it
follows that Stabgs () is a finite group. If ap = 0, then a3 # 0 since x> + axx? +
a3x + a4 is a separable polynomial. Therefore A* = 1, and thus the possible number
of A’s and b’s is finite.

Finally we consider char k = 2. Since we are assuming that K /k(x) is separable,
by Theorem 9.6.8 we have

y2—y = f(x) €k[x], with degf(x)=23, (9.83)
with A € k*, (9.84)

Zoy=x+ !
Y Y= Ax + B’

or
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ax +

2 _ = AT E
y y x+(x+8)2’

where (ax +8,x+¢)=1. (9.85)

Note that in the proof of Theorem 9.6.8, we showed that in a quadratic constant exten-
sion, (9.85) reduces to (9.84). Thus if X’ is this quadratic extension of k and K’ = K&/,
we have g = 1 and the stabilizer Stabg () in & is contained in the stabilizer in K.
Consequently we may assume that K is given by (9.83) or (9.84) and also that f(x) is

monic.
If K = k(x, y) is given by (9.83) and f(x) = x> + oox? + a1 x + g, we have
(c+dx+ ey)2 — (c+dx +ey) = (ax + b)3 + ap(ax + b)2
+aj(ax + b) + ao,
A+ d*x?+ ezy2 —c—dx —ey= a’x3 + a’bx?® + ab’x + b + ara’x
+oe2b2 + ajax +a1b + .

2

Hence

a’b + a2a2 —d* = o,

ab2+a1a+d = oy,
b + arb® + a1b + g — (c2—c) =0,
d* = a*h+ ax(a® + 1),
d=ab*>+ai(a+1),
d* = a®b* +al@® + 1),
a*b +ax(a@® +1) = a’b* + oz%(a2 + 1),
a®b(1 = b*) = (@2 + ap)(@® + 1).

Therefore there is a finite number of choices for b, and thus for d and ¢ also. Thus

Statg () is finite.
Finally, if K is given by (9.84), we have

(cz—{-dzxz+ezy2)—(c+dx+ey)=ax—i—b+—1
A(ax +b)+ B’
Then%:l,soe:land
yi—y=(@+dx+b+c*—c)+d*x* + ! = x4+ L
Aax + (Ab + B) Ax + B

Hence d = 0 and

1 1
Ax+ B  Aax+ (Ab+ B)’

@+d—Dx+ G+ —c)=
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It follows thata = 1, b+c2 —¢c =0, Ab+ B = B, b = 0, ¢* = ¢, and therefore
c=0orl.
This proves that in any case Stabg (3) is finite. O

9.6.4 Hyperelliptic Function Fields

Definition 9.6.15. A function field K /k is called hyperelliptic if gx > 2 and K is a
quadratic extension of a field of genus 0.

First we consider the special case of K /k a quadratic extension of a rational func-
tion field. Assume [K : k(x)] = 2. If chark # 2, then K = k(x, y) with

¥} = f(x) € klx].

Recall that f(x) is a square-free polynomial of degree m, and by Corollary 4.3.7,
gk = [’"TH] — 1. Thus K is hyperelliptic if and only if m > 5.

Proposition 9.6.16. A function field K /k is a hyperelliptic function field that is a
quadratic extension of a rational function field if and only if gx > 2 and there ex-
ists A € Dy such that d() = 2 and LA~ > 2.

Proof: Assume [K : k(x)] = 2 and gg > 2. Let 91, be the pole divisor of x. By
Theorem 3.2.7, d(y) = [K : k(x)] = 2. Since 1 and x belong to LK(‘R;I) and are
linearly independent, it follows that 2(9?;1) > 2.

Conversely, if gx > 2 and 2 is a divisor of degree 2 such that £ K(i’l_l) > 2, let
y € L@~ \ k. Then (y)x = 2A~'B for some integral divisor 8. Since y ¢ &,
it follows that d(B) = d() = 2 and £x(B~") = £x (A1) > 2 (see the proof of
Theorem 3.3.2).

Letx € Lg(B~hH \ k. Then 9, divides B and d(Ny) = [K : k(x)] < 2. Since
K # k(x), we have [K : k(x)] =2 and K is hyperelliptic. |

Corollary 9.6.17. If K is any function field of genus 2, then K is hyperelliptic.

Proof: Exercise. O

Example 9.6.18. Let n € N be any positive integer, and let k£ be any field. We consider
extensions K /k(x) such that the field of constants of K is k and [K : k(x)] = 2.

(1) If K/k(x) is separable, then we distinguish two subcases:
(a) char K # 2. Then K = k(x, y) and y?> = f(x) € k[x], where f(x)
is a separable polynomial of degree m. By Corollary 4.3.7, gx =

[mTH] — 1.Letm =2n + 1. Thus gx = n.
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(b) char K = 2. Then K = k(x,y) and y2 —y = f(x) € k(x). Let
flx) = xlk, where (2, A) = 1 and A € N. By Example 5.8.8 we have

A+1D(2—1 A+1
QK/k(x):m(_l—)( ):;B+’

where ‘B is the prime divisor of K that lies above the pole divisor of
x in k(x). Using the genus formula we obtain

1 Ar—1
8k =1+2(gk(x)—1)+§(>»+1)=7.
Let A =2n + 1. Then gx = n.

(2) Now we consider K /k(x) to be purely inseparable. In this case we have
K = k(x, y) and

y? = f(x) € klx],

where f(x) is a separable polynomial of degree m and chark = 2.

First we will see that if gx # 0, then & is an imperfect field (see also the proof
of Proposition 9.6.7). Assume for the sake of contradiction that k is perfect
and let £(x) = aux™ + am_1x" '+ +ax + ao.

Let b; € k be such that bl.2 =gq; for0 <i < m. Then

¥ = f(x) = bEx" + b2 X" bix by = xg (%)% + h(x)?

for some g(x), h(x) € k[x], where g(x) # O since f(x) is assumed to be a
separable polynomial. Hence

X = [y__h(x)]z _ 2
g(x)

with 7z = 2 _(};()x ) ¢ K. Therefore K = k(z), where z = /%, K is a rational
function ﬁeFd, and gg = 0.

Now assume that & is an imperfect field and let @ € k \ k2. Let m be an odd
positive integer and

f(x) =x" —a € k[x].

We will calculate gk using Tate’s genus formula. Consider (x)xx) = % and
let ¥ be a prime divisor in K such that ‘3 divides gso. Then

vp(r?) = 2vp() = vp(f () = e(PlPoo) Vs, (f (1)) = —e(Blpoo)m.

Since m is odd, we have e(P|p0) = 2, dx (B) = 1, and the field of constants
of K is k.
Let g be any divisor of k(x) distinct from gpso. Set

345
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rp = max ivp(f(x) —52)}.

Eek(x)p
Let & € k(x)y, be such that v, (f(x) — 52) =rp.
We have r, > vp(f(x)) > 0. Since k(x) is dense in k(x),, there exists
h(x) € k[x] such that

Vp(h(x) — &) > rp.

Thus vy, (h(x)? — £2) = 2v,(h(x) — §) > 2rp > rp.
It follows that

v (f(X) — h(x)?) =rg. (9.86)

Let h(x) = % with p(x), ¢(x) € k[x] and (p(x), ¢(x)) = 1.
We have vy, (¢ (x)) = 0 since otherwise, v, (g (x)) > 0 and

0 <rp = vp(f(x) — h(x)?) = min{vy (f(x)), 2vp (h(x))}
=2vp(h(x)) = —2v5(g(x)) < 0.

Assume that r, > 2. From (9.86) we obtain
Fx) —ax)? = £(x)%s(x), s(x) € k[x] (9.87)

with £(x) € k[x] a prime element for g. Taking the derivative with respect to
x in (9.87) we get

7 = a1 = 0(x)25 (x).

Since £(x) is a prime element for g, it follows that £(x) = x and s'(x) =
x"=3. Thus

s(x) = X2 4 r(x2) for some r(x) € k[x].
Using (9.87) we deduce that
" — o =ax)? + x> +r(x?).
Furthermore, we obtain
o = a(0)* € k%,
which is a contradiction. Thus

ro =0 or ro=1 foral g # pu.
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For p = oo, we have r, . > v (f(x)) = —m, which is an odd number.
Forany & € k(x)g,,, we have v, (f(x)—%‘z) = min{vg,, (f(x)), 2vp,, (§)} <
Voo (f(x)). Thus rp, . = —m.

Since the field of constants of K is k, Tate’s genus formula yields

2ek —2 = p'Qgkey =2 + (1 = p) Y vp(Dryyr) degg B
B

=2(0-2) = l((rp,, — 1) deg poo)
=—4—-1(-m—-1)=—-44+m+1=m—3.

Therefore gx = ’"T_l If wesetm =2n+ 1, we get gg = n.

In any case we have obtained a hyperelliptic function field of genus n for any
neN.

By Example 9.6.18, if K/k is a hyperelliptic function field with [K : k(x)] = 2
and K /k(x) separable (for instance if chark # 2 or chark = 2 and k a perfect field),
then K is given by K = k(x, y) with

Y2 = f(x) € klx], (9.88)
if chark # 2 and deg f = m. In this case gg = [”’TH] — 1 > 2. That is,

| 2gg +1if mis odd,
| 2gk + 2 if m is even.

Now if chark = 2, then K /k(x) is an Artin—Schreier extension and K = k(x, y) can
be given by
2 a(x)
yo—y= m, where a(x),b(x) € k[x] and (a(x),b(x))=1. (9.89)
X
When £ is a perfect field, we know from Example 5.8.8 that we may modify y in such
a way that

¥ —y =r(x) €kx)

with (r (X)) = ﬁ where @1, ... , gn are prime divisors, 2 is an integral
1 "6m

divisor relatively prime to 1, ... , om, A; > 0,and (A;,2) = 1.
The genus of K is given by the equation

1 m
gk =5 ;(xi + 1) degpi — 1
(see Example 5.8.8 and Theorem 9.4.2).
Now we study an important characterization of hyperelliptic function fields.
Let K/k be any function field of genus g > 0. If wq is a nonzero differential,
then by Theorem 3.4.9, for any differential w there exists a unique z € K such that
w = Zwyo.
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Definition 9.6.19. The element z defined above is called the ratio of the differentials

w and wy and it is denoted by z = wlo
Now we consider a function field K/k of genus g > 2. Let {wy, ..., w,} be a
basis of the holomorphic differentials. Assume that z; = 5}—)’] eKfori=2,...,g,

andz; = 1. Let L = k(1, z2, ..., z¢).
Proposition 9.6.20. If L # K, then K is a hyperelliptic function field.

Proof: Let [K : L] = m > 2 and let 2 be a canonical divisor in Wg. We may choose
2l to be integral since ¢ = gx > 2. By Corollary 3.5.5,

(A = NWg) =g.

Let{y:1,..., y;} beabasis of L x (A~"). For any nonzero x in K, the set {xy1, . .. , XYyg}
is a basis of Lg ((x)x2~!) and (x)x2~! € Wkg.
We may assume that z; =1, z2, ... , g form a basis of LK(Ql’l).

Let 8 be an arbitrary prime divisor of K. Since z; € Lg (A™"), we have vp(zi) >
vgp(Ql_l) for2 <i < g. Thus

vp@) < min vp(z).

On the other hand, by Exercise 3.6.19, there exists an index ig such that2 < iy < g
and z;, ¢ LAIP).
Thus v;p(Ql_l) = v (ziy). We have

v = Jmin vg(z;),  with P € Pg. (9.90)
<i=<g

It follows that A~ € Dy is a divisor of L.
By Theorem 5.3.4, we have

2-2¢ 2-12¢

dr @Y = hgyrdg @) = KL~ m

Since z1, ... ,zg € Land L (A~1) € Lg (A1), it follows that

@) =@ =g
Using the Riemann—Roch theorem we obtain
LT = dp (W) — gL+ 1+ L (W, '2),

2—-2
_ITOBK e L (W),

8K =
Therefore

m(C (W, ') — g1) = mgx +2—2gx —m = (m —2)(gx — 1) > 0.
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It follows that £, (W, '2) > g7 = €,(W, ). But W, ! divides W, "2, so
LL(Wp') < e (wph.

Thus mm —2)(gg — 1) =(m —2)(g — 1) =0,and m = 2.
The case g1 # 0 is not possible (Exercise 3.6.19), so g7 = 0 and K is a hyperel-
liptic function field. O

We will prove that the converse of Proposition 9.6.20 holds.

Proposition 9.6.21. If K / k is any function field of genus g = gx > 2 and L C K is
such that g = 0, then

laizi+ 4 ogzg las e L1 <i <g} #K,
where z1, ... , Zg are as in Proposition 9.6.20.

Proof: By Proposition 3.4.5 and Corollary 3.4.6, we have

. XL
dimy ————— =g; =0.
“Tom+L o St
It follows that X; = X (M) + L. Let A be a canonical divisor such that {z, ... , zg} is

abasis of Lg (A™"). If & € X, (M), then £z; € XL (M Xx A~ = Xx A1), which
implies

8
D X Mz € Xx @7, 9.91)
i=1
It follows that
8
D XM+ Kz € X&)+ K.
i=1

On the other hand, we have

Xk

— — —lon — —
T T = K = W = ek = 1.

dimk
In particular,

g @A+ K # Xk,

Therefore

g g g
D Xpzi =) XLOV+ L)z © Y (XLO) + Kz
i=1 i i

i=1 i=1

Cxx@ )+ K G Xk
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Now if Lz; +---+ Lzg = K held, then by Corollary 5.5.8 it would follow that

Xpzi+- -+ Xpzg = Xk

This contradiction shows that Lzy + --- + Lzg # K. O

The converse of Proposition 9.6.20 is also true:

Theorem 9.6.22. Let z1, ... , zg be as before. If K [ k is a hyperelliptic function field,

then
L:k(z—z,... Z—g>
21 271

is the only quadratic subfield of K of genus 0.

Proof: If E is a quadratic subfield of K of genus 0, we have [K : E] = 2, and by
Proposition 9.6.21,

ECEzn+---+Ezg #K.

Thus E = Ez1 +---+ Ezg,z; € E, and

F:k(l,zﬁ,...,z—g>gE¢K.
21 21

By Proposition 9.6.20, we have
[K:F]=2.

Therefore F = E = k (Z—Z, el Z—g) and k (Z—Z, e Z—”') is the only quadratic subfield
21 21 21 <1
of genus O of K. O

Remark 9.6.23. The above results are no longer true for elliptic function fields. Clearly
, i—f) = E implies g > 2. When g = 1 we have
E = k. The uniqueness of the quadratic subfield does not hold when gx = 1. For
instance, if k is an algebraically closed field, and K /k is an elliptic function field,
then K = k(x,y) with M, = P2, and Ny = 3 for some prime divisor. If we
choose a prime divisor ¢ such that ¢ # ‘3 and q is not ramified in K/k(x), we have
Ck(q2) =2.1fz € Lg(q ) \ k, then M, = q® and [K : k(z)] = 2. Thus z ¢ k(x),

since otherwise k(x) = k(z) and

the explicit construction of & (;—f ..

ax +b

ex+d’

This is impossible since Maris # g>.
cx+d
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9.7 Exercises

Exercise 9.7.1. Prove Proposition 9.3.2.

Exercise 9.7.2. With the notation of Section 9.3, prove that if (a, 8) ~ (&’, 8), then
for any y € K, we have (ya, B) ~ (ya', B').

Exercise 9.7.3. Prove Equation (9.21).

Exercise 9.7.4. Let K = k(x). Prove that the Hasse differential dx corresponds to the
differential dx given in Definition 4.1.4.

Exercise 9.7.5. Prove Equation (9.27).

Exercise 9.7.6. Prove that the differentials of the second kind form a k-vector space
of infinite dimension.

Exercise 9.7.7. If L/K is a purely inseparable extension of function fields of degree
p,prove that foralle, 8 € L\ K, (Da,B)(D,goe) =1.

Exercise 9.7.8. Using Theorem 9.5.17 give a new proof of Corollary 9.4.3.
Exercise 9.7.9. With the notation of Section 9.6.1, prove that A € Lk (B5S).

Exercise 9.7.10. Let L/k(x) be a geometric separable proper extension and let k£ be a
perfect field. Prove that there exists at least one prime divisor in k(x) that is ramified
in K.

Exercise 9.7.11. Show that Exercise 9.7.10 is no longer true if we do not assume & to
be perfect.

Exercise 9.7.12. Let K / k be a function field with g > 1. Prove that dx (D) = nZ
with n < 2gx — 2. Compare with Proposition 9.6.5.

Exercise 9.7.13. Let K be a field of genus 2. Prove that K is a hyperelliptic function
field.

Exercise 9.7.14. Let K /k be any function field such that chark = 2, given by K =
k(x,y), with y2 = f(x) € k[x]. Prove that there exists a constant extension k’ of k
such that K’ is a rational function field where K’ = Kk'.

Exercise 9.7.15. Let K = k(x, y), where

V=@ —a)x —a) - (x —aat1), 1> 2,

and o1, ... , a2,y are distinct elements of k. If char k # 2 then the places p,, (i =
1,...,n+ 1) and peo of k(x) are ramified in K/k(x) with ramification index 2. Let
Bi, ..., Panr1 and Poo be the prime divisors in K above Py, ... , Pay,, ;> and Poo

respectively. Prove that
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Bi- - Pony1 PBi- - Pantt .

and  (y)x =
7 z

From the above, deduce that gx = n and that the holomorphic differentials can be
written as

(dx)x =

Pot+ Brx+ -+ fuoix"!
y

dx, with B; €k.

Exercise 9.7.16. Assume chark = 2 and let oy, ... , ;41 be distinct elements of k.
Let K = k(x, y) be such that

V= —a)—a) - (x = app).

Prove that the places py; and po can be extended to PB; and P in K in such a way
that the ramification indices are 3. Prove that

(P12 - "Bnﬂ)z
4

(dx)x = T

and that gx = n.

Exercise 9.7.17. Let L/K be a geometric extension of function fields. Let @ be a
nonzero differential in K. Prove that L/K is separable if and only if cotrg,; @ # 0.

Exercise 9.7.18. Let F be a perfect field and consider a finite separable extension L /K
of formal series L = F((T)), with K = F((t)). Fora € L, set adt = a[‘f—}dT and

add—} =y o cnT", withResr adi = c_j.

(i) Show that if char F = 0 and « = T for some m € Z, then Resy adt =
Res; (Trp /g ) dt.
(ii) Prove that the same holds for char F' = p using formally what was obtained in (i).
(iii) Prove that for any « € L, Resy adt = Res;(Tr /g a)dt.

Exercise 9.7.19. Let k be a perfect field. Let K/k be a function field over k and let

L/K be a finite separable extension. Let p be a place of K and 3|p a place of L. Prove
that Res, <Tngp/Kp (y)dx) = Resy (v dx).

Deduce that Resy, (TrL/K (y)dx) = ngp Resgq (y dx).

Exercise 9.7.20. Prove the residue theorem for k(x) when k is an algebraically closed
field.

Exercise 9.7.21. Prove Liiroth’s theorem: Let K = k(x) be a rational function field.
Let £ ; T C K be any intermediate field other than k. Then T = k(¢) for some
te K\k.
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Cryptography and Function Fields

10.1 Introduction

The term cryptography comes from the two Greek words: kryptds (hidden, secret)
and grdphein (to write). In this way, cryptography may be understood as a method of
writing in a secret way. More precisely, it is the art of transforming written information
from its original or standard form to one that cannot be understood unless one knows
a secret key.

Cryptography consists of two processes. The first one, called encryption, is a way
of codifying the information, which means concealing it in a such a way that it be-
comes unintelligible to persons that are not authorized to read it; various methods are
known for keeping messages or data secret. The second and inverse process is the de-
cryption of the codified message; in order to decode or decipher the codified message,
one needs special knowledge.

Let us assume that a person, who from now on will be called Arnold, wishes to
share a given piece of information with another person, say Charlotte, in such a way
that no one other than Charlotte can understand it. We will say that Arnold wants
to send a message, which we shall call plaintext, to Charlotte. In order to keep the
message inaccessible to eavesdroppers and understandable by Charlotte only, Arnold
codifies it, obtaining in this way a new message, which will be called ciphertext. Once
Charlotte receives the message, she decodes it, obtains the plaintext, and reads it.

How does such a process work? First of all, Arnold needs to use an encryption
key in order to obtain the ciphertext from the original message; second, Charlotte must
use a decryption key to be able to decipher the message and obtain the plaintext. The
decryption key must be kept secret from everyone else so that the method can work
properly.

There are two basic types of codification: symmetric and asymmetric. Let us as-
sume that the encryption and decryption keys are called a and b respectively. We say
that the codification system is symmetric if a = b or b can be computed easily from
a. Observe that if Arnold and Charlotte are using a symmetric system, they need to
exchange the secret key before they begin sending each other information.
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In symmetric cryptography, exchanging keys is a process of capital importance,
since if a is not kept secret anyone could deduce b from a and then decipher the
message.

In the case of an asymmetric cryptosystem, a and b are distinct and the computa-
tion of b from a is not achievable. The advantage of such a system is that @ may be
made public without danger. Asymmetric systems work as follows: If Charlotte wishes
to receive an encrypted message, she publishes the encryption key a while keeping b
secret. When Arnold sends a message to Charlotte, he uses a to obtain the ciphertext.
Only Charlotte can decipher the message, since she is the only one who knows b; not
even Arnold would be able to obtain the original message from the encrypted one.

For the mentioned reason, asymmetric cryptosystems are called public-key cryp-
tosystems. Some of the most popular public-key systems will be described in Sec-
tion 10.2.

Symmetric cryptosystems used to work efficiently when communication systems
were still restricted, for instance, between spies and intelligence and counterintelli-
gence agencies (if one may call that intelligence). In these cases a small number of
select persons know the keys from the beginning, and they are the only ones who use
them.

Nowadays the situation has changed drastically; all kinds of persons, and not only
at governmental levels, use cipher systems to exchange information. This is done in
big businesses such as banks and credit card companies, etc. At the personal level,
cryptosystems are used for various purposes, for example exchanging scientific papers
between various collaborators who prefer to keep their work unpublicized in order to
avoid plagiarism. It is in such cases that public-key cryptosystems are useful; indeed,
sometimes it is not possible for several persons who live at a distance from one another
to get together and agree on a secret key.

10.2 Symmetric and Asymmetric Cryptosystems

One of the simplest cryptosystems is the so-called Caesar cipher. In this case,
the plaintext is written using the twenty-six usual letters of the alphabet ¥ =
{A, B,C, ..., Z}. The encryption and decryption keys are one and the same, namely
a=beQ={0,1,...,25}, where each letter of the alphabet is identified with a
member of 2. The codification scheme is
p: X —> X,
X = x +a mod 26.
The decoding function is
vi¥ - X,
y +— y — b mod 26.

Arnold and Charlotte just need to know a in order to exchange information. Since
we have only 26 choices for a, it is easy to guess its value and thus to obtain the
plaintext from the ciphertext. This shows that the Caesar cipher is quite unsecured.
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A major problem with symmetric cryptosystems is key distribution and key man-
agement. If Arnold and Charlotte use such a system, they must exchange the secret
key before exchanging messages.

In public-key systems, key exchange is no longer a problem. Charlotte makes pub-
lic the encryption key a so that anyone who wants to send a message to her uses a.
When Charlotte receives a ciphertext, she uses the decryption key b that she has kept
secret.

The most popular public-key cryptosystem is the RSA cryptosystem, named after
Ron Rivest, Adi Shamir, and Len Adleman, created in 1978 [123]. In fact, this was one
of the first public-key cryptosystems to be invented, and nowadays it remains the most
important one. The security of this cryptosystem is due to the difficulty of finding the
factorization of a composite positive integer that is the product of two large primes.
Let us see how it works.

Charlotte finds two large prime numbers p and g and computes n = pq. Then she
chooses any integer a suchthat 1 < a < ¢(n) = (p—1)(g—1) and ged(a, p(n)) = 1.
Because of this choice, there exists b € {0, ... , ¢(n) — 1} such thatab = 1 mod ¢(n).
The number b can be computed using the extended Euclidean algorithm ([12]).

Charlotte publishes the pair (n, a) and her private key is b. Note that if an attacker
or an eavesdropper is able to find the prime factorization of 7, then (s)he can easily
find b and the system breaks down. Therefore the security of the system depends on
making the factorization of n infeasible. If p and g are sufficiently large, it seems that
nobody yet knows how to factor n.

Let the plaintext be an integer m such that 0 < m < n. The ciphertext is ¢ :=
m® mod n. If Arnold wants to send the message m to Charlotte, then since he knows
a and n, he can encrypt m and send c.

Example 10.2.1. Let p = 17 and g = 29. Then n = 17 x 29 = 493 and ¢(n) =
(p—1)(g—1) =16x28 =448.Leta = 5. Then b = 269. If m = 75 is the plaintext,
then ¢ = 75> mod 493 = 249 is the ciphertext.

Note that ¢2® mod 493 = 75 = m.

Now, the way Arnold sends a message is as follows. Assume that the alphabet
contains N letters and he assigns to each letter a unique number between 0 and N — 1.
Set ¢ := [logy n] and assume that Arnold has a text mm, ...my, where each m; is
the number corresponding to a letter. Then he defines

t
m = ZmiNt_’.
i=1

Wehave 0 <m < (N — 1)} }_ N'™ = N' — 1 < n.Letc := m® mod n be the
ciphertext, and write ¢ in base N.

Since 0 < ¢ < n < N't1, the N-adic expansion of ¢ has length at most ¢ + 1, that
is,

t
c=Y N7 with ¢ €{0.1,...,N—1} for 0<i<t.
i=0
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Therefore the encrypted message consists of the integer ¢ = cocg . . . ¢k.

Example 10.2.2. Suppose that our alphabet consists of the set of vowels {a, ¢, i, 0, u},
that is, N = 5. In the setting of Example 10.2.1 we have k = [logs493] = 3 since
53 = 125 < 493 < 625 = 5*. The numerical assignment of our alphabet is

a0,

e—1,

i 2,

o3,

u+— 4.
If Arnold encrypts eio, which corresponds to 123, he obtains

m=1x5+2x5+3x5"=25410+3=38.
The encrypted integer is
¢ = 38° mod 493 = 208.
Writing 208 in its 5-adic expansion, we obtain

208 =1x54+3x5%+1x5+3x5

Therefore the ciphertext is eoeo, which corresponds to 1313. Again note that
2082%% mod 493 = 38.

The reason why the RSA system works is the following elementary result.

Theorem 10.2.3. If p and q are distinct prime numbers, n = pq, ¢(n) = (p — 1)(q —
1), and a is such that (a, ¢(n)) = 1, whenever 0 < m < n we have
a)b

(m mod n = m,

where b is such that ab = 1 mod ¢(n).
Proof. Exercise 10.9.1. O

10.3 Finite Field Cryptosystems

As we already mentioned in Section 10.2, the RSA cryptosystem is the most impor-
tant public-key cryptosystem. The concept of a public key was defined by Diffie and
Hellman in 1976 ([29]); the difference with respect to symmetric cryptosystems lies
in the idea of using a one-way function for encryption.

There are several public-key cryptosystems. We are interested in elliptic and hy-
perelliptic cryptosystems, which are applications of elliptic and hyperelliptic function
fields. We will study these cryptosystems later on.

First we introduce some concepts that are necessary in studying the feasibility,
security, and efficiency of a cryptosystem.
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10.3.1 The Discrete Logarithm Problem

Let IF; ={1,2,..., p—1} be the multiplicative group of the finite field of p elements.
We choose an element g of F;‘,, which will be called the “base.” The discrete logarithm
problem in I, with respect to the base g is that of, given y € I}, determining an
integer x such that y = g* (that is, x* = "log, y). Of course, the existence of x is
equivalent to y belonging to the subgroup of ]F*;, generated by g.

The discrete logarithm problem can be defined for any finite group. More pre-
cisely:

Definition 10.3.1. The discrete logarithm problem for the finite group G is the follow-
ing: given a base g € G and y € G, find x € Z such that g* = y if such an x exists,
that is, if y € (g). In other words, the discrete logarithm problem consists in finding

x =log, y.

Another useful concept for making a cryptosystem realizable is that of a hash func-
tion. The idea behind these functions is that in order to make a cryptosystem secure,
we need keys that require a lot of space, often much more than what is realistically
possible. For instance, we frequently need several numbers, each of which has several
thousand digits. To be able to reduce the quantity of space, we use a function, say
H:7/sZ — Z/tZ, where s is much larger than 7. Usually s is of the order of several
millions of bits and ¢ is smaller than 200 bits. Since ¢ < s, the function H is not in-
jective. We say that H is a hash function if its values can be computed in an easy and
efficient way, and if on the other hand it is not computationally feasible to find two
distinct elements x1, xp such that H(x;) = H(x»).

Definition 10.3.2. A cryptographic hash function is a function H: Z/s7 — Z/tZ
such that s > ¢ and:

(i) Given m, H (m) can be easily computed.
(ii) Given n, it is not computationally feasible to find m such that H(m) = n. We say
that H is preimage resistant.
(iii) It is not computationally feasible to find x1, xo € Z/sZ such that x; # x> and
H(x1) = H(xy). We say that H is collision resistant.

There exist several good hash functions. For a complete discussion see [110].

Another issue to be considered in cryptography is that concerning the signature of
the message. When Charlotte receives a message that supposedly comes from Arnold,
she must make sure with a reasonable degree of certainty that Arnold is really the one
signing the message. Whenever one sends a message, it must be sent together with a
digital and nonfalsifiable signature; that is what we mean by a digital signature.

10.3.2 The Diffie—-Hellman Key Exchange Method and the Digital Signature
Algorithm (DSA)

Assume that Arnold and Charlotte want to agree upon an integer to be used as a key for
their private-key cryptosystem. They must use some public communication channel
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like the Internet, telephone, e-mail, or regular mail in order to achieve this agreement.
First of all, both of them agree on a large prime number p and a base g € F;", This is
agreed publicly, so any eavesdropper knows p and g. Second, Arnold secretly chooses
a large number a < p, computes g mod p, and communicates his result to Charlotte.
Meanwhile, Charlotte does the same: she secretly chooses a large integer » < p and
communicates g¥ mod p to Arnold. Finally, they agree upon a key, which will be the
integer g% € F.

The eavesdropper knows g, g, and g” € F*, and faces the problem of finding

g®. This is the Diffie—Hellman problem. It is known that anyone who can solve the
discrete logarithm problem in I, can solve the Diffie-Hellman problem as well. The
converse is still an open question ([84]).

Now we present a digital signature public-key cryptosystem that was proposed in
1991. It is the analogue to the older Data Encryption Standard, which is a private-key
cryptosystem. This cryptosystem is called the Digital Signature Algorithm (DSA). Let
us see how it works.

Arnold chooses a large prime number p, say that p is of order about 10°°. This
can be achieved using a random number generator and a primality test (see [12]).
Secondly, he chooses a second prime number £ = 1 mod p of more than 512 bits and
whose number of bits is a multiple of 64. Hence £ is larger than 1034,

Thirdly, Arnold chooses a generator of the unique cyclic subgroup of I of order

p by computing y = g(()qfl)/ ? mod ¢ for a random integer go; note that if y # 1, then

go 1S a generator.

Finally Arnold takes a random integer x such that 0 < x < p as his secret key,
and sets as his public key z = g* mod p.

If Arnold sends a message, he first applies a hash function to the plaintext, ob-
taining an integer H such that 0 < H < p. Next, he chooses an integer k, computes
g¥mod ¢ = A, and sets 7 = A mod p. Finally, let tk = H + xr(modp). Arnold’s
signature is then the pair (r, ) mod p.

Charlotte verifies the signature as follows. Let « = t~!H mod p and g =
t~'r mod p, and consider g%z# mod ¢. If g%z# = r mod p, then Charlotte is rea-
sonably satisfied.

The DSA signature scheme uses relatively short signatures, since they consist of
numbers of order about 103, The security of the system depends on the nontreatability
of the discrete logarithm problem in the large-order field IF,. The DSA seems to have
attained a fairly high level of security without sacrificing small signature storage and
implementation time.

We are interested in a variant of DSA using elliptic function fields, which is even
harder to break than the DSA described in this subsection.

10.4 Elliptic Function Fields Cryptosystems

Elliptic curves and elliptic function fields can be used to implement public-key cryp-
tosystems. The Diffie-Hellman key exchange described in Section 10.3.2 can be im-
plemented in this case if instead of using finite fields we use elliptic function fields
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over finite fields. We will also present a variant of the DSA given in Section 10.3.2
using elliptic function fields.

Elliptic cryptosystems were first proposed in 1985 by Neal Koblitz [81] and Vic-
tor Miller [111]. There are two good reasons for using these cryptosystems. The first
one is that there exists only one finite field of g elements, whereas there are many
elliptic function fields over F,. The second and more important one is the absence
of subexponential-time algorithms to break the system if the elliptic function field is
chosen to be nonsupersingular. In fact, Menezes, Okamoto, and Varistone [109] found
a way to tackle the discrete logarithm problem using the Weil pairing in elliptic curves
to embed them in IE‘Z «» thus reducing the discrete logarithm problem to the discrete log-
arithm problem in ]FZ «- This is useful only if & is small; in fact, the only elliptic curves
for which k is small are essentially the supersingular ones. The supersingular elliptic
function fields are those such that Co, KF, (p) = {1}, where p is the characteristic.

Now, K is a supersingular elliptic function field over [, if and only if Ny () =
1 mod p, where Ni(F,;) denotes the number of prime divisors of degree 1 (see [157,
Proposition 4.29]). Moreover, as a consequence of the Riemann hypothesis (Theorem
7.2.9 (iv)), if p > 5, then K is supersingular if and only if Ny (F,) = p + 1.

Therefore we must choose a nonsupersingular elliptic function field. Even though
nobody seems to know how to find a subexponential-time algorithm for the discrete
logarithm problem on nonsupersingular elliptic function fields, the progress made in
computing discrete logarithms for finite fields and in factoring integers implies that
the key sizes necessary for the public-key systems to be secure grow every single day.

10.4.1 Key Exchange Elliptic Cryptosystems

In this subsection we present the Diffie—Hellman key exchange adapted for elliptic
function fields. Let IF; be a finite field and let K be an elliptic function field with exact
field of constants IF,;. Let Mk be the set of prime divisors of K of degree 1. Choose
Po € Mg such that K = F,(x, y) with N, = P, N, = P7 and let

¢: Mg — Cko

v ]
Po
be the bijection given in Proposition 9.6.9 and Equation (9.74). Therefore the set of
prime divisors of degree 1 forms an abelian group.
To any prime divisor B # Poo, Where Loy = Po is the infinite prime, corresponds
a unique rational point (a, b) € Fé satisfying the defining equation

¥ —h(x)y = f(x)

of the elliptic function fields, where f(x) is a polynomial of degree 3 (see Exer-
cise 10.9.1). Here h(x) = 0, f(x) is square-free if chark # 2 and h(x) # 0, and
degh(x) < 1if chark = 2 (see Exercise 10.9.2). The infinite prime B, corresponds
to the point at infinity (co, 00).
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First we choose a random prime divisor of degree one in an elliptic function field
K as the key. Of course, Arnold and Charlotte have agreed in advance on a method
to convert an arbitrary point on an elliptic curve or a prime divisor of degree one on
an elliptic function field into an integer. One way to do this is to use the fact that
to any prime divisor of degree one corresponds a rational point (a, b) € IF(ZI of the
corresponding elliptic curve over [F; and then to convert a € I, into an integer after
choosing a suitable map from I, to Z.

Next, Arnold and Charlotte choose an elliptic function field K over I, where the
discrete logarithm problem is hard, and a prime divisor p € Px of degree one. Now
Arnold chooses an integer o, computes p, := p*, and sends p® to Charlotte. In the
same way, Charlotte chooses a secret integer 8, computes pg 1= p?, and sends it to
Arnold. Now Arnold and Charlotte compute

Pap = Ppa = Pl = pf = p*’ = pP?.

Suppose that the eavesdropper John is spying on Arnold and Charlotte. Then John
has to find ¢ = p®# knowing p, p*, and p#, but neither o nor . John’s task is what
is called the Diffie—Hellman problem for elliptic curves or elliptic function fields. That
is, he has to solve the

Diffie-Hellman problem for elliptic function fields:
Given p, p%, and p# in Dy, compute p®/.

Note that if John solves the discrete logarithm problem in elliptic function fields,
he can obtain « using p and p®. Thus he can find p*# = (p#)®. That is, the elliptic
function field discrete logarithm problem with respect to the base 2 € Dy is, given
B € Dk, to find a € Z such that B = ¢ if such an a exists. Therefore, if John can
solve the discrete logarithm problem, then he can solve the Diffie—Hellman problem.

10.5 The ElGamal Cryptosystem

The ElGamal cryptosystem [33] is quite close to the Diffie-Hellman key exchange,
and its security is based on the difficulty of solving the Diffie-Hellman problem. Let
us first consider its implementation in the finite field .

Let p be a prime number and let g be an element of F*, preferably but not nec-
essarily a generator. Arnold chooses a random exponent « € {0, 1,..., p — 2} and
computes a = g% mod p. Arnold’s public key is (p, g, @) and his secret key is «. Note
that in the setting of the Diffie—Hellman protocol, a is Arnold’s key, which is fixed in
the ElGamal cryptosystem.

When Charlotte wants to encrypt a plaintext m, which we will assume, as usual, is
an integer in {1, ..., p — 1}, she obtains (p, g, @) from Arnold. Then she chooses a
random exponent 8 € {1, ..., p — 2} and computes b = g# mod p.

Again b is Charlotte’s key in the Diffie—Hellman cryptosystem. Charlotte finds

¢ = aPm mod p.
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That is, Charlotte encrypts the message m by multiplying it mod p by the Diffie—
Hellman key. The ElGamal ciphertext is (b, ¢).
Once Arnold gets (b, ¢), he computes
c

= cb?~17% mod p.

We have
cbP 1% = qPmgPP=1=0) = 4y (gP~1)P g—ob
=a’m(1)a™® =m mod p.

The implementation of the ElGamal cryptosystem for elliptic function fields runs
as follows.

Charlotte chooses an elliptic function field K over the finite field IF; such that the
discrete logarithm problem is infeasible for Cox . Then she picks a prime divisor p of
degree one such that the order of the class of p is a large prime number. Next, she
selects a secret integer o and computes 2 = p*. The elliptic function field K, I, p,
and 2 constitute Charlotte’s public key. Her private key is .

Now when Arnold wants to send a message to Charlotte, say that it corresponds
to a prime divisor of degree one g, he selects a secret random integer 8 and computes
B = pf and € = qAP. Finally, Arnold sends (B, €) to Charlotte. Charlotte simply
computes €B~*. This method works since

€B " = qWp~f = gp*Pp=f = q.

The eavesdropper John knows Charlotte’s public key, namely K, Fy, p, and 2 =
p% and also B and €. If he could solve the discrete logarithm problem, he could get
o from p and 2, where 2 = p® and & = log, 2, and use & to find g = €B~. The
same result is obtained if John obtains B from p and B, B = log, B, and computes
q = ¢AF (where €A = qAPAP = q).

Thus the security of this method relies on the infeasibility of solving the discrete
logarithm problem.

Note that if Arnold chooses $ all the time, then when he sends two different mes-
sages q and q, we have B = B = p#, and hence

¢! =qipfqlp P =qug

Now, depending on the kind of message, sooner or later g is made public (say that
the message informing about the status of the stock market has to be published some
days later) and John then knows g, €1, and €, so he knows q; = ¢;¢ ™ !q.

10.5.1 Digital Signatures

As we established in Section 10.3.2, digital signatures are used to legitimate a message
or a document. The traditional way, which we use in everyday life, is the written
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signature; but when we send a message, secret or not, and the addressee of our message
needs to be reasonably sure that the message comes from us, it is necessary to use
another kind of signature, namely a digital signature. Here we present the ElGamal
digital signature method using elliptic function fields.

Again, our old friends Arnold and Charlotte wish to share some information with-
out the knowledge of John. As before, for several good reasons, Arnold and Charlotte
have to use public key exchange. The digital signature must satisfy the following con-
ditions:

(1) The signature must depend on the document or message in such a way that
nobody can use it in another message.

(i1) It should be possible for Charlotte to find out that Arnold has sent the mes-
sage.

First, Arnold must select a public key. He uses an elliptic function field K over [F,
such that the discrete logarithm problem cannot be solved (at least for now) for K. Let
p € Pk be of order £, usually a very large prime number although this is not necessary.
Then Arnold chooses a secret integer « and computes 2 = p*. As explained in Section
10.4.1, he chooses a function from Px to Z (say f: Px — Z, f(q) = @q(x), where ¢4
is the place corresponding to g, that is, f(q) = @q(x) = x mod g where K = k(x, y),
Y2 = u)ory? 4y = u(x)).

The public information given by Arnold is K, f, p, and 2. Now when Arnold
sends a message, he first represents it as an integer m (see Section 10.2) and selects
an integer f that is relatively prime to £. Next he computes B = p# and takes y =
B~ (m — af (%)) mod £. Recall that B is represented by a pair (a, b) satisfying the
equation that defines K (see Exercise 10.9.3).

The signed ciphertext is (m, *B, y). In this way m is not kept secret. If Arnold
wants to make m secret, he may use any cryptosystem to perform this task. The main
point is that Charlotte receives (m, B, y) or (m’, B, y); in the former case, m is not
secret, and in the latter m’ is the encryption of m and Charlotte wants to verify that
Arnold is sending the message.

Charlotte computes € = A/ (B)BY and D = p”. If the signature is valid then

¢ = A/ BBy = p Bphy — o/ B—af(B) _ g _ .

Therefore, if € = ® Charlotte can be reasonably sure that the signature is valid.

Again we see that if John is able to compute discrete logarithms, then he can use
p and A to find o = log, 2, and this enables him to sign any message as if he were
Arnold.

Now, Arnold’s secret keys are @ and  and he must use a different 8 for every
document. Indeed, assume he keeps the same B every time, say that he sends two
messages m and m’ with 8 = B’. Then John gets (m, B, y) and (m’,B’, y’) but
B =pf = p’s/ = %', so he recognizes that the same key has been used. Thus, John
obtains

By = (m —af(B)) mod ¢
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and
By = (m' — af(B)) mod L.

He deduces that B(y — y’) = (m — m’) mod £, which implies that if r is the greatest
common divisor of £ and y — y’ (r = 1 if £ was chosen to be prime), then r divides
m —m’ and

vy =y (m—m 14 14 1
B = mod -=Amod -, 0<A<--1
r

r r r r

Thus B € {iA| 1 <i <r}. Then John tries these r values and obtains § (that is, until
he gets B = p#). Once he knows B he can obtain « as follows. He knows y, f(8),
and m. From

af (2B) = (m — By) mod ¢

he obtains, as before, r = ged(f(®B), £) possible values for «. Each candidate can be
tested until 2 = p“ is reached.

10.6 Hyperelliptic Cryptosystems

In 1989, Koblitz [83] generalized the use of elliptic curve cryptosystems to the use
of hyperelliptic curves. In this section we show how hyperelliptic function fields may
be used in cryptography. We shall see that among all function fields, the hyperelliptic
ones are differentiated by some special properties. Of course, one can consider elliptic
fields as forming part of the class of hyperelliptic fields although they are formally
defined otherwise. Everything presented in the rest of the chapter is valid for fields of
elliptic functions.

The main reason why hyperelliptic fields may be used in cryptography is that their
group of divisor classes of degree 0 has some special representatives that can be op-
erated within a computationally feasible algorithmic form. This does not happen with
other function fields.

Let K = [F,;(x, y) be a hyperelliptic function field where K /I, (x) is a quadratic
separable extension. Thus the defining equation of K is

y? = g(x) € Fylx] if charK #2 (10.1)
and
Y —y=gi(x) eFy(x) if chark =2, (10.2)
a(x)

where g(x) is square-free, gi(x) = B a(x), B(x) are relatively prime elements of
F,[x], and if p(x) is an irreducible polynomial dividing 8(x), then the power of p(x)
dividing B (x) is odd.

Assume that the infinite prime of F,(x) or, more precisely, the pole divisor of
x in [F,(x), ramifies in K. Let g be the genus of K. Then the defining equation of
K =T, (x, y) can be written as
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¥ = h(x)y = f(0), (10.3)

where A(x) is a polynomial of degree at most g, h(x) = 0 if char K # 2, h(x) is
nonzero and relatively prime to f(x) if char K = 2, and f(x) is a polynomial of
degree 2g + 1. Furthermore, we may choose /(x) and f(x) as follows. If char K = 2,
the ramified primes in K /k(x) are precisely the infinite prime and the prime divisors
of h(x); if char K # 2, then f(x) is square-free and the ramified primes in K/k(x)
are the infinite prime and the prime divisors of f(x) (see Exercise 10.9.2). We will
denote the infinite prime in K by P, and the infinite prime in k(x) by pec.
The following definition is standard in algebraic geometry.

Definition 10.6.1. Given any function field K/ k, the group Cg o of divisor classes of
degree 0 is called the Jacobian of K. It will be also denoted by Jg, or simply J if the
underlying field K is implicitly known.

In the case of a hyperelliptic function field over an algebraically closed field, there
is a way to represent every member of J: every class C contains a unique reduced
divisor. That is, there is a correspondence between reduced divisors and the Jacobian
of K. Furthermore, there are algorithms that are computationally feasible that multiply
two reduced divisors and provide the reduced divisor in the class of the product.

In the rest of this section, K = k(x, y) will be a hyperelliptic function field over
an algebraically closed field of constants k.

Definition 10.6.2. Let K = k(x, y) be a hyperelliptic function field over an alge-
braically closed field k (usually k = IF;) given by Equation 10.3. A divisor 2l € Dk o
of degree 0 is called reduced if:

A = ‘»13_%%@ where ‘B is an integral divisor of degree n that is relatively prime to
Poo-

(2) If p € Py(y) is not ramified and cong(xy/x p = PY', then vqg(%) > 0 implies that
v (B) = 0.

(3) If p € P(y) is ramified, p # Poo, and cong(x)/x p = P, then vy (B) € {0, 1}.

(4) degg B =n < g =gk

If A satisfies (1)—(3), then 2 is said to be semireduced.

The reasons to consider hyperelliptic function fields and not a general function
field for cryptosystem issues are the following:

(1) Every class divisor of degree 0 can be represented in a unique way by a re-
duced divisor.

(i) Every reduced divisor can be represented by two explicit functions.

(iii) The sum of two reduced divisors can be effectively computed.

Before proving these facts, we give the following notation and definition.
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Definition 10.6.3. Given any two divisors A, A; € Dg o, we define the 0-greatest
common divisor of 2 and 2/, as

[, A1]o :=2A>, where
vp(R2) = min{vp (@), vpA1)}  for P # Poo  and

v, (@) = — D vp(@a).
PB#Poo

Notice that 2(, € Dk o.
The following result is due to Mumford [114].

Theorem 10.6.4. Let 2 = H‘B PreR = [70_, DU ‘,]3’30 be a semireduced divisor
and assume that for 1 <i <r,we have, B;Nk[x] = p;, *—ai)rx) = p%’ PiNk[y] =
qi, and (y — bi)kx) = Cﬁ—c;. In other words, if s, is the place corresponding to *B;,

then oy, (x) = a; and o, (y) = b;. If p(x) = ]_[?Zl(x — a;)%, then there exists a
unique polynomial q(x) such that:

(1) degg(x) < deg p(x),
) q(a;) =bjfor1 <i <r,
3 px)| (g ()c)2 —h(x)q(x)— f(x)) where h(x) and f(x) are as in Equation (10.3).

Furthermore, we have 2 = [(p(x))k, (g(x) — ¥)k ]o-

Proof. Assume that 1 < i < r and p; is unramified. Consider y € K, = k(x)p,-
Since x — @; is a prime element for 3;, then y = Z?OZO cj(x — a;)’ with ¢cg = b;.

Define g; (x) := Zj";ol cj(x —a;)’. We have:

(1) deggi(x) <o — 1 < o; =deg(x —a;)*%.

(2) gi(ai) = co = b;.

(3) Reducing the equation y2 — h(x)y = f(x) modulo (x — ;)% and using the
fact that y mod (x — a;)* = ¢g;(x), we obtain

g7 (x) — h(x)gi(x) = f(x) mod (x — a;)“.
Hence (x — a;)% divides g; (x)* — h(x)g; (x) — f(x).

Now if #(x) is another polynomial satisfying (1)—(3), then
(x —a)* divides (gi(x) —t(x))(qi(x) +1(x) — h(x)).

In case h(x) = 0, that is, char K # 2, we have y2 = f(x), bl.2 = f(a).If (x —a;)
divides g (x) + t(x), then g(a;) + t(a;) = 2b; = 0,s0b; =0, (x —a;) | f(x) and
(x —a;) | gi(x). Since f(x) is square-free, (x —a;)* does not divide f(x) and (x —a)>
divides g; (x)2. Tt follows that o; = 1 and q(x) = g(x) = co = bj = 0 (in fact this
case is impossible since 3; would be ramified).

Now if char K = 2, we have h(x) # 0. Because of (2), (x — a;) divides (g; (x) —
t(x)); then since the ramified primes are precisely those dividing 4 (x), it follows that
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h(a;) # 0,50 (x —a;) t (gi (x) —t(x) —h(x)). Hence (x —a;)% divides (g; (x) —(x)).
Since deg(g; (x) — t(x)) < «; — 1, we conclude that g; (x) = #(x).

We have shown that in any case, g; (x) is the unique polynomial satisfying (1)—(3).

Now we study the case of p; ramified. Then o; = 1, and hence g; (x) = b; is the
unique polynomial satisfying (1)—(3). It follows by the Chinese remainder theorem
that there exists a unique polynomial g(x) such that g(x) = ¢;(x) mod (x — a;)%
for1 <i <randdegq(x) < Y i_,c.Itis easy to verify that g(x) is the unique
polynomial satisfying statements (1)—(3) of the theorem.

Now let By, ..., P, be the unramified prime divisors and let By, ... , P be
the ramified ones. Set p; = ‘B; N k[x] and cong(xy/k pi = ‘43,-‘43; for1 <i <s.Then

) 2q;
[T BB [Ticei B
P

Now for g (x) — y, if B is distinct from Py, ... , P, Poo, then vip(g(x) —y) > 0.
For1 <i <s wehave y = g(x) mod (x — @;)%, so v (v — g (X)) > o

Finally, for s + 1 < i < r, the conjugate of y — g(x) is —y — g (x) if chark # 2,

and y + h(x) — g(x) if chark = 2. Now the product of y — ¢g(x) and its conjugate is

—y2+q(x)* or y* +h(x)y —h(x)g(x)+q(x)?, thatis, f(x) —h(x)g(x)+q(x)* Itis

easy to verify that (x —a;)? { ¢(x)* — h(x)q(x) — f (x). Therefore ves, (y —g (x)) = 1.

We have proved that [(p(x))k, (y —q(x))k]o = L. O

(p()k = for some o« > 0.

Definition 10.6.5. The divisor [(p(x))x, (y — q(x))x]o will be denoted by div(p, g).

Another key fact concerning the use of hyperelliptic function fields in cryptogra-
phy is the following.

Theorem 10.6.6. Let C € Jg be any element of the Jacobian of K. Then there exists
a unique reduced divisor B in C.
In other words, every divisor of degree 0 is equivalent to a unique reduced divisor.

Proof. Let C be any class of degree zero and let € € C be any arbitrary divisor in C.
Then deg (€P5,) = g. By the Riemann—Roch theorem it follows that

(e >g—g+1=1

Therefore there exists an integral divisor 2| of degree g such that &g € C.Let%

be of degree n < g, such that (2, Ps) = 1 and %nl € C. Note that such an element

exists for any function field (such that degy Poo = Of).

Next we consider M to be the set of prime divisors other than P, that are not
ramified in K /k(x). Consider the partition M| U M, of M. If p € Py splits as
cong(y/k P = PP’ and if vp(A1) > vgy (A1), then P € M and P’ € M>. Define

2A —vgp (A —[vgp(A1)/2
— ’3 l—l(wp)KUm( 1) 1—[ (a‘ﬁ)K[vm( 1)/]’

00 WeM, mmr;r%ﬁed
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Bk

where (ap)i(x) = p;’” . Note that
B . .
o if B is ramified,
(ap)x =
2—23 if B is not ramified.
Thus B = H‘BEMI msm H‘IK ramified mtm : ‘33'&3, where sp = U‘B(Q’ll) - UEB’(QII) >0,

P#Poo
Iy = vqg(Qll) — z[va(Ql)] € {0, 1}, and u < 0. Clearly ‘B is a reduced divisor and
BeC.

It remains to prove that B is unique. Now, since K is hyperelliptic and P, is
ramified, it can be shown that KK(‘Bgoz’) = EK(‘B;)QIH)) =t+1for0<r<g-—1
and that there is no o« € K* such that 91, = %%g“ for0 <t < g — 1 (see Corollary
14.2.72).

Now for > 2g — 1, using the Riemann-Roch theorem we obtain £x (P!) =
t—g+1

Next, let B be a principal semireduced divisor. Say (¢)g = B = % Then

¢ is even. Let £x (P/) = £/2 + 1 and notice that 7/2 > 0. We have EKDO(‘B(;O’) =
ek<x>(p;§/2). For each B; such that 1 < i < ¢, we set (x — aj)g = %33:
Pi = P if P; is ramified and P; # P, otherwise. Thus a basis of L;;(‘Iigot) is
{1 =ao0,01,...,0/}, where o; = ]—[;-zl(x —aj).

Therefore @ = Z;fo Aia; € k[x]. Assume ¢t > 2. Then a(a;) = 0 and Ao = 0, so
1 and P} divide M. But this contradicts the fact that B is semireduced; it follows
thatr = 0 and 28 = N.

Now let B, and B, be two reduced divisors in the same class, i.e., B|Px =
By Px. Say B = AP and By = P2, deg(AA2) < 2g, and as in the
first part of the proof, we construct a semireduced divisor 283 such that B3 Px =
BB, ' Pk.

If we assume that ®B| # ‘B, there exists a prime divisor T # PBoo such that
vg, (B1) # vg, (Bz). We may assume that vg, (B1) > vg, (B2) and vg, (By) >
vy (B) if ¥ # T’l It is easy to see that vg, (B3) > 0, so B3 #* . This contradicts

the equalities %1%2_1PK = P, = B3 Pk. Hence B = B». m]

where

10.7 Reduced Divisors over Finite Fields

We apply the results of Section 10.6 to finite fields. Let K = k(x, y) be the hyperellip-
tic function field given by Equation (10.3), where & is a finite field. Then Jx = Ck o is
a finite group (Theorem 6.2.2). Now if k is an algebraic closure of k and K = Kk, then
by Exercise 8.7.20 we have Cx o € C g.0 and each element of Ck ¢ admits a unique
representation as a reduced division div(p, q), where p, g € k[x], deg p(x) < g, and
degg(x) < deg p(x).
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Given two reduced divisors 2| = div(p1, q1) and 2, = div(p», ¢g2), Koblitz [83]
presented an algorithm to find the reduced divisor 23 = div(p3, ¢3) such that ﬁlﬁg =
3. In this way it is possible to compute the Jacobian of a hyperelliptic function field.
For general function fields it is difficult to compute the Jacobian.

The first part of the algorithm is as follows:

Let 2, = div(p1, q1) and Ay = div(pa, g2). Set di = (p1, p2) and let oy, ap €
k[x] be such that d; = a1 p1 +azp2. Setdy = (d1, q1 +q2 —h), d> = Brd1 + B2(q1 +
q2 — h), y1 = 181, and y2 = az81, y3 = B2. We have

dry =yip1 +vap2 +y3(q1 +q2 — h).

Next, put p := % and g :
2

_ NP1+ prqi+y3(giget+f)
= =

mod p. We obtain the

following theorem:
Theorem 10.7.1. 2 = div(p, q) is a semireduced divisor that satisfies A = A, A,.

Proof. [84, Page 173, Theorem 7.1]. a

The second part of the algorithm starts with a given semireduced divisor 2 =
div(p, q). The task is to find the reduced divisor 23 = div(ps3, g3) such that A = 23
in Cg 0.

Let p} = %‘f*‘f and g¢; = (h — q) mod pj. If deg p; > g we repeat the
process. Once we get deg p; < g, we finally set p3 := a~!p} and g3 = ¢}, where a
is the leading coefficient of pg. Then A3 = div(ps, ¢g3) is reduced and Az = A (184,
p. 176, Theorem 7.2]).

Remark 10.7.2. Note that the computations take place in the field k.

Example 10.7.3. Consider the hyperelliptic curve of equation K = IF4(x, y) over
Fys = Fi6, where y24+x(x+B)y=x>+landp € Fy2 \IF2 so B% = B+ 1. Consider
p)=x*+x3+x24+x 41 = );S—fll € F»[x]. Notice that p(x) is irreducible over
Fy[x] and let &1, &>, &3, &4 € 6 be its roots. Fix one of them, say & = &;.

The ramified prime divisors of k(x) in K, where k := 4, are po and pg, which
correspond to x and (x + B) respectively, and the infinite prime po. Let Bo, Bg, and
Poo be the prime divisors in K that lie above po, pg, and po respectively. Define
h(x) ;= x(x 4+ B) and f(x) := XH1l=(+ D p(x). If p1 and pg are the prime
divisors in k(x) corresponding to x + 1 and x + & respectively, then p; and pg split
in K/k(x). If p; = PP and p; = &Bg‘ﬁé, then from the defining equation of K we
obtain that

oM =00 e (M =148 ¢p. (=0 op () =¢.
In this way we deduce that the divisor of y in K is

_ P l_[?=l ‘13&- .

6): T
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‘Blgi‘ﬁs and 2, = ‘431;3;:033&.
Applying the first part of the algorithm we obtain py, g1, p2, g2 such that ; =
div(p;, g;) for j =1, 2. We have

Now we apply the algorithm to the divisors 2; =

Pix)=x—-Dx - —-8§); qx)= (x =D —$§)

1
B+&
and

@) =@ —-Dx(x =& @) =1+ D2+ 1+ 4+ B)x+1

Therefore di = (p1, p2) = (x — 1)(x — &) = o1 p1 + a2 p2, from which we obtain
o) = oy = B+ 1. Next, we have d) = (d1,q1 + g2 +h) = (x — 1)(x — &). Thus
dy = Bid; +,32(611 +q2+h) =1xd +0x (ql +q2~|—h),thatis, B1 = 1 and
B> = 0. Hence we have y| = 0181 = a1 =B+ 1,y = apf) = a2 = + 1, and
y3=pB2=0.

In this way, we get

and

_piq@+v2p2qi + v+ g2+ f)

q(x) &

mod p =x + 1.

Note that if gs;; and @gs, are the places associated to By and Pg respectively, we
have

PR,y —q) = o, —q(0) =1-1=0
and

(v — @) = o, (¥») —q(B) =+ 1—-(B+1)=0.

Using this valuation it is easy to check that vy, (y — ¢) = v, (y —¢) = L.
Therefore the semireduced divisor in the class of ({2, is

pLrsity Q
B = div(p, 9) = [Pk, (v = (ko = [ oFs FoPpQ | _ Po¥y
0

P P P
where £ is an integral divisor relatively prime to PBoPoo-

Observe that since ‘B is already a reduced divisor, the second part of the algorithm
is not necessary.
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Example 10.7.4. Consider again the hyperelliptic curve of equation y? + x(x + 8)y =

x> + 1 over F,4 as in Example 10.7.3, and the divisors of degree zero 2; = %

and A, = ‘353‘4’1333 % Then A2 = %. Using the first part of the algorithm

as in Exampleﬁ0.7.3, we obtain that the semireduced divisor that belongs to the same
class as 22, is (see Exercise 10.9.5)

_ PoPsPe
P
Now we use the second part of the algorithm to find the reduced divisor 23 that

belongs to the same class as ‘B.
Let B = div(p, q), where

B

pxX)=x(x+B)x+E&), qgkx) <2
g0 =1, qB=+1, and q(§) =0.

It is easy to see that g(x) = é::ﬂl (x + g%f) x+8).

To simplify the notation, we set 4 = & + B € Foa \ F,2. Then we have p(x) =
x3 4+ ux? + pBxand g(x) = x2 4+ wWx + 1.

Using the algorithm we obtain

=+ D +u?) =4+ ux+u'? E=u

;oo [H+hg—q?
pa(X)_T

and

¢3(x) =h — g mod py = (x* + %) — (x* + p’x + 1) mod p = x + 1.

, ‘31‘1‘1‘&4‘3%;;
It follows that (p3(x))xk = —77——
x—1) = =5,and vy, (y —x — 1) =2 0, U‘I?ﬁ(y_x_ 1) = vslgé4(y—x— 1) =
Urp;4(y—x— 1) =0.

.Wehavey —gi =y —x— 1L op (v —

Therefore 23 = div(p5, ¢5) = [(P5() k. (v — q5(x) k1o = %-

10.8 Implementation of Hyperelliptic Cryptosystems

The advantage of using hyperelliptic function fields cryptosystems as compared to
elliptic ones is that we can construct such a cryptosystem at the same security level as
the elliptic one using a smaller defining field. More precisely, the order of the Jacobian
of a hyperelliptic function field of genus g over a field of ¢ elements is approximately
q&. This means that if we have an elliptic function field, i.e., of genus one, with a field
size of g of order 229, then a hyperelliptic curve of genus two, three, or four can have
field size of order 2109, 267 op 250 respectively.
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The Diffie—Hellman key exchange and the ElGamal message transmission can be
implemented in the Jacobian of a hyperelliptic function field. We need to choose k =
IF; and a suitable K for the implementation.

Now K must satisfy several conditions to be suitable for implementation. We
summarize the main security requirements for our function field. First, given the cur-
rent state of computing power, the class number /# over IF, must be divisible by a
large prime p of order larger than 2'% & 1.47 x 10°° in order to avoid Pollard-rho
([118, 119]), Shanks’s Baby-Step/Giant-Step, and Pohlig—Hellman ([116]) attacks.
These attacks are discrete logarithm problem algorithms. Second, after Gaudry [47]
it is recommended that the genus should be less than four so that one can construct a
secure hyperelliptic cryptosystem. Next, the order of the field base should be a prime
power of two in order to protect the cryptosystem against Weil descent on the Jaco-
bian of K (for instance see [40]). Finally, Frey and Riick [37] reduced the discrete
logarithm problem in Ck o to the discrete logarithm problem in F¥, . Therefore to
avoid the Frey—Riick attack, p must not divide g — 1 for “small” m, say of order
about m ~ 2000/ log, g, that is, p must not divide ¢’ — 1 for 1 < ¢ < 2000/ log, q.

In short, assume that K /IF, is a hyperelliptic function field of genus g suitable for
implementation in cryptography. If p is a prime dividing the order of the class group
of K, then K, g, g, and p must satisfy:

p> 2160

g=2o0rg=3,

g = 2" with r a prime number,

The smallest s > 1 such that g° = 1 mod p should be greater than 2000/ log, q.

In order to determine the class group, we use the Riemann zeta function. Let K be a
congruence function field over F; and let K, := KF,r withr > 1.If P, (u) = Pk, (u)
is the numerator of the zeta function of K, and if /4, denotes the class number of K,
we have

8
hi=hi =Pl =[]l -l
i=1

where {«;, ;} are the roots of P (u). We also have for any r > 1 (see Theorem 7.1.6),

8
he=[]11—ef
i=l1

We write P(T) = P\(T) = 1 +aiT + - + @, T8 + qag_1 T8+ + ... 4+ ¢8T%.
Denote by N, the number of divisors of degree 1 in K, = KF;r. Thena; = N1—1—¢q
anday = (N2 — 1 — ¢ —a})/2.

To compute /, in the case of genus g = 2, we may use Exercise 10.9.4.

Example 10.8.1. Consider y?> — y = x° + x. Here the only ramified prime is poo, and
the genus is 2.

Using Exercises 10.9.3 and 10.9.4 we find that Ny = 5 and N; = 9. Thena; =0
and a» = 2. The solutions of the equations 72 + (—2) = 0 are V2 and —v/2. Finally
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we obtain o = —\/553 and ap = «/523, where {3 = _1';“/5[ is a primitive third root
of unity.
It follows that

(212 — 1* if =0 mod 6,
142" 2% if r=1,5mod 6,
ho='T +2 , o (10.4)
(14+27242)2 if r =2,4mod 6,
2 —1)? if ¥ =3 mod 6.

For r < 666 all these hyperelliptic function fields satisfy that if a prime number
p divides A, then it divides 2! — 1 for some i < 2000. This follows from Equation
(10.4), since 2 — 1 = (2" — 1)(2¥ + 2" + 1). Therefore all such function fields
are vulnerable to the Frey—Riick attack for r < 666. That is, the discrete logarithm
problem can be solved in F;i for some i < 2000 and therefore all these hyperelliptic
function fields offer no security and are not suitable for cryptography.

Note that this example is quite similar to that of Koblitz [84, Example 6.1, p. 149].

Example 10.8.2. Consider the equation y>+x(x+p)y = x>+ 1 over Fy = F,2, where
B> = p+1.Let & = 1 be such that & € Fi \ F4. We use the element ju = & + B for
the explicit computations described below. Note that u® = &, u° = B2, etc. We have
F4 = {0, 1, u'% 3} and F¥ = {u' | 0 < i < 14}, u'® = ¥ = 1. Using Exercises
10.9.3 and 10.9.4 we find by direct computation Ny = 5 and N, = 23. Therefore
a; =0and ap = 3.

The solutions of the equation x>+ajx+(a;—2q) = Oare y; = +/5and y» = —/5.
Finally, one of the roots of x2 — v/5x +4 is o] = @ and a root of x2 4 +/5x + 4

iIsSay = M We have ap = —a;. It follows that

he =11 =i Pl — a5 = 1 —af Pl = (=1 e ?
o] — 1)* if r is even,
|1 — |2 if r is odd.

For instance, for » = 61 we obtain 4, = (271)% p?> where p is the fifty-three-digit
prime number

44947399259371741314172478713222775636987866517942801 ~ 4.5 x 10°2.

Furthermore, p does not divide 2/ — 1 for 1 <i < 1000 = 2000/ log, g. However, K
might not be completely suitable for cryptography purposes because the base field is
of order 4%, which is not a prime power of 2 and thus is vulnerable to the Weil descent
on the Jacobian.

In the next examples we present some hyperelliptic function fields. For the algo-
rithms used to compute the order of the Jacobian we refer to the original papers.
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Let p(¢) € F[t] be a monic irreducible polynomial of degree m and let A be a root
of p(t). Then Fom = Fy(A).

For any element ¢ = Z:"z_ol air € Fom, a; € Fy, we represent « by the integer
Z?:ol «;2! written in hexadecimal notation. For instance, the hexadecimal number
C1 represents the element o = A7 + 1% + 1.

We will use the above notation in the following examples.

Example 10.8.3 ([64]). Let p = 100013000640014200121 and consider the genus-2
hyperelliptic function field defined by

y2+y=ax’, orequivalently (y)?=oax>+47",

over IF,, where @ € IF, and « is not a Sth power. Then the class group 4 is of order
h =5 x £, where

£ = 2000520059203862158324190070180683302981.
This cryptosystem is not secure since K is defined over IF, where p is a large prime.

Example 10.8.4 ([24]). Let Fys3 = IF2(1), where A is aroot of p(t) = BT+
12 41 and let K /F,s3 be the genus-2 hyperelliptic function field given by the equation

¥2 4 (@0 + a1x + axx?) = x° + Bax* + B3x® + Bax? + Bix + fo,
where

a9 =4D168CABT8F1FTEBT8D54, a1 =3B167A2F520486B2A8A60,
ar = 507FC6D8DI98A1411D1F24,

Bo = 6ABF379716 E615F0997AF, B1 = 1D13C5C10A58A238681F 3,
B =3ACC28TDAA28DOIEDDBS8, B3 =T4ABF8FFDI1AO4B1E8BR45E,
B4 = 10046 AOE D36C F3B146071.

The order of the class group of K /F,s3 is 2p, where
p = 46768052394612054553468807679365619497317916118893 ~ 4.68 x 10%.

Now p does not divide 20 — 1 fori = 1,2,...,25. Moreover, we have
2000/ log, g = 2000/83 ~ 24.0964 < 25. Hence the system is reasonably secure
and therefore suitable for being used in cryptography.

Example 10.8.5 ([24]). Let Fys0 = F2(A), where A is aroot of p(¢) = P4+
t? + 1, and consider the genus-3 hyperelliptic curve given by

¥2 4 (a0 + a1x + aax? 4+ azx?)

= x7 + Bex® + Bsx® + Bax* + B3x> + Pox? + Bix + fo,

where
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ap =44ECOA3F607DSFE, o =183AFFC60B6C9TA,
ar = 5E8C286F052173E, o3 =39BFFAC327DOFCC,
Bo =2CEO03A6BDO01418F, pB; = 15160EES501EA31D,
B2 =2DDF3B805A56673, B3 =T72EAAC2B03D6F33,
Bs =30BF8CAFACF398A, Bs = 288F45C EB700047,
Bs = 692BDF3913214F7.

The order of the class group of K /F,s¢ is 2p, where

p = 95780971232851005943503002779523943538413536699032693
A~ 9.58 x 10°2.

Now, 2000/ log, ¢ = 2000/59 =~ 33.9 < 34 and p does not divide 2/ — 1 for 1 <i <
34. Thus K is suitable for cryptography purposes.

Example 10.8.6 (80, 67]). Assume Fyso = F»(A), where A is a root of p(t) = 9+
14+ +1* + 1341+ 1. Let K/F,s5 be the hyperelliptic genus-3 function field given
by

y2+()c3 +x2+ax+b)y =x" +x% 4+ ex® +dx* + ex? + f,
where

a = 6723B8D13BC30C7, b =T2DTEE15A5COCFS5,
¢ =6723B8D13BC30C7, d =T2DTEE15A5C9CF4,
e = 24198E10C3B7566, f =1EBY9AF07BD3B303.

The order of the Jacobian of K /F,s¢ is 2 p, where
p = 95780971304118053647396689122057683977359360476125197
~9.58 x 1072,

Finally, 2000/ log, g = 2000/59 =~ 33.9 < 34 and p does not divide 20 —1forl <
i < 34. It follows that the hyperelliptic function field K is suitable for cryptography
purposes.

10.9 Exercises

Exercise 10.9.1. Prove Theorem 10.2.3.

Exercise 10.9.2. Let K = k(x, y) be a hyperelliptic function field of genus g over an
arbitrary constant field &, and assume [K : k(x)] = 2. Show that if the pole divisor of
x in k(x) is ramified, then the defining equation of K can be given as follows:

(i) If char K # 2 then y? = f(x) € k(x), where f(x)isa square-free polynomial of
degree 2g + 1 and the ramified primes in K /k(x) are precisely the prime divisors
of f(x) and the pole divisor of x.
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(ii) If char K = 2 then y> — h(x)y = f(x), where f(x) is a polynomial of degree
2g+1, h(x) is anonzero polynomial of degree at most g that is relatively prime to
f(x), and the ramified primes in K /k(x) are precisely the prime divisors of /(x)
and the pole divisor of x.

Exercise 10.9.3. Let K = k(x, y) be a hyperelliptic or an elliptic function field of
genus g > 1 given by

¥y —h(x)y = f(x),
where
degh(x) <g, degf(x)=2¢+1,

h(x) =0, f(x) is square-free if char k # 2 and i (x) # 0 if chark = 2.
Let p be a prime divisor of degree 1 and let g be the associated place. If P8 # Poo
then o3 (x), pp(y) € k = dqu/P and g (x) = o (¥) = 00. Prove that

op > (pp(x), ep(y) if P # Poo

P, > (00, 00)

defines a 1-to-1 correspondence between the set of places of degree 1 in K and the set
of “rational points™: A = {(a, b) € k* | b* — h(a)b = f(a)} U {(c0, 00)}.

Exercise 10.9.4. Let K /I, be a hyperelliptic function field of genus 2 and let 4,,
r > 1, be the class number of K, = K[F,r. Show that the following procedure works
for finding £, :

(i) Let N, be the number of prime divisors of degree 1 in K,. Find by direct compu-
tation N1 and N, (you may use Exercise 10.9.3).
(ii) The coefficients of the numerator P (u) of the zeta function of K are given by
aj=Ni—1—ganday = (N2 — 1 — ¢ +a?))2.
(iii) Solve the equation T2 +a\T + (a2 — 2g) = 0. Let by and b; be its roots.
(iv) Solve T2 —p;T + q =0fori =1, 2 to obtain a1, @1, @2, and o3.
(v) Finally, obtain 1, = |1 — o/} |*|1 — a5 |%.

Exercise 10.9.5. Let K = [F,4(x, y) be the hyperelliptic function field given by

VA x@x+ By =x+1,

where B2+ B = 1. Set 2; = % and Ay = ‘33%330. Using Koblitz’s algorithm,
show that the semireduced divisor in the class of (1%, is B = %, where £ # 1

is a root of x> + 1.



11

Introduction to Class Field Theory

11.1 Introduction

The notion of class fields is usually attributed to Hilbert, but the concept was already
in the mind of Kronecker and the term was used by Weber before the appearance of
the fundamental papers of Hilbert.

During the years 1880 to 1927, class field theory developed into three topics: prime
decomposition, abelian extensions, and class groups of ideals.

In 1936 Chevalley introduced the concept of idele in order to formulate a class
field theory for abelian extensions.

There is another way to study class fields, given by Hasse at the beginning of the
of the 1930s. This approach uses the theory of simple algebras, which belongs to the
area of noncommutative algebra.

Generally speaking, class field theory is the study of extensions where the prime
divisors of degree 1 decompose totally. Particular features of the theory are the study
of abelian extensions of k(x) and of Q, where k denotes a finite field, as well as the
“reciprocity law.”

There are several approaches to the theory of class fields:

(1) Relations between groups of congruence classes and abelian extensions (We-
ber).

(2) Theory of adeles (repartitions) and ideles (Chevalley and Weil).

(3) Theory of simple algebras (Hasse, Noether, Witt).

(4) Nonabelian L series (Artin).

(5) Providing natural generators for class fields as values of transcendental func-
tions (Kronecker).

Unfortunately, a systematic treatment of class field theory would be too long and
technical for our goals, so we have to confine ourselves to an explicit description of
the abelian extensions of k(x), where k is a finite field. This work is due to Carlitz
and Hayes and is the objective of Chapter 12. The study of abelian extensions of a
congruence function field K can be done by means of the so-called elliptic modules
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or Drinfeld modules. We will discuss Drinfeld modules in Chapter 13. In this chapter
we present the Cebotarev density theorem, profinite groups and infinite Galois theory.

We will end this chapter with the principal results, without proof, of the theory of
class fields for local as well as for global fields.

11.2 Cebotarev’s Density Theorem

The proof we present here of Cebotarev’s density theorem is based on [38]. In the rest
of this chapter, the fields under consideration are congruence function fields. Let L /¢
be a Galois extension of K /k with Galois group G. Let P be a place of L, and p =
Plk.If D and I are the decomposition and inertia groups of P over g respectively,
then by Corollary 5.2.12, Gal (£ (P) /k (¢)) is isomorphic to D/I. Since £ (P) and
k (¢) are finite fields, it follows that D /I is a cyclic group generated by the Frobenius
automorphism

01 €(P) —> £(P), definedby o (x)=x9,
where [k| = g and f = [k (p) : k], ie., [k (p)| = ¢/ = Ngp.
If o is not ramified, then / = {1}. Therefore D is generated by the Frobenius
automorphism.
Definition 11.2.1. Let P be a place in L and g = P|k, where g is not ramified. Then
[%] denotes the Frobenius automorphism of £ (P) /k ().

Whenever we use the symbol [%] we will understand that P is not ramified.

Proposition 11.2.2. The Frobenius automorphism is characterized by the property

ES

5 ] (x) = xV® mod P forall x € ¥p,

where = P|k.

Proof. Let o = [%] If & is the image of o in Gal (£ (P) /k ()), then Gx = xN®)
for x € £ (P) = ¥p/P. The result follows. ]

Proposition 11.2.3. We have [ )] [L/K] ~forallo € G.

(

Proof.Letoc € Gandputd = o
¥p, which implies that

%] 1 Pickx e Vop = 0 (¥9p). Theno™ Ix e

L/K N(gp)
[%} o lx = (a_lx) v mod P.
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From the latter we obtain

L/K N(p)
Ox =0 [/T] o lx=0 ((a_1x> v ) mod 0P = xV® mod o P.

Therefore

L/KT| _, L/K
o|l— |07 = . |
P o (P)
Proposition 11.2.4. Assume K C E C L, where E/K is also a Galois extension.
Then
| L/K E/K
res = .
El7p PNE

Proof. Let6 = [%]p — Plg,and x € 9png = 9pNE. Then 0x—xV® € PNE.
O

When P run through the prime divisors above g, the Frobenius automorphisms
runs through a conjugation class of G (Proposition 11.2.3).

Definition 11.2.5. The Artin’s symbol (L{TK) of a place g of K is the conjugation

class
L/K L/KT _, .
—— ) =30|—— |0 |oeG;, withP|lx = g.
[3) P
Definition 11.2.6. Let A be a set of places of K. Then the limit (s € R, s > 1)

L 2 pea (NP
3 (A) = lim ZF———F——"—,
( ) S—1>nll+ ZPGP[{ (N'P)ib

is called Dirichlet’s density of A, in case this limit exists.
Proposition 11.2.7. If A is finite, then § (A) = 0.

Proof. Let £k (s) = HPEIP’K (1 - (NP)_S)_I. Then ¢k (s) hasapole ats = 1, so

. 1
lim

1 >1
MO--L) =tm [ ' =
s%l"’,Pe]P,K ( (NP)S S%H—PEPK 1— (ﬁ)

Therefore

1
lim ] (1——S> =0,
s—11 PePy (NP)
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which implies that

li NP)™S = o0.
Jim 3 (NPT =0

PEP[(

Now if A is finite, then ZPE 4 (N'P)~* is uniformly bounded, and we have

. 2 pea (NPT
5(A) = lim =Pea™D)
(4) = lm, > pep, NP

Proposition 11.2.8. Assume that A, B are disjoint sets of prime divisors such that
8 (A) and § (B) exist. Then § (AU B) = 6§ (A) + 6 (B).

Proof. The statement is an immediate consequence of the definition. O

In what remains of this section, we will use the following notation. Let L /¢ be a
finite Galois extension of K /k with Galois group G and |k| = q. Let x € K \ k, where
K /k(x) is a finite separable extension. Set

n=[:k]l=[K{:K], d=[K:k(x)], m=[L:K{],
P(K)={p € Pk |9lix) # P}, ordr=o0(r), for 1€G.

Define

P (K) = {p € P(K) | g is not ramified over k(x)}.

Fori e N, let

Pi(K) = {p € Pur(K) | dx (9) =i},

L/K
C;(L/K,¢) = {5@ € Pi(K) | <?> = Q:},

where € is a given conjugation class of G. For t € G, let

D, (L/K,7)= {7’ e P(L) | [%] =1,PNK € Pi(K)}.

The Frobenius automorphism of the algebraic closure k of k will be denoted by ¢.
Thus ¢ : k —> k is defined by ¢(x) = x9.

LetC =2, C; (L/K, €) = [g,) € Py (K) | (L{TK) = c].

The Cebotarev density theorem states that 6 (C) = |€|/|G].

Proposition 11.2.9. Leti € N, p € C; (L/K, ), and 7, ' € €.

(1) There are exactly [L : K]/ ord (t) prime divisors of P, (K) that lie above g.
Q) IfC! € C; (L/K, €) and D; (1) is the set of prime divisors in D; (L/K, ©) lying
above C/, then |C!| = |€|ord (v) | D} (v)|[L : K17".
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Proof.

(1) Let & be the number of prime divisors over . We have dr /x (P|gp) = ord (7)
since ey /x (P|g) = 1. Furthermore, by Theorem 5.1.14 [L : K] = efh =

fh = ord () h. Hence h = K],

(2) For 0 € G = Gal(L/K), we have D] (ora’l) =oDi(r).If ' € Cis
distinct from 7, then D/ () and D/ (t’) are disjoint. Therefore |, c¢ D} (7')
is the set of prime divisors of P, (L) over C;. By (1),

gL K] L )
i ord(r) 2 DI ()| =1al|D; ). u]

e

Proposition 11.2.10. Let T be an intermediate field, i.e., K C T C L, and let t be the
field of constants of T. Let t € Gal(L/T). Set |t| = q". If r divides i then

D; (L/K,t)=Dj; (L/T,t)yN{P e P(L) |dg (PNK) =i}.

Proof. Let P € P, (L) be such that p = P N K is of degree i. Thus Np = ¢'. Let
S = P NT be of degree s, that is, NG = (¢")* = ¢"*. By definition,

L/K i
[/T] =17 <= tx =x7 mod P forall x € ¥p (11.1)
and
L/T rs
[%} =71+ = tx=x7 mod P forall x € ¥p. (11.2)

Thus, it suffices to prove that [L/TK] = 7 implies rs = i. Since t € Gal(L/T),

(11.1) implies that x = x4 mod P for all x € ¥g. Hence 1 (6) C ]Fqi. On the other
hand, 1 (&) D k(p) = IE‘qi, so t(6) = IE‘qi. Finally, we have t (6) = F;rys, ie.,
i=rs. |

Corollary 11.2.11. With the hypotheses of Proposition 11.2.10, let €, €' be the conju-
gation classes of t € G and of T € Gal(L/T) respectively. Assume that r divides i
and let

Cl) =Ciyr (L/T,€)\ {6 € P(T) | dx (ENK) <i/2}.

lef|ci),
| T:K]"

Then |C; (L/K, €)| =

Proof. Put s = ;— The set

D/ (tr) = Ds(L/T,t)N{P € P(L) | dxg (PNK) =i}

is the set of prime divisors in D5 (L/ T, t) that lie above
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C!'=Cs (L/T,€)N{& € P(T) | dg (SNK) =i}.

We have
[L: K] ..
—|C; (L/K,&)| = |D; (L/K, 7)| (Proposition 11.2.9)
|€] ord ()
= |D} (v)| (Proposition 11.2.10)
[L:T] p -
= — \ ; | (Proposition 11.2.9).
|€’| ord (7)
Therefore, |C!'| = [Tﬁ'@' ICi (L/K, ©).

By the above, it suffices to prove that C;" = Ci’/r. If & € P, (T) is of degree s
and p = G N K, thenk C k(p) S 1(6) =F gy =Fgs =F,i. Therefore dg ()
divides i. It follows that dg (p) =i or dg (p) < ’5 ]

Proposition 11.2.12. Let i € N be such that t|; = ¢'|; (where ¢ is the Frobenius
automorphism) for all T € €. Let €' be a finite extension of £ and let L' = L{'. Then
L'/K is a Galois extension, the field of constants of L' is ', g1 = g1 and for each
T € € there exists a unique v' € Gal(L'/K) such that t'|;, = t and t'|¢ = ¢'|p.
Furthermore:

(i) ord (r’) is the least common multiple of ord (t) and [E’ 0N Fqi],
(i) ¢ = {1’ | T € €} is a conjugation class of Gal(L'/K),
(iii) C; (L'/K, &) = C; (L/K, ©).

Proof. Since L/K and £’/ k are Galois extensions and L” = L¢’, it follows that L' /K is
a Galois extension. By Theorem 6.1.2, ¢’ is the field of constants of L” and by Theorem
6.1.3, g1 = g;. Now assume that t € € and G’ = Gal(L'/K); since K¢’ N L = K¢,
we have G = G'/H, where H = Gal(L'/L) = Gal (E’/Z).
L——— If 1y € G’ is such that 7|z = 7, then 71]¢ = T|¢ =
@'l¢. It follows that 6 = (1)~ ' ¢'|y € Gal (¢//¢) = H.
Therefore v/ = 710 and /|y = ©|f8|L = ©1lL = 7,
K— Kl — K¢ |y = 11l¢Bly = ¢'|p. This proves the existence of
k

7’. The uniqueness follows immediately from L’ = L¢'.
Now, ord (t/|¢r) = ord (¢'|¢) = [¢' : €' N ]Fqi] and

~

b4 4
ord (z') = [ord (|) , ord (t'[¢')] = [ord (z) , [¢' : €' N Fqi]] ,

which proves (i).
To establish (ii), let ¢ = {1’ | r € €} and ¢’ € Gal(L’/K). Then

o't (0') " 1L =01t 1L (0) " 1L = 6707,

where 6 = 6'|; and 0't' (6') ' |p = 0'lpt'l0 (0) 1o = Ty = ¢, since
Gal(¢'/k) is a cyclic group. Now 076~! € ¢ implies 67’ (0’)_1 ed.
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Finally, in order to verify (iii) it suffices to demonstrate the following: Assume that
S e Py(L'), p = G NK is of degree i, and P = S|;.. Then [L/TK] — 7 if and only
if[245] =

To prove this, suppose that [%] = 7. Then tx = x? mod P for x € vp. If

x € ¢, we have ¢'(x) = x? . Furthermore, 9g = £'0p since L' = L¢' (Exercise
11.7.1). It follows that ’x = x4 mod & for all x € ¥g. Therefore [%] =1

Conversely, if [%] = 7/, then by Proposition 11.2.4,

|:L’/K:| , |: L/K :| |:L/K]

=1L = =|—]. O
G} I GNL P
Corollary 11.2.13. If L = K{ is the extension of constants and v € Gal(L/K) satis-
fies Tle = ¢'l¢, then Ci (K /K, 1d) = Ci (L/K, {t}).

Proof. Notice that in the context of Proposition 11.2.12, K plays the role of L and L
plays the role of L’. We have € = {Id} and €' = {t}, so the result follows. O

Proposition 11.2.14. Suppose that K€ = L and that t|y = ¢l¢, € = {t}, 7 € G. Then
IC1 (L/K, ©) — gl <2 (gr+grd +d%) g

Proof. Taking i = 1 in the previous corollary, we have C| (L/K, {t}) = C; (K /K, {Id})

= Pi(K ). Here € = {7} since G = Gal (¢/k) is a cyclic group. We will denote by

P1(K) the set of all prime divisors of degree 1. By Theorem 6.1.3 we have g;, = gk,

so using the Riemann hypothesis (Theorem 7.2.9 (iv)) we obtain that

[|P1(K)| = (g + D] < 2gxq ">

Now by Theorem 9.4.2, we have

1 1
gk =1+ (k) — 1) [K 1 k(x)] + Ed (Dk/kw) =1—d+ Ed (Dk/kw) »

and hence d (@ K/k(x)) = 2gx —2+2d. This implies that there are at most 2g; —2+2d
prime divisors of k(x) that are ramified in K. On the other hand, there exist at most
d elements in P; (K) above each element of P; (k(x)). Thus there are at most d prime
divisors of K above M, = g in k(x). Clearly, none of these divisors belongs to
P1(K), but they could belong to Pi(K). Then

Pi(K)\ Pi(K) = {p | dg (p) = 1, g is ramified in K /k(x) or ©i(x) = oo} ,

SO
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|PUK)\ Pi(K)| <d (g1 —2+2d) +d =d (2g, — 1 +2d) .
Therefore

|PL(K) — g < |IPL(K)| — |PL(K)I| + || PL(K)| — g
<d QgL —142d)+2¢1¢">+1 < Zﬂ(gL +ng+d2). o

Proposition 11.2.15. For each finite extension M of K and for each natural number
i, we have

HS € Pur(M) | dx (BN K) <i/2}] <4[M:K](gx +1)q'>.

Proof. For each prime divisor in P(K) there exist at most [M : K] places in P(M).
Therefore

(& € Pr(M) | dx (SNK) <i/2})| <[M:K] Y |Pi(K)|.
J=i/2

By Theorem 6.2.1, for each p € P;(K) there exist precisely j divisors of F; K
of degree 1. Hence, using the Riemann hypothesis (Theorem 7.2.9), we obtain that

IA

1 - 1 4 _
|Pj(K)|§7|P1(Fq./K)| ;(2g1<q’/2+q’+1>.

Fori > 4 we have

[i/2]—1 ’

. . q[i/zl_l
_J<_l/2 2: J_Zg 241
j _i + q’ l,q +

q—1

< zqi/Z‘

mM\

Fori =1,2,3 We also obtain the inequality.
Similarly, Z[l/ 2l (qf + 1) < 4¢'/%. Combining all these inequalities, we obtain

{& € P (M) | dg (6N K) <i/2}]
1 , .
<[M:K] Z - <2g1<q’/2+qf + 1)
j=i
<[M:K] {ZgK (2q"/2) +4q"/2} =4[M: Klg"* gk +1). O

Now we will prove the following result, from which the Cebotarev density theorem
will be an immediate consequence.

Proposition 11.2.16. Let a € N be such that t|; = ¢?|¢ for all T € €. Ifi # a mod n,
then C; (L/K, ®) = 0. Ifi = a mod n, then
<]
Ci(L/K,&) — —¢'
i (L/K. € ——q 5 5

1 1 .
< 4|¢ (d2 + —grd+ g1 + gk + 1) q'.
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Proof. Since t|y = ¢%|¢, if P € P(L) is above g € C; (L/K, &), we have

L/K :
¢le = [—} =¢'le.
P 14
This shows that if C; (L/K, €) # 4, then we necessarily have i = a mod n.
Now assume that i = a mod n. We substitute £ by a finite extension £’ such

that i ord () divides [E/ : k]. Set L' = L¢'. Since L'/L is L Lo =1/
an extension of constants, we have K¢’ N L = K £. Therefore

[L' : KE/] = [L : K{] = m and gy = gr. Furthermore, by
Proposition 11.2.12 there exists a unique 7’ € Gal(L'/K) such K¢ K
that '|, = 7, T'|l¢ = ¢'|¢,

ord (') is the least common multiple of {ord (1), [¢ : Fqi]} =[¢: ]Fqi] ,
and
Ci(L'/K,&")=Ci (L/K,®), (11.3)
where €” is the conjugacy class of 7/ in Gal(L’/K) and |€”| = |€|.
We substitute L by L’ and take T to be the fixed field of L’ under (), as in
Proposition 11.2.10. Then K € T € L' and
D;(L'/K.7')=Dj, (L'/T,t)n{P e P(L) | dgk (PNK) = j}.

Here ¢ is the field of constants of T, |t| = q", and r divides i. Observe that t =
€' NT is the fixed field of ¢’ under ¢' and therefore equal to .

Then [2’ : Fqi] =[L :T]=ord (1:’). In particular, T¢' = L', so [T : Fy K]
[L':¢K]=m,and [T : K] = [T :F K] [F K : K| =mi.

m

A 'K L
Fyi F,i K T = (L))
i

F, =k K

Now T = L/W), so if we substitute L by L’ in Corollary 11.2.11, we obtain
|¢’| = 1 for r = i. By Proposition 11.2.15 and Corollary 11.2.11,
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<]
[T : K]

€0 (T )| - |G (LK. )

g
T[T : K]
__ld
~[T: K]

(e (/. @) - leil)

S € Py (T) | dx (ENK) <i/2}| <41€| (gx + 1) q"/%.
(11.4)

By Proposition 11.2.14,

“Cl (L'/T, {z})] - qi‘ <2 (gL +g1d +d2) q'?
Multiplying the last inequality by |&€|/(im), where im = [T : K], we obtain

<] 2|¢| (

[T : K]

<] ;
|C1 (LT, {=})| - %q" < gL +grd +d2) . (15)
Hence by (11.3), (11.4), and (11.5) we get

i @ik o1 - Ty
m

(L'/K,¢")| -

€ (LT ()| - Uq '

; 21¢
<41¢(gx + Dg'? + Q (81 +grd +a%) g2

d d*\
=4|¢|<8K+1+—+&+—>q’/2

[T : K]

2 2im 2im
41e | 4? 1 d 1 1) 4
< 41¢] +28L +2gL+gl<+ q'". o

Notation 11.2.17. For two functions f(x) and g(x) of a real variable, we will write
f(x) = O(g(x)) as x — c to express the fact that | f(x)| < M|g(x)| when x is in
a neighborhood of c. In particular, if g(x) = 1, f(x) = O(1) means that f(x) is
bounded in a neighborhood of ¢ (see Notation 7.3.3).

Proposition 11.2.18.

0 1
Z — = ——In(1—-x)+ O(1) when x— 1 .
n

Proof. If £ is an nth root of 1, then & is distinct from 1 and satisfies 1 +& +£%4-- -+
£"~1 = 0. Therefore
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1 n—1 ) 1 n—1 oo (%-ix)] )
—~Y In (1 —E’x)é_’” = - &
1S x/ n—1
LA Ez(;—a))
xJ xj O yatin
RETR N L Syt B
Jj=amodn Jj=amodn t=1

Since for I <i <n—1,In(1 — &'x) is bounded in a neighborhood of 1, the result
follows. O

Proposition 11.2.19. Ifa € N is such that 0 < a < n and t|¢ = ¢*|¢ for all T € €,
then

- _ 1< s +
7;(1\/7)) - —[L:K]ln<1 q )+0(1), s — 1T,

Proof. Recall that C = | J72, C; (L/K, €). We have

1 — —s
P DD DL

PeC J=0PeCyyjn(L/K,&)
> |€] . 1 . .
— ( qa+jn +0 (qz(a+jn))) q—(a+jn)s
s \ma+ jn)
(Proposition 11.2.16)
|Q:| S q(l—s)(a+jn)

1 >0 1 :
_ _ [0) (j—s)a (Q—S)j"
m Z a+ jn (q ]X:(:)q

j=0
1
¢ (;—s)a
_ ey (1 —qH) +om+o|-L——
mn 1 _q(g—‘v)n
(Proposition 11.2.18
with x = g'™%)
___= ln(l—ql_s>+0(1), s — 1T, O
[L: K]

Theorem 11.2.20 (Cebotarev’s Density Theorem). Let L/K be a finite Galois ex-
tension of congruence function fields and let € be a conjugacy class of Gal(L/K).
Then the Dirichlet density of the set

e (45) 4

€|

exists and is equal to K
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Proof. In Proposition 11.2.19 we take L = K and obtain

Y (Np)™ = —In (1 - q‘*S) ro(), s— 1.
pePk
Since the number of prime divisors of k£ (x) above g is finite and so is the number
of ramified prime divisors, then the Dirichlet density of the set [ o Pk | (%) = Q}

is equal to the density of C = [J72, C;i (L/K, €). Hence by Propositions 11.2.7 and
11.2.8 we have

L/K) }) . 2pec (N@)™*
8 P L )=¢l)=56C) = lim == " _
({K') c g | ( p ( ) 3‘l>r{1+ ZKJEHIK (NBO)—Y

¢ _
. ——[L|:I|(]ln(1—ql )+ 0(1)
= lim

s—=1t  —In(1—¢'=%) + O(1)
g
T [L:K]

11.3 Inverse Limits and Profinite Groups

Definition 11.3.1. By a directed partially ordered set or a directed poset we under-
stand a nonempty partially ordered set I such that if i, j € I, there exists k € [
satisfying i < kand j < k.

Now suppose that I is an ordered set such that to any i € [ is associated a set A;
(which might be just a set, a group, a ring, a field, a topological space, etc.) in such a
way that whenever i < j, there exists a map

¢jl’:Aj—>Ai

which, depending on A;, is a map, a group homomorphism, a ring homomorphism, a
continuous map, etc., such that

(1) ¢ =1dy,,
(i) @ji o pxj = ¢y fori < j <k.

b1
Ap— A

Pki @ji

hS

A;

Definition 11.3.2. The system {A;, ¢;, 1}i je; above is called an inverse system or a
i<j
projective system.
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Definition 11.3.3. Given an inverse system {A;, ¢;;, I} we say that (X, ¢;);es is an
inverse limit of the system if there exist maps (group homomorphisms, continuous
maps, etc.)
pi: X — A;

foralli € I suchthat ¢j; o ¢; = ¢; wheneveri < j

YL —y

®j @i
X

and such that if (Y;, &)<y is any other object with maps
E,’J Y — A;

for all i € I such that ¢;; o §; = & wheneveri < j, then there exists a unique map
(group homomorphism, continuous map, etc.)

E:Y — X
such that p; 0 &€ = &; foralli € 1.
£
Yy —X
%-i “ bi
Aj

We write X = lim A; = lim A; = lim A;.
iel T -

Theorem 11.3.4. Given an inverse system {A;, @i, 1}, there exists an inverse limit
X, ¢i)ier, X = lign A;. Furthermore, (X, ¢;)ieq is unique in the following sense: if

14
(Z,6))icr is another inverse limit, there exists a unique map o: X — Z (o group
homomorphism, continuous map, etc.) such that « is an isomorphism satisfying 6; o
o =g foralliel.
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Proof: First we prove uniqueness. Since X and Z are both inverse limits, there exist
unique maps « : X — Z and B : Z — X such that the following diagrams commute:

Z——X

0
Di O Di
AN

A

Thus B o o and Idy satisfy ¢; o (8 o @) = ¢; = ¢; o (Idx). By the uniqueness,
we have B o @ = Idy. Similarly, @« o 8 = Idz. It follows that « and B are inverse
isomorphisms (of groups, rings, topological spaces, etc.).

To see the existence, let B = [];.; A; be the direct product, considered with the
product topology (and with the algebraic operations defined componentwise).

Let X = {(ai)ier € B | a; = ¢ji(a;) foralli < j}. Let¢; : X — A; be the map
induced by the projection (¢; = m;|x):

T HAj — A;
jel
(aj)jel > a,;.
Then (¢ o ;) ((ar)rer) = @ji(a;) = ai = ;i ((ax)ker) for all (ke € X. Assume
that (Y, &;);cs is another object such that the maps &;: ¥ — A; satisty ¢p;; 0 &; = &;
foralli < j.Let

E:Y—> X

be defined by

§(y) = (& (¥)ier-
Notice that & is well defined since (¢;;)(&;(y)) = &;(y) and we have

(9i 08)(¥) = @i (ExWMiker) =& (),

s0 (§(y))ier € X. Thus X is an inverse limit of {A;, ¢j;, I}. O

Remark 11.3.5. Given an inverse system {A;, ¢;;, I}, we denote by A := [1;e; Ai the

direct product. Then

iel

l(iElA,‘ = {( ,qi,...) € A|¢kj(ak)=aj forallj Sk}

iel

is the inverse limit or the projective limit.
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Given an inverse system {A;, ¢;, 1}, let
Tt A— A;
(aj)jer — ai

be the natural projection. For each i € I, let

i = ﬂiI@A,-I lim A; — A;

i l

be the map induced by the projection. We have ¢ jx o ¢; = ¢ fork < j.

lim Al' Ok
A

1

Ax

®j N Pk

Aj

Now if for each i € I, A; is a topological Hausdorff space, we provide A with
the product topology and Lin A; is a topological space with the induced topology. We

l
always assume that the maps ¢ ;; are continuous.
Notice that the maps ¢; are always continuous; indeed, if U is an open set of A;,
we have

¢ ' (U) ==, ' (U)Nlim 4;,

1

where ni_l (U) is an open set by definition of the product topology. In fact, the topol-
ogy of l(ln A; is generated by unions and finite intersections of the sets ¢;” Y(U;) such

1
that U; is open in A;. Furthermore, if T is open in I(Ln A;, we shall see that T contains
i
some ¢ 1(Uk) for some k and some Uy that is open in Ak. Since T is generated by
unions and finite intersections of sets of the form

nj_l(Uj) Nlim A;,
it suffices to see that
¢ W N7 (U)) = ' (Us) forsome k.
Choose k > i, j and let
Ui := ¢ (U) Ny (U,
Then

¢ (U = ¢ b U Ny b (U0) = 67 WU N (U
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Definition 11.3.6. Let I be a directed poset. Let I’ be a subset such that I’ is also a
directed poset with the order induced by the one in /. We say that I’ is cofinal in I if
for every i € I, there exists i’ € I’ such thati < i’.

If {A;, ¢ji, I} is an inverse system, then {A;, ¢;;, I’} becomes an inverse system
and we say that {A;, ¢;;, I’} is a cofinal subsystem of {A;, ¢;, I}.

Theorem 11.3.7. If {A;, ¢j;, 1} is an inverse system of groups, compact topological
spaces, or compact topological groups, and I' C I is cofinal in I, then

lim A; = lim A;.
Pam— <«
iel iel’

Proof: Let X = <1{iLnA,',<p,~> and Y = (l(gl A,-r,(pé,). For j € I,let j/ € I be
iel i'el’

such that j < j'. We define

Qj:Y > A
byaj = ¢j/j0g0},.
Y @ Aj
LT by
A

If k € I’ satisfies j <k, let £ € I be such that j', k < £. Then
D)@y =Gy ibej oy = bej@p = PjPekpy = Prj P

Thus @; is independent of the choice of j* € I'. Furthermore, if i, j € I and i < j,
then if k € I’ satisfies j < k, we have

Gji®j = Djibkjr = Privr = Pi-
Therefore, there exists a unique map
Y — X

such that ;g = @; forall j € I.If (a))irep € Y and 9((a;)ier) = (bi)ier, then
biyr = ay for i’ € I'. It follows that @ is an injection.

Now if (b;)ic; € X, we define (a;)i7epr € Y by ayy = by for all i’ € I'. Then
@((a;i)irer’) = (bi)ies since I’ is cofinal in I and @ is a surjection. In the case of an
algebraic structure, @ is an isomorphism. In the case of compact topological spaces, @
is a continuous bijection and since X and Y are compact spaces, it follows that ¢ is a
closed map and that X and ¥ are homeomorphic. O
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Theorem 11.3.8. Let {A;, ¢j;, I} be an inverse system of nonempty compact Haus-
dorff topological spaces A; over a directed poset 1. Then the set lim A; is nonempty.
<~

In particular, the inverse limit of an inverse system of nonempty finite sets is nonempty.

Proof: Foreach j € I,letY; = {(a;) € [[ Ai | ¢ji(aj) = ay forall k < j}.
By the axiom of choice, ¥; is nonempty. Note that Y; 2 Y for j < j’. In par-

ticular, the intersection of finitely many Y;’s is a nonempty set. Since [[;,.; A; is a
compact topological space, ) jer Yj is nonempty. Now

ﬂ Yj = lim 4;,

jel
so the result follows. |

Proposition 11.3.9. The set 1im A; is closed in A =[]

l

lEl

Proof: Let (aj)ic; € A\ lim A;. There exist i < j such that ¢j;(a;) # a;. Since

A; is Hausdorff, we can ﬁnd open neighborhoods U of ¢;;(a;) and V of a; such that
UNV =@.Set W := ¢_1(U) Then W is an open set of A;. LetU =V x W x
Hk;m,j A C A. Clearly, U is an open set of A, and (a;)iecs € U. Moreover, since
¢;i(W)yCUandUNV =0, wehave U ﬂl(iLn A; = . It follows that l(ln A; is closed

i i

in A. O

Definition 11.3.10. A group G is called a topological group if G is a topological space
such that the group operations

i:G— G and -:GxG—G

x> x7! x, ) F—x-y

are continuous.

Proposition 11.3.11. Let G be a topological group. Then G is Hausdorff if and only
if {e} is closed in G, where e denotes the identity of G.

Proof:
(=) Since G is Ty, it is T7.
(<) Let

0:GxG— G

x,y) —> xy_l.

Since ¢ = -(Id, i), it follows that ¢ is continuous. Furthermore,

o 'deh) = {x, »xy ' =e) ={(x,0)Ix e G} = A
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and therefore the diagonal A is closed in G x G. Thus G is a Hausdorff space. O

Now for each x € G, the map

£:G — G

Yy Xy

is continuous and satisfies é;l =£&,-1 (because (§,-1 0&,)(y) = x~1(xy) = y). Thus
&, 1s a homeomorphism and V is a open neighborhood of ¢ if and only if £, (V) = xV
is an open neighborhood of {x}. This means that the topology of G is determined by
the neighborhoods of {e}.

Definition 11.3.12. A profinite group is a topological group G that is Hausdorff, com-
pact, and contains a basis of open neighborhoods of {e} that consists of normal sub-
groups of G.

Theorem 11.3.13. Let G be a compact Hausdorff topological group. Then G contains
a basis of open neighborhoods of {e} consisting of normal subgroups if and only if G
is totally disconnected (that is, every element of G is its own connected component).

Proof:

(=) Let x # e. Since G is a Hausdorff space, there exist open sets U and V such that
ecU,xeV,andUNV =@ Let N be a normal subgroup of G. Then N is open
and contained in U. We have

G=<UgN>UN.

8¢N

Thus x € UgeN gN = W, which is an open set. Moreover, WNN = @#and WUN =
G. Thus the connected component of {e} is {e}.
Now for any y € G, the map

&:6G— G
Zv+— yZ

is a homeomorphism. Therefore the connected component of y is the image under &,
of the connected component of {e}, namely &y ({e}) = {y}. It follows that G is totally
disconnected.
(<) Assume that G is a totally disconnected topological group. Let V be an open
set of G containing e. Then V¢ := G \ V is a closed set and e ¢ V. Since G is a
compact space, it follows that V¢ is also compact. On the other hand, G is a Hausdorff
space, so for each x € V¢ there exist open sets Wy, Uy, such that e € Wy, x € U,,
and Wy N U, = @. Thus V¢ C [J,cye Ux. Since V€ is a compact set, there exist
X1,...,X, € VSsuchthat V¢ C U := J;_, Uy,.

Let W :=(7_; Wy,. Thene € W and WNU =, so W C U¢ and U is a closed
set. It follows that W C U¢€.

Therefore
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Pp=WNU2WNVE,

@d W C V. Thus, there exists an open neighborhood W of e such that W C V and
W is a compact set.
Next we show that {e} = (.4 U, where

A={U|eeUandU is open and closed in G}.

Let A = (yea U 2 {e}. It suffices to show that A is connected. Assume that
A=CUD,CND =®,and C and D are closed in A (and therefore closed in G).
Since G is Hausdorff (therefore a normal space) and C and D are disjoint compact
subsets, there exists open subsets C’ and D’ in G such that C' 2 C, D’ 2 D, and
C'ND' =¢¥.Now A C C'UD' s0o(C'"UD) C A° = |Jyc4U°. Now since
(C’" U D)¢ is closed and compact and U° is open, U € A, it follows that there exist
finitely many Uy, ... , U, € A such that

n n
cupyclJuf oo (NUi=PcC'UD,
i=1 i=1

P is open and closed in G.Now x € P = (PNCYU (PN D'),sayx € PNC/,
which is open. Also P N D’ is open. Since C' N D' = @, we have P N C' = P\
(PND")=PN(PND) Hence PNC’is also a closed subset of G. It follows that
PNC' € Aand A C PNC’'. Therefore AND C AN D’ = (. Then A is connected
and A =y U = {e}.

Next we show that if W is an open neighborhood of x, there exists a closed domain
P (that is, P is an open and closed set) such that {e} € P € W. Now W is closed
and W¢ C {e}¢ = (Jyeq UC, with U an open set. Since W€ is compact, there exist
finitely many Uy, ... , U, of Asuchthat W¢ C (Jyc 4 Uf. Thus P := (_, U; € W
is a closed domain and x € P’ C W.

letQ ={qeG|PgcCPlandH=0QNQ ! takeq e Qandx € P
Then xq € P’ and since P’ is open, it follows by the continuity of the product that
there exist open sets U, and V, containing x and g respectively, Uy, V; € P’ such
that U, V, € P’. Since P’ is closed and thus compact, and P’ = | J, . p/ Uy, there exist
Xl,... ,Xm € P'suchthat P" = [ J/_, Uy,.Let V' = /L, Vy,. Then ¢ € V' and
P'V' C P/,so V' C Q. It follows that Q is open.

Now letr € G\ Q. There exists p € P’ such that pr ¢ P’. Since G \ P’ is an
open set and the product is a continuous map, there exists an open neighborhood W
of r such that pW’ € G \ P’. Therefore W' C G \ Q, G \ Q is open, and hence Q is
closed. Since Q™! is homeomorphic to Q, it follows that H = Q N Q! is an open
and closed set of G.

Fory € Q,wehave y = ey € P’,s0 Q C P’. Also, P'e = P’ C P’, and hence
ee€ Q.

Let i, hy € H.Thenhy € Q,h,' € Q,and

P'(hihy") = (P'hy)hy' € P'hs' C P,
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Therefore h1hy' € Q. Similarly, (i, )™ = hoh(' € Q0,50 hih;' € 071 It
follows that hlhz_l € H and H is a subgroup of G.

We have shown that H is an open and closed subgroup of G. Finally, since G is
compactand G = | J,.; Hx, where Hx is open for each x € G, it follows that H is of
finite index in G, [G : H] =1 < 00,and G = Ule Hxi. Let N =, xHx ! =
m§:1 X; fol. Then N is a normal subgroup of G, and wehavee e N C H C W C
W C V. Furthermore, N is an open and closed normal subgroup of G of finite index.
This proves the theorem. O

Remark 11.3.14. If G is a finite group, then G is a topological group with the discrete
topology. Clearly G is a profinite group.

The term profinite group comes from the following theorem.

Theorem 11.3.15. Let G be a profinite group. Then if N runs through all open normal
subgroups of G, we have

G = limG/N
N

algebraically and topologically (note that G/ N is finite), that is, G is the inverse limit
of finite groups.

Conversely, if {G;, ¢ji} is a projective system of finite groups G; with the discrete
topology, then the group G := li(in G is a profinite group.

Proof: First, let G be a profinite group. Let N be an open and normal subgroup of G.
Then G = gy XN, where xN is homeomorphic to N for all x € G. Since G
is a compact space, we have [G : N] < oo. Thus G/N is a finite group and since

N = G\ UxeG/n XN and |xeg/n XN is open, it follows that N is a closed subgroup
x¢N x¢N
of G.

Let A = {N; | i € I} be the set of all open normal subgroups of G and let G; :=
G/N; for each i € I. We define a partial order on I by settingi < j <= N; 2 N;.
Now fori < j, let

fjiZGjZG/Nj—>G/Ni=G,‘

x mod N; — x mod N;

be the natural projection.
Given i, j € I,let Ny :== N; N N;. Then Ny € Aandi <k, j < k. Therefore
{Gi, fji} is a projective system. Let

f:G — limG;
i

o —> na,-, where o; := o0 mod N;.
iel
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Then f is a group homomorphism whose kernel is ();.; Ni = {e}. Indeed, {N; |
i € I} is a fundamental system of open neighborhoods of {e} and G is a Hausdorff
space. Therefore f is a monomorphism of groups.

Now {Ug := ]_[igs Gi x [licslec;} | S € I, S finite} is a subbasis of neighbor-
hoods of e € [];.; Gi. We have

f1<US ﬂ](iﬁlG,) = mNi.
i

ieS

iel

Since the latter is open, it follows that f is a continuous map.
Now, G is compact, so f(G) is a compact space too. Thus f(G) is a closed subset
ofl(iLn Gi.Let o = (¢i)ies € l(iLnG,-. Then ¢ (Us N 1<i£1G,-) is a basic open neighbor-

1 l 1
hood of ¢. Let Ny :=(");cs Ni and let ¢ € G be such that ¢ mod Ny = ¢x € G/Ni.
Then the diagram

Jii

G /Ny G/N; Pk @i

Tk
G o

commutes for i € S. Therefore 0 mod N; = ¢;. It follows that f(o) € ¢(Us N
1(i£1 Gi). Hence f(G) is dense in l(in G; and since f(G) is closed, we conclude that f

] 1
is onto. In particular, f is an algebraic isomorphism.

Finally, if 7 € G is closed, then T and f(7T') are compact. Therefore f(T) is a
closed set in lim G;. It follows that f is a closed map and f is a homeomorphism.

i
Conversely, let {G;, fj;} be a projective system where for all i € I, G; is a finite
group considered with the discrete topology.

Let G = l(iﬂlci. Then G is closed in [];.; Gi. Since each G; is compact, it

iel
l
follows by Tychonov’s theorem that [[;.; G; is a compact space. Therefore G is a
compact group. Also, since each G; is a Hausdorff space, so is [[;c; G;, and G is
Hausdorff too.
Let V be an open neighborhood of e € G. Then V = Vhl(igl G;, where V' an open

i
neighborhood of e € ]_[l- <7 Gi. Therefore there exists a finite subset S C I such that
Ug = ]—[i¢5 G x[ljes Hi € V' with H; <G foreachi € S. Thuse € UsNlimG;

1
V. It follows that {US N Lin Gi|SClI ﬁnite} is a basis of neighborhoods of e € G

l
and since Uy is a normal subgroup of ]_[l-el G;, we have Ug N l(iLnG,- < l(ir_nGi. By
i i

Theorem 11.3.13, it follows that G is a profinite group.
O

We have proved the following theorem:
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Theorem 11.3.16. Let G be a topological group. The following conditions are equiv-
alent
(i) G is a profinite group.
(i) G is the inverse limit of finite groups.
(iii) G is a topological group that is Hausdorff, compact, and totally disconnected.
(iv) G is a topological group that is a Hausdor[f compact space that contains a basis
of neighborhoods of e consisting of open normal subgroups of G. O

Example 11.3.17. If G is a finite group, then G is a profinite group.

Example 11.3.18. Let | =N=1{1,2,...,}. Wedefinen <m < n|m.
Let fin.n : Z/mZ — Z/nZ be the natural projection

a mod m — a mod n.

Set Z := lim Z/nZ. Then Z s called the Priifer ring. We have Z < [[;, Z/nZ. Let
neN
0: 7 — Z

a —> (a mod n),cN. (11.6)

Let o = (p)nez € 7 and let V be an open neighborhood of «. Then there exists
a finite set S € N such that W = a((]_[nes{l} X HnngZ/”Z) N Z) C V. Let
m= l_[SeSS. Thens <m forall s € S. Let a € Z be such that a = «,, mod m.
AThen amods = oy mod s for all s € S. Hence ¢(a) € W, and ¢(Z) is dense
in Z.
For n € N, the map
6, : 7 —> nZ
XH>nx =x+---+x
is an algebraic and topological isomorphism. Thus nZ = 7, and therefore nZ is open
and closed in Z. A A
Conversely, let H < Z be an open subgroup. Since Z is compact, H is a closed
subgroup and [Z : H] =n < oo. .
In particular, nZ C H. Now the map ¢ given in (11.6) satisfies ¢(nZ) < nZ and
induces
7% 25 2l
77— 7/nZ;
@ is dense and 2/nZAis finite. Hence ¢ is onto and ker ¢ = nZ, so Z/nZ = Z/nZ.
Therefore [Z : nZ] = [Z : nZ] =n = [Z : H],
Z/nZ7 — 7/H

x mod nZ — x mod H
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is an epimorphism, and nZ = H. . .
Therefore the open subgroups of Z are the subgroups nZ with n € N.

Example 11.3.19. Let p € N be a rational prime. Forn € NU {0} := Ng and m < n,
the natural projection

fn,m . Z/an - Z/me

x mod p" —> x mod p”
defines an inverse system. Set

Y :=limZ/p"Z.

n
LetZ, = [ Yooloanp lan €{0,1,..., p— 1}} (see Example 2.3.7) and let
0 2Ly — Y
00 i
Zanp” [ <Zanp">
n=0 n=0

Clearly, ¢ is a monomorphism of groups. If («;);eN, € JV, then the class of ¢; in
Z/ p'Z contains an element x; such that 0 < x; < p* — 1. Put

i—1

n

Xi = § Ain P
n=0

with a;, € {0,1,..., p —1}. Since for i > j, f;i(x;) = x;, it follows that a;, = aj,
forO <n < j. Set

iENO

a, :=a;, for n <i.

Then (i)ien, = (Zi,;lo anp”) = ¢ (X2 panp") and ¢ is a group isomor-
phism.
Let V = [[,e5 Us x ]_[ngs Z/ p"Z be a basic open neighborhood, and S € Ny a

finite set. Let t = sup S. Then if & = (a;);en, € V N, we have

iEN()

aymod p' =ag+aip+---+a-1p,

o ([ Jtas) x [[2/0"2) = @+ arp+ -+ a1p'™") + p'Z,
ses n¢gS

is open in Z,, and ¢~ 1(V NY) is a finite union of such subsets. Thus ¢ is continuous.
Finally, ¢ is closed. Indeed, if T C Z, is closed, then T is compact and so is ¢(T').
Thus ¢(T) is closed in ). We have

Zp = lim Z/p"Z

IIENQ
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algebraically and topologically.

As in Example 11.3.18, the open subgroups of Z, are precisely those of the form
p"Z, with n € Np.

Now let H be a closed subgroup of Z,.

If H # (0), let x € H be such that v, (x) is minimal and put v, (x) = n.

We have Zx = {mx | m € Z} C H. Since H is closed, it follows that Zx = Zpx C
H. We have x = app” with v,(ap) = 0. Hence ao_1 € Zp and p" = ao_lx € Zpx.
Thus p"Z, € H. On the other hand, if y € H \ {0}, we have v,(y) = m > n,
soy = p™by = p"(p" "by) € p"Zy. Consequently H = p"Z,. In particular, the
closed subgroups of Z, are {0} and p"Z, forn € NU {0}.

Example 11.3.20. Let A be an abelian torsion group. Then for any a € A there exists
n € Nsuchthatna =0.LetQ/Z={x =x+Z | x € Q} (wehave Q/Z = {£ € C |
&™ =1 for some m € N}). We define the Pontryagin dual of A as

x(A) = Hom(A, Q/Z).

Then A = | J;; Ai, where the union runs through all finite subgroups A; of A.
We definei < j <= A; 2 A;. Fori < j,let

fl'ji A,‘ —> Aj

be the natural injection
Let

@ji: x(Aj) = x(A)

be given by ¢ji(0) = o o f;j. Then {x(A;), ¢ji, I} is an inverse system. Note that
x(A) = Ai = A;, where Ai denotes the group of characters of A;.
Then yx (A) is isomorphic to liLn x (A;) (see Exercise 11.7.14).

1

11.4 Infinite Galois Theory

Definition 11.4.1. Let £ be any field and k the separable algebraic closure of k. The
Galois group Gal(k/k) =: Gy is called the absolute Galois group of k.

In general, Gy is an infinite group and the usual main theorem of Galois theory
does not hold anymore in the usual sense. The next example explains this difference.

Example 11.4.2. LetIF), be the finite field of p elements, and G = G]F,, = Gal(Fp /Fp).
Let

<p:IFp—>Fp

X —> xP
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be the Frobenius automorphism. Let H = (p) = {¢" | n € Z}. Note that if x € Fg,
then ¢(x) = x? = x, so x € F,. Therefore

We will now see that H # G.
Letn € Nand write n = b, p*»™, where (b,, p) = 1. Let x,,, y, € Z be such that

1= byx, + pr™y,.
Define a,, = b, x,, € Z. If m divides n, then
m = b p"r™ | byp*r™ = n,
SO

bn | by and v,(m) < vp(n).

Now, a, — a,, = byx, — by x,,. Hence by, divides a, — a,, and
Ay — ay = (1 _ pvp(n)yn) _ <1 _ pvp(m)ym) — pvp(m)ym _ pvp(n)yn_
It follows that p?»™ divides a, — a,,, and

a, = a,, mod m whenever m divides n.

Now assume that there exists an integer a such that a, = a mod n for all n. If g is
any prime other than p and @ € N is arbitrary, consider n = ¢®. Then

an, = q%x, = a mod g%.
Thus g% divides « for all «, so a = 0. But
ap,=p—15%0mod p.

This contradiction shows that there does not exist a € Z such that a,, = a mod n for
all n.

Let ¢, = (p“"hppn € Gal(Fpn /Fp). If Fpym C Fpn, then m divides n, so a, =
a,, mod m. Since o(gohppm) = m we have

wl’l'Fpm = (panthm = (pamthm = 1//m

Let v € G be defined as follows. If x € Fp, then x € IFy» for some n, and we put
Y(x) = ¥, (x). Clearly, ¥ is a well-defined element of G. If v € H = (¢), then
Y = ¢ for some a € Z. Then WF,,n = @ |1F,,n = go“hppn. Hence a,, = a mod n for
all n. This contradiction shows that H # G but
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In order to establish the “right” main theorem of Galois theory we must take into
account the topological nature of the Galois group of an arbitrary Galois extension.

Let K/F be an algebraic, normal, and separable extension of fields, that is, a Ga-
lois extension. Let

K={K;|iel}

be the collection of all intermediate subfields K; (F € K; € K) such that K; /F is a
finite Galois extension. Then
K = U K;.

iel

Let G := Gal(K/F) and N; = Gal(K/K;). We have K; = KVi = {a € K |
oa =a Vo e N;}. Then:

(1) Fori € I, N; <« G and G/N; = Gal(K;/F) is a finite group.

(2) Foreveryi, j € I, Ny := N; N N; satisfies that Ny <G and G/ N is a finite group
(in fact, if K; = Ki and K; = KVi, then Ky = KNi KNi = KNiTNJ),

(3) Nier Ni = {1},

We define a topology on G by taking the cosets
oN;, iel,
as a basis of neighborhoods of ¢ for each o € G.

Proposition 11.4.3. For the topology defined above, the multiplication and the inver-
sion maps

GxG5%G G456
(0,9) — o o o !
are continuous.

Proof: The statement follows from the facts that ¢ ~! (o N i) 20N; x YyN; and
i'(c7'N;) =0oN;

forall j € 1. O

Definition 11.4.4. The topology defined above on G is called the Krull topology and

with this topology G becomes a topological group.

Theorem 11.4.5. The Galois group G = Gal(K / F) endowed with the Krull topology
is a profinite group. Moreover, we have

G =1im G/N; = limGal(K; /F)
iel iel
algebraically and topologically, where N; = Gal(K /K;) and K; runs through the set
{Ki | F C K; CK,and K;/F is a finite Galois extension}.
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Proof: For each i € I, denote by G; the group Gal(K;/F), which is isomorphic to
G/N;.
We define a partial order < in I by
i<j <= K;CK; orequivalently, i <j <= N; 2 N;.

Then I is a directed poset since if i, j € I, the composite K; := K; K is a finite
Galois extension of F and K;, K; C K.
Now, ifi < j, let
¢ji: (;j e (;[

o olg;.
We have obtained an inverse system {G;, ¢;;, I} of finite Galois groups. Let

®:G — limG; <[] G
iel iel
o —> (olk;)iel-

Clearly, @ is a group homomorphism whose kernel is ();.; Gi = {1}.
Now consider the following composition:

G 2 1imG; 2 G,
el
S

For each i € I, ¢; o ® is continuous. Indeed, G; is a finite group with the discrete
topology, so if A C G, we have

(¢io®) (W) = Jpio®) ' @=] o ¢ @)

acA acA
= Jlo €Glolk, =a} =] aGal(k/K) = | JaN;.
acA acA acA

which is open. It follows that if § C [ is a finite set, then
q>—1((]_[ A x[] Gi) N lim G/N,-) — @i o ®) ' (4)
ieS i¢S jel ies

is open. Therefore @ is continuous.
Now we have

o000~ (1m) (T ) <( T )]

Jel K;CK;
and {j € I | K; C K;} is finite, so ®(N;) is an open set. Therefore ® is an open map.
Finally, if (07)je; € limGy, let 0 : K — K be such that o («) = o;(«) for

o € K;. Then o is a well-defined element of G and ® (o) = (0i)ics. Thus ® is a
group epimorphism. The result follows. O
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Example 11.4.6. Assume g = p" for some prime number p and some u € N. Let
IF, be the finite field of g elements. For each n, there exists a unique extension Fyn
of Fy, and Fyn /IF, is a cyclic extension. It follows that Fq = U;x’: 1 Fgn and G, :=
Gal(Fyn /F;) = Z/nZ. Therefore

Gal(F, /Fy) = lim Z/nZ = A

n

Example 11.4.7. Let ¢ = p" as in Example 11.4.6 and let £ be any prime number
@=porl #p)LletT, = qun.

Then H, = Gal(qun /Fy) = Z/L. I Ty = U:io T,, then Ty /F, is a Galois
extension and

Gal(T;/F,) = lim Gal(T,,/F,) = lim Z/0"Z = Zy.

Since Ty € F, if Ny = Gal(F,/ T¢), then Z¢ = 7,/ Ny. By Exercise 11.7.16,
| []T|=F, and [] Tv=F,
U#L £ prime
Therefore

7 = Gal(F, /F,) = ]’[ Gal(T;/F,) = ]‘[ Zg.

£ prime £ prime

Example 11.4.8. For each n € N, let ¢, denote a primitive nth root of 1 in C (for
example ¢, = €27/, Let Q(¢,) be the nth cyclotomic number field. Then

Gal(Q(@n)/Q) = Uy, = (Z/nZ)*.

P
Ifn= p(f” cepet L thenUy, =[] Up{x,-.We have

i=1 !
Uy = (1}, Up ZZJ2L, Use = 7J27 x 7J2° %7
fora > 3 and

Upn ZZ)(p— VL x Z/p""'Z

for each odd prime p.

Let Q(6o0) = U,21 Q(&n)- Then
Goo 1= Gal(Q(¢e0)/Q) = lim Gal(Q(8,)/Q).

If Q(¢pe) := ;= Q(¢pn), where p is any prime, then
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Qo) = [] Qp=)  and Q=) N [ Q) = Q.

p prime q#p

Therefore G is isomorphic to [ ] » prime Gal(Q(¢p=)/Q).
Now

Gal(Q(¢)~)/Q) = 1im Gal(Q(¢)/Q) = lim Uy

n n
| zrexz, i p=2,
“\z/p-DZxZ, it p>2.

From Example 11.4.7, we obtain that

Goo = (222 x [ Z/(p — DZ) x A
p>2

Now we are ready to state the main theorem in Galois theory

Theorem 11.4.9 (Fundamental Theorem in Galois Theory). Let K/F be a Galois
extension of fields with Galois group G = Gal(K /F). Set

F(K/F)={L|Lisafieldand F C L C K}

and
S(G) = {H | H is a closed subgroup of G} .
Let
d:F(K/F)— S(G) and V¥ :S(G)— F(K/F)
be defined by
P(L)y={oce€G|o|p=1d} =Gal(K/L)
and

V(H)={e € Kloca =aVo e H =K.

Then ® and ¥V are mutually inverse bijections. Furthermore, we have L1 C Ly if
and only if ®(L1) = ®(L»), and Hy < Hj if and only if V(H1) 2 V(H,).
Finally, ifo € G and L € F(K|F), then

Gal(K/oL) = ®(cL) = o ®(L)o ' = o Gal(K/L)o .

In particular, L € F(K/F) is a normal extension of F if and only if Gal(K /L) is
normal in G, and in this case, Gal(L/F) = %
The open subgroups of G correspond to the finite subextensions of K/ F.
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Proof: 1t is easy to see that ® and W reverse inclusions. By Theorem 11.4.5, ®(L) =
Gal(K /L) is a profinite group, so ®(L) is closed in G. Hence ® (L) € S(G).

Let L € F(K/F). Then Wd(L) = W(Gal(K/L)) = KGUK/L) > [ Suppose
that y € KOUK/L) Then if f(x) = Irr(y, x, L), every root of f(x) is of the form o'y
for some o € Gal(K/L). Thus

f&x)=(x—y" e Llx].

Since K/F is a separable extension, we have n = 1 and y € L. This shows that
Vo(L) =L

Conversely, pick H € S(G). Let L = W(H) = K. Then ®¥(H) =
Gal(K/KH) D H. To see that PV (H) = H, it suffices to show that H is dense
in Gal(K /L) since H is closed.

Let L € N C K be such that N/L is a finite Galois extension, and let T €
Gal(K /L). We wish to show that

T Gal(K/N) N H # @.

If o € H, since 0|y =1d; and N/L is normal, we have o (N) =
Let H = {o|y | 0 € H} < Gal(N/L). Then NI D NGal(N/L) = L.If
a € NPt then oo = o forallc € H. Hence « € K = L, and we have N1 = L.
Using finite Galois theory, we obtain
H; = Gal(N/L).

In particular, there exists 0 € H such that o|y = 7|y, ie.,0 € tGal(K/N) N
H # (. Therefore ®W (H) = H. This shows that ® and W are inverse bijections.
Now consider 0 € G and L € F(K/F). Let ®(L) = H = Gal(K/L) and
®(0L) = H = Gal(K/oL). We have 6 € H & 6(ca) = oaVa € L &
(07 '00)a)=aVae Lo '9oc e He 0 eoHo . Thus HH =0 Ho ™!
When L/F is normal the group homomorphism

G = Gal(K/F) 2 Gal(L/F)
o oL

is onto because every F-automorphism of L can be extended to any algebraic exten-
sion. Since

ker® = {0 € G | 0|, =1d.} = Gal(K/L)

we obtain that
Gal(K/F)
Gal(K/L)’

Finally if H is an open subgroup, H is also closed and of finite index. O

Gal(L/F) =

We have shown that the Galois group of any G extension is a profinite group.
(Theorem 11.4.5). We also know that any finite group G is the Galois group of a
certain Galois extension. Next we show that this is also true for an arbitrary profinite
group, or in other words, that the converse of Theorem 11.4.5 also holds.
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Theorem 11.4.10 (Leptin). Let G be any profinite group. Then there exists a Galois
extension of fields K /| F such that

G = Gal(K /F).

Proof: Consider any field E. Let T be the disjoint union of all the sets G/ N, where N
runs through the collection of all open normal subgroups of G. We have

= J ¢/N= | ( U 9N>.
N<G N<G 0eG/N
[G:N]<oco [G:N]<oco

Foreacht € T, define x; such that {x;};cr = 7 is an algebraically independent set
over E. Let K = E(7) be the field of rational functions with indeterminates in 7 and
coefficients in E. Notice that G acts on 7 in a natural way: if o € G andON € G/N,

then 0 (ON) = (60)N or o (x;) = x4¢, Wheret = ON and ot = (c0)N.
This action induces an action on K in a natural manner: if f € K, then in the
expression of f appear only finitely many variables x; € 7. Then if 0 € G and

f=f(xsy, ..., x,), put
of = fXotys v s Xat,)-
Let F:= K¢ ={w e K |oa=aforallo € G}. Leta € K and
Gy={oceG|loa=ua}

Then G, is a subgroup of G and if the indeterminates that appear in the expression
of a are {x;|t; € G/N;, 1 <i < m}, we have

n
Gy D ﬂN,- = N.
i=1

Since each Nj; is open, N is open too and thus [G : N] < oo. It follows that
Go = Ugeg, 8N isopenand [G : Go] < o0.

The orbit of « is the finite set C(«) = {oa | 0 € G} containing [G : G,] elements
(it is well known that

G/Gy — Cla)
§Go = ga

is a well defined bijection). Let f,(x) = ]—[(-,eG/Ga (x — o).

Clearly, tfy = fy for all T € G and thus f,(x) € F[x]. It follows that « is alge-
braic over F and since the roots of f, are all distinct, K /F is an algebraic separable
extension. Now Irr(«, x, F) divides f, (x) and all the roots of f, (x) belong to K. Thus
K /F is a normal extension. (Furthermore, o« is a conjugate of « for all 0 € G, so
fo(x) = Irr(a, x, F) although we do not need this fact.)

Let H = Gal(K/F) and notice that G € H. Consider the natural injection
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i:G— H.

Let N be an open normal subgroup of H and let KV = {0 € K|oa = « for all
o € N}. By the fundamental theorem of Galois theory (Theorem 11.4.9), KV /F is a
finite Galois extension, say, KN = F(ay,...,ay). Then

m
iT'(\)=GNN2()Gy
j=1

is an open set in G. It follows that i is continuous. Since G is compact, i(G) = G is
compact. Hence G is closed in H. Finally, KH = KGC so by Theorem 11.4.9, H = G.
O

Remark 11.4.11. Artin’s theorem establishes that if G is a finite group of automor-
phisms of a field L, then L/LC is a Galois extension with Galois group G. This theo-
rem is no longer true for a profinite group.

Example 11.4.12. Let G be any infinite profinite group and let F be any field. For each
g € G, consider an indeterminate x, such that {x;},cc is algebraically independent
over F.Let E = F(xg | g € G) be the rational function field on the variables {x,}¢eG
over F.

Then G acts on E naturally: if f(xg,,...,xg,) € E and h € G, then
ho f(Xgys...,Xg,) = f(Xngs---Xng,)-
Ifa e E\F,wehave @ = f(xg,,...,%,). Leth € G\ {gig;' | 1 <i <n).

Then hgy ¢ {g1,...,gn}and h o a # a. Thus EC = F. Clearly E/F is not a Galois
extension.

In any case we establish a light version of Artin’s theorem for profinite groups.

Theorem 11.4.13 (Artin). Let L be any field and G any profinite group of automor-
phisms of L, i.e., G is a subgroup of {o : L — L | o is a field automorphismj}.
Assume that for any « € L, the stabilizer

Gy={ceG|loa=a}
is of finite index in G. Then L/LC is a Galois extension with Galois group G.

Proof: The orbit of « is C(«) = {tra | T € G}, which is a finite set with [G : G4] = n
elements. Let C(a) = {ay,...,a,} = {01, ... ,0pa} and let f(x) =[], (x —
O‘iOl).

Since 7f(x) = f(x) forall Tt € G we have f(x) € K[x], where K = LY. Then
f(x) is a separable polynomial and all the conjugates of « are in L. It follows that
L/K is a Galois extension.

Let H = Gal(L/LG). Then G € H.Leti: G — H be the natural embedding. If
N is a normal subgroup of H, then [H : N] < oo and [LN : K] is a finite extension,
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say LN = K(). Thus i"'(N) = NN G 2 ﬂ’;zl G, Where ai, ... , a, are the
conjugates of . By Exercise 11.7.6, G; is open for all j and so is i~'(N). Therefore

i is a continuous map. Since G is compact, it follows that G is closed in H and K =
LG =LH, By Theorem 11.4.9, we have G = H. |

11.5 Results on Global Class Field Theory

In this section and the next, we will not present the proofs of the stated results. We
present only the main results, since a systematic treatment is beyond the scope of this
book. The principal references are [17, 76, 90, 115].

In what follows K /k is a function field with k = IF,. Let L/K be a finite Galois
extension and S(L/K) = {p | p € Pk, g is totally decomposed in L}. Then p €

SUJK)ﬁmmOmyﬁ<%§)={n(weEmmmen72)

Theorem 11.5.1 (Bauer). For two finite Galois extensions Ly and Ly of K, we have
S(L1/K) € S(L2/K) ifand only if Ly C L.

Proof.

(<) This is immediate.

(=) LetL = LiL,. Then S(L/K) = S(L1/K) and by the Cebotarev density
theorem (Theorem 11.2.20),

§(S(L/K)) =

— =5 (S(L1/K)).

[L:K] [Li:K]

This implies that [L : K] = [L1: K] and since Ly € L = LL,, it follows that
L1 = L{L,, or, equivalently, L, C L. a

Definition 11.5.2. The idele group Jx of K is defined as

Jg = {( Xp,...) € H K} | xp ez‘/‘;foralmostallgo}.
pePxk

The group Jg is provided with the following topology: a basis of open sets consists
of the subsets of the form ]_[pepk Ay, where Ap © K¢ isopenforall p and Ay = 97
for almost all p € Pg ([17, p. 62]). In other words, the topology of Jx is generated
by the open sets

Us=[]4ex[]25
pes PES

where § is a finite setand § C Pg, Ay, C K;‘) is open.
We have K* C Jk under the diagonal embedding and K* is a discrete subgroup
OfJK.
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Definition 11.5.3. We define the idele class group of K as €x = Jg /K*.

Let S be a finite set of prime divisors of K such that for some extension L/K, §
contains all the ramified prime divisors. Let IS be the free abelian group generated by

the prime divisors g ¢ S. In other words, IS = Dg /(S).
L/K

If L/K is an abelian extension with Galois group G and p ¢ S, ( =

) consists
of a unique element. This defines a function

L/K .
Yk () =|——) from Pg\S into G.
12
Then ¥/ can be extended to

Yk IS — G, Yk (01" o) =Yk (D YLk ().
For x € Jg, we write (x)S = 1_[50¢S pUoCe) e IS,

Definition 11.5.4. We say that the reciprocity law holds for an abelian extension L of
K if there exists a homomorphism ¢ : Jg —> Gal(L/K) such that:

(i) ¥ is continuous,
(i) ¥ (K*) =1,
(i) ¥ (x) = Yk ((0)3) for x € J§ = {(xp)MK lxp=1.p ¢ s}, where S
consists of the ramified prime divisors in L/K.

In this case K* C ker v. Therefore i can be viewed as ¢ : €x = Jg/K* —>
Gal(L/K).

Theorem 11.5.5. When there exists a map  satisfying the three conditions of Defini-
tion 11.5.4, it is unique.

Proof. See [17, Chapter 7, Section 4, Proposition 4.1, p. 169]. O

The next theorem describes the global class field theory.
Theorem 11.5.6 (Takagi—Artin).

(i) Every finite abelian extension L /K satisfies the reciprocity law.

(ii) The Artin map Vi k is surjective and its kernel is K* Ny /x (J.), where Nk is
the norm map. Therefore Y jk induces an isomorphism from €g /Ny k€, onto
Gal(L/K).

(iii) (Existence Theorem) For each open subgroup N of finite index in €, there exists
a unique finite abelian extension L /K such that Np k€L = N.

Proof. [17, Chapter 7, Section 5, Theorem 5.1, p. 172]. a
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Remark 11.5.7. Since the reciprocity law holds for any finite extension L/K we have
the map

¢L/K: J — Gal(L/K)

By the universal property of inverse limits, we have the reciprocity law homomor-
phism ¢:

¢: J — Gal (K*/K),
where K% is the maximal abelian extension of K. Thus

k= |J L. Gal(k®/K)=limGal(L/K).
L/K finite L
abelian

where ¢ is the unique homomorphism given by ¢; k. We have ker¢ = K*.

11.6 Results on Local Class Field Theory

Here we consider the completion K, of a congruence function field K at a prime
divisor . Recall that K, is of the form k((r)) for some finite field k. In this section
K will denote a field of the form k((;r)), where & is a finite field.

Theorem 11.6.1. If L/K is a finite abelian extension, there exists a function ¥ /g :
K* — Gal(L/K), Yr/k(a) = (a,L/K), that induces an isomorphism between
K*/Np/k L* and Gal(L/K). O

Definition 11.6.2. The map 7,k of Theorem 11.6.1 is called Artin’s local map.

Theorem 11.6.3 (Existence Theorem). [f H C K* is an open subgroup of finite
index, then there exists a unique abelian extension L/K such that H = Np g L*.
Furthermore, if Ly and Ly are finite extensions of K* we have Ny g L} 2 NL/KLj if
and only if L1 C L. O

11.7 Exercises

Exercise 11.7.1. Let K/ k be a congruence function field, £/ k a finite extension, L =
K. 1f B € Pr and p = P N K, prove that dgz = dpl.

Exercise 11.7.2. Let L/K be a finite Galois extension of congruence function fields.
Let p € Pk be an unramified prime divisor. Show that p splits completely in L/K if

and only if (L/TK) =1
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Exercise 11.7.3. For a finite Galois extension of congruence function fields L/K set
S(L/K) = {p € Pk | psplits completely in L/K}. Prove that if L and L’ are
two finite Galois extensions of a congruence function field K such that S(L/K) and
S(L'/K) differ by only finitely many elements, then L = L’.

Exercise 11.7.4. With the notation of Exercise 11.7.3, prove that the Dirichlet density
of S(L/K) is equal toﬁ.

Exercise 11.7.5. If U is an open subgroup of a profinite group G, show that U is
closed.

Exercise 11.7.6. Let G be a profinite group and let [G : H] < oo. Prove that H is
open and closed in G.

Exercise 11.7.7. Give an example of nonempty topological spaces A; such that
limA; = 0.
<~

1

Exercise 11.7.8. Prove that if A; is a group for all i, and ¢;;: A; — A; is a group
homomorphism, then liin A; #£ 0.

1

Exercise 11.7.9. Let (A;, @i, I) be such that each A; is a nonempty compact Haus-
dorff topological space and ¢ ; is a surjective morphism for each 7, j € I. Prove that

Qj: liLnA[ — Aj

1

is a surjection for all j € I.

Exercise 11.7.10. Let G be any group. Let A := {N | N < G,|G/N| < oo}. If
N, M € A we define

N<M << MCN.
Put Gy := G/N. Define

emn:  Gum — Gy
gmod M +— g mod N.

Then {Gy. @mn, A} is an inverse system. Let

G :=li

8

Gy =limG/N.
N

=1

G is called the completion of G. Show that there exists a canonical group homomor-
phism ¢: G — G and that G is a complete topological space. Show that ¢(G) is
dense in G. Is ¢ necessarily a monomorphism?
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Exercise 11.7.11. Prove that if G is a finite group, then G is also a profinite group that
is isomorphic to its own completion.
Exercise 11.7.12. Let G be any group and p a prime number. Set
A, :={N|N<G,|G/N|=p" <oo,neNU{0}}.

~

Let G, := lim G/N.Isit true that G = [] Gp?

NeA,

P prime

Exercise 11.7.13. If G = Z,, what is Gy for £ a prime number? Consider the cases
£ = pand ¢ # p (see Exercise 11.7.12).

Exercise 11.7.14. In Example 11.3.20 show that x (A) = lim x (A;).

l

Exercise 11.7.15. Prove that x (Q/Z) = 7 and that x (Qp/Zp) = Zp. Also show that
x(Zp) = Qp/Z,y.
Exercise 11.7.16. Let p be a prime number and ¢ = p" for some u € N. Let £ be

another prime number, not necessarily distinct from p, and set Ty = (Jro, Iqu.
Prove that
rn([]7e)=F, ad =] 7
U#L £ prime
(Rx/(anrl))

Exercise 11.7.17. Let G,,: =

———p—— where Ry = F,[x] is the ring of polyno-
q
mials in one variable. For n < m, consider the natural epimorphism

Oman: Gm — Gp.
Then { G, Om.ns N} is an inverse system. Prove that

Goo :=1imG, = {f(x) € Fyllx]]| £(0) = 1},

n

where IF,; [[x]] is the formal power series in one variable over F.

Exercise 11.7.18. Let K be a local field that is complete with respect to a discrete
valuation v whose residue class field is finite. Let ¢ be the ring of integers and p the
maximal ideal. Prove that

4
9 = limd/p"

n
a—> (l_[ a mod p”)
n
where

Pmp:  O/P" —> O/p"
a mod p™ +— a mod p"

is the natural map for m > n. In particular, ¥ is a profinite ring.
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Exercise 11.7.19. With the notation of Exercise 11.7.18, the group of units U of ¥ is
closed in 1%, hence Hausdorff and compact. Furthermore, the subgroups U™ := 14p”
form a basis of neighborhoods of 1 € U. Prove that

U= 1limU/ U™

and conclude that U is a profinite group.

Exercise 11.7.20. Let K /F be any Galois extension of fields with Galois group G =
Gal(K/F).Let Hbea s_ubgroup of G. Prove that K = K where K4 := {ax € K |
ocx =a Vo e A} and H denotes the closure of H.

Exercise 11.7.21. In this exercise, the M;’s could be other structures such as groups
or fields. Let I be a direct poset and (M;);e; a family of A-modules, where A is a
commutative ring with unit. For i < j, let u;;: M; — M be an A-homomorphism
and assume that the set of ;;’s satisfies:

1) wii = Id[\/[i foralli € I.
(ii) pik = Wk o wij wheneveri < j < k.

Then (M;, wij, I) is adirect system. Set C = @@;.; M; and let D be the submodule
of C generated by the elements of the form x; —u;;(x;) withi < j.Let M = C/D. Let
pu: C — M be the projection and let u; = w|pg;. Then (M;, pi, I), i My — M, is
called the direct limit of the system (M;, u;j, I) and we write M := h_r)n M;. We have

l
Wi = pjopijifi < j.

Prove that every element M can be written as u;(x;) for some i € I and some

xX;i € M;.

Exercise 11.7.22. Prove that if 1;(x;) = 0, there exists j > i such that u;;(x;) =0
in M;.
Exercise 11.7.23. Show that the direct limit satisfies the following universal property.
Let P be an A-module such that for each i € I, there exists an A-module homomor-
phism o;: M; — P such that o; = o o u;; whenever i < j. Then there exists a
unique homomorphism «: M — P satisfying o; = o o u; foralli € I.

Conclude that the direct limit is unique up to isomorphism.

Exercise 11.7.24. Let (M;);c; be a family of A-submodules of an A-module such that
for every i, j € I, there exists k € I such that M; + M; C M;. Define i < j to mean
M; € M; and let w;;: M; — M be the natural embedding. Show that

im 1 = 300 = | M

iel iel iel
Exercise 11.7.25. Assume that L/K is a Galois extension, L = | J;.; K;, where [K; :
K] < o0, K;/K is a Galois extension, and L = h_r)n K;. Prove that

iel
Gal(L/K) = Gal(li_r)nK,»/K) = 1<i£1Gal(K,-/K).

iel iel
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Cyclotomic Function Fields

12.1 Introduction

As we have seen, there is a close analogy between algebraic number fields and alge-
braic functions, and this analogy is even more pronounced if we consider the case of
congruence function fields, that is, when the field of constants is finite.

Since the nineteenth century, it is well known that every abelian extension of Q
is contained in a cyclotomic extension. This result is known as the Kronecker—Weber
theorem. In other words, the maximal abelian extension of Q is U?zo: 1 Q(&n), where

Zn = e“™1/" Note that ¢, is a torsion element of Z acting on @*, where Q denotes an
algebraic closure of Q. More precisely, @* is a multiplicative abelian group, that is, a
Z-module. The torsion of Q is M = tor @* ={¢ € @* | ¢" =1, somen € N} =
roots of 1. Therefore Q(M) is the maximal abelian extension of Q.

If we want to describe something similar for function fields, the role of Q must
be played by k(T), where k is a finite field, |k| = g, and T is a variable. The role of
Z will then be played by k[T]. This choice is not canonical since k(7") = k(giﬁi’),
ad —bc # 0,a,b,c,d € k, and the corresponding ring of polynomials is k[‘;YT.iS]
Here the infinite prime is different in each case. In the case of Z, the infinite prime
is canonical and it corresponds to the unique archimedean valuation of Q. Fur-
thermore, for n € N, k(T'/") and k(T") are rational function fields over k¥ and
[K(T'") : k(T)] = n = [k(T) : k(T"™)]. Notice that the case of a rational congru-
ence function field k(7") differs from that of Q in the following sense: If A C Q is a
field, then A = Q and if B is an overfield of Q strictly containing @, then Q is not
isomorphic to B. This is not the case for k(7).

Using the ideas of Carlitz [14], Hayes [61] gave a description for the class field
theory of a rational function field over the finite field £ similar to that of Q. In the rest
of this chapter we describe the work of Carlitz and Hayes.
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12.2 Basic Facts

As usual, let k£ = T, be the finite field of cardinality g. Let K be a rational function
field over F;, K = F,(T), and let Ry = F,[T]. Here K will play the role of Q and
R7 the role of Z. Let K be an algebraic closure of K and set

A =Endp, (K) ={¢: K - K | ¢(a +b) = ¢(a) + ¢(b),
p(aa) =apla)Va €F, andVa,b € K}.
Thus, A is the Fg-algebra (meaning an Fg-module that has a ring structure) consisting

of the IF;-endomorphisms of the abelian additive group of K.
We consider two special elements of A.

Definition 12.2.1.

(i) Let ¢ € A be the Frobenius automorphism of K /Ty, thatis, ¢: K — K is given
by u — uf.

(ii) Denote by ur the element of A that acts as multiplication by T, thatis, ur : K —
K is given by u > Tu.

Given any f(T) € Rr, the substitution T — ¢ + ur in f gives an element of A.
In other words, if f(T) =a,T" +--- 4+ a1T + ag then

fl@+npr)@) =ay(o+pur)" W)+ - +ai(e + nr)w) + ao(u)

for all u € K. Thus we obtain a map & : R — A given by &(T) = ¢ + pur, and
E(f(T)) = f(o + ur). Itis easy to see that £ is a ring homomorphism. Therefore &
provides K with the structure of a R7-module.

Remark 12.2.2. We have
(pour)w) = ¢(Tu) =T,
(14 o)) = ph@?) =T9u.
Therefore ¢ o ur = ;L(% o ¢. In particular, ¢ o w7 # ur o @.

Notation 12.2.3. If u € K and M € Ry we write uM = M(¢ + pur)(u). That is,
Mou=§M)u) = M(p+ pr)(u).

Remark 12.2.4. For a € F,, we have u® = au, so the Ry-action preserves the -
algebra structure of the algebraic closure of K.

Foru € K and M, N € R7, we have

uMAN — M N and WMV = (uM)N.
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Theorem 12.2.5. [f M = agT¢ +aq_ T4 ' + - +a1T + ag with ag # 0, then

i=0

M 4
where |: . ] is a polynomial of Rt of degree (d — i)q"'. Furthermore, we have
i

d
[1(\)/1:| =M, [i\ﬂ =ay and |:]t/[] =a; + Z anh,(i,T)

n=i+1

where each hy (i, T) = Y o< jy<.<jp_i<i Tal +q72 4 +gin=i ;o a polynomial of de-
gree (n —i)q' (here we put jo = 0).

Proof. First we consider the case u™ . We will prove by induction on # that

n—i
n il J2 ... Jn—i i n
W=y > AR F
i=0 \0<j1<p=<..Zjp-i<i

1.e.,

n—1 )
W ="y (i, Tyud " (12.1)
i=0

Forn =1wehave u’ = (¢ + ur)w) = u? + Tu = Tu + u? and

n—1 .
>l Tyt +ud" =y 0, Ty’ +u,
i=0

mon= Y p@ret O _gpd _pioy

0<j1=<<j1=j1-0=0

Thus (12.1) holds for n = 1. Assume that (12.1) holds for a givenn > 1. Forn+1
we have

n+1 n n n n
W =@ = (ur o)) =Tu" + @'

n
I oo gin—i+1 i n+l
=> > Ty 4y

i=0 \0<j1<<jp—i+15i
Thus u”""" = 3" hyp1G, Tud + u?"" and (12.1) holds for u”""". Define
hp(i, T) = 1ifi =nand h,(i, T) = 0ifi > n.
d
Now M =ao+a1T + -+ agT¢ = > a,T", where ag # 0. Hence

n=0
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d n d n d d i
WM = uZimo T =3 g™ =3 (Z anhy (i, T)) ud'.

n=0 i=0 \n=0

Therefore for0 <i <d — 1, we have
M . 4 .
[l. ] =D anhn(i,T) =} anha(i, T)
n=0 n=i

d
=a; + Z anh, (i, T).

n=i+1

Finally,

HE

M
[d] =Zanhn(d, T) =aghsd,T) = aqy. O
n=0

d
anhy(0,T) =) a,T" = M,
n=0

S
< iM=
[}

M
Remark 12.2.6. 1t is easy to see that if [ . j| =0fori <0andi > deg M, then
i

[QMT'BN}zaI:M}—F,B[];]] for o, B ey,

i i

T

Remark 12.2.7. Tt turns out that in spite of the fact that the action u™ is technically
. .. N~ o .
complicated, it is the counterpart in Q to exponentiation.

More precisely, Z acts on @* = @ \ {0} as follows: Forn € Zand u € @* put
nu = u". The cyclotomic number fields correspond to {# € Q* | u" =1} = {g“,‘f}z;(l),
where ¢, = e27i/".

<l
=

Z—Q Rr =F,[T] —— K = F\(T)

In our case Ry acts on K by exponentiation: For M € Rr and u € K, we have
M o u = u™. The cyclotomic function fields will correspond to {x € K | u™ = 0}.

Definition 12.2.8. Let Ay be the set of elements in K corresponding to the M-torsion
of K. Thus

Ay = {u € K | uM =0} is the set of zeros of the polynomial uM inu.

Ay is called the Carlitz—Hayes module of M.
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Now Rr7 is a commutative ring, so if # € Ay and N € Ry, we have
Nou=u" € Ay

since M o uV = @)M = yNM — (uM)N = 0N = (. Therefore we obtain the
following result:

Proposition 12.2.9. A s is an Ry-submodule of K. O

Remark 12.2.10. If a € Fy \ {0}, we have A p; = Aqp since
WM = WMy — )M =0 = M =0,

Proposition 12.2.11. Considered as a polynomial in u over K, uM is a separable
polynomial of degree q¢, where d = deg M. Therefore Ay is a finite set with q¢
elements. Furthermore, Ay is a vector space of dimension d over IF,.

M\ M
Proof. We have uM = Z?:o |: ] i|uq . Thus %(MM) = |:0] = M # 0, where
i

% (uM) is constant with respect to u. It follows that # is a separable polynomial of
degree ¢, and |A | = deg, uM = ¢?. Finally, since Ay is an F,-module, we have
dim]pq Ay =d. a

Remark 12.2.12. Over Q we have A, = (£ € Q" | £" = 1} = W, = IT-, Wi,

where n = p‘l)” --pY", p1, ..., pr are rational primes, and Wy denotes the group of
sth roots of 1. Thus A, is Z-cyclic.

One would think intuitively that the same happens over K, i.e.,
_ r
Ap={uek [uM=0}=[]Apx.
i=1 '

where M = []i_, Pl.o” , Pi,..., P, are irreducible polynomials in Ry, and Ay is
Rr-cyclic. It turns out that this is true.

Proposition 12.2.13. If M = []._, P, then Ay = @)_; A pui as Ry-modules.

Proof. We know that A s is an Rr-module and Ry is a principal ideal domain. Every
torsion R7-module A decomposes as A = € p A(P), where the sum runs over all
prime elements of Ry and A(P) ={a € A| P" oa = 0 for some n € N}.

For A = Ay, we have (see Exercise 12.10.4)

0 ifP&{P,..., P},

AP) = {AP% if P = P;.

Thus Ay = @:‘:1 APf"i~ O
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Proposition 12.2.14. Assume that M = P" for some irreducible polynomial P € Rt
and some positive integer n. Then Ay is a cyclic Rr-module.

Proof. We proceed by induction on n. For n = 1, let £ be a nonzero element of A p.
Define ¢ : R — Ap givenby N — £~ . Notice that ¢ # 0 since ¢ (1) = gel=¢ +£
0. On the other hand, ¢ (P) = £¥ = 0,50 P € ker¢ and (P) < ker ¢. Now since Rt
is a principal ideal domain and P is a nonzero irreducible polynomial, it follows that
(P) is a maximal ideal. Hence

(P) Sker¢p & Ry and (P) =ker¢.

(We might also proceed as follows: If N ¢ (P), we have (P, N) = 1.Let A, B € Rt
be such that 1 = AP + BN.If ¢(N) = 0 = £V we have & = &l = gPATNE —
(EPYA + (£N)B = 04 0 = 0.) Returning to our proof, we obtain

RT/(P) = RT/kCI‘d) = ¢(RT).

On the other hand, we have |¢p(R7)| = |R7/(P)| = qd = |Ap|. Hence ¢ (R7) = Ap
and A p is isomorphic to Rr/(P). Finally, for any S € Rr, Rr/(S) is a cyclic Rr-
module (because 1 is a generator). Thus A p is Ry-cyclic (or simply Ap = ¢(R7) =
{ENIN € R} = (€)).

Now for any n € N we consider

0 . AP'H’I — APn

ur—)uP.

Then 6 is an R7-homomorphism and ker6 = Ap.
It follows that A pn+1 /A p is isomorphic to 6 (A pn+1) and

d(n+1)
qd

q

0(A pus)| = | A pusi /Ap| = =q" = |Apn].
Therefore 6 is onto and A put1 /Ap = Apn.

Let A € Apn+1 be such that AE=00) generates A pn. We will prove that A
generates A pa+i.

Letu € Apn+1. Then 6(u) = uf =64 = AP4 for some A € Ry. It follows
that u — A% € Ap = kerf. Since #(AP") = AP""" = 0, A”" belongs to A p. Now
AP generates A pn, SO ()LP)PWI =P # 0. It follows from the case n = 1 (or the
fact that A p is a 1-dimensional Ry /(P)-vector space) that A "isa generator of Ap.
Therefore there exists B € Ry such that u — A4 = A"" B sou = AATP"B ¢ ()). Thus
A generates A pn+1 as an Rr-module and A p.+1 is a cyclic R7-module. m|

Corollary 12.2.15. Let P be an irreducible polynomial in Rt. Then:

(i) A p is a one-dimensional Rt /(P)-vector space whose scalar product is given by
uN*TP = yN for eachu € Ap and N € Rr.
(ii) For n € N, we have Apn C A pnt1 and A pni1 /Ap = Apn.
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(iii) Given n € N, if A € Apn+1 is such that AP generates A pn, then )\ generates
A pny1. Conversely, if A generates A pn+1, then AP generates A pn. O

Corollary 12.2.16. Let M be a nonzero element of Rt and let M = ocPI" Lo p

be its factorization in Rt in terms of irreducible monic polynomials. For each i =
1,...,r, let A; be a generator of Apn. Then Ay is a cyclic Ry-module and M +
-+ Ay is a generator of A ;. t

Proof. We have Ay = @l LA pli - Each A pei is a cyclic Rr—module and A pei is the
P;th primary component of A py. "The result follows O

A more precise version of Corollary 12.2.16 is the following.

Theorem 12.2.17. For each M € Rt \ {0}, the Rr-module A p; is canonically isomor-
phic to Rt /(M). In particular, Ay is a cyclic R-module.

Proof. If 1 is a generator of A 7, define §: Ry — Ay given by A > A4. Then 6 is an
epimorphism of Rr-modules and Ay = R7/ker0, where ker6 = {A € Ry | 2=
0} = ann(A) = ann(A y).

Clearly, M € ker6 since AM = 0 (A € Ay). Thus (M) C ker6. On the other
hand, |Ay| = |R7/M| = g%, where d = deg M. Therefore ker = (M) and Ay is
isomorphic to Rt /(M). |

Definition 12.2.18. For M € R7 \ {0} we define ®(M) as the order of the group
of units of Rr/(M), that is, ®(M) = |(Rr/(M))*|. Equivalently ®(M) =
{N € Rr|(N, M) =1,deg N < deg M}|.

Remark 12.2.19. ® is the analogue of the Euler function ¢ on N, defined for n € N by
¢(n) =|{m e N|(m,n) =1,m < n}|.

Proposition 12.2.20. For M, N € Rr, we have:
@A) If (M, N) =1, then ®(MN) = ©(M)D(N).
(ii) If P € Ry is irreducible, then ®(P) = qd — 1, whered = deg P.
(iii) If P € Ry is irreducible, then
®(P") = [Rp/(P"")|®(P) = ¢"! — "V,
where d = deg P.

Proof. Exercise 12.10.5. |
Proposition 12.2.21. The Rr-cyclic module A py contains precisely ® (M) generators.

In fact, if ) is any generator of Ay, then for A € Ry, A is a generator if and only if
(A, M) =1.
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Proof. Let A be a generator of Ayy. If (A, M) = 1,let& € Ap;andlet B € Ry be such
that £ = A8. Let S, U € Ry be such that SA+ UM = 1. Then B = SAB + UMB.
It follows that

é: — )\‘B — )\‘SAB-"-UMB — )\‘SAB + ()\M)UB — ()\,A)SB +O — ()\‘A)SB.

Thus A4 is a generator of A .

Conversely, if 1isa generator of Ay, then there exists B € Ry such that 2AB =
A. Hence A4B~1 = 0. Since A is a generator it follows that if A = 0 for some
C € Ry, then M divides C. Therefore M divides AB — 1. Thus AB = 1 mod M and
(A, M) =1. |

12.3 Cyclotomic Function Fields

Let R =Fy[T]and K = F,(T) as before.

Definition 12.3.1. The pole divisor p of T in K, defined by (T)x = %, is called
the infinite prime in K .

Definition 12.3.2. Let M € Ry \{0}. The field K (A ») generated over K by adjoining
Ay = {u € K | uM = 0} is called the cyclotomic function field determined by M
over K.

Proposition 12.3.3. K (A ) /K is a Galois extension.

Proof. Since Ay = Rr/(M), which is a cyclic R7-module generated by A, we have
ART = Apr = {04 A € Ry}, 50 K(Apy) = K()). Indeed, any element & € Ay is of
the form A4 for some A € Ry and

£=A(ur +9)(A) € KA, {T52) = K().

Finally, since K (A ) is the decomposition field of the separable polynomial F(u) =
uM e K[ul, it follows that K(Apm)/K is a Galois extension. O

Remark 12.3.4. Let M(T) = agT? + --- 4+ a1 T + ag. Then
M - M
uMzaduqd+[d l]u"d 1 +-~-+[]}4"+MMGRT[M],
uM = ay [uqd +--- —i—a;lMu]

with uqd +--- 4 ad_lM u € Rr[u] and the leading coefficient is 1. It follows that the
elements of A s are integral over Rr.

Definition 12.3.5. We will denote the Galois group of K (Ap)/K by Gy, ie., Gy =
Gal (K(Apm)/K).
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Proposition 12.3.6. The action of G py over K (A pr) commutes with the action of Rt .
In other words, ifu € K(Ay), 0 € Gy, and N € Ry, then owN) =o@)N.

Proof. Let u € K(Ay). First note that u¥ € K (Ayy) since if u = > i aiu; with
a; € K and u; € Ay, we have ulV = Z?:l al.NulN, where aiN € K and ulN € Ay.

Therefore u™¥ € K (A 7). Now

N deg N N 4 deg N N ; N
o(u')=o0 Z ; ufi :Z . o) =o)". ]

i=0 i=0

When the fields under consideration are number fields, if Q(¢&,)/Q is the cyclo-
tomic extension, we have Gal (Q(¢,)/Q) = U, = (Z/nZ)*. The analogue for func-
tion fields would be

Gal(K (Am)/K) = (RT/(M)* = Gy.
We will see that this is indeed the case.

Proposition 12.3.7. The group Gy is a subgroup of (Rr/(M))*. In particular,
K(Apm)/K is an abelian extension and

[K(Am) : K1 < (M) = |(Rr/(M))*|.

Proof. Since K (A p) = K(X)), an element o of Gy is determined by its action on A.
Now, oA is a conjugate of A, so 0 (A) € Apy and o(A) = A4 for some A € Ry. We
will show that oA must be a generator of A py.

If £ € Ay, then 071 (&) € Ay, s0 071 (€) = A8 for some B € Rr. Hence
£ = (o))B. Therefore o) is a generator of Ay and it follows that (A, M) = 1.
Thus A mod M € (Ry/(M))*. To see that A does not depend on A, let 1| be another
generator of Ay, say A = B for some B € Ry. Then

orm =B =a)B =218 = W B)4 =14

Now, if o(A) = A4 = 241, we have 2441 = 0. Thus A — A; € (M) and A =
A1 mod M.

Define 6 : Gy — (Rr/(M))* given by o — A mod M where o1 = A4,

If ¥ € Gy, we have W(1) = A8 and (W o 0)(A) = W(A4) = A48, Hence
(Vo) = AB mod M = 0(V¥)60 (o). Therefore 0 is a group homomorphism.

Finally, if 6(0) = 1 mod M, we have ¢ € kerf and o\ = Al =2, s00 =1Id and
6 is a monomorphism. It follows that

Gum S (Rr/(M))* and |Gum|=[K(Am): K] < |(Rr/(M)*| = ©(M).

Since (R7/(M))* is abelian, Gy is abelian too and the proof is complete. O
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Definition 12.3.8. Let S € Ry be a monic polynomial. We define the S-cyclotomic
polynomial or the cyclotomic polynomial with respect to S by

vy =[] @-9.
(B,S)=1
deg B<deg S

where Ag is a generator of Ag. We have Wg(u) € K(Ag)[u].
Proposition 12.3.9. For any monic polynomial S € Rt we have Vs(u) € K[u].

Proof. Let 0 € Gsg = Gal(K(As)/K). Then o (Ag) = 24, with (A, S) = 1. There-
fore o (Ws(u)) = [1 B,s=1 (u — 1£F). Now (A, S) = 1 and (B, S) = 1 imply
deg B<deg S

(AB,S) = 1.If AB = QS + B with deg B, < deg$, then A§% = x?l. Similarly,
if AB= Q1S+ By and AC = 0>S5 + C; withdeg B) < deg S and degC; < deg S,
then AB = AC mod S implies By = C; mod S.

Therefore [T (5,5=1 (u — A28) =T] (8,.5=1 @ — xf;l) = Wg(u). It follows

deg B<deg S deg B <deg S

that o (Ws(u)) = Wg(u) for all o € Gg, and hence Ws(u) € K[u]. O

Remark 12.3.10. We have deg Ws(u) = ®(S). For R, S € Rr we choose generators
ARs As, Ags of Ag, Ag, and Agg such that AR . = Ag and 13, = Ag.

We wish to prove that we may choose such generators for all M € Rry. More
precisely:

Proposition 12.3.11. There exists a system {Ap} mcr, such that dy generates Ay
M monic

as an Rr-module and for all N, M € Rt such that N divides M, we have )»f\v,l =
AM/N-

Proof. We call a subset I of Ry admissible if for all A € I, A is a monic polynomial
and there exists {Aa}aer C K such that forall A € I, A4 generates A 4 and if B is an
element of / that divides A, we have kﬁ = AA/B.

Let A = {I|I is admissible}. Then 4 is nonempty since I = {P, 1} € A, where P
is a monic irreducible polynomial (here we choose A p to be any generator of A p and
A1 =0).

We define a relation < in A as follows: I < Jif I C Jandforall Ae I, g =
Aa.y. Clearly < is a partial order in A and if {I};c 4 is a chainin A, T = Urealis
an upper bound of {/};c 4.

Let Ip be a maximal element of A. If Ip does not contain all monic polynomials of
Rrt, there exists a monic polynomial M in Rt \ Io.

Let M = P/ --- P/". Note that if N is monic and M divides N, then N & Iy
since otherwise, N € Iy and Ay := A%/ M would satisfy all the conditions.
Let M € Rr be a monic polynomial of minimal degree such that M ¢ Iy. Then

PP ... PP e Iy forall Y_, Bideg P < Y i, o deg Pi. Let H; = M & Ip, and let
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A, be the generator of Ap,. Since {P; }[’.:1 are relatively prime, there exist elements
Vi € Ry satisfying 1 = Y/_, yi Pi. Let Aag := A +--- 4+ A} . Then

P Y1 Pi Yi Pi vr Pi
Mg =AU AT A and i Pi= 1= yiP;.
J#i
Hence
) ) Y1 X 3 Yi—1
ap= =)+ (i =)

P, Pigy )Vt P _ P\
+<’\Hi+1"\m+> +~-~+(AHr—AHi>.

. . P; P;
Now for all j # i, we have A ; = AH;/P; = AM/P;P; = MH; /P, =)LHi.

Therefore Af,} = Ag, and Ay satisfies Ai,, = Apyys forall § € Ry suchthat § | M.
In particular, I; = Ip U {M} is an element of A that is strictly larger than Io. This
contradicts the maximality of /o and proves the proposition. O

Remark 12.3.12. Since Ay is isomorphic to Ry /(M) we may take Ay, = 1 mod M
for all M. However, Proposition 12.3.11 provides a system that does not depend on
the identification Ay = Ry /(M).

Proposition 12.3.13. We have

(1) If N and M are two distinct monic polynomials in R, then (Wy (1),
Wpr(u)) = 1.
) uM = [T mm n (), where M is a monic polynomial in Rr.

N monic
3) Uy w) =TT nm @) swhere
N monic
1 if D=1,
(=D if D= P, --- Ps, wherethe Py, P>, ..., P are
wb) = distinct irreducible monic polynomials of Rr,
0 otherwise,

and M is a monic polynomial.
Proof. Exercises 12.10.6, 12.10.8, and 12.10.12. m]
Proposition 12.3.14. Let P € Rt be a monic irreducible polynomial of degree d and
let M = P" withn € N. Then:

(1) No divisor in K other than p~, and p is ramified in K(Ap)/K. Here (P)g =
p
Ldeg P

Poo
(2) The ramification index of p in K(Apy)/K is

e(p) = (M) = q"" —q/""V = [K(Am) : K].
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Proof. Let ¥y be the integral closure of Ry in K(Ays). Since Ry is a Dedekind
domain, then ¥, is a Dedekind domain (Theorem 5.7.7). The ramified primes in
K (A ) /K other than the infinite prime po, are those appearing in the discriminant

99y /Ry -
Oy —— K(Ap)
R —K

Let X be a generator of Ays. Then Ry[A] C Up. Set g(u) = Irr(h,u, K) €
K[u]. Let f(u) = uM . Since f () = 0, there exists #(u) € K[u] such that f(u) =
h(u)g(u). Therefore

M = f'(u) = h'(u)g(u) + h(u)g' (u). (12.2)
Substituting # by A in (12.2) we obtain
M= f'O) =h'(0)g) +h()g' M) = h(M)g' ().

It follows that (g'(A))g,, | (M)p,, = P"Opm. By Theorem 5.7.21, the different
Dy /Ry satisfies

Doy/Rr = gcd{(F'(a)) | ais integral, K (Ay) = K (), F(u) = Irr(a, u, K)}.
Therefore Dy, /r; | (€' M) k(ay) = P" = (p1---pn)®", where
POy = (p1---pn)’. (12.3)

It follows that the only possible ramified prime divisors in K (A )/ K are p and poo.
This proves (1).
Next, we calculate e = ek (a,,)/k (pi|P). Let d = deg P. We have

n n—1 d P n—1 i
ul" =@t HF ZZI:.:|(MP )

l

i=0
d
n— P n— i n—
— P 1( |: i|(MP ')q—l)zup lt(u)
i=o LU
with #(#) € Rr[u] and
P d
u P Pnfl i_l
=g =R
=

Therefore t (@) =0 <= « € Apr \ Apn-1,o0rin other words, (o) =0 < «ais
generator of A p». Recall that A pn /A pa—1 = Ap (see Exercise 12.10.3).
Therefore
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d )
t(u) = 1_[ (u—14 = I:g:| + Z [f](u’ml)q’l
i=1

(A, M)=1
d
P n—1_ i
=P+ Pya L
[ e
i=1
For u = 0, we have

t(0) =+ ]—[ A =P (12.4)
(A,M)=1

Now by Theorem 12.2.5, u# = u(F (u)) for some F (u) € Ry[u].
Thus A4 = AF () and A divides A4 in 9. If (A, M) = 1, then A4 is a generator
and by symmetry we obtain A4 | A, so

A= BarA (12.5)

with B4 € ¥7,.
Using Equation (12.4) we obtain £P = ,BOA(D(M) for some By € 19;1. Hence (12.3)

yields (p1 -+ pn) = (P)g,, = WP Now vy, (A) = 1,50 e = vp, ((p1...pn)°) =
vp, (APM)) > & (M). Therefore e > & (M) = r(RT/(M))*| > [K(Ay): K] >e. It
follows that

e=®d(M)=[K(Ay): K]=q" —q""".

This proves (2) and the proposition. O

Remark 12.3.15. We have

uPn HN\pn Wy (1)
t(u) = =
u

=¥pw= [] @-2".

pr—1 HN‘Pn—] Wy (1) (AM)=1

Thus the polynomial () found in the proof of Proposition 12.3.14 is nothing other
than the P"-cyclotomic polynomial.

Theorem 12.3.16. Let M € Rt \ {0} be a monic polynomial. Then

(D) t(u) = Yy (u) = Irr(X, u, K). In particular, Wy (u) is an irreducible polynomial.

(2) Gy = Gal(K (Ap)/K) = (Rp/(M))*.

() [K(Am) : K] = (M).

@ If M = P" for some irreducible polynomial P, then y is totally ramified in
K(Apm)/K, where (P)g = pd%

Proof. If M = P", where P is an irreducible polynomial, we have

[K(Am) : K1= (M) = |(Rr/(M))*| = |G yl.
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By Proposition 12.3.7, G is a subset of (Ry/(M))*. Since both sets have the same
order, they must be isomorphic. Further, P is totally ramified since e = ®(M) =
[K(Ap) : K]. From the latter we obtain (4).

Now let M = P% ... P¥ where P;, ..., P. are distinct irreducible polynomials
in Ry. Then Ay = P)_, APiai.

If we prove that [K(Ay) : K] = ®(M) we will be able to deduce that Gy =
(Rt /(M))* since Gp; € (R7/(M))* and both sets have the same order @ (M). Then
(2) and (3) will follow, and then (1) will follow too from the facts that z(A) = O,
deg(t(u)) = ®(u) = deglrr(A, u, K), and Irr(A, u, K) divides ¢ (u), so Wy (u) =
t(u) = Irr(X, u, K). To prove that [K (A ) : K] = ® (M), notice that K(Apa), ...,

1
K (A per) are pairwise linearly disjoint because each p; is totally ramified in K (A pei )/ K
and unramified in ]_[j# K(Apei)/K.

It follows that

r r
[K(AM):K]:H[K(APiai):K] = [Tee = o). 0
i=1 i=1
Corollary 12.3.17. For any M € Rt \ {0}, the extension K (Ap)/K is geometric, that
is, the field of constants of K (A pp) is the same as that of K .

Proof. Let M = Pf[ U...P* where P, ..., P, are distinct irreducible polynomials
of Ry. Then

K(Ay) = ]L[ K (APl_a,-) .
i=1

K(Am)

3 K (A po)

K
Foreachi =1,...,r,let E; = K(AM/P_a,-). Then Gal (K (A )/ E;) is isomor-

phic to Gal(K (A pli /K)). Let L be the maximal unramified extension of K contained
in K(Ay), K C l: C K(Ap). Since K (A )/ E; is totally ramified at the prime divi-
sors above p; and E; L/E; is unramified, it follows that E; L = E;. Thus L C E; for
1<i<r.

Therefore K € L C ﬂfz 1 Ei = K, and L = K. In particular, it follows that every
extension S/K such that K ; S € K (A ) is ramified. If Fys is the field of constants
of K(Apy) and F is the field of constants of K, then F (T) = K C Fgs(T) C
K (Apm) and Fys (T)/F4(T) is unramified (Theorem 5.2.32). Thus Fys (T) = F,(T)
and by Proposition 2.1.6,

1 =[Fygs(T) : Fo(T)] = [Fgs : Fg] =s. O
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Proposition 12.3.18. Let P be a monic irreducible polynomial in Rt and M = P"
for some n > 1. Then

n
uP

Wpn(u) = T

is an Eisenstein polynomial over Rt at P. In other words, if

Wpn(u) = u? + ad_lud_l

+:--+ap € Rrlu],
then P divides a; for0 <i <d — 1, and P2 does not divide agp.
Proof. We have Wpn (1) = H(A,P"):l (u — k’;‘)n), and P is totally ramified.
Let p®™) = Py We have Wpn (0) = P = %[5 pny—; A It follows that
vp(P) = (M) =Y 1A =" Va1 (1)
A A
= vp(A) = (M)vy(h).
A

Thus vp(A4) = vp(A) = 1, s0
Wpn () = u®P — fopmy 1 (A u®EOT 4
+ A () e+ 0P g (644))

where the ﬁ({AA} 4) are the elementary symmetric polynomials in {44 and
fo(rA}4) = Wpn(0) = P. Hence
Wpn () = u®™ + Bony-1u® M - Bru+ Bo € Rrlul,
P divides B; for1 <i < ®(M) — 1, o = £P, and Bom) = 1. |
As a corollary we recover the irreducibility of W pn (u).
Corollary 12.3.19. The polynomial ¥V pn (1) € Rt is irreducible.

Proof. The statement is an application of Eisenstein’s criterion. O

12.4 Arithmetic of Cyclotomic Function Fields

In the case of number fields, assume that Q(&,)/Q is a cyclotomic extension, where
n € N is such that n £ 2 mod 4. Then a rational prime p is ramified in Q(¢,)/Q if
and only if p divides n and the infinite prime is ramified. Furthermore, if p is a finite
prime not dividing 7, then

POQ,) = Pi - P,
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where [Dq,)/Bi : Z/pl = f, fg = ¢(n),and f = o(p mod n), that is
Jf =min{m € N| p” =1 mod n}.

We will see that the same statements hold in the function field case. The key result
is that p, is tamely ramified in K(Aps)/K. We need two general facts: Newton’s
method (Section 12.4.1) and Abhyankar’s lemma (Section 12.4.2).

12.4.1 Newton Polygons

Let F be a complete field with respect to a discrete valuation v with place p. Let 2 be
an algebraic closure of F and

fx)=ap+ajx +---+a,x" € F[x], where apa, #0.

We associate to each term of f(x) a pointin R x (R U {oo}) as follows:

If g;x! # 0, i.e., if a; # 0, we take the point (7, v(«;)).

If a;x' =0, i.e., if q; = 0, we take the formal point (i, 00) = (i, v(a;)) (Which is
the same as not taking any point of R x R).

0, v(ap))e (n, v(an))

(L) e

(. v(aj))

(i, v(ai))
Consider the bottom convex cover of the set
{G,v@@)]i =0,1,...,n,la; #0}.
Definition 12.4.1. This cover is called a Newton polygon.
More precisely, the set of vertices of this bottom cover is
{0 =0, v(a0)), (i1, v(@i,)), ..., (im = n,v(an)},

where ag, a;,, ... , a, satisfy the following. First, consider S = {i > 0 | a; # 0} and
let i} be maximum such that
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v(aiy) — vlao) _ min { v(a;) — v(ap) e S}

ir—0 j—0
(0, v(ao))e
(i, v(ay))
././‘(iL v(ai,))
@", v(ai))
(i1, v(a;,))

Now let i be maximum such that

U(aiz) - U((lil) — min { v(aj) - U(Clil) | ] cs ] . l[}
ip — iy Jj—aj '

and so on.

Theorem 12.4.2. Let [(r, v(ay)), (s, v(as))] be any segment of the Newton polygon
corresponding to f(x). Let w = —m be its slope. Then f(x) has exactly s —r
roots i, ... , 0s_, satisfying v(ey) = - - - = v(otg—r) = m.

Furthermore, define f,(x) = ]_[:;I(x — ;). Then f,(x) € F[x] and fn(x)

divides f(x).

Proof Let f(x) =a; ' f(x) = a; 'apx" +a;  ap_1x" ' + -+ alayx +a;  ap.
Then

v(gia,; ') —v(aja,")  v(a) —v(a))

i— i—j

and the Newton polygon corresponding to g(x) is obtained from the one corresponding
to f(x) by a translation of —v(a,) in the y-direction, as follows:

(i, v(aiay ")) = (i, v(@) — v(an)) = (i, v(a) — O, v(ay)).

Moreover, the roots of g(x) and f(x) are the same. Thus we may assume that a,, = 1.
Letog, ..., a, € Q2 be the roots of f(x). We partition the set of «;’s according to the
value v(w;), obtaining

v(ay) = -+ =v(ag) = my,
U(Olsl+1) = = U(O{sz) = my,
V(g 41) =+ = v(0,, ) = My,
withm) <mp < -+ <my < myyq.

‘We have
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n
f@ =[]6—a) =x"—hi(@.....ox" " +holer, ... an)x" 2=
i=1

+ (=" hy (e, o) x + (=D R (a, - ),

where i j(aq, ..., 0) = Zi1<_._<ij Ay, ooty = (=D/ay—j, 1 < j <n.

Also v(a,) = v(l) =0.
ForO <u <sjy1 —sj,wehaven —s; >n—s; —u>n—=sj;11,50

U(an—Sj—Ll) = U(th+u(ala ce,0p)) =V Z iy - ‘aisj+u
i1<“‘<i5j+u

v

Comin {v(ey, ..o ,))
’]s"'als_/Jru J

= v(0] * o Qg Oy 1+ - Oy Oy ] - Os;+10s;42 -~ 'as_/+u)
=symy+ (2 —spma+ -+ (s; —sj—)mj+um;.  (12.6)

For a,— sjtl there is a single term with minimum valuation such that

U(an—s_,-+1) = U( Z o, “.aisj-pl) = v(al C Ol ...asj+1 “'asj-#l)

i1<'"<i5‘j+|

=symy+ (2 —spmo+ -+ (Sj41 — ;)M j11. (12.7)
We will deduce from (12.6) and (12.7) that the vertices of the Newton polygon of f(x)
are
(0, v(ao)) = (0, v(an—s,,,))
= (n—spy1,51my + (52 —spma + -+ (Se41 — S)Mpy1),
(n =51, v(an—s,)) = (n = s¢, sumy + (52 — sp)ma + -+ + (¢ — s-1)my),

(n — 52, symy + (52 — s1)my),
(n —s1, s1m1),
(n,0).

Now the slope between (n — 511, v(an,sj+l)) and (n —s;, v(a, —s;)) is given by

U(an—sj-_*_]) - U(an—sj-)
(n—sj41) — (n—s;)
[misi+ (s2 —sDma+ -+ (sjp1 — sjmjp1] — -

—(sj41 —5;)
o= [musi+ (2 —sDma + -+ (55 — sj-1)my |
—(sj+1 —55)
Gl — s
Jj+1 J
=————mjy = —Mmj].

Sj+1 —5j
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Thus the slope is 511 — s, which is the number of roots of f with valuation m .
This proves the first part.

For the second part, we proceed by induction on 7 to show that f,, (x) = [[;_} (x —
a;) € F[x]. Clearly, f, (x) divides f(x).

Forn =1, fo(x) = x + ap and there is nothing to prove.

For n = 2, we consider two cases. If f(x) is irreducible, assume that E is the
decomposition field of f(x); then the other root of f(x) is either « (if E/F is insepa-
rable) or o, where Gal(E/F) = {1, o}. In any case we obtain

v(ioa) =vp(oa) = vg_lp(a) = vp(a) = v(a)

because F is a complete field. Therefore all the roots have the same valuation and the
Newton polygon is a segment.

Suppose that f(x) is reducible. If both roots have the same valuation, there is
nothing to prove and if the two roots have different valuation, we have f(x) = (x —
a)(x — b),witha, b € F, so we are done.

Now assume that f,,,(x) € F[x] and that f(x) is any polynomial of degree less
than n. For n, let

Sj+1 t
Sy =[] G—w). j=0,1,....¢ (with s59=0), fx)=]] .
i=sj+1 j=0

Let g(x) = Irr(({q(—xx)F) Then g(x) € F[x]. Since every conjugate of «; has the same
Jsog ¥)
—m(a(l”x’F). Then g(x) =
go(x) ]_[;Zl Js;(x). Since deg g(x) < deg f(x) = n, we use induction on deg g(x) to
conclude that fsj (x) € FlxL,for j=1,...,t,and go(x) = g5, (x) € F[x].
Therefore fy,(x) = go(x) Irr(ay, x, F) € F[x]. |

valuation, it follows that Irr(cey, x, F) | fy,(x). Let go(x) =

12.4.2 Abhyankar’s Lemma

The other ingredient needed to determine the ramification type of po, in K (Aps)/K is
Abhyankar’s lemma. First we establish a result on finite groups.

Proposition 12.4.3. Let G be a finite group and let U be a normal subgroup of G of
order p", where p a rational prime or p = 1. Let G/U be a cyclic group of order
relatively prime to p.

Assume that Hy is a subgroup of G whose order is a multiple of p". Then for any
subgroup Hy of G we have |Hy N Hy| = (|Hy|, |H2|).

Proof. Since |Hy N Hy| divides |H;| fori = 1, 2, it follows that |H; N Ha| | (|H1|, |H2]).-
Put |H | = a1 p" and |H| = ap p™ with (a1, p) = (a2, p) = 1, and let d = (ay, az).
Then (|Hy|, |Hz2|) = dp™ with (d, p) = 1. In particular, |H; N Ha| < dp™.

By hypothesis, the normal subgroup U is the p-Sylow subgroup of G (or U =
{e}). Thus U contains any subgroup of G of order p™. Therefore, if W is a p-Sylow
subgroup of Hy, of order p™, then W C H, and W C U C H;. It follows that



434 12 Cyclotomic Function Fields

WCH NH, and p" ||H N Hyl. (12.8)
Letm: G — G/ U be the canonical epimorphism.
We have 7 (H;) = % = Ugiqi.Hence | (H;)| = % =gq; fori =1,2.

Since G/U is a cyclic group, w(Hj) N w(H>) is a cyclic group of order d =
(a1, a2). In particular, there exists x € H{NH; such that d divides o(x). Since (d, p)
1 it follows by (12.8) that

dp™ | |HHNHy| and |H| N Hy| =dp™ = (|Hil, |Ha). O

Theorem 12.4.4 (Abhyankar’s Lemma). Ler L/K be a finite separable extension of
function fields. Suppose that L = K1 K> with K C K; C L. Let p be a prime divisor
of K and B a prime divisor in L above p. Let B; = PN K; fori = 1,2. If at least
one of the extensions K; /K, i = 1, 2, is tamely ramified at p, then

er/k (BIp) = [ex,/k (B11p), ek, x (PBalp)] .

Proof. Let L be the Galois closure of L /K and let 5 be a prime divisor in L such that
Bl =P.

B L

|

|

|

B L =K K,

pU K B2 K>
&
p K

Let G = I (®B|p) and let H; = I (B|'B;), i = 1, 2, be the inertia groups. Define

char K ifchar K #0,
1 if char K = 0.

We may assume without loss of generality that K| /K is tamely ramified at 3;. Then
(e(Bilp), p) = 1.

Let U be a p-Sylow subgroup of G. Then U corresponds to the wild ramification
of pin L/K. Thus U is the first ramification group (Corollary 5.9.10) and U < G
(Theorem 5.9.4). Set |U| = p”. Since the ramification in 3 |p is tame, it follows by
Corollary 5.9.17 that U € H; and G/ U is a cyclic group.

Therefore H; and H, satisfy the conditions of Proposition 12.4.3, and we have
|Hy N Hy| = (IHyl, |H2l). Now since L = K;Kp, it follows that Gal(L/L) =
Gal(L/K1)NGal(L/K>) and I (B|'B) = I (B|'B1) N1 (B|P2) = H1 N Ha. Therefore
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e(BI'B) = [1(BIP)| = |H1 N Hy| = (|H|, |H2|)
= (e(BI'B1), e(BIB2))
= (e(BIP)e(BIP1), e(BIP)e(PIP2))
= e(BIP) (e(PBIP1), e(PIP2)).

Hence (e(B|B1), e(PIP2)) = 1. We have

e(Blp) = e(BIPe(B1lp) = e(PIP2)e(P2lp),

on the other hand. If a,b,x,y € Z \ {0} satisfy ax = by and (x,y) = 1, then
[a, b] = ax = by (see Exercise 12.10.16).
Therefore e(Blp) = [(e(P1lp), e(Balp)]. O

12.4.3 Ramification at poo

The main objective of this subsection is to prove that for any M € Rr \ {0}, with
Ry =TF4[T], the infinite prime of K = F,(T), where (T)x = % is tamely ramified
in K(Aym)/K.

Proposition 12.4.5. Assume M = P" € Ry, where P is a monic irreducible polyno-
mial of degree d. Then P, decomposes into ®(M)/(q — 1) prime divisors in K (A pp).
The ramification index of po in K(Ap) is eso = q — | and each prime divisor in
K (A ) is of degree 1, so the relative inertia degree f is 1.

B -K@Am)  Proof: Let B be a prime divisor of K (A ) that lies above poo. Since
K(Apm)/K is a Galois extension of degree ® (M), it suffices to prove
that eoo = e(Blpo) = ¢ — 1 and foo = f(Bpo) = 1. Let P :=
B-Knp) BN K(Ap). First we will prove that eg = e(Plpoo) = g — 1, fip =
f(BIpso) = 1, and that ‘P decomposes fully in K(Ayr)/K(Ap). Let
gu) = uP/u = Wp(u). Then K(Ap) is obtained by adjoining the
Poo — K roots of g(u) to K.

P i Pl 4d-1
We have g(u) = Y7, [ , ]uq 1 = hd=1) where h(u) = Y0, [ , }ui—l and
l l
P i
degr = d—-1)q".

Let Ko be the completion of K at p,, and denote by vy, the corresponding val-

P . P
uation. Clearly, veo <|: . ]) = —(d —i)g" = —degy ([ . :|> We write h(u) =
i i

qc =1 . i
j":’(; fi(Tu’ where fi(T) #0 < j = ﬁ forsome 0 <i <d.
We draw the Newton polygon corresponding to 4(u) in K. The vertices of the
coefficients are given by

i_l .
(. voo £5(TY) = (f]j —d- i)q’) Sy
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The slope from B; to Bi+1 is

_—d—G+ D))+ d i’

s g —dlg—D+q+i(g—1) <siq1.
=T g1
Bie
Bit2
Bit+1
Thus the slopes increase with i and therefore By, Bi, ... , Bq are the vertices of the
Newton polygon of i (u).

The slope from Sy to B is so = —d(g — 1) + g. Hence h(u) contains % —0=

1—0 = 1root 0 in K such that vs(0) = d(q — 1) — q. Now since g(u) = h(u?™"),
it follows that K (A p)y = Koo(A), where A is a root of u?=' — 0. Thus A4~! = 0.
Let v be the valuation above vo. We have

v = (g — Dup(L) = vp(0) = exotoo(®) = exold(q — 1) — q).
Since (d(q — 1) — q,q — 1) = 1, it follows that (g — 1) divides e, and
€00 < €oo foo = [K(AP)‘,B : Koo] =[Koo(X) : Kol =g — 1 < €.

Therefore eco = g — 1 and foo = 1, 50 K(Ap)g/ Ko is totally ramified.

Now we will prove that 3 decomposes fully in K(Apr)/K(Ap). Let A be a root
of g(u), and vy(A) = d(g — 1) — q. We have uf? = ug(u). Then u™ = ul" =
@P)P"™" = uP"" gP" =) (in other words, Wpr () = Wp@" ™) = u" juP""").

The field K (A ps) is obtained by adjoining any root of g(u Pnil) to K(Ap). If Apn
is a generator of A pn = Ay, then A;Zq = Apnypn-1 = Ap = A is a generator of Ap.
Therefore K (Ajy) is obtained from K (A p) by adjoining a root of uf (- A

Next, we determine the Newton polygon of u? "' _ 1. We have

pn-1 d@=D r pn-1 .
u — A= T — .
> [ )
i=0
Define

y-1=0,vp(=4) =(0,d(g — 1) —q),

and
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v = (@' ([PllD - (q",e(impoomo ([PZID)

=(q',—(g— D —1)—i)g") for 0<i=<d@n-1).
The slope from y_j to yp is

—(g-Ddr—-1)—-d@-1)—q)
1-0

—(g—Ddn—-1)+d) +gq
=—dn(g—1+q=1.

Next, for 0 <i < d(n — 1) the slope from y; to ;4 is given by

=g =D =1 =G +1))g""" + (g = Ddn=1) = i)'

gt —gi
=—qdn-1)—-(G+D)+dn-1)—-i)=—(¢g—-Ddn—-1)—-i)+q
=—(@@—-Ddn—-1)+i(g—1) +gq.

Therefore t; < t;41. Similarlyz_; = —dn(q — 1) +q < —(q — Dd(n — 1) +q = 1,

so t; is an increasing function of ;.
It follows that y_1, y0, ... , Yam—1) are precisely the vertices of the Newton poly-

gon of u”"~' — A. Now the segment from y_; to o shows that «”"' — A has a
root in K(Ap)m. Since the extension K(AM)%/K(AP);/B is Galois, it follows that
K(Am)s = K(Ap)gp. Thus uP"” decomposes in K (Ap)glu] and f(B|P) =
e(*B|B) = 1. This proves the proposition. O

Theorem 12.4.6. Let M be a nonzero polynomial of Rt. Then p, is tamely ramified
in K(A )/ K. Furthermore, we have exc = q — 1 and foo = 1, and there are exactly
hoo = ®(M) /(g — 1) prime divisors of K (A p) above peo.
Proof. Let M = Pl"‘1 -~ PP and K(Ay) =[], K(APiai). By Proposition 12.4.5,
ey =9~ 1. Moreover, poo is tamely ramified in K (A pei)/K for every i. Indeed,

P; i
set p = char K, where ¢ = p”" for some n > 1; then p does not divide ¢ — 1.

We obtain from Abhyankar’s lemma that

oo = |:€K(AP011)""’eK(APar)]z[q_l"" ,q-l]:q—l.
1 r

KA pe) K (Am)

¥ K(A

Bi ‘lB
|
|
|
|
|
|
|
My P ) |
|
|
|

Poo qi



438 12 Cyclotomic Function Fields

We wish to prove by induction on r that f, = 1. The case r = 1 is a consequence
of Proposition 12.4.5. For the general case, let B be a prime divisor in K (A7) that lies
above poo. Let 3, = BN K(Apz_x,-) and q; = %OK(AM/pfvi ). Then 1 = f(PBilpoo) >

F(Blai) and F(Blpoo) = f(Blai) f@ilpc) = /(Blas). By the induction hypothesis
f(@ilpso) = 1. It follows that fo = f(B|ps) = 1. Finally, the equality ho =
®(M)/(q — 1) follows from Corollary 5.2.17 and the facts that eoo = ¢ — 1, foo = 1,
and [K(Ay) : K] = ©(M). O

12.5 The Artin Symbol in Cyclotomic Function Fields

First we determine the Artin symbol in an extension K(Ajz)/K (see Definition
11.2.5).

Theorem 12.5.1. Let M € Rt \ {0} and let P be an irreducible polynomial that does
not divide M. Then the map

op: Ay —> Ay
A—s AP

corresponds to the Artin symbol [W]

Proof. Let (Rr) p denote the localization of P, i.e.,
s
(RT)p = glf,gGRT,PTg .

If (P)x = F'dC%’ then k(p) = (R7)p/P(RT)p E RT/(P) = qu, where d = deg P

(see Section cﬁo.4).
Let 3 be a prime divisor in K (A ;) that divides p.
Clearly, N(p) = |qu| =qg%and Ay C V. It follows by Proposition 11.2.2 that

[K(AM)/K

P ](A) = 19" mod PB.

We have u? = uWUpu) = u ui’=1 + Ba_ ud’=2 + -+ B1u + Bo ). Moreover, b
q9—-2 y
Proposition 12.3.18, P divides ; forall 0 < i < ¢g? — 2. Hence A" = 29" mod B.

Now

uM = ]_[ (u — 2%, (12.9)

Amod M
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so taking the derivative with respect to # in (12.9) we obtain, using Proposition
12.2.11,

M= Z ( ]—[ (u—kﬁ)), (12.10)

AmodM N B#A
BmodM

which is constant with respect to u.

Taking u = A€ in (12.10), we obtain M = [z (A¢ — A%). Since P does not
divide M, it follows that A€ = A8 mod 8 whenever C % B mod M.

Hence A” = 12 mod B implies A” = 12.

Finally, from AP = [LW] ) = )ﬂd, we conclude that pp = [M] m]

Proposition 12.5.2. Let M € Rt \ {0} and let P be an irreducible polynomial that
does not divide M. In K (A p)/ K we have

ep=1, fp=o(PmodM), and hp=dM)/fp.

Proof. Let A = Ay be a generator of A . Then K(Ay) = K(X).
Let B be a prime divisor in K (A ) dividing p, where (P)g = %QP Then
Poo”

op = {§ € K(Am)lvgp(§) = 0}

and

fp=[p/B: Rr)p/P(Rr)p] = [(Os)p/B@m)p : Rr/(P)]
= [Om/BOm : Rr/(P)],

where ¥, denotes the integral closure of Ry in K (A ).
Set d = deg P. By Proposition 12.3.14, p is not ramified in K (Aps)/K. Further-

more, the Artin symbol gp = [W] at P is given by pp (1) = AP . Thenep = 1

and hp = [K(Apm) : K1/ fp = ®(M)/fp.
Now fp = o(¢p), so fp is the minimum natural number such that

ol =1d € Gy = Gal (K (Aw)/K).

We have
] S
b =1d < ol =1" =1
e AP0 = M| P/ -1
— P/ =1mod M.
Thus fp = o(P mod M). |

We are ready to state the general theorem about the behavior of prime divisors in
cyclotomic extensions.
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Theorem 12.5.3. Let M = PIO‘1 -« PY € Ry, where Py, ..., P, areirreducible poly-
nomials, and let K(Apr)/K be a cyclotomic extension. If P € Ry is distinct from
Pi,..., P, Py, then

ep=1, fp=o(PmodM), and hp=dM)/fp.

If P = P;, then
, M
ep = O(P*), fp =0<Pi mod W)»
i
and
o — M) DM/P)
T 9P fr ~ o(P mod M/PT)’
If P = Py, then

tco=q—1, foo=1, and he=®M)/(g— D).

Proof. The statement follows from Proposition 12.3.14, Theorem 12.4.6, and Proposi-
tion 12.5.2. O

Next we determine the inertia group of the infinite prime.

Proposition 12.5.4. We have IF;"I = Gy, where G denotes the inertia group of any
prime divisor of K (A p) above poo.

Proof. Let '3 be a prime divisor of K (A ) above po. If M is a nonzero element of
Rr,thenfor A =« € IE‘Z C (R7/(M))* we have 64 (A) = 04(A) = LY = aA, where
A = Ay is a generator of A jyy.

Since foo = f(PIpoo) = 1, it follows that G is equal to the decomposition group
of P. Assume that M = P" for some irreducible polynomial P. Then

Gy = Gal (K(Am)/K) = (Rr/(PM)"
and

|GM| — @(Pn) — qdn _qd(n—l) — qd(l’l—l)(q _ 1)’

where d = deg P.

It follows by the decomposition law for abelian groups that G s contains a unique
subgroup or order (¢ — 1), and this can only be IF;.

On the other hand, we have |G| = ex foo = (¢ — 1)1 = g — 1. Thus Gg = FZ.
Now let M € Rt \ {0} be arbitrary. Assume that P divides M. First we will see that
there exists A € Ap C Ay such that vy (1) = —1, where ' =P N K (Ap).

For » € Ap \ {0},
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AP P - P
Tqud_l+|:d ]i|)ﬂd l—1_|_..._|_|:1:|)L‘7_1-|—P=O, (12.11)

P .
where d = deg P and [ . } € Ry is of degree (d — i)q'.
i

Dividing by 74~ lin (12.11) we obtain
4! 1y /2!
(7) rerl7) )

()
whereg,( )e]F [%]

e (1) = remmterla D = e )
(1)) = ([ ]

= —ig? T g? — g = g — i+ 1)g?

1 _ . »
Voo (gdl <?)> =q'-2¢""" <q? — (i + Dg""

1
= Voo (gd_i (T)) forall i > 1.
A

Now # is an integral element with respect to B | poo, since it satisfies a monic

and

Therefore

polynomial with coefficients in IF, [ ] Since } is a prime element at p, it follows

that % % is integral with respect to T . Thus vy (1) > 0. Assume for the sake of

a_
contradiction that vy ((%)q 1) < vy (gd 1 ( )) Then

(67wl (D)

foralli > 0.
Thus,
d_q d—1_1

oo oo () e () ()
(G @)= ()



442 12 Cyclotomic Function Fields

This shows that

a9
(@ — D(vgy () — v (1)) = vy ((?) )

1 1
> vy (ga’—l (;)) = e(P'IPoc) Voo (gd—l (7» = (g — D@ —2¢""".

Therefore
(¢ —D(g* —2¢"""
vy (A) = g +op(T) = -1
In particular, vqy(A) < 0 = wvw() = -—1. By Exercise 12.10.19,
[K(Ap) :Fa)] =g~
d—1

Therefore deg 3), = degM;, = ¢¢ " and eso = g — 1, where (¢ — 1,¢¢™") = 1.

It follows that there are qd_l prime divisors q of K (A p) such that vq(A) = —1in
the pole divisor of A.

Note that since A € Ap, A belongs to ¢p. Thus the pole divisor of A consists of
prime divisors dividing p.o. Therefore if g is any prime divisor in K (A p) that divides
35, then vg(A) = —1. Let A € Ry be such that o4-1(q) = P, 04A(}) = 24, and
O/p € GP.

Thus vgp/()»A) = Vg1 (A) = vq(A) = —1. We may assume A = A4

Our claim is thereby proved. Now since B | B’ is unramified (Theorem 12.4.6),
then vz (A) = e(P B’ Yo (A) = 1 X vy (A) = —1. In short, there exists an element
A € Aprn C Ay such that vq}()») = —1. Then % is a prime element for 3 | po, that

is, v (%) = 1. Finally, if o € ]FZ, then oy, (%) = a%. Therefore o (K (Ap)p) =

04 (Fga((1)) = Fya((A)) = K(An)sp. Thus oy € Gal(K (Ap)gp/Kp), so P7 = P
and Fy © D(P | poc) = Go. Since F and Gy are of order g — 1, the result follows. O

Definition 12.5.5. Let M be a nonzero element of Ry, and
KAt = KA.
K (A )T is called the maximal real subfield of K (A ).

Remark 12.5.6. We have [K (Ay) : K(Am)T] = |Gol = g — 1 and ps decomposes
totally into ® (M) /(g — 1) prime divisors in K (Ap) " /K.

Remark 12.5.7. The inertia group of the infinite prime divisors in the cyclotomic
number field Q(¢,)/Q is Go = {1, J}, where J denotes complex conjugation, and
Q)T = Q) NR = Q(g,)!-7}. The above equality motivates Definition 12.5.5.

For any M € Rr, denote by ) the integral closure of Rr in Kpy = K (A ).

Proposition 12.5.8. Assume that M = P" for some irreducible polynomial P. Then
v = Rr[Apm], where Ayy is a generator of A .
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Proof. Set A = Ap. Since X is integral, we have Rr[A] C vy. Let « € ¥p. Since
{1, A, ... ,Aq’(M)_l} is a basis of Kys/K, there exist aj, az, ... ,a, € K such that
o =ayg+aA+---+a\',wherer = &(M) — 1. We wish to show that a; € Ry for
i =1,2,...,r.By the proof of Proposition 12.3.14 we have vm()») = 1, where P is
the (unique) prime divisor of Kj; above p and (P)x = pdc%.

Clearly, vqg(a,')»i) =i+ ®(M)vp(a;) = i mod ®(M). Thus, whenever i # j,
a; #0,and a; # 0, we have vig(a; ') # v(a;A7). It follows that

0 <vp(a) = gl;lé% {vfp(aiki)} = Zf% li + <I>(M)vq3(ai)} .

Hence vy (a;) > 0 for all i. Now for any 04 € Gy = Gal(Kp/K) such that o4(2) =
14, we have

as =op(@) =ao+air + - +a- O, (12.12)
where A mod M € (Rr/(M))*. If {Ay, ..., Apuu} is a set of representatives of
(R7/(M))* we obtain from (12.12), writing o;; = i, A; = A4, that

ai Loy A2 A ao

“‘PI(M) 1 )‘r.+1 )‘E.Jrl )‘;.ﬂ ar

The determinant of the matrix [k{ ] 0<j<r is a Vandermonde determinant, so that
I<i<r+1

det [X{] = [Ti</<¢<r41(e — A1) = d (see Exercise 12.10.22). Therefore

Uoag e AT e AL
det| : S :
N RECRTRY s Pty s R vy By
1 Ap veeeee M d
det o :
1 Ay ooeeee )‘:H

where b; € V.

By the proof of Proposition 12.3.14 ((12.5)), for all A mod (R7/(M))*, we have
A = Bar’ and P = Bor®M for some B4, Po € V7.

Then for any prime divisor q in K(Ajs) dividing neither p nor p.,, we have
vg(d) = vq(kA) = 0. It follows that the support of the pole divisor of a; can con-
sist only of p and po. Since vp(a;) > 0, we have a; € Ry. Thus ¢y = Ry[A]. |

Proposition 12.5.8 holds for any M € Rt \ {0}. To see this fact, first we prove the
following proposition:
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Proposition 12.5.9. Let M, N € Ry \ {0} be two relatively prime polynomials. Then
Yun = duUN.

Proof. By Theorem 5.7.15,
Dopn/Rr = Doy /9y CONM/MN Doyr/Rr = Doy /oy COMN/MN Dy /Ry -

Since poo is not being considered in the Dedekind domain 9g (E € {N, M, N M})
and M and N are relatively prime, it follows by Theorem 12.5.3 and Proposition 5.6.7
that conp/mny Do, /ry and cony/yy Dy /ry have no common factor, and neither do
Don /o and Dy /9y -

Ky —— Kun

K Ky

Thus

conyymN Doy /Ry = Doy and  cony mn Doy Ry = Doy /oy (12.13)

Now since R7 is a principal ideal domain and 9 is a torsion-free Rr-module, it
follows using the theory of finitely generated modules over principal ideal domains
that ¥g is Rp-free. Let V be a basis for 9y;/R7 and V* the dual basis of V with
respect to the trace map. Then V* generates D ;4 /Ry 38 an Rr-module. By (12.13) it

follows that V* generates ’D;Alm /oy Hence V** = V generates ¥y over Uy, and
therefore Oy = Fp0N. O

As a corollary, we obtain the following theorem:

Theorem 12.5.10. For any M € Rt \ {0}, let . = Ay be a generator of the Carlitz—
Hayes module A py. Then )y = Rr[A].

Proof. Let M = o:Pla '... P where Pi, ..., P, are distinct monic irreducible poly-
nomials in R7. Using Propositions 12.5.8 and 12.5.9 we obtain

r r
‘[9 = o = o | = .
M _]_[19,,[, _]_[RT[AP;,] Rr[A] O
i=1 i=1
Next we present a particular case of an analogue of Dirichlet theorem on distribu-
tion of primes in arithmetic progressions without using the Cebotarev density theorem.

Proposition 12.5.11. Ler M € Ry \ {0}. If M is not a prime power, then Wy (u) =
1+ Cu?~! (mod u?@=Y), where C € Ry and deg C = (degM — 1)(q¢ — 1) — 1.
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Proof. By Exercise 12.10.12, Wy, (1) = ]_[A‘M(uA)“(M/A). Since M is not a prime
power, it follows that ZAlM,u(M/A) = 0 (Exercise 12.10.9). Hence Wy (u) =

A
[Tapp @ /)™M D Let y = ud~". By Theorem 12.2.5, u® /u = A+ [1i|y mod y2.

Thus
A n(M/A)
H<A+|:l]y> mody2

AM

= (H Au(M/A)) I1 <1 + ([ﬂ/A) y)M(M/A) mod y?.

AlM AlM

Wy ()

By Exercise 12.10.23,

A w(M/A)
W (u) = 1_[ (1 + <|:1i|/A) y) mod y2

AlM
=1+ C(T)y mod y?,
A
where C(T) = ZA|M u(M/A) ([ 1 i|/A>. Therefore

M\ [A
M(T)C(T) =) u(M/A) (X) [1}

AM

Set d; = deg A. Then

M A
deg <X> [1] =degM —d + (dy — 1)g
= (deg M — 1)q + (di — deg M)(g — 1) < (deg M — 1)q,

and we have equality if and only if d; = deg M, i.e., A = M. Hence
degC = (degM — 1)g —degM = (degM — 1)(qg — 1) — 1. O

Corollary 12.5.12. If M € Rt \ {0} is not a prime power and A € Ay is a generator,
then A is a unit in V.

Proof. We have 0 = Wy (1) = 1 + C(T)A9~" mod A2~V Therefore 1 =
M=C(THA972 + 2\2473g) for some « € 9. It follows that A is invertible in ¥3y. O

Definition 12.5.13. Let P € R7 be a monic irreducible polynomial and let A € Rr.
We say that

0(Amod P) =M € Ry

if M is monic and of minimal degree satisfying AM = 0 mod P.
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Remark 12.5.14. The notation given in Definition 12.5.13 is 0(A mod P) instead of
0(A mod P), that is, the one that denotes the order of an element in a quotient group.

Remark 12.5.15. Assume that N € Ry satisfies AY = 0 mod P,andlet N = QM+R
with O, R € Ry and R = 0 or deg R < deg M. Then AN = (AM)?Q + AR Tt follows
that AR = 0 mod P. Therefore R = 0 and M divides N. In particular, the polynomial
M given in Definition 12.5.13 is unique.

Remark 12.5.16. Since Rt /(P) is finite, {AM mod P | M € Rr} is finite too, and
there exist two distinct elements M}, M, in Ry such that AMi = AM2 mod P. Hence
AMi—M2 = () mod P.

Proposition 12.5.17. Let P € Rt be an irreducible polynomial and M € Rt monic
polynomial not divisible by P.If A € Rr, then

P|VYy(A) < 0(Amod P) =M.

Proof. First assume that P divides Wys(A). Since u™ = I1 DIM Wp(u) it follows that
AM = [Ty ¥p(A) =0 mod P.

Let 6(A mod P) = N. Then N divides M. Hence AN = HD|N Up(A) =0 mod
P. Therefore, there exists Dy dividing N such that P | Wp,(A).

Suppose that Dy # M. Then AM = Wy (A)Vp, (Al pm  Yp(A) =

D+#Dy,D#M

0 mod P2. Now Wy (A + P) = Wy (A) mod P = 0 mod P and Yp,(A+ P) =
Wp,(A) mod P = 0 mod P. Hence 0 = (A + P)M = AM 4 pM = pM mod P2.
We have

PM=3"

i=0

deg M M
l

] 4 — MP + P2C = MP mod P>

But this is impossible since P t M. It follows that 0(A mod P) = M.

Conversely, let 6(A mod P) = M, where AM = ]_[D‘M Yp(A) =0 mod P. Thus
P divides Wp(A) for some D dividing M. If D # M, then AP = ]_[D/‘D Up(A) =
0 mod P, which contradicts the fact that 6(A mod P) = M. Hence D = M and P
divides Wy, (A). O

Proposition 12.5.18. Let P € Rt be an irreducible polynomial, and M € Rt a monic
polynomial such that P { M. Then P divides Wy;(A) for some A € Ry if and only if
P =1 mod M.

Proof: If P divides Wy;(A) for some A € Ry, then by Proposition 12.5.17, 6(A mod
P) = M. By Proposition 12.3.18, the polynomial Wp(u) = u’/u is Eisenstein.
Thus uf = uVp(u) = uqd mod P, where d = deg P. In particular, we have
AP = A9 mod P.

Since ®(P) = q¢ — 1 = |(Rr/(P))*|, it follows that if P { A, we have A1 =
1 mod P, so that A7 = Amod P. If P divides A, we have A9 =0 = Amod P.
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In any case we obtain A"d = A mod P. Therefore A” = Amod P, or A — A =
AP~ = 0 mod P. Since 6(A mod P) = M, it follows by Remark 12.5.15 that M
divides (P — 1). Thus P = 1 mod M.

Conversely, assume that P = 1 mod M. Then d = deg(P — 1) = deg P and

P—-11 .
uf-1 = Z?:o |: . i|u‘4 . Hence (u”~'Y mod P = (P — 1) mod P = —1 mod
i

P #0.

Therefore the polynomial uP~Tmod P € (R7/(P)) [u] is separable.

Since deg, u”~' = ¢¢ = |Rr/(P)| and AP~! = O mod P for all A € Ry, it
follows that

uP~ " mod P = ]_[ Wp(u) mod P = ]_[ (u — A) mod P.

D|P—1 Amod P
A€RT

Therefore there exists A € Ry such that ¥3;(A) = 0 mod P. Thus P divides Wy;(A)
and 0(A mod P) = M. O

Corollary 12.5.19. For any nonconstant polynomial M € Ry, there exist infinitely
many irreducible polynomials P in Ry such that P = 1 mod M.

Proof. Let {Py, ..., P} be any finite set of irreducible polynomials satisfying P; =
Imod M. Set N = MP;--- P, and let Q € Rr be arbitrary. Then Wy, (NQ) =
W,7(0) mod N. Since we may take r > 1 and P; not dividing M, it follows that M
is not a prime power. By Exercise 12.10.26, we have W;(0) = 1. Thus V(N Q) =
1 mod N. In particular,

Yy (NQ)=1mod M and Yy (NQ)=1lmodP; for 1 <ic<r.

It follows from the above that if P is any irreducible polynomial dividing W, (N Q),
we have P = 1 mod M by Proposition 12.5.18,and P # P; for 1 <i <r. |

Remark 12.5.20. Corollary 12.5.19 is a particular case of Dirichlet’s theorem (The-
orem 12.5.21 above), which is an easy consequence of Cebotarev’s density theorem
(Theorem 11.2.20). However, the proof we provided for Corollary 12.5.19 does not
use Cebotarev’s density theorem.

Theorem 12.5.21 (Dirichlet). Let M, N € Rt be two nonconstant monic polynomi-
als such that (M, N) = 1. Then there exist infinitely many irreducible polynomials
P € Ry such that P = N mod M.

Proof. Consider the extension K (Aps)/K with Gal(K (Ap)/K) = (Rr/(M))*. Let
o € Gal(K (A p)/K) be the element of the Galois group corresponding to the element
N mod M € (Rr/(M))*. Then o (Ap) = kgv,l, where Ay is a generator of A py.

By Theorem 12.5.1, the Artin symbol [W] corresponds to the map

op: K(Ay) — K(Am)
A AR
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By Cebotarev’s density theorem, there exist infinitely many irreducible polynomials
P € Rt such that [K(A—}/‘;’)/K] = 0. Therefore 0 = ¢p for infinitely many irreducible
polynomials P € Rr. Now

U:(pp<:>)»%:)»f4<:>NEPmodM. m|

12.6 Dirichlet Characters

Definition 12.6.1. Let M € R7 \ {0} be a monic polynomial. A Dirichlet character
mod M is a homomorphism

X : (Rr/(M))* — C*.

Remark 12.6.2. Assume that M divides an element N of Ry and consider the canoni-
cal homomorphism

oN.m: (RT/(N)* — (Rr/(M))*
Amod N — A mod M.

Then for any Dirichlet character mod M, X’ : (R /(M))* — C*, ¢y pm induces a
Dirichlet character mod N, namely X o ¢y ar : (R7/(N))* — C*.
Py . . .. :
(Rr/(M))* C* Conversely, if X is a Dirichlet char
acter mod M, we say that we may de-
fine X mod F for F | M if there ex-
ists £ : (Rp/(F))* — C* such that
(Rr /(F))* Eopyr—X.

M. F &

Next we show the existence of the conductor. Let X: (Ry/M)* — C* be a
Dirichlet character and A and B such that A | M, B | M,and X = X4 o ¢y, 4 and
X = Xp o ¢p p. Consider C = (A, B) and set D as the product of all the monic
irreducible polynomials dividing M but not dividing B. It follows that C = (DA, B).
Consider any U, V € Ry suchthat (UV, M) = 1 and U = V mod C. By the Chinese
remainder theorem, there exists § € Ry suchthat S = U mod DA and S = V mod B.

If P is any irreducible polynomial such that P | S and P | M, then writing
S = V + OB, we deduce that P t B, since otherwise P | V and then P | (V, M) = 1.
Now since P | M and P 1 B, it follows that P | D. Therefore P | DA and P | S.
Hence P | U and P | (U, M) = 1. This contradiction shows that (S, M) = 1. It
follows that

X(S) =Xs00ma(S) =Xpaoom,pa(S) =XpaoomupaU) =XU)

and
X(S) = Xpoom,B(S) = Xpoopmp(V)=X(V).

Thus X (S) = X(U) = X (V). Therefore X can be defined mod C.
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(Rr/(M))* C*

Ym.c Xc
(R7/(C))*
In particular, if X can be defined mod F and mod F, with F| and F, monic of mini-

mal degree, then since it can be defined mod C, C = (Fy, F>) and C | F1 and C | F>,
it follows that C = F| = F».

Theorem 12.6.3. Given a Dirichlet character X, there exists a unique monic polyno-
mial F in Rt of minimal degree dividing M such that X can be defined mod F. O

Definition 12.6.4. Given a Dirichlet character X mod M the conductor of X is F if
F € Rr is a monic polynomial of minimal degree dividing M such that X can be
defined mod F. We denote the conductor of X by Fy.

Example 12.6.5. Let X : (RT/(T3))* — C* (with ¢ = 2) be given by X (1) = 1,
XT+1D)=—-1,XT*+T+1)=—-1l,and X(T?+1) = 1.

Leté& : (RT/(TZ))* — C*be definedby £(1) = land §&(T + 1) = —1.

Then ¢7s 72 : (Rr/(T%)" — (Rr/(T%)" is given by

o3 p2() = @3 p2(T> + 1) = 1
and
o2 (T+ 1) =g (T +T+1) =T +1.
Hence § o g3 72 = X. Clearly T2 is minimal since (R7/(T))* = {1}. Therefore
Fy =T2.
Example 12.6.6. Let X : (R /(T*(T + 1)))" — C* with ¢ = 2 given by
X(1)=1 and X(T>’+T+1)=-1.
Then& o ppapypy 72 =X where§(1) =1 and &§(T +1) = —1. Hence Fx = T2.

Remark 12.6.7. Given a Dirichlet character X’ we may regard X asamap X: Ry — C
by defining X' (Q) = 0 if (Q, Fy) # 1. Unless otherwise specified, we will always
view & as being defined modulo its conductor.

Definition 12.6.8. A Dirichlet character X defined modulo its conductor is called
primitive. In this case X (Q) = 0 as infrequently as possible. Also notice that when X’
is defined modulo its conductor, we have X (A 4+ Fy) = X (A). Thus X is periodic of
period Fy.
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Notation 12.6.9. Whenever we mention the characters of (Ry/(M))* for M € Ry
or characters mod M, we will be including all characters whose conductor divides M
and the trivial character of conductor 1. The trivial character ¢ satisfies £(Q) = 1 for
all O € Rr.

Definition 12.6.10. Let X and ¢ be two Dirichlet characters of conductors Fy and Fy
respectively. We define the product of &’ and ¢ as follows. First let

Q =[Fx,Fs] anddefine y: (Rr/(Q)* — C*
by y(A) = X(A)$(A). Then the product X¢ is defined as the primitive character
associated to y .
Remark 12.6.11. Tt is not true in general that (X¢)(A) = X (A)¢(A).
Example 12.6.12. Let g = 2, and X mod T2(T?2 + 1) be given by

X)y=1, XT*+T+D)=1, XT*+T*+1)=-1,
and
XT3 +T+1)=—1.

If Fy is the conductor of X, then

Fy € {1, T,T+1,T(T+1), T2 T>(T+1),T>+ 1, T(T*>+ 1), TX(T? + 1)}.

Note that |(R7/(T)*| = [(Rr/(T +1))*| = |(Rr/(T(T +1)))*| = 1. Thus
Fy #1,T,T+1,T(T +1).

Now T3 + T2+ 1mod T2 = 1, X(T3 +T?+1)=—1#1,T> + T + 1 mod
(T?+ 1) =1and X(T3+T +1) = —1 # 1. Thus Fy # T2, T? + 1. Finally we
have

T3+ 7?4+ 1mod TX(T+1) =1, XT>’+T>+1)=—1+#1,

T34+ T+1mod T(T?+ 1) =1, XT*+T+1)=—-1#1.
Hence Fy # T*(T + 1), T(T? + 1). It follows that Fy = T>(T? + 1). Now let
¢ mod (T2) be given by ¢(1) = 1 and ¢(T + 1) = —1. Then F, = T2

Consider the product X¢. We have [Fx, F,| = [T*(T* + 1), T?] = T*(T*+ D).
Define y : (Rr/T>(T? +1))" — C* by y(A) = X(A)p(A). Then

y() =XMe() =1x1=1,
YT +T+ 1) =XT*+T+ DT>+ T +1) = (1)(=1) = —1,
YT+ T+ 1) = X+ T2+ DT> + T+ 1) = (=1)(1) = -1,
YIP4+T+1)=XT*+T+ DT> +T+1) =(=D(=) =1.
Let&: (Rr/(T?+1))" — C* be such that £(1) = 1 and £(T) = —1.

Then & o 9par24y) 1241 = y. Thus F), = T? + 1 and £ = X¢. Notice that

E(T)=—-1#0=¢(T) = X(T)p(T).
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Definition 12.6.13. If X' is any Dirichlet character, we define the conjugate X of X
by X(A)_: X (A). Notice that X (A) = X (A)~! for any A such that (A, Fy) = 1.
Hence X' X is the trivial character defined by

XX(A)=1 forall A€ Rr.

Remark 12.6.14. We have Gy = Gal(K(Apy)/K) = (Rr/(M))*, where Ry =
F,[T], K = Fy(T), and Ayy = {» € K | AM = 0}. Then a Dirichlet character
is a character of G for some M € Ry. In this case the Dirichlet character may be
considered as a Galois character.

Example 12.6.15. Let X be as in Example 12.6.5. Then
*
X (RT/(T3)) =~ G = Gal (K (Apa)/K) — C*

andker X = {1 mod T3, (T241) mod T3}. Therefore X is a character of (RT/(T3))* /

ker X = (RT/(TZ))* = Gal(K(A72)/K) and it may be considered as a character of
Gal(K(A72)/K).

Example 12.6.16. Let X be as in Example 12.6.6. Then (RT/T2(T+1))* =

(RT / Tz)*, and since any character mod T2(T +1) or mod T2 is the same character,
it follows that K (Az2(p4 1)) = K(Ap2).

Our main interest in the topic of Dirichlet characters is the study of some arithmetic
properties of cyclotomic function fields. For this purpose, we need some general facts
on group characters, which we now review.

Definition 12.6.17. Let G be any finite group. The character group of G is
G = Hom(G, C*).

Assume that X € Hom(G, C*). Since C* is an abelian group, we have X ([a, b]) =
1 forany a, b € G, where [a, b] = aba='b™! is the commutator of a _and b. Therefore
we can factor X through [G, G] = ([a, b]|la, b € G) by defining X : (iﬂG, Gl =
G — C*. In particular, G = Hom(G, C*) = Hom (G, C*) = G%. For in-
stance, if G is a simple nonabelian group, we have [G, G] = G and G= {1d}.

From now on, all groups considered will be abelian (and finite).

Proposition 12.6.18. Any abelian group G is isomorphic to its character group G.

Proof. If G is a cyclic group of order m and if a is a generator of G, let X' € G be
given by X'(a) = ¢», where &, is a generator of the mth roots of 1 in C*. We have
X"'(a) = X(a)" = ¢)). Hence o(X) = m.

Now let ¢ € G be arbitrary. Then ¢(a) € C and since 1 = ¢(1) = ¢(@@™) =
@(a)™, it follows that ¢(a) = ¢/, forsome 0 <i <m — 1. Thus ¢ = X’ and G =
(X)Z2Z/mZ = G.Ingeneral,let G = [[/{_, Z/m;Z.If X € G, let X; : Z/mil7 —>
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C* be given by X;(a) = X(0,...,0,a,0,...,0). It is clear that X = 1_[?:1 A; and
this factorization is unique. Moreover,

G = H (Zﬁm\,z) =~ ]‘[ (Z/miZ) = G. O
i=l1 i=1

Now we consider the pairing ¥ : G x G — C*, (g, X) — X(g).

Proposition 12.6.19. U is a perfect pairing, which means that WV is not degenerate. In
other words, if g € G is such that X (g) = 1 for all X € G, then g = 1. Conversely, if
X € G is such that X(g) = 1 for all g € G, then X = 1 (by definition).

Proof. If g # 1, it follows by Proposition 12.6.18 that there exists X € G such that
X(g) # 1. O

Proposition 12.6.20. There is a canonical isomorphism between G and G.

Proof. We have G = (G) = G = G. Furthermore, if g € G, let § € G be defined

by g(X) = X(g) = W(g, X) forall X € G.Then 6 : G —> G is a natural group
homomorphism. It follows by Proposition 12.6.19 that 6 is an isomorphism. O

Definition 12.6.21. Let G be an abelian group, and H a subgroup of G. We define
HLz{XeGU’((h):l for all heH}:{Xeé|HgkerX}.

If M is a subgroup of G, let

Mt ={geG|X(g) =1 forall X € M}
={§eé|§(X)=1 for all XGM}.

Proposition 12.6.22. For any H < G and any M < G we have

Ht = (G//?I> and Mt = <G//I/I> .

Proof If suffices to exhibit an isomorphism between H L X C*
and G/H.If X € H* then X(h) = 1 forallh € H and
X can be factored as X o 7. - P

Thus H+ — G//T{, X+ Xisa group isomorphism. G/H O

Proposition 12.6.23. For any subgroup H of G, His isomorphic to G JH*