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Preface

In the few years since their appearance in the mid-sixties, variational
inequalities have developed to such an extent and so thoroughly that they
may now be considered an “institutional” development of the theory of
differential equations {(with appreciable feedback as will be shown). This
book was written in the light of these considerations both in regard to the
choice of topics and to their treatment. In short, roughly speaking my
intention was to write a book on second-order elliptic operators, with the
first half of the book, as might be expected, dedicated to function spaces
and to linear theory whereas the second, nonlinear half would deal with
variational inequalities and nonvariational obstacle problems, rather than,
for example, with quasilinear or fully nonlinear equations (with a few
exceptions to which I shall return later). This approach has led me to omit
any mention of “physical’”” motivations in the wide sense of the term, in
spite of their historical and continuing importance in the development of
variational inequalities. I here addressed myself to a potential reader more
or less aware of the significant role of variational inequalities in numerous
fields of applied mathematics who could use an analytic presentation of
the fundamental theory, which would be as general and self-contained as
possible.

Having said all of this, I cannot fail to point out the extent to which
my treatment of the subject does not succeed in being general or self-
contained. On the first point I hasten to indicate that, in order to avoid
an overly technical presentation, I have chosen to make C! regularity
assumptions on (portions of) boundaries even where C%' would have been
sufficient, But above all, I have bypassed “truly’’ mixed problems. In effect
I do systematically consider Dirichlet conditions on one portion of the
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boundary, and Neumann (or, more generally, regular oblique derivative)
conditions on the remaining part. However, the basic reason for this was
to avoid introducing separate statements and demonstrations for each type
of boundary value problem; therefore, 1 adopt the hypothesis that both
boundary portions are closed whenever the absence of such a hypothesis
might introduce excessively delicate problems of regularity.

Coming to the second point, background results in functional analysis
and in the theory of Lebesgue spaces have been listed without proofs;
I have furthermore assumed that the reader has a graduate level knowledge
of the rcal variable, and omitted the technically more complex part of the
John-Nirenberg lemma. Detailed demonstrations are provided for all other
results in the book.

What do I consider the relevant features of my book? First of all, I
must mention Chapter 3 in which I develop what are generally called the
Schauder and L7 theories (here referred to globally as H%? and C*-¢ theory).
Usually the essential @ priori estimates are obtained, for the former by
means of the Schauder—Caccioppoli techniques in Hélder function spaces,
for the latter by using singular integrals in the light of the Calderén-Zyg-
mund theory, and in particular by applying the Agmon-Douglis—Nirenberg
method for boundary estimates. But here I have chosen Campanato’s ap-
proach, which is more unified and, to my mind, simpler: Schauder’s
Hélderian estimates are absorbed by others, of a basically variational type,
in the spaces of Morrey, John-Nirenberg, and Campanato, whereas L?
estimates are obtained from the previous ones by Interpolation without
resorting to singular integrals. My presentation, designed to be as complete
as is reasonably possible, covers both the variational and the nonvariational
case, as well as Dirichlet, Neumann, and regular oblique derivative bound-
ary conditions. (The reader familiar with Campanato’s method may notice
some minor improvements introduced in Chapter 3, For instance, in the
problems at the end of the chapter the L? theory is extended to the range
| << p <z 2.) But the use of Campanato’s techniques is not limited to Chap-
ter 3. They are also used in Chapter |, reformulating those of Morrey, to
show part of Sobolev inequalities. Campanato’s method is further used in
Chapter 2 to extend the De Giorgi-Nash theorem to nonhomogeneous
equations with lower order coefficients, and in Chapter 4 to show C*
and C* regularity results for solutions of variational inequalities of
obstacle type.

These remarks should in no way give the impression that any one
method has been given systematic preference. Quite the contrary. For
example, still on the subject of variational inequalities, the reader will find
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the “natural” utilization of Lewy-Stampacchia inequalities for H%? reg-
ularity (p finite), of difference quotients for H? regularity in a more general
case, and of the penalty method for H'* and H%* regularity.

As has already been said, one of my aims throughout the book has
been to go beyond the Dirichlet type of boundary conditions, and conse-
quently 1 have had to tackle the problem of trace spaces in detail. This
has been done in Chapter |, where 1 have defined Sobolev spaces for orders
between 0 and 1 by using the rapid and to my mind handy method of
quotient spaces. This does not mean that I have systematically avoided
any intrinsic definition of function spaces on manifolds. In point of fact
I have presented full details, however tedious they may be, in the Lebesgue
case since it furnishes the concrete basis for later abstract constructions.
Before moving on from the material dealt with in Chapter 1, I would like
to add that it includes a detailed study of lattice properties, and that the
study of Sobelev spaces is probably more extensive here than is usually
the case in texts about partial differential equations.

Passing to Chapter 2 I want to mention, in addition to the standard
topics (Lax—Milgram and De Giorgi—-Nash theorems, method of difference
quotients), L’ regularity results for solutions of linear equations, and a
study of interior regularity for solutions of a class of quasilinear equations,
up to the point where the De Giorgi~Nash theorem comes into play and
makes possible the automatic application of the linear theory.

Abstract existence results for nonlinear equations are discussed in
Chapter 4 as byproducts of the study of variational inequalities. The
reason for this is that Brézis’ very general existence theorem for pscudo-
monotone operators (and its consequent application to differential opera-
tors of the Leray-Lions type) fits naturally into this wider setting. One last
observation on my treatment of variational inequalities: I have included
new existence and uniqueness results for variational obstacle problems
involving a class of noncoercive bilinear forms, as well as existence theorems
concerning quasilinear operators under natural growth conditions. In the
latter context I used Lewy-Stampacchia inequalities to bring the study of
equations in the presence of lower and upper solutions quite naturally
back to bilateral variational problems.

There is a correspondence between the last point above and the non-
variational case dealt with in Chapter 5, where, among other things, [
redemonstrate (and extend) results of Amann-Crandall and Kazdan-
Kramer for semilinear equations. Here again lower and upper solutions
are treated as obstacles in a constrained problem. (The study of the
nonlinear case utilizes prerequisites for linear operators which are demon-
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strated at the beginning of the chapter.) Chapter 5 also takes up the
problem of providing a sufficiently weak notion of solutions to unilateral
problems for some nonlinear operators when we cannot (at least a priori)
be certain of the existence of an H™? solution (nor even perhaps of an
H? solution in the case of divergence form operators). I also show that
the characteristics of these weak solutions make it possible, in certain
circumstances, to work back to an optimal threshold of regularity: The
case considered is that of implicit unilateral problems (nonvariational
counterparts of quasi-variational inequalities), in particular that of sto-
chastic impulse control.

The ground covered in this book should be more than sufficient as
the basis of a two-semester graduate course on second-order elliptic oper-
ators. With this end in mind I have provided problems at the end of each
chapter and hints to their solution in informal style similar to that of
suggestions which might be given orally in a seminar. The problems should
present no difficulties to anyone who has a sound grasp of the preceding
theoretical matter.

This book would probably never have been written had T not had the
privilege of studying with teachers such as P. D. Lax, L. Nirenberg, and
- G. Stampacchia, nor had the good fortune to work in daily contact with
colleagues and friends in the Mathematics Department of the University
of Rome, of whom I should single out M. G. Garroni, U. Mosco, and
F. Scarpini. The constructive telephone conversations I occasionally had
over the years with C. Baiocchi should also be mentioned here. However,
for what regards specifically this endeavor, the help and encouragement
given to me by J. J. Kohn have been of special importance. T am glad to
be able here to acknowledge my indebtedness to all these persons and
to express my gratitude.
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Glossary of Basic Notations

N is the set of natural numbers, R the real line. For N € ¥ the typical
point of the Euclidean N-space 8% is denoted by x = (x,, ..., xy) and
also by {x',xy) with x'=({x,, ... ,xy_,) if N>2; for x, yeR¥,
x-p=3%~ x;y;and | x| = (x - x)"2 For derivatives of a function t(x)
we shall often adopt the multi-index notation: D*u = @ lufdx™ ... dxy*»,
where each a; isin ¥ U {0}, a=(a;, ..., ay), |¢|=a,+ --- + ay.
We shall, however, usually write u,, for du/dx; and Uy, for Fufdx; dx;
if N>2, u for dufdx and u'" for d*ufdx® if N = 1.

If D is a subset of &Y, its boundary is denoted by 4D and its closure
Dbuab by D.

£2 is an open subset of ®Y¥; from Chapter 2 on we shall constantly
assume that £ is connected as well as bounded. (Openness and connected-
ness make £ a domain.) The notation w << £ means that o is an open
subset of BRY with @ < £. i

I is a relatively open portion of 6£2; the unit outward normal at a
point x € I, if existing, is denoted by » : x> (¥*(x), ..., »N(x)).

For x°€ &Y and 0 < r < oo,

B(x%) = {xe RY
BH(x%) = {(x', xy) € B,(x") | xy > xx°},

S,(x%) = 9B,(x"),

S;H(x®) = {(x’, xy) € S,{x%) | xxy > xx°},

5500 = {(x', x¢) € R¥ | | x' — x| <1, Xy = xx®};

| x —x°| <r},

Xv
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in these notations we shall usually depress the dependence on x% if x? == 0,
on r if r = 1. The set 2 N B,(x°) is denoted by Q[ 7).

We shall follow the practice of using the same symbol C for different
constants depending on prescribed sets of arguments.



Function Spaces

In the modern approach to partial differential equations a pivotal role is
played by various function spaces which are defined in terms of the ex-
istence of derivatives (either in the classical or in a generalized, weaker
sense). In this chapter we develop the study of such spaces to the extent
required for the investigation of second-order elliptic problems.

We begin by listing, without proofs, some fundamental background
results of functional analysis (Section 1.1). We then pass to spaces of smooth
functions, with a special emphasis on extensions and traces as well as on
local representations of boundary portions (Section 1.2). In Section 1.3 we
dwell on Lebesgue spaces. After recalling (without proofs) some basic
properties, we illustrate the technique of approximation by convolution
and introduce LP spaces which are defined through surface integrals.
Section 1.4 is devoted to L®# spaces, which for certain values of u are
identifiable with Holder spaces. We call the reader’s attention especially
to Lemma 1.18, which will be utilized on several occasions.

The rest of the chapter is centered on the theory of Sobolev spaces,
which will play a fundamental role throughout. Sections 1.5 and 1.6 deal
with such topics as density results, extensions, continuous or compact
imbeddings into Lebesgue or Hélder spaces. In Section 1.7 traces of func-
tions from Sobolev spaces are defined through a density argument. Finally,
in Section 1.8 various notions of inequalities, which will be essential to
the study of equations and especially of obstacle problems, are introduced
and mutually compared.



2 Chapter 1
1.1, Preliminaries from Functional Analysis

1.1.1. Banach and Hilbert Spaces

All linear spaces considered in this book are assumed to be defined
over R. If V, W are two such spaces and F is an operator ¥V — W, the
notation F(v) for the value of Fat v € V is replaced by Fo when F ts lincar
and by (F, v) when in addition W = E, that is, when F is a linear func-
tional.

A seminorm on a linear space V is a mapping v+ {v]; from V into
[0, cof such that

[As]y =14 [v]y for Je R, ve V,

v+ wly < [¥]y + [w]y for v, we V.

The following analytic formulation of the Hahn-Banach theorem guar-
antees the possibility of extending linear functionals dominated by semi-
norms.

_ THEOREM 1.A. Let W be a proper subspace of a linear space V. Sup-
pose that F is a linear functional on W and [- 1y @ seminorm on V such that

| ¢F vy | < [v]ly  for vE W.

Then there exists a linear functional F on V such that
(F,vy =(F,v)  forve W,
| Evy | < ly forve V.

A norm v | v |y on a linear space ¥ is a seminorm that vanishes
only for v = 0. Two norms || and |-|" on ¥ are said to be equivalent if

CllvlpZ vy <Cle|y for ve ¥,

C being some positive constant; we then write ||y ~ |-|y". When ¥V is
endowed with a norm we call it a normed space. Any (linear) subspace W
of ¥V is then a normed space with |-{,; = |-|,. Since the mapping

U, 00— |u—v|p

is a metric on ¥, we can freely utilize metric notions such as: convergence,
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also called strong convergence (of a sequence {v,} to v in ¥, denoted by
the symbol
vy —> V),

continuity (of a mapping from a subset of V into another normed space),
density, compactness or relative compactness (of a subset of ¥), complete-
ness or separability (of V). The (topological) dual space of V is the linear
space V' of continuous, or bounded, linear functionals F on V, endowed
with the norm
|Flyo= sup [{F o)}
teV, lolysl

in this context {-, -> is the duality pafring between ¥ and V'. By weak
convergence of a sequence {v,} to v in ¥, denoted by the symbol

v, — 0,

we mean convergence of {F, v,> to {F,v) in R whatever Fe V’. Strong
convergence implies weak convergence, and viceversa if V is finite dimen-
sional. Weakly convergent sequences are bounded, and (F,, v,y — {(F, v)
ifF,—»FinV',v,—vin V.

The Hahn-Banach theorem can be given a geometric formulation that
assures an adequate supply of continuous linear functionals, as is stated
in the following theorem.

TueoreM 1.B. Let W be a subspace of a normed space V. If W is not
dense in V there exists a nonzero element F of V' such that

(F,o)=0 forve W.

Two normed spaces ¥V and W are (topologically) isomorphic if there
exists an injective and surjective linear operator T : W — ¥ such that
both 7 and T ' : V — W are continuous, i.e., satisfy

| Twly < Clwly for we W

and
[Ty < Cloly forve Vv

with some positive constant C. We then write ¥ ~ W. V and W are iso-
metrically isomorphic in the particular case when

1Twly = | w ]y for we W.
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If the linear operator T is only required to be injective and continuous
(which can happen to be the case with 7 = identity when W is a subspace
of ¥ as well as a normed space on its own), we say that W is continuously
imbedded, or injected, in V and write

WalV,

the particular choice of T is algebraically and topologically irrelevant
because W and its image T(W) are isometrically isomorphic when the latter
is normed by

| Wy for z=Tw, we W.

If T(W) is dense in ¥ (so that
Ve W

we write
WalVb.
ds

When a normed space is complete we call it a Banach space. Simple
considerations show that ¥’ is always a Banach space whether the normed
" space V is complete or not (see Problem 1.3). Any closed subspace of a
Banach space is a Banach space in its turn.

Let ¥ be a Banach space.

Lemma 1.C. Let K < V be closed in (the metric of) V. If X is convex
and {v,} = K converges weakly to v in V, then ve K

The linear mapping [ defined by
{Iv, Fy = (F, v) for Fe v’

is a continuous injection of V¥ in the dual space V'’ of ¥’, and even more,
namely, an isometric isomorphism between V¥ and the image space I(V),
by the Hahn-Banach theorem (see Problem 1.1). If 7 is surjective, that is,
I(Vy= V", we call ¥ reflexive.

THEOREM |.D. A Banach space is reflexive if and only if its dual space
is such. Any closed subspace of a reflexive Banach space is reflexive as well.

An important property of reflexive Banach spaces is given by the
following theorem.
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THEOREM 1.E. Every bounded sequence in a reflexive Banach space con-
tains a weakly convergent subsequence.

A special class of normed spaces is that of pre-Hilbert spaces. They
are linear spaces ¥ such that there exists a mapping

u, v— (i, V),

from the Cartesian product F x V into R, called a scalar product on ¥V,
which is linear in each variable and satisfies

(u, V)py = (v, u)y for ,ve V
as well as
(u, )y >0 forue F, u70.

On pre-Hilbert spaces the Cauchy-Schwarz ineguality holds:

Tueorem 1.F. Let (-, )y be a scalar product on V. Then,

| (u, 0)p | < (u, u)pY2(e, v)p¥®  for u,pe V.

A norm on ¥V is given by the mapping
u— (u, w)p = fuly.

When we say that a normed space is a pre-Hilbert one, we mean that
{-|y is associated with a scalar product on V as above.

Two scalar products on V are said to be equivalent if the corresponding
norms are such.

When a pre-Hilbert space is complete (and is therefore a Banach
space) we call it a Hilhert space.

THEOREM |.G. Hilbert spaces are reflexive.

A Hilbert space is isometrically isomorphic to its image in the dual
space ¥’ under the mapping
ur—(u, - y.

As a matter of fact, the Riesz representation theorem (see the corollary of
Theorem 2.1 below) asserts that the above mapping is surjective; its inverse,
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that is, the isometric isomorphism 7 : V' — V defined by
(FF,v)p = {F, 0 forve ¥,

Fe V', is called the Riesz isomorphism.

We conclude this subsection with a few considerations about product
and quotient spaces.

If V,, ..., V; are normed spaces, so is their Cartesian product

V=V X%V,

with

k 1/p

|U|VE(Z|05|§() for some p € [1, oof

=1

or
lv|p= max |o;ly,
i=1,...,

[v=(vy, ...,v,) with p;€ V], all these norms being equivalent; V is

separable, or complete, or reflexive, if each V; is such.
Somewhat more delicate is the question of quotient spaces. For the
sequel all we need is the following theorem.

THeorReM | .H. Let W be a closed subspace of a normed space V, and
let VIW denote the linear space of equivalence classes

[l={v+w|we W}

ve V. Then the mapping

[o] — inf [0+ wly
weW
defines a norm on VIW. If V is a Banach (Hilbert) space, so is V{W.

1.1.2. Fixed Points and Compact Operators

It is well known that in a complete metric space (in particular, in a
Banach space) a contraction has a unique fixed point. More sophisticated
existence (not unigueness) results for fixed points will now be listed.

For finite-dimensional Banach spaces we have at our disposal Brouwer's
fixed point theorem:
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THeoreEM 1.1. Let V be a finite-dimensional Banach space, let X be a
closed convex subser of V, and let T be a continuous mapping of X into itself
such that the image T(X) is bounded. Then T has a fixed point

uc kK, u=Tu.

Brouwer’s theorem utilizes the fact that in Euclidean spaces bounded
sets are relatively compact. Its direct extension to infinite-dimensional
spaces is Schauder’s theorem:

THeoreM 1.J. Theorem I.I remains valid in any Banach space provided
the image T(X) is required to be relatively compact.

For the next result, known as the Lerav—Schauder theorem, we need
the following important notion. A mapping T between two normed spaces
is said to be compact if it is continuous and maps bounded sets into rel-
atively compact sets; when T is linear the requirement of continuity, which
then amounts to boundedness, is clearly redundant.

Tueorem 1.K. Let V be a Banach space. Suppose % is a compact
mapping of V < [0, 1] into V with the following properties:

() &(u, 0) =0 whenever uc V,

(ii) there exists a constant C such that

| 1|y << C whenever uec V with u= &(u, s) for some se€ [0, 1].
Then the mapping T=%(-,1): V — V has a fixed point.

A linear mapping T of a normed space into itself admits always 0
as a fixed point. If T is in addition supposed compact the question of the
existence of fixed points different from 0 must be formulated in terms of
the Fredholm alternative as follows.

TueoreM 1.L. Ler V be a normed space and suppose T:V —V is
linear and compact. Then, either the homogeneous equation

He v, u— Tu=20
has a solution u 7= 0, or the inhomogeneous equation

ueV, u—Tu=wv
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is uniquely solvable for any choice of v € V, in which case the inverse of the
operator u+>u — Tu is also bounded.

REMARK. If ¥ in Theorem 1.L is assumed to be a Hilbert space, the
content of the Fredholm alternative can be considerably enriched. To wit,
the equation

ueV, Au—Tu=v

can be shown to be uniquely solvable for any choice of v in Vif 0 £ 2 €
BNZ, Z being a certain countable set of real numbers with no limit points
except possibly A = 0, whereas the range of the mapping w+— Aw — Tu
when 1 € X can be characterized in terms of the null space of the mapping
u+— Au — T*u, with T* : ¥V — V' defined by

(T*u, v)py = (u, Tv)p for u,ve V.

The proofs of the results stated in this section can be found in mono-
graphs on functional analysis such as those by H. Brézis [19] and A. E.
Taylor and D. C. Lay [144]; for what concerns in particular fixed point
theorems, we refer to D. Gilbarg and N. S. Trudinger [67].

1.2. Various Spaces of Smooth Functions

1.2.1. C* and C*-¢ Spaces

For D = R¥, C°(D) is the linear space of continuous real functions
on D. When u# = u(x), x € D is uniformly continuous on D, any non-
negative and nondecreasing function 7 on ]0, oo[ such that z(r) >0 as
r— 0+ and

lu(x) —u(y) | <z(x—y[) for x,yeD

is called a modulus of uniform continuity for u.

Let D be compact. It is known from calculus that functions from
C9%(D) are uniformly continuous on D. Moreover, C°(D) becomes a Banach
space with the choice of the norm

| lcopy = max |u;
D

convergence in C°(D) is called uniform convergence. A necessary and suf-
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ficient condition for a subset of C°(D) to be relatively compact is given
by the celebrated Ascoli-Arzela theorem, which states the following.

THEOREM |.M. A subset of the Banach space C%(D) is relatively com-
pact if and only if its elements are uniformly bounded in the norm of C*(D)
and admit a common modulus of uniform continuity.

For the proof see, for instance, A. Kufner, O. John, and 8. Fuéik [92].

C*(£2), with k € N, is the linear space of functions on £ having all
derivatives of order << k in C°(f2), and C=(2) = Mi.x CH().

Given a continuous function ¥ = u(x), x € 2, let supp v denote its
support, that is, the closure of the set {x € Q2| u(x) # 0} : C,5(£2), with
k a nonnegative integer or k = oo, is the linear subspace of C*(£2) con-
sisting of functions u such that supp v is a compact subset of £2. In
particular, an important subset of C,(R¥) is introduced as follows:
Let o€ C2(RY), p=0, @+ suppu B {an admissible choice being
p(x) = V=1 if | x| < 1, p(x) = O otherwise]. Set p,(x) = n¥p(nx)/
{ax 0(y) dy for x € R™, so that g, = 0, supp g, = B,,,, and (g~ p,(x) dx
= 1 (n € N). Each function of the sequence {p,} is called a mollifier.

For k€ N, C¥() is the linear space of functions in C*() which
can be continuously extended to £ together with all their derivatives of
order < k. It is clear that, if £ is bounded, C*(J) becomes a Banach
space with the choice of the norm

k
| o |cremy = Z Z | D™u |cog) »

=0 lx]=i

where we have used the multi-index notation. C=(£2) is the linear space
Pl CHD).

C.t(£2 U M), with & a nonnegative integer or k = co, is the linear
subspace of C*(£2) consisting of functions # such that supp u is a compact
subset of £ U I'. For k finite a norm on C.4#(£2 U I') can be defined in
the obvious way also when £2 is not bounded; however, C*(22 U I') is
not complete unless 2 is bounded and I" = 0£2, in which case CA(2 U I
= C*Q).

For 0 <38 <1 let

u(x) —u
e = sy SRS
TEY

whenever v is a function defined on a closed subset D of R¥. If [u];.p < co
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{so that u is uniformly continuous on D with a modulus of continuity
given by t(r) = [u],.pr*}, we write ¥ € C®¥D) and say that u is Hélder
continuous or Hélderian in D (with exponent 8) when 0 << d <2 |, Lipschitz
continuous or Lipschitzian in D when 8 = 1. If D is compact, a norm in
the linear space C%4(D) is defined by

Lat Jgo.omy = | # |goey + [#]an-

If w = u(x), x € 2, is such that its restriction « | belongs to C%¢(D)
whenever D is a closed subset of 2, we write # € C*%({2) and say that u
is Hélder continuous or Hélderian in 2 (with exponent ) when 0 << § < 1,
Lipschitz continuous or Lipschitzian in 2 when 6 = 1. (Note that these
notations and terminology are consistent with the above ones for {2 both
open and closed, i.e., 2 = &Y.) For k € &, CH%(2) [C*4(2)] is the linear
space of functions # € C*(2) [u € C*(2)] such that D=u € C%¢(3) [D=u e
C™*(2)] whenever | @ | = k. When {2 is bounded, a norm on C*3(2) is
defined by

[ oesay = |t |ora + |2|:k [Drul,.5.-
LemMma 1.1, Fork =0,1, ... and 0 << § << 1, C**(D), with 2 bounded,
is @ Banach space. For k = 0 the result remains valid if  is replaced by
any compact subset of B¥.

ProoF. Let {1,} be a Cauchy sequence in C*#(£2). Since {u,} is also
a Cauchy sequence in the Banach space C*((), it converges in the latter
space toward a function #. Let ¢ >> 0 be arbitrarily fixed, and let », be so
large that
[Diun-rp - Dx“n]d:ﬁ <€

whenever n > n,, pE N, |a| =k. As p - oo we obtain the inequality
[Dau - Dx“n]d;ﬁ < ¢,

which proves that u € C*4(2) and that u, — u in CK4(0).
The last statement of the lemma is at this point obvious. ad

REMARK. When £2 is bounded, by the Weierstrass theorem (see M. A,
Naimark [124]) the set of all polynomials in x;, ..., xy with rational
coefficients is dense in C%($2). This shows that C°(f3) is separable. So also
is C*() for k € N, since it can be identified with a subspace of a suitable
Cartesian power of C%((2).
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For 0 < 8 < 1, instead, C*4() is not separable. It is convenient to
stipulate the notational convention C*?= C* For k=0,1,... and
0 < & <1, Cr4() is not reflexive. See A. Kufner, O. John, and S. Futik
[92] and the references therein.

When £2 is bounded the following facts can be readily ascertained.
For 0 < & < 1 the product uv belongs to C®%({2) whenever u, v do, and

| 40 |go.803, < | 1 o83y | U [coi) -

For k=0,1,... and 0 <y < 8 <1, C&¥Q) g Ch»(d). (As a matter
of fact, this injection is compact: see Problem 1.4.) More delicate is the
question whether for k € ¥/

CH(D) o C¥140) (1.1

if 6 = 0. When £2 is convex, (1.1) is an immediate consequence of the mean
value theorem whatever 8 < 1; in particular, if A belongs to [CH4()]¥
and Q' = A(Q) is open, each function u = u’ o A, u’ € Ck4("), belongs
to C*¢(Q) with norm estimate

| 4okt < C| w' ey -

Note that the convexity of £2 can be dispensed with when § —= 0. However,
(1.1) is not true in general.

EXAMPLE. Let N=2 02 = {(x;, x,)) e R | —-l < x; < ], =1 < x, X
| x, |V2}. The function
_ flsign xp)xy®, 1 <@ <2, if x, >0,
ulxy, x;) = {0 otherwise

belongs to C'(£), but does not belong to C4(2) if af2 < 6 < 1.

When N == 2 all the above definitions and properties can be automat-
ically transferred from ®¥ to R¥-1, or even to &¥-1x {0}, provided the
latter is endowed with its relative topology.

1.2.2. Extensions

When dealing with a function ¥ = u(x), x € D < R¥, it may be de-
sirable to know whether v can be extended as a function of x€ D', D «
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D' € B¥, which keeps throughout D’ certain properties v has in D. To
clarify this requirement we consider the case when D is not closed, and
suppose that 0 ¢ DN\ D. Let {x*} ¢ D be such that | x*| tends to 0 in R
with | x" | > | x**|. If ge €°(]0,00[) is such that g{| x*|) = 1{(nx),
g > 0in 10, oo, the continuous function ¥ = u{x) = sin [g{| x )], x e D,
admits no continuous extension to D.

As the preceding example shows, in order that every uv € C°(D) admit
a continuous extension to RY it is necessary that D be closed. Remarkably
enough, this condition is also sufficient. Indeed, call # = ii(x), x € RY, a
controlled C° extension of u € C%D) to RY whenever 77 € C*(RY), @], = u
and supgw | #| = supp | #|; then we have the following theorem.

Tueorem \.N. If D is a closed subset of RN every function u € C%D)
admits a controlled C° extension to R¥.

This is a formulation of the Tietze extension theorem, a result in
general topology whose proof can for instance be found in K. Kuratow-
ski [93].

Let us progressively increase the amount of regularity to be kept
* under the extension procedure.

Call # = #{(x), x&€ R¥, a controlled C®% extension of y € C%%D),
0<d<1,toR¥ifis a controlled C® extension of » such that [@)s.zv =

{”]d;n .

THeOREM 1.2. If D is a closed subset of R¥ every function u € C*%(D),
0 <3 < 1, admits a controlled C%* extension to R¥.

ProoF. For x € RY set
v(x) = sup {u(§) — [uly.p | x — &%)
geD
Then supg~y v < supp u and v(x)|2 u(x) for x€ D, If v(x) were > u(x)
for some x € D there would exist £ € D such that w(§) > u(x) + [u]s.px

| x — &% which is impossible. Thus, v = u on D.
The function

#(x) = max {v(x), —sup | u|}, xec R¥
n

satisfies # =u on D and supgpy | 7| = supp |uw|. Let x, ye BRY be such
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that #{x) > @#(»). Then ii{x) = v(x) and
0 < lx) — d(y) < v(x) — v(y) = sup {u(é) — [ulan | x — £ 1%}
—sup {u(n) — [uls;p |y — 7 1%}
ned
Sulgpsup(ly—E1P—[x—¢&19
&eD
= ["]a;n |x—yl’.

(For the last inequality see Problem 1.6). The proof is complete. |
To proceed further into extension techniques we specialize with D = £
and introduce a useful terminology for the description of open portions I
of 052, as follows.
When £2' and £2'' are bounded open subsets of ¥ we say that a map
A: Q> is a C&° diffeomorphism, with k€ N U {0yand 0 << d < ],
if it is one-to-one and onto with

AQ) =07, Ae[Che(I))Y,  Ate [CAQ).

We say that I' is straightened by a C*¢ diffcomorphism A : U —~ B
if U is a bounded domain of R¥, UNadR = "I, A(Un 2)= B* and
A(I") = 8" More generally, we call I of class C%? if it is the union of
a family (which we can always assume discrete, and even finite if I’ is
compact) of open sets I'; straightened by C** diffeomorphisms A;: U;
— B; we call the family {(I';, 4;)} a C*% atlas on. I. If k € N the Jacobian
matrices of A; and A;~! are, for each j, (defined and) nonsingular, respec-
tively, throughout ¥; and 8. This means that, whenever x°€ I, there
exist a positive real number » and a permutation é; = x;, ..., {y = x;,,
of coordinate axes such that 'n Q,, with Q,=1&—r, &%+ 1]
X - X}y —r, &" + [, is the graph of a C*? function &y = i(£"),
and 2 N Q, = {(&, &x) € Q, | £y > A(E)}. Moreover, the unit outward
normal » is defined throughout I,

We can now return to the problem of extending a function w(x),
x€ Q. 1f supp u < 2 the trivial extension of u to R¥, defined as 0 in
RY\Q, obviously shares the same propertics of regularity as u indepen-
dently of the regularity of #f2. In more general situations, however, the
latter plays a crucial role, as is illustrated by

THEOREM 1.3. Let §2 be bounded with 012 of class C*? for some k € N,
d € [0, 1]. Whenever ' is a bounded open subset of RY such that 2 < ',
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every function u € C*4(Q) admits an extension ii to £ with i e Ck¥('),
supp i = £ and : ‘
| & |cregn < Cluforom,

C being independent of u.

Proor. We begin with suitable changes of variables near boundary
points. Precisely, we fix x° € 92 and denote by U a bounded domain of
R¥ such that x° € U, U N 812 being straightened by a C*¢ diffeomorphism
A : U — B. The function u’(x) = (u o A~)(x), x € B*, belongs to C*¢(B).

We extend u' across S° by setting

k+1

;"(x’, xy) = hz G’ (x', —xyfh)
=

for (x', —xy) € B*, where the vector {(C,, ..., Ci;y) is determined as the
unique solution to .

k+1 1 yi-1
):(__h_) Co=1 forj=1,..., k+1
A=1

{The coefficient matrix [(—1/A) '], ;_; .. 4+, of the above system is non-
singular, since it coincides with the Vandermonde matrix of the numbers

—1, —1/2, ..., —1j{k + 1).} Thus, u' € Ct*(E) with
—~ k+1 1 \an ,
D, x) = 3. (= ) "G —xalh)
for (x’, —xy) € B* whatever the multi-index a = (a,, ..., ay), |a| <k,
hence

| u’ [cesm < C | |cessny < Clulerag.

We now go back to the original variables. Let r be so small that
B,(x*) « U~ £2'. The function w(x) = (;’ o A)x), x € B,(x9), belongs to
Ck3(B,(x°)) with

| w |c=-l’¢M) < Clu|gesm

[see the observation following (1.1)]; notice that w = u on B,(x°) N .

By compactness 02 = \ L, I’ for some m € N, where each 7 is the
intersection of df2 with some open sphere B constructed through the same
procedure as the one above for B,(x").
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At this point we need the following result, which is said to provide
a partition of unity.

Lemma 1.4 Let w be an open subset of RY and for j=0,1 ... let
w; ©C w be such that w =2, w;, any compact subset of w intersecting
only a finite number of the w;'s. Then there exists a sequence {g;} ¢ C=(R~)
with supp g; € w;, 0<<g; <1, ¥Z,g; = 1 throughout w.

For the proof see Problem 1.9. An open covering {w;} of the re-
quired type can, for instance, be obtained by setting w, = w," and w; =
w}H\;},l for j = 1 whenever w; cc wj,, o =JZ, 0).

As a matter of fact, here we need the following straightforward con-
sequence of Lemma 1.4, corresponding to the case w = &% for a suitable
choice of wy,, cc R¥\D, pe N:

COROLLARY. Let D be a compact subset of RY such that D < %, w;,
each w; being a bounded open subset of RY. Then there exist g, ..., gn
€ C(R¥) withsuppg; c w;, 0<g; < |, ¥, g; = | throughout D.

Wetake D=0, o, = Bifori=1,...,m 2 55w, > N2, B,
and set

7i(x) = (ugo)(x) + i wig)(x), xe

where each w' is the function from C"»"(F) constructed through the pro-
cedure previously illustrated for w [with the understanding that products
(/2;)(x) are defined to be 0 for x € 8\ supp g;]. The function # is the
sought-for extension of u. ' a

REMARK. Since £2' can be chosen convex, an immediate consequence
of Theorem 1.3 is that (1.1) holds for ke & and 0 << 8 < | if 82 is of
class C*.

1.2.3. Traces

Let 0<<3 << and assume 2 bounded, I" not only open but also
closed.
Every function u € C%%(2) admits a trace «|, on I, u|,. belonging to
C%¢(I') with
| ulp |codiry < | ¢ [oo.teiny-

In fact C%%(I") is exactly the space of traces of functions from C°4(3)
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since any function € C*(I") admits an extension u € C*4(2) (n = u[,)
with -
| |ee = [ 7 \coairy

(see Theorems 1.N and 1.2).

Now let k€ A and assume I" of class C*%. We define a linear space
C*4(I'y as follows. If {(I, A}y, ..n» nE N, is a CH? atlas on 1, a
function 5 = n(x), x € I', belongs to Ck4(I") if, for each j, no (A;)|s
belongs to CH#(S%) (8° being endowed with its relative topology); note
that the unit outward normal » belongs to [C*¥-14(1M)]¥.

It is clear that the traces on I' of functions from C*4(£2) belong to
C*3(I"). Vice versa, we have the following lemma.

LeMMmA 1.5. If 5 € C*8(I') there exists u € CH4($2) such that u|, = 7,
u = 0 near 3Q2I'" if the latter is not empty.

Proor. Let x° ¢ I'; for some j. The function
uj(x'l x‘\.’) = (1? o Aj_l)(xt) 0): (xfa xA\’) € B

belongs to Ck8(B).

Let B(x%) cc U;, B,(x°) N (@2 \T") = . The function wyx) =
(50 A))(x), x € B,(x°), belongs to C*4(B,(x%)), and w;lp w0~ = Nlp,eonr-
As in the proof of Lemma 1.4 we can reach the sought-for conclusion
by appropriately choosing an open covering of I" and the corresponding
partition of unity. a

By Lemma 1.5 the definition of C%4(I') does not depend on the par-
ticular choice of the C*? atlas on I'. Indeed, C*4(I") could equivalently
be defined as the linear space of functions n = u|, with u € C*¢(92), u = 0
on dOQN\_I". Moreover, a norm on C%4(I") is provided by

[ 7 loksim = inf{l # oo | ulr = 9, ulyen = 0}

Since }-|gv.8m is a2 norm on a Banach space quotient, CH4(I") is a
Banach space (see Theorem 1.H). We leave the details to the reader.

1.3. Lebesgue Spaces

We assume that the reader is familiar with the basic theory of Lebesgue
measure and integral, such as can be found, for instance in W. Rudin
[133]. We write a.a. and a.e., respectively, for “almost any” and ‘‘almost
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everywhere” with respect to Lebesgue measure measy on B¥ (We shall
often write | £ | for measy £.) Let u be a2 measurable real function on £2.
We identify u with the equivalence class of all functions on {2 which equal
u a.e.; we attribute a pointwise property in £ or £ to u if that property
holds for a representative of the equivalence class of u. We shall mostly
write [, u dx instead of [, u(x) dx.

For u measurable in £2 denote by {w,},.4 the indexed family of all
open sets w, < £2 such that ¥ = 0 a.e. in w,. The open set w = J,o,4 w,
is the union of a countable family of compact sets, and each one of these
can be covered by a finite number of the w,’s: hence, @ = 3y~ @, for
a suitable sequence {«,} < 4, and v = 0 a.e. in . We call 2w the
support of u and denote it by supp u. For u € C°{2) the present defini-
tion of supp « is rapidly seen to coincide with that of Section 1.2.1.

1.3.1. L? Spaces over {J

For | < p < oo we denote by LP(Q) the linear space of measurable
functions u on £2 such that |« |? is integrable over £2, and set

1p
lulp0 = U |u|"dx) .
l

Let
esssupu = inf{Ce R |u<C ae. in 2},
a
ess inf u = — ess sup (—u).
a 0

We denote by L=({2) the linear space of measurable functions v on @
such that ess sup, | u} < oo, and set

|4 )ooro = ess sup L ul.
n

Note that | U |e.y = | U |z if £2 is bounded and we C*(D). For |1 <
P < oo we attribute the same meaning as above to the symbol |u|,.qg
also when u is an R¥-valued function from [L?(£2)]¥. Moreover, for x°
€ RY and 0 < r < 0o we write | u |5.,0, instead of | w5 00, | U |p;20r,+
instead of | |p.5,+,9, and (usually) depress the dependence on x° if
x*=0,onrifr=1.

Whatever p € [, o0], u+> | u |,., defines a norm on LP({2), whereas
u, v — [ouv dx defines a scalar product in L*(£).
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If Q is bounded and v € I~({2) we have

1 1p '
e <1

as well as
(j lul? dx)"’ > (1 — )} |solmeasy{x € 2] [u(x) | = (1 — )] u g}
o

for & > 0. Therefore,

1fp
|t ooy = lim U |u1de) . (1.2)
*]

proo

With every p we associate the conjugare exponent p’ defined by

pP=pl(p—1) if 1l <p<oeo

3

il

i

0 if p=1,

I

pP=1 if p=o0.

The next result is Hdélder’s inequality; it contains the Cauchy-Schwarz
inequality when p = 2.

THEOREM 1.0. For } < p << oo let ue [P(§2) and v L? (). Then uv
belongs to L'({2), and

luv |0 < | wlpalvlpa.
More generally: let u;& I?(), 1 < p;<<oo, for i=1,...,n, with p!

=p it 4 B S (B =0 if py= o). Then u=uy--- uy be-
longs to L?(12), and

| u |p;n <y 1::1'.1') <oy Ip,.;ﬂ-

For what concerns structure properties of LP{{2) we have the following
theorem.

TueoREM 1.P. For | <\ p < oo, LP(§2) is a Banach space with respect
to the norm 1 > | u \,.o; L¥(82) is a Hilbert space with respect to the scalar
product u,v— [quvdx. LP(2) is separable for 1 < p < oo, whereas
L=(82) is not. LP(82) is reflexive for | << p << oo, whereas L}{(£2) and L=()
are not.

Note that LP(2) c L7(2) for | < g < p < oo if £ is bounded.
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The next result relates convergence in L?(£2) to convergence a.e. in 2.

THEOREM 1.Q. Let | < p << co and suppose that {u,}, converges toward
u in LP(82). Then there exists a subsequence {u, }, which converges 10 u a.e.
in 2; moreover, there exists u* € LP(2) such that |u, (x)| < u*(x) for
aa. x€' 82, any ke M.

Passing to dual spaces we have the following theorem.

THEOREM 1.R. Let Fe [LP({D)), | < p << oo. Then there exists f€
L¥'(82), with | f |0 = | F ey, such that

(F, vy — L fods  for ve L2(Q). (1.3)

For | < p < co we identify [LP(£2)]' with L*'(£2) by reformulating
(1.3) as F = f. Note that L!(£2) c [L=(£2)]’, but there exist bounded linear
functionals F on L°(£2) such that for no choice of fin L}(£2) (1.3) holds
with p = co: take for instance

(F, vy = v(x") for v € C,~(92),

x%¢ 2, and utilize the Hahn—Banach theorem to extend F as an element
of [L=(£2)} (see Problem 1.10).
Finally we have the following theorem.

“THEOREM 1.S. C,°(82) is dense in LP(2) for | << p < oo,

For the proofs of Theorems 1.0-1.S we refer to H. Brézis {19].
We denote by LE.(£2) the linear space of measurable functions w on
£2 such that u|, € LP(w) whenever o cc £2.

1.3.2. Approximation by Corvolution in C°, C%¢, L?

If ue Li,(f2) and p € C=(R¥) with supp p < B, for some r we de-
note by g * u the comvolution of ¢ and u, that is, the function

(0 * w)(x) = j olx = y)uty)dy

Bz

= .[ u(x — Ydo(y)dy for xe 02, dist(x, 852) > r;
B,
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the definition of g * u is trivially extended to the whole of £2 if dist(supp &,
92) > 2r. [For S, §' — R" the symbol dist(§, 5') denotes inff| x — y| |
xe S, ye Y]

LemMMA 1.6, Let u € Lie(£2), 0 € C°(R¥) with supp ¢ S B,. Then
(e * u)l; € C=(@) whenever v < 2 with dist(w, 02) > r, and

D (e » u)(x) = [(D%) *u](x)  for x€®

whatever the multi-index «. Moreover, p * u € C,°(2) when dist(supp u, 042)
> 2r.

PrOOE. It clearly suffices to prove that, for x € w, (g * ¥)(x) is dif-
ferentiable and verifies

d dp
@ r 0 = (5

i

)0,

i=1, ..., N. We arbitrarily fix e R¥ with | 4| sufficiently small and
apply the mean value theorem:

le(x+h—y)—o(x—y)—h Volx—y)|
<|h|e(lAa]), e(r)—0 asr—0t

Thus,
(e *u)(x+ h) — (¢ *uw)(x) — [(h - Vp) *ul(x)|
<twlednp | o uo)ldy
and the conclusion is patent. d

We now specialize with convolutions p, * u, called regularizations of
u, where {g,} is a sequence of mollifiers (see Section 1.2.1.).

LeMMA 1.7. Ler ue C°(2) and w =< 2. Then for n large enough afl
Sunctions (p, = w)|; have the same modulus of uniform continuity as u|5: and
satisfy

162 % ¥ ooz = | # [y

if wcc o' cc Q2; moreover,

(e, * W)z — ulg in C°m) as n — oo,
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ProoE. The statement about the modulus of uniform continuity and
the norm estimate are obvious.

Let &€ >> 0 be arbitrarily fixed and choose 6 > 0 in such a way that
B,(x) c w' and

|ufx —y) —ulx)| <e
forxem, y& E. Since

(00 * 0)(x) — u(x) = j [w(x — ») — u()]en(y) dy

Byn

and the right-hand side is majorized in absolute value by € [, 0,(y) dy
= ¢ for 1{n << 4§, the conclusion follows.

A simple consequence of the above is that C=(£2) is dense in C*(£2)
for k=0,1, ..., hence also in LP{{2) for | << p << co by Theorem 1.S.

If « is Hélderian or Lipschitzian in £ we can improve Lemma 1.7
as follows.

LEMMA 1.8, Letue C%3(2),0 < § < |, and w == Q. Then, whenever
wecc w cc 0

[on * ulse < [ulsa?
for n large enough, and

(o » )lz — ulz in C%(@) as n—>oc0  for 0 <y

ProoF. The estimate is obvious. The last statement follows from the
compactness of the imbedding C°%&) < C*¥(@) (see Problem 1.4). [

REMARK. In the setting of Lemma 1.8 we can estimate the rate of
convergence of (g, * u)|; to u|; in C%(®@). Namely, for n large enough

| (@n * )(x) — u(x) | < j lu(x — ») — u(x) | ea(y) dy
sj (s 5 0n(y) dy = n*[ulsiz
Bl.”l

for x& @. We can also majorize the rate of divergence, for & < I, of
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| n * t|guezy: indeed (assuming [zvody =1),

| (0n * u) (x) | = nn® 'B RS —y)lu(y)dy[
= nn¥ [ u(x — y)o,,(ny) dyl
J Bya
— 'B [u(x — ») — u(x)les, () dy‘

<n| Wl o " dy
Byn
for xew, i=1,..., N, hence
| en * 4 e < Cn'=% | u feotiahy
Passing to Lebesgue spaces we have the following lemma.

LEMMA 1.9. Let ue LE(D), 1 <p < oo, and w << Q. Then, when-

T ever wcc o e 2,

l Cn *u 1p;w S | u ];p;w’
for n large enough, and

(o, * u)l, — ul, in LP(w) as n— oo,

Proor. When x € w and i/n << dist{w, dow’) Holder's inequality yields,
for p>1,

b
(en * WX P < U on’?(x — YD (x — ) |u(p)| dy]

Byutz)
pip’
< me alx — ) lu(y) P dy UB,,,.(;) ea(x — ¥) dy]
— [ e =» o),
so that
| 1erwwpa<| wore | ac—na<| wwry

whatever pe [1, oof.
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Fix € >0 and let u; € C%(w') be such that |u — u, |, << £ (see
Theorem 1.8). Then
|9n *u— ulp:wS |9u* (u - ul)lp;w + |ul_u|p;m + |9n *ul_ullp;w

2wy — tper + max | g, xuy — uy | | supple, * 1)) U supp uy [V

=< 2 + max g, * 4y — uy | | supp(o, * ) U supp u, |7

by the preceding norm estimate, and

limsup |g, * v — ul,, < 2¢

n-»00

by Lemma 1.7 with u replaced by u,. 1)

REMARK. When £2 is bounded and ue C*¢(2), 0 < 4§ < 1, the norm
estimates and the convergence results of Lemmas 1.7 and 1.8 remain valid
with w and w’ replaced by £2 provided p, » u is replaced by p, » 4, i being
any controlled C%¢ extension of u to R¥ (see Theorems 1.N and 1.2}. An
analogous consideration can be made for Lemma 1.10 if v € L#(f2}, also
if £2 is not bounded, provided ¢, * u is replaced for | R"\ Q2| > 0 by
0n * i, where & is the trivial extension of u to RY.

Lemma 1.9 enables us to give an L? counterpart, known as the Fréchet—
Kolmogorov theorem, to the Ascoli-Arzela sufficient condition for relative
compactness in C°({2).

THEOREM 1.10. Let & = LE.(2), 1 <p < oo, be such that

SUP | U |y << 00 whenever o' cc £2.
ueF

Fix w cc $ and denote by F |, the family of restrictions to w of functions
from & F\, is relatively compact in. L?(w) if for every € > 0 there exists
8 =0, & < dist(w, 892), such that

_[|u(x—h)—u(x)|vdx<er forue F he BY  with |h] <.

PrOOF. For each # large enough the family &%, = {(¢, * w}|;  u € F}
satisfies the assumptions of the Ascoli-Arzela theorem, since

SUp | o, * u Jous << SUP | U |10 | @0l oo(Ey
ued ue
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and

sup | (9:1 * u)(x) - (Qn * u)(y)l S |x 7y| lBaX I Vgnl sup |” |l:w’
ue. 7 wed

Byya

for x, y € @, with @' =|Jzg Byu(x). This means that &%, is relatively
compact in C%a@), hence in LP(w). Let £ > 0 be fixed, and let {u,™, ...,
ui’} © LP(w), m, € M, be such that, whenever u€ 2 | g, *u — u™ .,
< ¢ for some i. Let € & If x € w and n > &1, § = d(¢g), we have (by
using Holder’s inequality as in the proof of Lemma 1.9)

| (on * W)(¥) - u(x) P = U (w(x — y) — u()lea) dy|”

By

< j lu(x — ¥) — u(x) P 0a () dy,
Bh’ﬂ
hence

st — sj en(y)dyj lu(x — ) — u(x)|Pdx < &

Bin

Thus, whenever 1 € & there exists some u"™ such that | u — u;" |, <

- 2¢. This proves that %, is relatively compact.

1.3.3. L? Spaces over I'

Up until now we have considered L? spaces only over open subsets
of R¥. When N > 2 we can turn to measurable functions defined on open
subsets of R¥-1 or even of R¥—'x {0} if the latter is endowed with its
relative topology as well as with the (¥ — 1)-dimensional Lebesgue mea-
sure measy_,; we write a.e.[N — 1] for ““‘almost everywhere with respect
to measy_;.” We can define the Banach space I7(S9), 1 <p < oo, of
all measurable functions n on S° such that | % |P is integrable over S°
and set

1/p
19 |puo = (j Inl”dx‘) .
g0

We can also define the Banach space L=(5%) of all measurable functions
% on S°such that | n | < Ca.e. [N — 1]in §° for some C € {0, oof, and set
| 9 luss0 = inf{C € [0, 00[ | | | < Cae. [N — 1] in S

The matter becomes considerably more delicate when §° is replaced
by a “curved surface” of B¥, This is the situation we are now going to
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deal with. More precisely, we are going to consider the case of a C? (open
and) compact portion I" of #{2: we mention at the outset that, here and
throughout most of the sequel, the class C' could be safely replaced by
the class C%1, as in J. Nedas [127], at the price of a few additional tech-
nical difficulties.

Let {(I;, A;)};-, . be a C! atlas on I

Suppose that I < I' is such that measy_,[4;(J" N I7;)] (exists and)
vanishes for every j. I is then said to be a zero subset of I'; a property
that holds at all points of I')\J", Iy being a subset of I', is said to hold
ae. [N—1]in I}.

For | < p < oo we write € L?(I") if 5 is a function on I" (to be
identified with any other such function that equals it a.e. [N — 1] in 1)
with %o (A, )|e € LP(S°) for every j. For € L*(I") we set

|9 Jwir = inf{C € [0, 00[ | | | < C ae. [N — 1] in I},

We now define an integral over I" through the following procedure.
We first consider all (¥ — 1}X (N — 1) submatrices of the Jacobian ma-
trix of A;7(x’, 0), | x' | << 1. The sum of the squares of their determinants
is a strictly positive continuous function of x’, whose square root we
denote by H;(x"). Next, we introduce a partition of unity {g;} relative to
the open covering {U;} of I', U; = A;7(B), and set

i=1

Ln do=% e @ leH; b (1.4)

for n € LY(I).
Let | << p < oo. For y € LP(I') we set

e = ([ 1nlrdo)”

LemMma 1.11. There exist two positive constants C,, C, such that

Cilalpir= Z no(A;77)se
=1

e
S C'z | n |;;I‘

p.S°

whenever n € LP(IM), 1 <p < oo,

Proor. Since the nonnegative function (g;| % [P) e (A;7')|s» vanishes
outside A;,{I'; N I7), the change of variables formula for (¥ — 1)-fold
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Lebesgue integrals yields

[ @immeaiads = [ @lne)o 4 ymnry d’

s AfF ATy

=C (glni®)o (Ai"l)h,mnrﬂ dx’

JAgrnry

<C (&7 P) o (A7) agerenrpHidx’
Jagrinry

<cC S°(8i|ﬂ|’)°(/1i—‘)|s°”idx‘-

o

Thus,
m
Lo |n]|Po (A Vg dx' < C }:1 L (8:|n1P) o (A )| oH  dx
- 0
—c| Inpds,
r

and the right-hand side inequality follows from summation over j. The
. left-hand side inequality is straightforward. d
L It is clear that |-|;.r is @ norm when p = co; as for | < p < co,
it suffices to write |n 5., 7€ LP(I"), as a sum 211, | %, |5.50 with #,',
ov., ' € LP(S%). The same argument also shows that, by the (N — 1)-
dimensional version of Theorem 1.0, Hélder’s inequality is still valid with
£ replaced by I

We can now collect all the results about the structure of LP(I") that
will be needed in the sequel.

TueoreMm 1.12. For 1 < p << oo LP(I') is a Banach space with respect
to the norm n— |\ n |p.r; L) is a Hilbert space with respect to the scalar
product 3,0 — [ .m0 do. Convergence of a sequence in LP(I") implies con-
vergence of a subsequence a.e. [N — 1] in I'. Finally,

() < [LA))

for 1 < p < oo,

ProoF. To prove completeness at the same time as convergence a.e.
[N — 1] on I' of suitable subsequences, consider a Cauchy sequence {7,},
< L#(I"). Each sequence {n, o (A, )]s}y, =1, ..., m, is then a Cauchy
sequence in L?(S% by Lemma 1.11 and converges in L?{S% toward a
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function 7;" by the (N — 1)-dimensional version of Theorem 1.P. As a
matter of fact, the {N — 1)-dimensional version of Theorem 1.Q shows
that we can find a subsequence of indices such that {n, o (4;!)|s]}, con-
verges to 7;’ ae. [N — 1] in S° for j=1, ..., m. Let Iy be the subset
of points x € I'; such that 7, (x) does not tend toward (7;" o A;)(x): it is
clear that measy_, 4;(I';') = 0, hence also that measy_, A;,(I';y N I}) =0
for every i since A,(I'; N I'}) = A;0 A7 o A;(I'y N I). This shows that
Nl ry tends toward n;" o (4;)},, a.e. [N — 1] in I. But then Nndrinry tends
toward both functions 5y o (4))| s, and 9/ o (Al ryar, a-e. [N — 1] in
I’ I';. This means that a function 5 € LP(f") is defined a.e. [N — 1] in
I by setting n =, o (A,-)lpl on Ij. Again by Lemma L.11, 5, =% in
L?(I"); moreover, n, —n a.e. [N — 1] in I’

The statement concerning p = 2 is obvious.

The last statement of the theorem is proved as follows. The linear

mapping
f l—rj nddo  for B e I2(I)
r

defines an element of [LP(I")]’, whatever the choice of n e L*'(I'), by
Holder's inequality. If 4 € LP(I") is such that

J mds=0 for 8e Lo(I),
r

then in particular

| 1npas—o

r

with the choice of 6 = |  |P~%*5 where % does not vanish, 8 = 0 elsewhere,

so that n = 0. These considerations prove that LP'(I') < [LP(])]. 1]
It is obvious that C°(I) g LP(M o LI if | € g < p < oo,
Let ne L?*(I"), | <p < co, and take ¢ > 0. For every j=1,...,m

let ¢,/ € C'(S®) be such that
[ 9o (A7)l — &f lpise < &

We extend trivially each function {; = {; o (4;)] s, to the whole of I,
Then g;|-{; belongs te C(I"), and

| gim — E)I5:r < Cllg;(m — &l o (A, M)se ;90 < Ce?
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(see the proof of Lemma 1.11). This shows that

m

‘n ~ Y &it;

I=1

.m
= Z | 851 — &) |pir <= Cé,
Pl i=1

and we have the following lemma.

Lemma 1.13. For | < p < oo, LP(I") is the completion of C'(I') with
respect to |-|,.p.

REMARK. Lemma 1.13 can be utilized to prove that the definition of
[ 7 do, hence also the definition of L?(I"), does not depend on the par-
ticular choice of the atlas {{I';, A))}—nor, a fortiori, on the partition of
unity {g;}.

Indeed, let 5 = u|, for we C (2 U I'): clearly, supp u lies in £’
U (82’ n I') for some bounded open set £’ < 2 with 32’ of class CL
Then the divergence theorem of advanced calculus vields

J mide = J g, dx.
r 0

" This demonstrates the required property of independence for [,uv'do
when n € CY(I"), hence also when % € C°(I") by density. Replace 5 by 73,
which belongs to C(IM) if n does: then

Jrn do = ﬁ"l Irn(Vi)z .

and the required property holds for [,#% do when n € C(I") and finally
when n e LY(TI).

The same observation applies to the notion of a zero subset IV of I
indeed, measy_,[A;(J" N I;)] = 0 for every j if and only if the charac-
teristic function yr. of I belongs to L}(I") with [,y do=0.

1.4. Morrey, John—Nirenberg, and Campanato Spaces
Throughout this section we assume {2 bounded.

1.4.1. Definition and Basic Properties

Let u be a function 2 —>R(Q — RN) Ifue LE(Q) (u € [L’(Q)]N) and
w 7 (7 is an open subset of 2, the scalar (the vector) |w | [, wdx is
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denoted by (u),. A straightforward computation shows that the function
Jolu— 4[*dx of A€ R (A€ RY) attains its minimum at 4 = (u),. There-
fore [, | u — (u),, |* dx increases with w. We write ()0 , instead of (i)pzn 41,
depressing the dependence on x® if x® =0. For 0 < 4 << N + 2 we set

1/2
[u]z,,,:ns(sug g-ﬂj |u—(u),o,g|=dx) .
zVeZ alz®,al
0<p<oo

Note that, whenever 0 << r < p <Z oo,

g‘f‘-[ L — (o, [ dx < rnj Lu 2 dx
[+1E ] nlz0, ¢l

<r| lupan
n
hence

[“]E.,u-.n S r# | u lg;ﬂ

+ sup Q—FJ Ju — (U)0,, [ dx.
%10 oz )
0<e=r

This circumstance will often be tacitly utilized. For instance, if w: 2 — R,
supp u < {2 and £ o £, then the trivial extension &# of v to £2' satisfies

[ﬁ]z,y:n' S C(l u lg:n + [H]E,,u;n)lm

with C dependent on u only through dist(supp u, 882).
If [4]), .., is finite we set

|t lg,0 = (L4 |50 + [W]E )™

We now specialize with scalar functions and denote by L*#(£2) the linear
space of function we€ L*($2) such that [u],,., << co.

LEmMa 1.14. For 0 < u < N+ 2, L2#(82) is a Banach space with
respect 10 the norm uv— | u g, 0.

PrOOF. We need only prove completeness, Let {u,} be a Cauchy se-
quence in L2#(£2). Since {u,} is a Cauchy sequence in L2({2) as well, it
converges in the latter space toward a function «. Let € > 0 be arbitrarily
fixed and choose n, € N in such a way that

[un+p - un]!.ﬂ:ﬁ < €



30 Chapter 1

for n > n, and p € . Whenever x° € £ and 0 < ¢ < oo we have
o L o R S T
Qlz%,¢]

< 29"‘.[ | =ty — (4 = Unip)eo o [* dx
20z, e]

+ 2{“[ | Un — tinsp — (p — Unipos,e [* d

20z%,01
< 29"‘I bu — tpp 12 dx + 262,
a
hence also

e”‘J L=ty — (e — wden o F e < 262
o[z%, 01

after letting p — oo. By a passage to the supremum over x° and g we
obtain

[“ - “n]z,,«;a S\ffe,

so that uw & L2#(£) and u, - u in L2#(2) as n —co, 1
For what concerns the behavior of functions in L*# spaces under

suitable changes of variables and under extensions we have the following
lemmas.

LEMMA 1.15. Let 2 he convex and let A : 2 — £ be a C! diffeomnor-
phism. Then each function u= ' o A, v’ € L2#(2"), belongs to L*#{§2).
Moreover,

|9 i < Clad Lz
with C independent of u'.
ProOOF. Since £2 is convex there exists a constant K such that
| A(x) — A9 | < K| x -- x°| for x, x° € .

Therefore,
A(2[x° o)) = Q'y°, Kol

for x°€ 0, y* = A(x?), 0 < g < oo. Let u’ € L2#(£2'). Then u € L*2),
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and
j | u(x) — (o [ dx < [u(x) — (4")yo.k, |1? dx
o1z%,pl J Qlz°,01
= [u'(¥) — (W) & [ (y) dy
J A28, 81}
< [ W' (¥) — (&) &, [2T(y) dy
J ', Kl

< (max J)Krgu' |2 .o,
64
where J denotes the absolute value of the Jacobian determinant of A1
and (W), g, = (W)gnye, k0 - g

LemMma 1.16. Let 2 = Bp*, 0 < R < oo, If u€ L*#(Bg*) its extension
@ to By defined by

ﬁ(xr’ Xx) = u(x', _xN) fo‘r (x’: '—x.N) € BR+
belongs to L%#(Bg) with
| @ |2.“:BR S‘\/T| u Iz.,u;B_.,*--

Proor. It suffices to utilize the inequalities

h[]w—mwhmmsj & — (), | dx
riz%.0

BRrlz0,.0)
< 2I |4 — ()o, [2dx
Bgtlat,0
for x°€ Bg*, 0 << p < co. {Note that, when (x', xy) € Bp[x®, o]\ Br*,
then (x', —xy) € Bp*[x" p] since
| —xy ~ x4 | < | xxy — x5°|
if xx°>0, xy <0.} 0
The above function 7 is called the extension by reflection of u.
1.4.2. Equivalent Norms and Multipliers

It is obvious that u|, € L3#(w) if u € L24(2), w being an open subset
of R, and that L} Q) o L2#(f) if 0<u < 1< N+ 2. Moreover,
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L2202} is isomorphic to L¥Q), and LP(Q2) c L2#(2) for p > 2, p =
N(p — 2)/p by Hélder’s inequality. To obtain deeper properties of func-
tions from L*#(f2) we introduce the following definitions. We say that
{2 has the property (A) if there exists a positive constant, which we denote
by A, such that | 2[x®, o] | = Ag” whenever x°¢ £ and 0 < p < diam 2
or, equivalently, 0 < g <r for some r < diam . (For § c R¥ the
symbol diam § denotes sup{|x — » ]| x, y€ §}) When N =2 we say
that £2 has the cone property if there exists a bounded open cone. X such
that each x° € 392 is the vertex of a cone H#{(x° < £ congruent to .%%.
The cone property clearly implies property (A). On the other hand, £ has
the cone property if 952 is of class C.

To see this we fix x" € 3£ and operate a permutation &, = x, , ...,
&y = x,,, of coordinate axes in such a way that, for some positive constant
r which can be assumed independent of x% the set 492 n @,, with

Qr=16"—r 50+ r[X-- - XS — 1, E° L[ (G0 =x))

is the graph of a C! function &y = A(¢) and R N Q, = {(¢, &y) € O, |
&x > A(£")}. Then for some constant C > | independent of x® the cone

{((.6)eRF || & — & | <rC?, C1E — 8| <&y — &< 1)

lies in £2.
Note that a hemisphere has the cone property.

THEOREM 1.17. Let £2 have the property (A).
(i) If 0 < u < N the mapping

1/2
uH( sup 9‘“J ut dx) (1.5)
%47 0200 ol
0<poo
defines @ norm on L:#(£2) which is equivalent 10 \-|; .o
) If N<pu<N+2 L2(Q) is isomorphic to C*G) for 6 =
(e — N)J2.

The proof of Theorem 1.17(i) relies on the following results, which
will again be useful on several future occasions.

LemMMa 1.18. Let @ and @ be nonnegative functions, the first one defined
on some interval 10, R, the second one on the half-line 11, co[. Let 8, y, K
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be real numbers satisfying B, v > 0, K > 1. Suppose that there exists a
positive function H(s), s > 1, such that H(s) < R and

#(0) < KL o) + 0705 (1.6)
whenever

0 < p < r<< H(s), rle <s.
Then, given any e € |0, 8 — y(, the inequality

f—e K(ﬂ*ylh

#(0) < K S 0(r) + o BK") iy —

is satisfied for 0 << g < r << H(K") without any further restriction on rfp.

Proor. Fix e€]0, A — »[ , re 10, H(KV)), p€ 10, r{. Setting 5=
K > | we denote by k the first nonnegative integer such that s¥+1 == r/p
and put

0; = os* for i=0,1,.. k.

We write (1.6) with p replaced by g;, r by p;y,;, and obtain

@(e;) < KsPp(0;41) + 0 D(s),

hence also

k-t
plo) < (Ks?)p(o:) + o .Z; (Ksy—#)ib(s)

by iteration. To estimate ¢(g,) we apply €1.6) with o replaced by g, and
obtain
plox) < K5t £ g(0) + s7igd(s).

Summing up,

k
#o) < K1 L) + g2 Y, (Ko9) (),
Since
K¥ = s < r¢fpe
and

k
2. (Ksr=P) < (1 — Ker=0)~
= = (1 — KWy,

the conclusion is patent. i
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PROOF OF THEOREM 1.17. Step 1: Proof of (i). Let x°€ §, 0 <o < r
< diam 2. Whenever u € L*#{{2) the inequalities '

j uadxszls:'[xmen|<u),«.,|=+2j lu — (), 2 dx
o[z, r]

21(=°,

< 219[x°, o] | | 21x°, r]r‘L utdx + P2uly o

(2,7}

show that the function @(g) = [aue.q 1 dx satisfies (1.6) with @(s) =
2[ult .05, 8= N,y = pwand K> 2| B|/A [where property (A) has been
utilized together with the inequality | Q[x% p]| <| B, (x°)| = | B| ¢¥].
If we simply divide by o* at this point we do not arrive at the required
bound on p~*#@(g) as ¢ varies near 0, because of the restriction rfp < 5.
But Lemma 1.18 applies: by choosing e = N — u and r = diam 2 we
obtain

o) < C(lu ko + [Wh,.0h

hence

sup Q‘FJ udx < Clulz,g.
%3 2020, )
0<p<o

On the other hand,

[ i @aras| e
01z2,0) Q[z%,)

hence

|30 < C sup g‘ﬂj u? dx.
0%l n[z%,0)
0<p<oo

Note that the proof of the last inequality did not utilize property (A).

Step 2: Proof of (ii). Let u € C*% Q). Whenever x°€ ( and 0 < p
< oo, the integral mean value theorem yields

| u(x) — (U)p0,, | < [uly.52%°

for x € 2[x° p]. Thus,
jw = g I < B2 | 9L, ]

and C%%(D) g L*#(Q); here property (A} has played no role.
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Vice versa, let ue L3#(2). Whenever x°c £ and 0 <r, <r, <
diam £ we have

| ()oo,e, — (@)s0,0y 12X 2(] 2(x) — (@dpor, P+ | u(x) — (W), 1),
hence

|(u)z°,r1 - (u)z",r, Il

<[ @ [ @, 1)
A Ol20%,7,) 129,11
SOV + Ul g (.7

after integration over 2[x°,r,].
Now let p € J0, 2 diam 2] be arbitrarily fixed. From (1.7) with r, =
p2-"1 and r, = p2%, i€ N, we obtain

F ()0, qa-ctrnr —— ()9, g9t | < C2MN—12U=NLY], o

and therefore
—A—

1
| (), gan — (o gars ] < COMN/2 S QicN—pilaguu-Miafy], g
=0

< O],

for h < k. This shows that {(u). ,.-1}; = R is a Cauchy sequence, hence
a convergent one: its limit #(x%) is clearly independent from the choice
of g, since (1.7) can be applied with r; = 52-% and r, = p2% whenever
0 < g < p. Thus, :
#(x%) = lim (¥),.,
m+

with

| (g, = x| < oM, g .8

for 0 < r < diam 2.
By the above procedure we have defined a function 4 on 2. From
(1.8) we first of all deduce that

| d(x) 1< C[u]z,p:a + | (u)z,d[amn 1
hence that i is bounded in 2 with

sup ] < Clulyua- (19)
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Next, let us prove that & is Holderian. Let x, y€ £ with R=|x — y|

< (diam £2)/2. Then (1.8) yields

[d(x) — a(y) | < 1(u)2n — Ax) | -+ | @)z en — (Whyer| + @)y 20 — d(¥))
< Clu)y, ;@R 72 - | ()00 — (U)yser|-

On the other hand, the inequality

I (”)z,zll - (")v,:h’.‘ <_: | (")z;zn - u(§)| -+ I"(E) - (")y.zh‘.[
yields

| Waar ~ @)yar ]! < 241RH | E |**[(2R)-ﬂ lu— (), on|? dE

0Lz, 2R)

+ @R[ Ju— yanl ]

2y 2R1

after integration over the set £ = 2[x, 2R] N 2[y, 2R] which contains
0{x, R] and therefore satisfies | £| > AR¥. Thus,

[ (W)z,28 — (¥)yar| < Clulp .o R¥¥12,
and finally
| @#(x} — d(y) | < Cluly e | x — ¥y |%

For | x — y] > (diam £2}/2 we obtain instead

. . diam 2 \~¢
190 = 80)| < Clulaio < C(-F) [ ulaal x = 1

by (1.9).

We have thus proved that &€ C™%(2) with | & |e.t3 < C| 4 |3 4in-
To complete the present proof we need only take into account the Lebesgue
theorem, which ensures the convergence a.c. in £2 of the function x — (), ,,
as r — 0+, toward (a representative of) u: thus, i is nothing but (a repre-
sentative of) w. d

REMARK. By Theorem 1.17, if g < N Lemma 1.16 remains valid for
the extension &(x', xy} = ——u{x’, —xy) for (x', —xy) € Bg*.

Theorem 1.17 indicates that the role of L%#(f2)} varies according to
whether 0 < p < N, N<pup < N4+ 2o0ru=N.
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For 0 < u < N, L¥#(2) is called a Morrey space. The norm (1.5)
[or, equivalently, any other norm obtained from (1.5) by replacing the
range 0 <Z ¢ < co with a range 0 < g < r, where 0 << r < o0] is clearly
more convenient to deal with than |-|s ...

For N < u < N4 2, L¥#(£2) is called a Campanato space.

LA¥(0Q) is called a John—Nirenberg space; its elements are also said
to have the bounded mean oscillation property. From the inequalities

J | — (W) [P dx < J. w? dx
arz%,91 afz®,a]

< |L[x,, ]| ess sup u*
o

it follows that L=(2) o L*¥(£2). On the other hand, L=(2) is a proper
subset of LE¥(£2): in the case N = 1, 2 =10, 1[, for instance, the latter
space contains the unbounded function u{x) = log x.

Let £2 have property (A). If we agree to qualify as a space of multipliers
for L*#(£2) a Banach space X of functions v defined on £ such that

ue L2#(£) implies uv € L35(),
with

| v |z,,u;a <Clu ]z,;n;a vlg,

it is not difficult to ascertain that L*°(f2) is one such space when 0 <
< N, C%4(7) when p—= N+ 26 with 0 <8 <1 (sce Lemma 1.18).
When x4 = N we proceed as follows: We fix any 4 in [0, 1] and multiply
ue LE¥(0) by ve C%¥3), Then we fix x°c &, p€]0,1], and obtain

[ T — o
arz®,el
=l W+ W0 — (0, [ e

<C(Ivltwan [ 0= @t de o+ M| )

alz®,p alz%,pl

where the estimate

|—19[x+-91| J.Ql'z“.a] u(y)[v(x) B v(y)] dylz

1
< gy O ks j W dy,

(29 pl
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x € £2[x° p)], has been utilized. Since L*¥(R2) g L2¥-(Q) if N = 24,
we also have

[ | way<coriupy
nlz%,pl
by Theorem 1.17(i), hence

sup p~¥ J | uv — (u)g0, | dx
alz?, 5]

%0
0<p=1

< C(|v [eua[uh.ni0 + [Pl | ulh v:0)-
Summing up, we have proved the following
LeMMA 1.19. Let 2 have property (A). If 0 << u << N, L=(£2) is a space
of multipliers for L2#(8). If N << u < N + 2, CO) is a space of mul-
tipliers for L1#(£2) provided d = (u — N){2. Finally, C*() is a space of
multipliers for L2:¥(0Q) whenever 0 < 6 < 1.
ReMARK. The results of the present section can be extended to the

class of spaces L74(£2), with 1 <p < coand 0 < u < N + p, constructed
via the obvious definitions of [-1, .0 and ||, .;q. See 8. Campanato [32].

1.5. Sobolev Spaces
Suppose I' of class C! and compact. Whenever we C (2 W ),

J wz{dx=J- w| o+ do fori=1 ..., N
o r

by the divergence theorem. This is the motivation for the generalized notion
of derivative which will be provided below, and even, indeed, the starting
point of the whole variational theory of elliptic equations. Note that,
regardless of I,

J u, udx——J un,, dx fori=1 ... N (1.10)

whenever u € C'(£2), ve CA(L).
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L.5.1. Distributional Derivatives

A sequence {v,} © C=(f2) is said to converge in (the sense of ) P (52)
toward 0 if supp v, © E, £ being some compact subset of £ independent
of n, and D?v, — 0 uniformly on £ for every multi-index a. If T :v—
(T, v) is a linear functional on C,=(f2) which satisfies (T, v,> — 0 when-
ever v, — 0 in 2(£2), we call it a distribution (on 2), and write T € 2'(2).
If T is a distribution, so is the linear functional v+ —(T, v,,> on C,2(£2):
we denote it by T/dx; or T, and call it the derivative in the sense of 2'(52),
or distributional derivative, of T with respect to x;. More generally, if «
is any multi-index the ath distributional derivative of T is the distribution

DT v (— 1T, D)y for ve C2(%2).
Note that ij =T, -
The single most important example of a distribution may be considered

to be the Dirac measure 8,0 concentrated at any given point x° € £2, which
is defined by

(80, > = v(x?) for v e C=(82).

A whole class of distributions is introduced instead by setting

(T vy = J. uv dx for v € C2($2)
fe}

whenever u € LL(£2); note that the identity #, = u, holds in L}(£2) if
and only if T# = T% (see Problem 1.11). Let | <p << oo, and let T€
D'(§2) with :

| <T) IJ) l S C | v Ip;ﬂ forve Ccm(Q):

since T can be extended as an element of [LP(£2)]’, there exists a function
ue L7 (2) < LL(£2) such that T = T*. On the other hand, no function
u e L1.(52) can be found with the property T% = 3., (Problem 1.10).

As a distribution, T% admits derivatives of all orders, regardless of
the (lack of) regularity of the function u. Even if v admits a classical
derivative Au(x)/0x; at a.a. x € 02, with du/dx; € Li,(£2), the identity
Tu/dzi — J(T4)/dx; need not hold: in the one-dimensional case 2 — R,
for instance, the classical derivative of the so-called Heaviside function

1 for x >0,
H(x) = {0 for x <0
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exists and equals O throughout £\ {0}, whereas d(T#)/dx = §,. However,
things change if we require that ‘the distributional derivative a(T#)/dx;
equal 7 for some w; € Li,.(52).

To illustrate this case we need some additional terminology. If P
denotes a straight line of ¥ intersecting £ on a nonvoid set, a function
on £2 that is absolutely continuous on every compact interval « P N Q2
1s said to be absolutely continuous on P. When N > 2, a property which
holds on all parallel straight lines from a given family, except those of a
subfamily intersecting an orthogonal hyperplane on a set § with measy_; S
= 0, is said to hold on almost all straight lines of the family. When N = 1
the same espression means that the property in question holds on R.

THEOREM 1.20. Let u€ Lio(£2), i =1, ..., N. In order that 8(T%)/0x;
= T% for some w; & Li,.(£2) it is necessary and sufficient that u admits a
representative u* = u*(x), x € 2, which is absolutely continuous on almost
all straight lines that are parallel to the ith coordinate axis and intersect 2
on a nonvoid set, and has the classical derivative Ou*{dx; in L5 (£2); if this
is the case, 8(T¥)[ox; = T /o=

ProOF. We shall repeatedly utilize Fubini’s theorem, both in N and
in N + 1 dimensions. For the sake of notational simplicity we shall consider
only the index i = N.

Step 1: Necessity. If BN\ Q2 3% (& we shall consider u and w = wy as
measurable functions on R¥, u=w =0 in R¥\ 2.

Let 2 = J72, w; with w; == 2, each compact subset of £2 inter-
secting only a finite number of the w;'s. Let {g;} be the partition of unity
relative to this open covering (see Lemma 1.4). We fix j and set g = g;,
z = gu. It is evident that z€ L!(RY) and

— J v, dx = J (g1 + gwivdx for ve C2(RY). (l.11)
RN * RN
Let 2'¥) be any representative of g, u + gw. The function z* defined as

Iy
z*(x) = J' 2N (x', 1) dt, Xy E R

—0d

if
x'eS§ = {y‘ € R¥-1

| ™ 1201 < o),

—0
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z*(x) = 0 otherwise, is (a representative of) an element of [ .(&"), and

Jm.' z*v dx = :m, Um b(x', 1) dt]zw’(x) dx

N

= :mv U:u(x‘, 1) d:]g'(x)Z“"’(x) dx

= 2o dx for ve CX(RY)
J RN

by (§.11) with v(x) replaced by [[7,, v(x’, Ndr]g(x), provided e C2(RY)
with § = | on supp g. This shows that z* is a representative of z.

Since measy_,(®¥1~8") = 0, z* is absolutely continucus on almost
all straight lines parallel to the Nth coordinate axis; a.e. in E¥ its classical
derivative zf, exists and equals z‘¥: hence,

— J 20, dx = J wdx  for ve CRY).
RN RN

The necessity of the condition has thus been proven with ¥ replaced
by g;u. At this point we need only utilize the identity ¥ = 372, g;u and
the fact that (supp g;) N E = (J for all but a finite number of the g;'s
if E is a compact subset of 02,

Step 2: Sufficiency. If R¥\£2 # (& we shall consider u* and u}, as
measurable functions on RY, u* — u}, = 0 in RN\ L.
Let v € C=(B™) with suppv < 2. Then,

a(Tu) *
(7—’ v) = — uvy, dx
Xy J -

= — uty,, dx
JRY -
r o0

= | T e x 6 x)
J RN —o

oD
= J dx’ J ug (X', xy)o(x’, xy) dxy
nyN-: —oa

. *
= ,L;N uz b dx

since u* and v are absolutely continuous on almost all straight lines parallel
to the Nth coordinate axis, and (w*v)(x', xy), x’ € R¥-1, vanishes identically
for | xy | large enough. ad
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REMARK. Inspection of Step | above shows that the classical derivative
u;, of a function v € C°(2) exists and is continuous at all points of £,
with T94/92i = g(T¥)/ax, , if 0(T¥)fdx; = T with w; € C°(£2). In particular,
a function u € C°(2) belongs to C}{L) if and only if 3(T+){0x; = T with
w; e CQ2) for i= 1, ..., N [see (1.10)].

We identify the distribution T* associated to w € Li,(2) with the
function v itself. This creates no ambiguity for what concerns the present
meaning of the symbol {u, v}, which is perfectly consistent with that of
the pairing between v € L?'(Q2) and v LP(2) for 1 < p < co. For what
concerns the notation dw/dx; or u,, for derivatives, no ambiguity arises
(at least, up to the equivalence relation for measurable functions) when-
ever distributional derivatives are {distributions associated with) functions
from L{,.{2). Note that, in such a case, d(u|,)/dx; = (Ju/dx,)\, whenever
@ is an open subset of 2, and suppw,, S suppw.

1.5.2. Difference Quotients

Let ¢ denote the ith unit coordinate vector. For x€ 2 and he R
with x + he' € Q we set, whenever  is defined on 2,
ul(x) = u(x + he'),
Sy'u = (1y'u — w)/h if h£0;
8, is the classical difference quotient. If dist(supp u, 6Q) > | k|, the def-
initions of 7'y, d,*u can be trivially extended to the whole of £2. We shall

often depress the dependence on /. For w < 2 and | & | sufficiently
small it is evident that

Sp{ur) = (Tau)bv + (S in w,
and that
J (Bp)v dx = — J. ud_pv dx
w o

if u,ve Ly.(Q), suppv c w.
It can also be readily ascertained that the membership in L(£2) of
u together with a distributional derivative Uy, implies

d

dx;

[(Bu)lu] = (O )\ € LP(w).
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TueOREM 121, Let |l <p<oo,i= 1, ..., N. In order that the dis-
tributional derivative u,, of u € LP(£2) belong to L»(Q) it is necessary and

sufficient that
[ 04t |pow < C (1.12)

Sfor all bounded open sets w < £2 and real numbers h such that x € w implies
x+ hete for 0 <<|h'|<|h| If this is the case, (1.12) holds with
C=| Uy, |p;a-

Proor. We shall only consider i = N, 8, = §,".

Step 1: Necessity. By Theorem 1.20 there exists S' = R¥-! such that
measy_;(RY-1\S8") = 0 and

1 zn+h
Spul{x) = — J ug (x', 1) dt

h Jlzy

at all points x = (x, xy) € @ with x' € §'. We introduce the trivial ex-
tensions z and (f;:,) to RY of (8u)(x), x € w, and Uy, (x), x € £, respectively.
Let | < p <<oo. For xX'€ § we have

o0 0 Tar+A — '
J |z(x', xN) |p dxf\’ SJ. ‘%J i (uzN)(xl, f) df‘ de

—0 N

oo l ] —_ , P
= J_m ‘7‘[0 (U (x's xy + 1) d" dxy

<o ([ 1@ e+ op ar) s

by Holder's inequality, hence

|7 e ane < o [ 7 10 x 0 de) a

= |7 1@, xy) P dxy.

1

Therefore,

j |yt [P dx = dx'j 2, %) [P dxy
o0 J RN-1 —c0

<[ & j | G (3", x) P dxy
RNt —o

v

= J |4, [7 dx.
Q

For i = N this amounts to (1.12) with C=|u; |p,0 if | < p < 0.
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If p = oo it suffices to consider the case when £ is bounded and
let ¢ — co in the inequality

(o)< (] ]

[see (1.2) in Section 1.3.1].

Step 2: Sufficiency. Take v in C,~(£2) and let w cc £ be such that
supp v < w. Then,

J ud_pv dx| = J (éhu)vdx\
i w
S c |D|p';un
hence
U uvadx’§C|v!p.:a (1.13)
l

after a passage to the limit as A -— 0. By (1.13) the distribution u, : v+
— [ouv,, dx on C=(£2) is an element of LP(£2). 0

REMaRrk. For what concerns the necessary part of Theorem 1.21 see
also Problem 1.14.

1.5.3. H*» Spaces: Definitions and First Properties

Let | < p << co. We define H-?(§2) as the linear space of functions
u€ LP(£2) whose distributional derivatives u, , ..., u,, belong to LP(£2),
and, by recurrence, H*?(£2) as the linear space of functions u € H ~1.7(£2)
with u, , ..., u;, € H¥'2(2) (ke N, k=2). For ke N, H**(Q2) is
called a Sobolev space. Local Sobolev spaces are introduced by writing
ue HEP(Q)if u|, € H*®(w) whenever w cc 2. For the sake of notational
uniformity we set HO?(Q) = LP(52), H¥ () = LE(2). In the symbol
HY? we depress the dependence on p if p = 2.

THEOREM 1.22. For k€ M and | < p < co, HE?(82) is a Banach space
with respect to the norm

p
|t |pepiay = ( Z |D’"|£:a) if p<<oo,

lal <k

I u l”"-“‘(ﬂ) = max IDZH ]W;Q .
|zl <k
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H*($2) is a Hilbert space with respect to rthe scalar product

@, VY = 3, (D%, D*0)paq -

x| <k

H*?(§2) is separable for 1 < p < oo, reflexive for | < p < oo.

PrOOE. It is clear that H*?(Q) is 2 normed space, H*(2) a pre-Hilbert
one.
Let
x» =[] X,

lal =<k

where X' = LP({2) whatever the multi-index a with | x| << k. For u=
{uz}lalste X‘;p) set

lulye = ¥ lualpae
laTsk

and define 7; H%?({2) — X'*? by

fu = {DPu} for u € H:P(f)),

I(H*?(£2)) is a closed subspace of X‘¥ by definition of distributional
derivatives. At this point completeness, separability for 1 << p < oo, and
reflexivity for 1 << p < oo are easily transferred from LP(f2) to (X’ and
from X' to) H*?(f2), the latter space being isomorphic to its image
under 7. ad

REMARK. H%>(£2) is not separable; neither H*1($2) nor H%>~(£2) is
reflexive (see A. Kufner, O. John, and S. Futik [92]).

If £2 is bounded the following inclusions are obvious:
H*»(Q) < HE(Q)  if 1 <g<p<oo,
CHD) c HE=(1).
From Theorem 1.21 it follows also that
Ct14(D) & HE=(Q);
the example of Section 1.2.1 shows that the inclusion
H:o(Q) ¢ Ck11(0)

is not true in general.
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Membership in H4?(£2) of a function from L?(£2) is a local property,
in the sense clarified by the next result.

LEMMA 1.23. Let ke N, | <p <oo If Q@ =R 2;, each 2; being
an open subset of RY, and u ¢ LP(£2) with u|Qj e H-?2(2) for j=10,1, ...,
m, then u e H?P({),

ProoF. Let o be any multi-index with | ¢ | < k, u* = D*(u|g). Since
wr = ug in 2; N £2;, the function w* =u on 2;, j=0,1,...,m,is a
well-defined element of L7(£2). Let v € C,2(£2) and denote by {g;} a par-
tition of unity relative to the open covering {£2;} of supp v (see the corollary
of Lemma 1.4). Then,

ey dx = 3 J wgw dx
L} ey ,E . gv
m m
= J upg dx — (—1)al ¥ J uD*(g,0) dx
gy 25

= =0
= (—1) J uD= dx,
o

hence u* = D*u. 0
For what concerns dual spaces the following considerations will suffice
to our purposes. Let | << p < oo. Since H*?(42) is densely injected in L?({2),
L*'(£2) is continuously injected in [H&?P(Q)Y. _
We can therefore safely utilize the same symbol {F, v} for the pairing
between F e [H%?()]" and v € H*?(2) as for the one between F € [LP(22)]’
and v & LP(), after identifying F e [H*?(£)] with u € L?'(22) when

F:v »—>J uv dx for v e HA?(Q).
Q

Note that, when # and v belong to H¥(£2), {u, v)> equals their scalar product
in L}(£2), not in H*(Q). An element F of [H*?(2)Y is defined by

(Foy= Y Lu,, D) for ve HE?(0)

|zl sk

if u, € L?'(£2) for any multi-index « satisfying |a | < k. Vice versa, it
can be proven that every clement of [H*?(£2)} admits the above repre-
sentation: see R. Adams [1].
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1.5.4. Density Results

When 2 = RY we have at our disposal the following lemma.
LeMMA 1.24. C2(R~) is dense in H*P(R™) whatever ke N, 1 < p < oo,

ProoF. We operate a preliminary reduction by the so-called curoff
method. For | < r < oo let g,(x) = g(x/r), where g C=(R¥),g =1 on
B. If u belongs to H%?P(2), so does gu with

|DHgu)| <C ¥ |Df| inRY for0<|a|<k.
18] <lal|

[Compare with (1.11).] Straightforward arguments prove that

| # — gu |grsme, =0 as r — oo,

so that we can restrict our considerations to functions # with compact
supports. Let {o,} be a sequence of mollifiers and denote by g,%, x € RY,
the function y > g,(x — ¥). Since p,2€ C,(R¥) we have

[D*(en * ))(x) = [(D*0,) * u)(x)
= (_1)|¢|<D¢an9 upy = {p,%, D*u)
= (g, * D™u)(x) for xe R¥Y,

We can therefore apply Lemma 1.9 with w = supp u: we obtain
Do, *w)l, > Duly  in LP(w)  for |a| <K,

hence
On ®* U —u in HE:P(RN),

Note that for n large enough p, * v € C,(R~) because supp u is compact. []

Approximation in H%?() becomes considerably more delicate if
R¥N 02 =£ 3 since we cannot take much advantage of the cutoff method
(see the beginning of the proof of Theorem 1.27 below). The same argu-
ment as in the preceding proof does however show that D*(g, » #)|, =
(o, * D?u}|, for n large enough, |a| < k, if ue H%?(2) [or even u €
HE?P(2) only] and w cc . Thus, Lemma 1.9 yields

(en*#)lo > ul, in H*?(w).
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If supp u is a compact subset of £ we are of course in the same situa-
tion as in the proof of Lemma 1.24, so that

P XTET in H5?(£),

pa * # being an element of C,~(£2) for n large enough.

Note that (g, * u), (x) vanishes identically for x€ w =< 2 if u,, =0
ae. in . Thus, if w, =-+- = u,, =0 a.e. in 2 and @ is connected,
each smooth function (p, * )|, is a constant, and finally u|, is a constant
by Theorem 1.Q.

Summing up, we have the following lemma and corollary.

LEMMA 1.25. Let 2 be any open subset of B¥. If ue H*?(2) with
ke Nand | =< p < oo, the function ul,, is the limit of {(p, » )|, }, in H*?(w)
Jor any @ o< £2, and even for v = 2 if supp u is a compact subset of 2
[in which case {0, * u},an, = C(2) if n, is large enough).

CorOLLARY. Let {2 be connected. If ue HVP(Q), u, = --+ = u,, = 0
in £2, then u is a constant.

From Lemma 1.25 it is easy to deduce that uy € H'?(£2), with (wv),,
=ty 0 + uv,, if ue CONQ) N L>(2) and v € H?(Q). See also Problem
1.21.

Lemma 1.25 has a local character. The most general global result in
approximation is the Meyers—Serrin theorem:

THEOREM 1.26. C=(£2) N H*#(£2) is dense in H*?(Q) whatever k € N,
1 <p < oo, -

Proor. Let 2 = | JjZ; w; with w;cc 2, w; N E= ¢ for all but a
finite number of indices j whenever E is a compact subset of £2. Denote
by {g;} a partition of unity relative to the above open covering of Q. If
ue H~?(2) wecan find, forany e > 0and =0, 1, ..., a natural number
ng such that supp[gn} * (g)] = w; and

| g5t — on, * (g54) lmx.piy < £/271 (1.14)

(see Lemma 1.25). The function w = 372, o4, * (g;4) belongs to C=(Q);
(1.14) implies that w € H*?(2) with

] u—w IH"-P(QJ < &, {]
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The approximating functions provided by the Meyers-Serrin theorem
need not be smooth up to 452. As a matter of fact, there exist bounded
domains 2 for which C'(2) is not dense in H»?().

ExaMpLE. Let ¥ = 2 and take
2 = (10, 2[x }—1, 1D\0, 1[x {0}),

2,=10,2[x]—1, 1[. Since & = Q, and fo= Ja,» the limit of any se-
quence {u,} = C'(2) that converges in H'“?(2) must be an element of
HY»(£2)). But the two spaces do not coincide: for instance, the function

el/tz’-1) for 0 < x; < 1/2, 0<xy, <1,
otherwise

u(x) = {

belongs to H“?(£2), whereas its derivative u,, in the sense of 2'(£2)) is
not a measurable function on £2,.

We now introduce a class of open sets £2 < ¥ for which Theorem
1.26 can be improved by replacing functions from C=(2) N H%?(2) with
functions that are smooth up to 8£2. £2 is said to have the segment property
if, given any x° € 952, there exist an open neighborhood U of x® and a
nonzero vector £ € RY¥ such that x + t£€ 2 whenever xe€ @ N U and
0 <t <1 For N>2 this property is certainly satisfied if every point
x° € 942 has an open neighborhood & such that & N £2 lies on one side
of T n 642, the latter being the graph of a continuous function of N — |
among the coordinates x,, ..., xy.

THEOREM 1.27. If 2 < R¥ has the segment property, the set of restric-
tion to 0 of functions from C=(R¥) is dense in H*?(52) whatever k € N,
1 <p < oo

Proor. If 2 is unbounded we can apply the cutoff method of the
proof of Lemma 1.23 and show that for our present purposes it suffices
to approximate functions from H*P(f2) whose supports are compact sub-
sets of 2 (not of £2, though). Let u be one such function. We can find
finitely many open neighborhoods U, ..., U, of the type required by
the segment property, and open sets @y, ..., w, with &; c U;, supp u
N 82 < \J, w;. (Compare with Problem 1.9.) Let w, be such that
supp a\UL, @; © wo << 2 and denote by {g;};—, .w a partition of
unity relative to the open covering {w;};. ... m Of supp u (see the corollary
of Lemma 1.4). We shall prove the theorem by showing that each function
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g;u is approximated in H*?(£2) by restrictions to £ of functions from
C~(RY). : .

The above is true for j = 0 by Lemma 1.25, since supp(go) is a com-
pact subset of 2. For j=1, ..., m set u; = trivial extension of g;u to
R¥: we have u;lp € H*?(Q), u;|p¥~supp u, € HEP(RY\ supp u;), and Lemma
1.23 implies uj|py.x, € H*?(R¥\K}), where K; = &; N 9Q. Let K;., de-
note theset of points y = x — t£, x € K;, where £ is the vector associated
with U; by the segment property. 1f

0 < 1 < min{l, | £ |[Mdist(@;, R¥Y\U,)}

we have both K;, < U; and K;, N 2 = (J. Then u;,~>u;(x + t£) is
an element of H*P(R¥\K;.\), with (D®u;,)(x) = (D°u;)(x + 1£) by defi-
nition of distributional derivatives, and supp w;,, < U;. Thus, wu; g —
ujlg in H*P(£2) as t — 0+ (see Problem 1.8). Let 2/ =2 N U;. Since
Q) cc R¥\Kj,, we have (0, * #;,)lo, — ;.o in H¥P(£2;) by Lemma
1.25 with £ replaced by R¥\ K|,,, and this concludes the proof because
0, * ;. € C2(RY) and g, * uy. = 0 in QN2 for n large enough.
{The above procedure can be greatly illuminated by sketching the
graphs of functions such as u; and u;., in the one-dimensional case.) ]

1.5.5. Changes of Variables and Extensions

Lemma 1.28. Let Q2 be bounded and let A: @ —§¥ be a C* diffeo-
morphism for some k€ N. Then for 1 < p < co the mapping u > u' =
uo A1 defines an isomorphism of H*?(£2) onto H*v(2"), all distributional
derivatives D’ with | @ | << k obeying the classical chain rule almost every-
where. When k == 2 the same conclusion remains valid if A is a C* 12 dif-
Sfeomorphism.

PrOOF. Let ue HAP(), | <p < oo, w' cc @, o = A w'). We
apply the chain rule for derivatives to each function u,’ = u, o (A3,
where u, = (p, * ¢)|,,: for | @ | << k we obtain

D (y) = WZI | Pop(¥)(DPu,)[x(¥)] (1.15)
for y € w, x(y) = A-1(y), where P, is a suitable polynomial in derivatives,

of order << | «|, of the components of A1 Since u, — 4|, in H*P(w)
by Lemma 1.25, we have

(DPu,) o (A7)l — (DPu) o (AN, in LP(w")  for | B| <k,
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so that {D*u,’} is a Cauchy sequence in LP{w’) by (1.15). Let «'= be the
limit of {D*u.'} in LP(®"): a passage to the limit in (1.15) for a suitable
subsequence of indices yields

u'=(y) = WE ] PN DPu)[x(y)] (1.16)

(1]

for a.a. y € &', Since

(—1)mj ' D' dy = lim (~|)'='J u, Do’ dy

@’

= lim (Dru, W dy

A w

= J u'w' dy for v’ € C&(w'),

(1.16} is valid with u'*(y) = D*u'(y) for a.a. y € w’, hence for a.a. y€ £’
by the arbitrariness of @’. We have thus proved that all distributional
derivatives, of order << k, of " belong to LP(£2')} and are obtained from
those of u by the classical chain rule, which yields

U tgron < C | IEA | (DPu) o A7, 00
al =k
< Clulpreia

since each function P4 is at least continuous on the compact set [o

When k> 2 and A is a C¥1! diffeomorphism, (i.16} remains valid
for aa. ye &, with w* =D/, if |a| <k — 1. Let |a|=k— 1, |f]
<{| @ |: then each function y =~ (Dfu)[x(y)] belongs to H'#(£2'}, and all its
first derivatives can be computed through the chain rule, by the first part
of the proof with & replaced by 1; moreover, each polynomial P, belongs
at least to C*!('). Hence each function ¥y Py(y)(D?u)[x(y})] belongs
to H'?(£2"), and all first derivatives of the function y — D*’(y) can be
obtained through the chain rule.

When p = oo we replace p by any ¢ < oo and arrive again at the
expression (1.16) for u'* = D=,

The roles of w and ', 2 and ', A and A-! can obviously be simul-
taneously interchanged. )

RemArk. If A is a C%! diffeomorphism Lemma 1.28 is valid for k = 1 ;
sece C. B. Morrey, Jr. [118] or J. Necas [127].
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LeMMA 1.29. Let u € H®P(B+) for some ke N, pe [l oa], and denote
by i its extension to B defined by

&
#Hx', xy) = Y Cu(x', —xylh)  for (x', —xx)€ B+,  (1.17)
F=1
where the vector (C,, ..., Cp) is the unique solution to the linear system

E 1 \i-t )
E(—-——h—) C=1 for j=1, .. k.

=
Then i1 € H*#(B) with
| D, < C| DPulpy  for | <k, (1.18)

C being independent of u.

PrOOF. Let us first assume u € C¥*L1(B+). Then i€ C*1)(B) with

D', xn) = 3 (=) O,
A=1

for (x', —xy) € B* whenever | a | <k — 1. (Compare with the proof of
Theorem 1.3.)

Let |a| =k — 1, so that all first distributional derivatives of Dai
belong to L*(B) by Theorem 1.2]1 and

a .
(ax; Dﬂu) B+

(aix,. D‘E)L\F = T {(D*2)| p 7]

We utilize Lemma 1.28 to compute (d{dx)[(D*u)(x’, —xyfh)] whenever
(x', —xy)E B*, h=1, ..., k. Thus,

a9 .
= ox (D*&)|p+],

(D’"z,)(x', xy) for a.a. (x’, xy) € B,

(2 Do) ' 200 = % co— 4o ', el

A=
for a.a. (x', xy) € BN\ Bt with ¢ =1
if § = l,...,N_l, Cyy = —llh.
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In the general case v € H%?(& ) we avail ourselves of Theorem 1.27
and approximate DFu for |a | < k with {D7u,}, u, € C=(B*), in LP(B*)
if p << oo, in LYB*)} for any g < co if p = oo, thus obtaining

J D% dx — lim | ,D% dx
B

nroo J B

t JB\5+ .rﬁ“l (_ %)GNC,!(Dmn)(x‘, —Xwlhplx’, xx) dx]

= (—1)= [Jm (Du)o dx

t L;\m ,ﬁ:l (_ %)GNCJ,(D‘H)(X'. —xy/h(x’, xy) dx]

for ve C=(B).

This shows that ¥ € H*?(B) with the norm estimate (1.18). 0
If & =1, (1.17} 1s the extension by reflection of wu.
If 2 is bounded we say that it has the extension property (k, p) if,

whenever {2’ is another open subset of RY¥ with 2 cc £, every u e
H*?(2}) admits an extension # € H*?(£2'} with supp i1 < 2’ and

| 7 jgeeipn = Cl# |geae,

C being independent of u. Note thdt, by Lemma 1.25, {2 cannot have the
extension property (k, p)} if C=(£2) is not dense in H*?(£2). Thanks to
Lemmas 1.28 and 1.29, a procedure analogous to that for Theorem 1.3
demonstrates the following.

THeoreM 1.30. When 2 is bounded, it has the extension property (k, p),
1 < p<oo, if 02 s of class C' for k = 1, of class C¥-2! for k == 2.

ReEMARK 1. For &k = | Theorem 1.30 admits a generalization which
requires only that {2 has a strengthened cone property: see R.A. Adams
[1]. However, the extension property need not be valid if £2 is only assumed
to have the segment property: see the cxample following Theorem 1.33
below.
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ReMarkK 2. Theorem 1.30 can easily be peneralized as follows: Let
u€ H:?(Q) with compact support — 2 U I', I' being of class C! for
k =1, of class C¥-1.1 for k = 2. If U is an open subset of RY such that
UndRc I and U 2 > suppu, then u admits an extension fi€
H:?(Q U U), supp 4 being a compact subset of I/. However, the constant
of the norm estimate depends on dist(supp u, #2\.1") unless I" is closed.

REMARK 3. Lemma 1.29 and Theorem 1.30 imply the validity of any
extension property (1, p) if £ is a hemisphere.

REMARK 4. By Theorem 121, H*~(Q) ¢ C+1YD) for ke N if Q
has the extension property (1, co). See also Theorem 1.41 below.

1.6. Continuous and Compact Imbeddings of Sobolev Spaces

1.6.1. Sobolev Inequalities X

LEMMA 131. Let N=2, f;, ..., fy € L¥YR¥-Y), The function
J(x) = fi(%) -« - fu(Kn),

where £, =(x;, ..., Xy, Xipy, --.,X§) for i=1, ..., N, -belongs to
LY(RX) and satisfies

N
|f|l;R~ S H |f; 1N~—1;RN—1 .
-]

Proor. The result is obviously true when N ==2. We assume its
validity for some value of N and proceed to prove it for N + 1: Let £,
=Xy, oo, Xic1y Xip1r - Xy, Xx4y) for i=1,...,N+ 1. For aa.
Xy € R,

N
|, TLiscedr dx, - du

-
=

N

N'IN
<TT(] L 01 di ey dis - )

i=1
by the inductive assumption applied to the functions

(g, o X X, e XN | SR Y
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N’ = N/(N — 1), which belong to L¥-1(&"¥~1); thus, Hdlder’s inequality
yields

N41
[ T 170 dx, - des

e

h 1/N*
< |fwn |N;R-'( v H1 | fi(@) ¥ dxy - - de)
N /N
< sl [T ([ 1AG1¥der - ey drin- o dxy) . (119)
Again by Holder’s inequality, the membership of all functions
} /¥
XN41 > (J-BN_I | fiE) ¥ dxy - v dxy iy - - de) ’

i=1,..., N, in L¥(R) implies the membership of their product in L1(X)
with
=1 " VN
'[ H (,I.RN—I. |_f|(x‘) |AV dxl e dx‘-_l dxi+l “ e dx‘v) de+1

—o0  jea]
N

= H [.[:o (,[RN—l |F( &) ¥ ey e dxy g dXgyy - de) deﬂ]lm

]

N
= H |f1 LV;HN'

1m]l

The desided result for ¥ + 1 then follows from (1.19) after integration in
dxy,,- 0
Lemma 1,31 will be utilized in the proof of the next result.

THEOREM 1.32. Let u€ H'?(RY) with | < p < N. Then u e LF(&%)
where p* = Np/(N — p); moreover,

| 24 |po.mw << C| V| o (1.20)
with C independent of u.

ProoF. Without loss of generality we assume u € C,2(&") (see Lemma
1.24).
Step 1: The case p = 1. Let x € R¥, Since

ER
lu(x)| = U Uz (Xyy o Xygy b Xigas -2, Xy) dt
—n

sj litg g - - Koo £y Xegns o, x) | dt = Ufi(£D1¥1
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fori=1, ..., N, we have

o) -0 < [T fices),

hence
N
JM@W“%SHMMNﬂ
BN =1

N 1/(N-1) N/HN-1)
=HUtmma) SU'W”)
RN RN

=1
by Lemma 1.31.

Step 2: The case p>> 1. For t >> 0 set v =v'' = | u |'**. Then v e
CAHR¥Ywith |Po | = (1 4 1) |u|*| Vu|. Step 1 with u replaced by v yields

)(N—l)h\"

(J | u lu+nNﬂN—1) dx
RN

1/p 1/p*
<q ‘H)(L | P ? dx) U u dx) :
N RN

Let t= N(p — 1}/(N — p): then,

< (1 +I)I |ult|Pu| dx
R¥

d+aN§y _ . _ N _ ,
and (1.20) holds with C = p(N — 1)/(N — p). 0

Passing to bounded open sets we have the following theorem,
THEOREM 1.33. Let k€ K, p €[], co[ with kp << N. If Q2 is bounded
and has the extension property (1,r) for p <<r << Np/[N — (k — 1)p), then

Hk,p(_Q) o pr;m—x—p)(g) (1.21)
if kp << N,
HE (Y o I3(C)  for any q << oo (1.22)
if kp = N, and even, if $2 has the extension property (N, 1),
HY YD) < Co(D).
PrOOF, Take ue H'?(), p < N, and let i € H'?(RY) be an exten-

sion of u,
| # |gregy) < Clulmoee
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with C independent of u. By Theorem 1.32 i belongs to L**(R¥), so that
ue L7(£2) and

| u ip':ﬂ <|& |p‘:RN <C|Va lp:ay < Clulgrom-

This proves the theorem if k = 1, p <. N. As a consequence, a function
u€ L'(Q) with u,,, ..., u,, € LYQ), 1 < g < oo, must belong to H-9(2).

Ifk > 1, kp < N, we apply the above result to all derivatives of order
k — 1, then to all those of order ¥ — 2, and so on. Thus,

HE2(Q) & H17(Q) & HE-29(Q),

and so on for k steps. Note that

A times

—_——
p* % = Np/(N — hp).

If kp = N, (1.22) follows from (1.21) with p replaced by p — ¢ for
any €€ ]0, p[.

Now take ue HY(Q) and let 7ie H¥'(R¥) be an extension of u,
1@ jgnagyy < C | u |gyag- Assume i€ C°(R%) [hence also u € C=(2)];
then,

Z; N
(x) = J J Uppozy (s <o oy IN) dry < dty,

hence
| ¢ Joosa < | # |oozpn < C | &t [gNaggy-
If @¢ C>(R¥) it suffices to proceed by density. 0

We know that 32 must have some regularity for 2 to have the exten-
sion property (1, p). The next example shows that (1.21) need not hold if
no regularity restriction is imposed on d£2.

ExaMpLE. Let N = 2,
R={xeR|0<x <], x| <eVa'}

The function u(x) = x,® exp(l/x,?) belongs to the Sobolev space H11(2)
but to no Lebesgue space LI($2) if g > 1. This is also an indirect way of
showing that the segment property (which holds for £ chosen as above)
is not sufficient for extension property (1,1) even though it guarantees the
density of C=(2) in H"1(£Q).

If kp = N with p > | a function ¥ € H*?(£2) need not be bounded.
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ExXAMPLE. Let N == 2,

, .
u(x) = (ln ﬁ) for xe 2 = B,,, x7#0,

with 0 << § << 1 — 1/N. Theorem 1.20 shows that the unbounded function
u belongs to HL¥(9).

1.6.2. Rellich’s Theorem with Some Applications

The next result is Rellich's theorem.

THEOREM 1.34. Let | < p << co. Whenever 52 is bounded and has the
extension property (1, p), the space H-P($2) is compactly injected into any
L) with 1 < g < p*= Np/(N—p) if p<<N, 1 <g < oo otherwise.
In particular, H'?(Q) is always compactly injected into LP(§2).

Proor. Let | <p <N, 1 <g¢ < p* and choose 1€ ]0,1] so that

1

!
Ag -+ g=1

p*
Let w cc 2 be arbitrarily fixed and set
Tu(x) = u{x + A) for x€ w,

with ke R¥, | h| < dist(w, 32). If ¥ is a bounded subset of H'2(f2),
Theorem 1.21 yields

| T — )y, < Clh] for ue ¥,
thanks to Theorem 1.33,

I Tu—u Iq'.w =< | TR — U H:m I T —u |1l;lm
S ClAPQ u )
<Clh) for ue &,
by Hélder's inequality for the product of | tyu — u [* and | Tpu — u |14

in w. From Theorem 1.10 it follows that 2|, is relatively compact in L¥{w)
whatever w << 2.
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Let £ > 0 be arbitrarily fixed. By Holder’s inequality,

| 4 |gone < | u |p';N | @\ @ |Va-1r,
hence
|ulgos <& forue P

if @ =< 2 is suitably chosen. By the relative compactness of &, there
exist #,, ..., u, € L%w) such that, whenever u e %,

o —ui g < € for some i,

but then
b — d; |0 < 26 for some i,

where #; denotes the trivial extension of u; to £. This shows that & is
relatively compact in L3(0).

If p = N =1 the same procedure as above can be repeated with p*
replaced by oo, and 1/p* by O (sec Theorem 1.33).

If pis >N>1or > N=1 it suffices to replace it by any r < N
for N>1,byl for N=1, 1]

In the sequel we shall often make a crucial use of Rellich’s theorem.
In Chapter 2, for instance, we shall exploit it in the study of linear partial
differential operators defined on bounded open sets.

For the time being we shall need Theorem 1.34 for the next three
results.

LEMMA 1.35. Let | < p < oo, Suppose that 2 is a bounded domain
that has the extension property (1, p). Then there exists a constant C($2)
such that

| W — (u)ﬂ 19;0 _<_. C(-Q) I Vu lg:o (123)

whenever u € H“?(£2). The same inequality holds with C(£2) = Cr, C inde-
pendent of x° € RY as well as of r € 10, oo, if 2 = B,(x®) or 2 = B,*(x°).

Proor. Without loss of generality we consider only the case (u), = 0.
If the theorem were false there would exist a sequence {u,} — H?(2)
with (u)o =0, |ty lp.0 =1, | Fu, |p.o < 1/n. But then, for a suitable
subsequence of indices,

Uy, U in LP(£2) as k—oo
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by Rellich’s theorem and (#), = 0, | # |0 = 1; besides,
|Pu, |pp—0 asn—oo

so that we H'?(02) with Fu = 0 a.e. in £. By the connectedness of 2,
u would be a constant (see the corollary of Lemma 1.25), thus contradicting
either (W)g =0 or |u |, o = 1.

Now let £2 = B,(x%); it is not restrictive to take x® = 0. Writing
C(r) for C(B,) we obtain the inequality

J lw — (u')g|? dx < C(l)j |V |7 dx
] B

for the function ¥’ € H"?(B) defined as #'(x) = u(rx) for x € B. The con-
clusion in the case at hand follows from the identities

()p = (W)p,, Vu'(x) = r(Vu)(rx) for x e B.

Finally let Q = B,*(x9), or, more specifically, £2 = B*, Let u€
H'?(B;*) with (u)5+ = 0 and denote by # the extension by reflection of
u to B, (see Lemma 1.29): then, (4)5, = 0 and

J ]ﬁ|’dx§CrT’J- | ViE|? dx.
B, B,
The conclusion follows from the identities
| lapax=2] jupas
B, B

J|Vﬂ|de:2j |Pu|? dx. 0

B, B

Inequality (1.23) is called Poincarés inequality.
A proof very close to the above vields another inequality of the
Poincaré type:

Lemma 1.36. Let p and 2 be as in Lemma 1.35 and take 6 €10, 1[.
Then there exists a constant C(£2, 8) such that

1 u |p;ﬂ‘ S C(Q! a) | Vu |p;f2

whenever the function u € H“P(2) vanishes a.e. in a subset of £ whose
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measure is > 8| 2 |. The same inequality holds with C(2, 8) = C(8)r, C(8)
being independent of x° € R¥ a5 well a5 of r€ 10,00, if 2 = B,(x®) or
Q = BA(x).

ReMARK. The connectedness of 2 is necessary for the validity of the
above lemma. To se¢ this, take {2 as the union of two disjoint open sets
Q,and 2,, u=00n 2y, u=1 on 0,.

LeEMMA 1.37. Let p and 2 be as in Lemma 135 and take ¢ > 0, h, k
€ N with h << k. Then there exists a constant C such that

Zh|D"“|y;aS€ Z |m”|p;o+c|"|p;n

Tal = 181 =k

whenever u € H%#(£).

PrROOF. Suppose that there exist ¢ > 0 and uw, € H%?(22), n€ N, with
| 4, |gtpeay = | and

Y | Dy |y > € Zk|D"u,||,,._a+n|un|p;n. (1.24)

la| =A 181=

By Rellich’s theorem we may assume that {Dvw,} converges in L?(Q)
whatever the multi-index y, | ¥ | << k — 1, hence that u, — u in H¥*1.7({2).
Since all norms | D*u, |,., are uniformly bounded it follows from (1.24)
that u, — 0 in L?(), hence that ¥ = 0. But then | D%, |,.q — 0 for | & |
= h, and (1.24) can again be applied to yield

Z IDa”nlp:n -0,

1=k
hence

| tn [mt.0000 = 0,
a contradiction. g
The above lemma is said to provide an interpeiation inequality for

intermediate derivatives. More results of this sort will be given in Section
5.2.1.

1.6.3. Soboley Inequalities IT

For 4> N —2 the next three results ate, respectively, interior,
boundary, and global formulations of Morrey’s theorem.
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THEOREM 1.38. Ler 2 be bounded and assume u e H'(2) withu,_, ...,
u,, € L4#(2) for some p € [0, N{. Then, whenever v c< L2, ul, belongs to
LEs+(y) [so that ue C*%(82) with = (u+2 — N){2 if p > N—2];
mareover,
[u]E.#+l‘,w <C|Fu 13.;‘;0:

C being independent of u.

PrOOE. Let 0 << o < dist(w, 32). Whenever x°€ @ Poincaré’s in-
equality in H'(B,(x?)) yields

j o= @l dx < [~ @]
wlz?,g] Bytz%

|Pu|t dx
]

< Ce’_[
Btz

< Cor** [Pulg - 0

THEOREM 1.39. Let 2 = B* and assume ue€ H'(B*) with u, , ..., u,,

€ L*#(B*) for some p € [0, N[. Then, whenever 0 < r < 1, u|g,+ belongs to
LAA+3(B.+), therefore 10 CO*(B,F) with 6 = (u + 2 — N)2 if u > N — 2;
moreover,

[“]z,;wz;n,i- <C|Vu IB.,u;B*"

C being independent of u.
PROOF. Set r, = (1 — r)2*, he N. If x € B,* with xy > ry, then

B*[x, o] = B N B,(x)
S B(x)cw={ye B, |yv>ri}

for 0 < ¢ < r,. Since w cc Bt Theorem 1.38 applies: hence,

g~iste | u— (u)B,Hz.o] Ig;Br*[z,a] S g tatd | — (u)z,a |§;z.a

S- [u]g,#-{-a:m S C | Vu |;..H:B*'

This means that there remains to bound o=+ | u — (W)p, +1z,0 [5:8, 12,61+
0 < o <r,, only when x e Bt with xy < r,. But then,

B *[x, a] ¢ B,*(x®) c B+,
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where x° is the projection of x on §5,° and p = 3¢. In such a case Poincaré’s
inequality yields

o~ |y — ()5, 412,01 |§:8,+rz_a1 < 3ot |y — (U)g0p B0 0,4

< Co*| Pu |§:z°.e.+ < C|Pu |§.#;B+- 0]

THEOREM 1.40. Let 0 be bounded with 09 of class C'. Assume u €
HYQ) with u, , ..., u,, € L*#(8) for some p € [0, N[. Then u belongs to
L2#+3(02), or equivalently to CO4(Q) withd = (u + 2 — N)2ifu > N — 2;
moreover,

| 20420 < C( t leso + | Vit |2,:0)

with C independent of u.

ProoF. Fix x° € 80 and denote by U a bounded domain of R¥, U 2 x¢,
such that 992 N U is straightened by a C! diffeomorphism A4: T — B.
Moreover, let R > 0 be so small that Bz(x®) = A~'(B,) for some r €
10, i[. By Lemma 1.15, Theorem 1.39 applies to the function ¥’ =ue
(A Y|g+. We extend u'lp+ to B, by reflection (see Lemma 1.16): again
by Lemma 1.15, u' o Al g0 belongs to L2#+3(B(x°)), hence ulgnp 0 —
w o Mongguo to L2440 N By(x°)), with norm estimate.

At this point we cover 2 with a finite number of open sets w;, j =
0,1,...,m, where w,cc 2 and e,, ..., w, are spheres constructed
through the same procedure illustrated above for Bp(x?). Letting {g;}
denote the partition of unity relative to {w;} we obtain the desired con-
clusion by writing u as 3.}, g;# and applying Theorem 1.38 to gov. [

We now fill up the gap in the range of &, p left over by Theorem 1.33.

THEOREM 1.41. Let ke M, p= 1 with kp > N. If 2 is bounded and
has the extension property (1, r) for every finite r, then

HEP(Q) G CU-Niplk-Nip—k-Nip)((3)
(where [a] = integer part of a€ R) if Njp¢ N, and
HR?(Q) g CE-¥ir-18((3)  for any € 10, 1
if Njpe N. In particular, lhAe Set-theoretical inclusion
() H»(2) < C(2)

EeN
holds for any p > 1.
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PrROOF. Let k = 1. If N < p it cannot be N/p € N. We fix a bounded
open subset ' of ¥, @ —cc ' and extend every ue HL?({2) to il €
HL2(£') with

| 8 |mpan < C |t |umg).

If ¥ = 1, i has the absolute continuity property provided by Theorem 1,20,
and the membership of u in C%-'?({) follows from the fundamental
theorem of calculus together with Holder’s inequality. Let ¥ = 2. Since
Lr(£2) o L*#(£2') for = N(p — 2)/p Theorem 1.38 applies with 2
replaced by £'. Hence, H'?(2) c C**({)) with 6 = (u + 2 — N){2 =
I — N/p.

Let k> 1, Nfp¢ N, and set h = [k — N/p). Each derivative D%,
|a| =h+ 1, belongs to H**-1.2(2) and therefore to L9(2) with

Np N

I~ N—G-h=Tp F¥i-G=npy "

by Theorem 1.33. The above considerations about the case £ = 1 yield
Dby e CO1-Fry() for |B|=h

with norm estimate, and | — Njg =k — N/p — h.
If N/p€ N replace p by p — &, where £ is any positive number such
that k(p — &) > N. 1]
The norm estimates corresponding to the continuous injections in
Theorems 1.33 and 1.41 are called Scbolev inequalities.

REMARK |. Theorem 1.4] can also be given a proof which does not
necessitate Theorem |.38 (see H. Brézis [19]); in the sequel, however, we
shall repeatedly need the latter result anyway.

REMARK 2. Theorems 1.33, 1.34, and 1.41 are valid for 2 = B,*(x9):
see Remark 3 after Theorem 1.30.

1.7. H,** Spaces and Trace Spaces

1.7.1. H}*7?({2) Spaces

For ke ¥ and 1 < p < co we denote by HEP({2) the closure of
C.=(£2) in H*?(£2), depressing the dependence on p when p = 2.
From Lemma 1.24 we know that H/M?(&¥) = H%?(R¥), When {2 is
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a proper subset of RY, H#?(£2) certainly contains all functions u € H*?(02)
such that supp « is a compact subset of f2 (sec Lemma 1.25), but whether
the identity H 5?(§2) = H*?(§2) is valid or not depends on 2 as well as
on the values of k and p.

ExaMpLE. Let 2 = R¥\ {0}

From Theorem 1.41 it is easy to deduce that, when kp > N, every
function from H,*?($2) has a representative in C°(R¥) which vanishes at 0.
This shows that H,2?(2) does not contain, for instance, any function from
H:?(2) which takes on a nonzero constant value in B,\ {0} for some
r> 0.

Now take k=1, | <p < N. Note that H'?(2) = HL?(R") by
Theorem 1.20. Let g € C=(R) satisfy g(r) =0 for | ¢]| < 1/2, g(t) =1 for
| t] > 1, and set g,(1) = g(nt) for n € N, so that g,(¢) = O for | ¢ | < 1/2n,
g.()) =1 for | t]| > 1/n, and supg| g, | <nsupg|g'| (where the prime
denotes dfdx). If ue H“P({2) with supp u < By for some R > 0, each
function x — u,(x) = g,(] x Du(x) belongs to H,"?(£2). We claim that

u, —>u in HYP(2).
To verify this claim we majorize [o ] P(u, — ) |? dx with a quantity
CJ.n |1 — gall x| | Pu(x) 7 dx + CJ.D |2/ (| x| |u(x) |7 dx.

Since

ja|g;(|xa)|"iu(x)|fdxsmg'mj |ulp dx

Byn

pip*
sc:-r(j u dx) | B, 17
Byia

pir*

< Cn”n‘“’“‘””’"('[ u [ dx)

By

with 1/p* = t/p — 1/N, where Theorem 1.32 has been taken into account,
we have

J [Puy —w)|Pdx —0 as n—» oo,
n

hence the claimed property. At this point we need only apply the cutoff
mecthod to approximate every element in H'7(f2) with functions having
compact supports, thus obtaining H.?(22) = H»({2).
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An exhaustive treatment of the above matter would require the theory
of “polar sets,” as in R. Adams [1]. We can, however, rather casily prove
that H,?(2) does not equal H>P(£2) if | R¥\ 2| > 0. This we shall do
in a minute. First we prove the following lemma.

Lemma 1.42. Let ue HP(82) for some p € [|,c0]. If £ is another
open subset of R¥, Q' o 82, the trivial extension i of u to 52 belongs to
——
H (£ with 8ijdx; = (Ouldx;) = trivial extension of dufix; to 2" (i =
I, ..., N).

PrOOF. Let u be the limit in H'?(2) of {u,} = C,°(2): the trivial
extension #, of each function u, to 2 belongs to C,>(£2'), {i,} is a Cauchy
sequence in H.2(2), i, — i in LP($'), and iF € H,17(2") with 6uj8x1 =0

in 2\9,
ofi ) _
( 0x; /o -

THEOREM 1.43, Let | R¥\ 2| = 0. Then H?(2) is a proper subspace
of HL?(2); moreover, if x°€ RY and R > 0 are such that By{(x") N 2
Z D and | Bg(x)\82 | > 0, there exists a constant C(8), where § =
| BR(x®YN\S2 |/ R¥, such that the ineguality

}u 'Ip:ﬂan(z‘“) < CO)R|Vu |p~,m3,¢(z°) (1.25)

d . du
a—xi(“ha) = K 0

holds for every function ue Hy'P(52).

Proor. Let u be arbitrarily fixed in H;»7(£2) and denote by 7 the
trivial extension of u to R¥: |, is a function from H'?{Byr(x®)) which
vanishes on Bg(x")\{2. Since

V(if|gpz0)) = V) gy = (V“)antz“l
Lemma 1.36 yields

| lp.0nBatem = 1 8 |p;20, R
L C@R Vil |y p = COR | Pu |p.0nppien

Now let u e H-P(52) equal a constant = 0 in 2 N Bg(x%). Then each
first derivative of u|pnp, vanishes identically, and (1.25) cannot hold.
Thus, u ¢ H17(52). 0

With no difficulty we arrive at the following corollary.
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COROLLARY. Lef Q2 be bounded. Then there exists a constant C{f2),
which equals Cr with C independent both of x°€ R¥ and of r € 10, oo[ if
Q = B,(x") or Q = B,*(x"), suck that Poincaré’s inequality

| u |p:c < C(2) | Vu Ip:a (1.26)

holds for u € H2?(2). A norm on H2?(2) equivalent to u > | u |m .z
is defined by urs | Pul,.q.
[Take R = 2r if 2 = B,(x9), R =r if 2 = B,*(x").]

[HP(2)] is denoted by H-12'(Q), p' =p/{(p— 1) if p>1 and
1’ = oo, the dependence on p’ being depressed if p’ =p = 2. If fe L?'(2)
the distribution f; is (identifiable with) an element of H-1?'(2).

1.7.2. HL#(Q2 U I') Spaces

We now assume I' of class C' and denote by HP(Q u I') the
closure of C=(2 U ) in HW»(2), 1 <p < oo; we write H{Q u )
instead of H13(Q2 U I'). If the support of we H.P({)) is a compact
subset of 2 U I, Remark 2 after Theorem 1.30 and Lemma 1.25
easily show that we H*?(2 U I'). In particular, H'?(2 U I') could
equivalently be defined as the closure of C1(2 U I') in H-#({2); conse-
quently, the mapping u+> ' = uo A~! defines an isomorphism betwecen
H?(Q U I') and H,2(2" U I') if 2 is bounded and 4: @ >0 is a
C! diffeomorphism, I = A(I'). As for the problem whether H,1.2(Q U I')
equals H'?{({)) or not when d0Q\J £ @, consider 2 = B(x%) with x?
= (0,...,0,1) and I"'= S(x°)\{0} in the light of the example at the
beginning of this section: H,M?(2 U )= H'?(Q) if p << N, whereas
nonzero constants do not beleng to H,\?(Q2 v I') if p > N.

Lemma 1.42 admits the following straightforward generalization.

LemMMA 144, Let I be of class C! and suppose there exists an open
subset Uof R¥ suchthat UN QA 3, UnT= Let uc HM?(Q U I
for some p € [1, 00, The trivial extension it of u to 2’ = @ U U belongs

—_—
to HaP(Q' U I') with 83/0x; = (Qu/dx) for i=1, ..., N.

In the same vein of Theorem 1.43 we therefore arrive at the following
theorem.

TREOREM 1.45. Let I’ be of class C! and suppose there exists a bounded
domain U of RY such that UNn QF#, Un = and | UNL2]| > 0.
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Moreover, suppose that U has the extension property (1, p). Then there exists
a constant C(Q2, U, which has the form C(8)R if U is a sphere Bg(x°) or
a hemisphere Bp+(x°) and 8 = | UNS2 |/RY, such that the inequality

Lt lpsang < €@, U | P |ysonp %)
holds for ue HA?P(Q U I). Consequently, H'P({D)\ H ' ?(2 LU I') # Q.

If Q is a hemisphere B,+(x®) we can take U = B}(x®) if I" = §,%(x"),
U= B(x% if I'= §,+(x"), and arrive at the following corollary of
Theorem 1.45.

CoROLLARY. There exists @ constant C independent of x° e RN and
of re 0, o0 such that Poincaré's inequality

| u |p;z°.r.+ S Cf'l V” |p;:|:",r,+

holds for ue H'?(B,+(x°) U 5,%(x%) or ue H,V?(B,(x%) U S,+(x%).

'REMARK. The formulation of Poincaré’s inequality in the above co-
rollary can also be directly proven as well as sharpened. To wit, consider
(x’, xy) € B;*. (We take x® = 0 for the sake of notational simplicity).
Then, both quantities

J(r’-lz'l'}‘“

?
Uz x’, 1) dt~ = 1u(x) 7
N

[when v e C(B,* v 5,°)] and

J:N (X', 1) dt r = u(x)

[when v e CM(B,* U S,*)] are bounded by

(=l 1110 .
r”‘lj lug (x", O) [P dt,
o

so that the double integration

(’._lzlli,l”
j dx’ J [ Jdxy
Iz’lsr [}
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and a density argument yield the inequality
| u |B:r.+ =r?| Ury Bir+
both for € H (B, U §,°) and for u e HB,+ U §,1).

In general, if 2 is a bounded domain and 2 w U has the same
regularity as U in Theorem [.45, we can obtain (1.27) with U replaced
by 2 U U, hence with 2 N U replaced by 2. (The connectedness of £
cannot be dispensed with: see the example in the remark after Lemma 1.36,
with I" = 99, of class C! so that 2, 1 @, = (#.) This amounts to (1.26).
For the validity of the latter the setting of Theorem 1.45, although very
simple, is, however, too restricted. The same technique as for Lemma
[.36 does indeed yield the following lemma.

LemMA 1.46. Let Q2 be a bounded domain. Suppose I' is of class C' end
such that H'?(2 U I'), where 1 << p < oo, does not contain any nonzero
constant. Then (1.26) holds whenever ue H)?(2 U I'), and a norm on
H?(2 U I') equivalent to u — | & |g,pp) is defined by uv> | Vi |pq.

We shall return to the (rather indirect) requirement that nonzero
constants do not belong to H,#(2 « I") in Lemma 1.58.

ReMARK. Let 22 be bounded with I" of class C! and closed {possibly
empty). Let £' be a bounded open set with 3%’ of class C', Q' r 30 =
NI, 2 > £2, and consider trivial extensions to £’ of functions from
H-2(2 O {1 < p < co0). From Theorems 1.33, 1.34, and 1.41 it follows
that, for p < N, H,»?(£2 W I') is continuously injected into I#*(£2) and
compactly injected into L7(£2) for g <X p*, whereas it is continuously in-
jected into Co'-¥2({2) for p > N.

The above statements do not remain valid if I" is not closed. Consider
for instance the example of Section 1.2.1, with the right angles of £ con-
veniently smoothed in order that I"= 30~ {0} be of class C': u belongs
to H,W?(2 U I') because it is the limit in C(£2) of the sequence {u,} <
C (2 I') defined by u,(x,, x3) = u(x,, x; — 1/n), and this proves that,
whatever p, H,'2(£2 U I') is not injected into C%¢(2) if & > a/2.

1.7.3. Boundary Values and H"?"?(I") Spaces

Assume 2 bounded, I" of class C! and closed, and fix p in [1, cof.
For functions from H?({2) we want to define the space of traces on
I, as we did in Section 1.2.3 for functions from C*3({2).
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In the present situation, however, the preliminary necessity of giving
sense to u|, when u € HV?(2) is already a relevant problem, in that u is
only defined up to equivalence in LP(2), and | I"| = 0. When p > N this
difficulty can be overcome by defining u|, as the trace on I' of the contin-
uous representative of u (see the final remark of Section 1.7.2). In the
general case we need instead more elaborate considerations.

We now proceed to illustrate them for N = 2: the corresponding study
for N = 1 is left to the reader as an easy exercise.

We begin with two lemmas concerning regular functions in the space
H#(Qu IN).

LemMma 1.47. Letu e CM82 U I'). Its trace ul, on I vanishes identically
if and only if ue H}?(2).

Proor. If u vanishes on I' each function u, = (1/n)G(nu) with G €
CU(R), G(t) =0 for |t| <1, G(t)y =1 for |11 =2 belongs to C}r(£).
By the dominated convergence theorem u, — u in H“?(£), so that u €
Ho ().

Vice versa, suppose that u € H,"?(f2). By Lemma 1.42 the trivial
extension # of u to R¥ belongs to HY?(R¥) with

j u,tudxzj Nﬁ,‘udxz —J‘ Nﬂvz‘dx-: —I uv,, dx
2 B B o

hence

J (uv)|vide =0
r

by the divergence theorem, for v e C2(RY), i =1, ..., N. Since T¥, (')
=1 the above implies u|, = 0. 1]

LeMma 148, Letg=(Np —p)/(N—p)if |l <p < N, ge [l,o0] ar-
bitrary if p = N. There exists a constant C such that

| 4lp [g:r < Clulgroc,

whenever ue CMQ u IN).

Proor. Through a partition of unity and a change of coordinates we
sec that the only thing to prove is the existence of a constant C such that

I Ul go Ic;sﬂ < Clu|gueiy (1.28)
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whenever u € C,l(Bt U §°). We write
TEPULIL
u(x',0) = — J ug (x’, 1) dt for |x'| << L.
0
If p=1, then ¢ = | and (1.28) follows from the inequality
J. [u(x’, 0)] dx’ =< J | 4z, | dx.
lzfl<1 B+

Let | << p << N. The function w = | u |'N»—»//¥—2) helongs to C,1(B+ U S7),
and

t1-|z7 1)V
wix’, 0) — — J wa (X', 1) dt
[+]

Np—p t1-lz7(AN2 . ]
= N_p Jo Lu(x’, 1) |¥-DE-2 |y (x*, 1) | dr.

By Hélder’s inequality,

[ulso|dis0 = J |u(x’, 0) (NP2} g’ — f w(x', 0) dr
lzfl<}

[FAIES
Np _p (J‘ v \ )171’1) J‘ )lr"ﬁ
< - I Np/(N—p)
<=2(] 1w dx ( eyl ax) " (1.29)

Since
HW?(8H) LN‘,D;’(N)p](B+)

by Theorem 1.33 (see Remark 3 after Theorem 1.30),

. Np/(N
|, 1wl ax < clulizine,

and (1.28) follows from (1.29) for the present choice of p.
Finally, if p > N (1.28) is valid with ¢ = (Nr — r)/(N — r) whenever
1 <r < N, hence with any ge& ]I, ccf. )
To ue Hy?(2 U I') we now associate the equivalence class [#] of
all functions ze H'P(£2 u I') satisfying z — w e H,P(§2). This means
that [u] is an element of the Banach (Hilbert, if p = 2) quotient space
H2(Q2 u DN/H?(82), normed by

|[u]|Hul.p(QUF”Hul.p(n) = lnf{l 4 |H’-P10) l ZE Hu]'p(g 9] D, Z—HE Hul-:ﬂ(g)}
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(see Theorem |.H). Note that the linear space of equivalence classes [u]
with u € CMQ U I') is dense in H??(2 U DYH! (). fue CHRU T
verifies [u] =0, then we H,P(2), and u|, =0 by Lemma 1.47. This
means that the mapping

ulp— | U] lg e oummg 2w ue CMRUI), (1.30)

defines a norm on C!{I") (see Lemma 1.5): we denote the completion of
C'(I") with respect to (1.30) by HY?"#(I"}, by HV¥(I") if p = 2. Obviously,
the following holds.

LemmA 1.49. HV?.2(I') is a Banach space (a Hilbert space, if p = 2)
isometrically isomorphic to H'»{(Q2 U I')/H,'\»(2).

It is clear that HY""(IN < HY?" M for 1 <p < r < oo,
We define a continuous linear mapping T from Hy'?(2 U I') onto
HY#.2(I'} by density after setting

Tu=u|, for ue CHR L I);

of course Tu = 0« u e H?(52).

THEOREM 1.50. Let g = (Np — p}/(N —p)if | <p < N, g < oo ar-
bitrary if p = N. For ue Hp}?(Q2 U I'), Tu is a function from LI with

]TH |G:PS- ClTulHup‘,pln, (131)

C independent of u, and Tu = 0 a.e. [N — 1] on I if and only if u € H ) {(£2);
equivalently,

e o LI,
Moreover, Tu = ujp if ue H*(Q 0 I CQ2 w IN).
PROOF. By Lemma 1.48 a bound
[Tuler < Clu+vmem

is valid whenever u€ C(£2 U I'} if v e C2{{2), hence also if v &€ Hy'(£2).
This shows that {1.31) holds for u e C,}(£2 U I'}), and therefore

| 9 lg:r = C| Tit |gpivenpy

for ue H?(2 U I'},  denoting the limit in LYT") of {Tu,} if {u,} c
CHR U T}, u, — u in H-?(£2). We will be allowed to identify 5 with Tu
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after proving that Tu is the zero element of H'#'.2(I") if 5 = O a.e. [N — 1]
on I If this is the case, then,

N N
Y J (zp + o) dx = Y | wylpolpvide —0
Sildn r

i=1

for v € C,/~(R¥). This shows that the trivial extension & of u to R¥ satisfies

J fiv, dx = —J. ug v dx for v € C2(RY)
RY a

and consequently belongs to H-#(R¥). We claim that the above guarantees
the membership of # in Hy?(£2), so that Tu = 0. Indeed, through a partition
of unity and a change of coordinates the problem at hand is reduced to the
case

QNB=Bt O6QNB=INB=S5% suppuvc B*U S (1.32)

Then each function

ulx’', xy — 1/m)  if (x’, xy — 1/n) € supp u = supp &,
0 otherwise

(', ) = {

satisfies 4, € H?(R¥) as well as supp i, c £2 and therefore 4, |, € H,''?(£2)
for n large enough, so that ¥ = lim,_,, &,|o in H"P(£2) belongs to H,.#(£2).

Rather simple considerations show that also the last statement of the
theorem need only be proven in the particular case (1.32). This time we
denote by & the extension by reflection of u|gw to B: thus,

e H'»(B) N C%B)  with suppti c B.
The sequence {g, *ii} of regularizations of # verifies
(0. * g —>& in CYB)

by Lemma 1.7, hence also

(on * DIz~ ulss  in C(5Y;
on the other hand,

(on* ®)|p—4d  in H'P(B)
by Lemma 1.25, hence also

(Qn * ﬁ)]gq— —>» U|p+ in Hl,p(B+)
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and finally, _
(on * #)lse = (Tu)le  in LI(S°).

This shows that the continuous function ulg is a representative of the func-
tion (Tu)|ge € LI(SO). il
Theorem 1.50 allows us to introduce the notations u|,= Tu for u
€ H "2 U IN), u), = (gu)|, for ue HY?(£2) if I" 052, where g is any
function from C, (2 U I') with g = | near I" [a definition that is clearly
independent of the particular choice of g), (uv)[; = u{v|, (an element of
Li(I"), not necessarily of H¥?'.2(I")] for ue H"*(2) and v € C%D).

By construction, H*?"?(I") is exactly the space of traces u|, on I (in
the sense of the above definition) of functions u & H'2(£2). On the other
hand, an “intrinsic definition” of HY?'.2(I"), which underlies our choice
of the symbol (of a ““Sobolev space of fractionary order 1/p’”), can also
be given: see J. NeZas [127].

Note that C*Y(I") ¢ HY?"2(I") since C%!({3) « H'»(2) (see Theo-
rem 1.21).

1.7.4. Supplementary Results

The next two results are not necessary for the sequel but cast more
light on the structure of HVY#»(I") when p > 1.

LemMa 1.51. For p > 1 the injection of HY?.»(I") into L¥I"), with
1<<s<(Np—p)/(N—p) if p<<N and s < oo arbitrary if p> N, is
compact.

Proor. We may safely restrict ourselves to the range 1 << p << N. Let
{n.} be a bounded sequence in H*?.»(I'), hence 1, = u,|r with {u,} <
H'?(22 U I') bounded. Without loss of generality we assume (1.32) with
u replaced by u, for every n. Let r € [1, p[ be such that s = (Nr — r)/
(N — r). By density we may apply (1.29) with « replaced by u, — u,,, p
by r, ¢ by s, and obtain

|7\7n ~ Nm |‘J‘,I‘ = I (un - um)lS" |s;8“

1~1/r 1/r
< O], tun— ¥ ) [t — ey )
B+ B+
L 1-1/7
= c (J. | Uy — Uy 'lhﬁm‘” dx) Iun - umIH‘-PIﬂI .
n

Since we have Nr/(N — r) < p* = Np/(N — p), H*-»(2 U I') is compact-
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ly injected into L¥*¥-"(£2) (see the final remark of Section 1.7.1). Thus,
a subsequence of {u,} converges in L¥"¥-N(0) and so does the cor-
responding subsequence of {5,} in L*(I") by the above estimate. 0

LemMA 1.52. For p > | the continuous injection HV?'?(I') o L¥(I") of
Theorem 1.50 is not anto.

Proor. If HYP2(I") were continuously injected onto L#(I"), L¥(I")
would be continuously injected onto HV#'.?(I") by the open mapping
theorem (see H. Brézis [19]), and L#%(I") would be compactly injected in
L(I') by the previous result. But we can easity construct (on the basis of
the sequence {sin nx}, 0 << x < @) a bounded sequence {n,}, = L#(I") with
t % [1; = 1 which converges weakly to 0 in L1(I"), so that no subsequence
{nn }x can converge strongly (to 0) in L}(I"). 0

By density, the divergence theorem can be extended as follows.

THeOREM 1.53. I ue H?(Q2 U T') and v e H'?(2), the identity
J up v dx = — J uv,, dx + J u|pv|pvide
n o r
holds for i =1, ..., N. In particular, let I' = (3. if ue H,\»(Q),

I U, dx =0
n

for i=1, ... N.

REMARK. The regularity of v required in the above statement can be
weakened in the light of the final remark of Section 1.7.2.

A few extensions of the above notions of boundary values will now
be given.

If 882 is of class C*, QT &, H* (2 U I') is the space of func-
tions w € H"?((2) such that ;5 is the zero element of HY?'2(3Q\TI").
This circumstance leads us to the following definition for the case when
no regularity is assumed about 321" We say that u € H'?(Q2) equals 0
on QNI in the sense of H'#(Q) if ue H-»(Q u IN).

Boundary values u|, can be given an unambiguous meaning also when
I' is no longer assumed closed. Take for instance 2 = B+, '= 8% If u
is a measurable function on B* such that u|g.. € H-?(Bg*) whenever
0 <R <1, we define its trace | a.e. [N — 1] by setting u|e =

un
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(gn)lso_,,, for n=12,3, ..., where g, € C(RY), g, =1 on By, with
supp g, < B. '

We finally observe that, since H'#"?(I") has been identified with a
dense subspace of L(I") (see Lemma 1.13), L¥(I") is automatically iden-
tified to a subspace of [H'7"?(I")]’ with unambiguous meaning of the
symbol (@, > when ® € LI(I"), n € HY?".7(I"); note that each mapping
vi> (D, v|» with @ piven in [HYF"P(I")]" is a bounded linear functional
on H,.?(2 U I'), hence an element of [H,'?(2 U I).

1.8, Inequalities and Lattice Properties

1.8.1. Some Notions from the Abstract Theory of Ordered Linear Spaces

Let a linear space ¥ be endowed with an order structure defined by
a reflexive, transitive and antisymmetric binary relation <<: ¥ is called an
ordered linear space with respect to < if u < v implies u +w<v -+ w
and Adu < Joforu, v, we Vand 0 <1 < oo, If Eis a subset of ¥ and there
exists z € V satisfying z = w(z << u) whenever u € E, E is said to be order
bounded from above (from below), or majorized (minorized), and z is called
an upper (a lower) bound, or a majorant (a minorant) of E. If, moreover,
E has an upper (a lower) bound z, satisfying z, < z(z, = z) whenever z
is an upper (a lower) bound of E, then z, is unique and is called the leass
upper bound (greatest lower bound), or supremum (infimum) of E. We de-
note the supremum (infimum) of E by sup E (inf E), or by VVier #il A iez ;)
if E={u;e V|ie I} for some index family 7; u v 0 [—(u A 0)] is also
denoted by wt (u), ut 4w~ by | u|. If V is an ordered linear space such
that # v v and u A v exist whenever w,v € ¥, we say that ¥ is a linear
lartice. If F is a linear functional on an ordered linear space ¥, we say
that F is nonnegative {(nonpositive), in symbol F > 0 (F < 0), if

F,op) =0 ((F,v><0) for ve ¥V, v > 0.

A Banach space ¥ which is an ordered linear space (a linear lattice)
is called an ordered Banach space (a Banach lattice if in addition | v? |}
<|vip for ve V).

Many properties of ordered Banach spaces and Banach lattices can
be proven exactly as in the case ¥ = 2. If ¥ is an ordered Banach space,
so is correspondingly ¥'; sometimes we will find it useful to refer to
inequalitics between elements of ¥’ as inequalities in the sense of V'.
¥’ need not be a Banach lattice, even if ¥ is; however, ¥’ has a property
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that ¥ need not have if the index family  in the following lemma is not
finite.

LeMMa 1.54. Let V be a Banach lattice. If {F;};.; = V' is order bounded
from above, then \/ i F; exists.

Proor. We begin with the particular case 7= {i,2}, F, =0, and
write F for F,. Let Ge V' satisfy G >0, G>> F. Wheneverve V, v > 0,
we have

H(@v) = sup {F,w) < (G, v,
eV
Osw=s0
so that 0 < H(s) < co. It is clear that H(dv) = AH(sv) for 1> 0. For
k=1L2ltyeV, p,=20: fweV, 0<w, <v, then 0 <w, + w,
< v, + v, and therefore

H(vy) + H(vy) < H(vy + vy).
On the other hand, let we V with 0 << w << v, + v,: then,

w=wAp 4+ (w—n)t

and
0<wi=wAy <uv,
0w, =(w— )t <,
hence
(F,w) < H{v,) + H(vg)
and finally

H(v, + v,) < H(w)) + H(vy).
This shows that 2 nonnegative linear functional H on V is defined by
(H,v) = H{vt) — H({v") forve V.

(For linearity: if v = v, + vy write »,® + vt as vt + w, v;” + vy~ as
v- 4w, w>0)

At this point we deduce that H is continuous on V, hence H € V',
from the following theorem that we shall prove shortly.

THeOREM 1.55. Let H be a nonnegative linear functional on a Banach
lattice V. Then H belongs to V.



Since
(F,0) < (H,v5 <G,

for any v€ V, v >> 0, G being an arbitrary upper bound of F and 0, we
have H=0v F.

If neither F, nor F, vanishes, both F; — F, and 0 are order bounded
from above by G — F, if G € V' is such that G = F, and G > F,, so that
there exists F; v F, = 0 v (F;, — F;) 4 F; by the above.

Passing to a general index family 7 we remark that \/,; F, exists if
and only if \/; zf (F; V F;) does, in which case the two coincide. Without
loss of generality we therefore assume that the family {F;};, contains the
supremum between any two of its elements. For ve ¥, v >0 we set

H(v) = sup (F;, v).
iel

It is obvious that H(Av) = AH(v) for A>0. Let v,,v,€ V with v, > 0,
vy = 0. Clearly,

H(v, + v;) < H(y)) + H(p,).
On the other hand, if £ > 0 is arbitrarily fixed and i, j€ I are such that

<F\'lvl>>H(vl)_£) <Fj,'-’a>>H(va)_£.

then
CF; Vv F;, 04 v > H(yy) + H(,) — 2e.

This shows that H(v, + v,) = H(v,) + H(v;). At this point we can proceed
as in the first part of the proof and conclude that the linear functional

{H,v> = H@xt) — H(v), ve V,
belongs to ¥ and equals V. F;. I

ProoF OF THEOREM 1.55. Since Vis a Banach lattice we need only prove
that

sup {H,v) < oo,
¥, 020, Iolpsl

If the above were not true, for every n € N there would exist u, € ¥ with
ty >0, |ty p < 1/n such that (H,w,> > 1. But then {v,} — V defined
by

ill
s

Vi Han

1

E
1



Function Spaces s
would be a Cauchy sequence with v, < v,,,,, hence u, — v in ¥ with
(H,v) = (H,vp) >m for every m,

which is absurd. 0

1.8.2. Inequalities and Lattice Properties in Function Spaces over £2

All function spaces over £2 of interest to us are linear subspaces of
I1.(£2). The latter is an ordered linear space and even a linear lattice with
respect to the relation < defined by

u<<0 if u(x) =<0 for a.a. xe £.

All spaces H%?(L2) are then automatically endowed with the structure of
ordered linear spaces, and so are all spaces C4%(2) after the obvious
passage to continuous representatives so that

u(x) <0 forxe® ifueC(Q), u<O.

Note that a function v of L}.(£2) is < 0 if and only if

J uwdx <0 for ve C=(02), v > 0.
2

The passage to lattice properties is more delicate. All spaces L{.(£2)
[LP(2)] and C°%Q) [C**(Q) with 2 bounded] are linear (Banach) lat-
tices. C'(£2) is not a linear lattice. For what concerns Sobolev spaces we
make use of Stampacchia's theorem:

THEOREM 1.56. For | < p < oo, HY¥(2) and H}*(Q U I) with I’
of class C* are Banach lattices, and

Put = 1,.,Vu, Fu— = y,«Fu

where ¥,.q (Xs<o) denotes the characteristic function of the subset of 2 where
(an arbitrarily fixed representative of) u is > 0 (<< 0); hence, Vu =0 a.e.
in the subset of 2 where u = 0. Moreover, the mappings u+ u* and uv» u~
are continuous in H?(52),

For the proof of this theorem we need the following lemma.
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LeMMA 1.57. Let G € CY(R) with G’ € L™(R) and in addition G(0) = 0
if Q is not bounded. Whenever ue H'P(2), 1 < p << oo, Gou belongs
to HW2(Q) with V(Gouw)= G'(w)Vu. If I is of class C', G(0) =0 and
ue H¥?(Q2 U IN), then Gou belongs to H,\#(Q U I'). Finally, the above
remains valid without the requirement G' € L™(R) if in addition u € L=(£2).

ProOF. If u € H'?(£2) the functions G o u, (G’ o u)u,, belong to Lr(2).
(Note | G(#(x)) | < | G(O) | + | G’ |oo;r | u(x) |.) Take w c< Q.

If {u,} « CY(@) is such that u,—u|, and u,, —u,|, in LP(w) as
well as a.e. in o (see Lemma 1.25), we have P(Gou,) = G'(u,)Vu, and
G'(u,) - G'(u) a.e. in w. Thus, from the inequalities

j | Gluy) — G(u) [P dx < | G’ ;;RJ | up — u'? d,

'[ | G"(u)Vu, — G'(u)Pu P dx < C |G’ {:,,..,,J | Pu, — Vu |7 dx

+ CJ |G () — G'(w) |7 | Ve |7 dx

and with the help of the dominated converpence theorem for the last
integral, we deduce that

Gouy —(Gou),,
(GO un)z;_b [(G'ou)uz‘“w for 'l= 1, R | N

in LP{w). This shows that (G o )], € H“P(w) with F(G o u)|, = (G ou)|,
x Fu|,. The first conclusion of the lemma is valid by definition of distribu-
tional derivatives. The statement concerning functions ue€ H.?(2 U I')
is obviously valid under the stronger assumption u € C,2(£2 U I") and ob-
tains in general through inequalities in L”(£2) analogous to those above in
LP(w). Finally, G o u equals G o u, G being a suitable function from C,}(R),
if we L($Q). 0

ProOF OF THEOREM 1.56. Step 1: Proof of the lattice property. For
e >0 set
(4 eV — e for 1 > 0,
G = {0 for 1 < 0.

We are in a position to apply Lemma 1.57, which yields G, o u € H-?(£2)
for ue H'»(2) and G,oue H}M?(2 U T) forue H}*?Q u N if I'is



Fonction Spaces 81
of class C!, as well as

] = — —.._.uuz‘ 0
JD (G, ou)vy dx ID+ RO vdx for ve CZ(82)

with 2, = {x € 2| u(x) > 0} (for an arbitrarily fixed representative of u).
By letting & — 0 we obtain
J uty, dx = -—J u, v dx for v e C(82),
o o,
hence ut € H-?(2) if ue H'»(Q), ut € H)¢(2Q U N ifue H}?*Q v I),

with
(u+)z{ = g Xu>0-

This proves the required property of u*. As for u-, it suffices to utilize
the identity #~ = (—u)*. Finaily, a.e. in the subset of 2 where u=20
both functions x,., and y,c, vanish, so that

Vu = Put — Pu-=0.

Step 2: Continuity of u — u*. Let {u,} converge to u in H*?(2) and
set 2+ = Xusos Xn+ = Xu,>o after fixing representatives. We have u, —u
and therefore |u, | — | u|, u,t— ut in LP(2) as well as (after passing
to a subsequence still denoted by the same symbol as the whole sequence)
a.e. in £, Let 2, be defined as in Step 1,

2_={xeQ|u(x) <0}, =\(2,uR):
we have :
wt = wyy = lim w,* = lim w 1.4,

n-+0 -

hence y,, — 1 a.e. in 2, because u = u* > 0 and y, = 1 there, whereas
Zas —0 2e in 2 and Pu=0 a.e. in 2,. But,

j | Pt — u) l’dx=J | 2nsPtn — 2,Vu P dx
n o
SC(JDxu+lV(us-u)I’dx+J |Vu|==|x,.+—z+|dx)
o
SC(j Pen— P dxt [ Vup g — 2ol e
o a,

—i—.[ ]Vul"x“dx—i—.[ IVu]”dx).
o 0,
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By the dominated convergence theorem, the integrals over £, and £2_ tend

to 0, and so does the integral over £ because u, — u in H“?(2), whereas

the integral over 2, vanishes. This shows that u,* — u* in H"#({2) for a

subsequence of indices, hence also for the whole sequence by uniqueness

of the limit. The statement about the continuity of u — u*, therefore also

of u > u~, has thus been proven. 1]
From Theorem 1.56 we deduce the following.

LEmmA 1.58. Let I' be of class C', 1 < p << oo. If ue H"(L2) and
there exists ve HP(Q U ) with 0 <u <v, then ue H»(Q U ). In
particular, if 02 is bounded a nonzero constant cannot belong to H#(2 U I
if the latter is a proper subspace of H"“P(£2).

Proor. Let {v,} = C1(2 U I') converge to v in H'#(22). Then u is
the limit in H-?(2) of {v, A u}, and each function v, A u belongs to
He(Q U ) because its support lies in £2 U I, This proves the mem-
bership of u in H,\.2(2 U I').

Now let £2 be bounded and assume u € HLP(N\H2 P2 U I), say
Cut¢ H?(Q2 U IN'). If nonzero constants belonged to H'#(2 U I') each
function u* A n, n € N, would belong to H?(£2 W I') by the previous
conclusion, and so would ut since ut A n —ut in HLWP{{). 1

1.8.3. Boundary Inequalities

Passing to boundary inequalities we assume £ bounded, I" of class
!, and say that we HL.(2), 1 < p < oo, satisfies u <0 (v > 0) on
A~U" in the sense of H'-*($) if wt € H'?(R2 U M) [u-e Hr? (2 U IN);
ue HWp(2 U M), 1 <p < oo, satisfies u <0 (w>0) on I' in the sense
of H'2(2) if u+ ¢ HL?(2) [u— € H?(82)].

Note that u satisfies both ¥ << 0 and u >0 on 82~ " in the sense
of H'»(£2) if and only if ue H,?(2 U I'), that is, u = 0 on 2T in
the sense of HL.?(92).

Lemma 1.59. Let 2 have the segment property and I' be of class C1.
Then ue H ($2), 1 < p < oo, satisfies u << 0 on Q1" in the sense of
HY2(Q) if and only if it is the limit in H*?(2) of a sequence {u,} C=(2)
with unlag\p < 0.

PROOE. Step 1: The “if " part. For n € N the support of the Lipschitzian
function (u, — 1/n)* lies in 24U I', hence (4, — I/m)* € HA?(2 U T,
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Since wt is the limit in H“?{2) of (v, — 1/n)* by Theorem 1.55, u* belongs
to H?(Q U I).

Step 2: The “only if” part. Let {u,t'} =« C=(f2 U I') converge to
ut in H'P(2). We approximate u~ in H'?(Q2) with a sequence {u,'”'} c
C=(£2) constructed, as in Theorem .27, through a partition of unity,
translations and convolutions with nonnegative mollifiers; hence, u,' == 0.
Then, u is the limit in H%?(Q) of {u,'*' — u,' 7}, and u,**) — u, " € C=(2)
with (u,.”) — " Nlgo~r < 0. 0

We now add the assumption that I" is compact. L{(I") is an ordcrcd
linear space with respect to the relation << defined by

n<0 ifp<<0 ae [N—1]lonlI.

All linear subspaces of L'(I") are ordered linear spaces with respect to <<
in L'(I"), with the obvious pointwise meaning in the continuous case.

Lemma 1.60. Let € L\(I"). In order that n << 0 it is necessary and
sufficient that

J'qadago for B CNI), 60
r

ProoF. Necessity is obvious. Passing to sufficiency, we consider a
covering I" = |\ Ji., I';, each I'; being straightened by a C! diffeomorphism
A;: O, — B, and suppose there exists £  S° with measy_, E > 0, such
that no A;7! > 0 on E for some i. We can always assume that E lies in-
side §,° for some re |0, 1[, and find a partition of unity {g;} relative to
the above covering of I" with the property that g; =1 on A;/'(S§z") for
some R € ], I[, hence g; = 0 on [4;7(Sg"] N [A;7(Se")] for j£ i With
the symbols of Section 1.33 we have

L (gm) o (A N)|gH dx" > 0O:

by approximating a.e. [N — 1] in §° the characteristic function of E with
a sequence {6,’} < C'(S°) such that 0 <8, <1, supp 6, = S’ we find
an index ny such that 8, = 6, satisfies

|, @ ot miax >0,
5



hence

J 8o do > 0
r
with 6, = 0, o A; on A;"(Sg°), 6, = 0 elsewhere. 0

THEOREM 1.61. Let I' be of class C* and compact, | << p < oo, HY#'\?(I')
is @ Banach lattice with respect to the order relation in L\I'), and n* =
ut|, if n = ulp withue H'*Q U T).

Proor. We know that 5 = u|, = ut|p — v|,. We need to show
that ut|,>0, ut|,u|p, =0 ae. [N — 1] But this is true with u#|,
replaced by u, %], if {u,} €« C>(R2 v ), u, —»u in H'?(2), and we only
need pass to the limit a.e. [N — 1] on I" (see Theorem 1.12). For what
concerns the norm estimate it suffices to note that

|‘l]i Iyur'.pgm S [u* |y:.p(m S ]u lm.pm,

whenever n = u|,. 0
In the setting of the above theorem the following mutual implications

ut€ H'#(Q) <> ut|p=0< (uip)* = 0<>ulr = —(lp)”
lead to the following corollary.

CoroLLArY. Let I’ be of class C' and compact, | <\ p << co. Then
uc HM»(QR U I is <0 on I in the sense of H“?(2) if and only if
ulp<0.

The notion of inequalities in the sense of H1.?(02), 1 << p < oo, can
be enlarged as follows. Let £ have the segment property and let E < (o}
P e CYE). We say that u e H“?(£2) satisfies u < 4 on E in the sense of
HY?() if u is the limit in H'?(2) of a sequence {u,} < C=(2) with u,
<¢on E. ff E=9\T with I" of class C* and $ = 0, Lemma 1.59
leads us back to the previous definition; as for the case E= 2, $ =0,
we can adapt an argument utilized in Step 2 of the proof of Lemma 1.59
and verify that u << 0 on £ in the sense of H*?(2) if and only if u(x) <0
for a.a. x € £2. Finally, if £ ¢ 2 u I" the above definition can be given
without any hypothesis of regularity about QI for functions we
H}»(Q v I'), the sequence {u,} being taken in C (2 U I').
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Problems

For brevity's sake, problems will often be phrased in the form of assertions

that must be proven, possibly following a basic outline.

1.1

1.2,

13.

14.

1.5

1.6.

L7,
1.8.

1.9.

Let ¥V be a normed space and let v, € V¥ be arbitrarily fixed. Apply the
Hahn-Banach theorem to the linear functional vt | v | for v = tv,,
t € B, and prove that there exists Fe V' with | F |, <1, (F, 0> =
| Yo Iy .
Prove that
o]y < liminf | o, |»
n 00
if v, — v in a normed space V.
Let ¥ be a normed space. Any Cauchy sequence in V'’ is weakly convergent
and even strongly convergent.
Let 2 be bounded and fix 4 in 10, 1), ¥ in [0, d[. To prove that the injec-
tion C+4() g CE¥() is compact for any & =0, 1, ..., utilize the in-
equality
| #(x) — o{x) — [u(y) — e[ x — y |¥ < 2|4 — v |coufe
for x, ye B, |x—y|=2e>0,
If 2 is connected and u is a function on 2 with [uly.q < oo for some § > 1,
then u is a constant,
Let 0 < & < 1. Utilize the inequality
(I+»f<l+y? fory=0
to show that the function w(x) = | x |4, x € R¥, verifies [u]sn¥ = 1.
Find a function & € C%(H) with []s,5 = oo for any & > 0.
Denote by 4 the trivial extension to KY of a function « € LP(§2), ] < p < oo,
and set uy{x) = i#(x + h) for x € 2, h ¢ R¥ Utilize Theorem 1.8 to prove
that ws ~ & in LP(2) as || —0.
Lemma 1.4 is proven as follows. For a suitable £ > 0 the set w,’ = {x € w, |

dist(x, dm,) > ¢t} is such that v = o, U (U, w). An open covering
fw)’} of w, with @y’ =< w,, is constructed by recurrence. For each j there
exists g/ € C°(R¥) with g, =1 on oy, supp g,/ © w,. The required par-
tition of unity is obtained by setting

o0
mzm/Znﬂ
k=0

1.10. Let x° € 2. There exists no function # € L1,.(2) with the property

'[ up dx = p(x®) for v € C2(82).
a
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1.11,

112,

1.13.

1.14,

1.15.

1.16.

1.17

1.18,

Chapter 1

Let u e Ll () verify

J. uwdx =0 for v e C2(Q).
a

By considering the functions (o, *u)|., @ cc 2, with n sufficiently large,
show that ¥ = 0 a.e..in .

Let 2 be bounded and take p e ]1, oo[. If {u,} is a bounded sequence
from L*D), u, »u at.in 2, the sets E,, = {x € 2| | u(x) —ufx) | < I
whatever n = m} satisfy | Ep, | = | @ | as m — oo, The family & of func-
tions v € L?'(Q) such that supp v € E,, for some m is dense in L?'(£), and

j‘ (4 —wodx - 0
o

whatever v € €, Hence, u, — ¥ in L?(0Q). See J. L. Lions [103].

Let @ = {xe R¥||x'| < 1,0 < xy < 1}. Utilize Theorem 1.20 to prove
the following: if « belongs to L>(2) and its distributional derivative «;,
to L), then the mapping xy = [z+«; #*(x', xy) dx’ is continuous on
10, I[. Next, utilize Problem 1.12 to prove that the mapping xy — u(-, xx)
is continuous from 10, 1[ into L3*(S°).

For w cc @2 and | k| < dist(w, Q) prove the necessary part of Theorem
1.21 with the help of Lemma 1.25 and Hdélder’s incquality [which yields

1
| Splu(x) |7 < J | Pulx + the') | dr for xew
L]

whenever u € Cl(w’), o = {x + the'| x e w, 0 < ¢ < 1}]. Proceed analo-
gously for 2 =B+, @ c B+ U S8 i=1,..., N— 1L

Given @ € R and p e [1, 2], find the largest value of k ¢ & for which the
function | x |[* belongs to H*#(B).

Let 92 be of class C'. Find the smallest value of the natural number &
(depending on N) such that us belongs to H*(2) whenever both « and v do.

Formula (1.17) can be given with B* replaced by a Cartesian product
J—a, e[ X - XJ—aw-1, ay-:[ X )0, an{, a; > 0. Utilize this observation a
convenient number of times (for instance, 4 times when N = 2) to prove
that every Cartesian product 15,, e,[ X --- X Jby, ¢x[, b < ¢4, has the ex-
tension property (k,p) for ke N and 1 < p < oo,

Lemma 1.37 can be given a different proof which yields the sharper estimate
Mih—k) 1

Y IDuln<é Y (Duilot C8
1]

lal=h 151 =

u ]:;D

with C independent of § > 0, provided the latter is sufficiently small. For
=1 and k = 2 such a proof is particularly simple if £ is a cube, the
constant C being then independent of the size of 2. Indeed, begin with
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1.19.

1.20.

1.21.

1.22.

1.23.

1.24,

1.25,

the case N =1 and divide the interval 2 into subintervals 2; of length
between 8,%f2 and 8,P, with 0 < 8, < | 2 |*. Assume u € CY$J). For
02; = la, b[ apply the mean value theorem to u between two points & €
Ja, @ + [ and n € Ja + 3a, [ with « = (b — a)/4, and obtain

ueo) < HOLEIOL L [y e

for x € Ja, b[. After integrating in & over J@, @ + «f, in # over la + 3a, b[,
take the pth power, apply Hélder's inequality, and integrate in x over the
interval la, 5[: the result is

-] cl’l b ]
J |M'll’dxs -[ Iulﬂdx_*.coap'[ |u”|’dx
a a

a P L]

Co [® Cobs [®, ,
SZ’P‘S—D'LIu]"dx-i- 2 Jnlu |”dx.
For 0 < &6 < 2-*C, | 2|7 the result in the case at hand follows easily.
The passage to the case N > 1 is an immediate consequence of the above
for u € C*(§3). (See A. Friedman [54].)

Let 1 < p < oo, If T € H-Y({2) with £ < T < g, where both f and g belong
to LP(L2), then T is an element of L7(£2).

If £ is bounded and y € C(D), y|lan =0, v >0 in 2, then for every
k € N and p € [l, co] there exists v € H,5P(() N C%2) such that 0 < v <
y in 2. To see this, utilize Lemma 1.4 and define v = 252 &2,/ &1 |er i
with & > 0 suitably chosen.

Utilize Lemma 1.25 to prove that uv € H'?(2) N L>=(Q2) (1 < p < o0)
with (uv),, = w0 + v, for i=1,..., N if 1, 0e H'2(Q) n L=().
Proceed analogously for H'?(2 v I'), with I’ of class C'and 1 < p < o¢,
instead of H?(0).

Let 22 be bounded (no regularity being assumed on 3802). Take p € [, oo[,
ue H-»(Q) n C() with u|ap =0, and prove that ¥ € H,-#(22) by con-
sidering (v — 1/m)*, (v — 1/n)~. See also the proof of Lemma 1.47.
Let {u,} converge toward u in H'(f2). Then u,* — u* in H'(£2); moreover,
| upt |0y — | u* |y, Hence, up,* — 4+ in HY(f2). Compare with Step
2 of the proof of Theorem 1.56.

Let w € H¥?(2) (1 < p < oo). Then | Vu | € HY?(Q) with (8]|dx)) | Vu | =
bsgltzef| Ve |.

Let 2 be bounded, I" of class C* and closed. For 1 < p < co utilize the
reflexivity of H,»?(f2 U I') to prove that, if n € HY?"?(I'), there exists
u € H'»(2 v Iy with u|p =» and

| & Jrieeen = | 9 |rret ooy



1.26.

1.27.

Chapter 1

Let v e HUVP(B* v §°% (1 <p < o0) and set n(x) =o(x, 0), [x'| <1
Prove that for i =1, ..., N — 1 the derivative ., in the sense of distri-
butions over §* (the latter being endowed with the relative topology) equals
vy, lse. Utilize this fact to prove that, if I'= 92 is of class C* and u €
B2 n H7(), then Fu = u, 'y,

If I' is compact and of class C', &, — u in H'(X) implies w,[r — ¥|r in

HM,



2

The Variational Theory
of Elliptic Boundary Value Problems

Consider the following “model problem™:

—Au+tu=f in 9,
2.1)
u=20 on QN1 (Pu)-v=10 on I,

where 4 denotes, as is usual in the literature, the Laplacian Y'¥,8%/dx¢2,
and f is an arbitranily fixed function from L2(£2). (As stipulated in the
Glossary of Basic Notations, £2 is from now on supposed to be a bounded
domain.) Let 9922 be of class C! and let its open portion I' be closed as
well. With the help of Section 1.7.3 for what concerns boundary values,
we see that (2.1) certainly makes sense in the function space H®*(2) and
implies
ue H(Q u I,
(2.2)

a(u,v) = J.n (U0, + wv) dx = Lfv dx for ve H}QUI)

by the divergence thcorem: see Theorem 1.53. (From now on we adopt
the summation convention: repeated dummy indices indicate summation
from | to N)

Vice versa, any function u € H*({2) satisfying (2.2) is rapidly seen to
satisfy (2.1) as well (see Theorem 2.6 below). The second formulation of



90 . Chapter 2

the model problem does, however, have a great advantage over the first
one. Indeed, from the Riesz representation theorem it immediately follows
that (2.2) admits a unique solution, since «, v+ a(u, v) is the scalar prod-
uct in the Hilbert space Hy(2 U I'} and v+ [, fo dx is an element of
[Ho (2 v M.

It is worth mentioning that a function & minimizing the functional

FW) E%jau Polt+ v dx - [ fods

over Hy'(2 U I') must satisfy the condition (d/di).Z(u + Av)|;., = O for
v e H\(2 v TI'), which, by the fact that a(u, v} = a(v, u), clearly amounts
to (2.2): the latter is called the Euler-Lagrange equation of the minimum
problem. Note that the converse of the above is also true, since Z{u)
< Z(u + v) whenever u solves (2.2), Z€ R, ve H'(2 U I'). In the
present chapter we shall not amplify this point; we shall instead return
to it in Chapter 4.

The solution of (2.2} is of course not a priori required to be an ele-
ment of H%({2). Thus, in order to go back to the initial setting of problem
(2.1), one has to tackle the nontrivial task of proving that (2.2), at least
under convenient regularity assumptions about the data 802, I', and f,
ensures the additional regularity w € H(£2).

These considerations are behind the approach of the present chapter
to differential problems such as (2.1).

We first peneralize the Riesz representation theorem, passing from
scalar products to wider classes of functionals u, v+ a(u, v), not neces-
sarily satisfying a{w, v} = a(p, v}, on Hilbert spaces (Section 2.1). We then
specialize with the space H'(2 U I') and study the applicability of previous
abstract results to a class of problems that includes (2.2) (Section 2.2).
Next we investigate various types of conditions on the data which guarantee
greater regularity of solutions than mere membership in H (2 u I').
More specifically we set conditions in order that v belong to some space
L#(£2) (Section 2.3), that we C%%(2) or ue C%() for some e 0, I[
(Section 2.4), that v € Hf\(£2) or ue H*(), k = 2 (Section 2.5). Section
2.4 can be read independently of Section 2.3; Section 2.5, independently
of Sections 2.3 and 2.4, except for Theorem 2.24, whose proof is omitted
because it is similar to that for Theorem 2.19.

In Section 2.6 we take up nonlinear equations, proving some interior
regularity results for their solutions.
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2.1. Abstract Existence and Uniqueness Results
- Let ¥ be a Hilbert space. A bilinear form on ¥V is a functional u, v
> alu, v) on ¥ x V which is linear in each variable; we call it
e bounded if
ta(u, o) | < Mu|p|vir for uve ¥ (M > 0), (2.3)
& coercive if
o, u) > ay|uly?  for ue V. (a, > 0), (2.4)
e nonnegative if
a(u,u) >0 for ue v,
o symmetric if '
a(u, v) = a(v, w) for u,ve V.
If a bilinear form a{u, v) is bounded, all linear functionals

u— a(u,v)  with v fixed in ¥
and
v— a(u,v)  with « fixed in ¥

are elements of V', Moreover, it is obvious that

a(u) !)) = lim a(un: uu)
n->0d

whenever u, — v and v, —v in ¥. The same conclusion remains valid if
either v, -« and v, —v in ¥V, or u,— u and v, — v in ¥, since weakly
convergent sequences are bounded and
|a(un)vn)_a(u)u)|SMlun_u]Vluan'*_la(u)vn_v)lx
|a(unﬁvn)_a("’v)ls[a(un_uvv)l+M|un|V|vn_D|V-
If a(u, v) is also supposed nonnegative, the inequalities
alu, —u, u, — ) >0 for ne N
clearly imply

a(u, ) <lim inf a(u,, u,)

=

whenever v, — u in V.
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Under assumption (2.3) a linear operator A: V — V' with | Au lvr.
< M |uly is defined by

{Au, v> = a(u, v) forve V

as u varies in V. Notice that {Au,} converges weakly in V' toward Au
if {u,} converges weakly in ¥ toward w.
Whenever Fe V' the equation

ue v, Au=F (2.5)
can also be wrtten as

ue v, a(u, v) = (F,v) forve V; (2.6)

in the sequel we shall refer indifferently to either formulation (2.5) or
(2.6), whichever is notationally more convenient.

The fundamental tool for the investigation of (2.6} is the Lax-Milgram
theorem:

THeOREM 2.1. Let a(u, v) be a bounded and coercive bilinear form on
V and let Fe V' Then there exists a unique solution u of (2.6); moreover,
u depends linearly on F and verifies

luly < e | Fly 2.7
with a, from (2.4).

Proor. We obtain (2.7) by choosing v = u in (2.6) and taking (2.4)
into account.

Uniqueness is a straightforward consequence of (2.7), since the dif-
ference of two solutions of (2.5) is a solution of the same equation with
F replaced by 0,

Another consequence of (2.7), rewritten as

luly < ag | Auly,,

is that a sequence {u,} < V¥ satisfies the Cauchy condition if {Au,} is a
Cauchy sequence in V. Suppose that Au, — Fin V' and setu = lim, ., u,.
Then Au = F by the continuity of 4. Thus, the image 4(}V) of V under
the linear map A is a closed subspace of ¥’. The proof will be complete
if we show that A(V) is dense in V' (the linearity of the map F+> u being
obvious). To this end we fix any vector z in the dual space of V', which
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equals ¥ by the reflexivity of Hilbert spaces. If {F, z) — 0 whenever Fe
A(V), then in particular e, | z {,® << (Az, z) =0, that is, z =0, and the
Hahn-Banach theorem (see Theorem 1.B) yields the desired conclusion. []

From Theorem 2.1 with the particular choice of a(u, v) = (u, v);-
[which implies (2.3) and (2.4) with M = @, = 1] we obtain the Riesz re-
presentation theorem as a corollary.

COROLLARY. For any choice of F € V' there exists a unigue vectoru € V

satisfying
wv)y = (F 0> forveV;

moreover, the isomorphism 7 from V' anto V defined by JF = u verifies

| ZF |y =| F |y

We now suppose that V is continuously and densely injected into
another Hilbert space H, so that H' is continuously and densely injected
into V'. Upon identification of H’ with H via the corresponding Riesz
isomorphism, we obtain the scheme

Ve H=H g V', 2.8)
da ds

which is referred to by saying that (V, H, V') is a Hilbert triplet. Notice
that (u, v)yg = {u, v) for w,ve H, in particular for u,v e V, whereas
(4, )y = (Fu, v} for u, v € V. Notice also that, if the original injection
of V into H is compact, so is the injection (2.8) of ¥ into V'

Returning to bilinear forms on ¥V, we weaken the notion of coercive-
ness as follows: we say that a(u, v) is coercive relative to H if there exists
some A > 0 such that g,(u, v) = a(u, v) + Alw, v} is coercive, ie.,

alp,u) + Au|g2 = ag | ul? for ue VvV (e, > 0). 2.9)

Let A;: ur—> Au + A, we V. If (2.9) holds, A, has a bounded inverse
A2 ¥V — ¥V by Theorem 2.1, and (2.5) can be rewritten as

ue v, u— A, u =1z (2.10)

with z = A,~1F. Let the injection V < H be compact, so that 4,7! is
compact when considered as an operator ¥ -» V. By the Fredholm alter-
native (see Theorem 1.L) (2.10) is uniquely solvable for any cheice of
z € V if and only if u = 0 is the unique vector of V satisfying u — A4, 'u
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= 0; when this is the case, the linear operator z+» u defined by (2.10) is
bounded from ¥V into ¥. Summing up, we have the following theorem.

THEOREM 2.2. Let (V, H, V') be a Hilbert triplet with V compactly
injected into H, and let a(u, v) be a bounded bilinear form on V, coercive
relative to H. Then (2.6) admits a unigue solution u for any choice of Fe V'’
if and only if it admits the unique solution u = 0 for F = 0, in which case
the solution of (2.6) satisfies

luly < C|Fly.

with C dependent only on A.

In its full strength the Fredholm alternative (see the remark following
Theorem 1.L) can be utilized to describe the so-called **spectral behavior”
of A, especially for necessary and sufficient conditions on F in order that
(2.6) be solvable when uniqueness is lacking. Instead of dwelling on this
point-we refer to D. Gilbarg and N. 8. Trudinger {67].

2.2. Variational Formulation of Boundary Value Problems

2.2.1. Bilinear Forms

We introduce a bounded bilinear form a(u, v) on H*{2), hence also
a bounded linear operator 4: H{(Q2) — [H'({2)]’, by setting

{Au, v = alu, v)

= .L [(a*u,, + d’u)v,, + (Biu,, + cu)v) dx (2.11)

for u, ve HY(2), where the coefficients ai/, &/, b?, ¢ are supposed to be
bounded measurable functions on {2. More generally, the integral in (2.11)
makes sense for ue HW“?(Q2), ve H-?'(2), and is bounded in absolute
value by C|uiguea |0 lmewm, if 1 <p < co.

A bounded linear operator L: H'(£2) — H(£) is defined, as u varies
in H'(£2), by the identities

{Lu, v> = a(u, v) for ve H(Q),

L:ur> — (aYu,, + dlu), + blu, A cu; (2.12)
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more generally, (2.12) defines a bounded linear operator HL?(f2) —
H-12(2), 1 < p < oo. The single distributional derivatives (a"u,, + d’u),,,
i,j=1, ..., N (no summation) need not of course be functions defined
a.e. in £2, even if Lu is. L is called a second-order differential operator and
the a'’s are called the leading, or second-order coefficients of L [or a(u, v)],
the d”’s, the b¥’s, and ¢ the fower-order ones. Throughout this chapter we
shall assume the condition

aitl; > al bt ae in 2 for £ RY (ax > 0),

which is referred to by saying that L is uniformiy elliptic in Q.

A property of a(u, v) that will frequently be utilized in the sequel is
that a(u, v) = a(ut, v), a(v, v) = a(v, u*) whenever v, v H(Q) with v v
= 0 in £, in particular when v = u*. This is a consequence of Theorem
1.56, since v = vy,»0, Vs, = Uz Xuzo With y,5 = characteristic function of
the subset of 2 where u > 0.

We now choose as ¥ any closed linear subspace of H'(£2), V 2 H,'({2).
Then a(x, v) is also a bounded bilinear form on ¥ [which might be coercive
on V¥ without being coercive on H({2)], A a bounded linear operator
V — V’; it will be convenient to view A as a bounded linear operator
HY{() — V' even if V is a proper subspace of H{£2).

With the present choice of ¥ and a(w, v) the unique solvability of
(2.6) follows from the Lax—Milgram theorem, provided the bilinear form
(2.11) is coercive. In order that the latter requirement be met, it suffices
to impose suitable restrictions on the coefficients of a(u, v), as the next
example illustrates.

ExampLE. Let the d”’s and the 5*'s vanish identically in £2; then,

a(u,u)za_[ |l7u|2dx+cssinfc-[ u? dx.

o 0 a

The form a(u, v) is therefore coercive whatever the choice of V if ess infj, ¢
> 0. This condition can be weakened by requiring ess inf, ¢ > 0, or even
ess inf, ¢ > —e with € > 0 conveniently small, whenever ¥ is such that
the Poincaré inequality (1.26) holds in it (see Lemma 1.46).

The bilinear form (2.1]) can be shown to be coercive under less re-
strictive assumptions than in the above example, but always by requiring
that the lower-order coefficients be conveniently small, in some sense to
be specified, with respect to various parameters such as | {2 | and the



9 Chapter 2

constant a of uniform ellipticity (see for instance G. Stampacchia [141])."
Rather than enlarging on this approach, we proceed to investigate (2.6)
in the light of Theorem 2.2 instead of Theorem 2.1. Note that the inequal-
ities

. N
ST Vulkotat ) (@1 lulio

=1

‘ J diuu, , dx
0o

and

N
”ob‘uz‘udX. S%IV"E;Q-F“_' Y, 16k lulig

=1

yield (2.9) with

1 d 1|2 i 12 o o
l=ﬂ_ ‘Zl(ldlleo;n+lbl m:0)+|clm;0+'_2'_: a0=7
Thus, whatever the choice of ¥ as above, the bilinear form (2.11) is coer-
cive on V relative to L*($2).

(V, L¥(2), V) is a Hilbert triplet. If the injection V' & L3(£2) is com-
pact (see Theorem 1.34 and the remark following Lemma 1.46), the unique
solvability of (2.6) for any choice of Fe V' is an immediate consequence
of Theorem 2.2 whenever it can be shown that (2.6) with F = 0 implies
u = 0. In Section 2.2.2 we shall provide sufficient conditions for this.

2.2.2. The Weak Maximum Principle

Throughout the rest of this chapter we shall take as ¥ the space
H (2 U IM with I at least of class C?, neither case I" = @ nor I" = 002
being excluded.

We say that the weak maximum principle holds for A: HY(2) = V'
if any function u € H'({2) satisfying

u<<0 on 2T in the sense of H({),

i (2.13)
Au <0 (i.e, a(u,v) <0 for ve ¥, v > 0]

is << 0.

The validity of the weak maximum principle implies naturally that
in the present situation (2.6) has only the trivial solution when F = 0.
The notion we have just introduced is, however, of extreme importance
also when the unique solvability of (2.6) can be directly deduced from the
Lax-Milgram theorem, We therefore explicitly state the following result,
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concerning the coercive case, which immediately follows from (2.13) with
the choice v = u*t.

THEOREM 2.3. If the bilinear form (2.11) on V = H (2 U I') is coer-
cive, the weak maximum principle holds for A: H'(£) — V.

Things become more difficult when the coerciveness assumption is
dropped. The result we have is the following theorem.

THEOREM 2.4. Let $2 be such that H,'(2  I') G LY(82) with g > 2.
Let the operator A: H'(2) — V' from (2.11) satisfy Al =0, and in addi-
tion A1 £ 0 if V= HMN2 U I eguals H'(£2). Then the weak maximum
principle holds for A.

ProoF. Let u € HY({2) satisfy (2.13), and suppose that K = ess supy u
> 0.

If u is the positive constant K, it coincides with u* € H'(2 U I'). But
then all constants belong to the space Hy'(2 w I'), which must coincide
with H'(£2) by Lemma 1.58. Our assumptions imply the existence of some
function v € ¥V, v > 0, such that

K{AL vy = a(u,v) > 0,

and this contradicts (2.13).

Since the possibility that u equals X throughout {2 has been ruled out,
there exists K, € J0, K[ such that the measure of the set 2* = {x € 2 | u(x)
< K,} is positive (and of course independent of the choice of the repre-
sentative of u).

Take any number k in the interval [K;, K[, so that ¥ > &k on a set
of positive measure. Since the nonnegative function v, = (¥ — k)t < ut
belongs to ¥, v = v; is admissible in (2.13), and the assumption 41 > 0
yields

0=a(u,vy) = au — k, v;) + k(AL v > a(u — k, v;)

= a(vg, v;).
Hence

J. @0y Dy, dx < — J- (470042, + (Bvpg, + cvi)vi) dx
0 0

gij' |I7vk|2dx+C(a)J. vt dx,
2 n o
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and finally _ .
| VUL- II;{J <Clu Iz;n (2.14)

by uniform ellipticity. Thanks to Holder's inequality (2.14) yields
| g |q;ﬂ < Clog gy < C | vg |z;n < C|supp v, |m_w | vg |q;ﬂ)

hence
|suppv, | = C >0

with C independent of k, since |v; ), n 7 0. Letting & — K we deduce
that the measure of the subset of 2 where u << K is < | £ |: therefore,
K is finite, and ¥ = K on a subset of £ having positive measure.

Now denote by v, the bounded function vg,, and set v’ = v,f/(K —
Ky + ¢ — ) for ¢ >> 0. If G is any function from C,'(R) such that G(t)
=tf(K—Ky+e—1t) for 0=<¢t<K—K;, Lemma 1.57 applies and
yields »'¢' € V. Since v'* vanishes wherever (v — K,)* does, the same pro-
cedure followed for v, yields the inequality

a(vﬂ ’ U“,) S Ol

which can be rewritten as

J (@008 — (dF — biYog, '] dx < — J' (o), + cog™] dx
o o
= — (AL o) <0

since the nonnegative function vp' belongs to V¥ by the boundedness of
v, and v (see Problem 1.21). Computation shows that

v = (K — Ko+ €)ve, /(K — Ko + & — vo)%,
hence that
a0y Doy,

o (K—Ky+ e — )

(K— Ky+ ¢) I dx < | (4 — b')v, " dx
o

| Pog |
=C dx,
- Jnvo K_‘Ko+£‘—1)0 *

and finally that

a-[ | Pwie) |2 dx < j 'a"'w;:’wij’ dx
n n

< cJ' | Pwee | dx < C].Q|”’(J | Pwto j8 dx)m (2.15)
0o o
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with
K—K,+ ¢
K—Ky+e—v,

wio = In

Again by Lemma 1.57, w'! belongs to ¥, and w'? = 0 on £* because
v, vanishes there. By (2.15)

| Vw(') h:a S C for € > 0,

so that Lemma 1.36 yields a uniform bound on | w'? 5., € >> 0. But then
the monotone convergence theorem shows that

K—K,
In——m——,

K _ Ko + vo
the limit as & — 0+ of {w'?}, is integrable over {2. This implies that «
cannot equal K on a set of positive measure, thus contradicting our previous
conclusion based on the assumption X >> 0. Hence, K < 0. 0

CoroLLARY. In addition to the assumptions of Theorem 2.4 suppose
that H'(2 W I') injects compactly imto L({2). Then (2.6) admits a unique
solution for any choice of Fe [Hy'\(£2 0 ).

The scope of the considerations developed up until now can be ap-
preciated more fully with the help of the following example.

ExampLE. Let N=1, 2 =10, R[ with 0 <R <oo, I'=(. On
H(£2) consider the bilinear form

R
a(u, v) = L 'y’ 4+ Auwv) dx.

If A>90, a(u, v) is coercive. But if A takes on a value —na2n®/R2, ne A,
the function u(x) = sin(znx/R) is an element of Hy'({2) satisfying 4w = 0,
so that the weak maximum principle does not hold.

2.2.3. Interpretation of Solutions

By choosing the space ¥V = H (2 I') and the bilinear form (2.11),
the following properties of a solution w (if it exists) to (2.6) are immediately
ascertained.
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First of all, v is an element of H'(f2) satisfying
alu,v) = (F oy = <fiv)  for ve HMD),

where f€ H-1(£2) is the restriction of Fe V' to H M) (f=Fif I' = ).
This is expressed by saying that u is a (variational) solution of the ordinary
(for N = 1) or partial (for N > 1) differential equation

Lu=f in

with free term f.
Secondly, the membership of u in V contains, if 32\I" 7 (), the con-
dition

u=10 on 3Q2\TI in the sense of H'{Q),

which amounts to

"130\1‘ =0

if 892 is of class C! and I is closed. We express the above by saying that
u satisfies a (homogeneous) Dirichlet condition on 82\ T

In order to investigate the behavior of # on I, supposed =, it is
convenient to deal with the following assumptions: I' is closed and, for
some p € |1, 00, u is a function of H.?(Q2} which verifies Lu € LP(§2).
The linear functional v+ a(y,v) — [o(Lu}vdx is then bounded on
H?7'(2w I and vanishes identically on H "7'(£2). A bounded linear
functional Bu on HYV??'(I') is therefore defined by the expression

{Bu, v|p> = alu, v) — IO (Lu)v dx forve H#7(Qu I (2.16)

which we refer to as Green’s formula; Bu is said to be the conormal deriv-
ative of u on T, relative to a{u, v). It is important to remark that, under
suitable hypotheses, Bu can be given a more explicit expression than its
mere definition (2.16). For, suppose that a'/, @/ € C*(Q) and u € H-?(2):
then, @¥u,, -+ d’u belongs to H*-?(2) for j =1, ..., N, and the divergence
theorem (see Theorem 1.53) yields

alu, v) — L (Luyo dx = J @y, + dupl,, dx

== Jr(a“uz‘ + du)| - vir ¥ do
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for v€ H*'(2 w I'), hence
Bu = (a¥u, + diu)| 7. (2.17)

[t would in fact be appropriate to say that (2.17) is Green's formula, Bu
being defined by (2.16).]
Summing up, we have the following lemma.

LemMA 2.5. Letr I be nonempty and closed. Let | < p < co. Then any
u € HY2($) with Lu € LP{($2) admits a conormal derivative Bu € [HV?.7 ()]
defined by (2.16). If, moreover, u € H*?(2) and a'}, &’ € C*({}), then Bu
satisfies (2.17).

At this point we can return to the interpretation of solutions u to
(2.6). If F has the expression

<F,v)=J. SJodx + &, 0| for pe V,
2 (2.18)

with fe L*2) and {e [H)],
then u verifies Ly € L*((2), and its conormal derivative satisfies the so-
called Neumann condition
Bu=1_ on I’

as an identity in [H*(I")]' {or even a.e. [N — 1], if for instance { € Ly N3,
Since this procedure can be inverted with no difficulty, we have proved

LemMma 2.6. Let I be closed and assume (2.18). Then a function u
€ H'W(R2) satisfies (2.6) with V = H\(2 U I') and a{u, v) given by (2.11)
if and only if it satisfies
Lu=f in £,
u=20 on 2N\ T in the sense of H\f2), (2.19)
Bu=1{ on I

We call (2.19) a (variational) boundary value problem (henceforth
b.v.p.); we say that it is of the mixed type, if neither I" nor 32~ I" isempty,
of the Dirichlet type if I'= (&, of the Neumann type if a2\ I = .
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REMARK. Assume 88N\ 1" 5= (7 and let g€ H'(£2). If the hypotheses
of Theorem 2.6 are satisfied and the function z solves

ZE ¥V,
a(z, v) == (F — Ag, v for ve ¥,
the function u = z -} g solves the b.v.p.

Lu=f in @,
u=g on G2\ I in the sense of H(Q),
Bu=1_ on I,

the condition on 82\ 1" being a nonhomogeneous Dirichlet condition.

2.3. L’ Repularity of Solutions

Throughout the rest of this chapter and the first five sections of
the next we shall investigate the regularity of solutions to problems such
as (2.6) with ¥ = H,'(2 u I') and a(y, v) given by (2.11). For the purposes
of clarification we begin with a few simple observations.

The form (2.11) may or may not be coercive; in any case, however,
there exists 4 = 0 such that u, v > a(u, v) + A{w, v) is coercive (see Sec-
tion 2.2.1). We rewrite (2.6) as

ue v, a(u, v) + A, v> = (F 4 du, v) forve ¥V, (2.20)
and deduce from (2.7) the norm estimate
lulgugy < ag™(| Fly + Alu l2.0)

with a, from (2.9).
When N = 1, H'(£) is continuously injected into C*1/3(2), so that

| ¢ lgoandgny < C(| Flys + |1 ly;0)-

When N > 2 we can give sufficient conditions on I" in order that V G
L7(£2), hence

[# 10 < CQ Flye 4+ | 2150, 221)
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with r arbitrarily fixed in ]2, co[ if N = 2, r = 2* = 2N/(N — 2) otherwise
(seec Theorem 1.33 and the remark at the end of Section 1.7.2). For what
concerns | F|p. we note that, whenever g~ = p~1 + N-! with p > 2 if
N=2and p>2if N>3, LY Q) is continuously injected into ¥’; we
define a bounded linear functional F on V by setting

(F,v)EJ (for + fiv,) dx forveV
a ' (2.22)

with f0e Le(f2), f‘e LP(2) fori=1, ..., N,
and (2.21) becomes

(4l < C(1f o + 3, 1/ lya + | ¥l
=1

Up to now the fact that u solves (2.6) has played a role only in the norm
gstimate, whereas the regularity of u has been deduced from general prop-
erties of V. In the rest of this section we shall give sufficient conditions
in order that the validity of (2.6) imply u € L*(£2), with norm estimate,
for some s > r.

First we have the following theorem.

THEOREM 2.7. Let N = 2, and suppose 1" is such that H}(Q v N <
Lr($2) for r =2* if N > 2, r€ 12, co[ arbitrary if N = 2. Let the bounded
linear functional F on V = Hy'(2 v I') be defined by (2.22) with p > N,
g=pNI(N+p) if N>2, g=>p2/2+p) if N=2, and let a(u,v) be
given by (2.11). Then any solution u of (2.6) belongs to L=(82); moreover,
there exists a constant C (independent of u, F) such that

N
(lia < (11 lva + 5, 1/ o + 14l

We shall obtain Theorem 2.7 as a straightforward consequence of the
following lemma.

LemMmA 2.8. Under the same assumptions of Theorem 2.7, any function
u€ H'(82) such that
u<<0 on 021" in the sense of H({2),

(2.23)
a(u,v) < (F,v) forveV, p>0
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satisfies

N
esssupu < (| 2 leio + 3, 1/ o + | 4lsio)
C being independent of u, F.

ProOOF. Since (2.23) remains valid with u and F replaced respectively
by ufiulso and Fflu|z.q if | u|s.q0 7 0, we need consider only the case
| u ln;a = L.

For 0 < k < co we set v, = (v — k)*, 2; = {x € £2]v; > 0}; notice
that

| 2| < lulpofk <} 21"k

by Hélder's inequality. We restrict ourselves to the values of k for which
18021 < 1.
Since v € ¥ and v, > 0, (2.23) yields

a(vt’ vt) = a(u - kl vt) S <F— Akl vt)‘

Set 6 = | Pv |5,0. By uniform ellipticity,

af? < — (o, + (Bivh,, + cvp)py] dx

g

+ j [(f° — keYog + (fF — kdi)og, ) dx,
so that Holder’s inequality yields
0* < Cl1os 1ol® + 10k oo + 1 Q401 00 + ke |2, 1)
{1911 3. | fi g + K12y )] (2.24)

We now utilize the continuous imbedding of V into L'({2), with r
so large that I/r < 1/2 4+ 1/p —1/g and (1/2 — 1/p)r > 1 if N = 2 (the
same inequalities being obviously satisfied by r = 2* if N > 3), to obtain

| Uz |r;0 = C(l Up ll:ﬂ + 6)
_<- C(I 'QI: I”’_”' l L4 Ir;ﬂ + 9),

hence also
| vilrn < CO for k >k, (2.25)
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if ko > 0 is large enough. Since 1/2 — 1/p <1 — 1j/r — 1/gand | 2,]| < 1
we deduce from (2.24) that

g < C[l 8, [V 0 |.0(0 + | Qe 27 [y b + | 22 1V2Y0] 00
N
FRIQP 4 012 12 5 | f 0+ k1 92|
i=1
S C[92 | “Qi IUI—UF + B(I Qi Im—lfpt + k | Q‘_ |1/2)}.
where
N -
= |f? |¢:0 + ;-:l !f’ Ip;o;
if ky = kg is large enough, we have
0 < CjQ V*-1o(z 4 k) for k > k,. (2.26)

At this point we utilize (2.25), (2.26), and the inequalities

nelo= [ @—0rdxz| @-kyacz1000-
Oy Op

valid for k < h < oo, to arrive at
| 2| th — k) < ¢ | 2, faa-ver(z 4 kY,
which we rewrite as
[ | <Kh—k)y" |8,

with K= C@+h)y and = (1/2— 1/p)r> 1, for k, <k < h < h,,
h; < oo,
Let us assume the validity of the following lemma.

Lemma 29. Let ¢ be a nonnegative, nonincreasing function of k €
Ik, ki, where ky < h, << co. Suppose that there exist positive constants K,
r, B, with 8 > 1, such that

9 (h) < K(h — K)"g (k)
Jor ky <k < h << hy. If the number

k= Klfrzﬁup—nq,(kl)w—nn_

is such that k, + k < hy, then gk, + k) = 0.
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We can apply Lemma 2.9 to @(k) = | £, |, provided we find k, and
hy with the required properties. '
We let k, be so large that not only (2.26) holds but also

Curysrg~1) | @2, |81 < Airpiig-1 | 2 |(8-viar =g o | f2,
Y =

We then choose h, = 2k, + t and obtain
ky + k = ky + Cur2s/s-1) | Qp, [PV + b)) < ky + e+ hy) = hy.

We can conclude that |2, ,¢| = 0, that is, ¥ <k, + Lk in . This is
nothing but the required bound on esssupyu for fulyp = 1. 0

ReMARK. In the above proof we did not utilize (2.23) in its full strength.
Indeed, we exploited only the fact that

a(u, (u — ky) < (F, (u— k)t

for all k sufficiently large.
Note that the constant of the estimate does not depend on the coef-
ficient ¢ if the latter is =>0.

At this point we need only proceed to the proof of Lemma 2.9.

ProoF oF LEMMA 2.9. For ne N let
ky =ky + k(1 — 2-t-1),

so that gk, + k) < ¢(k,). We shall prove Lemma 2.9 by showing that
¢(k,) —0 as n —oco. More precisely, we shall show by induction that

plk,) < plk,)2#00 (2.27)

whete u is the positive number r/(f — 1).
For n = 1, (2.27) is obviously satisfied. If {2.27) holds for some value
of n, the assumption of the lemma yields

Plkn) < K2kp(k, )
< szE—r(p(kl)ﬂ‘z—ﬁ,uln—l)_

But since
kr = K2rre-Ng(f -1,
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we can conclude that
Plknyy) < 2m-Aein10—Bug(k,) = p(k,)[2#". a

We now prove the following theorem.

THEOREM 2.10. Same assumptions as in Thearem 2.1, except that here
we take N = p > 2. Then any solution of (2.6) belongs ta L¥(£2), 1/p*
= 1/p — 1/N, with norm estimate

N
[ 4lpa < €(1lea + 3 1/ b+ 1#lsa) (2.28)

=1

the constant C being independent of u, F.

Proor. We proceed in two steps. Note that for p = 2 the theorem
is an immediate consequence of the assumption Hp'{¢2 v I") g L*(Q2).

Step 1: A preliminary reduction. Let us momentarily assume the valid-
ity of a norm estimate

N
I u Iﬂ-;ﬂ S C(Ifo Iq;ﬂ + z |.fi |p;0) (229)

=1
for all functions w € L*={{2) that satisfy

uc v, a(u, v) + Au,vd = (F, v for ve V (2.30)

with A sufficiently large; we can suppose that the bilinear form u, v —
a(u, v) + Au, v} is coercive. We claim that, as a consequence, (2.28) holds
for solutions of (2.6). To substantiate our claim, we first prove that (2.29)
remains valid even if the solution of (2.30) does not belong to L>(f2).
We approximate f° in L%Q2), /%, ..., /¥ in L?(2) with sequences {f,°},
{filly ..., {fu¥} of bounded functions and denote by u, the solution of
(2.30) with F replaced by F,: v [, (f,% + f,'v;) dx. Each u, belongs
to 2>(42) by Theorem 2.7, so that (2.29) yields

N
l uy, 'p‘;r) S C(]fno |¢;Q + El |f"i 'p;a) for neN. (231)

By the uniform boundedness of | u, |, [see (2.7)], a subsequence of {u,}
converges weakly in ¥ toward a function i: it is clear that # solves (2.30),
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hence & = « by uniqueness. We deduce that u is the weak limit in L7*(2)
of {u,}, with

N
| 8 |pe;0 << lim inf juy |peo < C(lfo Iq;n + Zl | f3 lp-_n)

by (2.31) (see Problem 1.2).
Let us turn to solutions of (2.6), and consequently of {2.20), instead
of (2.30). The function f° = f° + Au belongs to L%(£2) with

|f° |q,;n <c(r° He;n +lu |!;D)!

where ¢, = g A 2. Let p, be defined by p,~! = ¢,~' — N-!: from our pre-
vious considerations about solutions of (2.30) it follows that u € L™(Q)
with norm estimate, If p, = p we have obtained {2.28); if not, we repeat
the above procedure, with 2 replaced by p,*, and so on through a finite
number of stages, until we reach the sought-for conclusion. (This procedure,
called a boorsrrap argument, will be met with again,) The claim is thus
substantiated.

Step 2: Proof of (2.29) for solutions u € L>=(£) of (2.30). If u belongs
to ¥V L=(R), so does | v |%u, with

(ulu), =@+ Du ["u,i
whenever § > 0. [For 8 > 0 apply Lemma 1.57, with G e C,\(R), G{i) =

1012 if [ <|#|wg-] We fix 6 through the requirement 2*(4 4 2)/
2 = p* and estimate

a(a+1)j lul? | Pul? dx
o
1¥) 1 a
< [ ahu 8+ 1) 1uou, dx
=a(u,|u]‘u)~J (u(® + 1) |u fug, + By, + cu) | u Pul dx
]
Sa(u,lu]‘u)-i—ej Ll | P | dx -+ C(E)I 2 | d.
o Q

Since (672 + DY |u|?|Pult= ] F( u |""u)|2, we can choose £ > 0 and
A = A(e) in such a way that

|12 192 | 30, < Claus, | u 12u) + Au, | u [P}
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If u solves (2.30) we repeatedly make use of Hélder’s inequality and ob-
tain, for ¢ > 0,

|10t iy < € [ Ul 750 + 1) o) de
<c[ (1 + 1751 1w Gl |) dx
< [/ lal ulith
[, rreraf (ot
(m oo |4 1225

‘_Z_: I f [pa|“|p-n+ ||“|““|111m>)

since
5 No—2)
N—p

and therefore

ES

1
1 — —
q p*

_2_9
p P

At this point we set a suitable value of ¢ and majorize the quantity
it = ([ 1umax)
o
= ([ rupmsmm a)™ =
2 ;
with CI | u |*2u I:Iltm' thus obtaining
% < (11" lna Lt z £ o b ).
After dividing by | u [5%.0 7 0 we arrive at
(lea < O 1uBa + 5 1S o + 5 1S ) for >0,

hence (2.29) after another suitable choice of &. 0
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2.4. The De Giorgi-Nash Theorem

Throughout this section we shall take N = 3. This restriction will be
briefly commented upon in the remark following the proof of Lemma 2.15.

2.4.1. Pointwise Bounds on Subsolutions

A function W e H'(R2) is a (variational) subsolution of the equation
——(a""w,‘),, =0 in 2, where the a''s are the leading coefficients of the
bilinear form (2.11), if the distribution — (a%/ W,'),’ is a nonpositive element
of H}(£2), that is

J- a W o, dx <0 for v e Hy'(12), v >0
fo)

An important property of subsolutions, whose proof we postpone until
later (see Lemma 4.28 below), is that the supremum of two of them is
still 2 subsolution.

Lemma 2.11. Let W be a nonnegative subsolution and assume x° € Q,
By (x%) < 2 (r > 0). Then a bound

W(x) < Co ¥ W lg20 140 Jor a.a. x € B,(x"),

0 < o <, is valid; the constant C (independent of W, x° and r) depends
on the a#’s only through a and the bound imposed on | a*! | 4.

In the proof of Lemma 2.11 we shall utilize the following result.

LemMA 2.12. Let W be a nonnegative subsolution and set Wy = W N k
Jor 0 < k < oo, Assume x°€ 2, B, (x®) = 2 (r > 0). Then a bound

C(l + p)

R0 Joiem W2W. P dx, (2.32)
R

(J- W phrta=D dx)m <
Batz% -

where A = N/(N — 2), holds whenever 0 <p < co and 0 < p < R < 2r;
the constant C is independent of W, x° r, and k.

ProOF. Without loss of generality we assume x° = 0. Let g € C{(f2)
with suppgc Bz, 0<g<1l,g=1on B, |Vg|<2(R— )" Since
W, belongs to H'(Q) N L~(Q) with W;, = Woxw<k, Xw<e being the
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characteristic function of the subset of 2 where W < k (see Theorem
1.56), the nonnegative function v = g*W,? W belongs to H,'(£2) with

Uz, = gEWr(p sz, + Wz,) + Zggz, WPWw.

Writte W, = (W —KA0+ A W=(W—-KVO+ (W—-KkA0+ k]
Thus,

[ am g W oWon, + We)de < —2 [ W ga., Wow a,
n fel
and

ajar%r(p |PW, [+ | PW]3) dx

ﬁC'[ g|VW| WeWw | Ve |dx

n

s.sj gt | VW WP dx + C(e)j WeW? | Vg |* dr,
o Q

£>0. Take &£ = f2: then the gradient of the function W = W,»*W
satisfies

2
J 8’|VWIWxS2j gzw(pTlV%l’HVWl’)dx
a n
<(§+2) [ ewee 17w+ 17w m ax
fe] .

<cq +p)j W | Vg |* dx,
fel
so that
jB | PeW) P dx < C(l + p) jB Wr\Pglrde.  (233)
Since
| W |z < C| P(gW) la:r

by Theorem 1.33 and the corollary of Theorem 1.43, (2.33) yields

v . C(+ p)
( 7, W“dx) = (R—0)* lp, W dx.
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The conclusion now follows from the inequality W,, < W, which implies
Wi -1 << 2 and therefore

W‘thpH—Bu—l) < W PWD = W2, )|

ProoF OF LEMMA 2.11. Take x* =0, For m=0,1,2, ... we set
—_ 1 — n
rm=r(l+3;n Pﬂ=2(1 —1),
1/A™
A, = (j WAWPm dx) .
B,

By chocsing R = ry, ¢ = Fy and p = p, in (2.32) we obtain

c 21‘“ _ 1 1/3 13/A™
Apn = Am['(—rz-#_']

hence
" ( C243 )ﬁa‘

H r2-1

=0

Let A, > 0. For m large enough the logarithm of the right-hand side of
the above inequality is bounded by

ki :+l

In Ay + 2 Z ———In{(C2AOH¥i1112] — 2 inr Z A‘

=InAdy+ C—Nlnr

E(N;z)i=-2—’--

since

=0

and therefore

Api < Cr-NI W dx. (2.34)

B
Because of the inequality
(2.34) yields
ess sup W2 < Cr¥ L W dx (2.35)

B,
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after a passage to the limit as m — co. For p = r the sought-for conclusion
follows from (2.35}, whose right-hand side is independent of k. For 0 <
p < r we cover B, by a finite number of spheres B,,(y9), y* € B,. Then
B, = B,,,, and from the preceding conclusion we deduce

W(x) < CoV3  Whpp < Co V2| Wlap,

for a.a. x € B,;()*), hence the desired inequality a.e. in B,. 0

2.4.2. Holder Continuity of Solutions

We now turn from subsolutions to solutions of the equation — (t.'r"»‘w,,‘),j
= 0 in £2, that is,
we H'(Q),
(2.36)
.[a aw v, dx =0  for v e H.N$2),

and prove a Harnack type inequality (see J. Moser [123] for a sharper
result).

LemMA 2.13. Let w satisfy (2.36) and assume that w>> 0 on Bg(x%)
C Q, the set E= {x € Bp(x®) | w(x) = |} having measure = K| Bx(x°) |
Jor some K €10, I[. Then, w(x) = ¢(K) for a.a. x € Br,(x°), where c¢(K)
€ 10, I[ is independent of x° and R, but depends on w through K, on the
a'’’s through a and the bound imposed on | @' |.q.

Proor. Take x® =0, and let k€ ]1/2, I[ (independent of R) satisfy
[ Ba\Byz | = K| Bg |/2. Then,

K|Bg| <1E[=1EN (Ba\Bwn) |

K
+lEmBiRIS'_2_|BEI+|EanRls

and therefore | E N Byg | = K| By |/2.

The idea of the proof is to provide a bound independent of £ > 0
on [—In(w + €)]* or, equivalently, on —In[(w 4 £) A 1] throughout
Bg. For0 < e <1 and > 0 we set H,(f) = (1 + €} A | but, instead of
dealing immediately with —1In H,(w), we first approximate H, uniformly
from below with a monotone sequence of positive concave functions
H ., e C¥([0, oo), with H, ,(f) = H,(1) except in a small neighborhood of
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t=1—¢ Let G, (t) = —ln[ (), so that G, , = —H/,/H, ,, G, =

—HIWH, , — (Hin ) HE, > (Ci. B ge C'(Q) with supp g < By,
0<g<1,g=1 on By and | Fg| <2(R — kR)}, the function v =
g%G, ,(w) is admissible in (2.36) by an easy adaptation of Lemma 1.57.
Thus,

0= j 0w, (G (W)288s, + EGLn(w)W, ] dx
o

> [ (016ua 288y + ag*GLa(w) | P ) ds

74

z_j g2|VG,(w)|2dx—CJ | Vg |2 dx
2 gy By

by standard arguments: note that the inequality G}/, = (G, ,)* has played
a fundamental role here. Summing up,

J. | FG, ,(w) | dx << CR¥-2 (2.37)
Byn

~ whenever 0 < e <<1,ne N. As n > o0, G, ,(w) - W,* ae. in By, with
" W,= —In(w + €), and hence also, by monotonicity, in L%(By), whereas
from (2.37) we deduce that

7] 7]
—_ — W +
ax; Ge,n(w) Ax £

i

in L*(B,z) and

J [PW.+[ dx < CRY- (2.38)
Bkr

(see Problem 1.2).
Since (again by an adaptation of Lemma 1.57)

- o,
QW v, dx = — atlw, i dx
2
Jn e JBg w+e

[ v v
B i.anajw"[(w+e)z,+w” (w -+ e ]dx

. v
= — atw, w, ———dx <0
Jag U (w2 -

whenever v € C.}(Bg), v = 0, W, is a subsolution of the equation —(a"?'wﬂ),j
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= 0 in Bg, and so too is W,*, being the supremum of two subsolutions.
Lemma 2.11 therefore yields

ess sup Wt << C(kR — Rf2) %2 | Wt |y.1n- (2.39)
By
On the other hand, all functions W,*, ¢ > 0, vanish on the set £ N By,

whose measure is = K| Bg |/2 by our initial considerations, From Lemma
1.36 and (2.38) we deduce that

| Wt laur < C(K)KR | PW,* |10 < C(K)RY2,

so that (2.39) yields a uniform bound on W, t(x), 0 <e << I, for a.a.
x € Bg,.. The conclusion follows after letting ¢ — 0, since

—ln w(x) < C(K)

at a.a. point x € Bg,, where w(x) < I. 0
At this point we are in a position to prove the celebrated De Giorgi—
Nash theorem.

THEOREM 2.14. If w satisfies (2.36), then it belongs to C**({2) for
some 8,¢€ 10, I[; more precisely,

max w — min w < CR-¥2(p/R)% | w505 20 (2.40)

Bp(zal B‘,(I'JJ

whenever 0 << p << R, B,p(x") < 2, where C and 8, (both independent of w)
depend on the a'¥'s only through a and the bound imposed on | @7 | .n.

ProoF. Since both w and —w are subsolutions, Lemma 2.11 yields

esssup | w| < CR™2| w|yap,50.
Bglz0
We set

mg = ess inf w, M, = esssup w,
Bgizh Bgtzs®

so that My — mg < KR™¥2 | w ]34 ;0 for some K > 0.

Next we fix the unique number s such that | £t | << | By(x") |/2, E*
{E-) being the subset of Bg(x°) where w > #t (w << it); precisely, #1 is the
supremum of all values m = m, such that measy{x € Bp{x?) | w(x) < m}
= | Ba(x% |/2-
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Suppose m, < i << M,. Both nonnegative functions {M, — w(x)]/
(M, — %) and [w(x) — m,)/(h — my) satisfy (2.36) with £2 replaced by
Bz(x°), and are > | on subsets of Bg(x") having measure > | Bp(x°) |/2.
We can therefore apply Lemma 2.13 and obtain

M, — w(x) w(x) — my
0 > — " >e(l)2
o 2, e > el2)
that is,

m < w(x) < M,

with

mo=th— k(i —my), M=+ My— ), h=1—c(l}2),

for a.a. x € Bg,,(x%). The same result holds if #1 = m, or it = M,. Thus,
M, — m, < h(M, — m,), and by iteration

osc w << h"KR~¥ | w |y.95 20 = A°K'

2—PR

where
' osc w = ess sup w — ess inf w,
4 Bgiz® Bylz®

For 2-®"+UR < p << 2R we have

Infoscw) <InK'—Inh+(n+ 1)lnk
e

< In{(K'fh) + [(In A)/In 2] In(R/e),
hence
oscw << A1K'(g/R)% with é; = —(In A)/In 2, (2.41)

since the positive number 2 is < 1,

From (2.41) we immediately arrive at (2.40) provided we show that
w has a pointwise representative from C°2). To do this we arbitrarily
fix w =< £2 and denote by {)'} an everywhere dense sequence of points
ofw IfR > 0is < ¥ dist(w, #2) and n€ Nis > 1/R, there exists 5, < 22,
with | §, | = 0, such that (a representative of) w satisfies

| wx) — w(y) | < A KR ¥3(1/nRY | w30

whenever x, y € B,,,(*)\S, for some i € N [see (2.41)], hence also when-
ever x,y € w\ S, with |x — y| < 1/n. Set §=1),S,. The function w
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is uniformly continuous when restricted to the dense subset o\§ of @,

apd therefore has an extension to @ that belongs to C°(@). The con-
clusion 1s patent. 0

2.4.3. L*# Regularity of First Derivatives

Assume the validity of the next result, whose proof follows later.

LEMMA 2.15. Let £2 = B, for some r > 0. There exists a constant C
such that for any p € 10, r]

N
Vel < (L iPult+ 21108+ XIS R) Q4D

with py = N — 2+ 28,, 8, being the Hélder exponent of Theorem 2.14,
whenever u satisfies

u € H(B,),

J. aifu,‘v,, dx = (F,v) = J. (f% + fiv,}dx  for ve H)'(B,)
B, B,

with f°, ..., f¥ € L*(B,). C is independent of r; it depends on the a'’’s only
through the bound imposed on their L=(B,) norms as well as through a.

We can then pass from (2.36) to a complete equation such as

ue H\($2), | (2.43)

alu, v) = (F, v) = .[n (f + fiv,)dx  for ve Hyl(£2)

with a(u, v} given by (2.11) and f°€ L3W-¥* (D), 11, ..., f¥ e LA#(D),
0 < u < o, and investigate interior regularity of solutions as below.
Set

N
H,‘(F; uy=1/° g.(,u—l)‘*’;ﬂ + lz_:l lfi |§.,;;n + | u i

and suppose g is such that, whenever w, c< £, ul,, belongs to L*#{w,}
with | u |3 .0, =< Cx,(F; u); note that H'(w,) < L¥%(w,) if 8w, is of class

C*! (see Theorem 1.40).
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Let w cc w,, x°€ @, 0 <r < d= [dist(w, dw,)] A 1. The function
u satisfies ‘

J at T4y vy, dx = (fw + fi v,) dx
B,iz% B, {z%

= [(f* — b'u,, — culp + (ff — diu)v,] dx

Bytz%
for v € Hy'(B,(x%)).

Therefore, after an inessential translation of the origin, (2.42) with f7 re-
placed by f7 for j=0, ..., N yields

| Vit fBgo, < é[(——— +r ) | Va8, + 5, (F; u)] (2.44)

for 0 < p <7, since

PO g < OO |0 B it + P42 U Ry + 72| PufSse ),

¥
3 1S e < (% 1 B, + [l
i=1 -]

For 1 < s < oo let H{s) = s/t A d. By (2.44) the function ¢(g) =
| Vu |30, satisfies

plo) < C[2 {—: o(r) + e*x.(F; u)s“]

whenever 0 < r << H(s) and 1 < r/p <s. As in the proof of Theorem
1.17, we do not divide by g at this point, because g is till restricted to
vary away from 0. Instead, we apply Lemma 1.18 with K = 2, &(s5) =
Cx#(F; u)s* and € = py — @, 5o that

Vit liong < C| £ 1 Pl -+ e, Fin) |

whenever 0 < p <r << H(K'*), and finally
07| P [Ruren,0 < C{LH(KY)] ™ | Pu o + 2, (F; u)}.

We have proven that whenever w cc £2, all first derivatives of u|,
belong to L¥4(w) with | Pu |§ .. < Cx (F; u). Thus, if w, cc 2 with do,

of class C, Theorem 1.40 yields ul, € L:#+¥w,), | u [§ 1210, < Cx (F; u).

This shows that all the above considerations can be repeated with
replaced by any 4’ < 4 + 2, 4’ < u,, and so on with a bootstrap argument.
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Moreover, 1 € CO—Y+202(0Q) if 4 > N — 2,
Summing up, Lemma 2.15 leads to the following theorem.

THEOREM 2.16. Let u solve (2.43) with f°€ L»%2%(Q) and 1, ...,
¥ e L2#(2), 0 < u < py, po being defined as in Lemma 2.15. Whenever
woc 2, all first derivatives of ul|, belong to L #(w) with norm estimate

[P e < C(1 bpesra + 2 1 o + 8l

the constant C (independent of u, F) depending on the coefficients of a(u, v)
only through the bound imposed on their L=(£2) norms, as well as through a.
In particular, if p > N — 2 then u € C%%2) with 6 = (u — N + 2)/2.

In its turn the proof of Lemma 2.15 will rely on the decomposition
of u into a sum w + z, where w satisfies the homogeneous equation. We
have the following lemma.

LEMMA 2.17. There exists a constant C such that for any p € )0, r]
Pwlt, < C-L|Pwis,

whenever w satisfies (2.36) with 2 = B, , u, being defined as in Lemma 2.15.
C is independent of r; it depends on the a*’’s only through the bound imposed
on their L=(B,) norms as well as through a,

PrROOF. Since w — [ wdx solves the same equation as w, we may
suppose [g, wdx = 0. Then Lemma 1.35 yields

[wi, < CrtjPwli,,
hence
| w(x) — w(0) |* < Cra=¥-2% | x |2 | Pw |,

for x € B,,,, by Theorem 2.14. Let 0 < p << r{4 and set v = gZ%[w — w(0)]

with g€ C'(B,), supp g < B,,, 0<g<1l,g=1on B, | Pg(x)| <21
Then the equation yields

0= j @ g, + 88,0 — wO de = 5 [ g | Pwlr dx
B, Ty i ) 2 Blg

—Cmax]w—w(O)]“J. | Pg|? dx
B

1 By
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by standard arguments. Therefore,

J |Pw |*dx << Co¥2 max |w — w(0) |2
B, Ble

The conclusion foliows easily: notice that whenever rf4d < g <7,

eh'—1+ld.

N-
|PwlE, < 4¥ % s

[ Pwig, . 0

At this point we can proceed to the proof of Lemma 2.15,

PrOOF OF LEMMA 2.15. Solve
z € Hy'(B,),

J avz,p, dx = J (% + fiv,) dx for v € H(B)
B, B,
with the help of Theorem 2.1 and of the corollary of Theorem 1.43. Then
Pz )5, < a?| Flh-us,
N
<c(r1rE+ § 1)

=1

since Poincaré’s inequality in H'(B,) yields

[P ACH PR A PR ) PO
<C lfo Il:r’ l Vo 11;7

when v € Hy'(B,). The function w = u — z satisfies (2.36) with 2 = B, so
that

1Pulg, <2(1Pwl, +1Pz15,)

<C|Pwi, +21VzE,

< c[:.;f._ | Pu g, -+ (1 + %) | Pz IE;,]
o S

< C(?: (Pulty + 1+ 3 1S )

for 0 <p <r by Lemma 2.17. i1
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REMARK. Theorem 2.16 can be compared with the following impor-
tant theorem by N. G. Meyers [109]:

There exists p > 2 such that, if u satisfies (2.42) with fo¢ L%(2), ¢
=pN/(N+p) and 1, ..., f¥ e LP(Q), then u, |u, ..., Us)e € LP(®),
with the corresponding norm estimate, whenever w cc £,

Notice that, when N = 2, Meyers’ theorem implies the Hélder con-
tinuity of w in £ thanks to Sobolev’s inequalities (Theorem 1.41). In the
bidimensional case Holder continuity can, however, also be proven by
techniques analogous to those of the present section: see J. Kadlec and
J. Netas [84]. (The one-dimensional case is obvious: see the preliminary
considerations of Section 2.3).

Until now the results of this section have concerned only interior
regularity of solutions (and of their derivatives). Holder continuity up to
8102 of solutions of (2.6) for ¥V = H,'(2 u I') can be proven under rather
mild regularity assumptions about QI and I' (as well as F): see G.
Stampacchia [143]. We prefer instead to show that, if the assumptions
about 2O\ I and I' are strong enough, global regularity can easily be
deduced from previous interior results through an extension technique.

Beginning with the case £ = B+, we investigate solutions of either
equation

u € H'(B* U §%),
(2.45)

a(u, v) = (F, v = LH (o0 + fio,)dx  for ve HABY),

or

ue H‘(é+), (2.46)

a(u,v) = (F, o) = .L+ (f% + fiv,)dx  for ve H(B* U S§%).

LEMMA 2.18. Let u solve either (2.45) or (2.46) with f0 € L:-9*(B+)
and 1, ..., f¥ € L*#(B*), where u is defined as in Theorem 2.16. When-
ever 0 < R < 1, all first derivatives of u|p_+ belong to L**(Bg*) with norm
estimate

N -
|70 gy < C(1S lwmmize + 3 1 F lwine + 14 amia)

where C has the same dependence on the coefficients as in Theorem 2.16.
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Proor. For functions w = w(x), x € B, we define
wix', xy) = w(x’, —xy),

and denote by D;w the derivative w, ; notice that

D#=Dw fori=1,...,N—1, Dyw=—Dyw.

We can suppose that the coefficients of a(u, v) are bounded functions
defined throughout B according to the rules

a¥ = —a' and a¥=—a% fori=1,...,N—1,
d¥ = —d¥,  b¥ = ¥,
a'i = g, di=dj, b =5 for all remaining values of i, j,
c=2~¢C.

Notice that for any £ € BN,
F;Eifj =dipm > al R

ae. in B+, with ;= — &, fori=1,..., N— 1 and ny = &y.
Passing to the free term F, we consider f9, f1, ..., f¥ as functions of
the corresponding Morrey spaces over B, defined by the rules

f.i=-—}'7 for j=0,1,...,N—1, fN=Fv'
in the case (2.45), and

fi=f for j=0,1,...,N—1, f¥— ¥

in the case (2.46) (see Lemma 1.16 and the remark after Theorem 1.17).
Finally, we consider u as a function of H!(B) defined by the rule

U= —i
in the case (2.45) (see Lemma 1.44), and
u=i

in the case (2.46) (sce Lemma 1.29).
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Now let v e C,X(B). We have

J [(@¥Du + du)Dp + (b'Dju + cu)p] dx
Bt

N-1____ —
- ( Y a¥Dg + df"ﬁ)DNﬁ dx
BT

=1

N-1__ _
— J ( Y. a¥iDaD;b + b”DNﬁﬁ) dx
B+

1=1

—_ N-1_ N-1__
+ _I- [(Z' D + d"ﬁ)D,-ﬁ + ( Y 6D + Eﬁ)ﬁ] dx,
B+

=1 =1

where 3’ denotes summation over all remaining indices i, j. But then the
quantity

J‘B [(@9Du + d?u)Dpw + (b'Du + cuv] dx

= J‘ (@D + du)Dp + (b*Dyu + cu)p] dx
B+

+ .L;+ [(@Du + d)Dp + (6D + ca)] dx
cquals
L;+ (@D + diu)Dy(o — 5) + (B*Dyu + cu)(v — B)} dx
= [ U= + Do — o dx
in the case (2.45) [notice that (v — 5)|5+ € Hoi(B)] 20d
[ (@Da+ dDy(o +5) + 4D + o + 5)) de

_ L+ [ + B) + fD(v + 5)] dx

in the case (2.46) [notice that (v + )| g+ € Hy'(B+* UL §9)].
At this point we need only utilize the identities

L+ £ — 5) + fiD (v — 5)} dx — L (% + fiDw) dx
[in the case (2.45)] and

J-B+ [fo(v + 5) + fiD,(v + D) dx = J‘B (f* + fiDw) dx
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[in the case (2.46)] to verify that u satisfies (2.42) with £ replaced by B.
The conclusion is now an immediate consequence of Theorem 2.16. 0
At this point the following global regularity result can be proven.

THEOREM 2.19. Let 852 be of class C', the open portion I' = 342 being
also closed. Let u solve (2.6) with V = H(2 U I') and (F,v) = [o{(f%
+f"vz‘) dx for ve V, where f°, f, ..., f¥ satisfy the same assumptions as
in Theorem 2.16. Then all first derivatives of u belong to L*#($2) with the
corresponding norm estimate; in particular, y € C*¥(Q) with 6 = (u — N
+22ifp>N—2

Proor. Let x°€ 952 and let U be a bounded domain of R¥, U2 x?°,
such that U/ m 8£2 is a portion of either 82\ T or I" which is straightened
by a ! diffecomorphism A: I — B, A(x°) = 0. Then v’ = {uo A-Y)|p+
belongs to H(B*), with [ |gpn < C|u |myne (see Lemma 1.28),
As a matter of fact, u' € HW(B* U 8§t} if Un 802 c 8O\ T, since u' is
the limit in H*{B+) of a sequence {u,’} = C,M(B* U §*),u, = (u,0 AWz
with {u,} c CHR U I, u, — u in H'(2). Moreover, the function v' =
(v o A1)|z% belongs to CJ(B* U S°) if ve C'(2) with suppvc Un O,
- and even to CM{B*) if suppv c U n 2. Vice versa, any function v’ €
'C,‘(B* U §°), or even v’ € C.(B+), can be obtained by inverting the above
procedure. Thus a density argument and a change of variables in the
equation yield

ar(uf, v.r) = -[B+ [(a"u’u;hﬁ— drkur)v;k_*_ (b.rju,.r. + Crur)vr] dy
S o Jm (% + ™)) dy (2.47)

for v' € Ho)(B¥) (if U 82 < 82\T') or v € H'(B+ U §° (if U 902
c I'). In (2.47),
a*(y} = @9[x(1)]¥az (W)Y ee [xX (NI (B),
d'¥(y}) = d[x(¥)] e [x (I (3),
by} = B x(¥)aex(1)1 (),
(3} = cx()1(y),
I°0) = Ix(V0),
F*0) = LI [x(NI ),

where y = y(x) = A(x), x = x(y) = A-'(y), and J(y) denotes the absolute
value of the Jacobian determinant of A-! at y.
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The coefficients of &'(u’, v') belong to L*(8*) with norms bounded
by some constant times the sum of the L=(£2) norms of the coefficients of
a(u, v). Moreover,

N N 2
aMg g, = Jﬂ"’.)’uz‘)’&z,fah > (min J)e ), (‘2 yﬁz;Eﬁ) =>a &)}
B+ vl \A=]
a > 0. As for 9 f%, ..., f'¥ we can bound their respective Morrey
norms with some constant times the sum of the norms of f3, f, ..., f¥
(see Lemma 1.15).

To (2.47) we apply Lemma 2.18. We thus arrive at the membership
of Uy |gats - -« » Uyylmg+ in LE#(Bg*), 0 < R < 1, with norm estimate. For
s=1,..., N we set

u, (¥, y¥) if (', yn) € Bg*,
u;.(y', —yN) if (y's _yN) € BR+'

Each function z,’ is in L*#(Bp) (see Lemma 1.16). Therefore, each
function z,(x) = (z," o 4)(x), x € B,(x") = A~'(By), belongs to L*#(B,(x°))
by Lemma 1.15, and the restrictions to 2 M B,(x®) of u, , ..., u,, belong
to L2#(f2 N B,(x%) by the chain rule.

We now cover 982 with open spheres B!, ..., B® such as B,(x% in
the preceding. Let {g;};=01....m be 2 partition of unity relative to the open
covering {@;};0,1....m of @, where w;=Bifori=1,...,m, 2 5> w,
= NJUJR, B (see the corollary of Lemma 1.4). Thus,

L)
u= ; g,
=0

and all first derivatives of g;# belong to L24(Q) by the above considerations
for j=1, ..., m, by Theorem 2.16 for j = 0. 5]

zl’(y's yN) = {

2.5. H* Regularity by the Method of Difference Quotients

2.5.1. Regularity in the Interior
The following lemma throws light on the results of the present section.
LEMMA 2.20. Assume a'f € C*'($3) and let u satisfy

ue H(Q), suppu <= 2,
) PP (2.48)

I a‘iu,p, dx = (F,v) = I v+ fiv)dx  for ve Hy)' ()
a a
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with f°e L), f*, ..., f¥ e HY(Q). Then u belongs to H¥Q) with norm

estimate

N
2 gy < C(|f° Jeia + E | /¥ ey + 12 Im(m) ’

=1

where the constant C (independent of u, F) depends on the a'”’s through the
bound imposed on their C*'(£2) norms, as well as through a.

PrROOF. As in Section 1.5.2 we utilize the notations
w(x) = 1,'w(x) = w(x + he’), Spw = dy'w = (T,w — w)/h

for h € R\{0}, e* being the sth unit coordinate vector for an arbitrarily
fixed value of s.
Let suppu <« w c< 2 and set

d = dist{w, 912), w* = {x e 2|dist(x, w) < |k},

o = w¥. For 0 <|h) < d/4 we insert the admissible function v =
—d_pd,u in (2.48) and obtain

J d,,(a"fu,{)d,,uz} dx = — J [f95_p0\u — (6,.]")6,,;:“] dx.
A wh

From the bounds
| 5_,,(5,,;: |B;¢u* S | Vﬁ,,u |2;w’!

188 lssur < | O lgs0r
(see Lemma 1.21) and from the identity

(@) = (1aa)dpu,, + (840 )u,

we deduce

a J‘ . [P0 |?dx < j (za@") (Bt Yoptiy, dx
® h

w

= — [ U+ (i, — 80f Vo dx

N
< (I o+ 3, 167 losi | Pl

4,1=1

N
+ Z [ /" e ) | Vopu |2;0r -
i=1
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Since
J‘ | Pépu |*dx = I | Vépu |® dx,
wh w’
we have bounded | Véyu |5, uniformly with respect to b for 0 < | k| <
d/4. By Lemma 1.21 u,, belongs to H'(w’) with norm estimate, so that the

conclusion follows immediately. 0
Lemma 2.20 is utilized to prove the -following more general result.

LemMMa 2.21. Let k be a nonnegative integer. Suppose that the coef-
ficients of the bilinear form (2.11) satisfy

ai, df e CHI(D), b, ce HH(R),

and let u solve (2.43) with f°c HY), ), ..., /¥ € HY(Q). Whenever
wcc 2, ul, belongs 10 H*3(w) with norm estimate

L
|t fpwrrgy < C(l.f1J laea + 3 1 lgena + |“|H=(m)-
t=1

The constant C (independent of u, F) depends on the coefficients of the bi-
tinear form only through the bound imposed on their respective norms, as
well as through a.

PROOF. For h=0,1, ... we set dy = dist{w, 382)/2%, w, = {x € R¥ |
dist(x, w) << dy}. We also set

¥
)(Fru) = | f° v + _El | Brrio) + Hu o
=
and proceed by induction.

Step |: The case k = 0. To begin with, we get rid of lower order
coefficients by writing (2.43) as

J‘ auyp, dx = J‘ (fov + f"vz‘) dx
Pt o

_ J [0 — biuy, — cuo + (fi — diulo,]dx;  (2.49)
o]
notice that

¥ .
| /30 + 21 | £ gy < Coxo(F; u).



128 : Chapter 2

Next, we apply the cut-off technique. Let g € C“(Q), g = 1 on &. When.
ever v € H(2), the function gu satisfies

-[Q aij(g“):.”:; dx = a [ai;uz‘(gv)q - a‘.juzigzjv + aijugzlvzjl dx
= [.fogv + f‘(gv),‘ - a‘iquz’v + aijug’lvﬂ] dx
[}

= [(-ng - a‘-juz‘gz’ + f'g:q)v + (fig + aj‘ugz,)vq] dx-

Since supp(gu) < £2 and

|f°g - aijuz‘g:, + fgq + ; If'g + ajlugz, |Pmm < CxO(F u)s

the conclusion for k = 0 follows from the previous lemma with « replaced
by gu.

Step 2: The case k € N. Suppose that the sought-for result holds with
k replaced by k -- 1, k being some natural number. Then u e H*'(w,)
and, when restricted to w,, the functions f9, f1, ..., f¥ from (2.49) satisfy

N
|f° Bﬂlwﬂ + z-:l |f‘ Ii{tﬂ(“, S C?(k(F; u).

Now let ve C®(w,). From (2.49), written with v replaced by uv,,, we
deduce

-L aijuz',' vy, dx = — J (@"u U Vr g, + al Uz bz,) dx
— 1, if
= - .[ (.fovz, + f Uz a; + az,uzlvz;) dx
= J sz,v + z, - az,uz;)vz,] dx

for s =1, ..., N. By density, the first and the last term above are equal
for any v € HyY(w,). The conclusion follows from the inductive assumption
concerning the value k — 1, with 2 replaced by w, and u by u,,; notice
that

il , i
| £ Tkt + 21 | fo, — @b, |k oy < Coy(F; 0). 0
s

Thanks to Theorem 1.41, Lemma 2.2] is immediately seen to admit
the following corollary,
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COROLLARY. Suppose that all coefficients of the bilinear form (2.11) be-
Jong to C=(2), and let u satisfy (2.43) with f°, £, ..., f¥ € C=(2). Then
ue C=(0).

Remark. Whatever the nonnegative integer k in the assumptions of
Lemma 2.21, any solution of (2.43) verifies the equation

Lu=f"—fi inQ

almost everywhere.

2.5.2, Boundary and Global Regularity

We now want to extend the results of Section 2.5.1 up to the boundary
of 2. We begin with the case 2 = B+,

LEMMA 2.22. Assume a'f € CO(B¥) and let u satisfy either

u € Hy'(B*), suppu < B+ LU SO,
o'(BY) PP 2.50)

J a“u, v, dx = (F,v) = J (f% + flvz)dx  for ve Hy'(BY),
B+ B

or
u€ H(BY), supp u < Bt U 89,
(BY) PP @.51)

J a""uz‘v,’ dx = (F,v) = J (v + fiv,)dx  for ve H'(B* U S°)
B+ B
with f° € L3(BY), f, ....f¥ € H'B*). Then u € H¥}(B*) with norm estimate

N
fulgpn < C([f“ e + X 1 lman + | u |Hl<B+;)i

=1

the constant C (independent of u, F) depends on the a''s through the bound
imposed on their C°J‘(F) norms, as well as through a.

ProOF. Let he RN {0} with | 4| < dist(suppu, S*). Fors=1, ...,
N — 1, 8, = &, the functions &,» and 4_,6,u belong to Hy'(B*) in the
case (2.49), to Hy'(B* U S°) in the case (2.51). We can therefore proceed
as in the proof of Lemma 2.20 and demonstrate that w, , ..., %, €
H'(Bt) with norm estimates.
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We now write the distributional identity

— (aijuz;)::, = fo - fz: in B*
as
(aNHuzN)ZN = - Z'(aijuszJ - j‘O + .fz: in B+!

where 3’ denotes summation from 1 to N over all pairs of indices (i, j)
# (N, N). By the preceding considerations,

(@, )., € LY B).

Since the Lipschitzian function a¥¥ is > a > 0 on B*, we have
w
u,N(aN“' a‘”’) dx
TN

w AR
— ﬂj‘N NN
= [“m 2y NN T Uz ( oy ) ] dx
Bt z,

J‘ U W dx =
gt J Bt

- . [uzﬂ-aﬁf(aﬁ”)_l - (aNNuzN)zN(aNN)_l]w dx
B

for we Cr(Bt),

hence u,,,, € L*(B*) (with norm estimate). 0|

ReMARK 1. Inspection shows that the conclusion of the above lemma
remains valid if (2.51) is weakened into the requirement that

v e HY(B), suppu < B+ U 89,

J‘ au, (8 x0yu);, dx > (F, Sy
B+

for he RN\ {0} with | k| << dist(suppu, S*), 8, =982 fors=1,..., N1,
and

J‘ au v, dx = (F, v) for ve H,(B*).
Rt
This fact will be utilized later on (proof of Theorem 4.39).

ReMARK 2. In the case (2.51) of Lemma 2.22 we can construct a
domain w = B* in such a way that suppu m Bt < w, @ < B+ U 5% and
da is of class C'. By the divergence theorem (see Theorem 1.53) the func-
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tion u|, € H*(w) satisfies

J r.z“u,‘[uzJ dx = I fodx -+ {v|pdo  for ve HYw),

dw

where f = (f° — f})|. € L*(w) and { = fi;pu' € HY*(0w), (¢!, ..., u")
denoting the outward unit normal to dw. From Lemmas 2.5 and 2.6 we
can therefore deduce that

atu, ) = fiy'  on do,
hence that

a‘¥u, = f¥ ae. [N— 1] on 8°
As a counterpart to Lemma 2.21 we have the following lemma.

LEmMMA 2.23. Let k be a nonnegative integer. Suppose that the coef-
ficients of the bilinear form (2.11) (for 2 = B*) satisfy

al, d’ e CE(BY),  b% ce HE=(BY),

and let u satisfy either (2.45) or (2.46) with f°c H*(BY)and f, ..., f¥ €
H¥+1(B+). Whenever 0 << R < 1, u|p,+ belongs to H***(Bp*) with norm
estimate

N .
| u ]H“‘(BR*) = C(Ifo |zs) + E L f' lawsypey + |1 |le+y);
=1

the constant C (independent of u, F) depends on the coefficients of alu, v)
through the bound imposed on their respective norms, as well as through a.

Proor. We proceed by induction on k.

Step 1. The case k = 0. The function u satisfies
J a‘u, v, dx = J (fv +f‘v,‘) dx
Bt g+

for v e H,'(B*) in the case (2.45), for v € H'(B* U 89) in the case (2.46),
with fo0= fo — biu, — cue L*B*) and [ =fi — d'ue H'(B*) for i =
l,...,N. Let ge C=(B), g =1 on Bp: Lemma 2.22 can be applied to
the function gu, with f° replaced by fog — aug, + f“'g,,, fiby fig +
af"ug,J for i=1, ..., N (see Step 1 of the proof of Lemma 2.21). The
conclusion follows in the case at hand.
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Step 2: The case k € N. Suppose that the lemma is valid with k re-
placed by k — 1. The functions i, |5+, - - -, Uz,|p + then belong to H¥(B+),
r=(R+ 1)/2.

Lets=1,..., N~ |: then we also have u, | g+ € H,'(B,* U §,*) if
ue H)(B* U S*) [since (dy'u)|p+€ H B, U SH) for 0 < |h| < (] —
R)/2]. As in Step 2 of the proof of Lemma 2.21 it is clear that u, satisfies

i 0 i Ji,
a Uy Uz dx = z,V ' (fz, az i, )Dzl] dx
B+ ! B+ v
r r

for v € H,'(B,*) in the case (2.45), for v € Hy'(B,* U §,°) in the case (2.46).
[Notice that [ + w;, dx = 0 if w € H'(B,*) with supp wc B* U S,°] The
inductive assumption concerning the value k — 1, with B+ replaced by B,+
and u by u, , yields u, |5+ € H**'(Bg*) (with norm estimate). At this point
we need only utilize the distributional identity

(aNNuZ‘v)zN = - E’(aiju.q)zj - fa + _fz: in Byt
to arrive at u,,,,|p,+ € HX(Bg*) (with norm estimate). 0

CoRrOLLARY. Take the coefficients of a(u, v) in C""(-B:) and let u sat-
isfy either (2.45) or (2.46) with £, f1, ..., f¥ € C=(B*). Then u € C*(By*)
for any Re 10, 1[.

ReMARK. In the case (2.46) of Lemma 2.23 it is easy to verify that
a'®u, + d%u = f¥ a.e. [N — 1] on S° by using Remark 2 after Lem-
ma 2.22.

For what concerns global regularity we have the following theorem.

THeOREM 2.24. Let k be a nonnegative integer. Suppose that 88 is of
class C¥1.1 that its open portion I is also closed, and that the coefficients
of the bilinear form (2.11) satisfy

a‘l, & e Ck (), b, c € H:-=(R).
Then any solution u of (2.6) with V = HMNRQ U I') and {F,v) = [o {f%

+ fiv,) dx for ve V, where f°€ HY Q) and [, .. ., f¥ € H*\(R), belongs
to H ¥ Q) with norm estimate

N
(ulmnor < €1 lamar + 3 1 lmencan + )
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The constant C is independent of u, F; it depends on the coefficients of a(u, v)
only through the bound imposed on their respective norms and through a.

This theorem can be proven by the same technique adopted in the
proof of Theorem 2.19, with some simplifications. Note that, if A: U—~E8
is a C*+1.1 diffeomorphism that straightens a portion U 1 852 of 9@, the
data in equation (2.47) satisfy

a'™, d't € ChI(BY), b, ¢' € Hb=(B¥),
f°e HYB*), [, ..., 'Y € H¥\(BY),
and the membership in H**'(Bg*) of u} [p.+, ..., ), ]|5,+ implies mem-

bership in H**(w) of wu,),, ..., u,,l, [with o= A-(Bg*), and v’ =
(HDA_I)|B+], by Lemma ].28.

COROLLARY. Let the assumptions of Theorem 2.24 be satisfied for ail
values of k. Then u € C=(2).

REMARK. By Lemmas 2.5 and 2.6, the function # from Theorem 2.24
satisfies

(@Yu,, + diuyy? = fivt ae. [N—11on I

2.6. Interior Regularity for Nonlinear Equations

In the sequel we shall make use of the following terminology: g(x, {)
is a Carathéodory function of x€ Q and { € R¥ (M being a natural num-
ber) if

e g(-, ) £ — R is measurable for any € RM,

e g(x, -): R¥ - R is continuous for a.a. x€ 0.

We now take f°, 1, ..., f¥ in L~(f2) and rewrite (2.43) as
WE H'(D),  — oo A, Vi) + A%, Vi) =0 in 2. (2.52)

Here, for j=0,1, ..., N, A’(y, £) is the function x — a¥(x, 7(x), &(x})

if , £, ..., &y denote measurable functions on 2, £ = (£, ..., £Ey),
with

ai(x, g, £) = aP(x)&; + di(x)yy — fi(x) fori=1,..., N, S

] 2.53

a(x, 7, §) = bi(x)E; + clx)n — 1), 2:33)



134 ' Chapter 2

The @%s are Carathéodory functions of x € 2 and (7, £) € R*¥; moreover,
there exist two constants C,, C, such that ‘

| @8 <Clnl+i&l+1), j=01...,N (254)

and
a'(x, 1, £} = (af2) | £ * — Co(n* + 1)

2.55
for a.a. x€ 2 and any (y, &) € R+~ (2.55)

If the reguirement that the a’*s be defined by (2.53) is dropped, (2.52)
becomes a nonlinear equation; it still makes sense in H-(£2) if the a”’s
are Carathéodory functions of x € £2 and (%, &) € R~ satisfying (2.54).
We shall investigate the solvability of (b.v.p.’s associated with) nonlinear
equations such as (2.52) in Sections 4.3 and 4.9. In the present section we
instead provide some interior regularity results for solutions u, assuming

their existence.
We take N = 3.

2.6.1. Local Boundedness

The next result can be viewed as a nonlinear counterpart to Lemma
2,12,

Lemma 2.25. For j=0,1, ..., N let ai(x,n, E) be a Carathéodory
Sfunction of x € 2 and (n, £) € RV*¥ satisfying (2.54), (2.55). Let u satisfy
(2.52) and set

WM =(—kK)Vunrk for 0 <k < oo

Assume x°€ 0, B, (x") < 2 (0 < r <<1). Then a bound

[J (1 + w? | 'k |m+su-1)) dx]ln
B,lz0

<oty

=  f (k)
=C@®=op JW,““"“ e (259

where A = N{(N — 2), holds whenever 0 <p << co and 0 <p < R<2r,
the constant C being independent of u, x° r, and k.

PRrOOF. We take x® = 0 and fix g€ CY(2) with suppgc By, 0<g
<1l,g=1o0on FQ, | Vg | <2(R — g)'. Then v =g*| u'® |Pu belongs to
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H,{(2) with
v, = 8% |u® [P(puff) + u,) + 288, | u™® |7y,

and (2.52) yields
[ a1 1ough + ) ax
o
= —ZJ Algg,, | u'® |Pu dx + I A% | u'®) |Pu dx,
o o

where we have written A7 for A%(u, Vu), j =0, 1, ..., N.Since A"(u, Pu)ul
= A¥(u, Fu®)u® by Theorem 1.56, (2.54) and (2.55) yield

% J.a g u® |7(p| Pu'® |2 + | Pu|®) dx
<Gl +p) [ g lu® o + 1) d
F2NC, [ (ul+ | Vul + Dglu® 1P ul | Vgl dx
+C [ Qul+ 17l + Dt P ) d.
We majorize the quantities

2Nc1j |Vulglu® | |u]| Pg] dr
2]

and
G| 1Pulgt|u®|e|uldx
o
with
ij g“lu‘”lf‘quI‘derCJ | uth [t | Vg |2 d
8 o 2]
and

iJ' g’|u‘*’|P|Vu|3dr+CJ g u® [Pt dx,
8 o o

respectively. Set & = |u*® [?/2 | u|, so that

|u""|3’_<_|u‘”|7’+’+15ﬁ2-{—1
and
| uB P |u| S [0 [Pt + 1) < 28 + 1
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since

¢l + p) L gt | u® |’(u" + 1) dx
+2NC, [ (ul+ Dglu® 12 u||Vg] ds
+ G Qul+ g P u] dx
<cl+0) [ geir+1d

+ Nclj (& + | Vg [0 + 1) dx + clj g + 1) d,
n n
we arrive at the inequality

[ eru p@1 v 4 o ax
<CO+p) [ @+ ITemE+ 1 ds

But
’Vﬁlas (_‘;__+_ 4) Iu(k) |”(p|Vu‘” |z+%|[7u|l)_

so that
[1venrar<ca+or| @+ ivem@+na @5)
From (2.57) we deduce that
| g Byn < C(1 + p) LR @ + | Vg )@ + 1) dx

(see Theorem 1.33 and the corollary of Theorem 1.43). But then

o\ (1 + p) "
(.[B,u dx) =C (R — o) Bn(u + 1,

and (2.56) (with x° = Q) follows from the inequality

7] | u(k) |y1+lu—1l S Preo]

since o¥ < [R¥/(R — o)*]* 0
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We now insert R=r,=r(l + 1/2®), ¢ =rpy and p = p, =
2(A™ — 1) in (2.56), thus obtaining

Anis < A B LY,
hence

Annn < 4, 11 (C -23%)”1‘ (2.58)
where

1/A™
A, U (1 + u? | ut® |7m) dx]
Brptz%

(m=0,1,2,...). The logarithm of the right-hand side of (2.58) is
bounded by

> i+ 1 L o |
1 ) sy
n 4, + ‘E = In [(C24%) 2] 21nr‘§ =
=IlnAd,+ C— Nlnr,

We thus arrive at

1f1-+1
(], 1w )™ < Ay
o
< Cr—NJ (1 + «*) dx,
By lz
and finally at

esssup ut < Cr ¥ J’ (1 + ) dx
Bz By, tz9

after letting m — oo, k — co, (Compare with the proof of Lemma 2.11.)
By a straightforward compactness argument we can therefore conclude
with the following theorem.

THEOREM 2.26. Same assumptions about the functions a’(x, 1, &) as in
Lemma 225, Whenever w cc £2, the restriction to o of any function u
satisfying (2.52) belongs to L=(w) with

|t o < c[jn a+ u’)dx]m.
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2.6.2. H” Regularity

For what concerns interior differentiability of solutions to (2.52) we
have the following theorem.

THEOREM 2.27. For i =1, ..., N let the functions a'(x, 7, £) belong to
CHQ x R X RY) and satisfy

|aitx, n, &) < C(nl + 161+ 1),
lat (x,m €}, - [, ) S G DA ET+ 1), (2.59)

la,i(x,n, E), lab(x,m, &)1, ... al,(x,m E)l < GlIm )
Sor (x,n,E)E.QXR % R¥

as well as

agj(x, n OEE=alE?

2.60
for m e BxRXRY, FerRY (@=0), O

and let a%x, n, £) be a Carathéodory function of x € 2 and (n, £) € R'+¥
satisfying
la®(x,n, &) < Cnl+ &+ 1)

2.61
Jor aa. xe 2 and  any (3, &)e RN, (2.61)

in (2.59) Ci(s) is an increasing function of s € [0, co[. Whenever w cc 22,
the restriction to w of any solution u to (2.52) belongs to H*(w) with

|4 gy < CUQ (1 +|Vu |=)d:cr2 (2.62)

PrOOE. It is easy to see [by writing &*(x, %, £) as [} at(x, , t£)E; dt
+ a'(x, 5, 0)] that {2.60) implies (2.55). By Theorem 2.26, u|, belongs
to L=(2") whenever {2’ cc £, so that we can without loss of generality
prove the present theorem under the additional assumption u € L=({2).

Nonlinearity forces us to introduce difference quotients at the same
time as multiplication by a cutoff function. (Compare with Lemmas 2.20
and 2.21.) We utilize the notations

nw(x) = i'wlx) = wlx + he'),  Gw = d'w = (tw — w)/h

for he R™\{0}, ¢ denoting the sth coordinate vector (s =1, ..., N). Let
geC=(2), suppgc V'cc R, 0<g<], g=1onac £ and take v =



—8_p(g20u) with 0 < | A | < } dist(2’, 312). We have
_[ Ai(u, Py, dx = J Sy A (u, Vu)(g8yts, + 288, Sutt) dx
2 o

and

8aA(, Vu)(x)

1
= %J % a*(x + the’, u(x) + th S,u(x), Pu(x) + th V8,u(x)) dt
)

1 .
— [ 1, + a8 + af 01

the argument of all partial derivatives of o’ in the last integral being
(x + thet, u(x) + th Syu(x), Vu(x) + th Péu(x)).

Therefore, by utilizing (2.59) [with C,({#|) replaced by C(| u |w;0)]
together with (2.60) and (2.61), we obtain

[ 4 i, ax = gt~ + 18y + 1P
i1 o’

+ a1 Popu )| Vo | + ] Pdpul’]
— CQ + | dpu| + | Pu| + | 2] | Vdpu|
+ |VPou)2g| Vg || dpu |} dx.

For | & | small enough the right-hand side of the above inequality is mi-
norized by a quantity

i'[ g’iVéaul"dx—C'[ 1+ |Pul®)dx
2 }a o
(see Theorem 1.21). On the other hand,

l J A, Pu)v dx
o

=C L, (Pul + (1 7-ag 1184884} | 4 1848 | 1805 ) dx

55'[ IV(géhu)l’dxch'[ (| Vu | + 1)* dx.
8 Jo o
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From (2.52) we therefore deduce the estimate

a

—j g Pbulrax<C[ (1+|Pup)as,
7)o o

which implies u|, € H*(w) togsther with (2.62). 0

2.6.3. H'* and C** Regularity

LemMma 2.28. Same assumptions as in Theorem 2.27. Whenever w cc 0,
the restrictions to w of all first derivatives of any function u satisfying (2.52)
belong to L™(w), with

| Pt | < CUD(I + | V) dx]m.

Proor. Thanks to Theorems 2.26 and 2.27 we can, without loss of
generality, restrict ourselves to solutions of (2.52) which belong to L=()
as well as to H*(Q2).

For i,j=1,..., N we set

A%(x) = a}(x, u(x), Vu(x)).
Next we fix s=1, ..., N and put

Biy(x) = —ai (x, u(x), Pu(x))
—a,¥(x, u(x), Vu(x))u,(x) + a®(x, u(x), Pu(x))o"

with 4% =0 for is£s, = | for { = s; note that | B},, | < C(1 + | Pu|).
If v € Co(82), (2.52) yields

0= J (44, Vu)o,,,, + A4, Vu)p, ] dx
o
= J (_Aijuz,:‘vz, + B?a)vz‘) dS,
a

so that w = u,, satisfies the equation
we HY(Q2), —(A“wq),j =By, inQ (2.63)

as an identity in H1(92).
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The function | Fu | belongs to H(2); by Theorem 1.56, the same
istrue of z,, = e v |[PuP Ak, 0 <e <k < oo, with

{0 for |PulP<e or |Pul*>k,
zkh.l‘,__-'

2u, Uy 0 for e < |Pu|? <k, (2.64)

so that zy, € HYNO) N L=(£2). Take £ > 0 and let p > 0. Assuming, with-
out loss of generality, that 2 = B, for some r € J0, 1], we denote by g
the same cutoff function as in the proof of Lemma 2.25, and set

V=V = g’zfaw
Thus, v € H}(2) with

= gz(ztcwz, + sz._'zm,w) + Zgg,,zf,w,

and finally v € Hy'(£2) because of (2.64).
Because of assumptions (2.59)-(2.61), the equation yields

-[g g(azg, | Pw* + pzf, 1!4"""2"“’2&;:;) dx ~ C.[ glPglzh|w||Vw]|dx

< .[ AVw, o, dx = J By, dx
o o

sC_[ (Pl + DIg*CE | Pw] + pb | P2y, | | w))
e

+ 2g| Vg |28, | il dx
by the previous definitions of A% and Bi,,.

We now write u,, instead of w and sum over s from 1 to N. Since

MrgaleZhez, = $ZpesZres, [s€€ (2.64)] and | Pz, | | Pu| = | P2y, | z3?, we obtain

aj (zhzll?u,,|=+ 2 |Vzh|=)
e

a=1
<5 [ e 3 1vu1dx [ | Vepadvup s
+ [ o % 1Vurax+ [ (7ul+ 1yed ds
=1 o

ipj g2 | Vzp, [ dx + c:pj (| Vu| + 1)'gi, dx
o e

+cj (g + | Vg [B)8,( Vu| + 1) dx,
o
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hence

3] el F 1Pt 2 {7, ) d

=1

<ca+p | @+ Ve +IPup)dde  @65)

The function £, = z}/* | Pu | satisfies

fur = 5 B 2k, | P+ Sl iy V|

(see Problem 1.24), hence

172, < 2 L P P oL X, [ P, )

N
<(p+ O 5 28" P20t 4+ 2, 3, | P, ).
From (2.65) we therefore deduce the inequality
J. | V(g) |* dx < C(1 + p)? J- (8 + | Vg [k, + £ dx.
o )

Passing to a suitable subsequence of indices £ we utilize a weak convergence
argument and ascertain that the above remains valid with ¢ = 0, %, being
of course z§? | Fu|. But since

<A+ 1<+ 1,

we have obtained (2.57) with & replaced by %,. The conclusion of the
lemma can now be reached by proceeding as in Section 2.6.1. ]

At this point we can easily show how the Holder continuity results
for linear equations play a pivotal role in the nonlinear theory. Indeed,
consider a solution u € H}(2) N H"=(2) of (2.52). The functions A% and
Bi,, appearing in (2.63) are in L*=(£2), and the restrictions to any w cc 2
of the function w = u, belongs to C**®), for some é € ]0, 1[, by Theorem
2.16. In the general case u € H'({2) we need only apply Theorems 2.26
and 2.27 as well as Lemma 2.28, then replace 2 by any 2" with o cc
¥ cc £2. This demonstrates the following theorem.

THeorReM 2.29. Under the same assumptions as in Theorem 2.27, every
solution of (2.52) belongs to C¥(£2) for some 6 € 10, 1].
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Thanks to the above result, regularity of derivatives of order > |

can be deduced from the linear theory of the next chapter: if, for instance,
the functions a/(x, , &) are in C'*(2 X R x B¥) for j =1, ..., N and in
Cor( X R X R¥) for j =0, ¥ being any given number in )0, I[, then any
solution of (2.52) belongs to C2¥(£2). [See Theorem 3.4(iii).]

Problems

2.1. The Lax-Milgram theorem can be generalized as follows. Let U, ¥ be

2.2.

23.

24.

2.5.

Hilbert spaces and let u, » — a(u, v) be a functional on Ux ¥, linear in
each variable, with |a(u,0) | S M |u|y|v|v for ue U, ve V (M > 0),
SUPsev, iy | G0, ) | 2 ag | u |y for u € U (e, > 0), sup,ep alu, v) > 0 for
v € ¥, v+ 0. Then for any choice of F € V' there exists a unique solution
of ue U, alu,v) = <F,v> forve V, and |u |y < a7V | F|p.. Sec 1. Ba-
buska [7].

Let N=1, 2 =10, 1[. Functions u € H*(£2) satisfying &'(0) = 0, u(1) = 0,
—u" = f" with fe H(Q), | f|na < | for a given p (finite) do not admit
a common bound | |0 < C. [Note that, for any choice of £ € R and
£ > 0, we can find f with f(0) = & and | f|,.n < e] Compare with Theo-
rem 2.7.

A bounded bilinear form a(y, v) on H,Y(2) is defined by (2.11) under the
following assumptions:

e the d’’s and the »''s belong to L¥(2) if N > 2, to L***(£2) for
some ¢ > 0 if N=2 to L}Q)if N=1;

* ¢ belongs to L¥(Q) if N > 2, to Li+e(Q2) for some ¢ > 0 if N = 2,
to LMD N=1, '

in addition to e¥ € L*(2). If, moreover, the uniform ellipticity condition
is supposed to hold, then a(u, v) as above is coercive on H,{f2) relative
to L}(£2). [Note that given ¢ > 0, any function h € L7(2), | < p < o, in
particular any lower-order coefficient of a(u, v), can be written as A, + A,
with | A, |p.0 < ¢ and | By oo;e < k provided the positive real number &
= k(e) is large enough.]

Throughout this and the next five problems a(x, ¢) denotes the bilinear form
(2.11) with coefficients in L>(£).

The requirement that £2 be connected plays no role in the proof of The-
orem 2.4 if ' = @. Why?

If the injection ¥V & L*(£2) is compact and the weak maximum principle
holds for A, Theorem 2.10 remains valid for nonnegative functions satisfying
(2.23) instead of (2.6).
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2,6. Let ue HY(Q) satisfy a{u, v) = (F, o> for ve HMQ), with Fe H (N,

27.

2.8,

2.9,

Whenever w << 02, there exists a constant C independent of # and F such

that
| 4 Vs € C(| Flarm + | # |g0).

The same estimate, except for | 4 |w.q instead of | u |5, on the right-hand
side, remains valid if u e HY(f) N L>°(L) satisfies a(y, v) < (F,v> for v e
HME), v = 0. (Utilize the inequality & + | # |o;0 = 0.)
Let 02 be of class €, and let the aslsumptions of Theorem 2.16, ¢ > N — 2,
be satisfied together with L1 > 0, u|sg = n € C*{802). Then u € C°-4()
with .
(uleoodn < €(11° buapowmio + 3,1 an + 17 s ).
-

C being independent of w, f°, f1, ..., f¥: moreover,
| u lm:ﬂ S | 1] |m;30

if in addition f° =f'=--- = f¥ =0,

Let 92 be of class €* and L1 > 0. Whenever n e C°(892) there exists i
e HiL () n CHD satisfying Lu = 0 in 2, u|30 = n; such a function « is
unique, since, whenever ¢ > 0, any element of C%$) vanishing on 82 is
< ¢ on dw, w cc 2, provided dist(w, 02) is small enough.

The solution of the b.v.p. considered in the preceding problem belongs
to C*¥(f) for some y € 10, 1[ provided n e C**1(3£2) for some y, € 10, 1[.
To see this, consider a controlled C*: extension w of n to R¥ and intro-
duce regularizations w, = g, =+ w. Letting », € H{({2) denote the solution
of the b.v.p.

Lu, =0 in 2, Uslao = 1a = wylao

utilize the bound | u, |06 < C | w, [cud to ammive at | u, |8
< Cn* " | |oreo, and the bound |ty — |0 < | Wa — W |o0 tO
arrive at | wy — 8 log;0 < Cn71X| 1 | o0y19m (see Problem 2.7). The con-
clusion follows from the inequality

|u(x) — () | < C|n|cvruag(nri+ ntr|x — y |9

forx, yef2,0 < |x — y| < 1, after choosing n between | x — y |- and
|[x —y |9+ 1.
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H** and C* Theory

The contents of the present chapter can be tersely illustrated by considering
the mixed elliptic b.v.p.

—(aYuy, + du), + by +cu=f  in Q,
#u=0  on 8\T, (au, - du)}»’ =0 on I

By Theorem 2.24 the membership of f in L*(f2) guarantees that a
variational solution u to such a problem belongs to H*(£2) provided 80\ T,
I" and the coeffictents of the operator satisfy some suitable regularity as-
sumptions. In this chapter we extend this result in the following directions:
if fe LP(2) with 2 < p < oo then u belongs to H*-?(2), if fe C*42)
with 0 < 6 < 1 then u belongs to C*%(Q). In the same vein as in Section
2.4.3 we follow the approach of 8. Campanato. Here the three main stages
of this approach are as follows:

e Estimates on spheres (Section 3.1) and on hemispheres (Section
3.4); the latter estimates are considerably more difficult than the
former ones.

e Application of Lemma 1.18 to the preceding estimates. This leads
to L*# regularity of derivatives in the interior (Section 3.2) and by
using essentially the same technique, near the boundary (Section 3.5).

e Utilization of an interpolation theorem by J. Marcinkiewicz (proven
in the appendix to this chapter, Section 3.8) which leads to L?
regularity in the interior (Section 3.3) as well as, by the same method,
near the boundary (Section 3.5).

Global regularity is at this point easily obtained (Section 3.5).
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When the previous b.v.p. is replaced by
—athu,, + du, +au=f inQ,

=0 on dO\T, Biug |+ Pul, =0  on I,

where the @'/’s are less than Lipschitzian, although at least continuous on
£, and the vector field (8%, ..., B¥) is never tangent to I, the variational
results developed until now cannot be directly applied. If, however, the
ai’'s are “frozen’ at a point x° € £, the new problem can be transformed
into a variational one near x°. The estimates of the preceding sections
provide local bounds on existing solutions w, from which global bounds
can be deduced (Section 3.6). Then uniqueness can be derived from maxi-
mum principles, and existence in H*?(2) or C%%(£) obtained by an ap-
proximation procedure (Section 3.7).

3.1. Estimates on Spheres

Throughout this chapter we shall assume the N? functions a*/ at least
continuous on the closure 2 of the bounded domain 2 = R¥, with

@iE, > el onf2 foréeRY (x> 0)

By the Tietze extension theorem we can view the &*”’s as the restrictions
to £ of functions 4% € C%(£¥), where 2’ >> 2 is another bounded do-
main: we denote by v a2 common modulus of uniform continuity of the
d#s on £', hence of the a'”’s on £. Note that T is also a modulus of uni-
form continuity for restrictions to £ of regularizations g, » .

As in Chapter 1, we shall denote by (k),, the average (1/| @ |) {,, h(x) dx
over a nonvoid bounded domain w < R¥ of a function h € LP(w) f{or
h € [LP(w)}¥), so that (h), minimizes the real function [, | h(x) — 4 |* dx
of 2e R (or A€ RY), and set (h)n, = (Aarz 1> (B)g = (Mo ,-

The estimates of the present section concern the case when 2 = B,

3.1.1. Homogeneous Equations with Constant Coefficients

Beginning with homopeneous equations with constant coefficients
a'¥(x) = a,/, we have the following lemma.

LemMa 3.1. There exists a constant C, depending on the a,'’'s through
the bound imposed on their absolute values as well as through a, such that
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for any r and any p € 10, r]

Pl < C L 1 PwiE, @3.1)
and i
[P0 — (Pw) e < C -G | P — (7o), I, (3.2
whenever w satisfies
we HI(B,), 63)

J ao"J‘wI[sz dx =10 for v e H'(B,).
B,

(Compare with Lemma 2.17.)

Proor. We proceed in three steps.

Step 1: Preliminary reductions. It suffices to prove (3.1) and (3.2) for
functions w satisfying
we C=(B,),
g (3.4)
a.,”w,lzl(x) =0 for xe B,.

Indeed, by the corollary of Lemma 2.21 any solution of (3.3) satisfies
also (3.4) provided r is replaced by er, 0 << e << 1. On the other hand,
once the inequalities

N
|79 e < €Dy [P
and
Nig
| Pw — (Vw)se |2 g — =C _%W | Pw — (Vw)sr ]g:sr

have been ascertained, (3.1) and (3.2) follow from a passage to the limit
as e — |-
Next, let /2 << p < r: then,

|Vw|g,<2“’ | Pw 2.,

and

Nig
| 7w — (Pw), 8, < 2942 2o | P — (), I,

so that we can restrict our considerations to the range 0 << g < r/2.
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Step 2: Proof of (3.1). For k= 2,3, ... Lemma 2.21 provides f*
bounds on solutions to (3.3) [in particular on solutions to (3.4)], which
for our present purposes it is convenient to write as follows:

| w ks, < Clk, 1) | w g s,,0- (3.5)

If we fix a value of & sufficiently large with respect to N, H*(B,,) is con-
tinuously imbedded into C°(#,,) (Theorem 1.41) and therefore

| w |m:r{| S C(r) l w IHI‘BJH’&,'

The right-hand side of the latter inequality can in turn be bounded by a
quantity C(r) |w |,.,,. We can rapidly see this as follows: Fix a cutoff
function g€ C,°(B,) with 0 <g <1 in B,, g = | on B,,,; then

0= J ao""w,'(gzw),, dx = J gagw,, w,, dx + 2J ao"fw,‘wgg‘,‘1 dx
B, B, B,
zaJ g | Vwledx — C(r)J g | Pwl||w|dx
B, B,

>5[ eivwpdr - coywi,
2 1y, :
by standard arguments, hence the claimed bound. (See alsc Lemma 2.11.)
Summing up, w satisfies
[W loosra < C(r) | w l;,-
But then w satisfies also
| Wiz < Co¥|wlk, < C(re¥iwlE,

whenever 0 << g < rf2. In order to evaluate the dependence on r of the
last constant above, we pass to new variables y = x/r and define w'(y)
= w(ry) for y € B. Thus (3.4) is equivalent to

w' € C=(B),
a4y, (y) =0  for y€ B.

From the previous considerations it follows that, whenever 0 << g/r << 1/2,

N
[4
I w' l:;efr = C(')T[v"‘ l w' I%:l:
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and also
QH
| w |§'.9 S C(I)Tj? | w |§:r

after the inverse change of variables y+— x = ry.
If w satisfles (3.4), so does any of its derivatives. In particular, the
estimate just obtained becomes

N
| Weglhe < CO) S I Wl fori=1,... N
(0 < ¢ < r/2), so that (3.1) holds.
Step 3: Proof of (3.2). This time we utilize (3.5) to obtain a bound
[ PW |ooirs < C(r) | W |gum,,,

via the continuous imbedding H*(B,,;) G C'(B,,;) for a sufficiently large
fixed value of k. Thus we also have

| UW looirse =< C(r} | W a0
Let 0 << p << r/2: from the Lipschitz inequality
| w(x) — w(0) |* < Cg® | Pw |%;0s2,
valid for x € B,, we deduce
| w— (W) 3.0 < | w — w(0) 1f;, < CoV*2 | W |ooips < ClrYe™ I w I3,

A passage to new variables y = x/r shows C(r) = C(1)/r¥+2, so that
9N+z
| W — (w)g lg;g S C(l)—'m | w |§;r-

Any function w,, — (w,),, i =1, ..., N, satisfies (3.4) whenever w does,
and therefore

| wx; - (Wz|)q ]:;e = | Wz. - (wz;)r - (wz¢ - (wz;)r)e Ig;g
91\'+z .
SCU)W'“”:;—(“’:‘)'EH fori=1,...,N

(0 < ¢ < r[2), so that (3.2) holds. 0
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3.1.2, Nenhomogeneous Equations with Variable Coefficients

LemMa 3.2. There exists a constant C independent of r, which depends
on the a'’s through the bound imposed on | a'(0) | as well as through q
such that for any p € [0, r]

o~ N .
| Pulde < C{[w + f’(f)] |Vulge +r 10 + 3 1S } 36
and

] Vu — (Vu)r %;r + ta(r) l Pu IE::

ry¥+2

QV+2
|Vu — (Pu), |, < c[—

N
U+ S — U o)

whenever u satisfies
ue HY(B,),

| @napdx=cE = vt ruar o ve BB
B, B, )
with fo, .., f¥€ L¥(B,).

ProoF. As in the proof of Lemma 2.15 we shall decompose u into a
sum w 4- z, where w satisfies a homogeneous equation. In order to apply
Theorem 3.1 to w, however, we need a preliminary passage from variable
coefficients to constant ones.

We shall proceed in three steps.

Step 1: A preliminary reduction. We shall prove (3.6) and (3.7) in the
special case when the a*/’s are constant on B,: a"(x) = g,"/. In the general
case of variable coefficients we need only take into account that » can be
viewed as a solution to the variational equation

J GV Uz v, dx = J (f% + fin,) dx
B, B,

= [, U+ U+ — o i

for v € H,'(B,),
2" = a'(0), and that

If‘l [2;r = ]fils:r + Ct(r) | Pu lages
lfi - (fi)r lz:r = If‘ - Ui)r |2;r + Ct(r)l Vu |2;r'
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Step 2: Proof of (3.6). By Theorem 2.1 and the corollary of Theorem
1.43 the Dirichlet problem

zZ€ HOI(BF)!

J a0z, 0,, dx = j (% -+ fiv,,) dx for ve H,'(B,)
B, B,
js uniquely solvable, and the solution z satisfies

N
P2, < 1 + 3 1S )

1=1

the above bound follows from the Poincaré inequality in H,'(B,), which
yields
|fou |l:!'S |f0]!;r | v |2;rS C |f°|z;r’| VU |!;r

when v e H,\(B,), so that
N
| Fllaay < C( 1S+ 3 11 e)-
The function w = u — z satisfies (3.3), so that (3.1) leads to
N
| Vi, <2IPwi, + Pzl < C55 | Pwis, +2| V218,
<c[9—N|Vu|% +(1 +gi)|l72|’ ]
— ry 2;7 I'N 2;r
o ' N
< (G 1Pl + P LR+ 3 1S 1)
1=l

for 0 << ¢ << r, which amounts to (3.6) when z(r) = 0.

Step 3: Proof of (3.7). The unique solution to the variational Dirichlet
problem
z€ Hol(Br)n

L a2,y dx = L oo+ ff — Do} dx  for ve HA(B)

satisfies

N
|72l < C( 1Sl + X 11— U ).
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Since [p v, dx=0 (=1, « -+ 1 N) whenever ve H,'(B,), u satisﬁt-:s

JB' ag¥u, vy, dx = .[B, {fo + [ — (/)] } dx for ve H,'(B,),
and therefore w = u — z solves (3.3). From (3.2) it follows that

|Pu — (Pu), 13, < | Vu — (Vw)e 2. < 20| Vw — (Pw), I3, + [Pz 13,)
= C_r:ﬁi- l Vw—~ (VW), |§;r + 2 I Vz Ig;r

Niz
< CLos 1w — (Fu), 13, + 21 V2 g,

N4z

g_c[f;,Tqu— Pu), 3., + (1 + NH)IVle:]

eS+l 2 a2 2 i iy |2
SC(Wlpu_(Vu)rlz;r'*‘r ]f°|s,r+21f _(.f)r|2:r)-

=]

This proves (3.7) in the constant coefficient case. 0

3.2. Interior L+ Regularity of Derivatives

In this section we set out sufficient conditions in order that the first
and possibly the second derivatives of variational solutions in a bounded
domain £2 belong to L*#(w) when restricted to w c< §2. The importance
of L¥-# regularity when N << g << N + 2 is self-evident, thanks to the iso-
morphism L2#(w) ~ C%%“—¥%(g) for w of class (A) (Theorem 1.17). The
L%¥ regularity will play a fundamental role in the proofs of the L¥ reg-
ularity results of Section 3.3. As for L?# regularity when 0 << g << N,
we utilize it as a tool to arrive at the range [N, ¥ + 2[ by a sort of boot-
strap argument.

3.2.1. Regularity of First Derivatives

We want to prove a result analogous to Theorem 2.16. Since the proof
is rather lengthy, we begin with the equation

ue H'(Q),

J ai"u,'v,, dx = (F,v) = J U™ + fiv,) dx for ve Hy'(Q2),
) 0

(3.8)

involving no lower-order coefficients.
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LemMA 3.3. Let u solve (3.8) with f0€ L2« () and [\, ... f¥€
[}#(82) for some p€ Y0, N 4 2[.

(i) Let u << N. Whenever w = 2, all first derivatives of ul,, belong
jo L¥#(w) with norm estimate

N
| Vu ]l,p;m S.. C(l fO ]l,(,u—!i*‘:o + Z[ If‘ ]1,,«.1;0 + l Vu |a;o) v

The constant C (independent of u, f°, ..., f¥) depends on the a’’s through
the bound imposed on their L*=(£2) norms, as well as through « and .

(ii) Let u = N. If a¥i € C°%(Q) for some 8 € )0, 1f, the same conclusion
as in (i) applies, except that now C depends on the a'¥’s through the bound
imposed on their C%%(82) norms, as well as through a.

(iii) Let w > N. If a¥ € C%4(Q) with 6 = (u — N)/2, the same con-
clusion applies as in (ii).

PROOF. Letting 0 < d < dist{w, 8Q2), d <1, we set dy = df2* and

denote by w, the dy-neighborhood of w, that is, wy = {x € R¥ | dist(x, w)
< d,}. We also set

N
",.(F) =|f° |g.w—z:+;o + Ex | f* |§.,u;o; x,(F,u) = »,(F)+ | Pu 18.0s
notice that whenever x°€ @ and 0 < r < d,,
N o
B = | Lol + 3 1/ Bs)  HO<u<N,
=1 .

N
x,(F) = f“‘(f’ | £ B + 21— (o |§:z‘.r) fN<u<N+2
=1

(see Theorem 1.17).

Step 1: Proof of (i). After an inessential translation of the origin,
Lemma 3.2 can be applied to any sphere B,(x%) with x°e€ @, 0 < r < d,.
If 0 << u < N, (3.6) yields

[Vu 30, < C{[f—: + Tz(’)] | Vu 3.0, + r"x,,(n}.

0<p<r. To any s€]l, co[ we can associate a positive number H(s)
< d, by the criterion 0 < r < H(s) = r*(r) < s~¥. The function ¢(p) =



154 ' Chapter 3

| Vu |30, therefore satisfies

e” ‘
#©) < €257 60 + exu 1|

whenever 0 < r << H(s) and 1 < rfp << 5. We can apply Lemma 1.18 with
K =2C, ®(s) = Cx,(F)s*: taking ¢ = N — p we obtain for x°€ @ and
0 <o <r<HKY),

|Vt Be < C[E- 1 Pulfn, + 4w

and also
7 | Vu [ om0, << C{{H(K)]# | Vuu 13,0 + »,(F)}.

We have thus obtained the desired bound on

—, 2
sup o*|Vu Iz;w[z“.ol'
2%, 0<ps I KV/e)

hence on | Pt [fr.u, .

Step 2: An intermediate inequality for 1o > N. If 4 > N we can utilize
Step 1 with w replaced by w, and g replaced by N — %, where n can be
arbitrarily fixed in ]0, N[. Letting the a*”’s belong to C*%(), set n — 6.
Thus all first derivatives of u belong to L2¥-%(w,) with norm estimate.
Let x°e @, 0 < r << d,. Lemma 3.2 can again be applied to B,{x"); this
time we utilize (3.7) and obtain

| Vu — (V")z".e Ig;z".q
[ 9N+=

< | 1Vt = P, B+ 12| Vo, + i ()|

r V42
S C %Té— I Vll - (Vu)z",r |§:z°,r + rN+6xN—6(F; ll) + r“x,u(F)]

r o N+3
< €[ L 174 — (P o, [Big0p + rO¥ 4900 (F; u)]. (3.9)

N

0<e=<r, since r <1 and xy_4(F) < Cx,(F).

Step 3: Proof of (ii). Let $(p) = | Viu — (V) , |3.06,- When u =N
(3.9) yields

d(e) < C[—?—::—: &(r) + Yxy(F, u).w"]
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provided 0 <p<r<d, and | <rjo <s. We can apply Lemma 1.18,
this time with K = €, &(s) = Cxy(F; u)s¥. Choosing any z€ |0, 2[ we
obtain

N+2-«

|Vt — P e < [ Gy [P — (P s F 0ol )

whenever 0 <o <r < d,, hence

0 | Pt — (V)i 1 Brasn,n < Cly 1| Pt o, + sex(Fs )]
< Cxy(F; u)

whenever 0 << o << d,, and the conclusion follows.

Step 4: Proof of (iii). If x°€ w, and 0 << r < d,, (3.9) is still valid,
so that for 4 = N + 24 the function ¢(g) = | Pu — (Vu),0, &, , satisfies

N4z
$(o) < C‘[%:T $O) + 0¥+, (F; s

whenever 0 <<p <r and | < rfg <s. We again apply Lemma 1.18, this
time with K = C, @(s) = Cx (F; u)s¥+%, and obtain for 0 <o <r<d,
(after letting ¢ = 2 — 24)

1P (P, [y < C[ “’w |Pu — (Pe)gn s Boao s + @V 0, (F u)]

From this inequality it is now easy to deduce that Pu|, € [L*V+(w,)]¥
with norm estimate

l Vu ]2 Ny = < Cx.ﬂ(F u)

To reach the sought-for conclusion in its full strength we utilize the iso-
morphism L%¥+¥(g,) ~ C*%2(@,) [it is not restrictive to assume o, and
therefore also w,, of class (A)...]. The above inequality therefore yields

| Vu %, < Cx(F;u).
Thus,
r2 | Vu 300, < Cr¥+® | Vulk, , < Crex (F; u)

whenever x°€ @ and 0 <<r < d,. By utilizing (3.7) we can reinforce
(3.9) as

| Pu — (Vu)z",g g 2% = (Vu)z‘-‘.r |§:z°.r + rf‘x#(F; u)
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for x°, r as above and U < g << r. At this point the same procedure leading

to L2¥+(w)) regularity with norm estimate can be repeated to provide

L2.#(w) reguiarity with norm estimate. 0
We can now move from (3.8) to the complete equation

ue HY(Q),
(3.10)
a(u, v) = (F,v) = J (% + fiv,,) dx for v € H (&),
n
where
alu, v) = J [(@ts, + diu)o,, + by, + cu)v] dx; G.11)
o]

the lower-order coefficients of the bilinear form (3.11) are assumed at
least essentially bounded on £2.

TueoReM 3.4. Let u solve (3.10) with foe L2Ww-2%(Q), £, ...  f¥
€ L¥4(2) for some € 10, N + 2[.

(1) Let po << N. Whenever w cc 82, u|, and all its first derivatives belong
to L*#(w) with norm estimate

N
gy + 1 Pt g i < C(1f° et 3 15 b + 1 |mm:)-

The constant C (independent of u, f°, ..., f¥) depends on the coefficients
of a(u, v) through the bound imposed on their L>(82) norms, as well as through
o and .

(i) Let u = N. If a¥i € C%%($2) for some & € 0, 1], the same conclusion
as in (i) applies, except that now C depends on the coefficients through the
bound imposed on | @V |8, and | d?, b5, € |oo.q, as well as through a.

(iii) Let u > N. If a¥, di € CO4(Q) with 8 = (u — N)2, the same con-
clusion as in (1) holds, except that now C depends on the coefficients through
the bound on | a¥, di |.eiG) and | B, ¢ | g, a5 well as a.

Proor. We set
N

",,.(F; u)=\|f° |§.¢,.—z)+;o + 21 | f* |E,,.;g + |u |?Ilcm

and write d), = df2* [0 < d < dist(w, 982)], w, = d,-neighborhood of w;
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we assume Jw smooth. Morcover, we rewrite (3.10) as
JD au, v, dx = Jo o + _f‘vz.) dx
= Jn [(f° — biu,, — cup + (f* — diu)y, ] dx.

This will enable us to utilize a bootstrap argument based on Lemma 3.3,

Step 1: Proof of (i). Let 4 <~ N. We know (see Theorem 1,38) that
whenever w e H' () with w, , ..., w,, € L¥*Q), 0 <1 <N, wl, be-
longs to L**+¥(w,), with the corresponding norm estimate. Thus, ul,,
belongs to L2%(w,), and therefore f‘|wl, ey f*"lw’ to L2 (w,), yy = p N2,
with

N

Y. 1/ B, S CoulF ).
Lemma 3.3(i) applies with 2 replaced by w,. If u, = u we are done; if
iy < p, we replace w by w,, u# by u,, and so on for a convenient finite
number of times.

Step 2: Proof of (ii) and (iii). Let N<u < N+ 2. We can utilize
(i) with © replaced by w,: for any p' < N, u, |, - - - » Uzyle, € L (),
and ul,, € L*#'+¥(w,), (d'u)|,, € L™(w,) in the case (i), (d'u)],, € C*¥&y)
in the case (iii), hence 9|, € L2w2"(e,) and 1, , ..., /7|, € L¥#(wy)
in either case, with

N
| fo I3, (u—2r+10y + 21 | fi I, usmy < C,(F; u).

Lemma 3.3(ii), (iii) then applies with $2 replaced by w,. Therefore u|,,
Uplus -+ - s Uzyl, Delong to L2#(w) with |u i} .. + | Vu|3,., bounded by
Cr  (F; u). 0

3.2.2. Regularity of Second Derivatives

THEOREM 3.5. Let u solve (3.10) with f° ¢ L>#(2) and f3, f,;' € La#(80)
Jor i,j=1,..., N, where 0 < pu <N+ 2.

(i) Let p < N. If a¥3, &/ € C®V(§D), then, whenever w < £, all deriv-
atives u,|, belong to L**(w) with norm estimate

N

N
Z | uzgz, |2.,u;w S C[I.”o iz.,.;a + z (l fi |E.,u;a + | Vf‘ |!.,u;0) + }u |Klm)] .

1,i=1 =1
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The constant C (independent of u, F) depends on the coefficients through the
bound imposed on | a¥, d? {oag) and | S, ¢ |w.0 as well as through a.

(ii) Letpu > N.Ifa', &i € CL(D), b, c € C*(§2) withd = (u — N)/2,
the same conclusion as in (i) is valid, except that now the constant C depends
on the coefficients through the bound imposed on | a¥, d’ | 8.5, and | b', ¢ | 0.0,
as well as through a.

Proor. The idea of the proof is to differentiate the equation for y
and obtain the equations for u., ..., u,,, as in Step 2 of the proof of
Lemma 2.21. Here are the details: For all values of x, by Theorem 3.4
Ulys Ugylays - - -5 Hzyle, € LP#(@,) with norm estimate, whereas by Lemma
2.21 u|,, € H*(w,) with

N .
lu |=H'(w,_! < C(|f0 |::a + Zl | f |§ilm) +|u |!211m:) = C’f,.'(F: u);

here w, is again the dy-neighborhood of w,
N

",;'(F; wy=|[° |§.p;a + Z_:l (|f" |§.y:ﬂ + | Vf‘ |§.,.;a) + |u ﬁi'(m-

When v e C,”(w,) we can rewrite the identity

au, v;) = <F, v,
as
J @t i e = [ (5 o+ o)

izs

= J Z (j:l - d::lu - a:’:uz})uzl

wg Lixs

+ 7, —d;u— a,j:uz} + b'ug, + cu —fo)u,'] dx,

s=1, ..., N (no summation over 5). Both when 2 <. N and when u > N
the assumptions about the coefficients of a(u, v) yield f‘]m’ € L%#(w,) with

| fi ey < Cx,J(Fsu),  i=1,...,N.

We can therefore apply Theorem 3.4 again, this time with w, instead of
£ and u,,|,, instead of u. Consequently u,, |, € L2#(w) fori=1, ..., N,

la
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and
I Vu.!:, |2.,u;w S C?‘,:(F, H).

When x = N we utilize the previous result with « replaced by w,, u

by any p' < N: thus, ul,, ty o, - - tzyle, € L2# 43 (w,) and (diu +
afiu )., € L=(w,) for i =1, ..., N. The conclusion follows by the same
argument as above. 0

Theorem 3.5(ii) shows that if the coefficients of the bilinear form
(3.11) arc regular enough and /9, f;, ff€ C*(2) for some d€ 0, L[,
then all second derivatives of any solution « to (3.10) belong to C%*(£2).
It is natural to wonder whether an analogous result holds if €*% is replaced
by C° The following example shows that such is not the case (unless, of
course, N = 1).

ExampLE. Let N =2, @ = B,,,, a(u,v) = [p , u,p, dx. The function
u(x) = (x* — x?)(—In [ x )2 for xe B,,\{0},

u(0) = 0 [notice that u(x,, x;) = —u(x,, x;)] belongs to C!(B,,,), and
ulg 5, to C=(B,,\\B,) for any ¢ € |0, 1/2[. Since

— 2 {— 12 XX = x5") _ 2x,!
Uz z,(X) = 2(—In|x )2 4 Tx P(—In [x )2 [x*(—In[x )12
X2 — xt L xA(x — %)
TIxP(—in [x7  4x (=T [x )"

and therefore

1

2 __ 2
—Au(x)y = fox) = 2L — % 2(Tn [x )"

4
2)x|? [ (—In[x )2

+

for x € B, ;3 {0}, an application of the divergence theorem over B,,\ B,
(0 < ¢ < 1/2) followed by a passage to the limit as ¢ — 0% shows that

J. u v, dx = J Svdx for ve H,'(B,.).
Bin Bype

The function f° (set 0 at the origin) is in C°(B, ), although f® ¢ C°4(B, ;)
whenever 0 << 8 << |. Without any need of further direct inspection, the
membership in L*¥(B,,,) of all second derivatives of v follows from
Theorem 3.5(i). However, u,, is not even bounded near the origin.
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3.3. Interior L” Regularity of Derivatives

We now proceed to exhibit interior L? regularity for first (and second)
derivatives of solutions to (3.10). This we do by a technique of interpola-
tion between L? and L*¥ which requires a bit of the theory of weak
Lebesgue spaces.

A measurable real function 4 on a bounded domain @ = R¥ is said
to belong to LP(w)-weak, | < p < oo, if a constant C can be associated
to it in such a way that

measy{x € w | | A(x) | > 5} < (Cfs)»  for 0 < 5 < oo;

the infimum of all such constants C is denoted by ]#[,.,. A moment’s
thought shows that L?(w)-weak is a linear space, and that

Lo(w) < LP(w)-weak  with JA[pe < | A b

The mapping & — ]&[,., does not, however, define a norm on L {w)-weak,
since the triangle inequality need not be satisfied: for instance, if ¥ =1,
w =10, 1[ and p = 1, we have ]A;[;., = 1/4 both for A;(x) = x and h,(x)
= | — x, whereas ]k, + A;[,., = 1. Besides, L?(w) is a proper subset of
L?{w)-weak, as the simple example #(x) = 1/x shows for N, w, and p as
above. On the other hand, it is easy to ascertain that LP**(w)-weak — L?(w)
whenever € > 0 (see Problem 3.1).

For the sake of notational homogeneity we also write L>={w)-weak =
Lo(w), 1 foose = | * Jooieo-

Let »' = RY be another bounded domain and % : LP(w) — LP{w')-
weak be a subadditive mapping, that is,

18 (A + )l <18 (N + 18 (R

for 11, f; € L?(w). We say that & is of the weak fype p (from w into w')
when a constant C can be associated to it so that

1Ny <C|flpw  for f€ LP(w).

Of course, if in particular & : LP(w) — LP(w’) with | B(f) |50 < Clf |pi
—in which case & is said to be of the strong type p—, then & is also of
the weak type p.

The proof of the next lemma makes crucial use of the notions just
introduced. It also utilizes two fundamental results—one due to J. Marcin-
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kiewicz, the other to F. John and L. Nirenberg—which are given in the
Appendix to the present chapter.

LEMMA 3.6. Let Q be a bounded open cube of RY. Denote by T: L3(£2)
— L¥Q) a linear mapping such that T: L=(2) — L*~(Q), with

| Tf |2 = K | f |30 for f€ L*{),
| TS leviq £ Ko | [ oo for f€ L=(2).

Then for 2 << p << co T maps L?(82} into L?(Q), and there exists a constant
C, depending on T only through K, and K, such that

| TflP;Q =C |f|p;0 Jor f€ L7($2).
ProOOF. Let us first remark that a constant C exists such that

L,j {h— (h)g | dx < C|h ’z,N;Q for h e L2N(Q) (3.12)
[Q"| Jq

whenever Q' is an open subcube of Q. In fact, @' © B, 5,(x°) if x° is the
center of Q' and 2p the length of its edges. Thus,

< 2“"'9*5'[ | h— (h)Q(z‘.w’?e) I' dx
Qo VNl

< ClhlEng-

Let now 4: ¢ = | J; @, denote a countable decomposition of (J, the
Q,’s being mutually disjoint open cubes with edges parallel to those of Q.
The subadditive mapping %,: L) — L*(Q) defined by

1
@(f)z);xo.mj |Tf ~ (If)q, | dx  with XQ.E{I on Qs

Qr 0 elsewhere,

is also a mapping from L=({2) into L=(Q), and

1) 3,0 < Ka| [ haia for fe L),
| B4(f) o < CKeo[ f losa for f€ L=(2)

whatever the decomposition 4 [see (3.12)]. &, is therefore of both strong
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types 2 and oo, so that Theorem 3.30 of the Appendix applies: %, maps
L'($2) into L7(2) for any r€ ]2, oo, with norm estimate
| B4 g < CNKAKL | fly0 for f€ L7(2)

independent of A. Now let

a7 = sup 10417 ([ 14— (g, )

A k Qe

and fix f€ Lr(42). Since

EFOTPEMII I“'(L |77 — @y | ),
we have

MTf) < C(NKF" K™ | f s

so that Lemma 3.31 of the Appendix applies. Thus the function Tf — (If),
is in L7(Q)-weak, and

17f — (Tf Yolrq < CIIKP RS | flyia-

This means that the linear mapping @: f — Tf — (Tf)q, besides being
bounded from L3(£2)} into L2(Q), is also of the weak type r. We can again
apply Theorem 3.30 and conclude from the above that for any p € [2, oo
& is bounded from L?(§2) into L?(Q) with norm estimate

[Df oo = | Tf — (Tf g i = C(p, Ky, K) [ flpiq for f€ LP(Q).
This completes the proof, since

1 Tf o 1T — (Tf lglpie + 1 (Tf g lpiq

SI|Tf — (Tf)glpo + 1 Q VP72 I |aiq,
and
| TS loig < Ki | flae S | Q1317 flp0. 0

At this point the desired regularity results can be demonstrated.

THEOREM 3.7. Let u solve (3.10) with f°, ..., f¥ € LP(2), 2 < p < o0,
and let a'i, di € Co%(2) for some & € 10, |[. Whenever w cc 9, u|, belongs
to H“?(w) with norm estimate

»
| | e = C(E | f7 |p0 + 12 |Hum)-
J=0
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The constant C (independent of w and F) depends on the coefficients through
the bound imposed on | @', di |05, and | b, ¢ |, as well as through c.

Proor. We first assume that the bilinear form (3.11) is coercive on
H'(£2) and solve

zO € Hol(-Q),

a(z° v) = '[ fovdx  for vE H(£2),
a

as well as
zi e H\(52),
a(zi, v) = J. Sfivy, dx  for vE H\(R2),
a
i=1, ..., N (no summation over i inside the intcgral sign). Notice that

by coerciveness,
| 27 |uay < C | ff |2 for j=0,1,...,N.

If Q =< £ is a cube, we denote by T,,7: L2(£2} — L¥Q) the bounded
linear mapping fir>zi |o, # =1, ..., N. By Theorem 3.4(ii} T, is also
continuous from L>2(f2) < L2¥(f2) into L~¥(Q) and finally from LP(£2)
into LP(Q) as a consequence of Lemma 3.6. Let z = Zfr_o z4, The function
w=u — z € HY2) satisfies a(w, v) = 0 for v € Hy'({2), so that Theorem
3.4(ii1) yields wig, wzlg, ..., walg € C*%Q), hence wlg € H?(Q) with
the corresponding norm estimate. This proves the theorem in the coercive
case, since w can be covered by a finite number of cubes such as Q.

In the noncoercive case we rewrite (3.10} as

a(u, v) + ).J. uv dx = (F 4 Au, vd for ve H(£2),
o

where A is so large that the bilinear form on the left-hand side is coercive
on H,'(£2). With the usual notations d, = d/2* [0 < d < dist(w, 012))]
and @, = d)-neighborhood of @, we proceed by the following bootstrap
argument. (For brevity’s sake we take the case N > 3.) Ultilizing the
continuous imbedding H,'(f2) < L¥(£2) and the result just proven in the
coercive case, this time with w replaced by w, and p by p, = p A 2%, we
obtain u|, € H'?(w,) with norm estimate. If p, = p we are done; if not,
we utilize the same procedure as above and obtain ul,, € H"P(w;), py =
p A p,*, etc., thus arriving at the conclusion in a finite number of steps. []
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The requirement that @'/, d’ be Holder continuous on G, although
essential in the previous proof, is stronger than necessary for the validity
of the above result (see C. B. Morrey, Jr. [118]). The next example, how-
ever, shows that discontinuities in the @*'s cannot be allowed if we want
the range of validity to be the entire half-line 2 < p < oo,

ExaMpLE. Let N =2, 2 = B,andseta;(x) =1 — (I — A)x,? | x |2
@15(x) = ag(x) = (1 — x| x [, @pe(x) = 1 — (1 — A¥)x,* | x |~ for
x#0, where 0 < 4 < 1. Thus, the a*s belong to L*(B) but do not
admit continuous extensions to 5.

Let #(x) = x.|x[*}, so that u, (x) = |x '+ (A — D)x? | x 3,
u, (x) = (A — x;x, | x |3 Then u|g. p, belongs to C<(B\B,) when-
ever 0 < £ < |; moreover, u€ H.?(B) for p < 2f(1 — A), but |Ful¢
L¥9-2(B) However, since in B\ {0} u satisfies

(@), = [A} x P71 4 (B — A)xg? | x =L, + [(A — ADxyx; | x %), = 0,

an application of the Green formula over B\E: (0 < £ < 1) followed by
a passage to the limit as £ — 0% shows that

j G, dx =0 for ve Hy(B).
B
The passage to second derivatives is almost immediate:

THeoReM 3.8. Let u satisfy (3.10) with f°€ LP(Q), f*, .. ., f¥ € H.?({D),
2<p < oo, and let af, &/ € C*V(Q). Whenever w c< Q, u|, € H*?(w)
with norm estimate

N
|4 [mydiy = C(|f° lpia + Zl | f* oy + | u IHl(m)'

The constant C (independent of u and F) depends on the coefficients through
the bound imposed on | a@¥, &7 |wag, and | &, € |w,q as well as through a.

ProoF. The case p = 2 is Lemma 2.21 for k = 0. If p > 2 we need
only repeat the proof of Theorem 3.5(i), replacing L*# (0 << u << N) with
L? and utilizing Theorem 3.7 instead of Theorem 3.4. a

Notice that the example following Theorem 3.5 can also be utilized
to show that the range of p in the above result cannot be extended to
cover p = 0o,
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3.4. Estimates on Hemispheres

Throughout this section and the first two subsections of the next one
we take some hemisphere of R¥ and investigate the regularity of functions
that satisfy a variational equation in its interior together with a Dirichlet
or a Neumann condition on the flat portion of its boundary. In such a
setting we shall provide the counterparts of the interior regularity results
proven in the previous three sections.

We shall utilize the notations

Hy'+(B*) = H)\(Bjt U St),  HU(Bt) = Ho'(By U S,°).

Let 2 = B,*.

3.4.1. Homogeneous Equations with Constant Coefficients
Take a'i(x) = a,".

LeMMA 3.9. There exists a constant C, depending on the ay’s through
the bound imposed on their absolute values as well as through a, such that
Jor any r and any p € ]0,r],

N
|70 s < C 5 | VWl (3.13)
and
N42
V0 — W) [fios < Coeg | VW — T s (114)

whenever w satisfies either
w € Hy W+ (B,*),

I ao"fw,‘v,, dx=0  for ve H,\(B"),
B'*'

or
w e H'(B,*),

J.B . aylwyp,, dx =0 for ve Hy"(B,*).
r

PROOF. As in Step 1 of the proof of Lemma 3.1 it can be checked
(this time through the corollary of Lemma 2.23) that it suffices to prove
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the lemma in the case of functions w satisfying either

WwE C”(F), w=20 on §,°,

315
{(x)=0 for xe B+ ©-13)

I;T}
or
we C""(B +), a'¥w,, =0  on S,

(3.16)
W, (x) =0 for xe B,*.

In addition, it suffices to prove (3.13) and (3.14) for 0 << p <r/2.
After these preliminary observations we proceed in four steps.

Step 1: Proof of (3.13) in the case (3.15). We write the H* bounds
provided by Lemma 2.23 as follows:

| w |Htw,,,: < Clk,r) | w |y, (3.17)

rnt
Next we choose k so large that H¥B},) < C‘(B_:;z) and therefore
| Vw looirsz, + =< C(r)|w |H1(B;'m)-

With obvicus changes (such as integration over B,* instead of B, ...) we
can proceed as in Step 2 of the proof of Lemma 3.1 to show that the right-
hand side of the above inequality is bounded by C{r) | w |5, +. Thus, if
0 << p < rf2, we have

[Vw|2,,+<CQN|Vw|“,,.,,+<C(r)gNiw]2,+,

for the sake of future reference (see Step 4 below) we emphasize that the
inequality
| Zw e < COXY | W Biarses (3.18)

can be proven analogously. Finally, we estimate | w |3, by Cr* | Pw |3, .
{thanks to the corollary of Theorem 1.45) and arrive at

| VW 30+ < CO)™ | PW I, .
To evaluate the dependence on r of C{r) we pass to new variables y =
x/r and show that C{r) = C(1)/r¥.

Step 2. Proof of (3.13) in the case (3.16). For s=1,...,N— 1 the
derivative w, of a solution to (3.16) is a solution as well, so that (3.17)
becomes

| s, IHtcB,,,) < Clk,r) | w,, ]H!:B*',.)-
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For what concerns w,, we first notice that any of its derivatives of order
h, except O%w, [Bxy", is a derivative of the same order of some w, . Next

we utilize (3.16) to express w, . by means of

Wz (X) = —{(a¥ %) Y aoijwz‘z,(x)s X€ B*;
LD #N,N)

this shows that any pure derivative @w,,/0xy* A =1,2, ..., is a linear

combination of derivatives of order & of w,, ..., w,, . Summing up,

N N
Y | walmrmty < Cle, 1) Y 1w, lmcag, 00
1=l =1

hence

N
| PW leiora + < C(r) Zl | Wa lm st o (3.19)

if k is chosen so large that H¥(B},) < CO(B},).

In order to find a convenient estimate of Y'Y, | we, lmcsg,) we take
a cutoff function g€ C=(B,) with 0 < g<<1lin B,,suppg< B;s, g =1
on B, and obtain

0= J agiin, [gw — D], d
B+

= .[B R g*ao"fwz‘wz’ dx + 2-[ R aoijwzi(w _ }.)ggzi dx

r

> %J +82|Vw]1 dx — C(r)lw — 2-|%;7r.fa.+-

r

hence

| Pw |2:arra,+ = C(r) | w— & |20, < C(r) |w— 2 |2:r,l

for any 2 € R; in particular,
N
E | wa, lagrsa+ = C(r) |w — (W), |2;r,+ -
t=1

Notice that the inequality
N
Z | L l2szrsm,+ < C(r) | w — (W), 2+
i1

can be proven analogously. By the same token, fors =1, ..., N — 1 we
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have
| Vwe, [a0a,4 < Cr) | Wz, — Ao l2seis 4
hence
"
i; | Pw,, l2aria+ = C(r) ‘Z:l | wz, — Ails2em,4 (3.20)

for 4,, ..., 1y € R, after expressing w,,,, as a linear combination of first

derivatives of w,, ..., w,, ; in particular,

Z | Wy, lasara+ < C(r) Z | W lagrern,+ < €Y [ W — (W), [ar, 4

=1

Summing up,

Z | Wey Lo << COY W — (W) la;r - (3.21)

=1

The two inequalities (3.19) and (3.21), combined with the Poincaré
inequality in H'(B,*), yield

| Pw s, + < Co¥ | Pw % e s < C(r)o¥ | w — (W), 3,0+
L (e | Vw 3,4
for 0 << p << r/2. The conclusion follows from the change of coordinates
¥y = x/r, which shows that C(r) = C(1)/r¥.
Step 3: Proof of (3.14) in the case (3.15). If w(x) satisfies (3.15) so
does w'(x) = w(x) — Axy, 4 € R. Therefore

N
Z | Pw, 'm wne = C(r)|w |Ht18,.,.l <G | w! ]H'tB.,,.o <C(r) | w basr,+

=1

(see Step 1) once k has been fixed so large that H*(B};,) & C*(B},). Using
the Lipschitz inequality

| Pw(x) — Pw(0) |* = | Pw'(x) — Pw'(0) |*

e

N
S ng Z | sz: |§n:r12.+: xe B +
i1=1

we obtain
| Pw — (Pw), 3,0+ < | Pw — VW(U) |:0.+

< Cp"+* ‘Z | Pwgy (200 < CrO¥ 2 [ W 3 0
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for 0 << o < rf2. Since (see the remark after the corollary of Theorem
1.45) Poincaré’s inequality in H':t(Bp*) yields

] wr IE:1.+ S r I w.tN - j' ‘%;r,+s

the conclusion follows by taking 4 = (w,,,), and computing the dependence
on r of the final constant factor of | w,, — (w.,), |2;r;+ through the usual
change of coordinates y == x/r.

Step 4: Proof of (3.14) in the case (3.16). Any derivative Wy, s =1,
..., N—1, of a solution to (3.16) is a solution as well. Therefore [see
(3.19), (3.21)]

| Pwz, losirras < C(r) | Wy, ~ (Wr); |z;r.4»

and
N-1 N-1
X W — e lis < T I we, = we,(0) g,
== =l

N-1
S CQ‘I‘+z Z ] sz, lc?o:r.lz.+

=1

N1
S C(’)QN+2 Z | wz. - (w.z,)r l%;r,+ (3'22)

a=1

-

for 0 < ¢ < r/2. Let W = a,*¥w,,. Since W satisfies (3.15), from Step |
[see (3.18)] we deduce

| W — (ﬂ’)g |§:9.+ S CQE | V‘;’ |g;9,+ S C(’)Q‘v+x| W |§;3rll,+

< C(r)e*+*| V‘;’ [:8rs4,+

where use has also been made of the Poincaré inequality both in HY(B,*)
and in H,“+(Bj,,). From identity w — (W), = a'¥[w,, — (w,,),] we can
deduce (after dividing by a,¥~¥ > 0)

N
I Way — (Wgp)e lhiers < C( S s, — 05) s+ 19 — (9, |)

=1
N
= C(’)E’N-n( Zl l Wz — (wz,)r |§;r.+ + l Ve |§:3rl4,+) .

(3.23)
Finally, from (3.20) we obtain

N
|V |s;aru.+ =C Z | V“’z. |2:arrs.+ = ()| Pw — (FW)grse |2;7rl8.+
i=1

< C() 1 Fw — (Fw), laip s s
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so that the conclusion follows from (3.22) and (3. 23) after the usual evaly-
ation of the constant C{r). ) 0

3.4.2. Nonhomogeneous Equations with Variable Coefficients

LemMa 3.10. There exists a constant C independent of r, which depends
on the a'’s through the bound imposed on | a%(0) | as well as through a,
such that for any g € 10, r],

|V < [ G + 20 1Pultys + 721/l + }N: 1t}

(3.24)
and

gV

2
“7" - (Vu)e et — = C[ Nig | u— (V")r I::r.+ + Tz("') ] Vu IE:’.*

N

PP Bt X1 = U] G29)
tm]

whenever u satisfies either

u € Hy"*(B,Y), (3.26)

J auzp, dx = (F,v) = J (f% + fio,)dx  for v€ H,'(B,Y)
B+ Byt
or
H\(BH),
u € H'(B,%) 3.27)
L# ahyy vy dx = (F,0) = L (S0t flog)dx for ve HiB,Y)

with o, f1, ..., f¥ € L¥(B,*).

ProOF, Asin Step 1 of the proof of Lemma 3.2, it can be easily checked
that it suffices to prove (3.24) and (3.25) under the additional hypothesis

that a¥(x) = a," for x € B,*, which we shall assume valid throughout.

Step 1: Proof of (3.24) in both cases (3.26) and (3.27). The Dirichlet
problem
zZe Hol(Er+):

L . ayzz0, dx = (F, v) for v € H(B,")
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is uniguely solvable, and
N
Pz, < C(r= 12 B+ 3 1S |)

Here use has been made of the Poincaré inequality in H,!(B,*), exactly as
in Step 2 of the proof of Lemma 3.2. Analogously, the mixed b.v.p.

z € Hy(B,*),

J- aoisziuZ, dx = <F| U> forve H01:0(3r+)
B

is uniquely solvable, and
N
V2B, < C(r= 1B+ 511 |)
1=]

In this case the Poincaré inequality in H,''°(B,*) has to be utilized both
to ensure the coerciveness of [ + 2z, v, dx on Hy°(B,*) and to provide
the bound on | Fl[Hnl:O(Br+”l.

At this point we introduce the function w = u — z, to which Lemma
3.9 applies. Thanks to (3.13), we can arrive at (3.24) by proceeding as in
Step 2 of the proof of Lemma 3.2.

Step 2: Proof of (3.25) in the case (3.26). Since [g+v;,dx =0 (i =
1, ..., N) whenever v € Hy'(B,*), u verifies

J an¥i 0y, dx = L U U= (e} ds for ve HABY.

T

Therefore, if z is the unique solution to the Dirichlet problem

Jus

T

z € Ho'(B7),
802,,0,, dx = J {foo + [ff — (F) I, }dx  for ve HM(BY),
Bt
Lemma 3.9 applies to w = # — z. Hence (3.14) is valid, and the conclusion
follows as in Step 3 of the proof of Lemma 3.2.

Step 3: Proof of (3.25) in the case (3.27). Let u'(x) = u(x) — (f¥), x
xyfag®¥. Since [p+v, dx=0fors=1, ..., N— 1 whereas [5.v;, dx
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= —J-S'o IJIS'n dx' ifve Hul-'o(B,"'), u’ satisfies

Nj
" ay
agVug vy, dx — ,L . 2F UN),-Dz, dx
r

j ay' g, ,dx =
B+

B+

= <F, v) + J.su UN)'IJLS’U dx’

=] o+ U= U In)dx  for ve HIYBY).

B+

Moreover, Vu — (Pu), = Vu' — (Vu’),, which shows that for the purpose
of proving (3.25) it is irrelevant to replace u by «’ [since 7(r) = 0].
Now let z solve
z € Hy''%(B,%),

[ ampeds=| (ot tr— g ds for v HAAEY
Br+ Br+

Then the inequality

N 1.
P2 s < C(# 1 Bs + 3, 11— )

=1

is satisfied, and w = " — z satisfies (3.14) by Lemma 3.9. The conclusion
follows by standard arguments, 0

3.5. Boundary and Global Regularity of Derivatives

3.5.1. L*# Regularity near the Boundary
Let £2 = B+. Beginning with the b.v.p.’s

u € H W+ (BY), (3.28)

J. atu,p, dx = (F, v) EI (% + flo) dx for v € H,'(B*)
B+ B+
and
u € H'(B*),
(3.29)
| auwpdx= =] Go+rnydc for ve HosY)
B+ B+

we have the following lemma.
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LemMMA 3.11. Let u solve (3.28) or (3.29) with f°€ LYw-V*(B+) [,
.., J¥ € L2=(B*) for some p€ 10, N + 2.

(i) Let p << N. Whenever 0 < R <1, all first derivatives of u|py+ be-
long to L*#(Bg*) with norm estimate

N
| Py pomge < C(m AW 1)

The constant C (independent of u, f°, ..., f¥) depends on the a*?’s through
the bound imposed on their L(B+) norms, as well as through a and t.

(ii) Let p = N. If a7 € C*%(B*) for some & € )0, 1[, the conclusion of
(i) remains valid, except that now C depends on the a'’’s through the bound
imposed on their C%°(B*) norms, as well as through a.

(iii) Let u > N. If a¥ € CO%(B*) with 8 = (g — N)/2, the conclusion
of (ii) remains valid.

PrOOF. We do not need to distinguish between the two cases (3.28)
and (3.29). After setting R, = (1 — R)/2* and

N
#F) = | /° Bu-vr.p+ + Z_:l L mes  #(Fu) = 2,(F) + | Pulg,,

we shall proceed in three steps.

Step 1: A preliminary reduction for any p. As in the proof of Theorem
1.39 we shall now show that the crucial estimates over intersections Byt
M B,(x) can be reduced to estimates over hemispheres B,*(x°). If x € FR:
with xy > R, and if 0 < o << R;, then Bp*[x, o] = Bg* N B,(x) S B,(x)
c w={y€ Bg,n| yy > Ry}. Since w cc B+, Lemma 3.3 applies: for i
=1,..., N ul, € L*(w) and

o | Vu — (Pu)pgriz,00 [5:85412,00 < 07 FWPu — (Vu), o 1520

< | Pulte < x,(F, u).
This means that there remains to bound o* | Vu — (Vu)gpeiz,01 [2: 8541200
only when x € Bp* with xy < R,, 0 < ¢ < R,. But then, Bp*[x,0]
B,*(x°) c B*, where x° is the projection of x over Sg° and p = 4g;
therefore,

o # | Vu — (Pi)giz.o) [B.8+12.00 < ¥07* |Vt — (Vit)so g [Fi0 0,4 -
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Summing up, we need to prove that
gﬂu | Vu— (Vu)z",g ig;z".e,+ S CXF(F; M) (330)

for x°e Sg® and 0 < g < R,.

Step 2: Proof of (3.30) for u << N. Let 0 <<r < R,. Since the trans-
lation of the origin in x° is irrelevant for what concerns the estimate (3.24),
the latter holds for our function u in the sense that

N N
| Pultm e < C{[ By + 70 Pt 11 ot 31 )

<]

for 0 << p <r. We can at this point proceed exactly as in Step | of the
proof of Lemma 3.3, and prove the existence of Fe ]0, R,[ such that
o# | Pu 30054 < x,(F; u) whenever x°€ Sz° and 0 < g <<F. This is suf-
ficient for the proof of (3.30) when 0 << u << N.

)
O+ 20| 1 Pu g0 + (P

Step 3: Proof of (3.30) for = N. As a consequence of (i) with R
replaced by R + Ry, for i=1, ..., N u|ps, , € L*¥%(Bf,p) with the
corresponding norm estimate, From (3.25) we deduce that

| Pu — (V“)z".a Ig:z".a.+

-

r N2

< | Eig | Vit = P s + 7| Pt i+ (P
r g.-\'-u

< €[ | Pt = P B+ V¥ o5 1) + 12, (F)]

r AN+2
S C %] Pu— (Vu)z”,r Ig:z",r,+ + riN+9 AF",u(F; u)]

for xX°c Sp' and 0 << p <r < R,.

If 4 = N we can proceed as in Step 3 of the proof of Lemma 3.3 to
show (3.30).

If u=N+25, 6€ 0, I[, the regularity u,|ps, . € LEV+¥(BY ) is
first ascertained by a procedure analogous to that of the case u = N.
Then, the isomorphism L*¥+3(BE, 5 ) ~ C%¥%(B}, ) is utilized to obtain

N4z
I Vi — (Vu)z".g |g;z°,9,+ = C[_fﬁ | Vu— (Vu)z“,f |:;z°.r.+ + f“x‘“(F; H)]
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for x°€ Sp? and 0 < g << r < R;. From this inequality (3.30) can be
deduced again (see Step 4 of the proof of Lemma 3.3). H

Lemma 3.11 can be extended to b.v.p.’s involving the complete form
(3.11) (where £ = Bt), namely,

u € H4(BY),

a(u,v) = (F,v) = jm (f% + fiv,) dx for v e H,\(B*)

(.31

and

ue H(BY), (3.32)

a(u,v) = (F,v) = Jm (f% + fiv,) dx for v € H,Y°(B*).

THEOREM 3.12. Let u solve either (3.31) or (3.32) with 0 € L2 =-2%(B+),
..., f¥ e L2#(B*) for some ue 0, N + 2[.

(i) Let p << N. Whenever 0 << R <C 1, u|p,+ and all its first derivatives
belong to L:#(Bgpt) with

.\'
[ e pegs + | Pt fopne < C(If" lepnreipe + 3 i lappe + 1 mw,) .
i=1

C (independent of u, F) depends on the coefficients of the bilinear form through
the bound imposed on their L=(B*) norms as well as through a and t.

(i) Let g — N. If a¥y € CO*(B*) for some é € 10, 1{, the same conclusion
as in (i) is valid, except that now C depends on the coefficients through the
bound imposed on | 6V |;v.o%, and | &, b, ¢ |-y a5 well as through a.

(iii) Let u > N. If @, &} € COH(B*) with § — (u — N)/2, the conclu-
sion of (i) remains valid with the obvious changes for what concerns C.

(Compare with Lemma 2.18.)

The proof of this theorem is perfectly analogous to that of Theorem
3.4. The only real difference is that now the membership in L2*+?(Byt)
of wlg+ if we H'(B}.) with Wris ooy Wry € L2A(Bg), 0 < 4 < N and
R < R’ (see Theorem 1.39) must be utilized. We leave the details to the
reader.

Passing to second derivatives we have the following theorem.

THEOREM 3.13. Ler u solve either (3.31) or (3.32) with f° € L3#(B*)
and f*, fi € L»#(B*) for i,j=1,..., N.
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(i) Let 0 << u < N. If a¥i, d/ € C>Y(B*), then whenever 0 <2 R < 1,
all derivatives u,;|p.+ belong-to L*#(Bgp*) with .

N
2 | “:.;zj |z.,u-.8n+
1.7=1

N

< S0l + T S b+ 1 L) + L liman |

The constant C is independent of u and F but depends on the coefficients
through the bound imposed on | @, d | g7y and | BY, ¢ |,y as well as
through a.

(ii) Let u> N. If @, di € C'3(B*) and b, c€ CO%B*) with § =
(s — N)/2, the same conclusion as in (i) is valid, except that now C de-
pends on the coefficients through the bound imposed on | a'?, d’ {057, and
[ B, ¢ |co.55%, as well as through ea.

Proor. We pro_ceed simultaneously for all values of u. Let R, =
(1 — R)/2*. By Lemma 2.23 ulpy,, € H*(Bh,p,) With

N
| lipcntony < C(17° Ber + 3 1/ i + ulhian)
N
< (12 Basme + % Buns + 177 ) + 1 oo

whereas u|pt ., Uz |82, gy -+ Baylug, g € L#(B},z ) by the previous the-
orem. Lets =1, ..., N — | the function iz, B, 5, bElONgS to HY(B%,z,),
and even to Hy''*(Bx.p,) in the case (3.31), and satisfies

i, .+ dug Yo, d =J ( ip, ",)d
J.Bﬁ-m,(aum “,)", * B;ﬂl. va‘_*-fv‘ *

[T

; . )
[ Y, (fe, — dou — af:uxj)vz‘
BE+B, it

+ (fz, — du — ai:umJ + b'u,,

+oou— f")v,‘] dx, (3.33)

in the case (3.31) whenever v € C,°(B%,p), in the case (3.32) whenever
v € C(Bhygr, Y S.n,). Notice that [pr (hv,)., dx = 0ifhe H'(Bhin,)
and v € C(Ba,s, U S&.n,). The conclusion about each derivative u,,,

foltows as in the proof of Theorem 3.5. For what concerns u,,,, ., the con-
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clusion follows from the equation rewritten as

Uz oy = (GNN)_l[_ i E (a{j"zs)z; - "i&v“zu - (dju)zl + b"uz‘
i, JI#(N N)

toou— O+ f,“] in B*. (3.34)

0

3.5.2. L? Regularity near the Boundary

We conclude the study of the regularity of solutions to either (3.31)
or (3.32) with two theorems which correspond, respectively, to Theorem
3.7 and Theorem 3.8. Again we take {2 = B+,

THEOREM 3.14. Let u solve either (3.31} or (3.32) with f°, ..., f¥ ¢
L#(B*), 2 < p < oo, and let a¥, di e C°v"(B_+) Jfor some d € )0, 1{. Whenever
0 < R <1, u|p,+ belongs to H-P(Bp*) with norm estimate

Julinsiags < € E 15 v + 14 ).
f=0

The constant C is independent of u and F but depends on the coefficients of
the bilinear form through the bound imposed on | a¥, d’ |03, and | b%, € |, 4.
as well as through a.

Proor. Let u solve (3.31). We proceed as in the proof of Theorem
3.7. Namely, we first assume the bilinear form coercive on H'(Bt) and
solve :

z°€ H,\(B),

a(z% v) = J v dx for v € H(B*),
Bt

z' e Hy'(BY),
a(z’, v} = .[m Sfiv, dx  for ve H,'(BY),

i=1, ..., N. Let Q be a cube with edges parallel to the coordinate axes,
0 < Bl,s, (R, = (1 — R)[2). Each mapping Ty/: i — 2, G =0, 1, ...,
Nand h =1, ..., N) goes from L% B*+} into L* Q) by the very definition
of the z#s, from L*(B+} s L%¥(B+} into L2¥{Q) by Theorem 3.12(ii}
(with R replaced by R + R,). Thus T,/: LP(B+} — L?(Q} by Lemma 3.6.
Let z =Y, 2%: the function w = u — z € H,i+(B*) satisfies a(w, v} = 0
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for v € Hi(BY), so that Theorem 3.12(iii) yields wig € C4(Q) 5 H-?(Q)
with the corresponding norm estimate. In the coercive case the conclusion
follows after covering B;* by a finite number of cubes Q as above. In the
noncoercive case a bootstrap argument, based on the identity

alu, v) + 1J wdx = (F 4 Au,p>  for ve H(BY)
Bt

as well as on the result just proven for coercive bilinear forms, leads to the
desired conclusion for u solution of (3.31).
The procedure for 1 solution of (3.32) is perfectly analogous. 0
As an illustration of the sharpness of the above requirement about the
range of p, consider the following example.

ExAMPLE. Let N = 2 and set u(x) = x5(1 —In|x|). Since u, =
—x %l x| and ¥, =1 —In|x| — x| x| ue Hl*(B*), and as a
matter of fact u € H-?(B*) for any p € ]2, oo[; however, u|g .+ does not
belong to HY>(By*). Let v H,'(Bt). Since
J (xuxy | x |20, + x| x]-%,,) dx = ~J xa| x|~ dx.
B+ B+

= J (—1 + In | x ), dx,
BF

u satisfies
| monax= | fode=| (zanixi, - 2005 s,
B+ 5 B+
and f!, f* belong to L=(B*).
THEOREM 3.15. Let u satisfy either (3.31) or (3.32) with f° € LP(BY),

f5 ..., f¥e H\#(B*), 2<p < oo, and let @', d € CO'(BY). Whenever
0 < R <1, u|p,+ belongs to H*P(Bg*) with

N
| lsomgn < C(m e + 3, LS o + | |m+.):

the constant C (independent of u and F) depends on the coefficients through
the bound imposed on | @, d7 |cos g, and | b3, ¢ |.,., as well as through «.

Proor. The case p = 2 is Lemma 2.23 for k = 0. If p > 2 we repeat
the proof of Theorem 3.13(i), with L*# (0 < u < N) replaced by L7, [}
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3.5.3. Global Regularity

Setting ¥ = H(£2 U I') and assuming I’ closed, we consider solutions
to the mixed boundary valve problem

ueV,

(3.35)
a(u, v) = {F,v) = J (% + fiv,) dx forve ¥,
o
with a(u, v) given by (3.11). The following results can be proven by the
same technique utilized in the proof of Theorem 2.19.

THEOREM 3.16. Let u solve (3.35).

(i} Assume 812 of class C! and f°€ L2w=2*(0), 11, .., f¥ € L2#()
with 0 < p < N. Then u and all its first derivatives belong to L*#(£2) with

N
| u Iz.,u;n + |Vu |=,,u;n < C(|f° |s,(,u—n+:n + 21 |f Iz.,u;n + |u IHI(m)-

(i) Assume 682 of class C%¢ and a'i € C**(2) for some 6 € 10, 1. Let
foe LAWV-2%(), f1, ..., f¥ e L2¥(Q). Then the conclusion of (i) is valid
Jor u=N.

(iti) Assume 002 of class C¢, a'i, die C%¥0Q) for some §€ 10, 1],
fee L2y £, ..., f¥e L2#(Q) for u = N + 28. Then the conclu-
sion of (i) is valid for the present value of u.

(iv) Same assumptions about 852, a¥, d as in (iii). Let f°, ..., f¥ €
LP(82) for some p € 12, co[. Then u € H-?(2) with

¥
|| grmeay < C(E | f7 g0+ | |H1¢m)-
i=0

In all estimates above the constants (independent of u, F) depend on the
coefficients of the bilinear form through the bound imposed on their respective
norms, as well as through «; in the estimate of (i) it depends also on .

THEOREM 3.17. Let u soive (3.35).

(i) Assume 3R of class C' and a¥, di € CO'(Q). Let f° € L2+() and
f",f;', € L2#(2) fori, j=1, ..., Nwith 0 < i << N. Then all second deriv-
atives of u belong to L*#(02) with

N N

'21 !uzgzl lz.n;n S C[lfo |z,,u-,n + z—:l (Ifl lz.,u;n + [ Vf‘ ]2.‘;.:;9) + |" |Hlml]'

LTF Al
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(i) Same assumptions about 082 and @', &’ as in (i). Let f°€ Lr(0),
S .., f¥ e HYP(Q) for some p € [2, ool. Then u € H*?(£) with

N
|4 1oy = C(|f° oo + 2, 1/ lmpey + 4 15110))-
=1

(ii) Assume 082 of class C*? and a'}, d’ € CL(), bl ce Co4() Jor
some 8 €10, 1[. Let f°€ L:#((D) andf‘,f,j € L#(8) for i,j=1,...,N,

u = N + 28. Then the conclusion of (i) is valid for the present value of u.

In all estimates above the constants (independent of u, F) depend on
the coefficients of the bilinear form through the bound imposed on their
respective norms, as well as through a.

Note that the case p = 2 in Theorem 3.17(ii) is Theorem 2.24 for
k=0.

3.6. A priori Estimates on Solutions to Nonvariational
Boundary Value Problems

Consider the mixed b.v.p.

Lu= —a'h,, + du; +au~=f inQ,

. (3.36)
ulaﬂ\f‘ = 0} By = ﬁ'uz‘h" + ﬁulr = C on P.

In this section and the next I" is closed and 8£2 is of class C11! for the H>?
theory, of class C*2 for the C*? theory, 0 < § < 1. We assume a%/ = g7
[an unrestrictive hypothesis: both ¢ and g’ can be replaced, if necessary,
by (@ 4 a’)/2] and A% = x on I', » being some positive constant.
L is said to be a nonvariational (elliptic) operator since its principal part
cannot in general be put into divergence, or variational, form. Problem
(3.36) is calied a nonvariational b.v.p. The condition on 82\ I is, of course,
the (homogeneous) Dirichlet condition; the one on I' is calied a (non-
homogeneous) regular oblique derivative condition.

3.6.1. The Case of Smooth Coefficients

If the regularity assumptions about the coefficients of L and B are
suitably strong not only can the principal part of L be put into variational
form, but indeed the whole problem (3.36) can be given a variational
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formulation to which previous results apply. This is illustrated by the next
two lemmas.

Lemma 3.18. (i) If @ € C0(D), @', ac L=(Q), B, B € CO(), there
exisis a constant C, depending on the coefficients of L and B through the
bound imposed on their respective norms as well as through a, such that

| u |geogy < C( Lut | + | Bu |gustory + | 4 [mrei) (3.37)

when u € H>P(£2), 2 < p < oo, vanishes on 00O\ T
(i) If a'i e C14(Q), a', a € C*¥(D), B, B € C1¥(TI"), a similar estimate

| u o < C(| Lu [ay + | Bu[grsny + v loe@) (3.38)
holds when u € C*%(Q) vanishes on QT

ProoF. We set f= Lu, { = Bu, and proceed in two steps.

Step 1: The variational formulation of (3.36). Consider the case (i) and
set

i3] aid _
== ﬂ'—f,?’ L TE= 0Bt — oyl
Thus, (7%, ..., ™) is a C%! vector field on I satisfying v%z* = 0 identically.

Let a¥/ € C%'(Q) be such that a¥|, = v/7; then
(@] p — a¥ijppd = 7

Finally, let &/ € €*(f2) be such that d’|,.= 88»). We define a bilinear
form on H!(£2) by setting

d(u, v) = J.n [(6Yu,, + d”u)v,, + (5iu,‘ + Sulp] dx

= J- {lta" + ¥ — a/yu,, + JJ'M]IJzj
o
+ (@' + a3) + az) — o + D + (@ + duv} dx;  (3.39)
notice that /&&= a¥§£;. Inspection shows that whenever v e HX(Q),

a(u, v) = J-n (Luyp dx  for v e HMD)

and
(6%, + diu)| v = 8By
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[i.e., 8Bu is the conormal derivative of # with respect to the bilinear form
(3.39)]. ‘
Notice also that

_[ (@ + din, ) dx = '[ {av + (o)) dx = J av dx + _[ ()| i do
n I+ o r
- '[ av dx + _[ 0fo|.do  for ve V. (3.40)
o r

Now write { = z|, with ze H?(Q U ).
If 6 = 1], ¥ = |, with ¢, it € C%(D), let /% = tzn': then

|fi lnpy = C|z Inl-p;m-
Moreover,
[ G+ foas= | (Ponax = | gt o

~——j 6Lv|, do for ve V.
r

Notice that, as a consequence, { << 0 implies [, (f,jv +7f 0, ) dx < 0 if
veE Vis =>0.

Lemma 2.6 can at this point be utilized to ascertain that ue H*({)
solves (3.36) if and only if

ue v,
(3.4

du, v) = J-n (fov + fiv,) dx = L[(j-}— S+ fio )dx for ve V.

Analogous conclusions are easily obtained in the case (ii).

Step 2: Proof of (3.37) and (3.38). Let ue H*?({1), 2 <p < oo, To
(3.41) we can apply the estimates of Theorem 3.17(ii):

N
| ¥ |gvpio) < C(i foloo + 42‘1 | ¥ laroigy + [0 |n1<m)
=< C(|flp;n + |z lHl-v(m + | u lguew)-

By letting z vary in the equivalence class that defines £, we arrive at

| # |gueen < C(| f |50 + | & |pvetocny + | # l@0oia)s
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i.e., (3.37). The proof of (3.38) is perfectly analogous, since Theorem
3.17 (iii) provides the C*%(§2) estimate on solutions to (3.36). 0

LemMma 3.19. Suppose a => 0 in £ and 8> 0 on I', with in addition
ess SUpga + max 8 >0if I' = 90,

Under the assumptions of Lemma 3.18(1), (3.36) admits a unique solu-
tion ue H2?(8D) if fe L*(D), { € HYP'?(I"), 2 < p << 0o} under the as-
sumptions of Lemma 3.18(ii), (3.36) admits a unique solution u € C*()
if fe C%¥(8), L e CL¥I).

Additionally, u <0 if f<<0 and { =<0.

Proor. Let d(u,v), f9, /%, ..., /¥ be defined as in Step 1 of the
previous proof. Thanks te (3.40), the present assumptions about a and 8
imply 4(1, v) = 0 whenever ve V is > 0, and also 4(1, v) 7% 0 for some
ve Vif I'= 80, so that the assumptions of the corollary to Theorem
2.4 are satisfied. Therefore (3.41) admits a unique solution u. Let f <0
and { <0:if ve ¥is >0, then [, (/o + /v, ) dx < 0. Hence u < 0.

There remains to show that u has the required regularity [so that it
satisfies (3.36)). This can be done thanks to Theorem 3.17(ii) in the case
(i) of Lemma 3.18, and to Theorem 3.17(iii) in the case (ii) of Lemma
3.18. 0

3.6.2. The General Case

When the leading coefficients of L are¢ less than Lipschitz continuous,
there can be no hope of transforming (3.36) into a variational problem.
Yet, Lemma 3.18 itself can be utilized to provide sufficient conditions in
order that estimates such as (3.37) and (3.38) remain valid. Indeed we
have the following lemma.

LemMa 3.20. (i) Let a¥ € C°(f2), a', a € L=(£), #*, € CONT). There
exists a constant C, depending on the coefficients of L and B through the
bound imposed on their respective norms as well as through a and v, such
that (3.37) is satisfied whenever u € H»P(£)), 2 < p << 0o, vanishes on 952\T".

(ii) Let a¥, a*, a € CO%($d), Bi, B € CL(I"). There exists a constant C,
depending on the coefficients of L and B through the bound imposed on their
respective norms as well as through a, such that (3.38) is satisfied whenever
uc C¥({2) vanishes on 952 \T'.

Proor. We shall only prove (i), leaving the proof of (ii) to the reader
{see Problem 3.9).
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We fix x°€ I" and set a,"/ = a¥(x%), Lo = —a,Yu,, + a'u, + au.
Let r > 0 be so small that B,(x°) n 022 < I. Denoting by g, , a cutoff
function from C*(R¥) with 0 < g, , <1, supp g,,< B,(x°) and g,
=1 on B,(x%), let u’ = wj, = g, , u. We can apply Lemma 3.18(i) with
L replaced by L, and v by '. Thus,

| & Yooy < C(| Lo’ p:0 + | Bu' |gustous + 1 W |gsgy)
< C(Lv l:p;ﬂ + [ (L — Loy’ !p;a + | Bu |gustoey + |0 ]m-vtm)-

Notice that C, while independent of r, depends on the a'/’s through a and
the bound on | a¥ |e.p.

We can majorize | (L — Lot .o = | (L — Lo lyansyeo bY T(2r)
X BNy | ez, Ipia- Thus,

|4 |mreigy < Cll Lu' |p.q + | B’ |gueptnory + T(2r) |6 [grinigy + [ ¥ |E3300)]

If now r = r{x®) is so small that in the above inequality v(2r) < ¢ with
e > 0 suitably chosen we obtain

| |gasey < C(| Lu' |;p:9 + | Bv' IH’Ui"-P(m + 4 | muea))-

Similar considerations show that if x®€ 2O \[I" (or x°c€ ), there
exists a positive number » — r{x% such that B, (x° n 82 < 3\T (or
B,(x°) cc £2), and the function &' = up , = g, , u satisfies

|4 |as.oe < C( Lu' lp:0 + | u |71.2109)-

Since £ is compact there exists a finite number m of pairs (x™, r*)
with ® = r(x®), chosen with the criterion illustrated above, such that
0 c \Up., Ba(x™). By defining u,’ = u/os .» we therefore have

m
[ # |gaeiy = ; | uy' |anwiay
=1
m
’
= C; (| Lup' | ;0 + | Buy' |guwtiogn + | 4a' l@newa)-
=1

A straightforward computation shows that each term | Lu,’ |,.o is bounded
by C(} Lu |50 + | # |m1.9eay), €ach term | Buy' |g.ovpipy by C(| Bu |gu.omiry
+ | 4 |gmg) and each term |uy' |ge by Clu |gueg, so that (3.37)
obtains. g

The right-hand sides of both (3.37) and (3.38) depend not only on the
norms of Lu and Bu but also on some norms of u itself. We can, however,



H®? and CY% Theory 185

get rid of such an inconvenient dependency through a suitable zero-order
“penalization™ of L, as the next lemma shows.

LEMMA 3.21. There exists a positive constant %, dependent on the coeffi-
cients of L and B through the bound imposed on | a', a',a[.., and on
| B% B leoery as well as through a and =, such that the following is true:

(i) Same assumptions as in Lemma 3.20 (i). For any 1> 1 and any
p € [2, oo there exists a constant C, dependent on the coefficients of L and
B through the bound imposed on their respective norms as well as through
a and T, such that

| # lgrnoy < C(| Lu + Au [p;0 + | Bu lgustioim)

whenever u € H*P(Q) vanishes on 8O\ T

(ii) Same assumptions as in Lemma 3.20(ii). For any A > 1 there exists
a positive constant C, dependent on the coefficients of L and B through the
bound imposed on their respective norms as well as through a, such that

u oo < C( Lu + Au |3 + | Bu |ouaery)

whenever u € Ct9(2) vanishes on 82\

Proor. Step 1: Proof of (i} for p = 2. Let a,, n € N, be the restric-
tions to £ of regularizations g, » 4/ (see the introductory considerations
of Section 3.1): thus, a,'/ — @'/ in C%(2). Let L, be the operator obtained
from L after replacing a @' by a," and let 4,(u, v) be the bilinear form
analogously obtained from d(w, v} [see (3.39); the function 8 utilized in
the definitions of the coefficients must be replaced by 0, = a,%|, v¥vi[f¥¥].
We provide estimates on | ¥ |y, and | L,u 5., as follows.

Let u € H*(£2), u|y;~.yr = 0. By the Green formula,

J (Lyw)u dx = 8,(u, u) — J 8.(Bu)u | do
a r

a a
= 7 | Vu |§;o —Cn) |u |§;o 7 |u ﬁilm) — C| Bu Yy,

where we have minorized 4,(u, 4) as in Section 2.2.1 and have majorized
| [ r 0a(Bu)u|r do | (independently of n) by

C| Bl | uir br < = [ # ey + €1 B ey
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Thus,
1 1 ' '
7L+ Al + o Wl > [ o+ o d
= [1— € — 3] 1ulta — 1 Bulhuns,
fwith C(n) dependent on the a'¥’s only through @ and the bound on | a%/ | ],
so that there exists a positive constant i’(n) such that
juldo <|Lu+ 2ilg.g+ ClBullpngy  for 22 ().
Moreover,
| Ly + A 30 = | Lot (3.0 + 24 L (Lyuyu dx + 2 |u
> [ Lo+ 1 ulto — 2] C0) + 5| vl
— 2iC| B |lnmin
s0 that there exists 2’’(n) > 0 such that
| L o < | Lo + Juftg + 23C | Bu |hunry  for A= 2"(n).

We can apply Lemma 3.20(i) with L replaced by L,, the constant
of the estimate being independent of n. Thanks to the interpolation in-

equality
N
| e < E_Z | Uzz, |:;O + C(e)lu |%;{2
%,7=1

(see Lemma 1.37) we have
fu |3y < C(| Lyu I%:a + | Bulipngy + lu lg;n)
S C[I L,,u + 2.“ |§:D + (21 + l) IBH ﬁ;m(n]

for A= A(n) = A'(n) v A”(n). At this point we fix an index & so large
that

g ¥
lag'/ — a7 |30 < ¢, hence |(Lg— L)u [ty < Ceiz | thr, [:0+
q=

with ¢ suitably small. Note that 7 can be fixed so that it depends on the
a'”’s only through 7. Then the inequality

| Lau + Au [5:0 < 2| Lu + Au [0 + 2 [ (Lg — L) 30
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yields )
| ¥ |z < Cll Lu + Au 30 + (24 + 1) | Bu |znap]

for A== A(f1), hence the desired conclusion in the case at hand.

Step 2: Completion of the proof. Let 2> 1. By (3.37) we have
| u | < C[| Lu + Ju |p;o + | Bu |gustary + (1 + | u |mmm)]-

For brevity’s sake we restrict ourselves to N = 3. If 2 <2 p << 2%, Theorem
1.33 yields H¥(Q) c H.?(2), so that

|t |gaoim < C[| Lu + A4 |y, + | Bu [gueroey + (A + 1) || g2y]
< CA)(| Lu + Au |p; + | Bt |paewvney + | L+ du la:0 + 1 Bt | gny )

by Step 1 of the present proof, and the inequality required by (i) holds.
If instead 2* < p << 2** we utilize the continuous imbedding H2¥(2)
H'?(£2) and the inequality just proven with p replaced by 2*; proceeding
thus, we conclude the proof of (i) in a finite number of steps for any choice
of p. For the proof of (ii) it suffices to utilize (i} with p so large that H%?(£2)
 C%¥(9D) and apply (3.38). 0

3.7. Unique Solvability of Nonvariational Boundary Value Problems

3.7.1. Regularity of Solutions
Instead of (3.36) consider the nonvariational b.v.p.

Lu + iu = in Q,
4 (3.42)
Uag~r =0, Bu+ Adujp=¢ on I

We have the following lemma.

LEMMA 3.22. Let 2 be the positive constant provided by Lemma 3.21,
let 4,>> A be so large that a + A, >0 in 2, §+ 4, >0 on I', and let
A=A,

() If @ € @), &, ae L=(@), f, fe C'(I") and f € LP(@), L &
HYP»(Mywith2 < p < co, then (3.42) admits a unique solution u € H*?(Q).



188 ’ Chapter 3

(i) If o, &', a € COX), B, Be CHI™ and fe COND), L e CLI,
then (3.42) admits a unique solution u € CH4((),

Inall cases u<<0in Qif f<0inQand L <0on .

ProoF. We shall give only the proof of (i), since the proof of (ii) is
perfectly analogous.

Uniqueness follows immediately from the a priori estimate of Lemma
3.21(i) (with B replaced by B + 1). Passing to existence, we consider the
same functions g,/ and operators L, as in the proof of Lemma 3.21.
Moreover, we fix b%, b € C%(2) with bi|.= §i b|, = . By Lemma 3.19
each b.v.p.

Ly, + du,=f in O,

tplager =0, Bu, + lul.=¢ on I"

is uniquely solvable in H*?(£2), and u, <0in Qiff<0in 2, <0 on
I". Moreover, Lemma 3.21(i) yields the existence of a uniform bound

|ty [mroiey < C(| f |pio + | € |grenoem)-

By the reflexivity of H%:?(£2) we can extract from {u,} a subsequence,
still denoted for simplicity’s sake by the same symbol, such that u, —u
in H37(2). Hence w, —>u in H'?({)) by Rellich’s Theorem 1.34. Of
course, u <0 in 2 if u, <0 in Q2 for all ne N. Let ve C°(). In the
integral identities

-I- [_an‘ijunz‘ZJ + aiuﬂzi + (a + j-)un]U dx = J ﬁ) dx
o o
we can pass to the limit as n — oo and obtain
| @t iapax=[ poax,
e e

which shows that Lu + Au = fin £ by the arbitrariness of v. On 8O\ T
u vanishes, as do all functions u,. Finally, an easy application of the
divergence theorem (whose details are left to the reader) yields

J (Bu, + Au| )7 do — _[ (Bu + Ju|,)n do
r I

whenever 5 € CI(I"), so that Bu + Au|. = on I d
We can now arrive at a regularity result for solutions of (3.36).
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THEOREM 3.23. Let uc H'(Q) solve (3.36).

G) If ae CoD), di,ae [=Q), §, e CONI) and fe [} @), ¢ €
HY#' . ?(I"y with p€ ]2, oo[, then u € H»?({2).

(i) If a¥, a', ae COD), f*, e CYYI") and fe C*¥(R), { € C1YD),
then u e C24(2).

PrROOF. Let us simply prove (i). We fix A > A, (see Lemma 3.22) and
write (3.36) as

Lu+ lu=f+ Au in 2,
Ulgonr =0, Bu + Aulp={ + Au|p on I

Again, we take N > 3. Let p, = p A 2*. Since H3(Q2) < H"*(2), we have
S+ Aue LA(82) and { 4 Au|, € HY#'.2(I"). Lemma 3.22 provides the
existence of a unique solution we H>A{Q) to the b.v.p.

Lw 4+ Aw = f 4 Au in 2,
Wl = 0, Bw+ Awl,={+ Au|, on T

But then w is also the unique function from H*(2) which solves the same
problem; since u is already one such function, it must be ¥ = w, hence
ue H:-m(8). If p, = p we are done. Otherwise, we repeat the above
argument a suitable number of times to reach the desired conclusion. []

3.7.2. Maximum Principles

At this point we want to provide a suitable maximum principle for
solutions to (3.36). The following observation casts light on the various
stages through which we shall proceed: Let a‘*e C°(f2), a =0, and let
u e CYQ) satisfy Lu < 0 in 2, then « cannot achieve a local maximum
at a point x°€ £2. In order to show this all we have to do is recall that
at an interior maximum point x° the gradient Fu(x®) vanishes, the Hessian
matrix [c.g,‘.,,(x°)]£_,-,..1 _____ ~ 1s nonpositive, and therefore 0 > Lu(x%) ==
—a@ i (x®)uy; (x°), but also a'/(x%)u,,(x?) <0 {by a well-known result of
linear algebra which utilizes the fact that {@/(x®)); ;;, . is nonnegative},
hence a contradiction.

When u is only in some space H%P({2), so that the Hessian matrix of
u at x° is not defined, a more sophisticated tool is needed, namely, the
following Bony maximum principle.
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LemMma 3.24. Let ue H*?((), p > N, achieve a local maximum at
x°€ Q. Then, ' ‘

ess lim inf 4¥(x)u,,, (x) < O.
z-+z0

Proor. It suffices to proceed under the stronger assumption that
u(x% is a strict local maximum. This is certainly true if u(x) is replaced
by u'(x) = u(x) — | x — x° |*; moreover,

ess lim inf @"(x)uy g, (x) = ess lim inf a(x)uy, ., (x).
z-+zd z-+z0

Let U cc 2 be an arbitrary open neighborhood of x° such that
u < u(x?) in U\ {x?}, and let W be its (relatively closed) subset defined by

W= {ye Ululx) <u(y)+ Vuly) - (x — y) for xe U};

notice that H*?(Q) G C.:-5/»(Q) by Theorem 1.41. Since u(x?) is a
strict maximum we can fix r > 0 so small that

ulx) < u(x)+ 75 - (x — x% for xe 8U

whenever n € RY satisfies | % | < r. Thus for any 7 as above the maximum
over U of the function x+»u(x) — % - x can only be achieved in the
mterior of U: in other terms, there exists y € I/ such that

u(x) <u()+7n-(x—y) forxel

But this implies = Vu(y) and therefore y € W.

Now let the mapping & : @ — R¥ be defined by Z(y) = Vu(y) so
that by the above considerations &7 (W) = B,. We claim that the Lebesgue
measure of W cannot be zero. Indeed, by Theorem 1.41 there exists a
constant C such that, whenever Q < 2 is an open cube, each derivative
u,, € CO1-F/3(Q) satisfies

| uz(x') — u (x") | < C(diam Q)'~¥'?| w,, |gs.»(q)
for x', x'' € Q (see Problem 1.17). Thus,
| Z7(0) | < C(diam QYN O-N/P)| y |y pyq).

Assume | W] = 0. Then for any £ > 0 there exists a sequence {Q,} of
pairwise disjoint cubes @, =< £ such that W < |, 0,, o2, (diam Q,)¥
< &,
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But then, setting a, = (diam Q,)%, b, = | u [f.p(q,y,» We have

o oo ) 1-Nipy oo Nip
emi < §igea<cf i< ofFa) (5 b)

A=l n=

Nip

= C[ i (diam Q,JN]14”1’('5:’:1 | u l’f'za.p(o,;) ,

A=l
where use has been made of the Holder inequality. This implies
|F(W)| < Ce¥7 | u|fnog, hence |F(W)]|=0,

which is absurd since (W) contains a sphere.

By Theorem 1.20 Urq, 1S a classical derivative at almost any point of
2, hence in particular of W. Let £ be fixed in the unit spherical surface
S of R¥: by the change of coordinates formula, at almost any point y€ W
each first derivative 1, admits a classical directional derivative with respect
to £, and we can apply the MacLaurin formula to the function ¢(f) =
u(y + &), te R with | ¢| << dist(y, 8U). Thus,

u(x) = $0) = $0) + 19(0) + 5 14(0) + (1)

= u() + Pu0y) - (x = ) + 5= [ O, + o),
o(t)—>0 as t — 0,

for x = y + t£. Since u(x) << u{y) + Vu(y) - (x — y) for any x as above,
it cannot be u. . (y)€;£; > 0. Now let {£{*} be a countable dense subset
of S. From the above considerations it follows that at almost any point
y € W we have w,, ()™ <0 for ne N, hence also w, (y)i§; <0
whenever £ € S.

Summing up, we have proven that any open neighborhood U of x°
has a subset of positive measure where the Hessian matrix of u is non-
positive and therefore a'/u,,, << 0, which concludes the proof. a

Next we have the weak maximum principle for the nonvariational
operator L.

LemMa 3.25. Let ue H(Q), p > N, satisfy Lu <0 in Q. Then,

max ¥ — Mmax u
g an
ifa=0,
max 4 << max ut
a a0

ifa=0in Q.
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PROOF. Step 1: The case a = 0. Let us for just a minute strengthen
our assumption about Lv into Lu <7 < 0 in £ (almost everywhere). If
u achieved a local maximum at a point x° € £2, the Bony maximum principle
would imply ess lim sup,,, Lu(x) = 0, hence a contradiction (see the ob-
servation preceding Lemma 3.24). In the general case Lu <0 we fix y > 0
so large that

a},ﬂ - | b |oo;0y > 0,

then for any ¢ > 0 the function ¥, (x) = u(x) + eev™ satisfies

Lu, (x) < e[—a'(x)y? + B(xylern < e(—ay® + | B fouy)er™
< n(e) <O

almost everywhere. Since u,’ cannot achieve an interior maximum, the
conclusion in the case at hand follows from the inequality

u(x) + eev® << max (u(y) 4+ se1]  for x € 0,
yedn;

valid for any £ > 0. Notice that at no stage did we make usc of any reg-
ularity assumption about 9£2.

Step 2. The case a =0 in Q. If u <0 in £ there’s nothing left to
prove. Let 2+ = {x€ 2 |u(x) >0} F# . Since L'u=Lu —au < —au
< 0 in £2* we can apply the conclusion of Step | with 2 replaced by £+,
L by L'. Thus, '

max ¥ = max ¥ << max ¥ = max u. 1]
a at aat a0

We can now prove the Hopf boundary point lemma.

LEMMA 3.26. Let u € H2?(Q), p > N, satisfy Lu << 0 in Q. If u achieves
a strict local maximum at a point x* € 92 and if (B, ..., B,¥) € R¥ with
Bo'vi(x®) > 0, then Pou, (x%) > O provided either a =0, or a >0 in 2
and u(x°) > 0.

Proor. Our regularity assumptions about the boundary of £ imply
the existence of a sphere Br(y) = £2 which is tangent to 82 at x° To see
this it is enough to consider the case when x° is the origin of R¥, 2 N B
lies above 02 N B, and the latter is the graph of a C! function xy =
A(x') which vanishes together with all its first derivatives for x’ = 0. The
mean value theorem yields the existence of a constant C such that | 1(x") |
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< C| x"|?, hence the existence of a sufficiently small number R e )0, 3]
such that the distance of the point y = (0, ..., 0, R) from any point of
82 N B is not less than R.

Now let v(x) = e*'=vI* — ¢—F* where y is a positive constant to be
determined. Computation shows that

Lo(x) = e 2V {—dy2aii(x)(x; — y)(x; — ;)
+ 2y[a(x) — a'(x)(x; — y)I} + a(x)v(x)
< ez VN _dayt| x — p ! + 2y[ai(x) + | @¥(x) || x; — y; | + a(x)]}.

By the boundedness of the coefficients of L to any p € ]0, R[ we can as-
sociate y > 0 so that the last term of the above inequalities is < 0 whenever
g <|x—y]< R Since R can always be assumed so small that u(x°)
> u(x) for x € Bg(y), on S,(y) we have u — u(x®) < 0 and therefore
u — u(x®) + ev < 0 provided £ > 0 is also sufficiently small. The function
u — u(x®) + ev is < 0 on Si(y) where v = 0. In addition, L(y — u(x®) +
&) = Lu + eLv — au(x®) < —au(x®) < 0 in Bﬂ(y)\m both if a=0
and if @ > 0 in 2, u(x®) = 0. We can apply Lemma 3.25 with  replaced
by Bn(y)\m to obtain ¥ — u(x") + ev << 0 throughout the annulus.
Since x° is a maximum point for the function w(x) — w(x®) + ev(x),
elementary considerations show that

Bo'u (x°) > —efiyiv, (x°) > 0. 0
The following result is the important strong maximum principle.

THeOREM 3.27. Let ue H%?(Q), p > N, satisfy Lu <0 in Q and
By <0 on I'. Unless u is a constant, and specifically a nonpositive one if
€8s SUpg @ + max; # > 0, the maximum M of u on £ cannot be achieved
on QU I if eithera=0and §=0,0r a=0in 2, §>00n I, and
M>=>0.

ProoF. We need only rule out the possibility that v equals M at some
point x° € 2 U I' without coinciding with M throughout 2. To this end
we assume the existence of a sphere Bp(y) < £2 and of a point x° € Sg(y)
N (82 U I such that u(x) < M for x € By(¥) and u(x®) = M. Lemma
3.26 can be applied with 2 replaced by Bgr(y). Therefore Boiu,,(x%) >0
whenever f,%(x;° — »;)f] x° — y| > 0. But this is absurd because all first
derivatives of u must vanish at the maximum point x® if the latter is interior
to 2, whereas fy'u, (x°) < —AM < 0 with B} = §i(x°) if x°€ I 0
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REMARK. In 2all four results above the a'/’s mlght have been taken in
L=() instead of C°().

3.7.3. Existence and Uniqueness

A uniqueness criterion for solutions to (3.36) can now easily be proved.
In fact we have more than that:

TueoreM 3.28. (i) Let a'ie C'(2), a',a € I=(Q2) with a=>0 in 2,
B, 8 CONI) with $2> 0 on I, and in addition let ess supg a + max, §
=5 >0 if I'= 0. Then there exists a constant C, depending on the
coefficients of L and B through the bound imposed on their respective norms
as well as through o, T, x, and n if I' = 882, such that

| # |grey < C(t Lu o0 + | Bu |guptaim)

whenever u € H>?(£2), 2 < p < oo, vanishes on 0O \JT".

(ii) Let a'i,a',ae C*¥D2) with a=>0 in 2, fi, e C ¥ with #
> 0on I, and in addition let maxga + max;. 8> n > 0if I'= 80Q. Then
there exists a constant C, depending on the coefficients of L and B through

the bound imposed on their respective norms as well as through o, x, and n
if I'= 080, such that

| u |enseay < C(| Lut |tz + | Bu |gusir)

whenever u € C*%($2) vanishes on 9 \T".

ProOF. We shall only prove (i), the proof of (ii) being perfectly
analogous. Suppose that no constant C as required exists.

We can then construct sequences {a,’’} ¢ C%D), {a,’} and {a,}c
L=(2), {#,7} and {8} = C*(I), {u,} = H>?(Q), with the following
properties:

® |a,7, a,}, @, |oo;g < C, all matrices [a,'/]; ;, .. » sharing the same

constant of ellipticity «, and all functions a,'/ the same modulus of
uniform continuity t;

o 8, > x, B, = b, and B, = b,l where b, b, € C*!(2), with
|buab |C‘°1(ﬂ)SC

® 2, >0in £, §,>00n I esssupg @, + max, 8, > 5 > 0if I'= 842,

Ll "n|aa\r = 0’ Iun |H'-’(ﬂ) = 1) Luun —0 in Lp(Q)’ Bﬂ"u —0 in
HV#.?(I") with the obvious definitions of L, and B,.
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By making use of either Ascoli-Arzeld or Rellich compactness results
in the various function spaces at hand {(and passing to subsequences if
necessary) we can always find % € C%D), a, a € L=(2), b, b € C*1()
and v e H%?(§2) such that

e a7 —»a' in C%D), a,'— a* and a,— a in LYD);
e b —band b, =& in C);

o u, —u in H*?(), hence u, —u in H-?(Q).

It is clear that Lu = 0 and u|;0~ ;- = 0. Besides, let z, € H'.?(2 U 1),
Zp|r = Balty, | 2 lmnviay = | Batty [mireoiry: then z,' = bniuﬂzt + by — 2,
vanishes on I, tends to b, + bu in L?(£2), and verifies | z,” |puoioy < C,
so that u satisfies Bu = 0 on I" with the coefficients of B defined by £
=blr, f=blr.

The regularity result provided by Theorem 3.23 yields u € H%(§2)
for any g < oo, so that Theorem 3.27 can be applied to u even if the original
exponent p has not been chosen > N. Consequently u, the strong limit in
H.7(82) of u,, vanishes on 2. Let us now apply the inequality {(3.37) [see
Lemma 3.20(i)] as follows:

u L C(| Lot |p.g + | Bol | pistmey + | 1
= | n
| n EH’-”(O) a* |p.Q w¥ [HVPLP() |H1.P(m):

where the constant C is independent of n. Since not only | Ly |,.q and
| Bt |gussnpey tend to O by construction, but so does |u, |[gurgy by the
preceding considerations, we obtain | &, |g1.ripy — 0. This contradicts the
initial requirement | u, |gro = I. 0

The following theorem can now be deduced from Theorem 3.28 by
exactly the same techniques utilized to deduce Lemma 3.22 from Lemma
3.21.

THEOREM 3.29. (i) Same assumptions about the coefficients of L and B
as in Theorem 3.28(). If fe L?(f2) and L € HV? . ?(I") with 2 < p < o0,
then (3.36) admits a unique solution u e H*2(2).

{(ii) Same assumptions about the coefficients of L and B as in Theorem
3.28(ii). If f e C%¢(2) and { € C*4(T"), then (3.36) admits a unique solution
ue C4(0).

In all cases f<<0in Q and L <0 on I" imply u <0 in 2.

The two preceding theorems guarantee that in H%.?({2) problem (3.36)
is well-posed, that is, it admits a unique solution that depends continuously
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on the data fand {, provided the coefficients of L and B satisfy a suitable
set of assumptions. Among these the continuity of the a'#'s plays an es-
sential role, as the next example shows.

ExaMpPLE. Let

+41—2 xx;

g N
a(x) = b;; + —— | x|*

for |x|5£0.

If A <1 it is easy to ascertain that the matrix [@"]; ;.; . y is uniformly
elliptic in B\ {0}. Seta®' =a = 0, 2 = B, and I" = (. The corresponding
problem (3.36) is not well-posed in H*?(B) for p << Nf(2 — A), since the
function u(x) = | x |* — 1 belongs to that space and solves the homoge-
neous problem Lu =0 in B,u=0on S = 3B,

Notice that the first derivatives of u are not essentially bounded in B
[compare with the regularity result provided by Theorem 3.23 in the case
a‘f € CO({).

3.8. The Marcinkiewicz Theorem and the John—Nirenberg Lemma

We shall now give two results that were utilized in the proof of Lem-
ma 3.6.

The first one is known as the Marcinkiewicz interpolation theorem.
We present it under the particular formulation adopted for our pur-

poses,

THEOREM 3.30. Let w, w’ be bounded domains of R¥, let 1 < g <r
< oo, and let & be a subadditive mapping of both weak types g and v from
w into w', with

18N € Gl flyia Sor f€ L),
]E-U-)[;;.,' LGl f lre Sfor fe L'(w).

Then for any pc g, vl & is of the strong type p, and
| &) lprar < CCPACH| flps  for f€ LP(w), (3.43)

where C= C(p,q,r) and A€ 10, 1[ is defined by 1fp= (1 — Dfg + A/r
ifr<oo, Ifp=(1—-24)fqif r=co
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ProOF. Step 1: Preliminaries. When f: w-— R is measurable we
denote by S(f, s) the set {xe€ o |]f(x)| > s} and call u(s) = | S{f, s) |
the distribution function (over w) of | f{. Notice that if x> F(x, 5} is the
characteristic function of the set S(f, s), Fubini’s theorem yields

1ftz)l o0
J- | fix)|2dx = J- de. psPlds=p J- dx J- sP1F(x, 5) ds
w w 1] w0 1]

=p J.m s7lds Jw F(x,s)dx = p J‘: sPtu(s) ds (3.44)

whenever f€ LP(w) with 1 < p < oo,

At this point we fix fin L?(w) for ¢ < p < r < oo and denote by A
the function &(f), by #»(s) the distribution function {over »’) of | & |. For
any choice of 7 > 0 we set fo(x) == (—1) V fAx)} A T, fLlx) = f(x) — fi(x):
then f, € L?(w) € LY w), f, € L®(w)} € L'(w). We put k; = & (f;) and de-
note by g;(s), »{s} the respective distribution functions of | f; |, | #;] for
i=1,2. It is easy to verify that the subadditivity of & leads to

»(25) < »,(5) + vo(s) for s > 0. (3.45)

Since the integral 2%p [o° 57 1(2s5) ds equals p fg s*(s) ds = | h 2., if
finite, the conclusion of the theorem will follow from suitable estimates on
the right-hand side of (3.45). By assumption

M) < Cfs | i G-

Since u,(1) = u{t + 1) for 1 > 0, we see that

J .5'7_11’1(5) ds < quJ. §P~91 ds -I- |fl Iq dx
1] [

=gCr| s7 1 1ds 1, () dt

J 0 J O

= chﬁ' sP—a-1 de

oo

(t — ) Ip(r) dt

40 -
<qCfh | st lds | #lp(tydr =1,
v 0 v T

For what concerns #,(s) we must distinguish between the two cases r < co
and r = oo.
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Step 2: The case r << oo, Since r is finite we have

() <G5 | felhws

and therefore

r sP-lvy(s) ds < CF r §Pr-1 dsJ \ fuI dx
L] 1]

0

=rC/ r P ds J‘ee £y (1) dt
0

[}

=rC/ Jw sP-r-1ds J' tu(ydt =1,
V] V]

because u,{t) = u(f) for 0 <t <7, () =0 for t > 7.
Let 1 = 1(s5) = s/4 with 4 = C (/"¢ The quantities /, and
I, are, respectively, computed as follows:

oo Al
11=qc,,ej t‘l"p(t)dlj sP—2-1 gy
o 0

S CJ r' 11y ([P dt = r | C AP Jm tP-1u(1) dt
V] o

pP—q —
q o [ o
— C s+atp—a)/ig—n C rip—gl/ir—g J P10 dt
p—4q e r o lu( )
7 i P CPURC Jo P u(e) dt,
5= fo'J tr=Yp(e) dt J sorlds = —— C; J () [P T, dt
o A p—r 0

r (=]
= C,fAP-'J 1P 1u(e) dt
—— e

_ - r > qu(p-r)l(q-rlcrrﬂ(pfrh'(r—q) Jm ﬂ"lp(t) dt
- o

r o
— C pu-2( pA P10 dt
Ty —p e r Jo p(r)

[notice pi = (pr — qr){(r — q), p(1 — A) = (gr — p@){(r — 9)].
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From (3.45) we deduce

|4 e =28 [ 5719(29) ds
0

g r _
<27 CP"—Dcﬂ' P=u(e) dt
p(p—q+r_p)“ ") “

1 1 o
= 27 C pu-(C i j P00 dr
p(P_q+"—P)q rF 0 u

= CCPPCH | f .,

which amounts to (3.43) in the case at hand.

Step 3: The case r =oco. Let v = v(8) =5/C,. Then |h;|m, <
Cos | J3 |0: = 5 and therefore v,(s) = 0. Since 7, is evaluated as in Step 2
except for A4 replaced by C,, we can again arrive at the desired con-
clusion. 0

We now turn to the fundamental result known as the John—Nirenberg
lemma:

LemMA 3.31. Let Q be an open cube of R and let h € L\(Q). Assume
that for a fixed r € 11, oo[ the gquantity

Y1 l‘-'(Lu Lh— (h)q, | dx)'

is uniformly bounded whatever the countable decomposition A: § =\, O,
the Qp's being mutually disjoint open cubes with edges parallel to those of
Q. Let M(h) = M,(h) be defined by

(MY = sup Y, | Q4 'HUQ,, |5 — ()q, ] dx)’

Then the function h — (h)q belongs to L'(Q)-weak, and there exists a con-
stant C = C(r) independent of h such that th — (h)gly.q < CM(h).

SKETCH OF THE PROOF. Since ((h)g)q, = (h)q the function A — (h)q
satisfies the same hypotheses as A, so that it can without loss of generality
be assumed that (h)q = 0.

Introducing the distribution function »(s) = measy{xe€ Q|| Aa(x)]|
> 5} of | k| we reformulate the thesis of the lemma by requiring that

v(s) < CIM(B)/sY (3.46)
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for s > 0. Since #(s) < | Q| we can associate to any 4 > 0 a constant C
such that (3.46) holds for 0 < s << d. Consequently we only need to show
the validity of (3.46) for all s larger than some suitable d > 0.

Assume now that a constant C has been found with the property

v(s) < C[M(h)/sy1-1e*h | g /ei* (3.47)

whenever
2-Nsflr(e? — 1)+ 11 = M) | Q |27, (3.48)

j=0,1,2, ..., where p = rf(r — 1) is the conjugate exponent of r. Let
d=2"M(h)| Q |V and take any s > d. If j is the largest integer such
that (3.48) holds, for j + 1 we have the opposite inequality and therefore

s| @ IV IM(h) < 2¥[r(o™*! — 1) + 1] << 2¥rpi*t

[we consider only the nontrivial case M(h) > 0]. But then (3.47) yields
(3.46) since

v(s) < CIM(h)/sY[s | @ |V [M{R)]"P* < C[M(h)/s] (2N rgitty ™
< C[M(h)/s)".

We are thus left with the task of proving (3.48) = (3.47). Notice
that a constant C as required certainly exists if for any nonnegative in-
teger j, (3.48) implies

¥(s) < 2-Noler 2N (1 — e-l-f)M(h)/sr‘““"“’['_Ml(h‘) J Al "‘"]”"J.

This is obviously true when j = 0. The proof of the lemma depends on
showing that the above implication holds for a natural number j provided
it does so for j — 1. We omit this part of the proof not on the grounds
that it is only computational (it is not), but because the computations
involved are rather cumbersome. However, we mention that the inductive
assumption concerning the value j — 1 is applied with Q replaced by K,
and h by A — (h)x,, where {K,} is a countable family of disjoint open
cubes of 0 with the following properties:

o |h| <t a.e. in O\ K,,
n
e |(h)g,| < 2%,

-zlms:—lj k| dx
n Q
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where t = 2-¥5{[r(e — 1) + 1], hence
(=101 [ Ihlx
Q

by (3.48). The existence of such a family {K,} can be demonstrated as
follows. Let Q be divided into 2¥ equal subcubes and denote by K,
those among them for which (| & |)g,, = ¢, hence ¢ | Kin | < [g,, | £ ]dx
< 2¥%¢| K,,» | by the choice of r. Next, apply the same procedure to each
remaining subcube of @ and denote by X,,, those, among all the subcubes
of this second decomposition, for which (| k|)g, =t and therefore

! Kam | < [ h|dx < 2% | Kyl
Eym

By iteration a sequence of subcubes of @, renamed {X,}, is constructed
with the property that r | K, | < [g, | h| dx << 2%t | K, |. Almost any point
x € O\, K, belongs to cubes K;' with edge-length 2-%, i=1,2, ...,
such that (| & |)g,. << t. The first property required on the part of {K,}
is therefore satisfied, and so obviously are the second and the third ones.
Notice that for a.a. x € @ the inequalities | A(x) | > s = 2¥r imply x € K,
hence | A(x) — (Mg, | > 5 — 2¥1, for some n € V. Consequently, (s) <
Y. measy{x € K, | | h(x) — (hg ) | > 5 — 2¥1}. 0

Problems

3.1. Use (3.44) to prove that Li(w)-weak < LP(w) whenever w is a bounded
domain of R¥ and | < p < ¢ < oo,

3.2, This and the next six problems develop the H*? theory for p in the range
1L, 2[.
Let 32 be of class C*® (with I' closed) and take at de Co4(%), for
some & € 10, 1[. If a(y, v) (from 3.11) is coercive on V = H (2 v I') and
Sy oo fY¥ e L) with | < p < 2, there exists a unique solution to the
variational b.v.p.

ye HWw(Q u I, a(u, v) = j floz dx for v € Hi#'(Q v I).
o
To see this, begin with the proof of existence for f* = --- = /¥ = 0. Let

S, g € LX), and define bounded linear operators 7, §': LY2) — LYD),
j=0,1,...,N, as follows:
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o If=u Tf=u, fori=1,..., N, where
uev, a(u,v)=J’ oz, dx forve V,
a
o §S% =23, S¢g==z fori=1,..., N, where

e V, alv, z% =J go dx forve V¥,
o

e ¥, a(p, z%) =J‘ go, dx for v € V.
o

Then <T,f, g> = (8%, f>. Each §! is continuous from L?'({2) into L?'(£),
and each T; has a continuous extension L?(Q) — L?(2). If now f* is the
limit in L#(2) of {fp} = LYQ), solve

n €V, a(iia, v) = j fnuzl dx for v € H!-»'(R2 u IN)
o

and pass to the limit. As for uniqueness: if # is a solution of the b.v.p.
for f1 =... = f¥ =0, take fin L?(22), solve

ve HMP(Q u ), alw, v) = J fwdx for we V,
a

and replace w by u through a continuity argument: thus, [p fudx =0.
Let a¥, d' e C°{0). If u satisfies

ue HY(Q), a(u,v)=<(F,v)= J’ (fov + frv;) dx for v € HM?'(2)
a

with fo e L2(Q), /1, ..., fY € H'?(2), 1 < p < 2, the conclusion of Theo-
rem 3.8 remains valid (with the understanding, here as well as in Problems
3.4 and 3.5 below, that in the estimates the H'® norm of u is replaced by
the H'? norm). To see this, it suffices to consider the case df = b
=¢ =0, suppw = 12, supp /! = 2, so that the above equation holds for
v € HV?'({2); without loss of generality, 82 can be assumed of class €.
Fix any s =1, ..., N and solve the Dirichlet b.v.p.

wE Hﬂl'p(n):
j avws v, dx = J [—fov, + (f3 — affus )y, ]dx for v € H % ().
o i 0 ] 2 LI M |
Let g € C,>(£2): the solution § of the Dirichlet b.v.p.

& e H\{Q2), -[ @'z, By dx = J gzdx  for z € HMD)
n a

belongs to H*%(Q) for any finite ¢. Since [q u.(@"i,,)., dx equals — [oa"
X wz, bz, dx as well as — [o gu,, dx [after an approximation of « in H'»(Q2)
with functions from C. ()], the identity #,, = w follows by the arbitrari-
ness of g.
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34

a5,

3.6,

%

Let a¥, d’,'F be as in Problem 3.3 except for 2 replaced by B+. Let u solve

either
ue H?(B+ U SH), alu, v) = {F, v> for v € H,'?'(BY)

ue He»(BY),  afu,v) = (F,o>  for v e HMP'(B* U §9.

or

Then the conclusion of Theorem 3.15 remains valid. (The same technique
as in the preceding problem can be followed for s =1, ..., N— L)

Suppose 92 of class C'+ (with I" closed) and @V, 4!, F as in Problem 3.3.
If u satisfies

ue H'#(Q U T), a(u, v) = <F, v> for v e H?(Q L IN),

the conclusion of Theorem 3.17(ii) remains valid. Note that, as a conse-
quence, both Lemmas 3.18(j) and 3.20() hold true if } < p < 2,

If L e Hu?'o(I"), | < p < 2, there exists u € HV#(Q), 4 =0 on IO\T,
such that Bu = ¢, Indeed, let Lu = —Adu + u, and correspondingly con-
struct &(w, o) as in (3.39): the solution of the b,v.p.

we HeM@UE),  duo) = | (Folde  forve HiP@ U ),
o

where the fi's are chosen as in Step 1 of the proof of Lemma 3.18, has
the required properties,

For 1 < p < 2 Lemma 3,21(i) can be proven under the additional assump-
tion Bu = 0, as follows, Let d,{u, v) be defined as in Step 1 of the proof

of Lemma 3.21, and solve
we H ?(Q u I,

dnlv, w) + 1'[ wo dx = J- | & |P~*up dx for v € Ht2(2 W I,
o o

4 large enough. Choose p = | w |?'-*w and utilize the inequality

i 171 1/a
J |Pwl|w|""dxs(.[ |w|"'"|l7w|’dx) (_[ |w|”'dx) :
2 o o

then there exists 4, such that
[wlpne (4 — &) |u |52 for 1> 4,.

On the other hand,
'[ (Lot + L)w dx = d,(u, w) + 1.[ wu dx =J | [P dx.
o o o

At this point, utilize the inequalities
IL"’|9;Q < | Lu + A p0 + Al“'lﬂiﬂ-

N
| u |}!1-'t01 = C(E)l u |y;Q + ¢ |§: l"z‘z, |p;ﬂ:
=t

|t lp;0 = (A — )" Y(| L + Aur |pyn + |[(L — Lp)u l#;0)

in (3.37), and choose a suitably large value of a,
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Prove Theorems 3.28(i) and 3.29()) for 1 < p < 2.

Prove (ii) of Lemma 3.20 by proceeding as in the proof of (i); in order
to majorize | (L — L&’ | 0.8 use the inequality

nnT:,T : Juzgz, | < (4r)°luzz Joora, o + |27 | uzz, o
and estimate | 4, |10 through (i).
Use a cutoff technique and a bootstrap argument to demonstrate the fol-
lowing local counterpart of Theorem 3.23(i): if Q" = 2 n 0, where Q'
is an open subset of R¥ and if we HY2') with Lu = f e LP(Q"),
uloinagm =0 and (Bu)|ginr = ¢lonr, where (e AVP'H(I) 2 <p
< o0), then & € H*Pw) whenever w < 2" is open with dist(e, 5\4")
> 0, An analogous statement can be given as a local counterpart to Theo-
rem 3.23(ii).
Suppose that for some & € N, 80 is of class C*tt, g¥, gt g € CE-1Y({D),
g, g CoVMI), fe H*?P() and { is the trace on I" of some function
z € H¥+1.9(0), 2 < p < oo, Then any solution & € H*(2) of (3.36) belongs
to H*+12(). To see this, consider the case £k = 1. Take difference quo-
tients of & (in all directions near a point x* € £, and in all tangential
directions, after straightening a suitable portion of the boundary, near a
point x° € 8Q2). Utilize a local counterpart of Lemma 3.20(i) to obtain L?
uniform bounds on the corresponding difference quotients of all second
derivatives of wu.

State and prove the regularity result in C*4(£2) analogous to that of Problem
3.11 in H#(0).

Let u € Hi () n CYF) solve (3.36) with a € CY3), fe LD (N2 <
p < oo), I' = @. The equation —a"p,,, + a'o,;, = f — au in 2 can have
at most one selution v € H;;.(£2) » C(¢3) vanishing on 32, and # belongs
to H*»?(Q)).

Thanks to Sobolev inequalities, Lemma 3.20(i) (see Problem 3.5 as well)
remains valid if 8% § are taken in some space HY4'9(I'), for a suitable
choice of g > N{2 depending on p € ]1, <o[, instead of C°YI"). This can
be ascertained (after fixing x° € I') by replacing Bu’ with B’ = fo'ul,|r,
where (8}, ..., A,™) is the C°* vector field on I defined by

B! =gonBot + (1 —gaop), Bt = PHx*);
R is so small that B,z(x%) N 32 < I and »"{(x)f8,' > =/2 for x € Byp(x*) N I
Note that (B — Bou' = [(b* — By, + bu'llp if b, b € HY9({) are such
that &'|r = Y, b|r = § and r is small enough.
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Variational Inequalities

The minimum problem we mentioned in the introduction to Chapter 2
can be generalized as follows:

minimize Z(v) = %J (Vv |2+ v¥)dx — J Sodx
[+ 2
over a convex subset X of H(Q U I

[with fe L*(2), I" of class C']. If u is a solution to this problem, for any
choice of v in X the function 2(u + A(v — u)) of 1€ [0, 1] must attain
its minimum at 1 = 0; hence, u must satisfy the condition

d
ue X, m*f(u+l(u—u))|,_020 for ve K|

which amounts to

ue X, a(u,v—u)zj Sflv —u)dx for ve X 4.1)
n

[where a(u, v) denotes the symmetric bilinear form [, (uz,v;, + uv) dx}.
Vice versa, a solution of (4.1) necessarily minimizes Z(v) over X (see
Lemma 4.1 below). These simple observations are sufficient to introduce
the content of the present chapter.

In Section 4.1 we study the existence and uniqueness of solutions to
a wide class of problems which includes (4.1) and involves bilinear forms,
not necessarily symmetric, on a Hilbert space V. In Section 4.2 we gener-
alize further and replace bilinear forms by mappings {A(u), v>, with u, v
varying in a Banach space V, and A4 (not necessarily linear) going from
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to ¥'; in particular, whenever the choice of £ = V¥ is admissible, we extend
the corresponding theory of equations for linear operators A (see Sec-
tion 2.1).

At this point we focus on V= H 2 U ) or V= H?(Q U T).

In Section 4.3 we investigate the applicability of previous abstract
results to more concrete examples of convex subsets of V, of bilinear forms
and, especially, of nonlinear operators. We also show how to formulate
certain types of problems like (4.1) as differential ones. In Section 4.4 we
prove existence and uniqueness of solutions in some cases that are not
covered by the general abstract theory.

Sections 4.5-4.8 are devoted to the study of conditions ensuring some
regularity properties of solutions u, such as

ue H:?(2), ue CH(Q), u e CLy0).

In Section 4.9 we tackle instead a class of nonlinear operators that
do not enter the abstract theory of Section 4.2, and prove the existence of
solutions to problems involving either a special type of proper convex
subset K of ¥, or KX = V.

4.1. Minimization of Convex Functionals, and Variational Inequalities
for Linear Operators

4.1.1. A Class of Minimum Problems
Consider the problem of finding a vector # such that
uc k2w < FZW) for ve K, (4.2)

where X is a subset of a Hilbert space ¥ and
1
;(”)Ejlulvs—ﬁ'.l’) for ve V

with F given in V’. To investigate the minimum problem (4.2) we single
out the following properties of the quadratic functional 2
e 7 is convex, that is,
2+ (1 — ) <420 + (1 — AZ0)
for u,ve ¥, 0<A1<1;

and, more precisely,



Variational Inequalities 207

e 2 is strictly convex, that is,

A+ (1 —2w) <420 + (1 — 2)2W)
for v,ve V with uv, 0< i<l

[note that 2(u, v)y < |ulpy® + | v |p? if uv];
e 7 is coercive, that is,
FA@) >0 as vy —>o0;
e 7 is weakly lower semicontinuous in the sense that

liminf _2(v,) = 2Z(v) when v,— v in vV

(a consequcnﬁe of the analogous property of the norm | - |y);

o 7 is Gateaux differentiable at any u € V.

This means that there exists an element of ¥, denoted by 7/(u) and
called the Gateaux derivative of Z° at u, with the property

d
{(FZ (W), v) = -&T;(M + )|, for ve V;
computation shows that
('), vy = (g, v)p — (F, 0D for ve V. 4.3)

When X is convex the first and the last of the above properties of 2
lead to the following characterization of solutions to (4.2). Let u solve
(4.2), and let » € X be arbitrarily fixed. Then u+ A(v —u) e K for 0 <
A <1; the real function A A-[ 2(u + v — w)) — Z(u)] of 4 €10, 1]
is nonnegative and so too is its limit {2 '(x), v — u) as 1 — O+, This
means that u satisfies

ue K, (Z'w),v—up>0 forve K 4.4)
Vice versa, for ve X and 0 < 4 < | the convexity of 2 implies
P2+ — ) — ZW) < Z0) — 2,
so that another passage to the limit as 1 — 0+ yields

(), 0 —uy < 2(0) — Zu)
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and consequently (4.2) if # solves (4.4). Summing up, we have proved the
following lemma. ’ :

Lemma 4.1. Let K be a convex subset of V. Then (4.2) is equivalent
to (4.4).

Passing to existence and uniqueness we have the following lemma.

LemMma 4.2, If K is a nonvoid closed and conmvex subset of V, (4.2)
admits a unigue solution.

PROOF. Let {u,}, = X be a minimizing sequence for ;2 over X, that is,

FZu) —inf Z(v) as n — oo,
ve K

By the coerciveness of 7, {u,} is bounded and therefore contains a weakly
convergent subsequence {u, }. thanks to the reflexivity of ¥. Let u denote
the weak limit of the u,,'s. Since X is closed and convex, u € X (see Lemma
1.C). The weak lower semicontinuity of 2 implies

F) <lim inf 2(u, ) = inf 2 (),
ko0 el

so that u solves (4.2). .
As for uniqueness: if the minimum of 2" over X were also attained
at another vector w € X, the strict convexity of 2 would imply

ZGu+ (1 —2w) <inf Z(v) for0<i<l,
ek

"

hence a contradiction. 0

REMARK. In the particular case X = V any vector v =u ::: w, wE ¥,
is admissible in (4.4). By the two lemmas above, therefore, to any given
F € V" there corresponds a unique vector # € ¥ such that (u, w), = (F, w)
for we ¥. This amounts to a new proof of the Riesz representation
theorem.

Because of (4.3) we can rewrite (4.4) as

ue K, (v, 0o —wyy = (F,v —uw for ve X, (4.5)
or as
ue X, (T u—F,v—uy>=0 for ve K (4.6)
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(where the operator J: ¥’ — FV is the Riesz isomorphism), or as

ue k| w—z,v—u)y >0 for ve £ 4.7)

with z = JF. When X # (& is closed and convex, the solution u to (4.7),
being the minimum point for Z{v) =% | v |y® — (z, v)p over K, is also
the selution to the least distance problem (so familiar from calculus in the
case V = RY)

ue X lu—zlp<|v—2z}p forve K

We call & the projection of z over K and write it as Pg(z). The mapping
Pg: V -+ K so defined is not linear unless X is a linear subspace of V
(a case that can be investigated as an easy exercise). P is, however, con-
tinuzous, and even more than that: it is nonexpansive, in the sense of the
next result.

Lemma 4.3. Let K be a nonvoid closed and convex subset of V. Then

[Pe(z) —Pr(z) s < |zi— za |y SJor z;,z, € V.

Proor. For h = 1,2, (4.7) becomes
(Pg(zy) — zp, v — Pg(z))y =0 forve K.

Take v = Pg(z,) when k=1 and v = Pg(z,) when h = 2: the sum of
the two inequalities so obtained yields

| Pe(z) — Px(z) |v* = (Px(z1) — Pg(zs), Px(z() — Pg(z2))v
= (21 - zy, Pg(z) — Px(za))v
=|zi—z; |y | Px(z1) — Pg(z2) v,

hence the desired result. 0

4.1.2. Variational Inequalities

We now proceed to generalize (4.5), (4.6) as follows, On ¥V we intro-
duce a bilinear form a(u, v) which we assume to satisfy the boundedness
(i.e.,, continuity) requirement

|a(u, ) | < M|uly|v|y for u,ve V (M > 0);
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a bounded linear operator A: V — V’ is consequently defined by
{Au, v) = a(u,v) for u, ve V. (4.8)
We are interested in the variational inequality (henceforth, v.i.)
ue X, a(p,v —uw)=>(F,v—uw for ve K, 4.9)
which can also be written as

ue X, {Au—F, v—uw) >0 for v € X, (4.10)

where X < V and Fe ¥’ are given: (4.9) is the customary formulation
of the v.i. for a bilinear form on a Hilbert space, whereas (4.10) is a formu-
lation which can be extended to cover the case of a nonlinear operator
on a Banach space (see Section 4.2).

When the coerciveness and symmetry requirements

a(u, u) = ag | u |p? forueV (g > 0)

and
alu, v) = a(v, u) for u,ve VvV

are satisfied in addition to boundedness, a(u, v) is a scalar product on V
equivalent to (&, v)y and A is the inverse of the corresponding Riesz
isomorphism. Replace the definition (4.2) of 2" by

F )= % aly, v) — (F, v} forve V:

because of symmetry,
('), v) =a(,v) — (F,v) ={Au — F,v) forveV,

u€ ¥V, and (44) is nothing but the v.i. introduced above. The latter is
therefore uniquely solvable whenever a(y, v} is continuous, coercive, and
symmetric and £ 5% (7 is closed and convex, thanks to Lemmas 4.1 and 4.2.

When the symmetry assumption is dropped, (4.9) is no longer equiv-
alent to a minimum problem such as (4.1). We can, however, directly
provide the following existence and uniqueness result for v.i.’s.

THEOREM 4.4. Let a(u, v) be a continuous and coercive bilinear form
on V and let X7 (JJ be a closed and convex subset of V. Then, for any
choice of Fe V', (4.9) admits a unigue solution u and the mapping Fr+ u
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so defined is (with an obvious extension of terminology from the special case
V = R) Lipschitzian from V' into V with Lipschitz constant o™

PrOOF. Siep 1: Existence and uniqueness. By making use of the Riesz
isomorphism 7 we rewrite (4.10) as

ue X, (F(Au—F),v—u)y=0 forvek.

or equivalently as

ue K, (u—Tu, v —uw)y=0 for ve K

with Tt = u — p.7(Au — F), ¢ > 0. Thus u solves (4.10) if and only if

it satisfies u = Py(T,u) for some (and consequently for every) p > 0.
Let us show the existence of some positive number g such that the

mapping Pgo T, is a contraction on ¥: this will prove the existence of a

unique fixed point ¥ = Pg(T,u), hence of a unique solution to (4.10).
For u,,u, € V Lemma 4.3 yields

lPK(Tgu]) - Px(Tquz) [v* < | T@ul - Tgﬂa [
= ("1 — Uy — @ T4y — uy), Uy — Uy
— o TA(u, — ”2))7
= |uy — ty |yp* — 20 A, — up), Uy — uy)
+ 0| Ay — ug) |52
By coerciveness
oAy, — uy), 4y — up) > pag | uy — iy |5,
whereas by boundedness
| AGh — ug) [pr S My — s |y
Therefore,
| Pr(Toty) — Px(T ) Ip? < (1 — 200 + 0*M?) |4y — us |v*.
This shows that Pgo T, is a contraction provided I — 2pa, + o*M?* < 1,
that is, 0 < p < 2a,/M™.
Step 2: Lipschitz dependence. For h = 1,2 fix F, € V' and solve

u,c K, aluy, v— uy) = (Fy, v — uyy forve K.
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In the above v.i. take v = u, when A =1 and v =u, when A= 2: by
coerciveness, the sum of the two inequalities so obtained yields
oy |ty — uy |p? << @ty — Uy, Uy — )

<A —F,uy—up S|~ Flp |uy— |y,
hence the sought-for Lipschitz inequality
luy — 43|y < ag™t | Fy — Fy |y

(compare with the proof of Lemma 4.3). 0

REMARK 1. When X = V any vector v = u 4+ w, w € F, is admissible
in (4.9), which becomes

ue vV, alu, w) = (F, w) for we V.

Theorem 4.4 contains a proof of the unique solvability of the above equa-
tion, hence a new proof of the Lax—Milgram theorem.

" REMARK 2. Let a(u, v) be bounded and coercive and let each element

v of the nonvoid closed and convex set X = ¥ be the strong limit in ¥

of a sequence {v,}, each », belonging to a closed and convex set X, = V.

The reader may easily verify (by an argument that is also utilized

for Theorem 4.5) that the solution u of (4.9) is the weak limit in ¥ of the

sequence {u,}, each u, being the solution of (4.9) with K replaced by X, .

This is the simplest example of convergence of solutions to v.i.’s under

perturbations of the convex sets. For this aspect of the theory of v.i.'s we
refer to U. Mosco [119].

For what concerns existence of solutions, the assumption of coercive-
ness can be weakened by requiring that a(x, v) be nonnegative, i.e.,

a(u,u) =0 for ue v,
and satisfy a growth condition such as

there exist R € ]0,00[ and v € K, | ve |y < R,
such that 4.11)
a(u, v, — 4) < (F, v, — for ue K, |u |y = R;
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as a matter of fact, even (4.11) can be dispensed with if K is bounded.
This is illustrated by the next two results.

THEOREM 4.5. Let a(u, v) be a continuous nonnegative bilinear form on
V and let X+ (J be a closed and convex bounded subset of V. Then for
any choice of F&€ V' (4.9) admits at least one solution.

ProOF. For each n& N consider the v.i.
H”EK, a(un)v_un)+_’1!'(uu:v_un)VZ<F|v_un> for DEK!
(4.12)

which enters the coercive case dealt with in Theorem 4.4 and is therefore
uniquely solvable. By the boundedness of K, a subsequence {u,}; of
{u,}» € K converges weakly in ¥ to some vector u; u & K, because the
convex set K is closed (see Lemma 1.C). By weak lower semicontinuity

|
a(u, u) < lim inf[a(u,.,, u,,) + N | #p, |V’] s

koo

so that (4.12) yields
o, ) < i inf [ i, 0) + - (ner O)y — CF, v — )]
koo g
=a(u,v) —(F,v—u forve X,

hence (4.9). 1]

THEOREM 4.6. Let a(u, v) be a continuous nonnegative bilinear form on
V satisfying (4.11) where K (5 is a closed and convex subset of V.
Then for any choice of Fe V' (4.9) admits at least one solution.

Proor. Set
Kp={ve K||v|y <R},

where R is the positive number appearing in (4.11). The previous theorem
provides the existence of a solution u to the v.i.

ue Ky, a(u,v —u) > (F v —uw forve Kp. (4.13)

From (4.11) it follows that | u |y << R. Let w € K be arbitrarily fixed
and correspondingly let 4 £ ]0, 1[ be so small thatv =u + A(w —w) e K
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satisfies | vy < R. With this choice of v, (4.13) yields a(u, w — u) =
{F, w — u) so that u solves (4.9). - )]
Theorem 4.6 can in its turn be utilized to deal with the following
situation. Let the norm |- |y on V be equivalent to [-]y 4+ |« |4, where
[-1y is a seminorm on ¥ and |- |y is @ norm on another Hilbert space H,
into which ¥ is compactly injected.
The assumption

a(u, u) = agluly? forue vV (a, > 0),

referred to as semicoerciveness, is intermediate between coerciveness and
nonnegativity (and implies coerciveness retative to H).

THEOREM 4.7. Let a(u, v) be a bounded semicoercive bilinear form and
let K20 be a closed and convex subset of V. Then (4.9) admits at least
one solution for Fe V' if either

W N K is bounded (4.14)

or
F=F,+ F,, with | {(F,,v) | < Clvly forveV

(4.15)
and (Fi,wd <0 for we W K40},

where W= {we V| [w]y = 0}.

ProoF. By Theorem 4.5 we need only consider the case when X is
not bounded; by Theorem 4.6 we can limit ourselves to prove (4.11) with
v = 0. We shall proceed in two steps.

Step 1: The case (4.14). Suppose that (4.11) is not satisfied. Then to
cach n e ¥ we can associate u, € K with

us |y =n, a(u,, u,) < (F, u,).
By semicoerciveness,
ap[u,]v® < (F, up). (4.16)

Set w, = u, | u, |p~". From the bounded sequence {w,}, we can extract
a subsequence {w,,}; which converges weakly in ¥, hence strongly in H,
toward some vector w,
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Fix any 4 > 0: (4.16) yields

a[Awy,]y* = A% un, |y "aolutn, ]y

< A% [y CF, wo > = Ing W(F, w0,

hence
(Aw, ]y — 0 as k — oo,

and finally [iw]y =0 by the weak lower semicontinuity of the norm
|-1g + [-1v (see Problem 1.2), hence also of the seminorm [- ]p. Therefore
Aw € W; moreover, 4w, — Aw in ¥ thanks to the equivalence of the norms
|*lv and [-]y + | |a-

Since | dw,, |y = 4, w is 5= 0; mareover, since both 0 and u,, are in
the convex set K, Aw, belongs to X whenever |u,, |y =n, > 4, and
consequently dw belongs to X for all 1 > 0. In the case (4.14) this is a
contradiction.

Step 2: The case (4.15). If (4.11) is not satisfied, consider the same
sequences {u,,} and {w, } as in Step 1, and take 4 — 1. From (4.16) and
our assumption about F, we deduce that

| L ]V“o[“’n,]v! - C[wn;]V = <F1; wnk>-
Letting k — oo we see that
CFH,w» =0,

since [w, ]y —0. This contradicts our assumption about F, since we

W N KN{0). 0

ReMARK. Theorem 4.7 can be greatly improved: see G. Fichera [48],
C. Baiocchi, F. Gastaldi and F. Tomarelli [9, 10].

4.2. Variational Inequalities for Nonlinear Operators

Many of the results of the previous section can be extended, sometimes
with no substantial change (or even no change at all) in their proofs, to
much more general settings. In the present section we shall show this,
assuming at the outset that ¥ is a reflexive Banach space.
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4.2.1. Monotone and Pseudomonotone Operators

Beginning with minimum problems such as (4.1), we remark that
(strict) convexity, coerciveness, weak lower semicontinuity, and Gateaux
differentiability can be defined for nonlinear functionals 2 on V exactly
as in the Hilbert case. Therefore the proofs of Lemmas 4.1 and 4.2 can
be repeated word by word to yield the following more general results.

Lemma 4.8. Let K be a convex subset of V and let 2 be a Gateaux
differentiable convex functional on V. Then (4.2) is equivalent to (4.4).

LeMMA 4.9. Let X be a nonvoid closed and convex subset of V and let
& be a weakly lower semicontinuous, coercive and convex functional on V.
Then (4.2) admits at least one solution; uniqueness holds if 2 is strictly
convex.

By the two lemmas above we can tackle the analog of (4.10), which
we rewrite as

ue X, AWy — F, v —uw) >0 for ve X 4.17)

for a nonlinear operator A: ¥ — ¥’, whenever € ¥ and A(u), hence
also A(w) — F, is the Gateaux derivative at # of some convex functional
on V. In order to pass from this setting to more general ones, we introduce
the following definitions. We say that a nonlinear operator A: ¥V — V' is

¢ hemicontinuous if each real function
A A1 — Du + A0), v — w)

with w4, v € V, is continuous on R;

e monotone, if
(A(w) — A@), u—v> =0 for u,ve V;
e strictly monotone, if the requirement
(A(U) — AQ), u— > =0=u=0v
is added to monotonicity.

Note that each of these three properties holds for u+> A(uw) — F, Fe V',
if and only if it does for w+—> A(u). Note also that, when ¥ is a Hilbert
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space, the linear operator w+> A(u) = Au associated to a continuous
bilinear form a(w, v) [see (4.8)] is automatically hemicontinuous; it s
monotone if and only if a(w, v) is nonnegative, and strictly monotone if
a(u, v) is coercive.

The next result casts light upon the above definitions.

Lemma 4.10. Let 2 be a Gateaux differentiable functional on V. If
A is convex (strictly convex), then 7' is both hemicontinuous and monotone
(strictly monotone); if 2" is monotone (strictly monotone), then 7 is convex
(strictly convex).

ProoF. Fix u,ve ¥, u7v and set ¢p(4) = _Z{(1 — A)u + As). Then
@'(A) exists and equals (Z'((1 — 2)u + 4v), v —u) for Ae R.

If 7 is convex on V¥, so is ¢ on R. By well-known properties of convex
functions on &, ¢’ is continuous, and consequently 2 is hemicontinuous.
Moreover, ¢’ is nondecreasing: therefore

¢'(0) = ('), v—w) S(FW), v—uy = g'(1),

and _Z’ is monotone.
Vice versa, if 2" is monotone, ¢’ is nondecreasing, and consequently
@ is convex. The conclusion about the convexity of _Z° follows easily.
The proof of the ‘“‘strict’” case is perfectly analogous. 0
Strict monotonicity immediately leads to a uniqueness result for (4.17),
since the latter implies

(A(g) — Alug), uy —u» <0
whenever w, and u, are solutions. Therefore, we have the following lemma.

LeMMA 4.11. If A: V — V' is strictly monotone, (4.17) can have at
most one solution.

Before passing to the existence of solutions we move a step further
in generality. An operator A: ¥ — V' is pseudomonotone if it is bounded
(i.e., it maps bounded subsets of ¥ into bounded subsets of V') and satisfies

lim inf (A(w,), v, — v> = (A@W), u — v forve Vv (4.18)

n—oo
whenever the sequence {u,} converges weakly in ¥ toward u with

lim sup (A(u,), u, — ) < 0.

A—+00
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When V is finite-dimensional, A is pseudomonotone if it is continuous
fand vice versa: see Lemma 4.14(ii) below]. ‘

LEMMA 4.12. Let A: V — V' be bounded, hemicontinuous, and monotone.
Then A is pseudomonaotone.

ProoF. Let {u,} be a sequence as required in the definition of pseudo-
monotonicity. Since A is monotone,

<A(un)! Uy — u) 2 <A(u)! Uy — u>;

letting n — o0, we see that the right-hand side of the above inequality tends
to 0. Therefore,

{(A(u,), u, — uy —0 as n — oo, (4.19)
Again by monotonicity, we have
CA@,) — AW), uy —w> =0
for w= (1l — Du+ iv, 0 << 2 < 1. Hence,

1<A(UH), U — IJ) 2 - <A(un): Uy — u)
+ {(AWw), u, — uy + A(AW), u — v).

Let n — co: by (4.19) the above inequality yields

Alim inf (A(u,), u — v> = 2(A(W), u — vd,

n—oo

and also

lim inf (A(u,), u, — v) = liminf [{A(u,), u, — u> + {A(u,), u — v)]

00 el

> (A(W), u — ).

We let 2 (in the definition of w) tend to 0t: (4.18) follows from hemicon-
tinuity. 1

We now introduce another class of nonlinear operators 4: V — V',
To wit, we say that A4 is a Leray—Lions aperator if it is bounded and satisfies

A() = o u, u) for ue v,
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where @ V' x ¥V — V' has the following properties:

(i) whenever u € V, the mapping v — {u, v) is bounded and hemi-
continuous from ¥V to V', with

{u, u) — u,v), u — ) >0 for e V;
(if) whenever v € V, the mapping u— {u, v) is bounded and hemi-
continuous from V to V’;

(iii) whenever v € ¥, Wf{u,, v) converges weakly to &(u,v) in V' if
{u,} = V is such that u,— w in ¥ and

(..Q/(u,, ’ l“n) _‘—Qf(um u): Uy — u) - 0;
(iv) whenever v € ¥, (&u,, v), #,> converges to F, u) if {u,} = Vis
such that 4, —u in V, @f{u,, v)— F in V.

LeMMA 4.13. Every Leray—Lions operator A:V — V' s pseudomo-
notone.

PrOOF. Let u, — u in ¥, with

lim sup {A(u,), u, —u) =< 0.

Since {u,, u)}, is bounded in ¥’, we can extract a subsequence
{._Q/(u,,k, u)}; which converges weakly in V' toward some functional F.
Thus, (u,,, u), u,,> — (F, u) by (iv), and also (&, , v), u,, —ud
— 0.

Let

X = (up,, u,,) — Auy,, u), u,, - 10:

we have X, > 0 [by (i)] as well as
lim sup X; << 0,
koo
hence
Xy —0 as k — oo,

But then (iii) implies

u,,, w) — (4, w) in V' {4.20)
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whenever we ¥, and (iv) yields

(it W), tng> — (St W), ),

hence
(N up, , W), tiy, — 1) 0. (4.21)

Since X; = 0 we arrive at

lim inf (8T, , tp,), tn,— u> >0
k+co

by taking w = u in (4.21), hence

(& uty, , Un)y thp, — 1) — 0, (4.22)

We now arbitrarily fix v € V and take
w=u-+ Ap—u), A€]0,I[
From the inequality
(o ttp, ; ) — S ttny, W) thy, — W) =0
we deduce that
Aty 1), 16— 0D = — (S ity s Uny), Un, — 1)
+ (A un, , W), iy, — ) + Ay, , W), u — 1),

hence that

A lim inf (& u,,, uy,), ty, — 0> = A lim inf [{(u,,, u,,), v, — w
koo koo

+ (-.M(H"t, unk)y u— v)]
> Alim (& u,,, W), u —v)
koo

= M, u + A — u}), u — 0D

by (4.20), (4.21), and (4.22).
At this point we first divide by 4, then let A — 0+: by hemicontinuity
the result is that

lim inf (A(uy,), tin, — 0 > (A), u — v,
koo

and pseudomonotonicity easily follows. 1]
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When V is a Hilbert space and u+> A(4) = Aw is the linear operator
associated with a bounded bilinear form, the weak (strong) convergence
in ¥ of a sequence {u,} toward a vector v implies the weak (strong) con-
vergence of {4u,} toward du. For pseudomonotone operators on reflexive
Banach spaces we have instead the following lemma.

LEMMA 4.14. Let A: V — V' be a pseudomonotone operator.
O fu,—uinVand A(u,)— F in V', with
lim sup {A(u,), u,> < {F, w),
oo

then F = A(u).
(i) If u, —>u in V, then A(u,)— A(u) in V.

PrOOF. Step 1: Proof of (i). Since

lim sup {A(u,), 4, — 1> < limsup {A(u,), 4,> — lim {A(u,), ) <0,

[ L]
pseudomonotonicity yields {4.18). Therefore,

{Au), u — v) < lim sup (A(u,), u, — v

n—¥o0

L {Fu— for e ¥,
and finally A(w) = F by takingv =uw 4w, we V.

Step 2: Proof of (ii). Since the image under 4 of the bounded sequence
{u,} is bounded in the reflexive Banach space ¥, there exists a subsequence
of indices such that A(w,,)— F in ¥ as k — co. Since {(A(uy,), ¥y, — 1>

—0 as k — oo,
(F,u—v) = liminf {d(w, ), u,, — 1>
k-—»co
= (A(u), u — o) for ve ¥,

hence F = A(w). By uniqueness, the whole sequence {A4w,} converges
weakly in V toward A(w). 0

Finally we provide the following criterion for the stability of the class
of pesudomonotone operators under perturbations.

Lemma 4.15. Let Ay, Ay: V= V', with A, pseudomonotone and A,
bounded, hemicontinuous, and monotone. Then A = A, + A, is pseudo-
monoione.
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Proor. Let {u,} converge weakly in ¥ toward u, with

lim sup {A{u,), 4, — 4y < 0.

n—+»oo

Then,

(Al(un)! Uy — u) = <A(un)l Uy — u) - <A2(un)s Ug — u)
S <A(un)’ un - u) - <A:(u)’ un - u)

(by the monotonicity of 4,), and

lim sup {4,(¥,), u, — ) <0,
n-roa
which implies
lim inf (A, (1), 4, — ) = (A, (1), u — v) forve ¥V  (423)

n-»o

(by the pseudomonotonicity of A,).
This implies that {A,(u,), u, — u) —0 as n — oo, hence

lim sup {A4{u,), u, — u> = lim sup [{A(u,), 1, — >

n=oo

- <A1(un)r u, — u)] S 0
and

lim inf (dy(u,), u, — 0> = (A, (u), u —vy for ve ¥V  (4.24)

]
by Lemma 4.12. Summing (4.23) and (4.24) we obtain the inequality

lim inf {A(u,), u, — v) = {A(u), u — v} for ve ¥,
n

—-00

which completes the proof since A is obviously bounded. 0

4.2.2. Existence and Approximation of Solutions

Returning to (4.17) we prove the following generalization of Theo-
rem 4.5,

THEOREM 4.16. Let A be a pseudomonotone operator V. — V' and let
K= be a closed and convex bounded subset of V. Then for any choice
of Fe V' (4.17) admits at least one solution.
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Proor. We shall proceed in two steps.

Step 1: The finite-dimensional case. If V is a finite~<limensional space,
it can be endowed with a scalar product (-, -)p. Then {4.17) can be re-
written as

ue kK, (J(AW)—F)v—wyp=>0 forvek,

hence as (4.7) with z =y — F(A4(w) — F).

We need to prove that the mapping fg: u— Pg(u — 7(4(u) — F))
has a fixed point.

Since 4 is continuous from V into ¥V’ [by Lemma 4.14(ii): in the
finite-dimensional case weak = strong], .7 o 4 is continuous from ¥ into
V, and so is Pg (by Lemma 4.3). Thus [{g: K — K is continuous, and the
Brouwer fixed point Theorem 1.1 yields the existence of u = fig(u).

Step 2: The general case. We proceed under the additional assumption
that ¥ is separable; if it is not, the proof requires a few minor modifica-
tions as in H. Brézis [18].

Every subspace of a separable metric space is separable. By the sep-
arability of ¥ we can therefore construct a sequence {¥,} of Banach sub-
spaces of V, dim V¥, <», and a sequence {X,} of nonvoid closed and
convex sets K, € V,, with K, < K,,,, so that | J>, K, is dense in K.
For each n € N, Step 1 enables us to solve the v.i. (which we write with
a slight abuse of notation)

u, € K,, A, —F,v—uy>=0 for v € K,,. (4.25)

Since KX is bounded, a suitable subsequence of the bounded sequence
{u,}, say the original sequence itself, converges weakly in ¥ toward some
vector u; since X is convex and closed, # € K. Let £ > 0 be arbitrarily
fixed and let Aie ¥, d€ K, be such that ju — |, < £. Then

<A(un)’ Uy — u) = <A(uﬂ)l Uy — ﬁ) + <A(un)’ i — u)
S <F) Uy — ﬂ) + £ sup | A(un) |V'

neN
for n > £, hence

lim sup {A(w,), v, —u) < (F, u— &) 4+ esup | A{u,) |y

n-poo neN

< & Flp + sus | A(u,) |77)
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By the arbitrariness of ¢, lim sup, ..., {A(&,), 4, — u) <0, so that
pseudomonotonicity yields ' ‘

lim inf A(u,), u, — v> = (Au), u —v) for ve V.

n-eca

By taking v in some X, we deduce from (4.25), written for n = #,,
that

lim iﬂf(A(u"), U, — U) S <F) u— v))

hence
CA), u — o) < (Fu—v> forvel|JK,.

n=1
By density u solves (4.17). 0
If now the analog of the growth condition (4.11) is formulated for a
nonlinear operator 4 as follows:

there exist Re ]0,c0] and v e K| |vo |y < R,
such that (4.26)
(A) — F, vg— u) <0 for ue X, july =R,

we can proceed as in the proof of Theorem 4.6, this time by making use
of Theorem 4.16, and prove the following theorem.

THEOREM 4.17. Let A be a pseudomonotone operator V — V' satis-
Sying (4.26), where K 7 3 is a closed and convex subset of V. Then for
any choice of Fe V' (4.17) admits at least one solution.

REMARK. Since X = FV is admissible in Theorem 4.17, the latter con-
tains an existence result for the equation

ue v, A@w) = F.

Also Theorem 4.7 admits a generalization to the case of a nonlinear
operator A. To see this we consider the following situation: ¥ is compactly
imbedded into a Banach space X, and ||y ~[-]1y + |-|x, where [-]y is
a seminorm on V. Calling semicoercive a nonlinear operator A: V' — ¥’
such that

CAu), u) = aplu]y?  forueV (>0, ¢>1)

we can proceed as in the proof of Theorem 4.7 with a few, obvious changes;
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notice that now Theorem 4.17 must be utilized. Thus we have the following
theorem.

THEOREM 4.18. Let A:V —> V' be a pseudomonotone semicoercive
operator and let K> 0 be a closed and convex subset of V. Then (4.17)
admits at least one solution for Fe V' if either

W N K is bounded

or
F=F,+ F,, with |[(Fp, 0 | <Cloly forveV
and {Fi,wd> <0  for we W n KN\{0},

where W= {we V| [w]y =0}

We conclude this section by showing how solutions to v.i.'s can be
approximated by solutions to suitable equations (necessarily nonlinear,
even when the v.i's are of the form (4.10), A linear).

First, we call a bounded operator A: V — ¥V’ coercive (relative to K)
if there exists v, € K such that

| |y~ KA@M), u — vg) o0 as |u|p —>o00.

This terminology reflects the fact that a linear operator w+> A(u) =
Au associated with a bounded bilinear form on a Hilbert space V is coercive,
in the above sense, if a(u, v) is coercive in the usual sense. Note that (4.26)
holds if K is unbounded and A coercive. .

Next, we say that a bounded, hemicontinuous and monotone operator
B:V — V' is a penalty operator associated with X = V if

fu)=0<ue kK

TueoreM 4.19. Let K7~ (& be a closed and convex subset of V, let A
be a pseudomonotone and coercive operator V — V', and let 8 be a penalty

operator associated with K. Then there exists a sequence {u,}, where each
u, satisfies

u €V, A(u,) + ﬁﬁ(un) =F

with e(n) — 0% as n — oo, which converges weakly in V toward a solution
to (4.17).
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ProoF. Let e > 0 be arbitrarily fixed. The operator w—s A(u) +
(1/€)}B(u) is pseudomonotone by Lemma 4.15. It is also coercive since
the coerciveness of 4 implies

|1 ly A + - B), 1 — 09
— Ly ™A@ + - B — ol 1 — 50>

= Ju |y Au), u — vg) — o0 as |u|y —+ oo

by the membership of v, in K and the monotonicity of f. Theorem 4.17
can therefore be applied with X = V, and the equation

weV, Aw)+pl)=F

admits at least one solution u,. Moreover, the above inequality implies
the existence of a constant C, independent of the choice of ¢ > 0, such
that | u, | << C. Therefore | A(u,) |y is also bounded independently of e,
and finally the equation implies

B(u,) = e[F — A(un,)] —Q in ¥’ as ¢ — 0+,

A sequence {e(n)} can be found, with the property that e(n) — O+
and u, = u,,, —u in ¥V as n — oo,
Let v € ¥ be arbitrarily fixed; then the inequality

<ﬂ(un) - ﬁ(v)) u, — IJ> =0

yields (B(v), u — v> <0, hence {f(u — iw), wp> < 0 with the choice of
v=u— Aw with A > 0 and w € V. By hemicontinuity we can let A — 0+
and obtain {B(u), wp <0, hence f(u) =0 by the arbitrariness of w.
Therefore v € K. Next we fix v € X, so that f(v) = 0. From the equation
we deduce

1
<A(un) - F; v— un) = _e(_"T <ﬁ(v) - ﬂ(un)s v — un> 2 Os
hence
lim sup {A(u,), u, — uy < limsup{F, u, —ud = 0,

Ao n-rc)
and finally
im inf {A(u,), u, — > = {A(u), u — v

>0

by pseudomonotonicity. This suffices to show that u satisfies (4.17). [
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REMARK. Theorem 4.19 provides a constructive approximation method
if (4.17) is uniquely solvable. Notice that if this is the case, the solution
u is the weak limit in V of {i,} as ¢ — 0+.

4.3, ‘Variational Inequalities in Sobolev Spaces

We now proceed to exhibit fundamental examples of convex sets and
bilinear forms, or nonlinear operators, entering the theory of v.i.’s when
the underlying space V is some closed subspace of H'(f2), or of H""(£2)
with 1 < p << oo. We are also going to show that v.i.’s associated with
unilateral or bilateral constraints (in the sense specified in Section 4.3.1
below) can be interpreted as obstacle problems.

4.3.1. Convex Sets

The abstract results of Section 4.1 can be applied to any closed and
convex subset X = (7 of a closed linear subspace V of H!({2).

The most important instance of a convex subset of V occurring in
the theory of v.i’s is

K={veV|iv<yin 2} @.27)

with y measurable. X is obviously closed (see Theorem 1.QQ). Sufficient
conditions in order that X =~ (%} can easily be given in the special case
when V' = H (2 U I'), with I" of class CL. If p€ H'({2) with y >0 on
802\I in the sense of H'(£2), then X5 w A 0. If instead p € C°(2) with
v > 0 on 82\ T, we can easily construct p’ € C(Q) with p’ > 0on 82\ I
and ¥’ < y (see Theorem 1.N and Lemma 1.7), so that ' A 0 belongs to
H'(£2) with supp(y’ A 0) < £ U 1" and finally " A 0€ K. Note that the
above requirement that » > 0 on 22\ 1" cannot be weakened by replacing
> with >, as the following example shows.

ExampLE. Let N=1,2=)0,1[, ' = @, y€ C(), w(x)= — | x |
with 0 << d < 1/2 for 0 < x < 1/2, w(1) > 0. Any function v € & would
simultaneously belong to C%'2(f0, 1]) (by Theorem 1.41) and satisfy
Jv(x) — v(0) | = —v(x) = | x |? for x € {0, 1], which is contradictory.

We introduce another important class of nonvoid closed and convex
subsets of ¥V = Hy(£2 U ") by setting

K={veV|v<4¢ on E in the sense of H'(£)}, {4.28)
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where £ 2 U I and € CYE) with infg § > —oo. If E cquals I and
the latter is also closed, (4.28) becomes

E={veV|v<4% on I in the sense of H'(2)}. (4.29)

Note that the requirement % € C°(I") can then be replaced by § € HV¥(I"),
in which case X contains any function y € V with p|, = §.

The convex sets considered up to now are defined by wnilateral con-
straints (the latter ones being placed above: unilateral constraints placed
below can be dealt with through obvious changes). They are cones (i.e.,
they verify v€ X = Av € X whenever 0 < A < o0} if y, or ¥, vanishes
identically.

A closed convex set defined by bilateral consiraints is the following:

={veV|g<v<ypin 2} (4.30)

with @ and y measurable on £, ¢ < y. By considerations analogous to
those developed about (4.27) it can be checked that when V = H'{(2 U I'),
K £ (1 if ¢ and y belong either to H'(2) with p <0 <y on d2\ T in
the sense of H'(£2) [so that X3 ¢ V (p A 0)], or to C%(2) with ¢ < y in
QU T, @laonr <0 < plagr-

An important example of a nonvoid, closed, and convex subset of
V which is not of the obstacle type is given by

={peV||Pr|<tin Q} (4.31)

(see the Notes to this chapter).

All the above considerations can be easily extended to the case when
the Hilbert space H'(£2) is replaced by the reflexive Banach space H'-?({2)
for some p € ]1, oo[.

4.3.2, Bilinear Forms and Nonlinear Operators

As in Section 2.2.1 we introduce a bounded bilinear form a(u, v) on
HY{Q), as well as bounded linear operators A: HY(2) — [H(2)]' and
L: HY{(2) - H-1(£2), by setting

{Au, v) = a(u, v)

= J. [(a"u,, + d-’u)vz, + (bluy, + cu)v} dx for u, v € HY(S2)
(4.32)
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and
{Lu, v = a{u, v) for ue H'(2), ve H,'(2), {4.33)

under the assumptions
a¥, d’, b, c € L=(2),
aEE, > a|ElP  ae in R for E€ERy (a3 0).

Again, we also view A4 as a bounded linear operator HY{(2) — V'
whenever ¥V is a closed subspace of H(2), V = H,'(2).

The example of Section 2.2.1 provides us with a sufficient condition
in order that a{u, v) be coercive on F, so that the v.i. {4.9) can be investi-
gated in the light of Theorem 4.4.

Other abstract results of Section 4.1 can be utilized to investigate (4.9)
in some cases when coerciveness does not hold for the bilinear form (4.30).
For instance, we illustrate Theorem 4.7 with the following example.

ExaMpPLE. Let 82 be of class C!, so that Rellich’s theorem holds,
and set & = b' = ¢ = 0. Then a(u, v) is semicoercive on ¥ = H' (), with
H = L¥®) and {uly — | Pu |pg.

We must, however, mention that in applications of the theory of
v.i.’s the most relevant semicoercive examples involve bilinear forms of
types different from (4.32): see G. Fichera {48], C. Baiocchi, G. Gastaldi,
and F. Tomarelli [9, 10].

Passing from H'(2) to H.7(12) with p arbitrarily fixed in ]1, cof, we
denote by F a closed subspace of HL#(£2), V 2 H,'-?(2). We define a
nonlinear operator A: H1?(£2) — ¥’ by setting

(A, v> = J [AiCu, VYo, + A%, Vo] dx
2
for ue H-?(2), ve V, {4.34)

where, for j =0, 1, ..., N, A(5, &) is the function x> a¥{x, 5(x), £(x))
if , &, ..., &y denote measurable functions on £, ¢ = (§,, ..., éy);
@/ is supposed to be a Carathéodory function of x € 2 and (), £) € R*¥,
with
| @(x,n, 1< (I P71+ | E1P7Y) + h(x) @35)
foraa. xe @ and any (n, §)eR*Y  [he L7(Q)].
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We also define L: H.#(2) — H 1.7'(2) by setting
{L(w), vy = {A(u), » for v € H-?(), v e Hy?(2),

that is

L(u) = — a—i‘- A¥u, Vu) + 4A%u, Vu).

In the sequel we shall call A: H'?(2) — V' bounded, or hemicon-
tinuous, or monotone, if the restriction of 4 to ¥ is such. For what con-
cerns hemicontinuity (and boundedness) note that whenever %, &, ..., &y
are functions from LP(2), (4.35) implies A/(n, &) e L?(2) (and even

lAj(’T, &) |‘p’;QS Cif |7J) 51) ceey EN |p;ﬂS C).

Thus, by a theorem of M. A. Krasnosel'skii, A7 is continuous from
[LP(D)+¥ into L?'(£2). This circumstance, which implies hemicontinuity
of A4, can also be ascertained as a consequence of the following simple
lemma.

LemMa 4.20. Let g be a Carathéodory function of x€ 2 and [ € RM
such that

lg(x, O | <ClEr+h(x) foraa xe€Q and anyleRM

" (4.36)
with h € L($2), h>=>0,

1 << g < oo, 1 < r < oa. Then the operator G: {LP()|¥ — L), p =.rgq,
defined by G(Z): x> g(x, L)) for L= (ay - .., Lne) € [LHD)IH is con-

tinuous.

Proor. Forj=1,..., Mlet {,; — {;in L?(2) as n — co, hence also

(b= Ly &5 a.e. in 2 as k — oo,

[ | <{*eL?(2) ae. inQ forheN

for a suitable subsequence of indices (see Theorem 1.QQ). Because of (4.36)
this implies that the sequence {| G({}'} — G({) |4}, where & = (Ch,
..., tiae), is dominated by C[T¥, (£;%) + h?] € L}(); by Lebesgue’s
theorem,

G¢Y—~G(K) in LY(2) as k — oco.
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Since the passage to a subsequence is at this point nugatory, we have
proved that, as 7 — oo,

G(.) =~ G()  in LYQ)
whenever
(o= L in [LP(2)]M. 1]

If the requirement

[@®(-, 0, &) — a®(-, 7', E)n — %)
+ [@(-,n, &) — &, 7, EN&— &) =0 (4.37)
ae. in 2 forp,neR and ¢ EeRY

is added to (4.35), A ts rapidly seen to be monotone; as for strict mono-
tonicity, it holds if a.e. in @ the equality sign in (4.37) implies = %" and

= ¢, or even if it only implies & = ' provided Poincaré’s inequality
(as in Lemma 1.46) is valid in ¥. As a matter of fact, (4.37) implies more
than monotonicity. To wit, let u,v € H'?(£2) with {u — v)* € V: then,
Theorem 1.56 implies

<MM~M%@—@6=meﬂmwrwﬂmwm%—%9
+ (A%, Vu) — A%, Po))(u — v)} dx

with 2+ = {x € 2| u(x) > v(x)}.

Consequently, {A(u) — A(v), (u — v)*> is =0, and >0 for | 2+
> 0 if a.e. in 2 the equality sign in (4.37) implies n = %', £ = &', or even
if it only implies § = &’ and Poincaré’s inequality holds in V. This property
of the specific operator 4 defined by (4.34) underlies the following defini-
tion. A nonlinear operator A: H?(2) — V' is said to be

e T-monotone, if
CA@) — A(), (4 — 0)*) =0
for u,v € H"“?(£2) with (w —v)*te ¥,

o strictly T-monotone, if the equality sign in the above inequality can
only hold when ¥ < v in £2;

T-monotonicity implies monotonicity, since

CA(u) — A@), u —v) = {A(u) — AQ), (u—v)*
+ (A(v) — A(u), (v —u)*> for u,ve V.
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ExaMmpLE. Let @(x, 7, &) be continuously differentiable and convex
with respect to (5, £) € R'+¥ for a.a. x € £2, measurable with respect to
x € 2 for any (5, £) € &+¥, By Lemma 4.10 in R™*¥ the functions a° =
P,,a' =, ..., a" =D, satisly (4.37), with the strict inequality sign
for (, &) 7= (n', &) if convexity is required to be strict. Under assumption
(4.35), A(u) from (4.37) is the Gateaux derivative of the convex functional

HY?(2) 5 ur—r J D(x, u(x), Fu(x)) dx.
Q

If (4.37) is weakened into

[ai(', 7, 5) - ai(') 7, E’)](El - Ei') 2 0

4.38
a.e. in 2 for ne R and & EeRY “-33)

{which is the case when, in the above example, P is assumed to be convex
with respect to £ only), monotonicity can no longer be claimed. However,
we have the following theorem.

THEOREM 4.21. Let V be compactly imbedded into L7(2) and let A
be. defined by (4.34) under assumption (4.35). Suppose that (4.38) holds,
with the strict inequality sign for £ 7= £'. Then A is a Leray-Lions operator,
hence a pseudomonotone operator, when restricted to V.

[For what concerns sufficient conditions in order that the injection
V o LP(2) be compact, see Theorem 1.34 and the remark following
Lemma 1.46.]

The proof of Theorem 4.21 is by no means straightforward. It requires
the first part of the following technical result. (The second part will be
utilized for Theorem 4.47.)

LemMa 4.22. Same assumptions as in Theorem 4.21. If {u,} < V is
such that u,—u in V and [, D, dx — 0, where

Dﬂ = [Ai(u'“ V"n) - Ai(uﬂ.l V")](un - u)z.p (4'39)
then A*(u,, Vu,) — A% u, Vu) in LP'(£2) for j =0, 1, ..., N. If, moreover,

a'(x,n, )6 > alE|7 — 4717 — g(x)
Jor aa. xe 2 and any (n, &) e R+¥ (4.40)
(¢>0,A=20 and gelI¥R), g=>0),
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then u, —u in V and therefore
A¥u,, Vu,) — 4(u, Pu) in L¥($y for j=0,1,..., N.

{For p = 2 compare (4.35), (4.40) with (2.54), (2.55).]

PrOOF. Step 1: The general case. By the strong convergence of {u,},
in L?(2) and {D,}, in L(22) (D, being = 0), we can find a measurable
subset Z of 2, | Z | = 0, with the property that throughout 2\Z every
function at hand is well-defined, and

"*’E"lg_’"' DI'_IED“—I-O as kK —» oo

for a suitable subsequence of indices (sce Theorem 1.Q). We fix x € 2N\ Z
and set '

n= u(x), "7.!.-’ = u,,'(x), E = Vu(x)s Ei’l = uiz.((x)l 6!" = (Eill R | ELV)

We claim that {£,'} remains bounded. Suppose the contrary. Then
for a subsequence of indices we have

&, —&1>1, (&, —HNE, — &) >E*#0  as h—>oo

But then (4.38) yields

0 < [ae, 740, ) — o¥(x, s 6 + %{%)](e;..- — &),
hence also ‘
0.< [a(x, 7y, + l—j:%gl—) — ax, 7y, ©)|(Ei — £

&, — ¢
& — ¢

+ ax, 7y, E4) — 0K, s f)](s;.i — £) < D} (x).

—[a{x mhr 8 + ) — ats, i 64

Letting h — oo we obtain
la*(x, 5, & + £*) — a'(x, 5, O):* = 0,

hence £¢* = 0, a contradiction.
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If now £ is the limit of a converging subsequence of the bounded
sequence {£';}, we have '

0 = [a'(x, n, &) — a'(x, 7, HIE; — &)
But then & = £ so that & — £ and
a(x, ', &) = ai(x,p, &)  for j=0,1,..., N.
We have proved that, as k — oo,
Ai(u, Vu) — A3 (u, Vu) a.e in £2;

since the functions A/(w;’, Vu,'), k € N, are uniformly bounded in L?'(£2)
by (4.35), we arrive at

Aiu, Vuy — A¥(u, Pu) in L*'(£2)

{see Problem 1.12), so that the weak convergence of the whole sequence
{A%(u,, Vu,)}, follows easily.

Step 2: The case (4.40). We return to the subsequence {u,'} of Step
1, which verifies &' — u in L?(£2) as well as

Uy U, Uby > Up s - Uiy — Uy ae. in £,
The fuactions
8y = A, VugYuiz, + A |0 17+ g
are integrable and verify

8y = 8= A, Viu, + A|ul?+ g a.e. in £;

note that, by (4.40)
8u(x) = a | Puy/(x) |7 (4.41)

By assumption, as k& — co the quantity
J Dy dx = J dpdx — A J | " |P dx — J gdx — J Ay, PuYug, dx
n 1 2] o o

— J Al VuYug,, — ug,) dx
o
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tends to 0. But
J.a A, Vi g dx — Jo A, Vudu,, dx
by Step 1, whereas
L Ay, V) (g, ~ 1,,) dx — 0

since A'(uy’, Vu) — A'(u, Vu) in LP'(2) (sce Lemma 4.20) and uj, — u,
in L7(£2). Thus,

J dkdx—a-J. 5 dx.
2 o]

We now set §, =48, A8 =258 — (0 — §;)* Since 0<4§, < § and §,
—d a.e. in 2, the dominated convergence theorem yields

8, > 48 in LY(DQ).
But then,
B—98)=6—8,—0 in LY(Q),

and finally
J ]5—5k|dx=2j (a—ak)uxﬁj’ (8 — 8,) dx — 0.
a f¢} ) a

Thus the sequence {5,} converges to 8 in L(£2) as well as a.e. in £2, and
has uniformly absolutely continuous integrals by Vitali’s theorem; because
of {4.41) this is also true of the sequence {| Vu,’ |}. Vitali's theorem can
therefore be applied to the sequences

{| uizl - uzl Ip}: R | {l ui“zN - "z_y |p}-
so that fori=1,..., N
Uiy, — U, in L7($2) as k — oo,

The strong convergence of u, to w in V [hence also of Ai(u,, Pu,) to
Ay, Vu) in LP’(2), by Lemma 4.20] follows immediately. 0
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PrROOF OF THEOREM 4.21. A is o_bviously bounded. For u, v, we V
we set

{7 (u, 0), Wy = J.a A¥(u, Po)w,, dx,

(" (), wy = J‘ A%u, Vuyw dx,
0
A, 0) = " (w, 0) + " (u),

so that &”(u, u) = A(u), and proceed to verify requirements (i)-(iv) from
the definition of Leray-Lions operators.

The boundedness properties required in (i) and (ii) are obviously
satisfied; as for the hemicontinuity properties, they immediately follow
from the stronger property ensured by Lemma 4.20. Finally, (4.38) implies
that

(o, u) — M, v), v — ) = {4, u) — (4, v), u—v)>0.
Thus it remains to prove (iii) and (iv).
Let {u,} = ¥ be such that u,—u in ¥ and [, D,dx —0, with D,

defined by (4.39). Then in particular A%u,, Pu,) — A%u, Pu) in LP'(2)
by Lemma 4,22, hence

&) W) in V.
Since the convergence of ¥"(u,,v) to &¥”(u, v) is ensured by Lemma
4.20 because u, — u in L?(£), (iii) follows. '

Now let {u,} = ¥ be such that v, —=u in ¥V and u,, v)— Fin V',
Then

(A (it 0), > — (" (i, 0), w)
by Lemma 4.20. On the other hand, the incquality
(" (@), g — > | < Cluy — )0
yields ("' (u,), u, — uy — 0. Since
(A (), uy = (S uty, 0), Uy — (7 (4, 0), 4y — (F, u) — {7 (u, 0), w),

we have (& (u,), up> — (F, > — (& (u, 0), ud; finally, (&(up, 0), u,)
—{F, u). a
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The considerations developed in this section up till now provide us
with a satisfactorily wide class of concrete cases entering the abstract set-
ting of Theorem 4.17, except possibly for what concerns the growth condi-
tion (4.26). We therefore conclude this subsection with the following non-
linear extension of the example of Section 2.2.1.

ExaMPLE. Assume (4.35) for j =0, 1, ..., N and let (4.40) hold with
A = 0. Suppose that a®(x, 5, £ = ¢, | 5 |? for a.a. x € £ and any (z, §)
€ R“¥(e, > Q).

Then, whatever the choice of ¥ (and K), A4 is coercive, hence a fortiori
satisfies {(4.26). The same conclusion remains valid even when it is only
supposed that C from (4.35) for j =0 and A from (4.40) are < g, with
e > 0 sufficiently small, provided Poincaré’s inequality holds in V. We
leave details to the reader.

4.3.3. Interpretation of Solutions

Fix V = H}2 U I') with I' of class €' and let a(¥, v) and A be
defined by (4.32}, L by (4.33), B as the conormal derivative operator [see
(2.16)).

We first consider the v.i. (4.9) associated with the convex set (4.27)
(supposed = &), that is, the unilateral v.i.

ue v, <y in £,

(4.42)
o, v—wy={Fv—uw for ve ¥, vy in 2.

If w is a nonnegative element of V the choice of v = w — w is admis-
sible in (4.42), so that a{u, w) << (F,w) and therefore Au << F (in the
sense of V') by the arbitrariness of w. Denote by f the restriction of F
to H)(2); then, Lu < fin 2 [in the sense of H-(Q)].

Of course, a function w satisfying (4.42) vanishes on 821" [in the
sense of H'((2)] by its mere membership in V.

In order to proceed further with the interpretation of (4.42) we tackle
a special situation.

LemMa 4.23. Letr I' be closed and let y € HY(Q),

(F, vy = Jnfu dx + <& vl Jorve vV,

(4.43)
with fe L{Q) and  Ce [HVI))].
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A function u€ HY2) with Lu € L¥$2) solves (4.42) if and only if it
satisfies
v <y, Lu<f and (Lu— f){lu—yp)=0 in 2,
u=0  on 3T in the sense of H\(), T (4.44)
ulr < ylp, Bu < on I, and {Bu—2¢, (u— v)p =0.

Proor. Step 1: The “if”” part. Let u satisfy (4.44). Then v € V and
(Au, 0 — u) = a(u, v — u) = J- Lu(v — u) dx + (Bu, (v — )|
o

for v € ¥ by the definition of the conormal derivative Bu. Take in particular
v < : then (v -— u)*|, < (¢ — )|y, and By < on I {in the sense of
[HY¥I)]'} implies

(Bu— ¢, (0—u)t <0

as well as

(Bu— &, (0 —wy = (Bu—L, (p—u)p»=0.

On the other hand, (v — u)* can differ from O only where ¥ — u is
> 0 and therefore Lu — f vanishes. Thus,

(Au—F, v —~u =j (Lu Yo — uydx + (Bu— I, (0 — u)l
]
- —L(Lu—f)(v—u)‘dx— (Bu—1, @ — )] >0

because (v — u)~ is a nonnegative element of V. This suffices to show
that u solves (4.42). Note that, when I = (%, the requirement yp € H(f2)
can be relinquished.

Step 2: The “only if” part. Under the assumptions of the implication
we want to prove, the functions # — v and Lu — f are < 0. We fix any
measurable subset 7 of £2 having a positive distance from 852 and denote
by {y.} @ sequence of functions from C(f2) satisfying 0 < y, <1, 1,
— z1 (characteristic function of f) a.e. in £2; note that y, is the limit of
the sequence of its regularizations in every L?(§2), p < oo, hence also
(after passing to a subsequence, see Theorem 1.Q) a.e. in £2. We can insert

v=u-+t g,y —u) in (4.42) and obtain

0 CAu— F, paly— > = | (L= Nraty — ) d,
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hence also

0< j (Lu — Ny — u) dx = j (Lu — /)y — u) dx

after passing to the limit as n — oo with the help of the dominated con-
vergence theorem. By the arbitrariness of 7, (Lu — f)(y — #) = 0 and
finally (Lu — f)( —u) =0 a.e. in Q.

Next, let {f,}c C2(@ U ) satisfy 0< 2, <1 in @ and §,=1
near I, %, — 0 a.e. in Q. Since 4du < F we have

0= <{Au —F, j,w = J- (Lu — Ng,wdx + (Bu— 1, w|p»
Q

whenever w € ¥, w = 0. We can again pass to the limit under the integral
sign and verify that [, (Lu — f)f,wdx —0 as n —oo: hence Bu<{
follows from {Bu — {, w|py << 0 by the arbitrariness of w, hence of w|p.
We now insert v = u + £,(y — %) in (4.42) and obtain

0 <<{Au—F, ju(p —u)

- j (L — f)inly — u) ds + (Bu— L, (p — )|,

hence
(Bu—L,(p—u)|p»>=0

after a passage to the limit as 7 — oo, and finally
(Bu—1{, (p —u)lp=0

because (y — )|, is a nonnegative element of HV*(I"). a

We call (4.44) an obstacle problem, more precisely a variational uni-
lateral problem; we say that the condition on I' is a unilateral Neumann
condition, the one on A2\J" being of course the homogeneous Dirichlet
condition.

We do not develop here the study of (4.9) in the case when K is given
by (4.28) under general assumptions about the set E: the reader is referred
to G. Stampacchia [141] for an illustration of connections to potential
theory. Let us take up instead the special case (4.29), that is,

ueV, <4 on I in the sense of H({2),
au,v —u) = {F,v —u (4.45)
for ve ¥, <9 on I' in the sense of H'({2),
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with I closed and cither § € C°(I") or § € HY¥(I'). Again, Au << F. More-
over, any function v = u + w, w € Hp'(2), is admissible in (4.45), which
therefore implies Lu == f with f = restriction of F to Hy'(£2). At this point
the following result can be proven by proceeding as in the proof of Lemma
423,

LemMma 424, Let I' be closed, let § = y|p, v HY(R), and assume
(4.43). A function u € HY(L2) solves (4.45) if and only if it satisfies
Lu=f in £,
u=0  on 3T in the sense of H'(2), (4.46)
ulr < vlp, Bu<{ on I, and (Bu— ¢, (u—w)|>=0

We now consider the v.i. (4.9) associated with the convex set (4.30),
that is, the bilateral v.i.

ueV, o¢<u<yp in 4,
(4.47)

a(u, v —u) = <(F, v —u) for ve V¥, p<p<y in 2.

Lemma 4.25. Let I' be closed, let ¢, y € HY(Q2), and assume (4.43).
A solution u of (4.47) such that Lu € L¥) is alse a solution of

e<u<y, (Lu—fllu—g)<0
and (Lu — fY(u— ) <0 in Q,
u=20 on 3N\I in the sense of HY(2), (4.48)

olr <ulr < 9vlp, (Bu—{¢, (u— o) <0
and (Bu —{, (u—p)lpy <0.

For the proof, see Step 2 of the proof of Lemma 4.23: note that
whenever yx is a function of C=(2 U I') that lies between O and |, the
functions u# + y(p — u) and u + y(p — u) are in V and lic between ¢
and .

We say that the obstacle problem (4.48) is a variational bilateral problem
with the homogeneous Dirichlet condition on @2~ I" and a bilateral Neu-
mann condition on I
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REMARK. As in Lemma 2.6, likewise in Lemmas 4.23-4.25,an impor-
tant role is played by the circumstance that Lu € L*(£2). It must, however,
be noted that in Lemmas 2.6 and 4.24 such a circumstance is a straight-
forward consequence of the assumption about F, whereas in Lemmas 4.23
and 4.25 it must be assumed at the outset: that this assumption is not
unnatural will be seen in Section 4.5 below.

Considerations analogous to preceding ones of this subsection can be
made when V' = H?(2 U IN), | < p < oo, and (4.9) is replaced by (4.17)
with A(u) defined by (4.34), Lu being then replaced by L{u).

For what in particular concerns the behavior of a solution 4 on I
when the latter is closed, it suffices to introduce the functional B{u) €
[HY?.2(I")]" defined by

(B(w), 0| > = {Au), vy — L Lwwdx forve ¥

if L(u) € L?'(£2). We leave the details to the reader.

4.4. Existence and Uniqueness Results for a Class
of Noncoercive Bilinear Forms

Throughout this and the next four sections we shall specialize in the
study of (4.9) with a(u, v) given by (4.32), the underlying space being
V= H}2 U with I" of class C*.

If a(u, v) is of the most general noncoercive type [i.e., if it is merely
coercive on V with respect to L2(£2)], but ¥ is compactly injected in L*(2),
and the operator 4: H({2) — V' verifies the weak maximum principle (see
for instance Theorem 2.4), we know that the equation

eV, a(d,v) = {F, v forveV (4.49)

(Fe V') admits a unique solution by dint of the Fredholm alternative
(see Theorem 2.2). When dealing with v.i.’s instead of equations, we do
not have any counterpart of Fredholm’s theory at our disposal; yet, we
can again arrive at existence and uniqueness results, at least for convex
sets of either unilateral or bilateral type. This will be seen in the present
section.
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4.4.1. Unilateral Variational Inequalities

We say that z € HY(2) is a subsolution of (4.42) if z <y in @, z <0
on 8O\ in the sense of HY(2), Az < F [i.e,, a(z, w) < <(F, w)forwe ¥,
w = 0]; of course, a solution of (4.42) is a subsolution as well.

Lemma 4.26. Let a(u, v) be coercive on V and let F€ V' be given. If
u solves (4.42) with v measurable in £2, then u is maximal among all sub-
solutions.

Proor. Let z be a subsolution of (4.42). The function ¥+ = 2 V u
belongs to V and satisfies v << y in £2 so that (4.42) yields

a(u, (z — u)+) >LFz—uwD
by the identity z V ¥ — u = (z — u)*. But we also have

a(z, (z — W) < {F, (z — u)®,
so that
0> a(z — u, (z— w)*) = a((z — w)*, (z — u)*).

By coerciveness, | (z — u)* |gygy = 0 and therefore z < win 2. []
The preceding lemma admits the following straightforward corollary.

CoroLLARY. Let a(u, v) be coercive on V. For h =1, 2 let F, belong
to V' and vy, be measurable in 2, with F, < F, and w, < y,. If u=u,
solves (4.42) with F = F), and y = vy, then u; < u,.

REMARK. Lemma 4.26 and its corollary have obvious extensions to
the case when H(£2) is replaced by H"?({2), 1 < p < oo, and (4.42) by
its analog for a strictly 7-monotone operator A: H'"?(Q2) — V"

We shall utilize Lemma 4.26 and its corollary for the following theorem,
which generalizes Theorem 4.4 under the present choice of ¥, X, and
a(u,v) (see also Theorem 2.3).

TueoreMm 4.27. Let I' be such that V injects compactly into L*(£2). Let
the weak maximum principle hold for A: H'\(£2) — V', let Fe V' be given,
and let the closed and convex set (4.27) be nonvoid. Then the v.i. (4.42)
admits a unique solution, which in addition is maximal among all subsolutions.
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ProoF. We shall proceed in three steps.

Step |: Existence of subsolutions. Fix 4> 0 so that
ax(u, v) = au, v) + A J uv dx (4.50)
Q

is coercive. By Theorem 4.4 there exists a unique solution to the v.i.
eV, i<y in 02,
@i, v—5H>=0 for ve V, vy in Q.

Since A2+ 47 <0, the weak maximum principle for 4 4- 4 yields
£=<.0in £2. Now let z solve the equation

zeF, a(z,v) = a;(4, v) for ve V.

Since Az = A% + 17 < A7, the weak maximum principle for A im-
plies z < £, hence z < y. This shows that at least when F =0, (4.42)
admits a subsolution z. When F is arbitrarily fixed in V', construct a
subsolution z’ to (4.42) with F replaced by 0 and v by v — & [see (4.49)]:
the original v.i. then admits the subsolution z =z" + i

Step 2: Existence of solutions. Define by recurrence: uy = 4,
U, €V, U, <y in Q,
gy, vV —u,) > {F+ Au, o, 0 —up) (4.51)
for ve ¥, vy in 2,

ne N, with g,(u, v) as in (4.50). Lemma 4.26 and its corollary can be
applied with a(u, v) replaced by a;(u, v) so that

Uy g > Z in £ for ne N

whenever z is a subsolution of (4.42): note that the weak maximum prin-
ciple for 4 implies z << u,, hence Az + Az << F 4 Au,.

By fixing v in (4.51) we see that the sequence {u,}, being bounded in
L3(£2), is also bounded in ¥ because the bilinear form (4.50) is coercive;
thus {u,} converges weakly in ¥ and strongly in L?(f2) toward some func-
tion # (no need to pass to a subsequence, thanks to monotonicity). Since

a).(uv u) S lim inral(un s un):
nwco
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we have ]
ue ¥, u<y in 2,

au, v —u) > {F+ du,v—u) for ve V, vy in 2

as well as
u>z in 2

whatever the subsolution z of (4.42).
Conclusion: (4.42) admits a solution that is maximal among all sub-
solutions.

Step 3: Uniqueness. We shall prove uniqueness by showing that any
solution of (4.42) is maximal among subsolutions, more precisely that,
whenever u, and u, are respectively a subsolution and a solution, the func-
tion 4 = (u, — uy)*t € V satisfies 4id < 0, hence § < 0 by the weak maxi-
mum principle and finally u; < u,. The compactness of V < L?}(£2) will
play no role.

Suppose that the inequality 4Z << 0 does not hold. Then there exists
a function we C (2 L M), 0 < w < 1, such that a(d, w) > 0. For ¢ > 0
consider the nonnegative function w, = dw/(i + €): note that w,€e V
with w, = &w,f/(ﬂ 4 &) - ewﬁ,,/(d + €)® (see Lemma 1.57). Since ew,
< 4, the function v = u, + ew, < u, + @i = u; V u, can be inserted into
(4.42) written for 1 = u,. We thus obtain the inequality

a(uz, w,) = (F, wp
which, together with the other inequality

a(ul ] wc) _<_. <Fl wl)l
yields

0= a(u, — up, w,) = a(it, w,)

i o " . a .
— | e et + i, + B, + i) dx

i i g
if 17T} j 1
+6Lw[“ Greor TV E T ﬁ+e]dx

= Ii(e) + ely(e)

(since w, = 0 whenever u;, — uy << 0). As ¢ — 0+, I (¢) tends toward the
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positive quantity a(d, w) so that

lim sup &f,(e) < 0 (4.52)
0%
Let us prove that (4.52) is self-contradictory. Indeed, by uniform
ellipticity the inequality J,(g) << 0 implies the following integral estimate on
the function G,(@) = w2 | Vit |/(d + £):

-

G132 d <J i etz
Jn (@)% dx wa (u+£)zd

7 i
< — j 21 1) dx.
< andﬁ+€ ﬁ+£dx£CJ.aG,(u)dx

By the Cauchy-Schwarz inequality, therefore, | G,(#)|;., can be
bounded independently of £ > 0. But then the inequality

| 2(e) | < C(1 G.@) 30 + | G |;0)

implies £f,(e) — 0 as & — 0*, which contradicts (4.52). This proves that
the assumption a(i, w) > 0 was absurd. Q

The maximality property ascertained in Step 3 of the proof of Theorem
4.27 leads to the following corollary.

CoroLLary. The conclusion of the corollary to Lemma 4.26 remains
valid if the coerciveness assumption about a(u, v) is weakened into the require-
ment that A satisfies the weak maximum principle.

ReMARK. All considerations dcvelopéd until now can be repeated,
with obvious changes, if (4.42) is replaced by (4.45).

Another consequence of the maximality property (more precisely of
Lemma 4.26) is the following result, which we already utilized in Section
24.1.

LemMa 4.28. Let ¢ = \/ju, ", m € N, where each ¢" belongs to H'(£2),
and let there exist \/j, Ap" € V', Then

Ap < \7 Ap*  (in the sense of V). (4.53)
h=1

An analogous statement is valid if v is replaced by A, provided < in
(4.53) is replaced by >.
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PrOOF. Suppose first that a(u, v) is coercive on V and consider (4.42)
with p =0, F = \/j., A¢® — Ap. Then the unique solution & is maximal
among all subsolutions; in particular ¥ > ¢* — @ because A(p* — @) <
Vv, Ap* — Ag. Passing to the supremum over i we obtain ¥ > Vi, ¢*
—@=0, hencc u=0and 0 =Au<F.

If a(u, v} is not coercive, fix 4 = 0 so that the bilinear form (4.50) is
coercive. Then the family {4¢* + A¢*};—1 . m is order bounded from
above by G= '/}, A¢* + Ap, and there exists \/j-, (dg* + Ag*) by
Lemma 1.54. By the preceding part of this proof,

m
Ap+ g < Y (A¢* + Ap") <G,
A=1

and (4.53) again holds. a
Under the same assumption about A4 as in Theorem 4.27 a result
stronger that uniqueness holds:

THEOREM 4.29. Let the weak maximum principle hold for A: HY(£2)
— V' For h=1,2 let y, be measurable, with w, — p, € L™($). If u = u,
solves (4.42) with y = v,, then u; — u, belongs to L>=(Q2) and verifies

\

| 4y — uy |m;n <Clyr— v ]m;n- (4.54)

where C > | depends only on A, and C =1 if Al >0,

ProoF. Solve the v.i.
z, eV, z, =0  in 9,
a(zy, v — zg) = {—Al, v — zp) forve ¥V, v>0 in £2
with the help of Theorem 4.27. Note that z, = 0 when Al = 0; even when

the latter requirement is not fulfilled, z, still belongs to L=({2} because
v = z, — (2, — k)* is admissible in the above v.i., which therefore yields

a(zy, (2, — k)*) < (—Al, (z, — k)™

whenever £ = 0: see Lemma 2.8 and the remark following it.

Let f=z,+4 1,sothat 2> 1, #=1if A1 > 0, and 4% > 0. Next,
let k= |1 — ¥ |ooins @ = (y — u, — k£)* and w, = aw/(it + &), where
e>0and we CH (R UT), 0 <w=<Ll Since du; < F we have

a(ul - kf: ws) S <Fs W.);
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on the other hand, the function

v=ustew, <+ i = (u, — kI V u,
SV, < —p+y) Ve <y

is admissible in (4.42) written for y = y,, ¥ = u,, and therefore

a(u,, ws) :—> (F: W‘>.

Summing up,
0> a(u, — v, — k2, w) = a(d, w,)

(because w, = 0 whenever uy; — u, — k2 < 0). We can at this point proceed
as in the proof of Theorem 4.27 and show that Ad << 0, hence i < 0 by
the weak maximum principle, and finally u; — s < kZ < k| £ |-
Since the roles of w, and w, can be interchanged, (4.54) holds with
C= | £ Ioo;a- 0

Remark. Dependence of solutions on free terms could be tackled
through an argument utilized for a special case in the proof of Theorem
5.5 below.

4.4.2. Bilateral Variational Inequalities

THEOREM 4.30. Let I’ be such that V is compactly imbedded into L2(£2).
Let the weak maximum principle hold for A: H'($2) — V', let ¢ and v be
measurable functions in 2, and let F € V'. If the closed and convex set (4.30)
is 7 &, the v.i. (4.47) admits a unigue solution.

Proor. We shall proceed in two steps.

Step 1: Existence. To ¢ and ¢ we associate a bounded, closed and
convex subset X 7 J of L¥2) as follows. If @, y € L*(£2), we set H =
hel*(D)e<v<y in Q). If ye L} Q) but ¢¢ L), we utilize
Theorem 4.27 to solve (4.42), call ¥’ the solution, and set

HA={pel¥ () |pvu <v<yin O}

The definition of 5% in each remaing case, that is, when either p €
LMY, y ¢ LNQ2) or @ ¢ L*(82), v ¢ L2(12), is at this point obvious.
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Let the bilinear form (4.50) be coercive, and define a continuous
mapping S: L}({2) — ¥ by

Se ¥, pE=Swy<y in 2,

a(Su), v — S(w)) = (F + Ay, v — S(u)) (4.55)
for ve ¥, p<v<yp in 0,

where Theorem 4.4 is taken into account.

We claim that § maps. ¥ into itself. To see this we can safely restrict
our considerations to the case when @ ¢ L¥(2), y € L*(2); let us prove
that S(u) > ¢ V v’ for u€ X, The function v= S(u) + [&' — S@)]* is
admissible in (4.55), so that obvious passages lead to

0> l.[ (' — w)t’ — S(w)]* dx > al(u’ — S(), [v — S(u)]*‘)
o
= a(fu’' — S@I*, [ — SW)]*)

and finally to [u' — S(u)]* = 0 by coerciveness. This proves that S(u) = v,
hence S{u) e .

Again by coerciveness, S maps bounded subsets of L3({2) into bounded
subsets of ¥, hence into relatively compact subsets of L2(£2). Thus, the
Schauder theorem (see Theorem 1.J) yields the existence of a fixed point
u = S(u) .24, hence of a solution to (4.47).

Step 2: Unigueness. Let u, and u, solve (4.47) and set it = (v, — uy)*,
w, = iiwf(ii + €) with e >0 and we C ({2 U I'), 0 < w < |. Then both
functions #, — ew, = u; — & and u; + ew, < u; + # lie between ¢ and
y: by proceeding as in Step 3 of the proof of Theorem 4.27 it can be proved
that A4t < 0, hence that u; < u,; by the weak maximum principle. ad

Remark. For what concerns existence, the weak maximum principle
plays a role only when ¢ ¢ L*(f2) and/or y ¢ L%(f2). As for uniqueness,
note that the compactness of the imbedding ¥ < L(£2) plays no role.

Just as the proof of uniqueness carries over from Theorem 4.27 to
Theorem 4.30, so does the proof of the L* estimate from Theorem 4.29
to the following theorem.

THEOREM 4.31. Let the weak maximum principle hold for A HY(£2)
—V'. For h = 1, 2 let @y, ), be measurable with ¢, — @, , v, — v, € L(2).
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If u=u, solves (4.47) with @ = @, ¥ = y,, then u;, — u, belongs to
L>=(£2) and verifies

| Uy — iy |oo;0 =<C max(l P1— Pa Iao:n; l ¥1— ¥ |°°:!J)’

where C = | depends only on A, C=1if A1 = 0.

4.5. Lewy-Stampacchia Inequalities and Applications to Regularity

We now tumn to regularity of solutions to v.i.’s. Let us mention at
the outset that in our study an essential role will be played not only by
the regularity required on I, 90Q~TI", F, and the coefficients of a(y, v)
(which was the case for equations: see Chapters 2 and 3), but also by
specific features of the convex sets X under consideration. As a matter of
fact, even when solution to the corresponding equation [i.e., to (4.9) with
K replaced by ¥] would belong to C=({2), a solution to the v.i. need not
belong, say, to Hib(£2). This is illustrated by the following simple example.

ExampLE. Let N =1 and take 2 = 1—1, 1[, ¥ = H (), a(u, v) =
[Liu'v dx, w(x)=|x|—1{2, F=0.

The function w(x) = #(| x | — 1) satisfies (4.42) since u€ V, u < g,
and

alu, v —u) = — ;r @ + 1/2) dx + }f(u’- 1/2) dx
= — $ [v(0) + 1/2] —_5[9(0) + 112]=0

whenever v € V satisfies v << g in .

The regularity of « does not go beyond its being Lipschitz continuous,
since #'' is not a function, but is instead the Dirac measure concentrated
at 0 (see Problem 1.10).

In the light of the above, we shall tackle problems of regulanty by
separately considering various classes of convex sets, though all of obstacle
type.

Beginning with convex sets defined by unilateral constraints we have
the following theorem,

THEOREM 4.32. Let FE V' and w € H'(Q), w =0 on 9T in the
sense of H'($2), be such that there exists (Ay) A F€ V’'. Then a solution
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u of (4.42), if existing, satisfies
(Ap) NF < Au << F (in the sense of V'). (4.56)

More generally: if w= /\jua 9 with yhe H'(Q), v >0 on 02\ T in the
sense of H'(2), and there exists /N\[—, (Ay") A Fe V', then a solution of
(4.42), if existing, satisfies

R (AW AF<Au<F (in the sense of V'). 4.57)
k=1

ProoF. Since u is already known to be a subsolution of (4.42), there
remains to prove the left-hand-side inequalities of (4.56) and (4.57).
Beginning with the former, we first assume that the bilinear form is coercive
on ¥ and solve

ueV, W= in 9,
(4.58)

au', v — ) = (AY) A F,v—u') for ve ¥, v>u in
in the light of Theorem 4.4. The function v’ satisfies

A = (Ap) A F  (in the sense of V). (4.59)

As a matter of fact, by (the obvious analog of) Lemma 4.26, ¥’ minimizes
the family of all functions z € H(£2) satisfying z >0 on d\[T, z >y
in £, Az > (Ay) A F; in particular, u' <X y. But then the choice of v = #’
is admissible in (4.42), which yields

a(u, u — u) = CF, u' — uy = ((Ay) A Fyu' —u),
whereas (4.58) yields
au', u— Y= L(AY) A F, u—u
with the choice of v = u; thus,

a(' —u,u' —u) <0.

By coerciveness u' = u, so that (4.59) amounts to the left-hand side
inequality of (4.56).

Let us now drop the assumption that a(u, v) is coercive on V. Fix 4
so large that the bilinear form (4.50) is coercive: since G = (Ay) A F
+ Au is a lower bound for Ay + Ay and F + Au, the previous part of
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the proof yields
Au + = Ay + AP A (F+ ) =G

(see Lemma 1.54), hence again the desired conclusion.
For what concerns (4.57) it suffices to take into account that, by
Lemma 4.28, G = AJ, (Ayp*) A F is a lower bound for Ay and F. 0
The estimates from below provided by (4.56) and (4.57) are called
the (unilateral) Lewy-Stampacchia inequalities. Their interpretation presents
no difficulty when I' = {}, since A then coincides with the bounded linear
functional L: H(2) —» H-1(£2) defined in (4.33). Thus, say, (4.57) amounts

to
m

AN @M AF<Lu<f [inthe sense of H-(Q)], (4.60)

h=1

where we have written f instead of F for consistency with the general case.
From (4.60) we can deduce regularity properties of the distribution Ly, in
the sense that the latter belongs to some space L?(£2), p > 1, whenever
f and Aj-, (Ly®) A f do. The next example shows that the membership
of Ly in L=(£2) is a regularity threshold for solutions of (4.42).

ExamprLE. Take N =1 and let 2 = ]—1, I[, a(y, v) = [L,u" dx,
=0, p(x) =4x* — 1. We choose £€ ]—1,0[ so that the tangent line

y = (&) + v'(&)(x — &) passes through the point (—1,0) of the (x, y)
plane. Analogously, we choose % € 10, I[ so that the line y = w(n) +
v'(n)(x — ) passes through the point (1,0). Then the function

&)+ p'(O)x—§) for —1 <x <
u(x) = ¢ p(x) for £ << x <1,
) +y'(x—-n) forp<x=<1I

is in H*(£2), lies below v and satisfies
aw o= = [ YO — pE) ds
+ L Y (x) — 9/ ()] dx + j V) (x) — )] d
= 9 (E)(&) — ' (ENE + 1)]
+ ' ()) — p()] :— L ¥ () — w(x)] dx
+ ' (—vln) — ' ()1 — 7)]
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whenever v € Ho'(2). But ()6 + 1) = (&) and ¢'(n)(1 — 1) = —p(y)
so that '

a(i, v —u) = — J: v ()(x) — p(x)] dx
—~ =8 [ () — po) dx,

and finally a(u, v — ) = 0 if v < o,
We have Lu = —u'" € L=(£2), but Lu ¢ C%{2) although the free term
and the obstacle are analytic functions.

When I" # (7 the interpretation of the Lewy-Stampacchia inequalities
requires, so to speak, that they be decomposed into a part inside £ and a
part on I', In its generality this procedure requires the full machinery of
order dual spaces as developed by B. Hanouzet and J. L. Joly [72]. We
can, however, handle it rather simply under slightly restrictive assumptions,
as the next result shows.

LemMA 4.33. Suppose that F is defined as in (4.43), that v = /\j—y 9,
where y* e HY($2), p* = 0 on 0T in the sense of H'(2), Ly* € L}({2),
and that By, ..., By™, { admit a greatest lower bound Nj., (By") AL €
[HY (). If u solves (4.42), then Lu and Bu satisfy

K I Af<Lu<f inQ 4.61)
A=1
and
R (By") AL < Bu<<!  in the sense of [H'*()] (4.62)
A=l
respectively.

PrOOF. Ay!, ..., Ap™ and F admit a lower bound G € V' defined by

{G, v> EJ-Q[Z‘-\ (Lw“)Af]vdx+(7\ (By*) A E, v],-) for ve V.

Bl
Theorem 4.32 therefore yields

G<Au<F in the sense of V',

which immediately implies (4.61). As a consequence, Lu belongs to L3(£2),
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u admits a conormal derivative Bu on I', and (4.62) follows (see the proof
of Lemma 4.23). 0

Under the assumptions of Lemma 4.33 we can view u as a variational
solution of a b.v.p.

Lu=f" in @,
u=20 on dON\T, Bu=1{' on T,

where ' € L*($2) and {’' € [HV*(I")]’ are of course unknown. Local and
even global regularity results for « can at this point be deduced from the
regularity theory for b.v.p.’s developed in Chapters 2 and 3. Indeed, we
have the following lemma.

LemmMA 4.34. In addition to the hypotheses of Lemma 4.33 suppose that
the coefficients a¥, d’ of a(u, v) are Lipschitz continuous on £ and that f,
N1 (LY*) A fe L), 2 < p < oo. Then a solution u of (4.42) is in
HEE(ED). If in addition I is closed and 0Q T is of class C', the H?
regularity of u extends up to 82\ TI'. Finally, if it is also assumed that I’
Is of class C'! and that [ € HY??(I") with { << By* in the sense of [HV*(I")]
Jor h=1, ... m, then u e H*?(Q).

ProOOF. By (4.61) interior regularity follows from Theorem 3.8, the
regularity up to 092\ I follows from Theorem 3.17(ii) via a cutoff argument.
As for regularity up to I, notice that under our present assumptions,
(4.62) implies Bu = £, so that the conclusion follows from Theorem
3.17(ii). (See Step 1 of the proof of Lemma 3.18.) 0

Passing from unilateral to bilateral v.i.s we can easily arrive at (bi-
lateral) Lewy-Stampacchia inequalities by observing that, in the proof of
Theorem 4.32, the solution #’ of (4.58) satisfies not only ' <y but also
u' = @ if u > ¢. Thus we have the foliowing theorem.

THEOREM 4.35. Let Fe€ V' and ¢,y € HY(Q2), ¢ <0<y on 0O\ T
in the sense of H'(S2), be such that there exist (Ap) V F, (Ap) A Fe V",
Then a solution u of (4.47), if existing, satisfies

(AP) ANF < Au < (Ap) V F (in the sense of V').

More generally: let ¢ = \/}., ¢* with ¢* € H'(Q), ¢* < 0 on 052\ T in the
sense of H'(2), v = Ahey v* with vt € HY{(D), v* = 0 on 0O\ T in the
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sense of HW({2), and let there exist

V (4N Vv E, A (4vh) A Fe V',
A=l A=l

Then a solution of (4.47), if existing, satisfies

7\ (Ay") AN F< Au < {‘/ (Agh) v F (in the sense of V').
h=1

A=1

Consequently (see Lemma 4.33), we have the following lemma.

LEMMA 4.36. Suppose that F is defined as in (4.43), that p = /L., ¢*,
v = AP, v* where p*, phe H'(Q), " <0 < p* on QT in the sense
of H'(Q), Lo, Ly* e L¥(2), that By', ..., Bp™, { admit a least upper
bound ‘i, (Bp") v (e [HY(I), and that By, ..., By™, { admit a
greatest lower bound Nj, (By*) A L€ [HY2(I")]'. Let u solve (4.47). Then
Lu ond Bu satisfy

» m

ANAYWAfF<Lu<\ (LM VS inQ
A=l

A=1

and

R (ByM) AL < Bu < \7 (Be*) Vv { in the sense of [HY*(IM)],
A=1

h=1

respectively.
Finally (see Lemma 4.34), we have the following lemma.

LeMMA 4.37. In addition to the hypotheses of Lemma 4.36 suppose that
the coefficients a¥, &/ of a(u, v) belong to C\((2) and that \/, (Le") V f,
Ha (LM A fe Lp(Q), 2 <<p << co. Then a solution u of (4.47) is in
HEZ(Q). If in addition T is closed and 0Q\[I is of class C', the H»
regularity of u extends up to 0~ TI". Finally, if it is also assumed that I
is of class C*! and that [ € HY? ?(I") with Bg* << [ << By* in the sense
of [HY(IM))' for h =1, ..., m, then ue H*?(Q).

REMARK 1. By the same techniques utilized in the proofs of Theorems
4.32 and 4.35, unilateral and bilateral Lewy-Stampacchia inequalities can
be proven when V equals H'?(2 U I"), | <<p << oo, and 4 denotes a
bounded, hemicontinuous, strictly T-monotone (hence pseudomonotone)
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and coercive operator F{1.?(£2} — V': see Theorem 4.17, as well as Lemma
4.26 and the remark following it. Decompositions analogous to those of
Lemmas 4.33 and 4.36 can also be proven by taking the final observation
of Section 4.3 into account. Much more complex is instead the task of
arriving at regularity results extending those of Lemmas 4.34 and 4.37 to
the nonlinear case, e.g., we refer to G. Stampacchia [143].

REMARK 2. Both Lemmas 4.34 and 4.37 can be extended to the case
of any p € ]I, 2[ such that LP(Q2) < V’: see Problem 3.8,

4.6. Further H*®? Regularity

In Section 4.5 we entirely based our approach to H*? regularity on
Lewy-Stampacchia inequalities, thus automatically sidestepping two im-
portant questions that we are now going to discuss.

4.6.1. H** Regularity

In Lemma 4.34 we did not take into consideration the case p = oo,
The reason for this is that for N > 1 the membership of Lu in L(Q)
[which follows from (4.61) under suitable assumptions about £ and f]
does not suffice to guarantee that v € H322(2), no matter how regular
the coefficients of L are: sece the example following Theorem 3.5. On the
other hand, we already stressed that essential boundedness is a regularity
threshold for Lu. Thus, the membership of « in H**(£2) does not follow
from the regularity of Lu via the regularity theory for equations; it can
instead be proven by directly exhibiting L* bounds on second derivatives,
as we shall do in the proof of the next result.

THEOREM 4.38. Take 82 of class C*', I'= (¥, and a'ie C (D),
die CL¥(D),b%, ¢, fe CONDY(0 <8 < 1). Ler yE HE(Q) with |y, = 0.
Then a solution of the unilateral v.i. (4.42) (with F = f) belongs to H>=(12).

ProoF¥. Step |: Preliminary reductions. Since

N1
Ny
J (a“ z; zv zN z') dx
t-l

N—1
J [(@¥ + a¥y, v, + (aliu,, — a¥iu, ] dx  for vE Hy'(Q),

1-1
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we can without loss of generality assume
a¥i = fori=1,..., N— 1. {4.63)

Moreover, it is not restrictive to take a(w,v) = [, a"fur,ivzj dx, since in the
general case f can be replaced by f + (d’u),, — b*u,, — cu which still be-
longs to C%4(2) by Lemma 4.34 and Theorem 1.41. The solution of (4.42)
is then unique by the coerciveness of a(u, v) on H,'({2).

Let G be a smooth function of € R such that G’ € L=(R) and

G =0 if and only if ¢ << 0,
G'H=0 for alt r, G'(H =0 for r <.

(4.64)

It is easy to check that the mapping §: w+— G(w — y) is a penalty operator
associated with the convex set intervening in our v.i., so that the solution
u is the weak limit in H,'(£2) of the sequence {u,} defined by

u, € H\(12), Lu,+ G,(u,— )= f in £2,

. with G, = £G, £ > 0 (see Theorem 4.19 and the remark following it).
" A straightforward bootstrap argument based on Lemma 1.57 and Theorem
3.17 shows that u, € C*#(£2): we shall demonstrate the theorem by providing
a bound, independent of ¢, on | ¥, |ga.«(y . For the moment we claim that

| Lut, |oosa < C (4.65)
and therefore [Theorem 3.17(ii)}

| u oy < C(p)  for all finite p. (4.66)
To prove (4.65) we fix any ¢ > 2 and utilize the equation for #, to obtain
| ro— w6 — w4+ [ 16w, — wilax
= [ ¢~ G — w1 ax
Since (v, — ¥)lan = —w|ap < 0 and therefore G,(u, — )|, = 0, the func-

tion G, (i, — y) belongs to H,'(£2) and the first integral on the left-hand
side above equals

(q - l) J‘D aij(u' - ‘p)z‘(us - ’bu)z;[G.(uc - 'P)P_’Gl’(ul = 'P) dx.
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By uniform ellipticity and (4.64) we arrive at
| G —prax< | 17— Lyl (G — v dx

1/g 1-1/g
<([ 17— wora)"|] Gm—vwad
o I*]
that is,
i Gl(ue - ’P) |q;.Q S |f_ L’P |q;0!
and finally at
I Luc _flbo:ﬂ = | Ge(ul - 1P) ]l‘-':l'.D S |f - L’P IW:D

after letting ¢ — co. This yields (4.65). Note that, by Sobolev inequalities,
(4.66) implies u, — w in C1*() for all y € [0, 1[, in particular u, <y + 1
and therefore G,”"(u, — v) = 0 if ¢ is small enough.

It will be convenient to have L replaced by L, = —a'i3?*/dx;0x; =
L4+ ai’;ajc'ix.,-. Thus u, solves

uc € H!)l(‘Q)! L!)ua + Gz(us - ’P) =-f¢ in Q
with f, = f + aZu,.; note that by (4.65) and (4.66),

| Lot oorg < C 4.67)
and
| filpea < C

with constants independent of .

Step 2: Interior bounds. We fix w =c £ and proceed to obtain a
uniform bound on | u, |z, This we do in the special case of solutions
to

Lo, + G (u,—p) =K in £, (4.68)

K being some constant, under the assumption
Loy >1 in 0. (4.69)

[In the general case we need only replace #, by v, + w,xand y by y + w,x,
where
W, € Hol(g)a Lowsx =K — f;

with K large enough: w,x is in C*¢(§2) with norm bounded independently
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of ¢] By a bootstrap argument the validity of (4.68) lmplles u € H4?($2)
for every finite p (Problem 3.1f).

Let r, s be arbitrarily fixed in the range from 1 to N and let A > 0
be so small that

aiEl, + AEE, > 01in @ for € RY, 4 Ay, , = —1 ae in Q. (4.70)

By taking partial derivatives in (4.68) we easily see that the function

il = Lou, + Au,, ,, satisfies an equation of the form

Ll + G/d = G,'§ + Gd(u, — 9);,(u, — ¥z, + R+ K, in Q.
Here G, stands for G,(v, — ¥) and G,” for G,”(v, — ), whereas ¢ is
given by Loy + Ay, ., @7 by a'f — A6%8* (=a* —Aifi=rand j=s,

= a'i otherwise); finally, the functions A°e C°({2), hie C(Q) N H'(2)
depend on 4, hence on ¢, with

|hj |;p:f) S C(l + |uz IH"T’(():) for any p S o0, J - 0: I: sy Nv

with € independent of ¢. Since both G, and G, are > 0, so are also G,'§
and G, 'd(u, — y), (4, — p); by (4.69), (4.70). Let U=gi with ge
Co($2),0<g<1lin£2,g=1 on @ Since

LU = gLyit + aLog + 2i(a‘g,),, — 2(aig,).,,
U satisfies a differential inequality of the form
L0+ G/ U = H® + Hj, (4.71)

in {2, where the H”s have the same properties as the h”s. This means
that U is a function from H,'(2) satisfying

L0+ G, U, v5 = j [0 0,0, + (@0, + G, U)o} dx
o
> J. (H°% + H',) dx for ve H'({), uv=>=0.
o

We have no control over | G,' |...; as ¢ varies, but since G, > 0, we can
avail ourselves of the remark after Lemma 2.8. Thus U, and by (4.67)
Agu,; . as well, is bounded from below by a constant depending on ¢ only
through the bound on the norms | H7 |,..,, hence on the norms | u, |0,
for p finite and large enough. Since the same conclusion holds with A
replaced by —A, we have obtained a uniform bound on | i, |g1,00-
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Step 3: Global bounds. Let A: U — B be a C3! diffeomorphism that
straightens a portion U/ N 982 of 412, U being some bounded open subset
of BY. In the new local coordinates y = A(x) the function &, = (we A-1)|p+
satisfies

d.€ H'(B* U SY), Lgi. +6G&,—$)=F in B*+:

here £, = —@*3*/3y,8y, with @*(p) = @A~ ()], [ A7 ()Y a [A 72O,
P = (poAd)|g+, and £, is a function from C°¢(B+) bounded in norm by
a quantity C(1 4 | &, |¢.8,3)), hence [see (4.66)] by a constant independent
of &. For the purpose of providing a bound on | u, |g2,eg4-1c8f,,) » OF €QUiV-
alently on | #, |g.-(sf,), we may safely replace 4, by 4, + w.x and § by
% + W.z, where W, g solves

W.x € Ho'(B*), Lovx = K— [, in Bf
and therefore belongs to C*4(B,*), with
| Wex |m.6tm, =< C(R) independent of ¢,

whatever R € ]0, 1[ [Theorem 3,13(ii)]. These considerations show that the
bound on H%=(B/}.) norms need only be proven in the special case when
Un 2 =B+ Un 2 =25 and u, satisfies

u € Hi\(B* U S¥), Lo, + Glu,—y) =K in B

with K so large that
Lyy=1 in B*;

for R € ]0, 1{ u, belongs to H4-?(Bg*) whenever p is finite (Problem 3.11),
and the above equation is satisfied at every point of B+ U S"

We now take g€ C°(B) with 0 <<g<1lin B, g=1 on By, and
arrive again at (4.71), this time in B+, for the function ¢ defined corre-
spondingly.

When r and s are both fixed in the range from 1 to ¥ — 1, minor
changes in the techniques of Step 2 yield a uniform bound on | u,; »_leo;1/2;+ -
Indeed, U vanishes near S+ and is = — | Loy, loo;+ ON S° because u,; , |50
= 0: since U + | Ly, |, satisfies the same inequality (4.71) as U, the
weak maximum principle (Theorem 2.4) implies T + | Loy, |oo;y = 2,
where
ze HA(BY), <{Lyez+G,)z,v) = J (H% + Hiy,)dx for ve H(8').

n+
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Lemma 2.8 applies to z, so that we arrive at a uniform bound from below

for U(x), hence for = Ag(X)i,s,q,(x), x € BY.
Things become considerably more difficult if one of the two indices r
and s, say s, equals N. This is the case we are going to take up now.
Since (u, — ¥)|w <0 and G,/(:) =0 for t < 0, we have

(Low)zy = —G/(u, — 9);, =0  on §°
for i= 1, ..., N. This implies, first of all, that the conormal derivative
BLO": = _[a“\'(LOnz)ZI]IS“

vanishes identically. Moreover, since uemjl,go =Qforsyj=1,..., N—1,
the identities

iN

— (N iN
a Usz 2pyzy = (a “sz;:N)z, - a‘zlr ut:;::N

N-1

== Code, = 3 ), — 0t
[see (4.63)] show that
| By = — (0%t )l = 08U, 0.
Summing up, we have
| BU |oo;00 < Clu, | gaimipsy .
0 is a function from H(B+ U §°) satisfying (4.71) in B*, hence
J'B+ [0 O, p., + (a0, + G. O] dx
> J’B+ (H% ~ Hin, ) dx — Lﬂ (Y50 + BOY|go dx’
for ve H (Bt U 89, v>0.

In the above inequality the right-hand side is minorized by

J. (H% — H', ) dx — M,J- v]go dx’ =J. (H% — H'y, + M) dx,
B+ 50 B+

where M, is a quantity C(l 4 | 4, |g2.ez+))-
Without loss of generality we now assume j {f |,., = 1. Denoting by
B+(k) the set {x € B*| U(x) < —k} we recall, from the proof of Lemma
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2.8 (see Lemma 2.9) that | B+(k, + £)| = 0, i.e., U > —k, — k, provided
k, is suitably large, say k, > C,, and k is chosen accordingly. We can
always suppose Cy = 1, Cy = 2 | Ly, |oo.+ for every e. Take 2 > 0. Then
in B+(k,) we have

8Upz 2y < (—k, — gLou)/A < —k /22,
so that
| B+(k,) | < meas{x € B*| | 8Uezr, o (X) | = K1 /24}

ST [ syl o
B+
for any finite p. As for &, in the present situation it is bounded from above

by a quantity
Clky + | 4 |gzmipn) | Bk |7,

where C and % are some positive constants independent of . Therefore,
0> —k, — C(l + | u, |gr@)k,!™"  (where C, depends on p).
At this point we take

ky = [(Ce® + C(1 + | 4, |, (pe)]®
and arrive at
0= —[(C? + COA ~+ |, las iz )]?
—~[(Co? + C( + | u, | cagpsy)] 1772,

hence
U= —C(l + | u, |gr.oozn)?

if p is chosen large enough, and finally

£ 28(X My 2 (x) > —C(L + [t Iwsn)’,  X€ B, (4.72)

for r=1,..., N— 1. But since
N1

¥ Uppry = — Y, @upy,— K on S,
F=1

the same technique utilized for the case r, s < N shows that (4.72) holds
for r = N as well. Summing up, we have proved

1ty ity < C(1 A+ | w g™ (4.73)
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Now let Q = J2,w;, where wocc 2 and w;= U; N 2 with
U, = A;Y(B,y,y), A; being a diffeomorphism of class C*!, fori= 1, ..., m.
From Step 2 and (4.73) it is easy to deduce

|ty ooy = C(l + | u, |grco)'?,

and this yields the desired bound on | &, |g1.eg- 0

4.6.2. H? Regularity up to I" under General Conditions

In Lemma 4.34 we¢ imposed a very strong condition on By!, ...,
By™ and { in order to extend the H%? regularity of u up to I'. We cannot
do any better than this as long as we confine ourselves to the use of (4.62),
which can at most yicld Bu e L=(I') if the inequalities By* > { are not
assumed: (4.62) is therefore insufficient to guarantee the H? regularity of
u near I" no matter how regular Lu is. The following question now naturally
arises: can a general criterion be given for the H%? regularity near I'
of a solution u to (4.42), aside from (4.62) degenerating into Bu =
e BV 2(I?

The next example shows that the answer is negative when p is “too
large.”

ExaMPLE. ILet N = 2 and set
u(xy, xp) = —x(l z |*) Re 2% = —y(p*)p*? cos(30/2)

with z = x; + ix, = p exp(ifl) (i = —1), x being a smooth function on
[0,00[suchthat 0 < y < 1, y(r)=1for0<r<1/4, x(r) =0forr> 1.
In B>~ {0} the function Re z%? is harmonic; moreover, when x, = 0 the
Cauchy-Riemann equations yield

0 for Xy > 0,

Rez¥t = —
—#|x " for x, <.

ox, ox,

—_

Let £2 be such that 2 N B = B, with 92 regular: then « belongs to
CY(2) N H*(2), and by the above considerations the function f = — Au
is in C'(2). Moreover, u satisfies

du ou
ulaa S 0, W i S 0, Hlaﬁ W 0 =0.
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[Note that for —1 < x; < | and x, =0,

du Ju i}
X

=~ g =1z 5

il — Z3/2
oy an 6x= Re ]

Now let y e C2(), 0 < 8 < |, solve the b.v.p.
—Adpy=fin2, =0 on 2

(see Theorem 3.17(iii)]: by the weak maximum principle (see Theorem 2.4),
w=u on 2. This shows that » satisfies (4.44) with I'=08Q, L= —4
(and therefore B = 8/dv), { = 0. However, # does not belong to H>4(£2)
—nor to CH*(3) if 6 > 1/2, for the matter.

In the light of the above, we are left with the task of investigating
H*? regularity near I" only when p is close to 2. We take p = 2 and begin
by studying (4.45) instead of (4.42). Of course, we need only consider the
case V = HY(Q).

THEOREM 4.39. Let 82 = I" be of class C''. Assume that a¥i, &’ are
Lipschitz continuous on 2, that F is given by (4.43) with { € H'2(392), and
that ¢ = w|;p with w € HYQ2). Then any solution u of (4.45) belongs to
H*(2); moreover,

| | gaeay < C( flago + 18 |mram -+ 19 lmea + 14 lane),  (4.74)

where C (independent of u, F, ) depends on the coefficients of a(u, v) through
the constant of uniform ellipticity a and the bound impased on

| aij, & IC"’-'(ﬁh | b‘-, c |m;Q-

ProOF. For i= 1, ..., N let n* € C%!(£2) be such that ni|;, = ». If
z€ HW82) is such that z|;0 = { and } z | g1y = | € |niaa» the functions
fi= n'z satisfy

J (oo + fiog) dx = j {v|sggde forveV
Q an

and therefore

Ewy=| gotrod forvev
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with f° = f 4 fi, as well as

¥
1 /%30 + Zl | f* lruay < C{ flao + | € | gvaem)-

Set
N
x(Fyu)=|[ffo+ _Zl | f* ey + 1w s -

Since u — y satisfies (4.46) with f replaced by f— Ly, |, by 0 and
¢ by { — By, we can without loss of generality assume § = 0.
Moreover, since f° — b'u, — cu € L¥) and f* — d'u € H'(2) with
norms bounded by Cx(F; #)?, we can also assume that all coefficients
of a(u, v) except the leading ones vanish identically.
Let us consider the special case when 2 B = B+, 92 n B = 5°.
It is clear that 4, when restricted to B+, satisfies

u € H(B*), u=x0 on §9
J.B+ atu (v —u), dx > (F,v—u) (4.75)
for v € HY(B%), supp(v — w) = B+ U §¢, v<<0 on S°
Fixs=1,..., N— | and write
dyw(x) = dy'w(x) = h' {w(x + he') — w(x)]

for h € R\ {0}, ¢* being the sth unit coordinate vector. Let g€ C=(R¥)

with suppgc B,0<g<l,g—=1lon BawithO <R <1 For0<|[h]
< dist(supp g, S*) the function

on(0) = u(x) + B fu(x + heg(x + her)

4 u(x — he*)g(x — he') — 2u(x)g(x)}
satisfies
vy < ufl — 22 A <0 on §°

provided ¢ < #*/2. We can therefore insert v = p, in (4.75) and obtain

|, aueled idr(gul, dx = <F. 88 g,
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On the other hand,

'[ atu, (gv), dx = (F, gv)  for vE H,(BY).
Bt
Since
-[B*' a‘.juzi(gw)zj dx = -[B* [a“(gu),‘wz’ + aijuz;gz;w - a{j“gz;wz,] dx

and

CF, gw) = L» [ + fig.Jw + [igw, ] dx

whenever w € H'(B+), we are in the situation considered in Remark 1
after Lemma 2.22 with u replaced by gu, f° by f°¢ — a'iug. + [g;, €
L¥B*¥), f* by fig + a’'ug, € H'(B*). Hence gu € H*(B*), which implies
u|p.+ € HY(Bg"), with

[t |fpen <\ g i < Cx(F; u).

Now let U/ be a bounded domain of R¥ such that U n 92 is
straightened by a C! diffeomorphism A: - B. Then the function
u' = (uo A7)z, solves a problem such as (4.75) and u|,, where w
= A-1(Bz*), belongs to H*w) with

| 4 |l < Cx(F; ).

Finally, we write £ as | J, w;, where ®,, ..., w, are chosen by
the same criterion illustrated above for w and w, =< Q: the full conclusion
of the theorem is obtained by patching together the H* regularity results
and estimates on w,, ..., w, as well as on w, (sec¢ Lemma 2.21). 0

Returning to (4.42) we have the following theorem.

THEOREM 4.40. Same assumptions about 382 =T, a¥i, di and { as in
Theorem 4.39. Let w € H*($2). Then any solution u of (4.42) with F given
by (4.43) belongs to HY{2) with norm estimate (4.74).

ProofF. Since, by Lemma 4.33, u satisfies (4.46) with f replaced by
Lu e L¥2), we are led back to the situation investigated in Theorem
4.39. Q
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4.7. Regularity in Morrey and Campanato Spaces

4.7.1. The Case of Continuous Leading Coefficients

We are going to give sufficient conditions in order that all first deriva-
tives of a solution u to (4.42) belong to L#(2) whenever all first derivatives
of the obstacle y do; this will lead to the membership of u in C%4((2),
with 6 = (g + 2 — N)/2, if N— 2 < g < N, and even in C1%({) with
6= (u— N)/2, if N<pu < N+ 2 [see Theorems 1.17(ii) and 1.40].

THEOREM 4.41. Assume 982 of class C*, T closed, a'i € C%(0). Take
in 10, N[ and let u solve (4.42) with

(F,v> = J.Q (' + fio,)dx  for veEV,

where f°€ L%, 1, .., f¥eL*(2), ye H(D), vz, =0,
Wy, € L2#(82) for i= 1, ..., N. Then all first derivatives of u belong to
L34(2) with norm estimate

N
| Pttty 0 < c(|f° laguareio + 3 1 oo
1m]

1 Plno + | P hapa + 4 |m<m), 4.76)

where C depends on the coefficients of a(u, v) through the bound imposed
on their L=(£2) norms, as well as through the constant o of uniform ellipticity
and the modulus T of uniform continuity of the a'’s.

PrOGF. Step 1: Preliminary reductions. We need only prove the the-
orem under the additional assumption that we L2#(2) with |v|;,.0
bounded by a quantity such as the right-hand side of {4.76). [This assump-
tion is certainly satisfied for x4 << 2 by the mere membership of u in H*({2):
see Theorem 1.40.] For, if it is only known that u € L2#'(£2) with p' < p,
then the theorem itself with u replaced by u' yields u € L2#'+2(£2) with
norm estimate by Theorem 1.40, so that we can again arrive at the con-
clusion of the theorem with x replaced by min(u, p' 4 2), etc.

At this point it is not restrictive to assume d/ = 0, since f7 — d’u has
the same regularity as f7. Nor is it restrictive to assume that the bilinear
form is coercive on ¥: in the general case, we need only replace the coef-
ficient ¢ by ¢ 4 4 and the free term f° by f® + Au, with 4 large enough.
Finally, it is not restrictive to take F = 0, since we can always replace u
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by u — # and y by y — &, with & defined by
e vV, a(iz, v) = {F, v) forve V 4.7

[the bilinear form being coercive; see Theorem 3.16(i) for what concerns
the regularity of ).

Step 2: Interior regularity. Let wcc 2, x*e @, 0 < r <d=
[dist{w, 882)] A 1/2, and solve

2€ HA(BAx"),

J- Aoz, 0, dx = J- aciup; dx  for v e Hy'(B,(x%)),
B,(z9) By(z9)

a,'f = a'/(x°), with the help of Theorem 2.1 and of the corollary of The-
orem 1.43. Then (4.42) with &/ = 0, F = 0 yields

[ sz o —u), ax
Bpiz®)
— [ o — s, + @ — a0 — )
B,z
> - j | Wb, 4 cudo — ) + (a9 ~ a0 — )] d
B, tz9

whenever v € H'(B,(x°)) with v <y in B,(x°) and v — u € H'(B,(x*):

note that the trivial extension of v — u to £2is in ¥, so that v is the restric-

tion to B,{x%) of a function from V which equals u throughout 2\ B,(x%).
We now set w = u — z, so that v — u = v — w — z, and obtain

J- @z, 2, dx < J- {(b'uy, + cuY(v — w — z)
By(29) B,(29)

+ (@ — anij)uz;[(u - w)z, - zz,}
+ agiz, (v — W)y} dx. (4.78)
Poincaré’s inequality applies to the functions v — w, z € H,'(B,(x%))

(see the corollary of Theorem 1.43 again): for ¢ > 0 we have

J’ | (biuy, + cu)o — w— )| dx
B a9

= C(l Vu l!:.r.".r + I u Iz:ﬂ,r)(l 0—w |2:a:“,r + l z |2:z°,r)
= C(l Pu l'a:z".r + ]u |8;z‘°,r)r(l V(IJ - w) |z;z°,.- + | Pz 'l:z“.r)
S C(E)rs(l Vu |§:z‘°.r + I i ]g;z“_r) + E(l V(IJ - W) |22;z°.r + l VZ lg:z",r)-
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The remaining terms on thg right-hand side of (4.78) are bounded
by a quantity

CEP) | Vu o, + 1 V(0 — W) B0 + | Pz |50, -
By taking € = a/4 we can therefore deduce from (4.78) that

| Pz, < C{r*+ 73N} | Pu 2.0,
+ | Vo—w o, + et ulf, o) (4.79)

Let 0 < p <r. The function w belongs to H'{B,(x°)) and satisfies

J - agtw, o, dx =0  for ve Hy'(B,(x?)),

so that Lemma 3.1 yields

1Vw|m<0‘-’ |Vw|“-,56—,,(wu|“.,+|Vz|,,u,) (4.80)
and finally
Ipulzﬂo_z(lvwliz“o'*'lpzlz‘,o)

o
< (% 1 Pulis, + 172 )
C{[ﬁ +r2 4 t’(r)] 2 4H
—-— %] 2,z%r
CALCET R S
We now choose v = w Ay, which is admissible since w Ay — u
= (w—u) A (p —u) =(—2) A (¥ — u) belongs to Hy(B,(x")).

The function w A p — w belongs to H,'(B,(x°)) and vanishes at all
points of B,(x”) where w << p, hence satisfies

J agtw Ay — w)(w A p — w), dx
Byiz%
= a7’ (w A ) (w Ay — w),, dx
Bytz®

= j aoﬁﬁ”z‘(“’ Ay — w)z; dx,
Btz%
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so that
[P Ay — W B, S C|VplEmn, < CriVy R 0.

Summing up,
o~
| Pultn, < C{[ & 72 4+ 20)] | Pulin,
+ r# | V!P |§,,u‘,0 + ﬂﬂ-’ ‘ u |I.,u:ﬂ}'
At this point we need only proceed as in Step | of the proof of Lemma
3.3 to conclude that u, |,, ..., u,|, belong to L*#(w) with norm estimate.
Step 3: Completion of the proof. Let
2NnB=B+ 2N B=@NT)nB=25"
Let x®€ Sg% 0 < R <1, and fix re ]0, (1 — R)f2[. We solve
z € H\(B*(x%)),
J- aoVz,,0,, dx = I g u v, dx  for ve Hy'(Byt(x%),
By (%) Bzt
so that w = « — z belongs to H,'(B,*(x°) U S,+(x%)) and satisfies
j agiiw,p;, dx =0  for ve Hg'(B,*(x),
B (29

whereas w Ay — u belongs to Hy!(B,*(x?®)). We can estimate | Vz |50, 4
by proceeding as in Step 2 of the present proof: the only major difference
is that here Poincaré’s inequality in H,'(B,*(x®)) must be utilized (see the
corollary of Theorem 1.43). Next, we estimate | F'w |;.. , + With the help
of Lemma 3.9. At this point the same techniques employed in the first
two steps of Lemma 3.11 yield w, |p.+, ..., U, |p,+ € L¥#(Bg*) with
norm estimate.

Now suppose that 2 N B = B+, 82 mn B= I n B = 8° After fixing
x%e S0 for 0 < R < | and re 10, (I — R)/2[ we solve

ze H(B+(x%) U S,°(x),

J- agtz, v, dx = J- aup. dx  for ve H' (B H(x%) U S,(x°))
BHzo BHa0)

with the help of Poincaré’s inequality in HOI(B,‘*(x“) U 5,°%(x") (see the
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corollary of Theorem 1.45); thus, w = u — z belongs to H'(B,*(x°)) and
satisfies '

J- atiw, v, dx =0 for ve Hy'(B,H{(x%) U S,°%(x%),
Btz B

whereas w Ay — u belongs to Hy'(B,*(x%) U S,°(x%)). We can again
estimate | Pz |;.;0, , by proceeding as in Step 1 of the present proof:
here Poincaré’s inequality in Hy'(B,*(x%) U S,”(x°)) must be utilized again.
After | Pw |3..0, , has been estimated with the help of Lemma 3.9, the
same techniques employed in Step ! and 2 of the proof of Lemma 3.11
again yield u; |p 4, ..., Ury|pe+ € L¥#(By*) with norm estimate.

The final global resuit can at this point be obtained by locally straight-
ening both 2\ 1" and I' through C' diffeomorphisms, then patching
together local regularity results in the interior of £2 as well as near N\ 1"
and I 0

4.7.2. The Case of Holderian Leading Coefficients

THEOREM 4.42. Theorem 4.4 remains valid if u is taken in |N, N + 2|,
provided 052 is assumed of class C°, I' = (%, and a}, di € C°3((D), where
8= (u— NY2: C in (4.76) then depends on the coefficients of a(u, v)
through the bound imposed on | a¥, df |85 and | b7, c lwq as well as
through a.

ProOF. As in Step 1 of the proof of Theorem 4.41 it can be proven
that it is not restrictive to assume 4/ = 0 (note that u€ C°%{2), with
norm estimate, by Theorem 4.41 itself), F = 0,

Let us study interior regularity. We repeat the same procedure as
in Step 2 of the preceding proof, and arrive at

| Pz 50, < CU(r? + 1¥) [ PutF00, + | V(0 — W) a0, + r¥42 1 [S,0).

Since Lemma 3.1 yields

N+3

|Pw — (PW)yo p [Bige,e < C 2

FNi2 | Pw— (V"")z“,r |§:z°,r

9N+n
<cC g [Pw — (Vi) , 3.0,

<c ™ (i pu_w 2 Pz 2
C (l u ( u)z“,rl!;z”,r+l z|2;2°.r)‘

— N2
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we have

| Pu— (Vu)z".g |§:z°.q <|Pu— (Vw)z".e |§;2“.a
= 2(] Pw — (Vw)z".e IE::".@ + 1 Vz |E;z".e)

9‘V+2 . :
S C[ rN+2 l Vu - (Vu)z",r |2;z°,r + ("2 + r"") | Vl‘ Iﬂ;z"_r
+ 170 — W) [, + 14 |u |3,,;9].

In order to bound | V(v — w) |§.;5, we again choose v=w A y.
This time we make use of the circumstance that since w Ay —we
H,'(B,(x%)), we have

aoij('p.z‘)z“,r J.B z0) (W A ¥y — Hv')z’ dx =0

by the divergence theorem, and obtain
a|Viw Ap —w) g0, < J- @ Hw Ay — w)(w Ay — w), dx
B, (z%)
= [ bl — (e, lw Ay — W)
Bytz®
a
< 5 [PwAy—w)iio, +ClVyp— Py, [0, -

Finally we remark that all first derivatives of « belong to L2¥—4(2)
by Theorem 4.41, so that

N2
|Vt — g e < Oz [V — Py oy + 17742 P v

179 B+ P9 )

We can now proceed as in Step 4 of the proof of Lemma 3.3 and
arrive at the membership of u, |5, ..., u, |5 in C%¥%(®) first, and then
in C%%(@).

Regularity near {2 presents no difference with respect to the above
except that Lemma 3.9 must be used instead of Lemma 3.1. Note that
using the same symbols as in Step 3 of the previous proof, we are only
concerned with the case when the function w A y — w belongs to
Hy'(B,+(x°)) because I' = (3.

Global regularity is at this point obvious. a
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REMARK. Let I' % (. The example of Section 4.6.1 shows that The-
orem 4.42 cannot remain valid, because # cannot be expected to belong
to C%(2) for 8 > 1/2. For 8 < 1/2, however, Cr*($2) regularity can still
be proven: see L. Caffarelli [25].

4.7.3. The Case of Discontinuous Leading Coefficients

We return to the setting of Theorem 4.41, except for a'/ € C°($2)
weakened into g/ € L°2(2); we take N > 3. The proof of L%#(2) regu-
larity of u,, ..., 4,, must accordingly be modified as follows.

To begin with, for any solution # of (4.77) the only available regularity
result d,,, ..., i, € L*#(£2) (with norm estimate) concerns the range

0<u<pgog=N—2+ 28, (4.81)

where 8, is the Holder exponent of Theorem 2.14 (see Theorem 2.19).
We shall therefore limit ourselves to the case (4.81).
It can again be proven that it is not restrictive to suppose that
u € L*#(2) with norm estimate, that &/ = 0, that the bilinear form is
coercive, and that F = 0.
If z solves
z€ HH(B,(x),

Jar‘w a“z,p,, dx = Jn,cw au,p, dx  for ve H'(B,(x%),

where x° € @ with w cc 2,0 < r < [dist(w, 32)] A 1/2, we arrive at an
estimate such as

| Pz |30, < C(r* | Pt oo + | V(0 — W) B, + 74 | 1 [§,0)

instead of (4.79). To the function w = ¥ — z we apply Lemma 2.17 instead
of Lemma 3.1 and obtain

l leﬂz"p— C_(l Pu |2:t°r+ lvzlg;z",r):
instead of (4.80), for 0 < p << r. We thus arrive at an inequality

|Vu1“u,<c‘[( +"')|V“|sznr

+ 7| Py o+ 7 o)
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which implies the regularity , |,, ..., #;|, € L*#(w) and the correspond-
ing norm estimate with the choice (4.81) of u.

Regularity up to 8% can be proven similarly: the analog of Lemma
2.17 for functions w satisfying either

w € HY(B+(x% U §,*(x%),

J. aijw:‘vz’ dx = 0 for veE Hol(Br+(xn))
) B, +(z%)
or

weE Hl(Br+(xu))!

J aVw,p, dx =0 for v € Hi (B (x%) U 5,9(x%)
B,+z%

can be deduced from Lemma 2.17 itself by proceeding as in the proof
of Lemma 2.18.
Summing up, we have the following lemma.

Lemma 4.43. For p satisfying (4.81), with 8, as in Theorem 2.14,
Theorem 4.41 remains valid if the a'”'s are merely taken from L*(82); the
constant C in (4.76) depends on the coefficients of the bilinear form only
through the bound imposed on their respective L™(82) norms and through «.

For N— 2 < u <N — 24 26, the previous lemma implies Holder
continuity of u throughout O, with Holder exponent §' = (u + 2 — N)/2.
We are now going to utilize Lemma 4.43 and prove that if the bilinear
form is assumed coercive on V¥ and y is simply required to be continuous,
or Holder continuous, then u is also continuous, or Hélder continuous.

First we take y € C%(f2), » = 0 on 32\’ and construct a sequence
{w,} of regular functions such that y, >y and v, -y in C%(£2). If the
bilinear form is coercive on ¥, there exists a unique solution u, of (4.42)
with ¢ replaced by y,; moreover,

I"n_um!m:OSClV’n_anlm:a

(see Lemma 4.29).

Assume f9¢e L2#-25(Q) 1 . ., f¥ec L¥#(Q) with N—2 <pu <
N — 2 4 28,: then, each u, is continuous on £ by Lemma 4.43, and so
is the limit «' of the Cauchy sequence {u,} in C*(2). But, since v << g
implies v < y,, {u,} is also bounded in V by coerciveness: hence, w,— '
in ¥, and u' satisfies (4.42). We have thus proved the following theorem.
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THEOREM 4.44. Same assumptions as in Lemma 4.43, except for a(u, v)
being assumed coercive on V and vy being simply taken from C°(£3), with
v > 0 on 32N\T" Then the solution of (4.42) belongs to C°($2).

Next, we have the following theorem.

THEOREM 4.45. Same assumptions as in Lemma 4.43, except that u is
supposed > N — 2, a{u, v) is assumed coercive on V, and v is taken from
Co4(D), 0 < 6, < 1, with p >0 on dQ\TI". Then the solution of (4.42)
belongs to C*4(£2) for some & € 10, §,[.

Proor. Once again it is not restrictive to assume F = 0; note that
the solution of (4.77) is in C*#' () for & = (u + 2 — N)/2. Let us first
consider the case

v>e>0 on NI (4.82)

Denoting by ¥ a controlled C%% extension of y to RY (see Theorem 1.2),
we set
¥n = (Qn * 'i’)|ﬁ

Thus, y, > 0 on 021" for » sufficiently large, and

l Ya— ¥ Im:C = n-h I v IC”-"I((S]

[ ¥n lova < €72 ]y s

(see the remark following Lemma [.8). Next we denote by u, the solution
of (4.42) with y replaced by y,, F=0: since v = g, A 0 is admissible
in the v.i., we have

|y |y < C| 9alium

by coerciveness, and from Lemma 4.43 we deduce
|ty |mor@y < C | 9a loum < Cnt % | 9 lootuay -
At this point we utilize the fact that
Fe — #|ooio < Clyn — Yoo < Cn7% | ¥ |moua)
(see Lemma 4.29) to obtain

Ju(x) — w(p) | < |u(x) — w{x) | + | u(y) — w00 | + | 4a(¥) — ta(x) |
< Clylmougm™® + n'~% | x — y|*)
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for x,ye &2, 0 < |x — y| < 1. By choosing n between | x — | and
| x— »]™* 4+ 1 we arrive at

ju(x) —u(P) | < C|y lpng | X — y 124,

thus proving the theorem with § = 43, , under the additional assumption
(4.82). The latter can finally be removed by first replacing y by v + ¢
and solving the corresponding v.i., then letting ¢ — 0t. 0

ReMARK. In Theorems 4.44 and 4.45 the coerciveness assumption
about a(u, v) can be dispensed with if f°e Le(Q) and /?, ..., fY¥ € L?(Q),
where p > N and g = pNf(N + p). Then, indeed, the function & = —u,
which satisfies

a4, (@ — k)Y < (—F, (i - k)"

for every k = maxg |y |, is bounded not only from below, but also from
above (see the remark following Lemma 2.8). This means that /¢ + Au
satisfies the same assumptions as f° so that a{u, v) can be replaced by
a(u, o) + A [, uv dx.

4.8. Lipschitz Regularity by the Penalty Method

We again take N > 3.

THEOREM 4.46. Assume 08 of class C, I' = (), a'ie COV(D), d' e
Co.o((3) for some 8¢ 10, 1[. Let u solve (4.42) with

(Fvy = L (P + fio)dx  forve V,

where f0€ L2, f1, ..., f¥ € L2+#() for some u in N, N + 2[, and
pe COY D), =0 on QT Then ue C*V(Q) and

'N' -
Ll < C(lf“ l2,u-2:0 + Zl 1 awe + | ¥ looagn + |1 |H1(m) ’

where the constant C depends on the coefficients of the bilinear form through
the bound imposed on their respective norms as well as through a.

PRrOOE. Step 1: Preliminary reductions. Under our present assumptions
Theorem 4.41 yields u,, ..., u,, € L**'(2) and therefore u € L*+"+3(()
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for any &' < N; thus, f© — blu, — cu€ L*+¥Q) and f* — diu e L4(Q)
for & = p A (N + 28). By dint of Theorem 3.16(iii) a simple translation
argument shows that it is not restrictive to assume & = 6 = ¢ =0, F = 0.

Step 2: The penalized equation. Set S(w)(x) = [w(x) — p(x))*. It is
easy to verify that 8, as an operator H'({2) — V", is bounded, hemicon-
tinuous, and 7-monotone. Since S(w)(x) = 0 <> w(x) < w(x), # is a pen-
alty operator associated with the convex set (4.27), and the solution of
(4.42) (under the simplifications stipulated in Step 1) is the weak limit in
¥, as £ — 0, of the sequence {i,} defined by

w6V, Lu+ % B(u,) = 0, (4.83)

L = —0(a'#9/0x;){0x; (see Theorem 4.19 and the remark following it).
Note that an easy bootstrap argument based on Sobolev inequalities yields
u, € H:?({2) for any p € [2, oo[ [see Theorem 3.17(ii)].

Step 3: Boundary estimates. Since 952 is of class C?, there exists a

positive number r such that, whenever x°¢ 32, B,(y) N £ = x° for a
suitable cheice of y = y(x°) in R¥ (a property that is usually expressed
by saying that 2 satisfies a uniform exterior sphere condition; compare with
the beginning of the proof of Lemma 3.26).

We now fix x° € 2, translate the origin of R¥ in the center y of the
corresponding exterior sphere, and introduce the smooth function

wx) = {(r— | x1),  xe RY\{0},

with £, 5 > 0 to be determined later. Of course, w+'(x) = 0 for x€ &;
moreover,
Wi (x) = {nxg | x |~e®,

WL (x) = g8 | x |72 — Ly(n -+ 2)xex; | x |74
with 6% =0 for i j, =1 for i = j.

Let M be the essential supremum over £2 of the function x — | a;",(x)x;
+ 2'(x)3'/ |, and take % so large that

Lwi(x) = —af ()W (x) — aVwil (x)
= {n| x TP la N (x) (g + 2)xax; | x [ — ad(x0)x — a¥i(x)8V]
=L x|""Pa(y +2) — M]1=0,

for x € 2; a fortiori Lw'* 4+ (1/e)f(w') >0 in 2.
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Next we denote by ¢ a positive real number such that 2 < B,, and
fix { = | ¥ lew0™'/n: hence,
| Pw(x) | = & | x |00 > Enp=~1Y = | g |eons)

for x € B\ B,.
If x is arbitrarily taken in £, we draw a line segment from x to 0
and denote by £ the point on that segment that minimizes dist(x, 3£2).

Let wi—) = —w'): since w*~ is a radial function,
wiN(x) — wi(E) = — | wii(x) — W () | N
< — min |Pw | [ x — £]
o~ B,

by the mean value theorem, and

w(x) — p(x) < wx) — w2 (R) — [p(x) — w(£)]
< min |[Pw' 2 |x — 2| + {9 loam | x — £] 0.

e ~Or
because w(£) > 0. This shows that f(w'~’) = 0 throughout £2, hence that
Lw= 4+ (H{e)f(wt") = Lw'=) = —Lw'Y < 0 in .

Summing up, the functions w't’ have the properties

wt—)(x0) =0 = w‘+’(x°),

Wi x) < 0 << w(x) for x e 042,

Lw') 4 % Bw ) <0 < Lwtt 4+ %" B(w™) in 9,

which can be expressed by saying that w'-'(w'*)) is a lower (an upper)
barrier in 2 relative to L + (1/g)B(-) at x°. Then, the T-monotonicity of
B(-) yields

0> L (@9, — W), [(u, — W),
+ L (B — B l(w, — wi)*) dx
> J- a"’[(u, — W”’)J'lz.[(u. — W”))ﬂz, dX,
Q

hence | V[(s, — w'*)*]} .0 = O by coerciveness, and finally », < w'*) on
£ by Poincaré’s inequality in H,!(£2), Analogously, u, = w' on £. Thus,

WOE) — WG _ u(x) = ) _ W) — W)
|x — x°| - |x—x] [ x — x°]
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for x € 2. We have obtained a uniform bound on
|, (x) — u(x®) |/| x — x°| for x°€ 82, x€ 0, ¢ > 0;

since ¥, = 0 on 312, a passage to local coordinates shows that

{Pu | <C on 94 for ¢ > 0.

Step 4: Completion of the proof. Fix ¢ > 0 and k€ {1, ..., N}. By
(4.83) the function z = u,;, [which belongs to H'?(2) for any p < oo
satisfies

1 .
Lz + ? ID‘*(Z - 'Pzt) = (agguu.)z, (484)

in the sense of 2'(f2), yo+ denoting the characteristic function of the set
QO+ < Q where u, > y. We fix 0 > | Pu, |50 V | FY |o.q and set

Q) ={xel|z(x)=z(x) —0 >0},
Q,={x€ Q] z,(x) = z(x) + 6 < 0}.

By our choice of 8, for i =1, 2 we have 2, cc 2 and z; € H(2))
(scc Problem 1.22); moreover, from (4.84) it follows that

Lzy < (a8 2,z in the sense of H'(12)),
L(—z,) < —(afu,.),,  in the sense of H($2,).

Since z;: 2, -+ R and z,: 2, — R are nonnegative bounded functions, we
arrive at a uniform bound

| Z; lza10, < €

(see Problem 2.5, with p = 2). We have thus found a bound on |z |,..g
since 2 =20, U 2, U {xe 2|z(x) < 0}, hence also on | Pu, |s.q for &
> 0 by the arbitrariness of the index k.

By repeating the above procedure a convenient finite number of times
we arrive at a uniform bound on | Py, |,., for some p > N, so that

Izi ]ao;Q' S C

by Lemma 2.8; hence,
I z ]ou;ﬂ S C:

and finally
| Pty |ooso < C for ¢ > 0.
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By the compactness of the imbedding H(2) G L*(2), {u,} converges
to u in L%(f2), therefore (after extraction of a subsequence) a.e. in £2.
Lipschitz continuity follows from the inequalities

lu () —u ()| <Clx—&| forx, €8, £>0;
for the norm estimate see Problem 4.14. 1]
REMARK. When (4.42) is replaced by (4.48), the choice of
Bw)(x) = [w(x) — ()]~ + w(x) — p(x)]*

yields a penalty operator which plays exactly the same role as the one of
the preceding proof. Thus, Theorem 4.46 admits an obvious counterpart
for the bilateral case.

4.9. Problems Involving Natural Growth of Nonlinear Terms

We momentarily go back to the minimum problem considered in the
introduction to the present chapter and generalize it slightly as follows:

minimize 2(v) = —;—J- [a@w) | Py + v¥] dx — J- Jvdx

over a convex subset K of Hl(2uU IN),

(4.85)

where a(t) is a nonconstant bounded and smooth function > 1 of t € R,
|a'(f)| < C. The above functional fails to satisfy the requirement of
being Gateaux differentiable at every w € H(2 U I : forve HMQ U I')
N L=({2) the function 1+ 2 (u + Av) does indeed admit a derivative
at 1 =0, given by

%ﬁ(" + A0)|1m0 = J.D [—{gﬂ | Pu|® + a(u)u, vy, + uv — fv] dx,

but the term

I 3 | Py e ax
a 2

does not make sense if ¥ and v are arbitrarily chosen in HMQwu I
(unless N = 1). Thus, there can be no hope of tackling (4.85) in the light
of Lemma 4.9.



If K< L~(£2) we can still consider the v.i.

ue K, CAG@), v — ) = J- F(u, Vi)(v — u) dx forve K, (4.86)
Q
where

A, 0> = [ (@6uepe, +wldx,  Fu V=1 =L pup

Note that the term [a'(#)/2] | Vi |2 cannot be absorbed into the nonlinear
functional A(w) € [H,'($2 U I')]' by conveniently redefining the latter;
hence, (4.86) cannot be reduced to (4.17). If K ¢ L=(£2), (4.86) must be
replaced by

ue X, Aw), v—uw > I F(u, Pu)(v — u) dx
a
for v€ X such that v — v e L=({2),

which in the case KX = H,'(£2 U I') becomes

we HNR UT),  (A(w), > = j Flu, Vi) dx
el

for ve HA2 W I N L) (4.87)

Ithe Euler-Lagrange equation of the minimum problem (4.85)]. It is intu-
itively clear that (4.86) must be somewhat easier to handle than (4.87). In
this section we shall deal with rather general problems of the above types,
starting with bilateral v.i.’s.

We fix p in ]I, oo and take V = H?(2 U I') with I of class C!,
assuming that the imbedding ¥V & LP(§2) is compact. Let A be the operator
HL2(£2) - V' defined in (4.34) under assumptions (4.35), (4.38) with
strict inequality sign when £ 7= &', (4.40) with g € L?'(2); we also assume
A coercive with respect to the convex set defined by the bilateral constraints.
Next, we introduce a Carathéodory function f of x € £2 and (%, £) € R**¥
such that given any r € ]0, oof,

[fC,m, )< CLEIP + fo(x) (4.88)
for aa. x€ef2 and any (p,&)e R™*Y, [qn|<r, ’

where the constant C > 0 and the function f, = 0, f, € L?'(£2), depend
on r; (4.88) is called a ratural growth condition (see our introductory re-
marks in the case p = 2).
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We denote by F(u, Pu), u e H'?(02), the function S(x, u(x), Pu(x))
of xe 2.

THEOREM 4.47. Under the above assumptions about V, u— A(u) and

ur— F(u, Pu), there exists at least one solution to the bilateral v.i.

ue v, pu<y inQ 4.89)

CAGu), v — ) zj' Fu, Vu)o—u)dx forveV, 9<v<yp inf
o

provided g, yp belong to L>(2) and there exists vy € V such that ¢ < v, < .

PrOOF. Step |: A class of auxiliary v.i’s. For n€ N we introduce
the bounded function

0 for fix,n,£) =0
Salx m, £) = { n A7, 8)]
fix, n, E)W for A(x,n, E)7F£0

and set [F,(u, Pu)](x) = f,(x, u(x), Pu(x)). It is obvious that f, is a Cara-
théodory function of x€ Q2 and (%, §) € R™*¥; moreover, the function
a%(x, 5, &) — f.(x, n, £) satisfies the same type of growth condition (4.35)
as a%x, n, £). By Theorem 4.21, therefore, the operator B,: V — V' de-
fined by

{B,(u), v) = {A(u), v) — J- F(u, Pu)v dx
[+]
for u, v € V is of the Leray-Lions type, hence pseudomonotone. Since the

coerciveness of A implies the coerciveness of B,, from Theorem 4.17 (with
A replaced by B,, F by 0) we deduce that the bilateral v.i.

u, €V, @¢<u,<yp inK
CAGup), v — Uy —j Fulun, Vu)o —u) dx >0 (4.90)
n
for ve V, p<v<yp in £

admits at Ieast one solution.

Step 2: A uniform bound on | u, |g.pi0. For any t >> 0 we can find
a positive number 8(7) such that 8(1)& (1), with & (1) = &~ (where v,
is the function required in the statement of the theorem), is << 1 a.e. in £2.
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This means that the function ‘
va = 1 — 8(OF O]y + SOF (1)v6

is an element of ¥ which lies between ¢ and v (see Lemma 1.57). We
insert v = v, in (4.90). Since

Up — Uy = _6(1)(‘41 - vo)gp(l)
and

(Dn - un)z‘ = "'o(l)(“n - Do)z;g(’) - za(t)t(uu - Du)n(“n - vo)z;g(t)-

we have .
A, Va1 + 2000~ 187 () i
< [ (A%, Va1 -+ 2100, — 00
- [Pty V) — A%t Vit )ty ~ v0)}E () .

Since both u, and v, lie between ¢ and y, from (4.35), (4.40), and
{4.88) [which clearly holds also with f replaced by f,, r being chosen
= max(| ¢ [w,0. | ¥ lo:0)] we deduce that

aj | P, |P[ + 21, — 0021 (1) dix
o]
<G (40X +20 + (1P 574 1) | Py | (L + 20
n
+ | Pup |7 [ug — 0o + fo 4 1+ | Pup [P~ 3 A)E (1) dx.
At this point we utilize the following estimates;
| P[22 o, | (r) d
1-1/p, /p
< U | P 1P5 (1) dx] U | Py, P (1) dx] ,
n a
| Pu, [P (1) dx
1-1/p 1p
< U | P, PF (1) dx] ” £ (1) dx] ,
n n
Co | 1Pual? lun— v F 1) e
o]

:
< ;—J | Pu, |PE (1) dx + &- J | Pu, [P(u, — v,)*& (1) dx.
a 2a Jg
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By choosing t = Cy?f4a® we arrive at the inequality

a C.2 C.t 1-1/p
(Sl |, v ()]

which yields a uniform bound on [, | Vu, |?&(Cy*/4a®) dx, hence on
| Pu, |,.0 because & =1 on [0, cof. Note that by (4.35) this yields, for
each j= 0,1, ..., N, a uniform bound on | A¥(u,, Pu,) |,..c as well.

Step 3: Completion of the proof. By reflexivity, the conclusions of the
preceding step yield

u,— u in V, u, = u in LP(Q), u,(x) — u(x) for a.a. x€ £,

Alu,, Pu)—h  in LP(Q) for j=0,1,...,N

as n — oo (with the same symbol for a suitable subsequence of indices
as for the original sequence). We are now going to show that with the
notation (4.39),

J. D, dx —0 as n — co, 4.91)
a

For t > 0 set F(¢) = &, and let §(¢) > 0 be such that 8()F (1)
<1 ae in 2. Since v = [l — 8(ONF(O)]u, + S(NF (1) is admissible in
(4.90), we arrive at the inequality

j AiCuy, Vu) oty — w1 + 2y — wfF () dx
i+
< j (Foltn, Vi) — A%y, Vi)l — )F (1) d,
n N

whose right-hand side is majorized by a quantity
CU (ot 1+ |Vu, [P+ B |u, —ulP() dx
a

+ 5 j 170, PO d + .. j 1Py oy — wPFC) dx|

for £ > 0 (see Step 2 above), Because of (4.40) we have
o] 170 pFW de < | Alun, V@O de + | €+ PO d,
o o o
@[ | Vunloa, — w2 0) dx
o
< [ A, Vian oty — 0 F O e + (€ + D)~ 00) .
o o
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We set

P=[ (f, 414 1Pu P+ b) |, — u|F) d,
< 0

o) = 'a (1 + )& (1) dr,

R = [ (149 — @) dx
+ I At(un, Vuydu, (u, — u)?? (1) dx;

note that since u, converges to v in L?(2) and | u, — ¥ |oo;n, | V¥, 15.0»
| A*(u,, Vu,) l,+.q are uniformly bounded,

lim P,(tf) = lim R, () = 0
R-»cO A0
for every fixed f. Thus,

[ A, Vi)t = )t + 20600 — w10 i

< Cl[ PA(1) + o L Ay, V)t — ), &) dx
+ L Ai(tn, Vit Ju &) dx + o Q1)
+ % L Ay, V) ty — ), (4 — u)F () dx
+ 5 RO)].

We set t = K, = C,/4ea with € < 2a/C, and obtain

(l - g:: ) '[D Ai(un) V“u)(un - u)z{?-(Kn) dx
< Gl PuR) + o [ A, P, F R
7]

€ 1
+ 5 Q) + 5, RU(K)],
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hence

(-3 | pEwa

Ce
—(1 =) [ At P, — ) F K d
+ c,[P,,(K,) + ;_QJ' Ay, Pu ), F(K,) dx
+ 5 Q) + 5 Ry(K, )]

Since #(K,) > 1, we arrive at

C.e .
(1~ 5 )imsup [ Duax<cige | (Hue+1+8)dx

because A¥(u,, Vu) - A'(u, Vu) in L7 (2), up; — u,, in L?($2), and (4.91)
follows by letting £ — O+ since the integral on the left-hand side above
is > 0.

At this point, since (4.40) holds, we can apply Lemma 4.22 and obtain

u, > u in ¥,

sO that

A, , Puy — Ay, Pu) in L?($2) for j=0,1,...,N

by Lemma 4.20. As a matter of fact, the proof of Lemma 4.20 can also
be easily adapted to prove that

Fup, Vup) — F(u, Pu)  in LYQ);
after passing to a subsequence, we therefore have

Fn(un: Vﬂ-) — F(u, V“) a.e in 0
with
l Fu(“n) Vun) ! Sf‘ a.e in Q,

f* e L'(£2) (see Theorem 1.Q). Hence,

J Fo(u,, Pudu,dx — J- F(u, Pulu dx
Q n
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by the dominated convergence theorem. We can prove that u solves (4.89),
therefore, by a passage to the limit in (4.90). ‘ 0

Theorem 4.47 will now be utilized to investigate the solvability of the
equation

wEV,  (Aw),v> = J Fu, Puppdx  for ve VN L=(@Q); (4.92)

note that (4.92) implies

— Ai(u, Pu),, + A°(u, Vu) = F(u,Vu)  in the sense of 2'(2).

We take V as in Theorem 4.47. For what concerns the operator A,
we strengthen our previous assumptions by requiring also that it be strictly
T-monotone and coercive. Finally, we again assume (4.88).

THEOREM 4.48. In addition to the above assumptions, suppose that
@,y € HW2?' ()N Lo(2) with ¢ <0<y on 0TI in the sense of
H2(2), A(p) < F(p,Vp), A(y) = F(y,Vy) in the sense of V'. Then
(4.92) admits at least one solution u, which lies between ¢ and y.

Proor. Consider the v.i. (4.90). Since A(p) and F,{u,, Vu,) [4(y) and
F,{u,, Vu,)] admit an order upper bound F(p, V) Vv F,(u,, Fu,) € L#'(2)
[an order lower bound F(y, Fy) A F,(u,, Vu,) € L?'(£2)], we have

Fy, Vy) A Fylu,, Vu,) < A(u,)

< F(p, Vp) V F,(u,, Vu,)  in the sense of V',

(4.93)
(see Remark 1 at the end of Section 4.5).
The first consequence we draw from (4.93) is that the linear functional
A(u,) can be continuously extended from V to L?(2). In other words,
there exists f,* € L?'(£2) such that

(A(u), v) = J‘ Sfetvdx for ve V.
o
By (4.90),

J‘ r_fn' — Foluy, Vuy)lw — u,) dx >0 forve v, PE=v=<y.
Q2

We can successively take v = u, + x,{p — u,) and v = u, + y:(p — )
in the above inequality, where {3}, = C,=(2), 0 < 3, <1, 3 — 11 a.e.
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in 2, with y; = characteristic function of a measurable subset F of Q,
dist(J, 82) > 0. We let k — co and obtain

[fn‘ - Fn(un ’ Vun)]( - un) 2 0-
v (4.94)
[-f;l* - Fn(un ’ V"»)]('P - un) = 0
a.e. in 2, by the arbitrariness of 1. Write 2 = )3, £2;, with
p<u, <y in 2,, =1, <y in &,,
p<u,—y infy, e@e=u=y inQ;
By (4.94) and Theorem 1.56 we have
= F(u,, Vu,) in £2,,
£i* = Fyu,, Vuy),  Fig, Pg) = Flu,, Vi) in 2,
L= Fn(un’ Vun)’ F('P- VW) = F(";H Vun) in Qi’
F(p, Vo) = Fly, Vy) = F(u,, Vu,} in £;.
From (4.93) we therefore deduce
F(u,, Vu,) A Fy(u,, Vu,) < f,* < F(u,, Vu,) v F,(u,, Vu,) ae in Q,
hence

j [F(utns Vity) A Fyuay, Vup)lo d

< (A, v < j (Flun, Vety) V' Folutn, Veiy)]o dx
o
for v e¥n 1=2(82), v>0.

Since u, —+u in ¥V, A(,)— AW) in V', Flu,, Vu) A F,(u,, Vu,}) —
F(u, Vu) and F(u,, Vu,) v F,(u,, Vu,) — F(u, Vu) in LY(£) (for a sub-
sequence of indices; see Step 3 of the preceding proof), u solves (4.83). []

ReEmMarRK 1. Under the same assumptions about A4 as in Theorem
447, Theorem 4.48 can be given a (more difficult) proof that does not
utilize the result about bilateral v.i.’s: see L. Boccardo, F. Murat, and J. P,
Puel [16].

ReMark 2. Under a natural growth assumption about the nonlinear
function f, regularity results for solutions of equations or v.i.’s are extremely
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delicate. We refer the reader to S. Campanato [32], J. Frehse [52), J. Frehse
and U. Mosco [53], M. Giaquinta and E. Giusti [66]. Let us also mention
that some of the results of the next chapter will imply existence of regular
solutions to problems such as (4.89) or (4.92), in the case of linear opera-
tors A. See also the remark following Theorem 5.14 below.

Problems

4.1. For the existence of a solution to (4.2), the proof of Lemma 4.2 utilizes
the circumstance that Hilbert spaces are reflexive. An alternative method
can be based on the identity

Uy — Uy
2

U + g
2

*
v

! (dm’ + du.) — 'Z -

v 2

where z = ZFand d, = |uy — z |y — infoex |0 — z |p.

4.2. We identify R¥ with its dual (RV). If 2 € C'(RV) is (strictly) convex,
then A(x) = V_Z(x) is (strictly) monotone on R¥. On the other hand, an
operator R* — R?® such as

A(x) = (xl » X3+ ﬂxx));
where ¢ is 2 nonconstant function from CYR) with |¢’ | < 1 on R, is
strictly monotone without being the gradient of a convex function.
43. For a counterexample to uniqueness under the assumptions of Theorem
417, take ge N, p=2(g + 1), V= K = H?(f2) and
Aw) = — (| L2 e ”q)z. + (29 + l)z,_,,, | Uz, [*e,
where z is a given function from C,~(2). (See J. A. Dubinskii [46].)

44. Let X be a convex subset of a reflexive Banach space ¥, and let 4 be a
monotone and hemicontinuous operator ¥ — ¥’. Then (4.17) is equiva-
lent to:

uek {Ap) —F, o —ud =0 for v e K;

as a consequence, the set of solutions to (4.17) is convex. (See G. J. Minty
[113])
4.5. In addition to the assumptions of Problem 4.4, suppose that the equation

ueV, Au=0

can have at most one solution, and that K satisfies the strict convexity
condition: v,v € K, # #pand 0 < 4 < 1= 4w + (1 — A)p € interior of K.
Then (4.17) can have at most one solution.
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4.6.

4.7.

4.8

4.9.

4.10.

4.11.

For h =1, 2 let X, be a nonempty, closed and convex subset of a Hilbert
space V; let u = u, solve (4.9) with XK = K|, alu, v) coercive, F € ¥*; and
let wy, € K, be such that w, + wy = u, + u, and a(w, — uy, w, — u,) = 0.
Then w, = u,. In particular, consider (4.47) with ¢ = ¢, and p =y,
measurable in 2: if ¢, > ¢, and v, > w,, then w, = &, vu, and w, =
a4y Aug are admissible, and &, > u,. Consider also (4.43) with y =y,
measurable in 2, v, > y,, and compare with the corollary to Lemma
4.26. (See Y. Haugazeau [74].)

Give the explicit expression of the solution to the v.i.
ue K, J u(v—u)dxz-[ S(v — u) dx for v € K,
174 4] .

where X = {v € IN)) | ¢ < v < y in Q} with f, @, and y given in IN).
A v.i. associated with a fourth-order operator is

ue Kk, J Awd(p — ydx > (F, 0 — ) for ve K,
']

where K = {ve HM2) n HYD | —1 < Av <1 in Q} and F= £} with
fte LP(ID), 2 < p < oo, Introduce the solution & to the Dirichlet problem
i = 0 on 82, —4i = F, solve the v.i. for Au and prove that, if 82 is suf-
ficiently regular, then u € H"P(f]), See H. Brézis and (. Stampacchia [23].
Let u, solve (4.42) with y replaced by v, , supposing that {y.} converges
to v in ¥. Assume o{u, v) coercive on ¥. Then 4, — u in ¥, where u is
the solution of (4.42).

Utilize the method of translations to discuss the one-dimensional v.i.

1 1
ue Kk, Ju’(v'—u')dxzjf(v—u)dx forve K

a
where K={ve HMDN|v<0in 2}, 2=10, 1[, and f is a first-order
polynomial in x. Give numerical examples.

Let f=f°— f{, f'e LYN), satisfy £ < 0 in the sense of H-(f). Then
there exists {f,} < L=, f, <0 a.e. in £, such that f, — fin H-(f).
To see this, approximate f in H-Y0) with {f,} <« C. () and solve

G e Ho®, | Gpods= [ fwds  foroc HU)
Q a

then solve
u, € HQ), u,<i, inQ,
J Unz, (0 — u.),‘ dx >0 for v € H} ), v < i, in 12,
a

and finally pass to the limit: the functions f, = — Adu, have the required
properties. (See G. M. Troianiello [146].)
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412, Let V= HMN 2 v I with '# @ of class C'. Assume Fe V' and y €

4.13.

4.14.

HY (D, v 20 on dQ\T, are such that there exists (Ly) A f € H(4D),
with L defined by (4.33) and f = restriction of F to H,'(2). Then a solu-
tion u of (4.42) satisfies

(I ASf<Lu=<f [in the sense of H-'(Q)].

(Compare with Theorem 4.32.) To see this, suppose that a(w, v) is coercive
on H D), solve

i — u € HMQD), Li=1y in 2,

and utilize the Lewy-Stampacchia inequatlity for the v.i. in A, (£2) with
obstacle v — & and free term f — Ly.

Give a local counterpart to Theorem 4.38 as follows. If w is an open subset
of £2, take ¥ open with ' ¢ &2, 3% of class C*>* and dist(&, 32 N )
> 0. Let g € C.>(RY) with dist(supp g, 22 N ) >0, g =1 on @, and
write the v.i. for gu in &' with obstacle gy: the H*™ regularity of .,
depends only on the suitable regularity of the data on /3.

Give the norm estimate of Theorem 4.46 by evaluating the various constants
appearing in the proof.



5

Nonvariational Obstacle Problems

The first section in this chapter is based on the following considerations.
Obstacle problems such as (4.44) and (4.48) can be formulated even when
the operator L is of the nonvariational type; candidates as solutions are
those functions # whose first and second derivatives are defined a.e. in £,
so that Lu certainly makes sense. We can still avail ourselves of existence,
uniqueness, and regularity results for v.i.’s if the leading cocfficients of L
are smooth. If not, we can approximate L by a sequence of operators to
which variational tools do apply.

Now let the given functions f and ¢ be replaced by functions F(u, Vu)
and Z(«) that depend on the solution u itself [so that the linear operators

u+—> Lu, u+—> Bu

are replaced by the nonlinear ones
u— Lu — F(u, Vu), ur—> Bu — Z(w)].

We tackle the corresponding obstacle problems in Section 5.3. Qur ap-
proach to existence results, centered around the Leray—Schauder fixed point
theorem, utilizes the existence and uniqueness results of the first section in
conjunction with a priori H*? estimates on solutions. It is to the derivation
of estimates of this sort that Section 5.2, in its turn, is devoted.

The last section deals with unilateral problems for the operator
u+> Lu — F(u, Vu) (under Dirichlet boundary conditions) in cases when
regularity assumptions about the obstacle p are too weak to guarantee
the existence of a solution u in the previous, strong sense. We therefore
introduce an appropriate substitute for a regular solution. This new notion
enables us, in particular, to tackle problems where y depends on u itself.

m
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5.1. Obstacle Problems for Linear Operators
Set
= —aYu,, + @', + au,  Bu= Bhu | 4 Pulr.

Throughout this chapter the following properties of regularity will be sup-
posed to hold:

o I' is closed in 912, the latter being of class C11;

e g/ e C%(2) with a modulus of continuity 7, @ = @/, and
aEE >alEP onQ for e RY (x> 0);
o f . ,B8¥e (), and % >0 on I

In the present section we shall also assume &4, ...
in 2, feCoYI"), B>=0on I', and

,a¥, ae L~(2),a >0

esssupg+max >0 if I'=00,
n r

5.1.1. Bilateral Problems
We begin with the problem
p=u<y, (Lu—flu—-9¢)<0
and (Lu— flu—9) <0 in Q, (5.1
Hlaa\p = 0, Bu = C on I

This is a nonvariational bilateral problem, although of a special type: the
condition on I" is the same as in (2.19) or (3.36), not as in (4.48).

THEOREM 5.1. For 2 < p << co assume f€ L?(Q), { € HV? ' *(), ¢ =
Ve ¢t with o€ H*?(Q), Moo r <0 and Bp* <{ on I, y = N\J, v
with y* € H%?(QQ), y*3or > 0and By* > L on I, o < y in Q. Then (5.1)
admits a unigue solution u € H?(Q2), which satisfies the Lewy-Stampacchia
inequalities

l\ (L) Af<Lu< y LMV in Q. 5.2)
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PROOF. Step 1: Existence. We consider the same functions a,%, 6,,
operators L, , and bilinear forms 4,(u, v) as in Step | of the proof of Lemma
3.21, so that 0,8 is the conormal derivative with respect to 4,(u, v).

Our present assumptions about a and § yield dn(l,v) = 0 whenever
veE H°(QR U TI)is > 0in £, and also 4,(1, v) 7= 0 for some v € H'(2) if
I' = 89. This implies (Theorem 2.4) the validity of the weak maximum
principle, so that the bilateral v.i.

u, € HYQ2 u InN, P, <y in 2,
b v =)= | fo—u)dr+ | 00— wlrde (3
a r
forve HYQRQUT), e¢<u,<y inf

admits a unique selution by Theorem 4.30. Moreover, u, belongs to H*?(2)
and satisfies

rpsuns'ﬂ: (Luun_f)(un'—qj)so

and (Lyty — /)ty — 9) <O in O, (5.4)
“nlao\r = 0: Bun = c on F:
as well as
AL AT<Luy<V L VS inQ, (5.5)
Aml Al

by Lemmas 4.25, 4.36, and 4.37. But then, Theorem 3.28(i) yields a uniform
‘bound

[t v < €[ 3, (9 lnoir + 1 9* lmsoia) + 1 o+ 1€ oo

by reflexivity, a subsequence of {u,}, still denoted by the same symbol,
converges weakly in H32(2) [and strongly in H"?({2)] toward some func-
tion #. We pass to the limit in (5.4) (as in the proof of Lemma 3.22 for
what concerns Bw,) and in (5.5), thus showing that u solves (5.1) and
satisfies (5.2).

Step 2: Uniqueness. Assume that uy, u, € H¥?(2) are two solutions
to our problem. By Step I, the problem
p<v=<wu;Auy, (Lv—Hv—9p)<0
and (Lv— v —u, Auy) <0 in 2
viaa\p = 0, By = C aon F

»
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admits a solution v € H*?(£2). Put

£ = the subset of £2 where v < u; A u;,
2 = the subset of £ where v = u, < u,,

" = the subset of 2 where v = u,.

In 2 we have Lv = f and Lu, <[ (since u, > ¢); in 2" we have Lv
= Lu, > f (since u, << ) and Lu, << f (since u; > ¢); finally, in 2" we
have Lv = Lw,. [We have repeatedly exploited the fact that the first and
second derivatives of a function w e H*?(2) vanish a.e. in the subset of
2 where w = 0: see Theorem 1.56.] Thus,

Lv> Lu, in Q,

@ — u)dlenr =0, Blv—u)=0 on I,

so that Theorem 3.29 yields v > u, and therefore v = u,;. It can analogously
be proven that v = u,, whence uniqueness follows.

Note that, by uniqueness, the whole sequence {u,} of Step | converges
weakly to u in H*?($2). 0

5.1.2. Unilateral Problems
The unilateral counterpart of (5.1) is

U<y, Lu<f and (Lu—f(x—y)=0 inf,
5.6
Wooar=0, Bu={ onl 56

We have the following theorem.

THEOREM 5.2. Under the same assumptions about f, {, and ¢ as in
Theorem 5.1, (5.6) admits a unique solution u€ H*?(£2), which satisfies the
Lewy—Stampacchia inequality

Lu> 7\ (LY Af  in L. ¢.7

A=1

Proor. For existence and (5.7) we could again use an approximation
procedure as in the proof of Theorem 3.1, this time with the aid of Theorem
4.27 and Lemmas 4.23, 4.33, 4.34. An alternative method utilizes instead
Theorem 5.1 itself, as follows.
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Let w be any function from H??(£2) satisfying

w<y and Lw<f in £,
(5.8)
W r <0, Bw<{ onl

[a possible choice being the solution of the b.v.p.
m -
Lw= A (LyM Af in 8,
=1
Wagnr = 0, Bw=1{ on I’}
Theorem 3.29 then yields
w<wy in 2]
By Theorem 5.1 the bilateral problem
w=u<sy, (Lu—fllu—w)<0

and (Lu—f)u—y)<0 in £,

Ulpggar =0, Bu=1{ on I
admits a unique solution ¥ € H*?(2), which verifies

R LY ASF<Lu<(@w)Vf<f in$.
b=l

Then u satisfies (5.7), as well as the inequalities of the first line of (5.6);
from them, the equality (Lu — f)(u — ) = 0 follows since (Lu — 1)
X(u—p)<0.

Uniqueness can be proven as in Theorem 5.1, this time assuming
u,, 4, € H*?(£2) to be solutions of (5.6) and solving: v € H2P(f2),

v by Ay, Lv<f and (Lv—f)(v—uy Aug)=0 in £2,

v',;a\r\ = 0, B=20 on F,

then showing v = 1y, v = uy.

Observe that once uniqueness has been ascertained, the first part of
this proof shows that the solution w is maximal among all functions
w € H2?(Q) satisfying (5.8). 1]

For the case 1 << p << 2 in Theorems 5.1 and 5.2 solve Problem 5.1.
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If I' 5= (¥, the most general formulation of a nonvariationa! unilateral
problem is ' ‘

u<y, Lu<f and (Lu— fYu—y)=0 in 0,

ulsgr = 0, (5.9)
Wr=<vylp, Bu<{ and (Bu—{u—9);=0 onlrl

[see (4.44)], which contains (5.6) as a special case. As the example of
Section 4.6.2 shows, we cannot expect to solve (5.9) in H2?({2) for p much
larger than 2, unless (5.9) reduces to (5.6). We take p = 2. By analogy
with the definition introduced in Section 4.4.1, we call w € H*(£2) a sub-
solution of (5.9) if it satisfies (5.8). When the assumptions about the leading
coefficients of L are suitably strengthened, (5.9) can be tackled in the light
of the variational theory. Indeed, we have the following lemma.

LEMMA 5.3. Take the a'’’s in COVN(2). Assume f€ L¥ ), [ € HY(I)
if I' # &, and yp measurable in Q if I' = (5, p € H'(2) otherwise. A solution
u€ H*R2) of (5.9), if existing, is then maximal among all subsolutions (and
therefore unique). Moreover, under the additional requirement that y € H*({2)
“with ylsgr = 0, such a solution does indeed exist and satisfies the Lewy-
Stampacchia inequalities

Lu>(LyyANf in R,
Bu> (By) A ¢ on I’

as well as a norm estimate

| # |geen < CU S |z + 1 $ o + | 9 lma)s (5.10)

where C (independent of u, f, {, v) depends on the coefficients of L only
through a and the bound on | @¥ |z, | @, @ |w.q-

Proor. We introduce the same function # and bilinear form &(u, v)
as in Step 1 of the proof of Lemma 3.18, so that 0By is the conormal
derivatives of u with respect to &(u, v). Any solution ¥ € H¥}(Q) of (5.9)
is also a solution of the v.i.

ue HY Q2w D), U<y in Q,

d(u, v — u) > Lf(n —u)dx+ J 6C(0 — u)|y do
r

(5.11)
for ve HMNG o IN), vy in 2
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(Lemma 4.23). Since 4(1,v) >0 if ve H (2 v I") with v >0, and in
addition 4(1, v) 7= 0 for some v € H}(Q) if I' = 802, the weak maximum
principle holds and Theorem 4.27 applies.

The maximality property of # follows immediately, because any sub-
solution of (5.9} is a subsolution of (5.11) as well. Moreover, if y € H}(Q2)
with 9|30~ r = 0, (5.11) admits a unique solution u, and the Lewy-
Stampacchia inequalities follow from Lemma 4.33, the H*({2) regularity
with norm estimate

l# |y < CUS e + | Elpar + 19 e + | # ) (5.12)

from Theorem 4.40. By Lemma 4.23, » satisfies (5.9): notice that the
pairing {Bu — {, (u — y)|> equals the integral [, (Bu — {)(u — y)i,da,
and the latter equals 0 if and only if the nonnegative function (Bu — {)
X (¥ — )|, vanishes ae. [N — 1l on I

In order to pass from (5.12) to (5.10) we first of all apply the inter-
polation inequality (Lemma 1.37)

[ # oy < €| wlgye + Ce) | |30, e>0,

which enables us to replace | u |, with |u ]y, in the right-hand side
of (5.12). Then we utilize Theorem 3.29 and solve: w € H((2),

Lw=—|f|—|Ly| in®,
Wagr =0, Bw=—}{{|—|By]| on I
(where Theorem 1.61 has also been taken into account). Thus,

| Wiy =< CQ S 20 + | € lmaem + 19 o)

by Theorem 3.2B(i). Since w is a subsolution of (5.9), we have u = w in
addition to u < y, so that | # |5, << | ¥ 5,0 + | W |5;0 and (5.10) follows. [
We now return to the general case ai/ € CO({).

THEOREM 5.4. Lemma 5.3 is still valid if the leading coefficients of L
are merely taken in C°(Q); the constant in (5.10) now depends on them only
through the bound on their L=(£2) norms as well as through a and <.

PROOF. Step |: Maximality among subsolutions. Let {a,i/} c C=()
be the usual sequence of restrictions to £ of regularizations g, » 47 and set

Lau = ~ay'iuz,, + a'uy, + au.
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A solution u € H?(82) of (5.8) is also a solution of its analog with L replaced
by L, and f by f+ (L, — L)u. Let w be any subsolution of (5.9) and
consider the b.v.p.

Lz = —|(Ly— Lwu|—|(L,— L)w| in £,

nen

anan\r = 0: an =0 on I

By Theorem 3.29 such a problem admits a unique solution z, € H*(£),
which in addition is << 0; by Theorem 3.28(i), z, =0 as n —oco. The
function w, = w + z, verifies

w,<yp and Lw, <f+ (L,—Lu in £,

Welogr < 0, Bw, <{ on I',
so that w, << v by Lemma 5.3 and finally w < u.

Step 2. Proof of the norm estimate. We now follow a procedure
analopous to the one utilized in the proof of Lemma 3.20.
Consider a point x° € I"and fix any r > 0 such that B,,(x®) 1 Q2 c TI.
- Let g =gp,€ C(RY) with 0 <g=<{1, suppgc B,(x°) and g=1 on
B,(x®). The function u' = u,0, = gu satisfies
w <y, Ly <f' and (L' —fYw' —9)=0 in £,
Wlaar =0,

Wp<yln, BY<? and (BY —0{)@ —y),=0 onT,
where L, = —a*(x®)®?*/0x;0x; + a'd/0x; + a, and v' =gy, f["'=gf +
(Lo — LW — 2aVu, g, + ulg, I’ = gir{ + fig,| 4. notice that

[ M a0 < CU S 20 + 220 | |riay + | 8 lor By | ¥ s
[ ¢ ey < CU L gy + | 8 loysmmn | ¥ i)
with C independent of r. We can apply Lemma 5.3 with L, u, f, £, v,

respectively, replaced by L, ', f', ¢', y', thus obtaining, for 2 small
enough r, a bound

|4 i) < C( S 2o + 1 C lmmm + H o lasiey + 1 ¥ bin)

with C = C{r) independent of wu, f, {, ¥. Similar considerations can be
repeated if x9€ 82N\ J or x%€ 2.
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At this point we utilize a straightforward compactness argument and
arrive at (5.12), hence also at (5.10) (with the required type of dependence
of C on the a'/'s) by the same considerations as in the proof of Lem-
ma 5.2.

Step 3: Existence and Lewy-Stampacchia inequalities. We again con-
sider the sequence of operators {L,} introduced in Step 1, and find the
unique solution w, of (5.9) with L replaced by L, thanks to Lemma 5.3.
Because of the type of dependence the constant C in (5.10) now has on
the leading coefficients, the norms | u,, |0 are uniformly bounded. Hence,
(a subsequence of) {u,} converges weakly in H*({2) toward some function
u, and u, = u in H'(Q), up;|p— uz |, in HY3(I) (see Problem 1.27). A
passage to the limit (with the aid of Lemma 1.60 for what concerns in-
equalities on I') shows that « satisfies (5.9) and the Lewy-Stampacchia
inequalities. 1]

ReMARK. The maximality property of solutions to (5.9) implies their
monotonicity with respect to f, ¢, and .

5.1.3. An Approximation Result

Under the assumptions of Theorem 5.1 about £, {, ¢, and p we solved
(5.1) by introducing {a,"} < C=({) with a,¥ — ai’ in C*({J) and showing
that u,[solution of (5.3)] — u[solution of (5.1)] in H%7(£2). Since numerical
tools such as the finite element method are available for the investigation
of v.i.’s (see the notes to Chapter 4), the above approximation procedure
is also usefut in the numerical analysis of (5.1), provided the rate of con-
vergence of u, to u is estimated in some convenient norm. The result we
have (with the above notations) is as follows.

THEOREM 3.5. Let g be the number Np{(N — 2p) for 2p < N, any
real number for 2p = N, co for 2p > N. Then,

m
|u, —u Iq;O <C max |ag, % —a" |oo:{)[; (| @* lgs.ecas
ig=-1.....N =1

+ 1! lvean) + [ g+ 18 IH”?'-FU')] s (5.13)

where C (independent of u, f, €, ¢ and ) depends on the coefficients of L
only through the bound on their L*(§2) norms, as well as through a and .
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ProoF. Without loss of penerality [since we can always operate the
translations ’
p— @ — i, y—y — f, H—u—u

with @€ H:.?(£) solution of
Li=f in £
#sgnr =0, Bi={ onlT]
we assume f =0, { = 0. Then (5.3) becomes
u, € H(Q U D), p<u,<vyp in 2, (5.14)
a,(u,,v—u)>0 forve H'(RuUTI), e¢<v<y in '
and_ its analog with » replaced by r can be rewritten as

urEHol(QUP): ‘PS";-SVJ iﬂ Q,

Balry 0= 4) 2 [ 1o = LowI(o — ) e
a
for ve H)(Q w IN), p<v<vy in {2 (5.15)

[because w, € H:P(£2) with Bu, =0 on I']. Let it = (u, — u,)t, w,=
aw/(@i + €) with ¢ >0 and we C}M(R U T), 0<w<1, so that both
functions v' = u, + ew, and v’ =u, — ew, lic between ¢ and p. We
insert v = v’ in (5.14), v = v’ in (5.15), and obtain

j Zart d > Golity — ty, W) = Gy(d, W) (5.16)
o

with g,, = (L, — L Ju, where u, > u,, g,, = 0 elsewhere. By proceeding
as in Step 3 of the proof of Theorem 4.27, we decompose d,(ii, w,) as a
sum £,(g) + el,(e), with F(e) — 6,(i, w) as ¢ — 0+, If

a, (i, w) > J Ea,W dx (5.1
o
for some function w as above, we arrive at
lim sup ef,() < 0 (5.18)
ot

[see (4.52)] since
| s guwa.
a o
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But (5.18) is self-contradictory, and (5.17) must be false. This shows that
dy(a, w) < L gnwdx  for we HMRuUT), w>0;

by the weak maximum principle, (u, — u,)* < z,, in §2, where
I, € H(2u D), d,(z,,, v) = J-a 8.0 dx for ve HMQ U ).

But z,, belongs to H*?((2), with
| Znr |H’-l’tm =cC |gnr Ip;a
< C|(Ly— L)u, |P;G

< C max | C!“U - arij Ioo;o | u, IH'-PUJ)'
ig=1,....N

At this point we recall that
I Zny lq;a S l Zy, lH’-PIGl

by Theorems 1.33 and 1.41, and that
m
|4 1w < C 2:1 (1 #* lmsoian + | 9* liamion)

with C independent of r. Since the roles of r and n can be interchanged,
we have proved that (5.13) (with £ =0, { = 0) holds if u is replaced by
u,,a' by a,%, and the sought-for conclusion foliows as r — oo, U

5.1.4. Systems of Unilateral Problems

In the proof of Theorem 5.2 we soived a unilateral problem by re-
ducing it to a bilateral one. We now take I' = (& (for simplicity’s sake)
and consider two unilateral problems which are coupled through their
respective obstacles as follows:

e vt < o' 4y,
<y, Lf<f, (5.19)
Lo — M — v+ @)=L = —v' —p)=0 in Q,

Vg =00 =0,
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where f1, /2, @, and y are measurable functions on Q. If (!, v?) € [H3(2)]2
satisfies (5.19) the function w = v® — »! is an element of H2(2) which
vanishes on 92 and verifies

pSuUsY

as well as

(Lu— fYu — @) = (Lv* — [*u — @) + (—Lo* + f)u — ¢}
S (L + /Y =o'~ g) =0
and
(Lu — fYu —y) = (Lv* — ) u — 9) + (—Lo* + ) —v)
SN — ) =0
in 2, with f = f, — f;. This means that a solution v of the bilateral prob-
lem (5.1} with I'= {J can be obtained from a solution (', v?} of the

system of unilateral problems (5.19). Vice versa we have the following
theorem.

THEOREM 5.6. Take @, y as in Theorem 5.1 (p=12), f=*— f!
“with f1, f2e L¥Q). Suppose that ue H*($D) satisfies (5.1} with I'= (&
and let v\, ut € H*(Q) solve the b.v.p.’s

Lu' = f' — (Lu— f)*, L= f*— (Lu— Yy in 9,
u'lso = “'laq =0,

so that u* — u' = u. Then (u', u®) is the maximal solution of (5.19); unigue-
ness holds if and only if the set

§= {xe Q] p(x) = p(x)}
has measure 0.
ProOF. From ¢ < u <<y we deduce
W <ut— g, W<yl oy
Besides, the inequalities

<, Lep<f

are obvious. On the other hand,

(Lu' — Y - + @} = Lu— N u~¢) =0,
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the latter equality consequent on the fact that Lu << f in any measurable
subset of £ where u > @, and analogously

(Lu* — f*)( —u' — p) = (Lu — f)(y —u) = 0.

This suffices to prove that (u!, u®) is a solution of (5.19).
Now let (v!, v*) € [H*(£2)]® be any other such solution. By our pre-
vious considerations, uniqueness yields v> — v! = # and therefore

Lo — f — (L' — fY) = Lu— f = (Lu— f)* — (Lu— f)~.

This implies the existence of a function g € [}{2), g <0, such that the
nonpositive functions Lv' — f1 and Lu? — f* satisfy

L' —f1= —(Lu—f)* +e,

5.20
L — fP=—(Lu—f)Y"+g in 2. (5.20)

By Theorem 3.29,

v!<u' and v <u? in £,

thus the maximality of (&', #*). On the other hand, we cau find a necessary
and sufficient condition on a function g as above in order that the corres-
ponding pair (v, #*) in (5.20) satisfy (5.19). Indeed, the identity

0 = (Lo — /0! — " + §) = (Lu — Yu— 9) — gl — 9)
is valid in 2 if and only if, in any measurable subset of £ where u— >0
and therefore (Lu — f)t = 0, the identity g(u — @) = 0 is valid and there-
fore g = 0. By the same token, the identity

0=(L*— M —v'~yp) = —(Lu— f)y-(u—vp) +gu—1y)

is valid in £ if and only if g = 0 in any measurable subset of £2 where
u — y << 0. Summing up, any solution (', 1*) € [H*£2)]®* to (5.19) must
satisfy (5.20) with

g=0 in 2\8.

If| §|=0,theng = Oa.e. in 2, and (v!, v!) = (&', *). Ifinstead | S| > 0,
then the solution (), v*) € [H3}(2)]? to (5.20) with g = characteristic func-
tion of § satisfies {5.19) and differs from (u!, u2). |
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System (5.19) is a particular case of the following system of unilateral
problems:

vk < MEp), Lok < fE (Lot — fHlvt — M¥@w)] =0 in @,

vto=0 fork=1,..., m, (5.21)

where v = (v!, ..., v™) and

M) = /\ vl + k.

F+k

For m > 2 we cannot solve (5.21) by reducing it to a bilateral problem.
We proceed instead by putting some more restrictions on the y¥’s.

THEOREM 5.7. For k=1, ..., m let f¥e L*Q), vt e H} Q) with
vi;0 >0 and Ly’ + y¥) > 0 if j# k. Then (5.21) admits a maximal
solution u = (u, ..., u™) € [H(Q)™

PrROOF. We set
Lyt ™ Lyt .
| J— — — i
) \4 ( 2 7 )

(obviously, a* < f¥) and

= {v= (v, ..., v™) € [H}2)]"|
ab < Lot < ftinQ, vijp=0for k=1,...,m}.
D is convex and closed; moreover, it is also bounded in [H*(2)]" by
Theorem 3.28(i). Let v € D. For each k Theorem 5.2 yields the existence
of a unique function z¥ € H*(f2) such that
5 < MHp), L <fE (LzE— fH2F— M) =0  in 2,

oo = 0; ¢-32)

moreover,
Lz* > (/\ Lvi + Lw*) A S in 2. (5.23)
ik
Since v € D implies

A Lo + Lyt > Ak a? + Lyt

F#E
SNCIE T

J+k i=1

- A (a‘ L B —w st g ALy v,
ik

ek
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(5.23) yields Lz* > a* by the restriction imposed on the ¢*s. Thus, z
=(z', ..., 2"} € D. Denote by o the mapping v+ z: we¢ have proved
that (D} < D.

Now let ut e HYQ2) solve

Luyk = f* in £,

Uo*lan = 0.

Of course, u, = (4, ..., u,™) belongs to D, and for each component of
t = o(u,) € D Theorem 3.29 yields

nt <yt in 2.

Let v,y = o(u,) for ne N. If u* <ut_, for cach k, then M¥iu,) <
M*(u, ), and therefore v£,, < u,* by monotonicity with respect to ob-
stacles (see the remark after Theorem 5.4). Thus each sequence {u,*}, < D,
being nonincreasing as well as bounded in H2(£2), converges weakly in
that space and strongly in H(£2). We can pass to the limit as # — oo in
the system of unilateral problems (5.22) written for v = u,, z = u,,,.
Let u* = lim, o, u,f, v = (', ..., ™). Then not only u € D, but also

wb < MMu), Lut < fY (Lut— fR)luF — MYw)] =0 in Q,
uklao=0 fork:I,...,m.
This shows that y is a solution to (5.21}. As for maximality: if v € [H¥(2)]™

is any other solution, Theorem 3.29 applied to each component v* of v
yields v* << u,*, hence v* < u,* for n € N by recurrence, and finally v* <ut. []

5.2. Differential Inequalities

From now on we suppose that the coefficients a', ..., a¥, a (from the
definition of L) and # (from the definition of B} vanish identically.

In this section we provide global and local bounds on functions u
satisfying a differential inequality

|Lu| < K|{Vul+f, in®

(5.24)
with X > 0 and foe LP($2), fo=0.

As a preliminary, we give an interpolation inequality in H*?(2} which
will be needed in the sequel.
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5.2.1. Interpolation Results

LEMMA 58. Let 1 <p<<oo, 1 <g=<oo, and 2/r=1/p+ ljg<2
(where 1joo stands for 0). There exists a constant C such that
2 X
| Pu |,;RN <cC :E | Uz, ip:RN | u lq:RN (5.25)
=1
whenever u € C2(RY).
ProOOF. We begin with the case N=1, 1 < p << oo, | < g << o0,

Let w e C=(R). We claim that, whenever 7 is a2 bounded interval of
lenght 4,

v/
[ rurax < ([ yurpax)”
7 I
r/
+ )_41+pn’p)(J~ ful? dx) q] (5.26)
I

with € independent of u as well as of 7. To prove (5.26) we set la, b[ =1
and apply the mean value theorem in any interval [, ] with a < & <
at Afd, b— 4 <n<bh:

) =4 _ g

for a suitable { between ¢ and #, hence

ey = |[Cwr i+ weo)| < [ 1w a4 2 1O LD

for x € 1. After integrating with respect to £ from a to a 4 A/4 and with
respect to n from & — i/4 to b, we find

W) < [ 1@l de+ 5 [ 1o a

ilp 1/g
< J.H’FU PA dr) + cx—i—lfc(J e dr)
I I

by Holder’s inequality; therefore,

rip rlg
J |’ |rdx < C‘[A"f""’U fu’’ |de) +11—'—"¢U fule dx) ]
I I I

the last inequality amounting to (5.26) because 1 — rfg=rfp — 1.
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We shall now prove
oo ri2p s oo ritq
J1wras<2¢([” wreax) ([ futeas) (5.27)
! oo .

which is nothing but {5.25) in the case at hand by the arbitrariness of I.

Without loss of generality we assume supp v < )0, oo[ and restrict
ourselves to intervals 7 = 10, 4[. Let A, = A/k with k € ¥ arbitrarily fixed,
and consider (5.26) with 7 replaced by 7, =0, 4[. If

v/ riq
A.,HHWU " I"dx) "zzo—tw—ffmu 1u|vdx) (5.28)
IU

iy

we set J, = I, and obtain
1 14r—1/p s roo 'p
[wras2 )T wera)” G2
I —on

Suppose that (5.28) does not hold: we then denote by 7, the bounded
interval of length 1, obtained by increasing the right endpoint of 7, until
we reach the equality sign in (5.28) with J, replaced by 7, and 4, by 4;.
(Note that " cannot vanish identically unless v does.) We obtain

J.: [u' |7 dx < ‘-’.C(Jr | u” l*’d:c)'m'(.[r | u |vdx)m. (5.30)

Starting at the right endpoint of J; we repeat the above procedure,
choosing an interval J; of length 1,, and so on until / is covered. This
requires k steps at most. .

We now sum our estimates (5.29) and (5.30) with /, replaced by 7;,
A, by 4;, and arrive at

14r—r/ o0 rf
J L | dx < 26(%) ’kU PaL dx) ’
T

—o

(I R

with the aid of Hélder's inequality. Now let k — co: since p > 1, (5.27)
follows.

If ¥ >> | we apply the preceding one-dimensional result to each func-
tion x; —>ux,, ..., X;, ..., Xy) treating the variables x; for j=i as
parameters, and obtain (5.25) by utilizing Holder’s inequality in N — 1
dimensions.
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Finally, we cover the cases ¢ = oo and p = 1 through easy passages
to the limit. 0
Lemma 5.8 is instrumental in proving the following theorem.

THEOREM 5.9. Take p, q, r as in Lemma 5.8. If ue H*?(0) n LY(Q)
then u,, ..., uy, € L'(2) and there exists a constant C (independent of u}
such that

|Pullo < Clulmag | ¥ lga. (5.31)

Proor. By Theorem 1.30 u admits an extension &€ H2P(R¥) with
compact support and

| #gremmy < Clu |gag-

Moreover, the construction of d shows that the latter belongs to L2(RY)
with
| @ |grvy < Clu g0

The proof of the theorem is achieved by showing that i, , . .., d,, € L'(RY)
and that (5.25) holds with u replaced by d. To do this we approximate
@, both in H%?(R¥) and in LS(R¥), with the regularizing sequence {g, + i}
c C~(R¥): Lemma 5.8 shows that {(g, * @),,}, i =1, ..., N, is a Cauchy
sequence in L7(RY), and the conclusion follows from a passage to the
limit. a

REMARK. It is clear that the above result remains valid if the regularity
assumption about #¢2 is weakened into the requirement that £2 has the
extension property (2, p). In particular consider cubes, denoted by @Q,,
such as ]—R, R[¥ or ]—R, R[¥-1x10,2R[ (see Problem 1.17). If u¢€
H:2(0p) N LY(Qz) and R > R we first estimate the L'(Qg.) norms of
first derivatives of the function x — u(Rx/R’), x € (., then perform the
change of variables x — R’'x/R inside the integrals, and finally obtain

N
“7" l::OR = C(ll u I?:QRIR. + | Vu |p;OR/R + Z | Ugz, |p:03) | u |q;OR

4,1=1

with C = C(R’) independent of R.

5.2.2, A Global Bound

"From now.on we assume p > N [so that H*?() injects compactly
in CY(3)].
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LEMMA 5.10. Let u€ H®:P(S2) satisfy (5.24) as well as uljq =0,
and let M € ]0, oo[ be = | |oip + | But |ooyy. Then there exists a constant
X, depending on u only through M, such that

| 4 [mreigy < #(1 + | Bu |guermem)- (5.32)

PRrROOF. Step |: The case fy € L=(£2). If f, belongs to L=(£2) the absolute
value of the function

g(x) = [Lu(x) + u(x)]/[| Pu(x) |* + 1]

is bounded ae. in 2 by KX+ |fylwn+ |t#]eq- For r,ee[0, 1] we
introduce the b.v.p.
(Lt 1) =og(|Pz*+1) in 2,

(5.33)
|aor=0, B+ 2%|p=1tc(Bu+ul;) onl.

If z € H*»{£2) solves (5.33) and z** € H%P({2) its analog with ¢ replaced
by 5, we set w=12% —2" M' =|s—t|(M +|g |eq) The function
M’ — w satisfies
(L + DM — w) — og(z* + 2), (M’ —~ w),,
=M —gg(s—1)>0 in Q
as well as
(M’ — w)lao~r-= 0,

BM —w)+ M —~wW)p=M —(—to(But+u)>0 onl.
We can apply Theorem 3.29 to the operator
~—a'i9*/0x; 8x; — og(z* + 2),8/8x; + 1

and deduce that M’ — w > 0. Analogously, M’ + w == 0. We have thus
proved that

| Wiheio < |5 — 1| (M + {8 |w0)- (5.34)

Hence a solution of (5.33), if existing, is unique; moreover, the choice
t =0 yields
IZ" |M;QS M+ Iglen:.o- (535)
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On the other hand, w satisfies
(L+Dw=og(|Pz¥] — |P(w—2)]") +-0g(s —1) in L,
Whe~r =0,
Bw + wlp= (s — o(Bu +-uly) on [T,
and Theorem 3.28(i) yields a bound

| W e < Cll g ]nn;Q(| [Pz |? |p;ﬂ
+ l | Pw Iz |p;0 + I) + IBH + H]p lnur‘.p(”]- (536)

To estimate | | Fw |®|,.; we apply (5.31) with ¢ = oo and r = 2p, so that
7
[1Pw 2 ]p0 < Clwlgnew | W leosa- (5.37)

We proceed analogously for what concerns I | Pz |? |,;a, and deduce
from (5.34)-(5.37) an estimate

| 2% — 2% |gapiay < C{l & loo:al{M + | 8 loo:0){| 2% |mr210
+ls—t]|]z*° — 2¢|gag) + 1]
+ |B“ + “|r|xur‘-nm}-

In particular, if | s — ¢ | < m™! with m e ¥ large enough we obtain

| 2 |y << | 2 furpiay + C{l 8 loosol(M + | 8 loeza) | 2% |gamay + 1]
+ | Bu + ulp |z oo }- (5.38)

Fori=1, ..., m we now denote by u; the solution (whenever it exists)
of (5.33) with + = i/m and o = |. We shall prove that w,, ..., u, do
indeed exist and satisfy

| 45 lineey < 21 + | Bu + ulp liwteim) (5.39)

where each »; depends on the same parameters as % in (5.32). This will
accomplish the proof for f, € L=(2), since u = u,, and

| Bu + ulr |guetoem < | Bu lgetoim + | 4 |gieo

S |Bu IH”F'-FU") + £ | u |H’-F(O) + C(E)M | Q IUP

for all e > 0 (see Lemma 1.37).
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If u, exist, the corresponding estimate (5.39) follows immediately from
(5.38) with s = 0, ¢ = 1/m, ¢ = |. To prove existence we apply the Leray—
Schauder fixed point theorem. Let z be arbitrarily given in C{(), o in
[0, 1], and denote by & (g, z) the solution v € H%?({2) of the linear b.v.p.

L+ Dw=o0cg(VzPP+ I/m) in L,

I
V|oar =0, By 4 v|p= m o(Bu + ulp) on I’

[see Theorem 3.29(i)]. By taking Theorem 3.28(i) into account it is easy
to ascertain that & is a compact mapping from [0, 1]x C(2) into CY{(2).
If v = & (0, v) (and therefore v = z\V/m*) for some o € [0, 1], a uniform
bound on | v |gyg, follows from (5.38) with £ = |/m and s = 0. Finally,
#(0,z) = 0. The existence of the fixed point u, of the mapping & (1, )
is now consequent on Theorem [.K.

By the same token, (5.33) with £ = 1/m is uniquely solvable (with
norm estimate) also for 0 << ¢ << 1. This means that for 0 <o <1l a
uniform H*? bound on z'*™¥, whenever the latter exists, is provided by
(5.38) with s = 1/m, t = 2/{m. We can therefore apply Theorem 1.K again,
and arrive at the existence of w, [with the corresponding norm estimate
{5.39)]. The final conclusion follows by repeating the above procedure a
convenient number of times.

Step 2: The general case. If f, does not belong to L=(£2), we introduce
the bounded function

h(x) = {Lu(x) + u())/[| Vu(x) |* + folx) + 1]
and solve the linear b.v.p.
L+ w=h(l+f) in@
g~ r =0, Bu=10 on I
The function w = u — v satisfies
(L+ Dw=g'(|Pw|* + 1),

wirr=0, Bw=Bu onl

where g’ = h | Pu |*/(| Pw |* 4+ 1). Since

2 2
2| Vo2 +2|Pw] -

18| < k= ,
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and _ :
Lo lpme < C(K+ M+ 1)1 + | folp0),

by Theorem 3.28(i}, (5.32) follows from Step 1 with u replaced by w. [I

5.2.3. A Local Bound

LEMMA 5.11. Let u e H*?(Q) vanish on 8Q2 n §2' and satisfy (5.24)
with Q replaced by 2" = Q N &', where ' is some open subset of RY.
Whenever w is an open subset of 2 whose closure lies in ', there exists a
constant %, depending on u only through its modulus of uniform continuity
in £ and the bound on | 4 |u.q., Such that

| u |2y < . (5.40)

PROOF. Step 1: A family of cubes. We suppose that @ contains the
origin 0 of RY.

If 0€ 2 we denote by (,% the cubes ]—r(l —a), r(l — a)[¥ for
0<a<]and 0 <r <R, where R is so small that Qz°c Q.

If instead D € 82 we suppose that a relatively open portion of 992
near 0 lies on the hyperplane xy = 0, and denote by {,% the cubes
I—r(l —a), r(1 —a)[¥*x10,2r(1 —a) for 0 <<a<1and 0 <r <R,
where R is so small that 0;° < 2" and

]—R, R[* ' x {0} c 302 n .

In both cases above clementary considerations show that we can
construct cutoff functions g,% € C,*(R¥) with

0 =< g =1, g = 1 on Qras g’ = 0 in 'Q\Qr‘ﬂl
g% | < Clar and |gh | < Cla)® Gji=1,...,N)
whenever 0 <a <1 and 0 <r < R.

Step 2: Estimates over cubes. We let 2 vary in 10, 1/2] and set w2
= g,%. From (5.24} we deduce

| Lw2 |p.0 = | Lw/® |p:0r"'
= | g Lu + ulg® + 2a'u, g8 |;.qen
<KV |Pullpqen + ) folpqen

C C
+ ar | Pu |y qen + | u]pqen- (5.41)
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To estimate | | Pu |2 l,:q,m we introduce the function z = (u — wu,) %
(2,%*)*®, with u, = u(0) and therefore v, = 0 if 0 € 352. Since z € H'(Q,*4),
we have

= J- {[(uzg)i]lp_l}z‘z dx
erll
T I qan 0 TPz (852 + (u — uo)[(,°)%7],} dx
N r
=¥ 21 J-Q an [(uz‘)i]h(graIZ)Zp dx
—2p J-O » [ 1P — 10)(g,%2)2P~ g3 dx (5.42)
as well as ‘

Be@r oD () - w)E a5

by Theorem 1.56 and Lemma 1.57. We utilize (5.42) and (5.43) to majorize
| l VH' ]2 |;;Qrﬂll with

N
J- | Vu |22(g,5/2)2? dx << C osc u(J- | Pu 22— ): | gz | dx
a/d r -

Q; Qruu § 1

+ | Vg2 Ioo;RN J- | Vu lzp11 dX),
Qo

where .
0SC ¥ = max ¥ — min u.
r Qro of'
Finally, since '
o7 |s|? (e
or | < 2215 LENE
I 4%'p

for 5, t€ R and 4 > 0, Hoélder's inequality yields

' 1/p*
|19l Bgmm < Coscu( [ 17uidx)” (ulasmaem

or"‘
+ I Vg,u' |ou;RNl Vu |:P:°r'“)
< C(e)(osc u)"J- | Vu |2 dx
r Qrﬂl'|
+ ”(fu |?Il-i’ta,°“) + | Vg2 |§n;nN | Pu |;:a,=“) (5.44)

for £ > 0, with C(c) independent of a and r.
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Next, we majorize [g, e | Pu |*» dx with

N
Col u |&;anu{.z I uz;z, |£;Q'¢u

i7=1

+ [(1 — a/4)r]™® | Pu |p.qan + [(1 — aldy) ™ |u |:._Q'-;.},

where C, = C4(R) is independent of a and r (see the remark after Theorem
5.9). Let r = r{¢) > 0 be so small that

C(e)(osc )’ Co| u 8o < €7
r

since (1 — a/4)r = ar, from (5.44) we deduce (if ¢ < 1) an estimate
l | Pu Iz |;;chn =< 2P ] u I?I'-F(Q,ﬂf‘:
+ Cl(ary™ | Pu |5.q,en + (@)™ |u |5 g 0nl

with C independent of @ and r.
At this point we go back to (5.41): by Theorem 3.28(i) we have

| u |%!.»(Q,“) <|wi ey SCILw' 30
< Cife® | u | fppigue + | fo |5:0,are + (@r)™® | Puz |3.0,an0
+ (@) [u |2 gl (5.45)

with C, independent of ¢, @, and r, Let ¢ be 50 small that C,e? << 1/(2 x 42p+1),
and let r be fixed correspondingly. As in Problem 1.18 an estimate

C
| Pu I:;Q,ﬂl‘ <8 |ulfprgen + T’ | |;;o,m,

with C; independent of d as well as of a and r, is valid whenever § > 0
is sufficiently small, say 6 < C(I — a/4)Pr?. We take 8 = (nar)?, where
7 > 0 satisfies (5r/2)? < C(7r/8)* and C,n? < 1/(2x4%*+1). With the
above choice of g, r, and n (5.45) yields
1
| u H’I'-NQ,") S W | u H’]l.p(qrofl]
+ Gill fo |:;O,‘u + (1 + Cs'?_p)(a')_lp ju |:;Q,ﬂf‘] (5.46)

whenever 0 << @ < 1/2. Set D(2) = a*® | # |fnag e,

H(a) = C\fa™ | fo [pior + (1 + Cap®)r 2 fu |5.0.1].
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From (5.46) it follows that
I a
P@) < 4 45(7) + H(a),

and by recurrence

l a nl ] a

Letting n — oo we obtain

= 1 a o 1
o) < § TH(—) <H@ ¥ —
because @ is bounded on )0, 1/2] and H is increasing. This provides a
bound on, say, | u |,,,_,‘Q’u.,_

Step 3: Completion of the proof. Let x be arbitrarily fixed in @.

If x lies in 2 a bound of the required type on |u |aroqeny » Where
Q{(x) = £ is a suitable open cube centered at x, is obtained from Step 2
through a translation of x into the origin 0 of R¥.

If instead x is a boundary point we straighten a relatively open portion
of 2 N 012 near x, say U(x) n 842, through a ' diffeomorphism A:
U(x) — B with A(x) == 0 [U(x) being a suitable bounded domain of R¥].
Since (5.24), with £2 replaced by U(x) N Q, is transformed by A into a
similar inequality in B*, Step 2 again vields the desired H*? bound in a
suitable cube ]—p, o[¥" x ]0, 2o[ = B*, hence also in its image under
A-1, We sct )

Q'(x) = A1 —g, o[¥ " X |—2g, 2).

Since @ is covered by the family of all open sets Q(x), x€ a N &2,
and Q'(x), x€ @ N 042, the sought-for H*? bound in w follows from
the compactness of @. 1]

ReMark 1. Both in (5.32) and in (5.40) » depends on the a*’s only
through the bound on their L*=({2) norms, « and z.

REMARK 2. A major difficulty in the proof of Lemma 5.11 comes
from the type of dependence the constant # is required to have on w. The
reader may want to give a simpler proof of (5.40) with % depending on
u through | # [guan. See J. Frehse [S1]. 1]
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5.3. Obstacle Problems for Nonlinear Operators

We peneralize (5.1) as follows:

p<u<y, [(Lu—Fu Pu)lu—-¢) <0
and [Lu — Flu, Pu)l(u — ) <0 in 2, (5.47
Wi =0, Bu = Z(u) on I

Here and throughout F(u, Pu) denotes the function x — f(x, u(x), Vu(x)),
x € 2, f(x, n, £) being a Carathéodory function of x € £ and (7, £) € R1t¥,
whereas Z(u) denotes the function x> {(x, u(x)), x € I', where { belongs
to C°}(I"x R). Of course, (5.47) amounts to (5.1) when Flu, Vu) = —a'u,,
— au + f with f = f(x), and Z(u) = —fu|, -+ ¢ with { = {(x).

We shall first investigate the solvability of (5.47), then apply the
results thus obtained to the nonlinear generalization of (5.6), that is,

u <y, Lu<F(u,Pu) and [Lu— Fu, Vidl(u —y)=0 in £,

Uaor=0,  Bu=2Zu) onl, (5.48)
as well as to the unconstrained nonlinear b.v.p.
Lu = F(u, VIJ) n _Q,
(5.49)

Uy r =0, Bu = Z(u) on I

[Note the difference with the linear case: for (5.49) we have not proved
yet existence and uniqueness results corresponding to Theorem 3.29.]

5.3.1. Existence

On the function f(x, 5, £) we now impose the following natural growth
condition: given any r € ]0, oo,

[ f(x, 7, 6) | < K[ E*+ fo(x)

(5.50)
foraa. x6e2 and any (9, §)e RV, |gj<r

where the constant K > 0 and the function f >> 0, f;, € L?(f2), depend on r.
[Compare with (4.88).]
In the proof of the next result a crucial role is played by Lemma 5.10.
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THEOREM 5.12. Assume (5.50). Let @ = \/j, @* with ¢* € H*?(Q2),
Plar <0 and Bp* < Z(g*) on I, p= AL, ¢* with y*e H*?(Q),
Yoor = 0and By* = Z(yMyon . If ¢ < y on £, (5.47) admits a maximal
and a minimal solution in H*%().

PROOF. Step 1: An intermediate existence result. For x € I' the func-
tion £;(x, n) = L(x, 5} + An, where i is any positive number = [£]rxr,
is nondecreasing. We denote by Z,(w) the function x> {;(x, w(x)), and
set Z,(w) = Zy(@ V w A ). It is easy to verify that

|21(W) ey < C(1 4 [ w lcﬂ-ltﬁ))

if w belongs to C®'(£2), or in particular (see the remark at the end of
Section 1.2.2) to C!(§3). Moreover,

Be* + gt < Zw) < Byr + A9 - on I

Let w be arbitrarily fixed in C}(2), o in [0, 1]. By Theorem 5.1 the bilateral
problem

cp<v<op, [Lv— F(w, Pw)lv —op)<0
and [Lv — F(w, Pw)l(v — oyp) <0 in 2,
v]sa~r =0, Bv 4 Av|r= U’ZJ(W) on I

admits a unigue solution v € H:?(2); moreover,

A GLy*) A Fw, Vw) < Lo < \ (oLg®) V Fw, Pw) in Q. (5.51)

A=l A=l

We denote by & the operator (g, w) — v. Note that #(0, w) = 0 for all w.

Let w vary in a bounded subset of C/(2). Then F(w, Fw) remains
bounded in L?(22) and Z,(w) in HY?'?(I"); by (5.51), & (0, w) remains
bounded, independently of , in H*?(£2) [Theorem 3.28(i)]. As F(w,, Fw,)
— F(w, Pw) in L?(Q2) and Z,(w,) — Z,(w) in C°(J") whenever w, > w
in C!(), it is easy to conclude that & is a compact operator [0, 1]
x CY(2) ~ C(). Theorem 1.K can be applied to the mapping &(1, -),
and the existence of a solution to (5.47) can thus be proven, if an a priori
‘bound on | v |m is provided for all possible fixed points v = & (o, v),
0 < o<1 But any such function v satishes (5.51) with w = v, hence

| Lo < | F, Vv)|+§l(1up*|+ ILy*)  in Q.
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Fix some r = max(| ¢ |w:0s | ¥ leo;0): (5.50) yields (5.24) with u replaced
by v, foby fy + i, (| Le* | + | Ly* ). By Lemma 5.10,

| v ey < i(l + [ 0Z,(v) — A |H1w'.v(n)

with i independent of v since the quantity | v | ..o + | Bv |corpy 15 uniformly
bounded. It is easy to majorize the right-hand-side term above with a
quantity C(1 -+ | v |¢n(5)- But, exactly as in Lemma 1.37, it can be proven
that

[ v[oa < €| v |mow + CE) ]V |zog

for £ > 0. This enables us to arrive at an a priori bound on | v e,
hence on | v |ng-

Step 2: Maximal and minimal solutions. We define
ez (x) = sup{u(x) [ u solves (5.47)},
Ugn(x) = Inf{u(x) | u solves (5.47)},

and proceed to prove that both wuy,, and upy, are solutions.

Denoting by {x*}, a countable dense subset of £, we construct for
each k a sequence {u "}, c H*?({2) of solutions to (5.47) such that

Upax(X%) = lim uk-*(x%).
.

Then we consider (5.47) with ¢ replaced by #!:! and correspondingly find
a solution U'e H*#(2). The open subset {U! > ¢} of 2 where U! is
strictly larger than ¢ can be decomposed as {U! > w1} U {U' = u! > p).
In {U' > 4!} the inequality

[LU' — F(UL PUY(U' — it <0

yields
LU F(U', FUY,

and therefore also
[LU' — F(U, PUDU — ¢) < 0. (5.52)
In {U!= u'! > @}, u'? verifies

Lyl < Fut, Pul)
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as well as (by Theorem 1.56)

Lu],l — LUI
and
F(“l'ls Vul'l) = F(Ull VU])!

so that (5.52) is apain satisfied. This shows that (5.52) is valid throughout
£2, hence that U! is still a solution of the original problem (5.47).

We can inductively define a nondecreasing sequence {U’} ¢ H:?(£2),
where U7 solves (5.47) with @ replaced, as it is admissible, by /i, u®
v U1, Since

{UF > @} = {Uf > \J/ uhi v UH}
i=1
V{iUi=u>plu--- U{U/=ui> g}
U {UF = U1 > ¢},

an analysis as above shows that, if U7 solves (5.47), then U’ satisfies
[LU? — F(U, VUV — @) <0

in £2 and is therefore a solution of (5.47).

We utilize the final estimate of the previous step for all functions
Ui = & (1, U’) and see that the U”s are uniformly bounded in H*?{£2).
By monotonicity, the whole sequence converges weakly in H2?({2) toward
a function U; a passage to the limit in {5.47) written for ¥ = U7 shows
that U is a solution of the same obstacle: problem. Since

lim Uj(xk) = "mnx(xk):
jyoo
U satisfies
U(xF) > u(x*)

whatever k€ N, and therefore by density
U(x) > u(x)

whatever x € 2, if v is a solution to our problem. This means that through-

out 2, U equals ug,,, and the latter is a solution. The proof concerning

u,,, is analogous. ad
We can now easily move on to the study of (5.48) and (5.49).
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THEOREM 5.13. In addition to the assumptions of Theorem 5.12, sup-
pose that each function ¢* satisfies Lp* < F(g* Vo) in Q. Then the set of
all solutions to (5.48) which lie above @ coincides with the set of all solutions
to (5.47); therefore, it is not empty and admits a maximal and a minimal
element.

Proor. It suffices to notice that any solution of (5.47) satisfies
Lu — F(u, Vu) = Lo* — F(¢?, Vp*) <0

in the subset of {2 where ¥ = ¢* for some h. 1]
Call a function v € H*?(2) a subsolution of (5.48) if

V=1, Ly < F(v, Vv) in £,
Vyper <0, By < Z(v) on I':

Theorem 5.13 admits the following corollary.

COROLLARY. Same ossumptions about f and y as in Theorem 5.12. If
(5.48) admits a subsolution, then it admits also a solution from H%?(Q) which
is maximal among all subsolutions (in particular, among all solutions).

Next, we have the following theorem.

THEOREM 5.14. In addition to the assumptions of Theorem 5.13, sup-
pose that each function @* satisfies Ly* = F(y*, Vy*) in 2. Then the set
of all solutions to (5.49) which lie between @ and y coincides with the set of
all solutions to (5.47); therefore, it is not empty and admits a maximal and
a minimal element.

{Compare with Theorem 4.48.)

REMARK. If the a'/s are in C°1(Q) the operator L can be put into
the divergence form

d .0 da* 8
—_ i} | - FP Q H‘l Q
; (a ﬁx;) ox; Ox;’ @ ‘),

so that the assumptions of Theorems 5.12-5.14 about ¢ and ¥ can be

somewhat weakened. Consider for instance the Dirichlet case I' = (7 in
Theorem 5.12: it suffices to assume ¢, y € H'(Q) with ¢ <y a.e. in 2,
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@laa <0< 9|y, and Lo < &', Ly > k" in the sense of H-1(2), where
K, B e LP(2).

5.3.2. Uniqueness

We now make the following assumption about the behavior of
f(x,n, &) in n and &:
fo, ', &) — flx, 0", §)Y <o — )+ (& — &)
for aa. xe 2,
) (5.53)
any %', 5" €R with o' > %" and 9’|, |%"| <7
any Ef, E”ER‘N WIth If' |’ IE” | Sf
(0 < r << 00); here, o,(1) is continuous and < 0 for £ > 0, 7,(tr) >0 as

t — 0+, Note that (5.53) is certainly satisfied when f is continuous on
OxRxRY and decreasing with respect to 7. {Take

o= _max [f(x.n+1 8~ fx,n 8l

zed, |nlsr, | El<r

7, = modulus of uniform continuity of f on @x [—r, r]X B,.}
As for {(x, n), we require that if I' = &,

n— £(x, n) is decreasing for xe I (5.54)

THEOREM 5.15. Assume (5.53) and (5.54). Then a solution u € H*?({2)
of (5.47) with @ and v measurable in 2, if existing, is unique.

Proor, Let v € H:P(2) be another solution of (5.47).

The function v — w cannot attain a positive maximum at a point
x%e I', since then the necessary inequality

BH(x")[vz(x%) — u(x")} =0
would contradict the other inequality
¢(x°, v(x9)) < {(x°, u(x®))

consequent on (5.54). Since v — v vanishes on £\, it can attain a
positive maximum only at a point x® € £, If such a situation occurs there
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exists an open neighborhood U < £2 of x° such that

plu<v<y

and therefore
Lu = F(u, Vu), Lv < F(v, Pv)

a.e. in U. Since (5.53) implies
Fv, Po)(x) — Flu, Pu)(x) < 0,(o(x) — u(x)) + 7,(| Po(x) — Pu(x)])
for a.a. x € U if r is large enough, we arrive at

ess lim sup L(v — w)(x) < o,[v(x%) — u(x9)] < 0 (5.55)
z-»z?

because Fu(x?) = Pu(x"). But (5.55) contradicts Bony’s maximum prin-
ciple (Lemma 3.24) and therefore v << u. By the same token v > u, and
uniqueness follows. 0

Theorem 5.15 clearly contains a uniqueness resuit for (5.48) and (5.49)
as well, since the latter problems can obviously be interpreted as bilateral
ones. More specifically, the same procedure as above yields the following
maximality property for solutions of (5.48).

LEMMA 5.16. Under assumptions (5.53) and (5.54) a solution u € H*?P(Q)
of (5.48) with v measurable in £2, if existing, is maximal among all sub-
solutions.

Passing to (5.49), we call ve H®:P() a subsolution if

Lv << F(v, Fv) in 2,
Vapg~.r S 0, Bo S Z(D) on F,

a supersolution if the above inequalities hold with reversed signs; then
we have the following lemma.

LEMMA 5.17. Under assumptions (5.53) and (5.54) a solution u € H*?(£2)
of (5.49), if existing, is maximal among all subsolutions and minimal among
all supersolutions.

The requirement that /' be nonincreasing (instead of decreasing) with
respect to 7, even if fe CO@xRxRY), is not sufficient to guarantee
uniqueness:
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ExampLE. Let £ be the annulus defined by the inequalities 1 < | x | < 3
and set L = —A,

SO, n, §) = —(N— Dxdif|x |2 — [ £V
The unconstrained Dirichlet problem
Lu = F(u, Vu) in £,
lgo =0

is solved by the functions wy(x) = 0 and w,{(x)= (| x| — 2[* — 1}/12,
as well as by all functions

[(t+1—|xP—012 forl<|x|<1+1,
ufx) =10 for 1l +r<|x|<3—1,
(x| —3+0—)12 for3—t<|x|<3

with 0 < ¢ < 1,

5.4. Generalized Solutions and Implicit Unilateral Problems

5.4.1. Generalized Solutions

Up unti! now our approach to nonvariational obstacle problems has
required that all derivatives up to the second order of a function v belong
to some Lebesgue space for (Lu to make sense and) v to be admissible
as a solution. In the present section we relinquish such a requirement in
the case of problem (5.48) with I' = {7, that is,

u<<wy, Lu < F(u, VVu) and [Lu — F(u, Vu)}(u — ) =0 in 2,
(5.56)

uzo = 0.

We denote by X(p) the family of all subsolutions ve H-?(2) of
problem (5.56) with p € L=(£2), by o(y) the supremum in L=(2) of X{(y)
if the latter is nonvoid (see Lemma 1.54). Of course, o(y) << y in £2. Basic
properties of the mapping y > o(y)} are listed here below.

LEmMA 5.18. Ler pe L™(2) with X(yp) # . Then
(i) ofo(y)) exists and equals a(y);
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(i) o(y’) exists and verifies the inequality
a(y) = aly) in$

if v € L~(Q) with v >y in §2;

(iii) a(y’) exists and verifies the norm estimate
[a(y) — 0(®) oo < | 9" — ¥ |woio

SJor all ' € L>=(82), provided the function 1 — f(x, n, £) is nonincreasing in
R for a.a. x€ 2 and any £ € RY;
(iv) for 0 << <1, ofdp + (1 — A)y') exists and verifies the in-
equality
a(ﬂ.w + (- ).)1p") = Aa(y) 4 (1 — Daly”) in 2

if p' € L2(82) with E(y') # &, provided the function (n, &) f(x, 7, £) is

concave in R'“*Y for a.a. x€ 0.

Proor. The obvious identity Z(a(yp)) = Z(y) yields (i). As for (i),
it follows from the inclusion X(y) < Z(y’). Let us pass to (iii) and set
k=|y— ¢ |wo We know that a(y) < a(y’ + k). But the monoton-
icity hypothesis implies v — k € Z(y") and therefore v < a(y") -+ k when-
ever ve X(y' + k), so that o(yp’ + k) < o(y’) + k, and finally a(y)
— a(y’) < k; the roles of y and ¥ can obviously be interchanged. To
conclude we tackle (iv). If v € X(y) and v’ € Z(y’), thenw = v 4 (I — )
satisfies

w<ly+ (1 — Ay’

as well as, by concavity,
Lw = ALy + (1 — 2Ly’
< AF(v, Vo) + (1 — DF@’, Pv') < F(w, Pw)
in £, hence we Z(Ay + (1 — A)y’). This means that
AZ(y) + (1 — HE(Y) = Z(Ay + (1 — A)y),

and (iv) follows. 0

By the corollary to Theorem 5.13, a(y) is the maximal solution from
H*?P(£2) of (5.56) if f and y satisfy the same assumptions as in Theorem
5.12, with Z{y) # .
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When y is merely required to be continuous on 2 and >0 on 99,
a(y) still resembles a regular solution of (5.56) as closely as can be expected.
Indeed we have the following theorem.

THEOREM 5.19. Suppose that the function 7 — f(x, 7, &) is nonincreasing
in R for a.a. xc 2 and any £ € RY, that (5.50) holds, and that v € CY2)
with vl;o =0, Z(y) # @. Then u = a(y) belongs to C*(2) and u|, to
H*?(w) whenever w is open with ® c Dv = {x € | u(x) < w(x)}. More-
over, u satisfies

u<y in 2, Lu = F(u, Vu) in 2 n D,

ulaa = 0

ProoF. Let {y,} © H®?P(Q), with y,|so = 0, converge toward y in
C%$?) as n — oo. Since Z(y,) # @, the corollary to Theorem 5.13 yields
the existence of the maximal solution u, = a(y,) € H*?({2) to (5.56) with
y replaced by y,. Then 4, —u in C(2) [Lemma 5.18(jii)], so that u is
continuous on 2 and vanishes on 2. Now let £’ be an open subset of
R¥ such that @ < £ and @ N ' < D*. For all » sufficiently large we

have u, <<y, on 2 N 2" and therefore
Lu, = F(u,, Vu,) in 2N,

By (5.50) (with 7 = sup, | 4, |w.0) We can apply Lemma 5.11 and obtain
a bound on | u, |z.5.,, Which is independent of » because (Theorem 1.M)
the u,’s are uniformly bounded throughout £ and share a common modulus
of uniform continuity there. At this point standard arguments yield the
full conclusion of the lemma. 0

If a(yp) is known to be regular, the last statement of Theorem 5.19
is strengthened as follows.

LEMMA 5.20. fn addition to the hypotheses of Theorem 5.19 suppose
that a(y) belongs to H*P(Q). Then (5.56) is solvable in H*#(Q), and o(y)
is its maximal solution.

Proor. Since Z(o(y)) # @ and o(y) =0 on 92, (5.56) with y
replaced by o(p) admits a maximal solution u = a{a(y)) € H*?(2). But
then o(yp) = u by Lemma 5.18(i), and the conclusion follows from the
inequality

Lu << F(u, Vu) in 2, 0
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[Of course, o(y) need not belong to H*?(£2), even if f vanishes iden-
tically: see the beginning of Section 4.5.]

The considerations of this subsection motivate out callmg a(y) the
generalized maximal solution of (5.56).

RemMArkK. In the case of bilateral problems (for linear operators) a
satisfactory notion of generalized solutions is provided by a rather elaborate
approach based on Theorem 5.6: see M. G. Garroni and M. A. Vivaldi [59).

5.4.2. Implicit Unilateral Problems

We now want to deal with the situation arising when the obstacle
w in (5.56), instead of being kept fixed, “varies with the solution #.”” More
precisely, we consider an implicit unilateral problem such as

u < M(u), Lu < F(u, Vu)
and [Lu — F(u, Vu)llu — M@)] =0 in 0, (5.57)
”laa = 0,
where M is a mapping between functions spaces.
We cannot expect to find a solution ¥ € H*?(Q) of (5.57) in the case
of an arbitrary mapping M. We can, however, look for a function u that
equals the generalized maximal solution of (5.56) with v = M(u), that

is, for a fixed point of the mapping § = o o M. This is the approach we
follow. About f we assume:

¢ that the function 7 f{(x, %, £) is nonincreasing in R for a.a. x€ 2
and any &€ RY;

e that the function (n, £)— f(x, 5, &) is concave in R*¥ for a.a.
x€e 2;

¢ that (5.50) holds;
e that the unconstrained Dirichlet problem
Li = F(u, Vi) in 2,
#lag =10

admits a solution # € H*?({2) maximizing all subsolutions. [So that
a(y) exists and satisfies o(y) < & in 2 whatever yp € L=(Q)].
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As for M, we suppose that it is a continuous, nondecreasing and
concave mapping from the normed space of functions u € C°({2) vanishing
on 82 into C°(£2), so that the same is true of S by Lemma 5.18(ii)-(iv);
moreover, we suppose that there exist ¥ € C°(2) with u|;o = Oand € 10, 1]
such that

u=<iu on £, Mu)>=0 on 042,
(5.58)
=1 — Nu+ 15 < Su) on 9.

If the nonpositive continuous function ¥ = ¢(0) is > —1 on £J, the above
requirements are met by

M@IE) =1+ A uy =1+ A a0, 5.59)
yei? yeRY
yez y=z

where y > x means y, > x,, ..., ¥y = Xy and @ denotes the trivial ex-
tension of u to RY, if u€ C%() with u|;p = 0. [Note that u, < M(u) for
t > 0 small enough, so that w,& Z(M(u)) by the concavity assumption
about f.] The implicit unilateral problem corresponding to the choice of
the operator (5.59) plays a fundamental role in the theory of stochastic
impulse control: see A. Bensoussan and J. L. Lions [13].

THEOREM 5.21. Under the above assumptions about f and M there exists
a unique fixed point u € C%(Q), with ul,o = O, of the mapping S; moreover,
u is the limit in C%(2) of the sequence {S™(u°)}, with rate of convergence

| Sn(HO) —u |en:n S (1 - ")'| | i — u 'm:n, (560)

whenever u® € C(Q) satisfies u < u® < @ on 0.

ProoF. Fix any #° as above. The continuous function M(u®) is = M(u)
on £ and in particular > 0 on 32; S(u°) is continuous on £2, vanishes
on 0f2, and satisfies

u<u,<Sw<Sw) on

[see (5.58)]. By induction, u << S*(u°) on £2 for every n€ N.
Next, let v, w belong to C%(2) with u < v, w < @, and denote by 4
a number from ]0, 1] satisfying

Au—w)<o—w<i —u).
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We claim that ‘
(I — DALy — SW)] < S) — Sw) < (1 — l)Z[S(v) —u].  (5.61)
To prove the right-hand-side inequality we observe that
S(w) = (1 — 2)S() + 45(w),
since S is concave and w verifies

w= (1 — A + Ay
therefore,
S(w) = (1 — DSE) + A — 1)y + ta)
> [1 — A — DIS®) + A0 — Nu

because S(u) > u, and S(v) < i The left-hand-side inequality is proven
analogously.
At this point we choose v = S(u%), w = 1% A = 1, and deduce that

(I — Ny — SE)] < S — SE°) < (1 — N[§*u°) — u]
by (5.61). Then we choose v = S*u®), w = S(u°), A = | — 1, and arrive at
(1 — N'u — $*u%)) < §*@®) — $}(u°) < (1 — *[S*(u°) — u].
Thus proceeding we prove that
(I — O 'u — S*1(w)] < S™u®) — $* ') < (1 — O [SMu®) — ul,
hence that
| S*u®) — S* et Nooso S (1 — O* [ &~ t |oo;as (5.62)

for every ne N.

By (5.62) the series 3 aey [SM(u®) — S*}(u?)] converges uniformly, and
so does the sequence {§™(u?)}, toward a function u € C*(2) with u |35 = 0.
By the continuity of S,

S(S*u%) — S@)  in D),

so that v = S(u). Both the uniqueness of the fixed point u and the estimate
(5.60) follow from another iteration of (5.61), starting this time with v = ?°,
W=u, A=1. 1
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5.4.3. The Implicit Unilateral Problem of Stochastic Impulse Control

The continuous function u = S{x) whose existence and uniqueness
are guaranteed by Theorem 5.21 “solves” (5.57) only in a weak sense,
namely, that of Theorem 5.19 for y = M(u). But of course, under certain
specific choices of the operator M sufficient information can be obtained
for results of further regularity. This is in particular the case of the operator
(5.59): indeed we have the following theorem.

THEOREM 5.22. For some 8¢€]0,1[ let Q2 be of class C*? and
a'i e C*¥D), fe CO%ZxRxR¥). Suppose the function 5+ f(x, n, &) non-
increasing in R for (x, £) € @ x R¥, and assume (5.50) with f, constant, say
fo = K. For M given by (5.59) a fixed point ue CQ) with u|;op =0 of
the mapping S, if existing, belongs to H®?(2) and solves (5.57) in the usual
sense.

The proof of this theorem relies on the circumstance that throughout
£, M(u) inherits some regularity from the regularity u has in the set
D, = {x € | u(x) < [M@u)](x)}, as is illustrated by the next two lemmas.

LEMMA 5.23. Let ue C°(2) with u|y, = 0. For every x°¢ Q2 there
exist an open subset V(x°) of RY, a sphere B,(x"} with r = r(x®) > 0, and
a family T(x®) of vectors £ = 0 from RY such that

Vix)nQ2c D,, (5.63)
B,(x%) + T(x") < ¥(x°) (5.64)
and .

MWIx) =1+ A @x+$& for xe B(x)n 2. (565)
e )

Tiz®

ProoF. For x € £ let A(x) denote the set of all vectors y € £ such
that y = x and w(y) = [I()](x) = [M{u)](x) — 1. If y € A(x), then

I+ u(y) = [M()](x) < [M()](»)

and therefore u(y) << [M(4)]1(y). This shows that A(x) € D,. Fix x = x".
Since A(x°) is compact, there exists some § = 0 such that ¥(x%) = A(x%)
+ B; satisfies (5.63). On the other hand, any sequence {y*} such that
e A(x*) with {x*} c O and x* — x° admits a subsequence which con-
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verges toward some y°e€ A(x"). This means that given any g > 0, the
inclusion ‘

A(x) < A(x°) + B,

holds for every x € 2 with | x — x°| < # provided # >> 0 is small enough.
We fix ¢ < ¢ and choose r < ? with 2r 4+ o < §: setting

A'(x)={(e RY | x + £ e A(x)},

for every x € B,(x%) N 2 we have

A'(x) € 4'(x) + By,
and hence
A'(x) + B,(x°) < A(x°) + Bgryq < Vi(x°).

At this point (5.64) and (5.65) are immediately ascertained for

Tx)= |J 4'x). |

zeBAzN0

LEMMA 5.24. Let ue C%2) with u|,o = 0 and u|; € C*Y@) whenever
w is open with @< D,. Then M(u) € C*'({2).

Proor. Fix x°€ £2. By (5.63) ulymmag is Lipschitzian and so is ob-
viously #lle;. From (5.64) and (5.65) it is easy to deduce that

| IM)](x") — [M@)Ix") | < v | 5" — %7 |

for x, x” € B(x%) N @, hence that M(u)e C*){2) because £ can be
covered by a finite number of spheres such as B (x?). d

PrOOF OF THEOREM 5.22. Thanks to Theorem 5.19 (see also Problem
3.10), our present assumptions about 992, &%, and f vield u|; € C*%(id)
whenever w is open with @ < D,, and therefore M(u) € C*Y2) by the
preceding lemma.

For i,j=1,..., N let {a,}c C=(2) converge to a" in C%2)
with [4,],.; bounded independently of n € N (see Lemma 1.8 and the
remark following Lemma 1.9). Each operator
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can be put into divergence form and applied to M(4). We can show that

L,M@w)> —RK  in the sense of H (), (5.66)

for some positive constant K. To wit, we begin by fixing any x° € 22 and
introducing V(x°), B,(x°), T(x% as in Lemma 5.23. Let

t.={xeB(x) N Q|ulx + §) < —¢/2},

Q= {xeB(x)YN R)d(x + &) > —¢}
for £ € T(x®) and ¢ > 0. Both £2; A and £/, are open, and their union
equals B,(x°) N £. As x varies in 2} ,, x + £ varies in £2 as well as [by
(5.64)] in ¥(x°). But then [by (5.63)] the function #*!; x > #(x + £) and

all its first and second derivatives admit, when restricted to £2;,, an L=
bound independent of £ and &, Therefore,

Lu®>—K° in 4, (5.67)

with K° >> 0 independent of n as well. Through a partition of unity every
function v € C=(B,(x°) N 2), » > 0, can be decomposed as the sum of
two nonnegative smooth functions v’ and v*’ with supp o' = §2; ,, supp v'’
< £},. By Lemma 4.28, therefore, (5.67) suffices for the validity of the
inequality

Lwitet > K0 in the sense of HY(B,(x% N 2)

with wo! = ul®p 0, o A (—¢) (note that wis' = —e in (), hence also
of the inequality

Lw¥ > —K° in the sense of H(B,(x°) N 2) (5.68)

with w') = wit.% after a passage to the limit as ¢ — 0+. We let £ vary in
T(x°): the same proof as in the case of a finite number of the &'s (Lemma
4.28) shows that (5.68) implies

L,,( A w“") > —K°  in the sense of H{B(x%) N 2),
e Tz

and (5.66) follows easily since

MWlgumna =1+ A w.
T



a2 ' Chapter §

We now avail ourselves of the remark at the end of Section 5.3.1.
We arbitrarily fix ¢ = Vi, ¢" with ¢* € X(M(u)) and find a solution
v, € H%P{(2) to the bilateral problem
P S v, S M(u), [ann - F(vn’ an)](vu - ?’) S 0
and [ann - F(vrn an)][vrl - M(u)] S 0 in Q,

Vs = 0,

with

(=8 A Flv,, Pv,) <Lw, <V (LpM V Flv,, P,) in 2, (569)
A=1

and therefore also

[ Lova | < K(| Vo, [* + 1)+K+’i | Lyg*|  in 2
=1

for a suitable choice of r from (5.50}. But then Lemma 5.10 (see also
Remark 1 at the end of Section 5.2.3) provides a uniform bound

s | tp lpamg = C for ne M.

This means that a subsequence of {v,} converges weakly in H*?({) and
strongly in C({2) toward a function v > @, which satisfies
v < M), Lv< F({,FPv)
and [Lv — F(v, Pv)][v — Mu)] =0 in Q, {5.70)
e =0
since @* is a subsolution of the above unilateral problem (see Theorem
5.13). Moreover, the left-hand-side inequality of (5.69) becomes
Lv=>Fu, Py A (—K) in Q,

so that
[Lv | < K(Po 24+ 1)+ R in 0.

This means that | v |z.ee is bounded independently of the choice of @.
We can therefore proceed as in Step 2 of the proof of Theorem 5.12 and
prove that (5.70) admits a solution V., € H%P({2) which majorizes all
subsolutions. But then v,y = o(M(u)) = u, and the desired regularity of
u is proven. a
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5.1.
52.

53.

54.

55.

5.6.

Problems

Theorems 5.1 and 5.2 remain valid for 1 < p < 2.

Same assumptions as in Theorem 5.1. If w e H"?({)) satisfies (5.8), the
solution u of (5.1) satisfies u > w in Q2. Compare with Step 1 of the proof
of Theorem 4.30.

For n =0, 1, ... denote by u, the solution to (5.6) with v =0, f = f,,
and { =¢,, where f, e L?(f) and {, ¢ HY?'?P(I") (| < p < o), { <0
on I If f, — f,in L?*(2) and ¢, — {, in H'Y*"#(I"), then u, — u, in H*?({}).
To sece this, note that Lu, = f,x, with y, = characteristic function of the
subset 2, of 2 where 4, < 0. Passing to suitable subsequences, still in-
dexed by n, one sees that y, -+ 1 a.c. in 2,, so that

.[O |fnxa_fo|pd-t_'0;

0

mereover, since Ly, — Lu in LP(Q),
-[ ILuu |p dx = J- (Luu)gu dx — 0,
o~a, a

where g, = | fo [P2f,(1 — 2o} if f» # 0, ga = O otherwise.

An interesting consequence of Theorem 5.4 is that a function y € HY{)
satisfying Ly > 0, vlan~r =0, (Bylplr =0 on I'is >0 in Q: indeed,
the solution u of (5.6) with £ =0, { = 0 vanishes identically. [Compare
with Theorem 3.29 for the case I' = @, and with Lemmas 3.25, 3.26 for
the case y € H¥P({)), p > N}

Theorems 5.12-5.14 remain valid, for I'= @, if the linear operator

u = —a"(x)ug,,, is replaced by the nonlincar one » — —al(x, W)z gz with
a'’ e C{{2x R),

| &P <a¥x, bl < et |[E|"  for £e R¥

whatever (x,n) € 2xX R (0 < « < 1). To sec this, apply a very general
result of N. 8. Trudinger [153], O. A. Ladyzhenskaya and N. N. Ural’tseva
[95], which in particular provides two constants & € JO, [ and H > 0,
dependent only on a, K, f;, and | & |e;n, Such that [¢]s,5 < H whenever
u is alfunction from H¥() satisfying

| a¥(x, gy | < K| Vul*+f  in 02
with f, € L¥(Q), fo = 0. (See G. M. Troianiello [150].)

In (5.56) take a¥ e C*({), F(u, Vi) = —a‘u,, — au — f with a', ..., a?,
ac L=, a>0in Q, and f e LAQ). If vy € C°({}), y|an = 0, is such that
the set of functions v € H,'(f2) satisfying v < y in 2 is nonvoid, then o(y)
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coincides with the solution of the corresponding variational inequality,
[Note that this is obviously true¢ when the continuity of ¢ throughout
3 is strengthened into the requirement v € H*#((2).] If the v.i. does not
make sense (as in the example of Section 4.3.1), we can still avail our-
selves of the notion of a generalized solution: the estimate of Problem 2.6
can be utilized to prove that, in addition to all the properties stated in
Theorem 5.19, o(p) belongs to HL(2) and satisfies Lo(y) < f|.. in the sense
of H-Y(w) whenever w = 9, with Lu = —(a's.),, + (@Y, + @z, + au.

What is the role of the exponent p in the proof of Theorem 5.227 And
what additional assumption guarantees the membership of the fixed point
« in H*9(Q) for any finite g?
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in the assumptions about the lower-order coefficients of the operators.
Lemma 3.24 is taken from J. M. Bony [17]. Lemmas 3.27 and 3.26 are
straightforward generalizations of classical results by E. Hopf [76, 78].
The example of Section 3.7 is taken from the Introduction of O. A. Lady-
zhenskaya and N. N. Ural'tseva [94]. Theorem 3.30 is a special case of a
general result whose proof can be found in A. Zygmund [155]. The (com-
plete) proof of Lemma 3.31 can be found in F. John and L. Nirenberg [81].

Chapter 4

The theory of v.i’s onginated in Italy from the independent works
of G. Fichera [48] and G. Stampacchia [140) in the early 1960s. The intense
research that flourished internationally since can be roughly viewed as
consisting of three strands:

s abstract existence results (culminating in the unifying approach of
H. Brézis [18] to pseudomonotone operators);

s regularity results in more ‘‘concrete” cases involving partial dif-
ferential operators, still the main source of difficulties;

e applications of v.i.’s in such diverse fields as elasticity theory,
control theory, hydraulics, etc.

Existing monographs on v.i.’s usually find their motivations in the third
strand above: e.g., see I. L. Lions [104], G. Duvaut and J. L. Lions [47],
C. Baiocchi and A. Capelo [8], A. Bensoussan and J. L. Lions {12]. More
attention to regularity questions is devoted by D. Kinderlehrer and G.
Stampacchia [87], A. Friedman {56], and M. Chipot [43].

For the matenal of our Sections 4.1-4.3 the main reference is J. L.
Lions [103]. The proof of Stampacchia’s Theorem 4.4 is taken from J. L.
Lions and G. Stampacchia {105}, that of Fichera’s Theorem 4.7 from P.
Hess [75]. Theorem 4.21 is a fundamental result of J. Leray and J. L. Lions
[99], generalized slightly by dint of a device, due to R. Landes [97], in the
proof of Lemma 4.22; the second part of Lemma 4.22 is taken from L.
Boccardo, F. Murat, and J. P. Puel [16].

The results of Section 4.4 are due to the present author; in more
particular cases Theorem 4.27 was previously proven by M. Chicco [39]
and P. L. Lions [107] with completely different methods.
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Lewy-Stampacchia inequalities are named after the paper by H. Lewy
and G. Stampacchia [102], dealing with a potential-theoretic approach to
a minimum problem of the type illustrated in the Introduction. The passage
to a variational setting with applications to regularity of solutions is due
to U. Mosco and G. M. Troianielio [121]. For more general results see
B. Hanouzet and J. L. Joly [72], O. Nakoulima [125], and U. Mosco [120];
the latter article provides the simple arguments of the proof of Theorem
4.32. Regularity results of the same type as Lemma 4.34 werc first obtained,
with different techniques, by H. Lewy and G. Stampacchia [101] and H.
Brézis and G. Stampacchia [22].

Interior H** regularity was proved by H, Brézis and D. Kinderlehrer
[20] and C. Gerhardt [62]. Global H*> regularity was first proved by R.
Jensen [80] who, however, used a norm estimate (Lemma 4.4 in A. Fried-
man [56]) that is"not quite correct: compare with M. Chipot [43]. The
proof of Theorem 4.38 is based on C. Gerhardt {63]. The example of
Section 4.6.2 is attributed to E. Shamir by H. Brézis and G. Stampac-
chia [22]; the proof of Theorem 4.39 is basically due to J. L. Lions [103]
(see also D. Kinderlehrer [86]).

The techniques of Section 4.7 were introduced (for the study of interior
regularity) by M. Giaquinta [64]; the proof of Theorem 4.45, however, is
essentially that of M. Biroli [15]. For a different approach see J. Frehse [52].

Theorem 4.46 is due to M. Chipot [41].

Except for some minor changes, the proof of Theorem 4.47 comes
from L. Boccardo, F. Murat, and J. P. Puel [[6]. The proof of Theorem
4.48 is ours (but se¢ the remark following it); the idea of reducing a non-
linear equation to a v.i. was first utilized by J. P. Puel [13I].

By no means does our treatment of (elliptic) v.i.'s do justice to the
richness of existing results. Among our omissions we could mention
numerical aspects (see R. Glowinski, J. L. Lions, and R. Trémoliéres [69]),
regulanty of the free boundary (see A. Friedman [56]), and v.i.’s that are
not of the obstacle type {see H. Brézis and M. Sibony {21] and P. L. Lions
(108] for what concerns the convex set (4.31)}.

Chapter S

Nonvariational obstacle problems were introduced by A. Friedman
[55] and A. Bensoussan and J. L. Lions [12] as auxiliary tools in the theory
of stochastic control, for the case when the dynamic system at hand is
governed by a merely continuous diffusion term. Among the subsequent
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contributions to the subject we mention the papers by G. M. Troianiello
[147-149], P. L. Lions [106], and M. G. Garroni and M. A. Vivaldi [59,
60], all dealing with linear operators, and the papers by G. M. Troianiello
[150, 151] and M. G. Garroni and M. A. Vivaldi [61], where nonlinear
operators are taken up; for a class of degenerate problems see 1. Capuzzo
Dolcetta and M. G. Garroni [34].

The presentation provided here is largely taken from the author’s
articles. In particular, the notion of a generalized solution and its applica-
tions to the study of implicit unilateral problems are based on G. M. Troia-
niello [148].

Theorems 5.6 and 5.7 are based on their variational counterparts,
respectively studied by O. Nakoulima [125] and J. L. Joly and U. Mosco
[82]. Theorem 5.8 extends a result previously proven, with different tech-
niques, by M. G. Garroni and M. A. Vivaldi [61].

The results of Section 5.2.1 are due to L. Nirenberg [129]. Lemma 5.10
is based on H. Amman [5] (see also H. Amman and M. G. Crandall [6]
and K. Inkmann [79]). The proof of Lemma 5.1t, due to the present
author, makes a crucial use of some techniques by Q. A. Ladyzhenskaya,
V. Solonnikov, and N. N. Ural’tseva [96] as well as of some by J. Frehse [51].
“» Step 2 of the proof of Theorem 5.12 utilizes an idea in an article by
K. Akd [4], which also contains the example of Section 5.3.2. Theorem 5.14
extends previous results of H. Amann and M. G. Crandall [6] and J. L.
Kazdan and R. J. Kramer [85].

In a variational setting implicit vnilateral problems enter the theory
of gquasivariational inequalities, introduced by A. Bensoussan and J. L.
Lions [11]: see A. Bensoussan and J. L. Lions [13], J. L. Joly and U.
Mosco [82], C. Baiocchi and A. Capelo [8] as well as, for what concerns
in particular the impulse control problem, J. L. Joly, U. Mosco, and G.
M. Troianiello [83), I. Capuzzo Dolcetta and M. A. Vivaldi [35], B.
Hanouzet and J. L. Joly [71, 73], L. Caffarelli and A. Friedman [26],
U. Mosco [120], and A. Bensoussan, J. Frehse, and U. Mosco [14]).
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