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Result

This book computes the Hopf algebra of secondary cohomology operations which
is the secondary analogue of the Steenrod algebra.

Preface

Primary cohomology operations, for example the squaring operations Sq’ and the
pth-power operations P’ of N.E. Steenrod, supplement and enrich the algebraic
structure of the cohomology ring H*(X) of a space. The Steenrod algebra consist-
ing of all (stable) primary cohomology operations was computed by J.P. Serre and
J. Adem in terms of the generators Sq*, P?, i > 1. Using H. Cartan’s formula J.
Milnor showed that the Steenrod algebra A is a Hopf algebra with the diagonal:

6:A— AR A,

n
5(Sq”) _ Z qu ® Sqn—i ]
i=0

The computation of the Hopf algebra A led to progress, both in homotopy
theory and in specific geometric applications. In fact, in the decades after Steen-
rod’s discovery the Steenrod algebra A became one of the most powerful tools of
algebraic topology. We refer the reader to the survey of R.M.W. Wood [W] con-
cerning applications in topology and the rich algebraic properties of the algebra A.

It is, however, an intrinsic feature of homotopy theory (in contrast to algebra)
that primary operations always give rise to secondary and more general higher-
order operations. The understanding of higher operations leads to knowledge of
homotopy groups of spheres via the Adams spectral sequence. J.F. Adams in
solving the Hopf invariant problem and H. Toda in computing low-dimensional
homotopy groups of spheres exploited secondary operations in the solution of
fundamental problems in topology. This demonstrates that enriching cohomology
with both primary and secondary operations, yields a powerful algebraic model of
a space.

Though there is a large amount of detailed information on secondary coho-
mology operations in the literature, the algebraic nature of the secondary theory
remained a mystery. We clarify the algebraic structure by showing that secondary
cohomology operations yield an algebra B with an associative bilinear multiplica-
tion in the category of pair modules. This crucial fact is missing in the extensive
studies of L. Kristensen and his students A. Kock, I. Madsen, and E.K. Pedersen
on secondary operations.

The algebra B and its multiplication are defined in this book topologically
in terms of continuous maps between Eilenberg-MacLane spaces. Topologically we
also introduce a diagonal

A:B— BB
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which induces Milnor’s diagonal § on the Steenrod algebra A. Moreover we show
that B with the diagonal A is a (secondary) Hopf algebra and we compute algebraic
invariants L and S of B. We prove that up to isomorphism there is a unique
secondary Hopf algebra B with invariants L and S. For p odd the invariants are
trivial, L = S = 0, and for p = 2 we give explicit formule for L and S. This
uniqueness theorem yields the algebraic determination of B as a Hopf algebra
leading to an algorithm for the computation of B in Chapter 16. The author is
very grateful to M. Jibladze for implementing the algorithm as a Maple package.

As an application one obtains the computation of triple Massey products in
the Steenrod algebra A. In fact, we show that the Milnor generator

Sq®? =8q° +Sq° Sq' +8q* Sq* € A
yields a non-trivial triple Massey product
(+) (89,51, 5q1*%) # 0

containing Sq(0’1’2). This is the first non-trivial triple Massey product in the litera-
ture of the form («, 3,7) with «, 3,7 € A. We show that in degree |a|+ |8+ || <
17 all triple Massey products {«, 3,7) vanish. Our algorithm computes also all
matrix triple Massey products in the Steenrod algebra .A.

A fundamental tool for the computation of the homotopy groups of spheres
is the Adams spectral sequence (FEs, E3,...). Adams computed the Fs-term and
showed that

By = Ext(F,F)

is algebraically determined by Ext-groups associated to the Steenrod algebra A. It
is proved in [BJ5], [BJ6] that the Es-term is, in fact, similarly given by secondary
Ext-groups
F3 = Extp(G*¥,G¥)

which are algebraically determined by the secondary Hopf algebra B computed in
this book. The computation of F5 yields a new algebraic upper bound of homotopy
groups of spheres improving the Adams bound given by E5. Computations of the
new bound are described in [BJ6]. The author is convinced that the methods of
this book also yield a new impact on the computation of F,, for n > 3 and finally
this might lead to the algebraic determination of homotopy groups of spheres in
terms of the Steenrod algebra and its higher invariants like L and .S above.

The topological construction of both the multiplication and diagonal in B
and the proof of the uniqueness theorem constitute a substantial amount of work.
Essentially all the material in this book is required in the proof of the main result.
In order to provide the reader with a quick introduction to the new algebraic
concepts in secondary cohomology, we state the definitions and more important
results in the introduction. Further algebraic properties of the Hopf algebra B are
discussed in [BJ7] where in particular the dual of B is described extending the
Milnor dual of the Steenrod algebra \A.

Bonn, October 2003 H.-J. B.



Introduction

The introduction consists of several parts. Part A gives a topological description of
the algebra B of secondary cohomology operations and compares B with the Steen-
rod algebra A of primary cohomology operations. Part B introduces the algebraic
notion of a secondary Hopf algebra. We show that a secondary Hopf algebra struc-
ture of B exists which induces the Hopf algebra structure of A. The uniqueness
theorem for secondary Hopf algebras yields an algebraic characterization of B.
Part C discusses the concept of secondary cohomology of a space X and describes
its structure as a secondary algebra over the secondary Hopf algebra 5. This result
on secondary cohomology can be viewed as an enrichment of the cochain functor
C*( ,F) adding fundamental algebraic insight to the recent concept of C*(X,F)
as an algebra over an F..-operad, see part D.

Part A. Primary and secondary cohomology operations

Let p be a prime and let F = Z/pZ be the field with p elements. Then H*(X,[F)
and H*(X,F) denote the cohomology and reduced cohomology.
A primary (stable) cohomology operation of degree k € Z is a linear map

(A1) o: H"(X,F) — H" F (X, F),

defined for all spaces X and all n € Z, which commutes with suspension and with
homomorphisms induced by continuous maps between spaces. The graded vector
space of all such cohomology operations is the Steenrod algebra A. Multiplication
in A is defined by composition of operations.

It is also possible to define the Steenrod algebra A by stable classes of maps
between Eilenberg-MacLane spaces Z™ = K (F, n). A stable class & of degree k > 0
is a homotopy class

a:an —, Zn—‘,—k7
defined for each n > 1, such that the following diagram commutes in the homotopy
category.

(A2) zn ¢ > gntk
,V ) V,
anJrl o - an+k+1
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Here 2 is the loop space functor and the vertical arrows are the canonical homotopy
equivalences. Since the set [X, Z"] of homotopy classes X — Z™ satisfies

(A3) H"(X,F)=[X,2Z"]

we see that a stable class induces a primary cohomology operation and vice versa.
Therefore the graded vector space of all stable classes coincides with A. Multipli-
cation in A is given by the composition of stable classes.

Steenrod constructed the set of generators of the algebra A given by

{Sq*, S¢?,...} for p=2,
(A4) Eq=
{Pl,PZ,...}U{ﬂ,Pﬁl,Pﬁz,...} for p odd.

Here Sq' is the squaring operation, P’ is the pth-power operation, and £ is the
Bockstein operation. Moreover Pé denotes the composite Pé = BP'. We have to
introduce the additional generator Pé in order to deal with secondary instability
conditions. Adem obtained a complete set of relations for these generators so that
A is algebraically determined as an algebra.

Milnor observed that the algebra A of primary cohomology operations is
actually a Hopf algebra with the diagonal

(A5) :A— AR A

given by the Cartan formula. The multiplication p : H ® H — H of the coho-
mology algebra H = H*(X,T) is compatible with the Hopf algebra structure § of
A, see (C2) below.

In this book, we offer similar results on secondary cohomology operations.
Classically a secondary operation

p:8, — Q

is defined on a subset S, of all cohomology classes and has values in a quotient
set @, of all cohomology classes. This concept, however, is not suitable in order
to study the global algebraic structure of all secondary operations. For this reason
we introduce below the new object

B=B: °>8y)

termed the algebra of secondary cohomology operations. Secondary operations can
be derived from B in a similar way as Massey products are derived from the
structure of a differential algebra. The algebra B is the secondary analogue of the
Steenrod algebra A. For the definition of B we need the ring

G =7Z/p’Z
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and the ring homomorphism G — F which shows that an F-vector space is a
G-module. Let

(A6) Bo=Tc(E4)
be the G-tensor algebra generated by E4 in (A4) and let
q: By — A

be the surjective algebra map which is the identity on generators in E 4. The
definition of By and 0 : By — By is more complicated and relies on the notion of
track.

Given pointed maps f,g: X — Y a track H : f = g is an equivalence class
of homotopies f ~ g. Here homotopies Hy, H1,: f ~ g are equivalent if there is a
homotopy H; from Hy to Hy where H; : f ~ g for all ¢ € [0,1]. Hence a track is
the same as an arrow in the fundamental groupoid of the function space of pointed
maps X — Y.

A stable map « of degree k is a representative of a stable class @ in (A2),
that is, a is a diagram

(A7) z C gk
T THa T~
\ \
QZn+1 o > anJrkJrl

defined for each n > 1, where « is a pointed map and H, : ra = (Qa)r is a track.
Given a stable map « = («, H,) a stable track a : o = 0 of degree k is a diagram

(A8) ’

fra
o N\
AL . Zn+k

defined for each n > 1, such that the pasting of tracks in the following diagram
yields the trivial track.
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0
fra
Q
zn > gntk
THa
\ \
QZTLJrl > anJrkJrl
4
JQa
0

We can choose the Eilenberg-MacLane space Z" = K(F,n) to be a topological
F-vector space and the homotopy equivalence Z® — Q27! to be F-linear. This
implies that stable maps form a graded F-vector space [A]o and stable tracks form
a graded F-vector space [A]{. There is the linear boundary map

(A9) 0 : [Al} — [Alo

which carries a : @« = 0 to . One now gets the following pullback diagram with
exact rows which defines B; and 0 on Bj.

(A10) 0 >XA > [A]° R ' A =0
A A
s pull s

0 >3A s B v LB, -4 =0

Here ¥ denotes the suspension of graded modules. We define the function s in the
diagram by choosing for a € E4 an element sa € [A]y representing «. Since [A]o
is a monoid this induces the monoid homomorphism

s:Mon(E4) — [Alo

where Mon(E4) is the free monoid generated by E 4. Since [A]o is an F-vector
space one gets the G-linear map

(A11) s: By — [Alo

using the fact that the tensor algebra By is the free G-module generated by
Mon(E 4).
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It is also possible to define the graded G-module By by the near-algebra of
cochain operations introduced by Kristensen [Krl]. Let

C*(X,F)

be the singular cochain complex of a space X. A cochain operation © of degree k
is a function between the underlying sets

0:C"(X,F) — C"k(X,F)

defined for all n € Z and all spaces X, such that © commutes with homomorphisms
induced by maps between spaces. Let O be the graded vector space of all cochain
operations with addition defined by adding values in C"**(X,F). Composition
of cochain operations yields a multiplication © - ©" for ©,0’ € O which is left
distributive but not right distributive so that O is a near-algebra. There is a
linear map

(A12) 9:0 0

of degree +1 defined by the formula 96 = dO+(—1)°10d where d is the differential
of C*(X,F). One readily checks that 90 = 0.
Kristensen shows that the homology of (O, ),

A = kernel(9)/ image(9),

coincides with the Steenrod algebra. For this reason we get the following pull back
diagram with exact rows which also defines B .

(A13) 0 YA > ¥ cokernel(9) 2. kernel(0) > A >0
A A
pull s

o q

0 =34 1 =B ~ By A =0
Here s is defined by multiplication and addition in O similarly as s in (A12). This
construction of B; in terms of cochain operations yields the connection of the
theory in this book with Kristensen’s theory of secondary cohomology operations
in the literature, see [Krl] [Kr2].

We point out that for o, € By the element s(a - 3) does not coincide
with (sa) - (s3). But we show that there is a well-defined element I'(a, 3) € [A]}
satisfying

(A14) Ol (a, B) = s(a) - s(B) — s(a- ), see (A12).

Here it is of crucial importance that we define the tensor algebra By over the ring
G and not over F since only for elements «, 3, defined over G, the term I'(a, 3) is
well defined.
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According to the pull back in (All) an element x € B; is a pair x = (&, u)
with £ € By and u : s = 0 a stable track. We define stable tracks ceu : s(af) = 0
and ue 3 : s(£0) = 0 by pasting tracks in the following diagrams where I'(a, 3) =
['(a, B) + s(ap) is given by the operator T.

0
Tu
sa s s§
< C< . =qeu
V
I (a,8)
s(ag)
0
Tu
L s& - sB . —ue ﬂ
v
ANCNE))
s(€P)
A15 Theorem. Defining the left and right action of o, 8 € By on x = (&, u) € By

by

a-z=(a, aeu),
xﬂ: (gﬁvu.ﬂ)a

one obtains a well-defined structure of By as a Bo-bimodule. Moreover 0 : By —
By satisfies the equations (z,y € By),

Ia-x-B)=a-0(x)- B,
d(z)-y=x-9(y).

The theorem shows that B = (0 : By — Bp) is a pair algebra, see Section (B2)
below.

We now indicate how elements x € B; are related to secondary operations .
Given o, 8 € A with o- 3 = 0 in A we can choose @, 3 € By with ¢a = o, ¢8 =
so that ¢(a3) = 0. By exactness there is z € By with dz = & - 3. Then x induces
the associated secondary operations

(A16) v :{g€ H Bg=0} = H/aH

of degree |a| + |B| — 1 with H = H*(X,TF). If g is represented by v : X — Z"
then ¢, (g) is represented by the map ¢ : X — QznteltIBl obtained by pasting
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tracks in the following diagram.

0
Tu
Q
X T g T gntlal > gntlal+isl
//
Ut
0

The track ¢ exists since fg = 0 and v = sx is given by z. If X = Z™ is an
Eilenberg-MacLane space (with m large) then ¢ yields an element in A and the
collection of all such elements is the Massey product

(A17) (a,8,7) C A
defined for all o, 8,7 € A with 8y = 0 and o8 = 0. The Massey product {«, 3,7)

can be computed in terms of B as follows. Let &, 3,5 € By be elements representing
«, # and ~ respectively. Then there exists u,v € By with
ou=p-7, ov=a-j,
since By = 0 and a8 = 0. Hence we get the element
(A18) r=au—vy €B

by the By-bimodule structure of By. Since 0z = a(du) — (0v)y = 0 we see that
x € X A. The element x represents the Massey product < «, 3, >. This shows that
the algebraic determination of B in this book solves an old problem of Kristensen
and Madsen [Kr4], [KrM2].

We derive from the pair algebra B a derivation of degree —1,

(A19) Ipl: A— A

as follows. Let [p] € B; be the unique element of degree 0 with d[p] = p-1 where 1 is
the unit of the algebra By. For a € By the difference - [p] — [p]-a = x is defined by
the bimodule structure of By with 0z = a-p—p-a = 0 so that z € X A. Moreover
x depends only on the image & of « in A so that I'[p](&) = = is well defined.

A20 Theorem. The derivation T'[p] coincides with the derivation k : A — A
defined on generators as follows.
k(Sq") = S¢"* for n>1, p even. Moreover
K(P")=0 for n>1, and
k() =1 for p odd.

Here S¢° = 1 is the unit of A.
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Part B. Secondary Hopf algebras

The concept of algebra and Hopf algebra is based on the monoidal category of
modules with the tensor product as monoidal structure. Primary operations in
homotopy theory lead to such algebras in contrast to secondary operations which
lead to pair algebras defined in the monoidal category of pair modules like the
pair algebra B of secondary cohomology operations in (A16). Moreover, B has the
structure of a secondary Hopf algebra inducing the Hopf algebra structure of the
Steenrod algebra A.

(B1) Modules and pair modules

Let R be a commutative ring with unit and let Mod(R) be the category of R-
modules and R-linear maps. This is a symmetric monoidal category via the tensor
product A ® B over R. A pair of modules is a morphism

X=(82X1—>X0)

in Mod(R) and a map f : X — Y between pairs is the following commutative
diagram.

X, f1 -
P P
v v
Xo >Yp
fo

A pair in Mod(R) coincides with a chain complex concentrated in degree 0
and 1. Let X and Y be two pairs of modules. Then the tensor product X ® Y of
the underlying chain complexes is given by

d d
X107 “>Xi19Y0X YT >Xo0Y

withd; = (0®1,1®0) and de = (—1®9,0® 1). We truncate X ® Y and we get
the pair

X®Y = (cokernel(dz) -2 Xo ® Yp), with
J: (X®Y)1 = cokernel(dz) — X() ® YQ = (X@Y)Q

induced by d;. One readily checks that the category of pairs in Mod(R) together
with the tensor product X®Y is a symmetric monoidal category. The unit object
is R=(0— R).

A graded module is a sequence A", n € Z, of R-modules with A™ = 0 for
n < 0. We define the tensor product A ® B of two graded modules as usual by

(A@B)"= @& A'®B.
i+j=n
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We define the interchange isomorphism
T:-A B2B®A
depending on a prime p by the formula
T(a®b) = (—1)Pl9l¥lp @ q.

Here |a| is the degree of a € A with |a| = n if a € A™. Hence the interchange of
the graded elements a, b always involves the interchange sign (—1)?!%/l’l depending
on the prime p. Let A be the suspension of A defined by (XA4)" = A"~ ! and let
3 : A — XA be the map of degree +1 given by the identity. One has the canonical
isomorphisms

(SA)® B =%(A® B) = A® (SB)

where 7(a ® £b) = (=1)P19%(a ® b). We call 7 the interchange of X.

A graded pair module X is a sequence of pairs X" = (0 : X7 — X§) in
Mod(R) with X™ = 0 for n < 0. We identify a graded pair module X with the
underlying map 0 of degree 0 between graded modules

X=0: X1 — Xo.
The tensor product X®Y of graded pair modules X,Y is defined by

1+j=n

and the interchange isomorphism

T: XYy 2YRX
is induced by the interchange isomorphism for graded R-modules depending on
the prime p above. Given two maps f,g: X — Y between graded pair modules a

homotopy H : f = ¢ is a morphism H : Xy — Y7 of degree 0 as in the diagram

f1,91

Xl > Yl
4] 14]
H
\ \
Xo > Yo
fo,90

satisfying HO0 = f1 — g1 and 0H = fy — go.
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(B2) Algebras and pair algebras
An algebra A with multiplication

n:A®A— A

is the same as a monoid in the monoidal category of graded R-modules. Moreover
an A-module is a graded module M together with a left action

p:AQM — M

of the monoid A on M. Similarly one defines a right A-module by a right action
and an A-bimodule by an action

piARM®A— M

from the left and the right. For example the suspension YA of an algebra A is an
A-bimodule by using the interchange of X.
A pair algebra B is a monoid in the monoidal category of graded pair modules
with multiplication
i: BB — B.

A left B-module M is a graded pair module M together with a left action
w:BM — M

of the monoid B on M. One readily checks:

Lemma. A pair algebra B = (0 : By — By) consists of an algebra By and a
By-bimodule map 0 satisfying 0(x) -y = x - I(y) for x,y € By.

This shows that B in (A16) is, in fact, a pair algebra.

(B3) Hopf algebras

For graded algebras A and A’ the tensor product A ® A’ is again an algebra with
the multiplication

ARA)® (A A) ' Ag A A A XS AR A

In the same way the tensor product B&B’ of two graded pair algebras is again a
pair algebra with the multiplication

(B&B') ® (B&B') '“YS' BoBoB'®B' “25 B&B'.
Here T is the interchange isomorphism above depending on the prime p. Hence
the category of algebras, resp. pair algebras, is a symmetric monoidal category.

A Hopf algebra A is a comonoid in the monoidal category of graded algebras,
that is, A is a graded algebra together with augmentation e : A — R and diagonal
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A: A — A® A such that the following diagrams are commutative; here € and
A are algebra maps.

A A

A@ A< A ~A® A
e®1 1 1®e
Y Y Y
R® A A A®R
A & S ApA
A A®1
Y Y
Ao A o TA®ABA

The Hopf algebra is co-commutative if in addition the following diagram
commutes.

A

AR A - AR A

In a similar way it is possible to define a “Hopf pair algebra” as a comonoid in the
monoidal category of pair algebras. Secondary cohomology operations, however,
lead to a more sophisticated notion of secondary Hopf algebra, defined below in
terms of the folding product & which is a quotient of the tensor product ® of pair
modules.

(B4) Examples of Hopf algebras
The tensor algebra By = T(E 4) is a Hopf algebra with the diagonal

Ay : By — By ® By

which is the algebra map defined on generators by (i > 1)

Ao(Sq') = > S¢* @ Sq for p=2,
k+1l=i



xxii Introduction

and

Ao(P)= > PreP,

k+i=i for p odd.
Ao(Py) = Y (PfeP' +P*oP))

k+l=i

One readily checks that (B, Ag) is a well-defined Hopf algebra which is co-com-
mutative for p odd and for p even, since the interchange isomorphism 7" depends
on the prime p. Moreover the tensor algebra (Tr(E 4), A) and the Steenrod algebra
(A, 0) are Hopf algebras with the diagonal A, resp. §, defined by the same formula
as above so that the canonical surjective algebra maps

By =Tg(E4) — Tr(Ea) — A

are maps between Hopf algebras. Here Tp(E4) and A are also co-commutative
Hopf algebras.

(B5) The folding product of [p]-algebras

Let A" = A® --- ® A be the n-fold tensor product of the Steenrod algebra
A with A®" = T for n = 0. Hence A®" is an algebra over F and X A®" is an
A®"-bimodule. A [p]-algebra of type n, n > 0, is given by an exact sequence of
non-negatively graded G-modules

o

0 >y A®n ¢ > D1 > Dy ! > A®n >(

where Dy is a free G-module and an algebra over G and g : Dy — A®™ is an
algebra map. Moreover D; is a right Dp-module. Using the algebra map ¢ also
YA®™ is a right Dp-module and all maps in the sequence are Dg-linear. Since
(2A®™)0 = 0 we have the unique element [p] € Dy of degree 0 with d[p] = p - 1
where 1 is the unit in the algebra Dy. As part of the definition of a [p]-algebra we
assume that the quotient

Dy = Dy/[p| Do

of G-modules is actually an F-module. For this reason we get for a [p]-algebra D
a commutative diagram

Dy = D1/[plDo = Dy

v v ~
Dy > Do/pDo = Dy



Introduction xxiii

which is a push out and a pull back of right Dy-modules. We call 9 : Dy — Dy
the pair module over F associated to D. Now let D and E be [p]-algebras of type
n and m respectively. Then a morphism f: D — FE is a commutative diagram

0 >xaen - D, > D ~A%n =0
=fo f1 fo fo
\% \ \ Y
0 =xAem - Ey > Eo - A%m >0

where fo is an algebra map and f1 is an fp-equivariant map between right modules.
We point out that f; has the restriction X fy where fj is induced by fy. Let

AlglP!

be the category of [p]-algebras of type n > 0 and such maps.
The initial object G in AlglP! is the [p]-algebra of type 0 given by the exact
sequence

a

0 >XF >GY > G ~F >0

FoXF G

with 9|F : F C G and 9XF = 0. For each [p]-algebra D there is a unique morphism
G* — D carrying 1 to 1 and [p] to [p]. We call a morphism

e:D— G*¥ in Alg?

a secondary augmentation of D.
For n,m > 0 we obtain the folding map ¢ by the commutative diagram

A (BA) @ A9™ @ A% @ (BA®™)
¥ (1)7—)
v \
TA®M+m) TAZ @ AZ™

where we use the interchange of 2 . Let D and E be [p]-algebras of type n and m
respectively and let D, E be the associated pair modules. Then the folding product
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D&E is defined by the following diagram in which the top row is exact.

0 marm =(DEE)  =DpeB =AM =0
® push
v v . -
2A®(n+m) > (D@E)T > DQ ® EO
A A
pull

(D®E)1 9 > DQ ® E()

The bottom row defines the pair module D®E The algebra Dy ® Ep acts
from the right on (D®E)1 since Dy acts on D1 and Ey acts on E1 and ¢ is
equivariant. This shows that DQFE is a well-defined [p]-algebra of type n + m.

Lemma. The category Algl?! of [p]-algebras with the folding product ® is a sym-
metric monoidal category. The unit object of @ is Gy.

The pair of maps

(DRE), — (DRE); — (DRE)Y
(D®E)1 — Do ® Ey

induces by the pull back property of (D®FE); the map
q: (DRE); — (D®E);

which is a quotient map of right Dy ® Eg-modules.
The interchange map T for DQFE depending on the prime p induces via ¢
the corresponding interchange map

T: D&QE — E®D

in the category AlglP! of [p]-algebras. We are now ready to define secondary Hopf
algebras associated to the Steenrod algebra A.

(B6) Secondary Hopf algebras

As in (B4) we have the map

q:BOZTG(E_A)—>.A
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between Hopf algebras. We consider a pair algebra B = (9 : By — By) together
with an exact sequence of By-bimodules

By =A =0

0 YA > Bl
such that By /[p]- By is an F-vector space. Then B is also a [p]-algebra of type n = 1
as defined in (B5) and the folding product B&B together with the quotient map

q: (B&B) = B&B

is defined. Moreover we assume that B induces the derivation I'[p] = k as in (A19).
For example the pair algebra B of secondary cohomology operations in part A has
these properties.

Since B is a pair algebra also B&B is a pair algebra so that (B®B); is a
By ® Bp-bimodule which via the algebra map Ay : By — By ® By in (B4) is
also a By-bimodule. One can show that there is a unique By-bimodule structure of
(B&B); for which the quotient map ¢ is a morphism between By-bimodules. Here
one needs for the existence of the left action of By on (B&B); the assumption that
['[p] = & satisfies 6k = (k ® 1)0.

We say that the pair algebra B is a secondary Hopf algebra (associated to A)
if an augmentation

e:B— G” in Algl

and a diagonal
A:B— B&B in Alg)

are given such that the following diagrams commute.

0 >Y¥A > By > By > A >0

36 Ay Ao é

Y \l v Y
0 =YA®A =(B&B), ‘=B®By =A®A =0

Here A; is a map of right Byp-bimodules.
R A R
BB < B > BB
e®1 1 1®e

v
B&G*

o<

G¥®B
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B 2 - B&B
A A®1
M LY
BoB .. = BoBEB

These diagrams show that B is a comonoid in Alg?.

Existence theorem. The pair algebra B of secondary cohomology operations has
topologically defined augmentation ¢ : B — G* and diagonal A : B — BB
such that B is a secondary Hopf algebra.

Given a secondary Hopf algebra B let
Rgp = kernel(q : By — A)
= image(d : By — By)
be the ideal of relations in By with p € Rg in degree 0. We associate with B a

symmetry operator

S:Rp— A A
defined by the formula in (B&B);,
TA(@) = Ar(2) + TS(E)
for z € By with 0x = £ € Rp. Moreover we define a left action operator
L:A®Rg — A® A
by the formula in (B&B);,
Ajfa-z)=a-A1(z) + ZL(a® )

with a € By, z € By and dz = ¢. Here A = kernel(e : A — F) is the augmentation
ideal of A. In case B is the algebra of secondary cohomology operations we compute
S and L explicitly, see Chapter 14. If p is odd we have S = 0 and L = 0. But if
p = 2 we get non-trivial S and L.

An isomorphism between secondary Hopf algebras B, B’ is an isomorphism
B1 = B} which is compatible with all the structure described above.

Uniqueness theorem. Up to isomorphism there is a unique secondary Hopf algebra
B associated to A, the derivation T'[p] = k, the symmetry operator S, and the left
action operator L.

The existence theorem and the uniqueness theorem are the main results of this
book. Based on the uniqueness theorem we describe an algorithm for the compu-
tation of B. In low degrees B is completely determined by the tables at the end
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of this book. The author is very grateful to Mamuka Jibladze for implementing
the algorithm on a computer. His computer calculations are a wonderful manifes-
tation of the correctness of the new elaborate theory in this book. Also the result
of Adams [A] in degree 16 is an example of such calculations. Moreover a table of
triple Massey products in the Steenrod algebra is obtained this way.

Part C. Secondary cohomology

Cohomology of a space X can be derived from the singular cochain algebra
C*(X,TF) or from Eilenberg-MacLane spaces Z" = K(F,n) by

H"(X,F) = H"C*(X,F) = [X, Z").

In a similar way we derive in this book “secondary cohomology” H*[X] either
from C*(X,F) or from Z™. The secondary cohomology H*[X] has a rich additional
algebraic structure. In particular, H*[X] is a secondary permutation algebra over
the secondary Hopf algebra B, generalizing the well known fact that H*(X,F) is
an algebra over the Hopf algebra A, see (A3).

(C1) Secondary cohomology as a 3-module

We first introduce the concept of secondary cohomology of a chain complex. Let
C be an augmented cochain complex with the differential

d:C — C of degree +1
and augmentation € : C — F. Let
C = kernel(e).
The cohomology of C' is the graded module
H*(C) = kernel(d)/ image(d).

The secondary cohomology of C' is the graded pair module H*(C) defined by

»(C/ image d) 0 > kernel(d)

H* (O H*(C)o
Here 0 is induced by d. Hence we obtain the exact sequence of graded modules:
0 =XAYC) =H(Ch P=H(C) =H*(C) >0
Lemma. If (C,d) is an augmented differential algebra, then H*(C) is a pair algebra

and all maps in the exact sequence are H*(C)o-bimodule maps. Here H*(C)o is
the algebra of cocycles in C.
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The lemma shows that pair algebras are just the secondary truncations of
differential algebras. Now let X be a pointed path connected space. A topological
cocycle of degree n in X is a pointed map

E: X — 7" n>1.

Let H*(X)o be the graded module which is F in degree 0 and which consists
of topological cocycles in degree n > 1. Here addition of cocycles is induced by
the topological vector space structure of Z™. Moreover let H*(X); be the graded
module consisting of pairs (a, &) where a : £ = 0 is a track and £ is a topological
cocycle and let

8 H (X)1 — H*(X)o

be the boundary map which carries (a,&) to d(a) = & Then H*(X) is a pair
module termed the secondary cohomology of X. One has the exact sequence:

0 >=XH*(X) >HX): =H'(X), =H*(X) >0

Here H* (X) is reduced cohomology since tracks are defined by pointed homotopies.
The pair algebra structure of H*(X) is induced by the multiplication maps

,U . Zn X Zm N Zn+7n

which are associative. One can check that there is a weak equivalence of pair
algebras
H*(X) ~H*(C)

where C = C*(X,F) is the augmented differential algebra of cochains in the
pointed space X.

A stable map o : Z" — Z"*F as defined in part (A), acts on H*(X) by
composition of maps. But this action of [A]Jo on H*(X) is not bilinear. For this
reason we have to introduce the strictified secondary cohomology H*[X] which is
a pair module obtained by the following pull back diagram with exact rows.

0 >3AX) >H(X) =H(X)y >H'(X) >0
A A
pull s

0 >XH*X) > H[X]1 = H*[X]o ~H*(X) >0

Here H*[X]p is a suitable free algebraic object generated by H*(X)o which, in
particular, is a Bg-module. The function s is similarly defined as the function s
in the pull back diagram (A11) defining B. Generalizing the well-known fact that
the cohomology H*(X) is an A-module we show

Theorem. The strict secondary cohomology H*[X] is a B-module inducing the A-
module structure of H*(X).
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Compare the definition of B-modules in (B2). The action of B is defined similarly
as in (A16).

(C2) Algebras over Hopf algebras

The algebra structure of cohomology H*(X) and the A-module structure of H*(X)
are connected by the Cartan formula showing that H*(X) is an algebra over the
Hopf algebra A. More explicitly let ue be defined by the following commutative
diagram with H = H*(X).

AR A)®(H®H) AA®H®H
1RT®1
\
K2 AHQR A® H
H1 @
\ \
H < L H®H

Here py is the action of A on H and p is the multiplication in the algebra H.
Then the following diagram commutes where ¢ is the diagonal of A. This diagram
is termed the Cartan diagram.

Ao HoH 1 LU A) @ (He H)
1ou M2
\% \4
A®H >H

M1

An algebra H, which is also an A-module, is termed an algebra over the Hopf
algebra A if the Cartan diagram commutes.

In the next section we describe the corresponding property of the strictified
secondary cohomology H*[X].

(C3) Pair algebras over secondary Hopf algebras

We have seen that the secondary cohomology H*[X] is a pair algebra and a B-
module, see (C1). Moreover B is a secondary Hopf algebra. Now the pair algebra
structure of H = H*[X] and the secondary diagonal of B are connected by gener-
alizing the Cartan diagram (C2). There is a unique map us between pair modules
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for which the following diagram commutes

q®1

(B&B)®(H®H) < BRBRHRH
1RT®1
— V —
K2 B®H @ BQH
p1®p
y v
H=< u H®H

Here p is the action of B on H and g is the multiplication of the pair algebra H
and ¢ is the quotient map in (B5). Generalizing the Cartan diagram (C2) we get
the following result.

Theorem. The strictified secondary cohomology H = H*[X] is endowed with a
Cartan homotopy C' as in the following diagram.

_ _ A ~ _ _
B&H®H “l S (B&B)®(HEH)
1Qu g M2
v v
B&H . - H

Here C is a G-linear map natural in X,
CIB()(X)HQ@HQ—)Hl,

satisfying the following properties. First C : pu1(1® p) = ua(A® 1) is a homotopy
between pair maps, see (B1). Let o, 8 € By and x,y, z € Hy. Then the associativity

formula
Cla® (z-y,2)+(C@1)(A(a) ® (z,y,2))

=Cla®(z,y-2)+ (1 0)(A() @ (z,y,2))
is satisfied where x -y, y -z are given by the multiplication in H. The maps
Col,1eC:By®By® Hy® Ho ® Hy — H;
are defined by
(Col(a®pe(ry,2) = (1w (2,y) - (5 2),
(1@ C)(a® B (1,y,2) = (1) ) - C(B@ (y,2))

with (z,y) =2z ®y and (x,y,2) =z ®y ® z. On the right-hand side we use the
action of By on Hy and the action of Hy on Hy.

Moreover the Cartan homotopy C satisfies further equations with respect to
the symmetry operator S and the left action operator L, see Chapter 14.
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A pair algebra H which is a B-module together with a Cartan homotopy C
satisfying these properties is termed a pair algebra over the secondary Hopf algebra
B. This is the secondary analogue of an algebra over the Steenrod algebra in (C2).

We know that the cohomology algebra H*(X) is a commutative graded
algebra. The corresponding result for secondary cohomology H*[X] shows that
H*[X] is a secondary permutation algebra, see Section (6.3) and Section (14.2).
Only by use of this additional structure are we able to compute the operators
S and L above.

(C4) Instability

The cohomology H*(X) is an unstable algebra over the Steenrod algebra A in the
following sense:
If the prime p is even and x € H*(X) then for i > 1,

) Sq¢'z =0 for i > |z|, and
* ,
Sq'x = 2? for i = |z|.
If the prime p is odd then for ¢ > 1,

Pz =0 for 2i > |z|, and
(%) Péa: =0 for 20 +1>|z|, and

Plx = 2P for 2i = |z|.
An algebra H over the Hopf algebra A is called unstable if these conditions are
satisfied and if H is a commutative algebra.

Let M = Mon(E4) be the free monoid generated by E4. We define the
excess function

e: M > 7.

For a monomial a =e;...e, € M withey,...,e, € E4 put, for p =2,
e(a) = Maz;(|lej| — |ejt1 ... er|).

Moreover put for p odd

2lejl —lejt1---erl for e; € {P', P2 ...},
e(a) = Max; ¢ 2lej| +1—leji1...e| fore; € {Pg, P§,...},
1 for e; = 3.

One readily checks for z € H*(X) the equation:
ar =0 for e(a) > |z|.

We now consider the secondary instability condition of the secondary coho-
mology H*[X] corresponding to the primary instability above. For this let

E(X) C M x H*[X]o
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be the excess subset given by all pairs (o, z) with e(a) < |z|, « € M, x € H*[X]o.
Then there are unstable structure maps

v:E(X) > H*[X]1,
u: H* [ X]o >H*[X]1 for p =2,
w s H*[X]gven >H* [ X1 for p odd,
which are natural in X with |v(«, )| = |a| + |z| and |uz| = p|z| and

ov(a,x) = a -z,

ou(zr) =op - —a?

with o, = Sq'wl forp=2and o, = P1#1/2 for p odd. Moreover the properties in
(13.3.3) and (13.3.4) in the book are satisfied. The existence of v and u corresponds
to the instability equations () and (%) above.

Part D. Algebraic models of spaces

Sullivan showed that the cochain algebra C*(X,Q) of a simply connected space
X determines the rational homotopy type of X, [S]. In rational homotopy the-
ory, as developed in Félix-Halperin-Thomas [HFT], one has good knowledge of
how topological constructions are transformed to algebraic constructions by the
cochain functor. Such constructions can be transported to the secondary coho-
mology functor H* as well. We consider the functor H* (which carries X to a
secondary permutation algebra over B) as an intermediate step between the fol-
lowing models:

o the cohomology H*(X,F) as an algebra over A,

e the cochain algebra C*(X,F) as an algebra over an E..-operad as studied by
Mandell [Ma].

Here C*(X,F) determines the p-adic homotopy type of X yielding the p-adic ana-
logue of Sullivan’s result. The great advantage of secondary cohomology H*[X]
is the fact, that the B-module structure of H*[X] has a direct connection to the
A-module structure of the cohomology H*(X,F). Representing the action of the
Steenrod algebra in an algebra over the E-operad is a lot more involved, [May].
It would be interesting to see, how the action of B on H*[X] can be deduced from
the structure of C*(X,F) as an algebra over the E.-operad. This, in fact, requires
the secondary enrichment of May’s “General algebraic approach to Steenrod op-
erations”, [May].

Concerning the theory of secondary cohomology operations in the literature
we refer the reader to the recent book of John Harper [Ha]. Our approach is new
and mainly concerned with the algebraic nature of the theory. All the results in
the literature on secondary cohomology operations can be considered as properties
of the structure of H*[X] as an algebra over 5.
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Secondary Cohomology
and Track Calculus



In the first part of this book we study classical primary and secondary co-
homology operations and we show that a “global theory of secondary operations”
is obtained by the track theory of Eilenberg-MacLane spaces. As pointed out by
Karoubi [Ka2] Steenrod operations can be defined by “power maps”

v:Zt x 29 — ZP4

for ¢ > 1 and Z™ = K(F, n). Karoubi uses only the homotopy class of ~.

Since we are interested in the secondary structure we study the properties of
the map v and not of the homotopy class v. We observe that power maps ~ are
well defined up to a canonical track. The power maps are part of the homotopy
commutative diagrams related to

e the linearity of the Steenrod operations,
e the Cartan formula, and
e the Adem relation respectively.

We show that such diagrams not only admit a homotopy but, in fact, are homo-
topy commutative by a well-defined track which we call the linearity track, the
Cartan track and the Adem track respectively. These tracks can be considered
as generators of the secondary Steenrod algebra in the same way as power maps
generate the classical Steenrod algebra.

We shall work in the category Top of compactly generated Hausdorff spaces
and continuous maps, compare the book of Gray [G]. Let Top™ be the correspond-
ing category of pointed spaces and pointed maps.



Chapter 1

Primary Cohomology
Operations

In this chapter we show that for the prime 2 the category K° of connected algebras
over the Steenrod algebra A is isomorphic to the category UEPow of unitary
extended power algebras. A similar result holds for odd primes. Power algebras
are algebras together with power operations ,,. The cohomology algebra H*(X) of
a space is naturally a power algebra with power operations induced by the power
maps v in Chapter 7. Our approach of studying secondary cohomology operations
in Part IT is based on properties of these power maps.

1.1 Unstable algebras over the Steenrod algebra

We recall from the book of Steenrod-Epstein [SE] or Schwartz [Sch] the following
facts and notations on the Steenrod algebra.

Let p be a prime number and let F = Z/p be the field of p elements. The
mod p Steenrod algebra A = A, is the quotient of the “free” associative unital
graded R-algebra generated by the elements

Sq'  of degree i, i > 0, if p=2,
I} of degree 1 subject to 4> =0 and
Pt of degree 2i(p— 1), i > 0, if p>2;

by the ideal generated by the elements known as Adem relations

i g
iani iti—ka k
Sq'Sq kZ_(J( o >Sq Sq
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for all 7,7 > 0 such that i < 2j if p = 2;
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for all 7,7 > 0 such that i < pj if p > 2.

In these formulas Sq° (resp. P°) for p = 2 (resp. p > 2) is understood to be
the unit.

The mod p cohomology H*(X;Z/p) of a space X will be denoted by H*X
and the reduced mod p cohomology will be denoted by H*X.

1.1.1 Theorem (Steenrod, Adem). For any space X, H*X is in a natural way a
graded A-module.

Classically, 3 (Sq* if p = 2) acts as the Bockstein homomorphism associated
to the sequence 0 — Z/p — Z/p?> — Z/p — 0. N.E. Steenrod constructed the
operations S¢* and the operation P?, and J. Adem showed that the Adem relations
above act trivially on the mod p cohomology of any space. We shall prove these
facts by use of power algebras in the next section.

The next theorem is a consequence of the computation by H. Cartan and
J.-P. Serre (see [C][S1]) of the cohomology of the Eilenberg-MacLane spaces.

1.1.2 Theorem. The Steenrod algebra is the algebra of all natural stable transfor-
mations of mod p cohomology.

Here “stable” means “commuting with suspension”.

1.1.3 Proposition. The operations SQO, h > 0, for p = 2 constitute a system of
multiplicative generators for A; so do the operations 5 and pr" forp> 2.

In fact, this system of generators is a minimal one.
We now describe an additive basis for the Steenrod algebra.

1.1.4 Definition. Let p be 2. For a sequence of integers I = (i1,...,i,), let Sq’
denote Sq¢™ ... S¢™. The sequence I is said to be admissible if i;, > 2ij,; for all
h>1, (ins1 = 0).

Let p > 2. For a sequence of integers I = (e, i1, €1,...,1n, €,), where the €
are 0 or 1, let P! denote 3% P13 ... 3». The sequence I is said to be admissible
if ip, > pipy1 +ep for all h > 1, (ipg1 = 0).

The operations Sq’ (resp. P') with I admissible are called admissible mono-
mials.
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1.1.5 Proposition. The admissible monomials Sq' (resp. P!) form a vector space

basis for A.

Proof. It is a consequence of the Adem relations that the operations Sq’ (resp.
the operations P?), I admissible, span the graded vector space A. In fact, let
I = (i1,...,i,) (vesp. I = (€o,i1,€1,.-.,in,€,)) be an admissible sequence. Its
moment is defined to be i1 + 2i2 + -+ - + ni,, (resp. i1 + €1 + 2(ia + €2) +---). If
I is not admissible there exists h, 1 < h <n — 1 such that i < 2ip41. Using the
Adem relations one gets:

[in/2]
Sa' = Y asq’Sq st Sq",
0

where ¢; € Fy, 0 < ¢ < [ip/2], I’ = (i1,...,ip—1) and I” = (ip42,...,i,). The
moment of any sequence occurring on the right (i.e. I',ip +ipt1 — ¢y, I7), 0 <
t < [in/2]) is strictly lower than the moment of I. By induction on the moment
we see that admissible monomials generate A as a graded vector space. The case
of an odd prime is proved in the same way.

The admissible monomials are linearly independent. To see this one looks at
their action on H*(B(Z/p)®*) = (H*BZ/p)®*. Here BV is the classifying space
of the abelian group V. 0

The mod p cohomology of a space X has, as A-module, a certain property
called instability:

o ifx € H*X and i >| x|, then Sq¢'z = 0 for p = 2;
e ifr e H*X and e+ 2i >| x|, e = 0,1, then 3¢P'xz = 0, for p > 2.
Here | z | denotes the degree of z.

1.1.6 Definition. An A-module M is unstable if it satisfies the preceding property.
In particular, this implies that an unstable A-module M is trivial in negative de-
grees (recall that one identifies S¢°, resp. P, with the identity operator). Let U be
the category of unstable A-modules. This is an abelian category with enough pro-
jective objects. We obtain free objects in U as follows. The excess of an admissible
sequence [ is defined to be

2(iy — pia) +2(ia —pis) + -+ 2+ —€1— - —€, if p>2
and it is denoted by e(I). Note that, if p > 2, an admissible sequence I such that
e(I) < n contains at most n entries ¢; = 1 because e(I) = €¢g + -+ + €, + 2(i1 —

Pio —61) + +2(ln —En).
Let

(2) B(n)c A
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be the vector subspace generated by admissible monomials of excess > n. An A-
module X satisfies B(n) - X™ = 0 for all n if and only if X is unstable. We have
the suspension functor

(3) > U—U

defined by setting (XM)" = M" ! Let ¥ : M" ! — (XM)" be the map of
degree 1 given by the identity of M™~!. Then the A-action on ¥ M is defined by
6(xm) = (—1)!?12(@m) for m € M, 6 € A. We obtain the A-module

(4) F(n) = X"(A/B(n))

which is the free unstable module on one generator [n] in degree n. Here [n] =
¥™{1} € F(n) is defined by the unit 1 € A. A basis of A/B(n) is given by
admissible monomials of excess < n. Free objects in U are direct sums of modules
F(n), n>0.

The mod p cohomology of a space X is also, in a natural way, a graded
commutative, unital F-algebra which is augmented by H*(X) — F if X is a pointed
space x € X. Let H*(X) be the kernel of the augmentation H*(X) — F. The
algebra structure is related to the A-module structure by the Cartan formula

Sq'(xy) = Ypyi—i S"2Sdy,
(K1) Pz(xy) = ZkH:i kaplya

Blay) = (Br)y+ (-1)2py,
where z,y € H*(X) and by the following formulas:
Sql*lz = 22  for any z in H*X if p = 2,
(K2)
Pl#l/2z = 2P for any z of even degree in H*X if p > 2.

This leads to

1.1.7 Definition. An unstable algebra K over the Steenrod algebra A or an unstable
A-algebra K is an unstable A-module provided with maps p: K @ K — K and
n : F — K which determine a commutative, unital, F-algebra structure on K
and such that properties (K1) and (K2) hold. We shall denote by K = K, the
category of unstable augmented .4-algebras, morphisms being A-linear algebra
maps of degree zero compatible with the augmentation.

Hence the cohomology H* is a contravariant functor
H* : Top*/ ~— K

from the homotopy category of pointed topological spaces to the category K of
augmented unstable algebras over A. For pointed spaces X,Y let [X,Y] be the
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set of homotopy classes of pointed maps X — Y. This is the set of morphisms
X — Y in the homotopy category Top™/~.

The axiom (K1) can be reformulated as follows. There is an algebra map &
(diagonal) from A to A ® A such that

5(5¢") = Yy S" @S¢ ifp=2,
0B) = BR1+10,
S(P) = Yo PPePlifp>2.

This map determines a co-commutative Hopf algebra structure on A, and it can
be used to provide the tensor product M ® N of two A-modules M and N with
an A ® A-module structure, this structure being determined by the formula

O@0)(mon) = (—DIgm o o'n

for all 6,0’ € A, m € M and n € N. Then M ® N is an A-module by restriction
via 0. Axiom (K1) is equivalent to the A-linearity of the map p: K @ K — K
in (1.1.7). The structure of the dual of A, as a commutative Hopf algebra, was
determined by Milnor [Mn].

As an example of an unstable algebra, recall the structure of the mod p
cohomology of the classifying space B(Z/p).

For p = 2 the mod 2 cohomology H* B(Z/2) is the polynomial algebra F[z] on
one generator x of degree 1. The action of A is completely determined by axioms
(K1) and (K2) and one finds that

(1.1.8) Sq'a" = (n>x”H

If p > 2, H*B(Z/p) is the tensor product A(z) ® F[Bx] of an exterior algebra
on one generator x of degree 1 and a polynomial algebra on one generator Sx of
degree 2. The action of A is determined by axioms (K1) and (K2) and the fact
that 3 is the Bockstein homomorphism. We obtain

(1.1.9) B(x) = Bz, PYBz)" = <7Z> (Bz)"tir=1),

1.1.10 Definition. For an unstable A-module X let U(X) be the free unstable
A-algebra in K constructed as follows. Let

(1) T(X) = Px
i>0

be the tensor algebra generated by X. Then T'(X) is an .A-module since the i-fold
tensor product X® = X ® --- ® X is an A-module by the Hopf-algebra structure
of A. Let

(2) D(X) C T(X)



8 Chapter 1. Primary Cohomology Operations

be the two-sided ideal generated by the elements
r@y—(—=1)y @z,
(3) Sql*lz — 2®2 for p =2,
Plely — z®p for p odd and | z | even
with x,y € X. Then the quotient algebra
(4) U(X) = T(X)/D(X)

is the free unstable A-algebra in K generated by X. We call U(X) completely free
if X is a free object in . In particular let

(5) H(n) = U(F(n)) = U(E"(A/B(n))

be the completely free object in K generated by one element [n] in degree n.

Due to a result of Serre [S1] and Cartan [C], see Steenrod-Epstein II.§5[SE],
we know:

1.1.11 Theorem. For an Eilenberg-MacLane space Z™ = K(Z/p,n), n > 1, one
gets an isomorphism in K,
H*(Z™) = H(n).
For n = 1 we have Z! = B(Z/p) so that in this case H*B(Z/p) = H(1) can
be described by (1.1.8) and (1.1.9).

1.1.12 Definition. An augmented graded algebra A is connected if the augmenta-
tion is an isomorphism in degree 0, that is A% = F. Let

K°cK
be the full subcategory of connected unstable A-algebras.

There is an obvious forgetful functor
K—K°

which carries A to A=! @ F. Here A=! C A is the (non-unital) subalgebra of
elements of degree > 1. Of course AZ!, in addition, is an A%-module and S¢?, P7, 3
restricted to AZ! are A-linear. Moreover the multiplication in AZ! is A%-bilinear.
This leads to the following characterization of objects in /.

1.1.13 Proposition. Let A® be an augmented commutative algebra concentrated in
degree 0 satisfying a = aP where aP is the p-fold product in the algebra A. Moreover
let AZ' ©F be an object in K°. Then A=Y & A° is an object in K if and only if
AZ1 s an A%-module and Sq?, P7, 3 on AZ' are A°-linear and the multiplication
in AZ' is A°-bilinear.
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Proof. Given an object A in K we see that = € A satisfies S¢/z = 0, P/z = 0,
Bz = 0 for j > 0 since A is an unstable .A-module. Moreover (K1) implies that S¢7,
P3| 3 for j > 0 are A%linear. Finally (K2) implies for | z |= 0 that z = 2P. O

The proposition shows that the category K can be easily described by A°-
objects in the category K® where A° is an algebra as in (1.1.13). In the next section
we use power algebras to describe a category isomorphic to K. Using (1.1.13) we
thus also get accordingly a category isomorphic to /.

1.2 Power algebras

We here introduce the algebraic notion of a power algebra. Using power maps ~y
in Chapter 3 we show that the cohomology ring H*(X) of a path connected space
X has the natural structure of a power algebra. Power algebras can be used to
define the action of the Steenrod algebra on H*(X). In this section we describe
precisely the algebraic connection between power algebras and unstable algebras
over the Steenrod algebra. This clarifies the role of the power maps ~.

Again let F = Z/p be the field of p elements where p > 2 is a prime. If V' is
a F-vector space with basis x1,...,x, we write

(1.2.1) V=Fx;® - ¢Fz,

Let Vec be the category of F-vector spaces and F-linear maps. The zero-vector
space is denoted by V = 0. Let

S(V)=Flz1,..., 2]
be the polynomial algebra generated by (1.2.1) and let
AV) = Az, ..., zp)

be the exterior algebra generated by (1.2.1).
A (unital) graded algebra A = {A™} is a graded F-vector space concentrated
in degree > 0 with an associative multiplication

(1.2.2) pi A" @ A —— AT

denoted by u(z,y) = -y and a unit 1 € A° with 1 -2 = 2 -1 = 2. The algebra
A is connected if A =TF and A is augmented if an algebra map A — F is given.
In particular each connected algebra is augmented. Of course A is a subalgebra
of A and all A", n > 1, are A%-bimodules. Moreover A is commutative if z -y =
(—1)l=llly. 2. Here |2 is the degree of € A with |z| = ¢iffz € A9. A map between
graded algebras is an F-linear map f : A — B of degree 0 with f(z-y) = (fz)-(fy),
f(1) = 1. Let Alg, be the category of connected commutative graded algebras and
such maps. The category Alg, has coproducts given by the tensor product AQ B of
algebras. Multiplication in A® B is defined by (a®b)-(a’@V) = (1)l lq.a' @b-b'.
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1.2.3 Definition. A $-algebra A = (A,[54) is an object A in Alg, together with
an F-linear map (4 : A* — A2, A B-map f: (A4,B4) — (B,Bp) is a map in Alg,
compatible with 3; that is Bp f' = f234. Let 3-Alg, be the category of 3-algebras
and (B-maps. If F = Z/2 then we always insist that 34 : A — A? is given by

(1) Ba(z) =z -z for x € AL,

Hence for p = 2 the category (3-Alg, coincides with Alg,,.
The tensor product of algebras yields a coproduct in the category of (-
algebras by defining

Bagp: (A®B); =A'@B' — A*® B> C (A® B);

via 84 + Bp.
The forgetful functor ¢ : 3-Alg, — Vec which carries (A, 34) to A has a left
adjoint

(2) Eg : Vec — (-Alg,

which carries V' to the free B-algebra E3(V') generated by V concentrated in degree
1. Let SV be given by V concentrated in degree 2 and let 3 : V' — GV be defined
by the identity of V. Then the free S-algebra Eg(V) is given by

S(V) if p=2,

®) Es(V) = { AV)®S(BV) if p>2.

For a (-algebra (4, 3) and z € A' we define the element w;(z) € A%, i > 0 by

(4) wi(ﬂ?)—{ v (=Bz)Y i i=2j+1.

Hence we have wo(z) = 1 and wy(z) = = and fwi(z) = —ws(z). Here we follow
the convention of Steenrod-Epstein in V.5.2 [SE]. Moreover we set w;(xz) = 0 for
i <0.If p=2 we see by (1) that w;(z) = 2! for i > 0.

It is easy to see that the elements w;(x), i > 1, yield a vector space basis of
the free f-algebra Eg(Rz). Therefore each element y € Eg(Rz) @ A with ¢ = |y|
can be written uniquely in the form

(5) y=wil) oy

i>0
with y; € A97% termed the coordinate of y in degree ¢ — i where |y| = q.

The cohomology H* X with coeflicients in F is a commutative graded algebra
which is augmented if X is pointed and connected if X is path connected. Let
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Top;, C Top™ be the full subcategory of path connected pointed spaces. Then
cohomology determines a contravariant functor

(1.2.4) H* : Top;/ ~— (-Alg,.

Here H*(X) is a (B-algebra by use of the Bockstein homomorphisms 3 : H'(X) —
H?(X) associated to the exact sequence 0 — Z/p — Z/p* — Z/p — 0.

A finitely generated F-vector space V yields the Eilenberg-MacLane space
K(V,1) of the underlying abelian group of V. This is also the classifying space
B(V) of V. Let V# = Hompg(V,F) be the dual vector space. Then it is well known
that one has a natural isomorphism of (-algebras

(1.2.5) H*(K(V#,1)) = Eg(V).

The isomorphism (1.2.5) holds for all primes p > 2 since we use the convention
(1.2.3)(1) for p = 2. We show in Chapter 3 below that the cohomology algebra
H*(X) of a path connected space has naturally the following structure of a “power
algebra”.

1.2.6 Definition. A power algebra (H,~y) over F = Z/p is a (-algebra H (i.e. an
algebra in [3-Alg,) together with F-linear maps

Yo : HY — HP for x € H' and ¢ > 1.
The following properties (i), (ii) and (iii) hold:
(i) Y0(y) = y"-

Here 0 € H! is the zero element and yP is the pth power of y € HY in the algebra
H. Let p=p(p—1)/2 be given by the prime p. Then

(i) Yo (y) - v2(2) = (_1)|y”2|;57r(y )
for x € H', y,2 € H with |y| > 1 and |z] > 1 and
(iii) e (1 (2)) = (=1) Py, (12(2))

for x,y € H' and 2z € H with |z| > 1.
A map f: (A,74) — (B,~?) between power algebras is a map f: A — B
in 3-Alg, for which the following diagram commutes,

A4 ! > B4

A B
Yz Vfx

\ f \
APa ~ BPa
with € A' and fz € B'. Let Pow be the category of power algebras and such
maps.
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This book is mainly concerned with the following example.

1.2.7 Example. Let X be a path connected space. Then the cohomology
H*(X,Z/p) is a power algebra with power maps 7,, * € H'X, defined as fol-
lows. In Chapter 3 we obtain for Eilenberg-MacLane spaces Z™ = K(Z/p,n) the

power map
v:Zt x 29 — ZP4

which induces via H"(X) = [X, Z"] the map
Yy : H1 — HP4

by setting v.(y) = y(z,y) : X — Z' x Z9 — ZP4, We show in section (3.2) that
(H*(X), ) is a well-defined power algebra with properties as in (1.2.6). This yields
a contravariant functor

H* : Top;/ ~— Pow

enriching the structure of the functor (1.2.4). In particular we get by use of the
isomorphism (1.2.5) the next result.

1.2.8 Proposition. For a finitely generated F-vector space V' the power algebra
H*B(V#) = (Es(V),7)

is the unique power algebra satisfying (i) and (i) respectively:

(i) Letp=2. Then z,y € V C Eg(V) satisfy
YY) = v’ +a-y.
(ii) Let p be odd and m = (p —1)/2. Then x € V. C Eg(V) satisfies

Ye(y) = ml(Bz)" ' ((Bz) -y —xz-(By)) fory eV,
Ye(y) = y*— (Bx)P~" -y fory e pV.

We prove this result in (1.2) below.

The power algebra (Eg(V),v) is natural in V, that is, an F-linear map
¢ : V. — V' between finitely generated F-vector spaces induces a map ¢ :
(Eg(V),v) — (Eg(V'),7) between power algebras. This type of naturality is used
in the following notion of an “extended power algebra”.

1.2.9 Definition. For p > 2 an extended power algebra H is defined by a power
algebra (Eg(V)® H, ) for each F-vector space V of dimension < 2. The following
properties hold:

(1) The inclusion Eg(V) — E3(V)® H which carries y to y®1 is a map between
power algebras (Eg(V),v) — (Eg(V) ® H,~) where (Eg(V),~) is defined in
(1.2.8).
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(ii) The power algebra (E3(V) ® H,~) is natural under H, that is, for F-vector
spaces V, V' of dimension < 2 any map ¢ : Eg(V)® H — Eg(V')®@ H
under H in §-Alg, is also a map ¢ : (Eg(V) ® H,v) — (Es(V') ® H,~)
between power algebras. Here v is determined by the R-linear map ¢ : V —
(Es(VYo H)y =H'a& (V' @ HY).

For the trivial vector space V' = Or we have E3(Or) = F so that by (1.2.9) the
algebra E3(Op) @ H = H is a power algebra. Proposition (1.2.8) shows that the
trivial algebra F = H is an extended power algebra. A map f : A — H between
extended power algebras is a map in (-Alg, such that for all vector spaces V, V'
of dimension < 2 the map

1@ f: (Es(V)® A,y) — (Es(V') ® H,7)

is a map between power algebras. Let EPow be the category of extended power
algebras and such maps. The cohomology functor (1.2.4), (1.2.7) yields a con-
travariant functor

(1.2.10) Top;/ ~— EPow
which carries X to the extended power algebra H* X given by the power algebras
(Bs(V) @ H'X,7) = (H*(B(V*) x X),7)

where we use the product space B(V#) x X and (1.2.7) and the Kiinneth formula
H*(Y x X) = H*(Y) ® H*(X).

1.2.11 Definition. Given an extended power algebra H we obtain for the F-vector
space V = Fz the diagram

(1) (Es(Fz) @ H)P4 PR S ppai
A A
Ya D;
(Es(Fz) @ H)?< 7 He

where pr; carries an element to the coordinate of degree pg — i as defined in
(1.2.3)(5) and where j is the inclusion with j(y) = 1 ® y. The operator D; is the
composite D; = pr; oy, o j, or equivalently we have for x =2 ® 1 € Eg(Fz) @ H
the equation:

(2) 1(1®y) = sz‘(x) ® Di(y).



14 Chapter 1. Primary Cohomology Operations

We set D; = 0 for i > pq and for i < 0. Moreover we say that the extended power
algebra H is unitary if (3) and (5) hold.

D;(y) =0fori> (p—1)g and
®) { Dp—1)q(y) =g -y

for y € H?. Here 9, € Z/p = F is given by the formula

@ 9, =1 if p=2,

9y = (—1)maat /2 (mha  if p odd
with m = (p—1)/2. We point out that (m!)? = (—1)"*! mod(p), see 6.3 page 112
[SE]. If p is odd then

D;(y)=0 if |y|is even and
3 & {2m(p—1),2m(p - 1) — 1;m > 0},
()
D;(y)=0 if |y|is odd and
JE{@m+1)(p—1),2m+1)(p—1) = 1;m > 0}.

Let
UEPow C EPow

be the full subcategory of unitary extended power algebras.

Recall that for p = 2 the Steenrod algebra A, is generated by elements Sq’,
1 > 1, and that H*X is an unstable algebra over Ay as described in Chapter 1. Let
K2 be the category of augmented unstable algebras over A, see (1.1.7). The next
result shows a new fundamental relation between power algebras and the Steenrod
algebra.

1.2.12 Theorem. Forp = 2 the category UEPow of unitary extended power algebras
is isomorphic to the category K of connected unstable algebras over the Steenrod
algebra As.

Proof. If H is a unitary extended power algebra we define the action of Ay on
y € HY

(1) Sq’(y) = Dy—j(y) € HTH.

Now one can check that H is a well-defined object in K9. Conversely if H is an
object in K we see that H is also an object in UEPow as follows. The tensor
product of algebras is also a coproduct in Kz and Eg(V) = H*B(V#) is an object
in Ko. Hence also A = Eg(V) ® H is an object in K. We now define for x € A!
the power operation =, : A9 — A2 by the formula

(2) VoY) =Y we (@) - S¢ (y).

Jj=0
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Here we have w;(x) = z*. Now one can check that Eg(V) ® H is a power algebra
natural for algebra maps under H in $3-Alg, so that H is a well-defined unitary
extended power algebra. Further details for the proof are given in Section (1.3),
(1.4) below. O

A similar result is true for odd primes p if we use the following Bockstein
operators. Let H be an object in $-Alg,. Then a Bockstein operator  on H is
given by R-linear maps

(1.2.13) B:H? — HI with ¢ > 1

satisfying 36 = 0 and B(z - y) = B(z) -y + (=1)1*lz - B(y) for x,y € H. Moreover
for ¢ = 1 the map [ coincides with the (-algebra structure of H. For example
there is a unique Bockstein operator 5 on Eg(V) which extends 8 : V — V.
The cohomology H*(X) has a Bockstein operator induced by the extension 0 —
Z/p — Z/p* — Z/p — 0. If B is defined for H and A in Alg, then 3 is also defined
for H ®@ A.

1.2.14 Definition. For p odd a Bockstein power algebra (H,~, 3) is a power algebra
(H,~) together with a Bockstein operator 3 satisfying 37, = 0 for all x € H?.
Let BPow be the category of Bockstein power algebras. Morphisms are maps in
Pow which are compatible with 3. In particular (Eg(V),~, () is an object in BPow
defined by (1.2.8) and (1.2.13); this object is natural in V. An extended Bockstein
power algebra H is defined by Bockstein power algebras (Eg(V)® H,~, ) for each
F-vector space V of dimension < 2. The following properties hold:

(i) The inclusion E3(V) — E3(V) ® H which carries y to y ® 1 is a map
(Es(V),~,B8) — (Es(V)® H,~, ) in BPow where (Eg(V),~, §) is defined in
(1.2.8).

(ii) The object (E3(V)® H,~, 3) is natural under H, that is, for F-vector spaces
V, V' of dimension < 2 each map v : Eg(V) ® H — Eg(V') ® H under H
in - Alg, is also a map in BPow. Here 9 is completely determined by the
R-linear map ¢ : V — H' @ (V' ® HY).

We define maps between extended Bockstein power algebras in the same way as
in (1.2.9).

Let EBPow be the category of extended Bockstein power algebras and let
UEBPow be the full subcategory consisting of unitary objects; see (1.2.11).

Recall that for odd primes p the Steenrod algebra A, is generated by elements
B and P% i > 1, and that H*X is an unstable algebra over A,. Let ICg be the
category of connected unstable algebras over A, see (1.1.7). The next result is
the analogue of Theorem (1.2.12) for odd primes.

1.2.15 Theorem. For odd primes p the category UEBPow of unitary extended Bock-
stein power algebras is isomorphic to the category ICB of connected unstable algebras
over the Steenrod algebra A,.
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Proof. If H is a unitary extended Bockstein power algebra we define the action of
B,Pi € A, ony € H by
(_1)J7~9(1P](y) = D(q72j)(pfl)(y)7

where 9, is defined as in (1.2.11)(4). Now one can check that H is a well-defined
object in K. Conversely if H is an object in ICg we see that H is also an object
in UEBPow as follows. The tensor product of algebras is also the coproduct in C),
and Eg(V) = H*B(V#) is an object in K, see (1.1.9). Hence also A = Eg(V)® H
is an object in K,. We now define for z € Al the power operation v, : A — AP4
by the formula

Te(y) = Vg Z(—l)jw(q—zj)(p—1)(9€) - PI(y)
+ Y Z(_l)jw(q—Qj)(p—l)—l(x) - BPI(y).

Here w;(z) is defined by 8 : A — A? as in (1.2.3)(4). Now one can check that
A = Eg(V)® H is a well-defined Bockstein power algebra natural for maps under
H in 5-Alg, so that H is a well-defined unitary extended Bockstein power algebra.
Further details of the proof are given in Section (1.3), (1.4) below. O
Proof of (1.2.8). Let p = 2. Then we have for A = Es(V) = H*(BV#) and
x,y € AL =V the formula (see(1.2.11))

Yly) = Zwl‘j-qu(y)

(2)

= Sq'(y) +=-8¢°(y)

= y+a-y
Now let p be odd and m = (p — 1)/2. Then we get for A = Eg(V) = H*(BV#)
and z,y € Al =V the formula (see (1.2.15))

w) = V1) (1 wa_sjp-1 (@) P/(y)

J

+ % Z(_l)jw(l—zj)(p—l)_1(x) .5pj(y)

= (~1)"ml(wp-i (@) - PO(y) + wp—2() - BP°(y))
= ) B)" y (B) (By)
= ml(Bz)" " ((Br) -y — x - (By)).
Moreover for z € A' =V and y € 3V C A? we get by the formula in (1.2.15):
V) = V2 (~1we_ajp-n(x) P/(y)

J

+ 92 (—1Vwe2))p-1)-1(2) - BP(y).

J
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Here (1.2.11)(4) shows
9y = (=)™ -(m)?=(-1)"-(=1)""'=—-1 mod p.
Hence one gets for y € gV,
w(y) = (=1)- (Wap-1)(@) - P°(y) — wola) - P'(y))
+ (—1) - (wap-1)-1(x) - BP°(y))
= —(Bx)P oy +yP
Here we use (1.1.9) and the fact that 65 = 0 implies Sy = 0 for y € SV O

1.3 Cartan formula

Let p > 2 and let H be an extended power algebra so that for y € H,
(1.3.1) w(1®y) = Y wil@) @ Dily) € By(Fa) @ H

as in (1.2.11). We set D;(y) =0 for ¢ < 0.

1.3.2 Lemma.
Do(y) = v
Proof. We can choose the algebra map under H,

fiEs(Fo)® H— H

which carries = to the zero element in H'. Then compatibility of v with this map
shows

Do(y) = fr1z(1®@y) =7 (f(1®Y)) = 0(y) =y°

by (1.2.6)(1). 0
We define Sq’(y) and P?(y) in an extended power algebra by
Sq’(y = Dy -y if p =2,
(1.3.3) { (,) , v-3(¥) .
(=71 P (y) = Dyl-2j)p-1)(y) if podd.

1.3.4 Lemma. For p = 2 the power operation v in a unitary extended power algebra
H satisfies for x € H', y € HY,

(+) Yly) = Y a7 8¢ (y).
J
For p odd the power operation v in a unitary extended Bockstein power algebra H
satisfies, for v € H*, y € HY,
Y(y) = Ax(y)+ B:(y), with
y) = U4 Zj(_l)jw(q72j)(pfl)(m) - P(y),

(%) Ay (
Bu(y) = 9¢2;(=1)wg_ajp-1-1(x) - BP(y).
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Proof. For p = 2 the equation for v,(y) holds in (Eg(Fzx) ® H,~) by definition
(1.3.3), (1.3.1). Now the element z defines a unique algebra map Eg(Fz) — H
carrying the generator x to x € H'. This algebra map yields a map under H in

B-Algy,
(1) BEs(Fz) @ H — H

which by assumption on extended power algebras is compatible with . This im-
plies that (x) holds in H. For p odd we have to prove (xx) only in Eg(Fz) @ H.
Then the map (1) shows that (%) also holds in H. We know by the assumption on
Bockstein power algebras that v, (y) = 0. Hence we have for (1.3.1) the formula
in Ey(Fr) ® H,

0 = By =60 wilr)® Di(y))

= Yi(Bwi(z) ® Diy) + (—1)'wi(x) ® BDi(y))-
By (1.2.3)(4) we know (since 88 = 0)

(2)

Bui(z) = 0 if 4 1is even,
! | —wipi(z) if disodd, i > 1.

Hence (2) implies
0 = 3 censa((-1)'wi(2) @ BDi(y) — wi(z) ® Di-1(y))

3

“ + (X paa(=D'wi(z) ® BDi(y)) + 1@ BDo(y).

Here we have SDy(y) = By? = 0. Now (3) implies

" { BD;i(y) =0 if i is odd,
BD;(y) = (—1)'D;_1(y) if i is even > 2.

Hence the definition of P! in (1.3.3) and the assumption that H is unitary imply
that (xx) holds in Eg(Fz) ® H and hence in H. O

We now show that the “global Cartan formula” for v, (y-2) in a power algebra
H is essentially equivalent to the classical Cartan formula (K1) in (1.1.7). For this
we need the following formula in Eg(Fx):

0 ifi-t-pisodd,
(1.3.5) wi(z) - wi(x) =

witt(x) otherwise.

Compare (1.2.3)(4). Here we use the fact that -« =0 if p is odd and | z | odd.

1.3.6 Lemma. Let H be a connected unstable algebra over the Steenrod algebra
A= A,, p > 2. Then v, defined by (1.3.4)(x), (xx) satisfies the global Cartan
formula (1.2.6)(ii),

Yoy z) = (D)WIEPy () e ().
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Proof. For p =2 we have (¢ =|y |+ | 2z |),
Yy 2) = D a"I8¢(y- )
J

S w7 Y St (y) - Sq'(2)

J k+t=j

Z Z 2=k Sk (y) - 221718 gt (2)
7 kti—j

= %) 7=(2)

For p odd a similar argument holds. In fact, (K1) implies
Auly-2) = (FD)VIEPAL(Y) - Au(2).
Moreover since 3 is a derivation (K1) also implies
Bu(y-z) = (=D)AL (y) - Bo(2) + Ba(y) - Au(2)).

Finally we observe that

Bu(y) - Bx(2) = 0
sincex-x=0in H, z € H', p odd. O
1.3.7 Lemma. For p =2 let H be an extended unitary power algebra and for p odd

let H be an extended unitary Bockstein power algebra. Then Sq¢’ and P defined
as in (1.3.3) satisfy the Cartan formula (KC1).

Proof. We use the same equation as in the proof of (1.3.6) in the algebra Eg(Fz)®
H. Then comparing coordinates yields (K1). For example, for p = 2 we have

DI @SPy-2) = n(ley-z)

= ’Y:E(l ® y) "Y:E(l ® Z)

B qu*jé@( > Sq"(y) - Sq'(2)).

k+t=j

Similar arguments hold for p odd. In fact, in this case we get for the first summand
Az (y) in (1.3.4)(xx) the formula in Eg(Fz) ® H,

Auly-2) = (-1)¥IFPAL(y) - Au(2)

and this implies (K1) by comparing coordinates. O
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1.4 Adem relation

We show that the formula

(1.4.1) Yoy (2) = (=1)Py7,(2)

in a power algebra corresponds to the classical Adem relation. We use the following
convention on binomial coefficients.

(1.4.2) (;) =0ifr<0orj<0, (T

0>:lif7“20.

Moreover Sq¢’ and P’ are zero for j < 0. All summations run from —oo to +oo.
We have in Eg(Fx) the formulas (i,j € Z)

(1) S¢w,(z) = (;)errj(iC),

(2) Pjiw%(x) B () war+24=1) ()
BPwar(x) =0,

(3) Pleara() = (T ; 1) war42j(p—1)—1(2),

) r—1
BP war_1(x) = —< j >w2r+2j(p—1)(x)'

For this compare (1.1.9), (1.1.8), (1.2.3).

1.4.3 Lemma. Let H be a connected unstable algebra over the Steenrod algebra
A=A, p > 2. Then v, defined by (1.3.4)(x), (xx) satisfies the global Adem
formula (1.4.1) above.

Proof. Let p = 2. Then we get for ¢ =| z |,
YYy(2) = (X we-i(y)Sq'(2))
= Zl /Y:E(wqfi(y) : qu Z))

(
® = Ypiwa k(@) S¢"(wei(y) - Sq'(2))
(2)

Here we write ¢ — i + j = 2q — [, so that
(2) Ve Yy (2) = D wag k(@) - wag-1(y) - Dag—k,24-1(2);
k,l
q—1 —i— i
®) Dayoraale) =3 (1)1 ) st sito),

%
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Hence (1.4.1) is a consequence of the following equation in H**! for all k,1 € Z,
q>1,z¢e HY.

(4) Dag—k,24-1(2) = D2g—1,24—k(2)-

In fact, this equation holds in each unstable algebra over the Steenrod algebra As.
A direct proof of (4), however, is highly sophisticated based on Adem relations in
Ay and the unstable structure of H. We therefore give in (1.5) below a proof of
(1.4.3) relying on a result of Serre [S1].

For p odd one uses similar arguments as above though formulas are more
involved. We have

() Vay(2) = Az dy(2) + BeBy(2) + Az By(2) + BrAy(2).
Hence (1.4.1) is a consequence of

(6) Ay (2) = (1)1 A, 4,(2)

B, By(z) + Ay By(z) + By Ay(2)
= (=1)IP(By By (2) + AyBa(2) + By Au(2)).

Using the Cartan formula (1) and the equations in (1.4.2)(1), (2), (3) we see that
(6) and (7) correspond to equations in H (similarly as (4) above). These equations
are consequences of the Adem relations and the unstable structure of H. This can
be proved directly requiring highly tedious computations. We therefore give in
(1.5) below a proof of (1.4.3) as in the case of p = 2. O

1.4.4 Lemma. Forp =2 let H be an extended unitary power algebra and for p odd
let H be an extended unitary Bockstein power algebra. Then S¢’ and P’ defined
as in (1.3.3) satisfy the Adem relations.

Proof. We use the same equations as in the proof of (1.4.3) in the algebra Eg(Fa®
Fy) ® H. Then comparing coordinates yields for p = 2 the equation

Dag—k24-1(2) = Dag—1,24-k(2)-

This shows that for p = 2 the Adem relation is satisfied, see page 119 [SE]. Here
we use the fact that the maps under H in (-Alg,

Es(Fz)®@ H — Eg(Fx ®Fy) @ H

which carry z to = and y respectively both are maps of power algebras by the
condition (ii) in (1.2.8). This implies that the squaring operations Sq¢’, P¥ on H
defined by v, and ~, respectively coincide. For p odd we use (1.4.3)(6), (7) in
Es(Fzr @ Fy) ® H and we compare coordinates. This yields the Adem relations in
the same way as in VIIL.1.8, 1.9 [SE]. O
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1.5 The theory of Eilenberg-MacLane spaces

A theory T is a small category with products A x B for objects A, B in T. Let
Set be the category of sets. A model M of the theory T is a functor M : T — Set
which carries products in T to the products of sets,

M(Ax B) = M(A) x M(B).

Let model(T) be the category of such models; morphisms are natural transforma-
tions. Since the work of Lawvere [L] it is well known that many algebraic categories
(like the categories of groups, algebras, Lie algebras, etc.) are such categories of
models of a theory T. See also Borceux’s book [Bo.

1.5.1 Definition. Let p be a prime > 2 and let K, be the following theory. The
category
K, C Top*/~

is the full subcategory of the homotopy category of pointed spaces consisting of
finite products
A=7"x...x 2"

with nq,...,n, > 1 and » > 0 where Z" is the Eilenberg-MacLane space

zZ" = K(Z/p,n).
Products are defined in K,, so that K, is a theory, termed the theory of Eilenberg-
MacLane spaces.
1.5.2 Theorem. There is an isomorphism of categories

model(K,) = ICg
where ICg is the category of connected unstable algebras over the Steenrod alge-
bra A,.

This result relies on the computation of Serre [S1] and Cartan [C] of the
cohomology of Eilenberg-MacLane spaces.

Proof of (1.5.2). We have the forgetful functor
¢ : ICg — Vec=!

where Vec=! is the category of graded R-vector spaces concentrated in degree > 1.
The functor ¢ carries A to the underlying vector space of A. Let H be the left
adjoint of ¢ which carries V in Vec=! to the free unstable algebra H (V') generated
by V. Let x; be an element of degree n;. Then it follows from (1.1.11) that

H*(ZT”X"'XZ”T) — H(Ffﬂl@@FfET)
= Hm)®- - H(n,).
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Let
H, C k)

be the full subcategory generated by objects H(Fx1®- - -®Fz,) withny,...,n, > 1
and 7 > 0. Then the cohomology functor yields an isomorphism of categories where
H)P is the opposite category of Hy,

H*:K, = H®.
Since model(H;?) = KJ we see that (1.5.2) holds. Compare also [BJ4]. O

We have the following commutative diagram of functors corresponding to the
well-known equation

H"(X) = [X,K(n)]

for n > 0.
(1.5.3) model(K,)
P
Topy/~
T

K

Here [X, —] is the model which carries an object A in K, to the set [X, A]. This
model obviously satisfies

[X,Ax B] = [X,A] x [X,B]

so that the functor [X, —] in (1.5.3) is well defined. On the other hand H* is the
classical cohomology functor, see (1.1.7). The isomorphism of categories in (1.5.3)
is given by (1.5.2).

We are now ready to prove (1.2.12) and (1.2.15) by the following result.

1.5.4 Theorem. For p = 2 there is a commutative diagram of functors.

UEPow ® > K9

UEPow~< ©  model(Ks)
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For p odd there is a commutative diagram of functors.

UEBPow ’ ~ KO

UEBPow< model(K,)

Proof. The functor ® carries (H,~) to (H, Sq') for p = 2 and to (H, P?) for p odd.
By (1.3.2), (1.3.7) and (1.4.4) we see that ® is a well-defined functor. We shall
construct in Section (8.5) the inverse functor ¥ of ®. O



Chapter 2

Track Theories and Secondary
Cohomology Operations

In Chapter 1 the theory K, of Eilenberg-MacLane spaces was defined by homo-
topy classes of maps between products of Eilenberg-MacLane spaces. We now
consider all maps in Top® between such products and homotopy classes of ho-
motopies between such maps termed tracks. For this reason we choose in section
(2.1) Eilenberg-MacLane spaces Z" with “good” properties. For example they are
F-vector space objects in Top*. Many results in this book will rely on these prop-
erties. In Part I we use the additive structure of Z" as an F-vector space object. In
Part IT we need the multiplicative structure and the action of permutation groups
on the spaces Z".

2.1 The Eilenberg-MacLane spaces 2"

Let R be a commutative ring with 1 € R; for example for a primeplet R=F =Z/p
be the field of p elements. In (2.1.4) below we introduce an Eilenberg-MacLane
space (n > 1)

Z" = 7% = K(R,n)

for the underlying abelian group R. The space Z"™ is defined in the proof of (2.1.4)
by the free simplicial R-module generated by the non-basepoint singular simplices
in the n-sphere S = S' A --- A S'. The symmetric group o, acts on S™ by
permuting the S!-factors of S™ and hence o, acts on K (R,n). We point out that
Z™ is an Eilenberg-MacLane space as above only for n > 1, see also (1.5.1).

The space Z" is a topological R-module (with R having the discrete topology)
and Z" is a o,-space with the symmetric group o, acting via R-linear automor-
phisms of Z™. Moreover the following additional structure is given.
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The cup-product in cohomology is induced by R-bilinear multiplication maps
(2.1.1) W= fmn: 27X Z" — Zmtn

which are associative in the obvious sense and which are equivariant via the inclu-
sion oy, X 0y C Ot Let T = Ty € Oy be the permutation of {1,...,n+m}
exchanging the block {1,...,n} and the block {n+1,...,m+n}. Then the diagram

(2.1.2) Zm x Z" T s gnx gm

Hm,n Hn,m

\ \
Zm+n > Zm+n

commutes where T is the interchange map and 7(v) = 7 - v is given by the action
of T € opyyn.

Let sign : o, — {41, —1} be the homomorphism which carries a permutation
to the sign of the permutation. For example we have sign(r,.,) = (—1)"". The
kernel of sign is the alternating group. For the o,-space Z™ and for ¢ € o, we
have the map o : Z™ — Z™ which carries x to ¢ - . This map induces a homology
H,Z™ = R the sign of o, that is

(2.1.3) o. =sign(o) : Hy(Z") — Ho(Z").
These properties of Z™ are crucial for the definition of the power maps in Part II.

2.1.4 Proposition. FEilenberg-MacLane spaces Z"™ with properties described in
(2.1.1), (2.1.2) and (2.1.3) ewist.

Proof. We shall need the following categories and functors; compare the Appendix
of this section and Goerss-Jardine [GJ]. Let Set and Mod be the category of
sets and R-modules respectively and let ASet and A Mod be the corresponding
categories of simplicial objects in Set and Mod respectively. We have functors

(1) Top* Sing (ASet)” 1ER Top™

given by the singular set functor Sing and the realization functor | |. Moreover we
have

(2) ASet 5 A Mod -2 (ASet)*

where R carries the simplicial set X to the free R-module generated by X and
where ® is the forgetful functor which carries the simplicial module A to the
underlying simplicial set. Moreover we need the Dold-Kan functors

(3) Ch, —— AMod - Ch,
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where Ch; is the category of chain complexes in Mod concentrated in degree
> 0. Here N is the normalization functor which by the Dold-Kan theorem is an
equivalence of categories with inverse I'. For a pointed space V' the chain complex
C.(V) = NRSing(V) is the normalized chain complex of singular chains in V.
We now define

_ R Sing(V)

R Sing(x) "

Hence K : Top* — Top™ carries a pointed space to a topological R-module. We
define the binatural map

(5) &:K(V)x K(W) — K(VAW)

(4) K(V) = |®S(V)| with S(V)

as follows. We have
Sing(V x W) = Sing(V') x Sing(W)
and this bijection induces a commutative diagram in A Mod.

R Sing(V) ® R Sing(W) R Sing(V x W)

v

A = S(V AW)

\

S(V)e S(W)
The vertical arrows are induced by quotient maps. For R-modules A, B let ® :
A x B — A®pg B be the map in Set which carries (a,b) to the tensor product
a ® b. Of course this map ® is bilinear. Moreover for A, B in A Mod the map ®
induces the map ® : ®(4A x B) — ®(A ® B) in Set and the realization functor
yields

|®]:|PA| x |PB| = |®(A x B)| — |®(4A ® B)|.

Hence for A = S(V) and B = S(W) we get the composite

A
@S(V)| x [2S(W)| —Z [@(S(V) @ SW))| —220 [@S(V A W)
and this is the map ® above. One readily checks that ® is bilinear with respect to
the topological R-module structure of K(V), K(W) and K(V A W) respectively.
Moreover the following diagram commutes.

(6) K(V) x K(W) ® = K(VAW)

A A

hxh h

| Sing V| x | Sing W | | Sing(V' x W)] > | Sing(V A W)
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Here the Hurewicz map h is the realization of the map in ASet,
Sing(V) — ®R Sing(V) — ®S(V)

which carries an element z in Sing(V) to the corresponding generator in
R Sing(V).

Let S = S' A --- A S! be the n-fold smash product of the 1-sphere S*.
Then the symmetric group o,, acts on S™ by permuting the factors S'. It is well
known that this action of o, on S™ induces the sign-action of ¢,, on the homology
H, (S™) = R. We define the Eilenberg-MacLane space Z™ by

R Sing(S™)

@ 2" = K(5") = ‘q) R Sing(*)

Since K is a functor we see that o, also acts on K (S™) via R-linear automorphisms.
We define the multiplication map f, , by
piZmx Z0 = K(S™) x K(8") —2— K(S™ A S") = Zm+n

where S™ A S™ = S™*" and where we use (5). Diagram (6) implies that p induces
the cup product in cohomology. O

Let VAW =V x W/V x xUx x W be the smash product of pointed spaces
V and W. Since the multiplication pi, , is bilinear we obtain the induced map

(2.1.5) w:Zm™mANZY — Zmtn
which is o, X 0y, C Opqpn equivariant. We define the product x -y by
wla,y)=x-y€ Z™ " forx € Z™ and y € Z".
Moreover for maps f: X — Z™ and g: Y — Z" let
fRg: X xY — Zmt"

be the map which carries (z,y) to f(z)-g(y). If X =Y and A is the diagonal
X — X x X then
f . g . X _ Z7n+n

is the map (f X ¢g)A which carries z to f(x) - g(z).
For pointed spaces X,Y let [X, Y] be the set of homotopy classes of pointed
maps X — Y. It is well known that for n > 1 the set

(2.1.6) [X,Z"] = H"(X,R)

is the nth cohomology of X with coefficients in R. A pointed map f : X —
Z™ is therefore considered as a “cocycle” representing a cohomology class {f} €
H™(X, R). Clearly the cohomology class

{f-gt={ftuig}
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is given by the cup product in cohomology. The associativity and graded commu-
tativity of the cup product can be derived from the properties of the multiplication
maps u in (2.1.1).

Let QX be the loop space of the pointed CW-space X. The map p in (2.1.5)
with m = 1 induces a homotopy equivalence

(2.1.7) T 20 s Qzm

with the following properties. We choose a map i : S' — Z! which in homology
induces the homomorphism of rings Z — R. Then i yields the composite p(1Aig):

Z"ASY — ZP A ZY — Zn Tt

and the adjoint of this map is 7,. Since Z"*! is a topological R-module also
the loop space Q227! has the structure of a topological R-module. Moreover the
bilinearity of p implies that 7, is an R-linear map between topological R-modules.
This fact is of main importance in Part I of this book. In addition 7, is equivariant
with respect to the action of o, C 041

Remark. Using composites of maps Z" A S* — Z"! we get a map Z™ A S™ —
Z™*" which is 0, X 0y C s equivariant where o,, acts on S™ as above. This
shows that Z™ is a symmetric spectrum as used by Hovey-Shipley-Smith [HS] 1.2.5.

We need the homotopy equivalence 7, : Z™ — QZ"*! above for the definition
of stable maps in the secondary Steenrod algebra, see Section (2.5). The use of 7,
for stable maps turns out to be appropriate in Section (10.8); see also (2.1.9)(7)
below.

On the other hand we obtain the homotopy equivalence

(2.1.8) Sp 1 I — QZ" T
which is the adjoint of u(ig A 1):

S'AZ" — Z'NZ" — 2T
Then s, and r,, are related by the formula

TinSn = Ty With sign(r ,) = (—1)

where 7 5, is the interchange permutation, see (2.1.2). We use s,, (and not r,) for
the following definition of the Bockstein map 3. As we shall see in Section (8.6)
the use of s, implies that the Bockstein map is a derivation.

We define the Bockstein map

(2.1.9) B:zZp — Zgt
as follows. For F = Z/p and G = Z/p? we have the short exact sequence

(1) 0—F-5G-F—0
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which induces a fiber sequence

(2) 2 gett L, gndl T gntl

The space F™ is the fiber of the inclusion ¢, namely

(3) F" = {(z,0) € Zp"! x (Z2", 0019z = o(1)}.

Here we use the path space and we set d(x,0) = z. Now we have homotopy
equivalences

(4) zy ot <l pn
with m(z,0) = wo. Let 7 be a homotopy inverse of 7. Then (3 is the composite
(5) B:zp S zett I pr 2, grtl

The Bockstein map is compatible with r,, in (2.1.7) since there is the commutative
diagram (Z" = Zg, 1 = Qy = Q).

Sn ™ 17}

(6) zn > len+1 ~ Fn - Zn+1
Tn r’ r’ Tn+1

\ \ \ \
n+1 = n+2 n+1 = n+2
Lzl =02 S P = 0,7

Here 1/ carries (o : St — Z"*tl) € QZ"*! to +/(0) : ST A ST — Z"+2 with
r(0)(ta A ty) = o(t1) - to where = ip(t) is given by ip : S* — Z'. Similarly
r’" carries (z,0) € F™ to (7" (x,0) : St — F") € Qo FnH with v (z,0)(t2) =
(z-t3,0-t3). One readily checks that diagram (6) is well defined and commutative.
Diagram (6) shows that the following diagram homotopy commutes.

(7) Zn B > Zn+1
T Hé;z Trn+1
\ \
Qz71+1 s . Qz71+2

We now use notation explained later in this book. For pointed spaces X,Y
we have the groupoid
[X,Y].
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The objects in this groupoid are the pointed maps f, g : X — Y and the morphisms
termed tracks are the homotopy classes of homotopies f ~ g.

The map s, in (2.1.7) depends on the choice of ir : S* — Z!. The full
subgroupoid s,

(2.1.10) s, C [27,9271]

consisting of maps s, as in (2.1.8) is a contractible groupoid by (3.2.5) below.
Moreover there is a well-defined contractible subgroupoid

(2.1.11) B CZ¢, Z8
consisting of all maps ( as defined in (2.1.9). In fact, let
G. C [QZ7+ F]

be the full supgroupoid given by all homotopy inverses @ of w. Then G, is a
contractible groupoid by (3.2.5) below. Therefore the image of the functor

sn X Gn — [Z8, 257

carrying (sp,7) to Oms, is a contractible groupoid and this image is the sub-
groupoid 3 above. The subgroupoid § does not depend on choices.

This shows that two different Bockstein maps 3, 3’ as defined in (2.1.9) are
connected by a unique track 8 = 3’ in 3. We also say that the Bockstein map 3 in
Top* is well defined up to canonical track. Moreover there is, in fact, a canonical
track Hg, in (2.1.9)(7) which can be derived from the commutative diagram
(2.1.9)(6). This shows that [ is a stable map in the secondary Steenrod algebra,
see Section (2.5). In general the Steenrod operations a = Sq‘, P! considered as
maps

(2.1.12) 74— zdtlel

are not well defined up to a canonical track. In Part 2 we deduce the Steenrod
operations from a power map

7:Z%><Z§—>Z§q.
It is a crucial observation in this book that also the power map - is well defined
up to a canonical track.

Appendix to Section 2.1: Small models of Eilenberg-MacLane spaces

The Eilenberg-MacLane spaces Z™ defined in (2.1.4) are very large spaces since
they are defined by singular sets of spheres. They have the advantage of good
symmetry properties like the commutative diagram (2.1.2).
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In this appendix we discuss small models of Eilenberg-MacLane spaces which
are frequently used in the literature, see Eilenberg-MacLane [EML] and Kristensen
[Krl]. The small models are directly related to chain complexes of simplicial sets.

We first recall the following notation.

Let R be a commutative ring and let Mod be the category of R-modules. Let
grMod be the category of graded R-modules. For A and B in grMod a morphism
f: A — B of degree k is given by morphisms f; : A; — B;r. We write

For z € A, we say that | x |= n is the lower degree of x and for x € A™ we say
that |  |= m is the upper degree of x. A chain complex is a map d : A — A of
lower degree —1 with dd = 0 and a cochain complex is a map d : A — A with
upper degree +1 and dd = 0. Using the rule (1) a chain complex is a cochain
complex and vice versa. The tensor product of chain complexes is defined by

(2) (A® B), = @ A; ® B;j

i+j=n

where 4, j € Z and A; ® Bj is the tensor product over R in Mod and d(a ® b) =
(da) @ b+ (—=1)l%la @ (db).

Let A be the simplicial category. Objects in A are the sets n = {0,...,n} and
morphisms are monotone functions n — m. A simplicial object in a category C is
a functor X : A°? — C where A°P is the opposite category. We set X,, = X (n),
n > 0. Let AC be the category of such simplicial objects in C. Morphisms in
AC are natural transformations. We have the well-known Dold-Kan equivalence
of categories

r
(3) ChainJr < N = AMod.

Here Chain; is the full subcategory in Chain consisting of chain complexes A with
A; = 0fori < 0. Compare Goerss-Jardine [GJ]. The functor N is the normalization
and I carries A to a simplicial object in Mod with

I(A), = P A

n—k

where n — k denotes surjections in A.
Let Set be the category of sets. Then the forgetful functor ¢ : Mod — Set
induces

(4) ¢ : AMod — ASet.
Moreover we have the realization functor

(5) | — |: ASet — Top
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where Top is the category of topological spaces. We also use the free module functor
(6) R : ASet — AMod

which carries X to RX where (RX),, is the free R-module generated by X,,. We
have the natural map [—] : X — ¢RX which carries € X to the corresponding
generator [z] € RX. Moreover for A € AMod and f : X — ¢A in ASet we have
the unique map f : RX — A in AMod for which the composite (¢f)[—] coincides
with f.

For a module M in Mod let

(7) M|n] € Chain

be the chain complex given by M concentrated in degree n; i.e., M[n]; = 0 for
i # n and M[n], = M. Given a chain complex (C,d) in Chain we define the
cochain complex C*(M) = Hom(C, M) with

(8) C"(M) = Homypjoq(Cn, M)

and differential 0 = Hom(d, 157). Let

(9) Z™(M) = kernel{d : C™(M) — C™ (M)}

be the module of cocycles in degree n. One has the canonical binatural isomorphism
(10) Z"(M) = Hompain (C, M([n])

which we use as an identification.
For M in Mod we define the FEilenberg-MacLane object in ASet, resp. Top®,
by

(11) K(M,n) = ¢I'(M[n]) € ASet™,

(12) | K(M,n) |=| ¢I'(M[n]) |€ Top™.

This is the small model of an Eilenberg-MacLane space. The construction shows
that (11) and (12) are R-module objects in the category ASet™ and Top™ respec-
tively. Sine 'M[n] is a simplicial group we know that K (M,n) is a Kan complex
in ASet. Moreover K (M,n) is pointed by

x = K({0},n) — K(M,n).

Here {0} is the trivial module in Mod and x is the point object in ASet. Of course
the realization | * |= * is the point object in Top.

(13) Definition. Let X be a simplicial set. Then
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is the (normalized) chain complez of X and
C*(X,M)=Hom(C,X,M) =(NRX)*(M)

is the cochain compler of X with coeflicients in M € Mod. Let ¢ be a cocycle of
degree n in C*(X, M) so that ¢ : C.X — M|n] is a chain map which induces the
composite

cu: X 7L oRX 2 oTNRX P ¢rM[n) = K (M, n)

in ASet. If X is pointed by * — X then cx preserves the base point for n > 1.
Moreover for a map f: X — Y in ASet we have

cgof = (fro)s.

(14) Lemma. For K = K(M,n) there is a fundamental cocycle i € C"(K, M)
for which (i), : K — K(M,n) is the identity.

Proof. We have the equation (I'M|[n]),, = M so that C,,K = RM and i} : C.K —
M{n] is defined in degree n by the homomorphism RM — M in Mod which carries
[m]to m. O

Let Z”(X7 M) be the module of cocycles in degree n of

C*(X, M) = C*(X, M)/C* (x, M).

Then (14) implies that one has a canonical bijection

(15) ASet™ (X, K(M,n)) = Z"(X, M)

which carries f : X — K(M,n) to f*i}. The inverse carries ¢ to cg; see (13).
Moreover the bijection is natural in X and M. By (15) we see that the definition
of K(M,n) above coincides with the definition of Eilenberg-MacLane [EML].

For a simplicial set X and M, N € Mod we have the Alexander- Whitney cup
product of cochains

(16) U: cr(x,M)®C*(X,N) — C*(X,M @ N)

which is natural in X, M and N and which is associative. Now let X = K (M, m) x
K(N,n) and let p; : X — K(M,n), pa : X — K(N,n) be the projections. Then
the fundamental cocycles i¥ € C(K (M, m), M) and iy € C"(K(N,n), N) yield
the cocycle

piidl Upsid € C*(X,M @ N)
which by (15) gives us the map

(17) tmn s K(M,m) x K(N,n) — K(M ® N,m +n),
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pmn = (pyiM U psil), in ASet. The map pi, , is again natural in M and N
respectively and g, , is associative in the obvious way. Naturality implies that
Hm,n carries « X K (N, n) and also K (M, m) X * to the base point of K (M ® N, m+
n). Hence py, ,, defines an induced map

,Um,an(M,m)/\K(N,n) —>K(M®N’m+n)

Here X A\Y = X xY/X x {#} U{x} x Y is the smash product of pointed simplicial
sets. The maps (i, n, however, do not allow a commutative diagram as in (2.1.2)
since the permutation group o, acts only by sign on K(M,n).

We finally compare for R = F = Z/p the small model K (F,n) and the big
model Z™ in (2.1.4). For this we choose a homomorphism

(18) p: A" JOA™ =~ S"

which defines a generator ¢ and a cycle in the chain complex N.S(S™) with S(V) =
RSing(V)/RSing(x) as in (2.1.4)(4). We thus obtain chain maps

(19) Fln] - NS(5™) - F[n).

Here i is the inclusion with i[n] = ¢ and ¢ is a cofibration and a homotopy
equivalence in the category of chain complexes. Hence we can choose a retraction
r of ¢ with i = 1. By applying the functor | ¢I" | we get the F-linear maps i, r
between F-vector space objects in Top™ with 7i = 1.

(20) | oTF[n] | >|oINS(S™)|  >|¢l'Fn] |
| 9S(S™) |
K@FEn) " =z " >K(F,n)

Moreover ¢ is a homotopy equivalence in Top*. Using 4,7 we see that each map
a: K(F,n) — K(F,m) yields the map & = iar : Z" — Z™ with the property
Ba = Ba and 1 = ir. Using (15) we get for a simplicial set X with Y =| X | the
map (n > 1)

(21) Z"(X,F) — Top* (Y, Z2") = [Y, Z"]o

which carries the cocycle ¢ to the map 4 | cx |. This shows the connection between
the algebraic cocycles Z™(X,F) and the topological cocycles Top*(Y, Z™).

2.2 Groupoids of maps

We here recall some basic notation and facts on groupoids. A groupoid G is a
category in which all morphisms are invertible. The morphisms of G are termed
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tracks. The set of objects of G will be denoted by G, and the set of morphisms
of G will be denoted by G;. We have the canonical source and target maps

(2.2.1) G,  zG,.

Let Grd be the category of groupoids. Morphisms are functors between groupoids.
Tracks in a groupoid G are denoted by H : f — gor H: f~gor H: f = g.
Let G(f,g) be the set of tracks H : f = ¢ in G. Composition of tracks H : f = ¢
and G : g = h is denoted by
GUH : f=h.

The identity track or trivial track of f is 09 : f = f. The inverse of a track
H:f=gis H?:g= f so that HO(H®P) = (H°°?)OH = 0".
The set of connected components of G is

(222) WQ(G) = GO/ ~.
Here f, g € G satisfy f ~ g if there is a track f = ¢ in G. Let
(2.2.3) m1(G, f) = Aut(f)

be the group of automorphisms of the object f in G with 0 the neutral element
in Aut(f).

The groupoid G is connected if 7o(G) is a point *. Moreover G is contractible
if mo(G) = * and m1 (G, f) = 0 is the trivial group for f € Gg. For two objects
f,g in a contractible groupoid G there is a unique morphism f = ¢ in G. If all
automorphism groups in G are trivial then all connected components in G are
contractible.

The groupoid G is discrete if all tracks in G are trivial tracks. In this case
WQ(G) =G.

A groupoid G is abelian if all automorphism groups 71 (G, f) with f € Gg
are abelian groups.

2.2.4 Example. Given a topological space X one obtains the fundamental groupoid
II(X). Its objects are the points of X and morphisms zo — 1 with zg,z1 € X
are homotopy classes rel. O of paths w : I — X with w(0) = 29 and w(1) = ;.
Here I = [0,1] is the unit interval with boundary 0I = {0,1}. Composition in
II(X) is given by addition of paths. It is well known that II(X) is an abelian
groupoid if X is a topological group or more generally if each path component
of X has the homotopy type of an H-space. Moreover II(X) is connected if X is
path connected and TI(X) is contractible if X is 1-connected. Now let (X, )(4:*)
be the mapping space (with the compactly generated compact open topology, see
[G]) of all pointed maps A — X. Then the fundamental groupoid of this space is
denoted by

(1) I((X, %)) = [4, X].
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Objects in [A, X]o are the pointed maps f,g : A — X and tracks H : f = ¢ in
the groupoid [A, X] are homotopy classes of homotopies f ~ g. We call [A, X]
the mapping groupoid. The trivial map in [A, X]ois 0: A — * — X. Let [A, X]
be the set of homotopy classes of pointed maps A — X. This is the set

(2) [A, X] = mo[A, X]

of connected components in the mapping groupoid. Now let QX = (X.*)(Sl’*)
be the loop space of X with S = [0,1]/{0,1}. Then one readily checks that a
track 0 = 0 in [A, X] can be identified with the homotopy class of a pointed map
A — QX in [A, QX]. Hence we have the equation of sets

(3) [4, X](0,0) = [4, QX].

2.2.5 Definition. Let C be a category with products A x B. An abelian group object
Ain Cis given by maps +4 : AXA — A, —14: A — A, 04 : *x — A satisfying the
usual identities. Here * is the final object in C which is considered to be the empty
product. A map f: A — B between abelian group objects is linear, if f04 = 0p,
f(=1a) = (=1p)f and f+a =+5(f x f).

An abelian group object A is an F-vector space object in C with F = Z/p if
the composite
AL ety

is the trivial map A — % — A. Here A*P = A x --- x A is the p-fold product and
A is the diagonal map and + is defined by +4.

The category of pairs in C denoted by pair(C) is defined as follows. Objects
are morphisms f : A — B in C and morphisms (o, 3) : f — g in pair(C) are
commutative diagrams in C.

A > A’
f g
Y v
B g > B’

Let Ab be the category of abelian groups and let Vecy be the category of F-vector
spaces.

2.2.6 Proposition. The category of abelian group objects in Grd and linear maps
is equivalent to the category pair(Ab). The category of F-vector space objects in
Grd and linear maps is equivalent to the category pair(Vecy).

Proof. Given an abelian group object G in Grd we obtain the object
9:GY — Gy
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in pair(Ab) as follows. Here G is the set of objects of G which is an abelian group
since G is an abelian group object in Grd. Let 0 € Gy be the neutral object in the
abelian group Go. Then GY is the set of all morphisms H : a = 0 in G with a € Gy
and we define 0 by OH = a. The abelian group structure of GY is defined by

(H:a=0)+(G:b=0)=(H+G,a+b—0+0=0)

where the right-hand side is defined since G is an abelian group object in Grd.
Conversely given an object 0 : A1 — Ag in pair(Ab) we define the abelian group
object G(9) in Grd as follows. The set of objects of G(9) is

G(9)o = Ao.
The set of morphisms of G(9) is the product set
G(0)1 = A1 x Ap
where (H,z) € A1 x Ap is a morphism
(1) (Hyx)=H+xz:0(H)+z=x.
The identity of « is 0F = (0,2) = 0 + 2 = 2 = 3(0) 4+ 2 = 2. Composition of

2) o B2 9(H) 4 o CTRDT

OG)+0(H)+x
is defined by
(3) (H+2)D(G+0H)+2)=(H+G)+=x

for H/G € A; and =z € Ag. Now it is readily seen that this way one gets an
isomorphism of categories. The inverse (H + x)°P of the morphism H + z is given
by

(4) (H+2)?=(-H)+(0H)+z)=-H+0(H)+=x
By (3) one readily checks that (H + x)°P0(H + x) = 0F.

(
(H+x)*0(H +2) = (—H+0(H) + )D(H+a:)
(—H+H)+0(H) +
=0+0(H)+=

O O(H)+z" O

We point out that an abelian group object in Grd is an abelian groupoid but
not vice versa; that is, an abelian groupoid need not be an abelian group object
in Grd.

For a product of pointed spaces we get the equation of mapping groupoids

(2.2.7) [X,Ax B] = [X,A] x [X,B].
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This implies the following lemma.

2.2.8 Lemma. If Z is an abelian group object in the category Top™ then [X, Z] is
an abelian group object in the category of groupoids.

Hence you can, for the abelian group object Z in Top™, apply Proposition
(2.2.6) so that [X, Z] is determined by the homomorphism of abelian groups

0:[X,2]9 — [X, Z]o.

Here [X, Z] is the abelian group of all pointed maps X — Z in Top* and [X, Z]?
is the abelian group of all (f, H) where H : f = 0 is a track in [X, Z] from f to
the trivial map X — % — Z. Moreover we obtain the exact sequence of abelian
groups

(2.2.9) 0 — [X,07] — [X, 7] — [X, Z]o — [X, Z] — 0.

Since the Eilenberg-MacLane space Z™ in (2.1) is an F-vector space object in
Top™ we see accordingly by (2.1.6) that we get an exact sequence of F-vector
spaces (n > 1)

(2.2.10) 0— A" YX) — [X,2"])? -% [X, 2" — H™(X) — 0.

Here H*(X) is the kernel of H*(X) — H*(%) induced by the inclusion * — X. In
fact, O determines the groupoid [X, Z"] by (2.2.6).

2.2.11 Remark. Using (21) in the appendix of (2.1) one obtains for a pointed
simplicial set X the commutative diagram with exact rows and ¥ =| X |.

H" 1(X) > (" 1(X,F)/B" (X,F) 4. Z"(X,F) > H"(X)

\

o - [[K Zn]]o . Hn(y) > ()

\
H YY) > [y, z"]¢

where B"~1(X,F) = image d : C" 2(X,F) — C""}(X,F). Hence 0 in (2.2.10)
describes part of the boundary d in the cochain complex C*(X,F). In fact ¢ and
7 are injective.

2.3 Track categories and track theories
A category enriched in groupoids T, also termed track category for short, is the

same as a 2-category all of whose 2-cells are invertible. It is thus a class of objects
ob(T), a collection of groupoids T (A, B) for A, B € ObT called hom-groupoids
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of 7, identities 14 € T (A, A)p and composition functors 7(B,C) x T(A,B) —
T (A, C) satisfying the usual equations of associativity and identity morphisms.
For generalities on enriched categories the reader may consult Kelly [Ke]. Objects
of the hom-groupoids f € T (A, B)o, called maps in 7, constitute morphisms of
an ordinary category 7y having the same objects as 7.

For f,g € T(A, B) we shall write f ~ g (and say f is homotopic to g) if there
exists a morphism H : f — g in 7 (A, B). Occasionally this will be also denoted
as H: f~gor H: f= g, Hsometimes called a homotopy or a track from f to
g. Homotopy is a natural equivalence relation on morphisms of 7y and determines
the homotopy category T~ = Ty/ ~. Objects of T~ are once again objects in ob(7),
while morphisms of 7. are homotopy classes of morphisms in 7y. Let ¢ : 79 — 7~
be the quotient functor. Moreover let 77 be the disjoint union of all tracks in 7.
One has the source and target functions between sets

(2.3.1) T, = Mor(Tp)

t

with ¢s = gt. Here Mor(7j) denotes the set of morphisms in the category 75. We
borrow from topology the following notation in a track category 7. Let

[A,B]=T7y(A,B)/ ~
be the set of homotopy classes of maps A — B and let
[A,B] =7 (A, B)

be the hom-groupoid of 7 so that [A, B] is the set of connected components of the
groupoid [A, B].

For tracks H : f = gin [A,B] and H' : f = ¢ in [ B, C] we get the composed
track H =« H : f'f = ¢'g for the diagram

I f
p p
C vH' B VH A
v -
g’ 9

satisfying the formula
H'«H = (¢'H")O(H'f) = (H'g)O(f'H).

We call H' x H the “pasting of tracks” or the “horizontal composition” of tracks.

A map f: A — B isa homotopy equivalence if there exists amap g: B — A
and tracks fg ~ 1 and gf ~ 1. This is the case if and only if the homotopy class of
f is an equivalence in the homotopy category 7~. In this case A and B are called
homotopy equivalent objects.
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The morphisms in 7y are also termed 1-cells and the tracks in 77 are 2-
cells. In particular, the category Gpd of groupoids is a track category. Objects are
groupoids, morphisms are functors and tracks are natural transformations (since
they are natural isomorphisms). Moreover any category C can be considered to be
a track category with only identity tracks.

The leading example is the track category [Top™] of compactly generated
Hausdorff spaces with basepoint %, given as follows. For pointed spaces A, B let
[A, B] be the mapping groupoid. See (2.2.4). Hence maps are pointed maps f, g :
A — B between pointed spaces and tracks H : f = g are homotopy classes relative
to A x I of homotopies H : A x I/« xI — B with H : f ~ g. In this case

(2.3.2) [Top*]~ = Top™/ ~

is the usual homotopy category of pointed spaces. Let C C Top*/ ~ be a full
subcategory. Then [C] is the track category consisting of all spaces A with A €
0b(C), that is [C] C [Top™] is a full subcategory of the track category [Top*]. In
particular we get the following case.

2.3.3 Definition. For a prime p the theory K, of Eilenberg-MacLane spaces in
(1.5.1) yields the track category

[K,] C [Top™].

Here [K,] consists of products A = Z"™* x --- x Z"" of Eilenberg-MacLane spaces
Z"™ = K(Z/p,n) with ny,...,n, > 1 and r > 0. Morphisms are pointed maps
between such products and tracks are homotopy classes of homotopies between
such maps. We call [K,] the track theory of Eilenberg-MacLane spaces.

Here we use the following notion of track theory.

2.3.4 Definition. A strong product in a track category 7 is an object A x B
equipped with maps pg = p1 : AXxB — A, pg =p2 : AXx B — Bin 7,
such that the induced functor

(%) [X,A x B] — [X,A] x [X, B]

given by f — (paf.ppf), (H: f=g) — (paH :paf = psg.psH : ppf = pBg)
is an isomorphism of groupoids for all X in 7. We call (A x B,pa,pp) a weak
product if (x) is an equivalence of categories. Similarly a final object * in 7 is strong
if [X, %] is a groupoid with a unique morphism. Whereas a weak final object is an
object * for which [X, ] is equivalent to such a groupoid. A track theory is a track
category 7 with a strong final object and with finite strong products. This is the
analogue of a theory T in (1.5).

For example a product of spaces (A x B,pi,p2) in Top”™ is also a strong
product in the track category [Top*] by equation (2.2.7). Moreover # is a strong
final object in [Top*].
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Hence we see

2.3.5 Lemma. The track category [K,] of Eilenberg-MacLane spaces is a track
theory. Products in K, are also strong products in [K,].

A track functor, or else 2-functor, between track categories is a groupoid
enriched functor. For example, any object A of a track category 7 gives rise to
the representable track functor

(2.3.6) [4,-]: T — Gpd

sending an object X to the groupoid [A, X]. This 2-functor assigns to a map
f X — Y the functor [A, f] : [4,X] — [A4,Y] sending g : A — X to fg and
v:g — ¢ tovf. And this 2-functor assigns to a track ¢ : f = f’ the natural
transformation [A, ¢] : [4, f] — [A4, f'] with components g : fg — f¢'.

2.3.7 Definition. A track model M of a track theory T is a functor M : T — Grd
which carries strong products in 7 to products of groupoids.

As a special case of such a track model we obtain for each path-connected
pointed space X in [Top*] the representable track functor

(2.3.8) [X,-]: [K,] — Gpd

which we call the secondary cohomology of X. This generalizes the cohomology of
the space X since we have seen that

(2.3.9) H*(X)=[X,—]:K, — Set

is a representable functor in Top*/ ~. Here [X, —] is a model of K,, which carries
products in K,, to products of sets, see (1.5.3). Similarly the secondary cohomology
[X, -] is a track model of the track theory [K,] which carries strong products in
[K,] to products in Gpd.

We have seen in (1.5.2) that models of the theory K, can be identified with
connected unstable algebras over the Steenrod algebra A. We are interested in
understanding a corresponding result for track models of the track theory [K,]. For
this reason we introduce in Section (2.5) below the secondary Steenrod algebra [A].

The particular choice of Eilenberg-MacLane spaces Z™ in (2.1) yields many
further properties of the track theory [K,]. For example, for objects A, B in K, the
morphism groupoid [A, B] is an F-vector space object in the category of groupoids
since B is an F-vector space object in Top*, see (2.2.7).

The track theory [K,] is very large since all maps between products of
Eilenberg-MacLane spaces in Top® are morphisms in [K,]o. For this reason mainly
the weak equivalence type of [K,] is of interest. Here weak equivalences are defined
as follows.

2.3.10 Definition. A track functor F : 7 — 7T’ is called a weak equivalence be-
tween track categories if the functors [A, B] — [F(A), F(B)] are equivalences of
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groupoids for all objects A, B of 7 and each object A’ of 7’ is homotopy equiva-
lent to some object of the form F(A). Such a weak equivalence induces a functor
F : 7. — T. between homotopy categories which is an equivalence of categories.

Below we study weak equivalences between linear track extensions which are
special weak equivalences as above.

2.4 Secondary cohomology operations

Let QY be the loop space of the pointed space Y. An element QY is a pointed map
from the 1-sphere S! to Y. The basepoint of QY is the trivial map S' — x € Y.
Let

(2.4.1) QY C QY

be the path-connected component of the basepoint in Y. The following lemma
describes a well-known property of the track category [Top*].

2.4.2 Lemma. Let X,Y be the path-connected pointed spaces and let 0 : X — % —
Y be the trivial map. Then a track A : 0 = 0 in [Top™] can be identified with an
element A € [ X, QY.

Recall that Z™ = K(Z/p,n) is an Eilenberg-MacLane space for n > 1. Now
we define
Z" =% forn <1.

Then we obtain for all n € Z the homotopy equivalence
(2.4.3) VZ" ~ 7zt

which is well defined up to homotopy. The functor € is compatible with products
of pointed spaces; that is; Qo(X xY') = Q¢(X) x Qp(Y). Hence we can use (2.4.3)
to define the following loop functor

(2.4.4) L:K, —K,

for the theory K, of Eilenberg-MacLane spaces. The functor L carries A = Z"* x
- x Z™ € K, to the object

LA) =2zt x...Z2m "1 c K,

Moreover L carries f € [A, B] with A, B € K,, to the composite

L(f) : L(A) = Q0(4) Y% 0y(B) ~ L(B).

Here the homotopy equivalence is given by (2.4.3).
We are now ready to describe classical secondary cohomology operations in
the sense of Adams [A] or Kristensen [Krl].
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2.4.5 Definition. Let A, B, C be objects in K,. Then a relation (o, 3) is a commu-

tative diagram in K,
0

(1) A, =B , =C

where 0 is the trivial map, i.e., Ba = 0. A secondary cohomology operation (a,b, H)
associated to the relation fa = 0 in K, is a diagram in [K,],

0
fha .
(2) A . =B , >C

where a (resp. b) represents a (resp. (). Here the track H exists since Sa = 0
in K,. The secondary cohomology operation (a,b, H) associated to the relation
(o, B) defines a function 60, 4, ) as follows. We consider a path-connected pointed
space X and the following diagram in [Top™].

0
1z
(3) X =4 >B Zc
a ~ b
| a
0

Here x represents ¢ € [X, A] with a{ = 0. Hence tracks G exist and we get the
composed track 0 = 0 of the form

(4) (Hz)O(bG)°P € [X,QC] = [X, L(C))].

Here we use (2.4.2) and the loop functor L on K, in (2.4.4). Now let 0, r) be
the function which carries £ € [X, A] with o€ = 0 to the subset

(5) 0(a7b,H) (f) C [XvL(O)]

consisting of all elements (Hz)O(bG)°P with G : ax = 0 in [Top*] and z rep-
resenting &. Of course [X, A] and [X, L(C)] are determined by the representable
model [X, —] of K, which in turn can be identified with the cohomology H*(X)
by (1.5.3). Therefore 6, i) is a secondary cohomology operation in the classi-
cal sense. We shall see in Chapter 3 that 04 m)(§) is a coset of the subgroup
image((LfB)« : [X, L(B)] — [X, L(C)]). Hence 04 ) is a well-defined function.

(6) kernel(a, : [X, A] — [X, B))

0(a,b,H)
\
cokernel((L3). : [X, L(B)] — [X, L(C)])
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This is the typical form of a secondary cohomology operation in the literature.
Two secondary cohomology operations (a,b, H) and (a’,b’, H') associated to the
relation (a, §) are equivalent if there exist tracks A, B in [K,] such that the pasting
of tracks in the following diagram yields the trivial track 0 = 0.

0
ftu N
A, =B , =C
(7) vA UB
A “ .p v ;C
g
0

Of course the operation (6) depends only on the equivalence class (a, b, H) which
in turn is well defined by the weak equivalence class of [K,]. Here we use weak
equivalences of linear track extensions as in Chapter 3 below which are special
weak equivalences in the sense of (2.2.11).

In Section (2.6) we consider the stable version of secondary cohomology op-
erations.

We describe two examples of secondary cohomology operations due to Adams
[A] which are actually stable operations.

2.4.6 Example. For p = 2 consider the relation (a, 8) in Ko given by (n > 1)
Zn i) Zn+1 X Zn+3 x Zn+4 i) Zn+5

with o = (Sq', S¢?, Sq*) and 8 = (Sq*, Sq?, Sq'). Then there is a unique (stable)
secondary operation (a,b, H) associated to (a, 5) such that for n = 2 and u €
H?(CPs) = [CPx, Z?% we have

Oap, i) (u) = u® € H(CPx) = [CPx, LZ"].

Here CP,, is the complex projective space and u € H?(CPs,) = Z/2 is the gener-
ator. Compare the Addendum of Adams [A].

The main result of Adams [A] which implies the solution of the Hopf invariant
problem is the following example. Compare also the explicit calculation in (16.6.5)
below.

2.4.7 Example. Let p = 2. Then there are stable relations (d(j),z;;), 0 <4 < j,
j#i+1, in Ky of the form (n > 1)

zm () x{,OZ’”“t Zij Zm+2i+2j
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with d(j) = (Sq*, Sq%,...,5¢%) and z;,j chosen as in [A] page 88. Moreover let
0; ; be the (stable) secondary operation associated to (d(j), z; ;) with

RE kernelgd(j)*) > cokernel(L(Z; ;)«)
A
v . .
H™ (X) H7n+2"+23—1(X)

Take k > 3. Then u € kernel(d(k).) C H™(X) satisfies

k+1 k+1
Sq2 (u) S Z aiyj,kﬂi,j (u) C Hm+2 (X)
0<i<j<k,j#i+1

with appropriate a; ;i € Az. See Theorem 4.6.1 [A]. We have seen in (1.1.3)
that the Steenrod operations Squ, i > 0, are indecomposable generators of the
Steenrod Algebra As. The formula of Adams, however, shows that S’qQkJrl fork >3
is decomposable with respect to secondary cohomology operations. This describes
a deep and fundamental relation in the track theory [Ks] of Eilenberg-MacLane
spaces.

We point out that secondary cohomology operations (a,b, H) are special
diagrams in the track theory [K,] of Eilenberg-MacLane spaces. Moreover the
associated operations (44, 7y can be deduced from the track model [X, —] of [K,]
in (2.2.10). In fact, any algebraic track model M of [K,] allows the definition of
0(a,b, i) accordingly.

2.5 The secondary Steenrod algebra

All objects Z™ x --- x Z™ in the theory K, are by the construction in Section
(2.1) F-vector space objects in the category Top*. A morphism ¢ € [4, B] in K,
is linear in the homotopy category Top*/ ~ if the diagram

Ixf

(2.5.1) Ax A ~BxB
+ +

Y \%

A ! - B

homotopy commutes in Top*. Here f represents the homotopy class ¢. If ¢ is
linear in Top™/ =~ then in general there exists no representing map f € ¢ for
which diagram (2.5.1) commutes, so that f € ¢ in general cannot be chosen to be
linear in Top™.
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We use the loop functor L : K, — K, in (2.4.4) in the following definition of
stable operation.

2.5.2 Definition. A stable operation in K, of degree k € Z is a sequence of maps
a=(ay: 2" — 2",z

in K, with L(apt1) = a, for n € Z. Hence all o, are linear and therefore the
set A* of all stable operations in K, of degree k is an abelian group, in fact
an F-vector space. Moreover the composition 3 o « of stable operations given by
(Boa)y, = Pntk©an, n € Z, is bilinear so that composition yields the associative
multiplication
A" @ AP — ARt

carrying 3 ® a to 3o a. Hence A = {A* k € Z} is a graded algebra with A =TF
and A*F =0 for k < 0.

The next result is a well-known consequence of (1.1.2).

2.5.3 Theorem. The algebra A of stable operations in K, coincides with the Steen-
rod algebra.

Using power maps y we shall define stable operations in K, (n € Z),
Sqk . zn — ZntE for p =2,
B: Z" — Znt for p odd
Pk zn s znt2R0-D g0 poodd
which as well yield the isomorphism in (2.5.3), see Part II of this book.

We use the track theory [K,] to define the following secondary analogue of
the Steenrod algebra in (2.5.3).

2.5.4 Definition. We fix for n € Z maps in Top™
o 27— QoZn !

which are homotopy equivalences defined in (2.1.7). Then let [.A*] be the following
groupoid, k > 1. Objects (a, H,) in [.A*] are sequences of maps in Top*

a=(a,: 2" — Z"") ez
together with sequences of tracks Hy = (Hqa n)nez for the diagram
Qn

VAL > gntk

Tn S Tn+k

\

Qoant1
= QQZ”+k+1

\
QOZTL+1
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that is Ho p : (QoQn41)rn = Tntk0yn. This implies that the homotopy class of ay,
yields a stable operation in (2.4.2).

For k = 0 let [A°] = F be the discrete groupoid given by A" = F. The
elements o € F yield maps o, = a : Z" — Z" given by the F-vector space
structure of Z™. Hence «, satisfies rpa,, = Qo(ap41)rn so that Hy 4, in this case
is the trivial track.

For k < 0 let [LA¥] = 0 be the trivial groupoid.

For k > 0 we define morphisms H : (o, Hy) = (3, Hg) in the groupoid [A¥]
by sequences of tracks

H= (Hn DO = ﬂn)nGZ

in [K,] for which the pasting of tracks in the following diagram coincides with
Hg p.

)

AL fn > Zn+k
THn
AL o > gn+k
Tn Igz Tntk
QOZVnH foant QOZT\{+k+1
Q0 Hn 41
Qozm ! QoBni1 - QOZH—HH_l

That is, the following equation holds in [Top*],
Hﬂ,n = (QOHn—Q—l)TnDHa,nDTn—Q—ngp-

Composition in [A*] is defined by (HOG),, = H,OG,. One readily checks that
[A¥] is a well-defined groupoid with homotopy category [A¥]~ = A*. Moreover
one has a composition functor between groupoids

[AT] x [A*] = [A**7]
which is defined on objects by

(O/, Ha’) o (aa Ha) = (04;1+k O Olp, Ho/,nJrk * Ham)nEZ
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where * is the pasting operation. Moreover on morphisms H : (o, Hy) = (5, Hg)
and H' : (o/,Hy') = (0, Ha') the composition functor is defined by
HoH' = (H] xH,:al, oa, = 3,0 0B)nez-
This shows that
[A] = ([A*], 0)rez
is a monoid in the category of graded groupoids. We call [A] the secondary Steenrod

algebra. In fact, we shall prove that the homotopy category [A]~ = A is the
Steenrod algebra.

2.5.5 Lemma. Each groupoid [A*]is an F-vector space object in the category of
groupoids. The composition in [A], however, is not bilinear since maps in [A*]o
in general are not linear in Top®, see (2.5.1).

Proof. We see that [A*] is an F-vector space object since 7, in (2.1.7) is a linear
map between F-vector space objects in Top*. O

2.6 The stable track theory of
Eilenberg-MacLane spaces

Again we use the loop functor L : K, — K, in (2.4.4) in the following definition
of stable maps.

2.6.1 Definition. The stable theory K;table of Eilenberg-MacLane spaces is defined
as follows. Objects are the same as in K, i.e., products

A=27" x---x 2"
with ni,...,n, > 1, r > 0. The object A yields the sequence of spaces
L_N(A) _ ZN+77,1 N ZN+nT

with N > 0. Morphisms « : A — B with B = Z™! x --. x Z™* are sequences of
morphisms in K,

an : LTN(A) = ZNTm o N gNma oy g N
with Lay = an—1, N > 1. We call @ = (an)n>0 : A — B a stable map (up to

homotopy) between products of Eilenberg-MacLane spaces. There is an obvious
composition of such stable maps so that the category Kf’fable is well defined.

The stable theory K;table can also be described in terms of the Steenrod
algebra A. Let mod((.A) be the category of finitely generated free left A-modules
generated in degree > 1. Hence an object in mody(.A) is of the form

M=Az,®-- @ Az,

where x1, ..., x, are generators of degree | x; |[=n; > 1fori=1,...,r withr > 0.
Recall that C°P denotes the opposite category of C. The next result is well known.
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2.6.2 Theorem. There is an isomorphism of categories
K;table = mod(A)°P.
This is a consequence of the isomorphism
H* K, =H)?

in the proof of (1.5.2). For this we need the algebraic properties of the loop functor
L : K, — K, in Section (3.3) below.

We now obtain a track theory associated to essentially in the same
way as we obtained the secondary Steenrod algebra [A] in (2.5.4).

Kstable

2.6.3 Definition. The track theory [[Kffable]] is defined as follows. Objects are the

same as in K. Morphisms («, Hy) : A — B are sequences of maps (N > 0)
a=(ay:LNA—- L7VB)

in Top*, see (2.6.1), together with tracks as in the following diagram.

anN

LNA >L-NB
TA 25 rp
\ Y
Qo(L-N-14) - Qy(L-N1B)
Qoani1

Here r4 is a product of maps r,, defined in (2.1.7). We call (o, Hy) : A — B a stable
map. We say that a = (a, Hy) is strict if the diagram commutes in Top*, that is
rpany = (Qoant1)ra, and H, is the trivial track. For example for a product Ax B
in K, the projections p4, pp are such strict maps as follows from the definition of

L and r 4 above. Moreover the addition map A x A . A is strict.

We define stable tracks H : (a, H,) — (8, Hg) between stable maps in the
track category [[K;table]] by sequences of tracks

H=(Hy:any=0nN)n>0

in [K,] for which the pasting of tracks in [Top™] in the following diagram coincides
with Hg.
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BN

LNA >L-NB
THN
LNA o ~L-NB
TA Hé TB
v Qoani1 M
Qo(L-N14) - Qy(L-N-1B)
UQoHN+1
—N-1 —N-1
QL) =0y

There is an obvious composition of morphisms and tracks respectively so that
[[K;table]] is a well-defined track theory with strong products (A x B,pa,pp). All
objects are [F-vector space objects as in K, since 74 above is linear.

For objects A, B in K,, let [A, B]**2P! be the groupoid of stable maps A — B
in the track theory [[K;table]]. Then it is easy to see that for n > 1, k > 1 the
forgetful functor

(264) [[2717 Zn+k]]stable L IIAk]]

is a weak equivalence of groupoids. We study further properties of the track theory
[[K;table]] in Section (3.5) and Chapter 4 below.
We have the forgetful functor

(2.6.5) ¢ ¢ [K3™T — [Kp]
which is the identity on objects and carries H : o« = 3 to Hp : ag = [p. Accord-

ingly a track model of [K,] is also a track model of [K5™"'°]. In particular, the
secondary cohomology of a pointed space [X, —] yields the track model

(2.6.6) [K:*<] - [K,] — Grd

of [[K;table]] )
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2.7 Stable secondary cohomology operations

We are now ready to introduce stable secondary cohomology operations.

2.7.1 Definition. Let A, B,C be objects in K,. Then a stable relation (o, () is a
commutative diagram

(1) A, =B , =C

in Kf’fable, ie., Ba = 0. A stable secondary cohomology operation (a,b, H) associ-
ated to the relation So = 0 is a diagram in [[K;table]]

0

s
N
(2) A u > B b >
where a (resp. b) represents « (resp. 3). Equivalence of stable secondary cohomol-
ogy operations (a,b, H) and (a’,b’, H') associated to («, 3) is defined by a diagram
in [K3*"'°] as in (2.4.5)(7).

The example of Adams in (2.4.6) and (2.4.7) corresponds to such stable
secondary cohomology operations.

One can check that stable operations in (2.6.4) correspond to “stable sec-
ondary operations” as defined by Adams 3.6 [A] in terms of the cohomology func-
tor.

Next we describe secondary cohomology operations studied by Kristensen
[Kr1].

Let p = 2 and let F' be the free associative algebra with unit generated by
symbols s¢* of degree i (i = 1,2,...), that is,

F = Tr(sq",5¢°,...)

is the F-tensor algebra generated by sq',s¢?,.... Let R denote the kernel of the
algebra map F — A which carries sq’ to Sq’. A relation is an element

k
(2.7.2) r=>b+>Y auu €R

p=1

with a,, a,, b € F. We choose for the stable operation Sq’ in A an element (sq’, H)
in [A]o so that sg’, : Z" — Z"*? is defined for all n. Hence any monomial a in F*
yields the corresponding composite o : Z™ — Z"+*. Moreover an element 3 € F*
is a sum of such monomials and therefore yields a sum 3 : Z" — Z"** of the
corresponding maps. Here we use the fact that Z™ is an F-vector space object.
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Hence the relation (2.7.2) yields a diagram in [Ko] with A = Zn+loil x ... x
Zntlexl and N =| r |,
(273) AL @ >A « . Z7L+N
7
| H
b

where the track H exists since r € R. The diagram (2.7.3) is a secondary coho-
mology operation associated to r in the sense of Kristensen [Krl]. In fact consider
the diagram in [Top*]

0
x ﬂ G a R «
X > 7n > A > ZTL+N
74
(2.7.4) | =

b

b

0

where a canonical track H, is given. (We shall see in (5.5.1) below that such a
canonical track Hj, is defined if excess (b) > n. In fact, in this case b : Z™ — x —
Z" N can be chosen to be the trivial map and then H, is even the identity track.)
Then pasting of tracks in (2.7.4) yields as in (2.4.5) the operation 0, o, ) with
H' = H,OH of the form

kernel([X, Z"] 2 [X, A]) ¢ H™(X)

e(a,a,H’)

\
cokernel([X, A] 25 [X, Z"N]) = H™ V(X)) fim(ow)

This operation coincides with the operation Qu” of Kristensen [Krl] page 74 for
appropriate 8 with A6 = r and vice versa. Many results of Kristensen on the
operations Qu" can be derived from the track calculus in the next chapter, see also
Chapter 5 where we describe a new approach concerning the Kristensen operations.



Chapter 3

Calculus of Tracks

In this chapter we describe certain basic facts concerning the calculus of tracks in
topology. In particular we introduce linear track extensions and we show that the
track theories [A], [[K;table]], [K,] of Chapter 2 are such linear track extensions.
They represent a characteristic cohnomology class k4, kf,t and k,, respectively which
determines the track theory up to weak track equivalence.

3.1 Maps and tracks under and over a space

Recall that we work in the category Top of compactly generated Hausdorff spaces.
In particular the product X x Y in Top is compactly generated so that X x Y is
a CW-complex if X and Y are CW-complexes; see Gray [G]. As usual let IX =
[0,1] x X be the cylinder object in Top. We have the canonical maps

Xrx 4Lx

for ¢t € [0,1] with 4;(x) = (¢,2) and ¢(¢,2) = 2. Amap H : IX — Y is a homotopy
H: f~gwith f = Hip and g = Hi;. We also denote a homotopy by Hy : f ~ g
where H; = Hi;. Here H; : X — Y is a map in Top for ¢ € [0, 1] with Hy = f and
Hl =4d.

We shall use the following category Topg of spaces under A and over B.
Objects are diagrams A — X — B and morphisms are commutative diagrams

(3.1.1) A

s
N,

B
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in Top. We define a cylinder object A — I4X — B of A— X — B by a push out
diagram.

IA >IX >X
q push

' \ \
A > X > B

Let 014X = igX Ui1 X C 14X be the boundary of I4X. Using this cylinder in
Topg we obtain the notion of homotopy under A and over B and of homotopy
equivalence under A and over B.

We also use for maps f,g : X — Y under A and over B the tracks f ~ g
under A and over B which are equivalence classes of maps H',H : [, X — Y
under A and over B with H'ig = Hig = f and H'i1 = Hi;y = g and H' ~ H are
equivalent if and only if there is a homotopy H' ~ H under the boundary 914X
and over B. Tracks are also denoted by H : f = g¢.

As a special case we may choose A = () (empty set) so that we get the
category Top(DB = Topy of spaces over B. Or we can choose B = * (point) so that
Topf = Top* is the category of spaces under A.

The maps f under A and over B in (3.1.1) are the objects in the groupoid

(3.1.2) [X,Y]45.

The morphisms in this groupoid denoted by H : f = g are the tracks under A
and over B. The set of components

(1) [X.Y]5 = ml[X,Y]5

is the set of homotopy classes of maps under A and over B. If A = B = x is a
point, then we write

(2) [[Xv Y]] = [[Xv Y]]: and [XvY] = [Xv Y]I

for the groupoid of pointed maps f: X — Y.
If H:f= gand G: g = h are tracks in [X,Y]#, then addition of homo-
topies yields the composed track

(3) GOH : f = h.

This is the composition in the category [X, Y]4. The identity track of f is denoted
by 09 : f = f so that 0Y € Aut(f) is the neutral element. The inverse of a track
H:f=gis H?:g= f so that HO(H®P) = (H°?)OH = 0".
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The groupoids [X, Y]]g are the morphism groupoids in the track category
[Topp] and the sets [X,Y]4 are the morphism sets in the homotopy category
Top/ ~ so that

(4) [Topj]~ = Topj/ .

An operation for maps (like the product fxg: XXV — Y xW ofmaps f : X - Y
and g : V — W in Top®) induces the corresponding operation for tracks. For
example if H: f = f' and G : g = ¢ are tracks, then H x G: f x g= f' x ¢ is
the track defined by the homotopy H; x Gy, t € 1.

We have the tracks f X G: fxg= fxg and Hxg: fXxg= f X gand
using these tracks we obviously get the commutative diagram of tracks

G
(3.1.3) fxg I >fxg

HxG

Hxg Hxg'
V ! V
G
Fxg T =y

satisfying

HxG=(f'xGUOH x g)=(H x ¢")O(f x G).

A further operation for maps f : X — Y in Top™ is given by the loop space functor
) : Top* — Top™. For a track H : f = g in [X,Y] we thus obtain the track

(3.1.4) OH : Qf = Qg in [QX, QY]

where QH is defined by the homotopy QH;, ¢t € I. In fact
0:[X,Y] — [QX, QY]

is a functor between groupoids.

The following lemma is well known.

3.1.5 Lemma. Let E — B and E' — B be fibrations in Top and let f : E — E’ be
a map over B which is a homotopy equivalence in Top. Then f is also a homotopy
equivalence in Topg, i.e., there exists a map g : E' — E over B and homotopies
fg~1and gf ~1 over B.

Proof. The category Top is a fibration category in the sense of [BAH] and hence
the result follows from the dual of I1.2.12 [BAH]. O

The category Topy has products defined by the pull back E xp E’. Using
such products we define a group object (E — B, u, v, e) in Topg by structure maps



58 Chapter 3. Calculus of Tracks

over B

i : ExpFE— E (multiplication)
(3.1.6) v : E—FE (inverse)

o=o0p : B—E (neutral)

satisfying the usual identities. If B = % is a point, such a group object is the same
as a topological group. A group object E in Topy is via the section o also an
object under B. Homomorphisms between group objects in Topy are maps over
B compatible with the structure maps. In particular such a homomorphism f is
also a map under and over B, since fo = o.

3.1.7 Lemma. Let E — B and E' — B be group objects in Topg and fibrations
in Top. Let f : E — E’ be a homomorphism between group objects in Topg which
is a homotopy equivalence in Top. Then f is a homotopy equivalence under and
over B.

Proof. By Lemma (3.1.5) we know that f is a homotopy equivalence over B. Hence
we have a map ¢g : B/ — F and homotopies H; : E — E, Gy : E' — E’ over B
with ¢ € [0,1] and Hy; : gf ~ 1g, Gt : fg ~ 1g. We define the map

g:F — E

by g(u(v(gop), g) = —gop + g. Here we use additive notation for the group struc-
ture. Then g is again a map over B and we get

go = —gopo + go = —go + go — o0
so that g is a map under B. Next we define accordingly H, = —H,op + H, and

G = —Giop + G¢ which are also maps under and over B. We have for ¢t = 0 the
equations

Hy = —gfop+gf = —gop+gf
= —gopf+gf = (—gop+9)f = af,
Go = fgoo+fg = f(—gop+9) = [3,
and for t = 1 we get H; = —op+1g = 1g and G; = —op + 1g = 1g/. This
completes the proof of the lemma. O

3.2 The partial loop operation

Let S' = I/0I be the 1-sphere with basepoint * € S* given by dI. We consider the
free loop space 2, X = X5 with basepoint S — % — X. We have the following
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maps.
(3.2.1) Qx Tosax 7 sXx
A
i
X

Here 7 is the inclusion of the loop space QX = p~!(x) which is the fiber of the
fibration p given by p(c) = o(x) for o € Q. X. The section j of p carries z € X to
the free loop j(z) : S' — {z} C X.

We say that a map g: X x Y — B in Top® is trivial on Y if the composite

9(0,1): Y — X xY —B
is homotopic to the zero map 0. Let
[X xY,B]s C [X xY, B

be the subset of all homotopy classes trivial on Y.

An H-group is a group object in the homotopy category Top*/ ~. A map
f between H-groups is H-linear if f is a homomorphism of group objects. For
example the loop space is an H-group and a map (g is H-linear.

Now let B be an H-group. Then the partial loop operation L is the function

(3.2.2) L:[X xY,B], — [(QX) x Y,QB],

defined as follows. For n : X x Y — B (trivial on Y) the map L(n) is up to
homotopy the unique map (trivial on Y') for which the following diagram homotopy
commutes in Top*.

axxy) T sa.m
A
0.(X) x Q.(Y) .
A
TX]J
ax)xy " —qB)

Here we use the free loop space in (3.2.1) above. Compare the discussion of the
partial loop operation in [BAH], [BOT], [BJ3]. If Y = x is a point then the partial
loop operation satisfies L(n) = Q(n) so that L generalizes the loop functor €. The
partial loop operation is dual to the partial suspension described in [BAH].
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The partial loop operation satisfies the following rules.
1. The projection p; satisfies L(p1 : X x Y — X) = (p1 : (2X) x Y — QX).

2. The map L(n) is linear in QX, that is for a, § € [Z,Q2X] and f € [Z,Y] we
have

L(n)(a+ 8, f) = Ln)(e, f) + L) (B, f)-

3. The composite

Axz % x vy 1. B

with £ € [A x Z, X, satisfies

L(n(&; fp2)) = L(n)(L(E), fp2)-

It is well known that the loop space Y of an H-group Y is actually an abelian
H-group so that [X, QY] is an abelian group for all pointed spaces X.

3.2.3 Proposition. Let Y be an H-group and f : X — Y be a pointed map in Top™.
Then one has an isomorphism of groups

of: [ X, QY] = Aut(f)

where Aut(f) is the automorphism group in the groupoid [X,Y]. Hence Aut(f) is
an abelian group. Moreover the loop space functor Q : [X,Y] — [QX, QY] yields
the following commutative diagram.

af

[X, QY] > Aut(f)
(-1)-Q Q
\ oo v
[QX, Q%Y T s Aut(Qf)

Proof. We observe that we have the canonical bijection
Aut(f) = [X, .Yy

where X is a space over Y by f: X — Y and where we use the free loop space in
(3.2.1). Let po,p1 be the projections Y x Y — Y. We can form the composite

o Q) xY 240y x Y = (Y x Y) =W 0,(v)

where i = pa+p1 = pT is the composite of the interchange map T : Y XY — Y XY
and the H-group structure map p: Y xY — Y with u = p; 4+ p2. The map o is
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homotopic to a map ¢’ over Y and ¢’ is a homotopy equivalence over Y by (3.1.5).
Hence ¢’ induces

Aut(f) = [X, 2.Y]y 25 [X,Q(Y) x Y]y = [X, QY]

and this yields the isomorphism of groups in (3.2.3). Compare [BAH], [BJ2].
The loop space functor 2 with QX = (X, *)(Sl’*) satisfies

Q0.(X) = (X5170)(S17*) _ (X7*)(S1><S1/Sl><*,*)’
Q*Q(X) = ((X’*)(Sl,*))Sl _ (X7*)(Sl><51/*><51,*)’

so that the interchange map T : S' x S' — S! x S! induces a homomorphism
Q0. X = Q.0X. The map T : S* A S! — S' A S! is a map of degree —1. This
yields the equation oo s(—1)Q2 = Qoy. O

3.2.4 Proposition. LetY be an H-group and H : f = g be a track in [X,Y]. Then
for a € [X, QY] the following equation holds,
oq(@)0H = HOof (o).

We denote this track by H® « : f = g. Here & is a transitive and effective action
of the abelian group [X, QY] on the set T(f,g) of all tracks f = g in [X,Y]. The
loop space functor Q : [X,Y] — [QX, QY] satisfies Q(H & a) = (QH) & (—Qa).

The proposition generalizes the representability of tracks 0 = 0 in (2.3.2). If
X is (n — 1)-connected, then [X,QZ"] = H" 1(X) is trivial and hence we get by
(3.2.4):

3.2.5 Corollary. Let X be an (n — 1)-connected space. Then the connected compo-
nents of the groupoids [X, Z™] are contractible.

Let y : Y — Y’ be a map between H-groups. Then we obtain the difference
element

(3.2.6) Vy e[y xY,Y'],
as follows. Let Vy = —ypa + y(p2 + p1). We have

(vy)(ov 1) = _ypZ(Oa 1) + y(pZ +p1)(ov 1)
—Yp2 + Yp2
0

so that Vy is trivial on (0,1)Y C Y x Y. The difference element satisfies for a
composite gf : X — Y — Z of maps between H-groups the formula

(1) V(9f) = (Vo) (Vf.fp2) X x X — Y xY — Z.
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If g is H-linear then Vg = gp; so that in this case V(gf) = gV f. The partial loop
operation

(2) L(Vy) € [(2Y) x Y, QY"];

is defined by (3.2.2).

3.2.7 Proposition. Let H : f = g be a track in [X,Y] whereY is an H-group. Let
z: X' - X andy:Y — Y’ be maps in Top™ where Y’ is also an H-group. Then
the following formulas hold for a € [X,QY],

(Hoa)z = (Hz)® (az),

yHoa) = (yH)® L(Vy)(e, f).
These are formulas in [X',Y] and [X,Y"] respectively. If y is linear we get Vy =
yp1 so that in this case y(H @ ) = (yH) & (Qy)a holds.

One finds proofs of (3.2.4) and (3.2.7) in [BAH] and [BUT] where we describe
further properties of the partial loop operation, see also [BJ3].

For example we have for the multiplication map (2.2.1) the element iy, », €
[Z™ x Zz™, Z™t™]. If we apply the loop functor Q we get the trivial element

(3.2.8) Qe = 0 € [QZ" x QZ™ QZ"F™],

The partial loop operation L, however, yields the map L, », which via the ho-
motopy equivalences (2.1.7) can be identified with 5,1 4, that is, the diagram

Lptn,m
(329) (QZ") X Zm Hm, - QZ7L+7?’7.
A A
Zn—l < Zm Hn—1,m - Zn+m—1

homotopy commutes. Compare for example [BOT] 6.1.12 p. 328.
3.2.10 Lemma. For the map p = finm : Z" X Z™ — Z™ ™ we get the element

LVp € [QZ™ x Z™) x Z™ x Z™, Q(Z"™)],
which via the homotopy equivalence (2.1.7) is represented by the map
la . Zn—l X Zm—l X Zn x Zm _ Zn+m—1

which carries (x,y,xa,y2) to - ya+ (—1)""y-x2. Here we use the product defined
by pin (2.1.1).



3.3. The partial loop functor for Eilenberg-MacLane spaces 63

Proof. For a € Z™, b € Z™ we have u(a,b) = a-b. Hence Vy is defined by

(Vi) (@1, y1,22,y2) = —x2-y2 + (x1 +22) - (Y1 +y2)
= T1-y1+x1 Y2+ 2x2-Y1
= T1-y1+ 2y +7(y1 - x2)

with sign(

7) = (=1)™™. If we apply the partial loop operation L we get by (3.2.8)
and (3.2.9) t

he equation (LVu) = fi where we use (2.1.7) as an identification. O

3.3 The partial loop functor for
Eilenberg-MacLane spaces

In (2.3.4) we consider the loop functor
(3.3.1) L:K, —K,

on the theory of Eilenberg-MacLane spaces. This loop functor is a special case of
the partial loop functor

(3.3.2) Lx : Ky(X) — K,(X)

where X is an object in K. Here K,(X) is the following category with the same
objects A, B as in K,,. Morphisms a : A — B in K, (X) are commutative diagrams

in K.
X
2O

Ax X >BxX
X

The map a is given by coordinates (o, ps) with a € [A x X, Bly. We define Lx
on objects in the same way as L; that is, for A = Z™ x --- x Z"™ we have
LxA=LA=27Z""1x...xZ" "1 asin (2.3.4). On morphisms a = (a,p2) : A — B
in K,(X) we define Lx(a) = (La, p2) where Lo is given by the composite

L:[Ax X,Bly 2% [Q0(A) x X, QB> = [L(A) x X, LB]s.

Here L is defined by the partial loop operation and we use the homotopy equiv-
alence Qg(A) ~ L(A) in (2.3.3). If X = % is a point then Lx coincides with L in
(3.3.1).

3.3.3 Lemma. The category K,(X) is a theory with products as in K, and Lx is
a functor which preserves finite products. Moreover each object in K,(X) is an
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abelian group object and Lx carries maps to linear maps. The functors Lx are
natural in X in the sense that for all f : X — Y in K, the following diagram of

functors commutes.
Lx

K, (X) - K, (X)
e fe
KO -K()

Here f. is the identity on objects and f. carries the morphism a = (a,p2) to
fila) = (a1 x f), pa).
Compare [BJ4]. We now want to compute the loop functor and the partial

loop functor explicitly in terms of cohomology groups. Special cases are already
considered in the examples (3.2.7)...(3.2.9) above.

3.3.4 Definition. For an unstable A-module X let unstable A-modules X/ ~ and
X/ =~ be given by (see (1.1.12))
X/~ = image(X — U(X)
X/~ = image(X — U(X)— U(X)/UX) U(X))
UX)/UX) -U(X).
Then the free unstable A-modules F(n) = X"(A/B(n)) admit a unique .A-linear
map of degree (—1),

U(X)),
Ul

fZZ:F(n)/%—>F(n—1)/N
which carries the generator [n] to the generator [n — 1]. This yields the composite
map of degree (—1),

Q:H(n) -5 F(n)/ ~—% F(n—1)/ ~—— H(n —1)
where ¢ is the quotient map and ¢ is the inclusion. Compare (1.1.12)(5).

3.3.5 Lemma. The following diagram commutes.

L

[Z”, Zk] - [Zn—l’ Zk—l]

H(n)* ¢ = Hm-1

Here L is given by the loop functor and ) is defined in (3.34).
This lemma is a consequence of (1.1.13) and (3.2.8) and (2.4.3).
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If A and B are connected algebras, then also A ® B is a connected algebra
and we have

(A®B)> = AoB®(A®B).
Hence we have inclusion and projection

AeB-5 (A®B)” -L Aa B.
We define the composite 2 by the following diagram.

Q

(H(n1) ®@---® H(n.))™ >(H(m —1)®---®H(n, — 1))~

A
q 7
\ ~ -

Hn) @ - Hny) YR Hn -V e @ Hny —1)

3.3.6 Lemma. For the object X = Z" x ---x Z"" in K, we have the commutative
diagram.

(X, Z¥] > [LX,ZF 1

(Hn) @@ Hn))* *=Hmn —1)® - @ H(n, — 1))+

Here L is given by the loop functor and ) is defined above.

The map (0,1) : Y — X x Y in K, induces the map (0,1)* : H*(X xY) —
H*(Y). Let
H*(X xY)2 = kernel(0,1)*.

Then the Kiinneth formula shows
H*(X xY)y = H(X)® H(Y).
ForY =2 x --- x Z" as in (2.3.5) we now get:

3.3.7 Lemma. The partial loop operation L in K, is determined by the commutative
diagram (X,Y objects in K,)

L

(X x Y, Z¥), >[(LX) x Y, ZF 1],

Q®

(" X)y@ H (V) (7 (LX) @ H(V))F?

where Q is defined in (3.3.6) above.

This is essentially a consequence of (3.2.9).
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Next we consider a commutative graded algebra H and a graded module M.
Then M ® H is a right H-module by (m®z) -y = m® (x-y) and a left H-module
by y-(m®@z)=(-1)¥1"(m@ (y-z). A (linear) derivation

(3.3.8) D:H—MoH
is a map of degree (—1) satisfying
D(z-y) = (Dz) -y + (-1)1"lz - (Dy).
Given an object Y in K, we obtain the unique derivation of degree (—1),
V:H"(Y)— H'LY)® H*(Y)

for which the following diagram commutes where Y = Z™ x ... x Z"r.

H*(Y) v ~ H*L(Y) ® H*(Y)
A
H(ny)®---®H(n,) (Hni—-1)®---® Hn, — 1))~
A A

Fni)&---®F(ny) >Fn—1)/~&--- @ F(n,—1)/ ~
Here 5:2 and the morphisms i are defined in (3.3.4) and j carries z to x ® 1.

Recall that LV(y) is needed in (3.2.7). We now obtain the following result
on LV.

3.3.9 Lemma. For the difference element V in (3.2.6) the following diagram com-
mutes where Y is an object in K.

LV

[Y, Z¥ > [L(Y) x Y, ZF1]

H*(V)* = (H*(LY) @ H*(Y))"!

Here V is the derivation above and LV carries f:Y — ZF to the partial loop
operation applied to the difference element Vf.
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Proof. For a linear map f : Y — Z* we have Vf = fp; and LV f :~(Qf)p1.

This shows that (LV)i is defined on F(ny) & --- @ F(n,) by Q& --- @& Q in the
same way as V above. Hence it remains to show that LV is a derivation. This is a
consequence of (3.2.10). In fact, we have fora : Y — Z", b: Y — Z™ the formula
a-b=p(a,b) with g = py . Hence we get

(LV)(a-b) = LV (u(a,b))

= L((Vp)(V(a;b), (a,b)p2), (3.2.6)(1)

= (LVp)(LVp(a,b), (a,b)pa), (3.2.2)(3)
#((LVa, LVb), (ap, bp2)), (3.2.10)
LVa) - (=)™ (LVD) - a, (3.2.10)

( b+
(LVa)-b+ (—1)"™ . (=1)""m=Yq . (LVD)
(LVa) -b+ (=1)"a- L(Vb). O

3.4 Natural systems
We introduce the notion of natural systems on a category C and we describe a
particular natural system on the theory K, of Eilenberg-MacLane spaces.

3.4.1 Definition. Let C be a category. Then the category F'C of factorizations in
C is defined as follows. Objects of F'C are morphisms f : B — A and morphisms
(o, 8) : f — g in FC are commutative diagrams

[e3

A > A’
A A
f g
B< B’

B

in the category C. A natural system (of abelian groups) on C is a functor D : FC —

Ab. Here Ab denotes the category of abelian groups. We write D(f) = Dy € Ab

and D(a, f) = a.0*. In the situation @ the induced homomorphisms f,

and h* will be denoted by
fe:Dg = Dyg, §— fE = [u(§),
W : Dy — Dy, & Eh = h*(€).
We have the forgetful functor
(3.4.2) ¢: FC— CxC?®
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which carries f: B — A to (4, B) and carries (¢, §) to (o, 3). Hence any functor
M : C x C°® — Ab, termed a C-bimodule, yields the natural system M¢ also
denoted by M.

For example let C be an additive category and let L; : C — C, i = 1,2, be
additive functors. Then we obtain the C-bimodule

(3.4.3) Hom(Lq, Lg) : C x C°* — Ab

which carries (A, B) to the abelian group Hom(L; B, Ly A) of morphisms L1 B —
LA in C. If Ly is the identity functor we write Hom(Lq, —).

3.4.4 Definition. A natural system D on a category C is said to be compatible with
products if for any product diagram p : X1 X --- x X;, — X, k=1,...,n, and
any morphisms f:Y — X; X --- x X, the homomorphism

Dy — Dpf x--- X Dp, s

defined by £ — (p1&, ..., pn€) is an isomorphism. In a dual way we define compat-
ibility with sums (sum=coproduct).

For example Hom(L4, L) above is compatible with products in the additive
category C and also compatible with sums.
Recall that the category of stable operations K;table in (2.5) is an additive
category with
A K;table = mod(A)°P.

We obtain a bimodule on K;table by the shift functor L1 : K;table — K;table which
carries A= 2" x - x Z™ to LT'A = Z™*! x ... x Z™+1 Hence

(345) Hom(L_l, _) . K;table x (K;table)op — 5 Ab

is well defined. This bimodule carries (A, B) to [L 1B, A]**aP'¢ or using the equiv-
alence \, we have

Hom(L™'B, A) [L71B, A]stable
Hom 4 (A(A), \L™'B)

= Hom4(M\A, X\B).

Here ¥ is the shift functor on mody(A) which carries Az ®- - -® Az, with | z; |= n;
to A(Xz1) @ -+ @ A(Sz,) with | ¥2; |= n; + 1. We have X(AB) = A\(L~!B).

Next let A be a graded algebra over the field F, for example the Steenrod
algebra, and let M be a graded A-bimodule. Then we can consider A as a (graded)
monoid which is a category with one object. Moreover M yields canonically a
natural system on A by setting

(3.4.6) M, =M"forac A

and by : M, — Mpy., carries x to b-x and ¢* : M, — M,.. carries x to x - c.
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For the algebra A we obtain the A-bimodule XA defined by (SA4)" = A"~1
and a- (2z) = (—1)*%(a-z) and (Bz) - f = B(z- 3) for a, f € A and = € A. By
(3.4.6) we consider XA as a natural system on the monoid A.

Let modg(A)°P be the category of finitely generated free right A-modules
with generators in degree > 1. This is the opposite of the category mody(A) of
finitely generated free left A-modules in (2.5.2). Morphisms are A-linear maps of
degree 0. Let Hom(V, W) be the F-vector space of such morphisms V' — W in
mody(A)°P. Then Hom(V, W) is an A-bimodule with the action defined by

(a-a-b)(z)=a(x-a)b

forz € V, @ € Hom(V, W), a,b € A. Given an A-bimodule M as above we define
the natural system M on modg(A)°P by

(3.4.7) My = Hom(V,W) @4_a M

for a: V. — W. Here ®4_4 is the bimodule tensor product, see MacLane [MLH].
For example let A = A be the Steenrod algebra and let M = XA be the

A-bimodule above. Then the natural system XA is defined on modg(.A)°? by

(1) (2A)q =Hom(V,W) @4-4 LA
for o : V — W in mody(A)°P. We have the isomorphism of categories
(2) mody(A)°P = K;table

and using this isomorphism as an identification we get the isomorphism of natural
systems

(3) YA =Hom(L™ %, —)

where the right-hand side is defined by (3.4.5).
Finally we need the following natural system £ on K,,. For f: B — Ain K,
let

(3.4.8) L;=[B, LA
where LA is given by the loop functor L on K,. The natural system £, however,
does not coincide with the bimodule [—, L] since induced maps f., h* for A L
B cCc<{“Din K, satisfy

h*: L, =[C,LB] — Ly, = [D,LB],

1
W h*(§) = &h,

foiLy=[C,LB] — Ly, =[C, LA,

fe(&) = (LV)(£)(&, 9)-

Only in case f is linear do we get the formula f.(£) = (Lf)& which holds in general
for the bimodule [—, L]. We have seen in (3.3.8) that LV can be described by the
derivation V. The definition of f.(§) in (2) corresponds to the formula in (3.2.7).

(2)
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3.5 Track extensions

For a track theory 7 and for amap f: A — B in 7 the automorphism group of f
in the groupoid [A, B] = 7 (A, B) is denoted by Aut(f) = Hom(f, f). Any track
1 : f = g induces a group homomorphism

(=)": Aut(g) — Aut(f)

which carries & € Aut(g) to a” = —n + a + 1. On the other hand composition in

T yields for FERE AL 7o the homomorphisms

h*: Aut(g) — Aut(gh), §— &h,

fe+ Aut(g) — Aut(fg), £~ fE.

3.5.1 Definition. A linear track extension of a category C by a natural system D
denoted by

D =T T, "=-cC
is a track category 7 equipped with a functor ¢ : 7o — C and a collection of

isomorphisms of groups
of: Dq(f) — Aut(f)

where f: A — B is a map in 7. Moreover the following properties are satisfied.

(1) The functor ¢ is full and is the identity on objects, i.e., Ob(T) = Ob(C). In
addition for f,g : A — B in 7y we have ¢(f) = ¢(g) if and only if f ~ g.
In other words the functor ¢ identifies C with 7~. We also write ¢(f) = [f].
Hence for any ¢ : f = g we have [f] = [¢].

(2) For p: f = g and § € Djy| = D), we have
o7 (§) = 04(8)”.

Equivalently we have
plof (&) = ag(§)0yp
and this element is denoted by ¢ @ €.

3) For any three maps J gy To and any £ € D), one has
lgl

foy(&) = a54((119),
ag()h ogn (§[h]).

We say that a track category is linear if it occurs as a linear track extension
— of its own homotopy category, necessarily — by some natural system D. Clearly
a linear track category has abelian hom-groupoids by the definition above. The
result in [BJ1] shows that also the converse is true; that is:
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If 7 is a track category in which all hom-groupoids are abelian groupoids,
then 7 is a linear track category.

This already shows by (3.2.3) that the track categories
[A], [K;*"], [K,]

described in Chapter 2 are linear track categories. We shall describe details as
follows.

3.5.2 Theorem. The secondary Steenrod algebra is a linear track extension
zA > [Al: z [Alo ~A.

Here ¥A is the natural system on the graded monoid A given by (3.4.6).

Proof. 1f (a, Hy), (8,Hp) in [AJE both represent the same stable operation in
K, that is an element in A*, see (2.4.3), then for sufficiently large n we have a
track H, : a,, = f3, in [Z", Z"*], for example n > k. Moreover for n > k + 1
the function € is a bijection on [Z", Z"t*] so that H,, determines a unique track
H: (a,Hy) = (8,Hp). Hence we get [A]~ = A. Moreover we define

O(a,Hy) (ZAF = AF1 =~ Aut(a, Hy)
as follows. For the stable operation ¢ € A"~ with ¢ = (£,)nez and
&€ (Zn, ZM R = (27, Q0 27T
let o(q,1.)(§) = ((=1)"0a, (§n))nez. Here
O, |27, Q02" =2 Aut(ary,)

is defined in (3.2.3). O

3.5.3 Theorem. The track category of stable secondary operations is a linear track
extension

HOIn(Lil, _) - [[K;table]]l z [[K;table]]o - K;table i

Here Hom(L™!, —) is the natural system in (3.4.5).
The proof of this result is similar to the proof of (3.5.2).

3.5.4 Theorem. The track category of Eilenberg-MacLane spaces is a linear track
extension
L L z [Kylo ~K, .

Here L is the natural system in (3.4.7).

This is a direct consequence of the track calculus results in Section (3.2).
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3.6 Cohomology of categories

We recall from [BW], [BAH] the following definition of cohomology of a category.

3.6.1 Definition. Let C be a small category and let D be a natural system on C.
Let N,,(C) be the set of sequences (\1,...,\,) of n composable morphisms in C
(which are the n-simplices of the nerve of C). For n = 0 let No(C) = Ob(C) be the
set of objects in C. The nth cochain group F™ = F™(C, D) is the abelian group
of all functions

(1) c:NuC)— |J Dy=D
geMor(C)

with ¢(A1,...,An) € Dxjo..on,- Addition in F™ is given by adding pointwise in
the abelian group D,. The coboundary § : F"~1 — F™ is defined by the formula

(50)()\1,.. .,/\n) = ()\1)*0(>\2,. ..‘,/\n)
(2) 3 1) A ALy - An)
+(—1)n>\20(>\1, sy )\n—l)-

For n = 1 we have (dc)(A\) = Ac(A) — A¢(B) for A : A — B € Ni(C). One can
check that dc € F™ for ¢ € F"~! and that 6§ = 0. Whence the cohomology groups

(3) H"(C,D)=H"(F*(C,D),9)

are defined, n > 0. These groups are discussed in [BW], [BAH], [JP].
A functor ¢ : C' — C induces the homomorphism

(3.6.2) ¢* . H"(C, D) — H™(C,¢* D)

where ¢*D is the natural system given by (¢*D); = Dy(s). On cochains the map
¢* is given by the formula

(¢*f)()‘/17 R )\’/IL) = f((b/\/lv R ¢)‘;1)
where (\},...,\,) € N,(C). In IV.5.8 of [BAH] we show

’ n

3.6.3 Proposition. Let ¢ : C — C’ be an equivalence of categories. Then ¢* is an
isomorphism of groups.

A natural transformation 7 : D — D’ between natural systems induces a
homomorphism

(3.6.4) 7. : H"(C,D) — H"(C', D)

by (7« f) A1y sAn) = f (A1, ..., An) where 7y : Dy — Dy with A= Xj0---0),
is given by the transformation 7. Now let

D"'=">D T>D
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be a short exact sequence of natural systems on C. Then we obtain as usual the
natural long exact sequence

— H"(C,D') =5 H"(C, D) = H"(C,D") 2 H"*(C,D') —

where (3 is the Bockstein homomorphism. For a cocycle ¢” representing a class
{c"} in H"(C, D") we obtain ${c"} by choosing a cochain ¢ as in (3.6.1)(1) with
7¢c = ¢”. This is possible since 7 is surjective. Then 7 'dc is a cocycle which
represents 3{c"}.

3.6.5 Remark. The cohomology (3.6.1) generalizes the cohomology of a group. In
fact, let G be a group and let G be the corresponding category with a single
object and with morphisms given by the elements in G. A right G-module D
yields a natural system D : FG — Ab by Dg = D for g € G. The induced maps
are given by f*(z) = 2/ and h.(y) =y, f,h € G. Then the classical definition of
the cohomology H"(G, D) coincides with the definition of

H™(G,D) = H"(G, D)

given by (3.6.1).

3.6.6 Definition. Let C be a ringoid, i.e., a small category in which all morphism
sets C(A4, B) are abelian groups and composition is bilinear. (A ringoid is also
called a pre-additive category or a category enriched in the category Ab of abelian
groups.) Let D : Cx C°? — Ab be a C-bimodule, that is, D is additive as a functor
in C and C°P. Then we call a cochain

(1) ce€ F*(C,D)

multilinear if for all i = 1,...,n and \;, \; € C(4;, A;—1) we have
Ay N+ AL ) =My A An) (A, A )

in D(Ay, Ag). For n > 1 let

(2) LF"(C,D) C F*(C,D)

be the subgroup of multilinear cochains. The coboundary ¢ in (3.6.1) restricts to

LF™(C,D) — LF"*1(C, D) for n > 0 where we set LF°(C, D) = FY(C, D). Hence

the cohomology

(3) HH"(C,D)=H"LF*(C,D)

is defined which we call the Hochschild cohomology of C with coefficients in D.
Moreover (2) induces the natural homomorphism

(4) HH"(C,D) — H"(C, D).
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If C = Ais a (graded) algebra and M an A-bimodule, then M is a natural
system on the monoid A and by (3) the cohomology HH"(A, M) is defined. This
is the classical Hochschild cohomology of the algebra A with coefficients in the
bimodule M.

Now let mody(A)°P be the category of finitely generated free right A-modules
with generators of degree > 1.

Then M defines the natural system M on mody(A)°P as in (3.4.7). In this
case

(5) HH"(A,M) = HH"(mod(A)°", M).
This leads to the following definition of MacLane cohomology:
(6) HML"(A,M) = H"(mod(A)°?, M)

This is a special case of the cohomology defined in (3.6.1). MacLane cohomol-
ogy is also called topological Hochschild cohomology. Compare Pirashvili [P] and
Pirashvili-Waldhausen [PW]. By (4), (5) we have the natural transformation

(7) HH"(A, M) — HML"(A, M)

which can be studied by a spectral sequence, Pirashvili [P]. We also have the
forgetful map

(8) ¢ HML™(A, M) — H™(A, M)

where M is considered as a natural system on the graded monoid A, see (3.4.6),
and where H"(A, M) is defined by (3.6.1). We point out that (8) in general is not
an isomorphism.

For each linear track extension 7,
D =7 £l >C

a characteristic cohomology class in H3(C, D) is defined, compare [BD] where
this class is termed the ‘universal Toda bracket’ of 7. We recall the definition as
follows.

3.6.7 Definition. The element
(¢) =(T) € H*(C, D)

represented by the following cocycle: Choose for each morphism f in 7. = C a
representative 1-arrow of 7 denoted s(f) € f. Furthermore choose a track u(f,g) :
s(f)s(g) = s(fg). Then for each composable triple f, g, h the composite track in
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the diagram

s(fgh)
s(f9) {—n(fg,h)
—u(f.9)
2 f s(H)
® < ° < s(g) ® <
» s(f) A}
{J (g,
u(roh) | s(gh)
s(fgh)

determines an element in Aut(s(fgh)) and hence, going back via o, an element
c(f,g9,h) € Dygp. It can be checked that this determines a 3-cocycle of 7~ with
coeflicients in D, and that both choosing a different section s or different tracks
u(f,g) leads to a cohomologous cocycle. One can thus obtain a uniquely deter-

mined cohomology class (7') represented by the cocycle ¢ termed the characteristic
class of T.

3.6.8 Definition. Let D be a natural system on the small category C. Then we
define the category Track(C, D) as follows. Objects are linear track extensions

D =T Ty >C
and morphisms are track functors 7 — 7" for which the diagram

p

D =T =T ~C
F1 Fg
\ \ »

D ~T =1y >C

commutes, that is F1(¢ ® &) = Fi(¢) ® € and p’'Fy = p. Let moTrack(C, D) be the
set of connected components of the category Track(C, D).

In [BD] we show the following result.
3.6.9 Theorem. The function

moTrack(C, D) — H3(C, D)

which carries the component of T to the characteristic class (T) is well defined.
Moreover this function is a binatural bijection.
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We call a morphism in Track(C, D) a weak track equivalence (under D and
over C). Hence the theorem shows that a cohomology class ¢ € H3(C, D) deter-
mines a linear track extension 7¢ up to such weak track equivalences.

Using the characteristic class in (3.6.7) one has the following well-defined
cohomology classes

ka = ([AD € H3(A, X A),

k;table _ <[[K;tab1e]]> c H3 (K;table’ HOIH(L_l, _))
(3.6.10) — HMI3A,SA),

kyp = <[[Kp]]> EHB(KWE)'

For this we use the linear track extensions in (3.5.2), (3.5.3) and (3.5.4). Here the
natural map

HMI?*(A,XA) — H?*(A,SA)
carries k3P to k4, see (3.6.6)(8). The element of interest is k3" and not
ka = k3Pl with ¢ as in (3.6.6)(8).

3.7 Secondary cohomology and the obstruction
of Blanc

The cohomology H*(X) of a path connected pointed space X is a connected
unstable A4-algebra which by (1.5.3) equivalently can be described by the model
[X, —] of the theory K,. This model corresponds to the subcategory [X,K,]| with

(3.7.1) K, C [X,K,] C Top*/ ~

defined as follows. Objects of [X, K,] are X and the objects A, B in K,,. Morphisms
are the identity of X, all maps X — A in Top*/ ~ with A € K,, and all maps
A — B in K,,. The category [X, K] is completely determined by the model [X, —]
or by the unstable A-algebra H*(X).

We define a natural system £7 (X) on the category [X,K,] as an extension
{f X _o
X

of the natural system £ on K,, as follows. For the identity 1x of X let £
be the trivial group and for f: X — A with A € K, let

(3.7.2) £ =[x, LA]

and for g : A — B with A, B € K, let £ X) = £, = [A, LB] be defined as in
(3.4.7). Induced maps for L7 (X) are defined in the same way as in (3.4.7)(1),(2).
Finally let [X, K,] be the track category corresponding to [X, K,] above with

(3.7.3) [K,]  [X.K,] C [Top*].

Hence [X,K,] is completely determined by the track model [X, —] = H*(X) of
[K,] which is the secondary cohomology of X; see (2.2.10).



3.7. Secondary cohomology and the obstruction of Blanc 77

3.7.4 Theorem. The secondary cohomology yields a linear track extension
LX) = [[Xv K;D]]l z [[Xv KP]]O . [Xv K;D]

which by (3.6.9) is determined up to weak track equivalence by the cohomology
class
kx = <[[X7 K;D]]> € Hg([Xa KP]?‘CH (X))

We point out that the cohomology H?([X,K,], L7 (X)) is algebraically de-
termined by the connected unstable A-algebra H*X.

The element kx describes the secondary cohomology of X up to weak equiv-
alence. Moreover kx is an invariant of the homotopy type of X. In fact, for a map
f: X — Y between path connected spaces in Top™/ ~ we get the induced functor
« and the induced natural transformation 3,

o = f*:[YaK;D]—>[X7KP]v
B o= for frotX g

The maps «, 8 induce the homomorphisms

(X, K, £ 00) 25 H3([VK ], L7 00) & B (Y K| £ )),
Now the following equation holds,
(3.7.5) o kx = Biky.

This is the naturality of the invariant kx.
The inclusion of categories K, C [X,K,] induces the homomorphism * in
the exact sequence of a pair of categories:
(3.7.6)
H3([X,K,], L7 ) 25 H3(K, £) - HAY((X,K,],Ky; L7 (),
kX — kp

Here i* carries kx to the element k, = ([K,]). Hence exactness implies d(k,) = 0.
This leads to a first obstruction for the following realization problem.

Let H be a connected unstable A-algebra. We say H is realizable if there
exists a path connected space X with H = H*(X) in ICS. In general H need not
be realizable.

Recall that V# = Hom(V,F) is the dual vector space of V with (V#)# =V
if V is finite dimensional. Assume for a moment that H is of finite dimension and
let H# be the dual of H. Then H# is a connected unstable A-coalgebra.

Blanc [B]] discovered a sequence of obstructions (n > 1)

Xn € QH"T2(H# X" H#)

where QQH* denotes the Quillen cohomology. Here y,, is defined for n > 1 if
X1="-=Xn-1=0.
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3.7.7 Theorem ([Bl]). The finite-dimensional connected unstable A-algebra H is
realizable if and only if x, =0 for all n > 1.

We now define a first obstruction which plays the role of Blanc’s obstruction
X1. Let H be a connected unstable A-algebra and let My be the model of K,
corresponding to H; see (1.5.2). Then we define the category [Mu,K,| together
with the inclusion

(3.7.8) K, C [Mpy,K,]

such that for My = [X, —] and H = H*(X) this category coincides with [X, K,)
above. Objects in [My, K| are an object g, and the objects A in K,,. Morphisms
are the identity of #p, and the elements of My (A) which are morphisms xy — A
and the morphisms A — B in K,,. The composite

sy A-L B
with a € My (A) is defined by f.(a) € My (B). Here f, is defined by the functor
My : K, — Set. We point out that the category [Mpg,K,] is completely deter-
mined by K,, and the connected unstable A-algebra H.
We define a natural system £ on the category [My,K,] as an extension of

the natural system £ on K, as follows; compare (3.7.2). For the identity 1, of g
let £ =0 and for a: kg — A, a € Mp(A), let

(3.7.9) LT = My (LA).
We define induced maps for £ as in (3.4.7)(1),(2). In particular f : A — B
induces £ — E}{a with f. (&) = (LVf).(§, «) where
(& @) € My (LA) x My (A) = Ma(L(A) x A)

and LV f : L(A) x A — LB as in (3.3.8). Hence the natural system £” also uses
the derivation V in (3.3.9). Of course £ is completely defined by the unstable
A-algebra H. If H = H*(X) then £ coincides with the natural system £~ (X)
in (3.7.2).

We now consider an exact sequence as in (3.7.6).

3r10) HA(Mu KL LT) o HA(K,, L) o HY(Mi, K] Ky £F).
kyp = 6(kp)

Here k, is the class of the secondary Steenrod algebra. The sequence coincides
with (3.7.2) if H is realizable by the space X and in this case we know d(k,) = 0.
Hence we get:

3.7.11 Theorem. The connected unstable A-algebra H determines the group
HY([My,K,),Kp; L) and the element §(ky) is a first obstruction for the real-
izability of H. In particular 0(kp) # 0 implies that H is not realizable.

We claim that there is a connection between Blanc’s obstruction x; in (3.7.7)
and the element d(k,) but we do not work out details since this is not needed in
this book.
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3.8 Secondary cohomology as a stable model

We have the forgetful functor
K;table i) Kp

which is the identity on objects and carries the stable map « to ag. This functor
preserves products. Hence a model of K, is also a model of K;table. Using (2.5.2)
we see that

3.8.1 Proposition. There is an isomorphism of categories
model(K;table) = Mody(A).

Here Mod,(A) is the category of graded A-modules M with M; = 0 for i < 0.
Of course the isomorphism is compatible with the isomorphism in (1.5.2) in the
sense that the following diagram commutes.

(3.8.2) model(K5*"'°) Mod(A)
A A
" ¢
model(K,) K9

Here ¢ on the right-hand side is the obvious forgetful functor. A pointed path
connected space X yields the model [X, —] of K, and hence the model [X, —]¢ of
K5 The model [X, —]¢ can be identified by (3.8.1) with the A-module H*(X).

We now describe the stable analogue of the constructions in (3.7) above. The
space X yields the category

(383) K;table C [X, K;table]

defined as follows. Objects are X and the objects A, B of K;table. Morphisms
are the identity of X, all maps X — A in Top*/ ~ and all maps A — B in
K;table. Composition is defined by the functor ¢ above. The category [X, K;table]
is completely determined by the model [X, —]¢ or by the A-module H*(X). Let
H be any A-module in Mody(A) corresponding to the model My of K;table by
(3.8.1). Then we obtain more generally the category

(384) K;table c [MHa K;table]

which is defined similarly as in (3.7.8). If My = [X, —]¢ then this category coin-
cides with [X, K;table] above.
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We define a natural system R on the category [Mp, K;table] as an extension
of Hom(L™!,—) on Ki*™"'°. Let R, =0 and for f: A — B, A € K}*"°, let

(3.8.5) R{ =[X,LA]

The induced map «. : Rf — Rff for a : A — B in K;table is defined by
a(z) = L(ag)(x) for = € [X, LA]. Finally let [X, K;table]] be the track category
corresponding to [X, K;table] above with

(386) [[K;table]] C II)(7 K;table]].

Here [ X, K;table]] is completely determined by the track model [X, —]¢ where we
use the forgetful track functor

¢ : [K™F] — [K,]
see (2.6.5). Now we get the following stable analogue of (3.7.4).
3.8.7 Theorem. The secondary cohomology H*(X)¢ yields a linear track extension
RH* (X) - IIX7 K;table]]l z IIX7 K;table]]o - [X, K;table]
which by (3.6.9) is determined up to weak equivalence by the cohomology class
k%able —< [[X, K;table]] > HS([X, K;table], RH* (X))

Here the cohomology H? is completely determined by the A-module H*(X).

We now can define an obstruction for the realizability of an A-module H in
a similar way as in Section (3.7). For this we leave it to the reader to formulate
the stable analogue of (3.7.11) above.
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Stable Linearity Tracks

Maps in K;table are F-linear. The stable maps in [[K;tz"ble]]o7 however, need not be
linear. Therefore there arises a linearity track describing the deviation from lin-
earity. It turns out that linearity tracks can be chosen canonically. The properties
of linearity tracks serve as axioms for a I'-track algebra. the secondary Steenrod
algebra [A] is a I-track algebra which determines the linear extension [[Kffable]] up
to weak equivalence. Moreover secondary cohomology [X, . A] is a I'-track module.

4.1 Weak additive track extensions

Let T be a field, for example F = Z/p. An F-ringoid is a category enriched in the
category of F-vector spaces, that is, morphism sets are vector spaces and compo-
sition is F-bilinear. An F-additive category K is an F-ringoid in which products
exist. Such products are also coproducts and are called “biproducts” or “direct
sums”; see MacLane [MLC]. For example, the category K = K;table is an F-additive
category isomorphic to modg(.A)°P; see (2.5.2).

Let D be an F-biadditive K-bimodule, that is, D is a functor

(4.1.1) D : K x K — Vecy,

where Vecy is the category of F-vector spaces, and D(A, B) with A,B € K is
additive in A and B.
By (3.6.6)(5) we know that the homomorphism

(4.1.2) HH?*(K,D) — H3(K, D)
is defined.

4.1.3 Definition. Let K be F-additive and let D be an F-biadditive K-bimodule as
above. Then a linear track extension

D >T1 1, K
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is a weak F-additive track extension if the following properties hold. The track
category 7 has a strong zero object x with [, X] and [X,*] consisting only of
exactly one morphism for all objects X in 7. Moreover finite strong products
A X B exist in 7, see (2.3.4), and each object A is an F-vector space object in 7.

For example for K = K;table we have the F-biadditive K-bimodule D =
Hom(L™!, —) and we have seen in (2.6) and (3.5.3) that the stable track theory
T = [[K;table]] of Eilenberg-MacLane spaces is a weak F-additive track extension
with properties as in (4.1.3).

Weak coproducts in a track category are the categorical dual of weak products
as defined in (2.3.4), that is:

4.1.4 Definition. A weak coproduct or a weak sum AV B in a track category 7 is
an object AV B equipped with mapsiq =41 : A— AVBandig =iy: B— AVB
such that the induced functor (i7,45):

(*) IIA\/BaX]]_>[[A7X]]X[[BaX]]
is an equivalence of groupoids for all objects X in 7. The coproduct is strong if
(*) is an isomorphism of groupoids.
4.1.5 Proposition. Let T be a weak F-additive track extension as in (4.1.3). Then
strong products A x B in T are also weak coproducts by the inclusions

i1 = 1x0:A=Ax%x— AXB,

i, = O0x1:B=%xxB— AxB.

4.1.6 Corollary. Strong products A x B in |

Proof of (4.1.5). We have to show that A x B is a weak coproduct. Hence we have
to show that (x) in (4.1.4) is an equivalence of categories; that is, a full and faithful
functor which is also representative. Using the linear extension (4.2.3) we easily
see that (), in fact, is full and faithful since D is a K-bimodule which is additive
in each variable. It remains to check that (x) is representative, that is, for each
a:A— X and §: B — X there exist

& : AxB— X,

K;table]] are weak coproducts.

H : &1 = a,

G Eig = s.
This is clear since the homotopy category 7~ = K is an F-additive category in
which products are also coproducts. O

4.1.7 Definition. A weak F-additive track extension is strong F-additive if all strong
products A x B are also strong coproducts.

4.1.8 Proposition. The characteristic class (T) of a strong F-additive track exten-
sion T s in the image of Hochschild cohomology in (4.1.2).

We shall see that ([[K;table]b is not in the image of (4.1.2) so that [[K;table]] is
not weakly equivalent to a strong F-additive track extension.
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4.2 Linearity tracks

Let 7 be a weak F-additive track extension as in (4.1.3), for example 7 = [[K;table]].
Then we have for each object A in 7 the addition map +4 : A x A — A of the
F-vector space object A. Moreover for each morphism a : A — B in 7j there is a
diagram in 7y

(4.2.1) AxA " >~BxB
+a La, +B

\ \

A ~ B

where I'y, : a(4+4) = (+)(a X a). Since
(i7,13) : [Ax A, B] — [A4, B] x [4, B]
is an equivalence of groupoids (see (4.1.5)) there is a unique track I'q with
iiT, =09 = i3D,

where OE : a = a is the trivial track. We call Iy, the linearity track for a. We
obtain for x,y : X — A the map z +y = (+4)(z,y) : X — A and hence we get
the linearity track

(4.2.2) oY =Ty(x,y) : alzr +y) = ax + ay

in 77. We also use the following diagram where A*™ = A x --- x A is the n-fold
product.

aXn

AXn > Bxn
+a Lo +5
v v
A a >B
Here a unique track T7 is given with T74, = 0} for r = 1,...,n. For n = 2 this

coincides with (4.2.1). We write for (z1,...,2,): X — A*"™,
(4.2.3) Doveo®n =T wy, ... xn) s a(zy + -+ @) = ax1 + -+ axy
generalizing (4.2.2). One can check the following equation (n > 3)

thm,wn — (I‘ihmwnq + axﬂ)l]ril7~~';1n727$n71+$n
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so that inductively I'Z1»+»®» can be expressed only in terms of I'?¥ above. For
maps x,y : X — A we obtain x + y by the composite

z4+y=(+a)(z,y): X - Ax A— A
Similarly we get for tracks H : © = 2/, G : y = 3’ the composite
(4.2.4) H+G=(+a)HG) :z+y=2+y

where (H,G) : (z,y) = (2/,y') is a track in 7 since A x A is a strong product in
T.1G= OyD : y = y is the identity track we write, compare (2.2.6),

H+y:H+OE:aj+y:>x’+y
and accordingly if H = OE : ¢ = x is the identity track we get
14+ G=004+G:a4+y=>z+y.

We use this notation in the following theorem.

4.2.5 Theorem. Let T be a weak F-additive track extension. Then linearity tracks
in T satisfy the following equations (1),..., (7).

1) Tedyd = T2y,
2 =Ty eaprsy.

ro¥, =TV 4 T5Y.

a+a’_

(1)
(2) T
(3) T2 = Ty,
(4)
(5) Twaw = (T 4 qg)OTW+eY = (qu + TZ¥)OTW-7+Y,

Equivalently the following diagram commutes.

Fw+Ly

alw+z+y) ¢ >a(w + ) + ay

ryety P say
\ \

aw + a(z +y) > aw + ax + ay

aw+I7Y

This implies T9Y = 09 if we set w = 2 = 0 since T9° =T%°0 =0 by (1).
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(6) For H:x =2’ and G :y =y the following diagram of tracks commutes.

T,y

a(x +y) ¢ >ar + ay
a(H+G) aH+aG
\ \
alz’ +v') . >ar’ +ay

ra

(7) For A:a= d the following diagram of tracks commutes.

z,y

a(z +y) “ >ax + ay
A(z+y) Az+Ay
\ \
a@+y) ., >detdy

al

Proof of (4.2.5). Equation (1) is clear. Moreover (2) follows from

AxA Y ~pxp " scoxc
N n
Y Y Y
A . ~B . ~C

with Ty * T’y = Ty by uniqueness. Let T = (p2,p1) : A X A — A x A be the
interchange map. Then I', T = T, since (I',T)i; = Lyip = oY =T,i; = (TaT)is.
Hence we get (3). Again we see

FaJra’ :Fa+ra’
since (T'y + T )ip = 09 405 = 09 for k = 1,2. This implies (4). Again one readily

checks that I'3 in (4.2.1) can be expressed by the composite C of tracks in the
diagram
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AX3 > Bx3
(+a)xA TaXa
Avxz axa >Bvx2
La
\ \
A >B

since Ciy, = 0 for k = 1,2, 3. This implies (5). Finally we get (6) by the definition

'Y = T'y(x,y) so that pasting yields

T, (H,G) = T'¥VOa(H+G)
(aH + aG)OTEY.

Next we get (7) by considering the composite C' of tracks in the following diagram.

’ ’

A « A a Xa
fTAXA
A « A axXa
Ml
;’1 a
1A
A

’
a

Now Cli, = 09 for k = 1,2 implies C' = I'y/.

>Bx B

>Bx B

>B

For n € N={1,2,...} and an object A in 7 we obtain the map

(4.2.6) n-ly:A— A
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by the F-vector space structure of [A, A]g. This map depends only on the element
f=n-1 €T given by n. Moreover using (4.2.3) we have the track

(4.2.7) I(n)y=T%"%ra(n-14) = (n-1gla=n-a

where x1 = --- = x, = 14. This track actually depends on n € N and is not well
defined by n = n-1 € F = Z/p. (For example for n = 2 and a : 2™ — Z™+Fk
representing S¢* we know by (4.5.8) that I'(n), : 0 = 0 represents Sqg"~!.)

4.2.8 Lemma. For n,n’ € N we have
I(n"-n)a = ((n"-15)I(n)o)OT (0 )a(n - 14)).

If p| n’ and p | n, then the lemma shows that I'(n'n), = 07 : 0 = 0 is the
identity track of the zero map 0: A — x — A.

Proof. The lemma is a consequence of the diagram

A><(n’~n) > B><(n'~n)
sy
\ v
AXn > BXxn
Iy
\ v
A >B

where I'? is defined in (4.2.3). Pasting of tracks in the diagram yields I‘Zl'”. This
is seen by the uniqueness property of I'l ™. O

4.2.9 Lemma. For n,n’ € N the track T'(n 4+ n'), is the composite
Fn+n)y : an-1a44n"-14)=a(nla)+a(n'lsa) = na+n'a,
F(n+n)e = ([(n)g+TI(n),)Ortanta,

This shows by (4.2.8) that

4.2.10 Proposition. I'(n), = I'(n'), if n = n' mod Z/p*. For n < 0 we choose k
such that n + kp? > 0 and we define T'(n), = I'(n + kp?).

Proof. Let n’ = n + p? - m. Then we have
L(n')q = (L(n), +07)OIM40 = T'(n),.

Compare (4.2.5)(5). O
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Since the ring Z/p? in proposition (4.2.10) plays a major role we introduce
the following notation:

4.2.11 Notation. Let p be a prime number. Then F is the field F = Z/p and G is
the ring G = Z/p?. Clearly F is a G-module by the surjection G — F. We consider
standard free G-modules

V=G"=G& &G

with n = dim(V') > 0. Hence V = G™ has the standard inclusions i; and projec-
tions pj,

G- LV

for j=1,...,n. Let

Vy = ij V—G

j=1
be the folding map and let
+tv: VeV —V

be the addition map with +v(x @ y) = x +y for x,y € V. Of course Vg2 = +¢.
Each G-linear map ¢ : V = G" — W = G™ is given by a matriz (go;) with goj» eG
defined by

©; =pipii : G — G
fori=1,...,dim(V) and j =1,...,dim(W). We say that ¢ : V — V is a permu-

tation (of coordinates) if p(z1,...,2n) = (To1,- .-, Ton) Where o is a permutation,
z; € G.

Now let A be an object in 7 and let ¢ : V = G" — W = G™ be a G-linear
map. Then we define

(4.2.12) AR p: A" — AX™

by (A® o) (x1,...,2zn) = (X, Yiai, ..., >, p4,x;). More precisely, the map A® ¢
is defined by the projections p;, p; of the products via the formula:

piA®) = @lpit A" — A j=1,...m.
=1

One readily checks that A® ¢ is functorial, that is A®1 =1 and (AQ¢)(A®
) = A® (p1p). Moreover since p; € [A*"™, A]o is an element in an F-vector space
we see that the map A ® ¢ depends only on ¢ ® F. We point out that A ® ¢ is an
F-linear map between F-vector space objects in 7.
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Now let a : A — B be a map in 7y which need not be F-linear. Then we
obtain the diagram in 7.

Axn > gxn
r(e)a
A®p B®y
Y xm \4
Axm @ > pgxm

Here a track I'(y), exists since a is F-linear in the homotopy category 7~. The
object AX™ is a weak coproduct with inclusions i : A — A*" fori=1,...,n and
the object B*™ is a strong product with projections p] : B — B. Therefore
there is a unique track T'(p), satisfying the equation

(4.2.13) PPT(9)aift = T(p})a s alpila) = (¢}1p)a

where goj» is the matrix of ¢. Here we use the track I'(A), for A € G defined
by (4.2.10). We call I'(¢), the linearity track for ¢ and a. We define for z =
(x1,...,2n) : X — A*™ the track

L(e)a =T(@)(@1,...,an) 10" (AQ )z = (B® p)a™"x
For example if ¢ = Vy : V — G is the folding map then one readily checks that
R

coincides with the linearity track defined in (4.2.3). Therefore I'(¢)?Z is a general-
ization of the linearity tracks considered in theorem (4.2.5).

4.2.14 Lemma. Let ¢ : V =G" — V = G" be a permutation or let a : A — B be
an F-linear map in To. Then T'(p), = 0 is the trivial track.

Proof. If a is linear and X € Z, then a(A-14) = (A - 1p)a and I'(X), is the trivial
track since I' in (4.2.3) is the trivial track. This implies that I'(¢), is the trivial
track. If ¢ is a permutation we use an argument as in (4.2.5)(3). O

4.2.15 Theorem. Let 7 be a weak F-additive track extension, for example T =
[[K;table]]. Then the linearity tracks T'(p)Z in T above satisfy:

(1) T(p)2¢ = T(p)2d.
2) T(@), = (D) " ")BO ™ T(9)%).
(3) T(w)2 = (B @ )L ()2)O(L ()5 997).
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(4) ForH:a=d,G 2 =2, withG=(G1:21 = x},...,Gp : ¢, = ) the
following diagram of tracks commudtes.

Xm F(Lp)g Xn
a”™ - (1®p)z) >([1®e)(a™" - x)
HX™ - ((1®p)G) (1®@)(H*™-G)
% ()7 Y

@) (lep) | OF =(1ep) (@) )

Proof. Equation (1) is obvious. Moreover (2) follows from pasting of tracks in the
following diagram.

Xn

AXn > BXxn > OxXn
\ \ \
xXm xXm xXm

A >B b><7n >C

The uniqueness property for I'(p), shows that pasting yields I'(¢)s,. Here we use
(4.2.5)(2) applied to T'(A)yq in (4.2.7).
Next we obtain (3) by pasting in the following diagram.

Axn > BXn
ARy T(eda
\ \
AXm > Bxm
T By
\ \
Axk >B><k

Again the uniqueness property of I'(¢¢), shows that the pasting of tracks in this
diagram yields I'(¢¢)),. More precisely, we have for the track

G = (B (p)all(¢)a(A® @)
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the equation (o <t < k)

piGi; = pi(B@Y)(0)ati0pT()a(A® @)is
= (Z W) ()0t Op D (¥)a(9i1a, ..., ol 1a)

= (Z PIT(05)a)D(Pe D (W) (@h1a X -+ x @l 1a)AT)

with A% = (14,...,14) : A — AX™ the m-fold diagonal. Here we have for the
projection p? : BX™ — B,

Hence we obtain G’ in [[Axm, A], with
p:Giy = G’
defined by
ij XU (0))a) T (W)alpila x - x @l 1a)).

Here G’ is the unique homotopy satisfying

G/ij = WF(‘P;‘)aDptFW)aij(gaé . lA),
GIT(5)a0C (47)a (5 - 1a),
= T(¥]- ©4)a, see (4.2.8).

On the other hand we have for \; = Wl ;

Pl ()aii = T ¥i¢))a
ZI‘ ¢t "Pj a)DrgﬂA,m,)\mlA
J

O T - )OI (A1 1a) X -+ x (A - 14))AT)
= G'A}

with o

= (Q_p)OGTW] - @)a))OTT (A - 1a X - X A la).

j

Here G” is the unique track with

G"ij = T} ) Ore(0x -+ x A\jlax -+ x0)
= T( - ¢l)a, see (4.2.5)(5).
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Hence we see that G’ = G”. This proves p:Gi; = p:I'(¢) - ©)q%; and hence G =
(¢ - ¢)q. Hence the proof of (3) is complete.
Finally we obtain (4) similarly as in the proof of (4.2.5)(6),(7). O

Recall that +v : V@&V — V is the addition map, see (4.2.11).

4.2.16 Theorem. Let T be a weak F-additive track extension like T = [[K;table]].
Then the linearity tracks I'(p)% in T satisfy the following equations, ¢ : V. — W,
a:A— B.

(1) ()20 =) + ()2
T+ @)% = (T()F + T()3)O0 (+) A9 (A7)

)
(2) T(p @ ¥)&™) = (D)2, TW)E).
(3) T()3+'= (BRI (+v)&" ) PO ()5 +T ()2 YO () AH (45D,

(2

We point out that F(—&—v)(z ) can be expressed by

(z,a") z,z’
I'(+v)a = Iy, see (4.2.2
(4.2.17) (+v) a (4.2.2)
= (Pglw)plw/7 . 7I‘gn$7pnw/).

Here p; is the jth projection of A*™ and I'y = I'(4+¢)q is defined as in (4.2.1).
Proof. We have a + a’ = +p(a,a’) : A — B*? — B. Hence we get by (4.2.15)(2),

(4) L) ) = DO D)D) -
Here +p is F-linear and we can apply (4.2.14). Hence we get the proof of (1) by
F@)arar = (+8)" ()0
() = (+pm)(T(p)a, L(e)a)
= D(ep)s +T(e)g

Next we consider the composite

et =vY(p ) VoWaeW W
where ¢ = 4. Hence we get by (4.2.15)(3) the equation
(6) L(p+ @) = (B® )T (p, ¢ )sO0 ()7,
Here we have

(Boy)L(p,¢)e = (+pxm)(T(0),T(¥")E)
= T(p)s +T()5.



4.3. The I'-structure of the secondary Steenrod algebra 93

Finally we consider the composite

(7) v+ =(An)(z,2)): X — A" x A" — A"

where A @ n = + 4x» is given by n = +y. Hence we get by (4.2.15)(3),
. D(p)ete = T(p)itemee)

Y = (Bo @D )P Or(en):”,

Moreover o1 = (¢, p) = (o ® ) with ¢ = + so that by (4.2.15)

© D)@ = T((p e e
= ((Bey)T(p @ @)™ )Or(y) 0o @),

Here we have

/

(BRY)D(p x )&% = (+pxm)(L(p)Z,T(p)7)
= I(p)2+T(p)?.

This proves (3). O

(10)

4.3 The I'-structure of the secondary Steenrod algebra

The linearity tracks I'(¢)Z in [[K;table]] yield a I'-structure of the secondary Steen-
rod-algebra [A]. The I'-structure is part of the following notion of a I'-track alge-
bra. Let p be a prime and F = Z/p and G = Z/p?.

4.3.1 Definition. A T-track algebra ([A],T’) is a monoid [A] in the category of
graded groupoids such that the groupoid [A*] in degree k € Z is a G-module
object in the category of groupoids. Moreover [A*] = 0 is trivial for & < 0 and
[A°] is a discrete groupoid with 1 € [A°] such that G — [A°], z — z - 1, is
surjective. The monoid structure yields multiplication functors

(1) [A*] x [AT] — [A**7]
carrying (H : f = g,G:x = y)to H-G: f-2 = g-y. The element 1 € [A°] is

the unit of the associative multiplication (1), thatis H-1=1-H = H.
Moreover the G-module object [A"] yields the addition functor

(2) [A] x [A] =5 [AT]

carrying (G:z =y, G’ 12’ =y )to G+ G : x + 2’ = y+ . Hence [A"]; and
[A™]o are G-modules, see also (2.2.6).
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Multiplication preserves zero-elements and is left linear, that is
f-0=0-2=0,
H-0=0-G=0=0":0=0,

(f+f)a=fa+f z
(H+H) -G=H-G+H'-G.

The multiplication, however, need not be right linear. But there are given linearity
tracks in [A*+7],

(4) LY f(e +y) = fo+ fy,

for which the following diagram of tracks commutes.

’

e
(5) fa+a)y T = frtfa
H-(G+G") H-G+H-G'
\ , Fg,y’ \ )
gy +vy') =gy + gy

The linearity tracks are part of the following I'-structure of [A]. For a € [A]o and
a G-linear map ¢ : V = G" — W = G™ the I'-structure is a function (non-linear)
between graded G-modules

(6) L(p)a:[Alo®V — [Ah @ W

carrying « € [AJo @ V to I'(p)* € [A1 @ W.

Here V is concentrated in degree 0 so that = (x1,...,,) with z; € [A¥]y
and k =| z |. Ford € [A]p let -d = (z1-d,...,zp-d) and d-z = (d-x1,...,d - zy)
and we use similar notation for H = (Hy,...,Hy,) € [A]1 ® W. Moreover for
composable H,G € [A]; @ W let HOG = (H;0G,, ..., H,OG,).

Using this notation I'(p)? is a track

(7) L(e)s :a- (1@ p)z) = (1@p)(a-z)
In particular we have the linearity track
(8) rgbe i =T (Vy)g

which yields the track (4) as a special case n = 2.
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The following equations hold:

(9) T(p)% = 0" if ¢ is a permutation of coordinates,

(10) T()z? =T(¢)i - d, d € [A]o.

(11) T(p)g, = T(p)F"0b- T(p)7.

(12) T(1bp)® = ((1 ® )L(p)?)O0 () 29".
(13) T(¢)gsar = T(®)g +T(#)ar-

(14) T(p + ¢)2 = (T()2 + T()2) O () O™ (€07,

(15) T(p @ )" = (T()2, T()Z).

95

(16) T()2+* = (1@@)L(+v)5" ) PO(T ()% +T ()2 O () &9 1987,

Moreover, for H : a = o’ and G : ¢ = 2/ with G = (G1 : 21 = 21, ...

a},) the following diagram of tracks commutes.

T(e)a
(17) a-((1®¢)z) > (lee)(a- )
H-(10¢)G) (1®¢)(H-G)
v L(0)?) v

a - ((1® )z =(1®¢)(a 2"

That is, more generally than in (5), we have
(18) (1@ @)(H - @) (9); = T()eO(H - (12 9)G)).

This completes the definition of the I'-track algebra ([A],T).

LGty =

4.3.2 Definition. An element a € [A]o in a I-track algebra [A] is called linear if
for all z and ¢ we have I'()2 = 0Y. Moreover [A] is a strict [-track algebra if
all a € [A]o are linear. We shall see that a strict I'-track algebra is a track algebra
over G or a pair algebra over G, see (5.1.5) below. We shall prove in the next

chapter that each I'-track algebra over G can be “strictified”.

4.3.3 Remark. It is not clear how to define a I'-track algebra by a minimal list of
properties, so that the long list of properties described in (4.3.1) can be deduced
from the minimal list. Certainly the equations in Theorem (4.2.5) should be part

of such a minimal list since one readily checks:

4.3.4 Lemma. All equations in (4.2.5) hold in a T'-track algebra.
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Proof. (4.2.5)(5) for example is a consequence of Vy = (+¢ ® G)(+¢) = (G &
+¢)(+g) for V. =G3. O

4.3.5 Proposition. Let ([A],T) be a I'-track algebra. Then A = [A]~ is a graded
algebra over G and there is an A-bimodule D such that

D > [A]x z [Alo > A

is a (graded) linear track extension.
Proof. The linearity tracks show that multiplication in the homotopy category
A = [A]~ = [A]/ ~ is bilinear. Hence A is an algebra over G with 1 € A°. The
A-bimodule D with D™ = 0 for n < 0 is defined by

D = kernel([A]? -2 [A]o).

Here the A-bimodule structure of D is given by ao- H -8 = a-H -b with a,b € [A]o
representing o, 3 € A, H € D. We have for H,G € [A]} the equation H - G =
((0H) - G)O(H -0) = (H - (0G))T(0 - G); this shows (0H) - G = H - (0G). Hence
we get a- H =0and H-b=0if a,b € image(9). Therefore D is a left A-module.
In fact, D is also a right A-module since for H € D we get by (4.3.1)(5)

H-(b+0G) = (TY9°H.-b+H 0G)5%¢
H-b.
Therefore « - H - 3 above is well defined. Moreover
H-(b+V) = @CY)P(H b+ H-¥)TLY
H-b+H-V

so that D is a right A-module. Now we define the natural system D in (3.4.6) and
one can check the properties in (3.5.1) with a € a € A,

0a: Do = DI* = Aut(a)
carrying H € DI*l to H + a. g

4.3.6 Theorem. The secondary Steenrod algebra [A] is a T'-track algebra. Here
[A]L and [A]o are graded F-vector spaces and [A°] = F.

Proof. According to (2.4.4) we see that [A] has all the structure in (4.3.1) except
linearity tracks. We choose n > 1 so that for k£ > 1.

(1) [[Ak]] _ [[Zn’ Zn+k]]stab1e’

(2) F = [[AO]] C [[ZTL7 Zn]]stable’

by (2.5.4). Now the linearity tracks defined for [[K;table]] in (4.2.2) yield accordingly
linearity tracks I' for [A]. Uniqueness of linearity tracks shows that I'(¢)% in [A]
is independent of the choice of n. O
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In addition to (4.3.2) we know that [A] is a linear extension, see (3.5.2),
A > [Al z [Alo >A

which coincides with the extension of the I'-track algebra [A] in (4.3.5). The
secondary cohomology [X, —] of a path connected pointed space X is a model
of the track theory [[K;table]], see (2.3.8). This leads to the following notion of a
I'-track module.

4.3.7 Definition. A T'-track module ([M],T) over a I'-track algebra ([A],T) is
defined as follows. The module [M] is a graded object ([M*],k € Z) in the
category of groupoids. Moreover [M*] for k € Z is a G-module object in Gpd and
[M*] = 0 is trivial for k < 0. The monoid [A] acts on [M] from the left; that is,
functors

(1) [A*] > [MT] — [M*F7]

are given carrying (H : f = ¢g,G:z = y)to H-G: f-x = g-y in [M]. The
element 1 € [A°] is a unit of the action with 1-G = G and (H-H')-G = H-(H'-G).
The G-module object [M"] yields the addition functor

(2) [M7] x [MT] — [M"]

carrying (G:z = y,G' : 2/ = y)to G+ G 1z + 2’ = y+y'. Hence [M]; and
[M]o are graded G-modules, see (2.2.6).
The action preserves zero-elements and is left linear, that is, (x € [M]o,
G e [[M]]la fa f/ S [[A]]07 H7H/ € IIA]]l)v
F0=0-2=0,
H-0=0-G=0=0":0=0,
(f+f)ae=fa+f a
(H+H)-G=H-G+H -G.

3)

The action, however, need not be right linear. But there are given linearity tracks
in [M**7],

(4) LY f(r+y) = fo+ fy.

They are part of the I'-structure of [M]. For a € [A]o, and a G-linear map
p:V=G" - W = G™, the I'-structure is a function (non-linear) between
G-modules

() L(@)a: [Mlo®@V — [M]1 @ W
carrying « € [M]o® V to I'(p)% € [M]1 ® W with

(6) L(p)g sa- (1@ p)z) = (1@ ¢)(a- ).
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In particular we have the linearity tracks
(7) Do = D(Vy )

which yield (4) for n = 2. All equations as in (4.3.1)(5),(8). .. (18) hold accordingly
in [M] where we use also the I'-structure of [A].

4.3.8 Definition. An element a € [A]o is called [M]-linear if a is linear in [A] as in
(4.3.2) and if for all z € [M]o®V, ¢ : V — W, the track T'(¢)? = 0" is the trivial
track. We call [M] a strict I'-track module if all a € [A]y are [M]-linear. We shall
see that a strict I'-track module is the same as a module over a pair algebra, see
(5.1.6) below. Moreover we show in the next chapter that each I'-track module
can be “strictified”.

4.3.9 Theorem. Let X be a path connected pointed space. Then the secondary coho-
mology [M] with [M*] = [X,Z*], k > 1 is a -track module over the secondary
Steenrod algebra ([A],T) in (4.3.6). Here [M]y and [M]o are graded F-vector
spaces and [M*] =0 for k <0.

Proof. We define for = (z1,...,2,) € [M]o ® V the linearity track I'(p)* =
I'(p)a(z1,. .., zr) where we use I'(¢), in (4.2.13). O

We use Theorem (4.3.9) for a discussion of a formula of Kristensen, see 3.5
[Kr1]. Kristensen introduces the cochain operation d(«;z,y) which restricted to
cocycles corresponds to the following definition:

4.3.10 Definition. Let 2,y : X — Z" be pointed maps and let o € [A¥]o. Then
we define
d(a;z,y) € [X, 2]}
by the formula
d(a7x7y) + o+ ay = chx)y = Fa(x,y),
see (4.2.2). Hence
dlasz,y) oz +y) —ar —ay =0

is a cross effect track which plays a similar role as T%Y : a(z + y) = az + ay.

In Theorem (4.2.5) we describe basic properties of I'2?¥ which can be trans-
lated to achieve the corresponding properties of d(a; x,y). The formulas, however,

are more complicated. For example the derivation formula (4.2.5)(2) corresponds
to the following result:

4.3.11 Lemma. d(Bo;z,y) = d(G;az,ay) + fd(a;z,y) + d(B,a(z + y) — ax —
ay, ar + ay).

Proof. We have:
d(Ba; z,y) + fax + Bay = FZ;’
R NRan G vl
= {d(B; azx, ay) + Bax + fay}
Op{d(e; z,y) + ax + ay}
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= {d(B; ax, ay) + Bax + fay}
O{B - d(os 2, ) + Blox + ay))
DFg(r’Ly)_m_O‘y’m’LO‘y, see (4.2.5)(5),
= {d(0; ax, ay) + Bax + Pay}
O{B - d(os 2, ) + Blox + ay))
O{d(B, a(z + y) — ax — ay, ax + ay)
+ Bla(z +y) — ax — ay) + Blax + ay)}.

Now the rules in (2.2.6) yield the result. O

Formula (4.3.11) was not obtained by Kristensen, but he has in 3.5 [Kr1] the
following formula for p = 2 and cocycles x, vy,

d(Bo;z,y) + d(B; ax, ay) + d(B; oz + y), ax + ay) + Bd(a; x,y)

K(B)(ax) + k(B)(ay)
k(B)(az + ay)

(4.3.12)

where k is the Kristensen derivation. In order to prove (4.3.12) we have to show

d(B; a(r +y) — ax — ay, ax + ay)
=d(B;alz +vy), ax, ay) + k(B)(az + ay).

This follows from

d(B,§ +u+v,utv) =d(B;§u+v) + rw(5)(u+v)

which in turn is a consequence of (see (4.2.5)(5))
(T5“H + Blu+ )OG5 o+ = (8¢ + Dy )0rs”.

Here we have Fngv’”Jr” = k(8)(u + v) by (4.5.8) below.

4.4 The cocycle of [[K;table]]

We first introduce the extended cocycle of a I'-track algebra ([A],T). For this we
assume that [A]1, [A]o are graded F-vector spaces and [A°]p = F as in (4.3.6).

Let D be the A-bimodule given by ([A],T) as in the linear track extension
(4.3.5). Let mody(A)°P be the category of finitely generated free right A-modules
with generators in degree > 1. Then we have as in (3.4.7) the natural system D
on mody(A)°P given by

(4.4.1) Dy, =Hom(V,W)®a_a D
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for a : V. — W in mody(A)°P. More explicitly let z',...,2"Y) be a basis in V
and let ', ..., y"") be a basis in W. Then « is given by a matrix (a}) in A with

a(z') =3,y - af and one gets
Do = @ D().
4,J

This equation is needed in the next definition:

4.4.2 Definition. We choose an F-linear section sy of the projection ,
(1) = [A]o — A
with 7so = 1. Moreover we choose for (3, a) € A*¥ x A" the track

(2) po(B, @) = so(B)so(@) = so(fa)

in [A**"] and we define for
y L x L wey

in mody(A) the cocycle ¢(v, 8, a) depending on sg, po as follows. Let aé, ﬂi, o
be the coordinates of v, 3, a respectively. Then

(3) C(’Yv 67 a) € D’yﬁa = @ D('Yﬂa);

il
is the following element where &; = so(57) - so(af) for j=1,...,n(W).
c(v,B,0)] = zk:uo(%k, (Ba)y)
O Xk: so(™") Zﬂo(ﬂia aj)
O
e
D) ACRARCIE
j
O3 ol (38 )7
j

In this formula we only use sg and pg above and the I'-structure of the I'-track
algebra [A]. We call c(v, 3,a) the extended cocycle of [A]. One can check that c
represents a well-defined class (c¢) € H3(mody(A), D).
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We have seen in (2.5.2) that the Steenrod algebra 4 determines the category
Kffable of stable homotopy classes of maps between products of Eilenberg-MacLane
spaces, in fact,

stabl
K;ta ¢ = mod(A)°P

We now describe the secondary analogue of this classical result:

4.4.3 Theorem. The secondary Steenrod algebra [A] together with its I'-structure
determines the linear track extension [[K:,table]] up to weak equivalence. More pre-
cisely the extended cocycle ¢ of ([A],T) defined above represents the characteristic
cohomology class k3P = <[[K;table]]) in

HAK3*™ Hom(L™',—)) = H*(mod(A)°P, SA).

k;table — <C>

Here the A-bimodule D = XA yields the natural system D = LA as in (4.4.1).

The following result corresponds to (4.4.3). Recall that we have the linear
track extension

RH* (X) > [[X7 K;table]] 1 = [[X7 K;table]]o - [X, K;table]

in (3.8.7).

4.4.4 Theorem. The secondary cohomology ([X,—],T) as a T'-track module over
(IA],T), determines the linear extension [X, K;table]] up to weak equivalence over

[X, K;table] and under RT" (X)),

The proof uses a similar computation as in the proof of (4.4.3); here we also
use (2.2.10). This yields an extended cocycle for [ X, A].

4.4.5 Corollary. Stable secondary cohomology operations on H*(X) are completely
determined by the secondary cohomology ([X,—],T') considered as a T'-track mod-
ule over the secondary Steenrod algebra ([A],T).

In particular, examples of Adams in (2.3.7) yield 6; ; determined by the track
module ([X, —],T) over ([A],T).

Proof of (4.4.3). We show that a cocycle (as in (3.6.7)) for the linear extension
(1) HOIn(Lil, _) - IIK;table]]l ; [[K;table]]o - K;table

can be expressed completely in terms of [.A].
We first choose an F-homomorphism sg

(2) AE 25 [AM] - A
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which splits the projection 7 carrying a to the homotopy class « of a. Moreover
we choose for (3,a) € A x A" a track

(3) po(B, @) = s0(B)so(a) = so(Ber) in [A*7].
Now we consider a morphism
a:A=2%x . x 20— 2% x ... x Zb® = B
in the F-additive category K;table. Then « is given by a matrix
(4) a=(aj € A%)
withi=1,...,n(A) and j =1,...,n(B).
Here we use the equation [Z7, Z"tF]stable — AF for |k € Z. We now define the

section
s [A B]stable N [[A B]]?Jtable

by setting
n(A) '

(5) p}s(a) =Y solal)p".
i=1

Here we use the projections pJB,pf‘ of the strong products A and B above. For

objects D, C, B, A we have the indices I, k, j, resp. i with

1<1<n(D) ,
1<k <n(C) |,
1<j<n(B) ,
1<i<n(C)
Now consider a composite
(6) clpog

in Kffable with « given by (oz;) and 3 given by (ﬂ,ﬂc) accordingly so that sa and s
are defined with

n(B)

(7) (Boi = Blai.
j=1

Here ﬁiaé is the product in .A. We now define a track

(8) (e, B) = (sB)(sa) = s(Bev)
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in [[K;table]] in terms of po in (3) and the linearity structure I' on [[K;table]] in
(4.2.5). For each index k we have the projection p$ of the product C. Since C' is
a strong product it suffices to define p{'u(3, ) so that we have

9) pE (B, ) : pf (sB)(sa) = pf s(Ba)
with
g (sB)(sa) = (X, s0(BL)pP)sa

= X, (s0(B)pP (s00))

= 3, 50(B0) (X, s0(a)pi)

3, s0(8L)s0(ad))pft

Here the track uf (3, «) is defined by jg in (3), that is

(12) e (8,0) = > (> po(BY, 05))pit
i g
Since p# is a linear map between F-vector space objects in [[K;table]]o we see that
(13) Ry = 3,3 (s0(B])s0(ai)pi)
= 3, Xi(s0(B0)s0(a)pf).

Here we have the linearity track in [[K;table]],
j _ 50(04;)Pfxv»»yso(a;m))?ﬁm)
with ‘ ‘ , ‘ '
D48, @) = s0(BL (D so(@)pi') = Y so(B])so(a)pi".

Hence we get

(15) L (8,a) =) Th(8,a) : R = Ry

J
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and

(16) P (B, @) = p5(8, )OTE (5, @)
defines p(8, @) in (9). Next we consider the composite
(17) Do proa

Using u(5, ) above the cocycle ¢(v, B, «) is defined as in (3.6.7). In order to
compute this cocycle we use the projection plD : D — Z% and the inclusion
i : Z% — A which are linear in Top*. We have to compute the composite

(18) ¢} = pPe(y, B,a)ilt € A4

We obtain ¢! by the following composite of tracks.

(19) ps(vBa)if

PP n(yB,0)°Pift

Y
(20) pPs(vB)s(e)ig
PP u(y,8)°Ps(@)i
Y
(21) pPs(7)s(B)s(a)ist
pPs(V)u(Ba)if
Y
(22) pPs(v)s(Ba)ist
pP u(v,Ba)if

\

Ps(vBa)it

Here each track p is given by a composite of tracks as in (15). We describe the
tracks in (19),...,(21) more explicitly as follows. First we get (19) = ((23)J(24))°P
as follows where (24) = 0" so that (19) = (23)°P.

(23) ’757 ZNO 7617 ]
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_ O, 780( ), 7O
(24) o Zj FSO(’Yﬁ)J
= oY

Here we use piif = 1if iy = i and = 0 if i1 # 0. Next we see that (20) =
((25)0(26))°P with

11 (v, B)s(@)if

(5 (koo BL)pf)s(ai

(25) = (Z;Ckmo(vf, BL))pP s(c)i)
= (3,(Xk no(vf, B])so(at)),
TP (y,B)s()it = 3. TF(y, B)s(a)is
(26) oy, pelhelah o (R ol ),

so(vf)

Next we obtain (21) = (27)J(28) as follows. Here we have (28) = 0" so that
(21) = (27),

DS(’Y)(MIS(ﬂaa)if)k:1 ..... n(C)
(27) = (O 50N (S 108 ) ket
= S0 D s0(0f) X mo(B, ),

PP s(N (T8, )i Jr=1....n(0)
= (MY 50 (v )P ) (D Th(B, )i Yimi...n(o
(28) = YD 50N (T, TL(B, @)idh)
= 1 o) (5, T )
=0".

Finally we get (22) = (29)0(30) as follows. Here we have (30) = 09 so that
(22) = (29),

(29) o(7, Ba)if Zuo 15 (Ba)j,

>k TF(y, Baid

Z 0,. 750 6a)k; .0
k
= 0",

LAy, Ba)i

—
w
(=]

~~
I
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Hence we see that ¢! in (18) is given by
(22)0(21)0(20)01(19) = (29)01(27)01(26)°P0(25)°PLI(23)°P

where the right-hand side is well defined only by pg above and the linearity tracks
I in [A]. This completes the proof of (4.4.3). O

4.5 The Kristensen derivation

Let A be a (connected) graded algebra over F = Z/p and let D be an A-bimodule.
A linear derivation k of degree r from A to D is an F-linear map

(4.5.1) ki A" — D" n e,

with k(e - 8) = (ka)B + (—1)"a(kS).

Now let ([A4],T) be a I'-track algebra for which [A]; and [A]o are graded
F-vector spaces as in the case of the secondary Steenrod algebra [.A]. We have the
linear track extension

(4.5.2) D >[AhL  z[Ale A

as in (4.3.5). In particular the secondary Steenrod algebra is such an extension
with D = £ A. The linearity tracks I'**¥ in [A] define as in (4.2.3) the track

Dot a(xy + -+ xp) = ax1 + -+ + axy,
Ifry =---=x, =1€F = [A]° we thus get as in (4.2.7),
(4.5.3) I'(n)y=Tt':a(n-1) = n-a.

Hence if p divides n we have n-1 = 0 and n-a = 0 so that I'(n), : 0 = 0 represents
an element in D by the linear extension (4.5.2). Here we use the assumption that
[A]o is a graded F-vector space.

4.5.4 Definition. Let ([A],T") be a I-track algebra as above. Then for p\n a linear
derivation of degree 0,

I'ln]: A— D,

is defined as follows. We choose for o € A”, r > 1 an element a € [A"]o represent-
ing a and we define

by the linearity track (4.5.3).

4.5.5 Lemma. The derivation T'[n] is well defined for p\n.
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Proof. If H : a = o’ is a track, then by (4.2.5)(6) we see that

T'(n)q

a(n-1) >n-a
H(n-1) n-H
v I'(n)gr v
a’(n- 1) ( )a >n-a/

commutes. Here for p\n we have H(n-1) =07 : 0= 0 and n- H = 07 : 0 = 0.
Hence we get I'(n), = I'(n), . Moreover (4.2.5)(4) shows that I'[n] is F-linear and
(4.2.5)(2) yields the derivation property above. O

The following proposition shows that only I'[n] for n = p is of interest.
4.5.6 Proposition. T'[k - p| = k- T'[p].

Compare (4.2.8).
As a crucial example we get the following result.

4.5.7 Proposition. The secondary Steenrod algebra ([A],T) is a T-track algebra
which yields the derivation of the Steenrod algebra

Tlpl: A — SA

of degree 0. This is the same as a derivation I'[p] : A — A of degree —1.

For p = 2 one has the Kristensen derivation [Krl] of degree —1,
kit A— A

which carries S¢" to S¢"~t, n > 1, and Sq¢° to 0. Using a result of [Kr1] we show:

4.5.8 Theorem. For p = 2 the derivation T'[p] : A — A in (4.5.7) coincides with
the Kristensen derivation k.

Proof. Here we use the connection between algebraic cocycles (used by Kristensen)
and topological cocycles (used in this book) discussed in the Appendix of 2.1. We
leave the straightforward details to the reader. Recall definition (4.3.10). Kris-
tensen [Krl1] proves

d(a, z,z) = k(a)(x).
Now it is clear that for p = 2 we have

Ilp)(a) = d(a, x, x). O
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Next we obtain the computation of I'[p] for p odd as follows.

4.5.9 Theorem. For p odd the derivation T'[p] : A — A in (4.5.7) is the unique
derivation which satisfies U'lplsg = 1 for the Bockstein operation 8 € A and
T[p]pi =0 for the reduced powers P", i > 0.

We prove this result in the Appendix of this section.
We generalize the definition of the derivation (4.5.4) as follows.

4.5.10 Definition. Let 7 be a weak F-additive track extension as in (4.1.3), for
example 7 = [[K;table]]. Hence for @ : A — B in 7j the track I'(p)o : 0 = 0 is
defined as in (4.2.7). We define the homomorphism

[[p] : [4,B] — D(A, B)

as follows. Let a € [A, B] and let a : A — B be a map in 7y which represents the
homotopy class . Then we set

F[p]oz = U_l(r(p)a 0= 0)
where o : D(A,B) = Aut(0 : A — B) is given by the linear extension 7, see
(3.5.1).
4.5.11 Proposition. I'[p] in (4.5.10) is a well-defined F-linear map satisfying

Ilplga = a*(L[p]) + B(L[pla)-
This is the derivation property of T'[p].
This is a consequence of (4.2.15).

The track theory [[K;table]] is a weak F-additive track extension which by
(4.5.10) yields the F-linear map

(4512) F[p] : [A7B]Stable N [L*].A’ B]stable

for products of Eilenberg-MacLane spaces A and B. In fact I'[p] is totally deter-
mined by I'[p] in (4.5.7) as follows. Let

A=2% x .. x 20 B=7%x...x Zbns
and let n; j = b; — a;. Then we get the commutative diagram

T'[p]

(4.5.13) [A, B]stable =~ [L~1A, BJstable

D
@i,j AMisi D, [p] >®i,j A’ﬂi,j*l

which follows easily from the additivity rule (4.2.5)(4). Hence (4.5.8) shows that for
p = 2 the derivation I'[p] in (4.5.12) is determined by the Kristensen derivation .
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Appendix to Section 4.5: Computation of I'[p| for p odd
We first show
4.5.14 Proposition. T'[p]y =0 for U : Z9 — ZP? in Top*.

Proof. In this proof we use notation as in section (8.2) and (9.3) below. We consider
the track I' in the diagram (r =q — k, Z" = Zf)

A ur

(1) zr > (Zn) > (Zrm)p
+ L +
v v
ZT U > Zp’f‘

where T is a track under Z” V ---V Z" C (Z")P. The track I satisfies

(2) Clplp, = A'T:0=0

where A is the p-fold diagonal. According to the formula

3) Uz +y) = NU(z,y) + U(2) + U(y)

in Section (8.2) below we get
p—1

4) Ui+ +2p) = NO_ U+ +zi,mig1)) + Ulwr) + -+ + Ulap).
i=1

Hence the track I’ : N = 0 in Section (8.2) below yields the track T in (7), that is

(5)  T(x1,...,7p) = I‘(Z Ulxy 442, 2i41)) + Ulzy) + -+ Ulzy).
Hence we get
(6) (AT)(2) =T(,...,2) =T(>_ Uiz, x)) + pUx

=1

where pUx = 0. Here we have U(iz,z) = a(i,1)U(x,2) with & in Section (9.3)
below. Moreover I'(a + b) = T'a + I'b so that
(AT)(@) = (T i, )0, )

" = —TIU(z,x).
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According to the definition of U we have

(8) Uz,z) = Z b(x,z) = Z al = Z Ul(x).

beB beB beB
Hence the proposition T'[p]p, = 0% follows from
(9) IU(z) = 0.
Since T'U (z) = > ¢, ['aU(z) by definition of I' we study the function
(10) X:Z/p=m— Aut(U(y)) = [X, Z"]
which carries o to T'o U (y). We get

LapU(y)

IpU(y)OC(8UY)

(11)
LUy, (Uy)

since fUy = Uy for B € m. Hence x is a homomorphism. This shows that

TU(z) = YaerTaU(y)
= YaerX(@)
(12) = o =x(n)
_ p(p—l)x(l)
=0
since p is odd and px(1) = 0. O

4.5.15 Proposition. I'[p]pi =0 fori > 1.

Proof. In Section (10.8) we show that there is a stable map sP? in [Z, ZPa]stable
such that U : Z9 — ZP4 in Top* coincides with (sP?%)g, q even. Therefore the
forgetful map

(b . [Zq, qu—l]stable _ [Zq, qu—l]

carries I'[p] pi to I'[p]y. By the result in (1.1.13) we see that ¢ is injective. Therefore
the result follows from (4.5.14). O

4.5.16 Proposition. I'[p]g = 1.
Proof. The inclusion F = Z/p — G = Z/p? induces the map
(1) iz 7n

between Eilenberg-MacLane spaces defined for R = F and R = G respectively, see
Section (2.1). Moreover the addition maps +p : F? — F and +¢ : G? — G yield
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the following commutative diagram where X? = X x ---x X is the p-fold product.

;P

(2) O L
+ +
\ ) \
zy L/

Now we apply the natural fiber sequence to the map ¥ and to ¢ and we get the
following commutative diagram.

61’

(3) (F)? > (2 )P
+ +

v \

F A > Z];-L

Here F ~ QZf ~ Z]f_“l is given by the fiber sequence

(4) F— 7y — 7§ — Zy.

It is well known that the boundary map ZI?*I ~F 2, Zy represents the Bock-
stein map, see (2.1.9). In order to compute I'[p]g we have to be careful with respect
to the homotopy equivalence

(5) Zg~t " =QZ¢ T >F

Tn

defined in (2.1.9). Here 7,1 is F-linear but 7 is not F-linear. Therefore I'[p]s is
represented by the following diagram, Z" = Z3.

(6) I 7/ e (VA LY &

x_,_ _H, +
\ \ P N

azr _ =F “>=zn

Here the track H is unique by (3.2.5). The composite +(7P)A satisfies

(+H(@)A) (@) =p- =
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so that d(p - ) = 0 since Z™ is a F-vector space. The space F', however, is a
G-module so that p-z € F need not be trivial. We now observe that 7 : F' — QZ"
yields the track

(7) TH:0Y:0=0

which is the identity track of 0. In fact by (3.2.5) the track (7) is unique. Moreover
by (3.2.5) there is a unique track U in the following diagram.

(8) F ">=qQzn T >=F
A 7

U
1
Now pasting of H and U yields
(9) Ux H=UH0OUyH = U, HOUH,

with Uy H = arH = 708 = 09 and Uy H = H. Hence we get H = (UH,)°°0OU Hy
with HoA = 0. Therefore we get

F[p]g = 8HAT‘TL,1
(10) = QUPH,Ar,_,
= OU°P(-p)Trp_1.

Here the map -p: F — F (carrying y to y - p € F) admits a factorization

(11) F > F

\
Qzn Q(z)> QZG

where j is the inclusion. In fact, by (2.1.3)(3) we have for (z,0) € F' the equation
p(z,0) = (pz,po) = (0,po) = (0,imo) so that po is a loop. The inclusion j
satisfies 07 = 0 and mj = Q(7 : Zg — Z") so that 7j(2i) = 0. Therefore we get a
well-defined track

(12) V = QUjQ(i) : 0 = 0
representing an element in [QZ™, QZ"] such that
(13) Llplg = Vrrry—1 = Vrp_1.

The following lemma shows that V' is the identity of Q2™ in [QZ", QZ™] so that
I[p]g = rn—1 represents 1. For n > 1 we see that I'[p|g defined by the stable map
B in [A] coincides with I'[p]g above. O
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Let 7 : E — B be a fibration in Top® with fiber A. Consider the fiber
sequence

(4.5.17) o4 "o ' =F =4 'sE "-B

with F = {(z,0) € A x (E,*)"9 iz = ¢(1)} and 7(z,0) = mo € Q(B). Since T
is a homotopy equivalence we can choose a track U as in the diagram
04 Ysaqp T >F "=aB ">F “>4

g 7

1

where 7 is a homotopy inverse of . Since 95 = 0 and 7jQ(i) = Q(m)Q>3) =
Q(7i) = 0 this diagram represents a track 0 = 0 in [QA, A] and hence an element
in [QA, QA].

4.5.18 Lemma. There exists a track U such that the track OU jQU(r) in the diagram
above represents the identity element in [QA, QA].

Proof. The proof of the lemma is not so obvious though the lemma holds in any
fibration category with zero object *, see [BAH]. Therefore it suffices to prove the
dual lemma in a cofibration category with zero object *. We may assume that
all objects are fibrant and cofibrant. We consider for a cofibration 7 the following
diagram.

(1) A< NE < F< A< ' E<" B
F CEuUp(CB >(CE)/B E/B
A A

T o~ ~

YB < 5 FEUpCB

We replace the cofiber A = E/B by EUgC B. The map 0 is given by the composite
§:EUpCB-% CB/B=%YB —5%B

where ¢ is the quotient map. We replace F by F in the diagram. We have to show
that there exists a homotopy

H:I(F) — (CE)/B,
(2) Hy:F=CEUgCB % (CE)/B,

—1

H,:F=CEUzCB -4 ¥B — ¥B,
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where ¢ denotes the quotient maps. The cylinder of F satisfies
(3) I(F)=1(CB)Urp I(CE)

and we define H) = Hy | I(CE) by the composite

(4) H} : ice ' -cce © -ce >(CE)/B

CEUg CE

where the extension ¢ of (1,1) exists since CE is contractible. The restriction
H{ | IB admits a factorization

IB—%B " (CE)/B.
We now define H/ = Hy | IC'B by an extension in the following diagram.

1"
HO

(5) ICB ~(CE)/B
A A
(7"7777)
iWCBUIBUi,CB >~YBVYB
(0,q,9)

The extension H{ exists since the obstruction m + (—m) = 0 vanishes. Now one
can check that H = H{/ U H is a well-defined homotopy as above. Moreover the
following diagram commutes where ¢ are quotient maps and r is the inclusion.

q

(6) I(CBURE) " =%(E/B)

w

. S(E)

P

I(CB Us CE) , =(CE)/B

This proves (4.5.18). O

4.6 Obstruction to linearity of cocycles

In this section we show that the Kristensen derivation is actually an obstruction to
the F-linearity of cocycles representing the characteristic class of [[K:,table]]. For this
we introduce the following natural map between cohomology groups of categories.
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4.6.1 Definition. Let F = Z/p. Let A be an F-additive category and let D be an
F-additive A-bimodule. Then we define the linear map

I,: H3(A,D) — H'(A, D)

as follows. Let (c) € H3(A, D) be represented by the cocycle c. We may assume
that the cocycle ¢ is normalized with respect to 0-maps, sums and products. For
this compare the Appendix of Baues-Tonks [BT]. Then I';,({c)) is represented by

the 1-cocycle
d°:A — D

which carries o : A — B to d°(a) € D(A, B) given by the following formula. Let
AP A — AP =Ax---x A
be the p-fold diagonal in A and let
Ayt AP — A
be the p-fold codiagonal in A. We have A,AP = 0 since multiplication by p is
trivial. We now set
d(a) = c(a, Ap, AP) — ¢(Bp, P, AP) + ¢(B,, B, ).
4.6.2 Proposition. The linear map I'y in (4.6.1) is well defined.
Proof. We first check that d° is a cocycle, that is, dd° = 0, or

0= (6d°)(8,a) = pdy(a) — dy(Ba) + dy(B)ex

for B <2~ B <% Ain A. We know that dc = 0 since ¢ is a cocycle. Hence we have
the following formulas:
0 = (5c)(B,c Ay, A7)
= fe(a, Ay, AP) — c(Ba, Ay, AP) + (B, a Ay, AP)
—c(f,a,0) + (B, o, Ap) AP

0 = (56)(5, By P, A7)
= fBe(Bp, P, AP) — ¢(BBy, a”P, AP) + (8, Bpa™P, AP)
—c(8, By, a*PAP) + ¢(B, By, a*P) AP.
0 = (GO, By B 0)
= [c(Bp, BY,a) — c¢(8By, B, a) + ¢(5,0, a)
—c(B, By, BPa) + ¢(8, By, B? ).
0 = (6c)(Ep,B*P, B, q)
= Epc(8", B, a) — c(E,f7F, BY,a) + c(E), P B, a)
—c(Ep, B*P, BPa) + ¢(E,, 877, BP)a.
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Since ¢ is normalized with respect to zero maps, sums and products the under-
lined terms vanish. We write d°(a) = &(a) + n(a) where £(a) = c(a, Ap, AP) —
¢(Bp, P, AP) and n(«) = ¢(By, B?, «). By definition of £ we have
(08)(B,a) = —c(Ba, Ap, AP) + c(Ep, (Bar) P, AP)
—i—ﬁc(a, Apa Ap) =+ C(/@a B;Dv AP)O‘
_ﬁc(BPa Oé><p7 A;D) - C(Epa ﬂxpv Bp)a'

Hence the equations above show that (6€)(8, «) is the sum

= c(Ba, Ap, AP) +  c(Ep, (Ba) P, AP) +  c(Ba, Ap, AP)

— (B, 0A,, AP) — Be(Bp, B, ) + ¢(BBp, BP, )
+ (B, By, BPa) — ¢(BBp,a*?, AP) + (B, Bpa*?, AP)
— (B, Bp,a”PAP)  — c(E,B*P,BP,a) + c(Ep,B3*PBP,a)
— c(Ep, 8P, BPa).

Here we have a*P AP = BPa, §*PBP = EPf3, aA, = Bpo*P and BB, = E,B*P so
that 6(£)(8, «) is the sum
(&) (B, ) = c(BEp, (Ba)™ P, AP) — c(BBy, P, AP) — c(Ey, 377, BPa)
—Bc(Bp, B, o) + c(Ep, EP 3, ).
On the other hand we have
0 = (dc)(Ep, EP,B,a)
= E,c(E?,B,a) —c(0,0,a) + c(Eyp, EP(, a)
—c(Ep, EP, Ba) + c(E,p, EP, B)a
0 = (de)(E,,B"P, P, AP)
= Epc(B7P,aP, AP) — c(E,B7P, P, AP) + c¢(E,, (Ba) <P, AP)
—c(Ep, B*P,a P AP) + c(E,, B7P, a”P) AP.
Therefore we get
(65)(ﬂ,0{) = —ﬂC(Bp,Bp,Oé)—f—C(Ep,EpI@,Oé)
—Bc(Bp, BY,a) + c(Ep, E?, 5, a) — c(Ep, EP, B)ax
= —(0n)(B,a)

where 7 is defined above. Hence we see 0(d°) = 6£ + dn = 0. This completes the
proof that d¢ is a cocycle.

Next let ¢ = df be a coboundary where f is a normalized cochain. Then we
have

cla, B,7) = (0f) (e, B,7) = af(B,7) — flaB,y) + f(a, By) — [, B)y.
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Hence the definition of d° yields
d() = af(Ap, A") = Bpf(a™?, A") + B, f (B, q)
—(f(adp, A7) — f(Bpa™?, AP) + f(0, @)
+(f(,0) = f(Bp, ™ P AP) + f(Bp, BPa))
—(f(a, Ap) AP — f(Bp, a”P) AP + f (B, BY)av).

This shows that
d°(a) = af(Ap, AP) — f(B,, B?)a

and hence d€ is a coboundary. This completes the proof that I', is well defined. O

4.6.3 Proposition. The composition
HH3(A, D) — H*(A, D) -2 H'(A, D)

is trivial. Here we use the natural map (3.6.6)(4).

Proof. Assume that c is normalized and multilinear. We have inclusions i2 : A —
AP and projections p : AXP — A for 1 < r < p and the equations

A <A
AP:ZprvAp:ZZ'rv
T T
Xp __ -B A
(0% _ZZT ap,.
T

hold. Hence multilinearity of ¢ shows

dc(a) = Z O‘ptvs +Z prvztv
_Z prvztaptvs)'

r,8,t
Since ¢ is normalized we see that

0 fort £ s
A A\ _
(apt’S)_{c(oz,lA,lA) for t = s,

B B _J o fort #r
(pr,zt,a)—{ c(lp,1p,a) fort=r,

5B A A c(la,a,1aq) forr=t=s
(pralt y APy 51 s)_{ 0 otherwise.

Since multiplication by p is trivial we hence get d°(a) = 0. O

Proposition (4.6.3) shows that Iy, is an obstruction to the linearity of cocycles,
that is: Let * € H3(A,D) and let I'p(x) # 0. Then x is not in the image of
HH3(A, D) and hence = cannot be represented by a trilinear cocycle. We apply
this in Theorem (4.6.5) below.
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4.6.4 Proposition. Let T be a weak F-additive track extension as in (4.1.3), for
example T = [[K;table]]. Then the characteristic class (T ) yields the element

I,((T)) € H'(K, D)

which is represented by the derivation I'[p] in (4.5.10), that is I[p] € T, ((T)).

Proof. We have to compare the definitions of I', and I'[p] and we have to use
the definition of the characteristic class (7). In fact, the comparison gave us the
intuition to define the operator I', by the somewhat obscure formula for d°(«) in
(4.6.1). We choose first a cocycle ¢ representing (7) as follows, see (3.6.7). Let
s:K(A, B) — 7o(A, B) be compatible with products and with the F-vector space
structures of A, B in K and 7 respectively. This implies that ¢(B,, B?, o) repre-
sented by the track diagram (3.6.7) is trivial, since all tracks in this track diagram
are trivial tracks. Moreover we see that the sum c(a, 4,, AP) — ¢(Bp, a*P, AP) is
represented by the tracks in the following diagram.

> BXP
0 / %
\ 14
S A . =B
/ 7
0
Here = denotes trivial tracks. This proves I'[p] € I',((T)). O

4.6.5 Theorem. For the characteristic class ki™™° of [[K;table]] the element
I\p(k;table) c Hl (I<;table7 Hom(Lfl, _))

is represented by the Kristensen derivation I'[p] and hence I‘p(kffable) # 0, see
(4.5.13). This shows that k;table cannot be represented by a linear cocycle, p = 2.

This is a consequence of (4.6.4) and (4.6.3).



Chapter 5

The Algebra of Secondary
Cohomology Operations

In this chapter we show that the secondary Steenrod algebra which is a I'-track
algebra ([A],T") can be canonically “strictified”. This yields a new secondary alge-
bra B in which multiplication is bilinear. The secondary algebra B is well defined
up to isomorphism; so that B is the true algebra of (stable) secondary cohomology
operations generalizing the Steenrod algebra A.

5.1 Track algebras, pair algebras and crossed algebras

Let R be a ring and let Mod(R) be the category of (left) R-modules and R-linear
maps.

An R-module object in the category of groupoids Grd is an abelian group
object in Grd together with a left action of R. Let pair(Mod(R)) be the category
of pairs in Mod(R), then we obtain as in (2.2.6):

5.1.1 Proposition. The category of R-module objects in Grd and R-linear maps is
isomorphic to the category pair(Mod(R)).

Let M be an R-module object in Grd with 0y, 01 : M7 — My given by source
and target. Then we define the pair
(1) 9y : MY — My in pair(Mod(R))
where MY = {H :a = 0 € M;} = kernel(d;) and 9(H : a = 0) = a. That is )
is the restriction of dy. Conversely let
(2) 0 : M) — M

be an object in pair(Mod(R)). Then we define M; = MY & My and for H € MY,
x € My we write H+x = (H,z) € My. Then 0y(H + z) = 9(H) + = and
O(H+z)=zsothat H+z:0(H)+z= =z
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Composition of tracks is defined by
(3) (H+2)O(G+90(H)+2z)=H+ G+

This yields the R-module object M in Grd associated to 9, see (2.2.6).

We consider a pair 9 : MY — My in pair(Mod(R)) as a chain complex
concentrated in degree 0 and 1. Now let R be a commutative ring. Then we get for
pairs X = (0x : X1 — Xo), Y = (0y : Y1 — ¥)) in Mod(R) the tensor product of
chain complexes X ® Y (with ® = ®p) defined by

X107V B X 00X oY D X0,
d2(a®b) = (0a) @b —a® (9b),
di(a®y) = (0a) ®y,

di(z ®b) =z ® (9b),

with ¢ € Xg, y € Yy, a € X1, b € Y7. Hence d; induces the boundary map
g+ (X1 @Yy @ Xo®Y1)/im(d2) — Xo®@ Y

which again is a pair in Mod(R). This shows that (pair(Mod(R)), ®) is a monoidal
category with the product

(5.1.2) X®Y = 0y

defined above.

A (non-negatively) graded pair X in Mod(R) is a sequence of pairs X;, ¢ € Z,
in Mod(R) (with X; = 0 for ¢ < 0). Then X is the same as an R-linear map of
degree 0,

= (8 : Xl — XQ)
where X7, X are (non-negatively) graded objects in Mod(R). For such graded
pairs X,Y we get the X®Y satisfying

(5.1.3) (Xey) = @ x"eym™.
n+m=k

This is a monoidal structure of the category of graded pairs in Mod(R). Morphisms
are R-linear maps of degree 0. We now describe the concept of algebra in the
category of graded groupoids. Such algebras can be introduced in three different
ways, as ‘track algebras’, ‘pair algebras’ or ‘crossed algebras’.

5.1.4 Definition. A (graded) track algebra over R is a monoid A in the category of
graded groupoids such that A%, k € Z, is an R-module object in Grd with A* =0
for £ < 0. Moreover the monoid multiplication is a functor

An x Am _ An+m

which is R-bilinear (n,m € Z).
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5.1.5 Definition. A (graded) pair algebra over R is a monoid A in the monoidal
category of graded pairs in Mod(R) with multiplication (see (5.1.3))

i ARA — A.
Moreover A; = 0 for ¢ < 0.
5.1.6 Definition. A (graded) crossed algebra A over R is a graded pair
(1) 0: A1 — Ay

in Mod(R) with AT = A} = 0 for n < 0 such that Ay is a graded algebra in
Mod(R) and A; is an Ap-bimodule and 0 is an Ap-bimodule map. Moreover for
a,b € Ay the formula

(2) d(a)-b=a-0(b)
holds in A;. We write

(3) mo(A) = cokernel(9),
(4) 71 (A) = kernel(9).

Then it is easily seen that my(A) is an algebra over R and that m;(A) is a mo(A)-
bimodule. Hence we have the exact sequence of Ag-bimodules

0 — m(A) — Ay 95 Ay — mo(A4) — 0.

Remark. A crossed algebra is the same as a “crossed module” considered in Baues-
Minian [BM]. Such crossed modules correspond to classical crossed modules for
groups considered by J.H.C. Whitehead. We here prefer the notion “crossed alge-
bra” since we will also consider “modules over a crossed algebra”.

5.1.7 Proposition. The categories of track algebras, pair algebras, and crossed al-
gebras respectively are equivalent to each other.

In fact, using (5.1.1) we see that a track algebra yields a pair algebra and
vice versa. Moreover the definition of ® in (5.1.2) shows that a pair algebra yields
a crossed algebra and vice versa. Given a track algebra A we obtain the associated
crossed algebra by

0:AY — Ay

as in (5.1.1)(1). The Ap-bimodule structure of A? is defined by
_ nO O
(1) f-H-g=0%7 H-04

for f,g € Ag, H € A°. Here 0? : f = fisthe trivial track. Moreover for H : f = g,
G :x = yin A' we have the formula
H-G=(¢-G)O(H -x)

® — (H-y)O(f - )
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which for ¢ = 0 and y = 0 = implies

(3) H-G=H-z=f-G

and this corresponds to the formula H - (0G) = (0H) - G in a crossed algebra.
According to the equivalent concepts

(5.1.8) track algebra = pair algebra = crossed algebra

we can define a module over a track algebra also in three different but equivalent
ways. We do this first for the case of track algebras.

5.1.9 Definition. A (left) module M over a track algebra A is a graded object M
in the category of groupoids Grd such that MF*, k € Z, is an R-module object in
Grd. Moreover the monoid A acts from the left on M and the action is a functor

A" % Mk _ Mn+k
which is R-linear (n,k € Z). Compare (5.1.4).
Next we consider modules over a pair algebra.

5.1.10 Definition. A (left) module M over a pair algebra A is a graded pair M in
Mod(R) together with an R-linear map of degree 0,

w: AQM — M
which is an action of the monoid 4 on M.

5.1.11 Definition. A (left) module M over a crossed algebra A is a graded pair
M = (0: My — My) in Mod(R) such that M7 and M, are left Ap-modules and 0
is Ap-linear. Moreover a commutative diagram of Ag-linear maps

1®0

A1 ®A0 Ml > Al ®A0 MO
I f I3
\ \
M,y o > My

is given where p(a ® x) = (da) - x for a € Ay and © € M; or x € M.
According to the equivalent concepts in (5.1.8) we also see that the concepts
(5.1.12) module over a track algebra = module over a pair algebra
= module over a crossed algebra
are equivalent. In fact, in addition to (5.1.7) we get:

5.1.13 Proposition. Let A be a track algebra corresponding to the pair algebra A’
and to the crossed algebra A”. Then the categories of (left) modules over A, or A,
or A” are equivalent to each other.

The proof uses similar arguments as in (5.1.7).
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5.2 The I'-pseudo functor

Let ([A],T) be a I-track algebra and let ig : E C A be a graded set of generators
of the graded algebra A = [A]~. We can choose a lift s” of the inclusion ig as in
the following commutative diagram.

(5.2.1) E < S AL

A
Let Mon(FE) be the free monoid generated by F and T (E) = G Mon(E) be the
free G-module generated by Mon(E). Then

1) Te(E) = DGR

n>0

is the G-tensor algebra generated by GE where GE is the free G-module generated
by E. The function s” above yields a commutative diagram.

) Te(E) = GMon(E)  °  >[Alo
A

Mon(FE) ¢ > [A]o
A

E > [A]o

"
S

Here the vertical arrows are the inclusions. Since [A]o is a graded monoid we
obtain the unique monoid homomorphism s’ of degree 0 on Mon(E) extending s”.
Since [A]o is a graded G-module we obtain the unique G-linear map s extending
s’. The map s, however, is not multiplicative for the multiplication in the tensor
algebra Tg(E), that is, for a,b € T, (E) the element s(a-b) does not coincide with
the element s(a) - s(b). If a,b € Mon(E) we have s(a-b) = s'(a-b) = (s'a) - (s'd) =
(sa) - (sb). Moreover we get

(3) s(a) - s(b) = s(a-b)

for a € Tg(F) and b € Mon(E) since multiplication in [A] is left linear.



124 Chapter 5. The Algebra of Secondary Cohomology Operations

5.2.2 Definition. We write a = 32"\% niq; with n, € G, n}, # 0, and a; € Mon(E)
pairwise distinct for ¢ = 1,...,n(a). Let

( ) { Pa Vo= G — G,
1 ,
pa = Y9 nip;
be given by a and let @ = (a1,...,a,()) be the tuple associated to a. Then we

have sa = (sa, ..., Sap(q)) € [AJo ® Vo and the equation
n(a) ,

(2) s(a) = nis(a;) = (1@ pa)(sd)
i=1

holds. Hence we get for x € Tg(E) the track

(3) [(z,a) = T(pa)3 : (sz) - (sa) = s(z - a)

since (sz) - (sa) = (sz) - (1 ® v )(sa) and s(z - a) = (1 ® @4)(sz) - (sa). Here we
use (5.2.1)(3). Now (3) is the trivial track

(4) I(z,a) = o~

s(z-a

) if @ € Mon(E).
5.2.3 Theorem. For a,b,c € Tg(E) we have the formula

I'(ab, c)dI(a,b)(sc) = I'(a, be)O(sa)'(b, ¢).
Both sides are tracks (sa)(sb)(sc) = s(abc).

The formula in Theorem (5.2.3) shows that pasting of I'-tracks in the fol-
lowing diagram yields the identity track. This exactly is the property of a pseudo
functor (s,T) : Tg(E) — [A], compare for example Fantham-Moore [FM].

s(abc)

s(ab) 'ﬂ\

° < ° < s(b) ° < °
™ s(a) X

ﬂ\ s(be)

s(abc)
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Proof. Let
(1) T'(a,b,c) = D'(ab, ¢)OT(a, b)(sc)
and let

2) T’(a,b,c) = T'(a, be)(sa)T(b, c).

We have to show (1) = (2) for a,b,c € Tg(E).
We now consider the case that a,c € Tg(E) and b € Mon(E). Then we get
I'(a,b) = 0Y so that

[(a,b,¢) = T(¢e)3un)

(3) = I‘(apc)ﬁfa)(sb), since b € Mon(E)
= D(po) & 90(sa)(pe)s,  see (4.3.1)(11),
(4) I'(a,b, ¢) = T(ppe) 20 D(sa) () 3-

Here we have ¢p. = @, and s(bc) = (sb)(s¢) since b € Mon(E). This shows that
(1) =(2) if a,c € Tg(F) and b € Mon(E).
Now we consider for fixed a,c € Tg(E) the functions d and d’ with

d(z) =T'(a,z,c),

() d'(z) =T'(a,z,c).

We know d(z) = d'(x) for x € Mon(FE). Assume now that for z € Tz (FE) we have
d(z) = d'(z), then we show for y € Mon(FE) that

diz+y) =d(x+y).

This proves that d = d’. In fact, we only need to consider the following two cases
with n(z) > 1, see (5.2.2).

@8] y#ux; forali=1,...,n(zx).

(IT) y =1 and ny # —1.

In case (I) we have

(6) oty = (¢2,1) : Vary = Vo G — G,
and in case (II) we have

(7) Prt+y = Pz +pi: Vigy =V — G.
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By definition of d we get

(8) d(z + ) = T(Pe) Xazray)

9) Dary )35 (s0),

(10) d(x) = T(¢e) 3oz L (90)3 (50),

(11) (8) = D(¢e)i{u) + T(Pe)ilay):  (4:3.1)(13).

Now we compute (9). We get in case (I) and also in case (II) the formula
(12) (9) = T(a)ia (sc) + (sa)(sy)(sc)

(13) Orss*¥(sc).

We prove (9) = (12)(13) first in case (I). Then we get:

(14) (9) = D(+e(pa ® 1)50Y(sc)  case (I),

(15) (9) = (1® +¢)D(ws ®1)55%Y(sc), (4.3.1)(12),
(16) ng1®(@m®1))(srvsy)(sc)7

(17) (15) = (D(pa)ss + T(1)34)(sc),  (4.3.1)(13).

Here (15) = (12) by (4.3.1)(3) and (16) = (13) by (4.3.1)(10). This completes
the proof of (9) = (12)J(13) in case (I). Now we prove this in case (II). Then we
have

(a) (9) = T(pa + pi)ia(s0),
(b) = (D(px)is + T(07)50)(s0)
(C) DF(+G)g}l®¢z)wa(1®P1)Sif(sc).

Here I'(p7) is the trivial track of (sa)(sy) since 21 = y. This shows (b) = (12
Moreover we have (¢) = (13). This completes the formula (9) = (12)00(13) i
case (II).

Since (9) = (12)0(13) in case (I) and case (II) we get

d(z +y) = (8)1(9) = (11)D(12)T(13).

Here we have by (10)

)-

(18) (12) = {T(¢e)3(ax) 1 + slay)(sc)
(19) {d(z) + s(ay)(so)},

so that d(z +y) = (11)0(18)0(19)1(13), that is:

(20) d(z +y) = {T(9e)3ar) + L (9e)3(an }
(21) O{T ()3 1P + s(ay)sc
(22) Od(x) + s(ay)(sc)

(23) Orss*¥(sc).
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Here we get

(24) (20)0(21) = s(aze) + L(9e)3ay)s
(25) (20)0(21) = s(aze) + {T(pc) 2}
(26) O{s(axc) + (sa)(pe)sc},  (4.3.1)(11).

Now we use the assumption
(27) d(z) = d'(2) = T(pee) 3§ O(sa)T () 35
Hence we get
(28) d(x +y) = s(axc) + pye) 3¢, since pye = o,
(29) Os(aze) + (sa)L(¢e)3,
(30) O (00) 357 + s(ay)(sc)
(31)
(32)

O(sa)T(ee)ss + s(ay)(sc)
CID(s) (s0), (sp) (s0)

Equivalently we get

(33) d(x + ) = {T(0re)s" + T(0ye) 27}
(34) O{(sa)T'(pe) 5y + (sa)T(@e)sy
(35) ngir)(SC),(Sy)(SC).

On the other hand we get by (2)

(36) d' (2 +y) = T(Pretye)ss ¥

(37) O(sa)T(e)3(a44):

(38) (37) = (sa)(T(pe)ss + T(we)3y)s  (4:3.1)(13),
(39) (37) = {Ts{rrowelyer, (4.3.1)(5),

(40) O{(sa)T(¢e)35 + (sa)T ()3}

(41) I () (), (s9) (56,

Here (40) = (34) and (41) = (35). Hence d(z + y) = d'(z + y) follows from
the equation (33) = (36)0J(39) or equivalently (36) = (33)3(39)°P, that is

(42) D(puetye) 8T = {D(pue) 27+ Dpye) SO0 200,

sT

This formula is a consequence of the following lemma which we also need in the
next section. Hence the proof of (5.2.3) is complete. O
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5.2.4 Lemma. For a,z,y € Tg(E) we have
D(pory)2SH = (Dlpa)2d +Tpy)s) 0.

Proof. We first prove the formula for y € Mon(E). Then we have case (I) and case
(II) as in the proof of (5.2.3).

In case (I) we know that y # z; for all 7. This shows 1y = +¢ (v B py) and
also s(x + y) = (s&, s§). Therefore (5.2.4) is a consequence of (4.3.1)(12), that is:

(1) D (0a4y) 35 = T(+c(pr @ py)) "9
(2) - (1 ® +G)(F(§0m)§§v F(@y)gz)
(3) ng}1®(w®s&y))(siysm'

This yields the proof of the lemma for y € Mon(E) and case (I).

In case (IT) we have 1 = y and n = n§ # —1. Let z = & — nzy. Then we
have x = z + ny and x + y = z + my where m = n+ 1 # 0. Moreover Z does not
contain y so that

(4) Pz = +G(§0z D ‘Pny)a
(5) Prt+y = +c(p: @ ‘Pmy)-

Here we have ¢, = nyy, ©my = mey,. Moreover we get

(6) s(#) = (s(2),8(9)) = s(z +y).
Using (4.3.1)(12) we get:
(7) L(2)s” = T(+6(ps ® 9ny))3t* @
(8) = {T(0:) 25 + 0y}
(9) Orsmew,
(10) T (aty) 3 = T (02 © Qmy))37
(11) = {T(p2):5 + T(mepye) s}
(12) Ors(msw),

Here we have m = 1+ n so that by (4.3.1)(14)
(13) D(mpy)s?" = {T ()2 + T(ng, )3}
(14) Orsw)ns),

Hence we get
(15) (10) = {T(2)35 + D(nioy )3 + Doy )2}
(16) Ofs(a)s(z) + T30}

(17) DF?&Z%(nJrl)S(y).
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By (4.2.5)(5) we see

(18) (17) = {s(a)s(z) + Ts®)sw) yop
(19) D{Fzgz)ﬂw(y) + s(a)s(y)}
(20) Ors@-+ns@).s@),

Here (20) is part of (5.2.4). Moreover (18)°P = (16) by (4.2.5)(3). This shows

(10) = (15)0(19)01(20), that is:

(21) (10) = {T(2)557 + T(nipy )3 + Ty )5}
(22) O{I3 @ + (sa)s(y)}

(23) Ors@ss@),

Now (7) = (8)(9) and (8) is part of (21) and (9) is part of (22). This shows

(10) = {(7) + L(i2)5"30(23)

and this proves the lemma in case (II), y € Mon(F). Now the proof of the lemma
is complete for y € Mon(FE).

Now assume the formula in (5.2.4) holds for (z,y) with z,y € Tg(F) and let
v € Mon(E). Then we show that the formula holds for (z,y + v).

In fact, since v € Mon(E) we have shown that for w = z 4+ y the formula
holds for (w,v) so that

(10) D(pu+o) 3"+ = {T ()il + Dlpy)2 00,

sw

Here the assumption on (z,y) yields a formula for I'(¢,, )"

so that we get

A

) NS N 2
(11) D(puro)3T = {T(ea)ia +Dlpy)3 + Dlen)i}
(12) OfTse™ + (sa)(sv)}
(13) Ors@@+y)v,
Here (12)00(13) coincide by (4.2.5)(5) with (14)0(15),
(14) {(sa)(sz) + T30}
(15) Orsy-sv+sv.

Since Lemma (5.2.4) holds for (y,v) we get AO(14) = I‘(goerv)i((lerv)A and this
yields the formula:

D(puto)id T = T(ea)in + T(oyso)sd ™
Orsy-st+),

Hence the lemma also holds for (z,y + v) and the proof of the lemma is complete.
O
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5.3 The strictification of a I'-track algebra

Let p be a prime and F = Z/p and G = Z/p?. We show that each I'-track algebra
[A] over I as considered in (4.3.1) is weakly equivalent to a track algebra [A, E, s]
over G termed the strictification of [A]. Here it is crucial that we alter the ground
ring from F to G. In fact, we have seen in (4.6) that in general there is no track
algebra over F which is weakly equivalent to [A].

Let ([A],T) be a I'-track algebra as in (4.3.1). We choose a graded set E of
generators of the graded algebra A. Since Ag = F we choose only generators in
degree > 1. We choose a lift s” as in the diagram

E > A
so that s’ (e) represents the homotopy class e € E C A. Then the G-linear map
(5.3.1) s:16(F) — [A]o

is defined as in (5.2.1) and we have the I-tracks I'(a,b) : s(a) - s(b) = s(a-b) in
(5.2.2) so that

(s,1) : Te(E) — [A]
is a pseudo functor as proved in (5.2.3).

5.3.2 Definition. Using I'-tracks we define the I'-product H e GG of tracks as follows.
Let f,g,2,y € Te(FE) and let

H: sf = sg,

G: stz = sy
be tracks in [A]. Then the T-product is the track

HeG : s(f-z)=s(g-y),
HeG = T(g,y)0(H-G)OL(f, )%

where H -G is defined by multiplication in [A], see (4.3.1)(1). Hence the I'-product
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corresponds to pasting in the diagram.

s(gy)
A (9,9)
£ s(9) s(y)
o< o<
NH G
o< o<
o s(h) s(z)
r(fa))
s(f-z)

The pseudo functor property of (s,I") shows immediately:

5.3.3 Proposition. The I'-product is associative, that is
(HeG)eF=He(GeF),

and the unit 1 € Tg(E) is a unit for the T-product, that is 1 e

Here we use the notation

feG = 0eG,
Hex = He0
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H=Hel=H.

where OSDf :sf = sf and 05 : sz = sz are the identity tracks. One readily checks

the formula

He(G

(5.3.4)

5.3.5 Theorem. The I'-product is bilinear.

Proof. We have for H' : s(f’) = s(¢’) the equations

(1) (H+H')eG=T(g+g,y)0((H+H) GUL(f + f,2)°.

(90 G)U(H o),
(Hey)O(f 0 G).

Here we have by (4.3.1)(13) the equation I'(g + ¢',y) = I'(g9,y) + I'(¢’, y) so that

by (4.3.1)(3) we get

(H+H')eG={T(g,y) +T(q,9)},
2) O{H -G+ H -G},
O{T(f, =) + T(f', 2)}°P.

This shows (H + H')e G = (H ¢ G) + (H' ¢ G).
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Next we consider G’ : s(z’) = s(y') and
3) He(G+G")=T(g,y+y)0OH - (G+G))OL(f,z+a")°".
Here we can apply (4.3.1)(5) so that

(4) H-(G+G) = () PO(H -G+ H-@)Ors

On the other hand

(5) H o G =T(g,y)0(H - G)OL(f, 2),

(6) H o G’ =T(g,y)O(H - G)O(f, ).
Hence we have

HeG+HeoG ={I(g9,y)+T(g,9)},
(7) OH-G+H-G),
O{T(f, ) + T(f,2")}°P.

Therefore H o (G+ G') = H e G + H o G’ is a consequence of

) L(g,y +y){ILY 1P = T(g,y) + T(g.9),
9) D(pyry)og ) = (Dlpy)3 + Ty ) )BT .
But this formula is proved in (5.2.4). O

5.3.6 Definition. Let ([A],T') be a I-track algebra and let E be a set of generators
of the algebra A and let s : Tg(E) — [A]o be defined as in (5.2.1), (5.3.1). Then
we obtain the track algebra [A, E, s over A as follows, see (5.1.4). Let

(1) [[A7E7 S]]O = TG(E)
For z,y € Tg(F) a track G : x = y in [A, E, §] is a triple
(2) G=(yGa):x=y

where G : sz = sy is a track in [A]. Composition of such tracks is defined by
composition in [A]

(3) (y, é,m)D(m,ﬁ,z) = (y,éljﬁ,z)

and (y, OSDy7 y) is the trivial track of y. The product of tracks in [A, E, s] is defined
by the I'-product in [A], that is

(4) (y.G,2)- (f,H,g)=(y-f.GeH,xg).
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By (5.3.2) this product is associative with unit (1,05,1) = 1. The set [A, E, s,
of tracks is also given by the following pull back diagram.

(5) [[Av E, 5]]1 ’ = [[A]]l

(01,02) (61,90)

v v
Ts(E) @ Te(E)

Since s, dy, 01 are G-linear we see that [A, E, s]; is a graded G-module. By (5.3.5)
the product (4) is bilinear. This shows that [A, E, s] is a well-defined track algebra
over G termed the strictification of the I'-track algebra ([A],T").

We have seen in (5.1.5) that the track algebra [A, E, s] can be equivalently
described as a pair algebra or as a crossed algebra over G. According to (4.3.5) we
have the (graded) linear track extension

(5.3.7) D > [A]1 z [Alo > A

of a I-track algebra ([A],T"). According to the definition of D and A we see that
A = mo([A E,s]),
D = m([AE,s])

where we use the crossed algebra associated to [A, E, s], see (5.1.6).

5.3.8 Theorem. The graded linear track extension
D >[[A7E78]]1 ;[[Aans]]O >A

is weakly equivalent to (5.1.6).

Proof. A cocycle for [A, E, s] is easily seen to coincide with the corresponding
cocycle for [A], see (5.3.7). Hence the result follows from (3.6.9). O

The strictification [A, E, s] depends on the choice of generators E and the
choice of s” in (5.2.1). Let s{ be a further lift as in (5.2.1) with wsj = ig. Then
there exists a track

S" 8" = s
that is for e € E we have S : s"(e) = sjj(e) in [A].

5.3.9 Theorem. The track S” : s" = s{j induces an isomorphism of track algebras

S:[AE,s] 2[AE, so]
for which Sy is the identity of T (E).
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Proof. Let so be defined by s in the same way as in (5.2.1)(2). Then we obtain
by S” in the same way the track S : s = so in [A]. We define the isomorphism S}
on (y7G7 33) € IIAaEvs]]l by

S(y, G, x) = (y7SyDC¥DS‘;p,x).

One readily checks that S is a well-defined isomorphism of track algebras. Here
we need (4.3.1)(16). O

5.4 The strictification of a I'-track module

In a similar way as in (5.3) we can strictify a module over a I'-track algebra [A].
Let E and s be given as in (5.2.1).

Let [M] be a module over the I'-track algebra ([A],T"), see (4.3.7). Then
M = [M]~ is aleft A-module and we can choose a set Ejs of generators of degree
> 1 of the A-module M. Moreover we choose a lift s7,,

(5.4.1) [M]o
/ .

v

Ey > M

of the inclusion Epy C M so that s7,(e) represents the homotopy class e € Ey C
M. Let GEj; be the free G-module generated by Ej;. Then

(1) Te(E) ® GEy = G(Mon(E) x Ey)

is the free T (E)-module generated by Ejy, see (5.2.1)(1). Similarly as in (5.2.1)(2)
we get the following commutative diagram.

(2) G(Mon(E) x Ep) > [M]o
Mon(E) x Exy ™ > [M]o
Ev " oo

Here s}, is the s’-equivariant map extending s7, and sps is the G-linear map
extending s’,. Hence we get the G-linear map

(3) spTg(E) @ GEy — [[M]]O
We can define for b € Tg(E) and y € Tg(E) @ GE)yy the T-track
(5.4.2) Par(byy) : s(b) - sm(y) = sm(b-y)
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in the same way as in (5.2.2). Moreover (5.2.3) holds accordingly so that the
T-action H e G for H : sf = sg in [A] and G : spr(x) = sa(y) is defined by

(5.4.3) HeG =Ty(g-y)O(H - G)OT(f,2)°P

as in (5.3.2). This action satisfies (5.3.3) accordingly and also satisfies G-bilinearity
as in (5.3.5). The corresponding proofs are easily generalized to the case of actions.
Hence we obtain the following definition corresponding to (5.3.6).

5.4.4 Definition. Let ([A],T') be a I'-track algebra with strictification [A, E, s].
Let M be a module over ([A],T') as in (4.3.1) and let (Ej, spr) be chosen as in
(5.4.1). Then we obtain the [A, E, s]-module [M, Ejr, sp] as follows. Here we use
the notation in (5.1.6). Let

(1) [M,Enr,sulo =Te(E) @ GEp

be the free [A, E, s]o = Te(E)-module generated by Eys. For x,y € [M, En, sa]o
atrack G :x = yin [M, Enm,su] is a triple

(2) G:(y,é,a:):x:>y

where G : syr = smy is a track in [M]. We define composition and action in
the same way as in (5.3.6)(3),(4) and we obtain the G-module structure as in
(5.3.6)(5). Then it is easily seen that [M, En, sa] is a well-defined left [A4, E, s]-
module which is termed the strictification of [M].

The strictification [M, Ea, sar] satisfies a result similar to (5.3.8). Moreover
the strictification is well defined up to isomorphism by Ejs since a result similar
as in (5.3.9) holds.

5.5 The strictification of the secondary
Steenrod algebra

For a prime p we have the Steenrod algebra A over F = Z/p together with the
canonical set of algebra generators

{Sq|i>1} for p =2,
(5.5.1) Ey = , .
{BYU{P" and Py |i>1} for p odd.
Here the generator Pg € FE 4 is mapped by the inclusion £ 4 — A to the composite

element GP’. We need these extra generators Pj for the “instability condition”
defined below. Let ([A],T") be the secondary Steenrod algebra which is a I-track
algebra. Hence we can apply the strictification in (5.3). For this we choose a lift s
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as in the diagram

(1) [Alo

where 75 is the inclusion and s = ig. Hence the lift s chooses for each element
e € E4 a stable map s(e) in [A]o representing the homotopy class e. The stable
map s(e) is given by a sequence of maps s(e), and a sequence of tracks as in the
following diagram, n € Z, k =| e |.

s(e)n

(2) zmn > gn+tk
Heon
=
\ \
n+1 Zn+1+k
Q2o e S )

Compare (2.4.4). In Section (10.8) below we choose the stable map s(e) for e € E4
such that the following instability condition (2a), (2b), (2c) is satisfied. For e = S¢*
(p = 2) we choose s(e) in such a way that

(2a) 5(8¢") =0: 2" — x — Z"tk

is the trivial map for & > n and also H.,, = 0Y is the trivial track for k > n + 1,
see (1.1.6). Similarly for e = P* (p odd) we choose

(2b) S(Pk)n =0:2" — 5 — Znt+2ke=1)

for 2k > n and also He, = 09 for 2k > n + 1. Compare (1.1.6). Moreover for
e =P} (p odd) we choose

(2C) S(Pg)n =0:2" — x — Z”+2k(:0*1)+1

for 2k +1 > n and also H., = 0 for 2k +1 > n + 1. Compare (1.1.6). For e = 3
there is no condition of instability since we assume Z° = x is a point.

We have for a = s(S¢*) and z,y : X — Z" the linearity track T'%¥ :
a(xz,y) = ax + ay in (4.2.2). By the instability condition (2a) the track I'?:¥ :
0 = 0 represents an element in H"T*~1(X) for k > n. In fact, we shall show in
(10.8) the delicate linearity track formula

-y fork=n-+1,
2d LY =
s(Sq*)
0 for k >n+ 1.

T, x

For # = y we know that ;g . : 0 => 0 is the element #(S¢*)(x) =
Sq*=Y(z) in H"*=1(x), see (4.5.8). Here x is the Kristensen derivation. The
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delicate formula above is compatible with this result since I'";% ., = S¢"1(z) =
5(5q%)

x -z for |x|= k — 1. If the prime p is odd a delicate formula such as (2d) does not
arise since we get

(2e) I =0 for2k>n,  and
wly p—
I‘S(P[,;) =0 for2k+1>n.

The lift s in (1) defines as in (5.2.1) the G-linear map
(3) s : T5(Ea) — Tr(Ea) — [Alo
which together with the I-tracks I'(a, b) : s(a)s(b) = s(a-b) in [A]; is a pseudo
functor, see (5.2.3).

We now can define the ezcess e(a) of an element « € Tp(F 4) in such a way
that the map

(4) $()p : Z" —> % — Z" el

is the trivial map for e(a) > n and Hq 4, = 0U is the trivial track for e(a) >n+1.

If a1,...,ar € Mon(E4) are pairwise distinct and o = niay + -+ + ngag
with n; € F — {0}, then e(a) = Min(e(aq), ..., e(ax)). Moreover for a monomial
a=-e1----e. € Mon(E4) with e1,...,e, € E4 put for p =2,

(5) (@) = Max; (| ¢ | — | g1+ er |).

Moreover for p odd put

2|e; | —lejpr--e-- er | for e; € {P',P% ..},
(6) e(a)=Max;{ 2|ej|+1—|ejp1-----e.| for e;€ {PA,PE, g
1 for e; =p.

Now one readily checks that (4) holds by use of (2a), (2b), (2c¢).

5.5.2 Definition. The strictification of the secondary Steenrod algebra is the track
algebra [A, E 4, s] defined by s in (5.5.1), see (5.3.6). This track algebra can be
equivalently described as a pair algebra or a crossed algebra as in (5.1). The crossed
algebra B = B(s) corresponding to [A, E 4, s] is given by

(1) 8261—>BO

where By = T (E 4) is the G-tensor algebra generated by E 4. Moreover By is the
G-module consisting of pairs (H,z) where © € By and H : sz = 0 is a track
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in [A]. In degree 0 the crossed algebra B coincides with the following diagram.

E
BY > By

Flp] ~G

Here F[p] is the F-vector space generated by the element [p] = (07, p-1) € B; where

p-1€Tg(E4) and 0™ is the trivial track of the 0-element in the discrete groupoid
[A°] =T, see (2.4.4). The boundary map @ in (1) is defined by (H,z) = z. The
Bp-bimodule structure of B; is defined by

(H7$)y = (H.yvir'y)a
Here Hey : s(x-y) = 01is the track Hey = (H-sy)0'(x, y)°? and yeH : s(y-z) = 0
is the track y ¢ H = (sy - H)OT'(y, z)°® where we use the I-tracks of the pseudo

functor (s,T'), see (5.5.1)(3) and (5.2.3). In Section (5.3) we have shown that B is
a well-defined crossed algebra, see (5.1.6), with

(2)

B = cokernel(d) = A,

(3)

mB = kernel(d) = XA
Moreover two lifts s, sp as in (5.5.1) together with a track S : s = sg in [A] yield
the isomorphism

(4) S : B(s) = B(so)

which is the identity on Tg(E4) and on 71 (B(s)) = XA = m1B(so), see (5.3.9).
Therefore B is well defined up to such isomorphisms of a crossed algebra. We call
B the crossed algebra of secondary cohomology operations.

As the main goal of the book we will discuss properties of the crossed algebra
B which hopefully will lead to a computation of 5. In Chapter 11 we shall see that
B has the additional structure of a secondary Hopf algebra.

In order to compute the crossed algebra B we choose the following set of
generators By of the ideal Ig(A) = kernel(Tg(A) — A). Let

(5.5.3) EY CIg(Ea) C Te(EA)

be the subset consisting of p = p-1, where 1 is the unit of the algebra T (E 4), and
of the Adem relations (1.1) considered as elements of Tg(E4). Moreover 3% € EY
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and Pg — BP" € EY% (n > 1) if pis odd. Then it is clear that EY; generates the
ideal Ig(E 4). We now choose a lift ¢ as in the following diagram where jg is the
inclusion.

(1) By

e

o

¥

EY i Ic(E4)

That is, ¢ carries a relation r € EY; to a pair t(r) = (H(r),r) € By where H(r) :
s(r) = 0 is a track in [A]. For r = p € EY we have s(r) = 0 and H(r) = 0" is the
trivial track of 0. The map ¢ in (1) induces the following commutative diagram of
crossed algebras with exact rows.

a

(2) 0 >¥A i>31 =By " >A >0
A

I' t
J 17 d
0 > K4y > [E.A] > By > A > ()
Here d is the free crossed algebra generated by elements [r] with r € E}4 and

d[r] = r, that is,

[E4] = (Bo ® (GEYL) ® Bo)/U
where GEy is the free G-module generated by EY and U is the By-submodule of
V = By ® (GEY) ® By generated by the elements d(a)-b— a(db) for a,b € V. Here
d:V — By is the unique By-bimodule map with d[r] = r for r € E. Since dU = 0
we get the induced map d in the diagram. Moreover the map ¢ in the diagram is

the algebra map between crossed algebras which is the identity on By and satisfies
t[r] = t(r) with ¢t as in (5.5.3)(1). Then

(3) K4 = kernel(d: [EY] — Bo)

is a well-defined A-bimodule termed the bimodule of relations among relations
and the induced map

(4) I Ky — A

is a map between A-bimodules depending on the choice of ¢ in (5.5.3)(1). Kris-
tensen [Kr4] studies a “Massey product operator M” which corresponds to I'y; and
claims that a formula for M can be found. The computation of I'y; is equivalent
to the computation of the crossed algebra B since

(5) vA > By
A
Iy t

Ki  >[EY]
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is a push out diagram in the category of Byp-bimodules. Here the A-bimodule K 4 is
completely determined by generators E 4 and relations E'Y in the Steenrod algebra.
The A-bimodule map I';, however, depends on the crossed algebra B and can be
considered as an additional structure of the Steenrod algebra A. Kristensen [Kr4]
and Kristensen-Madsen [KrM1] compute certain elements [a, b, ¢] in K 4 and [Kr4]
indicates a method how to determine the map I'k; though there is not a definition
of the bimodule K 4 of relations among relations in [Kr4].

Now assume that ¢ : B — By is a further lift as in (1). Then there exists a
map A : By — XA with

to(e) = t(e) +iA(e)

for e € EY. The map A induces a By-bimodule map A : [EY] — ¥A such that
(6) Iy =Ts+Aj.

Hence the class

(7) I = {T's} € Homa-a(Ka,XA)/j* Homp, 5, ([E4], 2A)

is independent of the choice of ¢ and of the choice of s defining B = B(s). Each
element in the class 'z can serve as a map I'y in (5) which defines B as a push
out. Hence the computation of the class I's is equivalent to the computation of
the isomorphism type of B. In Baues-Pirashvili [BP] we show that there is an
isomorphism

(8)  HML3(A,SA) = Homa a(Ka,SA)/j* Homg, s, ([EY], A)

carrying the class k3P to I'p.

Recall that we obtained in (4.5.7) the degree 0 derivation I'[p] : A — XA
which for p = 2 coincides with the Kristensen derivation y in (4.5.8). The map '
extends I'[p] since we prove:

5.5.4 Theorem. For x € By with m(x) =& € A we get the element
[Pl -z —x-[p] € Ka

and the map T satisfies the formula

Ts(lpl @ — - [p]) = TpI(&)-

Proof. We have d([p]-z) = p-x = d(x-[p]) so that [p] -z — z - [p] € K 4. Moreover
we get by definition of ¢([p]) = (0, p) the formula

t(lpl-z—z-[p]) = (0,p)-z—x-(0,p)
(Oez,p-z)— (ze0,z-p)
((0-2)O0(0,2)°P,p-x) — ((z - 0)O0(z,0)°P, p - x).
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Here 0-2 = 0 and z - 0 = 0 are the identity tracks of 0. Moreover for x €
Mon(E4) the track I'(0,z) = 07 is the identity track of 0. Therefore we get

t(p] - @ — - [p]) = (U(x,0)°",0)
for x € Mon(E 4). Here
I'(z,0) : sx-sp=s(z-p) =p-s(z)
is the opposite of the track
[(p)se = (sz)(p-1) = p- sz

which represents I'[p](€). Hence

Ls(lpl - = — - [p]) = T(pl(€)
for € Mon(E). Since I'; and I'[p] are F-linear the result (5.5.4) follows. O

Let 2 be an element of degree | « |> 1. Then we obtain for the crossed algebra
B the free right B-module = - B generated by x, see (5.1.7). Let mody(B)°P be the
track category of finitely generated free right B-modules

(5.5.5) 21 -B®- @, B

with generators of degree | x; |> 1 for ¢ = 1,...,7. Morphisms (0-cells) are B-
linear maps and tracks (1-cells) are natural transformations between such maps
(considered as functors between graded groupoids). Then one gets the linear track
extension

r A >mody(B)P Z mody(B)y? > mody(A)°P

where mody(A)°P is defined as in (2.5.2) and XA is the natural system given by
the A-bimodule YA, see (4.4.1). We have seen in (2.5.2) that

K;table = mod(A)°P.

This result has the following secondary analogue

5.5.6 Theorem. The linear track extension given by mody(B)°P is weakly equivalent
to the linear track extension given by [[K;table]] in (2.5.3)

Proof. The extended cocycle (¢} in (4.4.3) is exactly a cocycle for the linear track
extension mody(B)°P. Hence the result follows from (3.6.9). O

Kristensen introduced Massey products for the Steenrod algebra A. They
can be easily derived from the crossed algebra B as follows.
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5.5.7 Definition. Let A = (a?), B = (b}) and C' = (¢;) be matrices withi =1,...,s
and j =1,...,t and entries

(1) al, bl c; € By = Tg(Ea).

Moreover assume that products AB and BC have entries in Ig(E 4). Then we can
choose matrices X,Y with entries in B; such that

(2) X = (') satisfies 0X = AB,
(3) Y = (y;) satisfies 0Y = BC.

Then one readily checks that

AX-C—AY) = 9X) C—A-9()
= ABC — ABC
0

so that XC — AY represents an element in 3.A. The Massey product
(4) (A,B,Cy C XA

is the set of all elements X - C' — A-Y with X and Y satisfying (2) and (3). This
set is a coset of the subgroup

t

Y (BA) -7(e) + Y m(a’)(SA) C TA

i=1 j=1
where 7(c;), m(a;) € A are given by the quotient map 7 : Tg(E4) — A.

We point out that the crossed algebra structure of B yields obvious properties
of the triple Massey product (A4, B, C) which also can be understood as a Massey
product in the linear track extension mody(5)°? in (5.5.6).

Kristensen-Pedersen [KrP] and Kristensen [Kr4] define the Massey product
in terms of the secondary Steenrod algebra [.A] and therefore I'-tracks are involved
in their definition. Since we know that ([.A],T') has the strictification B, the defi-
nition in (5.5.7) corresponds directly to the classical definition of a matriz Massey
product, see Massey-Petersen [MaP)].
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5.6 The strictification of secondary cohomology
and Kristensen operations

Let X be a path-connected pointed space and let Ex C H *(X) be a set of gener-
ators of the A-module H*(X). We choose a lift s as in the diagram

(5.6.1) X, Z*]o

where ix is the inclusion with msx = ix. Hence the lift sx chooses for each
element e € Ex a continuous map sx(e) : X — Zlel representing the homotopy
class e € [X, ZI°l] = HI*l(X). For example we can choose Ex = [X, Z*]o and sx
the identity. This is the natural choice of Ex which is very large but functorial in
X. As in (5.4.1) the lift sx and s in (5.5.1)(3) determine the G-linear map

(1) Sx ITG(EA)®GEX I [[X7Z*]]Q
Moreover for b € Tg(E4) and y € Tg(E4) ® GEx we have the I'-track
(2) x(b,y) : s(b) - sx(y) = sx(b-y)

in [X, Z*]1. Recall that B is the crossed algebra in (5.5.2) which is the strictifica-
tion of the secondary Steenrod algebra.

5.6.2 Definition. The strictified secondary cohomology H*(X, Ex,sx) is the B-
module, see (5.1.7), defined as follows: Let

(1) H* (X, Ex,sx)o =Tc(Fa) ® GEx

and let H*(X, Ex, sx)1 be given by the following pull back diagram.

(2) H*(X7EX38X)1 >|IX7Z*]]?

0 pull 0
v v
HY (X, Ex,sx)o,, >[X.Z"]o

Hence an element in H*(X, Ex,sx)1 is a pair (H,y) with y € Tg(E4) ® GEx
and H : sx(y) = 0 in [X, Z*]{. Moreover 9(H,y) = 0. Now 0 is a well-defined
B-module by setting

a-(Hyy)=(aeH,a-y) foraeBy=T5(EA),

(3) (Gya)-z=(Geza-z)
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fora € By =Tg(Ea), (G,a) € By, and z € H*(X, Ex, sx)o. The I'-products a e H
and G e z are defined by I'-tracks, that is
ae H = ((sa)H)OI'(a,y)°P,

@ Gez = (G(sxz))dl(a,z)°".

According to (2.2.10) we get

5) moH* (X, Ex,sx) = cokernel(0) :I:I*(X)7
mH*(X,Ex,sx) = kernel(d) = XH*(X).

Moreover two lifts sx,s% as in (5.6.1) together with a track S : sx = s% in

[X, Z*]1 yield the isomorphism of B-modules
(6) SH*(XaEXaSX)gH*(XaEXvsg()

which is the identity on Tg(E4) ® GEx and on mH*(X, Ex,sx) = SH*(X) =
mH*(X, Ex, s%). Therefore the strictified cohomology is well defined up to such
isomorphism.

We now can introduce secondary cohomology operations as follows.

5.6.3 Definition. Recall that

(1) Ig(E4) = kernel(r : Tg(E4) — A)
and let
(2) Ig(Ex) = kernel(r : Tg(E4) @ GEx — H*(X)).

A relation is an element

k
(3) r=>b+Y may, € Ig(Ea)

v=1

with a,,b,,b € Tg(E4). A secondary cohomology operation associated to r is an
element

(4) H € By with 0H =r.

If the element b has excess e(b) > n, then the stable map s(b), = 0 : Z™ —
x — ZMHI for m < n, compare (5.5.1). If e(b) > n, then each element z €
T6(E4) ® GEx with | 2 |< n yields the I-track

L, 2)? :s(b-x) = s(b) - s(x) =0
so that

(5) I'b,z) = (T'(b,z)°?,b-z) € H* (X, Ex,sx )1
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satisfies OT'(b,z) = b - 2. Now we assume that

(6) ay -2 € Ig(Ea) forv=1...k

so that there are elements

(7) H} € H*(X, Ex,sx)1 with 0H, = a, - .

Then an easy computation shows that

k
O(H -z —T(b,x) —ZaV-Hff)
=1

:(b—i—ZaV-r,,)-x—b-;v—Za,,-a,,-sz.

Hence we get the coset of elements

Ou(x) = {H-x—f(b,x)—ZIZ:laV-Hﬁ|8H§:au-x}

(8) 7% k 7%
€ (BH*(X))/(Cy= m(aw) - BH(X)).

This is the element defined by the Kristensen operation in (2.7.4). Now it is easy
to develop the properties of the operation 6y by use of the B-module structure of
H*(X, Ex, Sx).

In particular we get the following results where equality holds modulo the
total indeterminancy.

5.6.4 Theorem. Assume Op(z) and Oy (y) are defined. Then
On(z+y) =0 (z) + 0u(y) if |wl=lyl<e(d) -1,
Ou(z+y) =0u(x)+0u(y) —d(sbsz,sy) if [z|=]y|=e() -1
Compare Theorem 4.3 [Krl] and see (4.3.10) above.

Proof. By (5.6.3)(8) we see that

Ou(x+y)=0n(x)+0u(y) + Alb;z,y)

where A(b;z,y) € SH*(X) is given by L'(b;z,y) — L(b, ) — ['(b,y). According to
(4.3.10) we get

L(b,xz+y)—T(b,x) —T(by) = T —sb-sx—sb-sy
= d(sb;sz,sy).

Compare (4.3.10). Now one can check that (I'};*Y),, is the trivial track for n <
e(b) — 1. See (5.5.1)(2a)(2b). O
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5.6.5 Theorem. For ¢ € Tg(E4) we have
Om.c(z) =0u(c-x) and Oc.r(z) = cOx ().

Compare Theorems 5.2 and 5.3 in [Kr1]. Also the following result corresponds
to 5.3 [Krl].

5.6.6 Theorem. Assume 0y (x) and Oc(z) are defined. Then
Onic(z) = 0n(x) + 0g(x).
Proof. Here we use the fact that
[(bg +bg,z) = T(bg,x) +T(bg, )

as follows from (4.3.1)(13). Here by = b is given by the relation r = dH and
similarly bg is given by the relations 0G. g

5.7 Two-stage operation algebras

An Q-spectrum X is a sequence of pointed CW-spaces X,,,n > 1, together with
homotopy equivalences
Xn — QX7L+1'

Given (2-spectra X,Y let
(5.7.1) (X, Y]5iable & > 0,
be the set of all sequences a = (@, n > 1) with a,, € [X,,, Ytk such that

Qn

Xn > Yntk
v v
QX4 0 > QYo k1
Ant1

commutes in Top*/ ~. It is easy to see that [X, Y]3**P'¢ is a non-negatively graded
abelian group. Moreover for Q-spectra X,Y, Z we have the bilinear composition
law

(572) [Y, Z]itable ® [X7 Y]itable . [X7 Z]itable'

In particular [X, X|3*2Pe is a graded algebra termed the operation algebra of X.
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For example we have the Eilenberg-MacLane spectrum K = {K (F,n),n > 1}
and the operation algebra
A = [K, K]itable

is the Steenrod algebra, see (2.5.2).
We now associate with an element k € A a 2-stage Q-spectrum P(k) =
{P.(k),n > 1} where P, (k) is the homotopy fiber of

K(F,n) 2 K(F,n+ | k |).
Then we get the 2-stage operation algebra
(5.7.3) A(k) = [P(k), P(k)J

which is considered in Kristensen-Madsen [KrM2]. We now describe A(k) in terms
of the crossed algebra B = (0 : B1 — By).

5.7.4 Definition. Let fcl, ks be elements in By = Tg(E4). Then we define the
graded G-module

B(ky, ko) = {(c, B,G) € By x By X By; ov-ky — ko - 8= G}/ ~

with | (o, 8,G) |=| a |. The relation ~ is defined as follows. Let (a,3,G) ~
(o, B',G") if and only if there exist A, B € B; with

0A = a-—d,
oB = 6_/6/7
G = G/—I—A-]Aﬁ—]%g-B.

We define for l%l, feg, ks € By the composition law
Blka, ks) @ B(ky, ko) —— B(k1, ks)
by
,3,G)o(a,3,G) = (o, '8,G" - B+ -G).
One can check that o is compatible with the relation ~ above.

5.7.5 Theorem. Let k1,ks € A and let ]%17 1%2 € By be elements which represent kq
and ko respectively. Then there is a canonical map of graded abelian groups

B(iﬂl,iﬂg) — [P(kl)’p(b)]itable

which is compatible with the composition law. In particular if ke By represents
k € A then o
Bk, k) — A(k)

is a map between algebras which is a surjection in degree < |k| —2 and an isomor-
phism in degree < |k| — 2.
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Proof. The definition of B(l%l, ];2) corresponds to the category of homotopy pairs
in [BUT]. O

5.7.6 Remark. For k = Sq(*Y = S¢* + S¢2Sq" Kristensen-Madsen [KrM2] com-
pute the operation algebra A(k) by the formula
A(k) = AMT) o X (k)

where A(T) is the exterior algebra over F generated by an element T of degree 5
and X (k) is the F-algebra defined in [KrM2]. Moreover ® denotes the semi-tensor
product of Massey-Peterson.



Part 11

Products and Power Maps
in Secondary Cohomology



The Eilenberg-MacLane spaces Z" have an “additive structure” since they are
F-vector space objects. They also have a “multiplicative structure” by the mul-
tiplication maps u : Z" x Z® — Z"+t™ The theory in Part I is based on the
additive structure of Z™ which is also defined in the category of stable maps be-
tween products of Eilenberg-MacLane spaces. In the following Part IT we consider
the multiplicative structure of the spaces Z™ and we study unstable maps between
products of Eilenberg-MacLane spaces. In particular we construct power maps and
power tracks which correspond to the power algebra structure of the cohomology
H*(X) in Chapter 1.



Chapter 6

The Algebra Structure of
Secondary Cohomology

It is a fundamental result of algebraic topology that the cohomology H*(X) of
a space X is a (commutative graded) algebra. In this chapter we consider the
secondary analogue of this result. The multiplicative structure of the Eilenberg-
MacLane spaces Z™ constructed in Section (2.1) and the action of the permutation
group o, on Z™ lead canonically to the algebraic concept of “secondary permu-
tation algebra”. We show that the secondary cohomology of a pointed space is
naturally a secondary permutation algebra.

6.1 Permutation algebras

Let k be a commutative ring and let R be a (non-graded) k-algebra with unit i
and augmentation e,

(6.1.1) k-5 R -k

Here ¢ and € are algebra maps with e = 1. We assume that R is free as a module
over k. For example, let k be a field and G be a group together with a homomor-
phism € : G — k* where k* is the group of units in the field k. Then € induces an
augmentation

(1) € k[G] = k

where k[G] is the group algebra of G. Here k[G] is the free k-module with basis
G and e carries the basis element g € G to €(g). In particular we have for the
permutation group o, (which is the group of bijections of the set {1,...,n}) the
sign-homomorphism

(2) sign : o, — {1, -1} — k*
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which induces the sign-augmentation
(3) € = €sign : klon] — K,
or we can use the trivial augmentation
€ = Etrivial : klon] — k
with e(a) = 1 for a € 0,,. Later we shall consider the ring k = G = Z/p*Z where
p is a prime. In this case (G[o,],€) is given by the sign-augmentation if p is odd

and the trivial augmentation if p is even, that is ¢(a) = sign(a)? for a € o,,. For
k-modules A, B we use the tensor product

(4) A®B=A®; B.

A homomorphism f : A — B is termed a k-linear map. If A and B are R-modules,
then the map f is R-linear if in addition f(r-z) =r- f(z) forr e R,x € A. If R
and K are k-algebras, then also R ® K is a k-algebra with augmentation

(5) e:ROK —®, kok=k.

The multiplication in R® K is defined as usual by (a®3)-(¢/®8") = (aa)@(86’).
Moreover, if X is an R-module and Y is a K-module, then X ® Y is an R ® K-
module by (a® 8) - (z ® ) = (az) ® (By).

We now consider the sequence R, = {R,,n > 0} of augmented k-algebras

(6.1.2) R, = ko]
where o,, is the permutation group. We have the algebra maps
(1) Z.n,rrL =0:R,®R,;,, — Rn+m

induced by the inclusion oy, X 04, C 0p4m. The algebra map i, ,, carries « ® 3 to
a ® (. For v € Ry, we get

(2) (a0p)Oy=a0(80Y)

in Ry m+k. Since ® is an algebra map we have

(3) (a-a)o(B-8)=(a0p) (of)

where « - o/ denotes the product in R,,. Let 1,, € R, be the unit element of
R, with 1, ® 1,, = 1u4m. For n = 0 we have Ry = k and 1p € Ry satisfies

lo@a=a®ly=a. Asin (2.1.1) let

(4) Tnm € Ontm C Rn+m
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be the permutation exchanging the block {1,...,n} and the block {m+1,...,m+
n} for n,m > 1 with 7, (1) = m + 1. Then the following properties hold.

Tm,nTn,m = lntm,

Tm,0 = To,m = lm,

Tnm(a® B) = (B0 &)Tym for a« € Ry, B € Ryy,.
Tmtngk = (Tme @ 1) (I © T i)

(5)

We call R, with this structure a coefficient algebra.

6.1.3 Definition. A permutation algebra V is a sequence of R,-modules V" n € Z,
with V0 =k and V* = 0 for i < 0 together with k-linear maps

(1) VYT —

carrying  ® y to x - 3. For z € V¥ we have in V+m+k

(2) (@-y)-z=z-(y-2),
and for a € R,,, 8 € R,, we have
(3) (az) - (By) = (@ © B)(z - y).

Moreover, 1 € k = VY is a unit of the multiplication (1) with 1 -z =z-1=2z. In
addition, the multiplication (1) satisfies in V"™ the equation

(4) Tey(T y) =y

Here 7p,y = Tn,m € Ontm is the interchange element for x € V™ and y € V™.

A map f:V — W between permutation algebras is given by R, -linear maps
f:Vr - W" with f(1) =1 and f(z-y) = f(x) - f(y). This defines the category
Perm(k) of permutation algebras over k.

6.1.3 (a) Example. The coefficient algebra R, is a permutation algebra. In fact
V"™ = R, = kloy,] for n >0
is an R,-module by the left action
R, V" — V"

which carries a ® x to « e x = - x - &. Here the involution « — & of R,, is given
by the inverse & = o~ for a € o, so that for o,z € o, we have a e x = axa™!.

Moreover, we have the multiplication

Vn ® Vm N Vner



154 Chapter 6. The Algebra Structure of Secondary Cohomology

which carries ¢ ® y to  ® y. Now associativity of the multiplication holds by
(6.1.2)(2). Moreover, we have

(aez)© (Bey) = (aza)o (Byh)
= (a0pf)(zoy)(aos)
= (ae0pf)e(z0y)

so that (6.1.2)(3) holds. Finally (6.1.3)(4) is satisfied since
Toy @ (TOY) = Tuy(@OY)Tay

(YO X)To oy Ty

yoOx.

Here we use (6.1.2)(5).

6.1.3 (b) Example. Let V = k be defined by V" = k for n > 0. Then V is
a permutation algebra. Here V™ is the R,-module with the action o e x given
by a @z = z for a € 0,. Moreover, the multiplication V" @ V™ — V7™ jg
multiplication in k& which is commutative. Using the augmentation € : R,, — k for
n > 01in (6.1.1)(3) we get the map

e: R, — k
between permutation algebras in Perm(k).

Permutation algebras were also considered in Stover [St]. As in [St] we obtain
the category of R.-modules as follows.

Let R. be a coefficient algebra with interchange elements 7,,, € Rpm4pn as
n (6.2). An R.-module V is a sequence of (left) R,-modules V" n > 0. A map
or an R.-linear map f : V — W between R,-modules is given by a sequence of
R,-linear maps " : V™ — W™ for n > 0. The commutative ring k (concentrated
in degree 0) is an R.-module. Moreover, using the augmentation € of R,,,n > 0, we
see that each graded k-module M with M™ = 0 for n < 0 is an R,-module which
we call an e-module. For x € M™ we write |x| = m where |z| is the degree of x.

Given R,-modules Vi,..., Vi we define the R.-tensor product V1&---®V} by

(6.14) (K@ @W)"= P  RuOr,e-or, VOV

ni+--+ng=n

where we use the algebra map © : R,, ® ... ® R,, — R, given by the structure
of the coefficient algebra R, in (6.1.2). One readily checks associativity

V1@ QV1 1, )R-+ - (V5 1® -+ - @V 1,)
=Vi1® - QV1 1, Q- QVs1Q - - - QVi i, -
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Compare Stover [St] 2.9. Moreover, the interchange element 7 in R, yields the
isomorphism
T: VW 2 WV

which carries v ® w to Ty, w ® v Where Ty » = Tmn € Rpyn forw € W™ v e V™.
Of course we have kQV =V = VRk.

6.1.5 Definition. An algebra A over R, is given by a R.-module A with A° = k
and A" = 0 for i < 0 and a R.-linear map p: A®A — A, u(a ®b) = a - b, which is
associative in the sense that the diagram

ABAGA " S AsA

v v
A®A > A

commutes and has a unit 1 € k = A% Moreover, A is 7-commutative if

m

A®A = A
T

Y
ABA s g

commutes. Then one readily checks that a permutation algebra in (6.1.3) is the
same as a T-commutative algebra A over R, see [BSC].

6.1.6 Definition. Given an algebra A over R, we say that an R,-module V is an
A-module if a map m : AQV — V is given such that

ApAey M = Asv

pe1 I

v v
ARV >V

commutes. Hence for a -z = p(a ® ) with a € A,z € V we have («a) - (Bz) =
(a@p)(a-z)and (a-b)-x=a-(b-z). Moreover, 1-x = z is satisfied for the unit
lek=A°
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For an R.-module V' let V() be the underlying graded k-module. If A is a
k-algebra over R, then A is a graded k-algebra in the usual sense with A?k) =k.

6.1.7 Lemma. Let A be a permutation algebra and let V' be an A-module. Then
Vik) is an A)-bimodule by defining

a-x-b=a -1z )
fora,be A,z € V.
Proof. We write 1, = 1,, € R, for x € V™. Now we have for a,b € A,
(@-x) - b=Tpazb - (a-2)=Tpaz(b-a) z
= Tb)a.w(Ta’bCL . b) T
= Tb,a-w(Ta,b [O) 11)(0, -b- ;v),
a-(x-b)=a Tpzb-z)=1a0mz)(a-b-x).
Here we have Tp 4.4 (740 © 1) = 14 © 7, by one of the equations in (6.1.2)(5). O

Recall that each non-negatively graded k-module M is an R.,-module by
use of € : R, — k. Such an R,-module is termed an e-module, see (6.1.4). A
permutation algebra A for which A is an e-module is the same as a commutative
graded algebra over k with A° = k since we have, by (6.1.3)(4),

y-r = E(Tn,m)(x -Y)

(6.1.8) (—1)kellvly .y,
Moreover, we obtain as a special case of (6.1.7) the well-known lemma:

6.1.9 Lemma. Let H be a commutative graded k-algebra and let M be an H-module.
Then M is an H-bimodule by defining

a-z-b=a-(=1)lly. 4
fora,be H and x € M.

6.1.10 Definition. Let V be a graded k-module concentrated in degree > 1. Then
the free R.,-module R, ® V generated by V is given by

(R* @ V)n - Rn ® V’IL.

For an R,-module W we obtain the tensor algebra over R, by
(W)= wen
n>0

where W®0 = k and W®" is the n-fold @-product W& - - - @W defined in (6.1.4).
For the usual tensor algebra T'(V) over k we get

T(R. ®V) =R, ®T(V)
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so that R, ® T(V) is the free k-algebra over R, generated by V with the multi-
plication

(a®z)- (Boy)=a0fRx- Y
for a, 8 € Ry and z,y € T(V). Let
K, CR.OT(V)=A

be the R,-submodule generated by elements 1Qy-z — 7, , @z -y for z,y € T(V).
Then K. generates the ideal A - K, - A and the R,-quotient module

Perm(V)=A/A- K, - A

is the free permutation algebra generated by the graded k-module V. That is Perm
is a functor

(6.1.11) Perm : Mod(k)=! — Perm(k)

where Mod(k)=" is the category of graded k-modules concentrated in degree > 1
and Perm(k) is the category of permutation algebras in (6.1.3). Moreover, the
functor Perm is left adjoint to the forgetful functor which carries a permutation

algebra A to A = A/A°.

Let W be a k-module (non-graded). Then the permutation group o, acts on
the n-fold tensor product W®” by permuting the factors. This action is used in
the following result. Moreover, we have for n,m > 1 the inclusion

On C Onem

which carries a permutation in o,, to the corresponding permutation of the blocks
{1,...om}, {m+1,....2m}, ..., {(n —1)m+1,...,n - m} in oy.,. Hence for
ny-mi+ -+ ng-mp =1r we get the inclusion

Opy X oo+ X 0p, COpyomy X 0° X Opyomy, C Or
which yields the ring homomorphism

Ry, ® --®R,, — R,
needed in the following formula.

6.1.12 Proposition. Let V = (V™ m € Z) be a graded k-module concentrated in
degree > 1. Then we have for r > 0,

Perm(V)" = @ R, ®Rn1®“'®Rnk (Vm1)®n1 QR ® (mG)®nk.
Here the direct sum s taken over the index set:

ny-mp+ -+ Ng My =T,
1<my <mg < - <my,
Ny, ...,nE >0,
k> 0.
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For example, if V' is concentrated in degree 1, then
(6.1.13) Perm(V) =T(V) = V"
n>0

is the tensor algebra with the action of o, on V®" by permutation of factors. We
have the natural transformation

(6.1.14) € : Perm(V) — A(V)

where A(V) is the free commutative graded k-algebra generated by V. The trans-
formation is induced by e. We have

(6.1.15) A(V) _ E(VOdd) ® S(veven)

where V°4d (Veven) is the part of V concentrated in odd (even) degrees. Moreover,
E(V°4d) denotes the exterior algebra and S(V°V°") is the symmetric algebra or
polynomial algebra.

Now let A and B be permutation algebras. Then the R,-tensor product AQ B
is also a permutation algebra with the multiplication

(6.1.16) (b)) - (2@y)=10mp01)(a-z)®(b-y).
We have inclusions

i1: A=A®k — ARB,

is: B=k®B — ARB.
and one can check:

6.1.17 Lemma. (A®B,i1,12) is a coproduct in the category Perm(k) of permutation
algebras.

6.2 Secondary permutation algebras

In (5.1.6) we introduced the notion of a crossed algebra which is the notion “crossed
module” in the context of algebras. We now modify this concept for permutation
algebras as follows. Let k& be a commutative ring.

6.2.1 Definition. A crossed permutation algebra (A,d) over k is a permutation
algebra Ap as in (6.1.3) together with an Ag-module A; as in (6.1.6) and an
Ap-linear map (of degree 0)

8 : Al I AQ

satisfying for z,y € A; the equation
(0x) -y = Toy.(y) - =

Here we use the notation in (6.1.4) so that 7ay , = Ty m with | y |[=| Oy |= n and
| z |=| Ox |=m.
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6.2.2 Lemma. A crossed permutation algebra (A,d) yields for the underlying k-
modules a crossed algebra

0: (A1) — (Ao)r)

in the sense of (5.1.6).

Proof. In fact (Ao)x) is a graded algebra over k and (A1) is an (Ag)x)-bimodule
by using the definition in (6.1.7). Hence the equation in (6.2.1) is equivalent to
(0x) -y = - (Qy) in a crossed algebra. O

6.2.3 Example. Let f : Ay — B be a map between permutation algebras in
Perm(k) and let A; = kernel(f). Then the inclusion

82A1—>A0

is a crossed permutation algebra. Here A; is an Ap-module by multiplication in
Ap. Moreover, we have for x,y € A;

(0z) -y = Toy,2(0y) - @
since this equation holds in Ag, see (6.1.3)(4).
For an R,-module V' let I(R.)®g,.V be the R.-module defined in degree n by
(6.2.4) (I(R:) ®gr, V)" =I(R,) ®r, V"

Here we use the R,-bimodule I(R,,) = kernel(e : R,, — k). We have the R.-linear
map
p:I(R.) Op vV —V

which carries a ® © to a -z for a € I(R,,) C R, and z € V.

In addition to the notion of a crossed permutation algebra in (6.2.1) we
need the following concept which is motivated by the properties of secondary
cohomology in Section (6.3).

6.2.5 Definition. A secondary permutation algebra is defined by a commutative
diagram of R.,-linear maps

I(R)or A 7 = I(R) oR. A
w o B
m
Y \%
Ay 5 > A

where 0 is a crossed permutation algebra as in (6.2.1) and for a,b € Ay, 8 € I(R.)
the equation
a-p(feb)=p((1op)®(a-b))
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holds. A map between such secondary permutation algebras is a map as in (6.2.1)
which is compatible with fi. Let secalg(k) be the category of secondary permutation
algebras over k.

6.2.6 Remark. Recall the concept of a module over a crossed algebra in (5.1.11)
which has similarities but does not agree with the concept of a secondary permu-
tation algebra above. However, in each degree n a secondary permutation algebra
is a module over the crossed algebra I(R,) — R, (concentrated in degree 0).
This generalizes the fact that a permutation algebra in degree n is a module over
R, (where R, is also concentrated in degree 0). Compare also the discussion of
secondary modules in [BSC].

Given a permutation algebra Ay we define the Ag-bimodule structure of
I(R.) ®R, Ag by

(627) &'(ﬁ@b) = (1@,@)@(&-()),
o (a®a)-b = (¢®1)®(a-d).
We have seen in (6.1.7) that an Ag-module A; is also an Ag-bimodule.

6.2.8 Lemma. The equation in (6.2.6) is equivalent to the condition that
f:I(R.) Or, Ao — A1
is a map of Ag-bimodules.

Proof. The equation in (6.2.6) shows that fi is an Ag-linear map of left Ag-modules.
Moreover, we get for z = fi(a ® a) with | z |=| a | and hence 7, , = 7, the
equations
ala®a) b= Tbyxb cp(a®a)
baf((1©a)®(b-a))

Tha(lOa)®b-a)
O1)Ta®b-a)
O] 1) & Tp, b a)
Ol®a-b)

a) - b). 0

I |
= =

(
((a
((a
fi((a
(e @
Similarly as in (6.2.2) we now get

6.2.9 Lemma. A secondary permutation algebra A yields for the underlying k-
modules a crossed algebra Ay,

Iy * (A1) (k) — (Ao) k)
in the sense of (5.1.6), such that

H = mg Ay = cokernel(Oy))
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is a commutative graded k-algebra and
D = m Ay = kernel(Oy))

is an H-bimodule with the H-bimodule structure in (6.1.8).

Hence secondary permutation algebras are “appropriate resolutions” of com-
mutative graded algebras like the cohomology of a space, while crossed algebras
as in (5.1.6) are “resolutions” for graded algebras in general.

6.2.10 Definition. Let A be a permutation algebra and let V' be a k-module con-
centrated in degree > 1 and let

d:V—A

be a k-linear map of degree 0. Then the free secondary permutation algebra A(d)
generated by d is defined by the following universal property. We have A(d)y = A

and V — A(d); with 9i = d and for each commutative diagram of k-linear maps

a1

Vv > By
d b
\ \
A w0 By
where B = (0 : By — By) € secalg and oy € Perm, there is a unique map

a = (apg,a1) : A(d) — B in secalg for which «; extends a;, that is, the following
diagram commutes.

v

>Bl

4V o v
A(d)o > By

6.2.11 Proposition. The free secondary permutation algebra A(d) exists.
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Proof. We construct A(d); and 0 as follows. Recall the definition of R, ® V in
(6.1.10). Then we first obtain the following push out diagram in the category of
R.-modules.

IRYOV ' ~I(R)oR A
101 push i
\ \ ©
R, OV >Y

d//
N
= A
Here d” is defined by d’(a ® ) = « - d(z). The pair (u,d”) induces the R.-linear

map d’ which thus determines the map of A-modules & and 0 in the following
commutative diagram.

I(R*) ©OR, A > A
V !/
Y ¢ - A
I "
v ,
AQY 0 ~ A
v 16)
A(d), ARY/U - A

Here i” is defined by i"(y) = 1 ® y and 9’ is defined by 0'(a ® y) = a - d’'(y). Let
U be the A-submodule of AQY generated by the elements
@)y = 7oy2(0y) -,
a-j(Beb) — j1oA®a-b),with j=1"i
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withz,y € A®Y and a,b € A, 3 € I(R,). One readily checks that U is in the kernel

of @’ so that 9" induces the A-module map 0 on the quotient A(d); = AQY/U.
Now one can check that (A(d), 9, i) is a well-defined secondary permutation

algebra with the universal property in (6.2.10). O

6.3 Secondary cohomology as a secondary
permutation algebra

Let k be a commutative ring and let Top; be the category of path-connected
pointed spaces and pointed maps. We define the secondary cohomology functor

(6.3.1) H* : (Top;)°® — secalg(k).

Here the right-hand side is the category of secondary permutation algebras over k
in (6.2.5). For the ring k we have Eilenberg-MacLane spaces

Z" = K(k,n)

defined in Section (2.1). Then a space X in Top; yields H"(X) = H™(X, k) as in
(2.2.10) by

(1) HY (X)) = [X, 270 -2 [X, 2o = H™(X)o

with n > 1. Moreover, let H*(X); = 0 for i < 0 and H°(X)o = k and H*(X)p =0
for i < 0. By construction of Z™ in (2.1.4) the permutation group o, acts via
k-linear maps on Z™. Therefore H™(X); and H"(X)o are R,-modules and 9 is
Ry-linear for n > 0. Here R,, = k[o,] is the group algebra. The multiplication
map
W= g s 27X L — T

in (2.1.1) is k-bilinear and (0., X 05 C Opmtn)-equivariant and satisfies pin, T =
Tlm,n by (2.1.2). Therefore H*(X) is a crossed permutation algebra as in (6.2.1)

with multiplication induced by fin, m. That is, for & € H™(X)o, y € H™(X)o we
define

(2) Ty =pmn(r,y): X — Z™ x Z" — Z7M",

Moreover, for a € H™(X)1, b € H"(X )1 we define similarly a -y = i n(a,y) and
z-b = pmn(z,b). One readily checks that (H*(X),d) is a well-defined crossed
permutation algebra. Moreover, H*(X) is a secondary permutation algebra, as in
(6.2.8), by the map

3) fi: I(Rn) Or H"(X)o — H"(X )1

defined as follows. We know that the mapping groupoid [Z", Z"] has contractible
connected components, see (3.2.5). Moreover, the action of o, on Z" yields the



164 Chapter 6. The Algebra Structure of Secondary Cohomology

k-linear map R,, — [Z™, Z™]o which carries o € 7, to - 1zn. Here the homotopy
class of o is given by e(0) = sign(o) € {1,—1}, see (2.1.3). Therefore there is a
unique track

(4) Ty:0-1z0n = €(0) - 1zn

where 1z» is the identity on Z™. We call I, the permutation track of o € R,,. The
k-module structure of Z™ yields

(5) oo =T —€(0) - 1zn: (0 —€0) - 1z0n =0
and we define i in (3) by composition of z and T'y_.,, that is
(6) f((c—eoc)®@z) =T oo

for (z: X — Z™) € H"(X)o. For elements z, y as in (2) we obtain the interchange
track by use of (4), that is,

T(,y):a-y= (1) Wy.
" T(2,y) = Tr(ya o (y - ) € [X, Z1#1HI].
Here 7(y, z) is the interchange permutation with 7(y,z) -y -z =z - y.
6.3.2 Lemma. (H*(X),0, ) is a well-defined secondary permutation algebra.
This shows that we have a well-defined functor H* as in (6.3.1).

Proof. The diagram in (6.2.8) commutes since

(1) Oi((c —eo)®@x) = (M g_ep) ox = (0 —€0) - x
and since for a € H*(X); we have:
(1 0)((c —eo) ®a) = T'e_er00a
(2) = (OTy_es)oa, see (5.1.5)(3),
= (0—¢0)-a.

Moreover, the equation in (6.2.8) holds since
(3) a-i((c—er)@b)=a-(Ts_eo 0b),
(4) (1O (0 —€0)) @ (a-b) =Tig(g—co) © (a-).

Here o is composition and - is multiplication defined in (6.3.1)(2). Now (3) coincides
with (4) since for p: Z™ A Z™ — Z™*" in (2.1.5) we have:

(5) po(lzm Alg—co) = Ligo—co) © K-
In fact, both sides are tracks
(1o (c—e€eo))p=10
in [Z™ A Z™, Z™"] and this track is unique by (3.2.5). O
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6.4 Induced homotopies

Let f,g: X — Y be maps in Top;, and let H : f = g be a track. Then we obtain
the diagram

H*(Y)l fl »91 >H*(X)1
o o
Y P Y
fO 190
H*(Y)o S HA (X))

where f* = (f5, f1) and ¢* = (9§, 97) are maps H*(Y) — H*(X) in the category
secalg(k).
Now the track H : f = ¢ defines the induced R.-linear map

H* : H*(Y)o — H*(X)1,

6.4.1
( ) H*(x)=xoH —zog.

We have the following formulas:

OH*(x) = O(xoH —=zog)
— zof-aog
= [fo(@) —g5(z)
= (5 —95)(=).

(1)

Using (2.3.1) we get for a € H*(X)1,

axH = (0H)d(af)
(2)

I
S
~

= (ag)0(0a)H.

Therefore H* in (6.4.1) satisfies

H*(0a) = (0a)H — (0a)g
= ((ag)®?Oaf) — (9a)g
= ((ag)°? = (0a)g)U(af — (9a)g)
= (—ag)0(af — (da)g) (2.2.6)
= —ag+af (2.2.6)

= fila) —gi(a).
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Next we consider for the diagonal map A the commutative diagram

!
Y - X
A A
Y Y
vyxy Y oaxxx

and the track H x H : f x f = g x g with AH = (H x H)A. Here we have

HxH = (gxH)OH x f)
= (HxgUO(f x H).

For z,y € H*(Y)o w get the product z - y = u(x x y)A. Hence we have

H'(z-y) = (x-y)H—(z-y)g
= p(zxy)AH — (z-y)g
= u(exy)(H x g)0(f x H))A - (zg) - (yg)
= (u(@ xy)(H x g)A)DO(u(z x y)(f x H)A) = (zg) - (y9)
= (zH -yg)U(zf -yH) —zg-yg
= ((H'z+zg) yg)O(zf - (H*(y) +v9)) — g - yg
ﬁ*w-yg+x9-yg)5£xf-ﬂ*(y)+xf-yg)—xg'yg-

~ - ~ -
A B
Thus we get
H*(z-y) = (A—=zg-yg9)0(B—zg-yg)

(H*z-yg)O(xf - H'y +xf -yg —xg-yg)
= (H*x-yg)+ (xf - H*y), see (2.2.6)(3).

(3)

Finally, we consider the connection of H* and & in (6.3.1)(3). For the tracks

zf—xg o—e€o
X AL > Zmn
H*z 7 Fo—co 7

0 0
we get the formula

(c —eo)H*x = (Do—eo)(xf —xg)

(4) = [((oc —e€o)® (zf —zg)).
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Hence the following diagram commutes.

IR or H' (V) 7 = I(R.)or H(X)
10(f5—95) Iz
\% i Y
I(R,) Or, H*(X)o >H* (X )

The properties of H* above lead to the following definition:

6.4.2 Definition. Let f = (fo, f1) and g = (go, 91) be maps (A4,09) — (B, 0) be-
tween secondary permutation algebras in the category secalg(k) in (6.2.8). A ho-
motopy or track H : f = g is an R,-linear map

H1A0—>Bl

with the following properties (z,y € Ap):

(1) OH = fo — go,

(2) HO=fi—g,

3) H(z-y) = (Hz) - (9oy) + (fox) - (Hy),

(4) and the following diagram commutes.
10H

I(R*)QR* Ag >I(R*)®R* By

10(fo—go) H

\ i \
I(R.) ®r, Bo > By

Here property (4) is redundant so that a homotopy is an R,-linear map
satisfying (1), (2) and (3). In fact, since B is a secondary permutation algebra we
have by (6.2.5) the equation (£ € I(Ry), = €Ao,|z|= q),

§-H(x) =p(©0H(z)) = i(§ ® (fo— go)())

and hence diagram (4) commutes.
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6.4.3 Proposition. The category secalg(k) with tracks as in (6.4.2) is a track cat-
egory [secalg(k)] as in (2.3.1).

Proof. The composition of tracks H : f = g and G : g = h is given by the sum
GOH =G+ H

and the trivial track 07 of f is the trivial map 0 : Ay — B;. Composition is
defined by

Hoa = Hoay,
boH = bioH.
Now one readily checks the properties in (2.3.1). O

6.4.4 Theorem. Secondary cohomology H* is a track functor (2.3.6) from the track
category [Topy|°P to the track category [secalg(k)] above. This functor carries a
track H : f = g in Top™ to the track H* : f* = g* in (6.4.1).

Hence we have the induced functor between homotopy categories
(6.4.5) H* : (Topy/ ~=)°P — secalg(k)/ ~ .

Therefore the homotopy type of H*(X) = H*(X, k) is an invariant of the homotopy
type of X. This invariant also carries some information on Steenrod squares for
k=TF =7Z/2 as we see in the next section.

6.5 Squaring maps
Let A= (0: A1 — Ap) be a secondary permutation algebra over the commutative
ring k as in (6.2.5) with
fi:I(Ry) ©Or, Ag — Aj.
Then we have the exact sequence
0 — m(A) — Ay 9, Ay — m(4) — 0.

Here m1(A) = kernel(0) and mg(A) = cokernel(d) are graded k-modules. The
following result defines the squaring map Sq for A. Let 7, ,, € 02, be defined as
in (6.1.2)(4) with sign(7, ) € k.

6.5.1 Proposition. Let n > 1 with sign(t,,,) = 1. Then there is a well-defined
k-linear map
Sq:mo(A)" — 1 (A)*"

which carries the element {x} € myA represented by x € Aj to
,EL((Tn,n - 1) ® (33 . 33)) (S 7T1A.

Moreover, we get 25q = 0.
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For example if n is even we have for 7 = 7, ,, the equation €(7) = sign(r) =
(-1 =1.

Proof. We have 7 — 1 € I(R,) and we have
I((r=N&(z-z) = (r-1)(z-z)

= 71(x-z)—z-x
(1) _
= zr—2x-x
0.
since 7(z-x) = z -z by (6.1.3)(4). Therefore Sq(z) = a((1 — 1) ® (z - x)) € m1(A4).
Now let y = x4 da for a € A;. We have to show Sq(x) = Sq(y). This is equivalent
to A =0 where

(2) A=p((t-1)®@@-b+b-x+0b-b))
with b = 0a. We have 77 = 1 so that

O=rr—1=(F-11+(r-1).
Hence we get

p((r=Dr+(r-1)) @ (b-2))
pr—=1)7b-x)+a((t—-1)®b-x)
= pr—-1)®z-b)+p((t—1)®b- 1)
= i((r-1)®@(x-b+b-x)).

3)

Moreover, we get for b = Ja the formula

Ob-a)=0b-(0a)=b-b

so that
pir-D@-0) = p(r-1)e0db-a)
= (1=1)(b-a)
@ = 7(0a)-a—(0a)-a
= 0, see (6.2.1).

By (3) and (4) we see that A in (2) is trivial so that Sq in (6.5.1) is a well-defined
function.
For r € k we get

Sq(r-z) = p((l-7)©(re-rr))
w((l=7)® (z-2))
= r2Sq(x).

—

(%

~
|
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Moreover, for z,y € Aj we get

Sqlz+y) = w-7)@(@+y)-(r+y))
(6) = Sq(@) +5q(y) +p((l —7) @ (x-y +y-z))
= Sq(x) + Sq(y).

Here we use the argument in (3) where we replace b by y. Now we have Sq(0) =0

and 0 = Sq(a—a) = Sq(a) + Sq(—a) where Sq(—a) = (—1)*Sq(a) = Sq(a) by (5)-

Therefore 25¢ = 0. U
For A ="H*(X) in (6.3.1) we have
moH*(X) = H*(X),
mH*(X) = SH*(X),

where H*(X) is the cohomology ring of X. In this case we get:

6.5.2 Theorem. For F = Z/2 the e-crossed permutation algebra H*(X) yields by
(6.5.1) the squaring map

S’q . Hn(X) _ (Ef{*X)Qn — H27L—1(X)
which coincides with the Steenrod square Sq"~ ! forn > 1.
Proof. This is a consequence of (4.5.8). In fact the map
a: 272 Zn x Zn ey z2n

which carries z € Z" to z -z represents the Steenrod square Sq™ by (K2) in (1.1.7).
For the stable map a we have the track I', in (4.2.1) as in the diagram

aXo

VALSAL - Z2n % Z2n
=
+ +
\ \
Zn > Z2’I’L

(e

which for x : X — Z" yields I'2® = Iy (z,z) : a(2z) = 0 = 2a(x) = 0 and we
know by (4.5.8) that I'%® = I'[2](x) is given by S¢"~!(z). On the other hand we
get for y,z € Z" the formulas

(at)(y,2) = aly+2)

(y+2) (y+=2)
= Y+ 22 +yz+ a2y,

+axa)(y,z) = ay+az
= y2—|—22.
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Here we have zy = 7, ,yz so that for 7 = 7,, the track I'; : 7 = ¢(7) = 1 in
(6.3.1)(4) yields the track

T yz:zy =1yz = yz
and hence the track
yz+Tryz 1 yz + 2y = yz +yz = 0.
Therefore the track T, above coincides with the track T, where
Loy, 2) =y° + 22 +yz + Tryz : (at)(y, 2) = +(a x a)(y, 2)

since i{T, = 0Y and 5T, = 0Y. Here we use the uniqueness in (4.2.1) and
[Z™ A Z™,QZ%"] = 0. On the other hand we have

Co(z,2) = 22 +2%+22+T,22

= —224T,.22

= ([ —1)oa?

= ([y_1)o0a?, sincel’; —1=T,_1,
= M(r-1)®a?)

= Sq(z).

This proves the result. U

6.6 Secondary cohomology of a product space

We have seen in (6.1.17) that Ao®DBy is the coproduct in the category Perm(k). If
U is an Ap-module and W is a Byp-module as in (6.1.6), then URW is an Ay®By-
module by

(6.6.1) (a@b)- (uew) =100 1) (a-u®b-w).

Now let A and B be crossed permutation algebras as in (6.2.1). Then Xy = Ao® By
is a permutation algebra and by (6.6.1) A;®B;1, Ao®B; and By®A; are Xo-
modules. We obtain the chain complex of Xg-modules and Xg-linear maps:

(6.6.2) A1@B; 2 A,@B; @ By®A; - 40 B,
do(a®b) = (0a) ®b—1p4(0) R a,
di(z®b) = x®(0b),
di(y®a) = Tay((9a)®y),
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fora e Ay, x € Ag and b € By, y € Byg. We have d1ds = 0 since

dida(a®b) = di((0a) @b —7,4(0b) ® a)
(9a) @ (0b) — Tp,aToa,06(Da) @ (Ob)
= 0.

Here we see Toq,00 = Ta,p and Tp,aTe,p = 1. The chain complex above yields the
Xo-module

(1) X1 = (A®B); = cokernel(ds)

and d; induces the Xy-linear map

(2) A®B = (0: (A®B)1 — (A®B)o = Ao®By).

6.6.3 Proposition. AQB is a well-defined crossed permutation algebra which is the

coproduct of A and B in the category of crossed permutation algebras.

Proof. We have to check that 0 : X1 — X satisfies the formula in (6.2.1), that is,
for u,v € X1 we have

(1) (Ou) - v = Ty, (V) - u.
In fact for u =2z ® b, v =2’ @ V' we prove (1) as follows.

(Ou) - v x®0b)- (2 ®V)

107y ©1)(x- 2’ @ (9b) - ')

1O Twp O 1) (T2 © Ty p) (" -2 ® (OV) - D)

1O T b ©1)(Tar e © Ty ) (1 O Top o © 1) (2" @ OV ) (z @ b)

To,u(0V) - u.

A~ o~ o~

In a similar way we prove (1) for u = y® a and v = y’ ® a’. Moreover for u = 2 ®b
and v =y ® a we get

(Ou)-v = (z®0b)- (yRa)

1Ty, ©1)(z-y© (0))-a)

1O Ty ©1)(Ty,e © Tap)(y -z ® (Oa) - b)

1O Ty, ©1)(Tye © Tap)(1 O T ©1)(y ® da) - (z @ D)

To,u(0V) - w.

(
(
(
(

This completes the proof of (1) and hence AQB is a well-defined crossed permu-
tation algebra. The inclusions

i1: A= ARk — AQB,

io: B=k®B — A®B
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are defined by k C A and k C B respectively. Moreover maps f : A — D and
g : B — D between crossed permutation algebras yield a unique map

(4) (f,9): AQB — D
with (f,¢)i1 = f and (f, g)ias = g. We obtain

(5) (f,9)o = (o, 90) : Ao®Bo — Dy
by (6.1.17). Moreover we define (f,g)1 : (A®B); — Dy by
(6) (frghlz®b) = (fox)- (g91b),

(frohy®a) = (goy)- (fra).

One can check that (f, g) is (f, g)o-equivariant and that 9(f, g)1 = (f, )00 so that
the map (f,g) is well defined. O

Now let A and B be secondary permutation algebras with

fa: I(Ry) Or, Ay — Aj,

fip: I(R.) ®Or, By — DB
as in (6.2.5). Then we obtain the following diagram where A®B is the coproduct
of the underlying crossed permutation algebras, see (6.6.3).

(6.6.4)

i

Ao®(I(Ry) ©r, Bo) ® Bo®(I(Rx) ©r, Ao) > (A®B)
q push q
v . v
I(R.) ©r. (Ao®DBo) > (A® B),

This is a push out diagram of (Ay®By)-modules and Ag® By-linear maps. The

map fi is defined by Ao®up ® Bo®ua, see (6.6.2), and ¢ is defined by
1) ja(A®b) = 10N (@xb),
WeNed) = Vol)e(@ab),

with a € Ag, A\®b € I(R.) ©R, Bo and V' € By, N ®a’ € I(R.) ®g, Ao. The maps

) { d: (A®B)1 — (A®B)o = Ay®Bo,

p:I(Ry) ®r, (Ao®Bo) —  Ae®DBy,

satisfy Ofi = pg so that one obtains by (9, 1) the induced map

0:(A®B); — (A® B)o = Ao®DBy.
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6.6.5 Proposition. (A ® B, 0, i) is a well-defined secondary permutation algebra
which is the coproduct of A and B in the category secalg(k). Moreover we have
the natural isomorphism of commutative graded algebras

WQ(A(ZX) B) = 1A R mB
and there is a natural map of moA ® wgB-modules
i1 M, AQmB®mARQmEB — 7T1(A<:X> B).

Let X and Y be path-connected pointed spaces and let X XY be the product
space. The projections p; : X XY — X and p3 : X XY — Y induce maps

i HI(X) — HYX xY),
Py HA(Y) — HY(X xY),

which in turn yield the binatural map in secalg(k)
(6.6.6) j=1p3): H(X)®H(Y) — H (X xY)

where the left-hand side is the coproduct in (6.6.5). The Kiinneth theorem shows
for a field k that the map j induces an isomorphism jo = mo(j).

Jo

(1) mo(H*(X) @ H*(Y)) > moH* (X X Y)

(moH*(X)) @ (moH* (Y))

H*(X)® H*(Y) H*(X xY)

Moreover the map j induces the map j; = 71(j) for which the following diagram
commutes,

(2)
(M (X) @ 1 (V) n - HH (X X Y)
A
i1 SH*(X xY)
(SH*(X)) @ H*(Y) & H*(X) ® (SH*(Y)) . =XEHA(X) e HN(Y))

Ji

Here j; is defined by 71 (22 ®y) = L(z®@y) and j; (z®@Xy) = (—1)*I8(z ® y) and
i1 is the map in (6.6.5). For the algebra H = H*X ® H*Y the map j; = m1(j) in
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(2) is an H-linear map between H-modules which is natural in X and Y. Diagram
(2) shows that j; = m1(j) is surjective.
Using the push forward induced by j; = m1(j) we obtain the map in secalg(k)

3) ()« (X)@H (V) — H' (X xY)

which for a field k is a weak equivalence (i.e., induces isomorphisms in my and 77).
Therefore up to weak equivalence the secondary permutation algebra H*(X x Y)
is determined by H*(X), H*(Y") and the map j; in (2). This is a kind of secondary
Kiinneth theorem. The computation of j; remains unclear.



Chapter 7

The Borel Construction
and Comparison Maps

We first describe properties of the Borel construction on the classifying space of a
group G. Then we introduce comparison maps between Borel constructions with
fiber an Eilenberg-MacLane space. In the next chapter we deduce from comparison
maps the power maps between Eilenberg-MacLane spaces.

7.1 The Borel construction

For a discrete group G the universal covering
p: EG — BG

for the classifying space BG can be chosen to be a functor in G, that is, a homo-
morphism a : G — 7 between groups induces a commutative diagram in Top™.

Ea

(7.1.1) EG "> Ex
\% Y
BG "> Br

Moreover EG — BG is compatible with products of groups G = G1 x G2, BG =
BG1 x BGy, EG = EG1 X EG5. For a G-space X we obtain the Borel construction

(7.1.2) p: E=FEGxgX — BG

which is a fibration in Top with fibre X = p~!(x). We obtain E by the quotient
space

(1) EGxgX=EGx X/~
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with (Z, aw) ~ (Zo,w) for a« € G,w € X and 7 € EG. Given z € BG let 7 € EG
be a point with p(Z) = z. If the G-space X has a fixpoint * we obtain a section

(2) 0: BG— EGxgX
with o(z) = (&, *). We say that EG xg X is good if the inclusion
(3) i XVBG— EGxgX

is a closed cofibration in Top. Here X V BG is the one-point union and ¢|X is the
inclusion of the fiber and i|BG = o. For example, EG xg X is good if X is a
CW-complex with a cellular action of G and zero cell *. In fact, then EG x¢g X is
a CW-complex and ¢ in (3) is the inclusion of a subcomplex.

The Borel construction is functorial in the following sense. Let a : G — 7 be
a homomorphism between groups and let X be a G-space and let Y be a w-space
and let f : X — Y be an a-equivariant map, that is, f(a-w) = a(a) - f(w)
for « € G, w € X. Then we obtain the induced map fx for which the following
diagram commutes.

(7.1.3) EGxeX " >Erx,Y
\% \%
e " sBr

Here fy carries (Z,w) to ((Ea)Z, fw). If f carries a fixpoint * € X to a fixpoint
* €Y, then fuo = o(Ba) for the section o above.

The Borel construction is compatible with products in the following sense.
Let X,Y be G-spaces so that the product X x Y is a G-space with the diagonal
action a(w,v) = (aw,ow) for « € G, w € X, v € Y. Then the Borel constructions
EX =EGxgX,El = EG xgY and E5*Y = EG x¢ (X x Y) are defined and
we get

(7.1.4) ES*Y = EY xpc EE

so that Eéxy is a product in Topg. If X and Y have G-fix points *, then X VY
is a G-subspace of X x Y and the smash product X AY is a G-space. Moreover
the Borel construction EXY = EG xg (X AY) is a smash product in Topgg,
that is

(7.1.5) EX™Y = E& Apg ES.

Here the right-hand side is defined by the push out in Top

Eé UBgEg >Eé§ ngEg
push
v \
BG > EX Apc EY

with EX Upg EY being the push out of EX <~ BG > EY,.
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Using the compatibility of the Borel construction with products in (7.1.4)
we get

7.1.6 Lemma. If X is a topological group and G acts via automorphisms of the
topological group X then EG xq¢ X — BG is a group object in Topgq, see (3.1.6).

The multiplication p: X x X — X induces the multiplication pg : E& X g
EX = EJ** - EX.
7.1.7 Proposition. Let X andY be topological groups and assume the discrete group
G acts on X (resp. Y') via automorphisms of the topological group. Let f : X —Y
be a G-equivariant map and a homomorphism of topological groups. If X and Y
are CW-spaces and f is a weak homotopy equivalence, then

fﬁ:EGXGf:EGXGX%EGXGY

is a homotopy equivalence under and over BG.

Proof. Also EG xg X and EG x¢ Y are CW-spaces and f; is a weak homotopy
equivalence which thus is a homotopy equivalence. Hence we can apply Lemma
(3.1.7) since f; is also a homomorphism of group objects in Top . O

We recall from 5.2.4 Baues [BOT] the following result on cohomology groups
with local coefficients. Let A be an abelian group. Then a pointed CW-space X is
an Eilenberg—MacLane space of type K(A,n) or a K(A,n)-space if 7, X = A and

=0 for j # n. We also write in this case X = K(A,n).

Assume now that K(A,n) is a G-space with fixpoint *. Then A is a G-module

denoted by A and we have the Borel construction L(A,n) = EG xg K(A,n)
yielding the fibration

(7.1.8) K(A,n) — L(A,n) 2> BG

as in Baues [BOT] p. 300. We consider a closed cofibration V' C W between pointed
connected CW-spaces and a commutative diagram.

o(e|V)

Vv > L(A,n)
Y Y
w ° >BG

Recall that [W,L(g, n)]%e is the set of homotopy classes of maps W —
L(A,n) under V and over BG. According to 5.2.4 Baues [BOT]| we have the
isomorphism

(7.1.9) (W, L(A, n)] e = H"(W, V9" A).

Here ©* A is the w1 (W)-module induced by 1 (p) : mW — m BG = G and the
right-hand side is the cohomology with local coefficients in ¢* A.
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The pair (W, V) is n-connected if w;(W, V) = 0 for j < n. This is the case
if and only if there is a homotopy equivalence of pairs (W, V) ~ (W, V) where W
is a CW-complex with subcomplex V such that V contains the n-skeleton W" so
that the complement W — V' has only cells in dimension > n.

Let m be a group and let Y be a m-space with fixpoint *. We consider for
1 =0,1 a commutative diagram of the form

Y > K(A,n)
v 7 v
Br °>Erx,Y " >[L(An)<° BG
v J v
Bm > BG

with fio = do so that f; is a map under Bm and over BG. The next result
generalizes Corollary (3.2.5); many constructions of tracks in this book rely on
this result.

7.1.10 Proposition. Let Em x .Y be good as in (7.1.2)(3) and let Y be an (n—1)-
connected CW-space, n > 1. If there is a homotopy in Top*

ﬁ:fg’:fl, ITI:IYHK(A,n),

then there exists a homotopy H : fo >~ f1 under Bm and over BG and the track
fo = f1 under Bm and over BG is unique. Moreover H can be chosen to be an
extension ofH If fo = f1 there is a unique track fo ~ f1 under Ba V'Y and over
BG. This shows that the groupoid

[En x, Y, L(A,n)] 55y

is contractible.

7.1.11 Addendum. Assume only fo and a homotopy H fo :fl in Top™ with
H,:Y — K(A,n) are given as above. Then there exists f1 with f1 = f1|Y and an
extension H : fo ~ f1 ofH where Hy is a map under Bm and over BG.

Proof of (7.1.10). Let E = Ex x,Y and L = L(A, n). Then we have the following
commutative diagram.

Eo=I(YVBr)UEUE " >
J P

\ d
IE " >Ba
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Here j is the inclusion j = (I(4),40,%1) (see (1.2.4)) and k is the map given by
(fo, f1) on EUE and odq : IBw — L and by the homotopyI:T 1Y — K(A,n) C L.

The map p is a fibration and the map j is a cofibration. Hence we can apply
obstruction theory as in Theorem 5.4.3 in Baues [BOT].

The pair (I E, Ey) is readily seen to be (n+1)-connected and the obstructions
are in H™TY(IE, Eg, 7, K (A,n)) which is the zero group for all m. This shows
that there is a map H : IF — L with pH = dpq and Hj = k as required in the
lemma. In a similar way one checks uniqueness of H. For this we consider two such
homotopies H, H' : fo ~ f1 under Bm and over BG which yield the commutative
diagram

IUBrUEUE)UIEUIE " -1
i’ p

\ d \
IIE "~ B

with j° = (Ij”,i0,i1) and j” = (lo,ip,%1) and k' = (k”,H,H') and k" =
(odgq, fo, f1)q. Here j' is again (n + 1)-connected and obstruction theory yields
amap F: IIE — L with pF' = dpqq and F'j' = k. This implies the uniqueness of
H up to homotopy.

Finally we prove the addendum by the commutative diagram

IYvBryuE " >
j// p

v d v
IE " > Br

with j” = (I(4),40) and k" being restrictions of j and k respectively. Since j” is a
homotopy equivalence we again obtain by obstruction theory a map H : IE — L
with Hj"” = k" and pH = dpq. O

7.2 Comparison maps

We have seen in Section (2.1) that the Eilenberg-MacLane space Z™ is a topologi-
cal R-module and that the symmetric group o, acts on Z” via R-linear automor-
phisms. Given a homomorphism i : G — o, the space Z" is thus a G-space. On
the other hand we have the composite homomorphism

sign

(7.2.1) G- o, 21,10,
Here {—1,1} acts on Z™ by the automorphism —1 : Z"™ — Z™ which carries
w € Z" to —w with —w defined by the R-module structure of Z". Hence G acts

via (sign)i on Z™ and this action is termed the sign-action Z} of G on Z™. In this
section we compare the G-space Z" and the G-space Z%.
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We observe that for o € G the maps

o : Z"—Z" witho(w)=0-w,
sign(o) : Z™ — Z™ with sign(o)(w) = sign(io) - w

are homotopic. Moreover (6.3.1)(4) shows that there is a unique track
(7.2.2) T, : o0 = sign(o).

This is a first way of connecting the G-space Z™ with the G-space Z% studied in
Chapter 6.

Using the Borel construction we have a further more subtle comparison be-
tween the G-spaces Z" and Z% as follows.

7.2.3 Definition. For the G-spaces Z™ and Z% the Borel constructions EG xg Z"
and EG x g Z} are defined. A comparison map A is a map for which the following
diagram commutes in Top.

BGV Z" BGv ZY

J J
\% Ao \%
EG x¢ 7" 9> EG x¢ Z%

p
v v
BG BG

Here j is given by the section o of p and by the inclusion of the fiber. Hence A\g is
a map under and over BG which is the identity on fibers.

7.2.4 Theorem. Comparison maps A\ in (7.2.3) exist and for two such comparison
maps Ag, g there exists a unique track o : A\g = A\ under BG V Z™ and over
BG.

The theorem states that the groupoid
(7.2.5) [EG x¢ Z", EG x g Z1]BGV%"

is contractible. The tracks in this groupoid are termed canonical tracks. Theorem
(7.2.4) is the crucial connection between the G-spaces Z" and Z7 used in this
paper. The uniqueness of tracks in (7.2.4) is a consequence of (7.1.10). For the
construction of comparison maps we need the following lemma.

7.2.6 Lemma. There exist topological R-modules with an action of o, via linear
automorphisms together with o, -equivariant R-linear maps

zr Ly Sy B gy

which are homotopy equivalences in Top*. Here K" has the sign-action of oy,.
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Proof. For S(S™) in AMod we obtain the chain complex C = NS(5™) in Chy
with H,C = H,S™ = R concentrated in degree n. Hence we obtain the following
diagram of chain complexes in Ch, .

C ( o< On—l <d" Cn< dn41 C77,+1 < C”H—Q < AN )
\ v v

Cl (< Cn—1< Cn< Imdn+1< 0=< )
A A A A

c” (o< 0< kerd, <  Imd, < 0 < )
\ v v v

[R]n (< 0< R < 0< 0< )

Here [R], is the chain complex which is R concentrated in degree n. All chain
maps induce isomorphisms in homology and are equivariant with respect to the
action of o,,. Hence we get

S(S")2TNS(S")=TC —-TC" —TC" - T[R],
and therefore we get the following diagram.

|DS(S™)] > |oI'C’| < |oI"C”| > |OT'[R],|

zn Y/ Y// K:é

Here K7 is the small model of the Eilenberg-MacLane space K (R, n) for example
used by Kristensen [Krl]. O

7.2.7 (Construction of the comparison map). Let Y, Y} and Z7 be the topological
R-modules in (7.2.6) with the sign-action. Then we get o,-equivariant R-linear
maps

(1) zr Doyr sy B g2y By 8 g

which are homotopy equivalences in Top*. Here g2 = f and f3 = g1 and g3 = f1
are equations of R-linear maps. Of course the induced map

(2) (93)7 1 (f3)x(92)5  (f2)u(g1)7 L (fr)« = id

is the identity on 7, (Z"™). Let Y; be the ith space in the sequence (1). Since all Y;
are realizations of simplicial groups, the Borel constructions EG X Y; are good
for all subgroups G of o,; see (7.1.2).
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For a subgroup G C o, the maps g; in (1) induce maps
(3) (9i)y : EG X Yaiy1 — EG X Yoy

which by (7.1.7) are homotopy equivalences under and over BG. We choose a
homotopy inverse g; under and over BG of (gi)ﬁ. We now get a comparison map
Ag under BG V Z" and over BG

(4) /\62EG Xaq 7" - EG Xa Zl

by the composite \;; = g3(f3)zg2(f2)391(f1); of maps (f;),; and g; as follows. Using
(2) we see that A\{; induces on fibers a map A : Z" — Z7 which is homotopic in
Top™ to the identity of the space Z". Moreover A is a map under and over BG.
Now we can use the addendum (7.1.11) which shows that the homotopy A’ ~ 1 has
an extension H : Aj; >~ A¢ under and over BG which defines the map g in (4).

7.2.8 Remark. Karoubi in 2.5[Kal] indicates the construction of Z™ in (2.1.4)
though he does not give details. Our proof of (7.2.6) is more direct than an argu-
ment used by Karoubi in 2.12[Kal].

7.3 Comparison tracks

The comparison maps are endowed with additional structure given by comparison
tracks. We here describe three types of comparison tracks termed linear tracks,
smash tracks and diagonal tracks respectively.

Since Z™" is a o,-space, also the r-fold product

(7.3.1) (ZM)T =Z" x o x 2"

is a o,-space with the diagonal action. Moreover this product is a topological
R-module since Z™ is one. Let homomorphisms

(1) G T On

between groups be given and let
(2) f(Z0) — (Z7)*
with 7,k > 1 be an R-linear continuous map which is a-equivariant. Here (Z™)*"

is a G-space by ia : G — o, and (Z")*F is a G-space by i : 7 — 0,,. Hence we
obtain the following diagram of Borel constructions.

“
(7.3.2) EG xg (Z")*" 9> EG xq (Z1)*"
fa = Iy
\ k \

A
Em x, (Z7)k "% > En x, (Z2)%k

Here AL, (and AF) are r-fold (resp. k-fold) products of comparison maps using
(7.1.4) and fx is defined as in (7.1.3).
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7.3.3 Proposition. There is a unique track
L\ fy = NG

under BGV (Z™)*" and over Br. This track is termed the linear track for diagram
(7.3.2). If = G and a = 1 is the identity of G, we write LT = L%,

If r=k=1and m =G, then \; and \g are two different comparison maps
for G = 7. In this case the linear track L' of the identity 1 of Z" is the same as a
canonical track in (7.2.4).

The proposition is an easy consequence of (7.1.10). Uniqueness of the linear
comparison tracks implies the following formula: Let b : H — G be a homomor-
phism between groups and let g : (Z7)*t — (Z™)*" be a b-equivariant R-linear
map so that L9 is defined as in (7.3.3). Then the following composition formula
for linear tracks holds where O is the composition of tracks as in (2.2.1).

(7.3.4) Lobfe — fiLb’gDL“’fg#.

This formula also shows that linear tracks are compatible with canonical tracks in
(7.2.4) in the following way. Let L} : A\; = Ag and LL : A\x = A, be canonical
tracks, then the track addition

F (L&) DL O(L)* fa

is the linear track (X )* fu = f3(Mg)"
For a tuple of numbers n = (n1,...,n,) withn; > 1fori=1,...,r let

(7.3.5) O(n) = Ony X o+ X Op,

be the product of permutation groups. Let [n| = ny +--- +n, so that o,y C o}y
The group o, acts on the product

(1) A AN AL
of topological R-modules. Let
(2) fozxm . Zlnl

be a multilinear map (linear in each variable x; € Z™) and let f be G-equivariant
where G acts by a given homomorphism G — o(,) — 0}, Then we obtain the
following diagram of Borel constructions.

r

A
(7.3.6) EG xg Z*™ "°=EG xq z;™

J = f#
v \%
In| ¢ In|
EGxa Z ~ EG x¢ 2!
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Here A7, is again an r-fold product of comparison maps using (7.1.4) and fy is
defined as in (7.1.3). We have the smash product map

p: 2 = zm o ox Zrr — 2N = g A 2

where the right-hand side is the r-fold smash product. Since f is multilinear there
is a unique factorization

Foozxm) Py gam) L gl

of fin (7.3.5). Here f is again G-equivariant and by (7.1.5) we obtain the diagram

A

ar
(7.3.7) EG x¢ 2™ "¢ >=FG xg z,™
fa = Ta
% \ A
EGxg ZI" "¢ = EG x¢q zI"

where A2 is the r-fold smash product of comparison maps over BG. We have
P#AG = MG Py
Now we obtain for the diagrams (7.3.6) and (7.3.7) the following tracks.
7.3.8 Proposition. There is a unique track
ST Nofy = farey
under BGV Z"™ and over BG for (71.3.7) which defines the track

ST =5T(p)s: Aafs = fare
The track SY is termed the smash track for (7.3.6).

The proposition again is a consequence of (7.1.10). Uniqueness of S/ im-
plies the following compatibility with composition of multilinear maps. Let n’ =
(nf,...,n. ) be a tuple of numbers > 1 for i = 1,...,r such that [n’| = n;. More-
over let n* = (n',...,n") be the composed tuple so that O(n+) C T(n)y C Op|- Let
G — 0(n+) be a given homomorphism and let fi: 2> - Zm be a G-equivariant
multilinear map. Then the composition

FOfY o Ty zx0*) __, zin|

is again multilinear and G-equivariant so that Sf(/"*/") is defined. Now we
have the composition formula for smash tracks

(7.3.9) I = (ST % x SINAST (1 x o X fT) s
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Here ' x .-+ x S/" is the product of smash tracks defined by use of (7.1.4).
This formula again shows the compatibility of smash tracks and canonical tracks
similarly as in (7.3.4).

Finally we consider comparison tracks which are deduced from a diagonal
map A. For this let n = (ny,...,n,) and p — 0(,) C 0}, be given such that the
composite

p— 0(n) C Ojn sign {-1,1}
is trivial; that is, the sign-action of p on Z‘fl is trivial. Moreover let
(7.3.10) g: z2*m —, zlnl

be a p-equivariant multilinear map. Then we get the composite map
(1) Clg): Ep x, 2% 2%, gy 5, 7Inl 22, By x zlnl 22, glnl

where ps is the projection and A, is a comparison map.
Let £ > 1 and let 71 — o} be a homomorphism between groups for which
again the composite
T — o =25 {—1,1}

is trivial. Then the composite
sign
TXP—=0k XOp C O'k/0|n\ C Okln| — {1,—1}

is also trivial, so that the sign-action of m x p on Ziln‘ is trivial. Let

) £ (Z)<k — Z4

be a m X p-equivariant multilinear map. Here p acts diagonally on (Z |”‘)Xk via
p — 0y C 0}y and 7 acts via m — oy by permuting the factors of the k-fold

product (ZI™)**. Then we consider the composite

(3) (Zx(n))xk Q_Xk) (Z\n|)><k i) Zk\n|

which is again a 7 X p-equivariant multilinear map. Here 7 acts on the k-fold
product on the left-hand side by permuting the factors of the product. The group
7 acts also on the k-fold product (EG x ¢ Z*(™)** by permuting factors and there
is a canonical diagonal map with X = Z*k,

(4) D: E(1 X p) Xaxp X*¥ — Er x5 (Ep x, X)*k.

Here E(m x p) = E(w) x E(p) and D carries (Z,9,z1,...,z,) with & € E(n),
7y € E(p) and x1,...,2 € X to the element (Z, (¢, 1), ..., (¥, zx)). One readily
checks by the definition of the Borel construction in (7.1.2) that D is a well-defined
map.
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The diagonal map leads to the following diagram.

(7.3.11)

(f(QXk))ﬁ N
E(7 X p) Xnxp (Z2X)xk E(1t X p) Xaxp ZMF 7 = B(m x p) x ZInlk

D P2
\
k

\
Er xx (Ep x, ZX(M)x Znlk
A
(Cl9)F)4 P2
v f# A
Em X (ZI7)xk > En x, ZI"k " >BrxZzInk

Here A; and Ay, are comparison maps. The map C (9)** is m-equivariant since 7
acts by permuting factors. According to the notation in (7.3.10)(1) the top triangle
of the diagram yields

C(f(9"F)) = p2Aaxp(Fg™" )1

and the bottom triangle of the diagram yields

The left-hand column in diagram (7.3.11) induces the following commutative dia-
gram.

E(r % p) Xap (ZX0)%E T > B(m x p) Xercp (ZANW)AE

D
\

Em xq (Ep x, Z*(M)xk D(9)

(C9) M)%
v A v

Br % (ZIn1)xk ? > B %, (ZI7)nk

Here p are the quotient maps. The induced map D(g) is well defined since C(g)
in (7.3.10) carries section points o(x) = (&,%) € Ep x, Z*(™ to the basepoint
x =0 € ZI"l. Multilinearity of f and f(g**) yield the following diagram.

3.12
(7.3.12) F@* NG

Arx
E(7 % p) Xuxp (ZNNN T B X p) Xaxp 20T > B(r x p) x 21l

P2
Y
D(g) ZInlk
A
P2
v fa A
Er %, (ZIMNF > Em xn ZI"k " >Brx zInk
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Now we obtain for the diagram (7.3.11) and (7.3.12) the following tracks.

7.3.13 Proposition. There is a unique track

Df’g pg)m—f#D(g) = p2/\7r><p(f(g><k))/7;é

under B(m x p) V (ZN™)"F and over Br for (7.3.12) which defines the track

D19 = D9(p)y - O(f)(C(9) ") 4D = C(f(g*"))
for diagram (7.3.11). The track D59 is termed the diagonal track for (7.3.11).

The proposition is a consequence of (7.1.10). If we alter the comparison maps
Ap, Ar and Arx, by canonical tracks (7.2.4), then the diagonal track D79 is com-
patible with this alteration analogously as in (7.3.4).

Diagonal tracks are compatible with composition as follows. For this let ¢t > 1
and let 7 — o¢ be a homomorphism between groups such that the composite

i sien {-1,1}

is trivial. Then 7 acts on a t-fold product Y *! by permutation of factors. According
to the definition of diagonal maps D in (7.3.10)(4) we obtain the following diagram.
(7.3.14)

E(T X X p) Xoxmxp (XX P o B(r X 71) Xosm (Ep x, X)Xk)xt
D D

v DXt Y
Br i (B(x % p) xmep (X9)% 78 Brose, (B e (Bp x, X)76)<0

Here D*! is T-equivariant since 7 acts by permuting the factors of the ¢-fold
product. Using the definition of D one readily checks:

7.3.15 Lemma. Diagram (7.3.14) commutes.
Now we consider the composition of maps:
(7.3.16) (Zx(myxkt TN (Zlnlyxkt 7 (ZkInlyxt gkt

Here h is multilinear and h is 7 X p X m-equivariant. Since the corresponding
sign-actions are trivial we can define

C(g), C(f) and C(h), C(f(g"*)), C(h(f*")), C(R(F*")(g™"))
as in (7.3.10)(1). Moreover the diagonal tracks

Dfa. phf pht@™)  and DU

are defined as in (7.3.15).



190 Chapter 7. The Borel Construction and Comparison Maps

Now we get the following diagram of tracks.

(7.3.17) CC(CF DFD  CMC(f)5 Clg)s" DD

C(h)(DF9) 5D
V
C(MC(fg™*)3'D

Dhyngk
4

C(h(f(g"*))*")
A
thxtyg
C(hf*")C(g) 5" D

A
Dk’tc(g);(tk)D

CHCNFDC@F D cme()z ey pp

In the top row we use (7.3.15) and in the bottom row we use the naturality of D.
7.3.18 Proposition. The diagram of tracks (7.3.17) commutes.

This follows from the uniqueness of tracks in (7.3.13) if we consider diagram
(7.3.17) on the level of smash products similarly as in (7.3.12).



Chapter 8

Power Maps and
Power Tracks

The power maps introduced in this chapter yield the crucial ingredient for the
definition of Steenrod operations in the next chapter. In the literature the power
map was only considered as a homotopy class of maps. We here observe that the
power map as a map in Top™ is well defined up to a canonical track. Moreover we
describe certain homotopy commutative diagrams associated with power maps.
These diagrams are used to prove

e the linearity of Steenrod operations,
e the Cartan formula, and
e the Adem relation respectively.

We show that there are in fact well-defined tracks for these diagrams which we call
the linearity track, the Cartan track and the Adem track. These power-tracks are
defined by the comparison tracks in Section (7.3). The power tracks correspond
exactly to the relations in a power algebra; see (1.2.6) and (8.5.4).

8.1 Power maps

We define the power map

(8.1.1) U: 2925 (297 2 g

which carries € Z7 to the p-fold product U(z) = 2P = x-- - --z. This map has the
factorization U = pA where A is the diagonal and p is given by the multiplication

map p in (2.1.1) with p(x1,...,2p) = 1 - --- - x,. Moreover U is a pointed map,
that is U(0) = 0.
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The symmetric group o, acts on (Zq)Ap by permuting the factors Z¢ and
acts on Z trivially. Moreover o, C 0,4 carries a permutation a € o, to the corre-
sponding permutation of g-blocks in ¢pq. Then it is clear that U is op,-equivariant
and hence U induces for each subgroup G C o, the following map.

U
(1) BG x 79 ' =EGxgZr
A
My

Aﬁ Ap
EG Xa Z1 > EG Xq (Zq)
Hence via the comparison map A\g we get the composite
2) BG x 20 % BG ¢ 21 2% BG x ¢ 277

If gis even or if —1 =1 in R or if ¢ is odd and G is contained in the alternating
group, then the sign-action of G of Z} is trivial so that in this case we get

(3) EG x¢ Z% = BG x Z¥.

Moreover the following diagram commutes.

(4) BGv z1 “UsBaGv zva

v AcU v
BG x 79 "L EG xg 2P

v \
BG > BG

This is readily seen since Ag is a map under BG V ZP? and over BG.

Let p be a prime and let R = Z/pZ be the field of p elements and let 7 = Z/pZ
be the cyclic group of order p. Then B is a K (R, 1)-space and we fix a homotopy
equivalence in Top*

(8.1.2) he:Z' = Br

where Z1! is defined as in (2.1.4). Here h, induces the identity in homology (h). =
1:R=HZ' — H;Br = 7. By (3.2.5) the component

[Z*, Br], C [Z*, Br]

of such maps in the groupoid [Z*, Br] is contractible.
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8.1.3 Definition. The group = = Z/p is a subgroup of o, by using cyclic permuta-
tions. For this subgroup the condition used in (8.1.1)(3) holds. In fact the subgroup
7w =Z/p C o, is generated by the permutation Tr which sends i to (i + 1) mod p.
The sign of this permutation is

sign(Ty) = (~1)7 1.

Since (—1)?~! = 1(mod p) the sign action of 7 on ZP? is trivial. Hence we get the
composite
AU
v ZY % 29" Brox 2977 Br x zr1 P2, zva

where h, is defined as in (8.1.2) and A\ Uy is the map in (8.1.1)(2) and ps is the
projection. We call such a composite also a power map. Formally such a power
map 7 is a triple (v, Ar, Az) so that h, and A, are part of the definition of a power
map.

Using (8.1.1)(4) we see that the following diagram commutes for each power
map 7.
0U
(8.1.4) Zlv Zq( ' VAL

v vy
Zlx 79 | = zr

Power maps depend on the choice of A\; and h; but we have the following crucial
observation.

8.1.5 Proposition. There is a well-defined contractible subgroupoid ~v with
Rl AR AN Al

The objects of v are the power maps.

Proof. The subgroupoid + is the image of the functor

[[Z1’B7T]]1 X [Em Xp ZP1, Em Xy Ziq]]ggvzm

\
[2' x 79, Zva)7 V2"
which carries H : hy = hl. and G : A; = A to the composite

Z'x 29 —— Brx 29 — Brx ZP1 — 7P
Hx1 GUy P2
where we use the composition in a 2-category. Since a product of contractible
groupoids is contractible, we see that the image of the functor is a contractible
groupoid. Hence the track (v,hpi,Ax) = (7', hy,;, Ay) in v is the composite

p2(GUx) % (H x 1) where G and H are the unique tracks above. O
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We call the tracks in the contractible subgroupoid « the canonical tracks for

power maps. We also say that a power map is well defined up to a canonical track.
Indeed the subgroupoid « is well defined since it only depends on the structure of

the Eilenberg-MacLane spaces Z™ in (2.1).

Remark. The homotopy class of the power map y was considered by Karoubi
[Ka2] in order to define Steenrod operations. Also Milgram used the homotopy
class of the power map; compare 27.11 and 27.13 in Gray [G]. We are interested
in the secondary structure of cohomology operations. Therefore we think of v as
a map in Top™ and not as a homotopy class of maps in Top*/ ~. For this it is

a crucial observation that power maps form a contractible groupoid as defined in
(8.1.5).

8.1.6 Definition. For maps v: X — Z! and x : X — Z let ~y,(x) be the composite
yolx) : X U8 71 x 79 2, gva
where + is a power map in . We consider ~, also as a functor
v [X, 2] — [X, Z"].

We prove below that this functor induces on 7y the following commutative dia-

gram.
oYy

mo[X, Z9] > o[ X, ZP1]
H1X v > HPIX

Here v € H'X = mo[X, Z'] is represented by v and ~ is the function in (1.2.7)
defining the power algebra structure of H*X.

8.2 Linearity tracks for power maps

We now consider linearity properties of the power map ~. Using the R-module
structure of Z™ we define the cross effect map

U Z9x 29 — ZP1
(8.2.1) U z,y) =U(x+y) —Ulz) - U(y)
= (@ +y)’ —a" -y,
and the cross effect map
T2t x 29 x 29 — 7P

(8.2.2) Y (e, 2, y) = Y(o,x +y) — y(a, 1) — v(, ).
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Here U carries Z9V Z9 to 0 and " carries Z' x (Z9V Z9) to 0. Then (8.1.4)
shows that the diagram

Z' % (29 Z9) U {0} x 29 x 21 °V'% zpa

cr

v
ZY x 79 x 74 > 7P

commutes. Moreover we consider the following diagram in which ps3 is the follow-
ing projection.

cr

~
ZY x 79 x 74 > 7Pl
A
P23 v
V Ucr
VAR A > 7P4

8.2.3 Theorem. Linear comparison tracks in (7.3.3) induce the track
AL :Upaz =7

under Z1 x (Z1Vv Z9) U {0} x Z9 x Z9 which we call the linearity track for .
Moreover Ay, is compatible with canonical tracks in ~y.

Here “compatibility” means that a canonical track H : v = v/ in v yields
the track H" : v°" = (7)°" in the obvious way and the linearity track A for +/
satisfies H"OAL = A},

Proof. Let N : ZP1 — ZP4 be the m-norm map defined by

(1) N(m)zZa-aj

aEeT

where we use the action of 7 on ZP? given by 7 C 0, C 0pq. Then N is a 7-
equivariant linear map where 7 acts trivially on the source space ZP? and via
T — 0pq On the target space ZP4. There is a map

(2) U:2Z%%x 71— ZP1
with B
NU =U"

and U(z,0) = U(0,z) = 0 for x € Z9. In fact U (z,y) = (v + y)? — 2P —yP is
the sum of all monomials that contain k factors x and (p — k) factors y, where
1 <k <p—1. The cyclic group m = Z/p permutes such factors freely. We choose
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a basis B consisting of monomials b(z,y) whose permutations under = give each
monomial exactly once. Then

ﬁ(xv y) = Z b(xv y)
beB

is defined by this basis B. The map U yields the commutative diagram

(3) Brx 29x 74 Ys Br x zra

1 Ny
\ Ug” \
Brx Z9x Z1 > FEr x, ZP1

where U is m-equivariant in the same way as the map U in (8.1.1).
Using (7.3.4) we obtain the linear track LY : A, Nz = 1 x N for the following
diagram.

(4) Brx zr s Brox zr

Ny IXN
\ Ar \
Em x, ZP1 > Bm x ZP4

Next let v : ZP9 x ZP1 x ZP1 — ZP4 be the m-equivariant linear map defined by
v(z,y,2) = x —y — 2. Then (7.3.4) yields the linear track L” : \;vgy = vgA3 for
the following diagram.

3

A
(5) Em x, (ZP1 x ZP1 x ZP1) 7 > B x (ZP1 x ZP1 x ZP1)
vy 1xv
v N v
En x, ZP1 " > Bm x ZP4

Now we have for a € Z; and 8 = h,«a € B7 the equations:
,yc’r(a’ z, y) = 7(047 T+ y) - 7(047 {E) - 7(047 y)
= p2>\7'rUﬁ (/65 T+ y) - pQATrU]i(ﬁv .’,U) - pQATrU]i(ﬁv y)
= p2(1 x V)X US (B, 2, y)

where U : Z9 x Z9 — ZP9 x ZP4 x ZP4 carries (z,y) to (U(x+vy), Uz, Uy). Hence
we have

~ = pa(1 X z/))\f’TUﬁ’L(hTr X 1) =~ pgx\ﬂuﬁUﬁJr(hﬁ x 1)
= p2 AU (hr X 1) = pa Az Ny(hre X U) = pa(1 X N)(hz x U)
:pg(hﬂ— X NU) = (NU)p23 = Ucrpgg.
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This defines the track
Ap = (p2L"U (hx x 1)O(p2 L™ (hr x U))°P
Ap : U pag = "
Hence the proof of (8.2.3) is complete. O

Formapsv:X — Z', 2 : X — Z9, y: X — Z9 in Top* the linearity track
Ay yields the track

Lyy o U (z,y) =75 (2, ),

8.2.4
(8.24) L2y — Ay(v,ay) € [X, 27]

with U (z,y) = U(x+y) —Ux— Uy and v§" (z,y) = Yo(z+y) — Yo (z) — 70 (y); see
(8.1.6). According to the construction of Ay, in the proof of (8.2.3) we can describe
the track L?-Y by the following diagram which is based on the equations

(1) vU+ = U = NU.

We indicate in the diagram only the arrows; the objects e are appropriate Borel
constructions. Subdiagrams with a number 1 or 2 are homotopy commutative with
a fixed track; all other subdiagrams are commutative. Let w = h,v : X — Bm.

Yo' (@,y)
A3
(2) ° < T °
+
Uk
BrXv 1 V#
y v Ax ) vy (w,z,y)
VAL S ° < ° < ° < X
N p2 A A
BrxN 2 Ny _
BrxU
° <
Brx1
U (z,y)

Here the subdiagram 1 is given by (8.2.3)(5) and subdiagram 2 is given by
(8.2.3)(4). The map A2 = A\ X\ x\, is a product over Br according to (7.1.4)
while B x X denotes the product in Top. The m-norm map N : ZP? — ZP? in
(8.2.3)(1) admits by (7.2.2) the well-defined track

(8.2.5) =) TIa:N=N*=0

aEemT
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where
NE(z) = Zsign(a) cx=p-z=0¢€ 2P

aEemT

Here we use the fact that for « € 7 C 0, we have sign(a) = 1. According to the
definition of U in (8.2.3)(2) we have

Ul+y)—Uz—Uy=U"(z,y) = NU(z,y)
so that T'U(z,y) : U (z,y) = 0. Therefore the track

reY © Ul+y) = Uz +Uy

8.2.6 o
( ) ryY = TU(x,y)+Ux+Uy

is defined. This yields by LV in (8.2.4) the track

rzy o y(z,y) = () + Y (y)

(8.2.7) 29 = (DU (z,y)O(L2Y)P) + 7, (z) + 7o (y).

For v = 0 the track LY is the identity track so that I'{¥ for v = 0 coincides with
(8.2.6).

Moreover we define for r € F the linearity track
(8.2.8) L(r)s :v(re) = r -y, (x)

as follows. We have U(rz) = rPU(x) = rU(z) since ? = r in F = Z/p. Therefore
we get the following diagram where r : ZP? — ZP9 carries x to 7 - x.

p2 Ar Uy
ZP4 < Br x Z0 < Em X ZP1 < z1<" X

r T I<,:"‘ T4 r
\

\
g P2 p VAN Pq v q
7P < X2 < Er x, ZP1 < Z

Hence we can define
L(r)s = po L"Upa.

Here L" is the linear track in (7.3.4). We point out that, for example, I'2>* defined
in (8.2.7) is a track I'S® : 4, (2z) = 2v,(z) which, however, in general does not
coincide with L(7)% : v,(22) = 27, ().

In a similar way we get for a permutation ¢ € o, inducing o : Z9 — Z9 the
permutation track

(8.2.9) P(o)y = P(0)} : w(ox) = o - v, ()
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as follows. We have U(ox) = o?U(x) where 0P € 0, is the permutation for which

(02)? = oP2? where 2P = x-- - -- x is the p-fold product. Hence we get the diagram
P2 pq >\7r U# x
7ZP4 < Br x Z* < Er X, ZP1 < Z9 < X
oP Va; L::p (oP)u o
\ \ U. \
zri < 7 Brox 289 < L B 2P < * g4

™

which yields the definition
P(0)® = po L7 Uy

Here L°" is the linear track in (7.3.4).

We point out that the linearity track I'7'¥ is also defined if we replace z,y by
tracks Z : x = 2’ and § : y = ¢’ in [X, Z9]. In fact, such tracks are represented
by homotopies

7,7 IX — Z% with IX = [0,1] x X/[0,1] x
so that TZ¥ is defined in [IX, Z9]. Using the diagonal of T'Z:¥ we get the track
(8.2.10) 5 s y(z +y) = (@) +70(y)
and the following diagram of tracks in [X, Z7] commutes.

T,y

YwE+y) =) +ve(y)

rev
Yo (2+9) \ Vo (@) +70 (9)
\ \

@ 1)) + )

v

8.3 Cartan tracks for power maps

Next we consider the following diagram with Aj3(a, z,y) = (o, 2, @, ).

1x
71 x 79 % 79 ! > 71 x gat+d
A13 /Y
Y \%
1 1 ' Ac 4
ZYx 29 x 71 x 74 < zvla+d)
v Xy o
Y \%
! N
VA WAL > 7pa+pq’
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Here 0 € opgypq is the permutation for which
(8.3.1) o(x-y)P =aP - yP

with z € Z% and y € Z9. One has sign(o) = (-1)" "™ . We observe that the
diagram restricted to Z' V Z9 x Z9 commutes.

8.3.2 Theorem. Linear comparison tracks (7.3.3) and smash tracks (7.3.8) induce
the track

Ac i oy(1 x p) = p(y x v)Ag

under Z'\ Z9x Z9 which we call the Cartan track for v. Moreover Ac is compatible
with canonical tracks in 7.

Proof. Let n = pq+pq = p(qg+ q’). We have the following commutative diagram.

(1) 74 % 79 " > 7a+q
U

\%

UxU AL

v Y
’ 12
AL > 7"

The group 7 acts trivially on Z9 x Z9 and acts via cyclic permutation of the
(¢ + ¢)-blocks on Z™. This shows that all maps in the diagram are actually 7-

equivariant. Hence we get for induced maps on Borel constructions:

(2) o Ug(1 x ) = py(U x U)s.

Moreover using (7.3.3) we see that the diagram

(3) Enxn 2" " = B x 2"

B4 1xo

v N v
Ern x,.Z" > Br x Z"

homotopy commutes under Br V Z™ and over B and the corresponding linear
track L7 : Arog = (1 X 0)A; is well defined.
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Moreover we obtain for the m-equivariant bilinear map p : ZP9 x zvd s gn
defined by the multiplication (2.1.1) the smash track

(4) SH Appig = (1 x A2

for the following diagram.

SN2 ,
(5) B x, (ZP1x ZPT) " > Br x ZP1 x ZP4
M IxXp
v AL \
Erx 2" > Br x Z"

This is a track over and under Br vV ZP4 x ZP7 . Hence we get the track
Ac = (p25"(U x U)g(hz x 1))0(p2 L7 Uge (b X 2))°P
given by the composite

oy(1 x p) = p2(1 x ) Az U (hr x 1)
~ porropUs(hr x p)
= p2 ey (U x U)g(hr x 1)
~ po(1 x )A2(U x U)y(hy x 1)
= pu(y x 7)Aqs.

This is the Cartan track. O

Formapsv:X — ZY 2: X — 29, y: X — Z49 in Top* the Cartan track
A¢ induces the track

(8.3.3) Cov o oz y)n(T-y) = Y(®) - Y(y)
- C2v = Ac(v,2,y) € [X, ZPa+d)].

Here the permutation o(x,y) = 0 € Opgtpg is defined as in (8.3.1) for ¢ =| = | and
¢ =| y |. Moreover the product - is defined by multiplication maps p in (2.1.2).
According to the definition of A¢ in the proof of (8.3.1) we can describe C¥¥ by
the following diagram which is based on the equation

(1) oUp = p(U xU)

corresponding to oU(z - y) = (Ux) - (Uy).
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We use the same convention as in (8.2.4).

U'Yv(z'y)
Ar U.
(2) ° =< ° < # °
A
BrXo 1 T#
g v An v
zplat+d’) < o X < X Brxp
N
BrXpu 2 M
w,x,y
o< o< ( ) X
A2 (UxU) g

Yo () v (y)

Subdiagram 1 is given by (8.3.2)(3) and subdiagram 2 is given by (8.3.2)(5). All
other subdiagrams are commutative. The map A2 = A\, X\, is a product over Bm
according to (7.1.4) and Bw x X is the product in Top.

8.4 Adem tracks for power maps

Now let 7 = p = Z/p. Then the product group 7 x p is contained in 0,2 and we
have the following commutative diagram of groups.

T™Xp C opXop C prUp C oy C Op2q
T N
\ v
p X C opXop C opfop, C 0,2 C Op2q

The rows are the canonical inclusions as in McClure [MC], p. 254. The map T
is the interchange map with T'(a, ) = (3,a) and ()7 carries £ to 76771, If we
consider 0,2 as the permutation group of the product set = x p, then 7' is such a
permutation which yields 7 € 0,2 C 0,2,. Hence for (o, 3) € m x p we have the
equation in op2g,

(8.4.1) m(a, B) = (B, )T
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Therefore the map
(1) Tu  B(T X p) Xpnp ZP9 — E(p X ) X por ZP 9

which carries ((0,®w),z) to (w,?,z) is well defined with ¢ € Em, w € Ep and
z € ZP*4. In fact (8.4.1) shows that 7 : ZP°7 — ZP"4 is a T-equivariant linear map
since for 7(z) = 7 -z we have 7((o, 8) - ) = T'(av, 8) - 7(x). Hence 7 induces the
map 74 as in (7.3.2). We point out that the sign of 7 € 0,2, is

(2) sign(r) = (—1)

Next we consider the following diagram obtained by the interchange map 7" and
by the power map « in (8.1.3).

a(p—1)p
2 .

Ix~y v
AR SAR A > 71 x zp4 > 7p%q
Aa
Tx1 > T
Y \%
Ix~y v
VARG AR A > 71 x zp4 > 7p%q

We observe that v(1 x «)(T x 1) and 7y(1 x ) both restricted to Z! x Z! v Z4
coincide with (0, U2) where U2 : Z7 — ZP°? carries z to U2(z) = UU(z) = zP".
In addition we show:

8.4.2 Theorem. Linear comparison tracks (7.3.8) and diagonal tracks (7.3.13) in-
duce the track
Aa:v(I x )T x 1) = 7v(1 x )

under Z' x Z'V Z2 which we call the Adem track for v. Moreover A 4 is compatible
with canonical tracks in ~.

Proof. We have the multilinear maps
f= sz — 27,
9= (2" — 2,
which yield the composite
(1) Fg®) = (20 7)® — Z7°.

Here g is p = Z/p-equivariant and f is m X p = Z/p X Z/p-equivariant. Moreover
the sign-actions are trivial so that we can apply (7.3.13). Hence we obtain the
diagonal track

(2) D9 C(f)(C(9)") D = C(f(g™P))
for diagram (7.3.11) with f and g above.
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Next one readily checks that the following diagram commutes.

U2
(3) B(r xp)x 21 ‘= E(m X p) Xzxp zZr'a
A A
Tx1 T4
U2

B(p xm) x Z1 jj>E(p><7r) X pxr A
Here U? = U o U carries = to zPP, see (8.1.1)(1). Moreover 7 is induced by the
T-equivariant linear map 7 in (8.4.1)(1). For this map we have by (7.3.3) the linear
comparison track

4) L. AescpTat = (T X T)N\pxer

for the following diagram.

Arx
(5) E(1 X p) Xpxp 2P ! > B(r x p) x ZP4
A A
TH# > TXT
2 Apxr 2

E(p X T) Xpxn 2P 1 > B(p xm) x ZP 14
Next we have the equations:

Y1 x7) = (P2AUp(ha x D)(Z1 x (p2A,Use(hy x 1)))

(p2ArUg) (BT X paX\,Ug)(h X by x 1)
C(N)AY (Br x C(g) AL ) (hr x by x 1).

(6)

Here the diagonal maps A = A : X — X*" are defined in (8.1.1). Moreover
the following diagram commutes.

AP
(7) Br x Bp x (29)7 2 E(m X p) Xnxp ((£9)%P)*P
BrxC(g) C(g);pD
v NG v
Br x 7P > Em g (ZP7)%F

Here the right-hand side is defined as in diagram (7.3.11). Commutativity is easily
seen by the definition of the diagonal maps. Now (6) and (7) yield the first equation
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of the following composition of tracks.

Y1x7) = CUC) DAY (Br x AL (hy x hy x 1)
= C()(C()5"D)AY ) (he % hy x 1)
® ~ C(f(gP) AL (hy x by x 1) see (2),
= P Aeep(F7 )AL (e X By x 1)
= P2/\WXpU#(h7T X h, x 1)
= p2loxaUg(hp X by x 1).

Here the last equation holds since p = m = Z/p. Now we can apply (8) and (5) in
order to get

YAXANT x 1) = p2AaxpUl(hr X hy x 1)(T x 1), see (8),
= p2ArxpUL(T x 1)(hy X by x 1)
= pg/\ﬂ-XpT#Ui(hp X hy x 1), see (3),
=~ po(T X T)ApxaUZ(hp X hr x 1), see (5),
= Tpg/\pXﬂ—Ui(hp X he % 1)
~ 7y(1 x7), see (8).

(8.4.3)

This is the Adem track which uses the linear comparison track (5) and uses twice
the diagonal track in (8). O

Remark. The proof of the Adem track above is actually less complicated than
the proof 2.7 of Karoubi [Ka2] who follows the line of proof in Steenrod-Epstein
[SE] p. 117. In fact, our argument does not need the cohomology of the symmetric
group 0,2 (with local coefficients if ¢ is odd).

Let v,w: X — Z' and  : X — Z9 be maps in Top*. Then the Cartan track
A 4 induces the track

Ai,w : 'YU’Yw(x) = Tz " YwYv ({E)

(8.4.4) k
A7, = Aa(w,v,z) € [X, 277

Here 7, = 7 € 02 C 0,2, is defined as in (8.4.1) for ¢ =| = |.

8.5 Cohomology as a power algebra

For a prime p and F = Z/p the Eilenberg-MacLane space Z" = K(FF,n) yields the
cohomology groups of a pointed space X by the well-known equation

(8.5.1) H"(X)= H"(X,Z/p) = [X, Z"].
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Hence the power map v : Z' x Z™ — ZP" induces the operation (n > 1)
(8.5.2) Yo : HY(X) — HP™(X)

which for x € H! carries y € H"(X) to the composite
ve(y) s X B8 21w gn 2, g,

We have seen in Section (1.5) that the cohomology H*(X) corresponds to a model
of the theory K,, of Eilenberg-MacLane spaces. We now define for each such model

M € model(K,),
the algebra M* with M™ = M(Z™), n > 1, and multiplication
M™ x M™ = M(Z™ x Z™) 225 M(Z™™) = Mntm
induced by p in (2.1.1). Moreover we define (M*,v) by
(8.5.3) No : M™ — MPT

for € M*', n > 1. Here ~, carries y € M"™, n > 1, to v.(x,y) where v, is the
composite

MY x M™ = M(Z' x Z") 5 M(ZP") = MP"?
induced by the power map ~.

8.5.4 Theorem. For a path-connected space X the cohomology (H*(X),7) defined
by (8.5.2) is a power algebra. More generally for each model M of K, the algebra
(M*,~) defined by (8.5.3) is a power algebra.

Proof. If x = 0 is represented by z : X — x € Z! we see that v(z, y) is represented
by the composite X % Z" ¢ Z' x Z" 2 ZP" and we can use (8.1.4). Hence
Yo (y) = yP. Next we see by (8.2.4) that +, is a homomorphism of R-vector spaces.
Moreover (8.3.3) shows

Vo(y - 2) = sign(0)7z(y) - 72(2).
This is equation (1.2.6)(ii). Finally (8.4.4) shows

Yo vy (2) = sign(7) vy vz (2).

This is equation (1.2.6)(iii). The Bockstein map 3 : Z! — Z?2 defined as in (8.5.13)
below shows that H*(X) and M* are also B-algebras in §-Alg,,. O

Using (8.5.1) the power map v defines an element
v e HPY(Z x 29) = (H*(ZY) @ H*(2))"™
pq
=@ H (Z") 2 H (29
i=0
pq

=P wi © B (29).
=0
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Here w; = w;(z) where z = w; € HY(Z') = Z/p is a generator, see (1.2.3)(4).
Hence one obtains well-defined elements D; € HP?~(Z9) with

pq
(8.5.5) v=Y w;®D;.
1=0

This is an equation for the homotopy class of «v. The elements D; essentially coin-
cide with those in Steenrod-Epstein [SE] and are used for the following definition
of Steenrod operations:

8.5.6 Definition. For p = 2 let
qu c H‘H'j(Zq) _ [Zq,Z‘H‘j]
be defined by Sq/ = D,_; and for p odd let
Pie Hq+2j(p—1)(Zq) - [Zq’Zq+2j(p—1)}
m(q§+q)

be defined by (—1)j7.9qu = D(q72j)(p71)- Here 7.9q = (—1)
m= p;1 is an element in the field R = Z/p.

- (m!)? where

8.5.7 Remark. We point out that the sign for P/ above coincides with the sign of
Steenrod-Epstein [SE] p. 112 and not with the sign of Karoubi [Ka2] p. 705. In
fact, Karoubi takes the sign from formula (vi) of McClure [MC] p. 259; though
formula (4) p. 260 is the appropriate formula. Then the sign of McClure and
Steenrod-Epstein coincide provided we identify w; with the generator b used by
McClure. Karoubi also uses a choice of generators z; in H*(BZ/p) which do not
coincide with the generators w; used by Steenrod-Epstein, see (1.2.3)(4).

The elements Sq’ and P7 in (8.5.6) are directly deduced from the power
map -y via formula (8.5.5). Moreover the power map v was obtained easily by the
power function U and the comparison map A,. Therefore Definition (8.5.6) is a
best possible direct way to introduce the elements Sq’ and P7. These elements
coincide with the classical elements since we have the following result.

8.5.8 Theorem. The elements Sq’ and P7 defined in (8.5.6) by use of the power
map y coincide with the corresponding Steenrod operations.

Proof. Karoubi [Ka2] shows that Sq” and P° are represented by the identity of
Z4. Therefore the linearity track and the Cartan track imply that Sq’, P7 satisfy
the axioms for Steenrod operations in Steenrod-Epstein [SE]. The uniqueness the-
orem chapter VIII [SE] thus implies that the elements (8.5.6) coincide with the
corresponding classical elements. O

It is possible to describe all elements D; in (8.5.5) in terms of Steenrod
operations. If p = 2 we have for the homotopy class of v the equation

(8.5.9) T= w; ©8q’.
J
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If p is odd we have accordingly
(85.10) v=9 Z jw (a=2)(p—1) @ P’ + 1, Z Jw(q—2j)(P—1)—1 ® 3P
J

where (3 is the Bockstein operator. The sum is taken over j € Z with w,, = 0 for
n < 0and P/ = 0 and S¢/ = 0 for j < 0. Comparing (8.5.10) with (8.5.5) we
see that for p odd many D; are actually trivial. Formula (8.5.10) corresponds to
McClure [MC] (4) p. 260 or to Steenrod-Epstein [SE] p. 119. See also 1.10 [Kaz2].

8.5.11 Corollary. Let V be a finitely generated Z/p-vector space and V# =
Hom(V,Z/p). Then we have the isomorphism of power algebras natural in V,

(H*(B(VF),7) = (Bs(V),7).
Here the right-hand side is defined by (1.2.8).
Proof. We use (1.1.8), (1.1.9) and (1.2) and (8.5.8). O
The Bockstein homomorphism (¢ > 1)

(8.5.12) B:HY(X)— H(X)

associated with the short exact sequence 0 — Z/p — Z/p? — Z/p — 0 is induced
by a map
B:279 — 741

which is well defined up to a canonical track. That is by (8.5.1) the Bockstein
homomorphism is the composite

HY(X) = [X, 29 LN (X, 271 = HI+(X).
In the next section (8.6) we show:

8.5.13 Theorem. For p odd the composite of the Bockstein map 3 and the power
map 7,
71« 79 2, 7pq N Zpatt

is null homotopic.
As an application of (8.5.13) and (8.5.4) we get

8.5.14 Theorem. Let p be odd and let X be a path connected space and M be a
model of K,. Then (H*(X),~) and (M*,~) in (8.5.4) are Bockstein power algebras.

Proof. We define 8 on H*(X) by (8.5.12). Moreover we define 5 on M* by the
induced map

M7= M(Z9) B, M(z9+) = Mat!

induced by the Bockstein map 3 : Z9 — Zt1, O
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8.5.15 Theorem. Let X be a path connected space and let M be a model of the
theory K, of Eilenberg-MacLane spaces. Then the power algebras (H*(X),v) and
(M*,v) in (8.5.4) are unitary extended power algebras for p = 2 and are unitary
extended Bockstein power algebras for p odd.

Proof. We define the extended structure of (H*(X),~) by
Eo(V) & H*(X) = H*(B(VH) x X)

where we use the Kiinneth formula and the power algebra structure of the right-
hand side given by (8.5.4). We use for the model M of the theory K, the isomor-
phism of categories

K < : > model(K,)

in (1.5.2). Then bM in K and H* B(V#) in K have a tensor product H* B(V#)@bM
in I and we define the power algebra

Es(V)@ M* = (a(H*B(V#)@bM),~)

where v is defined by (8.5.4). This is the extended structure of (M*, ). These al-
gebras are unitary by (8.5.8) and (8.5.10). Moreover for p odd these power algebras
are Bockstein algebras by (8.5.14). O

8.5.16 Corollary. The functor ¥ in (1.5.4) is well defined for p =2 and p odd.

8.6 Bockstein tracks for power maps

Let Z" = Zf with F = Z/p. We have seen in (2.1.11) that there is a well-defined
contractible subgroupoid

B c Az, Zm .

The objects of 3 are the Bockstein maps . Moreover we have the well-defined
contractible subgroupoid
v C[Z' x 29, ZP].

The objects of « are the power maps . The morphisms in § and ~ are termed
canonical tracks. We now show:

8.6.1 Theorem. Let p be odd. Then there is a well-defined track
Ap: By = 0in [Z' x 2%, ZPTH1]

under Z' x * which we call the Bockstein track for . Moreover Ap is compatible
with canonical tracks in vy and (.
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The following facts are needed in the proof of (8.6.1). Recall that for G =
7Z/p?, the short exact sequence

0—F-5GF—0

induces the fibration ]
Zn L gn T gn,

Since the diagram

GeG >G
A A
i®l F
A

I

FoG 1®F>F®F

commutes, the following diagram is also commutative (i + j = n).

(8.6.2) zZixzi " =28
A A
ix1 zZn
A
o
Z' x 7, N AR

Here p is the multiplication map.

Moreover we need the following notation on cubes. Let I®¥ = I x --- x I be
the k-dimensional cube with I = [0,1] the unit interval and S' = 1/{0,1}. We
have the quotient map

po: (I, 0I%) — (ST A--- A S %) = (8%, %).
Here the boundary 0I* of I* is given by the union of faces
DE I*=1 — a1*
with e =€ {0,1} and j=1,...,k and
P (b1 the1) = (P ey 1y € Lty )
We need the map

k
(8.6.3) p:orF — \/ sF1
j=1
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defined by

%) = x,
O { o ]1,)

p(ij) = i;po-

Here i; : S*=1 C \/?:1 Sk=1 is the inclusion of index j. Hence the map p carries
faces of level 0 to the basepoint and carries faces of level 1 of the form I*~! =
i} 1" via the quotient map po to the sphere S¥~1 = ;5% 1.

We now choose a homeomorphism of pairs (%, xo),

2) (15 arky < X (k=1 A (1,0), SF1)
Po Sk_l/\po
Y _ \%
(5%, %) < ¥ (S 1A S %)

such that the map y : S¥ — S* induced by y is homotopic to the identity of S*.
Then the well-known homotopy addition lemma implies that the composite dxo
admits a homotopy

k
3) pxo =Y (=177
j=1

We introduce the mapping space

(4) Q1) Zntk _ (Zn+k70)(81k,*)

with * = (0,...,0) € I*¥. Then p induces the map

(5) pr x?zlﬂkle”H“ — Q1) gntk,

Moreover we introduce the following pull back of spaces.

(6) FG, - (Zn+k, 0)(1’2*)
ok 9o

% \
Q(k—l)Zn+k ; > Q(kﬁl)Z(gij

Here i is induced by the inclusion Z"*+* — Zg”“ and 0y is induced by the inclusion
OI* c I*. We get the map

(7) * Fiy — Qkzntk
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which carries (a,b) € F(j) to the unique map 7 (a,b) : S¥ — Z"*F for which the
following diagram commutes.

Ik b>_Z£+k
Po s
\ \

7 (a,b)

Recall that the Bockstein map [ is defined by (see (2.1.9)

(8.6.4) Zn FQzrl < Fn = znH

where F™ is the fiber of Z"+1 — Zp %! that is

(1) F" ={(z,0) € 2" x (Z2™,0)19 (1) = z}.

In fact F™ can be identified with Fj) in (8.6.3)(6). Using 7% and 9% in (8.6.3) we

get the following commutative diagram in which the horizontal homeomorphisms
are induced by x in (8.6.3)(2).

X" —
(2) QF zn+k L =007, 4
A A
ok a QF1lx
Fn X k—1 pntk—1
(k) ~ QR
L b Qk—1g
v Xt \
Q(k—l)Zn+k NO > Ok—1gn+k

Here the right-hand side is defined by 7 and 0 in (8.6.4). For k > 1 we need the
maps, see (2.1.7),

(8.6.5) rkosk Lz kb gntk,
Using the inclusion g : S* — Z' in (2.1.7) we write ¢ = ip(t). Then

(1) rR@Y A Aty = by tr, and
(2) K@)t A Atg) =dp - th - x.
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Hence we have

(3)

with

Th * $p(2) = 773 (2)

sign(7y,n) = (=1)*",

where 7, is the interchange permutation.
One readily checks that

(4)

7"1]2 = (Qk_lrn—i—k—l)rq]i_lv
sk = (QF s, 1)sk L

Let n = 47 + -+ + i with 41,...,7x > 1, £ > 1. Then we have the following
commutative diagram where p is the multiplication map.

(866) Zil NEERD ' Zlk " > gn
Siq XX Siy 1 sz
\ \
inl—H X oo X ink+1 B >kan+k
Tk b

For t1,...,t; € S' and for y1 € Z",.. .,y € Z% let 75y = 7" be the
interchange permutation for which
(1) T(k)(fl-y1-f2-y2 ..... {k.yk)zfl ..... ey y

with sign(ry)) = (—1)at@Fi)t+tiat+i-1) The map i in (8.6.4) is the
multiplication of loops, that is

(2)

a(o1,...,op) =01 X--- Koy

where the exterior product (see (2.1.5)) on the right-hand side is considered as a

map ST A---

ASY — Z"F carrying ty A - Aty to oy (t) - - - o (tr). Diagram

(8.6.4) commutes since

sy - -

7yk)(t1/\"'/\tk) = tl ..... tk.yl.....yk
= T(k)(ﬂ Y1 tgyg - th - yk)

= T(k)(ﬂ(silyl, .. .,Sikyk))(tl VAR /\tk).
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Next we embed diagram (8.6.6) into the following commutative diagram.

©w

(8.6.7) VA NS AL - gn
Siy X XSiy o~ 1 ~ sz
\ \
QZl'l—H X oo X ink—ﬂ—l B - ka7L+k
A T(k) 1 A
TX X~ 2 ~ gk
. . n
F1ox ... x F'*e _ >F(k)
T(k)
] 3 ok
\ v
X?:le_lszrk . - Q(k_l)Z7L+k
T(k)P

Subdiagram 1 is given by (8.6.4) and subdiagram 2 is given by (8.6.3)(7) with

(1) i((x1,01)y. .., (g, 0)) =01 K- - Koy

Here the exterior product on the right-hand side is considered as a map

(2) (71|Z|"'|EO’]€III€—>Z£+I€

for oy : I — Z&lﬂ, cony o i I — Zéf“. Now we use (8.6.2) to see that o1 K

oy | maps to Z7HF C Z&*k. Therefore fi is well defined.
In fact, we have by (8.6.2) the formula

3) (1 X+ NWoj1) - i(z;) (041 W Woy)
=i[(mo) W W (moj_1) -z - (mojp1 K- W (woy)].
Hence we define 0 = (91,...,0;) by

3j((331,0'1), sy (mk,ak))

) = (mo)W---W(noj_1) ;- (moj1 K- W (w0oy).

Here the right-hand side is a map I*~! — §*¥=1 — Z"*+k which defines an ele-

ment in Q"1 Z"*T* Now (3) shows that subdiagram 3 commutes. Let Tlgj) be the
permutation of Z"** which satisfies

TIEJ)(L?I YL B oyin -y iy gy e - Un)
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Here we have | y; |=i; and | z; |=i;+ 1. Now 9; yields the following commutative
diagram with j =1,... k.

6 ) )
(6) B; A;
) . . 55 ) . .
0 X x Z0T o Zik > Q70+ .o ZuT x o x QZik L
A —
TX X OX -+ X T=0;
1 i Fitx ... x Fiv
9;
\ AN \
n+1 > Ok—17n+k
Z RO QF—tZ
k n+1

Here p; is the multiplication map and 55 = s;, X ---x 1x--- X s;, and f1; carries
(01, . xj,...,0) to (o1 ®---Koj_1) -z (041 K- --Koy). Equations (4) and
(5) show that diagram (6) commutes.

The right-hand side of (8.6.7) is “equivalent” to the Bockstein map G(—1)"*~—1).
For this we use the following in which the indicated tracks are unique.

(_1)n(k71)
T
gk—1 el N
(7) AL " >0 < " gn
SZ T QF— Sntk—1 Sn
4
\ % \
Qk Zn+k -~ 0 < an—H
A A A
k a 5 T = @ Ié;
F&) >0 < Fm 1 > f'm
gk b k1l 6 o
\ % \A
Qk—1) zn+k >0 < gn+l
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Here 4, 5 and 6 are defined as in (2.1.9)(6). Subdiagrams without tracks are com-
mutative. Using (6) and (7) above we see that (8.6.7) implies the derivation prop-
erty of the Bockstein map 3, see (K1) in (1.1.7).

We are now ready to introduce the following diagram for the power map
U : Z% — ZP? with U(x) = 2P. Recall that the group G = Z/p C opq acts
on ZP? by cyclic permutation of g-blocks and G acts trivially on Z¢ and U is a
G-equivariant map.

8.6.8 Lemma. For all primes p there is a commutative diagram of G-equivariant
maps as follows.

74 > 7pd
Sq ~ 1 ~ qu
\ ' \
Qzat+! > (P Zp+pa
A A
T o~ 2 ~ P

U// pq

Fa > F(p)

AP 3 or
U/// v

\
Zat A (Qzat A=) > Q1) zp+pa

The maps s, and 7 are defined as in (8.6.4) and the maps sb , 7P, ¥ are
defined in (8.6.7). Moreover we put

(1) U'(a) = Ty fi(a, ..., a) for a € QZ7", and

(2) U"(b) = 1 ia(b,...,b) for b e F.

Here 7)1 and 7t for k = p and iy = --- = i), = ¢ are defined in (8.6.7). Next
let A} be given by

(3) AT(b) = (9b) A (wa) A -+ A (ma).

Moreover we define for z € Z97!, ay,...,a,_1 € QZ9TY

(4) Uz Nar AN+ Nap—1) = p*(A)
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where A is the p-tuple
(5) A=(rpai®---Raj_1-z-a; X---Rap_1]|7=1,...,p).

Now (8.6.7) shows that the diagram is commutative. The crucial observation is
that all maps in the diagram are G-equivariant. The group G acts trivially on all
spaces at the left-hand side of the diagram. Moreover @ € G yields the element
€a = a € G C 0y and the element o € G C 04 50 that €, © @ € 01 pq is defined.
We define the action of @ € G on (y : SP — ZPTP1) € QP ZPTP1 by

(6) a y=(ca®ayle’)

Here ¢! acts on S? = S' A--- A S! by permuting the S!-coordinates. The map
sh, in the diagram is G-equivariant since

shylax)(t) = i(t) axforte SP, v e ZM
= (1owil) =
= (woa)e O )it
= (cama)i(es't) 2)
— (ast,@)(O).

Similarly as in (6) we define the action of & on (a, b) € F(’;q) and a € QP~1) Zptrd by

ala,b) = (aa,ad),
(7) aa = (ca@a)a(ey),
ab = (ea ®a)b(e;l).

Here €1 acts on the cube (I?,dIP) by permuting coordinates. This shows that 77
and 0P are G-equivariant. Moreover U’ and U"” are G-equivariant. In fact for U’
we have
al'(a) = aryila,...,a)
= (ca @)Tp(aX---Ra)e,*
= T(p)(a,®---&a,)
= U'(a).

(8)

Compare the definition of the permutation 7,y in (8.6.6)(1). Similar equations
show that U” is G-equivariant.
We now show the fact that also U” in (4) is G-equivariant, that is

(9) aU"” =U" for a € G.
Proof of (9). We have

(@U@ Nay A+ Nap—1) = ap*(A)
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where A is the p-tuple in (5). According to the definition of p we obtain for
B = (€)' the commutative diagram

-1

(10) 1 Tsar P\ sl< T g
B B B B’
Y v o v \
-1 > 9P >\/P_1 Spr—1 <. Spr—1
ih; = ig;

with 87 € o,_1 given by

i . 163 .
8 {l . p=1={1,....p} = {4} —{1,...,p} = {85} ={1,...,p—1}.
Here the equations are the monotone bijections. Hence we get for A = (A41,...,4,)
ap’(xNar A+ Nap—1) = ap*(4)
(€a ©® @)(Bp)*(A) with 8 = ¢!

= plea ©a)(A)B
= p*(Bi,...,B,).

Let j = 3j and let a; = a;_; for t € Z/p.

Bj = (ca@a)mp(a1R---Ka; -z aj,, K- -Way,)s
= (ca@a)rplapt B---Rag_1)-x-aggr1y X ---Ragy)
= Tp(alﬁ---&aj,l-x-ajﬁ---ﬁap,l)
= Aj.

(11)

Compare the definition of 7, in (8.6.6)(1) for p = k. By (11) the proof of (9) is
complete. This also completes the proof of (8.6.8) O

8.6.9 Lemma. Let p be odd. The composite U" A in (8.6.8) is null homotopic and
there is a well-defined track U" A} = 0.

Proof. 1If ¢ is odd then the diagonal
A:Z9— ZINZ1

is null homotopic with a well-defined track A = 0, since 7,,,A = A with
sign(rq,q) = (—1)9 = —1. This shows that A} = 0 if ¢ is odd. If ¢ is even we
see that U"" = 0 as follows. Here the track U"”" = 0 is unique by (3.2.5). Accord-
ing to (8.6.3)(3) the map U has the degree

p .
d=) - (-1)7"
j=1
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where ¢; is the sign of the interchange of z and A; in z-A; with A; = a;X- - -Ma;_;.
Hence

€ = (_1)((j—1)(q+1))~(q+1) — (_1)1'—1
since ¢ is even. Therefore we get d = p = 0. g

8.6.10 Definition. Let 9 : FF — X and 0 : I/ — X’ be G-equivariant maps
between G-spaces in Top*. We say that 9 and &’ are weakly G-equivalent if there
exists a commutative diagram of G-spaces in Top™ and G-equivariant maps

F< Fy > Fy < >F, < F’
6] 9
\ \ \ \ \

X < Xl >X2< >Xn< X'

in which all horizontal arrows are homotopy equivalences in Top®. The homotopy
inverses need not be G-equivariant.

8.6.11 Lemma. The G-equivariant map O : F(Z;q) — Q=1 Zp+ra yith the G-action
in (8.6.8)(7) is weakly G-equivalent to the same map 0P with trivial G-action.

Proof. Recall that F(’; q) is the space of pair maps
) (17, 019) — (757, 28+71)

with G-action on F(’; q) given by a G-action on Z5™? and on I?. There is a G-
equivariant homeomorphism

(2) (COIP,dIP) ~ (IP,dIP)

where C is the reduced cone of a G-space in Top™. We now use first the method
in (7.2.6) to show that the pair of G-spaces (Z&79, ZE*P9) is weakly G-equivalent
to the same pair with trivial G-action. This shows that J” in (8.6.11) is weakly
G-equivalent to the same map 0P with the G-action given only by the G-action on
OI? via (2). Now we use the space of maps (1) considered as a space of maps in the
category of simplicial groups where the simplicial groups Z&79, ZE+P9 are abelian.
Hence this is the space of maps in the category of abelian simplicial groups and
since by the Dold-Kan equivalence abelian simplicial groups are equivalent to chain
complexes we can apply the method in (7.2.6) to the singular chain complex given
by OI” with the induced G-action. This shows by (2) the result in (8.6.11). O

8.6.12 Corollary. The weak G-equivalence (8.6.11) yields comparison maps Ag to-
gether with an induced track in the following diagram.

o BG x FM™

pq
EG xg I, )

(
oL Hg 1x P
\ \
EG xg Qw=Hzrtri 5 > BG x Q=1 zrtpa

G
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Here A\, X, are homotopy equivalences under and over BG which are the identity
on fibers, see (7.2.3). Moreover Hg is a track under and over BG.

The track in (8.6.12) induces the track in (8.6.1).

Proof of (8.6.1). We obtain the following diagram of Borel constructions with
G=1Z/p.

Uy pYel pr
BG x 71 >EG xq Z71 > BG x zP4 > ZP4
BGxsq ~ 1 (shg)# A shq
v v A v pr v
[ ] > @ > @ > 0
A A A A
BGxm ~ 2 o B, P
e pr
[ ] > @ > @ > @
3 H:G> P
v A v pr A
) ¢ ~e > ()(p=1) zp+pa
BGxAP h A
vy e BGXU""

A
BG x X L > BG x X

Here we set X = Z9t1 A (QZ9t1)AP=1) and the map A¢ is the comparison map
(7.2.3) and the track H¢ is defined in (8.6.12). We define A% by the composite

& = (BG x wP)Azh

where h is a homotopy inverse of w;l under and over BG. Now the tracks A, B
and C' in the diagram are the unique tracks under and over BG given by (7.1.10).
The commutative subdiagrams 1, 2 and 3 are obtained by applying the Borel
construction to the corresponding diagrams in (8.6.8). The top row of the diagram
corresponds to the power map . Therefore the diagram together with (8.6.9) and
(8.6.7)(7) yields the track v4 = 0. O



Chapter 9

Secondary Relations
for Power Maps

In Chapter 8 we have defined the
linearity tracks T'%¥Y  L(r)7, P(o)7,
Cartan tracks C2Y,
Adem tracks AZY.

Moreover we have by (6.3.1) the permutation tracks I';(z). All these tracks are
well defined and natural in X. In this chapter we describe relations for these tracks.
We do not yet consider relations for the Bockstein track in (8.6).

9.1 A list of secondary relations

Consider a diagram of tracks in [X, Z"].

(9.1.1) a >
G B
v Y
foa=
We choose the orientation of this diagram compatible with the arrow A. According
to the orientation we obtain the automorphisms di,...,ds as follows:
dy = G’ H°’BA € Aut(a) & [X, 2" 1],

i

dy = AGPHPB € Aut(b) 2 [X, 2",
= BAG°’H® € Aut(g) < [X, 2",
dy = HPBAG ¢ Aut(f) 2 [X,Z"1].

N

) =1
) = [X,

|I§
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Here the isomorphisms o4, 04,04,05 are defined in (3.2.3). By (3.2.4) we know
that the equation

(1) d=04dy = opdy = 0ydy = oydy € [X, 277

holds. We call this element the primary element represented by the oriented dia-
gram (9.1.1). By (3.2.4) we also have the equation

2) (HOG) @ d = BOA.

This primary element is trivial if and only if the diagram commutes. If we change
the orientation of (9.1.1) then we alter the primary element by the sign —1.

In Chapter 8 we have seen that there are the following well-defined tracks in
[X, Z*] which are natural in X.

L(r)X : ~(rx) = ry,(x) forr €F, see (8.2.8)
P(o); : m(ox) = oPy,(z) for o € oy, see (8.2.9)
(9-1.2) TeY o (@ +y) = (@) + (), see (8.2.7)
Crv i o(x,y) (@ y) = 7u(x) - 7(y), see (8.3.3)
AT V() = Ty (7). see (8.4.4)

Moreover we have for o € o, the permutation track (6.3.1)(4)
'y :0 = sign(o) : Z" — Z".

Now we describe relations between tracks which are diagrams as in (9.1.1) defining
primary elements. These primary elements are also natural in X and hence can
be expressed in terms of primary cohomology operations.

First the equation z 4+ y = y + x yields the following relation.

T,y

(9.1.3) Yl +y) = v() + 7 (y)

Y, T

PYU(y'*'w) 1]>'7/v(y) +'Yv(x)

We prove in Section (9.2) that this diagram commutes.
Next the associativity (x +y) 4+ z = = + (y + 2) yields the following relation.

Fz+y,z

(9.1.4) WwEt+y+z) 7 =yt y) +(z)

Pyt DIV (2)

\% 'Yu(z)"l‘ Y= V
Yo () + 70 (y + 2) > Yo () + 70 (y) +70(2)

We prove in Section (9.2) that this diagram commutes.
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Moreover x 4+ 0 = x yields the following relation.

x,0

(9.1.5) Yo(z+0) "> (x) +7(0)

Yo () o = Yo()
0

Also this diagram commutes, see Section (9.2).
We now define inductively

(9 ) 6) Fil"”’xr — (F§1>»»»7:ET_1 + ,Yv(mr))ljrgl+"~+rr—1,rr’
o F$1,~~~7wr : P)/U(irl"_""'_xr):>’Yv($l)+"'+7v(xr)a
and for 1 = --- = z,, we set
I'(r)z = TI%-7,
(9.1.7) ( );
L(r)E :  y(re) = ry(x).

Hence we get for » € N the following relation.

L(r)y

(918) 'Yv(rx) >T’Vv(x)

L(r)*
My Y0 ()

Yo (ra)
Here we use N — F mapping r to - 1 = r € F. Relation (9.1.8) describes
L(r)% in terms of linearity tracks I'?’* and vice versa. The primary element of
(9.1.8) in general is non-trivial and is computed in section (9.3.6). For r = p* — 1
and p odd, diagram (9.1.8) commutes so that
1) L(-1)? = L(p? — 1) = T(p* — 1)7.
This sign track is needed in the next relation.
Using permutation tracks I'; and P(o)?

* we get the following relation which
can be used to replace P(o)Z.

P(o)y
(9.1.9) (o) @
Yo (To) T'sp

Y Lsign(o))s .V
Yo (sign(o) - x) > sign(o) - v, (x)

> P, ()

We show in Section (9.4) that this diagram commutes.
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The equation 7(z,y) -« -y = y - x yields the following relation with P =
P(r(z,y));".

o(y,x)-P

(9.1.10) o(y, )y (T(2,y) - 2 - y) >o(y,z)7(z,y)Pvu(z - y)

oy, x) v (y - x) T2, yP)o (2, y)vu(z - y)
oye (aP,yP)CT Y
Y Y
Yv (y) * Yo (f) T(xp’ yp)'Yv (f) * Yo (y)

In Section (9.5) we prove that this diagram commutes.
Next the associativity z - (y - 2) = (x - y) - 2) yields the following relation.

(o(z,y)x1)CT¥*

(9]‘11) o(ﬂc,y,z)%(x-y-x) >(U({E,y) 'Vv(x'y)) "YU(Z)

(1xo(y,2))C¥¥= T (2)
v ,yv(r)c’g,z v
Wv(x) ) (U(yv Z)’Yv(y : Z)) > 'Yv(f) "Yv(y) : ’}/U(Z)
Also this diagram commutes, see section (9.5). Here we have o(z,y, 2) = (o(z,y) x
Do(z-y,2) = (1 xo(y,z))o(z,y - 2).
The distributivity (x + ') -y =« - y + 2’ - y yields the following relation.
(9.1.12)

C$+z/,y

oz, y)v((x+2') - y) >Yo(r +2') -7 (y)

(@) TEv'v 7y (y)

\ Cz,erCz’,y

\%
oz, y)vw(@-y) +o(@,y)vw@ y) ° =Y () - Yo (Y) + 7 (2") - Y0 (y)

We compute this relation in Section (9.6). If p is odd this diagram commutes.
Next we consider relations for the Adem track Ay . For the sum z + 2’ we
obtain the following relation.

Azt
(9.1.13) Yoyw (T + 2') > ToYw Yo (2 + ')
8 i Ty
Yo ('wa + 'wal) TeYw ('vaf + 'vavl)
F:}rwmw"r’wm/ TZFZ}/L’Y'uz/
\%
VoY (T) 4 VoY (') > To (VYo (T) + VYo (2"))

AT WAL,

v, w
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For the product z -y we obtain the following relation with 7 =7, ® 7.
(9.1.14)

o(zP,yP)o(z,y)P ATY,
>

o(xP,yP)o(,y)P Ve Yw (T - ) o (2P, yP)o (2, Y)P Toy Yu Yo (@ - Y)

A A
o(z?,y") P(o(z,y))w Fo(z?,y?) P(o(z,y))w
o (P, yP) (o (2, y)vw(@ - y)) 7o (P, y" ) yw (0 (2, y) 7 (@ - y))
o (@ y? ) (CFY) Fo(@?,y")vw (CFY)
\ ~ \
o (2P, y? )y (Y (2) - Yw (y)) To(a?, Y7 )y (1o (2) - 70(y))
c;{w(m)w"rw (v) 7O (@), (y)
\ \
Yo Yw ({E) : 'Yv’)/w(y) AT . AY (T:E © Ty)(’Yw’Yv(x) : Vw'Yv(y))

Here we use

oz, yP)o(x,y) Tuy = (T2 © 7)o (2P, yP)o(z,y)".

We now define inductively:

(9.1.15) Covo®r s o(xy, .oy @) Yoz oo Tr) = Y1) - - Yo (r).

For r = 2 this track is given by (8.3.3). For r = 3 this is the composite in (9.1.11).
Moreover for r > 3 we set

CFres®e — (CFrs®r=t oy (2 N0 (21, ) X 1)OFT Tt

and
o(x1,...,xp) = (o(z1,.. ., xp_1) X Do(xg - -+ - Tp—1, Tp).
For 1 = --- = x, we get as a special case
c(r)y o(r, )y (2") = y(z)" where
C(r)y = Co%and o(r,z) =o(x,...,x) with r-times z.

In particular since U(z) = 2P we have

Cp)y  o(p,2)7U(x) = U(yw()).
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This track is used in the next relation. Since for v = 0 we have v, (z) = U(z) we
get the following relation.

U(paz)Af;,o
(9.1.16) o(p,x)Y,U(zx) > o(p, z)T, Uryy(x)
Lop,a)ra
\
o 2)nl@) o, > Uny()

Here we assume that p =2 or | z | even so that

sign(o(p, 2)7) = (=1)PIFP =1

with p = p(p — 1)/2. If p is odd and | = | odd, then there is a canonical track
Uryyx = 0.

Interchanging v and w yields the following relation.

ATZ/,w
(9117) 'Yv’}/w(f) = Tw’}/w’)/v(x)

ToTaYo Yo (T) < . TaYwYo()

xT
Tva

Here we use the fact that 7,7, = 1.

Next we get the following hexagon relation for u,v,w : X — Z1.
(9.1.18)

'Yu'Yv’Yw
T ’Yu'Yw'Yv TwP’YUIYu'Yw(x)
TfA:’jjlf,z) Top P(T2 ) uyo AY 4
\4 \4
T TwP'Yw'Yu’YU Txp T:E 'Yv'Yw’Yu(x)

p
T szm TLp T"A"’“(T

Txp T:IJ Prew Vw'Yv'Yu

Here we use the fact that

(T2 )P 7w (T2)P = o (T )P T«
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9.2 Secondary linearity relations

In this section we compute the relations (9.1.3), (9.1.4), (9.1.5) concerning the
linearity track

I5Y (@ +y) = (@) + 70 (y)
defined in (8.2.7). For v = 0 this is the track

Y U(x+y) = U(z)+Ul(y)

defined in (8.2.6) where U is the power map with U(x) = 2P. Let X be a pointed
space and let z,y, z : X — Z7 be pointed maps. Then U(x), U(z+y), U(z+y+2)
are objects in the groupoid [X, ZP1].

9.2.1 Proposition. The track
reY:U(@x+y)=Uz+Uy
in [X, ZP1] is natural in X with the following properties:
() T =Y,
(i) (Uz +TY*)Arsy™ = (T5Y + Uz)Ore 7,
(iii) Fg,o is the identity track of 0.
By (i) and (ii) the following diagrams in the groupoid [X, ZP9] commute.

T,

T Y
Uxz+y) ° >Uz+Uy

Y,

rwe
Uy+z) ° >Uy+Uzx

Fz+y,z

Uz+y+z) ° =Ul+y) +U(z)
revts TeY4+U(2)
v U(z)+T%* v
U)+ Uy +2) =0 () + Uy) + U2)

Proof of (9.2.1). The m-norm map N : ZP? — ZP? with N(z) = 3
m = Z/p admits by (7.2.2) a track

acr @ - @ for

P:ZPQ:N:Ni:O

acT

with N*(z) =Y .. sign(a) - @ = p-2 =0 € ZP%. Compare (8.2.5). Here we use
the fact that the composite

T C Opgq sien {1,-1}
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is the trivial homomorphism and that Z?? is a Z/p-vector space object. We know
that ' : N = 0 is unique. This shows that for ay € m we have

(2) Fag=T

with ag : ZP1 — ZP4 carrying x to ag - x. In fact (2) is true since Nag = N and
0ap = 0. Moreover uniqueness shows that I" is additive, that is I'(a +b) = Ta+Tb
for maps a,b:Y — ZP4. According to the proof of (8.2.3) we have

(3) Ulx+y)—Ux—Uy=NU(z,y)
so that
(4) oY =TU(z,y) +Uz+Uy:U(x+y) = Uz + Uy

is well defined. We have by use of the basis B in the proof of (8.1.4) the formula
U(x,y) =Y blx,y).
beB

In fact I'y’Y does not depend on the choice of the basis B defining U = Ug. A
different basis By yields elements £, € m with 0y, - b(z,y) € By, b € B, so that by
(2) we have

FUBO =T Z ﬂb . b((E, y)

beB
beB beB
= T') ba,y) = IUs.
beB

If p = 2 then B contains exactly one element b, for example b(x,y) = = - y. If
p > 3 then let B’ C B be the subset of monomials b(x,y) for which the number
of factors = in b(z,y) is even. Then we get for b € B’ an element a; € 7 with
ap - b(z,y) € B so that for p > 3,

(5) U(x,y) = Y (bx,y) + ap - by, z)).
beB’
Hence by (2) we get for p > 3,
LU(z,y) = T (bx,y) +ab- by, )

beB’

= > Tb(x,y) + Taub(y, z)

beB’

= > Tb(x,y) +Tb(y, x),

beB’
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so that TU(x,y) = TU(y, x). This proves (i) for p > 3. In fact, since (4) does not
depend on B we may assume ap = 1 for b € B’. For p = 2 we have I'U(z,y) =
I'(z-y) =Ta(y-z) =T(y-2) = I'U(y,x) where « is the generator of 7 = Z/2.
Hence (i) also holds for p = 2.
Next we consider (ii). According to (4) we have to show

Uz +TU(y,2) + Uy +Uz)00U (z,y + 2) + Uz + U(y + 2))

(6) = (TU(x,y) + Uz + Uy + U2)OQU(z +y,2) + Uz +5y) +Uz).

Using (3) this is equivalent to

TU(y,2)00U(x,y + 2) + NU(y,2)) = TU(y,2) +TU(z,y+ 2)
=TU(z,y) 00U (z +y,2) + NU(x,y)) = TU(z,y) +TU(z +y, 2).

These are tracks from U(x +y + 2) — Uz — Uy — Uz to 0 in [X, ZP7]. Hence it
remains to show

(8) L(U(y,2) + Uz, y + 2)) =L(U(z,y) + Ulx +y,2)).
This is obviously true for p = 2. For p > 3 we consider
9) Ul +y+2)—Uz—Uy—Uz=NU(z,y) + Ulz,2) + Uy, 2) + U(z,y, 2)).

Here U is a sum of monomials of length p containing z,y and z at least as one
factor. The group m = Z/p acts on such monomials freely. We choose a basis B”
consisting of such monomials b(z, y, z) whose permutations under 7 give each such
monomial exactly once so that U(z,y,2) = > ,cp b(x,y,z). Now we get

(10) U(l‘, y+ Z) = U(xvy) + U(ma Z) + [?R(ma Y, Z),

(11) Ul +y,2)=U(z,2) + Uy, 2) + Up(x,y, 2).

Here R and L are a basis of monomials br(z,y, z) and bz (x, y, z) respectively with

(12) { bR(xayaz) = abb(irayaz)a be Blla

br(z,y,2) = Bob(z,y,2), be B,
where ay, 8, € 7. Hence we get by (2)
Fl?R(a:, Y, z) = Fﬁ(aj, Y, z) = FﬁL(x,y, 2)
and this implies (8) and equivalently (ii). O

Next we consider for v: X — Z' 2 : X — Z9 the composite of maps

Yolz) =y(v,2) : X — Z1 x 29 1 zP4
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where v € v is a power map. Compare (8.1.6). We have by (8.1.1)(4) and (8.1.3)
the equations

9.2.2) { Yo(z) =U(z) =ar for v=0,

Y (0) =0 for x=0.
Here yo(x) = U(x) satisfies the relations in (9.2.1). More generally such relations
hold for ~,(z) as follows.
9.2.3 Theorem. The linearity track

0¥ (@ +y) = 70(2) + 70(y)
in [X, ZP1] is natural in X with the following properties
6) 137 =137,
(i) (%( )+ DY#)OLTv = = (ITY + 70 (2)) 507,
(i) T2 is the identity track of v, (x).

These are the secondary linearity relations for the power map v € . Compare

(9.1.3), (9.1.4) and (9.1.5).
Naturality means that a map f:Y — X induces a functor

01X, 2 — Y, ZP9]
between groupoids which satisfies
spx,y _ pefuf
(9.2.4) ey = Loy

For v = 0 Theorem (9.2.3) corresponds to (9.2.1). By (i) and (ii) in (9.2.3)
the following diagrams commute in the groupoid [X, ZP9].

(i Y@ +y) (@) + ()

Y,

PYU(y'*'w) v>7v(y)+7v(x)
Here we use the commutativity of the vector space addition +.

r+y,z
v

(i) Yo +y + 2) > Yo(® +y) +70(2)

rgts P4 (2)

V z V
'YV(I)J"F%
Yo () + 70 (y + 2) > o (%) + 70 (y) + 70 (2)
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Poof of (9.2.3). By (8.2.3) we have the track
LYY =Ar(v,z,y) U +y) — Uz —Uy — vz +y) — (@) —v(y)

and by (8.2.6) we have the track
reY—Uz—Uy:U(x+y)—Uz—Uy — 0.

Recall that H°P denotes the inverse of the track H. Then we define

(1) Y = (Y = Uz = Uy)B(LTY)P) + vo(@) + 7 (y)-

Using (9.2.1) we see that equation (i) in (9.2.3) is equivalent to

(2) AP (v, 2, y) = A7 (v, y, ).

According to the proof of (8.2.3) we have for w = h,v,

3) AP (v, 2,y) = (p2L (w, U (,9))D(p2 LU (w, , )P

Here LY and L” are the linearity tracks in the proof of (8.2.3).

If p > 3 we can assume that U(z,y) = U(y, z).

For p = 2 we have U(z, y) = z-y. In this case we get LY (w, z-y) = LY (w,y-)
since for the generator & € m = Z/2 we have Nao = N so that

(4) LN = LV = (N®)4L°0LYay = LN ay, by (7.3.4).

Here we use the fact that L* = Br x o = 09 is the trivial track.
Hence we have for p > 2,

LY (w,U(z,y)) = LY (w, U (y. x)).
For the proof of (2) we still have to check that
LU (w,2,y) = L'UL (w, y, )

holds. This follows from the fact that v in the proof of (8.2.3) satisfies v(1 xT) = v
where T' : ZP4 x ZP1 — ZP1 x ZP1 is the interchange map. In fact, we have by
(7.3.4)

LY =L = (), L>TOLY(1 x Ty = LY (1 x T4,

since LT by definition of A2 in the proof of (8.2.3) is the trivial track 05. This
completes the proof of (2) and hence (9.2.3)(i) is true.
For the proof of (9.2.3)(ii) we use the notation

(5) { HyY =T0Y —pw =y 7y (2, y) — 0,

Y (2, y) = Yol® +y) — Yo(®) — 70 (y)-
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Then (9.2.3)(ii) is equivalent to the following diagram.

(6) HY*OH P 4477 (y, 2)) HpYOHG2 437 (2, y)

HY* + Hff’erz H>Y + H$+y,z
Here we have by (1) above the equation
(7) HpY = Hy 'OAL (v, 2,y)7
hence (6) is equivalent to

®) (HY*OAL (0,9, 2)) + (HE Y OAL (v, 2,y + 2)°P)
= (Hg"OAL (v, 2,9)°) + (Hy " OAL (v, 2 +y,2)*).
Since (6) holds for v = 0 by (9.2.1) we see that (8) is equivalent to

(9) AL(U7 Y, Z)Op + AL(U7 €,y + Z)Op = AL(U7 €, y)op + AL(Ua T+ Y, Z)Op

According to (3) the tracks in (9) are given by the tracks

T, = poLN(w,U(y,z)) and Tp = ng”U# (w,y, z)°P,
Ry = pol™(w,U(z,y+2)) and Ry = poLl"Uy(w,z,y+ 2)°P
T = poLN(w,U(z,y)) and T§ = ng”U# (w, z,y)°P

R, = pLlV(w,U(x+y,2z)) and R, = ng”U*(w T+y,z )

In fact (9) is equivalent to the equation
(10) 70T, + RyORy = T/OT, + R,OR),

This again is equivalent to

(11) (Ty + R)O(Ts + Ra) = (T] + RYO(TS + R).
Let a = yp(z+y+2) — Y — Yoy —Ywz and let b=U(x+y+2) —Ux — Uy —
and let
(12) c = pQAwV#U;;(wvya Z) —|—p2)\771/#U;;(w,x,y + Z)a
d = pg)\ﬂu#U;(w,Ly) —l—pg/\ﬂ-V#U;(w, T+, 2).

Then (11) yields the composite of tracks

To+Ro T1+ Ry
— c —
(13) T3+ R, Ti+R;
a =— ¢ — b

Uz
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For the proof of (11) we consider the following commutative diagram with Z = ZP4
and A: ZXxZ — Z Alx,y) =x+yandv: ZxZXZ — Z,v(x,y,z) =x—y— 2.

A A

(14) 7z xZ >7 < ZxZ
A A
VXV VXV
AL AS 2/ %6 V; JACEAS:
Here we set for x = (21,...,26) € 2%
V/(x) = (x5,x2,x3,x6,x1,x5),
Vix) = (24,%1,22, %6, T4, 23),

so that A(v x V)V (x) = o5 — 29 — X3 + g — T1 — X5 = XTg — T] — Ty — T3 =
Ty — 21 — T2 + a6 — x4 —x3 = A(v X v)"(2). For the element

(15) U™ (2,9,2) = (U(2),U(y),U(2),U(z +y),Uly +2), Uz +y + 2))
we thus get

(16) { VU (z,y,2) = (Ut(y,2),UT(2,y+2)),

ViU (@y,2) = (Ut (), Ut (z +y,2)),

where U™ (x,y) = U(x +y) — Uz — Uy as in the proof of (8.2.3). According to
(7.3.4) we get

LA(I/XV)I/ _ (A(l/ % V))#LV/DLA(VXV)(V/)#

(17) LA(I/XIJ)(V/)#

since L is the trivial track by definition of \5,. Here we use the fact that v/ is
given by permutation and diagonal. Similarly we get

(18) LAWY _ LAV (1,

so that by (14)

(19) LA (), = LA (1),
Moreover by (7.3.4) we have

(20) LAV = (AL )OLAW x v)4)
with LV*Y = LY x g, L”. One can check that

(21) pQA#(LU X B LV)V%EU;Jr(’LU,JZ,y, Z) = (TQ + RQ)Opv
(22) p2Ay (LY Xpr LV)I/%/&U;-F(U), x,y,2) = (Ty + R,)°P,
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so that by (20) we get for V = U;Jr(w;x»yaz)a
pQ(LA(”X”)DLA(V X I/);’;)V%&V = (T2 + Ry)",
pa(LAVIOLA x v) D)WLV = (T} + Ry)*

This implies by (19) the following equation with

{ K = pQLA(VXV)#I/:I#M

K" = pL*(v x v)pryV,
(23) (K')PO(Ty + Re) = (K")°PO(T; + R).
On the other hand one can check that for the norm map N : ZP4 — ZP? we have
(24) T+ Ry :pQA#LNXN(va(y7Z)70(may+Z))v
(25) T] + R} = po Ap LN N (w, U, y), Uz + 1y, 2)).

Here we use LY*YN = LY x g LY. We have for the addition map A : ZP9 x ZP? —

ZP1 the equation A(N x N) = NA so that by (7.3.4)
LNAy = NuLAOLN Ay = LNA = LANVXN)
26

(26) = (Ax LNV *MO(LA(N x N)y).

Here Ny L is the trivial track since L” is defined on the trivial fibration with
Ar = 1 the identity. Hence we get

ApLVN = (LN A)DO(LA(N x N) )P

This implies by (24) and (25) that
(27) Tl + Rl = (ngNA#)(w, U(ya Z)a U(iC, Y + Z))D(K/)Op
with

K' = poLY(N % N)y(w,U(y, 2),U(z,y + 2))
(28) = po LA (v x v)pvyV
as in (23). Similarly we get
(29) T] + By = (poLN Ay) (w, 0 (2, ), Uz + 9, 2))D(K")°P
with

K" = pa(L4)P(N x N) g (w,U(z,y),U(z +y,2))

= pg(LA) P(v x I/)#V#V

as in (23).
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‘We now show
(30) (Ty + R1)O(K")°? = (T} + R))O(K")°P.

Then (30) and (23) imply (11) and hence the proof of (9.2.3) is complete. By (27),
(29) equation (30) is equivalent to

(31) po LN Ay (w, Uy, 2),U(x,y + 2)) = po LN Ay (w, U(z,y), Uz + 1y, 2))
In fact by (9.2.1)(10), (11) equation (31) is equivalent to
(32) p2LN (w,U° + Ug(x,y, 2)) = po L™ (w, U° + Up(x,y, 2))
with U = U(z,y) + U(x, z) + U(y, 2). Using (26) we see that (32) is equivalent to
(33) pa LN (w, Ur(z,y, 2)) = p2 LN (w, Up(x, y, 2)).
This formula can be proved inductively by (9.2.1)(12) and (26) since
po LN (w, - ) = po LN (w,x) by (4) for a €.

Now the proof of (9.2.3)(ii) is complete.

Finally we consider the proof of (9.2.3)(iii). For this we first observe that I'0:0
is the identity track of 0 = 7,(0). This can be derived directly from definition (1)
above. Next we set © = y = 0 in formula (9.2.3)(ii) and we get

(30(0) + T9)ONY = (190 45, ()T

This implies
F%Z = Pg’o +70(2)

where the right-hand side is the identity track of v, (z). This proves (9.2.3)(iii) by
(i) so that the proof of (9.2.3) is complete. O

9.3 Relations for iterated linearity tracks

Given maps z; : X — Z7 with ¢ = 1,2,... we define inductively as in (9.1.7) for
r>2,
(9.3.1) Tov oy (O m) =) (@)

i=1 i=1

For r = 2 this is the linearity track in (8.2.7) and for r > 2 we set

(1) I‘ilwnxmr — (I‘il;nwwrfl +’Yv(ftr))DFilerH“l’17‘.
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This definition corresponds to the bracket of length r of the form (... ((1,2),3)
...,7). But by (9.2.3)(ii) any other bracket of length r can be used to define
IZ1--%r g0 that the iterated linearity track (9.3.1) is independent of this bracket.
Moreover (9.2.3)(i) shows that for any permutation o of (1,...,r) we have

B I LolysLor
(2) [2to®r = [loleTor,

Also the iterated linearity track is natural in X by (9.2.4); that is, for a map
f:Y — X we have

(3) frrgetn = Tl

The track I'?'¥* coincides with the composition of tracks in (9.2.3)(ii).
If xy =- - =2, =z we get as in (9.1.7) the track (r > 1)

(9.3.2) L(r)s =T % iy (r-z) = ry,(x).

This is the identity track for r = 1. For r = p we have p-z =0 and p-v,(z) =0
so that
T'(p)y:0=10

represents an element in [X, ZP971].

9.3.3 Definition. There is a well-defined element
ye [zt x z29,zP17Y]  with  T(p)? =7(v, ).

This follows from naturality. In fact, for X = Z' x Z? we have the projections
pr=v:X — Z' and pp = x : X — Z% so that in this case ¥ = I'(p)2. The
element 7 is computed in the next result.

Recall that we defined in (4.5.7) the linear derivation
Ipl: A— XA

on the Steenrod algebra A. For p = 2 this is the Kristensen derivation and for p
odd recall Theorem (4.5.9). Moreover we have the formulas (8.5.10) and (8.5.11)
expressing v € [Z1 x Z9, ZP9] in terms of elements in A. If we apply T'[p] to these
elements we get the element 4 € [Z! x Z9, ZP971] that is:

9.3.4 Theorem. For p = 2 we have
o) = Y0 S ().
J

Moreover if p is odd we have

F(v,x) = I, Z(_l)jw(qf%)(pfl)fl(v) - P/(z).
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9.3.5 Definition. Let p be a prime and r € N = {1,2,...}. It is well known that
rP — r is divisible by p so that the function, termed a Fermat quotient

apg : N — N,

ap(r) = (" = 7)/p,

is well defined. For F = Z/p and G = Z/p? the function «g induces
(2) a:G—-TF

(1)

with a(r - 1) = ap(r) - 1. Here 1 denotes the unit in F and G. Let ag(z,y) be the
universal polynomial over Z satisfying

3) pao(z,y) = (z +y)’ — 2" —y".

For example ag(x,y) = 2 -y for p = 2 and ag(x,y) = 2%y + ay? for p = 3. Then
@y induces a function

(4) a:FxF—TF

with a(r-1,t- 1) = ap(r,t) - 1. Now « in (2) satisfies

r—1

() a(r) =Y alj,1).

Jj=1

Moreover the function U in (8.2.3)(2) with NU = U°" satisfies

(6) U(ra,tz) = a(r,t)U(z).

One readily checks that a(i) = 0, a(p) = —1 and if p is odd «a(p? — 1) = 0.
Moreover one proves (5) by the equation

r—1
pao(r) = pao(j,1)
j=1

r—1

=Y ((G+1)P =7 —1), see (3)

Jj=1

=P —1—(r—1)=7"—r.

Using the track I'(r)Z in (9.3.2) and the track L(r)? in (8.2.8) we obtain the
following result which computes the relation (9.1.7).

9.3.6 Theorem. The tracks (r € N)
L(r)g, L(r)y : w(re) = ry(z)
satisfy the equation (see (3.2.4))

r—rP_

I(r)y = L(r)y & ( (v, 7))
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with (v, x) € [X, ZP917Y, q =| 2 |, given by (9.3.4). In particular we get for p odd
L(p® —1)7 = L(p? = 1); = L(-1);.
We prove the theorem in (9.3) below.

We point out that for » = p we have re = 0 and rv,(z) = 0and L(p)Z : 0 =0
is the identity track. Hence for » = p the theorem shows that T'(p)% : 0 = 0
represents (v, ). This, in fact, holds by definition in (9.3.3). Moreover, for r =1
the tracks I'(1)% and L(1)% are both identity tracks.

9.3.7 Proposition. The track T'(r)% satisfies for r,t € N the equations
Lr+t); = () +T()7)0r",
L(r-t)y = (r-T@)y)0O0(r)
= (t-T(r)y)Br@);"
Moreover, if r =t modulo p?, then T'(r)® =T'(t).
Compare (4.2.8), (4.2.9) and (4.2.10).

Proof. For r,t > 0 the equations hold since they correspond to certain brackets
of length r + ¢ or r - ¢, and I'(r)? is independent of the choice of bracket, see

v

(9.3.1)(1). O
9.3.8 Corollary. For r = p? the track

D)5 =071 7, (p*2) = 0 = PP ()
is the identity track of the trivial map. For r = p?> — 1 the track
Lp® = 1) 7(-2) = —(2)
satisfies the equation
L(p? = 1)7 = (I75)P — 7 ().

Proof. We have for r = p? — 1 and 7/ = 1 the following equation by (9.3.7),

Pp?); = (D(p? - 1)+ D100y -Hes
= (L(* - 1)§ +7(2)0O0; >
and T'(p?)? = 0" is the trivial track by the second equation in (9.3.7). O

We now consider for r,¢ € N the following diagram of tracks in [X, ZP7].

rz,to

(9.3.9) Yo(re 4+tx) " =y (re) + v (tr)

L(r+t);, L(r)g+L(¢)s
\ \
(r+ )y (2) Yo () + t70(2)
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9.3.10 Proposition. There is a natural element ¥* € [ X, ZP9~] so that the primary
element of (9.3.9) is given by a(r,t)y* with & defined in (9.3.5).

Proof. We subtract on both sides of (9.3.4) the track L(r)% + L(t)¥ so that we get
the following equivalent relation.

er,tz

(1) ~Ner(ra, tr) < ! U (ra,tx) =0
o
Lo _
v \ %tw)
0 0
Here we set
Ly = L(r+1t)y— L(v)y — L{t)7,
Iy = szﬂm - 'Yv(mj) - 'Yv(tx)

= TU(ra,tz)O(L7"")°P ) see (8.2.7).
We have the equation

U (ra,tx) = U(re+tx) —U(re) — Ul(tz)
(r+t)PUx — rPUx — tPUx
0

since (r +¢)? = r? +t? in F = Z/p. According to (8.2.4) the composite track
LoOL!™™ : 0 = 0 is represented by the following diagram with f = (r +
)4 X7 Xty is a product over Bm and w = h,v.

A Us
(2) o< " o~
4 Ap
Vioxe Y (Ug,Ug Uy)
® < ° <
(w,z)
3 ! \
VoaRoy Uy (w,ra,bx)
o< o< o< X
1 vy
Voo, v .
VAL ° < ® < Uy
P2 A L<1:V A
2 N BrxU
o< o<
Brx1

Here 3 is given by L™t X L"x Lt and 4 is the commutative diagram defined by the
diagonal map A. Since vfA = 0 we see that pasting of 1,3,4 yields the identity
track, see (7.3.9). This shows

(3) LoOLT™" = py(LV)°P(Br x U)(w, 7z, tx).
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We now use the equation
U(ra,tr) = a(r,t)U(z),
see (9.3.5). Hence we get for a = a(r,t) € F the following diagram representing 3.

U;[ (w rT tx)

p2
AXU
(w,z)
BTr><a

o<
B7'F><1 B7T><U

(4) zvi <

Here 5 is a commutative diagram. Since N is linear we have Na = aN so that the
pasting of 2 and 5 is given by the pasting of 6 and 2 in the following diagram, see
(7.3.9).

uer
p #  (wrztz)
(5) 7P < 7 e< ® < ° <
A A A
a 6 A /
w,x
P2 Py Oy (wz)
° < ° < ® < °
A A
2 Ny
o< o< Uy
Brx1

Since 6 is composed with 0x with NU = 0 we see that 3 coincides with
(6) LoOLT™"% = q - po(LYN)PU(w, 2).
On the other hand we have for I' : N = 0,

I'U(rz,tx) FaUx

al’'Uzx.

(7)

Uniqueness shows that I'a = aI'. This proves that the primary element of (9.3.9)
is given by

(8) (6)°P0(7) = a - ¥ with

9) Vo = pQ(LN)U#(w, x)OTUx.

This completes the proof of (9.3.10). O
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9.3.11 Corollary. Let A, be the primary element of (9.3.6), that is
D) ® Ay = L(r)".
Then A, satisfies the formula Ay =0 and
Apir = Ar + Ay — a(r, t)75.
Proof. According to (9.3.10) we have for a = a(r,t) and L, = L(r)% the formula
Lyyt @ (a7y) = (Ly + Ly)OT,
so that for I', = T'(r)Z,
Prit ® (Arpe +a7y) = (0 & Ar) + (T & A))DTE

Here we have by (9.3.7)
FT’-‘rt = (Fr + Ft)FZx’tz.

Therefore we get the formula in (9.3.11). O
Proof of (9.3.6). We have by (9.3.11) the formula
Ay = 0,
Ay = Ay —a(r,1)A0.
This shows inductively by (9.3.5)(5) that

Ay = —a(r)yy.

v

We know that —A, = ¥(v, z), see the remark following (9.3.6). Since a(p) = —1
we get
:Yﬁ = _:Y(’Uv .73)

Therefore we get
A, =ar) - y(v,z)

and the proof of (9.3.6) is complete. O

9.4 Permutation relations
According to (7.2.2) we have for o € o, the track in [Z9, Z],
I'y:0=sign(o) : 29 — Z%.

Here we have sign(o) = sign(o)P since Z? is an F-vector space with F = Z/pZ.
For a pointed map z : X — Z% we obtain therefore the track in [X, Z9],

(94.1) I'y =T5(z) : oz = sign(o)’z
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which we call the permutation track. One readily checks the relations

(1) FUT(x)
(2) Io(z+y)

(sign(o)T';(x))dC, (1) for o, 7 € gy,
Iy(z) +T'y(y) for z,y: X — Z%

Moreover for the product z -y : X — Z974 of x : X — Z9, y: X — Z9 and
01 € 04,02 € 0y We get

(3) FU1><02 ({E : y) = F(Tl (x) 'Pffz (y)

This readily follows from (6.3.2)(5).
Now let v: X — Z! be a pointed map and let

o) : X U8 74w za 1 gra

as in (8.1.6). Moreover let 0P € o,y be the permutation for which (oz)? = oPa?
where 2P =z - --- - x is the p-fold product. We define the permutation track

(9.4.2) P(o)y : yo(oz) = Py (x)
as in (8.2.9), namely we have for w = h,v the equation

Yolox) = p2AUg(w, o)
= peAUgoy(w,x)
= p2Ar(0P)4Ux(w, 2)
= pa(oP) g Ug(w, x)
= Ppar Ug(w,z)

= oly, ({E),

so that P(0)% = pa(L7" ) Uy (w, ).

S

9.4.3 Theorem. The permutation track P(o)Z can be described in terms of the

permutation tracks Ty in (9.2.1), since the following diagram commutes.

P(a)y

Yo(o) > oy ()

Yv (Fc') Top

v L(sign(o)P)* v
Yo(sign(o)? - z) T Gign(o)P -y (x)

We shall need this result in the proof of (9.3.3)(i).
Proof. We recall that for r € Z the track L(r)? : v,(r - z) = r - y,(x) defined in
(8.2.8) is given by

(1) L(r)s : po(L7 ) Ug(w, ) : vy (r - z) = 1 7, ()
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with w = h,v. Here r- : Z9 — Z9 is multiplication by r, » > 1. This is a linear map
so that the linear track L™ is defined. We have to compare (1) for r = sign(c)?
with

(2) P(0)t = pa( L7 ) Us (0, @) : yu(0x) = 0Py, ().
For this we consider the cylinder 1277 = Z% x [0, 1]/ * x[0, 1]. We choose maps

T, 174 — 71
Lyp : IZP1 — P4

3)
representing the permutation tracks I', and I',». We consider 179 as a triple
1729 =(Z912% 79)
with inclusions ig and i; respectively of the boundary. We also have the triple
(IZ)"" = ()", (12", (Z29)"")
with inclusions ig? and i}”. Moreover, we have the m-invariant inclusion
JI(ZN)" — (127)""

which carries (¢,21,...,2p) to ((¢,21),...,(t,2p)). The group m = Z/p acts by
permuting coordinates in X”*P. The map j is a homotopy equivalence in Top and
a map between triples which is the identity on the boundary. Therefore

(4) ju o B xg I(Z9)"? — Br x, (129)"P

has a homotopy inverse j over Bm which is also a map of triples and is the identity
on the boundary.

Now consider the following diagram corresponding to (1) and (2) respectively
with i = 0, 1.

Br x (29)"P

w,x A
T B« 74 . >~ Br x, 2P " > Brw x Z%¢
#
(9)# (fi)e L (fi)#
\ \ \
Br x 71 > BT X ZP4 > Bm x Z}1
U# )‘#

P2
\
AL
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Here we set ¢y = r and f1 = r» = r and g0 = o and fo = of and L1 = L™
and Ly = L°" are linear tracks defining (1) and (2) respectively. We consider the
following diagram of maps between triples.

I(w,z)
IX > Br x 171

A, {A)%
npy (TO7)4 N N
B X, (Z9)"P < Br %, (1Z9)"P > Br X, I(Z7)"P

Kt (Tp)
\ \
Br X VA Br XT‘—Iqu
Ar I,
v r v
Br x 71 (o Br x 1281
P2
\
AL

Let H = Appp(T0P)y and G = (Upr ) (INr)(I1t) 2. Then we obtain homotopies
H' =poHAxI(w,x) and G' = poGA4I(w,z) such that the corresponding tracks
satisfy

() (o) = H : y(0x) = 70(re),
(6) Top = G : dPvy,(x) = rv,(2).

Here we have (6) since there is a homotopy over Br and under the boundary
(7) JA% = (IA)4.
This is a consequence of the following commutative diagram.
>N
1(z) L =z

Given a triple X = (A € X D B) the boundary 9IX of the cylinder IX is
defined by

i : OIX CIX,

8
®) 0IX =TAUIBUi X Ui X.
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Hence we get the following diagram.

(9) Br xz O(I(IZ0)") * = Br x, I(IZ9)"?
F _ -7
\ =z~ F
Br x z¥1

Here the map F' is given by
(10) F=LopupULipxUHUG.

Now obstruction theory as in £7.1.10) shows that there is a map F over Bm ex-
tending F. The existence of F' shows by (1) and (2) and (4) and (5) that the
diagram in (9.4.3) commutes. O

9.5 Secondary Cartan relations

We consider pointed maps

x: X — 279, y:X—>qu 2: X — 27

)

so that products = -y, = - y - z are defined as in (2.1.5). We have 7(x,y) € 044q
with

(9.5.1) T(z,9)x-y=1y-x.
Moreover let o(x,y) € opgtpg be the permutation with
(9.5.2) oz, y)(z - y)? =P - yP.
Hence o(z,y) coincides with ¢ in (8.2.3). We have the following rules:
(1) oy, 2)7(z,y)" = 7(2?,y")o(z, y),
o(z,y,2) = (o(z,y) x Do (z -y, 2)
Jo(z,y - 2).

(2) =1 xo(y,2)
Here o(z,y, z) is the permutation with o(x,y, z)(zyz)P = aPyPzP. Moreover let

Yol(z) : X X W gt ga O, gea
be defined as in (8.1.6).

9.5.3 Theorem. The Cartan track Ac in (8.2.3) induces the track

C=CY:0(x,y)vw(@- y) = (@) 7 (y)

in [X, ZPt )] which is natural in X and for which the following diagrams (i),
(ii) commute. These diagrams are the secondary Cartan relations.
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o(y,z)-P

(i) o(y, )y (T(2,y) 7 - y) >o(y, 2)T(z,y)Pv(z - y)

oy, )y (y - ) (2P, yP)o (@, y)vu (T - y)
oy T(aP yP )oY
Y \%
Yo (y) - Yo () (2P, yP) v () - 70 (y)

Here P is the track in (9.4.3), P = P(7(x,y))sv.

.. (o(z,y)x1)CT¥>
(if) oz, y, 2) (e -y - x) >(a(2,y) - vo(z-y)) - 70(2)
(Ixo(y,2)CyY* CyYeve(2)
Y 7o (2)CY Y
'yv(;v) : (U(y,Z)’yv(y-Z)) >'Yv(x) "Yv(y) "71)(2)
Proof of (9.5.3). We define for w = hv and o = o(x,y),

C=0C"=Ao(v,2,y)

o = (p2S*"(U x U)g(w, z,y))O(p2 L7 Uy (w, x - y))°P.

Compare the proof of (8.3.2). Now (i) is equivalent to the following equation (see
(9.4.3)).

(2) CY® = (7 - Co¥)Opaos (L7 s (w, x,y),
T=1(x,y) , o=o(zy),
T=T1(2P,y?) , oc=o0(yx)

By (9.5.2)(1) we have the equation 677 = 7o. Hence by (7.3.4) we get
(3) G4 L7 OL% (1P)y = 7L°0OL 04

Hence we get

(4) (7 L7)PO(64 L") = LTou0(L74,)°.

Therefore (2) is equivalent to

(5) U = FpSHU X U)ge(w, o, y)D(L7 0 u DL T)P) U (1, ).
Since 7PU = Ut we see that (2) is equivalent to

(6)  p2SH(U x U)g(w,y,x) = poreS*(U x U) g(w, z,y)OL 04Uy (w, zy).
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We have the equation 7y = gT. Hence we know by (7.3.9) that
(7) ST = [, STOSH Ty = SFTy = S™" = 74,508 juy

where ST = L7 since 7 is linear and where ST = LT = 0 is the trivial track.
Moreover oU(z - y) = o(x-y)? = 2P - y? = pu(U x U)(x,y). This shows by (7) that
(6) holds. Hence the proof of (i) is complete.

For the proof of (ii) we have to consider:
Cr =Y = (p25" (U x U)g(w, 2, y)) D (p2 L7 Uy (w, 2y))°P
with pi(x,y) =z -y, o1 = o(x,y),
Cy = CY* = (p2S"* (U x Uy (w, y, 2))D(p2 L7 Uge (w, y2))°P
with p2(y,2) =y - 2z, 02 = o(y, 2),
Cs3 = CJ¥7% = (p2.5*2 (U x U)g(w, xy, 2))O(p2 L7 Uy (w, zyz))°P
with ps(z-y,2) =z -y-2, 03 =o(x -y, 2),
Cy = C)Y% = (p.S*" (U x U)g(w, x,yz))O(p2 L7* Uy (w, zyz))°P
with py(z,y-2)=x-y- 2z, 04 = o(x,y - z). We have to show
(8) (C1-mw(2))0(oL - C3) = (y(x) - C2)0(or - Ca)
with op = 1 X 0(y,2) and o, = o(z,y) x 1. We have by (9.5.2) the equation
9) oros = o(x,y,2) = 0ROy

so that
(01) L7 0L (03) 4 = L@V = (o) 4 L7 OL " (04) 4.

Hence (8) is equivalent to

(C17v(2))0orp2S"2 (U x U) g (w, zy, 2)Ope L7 (03) 4 Ug (w, zy2)

B0 (0 (@)Co)DompaS™ (U X U) (10, y2) Opa L7 (1) U (0, 9.

Here we have
(13)# (U x U)g(w, zy, 2) = (03)#Up (w, zy2),
(,u4)#(U X U)#(w,a:,yz) = (0-4)#U#(wamyz)v
since o3(zyz)P = (xy)P2P and o4(xyz)? = 2P(yz)P. Hence (10) is equivalent to

(C170(2))0p2 [(01) %S OL7" (p3) 4] (U x U)g(w, zy, 2)

B (4 @)Co)T (R) ™ OL (ua)] (U U, 2)
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Using (7.3.9) we see that (11) is equivalent to:

A
A~

(C170(2))Op2 87812 (U x U) g (w, 2y, 2
= (70(2)Co)DpaS74 (U % U)g(w, .2

~
B

~)

(12)

\—

We have the equation us(p1 x 1) = pa(1 X p2) so that by (7.3.9)

(113) 3 (SH X Ay )DIS#2 (g X 1)

13
(3 = ()0 x S")OISH(1 % pz)s
Moreover 7, (%) = paAzUx(w, z) so that

A= (p2SH* (U x U)g(w, z,y)) v (2)
= p2(p3)#(S" X Ar)(U x U x U)g(w,2,y, 2),

B = 'Yv(x) : (p25#2 (U X U)#(wvyv Z))
=pa(pa)#(Ax X S2)(U x U x U)g(w, x,y, 2).

Using the definition of Cy and Cy we see that (12) is equivalent to

A//
(14) AO ((p2 L7 Uy (w, zy) Py, (2)) DA’
= BUO (70(2) (p2L7?Ug(w,y2))°?) OB
B//

Hence (13) implies that (14) is equivalent to

p2(S#8)P (1 X Vg (U x U x U) g (w, x,y, z)DA'TA

(15) = pa(S**)P(1 X p2) (U x U x U)4(w,z,y,2)0B"OB".
Since U(z)U(y) = o(x,y)U(zy) and U(y)U(z) = o(y, 2)U(yz) we see that

(9.5.4) (1 X D) (U x U x U)g(w,x,y,2) = (01,)% (U x U)g(w,zy, 2),
o (1 X ,UQ)#(U x U x U)#(w,m,y,z) = (UR)#(U X U)#(wvxvyz)'

On the other hand we get for A”, B” in (14)

A" = po(pz) 4 (L7 X Ae)P(U x U)g(w, 2y, 2),
B" = pa(pa) #(Ax x L72)P(U x U) g (w, z,yz).

This implies that (15) is equivalent to

P2((5") P (oL)#0(ua)# (L7 x Ax)P) (U x U)y(w, vy, 2)OA’

B0 (5" (0r)$Dua) e Ohr X L)P)(U % D), , y)OA”.
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Now we have by definition of o, = 01 x 1 and og = 1 X 02 the equation pszo; =
o3(o1 x 1) and pyor = pa(l X 02). This shows that the left-hand side of (16) is
equal to

(17) p2(S"71)P(U x U)ge(w, zy, 2)0A" = 0F

and the right-hand side of (16) is equal to

(18) p2(SH17R)P(U x U) g (w,z,y2z)0B" = 0-.

Since both tracks (17) and (18) are the trivial track we see that (16) holds. This
completes the proof of (ii). O

9.6 Cartan linearity relation
We consider pointed maps v : X — Z* and
v X — 29 y: X — 27
so that z + 2’ and = -y, 2’ - y are defined. We have the linearity track
5 (e + 2') = (@) +70(2)
in (9.1.4) and the Cartan track
CyYo(z,y) (@ y) = (@) - 7(y)

in (9.3.3). These tracks yield following the diagram.

(9.6.1)
C:]c-%—m’,y
oz, y)ve((z+2') - y) > (T +2') 7 (y)
o(@y)Tove"y 12 5, (y)
Y Cff’y+C,fl‘y v
a(z,y)ve(r - y) + oz, y) v (2" - y) > Yo(2) - Yo (y) + 70 (') - VoY)

For v = 0 we have yox = Uz = 2P and C;"Y is the identity track. Therefore we
obtain the following as a special case v = 0 of diagram (9.6.1).

(9.6.2) o(z,y)U((z + ') - y) Uz +a')-Uly)

.z’ i
o(z,y)Tg" " Y e Uy)

\ v
o(z,y)U(z-y) + U -y)) (U(x) +U(") - Uly)
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9.6.3 Theorem. For the tracks in (9.6.2) we have
oo y)Ig""" & A, a',y) =I5 U(y)
where A(z, 2, y) € [X, ZP971] is given by the formula

.x' . Sglvl—1 =2,
A(l’,x/,y): x-T q (y) fOT p
0 for p odd.
9.6.4 Theorem. The primary element of (9.6.1) does not depend on v and hence
is given by A(z,x',y) in (9.6.3).
Proof of (9.6.4). For the inverse 0~1 of 0 = o(z,y) we obtain the track
Cr=0""C0Y iyl -y) = o yu(2) - 70(y).

According to the diagram in (8.2.4) we obtain C; by diagram 2 below where
w = hyv and
=0 Yupgpg : ZP1 x ZPT — zPlatd),

We point out that i is m-equivariant since for « € 7,
fiaz,ay) = 0" L(az - ay) = 0~ (@ © a)(z - y)
=ao Nz -y) = aj(z,y).

Hence the map fi4 between Borel constructions in the following diagram is defined.

Yo(z-y)
A .

(2) Z;U(quq/) < b2 o< Api o< Us °

N A A A

BrXj <Si j BrXp
° < \2 ° < (UxU)s ° < (w,2,) X
o v ()70 (y)

Similar diagrams are obtained for the tracks
(3) Cy = 07105/71/ : ’Yv(xl ) y) = Jil’Yv(ﬁ) "YU(y)a
(4) Cy =0 'CI Y iy ((z+a') - y) = 0 (@ +2)) - 70(y).

Using the definition of I'Z"¥ in (9.1.4)(1) we see that commutativity of the dia-
gram in (9.4.1) is equivalent to the commutativity of the following diagram where
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we use L7V in (8.2.4).

Cs3—-C1—C:
(5) Y (wy,2'y) T T =0 (0 (@, 2) - (y))
A A
Ly oLy ()
U (zy,z'y) oflU”(gc, ') v (y)
TU(zy,z'y) o N IU (w,2) 7o ()

0

Here I' : N = 0 is the track for the norm map N : ZP? — ZP? in the proof of
(9.1.1). As in (8.2.3) let v : ZP? x ZP1 x ZP1 — ZP9 be defined by v(z,y,z) =
z—y—z. Then diagram (2) shows that the track C3 —Cy — C5 is given by diagram

7) below with
(7)
(6) wy = (w,ay,x'y) : X — Z' x 27 x 27,
wy = (w, (x+2',y), (@), (@, y) : X — Z' x (29 x 29 ).

Moreover let U™ be defined as in the proof of (8.2.3) and recall that products like
A3 = A XA XA are products over Br, where we use the symbol x to denote the
product over BT.

p
(7) o< o
A
Brxv
+
A Uy
o< < [ ]
A A wy
Brxp®  (§9° @y
o< ® < < X

(2P (Uxv)y 2

Now diagram (7) is embedded into the large diagram (11) below which represents
the composite of tracks

(8) (07" Ly - 7 (1)PO(Cs — C1 — Co) DL

in diagram (5). Let

(9) ws = (w, (z,2'),y) : X — Z' x 29 x 29 x 79

be similarly defined as w; and ws in (6) and let Ay be given by the diagonal map

with

10 (st e
Az,y, z,u) = ((z,u), (y,u), (z,u)).
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Brx1
(11) ° < e °
-
BrxN 1 Ny
po v Ar v BrxU
o< o< [}
A A A
2 v
)\3
® < i ® < °
A A
w1
3 oA
(A3)?
o< o< o< X
A A wz
BrxA 4 Ay
D2 w3
o< 3= o< [}
A3 XA Uf XUy
5 vy x1
\ \
o< [}
A2
6 I
\ \
o< [ ]
A A A (UxU)4
7 I
< °
A Afr A
8 N# x1
P
° < B °
11X
All subdiagrams numbered 1,...,8 in diagram (11) are diagrams together with

linear tracks or smash tracks. The other subdiagrams of (11) commute. Since A
is a diagonal map also subdiagram 4 commutes.
Subdiagrams 1, 2 correspond to the defining diagram in (8.2.4) of Liy"'”/y.
Subdiagram 3 is given by diagram (7) and yields the track Cs — Cy — Ca.
Subdiagrams 6 and 7 are opposite to each other and therefore cancel as a
composite of tracks. This shows that subdiagrams 5, 6, 7, 8 yield by (8.2.4) the
track o' L%* - ~,(y). Here 8 is the track LN X\, and 5 is the track L”XA.
Hence we proved that diagram (11) represents the track (8).
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‘We now observe that
(12)
since we have

VﬂBA(m) y7 Z? u)

253

viP A = fi(v x 1)

= Vﬂg((myu)v(yau)v(zvu))
= o'z u—olyu—0tzu

= (v x1)(z,y,z,u).

Equation (12) shows by (7.3.9) that the tracks 2, 3, 4, 5, 6 cancel each other.
Therefore the composite track (8) represented by diagram (11) is also represented

by the following diagram.
(13)

U (zy,z'y)
Brx1
* <
BrxN 1 Ny (BWXUK
y P \ An \
< 2 < ° X
N A A
BrXp 7 Py
° < ° (UxU)pws
A A% A
BrxNx1 8 Ny x1
* < B .
IXAr

o U (2,2) o (y)

We describe further details of diagram (13) as follows.
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Let BZP?1 = Bm x ZP? be the trivial fibration and let EZP? = Ex x, ZP4
be the Borel construction for the m-space ZP9. Then subdiagram 8 together with
objects is explicitly given by the following.

A2 ,
(14) B x Zp1 x zpd < T E(ZP1 x ZP7)
A A
BrxNx1 8 NyXx1

Br x ZP1 x Z7 <_ . EZPIXEZPT

Here we use the notation x for the product over B, see (7.1.4). Using the defini-
tion of U in (8.2.3)(2) we see that

(15) Uz -y, 2’ -y) = q*fU(w,w’)-l{y
= a0 xU)(z,2",y).
Hence we can replace (Bm x U)w; in (13) by
(16) (Bt x U)wy = (B x @(U x U))ws
The triangle in (13) commutes since
(17) Niu(U x U) = i(N x 1)(U x U).
In fact (17) holds by the following computation.
Nu(U x U)(z,2",y) = No 'U(x,2') Uy
= NU(z-y.2'-y)
= Uz -y,2"y)
= o U (z,2") - Uy)
AN x 1)(U x U)(x,2',y).
We observe that (17) admits a refinement since
(18) Na(1 xU) = a(N x U).
In fact, we prove (18) by the equations

Ni(1 xU)(z,y) = Na(z,Uy) = Zau z,Uy) = Zﬂ(az,aUy)

aem aem
= Z i(az,Uy) since aUy = Uy
aem
= j( Zaz Uy) =a(Nz,Uy) = p(N x U)(z,y).
aEemT

We now embed diagram (13) into the following slightly larger diagram obtained
from (13) by adding subdiagrams 9, 10. We also use (18) and

wy = (Br x U x Vws = (w,U(z,2'),y).
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Brx1 Brxpi
(19) . <" T e
Brx1xU
Brx0 10 1 Ny
\ \ \
° < ° ° < ° ° <
P2 A A w X
Br X 7 e
° ° < °
A A A
Brx0x1 9 8 Ny x1
(IXU)#
° o< o<
I o-

Moreover the subdiagrams (10) and (9) are tracks given by I' : N = 0 in (5),
namely 10 = Br x " and 9 = Br x ' x ZP?7. We used T to define tracks in (5)
namely we have

LU (zy, 2'y) = po10(B7m x i)(Br x U x U)ws,

(20) . -
o U (z,2)) 1(y) = p2(Bmx g)9(1AxA)(U x U)gws.

This shows that diagram (19) describes the composite of tracks 0 = 0 in diagram
(5). Therefore diagram (5) commutes provided we can show that diagram (19)
describes the identity track 0 = 0. For this we embed (19) into the following
diagram.

(21) ® < °_
13 Brx1xU
\ Bmrx1 \ W4
o< °
12 Br Xl
V Brx1 Y
° o< °
10 1 Ny
\ \ \
< ° < ° X
p2 A A
7 Iz
° o< °
A A
9 8 Ny x1
° o< °
A IXAx A Wa
Brx1xU 11 (AxU)
o< o<
Brx1

Diagram 11 is again a linear track which we are allowed to add to diagram (19)
since 11 is composed with the zero map of 9. Moreover 12 and 13 are commutative
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diagrams. By equation (18) and by use of (7.3.9) we see that the pasting P =
11 % 8 % 7 coincides with the pasting P = 1% 12 % 13. Let

Q = p210(Bm x p)(Br x 1 x U)wy,
R = p(Brmx @)9(Br x1xU)ws.

(22)
Then (21) describes the following composite of track 0 = 0,
(21) = RO(p2 Pwy)d(p2 Pw4)°POQP = ROQP.

This shows that (21) does not depend on v or w = h,v since

ROQ = (T(1 x U)°PO(T x 279 )(1 x U (U (z,2'),y).
This completes the proof of (9.6.4). O
Proof of (9.6.3). According to the definition in (8.2.6) we have I' : N = 0 and
(1) Iy =TU(z,y) + U(z) + U(y).
Hence for A = A(z,2',y) and 0 = o(z,y) we get

o(PU (zy, «'y) + U(zy) + U(z'y)) @
= (oTU (zy,z'y) ® A) +o(U (xy)+U(x’y))
= (TU(z,2") - Uly) + U(x)U(y) + U(z")U(y).

Therefore A can be computed by
(2) (0TU(zy,2'y)) ® A = (TU(2,2")) - U(y)
or equivalently by

A = olPU (zy, 2'y)O(TU (2, 2")) - Uly)
(3) = ol°PooU(zy, 2'y)DTU (z,2")) - Uly)
= ol 1 (U(z,2") - Uy)) DU (z,2)) - Uly).

Here we have

(4) olPe~ ! = O'(Z I‘a)a_l = Z Faoa
since cao ™! = o ® o. Moreover we have

(CU(z,2")) - U(y) = (EperLa)U(z,2")-Uly)
(5) = D aerlaU(z,2")) - Uly)

Uz,
Yoaen Cao1(U(z,2") - U(y)), see (9.4.1).



9.6. Cartan linearity relation 257
Therefore (3) shows for z = U(x,2'),

(6) A=) (TP (2 U(y)Olaei(z- Uy)).

acT

Here the right-hand side is well defined since for « € © we have aU(y) = U(y)
and

(@00)(z-Uy) = oz al(y)
= az-U(y)
= (@O 1)(=Uly)).

Since a @ a = (1 ® a)(a ® 1) and sign(a) = 1 we get by (9.4.1)(1),
Fa@a - Fa@lljFl@a-

Therefore we have

Toa(z - U(Y))Olae1 (2 U(y))
(

=T180a (2 - U(®)Orge, (z - U)Olaer (2 Uly)),

=TI7%.(z- Uy)),
=z (CPU(y)), see (9.4.1).

This shows that A in (6) is given by

(7) —A=z-) TaU(y)

acT

For p =2 we have 2 = U(z,2’) =z -2’ and 7 = Z/2 = {1, 7} so that

> aer LaU(Y)

(Fl + FT)yQ
y2 + 2
= Sqlv=i(y)

(8)

by (6.5.1). This proves that for p = 2 we have A(z,2’,y) = z - 2’ - Sq¥!~1y. Now
we use an argument as in the proof of (4.5.9) above. For «, 8 € m we have

TosU(y) = Dol (y)OTa(BU(3)), see (9.4.1)(1)

(9) = FgU(y)DFaU(y)

Thus the function

X:Z/p=m— Aut(U(y)) = [X, Z"VI71]
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which carries o to ' U (y) is a homomorphism. This shows that

> TaU(y) =D x(a)

aem aem

p—1
(10) => rx(1)

r=1

=p(p—1)/2x(1).

Since px(1) = 0 we see that the element (10) is trivial if p is odd. This shows by
(7) that A(z,2’,y) = 0 if p is odd. O



Chapter 10

Kiinneth Tracks and
Kiunneth-Steenrod Operations

10.1 Kunneth tracks

For cohomology with coefficients in the field k& we have the Kiinneth formula
(10.1.1) H*(ZxY)=H"(Z)® H*(Y).

Here Z and Y are finite type path-connected pointed spaces and Z x Y is the
product space. We now describe properties of the Kiinneth formula on the level of
tracks.

Recall that we defined the Eilenberg-MacLane spaces Z™ = K (k,n) forn > 1
as in (2.1.4). We have for n,m > 1 the multiplication map

(1) Mm,n . Zm X Zn N Z7n+n
in (2.1.1). For maps f : Z — Z™ and g : Y — Z™ we get the composite map
(2) f&g:,um_,n(fxg):ZxY—>Zm+".

Moreover if m =0 and A € k weset A\Klg=A-gandif n =0 and \ € k we set
FRA=Xf.
We consider a map (n > 1)

(10.1.2) f:ZxY — Z" in Top*

which represents an element ¢ € H™"(Z x Y'). Let B be a basis of H*(Z). Since Z
is path connected and pointed we have H°Z = k and 1 € k = H°Z is assumed to
be the basis element 1 € B. By (10.1.1) we get

(1) HY(ZxY)=EPbe H (Y).
beB
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This shows that there are unique elements ¢, € H"~I!/(Y) for b € B (with ¢}, = 0
for n— | b |< 0) such that

(2) p=> bRp, =) b@p
beB, beB

Here B, = {b€ B || b|< n} is a finite set.
Now we fix maps s(b) : Z — ZI’l in Top* representing b € B with | b |> 1.
For | b|=0let s(b) =1 € k. For n— | b |> 1 we choose a map

(3) s(pp) 1 Y — zn~ Y

in Top” representing . Here we set s(op) = f |(xxy) if | b |= 0. Moreover for
n—|b|=0 weset s(¢p) = pp € k= H(Y) and for n— | b |< 0 we set s(pp) = 0.
Then (10.1.1)(2) yields the map

(4) D sb)Rs(py): ZxY — Z"
beB
representing the sum in (2). Therefore there exists a track
(5) K ) s(b)Rs(pp) = f
beB

termed a Kiinneth track for f. This track can be chosen to be a track under * x Y’
if ¥ — Z is a cofibration.

10.1.3 Proposition. Let s'(pp,) be a further representation of pp for b € B as above

and let
T: Zs(b) X s(pp) = Zs(b) X s

beB beB

be a track. Then there exists for b € B with n— | b |> 1 a unique track

Ty : s(pp) = s'(p) in [V, 2" ]
such that T =73, _p s(b) X Ty,. Here s(b) X Ty is the trivial track for n— [ b |< 0.

We call Ty, the coordinate of the track T associated to the element b € B. We
can alter the track T in (10.1.3) by an element

o € [ZxY,02% = BN (ZxY),
o = Ebegb@)ab with oy € H"—l—lb\(y).

Then T'® « is again a track as in (10.1.3), compare (3.2.4).
10.1.4 Proposition. The coordinate of T @ « satisfies the formula

(T®a)y =T ((—1)"ay).
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Proof of (10.1.3) and (10.1.4). Since f, = s(yp) and f] = s'(vp) represent ¢y, we
can choose a track

(1) Hy: fo = fi.

Then using (3.2.4) the track T' and the track

(2) H=> s(b)RH,
beB,

yield an element o with H @ o = T. We claim that there is ¢, € {—1,1} for b € B,
such that

(3) DR (Hy @ epan) = (Y bRH,)&

beB, beB,

Hence T, = Hy @ epayp satisfies the formula in (10.1.3). For the proof of (3) we
need (3.2.7) and (3.2.10). In fact for elements [, we get

4) D bR (Hy® ) = (Api)((bx Hy) @ (0 x 5y))

beB,
() = (A1)« (b x Hp)s & LV (AL 1)((0 % 5p); (b X f3))-

Here we have LV(ALfi) = (QA4+)LV i since AL is linear. Moreover by (3.2.7) we
get

(6) LV(A)((0 % Bo); (X fo)) = Y 0By

beB,

with &, = (=1)PI=1*) and 8, - b = (1)~ 1PI=DPlp © B,. Hence ¢, = (—1)I*I
satisfies (3).
A similar computation yields a proof of the formula in (10.1.4). g

10.1.5 Corollary. Let s'(pp) be a further representative of @y for b € B and let
K': Zs(b) Xs'(p) = f
beB

be a further Kinneth track for f as in (10.1.2). Then there exists a unique track
Ty : s(pp) = s'(p) for b€ By

such that
> s(b) KT, = (K')POK.
beB
Of course the track Tj depends on the choice of the Kiinneth tracks K and
K’ for f, the track Ty is the coordinate of (K')°PUK.
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10.2 Kiinneth-Steenrod operations

Let k = F = Z/p where p is a prime. We apply the Kiinneth tracks in Section
(10.1) to the power maps

v:ZYx 29— ZP1 g > 1.
In fact we have a basis
(10.2.1) B = {wo, w1, ws,...} C H*(Z') = E3(Fz)

where wo = 1 and wy = 2 € H(Z') = [Z', Z"] is represented by the identity of
Z1. According to (1.2.3)(4) and (8.5.5) we have

(1) w; = 2' for p=2, and
@) o — (—Bx) for i = 27, p odd,
’ x-(—pBz) fori=2j+1, podd.

Here 3: HY(Z') — H?(Z') is the Bockstein homomorphism. We choose a map in

(3) w; : 24— 7'

representing (1) and (2) as follows. For p = 2 the map w; is the power map which
carries z € Z! to the i-fold product 2 = 2 - --- - € Z* with the product defined
by (2.1.2). For p odd we choose a map

(4) Bzt — 7?

representing the Bockstein operator (see (2.1.11)) and we define the map w; in
(3) by use of 3. That is, w; carries z € Z' to the j-fold product (—f3x)7 € Z* for
i = 2j and to the product x - (—(x)7 € Z* for i = 25 + 1.

Now the basis (10.2.1) yields as in Section (10.1) a Kunneth track for

pq
(10.2.2) Ky w; ®s(D;) = 1.
i=0

Here s(D;) : Z9 — ZP4~% is a map in Top® representing the class D; € HPI=¢(Z9)
in (8.5.5). Moreover s(D;) satisfies further conditions described in (10.2.4), (10.2.5)
and (10.2.6) below. Now let

(1) (v,2): X — Z' x 74

be a map in Top™ with 7, (z) = 7o (v,z). We use the composites
(2) wi(v):wz’OUIX—>Z1 —>Zi,

(3) Di(z) = (sD;)ox : X — Z9 — ZPI71,
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Here the notation D;(x) should not be confusing. In fact, if £ is a cohomology
class then D;(€) is the composite of & and the homotopy class D; € [Z4, ZP4—1].
But in (3) the element z : X — Z? is a map in Top® and hence D;(z) is given by
the composite s(D;) oz with s(D;) chosen in (10.2.2).

With this notation K, above induces the Kiinneth track

(10.2.3) Ky(z) = Ky(v,2) : Y wi(v) - Di(x) = y(2).
i>0

This track is natural in X. That is, for a map f:Y — X we get

f*Kv(x) = va(xf)'

In computations below we shall use such natural tracks. We obtain similar results
as in (10.1.3), (10.1.4), (10.1.5) for such natural tracks. Recall that we have the
set of generators (see (5.5.1))

EjCcA

in the Steenrod algebra A with

Ea={S¢",Sq¢ ...} for p =2,
Eq={8,P"P? ... P} P; ..} forpodd

For oo € E 4 we obtain representing maps s(a), : Z9 — Zatlel a5 follows.
According to (8.5.10) with p = 2 the map

(10.2.4) $(Dy—i) = 5(5¢")4 : Z* — Z%*" in Top*

represents the Steenrod operation Sq’ for i > 0. We may assume that s(Sq°), = id
is the identity of Z? and s(Sq?), = U is the power map U : Z?¢ — Z?4 with
U(z) = z-x. In this case K, is a track under Z'V Z9. Moreover we set s(5¢"), = 0,
the trivial map for i > ¢, see (5.5.1).

We call this sequence of maps s(Sq'), with i € Z the Kiinneth-Steenrod
operations (associated to K;). Moreover we write for a map x : X — Z9 in Top”
with | = |= g,

Sq'(z) = 5(S¢")g0x: X — ZT — ZTH,

This composite denotes a map in Top*. When we write S¢’ () it is understood
that the map Sq’(z) is given by a Kiinneth-Steenrod operation.

In case p is odd various elements D; are trivial and we choose s(D;) = 0 to
be the trivial map if D; = 0. According to (8.5.6) the map

(10.2.5) (—1)7(9q) " s(Dg2jyp_1)) = (8P7)g : 27 — 74+ =1

represents the Steenrod operation P7 for j > 0.
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Here we may assume that (sP%), = id, the identity of Z9 if j = 0 and if
q is even, and if j = ¢/2 then (sP7), = U : Z9 — ZP% is the power map with
U(z) = 2P for x € Z9. In this case K, is a track under Z' Vv Z9. Again we set, see
(5.5.1) and (1.1.6),

(1) (sP7), = 0 for 2j > q.

We call the sequence of maps (sP7?), with j € Z the Kiinneth-Steenrod operations
(associated to K,). We write for a map = : X — Z? in Top® with | z |= ¢,

(2) Pi(z) = s(P) ox: X — Z1 — 79+~
This composite denotes a map in Top™®. Also for p odd the map
(10.2.6) (1) (9g) " s(D(g-25)(p—1)—1) = 8(P})g : Z7 — ZT+2I@=DF1

is part of the Kiinneth track. For j = 0 we may assume that this map represents
the Bockstein operation map (3, that is

(1) (ﬁq)ils(Dq(;D—l)—l) =(s8)q: 29 — Zt

is an element in the contractible groupoid 3 in (2.1.11). There is a Bockstein track

(2) $(Py)q = (sB)qra5o-1) (sP7)q
where the right-hand side is given by (10.2.5). According to (10.2.6) we set

(3) s(Pg)q =0for1+2j5>gq.

Compare the condition of instability in (1.1.6). We call the maps s(Pé) also a
Kiinneth-Steenrod operation (associated to K;). Again we write for a map x :
X — Z%in Top* with | z |= g,

(4) Bz) = (sP)gow: X — 21 — ZH,
(5) Pl(x) =s(P])ox: X — 79 — Z7FH0=DF 55,

Here $(x) and Pg(x) are again maps in Top™. By (10.2.6) we see that Pg(x) plays
a similar role as P7(x). The Bockstein track (2) induces the track

(6) Pi(x) = BP!(x).

At this point we do not understand the basic properties of the Bockstein track.

The Kiinneth tracks K, are kind of “strings” connecting power maps and
maps representing Steenrod operations. We shall use these strings to transform
the secondary relations for power maps in Chapter 9. For « € E4 and ¢ > 1
we have chosen above maps s(«a), associated to a Kinneth track K,. In fact, we
denote the pair (s(a)q, K4) by s(a)q so that K is part of the definition of s(a),.
Therefore we call s(a), a Kiinneth-Steenrod operation.
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10.2.7 Proposition. For o € E4 let (s(a)q, Ky) and (s'(a)q, Kp) be two different
Kiinneth-Steenrod operations. Then one has a well-defined track

Lyt s(a)y = s'(a),.
Proof. We have the Kiinneth tracks
Kgo Yisowilks(D;) = v,
Ky Ysowi®s'(Dy) = .
Hence by (10.1.5) there is a unique track
T;: S(Dl) — S/(DZ‘)
such that
O wiBT) = (K;)POK,.

Now T; yields the tracks Ty, according to (10.2.4) and (10.2.5). O

10.3 Linearity tracks for Kiinneth-Steenrod operations

For a map x : X — Z7 we have defined in (10.2.4), (10.2.5), (10.2.6) the Kiinneth-
Steenrod operations

Sqi(x) for p =2,
{ P'(z) and B(x) and Pj(z) for p odd.

These are again maps in Top™ which are natural in X. Let z,y : X — Z7 be maps
in Top®.
10.3.1 Theorem. Kiinneth tracks induce well-defined tracks

ey . S¢'(z+y) = S¢'(x)+S8q'(y) fori<|azl,

r=v . P(z+y) = P(x)+P(y) for2i<]|z|,

rev o Blat+y) = B)+6(),

r*y . Pix+y) = Pyle)+Pily) for2i+1<|z|.
These tracks in [X,Z*] are natural in X. If Sq'(x) = U(x) or Pi(z) = U(x) is
the power map, then ™Y coincides with T'gY in (8.2.6).
Proof. For maps v : X — Z' and z,y : X — Z9 in Top™ we have the following
composite of tracks which are natural in X, see (8.2.7) and (10.2.3).

Fff’y
(1) Yol(@ +y) > (@) + 70 (y)
A A
Ky (z+y) K, (z)+K,(y)

2 wi(v) - Di(x +y) > wi(v) - (Di(z) + Dily))
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According to (10.1.3) there is a unique natural track
(2) Y Di(z +y) = Di(x) + Di(y)

which is the coordinate of the composite (1). Using (10.2.4), (10.2.5), (10.2.6) we
get the result. (]

10.3.2 Definition. The Kunneth linearity track.
r*v =T7Y: Sq¢'(x +y) = Sq'(x) + Sq'(y)

is defined for all 4 > 0 by (10.3.1) for ¢ <|z | and by the delicate linearity track
formula

ey TV fori =|z| +1,
! 0 for i >|x| +1.

Here z - y is a cup product in H*(X) representing a track 0 = 0, see (10.2.4).
Moreover we define the Kunneth linearity tracks

IO STV Pia 4 y) = Pi() + Pi(y),
IV =T Py(x +y) = Pj(x) + Pi(y),
for all ¢ > 0 by (10.3.1) and by I';"Y = 0 for 2i >|z| and Fa)u =0 for 2i +1 >|xz]|.
We now can transform the relations (9.1.3), (9.1.4) and (9.1.5) and we get:

10.3.3 Theorem. For o € E 4 the track
[ ; a(z +y) = a(z) + aly)
in (10.3.1) satisfies
() T2 = v,
(i) (a(x) + YO0 v*T= = (T%Y + a(z))O0*+Y:2,
(iii) T%0 = identity track of a(x).

This result is similar to properties of linearity tracks I'2:¥ in the secondary
Steenrod algebra, see (4.2.5). The proof of (10.3.3), however, relies on (9.2) and
the definition (10.3.1). Below we shall compare Kiinneth linearity tracks I'*¥ and
stable linearity tracks I'2¥ in the secondary Steenrod algebra, see section (10.8).

Proof of (10.3.3). Proposition (i) is clear since I'>>¥ = T'%* in (9.1.3). Also (iii) is
obvious. Moreover we get (ii) as follows. Consider the commutative diagram where
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K denotes appropriate Kiinneth tracks.

Y@ +y+2)  Leyre

A
Yo(@) + ;yv(y +t2) L (@ysrety
Yo () + 70 (y) + 70(2)
K+K A
Yiwi(v) Di(z+y+2)
T K+K+K
i wi(v) - (Di(x) + Di(y + 2)) .
\

2 wi(v) - (Di(x) + Di(y) + Di(2))

Here T has coordinates I'**¥*# and T” has coordinates D;(z) + I'Y"*. The diagram
corresponds to the left-hand side of (ii). The right-hand side of (ii) yields a similar
diagram and we can apply (9.1.4). This yields (ii) by comparing coordinates of
tracks using (10.1.3). O

As in the theorem let a = S¢', P, 3, Pﬁi be a Kiinneth-Steenrod operation.
Given maps z; : X — Z% for i = 1,2,...,r we define inductively for r > 2 the
natural track

revesze o oY a) =" alx;),
(1034) (ijl ]) ijl ( ])
]_"11,---7$r — (I\rl,...,zT_l +a(xr))Dle+~~~+rr_1,zT'
For r = 2 this track coincides with the track in (10.3.1). If 1 = -+- =z, = & we
get
(1) L(r)* =% " : alre) = ra(x).
Here I'(r)* is the identity track and we define
(2) L(-1)*=T(p* - 1) : a(—2) = —a(z).

10.3.5 Lemma. I'*1»%r 45 the Kinneth coordinate of 21 in (9.1.6). Also
I'(r)* s the Kinneth coordinate of T'(r)% in (9.1.7). Moreover I'(—1)* is the

v

Kinneth coordinate of L(—1)% in (9.1.8).

Proof. We only consider I'(r)®. For r € Z/p? the track
I(r): Di(r-z) = r- Di(x)
is the coordinate of the composite in the following diagram.
r(r)3
Yo(r) >y ()

A A
K, (rz) rK,(z)

2 wi(v) - Di(rz) 2 wi(v) - (rDi(x))
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Here we use (10.2.4), (10.2.5), (10.2.6) to define I'(r)* for a. By (10.3.3) we see
that the coordinate I'(r)* coincides with (10.3.4)(1). Moreover by (9.1.8) we have
I'(p? —1)2 = L(—1)2 so that (10.3.4)(2) is the Kiinneth coordinate of L(—1)%. [

v

10.3.6 Definition. Let z : X — Z7 in Top™ and a permutation ¢ € o, be given.
For a Kiinneth-Steenrod operation a = S¢’, P*, 3, P} we define

P(0)* : a(ox) = sign(o)a(x)
by the composite (e = sign(o))

afox) {Le) a(ex) pCN ea(x).

Here I', : 0 = sign(o) is the track in (7.2.2) and I'(€)® is defined in (10.3.4)(2).
We call P(0)* the Kinneth permutation track.
10.3.7 Lemma. P(0)® is the Kinneth coordinate of TooOP(0)% in (9.1.9).

Proof. By (9.1.9) we know
P OP(0) = L(e)207(Ts)

where L = L(e)?. The Kiinneth coordinate of this track is the coordinate of the
following composite.

LO~,(T')
Yo (o) > ey ()
A A
K,(ox) eK, ()

2 wi(v) - Difox) 2 wi(v) - (eDi(x))

Now one readily checks that the coordinate of this composite is P(0)* defined in
(10.3.6). For this we use the diagonal of K,(I'5). O

10.4 Cartan tracks for Kiinneth-Steenrod operations

For a map z : X — Z? in Top™ we have defined in (10.2.4), (10.2.5), (10.2.6) the
Kiinneth-Steenrod operations «(x) for a € E 4, that is,

Sq'(x) for p=2,
Pi(x), B(z) and Pﬁ(x) for p odd.

These again are maps in Top™ which are natural in X. Let z : X — Z¢ and
y: X — Z% be maps in Top™.
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10.4.1 Theorem. Kiinneth tracks induce well-defined tracks (n > 1)

c*Y:Sq" (xy) = Z Sq'(z) - S¢ (),
i+j=n

C™Y:P'(x-y) = Y Plx)-Py),
i+j=n

C*™Y:fB(x-y) = plz)-y+ (—1)‘90‘95 - BY),
Py = Y (Pia) Piy)+ Pia) - Py)).
i+j=n,i,j>0

Here we have P°(z) = x and Pg(x) = B(x). These tracks in [X,Z*] are natural
mn X.

We call C*Y the Kiinneth-Cartan track. For the maps w; : Z' — Z' in
(10.2.1) we need the following result. Let

0 if p,i, 7 are odd,
€. =
" 1 otherwise.

10.4.2 Proposition. There is a well-defined track (i,j > 0)
Wl',j D€ j Wit == Wi+ Wj
for which the following diagrams (i), (it) commute.
Wi
(i) €i,j Wit ? > WiW;
T(w;,wj)

v

(CDPegawigg g = (S ww

(ii) €5k WiWj 4k

W; W5 Wk €i,j,kWit+j+k

\m €i,iWitjk

€, Wi+ Wk
Here we use the equation

(iii) €ijk = €itjk " €ij = €ijtk " €k
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Proof. By definition in (10.2.1)(3) we have
(1) wj - ’LUj = wi+j

if p=2orif poddand j even or i =0 or j = 0. In this case W; ; is the identity
track. If p is odd, ¢ even, j odd we get

) w; - w; = (—Bx)"? o (—px)U=172,
Wit =T - (—555)(”]71)/27
with | (—B2)"/? |= i even. Hence in this case the interchange track (6.3.1)(7) yields
3) Wiy = T(uws, w))°™.
Finally if p, ¢, j are odd we get the track
(4) Wi 0= w; - w

as follows. For x in (10.2.1)(3) we have |  |= 1. Hence we get the interchange
track
T(x,z):x- 2= —x-x

which yields the track
T=T(z,z)+z-2)P:0=2z-z.
This yields for p odd the track

_pt

1
5 T:- 0= {p+1)(z-z)=z =z

T/
since p(x - ) = 0. Moreover we have the following diagram.

wi-wy = x- (—Px) "D/ g (—Ba)-D/2
A
z~T(z,—(5r)(i—1)/2),(_ﬂz)(jfl)/z

AT/,(fﬁw)(iJrj*?)ﬂ

0

The composite of these tracks is W; ; in (4). Now one can check that the diagrams
commute. O

10.4.3 Proof of (10.4.1). Let v: X - Z' 2: X — Z%and y: X — Z9 be maps
in Top® with |  |= g and | y |= ¢’. The permutation o(z,y) = o is defined as in
(8.3.1) with

(1) e(z,y) = sign o(z,y) = (—1)llvIEe-1p/2,
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With the notation in (10.4.1) let
(2) €y = (—1)PI e 5.

s

Then the Kinneth-Cartan track
(3) CoY el y)Dulz-y) = D> &;Di(x) - D;(y)
i+j=n,i,j>0

is defined as the coordinate of the composite tracks R*¥Y in the following diagram.
Here C%¥ is the Cartan track (8.3.3) and K,(z - y), Ky(x), K,(y) are Kiinneth
tracks.

C,f‘yDFZr(’myy)
e(x,y) 'Vv(w'y) >'Yv(x) "Yv(y)
A A
e(z,y) Ko (z-y) Ky (@) Ko (y)
> wn(v) - (€(z,y) Dn(z - y)) i jzowiv) - Di(x) -w;(v) - Dj(y)
T,
Zi7j20(_1)J(P\I\—Z)wi(U) ~w;(v) - Di(z) - Dj(y)
A
W,
Zi,jzo €i,j " Witj(v) - Di(x) - Dj(y)
Rmvy

hNy

Don W (V) 3 is0 iy Di) - Dj(y)

Here T';(,,,) is given by (7.2.2) and we define T\ by use of the interchange tracks
(6.3.1)(7), that is

(4) T.= ) wi(v) T(Di(x),w;(v)) - Dy(y).

§,4>0
Moreover we define W, by the tracks in (10.4.2)
(5) We =Y (=1)F==0W, ;- Dia) - D;(y).

This completes the definition of the diagram.
Recall that by (10.2.4) we have for p = 2 the Kiinneth-Steenrod operation

$(Dag—i) = 5(S¢")q : ZT — Z7"" in Top*
and for x : X — Z9 with | z |= ¢ we write

Sq¢'z = (sSq" )02 : X — Z7T in Top*.
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We now obtain the Kinneth-Cartan track

(10.4.4) Cc*Y:9q" (- y) = Z (Sq¢'z) - (S¢’y)
i+j=n
by the composite in the following diagram where m = 2 | ¢ | +2 | y | —n,
r=2|z|—iand s=2|y| —j.
Sq"(x - y) Yitjen(Sa') - (Sa’y)
Dsjgy|—n(T - ) 2y jen(D2je|-i) - (Dajy| ;)
Dy -y) " ez (Dr) - (D)

Here C(wnf) is defined by (10.4)(3) above and we use the convention that S¢'z = 0
fori>2]|x|.
Now let p be odd. Then we have by (10.2.5) the Kiinneth-Steenrod operation

(1) (80) ™ (Digaiypn) = (5P)g : 21 — 2072000,
For z : X — Z9 with | z |= ¢ we write
¥ = (=1)7(9,)"* and v = (99)~t
Recall that we write
Pigz = (sP?),0ox: X — Z9+2(P=1) in Top*.
Then we define the Kinneth-Cartan track

(10.4.5) C™Y: P"(z-y) = Y _ (P'z)- Ply)
i+j=n

as follows. For m = (|z-y|—2n)(p—1), 7 = (| z | ~2i)(p—1), s = (| y | ~2/)(p—1)
we get C*Y by the following composite.

Pz -y) = ﬁgme(x - y)

e(z,y)~19’;y~cz’ny)
v

6(3;, y)ﬁgy Erﬁ»s:m,rﬂs even(_l)S(p|I|_r)Dr(m) : Ds(y)

iy €l )0, 9 (Par) - 9Y(Piy)

Eiﬂ‘:n(Pil’) ’ (Pjy)
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Here we use the fact that
e(z,y)05,07 - 9% =1

xy i

for n =i+ j, compare (1.2.11)(4). We use the convention that sD; =0 if D; = 0.
For this reason many summands D, (z) - Ds(y) are trivial.
Moreover for p odd we have by (10.2.6) the Kiinneth-Bockstein operation

(9q) " $(Dy(p-1)-1) = (88)q : 21 — Z9T1.
For z : X — Z9 with | x |= ¢ we set
Bz = (sf)gox: X — Z% — Z9"! in Top*.
Then we define the Kinneth-Cartan track
(10.4.6) C™V: Bay) = (Bz) -y + (1) - (By)
as follows. Let m =| 2y | (p — 1) — 1 and 9, = 9, for | = |= ¢. Moreover let

rm=lz|(p-1)-1, si=|y|(p-1),
ro=lz|(p-1) , sa=lyl(p-1)—1

Then we get C*¥ by the following composite.

B(zy) = 5y Din(y)

() 95,-CFY
\%

(=1)*®#1= D, (z) - Dy(y)

—1
6(3}‘, y)ﬁwy r+s=m,r or s even

e(z,y)95 (=1)1PI2I=TD D (2).- D, (y)
+e(z,y)0ay (—1)2@171=r2) D, (2)-Ds, (y)

e(z,y) 05, 00 B(x)0yy
te(@,y) 9y (—1)52121 =29, .29, -B(y)
B(x) -y + (—D)llz - By)

By (10.4.4), (10.4.5) and (10.4.6) the Cartan tracks C*¥ in (10.4.1) are well de-
fined. O
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10.5 The interchange relation for Cartan tracks

For the product of mapsz: X — Z%9,y: X — Z4 in Top* we have the interchange
track

T(x,y) : x-y— (=1)=Wy. o= (—1)Plllvly. o

(10.5.1) i
T(iC,y) = PT(y,I)(yir) € [[X7Zq q]].

Here 7(y, ) is the permutation with 7(y, x)y-x = x-y. Compare (6.3.1)(7). We now
describe the connection between Kiinneth-Cartan tracks C*¥ and C¥* in (10.4.1).
For this we consider the following diagrams for p = 2 and p odd respectively.

T,y . .
(10.5.2) Sq™(x - y) e Y SEH () - S (y)
Sq" T (x,y) Zi+j:n T(Sqi(w),qu(y))
\ \4
n cvr 1 i
Sq"(y - ) > it jen S (y) - S¢' (2)
(10.5.3) P (z - y) Yo Pia) - PI(y)
P"T(z,y)
\
P"(ey * 33) Z'H»j:n T(Pirvpjy)
T(e)y™
eP"(y - x) o 2jri=n P () - Pi(x)

Here we set e = (—1)lzllvl = (—1)IP*2[IP"v] gince p is odd.

(10.5.4) Bz -y) T = () -y + (~1)% - (By)
BT (x,y) T(Bx,y)+(-1)*T(z,By)
\ \4
By s) (D)@Y () 4+ (-1 ()
O

\
Bly-x) . =e(By)w+e(—1)Ty- (Go)
There is a similar diagram for Pg(z - y).

10.5.5 Theorem. The interchange relations (10.5.2), (10.5.3) and (10.5.4) above
are commutative diagrams of tracks in [ X, Z*].
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By definition in (10.4) the Kiinneth-Cartan track C*¥ is a Kiinneth coordi-
nate of the composite

(10.5.6) G2 : el yhvoley) ) o, y)rlay) S (@) - 0ly).

We now use the relation (9.5. )(1) for studying the following diagram where
e(z,y) = e(y, ) and € = (—1)Plel vl = (—1)l="Fly",

e(w,y) v (Ty) v Yo (2) - Yo ()

e(@,y) v (T (=,y))
Y
€(, y)y(eyx) T(rozvy)

e(z,y)(e)y”
\ \
@ yen(yz) > ey (@)
10.5.7 Lemma. This diagram is commutative.
Proof. The commutative diagram (9.5.3)(i) is given as follows.

o(y,x)P

T(@Py?P)CoY

This diagram is embedded into the following commutative diagram with 7/ =
T7(2P,yP), 7" = 7(x,y)P and € = €(x,y) = €(y,x) and & = o(y,z) and o0 = o(z,y).

&vo (T(y,z)) (o)
> @ > @
A A
T's 2 el's
F ol _n
cy* ° o > e > e
cyr o1 1 3 1
AV T'crY \ 'To
< ° > e
FT/ 4 EF.,_/
\ vV £+
< °
eé:f’y

Here 2 commutes by (9.4.3) and 3 commutes by (9.4.1)(1) and 4 commutes since
4 corresponds to the pasting I'zr x CFY. g
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Proof of (10.5.5). We show that the following diagram commutes, compare
(10.4)(3).

cry
(1) e(x,y)Dn(ay) ™ 3, € Di(@) - Di(y)
E(myy)Dn(T(aay))V
e(x, y)Dn(ey;v) >4, €, T(Diz,Djy)

6(90,14)1"(6)’“”\/

e(, y)eDn(yz)

\

v E” €,i€D;(y) - Di(z)
(n)

In fact, the left-hand side of this diagram is the Kiinneth coordinate of the left-
hand side of diagram (10.5.7). Therefore it remains to check that the right-hand
side of the diagram above is the Kiinneth coordinate of T'(v,x,v,y) in (10.5.7).
But this is a consequence of the following commutative diagram with a = w;(v),
b= Dj(z), c =w;(v), d = Dj(y) and + = (—1)labl-ledl,

T(ab,cd
(2) abed ( ) > tcdab
vaT(b,c)d V:I:cT(d,a)b
— lac > 1Tca
1)Pllel gebd +cadb

T(a,c)T(b,d)

For T'(a,c) we need the commutative diagram in (10.4.2)(i). This completes the
proof that (1) is commutative. From (1) we deduce the result in (10.5.5) by defi-
nition of C*Y. U

10.6 The associativity relation for Cartan tracks

For the Kiinneth-Cartan tracks C*¥ we obtain the following diagrams. Let x :
X -2,y X —-27,2: X — Z9 be maps in Top™.

Ty, z
O

(10.6.1) Sq™ (zyz) =Y nihem 54" (2y)Sq* (2)
o 3k -S04 (2)
\ \

D itr—m 54 ()Sq" (yZ)Z sdee) oLty k=m ¢ (€)S¢ (1)Sq"(2)

TY,z
an

o o C2¥-P(2)

v o
Y itrem P (@) P (y2) > itjikem P1(@)PI(y) PF(2)

>
i, Piz)Cl*
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. J N
(10.6.3) B (zyz) = Bzy) -z + (—1)7¥lzy - B(2)
e O™t (~1) PV ayB(2)
! "yl
z B(x)-yz+(=1)"z-B(y)z
Bl@)-yz(-D)leblyz), e D aaG)

There is a similar diagram for Pj*(zyz).

10.6.4 Theorem. The associativity relations (10.6.1), (10.6.2) and (10.6.3) are
commutative diagrams of tracks in [ X, Z*].

We use the notation C*¥ in (10.5.6) so that we derive from (9.5.3)(ii) the
following diagram with e(z,y,z) = signo(z,y,z) and €e(z,y) = signo(z,y);
see (9.5.2).

e(z,y)Cy¥*

e(x,y,z) -%(xyz) >6($7y) 'PYU(xy) 'PYU(Z)
e(y,z)éf‘yz C‘f‘y"yv(z)
\ \
€y, 2) 1 (@) - (yz) @) Yo () - Yo (y) - Yo (2)

10.6.5 Lemma. This diagram is commutative.
Proof. We use (9.5.3)(ii) and (10.5.6) and (9.4.1)(1). O

Proof of (10.6.4). Recall the definition of C(wnY)J in (10.4)(3). We show that the
following diagram commutes.

(1)

e(z,y)Cuy
e(x,y, 2) D (zyz) (2, y) > nthem €nkDn(7y) Di(2)
e(y,2) O Yk €n,kC (Y Di(2)
\ \
e(y,z) > @rDi(z)Dr(y2) > GirDi(z)D;(y)Di(2)
it+r=m it+j+k=m

>
i € Di(@)CYS

Here we set
(2) €ijk = €tk Eij = Eijik & k-

This equation readily can be checked by (10.4)(2) and the definition of €; ;. Ac-
cording to the definition of C*¥ we see that commutativity of diagram (1) above
implies the proposition in (10.6.4).
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We obtain diagram (1) as the Kiinneth coordinate of the tracks in diagram
(10.6.5), compare the definition of Ogif)’ in (10.4). For this we multiply K, (z) with

the diagram in (10.4) defining RY%.
This yields the following commutative diagram.

,yv(r).ég,z

(3) L > @
A A
Ky(z)-e(z,y) Ko (yz) 1 K, (z)-S¥*
[ [ )
a7 -RV*

Here 07 is the source of K,(x) and S¥* is the composite
@ §9% = (Ko(y) - Ka(2)D(T2) 70w

given by the right-hand side of the diagram in (10.4) where we replace (z,y)
by (y, z). We embed diagram 1 into the following commutative diagram of tracks.

e(z,y,2) Ky (zy2)

(5) ® < °
e(y.2)CyY* 2 €(y,z)R"¥*
v e(y,2)T,Y* e(y,2)Wrvs v
L ° >0 < °
Tule)CY ! o-RY%y 4 w
\4 \ \ \
° < ° >0 < a
K, (z)-SY* T/ w’

Diagram 2 is given by the diagram in (10.4), where we replace (z,y) by (z,yz2),
multiplied by €(y, z). The object a in diagram (5) is

and the track R’ has coordinates given by the bottom arrow in (1).
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Hence the diagram (1) is commutative if and only if the following diagram
is commutative.

K,(x)-SY* ’
(7) ° < @ ° < T °
A
6 w’
K1,(r)~Kv(y)~K1,(z) v
< [ ] 5 a
A
7 w”
\
P ° < °
S:c,va’u(z) T

Here we define W, T” by the diagram similar to (5) which corresponds to the top
arrow and the right-hand side of (10.6.5). Subdiagrams 6 and 7 are the obvious
commutative diagrams. Moreover 5 commutes if and only if for

a=Dx, b= Dy, c= Dyz

the following diagram (8) commutes. We set w; = w;(v) and we use the interchange
tracks and the tracks W; ; in (10.4.2). Moreover we indicate signs of the coefficients
€,; by *.

(8) FTw;aw;41be
W i T(wjyi,a)be=T"
Fw;aw;wibe FTw;wjyrabe
A A
wiaw; T (b,wy)c +W;, jyrabe=W'
wiaw; bwyc €i,j,kWitj+k - abe
w; T'(a,w;)bwyc +Witj kabe=W"
\ Y
FTw;wjabwyc FTwi4; - wrabe
im\ %b)c—T”
Fw;4jabwgc

If p = 2 then W, ; is the identity track and in this case it is easy to see that (8)
commutes. If p is odd one can check the commutativity of (3) by the definition of
W in (10.4.2) and by diagram (10.4.2)(ii). O
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10.7 The linearity relation for Cartan tracks

For the Kiinneth-Cartan tracks C*¥ in (10.4) and for the Kiinneth linearity tracks
I'®¥ in (10.3) we obtain the following diagrams. Let z, 2’ : X — Z%and y : X —
Z49 be maps in Top®.

ceta’y

(10.7.1) Sq™((z + 2')y) =it jen S (@ +2') - S/ (y)

vz’ z,z’ j
Fzyw Y Zi,j r; -Sq7 (y)

(8¢ (@) + Sqi(2')) - S (y)

Y
Sq" (wy) + Sq"(2'y)

cota’y

(1072) P +a)) - Sijon Pt al) Pi(y)
Ffi“/" 24 Ff’m/'Pj(y)
\

Priay) + Pr(ry) OO S (i) + PI(a) - Pi(y)

(10.7.3)
Bty T s Bt )yt (<)@ + 2B
— 02y (=) (@+2")B(y)
B+ ) O (3@ + B -y + ()@ + 2)5()

There is a similar diagram for Pg((x + 2')y).

10.7.4 Theorem. The relation (10.7.1) is a commutative diagram of tracks. The
relations (10.7.2) and (10.7.3) are commutative diagrams of tracks in [X, Z*].

We again use the notation C*¥ in (10.5.6) so that we derive from (9.6.3) the
following diagram.

cov
ez, y)v((z +2")y) > Yoz +2) 70 (y)
e(z,y)Tove"y 2%y, (y)
sy ey ,
(@, y) (Vo (2y) + 10 (2'y)) > (Yo () + 70 (2")) 70 (y)

10.7.5 Lemma. This diagram commutes for p odd and for p = 2 the primary
element of the diagram is x -z’ - Sqlv|=1 ().

Proof. We use (9.6.3) and the track I'y(,,,) and (9.4.1)(2). O
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Proof of (10.7.4). It suffices to consider the following diagram, see (10.4).

(1) c-(r+)m’,y
(@, y)Dy((z + 2")y) > D itjen € Di(@ + ") - D;(y)
e(ey)res S, @t D)
z,y+cz’yy \

(o) (Dulay) + Dule'y)) DYy s (Di() + D)) - Dy(y)

The tracks in this diagram are the Kiinneth coordinates of the corresponding tracks
in diagram ( 10.7.5). This is seen by (10.4) and by the following commutative
diagram.

(a+a)c ac+d'c
T(a+a’,c) T(a,c)+T(a’,c)
\ \
+c(a+a’) +ca + +ca’

For this we use (9.4.1)(2). The primary element of diagram (1) is trivial if p is odd
or if p =2 and n #|zy| and hence we get the result in these cases. For p = 2 and
n =|zy|, however, diagram (1) yields the following diagram with |z|= g, |y|= ¢/,
a=Sq", = 5¢.

C:C-F:C,yy

(2) Sq"((x + ') - y)
repay e sq7 ()

> (Sq?(x) + Sq¥(x")) - Sq? (y)

>Sql(x +a') - S’qq/ (y)

Y . o
cmvCT Y
Sqn(zy) + Sg"(z'y)

This diagram has primary element z - 2’ - Sqql_l(y). The morphism on the
right-hand side of (10.7.1) does not coincide with the right-hand side of diagram
(2) but is

o™ Sq% (y) + Ty - Sq* ' (v).

By the delicate linearity track formula (10.3.2) we have I’ ‘;fl/ =z - 2. This
shows that diagram (2) yields the commutativity of diagram (10.3.2) in case
n=|zy| O

10.8 Stable Kiinneth-Steenrod operations

Recall that the secondary Steenrod algebra [A] in (2.5.4) is defined by groupoids
[A¥]. Objects in [A*]o are stable maps (o, H,) given by a sequence of maps

(10.8.1) a=(ag: 29— ZT%) oy
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in Top®™ together with a sequence of tracks H, = (Hgy,q)qez for the following
diagram.

Aq
(1) 74 > 7q+k
Tq Hagg Tatk
\ v
QOZ‘J“ 0o > QOZq+k+l
00lg41

Here r, is the homotopy equivalence in (2.1.7). Moreover a stable track
(2) H : (o, Ho) = (8, Hp)
in [A*]; is a sequence of tracks
H=(Hy: 0= 04)qez
in Top™ such that
(3) Hgp o = (rq4iHy)OHy (O((Q0Hg41)Pry).

Compare the diagram in (2.5.4). Each stable map « represents an element {a} €
A¥ in the Steenrod algebra A.

10.8.2 Theorem. A sequence (Kg4,q > 1) of Kinneth tracks as in (10.2.2) induces
for a Steenrod operation

a€ Eq=1{59¢"S¢ ..} for p=2and
ozEEA:{B,Pl,PZ,...,Pﬁl,Pg,...} for p odd

a well-defined stable map
sa € [AleN,.

We call sa the stable Kiinneth-Steenrod operation (associated to o € E4 via
Kiinneth tracks).

Proof of (10.8.2). As in (2.1.7) we choose a map
ig: St — 71

which in homology induces the ring homomorphism Z — F = Z/p. Moreover we
choose a track By in the following diagram.

0
50
A
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Here [ is the Bockstein operator and s is the corresponding Kiinneth-Steenrod
operation. For p = 2 we have 3 = Sq'. We now define the following diagram with
a€ Eyand | al=k.

sa)g X1
(10.8.4) 70 % st "V E pan o g1
tq Gégz tork
Vo (sa v
gatt UL i

Here (sar)q is the Kiinneth-Steenrod operation associated to the Kiinneth track
K. Moreover we set

(1) ty = pg1(l xig) : Z9x St — 29 x 7t — 79,

Hence t, induces the map

(2) ty: ZINZY — Z0H1

with £, = u(1 A ig) and the adjoint of #, is the homotopy equivalence

(3) Ty 27— QZ g > 1.

Compare the definition of ry in (2.1.7). Let X = Z9x S' and let z = p; : X — Z1
and y = igpy : X — S' — Z! be given by the projections p; and p,. Then we
have

4) ty=x-y: X — 29T,

If we apply (sa)q+1 to @ -y we obtain the following Cartan tracks:
For o = Sq™ € E 4 we get the composite of tracks

(5) (sSq™)q+1tq Sq"(x - y)
cmY
\%
Gog (Sq™z) -y + (S¢"*x) - (Sq'y)
(Sq™x)-y+(Sq" " 'z)-Bo
Y \%
tork((8Sq™)g x 1) (Sq"z) -y

which defines the track G 4 in (10.8.4). Here C*¥ is the Kiinneth-Cartan track
in (10.4) and By is given by the track in (10.8.3).
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For a = P™ € E4 we get the following track.

(6) (sP™)g11tq Pz y)
Ga,q oY
\ \
tgrk((sP™)q x 1) (Prx) -y
For a = 8 = Bockstein € E 4 we get the composite of following tracks.
(7) (s8)q+1tq Bz -y)
C-’E,y
\
Gog (Bz) -y + (=1)% - (By)
(Bz)-y+(=1)7z-Bo
\ \
ta+1((sB)q x 1) (Bz) -y
Here By is given by (10.8.3).Finally for o = P} € E4 we get the following track.
(Spg)cﬁltq PZJ(JS )
C-’E,y
\
oo Py (x) -y + P"(x) - By)
P (z)-y+P"(z)-Bo
\ \
tgrr((sPg)q x 1) (Pyz)-y

Now we consider the cofiber sequence
Z0v 8t L 79 x §F T 79 A S
where j is the inclusion and 7 is the quotient map. One readily checks that
Gagj:0=0
is the identity track of the trivial map. This implies that in the diagram
(sa) Al

(10.8.5) 79 A St > zat+k A Gl
iq ééf Eqtk
\ \
VA S > za+l+k

(s@)q+1
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there is a unique track G’a,q with

Gaq = Ga7qw.
Now let H, , in the following diagram be the adjoint of Gy 4.

(sa)q

(10.8.6) Z4 > Za+tk
Tq Hagg Tatk
\ \
Qozq+1 > QOZq+1+k
Qo(sa)g+1

Then the stable map sa for « € E4 in Theorem (10.8.2) is defined by
(10.8.7) sa = ((sa)g, Ha,q)

with (sa), the Kiinneth-Steenrod operation associated to K, and H, 4 in (10.8.6).
This completes the proof of (10.8.2). O

Let X be a space and let .2’ : X — Z!*l be maps in Top*. In (4.2.2) we
define for the stable map sa with a € E 4 the stable linearity track

2 oz +2') = a(z) + o(z).
Moreover in (10.3.2) we define the Kinneth linearity track
o a(z+2") = a(z) + a(z'),

which for p = 2 satisfies the delicate linearity track formula in (10.3.2). We now
show that these linearity tracks coincide.

10.8.8 Theorem. For the stable Kiinneth-Steenrod operation sa, o € Ey4, in
(10.8.7) the linearity tracks satisfy

F;’f, — oo, alz +2') = alx) + a(z)).

The theorem shows that all results on stable linearity tracks in Chapter 2
also hold for Kiinneth linearity tracks. Compare (10.3.2).

Proof. Recall from (2.6.4) that for ¢o =| z | and k =| o | we have

(1) sa € [[_Ak]]o e VALK ZQoJrk]](s)table.
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The linearity track Fggfl is defined by I'y, in the following diagram in [K;table]]
where A is the addition map.

(2) 7% x 790 “*Ea0tk o gaotk
A=Aq, Leg A
\ \
790 > ZQO+]€

S

See (2.6.3) and (4.2.1). We claim that for sa with « € E 4 as defined in (10.8.7)
the component of Iy, in degree ¢ > gy coincides with the Kiinneth linearity track
I’y defined as follows. Let X = Z? x Z9¢ and let a = p;, b = pa be the projections
X — Z9. Then T'; = I'*? is a track for the following diagram in Top*.

(s@)q X (s5)q

(3) VARYAS > Zatk « zatk
A=A Lo A=Agtk
\ \
74 (sa) > 7a+k

We claim that
4) (Tsa)qg =Ty for g > qo.

This is clear if ¢ is sufficiently large since both tracks in (4) coincide on Z?V Z4.
Hence (4) is true if I' = (I'y, ¢ > qo) is a well-defined stable track as I'y, in (2).
For this we consider the following diagram where we use the linearity of r4 so that
the track Hq gAq is well defined. We write aq = (sav)q.

Agtr(agxaq)

fr.

aqAq D
AR YA > Zq+k
TqXTq H(%Aq Tatk
\ \
Q749+ « Qzat+1 > QO Zatk+1
Qaqgt1Ags1) 7
U/QFqul

(5) Q(Agtrt1(agtixagyr))
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Now (4) holds if and only if pasting of tracks in (5) yields the track

(6) (QAqukJrl)(Ha,q X Houq) = (5)

We prove (6) by considering the following adjoint diagram of (5) where
Asy(a, b, c) = (a,c,b,c).

g x5t

Agx1 =
Z9x 79 x St > 71 x St AL
Aog
\
(7) Z1x St x 71 x St Cog
tgxtq
v Ag+1 v v
VARES WA RS > 7q+1 > zqtk+1
7

U Fgt1

Now (6) holds if and only if pasting of tracks in (2) yields
(8) Agir41(Gag X Ga,g)B2s = (7).

We prove (8) by use of (10.7.4). Let X = Z9 x Z9 x S! and let a = p1,a’ = po
and let b = ipps be given by the projections of X.

We now consider the case p = 2 and a = S¢*. Then (10.7.4) shows that the
following diagram of tracks commutes.

!/
F:b,a b
(9) Sq*((a+a’)b) > Sq* (ab) + Sq*(a'b)
Ca+a/,b 1 Ca,b+cal,b
\ \
Sq* (a+a’)b Lo - Sq* (a)b+Sq" (a’)b
+SgkF—1(a+a’)-Sq'b +Sgk—1(a)Sq b+SgkF—'(a’)Sq'b
O k—1 ’ 0D+qu_1(a)50
0-+Sq¢" *(a+a")By 2 +Sqk—1(a")Bg
\ \

Sqk(a+a’) b , > Sq¥(a)b+ Sq*(a’)b
ree’p
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Here subdiagram 1 with
Lo =T b4+ T8 - S¢'(b)

commutes by (10.7.4). Moreover subdiagram 2 commutes by use of the product of
tracks I'"] - Bo.

The column on the left-hand side of (9) is Gq,q(A4 % 1), the column on the
right-hand side of (9) is Ag1x+1(Ga,q X Ga,q)A24. Moreover

sz’alb =Dgy1(tg x tg)Aau,

(10) !
LY b =tyn(Ty x SY).

This shows that (8) is equivalent to the commutativity of diagram (9). In a similar
way we prove (8) for a € E4 and for p odd. O



Chapter 11

The Algebra of A-tracks

In this chapter we introduce generalized Cartan tracks C,, defined for each « in the
algebra T (E 4). We show that relations of the Cartan tracks in Chapter 10 yield
corresponding relations of generalized Cartan tracks. The notion of “secondary
Hopf algebra” in the next chapter relies only on the relations for generalized Cartan
tracks. The diagonal of the secondary Hopf algebra is deduced from the relation
diagonal in this chapter.

11.1 The Hopf-algebra T (E4)

Let R be a commutative ring with unit and let M, N be non-negatively graded
R-modules. For a prime p the tensor product M ® N is “p-symmetric” by the

interchange isomorphism
T:-M@N=ZN®M,
(11.1.1)
T(e@y) = (-1 ly @ 1.

We shall use this sign convention for 7" in the presence of a prime p. We call
(11.1.1) the even sign convention since for p = 2 we have T'(z ® y) = y ® x. For
odd primes p we get the usual sign rule T(z ® y) = (—1)I*II¥l which we call the
odd sign convention.

Given a graded R-algebra (A, p4) the tensor product A ® A is an R-algebra
via the multiplication

paga = (pa @ pa)(ART® A).

Here T is the interchange with the even sign convention (11.1.1). That is, for z®vy,
' ®y € A® A the multiplication in A ® A is defined by

(z®y) (@ ey) =11 @ )@ (y-y).

Of course for R = Z/2 the even and the odd sign convention coincide.
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11.1.2 Definition. Let A be a non-negatively graded R-algebra with unit. Then A
is a Hopf algebra if A is augmented by

e:A— R

and if an algebra map
A:A— AR A

is given so that the following diagrams commute.

AoAa< ° A A& S AmA
e®1 1 1®e
Y \% Y
ReA A A®R
A 2 sAeA
A AR®1
\% \%
A® A A A A A

The Hopf algebra is co-commutative if in addition the following diagram
commutes.

A®A
/

A T

RN

A®A

Here the algebra structure of A® A and the interchange T are defined by the even
sign convention as in (11.1.1) above. Diagrams as in (11.1.2) are used to define a
coalgebra in any monoidal category. Hence a Hopf algebra as above is the same as
a coalgebra in the monoidal category of (non-negatively graded) algebras over R.

The Steenrod algebra A is a co-commutative Hopf algebra over F = Z/p with
the diagonal

(11.1.3) §:A— AR A
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defined by
5(Sq") = Y p11_; Sa* ® Sq' for p =2
(P =pe1l+12p,
{ §(PY)y= > P*® P! for p odd.

k+l=i

Compare (1.2.7). For Pé = BP* we have the formula

5P} 5(B) - 6(PY)

= Y (PjeP'+PraPp).
k+l=i

Recall that £4 C A is the set of algebra generators with

Sqt, Sq%,. .. for p = 2,
E —
A7\ (8. PLPL P2 P2, .} forpodd.

For G = Z/p? let Tg(E 4) be the G-tensor algebra generated by E 4. We have the
following canonical commutative diagram.

)

(11.1.4) A >A® A
A A
p pPRp
To(E4) 2 S Tu(Ba) ® To(Ea)

Here p is the surjective algebra map which is the identity on generators in E 4.
Moreover Tg(E4) ® Tg(E 4) is an algebra with the even sign convention as in
(11.1.1). The diagonal A is the unique algebra map defined on generators in E 4
by the formulas

A(S¢) = 3 S¢" @ Sq for p=2, and
k+1l=1i

AB) = Be1+100,

APy = XY PreP,
k+1l=1i

APy = X (P§®P1+Pk®Pé)forpodd.
k+1l=1

Here we have k,1 > 0 and S¢° =1, P° = 1 and PJ = 3. It is clear that diagram
(11.1.4) commutes and that p ® p is an algebra map.
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11.1.5 Lemma. (TG(E4),A) is a Hopf algebra which is co-commutative for all
primes p since we use the even sign convention.

Moreover, the tensor algebra
Tr(Ep) =Tg(Es)@F

is a co-commutative Hopf algebra (Tf(E 4), A) with A defined by the same formula

as above. We write
BO = TG(EA)a

Fo = Tr(E4) = Bo/pBo,
so that we have canonical algebra maps
(11.1.6) q: By —Fo— A

which are the identity on generators. These quotient maps are also Hopf algebra
maps. If z is an element in a G-module M, then its image in M ® F is denoted
by xp or also by z. Moreover for = € By the image in Fy, or in A, is also denoted
by .

Remark. For p = 2 the Hopf algebra (T(E 4), A) is not co-commutative if we use
the odd sign convention, since then we have

TA(Sq") = ) (-1)*S¢' @ Sq".
k+1l=i

Here the sign is non-trivial for kl odd since we work over G = Z /4.

11.2 A-tracks

In (10.8.2) we have seen that stable Kiinneth-Steenrod operations sa associated
to a € E 4 yield a function s as in the following commutative diagram.

[Alo

v
Ey > A

Moreover s induces as in (5.2.1) the function

(11.2.1) s: Tg(Ea) — [Alo
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which is a pseudo functor by (5.2.3). For a € Tg(E 4) we call sa also a (generalized)
Kinneth-Steenrod operation. If |a|=r and x : X — Z9 is a map in Top™, then we
obtain the composite

a(z) = (sa)gox: X — Z9 —s Z0F7,

Here a(x) is an element in the F-vector space [X, Z97"]y. Since a(x) is linear in
a we see that a(x) depends only on a ® 1 in Tp(E4) = To(E4) ® F. Hence for
p =2 we have ((—1) - @)(z) = a(z) though (—1) - a # a in Tg(E4).Now consider
the diagonal A for Tg(E4) in (11.1.4). For each a € T(E 4) we can find a family

(11.2.2) a={(a},a);iel,}

with of, of € Tg(E.4) such that

Aa = Z o @ € To(EA).
i€la

We say that & is a A-family associated to . Since (11.1.4) commutes there exists
a track

(11.2.3) H:a(zy) =>Z ledlaf () - of (y)

wherez : X — Z9, y: X — Z9 and z-y: X — Za+d For p = 2 the signs on the
right-hand side may be omitted. The track H = H2Y can be chosen for all spaces
X and all elements x,y of degree | z |= ¢ > 1, | y |= ¢ > 1 such that HZY is
natural in X. Here naturality means that a pointed map f : Y — X induces the
equation

HEYf = Hzﬁyf.

We call a natural family H, = (a, HY) a A-track associated to a. We point out
that a(z,y) and of(x),af(y) in (11.2.3) depend only on «,af, ol € Tp(E4). A
track H = H, as in (11.2.3), however, will be constructed below in such a way
that H, depends actually on o € Tg(E4). Therefore we insist that a A-track H

is associated to an element o € Tg(E 4) defined over G and not over F.

11.2.4 Definition. Let £ € Tg(F4) ® Te(E4) and let 2 : X — Z9,y: X — Z9 be
maps in Top*. Then we define

(r,y) s X T8 74« 70 gatd

as follows. We can write £ = > ¢/ ® &/’ and we set

E(z,y) =Y (- @) - € (y).

i
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Since a(z) - B(y) is linear in «, resp. (3, we see that &(z,y) is well defined. In a
similar way we define for z,y,2: X — Z9 and £ € Tg(FA) @ Te(Ea) @ Te(EA)
the map

E(,y.2) s X — Z0HH L

We point out that £(z,y) or £(x,y, z) depend only on &g, see (11.1.6). Using
this notation a A-track is a family of tracks

(11.2.5) HyY = a(z,y) = (Aa)(z,y)

which is natural in z,y. The universal example H%Y = H%7 is given by the
projections Z : Z9 x z4 — Zq and g : Z7 X 79 — 79 with q,q > 1. Hence we
have by naturality H%Y = Hq’q (z,y) for all x y with | z |= ¢, | v, |=¢. A A-track
is thus determined by the family (o, H xd ,q,q" > 1) where H® 4" is a track as in
the following diagram.

(11.2.6) 79 % 79 a - HZQH%\ % Za+la; |
K e 1o
v v
Za+d sa > za+d +|a|

Here p is the multiplication map and & is defined by the coordinates
((=1)lellos Tsa) x s and pg carries the tuple (z;, ;) to the sum S a; - y.
i

11.3 Linearity tracks I'y, and I',, 3

In this section we fix some notation on linearity tracks. For o € Tg(E4) we have
the map «(z) as in (11.2.1). Here a(x) is linear in «, that is

(a+0)(z) = a(z) + A(z),
but not linear in . There are well-defined linearity tracks (4.2.2)

(11.3.1) Lo =T 1 a(z +y) = a(z) + aly),
k k

a(z n;z;) = Zma(%)a
i=1 i=1

forn; € G, x; : X — Z9, i =1,...,k. While source and target of I', depend

)

only on (nl)F, the track I, depends on (n;)g. In fact, let
¢:GF —G
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be defined by the matrix ¢ = (ni,...,ng), then I'y, = I'(p)Z1~** is defined in
(4.2.13). The track T',, is linear in « so that T', depends only on ar and ¢.

Let A : I — J be a function between finite index sets. Then the following
diagram commutes

(11.3.2) a(Ponizy)  Teo L Yinia(an)
icl el

a Y- mjzj) Pa Y mja(z;)

JjeJ JjeJ
where m; = Y. n; for j € J. We derive the result from (4.2.15)(3).
€A ()
Moreover recall that (s,I") in (11.2.1) is a pseudo functor so that I' induces
the following track (¢ =| z |).

(11.3.3) Topg=T(a,8)z: (af)(x) > a(f(x))

s(aB)qx (SO‘)qHﬁI(Sﬁ)qx

Here I'(e, 8) is defined in (5.2.2). We point out that I'y g is the identity track if
B is a monomial of generators in E 4, moreover I'y g is linear in .. Therefore I, g
depends on ay and [g.

11.4 Sum and product of A-tracks

Given A-tracks
Ha : a(x . y) — (Aa)(xvy)a

Hp: B -y) = (AB)(z,y),
with o, f € Tg(E4) and | a |=| 8 | we obtain the sum of A-tracks

(11.4.1) Ho+ Hp: (a+B)(z-y) = Aa+ 8)(z,y)

which is a A-track associated to o + . If H, and Hg are linear, then H, + Hg is
also linear. We therefore define the following graded G-modules.
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11.4.2 Definition. Let 7a be the graded G-module consisting of all pairs («, Hy)
with « € Tg(E4) and H, a A-track associated to a. The degree of (a, H,) is the
degree |«| of o and the sum in T is given by the sum of A-tracks above, that is
(a, Hy) + (8, Hg) = (o + B, Ho + Hg). We call Tx the module of A-tracks.

11.4.3 Definition. We introduce for A-tracks (o, Hy), (5, Hg) € Ta the product of
A-tracks (o, Ho © Hg). Here
(1) Ho © Hp : (af)(x - y) = AlaB)(z,y)

is a A-track associated to a8 where af is the product of @ and (8 in the algebra
T (E ). For the definition of H, ® Hg below it is crucial that o and 3 are defined
over G.

Let M = Mon(E4) be the free graded monoid generated by E4 so that
E ) is the free G-module generated by M and the tensor product Tg(E4) ®
E ) is the free G-module generated by the product M x M. Here a pair
= (&,£") € M x M corresponds to the basis element £’ ® £”. Each element
€ Te(E4) ® Te(E4) can be written uniquely as a sum
)

a= Y e ¢

EeEM XM
with ¢, (€) € G and |a|=|£|. With the notation in (11.2.4) we have
(3) a(w,y) = (=110 () €' (@) - " ().

13
Now the A-track H, induces the track
(4) Hy o afa(z,y)) = ((Aa) - a)(z,y)

as follows. Let H, , be the composite of tracks as in the following commutative
diagram.

T (
T (
£
a

(2

(5) a(a(z,y)) a(%:e?@a(f)fl(f) £"(y))
[o=T%
\
Hea 25:6?%(5)01(5’(%) -&"(y))

¥ Eea(OHE W

v

o, Al (E (z) - £
(Ba) Wy TEOAEEE € W)
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Here Iy is defined by the elements e, (§) € G for § € M as in (11.3.1) with €f

given by the even sign convention: ef = (—1)plelle”],

Remark. One can also use in the definition of 'y, the odd sign convention:
g = (—=1)I=lIE"] for all primes p > 2.

In this case we obtain (I'y )oda With 'y, = (I )oda if pis odd and 'y, # (T'w)odd
if p is even. In fact one can check for p = 2 the formula

(5&) (Fa)odd =T, + EL,
L=lz|-w(@) Y eap©)Ez)-(E"y)
£=(¢,¢")
l&”| odd

where £ € H*(X). Here we use the following argument for the sign (—1)=/1€"l =
—1 in case |z| and |£”| are odd.
I(-1)a=T3)a =T(2+1)q

=T2)a+T 1)) (+c)a, see (4.2.16)(2)

= (0" @ k(a)T(+G)a, see (4.5.8)

= 0" @ k(w).

(5b)

The equation in the bottom row of (5) is checked below. We are now ready
to define the product H, ® Hg of A-tracks by the following commutative diagram,
see (11.3.3).

(6) (aB)(@ - y) - a(B(z - )
H,OHgs aHg
Y Y
A<, o alAE)@)

Remark. If we use the odd convention for I', we get the product (Hy ©® Hg)odd
with (Hy © Hg)oda = Ha @ Hp if p is odd and if p is even:

(Ha O) Hﬁ)odd = (Ha ® Hﬁ) + XL
with £ defined as in (5a) above.

We check the equation in the bottom row of (5) as follows. Let

Ala) = Zag ® .
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Then we get

= (Z a;®af)- (Z a(€)E' ® ")
_ Z |§ [la]| f)Oé 5 ® O//6//

Since ¢, ¢” are monomials we have (a;¢')(xz) = a;(¢'(x)) and (of&")(y) =
o (£"(y)). Hence we get by (11.2.4)

((Aa) - Zi% gx)- o (€'y)
—Zessﬂa a) (€ (x),£" ().

The signs + are achieved by the sign rules according to (11.1.1) and (11.2.4), that
is, the sign + in the first row is (—1)I€' 1% . (—1)l#[1e7€"] and in the second row
is (=1)1#lI€”1 'If p is even, then we are in an F-vector space so that in this case the
signs can be omitted.

Remark. We have seen in section (10.5) that the interchange relation for Cartan
tracks is of different form for p even and p odd respectively. This, in fact, forces
us to use the even sign convention for the definition of H, ® Hpg.

11.5 The algebra 7 of A-tracks

We show that the module of A-tracks (11.4.2) with the product (11.4.3) is an
associative algebra over G. For this we prove the following results.

11.5.1 Theorem. The product ® on Ta is bilinear, so that ® induces a well-defined
multiplication map
O :TARTA — Th.

The unit of the algebra (7a,®) is the A-track (1,07) where 1 is the unit of
the tensor algebra Tg(F4) with A(1) =1® 1 and

07 l(@-y)=z-y=(101)(z y) =z y

is the identity track which is a special A-track. We do not claim that the multi-
plication ® of 7 is associative. Therefore (1A, ®) is only a “magma algebra”.

Proof of (11.5.1). It suffices to consider the odd sign convention for the definition
of Hy, ® Hg since £ in (11.4.3)(5a) is linear in o and in 8. We show that

(Ho + Hy) ©Hg = Hy, ® Hg + Hy @ Hg.

This in fact is clear since 'y g in (11.4.3)(6) is linear in o and Ty, in (11.4.3)(5) is
linear in .
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Next we show that
H,® (Hg —i—Hg/) =H, @Hﬁ + H, @Hg/.

Both sides are tracks as in the following diagram.

(a(B+0))(x-y) > Aa(f +6')(,y)

(af+af)(z-y)

(@B)(z - y) + (af)(z - y) > Aaf)(z,y) + Alaf')(z,y)
Now we observe that the following diagram commutes.
(08 + )z -v) e = a((8 + 3z )
(aB)(z - y) + (af)(z - y) a(f(z-y)+ 6 (z-y))

a(B(z - y) + a(f'(z-y))
Moreover the next diagram commutes

Ta

a(f(z-y)+ B8 (z - y)) =a(B(z - y) +a(B (z-y))

a(H/rI»Hﬁ/) aH/ngaHﬁ/

Y Y
AAB(z,y) + AF (2,y) T = a(AB(x,y) + (A (2,y))

as follows from (4.2.5)(6). Hence it remains to check that the following diagram
commutes.

a(AB(x,y) + AB (2, y))

Ta

> a(AB(x,y) + (A (2, y))

FQ,AﬁJrFaYAB/

\
a(AB+0) (2, y)) v > Alaf)(@,y) + Alaf)(z,y)

a,A(B+p7)
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For this we observe that by definition of the coordinate function ¢ in (11.4.3)(3)
we have in G the equation

oae+8 (&) = vae) (§) +vae) (&)

for all £ € M x M with | £ |=| B | so that the following diagram commutes with
w=¢&(x)-&"(y), see (11.3.1)(2).

0[(25: + paprap (§w)

\

r. 04(25: + pap(w) + 04(2&: + pap (§w)

\%
Zg: * oaprap (§a(w)

This completes the proof of the theorem. O

11.6 The algebra of linear A-tracks

We first introduce the following linearity tracks T®1 and 1®T. Let £ € Tg(E4)®
TG(E 4). Then we obtain linearity tracks.

F@ 1: 6(33"‘33/,2/) — f(%y) —|—€(ﬂf/,y),
1T : (r,y+y) = &(z,y) + E(2,y)

as follows. Let £ = ", &/ @ &/ and let
g : (o +2) = &(@) + &)
be the linearity track. Then

rel= Z(_l)lrllfi \I‘&; - (y),

i

(11.6.1)

Pol: D)@ +a) ) — D)1 EE) +€@) & 1)

K2

E(x+a2',y) E(z,y) +&(2,y)

Since T/ is linear in &/ and since multiplication is bilinear, we see that I' ® 1 is
well defined by & and does not depend on the choice of &,&/. In a similar way
we obtain 1 ® I
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11.6.2 Definition. We say that a A-track H, is a linear A-track (or satisfies the
linearity relation) if for all z, 2, y,y" the following diagrams of tracks commute.

H,

af(z +2)y) > Ala)(z + 2, y)

r I'el

Y Y
Hotlle o Afa) (@, ) + A) (2, y)

= A(a)(z,y +9)

r 1T

\
Ho+Ha
> Ae)(z,y) + Ale)(z,y')
Here I'® 1 and 1 ® I are defined in (11.6.1) above. By the linearity relations for
Cartan tracks in section (10.7) we know that Cartan tracks C, for o € E 4 are
linear A-tracks. Since I', is linear in a we see that the sum H, + Hpg of linear
tracks is again a linear A-track. Hence linear A-tracks yield a submodule

N (hn) C 1a.

a(zy) + a(zy’)

We now show that this submodule is actually a subalgebra. For this we prove:

11.6.3 Theorem. If H, and Hg are linear A-tracks, then Ho, ® Hg is a linear
A-track.

Proof of (11.6.3). It suffices to consider the odd sign convention for the definition
of Hy, ® Hp since £ in (11.4.3)(5a) is linear in z and in y. We show that all
subdiagrams in the following diagram (*) commute.

Tap

(@B)((z +2)y) > (af)(zy) + (af)(¢'y)

Tos Top+l0.s
v aF[-g I'. A
a(B((z +2")y)) > > a(B(zy)) + a(B(z'y))
aHg a(Hg+Hpg) aHg+aHg
Vo arenyv r, M ,
a(AB(z+ay)) > T=a(AB(z,y)) + a(AB(,y))

Huo ap Ho ap+Hao np

\ \

M)z +a'y) o = A0B)y) + M) y)
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The top square commutes by properties of the pseudo functor (s,I"). The square
in the middle to the left commutes since we assume that Hg is a linear A-track;
moreover the one to the right commutes by (3.1.3). Hence it remains to check that
the bottom square commutes. For this let Aa = )", o/ ®af as in (11.4.3)(7). Now
I’ ® 1 in the bottom row is defined by

PO ol (4 a') = e (x) + o€ ().
Here we can use (4.2.5)(2) so that

xz,x’ gt 1’
ro%, =8 Dary” .
k2

aLg!
Now the following diagram commutes with z = £" (y).

a(Tgr-2) Ty,

all(x+2')-2) >a(('z+&2) 2) >a(l'x-2)+allx - 2)

Hil(z+z/),z Hi/m,z+H§/z/,z

\ \

A@)(E (@ +1), 2) . - A(0)(r,2) + Ala)(€a,2)

This follows from (3.1.3) and the assumption that H, is linear. Again using (3.1.3)
for 'y, in (11.4.3)(5) and for o(T'¢s - z) we see that the bottom square of diagram
(*) commutes. O

11.7 Generalized Cartan tracks and
the associativity relation

The Cartan tracks C, for a € E 4 are linear A-tracks
(11.7.1) Co:a(z-y) = (Aa)(x,y).

We now define such tracks C,, for all @ € Tg(E4). For this we use the fact that
the G-module 7 (lin) of linear A-tracks is an algebra and that T (E 4) is the free
G-algebra generated by E 4. Hence there is a unique linear map

(1172) C: T([;(E_A) — TA(IID)

which on generators a € E 4 is defined by C(«) = (o, Cy) where C,, is the Cartan
track in (10.4.1) and which for monomials &« € Mon(E 4) and 8 € E 4 satisfies

C(apf) = (af,Co © Cp).
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We point out that here Cy,, ® Cp is defined by the even sign convention in
(11.4.3). We get for « = a1 - - -, € Mon(E 4) with a1 -+ -« € E4 the A-track
Cla) = (a,Cq)

with
Ca - ( : (Ca1 @Caz) @ et @Ca7,71) @Car.

We call C,, the generalized Cartan track. We summarize the following properties
of generalized Cartan tracks for «, 5 € Tg(EA).

(1) Cotp =Co+Cg,

(2) Cop =Co©Cg, for f€ Ey,

(3) Cy is a linear A—track,

4) Cy is the Cartan track (10.4.1) if a € E4.

Given £ € Tg(EA) @ Tg(E 4) we define £(x,y) as in (11.2.4). Now the generalized
Cartan tracks induce tracks

C®1: §(xy,z) - ((A® 1)(5))(x,y,z),

which are linear in £. Here the right-hand side is defined also in (11.2.4). We get
for £ =5, & ® &/ the track C ® 1 by the generalized Cartan tracks

Ci: &z -y) = (AG)(x,y).

Namely we set
C®l= Z(_l)lwylvlﬁé/\ci - €(2)

so that

S (=D)levllEIg (wy) - £/ (2) &(zy, 2)

%

C®1

\

S (=)l AE) (2, y)) - €/ (2) (A @ 1)(€))(@,y, 2).

i

Since C; is linear in & and since multiplication is bilinear we see that C ®1 is well
defined. In a similar way we get C'® 1.

We prove that the associativity relation for Cartan tracks in (10.6) yields a
corresponding relation for generalized Cartan tracks.



304 Chapter 11. The Algebra of A-tracks

11.7.4 Theorem. Let o € Tg(E4) and let x,y, z be elements in [ X, Z*]o. Then the
following diagram is commutative.

a((zy)z) ¢ - A(a)(zy, 2)
C®1
Y
a(x(yz)) (A ®1)(Aa))(z,y, 2)
C
\%
Ba)a,yz) o, > (1@ A)(Aa)(z,y,2)

Proof. All morphisms and tracks are linear in «. Therefore we need to prove the
result only for & € Mon(E 4). For @ € E4 we know already that the diagram is
commutative since it is equivalent to the commutative diagram in (10.6.4). We
now use an induction argument.

Assume the proposition holds for all monomials @ = a; ..., € Mon(E 4) of
length < r and let 3 € E4. Then we get for C' = Cog = Co © Cp the following
diagram with A = (A ® 1)A = (1® A)A.

(1) (af)(zyz)

Cqo

5 Afap)(wy, 2))

aCp a(C®1)
v a(lC — ¥
(DB, y=) " La(BB@, . 2)) co1
Co,np
Y N Ny

Aap)(z, yz) > A(ap)(z,y, 2)

1®C
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The square containing aCg commutes by (10.6) since 8 € E 4. Hence it remains to
check that the subdiagrams containing u, v are commutative. For this we consider
the next diagram with

a=AB= Y g6 ¢

EeEM XM

Here we have £, £ € E4 since 8 € E 4, compare the definition of A. Moreover let
Aa = Z ol @al.
i

We consider the following diagram.

()
AL £ (O (@) €)1 _alL E (O (@) (A (0:2)

T'a Lo

\ \

25: +ea(@a((z) - " (yz)) O 25: £ pa(§)a(€' () - (A")(y, 2))

8= (x) 8= A" (.2

\ v

Zg) +pa(§)Aa(¢(2),6" (yz)) AT Zg) + ¢a(§)(Aa)(E'(z), AL (y, 2))

l'H(X’/L/YAg//

v

-22 + 0 (E)(al€ )z - (€ (yz) O .5; + a(E)(i€)z - A(a€")(y, 2)

1®C

Aap)(z, yz) > Alap)(z,y, 2)

The squares containing «(1 - C') commute by (3.1.3) and the square containing
1+ Hyy agr commutes since Cypren = Cpy @ Cer. The bottom square commutes by
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definition of 1 ® C'. The column to the left-hand side yields Cn ag and the column
to the right-hand side defines the track u. In the same way we get the track v in
diagram (1). Hence it remains to check that the following diagram commutes.

(3)
a(Zg: + ¢a(§)E (2) - (AL")(y, 2)) a(Zgi + a(§AE)(z,y) -£"(2))

FOL FO&

\ \

? *pa(§)al () - (AL")(y, 2)) T 4 To % * a(§)a(AE) (@, y) -£"(2))

o8/ A (w.2) CAEN @)z
\ \
Z&I + pa(§)Aa(€'z, AL (y, 2)) ? + pa(§)Aa(AL (2,y),£"2)
agg’z-ca;/,Agu Ca’/iYAé/-oz,’i'{”z
_ v v _ Y
Aap)(z,y,z) B AlapB)(z,y,2)

Here the left-hand column is u and the right-hand column is v. We have for

A=(1®A)A =(A®1)A the equation

AB) = Y. v nen en”

neM x M x M

> onpt @ (O paer(p)p @ p")
3 P

> 0asd pac(p)p @p")@¢".
3 p

Moreover let

Aa) = Za; ®aj ®al.
J

Now we define the track A — B in (3) by the following diagram.
(4) A=3, Fhmam'z 0"y -n"z)

¥, £ Ca

\
B =32, Fvmegn)z- (efn")y - («f -n'")z
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Here we set

(5) Co = (C®1)OC, = (1®C)OC,

since the proposition holds for a. Now the top square in (3) commutes by (11.3.2).
Moreover the bottom squares of (3) commute by the linearity of C,, and by (5).
For this recall that C, ag is the composite of I', and tracks defined by C. This
completes the proof of the theorem. O

Remark. In the proof of (11.7.4) above we use the even convention for the definition
of Co ® Cp so that one has to be aware that for p odd and p even different sign
rules are used, see (11.4.3). It is also possible to go through all arguments of the
proof of (11.7.4) using the odd convention for the definition of Cy ® Cg. Then
alteration is necessary according to the correction term £ in (11.4.3)(5a). One can
show that all correction terms arising cancel. In fact, if we replace « in (11.7.4)
by af with 8 = Sq™ we get the following four corrections with i + j + k = n:

L= w(@)lal Y Sqz-Sg'y- Sz fora- (y2)
j+k odd

Ly = r(a)|zy Y Sq'z- S’y - S¢*z, for (xy) - 2,
k odd

Ls = k(o) Y Sq'z- S’y - Sq*2,

j odd

Ly =r(a)ly| > Sq'z- S’y - Sq" 2.
k odd

Here £3 and L4 arise for C ® 1 and 1 ® C respectively. Now it is easy to see that
L1+ Lo+ L3+ Ly =0.

11.8 Stability of Cartan tracks

The universal Cartan track C, is stable with respect to partial loop operations.
This property of Cartan tracks is the crucial argument in the construction of the
relation diagonal in the next section.

Let o € By and let @ = {(, o), i € I'} be a A-family associated to «. Then
the universal Cartan track C, = Cg;q/ is given by

’

(11.8.1) 74« 74 sa GF[]Zm AL
I Lo 1o
\ \
A > zntm

1o}
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with n;, = ¢+ | o | ,n} =¢+ | & | and s& defined with signs as in (11.2.6). Here
Cy can be chosen to be a track under

Ziv 79 c 79 %x 77

since Cy|Z7V 79 =0 is the identity track of the trivial map 0. We therefore can
apply the following partial loop operation to C,.

11.8.2 Definition. Let A, B and U be pointed spaces and let
fiAxB—U

be a pointed map with fl[AV B =0: AV B — %« — U. Then the left partial loop,
resp. the right partial loop, are maps

Lf : (QA)x B — QU,

L'f : Ax(QB) — QU,
defined as follows. Let t € S and o € QA, o/ € QB. Then we set (Lf)(0o,b)(t) =
f(o(t),b) for b € B, resp. we set (Lf")(a,0’)(t) = f(a,o'(t)) for a € A.

We apply the partial loop operation L to C, in (11.8.1) and we get the
following diagram.

(11.8.3) (Q(Zq) y Zq/ Q(&)> H(QZ’I’LL) w Zmi
el
L,u,g L:§C Llﬂo
\4 \%
n n+m
07 Q(sar) >07

Here we define the arrow Q(&) by the coordinates Q(sa) x s/ for i € I. Moreover
we have for the maps (sa)po and pps@ in (11.8.1) the equations

1) L((sa)po) = (Qsa) o (Lpo),
L(fo(sa)) = (L") o (Qa),

so that diagram (11.8.3) is well defined. Here L’ [iy carries a tuple z = ((04,b;),i €
I) to the sum in QZ"+t™

(2) (L'4i0)(2) = > (Lpo)(os, bi)

el

where we use addition of loops induced by the vector space structure of Z™+™.
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Recall that sa is a stable map defined in (10.8.7) so that we have the diagram

a3

(3) Zn—l = Zn+7n—1
T :H> T
\ \
n n+m
Q7 Q(sar) >QZ

where we omit indices, see (10.8.6). A similar diagram is available for the stable
map so, for each i € I. This shows that we have the following diagram.

& n;—1 n’,
roosa J[Z AR

(4) Zq_l x 21 el
(71)qlr><1 A, i];[[(—l)"grxl
v . v ,
@z0) x 2 %= T1(Q2") x 27
el

Here H has coordinates H; x 1 where H; is the track defined by the stable map
sa as in (3) above. We point out that the definition of s@& in (11.2.6) involves

signs which cancel with the signs (—1)7 - (=1)" = (—1)le1,
Moreover we have a canonical permutation track for the following diagram.

—1)7 rx1 ,
(5) gotyga TV (Q29) x 74
Ho = Lpo
\ \
Zn-1 ~Qzn

This is easily seen by taking the adjoint ¢ of r as in (10.8.4)(1),(3).
Similarly we get as in (5) the following track.

(6) HZ”i_l % Zn; H(*l)"'irxl> H (QZTLI) % Zn;
i€l icl
o d L' o
v \
Zn+m—1 . an+m
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Now pasting tracks LC, and (3), (4), (5) and (6) yields a track £C, as in the
following diagram.

_ L ’
’ s - HZTLL 1 X an

q—1 q
Z xZ icl
Ho LCq Ho
\ \
Zn—l > Zn+m—1

The left stability of the Cartan track is expressed in the following theorem.

11.8.4 Theorem. Pasting the tracks LC%Y and the tracks (3), (4), (5) and (6)
above yields a track LC, which coincides with C4~H9 .

Proof. We point out that H and H are defined by Cartan tracks as in (10.8.6).
Therefore the theorem is a consequence of the associativity relation for Cartan
tracks in section (11.7). O

A similar result as above yields the right stability of the Cartan track showing
that the right partial loop L’ Cg;q’ yields a track £'C, which coincides with C'%1 -t

The proof of this case is somewhat simpler since signs such as in (11.8.3)(4) do
not arise.

11.9 The relation diagonal

According to the definition of the pair algebra B we have the pull back diagram

B, > F1 = [AR
P P

v v . v
By > Fo > [Alo

where Fo = By/pBo and F; = B1/[p]By and — is the quotient map. Here Fy and
F1 are F-vector spaces, see also (11.1.6).

11.9.1 Lemma. The diagram above is well defined and both squares are pull back
diagrams
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Proof. The pair algebra B is derived from the secondary Steenrod algebra [.A] by
the pull back diagram

(1) By T= AR

v \
Bo s > [Alo

where the G-linear map s is defined by Kiinneth-Steenrod operations. Here [A]}
and [A]o are graded F-vector spaces. Hence s carries pBy to zero and, in fact, 5
carries [p]By to zero since 3([p]a) with o € By is defined by the track

0
I
o< P o< s [ ]
(2) B
Ir
s(pa)=0

where I' = I'(p, ). Here I'(z, &) is linear in « so that I' = 0 and hence §([p]a) = 0.
Now we get the induced diagram (11.9.1). The square at the left-hand side is a
pull back since 9 : [p] - By — pBp is an isomorphism. Moreover the pair (s, 3) is a
pull back (1) by definition of B;. This shows that also the square at the right-hand
side is a pull back and therefore By /[p]By = F1 is an F-vector space. O

We say that « € By, resp. a € Fg , is a relation if « is in the image of 0 or
equivalently « is in the kernel of ¢ : By — A, resp. ¢ : Fo — A. Let

R = im(9) = ker(q) C Bo,
(11.9.2) { Ri =im(9) = kir(qq) C T(z)

be the submodules of relations. We can choose an F-linear map p for which the
following diagram commutes, we call p a splitting of Or.

(1) F1

P o=0r
\
Rr c Fo

In this section we associate to p a well-defined G-linear map of degree —1, termed
the relation diagonal,

(2) @pRB_’A@)A
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Since the kernel of 0 is XA, each F-linear map t : R — A of degree —1 yields
the splitting p 4+ ¢ : Rz — F1 of 0. We shall prove the formula

(3) 0,41(a) = B,(a) + H(Aa) - bt(a).
Here 6 : A — A® A is the diagonal of the Steenrod algebra A and #(Ac) is defined
as follows. Since o € Rp is a relation we can write
(4) AazZaQ@a’zf—i—Zag@ag’
i€l i€l

with o, € Rg for i € Iy and o € Rp for i € I;. Now we set
() HAa) = > (ta)) @ gaf + Y (=1)1*(ga)) ® ta?.

i€lo i€l
Hence formula (3) shows that the coset of ©,,

{@p} S HOm_l(RB,A@) A)/{EA —dt,t € Hom_l(R]:, A)},

does not depend on the choice of p. Hence this coset is an additional structure
of the pair algebra B. We point out that Rz ® F does not coincide with Rz, for
example in degree 0 the module (Rz) is trivial but (Rz ® F)? is not trivial.

11.9.3 Definition. Using the map s in (11.2.1) we define for z : X — Z9 and
u € F1 with Ou = a € Fy the track

u(z) : a(z) =0
with a(z) = (sa)q oz as in (11.2.1) and u(x) = (su)4 o x accordingly.

For a € Rp we have the generalized Cartan track C, as in the following
commutative diagram of tracks.

Ca

(11.9.4) a(z - y) > A(a)(z, y)
(pa) (zy) (pAQ)(x,y)
\ \
0 0uy >0

Here (pa)(x-y) is defined by the notation (11.9.3) and we get by use of (11.9.1)(4),

(PAQ)(,y) = Y (—Dl(pad) (@) - of (y)
+ Y (=n)lelal () - (paf) ().

Again we use the notation in (11.9.3).
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11.9.5 Lemma. The element (pAa)(x,y) only depends on p,a,x,y and does not
depend on the choice of the decomposition (11.9.1)(4) of Aa.

Proof. We claim that each element u € (F®F); with du = £ € Fy ® Fy yields a
well-defined track

u(@,y) : §(x,y) = 0.

Here £(x,y) is defined as in (11.2.4). Here u(z,y) is linear in u so that we can
define u(z,y) by the special cases

(a® B)(z,y) = (~1)"Wla(z) - B(y),

(@@ b)(@,y) = (=) Pla(z) - b(y),
for o, 8 € Fo , a,b € F1. By (3.1.3) we see that the definition of u(z,y) is com-
patible with the ® relation in (5.1.2). Let R = (Rz C Fo) be the pair given by

Ry so that p: R — F is a pair map over the identity of Fy. Then we see that
the following diagram commutes.

(ROR)1 > (F&F)1

Fo @ Fo
Here Jp is injective inducing an identification
(R®R)1 = im(9)

so that p : im(9) — (F®F)y is defined by p®p. For a € Rp we can consider
A« as an element in im(9) so that p(Aa) € (F®F); is well defined. Now one
can check that for v = p(A«) the track u(z,y) above coincides with (pAa)(x,y)
defined in (11.9.4). O

11.9.6 Theorem. The composite of tracks 0, , in (11.9.4) is a track 0 => 0 which
represents an element
O,y € HlelFlyltlal=1(x

depending only on o and p and x and y by (11.9.5). There exists a unique element
0,(a) € (A® Al

such that for all X,x,y the multiplication map p : H*(X) ® H*(X) — H*(X)
satisfies
#(©p(a) - (z@y)) = O y.

Moreover 6, satisfies formula (11.9.2)(3).
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This theorem defines the relation diagonal 8, in (11.9.2(2)). Since diagram (11.9.4)
is linear in o we see that 0, is G-linear.

Proof of (11.9.6). The theorem is a direct consequence of the left and right sta-
bility of Cartan tracks in (11.9). Formula (11.9.2)(3) is easily checked by use of
diagram (11.9.4). O

Remark. The main result of Kristensen in [Kr2] can be interpreted as a corollary
of Theorem (11.9.6). We also point out that the definition of ©, , in (11.9.4) can
be compared with the definition of the secondary products of Kock-Kristensen
[KKr].

11.10 The right action on the relation diagonal

The module of relations Ri C By is an ideal so that for o € Rg and § € By also
Ba, af € Rp. In this section we describe the relation diagonal element ©,(a5) in
terms of ©,(«). Let pg be the splitting of Jz as in the diagram

(11.10.1) B,

PB 9=05

\
RB - BO

where pg is induced by p via the pull back diagram (11.9.1). The splitting pp is
G-linear but not a morphism of By-bimodules. Since the kernel of Jz is XA we get
elements V,(3,a), V,(a,3) € Aof degree | a | + | 3 | —1 defined by the following
equation in By,

pB(ﬂa) =p3- pg(a) + V,,(ﬂ,a),

ps(af) = ps(a) - B+ Vi (o, B).

’ e .
Here V, and Vp are bilinear functions.

The elements u = (- pg(a) or v = pp(a) - 5 considered as elements in F; by
By — Fi yield, as in (11.9.3), tracks
(8- ps(a))(z) : (Be)(x) — 0,
(ps(@) - B)(2) : (aB)(z) — 0.

According to the definition of the Bp-bimodule structure of By these tracks are
obtained by the I'-product e in (5.3.2) so that we get the composites

(11.10.2)

(11.10.3)

B ps(@) (@) : (Ba)@) "> Bla(z)) " g
(ps(a) - B)() : (aB)(@) = a(Bx) " g
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HereI'g o , I'a 3 are given by the pseudo functor (s,T") as in (11.3.3). The bilinear
map V/p in (11.10.2) induces the following operators where 7" is the interchange
map (11.1.1) and p is the multiplication map of the algebra By.

v’

R @ By @ By @ By SN (A® A)
10T®1
\ vV, Qu
R ® By ® By ® By = (ZA) A
Vieo
By ®@ R ® By ® By >Y(A®A)
A
19T®1 T
v peV,
By ® By ® R ® By >A®(2A)

Here 7 is the interchange of X, that is
T(a®¥b) = (-1)4Ta @ b.

11.10.4 Theorem. Let o € Rg and let Ao = ag + a1 with ag € Ry @ By and
a1 € By @ Rp as in (11.9.2)(4). Then we have for 8 € By the formula in A® A,

0,(aB) = ©,(a) - (58) — V' (a, B) + V', (a0 @ AB) + V', (a1 @ AB).

Here an element [ in By represents also an element in A and § : A - A® A is
the diagonal.

Proof of (11.10.4). Since Cop = Cq ©® Cp the element ©,(af) is determined by
the composite of the following tracks.

CaOCp

(1) (aB)(z - y) > Aaf)(z,y)

p(aB)(z-y) (pA(ap))(z,y)

o<
o<
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Here p(af)(x - y) can be replaced by (11.10.2) and (11.10.3). Moreover we have
for the decomposition of A in (11.9.2)(4) and for AZ = > . pag(§)E ® "
the decomposition

(2) A(af) =) (teap(€)ajé) @ ale".
.8
Now we can replace
p(ae)(z) for i€ I
and

plale")(y) for icli

in (pA(af))(z,y), see (11.9.4). Hence we compare 0 ,(a/3) defined by the compos-
ite in (1) with the element ©,(«, 3) defined by the composite

CoOC
(3) (aB)(z ) © = AlaB)(z,y)
(pB(a)-B)(z-y) u
Y Y
0 0
with

u= Y +pap(@)(ps(a)) - &) () - af(€"y)
i€1p,&

(4)
+ Y Eeas©)ai(€a) - (ps(af) - €")(y).

ielq,&

Here we use the fact that &', ¢” are monomials. Hence by (11.10.2) we get the
equation in A ® A,

(5) @p(aﬁ) :@P(aaﬂ) —6V;J(Oé,ﬂ)+’(),
v=> Hpas(§)V,(af, &) @ (af¢")
i€lp,&
+ ) Foas(€) (@) @ Vi (af &),
i€11,&

For the computation of ©,(«, 3) we use the composites in (11.10.3) and (11.4.3)(6).
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Hence O,(a, () is given by the following composite since I, g is cancelled.

p(e)(B(z-y))

(6) a(B(z - y)) >0
OLCE OD
v
p(a)((AB)(z,y)) v
a((AB)(,y)) >0
OD
Iy
o S+eas@p@)Ere"y)
;iww(é)a(ﬁx-é y -0
Cu,np S tpag(e)cs =y
I3
NV

Alap)(z,y)) w >0

The top square and the square in the middle are commutative by (3.1.3). Since
Iy is the identity track if  is a monomial, we can use (11.10.3) to show that u
in (4) coincides with

(7) u=">Y Feas)(p(A))(¢'x,&"y).
3
Hence diagram (6) yields the formula
(8) Op(a,8) =D _¢ap(€)0,(a) - (€ @¢")
£

= 0,(a) - (AB). O



Chapter 12

Secondary Hopf Algebras

We prove the crucial fact that the relation diagonal
O, R — A® A
determines the secondary diagonal
A:B— BB

where B&B is the “folding product” of B. Though ©, depends on the splitting p, it
turns out that the secondary diagonal does not depend on the splitting and hence
is the “invariant form” of the relation diagonal. Then the properties of generalized
Cartan tracks imply that (B, A) is a secondary Hopf algebra. This is a main result
in this book, generalizing the fact that the Steenrod algebra A is a Hopf algebra.

12.1 The monoidal category of [p]-algebras

For a prime p we use the field F = Z/p of p elements and the ring G = Z/p?.
An F-vector space is also a G-module via the ring homomorphism G — F. For
a graded module M = {M"™,n € Z} we have the suspension ¥M which is the
graded module given by
(EM)” — Mn_l.
Let ¥ : M — ¥ M be the map of degree +1 given by the identity. In particular
let F be concentrated in degree 0 so that X is concentrated in degree 1. We have
canonical isomorphisms

(12.1.1) M®((EN) "T=S(MoN)<' (SM)®N

for graded modules M, N. Here the left-hand side is the interchange of ¥ and M
given by 7(m ® ¥n) = (—=1)"X(m ® n). Let

A" — A2 A
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be the n-fold tensor product of the Steenrod algebra A with A®" = TF for n = 0.
Here A®™ is an algebra over F and 3A®" is a left and a right A®" module.

12.1.2 Definition. A [p]-algebra D of type n > 0 is given by an exact sequence of
non-negatively graded G-modules
(1) 0 ~xAen ' =Dy ?>Dy "> gen >0

such that Dy is a free G-module and an algebra over G and ¢ is an algebra map.
Moreover D; is a right Dg-module and 9 is Dg linear. Using g also L. A®" is a
right Dp-module and i is also Dy-linear. In degree 0 we have the unique element

2) bl e Dy with dp]=p-1

where 1 is the unit of the algebra Dgy. Let [p] - Dy be the G-submodule of Dy
given by the right action of Dy on the element [p]. As part of the definition of a
[p]-algebra D we assume that the quotient

(3) D1/[p] - Do

is a graded F-vector space so that D;/[p] - Dy is a right module over the algebra
Dy/p-Dy = Dy®F. Now let D and E be [p]-algebras of type n and m respectively.
Then a morphism f : D — FE is a commutative diagram

(4) TA® > Dy > Dy > A®n
S fo f1 fo fo

\% \ \ \%
»A®mM > F; > By > A®m

where fo is an algebra map and f; is an fo-equivariant map of modules. We point
out that f induces ¥ fy where fy is induced by fo. Let Alg[P! be the category of
such [p]-algebras and maps.

12.1.3 Example. The initial object G* in Algl?) is the [p]-algebra of type 0 given
by the exact sequence

7]

0 >XF ~GT ~Gy >F >0

FoXF G

with 9|F the inclusion and 9|XF = 0. The generator of F C G} is [p]. For each
[p]-algebra D there is a unique morphism

GE > D
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carrying 1 € G§ to 1 € Dy and [p] € GY to [p] € D;. Therefore Gy, is the initial
object of AlglP!. We call a morphism

e:D > Gy
a secondary augmentation of D.

12.1.4 Proposition. The pair algebra B of secondary cohomology operations is a
[p]-algebra of type 1.

This is a consequence of (11.9.1). We point out that B is also a crossed
algebra, in particular B is a Byp-bimodule. But only the right By-module structure
of By is used in the definition of a [p]-algebra.

12.1.5 Definition. For the [p]-algebra B of secondary cohomology operations we
have the secondary augmentation of B,

€e: B > Gy,

in AlglP! defined as follows. Here € is the diagram

(1) By ¢ ~FaYF
16)
Y Y
BO > G

€0

where ¢( is the augmentation of the tensor algebra By = T (FE4). Moreover the
F-coordinate of €; is given by the commutative diagram (1) and the XF-coordinate
of €1 is given by the retraction

(2) €:B — XF

defined in degree 1 as follows. An element x € By with |x|= 1 is a pair = (a, @)
with o € By, |a|= 1, and a : s = 0. Here | a|= 1 implies that « is a multiple
of S¢" if p = 2 and of the Bockstein 3 if p is odd. This implies that so = 0
since s = 0 exists. Therefore a : 0 = 0 represents an element @ in F. We set
€(z) = a. The map € is compatible with Xe : 3.4 — XF. Moreover for the element
[p] = (p-1,0) € By we have (8 € By)

3) é([p] - 9) = é(pl) - €(B) = 0.
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For each [p]-algebra D we have an associated commutative diagram.

(12.1.6) 0 >y A®n > D > Dy > A®n >0

0 >N A% > D1/[p]Do > Do/ [p]Do > A®n >0

Dy Do

Here the rows are exact and all maps are morphisms of right Dp-modules. The
square in the middle is a push out and a pull back diagram. This square defines
the pair map

(1) D >D=(82D1—>D0)
where D consists of graded F-vector spaces. Hence there is an F-isomorphism
(2) Dy = (ZA®") & kernel(Dy — A®™).

For n,m > 0 we define the folding map ¢ by the commutative diagram

(12.1.7) Anm (BA®™) @ A®™ @ A% ® (RA®™)
@ (1,7)
\ \
$A®(ntm) TA®™ @ A®™

where we use the maps in (12.1.1). Now we are ready to introduce the product of
[p]-algebras.

12.1.8 Definition. Let D and F be [p]-algebras of type n and m respectively. Then
the folding product D®E is a [p]-algebra of type n 4+ m > 0 defined as follows.
Let D and E be the associated pairs as in (12.1.6). Since D and E are defined
over F we get the exact top row in the following diagram where we use the tensor
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product ® of pairs in (5.1.2).

pull

0 - Arm = (DBE),
L4 push
\ \
L(A®MHm)) >~ (DRE)Y
A
(DRE),

> Do & Eo

> Do & Eo
A

q®q

> Dy ® Ey

> A®(n+m)

323

>0

Here ¢ is the folding map in (12.1.7). Moreover the push out and pull back
in the diagram define the bottom row which is the folding product D®E. The pull
back in the diagram is also a push out. Hence the kernel of D&FE is Z(A®("+m))

and the cokernel is A®n+m)
One can check that

(DQE)Y = (DE)1/[p](Do @ Ey).

This shows that D&FE is a [p]-algebra of type n + m. The algebra Doy&E,
acts on (D®E)1 since Dy acts on Dy and Ej acts on E; and ¢ is equivariant. Here
we use the even sign convention depending on the prime p in (11.1.1).

12.1.9 Theorem. The category Algl?) with the folding product & is a symmetric

monoidal category. The unit object is Gy.

In particular we have the natural isomorphisms in Algl!,

Gs&D = D = D&Gs,

(D&E)QF = D&(EQF),

T: DQE = E®D.

The interchange map 7T is induced by T in (11.1.1), see also (12.1.11)(4) below.

There is a natural surjective map

(12.1.10) q: (DRE), - (DQE),



324 Chapter 12. Secondary Hopf Algebras

given by the following commutative diagram.

(DRE) > (DRE)Y > Dy ® Ey
A A A

pull

(D®E); - * = (D&E), > Do® Dy

o

The arrow at the left-hand side is the ®@-product of D — D and E — E given by
(12.1.6). The map ¢ is a morphism of right Dy ® Eyp-modules. Here Dy ® Ej acts
on (D®E); by use of the interchange map T in (11.1.1).

As a special case of the map (12.1.10) we get the surjective map

q: (B&B)1 — (B&B)
where (BRB); is a (By @ Bp)-bimodule and ¢ is a map of right (By ® By)-modules.

12.1.11 Theorem. Assume that a [p]-algebra B is also a pair algebra and that the
derivation

Ipl=x:A— A
defined by k(o) = [p] - o — - [p] for o € By satisfies
(k®1)0=0k: A— AR A

Then the folding product (B&B), is a left Bo-module in such a way that the map
q satisfies

q(A(e) - x) = - q()

for a € By, x € (B&B)1; that is, q is a map of left By-modules with the left action
of Bo on (B&B)1 induced by the diagonal A : By — By ® By.

We write for x,y € By and &, € By

x&n = q(z ®@n) € (B&B)1,

(1) . R
oy =q(®y) € (BOB):.

Hence for Aa =Y, o} ® o/ € By®B, we get the left action of « on z®n , £&y by
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the formulas:
a- (x&n) = q((Aa) -z ®@n)
=q<2<— Dlledlajz @ affn)

= > (=0l (o]2)& (o)),

(2) L '
a- (§xy) =q((Aa) - E@y)

=qO_(—n)lEldl(ae) @ (af y))

7

= Y (D) d(aly).

7

We point out, however, that (B®B); is not a left By @ Bo-module so that (o/ ®
") (x&n) or (o ®a”)- (£€&y) are not defined for o', o’ € By. But the right action
of &/ ® o is defined satisfying

(2&n) - (o @ o) = (=) (@ - )& (n - o),

(£&y) - (¢ @) = (~)WIl(g - )& (y - o).
Though (B&B); is also a left By ® By-module, the folding product (B&B); is
not a left Bo®By-module, only a left Bg-module. In fact, B&B is a pair algebra since

B is a pair algebra. Hence (B&B); is a By ® Bo-bimodule and for z,y € (B&B);
the equation

3)

(0x) -y =z - (9y)

holds in (B&B);. Such an equation is not available for z,y € (B&B);. However,
using the surjective map ¢ : (B&B); — (B®B); and Theorem (12.1.11) we still
get for 2,y € (B&B),

(4) a-y=x-(0y) if dz=A(a), ac By.
In fact © = q(2'), y = q(y’) with 9z = 92" = A(a) and 9y = 9y’ so that

x-5y=(

The interchange operator

is defined by
T(x@n) = (1) Mp&e

T(¢oy) = (—1)1yce.
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Now formula (3) shows that T is a T-equivariant map of right (By®Bp)-modules,
that is, for v € (B&B); and a € By ® By we get

(5) T(w-a)=T()- T(a).

This also follows from the fact that T is a map between [p]-algebras. For a« = A«
and v-a =v- (Aa) we get

(6) T(o-v) =a-T(v).
In fact, by (2) we get for v = x&n the formula

T(a-v) = 4T ((Aa) - (z @ 1))
=q(TAa) - T(x® 1))
=q(Aa-T(z@n))
=a-T(v).
A similar computation holds for v = £®y.
For the proof of theorem (12.1.11) we need the next lemma.

12.1.12 Lemma. For the derivation k = I'[p] : A — A of degree —1 the composite

A A4 T-AwA
is trivial with k.(a ® b) = k(a) ® b — (—=1)l*la ® k(). Here k. is a derivation of
degree —1.

Proof. The lemma is also a consequence of the equation (k ® 1)0 = (1 ® k) = dk
in (12.1.11).
U

Proof of (12.1.11). Counsider the following diagram.

(1) A®4 “# = 1 4®2
A

Y
Bt = (B&B), " - (B&B)

Here the left-hand side is the quotient map and the right-hand side is the inclusion.
Moreover we define v by
Pla@pedef)=(aep) (Pel-1a])-('eF)
= ((e[p) ® B —a® (Blp])) - (&' @ 7
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We observe that dv¥ = 0 so that dgi» = 0 and hence there is a well-defined map
k4 for which the diagram commutes. Since £ = I'[p] we have the equations in By,

a-[p] = [p] - a=3k(a),
B [pl = [p] - B = k().

Therefore we obtain x4 by the formula
rp(a®pfed ®f)=p(A-B) (d/®f)

where
A= (3k(e)®p and B =a® (Zk(H)).

Hence we get
p(A) = £(k(a) ® f) and @(B) = (-1)1*S(a ® &(3)).
This shows that
k@@ f®d ®pF)=32C with

C = (k(a) ® B — (~D)"la@k(B)) - (o/ @ )
=re(a® ) (@ f).

Here we use k. in the lemma above. Hence ky satisfies for £ € By the equations
ru((§- (a®pB) @ (' @ F)) = (k€ (a®B)) - (¢ @ B)).
Now we get

Fx(€ - (@@ )

(5(&) - (a® B))
K (0(8)) - (a® B) + (—=1)I€16(¢) - k(@ ® B)
= (—-1)I¥15(8) - k(@ @ B).

since k+(d) = 0 by Lemma (12.1.12). Therefore we get

R

(2) ra((§ (@@ B)@ (' @f)) = rp(a® B @)
where the action of ¢ is induced by the diagonal. Now we claim that the sequence

R _ .
3) k “Y-BaB) - BaB)) =0

is exact where K is the kernel of

(9075#)

ALl @ B§* > DA,
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Here i : A% — (B®&B); is induced by A C Bj. One readily checks that
q(i,7) = 0. Since K is a left Bp-module by (2) and (i,7) is a map of left Bo-
modules, also ¢ is a map of left Byp-modules. We derive the exactness of (3) from
the exactness of

(4) BtV > (B&B)/image(i) > Bo® Bo.
In fact, since B is a pull back as in (12.1.4)(2) we know that B; = (XA) & R
where Rp = kernel(By — A) with [p] € Rg.
Therefore we get
(B&B),/image(i) = (RRR);

with R = (Rg C Bp) the inclusion.
One now can check the exactness of

(5) B#t V= (R®R) =By B

This completes the proof of Theorem (12.1.11). O

12.2 The secondary diagonal

For the pair algebra B of secondary cohomology operations there is a canonical
secondary diagonal A which is a pair map

(12.2.1) A:B— BB

where B&B is the folding product. Here A corresponds to the commutative dia-
gram

A1 ~
B, > (B®B)1

\ Ao

v
By > By ® By

where Ag is the Hopf algebra structure of the tensor algebra Tg(E 4) with the
even sign convention in Section (11.1). We obtain A; using the pull back property
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of (B&B); by the commutative diagram

(12.2.2) AL > (F&F)
%} push %7}

v AV
$AS? > (BoB)Y

7 A

A
(B&B),
A
B 5

pull

> By

>Fo® Fo

>Fo® Fo
A
q®q

> By ® By

A
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with F = (B1/[p]Bo = F1 — Bo/pBo = Fo) = B as in (11.9.1) and (12.1.6). Below
we define a map A as in the diagram. The pair of maps (A, Agd) yields A; by
the pull back property. We define A by use of the relation diagonal ©, in Section

(11.10).
We choose a splitting p of F as in (11.9.2).

(1)

Then p induces a splitting p = pRp of FRF as in the following commutative

P
Rr=1m(0) c

diagram.

(2) (FO&F )

-
01

£

\

> (BRB)Y
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Here we have
(3) Rrgr=Rr®@Fo+Fo®@ RFr
and p carries * ® @ and b ® y with 2,y € Rr and a,b € Fj to (pr)®a and db&(py)

respectively. Compare the proof of (11.9.5). Hence ¢p is a splitting of 92 with ¢
defined by the push out in (12.2.1). We thus obtain the following diagram.

9
=5 N
YA > 3492
\ ~ AV
Bi——-——- > (BxB)Y
A A
PB pp
Rp % >Rrgr
n N
(4) Bo ega, ~F0 @70

Here the splitting ps of B is induced by p as in (11.10.1) and O, is the relation
diagonal in (11.9.6). We are now ready to define A by the following formula with
x € By, £ =0x € Rg,

() A(z) = ep(A) = ©,(&) +d(z — p5(£))-

Equivalently A is the unique G-linear map satisfying Ai = %6 and

(6) Alps(£)) = p(AE) — 6,(¢)
for £ € Rp.

12.2.3 Lemma. The G-linear map A does not depend on the choice of the splitting
p. Moreover 02 A = (¢ ® q)Ag0 holds.
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Proof. Let A = A, be defined by the formula above. As in (11.9.2)(3) we can alter
p by t: Rr — A of degree —1. Then we get

Apii(z) = @p+t(AE) — O, (§) +6(z — (p+1)5())
= @Pp(AE) +t(AE) = ©,44(&) + (z — ps(&)) — 0(tE).

Compare #(A€) defined in (11.9.2)(5). Now formula (11.9.2)(3) shows A, (x) =
A,(x). Moreover we get

2 A(x) = 02(pp(AL) — ©,(8) + 6(z — p5(£)))
0 = 02(@p(AE)) = (¢ ® q)AgS.

The lemma shows that the map A and hence the secondary diagonal in
(12.2.1) is independent of the choice of p though A is defined in terms of the
splitting p. Hence A is canonically defined, that is, A does not depend on choices.
Therefore the secondary diagonal A can be considered as the “invariant form”

of the relation diagonal. In fact, searching such an invariant form of the relation
diagonal forces us to introduce the folding product of [p]-algebras.

12.3 The right action on the secondary diagonal

The pair algebra B of secondary cohomology operations is also a crossed algebra
and therefore B; is a By-bimodule. Moreover the folding product (B®B)1 is a By
bimodule with the right action of By given by Ag and the right By ® Bp-module
structure of (B&B)1. The left action of By on (B&B); is described in (12.1.11).

12.3.1 Theorem. The secondary diagonal
Ay By > (B®B),

is a morphism of right By-modules.

We describe in Section (11.10) the right action of By on the relation diagonal
©,. It turns out that the complicated formula (11.10.4) yields exactly the right
equivariance of the By action on Aj.

Proof of (12.3.1). Let 8 € E4 and x € By with dx = £ € Rg. In order to prove
A(z - 8) = A(z) - 3 it suffices to show for p = pg,

(1) A((p) - ) = (Bpg) - 5.
Here we have by (11.10.2) the equation

(2) (p8) - B=p(&-B) —dV'(&, ).
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Hence (1) is equivalent to

(3) Ap(€-3) = (Bpg) - B+ 8V (&, ).
Here we can use the formula (12.2.2)(6) with p = @p, namely
(4) Apg = pAE = O,(¢).

Hence we get by (11.10.4) the formula

Ap(€- ) = pA(E-B) — ©,(¢ - B)

) — A B)— 0,(6) 35 + 0V (€, 5)
(6) V(6 8 AB) — V(6 © AB)

™) ~ A B)— (AE) - 5+ (6)

8) +(ApE) - B+ 8V (€, B).

Here (8) is the right-hand side of (2) so that (2) is equivalent to (7) = 0. Since
A& = &y + & this is easily checked by the definition of p = ¢p and the definition

of V/, ,,V}, ,- In fact, we have for n € Rp and «, 3', 3", € By the equation

VvV, moaef ©p")=+V,(n,0)@a- 5"
9) =+(pf) —p(n) -8 @a-p"
=p((nea)-(B'®8")-phea)- (3 @6").

A similar formula we get for V'p7 ,- This completes the proof of (1). g

12.4 The secondary Hopf algebra B

In this section we describe a main result in this book. Almost all the arguments in
this book are part of the proof of this result. We have seen that the pair algebra

(12.4.1) B=(0:B1— By)

of secondary cohomology operations with By = T (E 4) admits an augmentation
(1) e:B— G

and a secondary diagonal

(2) A:B— B&B
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where B&B is the folding product with the even sign convention in (11.1). Here
e and § are maps in the category of [p]-algebras Alg?”) which by (G, &) is a
monoidal category. More explicitly the augmentation ¢ and the diagonal A of B
are given by the following commutative diagrams.

3) o0 >Y¥A > B > By > A >0
e €1 €0 €
v v v v
0 > YF >GY ~G¥ ~F >0
FoXF G
(4) 0 >3A > B > By A >0
35 A4 Ao )

v \ Y Y
0 >YAx A >(B®B)1 > By ® By A A >0

Here ¢q is the augmentation of By and Ay is the diagonal of By in Section (11.1).
We know by (12.3.1) that A; is a map between By-bimodules; that is, the diagram

A1QA ~
(5) BooBi®By =By @ (B&B), @ By @ By
3 I3
v Ay v
B ~ (B&B),

commutes where p denotes the action map with the left action of By on (B&B);
defined in (12.1.11).

In (11.1.2) we have seen that a Hopf algebra is a coalgebra in the monoidal
category of algebras; in particular, A is such a Hopf algebra. We now obtain the
corresponding result for the pair algebra B.

12.4.2 Theorem. The pair algebra B together with the augmentation € and the
diagonal A is a coalgebra in the monoidal category of [p|-algebras, that is, the
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ollowing diagrams in Al Pl are commutative.
f g diag g

(1) BeB< ° B 2 - BeB
e®1 1 1®e
\ v \
G¥®B B B&G>
(2) B 2 - BeB
A AR1
v o
B&B ron T BEBEB

The theorem together with the properties in (12.4.1) describes the algebraic
structure of the secondary Hopf algebra B. We shall prove the theorem by using the
action of the secondary Hopf algebra B on the strictified secondary cohomology
in the next chapter. A somewhat more direct proof is also possible by using the
definition of A; and the properties of the generalized Cartan tracks in Chapter
11, in particular (11.7.4).



Chapter 13

The Action of B on
Secondary Cohomology

The pair algebra B of secondary cohomology operations is the strictification of the
secondary Steenrod algebra [A]. We have seen that B is a secondary Hopf algebra
generalizing the fact that the Steenrod algebra A is a Hopf algebra. We now con-
sider the action of A on the cohomology H*(X) of a space and the corresponding
action of B on the secondary cohomology. For this we use the strictification of
secondary cohomology as defined in (5.6.2).

13.1 Pair algebras over the secondary Hopf algebra B

The cohomology H*(X) of a space is an algebra and a module over the Steenrod
algebra A. Both structures are related by the Cartan formula which corresponds
to the diagonal

0:A— AR A

of the Hopf algebra A. The Cartan formula in terms of the diagonal is equivalent
to the following commutative diagram with H = H*(X).

o®1

(13.1.1) A® H® H ~A® AQH®H
1®pn 2
v \
AR H -H

M1

Here p; is given by the A-module structure of H, that is, p; carries a ® x to a(x).
Moreover 1 ® p carries « @ ¢ @ y to a ® (z - y) where z - y is the multiplication
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in H and uy carries a @ f @z @y to (—1)81#l(ax) - (By). One says that H is an
A-algebra or an algebra over the Hopf algebra A if the diagram commutes. This is
equivalent to the condition (K1) in (1.1.7).

In this section we introduce a secondary analogue of an algebra over a Hopf
algebra.

Let R be a commutative ring, for example R = G = Z/p?. A pair X in the
category of R-modules is an R-linear map 0 : X; — Xg. The category of such
pairs is a monoidal category with the tensor product X®Y = 0g in (5.1.2). A
graded pair X is an R-linear map of degree 0,

2(82X1—>X0)

between (non-negatively) graded R-modules. For n € Z we have the pair X" =
(0™ : X7 — X)) in degree n given by X . The tensor product of graded pairs X,Y
is defined by

(13.1.2) (xaev) = @ X"eym.
n+m==k

Compare (5.1.3). This is a monoidal structure of the category of graded pairs in
Mod(R). A monoid B in this category is the same as a pair algebra, see (5.1.5).
A module X over the pair algebra B is an action of the monoid B on X.

The category of graded pairs in Mod(R) is a track category in which homo-
topies or tracks are defined as follows. Let f,g: X — Y be maps between graded
pairs, so that df; = fo0 and dg; = god as in the following diagram.

(13.1.3) x, oLy
1
/
7/
d oy d
7/
7/
\ 4 \
Xo >Yp
fo:90

A homotopy H : f = g is an R-linear map H as in the diagram such that

OH = fo — go,
HO = f1 —

Compare (6.4.2). The pasting of homotopies H : f = g and G : g = h is defined
by
GOH:f=h

with GOH = G + H given by addition of maps.
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We are now ready to define “pair algebras over the secondary Hopf algebra
B 7 by replacing diagram (13.1.1) by a corresponding homotopy commutative
diagram as follows. Recall that we have the secondary diagonal

A:B— BB
where B&®B is the folding product for which we have the surjective map
q: BB — BRB.
Moreover we point out that we use the even sign convention in (11.1).

13.1.4 Definition. Let H be a pair algebra over G and a B-module. We say that
H is a pair algebra over the secondary Hopf algebra B if the following properties
are satisfied. There is a commutative diagram

(1) (BéB)@(HoH) < ' BeBoHGH
1RT®1
v
H2 BRHRIBRH
1 @p
v v
H < L HQH

where p; is the action of By on H and p is the multiplication of H and T is the
interchange map (11.1.1). Since ¢ is surjective the map po is uniquely determined
by p and p1. Moreover there is given a homotopy C' as in the diagram

(2) BOH®H A9 (BeB)R(HOH)
1Qu g M2
v v
B&H » ~H

where C' is a G-linear map

C:By® Hy® Hy — H;
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satisfying the equations

OC = (u1(1 @ p))o — (u2(A®1))o and

(3) CO= (1 ®p)) — (n2(AR1))1.

Compare (13.1.3). Moreover the homotopy C has the following property (4). Let
a,B € By and z,y,2 € Hy. We write (z,y) = v ®y € Hy ® Hy. Then the
associativity formula is satisfied:

) Cla®(z-y,2)+ (C1)(Ala) ® (z,y,2))
=Cla® (z,y-2)+ (13 C)(A(a) @ (x,y, 2)).
Here the operators

C®1,10C:By®By® Hy ® Hy ® Hy — H;
are defined by

(CoON@®FO (2,y,2) = ()P0 (2,y) - 6(=),
1 C)a® e (2,y,2) = (- Wa() - C(B (y,2))

with (z,y,2) =2y 2.
Equation (4) can be expressed in terms of diagrams as follows. We set

B? =B&B, B®=BBRB,
H? = H®H, H?= H®H®H.

Now we consider the following diagrams.

ARB®1

_ AR1 _ _
BRH? > B2QH? > B3QH3
1eu 1@ cel
Y %
_ A®1 A
BRH? > B2QH?
M3
1®u N M2
y %

M1



13.2. Secondary cohomology as a pair algebra over B 339

A®1 BRA®1

BRH3 > B2QH? > B3QH?
1®M// 1®N’“ g
v \
_ A®1 J
BoH? > B2QH?
M3
1®u <. M2
v v
B&H o ~H~

Here p/ and ' are defined by p/(x,y,2) = (z-y, 2) and p/’(z,y,2) = (z,y - 2) and
us is given by pu3(a® fRvR (x,y, 2)) = a(z) - B(y) - v(z) with the obvious sign.
The associativity of pg : HOH — H and A : B — B&B implies that

lepleu)=>1un e u"),

(13.1.5) (ABN(A®1)=BAR1)(Ax1).

This shows that the boundaries of the two diagrams above coincide. Now equation
(4) in (13.1.4) is equivalent to saying that the pasting of tracks in the two diagrams
yields the same track, that is

Cel)(AeOCleu)=(1®C)(A®)OC(1eu").

One can check that the formulas for C®1 and 1®C'in (13.1.4)(5) yield well-defined
homotopies for the diagrams above.

13.2 Secondary cohomology as a pair algebra over B

Let X be a connected space and let H*(X) be the secondary cohomology of X.
Then H*(X) is a pair algebra and its strictification defined in (5.6.2) is a B-module.
We now consider a strictification of H*(X) which is a B-module and also a pair
algebra.

A graded set is a sequence of sets S, i € Z, such that S* = ) is empty for
1 < 0. The product of graded sets S x S is the set of pairs (z,y) withz € S,y € S’
and degree | (x,y) |=| « | + | y |- Let Set™ be the category of graded sets and
maps of degree 0. Then (Set™, x, *) is a monoidal category where the unit « is the
singleton concentrated in degree 0. A graded monoid M is a monoid object in Set*
given by 1 € M and by the associative multiplication

‘un,k . Mn X Mk . Mn+k

which carries (z,y) tox -y with l-z =z =x-1.
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Let M be a graded monoid. Then M acts on the graded set S if an action
map
Mn X Sk _ S7L+k
is given which carries (x,u) to x - u such that 1-u =w and (z-y)-u =z (y-u).
In this case we will call S an M-set.

13.2.1 Definition. Recall that E 4 denotes the set of generators of the Steenrod
algebra A. Let M = Mon(E 4) be the free graded monoid generated by E 4 and

sx = Mx — H*(X)o = [X,Z7]o

be a function with the following properties. Here My is a monoid and sx is a
morphism of monoids with the multiplication in H*(X ), induced by Z™ x Z™ —
Zntm_ Moreover Mx is a free M-set and sx is an M-equivariant morphism of
M-sets with the action of « € M on £ : X — Z9 € H*(X)o by composition

af - X -5 70 ©Ys gatlal

Then we obtain the strictification H*(X, Mx, sx) by the pull back diagram (com-
pare (5.6.2))

H* (X, Mx, sx)1 ° >~ H*(X);

7] pull 7]

\4 \
H*(X7MX78X)0:G[M)(] sx >H*(X)0
where G[Mx] is the free G-module generated by the set Mx. Since Mx is a free
M-set we have a set Ex C Mx of generators of the free M-set Mx such that

G[Mx] = Tg(E4) ® GEx.

Moreover sx is the free G-linear extension of sx above. The B-module structure of
H*(X, Mx,sx) is defined as in (5.6.2) by the I'-product e. Since sx is a morphism
of monoids we see that H*(X, Mx, sx) is a pair algebra so that the strictification
H* (X, Mx,sx) is both, a B-module and a pair algebra.

13.2.2 Example. Let
Mx = Mon(M x H*(X)o)

be the free monoid generated by pairs af = (o, §) with a € M = Mon(E 4) and
¢ € H*(X)o. Then My is a monoid and a free M-set and we have the natural
map as in (13.2.1),

sx : Mx — H*(X)o

which is the identity on the generating set H*(X )y of Mx.
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In this case H*(X, Mx,sx) is a functor which carries a path connected
pointed space X to a pair algebra which is also a B-module.

13.2.3 Theorem. The strictification H*(X, Mx,sx) of the secondary cohomol-
ogy is a B-module and a pair algebra in such a way that H*(X, Mx,sx) is a
pair algebra over the secondary Hopf algebra B as defined in (13.1.4). Moreover
H* (X, Mx, sx) yields a functor from spaces to the category of pair algebras over
the secondary Hopf algebra B.

This result is proved by the lemmas below.

We know that H*(X) is not only a pair algebra but also a secondary permu-
tation algebra. We shall consider this richer structure below.

13.2.4 Lemma. For H = H*(X, Mx, sx) the map ps in (13.1.4) is well defined.

Proof. Since ¢ ® 1 is an isomorphism at level 0 we only have to consider level 1.
We have the commutative diagram

B1 ® By ® Hyp ® Hy " >H*(X)

~ V m/

Bi ® Fo® Ho ® Hy >H* (X )
A A

1"

SA® Fy® Ho ® Ho " = THY(X)
where we use s : H; — H*(X); in (13.2.1) to define m by the formula
(1) ma®Berey)=cs(a-z) s(6-y) with e = (—1)Pl=],

For a = [p] we get m([p]® @2 ®y) = 0 so that m induces the map m’. Moreover
we set

(2) m"((Ze) ® f @z @ y) =eX((ax) - (By))

with Ya € XA and ax, By defined by the action of A on H*(X). The product
(ax) - (By) is given by the multiplication in the algebra H*(X).
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In a similar way we get the commutative diagram

By ® By ® Hy ® Hy " >H*(X)1
~ v n’
Fo®B1® Hy ® Hy >H*(X)
A A

Fo® (XA) @ Ho @ Ho " > SH*(X)

with
(3) na@b®z®y) =es(az)-s(b-y) with e = (=1)ll=]
(4) n"(a® (Sf) @z ®y) =< (=1)1*15(az) - (By).

Now (2) and (4) show that the map

(5) (B&B); @ Hy ® Hy = H*(X),

defined by (m/,n’) is compatible with the folding map ¢. Therefore (5) induces
(6) (B&B), ® Ho ® Hy > H*(X);.

Compare (12.2.2). The map

(7) (B®8)1 ®HQ®H0 >H1
is a map between pull backs induced by the following diagram.
(B&B); ® Hy ® Ho >H* (X )1
a )
\ )
Fo® Fo® Hy® Hy >H*(X)o
A A

By ® By ® Hy ® Hy > Hy
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Moreover po is induced by (7) and
(8) Bo®By® (HRH); > H;

where (8) is given by the left action of By on H and the multiplication of the pair
algebra H. This completes the proof that po is well defined. 0

13.2.5 Definition. For the strictification H = H*(X, Mx, sx ) we define the Cartan
homotopy

(1) C:By® Hy® Hy > Hy

as follows. Let a € By and z,y € Hy. We have the following pull back diagram.

Hy * >H*(X )
4] 14]
\ \
Hy Mx ° =H*(X)o

Hence C(a ® x ® y) is completely determined by (2) and (5). In Hy we set
2) 0C(a @z ®y) = ale-y) - (A0) ©7®y).

Here x -y is the product in the algebra Hy and a(x - y) is defined by the action of
By on Hy. Moreover A(a) € By ® By is given by the diagonal A of By and ps is
defined in (13.1.4)(1).

Moreover using the generalized Cartan track C3%°Y we get the commutative
diagram of tracks in [X, Z*].

oSSy
(3) a(sz - sy) ’ > Aa)(sz, sy)
T'(a,zy) TAa
\ v \
s(a(z - y)) > sp2(Ala) @z ®@y)

Here I'(a, z - y) is given as in (5.3.1).
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For > o! ® o we get T'aq by the following diagram.
i

(4) A(a)(sz, sy) > Eaj(sz) - a(sy)
r%Y=Ta, ;iF(aé,z)T(a;’,y)
v v
/ 1
sp2(Ale) @z ® y) ZZ: + s(ejz) - s(afy)

Now we set in H*(X)1,
(5) sCla®@z®y) Ca¥ = spa(Aa) @ 2@ y).

Then we see that C(a®@x®y) € Hy is well defined by (2) and (5). Since all tracks
in (3) are linear in @ we see that C'(a ®  ® y) is linear in .. Moreover since C,, is
a linear A-track we see that C'(o ®  ® y) is also linear in x and y. Therefore the
G-linear map C' in (1) above is well defined.

13.2.6 Lemma. The diagonal A, : By — (B®B)1 satisfies the formula (a €
Bi,z,y € Hp)
Cla®z®y)=a(r-y) - Ai(a)(z,y) € Hy

with « = da € By. Here a(x - y) is defined by the left action of B on H and
Ai(a)(z,y) = p2(Ai(a) © 2 @ y)

is defined by pz in (13.2.4), (13.1.4)(1).

Hence (13.2.5)(1) and (13.2.6) show that the equations (13.1.4)(3) are satisfied.

Proof. Let p be a splitting of B and let a = pp(c). Then we define A;(a) by A(a)
with A in (12.2.2), namely

(1) Alps(@)) = ¢p(Aoa) — Op(a).

Compare formula (12.2.2)(6). According to (11.9.4) the element ©,(«) is given by
the track © 4 in the following commutative diagram of tracks.

sla(z-y) 7 =sw(Ale) @ray)

T'(a,zy) TAa
\ C \
u a(sz - sy) “ > A(a)(sz, sy) v
(pa)(sz-sy) pA(a)(z,y)
\ \
=0 -0~



13.2. Secondary cohomology as a pair algebra over B 345

Here the composites v and v satisfy

u=s((pa) - (z-y)),

v =su(pAa @z y).
Moreover by definition of C(a ® = ® y) we have

2) G = 5C(a @z @Y) + sp2(A0) @ 2 @),
We get by (2.2.6) that

(3) 0,,0u=0,,+u,

(4) vOCa = v+ (Ca — sp2(A(a) ® 2 @)

=v+sCla®x®vy).
Since we have (3)=(4) (see the diagram above) one gets

sCla®Rz®@y)=u+0,,y—v
= s(p(a)(x - y)) + Ouy — spa(pAa @z © y)
s(a(z - y)) — sAi(a)(z,y).

In fact, by (1) we have
sA1(a)(z,y) = s(@p(Aoer) — Oy(a))(z,y)
O =su2(pPAa @ ®Y) — O y.
13.2.7 Proposition. The Cartan homotopy C satisfies the associativity formula
(13.1.4)(4).

Proof. We derive from (11.7.4) and the definition of C,, = C%¥ that the following
diagram commutes.

s(a(zyz)) ¢ >~ spa(Aa ® 2y @ 2)
C C®1
Y Y
sh2(Aa ® x @ y2) oo TSHs(Boa@r@y®2)

Here Ay = (1@ A)A = (A®1)A and p3 is similarly defined as 2. Moreover C® 1

is similarly defined as C ® 1 in (11.7.4). Now (2.2.6) applied to the tracks in the

diagram yields, for £ = su3(A2a Rz Ry Q 2),
Cel1-+Clavry2)=100-§+Clavreyz2)

where C®1—¢ = (C®1)(Aa® (2,9,2)) and (10C)— € = (10C)(Aa® (2,9, 2)).
g
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13.2.8 Lemma. Let £,n € (B&B)y and let O¢ = On and &(x,y) = n(x,y) € H =
H*[X] for all spaces X and elements x,y € H. Then £ = .

The lemma shows that there is at most one element Aj(a) satisfying (13.2.6)
for all X and z,y.

Proof of (13.2.8). Exactness shows that there is X(u) € ¥(A® A) with £ = n +
1(X(u)), u € A® A. Then

E(z,y) = n(z,y) + S(u(z,y))

where u(z,y) € mo(H) = H*(X) and we use (2.2.10). Hence u(z,y) =0 for all X
and x,y. But this implies v = 0. In fact, let |u |< k and let X =Y x Y where

Y=Z'x-..x2Z!

is the k-fold product. For p = 2 let v : Z! — Z! be the identity and for p odd let
u=u'"-B): Z' — Z3 where v’ is the identity. Let

r=y=ulK..--Ku
be the k-fold X-product of u, see (2.1.5). Then one can check that
ASE - — HA(Y),
a —  ofu)
is injective, see 1.2 [Sch]. Hence the map
AP @ ASF s H*(YV) @ H*(Y) = H*(X)

which carries a ®@ 8 to (—1)8I%la(z) @ B(y) = (o @ B)((xp1), (yp2)) is injective
where p1, p2 are the projections X — Y. O

13.2.9 Lemma. The diagonal A = (A1, Ag) of B is coassociative.

Proof. We show that diagram (12.4.2)(2) commutes. Let a € By with da = « so
that 0(Aia) = Aga. Moreover let x,y, z € H. Then we have the equations

(1) Cla@(z-y,2) =a(z-y-2) - Aila)(z-y,2),
2)  (Co)(Ave)® (z,y,2)) = (Ara)(z -y, 2) — (A ©1)1441(a))(2,y, 2),
3) Clae(z,y-2)) = (w y-2) = (Awa)(z,y - 2),
4)  (1@0)((Aa) @ (2,y,2)) = Ai(a)(z,y - 2) = (1 © A)1Ar(a)) (2,9, 2).

Here we have (1) 4+ (2) = (3) 4 (4) by (13.2.7). This implies

(A@1)1Ai(a)(2,y,2) = (1@ A)1A(a))(2,y,2)
and this shows by uniqueness as in (13.2.8) that

(A®1)1A = (1®A)14

and hence A is coassociative. O
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13.3 Secondary Instability

The cohomology H*(X) of a space is an unstable algebra over the Steenrod algebra
A in the sense that for « € A, z € H*(X) we have ax = 0 if e(a) > |z| where
e(«) is the excess of a. Moreover

Slely =22 if p=2,

(13.3.1) !
P12 = 2P for || even and p odd.

In this section similar properties are also described for the strictified secondary
cohomology

H*[X] =H*(X,Px, sx)
defined in (5.6.2).

13.3.2 Definition. Let M = Mon(E 4) be the free monoid generated by the set E4
and let

(1) E(X) C M x H*[X]o

be the excess subset given by all pairs (o, x) with e(a) < |z|, « € M and z €
H*[X]o. Then there is a well-defined unstable structure map

(2) v:E(X) — H [ X
which is natural in X. We define v(«, ) by the pull back

H* (X1 S HA(X),

v v
H*[X]o >H" (X)o

SX
namely by dv(a,z) = - & and by the track sxv(a,z) : sx(azr) = 0 in H*(X )1
given by

(3) P(a,2) : sx(ax) = s(a)sx(z) = 0.

See (5.3.2) and (5.4.3). Here the right-hand side is trivial by (5.5.1), (10.2.5) and

(10.2.6) since e(a) < |z|. The existence of v(«, x) with dv(«, x) = ax implies that
ax represents the trivial element in cohomology H*(X) = cokernel(0).

In addition we get the following wunstable structure maps corresponding to
(13.3.1) above. We have

uw:H[X]p — H*[X]: forp=2and
w: H X" — H*[X]1 for p odd



348 Chapter 13. The Action of B on Secondary Cohomology

with |ux| = p|z| and

O(ux) = 8¢ (z) —2®  forp=2,
A(uzx) = PI*V/2(z) — 2P for |z| even and p odd.

We define uz using the pull back above by the track sx (uz) = I'(a, 2)°P — sx (zP)
with a = Sqm for p =2 and o = P1*I/2 for p odd where

D(a,z) : sx(ar) = s(a)sxx = (sxx)’ = sx(2P)

is a track in (5.4.3). Here the right-hand side holds by (5.5.1), (10.2.5), (10.2.6).
Again the map u is natural in X and the existence of u implies the equations
(13.3.1) in cohomology.

13.3.3 Theorem. The unstable structure map v of H = H*[X]| has the following
properties (provided both sides of the equations are defined),

av(B,z) = v(af, ),
v(By,z) = v(B, )

for a, B,y € M, x € Hy. Moreover

v(a, 0T) = az for T € Hy,
po(a, z) = [p] - (),

ov(a, x) = ax.

For p odd the element v(«, x) is linear in x, but for p = 2 the element v(«, ) is
quadratic in x with cross effect

v(a,z +y) —v(a,z) —v(a,y) = v(e,zly) € SH*X
determined by the properties above and the delicate linearity track formula
(5.5.1)(2d),
Yz - or k=|z|+1,
0 for k> |x| + 1.
13.3.4 Theorem. The unstable structure map u of H = H*[x] has the following
properties with o = S’qI‘TI, x € Hy forp=2and a=Pl*/% g ¢ HFV" for p odd:
O(ux) = ax — 2P,

wr =af —z- 2Pt for z € Hy and 9% = z,
p(ux) = [p] - (az — 2”).



Chapter 14

Interchange and
the Left Action

In this chapter we compute the symmetry operator S and the left action operator
L associated to the secondary Hopf algebra B of secondary cohomology operations.

14.1 The operators S and L

Let (B, A) be a secondary Hopf algebra as in (12.4) and assume that B is a pair
algebra such that I'[p] = & satisfies (k ® 1)0 = kd. For example the algebra
B of secondary cohomology operations has these properties. Then we define the
symmetry operator

(14.1.1) S:Rsg — A® A of degree —1

as follows. Here A is the augmentation ideal in the Steenrod algebra A and Rz =
kernel(Bo — A) is the ideal of relations in By. We define for { € Rp with { = Oz,
x € By, the element S(§) € A® A by the formula

TA(z) = Aq(z) + B5(8).

14.1.2 Lemma. The operator S is a well-defined linear map.

Proof. Since TAy = Ap by (11.1) we see that there is a unique element S(§)
satisfying the equation. Moreover altering x by YXa € XA we get Aq(z 4+ Xa) =
Aq(z) + Xda and T9 = § so that S(€) does not depend on the choice of z. Using
the augmentation of B we see that S(¢) € A® A. O

Next we define the left action operator

(14.1.3) L:A®Rg — A® A of degree —1
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as follows. By (12.1.11) we know that (B®B); is a left By-module but the diagonal
A1 : Bi — (B&®B)1 need not be a map of left Byp-modules. Therefore we define L
by the formula

Af(a-z)=a -Ai1(z) + ZL(a®E)

for a € By, x € By with 0z = £ € Rg.

14.1.4 Lemma. The operator L is a well-defined linear map satisfying the equations
(0[76 S BO? f € RB)

Laf ®€) = Lia ® ) + (-1)*1d(a) - L(B© ),
Lla®&f) = La®g) - 4(6),
La®p) =0.
The equations show that the operator L is determined by the values L(a® &) with

a € Aand ¢ € EY where EY is a set of generators of the ideal Rg, for example,
the set of generators given by Adem relations.

Proof. Since Ay is an algebra map we see that there is a unique element L(a ® &)
satisfying the equation. If &« = da, a € By, then a-x = a - dx = a - £ and since Ay
is a map of right Bp-modules we get
Ar(or-x) = Ar(a-§) = Ai(a) - Ao
=a-Ajz see (12.1.11)(4)

so that L(0a ® ) = 0. Moreover L(a ® &) does not depend on the choice of x
since § : A — A ® A is an algebra map. Finally using the augmentation of B we
see Lla®¢) € A® A.

Finally we check that L(a ® p) = 0 for the prime p considered as an element
in Rp. In fact we have for L = X L(a ® p),

Ai(a-[p]) = ali[p] + L
=q((Aa) - ([p]® 1))+ L

= q(;a;[p] ® a;’> +L
— o St + Sutat) waf) + 2

= Ay[p] - Ag(a) + B(k @ 1)da + L.
On the other hand « - [p] = [p] - @ + Tk(«) so that

Ai(a-[p))

|- ) + Lok(a)
1) - Ao(ar) + Xok(a).

Aqi(p
Aqi(p
=0.

Since (k ® 1)6 = dx we see that L
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14.1.5 Proposition. For a € By, £ € Rp the following formulas hold in A ® A.

Lia®&)+S(a-&) =TLa® &) + (-1)sa - 5(¢),

Proof. Let € = 0x, x € B1. Then we get:

TA(a-z) =A1(a-z)+2S(a-§)
=a-A(2) +2(La® &)+ S(a-f)).

On the other hand one has:

TA(a-z)=T(a - A1(z)) + XTL(a® &)
=a-TA(z)+ XTL(a®E)
= aAq(z) + 0a-ES(E) + ETL(a® ).

Finally it is readily checked that S(§-a) = S(§) - da since A is right equivariant.
In fact,

14.2 The extended left action operator

We consider a pair algebra H over the secondary Hopf algebra B as defined in
(13.1.4). Then the homotopy

C:By® Hy® Hy — H;
leads to the extended left action operator
(14.2.1) L:By®By® H*® H* — H* of degree —1

as follows. Here H* = cokernel(0 : H; — Hy) and YH* = kernel(d : H; — Hy).
We define L for «, 8 € By and u € Hy ® Hy by the equation

Clafeu)=aC(BRu)+Cla® A(B) -u)+XL(a® BRu).

14.2.2 Lemma. The map L is a well-defined linear map.
Proof. We have

(1) IC(af @ u) = af - j(u) — pa(A(aB) ® )
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with p and po as in (13.1.4)(2). Moreover

(2) daC(B@u) =a- (8- pu(u) — p2(AS @ u)),

(3) OC(a@AB-u)=a-u(AB-u) — p2(Aa @ AL - u).

Since p2(AB @ u) = u(Ap - u) we see that (2) + (3) = (1). Therefore the element

L(a® B ®wu) is uniquely determined by the equation. It remains to check that for
u € image((H®H ), S Hy® Hyp)

we have L(a® B®@u) = 0. In fact let x € Hy, y € Hp and v = 0z ® y. Then we
get
Cla®u)=Cola®@zx®y)

=a(r-y) - p(Aa@r®y).
Hence we get:
Claf@u) =ab(z-y) — p(Aaf) @z ®y),
aC(B@u)=a(f(z-y) - n(Aezey)),
Cla®Af-u)=a-pu(AB- (z®y)) — (Aa®@ Aj - (z®y)).

Since p2(AB @ u) = u(Ap - u) we see that L(a®@ fRu) =0foru=0(zx®y). O
14.2.3 Proposition. For a € By, £ € Rg and u € Hy ® Hy we have the equations
La®EQu)=—p(Lla®E) @u),

LE®a®u)=0.
Proof. Let € = 0z, x € By. Then
Clag @ u) = (ax) - p(u) — p2(Ar(ax) @ u),
aC(§®@u) = a(ﬂ«“ () — p2(Arz @ u)),
Cla®Ag-u) = Co(a A() u)
=a- p2(A1(@) ®@u) — p2(Aa @ Ay (x) - u).

Now A (azx) = aAq(z)+EL(a®z) and (az)-p(u) = a(z-p(u)) and pe(adq(z)®
u) = po(Aa @ Aq(z) - u) show the first equation. Next consider:

Cléa®u) = (2-a) - u(u) - pa(Ai (2 - ) @ ),

Cla®@u)=1z-0C(a®u)

— 5 (o pl(u) — p2(A(0) @ ),
Cél®@Aa-u)=z plAa-u) — p2(A1z ® Aa - u).

This shows L(§{ ® a ® u) = 0. O
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The extended left action operator £ in (14.2.1) satisfies the following («, 3, 7)-
formula.

14.2.4 Proposition. Let o, 3,7 € By and u € H* ® H*. Then
Lla®pyou)+ (-DYaLBoyou)=LaB@y@u)+ La® B AR) - u).

The formula shows that L is completely determined by the elements
La®B@u)with 8 € E4 and « € Mon(E4) and u € H* @ H*.

Proof. We consider the defining equations as in (14.2.1):

(1) Cla(py) ®@u) =aC(By@u)

(2) +Cla@ A(By) - u) + ZL(ae® By Q@ u)
3) =a(fC(y©u)+C(BRA(Y) - u) +ELBR®YQu)) +(2),
(4)  Cl(ab)y®@u)=Claf @ Aly) ©®u)
(5) +afC(y®@u) +XL(BR Y@ u)
(©) =aC(f® Ay - u)
+C(a®@AB-Ay-u)+XL(a®@ B @Ay -u)+ (5). O

14.3 The interchange acting on secondary cohomology

In Section (13.2) we used the fact that secondary cohomology H*(X) is a pair al-
gebra and we constructed strictifications H* (X, Mx, sx) which are pair algebras
and B-modules. We here consider the additional structure of H*(X) as a secondary
permutation algebra and we choose Mx = Px in such a way that the strictifica-
tion H*(X, Px, sx) is also a secondary permutation algebra and a B-module. We
show that the interchange operator T in H*(X, Px,sx) is compatible with the
interchange operator 7" in B.

We say that a graded monoid P is a permutation monoid if the permutation
group o, acts on P" for n > 0 and

p™k s P pE— prtk
is (o X 0k — Opt)-equivariant and the equation
Toy(T y) =y -
holds for z,y € P, see (6.1.3)(4). For example H*(X)o is a permutation monoid.
Moreover, each permutation algebra is a permutation monoid and for a ring R

the free R-module R[P] generated by a permutation monoid P is a permutation
algebra.
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14.3.1 Definition. As in (13.2.1) let M = Mon(E 4) be the free monoid generated
by E 4. Let
Sx = PX — H*(X)Q = [[X, Z*]]Q

be a function with the following properties. Here Py is a permutation monoid and
sx is a morphism of permutation monoids. Moreover Px is a free M-set and sx
is an M-equivariant morphism between M-sets with the action of M on H*(X)o
as in (13.2.1). Then we obtain the strictification H*(X, Px,sx) as in (13.2.1) by
the following pull back diagram.

H*(X,Px,SX) 5 >H*(X)1

7] pull e}

\4 \4
H*(X, Px,sx)o = G[Px] >H*(X)o

sSx=s

Since Px is a permutation monoid we see that sx induced by sx above is a
morphism between permutation algebras. Moreover, since Px is a free M-set with
generating set Ex C Px we have

(G[Px] = T((;,(EA) QR GEx.
Hence the B-module structure of H*(X, Px,sx) is defined as in (5.6.2) by the
I'-product e.

14.3.2 Lemma. The strictification H*(X, Px, sx) is a secondary permutation al-
gebra.

Moreover we show by theorem (13.2.3) that H*(X, Px, sx) is a pair algebra over
the secondary Hopf algebra 5.

Proof of (14.3.2). Let H = H*(X, Px,sx) and let R, and I(R,) be given by
R, = Glo,] and I(R,) = kernel(e) where ¢ : G[o,] — G is the sign augmentation.
Then we obtain the following commutative diagram.

100
I(R.) O, Hy “? > I(R.) ®r, Ho
H o H
\ \
Hy 3 > Hy

See (6.2.5). Here 0 is a crossed permutation algebra as in (6.2.1). This structure
is induced via the pull back over s = sx : Hy = G[Px] — H*(X)o by the
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corresponding structure of H*(X) in (6.3.2). More precisely the pull back H; is a
left Hyo-module by setting n- (£, x) = (n-&,s(n) ) where n, £ € Hy and (§,z) € Hy
with € H*(X); and s§ = dx. Then we get for (£, ), (n,y) € H; the formula

(0 ) - (n,y) = (€n,s(§) - y)
= (&n, (0z) - y) = (1(n€), 7(y) - x)
=71(m&, s(n) -z) =7(0n,y)) - (§ )

where T = 75, 5. Compare (6.2.1). Moreover we define i above by

fifo &) = (0-& (0 ©5(¢)))-

Here 7 is the image of o € I(G[o,]) under the following map.

o € I(Glo,]) > I[(Flo,]) 3G
\ \
G[Jn] >F[Un]

\ \

G >F

Moreover i(G ® s€) is given by the secondary permutation algebra H*(X) as in
(6.3.2). O

14.3.3 Example. For M = Mon(E 4) let M-Perm be the following category. Ob-
jects are graded sets S which have two (independent) structures, namely on the
one hand S is a permutation monoid and on the other hand S is an M-set. Mor-
phisms are maps in Set™ which preserves both structures. We have the forgetful
functor

M-Perm -2 Set”*.

Let Faq be the left adjoint of this functor. We call Fa(S) the free M-permutation
monoid generated by S.
Now let
Px = Fpm(H*(X)o)

be the free permutation monoid generated by the graded set H*(X)o and let
Sx PX I H*(X)O

be the morphism in M-Perm extending the identity on H*(X)o. Then (Px,sx)
is an example of (14.3.1). By naturality of sx we see that H*(X,Px, sx) yields
a functor from path connected pointed spaces X to the category of secondary
permutation algebras which are pair algebras over the secondary Hopf algebra B.
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14.3.4 Definition. Let H be a secondary permutation algebra as in (14.3.2). Then
we obtain the following interchange homotopy.

> H®H

H®H r
\ T

" = W
H

Here T is the interchange map induced by T with the even sign convention in
(11.1.1) and p is the multiplication of the pair algebra H. Moreover the homotopy

T : p= pT is the G-linear map
T: Hy® Ho — H,

defined by the formula

A~

T(x®y)=p((r(y,z) —er(y,z)) @y - )
for z,y € Hy. Here € : G[o,] — G with n = |z|+ |y| is the augmentation satisfying
er(y,z) = (=PI € G c Gloy,)

and [ is the map in (14.3.2). Moreover the element y - z is given by the multipli-
cation of Hy, and 7(y, z) is the interchange permutation with

T(y,z)(y-x) =2y
in the permutation algebra Hy. We have
M(z@y) =z y— (~1)PlIWly . 4

so that 8T = (u — uT)o. Compare the even sign convention in (11.1.1). Moreover
for z € Hy with 0z = x we get T ® y € (H®H); such that

To(x®@y) = p((1(y,r) —eT(y,z)) @ Ny - 7))
=7(y,2)(y %) —eT(y,2)y - T
=z y— (_1)P|€E||y|y T

by the equation fi(1 ® 9) = p; see the diagram in (14.3.2). Hence we also get
T0 = (u— pT)1. Therefore T : p = pT is a well-defined homotopy.

Let H = H*(X, Px, sx) be the strictification of H*(X) in (14.3.1). Using the
interchange homotopy 17" we define the extended symmetry operator with H* =
H*(X),

(14.3.5) S:By® H*® H* — H* of degree — 1
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as follows. Let o € By and u € Hy® Hy. Then S(a®u) is given by the interchange
formula in Hy:

Cla®u)+T(Aa-u) =aT(u) + Cla® Tu) + 2S(a @ u).
14.3.6 Lemma. The operator S is a well-defined linear map.
Proof. We have the elements:
IC(a®u) = a- p(u) — p2(Aa @ u),
OT(Aa - u) = pa(Aa @ u) — pa(TAa ® Tu),
) =

0aT (u) = a(p(u) — p(Tw)),
OC(a®@Tu) = a- pu(Tu) — puo(Aa @ Tu).

This shows that the element S(o ® ) is uniquely determined. It remains to check
that S(a®u) = 0 if u is a boundary as in the proof of (14.1.5), that is, u = d(z®y)
with € Hy and y € Hy. In this case we get as in (14.1.5):

Cla®u)=a(z-y) - p(Aa@z0y),
Cla®Tu)=ca(y-z) —cu2(Aa®y ® x)

with e = (—1)PI=llv]. Moreover

~

oI (u) = a(r-y—ey-x) by (14.1.4),
T(Aa-u) <Z +alr® o/’y)
=+ (dx-afy—+dy - djx)
=w(AaRzry) —cu(TAaR y  x).
This shows that S(a ®@ u) =0 for v = 0(z @ y). O
The symmetry operator S in (14.1.1) has the following property:
14.3.7 Proposition. For ¢ € Rp and u € Hy ® Hy we get the formula in H*(X),
S(E®u) = p2(S(§) @ u).
Proof. Let x € By with 0z = £. Then we get
ClE®u)=C0(x@u) = p(u) - p2(Ar1z @ u),
T(AE -u) = TO(A 1z - u) = pa(Arz @ u) — po(TA 1z @ Tu),

€ Tw) = 0 Tu) = 2 0F(w) = 2 - (u(u) — T(w),
Cl@Tu)=Co(x®@Tu) =z uT(u) — po(Ar1x @ Tu).

This yields the result. (]
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14.3.8 Proposition. For o, € By and u € H* @ H* we have the equation:
S(afou)=(-1)a-SBou)+S(a® A u)+ L(a® B (u—Tu)).

This is the extended version of (14.1.5).

Proof. Let v = u — Tu. Then (14.3.5) is equivalent to

(1) Cla®v) =al(u) — T(Aa-u) + LS(a @ u).
Moreover we have by (14.2.1)

(2) Claf@v)=aC(fov)+ Cla® AB-v)+EZL(a® B v).
Here we get by (1) the following equations in Hj.

(3) Claf @ v) = afT(u) — T(A(ap) - u)

(4) + XS(af @ u),

(5) aC( ©v) = a(BT(u) - T(AB - u))

(6) +aXS(B @ u).

Finally we get

(7) Cla@Ap-v)=Cla® (AB-u—AB-Tu))

(8) =C(a® (AB-u—T(AB-u))).
Moreover we get by (1):

(9) (8) = aT(AB-u) —T(Aa- A - u)

(10) +XS(a®@ AB - u).

Now we observe (3) = (5) + (9). Hence the remaining terms yield the equation in
(14.3.8). 0

14.4 Computation of the extended left action

We first prove the following result from which we can derive the operator £ com-
pletely by (14.2.3).

14.4.1 Theorem. For a € By and f € E4 and x @ y € H* ® H* the extended left
action operator L is given as follows. One has

La®f®rey)=0if pis odd.

Moreover, if p is even and 3 = Sq™, one gets

LlawS ooy =|d Y wa)(Sq' () S¢(y).

i+j=n, j odd
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Proof of 14.4.1. Tt suffices to consider the odd convention for the definition of
Co ©Cg. For 2,y € Hy and o € By and 3 € E4 we get the generalized Cartan
track

CZ%’S‘U =C,0Cg = Oa,AﬁDOzOﬁDFa,g

by (11.4.3). We therefore consider the following commutative diagram of tracks,
compare (11.4.3)(6) and (13.2.5)(3).

@@z sy) T s sapa )
A
To.p I(a,B(z-y))
v «@ L\
aBsz-sy) O s as(Bz - y)))
acﬁ aé’;’y ézby
v aT'ap v
o(AB(sz, 5y)) > a(sp2(AB @ T ® 1Y)
cohA[)‘ CVOL’A[)‘
Y Y A
AeB)szsy) = sm(Aaf) oz o)

Let £ = pa(A(af) @ @ y) and n = p2(A(B) ® 2 @ y). Then we get by (2.2.6)(3)
and (13.2.5)(5):

(1) sClaf@r@y)+s&=Cpy = H+ G+ s,
H = C’a,Ag — s€,
G = (aCy")O0 (o, Bl - y))* — asn.

On the other hand we get by (5.5.2)(2)

s(C(Borey)=aeC(Borey)
= (Oé(C';’y —sn))O0 (e, B(z - y) — n)°P.

This composite is the left-hand column of the following commutative diagram.

(2)

(3) s(a(B(z - y) —n)) s(eB(z -y)) = s(om)
I'(a,B(z-y))—T(a,n)
Y
a(s(B(z - y) — sn)) P = as(Bz-y) —asy
aé;’y—asn
Y Y
0 0
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Here the bottom square commutes by (4.2.5)(6). Now (2) and (3) imply

) s(aC(B @z ©y)) = GO(s(af(x - y)) — (a,n)*?)
=G — (D(a,n)°? — asn).

Therefore we get by (1)
(5) sClaf@x@y)=H+G=F+s(aC(f@zx®y)) with
(6) F = (Ca,ap — 56) + (D(e,n)* — asn).

It remains to compare F' with sC(a® (AfB) - (z ®y)). Using (2.2.6)(3) we have by
(6) the equation

(7) F 4 5 = o500 (0, 1)

We now consider the following commutative diagram in which the left-hand column
is Co.ap by (11.4.3)(5) and the sign is + = (—1)=ll?"],

OtFA,H

(8) a((AB)(sz, sy)) > Qs
re’s I(a,n)
; + %a(p)é(p’sx -p"sy) e = s(g/m)
éz% +pap(p)CL sy Fsé
\ \
(AaB))(sz, sy) =3

NI

Here we obtain ' by the following commutative diagram.

T(P)
> s(a(p'z-p"y))
A

(9) a(p'sx - p"sy)

a(T(p",x)-T(p"y)) T(a,p'z-p"y)

v
a(s(p'z) - 5(p"y)) a(s(p'z-p"y))
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On the other hand we have by (3.1.3) the following commutative diagram for
each p.

a(D(p',a)-T(p" ,y))

(10) a(p's - psy) a(s(p'z) - s(p"y))
cg/sm,///Sy ci(p/z)&(p”y)
V FPAa V
(Aa)(p'sz, p"sy) > (Aa)(s(p'z), s(p"y))

T, =Y +ail(p,z) ofT(p",y)

%

Moreover using the definition of FA(aﬁ) in (13.2.5)(4) we get
(11) TRV s =D eas(p)T(alp,2) - T(af p",y)

with the sign

"o

+ = (=)l ()l and with  T(ep, 2) = oy, p'z) 0T (0, 2)

since p’ is a monomial. This shows that
N <Z + pap(p)l(af, p'e) - T(af p”y))
(12) (Z + oap(p)iT (0, x) - o T(p", y))

<Zi%5 F”’“’) (Zi%ﬁ FAa)

Here in the first row the sign + is the same as in (11) and in the second row the
sign is & = (—1)I#ll/"I, Finally we get by multilinearity and the definition of ys
the equation:

SC(a®(A6)-(x®y))+86=zisom (p)sCla@ p'z @ p"y)
(13) +Zi<,0Ag sp2(Aa® p'z @ p'y)

S i
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with the sign given by 4+ = (—1)‘”””””‘. Here ég’%ﬂ"y is defined by the following
commutative diagram (see (13.2.5)(4)).

D(a,p'z-p""y)
(14) a(s(p'z) - s(p"y)) > s(a(p'z - p"y))
Cf;(p/’”)*s(p“y) Cvg/z,p“y
\ \
Aa(s(p'z),s(p"y) . = spe(Ba®pz@p"y)
TAY

Using (10) and (14) we see that the bottom square of (8) is subdivided into two
squares corresponding to (10) and (14) respectively. This shows by (13) that F' =
sC(a® (ApB) - (x®y)) and the proof of (14.4.1) is complete if p is odd. If p is even
we observe that all arguments above remain true for the odd convention. Hence
for the even convention the result follows by use of formula (11.4.3)(5a). O

We now can compute the left action operator L by use of (14.2.3) since we
know L by the result above. Since L(a ® p) = 0 by (14.1.4) we know that L is
given by the operator

(14.4.2) L:A®Rr — A® A of degree — 1
where Ry = kernel(q : Fo = Tr(Ea) — A).
We have the Adem relation in Ry C Fy given by the formula (0 < a < 2b)

[a/2] <b—k—1

_ ag. b a+b—k o k
[a,b] = Sq“Sq —i—kZ:O o — ok )Sq Sq”.

Compare (1.1). we now define (n, m > 0)

L(Sq"Sq™) = > Sq"Sq™ ®Sq"Sq™,
ni+nz2=n
mi+mo=m
m1,n9 odd

and we define L[a, b] accordingly by

[“/2]<b—k—1

Lla,b] = L(Sq*Sq") + Z o 9k >L(Sqa+b_k8qk).
k=0

For a + b < 9 we have the following explicit formulas for L{a, b].
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2
L[1,1] = Sq' ® Sq"
3
L[1,2]=0
4
L[1,3] = Sq' ®Sq® + Sq® @ Sq"
L[2,2] = Sq*Sq' ® Sq' +Sq* ® Sq®
5
L[1,4] =0
L[2,3] =Sq”Sq' ®Sq"
L[3,2] = Sq' ® Sq*Sq'
6
L[1,5] = Sq" ® Sq® + Sq® ® Sq* + S¢® ® Sq*
L[2,4] = Sq*Sq* ®Sq" +Sq*Sq* ® Sq® +Sq* ® Sq°
L[3,3] = Sq' ®Sq” + Sq® ®Sq* + Sq° ® Sq*

L[1,6] =0

L[2,5] = Sq®Sq' ®Sq® +Sq° Sq' ® Sq'

L[3,4] =8q' ®8q°Sq" +Sq¢® ®Sq*Sq’

L[4,3] = Sq®Sq' ®9q% +9¢° Sq' ®Sq* + S Sq* ®Sq® Sq' +Sq' ®Sq° Sq'
8

L[1,7) = Sq' ®Sq" +Sq® ® Sq° 4+ S¢° ® Sq* +Sq” ® Sq*

L[2,6] = Sq°Sq' ® Sq" +Sq" Sq' ®Sq” +S¢” Sq" ®Sq” +Sq" @ Sq”

L[3,5] =0

L[4,4] = Sq°Sq' ®Sq" +Sq* Sq' ®Sq® +Sq” Sq' ®8q” +Sq' ®Sq” +Sq¢” Sq' ®Sq” Sq'

L[5,3] = Sq” ® Sq® + Sq' ® Sq° Sq° +Sq° Sq® ® Sq* + S¢® ® Sq°
9

L[1,8] =0

L[2,7] = Sq’ Sq' ®8q° +Sq” Sq' ® Sq® +Sq” Sq' ®Sq'

L[3,6] = Sq' ®Sq" Sq" +Sq* ®Sq° Sq' + Sq” ® Sq® Sq*

L[4,5] = Sq* Sq" ® Sq® Sq' +Sq* Sq* @ Sq® Sq* +Sq* ®Sq” Sq*

L[5,4] = Sq' ®Sq" Sq" +Sq* ® Sq” Sq* + Sq” ® Sq® Sq*
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14.4.3 Theorem. For p odd the left action operator L is trivial. For p even the
operator L is the unique linear map of degree —1 satisfying the equations

L(a® [a,b]) = (6k(a)) - L]a, b,
La®pg) = L(af® &) +d(a) - L(B®E),
Lla®éB) = La®f) - 6(B),

with o, B € Fy and £ € Rr.

Proof. If p is odd then L is trivial by (14.4.2) and (14.2.4). Hence L is trivial by
(14.2.3). If p is even we compute L(a ® [a,b] ® z ® y) by considering, u =z ® y,

L{a® Sq"Sq™ @ u)

1
v =al(5¢" ®5¢" @u)+ L(aSq" ® S¢" @u) + L(a® S¢" @ A(Sq™) - u),

see (14.2.4). Here all terms are computed in (14.4.1). Hence we get (1) = (2) +
(3) + (4).

(2) alz| Y Sq" NS¢’z - S¢ly),
i+j=m
j odd
(3) 2| Y k(aSq")(Sq'z - Sq'y)
i+j=m
7 odd

with x(aSq™) = k(a)Sq" + aSq¢" ™!, and

(4) > 1Sdx Y K(a)(Sq'(Sq" @) - S’ (Sa*y)).
r+s=m i+j=n
j odd
Here we have |Sq¢"x| = r + |z|. We now compute the sum of all summands in

(2)+(3)+(4) containing the factor |z|. First we observe that

(5) 2)+ @) =lzls(a) Y Y S¢'Sqx-S¢'Sq’y.
i+j=nr+s=m
s odd

On the other hand the part of (4) containing the factor |z| is given by

(6) zlk(a) > Y Sq'Sq x-S’ Sqty.
r+s=mi+j=n
7 odd

The summands (i, j,7,s) with j odd and s odd appear in (5) and (6) and hence
cancel. Therefore we need only to consider in (5) j even and in (6) s even. Hence
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we get (5) + (6) = |z|r(a)(7),

ASq"Sq™) = > Sq'Sq"z-S¢'Sq’y
rAs=m
(7) jlj_sjgdd

= n2((1 @ ©)A(S¢"S¢™) @z ®@y).
Here ¢ : A — A is the function p(z) = z if |z| is odd and ¢(x) = 0 if |z| is
even. Since [a, b] is trivial in A we see that the sum A[a, b] defined by A(Sq"Sq¢™)

is trivial. Hence we need only to consider the part of (4) containing the factor r.
This part is given by

> re(e)(Sq'Sq "z - Sq’Sqy),
g rie=m
(8) T oad
= puo(0k(a) - L(S¢"Sq™) @ u).
Adding up such summands according to [a,b] we see by (14.2.3) that
L(a® [a,b]) = dk(a) - L]a, b].

Now the proof is complete. O

14.5 Computation of the extended symmetry

The extended symmetry operator S is determined by the extended left action
operator £ and the elements S(a® x ® y) with a € E 4. This follows from (14.3.8).
We now obtain the following result.

14.5.1 Theorem. Fora € E4 and x ® y € H* ® H* we have
Sla®@zr®y)=0if pis odd.
If p is even we get for « = Sq" the formula
S(5¢" @z @y) = |zllylw(a)(z - y) + pa(Sn @ z @ y)

with S, € A® A defined by

Sa= Y. S¢@S¢.
i+j=n—1
4,7 odd

In particular S,, is trivial if n is even.
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Proof of (14.5.1). We first consider the case that p is odd. Let H = H*(X, Px, sx)
and let z,y € Hy and a € E4. Then we claim that S(a ® z ® y) is the primary
element of the following diagram.

55y
(1) a(sz - sy) “ > A(a)(sz, sy)
Tss.'t,sy ST, sy

\% cCsY>s® \%
ea(sy - st) “ =eA(a)(sz, sy)

Here s : Hy — H*(X); is defined in the pull back diagram (14.3.1) and T. and
T are deﬁ/ned as follows. Recall that we have for pointed maps x : X — Z% y :
X — Z7 the interchange tracks (6.3.1)(7)

T(z,y):z-y — () y-
{ T(z,y) = Lriya(y - 2).
We therefore get for a € T (E 4) the interchange track
T.:a(z-y) > afey - x) >cea(y-x) forp>2.

Here € = (—1)!*II¥l € G and T is the composite of a(T'(x,y)) and I'(€),. Moreover
we get for

=) ¢ € Ts(Ba)@Ts(Ea)
the interchange track

T:&(z,y) > (=) (y, z)

where £(xz,y) is defined in (11.2.4). Here {(z,y) and (T€)(y, ) depend only on &g
and T is linear in &.
We define T' by the sum

T =3 ()T (), ().

i

We have to consider the interchange formula (14.3.5) under the operator
s: Hy — H*(X)1. We have (13.2.5)(5)

(2) sClagz®y)=CoY —spa(Aa@z®y).
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Moreover by (6.3.1)(6) we get

sT(x@y) = (U7 —&(r)) o s(y - x)

(3) =Trs(y) - s(x) —e(m)s(y) - s(x)

where 7 = 7(y, ) and T'; : 7 = £(7) with ¢ = e(7) = (—1)*ll¥l. Here we have for
Aa=Y,a;®a)

(4) T5T:5Y — Z iPT(a;/yya;z)(ag’sy) - (alsz).
Moreover we have

() 127 = T(e)aba(l7s(y) - s(x)),

where T'(e),, : a(esy-sx) = ea(sy-sx). Next we observe that the following diagram
commutes:

rye
(6) Al)szsy)< 7 sm(dasroy)
sy sT(A(a)-(2®y))+s¢
v ye v
A

eA(sy - sz) < sp2(Aa @y ® x)

where & = po(Aa®y®z). This follows from (4), the definition of I'{7 in (13.2.5)(4),
and (2) applied to sT(c}z ® a!y), and (3.1.3). Also the following diagram com-
mutes,

I'a,zy)
(7) s(a(z - y)) > sz - sy)
s(aT (z®y))+sn Tz
\ \
s(ea(y - x)) >ca(sy - sx)

el'(a,y-x)
with n = ea(y - z). In fact, we have
sl (z®@y)) =aeT(z®y).

Here the right-hand side is the composite in the left column of the following
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commutative diagram.

(8) s(a(z -y —cey-x)) sa(x - y) —Aésa(y - )

[(a,z-y)—el(,y @)

\
as(x -y —ey-x) r >as(x-y) —eas(y - x)
asT (z-y) a(T)—eas(y-z)
N I'(e)a—cas(y-x v
0< (e mcastys) ales(y - x)) —eas(y - x)

Here we set T = sT'(x ® y) + es(y - ) = Trs(y) - s(z) by (2). This shows by (5)
that (7) commutes.

The composite of top arrows in (1), (6) and (7) yields by (13.2.5)(4) the
track C%¥ and the composite of the bottom arrows in (1), (6) and (7) yields
accordingly eC¥%*. This shows by (2.2.6)(2) that the primary element of (1) is
indeed S(a ® x ® y). The primary element of (1), however, is trivial for p odd by
the result in Section (10.5).

Now let p = 2. Then the arguments above for p odd also hold if we use the odd sign
convention for p = 2. Now comparing the difference of the odd sign convention
and the even sign convention yields the formula in (14.5.1) for S(a ® z ® y) for
p=2. O

Using (14.3.8) the extended symmetry operator S is completely determined
by the formula in (14.5.1) above and by the operator £ in Section (14.4). Hence
we are able to compute the symmetry operator S by (14.3.7). For this we define
the following elements in A ® A with n,m > 0.

S(sqnsq’ln): (5Sqn)Sm+Sn(5Sqm)+ Z (58qn—1)(5q’m.1 ®Sq’m.2)
sy odd
Here S), is defined in (14.5.1). Similarly as in (14.4.3) we define for 0 < a < 2b the
element

[a/2] (b o

1 _
Sla,b] = S(Sq"Sq") + " ok )S(sq‘”b kSqk).
k=0

For a + b < 9 one gets the following explicit formulas for S[a, b].
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S[1,1] =0
S[1,2] =0
S[1,3] =0
S[2,2] =

S[1,4] =0

S[2,3] = Sq' ®Sq”Sq' +5¢° Sq' ®Sq" +Sq" ®Sq® + Sq® ® Sq*
S[3,2] = Sq* ® Sq” Sq* +Sq* Sq' ®Sq" +Sq* ® Sq* +Sq® © Sq*

S[1,5] =0
S[2,4] = Sq' ®Sq” Sq" +5q°Sq' ®Sq!
S[3,3] =0
S[1,6] =0

S[2,5] = Sq' ®Sq* Sq* +Sq* Sq' ®Sq* +Sq” Sq' ® Sq® + Sq® ® Sq® Sq*
+8q' ®Sq¢° +5q° ®Sq"

S[3,4] = Sq' ®Sq* Sq" +Sq* Sq' ®Sq" +Sq° Sq' ®Sq* +Sq® ® Sq® Sq'
+8q' ®Sq¢° +5q° ®Sq"

S[4,3] =0
S[1,7] =0
SQ,G]—Sq ®5Sq°Sq" +54° Sq* ®Sq' +5¢°* ®Sq® Sq* +Sq® Sq* ® Sq¢®

[
[
S[3,5] =0
S[4,4] = Sq' ®Sq° Sq* +Sq° Sq* ©Sq* +Sq% Sq' ® Sq® Sq' +Sq® Sq' ® Sq? Sqt
S[5,3] = Sq” Sq" ®Sq*Sq" +5q* Sq' ®Sa®Sq' +Sq® ®Sq® Sq* +Sq® Sq" @ Sq®
S[1,8] =0
S[2,7 = Sq' ®Sq°® Sq* +84¢° Sq* ® Sq* 4 S¢® ® Sq* Sq* +Sq* Sq' ® Sq®
+ Sq2 Sql ® Sq5 + Sq5 ® Sq2 Sql + Sql ® Sq7 + Sq? ® Sql

S[3,6] = Sqa' ®Sq° Sq" +8¢°Sq' ®8q" +S¢° ®8q* Sq" +8q¢* Sq' @S¢’
+9¢%Sq* ®Sq° + Sq° ©S¢% Sq* + Sq* ® Sq” + Sq” ® Sq*

S[4,5] = Sq"' ®Sq°Sq" +94¢°Sq" ®Sq' +Sq°® ®Sq* Sq" +Sq* Sq' ® Sq”
+5¢°Sq' ®Sq° +Sq® ®5q%Sq' +Sq* ®Sq” +Sq” ® Sq*

S[5,4] = Sq' ®Sq°Sq" +Sq¢° Sq* ®Sq* +Sq* Sq' ®Sq® +Sq® ® Sq* Sq*
+ Sq2 Sql ® Sq5 + Sq5 ® Sq2 Sql + Sql ® Sq7 + Sq? ® Sql
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One can check that S[1,n] = 0 for all n > 1. Here one has [1,n] = Sq* Sq" if n is
odd and [1,n] = Sq* Sq" + Sq™ " if n is even.

14.5.2 Theorem. For p odd the symmetry operator S is trivial. For p even the
operator S is the unique linear map of degree —1

S:Rr —A® A

satisfying the equations («a, B € Fo,& € Rr)

S([a,0]) = Sla, ],
S(e-€) = (6a) - 5(§) + L(a @ &) + TL(a ®§),
S(E-P8) =5(8)-(60).

Proof. If p is odd we know that £ = 0 so that by (14.3.8) and (14.5.1) also S = 0.
Hence S = 0 by (14.3.7). Now let p be even. We compute S([a, b|@u) with u = zQy
by considering (see (14.3.8))

S(Sq"™ Sq™ ®u)

M _ (6Sq™) - S(Sq™ ®u) + S(Sq" @(ASq™) - u) + L(Sq" ® Sq" ®(u + Tu)).
Hence by (14.5.1) we get (1) = (2) + (3) + (4):

(2) Sa"(|zllyl Sa™ " (z - y) + p2(Sm ® w)),

(3) > (18d 2|8’ ylSq" M (Sq' @ - So’ y) + pa(Sn @ Sq’ z @ So’ y))

i+j=m

(4) | > Sa"(Sq'w-Sa’y) +ly| Y Sqa"(Sq'y- S’ z)
i+j=m i+j=m
7 odd 7 odd

with Sq'y - Sq’ = S¢’ x - Sq' y since H* is a commutative algebra. Hence we get
by definition of S(Sq™ Sq™),

(2) + (3) + (4) = p2(5(Sq" Sq™) ® u) + [z[[y|x(Sq" Sq™)(z - y)

with £(Sq™Sq™) = Sq™ ' Sq™ +Sq" Sq™ !, Since k[a,b] = 0 in A we see by
(14.3.7) that S([a,b]) = S|a, b]. O

In Section (15.2) below we show that there exist elements [a, b] satisfying

(14.5.3) Sla,b] = la, bl + T¢a,b].
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Remark. The existence of elements [a, b] satisfying equation (14.5.3) is obtained
using the definition of S by the following result on relations associated to Adem
relations. For n,m > 0 let

Sq'Sq’ if 2i =n — 1, i odd, 2k = m, k even,
Sq’ qu if 2i =n—1, i even, 2k = m, k odd,

Sv S nS my _ ,
(Sa78q™) Sq'Sq* if2i=n, 2k =m —1, k odd,
0 otherwise.
Then we define
la/2]
G b k—1 a+b—k
Sla,b] = 5(Sq* Sq”) +Z(a_2k) S(Sq Sq").

One can check thatASA’ [a, b] is a relation, that is, S[a, b] considered as an element in
A is trivial. Since S|a, b] is trivial one gets by definition of Sa, b] elements &[a, b]
satisfying (14.5.3).

14.6 The track functor H*| ]

In (13.1.4) we define a pair algebra over the secondary Hopf algebra B of secondary
cohomology operations. We now refine this notion as follows.

14.6.1 Definition. A secondary permutation algebra over B is a pair algebra H
over B as in (13.1.4) such that the pair algebra H has also the structure of a
secondary permutation algebra as defined in section (6.2). Moreover the homotopy
C satisfies the formulas (14.2.1) and (14.3.5) where the operators £ and S are
uniquely given by the formulas in Sections (14.4) and (14.5). We say that H is an
unstable secondary permutation algebra over B if unstable structure maps with
properties as in Section (13.3) are given:

v:EH) — Hi,
u : Hy — H; ifp=2and
w: HSY" — Hp if pisodd
Here £ C M x Hj is the excess subset. These maps have properties as in (13.3.3)

and (13.3.4).
Moreover for p = 2 the function u is quadratic with cross effect

u(z+y) —u(z) —uly) =-T(xy) - [pln—1)y =

where n = |z| = |y| and T is the interchange homotopy in (14.2.4). The cross
effect is a consequence of the argument in the proof of (6.5.2).
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We defined homotopies in the category of secondary permutation algebras in
(6.4.2). We now consider such homotopies in the category of secondary permuta-
tion algebras over the secondary Hopf algebra B.

Let A and B be secondary permutation algebras over B as defined in (14.6.1).

Let f = (fo, f1) and g = (go, g1) be maps
fvg:A_)B

in the category of secondary permutation algebras over B. Such maps are defined
in the obvious way by compatibility with all structure maps.

14.6.2 Definition. A homotopy or track H : f = g is a map
H: AQ I Bl

which is R,-linear as in (6.4.2) and which also is By-linear such that the following
properties hold

(1) OH = fo — go,
(2) HO = f1 — g1,
(3) H(z - y) = (Hz)(goy) + (foz) - (Hy)

for z,y € Ap. If A and B are unstable as is (14.6.1) and if f and g are compatible
with the structure map u,v then we also assume

(4) H(a-z) = (fi —g1)v(a, )
for « € M, x € Ag and e(«) < |z|. Moreover
() H(ax —aP) = (fi — g1)u(x)

for a =8¢ 2 € Agif p=2and a = Pll/2 z ¢ AgYe™ if p odd.

Let [[IC?,]] be the category of unstable secondary permutation algebras over
the secondary Hopf algebra B, which is a track category given by such maps and
homotopies.

14.6.3 Theorem. There is a track functor

H*[]: [Topg] — [K3]-
Proof. We define H*[X] as in (14.2.1) by

H*[X] = H"(X,Px, sx)-
Moreover for a map f: X — Y in Top; let

£ oHA Y] — HYX]
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be given by
(f%)o = Fm(H*(f)o)«
in degree 0 and by ((f*)o, H*(f)1) in degree 1 where we use the pull back property
of H*[X];. For this we need the functor H* of secondary cohomology in (6.3.1).
Moreover for a track H : f = g in Top| we define the induced track
G=H":f"=g¢g"
in the category [K)] by the unique map

G:H'[Y]o = G[EMm(H(Y)o)] — H'[X]y

which is a homotopy G : f* = g* with the properties (1)-(4) in (14.6.2) and for
which the following diagram commutes.

H*

H*(YV)o - (X))
A
n
Yl o, =HX)

Here H is the induced homotopy defined in (6.4.1). One readily checks by the
freeness property of Faq(H*(Y)o) that G is well defined and that G, in particular,
satisfies (14.6.2)(4), (5). O

Recall that ICg is the category of connected unstable algebras over the Steen-
rod algebra A4 which by (1.5.2) is isomorphic to the category of models of the
theory K, C Top®/ ~. Moreover the diagram

model(K,)

Ky

commutes, see (1.5.3). We now describe a similar diagram for the secondary theory.
Let [[Kg]] be the category of unstable secondary permutation algebras over the
secondary Hopf algebra B. This is a track category with tracks as in (14.6.2).
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One gets the commutative diagram of track categories

(14.6.4) model[K,]
[x.-]
[Topo] H
H'[] v
Lo

Here the functor H is similarly defined as the functor H*[ ] in (14.6.3). The functor
H induces on 7o the isomorphism model(K,) = K. We conjecture that H is a
weak equivalence of track categories.



Chapter 15

The Uniqueness of the
Secondary Hopf Algebra B

We show that the secondary Hopf algebra B of secondary cohomology operations
is determined up to isomorphisms by the triple (x,S, L) where k = I'[p] is the
derivation associated to B and S is the symmetry operator and L is the left action
operator. We have seen in Chapter 14 that S =0 and L = 0 for p odd.

15.1 The A-class of B

The structure of the secondary Hopf algebra B leads to a A-class which can be
expressed directly in terms of the Steenrod algebra A. For this we have to choose
a splitting u of B.

Recall that for the prime p > 2 we have the field F = Z/p and the ring
G = Z/p?. There is a canonical set E4 of generators of the Steenrod algebra A
given by

Ea={Sqi>1} for p = 2,
Eq={B,P", Py i>1} forpodd.

Let Bp = Tg(E4) and Fo = Tr(E 4) be the tensor algebras over G, resp. F,
generated by E 4. We have the surjective algebra maps

B() — .7:0 — A
which are the identity on £ 4. Therefore we have the ideals of relations

Rp = kernel(By — A),
Rr = kernel(Fy — A).
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15.1.1 Definition. A splitting of B is a linear map u with the following properties.
The diagram

p-Bo Y =B S syF
i “ o
\% Y

Rg ; > By

commutes and éu = 0. Here € is the augmentation of B, see (12.1.5), and @ carries
pa to [p] - a for oo € By. The maps ¢ in the diagram denote the inclusions.

15.1.2 Proposition. A splitting u of B exists.

Proof. Consider the short exact sequence of F-vector spaces
0 > Rr > Fo > A > ().

We choose a basis Ni of R and we extend N by a basis Ng of a complement
of R in Fy so that Ng maps bijectively to a basis of A and 1 € Ng. For example
Ng is given by the set of admissible monomials. A lift b as in the commutative
diagram

By

\
Ngr U Ng > Fo

yields a basis b(Ng U Ng) of the free G-module By. Hence we get the direct sum
of free G-modules

Ra S =8,
where R is generated by bNk and S is generated by b/Ng. Now one gets accordingly

R&pS = Rg.
Since R is a free G-module we can choose a lift ¢ as in the commutative diagram

By

R > Rp R®pS
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with &t = 0, see (12.1.5)(2) and (3). We now define the splitting u by u(x) = ¢(x)
for x € R and u(pa) = [p] - « for @ € S. Then for o € R we have

u(par) = pu(a) = pt(e) = [p] - 9t(a) = [p] - a.
This shows that u has the properties in (15.1.1). O

Now let
R% = kernel(By @ By — A® A)

= Rp ® By + By ® Rp
and more generally let

% = kernel(B§" — A®")
for n > 1 so that Rll3 = Rgp.

15.1.3 Proposition. A splitting u of B induces via the following commutative dia-
gram a splitting uy of BRB.

q

(B®8)1 < (B®8)1 < B1® By @ By ® B,
A A

Uy u®1+1Qu

R < R ® By @ By ® Rp

More generally one obtains in a similar way a splitting
ug: R — (B®”)1
of BE" = B& - - - &B.
The horizontal arrows in the diagram are the canonical quotient maps.

Proof of (15.1.3). We have
RL=R®R®R®S®S®R®p(S®S)

where we use the direct sum in the proof of (15.1.2). We now define uy for z,y € R
and a,b € S by the equations

ug(x ®y) = (tr)®y = 2Q(ty),
uz(a ®y) = a®(ty),
ug(r ®b) = (tr)@b,

Here [p] = ¢(1 ® [p]) = ¢([p] ® 1) is defined by the quotient map ¢g. Now one can
check that uy fits into the commutative diagram above. O
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Next let A = kernel(e : A — F) be the augmentation ideal in the Steenrod
algebra A. Then one readily checks:

15.1.4 Proposition. Let u, u’ be splittings of B as in (15.1.1); then there is a unique
linear map of degree —1, ~
a: Ry — A,

such that v’ = u + Ya with Yo being the composite
Sa:Rg >Ry “>=j] ~>=SACB.
We now obtain for a splitting u of B the following diagram.

Ay

Bl > (B & B)l
7 ~
o 9
u Uy
\ '
By o By ® Bo
U
RB A > R%

15.1.5 Proposition. For each splitting u of B there is a unique linear map of de-
gree —1, o
Vu:RpF— AR A,

satisfying
Aju = UﬁA + XV,.

We call V, the A-difference element associated to the splitting u of B.
The A-class Vg is the set of all A-difference elements so that Vi is a subset
of Hom_1(Rr, A® A).

Proof of (15.1.5). We have
0A1u = AgOu = A = JuyA
so that 0(Aju —uyA) = 0 and hence F' = Aju — uyA maps to A ® A. Moreover
Fp-a)=0 and (¢®1)F =(1®¢e)F =0.
For this we need the fact that the augmentation € of B satisfies

(e®uy = ule ® 1),
I®e)uy =u(l®e).

Hence F' induces a unique map V,, as in the theorem. g
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The diagonal A of Fj yields the commutative diagram
A

Fo > Fo ® Fo
U U
Rr >R§:=R]:®.7:o+.7:o®Rj:
A q
A
\
Rr e AP AR® Rr

where ¢ is the quotient map with kernel(q) = Rr ® Rz. We define the differential
d' :Hom_;(Rs, A) — Hom_1(Rr, A® A)

by the formula

(15.1.6) d' () =da— (a®1,7(1® a))A.

Here 7 yields the sign which corresponds to the interchange of ¥ in A ® ¥.A. We
point out that d'(a) maps to A ® A since

(e®@1)d (o) = (@ 1)da—(c@D(a®1,7(1®a))A
=a—a=0.
Similarly one gets (¢ ® 1)d*(a) = 0.
15.1.7 Proposition. The A-difference element V., satisfies the formula
Vuisa = Vi +d(a).
Hence the A-class Vi is a well-defined element in cokernel(d!).

The proposition is readily checked by definition of uy and properties of (B, A).
Next we define the differential

d? :Hom_;(Rr, A® A) — Hom_;(Rr, A® A® A)
by the formula
(15.1.8) PE)=001-180)—(—@1,7(1®E)A.
Here the right-hand side is given by composites in the following diagram.

A

Rr >RrA® AR RFr
13 (—€¢®1,7(1®¢))
v $(6R1—-1®6 v
SAp A Ly AeAs A

As in (15.1.6) one can check that d?(£) maps to A® A ® A.
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15.1.9 Proposition. Fach element & in the A-class Vg satisfies d?(€) = 0.

Since d?d' = 0 the proposition shows that the A-class is an element in the
cohomology

(15.1.10) V5 € kernel(d?)/ image(d') = H4.
Proof of (15.1.9). We consider the following diagram where A’ = A®1 -1 A
is given by B.

NA®2 0 > 2 A®3
7 -
ni Ni

B&B), Y > (B&B&B),

ug g 2] Uy
y A v
Bo ® By > 6893
U U
Ry s > Rj}

The diagram shows that there is a unique linear map of degree —1,
p: R — A®3,

satisfying

(1) u A" = Aluy + Zp.

Now we get, for E =V, € Vg withd =6®1-1® 4,

i(B6)€ — ul) = A'i& —ipA
(2) = N(Au —ugA) — (—A'ug + ugA)A
=0.

Here we use the fact that A’A = 0, as follows from the associativity of the diagonal
A of B. By (2) we see

(3) £(5'¢) = uA.

Now the following diagram commutes.
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This, in fact, proves (15.1.9) since Xd?¢ = X(8'€) — GA and gA = pA.

A I

RB > R% > E(A®3)

=i

\i A \
Rr >Rr o A® A® Rr

Here we set i = (—£®1,7(1®¢)) and p is the quotient map given by R — R%.
We have to check that gp = p. Let 2,y € Rp and a,b € By. Then we get

in(p- (a®D))

A'ug +usA')(p - (a @ b))
AR1+1®A)p - (a®b)+up(Aa®b—a® Ad)
p] - (~Aa-b+a®Ab)+[p]- (Aa®b—a® Ab)

07

(_
(_

iz @y) = (—Auy + yA')(z @ y)
(FAR1+10A)u(zr®y) +u(Arz @y — @ Ay)

= —Az®uy + ur®@Ay + Az@uy — ur®@Ay
= O’

in(r @b) = (—A'ug + ugA")(z ® b)
=(FA®1+1®A)(ur ®b) + us(Az @b — x ® Ab)
= —Auz®b + ur@Ab + (uyAz)Db — ur@Ab
= —Aur®b + uy Az®b
= —((Au — uyA)z)®b

—i(E®1)(x D).

This shows pu(x ®b) = ip(z ® b). Similarly one gets the equation p(a ® y) =
fp(a ® y). This completes the proof of (15.1.9). O

Recall that we have the symmetry operator S which factorizes as a composite

Rp >Ryr S>A®A c A® A

Compare Section (14.1).
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15.1.11 Proposition. Fach element £ in the A-class Vg satisfies the symmetry
formula

TE=E4S.

In the next section we show that there is exactly one cohomology class in
H 4, see (15.1.10), satisfying the symmetry formula. This is the zero class for the
algebra B of secondary cohomology operations and p odd since we have seen that
B has the trivial symmetry operator S = 0 for odd primes.

Proof of (15.1.10). The definition of uy shows that Tuy = uyT where T : R} = R%
is the restriction of T on By ® By. Let £ = V,,, then we get:

i 2(T€) = Ti€ = T(Ayu — ugAg)
= (TAl)u — ’U,ﬁ(TAo)

Here we have TA; = Ay + 3S5(0_) and TAy = Ag. Hence we obtain
i5(T€) = Au—uAo+ 25 =E(E+ 9).

This completes the proof of (15.1.10). O

15.2 Computation of the A-class

We have seen that a secondary Hopf algebra B yields a A-class Vg which is an
element in the cohomology H 4 in (15.1.10).

15.2.1 Theorem. There is a unique element V € H 4 such that all cocycles £ € V
satisfy the symmetry formula

T¢E=¢+ S
where S is the symmetry operator in (14.1).

By (15.1.10) the class V in this theorem coincides with the A-class V. For
the proof of the theorem we prove the following result on the cocycles of the
cohomology H 4.

15.2.2 Theorem. Let £ : Ry — A® ./NlN be a cocycle, i.e. d*¢ = 0, and assume
T¢ = € holds. Then there is a: Ry — A with d*a = &, that is € is a coboundary.

Proof of (15.2.1). Let V, V' € Hy4 such that for £ € V, ¢, € V' the symmetry
formulas T¢ = £+ S and T¢' = & + S hold. Then n = £ — &' satisfies

Tn=T,-TE =¢—¢ =1

so that n = d'« is a coboundary by (15.2.2). Therefore V = V'. O
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Theorem (15.2.2) corresponds to the ‘dual’ of a result of Penkava-Vanhaecke
[PV]2.1. To see this we dualize the exact sequence

0 >Rr > Fo > A >()

where Fy — A is a map between commutative coalgebras. The functor Hom(—,F)
with Hom(V,F) = V* carries the sequence to the exact sequence

0< R;_-< fg< A* < 0.

Here A* — F§ is a morphism of commutative graded algebras so that R} =
Hom(Rg,F) is an A*-bimodule. This bimodule structure is also induced by dual-
izing A in (15.1.6). For « € R} and m € A* we have the equation

T-m = (_1)\w\\m|m .x

since the diagonal A of Fy is cocommutative. We now consider the following
normalized chain complex of Hochschild cohomology.

(15.2.3) o =0 "0
Here C; is the F-vector space of all linear maps of degree +1,
C: A% — M,

where A = A*, M = R satisfying the normalization condition c(a1 ®---®a;) =0
if there is j with 0 < j < i and a; = 1. Moreover the Hochschild differential is
defined by

di(c)(x ©y) = =(=1)1"z - c(y) + e(wy) — e(x) -y
for ¢ € C7 and

da(c)(z @y ®2) = ()2 c(y @ 2) — clay @ 2) + c(x @ y2) — c(z @ y)z
for ¢ € C5. We now observe that we have the dualization isomorphism

Ci = Hom,l(Ry:,./Zl@) = Cl

which carries ¢ to the dual ¢* of the composite Rr £, A% ¢ A®. Since the
dual of the augmentation ¢ of A is the inclusion 1 : F — A* we see that £* is
normalized.

15.2.4 Lemma. The differentials di ds above are isomorphic to the differentials
d*,d? in (15.1.10). that is, the following diagram commutes.

d d
o e =0
A A A

IR
IR
1R

d* d?

Cl - CQ > CB
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The lemma is readily checked by the definitions of the differential. We now
prove (15.2.2) by the following result, see Penkava-Vanhaecke [PV]2.1.

15.2.5 Theorem. Let D € Co with doD =0 and T'D = D; then there exists ¢ € C
with dyp = D.

Proof. To avoid signs we only consider the case of the even prime. Since D is a
normalized cocycle we can consider the algebra extension with XM = M,

0 M >F > A >0

Ae M
with the multiplication
(a,m) - (a’,m') = (ad’,am’ + ma’ + D(a,a’))
for (a,m), (a’,m') € E. Since TD = D and since am = ma we see that
(a,m) - (a',m') = (a’,m') - (a,m).

Hence F is a commutative algebra. Now A is a free commutative algebra and there-
fore there exists a section A — E. Hence the cohomology class of the extension
(represented by D) is trivial. Compare also section (16.2).

O

15.3 The multiplication class of 55

Let £ : R — A® A be a cocycle representing the A-class Vi which is the
element determined in (15.2.1) by the symmetry operator S. Let £ = 0 be trivial
if § = 0. Since £ € Vp there exists a splitting u of B with

Vi =A1u—uyA = 3¢

In this case we call u a &-splitting of B. If £ = 0 then we call u a A-splitting of
B. Hence u is a A-splitting of B if u is a splitting as in (15.1.1) and the following
diagram commutes.

(15.3.1) By S~ (BeB),
A A
u ul
RB > R%
N N
Bo > By ® By

Ao
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Since the algebra B of secondary cohomology operations has a trivial symmetry
operator S = 0 for odd primes p we see:

15.3.2 Theorem. The algebra B of secondary cohomology operations has a A-
splitting over odd primes p.

A &-splitting w of B is not uniquely determined by £. According to (15.1.7) we get:

15.3.3 Lemma. If u is a -splitting of B, then u + X is a £-splitting if and only
if d*(¢) = 0.

Here we have d*(p) = 0 if and only if the dual ¢* of ¢ satisfies d;(¢*) = 0 and
this is the case if and only if ¢* : A* — R% is a derivation of degree +1, that is

*

¢ (zy) = () -y + (—=1)"z - " (y)

for x,y € A*. We point out that such a derivation is completely determined by its
values on Milnor generators in the free commutative graded algebra A*, see [Mn].

We now consider the multiplication of the pair algebra B which is determined
by the Bp-bimodule structure of B;. The left and right action of By on B; yield
functions A = A, and B = B, by the formulas (a, 8 € By, z € Rg)

YA la®x) = u(r) —u(a-x) € BA,

(15.3.4) SB,(z® B) = u(z) - B— u(z - B) € SA

Here w is a &-splitting of B. We call the pair (A,, B,) a multiplication structure of
B. Such a multiplication structure has the following properties.

15.3.5 Definition. A B-structure (A, B) is given by a pair of G-linear maps of
degree —1,
A:By® R — A,

B:RB®BQ—>./Z\,

satisfying the following properties with o, o/, 3,3 € By and z,y € Rg.

Al 28) + (=1)"aB(x, §) = B(ax, §) + Ala, 2)5,
Az, y) = B(z,y),
Alad ) = Aa, o/ z) + (=D)*laA(/, 2),
B(z,80') = B(xp, ') + B(x, 8),
B(pa, 8) =0.

\)

~ o~ o~ —~
ot w
T — O O —

Let M? be the set of all B-structures (A, B). Hence M? is an F-vector space
by addition of maps. Moreover let

M2, C M?
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be the subset of all B-structures (A, B) satisfying

(6) A, pB) = —ro(a) - 5.

Here kg : A — A is a derivation of degree —1 of A satisfying (ko ® 1)d = dkyg.
For the trivial derivation o = 0 the subset Mg C M? is a vector space. In
general M ,30 is a coset in the quotient

(7) Mg, € M? /Mg

so that Mg acts transitively and effectively on the set M2 . By (5) and (6) we see
that pairs (A, B) in M¢ induce maps

A:Fo® Rp — A,

B:Rr® Fy — A,

also denoted by A and B, since A(«, p3) = 0 for ko by (6).

15.3.6 Lemma. Let B be the algebra of secondary cohomology operations. Then a
multiplication structure (Ay, By) of B is an element in M? where k = I'[p] is the
derivation with k(Sq"™) = Sq" ™ for p =2 and k(3) = 1, K(P"™) =0 for p odd.

The lemma is readily checked since Xk (a) = [p]ae — a[p]. We now define the
differential

(8)

1

(15.3.7) [V Vr

Here M"' = kernel(d' : C* — C?) is defined by d* in (15.1.6). Hence we see as in
(15.3.1) that ¢ € Hom_1(Rx, A) = C! is an element in M! if and only if ¢* is a
derivation. We define 9'(¢) = (A,, By,) by
Aplayz) = (=1)*la- p(a) - p(az),
By(z,0) = p(x) - 6 — o(zf).
One readily checks by (15.3.2) that
15.3.8 Lemma. (Ay+5,, Butsy) = (Au, By) + 0 (p).
Next we define the function
(15.3.9) 9 MZ — M?,
M3 = Hom_1(By ® R ® R ® By, A® A).
For (A, B) € M2, we consider the following diagrams.

)

(1) A ~A® A
A A
A Ay
Bo ® Rp s, Bo ® R%
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(2) A >A® A
A A
B By

Rs® By % ~Rie By B
Here the map Ay in (1) induced by A is defined by

Aflaze )= (-1l A, 2) @ (o - 7),

(3) '
Ao @ Boy) =D (-1)%(af - B) @ Al y),

with &; = ||| + || + |8] and
Ala) = Zo/i ®al € By ® Bo.
One can check that A; is well defined, in particular, if restricted to

p(Bo ® By) C R%. For this we use the assumption (kg ® 1)§ = kg in (15.3.5)(6).
Moreover the map By in (2) induced by B is defined by

Bi(z®d @@ p) = (_1)|a'H5|B(x7B) ® (- 8),
Bila®y@pef)=cla B),©B(y.0)

with & = (—1)WIBIFII+181 Using (15.3.3)(5) we see that By is well defined.
Using (1) and (2) we define the function 9% in (15.3.6) by

(5) 9*(A, B) = (A2, BY%) with
A% =6A - A1 @A),
B? = 6B - By(A® A).

(4)

The cocycle £ : R — A® A c A® A associated to the symmetry operator
S (with ¢ = 0 for S = 0) yields V£, Vf by the formulas in X(A ® A),

LV a®z) = (6a) - (S¢(x)) — B¢(a - @),
SVE(®B) = () - (68) — Z(y - B).

15.3.10 Theorem. Let u be a &-splitting of B; then the multiplication structure
(Ay, By) is an element in M?2 which satisfies

82(AuaBu) = (v? +LavgB)

where L : By ® Rg — A® R — AR A is the left action operator of B in
(14.1.3).
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The theorem implies that the composite

o' 5 0?2
Ml - MO > M3

is trivial, i.e., 920! = 0. In fact, we have for ¢ € M?*,

62(Au+2907 Bu+29&) = (V? +L, vgB)
= 0%((Ay, B,) + 0'y)
= (V& + L, VE)+ 00"

Let M7, ; be the subset of M7 consisting of all pairs (4, B) € M? with
0%(A,B) = (VA + L, VB) Then ' M! = image(d') acts on this set by addition
in M2, Let Mig,L/(?lM1 be the set of orbits of this action. This is a subset of
M?/9* M. If u is a &-splitting of B, then (15.3.7) shows that (A, B,) represents
an element

(15.3.11) (A,B) € M2, /o' M"

which we call the multiplication class of B associated to the triple (k, ¢, L). This
class is independent of the choice of the £-splitting . According to its construction
we see:

15.3.12 Theorem. The multiplication class determines the isomorphism type of the
secondary Hopf algebra B.

We are now ready to prove

15.3.13 Theorem. (Uniqueness): For all primes p > 2 there exists up to isomor-
phism only one unique secondary Hopf algebra associated to the Steenrod algebra
A, the derivation k, the symmetry operator S and the left action operator L (with
L=S8=0 forp odd).

Proof. The group MZ acts transitively and effectively on M2, see (15.3.5)(7).
Therefore the group ker(9?)/0'M* C ME/0 M acts transitively and effectively
on MS,g,L' In the next section we show that

ker(9%)/0' M* =0

consists of a single element. Hence M7 . ; /0" M consists of a single element. Thus
the uniqueness theorem follows from (15 3.8). O

We can use (4, B) € M,f’&L for the computation of Massey products in the
Steenrod algebra. Let «, 8,7 € A with o - 8 =0 and 8-y = 0. Then the Massey
product

(a, B,7) € AlelFIBIFINI=1 774

is a coset of U = aAIPIHIYI=1 f Alel+181=1~ " Ap element representing the coset is
obtained as follows:
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15.3.14 Theorem. Let (A, B) € ME@L and let &, 3,7 € By be elements represent-
ing a,B,v € A. Then

A(@,3-7) = B(a- B,7) € (&, B,7).

This result shows that Massey products in A are completely determined by
an element (4, B) € M 3,53 ;, which in turn can be obtained by solving equations
in A. Hence we get a computational method to determine (a, 3,~) solving an old
problem of Kristensen and Madsen [Kr4], [KrM2].

15.4 Proof of the uniqueness theorem
According to (15.3.9) the uniqueness theorem is a consequence of the following
result.

15.4.1 Theorem. The following sequence is exact:

. 9]

M 9 >Mg 2>M3.

Here Mg is the F-vector space of all pairs (A4, B) with
A:Fo® Rp — AC A,
B:Rr®Fy— A cA
satisfying equations (15.3.5)(1)...(4), see (15.3.5)(8). We have
(15.4.2) 0*(A,B)=0
if and only if the dual maps
A" AY — Fy ® RY,
B A" — R F;
are (u* : A* — A* ® A*)-derivations of degree +1. That is , for a,b € A* we
have
A*(ab) = A*(a) - p* (0) + (=1)"' " (a) - A*(b)
and the same formula holds if we replace A by B. Here we use the action of A*
on F§ and R} defined in the exact sequences following (15.2.2) above.

Next we describe the equations in (15.3.5) in terms of commutative diagrams
which can be easily dualized. Equation (15.4.3)(1) corresponds to the diagram

(15.4.3) (1) A< ! A® A
A A
(A,B) A®q—T1(q®B)
Fo@Rr® Rr ® Fop < Fo® Rr ® Fo

(1®p,—pu®1)
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where 7 corresponds to the interchange of 3 and p is the multiplication map and
q: F — Ais the quotient map. Next (15.3.5)(2) corresponds to the diagram.

(2) A
A
0 (A,B)
Rr® Rfr (i®1,71®z‘)> FoQ® Rr® Rr® Fo

where i : Ry C Fp is the inclusion. Moreover (15.3.5)(3), (4) corresponds to the
diagram

(3) A® A ! - A
A A
(T(¢g®A),BRq) (A,B)
Fo@Fo@ Rr ® Rr ® Fo® Fo >FoQRr ® Rr® Fo

withzi=(p®1-10u)® (p®1—18 u). In the following definition we dualize
the diagrams (1),(2),(3) above.
Let K5 be the set of all (u* : A* — A* ® A*)-derivations

(15.4.4) C=(A"B"): A" —F; QR &R F;
satisfying

(1) (lop",-p el)0=(A ¢ —(¢" @B )T ),
(2) (*®1,-1®i")C =0,

3) pC = ((¢" @A), B @ ¢" )"

with g* = (p*®1 -1 u*)P® (u* ®1—1® u*). These equations correspond to the
dualization of the diagram (15.4.3)(1), (2), (3). Hence we get the isomorphism

(15.4.5) ker(9% : Mg — M?) = K,
which carries (A, B) to C = (A*, B*), see (15.3.5). Moreover the following diagram
commutes.

(15.4.6) M* 7 = ker(9?: ME — M)

1R
1R
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Here K is the set of all derivations ¢ : A* — R of degree +1 and M' = K!
carries v to the dual v* and ; is the dual of ' in (15.3.6). That is, d; carries ¢
to the pair (A7, B}) with
A* _ * ® T* * ok ,
(15.4.7) - (g f) e

Bl = (o ®@q" )" — p*op.

Here we use the maps in the following diagrams.

A* Y - R: A* Y - R:

\% \% \%
~ Fi @ R A @A - RreF

r’

\%
A*® A*
(" ®¢

By a result of Milnor [Mn] the algebra A* is a free commutative graded algebra
generated by elements x;, i > 1, of degree

29 —1 for p even,
(15.4.8) ni = |z;| =<2p" —1 forpodd,i=2j+1,
2p7 —2 for p odd, i = 2.

We have n; = 1 < ng < ng < ---. Using the generators x1,xs, ... of A* we obtain
the derivations ¢ : A" — R% in K as follows.
For each element a € R} with |a| = n; + 1 there is a unique derivation

(15.4.9) pla): A" — R

of degree +1 satistying ¢(a)(z;) = a and ¢p(a)(z;) = 0 for j # i. Moreover each
derivation ¢ : A* — R} of degree +1 yields a sequence of elements a; = ¢(x;)

such that -
o= ola).
i=1

Here the infinite sum is well defined since ¢(a;)(b) = 0 for b € A* with [b| < n;.
Now Theorem (15.4.1) is a consequence of the following result.

15.4.10 Theorem. 0; in (15.4.6) is surjective.

Proof. We proceed inductively as follows. Let C' € K5. We construct inductively
elements aq,ag, ... such that (see (15.4.9))

(1) Ci =C —Cy, with ¢; = p(a1) + -+ ¢(a;)
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satisfies Cj(n) = 0 for n € A* with |n| < n;y1. This shows that C' = C, so that
01(¢) = C and hence 9, is surjective. We have C;(n) = 0 for |n| < n;y1 if and
only if (see (15.4.8))

(2) Ci(zj) =0 for j <i

since C}; is a derivation. For the case i = 1 we observe

(3) C € K; satisfies C(z1) =0.

Hence for any a1, for example a; = 0, we get C1y = C — C,, with Cy(x1) = 0.
Given C,,—1 we obtain a,, and Cy, in (1) by the following lemma. O

15.4.11 Lemma. Suppose C € K satisfies C(x;) = 0 for i <m. Then there exists
a = am with |a| = Ny, + 1 such that C = C — Cy(q) satisfies C(x;) =0 fori < m.

Proof of (15.4.11). We consider the element
Clrm) = (z,y) € F; @ R ® RF @ F{.
The diagonal u* of A* satisfies

(*) ,U*(xm):1®mm+mm®1+zgé®€;&/
t

with |&], [€)] < |Zm|. Therefore C = (A*, B*) satisfies

A*(&) = 0=B"(&/),
A*(xm) =z, B*(xm)=y.

Now (15.4.4)(1), (2), (3) yield the following equations.

(1) (leop',—p ®1)C(an) =1 p" )z — (" ®1)y
=A"(2m)®1—1® B*(zp)
=r®1-1®y,

(2) "®)z—- 1)y =0,

(3) (Wel-10pr =10 A%(zym) =1z,

(Wel-1eu)y=B(zn)®@1l=y® 1L

We shall show that the equations (1), (2), (3) on the pair (z,y) imply that

there is a = a,, with (z,y) = Cya)(2m) so that C = C — Cy(, satisfies the
proposition. We have by (15.4.7)

(4) Cotatm) = (~*(@) + 1@ a, —p*(a) + a @ 1).
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Here again we use () above. We associate to the equations (1)...(4) the mor-
phisms in the following diagram.
(s5) Ry
8/
\
F3 @ R ® Ry ® F§
8//
\
FEORQFyORrQRy ©Fy @ F; @ R ® Ry @ F5 @ Fy

Recall that 1 denotes the identity of an object and also the unit 1 = I of an
algebra. According to (4) we set

(5) d(a)=(—p*(a) +1®a,—p*(a) +a®1)

and we define the coordinates of 8" (z,y) as in (1), (2) and (3) respectively by
©) eyh=(Qep) 2ol (relytioy

(7) 0"(x,y)2 = (I"@ )z — (1&d")y,

(8) 0"(z,y)s = (W @lr-(1ep)r-10w,

9) (@ yla=Wel)y-(1op)y-yol

We have 8" (z,y) = 0 if and only if (1), (2), (3) are satisfied. Moreover there
exists a = an, with (2,y) = Cy(a)(2m) = 0'(a) if the sequence (x*) above is exact,
that is image(9’) = kernel(9”), in degree n.,, + 1. The sequence (xx*) is exact if and
only if the following dual sequence (x * %) is exact.

(s %) Ry
A
d/:(al)*
Fo@Rr® Rr® Fo
A

d/:(au)*

FoORrFoPRFrOIRFrOFo®@Fo @ Rr ® Rr ®Fo® Fo
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Here d’ and d” are dual to & and 9" respectively and hence d' and d” can be
described as follows. We have the augmentation

62.7:0—>F

which is dual to the inclusion F C F§ given by the unit 1 € F¢ of the algebra F¢.
Therefore 1 in (5)...(7) corresponds by dualization to €. This yields the following
formulas for d’ and d” with o, o', 8,8’ € Fo and =,y € Rr.

(10) d(a@z+y®pB)=ca®zr—ar+y®el—yp,

(1) d(a@zrep)=(a@zf - (a@z) &(f),—ar @ f+e()- (v 0)),

(12)  d"(z®y) = (iz®y,ziy),

(13) d'"(a®d @z)=ad @r—a®dz—cla) (d @),

(14)  d'yesepf)=yses —ye s - (y©p)- (5

Fo = kernel(e : Fy — )

be the augmentation ideal. Then we have Fy = F® Fy and this shows that (%) is
exact in degree n,, + 1 if and only if the left-hand column in the following diagram
is exact in degree n,, + 1.

(o * ) Rr - 7
A A
d2 d2
(ﬁ0®R7@R7®ﬁo)/~=.7'~'0®R]:—|—R]:®.7:—0 >.7}0®.7'-0
A A
d3 d3

Fo@Rr® Fo+ Fo®Fo @ Rr+ Rr @ Fo ® Fo > Fo @ Fo @ Fo

Here the horizontal arrows are the inclusions and dy = p is the multiplication and
ds is given by

(15) dz(a®@BRy)=af®y—a® 3.

The equivalence relation is defined by (iz) ® y ~ « ® (iy). Now we observe
that the right-hand column of the diagram is part of the bar construction B.JFy
of the free algebra Fy, compare for example page 32[A]. Moreover the projection
q : Fo — A induces the short exact sequence of chain complexes

(16) 0 > K >B]-'O q*>BA >0

where K is the kernel of g.. It is easy to see that the left-hand column of (x x* #x)
is part of the chain complex K. The short exact sequence (16) induces the long
exact sequence of homology group

Hs;BF, > HsBA > Hy K > HyBFy
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where H,BF, = 0 for n > 2 since Fy is a free algebra. Hence we have the
isomorphism

(17) HyK =~ H3BA

so that the left-hand column of (x * xx) is exact if and only if (17) is trivial in
degree n,,, + 1. Now -
(HsBA)" = Tor},(F,F)

is dual to the cohomology
H*(BA,F)' = Ext]',(F,F)

of the Steenrod algebra A, see page 28 of [A]. Therefore (17) is trivial in degree
N + 1 since we can use the following result. This completes the proof of (15.4.10).
O

15.4.12 Proposition. The cohomology H3(A) of the Steenrod algebra A is trivial
in degree n; + 1 for i > 1 where n; is defined in (15.4.8).

Proof. Compare [A], [Tal, [Li], [ShY], [No]. In fact, Tangora describes in 1.2[Ta]
a complete list of algebra generators which contribute to H?(A). The degree of
these generators implies the proposition. Tangora proves the result for the prime
p = 2. For odd primes p Liulevicius [Li] proves a result describing a similar list of
generators contributing to H3(A). That this is a complete list needs an extension
of Tangora’s argument to the case of odd primes. O

15.5 Right equivariant cocycle of B
A splitting
u: Rg — B

of B (as defined in (15.1.1)) is a right equivariant splitting if u(z - 3) = u(x) - 8 for
x € Rg, B € By or equivalently if B,(x ® ) =0, see (15.3.2). Moreover a cocycle

{:Rr — A A
in the A-class is a right equivariant cocycle if £(x-3) = &(x)-0(8) for z € Rx, (5 €
Fo or equivalently if Vf =0, see (15.3.10).

15.5.1 Theorem. If the A-class in (15.2.1) contains a right equivariant cocycle &,
then there exists a right equivariant &-splitting of B.

Proof of (15.5.1). We have to show that there exists
(A,B) € Mg,&,L

with B = 0. We construct (A, B) inductively. Since M? ¢, 1s non-empty there is

an element (A, B) with B(z,3) = 0 for |z ® 8| < 2. (Here 8 € F so that we can
use (15.3.5)(4) for =03 =1.)
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Next we assume inductively that there exists

(A,B) € M} ;, with

(1) B(z,8) =0 for [z®@ 0] < N

with N > 4. Then we get for  ® 88’ € R ® Fo with |z ® 86| = N the formula

(2) B(z,38") = B(zB,3") for || > 0.
Therefore
(3) B:(Rr®Fo)n — A

is uniquely determined by its restriction
4) B:(RFr®E)y — A

where EY C Fy is the submodule generated by E 4. We now observe by the following
commutative diagram that the multiplication map p with pu(z ® 8) = = - 8 is
injective.
RFr®E> " >Ry
n n
Fo®FE >Fo

Let K = kernel(d : A — A ® A) be the kernel of the reduced diagonal 4.
Then we can choose a map 7 as in the following commutative diagram.

(5) (Rr ® E)n b ~KcA

(Rr)N

This is possible since p being injective is a direct summand of the vector space.
We define v(x) = 0 for |x| < N so that

(6) B(x, ) = (zp)
for |z ® 8| = N, B € E. Here (6) is satisfied by (5). Now (2) and (6) show that

(7) B(z,B) = y(zp) —v(z) - B
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for |t ® 8| = N and 8 € Fy. The lemma in (15.5.2) below shows that there is a
map

(8) y:Rr — ACA
satisfying v € M such that 7 is an extension of  in (5). Now we define

Al(a,z) = A, z) = (y(az) = (=1)*lar(2)),
B'(z,8) = B(z, ) — (v(zf) — v(x) - B).

Then (A’, B') isalsoin M? . | and (7) shows that B'(z, ) = 0 for [z®@0| < N.
Hence we can proceed inductively to obtain an element (A’, B') € M7, ; with
B’ =0.

15.5.2 Lemma. The map v in (8) exists.

Proof. We first observe that -y satisfies dyz = y4Ax in degree |z| < N. Hence the
dual of v yields a map

Ten i AT — Ry
defined in degree < N such that v 5 is a derivation in degree < N. Now A" is
a free commutative graded algebra generated by the set M of Milnor generators.
Hence there is a unique derivation v* defined for £ € M by

{vzm for |¢] < N,

7O =10 for ¢ > N.

Hence the dual of v* yields the map v in (8). O
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Computation of the
Secondary Hopf Algebra 5

We describe an algorithm which computes the secondary diagonal of B and the
multiplication in the pair algebra B. In the final section we give a multiplication
table in low degrees. This yields a computation of triple Massey products.

16.1 Right equivariant splitting of B

We first observe the following property of the ideal Rr C Fyp.
16.1.1 Proposition. The ideal Rx is a free right Fo-module.

Proof. One can find the result in the book of Cohn [Co] section 2.4. But it is also
easy to see that a basis B of Rx as a free right Fp-module is inductively obtained
as follows. Let By be the set which contains the unique element S¢'Sq' or 33 of
degree 2 and let Co = ¢ be the empty set and let Dy = Bs U Cs. Assume linearly
independent subsets of elements of degree 1,

B;,D; C Fo with B; C D;

are defined for i <n — 1, n > 3. Then let C,, be the union
n—1 .
Cn = 92D7’ . Sqnfz.

One can check that C,, is linearly independent and we can choose a basis D,, of all
elements of degree n in Fy, containing C,,. Let B,, = D,, — C}, be the complement.
Then B = By UBsU---U B, --- is a basis of the free right Fy-module Rr. We
choose the elements of B,, as follows. Consider the set G,, of all elements «a[a, b] of
degree n with o € Mon(E 4). We choose lexicographical ordering of this set so that
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by this ordering G,, = {z1,22,...}. Let k > 1. If x; is not a linear combination
of x1,...,x,_1 and of elements in (), then x; is an element in B,, and these are
all elements of B,,. O

We now choose a basis B of the free right Fyp-module Rz and we choose a lift as
in the following diagram.

Then we get the induced equivariant injections
B ® BO > RBa
pBo > Rp,

with pBy N B ® By = p(B ® By). Hence we have the push out diagram

p(B ® By) ~B® By
v v
pBo > Rp

which is used for the construction of a splitting in the next result.

16.1.2 Theorem. There is a splitting u of B, see (15.1.1), which is right equivariant
with respect to the action of By.

Proof. We choose a lift as in the diagram

B

B > Rp
which defines the right equivariant map

uy : B® By — Bi.
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Moreover we define
ug : pBy — B

as in (15.1.1) by u(pa) = [p] - . Then u; and ug coincide on the intersection
p(B ® By) since for z € B, a € By,

ui(p(r ® @) = p(ur(z) - @) = [p| - 2 - o = ua(p(x - @)).
Therefore the section u = u; U usg is well defined and right equivariant. O

We consider the following diagram where u is a splitting of B as in (15.1.1) and
uy is defined as in (15.1.3).

A1 ~
Bl > (B®B)1
A A
u Uy
R A > R%

16.1.3 Theorem. If the prime p is odd, there exists a splitting u of B which is right
equivariant with respect to the action of By and for which the diagram commutes.

Proof. 1If p is odd we know that the symmetry operator S = 0 is trivial. Hence the
A-class of B is trivial by (15.2.1). Hence by definition of the A-class we obtain the
result. Here we use (15.5.1). O

We now consider the case that the prime p is even. In this case the symmetry
operator S is non-trivial and computed in (14.5.2). We consider the following
diagram where £ is a linear map of degree —1.

(16.1.4) Ry 2 >RroA® A® Ry
5 ¢ (€1,10€)
v S1+106 v
Aod=< . AsA ~A®A® A

Here A is induced by A : Fy — Fo ® Fo.

16.1.5 Theorem. Assume the prime p is even. Then there is a right Fo-equivariant
map of degree —1,
E:Rr — ARACA®A,
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for which the diagram above commutes. Moreover for each such £ there exists a
splitting u = u¢ associated to & such that u is right By-equivariant and

Ay = ugAg + 3¢

holds where we use Rg — Rr.

Proof. Using the right equivariant splitting » in (16.1.2) we obtain a right equiv-
ariant £ by the formula Aju = uyAg + X&. Moreover given { we obtain ue by
(15.5.1). O

The diagonal A in (16.1.4) has a left and a right part A and Ag respectively, so
that

AZ(AR,AL):R]:—>R_7:®A@A®R]:
(16.1.6) with Agp:Rr — Rr®A,
Ap:Rr— AQ Ry
satisfying TAy;, = Ar. We define
A':Rr — RroA
by Agr(z) =21+ A(x)

so that the reduced diagonal A is given by (A, TA). A list of values A’[a, b] for
the prime 2 is given as follows.

A'[1,1]=0
A'[L,2] = [1,1] ® Sq'

A'[1,3] = [1,1] @ Sq” +[1,2] ® Sq'
A'12,2] = [1,1] ® Sq® +[1,2] ® Sq'

A'[1,4] = [1,1] ® Sq® +[1,2] @ Sq° +[1, 3] ® Sq"
A'12,3] =[1,3] ® Sq" +[2,2] ® Sq’
A'[3,2] = [1,1] ® Sq4° Sq" +[1,2] ® Sq® +[2, 2] ® Sq*

A'[1,5] = [1,1] ® Sq* +[1,2] ® Sq® +[1, 3] ® Sq* +[1,4] ® Sq*

A'[2,4] = [1,1] @ Sq* +[1,2] ® Sq* +[2, 2] ® Sq® +[1,4] ® Sq* +[2, 3] ® Sq*

A'[3,3] = [1,1] @ Sq" +[1,1] ® Sq” Sq" +[1,2] ® Sq” Sq" +[1, 3] ® Sq” +[2,3] ® Sq'
+13,2] ® Sq*

A'[1,6] = [1,1] ® Sq° +[1,2] ® Sq* +[1, 3] ® Sq® +[1,4] ® Sq* +[1, 5] ® Sq*
A'[2,5] = [1,3] @ Sq® +[2,2] ® Sq* +[2, 3] ® Sq® +[1, 5] ® Sq* +[2,4] ® Sq*
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A'[3,4] = [1,1] ® Sq° +[1,1] ® Sq* Sq" +[1, 2] ® Sq® Sq* +[1,3] ® Sq° Sq" +]1, 4] ® S¢*
+ 12,2l ®Sq® +[3,2] ® Sq° +[2,4] ® Sq" +[3,3] ® Sq*

A'[4,3] = [1,1] ® Sq* Sq* +[1,2] ® Sq* +[1, 2] ® Sq® Sq* +[1, 3] ® Sq*
+[2,2] ®Sq® +[2,2] © Sq” Sq" +[2,3] © Sq* +[3,2] ® Sq” +[3,3] ® Sq'

A'[1,7) = [1,1] ® Sq® +[1,2] ® Sq° +[1, 3] ® Sq* +[1,4] ® Sq® +[1, 5] ® Sq* +[1, 6] ® Sq'
A'[2,6] = [1,1] ® Sq° +[1, 2] ® Sq” +[2,2] ® Sq* +[1,4] ® Sq® +[2, 3] ® Sq” +[2, 4] ® Sq°
+[1,6] ® Sq' +[2,5] ® Sq'
A'[3,5] = [1,1] ® Sq° Sq' +[1,2] ® Sq° +[1, 2] ® Sq”* Sq' +[1, 3] ® Sq* Sq*
+[1,4] ® Sqa* Sq' +[2,3] ® Sq® +[3,2] ® Sq* +[1, 5] ® Sq° +[3, 3] ® Sq*
+2,5]®Sq" +[3,4] © Sq"
A'[4,4] = [1,1] ® S¢° +[1,2] ® Sq® +[1, 3] ® Sq° Sq" +[2,2] ® Sq* +[2,2] ® S¢® Sq*
+ (1,4 ® Sq® +[2, 3] ® Sq° Sq" +[2,4] ® Sq® +[3,4] ® Sq* +[4, 3] ® Sq*
A'[5,3] = [1,1] ® Sq* Sq® +[1,2] ® Sq* Sq* +[1,3] ® Sq* +[2,2] ® Sq® Sq* +[2, 3] ® S¢®
+ 13,2l ® Sq® Sq' +[3,3] ® Sq° +[4, 3] ® Sq*

A'[1,8] = [1,1] ® Sq" +[1,2] ® Sq® +[1,3] ® Sq” +[1,4] ® Sq* +[1, 5] ® Sq” +[1, 6] ® Sq”
+[1,7) ®Sq

A'12,7) =[1,3] @ Sq” +[2,2] ® Sq° +[2, 3] ® Sq* +[1, 5] ® Sq® +[2,4] ® Sq*
+12,5] ® Sq® +[1, 7 ® Sq* +[2,6] ® Sq*

A'[3,6] = [1,1] ® Sq° Sq" +[1,2] ® Sq° +[1, 2] ® Sq° Sq* +[1,3] ® Sq° +[1, 3] ® Sq”* Sq*
+[2,2] ®Sq” +([1,4] ® Sa* Sa' +(3,2] ® Sq* +[1,5] @ Sq” Sq" +[2,4] © Sq°
+13,3] ® Sq* +[1, 6] ® Sq° +[3,4] ® Sq* +[2, 6] ® Sq* +[3, 5] ® Sq*

A'[4,5] = [1,1] ® Sq°® Sq' +[1,2] ® Sq° +[1, 2] ® Sq° Sq' +[2,2] ® Sq* Sq*
+[1,4] ® Sq® Sq* +[2, 3] ® Sq® Sq* +[3,2] ® Sq* +[1,5] ® Sq® +[2, 4] ® Sq* Sq*
+[3,3] ® Sq* +[2, 5] ® Sq® +[4, 3] ® Sq* +[3, 5] ® Sq' +[4, 4] ® Sq'

A'5,4] = [1,1] ® Sq” Sq” +[1, 1] ® Sq°® Sq" +[1,2] ® Sq°® +[1, 2] ® Sq* Sq°
+[1,3] ®Sq" Sq' +2,2] ® Sq° +[1,4] ® Sq* +[2, 3] ® Sq® Sq' +[3,2] ® Sq*
+[3,2] ® Sq” Sq" +[2,4] @ Sq® +[3, 3] ® Sq” Sq" +[3,4] ® Sq”

+ 4,4 ®Sq" +[5,3] ® Sq"
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16.2 Computation of ¢ and the diagonal A; of B

We describe a cocycle £ = £g in (16.1.5) only in terms of the symmetry operator S.
We shall present an explicit formula for £ and we show that £g is right equivariant.
For p odd we have & = 0 so that we only need to consider the case p even.

Let A = A" be the dual of the Steenrod algebra and let M = R’% and
F = F5. Then A and F are commutative algebras and M is an A-bimodule
satisfying a-m =m -a for a € A, m € M. We have the exact sequence

(16.2.1) 0 —A—F—M—70

as in Section (15.2). Given £ as in (16.1.5) we obtain the dual map with suspension
XM =M,

(1) &=D:AA— M
which is a normalized cocycle (see (15.2.4)) with

(2) Da®b)+Db®a)=Cla®Db).
Here C is the dual of the symmetry operator

(3) S*=C:A®A— M.
We associate with D the algebra extension

(4) 0 M >F > A >0

Ao M
with the algebra structure in E defined by the formula (a,a’ € A,m,m’ € M)
(5) (a,m) - (a’,m') = (ad’,am’ + ma' + D(a,d’)).

Here we set a - (Xm) = X(a - m) for m € M. The commutator in the algebra E
satisfies

(6) (CL, m) ’ (CL/, m/) - (a/v m/) ) (avm) = (Ov O(CL, Cl/))

so that S* = C in (3) is the commutator map in E. Since commutators [z,y] =
xy — yx satisly [za',y] = z[2/,y] + [z,y]z’ we see that C is a derivation in each
variable, that is

(7) C(ab,a’) = aC(b,a’) 4+ C(a,a’)b.
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16.2.2 Definition. The algebra A is a polynomial algebra generated by the Milnor
generators (;, i > 1, of degree |(;| = 2 — 1. Hence a basis of A is given by the
elements

(1) =G

with n = (n1,ne,...) and n; > 0 and only finitely many n; # 0. We define a linear
section

(2) s:A— F
for the algebra extension (16.2.1)(4) as follows. Let s(¢;) = e; = ((;,0) and let
3) S = el e =

Here the right-hand side is given by multiplication in E. The section s, in general,
does not coincide with the inclusion A C A @ M. In terms of the section s we
obtain a new cocycle

(4) Ds:A®A— M,

Ds(a ®b) = s(ab) — s(a) - s(b).
Now we define {g to be the dual of Dg, namely
(5) &s=D5:Rr — A® A of degree — 1.

16.2.3 Theorem. The map & = &g defined in (16.2.2) is completely determined by
the symmetry operator S. Moreover diagram (16.1.4) commutes for £ = £€s and &g
is right equivariant with respect to the action of Fy. Hence by (16.1.5) there is a
right equivariant splitting u = ug of B associated to £ = Eg.

Remark. Theorem (16.2.3) is compatible with the main result of Kristensen (the-
orem 3.3 in [Kr4]). In fact, Kristensen defines elements in A ® A of the form

Kla,b] = (Sq' ®(Sq® Sq" +Sq?)) - 6(Yap)
with Y, , € A given by the formula
Ya7b — Sqa—3 qu—2 4 Sqa—2 qu—3

—1—4 ) ) ) )
i Z (b ..]> (Sqa+b_J_3 ng—2 + Sqa+b—]—2 qu_g).
J

One can check that the Kristensen elements satisfy the formulas

Sla,b] = (14 T)K]Ja,b], and
&sla,b) = TK]Ja, bl.

Here S is described in (14.5.2) and g is the map above in (16.2.2).
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One can compute the diagonal A; of B in terms of the splitting ug, that is
(1624) Ajug = (US)ﬁAO + 3¢s.

Compare (16.1.5). In order to compute £s we first determine Dg in (16.2.2) by
the following formula. For n = (nq,ne,...) and m = (mq,ma,...) let n +m =
(n1 +m1,n2+ma,...). Then we have the product in the commutative algebra A
given by

Cn . Cn — <n+m

and hence we get

Ds(¢" ®¢™) = s(¢"™) = s(¢")s(¢™)

— ener +en _em

= () e )
="t pelt e (e ) (e52...)+ el C(¢y? ..., (" )ex . ...
Here we use the commutator rule (16.2.1)(6). Hence we get inductively the formula

(16.2.5) Dg Cn ® C Z<n1+m1 B Cni 1+mi— 1<n10(<:i-{1 o ’szi)cz’ilf—l o
i>1

This formula shows that Dg is completely determined by C and hence by S.
Therefore also &g, the dual of Dg, is completely determined by S. We obtain a
formula for g as follows. Let

Sq" e A
be the Milnor generator dual to (" € A = A*. Then the elements Sq" form a basis
of A and for x € A we denote by (x), € F the coordinate of = at the basis element

Sq™ so that
T = Z(m)n Sq™.

n

Similarly we denote coordinates of x € A® A by (2)n,m and coordinates of x €
AR AR ADY (T)n,m.k-
Recall that we have the left coaction Ay, in (16.1.6). Then the map

(s Rrp — AR A
defined in (16.2.2) is given by the coordinates, z € Rz,

(16.2.6) (€ @))nm = (1@ S)ALE)) k(1) 0000
i>1
k(l) = (nl + My, ., M1 M1, Ny, M1, Mig2, . .. ),
a(i) = (97 “ee 797 M1, it 2y - -+ )5

b(i) = (0,,0,m;,0,0...).
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This formula of £g is easily checked to be the dual of Dg in (16.2.5). Thus &g is
completely determined by Ay and the symmetry operator S computed in Section
(14.5).

Proof of (16.2.3). We use (16.2.6) and the fact that Dg is a cocycle representing
the extension (16.2.1)(4). This shows that diagram (16.1.4) commutes for £ = £g.
Hence it remains to check that &g is right equivariant. This follows from the next
lemma. U

16.2.7 Lemma. The following diagram commutes.

Rr & A A

A A
Hp

a ARFo@ AR Fy
A
1RT®1

A
Rr® Fy o€ > AR AR Fy® Fo

Here 1 is given by the multiplication of A and a is the right action of Fy on Rr.

Proof. We check that the following dual diagram commutes with D = Dg dual to
§=2¢s.

(1) M < A® A
preu
v
ot AQFQAQF
1RT®1
y Ds@A® y
M®F < AQAQFQF

Compare the notation in (16.2.1). Using the extension (16.2.1)(4) we get the fol-
lowing diagram.

(2) M >M@F
\ b \
FE >EQF
7 A
s s®1
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Here we have E = A@® M and b = p* @ a*. The map p* is given by the Milnor
diagonal of A which is the unique algebra map satisfying

(3) w(G) = @G
=0

Here we use the inclusion A C F' which is dual to 7y — A. The multiplication of
E is defined in (16.2.1)(5) in terms of D with D = £* where £ is right equivariant
asin (16.1.5). Since ¢ is right equivariant we observe that b = p* @ a* is an algebra
map. The section s is defined as in (16.2.2). We claim that

4) bs = (s® 1)p*.

Assuming (4) we see that by definition of Dg in (16.2.2)(4) diagram (1) commutes.
Finally we obtain (4) as follows. Since the commutator map C' is a derivation we
get _ _

Cle? ®a)=2a*"1C(a®a)=0 forj > 1.
Hence we have in E the equation

¥ x=x-é¢ forj > 1.

This implies by (3) and the definition of s in (16.2.2) that (4) holds. O

16.3 The multiplication in B

We know that B; is a Bp-bimodule. This bimodule is determined by a multiplica-
tion map A as follows. Let

L:A®Rp — AR A

be given by the left action operator L in (14.4.3) with L = 0 for p odd. Moreover
let
§=8s:Rp— A0 A

be defined by &g in (16.2.2) with £ = 0 for p odd.

16.3.1 Definition. A multiplication map (associated to L and ) is a linear map of
degree —1,
A: AR Rg — A,

satisfying the following properties with «, o, 3, 3’ € By and z,y € Rp. Recall that
via By — A an element o € By yields the corresponding element in 4 also denoted
by «.

(1) A, z3) = Ao, )3,

(2) Alad,2) = Aa, o/ z) + (=D)*laA(/, 2),

(3) Ao, pB) = —k(a) - B.
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Next we consider the diagram

A AR A

A A
A Ay
A® Rp oA > A® R%

where the induced map Ay is defined by

Aj(a®@x ®,@I) = Z(_l)la;/“w‘A(O&;,x) ® (ag/ /)’

i

Ala@pay) =Y (~1)7(dp) @ A, y),

A
with ; = |of'[|8] + |of| + |5] and

5(a) :Z%@ag’ e A® A

Then the following property holds:

4) JA=A4(1®A)+ L+ V.

Here L is the left action operator and V¢ is defined as in (15.3.10) by
Ve:Bo® Rg — A® A,

Ve(a®z) = (0a) - {(z) —{(a - x).
We have L = 0 and V¢ = 0 if p is odd. Recall that the reduced diagonals

b A— A® A,

A:Bo—>BQ®BO

are defined by

0(a)=90a) - (1®a+a®l),
Ala)=Al0) —(1®@a+a®1).
We can rewrite formula (4) by the equivalent equation
dA(a®x) = Ay(a® Az) + L(a® x) + Ve(a ® 2)
%) + > ((-1)/%a; © AGy,2) + (—1) I AGy, 2) © &)
J

for A(a) = >0y ® &; with |&;l, | ] < |al.
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We say that two multiplication maps A and A’ as in (16.3.1) are equivalent
if there exists a linear map of degree —1,

(16.3.2) v:Rr — A

satisfying the properties

(1) Ala @) - Ala®a) = (az) - (~1)la - y(a).

Moreover 7 is right equivariant with respect to the action of Fy and the diagram

)

(2) A >A® A
A A
¥ Vi
R]: A > R%_—

commutes with R = Rr ® Fo + Fo ® Rr C Fo ® Fo and

V(T @ B) =v(r) ® B,
yla®y) = (-1 y(y),

for x,y € Ry and o, € Fy. Commutativity of the diagram is equivalent to
the condition that the dual map v* : A* — R} is a derivation, and also to the
following equation corresponding to (14.6.1)(5):

3) 0v(x) = 1A(2).
We now get the result:

16.3.3 Theorem. There exists a multiplication map A and two such multiplication
maps are equivalent.

Proof. Using (15.3.5) we see that a B-structure (A, B) with B = 0 is the same as
a multiplication map. In fact, since B = 0, we see by (15.3.5)(2) that A(z,y) =0
for x,y € Rp. Hence the exactness of the row in the following diagram shows that
A induces a multiplication map also denoted by A.

Rp ® Rp > By ® Rp > A® Rp >0
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A B-structure (A4, B) with B = 0 exists by setting
a-u(z) —u(a-z) = ZA(a® )

where u = ug is the right equivariant splitting in (16.1.5). Two such sections yield
equivalent multiplication maps. Now the uniqueness theorem (15.3.13) yields the
result, see also (15.3.10). O

We obtain by (15.3.14) the next result on triple Massey products.

16.3.4 Corollary. Let A be a multiplication map and let («, 3,7) be defined for
a, B,y € A, af =0, By =0. If B, ¥ € By are elements representing 3, =y, then

-7 € Rp and -
A(O[,ﬂ ’7) € <a7577>'

Hence a computation of the multiplication map A yields the computation of all
triple Massey products in the Steenrod algebra.

16.4 Computation of the multiplication map

We only consider the case p = 2 so that F = Z/27Z and G = Z/4Z leaving the case
p= odd to the reader. Let
x:F—G

be the function with x(0) = 0 and x(1) = 1. We define for 0 < a < 2b the relation
[a,b] € R C T(;,(EA),

/2
16.4.1 =Sq*Sq” o atb=kgqk .
(16.4.1) [a,b] = Sq“ Sq +kz_ox( a_%)Sq Sq

Let E}4 be the subset of Rp consisting of the elements p = p- 1 and [a, b] for
0 < a < 2b. Then the function
(16.4.2) By ® EY ® By — Rg,

which carries a®@x® 3 to a-x- 3, is surjective since Rp is the ideal in By generated
by E}4 The reduced diagonal

AZA:BQ—>BQ®BQ

yields for Ala, b] the following result. Here we set [a,b] = 0 for a = 0 or a > 2b.

16.4.3 Proposition. The element Ala,b] € By ® By is a linear combination

Ala,b] = pUab—i—Z (ne)[r, 8] @ Sq* Sq” +x(m¢) Sq" Sq* ®u, v])
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where the p-term Ula, b] is a linear combination
Ula,b] = Z 1:Sq" Sq® ® Sq* Sq* .
t

The sums are taken over all t = (r,s,u,v) with r,s,u,v >0 and ny, my,l; € F.

Proof. We consider the following commutative diagram.

(1) By 2 Byw By
Y X Y
Fo Aro Fo ® Fo

It is easy to see that Ag[a,b] is a linear combination

(2) Arla,b) = Z(nt [r, s] ® Sq" Sq” +m: Sq" Sq° ®[u, v])

t

with ng,m; € F. Let (Ag[a,b]), be the same sum with n;, m; replaced by x(n:),
resp. x(m¢). Then there is an element Ula, b] € By such that

(3) Agla,t] = (Axla, M)y + pUla, -
This yields the canonical form of the p-term Ula, b] in Fy. O

Examples of the terms Ula, b] considered as elements in A ® A are given in the
following table.

Ull,1] = Sq' ®Sq*

U[1,2] =Sq' ®Sq” +Sq”> ®Sq'

U[L,3] = Sq' ®Sq® +Sq°> ®Sq® + Sq® ® Sq*
U[2,2] = Sq' ®Sq” Sq" +Sq” ®Sq” +Sq¢° Sq' ® Sq'

U[1,4] = Sq' ®Sq* +Sq° ® Sq* + Sq° ® S +Sq* ® Sq*
U[2,3] = Sq® ® Sq” +Sq” ® Sq” Sq' +8q” ® Sq” +Sq” Sq' ®Sq”
U[3,2] =0

U[1,5] = Sq' ®Sq” +Sq” ® Sq* + Sq” ® Sq” + Sq* ® Sq” +Sq° ® Sq'
U[2,4] = Sq* ®Sq” Sq' +Sq” Sq' ® Sq®
U[3,3] = Sq” ®Sq" +Sq4” ®Sq” Sq* +Sq” ® Sq” +Sq” ® Sq” + S¢” Sq* ® Sq”
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U[1,6] = Sq' ®Sq° +Sq° ®Sq” + Sq® © Sq* + Sq* ® S¢® +5q° ® Sq® +Sq° @ Sq'
U[2,5] = Sq° ®Sq° +Sq* ® 84> Sq" 4+ Sq° ® Sq* + Sq° Sq' ® Sq*
U[3,4] = Sq® ®Sq” +Sq° ®Sq* Sq' +S¢® ® Sq* +Sq* ® S¢® + Sq° ® Sq® + Sq* Sq* ® Sq?
Ul4,3] = Sq' ®9q*Sq® +Sq° ®Sq* +S¢® ® Sq® Sq' + Sq* ® Sq® + Sq° Sq* ® Sq?
+ Sq4 Sq2 ® Sql

U[1,7 =8Sq" ®Sq" +Sq” ®Sq° + 8¢ ® Sq° + Sq* ® Sq* +Sq¢° ® Sq” + Sq° ® Sq°
+Sq" ®Sq"

U[2,6] = Sq* ®Sq" +Sq” ®Sq” Sq' +8q¢° Sq"' ® Sq°

U[3,5] = Sq® ®Sq” Sq* + Sq® ® S¢° + Sq* ® Sq® Sq* + S¢° ® S¢® + S¢® Sq* ® Sq*
+5¢°Sq" ® Sq®

U[4,4] = Sq® ® Sq° +8¢° ®Sq* Sq” +Sq” ® Sq* Sq' +Sq* ®Sq* +Sq* ® Sq” Sq'
+ Sq6 ® Sq2 + Sq3 Sql ® Sq4 + Sq3 Sql ® Sq3 Sql + Sq4 Sql ® Sq3
+ Sq4 Sq2 ® Sq2

Ul5,3] = Sq® ®Sq* Sq* +Sq® Sq* @ Sq® Sq* + Sq* Sq* ® Sq®

U[1,8 = Sq' ®8q° +Sq° ®Sq" + Sq® ©Sq® +Sq* ® S¢° +8q° ® Sq*
+5¢° ®Sq® +Sq” ®Sq® + Sq® ® Sq*
U[2,7 =S¢ ®Sq" +5q¢° ® 84 Sq' +Sq” ® Sq” +5q° Sq* ® S¢°
U[3,6] = Sq° ®5q° Sq" 4+ S¢® ®Sq° 4+ Sq* ®Sq* Sq" +S¢°® ® Sq* +Sq* Sq' ® Sq*
+ SqG Sql ® Sq2
Ul4,5] = Sq2 ® Sq6 Sqt+S¢° ® Sq4 Sq2 + Sq4 ®Sq° +S¢° ® Sq4 + Sq3 Sq' ® Sq4 Sq*
+ Sq4 Sql ® SqB Sql + Sq4 Sq2 ® SqB + Sq6 Sql ® Sq2
U5,4] = Sq” ®Sq” Sq® + Sq® ® Sq°® Sq" + Sq* ® Sq® +Sq* ® Sq* Sq* + Sq° ® Sq*
+ Sq5 ® Sq3 Sql + Sq3 Sql ® Sq5 + Sq4 Sql ® Sq4 + Sq5 Sq2 ® Sq2
+ Sq6 Sql ® Sq2

The reduced diagonal Ar of Fy induces the quotient map A in the diagram

Af

4) Fo >Fo® Fo
U U
R]: > R_%_—
A

¥
Rr e AP AR® Rr
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with Z[a, b] also given by

(5) z[a, b = Z(nt [r, s] ® Sq" Sq” +m: Sq" Sq° ®[u, v])

t
with n; and m; as in the proof of (16.3.3). The map A in (4) has two coordinates
A(z) = (A (2), TA'(z)) forz € Rr

with A’ as in (16.1.6).
Given a multiplication map (see (16.3.1))

A: AR — A
we obtain for 0 < a < 2b the multiplication function (associated to L and &)
(16.4.4) Agp: A— A
This is the linear map of degree a + b — 1 defined by
Agp(a) = Ala ® [a,b)).

The family of multiplication functions {A,} determines the multiplication map
A uniquely by the following commutative diagram.

(1) kernel(q) C A® (By ® EY ® By) ! > A® Rp

b
b

A

Here ¢ is defined by (16.4.2). The map A is defined according to (16.3.1)(1)(2) by
the formulas

Ala®d = k(a) - /B,
2 { (@ ©p®p) =n(a) o

Ala® o' ®[a,b] ® B) = (Aap(aa’) + adqp(a’)) - B.
Here we use the algebra map By — A and the image of a € By in A is also denoted

by a.
We express for a € A the reduced diagonal § applied to « by the formula

(3) 5(a) = Z &y @ aj



16.4. Computation of the multiplication map 415

with |&;|, |&;] > 0. On the other hand the diagonal § is written as

(4) §(a)zg(a)+l®a+a®122a2®ag’.

Moreover, recall that we have by (16.4.3) the elements
(5) Ula,bje AR A

given by Ula,b] € Fo ® Fy via the quotient map Fy — A.
Now we get by (16.3.1)(5) the following A-formula for the multiplication
functions Agp.

16.4.5 Theorem. The family of multiplication functions A, associated to L and
& = &g satisfies the A-formula in A ® A:

gAa,b(a) = Lla®a,b]) + &(a - [a,b]) + a - &([a, b))
+ (0k(@)) - Ula,b) + W(a ® [a, b])

with
W(a®a,b]) =) & @ Aap(dy) + Aap(d;) ® d;

J
+ Z(ntArys(oc;) ® oy Sq" Sq” +ma; Sq" Sq° @Ay, (o).
ti
Here ng, my are the coefficients in the formula (16.4.3)(5) with t = (r, s, u,v). We
set Agp, =0 fora=0 ora > 20b.
The A-formula can be used for the inductive computation of A, ().

Proof. The formula in the theorem is a reformulation of the formula (16.3.1)(5).
U

16.4.6 Theorem. Consider a family of functions
Aa,b : .A e A

of degree a +b — 1 with 0 < a < 2b satisfying the A-formula (16.4.5) and assume
the map A in (16.4.4)(2) defined by the family {Aqp} satisfies the kernel condition

A(z) =0 for z € kernel(q)

as in (16.4.4)(1). Then A induces via (16.4.4)(1) a multiplication map A and vice
versa a multiplication map A yields a family {Aqp} with these properties.



416 Chapter 16. Computation of the Secondary Hopf Algebra B

The theorem gives an inductive method for the computation of a multiplica-
tion map A. If A, () is computed for a+b+|a| < n, then we get for a+b+|a| =n
the A-formula 6 A, () = (terms already computed) and we can choose a solution
Agp(a) of this formula.

We point out that the kernel of 6 : A — A® A is generated by the elements
Q; of degree 2° — 1, i > 1, which are dual to the Milnor generators of the algebra
A*. One obtains Q; = Sq®%V inductively by the formula (see [Mn])

{Qi = Sq17

16.4.7 i i
( ) Qi+1=5¢> - Qi +Q;-Sq*, i>1.

Hence in the induction procedure above the element A, ;(a) is uniquely deter-
mined for a + b+ |a| # 2.

16.4.8 Proposition. Let A, () be given for a+ b+ |a] < n = 2 such that the
A-formula holds and the kernel condition A(z) =0 for z € kernel(q) and [z| < n
is satisfied. Then there exists a multiplication map A such that

Al ® [a,b]) = Agp()

fora+b+|al <n.

Proof. Assume the result holds for n = 2¢. Then the A-formula yields for a + b +
la| < m = 2'! unique elements A, ;(«) and

Al ® [a,b]) = Agp(a) = Agp(a)

holds. We now choose for a+b+|a| = m elements A, ;(a) such that the A-formula
holds and such that the kernel condition

(1) A(z) =0 for |z| = m, z € kernel(q)
holds. Then A induces
(2) A™: (A® Rp)S™ — A

and A™ — A = V is defined in degree < m with V(a,z) = 0 for |a| + |z| < m.
The argument that 97 in (15.4.10) is surjective shows that there exists

(3) v:RF™ — A with
v=0 in degree < m,
0y = 1A in degree < m,

V(a, z) = y(az) + ay(z),
v(xB) = v(x) - B

for |a|, |8] < m — |x|.
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The following lemma shows that there is an extension
(4) v Rr — A

of (3) in degree > m such that the extension is an equivalence as in (16.3.2). Hence

we obtain a multiplication map A by
(5) Alo, z) = A(a, ) +v(az) + ary(z)

and we have A= Amin degree < m. This completes the proof of (16.4.8). O
16.4.9 Lemma. An equivalence vy extending (3) exists.

Proof. We define the dual of ~,

(7) v A — R,

in degree < m — 1 by the dual of (3). Let {x be the Milnor generator in A* of
degree 2F~!. Then ~*, being a derivation, is determined by v*(¢x) for & > 1.
We set 7*(Cx) = 0 for 28 > m = 21, Then ~* is well defined and ~ satisfies

(16.3.2)(1). We have to check that also (16.3.2)(3) holds for . This is equivalent
to the commutative diagram

(8) Ao A = A
A A

Y®q Y

Rr® Fo > Rr

where i and v are given by multiplication. The dual of the diagram is as follows.

(9) A* @ A* < - A*
7 ®q 7"
\ \4
Rr@Fy< Rz

According to Milnor the diagonal p* of A* satisfies the formula

k .
(10) pEG) =Y Gl
j=0
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We have to check that diagram (9) commutes on generators (. This is clear by
(3) for 2 < m. For 2 > m = 27+ that is k > i + 1, we have to check

(11) (V" ®q)u () =0

since v*((x) = 0. Since also v*({x) = 0 for k < i+ 1 we get by (10)

(12) (v @ q ) (G) =7 (GL) © a*G

for k—j=1i+41, j > 0. Now v* is derivation where the bimodule structure of R}

is given by the co-commutative diagonal of Fy. Therefore we have for ¢ = (x—;
and t = 27 the formula

t—1
(¢ = 3 (¢
13) o
=) Q=TI =0
1=0
since t is even. O

16.5 Admissible relations
We consider the case that the prime p is even. Then the admissible monomials
(16.5.1) Sq®t---Sq*  with ay > 2as,...,ax_1 > 2ag

form a basis of the Steenrod algebra A. The basis yields the F-linear section s of
the algebra map g,

(1) A °>F T=A gs=1

with s(Sq®* ---Sq“*) = Sq® -+ - Sq** for each admissible word Sq** - - - Sq** in A.
In addition let 0 < ar < 2a. Then the admissible relations are the elements

(2) [a1,...,ak,a] = Sq** ---Sq* Sq* +s¢(Sq™ - --Sq** Sq”) € Rg.

For k = 1 this is the Adem relation [a1,a]. Moreover the preadmissible relations
are the elements

(3) Sq*t - --Sq**~[ag,a] € Rr.
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The next result was pointed out to the author by Mamuka Jibladze, see (16.1.1).

16.5.2 Proposition. The set AR of all admissible relations and the set PAR of all
preadmissible relations both are a basis of the free right Fy-module Rx. Moreover
we have the formula in Rr,

[a1,...,ak,a] = Sq** ---Sq**'[ag, a +Za-ﬂa,

where the sum is taken over all @ € AR with a < [aq,...,ak,a] and B, € Fy.
Here the ordering of AR is the lexicographical ordering from the right.

The formula is easily checked by the definition of the Adem relation. The
basis PAR of Rz as a right Fy-module yields the section § of the multiplication g,

(16.5.3) Rr ‘>FoE'@F '>Rr ¢i=1.

Here E! is in the set of Adem relations and ¢ carries a ® [a,b] ® 3 to ala, bla.
Moreover § is the unique map of right Fyp-modules satisfying

3(Sq™ - --Sq**tlag,a]) = Sq™ - - - Sq*** ®lag,a] ® 1
for all preadmissible relations in PAR. The elements
x—38qr withz =a®[a,b ®

and « , 8 € Mon(E 4) generate the kernel of g.
Since the preadmissible relations form a basis of the free right Fy-module
Rx, we can write for each monomial 8 € Mon(E 4) in a unique way

(1654) ,@[a, b] = Zai[ai, bl]ﬁz in .7:0
with a;[a;, b;] preadmissible. A list of examples for such equations is given in the
following table.

Sq'[1,1] = [1,1] Sq"

Sq'[1,2] = [1,1] Sq” +1, 3]

Sq'[1,3] = [1,1] 8¢

Sq'(2,2] = [1,2] Sq® +[1, 3] Sq* +[3, 2]
Sq®Sq'[1,1] = Sq*[1,1] Sq*

Sq'[1,4] = [1,1] Sq* +[1, 5]

Sq'[2,3] = [1,2] Sq® +[1,4] Sq" +[1,5] + [3, 3]

Sq'[3,2] = [1,3] Sq®
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Sa®(2,2] = [2,2] Sq® +[2, 3] Sq' +[3, 3] + Sq[1, 1] + Sq’[1, 2]
Sq%Sq'[1,2] = Sq?[1, 1] Sq* + Sq*[1, 3]

Sq*[2,2] = [3,2]Sq” +[3, 3] Sq" +Sq°[1,1]

Sq'[1,5] = [1,1] S¢°
Sq'[2,4] = [1,2] Sq* +[1, 5] Sq +[1,6] + [3, 4]
Sq'[3,3] = [1, 3] Sq* +[1, 5] Sq
Sq?[2,3] = [2,2] Sq® +[2,4] Sq* +[2,5] + Sq°[1, 1] + S¢®[1, 3]
Sq*[3,2] = [2,3] Sq” +[4, 3] + Sq*[1, 2]
[ ]
Sq? Sq'[1,3] = qu[l, 1] Sq®
Sq® Sq'[2,2] = [2,3] Sa® +Sq°[1, 2] Sq* + Sq*[1, 3] Sq* +[4, 3] + Sq*[1, 2]
Sq'[1,6] = [1,1] Sq® +[1, 7]
Sq'(2, 5] = [1,2] Sq” +[1, 6] Sq" +[3, 5]
Sq'[3,4] = [1,3]Sq* +[1,7]
Sq'[4,3] = [1,4]Sq” +[1, 5] Sq® +[5, 3]
Sq?[2,4] = [2,2] Sq* +[2,5] Sq* +[2, 6] + [3,5] + Sq°[1, 1] + Sq*[1, 4]
Sq*[3,3] = [2,3]Sq® +[2,5] Sq" +[5,3] + Sq°[1, 1] + Sq™[1, 3]
Sq*[2,3] = [3,2]Sq® +[3,4] Sq" +[3, 5]
Sq’[3,2] = [3,3] Sq” +[5, 3] + Sq°[1, 2]
Sq® Sq'[1,4] = Sq°[1,1] Sq* + S¢[1, 5]
Sq”Sq'[2,3] = [2,3]Sq® +Sq*[1, 2] Sq® +[2, 5] Sq" +Sq*[1, 4] Sq" +[5,3] + Sq°[1, 1]
+Sq*[1, 3] + Sq*[1, 5]
Sq*Sq* [3,2] = qu[l, 3] Sq?
1,7 =[1,1]8q"
'2,6] = [1,2] Sq® 41, 7] Sq* +[3, 6]
'[3,5] = [1,3] Sq” +[1,7] Sq*

'4,4] = [1,4] Sq" +[1,6] Sq® +[1, 7] Sq" +15, 4]

q'[t, L,

q [ (L,

q L,

q 4 [
1[5 3] =[1,5]S¢*
2[2, 5] =[2,

q’[ 2,

q[4, 2,

q’[ [

q’[

(L,

2,2]Sq” +[2,6] Sq" +Sq"[1, 1] + Sq*[1, 5]
’[3,4] = [2,3]Sq* +[2, 7] + [4,5] + [5,4] + Sq™[1, 4]
%4, 3] = [2,4] Sq® +[2, 5] Sq° 4+ Sq°[1, 2] + Sq°[1, 3]
®12,4] = [3,2]Sq" +[3,5] Sq" +[3,6] + Sq"[1, 1]
]

®3,3] = [3,3]Sq” +[3,5] Sq" 4+ Sq"[1, 1] + S¢°[1, 3]
Sq®Sq'[1 5]—Sq [1,1]S¢®
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Sq%Sq'[2,4] = [2, 3] Sq” + Sq?[1, 2] Sq* + Sq?[1, 5] Sq* +[2, 7] + [4, 5]
+ [5,4] + Sq*[1, 4] + Sq*[1, 6]
Sq2 Sq* [3,3] = qu[l, 3] Sq3 + SqQ[l, 5] Sq*
Sq*(3,2] = [4,3]Sqa® +[5, 3] Sq" +Sq°[2, 2]

By (16.4.1) the equation (16.5.4) yields an element © € By such that

(16.5.5) Bla, b] :p9+Zai[ai,bi]ﬂi in By.

Here © modulo F is well defined by § and [a,b] so that © determines an element
O in A by the algebra map By — Fo — A.

16.5.6 Proposition. Consider a family of functions Aap as in (16.4.6). Then the
associated map A in (16.4.4)(1) satisfies the kernel condition if and only if for

all admissible monomials o and monomials 3 € Mon(E 4) the following formula
holds.

Aa,b(aﬁ) + OéAa,b(/g) -0 + Z a;,b aal + Oanl b (O‘Z))ﬂl

Proof. We observe that F ® Rp has a basis consisting of the elements

() pa, a € Mon(E,), and a admissible,
ala,b]B, «a,p € Mon(E4), and «fa,b] preadmissible.

Using this basis we obtain a section 5 of the multiplication map g,

(2) FoRs °>FoBo®EY®B) ' >F®Rs

with spa = p®a with p € EY and 5(afa, b]3) = a®|[a, b]® (. Therefore the kernel
of g is generated by the elements (3,7 € Mon(E 4))

3) fRpRY—s57(BRP©7),
(4) B&[a,b] @y —sq(B®[ab] @)
Since the kernel of ¢ in (16.4.4)(1) satisfies

(5) kernel(q) = A ® kernel(q)

we have to check that for o admissible A vanishes on elements a® (3) and a ® (4).
Now definition of A on a ® (3) shows that A(a ® (3)) = 0 is always satisfied.
Moreover by (16.4.4) we see that A(a ® (4)) = 0 holds if and only if

(Aap(af) + adap(B))y = k()07 + Z as bi (@) + ada, b, (02)) Biy

This equation is obtained by multiplying the equation in (16.5.6) by ~. g
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In the next result we use the section 5 of the reduced diagonal b:A— AnA
defined as follows. For = € image(d) there is a unique element 5(z) € A with
05(z) = x such that 5(z) is a sum of non-primitive Milnor generators. Moreover
we use the basis of preadmissible relations «fa, b] in the free right Fp-module Rz
in (16.5.1)(3). Let PAR(n) be the set of all preadmissible relations of degree n.

16.5.7 Proposition. Let i > 1. For each function
e’ : PAR(2") — T

there is a unique map vy = (') : Rx — A satisfying the properties in (16.3.2)
and satisfying

y(x) =0 for |z| < 2%,

y(z) = e'(x) - Q" for x € PAR(2Y), see (16.4.7),

v(z) = sum of non — primitive Milnor generators for 2 € PAR(2"), j > i.

Moreover each v in (16.3.2) determines well-defined functions €*, i > 1, such that

7=l

i>1
Proof. Using (16.3.2)(3) we define v(z) = (') in degree > 2" by the formula
~v(z) = 5v:A(zx), x € PAR. O

16.6 Computation of B

We consider the case of the even prime p. The structure of B is completely deter-
mined by the function {s and by the multiplication functions A, with 0 < a < 2b.
Since g is right equivariant the function £g is well defined by the elements

¢s(ala, b)) € Ao A

where ala, b] is a preadmissible relation. A list of such elements in low degrees is
given below. In this section we also describe well-defined elements

Aa,b(a) cA

for all admissible v in A. These elements determine A, p.

16.6.1 Theorem. There exists a splitting u of B,
u RB — Bl
which is right equivariant with respect to the action of By and which satisfies

Aju(z) = ug(Aoz) + X&s(z)
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for the diagonal A = (A1, o) of B. Moreover
- u([a,b]) = u(afa,b]) + XAqp()

for [a,b] € Rg as defined in (16.4.1) and « - u([a,b]) defined by the left action of
o € By on Bi.

This result shows that B is completely determined by the elements &(afa,b])
and Agqp(e). Theorem (16.6.1) allows the computation of matriz Massey prod-
ucts (X,Y, Z) as defined in (5.5.7).

16.6.2 Corollary. Let X = (27), Y = (y}) and Z = (z) be matrices in A with

XY =0 and YZ = 0. Then we choose matrices Y = (gj;) and Z = (%) in By
which map to' Y and Z respectively. Then

Zﬂ;ii € Rp
and we get
(+) “> A @Y gim) € (XY, Z).
j i

Here the function A : A® Rr — A of degree —1 is defined in terms of the
multiplication functions Aqp : A — A as in (16.4.4)(1).

Proof. Let also X = (2/) be a matrix mapping to X. Then the splitting u in
(16.6.1) satisfies

(1) wXY)-Z - Xu(YZ) e (X,Y,Z).

Moreover since u is right equivariant (1) coincides with

(2) w(XYZ) — (w(XYZ) - 3(%)) = 3(*)

where (x) is the term in the corollary.
U

For the inductive determination of the elements A,; we need the following
splitting § of the reduced diagonal §,

(16.6.3) image(d) ° > A 6>A®A

with 55(;10) = 2. The splitting 3 is determined by the Milnor basis of A given by
elements Sq" where n = (n1,n2,...) is a sequence of natural numbers n; > 0 for
i > 1 with n; = 0 for almost all indices i > 1. For n = (n,0,0,...) we actually
have Sq" = Sq". We have the formula

5Sq" = Z Sq' ®Sq’ .
1,j#0
i+j=n
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The kernel of ¢ is generated by the primitive Milnor generators

Q; = Sq(o"'”O’LO"") )
Therefore for 2 € image() there is a unique element () € A with 63(z) = x such
that 5(z) is a sum of non-primitive Milnor generators. This defines the splitting §.

16.6.4 Definition. We introduce well-defined elements A, ;(«) inductively as fol-
lows. In degree 3 we set

(1) Al,l(Sql) = 0

Assume now A, () is defined for degree |a| +a +b < n, n > 4 and let afa, b] be
given where « is admissible and [a| + a + b = n. Then the term W (a ® [a,b]) in
(16.4.5) is defined and we get the sum in A ® A:

Z = L(Oé ® [@a b]) =+ 65(04[&5 b]) + afs([a, b])

(2) + (65()U(a,b) + W(a ® [a, b]).

This element is in the image of 0 so that by the section 5 in (16.6.2) also
(3) 5(Z)e A

is defined.

We now introduce the length function. The function length, carries a mono-
mial « to the number > 0 defined as follows. Let o be the largest submonomial of
a satisfying a = o’ and o/[a, b] is preadmissible. Then length () is the length
of the monomial «””. We have length, () = 0 if and only if afa, b] is preadmissible.

If the degree n of afa, b] is not a power of 2 we set

(4a) Agp(a) = 5(2).
Moreover if the degree n of afa, b] is a power of 2 with n = 2¢, then
5(Z if length () = 0,
(4b) Ays(a) = ~( ) . gth,(a)
5(Z) +eap(a) - Q" if length,(a) = 1.

Here £, () € F is a variable and Q° is defined in (16.4.7).

If the degree n of afa,b] is a power of 2 and if length, () > 2, we define
Aqp(a) inductively as follows. Let Sq™ be the first factor of «, that is o = Sq™ 83,
with length, (5) < length,(«). Then we get Aqp(v) by the formula:

() Aap(@) = Aap(Sq™ B) = Sq™ Aap(8) +Sq™ ' © + 0.

Here ©, ¥ € A are defined as follows. Since the preadmissible relations form a
basis of the right Fy-module Rz, we have the formula

Bla,b] = ailai, b;]B; in Fo
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with a;[a;, b;] preadmissible. As in (16.5.5) this formula yields an element © € By
such that

(6) ﬂ[a, b] = p@ + Z ai[ai, bz]ﬂl in By.

This determines the corresponding element © in A. Moreover we define ¥ by the
sum

(7) U= Z(Aaiybi (Sqm ai) + Sqm Aai,bi (al)) : 61
Here length, (Sq™ a;) < 1 so that ¥ is already defined by (4b).

This shows that all elements A, ;(a) (where a is a monomial and a+b+|a| =
2%) are defined in terms of the e-vectors:

(8) ap(a) € Fwith length,(a) =1, a +b+ |a| = 2"

Now A, is a function on A so that for a relation r € Ry we have A, (1) = 0.
The relations

Bls,t]y € Rx, O[s,t] preadmissible, v monomial

with |a| + s+t + |3| = 2 — a — b generate R in this degree. Therefore the Adem
relation [s,?] written in the form [s,#] = 3, u; with u; a monomial of length 2
yields the equation

9) ZAa,b(ﬁujv) =0.

Here A, p(Bu;vy) is defined in terms of (8) so that the equations (9) yield linear
equations for the e-vectors in (8). Any choice of e-vector satisfying the equations
defines A, () in degree 2°. This way a computer can compute a list of elements
Agp(a) in low degrees. The list in the tables below is obtained by the choice of
e-vectors given as follows:

53,3(Sq2)
(10) 83,3(Sq4 SqG)
£3,3(S4% Sq"* Sq°)

and €q,5() = 0 otherwise, a + b+ |a| < 63.

We point out that the choices of € satisfy the conditions above so that the
elements A, ,(a) are uniquely determined for a + b + |a| < 63.

By induction the e-vectors in degree < 2¢ are already chosen. Then the e-
vectors in degree 2¢ satisfying the equations given by (9) form an affine subspace
V(2%) in the vector space of all e-vectors in degree 2¢. The dimension of this affine

)

1
L,
1

)
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subspace can be controlled by the equivalences v in (16.3.2) and (16.5.7). For this
we define a linear map

(11) L : A-vectors ——  e-vectors
follows. Here a A-vector is a tuple
A= (AMa,b] €F, 0<a<2b)

and L carries A to the e-vector defined by
Ea,b(a) = Z )\[ai, bz]

Here the [a;, b;] are all relations which appear in the sum decomposition (16.5.4)
of the element afa, b] without factors, that is, with a; = 1, §; = 1. Then (16.5.7)
shows that the image of L acts transitively and effectively on the affine space V(2%).
For this we point out that we have the condition (16.6.3)(4b) for length,(a) = 0
where o # 1.

The author is very grateful to Mamuka Jibladze for working out a computer
program implementing the algorithm above for the computation of the multipli-
cation table A, («). He implemented a Maple package on computations in the
secondary Hopf algebra B which is based on Monk’s package [Mo] on computa-
tions in the Steenrod algebra .A.

Using Mamuka’s package one obtains the tables below which in particular
show the multiplication table of the algebra B in degree < 17. In degree 17 one can
compute by (16.6.2) the triple matrix Massey product (C, B, A) with the matrices
(see Harper [Ha], Section 6.2):

Sq!
_ | s
A= Sq4 )
Sq®
Sqt 0 0 0
Sq® Sq? 0 0
Sq* Sq?Sq* Sqt 0
B = Sq” Sq° Sq* 01,
Sq® Sq” Sq*Sq'  Sq!

Sq” Sq? Sq® Sq*Sq®  Sq?
Sq15 Sq14 Sq12 SqS
C:(Sq15+SqllSq4, SqllSq2, Sq12+Sq118q1,
Sq®Sq" +Sq°Sq® + Sq°® Sq? S,
Sq® +S¢°Sq?, Sq”+Sq*Sq*Sqt, Sql).
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The multiplication table applied to (C, B, A) in (16.6.2) yields the matrix
triple Massey product

(16.6.5) Sq'® € (C, B, A) #0.
More precisely one gets by (16.6.2) and the tables the element

Sq!0 4 5202 4 Sq bt 4 500

— Sq16 4 Sql4 Sq2 +Sq13 Sq2 Sql +Sq11 Sq5 +Sq11 Sq4 Sql
+5q"°8q” Sq' + 89" Sq* Sq” + Sq” Sq* Sq* Sq'
which represents (C, B, A). This implies (16.6.5) by use of the indeterminacy of the
triple Massey product. Using (16.6.5) it is easy to deduce the result of Adams [A]
on secondary cohomology operations, see theorem 6.2.1 in [Ha]. We point out that
the computation of the triple Massey product (16.6.5) is also a (non-immediate)
consequence of the Adams result and of the fact that Sq2n, n > 0, generate the
Steenrod algebra.

Moreover triple Massey products {a, 3,v) with «, 3,7 € A are computed in
the tables below. It turns out that

(16.6.6) (a, B,7v) = 0 for |af + |B] + || < 17
and that for o = Sq”? we have, in degree 18,
(16.6.7) Sq”? € (8q”?,8q%%,8q"%) # 0.
Here we use the Milnor generators
Sq™? = Sq® +S¢° Sq' 4 Sq* S¢?
and

SqO,l,Z _ Sql7 + Sq16 Sql +Sq15 Sq2+sql4 Sq3+sq13 Sq4
+5a' 80" +8a" Sq” Sq' +Sq'! Sq” S¢® + 54" Sq” Sq”*.

This is the first example of a non-trivial triple Massey product in A.

The computer calculations show that the inductive system of equations de-
termining A, ;(a) has indeed solutions. The author was very pleased by the cal-
culations since they are a wonderful manifestation of the correctness of the new
elaborate theory in this book.



Tables

Below are given all those triples (o, 3,7) of homogeneous elements of degree < 22
in the Steenrod algebra with a8 = v = 0, which are indecomposable in the sense
that they cannot be presented in the form (a; s, 8,7) with asB =0, {(«, 81 82,7)

with af; = B2y = 0 or (o, B, 7172) with 8y = 0.
All the corresponding triple Massey products contain 0 except for

(Sq(0,2),5q(0,2),Sq(0,2))

(where Sq(0,2) = Sq° 4+ Sq® Sq* + Sq* Sq? is the Milnor basis element) which con-
tains Sq(0, 1,2) ¢ Sq(0,2)« + <7 Sq(0, 2).

Table 1. Triple Massey products in the mod 2 Steenrod algebra

Degree Q B v
3 1 1 1
4
5
6 1 3

2 2.1 1

7
8 3 2 2.1
3 3.1 1
1 3.1 2.1
9 2 5+4.1 2
3+2.1 3+2.1 3+2.1
2.1 4.1 1
1 5 3
10 ) 3 2
2 5.1 2
1 5.2 2
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11
12

13

14

15

16

94 7.2

6.1
2.1

5.1
7
5.2.1
7.1
3.1
3.1
4.2.1
5.1

8.1
6.3

3
3.1
2.1

10.1

5.2

6

4.2

7.1

6.1

94 8.1
9+81+4+72+6.2.1
7.3

6.3.1

5

9

5.2.1
724+94+8146.3

7

9.1+ 721
9.2

5.1
7+6.1
5.2+4.2.1
)

3.1
9.2+38.3
11.1

3.1

Tables

[E N S

7T+4.21

2.1
9+8.1+6.21
5

1

3+2.1

4

2

3.1

4.1
42+5.1
3+2.1
10+8.2+6.3.1
1

3

1

2.1
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10+8247.3
4+3.1

3

1

2.1

2

1

17

[\)

—F NN~ ONND O~

o N

18

o ¢
[

[u—y

6-+51+4.2
6+4.2

nonzero

94 7.2

[\)

N s O N

7+4.2.1
19 6.2

[T T R N e

)
10+8.247.3
7.3

4.1
4.2.1
3.1
9.2.1
8.3
9.1
5.1

12.1
)
10.3
9.3.1
5.1
9.4
9.3
4.1

3.1

9.1+ 721
11

8.3.1

2.1

9.4.2

6+51+4.2

72+9+81+6.3
5.2

3.1

6.1

14.1

3.1
10+82+73+6.3.1
6.3

6.3

7.2.1
5.2.1
9.1
9.3
10.3.1
7.2.1
7.2
11.3
7.1
5.2
5.2.1
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WN NN W

8.1+6.2.1

2.1
2

6
2.1
12.1
2

6+51+42

3+2.1

2

4.1
8.1+6.2.1
1

8.1
4+3.1
7T+4.2.1
2

1
4.1
6.2
4.2
2.1
6.2
7.2

2
4.2

2

1
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6.2.1

20 3
4+3.1

9472
9.2

6

9

6.2 +5.2.1
3+2.1
74+4.2.1
9.2

1

4

5
73+72146.3.1
2.1
624714521
4+3.1

9

3

1

3

1
8.2.14731+10.1
6.1+5.2

3

1

3+21

)

73.14+11+9.2
+8.2.1+10.1

5.2
11.2
6.2.1
6.3.1
8.2.1
11.2.1
7.1
6.1
10.2.1
7.3

7.1

4.2.1

948.1

7

7.1

9.21+83.1

5.2.1

8.2.1

72463

6.3.1

3.1

9.4.2.1
10+73+6.3.1

+82+47214+9.1

5.1

5.2+4.2.1

12.3

6.3+6.2.1

12.2.1

5.1

3.1

9.4.1

15.1

9.1

4.2

8.3.1

5.1
7+6.1
7.2

4.2

Tables

8.2.1
)
1
1
1

1

6.3.1
10+8.2+6.3.1
1

5.2.1

8.1+6.2.1
8.1

94 8.1

4

1

2

2.1

1
6.24+71+4+5.21
2.1

4.1

2.1

6451442

8.1

3+2.1

2

3+2.1

1

4.1

12.1

4.1

1

8.1

2.1

1

731411492
+8.2.1+10.1

12.1

73+7214+6.3.1

6+4.2

2.1
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W NN WOt

6+4.2
3+2.1
9
2

21 2
10.2

1

5.2
7T+6.14+524+4.2.1
3

7.2

2.1

2

2

7+4.2.1

7.3

3

3

9.1

3

—

114
10.2+4+11.1
4.2.1

2

7

3

13.1
7.3

9.1

9.3

6

6.2.1
74+6.1
9.1
10.5

10.5.2
5.2

9.4
7T+4.2.1
7T+6.14+524+4.2.1
6

7.2

16.1
13+12.1
9.1

6.1

5.2.1
11.3.1
6.2

6.2

6.2
8.2.14731+10.1
7.3.1

7.3

6.2 +5.2.1
6.2.1

7.2

13

6.1

7.2

4.2

6

7.3.1

4.1

4.2

8.4.1

6.3

4

7.3

433

1

7T+4.21

6.2

4.2
11+9.2473.1
4.1
73+631+09.1
1

3

2

2

4.2.1

6.1
74+6.14+5244.2.1
10.249.2.1
2.1

1

6

8.1

4.2.1

2.1

2.1

7.2.1

2.1
10+8.2473
4.2

6.2.1

7.2.1

4.2.1

1

2.1

7

10.2

4.2.1

2.1
9.2.1+8.3.1
2.1

1

2.1

1

8.2
104+824734+6.3.1
5.2.1
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2.1

1

9

3
104+8.247.34+6.3.1

7.1

10.2+9.2.1
4+3.1
10+8.2+6.3.1
7

7.2.1

1

—_
=
N N N W OW O

w

10
7.2.1
4.2

22 7.2+6.3
6.3

2

9+ 7.2

3+2.1

9+6.3

6

3

9.1+6.3.1

3+21

4.1

9.2

5

6
4+3.1
14.3
11.4
6.2.1

7.1

7.3.1

4
9.2+38.3
6.3.1

4.2
11.2410.2.1
6.2

9.3.1
6.3.1
9.3.1

5.2

7.3.1
7.3.1
11+92+73.1
6

4

)
6.2+7.1
4.1

6.2.1

6.3

6.2
9.4+8.4.1

7.3+7.2.1

8.2

18.1

3.1
72+9+81+6.3
734721

10+ 8.2

10

6.3+6.2.1
6.3.1+7.2.1

Tables

10.2.1

6.2.1

4.2.1

10.2+11.1

4.2.1

2

4.1

4.1

6.3.1

1

91+721

3

2.1

2.1

4

2.1

1

1

4.2.1

7T+4.2.1

1

4.2.1

4+3.1

11.1+8.3.1
104+7.34+6.3.1

+824+721+9.1

3

6+4.2

8.1+6.2.1

6.2.1

2

2.1

2

3+2.1

2.1

1

8.1
104824721
3+21

4.2

6.3

3+21
6.3+6.2.1
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9.3+ 11.1+8.3.1
10+8.249.1

4

3
10+82+7.21
6.1

6.2+ 7.1

1

5

6.3.1

3+2.1

1

6.3

3+2.1
10+82+7.21
2

6

7+5.2
6.1+5.2

94 8.1

4.2

4.2

13+ 10.3

5

4

4.1

2

2

2.1

2

6.3.1+7.2.1
3+21

3
10+8.249.1
4
15.24174+13.4+11.4.2

5.2+4.21
724+94+8146.3
10.2+9.2.1
10.2
72+9+81+6.3
10.2

6+4.2

11.1

11

8.2.1

7+6.1

13.2

9.2.1
72463
6.3+6.2.1
13.1
10.2+11.1
7.1+5.2.1
8.3.1

94 8.1
10.4.1

9.4.1

5.2

3.1

11.2.1
10.5+10.4.1
2.1

6.1

12.3.1
13.2+12.3
6.3+6.2.1
7.2+6.3
11.5

6.3+ 6.2.1
11.5+11.4.1
3

435

3+2.1

3+2.1

4.2

5.2

3+2.1

2.1

6.2+5.2.1

6.3

6

1

9.3+ 11.1+8.3.1
6

1
10+8.247.2.1
3+2.1

6

4+3.1
6.1+4.2.1

2.1

16.1

10.3 +8.4.1
2.1

5

3+21
7.3+721
3

3+21

2

2
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Table 2. The multiplication function A,; on admissible monomials

A1,2k+1(0é) =0 for all k£ and o

o A1 2(a) Az 2(a) A a(a) Az 3(a) As2(a) Az () As3(a)
4 4.1
1 3 131 5 5 5 5.1 5.1
4.2.1
4.2
4.2 5.2 +7
2 0 o 0 16 ;g f +7 452
’ +6.1
4.2.1
4.1 4.2 +7 6.2
2.1 +5 + 5.1 6.1 + 5.2 6.1 +5.2.1 0
+ 6.1
4.1 4.2 6.2 5.2.1
3 +5 + 5.1 6.1 0 6.1 + 7.1 + 7.1
6.1 5.2.1
3.1 5.1 Y7 7.1 T71 7.1 0 0
6.3 6.2.1
6.2 + 8.1 + 6.3
4 5.1 5.2 7.1 L7 6.2 19 181
+ 7.2 +9
9.1
8.1 8.1
5.2.1 6.3 +6.3.1 9.1
4.1 52 71 ;; g +7.2 ;; g +721 4721
’ ’ +7.3
8.1
6.2.1 9.1
5 5.2 5.2.1 +9 6.3 7.3
+7.9 +6.3 +7.2.1
7.3.1
8.2
9.2 +8.2.1
4.2 0 6.3 0 8.2 +10 + 11 + 10.1
+ 7.2 + 10 +6.3.1
4721 +7.3.1 +11
- + 8.3
6.3 7.2.1 7.3.1
5.1 0 170 9.1 +7.3 9.1 + 8.3 0

+9.1 +9.2
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4.2.1

5.2

6.1

5.2.1

6.2

7.1

Al,g(a)

8.1
+9

+ 7.2
+6.2.1

8.1
+9

+ 7.2
+6.2.1

6.3

6.3

9.1
+7.21

9.1
+7.21

7.3

A2’2(Ol)

6.3.1
+7.2.1

6.3.1
+7.21
+7.3

9.1

+ 8.2
+ 10
+6.3.1

7.3
+9.1
+ 8.2
+ 10

+6.3.1

8.2.1
+10.1
+11
+8.3

9.2
+11
+7.3.1

7.3.1

A1,4(Oé)

9.1

8.2.1
+10.1

8.2.1
+10.1

8.3
+9.2

8.3
+9.2

9.2.1
+11.1

9.2.1
+11.1

9.3

Agyg(a)

9.1

+ 8.2
+10
+7.21
+7.3

7.3.1
+8.2.1
+10.1
+11
+8.3

7.3.1
+8.3
+9.2

7.3.1
+9.2
+8.2.1
+10.1
+11

7.3.1

9.2.1
+9.3
+11.1

9.3
+11.1
+8.3.1

11.1
+8.3.1

A3}2(Oz)

9.1
+8.2
+ 10
+7.3

8.2.1
+10.1

9.2
+8.2.1
+10.1
+8.3

8.3
+9.2

9.2.1
+11.1

9.3
+11.1
+8.3.1

9.3

A2,4 (Oé)

8.3
+11

9.2.1
+9.3
+10.2

10.2
+11.1
+8.3.1
+9.2.1
+9.3

9.2.1
+10.2

10.2
+11.1
+8.3.1
+9.2.1

9.3.1

8.4.1
+13
+12.1
+10.2.1
+11.2
+9.3.1
+9.4
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A3}3(O¢)

8.2.1
+10.1
+11
+8.3

9.2.1
+9.3
+11.1

8.3.1
+9.2.1

9.3
+11.1
+8.3.1

8.4.1
+13
+12.1
+10.2.1
+11.2
+9.4

9.3.1
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6.2.1

6.3

7.2

8.1

6.3.1

Al,g(a)

7.3

7.3.1
+8.3
+9.2

7.3.1
+8.3
+9.2

7.3.1
+8.3
+9.2

8.3

8.3

8.3.1
+9.2.1

A2’2(Ol)

9.2
+11
+7.3.1

10.2
+8.3.1

10.2
+11.1
+8.3.1
+9.2.1
+9.3

10.2
+11.1
+8.3.1
+9.2.1
+9.3

11.1
+8.3.1
+8.4
+10.2

11.1
+8.3.1
+8.4
+10.2

12.1

+ 13
+8.4.1
+9.4

A1,4(Oé)

9.3

10.2.1
+9.3.1

10.2.1
+9.3.1

10.2.1
+9.3.1

9.4

9.4

10.3.1
+13.1

Agyg(a)

10.2
+11.1

8.4.1
+13
+12.1
+10.2.1
+11.2
+9.4

9.3.1
+11.2
+10.2.1

8.4.1
+13
+12.1
+10.2.1
+11.2
+9.3.1
+9.4

10.3
+12.1
+13
+84.1
+10.2.1
+9.3.1
+9.4

12.1
+13
+10.3
+8.4.1
+11.2
+9.4

11.2.1
+11.3
+13.1

A3}2(Oz)

10.2
+11.1

10.2.1
+9.3.1

8.4.1
+94
+10.3

12.1
+13
+11.2
+84.1
+94

9.4

13
+11.2
+10.3
+12.1

+94

10.3.1
+13.1

A2,4 (Oé)

10.3
+12.1
+13
+11.2
+9.3.1

11.3
+13.1
+10.3.1
+11.2.1
+9.4.1

10.3.1
+11.3
+9.4.1

9.4.1

10.4.1
+10.5

Tables

A3}3(O¢)

10.2.1
+10.3
+12.1

+13
+9.3.1

11.2.1
+11.3
+13.1

9.4.1
+13.1
+11.2.1

9.4.1

13.1
+11.3
+94.1
+11.2.1



Table 2: The multiplication function A, ; on admissible monomials

(07 Al,g(a) A2’2(Ol) A1,4(Oé) Agyg(a) A3}2(Oz) A2,4(Oé)
10.4.1
fizla 9.4.1 11131
7.2.1 93 e 11.21  +13.1 1121 +105
oW +11.2.1 +123
' +13.2
8.3.1 13.1 o1 13.1 11.3.1
7.3 +9.21 0 +1031 Ty #1031 4123
193 +11.2.1 S 41121 +132
13 13.1 iligé
£11.2 +8.4.2 o
+10.3 +10.3.1 8.4.2 4.
8.2 93 L2 W2l 191 4104 j: 122
+94 +104 o
+9.3.1 +9.4.1 o
10.3
+121 11.2.1 11.3.1
9.1 9.3 +13 0  +11.3 0 +12.3
F11.2 +13.1 +13.2
+9.3.1
12.2
9.3.1 12.2
10 9.3 94 o ; 41‘11 14 fig
F11.2 Uy s
10.3.1
7.3.1 931 41121 11.3.1 0 1131 0
+11.3
i'g'ié 11.4.1
o1 8.4.1 11.3 a1 AT 1041 49421
- +94  +842 1131 ST 41131 41042
Ry +115
11.3 11.4.1
8.4.1 11.3.1
+13.1 1131 +133
8.3 +3'3'1 +84.2 104.1 i gg +105 +10.4.2
4 4941 ' +105.1
10.4.2
0 8.4.1 8.4.2 10.4.1 10.4.1 05 s

+94 4941 +1131 4105 +10.5.1
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A3}3(O¢)

8.4.2.1
+9.4.2
+11.4
+11.3.1
+10.5

12.2.1
+15
+14.1
+12.3

13.3
+9.4.2.1
+11.4.1

11.5
+9.4.2.1
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10.1

11

8.3.1

9.2.1

8.4

9.3

10.2

Al,g(a)

10.3

10.3

9.4.1

9.4.1

9.4.1

9.4.1

A2’2(Ol)

12.2

+ 14
+10.3.1
+11.3
+10.4

10.4

+ 14
+13.1
+12.2
+10.3.1

10.5
+12.3
+13.2
+11.4

+11.3.1

10.5
+11.4

12.3
+13.2
+9.4.2

12.3
+13.2

15
+9.4.2
+10.5
+12.3

A1,4(Oé)

10.5

10.5

11.4.1
+12.3.1
+13.2.1

11.4.1

1141
+12.3.1
+13.2.1

12.3.1
+13.2.1

11.4.1

Agyg(a)

12.3
+10.4.1
+10.5
+12.2.1
+ 15
+14.1

10.4.1
+10.5
+12.3
+13.2

13.3
+9.4.2.1
+11.4.1

11.5
+94.2.1

13.3
+11.4.1
+10.4.2

10.5.1
+12.3.1
+13.2.1

13.3
+12.3.1
+10.4.2

+14.2
+11.4.1

A3}2(Oz)

10.5

10.5
+12.3
+13.2

11.4.1
+12.3.1
+13.2.1

1141

10.4.2
+10.5.1
+12.3.1
+13.2.1

13.3
+10.5.1
+11.4.1

+11.5

13.3
+15.1
+10.4.2
+14.2
+10.5.1

A2,4 (Oé)

14.2
+10.5.1
+12.3.1

10.5.1
+14.2
+15.1

11.5.1

11.5.1

13.3.1
+12.4.1
+16.1
+ 17
+15.2
+14.2.1
+10.5.2
+13.4
+11.4.2

11.5.1
+13.3.1

12.4.1
+14.2.1
+13.3.1
+10.5.2

+13.4
+14.3
+11.4.2
+11.5.1

Tables

A3}3(O¢)

10.5.1

13.3
+13.2.1
+15.1
+10.5.1

14.2.1
+16.1

+ 17
+10.4.2.1
+10.5.2
+13.4
+12.4.1
+15.2
+13.3.1

12.4.1
+15.2
+10.4.2.1
+14.3
+11.5.1
+10.5.2
+13.4



Table 2:

12

8.4.1

9.3.1

10.2.1

9.4

The multiplication function A, on admissible monomials

Al,g(a)

11.3

9.4.2

10.4.1
+10.5

9.4.2

A2’2(Ol)

10.5
+12.3
+13.2
+11.4

+11.3.1

13.2

+ 15
+11.4
+11.3.1

1141
+9.4.2.1
+10.5.1

10.5.1
+11.4.1
+11.5

13.3
+10.4.2
+15.1
+ 14.2
+11.5
+10.5.1

9.4.2.1

A1,4(Oé)

11.5

11.5

12.4.1
+16.1
+ 17
+15.2
+14.2.1
+13.3.1
+13.4
+11.4.2

13.3.1

11.5.1

15.2
+16.1
+ 17
+12.4.1
+14.2.1
+11.4.2
+13.4

Agyg(a)

13.2.1
+13.3
+15.1

+10.5.1
+11.4.1
+11.5

14.2
+15.1
+11.4.1
+11.5
+13.3

10.5.2
+11.4.2

12.4.1
+15.2
+10.4.2.1
+14.3
+11.5.1
+10.5.2
+13.4

10.4.2.1
+10.5.2

A3}2(Oz)

11.5

14.2
+15.1
+11.5
+13.3

12.4.1
+16.1
+17
+15.2
+14.2.1
+13.3.1
+13.4
+11.4.2

13.3.1

11.5.1

10.5.2
+13.3.1
+11.5.1

441
A2,4 (Oé) A3}3(O¢)
11.5.1
+13.3.1 1151
14.3 11.5.1
+16.1 4+14.2.1
+ 17 + 14.3
+15.2 + 16.1
+11.5.1 + 17
13.4.1
+17.1 15.2.1
+15.2.1 +17.1
+10.5.2.1 +13.4.1

+11.4.21 +11.4.2.1
+11.5.2

12.5.1
+13.4.1 0
+13.5

15.3
+11.5.2
+10.5.2.1
+14.3.1

11.4.2.1
+13.5
+12.5.1
+17.1
+15.2.1

11.5.2



442

10.3

11.2

12.1

13

8.4.2

Al,g(a)

10.4.1
+10.5

10.4.1

+10.5

12.3

12.3

AQ’Q(O[)

15.1
+10.4.2
+14.2
+10.5.1

10.4.2
+15.1
+14.2
+11.5

+10.5.1

12.4
+14.2
+15.1
+13.3

+12.3.1
+11.5

12.4

+ 14.2
+15.1
+12.3.1

10.5.2
+11.4.2

A1,4(Oé) Agyg(a)

15.2
+11.5.1
+14.2.1

11.5.1
+13.3.1

12.4.1
+14.2.1
+10.5.2

+13.4
+14.3
+11.4.2

11.5.1

14.3
+16.1
+ 17
+12.4.1
+14.2.1
+12.5
+11.5.1

12.5

12.4.1
+16.1

+ 17
+15.2
+12.5
+14.3

12.5

18

+14.4

0 +16.2
+14.3.1
+12.4.2

A3}2(Oz)

14.3
+12.4.1
+14.21
+13.3.1

+12.5

10.5.2
+13.4
+14.3

+11.4.2
+13.3.1
+12.4.1
+14.21

12.5

15.2
+14.3
+16.1

+17
+12.5

11.4.2.1
+ 18
+10.5.2.1
+14.4
+16.2
+14.3.1
+12.4.2

Tables

Az 4(a) Asz(a)
15.3
13.4.1 +15.2.1
+15.2.1 +10.5.2.1
+14.3.1 +12.5.1
+11.5.2 +13.4.1
+14.3.1
13.4.1
0 +11.4.2.1
+15.3
+11.5.2
14.3.1
+15.3 12.5.1
+12.5.1
15.3
+17.1
12.5.1 +12.5.1
+ 15.2.1
19
+11.5.2.1
17.2 +16.3
+ 19 +15.4
+15.3.1 +14.5
+11.5.2.1 +16.2.1
+15.4 +12.4.2.1
+13.4.2 +18.1
+13.5.1

+12.5.2



Table 2: The multiplication function A, ; on admissible monomials

9.4.1

10.3.1

11.2.1

10.4

11.3

12.2

Al,g(a)

10.5.1

11.4.1
+11.5

10.5.1

10.5.1
+11.4.1
+11.5

11.4.1
+11.5

A2’2(Ol)

10.5.2
+11.4.2
+11.5.1

14.3
+12.4.1
+14.21
+13.3.1

+13.4

10.5.2
+13.4
+14.3

+11.4.2
+13.3.1
+12.4.1
+14.21

15.2
+10.5.2

10.5.2
+11.4.2
+11.5.1

14.3
+16.1
+17
+15.2
+12.5
+11.4.2
+11.5.1

A1,4(Oé)

13.4.1
+17.1
+15.2.1

12.5.1
+13.4.1

0

17.1
+15.2.1
+12.5.1

12.5.1
+13.4.1

Agyg(a)

15.2.1
+17.1
+11.4.2.1
+11.5.2
+13.4.1

15.3
+15.2.1
+10.5.2.1
+12.5.1
+13.4.1
+14.3.1

13.4.1
+11.4.2.1
+15.3
+11.5.2

12.6
+13.4.1
+11.4.2.1
+13.5
+12.5.1
+14.4
+15.2.1
+15.3

15.3
+12.5.1

13.4.1
+12.4.2
+12.6
+14.3.1
+15.2.1
+11.5.2

A3}2(Oz)

13.4.1
+17.1
+15.2.1

12.5.1
+13.4.1

13.5
+15.2.1
+12.6
+14.4
+12.5.1

13.5

12.6
+13.4.1
+11.5.2
+12.5.1

+17.1
+12.4.2
+15.2.1

A2,4 (Oé)

13.5.1
+15.3.1
+16.3
+17.2
+12.5.2
+13.4.2
+14.4.1
+ 14.5
+11.5.2.1

14.4.1
+14.5

13.5.1
+14.4.1
+14.5
+12.5.2
+13.4.2
+11.5.2.1

15.3.1
+17.2
+12.5.2
+16.3
+13.4.2
+13.5.1
+ 13.6
+15.4

15.3.1
+12.5.2
+13.4.2

14.4.1
+ 14.5
+15.3.1
+ 13.6
+12.5.2

443

A3}3(O¢)

13.5.1
+16.3
+12.6.1
+15.4
+17.2
+14.4.1
+13.6
+11.5.2.1

11.5.2.1
+15.3.1
+13.5.1

14.4.1

+ 14.5
+16.3
+17.2
+12.4.2.1
+13.6
+12.6.1
+12.5.2



444

13.1

14

2.1

3.1

Al,g(a)

13.3

13.3

Al,g(oz)

8.1
+9

8.1
+9

9.1

A2’2(Ol) A1,4(Oé) Agyg(a)
n 13? 12.5.1
) +13.4.1
7 + 13.5
+15.2 13.5 '
+15.2.1
+13.3.1
+15.3
+12.5 L1171
+13.4 ’
13.4.1
13.4 + 13.5
+15.2 13.5 +15.3
+13.3.1 + 16.2
+ 18
A2,5(Oz) A3,4(Oz) A4}3(Oz) AQ’G(O[)
7
_?_; 0 + 5.2 7.1
+6.1
6.2
6.2 1591 5.2.1 7.2
7.2 9.1
+6.2.1 + 8.2
_?_2; 0 +6.3 + 10
' +81 4721
+9 +73
8.1 8.2
+9 0 72 + 10
7.2.1
9.1
+73 0 0
+9.1 +7.2.1

A3}2(Oz)

13.5

16.2
+ 18
+15.3
+13.5

A3}5(Oz)

6.
+
+

7.1

2.1
6.3
8.1

+9

7.
+

9.1

2.1
7.3

0

A2,4 (Oé)

13.5.1
+16.3
+17.2

+15.3.1

19
+16.3
+13.5.1

A4}4(O¢)

+6.2
+71

6.3
+8.1
+ 7.2

7.3
+ 8.2
+6.3.1

7.3
+9.1
+8.2

10.1
+11
+8.3
+9.2
+7.3.1

Tables

A3}3(O¢)

13.5.1

16.2.1
+18.1
+19
+16.3
+13.5.1

A5}3(O¢)

7.1

6.2.1
+ 7.2

9.1

7.2.1
+ 7.3



Table 2: The multiplication function A, ; on admissible monomials

4.1

4.2

5.1

4.2.1

5.2

Al,g(oz) A2,5(Oz)
9.1 7.3
7.3.1

+9.2

+91'? +8.2.1
+ 10.1

+ 11

8.2.1

9.2 +10.1

+ 11 + 11
+ 8.3

9.2.1

0 +10.2

0 0
9.2.1

0 +10.2

10.3

1021 +341
111.2 +10.2.1
’ +9.3.1
+94

9.3.1

w21 N
’ +10.2.1

A3,4(Oz)

7.3
+6.3.1

7.3.1
+8.3
+9.2

9.2.1
+9.3
+10.2

10.2
+8.3.1

9.3.1

A4}3(Oz) AQ’G(O[)
6.3.1 8.3
+9.1 + 11

9.2
+8.2.1 10.2
+10.1 +8.3.1
+ 11
9.2
+8.2.1 9.2.1
+ 10.1 +10.2
+ 11
10.3
+12.1
0 + 13
+11.2
+9.3.1
10.3
+12.1
9.3 + 13
+11.2
+9.3.1
8.3.1
+9.2.1 0
9.4.1
8.4.1 1131
+94
1103 +10.3.1
' +11.3
11.2 11.3

+9.3.1 +10.3.1

A3}5(Oz)

7.3.1

9.2.1
+11.1

9.2.1
+11.1

8.4.1
+11.2
+9.3.1
+94
+10.3

o

10.3
+8.4.1
+11.2
+94

11.2.1

11.3
+94.1
+11.2.1

A4}4(O¢)

9.2

10.2
+ 12
+8.3.1
+9.2.1

10.2
+11.1
+ 12
+8.3.1
+9.2.1

13
+84.1
+10.2.1
+11.2
+94

10.3
+11.2

10.3
+13
+8.4.1
+10.2.1
+94

12.2
+13.1
+11.3

12.2
+13.1
+94.1
+11.2.1
+10.3.1

445

A5}3(O¢)

7.3.1
+8.3
+9.2

9.2.1
+11.1

9.2.1
+11.1

10.2.1
+11.2

9.3.1
+11.2
+10.2.1

11.2.1

11.3
+94.1
+11.2.1



446

6.1

5.2.1

6.2

7.1

6.2.1

6.3

Al,g(a)

10.3
+12.1
+ 13

10.3
+12.1
+ 13

11.2.1

11.2.1

11.3
+13.1

11.3
+13.1

11.3.1
+12.3
+13.2

11.3.1
+12.3
+13.2

A2,5(Oz)

8.4.1

+ 13
+12.1
+10.2.1
+11.2
+9.3.1
+94

10.2.1
+10.3
+12.1

+ 13
+9.3.1

9.4.1
+11.3

11.3
+10.3.1

10.3.1
+11.2.1
+9.4.1

11.2.1

10.4.1
+10.5

10.4.1
+11.3.1
+10.5
+12.3
+13.2

A3,4(Oz)

0

9.3.1

0

11.3
+10.3.1

10.4.1
+10.5

A4}3(Oz)

10.3
+12.1
+13
+11.2
+9.3.1

12.1
+13
+8.4.1
+94

10.3.1
+9.4.1

10.3.1
+11.2.1
+9.4.1

10.3.1
+9.4.1

10.4.1
+11.3.1
+10.5
+12.3
+13.2

AQ’G(O[)

10.3.1
+9.4.1

10.3.1
+13.1

12.3
+13.2

10.4.1
+10.5

11.3.1
+12.3
+13.2

11.3.1
+12.3
+13.2

13.3

13.3
+10.5.1
+11.4.1

+11.5

Tables

A3}5(Oz) A4}4(O¢) A5}3(O¢)

113
10.3.1 I 1(1);’1 10.3.1
+131 TS 413
1941
941 9.4.1
+13.1 L Tl
+103.1 +103.1
+11.3 +11.3
12.3
11041
O 05 0
11221
10.4.1 132 104.1

+11.3.1 +14.1 +11.3.1
+10.5 +10.4.1 +10.5
+12.3 +11.3.1 +12.3
+13.2 +10.5 +13.2

11.3.1
+12.3

1131  +132 1131
+14.1
+15

loaq o4l

g T3

Ll T105 12.3
+123  +13.2

+12.3

Lo T132
+15

12.3.1 142 1231

+13.2.1 +13.21 +13.21

13.3 13.3 13.3
+11.4.1 +142 +11.4.1
+11.5 +10.5.1 +11.5
+12.3.1 +123.1 +12.3.1
+13.2.1 +13.21 +13.21



Table 2: The multiplication function A, ; on admissible monomials

7.2

8.1

6.3.1

7.2.1

7.3

Al,g(oz) A2,5(Oz)

11.3.1 10.4.1
+12.3 +11.3.1
+13.2 +10.5

11.4
Ly 100
+13.2 ’
11.4 10.4.1

+123 +11.3.1
+13.2 +11.4

11.4.1
+11.5
+13.3

12.3.1
+13.2.1

11.4.1
+11.5
+12.3.1
+13.2.1

13.3

12.3.1 12.3.1
+13.21 +13.2.1
+13.3  +13.3

A3,4(Oz)

10.4.1
+11.3.1
+10.5
+12.3
+13.2

0

11.3.1

+12.3
+13.2

A4}3(Oz) AQ’G(O[)

10.4.1
+10.5
+12.3
+13.2

13.3

13.3

10.4.1
+10.5.1

+11.3.1
+11.4.1

+11.4
1942 +12.3.1
+13.2.1

13.2
:9131"21 11.4.1
11231
F1181 T
+105 =

+12.3

13.3.1
+124.1
+16.1
+1141  HI7
+115 T192
+1421

+125

11151

10.5.1

12.4.1

13.3 +16.1
+10.5.1 + 17
+11.4.1 +15.2
+11.5 +14.2.1
+12.5

11.5.1

133 +13.3.1

A3}5(Oz)

13.3
+11.4.1
+11.5
+12.3.1
+13.2.1

11.4.1
+12.3.1
+13.2.1

13.3
+11.5
+12.3.1
+13.2.1

13.3.1

13.3.1

A4}4(O¢)

11.4.1
+11.5
+14.2
+15.1

11.4.1
+12.4
+ 14.2
+10.4.2
+10.5.1

13.3
+14.2
+15.1

+10.4.2
+11.5
+10.5.1
+ 124

12.4.1
+16.1

+ 17
+15.2
+12.5
+14.3

16.1
+17
+11.5.1
+12.4.1
+12.5

14.3
+15.2
+11.5.1

447

A5}3(O¢)

10.5.1

11.4.1
+12.3.1
+13.2.1

10.5.1
+11.4.1

13.3.1

13.3.1



448

8.2

9.1

10

2.1

Al,g(a) A2,5(Oz)

11.5
+12.3.1
+13.2.1
+11.4.1
+10.4.2

13.3

11.4.1
+11.5
+12.3.1
+13.2.1

13.3

14.2
+15.1
+11.4.1
+13.3

13.3

Al,g(oz)

10.1

10.1

Tables
A3,4(Oz) A4}3(Oz) AQ’G(O[) A3}5(Oz) A4}4(O¢) A5}3(O¢)
12.4.1
+ 16.1
15.2
13.3 + 17
11.5 + 10.5.2
t1042 ALy 182y, 1831
11141 +11.5 L1151 +14.2.1 11241 +11.4.2
19 4'2'1 +10.5.1 410421 4 11'5'1 +10.4.2.1
T 49421 +11.5.1 +14'2'1
4+ 10.5.2 -
+ 134
16.1
13.3 11.5.1 + 17
0 +10.5.1 +13.3.1 13.3.1 + 11.5.1 13.3.1
+13.3.1
14.3
+12.4.1
15.1 n 1213";) +14.2.1 14.2.1
12.3.1 +12.3.1 15.2 4 1'5'2 +13.3.1 + 15.2
+14.2 +13.3 +13.3.1 113 3'1 +12.5 +11.5.1
+11.5 N 1'2'5 + 134 +13.3.1
To+11.4.2
+ 11.5.1
A2,7(Oz) A3,6(Oé) A4,5(Oz) A5}4(O¢)
7.2
8.1 0 7.2 19
8.2 9.1 8.2
8.2 + 10 + 721 +10
+ 10 + 721 + 8.2 1 6.3.1
+ 7.3 + 10 e
11 10.1
+8.2.1 0 7.3.1 + 8.3
+ 8.3 +9.2
10.1
+ 8.3
10.1 0 0 199

+7.3.1



Table 2: The multiplication function A, ; on admissible monomials

3.1

4.1

4.2

5.1

4.2.1

5.2

Al,g(oz)

11.1

11.1

11.2

+12.1

11.2
+12.1

13.1

13.1

12.2.1

12.2.1

A2,7(Oz)

9.2.1
+9.3

10.2
+9.3

10.3
+13
+9.3.1

13
+11.2
+10.2.1
+10.3

11.2.1
+11.3

11.2.1
+11.3

13.2
+12.3
+10.4.1
+10.5
+12.2.1

11.3.1
+13.2
+12.2.1
+12.3

A3,6(Oé)

10.2
+11.1
+8.3.1
+9.2.1

10.3
+12.1
+13
+11.2
+9.3.1

11.3
+13.1
+10.3.1
+11.2.1
+9.4.1

13.1
+94.1

12.3
+13.2

A4,5(Oz)

9.3

10.2
+11.1
+8.3.1
+9.2.1
+9.3

10.3
+12.1
+ 13

10.3.1
+13.1

11.2.1
+11.3
+13.1

11.3.1

12.3
+13.2

449

A5}4(O¢)

9.3
+11.1

10.2

12.1
+9.3.1

10.3
+13
+11.2
+9.3.1

13.1
+94.1

13.1

11.3
+94.1
+11.2.1
+10.3.1

10.4.1
+11.3.1
+10.5
+12.2.1

13.2
+12.3
+10.4.1
+10.5
+12.2.1
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6.1

5.2.1

6.2

7.1

Al,g(oz)

14.1
+12.3
+13.2

14.1
+12.3
+13.2

13.2.1

13.2.1

13.3
+15.1

13.3
+15.1

A2,7(Oz)

10.4.1
+10.5
+12.3
+13.2
+14.1

11.3.1
+14.1
+12.3
+13.2

13.3
+13.2.1
+11.4.1

+11.5

12.3.1

12.3.1
+13.2.1
+13.3
+15.1
+11.4.1
+11.5

15.1

A3,6(Oé)

12.3
+13.2

12.3.1
+13.2.1
+13.3

13.3
+10.5.1

A4,5(Oz)

10.4.1
+10.5
+12.3
+13.2

10.4.1
+11.3.1
+10.5

11.4.1
+11.5

10.5.1

13.3

13.3
+11.4.1
+11.5
+12.3.1
+13.2.1

Tables

A5}4(O¢)

14.1

11.3.1
+14.1
+12.3
+13.2

11.4.1
+11.5
+13.2.1

13.2.1
+10.5.1

15.1

15.1
+10.5.1
+12.3.1
+13.2.1



Table 2: The multiplication function A, ; on admissible monomials

2.1

3.1

4.1

4.2

AQ’S(O[)

10
+9.1

9.2

9.2.1
+9.3
+11.1
+10.2

10.2

12.1
+13

10.3
+12.1
+ 13
+11.2

12.2
+13.1
+10.3.1
+11.2.1
+11.3

12.2
+11.2.1

13.2
+11.3.1

A3,7(Oz)

9.1

8.2.1
+10.1
+11
+8.3

9.2.1
+9.3
+11.1

10.2.1
+10.3
+12.1

+ 13
+9.3.1

11.2.1

11.3
+13.1

10.4.1
+10.5
+12.3
+13.2

A4,6(Oé)

8.2
+ 10
+9.1

8.3
+11

10.2
+11.1
+8.3.1
+9.2.1

9.3
+10.2
+11.1

10.3
+12.1
+ 13
+11.2
+9.3.1

13.1
+10.3.1
+11.2.1

10.3.1
+11.2.1
+11.3

10.4.1
+10.5
+12.3
+13.2

A5,5(Oz)

7.3.1
+8.3
+9.2

9.3.1

10.4.1
+10.5
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A6,4(Oé)

7.3
+9.1
+8.2

8.2.1
+10.1
+8.3
+7.3.1

8.3.1

9.2.1
+9.3

10.3
+11.2
+9.3.1

10.2.1

9.4.1
+11.2.1
+12.2

13.1
+12.2
+10.3.1
+11.3
+9.4.1

13.2
+10.4.1
+11.3.1

+10.5
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5.1

4.2.1

5.2

6.1

AQ’S(O[)

11.3.1
+12.3
+13.2

12.3

13.3
+13.2.1
+11.4.1

+11.5

12.3.1
+13.3

14.2
+11.4.1
+11.5
+13.3

14.2
+12.3.1
+13.2.1

+13.3

A3,7(Oz)

10.4.1
+11.3.1
+10.5
+12.3
+13.2

11.4.1
+11.5
+13.3

12.3.1
+13.2.1

13.3
+11.4.1
+11.5
+12.3.1
+13.2.1

A4,6(Oé)

12.3
+13.2

10.4.1
+10.5

10.5.1
+12.3.1
+13.2.1

13.3
+11.4.1
+11.5
+12.3.1
+13.2.1

10.5.1
+13.3
+11.4.1
+11.5
+12.3.1
+13.2.1

12.3.1
+13.2.1

A5,5(Oz)

10.4.1
+10.5

Tables

A6,4(Oé)

11.3.1

13.2
+10.4.1
+11.3.1

+10.5

13.3
+10.5.1
+12.3.1

13.3
+13.2.1
+11.4.1

+11.5

14.2
+10.5.1
+11.4.1

+11.5
+12.3.1
+13.2.1

14.2



Table 2: The multiplication function A, ; on admissible monomials

2.1

3.1

4.1

4.2

5.1

A110()

11

12.1
+13

12.1
+13

13.1

13.1

13.2

13.2

A2’9(Ol)

10.1

10.2

10.2.1
+10.3
+12.1

+13

11.2.1
+11.3

11.3
+13.1

11.3.1
+12.2.1

13.2
+12.2.1
+12.3

13.2.1

Agys (Oé)

11

9.2.1
+9.3
+10.2

12.1
+13

12.1
+ 13

13.1

13.1
+11.3
+10.3.1

13.2

11.3.1
+12.3

11.4.1
+11.5
+13.3

A4}7(O¢)

9.2
+11

9.2.1
+11.1

11.2
+9.3.1
+10.2.1
+10.3
+12.1
+13

11.2.1

10.3.1
+13.1

13.3

A5,6(OZ)

9.2
+ 11

8.3.1
+9.21
+9.3

10.3
+12.1
+13

10.3
+12.1
+ 13
+9.3.1

11.3
+13.1

11.3
+13.1

11.3.1
+12.3
+13.2

11.3.1
+12.3
+13.2

10.5.1
+11.4.1
+11.5

13.3

A6,5 (Oé)

10.1
+ 11
+8.3
+9.2

9.2.1
+9.3
+11.1
+10.2

10.3
+12.1
+ 13
+8.4.1
+10.2.1
+9.4

10.3
+11.2

9.4.1
+13.1
+11.2.1

10.3.1

12.2.1
+13.2

12.2.1
+10.4.1
+10.5
+13.2

10.5.1
+11.4.1
+11.5
+12.3.1

11.4.1
+11.5
+13.3
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A7}4(O¢)

9.2

10.2
+8.3.1

10.3

9.3.1
+10.3

11.3

10.3.1

11.3.1
+12.3

13.2

13.3
+10.5.1

13.3



454

2.1

3.1

4.1

A110(a) Az o(a) Asg(a) Asq(a) As ()

1141

0 13.2.1 +123.1 +13.2.1

+13.2.1

Az10() Aso(a) Ay z(a)

12 10.2

+11.1 11 + 12

10.2.1

13 +10.3 n 18?

+11.2 +12.1 +11'2
+13 ’

11.2.1 n i,l)’i)
+11.3 13.1 ’

1122 +12.2

’ +10.3.1

12.2 11.2.1 12.2

+13.1 +11.3 +11.3

11.3.1

+12.3

_’1_4151_) 0 +13.2

+14.1

+ 15

12.3 11.3.1 13.2

15.1 15.1

+12.3.1 13.2.1 +12.3.1

13.2.1 13.2.1 12.3.1

13.3

+11.5 1231 +10.5.1

+11.4.1
+11.5

A577(0£)

9.3.1
+11.2
+10.2.1

11.2.1
+11.3
+13.1

11.3.1
+12.3
+13.2

A6,5 (Oé)

13.2.1
+10.5.1

AQ@(O&)

12
+9.3

9.3.1
+13
+10.2.1

12.2
+11.3
+9.4.1

12.2
+13.1
+11.2.1
+11.3

14.1
+ 15

13.2
+11.3.1

15.1
+10.5.1
+11.4.1

+11.5

11.4.1
+11.5

Tables

A7}4(O¢)

11.4.1
+11.5

A775(Oé)

9.3
+11.1

10.3
+8.4.1
+10.2.1
+9.4

13.1

9.4.1
+11.2.1

10.4.1
+11.3.1
+10.5

11.4.1
+11.5
+13.2.1

13.2.1
+13.3



Table 2: The multiplication function A, ; on admissible monomials

« Al,lg(oz) A2,11(Ol)

12.1
+13

12.2
+ 14

12.2.1

+15
+14.1
+12.3

2.1 14.1

3 14.1 0

13.2.1
+13.3
+15.1

3.1 15.1

14.2
+15.1
+13.3

4 15.1

Aszo(a)  Asg(a)
11.2
B o
11.2.1
+11.3 12.2
+14
+122 0
14 2
14.1
WL 131
14.1 14.1
13.3
B
14.2
14.2
11231 Iggi
11321 2

+13.3

A5,8(OZ)

13
+11.2

10.3.1
+12.2
+ 14

14.1
+12.3
+13.2

11.3.1
+14.1
+12.3
+13.2

13.3
+15.1

14.2

455

A6,7(OZ) A7,6(Oé) A8,5(Oé)

121 10.3

) 13 +11.2

+13 +94

+11.2 '
9.4.1

12.2 + 13.1 10.3.1

+ 14 +12.2 +11.3

+11.3 +14 +94.1

+11.3

10.4.1
+11.3.1

+ 10.5 12.3

+12.3 14.1 + 13.2

+12.2.1 +10.4.1
+ 15
+14.1

12.3 11.3.1

+ 13.2 14.1 + 10.5
11.4.1

+11.5 13.3

+13.2.1 151 +11.4.1
+ 15.1

14.2 14.2 11.5

+15.1 +10.5.1 +410.5.1
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et Az12(a) Asjpi(a) Asio(a) Aso(a) Asg(a)
12.2 11.3
1 13.1 13.1 14 13.1 1131
12.2.1
12.2.1
132 +15 123 M3 415
2 115 141 115 +12.3 +14.1
+ 12.3 + 13.2 +12.3
’ +11.3.1
13.3
13.2.1 n 1;? +11.4.1
2.1 +13.3 0 112 3.1 0 +11.5
+14.2 ¥ 13'2'1 +12.3.1
- +13.2.1
13.2.1 14.2
3 n }g? +13.3 +15.1 0 _’1_3121
' +15.1 +13.3 ’
(67 A1714(a) A2,13(a) A3,12 (a) A4,11(Oé) As,lo (Oé) A6,9(a)
15
14.1 13.2 13.2
1 15 +14.1
+ 15 +14.1 + 15 1123
13.2.1 12.3.1
2 0 14.2 +13.3 13.2.1 +13.2.1 _‘1_31?)?3
+14.2 +13.3 ’
o Azjna(a) Asziz(a) Asiz(a) Asii(a) Asio(a) A7e(a)
14.2 13.3 13.3
! 151 15.1 +15.1 15.1 +14.2 +4+15.1

A7}7(Oz)

11.3
+13.1

10.4.1
+11.3.1
+10.5
+13.2
+12.2.1
+ 15
+14.1

13.3

11.4.1
+11.5
+13.3

+13.2.1
+15.1

A77s(a)

0

1141
+11.5
+12.3.1
+13.2.1

Ag,g(oz)

12.4
+14.2
+15.1
+13.3

+ 16

Tables

As}(;(a) A9,5(Oé)
12.2
+13.1
+10.4 1.3
+11.3
12.2.1
L 040
+11.3.1 105
+ 13.2 '
+11.4
11.5
+13.3
+10.5.1 13.3
+12.3.1
13.3
+13.2.1 ilﬁé
+11.5 '
A377(a) Agy@(a)
15
br 132
+11.4 '
13.3
+11.4.1 13.3
+11.5 +14.2
+14.2 +10.5.1
+12.3.1 +12.3.1
+13.2.1
Ag,7(a) Aro,6(a)
13.3
151 +124
+11.5



Table 3: The function £ = £s on preadmissible relations 457

Table 3. The function ¢ = {5 on preadmissible relations

0
=21®34+3®3+41®14+5®1

21®3+3®3+41®1+5®1

0

A1®3+51®1

A1®314+3®314+31®3+51®1
1®31+3®3.1



458 Tables

1®5+3®5+31®31+41®3+5®3+42101+52®1

1®54+3®5+41®3+5®3+421®14+52®1

0

=31®5+51®3+71®1

0
=21®51+3®51+41®3.1+5®3.1

=21®514+3®514+41®31+5®3.1
=31®5+51®3+71®1

1®514+3®514+3105+41®314+5®31+51®3+521x1



Table 3: The function £ = £s on preadmissible relations 459

£(5[2,3]) =21®51+3®51+41®31+513.1

£(6[1,3]) =0

£(6[2,2]) =31®5+51®3+521®1

£(701,2)) =0

§(8[1,1)) =0

£(4.2[1,3]) =0

£(5.2[1,2])) =0

£(6.2[1,1]) =0

£([1,10]) =0

£(02,9) =21Q7+3Q7+41®5+5®5+61®3+7®3+81®1+9®1

£(3,8) =21Q7+3Q7+41®54+5®5+61®3+7®34+8101+9®1

£([4,7)=51®31+31®5.1

£([5,6]) =0

£([6,5]) =2.1®52+3®52+31®51+41®5+5®5+51®31+61®3+7®3
+63®14+72®1

&([7,4]) =21®524+3®52+41®5+58®54+61®3+7®3+6301+72x1

£(2[1,8) =0

£(3[1,7) =0

£(4[1,6)) =0

£(4]2,5]) =21®5243®52+4105+5805+4.21®34+52®3+621®1+81x1

+901+72®1
§(5[1,5]) = 0

£(5[2,4]) =21 ®52+3®52+4105+505+421®3+52034+62101+81®1
19147201

£(6[1,4]) =0

£(62,3) =21 @7+3074+41®5+5054+51®31462101+6301+42102.1
4721478346121 +52®21+61®3+31®5.1

£(6[3,2)) =21@7+3®74+41®54+5®@5+51®3.14+621®1+63®1+4.21®2.1
+7®214+7®3+61®21+52®21+61®3+3.1®5.1

£(71,3]) =0

£(72,2) =21Q@7+307+4105+5®5+421®214+7®21+7®3+61®2.1
+61®3+52®21+62101+63®1

£(8[1,2]) =0
§O,1]) =0
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+71®34+91®1
&([5,7)=21®714+3®71+41®514+5®51+6.1®3.1+7®3.1

£([6,6) =21 ® 7143271431 ®524+41®51+5®5.1+51®5+6.1 ®3.1+7® 3.1
+71®3+7301

£(7,5) =21®714+3®71+41®51+5®51+61®31+7®3.1

£(2[1,9]) =0

£(3[1,8]) =0

£(4[1,7) =0

£(42,6) =3.1®52+31®7+521®3+71®3+721®1

£(5[1,6]) = 0

£(5[2,5]) = 0

£(6[1,5]) = 0

£(6[2,4) =210 714+3® 714310524318 7+41®51+5®51+6.1®3.1+7® 3.1
+521®21+521®3+71®21+71®3+631®1+721®1+91®1

£(6[3,3]) =0

§(7[1,4]) =0

£(72,3) =21®71+3®71+41®51+5®51+421®3.1+52®31+63.1®1
+721®14+73®1

&(73,2)) =21®714+3®71+41®514+5®51+421®314+52®31+631x®1
+721®14+73®1

£(8[1,3]) =0

£(8[2,2) =31®7+51®54+421®314+7®31+61®31+52®3.1+521®2.1
+71®214+71®3+721®1+73®1

£(9[1,2]) = 0
£(101,1]) = 0



Table 3: The function £ = £s on preadmissible relations 461

€(4.2[1,5]) =0

£€(5.2[1,4]) = 0

£(6.2[1,3]) =0

£(6.3[1,2]) =0

£(7.2[1,2]) =0

€(7.3[1,1]) =0

£(8:2[1,1]) =0

&([1,12]) =0

€([2,11]) =21 ®9+3®94+41®@T+507+6.1®5+7®5+81®3+9®3+10.1®1
+1I®1

£(3,10)) =21 ®9+3094+41®7T+507+6.1R5+705+8103+9®3+101®1
+11®1

€([4,9) =21 ®9+3® 9431 ® 7.144.1 ® T+5® T+5.1 © 5.146.1 ® 5+7 @ 5+7.1 ® 3.1
+81®34+983+101®1+11®1

€(5,8) =21 ®9+3094+41Q7T+507+6105+705+8183+983+10.101
+11®1

€([6,7) =219072+3072+21094+309+41052+58052+6105+795
+63®3+7203+8301+92®1+101®1+11®1

&([7,6])) =21®724+372+2194+309+41852+5®52+6154+7®5
+63®34+72®34+83®1+9214+101®1+11®1

£([8,5) =31®71+51®51+71®3.1

£(2[1,10)) =0

§(31,9]) =

£(4[1,8]) =
EM4[2,7)=7T®5+21®72+31®7.1+51®51+821®1+11®14+101®1+3® 7.2

+41®524+5®524+5®7+621®3+61®5+52®5+72®3+92®1
+41®7+71®314+421®5

§(5[1,7)) =0

£(5[2,6)) =21®724+3®724+41®524+41Q07+5®52+5®74+421®54+7®5
+6.1®5+52®5+621®3+72®3+821Q01+11®1+101®1+92x1

£(6[1,6]) =0

£(6[2,5) =9®21+6105+72®3+83®14+92®14+621®34+41®7+51®5.1
+421R®54+6.1041+7®54+507+63®21+21R®72+81®2.143®7.2
+421®414520414+31R0714+7®41+621®21+5®524+52®5
+41®524731®14+71®3.1

£(6[3,4]) =9®21+6.15+7203+83®1+92®1+621®3+41R®7+5.1®5.1
+421®54+6.1®414+7Q05+5®@74+6.3®214+21®724+81®214+3x7.2
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Tables

+421®41+520414+31R071+7®414+621®21+5®52+52K®5

+41®524731®14+71®3.1

§(7[1,5]) =0

£(72,4) =3072+4210414+7TR041+705+42105+5R52+507+9201
+619414+521®314+71931441952+6105+9®21+41®7
4+621©3+639214+52®41+81®214+21®72+621®21+72®3

+52®5+83®1

£(73,3)) =0
£(8[1,4]) =0

£(8[2,3) =30 9+41Q7T+507+51®514+7041+6185+61®41+421®4.1
+63®21+821®1+9®21+71®3.1+3.1®7.1+9®3+705+8.1®3

+83®1+52®414+621®21+81®21+21®9+731®1

£8[3,2) =30 9+41Q7T+507+51®514+70414+6185+61®41+421®4.1
+63®21+821®1+9®21+71®3.1+3.1®7.1+9®3+705+8.1®3

+83®1+52®414+621®21+81®21+21®9+731®1

§0901,3)) =0

€092,2) =621®21+521®31+71®31+63221+810214+4107+507
+9®34+52041+81®3+821914+612414+61%5+2109+3®9

+7T®414+7®54+9®214+421®41+83®1
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Table 3: The function £ = £s on preadmissible relations 463

£([6,8)) =319®72+51952+5107+7303+9183+93%1
&([7,7) =0

&([8,6])) =7®514+71054+73®3+21®734+3®73+3.109+4.17.1+51®5.2
+111®14+5®71+93®1+3.1®72+61®51+63®3.1+72®3.1

£([9,5) =21 ®73+3®07.34+41 @ 7.14+5® 7.14+6.1 ® 5.1+7®5.1+6.3 ® 3.1+7.2 ® 3.1
€(2[1,11]) =0
£(3[1,10]) =0
£(4[1,9]) =0
(

£(42,8]) = 21®91+3®91+31®72+41®71+5071+51®52+51Q7
+61®514+7®514+521®54+71®5+81®31+9®314+721®3
+921®14+11.1®1

£(5[1,8]) =0

£(5[2,7)=21®914+3®914+41®714+5® 7.1+6.1®51+7®5.14+81®3.1+9® 3.1

£(6[1,7)) =0

£(62,6) = 521®414+7®51+21®73+3®73+63231+41071+5x7.1
+721®214+73®214+831Q@1+71®4.14+91®21463.1®34+721®3
+111®1472®314+73®34+61®5.1

£(6[3,5]) = 0

§(7[1,6]) =0

£(72,5) =41®71+21®73+5071+72®314+721®3+52®51+9®3.1
+831®1+921®14+93®14+73®3+3®73+621®3.1+63.1®3
+421®51+81®3.1

&(7)3,4)) = 41®71+21®73+5071+72®314+721®3+52®51+9®3.1
+831®14+921®1+93R®14+73®34+3®73+621®3.1+63.1®3
+421®514+81®3.1

£(8[1,5]) =0

£(8[2,4]) = 9103 +621©31+721821+5071+21891+309.1+31®9
+73®2.147.21 ®3+4.2.1 ©5.146.3.1 ® 2.145.1 ® 5.243.1 ® 7.248.3.1 ® 1
+93®1+63®31+52®51+52105+411®7.1

£(8[3,3]) =0
£(9[1,4]) =0

£09[2,3]) =421®51+5®71+73021+41971+83191+921814+93%1
4621 ®3.147.21®2.1+6.3.1 ®2.142.1 © 9.1+3 ® 9.146.3 ® 3.145.2 ® 5.1

£(9[3,2])) =421®514+571+73®214+41®71+831®14+9211+93®1
+6.2.1 ®3.147.21®2.146.3.1 ®2.142.1 ® 9.14+43® 9.1+6.3 ® 3.1+5.2 ® 5.1

£(10[1,3]) =0



464 Tables

€(102,2]) = 9.1®3+921®1+93®1+63®3.1+81®31+9®31+73®2.1
+710414+5107+421®51+71®54+7®51+6.1®51+52®5.1
+31®9+91®21+721®21+621®3.1+521®4.1

&(11[1,2)) =0
&(12[1,1]) =0
£(4.2[1,7)=0
£(5.2[1,6]) =0
£(6.2[1,5]) =0
£(6.3[1,4]) =0
£(7.2[1,4) =0
£(7.3[1,3) =0
£(8.2[1,3]) =0
£(8.3[1,2]) =0
£(84[1,1]) =0
£(9.2[1,2])) =0
£(9.3[1,1]) =0
£(10.2[1,1)) =0
£([1,14)) = 0
£([2,13) =21®1143®11441®94+4509+6.1R7+7T07+81®5+9®54+10.1® 3

+11®3+121®1+13®1

£([3,12)) =21 @ 11430 11+41 Q94509461 R 7T+7R7T+8.105+985+10.1® 3
+11®3+121014+13®1

€([4,11)) =31®91+51®71+71®5149.1®3.1
&([5,10]) =0

£([6,9)) =21®9.2+21®114+3®924+3® 11+3.109.1+4107.2+510 7.2+51 1 7.1
+61®52+6107+7T®52+707+71®51+6305+81®5+9®5
+720549.1®314+83®34+92®3+103®1+121®1+1301+112® 1

&([7,8]) =21®92421®11+3®92+3®114+41R® 72450 7.24+6.1®5246.1Q7
+7T®524+7TR7+6.3 ®54+8.1®5+9®5+7.2® 5+8.3®3+9.2®3+103® 1
+121®1+13®1+11.2®1

£(8,7) =31®73+7®52+51®71+11®3+83®3+63®5+71®51+3®9.2
+41R0724+5®72+41®94+5®9+92®3+21®9.24+103®1+72®5
+11201473®31+10.1®34+6.1®5.2

£([9,6])) =41®724+572+11201+41®9+5®9+3®92+83®3+92®3
+6.1®524+7®5.24101®34+21®9.24+11®34+6.3®5+103®14+72®5
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€(2[1,12]) =0
§(3[1,11]) =0
£(4[1,10]) =
£(4[2,9)) = 1021®14+3®92+3®114+11.2014+21®92+21®11 +6.1®5.2

+621054+7205+421Q07+52074+101®34+92®3 +41®7.2
+5®724+7T®52+821®3+11®3

£(5[1,9)) =0

£(5[2,8)) =1021®1492®3+21®114+5®72+11.2®14+3®9.2+3®114+52Q 7
+421®74+21®924+621054+72Q054+61®52+41724+7®5.2
+821®34+11®3+101®3

£(6[1,8]) =0

£(6[2,7) =821 ®2141021®14+11®21+103® 14101 ®2.14+121® 1+3.1®9.1
+4.21®614+13®146.2.1 ®4.14+83®2.1+6.1 ®6.1+7.3®3.1+8.1®4.1
+931®1491®31+52061+79614+31073+63041+9®4.1
+731®3

£(6[3,6])) =8.21®2141021®14+11®21+103®1+101®2.1+121®1+3.1®9.1
+421®6.1+13®14+621®41+83®2.1+6.1®6.1+73®3.1+81®4.1
+931®1+91®314+52®614+7®61+31®73+63®41+9®4.1
+731®3

§(7[1,7) =0

£(7[2,6]) =103 ® 141021 @ 14+13@1+121 914421 ©6.14+7.1©5.146.2.1® 4.1
+61®61+7®61+521®51+83®21+81®41+73®3.1+9®4.1
+52061+721©31+91®3.1+821®21+101®2.1+11®2.1+

6.3®4.1
£(7[3,5]) = 0
£(8[1,6]) =0

£(8[2,5])) =9.2®3+82.1®3494®14+41®7.2+9.1®3.14+5® 7.24+841®1+7.2Q5
+52®524+31®73+31®914+621®54+731®214+81®5+9®5
+73®31+4218®52+931®14+41®9+5®9+3®9.2+21®9.2
+731®3

£(8[3,4]) =92®34821®3494®14+41®72+49.1®3.1+5® 7.2484.1Q®1+7.2®5
+52®524+31®73+31®9.14+621®54+731%214+81®5+9®5
+73®314+421®524+931®1+41®94+5R9+3®9.2+21®9.2
+731®3

£(8[4,3)) =31®7214+31®73+51®521+521®51+631®31+731®2.1
+731®3

§0901,5])) =0

€9[2,4]) =7.393147205+82193+81054+905+41®9+309.2+4.1®7.2
+421®52493101+92®3+52052+94®1+84101+5®9
162105+50724+631©3.1+72103.1+219.2
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£(9[3,3]) =0
€(10[1,4]) =0

£(10[2,3]) =52®6.1+6.3.1®3.14+9®41+9®5+41®9+81®41+7® 7+6.3®4.1
+3®11+10.1 ® 2.1+10.1 ® 3+8.2.1 ® 2.14+10.2.1 ® 1+7.3.1 ® 2.1+6.1 ® 6.1
+5®9+621®414+31®91+11®214+51®714+11®3+21x11
+71®51+721®314+81®54+83®21+103®14+7®6.14+73®3.1
+91®314+61®7+93.1®1+421®6.1

£€(10[3,2]) =5.2®6.1+6.3.1 ®3.1+92041+9®5+4.1®9+81R41+7® 7+6.3 ® 4.1
+3® 114101 ® 2.1410.1 ® 3+8.2.1 ® 2.1410.2.1 ® 1+7.3.1 ® 2.1+6.1 ® 6.1
+5®9+4621941+31®91+11821+51®71+11®3+21®11
+71®51+721®31+81®5+83®214+103®1+7®6.1+7.3®3.1
+91®31461®7+93181+421®6.1

§(11[1,3]) =0

£(1112,2]) =81®54+101®3+7®7+61®6.1+1021®14+101®21+521®5.1
+61®7+52®61+7®61+11®2.1+103®1+63®41+721R3.1
+821®21+71®51+83®21+5®9+21®114+73®3.1+81®4.1
+41®9+9®414+3®11+91®31+621®41+421®6.14+11®3

+9®5

£(121,2]) =0
§(13[1,1]) =0
£(4.2[1,8)) =0
£(5.2[1,7)) =0
£(6.2[1,6]) =0
£(6.3[1,5]) =0
€(7.2[1,5]) = 0
€(7.3[1,4]) =0
£(8.2[1,4]) =0
£(8.3[1,3]) = 0
£(8.4[1,2)) =0
£€(9.2[1,3]) =0
€(9.3[1,2]) =0
£(9.4[1,1]) =0
£(10.2[1,2]) =0
£€(10.3[1,1]) = 0
€(11.2[1,1]) =0
&([1,15]) =0
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£([2,14) =31 @11 +5109+7107+9185+11.1®3+131®1
€([3,13)) =0

€([4,12) = 210111 4+3011.1 +31011 +41891+5091+5109+6.1®7.1
+7TR 71471 @ T+81®5.149®5.149.1 ® 5+10.1 ® 3.1+11 ® 3.1+11.1 ® 3
+131®1

€([5,11]) = 21®11.1+3®11.1 +41©®9.1+5®91+61®71+7®7.1+81®5.1
+9®51+101®3.1+11®3.1

£([6,10) =21 ©11.14+3®11.1 +318092 431011 +41®9.1+5®9.1 +51® 7.2
+61Q7TI+7TQTI+7T1®524+71Q7+81®51+9®5.1+7.305+9.105
+101®314+11®314+9303+11.301+13.101

€(7,9) = 21®11.1+3®11.1+41891+5®91+61Q71+70714+81®5.1
+9®51+101®3.1+11®3.1

£([8,8) = 419734101931 +21®93+3011.1+131914+72®5.1+3®9.3
+63®51+92®314+11®31+5073+61071+91®5+7®7.1
+111®3+71®7+5109+83®31+31011+21®11.1

£(9,7) = 21®93+3093+21®11.1+3®11.1+418073+5073+61®7.1
+7®71+63®51+72®51483®314+92®3.1+101®3.1+11®3.1

£([10,6] =3.1©9.245.1® 72451 ®9+7.1 ® 5247305493 3+11.1 ®3+11.3® 1
(
£(3[1,12
(
(

£(4[2,10 21®5+921®3+51®9+9105+11.21®1+131Q1+5187.2

+31®924+521Q7+71R7T+7185.2

£(5[1,10)) = 0

£(5[2,9) =

£(6[1,9]) =0

£6[2,8]) = 7152+ 9303 +72051+63105+9251+52107+91®4.1

+5®9.1+73®54+11.1®214+73®414+721®41+5®734+9.21®2.1
+51®724+521®6.14+831®3+13.1®1+3.1®92+3.1®114+21®9.3
+41®9.1463®5.1+71®6.14+10.3.1®1+83®3.1+41®7.3+9.3® 2.1
+3®93+81®514+11.21®1+11.1®3+92®3.1

£(6[3,7)) =0
£(7[1,8]) =0

&(72,7) =5®73+101®314+5®914+721®5+921®3+831®3+61®7.1
+93®3+7T®71+52®71+1121®1+73®5+103.1®1+21®9.3
+72®514+41®734+3®93+11®3.14+821®3.1+41®9.1+6.3.1®5
+421®714621®51+92®3.14+113®1
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£(7[3,6) =5®73+101®31+5®9.1+721®5+921®3+83103+61x7.1

+93®3+7T®714+52071+1121014+73®5+103.1®1+21®9.3
+72®51+41®734+3®93+11®3.1+821®3.1+41®9.1+63.1®5
+421®714621®51+92®314+113®1

§B8[1,7) =0
£(8[2,6]) =6.3.1 ®4.1452.1®6.14+6.3.1®5+7.305+13.101+62.1®51+7.1®6.1

+93®3+11.21®1+821®3.14+91®5+3®9.3+831®3+11.1®2.1
+92®314+101®314+21®93+11®31+941®14+5®73+51®9
+113®14+41®914+421971+510724+7®714+31®9.2+5®9.1
+831®21+52®7.1+9.1®4.14+72®514+4.1® 7.3+6.1 ® 7.1+5.2.1 ® 5.2

£(8[3,5]) =0

£(8[4,4) =9.2®3.14+5®7.2.14421®521491®5+11.21®1+9.4.1® 1452 7.1

+31®92483®3.1+51®7.24721®5+521®524+521®6.1+7®7.1
+131®14+41®7214+51094+5®9.14+21®921+72®5.1+73®4.1
+421®714+721®414101®314+63®514+31®731+921®2.1
+11®314+71®6.14+91®41+3®9.214+921®3+11.1®214+6.1®7.1
+93®214+113®1+41®9.1+52®5.2.1

€(9[1,6]) =0
£9[2,5]) =41®91+5®9.1+93021+9®51+83®31+731®3.1+9223.1

+81®51+21®9.3+921®3+3®93+4.1®73+92.1®21+72185
+73®41+721®414831®214+93®34+73®54+63®51+63.1®5
+5®73+72®51+8318®3+63.1x4.1

£9[3,4]) =41091+5®91+93021+9®51+83®3.1+731®3.1+9223.1

+81®51+21®934+921R®34+3®934+41®73+921®214+721®5
+73®41+721®414+831®214+93®3+73®54+63®51+63.1®5
+5®73+72®51+8318®3+63.1x4.1

£09[4,3]) = 93®21+83®31+731®31+821®31+21®93+421®5.2.1

+921®3+3®934+41®73+9.21®214+721®5+73®414+41®7.2.1
+5®7214+721®414+21®9.21+831®214+93®3+3®9.2.14+73®5
+6.3®5.1+6.3.1 ® 5+5® 7.3+6.2.1 ® 5.1+8.3.1 ® 3+6.3.1 ® 4.1+5.2 ® 5.2.1

§(10[1,5]) = 0
£(1012,4]) =81®51+91®41+31®11+61®71+1031®1+51®724+9®5.1

£(10(3,3))
§(11[1, 4))

+71®6.14+21®11.14+721®54+521®524+7® 7.1+11 ® 3.14+5.2.1®6.1
+41®914+71®7+11.1®2.14+101®3.1+9.21®3+11.1®3+3.1®9.2
+831®21+631®41+5®914+941®14+3®11.1

=0
=0

£(11[2,3]) = 93®21+831®21+421®714+63®51+621®51+821®3.1

+103.1®14+731®31+21®111+631®41+41®91+921®2.1
+1121Q®14721®41+52Q71+83®3.14+5®9.1+73®414+3®11.1
+11.3®1
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£(11[3,2]) = 93®21+831®21+421®71+63®51+621®51+821®3.1
+1031®14+731®314+21®11.14+631®414+41®9.1+921®2.1
+11.21®14721®414+52®71+83®3.1+5®9.1+73®414+3®11.1
+11.3®1

£(12[1,3]) =0

£(12[2,2)) =11.1®3483®3.1+11.3®1+7®7.14821®3.1+11.21 ® 1+5.2.1 ® 6.1
+52®714101®3.14+71®6.1+51®94+63®514+3.1®114+9.21®2.1
+91®5+73®414+81®514+91R®414+71Q7+6.1®71+721®4.1
+421®714+93®21+11®314+9®51+11.1®21+6.21®5.1

| | | I
o o © © © © © ©o o <@ <

®© © © 00 N N o o Ot
N N R U R R R R

=5®91492®314+41®914+41®73+5172+73®5+93®3
4+921®214+831®21451®9+21®9.3+721®414+9.1®54+941®1
+73®41+831®34+72®51463.1®414+83®3.14+93®21+3®9.3
4+631®5+9®514+63®51+521®524+5®7.34+31®9.2+81®5.1

£€(9.2[1,4]) = 0
£(9.3[1,3]) = 0
£€(9.4[1,2]) = 0
€(10.2[1,3]) = 0
£€(10.3[1,2]) = 0
£€(10.4[1,1]) = 0
€(11.2[1,2]) = 0
€(11.3[1,1]) = 0
€(12.2[1,1]) = 0
£(8.4.2[1,1]) = 0
£([1,16]) =0
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£([2,15) =21 ® 1343 @ 13441 @ 1145 1146.1 © 9+7® 9+8.1 Q T+9® 7+10.1 ® 5
+11®54+12193+1303+141®@14+15® 1

£([3,14]) =21 ®1343®134+4.1 @ 1145 ® 11461 R 9+7®9+8.1 R 7T+9® 7+10.1 ® 5
+11®54+121®34+13®3+141x1+15®1

£([4,13) =21 ®134+3®13+31Q11.1+41@11+5011+51®9.1+6.109+7®9
+71® 71481 @ 7T+I® 7+9.1 ®5.1+10.1 ® 5+11 ® 5+11.1 ® 3.1+12.1 ® 3
+13®34+14101+15®1

£([5,12]) =21 ®1343® 13441 @ 1145 ® 1146.1 R 9+7®9+8.1 R 7T+9® 7+10.1 ® 5
+11®54+121®34+13®3+141x1+15®1

£([6,11]) = 21®11.24+3011.2 +41®92+ 41011+ 5892+ 5811 + 6.1 ® 7.2
+707246307+7207+81®52+9852+8305+92®5+103®3
+121®3+1303+11.2®3+123®1+13.2®1

&([7,10)) = 21®1124+3®11.24+41®92+41®11+5®92+5®11 +6.1® 7.2
+7TR724+63Q7+72Q07+81®524+9®5.2+83®5+92®5+10.3® 3
+121®3+13®3+11.2®3+123®1+13.2Q®1

€([8,9) =21 ®13+3® 134312934410 11450 11+51873+51®9.1+6.199
+7094+81Q7T+9®7T+73®51+9.1©51+101®5+11®5+9.3®3.1
+121®3+13034+141@1+1501

€([9,8)) =21 ®1343®@ 13441 ®11+5® 1146.1 ®9+7® 9+8.1 0 7+9® 7+10.1® 5
+11®5+1218®3+13@3+14101+15®1

£([10,71=101®5+11®54+6.1®94+63®52+73®514+7®94+5®92+114®1
+111®314+72®52451®73+61®72+103®3+3.1®11.1+83®5
+31®93+71®71+92Q05+7®72+21®94+112®3+105®1
+41®924+93®3.1+3®94

£(11,6] =5®9.2+11.2®3+7.2®52+6.1® 7.24+6.3®52+10.5 ® 1+83®5+9.2®5
+7®724103®3+61®9+21®944+114®1+101R®54+7®9+3®9.4
+11®5+41®9.2

1®914+9®52+1221014+41®92+5®92+11.1®3.1+6.1®7.2
+821®5+21®13+3®13+81®52+11.2Q3+71®7.1+3.1x11.1
+1021®34+21®11.24621Q07+9205+7R®72+121®34+132®1
+7207+421®9+13®3+3®11.24+52®9+9.1®5.1

£(3[1,11]) = 0

£(5[2,10) = 41®92+21®13+3213+ 30112462107 +61072+7207
+42109+70724+5292+82105+81952+1021®3+9285
+2191124+9®52+5209+1303+121®3+11.203+13201+
122101

£(6[1,10]) = 0
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£6[2,9) = 1141 +9205+ 1105+ 10105462107+ 113191+ 6.198.1
+31®934+3®11.2+1021®3+93103+907+41®92+421®9
+9®524+50114+9261+5209+13201+121®21+9.185.1+
73®514+63®61+11203+6109+83®4.1+93®3.1+81®52
+13®21+481®7+1030214+7207+5®92+421®81+731®5
461072451073 +51091+70814+41011+709+21911.2
+621261+52081+81®6.1+1021®2.1+821®5+101®4.1
+123®1+821®41+7®7.2

£6[3,8]) = 11041 +9205+ 1105+ 10105462107+ 113191+ 6.198.1
+31®934+3®11.2+102193+93103+907+41®92+421®9
+98052+5@11+9®6.1+5209+13201+121®21+91®5.1+
73®514+63®61+11203+6109+83®4.1+93®3.1+81®52
+13®21+481®7+1030214+7207+5®92+421®81+731®5
+61R724+51073+51091+7®814+41011+709+21®11.2
+621®61+52081+81®6.1+1021®2.1+821®5+ 101®4.1
+123®1+821®41+7®7.2

§(7[1,9]) =0

£(72,8) =41®11+81®52+521®71+101®414+821®5+7®9+11®4.1
+O0®I1I+7T®724+9®52+63®61+121®21+821®41+5®9.2
+52®94+103®21+921®31+13®21+1021®3+132Q®1+11Q®5
+52®81+93®314+92®5+621®74+61®724+421®814+81®7
+3®11.2472Q 7T+11.2®34+71® 71481 ® 6.1+9® 6.1+9 ® 7+2.1 ® 11.2
+11.1®31+621®61+61®81+1021®21+91®51+41®9.2
+73®514+7®814+83®41+101®5+123®14+421®9+721®5.1

+6.1®9
§(73,7) =0
£(8[1,8]) =0

£8[2,7) =52®81+83241+12301+101®4.1+841®3+94®3+81®6.1
+9®6.1+52®7.2+1021®2.146.1®81+821®5+121®2.1+52®9
+421®9492@5+21®9.4+821®4.1+421®72+7.2®5.24+6.3® 6.1
4621 ®524+13®2.149®5.249.3.1 ® 3+8.1®5.2+6.2.1 ®6.1+9.3.1 ® 2.1
+13201+441®92+1041®1+421®81+7®81+11401+11®4.1
+5©92+103®214+3®9.4+731®4.1

£(8[3,6]) =5.2©81+83241+12301+101®41+841®3+94®3+81®6.1
+9®6.1+52®7.2+1021®2.146.1®81+821®5+121®2.1+521®9
+421®94+92@5+21®9.4+821®4.1+421®72+7.2®5.24+6.3® 6.1
+6.2.1®5.24+13®2.149 ®5.249.3.1 ® 3+8.1 ®5.2+6.2.1 ® 6.1+9.3.1 ® 2.1
+13201+41®92+1041®1+421®81+7®81+11401+11®4.1
+5©92+103®214+3994+731®4.1

£(8[4,5]) = 73®51+521®521+831®31+51®91+31®921+52®8.1
+6.3.1®5.14+83®4.1+123®1+10.1 ®4.14+84.1®3+41®7.3.14+94® 3
+81®6.149®6.14+52® 7.24+2.1 ®9.3.1+10.2.1 ® 2.14+6.1 ® 8.1+3 ® 9.3.1
+821®5+121®214+93®3.1+5209+421®94+92R%54+21®9.4
+821®4.14+421®7.2472®5.24+6.3®6.1+6.21®5.2+13®2.1+9®5.2
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+5®7.3.14931®3+81®5.2+6.2.1 ®6.1+9.3.1 ®2.14+9.1®5.1+13.2® 1
+41®924+1041®1+421®814+7®81+114R1+11®41+5®9.2
+103®21+3®94+51®721+731®4.1

§ON,7) =0

£(9[2,6]) = 103®21+9©524+41092+5892+92®5+ 104101 +93.1®3
+421®81+1131®14+13021+94®3+72®052+3®9.4+4.2.1® 7.2
+81®52+4114014+121®21+91©514+12301+52107.1+5209
+83©4.1452®7.24821®5+11.1®3.1+13.2® 1+11 ®4.1+83.1® 3.1
+8.1®6.146.1 ®8.1+6.2.1 ®6.147 ® 8.146.3.1 ®5.1+7.1 ® 7.148.2.1 ® 4.1
+52®81+841®3+10.1®4.1+421®9+6.21®52+9®6.1+6.3® 6.1
+21®9.4+1021®2.1

£(903,5]) = 0

£(9[4,4]) =52®72472®524+83R®41+91®51+42189+52®9+10.1®4.1
+123®14+94®3+9.3®3.14+81®524+21®94463®6.14+9.21® 3.1+
8.21®4.149.3.1®34+10.3®2.149.2®5+13.2® 1+5.21® 7.1+6.2.1 ® 6.1
+5®92441®7314+52®81+114R014+71®7.1+82.1®5+11.3.1®1
+721®514+421®724+1021®214+73®51+3®9.31+81®6.1
+9®52+11®4.1+84.1R®3+5® 7.3.1+12.1 ® 2.14+6.2.1 ® 5.2+4.2.1 ® 8.1
+7®81+13®2146.1®81+9®614+104.1®14+41®9.24+11.1®3.1
+21®931+3®94

£(10[1,6]) =0

£(1012,5]) = 112®21+63Q@7T+71®71+41®924+72Q07+11041+7®6.3
+821®5+4.21®6.3+10.5®1+6.21®6.1+52®6.3+5® 9.2+2.1 ® 11.2
+31®93+11®5+94®21+931®21+104101+83R041+7®7.2
+821®414+31®11.14+9®6.14+92®5+5®11+73.1®5+6.3®5.2
+841®21+103®214+61®63+101®41+51®73+61®7.2+
7.21®5.1+6.2.1 ® 5.249.3.1 ® 3+3 ® 11.2+4.1 ® 11+10.2.1 ® 3+9.2.1 ® 3.1
+6.3 ®6.14+8.3.1 ®3.1+8.1 ® 6.14+11.2 ® 34+10.1 ® 5+11.1 ® 3.14-6.3.1 ® 5.1

€(10[3,4]) = 112®21+63R7+71®71+41®92+ 7207+ 11041+ 7%6.3
+82.1®544.2.1 ®6.3+10.5 ® 146.2.1 ® 6.1+5.2 ® 6.3+5 ® 9.2+42.1 ® 11.2
+31®934+11®54+94®214931®21+104191+83R41+7®7.2
+8219041+431011.1+9261+9205+5011+73.185+6.3®5.2
+841®21+103®214+61®63+ 101041 +51073+6107.2+
7.2.1®5.146.2.1 ®5.249.3.1 ® 3+3 ® 11.244.1 ® 114+10.2.1 ® 3+9.2.1 ® 3.1
+6.3®6.148.3.1 ®3.1+8.1 ® 6.1411.2 ® 3+10.1 ® 5+11.1 ® 3.146.3.1 ® 5.1

£(10[4,3]) = 63.1®51+831®31+731®41+731®5+931®21+31®9.3
+931®3+521®521+51®721+51®73+3.1®9.2.1

&(11]1,5])) =0

£(11[2,4]) = 111 ®31+831®314+621®6.1+83®41+841®21+6.1®6.3
+63®524+63R7T4+7207+11®41+94®214+11®5+621®5.2
+9®61+3®11.2+52®63+21®11.2+113.1®1+5®9.2+6.3®6.1
+91®51+1041®14101®414+101®54+821Q@5+71R@71+7®6.3
+631®514+821®41+1021®3+112®21+421®63+61®7.2
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+112®3+92®54+81®614+103®214+41®114+5x11+7x®7.2
+521®71+931®21+41®92+105®1

£(11[3,3]) = 0
&(12[1,4]) =0

£(122,3) =121 ®34+73®51+41®11+831®3.1+3213+5211 +83®4.1 +
6.1®9+5.1®9.149.3.1 ®21+43.1® 11.147.31 ® 4.1+10.3 ® 2.1+11.3.1 ® 1
+63®61+821®41+11.1®31+71®71+91®5.1+63185.1+
121921+ 10105+ 123014+ 130349218314 122101 +7®9
+421®81+7®81+1105+8107+52®81+61®81+11®4.1
+90T+9®6.14+21® 134721 ®5.1+46.2.1®6.1+10.1 ©4.1+10.2.1 ® 2.1
+13©21+81®6.1+93®3.1

€(12[3,2])) =121 ®34+73®514+41®11+831®31+3®13+5®11+83®4.1+
6.1®9+51®9.14931®21+3.1®11.1473.1® 414103 ®2.1+11.3.1® 1
+63®614+821®41+111®314+71®714+91®514+63.1®5.1+
121®214+101®54+123®1 +13®34+921®31+ 1221901 +7®9
+421®81+7®81+11®5+81®7+52®81+61®81+11®4.1
+I9R74+9®6.1+21®13+721®5.1+6.21®6.1+10.1 ®4.14+10.2.1 ® 2.1
+13®21481®6.1+93®3.1

&(13[1,3]) =0

£(13[2,2)) = 103®21+9®61+1221R14+5x0114+709+421®81+6.1®8.1
+101®54+123®14921®3.14+7®814+9@7+121®3+721®5.1
+11.1®3.146.21®6.1+7.3®5.1+6.3®6.1+82.1 ®4.1+3® 13+2.1® 13
+81®7+83®414+13®21+93®3.14+521®71+81®6.1+61%9
+52®814+41®114+121®21+11®414+11®54+101®4.14+71®7.1
+1021®21+13®34+9.1®5.1

£(14[1,2)) =0
£(15[1,1)) = 0
£(4.2[1,10)) =0
£(5.2[1,9]) =0
£(6.2[1,8]) =0
£(6.3[1,7) =0
(720, 7) =0
£(7.3[1,6]) =0
£(8.2[1,6]) =0
£(8.3[1,5]) =0
£(8.4[1,4) =0
£(8.4[2,3]) =9.42®1+51®9.1+52®72+81®52+92®5+84.1®3+4.1®7.3.1

+5®7.3.1+2.1®9.3.1+3®9.3.1+9® 5.2+6.2.1 ® 5.2+3.1 ® 9.2.1+9.3.1 ® 3
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+51®721+821®5+421®9+7218®51+521®521+521®9+
21®944+94®3 +421072+41®92+91®51+5®924+3®94
+921®31+72®52+8421®1

=942®1452®724+9205+5®92+821R®5+73®514+52®9
+3®944+72®52+831®31+421®724+631®51+81®52+
621®524+41®92+9®524+931®3+921®314+94®3+841®3
+8421®1+421®9+21®944+93®3.14+721®5.1
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A-track, 293
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A-algebra, 336
e-vectors, 425
k-algebra, 151

k-linear, 152
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p-term, 412
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F-biadditive, 81
F-linear map, 88
F-ringoid, 81

-stage operation algebra, 147

abelian, 36
abelian group object, 37
addition functor, 93, 97
addition map, 88
Adem
relation, 3, 138, 362
track, 2, 203
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admissible relations, 418
Alexander-Whitney cup product, 34
algebra, xx
A over R., 155
B of secondary cohomology
operations, xi
of secondary cohomology operations,
xii
over the Hopf algebra, xxix, 336
associativity formula, xxx, 338
augmentation, 151
augmented, 6, 9

B-module, xx
Bockstein
map, 29
operator, 15
power algebra, 15
track, 209, 264
boundary, 56

canonical tracks, 182, 194, 209
Cartan
diagram, xxix
formula, xxix, 6
homotopy, xxx, 343
track, 2, 200
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enriched in groupoids, 39
of graded pairs, 120
of pairs, 37
chain complex, 34
characteristic class, 75
co-commutative, xxi, 290
coalgebra, 290
cochain complex, 33, 34
cochain operation, xv
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cohomology, xxvii, 10 extended
groups, 72 Bockstein power algebra, 15
of a group, 73 cocycle, 100
commutative, xxxi, 9, 111, 161 left action operator, 351
commutative graded algebra, 156 power algebra, 12
commutator map, 404 symmetry operator, 356
comparison map, 182, 184 exterior algebra, 9
compatible, 185
compatible with products, 68 faces, 210
completely free, 8 Fermat quotient, 237
composed track, 56 field, 174
composition, 132 folding
formula for map, xxiii, 88
linear tracks, 185 ¥, 322
smash tracks, 186 product, xxiii, 322
concentrated, 33 forgetful, 26, 32
connected, 8, 9, 36 free, 161
contractible, 36 crossed algebra, 139
coordinate, 10, 260 loop space, 58
cross effect map, 194 M-permutation monoid generated
cross effect track, 98 by S, 355
crossed module functor, 33
algebra, 121 permutation algebra, 157
of secondary cohomology R-module, 26
operations, 138 right B-module, 141
permutation algebra, 158, 163 unstable, 8
cylinder object, 56 unstable A-algebra in, 7
unstable module on one generator, 6
degree, 9, 154 fundamental groupoid, 36
delicate linearity track formula, 136
derivation, xvii, 66, 385 generalized Cartan track, 289, 303
derivation property, 216 generators, 2
diagonal good, 178
action, 178 graded
map, 187 A-bimodule, 68
track, 189 algebra, 9
difference element, 61, 378 ®-product, 120
differential, 379 monoid, 339
discrete, 36 pair, 120, 336
Dold-Kan equivalence, 32 pair module, xix
set, 339
Eilenberg-MacLane object, 33 group algebra, 151
equivalence, 52 group object, 57
equivalent, 45, 410 groupoids, 39
even sign convention, 289, 297
excess, 5, 137, 144 Hochschild cohomology, 73

function, xxxi homotopic, 40
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homotopy, xix, 40, 167, 336, 372
addition lemma, 211
category, 40
equivalence, 40
equivalence under A and over B, 56
equivalent, 40
under A and over B, 56

Hopf algebra, xx, 290

Hurewicz map, 28

ideal of relations, xxvi, 375
identity track, 36
inclusions, 88
initial object, xxiii, 320
instability, 5, 264
instability condition, 136
interchange, xix
formula, 357
homotopy, 356
isomorphism, xix, 289
map, Xxiv
operator, 325
track, 164, 274, 366
isomorphism, xxvi

Kristensen derivation, 107
Kiinneth
formula, 259
linearity track, 285
permutation track, 268
track, 260, 262, 263
Kiinneth-Cartan track, 269, 271-273
Kiinneth-Steenrod operation, 263, 264,
293

left
action operator, xxvi, 349
linear, 94
partial loop, 308
stability of the Cartan track, 310
length function, 424
linear, 46, 70, 95, 98, 184
A-track, 301
derivation, 106
K of degree, 106
map, 123, 154
track, 185
track extension, 70

481

linearity track, 2, 83, 89, 94, 97, 195,
198, 294

loop functor, 43, 63

loop space, 29, 37, 43

lower degree, 32

MacLane cohomology, 74
magma algebra, 298
map, 9, 13, 154
mapping groupoid, 37
mapping space, 36
maps, 40
Massey product, xvii, 142
matrix, 88
matrix Massey product, 142
matrix Massey products, 423
module, 98, 122, 134
module of A-tracks, 296
module of cocycles, 34
monoid [A] acts on, 97
multilinear, 73
multilinear map, 185
multiplication, 163

class, 388

function, 414

functors, 93

map, 408

maps, 26

of loops, 213

structure, 385

natural, 12, 263

natural choice, 143

natural system, 67

naturality, 293

naturality of the invariant, 77
nerve, 72

norm map, 195
normalization, 27
normalized, 27, 115

odd sign convention, 289, 297
operation algebra, 146
opposite category, 49

pair, xviii
algebra, xx, 95, 121
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over the secondary Hopf algebra,
xxxi, 337

module over F associated, xxiii
partial loop functor, 63
partial loop operation, 59
permutation, 88

algebra, 153, 155

group, 151

monoid, 353

track, 164, 242
permuting, 187
polynomial algebra, 9
power algebra, 11
power map, 191, 193
preadmissible relations, 418
preserves zero-elements, 94
primary element, 222
product, 28, 130, 132, 178
product of A-tracks , 296
product over, 251
projections, 88
pseudo functor, 124
push out diagram, 140

quotient map, xxiv

realizable, 77
realization, 26, 32
relation, 44, 52, 144, 311
relation diagonal, 311, 314
relations among relations, 139
relations associated to Adem relations,
371
right, 69
equivariant cocycle, 395
equivariant splitting, 395
partial loop, 308
stability of the Cartan track, 310
ring, 88
ringoid, 73

secondary
augmentation, xxiii, 321
augmentation of B, 321
Cartan relations, 245
cohomology, xi, xxvii, xxviii, 42
functor, 163
cohomology operation, xii, 44, 53

Index

associated, 144
diagonal A, 328
Hopf algebra, xi, xxv
Hopf algebra B, 334
instability, xxxi
Kiinneth theorem, 175
linearity relations, 230
operations, xvi
permutation algebra, 159, 163, 371
Steenrod algebra, 49
set of homotopy classes, 37
shift functor, 68
sign track, 223
sign-action, 181
sign-augmentation, 152
simplicial object, 32
singular set, 26
small, 33
smash product, 28, 35, 178
smash track, 186

spaces
over B, 56
under A, 56

under A and over B, 55
splitting, 311, 376, 384
squaring map, 168
stable, 45
class, xi
Kiinneth-Steenrod operation, 282
linearity track, 285
map, xiii, 49, 50, 281
operation, 47
relation, 52
secondary cohomology operation, 52
theory, 49
track, xiii, 282
Steenrod algebra, xi, 3
Steenrod operations, 207
strict, 50, 95, 98
strictification, 133, 135, 340, 354
strictification of the secondary
Steenrod algebra, 137
strictified secondary cohomology,
xxviii, 143
strong, 41, 82
strong F-additive, 82
strong product, 41
structure, 94, 97, 385
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sum of A-tracks, 295
suspension functor, 6
symmetric spectrum, 29
symmetry formula, 382
symmetry operator, xxvi, 349

tensor algebra over R., 156
tensor product, 9, 32, 152
topological
cocycle of degree, xxviii
group, 58
Hochschild cohomology, 74
track, xiii, 36, 40, 56, 134, 167, 372
algebra, 93, 95, 120, 132
category, 39
functor, 42
model M of a track theory, 42
module, 97
theory, 41
theory of Eilenberg-MacLane spaces,
41
trivial
augmentation, 152
onY, 59
track, 36
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under A and over B, 56
unique track, 83, 89
Uniqueness, 388
unit, 151
unitary, 14
unstable, 5, 347, 371
algebra, xxxi
algebra K over the Steenrod algebra,
6
A-algebra, 6
structure map, 347
structure maps, xxxii
upper degree, 32

vector space object, 37

weak
coproduct, 82
equivalence, 42
F-additive track extension, 82
final object, 41
product, 41
sum, 82
track equivalence, 76
weakly G-equivalent, 219
well defined up to canonical track, 31
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