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Preface

Logica Universalis (or Universal Logic, Logique Universelle, Universelle Logik,
in vernacular languages) is not a new logic, but a general theory of logics, consid-
ered as mathematical structures. The name was introduced about ten years ago,
but the subject is as old as the beginning of modern logic: Alfred Tarski and other
Polish logicians such as Adolf Lindenbaum developed a general theory of logics at
the end of the 1920s based on consequence operations and logical matrices. Talking
about the papers of Tarski dealing with this topic, John Etchemendy says: “What
is most striking about these early papers, especially against their historical back-
drop, is the extraordinary generality and abstractness of the perspective adopted”
[4]. After the second world war, this line of work was pursued mainly in Poland
and became a bit of an esoteric subject. Jerzy �Loś’s fundamental monograph on
logical matrices was never translated in English and the work of Roman Suszko
on abstract logics remained unknown outside of Poland during many years.

Things started to change during the 1980s. Logic, which had been dominated
during many years by some problems related to the foundations of mathematics or
other metaphysical questions, was back to reality. Under the impulsion of artificial
intelligence, computer science and cognitive sciences, new logical systems were
created to give an account to the variety of reasonings of everyday life and to
build machines, robots, programs that can act efficiently in difficult situations,
for example that can smoothly process inconsistent and incomplete information.
John McCarthy launched non-monotonic logic, few years later Jean-Yves Girard
gave birth to linear logic. Logics were proliferating: each day a new logic was born.
By the mid eighties, there were more logics on earth than atoms in the universe.
People began to develop general tools for a systematic study of this huge amount
of logics, trying to put some order in this chaotic multiplicity. Old tools such
as consequence operations, logical matrices, sequent calculus, Kripke structures,
were revived and reshaped to meet this new goal. For example sequent calculus
was the unifying instrument for substructural logics. New powerful tools were also
activated, such as labelled deductive systems by Dov Gabbay.

Amazingly, many different people in many different places around the world,
quite independently, started to work in this new perspective of a general theory of
logics, writing different monographs, each one presenting his own way to treat the
problem: Norman Martin’s emphasis was on Hilbert systems [9], Richard Epstein’s,

This research was supported by a grant of the Swiss National Science Foundation.



viii Preface

on semantical tools, in particular relational structures and logical matrices [5],
Newton da Costa’s, on non truth-functional bivalent semantics [7], John Cleave’s,
on consequence and algebra [3], Arnold Koslow’s, on Hertz’s abstract deductive
systems [8]. This was also the time when was published a monograph by Ryszard
Wójcicki on consequence operations making available for the first time to a wide
public the main concepts and results of Polish logic [10], and the time when Dov
Gabbay edited a book entitled What is a logical system? gathering a collection
of papers trying to answer this question in many different ways [6]. Through all
these publications, the generality and abstractness of Tarski’s early work was being
recovered. It is surrounded by this atmosphere that I was doing my PhD [2] and
that I coined in the middle of a winter in Poland the expression “universal logic”
[1], by analogy to the expression “universal algebra”.

The present book contains recent works on universal logic by first-class re-
searchers from all around the world. The book is full of new and challenging ideas
that will guide the future of this exciting subject. It will be of interest for people
who want to better understand what logic is. It will help those who are lost in
the jungle of heterogeneous logical systems to find a way. Tools and concepts are
provided here for those who want to study classes of already existing logics or want
to design and build new ones.

In Part I, different frameworks for a general theory of logics are presented.
Algebra, topology, category theory are involved. The first paper, written by my-
self, is a historical overview of the different logical structures and methods which
were proposed during the XXth century: Tarski’s consequence operator and its
variants in particular Suszko’s abstract logic, structures arising from Hertz and
Gentzen’s deductive systems, da Costa’s theory of valuation, etc. This survey pa-
per presents and explains many concepts that are used in other papers of the book.
The following paper, by Marta Garćıa-Matos and Jouko Väänänen, gives a hint
of how abstract model theory can be used for developing universal logic. Although
abstract logic and abstract model theory are expressions which look similar, they
refer to two different traditions. Abstract logic has been developed by Suszko in
the context of the Polish tradition focusing on a general theory of zero-order logics
(i.e. propositional logics). On the other hand, the aim of abstract model theory has
been the study of classes of higher order logics. The combination of abstract model
theory with abstract logic is surely an important step towards the development of
universal logic. It is also something more than natural if we think that both the-
ories have their origins in the work of Alfred Tarksi. Steffen Lewitzka’s approach
is also model-theoretical, but based on topology. He defines in a topological way
logic-homomorphims between abstract logics, which are mappings that preserve
structural properties of logics. And he shows that those model-theoretical abstract
logics together with a strong form of logic-homomorphisms give rise to the notion
of institution. Then comes the work of Ramon Jansana which is a typical example
of what is nowadays called abstract algebraic logic, the study of algebraization of
logics, a speciality of the Barcelona logic group. Within this framework, abstract
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logics are considered as generalized matrices and are used as models for logics. Fi-
nally, Pierre Ageron’s paper deals with logics for which the law of self-deductibility
does not hold. According to this law, a formula is always a consequence of itself,
it was one of the basic axiom of Tarski’s consequence operator. Ageron shows here
how to develop logical structures without this law using tools from category theory.

The papers of Part II deal with a central problem of universal logic: the
question of identity between logical structures. A logic, like classical logic, is not
a given structure, but a class of structures that can be identified with the help
of a given criterion. According to this criterion, we say that structures of a given
class are equivalent, congruent or simply identical. Although this question may at
first looks trivial, it is in fact a very difficult question which is strongly connected
to the question of what a logical structure is. In other words, it is not possible
to try to explain how to identify different logical structures without investigating
at the same time the very nature of logical structures. This is what makes the
subject deep and fascinating. Three papers and seven authors are tackling here
the problem, using different strategies. Caleiro and Gonçalves’s work is based on
concepts from category theory and they say that two logics are the same, equipol-
lent in their terminology, when there exist uniform translations between the two
logical languages that induce an isomorphism on the corresponding theory spaces.
They gave several significative illustrations of equipollent and non equipollent log-
ics. Mossakowski, Goguen, Diaconescu and Tarlecki use also category theory, more
specifically their work is based on the notion of institution. They argue that every
plausible notion of equivalence of logics can be formalized using this notion. Lutz
Straßburger’s paper is proof-theoretically oriented, he defines identity of proofs
via proof nets and identity of logics via pre-orders.

In part III, different tools and concepts are presented that can be useful for
the study of logics. The papers by Arnon Avron and by Carlos Caleiro and co.
both deal with a concept very popular in the Polish tradition, the concept of logi-
cal matrices, the basic tool for many-valued logics. In his paper Avron studies the
notion of non-deterministic matrices which allows to easily construct semantics
for proof systems and can be used to prove decidability. This tool can be applied
to a wide range of logics, in particular to logics with a formal consistency operator.
Caleiro, Carnielli, Coniglio and Marcos discuss Suszko’s thesis, according to which
any logic is bivalent, and present some techniques which permit to construct in a
effective way a bivalent semantics, generally not truth-functional, from a many-
valued matrix. Their paper is illustrated by some interesting examples, including
Belnap’s four-valued logic. Then comes a paper by David Makinson, one of the
main responsible for the revival of Tarski’s consequence operator at the beginning
of the 1980s. He used it at the main tool, on the one hand for the development
together with Carlos Alchourrón and Peter Gärdenfors, of theory change (univer-
sally known today under the acronym AGM), on the other hand as a basis for a
general theory of non monotonic logics. In both cases, Makinson’s use of Tarski’s
theory was creative, he kept the original elegant abstract spirit, but widened and
extended the basic underlying concepts. Here again he is innovative defining within
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classical propositional logic two new concepts, logical friendliness and sympathy,
which lead to some consequence relations with non standard properties. The paper
by Lloyd Humberstone is no less original and brilliant, he studies the very inter-
esting phenomenon of logical discrimination. The question he examines is in which
circumstances, discrimination, i.e. distinction between formulas, is correlated with
the strength of a logic. The work of Humberstone is a very good example of the
philosophical import of universal logic. By a careful examination of a phenomenon
like discrimination, that requires a precise mathematical framework, one can see
to which extent a statement with philosophical flavor saying that discrimination
is inversely proportional to strength is true or not.
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From Consequence Operator to Universal Logic:
A Survey of General Abstract Logic

Jean-Yves Beziau

Abstract. We present an overview of the different frameworks and structures
that have been proposed during the last century in order to develop a general
theory of logics. This includes Tarski’s consequence operator, logical matri-
ces, Hertz’s Satzsysteme, Gentzen’s sequent calculus, Suszko’s abstract logic,
algebraic logic, da Costa’s theory of valuation and universal logic itself.

Mathematics Subject Classification (2000). Primary 03B22 ; Secondary 03B50,
03B47, 03B53, 03G10.

Keywords. Universal logic, consequence operator, abstract logic, substructural
logic, algebraic logic, many-valued logics, truth-functionality.

1. Introduction

During the XXth century, numerous logics have been created: intuitionistic logic,
quantum logic, modal logic, many-valued logic, relevant logic, paraconsistent logic,
erotetic logic, polar logic, linear logic, non-monotonic logic, dynamic logic, free
logic, fuzzy logic, paracomplete logic, etc. And the future will see the birth of
many other logics that one can hardly imagine at the present time.

Facing this incredible multiplicity, one can wonder if there is not a way to
find common features which allow one to unify the study of all these particular
systems into a science called logic.

In what follows we describe various attempts that have been made during
the XXth century to develop a general theory of logics.

This research was supported by a grant of the Swiss National Science Foundation. I would like
to thank Newton da Costa and Alexandre Costa-Leite for useful comments.



4 Jean-Yves Beziau

2. Tarski’s consequence operator

2.1. Tarski’s three axioms

Undoubtedly, Tarski has, among many other things, to be considered as the ini-
tiator of a general theory of logics.

At the end of the twenties, he launched the theory of consequence operator
[43]. This theory is about an “operator”, a function Cn defined on the power set
of a given set S. Following the philosophical ideas of his master, Lesńiewski, Tarski
calls these objects “meaningful sentences”. But in fact, the name does not matter,
the important thing is that here Tarski is considering a very general theory, be-
cause the nature of these objects is not specified. For Tarski, these sentences can
be sentences of any kind of scientific languages, since his work is concerned with
the methodology of deductive sciences, and not only with metamathematics. The
function Cn obeys three basic axioms, for any theories (i.e. sets of sentences) T
and U :

[TAR1] T ⊆ CnT

[TAR2] if T ⊆ U then CnT ⊆ CnU

[TAR3] CnCnT ⊆ CnT

Hereafter, a structure 〈S; Cn〉 where Cn obeys the three above axioms will
be called a Tarski structure. 1

2.2. Axiomatizing axiomatic proof systems

Why these axioms? Tarski wanted to give a general characterization of the notion
of deduction. At this time, the standard notion of deduction was the one given by
what is called nowadays Hilbert-type proof systems, or axiomatic proof systems. It
is easy to check that any notion of deduction defined with the help of this kind of
systems obeys the three above axioms.

One could say that Tarski was in this sense axiomatizing axiomatic proof
systems. It is very important however to understand the difference between the
two occurrences of the word axiom here. Tarski’s axioms are not axioms of a proof
system, although they can be considered as such, at a more complex level. One
should rather consider these axioms model-theoretically, as defining a certain class
of structures.

One can wonder if these three axioms characterize exactly the notion of de-
duction in the sense that any Tarski structure 〈S; Cn〉 verifying these axioms can
be defined in a Hilbertian proof-theoretically way.

1In this paper we will do a bit of taxonomy, fixing names to different logical structures.
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2.3. Semantical consequence and completeness

Before examining this question, let us note that these axioms axiomatize also the
semantical or model-theoretical notion of consequence given later by Tarski [45].
We do not know if Tarski had also this notion in the back of his mind when he
proposed the consequence operator.

Anyway, there is an interesting manner to connect these two notions which
forms the heart of a general completeness theorem. If we consider a Tarski structure
〈S; Cn〉 and the class of closed theories of this structure, i.e., theories such that
CnT = T , this class forms a sound and complete semantics for this structure, in
the sense that the semantical notion of consequence � defined by:

T � a iff for any closed theory U such that T ⊆ U , a ∈ U

coincides with Cn.
Now back to the previous point, it is clear that Tarski’s three axioms do

not characterize the notion of Hilbertian proof-theoretical deduction, since for
example there are some structures 〈S; Cn〉 like second-order logic that obey these
three axioms but cannot be defined in this proof-theoretical sense. This is because
second-order logic is not compact, or more precisely, finite.

2.4. Compactness and finiteness

Tarski had also an axiom for compactness:

[COM] CnT =
⋃

CnF (F ⊆ T , F finite)

In classical logic, this axiom is equivalent to the axiom of finiteness :

[FIN] if a ∈ CnT then a ∈ CnF for a finite F ⊆ T .

But in general they are not. Clearly it is the axiom of finiteness which char-
acterizes the Hilbertian proof-theoretical notion of deduction.

Once one has this axiom, one has also a more interesting semantical notion
of consequence. Let us call maximal a theory T , such that CnU = S, for every
strict extension U of T and relatively maximal a theory T such that there is a
a such that a /∈ T and for every strict extension U of T , a ∈ CnU . The class
of relatively maximal theories characterizes any finite consequence operator (i.e.
a consequence operator obeying the finiteness axiom together with Tarski’s three
axioms). In the case of an absolute Tarski structure, i.e. a structure where all
relatively maximal theories are also maximal 2, maximal theories characterize finite
consequence operators, but it is not true in general [9].

2The terminology “absolute” was suggested by David Makinson.
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3. Hertz and Gentzen’s proof systems

3.1. Hertz’s Satzsysteme

It is difficult to know exactly the origin of the work of Paul Hertz about Satzsys-
teme developed during the 1920s [31]. But something is clear, it emerged within
the Hilbertian stream and it is proof-theoretically oriented, although it is a very
abstract approach ; like in the case of Tarski’s consequence operator, the nature
of the basic objects is not specified.

What Hertz calls a Satz is something of the form u1 . . . un → v. One could
interpret this as the sentence “u1 and...and un implies v”, considering → as ma-
terial implication, and Hertz himself suggests this, saying that → is taken from
Whitehead and Russell’s Principia Mathematica.

However, we shall interpret here Hertz’s Satz u1 . . . un → v in the perspective
of Gentzen’s work considering it as the prototype of a Gentzen’s sequent and we
shall just call such a Satz, a protosequent. “u” and “v” are called “elements” in
Hertz’s terminology. Following again Gentzen, we will just consider that they are
sentences of a possible unspecified language. Hertz uses the word “complex” to
denote a finite site Γ of “elements”, we will just call such a set a finite theory.

Hertz’s notion of Satzsysteme is based on a notion of proof which is similar
to the Hilbert’s one, except that elements of the proof are protosequents. There-
fore rules in Satzsysteme have as premises, protosequents, and as a conclusion a
protosequent. Axioms are protosequents. There are only one kind of axiom and
two rules in Hertz’s system:

[HER1] Γ → α (α ∈ Γ)

[HER2] Γ→α
Γ∆→α

[HER3]
Γ→α ∆α→β

Γ∆→β

If we consider, something that Hertz didn’t, the structure 〈S;�〉 generated
by such a system in the following way: T � a iff there exists a finite subtheory Γ
of T such that there is a proof of the protosequent Γ → a in the system, we have
a structure which is equivalent, modulo trivial exchanges between � and Cn, to a
Tarski structure.

As we have seen, Tarski’s motivations are clear and one can perceive the
interest of his proposal. In the case of Hertz’s work, it is not clear at all. One
can see a step towards a kind of generalization of Hilbert-type proof-theoretical
concepts. But at first, Hertz’s notion of Satz is quite strange. In the light of
Gentzen’s work, we are now conscious of the incredible power of this notion, but
many people think that without Gentzen’s work, Hertz’s work would have been
completely ignored.

In fact Hertz’s work is generally not well-known. It is therefore important
to stress that Gentzen started his researches, which will lead him to his famous
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sequent calculus, by studying Hertz’s work, probably on a suggestion of Paul
Bernays. Gentzen’s first paper [29] is entirely devoted to Hertz’s system and among
several results he proves that this system is sound and complete with respect to
the semantics of closed theories (although he doesn’t use such a language). Due
to his paper, the model-theoretical notion of consequence and this general related
completeness theorem can be credited to Gentzen as well as to Tarski. Apparently
his work was carried out in total independence to the work of Tarski.

3.2. Gentzen’s sequent calculus

Gentzen’s sequent calculus differs in several points to Hertz’s system. Instead of
Hertz’s Satz, Gentzen considers “sequents”, i.e, objects of the form u1, . . . , un →
v1, . . . , vn where u1, . . . , un and v1, . . . , vn are sequences of sentences (mind the
comma!), hence the name “sequent calculus”. Gentzen’s rules are divided in two
categories: structural rules and logical rules. Logical rules are rules concerning
logical operators. Such rules appear here because Gentzen is not only interested
to work at the “abstract” level but also with specific logics, mainly classical and
intuitionistic logics. Gentzen’s structural rules are the following:

[GEN1] Σ → α (α ∈ Σ)

[GEN2l] Σ→Ξ
α, Σ→Ξ [GEN2r] Σ→Ξ

Σ→Ξ, α

[GEN3]
Σ→Ξ, α α, Ω→Π

Σ, Ω→Ξ, Π

[GEN4l]
Σ(α, α)→Ξ

Σ(α)→Ξ
[GEN4r]

Σ→Ξ(α, α)
Σ→Ξ(α)

[GEN5l]
Σ(α, β)→Ξ
Σ(β, α)→Ξ

[GEN5r]
Σ→Ξ(α, β)
Σ→Ξ(β, α)

where Σ, Ω, Π and Ξ are sequences and something like Σ(α, β) means that α and
β are occurrences of formulas appearing in the sequence Σ in that order.

[GEN1], [GEN2] and [GEN3] are adaptations of [HER1], [HER2] and [HER3]
to the sequent context. The rules [GEN4] and [GEN5] were implicit in the case
of Hertz’s system, but if one considers sequents instead of finite sets of sentences,
these rules are necessary.

Later on, people started to work with Tait’s version of Gentzen’s sequent
calculus. It is a Hertzianization of Gentzen’s system where finite sets are considered
instead of sequences, and where therefore there are no contraction [GEN4] and
permutation [GEN5] rules.

In view of Tait’s version, one may think that Gentzen’s system is a use-
less détour. But it is not, as the recent development of substructural logics has
dramatically shown.
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3.3. Scott structure

An important point is that Gentzen is considering a multiplicity of sentences on
the right. So even if one considers Tait’s versions of Gentzen’s structural rules, we
have here something different from Hertz’s rules, in particular we must have two
thinning rules, [GEN2l] and [GEN2r].

The multiplicity of the sentences on the right is very important in Gentzen’s
original system, since, as it is known, if one reduces this multiplicity to unity on
the right, one goes from classical logic to intuitionistic logic.

However, even if we stay at the abstract level, the multiplicity is an important
thing that permits to work with more symmetry. The structure generated by an
abstract (only structural rules) Tait’s version of Gentzen’s sequent calculus is a
structure of type 〈S; ��〉 where �� is a relation on P(S)XP(S).

This relation obeys a straightforward generalization of the three Tarskian
axioms. We will call such a structure, a Scott structure, since Dana Scott made
important contribution working with this kind of structures, generalizing for ex-
ample Lindenbaum theorem for them (see [38]). This kind of approach is usually
known under the banner “multiple-conclusion logic” (see [39]).

3.4. Substructural structure

A substructural structure 〈G; ��〉 is a Scott structure where a magma G = 〈S; ∗〉 is
considered instead of the naked set S. A magma is just a set with a binary operation
∗.3 Some specific axioms can be added for the operation *. Gentzen’s notion of
sequents can be designed in this way, and therefore substructural structures are a
refinement of Gentzen’s idea. Gentzen’s notion of sequents is quite precise but for
example associativity is an implicit supposition of it. Considering a magma, one
can turn this hypothesis explicit, with an axiom of associativity for ∗, or withdraw
it and work with non associativity. In a substructural structure in general there
are also no specific axioms for ��.

In the last twenty years the amazing development of linear logic [30] and non
monotonic logics has shown the fundamental role of substructural structures (see
[28], [37]).

3.5. Turning style

In the context of Gentzen’s sequent calculus, the Hertz-Gentzenian symbol → is
very often replaced by the turnstile � (in particular due to the fact that people
now use → for material implication instead of the old ⊃).

This change of symbol seems harmless, but in fact one has to be very careful,
because it leads to a confusion between a proof-theoretical system with axioms
and rules with the structure generated by this system. People like Scott and those
working with substructural logics generally do not make this difference, and there
is a tendency to use the same name for Gentzen’s structural rules and for axioms
applying to the relation ��.

3The terminology “magma” is due to Charles Ehresmann.
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For example the axiom stating the transitivity of �� is sometimes called
cut. This can lead to serious misunderstandings of the cut-elimination theorem.
Gentzen’s system for classical logic with cut is equivalent to his system without
cut, but the cut rule is not derivable in the cut-free system, although this system
generates a transitive relation ��, since the two systems are equivalent (see [8]).

Another example is the confusion between thinning rules [GEN2] and the
axiom of monotonicity [TAR2]. A proof system can have no thinning rules and be
monotonic.

4. Matrix theory and abstract logic

4.1. �Lukasiewicz and Tarski’s concept of logical matrices

Influenced by Tarski’s theory of consequence operator, Polish logicians have de-
veloped since the 1930s a general theory of zero-order logics (i.e. propositional
or sentential logics). This kind of stuff is generally known under the name Pol-
ish logic (see [12]). A central concept of Polish logic is the notion of matrix, or
logical matrix. In fact one could say that Polish logic is the fruit of the wedding
between the concepts of consequence operator and logical matrix. Polish logicians
have not developed the theory of consequence operator by itself, at the abstract
level, maybe because they thought it was sterile. Anyway they have shown that
its combination with matrix theory is highly fruitful.

The concept of logical matrix was introduced in Poland by 	Lukasiewicz,
through the creation of many-valued logic. However it is Tarski who saw the pos-
sibility of using this theory as a basic tool for a systematic study of logics. It is
clear that matrix theory does not reduce to many-valued logics, as shown by its
use for the proof of independence of axioms of the two-valued propositional logics.
Matrices are models of zero-order non classical logics. In fact the consideration of
models of zero-order non classical logics led Tarski to classical first-order model
theory (see [38]).

4.2. Lindenbaum’s matrix theorem

The first important general result about matrices is due to Lindenbaum. A matrix
M is an algebra A = 〈A; f〉 together with a subset D of A, whose elements are
called designated values. When one uses logical matrices, one considers the set S of
sentences of a logical structure as an algebra, an absolutely free algebra (explicit
consideration of this fact is also credited to Lindenbaum). Operators of this algebra
represent zero-order connectives.

Let us call a Lindenbaum structure, a structure 〈S; T〉 where S is an absolutely
free algebra of domain S and T is a subset of S. One can wonder if it is possible to
find a logical matrix M which characterizes this structure in the sense that any
homomorphism η from S to the algebra A of the matrix is such that:

α ∈ T iff η(α) ∈ D
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There are many logics, such as some modal logics like S5 or intuitionistic logic,
that cannot be characterized by finite matrices (i.e. matrices where the domain
of the algebra is finite). However Lindenbaum has shown that every Lindenbaum
structure stable under substitution can be characterized by a matrix of cardinal-
ity superior or equal to the cardinality of the language (i.e. the domain of the
structure).

Lindenbaum was killed during the second world war, but just after the war
his work was disseminated in Poland through the monograph of Jerzy 	Loś entirely
devoted to logical matrices (see [32]). Lindenbaum’s theorem was generalized by
Wójcicki for the case of 	Loś structures. A 	Loś structure is a structure of type
〈S; Cn〉 where S is an absolutely free algebra and Cn a structural consequence
operator, i.e. a consequence operator obeying the three basic Tarski’s axioms and
the following condition:

for every endomorphism ε of S, εCnT ⊆ CnεT

In other words, this means that Cn is stable under substitution. This crucial
notion was introduced in [33].

Matrix theory was also applied to Scott structures by Zygmunt (see [48]).

4.3. Suszko’s abstract logic

Suszko and his collaborators have shown that all known logics are structural. Later
on, Suszko developed a general study of logics that he called “abstract logic”
considering as basic structure a Suszko structure, i.e. a structure of type 〈A; Cn〉
where A is an abstract algebra and Cn a consequence operator obeying the three
basic Tarski’s axioms (see [18]).

Abstract logic in this sense is very close to universal algebra. Concepts of
category theory and model theory can also be fruitfully applied for its development.
With Suszko’s abstract logic, the general theory of logics reached the level of
mathematical maturity, turning really into a mathematical theory in the modern
sense of the word.

One could say: “very well, this is mathematics, but this is not about math-
ematics!”, since an abstract logic is a model for a propositional logic and we all
know that such a logic, be it classical, intuitionistic or whatever, is not rich enough
to fully represent mathematical reasoning.

I have proposed to generalize the notion of abstract logic considering struc-
tures of type 〈A; Cn〉 where A can be an infinitary algebra, in order to represent
logics of order superior to zero, taking in account the fact that higher order lan-
guages can be described by infinitary algebras (see [3]).

5. Algebraic logic

5.1. Logic and algebra

Algebraic logic is an ambiguous expression which can mean several things. One
could think that it is crystal clear and that algebraic logic means the study of logic



From Consequence Operator to Universal Logic 11

from an algebraic point of view. But this is itself ambiguous, because this in turn
means two things:

(1) The study of logic using algebraic tools
(2) Logics considered as algebraic structures.
(2) implies (1) but not necessarily the converse. It is clear that when one

considers a logic as a Lindenbaum structure or a 	Loś structure and considers the
problem of characteristic matrices, this involves mainly algebraic concepts. One
can even say that these structures as well as Suszko’s abstract logics are algebraic
structures. Roughly speaking this is right. But if one wants to be more precise,
it is important to emphasize two points ; this will be the subject of the two next
subsections.

5.2. Cross structures

First these structures are not exactly algebras, according to Birkhoff’s standard
definition of algebra. To call these structures algebras leads to a general confusion
according to which any mathematical structure is called an algebra. In fact an
abstract logic in the sense of Suszko is a mixture of topological concepts and
algebraic concepts. Algebraic concepts are related to the structure of the language
- algebraic operators representing logical operators - and topological concepts are
related to the consequence operator Cn. In fact Tarski was probably influenced
by topology when he developed the theory of consequence operator since topology
was very popular at this time in Poland and Tarski himself was collaborating with
Kuratowski. 	Loś and Suszko structures are in fact cross structures according to
Bourbaki’s terminology, they are the result of crossing two fundamental mother
structures: topological and algebraic structures.

To call “algebraic logic” a general theory of logics involving algebraic con-
cepts is misleading. Polish logic, which is such a theory, is often assimilated with
algebraic logic, by opposition to a more traditional approach to logic based on in-
tuitive concepts related to linguistics. But when the people, following this second
approach, say that Polish logic is algebraic logic, they simply identify algebra with
mathematics, or in the best case algebraic structures with mathematical struc-
tures.

5.3. Lindenbaum-Tarski algebras

It is not rare to hear that classical propositional logic is a boolean algebra. Tarski
at the beginning of the 1930s showed how to reduce classical logic to a boolean
algebra by factorizing the structure (cf. [44]). The factorized structure is called
a Lindenbaum-Tarski algebra, LT-algebra for short. The concept of LT-algebra
was then extended to other logics. Algebraic logic in this sense is the study of
logics, via their LT-algebras, and more generally the study of algebras which can
be considered as LT-algebras of some logics. This means in general that people
are considering algebraic structures of type 〈A; �〉 where � is an order relation
and A is an algebra whose operators have intended logical meaning: conjunction,
disjunction, implication and negation. This is for example the case of the famous



12 Jean-Yves Beziau

Birkhoff-von Neumann’s quantum logic which is in fact an algebraic structure of
this kind. These structures are tightly linked with lattices. A general study of these
structures has been developed by H.B.Curry (see [26]).

If one considers algebraic logic as the study of this kind of structures and
this is probably the only rigorous way to use this terminology, it seems then that
algebraic logic is too restricted for developing a general theory of logics. Firstly
because the notion of logical consequence cannot be properly represented by an
order relation �, one has to consider at least a consequence relation or a binary
Scott-type relation; secondly because there are logics which cannot properly be
handle through LT-algebras. This is the case of simple logics, logics that have no
non-trivial congruence relations and which cannot be factorized, like da Costa’s
paraconsistent logic C1 (see [5]).

However these last twenty years work in algebraic logic has made important
advances through the introduction of several new concepts such as protoalgebraiza-
tion and the correlated refinement of LT-algebra (see [27], [17]).

6. Da Costa’s theory of valuation

6.1. Every logic is two-valued

As we have seen, closed theories form a sound and complete semantics for any
Tarski structure and relatively maximal theories form a sound and complete se-
mantics for Tarski structures obeying the finiteness axiom. Now instead of con-
sidering theories, one can consider the characteristic functions of these theories,
these are bivaluations.

The above results can therefore be reinterpreted as saying that every Tarski
structure has a bivalent semantics, and they justify, at least if we restrict ourselves
to such structures, a general theory of logics based on the concept of bivaluations.
Newton da Costa’s theory of valuation is such a theory.

The advantage of such a theory is that it is based on the semantical intuitive
ideas of true and false and that it can be seen as a natural generalization of the
bivalent semantics for classical propositional logic, which can be applied to non-
classical logics and high-order logics.

6.2. Bivalency and truth-functionality

This generalization is however not so natural in the sense that one central feature
of the semantics of classical propositional logic is lost in most of the cases: truth-
functionality. Therefore the theory of valuation is mainly a theory of non truth-
functional bivalent semantics. An interesting result due to da Costa shows that
truth-functional bivalent semantics determine only logics which are sublogics of
classical logic (see [23]).

Semantics of bivaluations can be developed for many-valued logics, such as
	Lukasiewicz’s three-valued logic. But they are more interesting for logics which are
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not truth-functional, in the sense that they cannot be characterized by a finite ma-
trix. In fact, originally da Costa built semantics of valuation for his paraconsistent
logic C1, which is a non truth-functional logic [22].

6.3. Bivaluations, truth-tables and sequent calculus

Despite of the non truth-functionality of such semantics, it is possible to con-
struct truth-tables which are quite similar to the classical ones, and which provide
decision methods.

I have linked the theory of valuations with sequent calculus showing how it is
possible to translate conditions defining bivaluations into sequent rules and vice-
versa. Combining action of valuations upon sequent rules, in the spirit of Gentzen’s
1932 proof [29], with Lindenbaum-Asser theorem, I have given a general version
of the completeness theorem, from which it is possible to derive instantaneously
many specific completeness theorems (see [2], [11]),

7. Universal logic

7.1. Universality and trivialization

Wójcicki said once that his objective was to trivialize the completeness theorem.
What does this mean? It means finding a general formulation of this theorem from
which particular theorems appear as trivial corollaries.

In a proof of a completeness theorem for a given logic, one may distinguish the
elements of the proof that depend on the specificity of this logic and the elements
that do not depend on this peculiarity, that we can call universal.

This distinction is important from a methodological, philosophical and math-
ematical point of view. The first proofs of completeness for propositional classical
logic give the idea that this theorem is depending very much on classical features.
Even one still gets this impression with recent proofs where the theorem is pre-
sented using the concept of maximal consistent set which seems to depend on
classical negation. In fact this idea is totally wrong and one can present the com-
pleteness theorem for classical propositional logic in such a way that the specific
part of the proof is trivial, i.e. one can trivialize the completeness theorem.

One central aim of a general theory of logics is to get some universal results
that can be applied more or less directly to specific logics, this is one reason to
call such a theory universal logic.

Some people may have the impression that such general universal results
are trivial. This impression is generally due to the fact that these people have a
concrete-oriented mind, and that something which is not specified has no meaning
for them, and therefore universal logic appears as logical abstract nonsense. They
are like someone who understands perfectly what is Felix, his cat, but for whom the
concept of cat is a meaningless abstraction. This psychological limitation is in fact a
strong defect because, as we have pointed through the example of the completeness
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theorem, what is trivial is generally the specific part, not the universal one which
requires what is the fundamental capacity of human thought: abstraction.

7.2. Universal logic and universal algebra

Originally I introduced the terminology “universal logic” to denote a general theory
of logics, by analogy with the expression “universal algebra” (cf. [1]).

What is universal algebra? During the XIXth century, lots of algebraic struc-
tures appeared and then some people started to turn this heterogeneous variety
into a unified theory. In 1898, Whitehead wrote a book entitled A treatise on uni-
versal algebra (cf. [46]), but it is Garrett Birkhoff who is considered as the real
founder of universal algebra 4. Birkhoff was the first to give a very general defini-
tion of abstract algebra, as a set with a family of operators. He introduced further
general concepts and proved several important universal results (see [14], [16]).

The idea beyond universal logic is to develop a general theory of logics in
a similar way. This means that logics are considered as mathematical structures,
general concepts are introduced and universal results are proved.

One central question is to know which kind of structures are logical structures.
One may think that these structures are algebraic structures and that therefore
universal logic is just a part of universal algebra, this was more or less the idea
of Suszko. But as we have pointed out, it seems inappropriate to base essentially
a general theory of logics on the notion of algebraic structures. Other types of
structures are required.

7.3. Universal logic and the theory of structures

The idea I proposed about ten years ago is that logical structures must be con-
sidered as fundamental mother structures in the sense of Bourbaki, together with
algebraic, topological and order structures. This was also the idea of a former stu-
dent of de Possel, Jean Porte, 40 years ago (see [36]). In his work, Porte proposed
several types of logical structures.

My idea was to focus on a logical structure of type 〈S;�〉 where � is a relation
on P(S)XS. The important thing is that the structure of S is not specified, in
fact, further on, any kind of structure can be put on S, not only an algebraic
structure. We are back therefore to something very close to Tarski’s original theory
of consequence operator. One important difference is that in this new definition
of logical structure, no axioms are stated for the consequence relation � , in the
same way that no axioms are stated for the operators in Birkhoff’s definition of
abstract algebra.

Universal logic, like universal algebra, is just a part of the general theory of
structures, logical abstract nonsense is a subfield of general abstract nonsense. If, as
we have suggested, abstraction is the important thing, one could argue that what
is really interesting is a general theory of structures, like category theory, and not a
theory of specific structures like universal logic. The fact is that abstraction is really

4L. Corry erroneously says, in his otherwise excellent book [20], that the expression ‘universal
algebra” is due to Whitehead, this expression is due in fact to J.J. Sylvester, see [42].
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a nonsense if it is considered only by itself. Abstraction is abstraction of something
and when applied back it gives another view of this thing. Moreover there must
be a continuous interplay between the specific and the general. Universal logic is
an interesting material for the general theory of structures. For example, a central
point in universal logic is to try to define properly a relation between logics which
permits to compare them and to identify them (cf. [6], [13]). To solve this problem,
new concepts and tools have to be introduced at the level of a general theory of
structures, which can later on be applied to other fields of mathematics.
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Mathématiques, University of Toronto Press, Toronto, 1946, pp.310-326.

[15] G. Birkhoff, The rise of modern algebra to 1936 and The rise of modern algebra,
1936 to 1950, in Men and institutions in American mathematics, Graduate Studies,
Texas Technical Studies, 13 (1976), pp.65-85 and pp.41-63.



16 Jean-Yves Beziau

[16] G. Birkhoff, Universal algebra. Selected papers on algebra and topology by Garrett
Birkhoff, G.-C. Rota and J.S. Oliveira (eds), Birkhäuser, Basel, 1987.
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Abstract. We suggest abstract model theory as a framework for universal
logic. For this end we present basic concepts of abstract model theory in a
general form which covers both classical and non-classical logics. This ap-
proach aims at unifying model-theoretic results covering as large a variety of
examples as possible, in harmony with the general aim of universal logic.
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1. Introduction

Universal logic is a general theory of logical structures as they appear in classical
logic, intuitionistic logic, modal logic, many-valued logic, relevant logic, paracon-
sistent logic, non-monotonic logic, topological logic, etc. The aim is to give general
formulations of possible theorems and to determine the domain of validity of im-
portant theorems like the Completeness Theorem. Developing universal logic in a
coherent uniform framework constitutes quite a challenge. The approach of this
paper is to use a semantic approach as a unifying framework.

Virtually all logics considered by logicians permit a semantic approach. This
is of course most obvious in classical logic and modal logic. In some cases, such
as intuitionistic logic, there are philosophical reasons to prefer one semantics over
another but the fact remains that a mathematical theory of meaning leads to new
insights and clarifications.

Researchers may disagree about the merits of a semantic approach: whether
it is merely illuminating or indeed primary and above everything else. It is quite
reasonable to take the concept of a finite proof as the most fundamental concept
in logic. From this predominantly philosophically motivated point of view seman-
tics comes second and merely as a theoretical tool. It is also possible to take the
mathematical concept of a structure as a starting point and use various logics
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merely as tools for the study of structures. From this predominantly mathemati-
cally motivated view, prevalent also in computer science logic, formal proofs are
like certificates that we may acquire at will according to our needs. Finally, we may
take the intermediate approach that formal languages are fundamental in logic,
and there are many different ones depending on the purpose they are used for, but
common to all is a mathematical theory of meaning. This is the approach of this
paper.

Abstract model theory is the general study of model theoretic properties of
extensions of first order logic (see [3]). The most famous result, and the starting
point of the whole field, was Lindström’s Theorem [22] (see Theorem 3.4 below)
which characterized first order logic in terms of the Downward Löwenheim-Skolem
Theorem and the Compactness Theorem. Subsequently many other characteriza-
tions of first order logic emerged. Although several characterizations of first order
logic tailored for structures of a special form (e.g. topological [39]) were found, no
similar characterizations were found for extensions of first order logic in the set-
ting of ordinary structures. However, in [34] a family of new infinitary languages
is introduced and these infinitary languages permit a purely model theoretic char-
acterization in very much the spirit of the original Lindström’s Theorem.

In Section 2 we present an approach to abstract model theory which is gen-
eral enough to cover many non-classical logics. Even if few results exist in this
generality, the approach suggests questions for further study.

Intertwined with the study of general properties of extensions of first order
logic is naturally the study of the model theory of particular extensions. In this
respect logics with generalized quantifiers and infinitary languages have been the
main examples, but recently also fragments of first order logic such as the guarded
fragment and finite variable fragments have been extensively studied. Chang [9]
gives an early sketch of modal model theory, modern model theory of modal logic
emphasizes the role of bisimulation (e.g. [26]).

It was noticed early on that particular properties of extensions of first order
logic depended on set theoretical principles such as CH or ♦. A famous open
problem is whether L(Q2) is axiomatizable (Q2 is the quantifier “there exist at
least ℵ2 many”). In [35] the concept of a logic frame is introduced to overcome
this dependence on metatheory. It becomes possible to prove results such as, if
a logic of a particular form is axiomatizable, then it necessarily also satisfies the
Compactness Theorem. We discuss logic frames in Section 5 and point out their
particular suitability for the study of universal logic.

2. Abstract Model Theory

The basic concept of abstract model theory is that of an abstract logic. This con-
cept is an abstraction of the concept of truth as a relation between structures of
some sort or another and sentences of some sort or another. In its barest formu-
lation, void of everything extra, when we abstract out all information about what
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kind of structures we have in mind, and also all information about what kind of
sentences we have in mind, what is left is just the concept of a binary relation
between two classes1.

Definition 2.1. An abstract logic is a triple L = (S, F, |=) where |= ⊆ S × F .
Elements of the class S are called the structures of L, elements of F are called the
sentences of L, and the relation |= is called the satisfaction relation of L.

Figure 1 lists some building blocks from which many examples of abstract
logics can be constructed.

Some obvious conditions immediately suggest themselves, such as closure
under conjunction (see Definition 2.5 below) and closure under permutation of
symbols. However, the spectrum of different logics is so rich that it seems reason-
able to start with as generous a definition as possible. Still, even this definition
involves a commitment to truth as a central concept which limits its applicability
as an abstraction of e.g. fuzzy logic.

The value of a general concept like the above depends upon whether we can
actually say anything on this level of generality. Surprisingly, already this very
primitive definition allows us to formulate such a central concept as compactness
and prove some fundamental facts about compactness.

We say that a subset T of F has a model if there is A ∈ S such that A |= T i.e.
∀φ ∈ T (A |= φ). An abstract logic L = (S, F, |=) is said to satisfy the Compactness
Theorem if every subset of F , every finite subset of which has a model, has itself a
model. We can now demonstrate even in this quite general setup that compactness
is inherited by sublogics, a technique frequently used in logic. First we define the
sublogic-relation. The definition below would be clearer if we applied it only to
logics which have the same structures. This seems an unnecessary limitation and
we are quite naturally lead to allowing a translation of structures, too.

Definition 2.2. An abstract logic L = (S, F, |=) is a sublogic of another abstract
logic L′ = (S′, F ′, |=′), in symbols

L ≤ L′,

if there are a sentence θ ∈ S′ and functions π : S′ → S and f : F → F ′ such that

1. ∀A ∈ S∃A′ ∈ S′(π(A′) = A and A′ |=′ θ)
2. ∀φ ∈ F∀A′ ∈ S′(A′ |= θ → (A′ |=′ f(φ) ⇐⇒ π(A′) |= φ)).

The idea is that the structures in S′ are richer than the structures in S, and
therefore we need the projection π. The role of θ is to cut out structures in S′ that
are meaningless from the point of view of L. Typical projections are in Figure 2.

Lemma 2.3. If L ≤ L′ and L′ satisfies the Compactness Theorem, then so does L.

1In lattice theory such relations are called Birkhoff polarities [5]. A recent study is [14]. We are
indebted to Lauri Hella for pointing this out.
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Structures Sentences
Valuations Propositional logic
-double valuations Relevance logic
-three-valued Paraconsistent logic
Relational structures Predicate logic
-monadic -with two variables
-ordered -guarded fragment
-finite -with infinitary operations
-pseudofinite -with generalized quantifiers
-topological -higher order
-Banach space -positive bounded, etc
-Borel -logic of measure and category
-recursive
-ω-models
Kripke structures Intuitionistic logic
-transitive reflexive Modal logic
-equivalence relation -S4,S5, etc
-etc
Many-valued structures Many-valued logic, fuzzy logic
Games Linear logic

Figure 1. Building blocks of abstract logics

Proof. We give the easy details in order to illustrate how the different components
of Definition 2.2 come into play. Suppose T ⊆ F and every finite subset of T has
a model. Let T ′ = {θ} ∪ {f(φ) : φ ∈ T}. Suppose T ′

0 = {θ} ∪ {f(φ) : φ ∈ T0} ⊆ T ′

is finite. There is A ∈ S such that A |= T0. Let A′ ∈ S′ such that π(A′) = A and
A′ |=′ θ. Then A′ |= T ′

0. By the Compactness Theorem of L′ there is A′ ∈ S′ such
that A′ |=′ T ′. Thus π(A′) |= T . �

Another property that is inherited by sublogics is decidability (and axiomati-
zability). The formulation of these properties in abstract terms requires sentences
of the abstract logic to be encoded in such a way that concepts of effectiveness
apply. It is not relevant which concept of effectiveness one uses.

Definition 2.4. An abstract logic L = (S, F, |=) is said to be recursive if F is ef-
fectively given. A recursive abstract logic L = (S, F, |=) is an effective sublogic of
another recursive abstract logic L′ = (S′, F ′, |=′), in symbols L ≤eff L′, if L ≤ L′

via θ, π and f such that f(φ) can be effectively computed from φ. A recursive ab-
stract logic L = (S, F, |=) is said to be decidable if the set {φ ∈ F : φ has a model}
can be effectively decided inside F . It is co-r.e. (or r.e.) for satisfiability if {φ ∈
F : φ has a model} is co-r.e. (respectively, r.e.).

The above concept of co-r.e. for satisfiability could be appropriately called
effective axiomatisability for logics closed under negation (see Definition 3.3 below).
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Structure A Projection π(A) θ expresses
Ordered structure (M, <) Structure M Axioms of order
Zero-place relations Valuation
Binary structure Kripke structure Transitivity (e.g.)
Structure with unary predicates Many-sorted structure

Figure 2. Typical projections

The Independence Friendly logic IF (see [16]) is not closed under negation, it is r.e.
for satisfiability, but neither effectively axiomatizable nor co-r.e. for satisfiability.

Definition 2.5. An abstract logic L = (S, F, |=) is said to be closed under conjunc-
tion if for every φ ∈ F and ψ ∈ F there is φ ∧ ψ ∈ F such that ∀A ∈ S(A |=
φ ∧ ψ ⇐⇒ A |= φ and A |= φ). We say that a recursive abstract logic L is
effectively closed under conjunction if φ∧ψ can be found effectively from φ and ψ
inside F .

Lemma 2.6. Suppose L ≤eff L′ and L′ is effectively closed under conjunction. If L′

is decidable (or co-r.e. for satisfiability), then so is L.

Proof. If φ ∈ F has a model A in S, then there is a model A′ in S′ such that
A′ |= θ and π(A′) = A, whence A′ |= θ ∧ f(φ). Conversely, if θ ∧ f(φ) ∈ F has
a model A′ in S′, then φ has the model π(A′) in S. Since there is an effective
algorithm for“θ ∧ f(φ) has a model in S′”, there is also one for“φ has a model in
S”. �

Example (Predicate logic). Let S be the set of all first order structures of various
vocabularies, and F the set of all first order sentences (with identity) built from the
atomic formulas and the usual logical symbols ∃, ∀,∧,∨,¬,→,↔ and parentheses.
The relation A |=L φ is defined as usual for structures A and sentences φ of the
same vocabulary. Predicate logic is a recursive abstract logic which satisfies the
Compactness Theorem and is co-r.e. for satisfiability but not decidable. Predicate
logic on finite structures does not satisfy Compactness Theorem. It is r.e. for
satisfiability but not co-r.e. for satisfiability and hence not decidable. It is not a
sublogic of predicate logic but it is an effective sublogic of the extension of predicate
logic with the generalized quantifier Q0 (“there exists infinitely many”). Predicate
logic on ordered structures is important in computer science (especially on finite
ordered structures). It is clearly an effective sublogic of predicate logic. Another
variant of predicate logic is many-sorted logic [28]. It is an effective sublogic of the
ordinary predicate logic.

Example (Two variable predicate logic). Let S be the set of all first order structures
of various vocabularies, and F the set of all first order sentences (with identity)
built from the atomic formulas with just the two variables x and y, and the usual
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logical symbols ∃, ∀,∧,∨,¬,→,↔, and parentheses. The relation A |=L φ is de-
fined as usual for structures A and sentences φ of the same vocabulary. This is a
decidable abstract logic [29], which is an effective sublogic of predicate logic.

Example (Guarded fragment of predicate logic [1]). Let S be the set of all first order
structures of various vocabularies, and F the set of all guarded first order sentences
i.e. first order formulas where all quantifiers are of the form ∃�x(R(�x, �y)∧φ(�x, �y)) or
∀�x(R(�x, �y) → φ(�x, �y)), where R(�x, �y) is atomic. The relation A |=L φ is defined as
usual for structures A and sentences φ of the same vocabulary. This is a decidable
abstract logic [1], which is an effective sublogic of predicate logic.

Example (Propositional logic). Let us fix a set P of propositional symbols p0, p1, . . . .
Let S be the set of all functions v : P → {0, 1}, and F the set of all propositional
sentences built from the symbols of P and the usual logical symbols ∧,∨,¬,→,↔
and parentheses. The relation v |=L φ is defined to hold if v(φ) = 1. Propositional
logic is an effective sublogic of the (even two variable) predicate logic: We may
treat pn as a 0-place predicate symbol. A first order structure A gives rise to a val-
uation π(A) which maps pn to the truth value of Pn in A. Clearly, every valuation
arises in this way from some structure.

Example (Modal logic). Let us fix a set P of propositional symbols p0, p1, . . . .
Let S be the set of all reflexive and transitive Kripke-structures, and F the set
of all propositional modal sentences built from the symbols of P and the usual
logical symbols of modal logic �,♦,∧,∨,¬,→,↔ and parentheses. The relation
K |=L φ is defined as usual. Modal logic is an effective sublogic of predicate logic: A
first order structure A = (K, R, c, P0, P1, . . . ), where R is transitive and reflexive,
gives rise to a Kripke-structure K in which (K, R) is the frame, c denotes the
initial node and Pn indicates the nodes in which pn is true. Clearly, every Kripke-
structure arises in this way from some such structure A. Sentences are translated
in the well-known way:

g(pn, x) = Pn(x)
g(¬φ, x) = ¬g(φ, x)

g(φ ∧ ψ, x) = g(φ, x) ∧ g(ψ, x)
g(φ ∨ ψ, x) = g(φ, x) ∨ g(ψ, x)

g(�φ, x) = ∀y(R(x, y) → g(φ, y))
g(♦φ, x) = ∃y(R(x, y) ∧ g(φ, y))

f(φ) = g(φ, c)

In view of Lemma 2.3 this sublogic relation gives immediately the Compactness
Theorem, also for say, S4. In fact, basic modal logic is an effective sublogic of the
two variable logic, and therefore by Lemma 2.6 decidable.

Example (Intuitionistic logic). We fix a set P of propositional symbols p0, p1, . . . .
Let S be the set of all transitive and reflexive Kripke-structures, and F the set
of all propositional sentences built from the symbols of P and the usual logical
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symbols of intuitionistic logic ⊃,∧,∨,¬ and parentheses. The relation K |=L φ is
defined as usual. Intuitionistic logic is an effective sublogic of predicate logic, and
satisfies therefore the Compactness Theorem.

3. Lindström Theorems

The most famous metatheorem about abstract logics is Lindström’s Theorem char-
acterizing first order logic among a large class of abstract logics [22]. This type
of characterization results are generally called Lindström theorems even when the
conditions may be quite different from the original result. The original Lindström’s
Theorem characterizes first order logic in a class abstract logics L = (S, F, |=) sat-
isfying a number of assumptions that we first review.

The most striking formulations of Lindström theorems assume negation. To
discuss negation at any length we have to impose more structure onto the class S
of structures of an abstract logic.

Definition 3.1. An abstract logic with occurrence relation is any quadruple L =
(S, F, |=, V ), where L = (S, F, |=) is an abstract logic and V ⊆ S × F is a relation
(called occurrence relation) such that |= ⊆ V . An abstract logic L = (S, F, |=, V )
with occurrence relation is classical if S is a subclass of the class of all relational
structures of various vocabularies, and L satisfies:

Isomorphism Axiom: If A |= φ and A ∼= B ∈ S then B |= φ.
Reduct Axiom: If V (B, φ) and B is a reduct of A ∈ S,

then A |= φ ⇐⇒ B |= φ
Renaming Axiom: Suppose every A ∈ S is associated with A′ ∈ S

obtained by renaming symbols in A. Then for
every φ ∈ F there is φ′ ∈ F such that
for all A ∈ S, V (A, φ) ⇐⇒ V (A′, φ′)
and A |= φ ⇐⇒ A′ |= φ′.

A classical abstract logic with vocabulary function is the special case of an abstract
logic with occurrence relation where we have a vocabulary function τ mapping
F into S and the occurrence relation is defined by V (A, φ) ⇐⇒ A is a τ (φ)-
structure. We denote such an abstract logic by (S, F, |=, τ ).

Intuitively, V (A, φ) means that the non-logical symbols occurring in φ have
an interpretation in A. In classical abstract logics this means the vocabulary of
the structure A includes the vocabulary of φ, whence the concept of a vocabulary
function.

We say that a classical L = (S, F, |=, τ ) is a classical sublogic of another
classical L′ = (S′, F ′, |=′, τ ′), L ≤c L′, if L ≤ L′ via θ, π and f such that τ ′(f(φ)) =
τ (φ) for all φ ∈ F , and π(A) and A have the same universe for all A ∈ S′. A classical
abstract logic L satisfies the Downward Löwenheim-Skolem Theorem if whenever
φ ∈ F has a model, φ has a model with a countable universe.
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Lemma 3.2. If L ≤c L′, L′ is closed under conjunction, and L′ satisfies the Down-
ward Löwenheim-Skolem Theorem, then so does L.

Definition 3.3. An abstract logic L = (S, F, |=, V ) with occurrence relation is said
to be closed under negation if for every φ ∈ F there is ¬φ ∈ F such that

∀A(V (A, φ) ⇐⇒ V (A,¬φ) and A |= ¬φ ⇐⇒ A �|= φ). (3.1)

The Independence Friendly logic IF [16] is not closed under negation (one
way to see this is Corollary 4.2) if we define V (A, φ) to mean that the non-logical
symbols occurring in φ have an interpretation in A. However, if we use a different
definition letting V (A, φ) mean that the semantic game of φ is determined on A,
then IF is closed under negation. But then IF is not what we called classical above.

A classical abstract logic (S, F, |=, τ ) with vocabulary function is fully classi-
cal if S is the whole class of all relational structures. Among fully classical abstract
logics we assume the sublogic relation L ≤ L′ satisfies always the natural assump-
tions that every model A satisfies π(A) = A and A |= θ. In such a case we say that
the abstract logic L′ extends L. Two fully classical abstract logics are equivalent if
they are sublogics of each other. Now we are ready to state:

Theorem 3.4 (Lindström’s Theorem [22]). Suppose L is a fully classical abstract
logic closed under conjunction and negation extending first order logic. Then L is
equivalent to first order logic if and only if L satisfies the Compactness Theorem
and the Downward Löwenheim-Skolem Theorem.

This important result gives a purely model-theoretic syntax-free characteri-
zation of first order logic. It has lead to attempts to find similar characterizations
for other logics, also for non-classical logics. Indeed, de Rijke [26] has obtained a
characterization for basic modal logic in terms of a notion of “finite rank”. Other
characterizations can be found in Figure 3. Many of them are very close in spirit
to Theorem 3.4.

Another result of Lindström [22] tells us that a recursive fully classical ab-
stract logic satisfying the closure conditions of Theorem 3.4 (effectively), which
satisfies the Downward Löwenheim-Skolem Theorem and is effectively axiomatiz-
able, is an effective sublogic of first order logic. This result has an extra limitation
on definability of the set F of formulas of the abstract logic, typically satisfied by,
but not limited to, the extensions of first order logic by finitely many generalized
quantifiers.

There are two traditions in abstract model theory. One based on back-and-
forth systems, particularly suitable for infinitary logic and interpolation theorems.
The work on bisimulation shows that it is a similarly suitable setup for modal
logics. The other tradition is the method of identities associated with generalized
quantifiers and compact logics [27, 32]. It seems difficult to combine these two
traditions. This culminates in the open question whether there is an extension of
first order logic satisfying both the Compactness Theorem and the Interpolation
Theorem: If every model of φ is a model of ψ, then there is a sentence θ such
that every model of φ is a model of θ, every model of θ is a model of ψ, and
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Abstract logic L Reference
Monadic logic Tharp [37]
- with Q1 Caicedo [7]
Predicate logic Lindström [22]
- with a monotone generalized quantifier Flum [10]
- on pseudofinite structures Väänänen [38]
Infinitary logic
- Lκω Barwise [2]
- L1

κ Shelah,Väänänen [34]
Modal logic de Rijke [26]
Topological logic Sgro [30]
Various topological and related logics Ziegler [39]
Banach space logic Iovino [18]

Figure 3. Some examples of Lindström theorems

θ contains (in the obvious sense) only non-logical symbols common to both φ
and ψ. For logics closed under negation (see Definition 3.3) this is equivalent to
the Separation Theorem: If φ and ψ have no models in common, then there is a
sentence θ such that every model of φ is a model of θ, θ and ψ have no models in
common, and θ contains only non-logical symbols common to both φ and ψ.

Where did the two traditions reach an impasse? With back-and-forth systems
the problem arose that uncountable partially isomorphic structures need not be
isomorphic. With identities and compact logics the problem is the existence of
a fundamental function for the relevant identity, and that is a difficult partition
theoretic question.

The difficulties of the study of extensions of first order logic raise (among
others) the question, is there a logic of “many” that we could somehow understand,
e.g. axiomatize. A recent result of Shelah [33] shows that it is consistent that
L(Q1, Q2) is non-compact. On the other hand, logics with cofinality quantifiers
are axiomatizable and compact [32]. It seems that the cofinality quantifiers behave
much better than the “many”-type quantifiers.

With the new infinitary languages of [34] one can express “there is an un-
countable sequence” in a way which does not allow one to say “there is an infinite
sequence”. This proves to be crucial. Note that the generalized quantifier “there
exists uncountably many” is axiomatizable but the quantifier “there exists infinitely
many” is not. The new infinitary logics of [34] transform this phenomenon from
generalized quantifiers to infinitary logic. Thereby also a new Lindström theorem
arises.
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Structures Sentences
Relational structures Existential sentences

Existential universal, FI logic [24]
Transfinite game formulas [17]
Existential second order, IF logic [16]

Banach space structures Positive bounded formulas [18]
Kripke structures Intuitionistic logic

Figure 4. Examples of lack of negation.

4. Abstract logic without negation

There are many examples of abstract logics L = (S, F, |=, V ) with a natural occur-
rence relation which are not closed under negation, see Figure 4. Several concepts
of abstract model theory have definitions which are equivalent if we have negation
but otherwise different. It is not immediately obvious which of these definitions are
the most natural ones when we do not have negation. For the Interpolation Theo-
rem it seems that the Separation Theorem is the right formulation in the absence
of negation. This question is further studied in [11]. A formulation of Lindström’s
Theorem for logics not closed under negation states (as pointed out in [10]):

Theorem 4.1 (Lindström’s Theorem without negation). Suppose L is a fully clas-
sical abstract logic extending first order logic and closed under conjunction and dis-
junction, which satisfies the Compactness Theorem and the Downward Löwenheim-
Skolem Theorem. If φ ∈ F and ψ ∈ F have no models in common, then there is
a first order sentence θ such that every model of φ is a model of θ but θ has no
models in common with ψ.

Corollary 4.2 (Total lack of negation). Suppose L is a fully classical abstract logic
extending first order logic and closed under conjunction and disjunction, which
satisfies the Compactness Theorem and the Downward Löwenheim-Skolem Theo-
rem. Then only the first order sentences in F have a negation (in the sense of
(3.1).

The Independence Friendly logic IF is an example of a logic which satisfies
the assumptions of the above corollary [16]. Consequently, only the first order
sentences in IF have a negation. As an illustration of an abstract logic with partial
negation we consider the following example:

Definition 4.3 ([11]). Let us consider predicate logic as built from atomic and
negated atomic formulas by means of ∀, ∃,∧,∨. Let L(m, n) be the extension of
this predicate logic obtained by adding the generalized quantifiers

Qmxφ(x) ⇐⇒ there are at least ℵm elements x satisfying φ(x)

and
Q̌nxφ(x) ⇐⇒ all but fewer than ℵn elements x satisfy φ(x).
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In other words, L(m, n) is built from atomic and negated atomic formulas by
means of Qm, Q̌n, ∀, ∃,∧,∨.

Theorem 4.4 ([11]). The abstract logic L(m, n) satisfies the Compactness Theorem
if m < n, and also (by [31]) if m ≥ n and ℵω

m = ℵm. It satisfies total lack of
negation if n �= m, and it satisfies the Separation Theorem if and only if n < m.

We can define a kind of partial negation ∼φ in L(m, n) as follows:

∼φ = ¬φ if φ atomic
∼φ = φ if φ negated atomic

∼(φ ∧ ψ) = ∼φ∨ ∼ψ

∼(φ ∨ ψ) = ∼φ∧ ∼ψ

∼∃xφ = ∀x ∼φ

∼∀xφ = ∃x ∼φ

∼Qmxφ = Q̌nx ∼φ

∼Q̌nxφ = Qmx ∼φ

What can we say about Qmxφ∧ ∼Qmxφ for first order φ? The meaning of
this sentence is that φ is satisfied by at least ℵm elements but still all but fewer
than ℵn elements satisfy ¬φ. If m < n this is perfectly possible. So in this case
∼ψ acts as a weak negation which is not even in contradiction with ψ unless ψ is
first order. In a sense, L(m, n) does not satisfy the Law of Contradiction if ∼ is
interpreted as its negation. If m > n then Qmxφ∧ ∼Qmxφ cannot hold but now
Qmxφ∨ ∼Qmxφ may fail. Thus in this case ∼ψ acts as a strong negation which
does not cover the complement of ψ unless ψ is first order. In a sense, L(m, n) does
not satisfy the Law of Excluded Middle if ∼ is interpreted as its negation. Finally,
if m = n, ∼ acts as a perfect negation for L(m, n), i.e. A |=∼φ ⇐⇒ A �|= φ.

Open Question. Is there a model theoretic characterization of any abstract logic
L = (S, F, V ) with occurrence relation which is not closed under negation?

5. Logic frames

Having totally neglected the aspect of syntax we now bring it back with the concept
of a logic frame. Without specifying the axioms and rules of proof, for example, the
question of the Completeness Theorem has to be reduced to the question whether
the set of valid sentences is recursively enumerable. From such knowledge one could
in principle devise axioms and rules that yield a Completeness Theorem. However,
it is often relevant to know whether particular axioms and rules constitute a com-
plete set. This is all the more important in the case of logics which are originally
defined via axioms and rules, such as constructive logic. The below concept of a
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Structures Sentences axioms and rules by
Valuations Propositional logic Post [25]
Relational structures Predicate logic Gödel [12]
-monadic Löwenheim
-ω-models Orey [23]

-with two variables Scott [29]
-infinitary Karp [19]
-with Q1 Keisler [20]
-higher order Henkin [15]

-topological -invariant Ziegler [39]
-analytic -existential bounded Iovino [18]
-Borel -Borel logic Friedman[36]
Kripke structures Intuitionistic logic Kripke [21]

Modal logic, S4 Kripke [21]
Many-valued Many-valued logic Belluce-Chang [4]
structures Fuzzy logic Hajek [13]
Games Linear logic, additive Blass [6]

Figure 5. Examples of complete logic frames

logic frame captures in abstract form the combination of syntax, semantics and
proof theory of a logic. An axiom of an abstract logic L is simply a sentence of L,
i.e. an element of F . An inference rule is any collection of functions defined in the
set F .

Definition 5.1 ([35]). A logic frame is a quadruple L = (S, F, |=, A) where (S, F, |=)
is an abstract logic and A is a class of axioms and inference rules of L.

We write T � φ if φ is derivable from T in the usual sense using the axioms
and rules of L. A logic frame L = (S, F, |=, A) satisfies: the Soundness Theorem if
T � φ implies every model of T is a model of φ, the Completeness Theorem if T � φ
holds exactly if every model of T is a model of φ, and the Recursive Compactness
Theorem if every L-theory which is recursive in the set of axioms and rules, every
finite subset of which which has a model, itself has a model.

Literature of logic has numerous examples of logic frames satisfying the Com-
pleteness Theorem (see Figure 5). In the case of extensions of first order logic the
question of completeness depends in many cases on set theory. One of the oldest
open problems concerning extensions of first order logic is the question whether
the extension Lωω(Q2) of first order logic by the quantifier “there exist at least
ℵ2 many” is effectively axiomatizable or satisfies the Compactness Theorem (re-
stricted to countable vocabularies). The answer is “yes” if the Generalized Con-
tinuum Hypothesis is assumed [8] but remains otherwise open (see however [33]).
The concept of logic frames helps us here.
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Theorem 5.2. [35] The fully classical logic frame L = (S, Lωω(Q2), |=, AK), where
AK is the set of axioms and rules of Keisler [20], satisfies the Completeness The-
orem if and only if L satisfies the Compactness Theorem (for countable vocabular-
ies).

There is a more complicated axiomatization A (the details of A are omitted)
of an arbitrary Lωω(Qα1 , . . . , Qαn

) with the same property as AK above.

Theorem 5.3. [35] The extension L( �Q) = Lωω(Qα1 , . . . , Qαn
) of first order logic

has a canonically defined set A of axioms and rules such that the fully classical
logic frame L = (S, L( �Q), |=, A) satisfies: If L satisfies the Completeness Theorem,
then it satisfies the Compactness Theorem (and vice versa).

Why is this interesting? The point is that we cannot decide on the basis
of ZFC whether L satisfies the Compactness Theorem or not, but we can decide
on the basis of ZFC alone that all we need to care about is the Completeness
Theorem. We can also prove a general result about logics of the form

L( �Q) = Lωω(Qα1 , Qα2 , . . . )

as long as no αn is a limit of some of the other ordinals αi.

Theorem 5.4. [35] The extension L( �Q) = Lωω(Qα1 , Qα2 , . . . ) of first order logic
has a canonically defined set A of axioms and rules such that the fully classical
logic frame L = (S, L( �Q), |=, A) satisfies: If L satisfies the Recursive Compactness
Theorem, then it satisfies the Compactness Theorem.

What is interesting in the above theorem is that we cannot decide on the
basis of ZFC whether L satisfies the Compactness Theorem or not, but we can
decide on the basis of ZFC alone that if there is a counter-example to compactness,
it is recursive in the axioms.

The results about logic frames up to now have been about connections be-
tween completeness and compactness. But we can also ask, are there Lindström
theorems for logic frames. In particular, no answer to the following question is
known even in the case of first order logic:

Open Question. Is there a characterization of any of the known complete logic
frames L = (S, F, |=, A) in terms of natural conditions on S, F, and A?
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A Topological Approach to Universal Logic:
Model-Theoretical Abstract Logics

Steffen Lewitzka

Abstract. In this paper we present a model-theoretic approach to a general
theory of logics. We define a model-theoretical abstract logic as a structure
consisting of a set of expressions, a class of interpretations and a satisfaction
relation between interpretations (models) and expressions. The main idea is to
use the observation that there exist in some sense pre-topological structures
on the set of theories and on the class of interpretations. For example, if
the logic has conjunction, then these structures turn out to be topological
spaces. Properties of a given abstract logic now are reflected in topological
properties of these spaces. One of the aim of this research is to investigate
relationships between abstract logics. We introduce the concept of a logic-
homomorphism between abstract logics by means of topological terms. This
leads in a natural way to the notion of a logic-isomorphism, a mapping that
preserves all structural properties of a logic. We study in detail variations of
logic-homomorphisms and their properties. One of the main results is that
logic-homomorphisms with a special property satisfy a condition which has
the same form as the satisfaction axiom of institutions. This fact can serve
in future work to investigate possible connections between (classes of) model-
theoretical abstract logics and a resulting institution. At the end of the paper
we sketch out this idea. Furthermore, we outline two examples of model-
theoretical abstract logics and the respective logic-homomorphisms. However,
a systematic study of relevant logics as abstract logics, together with their
logic-homomorphisms and further relationships, remains to be done in future
work.
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1. Introduction

The term ”abstract logic” perhaps could serve as a synonyme for notions as ”gen-
eral logic” or ”universal logic”. The aim is to develop a general theory that allows
to investigate in an uniform way a big class of specific logics and the relationships
between them. It seems that in some sense one could compare this attempt with
the situation that we have in the established mathematical field that studies alge-
braic structures: Universal Algebra denotes the area in which concepts, methods
and results of specific algebraic structures are generalized and unified.
However, a precise definition of a notion of ”logic” depends on what one con-
siders as the central components (consequence relation, calculus, model-theoretic
semantics, category-theoretic components etc.). So the nature of a general theory
of logics depends on the choice between these different alternatives.
We would like to mention two important research lines which deal with the concept
of a general logic. The first one was founded by A. Tarski and others and continued
by the School of Warsaw (see [4]). A logic is here defined by a set L of expressions
(over a given alphabet) together with a consequence relation �⊆ Pow(L) × L,
which satisfies the following conditions for all A, B ⊆ L:

(i) For all a ∈ A it holds that A � a.
(ii) If A � b for all b ∈ B, and if B � c, then holds A � c.

(In particular, it follows that the consequence relation is monotonous: If B ⊆ A
and B � c, then follows A � c.) Many logics satisfy these two intuitive conditions
(an exception are non-monotonic logics). In the case of logics with classical nega-
tion, basic notions, as validity or consistence, maximal consistence etc. now can
be expressed by means of this consequence relation.
The other research line is based on the notion of an institution (see [2],[3]), which
has model-theoretic and category-theoretic components. An institution describes a
larger structure than the above mentioned concept of logics (for example, classical
first order logic can be seen as one institution, whereas the first approach yields
a logic for each first order signature). Institutions have found fruitful applications
in the investigation of integrations of different logical systems and in computer
science (software specification) [2],[3].
Our approach is partially based on the first one sketched above. However, to a
set of expressions we add models and a satisfaction relation. So we give priority
to a model-theoretic approach, which in the usual way determines a consequence
relation. Moreover, the model-theoretic aspect is helpful in order to establish a
connection to the concept of an institution. In this way, one aim of our research is
to find in some sense a connection of the two research lines mentioned above.
A possible research program in abstract logics may be roughly speaking the fol-
lowing: First, one tries to give a very general definition of a concept of an abstract
logic in order to investigate the biggest possible class of specific logics that satisfy
this definition. Now it is important to understand very well what are the gen-
eral properties of these logics and by which criteria they can be distinguished and
classified. Another important aspect is the question for the relationships between
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different logics. Here a theory of abstract logics has to clarify basic concepts. What
is an extension of a given logic, what is a reduction or an expansion of a model in
some logic to a model in another one, or what does it mean for a logic to be homo-
morphic or equivalent/isomorphic to another logic, of what kind are the possible
mappings between logics, which properties are preserved under these mappings?
In order to deal with these questions we develop in this article the basis of a general
theory. But there are also restrictions in our theory: We define negation in abstract
logics in a classical way. However, there are very recent considerations towards a
possible non-classical generalization of (model-theoretical) abstract logics.1

2. Model-theoretical abstract logics

We start by defining a model-theoretical abstract logic and some other basic con-
cepts.

Definition 2.1. A model-theoretical abstract logic is a structure

L = (ExprL, IntL, �L).

(To simplify matters, in the following we say ”abstract logic” or only ”logic” instead
of ”model-theoretical abstract logic”.)

(i) ExprL is a set of words over a given alphabet. The elements of ExprL are
called expressions or L-expressions.

(ii) IntL is a class of interpretations in which expressions receive their denota-
tions.

(iii) �L is a relation, called satisfaction relation, on IntL×ExprL. The satisfaction
relation determines the truth values (”true” or ”false”) of the expressions in
the interpretations.

• If A �L a holds, then we say that the expression a is true in the interpretation
A. In this case, A is called a model of a. Otherwise, we say that a is false in
A. We can extend the satisfaction relation to sets of expressions and classes
of interpretations. Let K ⊆ IntL and A ⊆ ExprL. Then we define:
A �L A if and only if A �L a for all a ∈ A,
K �L a if and only if A �L a for all A ∈ K,
and K �L A in the obvious way.
The class of models of A is defined by ModL(A) := {A | A �L A}

• We say that an expression b follows from a set of expressions B, written as
B �L b, if ModL(B) ⊆ ModL({b}) holds. The relation �L⊆ Pow(ExprL) ×
ExprL is called consequence relation. A set B of expressions is called (de-
ductively) closed, if from B �L b follows b ∈ B.

• A set B of expressions is called valid, if ModL(B) = IntL. That is, the
expressions in B are true in all interpretations, which is equivalent to the
condition ∅ �L B, by short �L B. An expression is valid, if it is contained

1I thank Andreas Brunner for a promising discussion on this matter.
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in a valid set. A set B of expressions is satisfiable, if ModL(B) �= ∅. A max-
imal satisfiable set of expressions is a satisfiable set B such that there is no
satisfiable set B′ with B � B′. A contradiction is an expression that is not
satisfiable. A contradictory set is a set of expressions that is not satisfiable.
A theory (or an L-theory) is a satisfiable and deductively closed set of L-
expressions. A maximal theory (or complete theory) is a theory T , such that
T � T ′ implies that T ′ is not a theory.
For A ∈ IntL, we define ThL(A) := {a ∈ ExprL | A �L a}. If K is a class of
L-interpretations, then we define ThL(K) :=

⋂
A∈K ThL(A) (= {a ∈ ExprL |

K �L a}).2
We introduce two equivalence relations. The first one is defined on expres-
sions, the second one on interpretations. To simplify matters, we call both by
the same name ”L-equivalence” and write for both the same symbol ”=L”.
The differentiation between them should be clear by the context. The ex-
pressions a and b are called L-equivalent, written a =L b, if ModL({a}) =
ModL({b}). The interpretations A and B are called L-equivalent, written
A =L B, if ThL(A) = ThL(B) holds. We denote the equivalence class of a
modulo =L by [a]L and the equivalence class A modulo =L by [A]L.
The sets A, B ⊆ ExprL are L-equivalent, written A =L B, if ModL(A) =
ModL(B).

• A logic L is called finitary, if for all X ⊆ ExprL the following holds: If every
finite subset of X is satisfiable, then X is satisfiable.

• We say that a logic L has (classical) negation, if for every expression a ∈
ExprL there exists another expression b ∈ ExprL with the following property
(neg):
For all A ∈ IntL holds: A �L b if and only if A �L a. (A �L a means: not
A �L a.)
If L has negation and a ∈ ExprL, then we denote the set of expressions b
satisfying the property (neg) by neg(a).3

• We say that a logic L has conjunction, if for every pair of expressions a, b
there exists some expression c with the following property (conjunct):
For all A ∈ IntL holds: A �L c if and only if (A �L a and A �L b).4

If L has conjunction and a, b are expressions, then we denote the set of expres-
sions c satisfying the condition (conjunct) by conjunct(a, b). In accordance
with the previous footnote, the set conjunct(a0, ..., an) is defined in the ob-
vious way.5

• An abstract logic is called compact (or boolean), if it is a finitary logic with
negation and conjunction.

2It is easy to see (Lemma 2.2), that the sets ThL(A) and ThL(K) are in fact theories, as the
notation suggests.
3Notice that expressions in neg(a) are L-equivalent.
4By induction on n < ω it is easy to see that if L has conjunction, then for every finite sequence
a0, ..., an of expressions there is some expression c satsfying condition (conjunct).
5The expressions in conjunct(a0, ...an) are L-equivalent.
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In the following Lemma we collect some simple observations concerning the-
ories.

Lemma 2.2. Let L be an abstract logic and T a satisfiable set of expressions. Then
the following holds:

• If T = ThL(A) for some interpretation A, then T is a theory.
• The intersection of a nonempty set of theories is again a theory.
• The set of all valid L-expressions is a theory. Moreover, it is the smallest

theory (that is, it is contained in any theory).

The conditions (i)-(iii) are equivalent. If in addition L has negation, then all con-
ditions (i)-(v) are equivalent.

(i) T is a maximal satisfiable set of expressions.
(ii) T is a complete theory.
(iii) T = ThL(A) for all A �L T .
(iv) T = ThL(A) for some A �L T .
(v) For all a ∈ ExprL holds: a ∈ T or neg(a) ⊆ T .

Proof. If T = ThL(A), then T is satisfiable (by A). We show that T is deductively
closed. So suppose that T �L a. Since A �L T , A �L a. Hence, a ∈ ThL(A) = T .
In order to show the second assertion, suppose that T =

⋂
i<α Ti, where every Ti is

a theory and α > 1 is any ordinal. Then T is clearly satisfiable since it is a subset
of satisfiable sets. Suppose that T �L a. The consequence relation is monotonous
(we have Mod(Ti) ⊆ Mod(T )), so it follows that Ti �L a for every i < α. Since
the Ti are deductively closed, a ∈ ⋂

i<α Ti = T . Whence, T is deductively closed
too and therefore a theory.
Let T be the set of all valid expressions. Then T is satisfiable (by all interpreta-
tions!). Suppose that T �L a. Every L-interpretation is a model of T , whence, a
model of a. Then a is a valid expression and must be contained in T . Whence, T
is deductively closed and a theory. If T ′ is any theory, then clearly T ′ �L a for all
valid expressions a. So a ∈ T ′ for all valid expressions a, whence, T ⊆ T ′ and T is
the smallest theory.
(i)→ (ii): If T is maximal satisfiable and T �L a, then T ∪{a} is satisfiable, whence
a ∈ T , by maximality of T . Hence, T is deductively closed and therefore a theory.
If T ⊆ T ′ and T ′ is a theory, then T ′ is satisfiable. Since T is maximal satisfiable,
it follows that T = T ′. Hence, T is a maximal (or complete) theory.
(ii)→ (iii): Let T be complete theory and suppose that A is any model of T . Then
clearly T ⊆ ThL(A). The fact that ThL(A) is a theory that contains the maximal
theory T forces T = ThL(A).
(iii)→(i): Suppose that (iii) holds, T ⊆ T ′ and T ′ is satisfiable. Every model A of
T ′ is a model of T . Whence, T = ThL(A) for every model A of T ′, by (iii). Since
T ⊆ T ′ ⊆ ThL(A) it follows that T = T ′, and T is maximal satisfiable.
Now we suppose that L has negation.
If (iii) holds, then follows (iv), since T is satisfiable and therefore there exists some
model of T .
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Suppose that (iv) holds and a /∈ T = ThL(A). Then A �L a and A �L b, for all
b ∈ neg(a). Hence, neg(a) ⊆ T = ThL(A).
Now suppose that (v) holds. In order to show (i), we assume that there is some
satisfiable set T ′ ⊇ T and some a ∈ T ′

�T . From (v) follows that neg(a) ⊆ T ⊆ T ′.
By definition of neg(a), T ′ can not be satisfiable - a contradiction. Hence, such a
T ′ does not exist and T is maximal satisfiable. �
Definition 2.3. Let L be a logic. We define:
Mod(L) := {ModL(a) | a ∈ ExprL}, and (Mod(L)�=L) := {(ModL(a)�=L) |
a ∈ ExprL}, where (ModL(a)�=L) denotes the set of equivalence classes modulo
=L on ModL(a).
A pseudo-complete theory is a theory T of the form T = ThL(A) for some in-
terpretation A. The set of all pseudo-complete theories is PTh(L) := {ThL(A) |
A ∈ IntL}. The set of all complete theories is CTh(L) := {T | T is a complete
L-theory}.

Notice that from Lemma 2.2. follows that CTh(L) ⊆ PTh(L), and if L has
negation, then CTh(L) = PTh(L).

Definition 2.4. Let L be an abstract logic. We put σ1
L := {⋃ δ | δ ⊆ Mod(L)} and

σ2
L := {⋃ δ | δ ⊆ (Mod(L)�=L)}. The elements of σ1

L, σ2
L are called open sets,

and the sets of the form ModL(a) ∈ σ1
L and (ModL(a)�=L) ∈ σ2

L are called basic
open sets.
The tupel (IntL, σ1

L) is called the space of models and the tupel ((IntL�=L), σ2
L)

is called the space of models modulo L-equivalence. We say that Mod(L) is the
basis of σ1

L and (Mod(L)�=L) is the basis of σ2
L.

For a ∈ ExprL, we define a∗L := {T ∈ PTh(L) | a ∈ T}. 6 If the context it allows,
we write a∗ instead of a∗L .
We put ρL := {⋃ δ | δ ⊆ {a∗ | a ∈ ExprL}}. Again, the sets O ∈ ρL are called
open sets, and the sets Ob := b∗ ∈ {a∗ | a ∈ ExprL} are called basic open sets.
The tupel (PTh(L), ρL) is called the space of pseudo-complete theories in L. We
say that {a∗ | a ∈ ExprL} is the basis of ρL.

The last definition recalls some topological concepts. In fact, in the follow-
ing results we show in which way the properties of a logic having conjunction or
negation or beeing finitary are reflected in suitable topological spaces. We shall
use these observations to define a notion of a logic-homomorphism between ab-
stract logics by means of functions that recall continuous mappings as known from
topology.

Proposition 2.5. Let L be an abstract logic.
L has conjunction if and only if σ1

L is a topology on IntL with basis Mod(L) if
and only if σ2

L is a topology on (IntL�=L) with basis (Mod(L)�=L).
The following conditions are equivalent:

(i) L is a logic with conjunction and negation.

6Notice that A ∈ ModL(a) if and only if ThL(A) ∈ a∗L .
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(ii) (IntL, σ1
L) is a topological space with basis Mod(L) of clopen sets.

(iii) ((IntL�=L), σ2
L) is a topological space with basis (Mod(L)�=L) of clopen

sets. This topological space is Hausdorff.

Furthermore, the following holds: L is a boolean logic if and only if (IntL, σ1
L) is a

compact, topological space with a basis of clopen sets if and only if ((IntL�=L), σ2
L)

is a boolean space (i.e. a topological space, which is compact, Hausdorff and has a
basis of clopen sets).

Proof. First, it is clear that IntL =
⋃

Mod(L). Furthermore, if L has conjunction,
then for any natural number n and any sequence of expressions a0, a1, ..., an holds

ModL(c) =
⋂

i≤n ModL(ai), for any c ∈ conjunct(a0, ..., an).
Whence, Mod(L) is closed under finite intersections. These two conditions are suf-
ficient for Mod(L) beeing a basis of the topology σ1

L on IntL.
Now suppose that Mod(L) is a basis of the topology σ1

L on IntL. Then for any pair
of expressions a, b there exists an expression c such that ModL(a) ∩ ModL(b) =
ModL(c), since the intersection of two open sets is again open. It follows that L
has conjunction. If we factorize IntL and ModL(L) by the equivalence relation
=L, then we obtain the second equivalence by the same argumentation.
Now suppose that (i) holds. We show (iii): By the first part of the Proposition we
know that ((IntL�=L), σ2

L) is a topological space. We must show that it has a ba-
sis of clopen sets and is Hausdorff. Since L has negation, every open basic set in σ2

L
is also closed: We have (ModL(a)�=L) = (IntL�=L) � (ModL(b)�=L), for every
expression a and every b ∈ neg(a). Whence, the basic sets are clopen. The topolog-
ical space ((IntL�=L), σ2

L) is also Hausdorff: Suppose that A, A′ ∈ IntL are not
L-equivalent interpretations, that is, the equivalence classes [A]L and [A′]L are dif-
ferent in IntL modulo =L. Then we may assume that there exists some expression
a such that A �L a and A′

�L a. Since L has negation, for any b ∈ neg(a) holds
A′ � b. But this implies that [A]L ∈ (ModL(a)�=L), [A′]L ∈ (ModL(b)�=L),
and (ModL(a)�=L)∩ (ModL(b)�=L) = ∅. Hence, the space is Hausdorff and (iii)
holds.
If (iii) holds, then it is easy to see that (IntL, σ1

L) is a topological space with basis
Mod(L) of clopen sets. Whence, (ii) holds.
Now suppose that (ii) is true. From the first part of the Proposition we know that
L has conjunction. Since the topological space has a basis of clopen sets, for every
expression a there is another expression b such that ModL(a) = IntL � ModL(b).
It follows that b ∈ neg(a) and L has negation. Hence (i) holds.
Finally, let us show the last part of the Proposition. So suppose that L is a boolean
(compact) logic, that is, finitary, with negation and conjunction. By the first part
of the Proposition we know that (IntL, σ1

L) and ((IntL�=L), σ2
L) are topological

spaces with basis of clopen sets and that the last one is Hausdorff. So it is sufficient
to show compactness. In order to show that the topological space (IntL, σ1

L) is com-
pact, we assume that X := IntL =

⋃
i∈I Ui for some system of open sets Ui ∈ σ1

L,
i ∈ I, where every Ui =

⋃
a∈Ai

ModL(a) for some Ai ⊆ ExprL. Put A :=
⋃

i∈I Ai.
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We get ∅ = X �
⋃

i∈I Ui = X �
⋃

a∈A ModL(a) =
⋂

a∈A(X � ModL(a)) =⋂{ModL(b) | b ∈ neg(a), a ∈ A} = ModL({b | b ∈ neg(a), a ∈ A}). In other words,
the set B := {b | b ∈ neg(a), a ∈ A} is not satisfiable. Since L is finitary, there is
some finite subset Bf ⊆ B such that Bf is not satisfiable. It follows that Bf = {b |
b ∈ neg(a), a ∈ Af} for some finite Af ⊆ A. (Notice that ModL(b) = ModL(b′)
for any b, b′ ∈ neg(a), a ∈ A.) Hence,

⋂{ModL(b) | b ∈ neg(a), a ∈ Af} = ∅. It
follows that X = X �

⋂{ModL(b) | b ∈ neg(a), a ∈ Af} =
⋃{X � ModL(b) | b ∈

neg(a), a ∈ Af} =
⋃{ModL(a) | a ∈ Af}. Whence, there is also a finite subset

If ⊆ I such that X =
⋃

i∈If
Ui. This shows that (IntL, σ1

L) is compact. Finally, if
we factorize IntL and ModL(a) (for any a ∈ ExprL) by =L, then the compactness
of ((IntL�=L), σ2

L) follows from the compactness of (IntL, σ1
L).

Now suppose that ((IntL�=L), σ2
L) is a boolean space (a topological space with

a basis of clopen sets, compact and Hausdorff). We have already proved that
L is a logic with negation and conjunction. We show that L is a finitary logic:
Suppose that A ⊆ ExprL is any set of expressions, which is not satisfiable.
It is sufficient to show that there exists a finite subset of A that is not satis-
fiable. Since A is not satisfiable, ModL(A) =

⋂
a∈A ModL(a) = ∅. Then we

get IntL = IntL �
⋂

a∈A ModL(a) =
⋃

a∈A(IntL � ModL(a)) =
⋃{ModL(b) |

b ∈ neg(a), a ∈ A}. The last term is an union of open sets that covers IntL.
Since the topology σ2

L is compact, σ1
L is also compact and there exists a fi-

nite Af ⊆ A such that IntL =
⋃{ModL(b) | b ∈ neg(a), a ∈ Af}. Hence,

∅ = IntL �
⋃{ModL(b) | b ∈ neg(a), a ∈ Af} =

⋂
(IntL � {ModL(b) | b ∈

neg(a), a ∈ Af}) =
⋂

a∈Af
ModL(a) = ModL(Af ). That is, the finite subset

Af ⊆ A is not satisfiable. Whence, L is finitary and therefore also compact. �

Proposition 2.6. Let L be an abstract logic. Then the following holds:
(i) The function h : (IntL�=L) → PTh(L) defined by h([A]L) =: ThL(A) is

a bijection from the class of interpretations factorized by L-equivalence onto
the set of pseudo-complete theories. This function is also a bijection from
(Mod(L)�=L) onto {a∗L | a ∈ ExprL} and therefore it is also a bijection
from σ2

L onto ρL.
(ii) L has conjunction if and only if {a∗L | a ∈ ExprL} forms a basis of the

topology ρL on PTh(L). If L has conjunction, then the topological spaces
((IntL�=L), σ2

L) and (PTh(L), ρL) are homeomorphic.

Proof. (i): It is easy to see that h is well-defined, injective and surjective.
h is also a bijection from (Mod(L)�=L) onto {a∗ | a ∈ ExprL}:
For a ∈ ExprL, we have

h(ModL(a)�=L) = {h([A]L) | [A]L ∈ (Mod(a)�=L)}
= {ThL(A) | [A]L ∈ (ModL(a)�=L)}
= {ThL(A) | A ∈ ModL(a)}
= {T ∈ PTh(L) | T ∈ a∗L}
= a∗L .
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It is clear that h is surjective. Suppose that (ModL(a)�=L) �= (ModL(b)�=L).
Then we may assume that there is some [A]L ∈ (ModL(a)�=L)�(ModL(b)�=L).
Hence, A is a model of a, but not a model of b. This is equivalent to the condition
that a ∈ ThL(A) and b /∈ ThL(A). Whence, ThL(A) ∈ a∗

� b∗. It follows that h
is also injective.
Finally, it is easy to see that h(

⋃
τ ) =

⋃
(h(τ )), for any τ ⊆ (Mod(L)�=L). Since

every element of σ2
L is of the form

⋃
τ and every element of ρL is of the form⋃

h(τ ), (h is a bijection from (Mod(L)�=L) onto {a∗ | a ∈ ExprL}), it follows
that h is a bijection from σ2

L onto ρL.
(ii): Suppose that L has conjunction. It is clear that PTh(L) =

⋃{a∗ | a ∈
ExprL}. Furthermore, since L has conjunction, for any finite sequence a0, ..., an

of expressions and for any expression c ∈ conjunct(a0, ..., an) holds
⋂

i≤n a∗
i = c∗:

Suppose that T ∈ c∗. Then c ∈ T . T = ThL(A) for some model A. Since A is
a model of c, it is a model of ai, for every i ≤ n. Whence, ai ∈ T = ThL(A),
for all i ≤ n. Whence, T ∈ ⋂

i≤n a∗
i . The other direction is proved by a similar

argumentation. Hence, {a∗ | a ∈ ExprL} is closed under finite intersections.
It follows that {a∗ | a ∈ ExprL} is the basis of the topology ρL on PTh(L).
Now suppose that ρL is a topology with basis {a∗ | a ∈ ExprL}. Then the a∗

are open sets and therefore closed under finite intersection. Hence, for any pair
of expressions a, b there exists an expression c such that a∗ ∩ b∗ = c∗. Then any
interpretation A is a model of a and a model of b if and only if a and b are contained
in the theory of A if and only if ThL(A) ∈ a∗∩b∗ = c∗ if and only if c ∈ ThL(A) if
and only if A is a model of c. Whence, L has conjunction and c ∈ conjunct(a, b).
Finally, if L has conjunction, then (Mod(L)�=L) forms a basis of the topology σ2

L
on (IntL�=L), by Proposition 2.5. Since h is a bijection from this basis onto the
basis of the topology ρL, it is an homeomorphism between the respective topologies
σ2
L and ρL. �

The preceding Proposition says that the space of pseudo-complete theories is
a topological space with basis {a∗ | a ∈ ExprL} if and only if L has conjunction if
and only if the space of pseudo-complete theories and the space of models modulo
L-equivalence are homeomorphic topological spaces.

For our next definition we are again motivated by analogous concepts from
topology. We explain what we mean - in our context - by continuous and open
functions between abstract logics (under special conditions our notion of continu-
ous and open functions in fact coincides with the concept of continuous and open
mappings in the true topological sense).

Definition 2.7. Let L = (ExprL, IntL, �L) and L′ = (ExprL′ , IntL′ , �L′) be logics.
(i) Let f : IntL → IntL′ and g : ExprL → ExprL′ be functions.

f is continuous, if for every open set O′ ∈ ρL′ , f−1(O′) is open.7

7The functions f , g and their inverses f−1, g−1 extend in an obvious way to functions defined on
sets. For instance, for any set A′ of L′-interpretations, f−1(A′) is defined as the set {A | f(A) ∈
A}, and in an analogous way, g−1(B′) = {b | g(b) ∈ B′}, for any set B′ of L′-expressions. (Notice
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g is continuous, if for every open O′ ∈ σL′ , g−1(O′) is open.8

f is an open function, if f maps every open set O ∈ ρL to an open f(O) ∈ ρL.
g is an open function, if g maps every open O ∈ σL to an open g(O) ∈ σL′ .9

We say that f is L-injective, if from A �=L B follows that f(A) �=L′ f(B).
g is called L-injective, if from a �=L b follows that g(a) �=L′ g(b). f is L-
surjective, if for any [A′]L′ ∈ (IntL′�=L′ ) there is some A ∈ IntL such that
f(A) ∈ [A′]L′ . g is L-surjective, if for any [a′]L′ ∈ (ExprL′�=L′ ) there is
some expression a ∈ ExprL such that g(a) ∈ [a′]L′ .
The function f (the function g) is L-bijective, if it is L-injective and L′-
surjective, respectively.
f is regular, if for all A,B ∈ IntL holds:

A =L B =⇒ f(A) =L′ f(B).

g is regular, if for all a, b ∈ ExprL holds:

a =L b =⇒ g(a) =L′ g(b).

(ii) A logic-homomorphism from L to L′ is a pair (f, g) of continuous functions
f : IntL → IntL′ and g : ExprL → ExprL′ . More precisely, the pair (f, g) is
a logic-homomorphism, if for every a′ ∈ ExprL′ there exists an Aa′ ⊆ ExprL
such that the following holds:

• f−1(ModL′(a′)) =
⋃{(ModL(a)) | a ∈ Aa′} and

• g−1(a′∗L′ ) =
⋃{a∗L | a ∈ Aa′}.

We write (f, g) : L → L′.
We say that a logic-homomorphism (f, g) is injective (surjective, bijec-

tive), if both f and g are injective (surjective, bijective) functions, respec-
tively.
A logic-homomorphism (f, g) : L → L′ is called trivial, if for all a′ ∈ ExprL′

the following holds:
• Aa′ = {a | g(a) = a′}, if a′ ∈ im(g),
• Aa′ = ExprL, if a′ ∈ ExprL′ � im(g).10

A logic-homomorphism (f, g) : L → L′ is called strong, if for all a′ ∈ ExprL′ ,
Aa′ = {a | g(a)∗L′ ⊆ a′∗L′ }, i.e., the following holds:

• f−1(ModL′(a′)) =
⋃{ModL(a) | g(a)∗L′ ⊆ a′∗L′ } and

that this definition implies that f−1({A′}) = f−1(A′) and g−1({b′}) = g−1(b′).) For a family
X of sets of L′-expressions (for ex., a family of theories a′∗L′ , for some a′ ∈ ExprL′ ), g−1(X ) is
defined as the set {g−1(T ′) | T ′ ∈ X}, i.e it is a family of sets.
8Notice that g is a function from ExprL to ExprL′ and in general does not extend to a func-
tion from PTh(L) to PTh(L′). So in the usual topological sense, g can not be a continuous
function between the spaces (PTh(L), ρL) and (PTh(L′), ρL′). However, our definition is useful
in this context and we shall see that under some conditions g can be extended to a function
G : PTh(L) → PTh(L′), which turns out to be a true continuous function between these spaces,
if the logics have conjunction (see Lemma 2.9 and 2.10).
9Clearly, in all these cases it is sufficient to require that O, O′ are basic open sets.
10im(g) is the image of the function g.
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• g−1(a′∗L′ ) =
⋃{a∗L | g(a)∗L′ ⊆ a′∗L′ }. 11

If the function g satisfies the defining condition of a (strong) logic-
homomorphism, then we say that g has the (strong) homomorphism prop-
erty. In the same way, we say that f has the (strong) homomorphism prop-
erty, if the function f satisfies the defining equation of a (strong) logic-
homomorphism. By short, we write SHP (HP) for (strong) homomorphism
property, respectively.

(iii) A logic-isomorphism from L to L′ is a pair (f, g) of bijective functions f :
IntL → IntL′ and g : ExprL → ExprL′ such that (f, g) and (f−1, g−1) are
logic-homomorphisms.
We say that L and L′ are isomorphic, written L 
 L′, if there exists some
logic-isomorphism from L to L′.

Remark 2.8. If the logics L and L′ have conjunction and are isomorphic, then from
our preceding results follows that the spaces ((IntL�=L), σ2

L), ((IntL′�=L′ ), σ2
L′),

(PTh(L), ρL), (PTh(L′), ρL′) are homeomorphic topological spaces.

Lemma 2.9. Suppose that (f, g) is a logic-homomorphism from L to L′. Then the
following holds:

(i) {g−1(T ′) | T ′ ∈ PTh(L′)} ⊆ PTh(L). For any satisfiable set A′ ⊆ ExprL′ ,
the set g−1(A′) is satisfiable.

(ii) Suppose that for a′ ∈ ExprL′, there is some a ∈ ExprL with g(a) = a′. Then
the following holds:

g−1(a′∗L′ ) ⊆
⋃

{b∗L | g(b) = a′} ⊆
⋃

{b∗L | g(b) =L′ a′}
⊆

⋃
{b∗L | g(b)∗L′ ⊆ a′∗L′ }.

f−1(ModL′(a′)) ⊆
⋃

{ModL(b) | g(b) = a′} ⊆
⋃

{ModL(b) | g(b) =L′ a′}
⊆

⋃
{ModL(b) | g(b)∗L′ ⊆ a′∗L′ }.

(iii) f is regular.
(iv) If g is L-injective, then the following equivalent conditions hold:

1. For all L-interpretations A and all L-expressions a, if f(A) �L′ g(a), then
A �L a.
2. For all L-interpretations A, g−1(ThL′(f(A))) ⊆ ThL(A).
3. For all L-expressions a, f−1(ModL′(g(a))) ⊆ ModL(a).

(v) If L has negation and g is L-injective, then the following equivalent conditions
hold:
1. For all L-interpretations A and all L-expressions a, f(A) �L′ g(a) if and
only if A �L a.
2. For all L-interpretations A, g−1(ThL′(f(A))) = ThL(A).
3. For all L-expressions a, f−1(ModL′(g(a))) = ModL(a).
Furthermore, f is L-injective and {g−1(T ′) | T ′ ∈ PTh(L′)} = PTh(L).

11Notice that g(a)∗L′ ⊆ a′∗L′ ⇐⇒ ModL′(g(a)) ⊆ ModL′(a′) ⇐⇒ g(a) �L′ a′, since for any
interpretation A and any expression a holds: A ∈ Mod(a) if and only if Th(A) ∈ a∗.
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(vi) For any A ⊆ ExprL and any a ∈ ExprL the following holds:

A �L a =⇒ g(A) �L′ g(a).

(vii) g is regular.
(viii) If {g−1(T ′) | T ′ ∈ PTh(L′)} = PTh(L), then g is L -injective.
(ix) Suppose that {g−1(T ′) | T ′ ∈ PTh(L′)} = PTh(L).

There exists an injective function G : PTh(L) → PTh(L′) such that

G−1(T ′) = g−1(T ′)

for all T ′ ∈ PTh(L′). Clearly, G−1(a′∗L′ ) = g−1(a′∗L′ ), for all a′ ∈ ExprL′ .
Hence, if L,L′ have conjunction, then G is a continuous mapping from the
topological space (PTh(L), ρL) to the topological space (PTh(L′), ρL′).
If L has negation, then we may define G by G(ThL(A)) := ThL′(f(A)).

Proof. (i): Let T ′ ∈ PTh(L′). Then for any a′ ∈ T ′, T ′ ∈ a′∗. Hence, g−1(T ′) ∈
g−1(a′∗) =

⋃{a∗ | a ∈ Aa′}. Then there is some a ∈ Aa′ , such that g−1(T ′) ∈ a∗.
Whence, g−1(T ′) must be a theory in PTh(L).
If A′ ⊆ ExprL′ is a satisfiable set, then it must be contained in some pseudo-
complete theory T ′. From the first part follows that g−1(A′) is contained in a
pseudo-complete theory, whence it is satisfiable.
(ii): By (i) we have:

g−1(a′∗) = {g−1(T ′) | a′ ∈ T ′ ∈ PTh(L′)}
⊆ {T ∈ PTh(L) | g−1(a′) ⊆ T}
⊆ {T | ∃b ∈ g−1(a′) ∩ T} ⊆

⋃
{b∗ | g(b) = a′}

⊆
⋃

{b∗ | g(b) =L′ a′} =
⋃

{b∗ | g(b)∗ = a′∗}
⊆

⋃
{b∗ | g(b)∗ ⊆ a′∗}

The assertion regarding f−1 follows from the following fact: A ∈ Mod(b) if and
only if Th(A) ∈ b∗.
(iii): Suppose that f(A) �=L′ f(B). We may assume that there is some a′ such
that f(A) �L′ a′ and f(B) �L′ a′. Whence, A ∈ f−1(ModL′(a′)) and B /∈
f−1(ModL′(a′)). Since f−1(ModL′(a′)) =

⋃{ModL(a) | a ∈ Aa′}, there is some
a ∈ Aa′ such that A �L a and B �L a, whence A �=L B.
(iv): Let g be L-injective. From f(A) ∈ ModL′(g(a)) follows

A ∈ f−1(ModL′(g(a))) ⊆
⋃

{ModL(b) | g(b) = g(a)} = ModL(a)

by (ii) and L-injectivity of g. Whence, 1. holds. Now it is easy to see that 1. and
2., and 1. and 3. are equivalent statements.
(v): Suppose that L has negation and g is L-injective. First, we show point 2. By (i),
g−1(ThL′(f(A))) is a pseudo-complete theory in L, say T . By (iv), T ⊆ ThL(A).
Then A �L T . Since L has negation, T is a complete theory and T = ThL(A)
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(see Lemma 2.2.). Whence 2. holds. 2. implies in particular that g(ThL(A)) ⊆
ThL′(f(A)). Now it is easy to see that 1. and 2. are equivalent and that 1. and 3.
are equivalent.
In order to show that f is L-injective, suppose that f(A) =L′ f(B). Then follows
that ThL′(f(A)) = ThL′(f(B)) and, by 2.,

ThL(A) = g−1(ThL′(f(A))) = g−1(ThL′(f(B))) = ThL(B).

Whence, A =L B, and f is L-injective.
The last assertion follows from (i) and item 2. of (v).
(vi): First, we observe that for any logic L and any A ⊆ ExprL, a ∈ ExprL
the following holds: A �L a if and only if ModL(A) ⊆ ModL({a}) if and only if
a ∈ ⋂{T | A ⊆ T ∈ PTh(L)}.
If g(A) is not satisfiable, then clearly ModL′(g(A)) = ∅ ⊆ ModL′(g(a)) and
therefore g(A) �L′ g(a), by definition. Now suppose that A �L a and g(A) is
satisfiable. Let T ′ be any pseudo-complete theory in PTh(L′) such that g(A) ⊆ T ′.
Then A ⊆ g−1(g(A)) ⊆ g−1(T ′) = T for some T ∈ PTh(L), by (i). From A �L a
and the preceding observation follows that a ∈ T = g−1(T ′), whence g(a) ∈ T ′.
Since T ′ was an arbitrary pseudo-complete theory, it follows that g(a) ∈ ⋂{T ′ |
g(A) ⊆ T ′ ∈ PTh(L′)}.
(vii): a =L b is equivalent to the condition a �L b and b �L a. Now the assertion
follows immediately from (vi).
(viii): Suppose that {g−1(T ′) | T ′ ∈ PTh(L′)} = PTh(L) and let g(a) =L g(b).
It is enough to show for any T ∈ PTh(L): a ∈ T ⇐⇒ b ∈ T . Then follows
a =L b and g is L-injective. So assume a ∈ T . By hypothesis, there is some
T ′ ∈ PTh(L′) such that g−1(T ′) = T . Then g(a) ∈ T ′ and T ′ ∈ g(a)∗. It follows
that T ∈ g−1(g(a)∗) = g−1(g(b)∗). Whence, b ∈ T . On the other hand, if we
assume b ∈ T , then we may conclude in the same way that a ∈ T .
(ix): Suppose that {g−1(T ′) | T ′ ∈ PTh(L′)} = PTh(L). Then for any T ∈
PTh(L) there is some T ′ ∈ PTh(L′) such that g−1(T ′) = T . By the axiom of
choice, there exists a function G that assigns to any T ∈ PTh(L) such a T ′ ∈
PTh(L′). It is easy to see that G is injective: If T1 �= T2, then we may assume that
there is some a ∈ T1 � T2. Then g(a) ∈ G(T1) � G(T2), whence G(T1) �= G(T2).
If L,L′ have conjunction, then (PTh(L), ρL) and (PTh(L′), ρL′) are topological
spaces and G is a continuous mapping, since G−1(a′∗L′ ) = g−1(a′∗L′ ) holds, for all
a′ ∈ ExprL′ .
The last assertion follows from (viii) and (v). �

Lemma 2.10. Suppose that (f, g) is a strong logic-homomorphism from L to L′.
Let A be any L-interpretation and let a be any L-expression. Then the following
holds:

(i) g is L-injective.
(ii) A �L a if and only if f(A) �L′ g(a).
(iii) f is L-injective.
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(iv) g(ThL(A)) ⊆ ThL′(f(A)) and ThL(A) = g−1(ThL′(f(A))). If g is surjective,
then g(ThL(A)) = ThL′(f(A)).

(v) f(ModL(a)) ⊆ ModL′(g(a)) and ModL(a) = f−1(ModL′(g(a))). If f is sur-
jective, then f(ModL(a)) = ModL′(g(a)) (whence, f is an open mapping).

(vi) If f and g are surjective, then
• g(a∗L) = g(a)∗L′ , whence g is an open mapping
• f([A]L) = [f(A)]L′

• g([a]L) = [g(a)]L′

(vii) g−1(g(a)∗L′ ) = a∗L .
(viii) {g−1(T ′) | T ′ ∈ PTh(L′)} = PTh(L).
(ix) A �L a ⇔ g(A) �L′ g(a), for all A ⊆ ExprL and all a ∈ ExprL.
(x) • For any T ∈ PTh(L) there exists some T ′ ∈ PTh(L′) such that g(T ) ⊆

T ′.12 For any T ′ ∈ PTh(L′) there exists some T ∈ PTh(L) such that
g(T ) ⊆ T ′.

• If T ′
1, T

′
2 ∈ PTh(L′) and g−1(T ′

1) = g−1(T ′
2), then T ′

1 = T ′
2.

• Suppose that L has negation. For any T ∈ PTh(L) there exists exactly
one T ′ ∈ PTh(L′) such that g(T ) ⊆ T ′. For any T ′ ∈ PTh(L′) there
exists exactly one T ∈ PTh(L) such that g(T ) ⊆ T ′. Hence, the mapping
defined by g(T ) ⊆ T ′ describes a bijection from PTh(L) onto PTh(L′).

(xi) f is L′-surjective.
(xii) If g is surjective, then PTh(L′) = {g(T ) | T ∈ PTh(L)}.
(xiii) • There exists exactly one bijective function G : PTh(L) → PTh(L′) such

that
G−1(T ′) = g−1(T ′)

for all T ′ ∈ PTh(L′). Furthermore, G satisfies the equations

G(a∗L) = g(a)∗L′ ,

G−1(a′∗L′ ) = g−1(a′∗L′ )

for all a ∈ ExprL and for all a′ ∈ ExprL′. In particular, if the abstract
logics L,L′ have conjunction, then G is an homeomorphism from the
topological space (PTh(L), ρL) onto the topological space (PTh(L′), ρL′).

• Suppose that L′ has negation.
There exists exactly one bijective function G : PTh(L) → PTh(L′) such
that

G−1(a′∗L′ ) = g−1(a′∗L′ )

for all a′ ∈ ExprL′ .

Proof. (i): Suppose that g(a) =L′ g(b). This is equivalent to g(a)∗L′ = g(b)∗L′ . We
have:

12This assertion is immediately clear by (viii) or by (iv). However, sometimes it is interesting to
know that a statement is independent of f and follows only from SHP of g. So we shall give an
alternative proof, using only SHP of g.
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g−1(g(a)∗L′ ) = {g−1(T ′) | g(a) ∈ T ′ ∈ PTh(L′)}
⊆ {T | g−1(g(a)) ⊆ T ∈ PTh(L)}, by Lemma 2.9.(i)
⊆ {T | a ∈ T ∈ PTh(L)}
= a∗L ⊆ ⋃{c∗L | g(c)∗L′ ⊆ g(a)∗L′}
= g−1(g(a)∗L′ ).
Whence, a∗L = g−1(g(a)∗L′ ) = g−1(g(b)∗L′ ) = b∗L . It follows that a =L b.
(ii): Since a strong logic-homomorphism is a logic-homomorphism and g is L-
injective by (i), the direction from right to left we have already shown in the
preceding Lemma.
Suppose that A �L a. If f(A) /∈ ModL′(g(a)), then A /∈ f−1(ModL′(g(a))) =⋃{ModL(b) | g(b)∗ ⊆ g(a)∗}. It follows that A /∈ ModL(a), a contradiction to the
hypothesis. Hence, f(A) �L′ g(a).
(iii): Suppose that A �=L B. Then ThL(A) �= ThL(B). We may assume that there
is an expression a ∈ ThL(A) � ThL(B). By (ii), f(A) �L′ g(a) and f(B) �L′ g(a).
Whence, f(A) �=L′ f(B).
(iv): Put T = ThL(A). g(T ) ⊆ ThL′(f(A)) follows from the left-to-right-direction
of (ii). Then T ⊆ g−1(g(T )) ⊆ g−1(ThL′(f(A))). On the other hand, since g
is L-injective by (i), Lemma 2.9(iv) says that g−1(ThL′(f(A))) ⊆ T . Whence,
T = g−1(ThL′(f(A))).
Now suppose that g is surjective and let a′ ∈ ThL′(f(A)). Then there exists some
a ∈ ExprL such that g(a) = a′, whence, f(A) �L′ g(a). By the rigth-to-left-
direction of (ii), a ∈ ThL(A). Hence, g(a) = a′ ∈ g(ThL(A)). By what we have
already shown, it follows that g(ThL(A)) = ThL′(f(A)).
(v) follows in an analogous way as (iv).
(vi): Suppose that f and g are surjective. Then g(a∗L) = {g(T ) | a ∈ T ∈ PTh(L)}
= {g(T ) | T = ThL(A),A ∈ ModL(a)}
= {ThL′(f(A)) | A ∈ ModL(a)}, by (iv)
= {ThL′(A′) | A′ ∈ f(ModL(a))}
= {ThL′(A′) | A′ ∈ ModL′(g(a))}, by (v)
= {T ′ ∈ PTh(L′) | g(a) ∈ T ′}
= g(a)∗L′ . This proves the first assertion.
Now suppose that B′ ∈ [f(A)]L′ . Since f is surjective, there is some L-intepretation
B, such that f(B) = B′. By (iii), f is L-injective, whence B =L A and therefore
B′ ∈ f([A]L). It follows that [f(A)]L′ ⊆ f([A]L). The other inclusion follows
from the fact that f is regular (Lemma 2.9.(iii)). The last assertion follows in an
analogous way using L-injectivity and regularity of g.
(vii): This we have already shown in the proof of (i).
(viii): The inclusion ”⊆” follows from Lemma 2.9.(i). Now let T = ThL(A) for
some A ∈ IntL. Then from (iv) follows the inclusion ”⊇”.
(ix): This follows from Lemma 2.9.(vi) and Lemma 2.10.(ii).
(x): Let T ∈ PTh(L). If a ∈ T , then T ∈ a∗L = g−1(g(a)∗L′ ), by (vii). Hence,
there exists some T ′ ∈ g(a)∗L such that g−1(T ′) = T and g(T ) ⊆ T ′.
The second statement of the first item is clear, since g−1(T ′) ∈ PTh(L), by Lemma
2.9.(i), and g(g−1(T ′)) ⊆ T ′.
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In order to prove the second item suppose that the hypothesis holds and let a′ ∈
T ′

1, that is , T ′
1 ∈ a′∗. Then T := g−1(T ′

1) ∈ g−1(a′∗) =
⋃{a∗ | g(a) �L′ a′},

whence T ∈ a∗ for some a with g(a) �L′ a′. Since a ∈ T , g(a) ∈ g(T ) ⊆ T ′
2. T ′

2

is deductively closed and it follows that a′ ∈ T ′
2. Whence, T ′

1 ⊆ T ′
2. The other

inclusion follows in the same way.
Now suppose that L has negation and for some T ∈ PTh(L) we have g(T ) ⊆
T ′

1 ∩ T ′
2. Since g is L-injective, g−1(g(T )) = T . It follows that T ⊆ g−1(T ′

1) and
T ⊆ g−1(T ′

2). Since L has negation, T , g−1(T ′
1) and g−1(T ′

2) are complete theories
in PTh(L) (see Lemma 2.2.). This implies g−1(T ′

1) = T = g−1(T ′
2). The second

item now says that T ′
1 = T ′

2.
Finally, let T ′ ∈ PTh(L′). As in the proof of the first item, it is easy to see
that T := g−1(T ′) ∈ PTh(L) and g(T ) ⊆ T ′. This shows the existence. Now let
T0 ∈ PTh(L) such that g(T0) ⊆ T ′. Since g is L-injective, T0 = g−1(g(T0)) ⊆
g−1(T ′) = T . Since L has negation, it follows that T0 = T .
(xi): Let A′ ∈ IntL′ . Then g−1(ThL′(A′)) = ThL(A) for some A ∈ IntL, by
Lemma 2.9.(i). On the other hand, by (iv) we get g−1(ThL′(f(A))) = ThL(A).
From the second item of (x) it follows that ThL′(A′) = ThL′(f(A)), whence
A′ =L′ f(A). This proves the assertion.
(xii): ”⊇” follows from (iv). Now let T ′ = ThL′(A′) ∈ PTh(L′). Since f is L′-
surjective, there is some A ∈ IntL such that f(A) =L A′. From (iv) follows that
g(ThL(A)) = ThL′(A′) = T ′.
(xiii): We may define G by G(ThL(A)) := ThL′(f(A)). By L-injectivity of f , the
function G is well-defined. G is injective, since f is L-injective, and G is surjective,
since f is L-surjective.
Now let T ′ ∈ PTh(L′). Then T ′ = ThL′(A′) for some A′ ∈ IntL′ . Since f is
L′-surjective, there is some A ∈ IntL such that f(A) =L′ A′. Then

G−1(ThL′(A′)) = G−1(ThL′(f(A))

= ThL(A)

= g−1(ThL′(f(A))) = g−1(ThL′(A′)).

Hence, G−1(T ′) = g−1(T ′). This shows the existence of G.
Now let us assume that G′ : PTh(L) → PTh(L′) is any bijective function such
that G′−1(T ′) = g−1(T ′) (= G−1(T ′)) for all T ′ ∈ PTh(L′). Then clearly G′ equals
G on all T ∈ PTh(L). Hence, there is exactly one such a function G.
In order to show the ”furthermore-clause”, let T ∈ PTh(L). Then T = ThL(A)
for some A ∈ IntL. By (ii) and by the definition of G we have: a ∈ T if and only
if g(a) ∈ G(T ). It follows that for any T ∈ PTh(L) holds: T ∈ a∗L if and only if
G(T ) ∈ g(a)∗L′ . Since G is surjective, it follows that G(a∗L) = g(a)∗L′ holds for
any a ∈ ExprL. Since G−1(T ′) = g−1(T ′) for any T ′ ∈ PTh(L′), it is also clear
that G−1(a′∗L′ ) = g−1(a′∗L′ ) for all a′ ∈ ExprL′ .
If L,L′ have conjunction, then (PTh(L), ρL) and (PTh(L′), ρL′) are topological
spaces, by Proposition 2.5. We have already proved that G is a bijection and that
G and G−1 are continuous functions. Whence, G is an homeomorphism between
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these topological spaces.
Now let us suppose that L′ has negation. In the first item we have already
proved the existence of a bijective function G : PTh(L) → PTh(L′) such that
G−1(T ′) = g−1(T ′) for all T ′ ∈ PTh(L′). It is clear that G also satisfies the
equation G−1(a′∗L′ ) = g−1(a′∗L′ ) for all a′ ∈ ExprL′ . Let G′ be another bi-
jective function from PTh(L) onto PTh(L′) satisfying G′−1(a′∗L′ ) = g−1(a′∗L′ )
for all a′ ∈ ExprL′ . If G′ �= G, then there is some T ′ ∈ PTh(L′) such that
G′−1(T ′) �= G−1(T ′) = g−1(T ′). (Hyp)
Claim 1: For any A′ ⊆ ExprL′ holds

g−1(
⋂

{a′∗ | a′ ∈ A′}) =
⋂

{g−1(a′∗) | a′ ∈ A′}.
Proof of Claim 1 : Suppose that T ∈ g−1(

⋂{a′∗ | a′ ∈ A′}). Then there is some
T ′ ∈ ⋂{a′∗ | a′ ∈ A′} such that T = g−1(T ′). Hence T ∈ ⋂{g−1(a′∗) | a′ ∈ A′}.
This shows the inlusion ”⊆”.
Now let T ∈ ⋂{g−1(a′∗) | a′ ∈ A′}. Then for any a′ ∈ A′ there is some T ′ ∈ a′∗ such
that T = g−1(T ′). By (x), all these T ′ are equal. Whence, there is some T ′ such that
T ′ ∈ ⋂{a′∗ | a′ ∈ A′} and g−1(T ′) = T . It follows that T ∈ g−1(

⋂{a′∗ | a′ ∈ A′}).
This shows the inclusion”⊇” and we have proved Claim 1.
Claim 2: For any A′ ⊆ ExprL′ holds

G′−1(
⋂

{a′∗ | a′ ∈ A′}) =
⋂

{g−1(a′∗) | a′ ∈ A′}.
Proof of Claim 2 : This proofs works in a similary way as the proof of Claim 1. For
the inclusion ”⊇” instead of (x) we argue using the fact that G′ is bijective.
Claim 3: {T ′} =

⋂{a′∗L′ | a′ ∈ T ′}.
Proof of Claim 3 : The inclusion ”⊆” follows immediately. Suppose that T ′′ ∈⋂{a′∗L′ | a′ ∈ T ′}. Then for any expression a′ ∈ T ′ it follows that a′ ∈ T ′′, whence
T ′ ⊆ T ′′. T ′ and T ′′ are complete theories of L′. Since L′ has negation, T ′ = T ′′.
This shows Claim 3.
Now we can prove the following:
g−1({T ′}) = g−1(

⋂{a′∗L′ | a′ ∈ T ′}) by Claim 3
=

⋂{g−1(a′∗L′ ) | a′ ∈ T ′} by Claim 1
=

⋂{G′−1(a′∗L′ ) | a′ ∈ T ′} by hypothesis
= G′−1(

⋂{a′∗L′ | a′ ∈ T ′}) by Claim 2
= G′−1({T ′}) by Claim 3.
Finally, g−1(T ′) = G′−1(T ′), a contradiction to our hypothesis (Hyp). Hence,
G′ = G and there exists exactly one such a function G. �
Proposition 2.11. Suppose that L and L′ are abstract logics and let f : IntL →
IntL′ and g : ExprL → ExprL′ be functions such that g is L-surjective. If for any
a ∈ ExprL, g−1(g(a)∗L′ ) = a∗L and f−1(ModL′(g(a))) = ModL(a), then (f, g) is
a strong logic homomorphism from L to L′.

Proof. Since g is L-surjective, for any b′ ∈ ExprL′ there is some a′ ∈ ExprL′ and
some a ∈ ExprL such that g(a) = a′ =L′ b′. Hence, g−1(b′∗) = g−1(g(a)∗)) = a∗

and f−1(ModL′(b′)) = f−1(ModL′(g(a))) = ModL(a), by hypothesis. Now it is
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sufficient to show that for any a ∈ ExprL, a∗ =
⋃{b∗ | g(b)∗ ⊆ g(a)∗} and

ModL(a) =
⋃{ModL(b) | g(b)∗ ⊆ g(a)∗}:

So suppose that a ∈ ExprL. Clearly, a∗ ⊆ ⋃{b∗ | g(b)∗ ⊆ g(a)∗}, since g(a)∗ ⊆
g(a)∗. For the other inclusion suppose that g(b)∗ ⊆ g(a)∗. By hypothesis, we have
g−1(g(b)∗) = b∗ ⊆ a∗ = g−1(g(a)∗). Hence,

⋃{b∗ | g(b)∗ ⊆ g(a)∗} ⊆ a∗. Whence,
a∗ =

⋃{b∗ | g(b)∗ ⊆ g(a)∗}. This is equivalent to ModL(a) =
⋃{ModL(b) |

g(b)∗ ⊆ g(a)∗}. Whence, (f, g) is a strong logic-homomorphism. �

Corollary 2.12. Let L and L′ be abstract logics. The logic-isomorphisms between
L and L′ are exactly the bijective strong logic-homomorphisms.

Proof. First, suppose that (f, g) is a strong logic-homomorphism such that f and
g are bijective functions. In order to show that (f, g) is a logic-isomorphism, it
is sufficient to show that (f−1, g−1) is a logic-homomorphism from L′ to L. But
this follows immediately from Lemma 2.10., points (v) and (vi), which say that
f(ModL(a)) = ModL′(g(a)) and g(a∗L) = g(a)∗L′ . Now suppose that (f, g) is a
logic-isomorphism. Since (f−1, g−1) is a logic-homomorphism, the proof of Lemma
2.10. shows that (f, g) satisfies (i)-(vi) of Lemma 2.10. (However, it is not obvious,
that it satisfies also (vii) of Lemma 2.10.) We show that g satisfies a∗ = g−1(g(a)∗):
We have
g−1(g(a)∗) =
= {g−1(T ′) | g(a) ∈ T ′ ∈ PTh(L′)}
= {T | a ∈ T ∈ PTh(L)}, where ”⊆” follows from Lemma 2.9.(i). For the inclusion
”⊇” we must show that for any T ∈ PTh(L) there exists some T ′ ∈ PTh(L′) such
that g(T ) ⊆ T ′ and g−1(T ′) = T . But this follows from Lemma 2.10.(iv). Finally,
the last term equals a∗. So we get g−1(g(a)∗) = a∗ and f−1(ModL′(g(a))) =
ModL(a) ((v) of Lemma 2.10.). Now from Proposition 2.11. follows that (f, g) is
a strong logic-homomorphism. �

Proposition 2.13. Suppose that L is a logic with negation and (f, g) is a logic-
homomorphism from L to some logic L′ such that g is surjective and L-injective.
Then (f, g) is a strong logic-homomorphism.

Proof. From Lemma 2.9.(v) follows, that g(ThL(A)) = ThL(f(A)). Let a′′ ∈
ExprL′ and suppose that g(a) = a′ =L′ a′′. Then we get:
g−1(a′′∗) = g−1(a′∗) = {g−1(T ′) | a′ ∈ T ′ ∈ PTh(L′)}
= {T | g−1(a′) ⊆ T ∈ PTh(L)} by Lemma 2.9.(v)
=

⋃{b∗ | g(b) = a′} by L-injectivity of g
= a∗, since all b with g(b) = a′ are L-equivalent.
By Lemma 2.9.(v), we get f−1(ModL′(a′′)) = f−1(ModL′(g(a))) = ModL(a). By
Proposition 2.11., (f, g) is a strong logic-homomorphism. �

Definition 2.14. Suppose that L is an abstract logic. Let ∼I be an equivalence
relation on IntL × IntL that refines =L and let ∼E be an equivalence relation
on ExprL ×ExprL that refines =L. Then we define the abstract factor logic of L
modulo ∼:= (∼I ,∼E) in the following way:
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• (IntL�∼I
) is the set of equivalence classes of IntL modulo ∼I , (ExprL�∼E

)
is the set of equivalence classes of ExprL modulo ∼E . The equivalence classes
of any interpretation A and any expression a are denoted by [A]∼I

and [a]∼E
,

respectively.
• The satisfaction relation �∼ of the abstract factor logic is defined as follows:

For any L-interpretation A and any L-expression a holds [A]∼I
�∼ [a]∼E

if
and only if A �L a.

• Finally, we denote the abstract factor logic by (L�∼) and put
(L�∼) := ((ExprL�∼E

), (IntL�∼I
), �∼).

Remark 2.15. (i) The satisfaction relation of the abstract factor logic is well-
defined:
Suppose that A �L a and A ∼I B and a ∼E b. By definition, these equivalence
relations refine L-equivalence. Hence, A =L B and a =L b. Then follows that
B �L b. Whence, [A]∼I

�∼ [a]∼E
if and only if [B]∼I

�∼ [b]∼E
.

(ii) Since the equivalence relation ∼E refines L-equivalence, for any theory T in
L and any a ∼E b holds: a ∈ T if and only if b ∈ T . Moreover, T = ThL(A) if
and only if T�∼E

= Th(L�∼)([A]∼I
) and a ∈ T if and only if [a]∼E

∈ T�∼E
.

Hence, the mapping a �→ [a]∼E
induces a mapping T �→ T�∼E

, which is a
bijection between the pseudo-complete theories in L and the pseudo-complete
theories in the factor logic.
For similar reasons holds: If A ∼I B and A ∈ ModL(a), then B ∈ ModL(a);
A ∈ ModL(a) if and only if [A]∼I

∈ Mod(L�∼)([a]∼E
).

The following result is an adaption of a well-known fact from universal algebra
(the Homomorphism Lemma):

Proposition 2.16. Suppose that L and L′ are abstract logics with negation. Let
(f, g) be a surjective and L-injective logic-homomorphism from L onto L′. Then
the equivalence relations Ker(f):={(A,B) | f(A) = f(B)} and Ker(g):={(a, b) |
g(a) = g(b)} refine L-equivalence. Put ∼:=(Ker(f),Ker(g)). Then the mapping
(f1, g1), where f1 : IntL → (IntL�Ker(f)) is defined by A �→ [A]Ker(f) and
g1 : ExprL → (ExprL�Ker(g)) is defined by a �→ [a]Ker(g), is a surjective strong
logic-homomorphism from L onto (L�∼) (called the canonical logic homomor-
phism). Furthermore, the abstract factor logic (L�∼) and the abstract logic L′ are
isomorphic.

Proof. Since (f, g) is L-injective, it is clear that Ker(f) and Ker(g) refine L-
equivalence.
By Remark 2.15., g1 is a bijection from PTh(L) onto PTh(L�∼) and it follows
that

g−1
1 ([a]∗Ker(g)) = {g1

−1(T�Ker(g)) | [a]Ker(g) ∈ (T�Ker(g))}
= {T | a ∈ T ∈ PTh(L)}
= a∗
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Furthermore, by the definitions it is clear that

f1
−1(Mod(L�∼)([a]Ker(g)) = ModL(a).

It follows that (f1, g1) is a surjective strong logic-homomorphism (Proposition
2.11.).
We define (f2, g2) with f2 : (IntL�Ker(f)) → IntL′ and g2 : (ExprL�Ker(g)) →
ExprL′ by: f2([A]Ker(f)) := f(A) and g2([a]Ker(g)) := g(a). Then f2, g2 are clearly
surjective, since f and g are surjective. By definition, they are also injective. Fur-
thermore, by definition, g = g2 ◦ g1 and f = f2 ◦ f1. By Proposition 2.13., (f, g) is
a strong logic-homomorphism.
Let a′ ∈ ExprL′ . Since g is surjective, there is some a ∈ ExprL with g(a) = a′.
By Lemma 2.10.(vii), the following holds:
g−1
2 (g(a)∗) = g1 ◦ g−1(g(a)∗) = g1(a∗) = [a]∗Ker(g), since, by Remark 2.15., g1 is a

bijective mapping between PTh(L) and PTh(L�∼).
Furthermore, f−1

2 (ModL′(g(a))) = f1 ◦ f−1(ModL′(g(a))) = f1(ModL(a)) =
Mod(L�∼)([a]Ker(g)), by Lemma 2.10.(v).
Now, by Proposition 2.11., (f2, g2) is a bijective strong logic-homomorphism. By
Corollary 2.12., (f2, g2) is a logic-isomorphism from (L�∼) to L′. �

We define further relationships between logics:

Definition 2.17. Suppose that L,L′ are abstract logics with ExprL ⊆ ExprL′ .

• L′ is called an extension of L, written L ≤ L′, if PTh(L) = {T ′ ∩ ExprL |
T ′ ∈ PTh(L′)}.

• L′ is a weak extension of L, written L ≤w L′, if PTh(L) ⊆ {T ′ ∩ ExprL |
T ′ ∈ PTh(L′)}.

• L′ is a definable extension of L, if L ≤ L′ and for every a′ ∈ ExprL′ there is
some a ∈ ExprL such that a′ =L′ a. We write L ≤def L′.

• L′ is called a ∞-definable (or an almost-definable) extension of L, if L ≤ L′

and for any a′ ∈ ExprL′ , there is some set A ⊆ ExprL such that a′ =L′ A.
We write L ≤∞ L′.

• If T ∈ PTh(L), T ′ ∈ PTh(L′) and T = T ′ ∩ ExprL, then T ′ is called an
extension of T . If L′ is a (weak) extension of L and every T ∈ PTh(L) has
exactly one extension in PTh(L′), then we say that L′ is a simple (weak)
extension of L and write L ≤simple L′ (L ≤simple,w L′), respectively.

A connection between logic-homomorphisms and extensions is given by the
following observation:

Proposition 2.18. Let L,L′ be logics with ExprL ⊆ ExprL′ and let i : ExprL →
ExprL′ be the identity a �→ a on ExprL. Then the following holds:

(i) If the logic L has negation and (f, i) : L → L′ is a logic-homomorphism, then
L ≤ L′.

(ii) If (f, i) : L → L′ is a strong logic-homomorphism, then L ≤simple L′.
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Proof. If the hypothesis of (i) holds, then for any A ∈ IntL, ThL′(f(A))∩ExprL =
i−1(ThL′(f(A))) = ThL(A), by Lemma 2.9.(v). Whence, PTh(L) ⊆ {T ′∩ExprL |
T ′ ∈ PTh(L′)}. The other inclusion follows from Lemma 2.9.(i), since i−1(T ′) =
T ′ ∩ ExprL for T ′ ∈ PTh(L′).
(ii) follows from Lemma 2.10., (viii) and (x). (Notice that i−1(T ′) = T ′ ∩ ExprL,
for any T ′ ∈ PTh(L′).) �
Definition 2.19. Suppose that L ≤w L′. Let A be an L-interpretation and let
A′ be an L′-interpretation. We say that A is an L-reduction of A′ and A′ is an
L′-expansion of A and write (A′ �L) =L A, if ThL(A) = ThL′(A′) ∩ ExprL.

Remark 2.20. Let L ≤w L′. Every L-interpretation A has an L′-expansion. If
L ≤ L′, then every L′-interpretation A′ has an L-reduction. In this case, there is
- up to L-equivalence - exactly one L-reduction of every A′ ∈ IntL′ .

Proof. This follows easily from the definitions. �
Definition 2.21. The abstract logic L is a sublogic of the abstract logic L′, if

• IntL ⊆ IntL′ ,
• ExprL = ExprL′ and
• �L=�L′� (IntL × ExprL). 13

We write L ⊆ L′.
If L ⊆ L′, then we call L′ a superlogic of L.

Lemma 2.22. (i) If L ⊆ L′, then L ≤w L′.
(ii) L ⊆ L′ ⇐⇒ ExprL = ExprL′ , IntL ⊆ IntL′ and for all a ∈ ExprL holds:

a∗L = a∗L′ ∩ PTh(L).

Proof. Both statements are clear by the definitions. �
Definition 2.23. Let L,L′ be abstract logics.

• Suppose that (f1, g1) and (f2, g2) are logic-homomorphisms from L to L′. We
say that (f1, g1) and (f2, g2) are equivalent and write (f1, g1) ≈ (f2, g2), if for
all L-interpretations A and all L-expressions a the following holds:

(i) f1(A) =L′ f2(A) and
(ii) g1(a) =L′ g2(a).

• We fix some function g : ExprL → ExprL′ and define a refinement ≈g⊆≈ by
(f1, g) ≈g (f2, g), if for all L-interpretations A holds:

f1(A) =L′ f2(A).

By short, we write f1 ≈g f2 instead of (f1, g) ≈g (f2, g).
• Let F : (IntL�=L) → (IntL′�=L′ ) be a function. We say that a function

f : IntL → IntL′ is of type F and write f : F , if f(A) ∈ F ([A]L) , for all
A ∈ IntL.14

13� denotes ”restricted to”.
14Notice that for any given function F : (IntL�=L ) → (IntL′�=L′ ) the axiom of choice

guarantees the existence of a function f : F .
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Lemma 2.24. Let L,L′ be abstract logics.
• Equivalence of logic-homomorphisms ≈ is an equivalence relation on the set of

all logic-homomorphisms from L to L′. For any g : ExprL → ExprL′ , ≈g is
an equivalence relation on the set of all logic-homomorphisms (f, g) : L → L′,
where g is fixed.

• For any pair of regular functions f1, f2 : IntL → IntL′ the following condi-
tions are equivalent:

(i) There is an injective function F : (IntL�=L) → (IntL′�=L′ ) such that
f1 : F and f2 : F hold.

(ii) For all L-interpretations A holds f1(A) =L′ f2(A), and f1, f2 are L-
injective.

(iii) For all L-interpretations A,B holds

A =L B ⇐⇒ f1(A) =L′ f2(B),

and f1, f2 are L-injective.

Proof. The assertions of the first point are clear.
Now suppose that L,L′ are logics and f1, f2 : IntL → IntL′ are regular functions.
(i)→(ii) is clear.
(ii)→(iii): Suppose that (ii) holds. Suppose A =L B. By hypothesis, f1(A) =L′

f2(A), and f2(A) =L′ f2(B), since f2 is regular. Hence, f1(A) =L′ f2(B).
Now suppose f1(A) =L′ f2(B). By hypothesis, f2(B) =L′ f1(B). Hence, f1(A) =L′

f1(B) and A =L B, since f1 is L-injective.
(iii)→(i): Suppose that (iii) holds. Then for all A,B: A =L B ⇐⇒ f1(A) =L′ f2(B).
Hence, f2(B) =L′ f1(B), since B =L B always holds. In particular, it follows for
all A,B: A =L B iff f1(A) =L′ f1(B), since f1 is L-injective.
Now we define F : (IntL�=L) → (IntL′�=L′ ) by F ([A]L) = [f1(A)]L′ . By the
previous consideration, F is well-defined. Now it is very easy to see that F is
injective and satisfies the condition (i). �

Definition 2.25. Suppose that L,L′ are abstract logics and g : ExprL → ExprL′

is a function.
• Suppose that a function F : (IntL�=L) → (IntL′�=L′ ) satisfies the con-

dition g−1(ThL′(F ([A]L))) = ThL(A), for all L-interpretations A. Then we
call F a big complement of g.

• A function f : IntL → IntL′ satisfying the condition g−1(ThL′(f(A))) =
ThL(A), for all L-interpretations A, is called a small complement of g.

Theorem 2.26. Suppose that L,L′ are abstract logics, g : ExprL → ExprL′ is a
function such that {g−1(T ′) | T ′ ∈ PTh(L′)} = PTh(L). Then the following holds:

(i) There exists a function F : (IntL�=L) → (IntL′�=L′ ) such that F is a big
complement of g. F is injective.

(ii) Let F be a big complement of g. Then every function f : IntL → IntL′ with
the property f : F is a regular function and a small complement of g.
Now let f : IntL → IntL′ be a regular function and a small complement of g.
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Then there exists a function F : (IntL�=L) → (IntL′�=L′ ), such that f : F
and F is a big complement of g.

Proof. (i): By hypothesis, {g−1(T ′) | T ′ ∈ PTh(L′)} = PTh(L). Hence, for any
[A]L ∈ (IntL�=L) there is some [A′]L′ ∈ (IntL′�=L′ ) such that g−1(ThL′(A′)) =
ThL(A). Notice that such an [A′]L′ is not necessary unique. However, the axiom
of choice guarantees the existence of a function F : (IntL�=L) → (IntL′�=L′ )
assigning to any [A]L an [A′]L′ such that g−1(ThL′(A′)) = ThL(A). This function
F is a big complement of g.
F is injective: If [A]L �= [B]L, then ThL(A) �= ThL(B). If F maps [A]L to [A′]L′

and [B]L to [B′]L, then

g−1(ThL′(A′)) = ThL(A) �= ThL(B) = g−1(ThL′(B′)).

Now it follows that ThL′(A′) �= ThL′(B′), whence [A′]L′ �= [B′]L′ and F is injec-
tive.
(ii): If F is a big complement of g and f : F , then f is clearly regular. f is also a
small complement of g, since ThL′(f(A)) = ThL′(F ([A]L)).
Now suppose that f is regular and a small complement of g. We define F :
(IntL�=L) → (IntL′�=L′ ) by F ([A]L) := [f(A)]L′ . This definition is well-defined,
since f is regular. Then f : F and it is easy to see that F is a big complement of
g, since ThL′(f(A)) = ThL′(F ([A]L)). �
Corollary 2.27. Suppose that L,L′ are logics with negation and g : ExprL →
ExprL′ is an L-injective function. If f : IntL → IntL′ is a function such that
(f, g) : L → L′ is a logic-homomorphism, then there exists a big complement F of
g such that f : F and the set

[f ]F≈g
:= {(f ′, g) | f ′ : F}

is exactly an equivalence class on the class of all logic-homomorphisms (., g) : L →
L′ modulo ≈g. Hence, there is a bijection [f ]F≈g

�→ F between these equivalence
classes and the set of all big complements F of g.

Proof. If (f, g) is a logic-homomorphism, then by Lemma 2.9.(iii),(v), f is regular,
a small complement of g and {g−1(T ′) | T ′ ∈ PTh(L′)} = PTh(L). By item (ii)
of the preceding Theorem, there is a big complement F of g with f : F .
Suppose that f ′ ∈ [f ]F≈g

. Then f ′(A) =L′ f(A) for any A ∈ IntL. It follows that
f ′−1(ModL′(a′)) = f−1(ModL′(a′)), for all a′ ∈ ExprL′ . Whence, (f ′, g) is a logic-
homomorphism and (f ′, g) ≈g (f, g). Hence, [f ]F≈g

= {(f ′, g) | f ′ : F} is a set of
≈g-equivalent logic-homomorphisms.
Now suppose that (f ′, g) is a logic-homomorphism and f ′ ≈g f . Since f : F , we
get f ′ : F and (f ′, g) ∈ [f ]F≈g

. This proves the assertion. �

Theorem 2.28. Suppose that L,L′ are abstract logics and g : ExprL → ExprL′ is
a function with SHP. Then the following holds:

(i) There exists exactly one big complement F : (IntL�=L) → (IntL′�=L′ ) of
g.
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(ii) For any function F : (IntL�=L) → (IntL′�=L′ ) the following two conditions
are equivalent:

• F is a big complement of g.
• F−1(ModL′(a′)�=L′ ) =

⋃{(ModL(a)�=L) | g(a)∗ ⊆ a′∗} holds, for all
L′-expressions a′.

(iii) Let F be a big complement of g. Then for every function f : IntL → IntL′

with f : F , (f, g) : L → L′ is a strong logic-homomorphism. On the other
hand, if (f, g) : L → L′ is a strong logic-homomorphism, then there exists a
function F , such that f : F and F is a big complement of g.

(iv) Any two strong logic-homomorphisms (f1, g) and (f2, g) from L to L′ are
≈g-equivalent.

(v) The big complement F : (IntL�=L) → (IntL′�=L′ ) of g is a bijection.

Proof. (i): The existence of a big complement of g follows from the preceding
Theorem. Now suppose that F ′ is another big complement of g. Then

g−1(ThL′(F ([A]L))) = ThL(A) = g−1(ThL′(F ′([A]L))),

for any A ∈ IntL. Then from Lemma 2.10.(x) follows that F and F ′ coincide on
[A]L, whence F = F ′ and there exists exactly one big complement of g.
(ii): First, suppose that F is the big compement of g, that is, g−1(ThL′(F ([A]L))) =
ThL(A)) holds for all interpretations A. Let [A]L ∈ F−1(ModL′(a′)�=L′ ). Then
there is some A′ ∈ IntL′ with F ([A]L) = [A′]L′ ∈ (ModL′(a′)�=L′ ). Since
ThL′(A′) ∈ a′∗, g−1(ThL′(A′)) = ThL(A) ∈ g−1(a′∗) =

⋃{a∗ | g(a)∗ ⊆ a′∗}.
It follows that [A]L ∈ ⋃{(ModL(a)�=L) | g(a)∗ ⊆ a′∗} and we have shown the
inclusion ”⊆”.
Now let

[A]L ∈
⋃

{(ModL(a)�=L)) | g(a)∗ ⊆ a′∗}
=

⋃
{(ModL(a)�=L) | ModL′(g(a)) ⊆ ModL′(a′)}

Then A �L a, for some a with the property that ModL′(g(a)) ⊆ ModL′(a′). Since
a ∈ ThL(A) = g−1(ThL′(F ([A]L)), it follows that g(a) ∈ ThL′(F ([A]L)), that is,
F ([A]L) ∈ (ModL′(g(a))�=L′ ). Since this set is contained in (ModL′(a′)�=L′ ), it
follows that [A]L ∈ F−1(ModL′(a′)�=L′ ). So we have also proved the inclusion
”⊇”.
Now suppose that F satisfies the equation

F−1(ModL′(a′)�=L′ ) =
⋃

{(ModL(a)�=L) | g(a)∗ ⊆ a′∗},
for all L′-expressions a′. Then it is easy too see that the tupel (F, g) satisfies most
of the properties of a logic-homomorphism proved in Lemma 2.9. and Lemma 2.10.
In particular, substituting f by F and factorizing sets of the form Mod(a) by L-
equivalence (L′-equivalence), one can show in a similar way as in Lemma 2.10.(iv)
(and Lemma 2.9.(iv)) that ThL(A) = g−1(ThL′(F ([A]L′))) holds for all A ∈ IntL.
Hence, F is a big complement of g.
(iii): We suppose that F is a big complement of g and f is a function such that



A Topological Approach to Universal Logic 59

f : F . By (ii), F satisfies F−1(ModL′(a′)�=L′ ) =
⋃{(ModL(a)�=L) | g(a)∗ ⊆

a′∗}. We show that this equation is still true, if we replace F by f . It is sufficient
to show F−1(ModL′(a′)�=L′ ) = f−1(ModL′(a′)�=L′ ) for any a′ ∈ ExprL′ . That
is, we show that for every a′ ∈ ExprL′ and every [A′]L′ ∈ (ModL′(a′)�=L′ ) holds
X := f−1([A′]L′) = F−1([A′]L′) =: [A]L, for some set X of L-interpretations and
some L-interpretation A. So suppose that [A′]L′ ∈ (ModL′(a′)�=L′ ). For every
B ∈ X, f(B) ∈ [A′]L′ . It follows that [A′]L′ = F ([B]L), for every B ∈ X, since
f : F . Then B ∈ F−1([A′]L), for every B ∈ X. Whence, X ⊆ F−1([A′]L′) = [A]L.
On the other hand, if B ∈ [A]L, then f(B) ∈ F ([B]L) = F ([A]L) = [A′]L′ . It
follows that B ∈ X, whence [A]L ⊆ X, and finally X = [A]L. We have shown, that
(f, g), for f : F , satisfies the definition of a strong logic-homomorphism.
The second part of the assertion follows from Lemma 2.10.(viii) and the preceding
Theorem.
(iv): If (f1, g) and (f2, g) are strong logic-homomorphisms, then by (iii) and (i) of
this Theorem there is exactly one function F such that f1 : F and f2 : F and F is
a big complement of g. Now the assertion follows in a similary way as in the proof
of the previous Corollary or from Lemma 2.24.
(v): F is injective, by Theorem 2.26.(i). Let f be a function such that f : F . By
(iii), (f, g) is a strong logic-homomorphism. By Lemma 2.10., f is L-surjective. It
follows that F is surjective. �

The following result is a direct consequence of the previous Theorem.

Corollary 2.29. Suppose that L,L′ are abstract logics and g : ExprL → ExprL′

is a function with SHP. Then there exists - up to ≈g-equivalence - exactly one
function f : IntL → IntL′ such that (f, g) is a strong logic-homomorphism.

The preceding Theorem yields an alternative defining condition for a strong
logic-homomorphism:

Corollary 2.30. Let L,L′ be abstract logics and suppose that g : ExprL → ExprL′

is a function with SHP. Let f : IntL → IntL′ be a regular function. Then the
following conditions are equivalent:

(i) (f, g) is a strong logic-homomorphism.
(ii) f is a small complement of g.
(iii) A �L a ⇐⇒ f(A) �L′ g(a), for all A ∈ IntL and for all a ∈ ExprL.
(iv) f−1(ModL′(g(a))) = ModL(a), for all a ∈ ExprL
(v) g−1(ThL′(f(A))) = ThL(A), for all L-interpretations A.

Proof. (i)→(ii)→(iii) is clear by the definitions and Lemma 2.10.(iv). The proof
of (iii)→(iv)→(v) is straightforeward. (v)→(ii) is the definition of a small comple-
ment. Finally, (ii)→(i) follows from the preceding two Theorems. �
Definition 2.31. Let L,L′ be abstract logics and suppose that g : ExprL → ExprL′

is a function such that {g−1(T ) | T ∈ PTh(L′)} = PTh(L).
Put F :=

⋃{F | F is a big complement of g} and G := F−1. We call G the inverse
complement of g.
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Notice that, by Theorem 2.26, the inverse complement G of g is not empty.

Theorem 2.32. Let L,L′ be abstract logics and suppose that g : ExprL → ExprL′

is a function such that {g−1(T ) | T ∈ PTh(L′)} = PTh(L).
The inverse complement G of g is a surjective function G : (IntL′�=L′ ) →
(IntL�=L). If g has SHP, then G is a bijection.

Proof. Clearly, G is a relation on (IntL′�=L′ )× (IntL�=L). By Theorem 2.26., F
and G are not empty. Whence, there exists a function F with F ⊆ F , and there-
fore F−1 ⊆ G. Let A′ ∈ IntL′ be any L′-interpretation. Then g−1(ThL′(A′)) =
ThL(A), for some L-interpretation A. Define F ′ as the function that maps [A]L
to [A′]L′ and every [B]L �= [A]L to F ([B]L). Since F is a big complement of g, F ′

is also a big complement of g, whence F ′ ⊆ F and F ′−1 ⊆ G. Since A′ was arbi-
trary, this shows that the domain of G is (IntL′�=L′ ). In order to show that G is
a function, we suppose that ([A′]L′ , [A]L) ∈ G and ([A′]L′ , [B]L) ∈ G. Then there
exist functions F1, F2 ⊆ F such that F1([A]L) = [A′]L′ and F2([B]L) = [A′]L′ .
Since F1 and F2 are big complements of g, ThL(A) = g−1(ThL′(A′)) = ThL(B).
Hence, [A]L = [B]L. This shows that G = F−1 is a function. G = F−1 is surjective,
since any [A]L ∈ (IntL�=L) is in the domain of every function F ⊆ F . Hence,
if [A]L ∈ (IntL�=L), then G([A′]L′) = [A]L for all [A′]L′ ∈ {F ([A]L) | F is big
complement of g}.
If g has SHP, then, by Theorem 2.28., there exists exactly one big complement F
of g, and F is bijective. Then G = F−1 is a bijection. �

Proposition 2.33. Let L,L′ be abstract logics and suppose that g : ExprL → ExprL′

is a function with SHP and let G be the inverse complement of g.

(i) For all expressions a′ ∈ ExprL′ the following holds:

G(ModL′(a′)�=L′ ) =
⋃

{ModL(a)�=L′ | g(a)∗L′ ⊆ a′∗L′}.
(ii) In particular, for all a ∈ ExprL the following holds:

G(ModL′(g(a))�=L′ ) =
⋃

{ModL(b)�=L′ | g(b)∗L′ ⊆ g(a)∗L′}
=

⋃
{ModL(b)�=L′ | ModL′(g(b)) ⊆ ModL′(g(a))}

= (ModL(a)�=L).

Proof. (i): If g has SHP, then there exists exactly one big complement F of g and

F−1(ModL′(a′)�=L′ ) =
⋃

{(ModL(a)�=L) | g(a)∗ ⊆ a′∗},
by Theorem 2.28. Since G = F−1, the assertion is clear.
The first and second equation in (ii) follow from (i). Let us prove the last equation.
Clearly,

(ModL(a)�=L) ⊆
⋃

{ModL(b)�=L′ | ModL′(g(b)) ⊆ ModL′(g(a))}.
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For the other direction suppose that

[A]L ∈
⋃

{ModL(b)�=L | ModL′(g(b)) ⊆ ModL′(g(a))}.
By definition of G,

[A]L ∈ F−1(ModL′(g(a))�=L′ )

where F is the big complement of g, see Theorem 2.28. Whence, F ([A]L) ∈
(ModL′(g(a))�=L′ ). This means that for any function f : F , f(A) ∈ ModL′(g(a)).
For all these funcions f , (f, g) are strong logic-homomorphisms, by Theorem
2.28. From Lemma 2.10.(ii) now follows that A ∈ ModL(a), whence [A]L ∈
(ModL(a)�=L). �
Corollary 2.34. Let L,L′ be abstract logics and suppose that g : ExprL → ExprL′

is a function such that {g−1(T ) | T ∈ PTh(L′)} = PTh(L). Let G be the inverse
complement of g. Then for all A′ ∈ IntL′ and for all a ∈ ExprL the following
holds:

A′ �L′ g(a) ⇐⇒ G([A′]L′) �L a.

Proof. Let A′ �L′ g(a). By Theorem 2.32., there is some big complement F of
g such that F ([A]L) = [A′]L′ , for some A ∈ IntL. From g(a) ∈ ThL′(A′) it
follows that a ∈ g−1(ThL′(F ([A]L))) = ThL(A) = ThL(G([A′]L)), since F is big
complement. We have shown that the implication from left to right holds.
Now suppose that G([A′]L′) �L a. Let G([A′]L′) = [A]L. Then there is some big
complement F such that F ([A]L) = [A′]L′ . We have a ∈ ThL(A). It follows that
g(a) ∈ g(ThL(A)) ⊆ ThL′(F ([A]L)) = ThL′(A′), since F is big complement. So
we have proved the implication from right to left. �

3. Two examples

Let us outline two simple examples of abstract logics and logic-homomorphisms.
The elaboration of further and more complicated examples we must postpone here
to later works.

Example.
Let Σ ⊆ Σ′ be first order signatures and let L,L′ be the following logics:

• ExprL is the set of first order formulas over Σ and ExprL′ is the set of first
order formulas over Σ′.

• IntL, IntL′ are the classes of all Σ-structures (Σ′-structures) together with
variable assignments, respectively.

• �L, �L′ are the respective satisfaction relations, defined in the usual way.
Then L ≤ L′. If L′ is a definable extension of L, that is, for every a′ ∈ ExprL′

there is some a ∈ ExprL such that a =L′ a′, then it is easy to see that the
identity i : ExprL → ExprL′ has SHP. By Theorem 2.28, there is a function
f : IntL → IntL′ such that (f, i) : L → L′ is a strong logic-homomorphism.
Moreover, any other strong logic-homomorphism is equivalent to (f, i).
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Example. Let ExprL be the set of first order formulas in the language of graphs,
and let IntL = IntL′ be the class of finite graphs together with variable assign-
ments. Let ExprL′ be the set of first order formulas in the language of graphs
extended by infinite disjunctions (and infinite conjunctions). Suppose that �L, �L
are defined in the usual way.
Then clearly L ≤ L′, but this extension is of another nature than the extension
of example (i). (In (i) we extend the non-logical part of the language, whereas
here we extend the logical part.) For example, connectivity of (finite) graphs is
definable in L′ but not in L.
There is a strong logic homomorphism (i1, i2) : L → L′, where i1, i2 are the iden-
tical functions on IntL, ExprL, respectively. Let us outline a proof: Every finite
model (finite graph) is characterizable - up to ismorphism - by a single first order
formula. This formula a isolates the theory T of the finite model, i.e. for any com-
plete theory T there is a formula a ∈ T such that �L a → b for all b ∈ T . For any
theory T of logic L and any theory T ′ of logic L′ such that T = T ′ ∩ ExprL it is
easy to see that a ∈ ExprL isolates T in L iff a isolates T ′ in L′. Then for any
a′ ∈ ExprL′ holds the following:
i−1
2 (a′∗L′ ) =

⋃{a∗L | a isolates some T ′ ∈ a′∗L′} =
⋃{a∗L | i2(a) �L′ a′} =⋃{a∗L | i2(a)∗L′ ⊆ a′∗L′ }.

So i2 has SHP. The rest follows from Theorem 2.28.

4. Further work

One aim of future research on model-theoretical abstract logics is the elabora-
tion of examples of relevant logics and the relationships between them, as logic-
homomorphisms, extensions, etc. Another promising project for future work could
be the attempt of a generalization of the concept of abstract logics towards non-
classical negation.
We conclude with a consideration - in a rather informal way - about a connection
of abstract logics and the well-known concept of institutions. Let us recall the def-
inition of an institution [3] (the reader is expected to be familiar with some basic
notions of category theory).

Definition 4.1. An institution I = (Sign, Sen, Mod, �) consists of:

• a category Sign whose objects are signatures,
• a functor Sen : Sign → Set, giving for each signature a set whose elements

are called sentences over the signature,
• a functor Mod : Signop → Cat, giving for each signature Σ a category whose

objects are called Σ-models, and whose arrows are called Σ-morphisms,
• a function � associating to each signature Σ a relation �Σ⊆ |Mod(Σ)| ×

Sen(Σ), called Σ-satisfaction relation, such that for each arrow φ : Σ → Σ′

in Sign the following satisfaction condition

A′ �Σ′ Sen(φ)(a) ⇐⇒ Mod(φ)(A′) �Σ a
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holds for any A ∈ |Mod(Σ′)| and any a ∈ Sen(Σ).

Now, if we look at Corollary 2.34., then we see that for any two abstract
logics L and L′ and a function g : ExprL → ExprL′ such that {g−1(T ) | T ∈
PTh(L′)} = PTh(L), we can find a mapping G such that g and G satisfy a condi-
tion, which has the same form as the satisfaction axiom of institutions.
So if we consider a class of model-theoretical abstract logics together with suit-
able mappings betweem them (for instance, strong logic-homomorphisms, or even
logic-homomorphisms, if the logics have negation (see Lemma 2.9.)), then we can
hope that this gives rise to the construction of a corresponding institution. How-
ever, these are very recent reflections and future research will be necessary to get
more clarity on this subject. We hope that our results serve as a first step in this
direction.
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Abstract. The aim of this paper is to develop the theory of the selfextensional
logics with an implication for which it holds the deduction-detachment the-
orem, as presented in [8], but avoiding the use of Gentzen-systems to prove
the main results as much as possible.

Mathematics Subject Classification (2000). 03B22, 03C05, 03G25.

Keywords. Abstract algebraic logic, logics with a deduction theorem, Hilbert
algebras.

1. Introduction

Abstract Algebraic Logic (AAL) is the area of algebraic logic which studies the
process of algebraization of the different logical systems. For information on AAL
the reader is addressed to [10]. The concept of logic that is taken as primary in the
AAL field is that of a consequence relation between sets of formulas and formulas
which has the substitution-invariance property; informally speaking this means
that if Γ is a set of formulas and ϕ is a formula that follows according to the logic
from Γ, then for every pair (∆, ψ) of the same form as (Γ, ϕ), ψ follows from ∆.
A logic in this sense may have different replacement properties. The strongest one
is shared by classical, intuitionistic and all the intermediate propositional logics.
It says that if �S is the consequence relation of S, for any set of formulas Γ, any
formulas ϕ, ψ, δ and any variable p

if Γ, ϕ �S ψ and Γ, ψ �S ϕ, then Γ, δ(p/ϕ) �S δ(p/ψ) and Γ, δ(p/ϕ) �S δ(p/ψ),

where δ(p/ϕ) and δ(p/ψ) are the formulas obtained by substituting ϕ for p and ψ
for p in δ respectively. This strong replacement property can be seen as a formal
counterpart of Frege’s compositionality principle for truth. Logics satisfying this
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Catalan grant 2001SGR-00017. The study was begun t during the author’s stay at the ILLC of
the University of Amsterdam in the academic year 1999-2000 supported by the Spanish DGESIC
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replacement property are called Fregean in [6]; the origin of the name comes from
the studies by R. Suszko on his non-Fregean logic. Several important logics are
not Fregean, for instance almost all the logics of the modal family. Many, like
the so-called local consequence relation of the modal logic K, satisfy a weaker
replacement property: for all formulas ϕ, ψ, δ,

if ϕ �S ψ and ψ �S ϕ, then δ(p/ϕ) �S δ(p/ψ) and δ(p/ψ) �S δ(p/ϕ).

A logic is said to be selfextensional if it satisfies this weaker replacement property.
In algebraic terms this means that the interderivability relation between formulas
is a congruence relation of the formula algebra. R. Wójcicki coined the name in
[17].

The class of protoalgebraic logics is the class of logics for which the theory
of the algebraic-like semantics of its elements is the best understood in AAL. A
logic is protoalgebraic if it has a generalizad implication, i.e. a set of formulas in
two variables, which we denote as ⇒(p, q), with the generalized modus ponens
rule (from p and ⇒(p, q) infer q) and such that for every ϕ ∈ ⇒(p, q), ϕ(q/p)
is a theorem. Roughly speaking protoalgebraic logics are the logics for which the
semantics of logical matrices is well behaved from the point of view of universal
algebra, in the sense that many of the results of universal algebra have counterparts
of specific logical interest in the theory of logical matrices for protoalgebraic logics.
A logical matrix is a pair 〈A, F 〉 where A is an algebra and F is a subset of the
domain of A; it is said to be a model of a logic S if A is of the type of S and F
is closed under the interpretations in A of the inferences of S, namely if for every
set of formulas Γ, every formula ϕ and every interpretation v of the formulas in
A, if Γ �S ϕ and the interpretations by v of the elements in Γ belong to F , then
the interpretation by v of ϕ belongs to F . If this is the case it is said that F is an
S-filter of A.

Several interesting logics are not protoalgebraic. For non protoalgebraic logics
logical matrix semantics is not so well behaved. For instance, the class of algebras
that the theory of logical matrices canonically associates with a non-protoalgebraic
logic does not necessarily coincide with the class one would intuitively expect to be
associated with it. An illustration of this phenomenon is found in the conjunction-
disjunction fragment of classical logic. Here the expected class of algebras is the
class of distributive lattices, but, as is shown in [11], this class is not the class of
algebras the theory of matrices provides.

In [8] a general theory of the algebraization of logic is developed using gen-
eralized matrices (where they are called abstract logics) as possible models for
logical systems. A generalized matrix is a pair 〈A, C〉 where A is an algebra and
C the family of closed sets of some finitary closure operator on the domain A of
A. It is said to be a model of a logic S if A is of the type of S and C is a family
of S-filters of A. Using generalized matrices, in [8] a canonical way is proposed to
associate a class of algebras AlgS with each logical system S that in the known
non-protoalgebraic logics supplies the expected results and for protoalgebraic log-
ics gives exactly the class of algebras the theory of logical matrices associates with
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them. In [8] several general results are proved that sustain the claim that the
class of algebras AlgS is the natural class of algebras that corresponds to a given
deductive system S, and a way to obtain AlgS as the result of performing the
Lindenbaum-Tarski method suitably generalized is given in [5] and [10].

Among the class of generalized matrices that are models of a given deductive
system S we find the class of the full g-models of S. A full g-model of S is a
generalized matrix 〈A, C〉 which from the logical point of view is equivalent to a
generalized matrix of the form 〈A, FiSA〉, where FiSA is the set of all S-filters of
A. The generalized matrices of this last form are called basic full g-models of S
and the study of the class of full g-models can thus be reduced to their study. The
class of full g-models of a deductive system was singled out in [8] as an important
class and their systematic study was started.

Given a generalized matrix A = 〈A, C〉, its “interderivability” relation is
defined as follows: two elements are related if they belong to the same elements of
C. This relation is called the Frege relation of A. Hence a logic S is selfextensional iff
the Frege relation of the generalizad matrix 〈Fm,ThS〉, where Fm is the algebra
of formulas and ThS the family of the theories of S, is a congruence of Fm.
Among the selfextensional logics there is an important class introduced in [8],
the class of fully selfextensional logics (note that there they are called strongly
selfextensional). A logic S is fully selfextensional if for every full model 〈A, C〉 of
S the Frege relation of 〈A, C〉 is a congruence of A, which is equivalent to saying
that for every algebra A the relation of belonging to the same S-filters of A is
a congruence. The class of fully selfextensional logics is included properly in the
class of selfextensional logics as shown in [1].

The present paper studies a class of protoalgebraic selfextensional deductive
systems using the tools of the semantics of generalized matrices. It is the class of
selfextensional deductive systems S with a binary formula, or term, p ⇒ q which
has the deduction-detachment property, that is such that for every set of formulas
Γ and all formulas ϕ, ψ,

Γ, ϕ �S ψ iff Γ �S ϕ ⇒ ψ.

Many deductive systems belong to this class, for instance the modal local conse-
quence relations given by classes of Kripke frames in the standard language for
many-modal logic. Hardly any of these are Fregean.

In [8] selfextensional deductive systems are studied using Gentzen systems
as one of the main tools. The present paper develops part of the theory developed
in [8] of the selfextensional deductive systems S with an implication ⇒ with the
deduction-detachment property without recourse to Gentzen systems. In this way
we provide new and much simpler proofs of the following two results in [8].

1. For every deductive system S with an implication with the deduction-detach-
ment property the class of algebras AlgS is a variety (Theorems 4.27 of [8]).

2. Every selfextensional deductive system S with an implication with the deduc-
tion-detachment property is fully selfextensional (Theorems 4.31 and 4.46 of
[8]).
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In [13] it is proved that for every algebraic similarity type with a binary term
∧ there is a dual isomorphism between the set of selfextensional deductive systems
where ∧ is a conjunction, ordered by the extension relation, and the set, ordered
by inclusion, of all the subvarieties of the variety axiomatized by the semilattice
equations x ∧ x ≈ x, x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z and x ∧ y ≈ y ∧ x. We prove the
parallel result for selfextensional logics with an implication that has the deduction-
detachment property, namely:
(3) for every algebraic similarity type and any of its binary terms ⇒ there is a

dual isomorphism between the set of selfextensional deductive systems where
⇒ has the deduction-detachment property, ordered by the extension rela-
tion, and the set, ordered by inclusion, of all the subvarieties of the variety
axiomatized by the Hilbert algebra equations H1-H4 below.
In our way to prove these results without recourse to Gentzen systems we

characterize the selfextensional logics with a binary term x ⇒ y that has the
deduction-detachment property, as the logics S for which there is a class of algebras
K such that the equations that define the Hilbert algebras
H1. x ⇒ x ≈ y ⇒ y
H2. (x ⇒ x) ⇒ x ≈ x
H3. x ⇒ (y ⇒ z) ≈ (x ⇒ y) ⇒ (x ⇒ z)
H4. (x ⇒ y) ⇒ ((y ⇒ x) ⇒ y) ≈ (y ⇒ x) ⇒ ((x ⇒ y) ⇒ x).
hold for the term ⇒ in K and the following two conditions are satisfied:

1. ϕ0, . . . , ϕn−1 �S ϕ iff ∀A ∈ K ∀v ∈ Hom(Fm,A)

v(ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ ϕn) . . .)) = 1.

2. ∅ �SK
ϕ iff ∀A ∈ K ∀v ∈ Hom(Fm,A)v(ϕ) = 1.

The deductive systems with these properties are called Hilbert-based in this paper.
At the end of Section 3 we give a characterization of the Hilbert-based deduc-

tive systems which are regularly algebraizable: they are the Fregean ones which
are Hilbert-based. In Section 4 we obtain some results on these systems and a
different proof of a result of Czelakowski and Pigozzi in [6]. Finally, in Section 5
we deal with Gentzen systems and we give a different, simpler proof of Proposition
4.47 (iii) and Proposition 4.44 in [8] using the results obtained in Section 3.

2. Preliminaries

In this section we survey the elements of AAL that will be used in the paper and
we fix notation. For detailed expositions we address the reader to [2], [4], [8], [10]
and [18].

Let L be an algebraic similarity type (or set of connectives) that we fix
throughout this section. All algebras considered, etc., will be of this type. The set of
all homomorphisms from an algebra A to an algebra B is denoted by Hom(A,B).

Let Fm be the absolutely free algebra of type L with a denumerable set V ar
of generators. The elements of V ar will be called, as usual, propositional variables.
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The algebra Fm is called the formula algebra of type L and the elements of its
domain Fm are the formulas of type L. A deductive system of type L is a pair
S = 〈Fm,�S〉 where �S is a relation between sets of formulas and formulas such
that

1. If ϕ ∈ Γ, then Γ �S ϕ.
2. If Γ �S ϕ and for every ψ ∈ Γ, ∆ �S ψ, then ∆ �S ϕ.
3. If Γ �S ϕ, then for any substitution σ, σ[Γ] �S σ(ϕ), where a substitution is

an homomorphism from the formula algebra Fm into itself.
From (1) and (2) it follows that:
(4) If Γ �S ϕ then for any ψ, Γ ∪ {ψ} �S ϕ.

The relation �S is called the consequence relation of S.
A deductive system S is said to be finitary if for every set of formulas Γ∪{ϕ},

Γ �S ϕ implies that Γ′ �S ϕ for some finite Γ′ ⊆ Γ. All the deductive systems we
deal with in the paper are finitary, so from now on when we say ‘deductive system’
we understand finitary deductive system. A theory of a deductive system S, or S-
theory for short, is a set of formulas Γ that is closed under the consequence relation
of S, that is, for every formula ϕ, if Γ �S ϕ, then ϕ ∈ Γ. The set of S-theories will
be denoted by ThS.

A deductive system S is said to be selfextensional if its interderivability
relation, denoted by �S�, is a congruence of the formula algebra, and it is said to
be Fregean if for every set of formulas Γ, the interderivability relation modulo Γ,
namely the relation defined by Γ, ϕ �S ψ and Γ, ψ �S ϕ, is a congruence of the
formula algebra.

Given a deductive system S and an algebra A with universe A, a set F ⊆ A
is an S-filter if for any homomorphism h from Fm into A, any set of formulas
Γ and any formula ϕ, if Γ �S ϕ and h[Γ] ⊆ F , then h(ϕ) ∈ F . If the deductive
system is finitary the condition can be replaced by the corresponding condition
that requires in addition that Γ is finite. We denote the set of all S-filters of an
algebra A by FiSA. The set of all S-filters of the formula algebra Fm is exactly
the set ThS of all the theories of S. A logical matrix, abbreviatedly a matrix, is a
pair 〈A, F 〉 where A is an algebra and F is a subset of the universe of A. A matrix
M = 〈A, F 〉 is a (matrix) model of a deductive system S if F is an S-filter of A.
Therefore the matrix models of S on the formula algebra are the matrices of the
form 〈Fm, T 〉 where T is an S-theory.

A finitary closed-set system on a set A is a family C of subsets of A that
contains A and is closed under arbitrary intersections and under unions of upward
directed subfamilies with respect to the inclusion relation. If C is a finitary closed-
set system on a set A the closure operator CloC on A associated with C is the
closure operator defined by

CloC(X) =
⋂

{F ∈ C : X ⊆ F},
for each X ⊆ A. The closure operator CloC is finitary in the following sense: if
a ∈ CloC(X), then there is a finite Y ⊆ X such that a ∈ CloC(Y ). Moreover, given
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a finitary closure operator C on a set A, the family CC of all C-closed subsets X of
A, i.e. such that C(X) = X, is a finitary closed-set system. It is well known that
CloCC

= C, and that if C is a finitary closed-set system, then CCloC = C.
A generalized matrix, g-matrix for short, is a pair A = 〈A, C〉 where A is an

algebra and C is a finitary closed-set system on the universe A. Usually we will
denote the closure operator determined by C on A by CloA. We will also refer to
the closed-set system of a matrix A by CA. Notice that for every finitary deductive
system S the structure 〈Fm,ThS〉 is a generalized matrix. Its associated closure
operator can be identified with the consequence relation �S . The finitarity of S
is essential for obtaining that ThS is closed under unions of upwards directed
subfamilies (by the inclusion order). Generalized matrices are exactly the finitary
abstract logics of the monograph [8].

A generalized matrix A = 〈A, C〉 is a generalized model, g-model for short,
of a deductive system S if every element of C is an S-filter, that is, if C ⊆ FiSA.
The g-matrix 〈Fm,ThS〉 is obviously a g-model of the deductive system S.

Given a generalized matrix A = 〈A, C〉, its Tarski congruence, denoted by
Ω̃A(C), is the greatest congruence of A compatible with every element of C, that
is, such that for every F ∈ C and every a, b ∈ A, if 〈a, b〉 ∈ Ω̃A(C) and a ∈ F ,
then b ∈ F . Sometimes we will denote Ω̃A(C) by Ω̃(A). A generalized matrix
A = 〈A, C〉 is reduced if its Tarski congruence is the identity. The class of the
algebraic reducts of the reduced g-matrix models of S, denoted by AlgS, is the
class of algebras that according to the general algebraic semantics for deductive
systems developed in [8] deserves to be considered the canonical class of algeras of
S. This class turns out to have the following simpler description that is the best
for working purposes in the present paper:

AlgS = {A : 〈A, FiSA〉 is reduced}.
A strict homomorphism from a g-matrix A = 〈A, C〉 to a g-matrix B =

〈B,D〉 is a homomorphism from A to B such that C = {h−1[F ] : F ∈ D}.
Bijective strict homomorphisms are called isomorphisms, and surjective strict ho-
momorphisms are called bilogical morphisms in [8]. If there is a strict surjective
homomorphism from A = 〈A, C〉 onto B = 〈B,D〉 we write A 
 B. In other words
this means that B is a strict homomorphic image of A. The most typical surjec-
tive strict homomorphisms appear in the process of reducing a g-matrix. Given
a g-matrix A = 〈A, C〉, its reduction is the g-matrix A∗ = 〈A/Ω̃(A), C/Ω̃(A)〉,
where A/Ω̃(A) is the quotient algebra and C/Ω̃(A) = {F/Ω̃(A) : F ∈ C}. The
projection homomorphism π : A → A/Ω̃(A) is a surjective strict homomorphism
from A onto A∗. It is known ([8] Proposition 1.14) that if A 
 B, then A∗ is
isomorphic to B∗.

The notion of full g-model of a deductive system is one of the main notions
introduced in [8]. A generalized matrix A = 〈A, C〉 is said to be a basic full g-model
of a deductive system S if C = FiSA and it is said to be a full g-model of S if
there is a basic full g-model B of S such that A 
 B, that is, if one of its strict
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homomorphic images is a basic full g-model of S. In [8] it is proved that if A 
 B,
then A is a full g-model of S iff B is so. Since the logical properties of the g-matrices
are the properties which are preserved under strict homomorphisms, the class of
full g-models is then the natural class of models one has to deal with. Moreover,
it has many interesting properties that make it a very useful tool in the study of
deductive systems, in particular for relating the algebraic treatment of a deductive
system with the algebraic treatment of the several Gentzen calculi that define it.
We will see this in the last section of the paper. Another important feature is that
AlgS is the class of the algebraic reducts of the reduced full g-models of S.

Given a g-matrix A = 〈A, C〉, its Frege relation Λ(A) is defined by

〈a, b〉 ∈ Λ(A) iff CloA({a}) = CloA({b}).
It is easy to see that Ω̃(A) is the largest congruence of A included in Λ(A). We
will also denote the Frege relation of 〈A, C〉 by ΛA(C). For any deductive system
S, the interderivability relation (ϕ �S� ψ) is the Frege relation of the g-matrix
〈Fm,ThS〉. Thus, a deductive system S is selfextensional iff the Frege relation
of 〈Fm,ThS〉 is a congruence. We denote the Frege relation of this g-matrix by
Λ(S).

A deductive system S is said to be fully selfextensional when the Frege re-
lation of every of its full g-models is a congruence. Thus, every fully selfexten-
sional deductive system is selfextensional. The converse is not true as is shown
in [1]. A deductive system S is said to be fully Fregean, if for every algebra A
and every S-filter F of A, the Frege relation of the g-matrix 〈A, FiSAF 〉, where
FiSAF = {G ∈ FiSA : F ⊆ G}, is a congruence of A. Clearly every fully Fregean
deductive system is Fregean. In [1] it is shown that not every Fregean deductive
system is fully Fregean.

Each deductive system has an associated variety, the variety KS generated
by the algebra Fm/Ω̃(S), which is the free algebra over a denumerable set of
generators of KS (see [8], [13]). The class KS is called the intrinsic variety of S in
[13]. This variety plays an important role in the proof of the main theorems of the
paper. The variety KS can be described as the variety whose valid equations are
the equations ϕ ≈ ψ such that 〈ϕ, ψ〉 ∈ Ω̃(S). Thus

KS |= ϕ ≈ ψ iff ∀δ ∈ Fm ∀p ∈ V ar δ(p/ϕ) �S� δ(p/ψ).

In particular, if S is selfextensional,

KS |= ϕ ≈ ψ iff ϕ �S� ψ iff 〈ϕ, ψ〉 ∈ Λ(S).

The relation between the classes of algebras AlgS and KS associated with a
deductive system S is that of inclusion: AlgS ⊆ KS . Moreover, KS is the variety
generated by AlgS. Thus, when AlgS is a variety, the two classes are equal. This
is for instance the case for classical logic and for intuitionistic logic. But there are
deductive systems S for which the inclusion is proper: for example the algebraizable
logic BCK is such that AlgBCK � KBCK.
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To conclude this section on preliminaries we recall the definitions of al-
gebraizable deductive system and regularly algebraizable deductive system. A
set of formulas ∆(p, q) in at most two variables is a set of equivalence formu-
las for a deductive system S if for every algebra A and every S-filter F of A,
ΩA(F ) = {〈a, b〉 ∈ A × A : ∆A(a, b) ⊆ F}. A set of equations τ (p) in at most one
variable is a set of defining equations for a deductive system S for every algebra
A ∈ AlgS the least S-filter of A is the set of solutions in A of the equations in
τ (p), that is the set {a ∈ A : A |= τ (p)[a]}. A deductive system S is algebraizable
if it has a set of equivalence formulas and a set of defining equations. An alge-
braizable deductive system S is regularly algebraizable if for any set of equivalence
formulas ∆(p, q) the G-rule holds, that is, p, q �S ∆(p, q).

3. Hilbert-based deductive systems

Let S be a deductive system; we say that a binary term ⇒ has the deduction-
detachment property, or is a deduction-detachment term, if for every set of formulas
Γ and every formulas ϕ, ψ,

Γ, ϕ �S ψ iff Γ �S ϕ ⇒ ψ.

A deductive system S is said to have the uniterm deduction-detachement property
(u-DDP) relative to a binary term ⇒ if the term ⇒ has the deduction-detachment
property, and it is said to have the uniterm deduction-detachement property if it
has the uniterm deduction-detachement property relative to some binary term.

Notice that if S has the u-DDP relative to ⇒ and relative to ⇒′ then

p ⇒ q �S� p ⇒′ q.

Thus, if S is selfextensional, for all formulas ϕ, ψ, 〈ϕ ⇒ ψ, ϕ ⇒′ ψ〉 ∈ Ω̃(S).

Definition 1. A class K of algebras is Hilbert-based relative to a binary term ⇒ if
the following equations are valid in K:
H1. x ⇒ x ≈ y ⇒ y
H2. (x ⇒ x) ⇒ x ≈ x
H3. x ⇒ (y ⇒ z) ≈ (x ⇒ y) ⇒ (x ⇒ z)
H4. (x ⇒ y) ⇒ ((y ⇒ x) ⇒ y) ≈ (y ⇒ x) ⇒ ((x ⇒ y) ⇒ x).

Thus K is Hilbert-based relative to a binary term ⇒ if for every A ∈ K the
algebra 〈A,⇒A〉 is a Hilbert algebra. We will refer to the equations (H1)-(H4) as
the Hilbert equations.

Definition 2. We say that a class of algebras is Hilbert-based if it is Hilbert-based
relative to some binary term.

A class of algebras Q is said to be pointed if there is a term ϕ(x0, . . . , xn)
with the property that ϕ(x0, . . . , xn) ≈ ϕ(y0, . . . , yn) is valid in Q for all variables
y0, . . . , yn. Thus for every A ∈ Q and any two valuations v, v‘ on A, v(ϕ) = v′(ϕ).
Such a term is called a constant term since it behaves like a constant. Once fixed



Selfextensional Logics with Implication 73

we will usually refer to it by �. Any Hilbert-based class of algebras K is pointed,
because the term x ⇒ x is a constant term, that is, for every algebra A ∈ K and
all a, b ∈ A, a ⇒ a = b ⇒ b. Let us denote the constant interpretation of x ⇒ x in
A by 1A or simply by 1. Given a Hilbert-based class of algebras K and an algebra
A ∈ K we define the relation ≤A on A by

a ≤A b iff a ⇒ b = 1. (1)

We will omit the superscript in ≤A when no confusion is likely.

Definition 3. Given a Hilbert-based class of algebras K relative to ⇒ and an algebra
A ∈ K, a set F ⊆ A is an ⇒-implicative filter of A if

1. 1 ∈ F
2. for all a, b ∈ A, if a ⇒ b ∈ F and a ∈ F , then b ∈ F .

Definition 4. A deductive system S is Hilbert-based relative to a binary term ⇒
and a class of algebras K which is Hilbert-based relative to ⇒ if for all formulas
ϕ0, . . . , ϕn, ϕ,

ϕ0, . . . , ϕn �S ϕ iff ∀A ∈ K ∀v ∈ Hom(Fm,A), (2)

v(ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ (ϕn ⇒ ϕ) . . .)) = 1
and

�S ϕ iff ∀A ∈ K ∀v ∈ Hom(Fm,A), v(ϕ) = 1. (3)

Property (2) is independent of the order in which the formulas ϕ0, . . . , ϕn

are taken because for any permutation π of {0, . . . , n}, v(ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒
(ϕn ⇒ ϕ) . . .)) = 1 iff v(ϕπ(0) ⇒ (. . . ⇒ (ϕπ(n−1) ⇒ (ϕπ(n) ⇒ ϕ) . . .)) = 1. In the
sequel when we say S is Hilbert-based relative to ⇒ and K we assume that K is
Hilbert-based relative to ⇒.

We say that S is Hilbert-based if there is a binary term ⇒ and a Hilbert-based
class of algebras relative to ⇒ such that S is Hilbert-based relative to them.

If S is Hilbert-based relative to ⇒ and K then it is also Hilbert-based relative
to ⇒ and the variety generated by K. The remark in the next proposition together
with Corollary 8 show that if S is Hilbert-based there is only one variety relative
to which it is Hilbert-based. We can denote it by V(S).

Proposition 5. If S is a Hilbert-based deductive system relative to K and ⇒ and
relative to K′ and ⇒′ then the varieties generated by K and by K′ are the same.

Proof. Assume that ϕ ≈ ψ is an equation valid in K. Then for every A ∈ K
and every v ∈ Hom(Fm,A), v(ϕ) = v(ψ). Therefore v(ϕ ⇒ ψ) = v(ψ ⇒ ϕ) = 1.
Hence, ϕ �S� ψ. Then for every A ∈ K′ and every v ∈ Hom(Fm,A), v(ϕ ⇒′ ψ) =
v(ψ ⇒′ ϕ) = 1. Therefore, v(ϕ) = v(ψ). Hence, ϕ ≈ ψ is valid in K′. Analogously
we obtain that the equations valid in K′ are valid in K. �

Remark 6. Condition (2) in the definition of Hilbert-based deductive system im-
plies that if S is Hilbert-based relative to K, then ϕ �S� ψ iff K |= ϕ ≈ ψ.
Therefore, ϕ �S� ψ iff V (S) |= ϕ ≈ ψ.
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Notice that the definition of Hilbert-based deductive system implies that
there cannot be two different deductive systems which are Hilbert-based relative
to the same variety.

Proposition 7. If S is Hilbert-based relative to ⇒, then
1. S is selfextensional,
2. ⇒ has the deduction-detachment property in S,
3. the variety V (S) is the intrinsic variety KS , thus S is Hilbert-based relative

to its intrinsic variety.

Proof. Assume that S is Hilbert-based relative to ⇒ and the variety K. (1) Let
us see that Λ(S) is a congruence. If ϕ �S� ψ then V (S) |= ϕ ≈ ψ, therefore
for every formula δ and every variable p, V (S) |= δ(p/ϕ) = δ(p/ψ), which, by
the above remark, implies that δ(p/ψ) �S� δ(p/ψ). (2) Let us show that S has
u-DDP relative to ⇒. Assume that Γ, ϕ �S ψ. Let ϕ0, . . . , ϕn−1 ∈ Γ such that
ϕ0, . . . , ϕn−1, ϕ �S ψ or ϕ �S ψ. Therefore for every A ∈ K and every v ∈
Hom(Fm,A), v(ϕ0 ⇒ (. . . ⇒ (ϕ ⇒ ψ) . . .)) = 1 or for every A ∈ K and every
v ∈ Hom(Fm,A), v(ϕ ⇒ ψ) = 1. Hence, Γ �S ϕ ⇒ ψ. On the other hand, if
Γ �S ϕ ⇒ ψ, it is also easy to seen that Γ, ϕ �S ψ. (3) From the definition of the
intrinsic variety of S and the selfextensionality of S we have

KS |= ϕ ≈ ψ iff ϕ �S� ψ.

Therefore, by the above remark, V (S) = KS . �

Corollary 8. If S is a Hilbert-based deductive system relative to ⇒ and also relative
to ⇒′, then for every ϕ, ψ, ϕ ⇒ ψ �S� ϕ ⇒′ ψ, and 〈ϕ ⇒ ψ, ψ ⇒ ϕ〉 ∈ Ω̃(S).

Proof. The first part follows immediately from the fact that, under the assump-
tions, by the above theorem both ⇒ and ⇒′ are deduction-detachment terms for
S. The second part follows from the selfextensionality of S. �

Proposition 5 and Ccorollary 8 allow us to speak simply of Hilbert-based
deductive systems when convenient.

Theorem 9. A deductive system S is selfextensional and has the uniterm deduction-
detachment property iff it is Hilbert-based.

Proof. By the proposition above we have the implication from right to left. To
prove the other implication assume that S is selfextensional and has u-DDP rela-
tive to ⇒. Let us consider the algebra Fm/Λ(S). It is not difficult to check that
{Fm/Λ(S)} is Hilbert-based relative to ⇒. Moreover,

ϕ0, . . . , ϕn−1 �S ϕ iff �S ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ ϕ) . . .)
iff ϕ ⇒ ϕ �S� ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ ϕ) . . .)
iff Fm/Λ(S) |= ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ ϕ) . . .) ≈ 1
iff ∀v ∈ Hom(Fm,Fm/Λ(S)),

v(ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ ϕ) . . .)) = 1,



Selfextensional Logics with Implication 75

and

�S ϕ iff ϕ ⇒ ϕ �S� ϕ
iff Fm/Λ(S) |= ϕ ≈ 1
iff ∀v ∈ Hom(Fm,Fm/Λ(S)), v(ϕ) = 1.

Thus S is Hilbert-based relative to the variety KS = V(Fm/Λ(S)) and ⇒. �

Let K be a Hilbert-based variety relative to ⇒. We define the deductive
system S⇒

K as follows:

ϕ0, . . . , ϕn �S⇒
K

ϕ iff ∀A ∈ K ∀v ∈ Hom(Fm,A)

v(ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ (ϕn ⇒ ϕ) . . .)) = 1

and
�S⇒

K
ϕ iff ∀A ∈ K ∀v ∈ Hom(Fm,A) v(ϕ) = 1.

From the definitions it follows straightforwardly that:

Proposition 10. For every Hilbert-based variety K relative to ⇒ the deductive sys-
tem S⇒

K is Hilbert-based relative to K and ⇒ and V(S⇒
K ) = K.

Let us fix a binary term ⇒. From the results above it follows that there is
a bijection between the Hilbert-based deductive systems relative to ⇒ and the
Hilbert-based varieties relative to ⇒. This bijection is in fact a dual isomorphism
when we order the deductive systems by extension and the varieties by the relation
of being a subvariety.

A Hilbert-based deductive system S is determined exactly by its Frege re-
lation, that is by the pairs of formulas 〈ϕ, ψ〉 which are interderivable in S, and
the extension relation between Hilbert-based deductive systems corresponds to the
inclusion relation between their Frege relations.

Proposition 11. Let S and S ′ be two Hilbert-based deductive systems. Then

Λ(S) ⊆ Λ(S ′) iff S ′ is an extension of S.

Therefore, if Λ(S) = Λ(S ′), then S = S ′.

Proof. It is clear that if S ′ is an extension of S then Λ(S) ⊆ Λ(S ′). Assume that
Λ(S) ⊆ Λ(S ′). Then

ϕ0, . . . , ϕn−1 �S ϕ iff �S ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ ϕ) . . .)
iff ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ ϕ) . . .) �S� ϕ ⇒ ϕ

then ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ ϕ) . . .) �S′� ϕ ⇒ ϕ
iff �S′ ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ ϕ) . . .).
iff ϕ0, . . . , ϕn−1 �S′ ϕ

and
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�S ϕ iff ϕ �S� ϕ ⇒ ϕ
then ϕ �S′� ϕ ⇒ ϕ
iff �S′ ϕ.
iff �S′ ϕ.

Thus S ′ is an extension of S. �

To state the theorem, given an algebraic similarity type L with a binary term
⇒ let KL

⇒ denote the variety axiomatized by the Hilbert equations (E1)-(E4).

Theorem 12. For every algebraic similarity type and every one of its binary terms
⇒ there is a dual isomorphism between the set of Hilbert-based deductive systems
relative to ⇒, ordered by extension, and the set of all subvarieties of the variety
KL
⇒, ordered by inclusion. The isomorphism is given by S �→ KS .

Proof. Recall that for a selfextensional deductive system S the Frege relation de-
termines exactly the equations that hold in the variety KS , that is, 〈ϕ, ψ〉 ∈ Λ(S)
iff ϕ ≈ ψ holds in KS . Thus if S and S ′ are Hilbert-based relative to ⇒ and
KS = KS′ , then Λ(S) = Λ(S ′). By Proposition 11, S = S ′. Thus the function
S �→ KS is injective. Clearly it is onto since by Proposition 10 every Hilbert-based
variety K defines a Hilbert-based deductive system whose class of algebras is K.

From Proposition 11 it follows that S is an extension of S ′ iff KS is a subva-
riety of KS′ . Therefore the function S �→ KS is a dual isomorphism. �

We proceed to show that for any selfextensional deductive systems S with
the uniterm deduction-detachment property, its class of algebras AlgS is a variety,
indeed we will show that it is the intrinsic variety of S. This will give the following
reformulation of the theorem above.

Theorem 13. For every algebraic similarity type and every one of its binary terms
⇒ the map S �→ AlgS is a dual isomorphism between the set of Hilbert-based
deductive systems relative to ⇒, ordered by extension, and the set of all subvarieties
of the variety KL

⇒, ordered by inclusion.

Lemma 14. Let S be a Hilbert-based deductive system relative to ⇒. Then for every
algebra A ∈ KS , the S-filters of A are the implicative filters of A.

Proof. Let S be a deductive system which is Hilbert-based relative to ⇒. Let
A ∈ KS and let F be an S-filter of A. Since �S p ⇒ p and p, p ⇒ q �S q it
is clear that F is an implicative filter. Conversely, if F is an implicative filter
of A, assume that ϕ0, . . . , ϕn−1 �S ϕ and that v ∈ Hom(Fm,A) is such that
v(ϕ0), . . . , v(ϕn−1) ∈ F , then we have v(ϕ0 ⇒ (. . . ⇒ (ϕn−1 ⇒ ψ) . . .)) = 1 ∈ F .
Thus, we conclude that v(ψ) ∈ F as well. This shows that F is an S-filter. �

Lemma 15. Let S be a Hilbert-based deductive system. Then for every algebra
A ∈ KS , the Frege relation of the g-matrix 〈A, FiSA〉 is the identity and therefore
the matrix is reduced and has the congruence property.
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Proof. Let a, b ∈ A be different elements. Consider the sets Fa = {c ∈ A : a ⇒ c =
1} and Fb = {c ∈ A : b ⇒ c = 1}. It is easy to see that they are implicative filters,
hence by Lemma 14 they belong to FiSA. Clearly, if Fa = Fb, then a ⇒ b = b ⇒
a = 1. Hence, a = b. Thus, if a �= b, a �∈ Fb or b �∈ Fa. Hence 〈a, b〉 �∈ ΛA(FiSA).
This shows that the Frege relation of the g-matrix 〈A, FiSA〉 is the identity, which
implies that 〈A, FiSA〉 is reduced and has the congruence property. �
Theorem 16. If S is a Hilbert-based deductive system then

1. AlgS = KS = V(S).
2. AlgS is a variety.
3. S is Hilbert-based relative to AlgS.

Proof. 1. We know that AlgS ⊆ KS always holds. By the previous lemma we
obtain that KS ⊆ AlgS. 2 follows from 1 because KS is a variety. 3 follows from
1 and item 3 in Proposition 7. �

In [8] it is proved that every selfextensional deductive system with the u-DDP
is fully selfextensional. We are going to give a proof of this fact that does not make
use of Gentzen systems.

Theorem 17. Every selfextensional deductive system with the u-DDP is fully self-
extensional.

Proof. Let S be a selfextensional deductive system with the u-DDP relative to ⇒.
By Theorem 9 and the corollary to its proof, it is Hilbert-based relative to ⇒ and
KS . By Theorem 16, KS = AlgS. Thus, by Lemma 15, if A ∈ AlgS, ΛA(FiSA) is
the identity relation on A; and therefore it is a congruence. If A is a full g-model
of S, its reduction A∗ is of the form 〈B, FiSB〉 for some B ∈ AlgS. By what we
have just proved this g-matrix has the congruence property and by Proposition
2.40 in [8] this property is preserved by surjective strict homomorphisms (bilogical
morphisms). Therefore, A has the congruence property too. We can conclude that
S is fully selfextensional. �

Given a pointed quasivariety variety Q with constant term � the �-assertional
logic of Q is the deductive system SASLQ = 〈Fm,�SASLQ〉 defined by

Γ �SASLQ ϕ iff ∀A ∈ V ∀v ∈ Hom(Fm, Q)(v[Γ] ⊆ {1A} =⇒ v(ϕ) = 1A),

where 1A is the interpretation of the constant term � in A. We will characterize
the selfextensional deductive systems S with the deduction-detachment property
such that S is equal to the �-assertional logic of AlgS, where � is x ⇒ x for the
deduction-detachment term ⇒ of S.

A pointed quasivariety Q with constant term � is said to be relatively point-
regular if for every A ∈ Q and all the congruences θ, θ′ of A such that A/θ,A/θ′ ∈
Q, 1A/θ = 1A/θ′ implies θ = θ′.

The regularly algebraizable deductive systems are the assertional logics of
the pointed quasivarieties that are reletively-point regular. If S is a regularly al-
gebraizable deductive system, then all theorems of S are equivalent, so any one
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can be taken as the designated constant term � and S is the �-assertional logic
of AlgS.

Theorem 18 ([6] Thm. 1.34). A deductive system S is regularly algebraizable iff
AlgS is a pointed and relatively-point regular quasivariety and S = SASLAlgS.

Theorem 19. Let S be a selfextensional deductive system with the uniterm deduct-
ion-detachment property. Then, S is regularly algebraizable iff S = SASLAlgS.

Proof. Let S be a selfextensional deductive system with the uniterm deduction-
detachment property for ⇒. Then AlgS is a pointed variety. By the theorem
above, if S is regularly algebraizable, then S = SASLAlgS. Assume now that
S = SASLAlgS. We show that AlgS is point-regular. Let A ∈ AlgS and let
θ, θ′ ∈ CoA be such that 1/θ = 1/θ′. Suppose that 〈a, b〉 ∈ θ. Then 〈a ⇒ a, a ⇒
b〉 ∈ θ, that is 〈1, a ⇒ b〉 ∈ θ. Thus, Thus, 〈1, a ⇒ b〉 ∈ θ′. Similarly, 〈1, b ⇒ a〉 ∈ θ′.
Hence, in A/θ′, 1 = a/θ′ ⇒ b/θ′ and 1 = b/θ′ ⇒ a/θ′. Since AlgS is a variety,
A/θ′ ∈ AlgS. Therefore, 〈A/θ′,⇒〉 is a Hilbert algebra. Hence a/θ′ = b/θ′. Thus,
〈a, b〉 ∈ θ′. By a similar argument we get the other inclusion. Now by the above
theorem S is regularly algebraizable. �

In [8] (Thm. 3.18 and Prop. 3.20) it is shown that for any fully selfexten-
sional deductive system S, S is a Fregean, protoalgebraic deductive system with
theorems iff S is regularly algebraizable. Thus, since every deductive system with
the deduction-detachment property is protoalgebraic and has theorems, Theorem
17 implies that a selfextensional deductive system with the deduction-detachment
property is Fregean iff it is regularly algebraizable. Moreover, Czelakowski and
Pigozzi prove in [6] (Corollary 80) that if a deductive system is protoalgebraic and
Fregean, then it is fully Fregean. Thus we have the equivalences below:

Theorem 20. Let S be a selfextensional deductive system with the uniterm deduct-
ion-detachment property. The following statements are equivalent:

1. S is Fregean;
2. S is fully Fregean;
3. S is regularly algebraizable;
4. S = SASLAlgS.

4. Fregean logics with a deduction-detachment theorem

We will obtain some results on Fregean logics with a uniterm deduction-detachment
theorem using our results on selfextensional logics with a deduction-detachment
theorem. In particular we give a different proof of the second part of Theorem 66
of Czelakowski and Pigozzi in [6].

Lemma 21 ([6]). If S is a deductive system and ⇒ is a deduction-detachment term
for S, then S is Fregean iff the set {p ⇒ q, q ⇒ p} is an equivalence set of formulas
for S.
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If S is a selfextensional deductive system with a DDT-term ⇒, then for all
formulas ϕ0, . . . , ϕn, ϕ and every permutation π of {0, . . . , n},
ϕ0 ⇒ (ϕ1 ⇒ (. . . ⇒ (ϕn ⇒ ϕ) . . .) �S� ϕπ(0) ⇒ (ϕπ(1) ⇒ (. . . ⇒ (ϕπ(n) ⇒ ϕ) . . .).

In general, for every full model 〈A, FiSA〉 the analogous result holds, that is for ev-
ery a0, . . . , an, b ∈ A and every permutation π of {0, . . . , n}, the sets CloFiSA(a0 ⇒
(a1 ⇒ (. . . ⇒ (an ⇒ b) . . .)) and CloFiSA(aπ(0) ⇒ (aπ(1) ⇒ (. . . ⇒ (aπ(n) ⇒
b) . . .)) are equal.

Given a sequence ϕ0, . . . , ϕn of formulas and a formula ψ we introduce the
notation ϕ ⇒ ψ to refer to the formula ϕ0 ⇒ (ϕ1 ⇒ (. . . ⇒ (ϕn ⇒ ψ) . . .).
Similarly, given a sequence a0, . . . , an of elements of an algebra and an element b,
a ⇒ b is the element a0 ⇒ (a1 ⇒ (. . . ⇒ (an ⇒ b) . . .).

Proposition 22. Let S be a selfextensional deductive system with a DDT-term ⇒.
S is Fregean iff for every n-ary connective �, every k and every different variables
p0, . . . , pk, q0, . . . , qn−1, r0, . . . , rn−1 the quasiequations

(
∧

i<n

p ⇒ (qi ⇒ ri) ≈ � ∧
∧

i<n

p ⇒ (ri ⇒ qi) ≈ �) −→ (4)

p ⇒ (�(q0, . . . , qn−1) ⇒ �(r0, . . . , rn−1)) ≈ �
are valid in AlgS.

Proof. Let S be a selfextensional deductive system with a DDT-term ⇒. Then S is
protoalgebraic. Suppose S is Fregean. By Theorem 20 it is fully Fregean. Let A ∈
AlgS. Then, A = 〈A, FiSA〉 is a Fregean g-matrix. Assume that v ∈ Hom(Fm,A)
is such that for every i < n, v(p ⇒ (qi ⇒ ri)) = 1 and v(p ⇒ (ri ⇒ qi)) = 1.
Then, letting X = {v(p0), . . . , v(pk)}, for every i < n,

CloA(X, v(qi)) = CloA(X, v(ri)).

Hence, 〈v(qi), v(ri)〉 ∈ ΛA(CloA(X)). Therefore,

〈�(v(q0), . . . , v(qn−1)), �(v(r0), . . . , v(rn−1))〉 ∈ ΛA(CloA(X)).

Thus, since S is fully Fregean

CloA(X, �(v(q0), . . . , v(qn−1))) = CloA(X, �(v(r0), . . . , v(rn−1))).

Hence, �(v(r0), . . . , v(rn−1)) ∈ CloA(X, �(v(q0), . . . , v(qn−1))). Therefore,

v(p ⇒ (�(q0, . . . , qn−1) ⇒ �(q0, . . . , qn−1))) ∈ CloA(1).

This implies that v(p ⇒ (�(q0, . . . , qn−1) ⇒ �(q0, . . . , qn−1))) = 1.
Suppose now that the quasiequations (4) of the statement of the propo-

sition hold in AlgS. Let A = 〈A, FiSA〉 be a reduced full model of S. Then
A ∈ AlgS. Let X be a finite subset of A. We will show that ΛA(X) is a con-
gruence. Let � be a n-ary connective. Suppose for every i < n, 〈ai, bi〉 ∈ ΛA(X).
Then, CloA(X, ai) = CloA(X, bi), for every i < n. We can assume without losing
generality that 1 ∈ X. Thus, consider any sequence X of all the elements of X
of length the cardinality of X, X ⇒ (ai ⇒ bi) ∈ CloA(1) and X ⇒ (bi ⇒ ai) ∈
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CloA(1). Thus, X ⇒ (ai ⇒ bi) = 1 and X ⇒ (bi ⇒ ai) = 1. Hence, using the
quasiequations (4), X ⇒ (�(a0, . . . , an−1) ⇒ �(b0, . . . , bn−1)) = 1, and similarly,
X ⇒ (�(b0, . . . , bn−1) ⇒ �(a0, . . . , an−1)) = 1. Hence, CloA(X, �(a0, . . . , an−1)) =
CloA(X, �(b0, . . . , bn−1)). Thus, 〈�(a0, . . . , an−1), �(b0, . . . , bn−1)〉 ∈ ΛA(X). �
Lemma 23. Let A be an algebra and ⇒ a binary term such that 〈A,⇒〉 is a Hilbert
algebra. The quasiequations in (4) are valid in A iff for every n-ary connective �,
letting X be any sequence of all the elements of the set {qi ⇒ ri, ri ⇒ qi : i < n},
the equations

X ⇒ (�(q0, . . . , qn−1) ⇒ �(r0, . . . , rn−1)) ≈ 1 (5)
are valid in A.

Proof. Suppose that the quasiequations in (4) are valid in A. Since 〈A,⇒〉 is a
Hilbert algebra, the equations X ⇒ (qi ⇒ ri) ≈ 1 and X ⇒ (ri ⇒ qi) ≈ 1 are
valid in A. Hence, using the quasiequations (4), the equations

X ⇒ (�(q0, . . . , qn−1) ⇒ �(r0, . . . , rn−1)) ≈ 1

and
X ⇒ (�(r0, . . . , rn−1) ⇒ �(q0, . . . , qn−1)) ≈ 1

are valid in A.
Suppose now that the equations

X ⇒ (�(q0, . . . , qn−1) ⇒ �(r0, . . . , rn−1)) ≈ 1

are valid in A. Then so are the equations

X ⇒ (�(r0, . . . , rn−1) ⇒ �(q0, . . . , qn−1)) ≈ 1.

Let p0, . . . , pk, q0, . . . , qn−1, r0, . . . , rn−1 be different variables. Let v∈Hom(Fm,A)
be such that v(p ⇒ (qi ⇒ ri)) = 1 and v(p ⇒ (ri ⇒ qi)) = 1 for every i < n.
From known facts on Hilbert algebras it follows that v(p ⇒ (�(r0, . . . , rn−1) ⇒
�(q0, . . . , qn−1))) = 1. �
Corollary 24. A Hilbert-based class K of algebras relative to ⇒ is the variety
AlgS of a Fregean deductive system S with ⇒ as binary term with the deduction-
detachment property iff it is a subvariety of the variety axiomatized by the Hilbert
equations and, for every connective �, the equations

X ⇒ (�(q0, . . . , qn−1) ⇒ �(r0, . . . , rn−1)) ≈ 1 (6)

where X is a sequence of all the elements of the set {qi ⇒ ri, ri ⇒ qi : i < n}.
Given an algebaric similarity type L and a binary term ⇒, let HI⇒L be the

variery axiomatized by the Hilbert equations for ⇒ and the above equations in
(6). As a corollary we have:

Theorem 25. For every algebraic similarity type L and every one of its binary terms
⇒ there is a dual isomorphism between the set of Fregean Hilbert-based deductive
systems relative to ⇒, ordered by extension, and the set of all subvarieties of the
variety HI⇒L . The isomorphism is given by S �→ AlgS.
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5. Selfextensional logics with a deduction-detachment theorem and
Gentzen calculi

Given a similarity type L, in the present paper a sequent of type L will be a pair
〈Γ, ϕ〉 where Γ is a possibly empty finite set of formulas and ϕ is a formula. We
will write Γ � ϕ instead of 〈Γ, ϕ〉.

A Gentzen-style rule is a pair 〈X, Γ�ϕ〉 where X is a (possibly empty) finite
set of sequents and Γ � ϕ is a sequent. A substitution instance of a Gentzen-style
rule 〈X, Γ � ϕ〉 is a Gentzen-style rule of the form 〈σ[X], σ[Γ] � σ(ϕ)〉 for some
substitution σ, where σ[X] = {σ[∆] � σ(ψ) : ∆ � ψ ∈ X}. A Gentzen-style rule
〈X, Γ � ϕ〉 is initial if X is empty. We will use the standard fraction notation for
Gentzen-style rules

Γ0 � ϕ0, . . . ,Γn−1 � ϕn−1

Γ � ϕ

For the purposes of this paper, a Gentzen calculus is a set of Gentzen-style
rules. Just as for Hilbert style axiom systems there is the notion of proof from an
arbitrary set of premises, given a Gentzen calculus G we can define the notion of
proof from an arbitrary set of sequents in a similar way. A proof in a Gentzen
calculus G from a set of sequents X is a finite succession of sequents each one of
whose elements is a substitution instance of an initial rule of G or a sequent in
X or is obtained by applying a substitution instance of a rule of G to previous
elements in the sequence. A sequent Γ�ϕ is derivable in G from a set of sequents
X if there is a proof in G from X whose last sequent is Γ � ϕ; in this situation we
write X �G Γ � ϕ. If Γ � ϕ is derivable from the emptyset of sequents it is said
to be a derivable sequent of G. A rule 〈X, Γ � ϕ〉 is a derived rule of a Gentzen
calculus G if X �G Γ � ϕ. Notice that if a rule is a derived rule, so are all its
substitution instances, and that, by the definition, every (primitive) rule of G is
a derived rule.

A Gentzen system is a pair G = 〈Fm,�G〉 where Fm is the algebra of formulas
and �G is a finitary closure operator on the set of sequents that is substitution-
invariant. This means, using the notation X �G Γ � ϕ, where X is any set of
sequents, instead of the notation Γ�ϕ ∈ �G (X) typical for closure operators, that
if

{Γi � ψi : i < n} �G Γ � ϕ, (7)

then for every substitution σ ∈ Hom(Fm,Fm)

{σ[Γi] � σ(ψi) : i < n} �G σ[Γ] � σ(ϕ). (8)

We say that a Gentzen system G = 〈Fm,�G〉 satisfies a Gentzen-style rule

Γi � ψi : i < n

Γ � ϕ
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if {Γi � ψi : i < n} �G Γ � ϕ; in this situation we also say that the rule is a sound
rule of G. A Gentzen system G = 〈Fm,�G〉 is said to be structural if it satisfies
the structural rules of Weakening and Cut, and the Identity rule 〈∅, p � p〉 1.

A Gentzen calculus G determines the Gentzen system GG = 〈Fm,�G〉. If G
has the structural rules (either as primitive or derived), the Gentzen system GG is
structural.

Every structural Gentzen system G defines a deductive system SG as follows

Γ �SG ϕ iff there is a finite ∆ ⊆ Γ such that ∅ �G ∆ � ϕ.

We will say that a Gentzen system G is adequate for a deductive system S if
S = SG .

Generalized matrices can be used as models of Gentzen-style rules, Gentzen
calculi and Gentzen systems. The double nature of g-matrices as models of both
deductive systems and Gentzen systems allows us to study in a natural way the
connections between the algebraic theory of deductive systems and the algebraic
theory of Gentzen systems. We explore some of these connections here for selfex-
tensional logics with a deduction-detachment term.

A g-matrix A = 〈A, C〉 is said to be a model of a Gentzen-style rule

{Γi � ψi : i < n}
Γ � ϕ

if for every homomorphism h ∈ Hom(Fm,A), h(ϕ) ∈ CloC(h[Γ]) whenever for all
i < n h(ϕi) ∈ CloC(h[Γi]). It is a model of a Gentzen calculus if it is a model of
all its rules, and it is a model of a Gentzen system if it is a model of all its sound
rules. The following observations follow immediately from the definitions:

1. if a g-matrix is a model of a Gentzen-style rule, it is also a model of all its
substitution instances,

2. if a g-matrix is a model of a Gentzen calculus, then it is a model of the
Gentzen system that it defines,

3. if a g-matrix is a model of a Gentzen system G, it is a g-model of the associated
deductive system SG .

The congruence rules for an n-ary connective � are the Gentzen-style rules
of the form

{ϕi � ψi, ψi � ϕi : i ≤ n}
�(ϕ0 . . . ϕn−1) � �(ψ0 . . . ψn−1)

We say that a Gentzen calculus has the congruence rules if the congruence rules
of every connective are derived rules. A Gentzen system has the congruence rules
if it satisfies the congruence rules of every connective.

Let S be from now on a selfextensional logic with the deduction-detachment
property for ⇒. Recall that then on every A ∈ AlgS the operation ⇒A defines

1We do not need to consider the other structural rules - exchange and contraction - because we
consider sets of premises in our sequents and not successions.
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by condition (1) an order that we denote by ≤A. We say that a Gentzen calculus
G adequate for S is AlgS-order-sound if whenever

{ϕi � ψi : I ∈ I} �G ϕ � ψ,

then for every A ∈ AlgS and every valuation v ∈ Hom(Fm,A)

if for all i ∈ I, v(ϕi) ≤A v(ψi), then v(ϕ) ≤A v(ψ).

We say that it is AlgS-order-complete if the converse of the main implication in
the above statement holds.

Lemma 26. If G is a Gentzen calculus adequate for S which is AlgS-order-
complete, then it has the congruence rules.

Proof. Let � be an n-ary connective. Let A ∈ AlgS and v ∈ Hom(Fm,A). Assume
that for ϕi, ψi with i < n, v(ϕi) ≤A v(ψi) and v(ψi) ≤A v(ϕi). Thus, v(ϕi) =
v(ψi). Therefore, v(� ϕ0 . . . ϕn−1) = v(� ψ0 . . . ψn−1). By AlgS-order-completeness
it follows that the congruence rules for � are derived rules of G. �

We say that a Gentzen calculus G has the DDT rules if the rules of the forms
Γ, ϕ � ψ

Γ � ϕ ⇒ ψ

Γ � ϕ ⇒ ψ

Γ, ϕ � ψ

are derived rules.

Remark 27. If G has the DDT rules then for every sequent Γ � ϕ,

Γ � ϕ �G� � � Γ ⇒ ϕ.

The remark implies the lemma below.

Lemma 28. Let G be a Gentzen calculus with the DDT rules, then for every family
of sequents {Γi � ϕi : i ∈ I} and every sequent Γ � ϕ the following statements are
equivalent:

1. {Γi � ϕi : i ∈ I} �G Γ � ϕ

2. {� � Γi ⇒ ϕi : i ∈ I} �G � � Γ ⇒ ϕ.

Lemma 29. If G is a structural Gentzen calculus adequate for S which is AlgS-
order-sound, has the DDT rules and has the congruence rules, then it is AlgS-
order-complete.

Proof. Assume that the family of sequents with elements ϕi � ψi with i ∈ I and
ϕ � ψ is such that for every A ∈ AlgS and every valuation v ∈ Hom(Fm,A), if
for all i ∈ I, v(ϕi) ≤A v(ψi), then v(ϕ) ≤A v(ψ). Then, setting � := p ⇒ p for
some fixed variable p,

{ϕi ⇒ ψi ≈ � : i ∈ I} |=AlgS ϕ ⇒ ψ ≈ �.

Thus by completeness of the quasiequational logic of AlgS and the fact that AlgS
is a variety, there is a proof of the equation ϕ ⇒ ψ ≈ � from the equations in
{ϕi ⇒ ψi ≈ � : i ∈ I} and the equations which are valid in AlgS, which are the
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equations δ ≈ ε such that δ ��S ε. An easy inductive argument will show that for
every equation γ ≈ δ in such a proof

{ϕi � ψi : i ∈ I} �G γ � δ, δ � γ.

If γ ≈ δ is ϕi ⇒ ψi ≈ � with i ∈ I, then the above remark and the fact that (using
Identity, the DDT rules and Weakening) �G ϕi ⇒ ψi �� gives the result. If γ ≈ δ
is valid in AlgS, then γ ��S δ; therefore the sequents γ � δ, δ � γ are derivable
in G and we have the result. Now if γ ≈ δ follows by symmetry of the equality
from previous equations in the proof, then it is clear. If it follows by transitivity
of equality, then Cut gives the desired result. Finally, if it follows by replacement
from previous equations in the proof, applying the congruence rules and Cut we
obtain the result. Hence, by the induccion principle we obtain that � � ϕ ⇒ ψ
is derivable in G from {ϕi � ψi : i ∈ I}. Thus ϕ � ψ is also derivable from this
set. �
Corollary 30. If G is a structural Gentzen calculus with the DDT rules which is
adequate for the deductive system S and which is AlgS-order-sound, then G is
AlgS-order-complete iff it has the congruence rules.

From the corollary follows that there is always a structural Gentzen calculus
which is adequate for the deductive system S and is AlgS-order-sound and AlgS-
order-complete. It is the Gentzen calculus GS defined by the following rules:

1. the structural rules of identity, weakening and cut,
2. the congruence rules for the connectives,
3. the DDT rules
4. for every finite Γ and every ϕ such that Γ �S ϕ, the initial rule

Γ � ϕ

That this calculus is AlgS-order-sound follows easily from Lemma 28 and the
fact that AlgS is Hilbert-based with respect to ⇒. The AlgS-order-completeness
follows from the corollary. We will denote by G(S) the Gentzen system of the
calculus GS .

If we have a nice Hilbert style axiomatization of S we can consider the
Gentzen calculus like the one described above except that, instead of the rules
in (4), it has the Gentzen-style rules that naturally correspond to the axioms and
rules of the Hilbert style axiomatization.

Remark 31. From Remark 27 it follows that any two structural Gentzen calculi
adequate for S and with the DDT rules which are AlgS-order-sound and AlgS-
order-complete define the same Gentzen system.

We say that a Gentzen system adequate for a deductive system S with the-
orems is fully-adequate if the g-matrix models of the Gentzen system are the full
g-models of S. This notion is introduced in [8] under the name ‘strongly adequate’.
We give a different, simpler proof of Proposition 4.47 (iii) in [8]. We will use the
lemma below.
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Lemma 32. Let S be a Hilbert-based deductive system. If A = 〈A, C〉 is g-matrix
model of S such that its Frege relation is the identity, then C = FiSA and A ∈ KS

Proof. Since the Frege relation of A = 〈A, C〉 is the identity, this g-matrix is
reduced, so A ∈ AlgS ⊆ KS . To prove that C = FiSA assume that F ∈ FiSA. By
Lemma 14, F is an implicative filter. We show that F = CloA(F ). If b ∈ CloA(F ),
then let a0, . . . , an ∈ F such that a ∈ CloA({a0, . . . , an}). Since A is a model of
the DDT rules, a ⇒ b ∈ CloA(�). Therefore, CloA(�) = CloA(a ⇒ b). Thus,
a ⇒ b = �. Since � ∈ F because it is an implicative filter, a ⇒ b ∈ F . Hence,
since a0, . . . , an ∈ F and F is an implicative filter, b ∈ F . �

Theorem 33. Let S be a deductive system with the deduction-detachment property.
Then, S is selfextensional iff the Gentzen system G(S) is fully adequate for S.

Proof. If the Gentzen system G(S) for S is fully adequate, then the full model
〈Fm,ThS〉 is a model of G(S), thus of the congruence rules. This implies that S
is selfextensional. Assume now that S is selfextensional. Then, by Theorem 17, S
is fully selfextensional. Thus, if 〈A, C〉 is a full g-model of S, then it is a model
of the congruence rules of every connective and of the sequents Γ � ϕ such that
Γ �S ϕ. Clearly it is also a model of the structural rules. Moreover, by Theorem
2.48 of [8] 〈A, C〉 has the deduction-detachment property. Thus it is a model of
the DDT rules. Therefore, it is a model of the Gentzen system G(S). To finish
the proof it is enough to show that if A = 〈A, C〉 is a reduced g-matrix model of
G(S), then C = FiSA. If A is a reduced g-matrix model of G(S) it is a model of S
and of the congruence rules. This implies that its Frege relation is a congruence;
therefore since A is reduced, its Frege relation is the identity. Moreover, A is a
model of the DDT rules. Lemma 32 implies that C = FiSA. �

The notion of AlgS-order-sound and AlgS-order-complete structural
Gentzen system is strongly related to the notion of algebraizable Gentzen sys-
tem. We recall this notion here.

A structural translation t of sequents into equations is a mapping that maps
every sequent to a finite set of equations and satisfies the following structurality
property: for every sequent Γ � ϕ and every substitution σ,

if t(Γ � ϕ) = {εi ≈ δi : i < n}, then t(σ[Γ] � σ(ϕ)) = {σ(εi) ≈ σ(δi) : i < n}.
A structural translation s from equations into sequents is a mapping that maps
every equation to a finite set of sequents and has the corresponding structurality
property, that is, for every equation ε ≈ δ and every substitution σ,

if s(ε ≈ δ) = {Γi � ϕi : i < n}, then s(σ(ε) ≈ σ(δ)) = {σ[Γi] � σ[ϕi] : i < n}.
If t is a translation of sequents into equations and X is a set of sequents, the set
of equations t(X) is defined by

t(X) =
⋃

{t(Γ � ϕ) : Γ � ϕ ∈ X}.
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If s is a translation from equations into sequents and E is a set of equations, the
set of sequents s(E) is defined by

s(E) =
⋃

{s(ϕ ≈ ψ) : ϕ ≈ ψ ∈ E}.
A Gentzen system G is said to be algebraizable if there is a class of algebras

K and a structural translation t from sequents into equations and a structural
translation s from equations into sequents such that the following two conditions
hold

{Γi � ϕi : i ∈ I} �G Γ � ϕ iff t({Γi � ϕi : i ∈ I}) |=K t(Γ � ϕ). (9)

ϕ ≈ ψ |=K t(s(ϕ ≈ ψ)) and t(s(ϕ ≈ ψ)) |=K ϕ ≈ ψ, (10)

where |=K denotes the equational consequence defined by the class of algebras K
as follows:

{ϕi ≈ ψi : i ∈ I} |=K ϕ ≈ ψ iff ∀A ∈ K and ∀h ∈ Hom(Fm,A),

if ∀i ∈ I h(ϕi) = h(ψi), then h(ϕ) = h(ψ).

When to the right of “ |=K ” there is a set it means that every element of the set
follows from the equations in the set to the left of “ |=K ”.

From [16] it follows that if a Gentzen system G is algebraizable, there is always
a quasivariety K, which is unique, such that (9) and (10) are satisfied for some
structural translations t and s. This quasivariety is called the equivalent algebraic
semantics of G.

The notion of algebraizable Gentzen system was introduced in [15] and its
theory developed in [16]. The theory of algebraizable Gentzen systems is an exten-
sion to these objects of the theory of algebraizable deductive systems developed
by W. Blok and D. Pigozzi in [2]. It is also a particular case of the notion of
equivalence between Gentzen systems introduced and studied in [16].

Let us fix a selfextensional deductive system S with the deduction-detachment
property for ⇒. We define the structural translation t from sequents to equations
and the structural translation sq from equations to sequents respectively by

t(Γ � ϕ) = � ≈ Γ ⇒ ϕ sq(ϕ ≈ ψ) = {ϕ � ψ, ψ � ϕ}.
Theorem 34. For every selfextensional logic S with the deduction-detachment prop-
erty for ⇒, the Gentzen system defined by the Gentzen calculus GS is algebraizable
with equivalent algebraic semantics AlgS and translations t and sq.

Proof. By the results above GS is AlgS-order-sound and AlgS-order-complete,
thus Lemma 28 gives condition (7) of the definition of algebraizable Gentzen sys-
tem holds. Condition (8) holds because in any Hilbert algebra, a = b iff a ⇒ b = 1
and b ⇒ a = 1. �
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Logic without Self-Deductibility

Pierre Ageron

Abstract. Self-deductibility is the Stoic version of the law of identity : if A,
then A. After a discussion on its role, we suggest a natural system of axioms
and rules for a logic in which this law is not valid, based on a simple model
where proofs are families of strictly injective maps. Finally we develop some
general theory of taxonomies (i.e. “categories without identities”) and place
this particular example into a more general algebraic picture.
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1. The law of self-deductibility

What we call here (following [4]) the “law of self-deductibility” is the Stoic version
of the “law of identity”, as incidentally cited by Sextus Empiricus: it reads “if A,
then A”, so that it expresses reflexivity of entailment. This is a law of the logic
of propositions, not to be confused with the more well known Peripatetic law of
identity which belongs to the logic of terms and is the equation a = a.

Self-deductibility has a paradoxical status. It seems so obvious that, unlike
the law of excluded middle or the law of contradiction, it was hardly ever a mat-
ter of controversy (interesting attempts at challenging it appear in [4]). Also it
seems of no use whatsoever in the mathematical practice and totally sterile in
terms of deductive power. However in Gentzen’s sequent calculus, the law of self-
deductibility is the only axiom, apart from those for truth and absurdity (recall
that an axiom is a rule with no premiss). It follows that self-deductibility, far from
being superfluous, is essential to start any proof. Moreover this axiom is really
only one half of the law of identity : the “cut rule” (expressing transitivity of en-
tailment) is in many senses the dual rule. Since self-deductibility is unavoidable
in sequent calculus, it is not surprising (although difficult to prove) that the cut
rule is redundant. This also means that challenging self-deductibility implies to
renounce cut elimination.
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One of the first modern attempts to formalize deductive logic is Charles
Peirce’s Algebra of logic, published in 1885 [8]. This paper mentions in passing a
quite remarkable interpretation of the law of self-deductibility. Peirce refers to it
as the “first icon of algebra” and argues that it “justifies our continuing to hold
what we have held, though we may, for instance, forget how we were originally
justified in holding it”. This clearly suggests that self-deductibility works as an
amnesia principle : once some statement is proved, it allows us to forget how it
was proved. In mathematical practice, it is obviously a good thing that we can
continue to trust our old theorems even if we are unable to reconstruct their proofs.
However, to give a a complete account of some new result, we should be able to
keep track of our old proofs very precisely. If Peirce’s view is correct, this implies
some restriction on the scope of self-deductibility.

Now let us see proofs as certain functions between sets (the so-called Heyting
paradigm). The analysis we have just done rather naturally leads to the idea that
these functions should be injective (in order to trace back the history of a proof
unambiguously) and not surjective (at each step we need some space to save the
job we accomplished). So we write A � B if there is a non surjective injective map
from A into B. From the constructive point of view we shall try and stick to, it
is in fact stronger and better to consider strict injective maps, i.e. those injective
maps whose coimage is inhabited. In other terms, we end up with the following : a
proof of A � B consists of an injective map f : A → B together with some element
x0 ∈ B \ f [A] witnessing that f is strict. Assuming from now on that A /∈ A for
every set A, it is convenient to encode these data as an injective map from A∪{A}
into B.

In this interpretation, self-deductible propositions correspond precisely to
reflexive sets, also known as Dedekind-infinite sets : recall that reflexive sets are
not finite, and that the converse holds if excluded middle and countable choice
are assumed. Also, assuming excluded middle, mutually deductible propositions
(i.e. A � B and B � A) correspond to equipotent reflexive sets (via the Cantor-
Bernstein theorem). It should by now be clear that the idea of a logic without self-
deductibility is a perfectly consistent and natural one: such a logic really underlies
Dedekind’s theory of “infinite systems” [3]. Our task in the next section will be
to make that hidden logic explicit. A basic knowledge of category theory will be
assumed from the reader, but proofs will be omitted.

2. A model for a logic without self-deductibility

To find out axioms and rules for a logic without self-deductibility, our strategy
consists in describing a particular categorical structure: our selection of axioms
and rules will then reflect the kind of structure that this model is equipped with.
Of course we build on the ideas of section 1. But in our model, propositions will
not be just sets, but arbitrary families of sets : this extension allows for a nice
interpretation of conjunction and disjunction. We certainly do not pretend this
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model is what we want ultimately : in particular it is too simple to account for
implication or negation.

The model is as follows. We denote by A the category with objects all families
A = (Ai)i∈I of sets, such that an arrow from A = (Ai)i∈I to B = (Bj)j∈J is a map
φ : J → I together with a family of injective maps Aφ(j) → Bj . Recall that we
assume A /∈ A for every set A throughout the paper. Then we have at our disposal
the endofunctor ? : A → A defined on objects by

?A = (Ai ∪ {Ai})i∈I

and on arrows in a straightforward manner. Also it can be checked that A has a
terminal object � and binary products A ∧ B, as well as an initial object ⊥ and
binary sums A∨B. For instance one has � = ( ) and ⊥ = (∅). It is the case that ?
preserves � and ∧, but not ⊥ or ∨. Now write A � B if there is some arrow from
?A to B in A. It can be checked that the following hold:

A � ?A
(1)

A � ??A
(2)

A � B

?A � ?B
(3)

A �?B B � C

A � C
(4)

A � A A � B

B � B
(5)

A � � (6)

A ∧ B � ?A
(7)

A ∧ B � ?B
(8)

C � A C � B

C � A ∧ B
(9)

C � A D � B

C ∧ D � A ∧ B
(10)

⊥ � ?C
(11)

A � ?(A ∨ B)
(12)

B � ?(A ∨ B)
(13)

A � ?A ∨ B
(14)

B � A∨ ?B
(15)

A � C B � C

A ∨ B � ?C
(16)

We can read this as a system of logical axioms and rules in the style of categorical
sequents, i.e. sequents with exactly one hypothesis and one conclusion, as they
appear in [5]. The calculus of categorical sequents is sometimes criticized by proof
theorists because it does not enjoy cut elimination. On the other hand, precisely
this shortcoming makes it possible to weaken self-deductibility. The weakening is
performed by a modality “?”, involved in all axioms except (6). This modality
is very different from those of modal or linear logics. Note that if we erase “?”
from axioms and rules (1) to (16), we get only valid axioms and rules of usual
intuitionistic logic.
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Although self-deductibility is not derivable in this system, some of its strength
can be recovered from rule (4), which can be seen as a strong form of the cut rule.
For instance (4) combined with (7) yields the usual weakening rule

A � C

A ∧ B � C

in spite of the fact that the axiom

A ∧ B � A

does not hold. It follows from (1), (3) and (4) that a proposition A is self-deductible
if and only if A and ?A are mutually deductible. And ordinary cut (i.e. transitivity
of entailment) can be derived from (2), (3) and (4).

The most unexpected rule is certainly (5). In the basic case where A and B
consist of just one set, it exactly says that a set containing a reflexive subset is itself
reflexive. As this result, theorem 68 in [3], crucially depends on excluded middle,
rule (5) gives a definite Boolean flavour to our system, even though it does not
include negation or implication. In the case of an arbitrary family, it relies on the
fact that A � A holds if and only if each Ai is reflexive, a consequence of theorem 72
in [3]: reflexive sets are precisely those sets containing a subset equipotent to the
set of natural numbers. If we were to accept infinitary rules, we should consider
adding this one where the premisses consist in an infinite regression of causes:

. . . A3 � A2 A2 � A1 A1 � A

A � A

In the next section, we shall develop a general framework in order to elucidate
the features of our model from an algebraic point of view.

3. Category-theoretic aspects of the subject

There is a link between category theory and universal propositional logic, first
explored by Joachim Lambek in a series of papers starting with [5]. The idea is
to view the objects of a category as propositions and its arrows as proofs. In fact
each notion of “category equipped with some extra algebraic structure of a certain
kind” can be seen to describe a set of logical axioms and rules, together with a
“natural” algebra of proofs. E.g. it is well known that bicartesian closed categories
(i.e. categories with terminal object, binary products, initial object, binary sums
and exponentials) are the algebraic counterpart of intuitionistic logic. Similarly the
so-called ∗-autonomous categories correspond to linear logic. Using the language
of Ehresmann’s sketches, a general logic is nothing but a limit sketch containing
the sketch for categories as a subsketch and built according to certain constraints :
see [1] for details. What matters for us here is just this obvious observation : since
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abstract “identity arrows” idA : A → A are part of the definition of a category,
such a logic automatically satisfies self-deductibility.

Now suppose we want to drop the principle of self-deductibility, while retain-
ing the cut rule and remaining in the categorical spirit. Then we have to consider
structures defined similarly to categories except that identities need not exist. Such
structures do appear but sporadically in the categorical literature. They have been
given various names: semicategories, semigroupoids, multiplicative graphs, tax-
onomies. Here we will retain the latter terminology, suggested by Robert Paré and
Richard Wood in a paper that was never published. The theory of taxonomies is
not much developed since it was considered by many as a blind alley. As put down
by the influential category theorist William Lawvere in 1991: “Even today there
are many who think one could usefully ’generalize’ categories by omitting the re-
quirement that there must be identity maps [...] However [how] useless would be
an intricate network of speeding buses without bus-stops” [6]. Moreover it is often
objected that taxonomies are nothing but (two-sided) ideals in categories: this is
certainly true, but of little use in practice, because there is in general no natural
category in which a given taxonomy is an ideal. In particular, the formal process
of freely adding identity arrows to a taxonomy destroys the identities that might
originally exist for some objects.

Recently taxonomies have attracted a renewal of interest. E.g. Isar Stubbe’s
thesis [9] demonstrates nicely that they cannot be avoided even in a context that
does not involve them a priori. Note that his taxonomies are “regular” in the sense
of [7]: every arrow f : A → B can be parsed as f = h◦g, where moreover g : A → C
and h : C → B are unique “up to homotopy”. This “interpolation” (or “density”)
property happens to make regular taxonomies rather close to categories. Looking
at them with a logical glance would probably be worthwhile.

A completely different example of a taxonomy is the effective taxonomy of
a pointed endofunctor, which was introduced in [3]. Given a category C, we start
with a functor F : C → C together with a natural transformation η : idC ⇒ F .
Recall that the latter means that for every object A, we are given an arrow ηA :
A → F (A) in such a way that we have ηB◦f = F (f)◦ηA for every arrow f : A → B
in C. Now consider the graph whose objects are juste those of C while its arrows
from A to B are the arrows from F (A) to B in C. Consecutive arrows of that
graph compose in a canonical way : if f : A → B and g : B → C, let

g • f = g ◦ ηB ◦ f.

It is easy to check that • is associative, so that we have in fact defined a taxonomy
that we will denote by Tax(C, F, η). In general, Tax(C, F, η) fails to be a category
because of the lack of identities. More precisely an object A has an identity in
Tax(C, F, η) if and only if the arrow ηA is invertible in C.

Of course an effective taxonomy Tax(C, F, η) inherits from F and η a much
richer structure than merely being a taxononomy : the rather exotic kind of struc-
ture that arises has been characterized in [2] under the name “supertaxonomy”.
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Further enrichments of the taxonomy structure (and of the underlying logic) ap-
pear if, e.g., we assume that C has and F preserves all products (empty, finite or
infinite). A typical situation is that where C is the free completion under products
of some multicocomplete category A in sense of Yves Diers. Let us first recall that
a cocomplete category A is one in which every diagram δ has a colimit, i.e. a cocone
over δ through which every cocone over δ factorizes uniquely. A multicocomplete
category is one in which every diagram δ has a multicolimit, i.e. a family of cocones
over δ such that every cocone over δ factorizes uniquely through precisely one of
these cocones. Equivalently a category A is multicocomplete if and only if its com-
pletion under products C = ΠA is cocomplete. Note that the completion ΠA can
be described very explicitely : its objects are all families A = (Ai)i∈I of objects of
A, and an an arrow from A = (Ai)i∈I to B = (Bj)j∈J is a map φ : J → I together
with a family of arrows Aφ(j) → Bj . In this situation any endofunctor F : A → A
uniquely extends to an endofunctor ΠF : ΠA → ΠA preserving products (but
not, in general, colimits); furthermore any natural transformation η : idA ⇒ F
extends to a natural transformation Πη : idΠA ⇒ ΠF .

Now a typical example of a multicocomplete category which is not cocomplete
is the category A of sets and injective maps between them. It should be clear that
the category C described in section 2 is just ΠA for that particular A; similarly
the endofunctor ? : C → C is just ΠF with F : A → A the obvious pointed
endofunctor such that F (A) = A ∪ {A}. What we considered to be proofs in our
logic are precisely arrows in T = Tax(ΠA, ΠF, Πη) where η : idA ⇒ F is the
obvious natural transformation. In fact, all of our axioms and rules except for rule
(5) hold in T = Tax(ΠA, ΠF, Πη) for A an arbitrary multicocomplete category,
F : A → A an arbitrary endofunctor and η : idA ⇒ F an arbitrary natural
transformation. Rules (1) to (4) above reflect the supertaxonomy structure of T.
Rules (6) to (10) reflect the structure inherited by T from the fact that ΠA has
and ΠF preserves products. Rules (11) to (16) reflect the structure inherited by
T from the fact that ΠA has sums (that are not necessarily preserved by ΠF ).

As can be suspected from the fact that it is some kind of Booleanness (see sec-
tion 2), rule (5) is more specific and the underlying algebra is more subtle. Namely,
if A is the category of sets and injective maps, it happens that Tax(A, F, η) → A
is a so-called “crossed taxonomy” : see [2]. As for the extension of rule (5) to
Tax(ΠA, ΠF, Πη), it is not fully understood yet.
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[2] Pierre Ageron, Effective taxonomies and crossed taxonomies, Cahiers de topologie et
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Equipollent Logical Systems

Carlos Caleiro and Ricardo Gonçalves

Abstract. When can we say that two distinct logical systems are, neverthe-
less, essentially the “same”? In this paper we discuss the notion of “sameness”
between logical systems, bearing in mind the expressive power of their asso-
ciated spaces of theories, but without neglecting their syntactical dimension.
Departing from a categorial analysis of the question, we introduce the new
notion of equipollence between logical systems. We use several examples to
illustrate our proposal and to support its comparison to other proposals in
the literature, namely homeomorphisms [7], and translational equivalence (or
synonymity) [6].

Keywords. Logical system, theory space, equipollence.

1. Introduction

When we talk about classical propositional logic (CPL), for example, we are most
often not referring to just a particular entity but rather to a family of (possibly
very) different logical systems that do all present essentially the “same” CPL. But
what do we mean when we say that two logical systems are the “same”? Our goal
is to find a satisfactory answer to this question and to show how our proposal,
equipollence, relates to earlier proposals in the literature [7, 6, 1].

Certainly there is no point in even discussing this question without first
agreeing on what a logical system is. Still, we do not wish to dwell on such a
delicate subject here. The interested reader can find a very complete discussion
of this theme in [4], along with a myriad of different viewpoints and possible
definitions. For what we are concerned in this paper, we will restrict our attention
to Tarski-style consequence operators over a structured language. This choice is
certainly not without controversy, but most logicians should at least agree that it
covers a wide range of well known examples.

This work was partially supported by FCT and EU FEDER, namely, via the Projects
POCTI/2001/MAT/37239 FibLog and POCTI/MAT/55796/2004 QuantLog of CLC. The sec-
ond author was also supported by FCT under the PhD grant SFRH/BD/18345/2004/SV7T.
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Methodologically, we shall adopt a category-theoretical perspective, where
logical systems will constitute our main category of interest. An adequate notion
of morphism between logical systems will however be essential, since we are not
only interested in logical systems as objects by themselves, but we are particularly
interested in the way different logical systems relate to each other. Morphisms
between logical systems will be uniform translations between the structured lan-
guages that preserve the corresponding consequence operators. We will also take
into account that logical systems generate spaces of theories, which in their turn
can also be endowed with a suitable categorial structure, in a functorial way. This
categorial setup is directly inspired by [8, 2].

As a first attempt to attack the problem, we shall analyze the most obvious
idea, that is, to try and characterize “sameness” between logical systems using
the built-in notion of isomorphism in the corresponding category. It turns out
that isomorphisms between logical systems are very closely related to Pollard’s
homeomorphisms, as presented in [7], and thus suffer from very similar merits and
shortcomings. In fact, with the support of suitable examples, we can claim that,
although meaningful, this notion is syntactically too strict as a definition of “same-
ness”. To overcome this strictness, we shall then take a brief look at the theory
spaces generated by these logical systems, thus abstracting away from syntactical
fine details. At the level of logical systems, individual formulas play a fundamen-
tal role, while at the level of their associated theory spaces, the expressive power
of isolated formulas is not so much important. It turns out, however, that the
built-in notion of isomorphism between theory spaces is now too broad, as we
also illustrate. The correct notion of “sameness” seems therefore to lie somewhere
in between these two notions of isomorphism. By capturing the right amount of
interplay between the two, and taking into account the functorial relationship be-
tween the categories of logical systems and theory spaces, we finally manage to
isolate our notion of equipollence, in a way similar to the one developed in [2]. It is
interesting to note that the ideas underlying equipollence are very closely related
to those that stand behind Pelletier and Urquhart’s proposal [6] of translational
equivalence (or synonymity). Equipollence can nevertheless be shown to be more
widely applicable, although the two notions coincide under mild assumptions, that
we make explicit.

We begin by introducing, in section 2, the categories Log of logical systems
and Tsp of theory spaces, that will be used throughout the paper. In section 3, we
analyze the notions of isomorphism in these categories, and we provide examples
that help us to conclude that none of them, per se, is satisfactory as a definition of
“sameness” between logical systems. We also show how isomorphisms in Log relate
to the homeomorphisms of [7]. Our notion of equipollence is then introduced and
analyzed in section 4. We illustrate our proposal with a few examples, that will
also enhance its comparison with the notion of synonymity of [6]. We conclude, in
section 5, with an overview of our proposal and a discussion of its adequation.
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2. From logical systems to theory spaces

In this section we introduce the precise definitions of logical systems and theory
spaces, along with their associated categorial structure. We should however start
with the more syntactical details. We will consider logical languages that are freely
generated from a given signature including constructors of different arities, as is
most often the case.

Definition 2.1. A signature is an indexed set Σ = {Σn}n∈N, where each Σn is the
set of n-ary constructors.

We consider that the set of propositional variables is included in Σ0.

Definition 2.2. The language over a given a signature Σ, which we denote by LΣ,
is build inductively in the usual way:

• Σ0 ⊆ LΣ;
• If n ∈ N, ϕ1, . . . , ϕn ∈ LΣ and c ∈ Σn then c(ϕ1, . . . , ϕn) ∈ LΣ.

We call Σ-formulas to the elements of LΣ, or simply formulas when Σ is clear
from the context.

Definition 2.3. A logical system is a pair L = 〈Σ,�〉, where Σ is a signature and
� is a consequence operator on LΣ (in the sense of Tarski, cf. eg. [9]), that is,
� : 2LΣ → 2LΣ is a function that satisfies the following properties, for every
Γ, Φ ⊆ LΣ:

Extensiveness: Γ ⊆ Γ�;
Monotonicity: If Γ ⊆ Φ then Γ� ⊆ Φ�;
Idempotence: (Γ�)� ⊆ Γ�.

For the sake of generality, we do not require here the consequence operator
to be finitary, or even structural.

Since we will need to talk about the expressive power of the language of a
given logical system, we will need to refer to its connectives (primitive or derived).
For the purpose, we consider fixed once and for all a set Ξ = {ξi}i∈N+ of metavari-
ables. Then, given a signature Σ and k ∈ N, we can consider the set Lk

Σ defined
inductively by:

• {ξ1, . . . , ξk} ⊆ Lk
Σ;

• Σ0 ⊆ Lk
Σ;

• If n ∈ N, ϕ1, . . . , ϕn ∈ Lk
Σ and c ∈ Σn then c(ϕ1, . . . , ϕn) ∈ Lk

Σ.
Clearly, we have that LΣ = L0

Σ. We can also consider the set Lω
Σ =

⋃
n∈NLn

Σ.
Given ϕ ∈ Lk

Σ we will write ϕ(ξ1 \ ψ1, . . . , ξk \ ψk) to denote the formula that is
obtained from ϕ by simultaneously replacing each occurrence of ξi in ϕ by ψi, for
every i ≤ k.

A derived connective of arity k ∈ N is a λ-term d = λξ1 . . . ξk.ϕ where ϕ ∈ Lk
Σ.

We denote by DCk
Σ the set of all derived connectives of arity k over Σ. Note that,
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if c ∈ Σk is a primitive connective, it can also be considered as the derived con-
nective c = λξ1 . . . ξk.c(ξ1, . . . , ξk). Given a derived connective d = λξ1 . . . ξn.ϕ we
will often write d(ψ1, . . . , ψn) instead of ϕ(ξ1 \ ψ1, . . . , ξn \ ψn).

Different languages generated from different signatures can be translated ac-
cording to the following notion of morphism, where primitive connectives from
one signature are mapped to derived connectives from another signature, while
preserving the corresponding arities.

Definition 2.4. Given signatures Σ1 and Σ2, a signature morphism h : Σ1 → Σ2 is
an N-indexed family of functions h = {hn : Σn

1 → DCn
Σ2

}n∈N.

Given a signature morphism h : Σ1 → Σ2, we can define its free extensions
h : Lk

Σ1
→ Lk

Σ2
for k ∈ N, and h : Lω

Σ1
→ Lω

Σ2
inductively, as follows:

• h(ξi) = ξi if ξi ∈ Ξ;
• h(c) = h0(c) if c ∈ Σ0

1;
• h(c(ϕ1, . . . , ϕn)) = hn(c)(h(ϕ1), . . . , h(ϕn)) if c ∈ Σn

1 .

A translation function h that satisfies the above requirements will be dubbed
uniform.

Signatures and their morphisms constitute a category Sig with identities
idΣ : Σ → Σ such that idn

Σ(c) = λξ1 . . . ξn.c(ξ1, . . . , ξn) for every n ∈ N and c ∈ Σn,
and the composition of signature morphisms f : Σ1 → Σ2 and g : Σ2 → Σ3 de-
fined to be g ◦ f : Σ1 → Σ3 such that (g ◦ f)n(c) = λξ1 . . . ξn.g(ϕ), assuming that
fn(c) = λξ1 . . . ξn.ϕ.

We can now take advantage of uniform translations to put forth the notion of
morphism between logical systems. Given a function h : LΣ1 → LΣ2 and Φ ⊆ LΣ1

we can consider the set h[Φ] = {h(ϕ) : ϕ ∈ Φ}.
Definition 2.5. Let L1 = 〈Σ1,�1〉 and L2 = 〈Σ2,�2〉 be logical systems. A logical
system morphism h : L1 → L2 is a signature morphism h : Σ1 → Σ2 such that
h[Φ�1 ] ⊆ h[Φ]�2 for every Φ ⊆ LΣ1 .

Logical systems and their morphisms constitute a concrete category Log, over
Sig. The following is a well known useful lemma.

Lemma 2.6. Let L1 = 〈Σ1,�1〉 and L2 = 〈Σ2,�2〉 be logical systems, and h : L1 →
L2 a Log-morphism. Then, h[Φ�1 ]�2 = h[Φ]�2 for every Φ ⊆ LΣ1 .

Proof. Clearly, by the extensiveness of �1, Φ ⊆ Φ�1 . Therefore, h[Φ] ⊆ h[Φ�1 ] and
by the monotonicity of �2 we get that h[Φ]�2 ⊆ h[Φ�1 ]�2 . On the other hand, since
h is a morphism, we have that h[Φ�1 ] ⊆ h[Φ]�2 . Thus, by the monotonicity of �2

it follows that h[Φ�1 ]�2 ⊆ (h[Φ]�2)�2 . Now, by the idempotence of �2 we get that
(h[Φ]�2)�2 ⊆ h[Φ]�2 . Therefore, we have h[Φ�1 ]�2 ⊆ h[Φ]�2 . �

As usual, a theory of a logical system L = 〈Σ,�〉 is a set Φ ⊆ LΣ such that
Φ� = Φ. We denote by Th(L) the set of all theories of L. It is well known that the
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structure of the set Th(L) under the inclusion ordering is very important. Namely,
it is always a complete lattice.

Definition 2.7. A theory space is a complete lattice tsp = 〈Th,≤〉, that is, a partial
order ≤ on the set Th such that every T ⊆ Th has a least upper-bound (or join)∨

T .

In particular, given a logical system L = 〈Σ,�〉, tspL = 〈Th(L),⊆〉 is always a
theory space (cf. eg. [9]). Moreover, the language translations associated to logical
system morphisms always act on the consequence operators in such a way that
joins are preserved in the corresponding theory spaces.

Definition 2.8. Let tsp1 = 〈Th1,≤1〉 and tsp2 = 〈Th2,≤2〉 be theory spaces. A
theory spaces morphism h : tsp1 → tsp2 is a function h : Th1 → Th2 such that
h(

∨
1T ) =

∨
2h[T ] for every T ⊆ Th1.

We prove now a straightforward but useful property of theory spaces mor-
phisms.

Lemma 2.9. Let tsp1 = 〈Th1,≤1〉 and tsp2 = 〈Th2,≤2〉 be theory spaces and
h : tsp1 → tsp2 a theory spaces morphism. Then h is order preserving, that is, for
every Φ, Γ ∈ Th1, if Φ ≤1 Γ then h(Φ) ≤2 h(Γ).

Proof. Clearly, if Φ ≤1 Γ then
∨

1{Φ, Γ} = Γ. Therefore, since h preserves joins,
h(Γ) = h(

∨
1{Φ, Γ}) =

∨
2{h(Φ), h(Γ)}. Consequently, h(Φ) ≤2 h(Γ). �

Theory spaces and their morphisms constitute the category Tsp, with the
usual identity and composition of functions. What is more, the definition of the
space of theories induced by a logical system can be extended to a functor.

Definition 2.10. The maps
• Th(L) = tspL;
• Th(h : L1 → L2) : tspL1 → tspL2 , with Th(h)(Φ) = h[Φ]�2 if L2 = 〈Σ2,�2〉,

for every Φ ∈ Th(L1),
constitute a functor Th : Log → Tsp.

Indeed, it can be shown that Th is an adjoint functor, although we shall not
need to use this fact here. What is important, however, is that Th does not reflect
isomorphisms from Tsp to Log. Recall however that, as a simple consequence of the
functoriality of Th, isomorphisms in Log are preserved along Th to isomorphisms
in Tsp.

3. Isomorphisms

In this section we analyze the notions of isomorphism in the categories Log and
Tsp. These would certainly be the first obvious ways of measuring the degree of
“sameness” of two given logical systems. We will see, however, with the help of
some examples, that none of these notions is fully satisfactory.
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First of all let us recall that an isomorphism in an arbitrary category C is a
morphism f : C1 → C2 for which there exists a morphism g : C2 → C1 such that
g ◦f = idC1 and f ◦g = idC2 . In this case, the morphism g is also an isomorphism,
and is usually referred to as the inverse of f , and denoted by f−1 due to its
uniqueness. Of course, it is also the case that f = g−1. Two C-objects C1 and C2

are isomorphic provided that there exists an isomorphism between them.
Since it will be useful, we first present a characterization of isomorphism in

the category Sig of signatures.

Proposition 3.1. Two signatures Σ1 and Σ2 are isomorphic if and only if there
exists a family of bijections h = {hn : Σn

1 → Σn
2}n∈N.

Proof. Suppose first that Σ1 and Σ2 are isomorphic in Sig. Then there exist sig-
nature morphisms f : Σ1 → Σ2 and g : Σ2 → Σ1 such that g ◦ f = idΣ1

and f ◦ g = idΣ2 . Given n ∈ N and c ∈ Σn
1 , let us first prove that fn(c) =

λξ1 . . . ξn.c′(ξ1, . . . , ξn), where c′ ∈ Σn
2 . Assume by absurd that fn(c) = λξ1 . . . ξn.ϕ

where ϕ had more than one constructor. Then, clearly, by the uniformity condi-
tion, g(fn(c)) would also have more than one connective, and so, g(fn(c)) could
not be λξ1 . . . ξn.c(ξ1, . . . , ξn), which would contradict the fact that g ◦ f = idΣ1 .
Thus, we can define hn(c) = c′. The fact that, for each n ∈ N, the function hn

must then be a bijection follows immediately.
Suppose now that there exists a family of bijections h = {hn : Σn

1 → Σn
2}n∈N.

Then we can build signature morphisms f : Σ1 → Σ2 and g : Σ2 → Σ1 de-
fined by hn(c) = λξ1 . . . ξn.fn(c)(ξ1, . . . , ξn) for every c ∈ Σn

1 , and gn(c′) =
λξ1 . . . ξn.c(ξ1, . . . , ξn) for every c′ = fn(c) ∈ Σn

2 , respectively. It is straightfor-
ward that g ◦ f = idΣ1 and f ◦ g = idΣ2 . �

It should be clear that signature isomorphisms induce bijective translations
between the generated languages.

We can now characterize isomorphisms in Log.

Proposition 3.2. Two logical systems L1 = 〈Σ1,�1〉 and L2 = 〈Σ2,�2〉 are isomor-
phic if and only if there exists a signature isomorphism h : Σ1 → Σ2 such that
h[Φ�1 ] = h[Φ]�2 for every Φ ⊆ LΣ1 .

Proof. Suppose first that h : L1 → L2 is an isomorphism in Log. That is, there
exists a Log-morphism g : L2 → L1 such that g ◦ h = idL1 and h ◦ g = idL2 .
Both h and g are also signature isomorphisms h : Σ1 → Σ2 and g : Σ2 → Σ1 that
also satisfy h[Φ�1 ] ⊆ h[Φ]�2 and g[Γ�2 ] ⊆ g[Γ]�1 , for every Φ ⊆ LΣ1 and every
Γ ⊆ LΣ2 . But then we have that g[h[Φ]�2 ] ⊆ g[h[Φ]]�1 = Φ�1 , and so it follows
that h[Φ]�2 = h[g[h[Φ]�2 ]] ⊆ h[Φ�1 ], thus rendering h[Φ�1 ] = h[Φ]�2 .

Suppose now that there exists a signature isomorphism h : Σ1 → Σ2 such that
h[Φ�1 ] = h[Φ]�2 for every Φ ⊆ LΣ1 . Then there exists a Sig-morphism g : Σ2 → Σ1

such that g ◦ h = idΣ1 and h ◦ g = idΣ2 . Clearly h : L1 → L2 is also a Log-
morphism, but so is g : L2 → L1. In fact, h[g[Γ]�1 ] = h[g[Γ]]�2 = Γ�2 , and so
g[Γ]�1 = g[h[g[Γ]�1 ]] = g[Γ�2 ]. Therefore, L1 and L2 are isomorphic. �
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This notion of isomorphism in the category Log is very closely related to
Pollard´s notion of homeomorphism, as introduced in [7]. Indeed, the only differ-
ence is that homeomorphism does only require the language translation function
h : LΣ1 → LΣ2 to be a bijection, but not necessarily one that is uniform with
respect to the structure of formulas. The same applies, of course, to its inverse
h−1 : LΣ2 → LΣ1 . In this respect, we should make clear that we find Pollard’s no-
tion slightly odd. Either one does not require the language to bear any structure
at all, in which case a simple translation function would make perfect sense, or
else one should not neglect this structure when translating formulas across logical
systems. Still, if we choose to simply ignore the way LΣ is build from the signature
Σ, then we can as well assume that the language is build from a new signature Ω
where all the relevant formulas come now without any structure whatsoever, that
is, Ω0 = LΣ and Ωn = ∅ for every n > 0. In doing this transformation we would get
LΩ = LΣ, and it is clear that isomorphisms in Log and homeomorphisms would
now coincide. Nevertheless, we maintain that translations across logical systems
should be effective, to a certain extent, and therefore some kind of uniformity must
be required (even if in a more general form than the one we are considering here).

Isomorphisms in Log are, however, too strict as a definition of “sameness”.
Many times logical systems differ just in the number of equivalent sentences they
possess, while still exhibiting essentially the same closure properties. The following
example illustrates this fact, and applies also to homeomorphisms.

Example. Consider the following logical systems:

• L1 = 〈Σ1,�1〉 where Σ0
1 = {
} and Σn

1 = ∅ for n > 0; and �1 is such that
∅�1 = {
}; and

• L2 = 〈Σ2,�2〉 where Σ0
2 = {
1,
2} and Σn

2 = ∅ for n > 0; and �2 is such
that ∅�2 = {
1,
2}.

Clearly, L1 and L2 have exactly the same expressive power and there is absolutely
no reason why they should not be considered the “same”. But it is also clear that
they are not isomorphic, nor homeomorphic.

Even if the set of formulas of each logical system is not finite, isomorphism
remains a too strong condition. We present one example where the two given logical
systems should clearly be the “same”, but there cannot exist an isomorphism
between them. They are homeomorphic, though, although in a non-uniform way
(even if we allow a more general definition of uniformness).

Example. Consider the following logical systems:

• L1 = 〈Σ1,�1〉 where Σ0
1 = {p}, Σ1

1 = {¬} and Σn
1 = ∅ for n > 1; and �1 is

such that ¬ behaves like classical negation; and
• L2 = 〈Σ2,�2〉 where Σ0

2 = {p}, Σ1
2 = {¬1,¬2} and Σn

2 = ∅ if n > 1; and �2

is such that both ¬1 and ¬2 behave like classical negation.

Clearly these two logics must be the “same”, since L2 is just L1 with two copies
of ¬. However, it is obvious that they are not isomorphic.
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Despite the existence of a homeomorphism between L1 and L2, it cannot be
made uniform (in our sense nor in any broader sense). It is clear that Th(L1) =
{{¬2np : n ∈ N}, {¬2n+1p : n ∈ N}}, and that Th(L2) = {{{¬1,¬2}2np : n ∈
N}, {{¬1,¬2}2n+1p : n ∈ N}}. Assume by absurd that there existed a uniform
homeomorphism h : L2 → L1. Being uniform, h would have to be presented induc-
tively. So, for some i ∈ N, there would exist distinct sequences u, v ∈ {¬1,¬2}i such
that h(uϕ) = ¬kh(ϕ) and h(vϕ) = ¬jh(ϕ), for some k, j ∈ N and every formula
ϕ. Then, h(uvϕ) = ¬kh(vϕ) = ¬k+jh(ϕ) and h(vuϕ) = ¬jh(uϕ) = ¬j+kh(ϕ). So
we would have h(uvϕ) = h(vuϕ) which, together with the bijectivity of h, would
contradict the fact that uvϕ �= vuϕ.

In both these examples, the one fact that stands out in support of the “same-
ness” of the logical systems involved is the fact that their theory spaces have exactly
the same structure. This fact should certainly be, at least, a necessary condition
for considering the logical systems to be the “same”. Of course, an isomorphism
in Log is always mapped by the functor Th to an isomorphism in Tsp. Let us then
present a characterization of isomorphisms in Tsp, which should be interesting to
analyze, even if we have reasons to believe that having isomorphic theory spaces
may not be enough as a criterion for dubbing two logical systems the “same”.

Proposition 3.3. Two theory spaces tsp1 = 〈Th1,≤1〉 and tsp2 = 〈Th2,≤2〉 are
isomorphic if and only if there exists a bijection h : Th1 → Th2 such that, for
every Φ, Γ ∈ Th1, Φ ≤1 Γ if and only if h(Φ) ≤2 h(Γ).

Proof. Suppose that h : tsp1 → tsp2 is an isomorphism in Tsp, that is, there
exists a Tsp-morphism g : tsp2 → tsp1 such that g ◦ h = idtsp1 and h ◦ g =
idtsp2 . Clearly h : Th1 → Th2 must be a bijection and g = h−1. If Φ ≤1 Γ,
since h is a Tsp-morphism, lemma 2.9 implies that h(Φ) ≤2 h(Γ). On the other
hand, since g is also a Tsp-morphism, if h(Φ) ≤2 h(Γ), lemma 2.9 implies that
Φ = h−1(h(Φ)) ≤1 h−1(h(Γ)) = Γ.

Assume now that h : Th1 → Th2 is a bijection, and Φ ≤1 Γ if and only if
h(Φ) ≤2 h(Γ), for every Φ, Γ ∈ Th1. We first show that h : tsp1 → tsp2 is a Tsp-
morphism. If T ⊆ Th1 and Φ ∈ T , then Φ ≤1

∨
1T . Therefore h(Φ) ≤2 h(

∨
1T ),

and consequently
∨

2h[T ] ≤2 h(
∨

1T ). On the other hand, clearly h(Φ) ≤2

∨
2h[T ].

Since h is a bijection, we can rewrite this to h(Φ) ≤2 h(h−1(
∨

2h[T ])). Therefore,
Φ ≤1 h−1(

∨
2h[T ]) and we conclude that

∨
1T ≤1 h−1(

∨
2h[T ]). Thus h(

∨
1T ) ≤2∨

2h[T ] and h is indeed a Tsp-morphism. Analogously, we can show that h−1 :
tsp2 → tsp1 is also a Tsp-morphism. �

Saying that two logical systems, L1 and L2, are the “same” if tspL1 and tspL2

are isomorphic in Tsp is expectedly not very satisfactory. Namely, this is due to
the fact that theory space morphisms are not guided by syntax, that is, they
neglect the expressive power of isolated formulas, by translating directly theories
to theories. Although a necessary condition, too many logical systems that we
would not want to consider the “same” end up having isomorphic theory spaces.
Below, we present two such examples.
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Example. Consider the following logical systems:
• L1 = 〈Σ1,�1〉 where Σ0

1 = {a, b} and Σn
1 = ∅ for n > 0; and �1 is the identity;

and
• L2 = 〈Σ2,�2〉 where Σ0

2 = {a, b, ab} and Σn
2 = ∅ for n > 0; and �2 extends

�1 by letting ab ∈ Φ�2 if and only if {a, b} ⊆ Φ�2 .
Clearly, Th(L1) = {∅, {a}, {b}, {a, b}} and Th(L2) = {∅, {a}, {b}, {a, b, ab}} are
isomorphic. However, L1 and L2 should not be considered the “same”. In par-
ticular, L2 contains the formula ab that can be seen as a bottom particle since
{ab}�2 = LΣ2 . It is also clear that, in L1, no such formula exists.

A more interesting example is that of linear temporal logic.

Example. Let P be a set of propositional variables. Consider the following two
fragments of discrete linear temporal logic (LTL), eg. as in [5], where X stands for
“in the next instant” and G for “always in the future”:

• L1 = 〈Σ1,�1〉 where Σ0
1 = P , Σ1

1 = {¬, X}, Σ2
1 = {⇒}, and Σn

1 = ∅ for
n > 2; and

• L2 = 〈Σ2,�2〉 where Σ0
2 = P , Σ1

2 = {¬, X, G}, Σ2
2 = {⇒}, and Σn

2 = ∅ for
n > 2; and

both �1 and �2 are the corresponding fragments of the consequence operator � of
full LTL.

Most notably, it turns out that {Gϕ}� = {Xnϕ : n > 0}�, which is of course
also true in L2. Therefore, it is straightforward to verify that tspL1 and tspL2 are
isomorphic. However, in L1 there is no single formula with the same expressive
power of Gϕ. This is certainly a very good reason not to dub these two logical
systems the “same”.

4. Equipollence

At this point, it seems clear that the notion of “sameness” between logical systems
must lie somewhere in between the notions of isomorphism in Log and Tsp. For
the reasons already discussed, two logical systems should indeed have isomorphic
theory spaces whenever they are to be called the “same”. This isomorphism should
however be based on a formula by formula translation, which must also be uniform
on the structure of formulas. Isomorphisms in Log do satisfy this constraint, al-
though they seem to be too sensitive to differences in the cardinality of the sets of
formulas and constructors of the two logical systems. In the end, what we seem to
need is a back and forth translation between the logical systems, that may perhaps
not constitute an isomorphism in Log, but which induces an isomorphism between
the corresponding theory spaces. Figure 1 depicts the idea behind our notion of
equipollence, that is rigorously formulated below.

Definition 4.1. Two logical systems L1 = 〈Σ1,�1〉 and L2 = 〈Σ2,�2〉 are equipollent
if there exist Log-morphisms h : L1 → L2 and g : L2 → L1 such that Th(h) and
Th(g) establish an isomorphism of tspL1 and tspL2 with Th(h) = Th(g)−1.
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Log

Th

��

L1

h
�� L2

g

��

Tsp Th(L1) Th(L2)��∼=
Th(h)= Th(g)−1
��

Figure 1. Equipollent logical systems.

As we intended, it is trivial to check that isomorphisms in Log constitute
a very special case of equipollence. Furthermore, as expected, equipollent logical
systems are always required to have isomorphic theory spaces.

We shall now provide an alternative, more appealing, characterization of
equipollence in terms of the internal notion of logical equivalence provided by
each logical system L = 〈Σ,�〉. Recall that two formulas ϕ, γ ∈ LΣ are said to
be logically equivalent in L if both ϕ ∈ {γ}� and γ ∈ {ϕ}�, or equivalently if
{ϕ}� = {γ}�. We denote this fact by ϕ ≡L γ. The following lemma shows that
the theories of L are in fact independent, modulo logically equivalent formulas, of
the way they are presented.

Lemma 4.2. Let Φ, Γ ⊆ LΣ. Then Φ� = Γ� whenever the following two conditions
are satisfied:

• for every ϕ ∈ Φ there exists ϕ′ ∈ Γ such that ϕ ≡L ϕ′;
• for every γ ∈ Γ there exists γ′ ∈ Φ such that γ ≡L γ′.

Proof. Let us assume that both conditions hold. If ϕ ∈ Φ then ϕ′ ∈ Γ. But ϕ ≡L ϕ′

and therefore ϕ ∈ {ϕ′}� ⊆ Γ�, using also the monotonicity of �. Analogously, we
can show that Γ ⊆ Φ�, and conclude that Φ� = Γ� by using the monotonicity and
idempotence of �. �

Next we state the aimed alternative characterization of the notion of equipol-
lence. Besides its simplicity, the characterization will also be useful in order to com-
pare equipollence with the notion of translational equivalence (or synonymity) due
to Pelletier and Urquhart [6].

Proposition 4.3. Let L1 = 〈Σ1,�1〉 and L2 = 〈Σ2,�2〉 be logical systems. Then L1

and L2 are equipollent if and only if there exist Log-morphisms h : L1 → L2 and
g : L2 → L1 such that the following two conditions hold:

• ϕ ≡L1 g(h(ϕ)) for every ϕ ∈ LΣ1 ;
• γ ≡L2 h(g(γ)) for every γ ∈ LΣ2 .

Proof. Assuming that L1 and L2 are equipollent, let h : L1 → L2 and g :
L2 → L1 be Log-morphisms such that Th(h) and Th(g) are isomorphisms, in-
verse of each other. Hence, given ϕ ∈ LΣ1 , it must be the case that {ϕ}�1 =
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Th(g)(Th(h)({ϕ}�1)). However, Th(h)({ϕ}�1) = h[{ϕ}�1 ]�2 = {h(ϕ)}�2 , just us-
ing lemma 2.6. Similarly, Th(g)({h(ϕ)}�2) = g[{h(ϕ)}�2 ]�1 = {g(h(ϕ))}�1 , thus
implying that {ϕ}�1 = {g(h(ϕ))}�1 , or equivalently that ϕ ≡L1 g(h(ϕ)). Analo-
gously, we can prove that γ ≡L2 h(g(γ)) for every γ ∈ LΣ2 .

Assume now that h : L1 → L2 and g : L2 → L1 are Log-morphisms
satisfying the two conditions stated above. If we have that Φ ∈ Th(L1), then
Th(g)(Th(h)(Φ)) = Th(g ◦ h)(Φ) = g[h[Φ]]�1 . Hence, Φ = Φ�1 and g[h[Φ]]�1 are
in the conditions of proposition 4.2 and we can conclude that g[h[Φ]]�1 = Φ. Using
an analogous argument, we can conclude that also Th(h)(Th(g)(Γ)) = Γ for every
Γ ∈ Th(L2). �

Let us illustrate the notion of equipollence with a meaningful example.

Example. Let P be a set of propositional variables. Consider the following two
fragments of CPL:

• L1 = 〈Σ1,�1〉 where Σ0
1 = P , Σ1

1 = {¬}, Σ2
1 = {⇒} and Σn

1 = ∅ for n > 2;
and

• L2 = 〈Σ2,�2〉 where Σ0
2 = P , Σ1

2 = {¬}, Σ2
2 = {∨,∧} and Σn

1 = ∅ for n > 2.

Clearly we can define the following Log-morphisms h : L1 → L2 and g : L2 → L1:

• h0(p) = p for every p ∈ P , h1(¬) = λξ1.¬ξ1, and h2(⇒) = λξ1ξ2.(¬ ξ1) ∨ ξ2;
and

• g0(p) = p for every p ∈ P , g1(¬) = λξ1.¬ξ1, g2(∨) = λξ1ξ2.((¬ξ1)⇒ ξ2), and
g2(∧) = λξ1ξ2.¬(ξ1 ⇒ (¬ξ2)).

Using proposition 4.3, it is an immediate consequence of well known facts about
CPL that the logical systems L1 and L2 are equipollent. It is also easy to see that
L1 and L2 are not isomorphic.

In [6], Pelletier and Urquhart have proposed to capture “sameness” of logical
systems using a notion of translational equivalence, that turns out to be very
closely related to our notion of equipollence. Indeed, translational equivalence is
stated exactly as our alternative characterization of equipollence in proposition 4.3,
but using a biconditional connective instead of logical equivalence. According to [6],
in order to be translationally equivalent, the two logical systems must both be
equivalential in the sense of [3], and with respect to precisely the same biconditional
connective, which must therefore be expressible in both. Pelletier and Urquhart
also show that this notion of translational equivalence turns out to be equivalent
to requiring that both logical systems share a common definitional extension, a
notion to which they call synonymity, and which has been considered before by
several other logicians (cf. [6]).

One immediate observation that we can make is that equipollence is certainly
more widely applicable than translational equivalence, since the logical systems at
hand are not required to be equivalential, even less with the same biconditional.
Still, equipollence and translational equivalence will obviously coincide if the two
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logical systems at hand are equivalential with a shared biconditional, that further-
more satisfies the deduction theorem in both. If that is not the case, then, transla-
tional equivalence always implies equipollence but nothing can be said about the
converse.

The conditions underlying translational equivalence seem therefore very re-
strictive, since many logical systems fail to be equivalential. The next example
illustrates equipollence between two logical systems where no reasonable bicondi-
tional connective can even be defined.

Example. Let P be a set of propositional variables. Consider the following two
logical systems:

• L1 = 〈Σ1,�1〉 where Σ0
1 = P , Σ1

1 = ∅, Σ2
1 = {∨} and Σn

1 = ∅ for n > 2; and
�1 is the corresponding restriction of the CPL consequence operator; and

• L2 = 〈Σ2,�2〉 where Σ0
2 = P , Σ1

2 = Σ2
2 = ∅, Σ3

2 = {∨∨} and Σn
1 = ∅ for

n > 3; and �2 behaves classically with respect to ∨∨, understood as ternary
disjunction.

Clearly we can define the following Log-morphisms h : L1 → L2 and g : L2 → L1:
• h0(p) = p for every p ∈ P , and h2(∨) = λξ1ξ2.∨∨(ξ1, ξ2, ξ2); and
• g0(p) = p for every p ∈ P , and g3(∨∨) = λξ1ξ2ξ3.(ξ1 ∨ ξ2) ∨ ξ3.

Using proposition 4.3, it is an immediate consequence of well known facts about
CPL that the logical systems L1 and L2 are equipollent.

5. Conclusion

In this paper we have discussed the notion of “sameness” between logics. By adopt-
ing a categorial approach to the problem, and keeping an eye on previous propos-
als [6, 7, 1], we end up proposing the definition of equipollence. Two logical systems
are equipollent whenever there exist uniform translations between the two logical
languages that induce an isomorphism on the corresponding theory spaces. Sev-
eral examples of equipollence and non-equipollence are presented along with the
exposition.

We have shown, and illustrated with examples, that, as a notion of “same-
ness”, equipollence is more accurate than Pollard’s notion of homeomorphism [7].
Indeed, contrarily to our proposal, homeomorphisms are not even required to pre-
serve the structure of formulas. Moreover, even if we ignore this fact, homeo-
morphisms (just like logical system isomorphisms) are too sensitive to cardinality
issues, and end up distinguishing logical systems that are equipollent, and should
in our opinion be considered the “same”.

Equipollence is also comparable, with advantage, to Pelletier and Urquhart’s
notion of translational equivalence (or synonymity) [6]. Although very similar in
spirit, equipollence is first of all much more widely applicable than translational
equivalence, since the logical systems at hand are not bound to being equivalential,
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even less regarding the same shared biconditional connective. Still, once these very
strong conditions are fulfilled, the two notions simply coincide if we further require
the deduction theorem to hold in both systems. Nevertheless, there is a gap in this
relationship that we have not been able to fill in. Under the conditions for the
applicability of the notion of translational equivalence, if the deduction theorem
fails in some of the logical systems, it is still the case that translational equivalence
implies equipollence, as an immediate consequence of detachment. The converse,
however, may not hold, but we were unable to find any meaningful example where
two logical systems would, under these conditions, be equipollent but fail to be
translational equivalent.

We conclude with a remark on the notion of postmodern equivalence put
forth by Béziau, de Freitas and Viana in [1], which is indeed too lax as a proposal
to capture the “sameness” of logical systems. As suspected by its very authors,
postmodern equivalence indeed seems to mix “bananas with tomatoes”, simply
because it tries to solve “too many problems”. Perhaps with the exception of any
postmodernist joker, there is certainly no one willing to defend that propositional
and first-order classical logic are the “same”.
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[9] R. Wójcicki, Theory of Logical Calculi. Synthese Library, vol. 199, Kluwer Academic
Publishers, 1988.

Carlos Caleiro and Ricardo Gonçalves
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Abstract. This paper builds on the theory of institutions, a version of abstract
model theory that emerged in computer science studies of software specifica-
tion and semantics. To handle proof theory, our institutions use an extension
of traditional categorical logic with sets of sentences as objects instead of sin-
gle sentences, and with morphisms representing proofs as usual. A natural
equivalence relation on institutions is defined such that its equivalence classes
are logics. Several invariants are defined for this equivalence, including a Lin-
denbaum algebra construction, its generalization to a Lindenbaum category
construction that includes proofs, and model cardinality spectra; these are
used in some examples to show logics inequivalent. Generalizations of famil-
iar results from first order to arbitrary logics are also discussed, including
Craig interpolation and Beth definability.
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1. Introduction

Logic is often informally described as the study of sound reasoning. As such, it
plays a crucial role in several areas of mathematics (especially foundations) and
of computer science (especially formal methods), as well as in other fields, such as
analytic philosophy and formal linguistics. In an enormous development beginning
in the late 19th century, it has been found that a wide variety of different princi-
ples are needed for sound reasoning in different domains, and “a logic” has come
to mean a set of principles for some form of sound reasoning. But in a subject
the essence of which is formalization, it is embarrassing that there is no widely
acceptable formal definition of “a logic”. It is clear that two key problems here are
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to define what it means for two presentations of a logic to be equivalent, and to
provide effective means to demonstrate equivalence and inequivalence.

This paper addresses these problems using the notion of “institution”, which
arose within computer science in response to the population explosion among the
logics in use there, with the ambition of doing as much as possible at a level of
abstraction independent of commitment to any particular logic [17, 31, 19]. The
soundness aspect of sound reasoning is addressed by axiomatizing the notion of
satisfaction, and the reasoning aspect is addressed by calling on categorical logic,
which applies category theory to proof theory by viewing proofs as morphisms.
Thus, institutions provide a balanced approach, in which both syntax and se-
mantics play key roles. However, much of the institutional literature considers
sentences without proofs and models without (homo)morphisms, and a great deal
can be done just with satisfaction, such as giving general foundations for modu-
larization of specifications and programs, which in turn has inspired aspects of the
module systems of programming languages including C++, ML, and Ada.

Richer variants of the institution notion consider entailment relations on sen-
tences and/or morphisms of models, so that they form categories; using proof
terms as sentence morphisms provides a richer variant which fully supports proof
theory. We call these the set/set, set/cat, cat/set, and cat/cat variants (where the
first term refers to sentences, and the second to models); the table in Thm. 5.20
summarizes many of their properties. See [19] for a general treatment of the vari-
ant notions of institution, and [33, 35, 11, 12, 14] for some non-trivial results in
abstract model theory done institutionally.

This paper adds to the literature on institutions a notion of equivalence,
such that a logic is an equivalence class of institutions. To support this thesis,
we consider a number of logical properties, model and proof theoretical, that are,
and that are not, preserved under equivalence, and apply them to a number of
examples. Perhaps the most interesting invariants are versions of the Lindenbaum
algebra; some others concern cardinality of models. We also develop a normal
form for institutions under our notion of equivalence, by extending the categorical
notion of “skeleton”.

We extend the Lindenbaum algebra construction to a Lindenbaum category
construction, defined on any institution with proofs, by identifying not only equiv-
alent sentences, but also equivalent proofs. We show that this construction is an
invariant, i.e., preserved up to isomorphism by our equivalence on institutions.
This construction extends the usual approach of categorical logic by having sets
of sentences as objects, rather than just single sentences, and thus allows treating
a much larger class of logics in a uniform way.

A perhaps unfamiliar feature of institutions is that satisfaction is not a dyadic
relation, but rather a relation among sentence, model, and “signature”, where sig-
natures form a category the objects of which are thought of as vocabularies over
which the sentences are constructed. In concrete cases, these may be propositional
variables, relation symbols, function symbols, and so on. Since these form a cat-
egory, it is natural that the constructions of sentences (or formulae) and models
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appear as functors on this category, and it is also natural to have an axiom ex-
pressing the invariance of “truth” (i.e., satisfaction) under change of notation. See
Def. 2.1 below. When the vocabulary is fixed, the category of signatures is the
one object category 1. (Another device can be used to eliminate models, giving
pure proof theory as a special case, if desired.) If σ : Σ −→ Σ′ is an inclusion of
signatures, then its application to models (via the model functor) is “reduct.” The
institutional triadic satisfaction can be motivated philosophically by arguments
like those given by Peirce [27] for his “interpretants,” which allow for context de-
pendency of denotation in his semiotics, as opposed to Tarski’s dyadic satisfaction.
We also use this feature to resolve a problem about cardinality raised in [3]; see
Example 2.2.

2. Institutions and Logics

We assume the reader is familiar with basic notions from category theory; e.g.,
see [1, 23] for introductions to this subject. By way of notation, |C| denotes the
class of objects of a category C, and composition is denoted by “◦”. Categories are
assumed by convention to be locally small (i.e., to have a small set of morphisms
between any two objects) unless stated otherwise. The basic concept of this paper
in its set/cat variant is as follows1:

Definition 2.1. An institution I = (SignI , SenI , ModI , |=I) consists of
1. a category SignI , whose objects are called signatures,
2. a functor SenI : SignI → Set, giving for each signature a set whose elements

are called sentences over that signature,
3. a functor ModI : (SignI)op → CAT giving for each signature Σ a category

whose objects are called Σ-models, and whose arrows are called Σ-(model)
morphisms2 and

4. a relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI |, called Σ-satis-

faction,
such that for each morphism σ : Σ → Σ′ in SignI , the satisfaction condition

M ′ |=I
Σ′ SenI(σ)(ϕ) iff ModI(σ)(M ′) |=I

Σ ϕ

holds for each M ′ ∈ |ModI(Σ′)| and ϕ ∈ SenI(Σ). We denote the reduct functor
ModI(σ) by �σ and the sentence translation SenI(σ) by σ( ). When M = M ′�σ

we say that M ′ is a σ-expansion of M .

1A more concrete definition is given in [20], which avoids category theory by spelling out the
conditions for functoriality, and assuming a set theoretic construction for signatures. Though
less general, this definition is sufficient for everything in this paper; however, it would greatly
complicate our exposition. Our use of category theory is modest, oriented towards providing easy
proofs for very general results, which is precisely what is needed for the goals of this paper.
2CAT is the category of all categories; strictly speaking, it is only a quasi-category living in a
higher set-theoretic universe. See [23] for a discussion of foundations.
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A set/set institution is an institution where each model category is discrete;
this means that the model functor actually becomes a functor ModI : (SignI)op →
Class into the quasi-category of classes and functions.
General assumption: We assume that all institutions are such that satisfaction is
invariant under model isomorphism, i.e. if Σ-models M, M ′ are isomorphic, then
M |=Σ ϕ iff M ′ |=Σ ϕ for all Σ-sentences ϕ. �

We now consider classical propositional logic, perhaps the simplest non-trivial
example (see the extensive discussion in [3]), and also introduce some concepts from
the theory of institutions:

Example 2.2. Fix a countably infinite3 set X of variable symbols, and let Sign be
the category with finite subsets Σ of X as objects, and with inclusions as morphisms
(or all set maps, if preferred, it matters little). Let Mod(Σ) have [Σ → {0, 1}]
(the set of functions from Σ to {0, 1}) as its set of objects; these models are
the row labels of truth tables. Let a (unique) Σ-model morphism h : M −→ M ′

exist iff for all p ∈ Σ, M(p) = 1 implies M ′(p) = 1. Let Mod(Σ′ ↪→ Σ) be the
restriction map [Σ → {0, 1}] → [Σ′ → {0, 1}]. Let Sen(Σ) be the (absolutely)
free algebra generated by Σ over the propositional connectives (we soon consider
different choices), with Sen(Σ ↪→ Σ′) the evident inclusion. Finally, let M |=Σ ϕ
mean that ϕ evaluates to true (i.e., 1) under the assignment M . It is easy to
verify the satisfaction condition, and to see that ϕ is a tautology iff M |=Σ ϕ for
all M ∈ |Mod(Σ)|. Let CPL denote this institution of propositional logic, with
the connectives conjunction, disjunction, negation, implication, true and false. Let
CPL¬,∧,false denote propositional logic with negation, conjunction and false, and
CPL¬,∨,true with propositional logic negation, disjunction and true4.

This arrangement puts truth tables on the side of semantics, and formulas on
the side of syntax, each where it belongs, instead of trying to treat them the same
way. It also solves the problem raised in [3] that the cardinality of L(Σ) varies
with that of Σ, where L(Σ) is the quotient of Sen(Σ) by the semantic equivalence
|=|Σ, defined by ϕ |=|Σ ϕ′ iff (M |=Σ ϕ iff M |=Σ ϕ′, for all M ∈ |Mod(Σ)|); it
is the Lindenbaum algebra, in this case, the free Boolean algebra over Σ, and its
cardinality is 22n

where n is the cardinality of Σ. Hence this cardinality cannot
be considered an invariant of CPL without the parameterization by Σ (see also
Def. 4.13 below). �
The moral of the above example is that everything should be parameterized by
signature. Although the construction of the underlying set of the Lindenbaum
algebra above works for any institution, its algebraic structure depends on how
sentences are defined. However, Section 4 shows how to obtain at least part of this
structure for any institution.

Example 2.3. The institution FOLR of unsorted first-order logic with relations
has signatures Σ that are families Σn of sets of relation symbols of arity n ∈ IN ,

3The definition also works for finite or uncountable X .
4The truth constant avoids the empty signature having no sentences at all.
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and FOLR signature morphisms σ : Σ−→Σ′ that are families σn : Σn −→Σ′
n of

arity-preserving functions on relation symbols. An FOLR Σ-sentence is a closed
first-order formula using relation symbols in Σ, and sentence translation is relation
symbol substitution. A FOLR Σ-model is a set M and a subset RM ⊆ Mn for
each R ∈ Σn. Model translation is reduct with relation translation. A Σ-model
morphism is a function h : M −→ M ′ such that h(RM ) ⊆ RM ′ for all R in Σ.
Satisfaction is as usual. The institution FOL adds function symbols to FOLR in
the usual way, and MSFOL is its many sorted variant. �
Example 2.4. In the institution EQ of many sorted equational logic, a signature
consists of a set of sorts with a set of function symbols, each with a string of
argument sorts and a result sort. Signature morphisms map sorts and function
symbols in a compatible way. Models are many sorted algebras, i.e., each sort is
interpreted as a carrier set, and each function symbol names a function among
carrier sets specified by its argument and result sorts. Model translation is reduct,
sentences are universally quantified equations between terms of the same sort, sen-
tence translation replaces translated symbols (assuming that variables of distinct
sorts never coincide in an equation), and satisfaction is the usual satisfaction of
an equation in an algebra. �
Example 2.5. K is propositional modal logic plus � and �. Its models are Kripke
structures, and satisfaction is defined using possible-world semantics in the usual
way. IPL is intuitionistic propositional logic, differing from CPL in having Kripke
structures as models, and possible-world satisfaction. The proof theory of IPL
(which is favored over the model theory by intuitionists) is discussed in Section 5.

�
Both intuitionistic and modal logic in their first-order variants, with both con-

stant and varying domains, form institutions, as do other modal logics restricting
K by further axioms, such as S4 or S5, as well as substructural logics, like linear
logic, where judgements of the form ϕ1 . . . ϕn � ψ are sentences. Higher-order [7],
polymorphic [32], temporal [16], process [16], behavioural [4], coalgebraic [9] and
object-oriented [18] logics also form institutions. Many familiar basic concepts can
be defined over any institution:
Definition 2.6. Given a set of Σ-sentences Γ and a Σ-sentence ϕ, then ϕ is
a semantic consequence of Γ, written Γ |=Σ ϕ iff for all Σ-models M , we have
M |=Σ Γ implies M |=Σ ϕ, where M |=Σ Γ means M |=Σ ψ for each ψ ∈ Γ.
Two sentences are semantically equivalent, written ϕ1 |=| ϕ2, if they are satisfied
by the same models. Two models are elementary equivalent, written M1 ≡ M2,
if they satisfy the same sentences. An institution is compact iff Γ |=Σ ϕ implies
Γ′ |=Σ ϕ for some finite subset Γ′ of Γ. A theory is a pair (Σ, Γ) where Γ is a set
of Σ-sentences, and is consistent iff it has at least one model. �

Cardinality properties associate cardinalities to objects in a category. It is
natural to do this using concrete categories [1], which have a faithful forgetful or
carrier functor to Set. Since we also treat many sorted logics, we generalize from
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Set to categories of many sorted sets SetS , where the sets S range over sort sets
of an institution’s signatures. The following enriches institutions with carrier sets
for models [5]:
Definition 2.7. A concrete institution is an institution I together with a functor
sortsI : SignI → Set and a natural transformation | |I : ModI → Set(sorts

I)op( )

between functors from Signop to CAT such that for each signature Σ, the carrier
functor | |IΣ : ModI(Σ) → Setsorts

I(Σ) is faithful (that is, ModI(Σ) is a concrete
category, with carrier functors | |IΣ : ModI(Σ) → Setsorts

I(Σ) natural in Σ). Here,
Set(sorts

I)op( ) stands for the functor that maps each signature Σ ∈ |SignI | to
the category of sortsI(Σ)-sorted sets. A concrete institution has the finite model
property if each satisfiable theory has a finite model (i.e., a model M with the
carrier |M | being a family of finite sets). A concrete institution admits free models
if all carrier functors for model categories have left adjoints. �

The following notion from [26] also provides signatures with underlying sets
of symbols, by extending sortsI ; essentially all institutions that arise in practice
have this structure:
Definition 2.8. A concrete institution with symbols is a concrete institution I to-
gether with a faithful functor SymbI : SignI → Set that naturally extends sortsI ,
that is, such that for each signature Σ, sortsI(Σ) ⊆ SymbI(Σ), and for each σ in
SignI , SymbI(σ) extends sortsI(σ). A concrete institution with symbols admits
free models if all the forgetful functors for model categories have left adjoints. �

3. Equivalence of Institutions

Relationships between institutions are captured mathematically by ‘institution
morphisms’, of which there are several variants, each yielding a category under a
canonical composition. For the purposes of this paper, institution comorphisms [19]
are technically more convenient, though the definition of institution equivalence
below is independent of this choice. The original notion, from [17] in the set/cat
form, works well for ‘forgetful’ morphisms from one institution to another having
less structure:

Definition 3.1. Given institutions I and J , then an institution morphism
(Φ, α, β) : I → J consists of

1. a functor Φ : SignI → SignJ ,
2. a natural transformation α : SenJ ◦ Φ ⇒ SenI , and
3. a natural transformation β : ModI ⇒ ModJ ◦ Φop

such that the following satisfaction condition holds

M |=I
Σ αΣ(ϕ) iff βΣ(M) |=I

Φ(Σ) ϕ

for each signature Σ ∈ |SignI |, each Σ-model M and each Φ(Σ)-sentence ϕ. �
Institution morphisms form a category Ins under the natural composition.
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Definition 3.2. Given institutions I and J , then an institution comorphism
(Φ, α, β) : I−→J consists of

• a functor Φ: SignI−→SignJ ,
• a natural transformation α : SenI ⇒ SenJ ◦ Φ,
• a natural transformation β : ModJ ◦ Φop ⇒ ModI

such that the following satisfaction condition is satisfied for all Σ ∈ |SignI |, M ′ ∈
|ModJ (Φ(Σ))| and ϕ ∈ SenI(Σ):

M ′ |=J
Φ(Σ) αΣ(ϕ) iff βΣ(M ′) |=I

Σ ϕ .

With the natural compositions and identities, this gives a category CoIns of in-
stitutions and institution comorphisms.

A set/set institution comorphism is like a set/cat comorphism, except that
βΣ is just a function on the objects of model categories; the model morphisms are
ignored.

Given concrete institutions I,J , then a concrete comorphism from I to J
is an institution comorphism (Φ, α, β) : I −→ J plus a natural transformation
δ : sortsI ⇒ sortsJ ◦ Φ and a natural in I-signatures Σ family of natural trans-
formations µΣ : |βΣ( )|IΣ ⇒ (| |JΦ(Σ))�δΣ between functors from ModJ (Φ(Σ)) to
sortsI(Σ)-sorted sets, so that for each I-signature Σ, Φ(Σ)-model M ′ in J and
sort s ∈ sortsI(Σ), we have a function µΣ,M ′,s : (|βΣ(M ′)|IΣ)s → (|M ′|JΦ(Σ))δΣ(s).

Given concrete institutions with symbols I and J , a concrete comorphism
with symbols from I to J extends an institution comorphism (Φ, α, β) : I−→J by
a natural transformation δ : SymbI ⇒ SymbJ ◦ Φ that restricts to δ′ : sortsI ⇒
sortsJ ◦Φ, and a family of functions µΣ : (|βΣ( )|IΣ)s → (| |JΦ(Σ))δ′

Σ(s), required to
be natural in I-signatures Σ. Notice that then (Φ, α, β, δ′, µ) is a concrete comor-
phism. �

Fact 3.3. An institution comorphism is an isomorphism in CoIns iff all its com-
ponents are isomorphisms. �

Unfortunately, institution isomorphism is too strong to capture the notion of “a
logic,” since it can fail to identify logics that differ only in irrelevant details:

Example 3.4. Let CPL′ be CPL with arbitrary finite sets as signatures. Then
CPL′ has a proper class of signatures, while CPL only has countably many. Hence,
CPL and CPL′ cannot be isomorphic. �

However, CPL and CPL′ are essentially the same logic. We now give a notion
of institution equivalence that is weaker than that of institution isomorphism, very
much in the spirit of equivalences of categories. The latter weakens isomorphism
of categories: two categories are equivalent iff they have isomorphic skeletons. A
subcategory S ↪→ C is a skeleton of C if it is full and each object of C is isomorphic
(in C) to exactly one object in S. In this case, the inclusion S ↪→ C has a left inverse
(i.e. a retraction) C → S mapping each object to the unique representative of its
isomorphism class (see [23]).
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Definition 3.5. A (set/cat) institution comorphism (Φ, α, β) is a (set/cat) insti-
tution equivalence iff

• Φ is an equivalences of categories,
• αΣ has an inverse up to semantic equivalence α′

Σ, (i.e., αΣ(α′
Σ(ϕ)) |=|Σ ϕ and

α′
Σ(αΣ(ψ)) |=|Φ(Σ) ψ) which is natural in Σ, and

• βΣ is an equivalence of categories, such that its inverse up to isomorphism
and the corresponding isomorphism natural transformations are natural in
Σ.

I is equivalent to J if there is an institution equivalence from I to J . �

This definition is very natural; it is 2-categorical equivalence in the appro-
priate 2-category of institutions [10]. The requirement for a set/set institution
comorphism to be a set/set equivalence is weaker: each βΣ need only have an
inverse up to elementary equivalence β′

Σ.

Definition 3.6. A concrete institution comorphism is a concrete equivalence if the
underlying institution comorphism is an equivalence and all δΣ and µΣ,M ′,s are
bijective, for each Σ ∈ |SignI |, M ′ ∈ |ModJ (Φ(Σ))| and s ∈ sortsI(Σ).

A concrete comorphism with symbols is a concrete equivalence with symbols
if the underlying institution comorphism is an equivalence and δΣ is bijective for
each signature Σ. �

Proposition 3.7. Both set/cat and set/set equivalence of institutions are equiva-
lence relations, and set/cat equivalence implies set/set equivalence. �

The following is important for studying invariance properties of institutions
under equivalence:

Lemma 3.8. If (Φ, α, β) : I −→J is a set/cat or set/set institution equivalence,
Γ |=I

Σ ϕ iff αΣ(Γ) |=J
Φ(Σ) αΣ(ϕ) for any signature Σ in I and Γ ∪ {ϕ} ⊆ SenI(Σ);

also M1 ≡ M2 iff βΣ(M1) ≡ βΣ(M2), for any M1, M2 ∈ ModJ (Φ(Σ)). �

Example 3.9. CPL and CPL′ are set/cat equivalent. So are CPL¬,∨,true and
CPL¬,∧,false : signatures and models are translated identically, while sentences
are translated using de Morgan’s laws. Indeed, CPL¬,∨,true and CPL¬,∧,false are
isomorphic, but the isomorphism is far more complicated than the equivalence. �

Definition 3.10. Given a set/cat institution I, an institution J is a set/cat skeleton
of I, if

• SignJ is a skeleton of SignI ,
• SenJ (Σ) ∼= SenI(Σ)/|=| for Σ ∈ |SignJ | (the bijection being natural in Σ),

and SenJ (σ) is the induced mapping between the equivalence classes,
• ModJ(Σ) is a skeleton of ModI(Σ), and ModJ(σ) is the restriction of ModI(σ),
• M |=J

Σ [ϕ] iff M |=I
Σ ϕ.

Set/set skeletons are defined similarly, except that ModJ (Σ) is in bijective corre-
spondence with ModI(Σ)/≡. �
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Theorem 3.11. Assuming the axiom of choice, every institution has a skeleton.
Every institution is equivalent to any of its skeletons. Any two skeletons of an
institution are isomorphic. Institutions are equivalent iff they have isomorphic
skeletons. �

We have now reached a central point, where we can claim

The identity of a logic is the isomorphism type of its skeleton institution.

This isomorphism type even gives a normal form for equivalent logics. It follows
that a property of a logic must be a property of institutions that is invariant under
equivalence, and the following sections explore a number of such properties.

4. Model-Theoretic Invariants of Institutions

This section discusses some model-theoretic invariants of institutions; the table in
Thm. 5.20 summarizes the results on this topic in this paper.

Every institution has a Galois connection between its sets Γ of Σ-sentences
and its classes M of Σ-models, defined by Γ• = {M ∈ Mod(Σ) | M |=Σ Γ} and
M• = {ϕ ∈ Sen(Σ) | M |=Σ ϕ}. A Σ-theory Γ is closed if (Γ•)• = Γ.5 Closed
Σ-theories are closed under arbitrary intersections; hence they form a complete
lattice. This leads to a functor C|= : Sign−→CLat. Although C|= is essentially pre-
served under equivalence, the closure operator ( •)• on theories is not. This means
it makes too fine-grained distinctions; for example, in FOL, (true•)• is infinite,
while in a skeleton of FOL, ([true]•)• is just the singleton {[true]}. As already
noted in [29], the closure operator at the same time is too coarse for determining
the identity of a logic: while e.g. proof theoretic falsum in a sound and complete
logic (see Section 5) is preserved by homeomorphisms of closure operators in the
sense of [29], external semantic falsum (see Dfn. 4.2) is not. Because the theory
closure operator is not preserved under equivalence, we do not study it further,
but instead use the closed theory lattice functor C|= and the Lindenbaum functor
L defined below. (We note in passing that this Galois connection generalizes some
results considered important in the study of ontologies in the computer science
sense.)

The category of theories of an institution is often more useful than its lattice
of theories, where a theory morphism (Σ, Γ) −→ (Σ′, Γ′) is a signature morphism
σ : Σ −→ Σ such that Γ′ |=Σ′ σ(Γ). Let Th(I) denote this category (it should
be skeletized to become an invariant). The following result is basic for combining
theories, and has important applications to both specification and programming
languages [17]:

Theorem 4.1. The category of theories of an institution has whatever colimits its
category of signatures has. �

5The closed theories can serve as models in institutions lacking (non-trivial) models.
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Definition 4.2. An institution has external semantic conjunction [34] if for any
pair of sentences ϕ1, ϕ2 over the same signature, there is a sentence ψ such that
ψ holds in a model iff both ϕ1 and ϕ2 hold in it. ψ will also be denoted ϕ1 ∧©ϕ2,
a meta-notation which may not agree with the syntax for sentences in the insti-
tution. Similarly, one can define what it means for an institution to have external
semantic disjunction, negation, implication, equivalence, true, false, and we will
use similar circle notations for these. An institution is truth functionally complete,
if any Boolean combination of sentences is equivalent to a single sentence. �
Example 4.3. FOL is truth functionally complete, while EQ has no external
semantic connectives. �

The Lindenbaum construction of Example 2.2 works for any institution I:

Definition 4.4. Let ΞI be the single sorted algebraic signature having that subset
of the operations {∧© , ∨© , ¬© ,→© ,↔© , t© , f©} (with standard arities) that are ex-
ternal semantic for I; ΞI may include connectives not provided by the institution
I, or provided by I with a different syntax. We later prove that ΞI is invariant
under equivalence6. For any signature in I, let L(Σ) have as carrier set the quo-
tient Sen(Σ)/|=|, as in Example 2.2. Every external semantic operation of I has a
corresponding operation L(Σ), so L(Σ) can be given a ΞI-algebra structure. Any
subsignature of ΞI can also be used (indicated with superscript notation as in Ex-
ample 2.2), in which case crypto-isomorphisms7 can provide Lindenbaum algebra
equivalence. Moreover, L is a functor Sign −→ Alg(ΞI) because |=| is preserved
by translation along signature morphisms8. If I is truth functionally complete,
then L(Σ) is a Boolean algebra. A proof theoretic variant of L(Σ) is considered in
Section 5 below. �
Definition 4.5. An institution has external semantic universal D-quantification
[35] for a class D of signature morphisms iff for each σ : Σ → Σ′ in D and each
Σ′-sentence, there is a Σ-sentence ∀σ.ϕ such that M |=Σ ∀σ.ϕ iff M ′ |= ϕ for
each σ-expansion M ′ of M . External semantic existential quantification is defined
similarly. �

This definition accommodates quantification over any entities which are part
of the relevant concept of signature. For conventional model theory, this includes
second order quantification by taking D to be all extensions of signatures by op-
eration and relation symbols. First order quantification is modeled with D the
representable signature morphisms [11, 13] defined below, building on the observa-
tion that an assignment for a set of (first order) variables corresponds to a model
morphism from the free (term) model over that set of variables:

6By determining ΞI in a purely model-theoretic way, we avoid the need to deal with different
signatures of Lindenbaum algebras of equivalent logics, as it is necessary in the framework of
[28].
7A cryptomorphism is a homomorphism between algebras of different signatures linked by a
signature morphism; the homomorphism goes from the source algebra into the reduct of the
target algebra.
8L is also functorial in the institution, though the details are rather complex.
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Definition 4.6. A signature morphism χ : Σ → Σ′ is representable iff there are
a Σ-model Mχ called the representation of χ and a category isomorphism iχ such
that the diagram below commutes, where (Mχ/Mod(Σ)) is a comma category and
U is the forgetful functor. �

Mod(Σ′)
iχ ��

Mod(χ) �������������
(Mχ/Mod(Σ))

U
��

Mod(Σ)

It seems likely that if external semantic universal quantification over rep-
resentable quantifiers is included in the signature ΞFOL, then our Lindenbaum
algebra functor yields cylindric algebras, though not all details have been checked
as of this writing.

Theorem 4.7. Let (Φ, α, β) : I −→J be an institution equivalence. Then I has
universal (or existential) representable quantification iff J also has universal (or
existential) representable quantification.

It follows that the set of the external semantic connectives an institution has is
preserved under institution equivalence.

Example 4.8. Horn clause logic is not equivalent to FOL, because it does not
have negation (nor implication etc.). Horn clause logic with predicates and without
predicates are not equivalent: in the latter logic, model categories of theories have
(regular epi, mono)-factorizations, which is not true for the former logic. �
Example 4.9. Propositional logic CPL and propositional modal logic K are not
equivalent: the former has external semantic disjunction, the latter does not:
(M |=Σ p) or (M |=Σ ¬p) means that p is interpreted homogeneously in all
worlds of M , which is not expressible by a modal formula. Indeed, the Linden-
baum algebra signature for CPL is {∧© , ∨© , ¬© ,→© ,↔© , t© , f©}, while that for K
is {∧© ,↔© , t© , f©}. Likewise, first-order logic and first-order modal logic are not
equivalent. These assertions also hold replacing “modal” by “intuitionistic”. �
Definition 4.10. An institution is liberal iff for any theory morphism σ : T1 −→
T2, Mod(σ) : Mod(T2) −→ Mod(T1) has a left adjoint. An institution has initial
(terminal) models if Mod(T ) has so for each theory T . �
Definition 4.11. For any classes L and R of signature morphisms in an institution
I, the institution has the semantic Craig 〈L, R〉-interpolation property [34] if for
any pushout

Σ

σ2

��

σ1 �� Σ1

θ2

��
Σ2

θ1 �� Σ′

in Sign such that σ1 ∈ L and σ2 ∈ R, any set of Σ1-sentences Γ1 and any set of
Σ2-sentences Γ2 with θ2(Γ1) |= θ1(Γ2), there exists a set of Σ-sentences Γ (called
the interpolant) such that Γ1 |= σ1(Γ) and σ2(Γ) |= Γ2. �
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This generalizes the conventional formulation of interpolation from intersec-
tion/union squares of signatures to arbitrary classes of pushout squares. While
FOL has interpolation for all pushout squares [15], many sorted first order logic
has it only for those where one component is injective on sorts [8, 6, 21], and
EQ and Horn clause logic only have it for pushout squares where R consists of
injective morphisms [30, 14]. Using sets of sentences rather than single sentences
accommodates interpolation results for equational logic [30] as well as for other
institutions having Birkhoff-style axiomatizability properties [14].

Definition 4.12. An institution is (semi-)exact if Mod maps finite colimits (push-
outs) to limits (pullbacks). �

Semi-exactness is important because many model theoretic results depend
on it. It is also important for instantiating parameterized specifications. It means
that given a pushout as in Def. 4.11 above, any pair (M1, M2) ∈ Mod(Σ1) ×
Mod(Σ2) that is compatible in the sense that M1 and M2 reduce to the same Σ-
model can be amalgamated to a unique Σ′-model M (i.e., there exists a unique
M ∈ Mod(Σ′) that reduces to M1 and M2, respectively), and similarly for model
morphisms. Elementary amalgamation [14] is like semi-exactness but considers the
model reducts up to elementary equivalence.

It is also known how to define reduced products, �Loś sentences (i.e. sentences
preserved by both ultraproducts and ultrafactors) and �Loś institutions [11], ele-
mentary diagrams of models [12], and (Beth) definability9, all in an institution
independent way, such that the expected theorems hold under reasonable assump-
tions. All this is very much in the spirit of “abstract model theory,” in the sense
advocated by Jon Barwise [2], but it goes much further, including even some new
results for known logics, such as many sorted first order logic [14, 21].

The faithful functors to Set make it possible to consider cardinalities for
signatures and models in a concrete institutions with symbols. By restricting sig-
nature morphisms to a subcategory, it is often possible to view these cardinality
functions as functors.

Definition 4.13. The Lindenbaum cardinality spectrum of a concrete institution
with symbols maps a cardinal number κ to the maximum number of non-equival-
ent sentences for a signature of cardinality κ. The model cardinality spectrum of
a concrete institution with symbols maps each pair of a theory T and a cardinal
number κ to the number of non-isomorphic models of T of cardinality κ. �

Theorem 4.14. Sentence and model cardinality spectra, and the finite model
property, are preserved under concrete equivalence. �

9As of this writing, the formal proof of the expected results on Beth definability (e.g., the Beth
theorem, which asserts the equivalence of explicit and implicit definability) are still in progress,
though we are confident of success.
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5. Proof Theoretic Invariants

Proof theoretic institutions include both proofs and sentences. Categorical logic
usually works with categories of sentences, where morphisms are (equivalence
classes of) proof terms [22]. But this only captures provability between single sen-
tences, whereas logic traditionally studies provability from a set of sentences. The
following overcomes this limitation by considering categories of sets of sentences:

Definition 5.1. A cat/cat institution is like a set/cat institution, except that
now Sen : Sign −→ Set comes with an additional categorical structure on sets
of sentences, which is carried by a functor Pr : Sign −→ Cat such that ( )op ◦
P ◦ Sen is a subfunctor of Pr, and the inclusion P(Sen(Σ))op ↪→ Pr(Σ) is broad
and preserves products of disjoint sets of sentences10. Here P : Set −→ Cat is
the functor taking each set to its powerset, ordered by inclusion, construed as a
thin category11. Preservation of products implies that proofs of Γ → Ψ are in
bijective correspondence with families of proofs (Γ → ψ)ψ∈Ψ, and that there are
monotonicity proofs Γ → Ψ whenever Ψ ⊆ Γ.

A cat/cat institution comorphism between cat/cat institutions I and J con-
sists of a set/cat institution comorphism (Φ, α, β) : I −→J and a natural trans-
formation γ : PrI −→PrJ ◦ Φ such that translation of sentence sets is compatible
with translation of single sentences: γΣ ◦ ιΣ = ι′Σ ◦ P(αΣ)op, where ιΣ and ι′Σ
are the appropriate inclusions. A cat/cat institution comorphism (Φ, α, β, γ) is a
cat/cat equivalence if Φ is an equivalence of categories, β is a family of equivalences
natural in Σ, and so is γ. Note that there is no requirement on α. As before, all
this also extends to the case of omitting of model morphisms, i.e. the cat/set case.
Henceforth, the term proof theoretic institution will refer to both the cat/cat and
the cat/set cases. �

Given an arbitrary but fixed proof theoretic institution, we can define an
entailment relation �Σ between sets of Σ-sentences as follows: Γ �Σ Ψ if there
exists a morphism Γ → Ψ in Pr(Σ). A proof theoretic institution is sound if
Γ �Σ Ψ implies Γ |=Σ Ψ; it is complete if the converse implication holds. In the
sequel, we will assume that all proof theoretic institutions are sound, which in
particular implies the following:

Proposition 5.2. Any cat/cat equivalence is a set/cat equivalence. �

Proposition 5.3. � satisfies the properties of an entailment system [25], i.e. it is
reflexive, transitive, monotonic and stable under translation along signature mor-
phisms. In fact, entailment systems are in bijective correspondence with proof
theoretic institutions having trivial model theory (i.e. Mod(Σ) = ∅) and thin cat-
egories of proofs. �

10Instead of having two functors Pr and Sen, it is also possible to have one functor into a comma
category.
11A category is thin if between two given objects, there is at most one morphism, i.e. the category
is a pre-ordered class.
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The requirement for sentence translation in proof theoretic institution equiv-
alences is very close to the notion of translational equivalence introduced in [28]. A
set/set institution equivalence basically requires that the back-and-forth transla-
tion of sentence is semantically equivalent to the original sentence (i.e. α′

Σ(αΣ(ϕ))
|=| ϕ); a similar notion would arise when using ��. Note, however, that this does
not work well for modal logics, since e.g. in S5, ϕ �� �ϕ. Therefore, [28] require
� α′

Σ(αΣ(ϕ)) ↔ ϕ. However, this is based upon the presence of equivalence as a
proof theoretic connective, which is not present in all institutions. Our solution
to this problem comes naturally out of the above definition of proof theoretic (i.e.
cat/cat or cat/set) equivalence: α′

Σ(αΣ(ϕ)) and ϕ have to be isomorphic in the
category of proofs. We thus neither identify ϕ and �ϕ in modal logics, nor rely on
the presence of a connective ↔.

Definition 5.4. A proof theoretic institution is finitary if Γ �Σ ϕ implies Γ′ �Σ ϕ
for some finite Γ′ ⊆ Γ.

A proof theoretic institution has proof theoretic conjunction if each category
Pr(Σ) has distinguished products of singletons, which are singletons again and
which are preserved by the proof translations Pr(ϕ). In terms of derivability, this
implies that for ϕ1, ϕ2 Σ-sentences, there is a product sentence ϕ1 ∧ ϕ2, and two
“projection” proof terms π1 : ϕ1 ∧ ϕ2−→ϕ1 and π2 : ϕ1 ∧ ϕ2−→ϕ2, such that for
any ψ with ψ �Σ ϕ1 and ψ �Σ ϕ2, then ψ �Σ ϕ1 ∧ ϕ2.

Similarly, a proof theoretic institution has proof theoretic disjunction (true,
false) if each proof category has distinguished coproducts of singletons that are
singletons (a distinguished singleton terminal object, a distinguished singleton
initial object) which are preserved by the proof translations.

A proof theoretic institution has proof theoretic implication if each functor
∪ {ϕ} : Pr(Σ) −→ Pr(Σ) has a right adjoint, denoted by ϕ→ , such that ϕ→

maps singletons to singletons and commutes with the proof translations. This
means there exists a bijective correspondence, called the ‘Deduction Theorem’ in
classical logic, between Pr(Σ)(Γ ∪ {ρ}, E) and Pr(Σ)(Γ, ρ → E) natural in Γ and
E, and such that the following diagram commutes for all signature morphisms
σ : Σ → Σ′:

Pr(Σ)
ϕ→ ��

Pr(σ)

��

Pr(Σ)

Pr(σ)

��
Pr(Σ′)

σ(ϕ)→
�� Pr(Σ′)

In case f is present, it has proof theoretic negation if each sentence ψ
has a distinguished negation ¬ ψ which is preserved by the proof translations
Pr(ϕ) and such that Pr(Σ)(Γ ∪ {ψ}, f ) is in natural bijective correspondence to
Pr(Σ)(Γ, { ¬ ψ}).

A proof theoretic institution is propositional if it has proof theoretic conjunc-
tion, disjunction, implication, negation, true and false. �
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Definition 5.5. A proof theoretic institution with proof theoretic negation has
¬¬-elimination if for each Σ-sentence ϕ, ¬ ¬ ϕ �Σ ϕ (the converse relation easily
follows from the definition). �

For example, CPL and FOL have ¬¬-elimination, while IPL has not. Clearly,
any complete proof theoretic institution with external semantic and proof theoretic
negation has ¬¬-elimination.

Proposition 5.6. A proof theoretic institution having proof theoretic implication
enjoys the deduction theorem and modus ponens for �Σ. A complete proof theoretic
institution is finitary iff it is compact. �

Example 5.7. The modal logic K does not have proof theoretic implication, nor
negation, and this is a difference from intuitionistic logic IPL, showing that the
two logics are not equivalent. (See [22] for the proof category of IPL.) �

While K does not have proof theoretic implication, it still has a form of local
implication, which does not satisfy the deduction theorem. This can be axiomatized
as follows:

Definition 5.8. A proof theoretic institution has Hilbert implication if for each
signature Σ, there is a unique binary operator � on Σ-sentences satisfying the
Hilbert axioms for implication, i.e.

(K) ∅ �Σ {ϕ � ψ � ϕ}
(S) ∅ �Σ {(ϕ � ψ � χ) � (ϕ � ψ) � ϕ � χ}
(MP ) {ϕ � ψ, ϕ} �Σ {ψ}

�There is a proof theoretic variant of the Lindenbaum algebra of Def. 4.4:

Definition 5.9. Let ΨI be the single sorted algebraic signature having a subset
of the operations { ∧ , ∨ , ¬ , � , ↔ , t , f } (with their standard arities), chosen
according to whether I has proof theoretic conjunction, disjunction, negation etc.,
and Hilbert implication for implication. Note that like the signature ΞI introduced
in Def. 4.4, ΨI may include connectives not provided by the institution I, or
provided by I with a different syntax. By Thm. 5.11, ΞI has a canonical embedding
into ΨI . Consider L��(Σ) = Sen(Σ)/∼=, where ∼= is isomorphism in Pr(Σ). Since
products etc. are unique up to isomorphism, it is straightforward to make this a
ΨI-algebra.

The Lindenbaum algebra is the basis for the Lindenbaum category LC��(Σ),
which has object set P(L��(Σ)). By choosing a system of canonical representatives
for Sen(Σ)/∼=, this object set can be embedded into |Pr(Σ)|; hence we obtain an
induced full subcategory, which we denote by LC��(Σ). Different choices of canon-
ical representatives may lead to different but isomorphic Lindenbaum categories.
While the Lindenbaum category construction is functorial, the proof theoretic Lin-
denbaum algebra construction is generally not. Also, the closed theory functor C|=

has a proof theoretic counterpart C� taking theories closed under �. �
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Definition 5.10. A proof theoretic institution is compatible if for each circled (i.e.,
external semantic) operator in ΞI , the corresponding boxed (i.e., proof theoretic)
operator in ΨI is present. It is bicompatible if also the converse holds. �

Theorem 5.11. A complete proof theoretic institution with thin proof categories
is compatible, but not necessarily bicompatible. �

Proposition 5.12. Assume a proof theoretic institution with thin proof categories.
If deduction is complete, then L(Σ) and L��(Σ)|ΞI are isomorphic; just soundness
gives a surjective cryptomorphism L��(Σ)|ΞI → L(Σ), and just completeness gives
one in the opposite direction. �

Example 5.13. Intuitionistic propositional logic shows that proof theoretic dis-
junction does not imply external semantic disjunction. �

Definition 5.14. A proof theoretic institution is classical modal if its Lindenbaum
algebras L��(Σ) are Boolean algebras (also having implication) with an operator� (congruent with ∧ and t ). A classical modal proof theoretic institution is
normal if the operator satisfies the necessitation law: ϕ �Σ �ϕ. (Note that modus
ponens already follows from implication being present in ΨI .) �

It is clear that equivalences between classical modal proof theoretic institu-
tions need to preserve L�� (but not necessarily the operator). It should hence be
possibly to apply the results of [28].

Example 5.15. S4 has a non-idempotent operator (congruent with ∧ and t ) on
its Lindenbaum algebra, while S5 does not have one. Hence, S4 and S5 are not
equivalent. �

Definition 5.16. Given cat/cat institutions I and J , J is a cat/cat skeleton of I
if it is like a set/cat skeleton, but such that SenJ (Σ) = SenI(Σ)/∼=, and such that
PrJ (Σ) = LC��(Σ), the Lindenbaum category. �

Lawvere [24] defined quantification as adjoint to substitution. Here we de-
fine quantification as adjoint to sentence translation along a class D of signature
morphisms, which typically introduce new constants to serve as quantification
“variables”:

Definition 5.17. A cat/cat institution has proof theoretic universal (existential) D-
quantification for a class D of signature morphisms stable under pushouts, if for all
signature morphisms σ ∈ D, Pr(σ) has a distinguished right (left) adjoint, denoted
by (∀σ) ((∃σ) ) and preserved by proof translations along signature morphisms.
This means there exists a bijective correspondence between Pr(Σ)(E, (∀σ)E′) and
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Pr(Σ′)(σ(E), E′) natural in E and E′, in classical logic known as the ‘Generalisa-
tion Rule’, such that for each signature pushout with σ ∈ D,

Σ

σ

��

θ �� Σ1

σ′

��
Σ′

θ′
�� Σ′

1

the pair 〈Pr(θ), Pr(θ′)〉 is a morphims of adjunctions. �

One may define a proof theoretic concept of consistency. A theory (Σ, Γ) is
consistent when its closure under � is a proper subset of Sen(Γ). Craig interpolation
also has a proof theoretic version: for any proof p : θ1(E1) → θ2(E2), there exist
proofs p1 : E1 → σ1(E) and p2 : σ2(E) → E2 such that p = θ2(p2) ◦ θ1(p1).

Given a set/cat (or set/set) institution I, we can obtain a complete cat/cat
(or cat/set) institution I|= by letting Pr(Σ) be the pre-order defined by Γ ≤ Ψ if
Γ |=Σ Ψ, considered as a category. Some of the proof theoretic notions are useful
when interpreted in I|=:

Definition 5.18. An institution I has internal semantic conjunction if I|= has
proof theoretic conjunction; similarly for the other connectives. �

Example 5.19. Intuitionistic logic IPL has internal, but not external semantic im-
plication. Higher-order intuitionistic logic interpreted in a fixed topos (see [22]) has
proof theoretic and Hilbert implication, but neither external nor internal semantic
implication. Modal logic S5 has just Hilbert implication. �

Theorem 5.20. The properties in the table below are invariant under set/set,
set/cat, cat/set and cat/cat equivalence, resp.12 Sect. 5.) Properties in italics rely
on concrete institutions (as in Def. 2.7).

12Functors such as the Lindenbaum algebra functor are preserved in the sense that LI is naturally
isomorphic to LJ ◦ Φ.
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set/set set/cat
compactness, (semi-)exactness,
elementary amalgamation, se-
mantic Craig interpolation,
Beth definability, having ex-
ternal semantic conjunction,
disjunction, negation, true,
false, being truth functionally
complete, Lindenbaum signature
ΞI , Lindenbaum algebra functor
L, closed theory lattice functor
C|=, (co)completeness of the
signature category, Lindenbaum
cardinality spectrum, finite
model property.

all of set/set, having exter-
nal semantic universal or ex-
istential (representable) quan-
tification, exactness, elementary
diagrams, (co)completeness of
model categories, existence of re-
duced products, preservation for
formulæalong reduced products,
being a �Loś-institution, model
cardinality spectrum, admission
of free models.

cat/set cat/cat
all of set/set plus its proof the-
oretic counterparts where ap-
plicable, soundness, complete-
ness, Hilbert implication, ¬¬-
elimination.

all of set/cat and cat/set, having
proof theoretic universal or ex-
istential quantification, compat-
ibility, bicompatibility.

6. Conclusions

We believe this paper has established four main points: (1) The notion of “a
logic” should depend on the purpose at; in particular, proof theory and model
theory sometimes treat essentially the same issue in different ways. Institutions
provide an appropriate framework, having a balance between model theory and
proof theory. (2) Every plausible notion of equivalence of logics can be formalized
using institutions and various equivalence relations on them. (3) Inequivalence
of logics can be established using various constructions on institutions that are
invariant under the appropriate equivalence, such as Lindenbaum algebras and
cardinality spectra. We have given several examples of such inequivalences. (4)
A great deal of classical logic can be generalized to arbitrary institutions, and
the generalized formulations are often quite interesting in themselves. Perhaps the
fourth point is the most exciting, as there remains a great deal more to be done,
particularly in the area of proof theory.

Among the proof theoretic properties that we have not treated. Proof the-
oretic ordinals, while an important device, would deviate a bit from the subject
of this paper, because they are a measure for the proof theoretic strength of a
theory in a logic, not a measure for the logic itself. But properties like (strong)
normal forms for proofs could be argued to contribute to the identity of a logic;
treating them would require Pr(Σ) to become 2-category of sentences, with proof
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terms and proof term reductions. A related topic is cut elimination, which would
require an even finer structure on Pr(Σ), with proof rules of particular format.
Another direction is the introduction of numberings in order to study recursive-
ness of entailment. We hope this paper provides a good starting point for such
investigations.
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What is a Logic, and What is a Proof ?

Lutz Straßburger

Abstract. I will discuss the two problems of how to define identity between
logics and how to define identity between proofs. For the identity of logics,
I will propose a possible notion, which might be considered to be folklore,
but which seems to be the right one from the viewpoint of the problem of
the identity of proofs. For that problem I will indicate a possible direction of
research.

1. Introduction

When we study mathematical objects within a certain mathematical theory, we
usually know when two of these objects are considered to be the same, i.e., are
indistinguishable within the theory. For example in group theory two groups are
indistinguishable if they are isomorphic, in topology two spaces are considered the
same if they are homeomorphic, and in graph theory we have the notion of graph
isomorphism. However, in proof theory the situation is different. Although we are
able to manipulate and transform proofs in various ways, we have no satisfactory
notion telling us when two proofs are the same, in the sense that they use the
same argument. The reason is the lack of understanding of the essence of a proof,
which in turn is caused by the bureaucracy involved in the syntactic presentation
of proofs. It is therefore an important problem of research to find new ways of
presenting proofs, that allow to grasp the essence of a proof by getting rid of
bureaucratic syntax, and that identify proofs if and only if they use the same
argument. As a matter of fact, the problem was already a concern of Hilbert, when
he was preparing his famous lecture in 1900 [Thi03]. The history of mathematical
logic and proof theory might have developped in a different way if he had included
his “24th problem”.

Proofs are carried out within logical systems. We can, for example, have
proofs in classical logic and proofs in linear logic. It should be obvious, that two
proofs that are carried out in different logics must be distinguished. Consequently,
before expecting an answer to the question “When are two proofs the same?”, we
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have first to give an answer to the question “When are two logics the same?”.1

The problem of identifying logics is not only of interest for proof theory, but for
the whole area of logic, including mathematical logic as well as philosophical logic.
That in particular the latter field is interested in the problem shows the “contest”
evoked by the organizers of the “1st World Congress and School on Universal
Logic” [Uni05].

This means that we have to deal with two problems: the identity of proofs,
and the identity of logics. Although the two problems are closely related, they are
of a completely different nature.

For the identity of proofs, the actual problem is to find the right presenta-
tions of proofs that allow us to make the correct identifications. So far, proofs
are presented as syntactical objects: we see Hilbert style proofs, natural deduc-
tion proofs, resolution proofs, sequent calculus proofs, proofs in the calculus of
structures, tableau proofs, and many more—in particular, also proofs written up
in natural language. Of course, the same proof can be written up in various differ-
ent formalisms. And even in a single formalism, the same proof can take different
shapes.

For the identity of logics, on the other hand, the actual problem is to find
the “least common denominator” for a definition of logic. The reason is that there
is no generally accepted consensus under logicians about the question what a
logic actually is. Not only is the model theoreticians understanding of a logic
different from the proof theoreticians understanding, we also see in other areas of
research various different notions of “logic”, which are all tailored for a particular
application.

But a clean definition of logic will immediately lead to a clean notion of
equivalence of logics. In the next section, I will give (from the proof theoreticians
viewpoint) such a definition together with its notion of equivalence. Although it
could certainly be considered to be folklore knowledge—for long it has been used
by logicians already—I discuss it here because it provides clear and firm grounds
for investigating the problem of identifying proofs. This problem will be discussed
in the last section of the paper.

2. What is a logic ?

Definition 2.1. A logic L = (AL ,⇒L ) is a set AL of well-formed formulae,
together with a binary relation ⇒L⊆ AL ×AL , called the consequence relation,
that is reflexive and transitive.

In other words, a logic is simply a preorder. The index L will be omitted
for A and ⇒, if no ambiguity is possible. The elements of A will be denoted by
A, B, C, etc. Instead of A ⇒ B, we can also write B ⇐ A. Similarly, we write

1Of course, this problem was of no concern for Hilbert, since at the time when he was thinking
about the identity of proofs there was only one logic.
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A ⇔ B if A ⇒ B and A ⇐ B. Observe that ⇔ is always an equivalence relation.
Let me make some comments about Definition 2.1:

• There are no cardinality restrictions on the set A .
• The definition abstracts away from the structure of the set A of well-formed

formulae. That means that for capturing the “purely logical part” of a logic,
it is (for the time being) irrelevant, which and how many connectives, modal-
ities, constants, variables, etc. are there.

• Our concern here is only syntax. We will (again, for the time being) not see
any semantics, neither in the model theoretic sense (à la Tarski), nor in the
denotational sense (à la Heyting).

• There are no computability or complexity restrictions on the relation ⇒. It
is also of no relevance whether it is defined in a model theoretic way (A ⇒ B
iff every model that makes A true does also make B true), by means of a
deductive system (A ⇒ B iff there is a proof of B from hypothesis A), or in
some other way.

• The two properties of being reflexive and transitive are essential for our treat-
ment of ⇒. Reflexivity says that A ⇒ A for every formula A. Transitivity
says that whenever A ⇒ B and B ⇒ C then also A ⇒ C.
Often the notion of a logic is presented such that the consequence relation

is not defined as a subset of A × A but as a subset of Pf (A ) × A or even of
P(A ) × A , where P(A ) is the powerset of A , i.e., the set of all subsets, and
Pf (A ) is the set of all finite subsets of A . Let us denote this new consequence
relation by �. It should be clear that such a definintion is perfectly equivalent to the
one in 2.1, provided the structure of A has access to the concept of “conjunction”,
for example, via a connective ∧. Then we have

{A1, . . . , An} � B iff A1 ∧ · · · ∧ An ⇒ B .

In the case of P(A ) we also need access to the concept of “infinite conjunction”.
Then we have

Γ � B iff
∧

Γ ⇒ B ,

where Γ ⊆ A is an arbitrary set of well-formed formulae and
∧

Γ is their conjunc-
tion.

Alternatively, the notion of logic can be defined as a pair (A , T), where
T ⊆ A is the set of tautologies (or theorems). Again, this definition is perfectly
equivalent to the one we have seen, provided the connectives that generate A
have access to the concept of “implication” (either via a connective ⊃, or via a
disjunction together with a negation, or in any other way) and the concept of
“truth” (for example via a constant �). Then we have

A ⇒ B iff A ⊃B ∈ T

and

A ∈ T iff � ⇒ A .
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However, in both alternative definitions, we have to ensure the reflexivity
and transitivity of the induced consequence relation. Because of the importance
of these two conditions I prefer the definition as given in 2.1.

Let us now continue with some standard definitions for preorders.

Definition 2.2. The skeleton of a logic is the partially ordered set (A/⇔,≤), where
A/⇔ is the set of equivalence classes of A under ⇔, and ≤ is defined by

[A]⇔ ≤ [B]⇔ if and only if A ⇒ B .

Observe that ≤ is anti-symmetric, and therefore a partial order.

Definition 2.3. A homomorphism F between two logics

L = (A ,⇒L ) and M = (B,⇒M )

is a monotone function F : A → B, i.e., if A ⇒L B then F (A) ⇒M F (B).

Definition 2.4. An isomorphism F between two logics L = (A ,⇒L ) and M =
(B,⇒M ) is a bijective function F : A → B, where F as well as F−1 are both
monotone, i.e., A ⇒L B if and only if F (A) ⇒M F (B). We say that two logics
are isomorphic if there is an isomorphism between the two.

Definition 2.5. An embedding F of a logic L = (A ,⇒L ) into another logic M =
(B,⇒M ) is an injective function F : A → B, such that A ⇒L B if and only if
F (A) ⇒M F (B).

Definition 2.6. Two logics L = (A ,⇒L ) and M = (B,⇒M ) are equivalent if
there are two monotone functions F : A → B and G : B → A such that for all
formulae A ∈ A we have A ⇔L G(F (A)) and for all formulae B ∈ B we have
B ⇔M F (G(B)).

Although I am using here the standard order theoretic vocabulary, all these
concepts have already been studied from the point of view of logic. For exam-
ple, in [PU03], the terms sound translation, exact translation, and translational
equivalent are used for the concepts of homomorphism, embedding, and equivalent,
respectively.2

One could say that two logics are “the same” if and only if they are isomor-
phic, but there are also reasons to argue that the notion of isomorphism is too
strong for identifying logics. In particular, under the notion of isomorphism we
can only compare logics with the same cardinality of well-formed formulae. Also
from the point of view of proof theory, the the notion of equivalence (which is also
used in category theory) seems more natural. In other words, I will here support
the slogan:

Two logics are “the same”

if and only if

they are equivalent as preorders.

2But in [PU03] they are not defined in order theoretic terms.
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We can make the following immediate observations:

• It is possible that two logics with different cardinality are equivalent.
• Under the notion of equivalence, we can say that the essence of a logic is

captured by its skeleton, because we have that two logics are equivalent if
and only if their skeletons are isomorphic.

It is obvious that our notion of equivalence is able to identify all different
formulations of classical propositional logic. For example we can generate the set A
by using only conjunction and negation, and the set B by using only disjunction
and negation. If ⇒A and ⇒B are the intended classical consequence relations, then
(A ,⇒A ) and (B,⇒B) are equivalent, provided we start with the same number of
propositional variables. We will not get an equivalence, if say A is generated from
5 propositional variables, and B from 2; and this certainly follows the intuition.

Furthermore, the notion of equivalence is able to successfully distinguish be-
tween classical logic and intuitionistic logic. Observe that both logics can use the
same set A of well-formed formulae, but the consequence relation is different for
the two: for example, we have that ¬¬A ⇒ A (where ¬A is the negation of A) in
classical logic, but not in intuitionistic logic. In fact, in the case of classical logic,
the skeleton is a Boolean algebra, and in the case of intuitionistic logic, it is a
Heyting algebra.

Similarly, we can single out linear logic [Gir87] and its various fragments. For
example the multiplicative fragment of linear logic (MLL) is not equivalent to the
multiplicative additive fragment (MALL). In fact, all the known logics, that are
considered to be different, can be distinguished by the notion of equivalence. For
various modal logics, namely K, T, S4, and S5, this has been shown explicitely in
[PU03]. But it can be shown straightforwardly also for other cases.

Notice that the notion of equivalence for logics that I use here is nothing but
the category theoretical equivalence, restricted to preorders. The idea of using this
well-known concept in the area of logic can be traced back at least to Lambek’s
work [Lam68, Lam69]. However, since in [Uni05] the organizers write: “Proposals
such that one of [Pol98] or [PU03] apply only to some special situations.”, there
might be an interest in some further comments:

In [Pol98], Pollard compares the notion of logic with the notion of function
space, as it is studied in clone theory (see e.g. [PK79]). Although in the case of
boolean logic and the boolean function spaces (as investigated by Post [Pos41])
this question has a certain interest, we should not be surprised by the “negative”
result that the two notions do not coincide. The only disturbing fact in [Pol98] is,
as pointed out by the author, that sometimes the projection function (in [Pol98]
denoted by =1) has a logical significance and sometimes not. The reason is that
Pollard uses the notion of preorder isomorphism3 for identifying logics, and this
is too strong. Under the notion of preorder equivalence, the projection function is

3[Pol98] does not use the order theoretic vocabulary but introduces the concept from the view-
point of topology.
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(as one would expect) irrelevant from the logical point of view, i.e., the logic does
not change if =1 is added as binary connective to the set of generators of A .4

In [PU03], Pelletier and Urquhart make a convincing case that preorder
equivalence5 is the right notion of identifying logics. As mentioned already, they
explicitely show how various modal logics are correctly distinguished under the no-
tion of this equivalence. In the end of of the paper, the authors provide a concrete
example illustrating the fact that two logics (i.e., preorders) which can be embed-
ded into each other are not necessarily equivalent. Although this is not surprising
from the order theoretic point of view, the example itself is instructive from the
point of view of logic.

3. What is a proof ?

From now on we do no longer content ourselves with statements like A ⇒ B, saying
that “B is a logical consequence of A”, but rather want to see a justification, or
proof, of such a statement. In order not to end up in a triviality, we have to accept
the fact that there can (and must) be different such justifications of the same
statement. Instead of writing A ⇒ B, we will therefore write f : A → B, in order
to single out the proof f of the statement that B is a consequence of A.

More formally, this is the step that takes us from preorders to categories. This
means that each pair (A, B) of well-formed formulae is equipped with a (possibly
empty) set of proofs (i.e., morphisms or arrows in the language of category theory)
from A to B. The axioms of category theory demand that

1. for every formula A there is an identity proof idA : A → A, and
2. for any two proofs f : A → B and g : B → C there is a uniquely defined

proof g ◦ f : A → C, the composite of f and g.
Further, we demand that for every f : A → B we have that

idB ◦ f = f = f ◦ idA ,

and for all f : A → B and g : B → C and h : C → D, we have that

(h ◦ g) ◦ f = h ◦ (g ◦ f) .

Under this refinement, a logic is no longer a preorder, but a category. This
relation between category theory and proof theory has already been observed by
Lambek in the early work [Lam68, Lam69]. What has been a homomorphism (or
monotone function) between preorders, is now a functor F between categories L
and M . More precisely, F consists of a map from formulae of L into formulae

4This is so because we have A =1B ⇔ A, no matter what A and B are.
5As said before, in [PU03] the term “translational equivalence” is used and the relation to order
theory is not mentioned. However, since classical implication is transitive and reflexive, the
preorder structure is there, and the two definitions coincide.
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of M , and a map from proofs in L into proofs in M such that composition and
identities are preserved.

Observe that from the point of view of proof theory, demanding the proper-
ties of a category is already quite a lot. For example in the sequent calculus the
composition of proofs is given by cut elimination, and this is per se not necessarily
an associative operation. Furthermore, in the sequent calculus for classical logic
this operation is not even confluent, which means that the composition of proofs
is not uniquely defined.

However, treating a logic as a category has several advantages. Not only do
we get the right level of abstraction to investigate the question how to identify
proofs, we also can still use our notion of equivalence of logics—two logics are
equivalent iff they are equivalent as categories:

Definition 3.1. Two logics L and M are equivalent if there are functors F : L →
M and G : M → L , such that for all formulae A in L and all formulae B in M
we have that A ∼= G(F (A)) and B ∼= F (G(B)).6

As useful as this might be for identifying logics, it does not tell us anything
about the problem of identifying of proofs, which now becomes the problem of
identifying arrows in a category. It should be clear, that the problem must be
asked for every logic anew, and it has to be expected that it is of various difficulty
in different logics.

In the case of linear logic we have the notion of proof nets [Gir87], which
works particularly well for the multiplicative fragment MLL. This gives rise to the
following slogan:

Two proofs are “the same”

if and only if

they are represented by the same proof net.

These proof nets are geometric objects consisting of the formula tree (or sequent
forest) extended by some additional graph structure, the so-called axiom links.
This name is chosen because they represent the identity axioms appearing in the
sequent proof:
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← axiom links

← sequent forest

In [HvG03] this is extended to MALL, the multiplicative additive fragment of linear
logic.

6Here A ∼= G(F (A)) means that the two are isomorphic in the category theoretical sense, i.e.,
there are proofs f : A → G(F (A)) and g : G(F (A)) → A, such that f ◦ g = idG(F (A)) and

g ◦ f = idA; and similarly for B ∼= F (G(B)).
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The proof nets for MLL do not only allow us to make the right identifications
on formal proofs presented in the sequent calculus (or any other formalism), but
also allow us to construct the free *-autonomous category [Bar79, Blu93, SL04],
and by this substantiate the connection between category theory and proof theory.

For intuitionistic logic, this connection is based on the notion of cartesian
closed categories (see, e.g., [LS86] for an introduction). Furthermore, due to the
Curry-Howard-correspondence [How80], we are able to name proofs in intuitionistic
logic by λ-terms, which can be identified through the notion of normalization
[Pra65, Pra71, ML75].

These notions of identifying proofs for linear logic and intuitionistic logic
turned out to be particularly useful for computer science. However, for the logics
which are most interesting for mathematics and philosophy, namely, classical logic
and modal logics, no such notions exist (yet). This lack of ability of naming proofs
in classical logic led Girard in [Gir91] to the statement: “classical proof theory is
inexistent.” In fact, any approach towards an identification of proofs in classical
logic is facing problems from two sides:

1. From the proof theoretical side: as mentioned before, there is no clear notion
of composing proofs in classical logic.

2. From the category theoretical side: The obvious categorical axiomatization
of classical logic leads to a collapse into a Boolean algebra; all proofs of a
given formula A are identified.

Nontheless, recently considerable progress has been made in the quest for a
decent proof theory for classical and modal logic.

Through the development of the calculus of structures [Gug02, GS01, BT01]
it was possible to present new formal systems for classical (propositional and pred-
icate) logic [Brü03] and various modal logics [Sto04]. The proof systems in the
calculus of structures have a finer granularity than in the sequent calculus, and
by this allow new notions of proof identifications. These led in [LS05b] to a novel
kind of proof nets for classical logic. The basic idea is again that the essence of a
proof is captured by axiom links that are put on top of the formula tree (or sequent
forest). For example the proof of the distributivity law (b∧a)∨(c∧a) ⇒ (b∨c)∧a,
which is given in the (one-sided) sequent calculus as

id � ¬a, a

id � ¬c, c
weak � ¬c, b, c∨ � ¬c, b ∨ c∧ � ¬a,¬c, (b ∨ c) ∧ a∨ � ¬a ∨ ¬c, (b ∨ c) ∧ a

id � ¬a, a

id � ¬b, b
weak � ¬b, b, c∨ � ¬b, b ∨ c∧ � ¬a,¬b, (b ∨ c) ∧ a∨ � ¬a ∨ ¬b, (b ∨ c) ∧ a∧ � (¬a ∨ ¬c) ∧ (¬a ∨ ¬b), (b ∨ c) ∧ a, (b ∨ c) ∧ a

cont ,� (¬a ∨ ¬c) ∧ (¬a ∨ ¬b), (b ∨ c) ∧ a
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would be represented by the following proof net:

¬a ¬c ¬a ¬b b c a
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.

Interestingly, the idea of capturing “the essence” of a proof with pairs of comple-
mentary atoms has already been used in Andrews’ matings [And76]. But since he
was only interested in proof search, he did not explore the possibility of compos-
ing proofs. This is done in [LS05b], where composition is defined via a strongly
normalizing cut elimination. Therefore we indeed have a category, which could be
called a “Boolean” category, since it is to a category what a Boolean algebra is to
a poset. In [LS05a], a possible axiomatisation for these kind of categories is given.

From the point of view of category theory, an alternative approach is given in
[FP04], where Führmann and Pym relax the equality on proofs defined by cut elim-
ination to a partial order on proofs, and by this avoid the collapse into a Boolean
algebra. Another work in that direction is [Hyl04], where Hyland exhibits concrete
mathematical objects, e.g., Frobenius algebras, that can serve as denotations for
classical proofs.

Let me finish with a list of questions that are still waiting for an answer:
• Is there a philosophical justification for the identification of proofs made by

proof nets?
• Are these identifications useful from the point of view of mathematics (i.e.,

can we use them for identifying real mathematical proofs)?
• Are there ways of extending the notion of proof net to the quantifiers (first or-

der, second order, and higher order), for example by using Miller’s expansion
trees [Mil87]?

• Is it possible to include modalities into proof nets (e.g., by exploring the
recent work by Stouppa [Sto04]), in order to get a way of identifying proofs
in modal logics?
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Non-deterministic Matrices and Modular
Semantics of Rules

Arnon Avron

Abstract. We show by way of example how one can provide in a lot of cases
simple modular semantics of rules of inference, so that the semantics of a sys-
tem is obtained by joining the semantics of its rules in the most straightfor-
ward way. Our main tool for this task is the use of finite Nmatrices, which are
multi-valued structures in which the value assigned by a valuation to a com-
plex formula can be chosen non-deterministically out of a certain nonempty
set of options. The method is applied in the area of logics with a formal con-
sistency operator (knowns as LFIs), allowing us to provide in a modular way
effective, finite semantics for thousands of different LFIs.

Mathematics Subject Classification (2000). 03B22; 03B50; 03B53.

Keywords. Propositional logics, multiple-valued semantics, paraconsistency.

1. Introduction

It is well known that every propositional logic can be characterized semantically
using a multi-valued matrix ([18]). However, there are many important decidable
logics whose characteristic matrices necessarily consist of an infinite number of
truth values. In such a case it might be quite difficult to find any of these matrices,
or to use one when it is found. Even in case a logic does have a finite characteristic
matrix it might be difficult to discover this fact, or to find such a matrix. The deep
reason for these difficulties is that in an ordinary multi-valued semantics the rules
and axioms of a system should be considered as a whole, and there is no method
for separately determining the semantic effects of each rule alone.

In this paper we show how one can provide in a lot of cases simple modular
semantics of rules of inference, so that the semantics of a system is obtained by
joining the semantics of its rules in the most straightforward way. Our main tool

This research was supported by THE ISRAEL SCIENCE FOUNDATION founded by The Israel
Academy of Sciences and Humanities.
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for this task is the use of finite Nmatrices ([6, 7, 5]. Nmatrices are multi-valued
structures in which the value assigned by a valuation to a complex formula can be
chosen non-deterministically out of a certain nonempty set of options. The use of
finite structures of this sort has the benefit of preserving all the advantages of logics
with ordinary finite-valued semantics (in particular: decidability and compactness),
while it is applicable to a much larger family of logics. The central idea in using
Nmatrices for providing semantics for rules is that the main effect of a “normal”
rule is to reduce the degree of non-determinism of operations, by forbidding some
options (in non-deterministic computations of truth values) which we could have
had otherwise. This idea was first applied in [6] for a very special (though extremely
important) type of rules (which was called there “canonical rules”). For that type
of rules 2-valued Nmatrices suffice. In this paper we show how by employing more
than two values we can apply the method for a much larger class of rules. As a case
study we have chosen the class of paraconsistent logics knows as LFIs, described
in [11, 12] 1. In what follows we use our method in order to modularly provide
effective, finite semantics for thousands of different LFIs.

2. Preliminaries

2.1. Consequence Relations, Logics, and Pure Rules

Definition 2.1.

1. A Scott consequence relation (scr for short) for a language L is a binary
relation � between sets of formulas of L that satisfies the following conditions:

s-R strong reflexivity: if Γ ∩ ∆ �= ∅ then Γ � ∆.
M monotonicity: if Γ � ∆ and Γ ⊆ Γ′, ∆ ⊆ ∆′ then Γ′ � ∆′.
C Transitivity (cut): if Γ � ψ, ∆ and Γ′, ψ � ∆′ then Γ, Γ′ � ∆, ∆′.

2. An scr � for L is structural (or substitution-invariant) if for every uniform
L-substitution σ and every Γ and ∆, if Γ � ∆ then σ(Γ) � σ(∆). � is finitary
if the following condition holds for all Γ, ∆ ⊆ W : if Γ � ∆ then there exist
finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that Γ′ � ∆′. � is consistent (or non-trivial)
if there exist non-empty Γ and ∆ s.t. Γ �� ∆. 2

3. A propositional logic is a pair 〈L,�〉, where L is a propositional language
and � is an scr for L which is structural and consistent. The logic 〈L,�〉 is
finitary if � is finitary.

Definition 2.2.

1. A pure rule in a propositional language L is any ordered pair 〈Γ, ∆〉, where
Γ and ∆ are finite sets of formulas in L (We shall usually denote such a rule
by Γ � ∆ rather than by 〈Γ, ∆〉).

1The name “LFI” stands for “Logics of Formal Inconsistency”. In our opinion it would make
more sense to call them “logics of formal consistency”, since they are obtained from classical logic
by the addition of a new connective ◦, with the intended meaning of ◦ϕ being: ”ϕ is consistent”.
2See [6, 5] for the importance of the consistency property.
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2. Let 〈L,�1〉 be a propositional logic, and let S be a set of rules in a propo-
sitional language L′. By the extension of 〈L,�1〉 by S we mean the logic
〈L∗,�∗〉, where L∗ = L ∪ L′, and �∗ is the least structural scr � such that
Γ � ∆ whenever Γ �1 ∆ or 〈Γ, ∆〉 ∈ S.

Remark 2.3. Obviously, the extension of 〈L,�1〉 by S is well-defined (i.e. a logic)
only if �∗ is consistent. In all the cases we consider below this will easily be
guaranteed by the semantics we provide (and so we shall not even mention it).

Remark 2.4. It is easy to see that �∗ is the closure under cuts and weakenings
of the set of all pairs 〈σ(Γ), σ(∆)〉, where σ is a uniform substitution in L∗, and
either Γ �1 ∆ or 〈Γ, ∆〉 ∈ S. This in turn implies that an extension of a finitary
logic by a set of pure rules is again finitary.

Remark 2.5. Most standard rules used in Gentzen-type systems are equivalent to
finite sets of pure rules in the sense of Definition 2.2. For example, the usual (⊃⇒)
rule of classical logic is equivalent (using cuts, weakenings, and the reflexivity
axioms ϕ � ϕ) to the pure rule ϕ, ϕ ⊃ ψ � ψ, while the classical (⇒⊃) rule is
equivalent to the set {ψ � ϕ ⊃ ψ, � ϕ, ϕ ⊃ ψ}.
2.2. Non-deterministic Matrices

Our main semantical tool in what follows will be the following generalization from
[6, 7, 5] of the concept of a matrix: 3

Definition 2.6.

1. A non-deterministic matrix (Nmatrix for short) for a propositional language
L is a tuple M = 〈V ,D,O〉, where:
(a) V is a non-empty set of truth values.
(b) D is a non-empty proper subset of V .
(c) For every n-ary connective � of L, O includes a corresponding n-ary

function �̃ from Vn to 2V − {∅}.
We say that M is (in)finite if so is V .

2. Let W be the set of formulas of L. A (legal) valuation in an Nmatrix M is
a function v : W → V that satisfies the following condition for every n-ary
connective � of L and ψ1, . . . , ψn ∈ W:

v(�(ψ1, . . . , ψn)) ∈ �̃(v(ψ1), . . . , v(ψn))

3. A valuation v in an Nmatrix M is a model of (or satisfies) a formula ψ in M
(notation: v |=M ψ) if v(ψ) ∈ D. v is a model in M of a set Γ of formulas
(notation: v |=M Γ) if it satisfies every formula in Γ.

3A special two-valued case of this definition was essentially introduced in [9]. Another particular
case of the same idea, using a similar name, was used in [13]. It should also be noted that
Carnielli’s “possible-translations semantics” (see [10]) was originally called “non-deterministic
semantics”, but later the name was changed to the present one. It is known that the semantics of
non-deterministic matrices used here and possible-translations semantics are not identical, but
it seems obvious that there are strong connections between them. The exact relations between
the two types of semantics have not been clarified yet.
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4. �M, the consequence relation induced by the Nmatrix M, is defined by:
Γ �M ∆ if for every v such that v |=M Γ, there is ϕ ∈ ∆ such that v |=M ϕ.

5. A logic L = 〈L,�L〉 is sound for an Nmatrix M (where L is the language of
M) if �L ⊆ �M. L is complete for M if �L ⊇ �M. M is characteristic for
L if L is both sound and complete for it (i.e.: if �L = �M). M is weakly-
characteristic for L if for every formula ϕ of L, �L ϕ iff �M ϕ.

Remark 2.7. We shall identify an ordinary (deterministic) matrix with an Nmatrix
whose functions in O always return singletons.

Theorem 2.8 ([5, 7]). A logic which has a finite characteristic Nmatrix is finitary
and decidable.

Definition 2.9. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices for
a language L.

1. A reduction of M1 to M2 is a function F : V1 → V2 such that:
(a) For every x ∈ V1, x ∈ D1 iff F (x) ∈ D2.
(b) F (y) ∈ �̃M2(F (x1), . . . , F (xn)) for every n-ary connective � of L and

every x1, . . . , xn, y ∈ V1 such that y ∈ �̃M1(x1, . . . , xn).
2. A reduction of M1 to M2 is called exact if it has the following properties:

(a) F is unto V2.
(b) For every n-ary connective � of L and every x1, . . . , xn, y ∈ V1:

F (y) ∈ �̃M2(F (x1), . . . , F (xn)) iff y ∈ �̃M1(x1, . . . , xn)

3. M1 is a refinement of M2 if there exists a reduction of M1 to M2. It is an
exact refinement of M2 if this reduction is exact.

Theorem 2.10.

1. If M1 is a refinement of M2 then �M2⊆ �M1 .
2. If M1 is an exact refinement of M2 then �M2= �M1 .

Proof. For the first part, assume that F is a reduction of M1 to M2. We show that
if v is a legal valuation in M1 then v′ = F ◦v (the composition of F and v) is a legal
valuation in M2. Indeed, let � be an n-ary connective of L, and let ϕ1, . . . , ϕn be n
formulas of L. We show that v′(�(ϕ1, . . . , ϕn)) ∈ �̃M2(v

′(ϕ1), . . . , v′(ϕn)). Let y =
v(�(ϕ1, . . . , ϕn)), and xi = v(ϕi) (i = 1, . . . , n). Then y ∈ �̃M1(x1, . . . , xn), and so
F (y) ∈ �̃M2(F (x1), . . . , F (xn)). Since v′(�(ϕ1, . . . , ϕn) = F (y) and v′(ϕi) = F (xi)
(i = 1, . . . , n), our claim follows.

Now assume that Γ �M2 ∆. We show that Γ �M1 ∆ as well. So let v be a
model of Γ in M1. Then v(ϕ) ∈ D1 for every ϕ ∈ Γ. Hence F (v(ϕ)) ∈ D2 for every
ϕ ∈ Γ. Since F ◦v is a legal valuation in M2, this means that F ◦v is a model of Γ
in M2, and so F (v(ψ)) = (F ◦ v)(ψ) ∈ D2 for some ψ ∈ ∆. Since F is a reduction
function, this implies that v(ψ) ∈ D1 for some ψ ∈ ∆, as required.
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For the second part note that if F is an exact reduction of M1 to M2, then
every right inverse G of F 4 can easily be shown to be a reduction of M2 to M1.
Thus by the first part �M1⊆ �M2 too, and so �M2= �M1 . �

Remark 2.11. An important case in which M1 = 〈V1,D1,O1〉 is a refinement of
M2 = 〈V2,D2,O2〉 is when V1 ⊆ V2, D1 = D2 ∩ V1, and �̃M1(�x) ⊆ �̃M2(�x) for
every n-ary connective � of L and every �x ∈ Vn

1 . It is easy to see that the identity
function on V1 is in this case a reduction of M1 to M2. A refinement of this sort
will be called simple.5

2.3. Positive Classical Logic

Definition 2.12. Let CL+ = 〈L+
cl,�+

cl〉, where L+
cl = {∧,∨,⊃}, and �+

cl is the
classical consequence relation in the language L+

cl (i.e.: Γ �+
cl ∆ iff every classical

two-valued model of Γ is a model of at least one formula in ∆).

Remark 2.13. For any pure rule in a propositional language containing L+
cl it is

possible to find an equivalent rule of the form � ϕ (by translating the condition
ϕ1, . . . , ϕn � ψ1, . . . , ψk into � ϕ1 ∧ . . . ∧ ϕn ⊃ ψ1 ∨ . . . ∨ ψk in case k > 0, and
to � ϕ1 ∧ . . . ∧ ϕn ⊃ q, where q is an atomic formula not occurring in ϕ1, . . . , ϕn,
in case k=0. Hence it is possible to construct a sound and complete Hilbert-type
system (with MP as the sole rule of inference) for any extension of CL+ by a finite
set of pure rules. On the other hand any pure rule is equivalent above CL+ to a
finite set of rules in which none of the formulas has either ∨,∧ or ⊃ as its principal
connective. For example, a condition of the form ϕ ∧ ψ, Γ � ∆ can be replaced by
ϕ, ψ, Γ � ∆, while Γ � ∆, ϕ ∧ ψ can be replaced by {Γ � ∆, ϕ , Γ � ∆, ψ}.
Definition 2.14. Let M = 〈T ,D,O〉 be an Nmatrix for a language which includes
L+

cl. We say that M is suitable for CL+ if the following conditions are satisfied:

• If a ∈ D and b ∈ D then a∧̃b ⊆ D
• If a �∈ D then a∧̃b ⊆ T − D
• If b �∈ D then a∧̃b ⊆ T − D

• If a ∈ D then a∨̃b ⊆ D
• If b ∈ D then a∨̃b ⊆ D
• If a �∈ D and b �∈ D then a∨̃b ⊆ T − D

• If a �∈ D then a⊃̃b ⊆ D
• If b ∈ D then a⊃̃b ⊆ D
• If a ∈ D and b �∈ D then a⊃̃b ⊆ T − D

4By this one means a function G : V2 → V1 such that F (G(x)) = x for every x ∈ V2. Such a
function G exists here, since F is unto V2.
5What we call here “a simple refinement” is what was called “a refinement” in [2]. The present
definition of “a refinement” is a refinement of the definition given to that concept there.
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Theorem 2.15. Suppose M = 〈T ,D,O〉 is suitable for CL+. Let M′ = 〈T ,D,O′〉,
where O′ is the subset of O which corresponds to the connectives of L+

cl. Then
�+

cl = �M′ . Hence σ(Γ) �M σ(∆) whenever Γ �+
cl ∆ and σ is a substitution in the

language of M.

Proof. Let MCL+ be the classical two-valued matrix, where the two truth values
are t and f . Since M is suitable for CL+, the function

λx ∈ T .

{
t x ∈ D
f x �∈ D

is a reduction of M′ to MCL+ . Hence �+
cl ⊆ �M′ . That �+

cl = �M′ follows from
the well-known fact that CL+ is a maximal nontrivial logic in its language. �

2.4. Formal Systems with a Formal Consistency Operation

2.4.1. The Basic Logic. Let Lcl = {∧,∨,⊃,¬}. Lcl is the standard language of the
classical propositional logic CL. The latter may be characterized as the extension
of CL+ by the rules ¬ϕ, ϕ � and � ¬ϕ, ϕ. The two main ideas of da-Costa’s school
of paraconsistent logics ([14, 11, 12]) are to limit the applicability of the first of
these two rules (which amounts to “a single contradiction entails everything”) to
the case where ϕ is “consistent”, and to express the assumption of this consistency
of ϕ within the language. The easiest way to implement these ideas is to add to
the language of CL a new connective ◦, with the intended meaning of ◦ϕ being “ϕ
is consistent”. Then one can explicitly add the assumption of the consistency of ϕ
to the problematic (from a paraconsistent point of view) classical rule concerning
¬. This leads to the basic system B described below.6

Definition 2.16. Let LC = {∧,∨,⊃,¬, ◦}.
Definition 2.17. The Logic B is the minimal logic in LC which extends CL+ and
satisfies the following two conditions:

(t): � ¬ϕ, ϕ
(b): ◦ϕ,¬ϕ, ϕ �

Lemma 2.18. Let LK be the standard Gentzen calculus for classical propositional
logic, and let GB be obtained from LK by replacing the (¬ ⇒) rule by:

(◦,¬ ⇒)
Γ ⇒ ∆, ϕ

◦ϕ,¬ϕ, Γ ⇒ ∆

Then for every finite Γ and ∆, Γ �B ∆ iff Γ ⇒ ∆ has a cut-free proof in GB.

Proof. Using cuts, it is straightforward to show that for every finite Γ and ∆,
Γ �B ∆ iff Γ ⇒ ∆ has a proof in GB. The cut-elimination theorem can then be
proved for GB by the usual syntactic method of Gentzen (i.e. by using double
induction on the complexity of the cut formula and on the height of the cut). �

6The logic B is called mbC in [12]. We prefer to use here a shorter name.
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Remark 2.19. By Remark 2.13, a Hilbert-type system which is sound and complete
for B can be obtained by adding the following two axioms to some standard
Hilbert-type system for CL+ having MP as the sole rule of inference:

(t): ¬ϕ ∨ ϕ
(b): (◦ϕ ∧ ¬ϕ ∧ ϕ) ⊃ ψ

The main property of B is given in the next theorem from [11, 12]:

Theorem 2.20. Let �cl be the classical consequence relation (in the language Lcl).
Then Γ �cl ∆ only if there exists a subset Σ of the set of subformulas of Γ ∪ ∆
such that ◦Σ, Γ �B ∆ (where ◦Σ = {◦ψ | ψ ∈ Σ}).
Proof. Suppose Γ �cl ∆. Then there are finite subsets Γ′ and ∆′ of Γ and ∆
(respectively) such that the sequent Γ′ ⇒ ∆′ has a cut-free proof in LK. Replace in
this proof any application of the classical (¬ ⇒) rule by an application of (◦,¬ ⇒).
The result will be a cut-free proof in GB of a sequent of the form ◦Σ, Γ′ ⇒ ∆′,
where Σ is a subset of the set of subformulas of Γ′ ⇒ ∆′. Hence ◦Σ, Γ �B ∆. �
2.4.2. Other Logics with a Formal Consistency Operation. Condition (b) provides
the most basic property expected of ◦. There are of course many others which might
seem plausible to assume. The next two definitions provide a list of conditions and
systems (not all!) that have been considered in the literature on LFIs.7

Definition 2.21. Let COND be the set consisting of the following 10 conditions:
(c): ¬¬ϕ � ϕ
(e): ϕ � ¬¬ϕ
(d1): � ◦ϕ, ϕ
(d2): � ◦ϕ,¬ϕ
(i1): ¬◦ϕ � ϕ
(i2): ¬◦ϕ � ¬ϕ
(a¬): ◦ϕ � ◦(¬ϕ)
(a�): ◦ϕ, ◦ψ � ◦(ϕ�ψ) (� ∈ {∧,∨,⊃})

Definition 2.22. For S ⊆ COND, B[S] is the minimal extension (in LC) of B
which satisfies the conditions in S.

3. Semantics for the Basic System

The system B treats the positive classical connectives exactly as classical logic
does. Hence an Nmatrix for B should most naturally be sought among the Nma-
trices which are suitable for CL+. In such Nmatrices the answer to the question
whether a sentence of the form ϕ�ψ (� ∈ {∨,∧,⊃}) is true or not relative to a

7In [11, 12] what is considered instead of (i1) and (i2) is actually their combination, the condition
(i): ¬◦ϕ � ϕ∧¬ϕ. This condition has been split here into two conditions as described in Remark
2.13. Conditions (d1) and (d2) were not considered in [11, 12], but they are natural weaker
versions of (i1) and (i2) (respectively).
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given valuation v (i.e. whether v(ϕ�ψ) ∈ D or not) is completely determined by
the answers to the same question for ϕ and ψ. The situation with respect to the
unary connectives ¬ and ◦ is different. The truth/falsity of ¬ϕ or ◦ϕ is not com-
pletely determined by the truth/falsity of ϕ. More data is needed for this. Now the
central idea of the semantics we are about to present is to include all the relevant
data concerning a sentence ϕ in the truth value from V which is assigned to ϕ. In
our case the relevant data beyond the truth/falsity of ϕ is the truth/falsity of ¬ϕ
and ◦ϕ. This leads to the use of elements from {0, 1}3 as our truth values, where
the intended intuitive meaning of v(ϕ) = 〈x, y, z〉 is the following:

• x = 1 iff ϕ is “true” (i.e. v(ϕ) ∈ D ).
• y = 1 iff ¬ϕ is “true” (i.e. v(¬ϕ) ∈ D).
• z = 1 iff ◦ϕ is “true” (i.e. v(◦ϕ) ∈ D).

However, because of the special principles of B not all triples can be used. Thus
condition (t) means that at least one element of the pair {ϕ,¬ϕ} should be true.
Hence the truth-values 〈0, 0, 1〉 and 〈0, 0, 0〉 should be rejected. Similarly, condition
(b) means that ϕ, ¬ϕ, and ◦ϕ cannot all be true. Hence 〈1, 1, 1〉 should be rejected.
We are left with 5 truth-values. Among them those which are designated are those
which can be assigned to true formulas, i.e. those whose first component is 1.
Then we define the operations in the most liberal way which is coherent with
the intended meaning of the truth-values, and with the need to use an Nmatrix
suitable for CL+. The resulting Nmatrix is described in the next definition.

Definition 3.1. The Nmatrix MB
5 = 〈V5,D5,OB

5 〉 is defined as follows:
• V5 = {t, tI , I, fI , f} where:

t = 〈1, 0, 1〉
tI = 〈1, 0, 0〉
I = 〈1, 1, 0〉
f = 〈0, 1, 1〉
fI = 〈0, 1, 0〉

• D5 = {t, I, ti} (= {〈x, y, z〉 ∈ V5 | x = 1}).
• Let D = D5, F = V5 −D. The operations in OB

5 are defined by:

a∨̃b =
{ D if either a ∈ D or b ∈ D,

F if a, b ∈ F

a⊃̃b =
{ D if either a ∈ F or b ∈ D

F if a ∈ D and b ∈ F

a∧̃b =
{ D if a ∈ D and b ∈ D

F if either a ∈ F or b ∈ F

¬̃a =
{ D if a ∈ {I, f, fI}

F if a ∈ {t, tI}

◦̃a =
{ D if a ∈ {t, f}

F if a ∈ {I, tI , fI}
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An Explanation. The conditions in B related to the classical connectives impose
no constraints on the truth/falsity of ¬ϕ or ◦ϕ. Hence they affect only the first
component of truth-values. Thus if the first component of v(ϕ) is 1 (i.e. if v(ϕ) is
in D5) then also the first component of v(ψ ⊃ ϕ) should be 1, but there are no
limitations in this case on the other two components of v(ψ ⊃ ϕ). Hence v(ψ ⊃ ϕ)
may in this case be any element of D5. This implies that a⊃̃b should be D5 in case
b ∈ D5 = {t, tI , I}. The other parts of the definitions of ⊃̃, ∨̃, and ∧̃ are derived
similarly. The truth-value of ¬ϕ, on the other hand, is dictated by the second
component of v(ϕ). If it is 1 then ¬ϕ should be true, implying that v(¬ϕ) should
be an element of D5. Since B imposes no further constraints on v(¬ϕ) in this case,
we get the condition that ¬̃a should be D5 in case a ∈ {I, f, fI}. The other parts
of the definitions of ¬̃ and ◦̃ are derived similarly (note that in the case of ◦ the
relevant component is the third).

The five-valued MB
5 is our basic Nmatrix. In the next section we shall ob-

tain semantics for a lot of extensions of B by refining this Nmatrix (where our
refinements will be of the special type described in Remark 2.11). However, in
many of the systems we discuss (including B itself), one needs to include in the
truth-value assigned to a formula ϕ only information concerning the truth/falsity
of ϕ and ¬ϕ. Hence a 3-valued Nmatrix consisting of pairs from {0, 1}2 (where the
pair 〈0, 0〉 is rejected because of condition (t)) would suffice. The basic 3-valued
Nmatrix corresponding to B is given in the next Definition.

Definition 3.2. The Nmatrix MB
3 = 〈V3,D3,OB

3 〉 is defined as follows:
• V3 = {t, I, f} where:

t = 〈1, 0〉
I = 〈1, 1〉
f = 〈0, 1〉

• D3 = {t, I} (= {〈x, y〉 ∈ V3 | x = 1}).
• Let this time D = D3, F = V3 − D = {f}. The operations in OB

3 corre-
sponding to ∧,∨ and ⊃ are defined like in MB

5 . The other two operations
are defined as follows:

¬̃a =
{ F if a ∈ {t}

D if a ∈ {I, f}
◦̃a =

{ V3 if a ∈ {t, f}
F if a = I

Lemma 3.3. �B ⊆ �MB
3

Proof. MB
3 is suitable for CL+. Hence by Corollary 2.15 it suffices to check that

conditions (t) and (b) are satisfied by �MB
3
. This is easy. �

Lemma 3.4. �MB
3
⊆ �MB

5
.

Proof. The function f defined by f(〈x, y, z〉) = 〈x, y〉 is easily seen to be a reduc-
tion of MB

5 to MB
3 . Hence the lemma follows from Theorem 2.10. �
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Lemma 3.5. �MB
5
⊆ �B.

Proof. Suppose Γ ��B ∆. We construct a model of Γ in MB
5 which is not a model

of any formula in ∆. For this extend Γ to a maximal set Γ∗ of formulas such that
Γ∗ ��B ∆. Γ∗ has the following properties:

1. ϕ �∈ Γ∗ iff Γ∗, ϕ �B ∆.
2. ϕ ∨ ψ ∈ Γ∗ iff either ϕ ∈ Γ∗ or ψ ∈ Γ∗.
3. ϕ ∧ ψ ∈ Γ∗ iff both ϕ ∈ Γ∗ and ψ ∈ Γ∗.
4. ϕ ⊃ ψ ∈ Γ∗ iff either ϕ �∈ Γ∗ or ψ ∈ Γ∗.
5. For every sentence ϕ of LC either ϕ ∈ Γ∗ or ¬ϕ ∈ Γ∗.
6. If ¬ϕ and ϕ are both in Γ∗ then ◦ϕ �∈ Γ∗.

The first property in this list follows from the maximality property of Γ∗. The
last from condition (b). To show the second property, assume first that ϕ∨ψ �∈ Γ∗.
Then Γ∗, ϕ ∨ ψ �B ∆. Since also ϕ �B ϕ ∨ ψ, we get that Γ∗, ϕ �B ∆, and so
ϕ �∈ Γ∗. Similarly, also ψ �∈ Γ∗ in this case. Now assume that neither ϕ ∈ Γ∗ nor
ψ ∈ Γ∗. Then Γ∗, ϕ �B ∆, and Γ∗, ψ �B ∆. Since also ϕ ∨ ψ �B ϕ, ψ (since �B is
an extension of �+

cl), we get that Γ∗, ϕ ∨ ψ �B ∆, and so ϕ ∨ ψ �∈ Γ∗.
The proofs of the other parts are similar (for the fifth property we use the

fact that �B satisfies condition (t)).
Define now a valuation v by v(ϕ) = 〈x(ϕ), y(ϕ), z(ϕ)〉, where:

x(ϕ) =
{

1 ϕ ∈ Γ∗

0 ϕ �∈ Γ∗ y(ϕ) =
{

1 ¬ϕ ∈ Γ∗

0 ¬ϕ �∈ Γ∗ z(ϕ) =
{

1 ◦ϕ ∈ Γ∗

0 ◦ϕ �∈ Γ∗

It is easy to check that the above properties of Γ∗ imply that v is a legal valuation
in MB

5 . Obviously, v is a model of Γ which is not a model of any formula in ∆. �

Theorem 3.6. Both MB
5 and MB

3 are characteristic Nmatrices for B.

Proof. This is immediate from the last three lemmas. �

Corollary 3.7. B is decidable.

Proof. This follows from Theorems 3.6 and 2.8. �

4. Semantics for the Extensions of B Induced by COND

One of the main virtues of our semantics is that for many syntactic conditions
concerning ¬ and ◦, it is easy to compute corresponding semantic conditions on
simple refinements (Remark 2.11) of MB

5 . In the next definition we list the seman-
tic conditions induced by the conditions in COND (Definition 2.21).

Definition 4.1.

1. The refining conditions induced by the conditions in COND are:
C(c): If x ∈ {f, fI} then ¬̃x ⊆ {t, tI}.
C(e): ¬̃I = {I}
C(d1): fI should be deleted.
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C(d2): tI should be deleted.
C(a¬): {t, f} is closed under ¬̃ (implying ¬̃t = {f}, ¬̃f = {t}).
C(a�): {t, f} is closed under �̃ (i.e.: �(t) ⊆ {t, f}, �(f) ⊆ {t, f}).
C(i1): fI should be deleted, and ◦̃(f) ⊆ {t, tI}
C(i2): tI should be deleted, and ◦̃(t) = {t}

2. For S ⊆ COND, let C(S) = {Cr | r ∈ S}
Here are some examples of how these conditions have been derived:

Notation. Let P1(〈a, b, c〉) = a, P2(〈a, b, c〉) = b, P3(〈a, b, c〉) = c.
C(c): A refutation of this condition is a valuation v in MB

5 such that v(ϕ) �∈ D5

(i.e. P1(v(ϕ)) = 0), but v(¬¬ϕ) ∈ D5 (i.e. P2(v(¬ϕ)) = 1). This will be
impossible iff for every x ∈ V5 such that P1(x) = 0 (i.e. for every x ∈ {f, fI}),
it is the case that if y ∈ ¬̃x then P2(y) = 0 (i.e. y ∈ {t, tI}).

C(e): A refutation of this condition is a valuation v in MB
5 such that v(ϕ) ∈ D5

(i.e. P1(v(ϕ)) = 1), but v(¬¬ϕ) �∈ D5 (i.e. P2(v(¬ϕ)) = 0). This will be
impossible iff for every x ∈ V5 such that P1(x) = 1 (i.e. for every x in
{t, tI , I}), if y ∈ ¬̃x then also P2(y) = 1. For x ∈ {t, tI} this is already true
in MB

5 . For x = I the only element y in ¬̃Bx which satisfies this condition is
y = I (where ¬̃B is the interpretation of ¬ in MB

5 ).
C(d1): A refutation of this condition is a valuation v in MB

5 for which both
v(ϕ) and v(◦ϕ) are not in D5. This will be impossible iff fI is not available.

C(a�): A refutation of this condition is a valuation v in MB
5 s.t. P3(v(ϕ)) = 1,

P3(v(ψ)) = 1, and P3(v(ϕ�ψ)) = 0 (i.e. v(ϕ) ∈ {t, f}, v(ψ) ∈ {t, f}, but
v(ϕ�ψ) �∈ {t, f}). This will be impossible iff {t, f} is closed under �.

C(i2): A refutation of this condition is a valuation v in MB
5 s.t. v(¬ϕ) �∈ D5 (i.e.

P2(v(ϕ)) = 0), but v(¬◦ϕ) ∈ D5 (i.e. P2(v(◦ϕ)) = 1). This will be impossible
iff for every x ∈ V5 such that P2(x) = 0, also P2(◦̃x) = 0. In other words: iff
for every x ∈ {t, tI}, ◦̃x ⊆ {t, tI}. For x = tI this is incoherent with the value
of ◦̃(tI) in MB

5 . Hence tI should be deleted, and so necessarily ◦̃(t) = {t}.
Definition 4.2. For S ⊆ COND, let MS be the weakest simple refinement (Remark
2.11) of MB

5 in which the conditions in C(S) are all satisfied. In other words:
MS = 〈VS,DS ,OS〉, where VS is the set of values from V5 which are not deleted
by any condition in S, DS = D5 ∩ VS , and for any connective � ∈ O and any
�x ∈ Vn

S (where n is the arity of �), the interpretation in OS of � assigns to �x the
set of all the values in �̃B(�x) which are not forbidden by any condition in C(S)
(where �̃B is the interpretation of � in MB

5 ).

An Example. Let S = {(i1), (a¬)}. Then MS = 〈VS ,DS ,OS〉, where:
• VS = {t, tI , I, f}
• DS = {t, I, ti}
• ∨̃, ∧̃ and ⊃̃ are defined like in the case of MB

5 (but now F = {f}).
• ¬̃t = ¬̃tI = {f} ¬̃I = DS ¬̃f = {t}
• ◦̃t = DS ◦̃tI = ◦̃I = {f} ◦̃f = {t, tI}
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Remark 4.3. It is not difficult to see that for all S ⊆ COND, {t, f, I} ⊆ VS ,
{t, I} ⊆ DS , and �̃B(�x) is never empty (in fact, �̃B(�x) ∩ {t, f, I} is never empty).

Remark 4.4. It can easily be checked that in any simple refinement of MB
5 which

satisfies C(a¬), ¬̃ behaves on {t, f} like classical negation (i.e. ¬̃t = {f}, ¬̃f = {t}).
Similarly, if � ∈ {∨,∧,⊃} then in simple refinements of MB

5 which satisfy C(a�),
�̃ behaves on {t, f} like the classical �.

Theorem 4.5. For all S ⊆ COND, MS is a characteristic Nmatrix for B[S].

Proof. It is easy to verify, that for any r ∈ COND, the satisfaction of C(r) in
some simple refinement of MB

5 guaranties the validity of r in that refinement.
This entails the soundness of B[S] with respect to MS . For completeness we
repeat the construction done in the proof of Theorem 3.6. It is not difficult to
show that the syntactic conditions in S force the resulting valuation to be a legal
valuation in MS . We do here the case where S = {(i1), (a¬)} as an example. So
suppose that Γ ��B[S] ∆. Construct the set Γ∗ and the valuation v like in the proof
of Theorem 3.6, using B[S] instead of B. This v is legal for MB

5 , and it is a model
of Γ which is not a model of any formula in ∆. Now the presence of (i1) implies
that v(ϕ) �= fI for every ϕ (because there can be no formula ϕ such that both
ϕ �∈ Γ∗ and ◦ϕ �∈ Γ∗. Indeed: if ϕ �∈ Γ∗ then because of (i1) ¬◦ϕ �∈ Γ∗, and so
◦ϕ ∈ Γ∗). Hence v is actually a valuation in VS . It remains to show that it is legal
for MS . Since v is legal for MB

5 , it suffices to show that it respects the conditions
imposed by (i1) and (a¬):

C(i1): Since fI is not used by v, respecting C(i1) amounts in the present case
to v(◦ϕ) being in {t, tI} in case v(ϕ) = f . But here v(ϕ) = f iff ϕ �∈ Γ∗, and
the latter implies (because of (i1)) that ¬◦ϕ �∈ Γ∗, which means (by definition
of v) that indeed v(◦ϕ) ∈ {t, tI}.

C(a¬): Again since fI is not used by v, respecting C(a¬) amounts in the present
case to v(¬ϕ) = t in case v(ϕ) = f . But v(ϕ) = f iff ϕ �∈ Γ∗, ¬ϕ ∈ Γ∗,
and ◦ϕ ∈ Γ∗. Because of (a¬) the latter implies that ◦¬ϕ ∈ Γ∗. Since also
¬ϕ ∈ Γ∗, necessarily v(¬ϕ) = t.

�

5. Applications

5.1. Decidability

An first important corollary of our semantics is the following:

Corollary 5.1. B[S] is decidable for any S ⊆ COND.

Proof. Immediate from Theorems 4.5 and 2.8. �
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5.2. Dependencies between the Conditions

Not all the 1024 systems of the form B[S] (where S ⊆ COND) are different from
each other. Using Theorem 4.5 it is a mechanical matter to check the relations
among the rules, finding what syntactical conditions in COND follow from what
subsets of the other conditions in COND. The next theorem sums up all existing
dependencies:

Theorem 5.2. The following is an exhaustive list of all the dependencies among
the conditions in COND:

• (d1) follows from (i1).
• (d2) follows from (i2).
• (c) follows from {(a¬), (d1)} (and from {(a¬), (i1)}).
• (a¬) follows from {(c), (d1), (d2)} (and of course also from {(c), (d1), (i2)},

{(c), (i1), (d2)}, and {(c), (i1), (i2)}).
Proof. The first two items on this list trivially follow from the corresponding se-
mantic conditions. For the third, note that without fI (i.e.: in the presence of (d1)
or (i1)), condition C(c) reduces to ¬̃f ⊆ {t, tI} and this condition immediately
follows from C(a¬). Finally, the forth item is immediate from the fact that if t, f ,
and I are the only available truth-values, then F = {f}, and both conditions C(c)
and C(a¬) reduce to ¬̃f = {t}.

A not too difficult examination of the corresponding 10 conditions given in
Definition 4.1 (together with the Definition of MB

5 ) reveals that the above list is
indeed exhaustive. �

Corollary 5.3. Conditions (c) and (a¬) are equivalent in the presence of conditions
(d1) and (d2). In particular, they are equivalent in the system Bi, obtained from
B by adding the following schema from [11, 12]:

(i): ¬◦ϕ � ϕ ∧ ¬ϕ

5.3. Cases Where 3-valued Nmatrices Suffice

In Section 3 We have seen that for the basic system B a three-valued reduction
of MB

5 (in which the truth-values include information only on the truth/falsity
of a sentence and its negation) suffices. The argument remains almost the same
if either (c), (e) or both are added to B, since these conditions do not involve ◦.
In the corresponding refinements of MB

3 we should have ¬̃f = {t} in case (c) is
added, and ¬̃I = {I} in case (e) is added.

Another obvious case in which a logic B[S] (S ⊆ COND) has a characteristic
3-valued Nmatrix is when both (d1) and (d2) are derivable in it (i.e. if either (d1)
or (i1) is in S, and also either (d2) or (i2) is in S). In this case Theorem 4.5
directly provides such an Nmatrix.
Conjecture. Except for the cases we have just described, no other system B[S]
(S ⊆ COND) has any characteristic 3-valued Nmatrix.

What we can prove for all the systems considered here is the following:
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Theorem 5.4. B[S] (S ⊆ COND) does not have a characteristic 2-valued Nmatrix.

Proof. Suppose M is a 2-valued Nmatrix for which B[S] is sound and complete.
We may assume that the two truth-values of M are 1 and 0, where 1 is designated
and 0 is not. Since condition (t) is valid in M, necessarily ¬̃0 = {1}. Hence it
suffices to consider the following 3 cases:

• Suppose ¬̃1 = {0}. Then ¬ϕ, ϕ �M for all ϕ. Since B[S] is paraconsistent
(because by assigning v(p) = v(¬p) = I we get a model of {p,¬p} in MS),
we get a contradiction.

• Suppose ◦̃1 = {0}. Then ◦ϕ, ϕ �M for all ϕ. However, assigning t to both p
and ◦p is legal in MS (for every S ⊆ COND). Hence ◦ϕ, ϕ ��B[S], and we
get a contradiction.

• Suppose that 1 is in both ¬̃1 and ◦̃1. Then assigning 1 to all the sentences in
{p,¬p, ◦p} is legal in M, contradicting the validity of (b) in M.

We got a contradiction in all possible cases. Hence no such Nmatrix exists. �

6. Other Plausible Extensions of the Basic System

In addition to the rules considered so far (that were basically taken from [11, 12]),
it is of course possible to consider many other rules that might seem plausible.
We consider now two natural groups of rules that may also be added to the basic
system B, and are very easy to handle in our framework.

6.1. Rules for Combinations of Negation with the Classical Connectives

(c) and (e) are just two of the standard classically valid rules concerning negation
which are derived from the classical equivalences of ¬¬ϕ with ϕ, ¬(ϕ ∧ ψ) with
¬ϕ∨¬ψ, ¬(ϕ∨ψ) with ¬ϕ∧¬ψ, and ¬(ϕ ⊃ ψ) with ϕ∧¬ψ. By splitting the last
3 equivalences into simple rules (see Remark 2.13) we get the following list:

Definition 6.1. Let DM be the set consisting of the following 9 conditions:
(¬ ∧ 1): ¬ϕ � ¬(ϕ ∧ ψ)
(¬ ∧ 2): ¬ψ � ¬(ϕ ∧ ψ)
(¬ ∧ 3): ¬(ϕ ∧ ψ) � ¬ϕ,¬ψ
(¬ ∨ 1): ¬(ϕ ∨ ψ) � ¬ϕ
(¬ ∨ 2): ¬(ϕ ∨ ψ) � ¬ψ
(¬ ∨ 3): ¬ϕ,¬ψ � ¬(ϕ ∨ ψ)
(¬ ⊃ 1): ¬(ϕ ⊃ ψ) � ϕ
(¬ ⊃ 2): ¬(ϕ ⊃ ψ) � ¬ψ
(¬ ⊃ 3): ϕ,¬ψ � ¬(ϕ ⊃ ψ)

In [1] we have shown how to modularly provide 3-valued non-deterministic se-
mantics for these rules, where the basic logic is CLuN (which is the logic in Lcl

obtained from B by deleting the schema (b)). It is straightforward to adapt those
results to the present context, with B as the basic logic. All we need to do is to
find for the conditions in DM equivalent semantic conditions on refinements of



Non-deterministic Matrices 163

MB
5 , using considerations of the type applied for the conditions in COND. For

this, one should only note that for the rules in DM only the first two components
of our truth-values are relevant. We present here as an example the derived seman-
tic conditions which are equivalent to the rules corresponding to the equivalence
between ¬(ϕ ∧ ψ) and ¬ϕ ∨ ¬ψ:

C(¬ ∧ 1): If x ∈ D then I∧̃x = {I}.
C(¬ ∧ 2): If x ∈ D then x∧̃I = {I}.
C(¬ ∧ 3): If x ∈ {t, tI} and y ∈ {t, tI} then x ∧ y ⊆ {t, tI}.

Like in Definition 4.2, We can now define MS for every S ⊆ COND ∪ DM . It is
then easy to prove the following generalization of Theorem 4.5:

Theorem 6.2. For all S ⊆ COND ∪ DM , MS is a characteristic Nmatrix for
B[S].

Corollary 6.3.

1. (¬ ∧ 3) is derivable in B[{(d2), (a∧)}].
2. (¬ ∧ 3) and (a∧) are equivalent in any extension of B[{(d1), (d2)}]

Proof. In the presence of (d2) the truth-value tI is not available. Hence in this case
C(¬ ∧ 3) reduces to t∧̃t = {t}. This last condition follows from C(a∧), implying
the first part of the corollary. Now in the presence of (d1) only f is not in the set
D of designated values, and so in this case C(a∧) too reduces to t∧̃t = {t}. Hence
the equivalence in the second part. �

Remark 6.4. One of the principles behind the construction of da Costa’s C-systems
([14, 11]) has been that the consistent formulas should be closed under the classical
connectives. This has been the reason for including the schemes of the form (a�)
in the systems. From Corollaries 5.3 and 6.3 it follows that under weak conditions
(which are satisfied, e.g., in the presence of axiom (i)), the axioms expressing the
applications of this principle to ¬ and ∧ can be replaced by well-known classical
tautologies in which ◦ is not mentioned.8

Remark 6.5. It is interesting to note that the semantics we get for the system
B[COND ∪ DM ] itself (or just for the system B[DM ∪ {(c), (e), (i1), (i2)}]) is
a characteristic 3-valued (ordinary, deterministic) matrix. This is the famous 3-
valued matrix characteristic for the paraconsistent logic called LFI1 in [11, 12],
to which B[COND ∪ DM ] is equivalent. 9

8This fact might give some justification why also (c) (and not only (t)) has been included in the
original basic system C1 of da Costa ([14]).
9This logic was originally introduced in [19]. Later it was reintroduced (together with its 3-valued
deterministic semantics) in [15, 16], and was called there J3 (see also [17]).
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6.2. Rules concerning ◦
Finally we turn to rules involving the connective ◦ but not ¬. We briefly consider
two types of rules of this sort.

Strengthening the closure rules: The conditions of the form (a�) express the
assumption that if ϕ and ψ are consistent, then so is ϕ�ψ. Now it is plausible
to consider stronger assumptions. One alternative that is investigated in [11,
12] is that ϕ�ψ should be consistent if either ϕ or ψ is consistent. There is no
problem to handle this stronger assumption within our framework by finding
corresponding semantic conditions. First, the assumption for � split into the
following two rules:

• (o1
� ) ◦ ϕ � ◦(ϕ�ψ)

• (o2
� ) ◦ ψ � ◦(ϕ�ψ)

Now the first of them, for example, translates to the condition: if P3(x) = 1
then P3(x�̃y) = 1. In other words: If x ∈ {t, f} then x�̃y ∈ {t, f}. What this
implies in specific cases depends on the semantics of �. Thus for ∧ we get:

C(o1
∧): f ∧̃y = {f} for every y, while t∧̃y = {t} for y ∈ {t, tI , I}.

Note that in the presence of d1+d2, C(o1
∧) reduces to t∧̃y = {t} for y ∈ {t, I}.

It is important to note that by using C(o1
∧), the condition (o1

∧) can be
added to COND without essentially affecting the validity of Theorem 4.5.
However a new situation arises if we consider (o1

∧) together with (¬∧2).
C(¬∧2) implies that t∧̃I = {I}, while C(o1

∧) implies that t∧̃I = {t}. This
means that we cannot use both t and I in constructing models for theories
based on the logic B′ = B[{(o1

∧), (¬ ∧ 2)}]. However, the combination of
the corresponding conditions does not decisively rule out any of these two
truth-values. Hence the framework we have developed here does not provide
a unique characteristic Nmatrix for B′. It does provide however two finite
Nmatrices M1 and M2 such that �B′=�M1 ∩ �M2 .

Some common modal rules: We end with considering the effects of the counter-
parts for ◦ of the three modal axioms of the modal logic S4:

(K): ◦ϕ, ◦(ϕ ⊃ ψ) � ◦ψ
(4): ◦ϕ � ◦◦ψ
(T): ◦ϕ � ϕ

In the context of extensions of B (i.e. refinements of MB
5 ) the corresponding

semantics conditions can easily be found to be:
C(K): If x ∈ {t, f} and y ∈ {I, tI , fI} then x ⊃ y ⊆ {I, tI , fI}.
C(4): If x ∈ {t, f} then ◦̃x = {t}
C(T): The truth-value f should be deleted.

Note that C(T) is in direct conflict with C(d1), since together they leave
no nondesignated element, implying that any formulas is a theorem of the
resulting logic (this can of course be verified directly, using a cut). A more
interesting observation is that the combined effect of C(d1), C(d2), and C(4)
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is identical to the combined effect of C(i1) and C(i2). Hence the axioms (d1),
(d2), and (4) are together equivalent to the axiom (i) (which is standard in
C-systems — see [11]).

7. Conclusions and Further Research

We have presented an extensive study of the use of Nmatrices in deriving useful
semantic for thousands of extensions of one particular basic system: B. It should
be clear from this case-study that the method has a very large range of applications
(far beyond the framework of B). However, it is still necessary to formulate it in
exact, general terms, and to determine its scope. Another important task is to
develop extensions of the framework for cases in which the method used in this
paper is too weak. Two such cases (and related questions and tasks) are:

1. The primary constraint on rules to which our method applies seems to be
purity. A good example of a context in which this constraint is violated, is
provided by normal modal logics. As we have seen in the previous section,
the usual axioms used in these logics pose no real problem. However, the
necessitation rule, as it is used in modal logics, is impure: if � is supposed to
be an extension of the classical consequence relation, then the necessitation
rule cannot be translated into ϕ � �ϕ. Indeed, in classical logic we have that
�ϕ � ϕ ⊃ �ϕ, and that � ϕ, ϕ ⊃ �ϕ. Together with ϕ � �ϕ these facts
entail � ϕ ⊃ �ϕ (using cuts). However, ϕ ⊃ �ϕ is not valid in any inter-
esting modal logic. It seems therefore that extra machinery, like the use of
non-deterministic Kripke structures, should be added in order to handle rules
of this sort. Steps in this direction have been taken in [1, 2], where hybrid
semantics, employing both Nmatrices and Kripke structures, has been pro-
vided for many extensions of positive intuitionistic logic 10 (which is another
logic which employs impure rules).

2. Two common features of all the rules considered in this paper are that each
of them is concerned with at most two different connectives, and also the
nesting depth of each formula used in their schematic description is at most
two. An example of a rule which lacks both features is rule (l) from [11, 12]:

(l): ¬(ϕ ∧ ¬ϕ) � ◦ϕ
Now in [3] it is shown that B[{(c), (l)}] (which is called there Cl) has no
finite characteristic Nmatrix. Hence at least one of the two features we have
mentioned should be essential. Which one? And what can be done in its
absence? Concerning the last question, it should be noted that Cl has also
been shown in [3] to have an infinite characteristic Nmatrix, which is simple
enough to yield a decision procedure. Can this fact be generalized?
Another natural (and important) line for further research is to use the seman-

tic ideas presented here for systematically producing tableaux-style proof-systems

10One of those extensions is da Costa’s basic paraconsistent system Cω from [14].
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for the various logics dealt with in this paper. Now general systems of this type
have in fact been developed in [4] for every logic which has finite characteristic
Nmatrix. However, the central idea of those systems is to use signed formulas,
where the signs are (essentially) the truth-values of the characteristic Nmatrix
(and so the number of signs equals the number of the truth-values of that Nma-
trix). Here it might be more effective to use 6 signs rather than 5, according to
the two possible values of the three components of each of the five truth-values (or
four signs in the cases where 3-valued versions suffice).

Finally, an obvious crucial line of further research is to extend the results and
methods of this paper to first-order languages. A first step in this direction has
been made in [8], but it is only the beginning.
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“The Humbug of Many Logical Values”
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How was it possible that
the humbug of many logical values
persisted over the last fifty years?

—Roman Suszko, 1976.

Abstract. The Polish logician Roman Suszko has extensively pleaded in the
1970s for a restatement of the notion of many-valuedness. According to him,
as he would often repeat, “there are but two logical values, true and false.” As
a matter of fact, a result by Wójcicki-Lindenbaum shows that any tarskian
logic has a many-valued semantics, and results by Suszko-da Costa-Scott show
that any many-valued semantics can be reduced to a two-valued one. So, why
should one even consider using logics with more than two values? Because, we
argue, one has to decide how to deal with bivalence and settle down the trade-
off between logical 2-valuedness and truth-functionality, from a pragmatical
standpoint.

This paper will illustrate the ups and downs of a two-valued reduction of
logic. Suszko’s reductive result is quite non-constructive. We will exhibit here a
way of effectively constructing the two-valued semantics of any logic that has a
truth-functional finite-valued semantics and a sufficiently expressive language.
From there, as we will indicate, one can easily go on to provide those logics
with adequate canonical systems of sequents or tableaux. The algorithmic
methods developed here can be generalized so as to apply to many non-finitely
valued logics as well —or at least to those that admit of computable quasi
tabular two-valued semantics, the so-called dyadic semantics.
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1. Suszko’s Thesis

“After 50 years we still face an illogical paradise of many truths and falsehoods”.
Thus spake Suszko in 1976, at the 22nd Conference on the History of Logic, in
Cracow (cf. [25]). He knew all too well who was the first to blame for that state of
affairs: “�Lukasiewicz is the chief perpetrator of a magnificent conceptual deceipt
lasting out in mathematical logic to the present day.” Suszko was perfectly aware,
of course, that there are logics that can only be characterized truth-functionally
with the help of n-valued matrices, for n > 2. He also knew that there were
logics, such as most logics proposed by �Lukasiewicz or by Post, that were char-
acterizable by finite-valued matrices, and he knew that there were logics, such as
�Lukasiewicz’s �Lω, intuitionistic logic, or all the usual modal systems, that could
only be characterized by infinite-valued matrices. Suszko was even ready to con-
cede, in his reconstruction of the Fregean distinction between ‘sense’ and ‘refer-
ence’ of sentences, that the talk about many truth-values, in a sense, could not be
avoided, “unless one agrees that thought is about nothing, or, rather, stops talking
with sentences” (cf. [23]).

Still, Suszko insisted that “obviously any multiplication of logical values is
a mad idea” (cf. [25]). How come? The point at issue is, according to Suszko, a
distinction between the algebraic truth-values of many-valued logics, that were
supposed to play a merely referential role, while only two logical truth-values
would really exist. The philosophical standpoint according to which “there are
but two logical values, true and false” receives nowadays the label of Suszko’s
Thesis (cf. [16, 18, 26]).

Suszko illustrated his proposition by showing how �Lukasiewicz’s 3-valued
logic �L3 could be given a 2-valued (obviously non-truth-functional) semantics
(cf. [24]). He did not explain though how he obtained the latter semantics, or
how the procedure could be effectively applied to other logics. The present pa-
per shows how that can be done for a large class of finite-valued logics. It also
illustrates some uses for that 2-valued reduction in the mechanization of proof
procedures. Our initial related explorations in the field appeared in our reports
[8, 6]. A detailed appraisal and an extended investigation of both the technical
and the philosophical issues involved in Suszko’s Thesis can be found in our [7].

The plan of the present paper is as follows. Section 2 explains the general re-
ductive results that make tarskian logics n-valued and 2-valued. Section 3 presents
the technology for separating truth-values, which is the cornerstone of our reduc-
tive procedure. Section 4 introduces gentzenian semantics as an appropriate format
for presenting bivaluation axioms, and proposes dyadic semantics so as to define
the class of computable 2-valued semantics. Section 5 obtains, in an effective way,
2-valued semantics for many-valued logics, applying the algorithm from the main
Theorem 5.2. Several detailed examples are given in Section 6. The question of
obtaining ‘bivalent’ tableaux for such logics is treated in Section 7. Finally, Sec-
tion 8 briefly summarizes the obtained results and calls for a continuation of the
present investigations.

C. Caleiro, W. Carnielli, M. Coniglio and J. Marcos
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2. Reductive results

Let S denote a non-empty set of formulas and let V denote a non-empty set of
truth-values. Any Γ ⊆ S will be called a theory. Assume V = D ∪ U for suitable
disjoint sets D and U of designated and undesignated values. Any mapping §Vk :
S → Vk is called a (n-valued) valuation, where n is |Vk| (the cardinality of Vk =
Dk∪Uk); if both Dk and Uk are singletons, §Vk is called a bivaluation. Any collection
sem of valuations is called a (n-valued) semantics, where n is the cardinality of the
largest Vk such that §Vk ∈ sem. A model of a formula ϕ is any valuation §Vk such
that §Vk (ϕ) ∈ Dk. A canonical notion of entailment given by a consequence relation
�sem ⊆ Pow(S)×S associated to the semantics sem can be defined by saying that
a formula ϕ ∈ S follows from a set of formulas Γ ⊆ S whenever all models of all
formulas of Γ are also models of ϕ, that is,

Γ �sem ϕ iff §Vk (ϕ) ∈ Dk whenever §Vk (Γ) ⊆ Dk, for every §Vk ∈ sem. (DER)

That much for a semantic (many-valued) account of consequence. Now, for an
abstract account of consequence, consider the following set of properties:
(CR1) Γ, ϕ, ∆ � ϕ; (inclusion)
(CR2) If ∆ � ϕ, then Γ, ∆ � ϕ; (dilution)
(CR3) (∀β ∈ ∆)(Γ � β and ∆ � α) implies Γ � α. (cut for sets)
A logic L will in this section be defined simply as a set of formulas together with
a consequence relation defined over it. Logics respecting axioms (CR1)–(CR3)
are called tarskian. Notice, in particular, that when sem is a singleton, one also
defines a tarskian logic. Furthermore, an arbitrary intersection of tarskian logics
also defines a tarskian logic. Given some logic L = 〈S, �〉, a theory Γ ⊆ S will be
called closed in case it contains all of its consequences; the closure Γ of a theory Γ
may be obtained by setting ϕ ∈ Γ iff Γ � ϕ. A Lindenbaum matrix for a theory Γ is
defined by taking V = S, D = Γ and sem[Γ] = {idS} (the identity mapping on the
set of formulas).

It is easy to check that every n-valued logic is tarskian. It can be shown that
the converse is also true:

Theorem 2.1. (Wójcicki’s Reduction)
Every tarskian logic L = 〈S, �〉 is n-valued, for some n ≤ |S|.
Proof. For each theory Γ of L, notice that the corresponding Lindenbaum matrix
defines a sound semantics for that logic, that is, Γ � ϕ implies Γ �sem[Γ] ϕ. To
obtain completeness, one can now consider the intersection of all Lindenbaum
matrices and check that � = ∩Γ⊆S �sem[Γ]. �

This result shows that the above semantic and the abstract accounts of conse-
quence define exactly the same class of logics. While we know that classical propo-
sitional logic can be characterized in fact by a collection of 2-valued matrices, and
several other tarskian logics can be similarly characterized by other collections of
finite-valued matrices, Wójcicki’s Reduction shows that any tarskian logic has, in
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general, an infinite-valued characteristic matrix. Apart from the ‘many truths and
falsehoods’ allowed by many-valued semantics, it should be observed that such
semantics retain, in a sense, a shadow of bivalence, as reflected in the distinction
between designated and undesignated values. Capitalizing on that distinction, one
can show in fact that every tarskian logic also has an adequate 2-valued semantics:

Theorem 2.2. (Suszko’s Reduction)
Every tarskian n-valued logic can also be characterized as 2-valued.

Proof. For any n-valuation § of a given semantics sem(n), and every consequence
relation based on Vn and Dn, define V2 = {T, F} and D2 = {T} and set the
characteristic total function b§ : S → V2 to be such that b§(ϕ) = T iff §(ϕ) ∈ D.
Now, collect all such bivaluations b§’s into a new semantics sem(2), and notice that
Γ �sem(2) ϕ iff Γ �sem(n) ϕ. �

The above results deserve a few brief comments. First of all, the standard
formulations of Wójcicki’s Reduction (cf. [27]) and of Suszko’s Reduction (cf. [18])
usually presuppose more about the set of formulas (more specifically, they assume
that it is a free algebra) and about the consequence relation (among other things,
they assume that it is structural, i.e., that it allows for uniform substitutions).
As we have seen, however, such assumptions are unnecessary for the more general
formulation of the reductive results. From the next section on, however, we will
incorporate those assumptions in our logics. Second, reductive theorems similar in
spirit to Suszko’s Reduction have in fact been independently proposed in the 70s by
other authors, such as Newton da Costa and Dana Scott (a summary of important
results from the theory of bivaluations that sprang from those approaches can be
found in [4]). Third, it might seem paradoxical that the same logic is characterized
by an n-valued semantics, for some sufficiently large n, and also by a 2-valued
semantics. As we will see, though, the tension is resolved when we notice that the
whole issue involves a trade-off between ‘algebraic’ truth-functionality and ‘logical’
bivalence. From the point of view of Suszko’s Thesis, explained in the last section,
these results can only lend some plausibility to the idea that “there are but two
logical values, true and false”: At the very least, we now know that the assertion
makes perfect sense once we are talking about tarskian logics. Last, but not least,
it should be noticed that the above reductive results are quite non-constructive. In
case the logic has a finite-valued truth-functional semantics, Wójcicki’s Reduction
tells you nothing, in general, about how it can be obtained. Furthermore, Suszko’s
Reduction does not give you any hint, in general, on how a 2-valued semantics
could be determined by anything like a finite recursive set of clauses, even for the
case of logics with finite-valued truth-functional semantics.

In the present paper we obtain an effective method that assigns a useful 2-
valued semantics to every finite-valued truth-functional logic provided that the
‘algebraic values’ of the semantics can be individualized by means of the linguistic
resources of the logic.



Two’s Company: The Humbug of Many Logical Values 173

3. Separating truth-values

Let’s begin by adding some standard structure to the sets of formulas of our
logics. Let ats = {p1, p2, . . .} be a denumerable set of atomic sentences, and let
Σ = {Σn}n∈N be a propositional signature, where each Σn is a set of connectives of
arity n. Let cct =

⋃
n∈N Σn be the whole set of connectives. The set of formulas S is

then defined as the algebra freely generated by ats over Σ. Let’s also add here some
structure to the set of truth-values of our logics. Unless explicitly stated otherwise,
from now on L will stand for a propositional finite-valued logic. Additionally, V will
be a fixed Σ-algebra defining a truth-functional semantics for L over a finite non-
empty set of truth-values V = D ∪ U . Assume that D = {d1, . . . , di} and U =
{u1, . . . , uj} are the sets of designated and undesignated truth-values, respectively,
with D ∩ U = ∅. Assume also that the valuations composing the semantics of
genuinely n-valued logics (logics having n-valued characterizing matrices, but no
m-valued such matrices, for m < n) are given by the homomorphisms § : S → V. A
uniform substitution is an endomorphism ε : S → S. Let us denote by ϕ(p1, . . . , pn)
a formula ϕ whose set of atomic sentences appear among p1, . . . , pn. From now on,
we write ϕ(p1/α1, . . . , pn/αn) instead of ε(ϕ(p1, . . . , pn)) whenever ε(pk) = αk.
Given a genuinely n-valued logic L whose semantics is determined by 〈V , cct,D〉,
we shall denote by Lc any functionally complete genuinely n-valued (conservative)
extension of it (extending, if necessary, the signature Σ), that is, a logic Lc with
the same number of (un)designated values as L, but which can define all n-valued
matrices —had they not been already definable from the start.

Def. 3.1. A set of interpretation maps [.] : Vn → V over S, for each n ∈ N
+, is

defined as follows, given �v = (v1, . . . , vn) ∈ Vn:
(i) [pk](�v) = vk, if 1 ≤ k ≤ n;
(ii) [⊗(ϕ1, . . . , ϕm)](�v) = ⊗([ϕ1](�v), . . . , [ϕm](�v)), where ⊗ is an m-ary connec-

tive and ⊗ is identified with the corresponding operator in the algebra V.

Remark 3.2. Given formulas ϕ(p) and α of L, and a homomorphism § : S → V,
then we have:

[ϕ](§(α)) = §(ϕ(p/α)). (∗)
Def. 3.3. Let v1, v2 ∈ V . We say that v1 and v2 are separated, and we write v1�v2,
in case v1 and v2 belong to different classes of truth-values, that is, in case either
v1 ∈ D and v2 ∈ U , or v1 ∈ U and v2 ∈ D. Given some genuinely n-valued logic L,
there is always some formula ϕ(p) of Lc which separates v1 and v2, that is, such
that [ϕ](v1)�[ϕ](v2) (or else one of these two values would be redundant, and the
logic would thus not be genuinely n-valued). Equivalently, one can say that ϕ(p)
separates v1 and v2 if the truth-values obtained in the truth-table for ϕ when p
takes the values v1 and v2 are separated. We say that v1 and v2 are effectively
separated by a logic L in case there is some separating formula ϕ(p) to be found
among the original set of formulas of L. In that case we will also say that the
values v1 and v2 of L are effectively separable.
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Example 3.4. Clearly, if v1�v2 then p separates v1 and v2. Therefore, every pair of
separated truth-values is always effectively separable. As another example, note
that ϕ(p) = ¬p separates 0 and 1

2 in �Lukasiewicz’s logic �L3 (see the formulation
of its matrices at Example 3.9), given that [¬p](0) = ¬0 = 1, [¬p]( 1

2 ) = ¬ 1
2 = 1

2 ,
and 1� 1

2 . The separability of the truth-values of a logic L clearly depends on the
original expressibility of this logic, i.e., the range of matrices that it can define by
way of interpretations of its formulas. The truth-values of a functionally complete
logic, for instance, are all obviously separable. Consider, in contrast, a logic whose
semantics is given by 〈{0, 1

2 , 1}, {⊗}, {1}〉, where v1 ⊗v2 = v1 if v1 = v2, otherwise
v1 ⊗ v2 = 1. The values 0 and 1

2 of this logic are obviously not separable.

Assumption 3.5. (Separability)
From this point on we will assume that, for any finite-valued logic we consider,
every pair 〈v1, v2〉 ∈ D2 ∪ U2 such that v1 
= v2 is effectively separable.

It follows from the last assumption that it is possible to individualize every
truth-value in terms of its membership to D (to be represented here by the ‘logical’
value T ) or to U (to be represented by the ‘logical’ value F ). As it will be shown,
together with this assumption about the expressibility of our logics, the residual
bivalence embodied in the distinction between designated and undesignated values
will permit us to effectively reformulate our original n-valued semantics using at
most two truth-values.

Remark 3.6. Consider the mapping t : V → {T, F} such that t(v) = T iff v ∈ D,
for some logic L. Note that:

ϕ separates v1 and v2 iff t([ϕ](v1)) 
= t([ϕ](v2)). (∗∗)
Now, suppose that ϕmn separates dm and dn (for 1 ≤ m < n ≤ i), and ψmn

separates um and un (for 1 ≤ m < n ≤ j). Given a variable x and d ∈ D, consider
the equation:

t([ϕmn](x)) = qd
mn

where qd
mn = t([ϕmn](d)). Observe that qd

mn ∈ {T, F} and qdm
mn 
= qdn

mn, using (∗∗).
Thus, if �ϕd(x) is the sequence (t([ϕmn](x)) = qd

mn)1≤m<n≤i, the distinguished
truth-value d can then be characterized through the sequence of equations Qd(x) :
(t(x) = T, �ϕd(x)), where commas represent conjunctions. That is,

x = d iff t(x) = T ∧
∧

1≤m<n≤i

t([ϕmn](x)) = qd
mn

characterizes d in terms of membership to D or to U (or, equivalently, in terms of
T/F ), as desired. Analogously, if ru

mn is t([ψmn](u)) for 1 ≤ m < n ≤ j and u ∈ U ,
then the sequence of equations Ru(x) : (t(x) = F, �ψu(x)) characterizes u in terms
of T/F , where �ψu(x) = (t([ψmn](x)) = ru

mn)1≤m<n≤j . That is,

x = u iff t(x) = F ∧
∧

1≤m<n≤j

t([ψmn](x)) = ru
mn

characterizes u in terms of T/F using t.
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Remark 3.7. If D = {d} then we simply write x = d iff t(x) = T . Analogously, if
U = {u} then we simply write x = u iff t(x) = F .

Remark 3.8. For any given logic L, the composition b = t ◦ § gives us exactly
Suszko’s 2-valued reduction, viz. a 2-valued (usually non-truth-functional) seman-
tic presentation of L. Given a logic that respects our Separability Assumption 3.5,
we will see in the next section how this 2-valued semantics can be mechanically
written down in terms of ‘dyadic semantics’. A later section will show how such
semantics can provide us with classic-like tableaux for those same logics.

Example 3.9. Consider the n-valued logics of �Lukasiewicz, n > 2, which can be
formulated by way of:

�Ln = 〈{0, 1
n−1 , . . . , n−2

n−1 , 1}, {¬,⇒,∨,∧}, {1}〉.
The above operations over the truth-values can be defined as follows:

¬v1 := 1 − v1; (v1 ⇒ v2) := Min(1, 1 − v1 + v2);
(v1 ∨ v2) := Max(v1, v2); (v1 ∧ v2) := Min(v1, v2).

Consider now the particular case of �L5. Then we can take, for instance:

ψ0 1
4

= ψ0 2
4

= ψ0 3
4

= ¬p; ψ 1
4

2
4

= ψ 1
4

3
4

= (¬p ⇒ p); ψ 2
4

3
4

= (p ⇒ ¬p).

To save on notation, take �(p) = ψ 1
4

2
4

and �(p) = ψ 2
4

3
4
, and consider next the

table:

v ¬v �(v) �(v)

0 1 0 1
1
4

3
4

2
4 1

2
4

2
4 1 1

3
4

1
4 1 2

4

Note that (the reduced version of) each �ψk(x) is as follows:
�ψ0(x) = 〈t(¬x) = T, t(�(x)) = F, t(�(x)) = T 〉,
�ψ 1

4
(x) = 〈t(¬x) = F, t(�(x)) = F, t(�(x)) = T 〉,

�ψ 2
4
(x) = 〈t(¬x) = F, t(�(x)) = T, t(�(x)) = T 〉,

�ψ 3
4
(x) = 〈t(¬x) = F, t(�(x)) = T, t(�(x)) = F 〉.

We obtain thus the following characterizations of the truth-values:

x = 0 iff t(x) = F ∧ t(¬x) = T ∧ t(�(x)) = F ∧ t(�(x)) = T,

x = 1
4 iff t(x) = F ∧ t(¬x) = F ∧ t(�(x)) = F ∧ t(�(x)) = T,

x = 2
4 iff t(x) = F ∧ t(¬x) = F ∧ t(�(x)) = T ∧ t(�(x)) = T,

x = 3
4 iff t(x) = F ∧ t(¬x) = F ∧ t(�(x)) = T ∧ t(�(x)) = F.
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Obviously, the sole distinguished truth-value 1 is characterized simply by:

x = 1 iff t(x) = T.

A similar procedure can be applied to all the remaining finite-valued logics of �Lu-
kasiewicz, making use for instance of the well-known Rosser-Turquette (definable)
functions so as to produce the appropriate effective separations of truth-values.

4. Dyadic semantics

Suszko’s Reduction is quite general, and it applies to any tarskian logic, be it
truth-functional or not. In the next section we will exhibit our algorithmic reduc-
tive method for automatically obtaining 2-valued formulations of any sufficiently
expressive finite-valued logic. To that purpose, it will be convenient to make use
of an appropriate equational language, made explicit in the following.

Def. 4.1. A gentzenian semantics for a logic L is an adequate (sound and complete)
set of 2-valued valuations b : S → {T, F} given by conditional clauses (Φ → Ψ)
where both Φ and Ψ are (meta)formulas of the form � (top), ⊥ (bottom) or:

b(ϕ1
1) = w1

1, . . . , b(ϕ
n1
1 ) = wn1

1 | . . . | b(ϕ1
m) = w1

m, . . . , b(ϕnm
m ) = wnm

m . (G)

Here, wj
i ∈ {T, F}, each ϕj

i is a formula of L, commas “,” represent conjunc-
tions, and bars “|” represent disjunctions. The (meta)logic governing these clauses
is fol, First-Order Classical Logic (further on, → will be used to represent the
implication connective from this metalogic). We may alternatively write a clause
of the form (G) as

∨
1≤k≤m

∧
1≤s≤nm

b(ϕs
k) = ws

k.

A dyadic semantics will consist in a specialization of a gentzenian semantics,
in a deliberate intent to capture the computable class of such semantics, as follows.
It should be noticed, at any rate, that not all decidable 2-valued semantics will
come with a built-in gentzenian presentation. Moreover, as shown in Example 4.6,
there are many logics that are characterizable by gentzenian or even by dyadic
semantics, yet not by any genuinely finite-valued semantics.

Remark 4.2. (i) Given an algebra of formulas S, an appropriate measure of com-

plexity of these formulas may be defined as the output of some schematic mapping
� : S → N, with the restriction that �(pk) = 0, for each pk ∈ ats. As a particular
case, the canonical measure of complexity of ϕ = ⊗(ϕ1, . . . , ϕm) has the additional
restriction that �(ϕ) = 1 + �(ϕ1) + . . . + �(ϕm), for each ⊗ ∈ cct.

(ii) Let var : S → Pow(ats) be a mapping that associates to each formula
its set of atomic subformulas. Given an algebra of formulas S, denote by S[n], for
n ≥ 1, the set S[n] = {ϕ ∈ S : var(ϕ) = {p1, . . . , pn}}. There are surely non-empty
(and possibly finite) families of formulas (ψi)i∈I , for some I = {1, 2, . . .} ⊆ N

+,
and there are 1 ≤ ni ≤ ℵ0, for each i ∈ I, with ψi ∈ S[ni], which cover the
whole set of formulas up to some substitution, that is, such that S =

⋃
i∈I{ε(ψi) :

ε is a substitution}. A minimal example of such a covering family is given by
{⊗(p1, . . . , pn) : ⊗ ∈ Σn and n ∈ N}.
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Def. 4.3. A logic L is said to be quasi tabular in case:
(i) There is some measure of complexity � and there is some covering family of
formulas {ψi}i∈I , with ψi ∈ S[ni], for some (possibly finite) set I = {1, 2, . . .} ⊆
N

+ such that for each ψi there is a finite sequence 〈φi
s〉s=1,...,ki

of formulas such
that var(φi

s) ⊆ {p1, . . . , pni
}, and �(φi

s) < �(ψi), for 1 ≤ s ≤ ki.
(ii) There is an adequate |V |-valued set of valuations § : S → V for L, for some
finite set of truth-values V , such that for each i ∈ I there is some recursive function
�.�i : Vki → V according to which, if φ = ε(ψi) for some substitution ε, then
§(φ) 
�i �§(ε(φi

1)), . . . , §(ε(φi
ki

))�i for every §, where 
�i is one of the following
partial ordering relations defined on V : =, ≤, or ≥.

The reader will have remarked that the above definition of quasi-tabularity
extends, in a sense, the usual Fregean notion of semantic compositionality.

Def. 4.4. A quasi tabular logic is called tabular in case � can be taken to be the
canonical measure of complexity and, accordingly, for each i ∈ I, one can take
〈φi

s〉s=1,...,ki
as the immediate subformulas of ψi. In that case, also, the covering

set {ψi}i∈I can be taken to be the minimal one (check Remark 4.2(ii)), and each 
�i

can be limited to the equality symbol =.

Tabular logics define exactly the class of truth-functional logics, given that
the former logics are always genuinely n-valued, for some 1 ≤ n ≤ |V|.
Def. 4.5. A quasi tabular logic L is said to have a dyadic semantics in case the
set V of Def. 4.3(ii) is {T, F}, and additionally L can be endowed with an adequate
gentzenian semantics.

The class of quasi tabular logics is quite wide: Genuinely finite-valued logics
are but a very special case of them, and the former class in fact coincides with
the class of logics which can be given a so-called ‘society semantics with complex
base’ (cf. [17]). It even includes logics that cannot be characterized as genuinely
finite-valued, as the following example shows:

Example 4.6. Consider the paraconsistent logic C1 (cf. [14]). It is well known that
this logic has no genuinely finite-valued characterizing semantics, though it can be
decided by way of ‘quasi matrices’ (cf. [15]). In fact, a dyadic semantics for C1 is
promptly available (cf. [9]). To that effect, recall that α◦ abbreviates ¬(α ∧ ¬α)
in C1, and consider the following bivaluational axioms (where �, �, − are the usual
lattice operators):

(4.6.1) b(¬α) ≥ −b(α);
(4.6.2) b(¬¬α) ≤ b(α);
(4.6.3) b(α ∧ β) = b(α) � b(β);
(4.6.4) b(α ∨ β) = b(α) � b(β);
(4.6.5) b(α ⇒ β) = −b(α) � b(β);
(4.6.6) b(α◦) = −b(α) � −b(¬α);
(4.6.7) b((α ⊗ β)◦) ≥ (−b(α) � −b(¬α)) � (−b(β) � −b(¬β)), for ⊗∈{∧,∨,⇒}.
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As it will be clear further on, in case it is possible to obtain a tableau decision
procedure from a gentzenian semantics B for a logic L then B is a dyadic semantics
for L.

5. From finite matrices to dyadic valuations

Let ⊗ be some connective of L; for the sake of simplicity, suppose that ⊗ is binary.
If an entry of the truth-table for ⊗ states that ⊗(v1, v2) = v then we can express
this situation as follows:

If x = v1 and y = v2, then ⊗ (x, y) = v.

Now, recall from Remark 3.6 the mapping t : V → {T, F} such that t(v) = T iff
v ∈ D. If the previous situation is expressed in terms of T/F using this mapping,
we will get, respectively, systems of equations Ev1(x), Ev2(y) and Ev(⊗(x, y)), and
consequently the following statement in terms of T/F :

if Ev1(x) and Ev2(y) then Ev(⊗(x, y)).

In the formal metalanguage of a gentzenian semantics (Def. 4.1), this statement is
of the form:

t([β1](x)) = w1, . . . , t([βm](x)) = wm,
t([γ1](y)) = w′

1, . . . , t([γm′ ](y)) = w′
m′

→ t([δ1](⊗(x, y))) = w′′
1 , . . . , t([δm′′ ](⊗(x, y))) = w′′

m′′ , (∗ ∗ ∗)
where wn, w′

k′ , w′′
s′′ ∈ {T, F} for 1 ≤ n ≤ m, 1 ≤ k′ ≤ m′ and 1 ≤ s′′ ≤ m′′.

Now, suppose that v is §(α) for some formula α. Then, using (∗) (check
Remarks 3.2 and 3.8) we obtain:

t([ϕ](v)) = t([ϕ](§(α))) = t(§(ϕ(p/α))) = b(ϕ(p/α))

for every formula ϕ(p). Using this in (∗ ∗ ∗) we obtain an axiom for B of the form:

b(β1(p/α)) = w1, . . . , b(βm(p/α)) = wm,
b(γ1(p/β)) = w′

1, . . . , b(γm′(p/β)) = w′
m′

→ b(δ1(p/⊗(α, β))) = w′′
1 , . . . , b(δm′′(p/⊗(α, β))) = w′′

m′′ ,

for wn, w′
k′ , w′′

s′′ ∈ {T, F} etc. Obviously, we can repeat this process for each entry
of each connective ⊗ of L. For 0-ary connectives there is no input at the left-hand
side; in such case, you should write conditional clauses of the form (� → Ψ).

Example 5.1. In �L5 we have, for instance, the following entry in the truth-table
for ∧: If v1 = 2

4 and v2 = 1 then v1 ∧ v2 = 2
4 . Or, in other words: If §(α) = 2

4 and
§(β) = 1 then §(α ∧ β) = 2

4 , for any formulas α and β, and any homomorphism §.
From Example 3.9 we obtain, using t and b = t ◦ §:

b(α) = F, b(¬α) = F, b(�(α)) = T, b(�(α)) = T, b(β) = T
→ b(α ∧ β) = F, b(¬(α ∧ β)) = F, b(�(α ∧ β)) = T, b(�(α ∧ β)) = T.
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So, each entry of the truth-table for each connective ⊗ of L determines an ax-
iom for a gentzenian valuation b : S → {T, F}. We obtain thus, through the above
method, a kind of unique (partial) ‘dyadic print’ of the original truth-functional
logic.

Theorem 5.2. Given a logic L, let B be the set of gentzenian valuations b : S →
{T, F} satisfying the axioms obtained from the truth-tables of L using the above
method, plus the following axioms:

(C1): � → b(α) = T | b(α) = F ;
(C2): b(α) = T, b(α) = F → ⊥;
(C3): b(α) = T → ∨

d∈D
∧

1≤m<n≤i b(ϕmn(p/α)) = qd
mn;

(C4): b(α) = F → ∨
u∈U

∧
1≤m<n≤j b(ψmn(p/α)) = ru

mn,

for every α ∈ S (here, qd
mn and ru

mn are as in Remark 3.6). Then b ∈ B iff b = t◦§
for some homomorphism § : S → V.

Proof. Given b ∈ B, define a homomorphism § : S → V such that:
(i) §(α) = d iff b(α) = T and b(ϕmn(p/α)) = qd

mn for every 1 ≤ m < n ≤ i;
(ii) §(α) = u iff b(α) = F and b(ψmn(p/α)) = ru

mn for every 1 ≤ m < n ≤ j,
where α ranges over the atomic sentences ats ∈ S. Note that S is well-defined as
a total functional assignment because b ∈ B satisfies conditions (C1)–(C2) above.
Since b satisfies all the axioms obtained from all the entries of the truth-tables of L,
it is straightforward to prove, by induction on the complexity of the formula α ∈ S,
that (i) and (ii) hold when α ranges over all the formulas in S. (Indeed, note that, in
the light of conditions (C2)–(C4), given b ∈ B and b(α) = T we can conclude that
there exists a unique d ∈ D such that

∧
1≤m<n≤i b(ϕmn(p/α)) = qd

mn; similarly,
given b(α) = F we can conclude that there exists a unique u ∈ U such that∧

1≤m<n≤j b(ψmn(p/α)) = ru
mn.) From this we obtain that §(ϕ) ∈ D iff b(ϕ) = T ,

therefore b = t ◦ § as desired. The converse (if b = t ◦ § for some homomorphism §,
then b ∈ B) is immediate. �

Thus, a new 2-valued adequate semantics based on but two ‘logical values’
can now be seen to realize Suszko’s Thesis, through the above constructive method.

Corollary 5.3. (i) For every bivaluation b : S → {T, F} in B there exists a homo-
morphism §b : S → V such that:

§b(α) ∈ D iff b(α) = T , for any α ∈ S. (1)

(ii) For every § : S → V there exists a b§ ∈ B such that:

b§(α) = T iff §(α) ∈ D, for any α ∈ S. (2)

We now have two notions of semantic entailment for L. The first one, |=,
uses the truth-tables given by V and its corresponding homomorphic valuations,
whereas the second one, |=B, uses the related gentzenian semantics B. But both
notions are in a sense ‘talking about the same thing’:
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Theorem 5.4. The set B of gentzenian valuations for L is adequate, that is, for
any Γ ∪ {ϕ} ⊆ S:

Γ |= ϕ iff Γ |=B ϕ.

Proof. Suppose that Γ |= ϕ, and let b ∈ B be such that b(Γ) ⊆ {T}, if possible.
By Corollary 5.3(i) there exists a homomorphism §b such that §b(Γ) ⊆ D. By
hypothesis we get §b(ϕ) ∈ D, whence b(ϕ) = T by (1). This shows that Γ |=B ϕ.
The converse is proven in an analogous way, using Corollary 5.3(ii). �

6. Some Illustrations

In this section we will give examples of gentzenian semantics for several genuinely
finite-valued paraconsistent logics, obtained through applications of the reductive
algorithm proposed in the last section. Instead of writing extensive lists of bival-
uational axioms, one for each entry of each truth-table, plus some complementing
axioms, we shall be using First-Order Classical Logic, fol, in what follows, in
order to manipulate and simplify the clauses written in our equational metalan-
guage. Moreover, we will often seek to reformulate things so as to make them more
convenient for a tableaux-oriented approach, as in the next section.

Example 6.1. The paraconsistent logic P1
3 = 〈{0, 1

2 , 1}, {¬,⇒}, { 1
2 , 1}〉, was intro-

duced by Sette in [22] (where it was called P 1), having as truth-tables:

0 1
2 1

¬ 1 1 0

⇒ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1 1

Note that ¬p separates 1
2 and 1. Indeed:

[¬p](1) = 0, [¬p]( 1
2 ) = 1,

and 0�1. Thus:

x = 0 iff t(x) = F ;
x = 1

2 iff t(x) = T , t(¬x) = T ;
x = 1 iff t(x) = T , t(¬x) = F .

Applying our reductive algorithm to the truth-tables of ¬ and ⇒ we may, after
some simplification, obtain the following axioms for b:

(i) b(α) = F → b(¬α) = T, b(¬¬α) = F ;
(ii) b(α) = T, b(¬α) = T → b(¬α) = T, b(¬¬α) = F ;
(iii) b(α) = T, b(¬α) = F → b(¬α) = F ;
(iv) b(α) = F | b(β) = T → b(α ⇒ β) = T, b(¬(α ⇒ β)) = F ;
(v) b(α) = T, b(β) = F → b(α ⇒ β) = F .
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In this case, axiom (C3) corresponds to b(α) = T → b(¬α) = T | b(¬α) = F ,
which can be derived from (C1). Axiom (C4) corresponds to b(α) = F → b(¬α) =
T , which is derivable from the above clause (i). Using fol we may rewrite clauses
(i)–(v) equivalently as:
(6.1.1) b(¬α) = F → b(α) = T ;
(6.1.2) b(¬¬α) = T → b(¬α) = F ;
(6.1.3) b(α ⇒ β) = T → b(α) = F | b(β) = T ;
(6.1.4) b(α ⇒ β) = F → b(α) = T, b(β) = F ;
(6.1.5) b(¬(α ⇒ β)) = T → b(α) = T, b(β) = F .

Note that (6.1.3)–(6.1.5) axiomatize a sort of ‘classic-like’ implication. Axioms
(6.1.1)–(6.1.5) plus (C1)–(C2) characterize a dyadic semantics for P1

3.

Example 6.2. The paraconsistent logic P1
4 = 〈{0, 1

3 , 2
3 , 1}, {¬,⇒}, { 1

3 , 2
3 , 1}〉, was

introduced in [11] and [19], and studied under the name P 2 in [17]. The truth-
tables of its connectives are as follows:

0 1
3

2
3 1

¬ 1 2
3 1 0

⇒ 0 1
3

2
3 1

0 1 1 1 1
1
3 0 1 1 1
2
3 0 1 1 1
1 0 1 1 1

It is easy to see that ¬p separates 1 and 1
3 , as well as 1 and 2

3 . On the other hand,
¬¬p separates 1

3 and 2
3 . From this we get:

x = 0 iff t(x) = F ;
x = 1

3 iff t(x) = T , t(¬x) = T , t(¬¬x) = T ;
x = 2

3 iff t(x) = T , t(¬x) = T , t(¬¬x) = F ;
x = 1 iff t(x) = T , t(¬x) = F , t(¬¬x) = T .

From the truth-table for ¬ we obtain, after applying fol:
(6.2.1) b(¬α) = F → b(α) = T ;
(6.2.2) b(¬¬α) = T → b(α) = T ;
(6.2.3) b(¬¬¬α) = T → b(¬¬α) = F .

Once again, axiom (C3) is derivable from (C1), and axiom (C4) is derivable from
the clauses above. The implication ⇒ is again ‘classic-like’, in the same sense as in
the last example. Therefore, axioms (6.2.1)–(6.2.3), (6.1.3)–(6.1.5) and (C1)–(C2)
characterize together a dyadic semantics for P1

4. Similar procedures can be applied
to each paraconsistent logic of the hierarchy P1

n+2(= Pn, from [17]), for n ∈ N
+.

Example 6.3. Having already used negation in the two above examples in order
to separate truth-values, let us now make it differently. Consider the paraconsis-
tent propositional logic LFI1 = 〈{0, 1

2 , 1}, {¬, •,⇒,∧,∨}, { 1
2 , 1}〉, studied in detail

in [13], whose matrices are:



182 C. Caleiro, W. Carnielli, M. Coniglio and J. Marcos

0 1
2 1

¬ 1 1
2 0

• 0 1 0

⇒ 0 1
2 1

0 1 1 1
1
2 0 1

2 1
1 0 1

2 1

plus conjunction ∧ and disjunction ∨ defined as in �Lukasiewicz’s logics (see Ex-
ample 3.9). Clearly, •p separates 1 and 1

2 . Thus:

x = 0 iff t(x) = F ;
x = 1

2 iff t(x) = T , t(•x) = T ;
x = 1 iff t(x) = T , t(•x) = F .

From the truth-table for ¬, and using fol, we obtain:

(6.3.1) b(¬α) = T → b(α) = F | b(•α) = T ;
(6.3.2) b(¬α) = F → b(α) = T, b(•α) = F .

Axiom (C3) is again derivable from (C1); axiom (C4) is derivable from (6.3.2).
Now, these are the axioms for •:
(6.3.3) b(•α) = T → b(α) = T ;
(6.3.4) b(••α) = T → b(•α) = F ;
(6.3.5) b(•¬α) = T → b(•α) = T ;
(6.3.6) b(•¬α) = F → b(¬α) = F | b(α) = F .

From the truth-tables for the binary connectives, and using fol, we obtain:

(6.3.7) b(α ∧ β) = T → b(α) = T, b(β) = T ;
(6.3.8) b(α ∧ β) = F → b(α) = F | b(β) = F ;
(6.3.9) b(α ∨ β) = T → b(α) = T | b(β) = T ;
(6.3.10) b(α ∨ β) = F → b(α) = F, b(β) = F ;
(6.3.11) b(α ⇒ β) = T → b(α) = F | b(β) = T ;
(6.3.12) b(α ⇒ β) = F → b(α) = T, b(β) = F .

To those we may add, furthermore:

(6.3.13) b(•(α ∧ β)) = T
→ b(α) = T, b(•β) = T | b(β) = T, b(•α) = T ;

(6.3.14) b(•(α ∧ β)) = F
→ b(α) = F | b(β) = F | b(α) = T, b(•α) = F, b(β) = T, b(•β) = F ;

(6.3.15) b(•(α ∨ β)) = T
→ b(α) = F, b(•β) = T | b(β) = F, b(•α) = T | b(•α) = T, b(•β) = T ;

(6.3.16) b(•(α ∨ β)) = F
→ b(α) = F, b(β) = F | b(α) = T, b(•α) = F | b(β) = T, b(•β) = F ;

(6.3.17) b(•(α ⇒ β)) = T → b(α) = T, b(•β) = T ;
(6.3.18) b(•(α ⇒ β)) = F → b(α) = F | b(•β) = F .
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So, if the above axioms are taken together with (C1)–(C2), then we obtain a natu-
ral dyadic semantics for LFI1. Two slightly different (non-gentzenian) bivaluation
semantics for LFI1 were explored in [13].

Example 6.4. Belnap’s paraconsistent and paracomplete 4-valued logic (cf. [2]),
B4 = 〈{0, 1

3 , 2
3 , 1}, {¬,∧,∨}, { 2

3 , 1}〉, can be presented by way of the following
matrices:

0 1
3

2
3 1

¬ 0 2
3

1
3 1

∧ 0 1
3

2
3 1

0 0 0 0 0
1
3 0 1

3 0 1
3

2
3 0 0 2

3
2
3

1 0 1
3

2
3 1

∨ 0 1
3

2
3 1

0 0 1
3

2
3 1

1
3

1
3

1
3 1 1

2
3

2
3 1 2

3 1
1 1 1 1 1

Clearly, ¬p separates 1 and 2
3 and also separates 1

3 and 1. Thus:

x = 0 iff t(x) = F , t(¬x) = F ;
x = 1

3 iff t(x) = F , t(¬x) = T ;
x = 2

3 iff t(x) = T , t(¬x) = F ;
x = 1 iff t(x) = T , t(¬x) = T .

Now, from the truth-table for ¬, and using fol, we obtain:

(6.4.1) b(¬¬α) = T → b(α) = T ;
(6.4.2) b(¬¬α) = F → b(α) = F .

Both axioms (C3) and (C4) are now derivable from (C1). From the truth-tables
of conjunction and disjunction, using fol, we obtain the positive clauses (6.3.7)–
(6.3.10) again, but also:

(6.4.3) b(¬(α ∧ β)) = T → b(α) = F, b(¬α) = T, b(β) = F, b(¬β) = T |
b(α) = F, b(¬α) = T, b(β) = T, b(¬β) = T |
b(α) = T, b(¬α) = T, b(β) = F, b(¬β) = T |
b(α) = T, b(¬α) = T b(β) = T, b(¬β) = T ;

(6.4.4) b(¬(α ∧ β)) = F → b(α) = F, b(¬α) = F | b(α) = T, b(¬α) = F |
b(β) = F, b(¬β) = F | b(β) = T, b(¬β) = F ;

(6.4.5) b(¬(α ∨ β)) = T → b(α) = F, b(¬α) = T | b(α) = T, b(¬α) = T |
b(β) = F, b(¬β) = T | b(β) = T, b(¬β) = T ;

(6.4.6) b(¬(α ∨ β)) = F → b(α) = F, b(¬α) = F, b(β) = F, b(¬β) = F |
b(α) = F, b(¬α) = F, b(β) = T, b(¬β) = F |
b(α) = T, b(¬α) = F, b(β) = F, b(¬β) = F |
b(α) = T, b(¬α) = F b(β) = T, b(¬β) = F .

A dyadic semantics for B4 is given by the above axioms, plus (C1)–(C2).
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7. Application: tableaux for logics with dyadic semantics

In the examples from the last section we found axioms for the set B of bivaluation
mappings b (defining a gentzenian semantics for a genuinely finite-valued logic L)
expressed as conditional clauses of the form:

b(α) = w
→ b(α1

1) = w1
1, . . . , b(αn1

1 ) = wn1
1 | . . . | b(α1

m) = w1
m, . . . , b(αnm

m ) = wnm
m ,

where w, ws
k ∈ {T, F} and αs

k has smaller complexity, under some appropriate
measure (recall Remark 4.2 and Def. 4.3), than α. Each clause as above generates
a tableau rule for L as follows: Translate b(β) = T as the signed formula T (β),
and b(β) = F as the signed formula F (β). Then, a conditional clause such as the
one above induces the following tableau-rule:

w(α)

� . . . �

w1
1(α

1
1) w1

m(α1
m)

...
...

wn1
1 (αn1

1 ) wnm
m (αnm

m )
where w, ws

k ∈ {T, F}. In that case, it is routine to prove that the set of tableau
rules for L obtained from the clauses for B characterizes a sound and complete
tableau system for L (check [7] for details). We are supposing that there exists a
basic common rule known as branching rule, as follows:

. . .

T (ϕ) | F (ϕ)

This rule is generated by clause (C1) of Theorem 5.2. In certain cases it may be
possible to dispense with such rule, but taking into consideration that tableau
rules are not mandatory but permissive there is little loss of generality in keeping
such rule. The branching rule is not analytic, but can be bounded in certain cases
so as to guarantee the termination of the decidable tableau procedure. Moreover,
the variables occurring in the formula ϕ must in general be contained in the finite
collection of variables occurring in the tableau branch.

The structural similarity between the tableau rules so obtained and the clas-
sical ones is not fortuitous. Applying the above idea to the gentzenian semantics
obtained in the last section for a large class of many-valued logics, one can de-
vise two-signed tableau systems for them. Many-signed tableau systems for many-
valued logics, constructed with the help of their many truth-values used as labels
may be obtained as in [10]. Here, though, we learn that we can forget about those
‘algebraic truth-values’ and work only with the ‘logical values’ T and F , just like
in the classical case. While the former many-signed tableaux enjoy the so-called
subformula property, according to which each formula αs

k obtained from the ap-
plication to α of a tableau rule as the one above is a subformula of the initial
formula α, the latter related two-signed tableaux obtained through our method
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will often fail this property, reflecting the loss of the truth-functionality of the
many-valued homomorphisms in transforming them into bivaluations. We will still
have, though, a shortening property which is as advantageous for efficiency as the
subformula property: Each formula αs

k will be less complex (under some appro-
priate measure, recall Def. 4.3) than the initial formula α being analyzed by the
tableau rules, the only exception being the above mentioned branching rule.

Example 7.1. The following set of rules characterizes a tableau system for the
paraconsistent logic P1

3, according to clauses (6.1.1)–(6.1.5) of Example 6.1:

(7.1.1)
F (¬α)
T (α)

(7.1.2)
T (¬¬α)
F (¬α)

(7.1.3)
T (α ⇒ β)

F (α) | T (β)
(7.1.4)

F (α ⇒ β)
T (α), F (β)

(7.1.5)
T (¬(α ⇒ β))
T (α), F (β)

Example 7.2. Following Example 6.2, an adequate set of tableau rules for the
paraconsistent logic P1

4 is given by (7.1.3)–(7.1.5) plus:

(7.2.1)
F (¬α)
T (α)

(7.2.2)
T (¬¬α)

T (α)
(7.2.3)

T (¬¬¬α)
F (¬¬α)

Example 7.3. Here is a tableau system for the paraconsistent logic LFI1 (see
Example 6.3), based on its dyadic semantics:

(7.3.1)
T (¬α)

F (α) | T (•α)
(7.3.2)

F (¬α)
T (α), F (•α)

(7.3.3)
T (•α)
T (α)

(7.3.4)
T (••α)
F (•α)

(7.3.5)
T (•¬α)
T (•α)

(7.3.6)
F (•¬α)

F (¬α) | F (α)

(7.3.7)
T (α ∧ β)

T (α), T (β)
(7.3.8)

F (α ∧ β)
F (α) | F (β)

(7.3.9)
T (α ∨ β)

T (α) | T (β)
(7.3.10)

F (α ∨ β)
F (α), F (β)

(7.3.11)
T (α ⇒ β)

F (α) | T (β)
(7.3.12)

F (α ⇒ β)
T (α), F (β)

(7.3.13)
T (•(α ∧ β))

T (α), | T (β),
(7.3.14)

F (•(α ∧ β))
F (α) | F (β) | T (α), T (β),

T (•β) | T (•α) | F (•α), F (•β)

(7.3.15)
T (•(α ∨ β))

F (α), | F (β), | T (•α),
(7.3.16)

F (•(α ∨ β))
F (α), | T (α), | T (β),

T (•β) | T (•α) | T (•β) F (β) | F (•α) | F (•β)

(7.3.17)
T (•(α ⇒ β))
T (α), T (•β)

(7.3.18)
F (•(α ⇒ β))
F (α) | F (•β)
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Compare this tableau system for LFI1 with the tableau system for this same logic
presented in [12]. The latter is based on a non-gentzenian semantics. As a result,
(decidable) tableaux without the shortening property (in fact, tableaux allowing
for loops) were thereby obtained.

Example 7.4. A tableau system for Belnap’s 4-valued logic (see Example 6.4), B4,
can be obtained by adding to (7.3.7)–(7.3.10) the following rules:

(7.4.1)
T (¬¬α)
T (α)

(7.4.2)
F (¬¬α)

F (α)

(7.4.3)
T (¬(α ∧ β))

F (α), T (¬α), | F (α), T (¬α), | T (α), T (¬α), | T (α), T (¬α),
F (β), T (¬β) | T (β), T (¬β) | F (β), T (¬β) | T (β), T (¬β)

(7.4.4)
F (¬(α ∧ β))

F (α), F (¬α) | T (α), F (¬α) | F (β), F (¬β) | T (β), F (¬β)

(7.4.5)
T (¬(α ∨ β))

F (α), T (¬α) | T (α), T (¬α) | F (β), T (¬β) | T (β), T (¬β)

(7.4.6)
F (¬(α ∨ β))

F (α), F (¬α), | F (α), F (¬α), | T (α), F (¬α), | T (α), F (¬α),
F (β), F (¬β) | T (β), F (¬β) | F (β), F (¬β) | T (β), F (¬β)

As done in [5], similar algorithmic procedures can be devised so as to provide
adequate sequent systems to all the 2-valued semantics hereby constructed.

8. Conclusions

While Suszko’s Thesis is a philosophical stance concerning the scope of Universal
Logic as a general theory of logical structures (cf. [3]), Suszko’s Reduction is pre-
sented in this paper as a general non-constructive result about the comprehensive
class of tarskian logics.

We have exhibited here a method for the effective implementation of Suszko’s
Reduction by transforming any finite-valued truth-functional semantics whose
truth-values can be individualized in the sense of Assumption 3.5 into homol-
ogous 2-valued semantics. The specific form of the gentzenian axioms we obtain
permits us then to automatically define a (decidable) tableau system for each logic
subjected to that 2-valued reduction. The same methods can be applied to many
other well-known logics such as �Lukasiewicz’s �Ln, Kleene’s K3, Gödel’s G3 etc.
Our reductive method builds bulk in the reductive results from [20, 21] and [1].

It is an open problem to extend our 2-valued reductive procedure so as to
cover other classes of logics such as modal or infinite-valued logics.
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[5] J.-Y. Béziau, Sequents and bivaluations, Logique et Analyse (N.S.) 44 (2001), no. 176,
373–394.

[6] C. Caleiro, W. A. Carnielli, M. E. Coniglio, and J. Marcos, Dyadic semantics for
many-valued logics, Preprint available at:
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/03-CCCM-dyadic2.pdf.

[7] C. Caleiro, W. A. Carnielli, M. E. Coniglio, and J. Marcos, How many logical values
are there? Dyadic semantics for many-valued logics, Preprint.

[8] C. Caleiro, W. A. Carnielli, M. E. Coniglio, and J. Marcos, Suszko’s Thesis and
dyadic semantics, Preprint available at:
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/03-CCCM-dyadic1.pdf.

[9] C. Caleiro and J. Marcos, Non-truth-functional fibred semantics, Proceedings of the
International Conference on Artificial Intelligence (IC-AI’2001), held in Las Vegas,
USA, June 2001 (H. R. Arabnia, ed.), vol. II, CSREA Press, Athens GA, USA, 2001,
pp. 841–847.
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/01-CM-fiblog10.ps.

[10] W. A. Carnielli, Systematization of the finite many-valued logics through the method
of tableaux, The Journal of Symbolic Logic 52 (1987), 473–493.

[11] W. A. Carnielli and M. Lima-Marques, Society semantics for multiple-valued log-
ics, Advances in Contemporary Logic and Computer Science (W. A. Carnielli and
I. M. L. D’Ottaviano, eds.), Contemporary Mathematics Series, vol. 235, American
Mathematical Society, 1999, pp. 33–52.

[12] W. A. Carnielli and J. Marcos, Tableaux for logics of formal inconsistency, Proceed-
ings of the 2001 International Conference on Artificial Intelligence (IC-AI’2001), held
in Las Vegas, USA, June 2001 (H. R. Arabnia, ed.), vol. II, CSREA Press, Athens
GA, USA, 2001, pp. 848–852.
http://logica.rug.ac.be/~joao/Publications/Congresses/tableauxLFIs.pdf.

[13] W. A. Carnielli, J. Marcos, and S. de Amo, Formal inconsistency and evolutionary
databases, Logic and Logical Philosophy 8 (2000), 115–152.
http://www.cle.unicamp.br/e-prints/abstract 6.htm.

[14] N. C. A. da Costa, Calculs propositionnels pour les systèmes formels inconsistants,
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Logical Friendliness and Sympathy

David Makinson

Abstract. We define and study a notion of logical friendliness, which is a
broadening of the familiar notion of classical consequence. The concept is
studied first in its simplest form, and then in a syntax-independent version
which we call sympathy.

Beyond the specific results obtained, a general message emerging from the
investigation is that even in such an elementary and well-trodden area as
classical propositional logic, there are intriguing concepts that remain lit-
tle explored, and non-trivial problems concerning them. Once they are well-
understood in a classical setting, the concepts can also be formulated in a
more general manner to be applicable to a wide variety of non-classical logics.

Mathematics Subject Classification (2000). Primary 03B05; Secondary 03B99.

Keywords. classical logic, consequence relations, logical friendliness, logical
sympathy.

1. Friendliness

1.1. Notation and Terminology

We consider formulae a,b,. . . ,x,y,. . . of classical propositional logic. It will be con-
venient to include the zero-ary falsum ⊥ among the primitive connectives. Sets of
formulae are denoted by upper case letters A,B,. . .X,Y,. . . For any formula a, we
write E (a) to mean the set of all elementary letters occurring in a. Similarly for
sets of formulae.

Classical logical consequence is written as � when treated as a relation, Cn when
viewed as an operation. Classical logical equivalence as a relation is written ��.
‘Valuation’ means boolean valuation. A partial valuation is a restriction of a val-
uation to a subset of the set E of all elementary letters of the language.

To lighten notation, we follow the common convention of usually writing A,x for
A∪{x}. A � B is short for ‘A � b for all b ∈ B ’. Also, v(A) = 1 is short for
‘v(a) = 1 for all a ∈ A’, while v(A) = 0 is short for ‘v(a) = 0 for some a ∈ A’.
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1.2. Basic Definition

Let P ⊆ E be any set of elementary letters, and let v be any partial valuation on
P. Let x be any formula. We say that v is friendly to x iff v may be extended to
a partial valuation v+ on P∪E (x ) with v+(x ) = 1.

We say that a set A of formulae is friendly to x and write A |≈ x, iff every partial
valuation v on E (A) with v(A) = 1 is friendly to x.

In other words: iff every partial valuation v on E (A) with v(A) = 1 may be
extended to a partial valuation v+ on E (A,x ) with v+(x ) = 1.

Equivalently: iff for every partial valuation v on E (A) with v(A) = 1 there is
a partial valuation w on E (x ) agreeing with v on letters in E (A)∩E (x ), with
w(x ) = 1.

1.3. Remarks on the Definition

We think of the relation |≈ of friendliness as a broadened version of classical conse-
quence. Classical consequence may be characterized in terms of partial valuations
as follows: A � x iff for every partial valuation v on E (A) with v(A) = 1, we have
v+(x ) = 1 for every extension v+ of v to E (A,x ). Whereas classical consequence,
so expressed, is an ∀∀ concept, friendliness is the corresponding ∀∃ concept.

Two words of caution when reading the definition. First: E (a) is the set of all ele-
mentary letters actually occurring in a, rather than the least set of letters needed
to get a formulae classically equivalent to a. For example, if a = p∧(q∨¬q) then
E (a) is {p,q}, not {p}. We will investigate a corresponding notion of sympathy,
defined using least letter sets, later in the paper. Second: when we speak of a par-
tial valuation v on a set P of elementary letters, we mean one with exactly P as
domain. Any valuation on a proper superset P+ of P, agreeing with v over P, will
be called an extension of v. These fine distinctions are without much significance
when considering classical consequence, but will be essential for the relation of
friendliness.

In principle a similar definition could be made for first-order logic, speaking of
partial models rather than partial valuations, but we leave that aside, remaining
for simplicity in the propositional case. All of our concepts carry over routinely to
the first-order context, but some of the proofs (notably those for compactness and
interpolation) do not.

1.4. Basic Properties

Supraclassicality. � ⊆ |≈ , that is, whenever A � x then A |≈ x.

Verification. Immediate from the definition of |≈.

The inclusion is proper, for when a, x are distinct elementary letters then a |≈ x
but not a � x. Friendliness is not the trivial relation over the language, for when
a is a tautology and x a contradiction, a |
≈ x. For a less extreme example, put
a = p∨q and x = p∧q where p,q are distinct elementary letters: again a |
≈ x. This
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example illustrates a general point.

Reduction case. Whenever E (x ) ⊆ E (A) then A |≈ x iff A � x.

Verification. Right to left is given unconditionally by supraclassicality, so we need
only show left to right. Suppose E (x ) ⊆ E (A) and A |≈ x. Let v be any partial
valuation on E (A) with v(A) = 1. We need to show that v+(x ) = 1 for every
extension v+ of v to E (A,x ). Since A |≈ x, v+(x ) = 1 for some extension v+ of v
to E (A,x ). But since E (x ) ⊆ E (A), E (A,x ) = E (A), so the unique extension of v
to E (A,x ) is v itself. Thus v(x ) = 1 and indeed v+(x ) = 1 for every extension v+

of v to E (A,x ).

Characterization in terms of consistency. A |≈ x iff every set B of formulae in LA

that is consistent with A, is consistent with x.

Here LA stands for the sub-language generated by E (A), i.e. the set of all formulae
y with E (y) ⊆ E (A).

Verification. Suppose first that A |≈ x. Let B be any set of formulae in LA that
is consistent with A. Then there is a partial valuation v on E (A) with v(A) = 1,
v(B) = 1. From the former, v may be extended to a partial valuation v+ on E (A,x )
with v+(x ) = 1. Since v+ extends v and v(B) = 1 we have v+(B) = 1. Hence B
is consistent with x, as desired.

For the converse, suppose that A |
≈ x. Then there is a partial valuation v on E (A)
with v(A) = 1, such that v+(x ) = 0 for every extension v+ of v to E (A,x ). Put
B to be the state-description (set of literals) in LA that corresponds to v ; in the
limiting case that A = ∅ put B = {�}.
We complete the verification by showing that B is consistent with A but not
consistent with x. The former is immediate from the fact that v(A) = 1 and by
construction also v(B) = 1. For the latter, we observe that by construction, v is the
only partial valuation on E (B) = E (A) with v(B) = 1, and by hypothesis v+(x ) = 0
for every extension v+ of v to E (A,x ). Thus there is no partial valuation w on
E (B,x ) = E (A,x ) with w(B) = 1 and w(x ) = 1. In other words, B is inconsistent
with x.

Corollary. When E (A) is finite, then A |≈ x iff every formula b in LA that is
consistent with A, is consistent with x.

Verification. When E (A) is finite, B ��B ′ for some finite B ′. Put b = ∧B ′.

The relation of friendliness fails many familiar features of classical consequence.
In particular:

• It is not closed under substitution for elementary letters. Example: p |≈ p∧q
where p,q are (here and always) distinct elementary letters, but p |
≈ p∧¬ p.

• It fails monotony. Example: p |≈ p∧q but p∧¬q |
≈ p∧q.
• It fails cautious monotony. Example: p |≈ q and p |≈ ¬q but p∧q |
≈ p∧¬q.
• It fails left classical equivalence. Example: p |≈ p∧q but p∧(q∨¬q) |
≈ p∧q.
• It fails conjunction in the conclusion. Example: p |≈ q, p |≈ ¬q, but p |
≈ q∧¬q.
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• For essentially the same reason, it fails a general form of transitive cumula-
tivity. Example: p |≈ q, p |≈ ¬q, and p∧q∧¬q |≈ ¬p, but p |
≈ ¬p.

• It fails plain transitivity. Example: p |≈ q, q |≈ ¬p, but p |
≈ ¬p.
• It fails disjunction in the premises. Example: p |≈ p↔q, q |≈ p↔q, but

p∨q |
≈ p↔q.
Nevertheless, friendliness does have some positive properties, including ‘local’ ver-
sions of some of the above.

Right weakening. Whenever A |≈ x � y then A |≈ y.

Verification. Immediate from the definition of |≈.

It follows from this, of course, that the relation is syntax-independent in its right
argument, i.e. satisfies right classical equivalence: whenever x �� y then A |≈ x iff
A |≈ y. This contrasts with the already noted syntax-dependence on the left.

Singleton cumulative transitivity. Whenever A |≈ x and A,x |≈ y then A |≈ y.

Verification. Suppose A |≈ x and A,x |≈ y. Let v be any partial valuation on E (A)
with v(A) = 1. By the first hypothesis, v may be extended to a partial valuation
v+ on E (A,x ) with v+(x ) = 1, so also v+(A,x ) = 1. By the second hypothesis, v+

may be extended to a partial valuation v++ on E (A,x,y) with v++(y) = 1. Restrict
v++ to E (A,y), call it w. Then w is still an extension of v with domain E (A), and
w(y) = 1.

Local left strengthening. Suppose E (B) ⊆ E (A). Then B � A |≈ x implies B |≈ x.

Verification. Suppose B � A |≈ x. Consider any partial valuation v on E (B) with
v(B) = 1; we need to show that v is friendly to x. Extend v to any partial valua-
tion v+ on E (A) ⊇ E (B). Then v+(B) = v(B) = 1, and so since B � A we have
v+(A) = 1. Since A |≈ x, there is an extension v++ of v+ to E (A,x ) with v++(x ) = 1.
Restrict v++ to E (B,x ), call it v++−. Then clearly v++−(x ) = v++(x ) = 1. But
v++− is still an extension of v with domain E (B). Hence v is friendly to x, as
desired.

Local left equivalence. Suppose E (B) ⊆ E (A). Then A |≈ x and A �� B imply
B |≈ x.

Verification. When A �� B then B � A so we can apply local left strengthening.

Local monotony. Suppose E (B) ⊆ E (A). If A |≈ x and A ⊆ B then B |≈ x.

Verification. When A ⊆ B then B � A; apply local left strengthening.

Local disjunction in the premises. Suppose E (b2) ⊆ E (A,b1) and E (b1) ⊆ E (A,b2).
Then A,b1 |≈ x and A,b2 |≈ x together imply A,b1∨b2 |≈ x.

Verification. Suppose A,b1∨b2 |
≈ x. Then there is a partial valuation v on
E (A,b1∨b2) with v(A,b1∨b2) = 1 that is not friendly to x. By the hypotheses,
E (A,b1∨b2) = E (A,b1) = E (A,b2). Since v(A,b1∨b2) = 1 either v(A,b1) = 1 or
v(A,b2) = 1. Hence either v is a partial valuation on E (A,b1) with v(A,b1) = 1
but not friendly to x, or similarly with b2. That is, either A,b1 |
≈ x or A,b2 |
≈ x.
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1.5. Compactness

In the context of friendliness, some care must be taken with the formulation of
compactness. When the property is formulated in exactly the same way as in
classical logic, it tells us little. For suppose A |≈ x. Then:

• On the one hand, in the limiting case that x is inconsistent the definition of
|≈ implies that A must also be inconsistent, so by classical compactness there
is a finite inconsistent subset F ⊆ A, so that by the definition of |≈ again,
F |≈ x.

• On the other hand, in the principal case that x is consistent, we have immedi-
ately that ∅ |≈ x. But we would surely like something more substantial. When
A itself is non-empty, we would like to be able to choose a suitable non-empty
finite subset. This motivates the following strengthened formulation.

Compactness. Let A be a non-empty set with A |≈ x. Then there is a non-empty
finite subset Af ⊆ A with Af |≈ x.

• Note that we are requiring Af to be a non-empty finite subset of A itself,
rather than merely of some set A′ �� A. In classical logic this doesn’t make
much difference, but in the context of friendliness it does. Allowing such an
A′ would again render compactness for |≈ trivial in the principal case that x
is consistent, for we could take A′ = A∪{�} �� A and choose F = {�}.

• It does not seem possible to derive compactness, as thus formulated, as a
simple corollary of its classical counterpart. We will instead go back and
rework a standard semantic proof for the classical version. The argument is
non-constructive: it does not find a suitable Af , but supposes that there is
none, and infers that A |
≈ x. As the proof is rather long, it may be skipped
on first reading.

Proof of compactness. Suppose that Af |
≈ x for every finite non-empty subset Af

⊆ A. We want to show that A |
≈ x. That is, we want to find a partial valuation v
on E (A) with v(A) = 1 with no extension v+ to E (A,x ) with v+(x ) = 1.

Clearly, we may assume without loss of generality that A is infinite.

We may also assume without loss of generality that A∩Cn(∅) = ∅, i.e. that A
contains no tautologies. For let A0 be the subset of A formed by dropping all
tautologies. Suppose that there is a partial valuation w on E (A0) with v(A0) = 1
with no extension w+ to E (A0,x ) with w+(x ) = 1. Extend w in any way whatever
to E (A), call it v. Since A0 �� A we have v(A) = 1. Moreover, any extension v+

of v from E (A) to E (A,x ) is an extension of w from E (A0) to E (A,x ), so that
v+(x ) = 0.

Next, we note that the supposition implies that A is consistent. For otherwise,
by classical compactness we have a finite Af ⊆ A with Af � x. By monotony of
classical consequence Af may be taken as non-empty, and by supraclassicality Af

|≈ x, contradicting the supposition.
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We will construct the desired partial valuation v inductively; to do so we need to
consider a strong property, which we call hostility.

Fix an enumeration p1, p2,. . . of E (A) (finite or of type ω, according to its cardi-
nality). In what follows we consider partial valuations on initial segments of this
enumeration.

When P is an initial segment of E (A) and v is a partial valuation on P, then we
say that v is hostile to x iff for every non-empty initial segment P+ with P ⊆ P+

⊆ E (A) with finite difference P+-P and A∩Lp+ 
= ∅, there is a partial valuation
v+ on P+ that extends v, with v+(A∩LP+) = 1 but which is not friendly to x.

Here, we recall, LP+ is the sub-language generated by P+, i.e. the set of all for-
mulae y with E (y) ⊆ P+. Clearly, if in the definition of hostility we take P+ = P,
the only possible choice of v+ is v, so that:

Link: When v on P is hostile to x and A∩Lp 
= ∅, then v(A∩LP ) = 1 and v is not
friendly to x.

We make the following three claims.

Claim 1: The empty partial valuation (on the empty initial segment of E (A)) is
hostile to x.

Claim 2: Any partial valuation on a proper initial segment P of E (A) that is hos-
tile to x may be extended to a partial valuation on the segment P,p where p is
the first elementary letter in E (A)-P, which is also hostile to x.

We verify these claims in a moment. Once we have them, we can proceed as fol-
lows. By induction and the axiom of choice, they clearly imply:

Claim 3: There is a partial valuation v on E (A) such that for every finite initial
segment P of E (A), the restriction vP of v to P is hostile to x.

Now choose such a v. To complete the proof (apart from the pending claims 1 and
2), it suffices to show (4a): v(A) = 1, and (4b): v is not friendly to x.

For 4a: To show v(A) = 1, consider any a ∈ A; we need to show v(a) = 1. Since
a is a individual formula, E (a) ⊆ P for some finite initial segment P of E (A).
By the choice of P, vP (a) is well-defined and vP (a) = v(a). Also, by Claim 3,
vP is hostile to x, so by the Link, vP (A∩LP ) = 1, so since a ∈ A∩LP we have
1 = vP (a) = v(a) as desired.

For 4b: To show that v is not friendly to x, consider any partial valuation w extend-
ing v to E (A,x ); we want to show that w(x ) = 0. Since x is a individual formula, it
has only finitely many elementary letters, i.e. E (x ) is finite. Hence E (x )∩E (A) is
finite. Since A is non-empty, we can choose an a ∈ A such that (E (x )∩E (A))∪E (a)
is finite and non-empty, and moreover (E (x )∩E (A))∪E (a) ⊆ Q for some finite ini-
tial segment Q of E (A) with A∩LQ 
= ∅.
Consider the restriction vQ of v to Q. By Claim 3, vQ is hostile to x, so we know
by the Link that vQ is not friendly to x. Since v extends vQ, it follows that v is
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not friendly to x, as desired.

It remains to verify the pending Claims 1 and 2.

Verification of Claim 1: We need to show that for every finite non-empty initial
segment P ⊆ E (A) with A∩Lp 
= ∅ there is a partial valuation w on P such that
w(A∩LP ) = 1 but w is not friendly to x.

Take any finite non-empty initial segment P ⊆ E (A) with A∩LP 
= ∅. Since P is
finite, the sub-language LP is finite modulo classical equivalence, and thus so is
A∩LP , so A∩LP is classically equivalent to some finite F ⊆ A∩LP . Since A∩LP


= ∅ we may choose F 
= ∅. Since F ⊆ LP we have E (F ) ⊆ P. Since F is a finite
non-empty subset of A, by hypothesis F |
≈ x. Hence there is a partial valuation v
on E (F ) such that v(F ) = 1 but v is not friendly to x.

Choose such a v on E (F ) and put w to be an arbitrary extension of v to P. Since
v(F ) = 1 and A∩LP �� F we have w(A∩LP ) = 1. To complete the verification of
Claim 1, it remains to check that w is not friendly to x. Let w+ be any extension
of w to from P to E (A,x ). Then w+ also extends v to E (A,x ), so since v is not
friendly to x, w+(x ) = 0 as desired.

Verification of Claim 2: Let v be any partial valuation on a proper initial segment
P ⊆ E (A). Let p be the first letter in E (A)-P. Define partial valuations v0, v1 both
on the initial segment P,p of E (A), by extending v with v0(p) = 0 and v1(p) = 1.
It suffices to show that if v is hostile to x, so too is one of v0, v1.

Suppose v is hostile to x. Consider any extension of P,p to a larger initial segment
Q of E (A) but with a finite difference and such that A∩LQ 
= ∅. Then Q is also
an extension of P with still a finite difference. Since v is hostile to x, there is an
extension v+ of v to Q such that v+(A∩LQ) = 1 and v+ is not friendly to x. But
v+ is either an extension of v0 or an extension of v1. So either v0 or v1 is hostile
to x, as desired.

This argument depends on the fact that in classical propositional logic there are
only finitely many non-equivalent formulae in the language generated by any finite
set of elementary letters. The corresponding property fails in classical quantifica-
tional logic. It thus leaves open the question whether compactness holds for logical
friendliness in the first-order context.

1.6. Interpolation

As in the case of compactness, interpolation for friendliness is trivial when for-
mulated in the way customary in classical logic. For suppose A |≈ x. We want to
show that there is a formula b with E (b) ⊆ E (A)∩E (x ) such that both A |≈ b and
b |≈ x. On the one hand, if A is inconsistent, we can put b = ⊥ giving us A � b � x
so A |≈ b |≈ x. On the other hand, if A is consistent then since A |≈ x, x must also
be consistent, so we can put b = �, so that A � b and thus A |≈ b, and also �
= b |≈ x using the consistency of x.
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The following formulation strengthens the property by guaranteeing the contin-
gency of b in suitable circumstances.

Interpolation. Whenever A |≈ x there is a formula b with E (b) ⊆ E (A)∩E (x ) such
that both A |≈ b (indeed A � b) and b |≈ x. Moreover, if A is consistent and there
is a contingent formula y ∈ LA∩Lx with A � y, then b may be chosen contingent.

Proof. Suppose A |≈ x. Since x is a single formula, E (x ) is finite, and thus so
too is E (A)∩E (x ). Hence there is a strongest formula b in LA∩Lx = LE(A)∩E(x)

with A � b. In the limiting case that A is inconsistent, b = ⊥. In another limiting
case, that there is no contingent formula y ∈ LA∩Lx with A � y, then b = �. In
the principal case that neither of these two hold, b will be contingent. The same
argument will be used for all three cases.

By supraclassicality, A |≈ b. It remains to show that b |≈ x. Suppose b |
≈ x ; we de-
rive a contradiction. Since b |
≈ x there is a partial valuation v on E (b) ⊆ E (A)∩E (x )
with v(b) = 1, which is not friendly to x, i.e. such that v+(x ) = 0 for every exten-
sion v+ of v to E (b,x ). Fix such a v.

Write k for the state-description formula in Lb that corresponds to v. Then clearly
v(k) = 1 and also k � ¬x. Put b* = b∧¬k. We complete the proof by showing
that b* is a formula in LA∩Lx with A � b* and b 
� b*, thus contradicting the
construction of b.

For b* ∈ LA∩Lx. This is immediate since both b,¬k ∈ LA∩Lx

For b 
� b*. It suffices to show b 
� ¬k. Since v(b) = 1 we have by its construction
that k � b, so ¬b � ¬k. But since v(k) = 1, k is satisfiable, so b 
� ¬k as desired.

For A � b*. Since A � b it suffices to show A � ¬k. As a preliminary observation,
we show that there is no extension w of v to E (A) with w(A) = 1. For let w be
such an extension. Since by hypothesis A |≈ x, there is an extension w+ of w to
E (A,x ) with w+(x ) = 1. Also w+ is an extension of v to E (A,x ). Now restrict w+

to E (b,x ), which is possible since E (b) ⊆ E (A)∩E (x ) so that E (b,x ) ⊆ E (A,x ),
and call it w+−. Clearly w+−(x ) = 1 and also w+− is still an extension of v, which
has domain E (b). But this contradicts the fact that v is not friendly to x. This
completes the preliminary step of showing that there is no extension w of v to
E (A) with w(A) = 1.

Now let w be any partial valuation on E (A) ⊇ E (b) = E (k) with w(¬k) = 0,
i.e. w(k) = 1. It remains to show that w(A) = 0. Restrict w to E (k) = E (b) =
domain(v), call it w−. Clearly w−(k) = 1. Hence by the construction of k as a
state-description in Lb corresponding to v, w− = v. Thus w is an extension of v to
E (A). So by the preliminary observation, w(A) = 0 and we are done.

1.7. Joint Friendliness

For classical consequence, we have been following the common convention of writ-
ing A � B to mean that A � b for all b ∈ B. For friendliness, it is tempting to write
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A |≈ B analogously. But care is needed, for there is an important distinction that
does not arise in the classical case. We must distinguish between two relationships:

• A |≈∀∀∃ B : for every partial valuation v on E (A) with v(A) = 1 and every
b ∈ B, there is an extension v+ of v to E (A,b) with v+(b) = 1.

• A |≈∀∃∀ B : For every partial valuation v on E (A) with v(A) = 1 there is an
extension v+ of v to E (A,B) with v+(B) = 1, i.e. with v+(b) = 1 for every
b ∈ B.

The former says the same as A |≈ b for all b ∈ B. But the latter says more,
essentially because of the failure of conjunction in the conclusion for friendliness.
For classical consequence, where conjunction in the conclusion is satisfied, no such
distinction arose. When we refer to one or other of these relations (section 2.5),
we will always specify clearly which is intended.

2. From Friendliness to Sympathy

2.1. Definitions

We now consider a normalized version of friendliness that is syntax-independent.
It is well-known that for any finite set A of boolean formulae, there is a unique
least set P of elementary letters such that A is classically equivalent to some set
of formulae in the language generated by P. Although this is usually stated for
finite sets A only, it also holds for infinite ones. More specifically, let A be any set
of formulae:

• Put E !(A) to be the set of all letters p that are essential for A, in the sense
that there are two valuations v,w on L that agree on all letters other than p
but disagree in the value they give to A. Clearly E !(A) ⊆ E (A).

• Put A* to be the set of all formulae x with both A � x and E (x ) ⊆ E !(A).
Clearly E (A*) = E !(A).

Clearly, whenever A �� B then E !(A) = E !(B) and also A* = B*. Moreover, as
we show in the Appendix:

Least letter-set theorem. A �� A*, and for every set A′ of formulae with A �� A′,
E (A*) ⊆ E (A′).

We say that a set A of formulae is sympathetic to x and write A |∼ x, iff A* |≈ x.
This notion can be seen as a normalized version of friendliness, making it syntax-
independent in the left argument.

Unrestricted left classical equivalence for |∼. Whenever A �� B, then A |∼ x iff
B |∼ x.

Verification. Whenever A �� B then as noted A* = B*, so A* |≈ x iff B* |≈ x,
i.e. A |∼ x iff B |∼ x.

From the least letter-set theorem we have immediately the following criterion for
membership in E !(A), which is useful in verifications.
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Criterion for membership in E !(A). Let p be any elementary letter. Then p ∈ E !(A)
iff p ∈ E (B) for every set B of formulae with B �� A.

We also have the following four criteria for sympathy.

Criteria for sympathy. The following are equivalent to A |∼ x : (a) B |≈ x for
every B with A �� B and E (B) = E !(A), (b) A* |≈ x, (c) B |≈ x for some B with
A �� B and E (B) = E !(A), (d) B |≈ x for some B with A �� B.

Verification. A |∼ x is defined as (b), and immediately (a) ⇒ (b) ⇒ (c) ⇒ (d).
So we need only show (d) ⇒ (a). Suppose B |≈ x for some B with A �� B. Let
A �� C and E (C )= E !(A). We need to show C |≈ x. Let v be any partial valuation
on E (C ) with v(C ) = 1. We need to find an extension v+ of v to E (C,x ) with
v+(x ) = 1. Since E (C ) = E !(A) ⊆ E (B) we may fix an arbitrary extension w of v
to E (B). Since C �� A �� B, we have w(B) = 1. Since B |≈ x there is an extension
w+ of w to E (B,x ) with w+(x ) = 1. Then w+ is an extension of v to E (B,x ). Since
E (C ) ⊆ E (B) we also have E (C,x ) ⊆ E (B,x ), so we may restrict w+ to E (C,x ),
call it w+−. Clearly w+− is still an extension of v and also w+−(x ) = w+(x ) = 1,
so we may put v+ = w+− and it has the desired properties.

Corollary: broadening. Whenever A |≈ x then A |∼ x.

Verification. By criterion (d).

Evidently, the inclusion converse to broadening fails. Example: p∧(q∨¬q) |
≈ p∧q
but (p∧(q∨¬q)) |∼ p∧q since (p∧(q∨¬q)) �� p |≈ p∧q.

2.2. Property Failures

All of the property failures that we bulleted for |≈ are also failures for |∼. We can
take the same counterexamples and observe that for each premise a, E !(a) = E (a).

There is an important property that succeeded for |≈ but fails for |∼, namely local
disjunction in the premises. The following example, due to Pavlos Peppas (personal
communication) illustrates this. Put a = p∨r, b1 = p∧q, b2 = ¬q, and x =¬q∨¬r.

Verification of example. Clearly E (b2) ⊆ E (a,b1) and indeed E !(b2) ⊆ E !(a,b1).
Also E (b1) ⊆ E (a,b2) and indeed E !(b1) ⊆ E !(a,b2). Also a,b1 |∼ x since {a,b1}*
�� b1 |≈ x. Also a∧b2 � x so that a∧b2 |≈ x and thus a,b2 |∼ x. But a,(b1∨b2) |
∼ x.
To check the last, note that a∧(b1∨b2) = (p∨r)∧((p∧q)∨¬q) �� p∨(r∧¬q) so
that E !(a,(b1∨b2)) = {p,q,r}. So by criterion (a) for sympathy, it suffices to check
that p∨(r∧¬q) |
≈ ¬q∨¬r. Since every letter on the right already occurs on the
left, it suffices to show p∨(r∧¬q) 
� ¬q∨¬r by the reduction case for friendliness
(section 1.4). But this is clear putting v(p) = v(q) = v(r) = 1.

2.3. Property Successes

Apart from disjunction in the premises (and perhaps compactness - see the fol-
lowing section), all of the other properties that we noted for friendliness also hold
for sympathy. We consider them one by one. Whenever possible, we derive the
property for |∼ from the one for |≈, rather than argue from scratch. Most of the
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verifications are straightforward; only singleton cumulative monotony is rather
tricky, needing some lemmas on least letter sets.

Supraclassicality for |∼. Whenever A � x then A |∼ x.

Verification. Suppose A � x. Then A |≈ x by supraclassicality for |≈, so A |∼ x by
broadening.

Reduction case for |∼. Whenever E (x ) ⊆ E !(A) then A |∼ x iff A � x.

Verification. Right to left is given by supraclassicality. For the converse, suppose
E (x ) ⊆ E !(A). Suppose A |∼ x. By definition, A* |≈ x. By the reduction case for
friendliness we have A* � x. By classical equivalence, A � x.

Characterization of |∼ in terms of consistency. A |∼ x iff every set of formulae in
LE!(A) that is consistent with A, is consistent with x.

Verification. By definition, A |∼ x iff A* |≈ x. Applying the corresponding consis-
tency characterization of |≈ and the fact that A* �� A, the desired equivalence
follows.

Right weakening for |∼. Whenever A |∼ x � y then A |∼ y.

Verification. Immediate from the definition of |∼ and right weakening for |≈.

This implies right classical equivalence for sympathy: whenever x �� y then A |∼ x
iff A |∼ y. The relation |∼ is thus thoroughly syntax independent.

Local left strengthening for |∼. Suppose E !(B) ⊆ E !(A). If B � A |∼ x then B |∼ x.

Verification. Immediate from the corresponding property of |≈, the definition of
|∼, and the fact that A* �� A.

Local monotony for |∼. Suppose E !(B) ⊆ E !(A). If A |∼ x and A ⊆ B then B |∼ x.

Verification. If A ⊆ B then B � A.

Interpolation for |∼. Whenever A |∼ x there is a formula b with E (b) ⊆ E !(A)∩E (x )
such that both A |∼ b (indeed A � b) and b |∼ x. Moreover, if A is consistent and
there is a contingent formula y ∈ LA∩Lx with A � y, then b may be chosen con-
tingent.

Verification. Suppose A |∼ x. By definition, A* |≈ x. By interpolation for |≈ there
is a formula b with E (b) ⊆ E (A*)∩E (x ) = E !(A)∩E (x ) such that both A* � b
and b |≈ x. Also by interpolation for |≈, if A is consistent and there is a contingent
formula y ∈ LA∩Lx with A � y, then b may be taken as contingent. Since A* �� A
we have A � b and so by supraclassicality A |∼ b. Since b |≈ x broadening gives
us b |∼ x, and we are done.
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2.4. Singleton Cumulative Monotony

We have postponed consideration of singleton cumulative transitivity because its
proof requires two lemmas about least letter-sets.

Lemma. E !(A,B) ⊆ E !(A)∪E !(B) ⊆ E !(A)∪E (B).

Verification. The right inclusion is immediate from E !(B) ⊆ E (B). For the left
inclusion, suppose p ∈ E !(A,B). Then there are partial valuations v0,v1 on E (A,B)
that agree on all letters in this domain other than p, with v0(A,B) = 0 and
v1(A,B) = 1. Since v0(A,B) = 0, either v0(A) = 0 or v0(B) = 0.

Suppose the former; the argument for the latter is similar. Restrict v0, v1 to E (A),
call them v−0 , v−1 . Then v−0 (A) = 0 whilst v−1 (A) = 1, but v−0 , v−1 agree on all
letters in their common domain other than p. Hence p ∈ E !(A) ⊆ E !(A)∪E !(B)
as desired.

Lemma. If A |≈ x then E !(A) ⊆ E !(A,x ). More generally: If A |≈∀∃∀ B then
E !(A) ⊆ E !(A,B).

Verification. Suppose A |≈∀∃∀ B (defined in section 1.7) and p ∈ E !(A). From the
latter, there are partial valuations v0,v1 on E (A) that agree on all letters in this
domain other than p, with v0(A) = 0 and v1(A) = 1. Since A |≈∀∃∀ B, v1 can be
extended to a valuation v+

1 on E (A,B) with v+
1 (B) = 1, so v+

1 (A,B) = 1. Now
extend v0 to E (A,B) by putting v+

0 (q) = v+
1 (q) for every letter q ∈ E (A,B)/E (A).

Then clearly v+
0 , v+

1 agree on all letters in their common domain except p, and
disgree on A,B since v+

1 (A,B) = 1 while v+
0 (A,B) = 0 since v0(A) = 0. Hence

p ∈ E !(A,B) as desired.

Singleton cumulative transitivity for |∼. Whenever A |∼ x and A∪{x} |∼ y then
A |∼ y.

Proof. Suppose A |∼ x and A,x |∼ y. From the hypotheses we have A* |≈ x and
(A,x )* |∼ y. We need to show A* |≈ y.

Let v be any partial valuation on E (A*) = E !(A) with v(A*) = 1. We need to
find an extension w of v to E !(A)∪E (y) with w(y) = 1.

Since A* |≈ x and v(A*) = 1, v can be extended to a v+ on E (A*,x ) = E !(A)∪E (x )
with v+(x ) = 1. By the first lemma, we may restrict v+ to the subset E !(A,x ) of its
domain, call it v+−. By the second lemma, since A* |≈ x we have E (A*) = E !(A) ⊆
E !(A,x ), so v+− is an extension of v. Also, v+−((A,x )*) = v+((A,x )*) = v+(A*,x ).
Also v+(A*) = v(A*) = 1 and v+(x ) = 1. Putting this together, v+(A*,x ) = 1 so
v+−((A,x )*) = 1.

Hence, since (A,x )* |∼ y, v+− may be extended from E !(A,x ) to a valuation v+−+

on E !(A,x )∪E (y) with v+−+(y) = 1. Since v+− is an extension of v it follows
that v+−+ is also an extension of v. Finally, restrict v+−+ to E !(A)∪E (y), which
by the second lemma again is a subset of E !(A,x )∪E (y); call it v+−+−. This is
still an extension of v, defined on E !(A), and also v+−+−(y) is well-defined with
v+−+−(y) = v+−+(y) = 1. Put w = v+−+− and the proof is complete.
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2.5. Compactness

As in the case of friendliness, the relation of sympathy is trivially compact if
the empty set is allowed to serve as a finite subset. Formulated to require non-
emptiness, its status remains open. If one tries to obtain it as an immediate corol-
lary of compactness for |≈, the sticking point in the argument is that A* need not
be a subset of A.

3. Open Questions

3.1. Specific Problems

• Can compactness for friendliness be given a constructive proof?
• Does compactness hold for sympathy?
• Can we prove a representation theorem for friendliness, or for sympathy?
• Which properties of friendliness and sympathy carry over to their natural

first-order counterparts?

3.2. Open-Ended Questions

• How much of the theory can be generalized to cover arbitrary consequence
relations defined by the preservation of truth in models of some kind?

• Can we characterize friendliness or sympathy using appropriate three-valued
possible worlds structures, with a relation between possible worlds represent-
ing the extension of one partial valuation by another?

• Are there any interesting connections between the theory developed here and
possible-worlds semantics for intuitionistic logic?

• Can we internalize the friendliness or sympathy relation as a conditional
connective of the object language?

• Are there any interesting applications of the concepts of friendliness or sym-
pathy to other areas?

Appendix

As remarked in the text, proofs of the least letter-set theorem usually cover only
the finite case. We prove it for the general case, where both the language and the
set A of formulae may be infinite.

Least letter-set theorem. A �� A*, and for every set A′ of formulae with A �� A′,
E (A*) ⊆ E (A′).

We recall the definitions:

• E !(A) is the set of all letters p that are essential for A, in the sense that
there are two valuations v,w on L that agree on all letters other than p but
disagree in the value they give to A. Clearly E !(A) ⊆ E (A), and whenever
A �� B then E !(A) = E !(B).
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• A* is the set of all formulae x with both A � x and E (x ) ⊆ E !(A). Clearly
E (A*) = E !(A). Clearly, whenever A �� B then A* = B*.

Proof. We need to show (1) E !(A) ⊆ E (A′) for every A′ with A �� A′, and (2)
A �� A*.

For (1): Suppose A �� A′, p ∈ E !(A), but p /∈ E (A′); we obtain a contradiction.
The table illustrates the argument that follows.

v(A) 
= w(A)
= =

v(A′) = w(A′)

Since p ∈ E !(A) there are valuations v,w on L with v(q) = w(q) for all
letters q with q 
= p, but v(A) 
= w(A) (top row). Since p /∈ E (A′) this implies
v(A′) = w(A′) (bottom row). But since A �� A′ we have both v(A) = v(A′) and
w(A) = w(A′) (side columns), giving a contradiction.

Before proving (2) we establish a lemma.

Lemma. Let v,w be any two valuations on L that agree on E !(A). Then v(A) = 1
iff w(A) = 1.

Verification of Lemma. First we use induction to show that the Lemma holds
whenever v,w disagree on only finitely many letters. Then we use this to show
that it holds when they disagree on infinitely many letters.

For the basis of the induction put n = 0, i.e. suppose that v,w disagree on no let-
ters. Then v = w and we are done. For the induction step, suppose that the lemma
holds whenever two valuations disagree on just n letters. Suppose v,w disagree on
just n+1 letters p1, . . . , pn, pn+1. Let w ′ be a valuation that is just like w except
that w ′(pn+1) = v(pn+1). Then w ′ disagrees with v on just n letters, and so by
the induction hypothesis v(A) = 1 iff w ′(A) = 1. But also w ′ disagrees with w on
just the one letter pn+1. Since v,w agree on E (A*) = E !(A) while disagreeing on
pn+1 we know that pn+1 /∈ E !(A), i.e. pn+1 is not essential for A. Hence since w,w ′

agree on every letter other than pn+1 we have by the definition of essential letters
that w(A) = 1 iff w ′(A) = 1. Putting these together, v(A) = 1 iff w(A) = 1 as
desired. This completes the induction.

Now suppose that v,w are any two valuations on L that agree on E !(A) but differ
on infinitely many letters. We want to show that v(A) = 1 iff w(A) = 1. Suppose
otherwise; we obtain a contradiction. Then either v(A) = 1 while w(A) = 0, or
w(A) = 1 while v(A) = 0. Consider the former; the latter case is similar.

Since w(A) = 0, we have w(a) = 0 for some a ∈ A. Let v ′ be the valuation like
v except for the letters in a, where it is like w. Then v ′ disagrees with v on just
finitely many letters. Moreover, none of those letters are in E !(A). For suppose
v ′(p) 
= v(p). Then the letter p occurs in a, so v ′(p) = w(p) so w(p) 
= v(p) and
thus p /∈ E !(A) by the supposition that v,w agree on E !(A). Hence the finite part
of the Lemma gives us v(A) = 1 iff v ′(A) = 1. By supposition, v(A) = 1 so we have
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v ′(A) = 1. Since a ∈ A this gives v ′(a) = 1. But w(a) = 0 and by the construction
of v ′ we have v ′(a) = w(a). Hence v ′(a) = 0 giving us the desired contradiction.
This completes the proof of the Lemma.

For (2): By construction, we have A � A*. Suppose A* 
� A; we derive a contra-
diction. Since A* 
� A there is a valuation v with v(A*) = 1 and v(A) = 0, i.e.
v(a) = 0 for some a ∈ A. Let S be the set of all literals ±q with q ∈ E (A*) such
that v(±q) = 1. Then clearly S � A*. We break the argument into two cases,
deriving a contradiction in each.

Case 1. Suppose S is inconsistent with A. Then by classical compactness, some
finite subset Sf ⊆ S is inconsistent with A. Hence A � ¬∧Sf . Since all letters
in ¬∧Sf are in E (A*) it follows that ¬∧Sf ∈ A*, so since v(A*) = 1 we have
v(¬∧Sf ) = 1. But by the construction of S we also have v(∧Sf ) = 1, giving us
the desired contradiction.

Case 2. Suppose S is consistent with A. Then there is a valuation w with w(S ) =
w(A) = 1. Since w(S ) = 1 it follows that w agrees with v on all letters in E (A*).
So the Lemma tells us that v(A) = 1 iff w(A) = 1. So since w(A) = 1 we have
v(A) = 1. Since a ∈ A, this gives v(a) = 1, contradicting v(a) = 0 and completing
the entire proof.
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1. Introduction

Our topic is the idea that deductive strength varies inversely with discriminatory
strength: the more a logic proves, the fewer distinctions (or discriminations) it
registers. This is a thought often voiced, either in general terms, or with reference
to a specific case. Here, for example, is what David Nelson had to say about the
relationship between classical and intuitionistic logic:

As we have suggested earlier, an argument favouring intuitionistic logic
over the classical is the fact that the intuitionistic logic allows the clas-
sical distinctions in meaning and further ones besides. Classical logic
is open to possible objection in that it identifies certain constructively
distinct entities. Since we are speaking here of formal systems, we are
interested in the general question of finding when one formal system
allows distinctions among concepts which are not possible in another.
([27], p. 215.)
In a similar vein, Anderson and Belnap [1] write as follows when comparing

the implicational fragments T→, E→, and R→ (cited here in order of increasing
deductive strength) of their logics of ticket entailment, entailment, and relevant
implication; the initially mentioned “two systems” are the first and third just
listed:

These two systems, both intensional, exhibit two quite different ways
of demolishing the theory of necessity enshrined in E→: R→ by making
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stronger assumptions about identity or intersubstitutability (and hence
having fewer propositional entities), and T→ by making weaker assump-
tions (and hence having more distinct propositional entities). Modal
systems, generally being weaker than their cousins, tend to make more
distinctions; in E→ we can distinguish A from �A, since, though the
latter entails the former, the converse is neither true nor provable. As
we saw in §5, adding A → �A → A → A, i.e., A → �A, to E→ ruins
this distinction and produces R→: a stronger assumption produces fewer
propositional entities. ([1], p. 47.)1

Sometimes the additional distinctions made available by passage to a weaker
logic are thought of as making for an embarras de richesses when that logic is
applied as the logic of a particular (typically, mathematical) theory. Troelstra and
van Dalen [37] devotes a Section (3.7 of Chapter 1, entitled “Splitting of Notions”)
to replying to this objection – as it arises specifically in the passage from classi-
cal to intuitionistic logic – mainly by suggesting that in fact far fewer than the
in-principle available distinct versions of what would in the classical case be al-
ternative equivalent definitions of the same notion are of practical significance. In
what follows we shall be concerned neither to sing the praises nor to lament the
consequences of weakening a logic and thereby increasing the number of distinc-
tions that have to be made as a result, contenting ourselves with an examination
of the question of what background assumptions need to be in place in the general
case for this “thereby” to be justified. We shall be concerned to see what these
assumptions are, as well as to illustrate how, in cases in which they do not hold, a
weaker logic may yet fail to support a greater number of distinctions. (See the dis-
cussion following Proposition 2.5 in this regard.) Alternatively put, strengthening
a logic deductively need not, in such cases, result in collapsing any distinctions. We
also consider the possibility, conversely, that an decrease (or increase) in discrim-
inatory power need not signal a corresponding increase (or decrease, respectively)
in deductive strength. While the particular distinctions that arise, to return to
the previous example, in intuitionistic as opposed to classical mathematics – non-
empty vs. inhabited, apartness vs. inequality (non-identity), etc. – might call for
a logical discussion at the level of predicate logic, the general issue about discrim-
inatory and deductive strength varying inversely can be illustrated without going
beyond purely propositional logic. In the interest of simplicity, then, our general
discussion as well our illustrations are drawn from amongst propositional logics.
The discussion presents a few elementary observations and examples, which might
provide a stimulus for a general and systematic study of the topic, without itself
pretending to constitute such a study.

1The passage continues with: “And of course further strengthening in the direction of the two-
valued calculus produces a system which cannot tell the difference between Bizet’s being French
and Verdi’s being Italian”, rather lowering the tone since no formalization of “Bizet is French”
and “Verdi is Italian” would render these two logically equivalent by the lights of classical logic.
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Although we shall find the dictum that deductive and discriminatory strength
vary inversely is not universally correct, it does hold up over a wide range of logics,
so it is interesting to see the opposite presumption expressed in print. This is what
we find in J. R. Lucas’ discussion of a past-tense version of A. N. Prior’s argument
for the logical possibility of time without change (a version of which, purged of
errors in an earlier formulation, appears in Prior [30]). Lucas [23], p.10, writes:
“Even within the austere framework of Lemmon’s minimal tense logic Kt, we can
distinguish between a dawn of creation in which the stars started in their courses
the moment time began and a more leisurely inauguration in which they spent part
of the morning doing nothing in unison”. That is—presumably—we can distinguish
the hypothesis that time had a beginning from the hypothesis that change had a
beginning. Although what Lucas says may not seem especially clearly to amount
to this, the present objection is different. It is to the confusion underlying any
claim of the form “Even within the austere framework of Lemmon’s minimal tense
logic Kt, we can distinguish between X and Y .” The weaker the logic, the more
distinctions it allows, according to the by-and-large correct dictum enunciated
above: so there is no “even” about it.2

We close this introduction with remarks on three related issues we shall not
be further attending to. The first concerns the general theme of discrimination in
logic, one aspect of which is the issue of more and less discriminating accounts
of what a logic is. In Section 2 and 3, for example, we shall be concerned with
logics as sets of formulas and logics as consequence relations.3 It is well known
that many distinct consequence relations on a given language induce (by taking
the consequences of the empty set) the same logic-as-set-of-formulas,4 and in this
sense we may say that the ‘consequence relations’ account of what a logic is counts
as more discriminating than the set-of-formulas account. Similarly, the use of gen-
eralized consequence relations in the style of Scott [32] (or more generally – see
the preceding footnote – logics as sets of multiple-succedent sequents) is more dis-
criminating still.5 Another dimension of variation consists in how much attention
is paid to rules: taking, for example, single-succedent sequents, we could say that
two proof systems which render provable the same set of such sequents count as

2Setting aside the issue specifically about distinctions supported, teaching experience attests to
the difficulty that students have with talk of one logic’s being stronger than another, invariably
intended by logicians, when no further qualification is added, to mean deductively stronger, but
often suggesting the reverse to students, the stronger logic being taken to be the one making the
more stringent demands in respect of what is provable. (Many examples of the customary usage
alluded to here may be found in Mortensen and Burgess [26] and authors there quoted. The issue
under discussion is whether for this or that purpose a stronger logic is better or worse than a
weaker logic.)
3The latter could themselves be viewed as a special case of ‘logics as sets of (single-succedent)
sequents’ – see the discussion after Proposition 3.2 below.
4In the terminology of Section 3 below, these are consequence relations which, though distinct,
‘0-agree’.
5See Gabbay [11], Theorem 13 on p.8, Theorem 4 on p.28, for example.
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two systematizations of the same logic, or we could be more demanding and re-
quire for this that not only the same sequents should be provable but the same
sequent-to-sequent rules should be derivable (= primitive or derived). Interesting
as these issues are in their own right, they are not what we are talking about here.
The discriminations we are concerned with are those made by a logic – however
conceived – between formulas, not discriminations in respect of the individuation
of logics themselves. This allows us derivatively to speak, for instance, of one logic
making a finer discrimination between connectives than another, in the sense in
which substructural logics support a distinction between, e.g., multiplicative and
additive conjunction, which is collapsed in classical or intuitionistic logic – because
this amounts to saying that the former logics discriminate, and the latter do not,
between the formulas formed from two distinct propositional variables by com-
pounding them on the one hand with the one connective and on the other with
the other. (See pp. 15–17 of Paoli [28] for some discussion of the “suppression of
distinctions” objection to the structural rules.)

Secondly, we are not directly concerned with semantically based measures of
relative expressive power, such as closeness to functional completeness in logics
determined by reducts of some single matrix, or the ability to distinguish between
more frames (validating the logic) amongst normal modal logics interpreted by the
Kripke semantics. ([14] gives one example of this kind of enterprise; note the title.)
This is not to say that there are no connections between such issues and the more
straightforwardly syntactical matter of discriminatory strength as understood here:
just that we are not addressing any such connections here. Note that an ‘inverse
proportionality’ between deductive strength and some such measures of expressive
power is often remarked on – for example in Tennant [36] à propos of expressive
power as the power to discriminate between non-isomorphic structures. There is
also the matter of discrimination between elements within an individual structure,
stylishly explored in Quine [31]. An algebraic incarnation of the latter theme arises
with the (ternary) discriminator function t satisfying for arbitrary elements a, b, c:
t(a, b, c) = c if a = b, and t(a, b, c) = a otherwise. Discriminator varieties – varieties
generated by a class of algebras in which this function is a (fixed) term function
– have turned out to have striking applications outside the realm of universal
algebra: Burris ([6], esp. Section 5) shows how to ‘reduce’, in one reasonable sense
of that word, an arbitrary first-order theory to an equational theory, in the context
of such varieties.6 No doubt there are further things that could go under the
name of discriminatory strength from the point of view of interpretations of formal
languages (and thus outside our present purview) but that should suffice by way
of example.

Finally, a remark is in order on the measure of deductive strength we are em-
ploying, according to which one logic, S1, is at least as strong as another, S0, (resp.,
strictly stronger than S0) when S0 ⊆ S1 (resp., S0 � S1). Those formulations are
suited to the logics-as-sets-of-formulas of the following section, while for Section

6See Bignall and Spinks [3] for some further developments and references.
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3 the corresponding inclusions are between consequence relations. Though in the
main cases we consider below the language does not change, the definition does
not rule out the possibility that the language of S0 should be properly included in
that of S1, in which case the issue of relative deductive strength becomes clouded
by the possibility of a translation from the larger language to the smaller which
allows for a faithful embedding of S1 into S0. Thus �Lukasiewicz [24] argued that
intuitionistic propositional logic should be regarded as a extension rather than—
as is customarily maintained—a sublogic of classical propositional logic, because
if the connectives of classical logic were taken as defined in terms of conjunction
and negation, the similarly notated but now to be distinguished connectives of
intuitionistic logic could be regarded as new non-classical primitives (somewhat
in the style of modal logic). This alternative point of view was available because
of Gödel’s observation that the conjunction–negation fragments of classical and
intuitionistic logic coincided, which is of course so on the ‘set-of-formulas’ concep-
tion of logics (favoured by �Lukasiewicz), though not on the ‘consequence relation’
conception; however, other examples can be given of apparent reversals in compar-
ative deductive strength attendant upon judicious definitional manoeuvres which
do work equally well at the level of consequence relations. One such example is
given a particularly crisp presentation in Béziau [2], where the puzzling nature of
the general phenomenon is also emphasized. (Further discussion of the phenom-
enon, as well as of Béziau’s specific example, appears in [18].) Here we simply
set such matters to one side, taking relative deductive strength as given quite
literal-mindedly by set-theoretic inclusion – no “re-notation” permitted.

2. Discrimination In Logics as Sets of Formulas

The idea that the stronger the logic (deductively), the more distinctions it col-
lapses, voiced by the authors quoted in the preceding section, is conveniently for-
mulated in general terms with the aid of the notion of synonymy in the sense of
Smiley [34].7 As also mentioned in that section, we confine ourselves to two (from
amongst many possible) conceptions as to what constitutes a logic: the conception
of logics as (certain) sets of formulas of a formal language, and the somewhat richer
conception of logics as consequence relations on such a language. Working with
the former conception, we say that formulas A and B are synonymous according
to (or “in”) a logic S (considered as a set of formulas from some language to which
A and B belong) when for any formula C(A) in which A occurs zero or more times
as a subformula, and any formula C(B) resulting from replacing zero or more such
occurrences by B, we have C(A) ∈ S if and only if C(B) ∈ S. (We can regard
the ‘context’ C(·) as a formula C(q) in which amongst others there occurs the
propositional variable q, with C(A), C(B) the results of uniformly substituting A,

7In fact Smiley writes “synonymity”, as do the authors of [10], explaining at p.34 there the
relation of this concept to the main concepts of abstract algebraic logic in the tradition alluded
to in note 9 below.
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B, respectively, for that variable.8 Compare the notation with ∆ below, in which
the exhibited variables are the only ones allowed to occur.) In some formulations
to follow, we render “C(A) ∈ S” in words by saying that C(A) is provable in – or
is a theorem of – the logic S. (Though we are confining ourselves to sentential logic
for illustrative purposes here, a similar notion of synonymy could be given in an
obvious way for expressions of arbitrary syntactic categories.) If we are thinking,
as on the second conception of logic mentioned above, of a logic as a consequence
relation, �, then we say that A and B are synonymous according to � when, with
the C(·) notation understood as above, C1(A), . . . , Cn(A) � Cn+1(A) if and only
if C1(B), . . . , Cn(B) � Cn+1(B). Of course, as remarked in Section 1, many still
richer conceptions of what should constitute a logic are possible, but our pur-
poses will be served by considering only these two. In the present section, we stick
with the first ‘logics as sets of formulas’ conception. In such a setting, the general
idea that increasing deductive strength goes with reducing discriminatory power
is embodied in (1) below, in which we denote, for logics S0 and S1, for simplicity
presumed to have the same language, the relation of synonymy according to Si by
≡i (to avoid a proliferation of subscripts).

S0 ⊆ S1 if and only if ≡0 ⊆≡1 (1)

Since the original idea is that increasing discriminatory power goes with de-
creasing logical strength, a formulation in terms of strictly increasing and decreas-
ing discrimination and strength, respectively, may be found attractive:

S0 � S1 if and only if ≡0 �≡1 (2)

It is the “only if” direction of (2) that most directly encapsulates the dictum that
the weaker a logic is deductively, the more discriminating it is amongst formulas,
since it says that whenever one logic, here S0, is strictly weaker (deductively) than
another, S1, then the former logic collapses strictly fewer distinctions between pairs
of formulas than the latter, thus making finer discriminations between formulas.
Arguably, in adding the converse, the biconditional formulation of (2) captures the
idea that deductive and discriminatory strength vary inversely. (2) is a consequence
of (1), but we shall concentrate on (1) itself, considering separately the possibility
of counterexamples to its “if” and “only if” directions, and begin with some simple
conditions which suffice to rule out such counterexamples. We follow a similar
pattern in Section 3, except that there we take logics to be consequence relations
rather than collections of formulas. In either case, we take the languages concerned
to be based on a countable supply of propositional variables (sentence letters)
amongst which are p, q, and r, with formulas generated from these by application
of sentence connectives in the usual way. To avoid complications, when two logics
are considered in the same breath (as with the S0, S1 of (1) and (2) above) we
assume for the most part that they are logics in the same language.

8The substitution of B for A, or better, replacement of A by B in the transition from C(A) to
C(B) is of course not itself required to be uniform.
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Let ∆ be a set of formulas in which the only propositional variables to appear
are p and q, to emphasize which we write ∆ as ∆(p, q), with ∆(A, B) as the result
of substituting the formula A for every occurrence of p and B for every occurrence
of q in the formulas in ∆(p, q). Adapting a usage of T. Prucnal and A. Wroński
(see Czelakowski [8], [9]), we call logic S (in the set-of-formulas sense) equivalential
if there is a set ∆(p, q) of formulas in the language of S with the property that A
and B are synonymous according to S if and only if ∆(A, B) ⊆ S. (Cf. also Porte
[29], where the terminology of formula-definable congruences is used instead.)9

The simplest example of such a ∆(p, q) would be {p ↔ q}, which shows, amongst
many others, classical logic to be equivalential. In a purely implicational logic,
such as BCI logic, which comprises all the consequences under the rule Modus
Ponens of instances of the three schemas B , C , and I below, we obtain a similar
effect by taking ∆(p, q) to be {p → q, q → p}.
B (B → C) → ((A → B) → (A → C))
C (A → (B → C)) → (B → (A → C))
I A → A

We shall return to this logic and some of its close relatives below. (These logics
were intensively investigated by C. A. Meredith, to whom the combinator-derived
labelling – “BCI ” etc. – is also due. Discussion and extensive bibliographical
references may be found in Hindley [12].) For the moment, we need to consider the
following variation on this theme. Call logics, S0 and S1, presumed for simplicity to
be in the same language, similarly equivalential if there is a set ∆(p, q) of formulas
of that language with, for i = 0, 1, A and B are synonymous according to Si if and
only if ∆(A, B) ⊆ Si. Thus S0 and S1 are not just equivalential in that there is
some set of formulas licensing the interreplaceability of arbitrary formulas A and
B – i.e. the provability of appropriate substitution instances of which is necessary
and sufficient for the synonymy of A and B, but it must be the same set for
both logics. This relationship between S0 and S1 provides a simple and obvious
sufficient condition for the “only if” direction of (1) above:

9In the original usage, it is logics as consequence relations rather than as sets of formulas, that are
said to be equivalential. That usage has considerable currency in the literature on contemporary
‘abstract algebraic logic’ – [4], [8], [10], q.v. for the definition of “equivalential” as applied to
consequence relations (or ‘deductive systems’ as this literature would have it). We have chosen to
write “∆” here to echo the choice made in Blok and Pigozzi [4]—but without their infix notation—
for what they call a set of ‘equivalence formulas’ (though arguably ‘congruence formulas’ would
be a more appropriate description). Though we make little direct contact with this tradition,
there are some connections, especially as suggested in the following remark from Font et al. [10],
p. 24: “One of the reasons why classical logic has its distinctive algebraic character lies precisely
in the fact that logical equivalence and logical truth are reciprocally definable.” (Cf. the proof
of Proposition 2.3 below.) The remark just quoted could convey the misleading impression that
the relation of logical equivalence—or more to the point, synonymy—associated with classical
propositional logic is not thus associated with any other logic. If we take S as the set of classical
tautologies in the language with, say, negation and implication as primitive connectives and S′
as the set of formulas in this same language whose negations like in S, then S-synonymy and
S′-synonymy coincide, even though S �= S′.
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Proposition 2.1. For any similarly equivalential logics S0 and S1, S0 ⊆ S1 implies
≡0 ⊆≡1.

Proof. Suppose S0 and S1 are similarly equivalential, with replacement-licensing
formulas ∆(p, q), that S0 ⊆ S1, and that A ≡0 B. Since A ≡0 B, we have
∆(A, B) ⊆ S0, so since S0 ⊆ S1, ∆(A, B) ⊆ S1, and thus, finally A ≡1 B. �

Remark 2.2. As this proof shows, the requirement of being similarly equivalential
is stronger than is actually called for (and was employed for the sake of a succinct
formulation). If we let ∆i be the set of replacement-licensing formulas for Si (i =
1, 2), then all that is that ∆1 ⊆ ∆0 – and not also the converse inclusion.

For the other direction of (1), we are also able to find a fairly simple sufficient
condition, frequently satisfied in practice. Again some terminology is needed for
its formulation. A logic S is monothetic if all its theorems are synonymous, i.e,
if for all A, B ∈ S, we have A ≡S B. (The terminology is motivated by the
consideration that for such logics there is, to within synonymy, only one theorem
or ‘thesis’.) Note that if the language of S has a binary connective → for which
{p → q, q → p} licenses replacements, and S is closed under Modus Ponens for
this connective, then as long as every instance of the schema K is provable:

K A → (B → A),

S is monothetic. This applies to all the intermediate logics, intuitionistic and classi-
cal logic included, as well as to BCK logic, a pure implicational logic axiomatized
as BCI logic was above, except putting K in place of I (all instances of which
are now derivable). BCI logic itself, as well as BCIW logic, for which we add
the contraction schema

W (A → (A → B)) → (A → B)

are well known non-monothetic logics. (These last two are the implicational frag-
ments, respectively, of Girard’s linear logic and of the the relevant logic R, accord-
ing to neither of which are the provable formulas p → p and q → q synonymous.
See the discussion following Proposition 2.5 below.)

Proposition 2.3. Let S0 and S1 be monothetic logics with S0 ∩ S1 �= ∅. Then
≡0 ⊆≡1 implies S0 ⊆ S1.

Proof. Assuming S0 and S1 as described, choose B ∈ S0∩S1. Suppose that ≡0⊆≡1

and that A ∈ S0, with a view to showing that A ∈ S1. Since A ∈ S0 and S0 is
monothetic, A ≡0 B, and so A ≡1 B. Since S1 is also monothetic and B ∈ S1,
A ∈ S1. �

We turn to the negative business for this section, with a counterexample –
or family of counterexamples – to the “if” direction of (1) above. To describe the
examples, we need to mention another schema, all instances of which are provable
in BCI logic:

B ′ (A → B) → ((B → C) → (A → C)).
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As with the other Meredith-style labelling, BB ′I logic comprises the Modus Po-
nens consequences of all instances of the schemata named in the label. We use this
convention without further comment for other cases as they arise, and further,
write such things as “BB ′I ⊆ BCI ” to abbreviate the claim – just made – that
BB ′I logic is a sublogic of BCI logic. For a proof of the following, see Theo-
rem 5.1 in Martin and Meyer [25], as well as the discussion in their introductory
section:

Lemma 2.4. (E. Martin) If for formulas A, B, we have A → B and B → A both
provable in BB ′I logic then A is the same formula as B.

Proposition 2.5. Let S be any logic with I ⊆ S ⊆ BB ′I . Then the relation ≡S is
the relation of identity between formulas.

Proof. Since ≡S is reflexive for any S, we have only to show that for S between I
and BB ′I , if A ≡S B then A = B. Since A → A ∈ S for any S ⊇ I , if A ≡S B
then A → B ∈ S and B → A ∈ S. But we are also supposing that S ⊆ BB ′I , so
each of A → B and B → A is also BB ′I -provable, implying by Lemma 2.4 that
A = B. �

As a corollary to Proposition 2.5, then, we have that all logics between I and
BB ′I have the same synonymy relation, giving rise to a range of counterexamples
to the “if” half of (1):

Example. (A range of examples, really.) If we take S0 as BB ′I logic and S1 as
any one of I , BI , B ′I , we have ≡0 ⊆≡1 while S0 �⊆ S1. (Alternatively, we can
see these as counterexamples to the “only if” half of (2).)

Proposition 2.3 gave sufficient conditions which together ruled out this situa-
tion, namely (i) that each of S0 and S1 was monothetic, and (ii) that S0∩S1 �= ∅.
Clearly in the present instance condition (ii) is satisfied – indeed for the cases just
listed, we have S1 ⊆ S0 – so it is condition (i) that fails. Like BCI logic, all of the
logics here fail to be monothetic. (We can see that for all these logics, BCI in-
cluded, p → p and q → q are both provable though the result of replacing the first
occurrence of the former by the latter in the equally provable (p → p) → (p → p)
is unprovable – an oft-made observation with many interesting repercussions not
germane to the present study.10) The example of S and S′ at the end of note 9
also gave a counterexample to the “if” direction of (1), taking these as S0 and
S1 respectively, or indeed vice versa. In this case, condition (i), the monotheticity
condition, is satisfied and it is condition (ii) that fails: S and S′ are disjoint.

Can we with equal ease illustrate how a failure of the sufficient condition
in Proposition 2.1 can give rise to a counterexample to the “only if” half of (1)?
The simplest cases in which strengthening a logic results in a loss of synonymies
arise with a change of language, and so are not directly pertinent to the present
enterprise since we have agreed to concentrate on comparisons amongst logics in

10Cf. Kabziński [21] and Section 4 of Humberstone [20].
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the same language. For example, if we take the smallest modal logic,11 or any
of various non-normal modal logics such as Lemmon’s S0.5, we have a proper
extension of non-modal classical propositional logic in which classically equivalent
formulas, synonymous in that logic, are no longer synonymous – indeed in which, as
for the logics treated in Proposition 2.5, no two distinct formulas are synonymous.
(See Porte [29].) Another well-known example is that of intuitionistic logic with
‘strong negation’, which we shall consider at the end of Section 3. Abiding by by
our ‘same language’ restriction on S0 and S1, one simple, if artificial, type of case
arises as follows.

Example. Take again the language of (non-modal) classical propositional logic and
S0 as the empty set (certainly a subset of the set of formulas of this language, and
answering to the most commonly proposed additional conditions on logics as sets
of formulas – such as closure under Uniform Substitution12), with S1 as classical
logic. Although S0 ⊆ S1 we do not have ≡0 ⊆≡1, because every pair of formulas
stand in the former relation while only formulas which are classically equivalent
stand in the latter.

The above example is not very appealing because the empty set may not
be regarded as a logic on the ‘set of formulas’ conception of logics (which does
not say that any old set of formulas constitutes a logic), or is perhaps regarded
only as an extreme and degenerate case of a logic. If one is interested in some
‘atheorematic’ logic such as the classical logic of conjunction and disjunction, one
would normally pass to something like the consequence relation conception, noting
that the set of pairs 〈Γ, A〉 standing in this relation is far from empty, even though
the set of such pairs for which Γ is empty is itself empty.13 Let us accordingly give
a counterexample to the “only if” half of (1) not requiring ∅ to be acknowledged
as a logic.

Example. Let the language have two connectives → and �, say, of arities 2 and 1
respectively, and let S0 consist all formulas of the form �A, and S1 of all all such
formulas together with all formulas of the form A → A. Then for any formulas A
and B, �A ≡0 �B, though this is not so in the case of ≡1; for example �p is not
synonymous with �q in S1, because �p → �p ∈ S1 while �p → �q �∈ S1.

11We understand a modal logic here to be a set of formulas in the language of classical proposi-
tional logic with some functionally complete set of boolean primitives and one additional 1-ary
connective �, containing all classical tautologies and closed under Modus Ponens and Uniform
Substitution.
12All logics-as-sets-of-formulas we consider satisfy this condition, with the corresponding condi-
tion also satisfied for all logics-as-consequence relations in the following section.
13This is what we mean by an atheorematic consequence relation. Such consequence relations
are called ‘purely inferential’ in Wójcicki [39] – except that Wójcicki tends to prefer formulations
in terms of consequence operations rather than consequence relations.
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3. Discrimination in Logics as Consequence Relations

We defined synonymy according to a consequence relation in Section 2, before
putting this notion to one side in order to compare discriminatory and deductive
strength in the simpler setting of logics as sets of formulas. We to take it up
again here, to which end the following notation will convenient. For a consequence
relation � (�i) we denote by ≡� (≡�i

, or for short ≡i) the relation of synonymy
according to � (�i), and write A �� B to mean “A � B and B � A” (A ��i B
to mean “A �i B and B �i A”). As in Segerberg [33], we call a consequence
relation � congruential when for all formulas A, B (in the language of �) A �� B
implies A ≡� B. (The converse implication holds for any �. Thus a congruential
consequence relation is one for which logical equivalence – the relation ��, that
is – and synonymy coincide. Here we rely on the fact that the synonymy of A, B
according to a consequence relation �, as defined in Section 2, is equivalent to its
being the case that for all contexts C(·), we have C(A) �� C(B). Wójcicki [39]
uses “self-extensional” for “congruential”.)

Conceiving of logics as consequence relations rather than sets of formulas
makes for the following modifications to (1) and (2):

�0 ⊆�1 if and only if ≡0 ⊆≡1 (3)

�0 ��1 if and only if ≡0 �≡1 (4)

Again, we concentrate on the first of these, and on the case in which �0 and �1

are consequence relations on the same language. Here is a very simple sufficient
condition for the “only if” direction of (3):

Proposition 3.1. If �1 is congruential and �0 ⊆�1, then ≡0 ⊆≡1.

Proof. Suppose that �0 ⊆�1 for congruential �1, and that A ≡0 B. Since A ≡0 B,
we have A ��0 B, so since �0 ⊆�1, A ��1 B, whence by the congruentiality of �1,
we get A ≡1 B. �

Proposition 3.1 is (nearly) a special case of the analogue for consequence rela-
tions of Proposition 2.1. Although the notion of an equivalential (set-of-formulas)
logic was abstracted from the notion of an equivalential consequence relation, the
latter turns out not to be the pertinent concept, and what we want instead is the
concept of a consequence relations � with sequent-definable synonymy, by which
we mean (cf. [29]) that there is a set Σ(p, q) of pairs 〈Γ, C〉, all formulas occurring
in which are constructed from only the variables p, q with the property that for all
formulas A, B (in the language of �) we have Σ(A, B) ⊆� if and only if A ≡� B.
As in Section 2, we immediately pass to a relational version of this concept, saying
that consequence relations �0 and �1 have similarly sequent-definable congruences
if the same set Σ(p, q) witnesses the sequent-definability of synonymy for �0 and
�1. Then by a simple argument which replaces Si in the proof of Proposition 2.1
by �i and substitutions in the set of formulas ∆(p, q) by substitutions in the set
of sequents Σ(p, q), we obtain a proof of:
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Proposition 3.2. For any consequence relations �0 and �1 with similarly sequent-
definable synonymies, �0 ⊆�1 implies ≡0 ⊆≡1.

The analogue of Remark 2.2 applies here too.
It may seem stretching things to use the term sequents for the ordered pairs

〈Γ, C〉, certain sets of which are consequence relations, since the the ‘antecedent’
of a sequent might typically be required to be a finite set, whereas these Γ will
not all be finite. Indeed on many versions of what a sequent should be (e.g., for
the sake of a convenient sequent-calculus), Γ wouldn’t be a set (of formulas) at
all but a multiset or a sequence. Nevertheless, the terminology is convenient and
we ignore those objections to its use here. Let us further follow Blamey [5] in
using � as our sequent-separator – that is, we notate the sequent 〈Γ, C〉 more
suggestively as Γ � C. We are now in a position to see Proposition 3.1 as close to
being a special case of Proposition 3.2: a congruential consequence relation is one
for which synonymy is defined by the set of sequents Σ(p, q) = {p �q, q�p}. “Close
to being” a special case but not quite there, since Proposition 3.1 demands only
that �1 be congruential, whereas the application just envisaged of Proposition 3.2
would appear to require the condition that both �0 and �1 be congruential (since
they need to have similarly sequent-definable synonymies).14

We turn our attention to the provision of two counterexamples to the “if” di-
rection of (3), each of which features a pair of consequence relations which, though
distinct, yield the same synonymy relation. These examples, especially the second
(appearing after Remark 3.12), are of some theoretical interest in their own right,
and all four logics (playing the �0 and �1 roles in the two examples) are congruen-
tial, though that fact does not need to be exploited. The first example (immediately
following Coro. 3.6 below) draw attention to a relation we shall call “1-agreement”
between consequence relations, isolating which will assist in presenting the second
example. After that discussion, we conclude with a counterexample (or two) to
the “only if” direction of (3).

For the first of these examples, the language we use has only one connective,
the 0-place connective (sentential constant) 
; we define ��

0 to be the least conse-
quence relation � on this language satisfying (5) for Γ �= ∅, and ��

1 to be the least
consequence relation � on the language satisfying (5) for arbitrary Γ (equivalently,
satisfying (5) for Γ = ∅):

Γ � 
. (5)

��
0 is a simplified version of idea of Roman Suszko’s, described in note 7 of Smiley

[34], and it is not hard to check that ��
0 ���

1 . Indeed, we will verify this twice
over, the second proof following its statement below as Corollary 3.4. It is clear
from the definitions that ��

0 ⊆��
1 ; that the converse inclusion does not hold follows

from the fact that ∅ �1 
 (again from the definition of ��
1 ) while ∅ �

�
0 
. We

can verify this latter fact syntactically by thinking of the above definition of ��
0

as an inductive definition (“from below”) of the class of pairs 〈Γ, A〉 standing in

14The author has the strong impression of missing an insight here.
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this relation, which allows for a proof by induction on the length of a construction
which would place 〈Γ, A〉 in ��

0 only when Γ �= ∅. (See Scott [32] for this type of
argument; the characterization below in terms of valuations is also much inspired
by Scott’s work.)

An an alternative to the above (quasi-)proof-theoretic argument, we can ob-
tain the same conclusion by semantic reasoning, couched in terms of the notion of
a consequence relation �’s being determined by a class V of valuations (bivalent
truth-value assignments to the formulas of the language of �), a relation defined
to hold between � and V just in case for all sets Γ of formulas of the language and
all formulas A thereof: Γ � A if and only if for each v ∈ V , whenever v(C) = T for
all C ∈ Γ, then v(A) = T. (We use “T”, “F”, to denote the two truth-values; if �
has been specified by means of a proof system, the “only if” and the “if” parts of
this definition amount to the soundness and the completeness, respectively, of this
system, with respect to V .) The easy proof of the following is left to the reader; the
reference to valuations in both cases is to valuations for the (common) language
of ��

0 and ��
1 .

Proposition 3.3. Let vF be the unique valuation (for the language of ��
0 and ��

1 )
assigning the value F to every formula, and V be the class of all valuations (for
this language) satisfying v(
) = T. Then
(i) ��

0 is determined by V ∪ {vF}
(ii) ��

1 is determined by V .

We now repeat the earlier syntactically argued assertion with its new semantic
justification:

Corollary 3.4. ��
0 ���

1 .

Proof. That ��
0 ⊆��

1 follows from Prop. 3.3 by a familiar Galois duality between
consequence relations and classes of valuations, since V ⊆ V ∪ {vF}; the failure
of the converse inclusion (between the ��

i ) is illustrated by the fact that ∅ ��
1 


while ∅ �
�
0 
. �

Remark 3.5. The formula 
, as it behaves according to ��
0 , is what is called in

Humberstone [16], p. 59, a “mere follower”: it follows from every formula and thus
from every non-empty set of formulas – but not from the empty set of formulas.
Note that so defined, only an atheorematic consequence relation can have a mere
follower, and that any two mere followers are logically equivalent (each being a
consequence of the other).

From Proposition 3.3 we may also infer (by an argument we leave to the
reader) the following:

Corollary 3.6. For all non-empty Γ and all formulas B, we have Γ ��
0 B if and

only if Γ ��
1 B.

In particular, then, we have:
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Example. For all formulas A, B, we have A ���
0 B if and only if A ���

1 B.
Since ��

0 and ��
1 are congruential, the induced synonymy relations ≡�

0 and ≡�
1

coincide, the fact that ��
0 ���

1 notwithstanding, providing a counterexample to
the “if” direction of (3), taking �0 and ≡0 (resp. �1 and ≡1) in (3) as ��

1 and
≡�

1 (resp. ��
0 and ≡�

0 ). Alternatively, we can see this as a counterexample to the
“only if” direction of (4) – keeping the subscripts the same, this time. (In fact, the
reference to congruentiality is not needed. See Remark 3.7 below.)

There is one aspect of the situation just reviewed we shall isolate for our
second example. Say that consequence relations � and �′ on the same language
n-agree when for all formulas A and all sets of formulas Γ of cardinality n ∈ N,
we have Γ � A if and only if Γ �′ A. In this terminology Corollary 3.6 says that
�0 and �1 n-agree for all n ≥ 1. What actually matters for the above example
though, is specifically that these consequence relations 1-agree:

Remark 3.7. Even if � and �′ are not congruential, if � and �′ 1-agree, then
≡� =≡�′ , since, adapting the characterization of congruentiality at the end of
the opening paragraph of this section, A and B are synonymous according to a
consequence relation just in case for all C, C(A) and C(B) are equivalent. But
any 1-agreeing consequence relations also agree in respect of which formulas are
synonymous – that is, have the same synonymy relation.

For our second example, included for its intrinsic interest, there is again only
one connective in the language, and this time it is binary, and will be written –
for reasons to become clear immediately – as “∧”. Let �∧

0 and �∧
1 be the least

consequence relations � on this language satisfying, for all formulas A and B and
in the case of �∧

0 , for all Γ of the form {C} while in the case of �∧
1 , for arbitrary

Γ, the condition (6):

Γ � A ∧ B if and only if Γ � A and Γ � B. (6)

The consequence relations �∧
0 and �∧

1 , or similarly related consequence relations
with additional connectives present answering to their own conditions, are distin-
guished in Koslow [22] and Cleave [7]. �∧

1 , is the restriction to the language with
∧ of the consequence relations of intuitionistic or classical logic; it is called the
logic of ‘parametric’ conjunction in [22], where essentially reasoning of Prop. 3.8
and Coro. 3.9 may be found (p. 129f.).15

Proposition 3.8. Whenever Γ �∧
0 A, we have C �∧

0 A for some C ∈ Γ.

Corollary 3.9. �∧
0 � Γ �∧

1 .

Proof. Clearly we have p, q �∧
1 p ∧ q, since we may take Γ in (6) as {p, q}; but by

Proposition 3.8 p, q �
∧
0 p ∧ q, as otherwise we should have p �∧

0 p ∧ q or q �∧
0 p ∧ q

(neither of which is even the case for �∧
1 , of course). �

15In the case of Cleave [7], pp. 121ff. should be consulted. There are many problems with Cleave’s
discussion, and a few with Koslow’s; see [15], esp. p. 478f. for these.
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It was promised that the example involving the �∧
i would be of some theo-

retical interest in its own right. There are two points of interest. A philosophical
moral to be drawn is most easily seen condition (6) is recast as a collection of
sequent-to-sequent rules, in which case the weaker (�∧

0 -defining) Γ = {C} version
of (6) emerges as follows, with semicolons separating the premiss-sequents from
each other and “/” separating them from the conclusion-sequent:

(i) C �A; C �B / C �A∧B. (ii) C �A∧B / C �A. (iii) C �A∧B / C �B.

The point of interest is that these rules already uniquely characterize ∧ (to within
logical equivalence),16 even though they are weaker than the standard rules (i.e.,
the rules with the general set-variable “Γ” replacing C throughout – though it is
easy to see that the rule (iii) would not be strengthened by this generalization).
Thus it is not open to the intuitionist, for example, to complain that what is
wrong with the classical rules governing negation is that that they are ‘stronger
than needed’ to characterize this connective uniquely, since the intuitionistically
acceptable negation rules already suffice for uniqueness. To take such a line without
further qualification would be to leave the intuitionist open to an objection to the
intuitionistically accepted rules governing conjunction, since as just observed, these
are also stronger than needed for unique characterization. In (the paper abstracted
as) [13] it is suggested that the ‘further qualification’ needed will address the
issue of rules being fully general in respect of side-formulas (so arbitrary Γ, rather
than just C or more explicitly {C}, for instance), though what this comes to
will naturally depend on exactly what form the sequents take – e.g., on whether
multiple succedents are to be permitted. (Of course such sequents do not arise in
the rules embodying conditions on consequence relations, but we are speaking of
sequent-to-sequent rules for a notion of sequent that should be thought of as yet
to be settled on, when issues of one logic vs. another are being aired.)

Philosophy of logic aside, the case of �∧
0 presents us with an interesting task

in valuational semantics, namely that of informatively specifying a class of valu-
ations which determines this consequence relation. To attack this problem, which
will have dividends for our main business as well (see Coro. 3.11), we need some

16This is pointed out in Example 4.3(i) on p.121 of [7]. (The parenthetical “to within logical
equivalence” is an allusion to the possible contrast with unique characterization to within syn-
onymy, on which see Humberstone [19], Sections 3 and 4.) The result of this is that if one party
to a dispute about the logical powers of conjunction endorses only the �∧

0 conditions, while the
other endorses the stronger �∧

1 conditions, they cannot agree to bury their differences by agreeing
to adopt a logic with two connectives in place of ∧ – ∧0 and ∧1, say – governed by rules embody-
ing the respective conditions: because even the weaker rules have the unique characterization
property, the resulting combined logic then has the ∧0-conjunction of two formulas following
from those formulas. The situation is just as with intuitionistic and classical negation, alluded to
presently, in which the intuitionist would be ill advised indeed to concede the intelligibility of a
connective governed by the rules for classical negation alongside and notationally distinguished
from the favoured intuitionistic negation: the former’s distinctive behaviour will then infect the
latter, leaving no room, as Humberstone [13] concludes, for any such ‘live and let live’ attitude.
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terminology and notation. If # is an n-ary connective with which some preas-
signed n-ary truth function f is associated, then we call a valuation #-boolean
if for all formulas A1, . . . , An, v(#(A1 . . . An)) = f(v(A1), . . . , v(An)). Thus the
class V featuring in Proposition 3.3 is the class of 
-boolean valuations, while
the ∧-boolean valuations (for a given language) are exactly those which assign
the value T to formulas (of that language) A ∧ B when they assign the value T
to A and to B. A somewhat less frequently encountered notion is the following.
(See [16].) For an arbitrary family of valuations, V we denote by

∑
V what we

call the disjunctive combination of the valuations in V , defined to be the unique
valuation u for which for all formulas A, u(A) = T if and only if there is some
v ∈ V with V (A) = T. If V = {v1, v2}, we write v1 +v2 for

∑
V . The dual—in the

sense of poset duality, not Galois duality17—operation on valuations, conjunctive
combination here denoted by

∏
V (v1 · v2 in the binary case) is similarly defined

but with “there is some” replaced by “for all”; these are fairly well known, being a
bivalentized version of the notion of a supervaluation over V .18 Their key logical
significance is that the consequence relation determined by a class of valuations
remains unaffected by adding conjunctive combinations of valuations to the de-
termining class.19 This, which is not so for generalized consequence relations, is
due to the presence of a single formula on the right of the “�”. (The presence
of at most one formula on the right, that is, rather than at least one, as in the
preceding note.) In view of Proposition 3.8 above, which says that for the case
of �∧

0 a consequence statement holds in virtue of a single formula from amongst
those on the left, suggests the semantic characterization given in Proposition 3.10
below. It is well known that �∧

1 is easily seen to be determined by the class of all
∧-boolean valuations; what we need for �∧

0 is the class of disjunctive combinations
of such valuations, so we pause to observe that disjunctively combining ∧-boolean
valuations typically results in a valuation that is not ∧-boolean (whereas the class
of ∧-boolean valuations is closed under conjunctive combination). We illustrate
with the binary mode of combination.

Example. Let u and v be ∧-boolean valuations satisfying: u(p) = v(q) = T, u(q) =
v(p) = F. For their disjunctive combination u + v we have u + v(p) = T, since

17In the terminology, though not the notation, of [16], + is Galois dual to ∨ and · to ∧. (Up-
ward and downward pointing triangles are used in [16] to symbolize conjunctive and disjunctive
combinations, large for the case of families of valuations and small in the case of the binary
operation.)
18Incidentally, the standard ‘gappy’ version of what later became known as supervaluations
appears already at the end of the second paragraph of §4 in Nelson [27].
19A special case is that of V = ∅, for which

∏
V is the valuation vT assigning the value T to

every formula. So any � determined by a class U of valuations is also determined by U ∪ {vT}.
For the same choice of V ,

∑
V is the valuation vF of Proposition 3.3, which taken together with

Corollary 3.4 shows that, by contrast with the case of vT, adding vF to the determining class can
change which consequence relation is determined. The explanation for this lies in the mandatory
appearance of a formula on the right of the “�” (or “�”, at the level of individual sequents), as
contrasted with the possible disappearance of all formulas from the left.
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u(p) = T, and also u + v(q) = T since v(q) = T. However, u + v(p ∧ q) = F, since
neither u nor v verifies this conjunction, so u + v is not ∧-boolean.

Having shown that we obtain a new class of valuations other than just that con-
sisting of ∧-boolean valuations when passing to arbitrary disjunctive combinations
of such valuations, we proceed to our semantic characterization of �∧

0

Proposition 3.10. The consequence relation �∧
0 is determined by the class of all

valuations which are disjunctive combinations of families of ∧-boolean valuations.

Proof. We must show that Γ �∧
0 A if and only if every disjunctive combination of

∧-boolean valuations which verifies each formula in Γ also verifies A. The “only
if” direction is essentially a soundness proof for the system with, in addition to
basic structural rules, the sequent-to-sequent rules (i), (ii), (iii), above), for which
purpose it suffices to check that no disjunctive combination of ∧-boolean valua-
tions verifies all the left hand formulas without verifying the right-hand formula
of any provable sequent. Since rules (ii) and (iii) are obviously equivalent (given
the structural rules encoding the fact that our sequents are the elements of a con-
sequence relation) to the zero-premiss rules A∧B �A and A∧B �B it is sufficient
in their case to check that there are no countervaluations in the class w.r.t. which
soundness is being shown, We consider the former by way of example. Suppose u is∑

V for a family V of ∧-boolean valuations, and u(A∧B) = T. We must show that
u(A) = T. As u(A∧B) = T and u =

∑
V , there is v ∈ V with v(A∧B) = T. But

all valuations in V , v included, are ∧-boolean, so v(A) = T, and therefore u(A) =
T. We now check (i), showing that if there is a countervaluation to the conclusion
sequent C � A ∧ B of an application of this rule, then there is a countervaluation
to one or other of the premiss-sequents C � A, C � B. So suppose that u =

∑
V

for a collection V of ∧-boolean valuations, and u(C) = T while u(A ∧ B) = F.
Then for some v ∈ V , we have v(C) = T, but since u(A ∧ B) = F, v(A ∧ B) = F.
As v is ∧-boolean, either v(A) = F or v(B) = F, so since v (=

∑{v}) is itself a
disjunctive combination of ∧-boolean valuations, it is either a countervaluation to
C � A or to C � B.

We turn to the “if” (completeness) direction of the claim. We must show then
whenever Γ �

∧
0 A, we can find a disjunctive combination of ∧-boolean valuations

verifying each formula in Γ but not A. For each C ∈ Γ define the valuation vC by
setting vC(B) = T iff C �∧

0 B for all formulas B. Note that vC is guaranteed to
be ∧-boolean by the way �∧

0 was defined. Also observe that for each C ∈ Γ, we
have vC(A) = F, since otherwise we should have C �∧

0 A and hence, by a defining
property (variously called monotonicity, thinning, weakening...) of consequence
relations, Γ �∧

0 A, contradicting our initial assumption. But together these facts
imply that for u =

∑{vC |C ∈ Γ}, u is a disjunctive combination of ∧-boolean
assigning T to every formula in Γ and F to A, as required.

�

Corollary 3.11. The consequence relations �∧
0 and �∧

1 1-agree.



224 Lloyd Humberstone

Proof. Since �∧
0 ⊆�∧

1 , we have only to show that for all formulas C, A, if C �∧
1 A,

then C �∧
0 A. So, arguing contrapositively, suppose that C �

∧
0 A. By Prop. 3.10

there is a valuation u =
∑

V with all v ∈ V ∧-boolean, with u(C) = T and
u(A) = F. Thus for some v ∈ V , v(A) = T while v(C) = F. But v is an ∧-boolean
valuation, so since �∧

1 is determined by the class of ∧-boolean valuations, C �
∧
1 A.

�
Remark 3.12. Notice how this argument would have failed if we had tried to
show that, for instance, if C, D �∧

0 A then C, D �∧
0 A. In this case we have

u(C) = u(D) = T while u(A) = F, for u =
∑

V as above: but this allows v ∈ V
with v(C) = T and v′ ∈ V with v′(D) = T, with no guarantee that v = v′ and so
way to complete the argument – since as we saw in the Example preceding Prop.
3.10, v + v′ need not be ∧-boolean. (We could have established Coro. 3.11 purely
syntactically, but the semantic characterization seems illuminating.)

We have now assembled all the ingredients for the second of the counterex-
amples to be presented here to the “if” direction of (3).

Example. Although ≡∧
0 =≡∧

1 , by Coro. 3.11 and Remark 3.7, �∧
0 � Γ �∧

1 (by Coro.
3.9).

We pause to notice that the ��
i and �∧

i pairs (i = 0,1) with which we have
illustrated the failure of the “if” direction of (3), are also convenient indicators
of the falsity of a conjecture either to the effect that if consequence relations n-
agree then they must m-agree whenever m ≤ n or to the effect that n-agreeing
consequence relations must m-agree whenever n ≤ m. Counterexamples to these
conjectures are given respectively by the cases of the ��

i , which 1-agree without
0-agreeing, and of the �∧

i , which 1-agree without 2-agreeing.

Remark 3.13. It should be noted, however, that the implication in the case of
m ≤ n: “�,�′ n-agree ⇒ �,�′ m-agree” holds under very weak conditions for all
m ≥ 1. The following additional condition secures the implication, for example:
that for every formula A there is some formula B �= A such that B � A, and
likewise in the case of �′. Alternatively, if one wished, one could secure the above
implication, still with the m ≥ 1 proviso in force, by a change in the definition of
n-agreement, defining this relation to hold between � and �′ just in case for all
formulas A1, . . . , An, B: A1, . . . , An � B iff A1, . . . , An � B. (This differs from the
original definition because we can have Ai = Aj when i �= j.)

Before leaving the subject of 1-agreement altogether, we should take a mo-
ment to observe that despite its figuring in our examples distinct consequence re-
lations with the same synonymy relation, 1-agreement is by no means a necessary
condition for two consequence relations to coincide thus in respect of synonymy.
The small reminder we include to that end, Proposition 3.14, requires the following
concept. Let us call consequence relations on the same language � and �′ weakly
dual when for all formulas A, B, of that language, A � B if and only if B �′ A.
Many consequence relations will weakly dual to any given consequence relation �,
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and though they will 1-agree with each other, they will typically not 1-agree with
� – the point of current interest.20

Proposition 3.14. If � and �′ are weakly dual, then they have the same synonymy
relation.

Proof. Weakly dual � and �′, though not in general 1-agreeing, still ‘agree’ in
respect of which formulas are equivalent to each other, and so, by the reasoning
given in Remark 3.7, agree as to which pairs of formulas are synonymous. �

The counterexamples we have provided to the “if” direction of (3) have been
of cases of differing consequence relations with the same same synonymy relations.
We cannot similarly offer counterexamples to the “only if” direction of (3)—our
final topic—in which �0 coincides with �1 while ≡0 and ≡1 differ, since ≡i is
fixed by �i. A somewhat artificial counterexample can be obtained by tinkering
minimally with that given at the end of Section 2. We use the same language, with
connectives → and �, and define �0 and �1 as the least consequence relations �
on this language such that (for the former) ∅ � �A for all A, and (for the latter)
∅ � �A as well as ∅ � A → A for all formulas A. The explanation given at the end
of Section 2 as to why this is a counterexample applies here also, mutatis mutandis.
Our final topic will be a more interesting ‘naturally occurring’ counterexample to
the “only if” direction of (3).

Consider first the consequence relations of intuitionistic (propositional) logic,
�IL, with any familiar set of primitive connectives, and of intuitionistic logic with
strong negation �ILS , whose language contains a further 1-ary connective (‘strong
negation’) written as “−”, governed by principles which may be found in any
discussion of the subject, such as Chapter 7, Section 2 of Gabbay [11].21 (If the
account specifies a logic in the set-of-formulas sense, by means of an axiomatiza-
tion using Modus Ponens as the sole rule, then the consequence relation we are
interesting in relates Γ to A in the following familiar way: A stands at the end
of a sequence of formulas each of which is either an axiom, an element of Γ, or

20From the definition of weak duality given here it is not hard to deduce the following. The
smallest consequence relation weakly dual to a given � is the �′ defined by: Γ �′ A iff for some
B ∈ Γ, A � B. The largest consequence relation weakly dual to � is the �′ defined by: Γ �′ A iff
for all B such that C � B for each C ∈ Γ, we have B � A. This latter is essentially the notion of the
dual of � offered by Wójcicki [38] (see also [35]) and §9.5 of Koslow [22], though there are slight
differences. Koslow is discussing what calls implication relations rather consequence relations,
which amounts to treating them as relations between finite but non-empty sets of formulas and
individual formulas (subject otherwise to the usual defining conditions for consequence relations),
while Wójcicki’s definition is like ours except that what ours requires of Γ itself for Γ �′ A to
hold is instead required of some finite subset of Γ. With generalized consequence relations, of
course, matters are much more straightforward since one can take the dual of such a relation just
to be its converse. (See, e.g., Gabbay [11], p.16.)
21Since we quoted Nelson [27] in our opening section, we should stress that the logic of strong
negation presented in [27] is definitely not what we have in mind here (though it was earlier work
by Nelson that inspired what we do have in mind), since that is not an extension of (even the
implicational fragment of) intuitionistic logic.
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follows from earlier formulas in the sequence by an application of Modus Ponens.)
A well-known feature of �ILS is that it is not congruential, since for example, writ-
ing “¬” for (ordinary) intuitionistic negation, ¬¬¬p and ¬p are �ILS-equivalent
(being �IL-equivalent), whereas −¬¬¬p and −¬p are not �ILS-equivalent.22 The
latter pair of formulas are �ILS-equivalent respectively to ¬¬p and p, which are not
�ILS-equivalent, since they do not involve strong negation, are not �IL-equivalent
and �ILS is a conservative extension of �IL. Clearly, however, there is something
non-conservative going on. We could say that the passage from intuitionistic logic
to intuitionistic logic with strong negation fails to conserve synonymy – which
should raise eyebrows amongst adherents of intuitionistic logic, the conservativ-
ity of the extension notwithstanding23 – since evidently the ‘strong negation’-free
formulas ¬p and ¬¬¬p synonymous according to �IL but not according to �ILS .
This gives the counterexample we have in mind (and in fact could have presented
in a suitably modified form in Section 2, as involving ‘formula’ logics):

Example. We have assembled the pieces for a counterexample to the following case
of the the “if” direction of (3):

�IL ⊆�ILS ⇒ ≡IL ⊆≡ILS ,

since, as just observed, although �IL ⊆�ILS , we have ¬p ≡IL ¬¬¬p without
¬p ≡ILS ¬¬¬p.

This is, however, a ‘two-language’ example since strong negation is not a
connective in the language of �IL, whereas we undertook to seek counterexamples
without a change of language. One might think to get around this by considering in
place of the consequence relation �IL a variation which has strong negation in its
language but enjoying no special logical behaviour, �IL(S), we could call it, much
as with � in the smallest modal logic or ⊥ in Minimal Logic (Minimalkalkül).
For the counterexample, however, we should need ¬p ≡IL(S) ¬¬¬p, which is no
longer the case since the two formulas involved here give non-equivalent results
(relative to �IL(S)) when embedded in the scope of the strong negation connective:
the very point we were exploiting concerning �ILS (though with �IL(S), the situ-
ation is more serious in that, as with several other logics we have considered, no
two formulas are synonynmous). If there is a simple one-language counterexample
in this vicinity to the claim that inclusion of consequence relations implies the
corresponding inclusion of synonymy relations, we leave it for others to find.
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