


Introduction to the Theory 
of Nonhnear Optimization 



Johannes Jahn 

Introduction 
to the Theory 
of NonHnear 
Optimization 

Third Edition 

With 31 Figures 

Sprin g er 



Prof. Dr. Johannes Jahn 
Universitat Erlangen-Niirnberg 
Institut fur Angewandte Mathematik 
Martensstr. 3 
91058 Erlangen 
Germany 
jahn@am.uni-erlangen.de 

Library of Congress Control Number: 2006938674 

ISBN 978-3-540-49378-5 Springer Berlin Heidelberg New York 
ISBN 978-3-540-61407-4 Second Edition Springer Berlin Heidelberg New York 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is 
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad­
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of 
this publication or parts thereof is permitted only under the provisions of the German Copyright 
Law of September 9,1965, in its current version, and permission for use must always be obtained 
from Springer. Violations are liable to prosecution under the German Copyright Law. 

Springer is part of Springer Science+Business Media 

springer.com 

© Springer-Verlag Berlin Heidelberg 1994,1996,2007 

The use of general descriptive names, registered names, trademarks, etc. in this publication does 
not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 

Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig 
Cover-design: Erich Kirchner, Heidelberg 

SPIN 11932048 42/3100YL - 5 4 3 2 1 0 Printed on acid-free paper 



To Claudia and Martin 



Preface 

This book presents an application-oriented introduction to the the­
ory of nonhnear optimization. It describes basic notions and concep­
tions of optimization in the setting of normed or even Banach spaces. 
Various theorems are appHed to problems in related mathematical 
areas. For instance, the Euler-Lagrange equation in the calculus of 
variations, the generahzed Kolmogorov condition and the alternation 
theorem in approximation theory as well as the Pontryagin maximum 
principle in optimal control theory are derived from general results of 
optimization. 

Because of the introductory character of this text it is not intended 
to give a complete description of all approaches in optimization. For 
instance, investigations on conjugate duality, sensitivity, stability, re­
cession cones and other concepts are not included in the book. 

The bibliography gives a survey of books in the area of nonlinear 
optimization and related areas like approximation theory and optimal 
control theory. Important papers are cited as footnotes in the text. 

This third edition is an enlarged and revised version containing 
an additional chapter on extended semidefinite optimization and an 
updated bibliography. 

I am grateful to S. GeuB, S. Gmeiner, S. Keck, Prof. Dr. E.W. 
Sachs and H. Winkler for their support, and I am especially indebted 
to D.G. Cunningham, Dr. G. Eichfelder, Dr. F. Hettlich, Dr. J. Klose, 
Prof. Dr. E.W. Sachs, Dr. T. Staib and Dr. M. Stingl for fruitful 
discussions. 

Erlangen, September 2006 Johannes Jahn 
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Chapter 1 

Introduction and Problem 
Formulation 

In optimization one investigates problems of the determination of a 
minimal point of a functional on a nonempty subset of a real linear 
space. To be more specific this means: Let X be a real linear space, 
let S' be a nonempty subset of X, and let / : iS —> R be a given 
functional. We ask for the minimal points of / on S. An element 
X E S is called a minimal point offonS if 

f{x) < f{x) for all xeS. 

The set S is also called constraint set^ and the functional / is called 
objective functional 

In order to introduce optimization we present various typical op­
timization problems from Applied Mathematics. First we discuss a 
design problem from structural engineering. 

Example 1.1. As a simple example consider the design of a beam 
with a rectangular cross-section and a given length I (see Fig. 1.1 and 
1.2). The height xi and the width X2 have to be determined. 

The design variables Xi and X2 have to be chosen in an area which 
makes sense in practice. A certain stress condition must be satisfied, 
i.e. the arising stresses cannot exceed a feasible stress. This leads to 
the inequality 

2000 < x\x2. (1.1) 



Chapter 1. Introduction and Problem Formulation 

"A Xx 

X2 

Figure 1.1: Longitudinal section. Figure 1.2: Cross-section. 

Moreover, a certain stability of the beam must be guaranteed. In 
order to avoid a beam which is too slim we require 

Xi < 4X2 (1.2) 

and 
X2 < Xi. (1.3) 

Finally, the design variables should be nonnegative which means 

and 

x i > 0 

X 2 > 0 . 

(1.4) 

(1.5) 

Among all feasible values for xi and X2 we are interested in those 
which lead to a light construction. Instead of the weight we can also 
take the volume of the beam given as lxiX2 as a possible criterion 
(where we assume that the material is homogeneous). Consequently, 
we minimize lxiX2 subject to the constraints (1.1), . . . ,(1.5). 

With the next example we present a simple optimization problem 
from the calculus of variations. 

Example 1.2. In the calculus of variations one investigates, for 
instance, problems of minimizing a functional / given as 

f{x)= fl{x{t),x{t),t)dt 
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where — o o < a < 6 < o o and / is argumentwise continuous and 
continuously differentiable with respect to x and x. A simple problem 
of the calculus of variations is the following: Minimize / subject to 
the class of curves from 

S := {x e C^[a^b] \ x{a) = Xi and x{b) — X2} 

where Xi and X2 are fixed endpoints. 

In control theory there are also many problems which can be for­
mulated as optimization problems. A simple problem of this type is 
given in the following example. 

Example 1.3. On the fixed time interval [0,1] we investigate 
the linear system of differential equations 

with the initial condition 

^i(O) \ / -2x/2 \ 
0:2(0) J { 5V2 J-

With the aid of an appropriate control function u G C[0,1] this dy­
namical system should be steered from the given initial state to a 
terminal state in the set 

M := {(xi, X2) eR'^\xl + xl = 1}. 

In addition to this constraint a control function u minimizing the cost 
functional 

1 

f{u) = j{u{t)f 
0 

has to be determined. 

Finally we discuss a simple problem from approximation theory. 
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(3 = sinh a 
j3 = xa 

X ̂  1.600233 

0 1 2 ^ 

Figure 1.3: Best approximation of sinh on [0,2]. 

Example 1.4. We consider the problem of the determination of 
a hnear function which approximates the hyperbohc sine function on 
the interval [0,2] with respect to the maximum norm in a best way 
(see Fig. 1.3). So, we minimize 

max ax 
aG[0,2] 

sinh a I 

This optimization problem can also be written as 

min A 
subject to the constraints 
A = max lax — sinh a\ 

aG[0,2] 

(x,A) eR\ 

The preceding problem is equivalent to the following optimization 
problem which has infinitely many constraints: 

min A 
subject to the constraints 
ax — sinh a < A 
ax — sinh a > —A 
(x,A) G R ^ 

for all a G [0, 2] 
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In the following chapters the examples presented above will be 
investigated again. The solvability of the design problem (in Exam­
ple 1.1) is discussed in Example 5.10 where the Karush-Kuhn-Tucker 
conditions are used as necessary optimality conditions. Theorem 3.21 
presents a necessary optimality condition known as Euler-Lagrange 
equation for a minimal solution of the problem in Example 1.2. The 
Pontryagin maximum principle is the essential tool for the solution of 
the optimal control problem formulated in Example 1.3; an optimal 
control is determined in the Examples 5.21 and 5.23. An application 
of the alternation theorem leads to a solution of the linear Chebyshev 
approximation problem (given in Example 1.4) which is obtained in 
Example 6.17. 

We complete this introduction with a short compendium of the 
structure of this textbook. Of course, the question of the solvability 
of a concrete nonlinear optimization problem is of primary interest 
and, therefore, existence theorems are presented in Chapter 2. Sub­
sequently the question about characterizations of minimal points runs 
like a red thread through this book. For the formulation of such char­
acterizations one has to approximate the objective functional (for that 
reason we discuss various concepts of a derivative in Chapter 3) and 
the constraint set (this is done with tangent cones in Chapter 4). Both 
approximations combined result in the optimality conditions of Chap­
ter 5. The duality theory in Chapter 6 is closely related to optimality 
conditions as well; minimal points are characterized by another opti­
mization problem being dual to the original problem. An apphcation 
of optimality conditions and duahty theory to semidefinite optimiza­
tion being a topical field of research in optimization, is described in 
Chapter 7. The results in the last chapter show that solutions or 
characterizations of solutions of special optimization problems with 
a rich mathematical structure can be derived sometimes in a direct 
way. 

It is interesting to note that the Hahn-Banach theorem (often in 
the version of a separation theorem like the Eidelheit separation theo­
rem) proves itself to be the key for central characterization theorems. 



Chapter 2 

Existence Theorems for 
Minimal Points 

In this chapter we investigate a general optimization problem in a 
real normed space. For such a problem we present assumptions under 
which at least one minimal point exists. Moreover, we formulate 
simple statements on the set of minimal points. Finally the existence 
theorems obtained are applied to approximation and optimal control 
problems. 

2.1 Problem Formulation 

The standard assumption of this chapter reads as follows: 

Let (X, II • II) be a real normed space; "j 
let 5 be a nonempty subset of X; > (2.1) 
and let / : iS —> R be a given functional. J 

Under this assumption we investigate the optimization problem 

fin fix), (2.2) 

i.e., we are looking for minimal points of / on S, 
In general one does not know if the problem (2.2) makes sense 

because / does not need to have a minimal point on S. For instance, 
ioT X = S = R and f{x) = e^ the optimization problem (2.2) is not 
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solvable. In the next section we present conditions concerning / and 
S which ensure the solvability of the problem (2.2). 

2.2 Existence Theorems 

A known existence theorem is the WeierstraB theorem which says that 
every continuous function attains its minimum on a compact set. This 
statement is modified in such a way that useful existence theorems 
can be obtained for the general optimization problem (2.2). 

Definition 2.1. Let the assumption (2.1) be satisfied. The func­
tional / is called weakly lower semicontinuous if for every sequence 
(̂ n)nGN 1̂  S couvcrgiug wcakly to some x G S' we have: 

liminf/(a:^) > f{x) 
n—^oo 

(see Appendix A for the definition of the weak convergence). 

Example 2.2. The functional / : R -^ R with 
,. . _ r O i f x - 0 1 

^ ^ \ 1 otherwise J 

is weakly lower semicontinuous (but not continuous at 0). 

Now we present the announced modification of the WeierstraB 
theorem. 

Theorem 2.3. Let the assumption (2.1) he satisfied. If the set 
S is weakly sequentially compact and the functional f is weakly lower 
semicontinuous^ then there is at least one x E S with 

f{x) < f{x) for all xeS, 

i.e., the optimization problem (2.2) has at least one solution. 
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Proof. Let {xn)neN be a so-called infimal sequence in S', i.e., a 
sequence with 

limf{xn) = inf/(x). 
n—>oo xES 

Since the set S is weakly sequentially compact, there is a subsequence 
(^nJiGN converging weakly to some x E S. Because of the weak lower 
semicontinuity of / it follows 

f{x) < l iminf/(xnj = inf/(:^), 

and the theorem is proved. D 

Now we proceed to specialize the statement of Theorem 2.3 in 
order to get a version which is useful for apphcations. Using the 
concept of the epigraph we characterize weakly lower semicontinuous 
functionals. 

Definition 2.4. Let the assumption (2.1) be satisfied. The set 

E{f) := {{x,a) eSxR\ f{x) < a} 

is called epigraph of the functional / (see Fig. 2.1). 

a /N 

/ 

X 

Figure 2.1: Epigraph of a functional. 
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Theorem 2.5. Let the assumption (2.1) he satisfied, and let the 
set S he weakly sequentially closed. Then it follows: 

f is weakly lower semicontinuous 
<=^ E{f) is weakly sequentially closed 
<==> If for any a GR the set Sa '•= {x E S \ f{x) < a} is 

nonempty, then Sa is weakly sequentially closed. 

Proof. 

(a) Let / be weakly lower semicontinuous. If {xn^Oin)neN is any 
sequence in E{f) with a weak limit (S, a) G X x R, then {xn)neN 
converges weakly to x and (ofn)nGN converges to a. Since S is 
weakly sequentially closed, we obtain x E S. Next we choose 
an arbitrary e > 0. Then there is a number no G N with 

f{xn) < an < o^ + e for all natural numbers n> UQ. 

Since / is weakly lower semicontinuous, it follows 

fix) < liminff{xn) < a + e. 
n—»oo 

This inequality holds for an arbitrary 5 > 0, and therefore we get 
(S, a) G E{f). Consequently the set E{f) is weakly sequentially 
closed. 

(b) Now we assume that E(f) is weakly sequentially closed, and we 
fix an arbitrary a G M for which the level set Sa is nonempty. 
Since the set S x {a} is weakly sequentially closed, the set 

Sa X {a} = E{f) n{Sx {a}) 

is also weakly sequentially closed. But then the set Sa is weakly 
sequentially closed as well. 

(c) Finally we assume that the functional / is not weakly lower 
semicontinuous. Then there is a sequence {xn)neN in S converg­
ing weakly to some x E S and for which 

limmif{xn) < f{x). 
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If one chooses any a G M with 

limiiii f{xn) < a < f{x), 
n—^oo 

then there is a subsequence (X^J^^N converging weakly to x ^ S 
and for which 

Xui e Sa for all I e N. 

Because of /(x) > a the set S^ is not weakly sequentially closed. 

D 

Since not every continuous functional is weakly lower semicontin-
uous, we turn our attention to a class of functionals for which every 
continuous functional with a closed domain is weakly lower semicon-
tinuous. 

Definition 2.6. Let 5 be a subset of a real linear space. 

(a) The set S is called convex if for all x, y G 5 

Xx + {1- X)y G S for all A G [0,1] 

(see Fig. 2.2 and 2.3). 

Figure 2.2: Convex set. Figure 2.3: Non-convex set. 

(b) Let the set S be nonempty and convex. A functional f : S • 
is called convex if for all x, y G 5 

f{Xx + (1 - X)y) < Xf{x) + (1 - A)/(y) for all A G [0,1] 

(see Fig. 2.4 and 2.5). 
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-f- — 

m 
f(Xx+{l-X)y) 

Xf{x) + (1 - X)f{y) 

^ 
X Ax + (1 - X)y 

Figure 2.4: Convex functional. 

(c) Let the set S be nonempty and convex. A functional / : iS —> 1 
is called concave if the functional —/ is convex (see Fig. 2.6). 

Example 2.7. 

(a) The empty set is always convex. 

(b) The unit ball of a real normed space is a convex set. 

(c) For X = 5 = R the function / with f{x) = x^ for all x G R is 
convex. 

(d) Every norm on a real linear space is a convex functional. 

The convexity of a functional can also be characterized with the 
aid of the epigraph. 

Theorem 2.8. Let the assumption (2.1) he satisfied, and let the 
set S he convex. Then it follows: 

f is convex 
<==^ E{f) is convex 
= ^ For every a &R the set Sa '-= {x E S \ f(x) < a} is 

convex. 
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/N 

Figure 2.5: Non-convex functional. 

Figure 2.6: Concave functional. 

Proof. 

(a) If / is convex, then it follows for arbitrary (x, a) , (?/,/?) G E{f) 
and an arbitrary AG [0,1] 

fiXx+{l-X)y) < Xfix) + {1-X)f{y) 
< Xa + {1-X)f3 

resulting in 

X{x,a) + {l-X)iy,p)eE{f). 

Consequently the epigraph of / is convex. 

(b) Next we assume that E{f) is convex and we choose any a G M 
for which the set Sa is nonempty (the case S'Q, = 0 is trivial). For 
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arbitrary x^y E Sa we have (x,a) G E{f) and (y^a) e £"(/), 
and then we get for an arbitrary A G [0,1] 

X{x,a) + {l-X){y,a)eE{f). 

This means especially 

f{Xx + (1 - X)y) <Xa + {l-X)a = a 

and 

Xx + {l-X)yeSa-

Hence the set Sa is convex. 

(c) Finally we assume that the epigraph E{f) is convex and we 
show the convexity of / . For arbitrary x^y E S and an arbitrary 
A G [0,1] it follows 

X{xJ{x)) + {l-X){yJ{y))eE{f) 

which implies 

/(Ax + (1 - X)y) < Xf{x) + (1 - X)fiy). 

Consequently the functional / is convex. 

D 

In general the convexity of the level sets Sa does not imply the 
convexity of the functional / : this fact motivates the definition of the 
concept of quasiconvexity. 

Definition 2.9. Let the assumption (2.1) be satisfied, and let the 
set S be convex. If for every a G M the set '̂a := {3; G 5 | f{x) < a} 
is convex, then the functional / is called quasiconvex. 
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Example 2.10. 

(a) Every convex functional is also quasiconvex (see Thm. 2.8). 

(b) For X = 5 = R the function / with f{x) = x^ for all x G M 
is quasiconvex but it is not convex. The quasiconvexity results 
from the convexity of the set 

{x e S \ f{x) <a} = {xeR\x^<a}= (-oo,sgn{a){/\a\\ 

for every a G M. 

Now we are able to give assumptions under which every continuous 
functional is also weakly lower semicontinuous. 

Lemma 2.11. Let the assumption (2.1) he satisfied, and let the 
set S he convex and closed. If the functional f is continuous and 
quasiconvex, then f is weakly lower semicontinuous. 

Proof. We choose an arbitrary a G R for which the set Sa '= 
{x E S \ f{x) < a} is nonempty. Since / is continuous and S is 
closed, the set Sa is also closed. Because of the quasiconvexity of / 
the set Sa is convex and therefore it is also weakly sequentially closed 
(see Appendix A). Then it follows from Theorem 2.5 that / is weakly 
lower semicontinuous. • 

Using this lemma we obtain the following existence theorem which 
is useful for applications. 

Theorem 2.12. Let S he a nonempty, convex, closed and houn­
ded suhset of a reflexive real Banach space, and let f : S -^ R he a 
continuous quasiconvex functional. Then f has at least one minimal 
point on S. 

Proof. With Theorem B.4 the set S is weakly sequentially com­
pact and with Lemma 2.11 / is weakly lower semicontinuous. Then 
the assertion follows from Theorem 2.3. • 



16 Chapter 2. Existence Theorems for Minimal Points 

At the end of this section we investigate the question under which 
conditions a convex functional is also continuous. With the following 
lemma which may be helpful in connection with the previous theorem 
we show that every convex function which is defined on an open con­
vex set and continuous at some point is also continuous on the whole 
set. 

Lemma 2.13, Let the assumption (2.1) he satisfied, and let the 
set S be open and convex. If the functional f is convex and continuous 
at some x ^ S, then f is continuous on S. 

Proof. We show that / is continuous at any point of S. For that 
purpose we choose an arbitrary x E S. Since / is continuous at x and 
S is open, there is a closed ball B{X^Q) around x with the radius Q 

so that / is bounded from above on B{x^ g) by some a G R. Because 
S is convex and open there is a A > 1 so that x + \{x — x) G S 
and the closed ball B{x^{l ~ j)g) around x with the radius (1 — ^)^ 
is contained in S. Then for every x G B{x, (1 — j)g) there is some 
y G B{Ox, g) (closed ball around Ox with the radius g) so that because 
of the convexity of / 

fix) = f{x + {l-j)y) 

= f(x-{l-j)x + {l-j)ix + y)) 

= f{j{x + X{x-x)) + {l-j){x + y)) 

< jf{x + X{x-x)) + {l-j)f{x + y) 

< jf{x + X(x-x)) + {l-j)a 

=: p. 

This means that / is bounded from above on B(x, (1 — j)g) by /3. 
For the proof of the continuity of / at £ we take any s G (0,1). Then 
we choose an arbitrary element x of the closed ball B{x,€{l — j)g)' 
Because of the convexity of / we get for some y G 5(Ox, (1 — j)g) 

f{x) = f{x + ey) 
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= f{{l-s)x + s{x + y)) 

< {l-e)f{x)+sf{x + y) 

< {l-e)f{x)+€p 

which imphes 

f{x)-f{x)<e{P-m). (2.3) 

Moreover we obtain 

I + 6 I + S 

^ {f{x)+eP) 
l+€ 

which leads to 

{l + e)f{x)<f{x)+eP 

and 

-{f{x)-f{x))<e{p-f{x)). (2.4) 

The inequahties (2.3) and (2.4) imply 

\f{x) - f{x)\ < e{P - fix)) for all x G B{x,e{l - j)g). 

So, / is continuous at x, and the proof is complete. • 

Under the assumptions of the proceding lemma it is shown in [68, 
Prop. 2.2.6] that / is even Lipschitz continuous at every x ^ S (see 
Definition 3.33). 
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2.3 Set of Minimal Points 

After answering the question about the existence of a minimal solution 
of an optimization problem, in this section the set of all minimal 
points is investigated. 

Theorem 2.14. Let S be a nonempty convex subset of a real 
linear space. For every quasiconvex functional f : S -^ R the set of 
minimal points of f on S is convex. 

Proof. If / has no minimal point on S, then the assertion is 
evident. Therefore we assume that / has at least one minimal point 
X on S. Since / is quasiconvex, the set 

S:={xeS\ fix) < fix)} 

is also convex. But this set equals the set of minimal points of / on 
S. • 

With the following definition we introduce the concept of a local 
minimal point. 

Definition 2.15. Let the assumption (2.1) be satisfied. An 
element x E S is called a local minimal point oi f on S if there is a 
ball B{x^ e) := {x E X \ \\x — x\\ < e} around x with the radius £: > 0 
so that 

fix) < fix) for dllxeSn Bix, e). 

The following theorem says that local minimal solutions of a con­
vex optimization problem are also (global) minimal solutions. 

Theorem 2.16. Let S be a nonempty convex subset of a real 
normed space. Every local minimal point of a convex functional f : 
S —^^ is also a minimal point of f on S. 

Proof. Let x G 5 be a local minimal point of a convex functional 
/ : S' —> M. Then there are an £: > 0 and a ball Bix.e) so that x is a 
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minimal point of / on SnB{x^ e). Now we consider an arbitrary x e S 
with X 0 B{x,e). Then it is \\x — x\\ > e. For A := T^^\ ^ (0,1) we 
obtain x\ := Ax + (1 — X)x G S and 

\\x\ — x\\ = \\Xx + (1 — A)x — x\\ = \\\x — x\\ = £, 

i.e., it is XA G 5 n B{x, e). Therefore we get 

fix) < f{xx) 
= f{Xx + {l-X)x) 
< Xf{x) + {1-X)fix) 

resulting in 

m < fix). 

Consequently S is a minimal point of f on S. • 

It is also possible to formulate conditions ensuring that a minimal 
point is unique. This can be done under stronger convexity require­
ments, e.g., like "strict convexity" of the objective functional. 

2,4 Application to Approximation 
Problems 

Approximation problems can be formulated as special optimization 
problems. Therefore, existence theorems in approximation theory can 
be obtained with the aid of the results of Section 2.2. Such existence 
results are deduced for general approximation problems and especially 
also for a problem of Chebyshev approximation. 

First we investigate a general problem of approximation theory. 
Let 5 be a nonempty subset of a real normed space (X, || • ||), and let 
X G X be a given element. Then we are looking for some x E S ior 
which the distance between x and S is minimal, i.e., 

11̂  — £|| ^ 11̂  ~ 1̂1 for all X E S. 
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Definition 2.17. Let S' be a nonempty subset of a real normed 
space (X, II • II). The set S is called proximinal if for every £ G X 
there is a vector x E S with the property 

\\x - x\\ < \\x - x\\ for all x e S. 

In this case x is called best approximation to x from S (see Fig. 2.7). 

/ 
/ 
\ 
\ 

{x G X I ||x — x\\ = ||x — x\ 

Figure 2.7: Best approximation. 

So for a proximinal set the considered approximation problem is 
solvable for every arbitrary x E X. The following theorem gives a 
sufficient condition for the solvability of the general approximation 
problem. 

Tiieorem 2.18. Every nonempty convex closed subset of a re­
flexive real Banach space is proximinal. 

Proof. Let 5 be a nonempty convex closed subset of a reflexive 
Banach space (X, || • ||), and let x G X be an arbitrary element. Then 
we investigate the solvability of the optimization problem min ||x —x||. 

xeS 

For that purpose we define the objective functional / : X —> R with 

f{x) == \\x — x\\ for all x G X. 
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The functional / is continuous because for arbitrary x^y E. X we have 

\M-f{y)\ = \\\x-x\\-\\y-x\\\ 

< \\x - X - {y - x)\\ 

= ll^^-yll-

Next we show the convexity of the functional / . For arbitrary x,y & 
X and A e [0,1] we get 

fiXx + il-X)y) = \\Xx+il-X)y-x\\ 

= \\X{x-x) + {l-X){y-x)\\ 

< A||a;-f| | + ( l - A ) | | y - : r | | 

= A/(a;) + ( l - A ) / ( y ) . 

Consequently / is continuous and quasiconvex. If we fix any x E S 
and we define 

S:^{XES\ fix) < fix)}, 

then ̂  is a convex subset of X. For every x E S we have 

\\x\\ = \\x — X + x\\ < \\x — x\\ + \\x\\ < f{x) + ||x||, 

and therefore the set S is bounded. Since the set S is closed and 
the functional / is continuous, the set S is also closed. Then by the 
existence theorem 2.12 / has at least one minimal point on S^ i.e., 
there is a vector x E S with 

f{x) < f{x) for all XES. 

The inclusion S C S implies x E S and for all x E S\S we get 

fix) > fix) > fix). 

Consequently x E S is a> minimal point of f on S. • 

The following theorem shows that, in general, the reflexivity of 
the Banach space plays an important role for the solvability of ap­
proximation problems. But notice also that under strong assumptions 
concerning the set S an approximation problem may be solvable in 
non-reflexive spaces. 
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Theorem 2.19. A real Banach space is reflexive if and only if 
every nonempty convex closed subset is proximinal. 

Proof. One direction of the assertion is already proved in the 
existence theorem 2.18. Therefore we assume now that the consid­
ered real Banach space is not reflexive. Then the closed unit ball 
5 (0x , l ) := {x e X I \\x\\ < 1} is not weakly sequentially compact 
and by a James theorem (Thm. B.2) there is a continuous linear func­
tional I which does not attain its supremum on the set S(Ox, 1), i.e., 

l{x) < sup l{y) for all x G 5(0^ , 1). 
yeBiOxA) 

If one defines the convex closed set 

S :={xeX \ l{x) > sup l{y)}, 
yeB{Ox,i) 

then one obtains S n B{Ox, 1) = 0- Consequently the set S is not 
proximinal. • 

Now we turn our attention to a special problem, namely to a prob­
lem of uniform approximation of functions (problem of Chebyshev ap­
proximation). Let M be a compact metric space and let C{M) be the 
real linear space of continuous real-valued functions on M equipped 
with the maximum norm || • || where 

\\x\\ •= max \x{t)\ for all x G CiM). 
II II ^ ^ ^ I V / I \ / 

Moreover let 5 be a nonempty subset of C{M)^ and let x G C{M) be 
a given function. We are looking for a function x E S with 

11̂  — 1̂1 ^ 11̂  — 1̂1 for all X E: S 

(see Fig. 2.8). 
Since X = C{M) is not reflexive, Theorem 2.18 may not be ap­

plied directly to this special approximation problem. But the follow­
ing result is true. 

Theorem 2.20. If S is a nonempty convex closed subset of 
the normed space C{M) such that for any x E S the linear subspace 
spanned by S — {x} is reflexive, then the set S is proximinal 
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/N 

\x — x\\ = max \x{t) — x{t)\ 
I II ^^^ I V / \ n 

M = [a, b] 

Figure 2.8: Chebyshev approximation. 

Proof. For x E S we have 

inf \\x — x\\ = inf 
xes xes (X x) — {x ~ x)\ 

= inf \\x 
xes-{x} 

{x — x) 

If V denotes the linear subspace spanned by £ — x and S — {£}, then 
V is reflexive and Theorem 2.18 can be appHed to the reflexive real 
Banach space V. Consequently the set S is proximinal. • 

In general, the linear subspace spanned by S — {x} is finite di­
mensional and therefore reflexive, because S is very often a set of 
linear combinations of finitely many functions of C{M) (for instance, 
monoms, i.e. functions of the form x{t) = l , t , t^ , . . . ,t^ with a fixed 
n E N). In this case a problem of Chebyshev approximation has at 
least one solution. 

2.5 Application to Optimal Control 
Problems 

In this section we apply the existence result of Theorem 2.12 to prob­
lems of optimal control. First we present a problem which does not 
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have a minimal solution. 

Example 2.21. We consider a dynamical system with the dif­
ferential equation 

x{t) = —uitY almost everywhere on [0,1], (2.5) 

the initial condition 
:r(0) - 1 (2.6) 

and the terminal condition 

x{l) = 0. (2.7) 

Let the control ?i be a L2-function, i.e. u G I/2[0,1]. A solution of the 
differential equation (2.5) is defined as 

x{t) =c- u{sfds for all t G [0,1] 

0 

with c G R. In view of the initial condition we get 

t 

x{t) = 1 - ju{sfds for all t G [0,1]. 

0 

Then the terminal condition (2.7) is equivalent to 

1 - f u{sfds = 0. 
0 

1 

Question: Is there an optimal control minimizing Jt'^u{tydt ? 
0 

For X = 1/2 [0,1] we define the constraint set 

1 

5 : = | nGL2[0 , l ] fuisfds^ll 
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{S is exactly the unit sphere in L2[0,1]). The objective functional 
/ : S' —> R is given by 

1 

f{u)= ftMtYdt for all u e 5. 
0 

One can see immediately that 

0<mif{u). 
ues 

Next we define a sequence of feasible controls {un)neN by 

/j,\ _ j ^ almost everywhere on [0, ̂ ) 1 
'^^ ̂  \ 0 almost everywhere on [^, 1] J ' 

Then we get for every n G N 
1 

1 ^ 

INn||i2[o,i] = / \un{t)\'^dt = / n^dt = 1. 
0 0 

Hence we have 

Un e S for all n G N 

(every Un is an element of the unit sphere in I/2[0,1]). Moreover we 
conclude for all n G N 

f{Un)= ft\n{tfdt=: ft ̂ nHt ^ "it' 
0 3n4 

and therefore we get 

lim/(w„) = 0 = inf/(ti). 
n—>oo UES 

If we assume that / attains its infimal value 0 on 5', then there is a 
control u E S with f{u) = 0, i.e. 

0 >0 
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But then we get 

u{t) = 0 almost everywhere on [0,1] 

and especially u ^ S. Consequently / does not attain its infimum on 
S. 

In the following we consider a special optimal control problem 
with a system of linear differential equations. 

Problem 2.22. Let A and B be given (n, n) and (n, m) matrices 
with real coefficients, respectively, and let the system of differential 
equations be given as 

x{t) = Ax{t) + Bu{t) almost everywhere on [to,ti] (2.8) 

with the initial condition 

x(to) = xo E M^ (2.9) 

where — oo < to < ^i < oo . Let the control i/ be a 1/2̂ [to, ^i] function. 
A solution X of the system (2.8) of differential equations with the 
initial condition (2.9) is defined as 

t 

x{t) =xo+ f e^^^-'^Bu{s) ds for all t G [to, h]. 

to 

The exponential function occurring in the above expression is the 
matrix exponential function, and the integral has to be understood in 
a componentwise sense. Let the constraint set S C 1/2̂ [to, h] be given 
as 

S := {u e L^[to,ti] I \\u{t)\\ < 1 almost everywhere on [to,ti]} 

(II • II) denotes the I2 norm on BJ^). The objective functional / : 5 —> R 
is defined by 

h 

f{u) = j{g{x{t)) + h{u{t))) dt 
to 

h t 

- / (^(^0+ I e^^'-'^Bu{s)ds\+h{u{t))\dt for ^WueS 
to to 
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where 5̂  : R'̂  —> R and h : R^ —> R are real valued functions. Then 
we are looking for minimal points of f on S. 

Theorem 2.23. Let the problem 2.22 be given. Let the functions 
g and h be convex and continuous, and let h be Lipschitz continuous 
on the closed unit ball. Then f has at least one minimal point on S. 

Proof. First notice that X := L^[to,ii] is a reflexive Banach 
space. Since S is the closed unit ball in L2^[to,ti], the set S is closed, 
bounded and convex. Next we show the quasiconvexity of the ob­
jective functional / . For that purpose we define the linear mapping 
L : 5 —> A(7^[to, ii] (let AC^[to^ ti] denote the real linear space of ab­
solutely continuous n vector functions equipped with the maximum 
norm) with 

ti 

L{u){t) = I e^^^-'^Bu{s)ds for ^WueS and all t e [to.ti]. 

to 

If we choose arbitrary Ui,U2 E S and A G [0,1], we get 

g{xo + L{Xui + {l-X)u2){t)) 

= g{xo + XL{m){t) + {l-X)L{u2m) 

= g{X[xo + L{m){t)] + {l- X)[xo + L{u2m]) 

< Xg{xo + L{ui){t)) + {l~X)g{xo + L{u2){t)) for alH G [to,ii]. 

Consequently the functional g{xo + L{-)) is convex. For every a G R 
the set 

Sa:={ueS \ f{u) < a} 

is then convex. Because for arbitrary Ui^U2 G Sa and A G [0,1] one 
obtains 

/(Aui + (1 - X)u2) 

= f[g{xo + L{Xui + {l-X)u2){t)) 

to 

+h{Xui{t) + {1 - X)u2{t))]dt 
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ti 

< [[Xgixo + L{ui){t)) + (1 - A)̂ (a;o + L{u2){t)) 

to 

+Xh{ui{t)) + {1 - X)h{u2{t))]dt 

= A / K ) + (1 - A)/(w2). 

So, / is convex and, therefore, quasiconvex. Next we prove that the 
objective functional / is continuous. For all î  G S' we have 

to 

< Ci\\u\\L^itoM] (2-10) 

where Ci is a positive constant. Now we fix an arbitrary sequence 
(̂ n)nGN ^^ S couvcrging to some u E S, Then we obtain 

ti 

f{un)-f{u) = J[g{xo + L{un){t))+g{xo + L{u){t))]dt 

to 
ti 

+ f[h{Un{t))-h{u{t))]dt (2.11) 

to 

Because of the inequality (2.10) and the continuity of g the following 
equation holds pointwise: 

lim g{xo + L{un){t)) = g{x^ + L{u){t)). 
n—>oo 

Since ||t̂ n||L5 [̂to,tii < 1 and ||t̂ ||Lĵ [to,tii < 1, the convergence of the first 
integral in (2.11) to 0 follows from Lebesgue's theorem on the domi­
nated convergence. The second integral expression in (2.11) converges 
to 0 as well because h is assumed to be Lipschitz continuous: 

ti ti 

I \h{un{t)) - h{u{t))\dt < C2 / \\un{t) - u{t)\\ dt 

to to 

< C2||«n-w|U-[to,«il 
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(where C2 G M denotes the Lipschitz constant). Consequently / is 
continuous. We summarize our results: The objective functional / 
is quasiconvex and continuous, and the constraint set S is closed, 
bounded and convex. Hence the assertion follows from Theorem 2.12. 

D 

Exercises 

2.1) Let S' be a nonempty subset of a finite dimensional real normed 
space. Show that every continuous functional f : S -^Ris also 
weakly lower semicontinuous. 

2.2) Show that the function / : R -^ R with 

f{x) = xe^ for all X G R 

is quasiconvex. 

2.3) Let the assumption (2.1) be satisfied, and let the set S be con­
vex. Prove that the functional / is quasiconvex if and only if 
for all x^y E S 

f{Xx + (1 - X)y) < max{/(x), f{y)} for all A G [0,1]. 

2.4) Prove that every proximinal subset of a real normed space is 
closed. 

2.5) Show that the approximation problem from Example 1.4 is solv­
able. 

2.6) Let C{M) denote the real linear space of continuous real valued 
functions on a compact metric space M equipped with the max­
imum norm. Prove that for every n G N and every continuous 
function x G C{M) there are real numbers a o , . . . , 0;̂  G R with 
the property 

n 

max I 2_, ^it^ ~~ ^[^)\ 
teM 

i=0 
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n 

< max I y ^ aif — x{t) \ for all a o , . . . , ĉ n ^ 1̂ -

2.7) Which assumption of Theorem 2.12 is not satisfied for the op­
timization problem from Example 2.21? 

2.8) Let the optimal control problem given in Problem 2.22 be mod­
ified in such a way that we want to reach a given absolutely 
continuous state x as close as possible, i.e., we define the objec­
tive functional f : S -^Mhy 

f{u) = max \x{t) — x{t)\ 
te[to,ti] 

= max 
te[to,ti] 

xo-x{t)+ I e'^^'-'^Bu{s)ds for all u E S. 

to 

Show that / has at least one minimal point on S. 
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Generalized Derivatives 

In this chapter various customary concepts of a derivative are pre­
sented and its properties are discussed. The following notions are in­
vestigated: directional derivatives, Gateaux and Frechet derivatives, 
subdifferentials, quasidifferentials and Clarke derivatives. Moreover, 
simple optimality conditions are given which can be deduced in con­
nection with these generalized derivatives. 

3.1 Directional Derivative 

In this section we introduce the concept of a directional derivative 
and we present already a simple optimality condition. 

Definition 3.1. Let X be a real linear space, let (y, || • ||) be a 
real normed space, let 5 be a nonempty subset of X and lei f : S -^Y 
be a given mapping. If for two elements x E S and h e X the limit 

/'(^)(/i) := lim hf(x + Xh)-m) 

exists, then f'{x){h) is called the directional derivative of / at x in 
the direction h. If this limit exists for all /i G X, then / is called 
directionally differentiable at x (see Fig. 3.1). 

Notice that for the limit defining the directional derivative one 
considers arbitrary sequences (An)nGN converging to 0, Â  > 0 for all 
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X + h 

Figure 3.1: A directionally differentiable function. 

n G N, with the additional property that x + A /̂i belongs to the 
domain S for all n G N. This restriction of the sequences converging 
to 0 can be dropped, for instance, if S equals the whole space X. 

Example 3.2. For the function / : R^ _, ]R ^ith 

f{x^^x,) = S^f^^ + ^^^ f f x ^ i o } fo^^ll(^i,^2)GM^ 

which is not continuous at 0^2, we obtain the directional derivative 

/'(OR^)(/M, h^) = lim \f{X{h„ h)) = ( I '11'^^ 
A->o+ A \ 0 it h2 = 0 

in the direction (/ii,/i2) G M .̂ Notice that f{0^2) is neither continu­
ous nor linear. 

As a first result on directional derivatives we show that every 
convex functional is directionally differentiable. For the proof we 
need the following lemma. 
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Lemma 3.3. Let X be a real linear space^ and let f : X -^ W 
be a convex functional. Then for arbitrary x^h E: X the function 
(̂  : R+ \ {0} -> R with 

(̂ (A) = i ( / ( x + Xh) - f{x)) for allX>0 
A 

is monotonically increasing (i.e., 0 < s <t implies (p{s) < (p{t)). 

Proof. For arbitrary x,h E X we consider the function (p defined 
above. Then we get because of the convexity of / for arbitrary 0 < 
s<t: 

f{x + sh)-fix) = f(^{x + th) + ^-^x)-fix) 

< '-f(x+th) + ^-^m-m 

= ^^{f{x + th)-f{x)) 

resulting in 

-{fix + sh) - fix)) < lifix + th) - fix)), 
s t 

Consequently we have (p{s) < (p{t). • 

Theorem 3.4. Let X be a real linear space, and let f : X —^R 
be a convex functional. Then at every x E X and in every direction 
HEX the directional derivative f{x){h) exists. 

Proof. We choose arbitrary elements x^h E X and define the 
function (/P : R ^^ R with 

cp{X) = hf{x + Xh) - f{x)) for all A > 0. 
A 

Because of the convexity of / we get for all A > 0 
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and therefore, we have 

(l + X)f{x)<f{x + Xh) + Xf{x-h) 

implying 

fix) - fix -h)< h^fix + Xh) - fix)) = ^iX). 

Hence the function (/p is bounded from below. With Lemma 3.3 (/P is 
also monotonically increasing. Consequently the limit 

f'ix)ih) = lim <piX) 
A—>U-f 

exists indeed. • 

For the next assertion we need the concept of sublinearity. 

Definition 3.5. Let X be a real linear space. A functional 
/ : X —> R is called suhlinear^ if 

(a) f{ax) = af{x) for all x G X and all a > 0 (positive 
homogenity), 

(b) f{x + y) < f{x) + f{y) for all x,y e X (subadditivity). 

Now we show that the directional derivative of a convex functional 
is subhnear with respect to the direction. 

Theorem 3.6. Let X be a real linear space ̂  and let f : X —^R be 
a convex functional. Then for every x G X the directional derivative 
f\x)(') is a sublinear functional. 

Proof. With Theorem 3.4 the directional derivative f\x){') 
exists. First we notice that f{x){Ox) = 0. For arbitrary h E X and 
a > 0 we obtain 

f'ix)iah) = lim hfix + Xah) - fix)) = a/ '(x)(/i). 
A—>0+ A 
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Consequently /'(x)(-) is positively homogeneous. For the proof of the 
subadditivity we fix arbitrary /ii,/i2 ^ X. Then v̂ e obtain for an 
arbitrary A > 0 because of the convexity of / 

/ (x + A(/ii + /i2)) = / ( ^ ( x + 2A/ii) + i ( x + 2A/i2)) 

and 

+ ^\f{x + 2\h^)-f{x)]. 

Hence we get for A -^ 0+ 

f{x){h^ + h^) < f{x){h) + f'{x){h2) 

and the proof is complete. • 

If a functional / is defined not on a whole real linear space X 
but on a nonempty subset 5, the property that / has a directional 
derivative at x in any direction x — x with x e 5, requires necessarily 

X + X{x — x) = Xx + {1 — X)x e S for sufficiently small A > 0. 

This necessary condition is fulfilled, for instance, if S is starshaped 
with respect to x — a notion which is introduced next. 

Definition 3.7. A nonempty subset S of a real hnear space is 
called starshaped with respect to some x E S^ ii for all x E S: 

Xx + {1- X)x E S for all A G [0,1] 

(see Fig. 3.2). 
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Figure 3.2: A set S' which is starshaped with respect to x. 

Every nonempty convex subset of a real linear space is starshaped 
with respect to each of its elements. And conversely, every nonempty 
subset of a real linear space which is starshaped with respect to each 
of its elements is a convex set. 

Using directional derivatives we obtain a simple necessary and 
sufficient optimality condition. 

Theorem 3.8. Let S he a nonempty subset of a real linear space, 
and let f : S —^ W be a given functional. 

(a) Let X E S be a minimal point of f on S. If the functional f 
has a directional derivative at x in every direction x — x with 
arbitrary x E S, then 

f{x){x ~x)>0 for all x e S. (3.1) 

(b) Let the set S be convex and let the functional f be convex. If 
the functional f has a directional derivative at some x e S in 
every direction x — x with arbitrary x E S and the inequality 
(3.1) is satisfied, then x is a minimal point of f on S. 

Proof. 

(a) Take any x E S. Since / has a directional derivative at x in the 
direction x — x, we have 

f'{x){x -x)= lim Ufix + X{x - x)) - fix)). 
A—>0-j- A 
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X is assumed to be a minimal point of / on 5, and therefore we 
get for sufficiently small A > 0 

f{x + X{x-x))>f{x), 

Consequently we obtain 

f{x){x-x)>Q. 

(b) Because of the convexity of / we have for an arbitrary x E S 
and all A G (0,1] 

fix + X{x - x)) = f{Xx + (1 - A)^) < Xf{x) + (1 - X)f{x) 

and especially 

fix) > fix) + jifix + Xix - x)) - fix)). 

Since / has a directional derivative at x in the direction x — x^ 
it follows 

fix)>fix) + f'ix)ix-x) 

and with the inequality (3.1) we obtain 

fix) > fix). 

Consequently S is a minimal point of / on S. 

D 

In part (b) of the preceding theorem one can weaken the assump­
tions on / and S, if one assumes only that / is convex at x. In this 
case S needs only to be starshaped with respect to x. 

3.2 Gateaux and Prechet Derivatives 

In this section we turn our attention to stronger differentiability no­
tions. We want to ensure especially that differentiable mappings are 
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also continuous. Furthermore we investigate a known problem from 
the calculus of variations. 

Definition 3.9. Let (X, || • ||x) and (y, || • ||y) be real normed 
spaces, let 5 be a nonempty open subset of X, and let f : S —^Y he 
a given mapping. If for some x E: S and all /i E X the limit 

f'{x){h):=^mj{f{x + Xh)-m) 

exists and if f\x) is a continuous linear mapping from X to Y^ then 
f\x) is called the Gateaux derivative of / at x and / is called Gateaux 
differentiable at x. 

Example 3.10. 

(a) Let / : R^ —> R be a given function with continuous partial 
derivatives. Then for every S G R^ the Gateaux derivative of / 
at X reads as 

n^h) = 4^ fix + Xh)\ = V/(x + Xhfh\ = Vfixfh 
IA=O ^ dy A=0 

for all h E 

(b) Let (X, II • IIx) and (F, || • ||y) be real normed spaces, and let 
L : X —> y be a continuous linear mapping. Then the Gateaux 
derivative of L at every x G X is given as 

L\x){h) = L{h) for a l l / iGX. 

Sometimes the notion of a Gateaux derivative does not suffice in 
optimization theory. Therefore we present now a stronger concept of 
a derivative. 

Definition 3.11. Let (X, || • ||x) and (Y, || • ||y) be real normed 
spaces, let 5 be a nonempty open subset of X, and let / : iS —> F be a 



3.2. Gateaux and Prechet Derivatives 39 

given mapping. Furthermore let an element x E S he given. If there 
is a continuous hnear mapping f\x) : X -^Y with the property 

j . ^ \\f{x + h)-f{x)~f{x){h)\\y _^ 

ll^llx-0 \\h\\x 

then f{x) is called the Frechet derivative oi f ai x and / is called 
Frechet differentiable at x. 

According to this definition we obtain for Frechet derivatives with 
the notations used above 

f{x + h)^fix) + f'ix)ih) + oi\\h\\x) 

where the expression o(||/i||x) of this Taylor series has the property 

Example 3.12. We consider a function / : R^ —> R which 
is continuous with respect to each of its arguments and which has 
continuous partial derivatives with respect to the two first arguments. 
Moreover we consider a functional / : C^[a, 6] —> E (with — CXD < a < 
b < oo) given by 

6 

f{x)= Il{x{t),x{t),t)dt for alia; GC^[a,6]. 

a 

Then we obtain for arbitrary x, /i G C^[a, 6] 

f{x + h)- fix) 
b 

= [l{x{t) + h{t),x{t) + h{t),t) -l{x{t),i{t),t)]dt 
a 

b 

= jMx{t),^{t),t)h{t) + k{x{t),i^^^ 
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Consequently the Frechet derivative of / at x can be v^ritten as 

b 

f{x){h) = A/^(x(t),x(t),t)/i(t) + /i(x(t),x(t),t)/i(t)]rft 

a 

ioi8llheC^[a,b], 

Next we present some important properties of Frechet derivatives. 

Theorem 3.13. Let (X, || • \\x) (ind (Y", || • ||y) be real normed 
spaces, let S be a nonempty open subset of X, and let f : S —^ Y 
be a given mapping. If the Frechet derivative of f at some x E S 
exists, then the Gateaux derivative of f at x exists as well and both 
are equal 

Proof. Let f{x) denote the Frechet derivative of / at x. Then 
we have 

implying 

lim r^A\f{x + Xh) - fix) - f'{x){Xh)\\y = 0 for all h e X\{Ox}. 
A—>0 | A | 

Because of the linearity of f{x) we obtain 

lim hf{x + Xh) - f{x)] = f\x){h) for all heX. 
A—>0 A 

D 

Corollary 3.14. Let (X, || • ||x) dnd (Y, \\ • ||y) be real normed 
spaces, let S be a nonempty open subset of X, and let f : S —^ Y be 
a given mapping. If f is Frechet differentiable at some x E S, then 
the Frechet derivative is uniquely determined. 
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Proof. With Theorem 3.13 the Frechet derivative coincides with 
the Gateaux derivative. Since the Gateaux derivative is as a hmit 
uniquely determined, the Frechet derivative is also uniquely deter­
mined. • 

The following theorem says that Frechet differentiability implies 
continuity as well. 

Theorem 3.15. Let (X, || • ||x) and (Y", || • ||y) be real normed 
spaces^ let S be a nonempty open subset of X, and let f : S —^ Y be 
a given mapping. If f is Frechet differentiable at some x E S, then f 
is continuous at x. 

Proof. To a sufficiently small e > 0 there is a ball around x so 
that for all X + h of this ball 

\\f(x + h)-fix)-f'{x){h)\\Y<s\\h\\x. 

Then we conclude for some a > 0 

\\f{x+h)-m\\Y 
= \\f{x + h)- fix) - f{x){h) + f'{x){h)\\y 

< \\f{x + h)- fix) - f'ix)ih)\\y + \\f'ix)ih)\\y 

< e\\h\\x+a\\h\\x 

= {e + c^)\\h\\x. 

Consequently / is continuous at x. • 

One obtains an interesting characterization of a convex functional, 
if it is Gateaux differentiable. This result is summarized in the fol­
lowing theorem. 

Theorem 3.16. Let S be a nonempty convex open subset of a 
real normed space (X, || • ||); and let f : S -^ R be a given functional 
which is Gateaux differentiable at every x E S. Then the functional 
f is convex if and only if 

f{y) > fix) + f{x){y - x) for all x,y e S, (3.2) 
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Proof. 

(a) First let us assume that the functional / is convex. Then we 
get for all x,y e S and all A G (0,1] 

f{x + X{y - x)) = f{Xy + (1 - X)x) < Xf{y) + (1 - A)/(x) 

resulting in 

f{y) > fix) + jifix + Xiy - x)) - fix)). 

Since / is Gateaux diflFerentiable at a;, it follows with Theorem 
3.13 

fiy)>fix) + f'ix)iy-x). 

(b) Now we assume that the inequality (3.2) is satisfied. The set 
S is convex, and therefore we obtain for all x,y E S and all 
AG [0,1] 

fix) > fiXx + (1 - X)y) + fiXx + (1 - X)y)iil - A)(x - y)) 

and 

fiv) > fiXx + (1 - X)y) + fiXx + (1 - X)y)i-Xix - y)). 

Since Gateaux derivatives are linear mappings, we conclude fur­
ther 

Xfix) + (1 - X)fiy) 
> XfiXx + (1 - X)y) + A(l - A)/'(Aa: + (1 - X)y)ix - y) 

+ (1 - A)/(Aa; + (1 - X)y) 
-Xil-X)f'iXx + il-X)y)ix-y) 

= /(Ax + (1-A)y). 

Consequently, the functional / is convex. 

D 
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If 5 is a nonempty convex open subset of R'̂  and f : S —^ R is 
a continuously partially differentiable function, then the inequality 
(3.2) can also be written as 

f{y) > f{x) + Vf{xY{y - x) for all x,y e S, 

If one considers for every x E S the tangent plane to / at (x, /(x)), 
this inequality means geometrically that the function is above all of 
these tangent planes (see Fig. 3.3). 

Figure 3.3: Illustration of the result of Thm. 3.16. 

Next we formulate a necessary optimality condition for Gateaux 
differentiable functional. 

Theorem 3.17. Let (X, || • ||) 6e a real normed space, and let 
f : X -^ R be a given functional. If x E X is a minimal point of f 
on X and f is Gateaux differentiable at x, then it follows 

f(x){h)=0 for all hex. 

Proof. Let an element h e X he arbitrarily given. Then it 
follows ioT X := h + X with Theorem 3.8, (a) 

f'{x)ih) > 0, 
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and for x := —h + x we get 

f'm-h) > 0. 

Because of the linearity of the Gateaux derivative the assertion follows 
immediately. • 

Finally, we discuss an example from the calculus of variations. We 
proceed as in the proof of Theorem 3.17 which, in virtue of Theorem 
3.13, holds also for Frechet differentiable functional. 

Example 3.18. We consider a function / : M̂  —̂  R which is 
continuous with respect to all arguments and which has continuous 
partial derivatives with respect to the two first arguments. Moreover, 
let a functional / : C^[a, 6] —> R (with —oo < a < 6 < oo) with 

b 

/ ( x ) - f l{x{t),x{t),t)dt for all a; GC^[a,6] 

a 

be given. But we are interested only in such functions x for which 
x{a) = xi and x{b) = x^ where Xi,X2 G R are fixed endpoints. If we 
define the constraint set 

S' := {a; G C\a, 6] | x{a) = Xi and x{h) = X2}, 

then we ask for necessary optimality conditions for minimal points of 
/ o n 5. 

For the following we assume that x G 5 is a minimal point of / on 
S. The constraint set S is convex and the objective functional / is 
Frechet differentiable (compare Example 3.12). Then it follows from 
Theorem 3.8, (a) (in connection with Theorem 3.13) for the Frechet 
derivative of / 

f{x){x-x) > 0 fo ra l lxGS ' 

or 
f{x){h) > 0 ioi^WheS — S- {x}. 

The set S can also be written as 

S = {xe C^[a,h] I x{a) = x{h) = 0}. 
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With h E S we have —/i G 5 as well. Because of the linearity of the 
Frechet derivative v̂ e obtain 

f{x){h)=0 for all/iG 5. 

With Example 3.12 we have 

b 

f\x){h) - A/,(x(t),^(t),t)/i(t) + /i(x(t),^(t),t)/i(t)]dt 
a 

for all heS. 

Hence our first result reads 
h 

[k{x{t),x{t),t)h{t) + k{x{t),2^^^ = 0 for all h G 5.(3.3) 

For further conclusions in the previous example we need an im­
portant result which is prepared by the following lemma. 

Lemma 3.19. For —oo < a < b < oo let 

S = {xe C^[a,b] I x{a) = x{b) = 0}. 

If for some function x G C[a, 6] 

b 

/ x{t)h{t) dt = 0 for all he S, 

then 
X = constant on [a, 6]. 

Proof. We define 
b 

\dt ^=6^/^(')' 
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and choose especially h E S with 

t 

h{t) = / {x{s) - c) ds for all t G [a, h]. 

Then we get 

b 

\dt l{x{t)-cfdt = I{x{t) - c)h{t). 

a a 

b 

= f x{t)h{t) dt - c[h{b) - h{a)] 

a 

= -ch(h) 
b 

I x{s) ds — c{b — a) 

= 0. 

Hence it follows 
x(t) = c for all t G [a, b]. 

Lemma 3.20. For —CXD < a < b < OO let 

S = {xe C^[a,b] I x{a) = x{b) = 0}. 

/ / there are functions x^y E C[a,b] with 

b 

/ [x{t)h{t) + y{t)h{t)] dt = 0 for all he S, 

a 

then it follows y G C^[a, b] and y = x. 

D 

(3.4) 
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Proof. We define a function (/? : [a, 6] —> R by 

t 

ifit) = / x{s) ds for all t G [a, 6]. 

a 

Then we obtain by integration by parts 

h b ^ 

I x(t)h{t)dt = ^{t)h{t)\ - (p{t)h{t)dt 
a a 

b 

= - (f{t)h{t) dt for all he S, 

a 

and from the equation (3.4) it foUov̂ s 

b 

f[-(f{t) + y{t)]h{t) dt = 0 for all heS, 

a 

With Lemma 3.19 we conclude for some constant c G R 

y{t) = (p{t) + c for all t G [a, b]. 

Taking into consideration the definition of (p this equality leads to 

y{t) •=x{t) for all t G [a, 6], 

and the assertion is shown. • 

Using this last lemma we obtain the following theorem which is 
well known in the calculus of variations. 

Theorem 3.21. Let the assumptions of the Example 3.18 be 
satisfied. If x E S is a minimal point of f on S, it follows 

—k{x{t),x{t),t) = k{x{t),x{t),t) for allte [a,b]. (3.5) 
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Proof. In Example 3.18 the equation (3.3) is already proved to 
be a necessary optimality condition. Then the application of Lemma 
3.20 leads immediately to the assertion. • 

In the calculus of variations the equation (3.5) is also called the 
Euler-Lagrange equation. 

Example 3.22. Determine a curve x G C^[a, 6] (with —oo < 
a < b < oo) with smallest length which connects the two end points 
(a, Xi) and (6, X2) (where xi, 0:2 G M). In other words: We are looking 
for a minimal point x of f on S with 

and 

S := {x E C^la^ b] \ x{a) = Xi and x{b) — X2} 

0 

f{x) = I y/1 + x{tf dt for all x e S. 

In this case the Euler-Lagrange equation (3.5) reads 

This equation is equivalent to 

d 2x{t) 

= 0. 
X=X 

= 0. 
dt2^/TTJW 

Then we get for some constant c G M 

x(t) 
, ^ ' = c for all t e \a, b] 

VTTW 
and 

i = constant. 

Hence we have the result that the optimal curve x is just the straight 
line connecting the points (a, xi) and (6, X2) (see Fig. 3.4). This result 
is certainly not surprising. 
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/ 1 \ 

^2 

Xi 

a b t 

Figure 3.4: Illustration of the result of Example 3.22. 

3.3 Subdifferential 

In this section we present an additional concept of a derivative which 
is formulated especially for convex functional. With the aid of this 
notion we derive the generalized Kolmogoroff condition known in ap­
proximation theory. 

The characterization of convex Gateaux differentiable functional 
which is given in Theorem 3.16 proves to be very useful for the formu­
lation of optimality conditions. This characterization motivates the 
following definition of a subgradient. 

Definition 3.23. Let (X, || • ||) be a real normed space, and let 
/ : X —> R be a convex functional. For an arbitrary x ^ X the set 
df{x) of all continuous linear functionals / on X with 

f{x) > f{x) + l{x - x) for all X G X 

is called the subdifferential of / at x. A continuous linear functional 
/ e df{x) is called a subgradient of / at x (see Fig. 3.5). 

Example 3.24. 

(a) With Theorem 3.16 for every convex Gateaux differentiable 
functional / defined on a real normed space the subdifferen­
tial df{x) at an arbitrary x G X is nonempty. For every x E X 
we have for the Gateaux derivative f{x) G df{x)^ i.e., f'{x) is 
a subgradient of / at x. 
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A\ 

y = f{x) -\-li{x-x) 

__ _ - 2/ = f{x) + k{x - x) 

~ y = fix) + hix - x) 

> 
X X 

Figure 3.5: Subgradients of a convex functional. 

(b) Let (X, II • II) be a real normed space, and let (X*, || • \\x*) denote 
the real normed space of continuous linear functionals on X 
(notice that ||/||x* = sup ^ for all / G X*). 

Then for every x E X the subdifferential of the norm at x is 
given as 

d\\x\\ = 
{lex* \ l{x) = \\x\\ and ||^|U* = 1} if ^ 7̂  Ox 

{lex*\ \\i\\x* < 1} 

Proof. 

(i) For ^ = Ox we obtain 

aiî ll = {lex* 

= {lex* 

= {lex* 

if X = Ox 

||:E|| > l{x) for all x e X} 

\l{x)\ 

X 
< 1 for all X G X \ {Ox}} 

X- <!}• 

(ii) Now let an arbitrary element x ^ Ox he given. Then we obtain 
for every continuous linear functional I G X* with l{x) = \\x\\ 
and ||/||x* = 1 (see Theorem C.4 for the existence of such a 
functional) 

l{x) < \\x\\ for all X G X 

which implies 

||x|| + l{x -x) = \\x\\ - l{x) + l{x) < \\x\ 
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Hence it follows / G d\\x\\. 
Finally, we assume that I is a subgradient of the norm at x 7̂  Ox-
Then we get 

\\x\\-m = 2\\x\\ - \\x\\ - l{x) 

= \\2x\\ - \\x\\ - l{2x - x) 

> 0 

and 

-\\x\\ + l{x) = \\0x\\ - \\x\\ - l{Ox - x) 

> 0. 

These two inequalities imply/(x) = \\x\\. Furthermore we obtain 
for all a; G X 

\\x\\ > \\x\\+l{x-x) 

= Pll + ^(x)-llxll 

= lix). 

But then we conclude 

\\l\\x^ = sup 1 ^ < 1. 

Because oi l{x) = \\x\\ this leads to ||/||x* = 1- So the assertion 
is proved. 

D 

With the following lemma we also give an equivalent formulation 
of the subdifferential. 

Lemma 3.25. Let (X, || • ||) be a real normed space, and let 
f : X -^ R be a convex functional. Then we have for an arbitrary 
xeX 

df{x) := {/ G X* I f\x){h) > l{h) for all h e X} 
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(where f\x){h) denotes the directional derivative of f at x in the 
direction h). 

Proof. For an arbitrary / G df{x) we have 

f{x){h) = lim \{f{x + Xh) ~ f{x)) > l{h) for all heX. 

Hence one set inclusion is shown. For the proof of the converse inclu­
sion we assume that any / G X* is given with 

f{x){h) >l{h) iorallheX. 

Then it follows with Lemma 3.3 (for A == 1) 

f{x + h)- f{x) > f{x){h) > l{h) for alike X 

which means that / G df{x). • 

Next we investigate the question under which assumption a convex 
functional already has a nonempty subdifferential. 

Theorem 3.26. Let (X, || • ||) 6e a real normed space, and let f : 
X —^ E. be a continuous convex functional. Then the subdifferential 
df{x) is nonempty for every x E X. 

Proof. Choose any point x E X. Since the functional / is 
continuous at 5, there is a ball around x on which the functional / 
is bounded from above by some o; G M. Consequently, the epigraph 
E{f) of / has a nonempty interior (e.g., {x, a H- 1) G int(£'(/))), and 
obviously we have {x^f{x)) ^ int(£'(/)). / is a convex functional, 
and therefore with Theorem 2.8 the epigraph E{f) of / is convex. 
Hence the sets E{f) and {(x,/(x))} can be separated with the aid 
of the Eidelheit separation theorem (Theorem C.2). Then there are 
a number 7 G R and a continuous linear functional (/,/?) on X x R 
with {1,(3)^ (Ox*,0) and 

l{x) + /3a < 7 < l[x) + (3f{x) for all (x, a) G E{f), (3.6) 
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For X == :r we obtain especially 

Pa<Pf{x) for a l i a > f{x). 

Consequently we have /3 < 0. If we assume that /? = 0, we obtain 
from the inequality (3.6) 

l{x ~ x) <0 for allx e X 

and therefore we conclude / = Ox* - But this is a contradiction to the 
condition (l^P) i=- (Ox^jO). So we obtain /? < 0, and the inequality 
(3.6) leads to 

h.{x) + a > i / (x) + j{x) for all (x, a) E E{j) 

which implies for a = f{x) 

fix) > fix) - hix - x) for all x e X. 

Consequently, —^l is an element of the subdifferential dfix). • 

Under the assumptions of Theorem 3.26 it can be shown in addi­
tion that the subdifferential is a convex weak*-compact subset of X*. 
Notice that with Lemma 2.13 the convex functional in the previous 
theorem is already continuous if it is continuous at some point. 

With the aid of subgradients we can immediately present a neces­
sary and sufficient optimality condition. This theorem is formulated 
without proof because it is an obvious consequence of the definiton 
of the subdifferential. 

Theorem 3.27. Let (X, || • ||) be a real normed space, and let 
f : X —^R be a convex functional. A point x E X is a minimal point 
of f on X if and only if Ox* E dfix). 

With the following theorem we investigate again the connection 
between the directional derivative and the subdifferential of a convex 
functional. We see that the directional derivative is the least upper 
bound of the subgradients (compare also Lemma 3.25). 
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Theorem 3.28. Let (X, || • ||) 6e a real normed space, and let f : 
X —^ R be a continuous convex functional. Then for every x^h E X 
the directional derivative of f at x in the direction h is given as 

f{x){h)=max{l{h) I ledf{x)}. 

Proof. Let x G X be an arbitrary point and /i G X be an arbi­
trary direction. With Theorem 3.4 the directional derivative f'{x){h) 
exists and with Theorem 3.26 the subdifferential df{x) is nonempty. 
With Lemma 3.25 we have 

f{x){h) > l{h) for all I e df{x). 

Hence it remains to show that there is a subgradient / with f\x){h) = 
l{h). For that purpose we define the set 

T := {{x + Xh, f{x) + Xf'{x){h)) G X X M I A > 0}. 

Because of Lemma 3.3 we have 

f{x + \h) > f{x) + Xf\x){h) for aU A > 0. 

Therefore we get 

{x + A/i, f{x) + \f'{x){h)) 0 int(£;(/)) for all A > 0 

(as in the proof of Theorem 3.26 notice that the epigraph of / has a 
nonempty interior because / is continuous). Then it follows int(jE'(/)) 
f]T = 0. If we also notice that the sets S := E{f) and T are convex, 
then the Eidelheit separation theorem is applicable (Theorem C.2). 
Consequently, there are a continuous linear functional / on X and real 
numbers (3 and 7 with the property (/,/?) 7̂  (Ox^^O) and 

l{x) + Pa<-f<l{x + Xh) + p{f{x) + Xf\x){h)) (3.7) 

for all {x, a) G E{f) and all A > 0. 

For x = X and A = 0 we obtain especially 

15a < (5f{x) for all a > f{x) 
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which leads to /? < 0. If we assume that P = 0, then we obtain from 
the inequahty (3.7) with A = 0 

l{x - x) <0 for all X G X 

and therefore I = Ox*- But this is a contradiction to the condition 
(/,/?) 7̂  (Ox*, 0). Consequently we get /? < 0, and from the inequality 
(3.7) we conclude 

i/(x -x-Xh) + a> f{x) + Xf\x){h) (3.8) 

for all (x, a) G E{f) and all A > 0. 

For a = f{x) and A = 0 we obtain 

/ (^) > / (^) - -^K^ - ^) for all X G X, 

i.e., —4/ is a subgradient of / at x. For x = x, a = f{x) and A = 1 
we also conclude from the inequality (3.8) 

nx){h) < --^m. 

Because oi —hi G df{x) the assertion is shown. • 

As a result of the previous theorem the following necessary and 
sufficient optimality condition can be given. 

Corollary 3.29. Let S he a nonempty subset of a real normed 
space (X, II • II), and let f : X —^R be a continuous convex functional. 

(a) If X E S is a minimal point of f on S and S is starshaped with 
respect to x, then 

max{/(x -x)\le df{x)} > 0 for all x E S. (3.9) 

(b) If for some x E S the inequality (3.9) is satisfied, then x is a 
minimal point of f on S. 
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Proof. The part (a) of this theorem follows immediately from the 
Theorems 3.8, (a) and 3.28 (together with a remark on page 35). For 
the proof of the part (b) notice that with Theorem 3.28 and Lemma 
3.3 it follows from the inequality (3.9) 

j{f{x + X{x - x)) - f{x)) > f{x){x -x)>0 

for sllx e S and all A > 0. 

Hence we get for A = 1 

f{x) < f{x) for all xeS. 

Consequently, x is a minimal point of f on S. • 

For the apphcation of this corollary we turn our attention to ap­
proximation problems. 

Theorem 3.30. Let S be a nonempty subset of a real normed 
space (X, II • 11)̂  and let x ^ X \S be a given element. 

(a) If X E S is a best approximation to x from S and S is starshaped 
with respect to x, then 

max{/(x — x) \ I E X*, l{x — x) = \\x — x\\ and 

IÎ IU* = 1} > 0 for all xeS, (3.10) 

(b) If for some x E S the inequality (3.10) is satisfied, then x is a 
best approximation to x from S. 

Proof. X G S' is a best approximation to x from S if and only if 
X — X 7̂  Ox is a minimal point of the norm || • || on 5 — {x}. With 
Example 3.24, (b) we have 

d\\x ~ x\\ = {; G X* I l{x -x) = \\x - x\\ and ||/||x* = 1}. 

Then the inequahty (3.9) is equivalent to the inequality 



3.4. Quasidifferential 57 

max{/(x — X + x) \ I E X*, l{x — x) = \\x — x\\ and ||/||x* = 1} > 0 

for all X E S' - {x} 

resulting in 

m3x{l{x ~x) \ I e X*, l{x ~x) = \\x - x\\ and ||/||x* = 1} > 0 

for all X E S. 

Finally notice in part (a) that the set S — {x} is starshaped with 
respect to x —£ and the norm || • || is a continuous functional (compare 
page 21). So this theorem is proved using Corollary 3.29. • 

The optimality condition for approximation problems given in 
Theorem 3.30 is also called generalized Kolmogorov condition in ap­
proximation theory. 

3.4 Quasidifferential 

The theory of subdifferentials may also be extended to certain non-
convex functional. Such an extension was proposed by Dem'yanov 
and Rubinov^ and is the subject of this section. We give only a short 
introduction to this theory of quasidifferentials. 

Definition 3.31. Let 5 be a nonempty open subset of a real 
normed space (X, || • ||), let / : 5 —> R be a given functional, and 
let X G 5 be a given element. The functional / is called quasidiffer-
entiable at x if / is directionally differentiable at x and if there are 
two nonempty convex weak*-compact subsets df{x) and df{x) of the 
topological dual space X* with the property 

f{x){h) = max l{h) + min l{h) for all heX. 
Ledfix) ledfix) 

The pair of sets Df{x) := {df{x)jdf{x)) is called a quasidifferential 
of / at X, and the sets df{x) and df{x) are called subdifferential and 
superdifferential of / at x, respectively. 

-^V.F. Dem'yanov and A.M. Rubinov, "On quasidifferentiable functionals", So­
viet Math. Dokl 21 (1980) 14-17. 
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Quasidifferentials have interesting properties. But, in general, it 
is difficult to determine a quasidifferential to a given functional. 

Notice in the preceding definition that the subdifferential and the 
super differential are not uniquely determined. For instance, for every 
ball B{Ox*,e) := {/ G X* | \\l\j_x* < s} with an arbitrary e > 0 the 
pair of sets {df{x) + B{Ox*^s)^df{x) — B{Ox*')S)) is a quasidifferential 
of / at X as well. 

Example 3.32. Let (X, || • ||) be a real normed space, and let 
f : X -^ R and g : X -^ R he convex functional. If / and g are 
continuous at some x G X, then the functional cp := f — g is quasidif-
ferentiable at x. In this case (9/(x), —dg{x)) is a quasidifferential of 
(̂  at X where df{x) and dg{x) denote the subdifferential of / and g 
at X, respectively. 

Proof. By Theorem 3.4 / and g are directionally differentiable 
and therefore (f = f — g is also directionally differentiable. If df{x) 
and dg{x) denote the subdifferential of / and g at x (these two 
sets are nonempty, convex and weak*-compact), we define the sets 
d(p{x) := df{x) and dip{x) := —dg{x). By Theorem 3.28 the direc­
tional derivative of (̂  is given as 

<p\x){h) = f{xm-g'{x){h) 

— max lih) — max l{h) 
Ledfix) ~iedg{x) 

= max l{h) + min J{h) for all h E X. 
Ledifix) Jedip(x) 

Hence D(p{x) := (5/(x), —dg{x)) is a quasidifferential of (̂  at x. • 

This example shows that the concept of the quasidifferential is 
suitable for functionals which may be represented as the difference of 
two convex functionals. These functionals are also called d.c. func­
tionals. 

For locally Lipschitz continuous functionals we can present an in­
teresting characterization of the notion of quasidifferentiability. We 
show the equivalence of the quasidifferentiability to a certain "Frechet 
property" for locally Lipschitz continuous functionals on R^. 
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Definition 3.33. Let 5 be a nonempty subset of a real normed 
space (X, II • II), let / : 5 -^ R be a given functional, and let x e S 
be a given element. / is called Lipschitz continuous at x if there is a 
constant A: > 0 and some £ > 0 with 

\f{x) - f{y)\ < k\\x - y\\ for allx.yeSn B{x,e) 

where 

B{x, e) := {x e X \ \\x - x\\ < e}. 

f is called Lipschitz continuous if there is a constant k > 0 with 

\f{x) - f{y)\ < k\\x - y\\ for all x,y e S, 

The constant k is also called Lipschitz constant. 

Definition 3.34. Let S' be a nonempty open subset of a real 
normed space {X^\\ • ||), let/ : 5 -^ R be a given functional, let 
/ : X -^ R be a positively homogeneous and Lipschitz continuous 
functional, and let x G 5 be a given element. / is said to have the 
Frechet property at x with the functional / if 

.̂̂  \f{x + h)-f{x)~f{h)\ ^ ^ 

If / is Frechet differentiable at some x E S^ then it has also the 
Frechet property at x with / := fi^) (Frechet derivative of / at 
x) because the Frechet derivative f{x) is continuous and linear, and 
therefore it is also positively homogeneous and Lipschitz continuous. 
Hence the concept of the Frechet property of a functional is closely 
related to the concept of the Frechet differentiability. 

The following theorem which plays only the role of a lemma for 
Theorem 3.36 says that every directionally differentiable and locally 
Lipschitz continuous functional defined on R'̂  has already the Frechet 
property. 
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Theorem 3.35^. Let S be a nonempty open subset ofW^, and 
let X ^ S be a given element. Every functional / : 5 —> M which is 
Lipschitz continuous at x and directionally differentiable at x has the 
Frechet property at x with J := f'{x) (directional derivative of f at 
x). 

Proof, Let / : S' -^ R be Lipschitz continuous at x and direc­
tionally differentiable at x. Since / : 5 —̂  M is Lipschitz continuous 
at X, i.e., there are numbers A; > 0 and e > Q with 

\f{x) - f{y)\ < k\\x - y\\ for all x, y G 5 n B{x, e), (3.11) 

the directional derivative f{x) : M^ -^ R of / at x is also Lipschitz 
continuous because for every Xi,X2 G R^ 

\r{x){x,)-nx){x,)\ = lim Uf{x + Xx,)-m) 
A—>U+ A 

- lim \ {fix + Xx,) - fix)) 

lim - ifix + Aa;i) - / (x + Aa;2)) 
A—>0-f- A 

< lim —/cIlAxi 
A^o+ A 

Xxo 

= k\\xi - X2I (3.12) 

So, f{x) is Lipschitz continuous and it is obvious that f{x) is also 
positively homogeneous. 
Now assume that / does not have the Frechet property at x with / := 
f'{x). Then we get for / := f{x) which is positively homogeneous 
and Lipschitz continuous 

\\h\\-0 \\h\\ 

^This theorem is due to R. Schade (Quasidifferenzierbare Abbildungen, diplom 
thesis, Technical University of Darmstadt, 1987) and it is based on a result 
of D. Pallaschke, P. Recht and R. Urbariski ("On Locally-Lipschitz Quasi-
Differentiable Functions in Banach-Spaces", optimization 17 (1986) 287-295) 
stated in Thm. 3.36. 
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Consequently, there is a /3 > 0 so that for alH G N there is some 
hi e R" with 0 ^ \\hi\\ < ^ and 

\f{x + K) - fix) - nx)ihi)\> (3\\hi\\- (3-13) 

Next we set 

g. •= 1 ^ for all i e N. (3.14) 

ll̂ ill 
Obviously we have 

ll̂ ill =e f o r a l H e N , (3.15) 

i.e., Qi belongs to the sphere {a; G R" | ||x|| = s} which is compact. 
Therefore the sequence {gi)ien has a subsequence {gij)jeN converging 
to some g with ||5f|| = s. If we also set 

a- := I M > 0 for all i G N, 
e 

we obtain lim â  = 0 and with the equality (3.14) 
i—•oo 

hi — aigi for all i G N. (3.16) 

Finally we define for every i G N 

(t>i ••= Ifi^ + ^ig)-fix)-f'{x){aig)\ 

= \f{x + hi) - fix) - f'ix)ihi) - fix + hi) + fix + aig) 

+f'ix)ihi)-f'ix)iaig)\ 

= \[fix + hi)-fix)-f'ix)ihi)] 

-[ifix + hi) - fix + aig)) - if'ix)ihi) - f'ix)iaig))] | 

> \fix + hi)-fix)-f'ix)ihi)\ 

-\ifix + hi) - fix + aig)) - if'ix)ihi) - f'ix)aig))\ 

> \fix + hi)-fix)-f'ix)ihi)\ 

-ilfix + hi) - fix + aig)\ + \f'ix)ihi) - f'ix)iaig)\). 

For sufficiently large i G N we have 

x + /ii G SV\Bix,e) 
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and 
x + aiQ G S nB{x,e), 

and therefore we get with the inequaUties (3.13), (3.11), (3.12) and 
the equahties (3.16), (3.15) 

0i > P\\hi\\ - {k\\hi - aig\\ + k\\hi - aig\\) 

= PaiWgiW -2kai\\gi- g\\ 

= ai{Pe^2k\\gi-g\\). 

Since the sequence {gi.)j^fi converges to g, we obtain for sufficiently 
large j EN 

\\9y-g\\<^. 

Hence we conclude for sufficiently large j EN 

(f>ij > cXi, yPe - y j 

= OLi. • 
(5e 

and because of the positive homogenity of f'{x) 

\f{x + aig)- f{x) 

OLi 
-rmg) 

\f{x + ai.g)-f{x)-f'{x){ai.g)\ 
O-i 

(f>i Pe 
a,-- 2, 

Prom the preceding inequality it follows 

f{x + ai g) - f{x) 
f{x){g) ^ lim 

C^i 

which is a contradiction to the definition of the directional derivative. 
D 

The preceding theorem presents an interesting property of direc-
tionally differentiable and locally Lipschitz continuous functionals on 
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R'̂ . It is now used in order to prove the equivalence of the quasidif-
ferentiabihty to the Frechet property for locally Lipschitz continuous 
functionals on R^. 

Theorem 3.36. Let S be a nonempty open subset of R^, let x G 
S be a given element^ and let f : S ~^R be a given functional which is 
Lipschitz continuous at x. The functional f is quasidifferentiable at 
X if and only if f has the Frechet property at x with some functional 
/ : R^ —> R which can be represented as difference of two Lipschitz 
continuous sublinear functionals. 

Proof, (i) First, assume that / is quasidifferentiable at x. Then 
/ is also directionally differentiable at x, and by Theorem 3.35 it has 
the Frechet property at x with the directional derivative of / at x 

/ := f{x) = max /(.)+_min !(•) 
iedf{x) ledfix) 

= max /(•) — max !(•). (3.17) 
ledfix)^^ -le-dfix) 

Next we define the functional (̂  : R'̂  —̂  R by 

ip{h) := max l_{h) for all h e R"". 

Lp is subhnear because for all /ii, /12 G R^ and all A > 0 we have 

(^(/ii + /i2) = max l{hi + /12) 
l^df{x) 

= max l{hi) + l{h2) 
iedf{x) 

< max l(hi) + max /(/i2) 
i_Gdf{x)~^ Ledfix)'^ 

and 

= (/p(/ii) + (p{h2) 

(f{Xhi) — max l{Xhi) = max A/(/ii) 
l^df{x) L^df{x) 

= X max l{hi) = Xip{hi). 
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The functional ^ is also continuous because for all h G 

\^{K)\ = max 1(h) 
iedf{x) L^df{x) 

< max 
ledfix) 

with 

max 
ledfix) 

L 

L := max 
Ledfix) 

(3.18) 

(L > 0 exists because df{x) is weak*-compact). 
Now we show that the continuous sublinear functional (p is also Lip-
schitz continuous. For that proof take any /ii, /12 G M .̂ Then we get 
with the inequality (3.18) 

(f{hi) = (p{hi - h2 + h2) < (p{hi - h2) + ^{h2) 

< L\\hi - /i2|| +(f{h2) 

resulting in 
(p{hi) - (f{h2) < L\\hi - /i2||. 

Similarly one obtains 

^(/^2) -^{hi) < L\\hi -/12II, 

and so it follows 

\(p{hi) -^{h2)\ < L\\hi - / i2 | | . 

Consequently we have shown that / has the Prechet property at x 
with / := f{x) which, by the equation (3.17), can be written as the 
difference of two Lipschitz continuous sublinear functionals. 
(ii) Now we assume that / has the Frechet property at x with some 
functional f :W^ —^ R which can be represented as difference of two 
Lipschitz continuous sublinear functionals. First we prove that / is 
the directional derivative f{x) of / at x. Because of the positive 
homogenity of f{x) and / we have 

f{x){OMn)=f{OMn)=0. 
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Since / has the Frechet property at x with / , we get for every h G 

\f{x+xh)-m-fixh)\_ 
A™^ \\Xh\\ 

and j . ^ \f{x+xh)-m-f{xh)\ ^ Q 
A-̂ 0+ A 

Because / is positively homogeneous, we obtain 

I fix+xh) -m_ j^^^ 
lim 

A 
0. 

Hence / is directionally differentiable at x with / == / ' (x) , and the di­
rectional derivative f'{x) can be written as difference of two Lipschitz 
continuous sublinear functionals (/:?i,(/92 • ̂ ^ —̂  IR, i-e. 

/ ( x ) - ( ^ 1 - 9 9 2 . (3.19) 

Now fix an arbitrary i G {1,2} and define the set 

Ai := {(peW \ ^^x < ipi{x) for all x G W} 

which is nonempty convex and weak*-compact (in fact, it is a compact 
subset of E^). Then we have for all x eW 

^i{x) > maxip^x. (3.20) 
(peAi 

Next, fix any S G R^ and consider the set {{x^(pi{x))} and the 
epigraph E{(pi). Notice that this epigraph is convex and it has a 
nonempty interior because cpi is a Lipschitz continuous sublinear func­
tional. Then by the application of the Eidelheit separation theorem 
(Thm. C.2) there are a number 7 G M and a vector (/,/?) G R̂ "̂ ^ with 
(/,/?) 7̂  Oî n+i and 

F x + /?a < 7 < Fx + P(fi{x) for all (x, a) G E{(fi). (3.21) 

With the same arguments used in the proof of Theorem 3.26 we get 
P < 0. If we set (p := —^/, we get for x = 0^^ and a = (pi{0]^n) = 0 
from the inequality (3.21) 

^i{x) < (f^x. (3.22) 
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It follows from the inequality (3.21) that 

l^x + P(pi{x) < 0 for all xeW (3.23) 

(otherwise we get for some x G M^ with l^x + P(fi{x) > 0 

l^{5x) + P(pi{5x) = S{l^x + f5^i{x)) —> oo for 5 —> oo 

which contradicts the inequality (3.21)). From the inequality (3.23) 
we conclude 

(fx ~ ipi{x) < 0 for all x G R"", 

i.e. (p G Ai. Then it follows from the inequalities (3.20) and (3.22) 
that 

(fi{x) — max(^^x, 

and so we have with the equality (3.19) 

f (x) {x) = max ip^x — max cp^x 
(peAi (peA2 

= meixcp^x + min (p'^x for all x EW^. 
(peAi (pe—A2 

Consequently, the functional / is quasidifferentiable at x. • 

Finally, we also present a necessary optimality condition for quasi­
differentiable functionals. 

Theorem 3.37. Let (X, || • ||) be a real normed space, and let 
f : X —^ R be a given functional If x E X is a minimal point of 
f on X and if f is quasidifferentiable at x with a quasidifferential 
{df{x)^df{x)), then it follows 

-df{x)cdm-

Proof. Using Theorem 3.8,(a) we obtain the following necessary 
optimality condition for the directional derivative: 

f'{x){h) > 0 for all heX. 
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Then, by Definition 3.31, we get for a quasidifferential (9/(x), 9/(x)) 

max l{h) > — min 1(h) 
L^dfix) ledfix) 

- m_ax l{h) for a l l / i G X (3.24) 
~ie-df{x) 

Now assume that there is some / G —df{x) with the property I ^ 
df{x). Since the subdifferential df{x) is convex and weak*-compact, 
by a separation theorem (Thm. C.3) there is a weak*-continuous linear 
functional x** on X* with 

x**(0 > sup x**(/). (3.25) 
Ledfix) 

Every weak*-continuous linear functional on X* is a point functional. 
In our special case this means that there is some h E X with 

x^'^(l)=l{h) forallfeX*. 

Then it follows from the inequality (3.25) 

_ mjtx J(h) > l{h) > max 1(h) 
~ie-df{x) ledfix) 

which is a contradiction to the inequality (3.24). Hence our assump­
tion is not true and we have —df(x) C df(x). • 

3,5 Clarke Derivative 

An interesting extension of the concept of the directional derivative for 
real-valued mappings was introduced by F.H. Clarke^. This section 
presents a short discussion of this notion of a derivative. A simple 
necessary optimality condition is also given. 

^F.H. Clarke, "Generalized gradients and applications", Trans. Amer. Math. 
Soc. 205 (1975) 247-262. 
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Definition 3.38. Let S' be a nonempty subset of a real normed 
space (X, II • II), let / : 5 -^ M be a given functional, and let two 
elements x G S and h E X he given. If the limit superior 

r{x){h) = limsup J {f{x + Xh) - f{x)) 

exists, then f'{x){h) is called the Clarke derivative of / at x in the 
direction h. If this limit superior exists for all /i G X, then / is called 
Clarke differentiable at x. 

The difference between the Clarke derivative and the directional 
derivative is based on the fact that for the Clarke derivative the limit 
superior has to be determined and the base element x of the difference 
quotient has to be varied. 

In this section we see that the Clarke derivative has interesting 
properties. But it has also the disadvantage that this derivative de­
scribes a functional only "cumulatively". 

Notice that for the Clarke derivative the limit superior is consid­
ered only for those x E X and A > 0 for which x e S and x + Xh E S. 
There are no difficulties, for instance, if x belongs to the interior of 
the set S. But other types of sets are possible, too. 

Example 3.39. For the absolute value function / : R —> E with 

/(x) - \x\ for all X G R 

the Clarke derivative at 0 reads for every /i G R 

f{0){h) = limsup i {\x + Xh\ - \x\) = \h\. 
x-^O ^ 

In order to see this result, notice that we get with the aid of the 
triangle inequality 

f{0){h) = limsup \{\x + Xh\-\x\) 
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< limsup-(|a; |4-A|/i | - |a;|) 
A X -^0 

A->0+ 

= \h\. 

For X =^ Xh we obtain 

f{0){h) = l i m s u p ^ ( k + A/ i | - |x | ) 

A->0+ 

> limsupi(2A|/i | -A|/i | ) 
A^0+ A 

= H 

Hence we have f{0){h) = \h\. 

The class of locally Lipschitz continuous functionals is already 
differentiable in the sense of Clarke. 

Theorem 3.40. Let S be a subset of a real normed space (X, || • ||) 
with nonempty interior, let x G int(S) be a given element, and let 
f : S ^^ R be a functional which is Lipschitz continuous at x with a 
Lipschitz constant k. Then f is Clarke differentiable at x and 

\f{x){h)\ <k\\h\\ for all hex. 

Proof. For an arbitrary h E X we obtain for the absolute value 
of the difference quotient in the expression for f{x){h) 

J {fix + Xh) - fix)) < — k\\x + Xh — x\ 
A 

= k\\h\\, 

if X is sufficiently close to x and A is sufficiently close to 0. Because 
of this boundedness the limit superior f{x){h) exists. Furthermore 
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\nx){h)\ = limsup - {f{x + Xh) - f{x)) 
X —> X 

A->0+ 

< lim sup 
x —> X 

< k\\h\\ 

i (fix + Xh) - fix)) 

which is to prove. D 

The assumption in the preceding theorem that x belongs to the 
interior of the set S can be weakened essentially. But then Theorem 
3.40 becomes more technical. 

Clarke derivatives have the interesting property to be sublinear 
with respect to the direction h. 

Theorem 3.41. Let S be a subset of a real normed space (X, || • ||) 
with nonempty interior^ let x G int(S) be a given element, and let 
f : S —^ M. be a functional which is Clarke differentiate at x. Then 
the Clarke derivative f'{x) is a sublinear functional. 

Proof. For the proof of the positive homogenity of fix) notice 
that f'{x){Ox) = 0 and that for arbitrary h G X and a > 0 

f{x){ah) — limsup - (/(x + \aK) — f{x)) 
X —> X ^ 

A->0+ 

1 
= a limsup -— {f{x + Xah) — f{x)) 

x-^x ^ ^ 
A->0+ 

= cxf'{x){h). 

Next we prove the subadditivity of f{x). For arbitrary /ii,/i2 G X 
we get 

f'{x){h^ + h2) 
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= limsup i (fix + X{hi + h2)) - fix)) 
X -^ X ^ 

= limsup i (/(x + Xhi + A/12) - f{x + A/12) + f{x + A/12) - /(:^)) 
X -^ X ^ 

< limsup - (/(x + A/12 + \hi) - / (x + A/i2)) 
X -^ X ^ 

+ limsup y (/(:r; + A/i2) - f{x)) 
X —^ X ^ 

A-^0+ 

= /'(S)(/ia) + / ' (x ) (M-

Consequently, f'{x) is sublinear. • 

In the case of a locally Lipschitz continuous convex functional the 
directional derivative and the Clarke derivative coincide. 

Theorem 3.42. Let (X, || • ||) he a real normed space, and let 
f : X —> W be a convex functional which is Lipschitz continuous at 
some X E X. Then the directional derivative of f at x coincides with 
the Clarke derivative of f at x. 

Proof. Let h G X denote an arbitrary direction. By Theorem 3.4 
and Theorem 3.40 the directional derivative f'{x){h) and the Clarke 
derivative f^(x){h) of / at x in the direction h exist. By the definition 
of these derivatives it follows immediately 

f'ix)ih) < f\x)ih). 

For the proof of the converse inequality we write 

f%x)ih) = limsup Ufix + Xh)-fix)) 

A->0+ 

1 
= lim sup sup -- {f{x + Xh) — f{x)). 

^-^0+ ||:c_4|<(5 0<X<e A 
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Since / is convex, Lemma 3.3 leads to the equality 

f{x){h)= lim sup l ( / ( x + e / i ) - / ( x ) ) , 
S-^0+ \\x-x\\<5 ^ 
e->0+ 

and for an arbitrary a > 0 we obtain 

f{x){h) = lim sup - {f{x + eh) - f{x)). 

If we notice that because of the local Lipschitz continuity of / we 
have for sufficiently small e > 0 

- {fix + eh) - fix)) - - {fix + eh) - fix)) 
e e 

< i \fix + eh) - fix + eh)\ + ^ \fix) - fix)\ 

< - ur — x\\ H — \\x — x\\ 
e e 

< 2ka 

{k >0 denotes a Lipschitz constant), then it follows 

f(x)(h) < lim - (fix + eh) - fix)) + 2ka 

= f{x){h) + 2ka. 

Since a > 0 has been chosen arbitrarily, we obtain 

f\x)ih) < f'ix)ih). 

This completes the proof. • 

With the aid of the Clarke derivative it is possible to introduce 
a so-called generalized gradient for locally Lipschitz continuous func-
tionals. 

Definition 3.43. Let S' be a subset of a real normed space 
(X, II • II) with nonempty interior, and let / : 5 •—> M be a func­
tional which is Lipschitz continuous at some x E int(S'). Then the set 
dcif{x) of all continuous linear functional / on X with 

f{x){h) >l{h) f o r a l l / iGX 
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is called the generalized gradient of / at x (where f'{x){h) denotes 
the Clarke derivative of / at x in the direction h). 

For functionals defined on the whole space, notice the formal anal­
ogy of the definition of the generalized gradient and the equivalent 
definition of the subdifferential from Lemma 3.25. The formal differ­
ence Ues in the fact that one uses the directional derivative for the 
subdifferential whereas one works with the Clarke derivative for the 
generalized gradient. 

The next result follows immediately from Theorem 3.42 and Lem­
ma 3.25. 

Corollary 3.44. Let (X, || • ||) he a real normed space, and let 
f : X —> M. be a convex functional which is Lipschitz continuous at 
some X E X. Then the subdifferential df{x) of f at x coincides with 
the generalized gradient dcif{x) of f at x. 

With the following theorem we show that locally Lipschitz contin­
uous functionals have a nonempty generalized gradient. 

Theorem 3.45. Let S be a subset of a real normed space (X, || • ||) 
with nonempty interior, and let f : S —> R be a given functional. If 
f is Lipschitz continuous at some x G int(S), then the generalized 
gradient dcif(x) of f at x is nonempty. 

Proof. By Theorem 3.40 the Clarke derivative exists and by 
Theorem 3.41 it is sublinear. Consequently, by the basic version of the 
Hahn-Banach theorem (compare Thm. C.l) there is a linear functional 
/ on X which satisfies the inequality 

f{x){h) > l{h) for all heX. (3.26) 

For the proof of the continuity of / we choose an arbitrary h E X. 
Then it follows from the inequality (3.26) and Theorem 3.40 

m < nx){h) < \f'{x){h)\ < k\\h\\ 
(where k >0 denotes a Lipschitz constant) and 

-i{h) = i{-h) < fm-h) < \nx){-h)\ < k\\ - h\\ = k\\h\\. 
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This leads to the inequality 

\m\ < km. 
Hence I is continuous at O^. Because of the hnearity of / the functional 
I is also continuous on X. This completes the proof. • 

It is also possible to derive a necessary optimality condition for 
Clarke differentiable functional. This condition is given in the next 
theorem. 

Theorem 3.46. Let T be a superset of a nonempty subset S of a 
real normed space (X, \\'\\), let f \T -^^ be a given functional, and 
let T have a nonempty interior. Ifx^SD int(T) is a minimal point 
of f on S, the set S is starshaped with respect to x and the functional 
f is Lipschitz continuous at x, then the following inequality holds for 
the Clarke derivative 

f\x){x-x) > 0 for allxeS. 

Proof. Let x G 5 be a minimal point of / on S. Since x G int(T) 
and / is Lipschitz continuous at x, we have for an arbitrary x E S 

^(f{x + Xix-x))-f{x)) 

< ^l|A(x-x)|| 

= A;||x — x|| for sufficiently small A > 0. 

Consequently the expression 

limsup Y ( / ( S + A(x - x)) - f{x)) 

exists. Because of the minimality of / at :r and the starshapness of S 
with respect to x this limit superior is nonnegative. Then we conclude 

0 < limsup—(/(x + A(x — x)) —/(x)) 
A->o+ A 
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< limsup-(/(y + A(x-^))- /(y)) 
y —^ X ^ 

= nx){x-x) 
which completes the proof. • 

If (X, II • II) is a real normed space and / : X —> M is a given 
functional, then in the case ofS = X the assertion of Theorem 3.46 
can also be interpreted as follows: If x G X is a minimal point of / on 
X, then the functional Ox* is an element of the generalized gradient 
of / at X. 

Exercises 

3.1) For the function / : R -^ R with 

„, . _ J x^ sin ^ if x 7̂  0 
/ W - | 0 "" i fx= :0 

determine the directional derivative at x = 0. 

3.2) Let M be a compact subset of R^, and let C{M) denote the 
linear space of continuous real-valued functions on M equipped 
with the maximum norm || • || where 

|b | | = maxb( t ) | for all x G C(M). 
II II ^ ^ ^ I \ / I \ / 

To a given function x G C{M) we consider a functional / : 
C{M) -^ R with 

f{x) = \\x-x\\ for all X G C ( M ) . 

Show that the directional derivative of / at an arbitrary x G 
C{M) is given as 

{ max sgn(x(t) — x{t))h{t) \ix ^ x 

max \h(t)\ li X = X 

teM{x)^ 
with 

M{x) :={teM \ \x{t) - x{t)\ = f{x)}. 
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3.3) Let (X, II • II) be a real normed space, and let / : X —> R be a 
convex functional v^hich is Gateaux differentiable at some x G 
X. Prove that x is a minimal point of / on X if and only if 

3.4) For the function / : E -^ R with 

f{x) = \x\ for all a; G M 

determine the subdifferential 5/(0) at zero. 

3.5) Let {X, II • II) be a real normed space, and let / : X —> R be a 
convex functional. Show: For an arbitrary x E X the subdiffer­
ential df{x) is a convex set. 

3.6) Prove: For every convex function / : R" —> R which is differen­
tiable at some x G R" it follows df{x) = {Vf{x)}. 

3.7) Let the function / : R^ ^ R with 

f{xi,X2) = |a;ia;2| for all (a;i,a;2) G M̂  

be given. Determine a quasidifferential of / at an arbitrary 
point (a;i,a;2) ^ E^-

3.8) Consider the function / : R^ ^ R with 

f(x,x.) = l l^il-l^^l + l ^ ii{xr,x,)^iO,0) 
\ 0 if (0:1,0:2) = (0 ,0) • 

Show that / is quasidifferentiable ai x := (0,0) and that it does 
not have the Frechet property at x v^ith f := f{x) (directional 
derivative of / at x). 

3.9) Let the function / : R^ -> R with 

/ ( x i , . . . ,Xn) = max{a:i,... ,Xn} for all Xi, . . . ,x^ G R 

be given. For an arbitrary x eW^ let 

I{x) : - {i G { 1 , . . . , n} I f{x) = x j . 
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Show that the Clarke derivative of / at x in an arbitrary direc­
tion h eW^ is given as 

f{x){h) = max{hi}, 
iei{x) 



Chapter 4 

Tangent Cones 

In this chapter certain approximations of sets are considered which 
are very useful for the formulation of optimality conditions. We in­
vestigate so-called tangent cones which approximate a given set in a 
local sense. First, we discuss several basic properties of tangent cones, 
and then we present optimality conditions with the aid of these cones. 
Finally, we formulate a Lyusternik theorem. 

4.1 Definition and Properties 

In this section we turn our attention to the sequential Bouligand 
tangent cone which is also called the contingent cone. For this tangent 
cone we prove several basic properties. 

First, we introduce the concept of a cone. 

Definition 4.1. Let C be a nonempty subset of a real linear 
space X. 
(a) The set C is called a cone if 

X e C, A > 0 = ^ Ax G C 

(b) A cone C is called pointed if 

X G C, - X G C =^ X =^ Ox-
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•:>-:::-:-x>::-:C?x::::::::: 

Figure 4.1: Cone. Figure 4.2: Pointed cone. 

Example 4.2. (a) The set 

Wl :={xeW\xi>0 for all i G { 1 , . . . ,n}} 

is a pointed cone. 
(b) The set 

C :={xe C[0,1] I x{t) > 0 for all t e [0,1]} 

is a pointed cone. 

In order theory and optimization theory convex cones are of special 
interest. Such cones may be characterized as follows: 

Theorem 4.3. A cone C in a real linear space is convex if and 
only if for all x^y E C 

x + yeC. (4.1) 

Proof. (a) Let C be a convex cone. Then it follows for all 
x,y eC 

2(^ + 2/)^ 2 ^ ^ 2 ^ ^ 
which implies x + y E C. 

(b) For arbitrary x,y E C and A G [0,1] we have Xx E C and (1—A)y G 
C. Then we get with the condition (4.1) 

Ax + (1 - A)^ G C. 
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Consequently, the cone C is convex. • 

In the sequel we also define cones generated by sets. 

Definition 4.4. Let 5 be a nonempty subset of a real linear 
space. The set 

cone(5') := {As | A > 0 and s ^ S} 

is called the cone generated by S, 

cone(S') 

Figure 4.3: Cone generated by S. 

Example 4.5. (a) Let 5 (0x , l ) denote the closed unit ball in 
a real normed space (X, || • ||). Then the cone generated by -B(Ox, 1) 
equals the linear space X. 
(b) Let S denote the graph of the function / : R -^ R with 

f{x) = { a; sin i ii x ^ 0 
0 "̂  ifx = 0 

Then the cone generated by S is given as 

cone(;S) = {{x,y) G M̂  | |y| < |a;|}. 
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Now we turn our attention to tangent cones. 

Definition 4.6. Let S he a nonempty subset of a real normed 
space (X, II • II). 
(a) Let X G cl(S') be a given element. A vector h E X is called a 
tangent vector to S at x, if there are a sequence {xn)nen of elements 
in S and a sequence {Xn)neN of positive real numbers with 

X = lim Xn 
n—^oo 

and 
h = lim Xn{xn — x). 

(b) The set T(S', x) of all tangent vectors to 5 at x is called sequential 
BouUgand^ tangent cone to S' at x or contingent cone to 5' at x. 

Notice that x needs only to belong to the closure of the set S in 
the definition of T{S, x). But later we will assume that x E S. 

By the definition of tangent vectors it follows immediately that 
the contingent cone is in fact a cone. 

Before investigating the contingent cone we briefly present the 
definition of the Clarke tangent cone which is not used any further in 
this chapter. 

Remark 4.7. Let x be an element of the closure of a nonempty 
subset S' of a real normed space (X, || • ||). 
(a) The set 

Tci{S^x) := {h E X \ for every sequence (x^)neN 

of elements of S with x = lim Xn and 
n—>oo 

for every sequence {Xn)neN of positive 

real numbers converging to 0 there is 

^M.G. Bouligand, "Sur les surfaces depourvues de points hyperlimites (ou: un 
theoreme d'existence du plan tangent)", Ann. Soc. Polon. Math. 9 (1930) 32-41. 
F. Severi remarked that he has independently introduced this notion (F. Severi, 
"Su alcune questioni di topologia infinitesimale", Ann. Soc. Polon. Math. 9 (1930) 
97-108). 
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TiS,x) 

Jx T{S, x) X 

Figure 4.4: Two examples of contingent cones. 

a sequence {hn)neN with h = lim hn 
n—>oo 

and Xn + Xnhn G S for all n G N} 

is called (sequential) Clarke tangent cone to 5 at x. 
(b) It is evident that the Clarke tangent cone Tci{S^x) is always a 
cone. 
(c) li x e S^ then the Clarke tangent cone Tci{S^x) is contained in 
the contingent cone T{S,x). 
For the proof of this assertion let some h G Tci{S,x) be given arbi­
trarily. Then we choose the special sequence {x)nen ^^d an arbitrary 
sequence {\n)nm of positive real numbers converging to 0. Conse­
quently, there is a sequence (/in)nGN with h = lim hn and x+Xnhn G S 
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for all n G N. Now we set 

yn := X + Xnhn for all n G N 

and 

Then it follows 

and 

tn '•= — for all n G N. 

Vn ̂  S for all n G N, 

lim yn = lim {x + XuK) = x 
n—>oo n—>oo 

lim tn{yn - x) = lim i—{x + Xnhn - x) = lim hn = h. 
n—^oo n-^oo Art n-^oo 

Consequently, /z is a tangent vector. D 

Figure 4.5: Illustration of the result in Remark 4.7,(c). 

(d) The Clarke tangent cone Tci{S, x) is always a closed convex cone. 
We mention this result without proof. Notice that this assertion is 
true without any assumption on the set S. 

Next, we come back to the contingent cone and we investigate 
the relationship between the contingent cone T(5, x) and the cone 
generated by S — {x}. 
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Theorem 4.8. Let S be a nonempty subset of a real normed 
space. If S is starshaped with respect to some x E S^ then it follows 

cone{S-{x}) cT{S,x), 

Proof. Let the set S be starshaped with respect to some x e S, 
and let an arbitrary element x E S he given. Then we define a 
sequence {xn)neN with 

Xn '-= X -\—(x — x) = —X + (1 )x G S' for all n G N. 
n n \ nJ 

For this sequence we have 

l im Xn = X 
n—>oo 

and 
lim n{xn — x) = X — X. 

Consequently, x — x is a tangent vector, and we obtain 

S-{x}cT{S,x), 

Since T(S', x) is a cone, we conclude 

cone{S - {x}) C cone(r(5, x)) = T{S, x). 

D 

Theorem 4.9. Let S be a nonempty subset of a real normed 
space. For every x E S it follows 

T{S,x) C cl{cone{S~{x})). 

Proof. We fix an arbitrary x E S and we choose any h E 
T{S^x). Then there are a sequence {xn)neN of elements in S and 
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a sequence {Xn)neN of positive real numbers with x = lim Xn and 
n—>oo 

h = lim Xn{xn — x). The last equation implies 
n—>oo 

h e cl(cone(5' - {x})) 

which has to be shown. • 

By the two preceding theorems we obtain the following inclusion 
chain for a set S which is starshaped with respect to some x E S: 

cone{S-{x}) C T{S,x) C cl(cone(S'- {x})). (4.2) 

The next theorem says that the contingent cone is always closed. 

Theorem 4.10. Let S be a nonempty subset of a real normed 
space (X, II • II). For every x E S the contingent cone T{S, x) is closed. 

Proof. Let x E S he arbitrarily chosen, and let {hn)neN be an 
arbitrary sequence of tangent vectors to 5 at x with lim hn = h E X. 

n—>oo 

For every tangent vector hn there are a sequence (x^JieN of elements 
in S and a sequence (A^J^^N of positive real numbers with x — lim x^. 
and hn = lim Xmi^m — ^)- Consequently, for every n E N there is a 

number i(n) G N with 

W^m — 5|| ^ — for all i G N with i > iin) 
n 

and 

ll'̂ ni(^ni ~ ^) "~ ̂ n|| ^ — for alH G N with i > i{n), 
lb 

If we define the sequences {yn)nen ^nd (tn)nGN by 

Vn '•= Xn.^r.) ^ ^ fo^ all n G N 

and 
tn := An,(,) > 0 for all n G N, 

then we obtain lim yn = x and 

n—^oo 

WtniVn - X) - h\\ = \\Xn,^^^{Xn,^„^-x)-hn + hn-h\\ 

< - + ||/in - h\\ for all n G N. 
n 
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Hence we have 
h ^ Yimtniyn - x) 

and /i is a tangent vector to 5 at :r. • 

Since the inclusion chain (4.2) is also valid for the corresponding 
closed sets, it follows immediately with the aid of Theorem 4.10: 

Corollary 4.11. Let S be a nonempty subset of a real normed 
space. If the set S is starshaped with respect to some x E S, then it is 

T{S,x) = cl{cone{S ~ {x})). 

If the set S is starshaped with respect to some x G S', then Corol­
lary 4.11 says essentially that for the determination of the contingent 
cone to iS at X we have to consider only rays emanating from x and 
passing through S. 

Finally, we show that the contingent cone to a nonempty convex 
set is also convex. 

Theorem 4.12. If S is a nonempty convex subset of a real 
normed space (X, || • ||); then the contingent cone T(S', x) is convex for 
all X E S. 

Proof. We choose an arbitrary x E S and we fix two arbitrary 
tangent vectors hi^h2 E T{S,x) with /ii,/i2 7̂  Ox- Then there are 
sequences {xn)neN^ (?/n)nGN of elements in S and sequences {Xn)neN^ 
(/̂ n)nGN of positivc real numbers with 

X = lim Xn^ hi = lim Xn{xn — x) 
n—>oo n—^oo 

and 
X - lim yn, /i2 = lim UniVn - x), 

n—>oo n—>oo 

Next, we define additional sequences (ẑ n)nGN ^^d {zn)nen with 

^n •= K + iin for all n G N 
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and 

Zn '= —{XnXn + llnVn) for all n G N. 

Because of the convexity of S we have 

Zn = T ^ Xn + T ^ Vn ^ S foi all n E N, 

and we conclude 

lim Zn = hm — {XnXn + l^nVn) 
n—»oo n—^oo p^ 

= l i m —{XnXn - XnX + flnVn ~ l^nX + XnX + jlnX) 
n-^ooUn 

= lim { — {xn - x) + —{Vn - x) + x) 
n-^oo KUn l^n ^ 

= X 

and 

lim Un{Zn-x) = lim {XnXn + finVn - l^nX) 
n—^oo n—^oo 

= l i m {Xn{Xn - x ) + IXniVn " x)) 

= /ll + /l2. 

Hence it follows /ii + /12 G T{S^ x). Since T(5, x) is a cone, Theorem 
4.3 leads to the assertion. • 

Notice that the Clarke tangent cone to an arbitrary nonempty set 
S is already a convex cone, while we have shown the convexity of the 
contingent cone only under the assumption of the convexity of 5'. 

4,2 Optimality Conditions 

In this section we present several optimality conditions which result 
from the theory on contingent cones. 

First, we show, for example, for convex optimization problems 
with a continuous objective functional that every minimal point x of 
f on S can be characterized as a minimal point of / on {x} + T{S^ x). 
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Theorem 4.13. Let S be a nonempty subset of a real normed 
space (X, II • 11)̂  and let f : X —^M be a given functional. 
(a) If the functional f is continuous and convex, then for every min­
imal point X E S of f on S it follows: 

f{x) < f{x + h) for all h G r ( ^ , x), (4.3) 

(b) If the set S is starshaped with respect to some x E S and if the 
inequality (4-3) is satisfied, then x is a minimal point of f on S. 

Proof. (a) We fix an arbitrary x E. S and assume that the 
inequahty (4.3) does not hold. Then there are a vector h G T{S^ x) \ 
{Ox} and a number a > 0 with 

f{x) -~f{x + h)>a>0. (4.4) 

By the definition of h there are a sequence {xn)neN of elements in S 
and a sequence {Xn)neN of positive real numbers with 

X = lim Xn 

and 
h = lim h n 

n—»oo 

where 
hn '•= Xni^n — ^) for all n G N. 

Because of h ^ Ox we have lim —- = 0. Since / is convex and 

continuous, we obtain with the inequality (4.4) for sufficiently large 
neN: 

fM = f(—x + Xn-x + x-—x) 

An ^ ^n / 

< l-{f(x + h) + a)+{l-l-)f{x) 

= m-
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Consequently, x is not a minimal point of / on 5. 
(b) If the set S is starshaped with respect to some x E S, then it 
follows by Theorem 4.8 

S-{x}cT{S,x). 

Hence we get with the inequality (4.3) 

f{x) < f{x + h) for dllheS- {x}, 

i.e., X is a minimal point of f on S. • 

{x} + T{S,x) 

{xex\ f{x) = f{x)} 

Figure 4.6: Geometric illustration of the result of Theorem 4.13. 

Using Frechet derivatives the following necessary optimality con­
dition can be formulated. 

Theorem 4.14. Let S be a nonempty subset of a real normed 
space (X, II • 11)̂  and let f be a functional defined on an open superset 
of S. If X ^ S is a minimal point of f on S and if f is Frechet 
differentiable at x, then it follows 

f{x){h) >OforallheT{S,x). 
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Proof. Let x G 5 be a minimal point of / on 5, and let some 
h G T(5, x) \ {Ox} be arbitrarily given (for h = Ox the assertion is 
trivial). Then there are a sequence {xn)nen of elements in S and a 
sequence (An)nGN of positive real numbers with 

X = l im Xn 
n—>cx) 

and 
h = lim hn 

n—>oo 

where 
hn •— ^n{^n — ^) for all n G N. 

By the definition of the Frechet derivative and because of the mini­
mality of / at X it follows: 

f\x){h) = f{x)(limXr,{Xn-x)) 

= \imXnf'ix){xn-x) 
n—>oo 

= l i m X„[f{Xn) - f{x) - {f{Xn) - f{x) - f'{x){Xn - x))] 
n—>oo 

> -\imXn{f{Xn)- f{x)- f'{x){Xn-x)) 
n—^oo 

l :^ II .̂ II/(^") - / ( ^ ) ~ f'i^){^n - X) 
— n m ll't'nil II - 1 1 

n-^oo \\Xn — X\\ 

= 0. 

Hence, the assertion is proved. • 

Next, we investigate under which assumptions the condition in 
Theorem 4.14 is a sufficient optimahty condition. For this purpose 
we define pseudoconvex functionals. 

Definition 4.15. Let 5 be a nonempty subset of a real linear 
space, and let / : 5 —> R be a given functional which has a directional 
derivative at some x G 5 in every direction x — x with arbitrary x E S. 
The functional / is called pseudoconvex at x if for all x G 5 

f{x){x-x)>0 => f{x)-f{x)>0. 
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Example 4.16. The functions / : R - > R a n d g : R - > R with 

/(x) = xe^ for all X G R 

and 

g{x) = —-q—-̂—- for all x G 1 
1+X2 

are pseudoconvex at every x G R. But the two functions are not 
convex. 

A relationship between convex and pseudoconvex functionals is 
given by the next theorem. 

Theorem 4.17. Let S be a nonempty convex subset of a real 
linear space, and let f : S -^ R be a convex functional which has a 
directional derivative at some x E S in every direction x — x with 
arbitrary x E S. Then f is pseudoconvex at x. 

Proof. We fix an arbitrary x E S. Because of the convexity of / 
we get for all A G (0,1] 

f{Xx + (1 - X)x) < Xf{x) + (1 - A)/(x) 

and 

fix) > f{x) + jif{Xx+{l-X)x)-fix)) 

= f{x) + ̂ {f{x + X{x-x))-f{x)). 

Since / has a directional derivative at x in the direction x — x, we 
conclude 

f{x)-m>f'{x){x-x). 
Consequently, if f'{x){x — x) > 0, then 

fix) - fix) > 0. 

Hence / is pseudoconvex at x. • 

It is also possible to formulate a relationship between quasiconvex 
and pseudoconvex functionals. 
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Theorem 4.18. Let S be a nonempty convex subset of a real 
normed space, and let f be a functional which is defined on an open 
superset of S. If f is Frechet differentiable at every x E S and pseu-
doconvex at every x E S, then f is also quasiconvex on S. 

Proof. Under the given assumptions we prove that for every 
a G M the level set 

S^:={xeS\ fix) < a] 

is a convex set. For this purpose we fix an arbitrary a G E so that 
Sa is a nonempty set. Furthermore we choose two arbitrary elements 
x^y E Sa- In the following we assume that there is a A G [0,1] with 

/(Ax + (1 - X)y) >a> max{/(x), f{y)}. 

Then it follows A G (0,1). Since / is Frechet differentiable on S, by 
Theorem 3.15 / is also continuous on S. Consequently, there is a 
A G (0,1) with 

/(Ax + (1 - ~X)y) > f{Xx + (1 - A)^) for all A G (0,1). 

Using Theorem 3.13 and Theorem 3.8,(a) (which is now applied to a 
maximum problem) it follows ior x := Xx + (1 — X)y 

nx){x-x)<o 
and 

f'{x){y-x)<0. 

With 

X — x = x — Xx — {1 — \)y = (1 — \){x — y), 

y-x = y-Xx-{l-X)y = -X(x - y) (4.5) 

and the hnearity of f'{x) we obtain 

Q>nx){x-x) = {l-X)f\x){x-y) 

and 
0>nx){y-x) = -Xf{x){x-y). 



94 Chapter 4. Tangent Cones 

Hence we have 
0 = f'{x){x-y), 

and with the equahty (4.5) it also follows 

f'{x)iy-x)=0. 

By assumption / is pseudoconvex at x and therefore we conclude 

m - fix) > 0. 

But this inequahty contradicts the following inequality: 

f{y)-m = f{y)-f{Xx + {l-~X)y) 

< f{y)-f{Xx + {l-X)y) 

< 0. • 

Using Theorem 3.13 the result of the Theorems 4.17 and 4.18 can 
be specialized in the following way: If (X, || • ||) is a real normed space 
and if / : X —> R is a functional which is Frechet diflPerentiable at 
every x G X, then the following implications are satisfied: 

/ convex => f pseudoconvex at every x E X 

= ^ / quasiconvex. 

After these investigations we come back to the question leading to 
the introduction of pseudoconvex functionals. With the next theorem 
we present now assumptions under which the condition in Theorem 
4.14 is a sufficient optimality condition. 

Theorem 4.19. Let S be a nonempty subset of a real normed 
space, and let f be a functional defined on an open superset of S. 
If S is starshaped with respect to some x E S, if f is directionally 
differentiable at x and pseudoconvex at x, and if 

f{x){h)>OforallheT{S,x), 

then X is a minimal point of f on S. 
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Proof. Because of the starshapedness of S with respect to x E S 
it follows by Theorem 4.8 S — {x} C T(S', x), and therefore we have 

f{x){x-x) >Ofora l lxG;S . 

Since / is pseudoconvex at x, we conclude 

f{x) - f{x) > 0 for all x e S, 

i.e., X is a minimal point of f on S. • 

Notice that the assumption in Theorem 3.8,(b) under which the 
inequality (3.1) is a sufficient condition, can be weakened with the aid 
of the pseudoconvexity assumption. This result is summarized with 
Theorem 3.8 in the next corollary. 

Corollary 4.20. Let S be a nonempty subset of a real linear 
space, and let f : S —^ R be a given functional. Moreover, let the 
functional f have a directional derivative at some x E S in every 
direction x — x with arbitrary x E S and let f be pseudoconvex at x. 
Then x is a minimal point of f on S if and only if 

f\x){x-x) >OforallxeS. 

4.3 A Lyusternik Theorem 

For the application of the necessary optimality condition given in The­
orem 4.14 to optimization problems with equality constraints we need 
a profound theorem which generalizes a result given by Lyusternik^ 
published in 1934. This theorem says under appropriate assumptions 
that the contingent cone to a set described by equality constraints is 
a superset of the set of the linearized constraints. Moreover, it can 
be shown under these assumptions that both sets are equal. 

^L.A. Lyusternik, "Conditional extrema of functionals", Mat Sb. 41 (1934) 
390-401. 
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Theorem 4.21. Let (X, || • \\x) and (Z, || • \\z) be real Banach 
spaces^ and let h : X -^ Z be a given mapping. Furthermore^ let some 
X E S with 

S:={xeX\ h{x) = Oz} 

be given. Let h be Frechet dijjerentiable on a neighborhood of x, let 
h'{-) be continuous at x, and let h'{x) be surjective. Then it follows 

{xeX\ h'{x){x) = Oz} C T{S, x). (4.6) 

Proof. We present a proof of Lyusternik's theorem which is 
put forward by Werner [347]. This proof can be carried out in several 
steps. First we apply an open mapping theorem and then we prove the 
technical inequality (4.14). In the third part we show the equations 
(4.26) and (4.27) with the aid of a construction of special sequences, 
and based on these equations we get the inclusion (4.6) in the last 
part. 

(1) Since h\x) is continuous, linear and surjective by the open 
mapping theorem the mapping h\x) is open, i.e. the image of every 
open set is open. Therefore, if J5(0x, 1) denotes the open unit ball in 
X, there is some ^ > 0 such that 

B{Oz^Q)ch\x)B{OxA) (4.7) 

where 5(0^, g) denotes the open ball around Oz with radius g. Be­
cause of the continuity of h\x) there is a 

0̂ := sup{^ > 0 I B{Oz, g) C h\x) S(Ox, 1)}. 

(2) Next we choose an arbitrary e G (0, y ) . /i'(-) is assumed to be 
continuous at x, and therefore there is a 5 > 0 with 

\\h\x) - h\x)\\Lix,z) < e for all x e B{x,25). (4.8) 

Now we fix arbitrary elements x,x G B{x,2S). By a Hahn-Banach 
theorem (Thm. C.4) there is a continuous linear functional I G Z* 
with 

II^IU* = 1 (4.9) 
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and 

l{h{S:)-h{x)-h\x){S:-x)) = \\h{^)-h{x)-h\x){S:-x)\\z^ (4.10) 

Next we define a functional (/P : [0,1] -^ R by 

ip{t) = l{h{x + t(S: - x)) - th'{x){5: - x)) for all t G [0,1]. (4.11) 

Lp is differentiable on [0,1] and we get 

ip'{t) = l{h'{x + tii - x)){5: -x)- h'{x){5: - x)). (4.12) 

By the mean value theorem there is a t e (0,1) with 

(^(1) - (^(0) = ^'(i). (4.13) 

Then we obtain with (4.10), (4.11), (4.13), (4.12), (4.9) and (4.8) 

\\h{5:)-h{x)-h'{x){3:-x)\\z 
= l{h{x) - h{x) - h\x){5^ ~ x)) 

= ¥ ' ( l ) - ^ ( 0 ) 

= l{h'{x + t{i - x)){S; ~x)- h'{x){S; - x)) 

< \\h'{x + i{x - x)) - h'{x)\\L(x,z) \\3: - x\\x 

< e\\x-x\\x. 

Hence we conclude 

\\h{x) — h{x) — h'{x){x — x)\\z < £\\x — x\\x for all x,x E B{x,2S). 
(4.14) 

(3) Now we choose an arbitrary a > 1 so that a ( | + —) < 1 
(notice that — < | ) . For the proof of the inclusion (4.6) we take an 
arbitrary x E X with h'{x){x) — Oz- For x — Ox the assertion is 
trivial, therefore we assume that x j^ Ox- We set A := -n-ir- stnd fix 

' ^ / ^ \\x\\x 

an arbitrary A G (0, A]. Now we define sequences (r̂ )nGN and {un)neN 
as follows: 

ri = Ox, 
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h'{x){un) = h{x + \x + Tn) for all n e N, (4.15) 

r^+i ^^Vn-Un for all n G N. (4.16) 

Since h'{x) is assumed to be surjective, for a given r^ G X there 
is always a vector u^ & X with the property (4.15). Consequently, 
sequences {rn)nen and {un)nm are well-defined (although they do not 
need to be unique). From the inclusion (4.7) which holds for ^ = ^ 
and the equation (4.15) we conclude for every n G N 

\\Un\\x<-\\h{x + \x + Tn)\\z^ (4.17) 
^0 

For simplicity we set 

and 

d{\)',= \\h{x + \x)\\z 

ea 

Since ||Aa;||x < 5 we get from the inequality (4.14) 

d{X) = \\h{x + Xx)-h{x)-h'{x){Xx)\\z 

< e\\Xx\\x 

< eS, (4.18) 

and moreover, because of a > 1 we have 

9 < l - | < i . (4.19) 

Then we assert for all n G N: 

||r„|U < - r f ( A ) i f ^ , (4.20) 

\\h{x + Xx + rn)\\z<d{X)q^-' (4.21) 

and 
IknIU < -d{X)q--\ (4.22) 

^0 
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We prove the preceding three inequaUties by induction. For n = 1 we 
get 

llnlU = o, 
\\h{x + Xx + n)\\z = d{X) 

and by the inequaUty (4.17) 

!|MI|U < —\\h{x + Xx + ri)\\z 
QQ 

= -d{X). 
Qo 

Hence the inequahties (4.20), (4.21) and (4.22) are fulfilled for n = 1. 
Next assume that they are also fulfilled for any n G N. Then we get 
with (4.16), (4.20) and (4.22) 

< IklU + IKIU 
< ^.(A)fif^ + , -

Qo 1 - 9 

Hence the inequality (4.20) is proved. For the proof of the following 
inequalities notice that from (4.20), (4.18) and (4.19) 

||A:r + 
^ , a ^ , , , l - g " - i 
< 5 + —d{X)-

< S + 

Qo i-q 
ae5 1 — q"~^ 

Qo 1 - g 

< 25 (4.23) 

and from (4.16), (4.20), (4.18) and (4.19) 

\\Xx + rn - UnWx < ||Aa;|U +| | r„+i |U 
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< S+—d{X)- — 

< 25. (4.24) 

Next with (4.16), (4.15), (4.23), (4.24), (4.14) and (4.22) we conclude 

\\h{x + Xx + rn+i)\\z 

= \\h{x +Xx + rn-Un)\\z 

= II - h'{x){-Un) - h{x + XX + Tn) + h{x + Xx + Tn - Un)\\z 

< eW-UnWx 

< e -d(A)g"- i 

= d(A)g^ (4.25) 

and with (4.17) and (4.25) we obtain 

||^^n+i||x < —\\h{x + Xx + rn+i)||z 

< -d(A)g^. 

Consequently, the inequaUties (4.21) and (4.22) are fulfilled. From 
the inequalities (4.22) and (4.18) we get 

llMnlU < -d{X)q--' 

Qo 

= Sq"" for all n G N, 

and because of the inequality (4.19) it follows lim Un — ^x- With the 
n—>oo 

equation (4.16) and the inequalities (4.22) and (4.19) we see for all 
n, A; e N 

WVn-irk - TnWx = l^n " Un+k-1 " Un-^k-2 ^n - ^̂ nlU 

< INnlU + ll^n+lIU H 1- ||^n+/c-l|U 
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< —d{X) (g"-i + g" + • • • + g"+*^-') 
^0 

diX)q^-\l + q + • • • + q''-^) 

^ ad{X) ^^_i^ 

^ o ( l - g ) 

and therefore (r̂ )nGN is a Cauchy sequence. So, there is a vector 
r(A) G X with hm r^ == ^i^)- Furthermore, we obtain from the 

n—>oo 

equation (4.15) in the hmit 

h{x + Xx + r{X)) = 0 z . (4.26) 

From (4.20) we conclude 

A A ô 1 - ? 
_ a \\h{x + Ax) - h{x) - Xh'{x){x)\\z 

go{l -q) X 

and therefore we have 

hm ^ = Ox. (4.27) 

(4) Finally we show that x belongs to the contingent cone T{S, x). 
Take any sequence (An)nGN with An G (0, A] for all n G N and lim Â  — 

n—^oo 

0, and define the sequences (//n)nGN ^nd {xn)nen with 

/in := T~ > 0 for all n G N 
An 

and 
Xn ''=^ X + XnX + r(An) for all n G N. 

From the equation (4.26) we get 

Xn^ S for aU n G N. 
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Moreover, we have with (4.27) 

hm Xn = hm x + XnX + r{Xn) 
n—>oo n—^oo 

— hm X + \n\x + 
n->oo y An / 

- X, 

and we conclude 

hm iin{xn-x) = hm -7-{Xn^+ r{Xn)) 
n-^oo n-^oo A^ 

V _, r{Xn) 
^ hm X H—\—-

n-^oo A^ 
= X. 

Consequently, we obtain x G T{S, x) which completes the proof. 
D 

With the following theorem we show that the inclusion (4.6) also 
holds in the opposite direction. 

Theorem 4.22. Let {X, \\ • \\x) cind (Z, || • \\z) be real normed 
spaces, and let h : X —^ Z be a given mapping. Furthermore, let some 
X G S with 

S:={xeX\ h{x) = Oz} 

be given. If h is Frechet differentiable at x, then it follows 

T{S,x) C {x e X \h\x){x) ={)z}' 

Proof. Let y G T(S', S)\{Ox} be an arbitrary tangent vector (the 
assertion is evident for y — Ox)- Then there are a sequence {xn)neN of 
elements in S and a sequence (An)nGN of positive real numbers with 

X = lim Xn 
n—>oo 

and 
y= lim yn 
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where 

Vn '= ^n{^n ~ ̂ ) for all u EN. 

Consequently, by the definition of the Frechet derivative we obtain: 

h'{x){y) = h'{x)[\im Xn{xn - x)] 

= lim Xnh\x){xn — x) 
n—»oo 

= lim Xn[h{xn) - h{x) - {h{xn) - h{x) ~ h\x){xn - x))] 
n—>oo 

r II II KXn) - h{x) ~ h'{x){Xn - X) 
= - l i m WVnWx n ZTj 

n->oo \\Xn ~x\\x 

= Oz. 

D 

The proof of the preceding theorem is similar to the proof of The­
orem 4.14. Since the assumptions of Theorem 4.22 are weaker than 
those of Theorem 4.21, we summarize the results of the two preced­
ing theorems as follows: Under the assumptions of Theorem 4.21 we 
conclude 

T{S,x) = {xeX\ h\x){x) = Oz}. 

Exercises 

4.1) Let C be a convex cone in a real normed space with nonempty 
interior int(C). Show: int(C)= int(C)+C 

4.2) Let X be a real linear space. Prove that a functional / : X —> R 
is subhnear if and only if its epigraph is a convex cone. 

4.3) Let iS be a nonempty convex subset of a real linear space. Show 
that the cone generated by S is convex. 

4.4) In M̂  let the set S := {{x,y) e R'^ \ -x + y < 1, 2x + y < 
4, 0 < x < § , ? / > 0} be given. Determine the cone generated 
hyS. 

4.5) Let the set S be given as in Exercise 4.4). Determine the con­
tingent cone to 5 at (1, 2). 
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4.6) Let S' be a nonempty subset of a real normed space (X, || • ||) 
with nonempty interior int(5). For every x E int(S') show 
T{S,x)=X. 

4.7) Let 5'i and S2 be two nonempty subsets of a real normed space. 
Prove the following implications: 
(a) xeSiCS2 => T{Sux)cT{S2,x), 
(b) xeSinS2 ^ T{SinS2,x)cT{Si,x)nT{S2,x). 

4.8) Let 5 be a nonempty subset of a real normed space (X, || • ||), 
and let some x E S he arbitrarily given. Show: 
T{S^ x) = {h E X \ there are a number a > 0 and a mapping 

r : {0,a] —^ X with lim -r{t) = Ox, and there is a sequence 
t-̂ o+ t 

{tn)neN of positive real numbers converging to 0 so that x + 
tnh + r{tn) G S for all n G N}. 

4.9) Let X be an element of a subset iS of a real normed space. Prove 
that the Clarke tangent cone Tci{S^x) is closed and convex. 

4.10) Is the function / : R -> R with f{x) = x^ for all x G R pseudo-
convex at an arbitrary x G R? 



Chapter 5 

Generalized Lagrange 
Multiplier Rule 

In this chapter we investigate optimization problems with constraints 
in the form of inequahties and equahties. For such constrained prob­
lems we formulate a multiplier rule as a necessary optimality con­
dition and we give assumptions under which this multiplier rule is 
also a sufficient optimality condition. The optimality condition pre­
sented generalizes the known multiplier rule published by Lagrange 
in 1797. With the aid of this optimahty condition we deduce then the 
Pontryagin maximum principle known from control theory. 

The classical Lagrange multiplier rule is a generalization of a 
Fermat theorem (given in 1629) to optimization problems with con­
straints in the form of equahties. Lagrange developed this rule in con­
nection with problems from mechanics. First he applied this principle 
to infinite dimensional problems of the classical calculus of variations 
(where it led to the Euler-Lagrange equation) and later he extended 
it also to finite dimensional problems. 

5.1 Problem Formulation 

First, we present the class of optimization problems for which we 
formulate the generalized Lagrange multiplier rule as an optimality 
condition. Furthermore, we discuss several examples. 
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(5.1) 

The standard assumption of this chapter reads as follows: 

Let (X, II • \\x) and (Z, jj • ||^) be real Banach spaces; 
let (Y, II • ||y) be a partially ordered real normed space 
with ordering cone C with a nonempty interior int(C); 
let 5 be a convex subset of X with nonempty interior 
int(5); 
let / : X —> R be a given functional, and 
let g : X —^ Y^ h : X —^ Z he given mappings; 
furthermore let the constraint set 
S:={xeS\ g{x) G - C , h{x) = Oz} 
be nonempty. 

Under this assumption we consider the optimization problem 

min/(x), 

i.e., we are looking for minimal points of / on S. 
The following examples illustrate why the considered class of con­

straint sets is important for applications. 

Example 5.1. (a) We consider again the design problem in 
Example 1.1. For this optimization problem the constraint set reads 
as follows: 

S := {x eR^ \ 2000 < x^rrg, xi < Ax2, X2 < Xi, Xi > 0, ^2 > 0}. 

This set can be obtained, for instance, if we choose in the standard 
assumption (5.1): X = 
R^ with 

g{xi,x2) 

\Y = R\C = M^,S = Rl andg : R^ 

for all (xi,a;2) G 

Notice that the mapping h does not appear explicitly (formally, one 
can also choose the mapping being zero). 
(b) In Example 1.4 an optimization problem is given which has the 
constraint set 

S := {(x. A) G R2 I ax- sinha < A for all a G [0,2], 

ax — siuha > —A for all a G [0,2]}. 
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For the description of this set we choose especially in the standard 
assumption (5.1): X = R'^,Y = C[0,2f, 
C = {(v?i, (̂ 2) e C[0,2f I ^i{t) > 0 and (p2{t) > 0 for all t G [0,2]}, 
^ = M2 and c/: E^ ^ C[0,2f with 

, . ̂  / a: id — sinh —Al \ ^ „ . , ̂  ^0 
^(^'^)==(-a;id + sinh-Aljf'^'^^^^(^"^)^^-

Let id denote the identity on [0,2], and let 1 denote the C[0,2] func­
tion which equals 1 on [0, 2]. The mapping h does not appear explic­
itly. 
(c) In nonlinear control theory one considers, among other things, the 
following dynamical system with additional conditions: 

x{t) = f{x{t)^u{t)) almost everywhere on [to,ti], 

g{x{ti)) = OMr, 
u{t) G VL almost everywhere on [to^^i]-

Next, we discuss the used notations and the necessary assumptions. 
The control process is considered on the fixed time interval [toj^i] 
where —oo < to < ^i < oo. Let the control u be an L^ function, 
i.e., u G L^[£o,ti]- The dynamical system is described by a system 
of ordinary differential equations of first order. Let the function / : 
j^n y^ j^m __̂  ]̂ n j ^ ^ contiuuously partially differentiable. If we define 

^I!OO[^OJ^I] '-— {^ • [̂ Oĵ i] —̂  ^^ absolutely continuous | 

i ;GL^[to,ti]}, 

then the space W[|oo[̂ 05 î] equipped with the norm || • || defined by 

\\x\\ = max{||x||Ls,[to,til, ||i|Uso[to,ti]} for all x G Wl^[U,ti] 

is a Banach space. A solution x of the differential equation 

x = f{x,u) 

for a fixed u G L^\tQ^ ti] is defined as a function x G Wi^^\t^^ ti] with 

x{t) = f{x{t)^u{t)) almost everywhere on [toj-̂ i]-
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Then we conclude with the initial condition x(to) — XQ (where XQ E M.^ 
is a given vector) 

t 

x{t) = xo+ f{x{s),u{s))ds for all t G [to^^i]-

to 

For the terminal state x{ti) we require that 

g{x{ti)) = ORV 

where ^ : M^ -^ R^ is a continuously partially difFerentiable vector 
function. Let fi be a convex subset of E ^ with nonempty interior. 
Among all feasible controls one tries to determine such a control for 
which a given functional becomes minimal. For the description of 
the constraint set S of this optimization problem we use the follow­
ing notations in the standard assumption (5.1): X = W î̂ oo[̂ o?̂ i] x 
LZ[to,tilZ = W^i%[to,ti] xW,S = {{x,u) e X I u{t) e n almost 
everywhere on [to,ti]}, and h : X -^ Z with 

h{x, u) = ( ^(-^ - ^° - / / (^(^) ' ^(^)) ^' ] for all {X, u) G X. 

The constraint g does not appear explicitly in (5.1). 

5.2 Necessary Optimality Conditions 

In this section we present, under the assumption (5.1), a necessary 
condition for minimal points of / on S. This optimality condition 
generalizes the known Lagrange multiplier rule. 

As an essential tool for the proof of the multipher rule we need 
the following lemma which is obtained with the aid of the necessary 
optimality condition of Theorem 4.14 and the Lyusternik theorem. 

Lemma 5.2. Let the assumption (5.1) he satisfied, and let x he 
a minimal point of f on S. Let the functional f and the mapping g he 
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Frechet differentiable at x. Let the mapping h be Frechet differentiable 
in a neighborhood of x, and let h'{-) be continuous at x. Moreover, 
let the mapping h'{x) be surjective. Then there is no x E int(S) with 
f'{x){x — x) < 0, g{x) + g'{x){x — x) G — int(C) and h\x){x — x) — 

Proof. Let x G iS be a minimal point of / on S. We fix an 
arbitrary x G int(S') with x ^ x^ g{x) + g\x){x — x) G ~ int(C) 
and h\x){x — x) = ^z (if such an x does not exist, the assertion is 
evident). By the Lyusternik Theorem 4.21 we get x — x E T{S,x) 
with 

S:={xeX\ h{x) = Oz}. 

Consequently, there are a sequence {xn)neN of elements in S and a 
sequence {Xn)neN of positive real numbers with 

X = h m Xn 

a n d 
X — X = l im Hn (5.2) 

n—>'00 

where 
Vn '= ^ni^n — ^) for a l l 71 G N . 

Because of x G int(S') we obtain with the equation (5.2) 

X + yn E S ioi sufficiently large n G N. 

Then we get with the convexity of S for sufficiently large n G N 

_ _ J_ 

= x + —{yn + x-x) 

= (l-—)x + —{yn + x)eS, 

and therefore we have 

Xn G 5 n 5 for sufficiently large n G N. (5.3) 
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For the constraint g we obtain 

aM ^ gM-g'{x){xn-x) + —g\x){yn) 

= -r~^K{g{xn) - g{x) - g'{x){xn - x)) + g\x){yn - {x - x)) 

+g{^) + g\^)i^ - ^)] + f 1 - T-)^(^) fo^ ^1^ ^^^' (5-4) 

For n -^ cxD we conclude with Â  = ,•''_l--^ for sufficiently large n EN 
and the Frechet differentiability of g 

K{g{xn) - g{x) - g'{x){xn - x)) + g'{x){yn -{x- x)) -^ 0. (5.5) 

Because of 
g[x) + g'{x){x -x) e - int(C) 

it follows with (5.5) for sufficiently large n G N 

K{g{xn) - g{x) - g\x){xn - x)) + g'{x){yn - {x - x)) 

+g{^) + g\^){^ - s) ^ -c. (5.6) 

Since g{x) G —C, we get from (5.4) and (5.6) with the convexity of C 

g{xn) G — C for sufficiently large n G N. 

Hence we obtain with (5.3) for sufficiently large n G N 

XnE S =- {x e S \ g{x) G - C , h{x) = 0^}, 

and it follows 

x-xeT{S,x). 

Then we conclude with Theorem 4.14 

f\x){x-x)>0. 

This leads to the assertion. • 

Now we are able to present the generalized Lagrange multiplier 
rule. 
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Theorem 5.3. Let the assumption (5.1) he satisfied, and letx be 
a minimal point of f on S. Let the functional f and the mapping g he 
Frechet differentiahle at x. Let the mapping h he Frechet differentiahle 
in a neighborhood of x, let h\-) he continuous at x, and let the image 
set h'{x){X) he closed. Then there are a real number /J. > 0 and 
continuous linear functionals li G C* and I2 G Z* with (/i,/i,/2) 7̂  
(0,0y*,0z*). 

{fif{x) + /i o g\x) + I20 h\x)){x - x) > 0 for allxeS (5.7) 

and 
h{gi^)) = 0. (5.8) 

If in addition to the above assumptions, 

^',[1] ) cone {S - {x}) + cone ( ^ + ^^^ j^^^ ^=YxZ, (5.9) 

then it follows /i > 0. 

Proof. For the proof of this theorem we consider the two cases 
that h\x) is not surjective or alternatively that h'{x) is surjective. 
First, we assume that h\x) is not surjective. Then there is a ^ G 
Z with z ^ h\x){X) = cl{h\x){X))^ and by a separation theorem 
(Theorem C.3) there is a continuous linear functional I2 G Z''\{Oz^} 
with 

Uz) < inf kiz). 
zeh'{x){X) 

Because of the linearity of h'{x) it follows for every z G h'{x){X) 

hiz) < kiXz) = Xkiz) for all A G R, 

and so we get 
kiz) = 0 iov all z e h\x){X) 

resulting in 
l2oh\x)=^0x*-

If we set fi = 0 and /i = Oy*, then the inequality (5.7) and the 
equation (5.8) are fulfilled, and the first part of the assertion is proved. 
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For the following we assume the surjectivity of h'{x). In the product 
space R X y X Z we define the nonempty set 

M := {{f\x){x-x) + a, g{x)+g\x){x-x)+y, h\x){x-x)) 
eRxY X Z \xe mt{S), a > 0, ye int(C)}, 

and we show several properties of this set. 
First, we prove that M is a convex set. For this proof we fix two 
arbitrary elements (ai,6i,Ci), (a2,625^2) G M and an arbitrary A G 
[0,1]. By definition there are elements Xi,ai,yi and X2,ĉ 2??/2 with 
the properties 

ai = f{x){xi -x) + a i , a2 -- f{x){x2 - x) + 0̂ 2, 

h = g{x) + g\x){xi -x)+ yi, 62 = 9{x) + g\x){x2 - x) + ?/2, 

Ci = h\x){xi — x), C2 = h'{x){x2 — x). 

Consequently, we obtain 

Aai + (1 - A)a2 = f{x){Xxi + (1 - A)x2 - x) + Aai + (1 - A)a2, 

A61 + (1 - A)62 = g{x) + g\x){Xxi + (1 - X)x2 -x) + Xyi + (1 - A)?/2, 

Aci + (1 - A)c2 = h\x){Xxi + (1 - X)x2 - x) 

which implies 

A(ai,61,ci) + (l-A)(a2,62,02) E M. 

Next, we show that M is an open set (i.e. M = int(M)). Since int 
(M) C M by definition, we prove the inclusion M C int(M). We 
choose an arbitrary triple (a, 6, c) G M. Then there are elements x G 
int(S'), a > 0 and y G int(C) with 

a = / ' ( x ) (x — x ) + a, 

b =^ g{x) + g'{x){x - x) -\- y 

and 
c = h'{x){x — x). 
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The mapping h'{x) is continuous, linear and surjective. By the open 
mapping theorem the image of every open set is open under the map­
ping h\x). If we notice furthermore that a > O^y E int(C) and that 
Frechet derivatives are continuous and hnear, it follows (a, 6, c) G int 
(M). 
By Lemma 5.2 we have 

(0 ,0y ,0z )^M, 

i.e. 
Mn{(O,Oy,Oz)} = 0. 

By the Eidelheit separation theorem (Theorem C.2) there are a real 
number //, continuous hnear functional li G F* and I2 G Z* and a 
real number 7 with (^,/i,/2) 7̂  (0,0y*,0^*) and 

li{f{x){x - x) + a) + li{g{x) + g\x){x -x) + y) 

+l2{h\x){x ~ x)) > 7 > 0 

for all X G int(^), a > 0 and j / G int(C). (5.10) 

If we notice that every convex subset of a real normed space with 
nonempty interior is contained in the closure of the interior of this 
set, then we get from the inequality (5.10) 

li{f{x){x - x) + a) + li{g{x) + g\x){x -x) + y) 

+l2{h\x){x - x)) > 7 > 0 

for all 2; G ̂ , a > 0 and y G C. (5.11) 

From the inequality (5.11) we obtain for x = x 

fia + li{g{x) +y)>0 for all a > 0 and y eC. (5.12) 

With a = 1 and y = —g{x) we get /x > 0. From the inequality (5.12) 
it follows for a = 0 

h{g{x)) >-h{y) ioi all yeC. (5.13) 

Assume that for some ^ G C it is /i(?/) < 0, then with Xy E C for 
some sufficiently large A > 0 one gets a contradiction to the inequality 
(5.13). Therefore we have 

hiy) > O f o r a l l y G C , (5.14) 



114 Chapter 5. Generalized Lagrange Multiplier Rule 

i.e., li is an element of the dual cone (7* of C, Moreover, the inequality 
(5.13) implies li{g{x)) > 0. Since x satisfies the inequality constraint, 
i.e., it is g{x) G —C, we also conclude with the inequality (5.14) 
li{g{x)) < 0. Hence we get li{g{x)) = 0 and the equation (5.8) is 
proved. 
Now, we show the equation (5.7). For a = 0 and y = —g{x) we obtain 
from the inequality (5.11) 

fj.f{x){x -x) + li{g'{x){x - x)) + l2{h\x){x - x)) > 0 for all x G ^ 

and 

(/i/(x) + /i o g\x) + I20 h\x)){x -x)>0 for all x e S, 

Finally, we consider the case that in addition to the given assumptions 

( g ) ) o o „ e ( 5 - W ) . - e ( ^ + { f ) > ) = y x Z . 

For arbitrary elements y E Y and z E Z there are nonnegative real 
numbers a and /? and vectors x E S and c E C with 

y = g\x){a{x - x)) + /?(c + g{x)) 

and 
z = h'(x){a{x — x)). 

Assume that /i = 0. Then we obtain with the inequality (5.7), the 
equation (5.8) and the positivity of l\ 

h{y) + i2{z) 

= {h o g\x)){a{x - x)) + Ph{c + g{x)) + [h o h'{x)){a{x - x)) 

> 0. 

Consequently, we have li = Oy* and I2 = Oz*- But this contradicts 
the assertion that (/x,h^h) 7̂  (0,Oy*,0^*). • 

Every assumption which ensures that the multipher /x is positive is 
also called a regularity assumption. We call the additional assumption 
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(5.9) given in Theorem 5.3 the Kurcyusz-Robins on-Zowe^ regularity 
conditon. Notice that a regularity assumption is only a condition on 
the constraint set S and not a condition on the objective functional 
/ . For // == 0 the inequality (5.7) reads 

(/i o g'{x) + I20 h\x)) (x - x) > 0 for all xeS, 

and in this case the generalized Lagrange multiplier rule does not 
contain any information on the objective functional / — this is not 
desirable. Therefore, in general, one is interested in a necessary op­
timality condition with /a > 0. For /i > 0 the inequality (5.7) leads 
to 

(f{x) + -h o g'{x) + -h o h'{x))(x - x) > 0 for all xeS, 
\ jJL Li / 

and from the equation (5.8) it follows 

If we define the continuous linear functional u :== -li E C* and 
V := H2 E Z"", then we obtain 

{f{x) +UO g\x) -^vo h\x)){x - x) > 0 for dl\ x e S (5.15) 

and 
u{g{x)) - 0. 

The functional L := f + uog + vohis also called Lagrange functional 
Then the inequality (5.15) can also be written as 

L\x){x-x) > 0 for a l l x G ^ 

where L\x) denotes the Frechet derivative of the Lagrange functional 
at X. 

^S.M. Robinson, "Stability theory for systems of inequalities in nonlinear pro­
gramming, part II: differentiable nonlinear systems", SIAM J. Numer. Anal 13 
(1976) 497-513. 
J. Zowe and S. Kurcyusz, "Regularity and stability for the mathematical pro­
gramming problem in Banach spaces", Appl. Math. Optim. 5 (1979) 49-62. 
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If the superset S of the constraint set S equals the whole space 
X, then the generalized Lagrange multiplier rule can be specialized 
as follows: 

Corollary 5.4. Let the assumption (5.1) with S = X be satisfied, 
and let x be a minimal point of f on S. Let the functional f and the 
mapping g be Frechet differentiable at x. Let the mapping h be Frechet 
differentiable in a neighborhood of x, let h\') be continuous at x and 
let h'{x){X) be closed. Then there are a real number fJ^ > 0 and 
continuous linear functional li G C* and I2 E Z* with (fi J1J2) 7̂  

(0,0y*,0z*); 

fifix) + I10 g\x) + I20 h\x) = Ox* 

and 
h{g{x)) = Q. 

If, in addition to the above assumptions, the Kurcyusz-Robins on-Z owe 
regularity assumption (5.9) is satisfied, then it follows fi> 0. 

Proof. In this special setting the inequality (5.7) reads 

(/x/(x) + I10 g'{x) + I20 h\x)) (x - x) > 0 for all x G X 

which implies because of the linearity of the considered mappings 

^lf\x) + /i o g'{x) + I2 o h\x) = Ox-

Then the assertion follows from Theorem 5.3. • 

The assumptions of Theorem 5.3 (and also those of Corollary 5.4) 
can be weakened considerably: Instead of the assumption that int(C) 
is nonempty and h'{x){X) is closed, Theorem 5.3 can also be proved 
under the assumption that either the set 

f | ) ) cone ( 5 - { . } ) + cone ( ^ + < f ) > 

is closed or the product space Y x Z is finite dimensional (compare 
Theorem 5.3.6 in the book [347] by Werner). 
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In the proof of Theorem 5.3 we have shown the following impli­
cation: If the Kurcyusz-Robinson-Zowe condition is satisfied at some 
X E S^ then the generalized Lagrange multiplier rule is not fulfilled 
with /i = 0 at X. Conversely we prove now: If the generalized La­
grange multiplier rule does not hold with /i = 0 at some x E S^ then 
a condition is satisfied at x which is in a certain sense a modified 
Kurcyusz-Robinson-Zowe condition (condition (5.16)). This result 
shows that the Kurcyusz-Robinson-Zowe condition is a very weak 
regularity assumption. 

Theorem 5.5. Let the assumption (5.1) he satisfied (without the 
assumption int{C) ^ ^), and let some x E S be given. Let the map­
pings g and h be Frechet differentiable at x. If there are no continuous 
linear Junctionals li G C* and I2 G Z* with {I1J2) 7̂  (Oy*,0^*); 

(/i o g^{x) + I20 h'{x)) (x — x) > 0 for all x E S 

and 
h{g{x))=0, 

then it follows 

Proof. We prove the assertion by contraposition and assume 
that there is a pair (y^z) EY x Z with 

The set appearing in the right hand side of this condition is nonempty, 
closed and convex. By a separation theorem (Theorem C.3) there is 
then a continuous linear functional (h^h) EY"" x Z"" with {h^h) 7̂  
(Oy*,02:*) and 

k{y) + l2{z) < {hog\x)){a{x-x))+Ph{c + g{x)) 

+{l2 o h'{x)) {a[x - x)) 

for all a > 0, /? > 0, X G ̂ , c G C. 
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With standard arguments it follows 

a{li o g\x) + I20 h\x)){x - x) + (5li{c + g{x)) > 0 

for sl\a>0, P>0,xeS,ceC. (5.17) 

Then we get with a = 0 and P = I 

hie) > -h{g{x)) for a l l c e C 

which leads to h G C* and li{g{x)) = 0. From the inequality (5.17) 
we obtain with a = 1 and P ~ 0 

{h o g\x) + I20 h\x)) (x - x) > 0 for all XES. 

Hence the generalized Lagrange multiplier rule is fulfilled with /i = 0 
at X. • 

The Kurcyusz-Robinson-Zowe regularity assumption may seem to 
be unwieldy. In the following we see that there are simpler (and there­
fore more restrictive) conditions implying this regularity assumption. 

Theorem 5.6. Let the assumption (5.1) be satisfied, and let some 
X ̂  S be given. Let the mappings g and h be Frechet differentiable at 
X. If the mapping h'{x) is surjective and if there is a vector x G int{S) 
with g{x) + g\x){x — x) G —int{C) and h\x){x — x) =^ Oz, then the 
Kurcyusz-Robinson-Zowe regularity assumption (5.9) is satisfied. 

Proof. Let y ^ Y and z E Z he arbitrarily given elements. 
Because of the surjectivity of h\x) there is a vector x E X with 
h'{x){x) = z. Then we have 

z = h'{x){x + \{x - x)) for all A > 0. 

Since x G int(5'), it follows for sufficiently large A > 0 

X + \{x — x) = X(x + --X — x) G cone(5' -- {x}). 

Because of g{x) + g'{x){x — x) e —int(C) we also get for sufficiently 
large A > 0 

-g{x) - g\x){x -x) + j{y - g\x){x)) G C. 
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If we notice that 

y = g'{x){x + X{x-x)) + \{^-g{x)+g{x) 

+j{y-g'{x){x + X{x-x)))^ 

= g'{x){x -{• X{x - x)) + X\^- g{x) - g'{x){x - x) 

+^(y - g\x){x)) + g{x)) for all A > 0, 

then we conclude 

Consequently, the Kurcyusz-Robinson-Zowe regularity assumption 
(5.9) is satisfied. • 

For the proof of the generalized Lagrange multiplier rule we have 
assumed that the ordering cone C has a nonempty interior. If we 
drop this restrictive assumption, the following example shows that 
the Kurcyusz-Robinson-Zowe condition can be satisfied although the 
regularity assumption of Theorem 5.6 is not fulfilled. 

Example 5.7. We consider especially X = Y = L2[0,1] with 
the natural ordering cone 

C := {x G 1/2[0,1] I x{t) > 0 almost everywhere on [0,1]} 

(notice that int(C) = 0). For an arbitrary a G I/2[0,1] we investigate 
the optimization problem 

min < x^x > 
subject to the constraints 
X — a e C 
xeC. 

Let < •, • > denote the scalar product in the Hilbert space I/2[0,1]. 
Since the ordering cone C is closed and convex, this optimization 
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problem has at least one minimal solution x (by Theorem 2.18). If 
we define the set S := C and the constraint mapping g : X —^Y by 

g{x) = —X + a for all x G X, 

then we obtain for this minimal solution x 

g\x) cone(5 - {x}) + cone(C + {g{x)]) 

= g'{x) cone((7 - {x}) + cone(C + {g{x)}) 

= -C + cone({5}) + C + cone{{g{x)}) 

= X 

because we have X = C—C. Hence this optimization problem satisfies 
the Kurcyusz-Robinson-Zowe condition. 

In the following we turn our attention to finite dimensional prob­
lems. We specialize Corollary 5.4 for such problems. In this finite 
dimensional setting one speaks of the so-called F. John conditions^ 
and in the case of // > 0 one speaks of the Karush-Kuhn-Tucker con­
ditions^. 

Theorem 5.8. Let the objective function f : W^ ^ R and the 
constraint functions g :W^ -^ W^ and h :W^ -^MP be given. Let the 
constraint set S which is assumed to be nonempty be given as 

S :=^ {x eMJ" I gi{x) < 0 for alii e {1,...,m} and 

hi{x) = 0 for all z G { 1 , . . . ^p}}-

Let X E S be a minimal point of f on S. Let f and g be differentiable 
at X and let h be continuously differentiable at x. Moreover^ let the 

^F. John, "Extremum problems with inequalities as side conditions", in: K.O. 
Priedrichs, O.E. Neugebauer and J.J. Stoker (eds.). Studies and Essays^ Courant 
Anniversary Volume (Interscience. New York, 1948). 

^W.E. Karush, Minima of functions of several variables with inequalities as 
side conditions (Master's Dissertation, University of Chicago, 1939). 
H.W. Kuhn and A.W. Tucker, "NonUnear programming", in: J. Neyman (ed.). 
Proceedings of the Second Berkeley Symposium on Mathematical Statistics and 
Probability (University of California Press, Berkeley, 1951), p. 481-492. 
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following regularity assumption be satisfied: Assume that there is a 
vector X EMJ^ with 

Vgiix^x < 0 for all i e I{x) 

and 

Vhi{x) X = 0 for all z G { 1 , . . . ,p}, 

and that the vectors V/i i (x) , . . . , V/ip(x) are linearly independent. 
Here let 

I{x) : - { z G l , . . . , m } \g^{x) = Q} 

denote the index set of the inequality constraints which are ^'active'' 
at X. Then there are multipliers Ui > 0 {i E I{x)) and Vi E M. {i E 
{ 1 , . . . ,p}) with the property 

V 

V/(x) + Y^ UiVgiix) + Y^ViVhi{x) = O^n. 
iel{x) i=l 

Proof. We verify the assumptions of Corollary 5.4. h^{x) is 
surjective because the vectors V/i i (x) , . . . , Vhp{x) are linearly inde­
pendent. The ordering cone C on W^ is given as C = W^, Then we 
have 

int(C) = {yeW\yi>{) for all i G { 1 , . . . ,m}} 

and C* 
A > 0 

and 

. Consequently, we obtain for some sufficiently small 

gi{x) + XVgi{xfx \ 

gm{x) + XVgm{x)^x J 

( XWhi{xfx 

g{x) + g\x){Xx) = G -int(C) 

h\x){Xx) = 

y xvhp{xYx 



122 Chapter 5. Generalized Lagrange Multiplier Rule 

Because of Theorem 5.6 the Kurcyusz-Robinson-Zowe regularity as­
sumption is then also satisfied. By Corollary 5.4 there are elements 
/i > 0, /i G R!̂ ' and k G W with 

m p 

and 

m 

i=l 

For u := ^i G W? and v := H2 G R^ it follows 
m p 

Vf{x) + ^UiVgi{x) + ^ViVhi{x) = ORn (5.18) 

and 
m 

J2uM^)=0, (5.19) 

Because of the inequalities 

gi{x) < 0 for alH G { 1 , . . . , m}, 

Ui>0 for alH G { 1 , . . . , m} 

and the equation (5.19) we obtain 

UiQiix) = 0 for alH G { 1 , . . . , m}. (5.20) 

For every i G { 1 , . . . ,m}\/(x) we get gi{x) < 0, and therefore we 
conclude with (5.20) Ui = 0. Hence the equation (5.18) can also be 
written as 

p 

iel{x) i=l 

D 
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V^2(S) 

r ^ ^9s{x) 

m = fix) 

9s{x)=^0 

Figure 5.1: Geometric interpretation of Theorem 5.8. 

The regularity assumption given in the previous theorem is also 
called Arrow-Hurwicz-Uzawa condition. Figure 5.1 illustrates the re­
sult of Theorem 5.8. 

If a finite optimization problem has only constraints in the form of 
inequalities, then a simple sufficient condition for the Arrow-Hurwicz-
Uzawa regularity assumption can be given. This condition presented 
in the next lemma is also called Slater condition. 

Lemma 5.9. Let g : 
let the constraint set 

be a given vector function, and 

S :={xeW\ gi{x) < 0 for all i G { 1 , . . . ,m}} 

be nonempty. If the functions gi^... ,gm CLTC differentiable and convex, 
and if there is a vector x EM.^ with 

gi{x) < 0 for a// i G { 1 , . . . , m}, 
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then the regularity assumption of Theorem 5.8 is satisfied. 

Proof. With Theorem 3.16 we get for every x E S 

9i{x) > Qiix) + Vgi{xY{x - x) for alH G { 1 , . . . , m}, 

and then by the assumptions we conclude 

Vgi{xf{x -x) < gi{x) - gi{x) 

< 0 for all i G I{x) 

where I{x) denotes the index set of the inequality constraints being 
"active" at S. • 

The Slater condition can be checked with the aid of the constraint 
functions gi^... ^gm without the knowledge of the minimal point x. 
But this condition is also very restrictive since, in general, one has to 
assume that the functions fi^i,..., fl'm are convex. 

Example 5.10. We consider again Example 1.1. For X = M? 
we define the objective function / by 

f{x) = lxiX2 for all x G R^. 

The constraint functions gi^... ^g^ are given as 

gi{x) =2Qm-x\x2 \ 
92(00) = x i - 4x2 

gs{x) = -xx'Vx2 
g^{x) = -Xi 

g^{x) - -X2 

> for all X G 

The constraint set S reads as follows 

S' := {x G R^ I gi{x) < 0 for alH G { 1 , . . . , 5}}. 

In this example there are no equality constraints. Figure 5.2 illus­
trates the constraint set. One can see immediately that the con­
straints described by 5̂4 and g^ do not become active at any x E S. 
These constraints are therefore called redundant. 
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Xi + X2 = 0 

Xi — 4x2 = 0 

^ lxiX2 = 200/ 

- lxiX2 = 100/ 

Figure 5.2: Illustration of the constraint set S. 

For X := (20,10) the set 

Sa:={xeS\ f{x) < a} 

with a := f{x) — 200/ is certainly compact because of the continuity 
of / . Hence / has at least one minimal point x on 5a. Then x is 
also a minimal point of f on S. If we notice that the assumptions of 
Theorem 5.8 are satisfied (e.g., the regularity assumption is satisfied 
for X = £ — x), then there are multipliers ui^U2^us > 0 (ĝ 4 and g^ do 
not become active) with the property 

V/(x)+ J2 ^i^9i{^)=^R^' 
iei{x) 
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For the calculation of x,ui^U2 and us one can investigate all possible 
cases of no, one or two constraints being active at x. For the following 
we assume that gi and g2 are active. Then we get 

-.(-5f)--(-0 = (o 
2000 = x\x2, 

Xi = 4X2, 

Ui >0^U2> 0. 

A solution of this nonhnear system reads Xi = 20, X2 = 5, ni — 
^ / , U2 = | / . Consequently, x = (20,5) G 5̂  satisfies the Karush-
Kuhn-Tucker conditions. 

5.3 Sufficient Optimality Conditions 

The necessary optimality conditions formulated in the preceding sec­
tion are, in general, not sufficient optimality conditions if we do not 
consider additional assumptions. Therefore we introduce first so-
called C-quasiconvex mappings and we show the equivalence of the 
(7-quasiconvexity of a certain mapping with the sufficiency of the gen­
eralized multiplier rule as optimality condition for a modified prob­
lem. Moreover, we present a special sufficient optimality condition 
for finite-dimensional optimization problems. 

In Definition 2.9 we already introduced quasiconvex functionals. 
With the following theorem we give a necessary condition for a qua­
siconvex directionally differentiable functional. 

Theorem 5.11. Let S be a nonempty convex subset of a real 
linear space X, and let f \ S —^M. be a quasiconvex functional having 
a directional derivative at some x E: S in every direction x — x with 
arbitrary x E S. Then the following implication is satisfied for all 
xeS 

f{x)-f{x)<0=^f{x){x-x)<0. 
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Proof. For an arbitrary x E S we assume that 

fix) - fix) < 0. 

Because of the quasiconvexity of / the level set 

5/(,) •.= {xeS\ fix) < fix)} 

is then convex. Since x,x E Sf(x) we obtain 

Aa; + (1 - X)x G S'/(x) for all A € [0,1] 

and especially 

fiXx + (1 - X)x) < fix) for all A G [0,1]. 

Then it follows 

\ifix + Xix - x)) - fix)) < 0 for all A G (0,1]. 
A 

Finally we conclude because of the directional differentiability of / at 
X 

f'ix)ix -x)= hm \ifix + Xix - x)) - fix)) < 0. 
A—>0+ A 

D 

The previous theorem motivates the following definition of C-
quasiconvex mappings. 

Definition 5.12. Let 5 be a nonempty subset of a real linear 
space X, and let C be a nonempty subset of a real normed space 
(y, II • II). Let f : S —> Y he a. given mapping having a directional 
derivative at some x G 5 in every direction x — x with arbitrary x E S. 
The mapping / is called C-quasiconvex at x, if for all x E S: 

fix)-fix)eC=^f'ix)ix-x)eC. 

Example 5.13. 
(a) Let 5 be a nonempty convex subset of a real linear space, and let 
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/ : 5 —> R be a quasiconvex functional having a directional derivative 
at some x E S in every direction x — x with arbitrary x e S. Then / 
is R_-quasiconvex at x. 

Proof. We choose an arbitrary x e S with f{x) — f{x) < 0. Then 
it follows with Theorem 5.11 f {x){x — x) < 0, and the assertion is 
proved. • 

(b) Let 5 be a nonempty subset of a real linear space, and let / : 
S' —> R be a given functional having a directional derivative at some 
X E S in every direction x ~ x with arbitrary x E S and let / be 
pseudoconvex ai x E S. Then / is also (R_\{0})-quasiconvex at x. 

Proof. For an arbitrary x E S with f{x) — f{x) < 0 it follows 
f{x){x — x) < 0 because of the pseudoconvexity of / at x. • 

With the aid of the (7-quasiconvexity it is now possible to charac­
terize the sufficiency of the generalized multiplier rule as an optimality 
condition for a modified optimization problem. For that purpose we 
need the following assumption: 

Let 5 be a nonempty subset of a real linear space X] 
let (y, II • ||y) be a partially ordered real normed space 
with an ordering cone C; 
let (Z, II • 11̂ ) be a real normed space; 
let / : AS —> R be a given functional; ^ (5.21) 
let g : S -^Y and h : S -^ Z he given mappings; 
moreover, let the constraint set 
S:={XES\ g{x) E - C , h{x) = Oz] 

be nonempty. 

Theorem 5.14. Let the assumption (5.21) be satisfied, and let 
/ ; g, h have a directional derivative at some x E S in every direction 
X — X with arbitrary x E S. Moreover, assume that there are linear 
junctionals u E C and v E Z' with 

{f{x) +UO g\x) +VO h\x)) (x - x) > 0 for all x E S (5.22) 



5.3. Sufficient Optimality Conditions 129 

and 
u{g{x)) - 0. (5.23) 

Then x is a minimal point of f on 

S := {x e S \ g{x) G - C + cone{{g{x)}) - cone{{g{x)}), h{x) = Oz} 

if and only if the mapping 

{f,g,h) ',S-^RxY xZ 

is C-quasiconvex at x with 

C := (M-\{0}) X ( - C + cone{{g{x)}) - cone{{g{x)})) x {0^}. 

Proof. First we show under the given assumptions 

{f'{x){x-x),g'{x){x-x),h'{x){x-x))^C for all x G S*. (5.24) 

For the proof of this assertion assume that there is a vector x E S 
with 

{f'{x){x - x),g'{x){x - x), h\x){x - x)) G C, 

i.e. 

f'{x){x-x) < 0, 
g'{x){x-x) G -C + cone{{g{x)})-cone{{g{x)}), 

h'{x){x-x) = Oz. 

Hence we get with the equation (5.23) for some a, /3 > 0 

{f'{x)+UOg'(x)+ v o h'{x))(x — x) < u{g'(x) {x — x)) 

< au{g{x)) - /3u{g{x)) 

= 0. 

But this inequality contradicts the inequality (5.22). Consequently, 
we have shown that the condition (5.24) is satisfied. 
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If the mapping (f^g^h) is C-quasiconvex at x^ then it follows from 
(5.24) 

(fix) - f{x),g{x) - g{x), h{x) - h{x)) i C for all xeS, 

i.e. there is no a; G 5' with 

f{x) < fix), 

9{x) e {g{x)} -C + cone({p(;r)}) - cone({5f(x)}) 

= -C + cone{{g{x)}) - cone({^(x)}), 

h{x) = Oz. 

If we notice that with 

g{x) e-C C-C + cone({^(x)}) - cone{{g{x)}) 

it also follows X E S, then ;r is a minimal point of / on S. 
Now we assume in the converse case that S is a minimal point of 

f on S, then there is no a: G 5 with 

fix) < fix), 

gix) e -C + coneiigix)}) - cone({^(x)}) 

= {aix)} -C + cone({p(x)}) - cone({p(x)}), 

Kx) = Oz, 

i.e. 

ifix) - fix), gix) - gix), hix) - /i(x)) ^ C for all x e S. 

Consequently, with the condition (5.24) we conclude that the mapping 
if^g^h) is (7-quasiconvex at x. • 

By Theorem 5.14 the C-quasiconvexity of the mapping (/, g, h) is 
characteristic of the sufficiency of the generalized Lagrange multiplier 
rule as an optimahty condition for the optimization problem 

min/(x) 
xes 
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with 

^ := {x e ^ I g{x) e-C + cone({^(x)}) - cone{{g{x)}), h{x) = 0^}. 

The set cone{{g{x)}) — cone{{g{x)}) equals the one dimensional sub-
space of Y spanned by g{x). Figure 5.3 illustrates the modified con­
straint set S. 

g3{x)=0 

gi{x)=0 

92{x)=0 

Figure 5.3: Illustration of the set S 

For the orginal problem 

min/(x) 
xes 

we obtain the following result. 

Corollary 5.15. Let the assumption (5.21) he satisfied, and let 
f, g, h have a directional derivative at some x E S in every direction 
X — X with arbitrary x E S. If there are linear Junctionals u E C^ and 
V E Z' with 

{f{x) +UO g\x) + VO h'{x)) (x - x) > 0 for all x E S 

and 
u{g{x)) = 0, 

and if the mapping 

{f,g,h) :S-^RxYxZ 
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is C-quasiconvex at x with 

C := (M_\{0}) X ( - C + cone{{g{x)}) - cone{{g{x)})) x {^z}, 

then X is a minimal point of f on S. 

Proof. By Theorem 5.14 x is a minimal point of / on S. 
For every x E S we have 

gix) e -C 

C -C + cone{{g{x)}) - cone{{g{x)}). 

Consequently we get S C S^ and therefore x is also a minimal point 
of / on 5. • 

With the following lemma we present conditions on f^ g and h 
which ensure that the composite mapping (/, g^ h) is C-quasiconvex. 

Lemma 5.16. Let the assumption (5.21) he satisfied, and let f, 
g, h have a directional derivative at some x E S in every direction 
X — X with arbitrary x E S. If the functional f is pseudoconvex at 
Xj the mapping g is {—C-{- cone{{g{x)}) ~ cone{{g{x)}))-quasiconvex 
at X and the mapping h is {Oz}-quasiconvex at x, then the composite 
mapping (/, g^ h) is C-quasiconvex at x with 

C := (M-\{0}) X (-C + cone{{g{x)})-cone{{g{x)})) x {0^}. 

Proof. Choose an arbitrary x E S with 

{f,g,h){x)-{f,g,h){x)eC, 

i.e. 

fix)-fix) < 0, 
gix) - gix) e -C + coneiigix)}) - cone({y(S)}), 

hix) - hix) = Qz-

Because of the pseudoconvexity of / it follows 

f'ix)ix-x)<Q, 
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the (—C + cone{{g{x)}) — cone({ig(x)}))-quasiconvexity of g leads to 

g\x){x -x) e-C + cone{{g{x)}) - cone{{g{x)}), 

and with the {0^}-quasiconvexity of h we obtain 

h\x){x-x) =0z. 

This completes the proof. • 

Notice that the assumption of {0^}-quasiconvexity of the mapping 
h at X is very restrictive. In this case the following implication is 
satisfied for all x E S: 

h{x) - h{x) = 0z=> h\x){x -x) = Oz- (5.25) 

Such a mapping is also called quasilinear at x. For instance, every 
affin-linear mapping h satisfies the implication (5.25), but also the 
nonlinear function /i : R —> M with h{x) = x^ for all x G E is 
quasilinear at every x G R. 

Now we turn our attention to finite dimensional optimization prob­
lems and we give assumptions on f, g and h under which the Karush-
Kuhn-Tucker conditions are sufficient optimality conditions. 

Theorem 5.17. Let an objective function f :W^ -^R as well as 
constraint functions g '.W^ -^ R^ and h :W^ —^MP be given. Let the 
constraint set S which is assumed to be nonempty be given as 

S :={xeW I gi{x) < 0 for a// z G { 1 , . . . , TO} and 

hi{x) = 0 for all z G { 1 , . . . ,p}}. 

Let the functions / , g'l,.. . , g'^, / i i , . . . , /ip be differentiable at some x G 
S. Let the set 

I{x) : - { i G { ! , . . . ,TO} \gi{x) - 0 } 

denote the index set of the inequality constraints being '^active^^ at 
X. Assume that the objective function f is pseudoconvex at x, the 
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constraint functions gi {i G I{x)) are quasiconvex at x, and the con­
straint functions / i i , . . . , /ip are quasilinear at x. If there are multipli­
ers Ui >0{i E I{x)) and '̂̂  E M (z G { 1 , . . . ,p}) with 

p 

Vf{x) + Y, ^i^9i{x) + ^ViWhi{x) = ORn, (5.26) 
iel{x) i=l 

then X is a minimal point of f on S. 

Proof. If we define additional multipliers 

Ui := 0 for alH G { 1 , . . . , m}\/(x) , 

then it follows from the equation (5.26) 

m p 

V/(x) + Y,UiVgi{x) + J2^iVhi{x) = ORn 
z = l i=l 

and 
m 

Y^UiQiix) =0. 

Then the assertion results from Corollary 5.15 in connection with 
Lemma 5.16. One interesting point is only the assumption of the 
{—R^ + cone{{g{x)}) — cone({5'(x)}))-quasiconvexity of g at x. For 
the verification of this assumption we choose an arbitrary x E M.^ 
with 

9i{^) - 9i{^) < otgi{x) - pgi{x) for alH G { 1 , . . . , m} 

and some a,/? > 0. (5.27) 

The inequality (5.27) implies 

9i{x) — gi{x) < 0 for all i G I{x). 

Because of the quasiconvexity of the gi {i G I{x)) it then follows 

V^^(x)^(x -x) <0 for all i G I{x). 
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Moreover, there are numbers ẑ , /i > 0 with 

Vgi{xY{x — x) < {u — fJ^)gi{x) for all z e { 1 , . . . , m}. 

Consequently, the vector function g is {—W^ + cone({5'(x)}) — cone 
({5'(x)}))-quasiconvex at x. This completes the proof. • 

Example 5.18. We investigate the following optimization prob­
lem: 

min 2x1 + 2x1X2 + x | — lOxi — 10^2 
subject to the constraints 
xl + xl-5<0, 
3xi + 0:2 — 6 < 0, 
Xi,X2 G M. 

The objective function / : E^ —> R is defined by 

/ (x i , X2) = 2x\ + 2x1^2 + x\ — lOxi — 10x2 for all (xi, X2) G M ,̂ 

and the constraint functions g'l, 5̂2 • R^ -^ R are given by 

g'i(xi,X2) = xl + xl — 5 for all (xi,X2) G R^ 

and 
5̂ 2(̂ 1? ̂ 2) = 3xi + X2 — 6 for all (xi, X2) G M .̂ 

Then the Karush-Kuhn-Tucker conditions for some x G R^ read as 
follows: 

4xi + 2x2 - 10 \ /̂  2x1 \ f ^ \ f 0 
2xi + 2x2-10j+^^^2x2 j + ^ ^ U J ^ V O 

Ui{xl + X2 — 5) = 0, 

'̂ 2̂(3x1 -I-X2 - 6) = 0. 

Notice that Xi, X2, ui and U2 must also fulfill the following inequalities: 

X? + x | - 5 < 0, 
3xi + X2 — 6 < 0, 
ui > 0 , 
U2 > 0. 
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For the determination of solutions xi^X2^ui^U2 we can consider all 
possible cases of no, one or two active constraints. Under the as­
sumption that only the constraint function gi is active {^ U2 = 0) it 
follows 

Axi + 2x2 - 10 + 2uiXi = 0, 
2xi + 2x2 - 10 + 2uiX2 = 0, 
Xi "T" Xo 0 —- U5 

3xi + X2 - 6 < 0, 
ui > 0. 

Xi = 1, X2 = 2 and ui = 1 are a solution of this system. Hence 
X = (1,2) satisfies the Karush-Kuhn-Tucker conditions. 

Question: Is x also a minimal point of / on the constraint set? 
In order to answer this question we use the result of Theorem 5.17. 
The Hessian matrix H of the objective function / reads 

^ = ( 2 2 

and is positive definite (the eigenvalues are 3 ± \/5). Consequently 
we have 

f{y) = f{x) + Vf{xf{y-x) + ^{y-xfH{y-x) 

> f{x) + Vf{xf{y-x) for all X, 2/G R^ 

Then we know with Theorem 3.16 that / is convex. Since the Hes­
sian matrix of the constraint function gi is also positive definite, we 
conclude with the same arguments as for / that gi is convex. Conse­
quently, by Theorem 5.17 x = (1,2) is a minimal point of / on the 
constraint set. 

5.4 Application to Optimal Control 
Problems 

It is the aim of this section to apply the generalized Lagrange multi­
plier rule to an optimal control problem which was already described 
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in Example 5.1,(c). For this optimal control problem we deduce the 
Pontryagin maximum principle as a necessary optimality condition, 
and moreover we give assumptions under which this maximum prin­
ciple is a sufficient optimality condition. 

In the following we consider the optimal control problem in Ex­
ample 5.1,(c) with a special objective functional and g instead of g. 
Let / i : R^ ^ R and /a : R"" x R^ -^ R be continuously partially dif-
ferentiable functions. Then the investigated optimal control problem 
reads as follows: 

min f,{x{h)) + J f2{x{t),u{t))dt 

(5.28) 

to 
subject to the constraints 
x{t) = f{x(t)^u{t)) almost everywhere on [to^ î]? 

g{x{ti)) =Qw, 
u{t) G Vt almost everywhere on [to,ti]. 

The assumptions were already given in Example 5.1,(c) (for g instead 
oig). 

With the following theorem we present a necessary optimality con­
dition for an optimal control of this control problem. This optimality 
condition is also called the Pontryagin maximum principle. 

Theorem 5.19. Let the optimal control problem (5.28) be given. 
Let the functions / i : R^ -> R, /s : R^ x R^ -> R, / : R^ x R^ -> R^ 
and g '.W^ —^W be continuously partially differentiable. Let Q be a 
convex subset ofW^ with nonempty interior. Let u G L^[to,ti] be an 
optimal control and let x G W^f^[^o,^i] be the resulting state. Let the 
matrix ^{x(ti)) be row regular. Moreover, let the linearized system 

almost everywhere on [to,ti], 

x(to) = 

be controllable (i.e., for every xi G R'̂  there are a controluEL'^\tQ^t^ 
and a resulting trajectory x G W[̂ Q [̂io5̂ i] satisfying this linearized 
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system and for which x{ti) = Xi is fulfilled). 
Then there are a function p G WT̂ ô fto, ̂ i] cirid a vector a EW so that 

(a) -Pitf ^p{tf^{x{t),u{t)) - ^{x{t),m) 

almost everywhere on [to,ti] (adjoint equation)^ 

ib) -p{t,Y = a^ll (x(ii)) + ^ (x(ti)) 
(transversality condition), 

(c) for every control u G L^ftoj^i] "^ith 

u{t) G VL almost everywhere on [to,ti] 

the following inequality is satisfied: 

p{tf^{x{t)Mt)) - ^{x{t)Mt))] {u{t)-u{t)) < 0 

almost everywhere on [to,ii] (local Pontryagin maximum 

principle). 

Proof. It is our aim to derive the given necessary optimality 
conditions from the generahzed Lagrange multipHer rule (Theorem 
5.3). 

The control problem (5.28) can be treated as an optimization prob­
lem with respect to the variables {x^u). Then we define the product 
spaces X := Wi%[to,ii] x L^[to,^i] and Z := H^i%[to,ii] x R^ The 
objective functional (̂  : X —> R is defined by 

ti 

(p{x,u) = fi{x{ti)) + / f2{x{t),u{t))dt for all {x,u) G X. 

to 

The constraint mapping h : X —> Z is given by 

\ 
for all {x,u) e X. 

Furthermore, we define the set 

S := {{x^u) G X I u{t) G ̂  almost everywhere on [to,ti]}. 

uf^^A^l ^{')-oco- ff{x{s),u{s))ds 
a\x^ u) — \ Q̂ 
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Then the optimization problem which has to be investigated reads as 
follows: 

min (f{x^u) "I 
subject to the constraints I . ^. 

{x,u)eS. J 

By the assumption (x,n) is a minimal solution of the optimization 
problem (5.29). For the formulation of the generalized Lagrange mul­
tiplier rule for the problem (5.29) we need the Frechet derivatives of 
(p and h at {x^u). One can show that these derivatives are given as 
follows: 

ip\x,u){x,u) = —^{x{ti))x{ti) 

+ -^{x{s),u{s)) x{s) + ~{x{s),u{s)) u{s) 

to 

ds 

for all (x, u) £ X 

and 

h'{x^u) {x^u) = 

^ ( • ) - / [^(:^^(5),^(5))a;(5) + —(x(5),n(5))n(s)] ds, 

to 

^^/- / {x{ti)) x{ti) \ for all {x, u) G X. 

Notice that h is continuously Frechet differentiable at {x^u). 
Next, we show that the optimization problem (5.29) satisfies a 

regularity condition. By Theorem 5.6 the problem is regular, if the 
mapping h'ix^u) is surjective (notice that we do not have inequal­
ity constraints). For the proof of the surjectivity of h'{x^u) we fix 
arbitrary elements w E W î%[*05̂ i] Q̂nd y EW. Since the matrix 
|^(x(ti)) is row regular, there is a vector ^ G R^ with 

dx 
{x{ti))y = y. 
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The integral equation 

f df _ 
x{t) — w{t) + / —{x{s)^u{s))x{s)ds for all t G [to,ti] 

to 

is a linear Volterra equation of the second kind and therefore it has a 
solution X := z E Wi^[tQ^ti]. With this solution z we then consider 
the linearized system of differential equations 

m = ^{x{t),u{t))x{t) + ^{x{t),u{t))u{t) 

almost everywhere on [to^ti] 

with the initial condition 

and the terminal condition 

x{ti) =y- z(ti). 

Because of the controllability of this hnearized system there are a con­
trol u G L'^\tQ^ ti] and a resulting trajectory x G VKfô fto, ti] satisfying 
the initial and terminal condition. Then we obtain 

h'ix^u) {x + z^u) 

K-) + zi-)-J[^ix{s)Ms)){x{s) + z{s)) 

to 

= xi 

+^ixis),u{s)) u{s)\ ds, ^{x{h)) {x{h) + z{h))\ 

fvdf _ _ df _ _ 1 
w{-) + x{-) - / y—{x{s),u{s))x{s) + ^(^(s),u{s))u{s)\^ds, 

to 
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Consequently, the mapping h'{x^u) is surjective, and we can choose 
the parameter /x as 1 in the generalized Lagrange multiplier rule. 

Since all assumptions of Theorem 5.3 are satisfied, there are a 
continuous linear functional I G {Wi^\t{),ti]y and a vector a E M̂  
with 

((/;'(x,u) + (/,a) o h'(x^u)) {x — x^u — u) > 0 for all x E S. 

Then it follows 
h 

dx 
'-{x{h)) (xih) - x{h)) + I [^{x{s),u{s)) {x{s) - x{s)) 

to 

5/2 _ _ 
+-g;^ix{s),u{s)) (uis) - u{s)) ds 

+l(xi.)-x{-)-l 
to 

dl 
dx 

{x{s),u{s)){x{s)-x{s)) 

df, 
+ ^ ( 3 ^ ( s ) , ^ i ( s ) ) ( « ( s ) - M ( s ) ) 

W^{x{h)){x{tr)-x{U)) 

ds 

> 0 for all (x, u) e S. 

If we plug u = u in the inequality (5.30), then we get 

ti 

(5.30) 

| | ( x ( t i ) ) {x{h) - x{h)) + J ^{x{s), u{s)) {x{s) - x{s)) ds 

to 

.L,-..,-/|..).,.).(....... 
\ to / 

+a^^{x{h)) {x{h) - x{h)) > 0 for all x G W^Jto.h] 
dx 

and 

dx 

ti 

' (x(ti)) x{h) + J ^{x{s)Ms)) x{s) ds 

to 
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+/ x{') - / —{x{s),u{s))x{s)ds 

to 
rdg, 

W-^{x{h))x{h) 

= 0 for sllxeW^^[to,ti]] (5.31) 

for x = x it follows 
ti 

/

df 
-^{x{s),u{s)) {u{s) - u{s)) ds 

to 

\ to ) 
> 0 for all u G I/^[to,ti] with u{t) E Q 

almost everywhere on [io^^i]- (5.32) 

Next, we consider the equation (5.31) and we try to characterize the 
continuous linear functional l. For this characterization we need the 
following assertion: 

If $ is the unique solution of 

almost everywhere on [to^ti] (5.33) 

then for an arbitrary y e W r̂o f̂toĵ i] the function 

x(.) = y{-) + $(.) J ^-\s)^{x{s),u{s)) y{s) ds (5.34) 

to 

satisfies the integral equation 

x{-) - J ^ ( ^ ( s ) , «(5)) x{s) ds = y{-). (5.35) 

to 
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For the proof of this assertion we plug x (as given in (5.34)) in the 
left hand side of the equation (5.35) and we obtain by integration by 
parts 

X 
f df _ 

^*^~y ^(X(5),ll(5))x(5)ds 
to 

= y{') + H') J ^-\s)^{x{s),u{s))y{s)ds 

to 

-l^{x{s),u{s))[y{s) 

to 
s 

+$(s) J ^-\a)^{x{a),u{a)) y{a) da 

to 

= y{-) + <E>(-) / ^-\s)^{x{s)Ms)) y{s) ds 
to 

f df _ 

s 

- j ^s) I ^-\a)^(x{a),u{a))y{a)dads 

to to 

y{-) + $(•) j ^-\s)^{x{a),u{a)) y{a) dads 

to 

r df _ 
-J •Q^{^is),u{s))y{s)ds 

to 

-^•) J ^-\s)^{x{s),u{s))y{s)ds 
to 
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+ J ^s)^-\s)^{x{s), u{s)) y{s) ds 

to 

= y{-)-

Hence the equation (5.35) is proved. 
For an arbitrary function y G ^[^^^[tojti] we conclude from the 

equation (5.31) with the aid of the equation (5.34) 

m = -(||(.(«)+a-|(.fe))) 
f tl \ 

y{h) + $(ti) j $- i ( , )g(x(5) , u{s)) y{s) ds 

to 
tl S 

to to 

df _ _ \ 
— {x{a),u{a)) y{a) da 1 ds. 

Integration by parts leads to 
tl 

to 
*1 df \ t df 

— {x{s),u{s))y{s)dsj - / ~{x{s),u{s))y{s)ds 

to 

tl 

-J^{xis)Ms))Hs)ds 
to 

t 

J^-Hs)^{x{s),uis))y{s)ds 
to to 

tl t 

+11 ^ix{s),u{s)) Hs) ds ^-\t)^(x{t)Mt)) y{t) dt 
to to 
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|^(x(tO) + a^ff(s(tO))y(ti) 

to 

(x(t,))+a'-^(x(f,)))$(t,)»^'W 

tl 

g^{x{t)Mt))-^{mMt)) 

- J ^{x{s),u{s)) $(s) ds ^-\t)^{x{t),u{t)) 
to 

t 

+1 ^{x{s),uis))^s)ds^-\t)^ix{t)Mt))]y{t)dt 
to 

to 

{x{t^)) + a''^{x{h)))^t,)^-\t) 

^ix{t),u{t))--^{x{t)Mt)) 
tl 

- J ^ix{s),uiB)) ^s) ds ̂ -\t)^{xit), uit))]y{t) dt 
t 

iorallyeW^^JtoM 

For the expression in brackets we introduce the notation r(t)^, i.e. 

df2 
dx 
h 

{x{t),u{t)) 

^{xis)Ms))Hs)ds^-\t)^{x{t)Mt)) 

almost everywhere on [toĵ i]-
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With the equation (5.33) it follows (compare page 217) 

df _ 
= —$~'̂ (t) —{x{t)^u{t)) almost everywhere on [to,ti]. 

Then we obtain 

t 

almost everywhere on [to,fi]. 

For 

tl 

- f j^{x{s),u{s))^s)ds^-\t) foralHG [to,ti] 

we get 
p{t) = —r{t) almost everywhere on [to,ti]. 

Then it follows 

i.e., the transversality condition is satisfied. Moreover, we conclude 

p{tr^{x{t),u{t))-^{x{t)Mt)) 
^{x{t,)) + a^^{x{t,))]^t^)^-Ht)^{mMt)) 
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t 

dx 

= —p{tY almost everywhere on [ioj^i]-

Hence p satisfies the adjoint equation 

almost everywhere on [toj^i]-

Then the continuous linear functional / can be written as 

Ky)=p{tify{ti) - Jp{tfy{t)dt for all y G W^^JtoM 

to 

Now we turn our attention to the inequality (5.32). From this 
inequality we obtain by integration by parts 

ti 

0 < J^{x{s),u{s))iu{s)-u{s))ds 
to 

-nl^(^i')Ms)){u{s)-u{s))ds 

\to 

tl 

J a^(^^^^'^(^)) (̂ (̂ ) ~ ^(^)) ^̂  
to 

tl 

-Pitif j ^{x{s),u{s)) {u{s) - u{s)) ds 

to 
tl t 

+1 p{tf j ^ix{s),uis)){u{s) -u{s))dsdt 

to to 
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to 
ti 

-Pihf J^{x{s),u{s)){u{s)-u{s))ds 

to 

t 

+ P{tf J ^{x{s),u{s)) {u{s) - u{s)) ds 
to to 

tl 

- j p{tY^{x{t)Mt)) Ht) - u{t)) dt 
to 

tl 

to 

- IPitf^{x{s),u{s)) {u{s) - u{s)) ds 

to 

tl 

5/2,_ 5/, ^ ( S ( i ) , t x ( i ) ) - p ( t ) ^ ^ ( S ( t ) , « ( t ) ) 
du du 

{u{t) - u{t)) dt 

to 
for all u e L^[to,ti] with u{t) G 0 almost everywhere on 

[toM 

Then we get for every control u G L^ [to 5̂ 1] with ?i(t) G fi almost 
everywhere on [to^ti] 

^df df2 
p(ty^{xit),u{t))-^ixit),uit)) 

du du 
{u{t) - u{t)) < 0 

almost everywhere on [fojii]-

Hence the local Pontryagin maximum principle is also shown, and the 
proof of Theorem 5.19 is completed. • 
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Remark 5.20. 
(a) If one defines the so-called Hamilton function 

pointwise by 

H{x,u,p) {t)=p{tff{x{t),u{t)) - f2{x{t),u{t)) for all t G [to,ti], 

then the adjoint equation reads 

—^{tY = -^—{x^u^p) it) almost everywhere on [toĵ i]? 

and the local Pontryagin maximum principle can be written as 

-^-{x^u^p){t) {u{t) — u{t)) < 0 almost everywhere on [to,ti], 

(for all u e L^[to,ii] with u{t) G fi almost everywhere on [to,ti]). 
(b) In Theorem 5.19 it is assumed among other things that the 

hnearized system 

x{t) = A{t) x{t) + B{t) u{t) almost everywhere on [to, ti], 

with A{t) := ^{x{t),u(t)) and B{t) := ^{x{t),u{t)) is controllable. 
If the matrix functions A and B are independent of time, i.e. A := 
A{t) almost everywhere on [to,ti] and B := B{t) almost everywhere 
on [to,ti], then, by a known result of control theory, this system is 
controllable, if the so-called Kalman condition is satisfied, i.e. 

rank(5, AB, A^B,..., A^'-^B) - n. 

(c) If the set Q. in the considered control problem is of the special 
form VL = R'^, then the local Pontryagin maximum principle can be 
formulated in the special form: 

For all u G I/^[to,^i] it follows 

almost everywhere on [to^ti] 

^T5/ . . / . ^ ...^^ df^,^, p{ty ^(xit),u{t)) - -^{x{t),u{t)) = 0 
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Example 5.21. We consider Example 1.3 and investigate the 
following optimal control problem: 

Determine a control u G I/oo[0,1] which minimizes 

/ < ^ 
0 

{u{t)fdt 

subject to the constraints 

almost everywhere on [0,1], 

xM \ ^ ( - 2 \ / 2 \ 
X2(0) ) \ h^/2 ) ' 

{x,{l)f + {x,{l)f-l = 0. 

The system of linear differential equations of this problem satisfies 
the Kalman condition. According to Remark 5.20, (b) this system is 
controllable. 

We assume that there is an optimal control u G i/oo[0,1] for this 
problem. Then the adjoint equation reads as follows 

0 0 

= (0,pi(t)) almost everywhere on [0,1], 

i.e. we have 

Pi(t) — 0 almost everywhere on [0,1] 

and 
P2(^) = ~'Pi{t) almost everywhere on [0,1]. 

This leads to the general solution 
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with real numbers Ci and C2. The transversality condition can be 
written as 

( -Pi( l ) , -nil)) = o(2a:,(l), 25;2(1)) 

Mi)\^_,j^^m 
or 

[ P2(l) J~ ^^\ ^2(1) 

Hence it follows 

-C1+C2 J \ X2(l) J 

Next, we consider the local Pontryagin maximum principle as given 
in Remark 5.20, (c): 

{Pi{t),P2{t)) ( 1 I ~ 2iZ(t) = 0 almost everywhere on [0,1]. 

Consequently we get 

= -{—cit + C2) almost everywhere on [0,1]. 

Moreover, we have with the second linear differential equation as con­
straint 

X2(t) = u{i) ~ -{—Cit + C2) almost everywhere on [0,1] 

and 
X2{t) = -^f + ^t + bV2 for all t G [0,1]. 

With this equation and the first linear differential equation as con­
straint we obtain 

xi(t) = -^t^ + ^^2 _̂  5 ^ ^ _ 2 ^ for all t e [0,1]. 

With the terminal condition 
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we then conclude 

( - | | + | + 3x/2)^ + ( - f + | + 5x/2)^ = l. 

We summarize our results as follows: For an optimal control u G 
Loo[0,1] there are real numbers a, P and 7 with the property 

u{t) =at + l3 almost everywhere on [0,1], 

{^ + ^ + 3V2r + {^+P + 5V2f = l^ 

a + p = ^{^+P + 5V2). 

(a ,^ , 7) = (3\/2, —6\/2, —6) is a solution of these nonlinear equa­
tions. Then the resulting control satisfies the necessary optimality 
conditions of Theorem 5.19. 

At the end of this section we investigate the question under which 
assumptions the conditions (a), (b) and (c) of Theorem 5.19 are suf­
ficient optimality conditions. 

Theorem 5.22. Let the optimal control problem (5.28) he given. 
Furthermore, let a control u G Z/^[io,^i] ^i^ith 

u{t) G VL almost everywhere on [to^ î] 

and a resulting state x G W î%[io5 î] he given where 

x{t) — f{x{t)^u{t)) almost everywhere on [to,ti], 

xito) = xo, 

g{x{ti)) = OMr. 

Let the function / i be convex (at x{ti)) and differentiable at x{ti). 
Let the function /2 be convex and differentiable. Let the function f be 
differentiable. Let the function g be differentiable at x{ti). Moreover, 
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let there are a function p G Wi^[to^ ti] and a vector a GW so that 

(a) 

(c) 

-P{hr = a^^ix{t^)) + ^{x{t,)), (5.37) 

-p{tr=p{tr^{xit),u{t)) - ^{x{t)Mt)) 
almost everywhere on [to^ti]^ (5.36) 

for every control u G L^[to,ii] "^ith 

u{t) G O almost everywhere on [to^ î] 

we have 

du 
{x{t),u{t))\{u{t) - u{t)) < 0 

du 
almost everywhere on [to,ti]. (5.38) 

Let the function oFg{') he quasiconvex at x{ti) and almost everywhere 
on [to^ti] let the functional defined by —p{tYf{x{t)^u(t)) he convex 
(at {x{t)^u{t))). Then u is an optimal control for the control prohlem 
(5,28). 

Proof. Let u G L^[to,*i] be an arbitrary control with the re­
sulting state X G V 7̂̂ oo[to,̂ i] such that {x^u) satisfies the constraints 
of the problem (5.28). Then we get with the adjoint equation (5.36) 

-~{p{tnx{t)-xm 
= -p{tY{x{t) - x{t)) - p{tf{x{t) - 2{t)) 

'p{tr^{x{t)Mt)) - ^{x{t)Mt))]{x{t) - x{t)) 
-pmfix{t),uit))-f{mMm 
almost everywhere on [to,^i]-

With this relationship it follows 

d 
f2{x{t),u{t)) - h{x{t)Mt)) - f^iPitfi^t) - m)) 

= h{x{t),u{t)) - f2{mMt)) - ^{x{t)Mt)) w) - m) 
-p{tf\f{xit)Mt))-f{x{t)Mt)) 
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almost everywhere on [to^ii]- (5.39) 

Since the function /2 is convex and differentiable, we conclude 

f2{x(t),uit)) - /2(^(i),^W) - ^{X{t),^{t)) {X{t) - X{t)) 

df2 _ _ 
> -^{x{t),u{t)) {u{t) — u{t)) almost everywhere on [toj^i]-

Similarly we obtain because of the convexity of the functional defined 
by -p{tff{xit),u{t)) (at {x{t),^m 

-p{tf[f{x{t),u{t)) - f{x{t),u{t)) - ^^{x{t)Mt)f{<t) - m) 

> -p{tr^{x{t)Mt)Y{<t)-u{t)) 

almost everywhere on [to^^i]-

Then it results from the equation (5.39) and the inequality (5.38) 

d_ 

almost everywhere on [to,ti]. 

Because of x(to) = x(to) = ^o integration leads to 

ti 

J[f2{x{t),u{t))-f2ix{t),umdt-p{tif{x{t^ (5.40) 

With the transversality condition (5.37) and the differentiability and 
convexity of / i (at x{ti)) we get 

-p{tif{x{h) - x{ti)) 

= a^^{x{h)) {x{h) - x{h)) + ~{x{h)) {x{h) - x{h)) 

< a^||(S(ti))(a;(ti)-x(ti)) + /i(x(ti))-/i(x(ti)). (5.41) 

f2{x{t),u{t)) - f2(x{t),u{t)) - -{p{tf{x{t) - X{t)) > 0 



5.4. Application to Optimal Control Problems 155 

Because of the differentiability and quasiconvexity of a^g{-) at x(ti) 
the equation 

0 = Jg{x{h)) - a^g{x{h)) 

implies the inequality 

0 > a^^(^(^ i ) ) {<ti) - x{t,)). (5.42) 

The inequalities (5.41) and (5.42) then lead to 

-p{hfix{t,) - x{U)) < Mx{ti)) - MHti)) 

which implies with the inequahty (5.40) 
h ti 

fMh)) + f h{x{t), U{t)) dt > Mx{h)) + J f2ix(t),u{t)) dt. 

to to 

Hence u is an optimal control for the control problem (5.28). • 

For the proof of the preceding theorem we did not use the general 
result of Theorem 5.14. Therefore the given assumptions under which 
the optimality conditions are sufficient are certainly not the weakest 
assumptions on the arising functions. 

Example 5.23. We consider again the control problem of Ex­
ample 5.21. We have already shown that the control u G Loo[0,1] 
with 

u{t) = 3\/2 t — 6\/2 almost everywhere on [0,1] 

satisfies the optimality conditions (5.36), (5.37) and (5.38) with p e 
Wl^lO, 1] defined by 

and 
a := 6. 

The functions g and /2 are convex. The vector function / is linear 
and every component of p is negative. Consequently, all assumptions 
of Theorem 5.22 are satisfied. Then this theorem says that u is an 
optimal control for the control problem of Example 5.21. 
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Exercises 

5.1) Let S' be a closed linear subspace of a real normed space (X, 
II • II). Prove: If there is a vector x E X \ S^ then there is a 
continuous linear functional / G X* \ {Ox*} with 

l{s) = 0 for all seS. 

5.2) Show: For every convex subset 5 of a real normed space with 
nonempty interior it follows cl (int (S)) = cl (5). 

5.3) Does the constraint set 

S := {{xi,X2) eR'^\xl + xl<l and {xi - 1)^ + (̂ 2 - 1)^ < 1} 

satisfy a regularity assumption? 

5.4) Let the optimization problem 

min a:i + X2 
subject to the constraints 
X2 < xl 
XIER, 3;2 > 0 

be given. 

(a) Show that x = (0,0) is a solution of this optimization 
problem. 

(b) Is the Arrow-Hurwicz-Uzawa condition satisfied ai x = 
(0,0) ? 

(c) Are the Karush-Kuhn-Tucker conditions satisfied at :r = 
(0,0) ? 

5.5) Determine a minimal solution of the optimization problems: 

(a) min {x - 3f + {y - 2f 
subject to the constraints 
a;2 + y2 < 5 

x + y < 3 
2; > 0, y > 0. 
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(b) min {x - 1)2 + {y- 2)2 
subject to the constraints 
x'^ -y<0 
x+y-Q<0 
^ > 0, y>0. 

(c) max 3x — y — Az^ 
subject to the constraints 
X + y -\- z <Q 
-x + 2y + z'^ =^0 
x^y^z E R. 

5.6) Is every point on the straight hne between (0,0) and (6,0) a 
minimal solution of the optimization problem 

mm c _rZl 
subject to the constraints 
2x + y<l2 
-x + 2y <A 
x>Q, y>Q 1 

5.7) For given functions / i , . . . , /n : M —> M consider the optimization 
problem 

n 

min 
z = l 

subject to the constraints 
n 

^ X , - 1 
i = l 

Xi>{) for all z G { 1 , . . . , n). 

Prove: If x = (x i , . . . , Xn) is a minimal solution of this problem 
and for every i 6 { 1 , . . . , n} the function fi is differentiable at 
Xi^ then there is a real number a with 

S!)-)..=o} '-^''^f ">• 
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5.8) Let S' be a nonempty subset of M ,̂ and let f : S —^ B., g : S -^ 
R^ and h : S —^MP he given functions. Let the constraint set 

S := {x ^ S I gi{x) < 0 for all z G { 1 , . . . , m} and 

/i.(x) = 0 for all z E { 1 , . . . ,p}} 

be nonempty. Let the functions / , g^i,..., g'^, / i i , . . . , /ip be dif-
ferentiable at some x ^ S. Let there be multipliers Ui > 0 
{i e I{x)) and Vi eR {i e {1,... ,p}) with 

P \T 

V/(^) + Y. ^i^9i{^) + X]^iV/i,(x) j (x - x) > 0 
iei{x) 2=1 ^ 

for all X e. S. 

Let / be pseudoconvex at x, for every i E I{x) let gi be qua-
siconvex at x, for every z G { 1 , . . . ,p} with t?̂  > 0 let /î  be 
quasiconvex at x, and for every i G { 1 , . . . ,p} with Vi < 0 let 
—/li be quasiconvex at x. Prove that x is a minimal point of / 
onS. 

5.9) Determine an optimal control u G i^^[0,1] of the following prob­
lem: 

1 

dt 
/

r 1 2 

^lXl(f) - - X i ( t ) + 2^2(t) - -X2{t) 
0 

subject to the constraints 
x^{t) = Uu^it) - 2m{tf - x,{t) - U2{t) 1 , ^ ^„ r m i 
X2{t) = 12u2{t) - 2u2{tf - X2{t) - U^{t) j •̂®- ° ' ' ^ '̂ -̂J 

a;i(0) = Xo^, 0:2(0) = a:o2 

•̂  ̂  / ~ „ > almost everywhere on [0,1] 
where xoi and XQ^ are given real numbers. 



Chapter 6 

Duality 

The duality theory is also an additional important part of the op­
timization theory A main question which is investigated in duahty 
theory reads as follows: Under which assumptions is it possible to 
associate an equivalent maximization problem to a given (in general 
convex) minimization problem. This maximization problem is also 
called the optimization problem dual to the minimization problem. 
In this chapter we formulate the dual problem to a constrained min­
imization problem and we investigate the relationships between the 
both optimization problems. For a linear problem we transform the 
dual problem in such a way that we again obtain a linear optimiza­
tion problem. Finally we apply these results to a problem of hnear 
Chebyshev approximation. 

6.1 Problem Formulation 

In this section we consider a constrained optimization problem. Let 
the constraints be given in the form of a general system of inequali­
ties. Then we associate a so-called dual problem to this optimization 
problem, the so-called primal problem. 

First, we need 

Definition 6.1. Let S' be a nonempty convex subset of a real 
linear space, and let y be a partially ordered real linear space with 
an ordering cone C A mapping g : S —^ Y is called convex^ if for all 
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Xg{x) + (1 - A) g{y) - g{\x + (1 - \)y) e C for all A G [0,1]. 

Example 6.2. Let 5 be a nonempty convex subset of a real 
linear space, and let / i , . . . , /^ : /§ —> M be convex functionals. If the 
linear space R'̂  is supposed to be partially ordered in a natural way 
(i.e., C := Wl), then the vector function / = ( / i , . . . , /^) : 5 -> M^ is 
convex. 

Now we turn our attention to a class of mappings which are slightly 
more general than convex ones. 

Definition 6.3. Let 5 be a nonempty subset of a real linear space 
and let F be a partially ordered real linear space with an ordering 
cone C. A mapping g : S —^Y is called convex-like^ if the set g{S) + C 
is convex. 

Example 6.4. 

(a) Let S' be a nonempty convex subset of a real linear space, and 
let y be a partially ordered real linear space with an ordering 
cone C. Every convex mapping g : S —^Y is also convex-like. 

Proof. We have to show that the set g{S) + C is a convex set. 
For that purpose choose arbitrary elements yi,y2 ^ g{S) + C 
and an arbitrary number A G [0,1]. Then there are elements 
Xi,X2 E S and ci, C2 G C with 

2/1 = g{xi) + ci 

and 
2/2 = ^ ( ^ 2 ) + C 2 . 

Consequently, we get with the convexity of g 



6.1. Problem Formulation 161 

= A^(xi) + (1-A)^(:r2) + Aci + (1-A)c2 

e {g{Xxi + {l-X)x2)} + C + XC + il-X)C 

I.e. 
Xyi + (1 - A2/2) G g{S) + C. 

Hence the set g{S) + C is convex, and the mapping g is convex-
hke. D 

(b) We consider the mapping 5̂  : R —> R^ with 

g(x) = ( .^ ) for all xeR. 

Let the real Hnear space R? be partially ordered in a natural 
way (i.e., C := M+). Then the mapping g is convex-like but it 
is certainly not convex. 

The preceding example shows that the class of convex-like map­
pings includes the class of convex mappings, and, in fact, it goes 
beyond this class slightly. 

After the introduction of convex-like mappings we are now able to 
formulate the standard assumption for the following investigations: 

Let AS be a nonempty subset of a real linear space X; 
let (F, II • II) be a partially ordered real normed space with the 
ordering cone C; 
let / : AS -^ R be a given objective functional; 
let g : S -^Y he a> given constraint mapping; } (6.1) 
let the composite mapping (/, g') : 5 —> R x y be convex-like 
(with respect to the product cone R+ x C in R x F ) ; 
let the constraint set be given as S := {x E S \ g{x) G —C} 
which is assumed to be nonempty. 

If the set S is convex, if the objective functional / is convex and 
if the constraint mapping g is convex, then the composite mapping 
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{f^g)'S-^'RxYis convex-like (with respect to the product cone 
R_|. X C in R X y ) . Because of the assumption of the convex-hkeness 
of (/, S') in (6.1) it is even possible to treat certain nonconvex opti­
mization problems with this duality theory. 

Under the assumption (6.1) we investigate the constrained opti­
mization problem 

min/(x) 
subject to the constraints i /^ r>\ 
g{x) G -c ^ ^'-'^ 
xeS. 

In this context the optimization problem (6.2) is also called primal 
problem. With the following lemma we see that, under the additional 
assumption of the ordering cone being closed, this problem is equiv­
alent to the optimization problem 

min sup f{x) + u{g{x)) (6.3) 
xes uec* 

where C* denotes the dual cone of C 

Lerama 6.5. Let the assumption (6.1) he satisfied and in addition 
let the ordering cone C he closed. Then x is a minimal solution of the 
prohlem (6.2) if and only if x is a minimal solution of the prohlem 
(6.3). In this case the extremal values of hoth problems are equal. 

Proof. First we assume that x G 5' is a minimal point of / on 
S. For every x E S with g{x) G —C we have 

u{g{x)) < 0 for all z/ G C* 

and therefore we get 
sup u{g{x)) = 0. 
uec* 

Since C is convex and closed, for every x E S with g{x) ^ —C there 
is, by a separation theorem (Theorem C.3), a xZ G C* \ {Ox*} with 

u{g{x)) > 0 
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which imphes 
sup u{g{x)) = oo. 
uec* 

Consequently, we obtain for every x G 5 

SM^ f{x)+u{g{x)) = f{x)+sup u{g{x)) 
uec* uec* 

= m 
< f{x) + sup u{g{x)) 

uec* 
< sup f{x) + u{g{x)). 

uec* 

Hence x G S is also a minimal solution of the optimization problem 
(6.3). 

Finally, we assume that x G 5 is a minimal point of the functional 
(/9 : 5 —> M with 

(p{x) = sup f{x) + u{g{x)) for all x G S' 
uec* 

on S. Assume that g{x) ^ —C. Then with the same arguments as 
above we get 

sup u{g{x)) — oo 
uec* 

which is a contradiction to the solvability of problem (6.3). Conse­
quently, we have 

sup u{g{x)) = 0. 
uec* 

Then we obtain for all x E S 

fix) = fix) + sup uigix)) 
ueC* 

= sup fix) + uigix)) 
uec* 

< sup fix) + uigix)) 
uec* 

= fix) + sup uigix)) 
uec* 

= m-
Hence x G 5 is a minimal point of / on S'. • 
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Now we associate another problem to the primal problem (6.2). 
This new problem results from the problem (6.3) by exchanging "min" 
and "sup" and by replacing "min" by "inf" and "sup" by "max". This 
optimization problem then reads: 

max inf f{x) + u{g{x)). (6.4) 

The optimization problem (6.4) is called the dual problem associated 
to the primal problem (6.2). Obviously, this dual problem is equiva­
lent to the optimization problem 

max A "j 
subject to the constraints I . . 
f{x) + u{g{x)) > A for all X G ̂  ( ^ ^^ 
XeR,ueC\ ) 

If tZ G C* is a maximal solution of the dual problem (6.4) with the 
maximal value A, then (X^u) is a maximal solution of the problem 
(6.5). Conversely, for every maximal solution (X^u) of the problem 
(6.5) tZ is a maximal solution of the dual problem with the maximal 
value A. 

6.2 Duality Theorems 

In this section the relationships between the primal problem (6.2) and 
the dual problem (6.4) are investigated. We present a so-called weak 
duality theorem and a so-called strong duality theorem which says in 
which sense the primal and dual problem are equivalent. 

First we formulate a so-called weak duality theorem. 

Theorem 6.6. Let the assumption (6.1) he satisfied. For every 
X E S (i.e., for every feasible element of the primal problem (6.2)) and 
for every u E C (i.e., for every feasible element of the dual problem 
(6.4)) the following inequality is satisfied: 

inf f{x) + u{g{x))<f{x). 
xes 
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Proof. For arbitrary elements x E S and ii G C* it follows 

inf fix) + u{g{x)) < fix) + w(^(f)) < fix) 
xes 

because g{x) e —C. • 

It follows immediately from the weak duality theorem that the 
maximal value of the dual problem is bounded from above by the 
minimal value of the primal problem (if these values exist and the 
assumption (6.1) is satisfied). In particular, one obtains a lower bound 
of the minimal value of the primal problem, if one determines the 
value of the objective functional of the dual problem at an arbitrary 
element of the constraint set of the dual problem. 

If the primal and dual problem are solvable, then it is not guar­
anteed in general that the extremal values of these two problems are 
equal. If these two problems are solvable and the extremal values 
are not equal, then one speaks of a duality gap. In Exercise 6.1 an 
optimization problem is presented for which a duality gap arises. 

Next, we come to an important result concerning the solvability 
of the dual problem and the obtained maximal value. With the aid 
of a generalized Slater condition it can be shown that a duahty gap 
cannot arise. The following theorem is also called a strong duality 
theorem. 

Theorem 6.7. Let the assumption (6.1) he satisfied, and in ad­
dition let the ordering cone C have a nonempty interior int(C). If the 
primal problem (6.2) is solvable and the generalized Slater condition 
is satisfied, i.e, there is a vector x E S with g{x) G —int{C), then the 
dual problem (6.4) is also solvable and the extremal values of the two 
problems are equal. 

Proof. In the following we investigate the set 

M := {{f{x) + a,g{x)+y)eRxY\xeS,a>0,yeC} 

= {f,g){S)+R^xC. 

By the assumption (6.1) the composite mapping {f^g):S-^RxYis 
convex-like, and therefore the set M is convex. Because of int(C) 7̂  0 
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the set M has a nonempty interior int(M) as well. Since the primal 
problem is solvable there is a vector x ^ S with 

f{x) < f{x) for all xeS. 

Consequently we have 

( /(S),Oy)^int(M) 

and 
mt (M)n{( / (S) ,Oy)} = 0. 

By the Eidelheit separation theorem (Thm. C.2) there are real num­
bers /i and 7 and a continuous linear functional u ^V with (fi^u) j^ 
(0,0y*) and 

IJ.P + u{z) > 7 > fif{x) for all (/?, z) G int(M). (6.6) 

Since every convex subset of a real normed space with nonempty inte­
rior is contained in the closure of the interior of this set, we conclude 
from the inequality (6.6) 

/i(/(x) + a) + u{g{x) + y) > 7 > ^Jif{x) for dl\ x e S,a>Q,y e C. 
(6.7) 

For X = X and a = 0 it follows from the inequality (6.7) 

u{y) > -u{g{x)) for all yeC, (6.8) 

With standard arguments we get immediately t̂  G C*. For y = Oy it 
follows from the inequality (6.8) u{g{x)) > 0. Because of g{x) E —C 
and tA e C* we also have u{g{x)) < 0 which leads to 

u{g{x)) = 0. 

For X = X and y = Oy we get from the inequality (6.7) 

/ia > 0 for all a > 0 

which implies /i > 0. For the proof of /i > 0 we assume that [1 = 0, 
Then it follows from the inequality (6.7) with y = Oy 

u{g{x)) > 0 for all x e S. 
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Because of the generalized Slater condition there is one x ^ S with 
g{x) e —int(C), and then we have 

u{g{x)) = 0. 

Now we want to show that u = Oy*. For that purpose we assume that 
u ^ Oy*, i.e., there is one y EY with u{y) > 0. Then we have 

u{Xy + (1 - A) g{x)) > 0 for all A G (0,1], (6.9) 

and because of g{x) G ~int((7) there is one A G (0,1) with 

Xy+{1- A) g{x) G -C for all A G [0, A]. 

Then we get 

u{Xy + (1 - A) g{x)) < 0 for all A G [0, A] 

which contradicts the inequahty (6.9). With the assumption /i == 0 
we also obtain u = Oy*, a contradiction to (/i,n) 7̂  (0,0y*). Conse­
quently, we have /i 7̂  0 and therefore fi > 0. Then we conclude from 
the inequality (6.7) with a == 0 and y = Oy 

IJif{x) + u{g{x)) > fxf{x) for all x E S 

and 

f{x) + ~ u{g{x)) > f{x) for all xeS. 

If we define u := -u E C* we obtain with u{g(x)) = 0 

inf f{x) + u{g{x))>f{x)+u{g{x)). 
xes 

Hence we have 

f{x) + u{g{x)) = inf f{x) + u{g[x)), 
xes 

and with the weak duality theorem tl G C* is a maximal solution of 
the dual problem (6.4). Obviously, the extremal values of the primal 
and dual problem are equal. • 
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In the following we discuss the practical importance of the strong 
duality theorem. If one wants to solve the primal problem and if one 
is interested in the minimal value in particular, then under suitable 
assumptions one can also solve the dual problem and determine the 
maximal value which is then equal to the minimal value of the primal 
problem. If the dual problem is simpler to solve than the primal 
problem, then this method is very useful. 

6.3 Saddle Point Theorems 

Relationships between the primal and the dual problem can also be 
described by a saddle point behavior of the Lagrange functional. 
These relationships will be investigated in this section. 

First, we define the notion of the Lagrange functional which has 
already been mentioned in the context of the generalized Lagrange 
multiplier rule in Section 5.2. 

Definition 6.8. Let the assumption (6.1) be satisfied. The 
functional L : 5 x C* —> R with 

L(x, u) = f{x) + u{g{x)) for all x G S' and all u E C 

is called Lagrange functional. 

Since we will investigate saddle points of the Lagrange functional 
L, we introduce the following notion. 

Definition 6.9. Let the assumption (6.1) be satisfied. A point 
(x, iZ) G 5 X C* is called a saddle point of the Lagrange functional L 
if 

L(x, u) < L(S, u) < L(x, u) for all x G 5 and all u E C*. 

A saddle point of the Lagrange functional can be characterized by 
a "min sup = max inf" result which goes back to a known John von 



6.3. Saddle Point Theorems 169 

Neumann^ saddle point theorem. 

Theorem 6.10. Let the assumption (6.1) he satisfied. A point 
(x, u) G *§ X C* is a saddle point of the Lagrange functional L if and 
only if 

L ( x , ' u ) = m i n sup L ( x , i ^ ) = m a x inf L{x^u). (6.10) 
xes uec* ^̂ <̂ * xes 

Proof. First we assume that the equation (6.10) is satisfied. 
Then we have with x E S and u e C 

sup L{x^u) = inf L{x,u)^ 
uec* xeS 

and we get 

L{x^u) < sup L{x^u) = inf L{x^u) < L{x^u) 
uec* xes 

resulting in 

sup L{x^u) — L(x^u) = inf L{x^u). 
uec* xes 

Hence (x^u) is a saddle point of the Lagrange functional L. 
Next we assume that (x, iZ) G 5 x C* is a saddle point of L. Then 

we obtain 
max L{x^u) = L{x,u) = min L{x^u). (6.11) 
êc** xeS 

For arbitrary x e S and u e C* we have 

inf L{x^u) < L{x^u)^ 
xeS 

and therefore we conclude 

sup inf L{x^u) < sup L{x,u) 
uec* xeS uec* 

^J. von Neumann, "Zur Theorie der Gesellschaftsspiele", Math. Ann. 100 
(1928) 295-320. 
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and 
sup inf L{x^u) < inf sup L{x^u), 
uec* xes xes uec* 

With this inequahty and the equation (6.11) it follows 

L[x^u) — inf L{x^u) < sup inf L{x^u) 
xeS uec* xeS 

< inf sup L{x^u) < sup L{x,u) 
xes ueC* ueC* 

= L{x^u). 

Consequently, we have 

L ( x , u ) = m a x inf L(a;,?x) = min sup L{x^u) 
^ec* xeS xes ueC* 

which has to be shown. • 

Using the preceding theorem we are able to present a relationship 
between a saddle point of the Lagrange functional and the solutions 
of the primal and dual problem. 

Theorem 6.11. Let the assumption (6.1) be satisfied, and in 
addition, let the ordering cone C he closed. A point (x^u) E S x C* 
is a saddle point of the Lagrange functional L if and only if x is 
a solution of the primal problem (6.2), u is a solution of the dual 
problem (6.4) and the extremal values of the two problems are equal. 

Proof. We assume that {x,u) e S x C* is a saddle point of the 
Lagrange functional L. By Theorem 6.10 we then have 

L(x,'u) =min sup L(x,u)==max inf L{x,u). 
xeS uec* ^^^* xes 

Consequently, x is a minimal solution of the problem (6.3) and with 
Lemma 6.5 x is then also a minimal solution of the primal problem 
(6.2). Moreover, -u is a maximal solution of the dual problem (6.4) 
and the extremal values of the primal and dual problem are equal. 

Next, we assume that x is a minimal solution of the primal prob­
lem (6.2), iZ is a maximal solution of the dual problem (6.4) and the 
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extremal values of the two problems are equal. Then we have 

A := inf L{x^u) = max inf L{x^u)^ 
xes '̂ Ĉ'* xes 

and with Lemma 6.5 we get 

/(x) — sup L(x ,u )=min sup L{x^u). 
uec* xes uec* 

Because of A = f{x) we obtain 

u{9{^)) > - / ( ^ ) + inf f{x) + u{g{x)) 
xes 

= -f{x) + X 
= 0 

and because of g{x) G —C, il G C* we have 

u{g{x)) < 0 

resulting in 

which implies 

Then it follows 

u{g{x)) = 0 

f{x) = L{x,u). 

L{x,u) = mm sup L(x,i^)==max inf L{x^u)^ 
xes ueC* '̂ ^C'* xes 

and by Theorem 6.10 it follows that {x^u) is a saddle point of the 
Lagrange functional L, • 

With the aid of the strong duality theorem we also present a suf­
ficient condition for the existence of a saddle point of the Lagrange 
functional. 

Corollary 6.12. Let the assumption (6.1) he satisfied, and in 
addition, let the ordering cone C he closed and let C have a nonempty 
interior int(C). If x E S is a minimal solution of the primal prohlem 
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(6.2) and the generalized Slater condition is satisfied, i.e., there is one 
X £ S with g{x) G —int{C), then there is a u G C* so that (x, u) is a 
saddle point of the Lagrange functional. 

Proof. If X G S' is a minimal solution of the primal problem 
then, by Theorem 6.7, there is a maximal solution u E C^ oi the dual 
problem and the extremal values of the two problems are equal. Con­
sequently, by Theorem 6.11, {x^u) is a saddle point of the Lagrange 
functional. • 

The preceding corollary can also be proved directly without the 
assumption that the ordering cone is closed. 

6.4 Linear Problems 

An excellent application of the duality theory can be given for linear 
optimization problems because the dual problem of a linear minimiza­
tion problem is equivalent to a linear maximization problem. It is the 
aim of this section to transform this dual problem in an appropriate 
way so that one gets a problem formulation which is useful from the 
point of view of the applications. 

In the following we speciahze the problem (6.2). For that purpose 
we need the following assumption: 

Let (X, II • 11̂ ) and (y, || • ||y) be partially ordered real 
normed spaces with the ordering cones Cx and Cy, 
respectively; 
let c G X* be a continuous linear functional; 
let A : X —> y be a continuous linear mapping; 
let 6 G y be a given element; 
let the constraint set S := {x E Cx \ A{x) — b E Cy} he 
nonempty. 

Under this assumption we consider the primal problem 

min c(x) 
subject to the constraints . fa ^Q\ 
A{x)-bECY ^ ^^'^^^ 
xeCx-

} (6.12) 



6.4. Linear Problems 173 

In the problem formulation (6.2) we have replaced the objective 
functional / by the continuous linear functional c and the constraint 
mapping ghy b — A{'). The set S equals the ordering cone Cx- Notice 
that under the assumption (6.12) the composite mapping (c(-),6 — 
M')) : Cx —> M X y is also convex-hke. 

In this case the dual problem reads (by (6.4)) 

max inf c(x) + u(b — A(x)). 
uec^ xeCx 

This problem is equivalent to the problem (compare (6.5)) 

m a x A "I 
subject to the constraints I {f^^A\ 
c{x) + u{b - A{x)) > A for all x e Cx ( ^ ^ ^ 

If we define the constraint set of the problem (6.14) as 

5* := {(A, u) eRxC;r\ c{x) + u{b - A{x)) > A for all x E C^}, 
(6.15) 

then we can reformulate this constraint set using the following lemma. 

Lemma 6.13. Let the assumption (6.12) be satisfied, and let the 
set S* be given by (6.15). Then it follows 

5 * = { ( A , ^ ) G R X Q | C - A * ( ^ ) G Q and\<u{b)} 

(Cx ^'^d ^Y denote the dual cone of Cx ctTid Cy, respectively; A" : 
y* -^ X* denotes the adjoint mapping of A). 

Proof. First we assume that a pair (A, u) E 5* is given arbitrarily. 
Then it follows 

c{x) + ix(6 - A{x)) > A for all x e Cx 

and 
{c-uo A){x) > A - u{b) for all x E Cx- (6.16) 

For X = Ox we get especially 

A < u{b). 
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From the inequality (6.16) we also obtain 

{c-uo A){x) > 0 for all x e Cx 

(because the assumption that {c — u o A){x) < 0 for some x G Cx 
leads to a contradiction to the inequality (6.16)). Consequently we 
have 

c-uo AeCx 

resulting in 

This proves the first part of the assertion. 
Next, we choose an arbitrary pair (A, u) G E x Cy with 0— 4̂* (n) G 

Cx and A < u{b). Then we conclude 

{c~uo A){x) > 0 > A - u{b) for all x G Cx, 

and therefore it follows {X^u) G 5'*. • 

With Lemma 6.13 the equivalent dual problem (6.14) is also equiv­
alent to the problem 

max A 
subject to the constraints 
c-A'{u) eC^x 
A < u{b) 
XeR, ueC^. 

Because of the second constraint this problem is again equivalent to 
the problem 

max u{b) "j 
subject to the constraints I fa ^7\ 
C - A * ( ^ ) G Q ( ^^'^^^ 

The problem (6.17) generahzes the dual optimization problem 
known from linear programming (i.e. X = MJ^^ Y = R" ,̂ Cx = 
R̂ f:, CY = W^). Since the equivalent dual problem (6.17) is also a 
linear optimization problem, one can again formulate a dual problem 
of this dual one. If one assumes in addition that X is reflexive and the 
ordering cones Cx and Cy are closed, one can show that by double 
dualization one comes back to the primal problem. 
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6.5 Application to Approximation 
Problems 

In this section we investigate a special linear optimization problem. 
This is a problem of the linear Chebyshev approximation. For this ap­
proximation problem we formulate the dual problem which we trans­
form in an appropriate way. Moreover, with the aid of the duality 
theory we prove an alternation theorem of the linear Chebyshev ap­
proximation. 

First we formulate the assumptions of this section: 

Let M be a compact metric space; 
let C{M) denote the linear space of continuous real-
valued functions on M equipped with the maximum 
norm || • || where 
||x|| = max \x{t)\ for all x G C(M); 

lei Vi^... ^Vn^v & C{M) be given functions. 

(6.18) 

Under this assumption we investigate the following problem of 
linear Chebyshev approximation: 

mm E 
i=l 

XiVi (6.19) 

Hence we are looking for a linear combination of the functions t^i,. . . , 
Vn which uniformly approximates the function v in the best possible 
way. The problem (6.19) is equivalent to the problem 

min A 
subject to the constraints 

XeR, xel 

< A 

which can also be written as: 
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min A 
subject to the constraints 

n 

X + Y^XiVi{t) >v{t) 

n 

X-^XiVi{t) > -v{t) 

A G R, a; G M". 

> for alH e M 
(6.20) 

If M contains infinitely many elements, then the problem (6.20) is 
a semi-infinite optimization problem. A problem of this type is dis­
cussed in Example 1.4. 

Question: What is the dual problem to (6.20)? 

In order to answer this question we introduce some notations: 
X := E"+i; Cx •= M"+^ let E denote the finite dimensional Unear 
subspace of C{M) spanned by the functions vi,...,Vn^v,e (where 
e e C{M) with e{t) = 1 for all t e M); Y := E x E\ and Cy := 
{(/i, /2) e y I /i(t) > 0 and /2(0 > 0 for all t e M}. If we define 
c := (1 ,0 , . . . , 0) G R"+S b := {v, -v) G Y and the mapping A : X ^ 
y with 

Ae + 2_^ XiVi 

A{X,x) 
i=l 

\ 
Ae-E XoVi 

i = l / 

for all (A, x) E p n + l 

then the problem (6.20) can also be written as follows: 

min c^(A,x) 
subject to the constraints 
A{X,x)-beCY 
(A,x) G C X . 

(6.21) 
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This is a linear optimization problem which was aheady discussed 
in the preceding section. For the formulation of the equivalent dual 
problem (by (6.17)) we need the adjoint mapping A* of A, among 
other things. The mapping A* : F* -> X* ( - E "̂̂ )̂ is defined by 

A''{ui,U2){X,x) = {ui,U2){A{X,x)) 

= Ui i Xe + Y^ XiVi \ +U2 I Xe — V^ XiVi j for all (A, x) G W~^^. 

The statement 

c - A * (̂ 1,7x2) e Cx 

is equivalent to 

X-ui I Xe + Y^XiVi I -U2 I Xe- ^^XiVi ] =0 for all (A,a;)GR''^^ 

resulting in 
n 

X{l-ui{e)--U2{e)) + "^Xi{u2{vi)~ui{vi))=0 for all (A,x) G E^+l 
z = l 

This equation is also equivalent to 

Ui{vi) - U2{vi) = 0 for all z G { 1 , . . . , n} 

and 
ui{e) +U2{e) = 1. 

Consequently, the equivalent dual problem (by (6.17)) which is asso­
ciated to the problem (6.21) reads as follows: 

max Ui{v) — U2{v) 
subject to the constraints 
'^i('^i) ~ 'i^2{vi) = 0 for alH G { 1 , . . . , n} 
ui{e) + U2{e) = 1 

(6.22) 

This problem is also a semi-infinite optimization problem which 
has finitely many constraints in the form of equalities. With the fol­
lowing representation theorem for positive linear forms on C{M) the 
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problem (6.22) can be simplified essentially. A proof of this represen­
tation theorem can be found in the book [201, p. 184] by Krabs. 

Theorem 6.14. Let F be a finite dimensional linear subspace 
of C{M) (compare (6.18)) spanned by functions / i , . . . , /m G C(M). 
Let F be partially ordered in a natural way, and assume that there is 
a function f E F with 

f{t) > 0 for all t e M. 

Then every continuous linear functional I G Cp (dual cone in F*) can 
be represented as 

k 

m-Yl^jfitj) forallfeF 

where fc G N, t i , . . . , t/. G M are different points, and Ai , . . . , A/̂  are 
nonnegative real numbers. 

Now we apply this theorem to the linear subspace E. Since e E E 
with 

e{t) = 1 > 0 for alH G M, 

all assumptions of Theorem 6.14 are fulfilled, and therefore we obtain 
the following representations for Ui^U2 G C% (dual cone in £"*) 

ki 

and 
k2 

U2{v) = ^ X2jV{hj) for all v e E. 
3=1 

Here we have A:i,A:2 G N; t i j , . . . , t i ^ ^ M are different points; 
hi^ " ' ^hk ^ ^ ^^^ different points; and it is Ai^,.. . , Aî  , A21,..., 
K, > 0. ' 
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Consequently, the problem (6.22) is equivalent to the following 
problem: 

ki k2 

max Xl'^ii'^(*i.) - X^^2,-^(i2,) 

subject to the constraints 

ki k2 

^>^ijVi{ti.) - ^X2jVi{t2j) = 0 for alH G {1 , . . . ,n} 
i=i 3=1 \ (6.23) 

kl /C2 

A l l , . . . jAi^^, A 2 1 , . . . ,A2fc2 > 0 

Before simphfying this problem we discuss the question of solv­
ability. 

Theorem 6.15. Let the assumption (6.18) he satisfied. Then 
the optimization problem (6.23) has at least one maximal solution 

(Aii,...,Ai^^,A2i,...,A2fe2'*ii'-"'^ifci' hi,'"Mk^), cirid the extre­
mal value of this problem equals the extremal value of the problem 
(6.19). 

Proof. By Theorem 2.20 the problem (6.19) of linear Chebyshev 
approximation is solvable. Then the equivalent linear optimization 
problem (6.21) is also solvable. The ordering cone Cy has a nonempty 
interior; and the generalized Slater condition is satisfied, because for 
an arbitrary £ G R^ we obtain with 

A - ^ XiVi 

i=l 

+ 1 

also b - A(A, x) G -int(C). Then by Theorem 6.7 the problem (6.22) 
which is equivalent to the dual problem of (6.21) is also solvable. 
With the preceding remarks this problem is also equivalent to the 
maximization problem (6.23) which has therefore a solution. Finally, 
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we conclude with Theorem 6.7 that the extremal values of the corre­
sponding problems are equal. • 

The maximization problem (6.23) is a finite optimization problem 
with finitely many variables and finitely many constraints. But it 
is unwieldy because ki and k2 are not known. One can show that 
ki + k2 < n + 1 (we refer to Krabs [201, p. 54]). But even if we 
restrict the number of variables in the maximization problem (6.23) 
in this way, this problem is a finite nonlinear optimization problem 
which, from a numerical point of view, is not easier to solve than the 
original problem of linear Chebyshev approximation. 

Finally, we formulate a so-called alternation theorem for the in­
vestigated problem of linear Chebyshev approximation. 

Theorem 6.16. Let the assumption (6.18) be satisfied. A vector 
X ^ W^ is a solution of the problem (6.19) of linear Chebyshev ap-

n 

proximation (i.e., 2_\^i^i '^^ ^ best approximation to v in E) if and 
^=l 

only if there are k < n+ 1 different points t i , . . . , t^ G M with 

^(^j) ~ ^^iM''^j)\ = r ~ XI ^̂ ^̂  -̂ ^̂  all j = l,...,k (6.24) 
i=l i=l 

and there are numbers Ai , . . . , A/. G M with 

k 

(6.25) 

y~^ XjVi{tj) = 0 for alii = 1,..., n. (6.26) 

Xj^O for j = l,...,k=^ v{tj)-Y^XiVi{tj) = ^^v-'^XiVi^], sgn{Xj). 

(6.27) 
i = l i = l 
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Proof. First we assume that for some x G R^ there are k < n+1 
different points ti^... ^tk E M so that the conditions (6.24), (6.25), 
(6.26) and (6.27) are satisfied. Then we obtain for every x G M^ 

n k n 

\v-Y^XiVi^=-^\\j\ ^v-'^XiVi^ (by (6.25)) 
i = l j = l i = l 

k / n 

:= J]|A,-|sgn(A,-) {v{tj)-Y,^iV,{t^)\ (by (6.27)) 
3=1 \ i=l J 

k n k 

j=l i=l j=l 
k 

= E V ( ^ i ) (by (6.26)) 

k n k 

= J2 ^̂ •̂ (*̂ ) ~ E ^̂  E ^Mtj) (by (6.26)) 
i= i *=i i=i 

k / n ^ 

"= ^^j U(*i)-l]^^^^(*i) 
j = l \ i=l 

k n 

n 

= \\v-J2xiVi\\ (by (6.25)). 
i=l 

Consequently, x is a solution of the problem (6.19) of the hnear Cheby-
shev approximation. 
Next, we assume that x G M^ solves the problem (6.19). By The­
orem 6.15 the optimization problem (6.23) has a maximal solution 
(All ̂  • • • 5 K, 5 A21,..., As,^, t i , , . . . , f 1,^, ^21, . . . , 2̂̂ 2) (with positive 
Al l , . . . , Aifĉ , A21,..., A2fc2 J otherwise, if Â .̂ = 0 for some i G {1,2} and 
some j G { 1 , . . . , A;̂ }, we can drop the variable Â .̂ together with the 
point ti- without changing the minimal value of the problem (6.23)), 
and the extremal values of the two problems are equal, i.e. 

/ ? : = 
ki /C2 

V - J^XiVi\\ = ^ Ai.t)(ii,) - ^ A2,z)(t2,). (6.28) 
i=l j=l j=l 
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Because of the constraint 

kl /C2 

X ; Ai,^,(ti,) -J2>^^Mt^j) = 0 for all i e { 1 , . . . , n } (6.29) 
3=1 3=1 

it follows 

kl n k2 n 

(6.30) 

and with the constraint 

kl /C2 

(6.31) 

and the equations (6.30) and (6.28) we conclude 

" n "1 

i=l J 

r ^ 

L i=l J 
n 1 nO / n l IvO \ 

E^i.^(*i.)+E^2i^(^)+/^ E^1. + E^2. 

k2 

- 0. 

Then the following equations are satisfied: 

n 

^(^ij ~ E^*^^(^ij-) "̂  ̂  "^^^ ^ J e { 1 , . . . , fci}, 
i = l 

^(^2,) - E^»^»(^2,) = -/? for all j G {1 , . . . , A;2}. 
i = i 

If we define the variables 

[ij := Aî . for j = l , . . . ,A; i , 

Sj := ti^. for j = 1 , . . . , kx 
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and 

///ci+j := -A2,. for j = 1 , . . . , A:2, 

Sk^+j := t2j for j = 1,...,A:2, 

we get with the equation (6.31) 

and with the equation (6.29) it follows 

y] lij Vi{sj) = 0 for all z = 1 , . . . , n. 
j=i 

Moreover, the following equation is satisfied: 
n n 

v{sj)-YxiVi{sj) = p-Xl^^'^^ sgn(/ij) for all j G {1, . . . ,ki+k2}. 
i=l i=l 

If we notice that ki + k2 < n+ 1^ then the assertion follows immedi­
ately. • 

Example 6.17. We consider again Example 1.4 and ask for a 
solution of the problem 

min max Isinht — xt\. 
xeR te[Q,2] 

By the alternation theorem the necessary and sufficient conditions for 
a minimal solution :r G R of this problem read as follows: 

IA1I + IA2HI 
Aiti + A2t2 = 0 
Ai 7̂  0 => sinhti — xti = ||sinh — xid|| sgn(Ai) 
A2 7̂  0 =^ sinht2 — xt2 = ||sinh — xid|| sgn(A2) 
[sinhti — xti\ = ||sinh — xid|| 
|sinht2 — ^hl = Ijsinh — ^id|| 
A I , A 2 G M ; ti,£2G[0,2]. 
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One obtains from these conditions that :r is a minimal solution of the 
considered approximation problem if and only if x ?̂  1.600233 (see 
Fig. 1.3). 

Exercises 

6.1) Let the following primal minimization problem be given: 
1 1 

min 2a + txit) dt 

0 
subject to the constraints 

1 

1 — a — x{s) ds < 0 almost everywhere on [0,1] 

t 

x{t) > 0 almost everywhere on [0,1] 
a > 0 
X G L 2 [ 0 , 1 ] , aeR. 

(a) Formulate the equivalent dual problem (6.5) of this mini­
mization problem. 

(b) Show that the minimal value of this problem is 2 and that 
the maximal value of the dual problem (6.4) is 1. Conse­
quently, there is a duality gap. 

6.2) With the matrices An G R(^i'^i), A12 G R(^i'̂ 2)^ ^^i G R(^2,ni)^ 
A22 G M("̂ 2,n2) and the vectors 61 G R^S 62 ^ R^^ ci G W\ 
C2 G R^^ we consider the following primal linear optimization 
problem: 

min cf Xi + ĉ X2 
subject to the constraints 
AnXi + A12X2 = bi 

A21X1 + A22X2 > 62 

Xl >OMni, X2eW\ 

The inequalities have to be understood component by compo­
nent. Associate to this primal problem an equivalent dual prob­
lem by (6.17). 
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6.3) Consider the problem (6.19) of the hnear Chebyshev approx­
imation with M = [0,1], v{t) = t^ for all t e [0,1], n = 1, 
Vi{t) = t for all t G [0,1]. With the aid of the alternation 
theorem (Theorem 6.16) determine a solution of this problem. 



Chapter 7 

Application to Extended 
Semidefinite Optimization 

In semidefinite optimization one investigates nonlinear optimization 
problems in finite dimensions with a constraint requiring that a cer­
tain matrix-valued function is negative semidefinite. This type of 
problems arises in convex optimization, approximation theory, con­
trol theory, combinatorial optimization and engineering. In system 
and control theory so-called linear matrix inequalities (LMFs) and 
extensions like bilinear matrix inequahties (BMFs) fit into this class 
of constraints. Our investigations include various partial orderings for 
the description of the matrix constraint and in this way we extend the 
standard semidefinite case to other types of constraints. We apply the 
theory on optimality conditions developed in Chapter 5 and the du­
ality theory of Chapter 6 to these extended semidefinite optimization 
problems. 

7.1 Lowner Ordering Cone and Exten­
sions 

In the so-called conic optimization one investigates finite dimensional 
optimization problems with an inequality constraint with respect to a 
special matrix space. To be more specific, let <Ŝ  denote the real linear 
space of symmetric (n, n)-matrices. It is obvious that this space is a 
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finite dimensional Hilbert space with the scalar product (•, •) defined 
by 

{A, B) = trace(A • B) for all A,B e 5^. (7.1) 

Recall that the trace of a matrix is defined as sum of all diagonal 
elements of the matrix. Let C be a convex cone in S'^ inducing a 
partial ordering :^. Then we consider a matrix function G : W^ —̂  S^ 
defining the inequality constraint 

G{x) ^^s^. (7.2) 

If / : W^ —^ R denotes a given objective function, then we obtain the 
conic optimization problem 

min/(x) 
subject to the constraints . ,^ . 

G{X) ^ {)sn ^ ^^'"^^ 

The name of this problem comes from the fact that the matrix in­
equality has to be interpreted using the ordering cone C. Obviously, 
the theory developed in this book is fully apphcable to this problem 
structure. 

In the special literature one often investigates problems of the form 

min/ (X) 
subject to the constraints • .^ .. 

X eSP 

with given functions / : <Ŝ  —> R and G : S'^ -^ S^. In this case 
the matrix X E S^ can be transformed to a vector x E R '̂̂  where 
X consists of all columns of X by stacking up columns of X from 
the first to the p-th column. The dimension can be reduced because 

p(p+i) 
X is symmetric. Then we obtain x G R 2 . If cp denotes the 
transformation from the vector x to the matrix X, then the problem 
(7.4) can be written as 

min {f oip){x) 
subject to the constraints 

(G0(^)(X) ^O^n 
£(£+1) 

X e R~"2—. 
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Hence, the optimization problem is of the form of problem (7.3) and 
it is not necessary to study the nonlinear optimization problem (7.4) 
separately. 

In practice, one works with special ordering cones for the Hilbert 
space <Ŝ . These cones are discussed now. 

Remark 7.1. Let <Ŝ  denote the real linear space of symmetric 
(n, n) matrices. 

(a) The convex cone 

S^l := {X e S'^ \ X is positive semidefinite} 

is called the Lowner^^ ordering cone. 

The partial ordering induced by the convex cone S!l is also called 
Lowner partial ordering :< (notice that we use the special sym­
bol :< for this partial ordering). The problem (7.3) equipped 
with the Lowner partial ordering is then called a semidefinite 
optimization problem. The name of this problem is caused by 
the fact that the inequality constraint means that the matrix 
G{x) has to be negative semidefinite. 

Although the semidefinite optimization problem is only a fi­
nite dimensional problem, it is not a usual problem in W^ be­
cause the Lowner partial ordering makes the inequality con­
straint complicated. In fact, the inequality (7.2) is equivalent 
to infinitely many inequalities of the form 

y^G{x)y<0 for all y eW. 

(b) The K-copositive ordering cone is defined by 

C^ ;::.: {X E S"" \ y^Xy > 0 for all y e K} 

for a given convex cone K CR^^ i.e., we consider only matrices 
for which the quadratic form is nonnegative on the convex cone 

•̂ ^K. Lowner, Uber monotone Matrixfunktionen, Mathematische Zeitschrift 38 
(1934) 177-216. 
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K. If the partial ordering induced by this convex cone is used 
in problem (7.3), then we speak of a K-copositive optimization 
problem. 

It is evident that S!^ C C^ for every convex cone K and S'!^ = 
C^n. Therefore, we have for the dual cones (C^)* C (<S!f)*. 

If K equals the positive orthant W\_^ then C£n is simply called 
copositive ordering cone and the problem (7.3) is then called 
copositive optimization problem. 

(c) The nonnegative ordering cone is defined by 

Â ^ := {X G 5^ I Xij > 0 for all ij G { 1 , . . . ,n}}. 

In this case the optimization problem (7.3) with the partial 
ordering induced by the convex cone Â '̂  reduces to a standard 
optimization problem of the form 

min/(a;) 
subject to the constraints 

Gij{x) < 0 for all z, j G { 1 , . . . , n} 
X eW^. 

The number of constraints can actually be reduced to liî t̂lz 
because the matrix G[x) is assumed to be symmetric. So, such 
a problem can be investigated with the standard theory of non­
linear optimization in finite dimensions. 

(d) The doubly nonnegative ordering cone is defined by 

= {X E S^ \ X IS positive semidefinite and 

elementwise nonnegative}. 

If we use the partial ordering induced by this convex cone in 
the constraint (7.2), then the optimization problem (7.3) can 
be written as 

min/(x) 
subject to the constraints 

G{x) ^ Osn 
Gij{x) < 0 for all z, j G { 1 , . . . , n} 

X eW^. 
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So, we have a semidefinite optimization problem with additional 
finitely many nonlinear constraints. Obviously, for every convex 
cone K we have D^ C C^ and (C^)* C {D'^y. 

Before discussing some examples we need an important lemma on 
the Schur complement 

Lemma 7.2. Let X = f "^ ^ J G 5̂ +̂  with A e S\ C e S^ 

and B G R̂ '̂̂ ^ be given, and assume that A is positive definite. Then 
we have for the Lowner partial ordering :< 

-X ^ Osk-,1 ^=^ -{C- BA-^B^) ^ Osi 

(the matrix C — BA~^B^ is called the Schur complement of A in X). 

Proof. We have 

= x^Ax + 2x^B^y + y^Cy for all x eR^ 

and all y G M̂  

4==> 0 < min x^Ax + 2x^B^y + y^Cy for all y e^K 

Since A is positive definite, for an arbitrarily chosen ?/ G M̂  this 
optimization problem has the minimal solution —A~^B^y with the 
minimal value 

-y^BA-'B^y + y^Cy = y^{C - BA-'B^)y. 

Consequently we get 

-X^Qs^^i 4=^ y^{C-BA-^B^)y>0 for all y G R̂  

^=> ~{C-BA-^B^)^Osi. 

D 

The following example illustrates the significance of semidefinite 
optimization. 
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Example 7-3. 

(a) The problem of determining the smallest among the largest 
eigenvalues of a matrix-valued function A : M^ —> S^ leads 
to the semidefinite optimization problem 

min A 
subject to the constraints 

A{x) ~XI di Osn 

(with the identity matrix / G 5^ and the Lowner partial order­
ing :<), Indeed, A{x) — XI is negative semidefinite if and only 
if for all eigenvalues Ai , . . . , Â  of A{x) the inequality Â  < A is 
satisfied. Hence, with the minimization of A we determine the 
smallest among the largest eigenvalues of A{x). 

(b) We consider a nonlinear optimization problem with a quadratic 
constraint in a finite dimensional setting, i.e. we have 

min/(x) 
subject to the constraints 

{Ax + b)^{Ax + b) -c^x-a<0 
xeW^. 

. (7.5) 

with an objective function / : R^ —> R, a given matrix A G 
R^^'^\ given vectors 6 G R^ and c G R^ and a real number a. 
If :< denotes again the Lowner partial ordering, we consider the 
inequality 

{Ax + bf /x + a)-^^'^' (̂ -̂ ^ 

(/ G S^ denotes the identity matrix). By Lemma 7.2 this in­
equality is equivalent to the quadratic constraint 

{Ax + bf{Ax + b)-c^x-a<0. 

If the i-th column of the matrix A (with i G { 1 , . . . , A;}) is 
denoted by â ^̂  G R" ,̂ then we set 
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and 

^ ( , ) ^ ^ / °f)T ""̂ ^M f o r a l H e { l , . . . , f c } , 

and the inequality (7.6) is equivalent to 

_ ^ ( o ) _ ^ ( 1 ) ^ ^ _ ^ ^ _ j^{k)^^ ^ O5/C+1. 

Hence, the original problem (7.5) with a quadratic constraint 
can be written as a semidefinite optimization problem with a 
linear constraint 

min/(x) 
subject to the constraints 

_ ^ ( o ) _ j^{i)^^ - . . . - A^^hk :< Osk^i 

Although the partial ordering used in the constraint becomes 
more complicated by this transformation, the type of the con­
straint which is now linear and not quadratic, is much simpler 
to handle. A similar transformation can be carried out in the 
case that, in addition, the objective function / is also quadratic. 
Then we minimize an additional variable and use this variable 
as an upper bound of the objective function. 

(c) We consider a system of autonomous linear differential equa­
tions 

x{t) = Ax{t) + Bu{t) almost everywhere on [0, 00) (7.7) 

with given matrices A G R( '̂̂ ) and B G E^ '̂̂ ). Using a feedback 
control 

u{t) = Fx{t) almost everywhere on [0,00) 

with an unknown matrix F G R̂ '̂̂ ^ we try to make the system 
(7.7) asymptotically stable, i.e. we require for every solution x 
of (7.7) that 

lim \\x{t)\\ = 0 
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for the Euclidean norm || • || in R^. In control theory the au­
tonomous linear system (7.7) is called stabilizable^ if there exists 
a matrix F G M̂ '̂̂ ^ so that the system (7.7) is asymptotically 
stable. 

For the determination of an appropriate matrix F we investigate 
the so-called Lyapunov function i; : R^ —> R with 

v{x) = x^Px for all £ G R^ 

(P G S^ is arbitrarily chosen and should be positive definite). 
Since P is positive definite we have 

v{x) > 0 for all x G R^\{OM/C}. (7.8) 

For a solution x of the system (7.7) we obtain 

v{x{t)) 

= j^x{tfPx{t) 

= x{tfPx{t) + x{tfPx{t) 

= {Ax(t) + BFx(t)fPx{t) + x{t)'^P{Ax{t) + BFx{t)) 

= x(ty({A + BFfP + P{A + BF))x{t). 

If the matrices P and F are chosen in such a way that {A + 
BFYP+P{A+BF) is negative definite, then there is a positive 
number a with 

v{x{t)) < -a\\x{t)f for all t G [0, oo). (7.9) 

The inequalities (7.8) and (7.9) imply 

Y\mv{x{t))=Q. (7.10) 
t—^OO 

Since P is assumed to be positive definite, there is a positive 
number /3 > 0 with 

v{x) > P\\x\\^ for all x G R^ 

Then we conclude with (7.10) 

lim ||x(t)|| = 0 , 
t—^oo 



7.1. Lowner Ordering Cone and Extensions 195 

i.e. the autonomous linear system (7.7) is stabilizable. Hence, 
we obtain the stabihzation of (7.7) by a feedback control, if we 
choose a positive definite matrix P E S^ and a matrix F G M̂ '̂̂ ^ 
so that {A + BFYP + P{A + BF) is negative definite. 

In order to fulfill this requirement we consider the semidefinite 
optimization problem 

min A 
subject to the constraints 

-XI + {A + BFfP + P{A + BF) di Ôfc 
- A / -P di^s^ 

A G R , PeS^, F G R ( ^ ' ^ ) 

(7.11) 

(/ G S^ denotes the identity matrix and recall that :< denotes 
the Lowner partial ordering). By a suitable transformation this 
problem formally fits into the class (7.3) of semidefinite prob­
lems. Here G has to be defined in an appropriate way. It is 
important to note that it is not necessary to solve the problem 
(7.11). Only a feasible solution with A < 0 is requested. Then 
the matrices P and F fulfill the requirements for the stabiliza­
tion of the autonomous linear system (7.7). 

(d) Finally we discuss an applied problem from structural optimiza­
tion and consider a structure of k elastic bars connecting a set of 
Tp nodes (see Figure 7.1). The design variables xi {i — 1^... ,k) 

Figure 7.1: Cantilever with 7 nodes and the load force fj. 
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are the cross-sectional areas of the bars. We assume that nodal 
load forces / i , . . . , /p are given, / i , . . . , //. denote the length 
of the bars, v is the maximal volume, and x̂  > 0 and Xi a re 
the lower and upper bounds of the cross-sectional areas. The 
so-called stiffness matrix A{x) G S'^ is positive definite for all 
Xi , . . . , x/j; > 0. We want to find a feasible structure with min­
imal elastic stored energy. Then we obtain the optimization 
problem 

min/^A(x)~V 
subject to the constraints 

y^ kxi < V 
z=l 

or 

oc.i < Xi < Xi for all z G { 1 , . . . , k} 

min A 
subject to the constraints 

fA{x)~'f - A < 0 

y^ kxi < V 

Xi < Xi < Xi for a lH G { 1 , . . . , k}. 

By Lemma 7.2 the inequality constraint 

fAixr'f - A < 0 

is equivalent to 

ẑ  O^p+i 

(recall that ^ denotes the Lowner partial ordering). Hence, we 
get a standard semidefinite optimization problem with an addi­
tional linear inequality constraint and upper and lower bounds: 

min A 
subject to the constraints 
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A{x) f 

k 

T \ I I^ O^p+i 

y^ hxi < V 
i = l 

^i ^ ^i ^ ^i for alH G { 1 , . . . , A:}. 

Although the Lowner partial ordering is mostly used for describing 
the inequality constraint (7.2), we mainly investigate the more general 
conic optimization problem (7.3) covering the standard semidefinite 
problem. For the application of the general theory of this book we 
now investigate properties of the presented ordering cones in more 
detail. 

Lemma 7.4, For the Lowner ordering cone S^ we have: 

(a) mt{S^) = {X E S^ \ X is positive definite] 

(b) {SlY = SI, i.e. SI is self-dual. 

Proof. 

(a) First, we show the inclusion int(5!^) C {X G 5̂ ^ | X is positive 
definite}. Let X G int(5!^) be arbitrarily chosen. Then we get 
for a sufficiently small A > 0 X — XI E S'^ {I E S'^ denotes 
the identity matrix), i.e. 

0 < x^(X - XI)x = x^Xx - Xx^x for all xeW 

implying 

x^Xx > Xx^x > 0 for all x G R^\{OMm}. 

Consequently, the matrix X is positive definite. 

Next we prove the converse inclusion. Let a positive definite 
matrix X E S^ he arbitrarily given. Then all eigenvalues of X 
are positive. Since the minimal eigenvalue continuously depends 
on the elements of the matrix, it follows immediately that X 
belongs to the interior of S"^. 
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(b) First, we show the inclusion (5!^)* C S!l. Let an arbitrary 
matrix X G (5!^)* be chosen and assume that X ^ S^, Then 
there exists some y G W^ so that y^Xy < 0. If we set y := yy^, 
we have Y E S^^, and we obtain 

(X,y) = tmce{Xyy^) = y^Xy < 0, 

a contradiction to X G (<S!,!)*. 

Now, we prove the converse inclusion. Let X £ S^^he arbitrarily 
given. Choose any Y E S!^. Since X and Y are symmetric 
and positive semidefinite it is known that there are matrices 
VX, VY eSl with {VXf = X and {VY^ = Y and we obtain 

(x,y) - tmce{VxVXVYVY) 
= tvace{^/xVYVYVx) 

= {^VY.VXVY) 
> 0. 

Hence, we conclude X G (5!,!:)*. 

D 

The result of Lemma 7.4,(b) is also called Fejer theorem in the 
special literature. 

For the /C-copositive ordering cone we obtain similar results. 

Lemma 7.5. Let K CW^ be a convex cone. For the K-copositive 
ordering cone C^ we have: 

(a) {X eS"^ \ X is positive definite} C int{C^). 

(h) In addition, if K is closed, then for HK '•= convex hull {xx'^\ xG 

(i) HK is closed 
(ii) ( Q ) * = HK. 
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Proof. 

(a) By definition we have S^l C C^. Consequently, the assertion 
follows from Lemma 7.4,(a). 

(b) (i) Let an arbitrary sequence Xk G HK be chosen with the limit 
X e S^ (with respect to the spectral norm). Since X is a cone, 
for every A: G N there are vectors x^^^\ ... ^ x^^^^ E K with the 
property 

p 

^̂  = E ^(*fc)^(*fc) 

i=l 

(notice that by the Caratheodory theorem the number p of vec­
tors is bounded by n + 1). Every x̂ ^̂ ^ G /C (z G { 1 , . . . ,p}, k G 
N) can be written as 

with fiif^ > 0 and 

s(ik) ^xn{xeW \ ||x||-i} 

(II • II denotes the Euchdean norm in M^). This set is compact 
because K is assumed to be closed. Consequently, we obtain 
for every A; G N 

Since 5^^^^ . . . ,s^^^^ belong to a compact set and (Xfc)A;eN con­
verges to X, the numbers ^ i ^ , . . . ,/ip^ are bounded and there 
are subsequences {^s^^^^^\^^ and (/î ^ )/eî  (with i G {l , . . .p}) 
converging to s^^^ G K and \Xi G K, respectively, with the prop­
erty 

This implies X G RK- Hence, HK is a closed set. 
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(ii) First we show the inclusion HK C (C7^)*. For an arbitrary 
X G HK we have the representation 

X = J2 ^^^^^^^ for some x^^\ . . . , x^^^ G K 

(notice here that i^ is a cone). Then we obtain for every Y G C^ 

(y,X) = t race(y-X) 
p 

=: trace Y^^x^^'^x 

p 

= J]] trace(yx«a:«^) 

p 

> 0, 

i.e. X G (C^)*. 

For the proof of the converse inclusion we first show H^ C C^. 
Let an arbitrary X ^ C^ be given. Then there is some y E K 
with y^Xy < 0. If we set Y" := yy'^, then we have Y G HK and 

(y, X) = trace(y • X) = tmce{Xyy^) = y^Xy < 0, 

i.e. X ^ H^. Consequently H^ C CK and for the dual cones 
we get 

(C^)* C m y . (7.12) 

Next, we show that {H]^)* C HK- For this proof let Z G (F^)* 
be arbitrarily given and assume that Z ^ i//<:. Since HK is 
closed by part (i) and convex, by Theorem C.3 there exists some 
FG<S"\{05n} with 

{V,Z)<^nijV,U). (7.13) 

This inequality implies 

{V,Z)<0, (7.14) 
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if we set U = O n̂. Now assume that V ^ H^. Then there is 
some U E HK with (V, U) < 0. Since HK is a cone, we have 
XU G HK for all A > 0 and 

0 > X{V, U) = {V, XU) for all A > 0. 

Consequently, (1/, XU) can be made arbitrarily small contra­
dicting to the inequality (7.13). So 1/ G i7^ and because of 
Z E (iJ^)* we obtain {V,Z) > 0 contradicting (7.14). Hence 
we get Z e HK. With the inclusions (F^)* C HK and (7.12) 
we then conclude (C^)* C HK which has to be shown. 

D 

In the special hterature elements in the dual cone (C^n) * — H-^ri 
(i.e. we set K = W^) are called completely positive matrices. 

Finally we present similar results for the nonnegative ordering 
cone and the doubly nonnegative ordering cone. 

Lemma 7.6. For the nonnegative ordering cone N'^ and the 
doubly nonnegative ordering cone D^ we have: 

(a) int{N'') = {X e S"" \ Xij > 0 for all ij G { 1 , . . . ,n}} 

(b) (7V )̂* = m, i.e. N"" is self^dual 

(c) int{D^) = {X E S'^ \ X is positive definite and elementwise 
positive} 

(d) {D'^y = D"", i.e. D"" is self-dual. 

Proof. 

(a) This part is obvious. 

(b) (i) Let X G A'̂ ^ be arbitrarily chosen. Then we get for all 
M e N"" 

(X,M) = t race(X.M) 
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= EE5^-5^ 3^ 

*-l i - 1 >o >o 

> 0. 

Consequently, we have X G {N'^)*. 

(ii) Now let X G (A/"̂ )* be arbitrarily chosen. If we consider 
M e N"" with 

1 foii = k and j = I 
•̂̂  "[ 0 otherwise 

for arbitrary A;, / G { 1 , . . . , n}, then we conclude 

0<{X,M)=X,i, 

So, we obtain X eN"". 

(c) With Lemma 7.4,(a) and part (a) of this lemma we get 

int(i:^^) = int(5^nA^^) 

= int(5^) n int(iV^) 

= {X e S'^l \ X positive definite and elementwise 

positive}. 

(d) With Lemma 7.4,(b) and part (b) of this lemma we obtain 

7.2 Optimality Conditions 

The necessary optimality conditions presented in Section 5.2 are now 
applied to the conic optimization problem (7.3) with the partial or­
dering =̂  inducing the ordering cone C. To be more specific, let 
/ : W^ —> R and G : W^ -^ S^ be given functions and consider the 
conic optimization problem 
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min/(x) 
subject to the constraints 

G{X) ^ Ô n 

First, we answer the question under which assumptions the matrix 
function G is Frechet differentiable. 

Lemma 7.7. Let the matrix function G : R^ —^ S^ be element-
wise differentiable at some x G R^. Then the Frechet derivative of G 
at X is given by 

G\x){h) = J2 ^^i(^) ^i f^^ ^^^ h ^ 
i=l 

with 

( ^Z-Gxx ' ' ' oT-Gln \ 

Gxi '--

dxi 

\ £;^ni 
for all z G { 1 , . . . , w}. 

dx, '^nn J 

Proof. Let h G R'^ be arbitrarily chosen. Since G is elementwise 
differentiable at x G R^, we obtain for the Frechet derivative of G 

G\x){h) 
VGnixfh ••• VG^nixfh \ 

VGnlixfh ••• VGnnixfh J 

/ m m \ 

i=l i = l 

i = l / 

^ G ; , . ( a ; ) / i i . 
1=1 a 
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Now we present the Lagrange multiplier rule for the conic opti­
mization problem (7.3). 

Theorem 7.8. Letf:W^^R and G : R^ -> 5^ 6e given func-
tionSj and let x G W^ he a minimal solution of the conic optimization 
problem (7.3). Let f be differentiable at x and let G be elementwise 
differentiable at x. Then there are a real number IJ.> 0 and a matrix 
LeC" with iii.L) ^ (O.Osn), 

/ (L,G,,(x)) \ 

/ iV / (x )+ : \=0^^ (7.15) 

\{L.G^Jx)) J 

and 
{L,G{x))=0. (7.16) 

//; in addition to the above assumptions the equality 

G\x){W^) + cone{C + {G{x)}) = S"" (7.17) 

is satisfied, then it follows /i > 0. 

Proof. Because of the differentiability assumptions we have that 
/ and G are Frechet differentiable at x. Then we apply Corollary 5.4 
and obtain the existence of a real number /i > 0 and a matrix L E C 

fiVf{x) + Lo G'{x) = ORm (7.18) 

and 
{L,G{x))=0. 

For every h G R"̂  we obtain with Lemma 7.7 

{LoG'{x)){h) = {L,G'{x){h)) 
m 

i=l 
m 

= Y.mG,,{x))hi 
i = i 
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/ {L,G,,{x)) y 
h. 

Then the equahty (7.18) imphes 

(L,G,,(x)) \ 

/xV/(x) + 
{L,G,Jx)) J 

Hence, one part of the assertion is shown. If we consider the Kurcyusz-
Robinson-Zowe regularity assumption (5.9) for the special problem 
(7.3), we have 5 = M^ and cone(^ - {x}) = W^. So, the equality 
(7.17) is equivalent to the regularity assumption (5.9). This completes 
the proof. • 

In the case of /i > 0 we can set U := -L E C* and the equalities 
(7.15) and (7.16) can be written as 

f,,{x) + {U,G,,{x)) = 0 for all z G { 1 , . . . ,m} 

and 
{U,G{x)) = 0. 

This gives the extended Karush-Kuhn-Tucker conditions to matrix 
space problems. 

In Theorem 7.8 the Lagrange multiplier L is a matrix in the dual 
cone C*. According to the specific choice of the ordering cone C 
discussed in Lemmas 7.4, 7.5 and 7.6 we take the dual cones given 
in Lemmas 7.4,(b), 7.5,(b),(ii) and 7.6,(b),(d). For instance, if C 
denotes the Lowner ordering cone, then the multiplier L is positive 
semidefinite. 

Instead of the regularity assumption (7.17) used in Theorem 7.8 
we can also consider a simpler condition. 

Lemma 7.9. Let the assumption of Theorem 7.8 be satisfied 
and let C denote the K-copositive ordering cone C^ for an arbi­
trary convex cone K. If there exists a vector x G M^ so that G{x) + 
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m 

2_\Gxi{x)(xi~Xi) is negative definite, then the regularity assumption 

in Theorem 7.8 is fulfilled. 

Proof. By Lemma 7.5,(a) we have 
m 

G{x) + G'{x){x-x) = G{x) + ^G,,{x){^i-^i) 

e - i n t ( Q ) 

and with Theorem 5.6 the Kurcyusz-Robinson-Zowe regularity as­
sumption is satisfied, i.e. the equahty (7.17) is fulfilled. • 

It is obvious that in the case of the Lowner partial ordering 5'!̂  = 
C^n Lemma 7.9 is also applicable. Notice that a similar result can be 
shown for the ordering cones discussed in Lemma 7.6. For the interior 
of these cones we can then use the results in Lemma 7.6, (a) and (c). 

Next, we answer the question under which assumptions the La­
grange multiplier rule given in Theorem 7.8 as a necessary optimality 
condition is a sufficient optimality condition for the conic optimiza­
tion problem (7.3). 

Theorem 7.10. Let f : W^ -^ R and G : W^ -^ S"" be given 
functions. Let for some x G R^ / be differentiable and pseudoconvex 
atx and letG be elementwise differentiable and {—C+cone{{G{x)}) — 
cone{{G{x)}))-quasiconvex at x. If there is a matrix L E C" with 

/ {L,G,,ix)) \ 

Vf{x)+ : = 0 R - (7.19) 

\{L,G,Jx)) J 
and 

{L,G{x))=0, 

then X is a minimal solution of the conic optimization problem (7.3). 

Proof. With Lemma 7.7 the equality (7.19) implies 

Vf{x) + LoG\x) = OMm. 
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By Lemma 5.16 and Corollary 5.15 the assertion follows immediately. 
D 

The quasiconvexity assumption in Theorem 7.10 (compare Defini­
tion 5.12) means that for all feasible x G M^ 

G{x) - G{x) G - C + cone{{G{x)}) - cone{{G{x)}) 
m 

= ^ X^G'^i(^)(2;i - Xi) e - C + cone({G(^)}) - cone{{G{x)}). 

For all feasible x G W^ this implication can be rewritten as 

G{x) + (a - 1 - p)G{x) e -C for some a,p>0 
m 

=4> yZ ^^i (^)(^^ ~ ^i) + (7 "~ ̂ )G{x) E —C for some 7,5 > 0 

or 

G{x) + aG{x) G -C for some a eR 
m 

==> y^Gxi{x){xi — Xi) + ^G{x) G —C for some 7 G M. 
1=1 

7.3 Duality 

The duality theory developed in Chapter 6 is now applied to the 
conic optimization problem (7.3) with given functions / : W^ —> M 
and G : W^ —> 5 " and the partial ordering ^̂  inducing the ordering 
cone C. 

For convenience we recall the primal optimization problem 

min/(x) 
subject to the constraints 

G{X) ^ Ô n 

X G R ^ . 

According to Section 6.1 the dual problem can be written as 

max inf fix) + (U,Gix)) (7.20) 
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or equivalently 

max A 
subject to the constraints 

f{x) + ([/, G{x)) > A for all x G R^ 
A G R, U eC\ 

We are now able to formulate a weak duality theorem for the conic 
optimization problem (7.3). 

Theorem 7.11. Let the composite mapping (/, G) : R"̂  -^RxS^ 
be convex-like. For every feasible x of the primal problem (7.3) and 
for every feasible U of the dual problem (7.20) the following inequality 
is satisfied 

Mfix) + {tj,G{x))<f{x). 

Proof. This result follows immediately from Theorem 6.6. • 

The following strong duality theorem is a direct consequence of 
Theorem 6.7. 

Theorem 7.12. Let the composite mapping (/, G) : R'^ -^RxS^ 
be convex-like and let the ordering cone have a nonempty interior 
int(C). If the primal problem (7.3) is solvable and the generalized 
Slater condition is satisfied, i.e., there is a vector x G R"̂  with G{x) G 
— int{C), then the dual problem (7.20) is also solvable and the extremal 
values of the two problems are equal. 

For instance, if the ordering cone C is the i^-copositive ordering 
cone C^ for some convex cone K CW^^ then by Lemma 7.5,(a) the 
generalized Slater condition in Theorem 7.12 is satisfied whenever 
G{x) is negative definite for some x G R^. In this case a duality gap 
cannot appear. 

With the investigations in Section 6.4 it is simple to state the dual 
problem of a linear semidefinite optimization problem. If we specialize 
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the problem (7.3) to the linear problem 

min (Fx \ 
subiect to the constraints I /̂ . ̂ ^ N 

xi , . . . ,x^ > 0 J 

with c G M^, a hnear mapping A : W^ -^ <Ŝ  and a matrix B E S^. 
Since A is hnear, there are matrices A^^\ . . . , Â ^̂ ^ G S^ so that 

A(x) = A^^^xi + ...+ A^'^^Xm for all x G R^. 

Then the primal hnear problem (7.21) can also be written as 

min c^x 
subject to the constraints 

A(i)xi + .., + A S : ^ ' A ( % 1 + . . . + A M X , ^ '̂̂ •̂ ^̂  

For the formulation of the dual problem of (7.22) we need the adjoint 
mapping A* : S'^ —^ W^ defined by 

A*{U){x) = {U,A{x)) 

= {U,A^'^X, + ... + A^'^^Xm) 

= {U,A^'^)x^ + ... + {U,A^^^)xm 

= ((t/,A(i)),. . . ,(f/,A(-)))-rr 

for all xeW" and all t/ e <S". 

Using the general formulation (6.17) we then obtain the dual problem 

max {B, U) 
subject to the constraints 

{A^'\U)<c^ 

u ec*. 

(7.23) 

In the special literature on semidefinite optimization the dual problem 
(7.23) is very often the primal problem with C* = 5 " . In this case 
our primal problem is then the dual problem in the literature. 
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Exercises 

7.1) Show that the Lowner ordering cone S'!^ is closed and pointed. 

7.2) Show for the Lowner ordering cone 

SI = convex hull {xx^ \ x G W}. 

7.3) As an extension of Lemma 7.2 prove the following result: Let 

X = (^ ^^ ^ e S^^^ with AeS^.C eS^ and B G E^̂ '̂ ) 

be given, and assume that A is positive definite. Then we have 
for an arbitrary convex cone K CM!". 

^ ^ C ^ K K ^=^ C-BA-'B^eC'j,. 

7.4) Show for arbitrary A,B e S!^ 

{A,B)=0 <=^ AB = Osn. 

7.5) Let A be a given symmetric (n, n) matrix. Show for an arbitrary 
{j — i + l^j — i + 1) block matrix A^^ {I < i < j < n) with 

A'j^i = A^+A:-i,z+z-i for all /c, / G { 1 , . . . , i - z + 1} : 

A positive semidefinite ==> A^^ positive semidefinite. 

7.6) Show that the linear semidefinite optimization problem 

min X2 
subject to the constraints 

Xi 1 

1 X2 ' 

Xi,X2 G M 

(where :< denotes the Lowner partial ordering) is not solvable. 

7.7) Let the hnear mapping G : R^ —̂  <Ŝ  with 

G{xuX2) =(11 0̂' ) f̂^ ^̂ ^ (^i'^2) G M' 

be given. Show that G does not fulfill the generahzed Slater 
condition given in Theorem 7.12 for C = S^. 
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7.8) Let c G R"*, B G 5 " and a linear mapping A : R"* ^ <S" with 

A{x) = A^^^xi + ... + A^'^^Xm for all xeW^ 

for A W , . . . , A ( ' " ) e<S"be given. Show that for the Hnear prob­
lem 

min c^x 
subject to the constraints 

B ^ A{x) 

the dual problem is given by 

max (J5, U) 
subject to the constraints 

{Am^U)=Cr 

U eC\ 

7.9) Consider the linear semidefinite optimization problem 

min xi 
subject to the constraints 
0 - x i 0 \ 

-Xi -X2 0 I^ O53 

0 0 -Xi-1 J 
Xi ,X2 G M 

(where :< denotes the Lowner partial ordering). Give the cor­
responding dual problem and show that the extremal values of 
the primal and dual problem are not equal. Why is Theorem 
7.12 not applicable? 



Chapter 8 

Direct Treatment of Special 
Optimization Problems 

Many of the results derived in this book are concerned with a gen­
erally formulated optimization problem. But if a concrete problem 
is given which has a rich mathematical structure, then solutions or 
characterizations of solutions can be derived sometimes in a direct 
way. In this case one takes advantage of the special structure of the 
optimization problem and can achieve the desired results very quickly. 

In this final chapter we present two special optimal control prob­
lems and show how they can be treated without the use of general 
theoretical optimization results. The first problem is a so-called lin­
ear quadratic optimal control problem. For the given quadratic ob­
jective functional one gets a minimal solution with the aid of a simple 
quadratic completion without using necessary optimality conditions. 
The second problem is a time-minimal optimal control problem which 
can be solved directly by the apphcation of a separation theorem. 

8.1 Linear Quadratic Optimal Control 
Problems 

In this section we consider a system of autonomous linear differential 
equations 

x{t) = Ax{t) + Bu{t) almost everywhere on [0, f] (8.1) 
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and an initial condition 
x{0) = x^ (8.2) 

(where T > 0 and x^ G E^ are arbitrarily given). Let A and B 
be (n, n) and (n, m) matrices with real coefficients, respectively. Let 
every control u G L^([0,r]) be feasible (i.e. the controls are uncon­
strained). It is our aim to steer the system (8.1), (8.2) as close to a 
state of rest as possible at the terminal time T. In other words: For a 
given positive definite symmetric (n, n) matrix G with real coefficients 
the quadratic form X{TYGx{T) should be minimal. Since we want 
to reach our goal with a minimal steering effort, for a given positive 
definite symmetric (m, m) matrix R with real coefficients the expres-

f 
sion / u(tYRu{t) dt should be minimized as well. These two goals are 

0 

used for the definition of the objective functional J : I/^([0, T]) —> M 
with 

f 

J{u) = x{ffGx{f) + Iu{tYRu{t)dt for all u G L^([0,f]). 
0 

Under these assumptions the considered linear quadratic optimal con­
trol problem then reads as follows: 

Minimize the objective functional J with respects 
to all controls u G L^([0, T]) for which the result- I . . 
ing trajectory is given by the system (8.1) of dif- [ ^ ' ^ 
ferential equations and the initial condition (8.2). J 

In order to be able to present an optimal control for the problem 
(8.3) we need two technical lemmas. 

Lemma 8.1. Let P(-) he a real {n^n) matrix function which is 
symmetric and differentiable on [0, T]. Then it follows for an arbitrary 
control u G L^([0,T']) and a trajectory x of the initial value problem 
(8.1), (8.2): 

f 

0 = a;°'^P(0)x° - x{ffP{f)x{f) + f ^2u{tf B'^P{t)x{t) 
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+x{tY [Pit) + A^P{t) + Pit)A) xit) 

215 

dt. 

Proof. For an arbitrary control u G L^([0,r]) and a corre­
sponding trajectory x of the initial value problem (8.1), (8.2) and an 
arbitrary real matrix function P(-) defined on [0,T] and being sym­
metric and differentiable it follows: 

I [x{tYP{t)x{t)] 

= x{tfP{t)x{t) + x{tf iP{t)x{t) + P{t)x{t)) 

= {Ax{t) + Bu{t)f P{t)x{t) 

+x{tf iP{t)x{t) + P{t) {Ax{t) + 5M(i))) 

= x{tf(^P{t)+A^P{t) + Pit)A^x{t) 

+2u{tf B^P{t)x{t) almost everywhere on [0,f]. 

With the initial condition (8.2) we get immediately by integration 

x{ffP(f)x{f) - x'>'^P{0)x'' 

1 

1 \2u{tfB^P{t)x{t) 

+x{tf (P(t) + A^Pit) + P{t)A) xit) 

which implies the assertion. 

dt 

n 

Lemma 8.2. The {n,n) matrix function P(-) with 

P{t) = I ^A(t-f)g-i^A'r(t-f) ^ / e^(*-^)5i?-iS^e^^(*-^) ds 

for all t e [0, f] (8.4) 
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is a solution of the Bernoulli matrix differential equation 

P{t) + A^P{t) + P{t)A - P{t)BR-^B^P{t) = 0 for all t e [0, f] 
(8.5) 

with the terminal condition 

P{f) = G. (8.6) 

The matrix function P(-) defined by (8.4) is symmetric. 

Proof. First we define the (n, n) matrix function Q(-) by 

ds 

for all te [0,f] 

(notice that the matrix exponential function is defined as a matrix 
series). It is evident that Q{') is a symmetric matrix function. For 
an arbitrary z ER^^ z y>^ ORn, we obtain 

z^Q{t)z 
f 

> 0 t > 0 

> O f o r a l H e [0,f]. 

Consequently, for every t G [0,T] the matrix Q(t) is positiv definite 
and therefore invertible, i.e. the matrix function P(-) with 

P{t)^Q{t)-^ fo ra lHE [0,f] 

is well-defined. Since Q(-) is symmetric, P(-) is also symmetric. 

It is obvious that P(-) satisfies the terminal condition (8.6). Hence, 
it remains to be shown that P(-) is a solution of the Bernoulli matrix 
differential equation (8.5). For this proof we calculate the derivative 
(notice the implications for arbitrary t G [0, T]: Q{t) • Q{t)~^ = I ==^ 
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Q{t)Qit)-' + Q{t)i{Q{tr') = 0 =^ iiQit)-') = -Q{tr'Q{t) 

Pit) = iiQity') 
= -Q{t)-'Qm{t)-' 

f 

t 

+e^(*-^)Si?-i5^e^'^(*-^U^) ds - BR-'B^'\Q{t)~' 

- -Q{t)-' [AQ{t) + Q{t)A^ - BR-^B^] Q{t)~' 

= -Q{t)-'A - A^Q{t)-' + Q{t)-'BR-'B^Q{t)-' 

= -P{t)A - A^P{t) + P{t)BR-^B^P{t) for all t G [0,f ]. 

Consequently, P(-) satisfies the Bernoulli matrix differential equation 
(8.5). D 

With the aid of the two preceding lemmas it is now possible to 
present the optimal control of the linear quadratic problem (8.3). 

Theorem 8.3. The so-called feedback control u given by 

u{t) = —R~^B^P{t)x{t) almost everywhere on [0,T] 

is the only optimal control of the linear quadratic control problem (8.3) 
where the matrix function P(-) is given by (8.4)-

Proof. In the following let P(-) be the matrix function defined 
by (8.4). Then we have with Lemma 8.1 and Lemma 8.2 for every 
control u e L^([0, f ]) with u ^ u: 

J{u) = x{ffGx{f)+fu{tfRu{t)dt 
0 

= x^^P(0)x^ + x{ff[G - P{f)]x{T) 
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dt 

= X 

+ I \u{tfRu{t) + 2u{tfB^P{t)x{t) 
0 

+x{tf{p{t) + A^Pit) + P{t)Ay{t)\ 

(from Lemma 8.1) 
f 

P(0)x^ + / \u{tfRu{t) + 2u{tfB^P{t)x{t) 
0 

+x{tY P{t)BR-^B^ P{t)x{t)\ dt 

(from Lemma 8.2) 

0 ^ ] 

X 

1 

P{Qi)x^ + / {u{t) + R~^B^P{t)x{t)YR 
0 

(u{t) + R-^B^P{t)x{t)) dt 

> a;°^P(0)x'̂  
= J{u). 

Hence u is the only minimal point of the functional J. D 

The optimal control presented in Theorem 8.3 depends on the 
time variable t and the current state x{t). Such a control is called a 
feedback or a closed loop control (see Fig. 8.1). 

u{t) 
^ x{t) = Ax{t) + Bu(t) 

x{t) 

u {t) = -R-^B^P{t)x{t)k: 

Figure 8.1: Feedback control of Theorem 8.3. 
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If the control function depends only on t and not on the state 
x(t), then it is called an open loop control Feedback controls are 
of special importance for applications. Although feedback controls 
are also derived from the mathematical model, they make use of the 
real state of the system which is described mathematically only in an 
approximate way. Hence, in the case of perturbations which are not 
included in the mathematical model, feedback controls are often more 
realistic for the regulation of the system. 

Since the matrix function P is analytic and the trajectory x is 
absolutely continuous, the optimal control u in Theorem 8.3 is an 
absolutely continuous vector function. In fact, a solution of the lin­
ear quadratic optimal control problem lies in a smaller subspace of 

Notice that the proof of Theorem 8.3 could be done with the aid of 
an optimality condition. Instead of this we use a quadratic completion 
with Lemma 8.1 and 8.2 which is simpler from a mathematical point 
of view. 

The linear quadratic control problem (8.3) can be formulated more 
generally. If one defines the objective functional J by 

f 

J{u) = x{ffGx{f) + / {x{tfQx{t) + u{tfRu{t)) dt 

0 

for all 7xGL^([0,f]) 

where Q is a positive definite symmetric (n, n) matrix with real co­
efficients, then the result of Theorem 8.3 remains almost true for the 
modified control problem. The only difference is that then the matrix 
function P(-) is a solution of the Riccati matrix differential equation 

P{t) + A^P{t) -f- P{t)A + Q- P{t)BR-^B^P{t) = 0 for all t e [0, f ] 

with the terminal condition P{T) — G. 

Example 8.4. As a simple model we consider the differential 
equation 

x{t) = 3x{t) + u{t) almost everywhere on [0,1] 
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with the initial condition 

x(0) = x° 

where x^ G R is arbitrarily chosen. The objective functional J reads 
as follows: 

1 

J{u) = x{lY + i /u{ t f dt for all u e Loo([0,1]). 

0 

Then we obtain the function P as 

Pit) = 

n - 1 

oHt-

t 

1 

t 

6(t-l) _ 5 6(t-l) , ^ 
6 6 

- 1 

- 1 

6 
—T f o r a l H e [0,1]. 

5 + e6(*-i) 

Hence, the optimal control u is given by 

30 
== — Q(t-i) ^(*) ^l^c>st everywhere on [0,1]. (8.7) 

If we plug the feedback control u in the differential equation, we can 
determine the trajectory x: 

x{t) = 3x{t)+u{t) 

= 3x{t) 
30 

5 + e6(*-i) 

30 
5 + e^C-i) 

ZTT^W 

xit). 
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Then we obtain the trajectory x as 

x{t) = x^ e^^ +̂̂  ^ 

= X^ g(3s-6(s- l)+ln(e6(- i)+5)) |* 

= X^ g-3t+ln(e6(*-i)-|-5)-ln(e-6+5) 

X^ 

e-^ + 5 
g-3t ^g6(t-l) ^ 5j f̂^ ĝ ii ^ ̂  JQ̂  -̂ 1̂  (g g) 

If we plug the equation (8.8) in the equation (8.7), we get the optimal 
control u in the open loop form 

u{t) = ——- e~̂ * almost everywhere on [0,1]. 
6 ~r 0 

This optimal control is even a smooth function. 

8.2 Time Minimal Control Problems 

An important problem in control theory is the problem of steering a 
linear system with the aid of a bounded control from its initial state to 
a desired terminal point in minimal time. In this section we answer the 
questions concerning the existence and the characterization of such a 
time minimal control. As a necessary condition for such an optimal 
control we derive a so-called weak bang-bang principle. Moreover, we 
investigate a condition under which a time minimal control is unique. 

In this section we consider the system of hnear differential equa­
tions 

x{t) = A{t)x{t) + B{t)u{t) almost everywhere on [0,T] (8.9) 

with the initial condition 

x{0) = x^ (8.10) 

and the terminal condition 

x{f)=x^ (8.11) 



222 Chapter 8. Direct Treatment of Special Optimization Problems 

where T > 0, x^,x^ G R^, A and B are (n,n) and {n^m) matrix 
functions with real coefficients, respectively, which are assumed to be 
continuous on [0,r], and controls u are chosen from L^([0, T]) with 
ll'̂ l̂li/oo([o,f]) — ̂  f̂^ ^1^ ^ ^ {Ij • • • 5^}- Then we ask for a minimal 
time T G [0, T] so that the linear system (8.9) can be steered from x^ 
to x^ on the time interval [0,T]. 

If we consider the linear system (8.9) on a time interval [0, T] with 
T E [0, T] we use the abbreviation 

U(T) := {u G L^([0, T]) | for every fc G { 1 , . . . , m} we have 

|'̂ /c(^)| ^ 1 almost everywhere on [0,T]} 

for all T G [0,f] (8.12) 

for the set of all feasible controls with terminal time T. 

Definition 8.5. For any T G [0,T] consider the linear system 
(8.9) on [0,T] with the initial condition (8.10). The set 

K{T) := {x{T) eW \ue U{T) and x satisfies the linear 

system (8.9) on [0,T] and the initial condition (8.10)} 

is called the set of attainability. 

The set of attainability consists of all terminal points to which the 
system can be steered from x^ at the time T. Since we assume by 
(8.11) that the system can be steered to x^ we have x^ G K{T). Hence, 
the problem of finding a time minimal control for the linear system 
(8.9) satisfying the conditions (8.10), (8.11) can be transformed to a 
problem of the following type: Determine a minimal time T G [0,T] 
for which x^ G K{f) (see Fig. 8.2). 

Before going further we recall that for an arbitrary u G L^{[0, T]) 
the solution of the initial value problem (8.9), (8.10) with respect to 
the time interval [0,T], T G [0,T], can be written as 

t 

x{t) = ^{t)x^ + $(t) / ^s)-^B{s)u{s) ds for all t G [0, f ] 
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y1\ 

K{f) 

K{f) 

K{T), T G ( 0 , f ) 

-> 

Figure 8.2: Illustration of the set of attainability. 

where $ is the fundamental matrix with 

$(t) = A{t)^t) for all t e [0,T], 

$(0) = I (identity matrix)^^ 

Notice that in the case of a time independent matrix A, the funda­
mental matrix $ is given as 

In the following, for reasons of simplicity, we use the abbreviations 

Y{t) := ^-\t)B{t) for all t G [0,r] 

and 

R{T) : - <̂  / Y{t)u{t)dt ueU{T)\ for all T E [0,f]. 

The set R{T) is sometimes called the reachable set. A connection 
between K and R is given by 

K{T) = $(T) ( x V i?(T)) 

= {$(T)x' + ^T)y I yeR{T)} for all Te[0,f]. (8.13) 

11 A proof of this existence result can be found e.g. in [202, p. 121-122]. 
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First we investigate properties of the set of attainability. 

Lemma 8.6. For every T G [0,T] the set K{T) of attainability 
for the initial value problem (8.9), (8.10) with respect to the time 
interval [0, T] is nonempty, convex and compact. 

Proof. We present a proof of this lemma only in a short form. Let 
some T G [0, T] be arbitrarily given. Because of the initial condition 
(8.10) it is obvious that R{T) ^ 0. Next we show that the reachable 
set 

R{T) = \ / Y{t)u{t) dt u G U{T) ] 
is convex and compact. U{T) is the closed unit ball in L^([0,T]) 
and therefore weak*-compact. Next we define the linear mapping 
L :L^( [0 , r ] ) -^W with 

T 

L{u) = fY{t)u{t)dt for all u G L^([0,T]). 

0 

L is continuous with respect to the norm topology in I/^([0, T]), and 
therefore it is also continuous with respect to the weak*-topology in 
L^([0,T]). Since L is continuous and linear and the set U{T) is 
weak*-compact and convex, the image R{T) = L{U{T)) is compact 
and convex. Because of the equation (8.13) the set K{T) is also 
compact and convex. • 

As a first important result we present an existence theorem for 
time minimal controls. 

Theorem 8.7. If there is a control which steers the linear system 
(8.9) with the initial condition (8.10) to a terminal state x^ within a 
time T G [0,T]; then there is also a time minimal control with this 
property. 

Proof. We assume that x^ G K{T). Next we set 

f : = i n f { r G [0,f] I x^ eK{T)}. 
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Then we have T < T^ and there is a monotonically decreasing se­
quence (T )̂ieN with the hmit T and a sequence {u^)ien of feasible 
controls with 

x^='.x{Tiy)eK{Ti) 

(let x{Ti^ u^) denote the terminal state at the time Ti with the control 
u^). Then it follows 

\W-x{fy)\\ 
= \\x{Ti,u')-xif,u')\\ 

Ti Ti 

$(Ti)x° + $(Ti) fY{t)u'{t)dt-^f) JY{t)u\t)dt 
0 0 

f Ti 

-$(f)a;° - $(f) fY{t)u'{t)dt + ̂ f) [Y{t)u\t)dt 

< ||($(T,)-$(t))a;°|| + 

0 

Ti 

{^{T,)-^f)) JY{t)u\t)dt 

+ 
Ti 

$(f) fY{t)u\t)dt 

which implies because of the continuity of $ 

xi = lim x{f,u'). 
i—^oo 

Since x{f,u') G K(T) for alH G N and the set K{f) is closed, we 
get x^ G K(T) which completes the proof. • 

In our problem formulation we assume that the terminal condition 
(8.11) is satisfied. Therefore Theorem 8.7 ensures that a time minimal 
control exists without additional assumptions. For the presentation 
of a necessary condition for such a time minimal control we need some 
lemmas given in the following. 

Lemma 8.8. Let the linear system (8.9) with the initial condition 
(8.10) he given. Then the set-valued mapping K : [0,T] —> 2̂ "" (where 
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K{') denotes the set of attainability) is continuous (with respect to the 
Hausdorff distance). 

Proof, First we prove the continuity of the mapping R. For that 
proof let f , r G [0,f], with T ^ T, be arbitrarily chosen. Without 
loss of generality we assume T < T. Then for an arbitrary y G R{T) 
there is a feasible control u with 

1 

y= Y{t)u{t) dt. 

For the feasible control u given by 

u{t) 
_ J u{t) almost everywhere on [0,T] 

( l , . . . , l f foralHG ( f , r ] 

we have 
1 

fy{t)u{t) dt e R{T). 

Consequently we get 

d{y,R(T)) := min | | y - y | 
yeRiT) 

< y- JY{t)u{t)d 
0 

T 

JYim,...,!) 
f 

T 

< V^I\lY{t)l\dt 

dt 

and 

max 
yeR{f) 

d{y,R{T))<yMjl\Y{t)\ldt 
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(here || • || denotes the Eudidean norm in R'̂  and ||| • ||| denotes the 
spectral norm). Similarly one can show 

1 

d{R(T),y)<^llY{t)\\dt. 
' J max 

yeR{T) 
T 

Hence, we obtain for the metric Q\ 

Q{Rif),R{T)) 

max min lly — y\\ + max min \\y — y\ 
yeR{f) yeRiT) yeR{T) yeR{t) 

2V^J\lY{t)l 

Since the matrix function Y is continuous, there is a constant a > 0 
with 

l\Y{t)\l < a f o r a l H G [0,r]. 

Then we get 
g{R{f), R{T)) < 2 a v ^ ( T - f ) . 

Consequently, the set-valued mapping R is continuous. Since the 
fundamental matrix $ is continuous and the images of the set-valued 
mapping R are bounded sets, we obtain with the equation (8.13) (no­
tice for f_,Te [0, f ] and a constant P> 0 the inequality g{K{f), K{T)) 
< /3|||$(T) - $(r) | | | + |||$(f )||| g{R{f), R{T))) that the mapping K is 
continuous. • 

Lemma 8.9. Let the linear system (8.9) with the initial condition 
(8.10) and some T G [0,T] he given. Let y he a point in the interior 
of the set K{T) of attainahility, then there is a time T E (0, T) so 
that y is also an interior point of K{T). 

Proof. Let y be an interior point of the set K{T) (this implies 
f > 0). Then there is an s > 0 so that B{y,£) C K{f) for the 
closed ball B{y^e) around y with radius e. Now we assume that for 
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all T G (0,T) y is not an interior point of the set K{T). For every 
T e (0,f) the set K{T) C W is closed and convex. Then for every 
T G (0,T) there is a hyperplane separating the set K{T) and the 
point y (compare Theorem C.5 and Theorem C.3). Consequently, for 
every T G (OjT) there is a point yr G B{y,e) whose distance to the 
set K{T) is at least e. But this contradicts the continuity of the set-
valued mapping K. • 

The next lemma is the key for the proof of a necessary condition 
for time minimal controls. For the formulation of this result we use 
the function sgn : M —> R given by 

r 1 for y > 0 1 
sgn(2/) = I 0 for 2/ -- 0 > . 

[ - 1 for y < 0 J 

Lemma 8.10. Let the linear system (8.9) with the initial con­
dition (8.10) and some f G (0,f] be given. If x{f,u) G dK{f) 
for some u G U{T), then there is a vector rj ^ ORn so that for all 
A; G { 1 , . . . , m } ; 

U]^{t) = sgn[ri'^Yk{t)] almost everywhere on {t G [0,T]|r/^Y/.(t) ^ 0} 

fx(T, u) denotes the state at the time T with respect to the control u; 
Yk{t) denotes the k-th column of the matrix Y{t)). 

Proof. Let an arbitrary point y := x{T^u) G dK{T) be given. 
Since the set K{T) is a convex and closed subset of R'̂ , by a separation 
theorem (see Theorem C.5) there is a vector f) ̂  ORTZ with the property 

fy > fy for all y G K{T). 

Because of 

f 

fy ^ f^{T)x'' + f^{T) I Y{t)u{t) dt 
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and 

f 

fy = f^f)x^ + f^{f) I Y{t)u{t) dt for all y E K{f) 

0 

we obtain for rj^ := ff^{T) 

f f 

rf I Y{t)u{t) dt>ri^ I Y{t)u{t) dt (8.14) 

0 0 

for all feasible controls steering the linear system (8.9) with the initial 
condition (8.10) to a state in the set K{T) of attainability. From the 
inequality (8.14) we conclude 

rfY{t)u(t) > r}^Y{t)u{t) almost everywhere on [0,T]. (8.15) 

For the proof of the implication "(8.14) = > (8.15)" we assume that 
the inequality (8.15) is not true. Then there is a feasible control u 
and a set M C [0, T] with positive measure so that 

rfY{t)u{t) < r}^Y{t)u(t) almost everywhere on M. 

If one defines the feasible control u^ by 

^, X _ J u{t) almost everywhere on [0,r] \ M 1 
^ ^ \ u{t) almost everywhere on M J ' 

then it follows 

f 

_ _dt 

M [0,t]\M 

T]^ fY{t)u'{t)dt = rf lY(t)u{t)dt + ri^ I Y{t)u{t)^ 

M [0,t]\M 

' I Y{t)u{t) dt + ri^ I Y{t)u{t) dt 
M [0,t]\M 

T 

T]'' fY{t)u{t)dt 
0 
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which contradicts the inequality (8.14). Hence, the inequality (8.15) 
is true. 
From the inequality (8.15) we get for all A; G { 1 , . . . , m} 

uj,{t) = sgn [v^Yk{t)] almost everywhere on {t G [0,f]\r]'^Yk{t) -/- 0}. 

D 

Now we present the afore-mentioned necessary condition for time 
minimal controls. 

Theorem 8.11. Lei the linear system (8,9) with the initial con­
dition (8.10) and the terminal condition (8.11) he given. If u is a time 
minimal control with respect to the minimal terminal time T G [0,T], 
then there is a vector rj ̂  OE^ SO that for a// /c G { 1 , . . . , m}: 

Uk{t) = sgn[ri^Yk{t)] almost everywhere on {t G [0,T]\ri^Yk{t) ^ 0}. 
(8.16) 

Proof. The assertion is obvious for T = 0. Therefore we assume 
T > 0 for the following. We want to show that 

T 

y := $(f)x^ + $(T) /Y{t)u{t) dt G dK{f). (8.17) 

0 

Suppose that y were an interior point of the set K{T) of attainability. 
Then by Lemma 8.9 there is a time T G (0, T) so that y is also an 
interior point of the set K{T). But this contradicts the fact that T is 
the minimal time. Hence, the condition (8.17) is true. An application 
of Lemma 8.10 completes the proof. • 

The statement (8.16) is also called a weak hang-hang principle. If 
the measure of the set {t G [0,T]|77^yA;(̂ ) = 0} equals 0 for every 
k G { l , . . . , m } , the statement (8.16) is called a strong hang-hang 
principle. Theorem 8.11 can also be formulated as follows: 

For every time minimal control u there is a vector 77 7̂  
Q^n SO that u satisfies the weak bang-bang principle 
(8.16). 
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The next example illustrates the applicability of Theorem 8.11. 

Example 8.12. We consider the harmonic oscillator mathemat­
ically formalized by 

y{t) + y{t) ~ u{t) almost everywhere on [0, T], 

ll̂ llLoo([0,f]) ^ 1 

where T > 0 is sufficiently large. An initial condition is not given 
explicitly. The corresponding linear system of first order reads 

— A =:B 

We have 
^/.\ At v ^ A'it^ ( cost sint 

^ ' ^̂—-̂  %\ \ — sm£ cost 
=̂o ^ 

and 

Then we obtain for an arbitrary vector r] ^ 0^^ 

r}^Y{t) — —r/i sin t + r/2 cos t. 

Consequently, we get for a number a G M and a number 5 G [—TT, TT] 

ri^Y{t) - a s i n ( t + (5) 

and therefore 
sgTi[r}^Y{t)] = sgn[asin(t + S)] 

(see Fig. 8.3). 
Conclusion: If there is a time minimal control u, then it fulfills 

the strong bang-bang principle, and therefore it is unique. After TT 
time units one always gets a change of the sign of u. 

With a standard result from control theory one can see that the 
considered linear system is null controllable (i.e., it can be steered to 
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1 -

n 
u 
1 -

\ 

•V 
V -

n 
V V 

TT 
V / 

t 

sgn[asin(£ + S)] 

Figure 8.3: Illustration of the time optimal control. 

the origin in a finite time). Hence, by Theorem 8.7 there is also a 
time minimal control u which steers this system into a state of rest, 
and therefore the preceding results are applicable. 

Now we present an example for which the necessary condition for 
time minimal controls does not give any information. 

Example 8.13. We investigate the simple linear system 

../. ^\J. , }J. > almost everywhere on [0, Tl 

with 

and T > 0. Here we set 

A = 

Then we obtain 

1 0 
0 1 

l̂ llLoo[0,f] ^ 1 

/ and B 

Y(t) -At B ^-t 

and for any vector rj ^ ^^2 we get 

For example, for ry = ( . 1 we conclude 

77^y(t) = 0 for alH G [0,t] , 



8.2. Time Minimal Control Problems 233 

and Theorem 8.11 does not give a suitable necessary condition for 
time minimal controls. 

Next we investigate the question under which conditions time min­
imal controls are unique. For this investigation we introduce the no­
tion of normality. 

Definition 8.14. 
(a) The linear system (8.9) is called normal on [0, T] (with T G [0, f ]), 
if for every vector TJ ^ 0^^ the sets 

Gk{j]) - {t G [0, T] I r/^n(t) - 0} with /c G { 1 , . . . , m} 

have the measure 0. Y^it) denotes again the /c-th column of the matrix 
Y{t). 
(b) The linear system (8.9) is called normal^ if for every T G [0,T] 
this system is normal on [0,r]. 

Theorem 8.15. Let the linear system (8.9) with the initial con­
dition (8.10) and the terminal condition (8.11) he given. If u is a time 
minimal control with respect to the minimal terminal time T G [0,T] 
and if the linear system (8.9) is normal on [0, T], then u is the unique 
time minimal control. 

Proof. By Theorem 8.11 for every time minimal control u there 
is a vector r/ ^ ORn so that for all fc G { 1 , . . . , m}: 

Uk{t) = sgn[ri'^Yk{t)] almost everywhere on [O^T] \ Gkirf). 

Then the assertion follows from the normality assumption (notice that 
in the proof of Lemma 8.10 the vector 77 depends on the terminal state 
and not on the control). • 

A control u which satisfies the assumptions of Theorem 8.15 fulfills 
the strong bang-bang principle 

u{t) = sgn[?7^y;.(t)] almost everywhere on [0,T]. 
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One obtains an interesting characterization of the concept of nor-
mahty in the case of an autonomous linear system (8.9) with constant 
matrix functions A and B. 

Theorem 8.16. The autonomous linear system (8,9) with con­
stant matrix functions A and B is normal if and only if for every 
k E {1^... ,m} either 

rank {Bj,, ABk,..., A'^'^Bk) = n (8.18) 

or 
rank (A — A/, 5/̂ ) — n for all eigenvalues A of A. (8.19) 

Here B^ denotes the k-th column of the matrix B. 

Proof. We fix an arbitrary terminal time T G [0, T]. First notice 
that for every A; G { 1 , . . . , m} and every 77 G R^ 

Consequently, the real-valued analytical function rfYk{') on [0,T] is 
either identical to 0 or it has a finite number of zeros on this interval. 
Therefore, the autonomous hnear system (8.9) is normal on [0, T] if 
and only if the following implication is satisfied: 

rj^e'^^Bk = 0 for all t G [0, T] and some fc G { 1 , . . . , m} => 77 = 0]Rn. 
(8.20) 

Next we show that the implication (8.20) is equivalent to the con­
dition (8.18). For this proof we assume that the condition (8.18) is 
satisfied. Let a vector 77 G R'̂  with 

rj^e-^^Bk = 0 for all t G [0, T] and some A; G { 1 , . . . , m} 

be arbitrarily given. By repeated differentiation and setting H = 0" 
we get 

if{Bk, ABk,..., A''~'^Bk) = Ô n for some /c G { 1 , . . . , m}. 

By assumption the system of row vectors of the matrix (5^, ABk^..., 
A^'^Bk) is linear independent, and therefore we get r] = OM .̂ Hence, 



8.2. Time Minimal Control Problems 235 

the implication (8.20) is satisfied, i.e. the autonomous linear system 
(8.9) is normal on [0,r]. 

Now we assume that the condition (8.18) is not satisfied. This 
means that for some /c G { 1 , . . . , m} the system of row vectors of the 
matrix {Bk^ABk,... ,A^~^Bk) is linear dependent. Then there is a 
vector T) ^ 0-^n with 

r]^{Bk,AB,,...,A^-'B,) = Ol. 

which implies 

rj'^Bk = v^ABk = "• = v^A^-'Bk = 0. (8.21) 

The Cayley-Hamilton theorem states that the matrix A satisfies its 
characteristic equation, i.e. 

A"" = aol + aiA +••- + a^_i A^~^ 

with appropriate coefficients a^^ai^,.. ,an-i G R. Then we obtain 
with (8.21) 

rj^A'^Bk = aoV^Bk + aiV^ABj, + • • • + an-iff A""-^ B^ = 0 

and by induction 
rj^A^Bk = 0 for all I > n. (8.22) 

The equations (8.21) and (8.22) imply 

r]^A^Bk = 0 for all / > 0 

which leads to 

rj^e-'^'Bk - V^ ( £ ^ ' - ^ ) Bk = 0 for all t G [0,r]. 

Consequently, the imphcation (8.20) is not satisfied, i.e. the autono­
mous linear system (8.9) is not normal on [0,T]. 

Finally we show the equivalence of the two rank conditions (8.18) 
and (8.19). Let A; G { 1 , . . . , m} be arbitrarily chosen. 
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Assume that the condition (8.19) is not satisfied, i.e. for some 
possibly complex eigenvalue A of A we have 

rank {A — A/, Bk) 7̂  n. 

Then there is a vector z eR^ with z ^ ORn and 

2:^(A-A/,f i^)-0^n+i, 

i.e. 
z^A - \z^ (8.23) 

and 
z^B^ = 0. (8.24) 

With the equations (8.23) and (8.24) we conclude 

z'^ABk = Xz^Bk = 0, 

and by induction we get 

z^A^Bk = 0 for all I > 0. 

Hence we have 

mnk{Bk,ABk,...,A''-^Bk)7^n. 

Conversely, we assume now that the equation (8.18) is not satis­
fied. Then there is a 2: 7̂  O^n with 

z^Bk = 0, z^ABk - 0 , . . . , z^A^'-^Bk = 0. 

Again with the Cayley-Hamilton theorem we conclude immediately 

z^A^Bk = 0 for all I > 0. 

Consequently, the linear subspace 

S :={zeW \ z^A^Bk = 0 for all I > 0} 

has the dimension > 1. Since the set S is invariant under A^ (i.e. 
A^S C S)^ one eigenvector z of A^ belongs to S. Hence, there is an 
eigenvalue A of A^ which is also an eigenvalue of A so that 

A^z = Xz 
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or alternatively 
z^{A-XI)=Oln. (8.25) 

Because of z e 5 we obtain with / = 0 

z^Bk = 0. (8.26) 

The equations (8.25) and (8.26) imply 

rank {A — A/, Bk) 7̂  n for some eigenvalue A of A, 

This completes the proof. • 

In control theory the condition 

rank {B,AB,,..,A''-^B)=n 

is called the Kalman condition. It is obvious that the condition 

rank {Bj,, ABj,,..., A''~'^Bk) = n for all A; E { 1 , . . . , m} 

which is given in Theorem 8.16 impUes the Kalman condition. More­
over, in control theory the condition 

rank {A — A/, B) = n for all eigenvalues A of A 

is called the Hautus condition which is implied by the condition 

rank {A — A/, Bk) = n for all fcG{l,..., m} and all eigenvalues A of A. 

One can show with the same arguments as in the proof of Theo­
rem 8.16 that the Kalman and Hautus conditions are equivalent. In 
control theory one proves that the Kalman condition (or the Hautus 
condition) characterizes the controllability of an autonomous linear 
system, i.e. in this case there is an unconstrained control which steers 
the autonomous linear system from an arbitrary initial state to an 
arbitrary terminal state in finite time. 

The following example shows that the Kalman condition (or the 
Hautus condition) does not imply the condition (8.18) (and (8.19), 
respectively). 
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Example 8.17. The following autonomous linear system satisfies 
the Kalman condition but it is not normal: 

A= { ^ „ and B 

with some T > 0. Here we set 

-1 0 
Q _2 J — ^ " \ 1 1 

Then we have 

1 y ' ^ V - 2 y • 
The matrix (^2, ^^2) has the rank 1, and therefore the hnear system 
is not normal. On the other hand we have 

rank {B,AB) - 2 , 

i.e. the Kalman condition is satisfied. 

Exercises 

8.1) Consider the differential equation 

x{t) = 2x{t) — 3u{t) almost everywhere on [0,2] 

with the initial condition 

x{0) = x^ 

for an arbitrarily chosen x° G M. Determine an optimal control 
u G Loo([0,2]) ^s a minimal point of the objective functional 
J : Loo([0,2]) ^ R with 

2 

J{u) = -x{lY + 2 fu{tfdt for all u G Loo([0,2]). 
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8.2) ([49, p. 132-133]) Let the initial value problem 

x{t) = u(t) almost everywhere on [0,1], 

x(0) - 1 

be given. Determine an optimal control u G I/oo([0,1]) for which 
the objective functional J : I/oo([0,1]) -^ R with 

1 

J{u) = I {u{tf + x{tf) dt for all u e Loo([0,1]) 

0 

becomes minimal. 

8.3) Consider the linear differential equation of n-th order 

y^-\t) + an-iy^^-'\t) + . • • + a,y{t) = u{t) 

almost everywhere on [0, T] 

where T > 0 and ao, . . . ,^^-1 G M are given constants. The 
control u is assumed to be an Loo([0,T]) function. Show that 
the system of linear differential equations of first order which 
is equivalent to this differential equation of n-th order satisfies 
the Kalman condition. 

8.4) ([206, p. 22-24]) Let the system of linear differential equations 

x{t) — Ax{t) + Bu{t) almost everywhere on [0, T] 

with 

A = 

be given where T > 0 , a > 0 , / 3 > 0 and 7 > 0 are constants. It 
is assumed that u G Loo([0,T]). Show that this system satisfies 
the Hautus condition. 

/ 0 1 0 0 \ 
- a 0 0 0 

0 0 0 1 
\ 0 0 0 0 ^ 

and B = 
( o\ 

-/3 
0 

^ 1) 
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8.5) For the linear system in 8.4) assume in addition that the termi­
nal time T is sufficiently large. Moreover, let the initial condi­
tion 

x{0) = x^ 

with x^ G R^ and the terminal condition 

x{f) = OM4 

be given. For the control u we assume 

ll̂ llLoo([0,f]) ^ 1-

It can be proved with a known result from control theory that 
this system can be steered from x^ to 0̂ 4 in finite time. Show 
then that a time minimal control exists which is unique, and 
give a characterization of this time minimal control. 



Appendix A 

Weak Convergence 

Definition A. l . Let {X, \\ • ||) be a normed space. A sequence 
(^n)neN of elements of X is called weakly convergent to some x e X 
if for all continuous linear functional I on X 

lim l{xn) = l{x). 
n—>oo 

In this case x is called a weak limit of the sequence {xn)neN' 

In a finite dimensional normed space a sequence is weakly conver­
gent if and only if it is convergent. In an arbitrary normed space every 
convergent sequence is also weakly convergent; the converse statement 
does not hold in general. 

Example A.2. Consider the Hilbert space I2 of all real sequences 

= (x')^eN with 

special sequence 

X = (x )̂ieN with Yl |x^p < 00. In this linear space we investigate the 
2 = 1 

x i : ^ (1,0,0,0,...), 

X2:= (0,1,0,0,...), 

x s : ^ (0,0,1,0,...), 

and so on. This sequence converges weakly to O/2 because for each 
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continuous linear functional / on I2 there is a y E I2 with 

l{x) — {y, x) for all x Eh 

so that 

lim l{xn) = lim {y^x^) = lim y'^ = 0. 
n—>oo n—>oo n—>oo 

On the other hand the sequence {xn)nen does not converge to O/2 
because 

l^nll \ Y^n-t^n) 

\ 

^{x\^Y = 1 for all neN. 
i = l 

Definition A.3. Let (X, || • ||) be a normed space. A nonempty 
subset S' of X is called weakly sequentially closed if for every weakly 
convergent sequence in S the weak limit also belongs to S. 

Every weakly sequentially closed subset of a normed space is also 
closed (because every convergent sequence converges weakly to the 
same limit). The converse statement is not true in general. But 
every nonempty convex closed subset of a normed space is also weakly 
sequentially closed. 

Definition A.4. Let (X, || • ||) be a normed space. A nonempty 
subset 5 of X is called weakly sequentially compact if every sequence in 
S contains a weakly convergent subsequence whose weak limit belongs 
to 5. 

A nonempty subset of a normed space is weakly sequentially com­
pact if and only if it is weakly compact (i.e. compact with respect to 
the weak topology). In a finite dimensional normed space a nonempty 
subset is weakly sequentially compact if and only if it is closed and 
bounded. 
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Reflexivity of Banach Spaces 

Definition B. l . A complete normed space is called a Banach 
space. 

Using a James theorem (e.g., compare [168, § 19]) a sufficient 
condition for the weak sequence compactness of a nonempty subset 
of a real Banach space can be given. 

Theorem B.2. Let S be a nonempty convex bounded closed 
subset of a real Banach space. If every continuous linear functional 
attains its supremum on S^ then the set S is weakly sequentially com­
pact. 

Reflexive normed spaces are special Banach spaces. In specialist 
literature a normed linear space (X, || • ||) is called reflexive if the 
canonical embedding of X into X** is surjective — but here we use a 
known characterization for the definition of this notion. 

Definition B.3. A Banach space (X, || • ||) is called reflexive if 
the closed unit ball {x G X | ||x|| < 1} is weakly sequentially compact. 

Every finite dimensional normed space is reflexive. For instance, 
the linear space l/i[0,1] of Lebesgue integrable real-valued functions 
on [0,1] is a Banach space, but it is not reflexive. 
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In a reflexive Banach space a simple sufficient condition for the 
weak sequence compactness of a nonempty subset can be given (for 
instance, compare [347, Cor. 6.1.9]). 

Theorem B.4. Every nonempty convex bounded closed subset of 
a reflexive Banach space is weakly sequentially compact. 

Notice that in a finite dimensional normed space the assumption 
of convexity can be dropped. 



Appendix C 

Hahn-Banach Theorem 

The following theorem is also called a basic version of the Hahn-
Banach theorem (for a proof, for instance, compare [181, Thm. 3.8]). 

Theorem C.l. Let X be a real linear space. For every sublinear 
functional / : X —> R there is a linear functional I on X with 

l{x) < f{x) for allx e X 

(see Fig. C.l). 

/N 
/ 

X 

Figure C.l: Illustration of the result of Thm. C.l. 

Besides this basic version there are further versions of the Hahn-
Banach theorem. The following Eidelheit separation theorem can be 
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deduced from Theorem C.l (for a proof see [181, Thm. 3.16]). 

Theorem C.2. Let S and T he nonempty convex subsets of 
a real topological linear space X with int{S) ^ 0. Then we have 
int[S) DT = 0 if and only if there are a continuous linear functional 
/ G X* \ {Ox*} and a real number 7 with 

l{s) < 7 < l{t) for allseS and allteT 

and 

l{s) < 7 for all s G int{S) 

(see Fig. C.2). 

Figure C.2: Illustration of the result of Thm. C.2. 

The following separation theorem can be obtained from the pre­
ceding theorem. 

Theorem C.3. Let S be a nonempty convex and closed subset 
of a real locally convex space X. Then we have x E X\S if and only 
if there is a continuous linear functional I G X* \ {Ox*} u)ith 

l{x) <mil{s). (C.l) 
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Proof. 

(a) Let any x E X he given. If there is a continuous linear func­
tional / G X* \ {Ox*} with the property (C.l), then it follows 
immediately x ^ S, 

(b) Choose an arbitrary element x E X \ S. Since S is closed, 
there is a convex neighborhood N of x with N H S = 0. By the 
Eidelheit separation theorem (Thm. C.2) there are a continuous 
linear functional I E X* \ {Ox*} and a real number 7 with 

l{x) < 7 < l{s) for all s e S. 

The inequality (C.l) follows directly from the previous inequal­
ity. 

D 

The next result is a special version of the Hahn-Banach theorem 
deduced by the Eidelheit separation theorem. 

Theorem C.4, Let (X, || • \\x) be a real normed space. For every 
X e X there is an I E X* with \\l\\x* = 1 ct'i^d l{x) = ||^||x-

Proof. For x — Ox the assertion is evident. Therefore assume in 
the following that any a; 7̂  Ox is arbitrarily given. Let S denote the 
closed ball around zero with the radius ||a;||, and letT \= {x}. Because 
of int(S') n T = 0 by the Eidelheit separation theorem (Thm. C.2) 
there are an TG X* \ {Ox*} and a 7 G R with 

/"(s) < 7 < l{x) for all SES, 

If we define / := |mr7^5 we have ||/||x* = 1 and 

l{s) < l{x) for all SES. 

Then we get 

\\x\\x = IklU sup \l{y)\ 
\\y\\x<i 
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Since ||/||x* 

resulting in 

= 

= 

< 

= 1 we have 

sup 

sup \l{\\x 
\\y\\x<i 

sup |/(5)1 
ses 
SUp/(5) 
ses 
l{x). 

IblU 

l{y) < \\y\\x for all y G 

From the inequality (C.3) we ' 

and togethei 

l{x) 

obtain 

< \\A\x 

• with the inequality (C.2) we 

l{x) = II^IU-

IUy)| 

X. 

conclude 

(C.2) 

(C.3) 

D 

Finally we present a special separation theorem in a finite dimen­
sional space (for instance, compare [347, Thm. 3.2.6]). This result is 
in general not true in an infinite dimensional setting. 

Theorem C.5. Let S he a nonempty convex and closed subset 
of a finite dimensional real normed space (X, || • ||x)- Then for every 
boundary point x E dS there is a continuous linear functional I G 
X*\{Ox*} with 

l{s) < l{x) for all s e S. 
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Partially Ordered Linear 
Spaces 

Definition D. l . Let X be a real linear space. 

(a) Every nonempty subset R of the product space X x X is called 
a binary relation R on X (one writes xRy for (x, y) E R). 

(b) Every binary relation < on X is called a partial ordering on X, 
if for arbitrary w^x^y^z E X: 

(z) X < X (reflexivity); 

(ii) X < y^ y < z =^ X < z (transitivity); 

{Hi) X < y, w<z=^x + w<y + z (compatibility with the 

addition); 

(iv) X < y^ a E R+ => ax < ay (compatibility with the 

scalar multiplication). 

(c) A partial ordering < on X is called antisymmetric^ if for arbi­
trary x^y E X: 

^ ^ 2 / 5 y ^ ^ =^ X = y -

(d) A real linear space equipped with a partial ordering is called a 
partially ordered linear space. 



250 Appendix D. Partially Ordered Linear Spaces 

Example D.2. 

(a) If one defines the componentwise partial ordering < on R'̂  by 

< :={{x,y) eW xW \xi<yi for alH G {!,..., n}}, 

then the hnear space R^ becomes a partially ordered linear 
space. 

(b) For —GO < a < 6 < oo let C[a^b] denote the linear space of 
all continuous real-valued functions on [a, 6]. With the natural 
partial ordering < on C[a, 6] given by 

< := {(x, y) G C[a, h] x C[a, h] \ x{t) < y{t) for all t G [a, h]} 

the space C[a, 6] becomes a partially ordered linear space. 

Notice that two arbitrary elements of a partially ordered linear 
space may not always be compared with each other with respect to 
the partial ordering. 

The following theorem which is simple to prove says that partial 
orderings on linear spaces can be characterized by convex cones. 

Theorem D.3. Let X be a real linear space. 

(a) If ^ is a partial ordering on X, then the set 

C :={XEX \0x <x} 

is a convex cone. If in addition, the partial ordering is anti­
symmetric, then C is pointed. 

(h) If C is a convex cone in X, then the binary relation 

< '= {{x,y)eXxX\y-xeC} 

is a partial ordering on X. If in addition, C is pointed, then 
the partial ordering < is antisymmetric. 
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Definition D.4. A convex cone characterizing the partial order­
ing on a real linear space is called an ordering cone (or also a positive 
cone). 

Example D.5. 

(a) For the natural partial ordering given in Example D.2, (a) the 
ordering cone reads 

C:={xeW \xi>0 for all i G {1, ...,n}} - ^ " 
+ • 

(b) In Example D.2, (b) the ordering cone can be written as 

C :={xe C[a, b] \ x{t) > 0 for all t G [a, b]}. 

If a real linear space is partially ordered, then a partial ordering 
can also be introduced on its dual space. 

Definition D.6. Let X be a real linear space with an ordering 
cone C. The cone 

C := {lex' \ l[x) > 0 for all x e C} 

is called the dual cone for C (here X' denotes the algebraical dual 
space of X). 

With the aid of the dual cone C a partial ordering is described on 
the dual space X\ In the case of a real normed space (X, || • ||) the 
dual cone in the topological dual space X* is denoted by C*. 
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Answers to the Exercises 

CHAPTER 2 

2.1) Use Definition 2.1 and notice that in a finite dimensional normed 
space weak convergence is equivalent to norm convergence. 

2.2) Show for the functions / i , /s : K -^ K with 

I -I f o r a l l x > - l J 

and 
n f s _ j -- for all X < ~1 1 

Moo) - I ^̂ ^̂  ^̂ ^ ĵj X > - 1 j 

that the level sets S^' := {x eR\ fi{x) < a} and S^^ := {x G 
^ I /2(^) ^ <^} are convex for all a G M. Then the level set 
5 / = 5/1 n '̂̂ ^ is convex as well. 

2.3) For the "==^" part of this proof consider the level set Sa with 
a := max{/(x), /(?/)}. Prove the converse case by showing that 
Sa is convex. 

2.4) Take an arbitrary sequence {xn)neN in ^ proximinal set S con­
verging to some X. Then the approximation problem min ||x—x|| 

has a solution x G iS. Since II we con-
n—^00 

elude X = X E. S. 

2.5) Apply Theorem 2.18. 

2.6) Notice the remarks at the end of section 2.4. 
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2.7) The constraint set S is not convex. 

2.8) In analogy to the proof of Theorem 2.23 show that / is convex 
and continuous. The assertion then follows from Theorem 2.12. 

C H A P T E R 3 

3.1) For h ^ 0 we obtain 

f'mh) = lim \if{Xh) - /(O)) = lim Xh'sm^ = 0, 

and ioY h = 0 we immediately get f\0){h) = 0. 

3.2) The result is trivial in the case of x = x. For x j^ x we obtain 
for the directional derivative 

— lim —{^x + Xh ~ x\\ — \\x — x\\) 

= lim -- f max \x(t) + Xh(t) — x{t)\ — max\xit) — x{t)\ ) 
A-̂ o+ A \teM ' ^ ^ ^ ^ ^ ^' teM ' ^ ^ ^ ^'y 

> max sgn(x(t) - x{t))h{t) for all h G C(M). 
teM{x) 

For every A > 0 choose d^ntxE M with 

\x{tx) - xitx) + Xh{tx)\ = \\x-x + Xhl 

Then we conclude 

lirn \x{tx) - x{tx) + Xh{tx)\ = \\x - x\\, 
A—>^0-f 

This implies the existence of a sequence {Xk)ken of positive num­
bers converging to 0 with lim tx^ = to E M{x). Then we get 

k-^oo 

for sufficiently large k EN 

— |5(tAj - x{tx^) + Xkh{tx^)\ - \x{to) - x(to)| 

< sgn(^(to) - x{to))h{txk) 
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implying 

fixMh) < max sgn(x(i) -x(t))h(t). 
teM{x) 

3.3) From Theorem 3.16 we obtain 

f{x) > f{x) + f{x){x - x) for all x G X 

If f{x) = Ox*, then x is a minimal point of / on X. The 
converse statement follows from Theorem 3.17. 

3.4) a/(o) = { ; G R | | ; | < i } = [ - i , i ] . 

3.5) One proves for h^k^ df{x) and A G [0,1] that Xh + (1 - A);2 G 
am. 

3.6) Since 

/(a;)- /(^)> lim \{f{x + X{x-x))-f{x)) = Vf{xf{x-x), 

we conclude V/(x) G df{x). For an arbitrary v G df{x) one 
gets for all unit vectors e i , . . . , e„ EW' 

v,<\\m \{f{x + Xe,)-f{x)) = ^ 
A—>0+ A OXi 

and 

. .>to_i( /( . + Ae.)-/(.)) = M£) 

which results in i; = V/(x). 

3.7) The sub- and super differential can be chosen as 

{(sgn a;i|x2|, sgn X2|xi|)} if X1X2 7̂  0 

o|/(xi, X2) = { {{u, 0) I 1̂1 <\x2\} if xi = 0 
{(0,̂ ;) I 1̂1 < \xi\} ifx2 = 0 

and df{xuX2) = {(0,0)}. Then Df{x,,X2) = (a/(xi,X2), 
df{xi^X2)) is a quasidifferential of / at (a:i,a;2). 
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3.8) Since the directional derivative f{x) is given by 

f{x){h) = \hi\ - |/i2| for all h = (/ii,/i2) e D2 

the function / is quasidifferentiable at x. With the special se­
quence ( ( | , ^))/j.^|^ converging to (0,0) and the norm || • || on 
E^ given by 

\\h\\ = \hi\ + \h2\ for all h = {hi, /12) G E ^ 

one can see that the limit in Definition 3.34 is | for this special 
sequence. Hence, / does not have the Frechet property at x 
with f:=f{x). 

3.9) Since / is a convex function, the Clarke derivative coincides 
with the directional derivative f{x){h). Then we obtain for all 
heW 

f{x){h) — lim — I max{x^ + Xhi] — max{x^} ) 
A—^0-1- A V l ^ ^ ^ ' T ' l<i<n J 

— lim — maxjx^ + Xhi — Xi\ 
A->o+ A iei{x) 

= m a x { / i i ) . 
iei{x) 

CHAPTER 4 

4.1) The inclusion int(C) C int((7) + C is trivial, and the converse 
inclusion is simple to show. 

4.2) If / is sublinear, it is simple to show that the epigraph E{f) is 
a cone. By Theorem 2.8 this cone is convex. For the proof of 
the converse implication one proves that 

f{Xx) = Xf{x) for all A > 0 

and /(O) — 0. The subadditivity can be simply shown. 
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4.3) Take xi,a;2 G cone(5'), i.e. xi = AiSi and X2 = X2S2 for some 
Ai, A2 > 0 and Si, S2 G S. Without loss of generality we assume 
Ai + A2 7̂  0. Then 

2;i + â2 = (Ai + A2) I T—;^-si + T—r"^S2 ) e cone(5). 
\ A i + A2 Ai + A2 / 

4.4) cone(S')=R^. 

4.5) T(5, (1,2)) = {A(a, -1 ) | A > 0, a e [-1,1]}. 

4.6) Simply apply Definition 4.6. 

4.7) (a) Apply Definition 4.6 and notice that Si C 82-

(b) By part (a) one obtains T{Si D S2,x) C T{Si,x) and 
T{SinS2,x) C r(52,S) implying r(5in^2,:r) C T{Sux)n 

ns2,x), 
4.8) See the remark under 4. on page 31 in [192]. 

4.9) Apply Theorem 2.4.5 in [68]. The assertion then follows from 
Proposition 2.2.1 in [68]. This result is also proved on the pages 
17-18 in [296, Theorem 2E]. 

4.10) / is not pseudoconvex at x = 0. 

CHAPTER 5 

5.1) Since x ^ S = c\{S) and S is convex, the separation theorem 
C.3 gives the desired result. 

5.2) See Lemma 1.1 and Lemma 2.1 in [192]. 

5.3) The Slater condition given in Theorem 5.9 is satisfied (take x := 

(hi))-
5.4) (a) Since Xi,a;2 > 0, it follows Xi + 0̂2 > 0 for all feasible 

{xi,X2) G R 2 . 
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(b) No. 

(c) No. 

5.5) (a) (2,1). 

(b) (1.5,2.25). 
/ \ /185 _55_ _5_\ 
VW V768' 768 ' 16/* 

5.6) Yes. For all feasible (x,y) it follows 

x + 3y + 3 ^ 1 ly ^ 1 
2x + y + Q 2 2x + y + Q - 2' 

-y Since ^^^ ^^ > 0 for y > 0, we conclude that there are no other 
solutions. 

5.7) This problem satisfies the Arrow-Hurwicz-Uzawa condition. 
Then the Karush-Kuhn-Tucker conditions give the desired as­
sertion. 

5.8) Choose an arbitrary x E S, show Vf{xY{x — x) > 0 and con­
clude that X is a minimal point of / on 5. 

5.9) The function p with 

Pit) = \ ( l - e'-') ( 2 ) fo^ 1̂1 ^ ^ [0' 1] 

satisfies the adjoint equation (5.36) and the transversality con­
dition (5.37). Then an optimal control u = {ui^U2) is given 
as 

almost everywhere on [0,1 + In -^j 

almost everywhere on [1 + In ^ , 1] 
Ui{t) = < 

and 

U2{t) = I 

(6 3 
J 2 4( l-e*-i) 

I 0 

' 23 3 
8 4(l-e*-i) 

0 

almost everywhere on [0,1 + In | | ] 

almost everywhere on [1 -h In 
In i l l 
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C H A P T E R 6 

6.1) (a) The dual problem reads 

1 

max / u(t) dt ju{t), 
0 

subject to the constraints 
t 

/ u{s) ds <t almost everywhere on [0,1] 

0 

u{t) > 0 almost everywhere on [0,1] 
1 

/ u{t) dt<2 

0 

(b) (a, x) = (1,0^2[0,1]) is a solution of the primal problem with 
the minimal value 2, and u with 

u{t) = 1 almost everywhere on [0,1] 

is a solution of the dual problem with the maximal value 
1. 

6.2) The dual problem reads 

max b^ui + b^U2 

subject to the constraints 

Aj^ui + Al^U2 < ci 

Al^ui + AI2U2 = C2 

Ui e W \ U2 >0Mm2. 

6.3) The solution reads Xi - 2(\/2 -l)^ 0.8284272 with the mini­
mal value 1 - xi = 3 - 2\/2 ^ 0.1715728. 
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CHAPTER 7 

7.1) Take any sequence (X )̂̂ eN ^^ 5+ converging to some matrix X e 
S'^. The matrix Xi is symmetric and positive semidefinite for 
every z e N and, therefore, all eigenvalues of X^ are nonnegative. 
Since the eigenvalues continuously depend on the entries of a 
matrix, we also obtain that the eigenvalues of the matrix X are 
nonnegative oi X E S!^. Consequently, 5!f is closed. 

For the proof that S!^ is also pointed take an arbitrary matrix 
X E S!l n {—S!l). Then all eigenvalues of X are nonnegative 
and nonpositive, i.e. they equal 0. So, we get X — O n̂. 

7.2) For K : = W we obtain by Lemma 7.4,(b) and Lemma 7.5,(b),(ii) 

SI = {SlY - (Qn)* = H^n = convex hull {xx^ \ x E W}. 

7.3) We proceed as in the proof of Lemma 7.2. We have 

XeCX, -^ 0 < ( x ' - , / ) ( ^ ^ " ) ( X 

, y 

for all X eR^ and sll y e K 

^^ C-BA-^B^ eC\^. 

7.4) Since (A^B) = trace (A5), the implication ''<^" is obvious. 
For the proof of the converse implication assume that (A, B) = 0 
is fulfilled. With Exercise 7.2) we can write for some p G N 

p 

B = Y^x^^x^^^ for appropriate x^^\ .. .,x^^^ G W. 
2 = 1 

Since A G 5!^, we have A = \fA\fA for a matrix \/A G 5!f. 
Then we obtain 

0 = {A,B) 

= trace(A5) 
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-Wa;« = trace j VAVA ^ x* 

p 

= ^tr&ce(x^^^VAVAx^^) 

> 0 

implying 
^/Ax^'^ = 0^n for alH = l , . . . , p . 

With this equation we get 

p 

AB = VAVAJ2^^^' x^ 
i=i 

= Ogn. 

7.5) Since A is positive semidefinite, we have 

x'^Ax > 0 for all x G M". 

For X = {0,... ,0,Xi,... ,Xj,0,... ,0)EM.^ with arbitrary Xi,..., 
ve 

0 < x'^Ax 

Xj G M we then obtain 

{0,...,0,Xi,...,Xj,0,...,0) AiJ 

J 

( 0 \ 

6 

X{ 

Xj 

0 
V 6 / 

\^ii ' ' ' 1 "^j)^ ̂ J 

Xi 

I 
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Consequently, the block matrix A^^ is positive semidefinite. 

7.6) For the matrix A := \ } | we obtain the eigenvalues 

V 1 ^2 y 

X1+X2 , / (Xi+X2)2 
Al/2 = ^ ± Y ^ X1X2 + 1 

being nonnegative if and only if 

X1X2 > 1, Xi> 0 , X2 > 0. 

Therefore, the feasible set of this problem can be written as 

{(^1,^2) G IR̂  I ̂ 1^2 > 1, ^1 > 0, X2 > 0}. 

It is obvious that the objective function has the lower bound 
0 on this set but this value is not attained at a point of the 
constraint set. 

7.7) By Lemma 7.4, (a) we have 

-int(5+) = {X G 5^ I X is negative definite}. 

For arbitrary xi, X2 G M the eigenvalues of G(xi, X2) are 

^1 . . / ^ l . „2 

and 

A2 = ^ - \ / ^ + - i . 2 V 4 
If Xi < 0, then we get Ai > 0 and in the case of a;i > 0 we 
have Ai > 0. Hence, there is no vector (xi,£2) ^ ^^ with 
G(xi,X2) G —int(vS^), i.e. the generalized Slater condition is 
not satisfied. 

7.8) For an arbitrary x G W^ we write 

^i = Vi ~ Zi for all i G { 1 , . . . , m} 
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with yi^... ^ym^zi,,.. ,Zm ^ 0. Then the primal problem can 
be written as 

min (c, —c) 

bject to the 

\T I y 
z 

subject to the constraints 
y 
z 

y i , . . . , l / m , ^ l , . . . , ^ m > 0. 

This problem has the form of the primal problem (7.21) and its 
dual is given by (7.23) as 

max (S, U) 
subject to the constraints 

_ ( A ( i ) , C / ) < - c i 

U eC*. 

This problem can be simplified to the dual problem 

max (5 , U) 
subject to the constraints 

{A(^\U)=Cm 

u eC*. 

7.9) The primal problem equals the primal problem in Exercise 7.8), 

/ n /o 0 0 
if we set c = ( J, B = 0 0 0 | and 

A{x) = A^^^xi + A^'^h2 
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with 
/ O 1 0 \ 

A(i) = 1 0 0 , ^(2) ^ 
\0 0 ij 

The eigenvalues of the matrix B — A{x) are 

'̂ ^ = -2- + V f + " -
^2 , , / ^2 , ^2 

^2 . / a ^ i , ^2 

and 
As = -xi - 1. 

5 — A{x) is negative semidefinite if and only if Ai, A25 A3 < 0. 
These eigenvalues are nonpositive if and only if Xi = 0 and 
X2 > 0. So, the constraint set of the primal problem can be 
written as {(xi,X2) G M̂  | Xi = 0, ^2 > 0} and, therefore, the 
extremal value of the primal problem equals 0. 

With Exercise 7.8) the dual problem can be written in this spe­
cial case as 

max-[ /33 

subject to the constraints 
2Ui2 + C/33 - 1 

U22 = 0 

or equivalently 

( ' 

v^s\ 

max-t/33 
subject to the constraint 

Un i ( l - t / 3 3 ) t/31 \ 
(l-C/33) 0 t/32 

Usi f/32 Us3 ) 

eSl 

Since the matrix defining the constraint is positive semidefinite, 
by Exercise 7.5) the leading block matrices U^^ := (Un) and 

rri2._f U^^ 1(1 - t/33) 
- ' i ( l - f /33) 0 
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have to be positive semidefinite as well. The eigenvalues of the 
matrix U^'^ are 

Al/2 = ^ ± % ) +i(l-^33)^-

They are nonnegative if and only if t/n > 0 and Uss = 1. Then 
the extremal value of the dual problem equals —1. So, the 
extremal values of the primal and dual problem do not coincide. 

We consider an arbitrary x G E^ for which the matrix B — A(x) 
is negative semidefinite. Then one eigenvalue of this matrix 
equals 0. Therefore, B — A{x) is not negative definite. Hence, 
the generalized Slater condition is not satisfied and Theorem 
7.12 is not applicable. 

CHAPTER 8 

8.1) An optimal (feedback) control u is given by 

12 
u{t) = x{t) almost everywhere on [0,2]. 

7e4(t-2) + 9 ' 

8.2) An optimal (feedback) control u is given by 

u(t) = —tanh (1 — t) x{t) almost everywhere on [0,1]. 

8.3) The equivalent system of linear diff"erential equations of first 
order reads 

( 0 
0 

0 

1 
0 

0 
- a i 

0 •• 
1 •• 

0 •• 
—02 • • 

• 0 \ 
0 

1 

x{t) = 

almost everywhere on [0,T]. 

This system satisfies the Kalman condition. 

x{t) + 

/ 0 \ 
0 

0 
u{t) 
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8.4) The eigenvalues of A are Ai = ^/ai^ A2 = —\foL%^ A3 = A4 = 0. 
For every eigenvalue of A we get the implication 

z^{A - Xjl, S) - 0̂ 5 ==^ z=-

resulting in 

Rank {A - Xjl, J5) = 4 for j = 1 , . . . , 4. 

Hence, the Hautus condition is fulfilled. 

8.5) By Theorem 8.7 there is a time minimal control iZ, and by The­
orem 8.11 there is a vector r/ 7̂  0]R4 with 

u{t) = sgn —p= sin t\/a — 772/? cos t^/a — rj^jt + 7/47 

almost everywhere on [0, T] 

(T denotes the minimal time). Since the term in brackets has 
only finitely many zeros, the time minimal control u is unique. 
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