Theory and Application
of Graphs

by
Junming Xu

Department of Mathermatics
University of Science and Technology of China

Hefei, Anhui, China

Kluwer Academic Publishers -
Dordrecht/Boston/London



Theory and Application
of Graphs




Network Theory and Applications

Volume 10

Managing Editors:

Ding-Zhu Du
University of Minnesota, U.S.A.

Car'igi Raghavendra
University of Southern ( ‘aliforina, U.S.A.



—
p—

Theory and Application
of Graphs

by
Junming Xu

Department of Mathematics

University of Science and Technology of China
Hefei, Anhui, China

Kluwer Academic Publishers
Dordrecht/Boston /London



Distributors for North, Central and South America:
Kluwer Academic Publishers
101 Philtp Drive
Assinippi Park
* Norwell, Massachusetts 02061 USA
Telephone (781) 871 -6600
Fax (781) 871-6528
E-Mail <kluwer@wkap.com=>

Distributors for all other countries:

Kluwer Academic Publishers Group

Post Office Box 322 ‘
3300 AH Dordrecht, THE NETHERLANDS
Telephone 31 78 6576 000

Fax 31 78 6576 474

E-Mail <orderdept@wkap.nl>

| | . .
1“ Flectronic Services < http:/www wkap.nl »

Library of Congress Cataloging-in-Publication
CIP info or:

Title: Theory and Application of Graphs
Author: Xu
ISBN: 1-4020-7540-5

Copyright © 2003 by Kluwer Academic Publishers

Al rights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photo-copying.
microfitming, recording, or otherwise, without the prior written permission of the publisher. with
the exception of any material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work.

Permissions for books published in the USA: Qermi ssions@wkap.com
Permissions for books published in Burope: permissions@wkap nl

Printed on acid-free paper.

Printed in the United States of America



Theory and Application
of Graphs

by
Junming Xu

Department of Mathermatics
University of Science and Technology of China

Hefei, Anhui, China

Kluwer Academic Publishers -
Dordrecht/Boston/London



Theory and Application
of Graphs




Network Theory and Applications

Volume 10

Managing Editors:

Ding-Zhu Du
University of Minnesota, U.S.A.

Car'igi Raghavendra
University of Southern ( ‘aliforina, U.S.A.



—
p—

Theory and Application
of Graphs

by
Junming Xu

Department of Mathematics

University of Science and Technology of China
Hefei, Anhui, China

Kluwer Academic Publishers
Dordrecht/Boston /London



Distributors for North, Central and South America:
Kluwer Academic Publishers
101 Philtp Drive
Assinippi Park
* Norwell, Massachusetts 02061 USA
Telephone (781) 871 -6600
Fax (781) 871-6528
E-Mail <kluwer@wkap.com=>

Distributors for all other countries:

Kluwer Academic Publishers Group

Post Office Box 322 ‘
3300 AH Dordrecht, THE NETHERLANDS
Telephone 31 78 6576 000

Fax 31 78 6576 474

E-Mail <orderdept@wkap.nl>

| | . .
1“ Flectronic Services < http:/www wkap.nl »

Library of Congress Cataloging-in-Publication
CIP info or:

Title: Theory and Application of Graphs
Author: Xu
ISBN: 1-4020-7540-5

Copyright © 2003 by Kluwer Academic Publishers

Al rights reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photo-copying.
microfitming, recording, or otherwise, without the prior written permission of the publisher. with
the exception of any material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work.

Permissions for books published in the USA: Qermi ssions@wkap.com
Permissions for books published in Burope: permissions@wkap nl

Printed on acid-free paper.

Printed in the United States of America



Preface

In the spectrum of mathematics, graph theory which studies a mathe-
matical structure on a set of elements with a binary relation, as a recognized
liscipline, is a relative newcomer. In recent three decades the exciting and
rapidly growing area of the subject abounds with new mathematical devel-
spments and significant applications to real-world problems. More and more
colleges and universities have made it a required course for the senior or the
beginning postgraduate students who are majoring in mathematics, computer
science, electronics, scientific management and others. This book provides
an introduction to graph theory for these students.

The richness of theory and the wideness of applications make it impossi-
ble to include all topics in graph theory in a textbook for one semester. All
materials presented in this book, however, I believe, are the most classical,
fundamental, interesting and important. The method we deal with the mate-
rials is to particularly lay stress on digraphs, regarding undirected graphs as
their special cases. My own experience from teaching out of the subject more
rhan ten years at University of Science and Technology of China (USTC)
~hows that this treatment makes hardly the course difficult, but much more
twccords with the essence and the development trend of the subject.

The book consists of seven chapters. Excepting that the first chapter
ontains the most basic concepts and results, each chapter presents one spe-
il topic, including trees and graphic spaces, plane and planar graphs, flows
nd connectivity, matchings and independent sets, coloring theory, graphs
nd groups. These topics are treated in some depth, both theoretical and ap-

ded, with some suggestions for further reading. Every effort will be made to
-‘rengthen the mutual connections among these topics, with an aim to make
ne materials more systematic and cohesive. All theorems will be stated
warly, together with full and concise proofs, some of them are new. A
1mmber of examples and more than 350 figures are given to help the reader
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to understand the given materials. To explore the marbes 2 f
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cal results, such as the max-flow min-cut theorem of Ford
Menger’s theorem, Hall’s theorem, Tutte’s theorem and Ko - =

|
graph theory Letter, we will specia

Throughout this book the reader will see that graph the v oo -
connection with other branches of mathematics, including e oo
matrix theory, group theory, combinatorics, combinatorial cprios 2]
operation research, and wide applications to pther subjects. e oo
puter science, electronics, scientific management and so on. The w7 o ns
carefully selected are arranged in the latter section(s) of each (hiazr-o lue
aim of such arrangements is to conveniently choose these material- @ 7 - e

readers according to their interesting and available periods.

Fxercises at the end of each section, more than 500, from routinge = iiee
to challenging, are supplements to the text. Some of them are very nup rraiit
results in graph theory. It is advisable for the reader to be familiar with: the
new definitions introduced in the exercises since they are useful fur tureher
study. The reader is also advised to do the exercises as many as he o1 <he)
can. The harder ones are indicated by bold type.

The style of writing and of presentation of this book have be, to a great
extent, influenced by Graph Theory with Applications, a popular textbook
written by J. A. Bondy and U. S. R. Murty whom I am grateful to. fiom
which some typical materials have been directly selected in this book.

"The book is developed from the text for a senior and first-yvear p ~tarad-
nate course in one semester at USTC. I thank the participants of the course
for their great interest and stimulating comments. I would like to thank
Teaching Affairs Division, Graduate School and Department of Mathematics
at USTC for their support and encouragement.

Many people have contributed, either directly or indirectly. to this book. I
avail myself of this opportunity to particularly express my heartfelt gratitude
to Qiao Li, Feng Tian, Yanpei Liu, Genghua Fan. Yongchuan Chen. Dingzhiu
Du and Shenggui Zhang for their continuous help and valuable suggestions.

Finally, I would like to express my appreciation to my son, Keli Xu, for his
very concrete help, and my wife, Jingxia Qiu, for her support, understanding
and love, without which this work would have been impossible.

Jun-Ming Xu
(xujm@ustc.edu.cn)
December 2002
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Chapter 1

Basic Concepts of Graphs

In many real-world situations, it is particularly convenient to describe the
svecified relationship between pairs of certain given objects by means of a
“lagram, in which points presents the objects and (directed or undirected)
~nes the relationship between pairs of the objects. For example, a national
‘raffic map describes a condition of the communication lines among cities
-t the country, where the points represent cities and the lines represent the
ighways or the railways joining pairs of cities. Notice that in such diagrams
ne is mainly interested in whether or not two given points are joined by
= line; the manner in which they are joined is immaterial. A mathematical
:bstraction of situations of this type gives rise to the concept of a graph.

In fact, a graph provides the natural structures from which to construct
~~athematical models that are appropriate to almost all fields of scientific
“atural and social) inquiry. The underlying subject of study in these fields
* some set of “objects” and one or more “relations” between the objects.

In this chapter, we will introduce basic concepts of a graph used in the
“maining parts of the book, including several special graphs, subgraphs of

-rlous types, walk, path, cycle, diameter, connection, Euler circuit, Hamil-
21 cycle, adjacency and incidence matrices, as well as the basic results closely
~-.ated these concepts. At the end of this chapter we will present an appli-
:ion of graphs to matrix theory.

It should, for the beginner specially, be worth noting that most graph
“.=orists use personalized terminology in their books, papers and lectures.
~=n the meaning of the word “graph” varies with different authors. We will
.2 pt the most standard terminology and notation extensively used by most
--7hors, with a subject index and a list of symbols in the end of the book.
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1.1 Graph and Graphical Presentation

Mathematically, a graph is a mathemart: -z <=7 72w v 3
with a binary relation. Concretely speak::. LoITiI o B R 2
(V,E,%), where V and F are two dISJomt s57% U 4 om TLBRIGC DL .-
V x V. The set V is nonempty and calis-: s -e=taz-ges of "1 27
element in V called a vertez. The set E is <= =2~ spger-ses 0F L1 7 2L
element in E called an edge. The mapping © & “afel &I o0 6. '
which maps an edge into a pair of vertices ‘a2 mg-memmrs 0 0-

If V x V is considered as a set of order=2 za: =y & 1 _oh
is called a directed graph, or digraph for sr.-zv T ¢ az suss o
sometimes, called a directed edge or arc. if = < = = . “aem ie oo =
z and y are called the tail and the head cf 17z =zz2 ¢ r=geemoes Ce
edge e is sometimes called an out-going €3: =7 = 0wz T T

If V x V is considered as a set of unord-c=2 caz =3 & 2@
is called an undirected graph. Usually, it :2 czsiizas on 1emeen
an unordered pair of vertices by either ro "= .z &ews
an undirected graph are sometimes called .-z:-- -2 <ops

From definition, it is possible that two szmz-weriimes 0oz =i o
cal, such an edge is called a loop. It is also ;ssim = tnzt o mnes 0 0 oos
are mapped into the same element in V7 - 17 _nZer ine conlt oo '
edges are called parallel edges or multi-eds=: £o0 = . < - . .
— {e € E(G) : y(e) = (z,y)} and pgiz.. = = = . T L
1(G) = max{ug(z,y) : Vz,y € V(G)}is calied e —ums o

Example 1.1.1 D = (V(D),E(D),vp' 152 1igmzi v

V(D) ; {1131, r2,T3,T4. If.}.
E(D) S {al,ag,ag,a4.,a5.ag. (PRl S
and 1¥p is defined by
Yplay) = (z1,72), ¥plaz) = (z3.000. =2 2 =
Yplag) = (z4,73), ¥plas) = (vg.02. ~: == =
Yplar) = (z5,72), ¥plag) = (r2.75 . =~z 2. =
0

In such a digraph D, two edges a5 and aq- ar= ;27a .2 - 2o
edges a7 and ag are not. The edge a3 is a locp

Example 1.1.2 H = (V(H),E(H).vpg =2 22700

E(H) = {blh'_’b}")‘ L,:, .
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and ¥y is defined by

’(pH(bl) = (y17y2)7 beH(bQ) = (yS)yQ)’ 71Z)H(b3) = (?/3:1/3),
Y (ba) = (ya,v3), Yubs) = (ys,v2), vu(bs) = (ys,v2),
Yu(br) = (ys,v2),  Yu(bs) = (y2,us), vu(bs) = (y3,us).

Example 1.1.3 G = (V(G), E(G),v¢) is an undirected graph, where
V(G) = {Z[,ZQ,Z3,Z4,Z5,Z6}

E(G) = {e1,e2,e3,e4,e5,€5,€7,€5,€9}
and g is defined by

Yoler) = z122, Yples) = z124, vYales) = 212,
Yales) = 2223, Peles) = z3z4, Peles) = 232,
Yaler) = 2025, Pgles) = 2425, Pi(eg) = z526.

(2) (b)

Figure 1.1: Two graphical presentations of the digraph D

A graph can be drawn on the plane. Each vertex = of the graph is indi-
cated by a poiﬁt. For clarity, such a point is often depicted as a small circle.
If the graph is a directed, then each edge with tail z and head y is indicated
by a directed line segment or curve joining from z to y. If the graph is unai-
rected, then each edge with end-vertices z and y is indicated by an undirected
line segment or curve joining z and y. Such a geometric diagram is called
a graphical presentation of the graph. It depicts the incidence relationship
holding between its vertices and edges intuitively.

For instance, the diagrams shown in Figure 1.1 are two graphical presen-
tations of the digraph D defined in Example 1.1.1. The diagrams shown in
Figure 1.2 are graphical presentations of the digraph H and the undirected
graph G defined in Example 1.1.2 and Example 1.1.3, respectively. It is this
representation that gives graph its name and much of its appeal.



4 Basic Concepts of Graphs

The end-vertices of an edge are said to be incident with the edge, and vice
versa. Two vertices which are incident with a common edge are adjacent, as
are two edges which are incident with a common vertex.

A graph is said to be loopless if it contains no loop. A graph is said to
be simple if it contains neither parallel edges nor loops. For a graph without
parallel edges, the mapping 1 is injective. In other words, for each edge e
there exists a unique pair of vertices corresponding to the edge. Thus it is
convenience to directly use a subset of V x V instead of the edge-set E. In this
case, we may simply write (V, E) for (V, E, ). For instance, the graph G de-
fined in Example 1.1.3 is simple, which can be written as G = (V(G), E(G)),
where E(G) = {zlzg,z1z4,zlzﬁ,2223,zgz4,2325,2225,Z4z5,2526}.

F41 z3 Zs
22 24 26
(a) H ) G

Figure 1.2: Graphical presentations of graphs H and G

An undirected graph can be thought of as a particular digraph, a sym-
melric digraph, in which there are two directed edges called symmetric edges,
one in each direction, corresponding to each undirected edge. Thus, to study
structural properties of graphs for digraphs is more general than for undi-
rected graphs. -

There are many topics in graph theory that have no relations with direc-
tion of edges. The undirected graph obtained from a digraph D by removing
the orientation of all edges is called an underlying graph of D. Conversely, the
digraph obtained from an undirected graph G by specifying an orientation of
each edge of G is called an oriented graph of G.

Figure 1.3 shows such graphs, where (a) is an undirected graph, (b) and
(=) are its symmetric digraph and an oriented graph, respectively.

Let (V, E,) be a graph. The number of vertices, v = |V], is called order
of the graph; the number of edges, € = |E], is called size of the graph. A
graph is called to be empty if € = 0. An empty graph is called to be trivial if
v = 1, and all other graphs non-trivial. A graph is finite if both v and ¢ are
finite. Throughout this book all graphs are always considered to be finite.
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The letter G' always denotes a graph, which is directed or undirected
according to the context if it is not specially noted. Sometimes, to emphasize,
we use the letter D to denote a digraph. When just one graph is under
discussion, the letters v and ¢ always denote order and size of the graph,
respectively.

a

X3
@ a3

X2

a, as

X3 X4
@ (b) ©
Figure 1.3: The symmetric digraph and oriented graph of an undirected graph

The symbols [r] and [r] denote the greatest integer not exceeding the
real number r and the smallest integer not less than r, respectively. The
symbol

n\ nn-1)---(n—k+1)
k k!

denotes the number of k-combinations of n distinct objects (k <n).
As an application of a graph, we give an example.

Example 1.1.4 1In any group of six people, there must be three people
who get to either know each other or not.

Proof We use the points A, B,C, D, E, F on the plane to denote these
six people, respectively. We draw a red line joining two points if two people
have known each other, a blue line otherwise. Use G to denote the resulting
diagram. We need to only prove that G certainly contains either a red triangle
or a blue triangle. Consider a point, say F. There exist three lines of the same
color which are incident with a common point F. Without loss of generality,
we can suppose that they are three red lines FA, FB and FC. Consider the
triangle ABC. If it has no red line, then it is a blue triangle; if it has a red
line, say AB, then the triangle FAB is red. 1
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Exercises

1.1.1 Drawing graphical presentations of the following five graphs without
parallel edges B, K,Q, D and G, respectively, where
(a) V(B) = {z1m273 © Ti € {0,1}} and if z,y € VIB . = = "-1233,

<~ then (z,y) € E(B) if and only if y = o730, a € {0. 1}

(b) V(K) = {z1moz3 : 7; € {0,1,2}. 72 # 1. 73 S It <
V(K),z = z13973, then (z,y) € E(K) if and only 3f o = == % a €
{0,1,2} and « # x3;
(¢) V(Q) = {z1z223 © T € {0,1}}. ifr,y e VI(Q o= o720 and
y = y11oy3, then zy € F(Q) if and only iflry—yy ~ 0= = 55— v

(d) V(D) = {0,1,---,7}, and E(D) = {(i,j) : there exists scme § €

1.1.2

1.1.4

{1,2} such that j —i = s (mod 8) };

(e) V(G) = {0,1,---,7}, and E(G) = {ij : there exists some s € {1,4}
such that |5 —i| = s (mod 8) }.

Prove that for any simple graph G,

(a) e <w(v —1) if G is directed;

(b) € < 1 v(v 1) if G is undirected.

The symbols D, and G, denote the sets of all simple digraphs and all
simple undirected graphs of order v, respectively. Prove that

(a) [Dy] = 2715

(b) |gv’ — 2v(v—1)/2'

Prove that there are 2¢ different oriented graphs for any undirected
graph.

The symbols D(v,e) and G(v,€) denote the sets of all simple digraph
and undirected graphs of order v and size ¢, respectively. Prove that

(a) [D(v,6)] = (”(” - ”>;

£

v(v — 1)/2>'

€

(b) 1G(v,e)| = (
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1.2 Graph Isomorphism

"T'wo graphs often have the same structure, differing only in the way their
wertices and edges are labelled or the way they are drawn on the plane. To
‘nake this idea more exact, we introduce the concept of isomorphism. A graph
7 = (V(G), E(G),%¢) is isomorphic to a graph H = (V(H), E(H),}y) if
-here exist two bijective mappings

0:V(G) - V(H) and ¢: E(G) — E(H)
such that for any e € E(G),

bale) = (z,y) <= Yu(dle)) = (0(x),0(y)) € B(H). (1.1)

The pair (6, ) of mappings is called an isomorphic mapping from G to H.

Since such two mappings 6 and ¢ are bijective, H also isomorphic to G.
Thus we often call that G and H are isomorphic, write G = H, the pair (6, ¢)
of mappings is called an isomorphism between G and H.

To show that two graphs are isomorphic, one must indicate an isomor-
phism between them. For instance, two digraphs D and H defined in Ex-
ample 1.1.1 and Example 1.1.2, respectively, are isomorphic since the pair of
mappings (6,1) is an isomorphism between them, where 8 : V(D) — V (H)
and 1 : E(D) — E(H) are defined by

O(zi) =vy;, foreachi= 0,1,2,---,5; and
w(aj):bj, for each i =0,1,2,---,9.

The concept of isomorphism for simple graphg is simple. Two simple
zraphs G and H are isomorphic if and only if there is a bijection 8 : V(G) —
. (H) such that (z,y) € E(G) if and only if (f(z),0(y)) € E(H). In this

:se, the condition (1.1) is usually called the adjacency-preserving condition.

It is clear that if G and H are isomorphic, then v(G) = v(H) and €(G) =
- H). But the converse is not always true. Generally speaking, to judge
~nether or not two graphs are isomorphic is quite difficult.

It is easy to see that “to be isomorphic” is an equivalence relations on
--1phs; hence, this relation divides the collection of all graphs into equiv-
.-nce classes. Two graphs in the same equivalence classes have the same
--ructure, and differ only in the labels of vertices and edges. Since we are
-imarily interested in structural properties of graphs, we will identify two
- morphic graphs, and often write G = H for G = H. We often omit labels

~.en drawing them on the plane; an unlabelled graph can be thought of as a
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representative of the equivalence class of isomorphic graphs. We assign labels
to vertices and edges in a graph mainly for the purpose of referring to them.

Next, we introduce some special classes of graphs, which frequently occur
i.1 our discussion later on.

-

Figure 1.4: Petersen graph

The graph shown in Figure 1.4 is called Petersen graph, an hveresting
graph, which often occurs in the literature and any textbook on graplh Loty
as various counterexamples.

(@) Ks ®m K; (c) Kiz

Figure 1.5: (a) K5, (b) K3, (c) Ka3

A complete graph is one in which each ordered pair of distinct vertices igur
linked by exactly one edge. Up to isomorphism, there is just one complete
graph on v vertices, denoted by K,. The graphs shown in Figure 1.5 (a)
and (b) are a complete undirected graph K5 and a complete digraph K3,
respectively. It is clear that

(Ky) = v(v — 1) if K, is directed,;
SR % v(v—1) if K, is undirected.

An oriented graph of a complete undirected graph is called a tournament.
The reason why we call it the name is that it can be used to indicate the
results of games in a round-robin tournament between v players. A directed
edge (z,y) means that the player z has won the player y. Up to isomorphism,
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" tournament of order one is a trivial graph; there is just one tournament
- order two; two tournaments of order three; four tournaments of order four.
- :ese not isomorphic tournaments are shown in Figure 1.6.

S AN

Figure 1.6: Nonisomorphic tournaments of order i for § = 1,2,3,4

A bipartite graph is one whose vertex-set can be partitioned into two
-:bsets X and Y, so that each edge has one end-vertex in X and another
- Y, such a partition {X,Y} is called a bipartition of the graph. We call
- graph to be equally bipartite if it is bipartite and has a bipartition with
"¢ same number of vertices in each part. We often use the symbol G(X U
- E) to denote a bipartite simple graph G = (V, E) with bipartition {X,Y}.
~:milarly, we can define a k-partite graph and an equally k-partite graph.

A complete bipartite graph is a bipartite simple graph G(XUY, E) in which
-:ch vertex of X is joined by exactly one edge to each vertex of Y if | X| = m
d Y| =n, up to isomorphism, such a complete bipartite undirected graph
- unique and denoted by K,, ,. The graph shown in Figure 1.5 (c) is K3 5.
s customary to call Ky n a star. Usually, write Kn(2) for K, 5.

Similarly, we can define complete k-partite grapit and K, (k). 1t is easy to
-rify that e ’

3
€(Km,n) =mn and (K, (k) = % k(k — 1)n?.
~ is also easy to verify that for any bipartite simple graph G of order n,
1 n? if n is even;
(@) < { g (n®* —1) if nis odd.
Bipartite graphs are an important class of graphs. In fact, every digraph

‘responds a bipartite undirected graph. Let D = (V,E,¢) be a digraph,
ere

V(D) = {.’L‘],.’EQ,"',Q?U} and E(D) = {aj,ay,--- , Qe }.

-
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Construct an equally bipartite undirected graph G = (X UY. £ /7 . a)
with :

X ={z), 2y, 2}, Y= {90'1'>$'2'a"'a$'u' ’
E(G) = {e1,e2, ", e}, where ¥g(e;) = ziz]
_ <= there is a; € E(D) such that ¢¥p(a;) = (r;. 1-
(l = 1a21"'7€)'

So constructing bipartite undirected graph G is called an associatz: ~: riite
graph with the digraph D. For instance, the graph G shown in Figure ..~ 'b)
is an associated bipartite graph with the digraph D shown in (a). I+ :s clear
that

v(G) =2v(D) and ¢(G) =¢(D). 1.2)

(b)

Figure 1.7: A digraph D and its associated bipartite graph &
R

Example 1.2.1 We construct an equally bipartite simple graph. called
n-cube, or hypercube, denoted by Qn = (V(Qn), E(Qr)), where,

V(Qn) = {mz2- - 7 €{0,1}, i=1,2,---,n},

and two vertices £ = z1z2-- Tp and y = Y1Y2- --)yn are linked by an undi-
rected edge if and only if they differ in exactly one coordinate, i.e..

(%

zy € E(Qn) <= ) _lzi—wil =1

i=1

The graphs shown in Figure 1.8 are Q1, Q2, Q3 and Q4.
By definition, @y is a simple undirected graph, and has 2" vertices. We
show that (), is bipartite. To the end, let

X ={z1z2- Tn: 1+ T2+ +xp, =0 (mod 2)}:
Y={yiy2- - yn: y1+y2+- +yn =1 (mod 2)}.
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0 00 01
o [0} 0100 g
011 111
001 0000 &
101
010
110
O
000 100

10
Figure 1.8: n-cubes Qnforn=1,234

Then, by definition, X UY = V(Qn), XNnY
-partition of V(Q,)

~rtices in X. Suppose

= 0. Therefore, {X, Y}isa
- We can claim that thére is i edge between any two

to the contrary that there exist 7 = 1T 1y, o =
on
rh---2), € X such that z2' € E(Qy). Then Y |z; — ;] = 1, namely,
N

\

Mevtea e — (@ by gl =,
- iis contradicts the fact that ¢ and ¢ are ‘i‘n X. There, ther
~tween any two vertices in X.

efore, is no edge
LI R ¢
Similarly, there is no edge between.any two vertices in V. Therefore, Q,,
1+ bipartite graph with the bipartition {X,Y}.
Arbitrarily choose z = 122 Tp € V(Q)
" Jn, it is adjacent to z if and only if they di

ffer in exactly one coordinate.
- "is means that vertices adjacent to the verte

x z have exactly n, that is,
ges incident with z have n since Qn is simple. Let us use Ey (resp. Ey)
lenote the set of edges incident with vertice

s in X (resp. Y). Then

n|X| = |Ex| = e(Qn) = |By| = n]Y|.
- i result, we have that

. For a vertex Y=1Yy2 - yYp

Xl =1Y]= é v(@n) =2""1 and £(Q,) = n2" 1.
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Example 1.2.2 The symbol T} , denotes a complete k-partite graph of
order v in which each part has either m = l%} or n = [%‘l vertices. Prove
that

(a) e(Tkp) = (” ;m> +(k—1) (m;“ 1);

(b) €(G) < e(Tk,y) for any complete k-partite graph G, and the =iy
holds if and only if G = Tk y.
Proof (a) Let v = km+r, 0 <7 < k. Then r = v — kn 0 e

definition of Tk ,, we have that

)" --1(3)
o(v 1) = rm(m+1) — (k= r)m(m = 1)

v(v = 1) = 2m(v — km) — km{m — 1))
vwm)(vﬁm——l)Jr% (k — 1)ym{m +1)

- () e

(b) Suppose that G = Kn, . n, is a complete k-partite grap:. = e
largest number of edges. Then o

k ';,(' -
- ()% ()

4
'

If G is not isomorphic to Ty, then there must exist some i ar’ )

Tk,v =

—

fi

—_—

I Sl Lt e N
<

I

—~—

<

3

such that n; — n; > 1. Consider another complete k;partite gra;: - Cne
number of vertices in its k-partition are, respectively,

iy ngs o, (i — 1), napn, o mi-1 (g 1), njer - -

’

k ' L
=) & (-5

Then

which contradicts to the choice of G. Thus, G = Tk y- 1
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o

(a) Prove that if G 2 H, then v(G) = v(H) and e(G) = (H).

(b) Construct a graph to show that the converse of (a) is not true.

Prove that if G is a bipartite simple graph G of order n, then

2
£(G) S{

n if n is even;
In Particular, e(K, ) = mn.

M i f et

(n*—-1) if nis odd.

Write out definition of k-partite graph and prove that
e(Kn(k)) = % k(k ~ 1)n?.

Prove that the following three graphs are isomorphic to Petersen graph.

(the exercise 1.2.4)

The complement G of a simple graph G = (V, E) is the simple graph
with the vertex-set V, and (z;y) € E(G®) <= (z,y) ¢ E(G). Prove
that _ AP

'a) the complement of every tournament is a tournament;

b) G¢= H® <= G = H if both G and H are simple.

- A simple graph G is self-complementary if G = G°. Prove that if G is

self-complementary, then
v(v—1) if G is directed;
v(v—1)and v =0, or 1 (mod 4) if G is undirected.

Ny

m

—_—

Q

g

|
A= DN

Construct that
1) two self-complementary tournaments of order four;

11 a self-complementary undirected graph of order five.
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1.3 Vertex Degrees

Let G be an undirected graph and z € V(G). The de:7-
denoted by d¢(z), is the number of edges incident with =. earr. . - s
as two edges.

For the graph G shown in Figure 1.9 (a), for instance,

de(zy) = dglzs) =4, dg(z2) = dg(ze) = 3.

() ' ®

Figure 1.9: (a) an undirected graph G (b) a digraph D

A vertex of degree  is called a d-degree vertez. A O-degree vertex - .=
an isolated vertez. A vertex is called to be odd or even if its degr=- - ~Id
or even. A graph G is k-regular if dc(m) — k for each x € V(G1. an 7 s,
regular if it is k-regular for some k, and k is called the reqularity of

JFor instance, the complete graph K, is (n’'— 1)-regular, the - ilete
bipartite graph K, , is n-regular; Petersen gra’bh is 3-regular; the - - e is

n-regular. The parameters

A(G) = max{dg(z): 7 € V(b)}, and
§(G) = min{dg(z) : z € V(6)}

are the mazimum and the minimum degree of G, respectively. Clearly. * 1 =
k = A(G) if G is k-regular.

We now give the corresponding terminology and notation for a digraph.
Let D be a digraph and y € V(D). The symbol E}(y) denotes a set of
out-going edges of y in D. The cardinality [EE(y)| is the out-degree of y,
denoted by df(y). Similarly, the symbol Ep(y) denotes a set of in-coming
edges of y in D, and di,(y) = |Ep(y)| is the in-degree of y. For the digraph
D shown in Figure 1.9 (b), for instance,

dz(yl) = 2a dg(y?) = 17 dE(y3) = la d-]S(yU =3
dB(yl) = 27 dB(UQ) = 2? dB(y3) = 31 dl—)(y’l) - 01
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A vertex y is called to be balanced if dh(y) = dp(y), and D is called to

be balanced if each of its vertices is balanced. The parameters

AT (D) = max{d}(y): y € V(D)}, and

A~(D) = max{dp(y) : ye V(D))
-re the mazimum out-degree and mazimum, in-degree of D, respectively. The
T arameters

0F(D) = min{d}(y) : y € V(D)}, and

67(D) = min{dp(y) : ye V(D))

v the minimum out-degree and minimum in-degree of D, respectively. The
. irameters

A(D) = max{A*(D), AT(D)}, and
4(D) = min {67(D), 07 (D)}

--» the mazimum and the minimum degree of a digraph D, respectively. A
~zraph D is k-regular if A(D) = (D) = k.

Let G be a bipartite undirected graph with a bipartite {X,Y}. It is easy
see that the relationship between degree of vertices a

’ nd the number of
zes of GG is as follows. o -
2 dela) mel@) = Y daly). (1.3)
z€X - yey
- 1 result, we have —_
) C2e(G) = Y do(a). (1.4)
TEV(G) .

senerally, for any a digraph D we have the following relationship between
-r=e of vertices and the number of edges of G.

Theorem 1.1 For any digraph D,
e(D) = Z di(z) = Z dp(z).
€V zeV

~roof Let G be the associated bipartite graph with D of bipartition
*"}. Note that

de(a') = df(z), de(a") = dy(z), Ve V(D).
.z equality (1.3), we have that
2 dp@)= Y do(@) =e(@) = Y do(a") = > dp().

eV z’eX z'’'eY zeV
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Since £(D) = £(G) by (1.2), the theorem follows.
Corollary 1.1 For any undirected graph G,

2(G) = ¥ dg(z)

zeV

and the number of vertices of odd degree is even.

Proof ‘Let D be the symmetric digraph of G. Then e(D) = 2= -

that
dg(z) = df(z) = dp(z), YzeV.

By Theorem 1.1, we have that

S do(z) = Y db(z) = > dp(z) ) =2e(G

zeV zeV eV

Let V, and V, be the sets of vertices of odd and even degree . - roers

tively. Then

S da(z)+ ) dg(z) = Zd};gw) =

zeVo z€Ve zeV. .

Since Y dg(x) is even, it follows that 3 dc(z) is also even. =.. -

zeVe €V,
is odd for any z € V,, thus, |V, is even.

The following notation and terminology are pseful and conen o

discussions later on.
Let D be a digraph, S and T are disjoint nonempt\ SHT

The symbol Ep(S,T) denotes the set of edges of D whose tails =72 0
= mder

heads are in T', and pp(S,T) = |Ep(S,T)|. When just one fral

discussion, we usually omit the letter D from these symbols arz o

and p(S,T) instead of Ep(S,T) and pp(S,T) for short. S
(1,S). ¥ T =5 =V(D)\S, then we write E}(S) (resp. E— =
(S,S) (resp. (S,S5)), and d5(S) = |ES(S)] (resp. dp(S) = E» -
The symbol N} (S) (resp. Np(S)) denotes the set of hezis
of edges in Ep[S], which is called a set of out- neighbors (resp
Sin D.
For instance, consider the digraph D shown in Figure -

{yly y?}’ then

E}(S) = {as}, dh(S)=1,  Np(5) = {v:
Ep(S) = {as,a7r},  dp($) =2, Np(5) =1

i

M-

Toate

<ur

D).

~ and
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Similarly, for an undirected graph G and S ¢ V(G), the symbols Es(S)
and Ng(S) denote the set of edges incident with vertices in S in G and the
sct of neighbors of S in G, dg(S) = [Ec(S)]

Example 1.3.1 Prove that ¢(G) <  v? for any simple undirected graph
5 without triangles.

Proof  Arbitrarily choose zy € E(G). Since G is simple and contains no
‘riangle, it follows that
[da(z) — 1]+ [da(y) — 1] < v -2,
“hat is,
dg(z) + dg(y) < wv.

- hen summing over all edges in @ yields

Z dg(z) < ve.

zeV
3v Cauchy’s inequality and Corollary 1.1, we have that

, 2
~ 1 4
> Tdi(z) >~ = - ¢?
ve> ijG(x)"v (Z dg(fL’)) o
eV , o \eeV
“at is, 6(G) < 1 o2, , '

Example 1.3.2 Let Gisa self-complementary simple undirected graph
“ithv =1 (mad 4). Prove that the number of vertices of degree % (v—1)in
- 1s odd (the self-complementary graph is defined in the exercise 1.2.6).

Proof Let V, and V, be the sets of vertices of odd and even degree in
- respectively. Then |V,| is even by Corollary 1.1. Since v = 1 (mod 4), v
st be odd and, thus, |V] is odd and 5 (v — 1) is even.
Let V] be the set of vertices in V, whose degree are not equal to % (v—-1).
prove the conclusion, we need to only show that |V/| is even. To the end,
© o € V,. Then, since G = G° there must exist y, € V(G) such that
- yz) = dge(z). Note that

d6(yz) = de(2) = (v — 1) - dg(z) (L.0)

- ~ven. Thus, y; € V,. Since dg(z) # % (v —1), it follows that dg(y,) #
—1) and y; # = from (1.5). Therefore, y, € V/. Furthermore, y, # y, if

- £V, and z # 2. This fact implies that the vertices in V. occur in pairs,
~-h shows that |V/] is even. 1




18 Basic Concepts

Exercises
1.3.1 Prove that 6 < 2e/v < A for any undirected graph.

1.3.2 Prove that there are always two vertices with exactly the s~

for any simple undirected graph of order at least two.

1.3.3 (a) Prove that if a digraph D is both §*-regular and 07 -2

§ = 6t =6, and hence D is é-regular.

-7 Graphs

ngree

“=r. then

b) Construct a digraph that is §+-regular but not §7-rez i
g

1.3.4 Let v > 2. Prove that

(a) there exists a simple digraph D of order v such that £ =o.v

distinct vertices z and y -
d}(z) # d(y) and dp(z) # dp(y);

(b) there exists a simple digraph D of order v such that the
vertices of odd out-degree and the number of vertices of ot - i

both are odd;

(c) there exists a r-regular simple digraph for any integer 7 i

1.3.5 Prove that for any tournament D,

Y dh(z)? = % dpl@)’= X (v dp(z))® — %
zeV \'%4

) eV T€
1.3.6 Prove that . ' v o
(a) any k (> 0)-regular bipartite graph is equally bipartite.

(b) any k-regular tournament has order v = 2k + 1.

1.3.7 Let X and Y be two subsets of V(G).‘ Prove that

2) d5(X NY) +d5(X UY) < dg(X) +d(Y) if G is a diz
G G G G

TWO

apin

(b) dg(X NY) +dg(X UY) <dg(X) +dg(Y)ifGisa dizraple

() dg(X NY) +dg(X U Y) < dg(X) + da(Y) if G is an
graph.

nndirected

1.3.8 The symbol emin denotes the minimum number of edges in 2 simple
undirected graph of order v that there is at least one edge among any

three vertices. Prove that

o k2 —k, ifv=2k
Emin k2, ifv=2k+1.
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1.4 Subgraphs and Operations

19

A subgraph is one of the most basic concepts in graph theory. In this
s=ction, we first introduce various subgraphs induced by operations of graphs.
Suppose that G = (V(G), E(Q),¢) is a graph. A graph H = (V (1),
ZiH), 1) is<called a subgraph of G, denoted by HCG,orGisa supergraph
THIfV(H) C V(G), E(H) C E(G) and vy is the restriction of Ya to

ZiH). A subgraph H of G is called a spanning subgraph if V(H) = V(G).

Let S be a nonempty subset of V(G). The induced subgraph by S, denoted
- G[S], is a subgraph of ¢ whose vertex-set is S and whose edge-set is the
:=t of those edges of G that have both end-vertices in S. The symbol G — §

~-notes the induced subgraph GV \ 9]

Let B be a nonempty subset of E(G), the edge-induced subgraph by B,
-noted by G[B], is a subgraph of G' whose vertex-set is the set of end-
--rtices of edges in B and whose edge-set is B. The symbol ¢ — B denotes

e spanning subgraph G[E \ B] of G. Similarly,
- iding a set of extra edges F to (7 is denoted by G

:rious types are depicted in Figure 1.10.

o X2

X0 - 0 X3
A spanning subgraph of G

x o
0 X2

x40

G— {eyes) Gl {xixx) ]

the graph obtained by
+ I'. Subgraphs of these

Xs X2
&4
Xy

G— {x1,x3)

Xs X2

(43
€3
X4 O———Pp————0x;
G[{eeseses) 1

Figure 1.10: A graph and its various types of subgraphs

=t G and G be subgraphs of G. We say that G| and G, are disjoint
-+ have no vertex in common, and edge-disjoint if they have no edge in

T
\ \\\\‘H}:\;‘\ :,I;l'a %

01559678
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common. The union Gy U G5 of Gy and G, is the subgraph with w77~ <-sef
V(G1)UV(G2) and edge-set E(G1)UE(G2). We write Gy +Gofor - reaif
G, and G are disjoint, and G1®G, for GUG, if Gy and (G5 are edge- 1< int.
If G; = H for each i = 1,2,---,n, then write nH for Gy +Ga+- — = The

intersection G1NGq of G and Gy is defined similarly if V(Gy1)© 1 = .

These operations of graphs are depicted in Figure 1.11.

X\ X4 1 X4
X2 x X3 OF— x3 X2 X3
Xy X4
O————re—0Q
X2 X3 X2 x3 X1 X
X1
x Xy
X2 X3
x; Xs X2 Xs .
® =
Xs
X4 X3
X3 X4 *3

Figure 1.11: Union and intersection of grdphs

An edge e of G is said to be contracted if it is deleted and its end-vertices
are identified; the resulting graph is denoted by G - e. This is illustrated in

Figure 1.12.

X3

X2

X3 =Xs

M G-e

Figure 1.12: A graph G- e by contracting the edge e of G
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Example 1.4.1 Let G be a balanced digraph. Then d}(X) = d;(X)

- r any nonempty proper X C V(G).

Proof Let H = G[X]. Sinee G is balanced, d/(z) = dg(z) for each

- = V(G). By Theorem 1.1, we have that Y dj;(z) = 3 dy(z). Thus,
zeX

ze X
dg(X) = ) di(@) = 3 djj(e) = 3 dgle) = Y dy(w) = dg(X)
z€X reX zeX zeX
- required. [

Example 1.4.2 Let G be an undirected graph without loops. Then G
tains a bipartite spanning subgraph H such that dg(z) < 2dy(z) for any
= V(G). Hence ¢(G) < 2¢(H).

Proof Let H be a bipartite spanning subgraph of G with edges as many
- nossible, and let {X,Y} be a bipartition. Arbitrarily choose = € V(G),
“hout loss of generality, say z € X. Let d = dg(z) — dy(z).
We claim that d < dg(z). In fact, suppose to the contrary that d >
r). Let X' = X'\ {z} and Y' = Y U {z}. Consider a bipartite spanning
~zraph H' of G with the bipartition {X’, Y’}. Then

e(H) > e(H') =e(H) + d— dy () > e(H),

ntradiction. Thus, dg(z) = d+dy(z) < 2dy(z). Summing up all vertices
- yields that €(G) < 2e(H) by Corollary 1.1. '

“he cartesian product Gy x G of two simple graphs Gy and G is a graph
. the vertex-set Vi x V5, in which there is an edge from a vertex z,z9
iother y1yz, where 71,41 € V(G,) and z2,y2 € V(G3), if and only if
rzp =y and (zg,y2) € B(Ga), or z3 =y, and (z1,41) € E(G)). See
.re 1.8, for example, QQ = K2 X Kg, Qg = KQ X QQ and Q4 = Ky x Qg,
-sneral, Qn = Ky X Q1. Some simple properties are stated in the
- ise 1.4.6. Particularly, the cartesian product satisfies commutative and
lative laws if we identify isomorphic graphs. It is the two laws that can
-~ us greatly simplify proofs of many properties of the cartesian products.
-t G; = (V;, B;) be a graph for each i = 1,2, -, n. By the commutative
.ssociative laws of the cartesian product, we may write Gy x Gy x - x Gy,
= cartesian product of G, Gy, - -, Gy, where V(G x Gy x --- x Gy) =
t2 x -+ x V. Two vertices z1z3 - - - z,, and Y1Y2 - - Yn are linked by an
n Gy x Gy x --+ x Gy if and only if two vectors (z1,22, -+, zy,) and
~+,yn) differ exactly in one coordinate, say the ith, and there is an

) € E(Gy).
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Example 1.4.3 An important class of graphs, the well-known hyper-
cube Q,, defined in Example 1.2.1, can be defined in terms of the cartesian
products, that is, @, = Ky x Ky x -+ x Ky of n identical complete graph Ko,
see Figure 1.8 for @1, Q2, Q3 and Q4. The hypercube is an important class of
topological structures of interconnection networks, some of whose properties
will be further discussed in some sections in this book.

The line graph of G, denoted by L(G), is a graph with vertex-set E(G)
in which there is an edge (a, b) if and only if there are vertices z,y, z € V(G)
such that ¢ (a) = (z,y) and Yg(b) = (y,z). Thisis illustrated in Figure 1.13.
Some simple properties of line graphs are stated in the exercise 1.4.4.

B(2,3)7L(B(2.2))
Figure 1.13: Graphs and their line graphs

Assume that L(G) is the line graph of a graph G. If L{G) is non-empty
and has no isolated vertices, then its line graph L(L(G)) exists. For integers
n > 1, L™(G) can be recursively defined as L(L"Y(@G)), where L°(G) and
LY(G) denote G and L(G), respectively, and L"1(G) is assumed to be non-
empty and has no isolated vertex. The graph L™(G) is called the nth iterated
line graph of a graph G.

Example 1.4.4 Two important classes of graphs, the well-known the n-
dimensional d-ary Kautz digraph and de Bruijn digraphs, denoted by K(d,n)
and B(d,n), respectively, whose original definitions will be given in Section
1.8, can be defined as L™ (Kg41) and LM Y(K)), where K} (d > 2) denotes
a digraph obtained from a complete digraph K4 by appending one loop at
each vertex. The digraphs in Figure 1.13 are B(2,1), B(2,2) and B(2,3).
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Exercises

141 Prove that for any bipartite undirected graph G with A(G) = A,
(a) there exists a A-regular bipartite graph H such that G C H;

(b) there exists a A-regular bipartite simple graph F such that G C F
if G is simple.

1.4.2 Prove that any loopless undirected graph G contains a k-partite span-
ning subgraph H such that (1 — )de(z) < dp(z) for any z € V(G).

1.4.3 (a) Let G be an undirected graph of order v, and n be an integer with
2 <n <wv-1 Prove that if v > 4 and all induced subgraphs by n
vertices in G have the same numbers of edges, then @ is either complete
or empty.

(b) Give an example to show that the conclusion in (a) is false for
digraphs.

(c) Let G' be a digraph of order v, and n be an integer with 2 < n < v—1.
Prove or disprove that if all induced subgraphs by n vertices in G are
regular, then G is either complete or empty.

1.4.4 Let L = L(G) be the line graph of G. Prove that
(a) L contains no parallel edges and contains a loop at vertex a if and
only if a is a loop in G; .
(b) /dzr(a) = d(y) and d (a) = de(z) for any a € E(G) with ¢g(a) =
(:1:,1‘{/), in particular, if G is d-regular, then so is L;
(c) if G is undirected then dr(e) = dg(z) +dg(y) — 2 for any e € L(G)
with 1 (e) = zy, particularly, L is (2d ~ 2)-regular if G is d-regular;
(d) e(L)y= ¥ dfi(z)d;(z) if G is directed, and
zeV(G)
(&) e(L) =% ¥ (do(z))? — e(G) if G is undirected.
reV(G)

1.4.5 The join G, VGQ of disjoint undirected graphs G} and G is the undi-
rected graph obtained from G; + G, by joining each vertex of G to
each vertex of G'5. Prove that

(a) Km,n = K&V KS,
(b) e(G1V G2) = €(G1) + &(G2) + v(G1) v(Ga).
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1.4.6 Prove that the cartesian product G X G of two simple graphs G and
G satisfies the following properties.
(EL) ’U(G1 X Gg) = l/(Gl)U(Gg).
(b) For any =y € V(Gy x Gy), where 2 € V(G) and y € V(G2).

db o, (ay) = d&, (@) +dG, (), A, G, (#Y) = dg, (@) + dg, (y)
if G is directed, and

dg, g, (@) = dg, (2) + de, ()

if G is undirected. In particular, Gy X Gy is 71 + o regular if Gy and
G are r1- and ro-regular, respectively.

(C) E(G1 X GQ) = U(Gl)E(Gg) + ’l)(GQ)E(Gﬂ.

(d) The cartesian product satisfies commutative and associative laws
if we identify isomorphic graphs, that is, Gy x Gy = Gy x Gy and
(Gl X Gg) x G3 = G % (Gz X G3)

(e) Qn = K2 % Ky x -+ % Ky of n identical complete graph Ko.

1.4.7 F.R.Ramsey [149] in 1930 proved the well-known Ramsey’s Theorem:
For given positive integers k and [, there exists a smallest integer 7 =
r(k,1) such that every simple undirected graph of order r contains either
Ky or Kf as its subgraph. The number r(k,1) is known as the Ramsey
number. Prove that ’

(a) r(k,1) = r(,k), r(1,k) =1, 7(2,k)= k and 7(3,3) = 6:

(b) r(k,1) < k1 - 1) + r(k — 1,1), and the strict inequality holds if
r(k,l — 1) and r(k — 1,1) are both even for & > Jand [ > 3;

(¢) (3,4) = 9, R(3,5) = 14, 7(4,4) =18.

(Other Ramsey numbers known to date are (3, 6) = 18 [102], 7(3, 7) =
23 [77), 7(3,8) =28 [126] and 7(3,9) = 36 [79].)

1.4.8 Prove that if an undirected graph G with vertex set V contains no
Ky as its subgraph, then there exists a complete k-partite graph
H with vertex-set V such that dg(z) < du(x) for every T € V(G).
Moreover, the equality holds if and only if G = H. (P.Erdos [54))

1.4.8 Prove that (Turdn’s theorem) if an undirected graph G contains no
Ky as its subgraph, then e(G) < €(Tky). Moreover, the equality
holds if and only if G = Tk v (P.Turan [161])



1.5, WALKS, PATHS AND CONNECTION 25

1.5 Walks, Paths and Connection

Let z and y be two vertices of a graph G. An zy-walk of length k in G is
1 sequence

W = zoeizies - - - epry,

where zg = z,z = y, whose terms are alternately vertices and edges, such
that the end-vertices of the edge e; are z;_; and z; for each i = 1,2,--- k.

If G is simple, an edge e; of W is determined by two vertices z;_. and
13, we may write W = (z,z,,---,zx_1,y) for short. The vertices = and y are
called the origin and the terminus of W, respectively, and other vertices its
internal vertices. A subsequence (z;,e;,1, - - yej,7;) of W is called a subwalk
of W, denoted by W (z;, ;).

If the edges ey,es, -+, ex of W are distinct, W is called a trail. If, in
addition, the vertices zg, 1, -, ) are distinct, W is called a path. A walk
trail) is called to be closed if its origin and terminus are identical. A closed
rail is called a circuit; a circuit is called a cyele if its vertices are distinct.

Note that in definition of a walk, all edges are direction-free. An zy-walk
W of a digraph G is called a directed zy-walk, denoted by (z,y)-walk, if for
every edge e; of W, vg(e:) = (x;-1,2;), that is, the direction of all edges in
W is accordance with one of W from z to y. Analogous definition can be
ziven for a directed trail, directed path, directed circuit and directed cycle.

Figure 1.14 illustrates an z;z3-walk W, -trail T', -path P, an (z1,z3)-walk
W, -trail T', -path P', a directed circuit C' and a directed cycle C' in the
Jigraph.

W = T121T502T503T4A3L508L247L3
T = zia1T5020508T2a723

P =zia1z508T20773

W' = 21a175a2250623042403L506T3
T' = r1a1T502T5a623

Pl = 21Q1T5QT3

C =z1a12502T5a6T3a722a0T

C, = T101T5067T3Q7T2Q9T

Figure 1.14: A digraph G

It should be noted from definition that a path is always supposed that its
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origin and terminus are different. A path is called to be longest if it has the
maximum length over all paths in the graph. A pathis call a Hamailton path
if it contains all vertices of the graph.

Example 1.5.1 BEvery simple graph G must contain a path I length
at least 8, where § = 0(G).

Proof We can, without loss of generality, suppose that G is an undirected
graph. Let P = (zo, %1, ,zx) be a longest path in G. Then all neizibors of
1o must lie on P, that is, Ng(zo) C {z1, 72, - ,x}. Since dgty . 2 VG =
§, it follows that

k > |Ng(zo)| = de(z0) = 9. '

Theorem 1.2 (Rédei, 1934 [150]) Every tournament contains Hamilton
directed path.

Proof Let T be a tournament of order v and P = (zy.rz.-- .7~ bea
longest directed path in T. The conclusion holds for v < 2 ¢iearl Sup-
pose v > 3 below, and suppose to the contrary that P is no « Hamil-
ton directed path. Then n < v, and there exists some T € VvoT P
such that (z,7n), (£1,2) € E(T). Thus, there must be some : . < 1 <
n) such that (z;-1,%) (z,z;) € E(T) (see Figure 1.15). It & lows that
(T, T2, Tim1y Ty Ty Tid 1" ,zp) is a directed path whose lengri :s longer
than P’s. This contradicts to the hypothesis that P is a longes: iwected
path in 7. Thus P is a Hamilton directed path in T'. I

Figure 1.15:  An illustration of the proof of Theorem 1.2

Two vertices z and y of G are said to be connected if there is an ry-path
in G. Tt is easy to see that “to be connected” is an equivalence relation on
V(G). Thus, there exists an equivalence partition {V1,---, Vo, } of V(G), two
vertices are in the same equivalent class V; if and only if they are connected
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in G. The subgraphs G[V;] is called a connected component of G. w = w(G)
is called the number of connected components of G. If w = 1, then ( is called
to be connected; otherwise disconnected.

For instance, the digraph shown in Figure 1.16 (a) is connected, but the
digraph shown in (b) is not for it has three connected components, where
one component is a single vertex.

K s
LN

Figure 1.16: a connected digraph and its three strongly connected components

It is easy to prove that a graph is connected if and only if [S,5] # 0 for
any nonempty proper subset S of V (see the exercise 1.5.4 (a)).

Example 1.5.2 Let G be a simple undirected graph with vertex-set
Vi={zy,29, -, 7y} satisfying dg(z1) < dg(zy) < --- < da(zy). I dg(zy) >
k for any integer k with 1 < k < v — dc(zy) — 1, then G is connected.

Proof Suppose to the contrary that G is disconnected. Then there is a
nonempty S C V such that [S,S] = 0. Without loss of generality, let z, € S.
Then [S| > dg(z,) + 1 since G is sumple. Let k = |5}, then

k=1[Sl=v—|S| <v—dg(z,) - 1.
Thus, dg(zx) > k by our hypothesis, which means that z; € S for every
t=k,k+1,--,v. If follows that k = | S| =v—-|S|<v—(v-k+1)=k— 1,
a contradiction. Therefore, G is connected. ]

Let G be a loopless graph, z € V(G) and e € E(G). Mfw(G —z) > w(G),
then z is called a cut-vertez; if w(G — e) > w((), then e is called a cut-edge.
For instance, in the graph @ shown in Figure 1.17, both x4 and z4 are cut-
vertices; Tz is a cut-edge. It is clear that if ¢ contains a cut-edge then it
must contain a cut-vertex if the order is at least three, but the converse is
not always true in general. A graph is called a block if it contains neither
“ut-vertex nor cut-edge. Every graph can be expressed as the union of several
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blocks. In Figure 1.17, (a) shows a graph G and (b) shows all blocks of G

3

X3

. X2
' x X3 x * X
X4

n . Xs X1
X3
x-
X6
Xo
(b)

(a)
Figure 1.17: a graph G and all of its blocks

Exémple 1.5.3 Every graph of order at least two contains at least two
vertices that are not cut-vertices.

Proof Without loss of generality, suppose that G is a nontrivial con-
nected graph. Let P = zgeiwi€272 - Tk—1€kTk be a longest path 1n G.
Then k > 1.

We now prove that each of two end-vertices o and zj of P is not a cut-
vertex. Suppose to the contrary that xp is a cut-vertex. Then w(G — xg) >
w(G). Let Go and G be two connected components of G — o, where Gy
contains z;. Choose y € Ng(zg) N V(Go). Thus, there exists an edge e of G
with end-vertices zg and y. Since P is not contained in G, the path

Q = yexpe1T1€2T2  Th—1€kTk
is longer than P, which contradicts to the choice of P. Tt follows that zo is

not a cut-vertex of G.
Similarly, we can prove that z) is not a cut-vertex of G too. ]

The connection is a concept that has no relations with direction of edges.
Next, we introduce a concept of strong connection that has relation with
direction of edges.

Let G be a digraph, two vertices ¢ and y of G are said to be strongly
connected if there are both (z,y)-path and (y,z)-path in G. Tt is also easy
to see that “to be strongly connected” is an equivalence relation on V(G).
The subgraph induced by an equivalence class is called a strongly connected
component of G. A digraph is called to be strongly connected if 1t has exactly
one strongly connected component, that is, any two vertices of G are strongly
connected.
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Two concepts of connectedness are the same for undirected graphs. For a
digraph, if it is strongly connected, then it is necessarily connected. The con-
verse is not always true. For instance, the digraph shown in Figure 1.16 (a)
is connected, but not strongly connected, its three strongly connected com-
ponents are shown in (b).

It is also easy to prove that a digraph is strongly connected if and only if
both (S,5) # @ and (S, S) # 0 for any nonempty proper subset S of V (the
exercise 1.5.4 (b)).

Example 1.5.4 A simple digraph G with e > (v~ 1)? is strongly con-
nected.

Proof Suppose to the contrary that G is not strongly connected. Then
there exists a nonempty proper subset S of V(G) such that (S,5) = 0. Let
k =|S|. Note that |(S, )| < k(v - k). It follows that

€ §2<§>+2<U;k>+k(v—k)

=-12—(k-1)v—k=1) < (v 1)
which contradicts to the hypothesis. Thus, G is strongly connected. 1

Example 1.5.5 A digraph G is called to be unilateral connected if there
exists either (z,y)-path or (y, z)-path for any two vertices z and y of G. Show
that G is unilateral connected if and only if G contains a directed walk going
through all vertices of G.

Proof The condition is sufficient clearly. We now show the condition is
necessary. To the end, we construct a simple digraph G’ = (V(G@"), E(G"))
as follows. V(G') = V(G) and (z,y) € E(G") if and only if there is an (z, y)-
path Py in G. Then G' contains a tournament as its spanning subgraph
since G is unilateral connected. By Theorem 1.2, G' contains a Hamilton
directed path P’. We can obtain a directed walk going through all vertices
of G by replacing an edge (z,y) of P’ with the directed path P, in G. 1

Exercises
1.5.1 (a) Prove that any zy-walk (resp. (z,y)-walk) necessarily contain an
zy-trail (resp. (z,y)-trail).

(b) Prove that any zy-trail (resp. (z,y)-trail) necessarily contain an
zy-path (resp. (z,y)-path).
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1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

Basic Concepts of Graphs

(c) Prove that any directed closed walk can be expressed as the union
of several edge-disjoint closed trails, and construct an example o show
that the term “directed” can not be deleted.

(d) Prove that any (directed) circuit can be expressed as :he nion of

several edge-disjoint (directed) cycles.

Prove that any simple digraph contains a directed path cf iength at
least max{dt,67}.

Prove that if G is a strongly connected digraph and z.y £ 17 . then
there exists an (z,y)-walk going through every vertex in G.

Prove that

(a) a graph is connected if and only if [S,5] # § for any nonempty
proper subset S of V;

(b) a digraph is strongly connected if and only if both (5. S = ¢ and
(5,S) # 0 for any nonempty proper subset S of V;

(c) a balanced digraph is strongly connected if and only if it 1s con-
nected;

(d) a digraph contains a directed path from a vertex zo to any other
vertex if and only if (S, S) # 0 for any nonempty proper subset S of V
containing zg-

Prove that a graph G of order at least three is connected if and only if
there exist two vertices z and y in G such that G — and G — y both
are connected.

Let G be a simple undirected graph and w = w(G). Prove that

(8) €(G) < } (v~ W) —w+1);

(b) G is connected if £(G) > Lv—1)(v—2);

(c) G is connected if dg(z) +dg(y) 2 v — 1 for any two nonadjacent
vertices x and y.

Let G be a simple digraph with w strongly connected components.
Prove that

(a) e(G) < (v~ w)(v—w+ 1)+ 3 (w—1)(2v - w);

(b) w = 1, that is, G is strongly connected if €(G) > (v - 1)°.
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1.5.8 Let G be a simple digraph of order v > 1. Prove that

(a) G is strongly connected if dt(z) +dg(y) > v—1 for any two vertices
z and y satisfying (z,y) ¢ E(G);

(b) G is strongly connected if ¢ > v —1) = (k+1)(v - k - 1) and
>k
1.5.9 Let G be an undirected graph. Prove that
(a) G contains no cut-edge if G contains no vertex of degree odd;
(b) G contains no cut-edge if 7 is k (> 2)-regular and bipartite;

(c) if by denotes the number of blocks containing the vertex z in G,
then the number of all blocks in G

bG) =w(@G)+ > (b, —1).
zeV(G)
1.5.10 Prove that

(a) any two longest paths in any connected graph must have a vertex
in common;

(b) all longest paths in the following graph have no vertex in common.

(the exercise 1.5.10)

1.5.11 Let G be a simple undirected digraph. Prove that
(a) if G is disconnected, then G® is connected;

(b) G and G° both are connected if and only if G and G* both contains
no complete bipartite graph as their spanning subgraph.
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1.6 Distances and Diameters

We in this section introduce the concepts of distance and diameter of
graphs which is closely related with paths and connectedness.

Let z and y be two distinct vertices of a graph G. The smallest length over
all (z,y)-paths is called the distance from z to y in G, denoted by dglz,y);
if there is no (z,y)-path, we adopt the convention that dg(r.y! is positive
infinite. An (z,y)-path is said to be shortest if its length is equal to dg(7,y)-

It is clear that if G is an undirected graph, then the existence of dg(z,y)
means existence of dg(y, ), and they have the same value, as the reverse of a
shortest (z,y)-path is also a shortest (y, z)-path. However, if G is a digraph,
then dg(z,y) and dg(y,z) exist not always at the same time. even if both
exist, they have not necessarily the same value.

The diameter of G, denoted by d(G), is defined as the maximum distance
between any two vertices of G, that is,

d(G) = max{dg(z,y) : V2,9 € V(G)}.

For example, for a path P, of n vertices, we have d(P,) =n — 1 if P, is
undirected, and d(P,) = oo if Py is directed. For a complete graph K,, we
have d(K,) = 1 no matter whether it is directed or undirected. The diameter
of a complete bipartite graph or Petersen graph is 2. For the n-cube Qn, its
diameter d(Q@n) = n.

It is clear that d(G) = 1 if and only if Ky C G, and the diameter d(G)
is well-defined if and only if G is a connected undirected graph or a strongly
connected digraph.

Example 1.6.1 Let G bea connected undirected graph with two non-
adjacent vertices. Then there exist z,y € V(G) such that dg(z, y) = 2.

Proof Let x and z be two nonadjacent vertices in G. Since G is con-
nected, there exists a shortest zz-path P = zejTi€%2 " Tk-1€k2- Then
k > 2. Let y = z2, then zejTiezy is an wy-path in G, and, hence dg(z,y) < 2.
If dg(x,y) = 1, then there exists some e € E(G) such that ¥g(e) = zy. The
length of the zy-path P' = Teyesrs - - €x—1€k? is shorter than that of P,
which contradicts to the choice of P. It follows that dg(z,y) = 2. 1

Example 1.6.2 Let G be a connected and simple undirected graph of

3
order v and the minimum degree 4, then d(G) < 5 %1»)1'

Proof Note that the diameter d(G) is well-defined and d(G) <v-—1for
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any connected graph G of order v. Thus we may assume that § > 3. Since
v 2 8 + 1, thus, we may also assume that d(G) > 4.

Let z and y be two vertices of G such that dg(z,y) = d(G) =d >4, and
let P = (zg, x4, yTd—1,%q) be a shortest zy-path in G, where zy = z and
zq = y. Because of the shortness of P, it is clear that Neg(z3:) " Ng(z35) = 0
for any two vertices z3; and z3; (0 < i # 5 < [g« 1). Considering all vertices
in P as well as their neighbors, we have

o2 a(|E o) ([ o) 2ottt

This means that the assertion follows. ]

Example 1.6.3 Let G be a strongly connected digraph of order v and
the maximum degree A. Then diameter of G '

:’U—l, fOrA:l,
d(G) { > [loga((A~1)+1) 11, forA>2

Proof Since G is a strongly connected digraph, diameter d(G) is well-
defined. Let d(G) = k. From any given vertex at most A vertices can be
reached in a distance of one and, for i > 1, at most A? vertices can be reached
in a distance of 7. It follows that

V<THA+A AT AR

k+1, for A =1;
— k+1 _ - (1.6
éA—~l—1, fOT A _>_ 2 ( )

For A =1, v <k +1 by (1.6), which means that d(G) =k >v—1. But
d(G) < v~ 1 obviously. Thus, d(G) =v - 1if A = 1.

For A > 2, (A~ 1)v < A*1 —1 by (1.6). This implies that d(G) = k
[ loga(v(A —1) +1) ] =1 as required.

-V

The upper bounds of v in the expression (1.6) is called (A, k)-Moore
bounds for digraphs of the maximum degree A and diameter k. The digraphs
whose order reaches the Moore bounds is called a (A, k)-Moore digraph. A
directed cycle of length k£ + 1 is the unique (1,k)-Moore digraph. We can
prove there are no (A, k)-Moore digraph for A > 2 and & > 2 (see Example
1.10.1 in Section 1.10). The Moore bounds for undirected graphs are given
in the exercise 1.6.5.
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The following two theorems give diameters of the cartesian product and
a line graph, respectively.

From definition of G x Ga, we note that if P = (zy,v1,v2.-+ . Um, Y1) is
an (x1,y1)-path in Gy, then for any b € V(Ga), (m1b,v1b,u2b, - - - . vmb,y1b),
denoted by Pb, is an (z1b,y;b)-path from the vertex z1b to the vertex yb
in G, X Go. Similarly, if W = (z2,u1,ug, -, u;,Y2) 18 an (z9.y2)-path in
G, then for any a € V(G1), (az2,auy, auz, - ,auy, ays), denoted by al¥, is
an (axq,ayz)-path from the vertex az to the vertex ayy in G; ¥ G,. Thus,
Q = Pzo,Uy W is an (7172, y19y2)-path in G X G4 with length =( 1+ e(W).

Theorem 1.3 The diameter d(Gy x --- x Gy) = d(G1) + - ~ d(Gn).
Particularly, d(Qn) = n, where @, is an n-cube.

Proof Using the associative law and the induction on n > 2. we need to
only prove d(Gy X Go) = d(G1) + d(G). To this purpose, let © = 1,72, y =
11y € V(G x Gp), where z1,y1 € V(G1) and z2,y2 € V(Gy). Let P bea
shortest (z1,y1)-path in Gy and W be a shortest (Ty,y2)-path in G1.

If , = y;, then 2, W is a shortest (z,y)-path in G x Gy and so

Ay %G, (3, y) = e(mW) = e(W) < d(G2) < d(Gy) + d(Ga).

If 29 = v, then Pz, is a shortest (z,y)-path in Gy X Gy, and so

da, %G, (7, y) = €(Pxy) = e(P) < d(G1) < d(G1) +d(Ga).

If z;